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Résumé

Les liaisons optiques satellite-sol en orbite terrestre basse (LEO) permettront des
communications directes à haut débit entre les satellites et les stations sol. Afin
d’exploiter les réseaux de télécommunication optique existants, le faisceau optique
descendant peut être injecté dans une fibre monomode. Cependant, la turbulence
atmosphérique dégrade la propagation du faisceau optique, altérant le couplage
dans la fibre monomode. L’optique adaptative (AO) peut fournir une correction
en temps réel des effets de turbulence. L’objectif de cette thèse est d’améliorer les
performances de l’optique adaptative pour les liaisons optiques LEO-sol.
Dans les applications de liens LEO-sol, le vent apparent dû au mouvement

relatif entre le télescope et l’atmosphère entrâıne une évolution plus rapide de la
turbulence, augmentant l’erreur temporelle induite par le retard entre la mesure et
la correction du front d’onde fournies par la boucle d’OA. Cette thèse s’intéresse à
la limite théorique de réduction de l’erreur temporelle grâce à la prédiction de la
turbulence. Cette thèse considère alors un algorithme de contrôle prédictif pour
atténuer en temps réel l’impact de l’erreur temporelle. Les résultats de simulation
pour le contrôleur montrent une réduction significative des évanouissements de
couplage dans la fibre. Le même contrôleur est appliqué à l’imagerie au sol des
satellites en orbite LEO, avec de forts gains en qualité d’image. Alternativement, le
contrôleur peut être utilisé pour assouplir la fréquence d’asservissement de boucle
d’OA, réduisant ainsi la complexité du système et augmentant le flux de photons
disponible pour l’analyse du front d’onde.
Enfin, cette thèse présente PICOLO, un émulateur de turbulence pour les liaisons

basse élévation. À basse élévation, les effets de la turbulence sont plus forts,
entrâınant une scintillation qui altère le fonctionnement de l’OA. Les effets de
scintillation du banc ont été caractérisés et comparés à une simulation numérique,
validant l’émulateur et définissant ainsi son jumeau numérique. PICOLO servira
aux tests en laboratoire de nouveaux concepts d’OA pour les liaisons LEO-sol dans
des conditions réalistes. Un premier test a ainsi été réalisé en couplant un système
d’OA à l’émulateur ; les statistiques de couplage de la correction par OA utilisant
un contrôleur classique ont été comparées avec succès aux simulations numériques.
Des travaux ultérieurs mèneront à une démonstration expérimentale du contrôleur
prédictif proposé dans la perspective d’une démonstration sur le ciel.

Mots clés : turbulence atmosphérique, optique adaptative, communication op-
tique, satellite en orbite basse, command prédictif, contrôleur linéaire-quadratique-
gausséen, filtre de Kalman, forte scintillation
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Abstract

Low-Earth-orbit (LEO) satellite-to-ground optical downlinks will allow direct high-
data-rate communications between satellites and ground stations. To benefit from
the existing optical telecommunication network, the received beam can be injected
into a single mode fiber. However, atmospheric turbulence degrades optical beam
propagation, impairing coupling into single-mode fiber. Adaptive optics (AO) can
provide real-time correction of turbulence effects. The goal of this thesis is to
improve the performance of AO for LEO-to-ground optical links.
In LEO satellite tracking applications, the apparent wind due to the relative

motion between the telescope and the atmosphere leads to a faster turbulence
evolution, increasing the servo-lag error caused by delays between measurement
and wavefront correction in the AO loop. This thesis discusses a theoretical upper
bound in servo lag error reduction thanks to turbulence prediction. It then proposes
a predictive control algorithm to mitigate the impact of servo-lag error. Simulation
results for the controller show a significant reduction in fiber coupling fadings. The
same controller is applied to ground-based imaging of satellites in LEO orbit, with
strong gains in image quality. Alternatively, the predictive controller can be used to
relax the loop frequency, reducing the complexity of the AO system and increasing
the available photon flux for wavefront sensing.
Finally, this thesis presents PICOLO, a turbulence emulator for low-elevation

links. At low elevations, turbulence distortions are stronger, resulting in scintillation
that impairs AO. The scintillation characteristics of the bench were characterized
and compared with numerical wave propagation simulations, validating the emula-
tor’s design and obtaining its digital twin. PICOLO will serve for the laboratory
testing of new AO techniques for LEO-to-ground links in realistic conditions. A
first test was conducted by coupling an AO system to the emulator; the coupling
statistics of AO correction using a classical controller were successfully compared
to numerical simulations. Further work will lead to an experimental demonstration
of the proposed predictive controller in the prospect of on sky demonstration.

Keywords: atmospheric turbulence, adaptive optics, optical communication,
low-Earth orbit satellite, predictive control, linear-quadratic-Gaussian controller,
Kalman filter, strong scintillation
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Synthèse en Français

Contexte
L’expansion rapide des applications spatiales, notamment l’observation de la Terre,
les communications à large bande par satellite et l’exploration spatiale, a accru la
demande de liaisons de communication de plus grande capacité entre les satellites
et la Terre. Cette demande est encore plus forte à l’ère des grandes constellations
de satellites et des missions dans l’espace lointain avec des charges utiles à haute
résolution à bord, qui génèrent des volumes massifs de données. Les systèmes
traditionnels de radiofréquences approchent de leurs limites inhérentes en termes de
largeur de bande et de débit de données. Les communications optiques, en raison
de la fréquence plus élevée des ondes électromagnétiques optiques, peuvent offrir
des largeurs de bande supérieures qui dépassent de plusieurs ordres de grandeur les
liaisons par radiofréquence, avec un objectif d’un térabit par seconde.
Les liaisons optiques espace-sol sont également confrontées à des défis importants.

Avant tout, l’atmosphère terrestre atténue, diffuse et déforme le faisceau laser en
raison de l’absorption, de la couverture nuageuse, du brouillard, de la pluie et des
turbulences atmosphériques. Ces effets entrâınent une perte et une fluctuation de la
puissance reçue, ce qui provoque des erreurs et des coupures dans la communication
et limite le débit de données possible. L’absorption atmosphérique peut être
atténuée en sélectionnant correctement la longueur d’onde de la porteuse optique,
et les phénomènes liés aux conditions météorologiques peuvent être évités grâce à la
diversité des sites. Les turbulences atmosphériques, qui provoquent des distorsions
de phase et d’amplitude sur l’onde optique porteuse, peuvent être corrigées par
l’optique adaptative.
L’optique adaptative est une technique de correction des effets de la turbulence

optique atmosphérique. Elle a été développée pour l’astronomie et les applications
militaires, mais elle est désormais utilisée dans d’autres domaines tels que l’imagerie
biomédicale et les communications optiques en espace libre. L’optique adaptative
mesure et corrige les distorsions de phase du faisceau au moyen d’un capteur de
front d’onde et d’un miroir déformable contrôlé par un ordinateur en temps réel
qui traite les mesures et calcule les commandes de miroir nécessaires à l’aide d’une
boucle de contrôle. La correction de phase fournie par l’optique adaptative permet
de coupler le faisceau reçu dans une fibre optique monomode, tirant ainsi parti de
toutes les techniques de détection optique développées pour les communications
par fibre optique, telles que les amplificateurs optiques et la détection cohérente.
L’optique adaptative a été reconnue comme un élément clé des futures liaisons
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optiques espace-sol. Après plusieurs démonstrations de cette technique, plusieurs
stations optiques au sol équipées d’optique adaptative sont actuellement en cours
de construction.
Les satellites Low Earth orbit (LEO) sont les plus courants. Ce type d’orbite

est le plus proche de la Terre et offre donc une meilleure résolution spatiale
pour les charges utiles de télédétection ainsi qu’une latence plus faible pour les
communications. En outre, les satellites LEO restent dans le champ de vision
d’une station terrestre pendant environ dix minutes, ce qui limite la durée possible
des liaisons de communication. Par conséquent, les liaisons descendantes optiques
direct-to-Earth (DTE ) entre les satellites LEO et le sol permettront aux charges
utiles d’observation de la Terre de transférer la quantité croissante de données
qu’elles génèrent dans le temps limité de leurs liaisons.
Les liaisons par satellite LEO sont particulièrement difficiles en raison du mou-

vement rapide du satellite dans le ciel. Pour l’optique adaptative, cela signifie
trois choses : (1) les conditions de turbulence changent au fur et à mesure que la
ligne de visée du satellite change ; (2) la vitesse angulaire rapide de la ligne de
visée équivaut à une évolution plus rapide de la turbulence observée ; et (3) pour
prolonger la durée de la liaison, celle-ci doit fonctionner à basse altitude, où la
turbulence optique est plus forte. Cette thèse est consacrée à l’amélioration des
performances des systèmes d’optique adaptative pour les applications satellitaires
LEO en relevant ces défis.

Dans cette thèse, une deuxième application est également considérée en raison
de ses fortes synergies avec ce défi : l’imagerie des satellites LEO depuis le sol.
L’observation de l’orbite LEO avec des télescopes au sol peut être utilisée pour la
surveillance et le contrôle des engins spatiaux en orbite. La présence de turbulences
optiques réduit la résolution effective des télescopes, et l’optique adaptative peut
aider à corriger ces effets pour obtenir des images à la limite de diffraction. Cette
application présente des problèmes similaires à ceux des liaisons optiques LEO vers
le sol, bien que le flux de signaux et les conditions de turbulence soient différents.
La boucle d’optique adaptative présente un retard inhérent entre la mesure et la

correction qui entrâıne une différence entre la phase corrigée et la phase au moment
de la correction et, par conséquent, une diminution des performances. L’effet de ce
retard est accru dans le cas des satellites LEO, puisque la trajectoire du satellite
implique le mouvement relatif du faisceau et des couches de l’atmosphère, ce qui
provoque une évolution plus rapide des distorsions atmosphériques. Cette thèse
propose un nouvel algorithme de contrôle prédictif qui modélise la turbulence pour
prédire son évolution entre sa mesure et sa correction. Les gains potentiels en
performance du système grâce à un tel contrôleur prédictif sont analysés pour les
deux applications considérées.
Il n’est pas nécessaire de travailler à faible altitude pour les applications as-

tronomiques traditionnelles, puisque les observations sont limitées à des altitudes
plus élevées où les conditions de turbulence sont plus favorables ; cependant,
l’extension du fonctionnement de l’optique adaptative à de faibles altitudes en-
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trâınera une augmentation significative de la durée de la liaison optique. À faible
hauteur de visée, la turbulence est plus forte et les distorsions d’amplitude sur
le front d’onde dues à l’effet de la turbulence deviennent plus importantes. Les
distorsions d’amplitude se manifestent par des distributions d’irradiance inho-
mogènes de type speckle sur la pupille du télescope, également connues sous le
nom de scintillation. L’optique adaptative ne peut pas corriger les distorsions
d’amplitude, mais ces distorsions peuvent entraver le fonctionnement des systèmes
d’optique adaptative, par exemple en affectant les mesures du front d’onde. Une
bonne connaissance de ces distorsions et de leurs effets sur les systèmes d’optique
adaptative est nécessaire pour développer des systèmes plus robustes. Cette thèse
a travaillé sur une installation de laboratoire pour l’émulation de la turbulence
dans ce scénario, avec un accent particulier sur la caractérisation de la scintillation
et sa comparaison avec les simulations numériques. Un tel émulateur de turbulence
sera utilisé pour étudier de nouvelles solutions de contrôle d’optique adaptative qui
prennent en compte les effets de scintillation.

Objectifs et contribution de la thèse
Dans cette thèse, j’ai travaillé sur deux projets principaux. Tout d’abord, j’ai
développé un nouveau contrôleur prédictif dans le but d’améliorer la performance
des systèmes d’optique adaptative dans les applications satellitaires. Initialement,
la principale application envisagée pour ce contrôleur était la communication
optique, mais au cours de ma thèse, j’ai également évalué l’observation au sol des
satellites comme deuxième application. Jean-Marc Conan et Cyril Petit avaient
déjà réalisé une évaluation théorique des gains de performance maximaux que la
prédiction de la turbulence pouvait apporter à l’optique adaptative ; j’ai poursuivi
ce travail en développant un contrôleur prédictif, et j’ai également contribué à
sa publication sous le titre Conan et al. (2023). Pendant le développement du
contrôleur, j’ai essayé d’atteindre cette performance ultime et de comprendre les
limites du système qui l’éloignent de cette performance optimale. Enfin, j’ai étudié
les gains de performance dans les applications spécifiques grâce à l’utilisation de la
commande prédictive.
Deuxièmement, j’ai travaillé sur l’émulateur de turbulence PICOLO pour les

liaisons descendantes LEO vers le sol dans des conditions de forte turbulence. J’ai
travaillé sur la caractérisation de la scintillation du banc et sa comparaison avec les
simulations numériques. De plus, j’ai travaillé sur le couplage du banc à un système
d’optique adaptative, ce qui permettra à l’avenir de tester le contrôleur prédictif
développé durant cette thèse, ainsi que d’autres méthodes d’optique adaptative,
dans des conditions de turbulences réalistes et de les comparer au jumeau numérique
du banc qui est maintenant disponible grâce à ma caractérisation.
Les travaux présentés dans ce manuscrit ont porté sur l’amélioration de la

correction de la turbulence atmosphérique de l’optique adaptative dans le cas des
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liaisons optiques descendantes LEO vers le sol et de l’imagerie des satellites à partir
de télescopes terrestres.

Conclusions générales
Au chapitre 1 j’ai présenté l’origine de la turbulence optique et ses effets sur un fais-
ceau qui s’y propage. J’ai montré comment les aberrations de phase introduites par
la turbulence atmosphérique se transforment également en distorsions d’amplitude
au cours de la propagation, en particulier dans les cas de forte turbulence, ce qui
entrâıne des fluctuations d’irradiance à travers la pupille du télescope, connues
sous le nom de scintillation. J’ai également présenté la description statistique de la
turbulence et sa représentation en tant que projection sur une base polynomiale de
Zernike, qui est au cœur de l’identification des modèles prédictifs présentés plus
loin dans ce manuscrit.
Au chapitre 2 j’ai présenté le principe de l’optique adaptative et ses composants.

Le chapitre a également donné une introduction au contrôle de l’optique adaptative
et à l’importance du retard, un concept crucial pour cette thèse puisqu’il est
à l’origine du besoin de contrôle prédictif. Enfin, j’ai introduit le concept de
budget d’optique adaptative, l’outil principal pour la conception et l’évaluation des
performances des systèmes d’optique adaptative.
Le chapitre 3 a décrit l’effet de la turbulence atmosphérique sur la qualité de

l’imagerie des télescopes et sur le couplage des fibres et les systèmes de communica-
tion. J’ai également présenté les différents systèmes pris en compte dans les études
de cas de ce manuscrit. Quatre systèmes différents ont été présentés, deux pour les
communications optiques et deux pour l’observation par satellite, couvrant deux
spécifications de système, l’une plus performante et complexe et l’autre plus simple
et moins coûteuse.
Au chapitre 4 j’ai discuté des deux principaux éléments du contrôleur prédictif

de cette thèse et de la plupart des contrôleurs de la littérature : les modèles
autorégressifs et le contrôleur LQG en tant que contrôleur prédictif. J’ai souligné
comment le contrôleur LQG incorpore trois tâches nécessaires que de nombreux
systèmes d’optique adaptative mettent en œuvre séparément : (1) la reconstruction
de la phase à partir de l’espace de pente du capteur de front d’onde vers l’espace
de phase souhaité (espace zonal, modal ou DM ), (2) l’optimisation du gain du
contrôleur et (3) l’estimation de la phase future pour réduire l’effet du délai entre
la mesure et la correction, c.-à-d. le contrôle prédictif.
Dans le chapitre 5 j’ai présenté la méthode de prévisibilité des turbulences

initialement introduite dans Conan et al. (2023) et je l’ai appliquée aux systèmes
étudiés. J’ai analysé à la fois la prévisibilité des systèmes et la possibilité de réduire
la fréquence de la boucle AO. La méthode a montré des gains très prometteurs pour
la plupart des systèmes. Seuls les systèmes FEELINGS semblent avoir déjà une
très bonne performance en termes d’erreur temporelle. Parmi les autres résultats,
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on peut citer la nécessité d’utiliser des modèles VAR d’ordre supérieur pour obtenir
de meilleures performances de prédiction dans le cas des applications satellitaires
LEO pour l’optique adaptative.

Le chapitre 6 a présenté le contrôleur prédictif développé dans cette thèse :
le high-order VAR Zernike LQG. J’ai discuté de la manière dont le modèle est
identifié et de ses similitudes avec le prédicteur utilisé au chapitre 5. J’ai également
fourni une analyse des schémas possibles d’identification des données qui pourraient
conduire à une identification en ligne du contrôleur et à son adaptation le long de
la trajectoire LEO.
Le chapitre 7 présente les simulations de bout en bout du contrôleur dans différents

scénarios. Une première simulation a utilisé un capteur de front d’onde simplifié et
un miroir déformable pour vérifier les performances du modèle prédictif dans le
LQG et les comparer à l’évaluation de la prévisibilité ; la comparaison a prouvé
que dans les conditions simplifiées, le contrôleur peut atteindre les performances
attendues par l’évaluation. Cette simulation a également été utilisée pour montrer
la robustesse du contrôleur par rapport au bruit de mesure. L’introduction d’un
capteur de front d’onde Shack-Hartmann dans les simulations exige que le contrôleur
effectue également une reconstruction modale à partir des mesures de la pente
vers les polynômes de Zernike utilisés par le modèle prédictif. Cette opération
et la présence d’un repliement provoquent une erreur supplémentaire dans le
contrôleur qui, si elle n’est pas gérée correctement, entrâıne une erreur beaucoup
plus importante que l’erreur de repliement présente dans le contrôleur à action
intégrale classique. J’ai proposé une analyse de cette reconstruction en utilisant
le reconstructeur MAP comme substitut de la reconstruction dans le filtre de
Kalman. Le reconstructeur MAP a été utilisé pour étudier le nombre optimal de
modes nécessaires pour diminuer l’erreur de reconstruction, l’influence du facteur
de correction et le bruit de mesure dans cette reconstruction. Bien qu’un facteur
de correction puisse être utilisé pour améliorer la performance de la reconstruction
sans augmenter le nombre de modes reconstruits, la recommandation de cette thèse
est de reconstruire plus de modes (à peu près les modes équivalents à deux fois la
fréquence d’échantillonnage du Shack-Hartmann). Les simulations de bout en bout
du contrôleur ont montré comment les contrôleurs prédictifs réduisent de manière
significative l’erreur temporelle dans les systèmes d’optique adaptative. L’impact
de cette réduction sur les mesures de performance spécifiques du système dépend
du reste du budget AO et de la nature de la mesure. Pour le couplage de fibres
monomodes, la commande prédictive est capable de réduire les évanouissements
; pour l’observation par satellite, la réduction de la variance résiduelle conduit à
de fortes améliorations du rapport de Strehl. Dans tous les cas, les contrôleurs
prédictifs peuvent être utilisés pour réduire la fréquence de la boucle d’optique
adaptative à la moitié de la fréquence nominale tout en maintenant les performances
d’un contrôleur intégral. Pour l’observation par satellite, cela signifie l’imagerie de
cibles moins lumineuses.
Le chapitre 8 fait état de mes travaux sur la caractérisation de la scintillation
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de l’émulateur de turbulence PICOLO pour les liaisons LEO vers le sol dans
des conditions de forte turbulence. J’ai effectué des mesures expérimentales de
la scintillation sur le banc, d’abord par écran puis pour le profil de turbulence
complet, et je les ai comparées à des simulations numériques utilisant le code
de simulation TURANDOT. La caractérisation a montré que le banc fournit les
caractéristiques de scintillation attendues et le jumeau numérique qui en résulte
peut maintenant être utilisé pour comparer les performances des expériences sur
le banc aux simulations numériques. Cette caractérisation est essentielle pour
préparer la validation expérimentale de concepts innovants en matière de détection
et de contrôle du front d’onde afin de permettre à l’optique adaptative de faire face
à la scintillation à faible élévation. Pour préparer ces travaux futurs, j’ai également
réalisé les premières expériences avec l’émulateur en utilisant le système d’optique
adaptative LISA, comme je l’ai indiqué au chapitre 9.

Limitations et recommandations
Cette section présente mes recommandations basées sur les résultats de cette thèse
et leurs limites. Mes suggestions particulières sont décrites ci-dessous :

1. Cette thèse a défini un ensemble de quatre systèmes d’optique adaptative
et leurs profils de turbulence associés en essayant de couvrir les points de
fonctionnement et les situations les plus courants. Bien que la méthodologie
proposée puisse être appliquée à n’importe quel système et que les tendances
observées devraient être cohérentes pour d’autres points de fonctionnement,
seule une étude de cas pour chaque système considéré pourrait donner des
résultats définitifs.

2. La méthode d’identification de cette thèse, basée sur des expressions analy-
tiques des covariances angulaires entre les coefficients de la phase turbulente
projetés sur une base polynomiale de Zernike, a une grande valeur non seule-
ment pour les évaluations théoriques, mais aussi pour une mise en œuvre
sur le ciel et l’adaptation du contrôleur grâce à des antécédents. Néanmoins,
une méthode basée sur l’identification des matrices de covariance spatio-
temporelles à partir des données, suivant la discussion de la section 6.3 devrait
être étudiée, en particulier une méthode basée sur l’identification récursive
pour permettre l’adaptation du modèle prédictif sur toute la LEO trajectoire
du satellite.

3. Il a été démontré que le coût de calcul du contrôleur prédictif doit augmenter
pour réduire la propagation du repliement dans la reconstruction modale et le
modèle prédictif du contrôleur. Dans le cas du couplage de fibres, les modèles
d’ordre supérieur ont moins d’effet sur les évanouissements ; le contrôleur
proposé pourrait être simplifié en réduisant le nombre de modes prédits.
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4. Il a été démontré que le coût de calcul du contrôleur prédictif doit augmenter
pour réduire la propagation du repliement dans la reconstruction modale et le
modèle prédictif du contrôleur. Dans le cas du couplage de fibres, les modèles
d’ordre supérieur ont moins d’effet sur les évanouissements ; le contrôleur
proposé pourrait être simplifié en réduisant le nombre de modes prédits.

5. Les contrôleurs de l’espace de pente devraient faire l’objet d’un examen plus
approfondi en raison de leur facilité d’identification et de la réduction des
besoins d’étalonnage, en particulier dans les cas où le repliement dans les
modes d’ordre supérieur peut ne pas être toléré.

6. Cette thèse a limité les essais du contrôleur aux distorsions du front d’onde en
phase seulement et à une propagation géométrique de la phase turbulente. Les
performances du contrôleur prédictif devraient être testées dans des conditions
de forte turbulence. Deux points seront cruciaux : (1) Les formules analytiques
pour le calcul des statistiques de phase peuvent ne pas fonctionner dans des
conditions de forte turbulence et de phase fortement diffractée ; dans ce cas,
l’utilisation d’une identification basée sur les données peut s’avérer nécessaire
pour obtenir ces statistiques. (2) La robustesse du contrôleur aux effets de
scintillation sur la détection du front d’onde doit également être étudiée.

7. Le contrôleur prédictif présenté dans cette thèse pourrait être combiné à
l’approche proposée par Lognoné et al. (2022), qui propose un estimateur de
l’angle d’avance des liaisons optiques montantes en utilisant des statistiques
de phase et de scintillation.

8. L’utilisation de la commande prédictive peut servir de technique d’atténuation
des effets de la scintillation sur le capteur de front d’onde Shack-Hartmann.
Les mesures manquantes peuvent être remplacées par des prédictions de la
phase, c’est-à-dire qu’il n’y a pas d’étape de mise à jour s’il n’y a pas de mesure,
au lieu d’utiliser une mesure médiocre. Deux techniques supplémentaires
peuvent être utilisées pour rendre le contrôleur plus robuste à la scintillation :

a) L’utilisation d’un filtre de Kalman séquentiel qui met à jour les mesures
de pente indépendamment (en supposant qu’il n’y a pas de corrélation
entre les bruits de mesure dans les mesures de pente, une hypothèse déjà
utilisée) et qui saute l’étape de mise à jour lorsque la mesure de pente est
annotée comme non valide en raison des effets de la scintillation ; dans
ce cas, seule l’étape de prédiction sera utilisée.

b) L’utilisation d’une base zonale pour maximiser le découplage entre les
points de la pupille du télescope. La présence de scintillation signifie
que certaines zones de la pupille n’auront pas de flux ; la reconstruction
de la phase sur la pupille peut imposer de fortes contraintes et aggraver
la reconstruction des points qui n’ont pas de problèmes de scintillation.
L’utilisation d’une base zonale pour le contrôle peut aider à traiter le
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front d’onde lorsqu’il n’y a pas de mesures disponibles pour plusieurs
points de la pupille.

9. La prochaine étape dans le développement du contrôleur prédictif devrait
être sa démonstration en laboratoire en utilisant l’émulateur de turbulence
PICOLO avant sa validation sur le ciel. Cette thèse a commencé ce travail mais
n’a pas pu le terminer. Une première démonstration devrait utiliser un seul
écran de phase à la pupille du télescope pour éviter tout effet de scintillation.
Par la suite, le banc peut également être utilisé pour tester le contrôleur dans
des conditions de forte turbulence et de scintillation. Différentes méthodes
d’identification peuvent également être testées sur le banc.
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To my mother, of course.



The greatest remedy for
anger is delay.

— Lucius Annaeus Seneca
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Introduction

Context
The rapid expansion of space-based applications, including Earth observation, satel-
lite broadband communications, and space exploration, has increased the demand
for higher-capacity communication links between satellites and Earth. This demand
becomes even more pronounced in the era of large satellite constellations and deep
space missions with high-resolution payloads onboard, which generate massive
volumes of data. Traditional radio frequency systems are approaching their inher-
ent limits in terms of bandwidth and data throughput. Optical communications,
because of the higher frequency of optical electromagnetic waves, can offer higher
bandwidths that exceed radio frequency links by orders of magnitude, aiming at
one terabit per second.
Space-to-ground optical links also face significant challenges. Above all, Earth’s

atmosphere attenuates, scatters, and distorts the laser beam due to absorption,
cloud coverage, fog, rain, and atmospheric turbulence. These effects cause the loss
and fluctuation of the received power, causing errors and outages in communication
and limiting the possible data rate. Atmospheric absorption can be mitigated with
the proper selection of optical carrier wavelength, and weather-related phenomena
can be avoided by means of site diversity. Atmospheric turbulence, which causes
phase and amplitude distortions on the carrier optical wave, can be corrected by
adaptive optics.
Adaptive optics is a technique for correction of the effects of atmospheric optical

turbulence. It has been developed for astronomy and military applications, but
it is now used in other fields such as biomedical imaging and free-space optical
communications. Adaptive optics measures and corrects the phase distortions of the
beam by means of a wavefront sensor and a deformable mirror controlled by a real-
time computer that processes the measurements and computes the necessary mirror
commands using a control loop. The phase correction provided by adaptive optics
enables coupling the received beam into a single-mode optical fiber, thus leveraging
all the optical detection techniques developed for fiber optics communications, such
as optical amplifiers and coherent detection. Adaptive optics has been acknowledged
as a key enabler of future space-to-ground optical links, after several demonstrations
of this technique, several optical ground stations equipped with adaptive optics are
being built at the moment.
Low Earth orbit (LEO) satellites are the most common kind of satellite, this

kind of orbit is the closest to Earth and therefore offers higher spatial resolution for
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remote sensing payloads as well as lower latency for communications. Additionally,
LEO satellites stay in the view of a ground station for about ten minutes, limiting the
possible duration of communication links. As a result, optical direct-to-Earth (DTE )
downlinks between LEO satellites and the ground will allow Earth observation
payloads to transfer the growing amount of data they generate within the limited
time of their links.
LEO satellite links are especially challenging due to the fast movement of the

satellite across the sky. For adaptive optics, this means three things: (1) the
turbulence conditions change as the satellite line of sight changes; (2) the fast
angular rate of the line of sight is equivalent to a faster evolution of the turbulence
observed; and (3) to extend the link duration, the link needs to operate at low
elevations, where optical turbulence is stronger. This thesis is devoted to improving
the performance of adaptive optics systems for LEO satellite applications by
tackling these challenges.
In this thesis a second application is also considered due to its strong synergies

with this challenge: the imaging of LEO satellites from the ground. The observation
of the LEO orbit with ground telescopes can be used for surveillance and monitoring
of spacecraft in orbit. The presence of optical turbulence reduces the effective
resolution of the telescopes, and adaptive optics can help correct for these effects
to image them at the diffraction limit. This application shares similar problems as
LEO-to-ground optical links, though signal flux and turbulence conditions differ.

The adaptive optics loop has an inherent delay between the measurement and
the correction that causes a difference between the corrected phase and the phase at
the time of correction and, therefore, a decrease in performance. The effect of this
delay is increased in the case of LEO satellites, since the trajectory of the satellite
implies the relative movement of the beam and the layers of the atmosphere, which
causes a faster evolution of the atmospheric distortions. This thesis proposes a new
predictive control algorithm that models turbulence to predict its evolution between
its measurement and correction. The potential gains in system performance due to
such a predictive controller are analyzed for the two applications considered.
Working at low elevation is not necessary for traditional astronomy applications,

since the observations are limited to higher elevations where turbulence conditions
are more favorable; however, extending adaptive optics operation to low elevations
will lead to a significant increase in optical link duration. At low line-of-sight
elevations, the turbulence is stronger, and the amplitude distortions on the wavefront
due to the effect of turbulence become more important. Amplitude distortions
manifest as inhomogeneous speckle-like irradiance distributions over the pupil of the
telescope, also known as scintillation. Adaptive optics cannot correct for amplitude
distortions, but these distortions can impair the work of adaptive optics systems, for
example, by affecting the wavefront measurements. Proper knowledge of these and
their effect on adaptive optics systems is necessary to develop more robust systems.
This thesis worked on a laboratory setup for the emulation of turbulence in this
scenario, with a particular emphasis on the characterization of the scintillation
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and its comparison to numerical simulations. Such a turbulence emulator will be
used for investigating new adaptive optics control solution that under scintillation
effects.

Thesis Objectives and Contribution
In this thesis I worked on two main projects. First, I developed a new predictive
controller with the aim of improving the performance of adaptive optics systems
in LEO satellite applications. Initially, the main application considered for this
controller was optical communication, but during my PhD I also assessed the
ground-based observation of satellites as a second application. A previous seminal
work by Jean-Marc Conan and Cyril Petit had provided a theoretical assessment of
the maximum performance gains that turbulence prediction could bring to adaptive
optics; I continued this work with the development of a predictive controller, while
I also contributed to its publication as Conan et al. (2023). During the development
of the controller, I tried to achieve this ultimate performance and to understand
the limitations within the system that separate it from this optimal performance.
Finally, I studied the performance gains in application specific performance thanks
to the use of predictive control.
Secondly, I worked on the PICOLO turbulence emulator for LEO-to-ground

downlinks under strong turbulence conditions. I worked on the scintillation charac-
terization of the bench and its comparison with numerical simulations. Additionally,
I worked on the coupling of the bench to an adaptive optics system, which will
allow in the future to test the predictive controller developed during this thesis, as
well as other adaptive optics methods, in realistic turbulent conditions and compare
them to the numerical twin of the bench that it is now available thanks to my
characterization.

Thesis Outline
This manuscript is divided into three parts:

– ”Part I: Adaptive Optics for LEO Satellite Applications” provides the theo-
retical basis of this work; it contains the following chapters:

– Chapter 1 describes the properties of atmospheric optical turbulence and
its effect on optical waves when they propagate across it.

– Chapter 2 introduces the principle of adaptive optics and its components.
The chapter also discusses the control problem in the case of adaptive
optics and some of the common tools for adaptive optics control. Finally,
the concept of AO error budgets is introduced as a methodology to assess
and validate the performance of an adaptive optics loop.
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– Chapter 3 discusses the relevant performance metrics for the two applica-
tions considered and the effect that atmospheric optical turbulence has
on them. The chapter also provides the description of the AO systems
and turbulence conditions used in the case studies in this manuscript.

– Chapter 4 introduces the prediction of atmospheric turbulence for control
applications. This includes the theory of autoregressive processes as
the standard model for the evolution of turbulence and the use of the
linear-quadratic-Gaussian (LQG) as a predictive controller.

– ”Part II: Predictive Controller” discusses the proposed predictive controller
to improve adaptive optics performance for LEO satellite applications; it
contains the following chapters:

– Chapter 5 discusses and applies a method for assessing the predictability
of turbulence originally presented in Conan et al. (2023). The assessment
method provides expected performances for turbulence phase evolution
predictive models in the frame of AO controllers. The method is ap-
plied to the cases under study in this thesis and these results serve as
performance expectations for the predictive controller proposed in this
thesis.

– Chapter 6 introduces the predictive controller proposed in this thesis.

– Chapter 7 analyzes the performance of the proposed predictive controller
for the cases defined in Chapter 3 using numerical simulations.

– ”Part III: Experimental Validation” contains the experimental part of this
thesis; it contains two chapters:

– Chapter 8 reports the characterization and validation of a turbulence
emulator for LEO-to-ground links under strong scintillation conditions.
This chapter corresponds to the publication Robles et al. (2023).

– Chapter 9 discusses the first steps towards the experimental validation
of the predictive controller developed in this thesis using the PICOLO
turbulence emulator.
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1. Propagation of Light across Atmospheric Turbulence
1.1. Atmospheric Optical Turbulence

Introduction

This chapter introduces the origin of the phase and amplitude distortions of
an electromagnetic field when it propagates across a turbulent medium.
First, Section 1.1 introduces the origin of atmospheric optical turbulence

and provides a statistical description of the index of refraction fluctuations.
Section 1.2 presents the theory of optical propagation in turbulent media and

shows how the phase distortions caused by the index of refraction fluctuations
within a layer generate both phase and amplitude distortions in the propagated
field. A statistical description of the resulting intensity fluctuations, also
known as scintillation, is also given; first analytically thanks to the Rytov
approximation in the weak perturbation regime and later computationally
for the strong perturbation regime.
Section 1.2.5 defines some integrated parameters that capture the accumu-

lated influence of turbulence across its propagation path.
Finally, Section 1.3 discusses the modal representation of the turbulent

phase, with a special emphasis on the Zernike polynomial basis and the
analytical computation of the statistics of turbulence projected on this basis.

1.1. Atmospheric Optical Turbulence

1.1.1. Physical Origin
Earth’s atmosphere is a mixture of masses of air in continuous movement due
to solar radiation and the heat transfer within itself and with the ground. The
variations in temperature within the atmosphere cause local variations in the air
density that result in local variations in the index of refraction. The index of
refraction of a medium affects the propagation of electromagnetic waves across
this medium; the resulting difference in propagation speed for each point of the
wavefront leads to optical path differences, which create a difference in phase across
the wavefront.
The theory describing atmospheric turbulence and the index of refraction fluctua-

tions within it is based on the concept of energy cascades proposed by Kolmogorov
(Kolmogorov 1941). This theory models the transfer of kinetic energy within the
atmosphere as a cascade of eddies, where energy flows from bigger to smaller
scale eddies until it is consumed by the dissipation caused due to the viscous
friction between air molecules. The large scales of turbulence are initiated by some
external macroscopic phenomena that start the movement of air masses (e.g. wind
shear, thermal convection, topography, etc.). The larger-scale eddies break into
smaller-scale eddies causing a transfer of energy; this stops when the eddies are
small enough for viscous friction to become relevant and dissipate the energy as
heat. As a result, two typical sizes, i.e. scales, are defined: (1) the outer scale, L0,
which is conditioned by the external causes of turbulence, typically between tenths
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and hundreds of meters; and (2) the inner scale, l0, which is the size of the smallest
turbulent structures, typically some millimeters.

1.1.2. Index of Refraction Fluctuations
The index of refraction fluctuations caused by atmospheric turbulence is stochastic
in nature and, therefore, requires a statistical analysis. This section introduces the
statistical description of the index of refraction fluctuations.
In general in all this analysis turbulence is considered isotropic, which means that

the statistical parameters of turbulence do not vary with direction, and stationary,
which means that they do not change with time. Although these assumptions are
not true in reality, they are helpful for the development of statistical descriptions
and will be close to reality for sufficiently small distances and periods of time.

1.1.2.1. Structure Function

We start by considering the spatial variation of the index of refraction, n(r), where
r is a vector in a three-dimensional Cartesian space.
The index of refraction structure function is the variance of the difference in the

index of refraction between two points in space separated by a given distance; it
has been shown to be described by (Obukhov 1949; Yaglom 1949):

Dn(ρ) = ⟨n(r)− n(r + ρ)2⟩ = C2
nρ

2/3 , (1.1)

where ⟨·⟩ represents the ensemble average, ρ = |ρ|, and C2
n is the index of

refraction structure constant of the turbulence with units of m−2/3.

1.1.2.2. Inertial Domain

The inertial domain is the range of scales within which turbulence is fully developed,
meaning that neither there is energy being injected nor dissipated as heat, but is
instead only cascading down from larger to smaller scales. As a result, the inertial
domain is limited within the external scale and internal scale. For values outside of
this range, l0 < ρ < L0, the fluctuations of the index of refraction are independent
of each other and the structure function is not defined.

1.1.2.3. Power Spectral Density

The power spectral density (PSD) of the index of refraction fluctuations can be
computed from their structure functions. Since it is a variance, the Wiener-
Khinchine theorem can be used to compute the PSD as a Fourier transform of the
structure function, known as the Kolmogorov spectrum (Tatarskii 1961):

WKol
n (f) ≈ 0.033(2π)−2/3C2

nf
−11/3 , (1.2)
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where f corresponds to the spatial frequency in units of m−1. The Kolmogorov
spectrum is only valid within the inertial domain, 1/L0 < f < 1/l0, and it assumes
that the external and internal scales are infinite and zero, respectively.
This model was completed by von Kármán, so it accounts for the effect of the

internal scale and the external scales of the turbulence (Tatarskii 1961):

WKar
n (f) ≈ 0.033(2π)−2/3C2

n

(
f 2 +

(
1

L0

)2
)−11/6

e−(
2πl0f
5.91 )

2

. (1.3)

1.1.2.4. Vertical Structure of C2
n

The strength of the index of refraction fluctuations, represented by the index of
refraction structure constant, C2

n, will vary with the meteorological dynamics and
the surrounding topography. As a result, the value of C2

n varies in time and space.
The analysis of the propagation of light across atmospheric turbulence requires
therefore the knowledge of the distribution of C2

n along its propagation path. The
common assumption is that this distribution varies vertically, while horizontal
variations around the observation location are negligible. The atmosphere is
therefore modeled as a stratified distribution that can be understood as a sequence
of independent layers with different turbulence strengths and statistics. The vertical
stratification of turbulence depends on a mixture of different physical factors, such
as thermal gradients between the Earth’s surface and the atmosphere, wind shear
(e.g. jet stream), the stability of the air masses (e.g. inversion layers), meteorological
phenomena, or the decrease of air density with altitude.
There exist various models and metrology techniques for the description of the

C2
n vertical profile; Section 3.2.1 discusses briefly some of them. This thesis uses a

family of profiles developed at ONERA, the MOSPAR profiles; the structure and
construction of MOSPAR profiles is detailed in Section 3.2.1.1.

1.1.3. Frozen Flow Hypothesis
So far, the statistical description of the index of refraction fluctuations has been
limited to its spatial variation; now a description of their temporal evolution is
introduced.
In general, there exist two different transport mechanisms for a field within

a fluid (such as temperature and density) that lead to its temporal variation:
advection and diffusion. Advection refers to the transport of a field by the fluid’s
flow, while diffusion refers to the transport due to the gradients within the field.
Those to phenomena are coupled and lead to complex interactions; however, for
most conditions, and within a small enough time scale, it is possible to consider
only one of them.
The long-term temporal evolution of turbulence depends on the dynamics of

the atmosphere; however, at short time scales, the turbulence can be considered
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steady, and its evolution driven by the translation of wind (i.e. advection). This
simplification is the so-called Taylor frozen flow hypothesis, which states that in
the time scales relevant to adaptive optics the turbulence phase does not change
its shape in space, i.e. it is frozen, but it is driven by a shift of the frozen phase
screen related to the layer with the wind speed, V . For a given layer, the Taylor
frozen flow hypothesis assumes that:

n(r, t+ τ) = n(r − τV , t) , (1.4)

where τ is a time interval.
This hypothesis will be very important for the analytical computation of temporal

turbulence statistics, since it allows to compute them from the spatial statistics
and the translation of each layer of the atmosphere.
The frozen flow hypothesis has been experimentally validated in different pub-

lished works (Schöck and Spillar 2000; Poyneer et al. 2009; Guesalaga et al. 2014).
Note that in the case of LEO satellite tracking applications, the validity of the
frozen flow hypothesis becomes stronger due to the presence of apparent wind.
In some cases, the turbulence flow does not follow a frozen flow and diffusion

effects become predominant. This is the case when there exist strong gradients,
typically at the ground layer (temperature gradient between the Earth’s surface and
the atmosphere) or between the dome of the telescope and the atmosphere. The
diffusive transport of index of refraction fluctuations is known as boiling turbulence
in the adaptive optics literature.

1.2. Optical Propagation in Turbulent Media
This section discusses how fluctuations in the index of refraction produce phase and
amplitude distortions on a wave propagated across a turbulent medium. For this,
the numerical and analytical computation of the wave propagation is introduced.
The goal is to describe the rigorous description of the propagation necessary to
study the statistics and characteristics of scintillation (i.e. intensity fluctuations
within the optical wavefront) and to present some of these results. The phase
distortion statistics are introduced in later sections, usually neglecting propagation
effects and focusing on the statistics of the phase introduced by every layer and
assuming their geometrical propagation.
Section 1.2.1 discusses the Helmholtz equation as the main wave propagation

equation within turbulent media; the equation is simplified using certain assump-
tions for the optical regime. This propagation is further simplified by the phase
screen propagation model introduced in Section 1.2.2, which models the atmo-
sphere as a sequence of layers that act as phase screens and divides the effects
of propagation into two steps: (1) a phase disturbance due to the index of re-
fraction fluctuations within the phase screen, (2) and a numerically inexpensive
propagation using Fresnel propagation (the solution of the Helmholtz equation for

10



1. Propagation of Light across Atmospheric Turbulence
1.2. Optical Propagation in Turbulent Media

a homogeneous medium) that leads to amplitude distortions and further phase
distortions.
The phase screen model and the Fresnel propagator are used for the implemen-

tation of numerical simulations of optical propagation; however, the analytical
study of the effects of propagation requires further simplifications. Section 1.2.3
introduces the Rytov approximation, which allows for an analytical description of
the statistics of the phase and amplitude distortions. Section 1.2.4 briefly introduces
the case where no diffractive effect is considered and only phase distortions are
taken into account; this is a common assumption in adaptive optics simulations to
reduce their computational cost, as well as in some analytical derivations.
Finally, Section 1.2.6 discusses the strong turbulence regime, the regime in which

the turbulence strength is too strong and the Rytov approximation is not valid
any more, requiring the help of computational simulations. More interestingly, the
strong perturbations regime will show different physical characteristics, such as
the saturation of the variance of the intensity fluctuations and a different shape in
their spectrum.

1.2.1. Helmholtz Equation
The propagation of an electromagnetic wave in a dielectric medium, such as air,
is described by the Maxwell equations. Under the assumption that the temporal
evolution of the refractive index fluctuations is very low with respect to the
oscillation period of the electromagnetic wave, 2π/ω, it is possible to simplify
the Maxwell equations to describe the spatio-temporal evolution of the vectorial
electrical field amplitude, E(r), (Tatarskii 1961); the resulting equation is the
Helmholtz equation:

∇2E(r) + k20n
2(r)E(r) + 2∇

(
E(r)∇ · (log(n(r)))

)
= 0 , (1.5)

where r = (x, y, z) represents a point in space, k0 = 2π/λ is the wave number of
the field propagating through vacuum, and ∇ = [∂/∂x, ∂/∂y, ∂/∂z]⊤ is the nabla
differential operator of vector calculus.

Scalar Helmholtz equation: The term ∇
(
E(r)∇ · (log(n(r)))

)
represents the

change in the wave polarization across its propagation, since the wavelength, λ,
is much smaller than the inner scale of the spatial fluctuations of the index of
refraction, l0, this term can be neglected (Strohbehn et al. 1978). This allows to
further simplify the Helmholtz equation as:

∇2E(r) + k20n
2(r)E(r) = 0 . (1.6)

This equation can be decomposed into three equations for the three scalar
Cartesian components of E.
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Complex amplitude Helmholtz equation: Consider a monochromatic wave that
can be decomposed on a spectrum of plane waves (Goodman 2017) that propagates
in space along a direction ez; as a result, only the component of Equation 1.6 in
this direction is of interest. The scalar amplitude of the electromagnetic field, E,
can be decomposed as:

E(r) = A0Ψ(r)eikz , (1.7)

where A0 represents the complex amplitude of the wave before propagation and
Ψ(r) is a complex amplitude that represents the deviation from a plane wave
eikz due to propagation. The wave propagates across a medium with an average
index of refraction n̄(r) = ⟨n(r)⟩, where ⟨·⟩ is the temporal average operator; the
wavenumber is given by k = n̄k0. Considering Ψ(r) as the solution of the Helmholtz
equation, Equation 1.6 can be rewritten as:

∇2Ψ(r) + 2ik
∂Ψ(r)

∂z
+ k0

(
n2(r)− n̄2(r)

)
Ψ(r) = 0 . (1.8)

Paraxial approximation: The paraxial approximation implies that the variation
of the field along the propagation direction due to diffraction is negligible compared
to the transversal directions:∣∣∣∣∂2Ψ∂z2

∣∣∣∣≪ ∣∣∣∣∂2Ψ∂x2 +
∂2Ψ

∂y2

∣∣∣∣ , (1.9)

where the transverse Laplacian can be written as ∇2
⊥Ψ = (∂2Ψ/∂x2 + ∂2Ψ/∂y2).

The paraxial approximation is usually valid for the propagation of plane waves
with wavelengths in the optical domain.

Weak fluctuations approximation: Additionally, the index of refraction fluctu-
ations, n(r) = n̄(r) +N(r), are approximated assuming weak fluctuations (Rytov
et al. 1989), i.e. N ≪ 1, so that the following first-order approximation is possible:

n2 ≈ n̄2 + 2Nn̄ . (1.10)

This approximation is less strict than the approximation introduced in Section
1.2.3 and is generally valid for optical wavelengths under all turbulence conditions
within the atmosphere.

Final Helmholtz equation: Applying the paraxial approximation and the ap-
proximation of weak the index of refraction fluctuations, Equation 1.8 becomes:

∇2
⊥Ψ(r) + 2ik

∂Ψ(r)

∂z
+ 2k20N(r)n̄(r)Ψ(r) = 0 . (1.11)
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1.2.2. Phase Screen Propagation Model
The Helmholtz equation presented so far until Equation 1.11 cannot be solved
analytically, and its numerical computation is very costly. Nevertheless, assuming
that the perturbations occur only at certain locations and that the wave propagation
happens in a homogeneous medium allows the simplification of this computation.
The suggested approximation is therefore equivalent to the decomposition of the

turbulence volume into a series of layers whose thickness, δz, is small enough to
neglect the propagation effects within each layer. Therefore, the propagation is
divided into two steps:

1. The complex amplitude is first propagated between two phase screens in a
homogeneous media using the Fresnel approximation.

2. The complex amplitude is perturbed in phase only by the phase screen.

This model can be used as a simplification of the actual propagation of the optical
wave across a continuous volume of inhomogeneous media. Such an approximation
enables the analytical treatment of propagation and an efficient computational
solution of the initial Helmholtz equation used for optical propagation simulations.

Propagation in vacuum: The Helmholtz equation can be solved for homogeneous
media, i.e. N = 0, between layers with propagation in the z-direction by convolution
with the Fresnel propagation:

Ψ(ρ, z + d) = Ψ(ρ, z + d) ∗ Fd(ρ) , (1.12)

where ρ = (x, y) are the Cartesian coordinates in a plane perpendicular to the
z-direction and d is the distance between the two phase screens. The operator
Fd(ρ) corresponds to the Fresnel propagator across a distance d and is defined as:

Fd(ρ) =
eikd

i2πd
e

ikρ
2d . (1.13)

Phase disturbance due to phase screen: The influence of fluctuations of the
index of refraction is limited to the propagation within the phase screen and only
affect the phase of the complex amplitude:

φ(ρ, z + δz) = k0

∫ z+δz

z

N(ρ, z) dz . (1.14)

Thus, the effect of the propagation across the phase screen is equal to a phase
shift of the complex amplitude:

Ψ(ρ, z + δz) = Ψ(ρ, z)eiφ(ρ,z+δz) . (1.15)

13



1. Propagation of Light across Atmospheric Turbulence
1.2. Optical Propagation in Turbulent Media

Simulation tool: A simulation tool can iteratively apply these two steps between
phase screens to compute the numerical propagation across a sequence of phase
screens. The propagation adheres to the subsequent scheme:

Ψ(ρ, z) = A0(ρ) ,

Ψ(ρ, z + δz) = Ψ(ρ, z) · eiφ1(ρ) ,

Ψ(ρ, z + d) = Ψ(ρ, z + δz) ∗ Fd(ρ) ,

Ψ(ρ, z + d+ δz) = Ψ(ρ, z + d) · eiφ2(ρ) ,

Ψ(ρ, z + 2d) = Ψ(ρ, z + d+ δz) ∗ Fd(ρ) ,

. . . = . . .

A numerical tool of this nature must consider various dimensioning rules to
ensure accurate propagation. The strength of each of the phase screens can be set
to represent an atmospheric profile.
The TURANOT optical propagation tool (Vedrenne et al. 2012), developed by

ONERA, is implemented in accordance with these guidelines. During this thesis,
it will serve as the primary tool for conducting end-to-end simulations of optical
propagation, including diffractive effects, under conditions of strong turbulence.

Temporal evolution of the disturbances: The temporal evolution of turbulence
is modeled under the frozen flow assumption (see Section 1.1.3) by shifting the
phase screen with a speed corresponding to the speed of the layer in the orthogonal
direction to the line of sight, V⊥. The phase of each layer is shifted so that
φ(r, t) ≈ φ(r − V⊥(r)t).

1.2.3. Weak Perturbations Regime
Although it is not possible to compute an analytical solution of the Helmholtz
equation as given in Equation 1.6, establishing certain hypotheses about the strength
of the perturbations allows to simplify the equation thanks to the linearization of the
wave equation. The Rytov approximation (Tatarskii 1961) is such an approximation.
The subsequent analytical solution of the propagation equations for phase and
amplitude allows us to compute the statistics of phase and amplitude distortions.

1.2.3.1. Rytov Approximation

Consider a wave with an electrical field amplitude E0(r) = eψ0(r), where ψ0(r) is the
logarithm of the complex amplitude of the field. Throughout its propagation across
the atmosphere, this complex amplitude will suffer the effect of the fluctuations of
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the index of refraction, as described by Equation 1.6. The Rytov approximation
describes this perturbation as:

E(r) = eψ0(r)+ψ(r) , (1.16)

where ψ(r) is the logarithm of the complex amplitude due to the effect of
propagation. Equation 1.6 can be rewritten as:(

∇2(ψ0 + ψ) + (∇(ψ0 + ψ))2 + k0n
2
)
eψ0+ψ = 0 . (1.17)

Solving this equation for a non-zero E0 requires:

∇2(ψ0 + ψ) + (∇(ψ0 + ψ))2 + k20n
2 = 0 . (1.18)

Which means that the unperturbed field satisfies Equation 1.6 as:

∇2ψ0 + (∇ψ0)
2 + k20n̄

2 = 0 . (1.19)

The fluctuation of the index of refraction can be developed as:

n2 = n̄2(1 + 2δn+ δn2) , (1.20)

where δn(r) = N(r)/n̄(r) corresponds to the fluctuation of n(r) with respect to
its temporal average. Injecting this development and Equation 1.19 into Equation
1.18:

∇2ψ +∇ψ · (∇ψ + 2∇ψ0) + k20δn
2 + 2k20n̄δn = 0 . (1.21)

The equation above can be solved analytically if the terms (∇ψ)2 and k20δn
2

can be neglected. The Rytov approximation assumes that this is true if (Tatarskii
1961):

– δn(r) ≪ 1 and

– |∇ψ| ≪ |∇ψ0| = k0 (meaning that the complex amplitude does not change
much over a distance of λ).

While the first condition is always true for atmospheric perturbations, the second
one limits the strength of the perturbations that can be properly modeled and
limits the Rytov approximation to a regime known as the weak perturbation regime
Fante (1975). If the two conditions are satisfied, Equation 1.21 can be simplified
to:

∇2ψ + 2∇ψ · ∇ψ0 + 2k20n̄δn = 0 . (1.22)

Such an equation has the form of a Ricatti equation and can be solved as:
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ψ(r) =
k2

2πE0(r)

∫
V
δn(r′)E0(r

′)
eik|r−r′|

|r − r′| dr
′ , (1.23)

where V is the considered propagation volume.

1.2.3.2. Effect on Phase and Amplitude

The Rytov approximation allows to analyze the perturbations of the field as a
complex argument of the exponential function that can be decomposed in real and
imaginary parts:

ψ = χ+ iφ , (1.24)

where χ corresponds to the log-amplitude and φ phase of the wavefront distortion.

Propagation: The solution of the field propagation given in Equation 1.23 can
be applied to this decomposition to obtain (Tatarskii 1961; Sasiela 1994):

χ =
k20
2π

∫ L

0

1

L− z

∫ +∞

−∞
N(ρ′, z) cos

(
k

2

|ρ− ρ′|2
(L− z)

)
dρ′ dz , (1.25)

φ =
k20
2π

∫ L

0

1

L− z

∫ +∞

−∞
N(ρ′, z) sin

(
k

2

|ρ− ρ′|2
(L− z)

)
dρ′ dz , (1.26)

where L is the total propagation distance.
Notice how the log-amplitude is a phase distortion that becomes an amplitude

distortion thanks to its propagation.

Power spectral densities: The statistical description of the spatial distribution
of phase and log-amplitude can be given by the computation of their power spectral
densities. It is assumed that the atmosphere is divided into several layers that act
as phase screens, meaning that the contribution of each layer is uncorrelated with
the other layers and that the layers are thin enough so that there are diffractive
effects due to the propagation across the layer. The power spectral densities of the
log-amplitude and the phase are thus given by:

Wχ(f) = k2
∫ L

0

Wn(f) sin
2
(
πzλf 2

)
dz (1.27)

Wφ(f) = k2
∫ L

0

Wn(f) cos
2
(
πzλf 2

)
dz (1.28)

Variances: The expression for the variances of the log-amplitude and the phase
fluctuations can be obtained by integration of their power spectral densities:
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σ2
χ = k20

∫ L

0

∫ inf

0

2πfWn(f) sin
2(πzλf 2) df dz , (1.29)

σ2
φ = k20

∫ L

0

∫ inf

0

2πfWn(f) cos
2(πzλf 2) df dz . (1.30)

The variance for the log-amplitude can be computed assuming a Kolmogorov
spectrum within Equation 1.29 as:

σ2
χR

= 0.5631k7/6
∫ L

0

C2
n(z)z

5/6 dz . (1.31)

This expression is a simplified expression of the log-amplitude computation that
is called the Rytov variance. Its validity is limited to a certain regime for which
this variance does not approximate the log-amplitude any more. The expression
can be used as a simple way of evaluating the strength of the scintillation effects for
a given turbulence profile and decide whether those are strong enough to consider
a more rigorous treatment of propagation.

1.2.4. Geometric Propagation of Phase
Roddier (1981) showed that for weak turbulence regimes the effects of diffraction
in the phase and amplitude of the wavefront are negligible. In this case, the
propagation of the field results in no effect on its amplitude and in a phase that is
given by the sum of the phases by each layer:

ϕ(r) =

nl∑
i=1

φ(r, hi) , (1.32)

where nl is the number of layers and ϕ(r) is the phase at the telescope pupil.

1.2.5. Integrated Parameters
The integrated turbulence parameters are a set of quantities that describe the
overall effect of atmospheric turbulence along a certain propagation path defined
by its C2

n profile. Their computation is based on the same phase screen assumption
presented above.
The first of those parameters is the Fried parameter Fried (1982):

r0 =

[
0.423 k2

∫
path

C2
n(z) dz

]−3/5

, (1.33)

It describes the integrated coherence length of the turbulence phase distortion
along the propagation path. In particular, it is defined so that a telescope of
diameter r0 will have a phase variance of 1 rad2 across its pupil, assuming a
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Kolmogorov spectrum. Notice how it depends on the reference wavelength through
the wavenumber k.
In a similar way, it is possible to define an integrated coherence time so that

⟨(φ(t)− φ(t+ τ))2⟩ = 1 rad2. This parameter can be computed as (Roddier 1981):

τ0 = 0.314
r0
V̄
. (1.34)

V̄ is a weighted turbulence layer speed given by:

V̄ =

[∫
path

C2
n(z)V

5/3
⊥ dz∫

path
C2
n(z) dz

]3/5
, (1.35)

where V⊥ is the transverse velocity of the layer. The integrated coherence time
and its reciprocal, the Greenwood frequency (Fried 1990), are commonly used to
define the correction bandwidth necessary for an adaptive optics system.
Finally, the anisoplanatic angle (Fried 1982):

θ0 =

[
2.05 k2

∫
path

C2
n(z)z

5/3 dz

]−3/5

. (1.36)

The anisoplanatic angle is defined as the angular distance between two lines of
sight for which an angular separation of θ0 leads to ⟨(φ(0)− φ(θ0))

2⟩ = 1 rad2.
These terms are used for the analytical evaluation of the phase effects of turbu-

lence for a given atmospheric profile and are part of the formulas used to assess
adaptive optics performance within error budgets (see 2.5).

1.2.6. Strong Perturbations Regime
When the fluctuations of the index of refraction become sufficiently large, the
scattering due to propagation becomes strong enough for multiple path effects to
occur, where the optical wavefront gets broken into multiple beams that interfere
with each other. As a result, the intensity fluctuations at the receiver plane are not
linear anymore with respect to the phase perturbation by a layer. The main result
of this non-linearity is the emergence of the phenomenon of saturation Gracheva
and Gurvich (1965), which is not represented by the Rytov approximation.
Given that the analytical solutions of the Helmholtz equation are not valid for

the strong perturbations regime, the use of numerical simulations is necessary for
the study of scintillation in the strong regime. This section presents two of the
phenomena characteristic of scintillation in the strong perturbations regime:

– The saturation of the intensity fluctuations: The non-linear effects of propaga-
tion lead to the saturation of the scintillation, at some point stroger turbulence
does not lead to stronger scintillation conditions.
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– Appearance of a second cut-off frequency in the scintillation spectrum: The
spatial distribution of the scintillation shows a different signature in the strong
perturbations regime (described by its power spectral density).

1.2.6.1. Intensity Fluctuations

The use of the log-amplitude is convenient for the weak perturbations regime
since it allows the analytical computation of the amplitude fluctuation statistics.
However, from an instrumental point of view, it is the intensity fluctuations that
are of interest. We define the normalized intensity fluctuations as follows:

Ī =
I − ⟨I⟩
⟨I⟩ , (1.37)

where I = ΨΨ∗ = I0e
2χ. Under the assumption of weak perturbations, it

is possible to find a relationship between the log-amplitude and the intensity
fluctuations and compute analytical expression for the latter: e2χ ≈ 1 + 2χ, by
Taylor expansion, and Ī ≈ 2χ with σ2

Ī
≈ 4σ2

χ.

1.2.6.2. Scintillation Saturation

Figure 1.1 shows an example of the evolution of the intensity fluctuations, σ2
I ,

as well for the log-amplitude, σ2
χ, with an increase in turbulence strength. The

strength of the turbulence is measured using the Rytov variance, σ2
χR

(Equation
1.31); a constant C2

n profile was used, with the value computed from the Rytov
variance. The experiment corresponds to a propagation of L = 20 km with L0 = 2m
and l0 = 5mm.
Two different regimes are observed: (1) For σ2

χR
< 0.15 the approximation Ī ≈ 2χ

is valid and (2) for σ2
χR
< 0.4 the log-amplitude variance, σ2

χ, is well represented by
the Rytov variance, σ2

χR
. The former limit is generally defined as σ2

χR
< 0.3 (Fante

1975). For stronger turbulence, the intensity fluctuations saturate or even decrease.

1.2.6.3. Scintillation Power Spectrum

Figure 1.2 shows an example of the power spectral density of the intensity fluc-
tuations in a propagation case with weak and strong perturbations, respectively.
Depending on the turbulence strength regime, the spectra have a different shape,
defined by their cutoff frequencies Sechaud et al. (1999); Andrews et al. (1999). The
spectra of scintillation under weak turbulence show a peak around 1√

λL
. The spectra

of scintillation under strong turbulence have been observed to have a spectrum
divided that shows two different cutoff frequencies:

– At low frequencies r0
λL

related to multiple scattering.

– At high frequencies 1
r0
, due to single scattering.

19



1. Propagation of Light across Atmospheric Turbulence
1.3. Modal Decomposition of the Phase

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

σ2
χR

[−]

0.0

0.5

1.0

1.5

2.0

2.5

[−
]

σ2
I

4σ2
χ

4σ2
χR

Figure 1.1.: Saturation of the scintillation with the increase of the turbulence strength.
(Credit: Védrenne (2008)).
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(b) Strong perturbation regime.

Figure 1.2.: Intensity PSD for a plane wave after a phase screen.

1.3. Modal Decomposition of the Phase
Adaptive optics corrects for the phase of the complex amplitude distortions on the
incoming optical electromagnetic field. We search a vector space to describe the
phase φ and its variation in space. Such a phase representation will be needed for
the formulation of adaptive optics controllers that use a mathematical model of
the phase in such a space. Different bases are possible to form such a vector space.
The selected basis should be orthonormal with respect to their geometrical scalar
product to allow a projection of the phase in such a basis.
We define ϕtur, the vectorial representation of the turbulent phase in the telescope
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pupil, and use φ as the vectorial representation of the phase distortion induced by
a given atmospheric layer. This vector corresponds to a projection of phase onto a
given basis:

– Zonal basis.

– Zernike polynomial modal basis.

– Karuhen-Loève modal basis.

– Fourier modal basis.

Only the zonal basis and the Zernike polynomial basis are discussed here; the
phase statistics of the turbulent phase projected on this base that are relevant for
this thesis are given as well.

1.3.1. Zonal Basis
The zonal basis representation of the turbulent phase corresponds to a discrete
spatial sampling of the continuous phase that has been presented so far; the
statistical properties of this basis can be computed using the formulas given above.
The spatial resolution of the sampling grid determines the frequency content of the
representation following the Nyquist–Shannon sampling theorem.

1.3.1.1. Covariance

The covariance function between two points of the phase distribution can be
computed from the structure function. In the case of von Kármán turbulence its
analytical expression is given as (Assémat et al. 2006):

C(ρ) = ⟨(φ(r)− φ(r + ρ))2⟩

=

(
L0

r0

)5/3
Γ(11/6)

25/6π8/3

[
24

5
Γ

(
6

5

)]5/6 (
2πρ

L0

)5/6

K5/6

(
2πρ

L0

)
,

(1.38)

where K5/6(x) is the modified Bessel function of the third kind and Γ(x) is the
gamma function.

1.3.2. Zernike Polynomials
The Zernike polynomials are a basis of modes that are orthogonal over a circular
support (Noll 1976):

1

S

∫
S
Zi(r)Zj(r) dr = δij , (1.39)
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where δij represents the Kronecker delta function. Each polynomial is described
by an analytical expression that is the product of a radial function Rm

n (r) and an
azimuthal function Θm

n (θ):

Zj(r) = Rm
n (r)Θ

m
n (θ) , (1.40)

where the parameters m and n correspond to the azimuthal and radial orders,
respectively. The index j is a function of m and n that servers to order the basis,
several conventions are possible, here the one of Noll (1976) is used. The radial
component is given by:

Rm
n (r) =

(n−m)/2∑
s=0

(−1)s (n− s)!

s! (n+m)/2− s)! ((n−m)/2− s)!
rn−2s . (1.41)

The azimuthal component is given by:

Θm
n (θ) =


√
n+ 1 if x = 1 ,√
2(n+ 1) cos(mθ) if m ̸= 0 and i even√
2(n+ 1) sin(mθ) if m ̸= 0 and i odd

. (1.42)

The turbulent phase can be projected into the Zernike polynomials to forma
modal basis so that:

φ(r) =
∞∑
j=1

ajZj(r) , (1.43)

where aj is the coefficient associated to the mode Zj(r) and is given by:

ai =
1

S

∫
S
φ(r)Zj(r) dr . (1.44)

For practical applications the basis is truncated to a given number of modes,
usually considering the modes up to a certain radial order. Since the constant
phase offset within the pupil has no effect on the imaging quality (or fiber coupling)
it is often removed from the basis.

1.3.2.1. Advantages

The Zernike polynomials offer several advantages for their use as modal description
of turbulence; the following advantages are highlighted:

– Their orthogonality over a circular pupil allows them to be used as a modal
basis.

– The low order polynomials have a physical meaning in terms of optical
aberrations: piston (constant phase offset), tip and tilt, defocus, and other
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aberrations such as astigmatism, coma, and spherical aberration. This allows
an intuitive understanding of the impact of each mode in terms of the resulting
imaging performance.

– The energy of the turbulence is ordered by radial order.

– The polynomials can be computed analytically and so can also the statistics
of turbulence projected on them, see the following sections.

– Each radial order has a characteristic spatial frequency given by (Conan et al.
1995): κ ≈ 0.37(n+ 1)/D.

1.3.2.2. Variance

Thanks to the fact that the Zernike polynomial basis is orthonomalized, the
temporal variance of the turbulent phase is equal to the sum of the variances of
each coefficient:

σ2
φ =

1

S

∫
S
⟨φ(r)2⟩ dr =

∞∑
j=1

⟨a2j⟩ . (1.45)

1.3.2.3. Spatial Covariance

Noll (1976) developed the analytical computation of the covariance between two
turbulent modes of Kolmogorov turbulence projected on the Zernike polynomials.
Figure 1.3 shows an example of such a covariance matrix.
First, it can be observed how the diagonal of the matrix, corresponding to the

variance of each of the modes, is ordered from more to less energy. Second, it
can be observed that the covariance matrix is not diagonal, which means that
the modes are not statistically independent of each other. Although the Zernike
polynomials are orthogonal over the unit circle, the turbulent phase projected on
them are not statistically independent. This fact is a disadvantage since it makes
necessary to consider the cross-correlations between modes when analyzing the
statistics of the turbulence, for example the measurement noise propagation or
the statistical estimation of the coefficients. Similar results are obtained for von
Kármán spectrum turbulence.

1.3.2.4. Temporal Characteristics

The temporal characteristics of the turbulence projected on a Zernike polynomial
basis can be obtained by considering the frozen flow assumption and computing
them from the spatial statistics for a distance that is equivalent to the displacement
due to the translation of the turbulence layer, see Section 4.2.5.
Conan et al. (1995) studied the temporal spectra of turbulence projected onto

a Zernike polynomial basis. The work considers that the layers evolve under the
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Figure 1.3.: Covariance matrix of Zernike modes assuming Kolmogorov turbulence.

frozen flow assumption and provides the calculation of the temporal spectrum of
turbulence projected on each of the Zernike polynomials. One of the main results
presented is that the cutoff frequency of each spectral is proportional to:

νc ∝ 0.3(n+ 1)
V

D
, (1.46)

where V is the layer speed, D is the diameter of the telescope, and n is the
Zernike polynomial radial order. This means that the temporal evolution of higher-
order modes is faster. However, since most of the energy is concentrated on the
high-order modes, the temporal filtering of turbulence is driven by both the cutoff
frequency of each mode but weighted by the energy of each mode.

1.3.2.5. Angular Covariance

This thesis relies on the computation of the angular covariances between Zernike
coefficients to compute the spatio-temporal covariance matrices of turbulence
projected on a Zernike modal basis; see Section 4.2.5.2.
The angular covariances between Zernike coefficients, C(∆α), for a given angular

distance ∆α are given by Chassat et al. (1989), assuming a von Kármán spectrum
and a weak turbulence regime:
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C(∆α) =⟨(ai(0)− aj(∆α))
2⟩ =

5.20Kij

∫ L

0

C2
n(z)

∫ +∞

0

k
−14
3

× Jni+1(k)Jnj+1(k) cos
2

(
zk2

2k0R2
tel

)(
1 +

2πR2
tel

L0k

)−11
6

×
(
S1Jm1+m2

(
k d(z,∆α)

Rtel

)
+ S2J|m1−m2|

(
k d(z,∆α)

Rtel

))
× dz dk ,

(1.47)

where:

– k = 2πf is the angular spatial frequency of the domain in which the polyno-
mials are defined,

– (ni,mi) and (nj,mj) are the radial and azimuthal degrees of the ith and jth
Zernike polynomials respectively,

– z is the distance to the telescope pupil on the line of sight,

– Rtel is the telescope pupil radius,

– k0 =
2π
λ

is the wavenumber,

– Kij is defined as Kij =
√
(ni + 1)(nj + 1) · (−1)

ni+nj−mi−mj
2 ·R

5
3
tel · k20 ,

– C2
n(z) is the turbulence refractive index structure function at a distance to

the pupil z,

– Jn(k) are the Bessel functions of the first kind of order n,

– cos2
(

zk2

2k0R2
tel

)
corresponds to the Fresnel term to account for the diffractive

effects on phase due to propagation (Lognoné et al. 2022),

–
(
1 +

2πR2
tel

L0k

)−11
6

is the von Kármán term accounting for the influence of the

turbulence outer scale L0,

– d(z,∆α) is the distance between the two beam footprints separated by an
angular distance ∆α at a distance z,

– S1 and S2 are geometrical coefficients that capture the relative angular clocking
rotation of the beam footprints as described in Chassat (1992).

∗ ∗ ∗
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Summary

This chapter discussed the phase and amplitude distortions of an optical wave
propagating across atmospheric turbulence.
First, the origin and statistics of the index of refraction fluctuation were

discussed. The frozen flow assumption was presented as a fundamental
hypothesis in this thesis, since it allows one to describe the temporal evolution
of turbulence from its spatial statistics.
The numerical and analytical treatment of the propagation of an optical

wavefront in atmospheric turbulence was discussed. This allowed the intro-
duction of the origin of the phase and the amplitude distortions on the beam.
The method for the numerical simulation of optical propagation used in the
TURANDOT simulation tool was also introduced. These methods and tools
will be used to study the scintillation characteristics of the strong turbulence
emulator presented in Chapter 8.
Finally, the representation of turbulent phase on a modal basis and the

statistics of each mode were introduced. This tool will be used for the
analytical computation of phase correction and for the formulation of phase
evolution models to be incorporated into the predictive controller developed
in this thesis.
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Introduction

This chapter presents the basics of adaptive optics systems and their compo-
nents.
The chapter will also discuss adaptive optics as a control problem. This

includes two different aspects, the shaping of a stable control loop with the
best performance possible and the necessary phase reconstruction to optimize
necessary for certain kinds of advanced adaptive optics controllers. Finally,
the concept of adaptive optics error budget is introduced; this can be seen
as a methodology for the analysis of adaptive optics performance based on
the analytical modeling of an adaptive optics loop. The use of error budgets
and other modeling tools is at the heart of the methodology followed in this
thesis.

2.1. Adaptive Optics Principle
An adaptive optics (AO) system is an optomechanical system used to correct in
real-time the distortions on an optical wavefront. Figure 2.1 depicts such a system.
The distorted wavefront enters the telescope, a wavefront sensor (WFS ) is used
to measure it. The measurement is processed by a real-time computer (RTC )
that computes and sends commands to a deformable mirror (DM ). The mirror
is controlled to impose the same but opposite in sign wavefront distortion as the
one measured on the beam. The resulting (partially) corrected wavefront provides
(close to) diffraction-limited focusing of the beam, improving the performance of
the instrument using the beam, for example, imaging or fiber coupling.
Most adaptive optics systems work in closed-loop, where the wavefront sensor is

placed after the deformable mirror so that the measurement wavefront corresponds
to the residual one. Typically, the corrected distortions will come from atmospheric
turbulence; however, adaptive optics can also correct other aberrations present in
the system.
The remainder of this chapter details the working principle and mathematical

modeling of adaptive optics systems. The discussion is focused on the architecture
used for the application covered in this thesis. These are relatively small telescopes
and, therefore, relatively small AO systems when compared to the modern 40m-
class telescopes under construction Bonnet et al. (2018). First, the two main
physical elements of AO systems are discussed: Section 2.2 introduces the Shack-
Hartmann wavefront sensor, while Section 2.3 discusses the use of a deformable
mirror as wavefront corrector. Nevertheless, due to the presence of measurement
noise and the delay between the measurement and correction, it is not possible to
directly apply the wavefront correction as it is measured. Instead, the correction
needs to be temporally filtered by a control system to achieve a stable closed-loop
control. Section 2.4 discusses the control algorithms and techniques used in AO.
Finally, in truth, adaptive optics suffers physical and instrumental limitations that
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Figure 2.1.: Adaptive optics system diagram. (Credit: C. Max.)

make its correction only partial. Section 2.5 introduces the adaptive optics error
budget as the breakdown of the various contributions to the residual wavefront
error after adaptive optics correction.

2.2. Wavefront Sensing
This thesis limits its discussion to the Shack-Hartmann (SH ) as AO wavefront
sensor. The SH is used in most of the AO systems in operation at the moment and
accumulates a strong heritage; as a sensor, it is linear over a high dynamic range,
has a simple design, has a robust operation and it is achromatic. As an alternative,
the use of a pyramid wavefront sensor Ragazzoni (1996) is being studied, especially
for satellite imaging applications, as it can offer an increase in sensitivity (Ragazzoni
and Farinato 1999) and a reduction in the effect of aliasing. Nevertheless, the
pyramid sensor has a low range over which it is linear and requires the use of a set
of gains (known as optical gains) that change with the turbulence conditions; while
some solutions have been suggested to adjust these gains, changing turbulence
conditions during the tracking of LEO satellites increase the difficulty of the
pyramid sensor operation for this application.
The Shack-Hartmann measures the local slopes of the wavefront. It does so

by placing a microlens array on the pupil plane of the telescope that split the
wavefront in a grid of subpupils and images the light within each of them at a
different location on a detector. The image within each subpupil will be a spot
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on the detector (when using a point source); the position and shape of the spot
are a result of the local wavefront within the subpupil. The local wavefront slopes
will influence the position of the spot, i.e. its centroid, on the detector, while
higher-order aberrations are responsible for the shape of the spot (the diffraction
pattern of the pupil when diffraction-limited, which is distorted in the presence
of turbulence). Since the effect of turbulence distortion on the spots affects the
measurements, the Shack-Hartmann is usually dimensioned to be near-diffraction-
limited within each subpupil. The displacement of the centroid of the spot of each
microlens, (xc, yc), also known as wavefront slopes, is related to the local slope of
the corresponding sub-aperture by the following expressions:

xc
fml

=
λ

2πS

∫∫
spup

∂ϕ

∂x
dx dy , (2.1)

yc
fml

=
λ

2πS

∫∫
spup

∂ϕ

∂y
dx dy , (2.2)

where fml corresponds to the focal length of the microlenses and S to the surface
of each subpupil. These equations neglect the effect of scintillation Mahe et al.
(2000).

Within the Shack-Hartmann post-processing chain, the slopes are computed as
using a centroid computation algorithm, generally a variation of center of gravity
computation, on the intensity distribution measured by the detector Thomas et al.
(2006). The measurement is compared to a reference position previously calibrated
in absence of turbulence to compute the slope error.
The Shack-Hartman measurements are linear, apart from some measurement

and post-processing artifacts at the end of its dynamic range. Thus they can be
modeled by the following equation:

y = Dϕ+w , (2.3)

where y are the measured slopes, ϕ is a vectorial representation of the phase
in front of the wavefront sensor, and D is the model of the wavefront sensor
measurement. Finally, w is an additive measurement noise component.
There are two sources of noise within the Shack-Hartmann: (1) the photon noise

and (2) the detector read-out noise. Both noises appear at a pixel level adding
uncertainty to the measurement of centroid of the spot; this propagates further to
the slope measurement. Photon noise derives from the arrival statistics of individual
photons at each pixel and therefore it follows a Poisson distribution. The detector
read-out noise is due to the variation in the electrical signal produced at each pixel
due to the analog to digital conversion, amplification, and other processing steps; it
follows a Gaussian distribution. The propagation of these errors within the slopes
computation depends on the method used to compute them (Nicolle et al. 2004;
Thomas et al. 2006).

30



2. Adaptive Optics
2.3. Wavefront Correction

Remark

The estimation algorithms in this thesis assume that the noise terms are
Gaussian and white. Photon noise instead follows a Poisson distribution (but
still white). Nevertheless, it is often, but not always (Gratadour et al. 2005),
approximated as Gaussian when deriving estimators; this is the case in this
thesis.

In the case of the center of gravity method, variance slope measurement noise
(in radians squared of phase across a subpupil) due to photon noise is given by:

σ2
ph =

π2

2

1

Nph

N2
T

N2
D

(
rad2

)
, (2.4)

where Nph is the average number of photons per subpupil, NT the full width at
half maximum of the lenslet spot under the influence of turbulence, and ND the
full width at half maximum of the diffraction-limited spot. Both widths are usually
given in pixels.
For detector read-out noise we have (in the same units):

σ2
RON =

π2

3

σ2
RON

N2
ph

N4
S

N2
D

(
rad2

)
, (2.5)

where σϕ,RON corresponds to the standard deviation of the read-out noise per
pixel in photo-electrons and NS the number of pixels used for the computation of
the center of gravity (in general NS ≈ 2NT ).
The previous expressions express the centroid computation errors in units of

phase difference across the subpupils (in radians). In some occasions, it is necessary
to express these noises in pixels since these are the units in which the calibrations
(i.e. interaction matrix) are measured. The slope error variance in radians squared
can be translated to pixel squared by multiplying by (Nsamp/2π)

2, where Nsamp

is the sampling parameter of the lenslet spot (Thomas et al. 2006). Rigaut and
Gendron (1992) provides formulas for the propagation of the slope measurement
error to the reconstruction of Zernike coefficients using the leas-square method.

2.3. Wavefront Correction
In an adaptive optics system, a deformable mirror (DM ) is used to introduce an
additional phase distortion on the beam that should (at least partially) cancel the
distortions originated by atmospheric turbulence. The typical DM is composed of
a continuous flexible mirror substrate and coating that can be deformed thanks to
a set of actuators that receive commands to control their stroke. As a result, the
mirror is able of changing shape to correct the turbulence distorted wavefront in
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real time. For an overview of the different DM technologies available see Madec
(2012).

The correction phase ϕcor generated by the DM for a given command vector
u can be modeled as a sum of the responses of the surface to each individual
actuator command, denominated influence function of the actuator, fi(r), times
the commanded amplitude for the actuator:

ϕcor(t) =
Nact∑
i=1

fi(r)ui = Minfu(t) , (2.6)

where Nact is the number of actuators of the DM and Minf is a matrix that
concatenates the influence functions for each actuator, denominated influence
matrix, and u is a vector concatenating the commands for each actuator.

2.4. Adaptive Optics Control
The presence of measurement noise and a delay between measurement and correction
prevents a direct application of the measured phase from leading to a stable closed-
loop behavior. Instead, the phase measurements need to be filtered in time
using a control system that guarantees stability while maximizing the correction
performance.

Remark

While the measurement vector y is in the slopes space, the (classical) AO con-
troller is in the DM space. As a result, an intermediate phase reconstruction
is necessary, see Section 2.4.5.

From a control system theory point of view, adaptive optics control is a multiple-
input multiple-output (MIMO) regulation problem: (1) a MIMO problem since it
computes several commands (i.e. inputs) that will affect several measurements (i.e.
outputs) and (2) a regulation problem since the goal of the control system is to
reject the disturbances on the system (the atmospheric turbulence evolution) that
cause it to deviate from its reference state (the reference slopes that lead to the
desired wavefront, usually flat).
With respect to other aerospace control problems, adaptive optics comes with

particular challenges:

1. Its plant, i.e. the atmospheric turbulence phase distortions, is stochastic and
difficult to model. Chapter 1 introduced the statistical description of turbu-
lence, the statistical models of turbulence allow analyzing the performance of
adaptive optics systems and also designing predictive controllers, as will be
discussed in Chapter 4. However, these models do not capture all the possible
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problems (Petit et al. 2006; Sauvage et al. 2015; Lai et al. 2019) that impact
the performance of adaptive optics systems.

2. The states of its plant (electromagnetic optical phase) are not easily measur-
able, since no optical phase can be measured directly and requires instead
indirect measurements such as wavefront slopes and a phase reconstruction
step.

3. The measurements are noisy because of the use of faint sources for wavefront
sensing.

4. There exists an important delay between the measurement and the correction.

5. It involves a large number of measurements and actuators, in the order of
the hundreds for medium-size systems like the ones discussed in this thesis,
but up to thousands in the case of bigger telescopes. This increases the
computational complexity and cost of its control laws.

6. It needs to run at high loop frequency. The evolution of the atmospheric
disturbance is so fast that it requires loop frequencies of the order of thousands
of Hz. This limits the computation time for its control laws, reduces the time
available for wavefront sensing (limiting the flux further), and increases the
complexity and cost of the system components.

The remainder of this section is an introduction to the control aspects of adaptive
optics. Section 2.4.1 introduces the AO loop and its notation. Section 2.4.2 deals
with the computation of DM commands from slopes. The classical AO controller,
the integral action controller, is introduced in Section 2.4.3; this is followed by two
refinements: (1) modal control in Section 2.4.4 and (2) phase reconstruction in
Section 2.4.5.

2.4.1. Adaptive Optics Loop
The use of a chronogram allows to illustrate the working principle of the adaptive
optics loop. Figure 2.3 depicts such a chronogram and introduces the related
notation. The loop is divided into time intervals of a period T defined by the
frequency of the loop T = 1/fsamp. The WFS detector uses an exposure time of T
of enough duration to have enough photons. The exposure results in an integration
of the phase during this time:

ϕres
k =

1

T

∫ kT

(k−1)T

ϕres(t) dt . (2.7)

The WFS image is read-out and post-processed, which produces a measurement
yk that corresponds to the wavefront ϕres

k−1. Using the new measurement, the next
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Figure 2.2.: Architecture diagram of a closed-loop adaptive optics system.

DM command uk+1 is computed and applied during a complete interval as a
zero-order hold:

uk+1 = u(t), t ∈ [kT, (k + 1)T [ . (2.8)

Note that by the time the command uk+1 is applied, it will act on the wavefront
ϕres
k+1 while it is based on the measurement yk and therefore on the wavefront ϕres

k−1,
thus the two frame delay. The difference between these two phases is responsible
for the temporal error (see Section 2.5.2.4).
Figure 2.3 illustrates the case of the typical two-frame delay considered for most

adaptive optics systems. In practice, this delay can be non-integer and arbitrarily
long depending on the time required to post-process the WFS measurement and
compute the new command.

Figure 2.3.: Chronogram of the adaptive optics control loop.

2.4.2. Interaction and Control Matrices
Before defining a control strategy, it is necessary to define a link between the
controller quantity, the measurement of the WFS, y and the control commands, u.
This relationship is linear and is given by the following expression:
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y = Mint · u , (2.9)

where Mint is the matrix called interaction matrix.
The control matrix Mctrl is defined as the matrix that provides the control

commands that will cancel the input WFS measurement:

u = −Mctrl · y . (2.10)

This matrix can be computed as the pseudo-inverse of the interaction matrix:
Mctrl = (Mint)

†. This pseudo-inverse is computed by means of singular value
decomposition (SVD) decomposition:

Mint =
[
U ∥ U⊥

]
· diag(s)

[
·V ∥

V ⊥

]⊤
, (2.11)

where s is the vector of singular values ordered in descending order. The U ∥

vectors span a base of orthogonal modes that can be measured and controlled,
while in the case of U⊥ the vectors are the modes that cannot be measured since
they have very low (poorly seen modes since sensitive to noise) or zero (unseen
modes) singular values. The V ⊥ vectors correspond to the DM commands that
generate a poorly seen or unseen measurement.
A simple thresholding of the lowest singular values may not be enough due to

the presence of waffle mode. See Appendix B of Petit (2006) for how to filter the
waffle mode and other details on the computation of the control matrix.

Once the modes have been filtered, the pseudo-inverse of the interaction matrix
can be computed as:

Mctrl = (Mint)
† = V ∥ · diag(s′)−1 · (U ∥)⊤ , (2.12)

where s′ is the vector that contains the singular values associated with the modes
kept as part of U ∥ and V ⊥.
So far it has been assumed that the interaction matrix is known; however, it

needs to be computed. The interaction matrix can be experimentally computed as
a calibration procedure. The interaction matrix can be calculated as a sensitivity
matrix of the response of the WFS to each of the DM actuators. This matrix is
computed by applying and measuring the response of the WFS to a positive and
negative (small) command amplitudes, computing their difference and diving by
two. This calibration needs access to a point source to provide a flat wavefront
to illuminate the system. In the absence of a stable wavefront, a point source
subject to atmospheric turbulence (typically a guide star) can be used if the WFS
measurements are averaged for a long enough time, assuming that turbulence has
zero mean. Other methods of obtaining the interaction matrix rely on mathematical
models (Oberti et al. 2006).
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2.4.3. Integral Action Control
The traditional adaptive optics controller is the integral action or integrator. The
formulation of the integral action controller is a self-recurrent expression:

uk+1 = uk +G · yk (2.13)

where G is typically g ·Mctrl , a scalar gain and the control matrix of the adaptive
optics (AO) system. Setting the gain is a trade-off between noise propagation, loop
stability, and performance. Since the turbulence disturbance dynamics (Conan
et al. 1995) and the propagation of noise (Rigaut and Gendron 1992) are not the
same for different modes of turbulence, the optimal modal gain integrator (OMGI)
method (Gendron and Lena 1994; Dessenne et al. 1998) was developed to provide
a different optimal gain for each of the controller modes in the AO system.
An additional improvement to the integral action is the use of a coefficient in

the integral term of the controller as a forgetting factor. The resulting controller is
the leaky integrator:

uk+1 = f · uk +G · yk (2.14)

The leaky integrator has been reported to reduce noise and aliasing propagation
(Agapito et al. 2019), in particular for high-order modes. This kind of control
structure is widely used in current adaptive optics systems (Banet and Spencer
2020; Agapito et al. 2021; van Kooten et al. 2022).

2.4.4. Modal Control
Since the optical wavefront phase is not directly measured, it has to be reconstructed
(i.e. estimated) from the slope measurements provided by the Shack-Hartmann
wavefront sensor. Two kinds of approaches are possible for phase reconstruction:
(1) zonal if the phase is estimated at a local point or (2) modal if the phase is
estimated as the coefficients of a modal basis defined across the telescope aperture.
Once the phase has been reconstructed, a projection matrix is used to create the
shape of the sum of the estimated modes with the DM.
The early results in adaptive optics theory highlighted the advantages of the

use of modal phase representations for wavefront correction. These early phase
reconstruction methods (zonal or modal) start with Rimmer (1974), followed by
several publications (Fried 1977; Hudgin 1977; Noll 1978; Fried 1978; Hunt 1979;
Cubalchini 1979; Herrmann 1980), and finish with Southwell (1980). All these
methods are based on the least squares estimator (see Section 2.4.5) while they
study the comparison between different zonal and modal reconstruction bases
in terms of noise propagation and computational complexity. Southwell (1980)
compares zonal and modal reconstruction and shows that noise propagation is
lower in the case of modal reconstruction compared to several zonal reconstruction
methods. Additionally, the modes with lower signal-to-noise ratio (SNR) can be
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filtered out, so they are not used in the correction (known as modal truncation)
since they will add more noise than signal to it.
The Zernike polynomials can be used for modal control; their main advantage is

their analytical tractability, which allows one to compute formulas for turbulence
statistics and performance metrics. The Karhunen–Loève (Fried 1978) basis has
the advantage of being optimal in the sense that it is the basis that better fits
the turbulence for a given number of modes; using fewer modes allows to relax
the computational cost of the correction. Unfortunately, the KL cannot be easily
computed analytically (Dai 1995).
As introduced in Section 2.4.3 in the context of the OMGI controller, the use of

modes allows to take advantage of the different dynamics and noise propagation of
each mode to optimize their gain to optimize the rejection performance.
The greater desirability of one reconstruction basis over another is not a closed

question in the literature. A complete evaluation of this problem would require
considering not only the noise propagation and reconstruction error, but also factors
such as the instrumental implementation of the calibration for each basis or the
sensitivity to model errors. Some additional observations on the comparison of
zonal and modal reconstruction bases are given in Section 6.2 in the context of
prediction of turbulence.
Section 2.4.5 details the methods used in phase reconstruction. Note, not only

modal methods, but also zonal methods benefit of phase reconstruction.

2.4.5. Phase Reconstruction
Historically (see Flicker et al. (2000) and Ellerbroek (2002) for an overview, compar-
ison, and historical context of phase reconstruction methods), phase reconstruction
was carried out using the pseudo-inverse of the influence matrix. This is the least
squares estimator that finds the best fit of the slopes to the DM. This was not
enough for tomographic reconstructors since there exist many poorly seen modes. A
solution to this problem is to regularize this inversion; two main groups of options
are available regarding the regularization of inversion problems: (1) SVD and
truncation of the lower singular values (i.e., the poorly seen modes) as discussed
in Section 2.4.2; (2) using a regularization term in the reconstructor. The second
category is discussed below.
We start by considering the following measurement equation:

y = Dϕ+w , (2.15)

where y are the measured slopes, ϕ is a vectorial representation (in an arbitrary
space) of the phase in front of the wavefront sensor, and D is the model of the
measurement of the wavefront sensor. Finally, w is an additive measurement noise
component of the covariance matrix Σw.
The goal is to find the phase reconstructor R so that:
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ϕ̂ = Ry = D†y , (2.16)

where ϕ̂ is the estimated phase and R = D† is a pseudo-inverse of the measurement
equation.
The classical least-squares pseudo-inverse solution is given by:

D† =
(
D⊤D

)−1
D⊤ . (2.17)

Remark

Here, D⊤D is, in general, not guaranteed to be invertible due to unseen or
poorly-seen modes whose eigenvalues are close to zero. Thus, this solution
requires a regularization that at least will filter out these modes.

The least-squares solution can be regularized by using the noise-weighted case:

D† =
(
D⊤Σ−1

w D
)−1

D⊤Σ−1
w . (2.18)

As an alternative, Tikhonov regularization will introduce a regularization param-
eter α > 0 so that:

D† =
(
D⊤D+ αI

)−1
D⊤ . (2.19)

A classical result is that Tikhonov regularization is equivalent to the SVD
truncation, where the regularization parameter tunes the number of singular
values that are truncated. Singular value truncation removes information from
the truncated modes under the assumption that their SNR is to low to be useful.
Instead, the maximum a posteriori (MAP) estimator (Wallner 1983) can be used:

D† =
(
D⊤Σ−1

w D+Σ−1
ϕ

)−1
D⊤Σ−1

w , (2.20)

where Σϕ is the covariance of the phase. Note how this is a mixture of the
noise weighted least squares solution with a regularization similar to the Tikhonov
regularization, but in this case using a weighting that depends on the turbulence
variance with respect to the measurement noise; in fact, the MAP reconstructor
can be seen as a Tikhonov regularization but with the optimal parameter found
thanks to the statistic priors (Foster 1961).
Fusco et al. (2001) adapted the method for tomographic approaches, while

Thiébaut and Tallon (2010) introduced a method to solve the reconstruction using
iterative methods that are more computationally affordable.
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Remark

The phase covariance statistics required for the MAP based regularization
are only available for open-loop turbulence. As a result, a pseudo open-loop
controller needs to be used for these methods.

2.4.6. Linear Quadratic Gaussian Control
The linear-quadratic-Gaussian (LQG) controller is explained in detail in Section
4.3.

2.5. Error Budget
The wavefront correction provided by adaptive optics will be only partial, resulting
in a residual wavefront error. The adaptive optics error budget is the breakdown
of the different contributors to the residual wavefront error. The adaptive optics
budget is expressed in terms of the variance of the residual phase; under the
assumption that all error terms are statistically uncorrelated, the variance for an
element can be summed to compute the total residual variance.
The elements causing errors in AO systems can be grouped into three categories:

1. Turbulence induced errors,

2. adaptive optics system errors, and

3. other errors.

Some of those are detailed below, although this list is not exhaustive. Depending
on the adaptive optics system, application, and operating point, some terms will
become more relevant than others, while others can be neglected.

Remark

Understanding and tracking the error budget is crucial to analyze and verify
the performance of an adaptive optics system during its design and imple-
mentation.

2.5.1. Turbulence Induced Errors
Those are errors related to the nature of optical propagation in turbulent media, such
as the anisoplanatism of turbulence or the amplitude distortions across atmospheric
propagation that cannot be corrected by adaptive optics. Other errors such as
the atmospheric chromatism error are of importance in some cases, but are not
considered in this manuscript.
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2.5.1.1. Scintillation Error, σ2
scint

Scintillation is the variation in the irradiance distribution over the pupil of a
telescope (or its focal plane) caused by amplitude distortions of the wavefront
resulting from the propagation of phase distortions along its path. Two factors
drive the strength of this effect: (1) long propagation distances, so the upper
layers of the atmosphere are its biggest contributor; and (2) strong turbulence.
Since adaptive optics only corrects the phase of the electromagnetic wave, its
performance, measured as the variance of the residual phase, is not directly linked
to scintillation. However, scintillation contributes to the residual phase budget since
the inhomogeneous irradiance distribution produces measurement errors in the
wavefront sensors (Mahe et al. 2000) and in stronger regimes can impair wavefront
sensing.
For astronomical observations and ground-based imaging of satellites, the effect

of scintillation is often neglected, since these observations happen at higher line of
sight elevations and during night, when turbulence strength is weaker. Scintillation
becomes more important in the case of free-space optical communication, since
they take place in less favorable locations during night-time and day-time (when
turbulence is stronger) and ground-to-LEO links need to be extended to lower
elevations to increase the duration of the link. Additionally, although not affecting
phase correction directly, scintillation affects other performance metrics such as
fiber coupling; see Section 3.3.2.1.

2.5.1.2. Anisoplanatism Error, σ2
aniso

Most adaptive optics applications aim to correct in an angular direction different
to the direction of the source used for wavefront sensing, for example the use of a
natural guide star to image a galaxy. This is because most targets in astronomy are
not bright enough to be used for wavefront sensing. Although the integration time
of the imaging cameras can be long enough to image faint targets, the integration
time of the wavefront sensor is limited by the AO loop rate, which limits the
possible sources for wavefront sensing.
The anisoplanatism error is defined as the difference between the turbulence

phase in the direction of correction and the phase in the direction at which wavefront
sensing is performed:

σ2
aniso = ⟨(ϕ(α)− ϕ(0))2⟩ , (2.21)

where α is the angle between both directions. Anisoplanatism phase variance
can be computed using the spatial angular decorrelation of turbulence (Fried 1982).
The anisoplanatic error becomes bigger with bigger angular distance between the

source and the target, which limits the guide stars available for a given target. This
lack of natural guide stars is what motivated the development of laser guide stars.
For ground-based imaging of satellites, it is often possible to use the reflection
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of sunlight on the satellite as a wavefront source, although laser guide stars are
also common (Fugate et al. 1994). Anisoplanatism is not a problem in the case
of optical communication downlinks, since in this case the satellite is used as a
beacon. For precompensated uplinks (Shapiro 1975; Tyson 1996) it is possible to
use the satellite downlink beam as a beacon; however, the angular distance between
the downlink and uplink beams (i.e. the point ahead angle (Lognone et al. 2022;
Lognoné et al. 2022)) introduces anisoplanatism error in the AO correction.

2.5.2. Adaptive Optics System Errors
Those are wavefront errors caused by the design and characteristics of the adaptive
optics systems and their components. All these errors are driven by the adaptive
optics system design, therefore, the different parameters of the system elements
such as the wavefront sensor, deformable mirror, or control loop can be traded off
to balance them.

2.5.2.1. Fitting Error, σ2
fitting

This error corresponds to the difference between the shape of the wavefront and
the shape that the deformable mirror can fit. In the spatial frequency domain, this
corresponds to the limited bandwidth covered by the deformable mirror influence
functions. As a result, the high spatial frequencies that are not covered by the DM
are not corrected (even if the phase is perfectly measured) and contribute to the
residual wavefront.
The fitting error variance can be computed as:

σ2
fitting = 0.458(nmax + 1)−5/3

(
D

r0

)5/3

, (2.22)

where nmax is the maximum corrected Zernike radial order in the system, r0 is
the Fried parameter, and D is the diameter of the telescope entrance aperture.
A deformable mirror with more actuators is able to cover a broader spatial

frequency and, therefore, fits more turbulence and reduces fitting error. Nevertheless,
the cost of the DM increases with the number of actuators, and so does the
computational complexity of the control algorithm, which limits the maximum
temporal sampling frequency of the loop (see temporal error). Correcting for more
spatial frequencies requires the reconstruction of those frequencies. Reconstructing
more spatial frequencies requires a finer sampling of the phase; for a fixed number
of photons over the telescope pupil, this implies fewer photons per measurement
point. For example, for the Shack-Hartmann WFS, a finer sampling requires the
use of more subpupils, which reduces the number of photons available per subpupil.

41



2. Adaptive Optics
2.5. Error Budget

2.5.2.2. Aliasing Error, σ2
alias

This error is related to the finite spatial sampling of the wavefront by the wavefront
sensor. For the Shack-Hartmann WFS the sampling is defined by the number
of microlenses that sample the telescope pupil. The Shack-Hartmann samples
the phase of the wavefront at a spatial frequency of fWFS

samp = 1/d, where d is the
pitch between two subpupils. The spatial frequencies of the wavefront that are
higher than the Nyquist-Shannon sampling criterion of fmax = fsamp/2 = 1/(2d)
are not properly sampled by the SH. The resulting sampled spectrum is symmetric
around fmax, also known as spectrum folding, and therefore there is no way to
distinguish the energy allocated to a frequency from its symmetric. This wavefront
measurement error propagates to the correction causing the aliasing error.
The aliasing error can be computed as a fraction of the fitting error (Rigaut et al.

1998; Neichel 2008):

σ2
aliasing = ασ2

fitting , (2.23)

where α is a constant that varies from 0.3 to 0.4. A value of α = 0.35 is assumed
throughout this thesis.
Spatial filtering techniques (Poyneer and Macintosh 2004; Fusco et al. 2005)

reduce the aliasing error by removing the high frequencies of the wavefront so that
the wavefront sensor does not see them and therefore cannot be folded into lower
frequencies. However, spatial filtering requires partially corrected wavefronts to
operate, limiting its use to high-performance systems such as the extreme AO
systems (Fusco et al. 2006; Poyneer et al. 2016).

2.5.2.3. Wavefront Sensor Noise Error, σ2
meas

The measurement noise in the wavefront sensor propagates to the wavefront re-
construction. For the case of the Shack-Hartmann WFS, the measurement of the
slopes is impacted by the photon noise and the detector read-out noise (see Section
2.2). This error in the wavefront measurement propagates across the loop and adds
up to the residual wavefront error.
The dimensioning of a Shack-Hartmann wavefront sensor depends on many

variables such as the flux level available for wavefront sensing, the detector noise,
the turbulence level expected and its impact on the shape of the lenslet spots, the
sampling of the spots, and the centroid computation algorithm used. A detailed
study of the dimensioning for this sensor is reported in Nicolle (2006).

2.5.2.4. Temporal Error, σ2
temp

This error, of great importance for this thesis, is caused by the delay present in the
adaptive optics loop between the measurement of the wavefront and its correction.
The origin of this delay was detailed in Section 2.4.1. The temporal error increases
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with a faster evolution of the turbulence and with slower temporal sampling of the
loop.
The most obvious way to decrease the temporal error is to run the loop at a

faster frequency. Unfortunately, this strategy faces technological limitations, such
as the DM response time, the DM mechanical resonance frequencies, or the lack of
enough computational power. Additionally, running the loop at a faster temporal
frequency entails using a shorter integration time for wavefront sensing, which
increases the measurement noise error in cases where the flux budget is already
tight, such as astronomical targets and ground-based imaging of satellites.
The delay in the loop increases with the complexity of the control algorithm, since

more time is necessary for the computations. To avoid increasing the loop delay
while using more complex control algorithms such as tomographic reconstructions
or extremely-large telescopes with thousands of actuators, different custom RTC
architectures (Fedrigo et al. 2006) have been proposed that make use of technologies
such as field programmable gate array (FPGA) or graphics processing unit (GPU )
for faster computations (Perret et al. 2016). Finally, and in line with the goal of
this thesis, predictive control can be used to reduce temporal error.

2.5.3. Other Errors
2.5.3.1. Calibration Error, σ2

cal

This error is related to the different calibrations that are needed to run the adaptive
optics loop, such as the interaction matrix or the reference slopes. To compute the
commands for the deformable mirror, it is necessary to compute the interaction
matrix. Some AO systems do not offer access to an internal source to acquire the
interaction matrix. Moreover, the interaction matrix changes during operation due
to the effect of the environment on the optomechanics of the system (Oberti et al.
2006). The deviations between the interaction matrix and the actual system, also
known as misregistration, will cause an error when computing the commands sent
to the DM and contribute to an additional residual wavefront.

2.5.3.2. Non-Common Path Aberration Error, σ2
NCPA

Once the wavefront sensing beam is split from the main optical path, both beams
will undergo different aberrations due to the remaining optical elements. Adaptive
optics corrects the aberrations that are measured at the wavefront sensing beam.
As a result, it will correct the aberrations in this path and will not correct the
aberrations present in the imaging path. These aberrations can be calibrated
(Sauvage et al. 2010) and incorporated into the AO loop, otherwise they will be
part of the residual wavefront error.
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2.5.3.3. Mechanical Vibrations, σ2
vib

Mechanical vibrations coming from the telescope structure or from instrument com-
ponents such as cryo-coolers will cause additional wavefront aberrations. Predictive
controllers can be used as vibration filters (Petit et al. 2008; Poyneer and Véran
2010; Guesalaga et al. 2012).

2.5.3.4. Modeling Errors

Thee errors to errors in the models used within the AO loop. This is the case for
the predictive models used in predictive controllers, for example, due to errors in
the identification of the model or the turbulence profile.

∗ ∗ ∗

Summary

This chapter introduced the basics of adaptive optics. The correction principle
of adaptive optics was presented together with its two main components: the
Shack-Hartmann as a wavefront sensor and the deformable mirror as a phase
corrector.
Different aspects of adaptive optics control were presented. The adaptive

optics chronogram was used to introduce the time delay between wavefront
measurement and correction in the adaptive optics loop, which will condition
adaptive optics control and that can be partially remedied by predictive
control. The interaction and control matrices are the main connection between
the slopes measurements and the DM commands, while the integral action
controller is the classical adaptive optics controller that will be used as a
benchmark for the predictive controller developed in this thesis. Modal
control expresses the phase measurements on a modal basis, by means of
phase reconstruction, and allows the controller to be expressed in a different
space. This can have advantages related to the noise propagation and filtering
in the controller, as well as the modeling of the disturbances to be controlled
for the design of more complex control laws such as predictive controllers.
Finally, the error budget was introduced. The error budget is an assessment

of the contribution of each aspect of an adaptive optics system to the final
residual wavefront phase variance. The error budget allocates and tracks the
performance of the system during its design and verification. Thus, it is a
crucial tool for the development of adaptive optics controllers.
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Introduction

This chapter provides a description of the adaptive optics challenges considered
in this thesis. These challenges deviate from the ones found in the development
of adaptive optics systems for astronomy, since they are specific for LEO
satellite applications.
This chapter will also provide a definition of the four AO systems that will

be used as case studies during this thesis: two for optical communications
and two for satellite observation.
The chapter will provide the error budgets previously introduced to these

four systems. In addition to the residual phase variance used by the AO error
budgets the Strehl ratio and fiber coupling efficiency will be introduced as
application specific metrics.

3.1. Low-Earth-Orbit Satellite Tracking
This thesis focuses on low Earth orbit (LEO) satellite applications. LEO satellites,
the satellites with the lowest orbits, typically with altitudes between 300 km of
2000 km. In contrast to geosynchronous equatorial orbit (GEO) satellites, LEO
satellites present a relative movement with respect to Earth’s surface, which implies
that they need to be tracked across their trajectory.
LEO orbits present several advantages, mainly related to their closer distance

to Earth. For Earth observation payloads, this means higher resolution imaging;
conversely, it means that LEO satellites can also be imaged with higher resolution
by ground-based telescopes. For communications payloads, they allow lower latency,
since the electromagnetic signals need to travel less distance, and lower geometric
losses, which lead to power savings or higher bandwidths.
The main disadvantage of LEO satellites is related to their relative movement

with respect to the Earth’s surface, since they need to hand over communications
between several ground stations. As a result, the duration of the link between the
satellite and the ground station is limited and will condition the volume of data
that can be exchanged; this volume can be improved with higher data rates, e.g.
thanks to optical links.
Figure 3.1 shows the evolution of the elevation and distance of a typical LEO

satellite with respect to a ground station. It can be observed that the satellite is
only observed during a maximum of less than 13min, while half of this time is
spent at an elevation below 20◦. Therefore, extended satellite link performance at
low elevations can significantly increase link duration. For satellite observation,
there is limited interest in imaging below 30◦, since the greater distance to the
satellite will imply lower received flux, limited resolution, and stronger turbulence.
Due to the advantages mentioned, the majority of satellites are in LEO orbits.

Traditional space-based communications have privileged architectures based on
high-performance payloads in the GEO belt, since they do not require tracking by
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Figure 3.1.: Evolution of elevation of the line of sight and distance to the satellite with
time for a 750 km altitude orbit with culmination at 90◦.

the receiver, and a unique satellite can cover and service a large area. However, in
the last years, a new generation of mega-constellations, e.g. Starlink and OneWeb,
for communications have started operation. Figure 3.2 plots the number of satellites
launched per year and per orbit type. The data is sourced from the satellite database
published by the Union of Concerned Scientists (USC ) (USC 2023), which, at the
time this analysis was conducted, contains all satellites launched until January
2023. A clear trend can be observed: the number of satellites launched per year
has increased exponentially in recent years, and the main share of this growth is
due to LEO satellites.
Such an increase in the use of the LEO orbit will drive the interest of new

technologies targeting this application. The use of LEO-to-ground optical links will
be able to support both Earth observation and telecommunications constellations.
For Earth observation, optical links will provide higher data rates to download
the high-resolution data, for example, the satellites of the CO3D constellation by
CNES will have optical terminals for downloading their data to optical ground
stations (Lochard et al. 2023). For telecommunications constellations, optical links
will bring higher-data rates, as well as the possibility of using quantum encryption
in the links (Acosta et al. 2023). At the same time, the increase in occupation of
LEO orbits will increase the need to monitor debris and other activities. Since
the distance of LEO to the satellites is close enough, they can be imaged from
ground-based telescopes using adaptive optics. The deterioration of image quality
due to atmospheric turbulence means that resolved imaging of LEO objects is only
possible with the aid of adaptive optics (Petit et al. 2020).
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Figure 3.2.: Satellites launched per year and orbit type since the year 2000. (Source:
USC (2023)).

3.1.1. Challenges of AO LEO Applications
From an adaptive optics perspective, there are three main challenges when using
LEO satellites as targets:

1. Faster temporal evolution of turbulence: As discussed in Section 1.1.3, the
evolution of turbulence in the time scale of adaptive optics correction (i.e.
milliseconds) is driven by frozen flow. This evolution depends on the wind
layer speeds of each of the layers that form the turbulence profile along the
observation line of sight. The faster these wind speeds are, the faster the
evolution of turbulence.

In the case of LEO satellite tracking, there is a second component to this
evolution: the relative motion of the telescope with respect to the atmospheric
layers due to the tracking of the satellite. This relative motion is equivalent
to the adaptive optics line of sight staying steady and the different layers
moving in a direction orthogonal to it with a speed that is the product of
the tracking speed of the telescope and the distance from the telescope to
the layer. Due to its similarity to the translation of the atmospheric layers
caused by wind, this component is called apparent wind, while the wind effect
is often called natural wind.

For LEO satellites, apparent wind speeds are one order of magnitude higher
than natural wind; see Figure 3.5 for an example. As a result, the presence
of apparent wind will significantly increase the speed with which turbulence
evolves, increasing also the temporal error in the adaptive optics correction.
Reducing temporal error requires increasing the adaptive optics loop frequency,
which affects the complexity, cost, and possible targets for the adaptive optics
system.
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An alternative to increasing the adaptive optics loop frequency is using
predictive control. Predictive control uses a predictive model of the turbulence
evolution to compensate for the delay between the measurement of turbulence
and its correction by predicting the evolution of turbulence from the moment
that was measured to the moment that is corrected. This thesis proposes a
predictive controller that incorporates apparent wind information to be used
with LEO satellites, see Chapter 6.

2. Changing turbulence conditions: In traditional astronomical applications,
turbulence conditions are stable for several minutes Poyneer et al. (2009);
Shepherd et al. (2014), which reduces the updates necessary for adaptive
optics controllers. This is not the case for LEO satellites, since the line of
sight elevation changes rapidly with satellite tracking; see Figure 3.1. The
change in elevation will imply a change in the turbulence conditions faced by
the adaptive optics system. Figure 3.3 shows an example of the change in
turbulence conditions with elevation, in particular, the evolution of the Fried
parameter, r0, which represents the turbulence strength. It can be observed
that r0 decreases by a factor of three (i.e. the turbulence strength increases)
between an observation at the zenith and an observation at 10◦.

In order to maintain consistent performance across all the satellite trajectory,
the adaptive optics controllers need to be updated according to the change
in turbulence conditions. Section 6.4 discusses how this can be done for
predictive controllers.

3. Strong scintillation conditions: To increase the duration of the link, adaptive
optics needs to extend its operation to the lowest possible elevations. At low
elevations, the path of the beam across turbulence and therefore the effects of
turbulence are stronger. The increase of the strength of turbulence leads to
the appearance of scintillation effects, which become more important. These
effects impair wavefront sensing and decrease coupling efficiency; therefore,
they challenge the use of adaptive optics in this regime. Figure 3.3 plots the
evolution of the Rytov variance with elevation; it can be observed how it
approaches the strong perturbation regime, σ2

χ,R > 0.3, for low elevations.

This thesis works on the development of the PICOLO, a turbulence emulator
for low elevation LEO-to-ground links, see Chapter 8. This bench will be
used in the future to test new adaptive optics techniques for the mitigation of
the effects of turbulence.

3.1.2. Satellite Orbits Considered
A unique orbit of 750 km altitude and culmination at 90◦ elevation is considered for
all cases. Depending on the inclination of the orbit with respect to the telescope
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Figure 3.3.: Example of changing turbulence conditions with elevation.

location, the culmination can be different, and therefore the time spent at every
elevation will also change. This kind of system study is not the aim of this thesis;
therefore, the most general orbit was chosen. Although this is not the most
statistically probable case, the culmination at 90◦ is the most general, since in this
case the satellite is observed from all possible elevations.

3.2. Turbulence Conditions
This section discusses the turbulence conditions faced by adaptive optics LEO
tracking applications, both in terms of C2

n and in terms of natural and apparent
wind profiles. Two reference profiles are defined for the case studies in this thesis:
(1) a night-time weaker turbulence profile for satellite observation applications, and
(2) a day-time stronger turbulence profile for optical communication applications.

3.2.1. Atmospheric Turbulence Profiles
The design of adaptive optics systems requires the evaluation of their performance;
this performance is mostly driven by the atmospheric turbulence profile under
which the system operates. The turbulence profile represents the refractive index
structure constant, C2

n(z), distribution across the propagation distance z; this
distribution, and not only the total turbulence strength, will affect the statistics
of the turbulence seen at the telescope pupil, as discussed in Chapter 1. As a
result, using an adequate atmospheric profile for the evaluation of adaptive optics
performance is crucial to achieving meaningful results.
The atmospheric turbulence profile depends on the current atmospheric conditions
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and the dynamics of the atmosphere. As a result, its structure evolves on a minute
time scale, while diurnal and seasonal trends are also observed. Since it is not always
possible to evaluate the system performance over all possible profiles, especially
when conducting end-to-end simulations, the set of possible profiles needs to be
reduced to one or more profiles that are representative enough of the typical
turbulence that will be faced by the system. Such a typical profile can be produced
by using turbulence profiling instruments (Haguenauer et al. 2020; Giordano et al.
2021) to collect measurements of the local turbulence across long periods and
conduct statistical studies to derive typical profiles for a given site (Osborn et al.
2018; Giordano et al. 2022). This kind of data should be sampled at the scale
of minutes and span one or several years to capture the different time scales
present in the evolution of the profile. The resulting averaging from the statistical
reduction of profiles will also remove some features present in some of the profiles,
so this reduction needs to consider the different scenarios such as the correlation
to meteorological seasons observed in the data. In order to do this, Farley et al.
(2018) suggested a methodology to cluster features and generate a set of typical
profiles from databases of long-term profile measurements.
The nature of the atmospheric turbulence profile varies heavily with the line

of sight, and more generally with telescope location. Turbulence profiling studies
are a key factor for the decision on the ideal location of an observatory (Schöck
et al. 2009). To characterize the geographical variability of the turbulence profiles,
Osborn and Sarazin (2018) proposed a method to derive turbulence profiles from
general circulation models based on weather forecast data.
When local measurements are not available or for preliminary studies, it is

possible to use analytical models published in the literature. A common choice is
to use a modified Hufnagel-Valley 5/7 model Valley (1980) to define the profile,
which is the recommendation of the ITU-R P.1621-2 standard for free-space optical
communications.
The choice among all the alternatives presented depends on the maturity of the

study and the availability of data. In this thesis, the MOSPAR atmospheric profiles
developed at ONERA Védrenne et al. (2021); Bonnefois et al. (2022) will be used.

3.2.1.1. MOSPAR Atmospheric Profiles

In this work, the MOSPAR profiles developed at ONERA are used as reference
profiles. The MOSPAR profiles are computed from a profile database constructed
with data available in the literature, which are combined to adequately represent
a general turbulence profile for adaptive optics systems in night-time and day-
time conditions. The database uses two different sources: (1) vertical turbulence
profiles from Cerro Paranal (in Chile) (Osborn et al. 2018) and (2) ground C2

n

measurements collected at Mount Teide Observatory in Tenerife (in Spain) for
night-time (Ramió et al. 2012) and day-time (Sprung and Sucher 2013). The
former provides high-altitude layer conditions in the free atmosphere that will
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drive the anisoplanatism, while the latter provides variability in ground turbulence
strength. Since the turbulence conditions vary strongly between day and night
due to the thermal interaction of the ground and the atmosphere, the ground
measurements data contain measurements for both night and day-time conditions.
The link between the ground layer and the free atmosphere is described thanks
to the Monin-Obukhov similarity (MOS ) theory assuming a h−p decrease of the
C2
n with p = 2/3 for stable conditions (the case of night-time ground) and with

p = 4/3 for unstable conditions (the case of day-time ground turbulence). The
MOSPAR (for MOS-Paranal) profile database contains 10 000 profiles with their
corresponding integrated parameters.
The construction of the MOSPAR profiles is detailed in Védrenne et al. (2021)

and Bonnefois et al. (2022). A reference profile can be generated from the MOSPAR
database by stitching two profiles from the two databases corresponding to the
free atmosphere and the ground layer. The profiles are chosen based on the two
main integrated turbulence parameters that drive AO performance: (1) the Fried
parameter, r0, and (2) the anisoplanatic angle, θ0. The Fried parameter drives
the fitting, temporal, and aliasing errors, and the anisoplanatic angle drives the
anisoplanatism error. The aim is to select as a typical profile a worst-case profile
that will have stronger turbulence than a given percentile across the databases.
The following nomenclature MOSPAR-A/B is used to name the worst-case profiles,
where A means that the A% of the profiles has a weaker turbulence (i.e. higher r0)
and B means that the B% of the profiles has a weaker anisoplanatism (i.e. smaller
θ0). First, the threshold on θ0 is used to select the free atmosphere part of the
profile from the Paranal database. Later, an intermediate database of profiles is
generated that has the same free atmosphere for all the profiles, the one chosen
by the threshold on θ0, and a ground layer from each of the profiles within one
of the two ground-layer databases, depending of whether the desired profile is a
night-time or day-time profile. The threshold in r0 is used to select a profile from
this intermediate database.

Remark

Even if for the LEO downlink case there is no anisoplanatic error involved,
the anisoplanatic angle also drives the temporal error. Due to the presence of
frozen flow turbulence, the presence of fast angular decorrelation is equivalent
to a fast temporal decorrelation.

3.2.1.2. Reference Profiles

This work considers two reference profiles: one for satellite imaging and the other
for optical telecommunication scenarios. For satellite imaging, the profile chosen
is a MOSPAR-75/75 night-time. The aim is to represent a scenario of favorable
turbulence conditions, since these systems are located in astronomical sites and
are only possible during the night. For optical communication systems, the profile
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chosen is a MOSPAR-90/90 day-time. The reference profile is a day-time profile
with a strong threshold to correspond to the worst case in terms of turbulence
strength. Since the optical ground stations will be located closer to the rest of the
network infrastructure, they will not benefit from the favorable seeing conditions of
astronomical observatories. Figure 3.4 plots the two selected profiles. The profiles
are plotted with a zenithal line of sight. The main difference between their structure
is the presence of a stronger ground layer in the case of the MOSPAR-90/90 day-
time due to the thermal exchange between the ground and the atmosphere during
the day. The integrated parameters for the profiles are plotted in Section 3.4.2 for
each of the systems considered.
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(a) MOSPAR-75/75 night-time.
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(b) MOSPAR-90/90 day-time.

Figure 3.4.: Atmospheric turbulence profiles used for the different operating points.

3.2.2. Wind Profile
The wind profile is the same for all the simulations, but it changes with elevation.
The total wind has two components: (1) the natural wind and (2) the apparent
wind due to the satellite tracking. Natural wind depends on the height of the layer
and here it is modeled as a Bufton profile with a ground layer speed of 3m/s and
an upper layer speed of 20m/s. The apparent wind depends on the distance to
the layer (equivalent to the propagation distance from the layer) and the angular
tracking speed of the telescope (equivalent to the satellite slew rate).
Figure 3.5 depicts the wind profile used in the simulations at two different

elevations. The plot uses propagation distance instead of height of the layer which
causes the natural wind profiles to look different; this is normal since the line of
sight is longer for lower elevations. The maximum apparent wind speed is a factor
of the maximum layer distance and the slew rate at this elevation.
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Remark

The temporal error is driven by the distribution along the line of sight of both
the turbulence C2

n and the layer speeds, and not only by the wind profile.
The same wind profile and the same r0 can lead to very different temporal
error.

Natural wind is assumed to have the same orientation as the apparent wind. If
the two wind components have different orientations, the argument of the wind
vector for a given layer may increase or decrease and with it the contribution of
the layer to temporal error. Nevertheless, this effect does only slightly change the
absolute results of the case under study and neglecting it does not invalidate any
of the general observations presented in this work.
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Figure 3.5.: Wind profiles considered for the case studies. The natural wind profile is
given by a Bufton profile with a ground layer speed of 3m/s and an upper layer speed of
20m/s. The apparent wind speed is given by the product between the angular speed of
the tracking and the distance to the corresponding layer of turbulence. The profiles are
plotted for two different layers to illustrate their variation with elevation.

3.2.3. Variation of Integrated Parameters with Elevation
The variation of the line of sight elevation along the satellite trajectory tracking
will lead to an evolution of the turbulence integrated parameters. Figure 3.6 and
Figure 3.7 plot the evolution of these parameters, as presented in Chapter 1.
The evolution of these parameters will drive the performance of adaptive optics

correction, which will change depending on the elevation as shown in the AO error
budgets reported in Section 3.4.2. The evolution of AO performance will also lead
to an evolution of the system performance metrics presented in this chapter. From

54



3. Adaptive Optics for LEO Satellite Tracking
3.2. Turbulence Conditions

a control system point of view, this evolution implies that the parameters of the
controller (i.e. the predictive model in the case of a predictive controller) need to
be updated to adapt to these changes.
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Figure 3.6.: Evolution of integrated parameters with elevation for the MOSPAR-90/90
day-time profile used for the optical communication case studies.
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Figure 3.7.: Evolution of integrated parameters with elevation for the MOSPAR-75/75
night-time profile used for the satellite observation case studies.
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3.3. System Performance Metrics
The main performance metric for adaptive optics correction is the residual phase
variance, which quantifies the remaining phase distortion after AO correction. This
metric was discussed in Section 2.5 and will be quantified for the case studies
considered in this manuscript in Section 3.4.2. The residual phase variance and its
allocation to different AO elements is very useful for the assessment of adaptive
optics system performance, and will be extensively used in this thesis as such.
Nevertheless, other performance metrics are necessary to study the performance
of the application under adaptive optics correction. This section will discuss the
effect of turbulence distortions on the two main applications considered: image
formation and single-mode fiber coupling. Image formation will be discussed first
since some of these concepts are useful for the understanding of fiber coupling.

3.3.1. Image Formation in Presence of Atmospheric
Turbulence

The presence of atmospheric turbulence introduces aberrations in the imaging of a
telescope which result in degradation of the telescope’s imaging performance. This
section describes mathematically the effect of atmospheric turbulence in the image
formation of a telescope and how it degrades its performance.
The image formation of an imaging system can be modeled as a convolution

operation:

i = h ∗ o , (3.1)

where o represents the object imaged, h is the response of the system to a
point source, known as point spread function (PSF ), and i is the resulting image.
This convolution model assumes that the system response is linear and translation
invariant (i.e. the imaging performance is the same over all the field of view).
Note that the convolution operation has the effect of blurring the original; this

blurring effect is stronger when the shape of the PSF is wider. From a Fourier
optics perspective, the PSF and its effect on image formation can be interpreted
thanks to the optical transfer function (OTF ), which is the Fourier transform of the
PSF. The OTF is a complex valued transfer function that represents the filtering
in the Fourier domain of the object by the imaging system:

FT[i] = OTF · FT[o] = FT[h] · FT[o] , (3.2)

where FT[·] corresponds to the Fourier transform operator.
As a result, the spectral content of the PSF defines the attenuation of the spectral

content of the object when it is imaged.
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3.3.1.1. Effect of Turbulence on the PSF

The theory of Fourier optics defines the PSF as the squared magnitude of Fourier
transform of the optical field complex amplitude at the telescope pupil (i.e. Fraun-
hofer diffraction pattern):

h = |FT [ψ(ρ)P(ρ)]|2 , (3.3)

where ψ(ρ) is the complex amplitude of the optical field at the telescope pupil
P(ρ) is the pupil function, defined as:

P(ρ) =

{
1 if d

2
≤ ∥ρ∥D

2

0 otherwise,
(3.4)

where D is the diameter of the telescope pupil and d is the diameter of the
central obscuration of the pupil.

Remark

The PSF depends therefore on the pupil shape and size with respect to
the wavelength and on the complex amplitude of the optical field, that is,
both its phase and its amplitude. Both phase and amplitude distortions (i.e.
scintillation) contribute to the degradation of the PSF ; here only the phase
is discussed, since scintillation is negligible in most adaptive optics operation
regimes in imaging applications. The effects of scintillation on the PSF are
nevertheless considered when discussing coupling into an optical fiber.

In absence of turbulence, the optical complex field does not suffer any distortion
and it has (ideally) a uniform phase and amplitude over the telescope pupil. This
results in the PSF having the shape of the Airy disk, with a width proportional
to λ/D. This case is the diffraction limited case, where the imaging resolution is
limited by the diffraction of the pupil and not by the effect of the distortions of the
optical field on the PSF. In the presence of turbulence, the short exposure PSF
will be scattered across a broader area and broken into several speckles. For long
exposure images, the speckle pattern will be averaged and the resulting pattern
has a diameter that depends on the Fried parameter, r0.
Note how the ratio D/r0 allows to define two regimes for the PSF : For D/r0 < 1

the image formation is limited by the diffraction of the pupil; while for D/r0 > 1
the turbulence limits the image resolution.
Figure 3.8 illustrates the effect described above for a turbulence of D/r0 = 12.

3.3.1.2. Strehl Ratio

The Strehl ratio (SR) is the most common metric for optical image formation
quality. It is defined as the ratio of the peak intensity of the aberrated and/or
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(a) (b) (c)

Figure 3.8.: Illustration of the effect of turbulence on the PSF. (a) Diffraction limited
PSF (zoomed with 4x). (b) Short exposure PSF for D/r0 = 12. (c) Long exposure PSF
for D/r0 = 12.

partially-corrected PSF to the peak intensity of the diffraction-limited PSF in the
on axis direction:

SR =
Iaberrated(0)

Idiff.−lim.(0)
. (3.5)
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Figure 3.9.: Computation of the Strehl ratio.

The Strehl ratio represents the concentration of energy within the peak of the
PSF with respect to the diffraction limited case; this depends mainly on the
low frequencies of the optical transfer function and therefore it does not convey
information about how well the high frequencies of the object are imaged. Figure
3.9 illustrates a the computation of the Strehl ratio as the ration of the peak of the
diffraction limited and the partially-corrected PSFs.
Under the assumption of small residual phase functions, the Strehl ratio can
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be approximated in terms of the residual phase variance using the definition of
coherent energy (i.e. the Maréchal approximation (Ross 2009)):

SR ≈ exp(−σ2
res) (3.6)

3.3.2. Communication Channel Impairments Induced by the
Atmosphere

This section discusses the effect of atmospheric optical turbulence in the commu-
nication channel, in particular in the single-mode coupling necessary for the use
of different optical communication techniques such as coherent detection, erbium-
doped fiber amplifiers, multiplexers, and other technologies initially developed for
fibered networks. Other effects such as cloud coverage and atmospheric absorption
or the Doppler effect are beyond the scope of this manuscript.

3.3.2.1. Effect of Turbulence Distortions on Single Mode Fiber Coupling

An optical receiver uses a telescope to collect the light from the satellite and to
couple it into a single-mode fiber (SMF ). Fiber coupling will also be affected by
the distortions on the incoming wavefront (both in phase and in amplitude). The
efficiency of fiber coupling depends on the mode matching between the turbulence
and the optical fiber, as a result, the coupling by an overlap integral between two
modes. The overlap integral can be computed in both the pupil plane or the focal
plane of the telescope; the only difference between both is the Fourier transform
that represents the Fraunhofer propagation of the telescope focusing the wave from
the pupil to the focal plane. The two perspectives are possible to analyze the
coupling of a wave into a fiber, each of them providing interesting interpretations.
We start by discussing coupling on the pupil plane since this avoids considering

the Fourier transform of the wave complex field. After propagation, the complex
amplitude of propagated wave received at the telescope pupil is:

Ψ(r, t) = A0(r)Atur(r, t)e
iϕturb , (3.7)

where A0 denotes the complex field amplitude without perturbation, Atur and
ϕturb represent the turbulence induced amplitude fluctuations and phase aberrations,
respectively.
In the pupil plane, the coupling to a SMF with a mode M0(r) is given by the

following overlap integral (Shaklan and Roddier 1988):

Ω(t) =

∫∫
P (r)ψ(r, t)M∗

0 (r) dr
2√∫∫

P (r)ψ(r, t)ψ∗(r, t) dr2
∫∫

P (r)M0(r)M∗
0 (r) dr

2

, (3.8)

where z∗ denotes the complex conjugate of a complex quantity z and P (r) is
the pupil function as defined in Equation 3.4. Thanks to the Parseval theorem, a
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similar relationship holds in the image plane, in this case as an overlap integral
between the PSF and the SMF shape in the image plane. This second view is
also interesting since all the intuitions of the PSF, such as angle of arrival due to
aberrations, shape with respect to r0, can be used.
The complex coupling can be decomposed in two terms corresponding to its

square modulus, the coupling efficiency, ρ(t), and its argument, the phase noise,
ϕ(t):

ρ(t) = |Ω(t)|2 (3.9)

and

ϕ(t) = arg(Ω(t)) . (3.10)

As a result, both phase and amplitude distortions will cause losses in coupling,
since any mismatch between the wave complex field and the fiber mode, both in
amplitude or phase, causes losses of energy in the coupling.
Even in the case of phase correction, there are two contributions related to wave

amplitude, which cannot be corrected by AO, that will cause losses in coupling
efficiency: mode mismatch in vacuum and scintillation.
The amplitude mismatch between the undisturbed beam and the fiber mode will

already limit coupling. For the case of a LEO satellite, the unperturbed optical
beam is assumed to have a constant amplitude over the pupil (the propagation
length is long enough to only see a small section of the emitted beam profile due to
divergence) and zero phase (by definition, since there are no perturbations). The
SMF mode shape, M0(r), is approximated by a Gaussian mode shape, whose waist
is optimized to provide the maximum coupling with the unperturbed optical beam.
In this case, the optimal beam waist results in a maximum coupling efficiency
of ρ(t)max ≈ 0.81 (Ruilier and Cassaing 2001). This value will be lower if pupil
obscuration is considered.
Scintillation will have two effects in coupling. On the one hand, the total power

collected by the telescope, also known as power in the bucket, will vary as a result of
scintillation. On the other hand, scintillation will also influence the overlap integral
of the coupling efficiency. The computation of coupling efficiency in Equation
3.8 only accounts for the second effect. The total flux coupled into the fiber will
therefore be:

P (t) = |Ω(t)|2 ×
∫∫
S

P (r)ψ(r, t)ψ∗(r, t) dr2 , (3.11)

where the second factor corresponds to the integral of the field flux over the
pupil surface, i.e. power in the bucket. The total power coupled into the fiber
depends on the power in the bucket (driven by scintillation) and the coupling
efficiency (driven by AO correction and to a lesser extent by scintillation). This
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means that the scintillation limits the stability of coupled power, also. For this
reason, the design of optical ground stations may use a bigger telescope, so the
effect of scintillation can be averaged to obtain a more stable signal. Nevertheless,
increasing the telescope size leads to more phase effects, due to the increase in
D/r0, and requires more complex adaptive optics systems, i.e. that correct more
turbulence modes by having more actuators.
In summary, the presence of turbulence will cause a fluctuation and drops in the

coupling efficiency, known as fadings. The role of adaptive optics is to correct the
phase distortions on the beam so fadings can be reduced.

3.3.2.2. Fading Mitigation Techniques

Different fading mitigation techniques are available; they can be divided into
physical and digital signal processing techniques. Physical techniques use the
physical properties of light to reduce the power fluctuations in the received signal;
digital signal processing techniques work on the way the information is encoded in
the physical signal so that it is more robust to fadings.
Physical mitigation techniques can reduce the impact of atmospheric turbulence

on the coupling into an optical fiber. Two main options are available: Multi-
aperture receivers and adaptive optics. Multi-aperture receivers make use of several
smaller telescopes; smaller telescopes are less affected by turbulence (since they
have a smaller D/r0) and are able to achieve SMF coupling without the use of
distortion correction. The received signal is mostly limited by the collected flux
and the power fluctuations due to scintillation averaged over the pupil; as a result,
several telescopes are used. The optical signals of each aperture are then detected
individually and recombined and postprocessed digitally. As a result, each of the
elements of the detection chain (amplifiers, detectors, processing circuits) are scaled
by the number of apertures and so is the system complexity and cost. In cases
of strong turbulence, a multi-aperture system may need at least tip-tilt phase
correction, also one per aperture, which would also increase the system complexity.
Adaptive optics provides phase correction to improve fiber coupling efficiency.

Phase correction allows using a bigger and unique telescope, increasing the collected
flux, and reducing the signal fluctuation due to scintillation since the effect of
aperture averaging will be stronger. The principle of adaptive optics was introduced
in Section 2.
Two digital signal processing techniques are the most common: forward error

correction and interleaving. Forward error correction coding adds redundancy to
the transmitted data, enabling the receiver to correct a certain number of errors
without requiring retransmission of the data. The method operates by encoding
the message into a longer block of data before transmission, such that even if some
bits are altered due to channel impairments like fading, the original message can
still be accurately decoded at the receiver. Interleaving rearranges the sequence of
transmitted bits, such that consecutive bits in the original data sequence are spaced
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apart in the transmitted sequence. Upon reception and after error correction, the
bits are de-interleaved to reconstruct the original sequence. The main objective is
to disperse the effects of burst errors that could result from deep fading events.
This thesis is devoted to one of those techniques, adaptive optics, which has

become part of most implementations of space-to-ground optical links. In practice,
the implementation of optical links rely of both kinds of techniques and requires a
joint optimization of both (Canuet 2018).

3.3.2.3. Link Budget and Link Margin

The link budget is a design tool for communication systems that accounts for all the
gains and losses of signal power between the emitter and a receiver in a link. The
link budget allows therefore to compute the received power. The received power is
then compared to the receiver sensitivity, which is the required power to achieve a
given SNR. The receiver sensitivity depends on the modulation used by the link
and ultimately on the components used within its detection chain (Anfray et al.
2019). The difference between the received power and the receiver sensitivity is the
link margin, the power that can be lost during signal fadings while maintaining
the desired communication performance.
The link budget can be written as:

PRX = GRXLRXLcloudLabsLFSLTXGTXPTX , (3.12)

where:

– PTX is the transmitted power.

– PRX is the received power.

– GTX and GRX correspond to the transmitter and receiver antenna gains,
respectively; the account of the directivity of the transmission and reception.

– LTX and LRX correspond to the losses during transmission and reception
related to telescope transmission and fixed fiber injection losses.

– LFS to the free space losses due to diffraction during the optical wave propa-
gation along its path.

– Lcloud represents the losses due to cloud coverage.

– Labs represents the losses due to atmospheric absorption.

Other losses, such as those due to errors in pointing by the transmitter and in
tracking by the receiver, may be included.
The link margin, PLM (this time given in dB) is the difference between the

receiver power allocated in the link budget and the sensitivity of the targeted
detection system in the receiver, PS:
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PLM = (GRX − LRX − Lcloud − Labs − LFS − LTX +GTX + PTX)− PS . (3.13)

Remark

The design objective for a telecommunications system is thus to dimension a
system where the instantaneous received power due to signal fadings is still
below its detection threshold:

PRXs(t) > PS , (3.14)

where s(t) is the instantaneous signal attenuation due to fadings. In this
design, different trade offs between laser source power, telescope dimensioning,
optical terminal design, data-rate, modulation scheme, and fading reduction
mechanism are involved. Adaptive optics, as a fading reduction mechanism,
enables therefore to reduce some of those constraints to achieve higher data
rates.

3.4. Adaptive Optics Systems: Case Studies
Four different systems are considered in this work, corresponding to two optical
communications systems and two satellite imaging systems, with a low-performance
and a high-performance variant for each. The AO relevant parameters for each for
each of the systems are reported in Table 3.1. The systems are:

1. LISA: a compact adaptive optics bench for optical telecommunications devel-
oped by ONERA (Lim et al. 2018).

2. FEELINGS : the ONERA optical communications ground station (Petit et al.
2022).

3. ODISSEE : the current ONERA adaptive optics bench for satellite observation,
installed at the Observatoire de la Côte d’Azur (Petit et al. 2020).

4. ODISSEE++: hypothetical high-performance version of the ODISSEE bench
with the same sampling frequency but a doubled actuator sampling.

The reported central obscurations correspond to a circular obscuration with a
diameter corresponding to the cited percentage of the telescope pupil diameter.

3.4.1. Wavefront Sensing Noise Levels
This section defines the wavefront sensing measurement noise levels that will be
considered for the different applications. The noise level at which an AO system

63



3. Adaptive Optics for LEO Satellite Tracking
3.4. Adaptive Optics Systems: Case Studies

Table 3.1.: Adaptive optics system parameters for the four AO configurations.

Name LISA FEELINGS ODISSEE ODISSEE++ Units

Imaging wavelength, λimg 1.55 1.55 0.850 0.850 µm
WFS wavelength, λWFS 1.55 1.55 0.600 0.600 µm
Telescope diameter 0.4 0.6 1.5 1.5 m

Central obscuration 0.0 25.0 25.0 25.0 %

SH subpupils 8× 8 16× 16 8× 8 16× 16 −
DM actuators 9× 9 17× 17 9× 9 17× 17 −
Loop sampling frequency 2 4.5 1.5 1.5 kHz

Loop delay 2 2 2 2
frames

operates depends on many factors, such as the flux coming from the reference
source (beacon for optical communications and the light reflected from the satellite
for imaging) and the detection technology used in the wavefront sensor. The aim
here is not to use the exact values for a given system, but to define a range of
noise values that allow covering all possible regimes at which an AO system and
its control system may operate.
For optical telecommunication applications, wavefront sensing is conducted

on a beacon on the downlink beam. As a result, the same wavelength as the
telecommunication wavelength is used for wavefront sensing, i.e. λ = 1.55 µm.
Due to the nature of the sensing source, the flux available in this application is
much higher than for typical astronomical targets. For ground-based imaging of
satellites wavefront sensing uses the solar radiation reflected on the target satellite.
In this case, the available flux is much lower than that for optical communications.
Additionally, the radiation received from the satellite is broadband in wavelength.
A common strategy is to split the beam with a dichroic and use a central wavelength
of λ = 0.850 µm for imaging and λ = 0.6 µm for wavefront sensing.
In order to provide a convenient definition of measurement noise levels the

per-subpupil signal-to-noise ratio (SNR) is defined as:

SNR =
µ

σ
, (3.15)

where µ is the signal mean and σ is the standard deviation of the noise. Assuming
that the detection is photon noise limited and neglecting the read-out noise of the
detector, the signal will follow a Poisson distribution: its mean signal is the number
of photons, Nph, and its standard deviation is

√
Nph, so that:

SNR =
Nph√
Nph

=
√
Nph . (3.16)

Plugging this into Equation 2.4 and assuming that the spot on the detector is
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close to the diffraction limit, i.e. XT = XD:

σ2
meas =

π2

2

1

SNR2

(
rad2

)
. (3.17)

where σ2
meas is the variance of phase in radians squared over the subpupil.

The definition of SNR presented above allows for defining high and low noise
scenarios in a simple manner. We will consider SNR = 100 as a case with low
measurement error and lower values as high noise cases.
The assumption of photon noise limited is reasonable since for satellite imaging

applications even if the number of photons is low the EMCCD detectors used have
very low read-out noise. For optical communications, the number of photons is
high enough so that photon noise dominates over the detector noise.
Figure 3.10 illustrates the equivalence of the defined SNR in terms of photons

per frame per subpupil, phase variance over the subpupil, and slope measurement
noise. It can be observed how the SNR scale used provides a good coverage of all
the regimes that may be encountered.
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Figure 3.10.: Noise ranges covered by the SNR scale.

3.4.2. Error Budgets
This section provides and discusses the AO error budgets for the four systems
considered.
The use of error budgets is of utmost importance for the methodology followed in

this thesis. Error budgets are used for the validation of the end-to-end simulations
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and for the assessment of their results. They allow understanding the performance
limits of the system and the origin of possible performance gains or losses.
The error budgets presented here use the tool simplified adaptive optics simula-

tion tool (SAOST ); a detailed description of the tool can be found in Bonnefois
et al. (2022). SAOST is based on the modal decomposition of phase in Zernike
polynomials; as a result, it is able to provide a residual phase variance budget per
mode including fitting, aliasing, temporal, and anisoplanatic error. The calculation
of temporal error is conducted using the temporal power spectral density function
for each of the modes as provided by Conan et al. (1995) and filtered by the
rejection transfer function of a integral action controller. The integrator used has a
two-frame delay and a gain that is optimized for the noise level using a scalar gain
optimization. This computation was modified in this thesis to also include the noise
transfer function of the integrator and compute the contribution of measurement
noise to the residual phase variance.
The error budgets presented use the wind profile with only apparent wind speed,

since most of the simulations in this thesis will not incorporate natural wind
speed. As stated in Section 3.2.2 the two optical communication systems use the
MOSPAR-90/90 day-time profile and the two satellite observation systems use the
MOSPAR-75/75 night-time profile.

The results provided here are for a scenario of SNR = 100, a high SNR; therefore,
the contribution of measurement noise is negligible.
The LISA and the ODISSEE systems, both with a 9 × 9 DM, are assumed

to correct the first nmax = 10 Zernike polynomials radial orders; while for the
FEELINGS and the ODISSEE++ systems, both with a 17× 17 DM, nmax = 20 is
used.
Table 3.2 reports the AO budget for each system at different elevations; while

Figure 3.11 plots the same information. The main interest for this thesis is to study
the importance of temporal error within these budgets. Since predictive control
reduces the temporal error, it will be more interesting cases where temporal error
has a greater importance.
The two optical communication systems present a temporal error that is smaller

than their fitting error. This is due to the fact that the profile considered has its
turbulence concentrated at the ground layer, where the apparent wind speed is
very low since the distance to the layer is low. Overall, the two systems show a
very similar structure of their error budget. Nevertheless, the FEELINGS system
has a lower total residual phase variance since, even if it has a larger telescope
diameter, it has twice the number of DM sampling and a faster AO loop. As can
be observed in the orange line plotting the total residual phase variance without
temporal error, the gains by reducing temporal error are not very high, since fitting
and aliasing dominate the error budget.
The satellite observation cases show a different scenario, where the temporal

error is of greater importance in the AO budget. This is again due to the profile
considered, since (in relative terms) most of the turbulence is located at the free
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atmosphere, where the apparent wind is higher in speed. This is especially true for
the ODISSEE++ system, since it has the same sampling frequency as ODISSEE
but twice the actuator sampling. Considering more modes to be corrected implies
that the temporal error will increase and the fitting error will decrease; therefore,
this shifts in the AO budget. As a result, the performance gains for the satellite
observation systems are higher. Assuming that it is possible to reduce the temporal
error to a negligible quantity with respect to the other budget terms, the total
residual phase variance can be reduced from 7.834 ·10−1 to 9.830 ·10−2 in the zenith
case.

Remark

These results are more related to the structure of the C2
n profiles for both

optical communications and satellite observation cases than to the application
and its systems. The AO budget and the gains would be similar for optical
communications if the same profile, meaning a night-time scenario, was
considered.

∗ ∗ ∗
Summary

This chapter introduced all the specific concepts of the applications considered
in this thesis with respect to the use of adaptive optics. This thesis focuses
on the improvement of adaptive optics for the specific case of LEO satellite
applications, which differ in some points to the traditional problems of
adaptive optics for astronomy.
In particular, adaptive optics for LEO applications faces a stronger layer

(apparent) wind speed that results in a significantly greater temporal error.
This fact will drive the interest of predictive controllers with respect to
other applications. The presence of strong turbulence conditions leading to
scintillation is also not common in astronomy applications, but it is key for
adaptive optics if LEO optical links need to be extended below 20◦ elevations.
The chapter also provided an overview of the typical atmospheric conditions

faced by adaptive optics in LEO satellite applications. The reference profiles
for the case studies within this manuscript were defined.
Strehl ratio and fiber coupling efficiency were discussed as metrics for

satellite imaging and optical communications, respectively, as well as the
influence of atmospheric turbulence on them. Residual wavefront variance
will be used to assess the performance of adaptive optics, while these metrics
will describe the performance of the applications assisted by adaptive optics.

Finally, the four AO systems used as case studies within this manuscript
were presented, including the error budgets for them. These budgets will be
used in this thesis to assess the performance of adaptive optics correction.
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Table 3.2.: AO error budget for different elevations. Results are given in variance of
the residual phase with units rad2.

Elevation Fitting Aliasing Temporal Total

L
IS
A

10◦ 1.193 4.177 · 10−1 6.336 · 10−1 2.245

20◦ 6.067 · 10−1 2.123 · 10−1 2.778 · 10−1 1.097

30◦ 4.151 · 10−1 1.453 · 10−1 1.961 · 10−1 7.566 · 10−1

40◦ 3.229 · 10−1 1.130 · 10−1 1.648 · 10−1 6.008 · 10−1

50◦ 2.710 · 10−1 9.485 · 10−2 1.486 · 10−1 5.145 · 10−1

60◦ 2.397 · 10−1 8.390 · 10−2 1.393 · 10−1 4.630 · 10−1

70◦ 2.209 · 10−1 7.732 · 10−2 1.336 · 10−1 4.319 · 10−1

80◦ 2.108 · 10−1 7.378 · 10−2 1.305 · 10−1 4.151 · 10−1

90◦ 2.076 · 10−1 7.266 · 10−2 1.295 · 10−1 4.098 · 10−1

F
E
E
L
IN

G
S

10◦ 7.014 · 10−1 2.455 · 10−1 2.644 · 10−1 1.212

20◦ 3.566 · 10−1 1.248 · 10−1 1.003 · 10−1 5.820 · 10−1

30◦ 2.440 · 10−1 8.540 · 10−2 7.193 · 10−2 4.016 · 10−1

40◦ 1.898 · 10−1 6.644 · 10−2 6.369 · 10−2 3.202 · 10−1

50◦ 1.593 · 10−1 5.575 · 10−2 6.100 · 10−2 2.763 · 10−1

60◦ 1.409 · 10−1 4.931 · 10−2 6.039 · 10−2 2.508 · 10−1

70◦ 1.299 · 10−1 4.545 · 10−2 6.039 · 10−2 2.359 · 10−1

80◦ 1.239 · 10−1 4.337 · 10−2 6.052 · 10−2 2.280 · 10−1

90◦ 1.220 · 10−1 4.271 · 10−2 6.058 · 10−2 2.255 · 10−1

O
D
IS
S
E
E

10◦ 1.384 4.843 · 10−1 2.670 4.538

20◦ 7.084 · 10−1 2.479 · 10−1 9.567 · 10−1 1.913

30◦ 4.854 · 10−1 1.699 · 10−1 6.889 · 10−1 1.344

40◦ 3.778 · 10−1 1.322 · 10−1 6.246 · 10−1 1.135

50◦ 3.171 · 10−1 1.110 · 10−1 6.118 · 10−1 1.040

60◦ 2.805 · 10−1 9.818 · 10−2 6.139 · 10−1 9.928 · 10−1

70◦ 2.586 · 10−1 9.049 · 10−2 6.193 · 10−1 9.686 · 10−1

80◦ 2.467 · 10−1 8.635 · 10−2 6.235 · 10−1 9.568 · 10−1

90◦ 2.430 · 10−1 8.504 · 10−2 6.244 · 10−1 9.526 · 10−1

O
D
IS
S
E
E
+
+

10◦ 4.138 · 10−1 1.448 · 10−1 3.017 3.575

20◦ 2.118 · 10−1 7.415 · 10−2 1.144 1.430

30◦ 1.452 · 10−1 5.080 · 10−2 8.176 · 10−1 1.014

40◦ 1.130 · 10−1 3.954 · 10−2 7.239 · 10−1 8.767 · 10−1

50◦ 9.482 · 10−2 3.319 · 10−2 6.944 · 10−1 8.226 · 10−1

60◦ 8.389 · 10−2 2.936 · 10−2 6.863 · 10−1 7.998 · 10−1

70◦ 7.732 · 10−2 2.706 · 10−2 6.854 · 10−1 7.900 · 10−1

80◦ 7.378 · 10−2 2.582 · 10−2 6.860 · 10−1 7.858 · 10−1

90◦ 7.266 · 10−2 2.543 · 10−2 6.851 · 10−1 7.834 · 10−1
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Figure 3.11.: AO budget for the four system configurations considered.
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Introduction

This chapter discusses the use of temporal prediction in adaptive optics
controllers. A mathematical model of the temporal evolution of turbulence is
used to predict its state two frames ahead of time, corresponding to the typical
delay between adaptive optics correction and the last wavefront measurement.
Using the predicted turbulence for correction instead of the outdated measured
wavefront helps reduce temporal error in adaptive optics systems.

The temporal prediction problem for adaptive optics control is formulated.
A review of the different predictive control strategies for adaptive optics is
provided. The rest of the chapter introduces the two standard elements of
predictive controllers for adaptive optics: (1) linear autoregressive processes as
turbulence evolution models and (2) the use of the linear-quadratic-Gaussian
(LQG) as predictive controller.

4.1. Temporal Prediction Problem
Adaptive optics loops present a delay between the wavefront measurement and
its correction. This delay leads to the so-called temporal error, a residual phase
aberration due to the difference between the measured phase and the phase at the
time of correction. Predictive controllers reduce the temporal error by computing
the adaptive optics correction from a prediction of the future phase rather than
using the last available measurement. Temporal error, and therefore the interest
in predictive controllers, becomes bigger in the case of fast turbulence evolution,
such as in the presence of strong natural wind or the strong apparent wind in
tracked-satellite applications.
The predictive models to be implemented within the adaptive optics loops need

to be simple enough to run on a RTC at the AO loop frequency. The model also
needs to be identified from available telemetry during the operation of the system.

4.1.1. Mathematical Formulation
The continuous-time turbulent phase is represented in discrete-time (Looze 2007,
2009; Kulcsár et al. 2006) form as:

ϕk = ϕ(t = t[k]) =
1

T

∫ kT

(k−1)T

ϕ(t) dt , (4.1)

where t is the continuous time variable, discretized in temporal steps indexed by
k with a period T corresponding to the integration time of a WFS frame.
The phase ϕ is expressed as a vector ϕ of N components corresponding to one

of the different spatial phase representations discussed in Section 1.3.
The goal is to estimate ϕk+s assuming knowledge of a set of past phase vectors
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{ϕk,ϕk−1,ϕk−2, . . . }. A prediction horizon of integer time steps s is used, corre-
sponding to the AO loop delay (typically 2 frame delay, i.e. s = 2). Extensions to
fractional time steps are possible (Poyneer and Véran 2008; Raynaud et al. 2011)
but are not considered in this work.
The discussion here is limited to a mono-layer of turbulence, be it one of the

layers of a multi-layer turbulence profile or the resulting turbulent phase on the
pupil plane of the telescope. The same methods can be extended to predict the
evolution phase of several layers of turbulence.
The present discussion covers the prediction of the turbulent phase. Some

methods for adaptive optics predictive control work in the slope space and therefore
predict the slope evolution directly. Although this is not strictly equivalent from a
physical point of view, the mathematical framework for the formulation of predictive
controllers remains the same regardless of whether phase or slopes are considered.

4.1.2. Predictive Control for Adaptive Optics
The presence of temporal error due to insufficient wavefront sampling frequency
and its impact on imaging systems has been acknowledged for a long time (Kane
et al. 1991). The first mention, to the author’s knowledge, of predictive control
in adaptive optics as a solution to decrease temporal error can be traced back to
Zuev and Lukin (1987), where a new class of adaptive optics systems is proposed:
the ”predicting adaptive system”. This work was the first to suggest the use of
turbulence statistics and the last measurements available to compute an estimation
of the future phase in the presence of a control system delay.
Predictive controllers use a predictive model based on the spatio-temporal

statistics of turbulence. Different works have suggested the use of different statistics,
such as covariance matrices, correlation functions, or power spectral densities, all
of them presenting different trade-offs such as availability of analytical expressions
for their computation or ease to identify them from data.
Paschall and Anderson (1993) presented the development of the first use of

the linear-quadratic-Gaussian (LQG) controller in AO, with predictive control
as its main goal. Since then, this method has been one of the main predictive
control methods in AO. The LQG provides the optimal control strategy for a linear
system in the presence of uncertainties in the noise that drives the evolution of
the controlled system in the measurements about the system. This is the case
of adaptive optics, where the controlled system, i.e. the phase distortion due to
turbulence, is stochastic in nature and the wavefront measurements are significantly
noisy because of the limitations in flux available for wavefront sensing. To do so,
the LQG uses a predictive model of the evolution of the turbulence. Many works
have continued its development, mostly focusing on the search for a model that can
provide good prediction performance, be computationally inexpensive and easily
identifiable from available AO telemetry. Autoregressive (AR) models are one of
the most common models assumed in adaptive optics; Section 4.2 introduces them.
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The use of the LQG as a predictive controller is detailed in Section 4.3.
Dessenne et al. (1998, 1999) developed a predictive controller that models the

AO loop in the frequency domain, including a linear predictive filter for the phase
disturbance. The linear predictors are defined for each KL mode independently.
Each predictor is optimized to decrease the residual wavefront error while accounting
for measurement noise level, delay, and stability constraints in a similar fashion
to the modal gain optimization method (Gendron and Lena 1994). The article
proves that close-loop data can be used for model identification, which allows model
identification during operation.
Other works have developed fully data-based methods (Hinnen et al. 2007; Beghi

et al. 2007; Guyon and Males 2017; Sinquin et al. 2020). These methods assume a
general structure of turbulence evolution and fit the data to it without considering
any a priori information such as the spectrum of the turbulence or frozen flow.
After pioneering work during the 1990s (Jorgenson and Aitken 1992; Lloyd-Hart
and McGuire 1996), the last few years have seen the start of the development
of machine learning techniques for adaptive optics, with a focus on predictive
controllers Swanson et al. (2018); Liu et al. (2020); Landman et al. (2021); Pou
et al. (2022); Nousiainen et al. (2022). This includes the first neural network
predictive control with on-sky data Chen et al. (2021).
In astronomy predictive control has found different applications. Tomographic

techniques often use the LQG framework for the implementation of phase recon-
structors (Fusco et al. 2001; Lloyd-Hart et al. 2006) as part of a controller. In this
case, even if temporal error reduction is not the main priority, the Kalman filter
involved needs a temporal evolution model. As a result, many advances in the field
of predictive control have come from tomography applications (Le Roux et al. 2003;
Petit et al. 2009; Kulcsár et al. 2012; Correia et al. 2014; Cranney et al. 2020). Fur-
thermore, accounting for the temporal signature of different layers in tomographic
measurements can improve the performance of tomographic reconstructors, since it
allows them to distinguish their contribution to the measured turbulence volume
(Ammons et al. 2012).

Another application of predictive control for astronomy has been its use in
high-contrast imaging systems for exoplanet detection using coronographs. In this
case, high-performance adaptive optics systems are required to reduce the speckles
in the coronographic imaging that can be confused with exoplanets (Macintosh
2001). In fact, the first operational predictive control systems for AO are found in
the Spectro-Polarimetric High-Contrast Exoplanet REsearch (SPHERE) (Petit et al.
2014) and the Gemini Planet Imager (GPI) (Poyneer et al. 2016). Even after the
success of the first high-performance AO systems (Keppler et al. 2018), Cantalloube
et al. (2018) has observed how the temporal error causes the so-called wind-driven
halo, which continues to contaminate the images of high-contrast instruments. This
need to reduce temporal error has motivated a wave of new work on predictive
control (Guyon and Males 2017; Landman et al. 2021; Haffert et al. 2021; Fowler
et al. 2022; van Kooten et al. 2022).
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Predictive control has also been used as a filter for the vibrations present in the
AO optical path (Petit et al. 2008; Poyneer and Véran 2010; Guesalaga et al. 2012;
Sivo et al. 2014).
Finally, tracked-satellite applications have also motivated the research of pre-

dictive controllers for adaptive optics Wild (1997) being among the first. Many
of these works aim to include a priori information on wind speed and direction.
This information may come from knowledge of the orbit in the case of or thanks to
wind speed profiling techniques such as Guesalaga et al. (2014). A more thorough
review of the different predictive control methods that account for wind priors is
given in Section 6.2.

4.2. Autoregressive Predictive Models
Most works on temporal prediction of atmospheric turbulence assume that the
temporal dynamics of turbulence can be captured by its temporal statistics, in
particular its temporal covariances or an equivalent magnitude. Autoregressive
(AR) processes are a useful mathematical tool in this context, since they are a way
to model a temporal time series. AR models can be used both as a model for the
evolution of a process that has certain temporal statistics (Assémat et al. 2006) or
as a predictor of an underlying process.
AR models represent the evolution of a dynamic process in terms of linear

combinations (i.e. regressions) of its previous states. In their vector form, vector
autoregressive (VAR) models also capture the correlation between several time
series; for example, between different models of the turbulent phase or different
points within the pupil for a zonal phase description.
Autoregressive models are a common way to build linear models of dynamic

processes that can be used for the analysis and prediction of atmospheric turbulence.
The resulting models are also computationally inexpensive and suitable for their
implementation within the adaptive optics system RTC.
The section is structured as follows. First, Section 4.2.1 introduces the definition

of VAR processes, along with some relevant properties in Section 4.2.2. Next, a
general discussion on the identification of VAR processes is given in Section 4.2.3.
Section 4.2.4 deals with the Yule-Walker estimator for the identification of VAR
processes from their autocovariance matrices. In this thesis, this estimator is used
to compute VAR processes from the analytical expressions of their autocovariance
matrices. Finally, Section 4.2.5 discusses the analytical computation of the required
autocovariance matrices.

4.2.1. VAR(p) Processes
The turbulent phase in the telescope pupil plane is assumed to be represented by a
weakly stationary discrete time series {xk}k, where xk is a state vector representing
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the turbulent phase at a given time step k, see Section 1.3 for possible vectorial
phase representations.
A linear scalar autoregressive model of order p, denoted AR(p), is defined as

xk+1 =

p∑
i=1

aixk−i+1 + vk . (4.2)

The future state of the process is the result of the linear combination of the
previous p states using the coefficients ai plus the innovation vk. The innovations
{vk}k are zero mean white noise and statistically independent with respect to the
turbulence states; they introduce a stochastic component in the evolution of the
process.
This concept can be generalized to a set of time series as:

xk+1 =

p∑
i=1

Aixk−i+1 + vk , (4.3)

where Ai is a matrix of linear combination coefficients and vk is a vector of
zero-mean white noise components that is also independent of all the previous
process states such that:

E{vk} = 0 (4.4)

E
{
vkv

⊤
k

}
= Σv (4.5)

E
{
vkx

⊤
l

}
= 0, for l ≤ k . (4.6)

The product Aixk−i−1 implies the linear combination of the different time series
for time step k, while the summation is a further linear combination of the different
time steps together. In this way, the model is able to account for the regression
between different states and different time steps.

Remark

In the case of all matrices Ai and matrix Σv being diagonal, a set of n
independent autoregressive models, AR(p) with no interaction between states
is obtained. All mathematical developments for VAR(p) also apply to AR(p).

4.2.2. Important Properties
For a thorough discussion on VAR processes and their mathematical properties,
the reader is invited to refer to the book Lütkepohl (2005). The main results from
the VAR processes theory that are relevant to this work are listed below:
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Property 4.1 A VAR process is defined by its coefficient matrix A and the
covariance matrix of the process noise Σv.

Property 4.2 (VAR(p) process as a VAR(1)) Any VAR(p) process can be
written in VAR(1) form.

Starting from Equation 4.3 we stack all the past x vectors as:

Xk = [xk,xk−1, . . . ,xk−p+1]
⊤ . (4.7)

The time evolution of this vector is defined as:

Xk+1 = [xk+1,xk, . . . ,xk−p+2]
⊤ . (4.8)

The stacked process noise vector has only non-zero elements corresponding
to xk+1:

Vk = [vk, 0, . . . , 0]
⊤ . (4.9)

Finally, we define:

A
(p)
VAR(1) =


A1 A2 · · · Ap−1 Ap

I 0 0 0

0 I · · · 0 0
...

. . .
...

...

0 0 · · · I 0

 . (4.10)

Using these elements, we define the equivalent VAR(1) process:

Xk+1 = A
(p)
VAR(1)Xk + Vk . (4.11)

Property 4.3 (Stability of a VAR(p) process) A VAR(p) is stable if all
eigenvalues of the matrix A have modulus less than 1. See Lütkepohl (2005),
page 15.

Property 4.4 (VAR(p) autocovariance matrices) A VAR(p) process is
defined by its first p+1 autocovariance matrices (τ = 0, . . . , p). The coefficient
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matrix A and the covariance matrix of the process noise Σv can be computed
from them, as well as the rest of its autocovariance matrices can be also
computed. See Lütkepohl (2005), page 28. (See Appendix A.2 for the definition
of the autocovariance matrix).

As a result, a VAR model can be identified from an estimation of its
autocovariance matrices, see Section 4.2.4. In the same way, it is possible to
compute the autocovariance matrices of a VAR(p) process.

Property 4.5 (VAR(p) optimal prediction) If the underlying process for
the generation of a time series is a VAR(p), the same VAR(p) (with the same
order p) is the optimal linear predictor of the time series in the sense of
prediction error MSE. See Lütkepohl (2005), page 36.

For a process defined as in Equation 4.11 the optimal estimate considering
a s-step prediction horizon is:

X̂k+s = AX̂k+s−1 = AsXk , (4.12)

where As is the s power of the matrix A. That means that the best
one-step predictor is the A matrix and the best s-step prediction is to apply
the one-step predictor iteratively s times.
The prediction error covariance matrix is given by:

ΣX̃(s) =
s−1∑
i=0

AiΣV (A
i)⊤ . (4.13)

Property 4.6 (VAR(p) prediction from estimated model) If the under-
lying process for the generation of a time series is a VAR(p), an estimated
model of the VAR(p) process (with the same order p) will produce an unbiased
estimator. See Lütkepohl (2005), page 94.

In this case, the coefficient matrix in Equation 4.12 is substituted by its
estimated version A′ the prediction error covariance matrix is given by:

X̂ ′
k+s = A′X̂k+s−1 = (A′)sXk . (4.14)

The prediction error covariance matrix is given by:

ΣX̃′(s) = ΣX̃ + E
{(

X̂k+s − X̂ ′
k+s

)(
X̂k+s − X̂ ′

k+s

)⊤}
. (4.15)
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That can be interpreted as the fact that the prediction error will be the
prediction error with the true model plus a term that depends on the difference
between the true model and its estimate.

Property 4.7 (VAR(p) modeling for unknown processes) An unknown
process can be approximated by a VAR(p). However, in this case, there is no
optimality guaranteed and the order of the model is to be tested. See Lütkepohl
(2005), Chapter 4.3.

4.2.3. Autoregressive Model Identification
So far, the stochastic model structure of vector autoregressive processes has been
discussed. The present section deals with the identification and computation of
these models. All VAR models are defined by the following matrices: (1) the
parameter matrix A and (2) the process noise covariance matrix Σv. The task of
model identification is to compute these two matrices from the available knowledge
about the system to be modeled.
Different model identification methods are available. Data-based approaches

make use of the available time series of the described process. The least squares
estimator (see Lütkepohl (2005), page 69) computes the estimator that provides the
lowest square error for a time series. Since VAR models can be written in a state
space form, subspace identification methods can also be used, for example, Doelman
et al. (2011) for the tip-tilt modes, Tesch et al. (2015) for low-order KL modes, and
Sinquin et al. (2020) for low-order Zernike modes. Recursive estimation methods are
very promising since they update the model while the turbulence changes (the case
of LEO satellite tracking). Monchen et al. (2019) has proposed an iterative VAR
process identification method based on the recursive least-squares method. Some
works (Meimon et al. 2010; Yang et al. 2018) use a combination of simple models
derived from a priori physical knowledge and data-based identification. In these
cases, the dynamics of the phase aberrations due to vibrations on the AO system
are approximated by a mass-spring-damper model rewritten as a second-order
autoregressive process.
This section does not aim to provide a complete review of VAR model identifi-

cation methods. The reader can refer to Juvenal et al. (2015a) for a comparison
of the performance of several VAR model identification methods in the context of
adaptive optics.
This work uses the Yule-Walker estimator as the preferred method for the

identification of processes; the method is introduced in the following section. The
Yule-Walker estimator computes an autoregressive process from its autocovariance
matrices. To do so, the estimator uses the Yule-Walker equations, which relate the
parameter matrix of the VAR model to its autocovariance matrices. This method
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is very flexible since different methods can be used to compute the autocovariance
matrices. The autocovariance matrices can be estimated using data-based methods
(Paschall and Anderson 1993) or from theoretical values when available (Assémat
et al. 2006; Correia et al. 2014), as discussed in Section 4.2.5.

4.2.4. Yule-Walker Estimator
This section details the VAR process estimation method used in this thesis: the Yule-
Walker estimator. The Yule-Walker estimator assumes that the autocorrelation
matrices of the process are available and uses the Yule-Walker equations, the
equations relating the VAR process auto-correlations to its model coefficients, to
compute the process model.

Remark

The Yule-Walker estimator is a variant of the method of moments in statistics.
The method of moments is an estimator of the parameters of a statistical
distribution from its statistical moments. The method assumes that the
statistical moments are known or can be computed with a sample estimator
and expresses those moments as functions of the parameters to be estimated;
the resulting equations are then solved for the parameters of interest.

In the following, the Yule-Walker equations are derived and used to compute
the parameter matrix A, followed by a method for the computation of the process
noise covariance matrix Σv. The auto-correlations used in this section can be
estimated from data or computed analytically when models are available. Section
4.2.5 will introduce the computation of analytical autocovariance for the case of
phase aberrations due to frozen flow atmospheric turbulence.
Since VAR models are the best predictor for VAR processes (see Property 4.5)

the Yule-Walker is a way of computing an optimal predictor for a VAR process
from its autocovariance matrices.
An additional advantage of this method is that the Yule-Walker estimator always

produces a process that is stable. However, the use of sample covariance matrices for
the identification of the required autocovariances may lead to bias in the estimator.
See Lütkepohl (2005), page 85.

4.2.4.1. Yule-Walker Equations

In order to derive the Yule-Walker equations, we right multiply Equation 4.11 by
X⊤

k and compute the expectation of the resulting expression:

E
{
Xk+1X

⊤
k

}
= E

{
AXkX

⊤
k + VkX

⊤
k

}
. (4.16)

We use the linearity properties of the expected value operation:
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E
{
Xk+1X

⊤
k

}
= AE

{
XkX

⊤
k

}
+ E

{
VkX

⊤
k

}
. (4.17)

Finally, we remove the cross-terms between the state vector and the process
noise, since they are statistically independent (see Equation 4.6):

E
{
Xk+1X

⊤
k

}
= AE

{
XkX

⊤
k

}
. (4.18)

We can right-multiply by the inverse of E
{
XkX

⊤
k

}
to get a solution for A:

A = E
{
Xk+1X

⊤
k

}
E
{
XkX

⊤
k

}−1
. (4.19)

All of the above covariance matrix expressions correspond to autocovariance
matrices. We define the temporal autocovariance matrix of a zero-mean stochastic
process X as ΓX(τ) = E

{
Xk+τX

⊤
k

}
. For the covariance matrix expressions in

Equation 4.19 this gives:

E
{
XkX

⊤
k

}
=


E
{
xkx

⊤
k

}
E
{
xkx

⊤
k−1

}
· · · E

{
xkx

⊤
k−p+1

}
E
{
xk−1x

⊤
k

}
E
{
xk−1x

⊤
k−1

}
· · · E

{
xk−1x

⊤
k−p+1

}
...

...
. . .

...

E
{
xk−p+1x

⊤
k

}
E
{
xk−p+1x

⊤
k−1

}
· · · E

{
xk−p+1x

⊤
k−p+1

}



=


Γx(0) Γx(1) · · · Γx(p− 1)

Γx(−1) Γx(0) · · · Γx(p− 2)
...

...
. . .

...

Γx(1− p) Γx(2− p) · · · Γx(0)

 ,

(4.20)

and

E
{
Xk+1X

⊤
k

}
=


Γx(1) Γx(2) · · · Γx(p)

Γx(0) Γx(1) · · · Γx(p− 1)
...

...
. . .

...

Γx(−p) Γx(1− p) · · · Γx(0)

 . (4.21)

Remark

As stated in Property 4.4 coefficients of A depend therefore on the temporal
autocovariances of the vector x from τ = 0 to τ = p. This requires the
assumption that the modeled process is weak-sense stationary, which means
that the mean and autocovariance of a process do not change in time and its
second moment is finite at all times.
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Remark

For the case of adaptive optics, the autocovariances defined in this section are
equivalent to the spatio-temporal cross-covariance matrices of the turbulence.
They are ”temporal” since they are autocovariances, and ”spatial” due to
the cross-covariance between phase modes or pixels, which carry spatial
information.

Remark

The computation above considers the A matrix as defined in Equation 4.10.
To save computational resources, the first row of this block matrix can be

computed by considering A = E
{
xk+1X

⊤
k

}
E
{
XkX

⊤
k

}−1
, since the rest of

the terms are known to be the identity matrix or zero.

4.2.4.2. Process Noise Computation

Once the coefficients of the VAR model are known. For example, computed using
Equation 4.19. It is possible to compute the process noise covariance matrix Σv

from Equation 4.2 by multiplying it by itself and taking the expectation so that:

E
{
Xk+1X

⊤
k+1

}
= E

{
(AXk + Vk) (AXk + Vk)

⊤
}
. (4.22)

We develop the expression:

E
{
Xk+1X

⊤
k+1

}
= E

{
AXkX

⊤
k A

⊤ +AXkV
⊤
k + VkX

⊤
k A

⊤ + VkV
⊤
k

}
. (4.23)

We use the linearity properties of the expected value operator:

E
{
Xk+1X

⊤
k+1

}
=AE

{
XkX

⊤
k

}
A⊤ +AE

{
XkV

⊤
k

}
+ E

{
VkX

⊤
k

}
A⊤ + E

{
VkV

⊤
k

}
.

(4.24)

We remove the cross-terms between the state vector and the process noise since
they are statistically independent, see Equation 4.6:

E
{
Xk+1X

⊤
k+1

}
= AE

{
XkX

⊤
k

}
A⊤ + E

{
VkV

⊤
k

}
. (4.25)

We replace by the cross-covariance matrices:

ΣX = AΣXA⊤ +ΣV . (4.26)

Finally, we solve for ΣV in the previous equation:

ΣV = AΣXA⊤ −ΣX . (4.27)
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Remark

Compared to other derivations of AR and VAR models found in the literature
(Correia et al. 2015; Prengère et al. 2020), this method allows to compute the
model for an arbitrary order.

Remark

The computation above considers the V vector as defined in Equation 4.9. In
order to save computational resources, the vector v can be considered instead
and compute its covariance matrix as Σv = AΣXA⊤ −Σx, where A in this
case is only the first row of the block matrix version in Equation 4.11. The
rest of the elements of the vector V are zero.

4.2.5. Computation of Spatio-Temporal Covariance Matrices
This section discusses the computation of the spatio-temporal covariance matrices
necessary to compute a VAR model. As presented in Section 4.2.4 the Yule-Walker
estimator computes a VAR model from known autocovariance matrices, which for
the case of turbulence is equivalent to spatio-temporal covariance matrices.
There exist two options to obtain the turbulent phase spatio-temporal covariance

matrices: (1) estimating them from data (Hinnen et al. 2008; Vidal et al. 2010;
Piscaer et al. 2019; Sinquin et al. 2020) or (2) computing them using analytical
expressions depending on known turbulence parameters.
In the same way that the computation of spatial statistics of turbulence is

based on physical a priori knowledge (i.e. the concept of energy cascades leading
to assumptions on the spatial energy spectrum such as the Kolmogorov or von
Kármán spectra), the computation of temporal turbulence statistics requires certain
assumptions about the turbulence evolution. The application of the frozen flow
assumption (see Section 1.1.3) allows computing temporal statistics based solely
on the spatial statistics, with the advantage that there exist analytical expressions
for the latter. Sections 4.2.5.1 and 4.2.5.2 detail the application of the frozen flow
assumption for the computation of the spatio-temporal covariance matrices for
both zonal and Zernike modal basis respectively.
Finally, Section 4.2.5.3 discusses the identification of the spatio-temporal co-

variance matrices from data, which, in general, avoids relying on any frozen flow
assumption.

Remark

The discussion here focuses on the computation of the spatio-temporal co-
variance matrices of phase for a given layer of turbulence. The corresponding
matrices for the telescope pupil can be computed by summing the matrices
of every layer.
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4.2.5.1. Analytical Computation in Zonal Basis

In the case of a zonal representation (Assémat et al. 2006; Piatrou and Roggemann
2007; Correia et al. 2015; Jackson et al. 2015; Ono et al. 2018; Cranney et al. 2019;
Prengère et al. 2020), the goal is to compute the following covariance:

⟨ϕ(r1, t)ϕ(r2, t+ τ)⟩ , (4.28)

where r1 and r2 are the coordinates of two points in space, t is the temporal
index, and τ temporal delay between the two frames considered.

Figure 4.1.: Illustration of the use of frozen flow assumption to compute temporal phase
covariances from spatial statistics.

Figure 4.1 depicts this arrangement. A black circle represents the aperture
where the turbulent phase is defined, and the red points are the locations where
the phase is considered. The first column in the figure, labeled ”spatio-temporal”
corresponds to Equation 4.28, which is the covariance between two different points
at two different time steps. To compute this, it is necessary to have access to the
spatio-temporal statistics of the phase field, which are not available analytically.
For the turbulent phase, the spatial statistics are available using the Kolmogorov or
von Kármán spectra (see Section 1.3.1.1). However, these statistics do not describe
temporal evolution.
Introducing the frozen flow assumption allows for the analytical computation of

the spatio-temporal covariances by using the available expressions for the spatial
covariances. Under the frozen flow assumption, the phase ϕ(r2, t+ τ) is the phase
of a third point at time t, ϕ(r3, t), where the location of the point r3 is given by
the layer shift during the time interval τ :
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ϕ(r2, t+ τ) = ϕ(r3 + V · τ, t) . (4.29)

Figure 4.1 depicts this equivalence in its second column, labeled ”spatial + frozen
flow”. As a result, it is obtained that:

⟨ϕ(r1, t)ϕ(r2, t+ τ)⟩ = ⟨ϕ(r1, t)ϕ(r3 + V · τ, t)⟩ . (4.30)

The previous expression links the spatio-temporal covariances to purely spatial
covariances thanks to the frozen flow assumption. The spatial phase covariances
can be computed using Equation 1.38.

4.2.5.2. Analytical Computation in Zernike Modal Basis

Consider now the case of a Zernike modal basis (Whiteley et al. 1998a; Correia et al.
2014). A circular pupil centered at an angle α with respect to the line-of-sight and
at time t is represented by the vector of Zernike coefficients ϕ(α, t). In this case,
and always under the assumption of Taylor frozen flow, it is possible to compute
the temporal covariances between Zernike polynomials by using the analytical
expressions for their angular covariances presented in Section 1.3.2.5.
The temporal covariances between Zernike coefficients are computed as:

⟨ϕi(0, t)ϕj(0, t+ τ)⟩ . (4.31)

Under frozen flow assumption, the turbulence ϕj(0, t + τ) is the same as the
ϕt(α, t) where α = (αx, αy) is the angle corresponding to a d = −V ·τ displacement,
with (αx, αy) = (−V cos θ,−V sin θ) for small angles, θ being the direction of the
wind. As a result, the spatio-temporal covariance matrix can be computed as:

⟨ϕi(0, t)ϕj(0, t+ τ)⟩ = ⟨ϕi(0, t)ϕj(α, t)⟩ . (4.32)

Remark

The angular cross-covariances between Zernike coefficients have been used
here, note that the spatial cross-covariances could be used for the same
purpose. In fact, the angular cross-covariances given in 1.3.2.5 are spatial
cross-covariances where the (linear) spatial distance has been replaced by the
angular distance.

In summary, these are the assumed inputs for the identification following the
equations in Section 1.3.2.5:

– The layer speeds are known in magnitude and direction. This may include
natural and apparent wind. Apparent wind can be computed from a known
satellite trajectory, while natural wind needs to be measured by a meteorology
instrument.

84



4. Atmospheric Turbulence Prediction
4.2. Autoregressive Predictive Models

Figure 4.2.: Geometry for the computation of temporal cross-covariances of turbulence
projected on Zernike polynomials using spatial statistics.

– The C2
n profile across the line of sight, including also the position of each

layer.

– The outer scale of the turbulence, although its effect is not very important
due to the expected outer scale sizes with respect to the telescope diameters
considered for the application.

These assumptions are the same for the zonal computation.

4.2.5.3. Data-Based Computation

The identification of the spatio-temporal covariance matrices from data enables
the use of data-driven VAR models. This kind of identification has as advantage
that it does not require any knowledge of the turbulence C2

n(h) or wind profiles.
A simple method for the computation of the cross-covariance matrices from data

is to use the sample covariance matrix Vogel et al. (2014):

Σsamp
xy =

1

N − 1

N∑
k=1

(xk − x̄) (yk − ȳ)⊤ , (4.33)

where N is the total number of samples and x̄ = (1/N)
∑N

k=1 xk the sample
mean. In the case of autocovariances, for a time series {xk}, this can be written as:

Γsamp
x (τ) =

1

N − 1

N∑
k=1

(xk − x̄) (xk+τ − x̄)⊤ . (4.34)
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The sample covariance matrix may not be a robust enough method. Better results
in terms of convergence of the covariance matrix estimation and its robustness
to measurement noise applying the methods are discussed in Ivanov and Yakoub
(2023).

Vidal et al. (2010) proposed an identification for the slope-phase covariance
matrices necessary to compute tomographic reconstructors. The method uses a
parametric model of the slope-phase covariance matrices computed in the Fourier
domain that can be fitted to the open-loop slope measurements. The convergence of
this method was improved in Martin et al. (2012). Cranney et al. (2020) extended
this method for the computation of temporal covariance matrices assuming frozen
flow. Although this method is applicable in the slope space, an extension to Zernike
polynomials or a zonal basis could be promising, as already pointed out by Correia
et al. (2014).

4.3. Linear-Quadratic-Gaussian Controller as
Predictive Controller

In this section, the linear-quadratic-Gaussian (LQG) controller is presented as a
control strategy for the implementation of a predictive controller for an AO system.
Other useful characteristics of the LQG in its application to adaptive optics are
also highlighted.
The LQG controller is an optimal stochastic controller, which means that the

controller can provide an optimal control policy that accounts for the presence
of uncertainties in the states to be controlled and the measurements associated
with them. Section 4.3.1 introduces the state-space representation of the stochastic
system to be controlled. The principle of separation of estimation and control
(Åström 1970) states that a controller for a stochastic system can be designed by
considering separately an optimal state observer for the states to be controlled and
an optimal controller for the equivalent deterministic system. This separation allows
us to solve the estimation and optical control problems independently. As a result,
the LQG is the combination of two control theory techniques: a multiple-input
multiple-output optimal control strategy, the linear-quadratic regulator (LQR)
controller (see Section 4.3.2); and an optimal estimator of the stochastic states
to be controlled, the Kalman filter (see Section 4.3.3). The LQR provides the
solution for the optimal gain to achieve optimal control in terms of a quadratic
criterion. In the case of AO this criterion is the minimum variance of the residual
phase. The LQR is a state feedback controller and therefore assumes that the
states to be controlled are available. In the case of a stochastic system such
as turbulence, the use of an observer like the Kalman filter allows to filter the
measurements to produce estimates of the system states that are more accurate
than the measurements themselves. Additionally, the Kalman filter includes a
model of the temporal evolution of the system that is used to account for the
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temporal correlation of the measurements to improve the accuracy of the filter
estimates. This model can also be used as a predictive model for a predictive
controller in the case of systems with delay.

4.3.1. State-Space Representation for a Linear Stochastic
System

The state-space model of a dynamic system represents the temporal evolution of
the system states as a function of the system inputs and outputs and some matrices
that model the relationship between these variables. For a linear system and in
the case of discrete-time, these relationships are written as:

xk+1 = Axk +Buk + vk , (4.35)

yk = Cxk +Duk +wk . (4.36)

The subindices correspond to the discrete-time step index for each variable.
The first equation is the state evolution equation, it relates the evolution of the
state vector x from time step k to time step k + 1. The second equation is the
measurement equation, it models the resulting measurement vector y. The variables
in the equations represent:

– x ∈ Rns , vector for the ns state variables;

– y ∈ Rnm , vector for the nm measurement variables;

– u ∈ Rna , vector for the na control inputs;

– v ∈ Rns , vector for the process noise;

– w ∈ Rns , vector for the measurement noise;

– A ∈ Rns×ns , state transition matrix;

– B ∈ Rns×na , control matrix;

– C ∈ Rns×nm , measurement matrix;

– D ∈ Rnm×na , feed-forward matrix.

Remark

The formulation above corresponds to a stochastic control problem. The
states are not well known and need to be estimated. Two different stochastic
components are present:

– The evolution of the system is not entirely deterministic, and thus the presence
of process noise. This is the case for the phase of atmospheric turbulence.

– The state measurements contain noise. This is the case with wavefront sensors.
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4.3.2. Optimal Linear-Quadratic-Regulator (LQR)
4.3.2.1. General LQR Solution

The infinite-horizon discrete-time linear-quadratic regulator (LQR) control problem
searches to find the optimal control uk ∀k ≥ 0 that minimizes the criterion:

J(u) = lim
M→∞

1

M

M−1∑
k=0

(
x⊤
kQxk + u⊤

kRuk
)
, (4.37)

whereQ andR are cost weight matrices such thatQ = Q⊤ ≥ 0 andR = R⊤ > 0.
These matrices are design parameters that can be used to implement physical
constraints such as saturation or penalties on the use of some inputs.
For the case in which the states of the system are known with no uncertainty (i.e.

complete information), the solution to this minimization problem can be written
as a state feedback law of the form:

uk = −Kxk , (4.38)

where K is a gain matrix. The gain matrix is computed to satisfy the optimality
criterion as:

K = R−1B⊤P∞ , (4.39)

where P∞ = P⊤
∞ ≥ 0 is the solution of the algebraic Riccati equation:

A⊤P + PA− PBR−1B⊤P⊤ +Q = 0 . (4.40)

4.3.2.2. LQR for Adaptive Optics

In the case of adaptive optics (Kulcsár et al. 2006, 2012), the criterion in Equation
4.37 is generally considered to be the variance of the residual phase:

J(u) = lim
M→∞

1

M

M−1∑
k=0

∥ϕres
k+1∥2 . (4.41)

The minimization of the residual phase can be related to the minimization of
the Strehl ratio (Herrmann 1992), and therefore the improvement of image quality;
as well as to the improvement in fiber coupling statistics (Canuet et al. 2018).
The AO corrected residual phase expression ϕres = ϕtur + ϕcor allows to write:

J(u) = lim
M→∞

1

M

M−1∑
k=0

∥ϕtur
k+1 + ϕcor

k+1∥2 , (4.42)

where

88



4. Atmospheric Turbulence Prediction
4.3. Linear-Quadratic-Gaussian Controller as Predictive Controller

ϕtur
k =

1

T

∫ kT

(k−1)T

ϕtur(t) dt (4.43)

and

ϕcor
k = Nuk . (4.44)

This leads to the following criterion:

J(u) = lim
M→∞

1

M

M−1∑
k=0

∥ϕtur
k+1 + Nuk+1∥2 . (4.45)

The minimization of Equation 4.45 defines an LQR. The optimal solution to this
problem is given by:

uk+1 = argmin
u

∥ϕtur
k+1 + Nu∥2 . (4.46)

The solution is obtained analytically by minimizing Equation 4.45 using a least-
squares approach and it does not require the solution of the Riccati equation. The
influence matrix of the DM needs to be full column rank, i.e. N⊤N is invertible, so
that:

uk+1 = −
(
N⊤N

)−1
N⊤ϕtur

k+1 . (4.47)

Note that uk = −Kxk, with K =
(
N⊤N

)−1
N⊤, so it can be linked to the general

LQR solution. In this case this is the least-square solution.

Remark

The computation of the feedback in Equation 4.47 requires a perfect measure-
ment of ϕtur

k+1. This is typically not the case for three different reasons:

1. First, a measurement of the state may not be possible; in this case, the
state needs to be reconstructed from other measurements. For example,
if the states represent the turbulence wavefront, a measurement of phase
is not possible. Instead, we may use the Shack-Hartmann slopes as
measurements.

2. Second, the measurements (direct or not) of the states may be noisy.

3. Third, computing u at time k requires knowledge of ϕtur at time k also.
This is generally not possible, since there is a delay between the moment
ϕtur is available and the moment u is computed, i.e. loop delay.

Thanks to the separation principle, we can solve this problem by replacing ϕtur
k+1
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with its estimate ϕ̂tur
k+1. The LQG uses the Kalman filter as a state estimator for

this purpose.

4.3.3. Kalman Filter
The LQG uses the Kalman filter as the optimal state estimator, so it can feed
these estimates to the LQG optimal controller. This section discusses the Kalman
filter and its application to the LQG for predictive control in adaptive optics. For
a complete description of the Kalman filter, the reader is invited to consult Simon
(2006).

For a stochastic linear dynamic system as described in Equations 4.35 and 4.36,
the Kalman filter provides the optimal estimate x̂ of the system state x. This
estimate will be given by the conditional mean of the state:

x̂k|j = E
{
xk
∣∣Yj

}
, (4.48)

where

Yj = {yi, i ≤ j} (4.49)

denotes all measurements available at time j. Depending on the value of k we
have:

– The estimate of the state if k = j,

– the predicted value of the state if k > j, or

– the smoothed value of the state if k < j (not discussed in this thesis).

The estimation error is defined as:

x̃k|j = xk − x̂k|j . (4.50)

While the covariance matrix of the estimation error is defined as:

Pk|j = E
{(

xk − x̂k|j
) (

xk − x̂k|j
)⊤}

(4.51)

If {vk} and {wk} are Gaussian, zero-mean, uncorrelated, and white, then the
Kalman filter provides the optimal solution to the minimization of the MSE of
the estimation. Note, under these assumptions, it is also the minimum variance
estimator.
The Kalman filter is made up of two steps: the update and the prediction. The

Kalman filter starts with a guess of the conditional mean of the state and the
covariance of the estimation error and propagates them across steps. The update
step incorporates the information from a new measurement into the filter. The
filter fuses this new information with its previous estimate by means of the Kalman

90



4. Atmospheric Turbulence Prediction
4.3. Linear-Quadratic-Gaussian Controller as Predictive Controller

gain, a weighting matrix that is computed based on the uncertainties associated
with the measurement and the predictive model. The prediction step advances the
filter in time using a predictive model of the states. At any time step k, the filter
provides both an estimate and a prediction based on the measurements available
up to this moment.

4.3.3.1. Update

In the update step, the information from the new measurement and the previous
prediction are combined together. The Kalman gain acts as a weighting of the
importance of the innovation due to the measurement in this fusion:

x̂k|k = x̂k|k−1 +Hk(yk −Cx̂k|k−1) , (4.52)

where yk −Cx̂k|k−1 is called the filter innovations, i.e. the difference between
the prediction of the state and the measurement associated with it, which can be
seen as ”the new information brought by the measurement”; and Hk is the Kalman
gain matrix, which is computed as:

Hk = Pk|k−1C
⊤ (CPk|k−1C

⊤ +Σw

)−1
. (4.53)

Although not shown here, the computation of Hk in Equation 4.53 is the result
of minimizing the estimation error. It computes the fusion of the prediction and
the new measurement taking into account the process and measurement covariance
matrices. In fact, the filter gain is ”proportional” to the state process noise
covariance, i.e. for high prediction uncertainty, the innovations are given a higher
weight; and ”inversely proportional” to the measurement noise variance, i.e. for
high measurement uncertainty, the innovations are given a lower weight.
The information from the new measurement is also propagated to the covariance

of the estimation error:

Pk|k = (I −HkC)Pk|k−1 . (4.54)

Remark

The update step contains another feature that is especially relevant in the
case of adaptive optics. The Kalman filter carries a regularized inversion of
the measurement model that allows the reconstruction of the states from the
measurements. See Section 4.3.3.4.
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Remark

Some authors such as Anderson (1991) and Petit et al. (2006) have claimed that
AR models can introduce the crosscorrelation between Zernike polynomials
by including the non-diagonal spatial covariance matrix in the computation
of the process noise.
In fact, doing this does not improve the prediction performance of the

controller in the way that the use of VAR models does. However, it does
help to improve the modal reconstruction within the Kalman filter, since it
accounts for the spatial crosscovariances between modes. This is the reason
for the better performance of these controllers compared to fully decoupled
AR controllers.

4.3.3.2. Prediction

The prediction step advances one time-step the current estimate of the filter using
the state transition matrix of the system:

x̂k+1|k = Ax̂k|k +Buk . (4.55)

The covariance of the estimation error is also propagated to the next time step:

Pk+1|k = A⊤Pk|kA+Σv . (4.56)

Remark

The state matrix is a matrix that relates the future state and the present state
in a linear Markovian fashion, i.e. the future state is a linear combination
of the previous state, plus the process noise {vk}. In the case that the plant
dynamics are unknown, or we desire to model them with a reduced model, it
is possible to substitute A by a similar linear predictive model of the state
evolution. Finding this matrix and the covariance of the process noise is
the object of the predictive modeling of this work and other works in the
literature.

4.3.3.3. Kalman Gain Computation

The Kalman matrix, Hk is computed for each time step from the propagation of
the estimation error covariances. This does not depend on the particular states
or measurements, so an asymptotic solution for the Kalman gain, H∞ can be
computed before running the controller. By running Equations 4.53, 4.54, and 4.56
until convergence in the result.
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4.3.3.4. State Reconstruction within the Kalman Filter

The Kalman filter includes a feature that is quite relevant for its use in adaptive
optics. The measurement equation assumed in the state space model as presented
in Equation 4.36 corresponds to the close-loop slopes case:

yCL
k = Cxk +Duk +wk , (4.57)

It is possible to write the pseudo-open loop slopes as:

yPSO
k = yCL

k −Duk = Cxk +wk . (4.58)

In order to compute an estimate of the state xk from the measurement yPSO
k , some

sort of inversion of the measurement matrixC is necessary. When the measurements
are Shack-Hartmann slopes and the estimated states are the coefficients of open-
loop turbulence projected on a polynomial basis (or a zonal representation of the
phase), this can be seen as a modal (or zonal) reconstruction problem similar to
the phase reconstruction problem discussed in Section 2.4.5.
Within the Kalman filter, the result of this reconstruction is ϕ̂k|k, since it is the

estimate of the phase from the measurements in the slope space. As a result, the
Kalman filter provides a reconstruction of the phase that is regularized thanks to
the turbulence statistics included in its model, in a similar way to the one provided
by the MAP reconstructor. In fact, Correia (2010) showed that it is possible to
derive a static optimal state reconstructor from the Kalman filter, which can be
interpreted as the MAP phase reconstructor in the case of adaptive optics. First,
it will be assumed that the phase is de-correlated in time, i.e. static assumption.
This is equivalent to setting A = 0 in Equation 4.35 to get the following state
space equation:

xk+1 = ϕk+1 = vk , (4.59)

where vk is a Gaussian, zero-mean noise. The previous equation implies that
Σv = Σϕ.

The measurement equation is given by:

yPSO
k = Cxk +wk . (4.60)

The update step in the Kalman filter can be written as:

ϕ̂k|k = ϕ̂k|k−1 +H∞
(
yPSO
k −Cϕ̂k|k−1

)
, (4.61)

where H∞ is the Kalman gain for the static filter. ϕ̂k|k−1 is the predicted phase,
since the turbulence is supposed to be uncorrelated in time, the best prediction for
it is its average, which is zero, thus:

ϕ̂k|k = H∞yPSO
k , (4.62)
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H∞ = ΣϕC
⊤ (CΣϕC

⊤ +Σw

)−1
. (4.63)

Replacing the Kalman gain:

ϕ̂k|k = ΣϕC
⊤ (CΣϕC

⊤ +Σw

)−1
yPSO
k , (4.64)

which is equivalent to the MAP phase reconstructor proposed by Wallner (1983).
For the general case where the Kalman filter considers a temporal evolution model
this reconstruction still takes place but it includes the temporal statistics of the
phase and the iterative aspect, which helps increase its performance.

Remark

This analysis provides different insights. First, it shows that the Kalman filter
works as a phase reconstructor. Second, it allows us to analyze the phase
reconstructor within the Kalman filter separately using the MAP framework.
Section 7.3.3 will discuss further the implications of this realization in the
context of LQG applied to adaptive optics control.

4.3.4. Synthesis of the LQG Controller
The LQG controller runs a Kalman filter in parallel to the LQR controller, which
allows to provide the estimate of the states and compute the control command
using Equation 4.38 as:

uk+1 = −K∞x̂k+1|k . (4.65)

For the adaptive optics case, this has the form:

uk+1 = −
(
N⊤N

)−1
N⊤ϕ̂tur

k+1|k . (4.66)

Remark

Using the prediction of the phase ϕ̂tur
k+1|k allows to implement a predictive

controller.

The LQG is optimal under the inherited assumptions from the LQG and the
Kalman filter: the system state-space evolution and its measurements must be linear,
the process and measurement noises need to be Gaussian, zero-mean, uncorrelated,
and white.

4.3.5. Use of the LQG in Adaptive Optics
The first use of the LQG for adaptive optics was by Paschall and Anderson (1993).
This work introduced the basic LQG structure, as presented above and a particular

94



4. Atmospheric Turbulence Prediction
4.3. Linear-Quadratic-Gaussian Controller as Predictive Controller

way of identifying a turbulence evolution model. The two applications considered
were predictive control and to account for the DM dynamics as later expanded by
Correia et al. (2010).
The LQG has seen different applications in astronomy: as controller for the

implementation of tomographic reconstructions, as vibration filter, and as predictive
controller. Kulcsár et al. (2012) provides an overview of the use of the LQG in
astronomy, while Kulcsár et al. (2017) contains a table with all the laboratory and
on-sky demonstrations of LQG controllers in astronomical applications.
The will to increase the field of view in AO assisted astronomical observations,

fostered research on phase reconstruction (modal or zonal) based on tomographic
techniques. Wallner (1983) and Fusco et al. (2001) proposed static tomographic
reconstructors that needed temporal filtering to achieve stable control loop. Until
then, most AO control had been single-input single-output, either using a per
actuator control or modal controllers (see Section 2.4.4). The tomographic recon-
structors require multiple-input multiple-output control, so the use of the classical
integral controllers was not possible. Le Roux et al. (2004) proposed the use of the
LQG for the temporal filtering of tomographic reconstructors and Petit et al. (2009)
developed it. Costille et al. (2010), Parisot et al. (2012), and Sivo et al. (2012)
worked on the first laboratory demonstrations of tomographic methods using the
LQG controller. No tomographic LQG has been demonstrated on-sky to this date.

Petit et al. (2006) suggested and demonstrated on-laboratory the use of vibration
filtering using the LQG, followed by the on-sky demonstration of this method by
Sivo et al. (2014). To this date, the only operational LQG are the vibration filtering
controllers in the SPHERE-SAXO tip-tilt correction (Petit et al. 2014) and the
GPI tip, tilt, and focus controller (Poyneer et al. 2016).

The work of Massioni et al. (2011) and Gilles et al. (2013) suggested schemes to
take advantage of the sparse nature of the matrices involved in LQG controllers to
optimize their computational needs so they can be used in bigger telescopes with
thousands of states to be controlled.

4.3.6. Summary of the LQG Predictive Controller
In summary, the LQG predictive controller provides a minimum variance regulation
of the controlled state for a stochastic linear system. It does so thanks to an
optimal state feedback policy. Since the states of the system are only available
via noisy measurements, it uses a Kalman filter to provide estimates of the states.
The Kalman filter operates in two stages. In the first stage, once a measurement
is available, it updates the state estimate with it, weighting it by the Kalman
matrix gain. The second stage uses a predictive model to compute the optimal
prediction of the future state based on all the measurements available until the
present moment.
We have seen here that the LQG controller solves different problems related to

the control of AO systems in the same algorithm:
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1. It acts as a state (modal or zonal) reconstructor from slope measurements via
a regularized inversion similar to the classical MAP reconstructor.

2. It acts as a predictive controller. It uses the previously reconstructed states
to compute a prediction of turbulence at the time of applying the deformable
mirror (DM) command.

3. It acts as an optimal gain strategy. The optimal gains for both the estimation
and the control computation are optimally computed.

These are the same steps used in traditional AO control architectures but
integrated with a unique (and optimal) algorithm.

∗ ∗ ∗

Summary

This chapter has presented the problem of predictive control for adaptive
optics. Every predictive controller requires the same main elements: (1) a
predictive model and (2) a controller structure.
Linear predictive models are attractive because they offer a good trade-off

between performance and ease of computation, identification, and analysis.
Linear autoregressive models have been presented as the standard way of
modeling and predicting linear processes. The use of vector autoregressive
models allows accounting for the possible covariances between the different
states and uses them to represent the turbulent wavefront. The Yule-Walker
estimator was presented as a method to compute such a model from its spatio-
temporal covariances. Finally, the assumption of frozen flow turbulence allows
to compute these covariances from analytical formulas.
The LQG has been presented as the optimal controller for linear stochastic

systems. The controller uses turbulence evolution models such as the autore-
gressive models discussed, or similar alternatives. The LQG does not only
work as a predictive controller, it also solves other common AO problems
such as optimizing the controller gain or the regularized reconstruction of
phase from WFS measurements.
All of these elements will be used in the rest of this thesis. Chapter 5

will use the concepts of autoregressive processes as turbulence predictors
and the computation of spatio-temporal covariance matrices to analyze the
predictability of turbulence and the potential gains thanks to predictive
controllers in the case of tracked satellite AO applications. One of these
predictive models will then be used within a LQG controller as a predictive
controller in Chapter 6.
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Introduction

The framework introduced by Conan et al. (2023) for the computation of the
performance boundaries of temporal predictive controllers is discussed. The
spatio-temporal statistics of the optical turbulence are modeled in terms of the
cross-covariance matrices of the Zernike polynomials. These spatio-temporal
cross-covariances for the Zernike modes can be computed from analytical
formulas for the case of frozen flow von Kármán turbulence by computing
angular cross-covariances instead. The optimal linear estimator for the future
state of turbulence, i.e. a predictor, is derived. The framework allows the
pseudo-analytical evaluation of the performance of the optimal estimator and
its comparison to other linear estimators.

5.1. MMSE Temporal Prediction
The adaptation of the minimum mean square error (MMSE ) estimator for the case
of temporal prediction suggested in Conan et al. (2023) is presented. The resulting
estimator is the best possible linear predictor of the evolution of the turbulent
phase. The optimality of the predictor allows the computation of upper performance
boundaries for the turbulence prediction problem that can be extrapolated to AO
system budgets and used to benchmark predictive control strategies.
The following section details the computation of a minimum mean square error

(MMSE ) estimator for temporal prediction. The classical MMSE estimator is first
defined. In order to adapt the MMSE estimator to be a temporal predictor, the
future phase is defined as the estimated parameter and a set of phase measurements
are the observations used for the estimation.

5.1.1. State of the Art
There exist some previous attempts to assess the predictability of atmospheric
turbulence and possible gains in AO performance thanks to predictive controllers.
Aitken and McGaughey (1995) conducted a statistical analysis of Shack-Hartmann
slopes to characterize the predictability of turbulence in an astronomical application
and reported a ”useful degree of predictability in the wavefront time series” that
could be exploited to reduce the temporal bandwidth requirements of adaptive
optics systems.
Doelman (2020) extended the classical frequency domain analysis of temporal

error for integral action (Fried 1990; Harrington and Welsh 1994) but using an
optimal prediction filter as the controller transfer function and provided prediction
boundaries. Nevertheless, this analysis is conducted for a unique point in the pupil.
This is equivalent to a diagonal AR (zonal) model for each point in an extended
pupil. As has been shown in the literature before, for zonal predictive models, the
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use of the correlation between several points, i.e. a VAR model brings additional
advantages (Jackson et al. 2015).
Vogel et al. (2014) propose a method for spatio-temporal covariance based

modeling and analysis of wavefront aberrations. They use a zonal basis for the
representation of turbulence. The covariance matrices are computed from Shack-
Hartman WFS measurements after reconstruction of the phase from the slope
space. They use the covariance matrices to compute a first-order VAR model of the
evolution of turbulence with an approach similar to the one described in Section
4.2.3. This method shares some similarities with the method proposed here, since it
uses a spatio-temporal covariance matrix approach. However, the method is limited
to a first-order VAR model; we prove here that the use of higher-order modes
provides a significant improvement for the representation of turbulence evolution
and its prediction.
Whiteley et al. (1998a) and Correia et al. (2014) already used the temporal

properties of turbulence projected on Zernike polynomials. Nevertheless, the
framework was limited to first-order models and was not applied for analysis of the
predictability of turbulence, but for the development of predictive controllers.

5.1.2. Linear MMSE Estimator
First, consider the following measurement equation:

y = Dx , (5.1)

where y is a measurement vector, D is a linear measurement model, and x is a
state vector of the measured system.

Remark

Since the aim is to provide upper boundaries in prediction performance the
measurements are assumed to be noiseless. A similar estimator can be derived
in the case of noisy measurements (see Appendix B.2). This extension allows
both to account for the presence of measurement noise in the analysis and to
compute an estimator that minimizes the noise propagation.

The goal is to find a linear estimator R that produces an optimal estimate x̂ of
x given the measurement vector y:

x̂ = Ry . (5.2)

To define the optimality criterion, we define the estimation error, x̃, given by:

x̃ = x− x̂ . (5.3)

The mean square error (MSE ) of the estimator can be written as:
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MSE = Tr
(
E
{
x̃x̃⊤}) = Tr

(
E
{
(x− x̂) (x− x̂)⊤

})
. (5.4)

The MMSE is the optimal estimator in terms of MSE that solves the following
estimation problem:

min
x̂

MSE s.t. x̂MMSE = RMMSEy . (5.5)

Assuming that both x and y are zero mean random processes, the case for
turbulent phase, the solution for this estimator (see Appendix B.1) is:

RMMSE = ΣxyΣ
−1
yy , (5.6)

where Σxy and Σyy are cross-covariance matrices as defined in Appendix A.1.

5.1.3. Temporal Prediction as a Linear Estimation Problem
Linear optimal estimators can be used for turbulence prediction under the assump-
tion that the turbulence evolution is given by a linear model similar to a vector
autoregressive process:

ϕk+1 = A1ϕk +A2ϕk−1 + · · ·+Anϕk−p′−1 + vk , (5.7)

where p′ is unknown.

Remark

Regardless of whether the theory of autoregressive processes is used or not,
all approaches considering prediction as a linear estimation problem assume
this kind of underlying model.

The aim here is not to identify an autoregressive model but to compute an
estimator that will estimate the ϕk+s value of the time series. The MMSE estimator
can be used as an optimal temporal predictor by choosing the estimated vector to
be the future state of turbulence:

x =
[
ϕk+s

]
(5.8)

and the measurement vector the concatenation of the last p phase measurements:

y =


ϕk

ϕk−1

...

ϕk−p−1

 . (5.9)
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We introduce the notation R(s,p)
MMSE for an estimator computed for s-step-ahead in

time and p measurements using Equation 5.6 so that:

R(s,p)
MMSE = E


[
ϕk+s

]


ϕk

ϕk−1

...

ϕk−p−1


⊤

E




ϕk

ϕk−1

...

ϕk−p−1




ϕk

ϕk−1

...

ϕk−p−1


⊤


−1

(5.10)

The resulting predictor is the optimal predictor for the turbulence states con-
sidered in the vector ϕ when using a given number of previous measurements p.
The value of p for which prediction is enough will be the subject of study in the
forthcoming sections.

5.1.4. Phase Representation
So far, the predictor has been derived in its more general form, without assuming
any basis for the representation of the phase vectors within x and y. In principle,
they can be defined on a zonal basis or on any modal basis as discussed in Section
1.3. The pros and cons of the different bases discussed for autoregressive models
(see Section 4.2.5) also apply here. For the use of the MMSE predictor as an
analytical tool for the upper prediction boundaries, it is assumed that both vectors
are expressed in the Zernike polynomial basis to allow the analytical evaluation
of the cross-covariance matrices. The computation of these matrices is detailed in
Section 4.2.5.2. Other bases can be used if the spatio-temporal covariance matrices
are available, either from analytical expressions or from data-based identification.

5.1.5. Prediction Error
The previous sections introduced the use of the MMSE estimator as an optimal
predictor for the evolution of turbulence. This predictor depends on the spatio-
temporal cross-covariance matrices between turbulence phases at different points
in time. This section derives the matrix expression for the computation of the
estimation error variance for a given linear estimator (MMSE or not) and the
cross-covariance matrices of the estimated variables. In the case of prediction, this
expression is equivalent to the prediction error variance and can be computed with
the spatio-temporal cross-covariance matrices for the underlying process.
The estimation error is expressed by Equation 5.3. Inserting an arbitrary linear

estimator x̂ = Ry in Equation 5.3:

x̃ = x− Ry . (5.11)

102



5. Assessment of Turbulence Predictability
5.1. MMSE Temporal Prediction

The variance of the prediction error is given by the trace of the covariance matrix
of the prediction error. First, the covariance matrix is computed from Equation
5.11:

Σx̃x̃ = E
{
x̃x̃⊤} = E

{
(x− Ry) (x− Ry)⊤

}
. (5.12)

Developing the product:

Σx̃x̃ = E
{
xx⊤ − Ryx⊤ − xy⊤R⊤ + Ryy⊤R⊤} . (5.13)

Simplifying the expected value of the sum as the sum of the expected values:

Σx̃x̃ = E
{
xx⊤}− E

{
Ryx⊤}− E

{
xy⊤R⊤}+ E

{
Ryy⊤R⊤} . (5.14)

Taking the linear estimator out of the expected value since it is constant:

Σx̃x̃ = E
{
xx⊤}− RE

{
yx⊤}+ E

{
xy⊤}R⊤ − RE

{
yy⊤}R⊤ . (5.15)

Using the definition of the cross-covariance matrix:

Σx̃x̃ = Σxx − RΣyx −ΣxyR
⊤ + RΣyyR

⊤ . (5.16)

Finally, using the identity Σyx = Σ⊤
xy:

Σx̃x̃ = Σxx − RΣ⊤
xy −ΣxyR

⊤ + RΣyyR
⊤ . (5.17)

The estimation error variance, σ2
est, is thus:

σ2
est = Tr(Σx̃x̃) . (5.18)

The formula computes the estimation error variance of x using any linear
estimator R and the measurements y. For the phase temporal prediction setup
presented in Section 5.1.3 we define x = ϕk+s, so that the estimation error is:

x̃ = ϕk+s − ϕ̂k+s . (5.19)

Equation 5.17 can be used to compute the phase temporal prediction error
covariance matrix of the wavefront at s steps ahead using the last p measurements
of the wavefront.

Remark

The prediction error can be used to evaluate the linear prediction performance
bound when using R = RMMSE or to compare the performance of the optimal
predictor to other alternative predictors.
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5.1.6. No Prediction Error
It is also possible to compare the MMSE predictor and other predictors to the case
of no prediction (NP), which assumes that the turbulence did not evolve during the
time elapsed between the last measurement available and the time to be predicted:

ϕ̂NP
k+s = ϕk . (5.20)

This approach can be compared to a simplified control loop in the presence of
delay, although in a true loop, the measurement will be filtered by the transfer
function of the controller (Ferreira et al. 2018; Juvénal et al. 2018).
The prediction error of this predictor can be computed using Equation 5.17

with the covariance matrices computed for x = ϕk+s and y = ϕk and writing this
predictor in matrix form as:

RNP = I , (5.21)

where I is the identity matrix.

5.1.7. Adaptive Optics Performance Assessment
The framework developed above is used to assess the potential gain in adaptive
optics performance thanks to the use of prediction. This assessment is done in
terms of the predictability of the phase and is therefore equivalent to a simplified
AO loop under the following assumptions:

1. The wavefront sensor can perfectly measure the basis selected for the phase
representation and do it without noise

2. The deformable mirror can fit the same basis without any error

3. The control strategy is based on the application of the prediction without any
temporal filtering by a control transfer function (in practice necessary due to
the presence of noise and delay in the feedback loop). As a result of these
simplifications, the performance results of this assessment are optimistic, but
remain a good approximation.

4. The measurements of the system correspond to the open-loop (usually thanks
to pseudo-open-loop) turbulent phase.

A two-frame delay loop is considered, therefore, a two-step ahead, s = 2,
prediction is used. The baseline AO temporal error is computed using the no-
prediction predictor. The residual temporal error after prediction is computed as
the prediction error for the MMSE predictor. In both cases, the phase is predicted
only for the radial orders which the analyzed system can correct with a DM. The
higher orders are purely fitting error and are not part of the analysis.
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5.1.8. MMSE vs. VAR Predictors
Two different predictors have been presented so far: the VAR(p) model and the
MMSE estimator. Both methods assume an underlying autoregressive linear model
as defined in Equation 5.7 and both are optimal regarding a MSE criterion. In the
present section, a comparison of the two methods is provided.
The first observation is that for the case of s = 1 the MMSE estimator R(1,p)

MMSE

is equivalent to a VAR(p) model computed with Equation 4.19. This result was
already presented in Property 4.5, which states that the optimal linear predictor
for a VAR(p) process in terms of MSE is the process itself, while the process can
be computed from its autocovariance matrices using the Yule-Walker estimator as
in Equation 4.19.
In order to rewrite the MMSE predictor so that it can be iterated as the VAR

predictor, we extend the vector x firstly defined in Equation 5.8 as:

x =


ϕk+s

ϕk+s−1

...

ϕk+s−p−1

 . (5.22)

In this case, the resulting predictor R(s,p)
MMSE is a square matrix that can be applied

iteratively.
As a result, the MMSE predictor for s = 1 is equivalent to a VAR model of the

same order p:

A
(p)
VAR(1) = R(1,p)

MMSE . (5.23)

The difference between the methods appears when a prediction horizon of s > 1
is considered. The VAR process prediction is a power of itself as introduced in
Equation 4.12, something similar can be also achieved with the MMSE solution:(

A
(p)
VAR(1)

)s
=
(
R(1,p)

MMSE

)s
= R(1,p,s)

MMSE , (5.24)

where R(1,p,l)
MMSE =

(
R(1,p)

MMSE

)l
, for any integer l > 0.

Remark

In general, R(1,p,l=s)
MMSE is not equal to R(s,p)

MMSE. The former is the iterative
application of the 1-step-ahead predictor; the latter is the optimal s-step-
ahead predictor. They are only equal when the underlying process is a VAR(p)
process and Property 4.5 is satisfied. Otherwise, the iterative application will
be suboptimal and have lower performance.

When approximated by a linear autoregressive process, the real underlying
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process to be predicted has an unknown order p′. For a given model order p, the
resulting VAR predictor R(1,p,s)

MMSE contains p+ 1 autocovariance matrices, while the

MMSE predictor R(s,p)
MMSE contains p+ s autocovariance matrices. As a result, the

latter contains more information and obtains better prediction performance. Only
when the underlying process is a VAR process with p′ = p both predictors are
equivalent since the autocovariances for τ > p+ 1 depend on the covariances for
τ <= p+ 1 and are therefore redundant (see Property 4.4).

In this work, R(s,p)
MMSE predictors are used for the assessment of the maximum

prediction possible with adaptive optics. Nevertheless, even if suboptimal, the
VAR models equivalent to a R(1,p,l=s)

MMSE predictor will be used for the implementation
within LQG controllers as state space models since they are guaranteed to produce
a stable process.

5.1.9. Data-based Version of the MMSE Predictor
A data-based version of the MMSE predictor can be obtained by estimating the
covariance matrices required for its computation. For this, the simplest method is
to use the sample covariance matrix as discussed in Equation 4.34. See also the
discussion on the data-based identification of VAR models in Section 4.2.5.3 for
further discussion on the identification of the cross-covariances.

5.2. Predictability of LEO Satellite AO Applications
The following section applies the predictability assessment method based on the
MMSE estimator presented above to the case of LEO satellite AO applications. The
aim of this analysis is to quantify the possible reduction of temporal error in these
applications, thanks to the use of predictive controllers. The analysis presented
also allows to observe and explain the different performance gains depending on
the AO system parameters for each of the systems considered.
The four systems presented in Chapter 3 are used as a case study. The systems are

modeled as perfect measurement and correction of the first nmax Zernike polynomial
radial orders. For the LISA and ODISSEE systems, both with an 8×8 subapertures
Shack-Hartmann wavefront sensor, a nmax = 10 is used, corresponding to the first
65 Zernike polynomials in Noll ordering after removing the piston mode. For the
FEELINGS and ODISSEE++ systems, both with an 16× 16 subapertures Shack-
Hartmann wavefront sensor a nmax = 20 is used, corresponding to 230 Zernike
polynomials. The turbulence profiles are those assigned to each configuration in
Section 3.2.1.
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5.2.1. Prediction Gain
Table 5.1 reports the results of the use of the predictability assessment for the four
systems considered across all elevation angles for the turbulence profile considered.
The reported results are the sum of the prediction errors over all the Zernike modes
considered. Those errors correspond to the residual phase variance of the wavefront
for each of the corrected modes due to a two frame delay between measurement
and correction. The present analysis does not include aliasing and measurement
noise errors. The fitting error is also not considered here since only the corrected
modes are analyzed.
Three predictors are considered: (1) R(s=2,p=0)

MMSE , the no-prediction case from

Section 5.1.6; (2) R(s=2,p=2)
MMSE the MMSE predictor using two measurements from the

past, and (3) R(s=2,p=8)
MMSE MMSE predictor using eight measurements from the past.

The choice of p = 2 and p = 8 will be better understood after Section 5.2.3, so far
they should be considered as ”good enough” and ”best performance” predictors,
respectively.
The gain of both predictors with respect to the no-prediction case is reported in

the same table as the percentage of prediction error variance with respect to the
no-prediction variance:

gain (%) =
residual phase variance for R(s=2,p)

MMSE

residual phase variance for R(s=2,p=0)
MMSE

× 100 . (5.25)

Lower percentage means more reduction of residual variance and thus better
prediction.
Several observations about the results are possible:

– The performance gains are considerable. In most of the cases, the phase
variance is reduced by an order of magnitude.

– The performance gains seem to be consistent across the whole orbit in relative
terms when expressed in variance.

– The LISA configuration presents less relative gain, around 25% of the no-
prediction variance, than the other configurations, around 10%.

In general, prediction allows to reduce the temporal error significantly. However,
the impact of this reduction on the final system performance will depend on the
other elements of the AO budget. For example, the Strehl ratio (see Equation
3.6) is the negative exponential of the residual phase variance. The ODISSEE and
the ODISSEE++ have similar prediction errors, but since the former has a higher
fitting, the later will end up having a better performance. The same happens at
lower elevations, where the prediction error is higher. Even if there was no fitting
error and the relative gains in phase variance are the same at all elevations, the final
performance will be very different due to the non-linear relationship between Strehl
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ratio and residual phase variance. For both the LISA and the FEELINGS cases, the
chosen profile does not have a strong temporal error even with no-prediction, so the
effect of prediction will be weaker when looking at final performance metrics such
as Strehl ratio. The lower temporal error for the optical communication systems is
due to the profile selected for this study, the day-time turbulence is concentrated
at the ground, the apparent wind speed is slower at the lower layers, leading to less
temporal error that for a profile with equivalent r0 but with turbulence located
at the higher layers. Additionally, the FEELINGS system has a loop sampling
frequency of 4 kHz, therefore temporal error is already greatly reduced. As a result,
the rest of the discussion on this study will be in terms of residual phase variance,
see Chapter 7 for an analysis of the final system performance in terms of Strehl
ratio or coupled flux thanks to the use of end-to-end adaptive optics simulations.
The smaller prediction gains for the LISA case are explained in Section 5.2.2,

where the relationship between predictability and the temporal decorrelation of
the predicted modes is illustrated.

5.2.2. Predictability
This section aims to discuss the predictability of different AO configurations.
Predictability is measured by the percentage of prediction error variance with
respect to the no-prediction variance; see Equation 5.25. Lower percentage means
greater reduction of residual variance and, thus, better prediction.
Predictability is related to the temporal (de)-correlation between the future

phase and the phase measurements used for prediction. As a result, several remarks
are possible thanks to the AO systems parameters in the temporal correlation of
the observed turbulence and the resulting predictability:

– Faster layers have lower predictability since the temporal decorrelation of
phase is higher. However, their contribution to temporal error is greater, so
even if a lower portion of the temporal error can be reduced by prediction,
the absolute gains may be higher.

– Smaller telescope diameters lead to more temporal decorrelation and therefore
less predictability too.

– The systems with faster sampling frequency are more predictable since this is
equivalent to slower layer speed, so measurements are more correlated.

– The outer scale of the turbulence could also have an effect on the predictability
of turbulence.
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Table 5.1.: Prediction gains for all AO configurations vs. elevation. Residual phase
variance (in rad2) over the corrected modes.

Elevation R
(s=2,p=0)
MMSE R

(s=2,p=2)
MMSE Gain (%) R

(s=2,p=8)
MMSE Gain (%)

L
IS
A

10◦ 5.326 · 10−1 1.568 · 10−1 29.44 1.428 · 10−1 26.81

20◦ 2.214 · 10−1 5.367 · 10−2 24.24 4.857 · 10−2 21.93

30◦ 1.571 · 10−1 3.866 · 10−2 24.61 3.502 · 10−2 22.29

40◦ 1.344 · 10−1 3.565 · 10−2 26.52 3.221 · 10−2 23.96

50◦ 1.240 · 10−1 3.556 · 10−2 28.67 3.205 · 10−2 25.84

60◦ 1.189 · 10−1 3.644 · 10−2 30.66 3.296 · 10−2 27.73

70◦ 1.160 · 10−1 3.744 · 10−2 32.27 3.387 · 10−2 29.20

80◦ 1.145 · 10−1 3.815 · 10−2 33.32 3.450 · 10−2 30.13

90◦ 1.140 · 10−1 3.840 · 10−2 33.67 3.472 · 10−2 30.45

F
E
E
L
IN

G
S

10◦ 2.204 · 10−1 2.736 · 10−2 12.41 2.193 · 10−2 9.95

20◦ 8.436 · 10−2 9.942 · 10−3 11.79 7.749 · 10−3 9.19

30◦ 6.043 · 10−2 7.151 · 10−3 11.83 5.560 · 10−3 9.20

40◦ 5.334 · 10−2 6.342 · 10−3 11.89 4.982 · 10−3 9.34

50◦ 5.084 · 10−2 6.226 · 10−3 12.25 4.872 · 10−3 9.58

60◦ 5.011 · 10−2 6.229 · 10−3 12.43 4.922 · 10−3 9.82

70◦ 4.991 · 10−2 6.242 · 10−3 12.51 4.968 · 10−3 9.95

80◦ 4.989 · 10−2 6.319 · 10−3 12.67 5.043 · 10−3 10.11

90◦ 4.990 · 10−2 6.352 · 10−3 12.73 5.071 · 10−3 10.16

O
D
IS
S
E
E

10◦ 2.137 2.173 · 10−1 10.17 1.513 · 10−1 7.08

20◦ 7.859 · 10−1 6.916 · 10−2 8.80 4.812 · 10−2 6.12

30◦ 5.638 · 10−1 5.088 · 10−2 9.02 3.516 · 10−2 6.24

40◦ 5.053 · 10−1 4.743 · 10−2 9.39 3.310 · 10−2 6.55

50◦ 4.904 · 10−1 4.902 · 10−2 9.99 3.406 · 10−2 6.94

60◦ 4.893 · 10−1 5.139 · 10−2 10.50 3.583 · 10−2 7.32

70◦ 4.918 · 10−1 5.416 · 10−2 11.01 3.779 · 10−2 7.68

80◦ 4.941 · 10−1 5.602 · 10−2 11.34 3.901 · 10−2 7.89

90◦ 4.943 · 10−1 5.654 · 10−2 11.44 3.938 · 10−2 7.97

O
D
IS
S
E
E
+
+

10◦ 2.486 2.956 · 10−1 11.89 1.793 · 10−1 7.21

20◦ 9.558 · 10−1 9.665 · 10−2 10.11 5.889 · 10−2 6.16

30◦ 6.824 · 10−1 7.085 · 10−2 10.38 4.279 · 10−2 6.27

40◦ 6.012 · 10−1 6.553 · 10−2 10.90 3.975 · 10−2 6.61

50◦ 5.733 · 10−1 6.670 · 10−2 11.63 4.031 · 10−2 7.03

60◦ 5.636 · 10−1 6.882 · 10−2 12.21 4.176 · 10−2 7.41

70◦ 5.606 · 10−1 7.141 · 10−2 12.74 4.360 · 10−2 7.78

80◦ 5.598 · 10−1 7.303 · 10−2 13.05 4.460 · 10−2 7.97

90◦ 5.588 · 10−1 7.335 · 10−2 13.13 4.487 · 10−2 8.03
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Remark

The observations above correspond to one layer of turbulence. The contri-
bution of each layer is weighted by its strength in terms of C2

n. For LEO
satellite applications, the higher layers are faster due to the higher apparent
wind; while their relative strength will depend on the time of the day, being
higher during the night and lower during the day, when the ground layer is
stronger.

Figure 5.1 confirms the previous remarks with one example. Figure 5.1a reports
the predictability for nmax = 10 Zernike radial orders, with λ = 1.55 µm, L0 = 10m,
and 30◦ elevation using different aperture diameters, two sampling frequencies, and
two turbulence profiles. It can be observed how an increase of the aperture diameter
leads to an improvement in the prediction of turbulence, the same happens with
the sampling frequency. This explains why the LISA case shows a lower prediction
gain than the order systems since its diameter is smaller. At the same time, smaller
telescope diameters are of less interest for AO applications since the absolute effect
of turbulence is smaller.
Figure 5.1b completes the study with the effect of changing the outer scale of

turbulence. In this case, the outer scale does not show any effect on the predictability
of turbulence.
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Figure 5.1.: Predictability for different AO system parameters that influence the
temporal correlation of turbulence. Three parameters are considered: (a) the diameter of
the telescope and the sampling frequency of the AO loop, and (b) the outer scale of the
turbulence. The y-axis of the graphs is defined in Equation 5.25, but without multiplying
by hundred.
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5.2.3. Effect of the Model Order
Figure 5.2 plots the prediction error results vs. the model order considered for the
four AO systems considered. Three different predictors are considered: the MMSE
predictor R(s=2,p)

MMSE , the VAR predictor R(s=1,p,l=2)
MMSE , and the diagonal AR predictor

R(s=1,p,l=2)
MMSE . The latter is computed as the VAR but with extra-diagonal terms in

the autocovariance matrices set to zero. The comparison of the two first predictors
allows to evaluate if their performance is similar; this is necessary since only the
second (which is suboptimal) leads to a stable model that can be used within a
predictive controller. The comparison between the VAR and the diagonal AR since
many works in the literature have used diagonal models, which are computationally
less expensive; this comparison allows to evaluate the performance loss when using
diagonal models. Table 5.2 reports the results for the R(s=2,p)

MMSE predictor.
Although the MMSE predictor has a better performance than the VAR predictor

the difference is negligible. This result ensures that the use of a VAR predictive
model within a predictive controller will provide near-optimal performance.
For all predictors, the performance improves when increasing the model order.

This is thanks to the fact that increasing the model order will include more
autocovariances of the process in the predictor. There is an important gain in
performance when using p = 2 and the gains are less important after. This result
shows that using at least a second-order model is necessary for predicting frozen
flow. This contrasts with the typical Markovian (i.e. first order) assumption in
astronomy cases (Gavel and Wiberg 2003; Correia et al. 2014). Other works, for
example, Prengère et al. (2020) but using a zonal phase representation, have used
second-order systems and observed better performance, but this kind of pseudo-
analytical result is a demonstration of the need for at least second-order models
for representing frozen flow turbulence. This finding may also be extrapolated to
controllers working on zonal and slope spaces, although a theoretical framework
for this space is not available at the moment.

Remark

The MMSE solutions are optimal for the data they are given. As explained
in Section 5.1.8, the R(s=2,p)

MMSE contains information on the temporal autocovari-
ances from τ = 0 to τ = p+ 2, since temporal information is considered for
higher-orders those tend to have better predictive performance.

Due to the convergence in performance gains for a given model order p, the com-
putational cost of the model can be reduced by limiting it to a second order without
losing a lot of performance, at least in the case of frozen flow turbulence. This
convergence is not always as strong, especially for the bigger systems (FEELINGS
and ODISSEE++), where the performance continues to improve considerably for
higher orders.
When the AR model is compared to the VAR it is clear that the performance
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is degraded. This shows how accounting for the cross-covariance terms between
modes brings a great gain in performance. Jackson et al. (2015) did an experiment
for which zonal VAR(1) was compared with also zonal AR(1), AR(2), and AR(3).
The experiment was conducted for astronomy cases where layer speeds are not as
strong. They found that VAR(1) always provided better performance, but this
is not the case for the configurations studied in this work. For the diagonal AR
models the performance seems to converge for p = 3.
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Figure 5.2.: Prediction performance vs. model order for different predictors. The
performance of different predictors is compared for three models: (1) the MMSE predictor,
(2) the VAR predictor, and (3) the diagonal AR predictor. The models are computed for
different model orders, i.e. different number of previous measurements used to compute
the prediction. The results are reported for the four AO systems considered.
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Table 5.2.: Performance of the R
(s=2,p)
MMSE predictor for different model orders. Results are

given in variance of the residual phase with units rad2.

p = 0 p = 1 p = 2 p = 8

LISA
R

(s=2,p)
MMSE 1.571 · 10−1 1.552 · 10−1 3.866 · 10−2 3.502 · 10−2

Gain (%) 100.00 98.80 24.61 22.29

FEELINGS
R

(s=2,p)
MMSE 6.043 · 10−2 5.962 · 10−2 7.151 · 10−3 5.560 · 10−3

Gain (%) 100.00 98.67 11.83 9.20

ODISSEE
R

(s=2,p)
MMSE 5.638 · 10−1 4.728 · 10−1 5.088 · 10−2 3.516 · 10−2

Gain (%) 100.00 83.85 9.02 6.24

ODISSEE++
R

(s=2,p)
MMSE 6.824 · 10−1 5.725 · 10−1 7.085 · 10−2 4.279 · 10−2

Gain (%) 100.00 83.89 10.38 6.27

5.2.4. Results per Mode
This section analyzes the per mode performance of prediction using the MMSE
predictor. The MMSE predictor with two steps into the future and two measure-
ments, R(s=2,p=2)

MMSE , this predictor is used instead of the better performing R(s=2,p=8)
MMSE

since the performance differences are not too strong, while the computational cost
is greatly reduced. Figure 5.3 provides the results for the LISA system and Figure
5.4 does it for the ODISSEE.
The performance results in this section are given in terms of residual phase

variance after prediction, either per Zernike mode or Zernike radial order after
averaging across all modes with the same radial order. In any case, when the sum
of all contributions is given, it corresponds to the sum of the variance per Zernike
mode.
Figure 5.5 plots the reduction in variance from the no prediction case to the

R(s=2,p=2)
MMSE case. It can be observed that the slowest changing modes have better

prediction performance in terms of variance reduction. A possible explanation
for this is that, due to the slower evolution, the decorrelation between the two
measurements and the predicted state is lower, allowing for better predictability.
One can also see that some modes are harder to predict with respect to their
neighbors; the evolution of these modes is poorly related to the wind (frozen flow)
since they are orthogonal to the direction of wind.
It can be observed how for the ODISSEE case the prediction performance

decreases for the last radial orders considered. Figure 5.6 plots the same curve as in
Figure 5.4b but for a different number of radial orders considered in the prediction,
i.e. the baseline is the prediction of nmax = 10 radial orders measuring the same
number of modes, in the figure a different number of radial orders is considered.
The per mode performance of an AR(3) model is also plotted. The per mode
performance of diagonal AR models does not change with the number of modes
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Figure 5.3.: Residual phase modal variance for the LISA case with and without MMSE
temporal prediction.
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Figure 5.4.: Residual phase modal variance for the ODISSEE case with and without
MMSE temporal prediction.

considered since they are considered to be decoupled. The following observations
are possible:

– In general, for the VAR models, predicting a few more radial orders will
increase the performance of the previous radial orders. For example, when
nmax = 1 (i.e. only tip-tilt) is considered, the prediction error variance for
n = 1 is around 9 · 10−3 rad2. For nmax = 2 the prediction error variance for
the n = 1 modes goes down to 4 · 10−3 rad2.

114



5. Assessment of Turbulence Predictability
5.2. Predictability of LEO Satellite AO Applications

0 10 20 30 40 50 60

Zernike polynomial Noll index, j, [−]

0

20

40

60

80

100

R
es

id
ua

l
va

ri
an

ce
w

.r
.t

.
no

-p
re

di
ct

io
n

[%
]

(a) Modal prediction error reduction for
the LISA case.
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(b) Modal prediction error reduction for
the ODISSEE case.

Figure 5.5.: Residual phase modal variance for the ODISSEE case with and without
MMSE temporal prediction.

– Very higher-order modes do not contribute much to the prediction of lower-
order modes. For example, adding modes beyond nmax = 6 does not bring
significant performance gains to the estimation of the n = 1 modes.

– The last radial orders predicted have a lower performance that is regained when
considering more radial orders. For example, for nmax = 3 the performance
of the prediction for n = 3 is close to the AR(3) model. The prediction
performance of these modes improves significantly after considering the nmax =
4 modes.

It has been observed that neighboring radial orders provide the most information
to the prediction of a given radial order. This can be explained from the fact
that the autocovariance matrices present stronger correlations between neighboring
modes. Figure 5.7 shows this behavior for the LISA case, it can be observed how
the correlations decrease with their distance to the diagonal of each covariance
matrix.
Since most of the error comes from the lower orders and they are fully predicted

with a small number of radial orders, a smaller predictive controller that only
includes the lower radial orders can be considered. Figure 5.8 illustrates this case.
On the left subfigure, each curve corresponds to a given nmax considered in the
prediction. The modes until nmax are predicted, while the modes until n = 10
are assigned the no-prediction error. The right subfigure plots the total residual
phase variance for each curve in the left subfigure. It is observed that the total
prediction error variance decreases to half with few predicted modes, i.e. nmax = 4.
This observation means that smaller predictive models, with fewer modes, can be
enough to achieve a significant performance gain.
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Figure 5.6.: Residual phase variance after prediction for a different number of predicted
modes for the ODISSEE system.
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Figure 5.7.: Autocovariance matrices for the LISA case.

5.2.5. Reduction of Loop Frequency
The ability of predictive control to reduce temporal error can be used to run the AO
system at a slower sampling frequency with equivalent performance, since the higher
temporal error could be compensated for by the use of prediction. This approach
would allow an increase in the integration time used for wavefront sensing and,
therefore, benefit the applications that are limited in flux, such as the imaging of
satellites from the ground. Reducing the loop sampling frequency while maintaining
performance can also be useful when some of the components cannot operate at
the required frequencies; for example, a DM that starts showing actuator dynamics
or resonances in this regime.
Table 5.3 reports the prediction performance for the systems under study after

halving and doubling their sampling frequencies. For example, the ODISSEE case
could run at 750Hz sampling frequency with a temporal error after prediction is
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Figure 5.8.: Residual phase variance after prediction for a different number of predicted
modes for the ODISSEE system. A total number of n = 10 radial orders is considered
to be corrected; when prediction considers fewer radial orders, the no prediction error
is used for the rest of radial orders. Left, residual phase variance averaged over radial
order. Right, total residual phase variance.

equivalent to a system running twice or four times the speed without prediction.

Remark

The reduction of system frequency here considers that the delay is kept to
two frames also with lower loop frequency. In reality, if a system is able to
work at a given loop frequency fsamp with a 2 frame delay, when the frequency
is reduced to fsamp/2, the system should be able to work at a 1.5 delay. This
is so because the WFS detector read and control command computation take
the same time as at higher frequency. Under these assumptions, the integrator
results presented here are suboptimal, since a smaller delay is possible.
The approach in this section is representative when the implementation of

the case where the higher loop frequency is not possible due to technological
constraints like computational resources.

5.2.6. Performance on a Time Series
So far, the performance of the predictor has been evaluated using the analytical
method described in Section 5.1.5 that computes the theoretical prediction error
or a given linear predictor based on the covariances of the predicted process. The
performance of the predictor is now evaluated against a time series of simulated
turbulence. The time series corresponds to the multi-layer profile associated with
each configuration. Each layer of the profile was shifted to simulate pure frozen
flow. The phase is simulated as described in Section 7.1.2 and amounts to a total
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Table 5.3.: AO residual wavefront variance (in rad2) budget for ODISSEE configuration.

fsamp No-prediction R
(s=2,p=2)
MMSE R

(s=2,p=5)
MMSE

3000Hz 0.157 0.015 0.009

ODISSEE 1500Hz 0.564 0.051 0.038

750Hz 1.701 0.274 0.196

3000Hz 0.212 0.020 0.013

ODISSEE++ 1500Hz 0.682 0.070 0.047

750Hz 1.828 0.314 0.211

4000Hz 0.060 0.007 0.006

LISA 2000Hz 0.155 0.034 0.029

1000Hz 0.317 0.151 0.137

9000Hz 0.018 0.003 0.002

FEELINGS 4500Hz 0.060 0.007 0.006

2250Hz 0.165 0.025 0.021

of 50 000 temporal samples. For each time step, the phase on the telescope pupil is
projected onto the Zernike modes to obtain the time series of coefficients {ϕk}. The
previous phase vectors are used with the predictor to compute the two-step-ahead
prediction:

ϕ̂k+2 = R(s=2,p)
MMSE

[
ϕk

ϕk−1

]
(5.26)

The prediction error is computed as ϕ̃ = ϕk− ϕ̂k and its variance along the time
series {ϕ̃k} is reported as the predictor error variance. Two different predictors
are compared, the V AR(2) and the AR(3). For each predictor, there are two
versions, one computed from the theoretical covariance matrices and one using the
data-based sample covariances computed from the same time series. The results
are shown in Figure 5.9.
The data-based predictor delivers slightly better results since the covariance

matrices are computed from the same time series. The theoretical predictor is
expected to behave better on average and to converge to the optimal performance
when the time series is infinite. The results for both predictors are close to the
theoretical calculations reported in Figure 5.2. This confirms that the MMSE can
work as a predictor and that the boundaries computed are respected. Additionally,
the results confirm that temporal prediction using a Zernike polynomials represen-
tation can capture Taylor frozen flow turbulence evolution without the need for
explicit shifting of the basis like the one proposed in Juvénal et al. (2016).
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Figure 5.9.: Prediction of a time series using a predictor computed from theoretical
covariance data and from the sample covariance data.

5.2.7. Effect of Unknown Natural Wind
This section studies the effect of an unknown natural wind component in the
prediction of turbulence for LEO satellite tracking. So far, all computations have
done the assumption that the shifting of each of the layers is driven only by the
apparent wind due to the LEO satellite tracking, i.e. no natural wind was included,
neither in the turbulence nor in the predictive model. This assumption is valid since
the apparent wind speed and direction can be computed for each layer knowing the
layer altitude and the satellite orbit. However, natural wind, although it could also
be included in the model, is more difficult to obtain and may remain unmodeled.
The MMSE prediction assessment framework can include unmodeled phase

dynamics by including them in the covariance matrices of the phase used for
computing the prediction error of the predictor in Equation 5.17, while the predictor
is computed using the covariance matrices that do not include the natural wind.
For the reported test, the natural wind profile used is a Bufton wind profile with

a ground layer speed of 3m/s and an upper layer speed of 20m/s. The results of
this analysis are presented in Figure 5.10.
The first observation is that the no-prediction temporal errors are higher than for

the turbulence profiles without natural wind reported in Table 5.2. For the LISA
case the the no prediction error raises from 1.571 · 10−1 rad2 to 2.246 · 10−1 rad2,
while for ODISSEE it does from 5.638 · 10−1 rad2 to 7.054 · 10−1 rad2. This is
reasonable since the additional layer velocities bring additional temporal error. In
the case of LISA the increase is more significant since most of the turbulence for
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its profile is concentrated at the lower layers; those layers had a very slow velocity
before and now with the addition of natural wind start to contribute strongly.
Two prediction cases are reported, one in which the predictor was computed with

knowledge of the natural wind (in blue in the figure) and one without knowledge
of the natural wind (in green in the figure). When the natural wind is known and
accounted for in the predictive model, prediction has the same relative performance
gains as when only apparent wind was present. The absolute residual phase
variance is higher, as the initial temporal error was greater. Therefore, the presence
of natural wind, when included in the predictive model, does not change the
performance of the prediction.
However, a lack of modeling of the natural wind will cause a loss in performance.

The loss in performance for the LISA case is total, resulting in a performance close
to the no-prediction case. This can be explained by the fact that this case considers
a daytime turbulence profile, where the turbulence strength is concentrated in the
layers close to the ground. For these layers, the apparent wind speed is not that
high, and the turbulence evolution is driven by the natural wind speed; therefore,
excluding this information from the predictive model leads to a very poor prediction.
Since the ODISSEE case considers a night-time profile, the performance losses here
are lower but still significant. Even in the least favorable case of LISA prediction
still brings gains, those are related to the contribution of natural wind, which are
still predicted; while the strong contribution of natural wind will not be predicted.
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Figure 5.10.: Comparison of MMSE prediction performance in the case of known and
unknown natural wind.

In conclusion, when the natural wind is included in the predictive model, it can be
predicted in the same way as the apparent wind. The differences between both cases
are related to their predictability and their absolute contribution to temporal error.
The absolute contribution to the temporal error depends distribution of turbulence
strength with respect to the wind profile: natural wind is slower but affects the
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turbulence that has the most strength (i.e. ground turbulence, especially in day-
time conditions), apparent wind is higher at high altitudes, where the turbulence
is less strong. When the natural wind is not modeled, the loss of performance will
depend on the relative contribution of the natural wind to the temporal error with
respect to the apparent wind. For cases such as ODISSEE, where the turbulence
strength is concentrated in the free atmosphere, the contribution of the apparent
wind dominates, and excluding the natural wind from the prediction does not come
with a strong penalty. For cases such as LISA, where the turbulence strength is
concentrated in the ground layer, the contribution of the natural wind dominates,
and executing it from the prediction will result in significant performance losses.
Even in this case, at least most of the apparent wind contribution appears to still
be predicted, so the performance is still better with prediction. In the cases where
it is necessary, the natural wind can be incorporated into the model and predicted
using wind speed and direction information from metrology sources.

Remark

The (relative) robustness of the predictive models to the unmodeled wind
shown in this section is only partial. The analysis presented here assumes
that the measurements used for the prediction do not contain measurement
noise. It still remains to see how the models behave when used in a control
algorithm; several errors will propagate at the same time.

∗ ∗ ∗

Summary

In this chapter, I presented a framework for analyzing the performance of
linear predictors of atmospheric turbulence evolution for predictive control
purposes. The framework uses the spatio-temporal covariances of the tur-
bulence to compute the optimal predictor and to assess the prediction error
associated to a simplified AO model, which allows us to evaluate the potential
gains of predictive controllers. The method uses the Zernike polynomials as a
modal basis for the turbulence description since they allow the analytical com-
putation of the spatio-temporal covariance matrices for the case of frozen flow
turbulence by using the expressions of angular covariance matrices between
Zernike polynomials. The method can account for multi-layer turbulence,
and the size of the derived predictor does not depend on the number of layers
used since the turbulence is predicted at the telescope pupil from the sum of
the covariance matrices of every layer.
I applied the predictability evaluation method to the case studies in this

thesis and two applications were considered: satellite-to-ground optical com-
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munications and ground-based satellite observation. The results show a
significant reduction in temporal error due to prediction. The observed
performance gains motivate the development of predictive adaptive optics
controllers for LEO satellite applications. The results of this study left the
following conclusions:

– The typical gain thanks to the use of prediction is a reduction of the
residual phase variance due to temporal error to 10% of the original.
However, the impact of this reduction on the performance metrics of
the AO system such as Strehl ratio will depend on the overall AO error
budget.

– Smaller telescope diameters lead to less predictability of the turbulence
due to a higher temporal decorrelation of the turbulence integrated over
the telescope pupil.

– The MMSE and the VAR predictors, although slightly different in theory
(see 5.1.8) provide equivalent performance for the case of two-step-ahead
prediction. This means that VAR model predictors can be used instead
and provide the same performance, with the advantage that they are
equivalent to a stable VAR process and therefore can be implemented
as part of a predictive controller within a Kalman filter.

– The optimal prediction of turbulence requires at least a second-order
model, while the gains for higher-order models are more modest. This
result has been observed in LEO satellite applications and contradicts
the literature on predictive control for astronomy.

– The prediction of the modes of a given Zernike radial order is associated
with the use of their neighboring modes. For the tip-tilt prediction, little
gains are observed after the first radial orders are taken into account in
the prediction. This may lead to optimization of predictive controllers
and their models, both in terms of performance and robustness.

– Prediction could allow the same performance in terms of temporal error
to be obtained with a reduction in the AO loop sampling frequency by
a factor of two or four.

– The pseudo-analytical framework based on covariance matrices was
verified on a simulation of multi-layer turbulence. This successful verifi-
cation confirms that the shifting of turbulence layers can be properly
modeled in the Zernike polynomials space without the explicit shifting
of the phase.
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– This also means that the same model could be identified from data as
in Section 5.2.6 and still represent the frozen flow turbulence without
explicit modeling of layer shift.

– The presence of an unmodeled natural wind in the prediction causes
a significant loss of performance in some cases, especially those with a
strong ground layer, which is the case for daytime turbulence. This is
due to the very strong contribution of (unpredicted) natural wind, while
apparent wind is still predicted and some performance gains are still
observed. In those cases, the speed and direction of the natural wind
should also be taken into account for the computation of the predictor.

The analysis in this chapter has highlighted that the gains due to the use of
prediction in the case of LEO satellite applications are very promising. At the
same time, the covariance-based framework presented is also very promising
for the development of a predictive controller. First, as already stated, the
VAR models can be easily integrated into a LQG controller. At the same time,
the controller can be identified from a priori knowledge of the wind speed
and direction and C2

n(h) profile or from a data-based approach. Finally, the
modal nature of the model brings the advantages of modal control presented
in Section 2.4.4. The development of such a predictive controller is presented
in Chapter 6.
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Introduction

This chapter introduces the predictive controller that I developed during
this thesis and discusses its potential extensions and limitations. Section
6.1 introduces the predictive controller and discusses its implementation.
In Section 6.2 I compare the proposed predictive controller with similar
controllers from the literature, to justify some of the choices and identify
possible improvements. Section 6.3 I briefly discuss the requirements and
possible techniques for a data-based identification of the controller, while
Section 6.4 comments on possible adaptation strategies for the controller so
that it can be adapted to changing turbulence conditions during the orbit of
the tracked LEO satellite.
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6.1. Controller Description
This chapter discusses the predictive controller developed during this thesis: the
higher-order vector autoregressive Zernike LQG. The controller is based on an LQG
predictive controller with a high-order VAR predictive model. The controlled states
are the (pseudo-)open-loop turbulence at the telescope pupil projected on a Zernike
polynomial basis. This controller is an extension of the controller presented in
Whiteley et al. (1998a), Correia et al. (2014), and Correia et al. (2015), but with a
high-order vector autoregressive model, while those original works used a first-order
vector autoregressive model.
The predictive model in this controller is the same as in the predictability

assessment in Chapter 5. The controller uses the VAR model discussed in Section
5.1.8, which has similar performances to the MMSE solution even if they are not
equivalent; see the referred section for a more detailed discussion on the differences
between the two models. For the implementation of the predictive controller, the
MMSE predictor cannot be used, since it does not provide a stable process, a
requirement for the stability of the LQG controller; instead the similar VAR model
used.
The identification of the VAR model is very flexible and can be carried out

using different strategies, as originally discussed in Section 4.2.3. In this work,
the VAR model is computed from the spatio-temporal covariance matrices of the
turbulence, those are computed analytically as explained in Section 4.2.5.2. Section
6.3 will discuss alternative strategies for the identification of the controller, but the
development of those is beyond the scope of this thesis.
Such a predictive controller presents several advantages:

1. It uses the LQG framework, which is not only the optimal linear control
policy, but also a well known control method in adaptive optics.

2. The turbulence is modeled only at the pupil, which allows reducing the
computational load of the controller. This is possible because covariance
modeling is able to capture frozen flow shifting of different layers at the pupil
without explicit shifting of the layers.

3. The model can be identified in different ways. As a result, the controller will
be extended in the future.

4. The model can be analytic. Analytical update may be beneficial since allows
to compute the whole controller before the orbit. See Section 6.4. This
includes wind information and is therefore especially interesting for its use in
LEO satellite applications.

The rest of this section will introduce the structure of the controller and the
details of its implementation.
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6.1.1. State-Space Representation
This section details the state space representation of the predictive controller. The
controller structure is based on the predictive LQG controller as presented in
Section 4.3; the discussion in that section is extended here to incorporate details
specific to the implementation of the proposed controller.

Remark

The state space representation introduced here is the same used by other
predictive LQG controllers, where the state vector contains a vectorial repre-
sentation of the turbulence (i.e. zonal basis, modal basis, SH slopes, etc.),
different versions of this vector for different time steps, and (optionally but
not in this case) several layers of turbulence.

Controller states: The state vector is split into two sub-vectors: (1) The open-
loop turbulence states at different steps in time and (2) the past control commands.
The turbulence states vector represents the open-loop turbulent phase at the

telescope pupil projected on a Zernike polynomial basis: ϕtur. The number of
modes used by the controller is a design parameter that will be discussed later. The
state vector needs to contain the different time steps of ϕtur, since the state-space
model that will define the evolution of the system is an autoregressive process.
Without loss of generality, the equations presented here consider two time steps
saved, corresponding to a second-order autoregressive model; higher orders can be
implemented by extending the vector. The vector is defined as:

x1
k =

[
ϕtur
k

ϕtur
k−1

]
. (6.1)

The second state vector will act as a buffer keeping the last control commands as
a vector u. These commands are necessary to reconstruct the open-loop turbulence
projection onto the Zernike polynomials from closed-loop measurements. Since a
two-frame delay system is considered, the vector stores the last two commands sent
to the DM :

x2
k =

[
uk

uk−1

]
. (6.2)

The state model in Equations 4.35 and 4.36 can be rewritten as:

x1
k+1 = A1x1

k + Γvvk , (6.3)

x2
k+1 = A2x2

k +B2uk , (6.4)

yk = C1x1
k +C2x2

k +wk . (6.5)
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The concrete definition of the matrices A1, B1, B2, C1, C2, and Γv follows in
the following paragraphs.
Within the Kalman filter there exist two estimates of the x1

k vector, corresponding
to the update and prediction phases; those are, respectively:

x̂1
k|k =

[
ϕ̂tur
k|k

ϕ̂tur
k−1|k

]
, (6.6)

and

x̂1
k+1|k =

[
ϕ̂tur
k+1|k
ϕ̂tur
k|k

]
. (6.7)

The vector x2
k is not an estimate since the previous commands are known with

absolute certainty.

Measurement model and correction step: The Kalman filter within the LQG
needs a measurement model that connects the phase estimates from the vector
x̂k|k−1 to the measured slopes from vector yk. Additionally, it is necessary to
account for the fact that the phase states and their estimates correspond to the
open-loop phase, while the slope measurements correspond to the close-loop residual
phase; Equation 6.5 combines in the computation of the closed-loop turbulence
slope measurement the contribution of the open-loop turbulence, C1x1

k, and the
contribution of the DM figure, C2x2

k.
In the same way, Equation 4.52 is modified to account for the pseudo-open-loop

computation:

x̂1
k|k = x̂1

k|k−1 +Hk

(
yk −

(
C1x̂k|k−1 +C2x2

k

))
. (6.8)

The matrix C1 corresponds to the phase ϕ̂tur
k−1|k−1 as it would be seen by the

WFS :

C1 =
[
0 MWFS

]
, (6.9)

where the matrix MWFS captures the linear relationship between how each
component (e.g. Zernike polynomial) of the open-loop phase vector is seen by the
WFS in the slope space. Note the one-frame delay between the ϕ̂tur

k−1|k−1 phase and
its corresponding measurement yk.
The matrix C2 corresponds to the DM figure at the time where the measurement

was performed as seen by the WFS :

C2 =
[
0 −Mint

]
, (6.10)
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where the matrix Mint is the interaction matrix that captures the linear response
of theWFS to an actuator command. The minus sign corresponds to the subtraction
of the corrected phase from the open-loop phase to obtain the residual one: ϕres =
ϕtur−ϕcor. Note how the command selected from x2

k is uk−1, the command applied
in the previous frame k − 1 to generate the measured phase, ϕres

k−1. This command
was computed at frame k−2 using measurement yk−2 based on ϕres

k−3, corresponding
to a two-frame delay between measurement and correction.
It remains the question of the computation of the matrices MWFS and Mint. Both

matrices can be computed from computational models of the WFS and DM, also
known as synthetic matrices. This approach can be exact within computational
simulations since the model used can be the same as the one used to simulate
the system; however, it will lead to calibration errors when used in real systems
since the models will never fully match reality. The interaction matrix, Mint, can
be computed synthetically, calibrated from the instrument, or obtained with a
hybrid approach; the different methods offer different trade-offs (Oberti et al. 2006;
Heritier et al. 2018). The matrix MWFS is a sort of interaction matrix between the
Zernike polynomials and the wavefront sensor, so this matrix can only be computed
synthetically, leading to potential calibration errors.

Prediction step: The prediction step of the Kalman filter can be rewritten from
Equation 4.55 as:

x̂1
k+1|k = A1x̂1

k|k , (6.11)

where

A1 =

[
A1 A2

I 0

]
. (6.12)

The matrices A1 and A2 are the block matrices of a predictive autoregressive
model matrix as defined in Equation 4.3; further details of the model are given in
Section 6.1.3. The identity matrix I is used to shift the previous phase estimate
within the estate vector. The matrix Γv relates the process noise only to the first
element of x1

k+1 since it is the only one generated from the stochastic process:

Γv =

[
Ins

0

]
, (6.13)

where Ins is the identity matrix in Rns×ns .

Kalman gain computation: The Kalman gain is computed with the asymptotic
solution of the Riccati equation by propagating the estimation error covariance
matrices (Equations 4.54 and 4.56) and the Kalman gain (Equation 4.53) until
convergence is reached; see Section 4.3.3.3. This uses the covariance matrix of
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the slopes measurement noise Σw and the process noise covariance matrix Σv

computed as detailed in Section 4.2.4.2.

Remark

The use of the asymptotic Kalman gain is a common strategy in adaptive optics
since it leads to computational savings. This strategy is near optimal since
convergence is typically achieved after hundreds of iterations, corresponding
to some milliseconds during which the controller does not perform optimally.
This is usually not a problem, since turbulence is assumed to be stationary
during a much longer period, during the time the controller does not need
to be updated. In the case of LEO satellite tracking, the update of the
predictive controller (see Section 6.4) will happen more often, the use of the
non-stationary Kalman gain may be beneficial; especially in the case of optical
communications, where no bump in performance during the link is desired.

DM command computation: The final DM command is computed as the
projection of the predicted phase into the DM:

uk+1 = Γprojx̂k+1|k , (6.14)

where the projection matrix, Γproj, selects the predicted phase for the next step
and computes the DM command from it. The matrix is defined as:

Γproj =

[
−K
0

]
, (6.15)

where the minus sign corresponds to the negative feedback, i.e. the phase applied

is the opposite to the one estimated, and K =
(
N⊤N

)−1
N⊤, with N a matrix

relating the voltage commands to their application their influence of the DM
projected Zernike polynomials. This matrix can be obtained by a measurement
(for example using a high-resolution phase metrology interferometer) of the DM
influence functions on a zonal basis and then changing the basis to a Zernike
polynomial basis defined on the same grid of points.

6.1.2. Stability
In order for the LQG controller to be stable, the following conditions need to be
satisfied (Halevi 1994):

1. ΣV > 0,

2. (A,C) is detectable,

3. (A,Σ
1/2
V ) is stabilizable, and

129



6. Higher-Order VAR Zernike LQG
6.1. Controller Description

4. (A,B) is stabilizable.

These conditions imply the necessity of a stable predictive model A, which
implies: |eig(A)| < 1. Additionally, the computation of the ΣV matrix needs
also to ensure that it is positive-definite. In the case of VAR models, these two
conditions can be checked for the identified model.

Remark

The stability conditions stated here assume that the models used in the LQG
match with no deviation in the dynamics of the process being controlled,
when this is not true, the stability of the controller is not guaranteed (Luo
and Johnson 1993).

6.1.3. Predictive Model
The predictive model used in the controller is a second-order VAR model of the
open-loop turbulence projected on the Zernike polynomials.
The stability constraints of the LQG controller require a stable stochastic process

as a predictive model; this means that not any predictive model can be used, but
only one leading to a stable stochastic process. This is the reason why autoregressive
processes are a common choice in predictive controllers.

Remark

While the typical AO loop delay is of two frames, the VAR process prediction
is one step ahead at a time; the prediction two-step-ahead prediction is
achieved by the iteration of the predictive model (see Property 4.5).

The second order model chosen for the VAR is justified by the discussion in
Section 5.2.3, since, for the case of LEO tracking, it brings significant gains with
respect to first-order models; a higher order may lead to improved performance,
but those gains are deemed low compared to the increase in computational load
that increasing the state vector will entail.
The phase representation used for the controller is a Zernike modal basis, there

are two main reasons for this: (1) The spatio-temporal covariance matrices necessary
for the identification of the model can be computed analytically for this basis, and
(2) this way the comparison to other analytical tools such as the predictability
assessment method presented in Chapter 5 and other analytical tools are direct.
The analytical computation of the model is of great advantage, since, using wind
priors and a known turbulence profile, a predictive model can be computed for any
point of the LEO satellite trajectory. Nevertheless, the results of this thesis are
complementary to the controllers implemented in other bases; a comparison to the
zonal basis is given in Section 6.2.1.
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The baseline identification method for the controller is the one described in
Section 4.2.5.2. However, other possible identification methods are discussed in
Section 6.3.

Remark

Any other (stable) predictive model could be used. Possible variations of the
predictive model are the use of a different basis, such as slopes space, zonal
basis, or Fourier models; or a Zernike VAR model identified in a different
manner (see Section 6.3).

The number of modes considered in the predictive model, which will therefore
define the number of states used in the controller, is one of its main design
parameters; it is driven especially by three factors:

1. The number of modes to be corrected. All the modes to be corrected need
to be part of the Kalman filter; ultimately, the corrected phase space is the
projection of the estimated modes onto the DM space.

2. The number of modes necessary for obtaining good prediction performance.
As discussed in Section 5.2.4, to achieve near-optimal prediction performance
on a set of modes, it is necessary to consider higher-order modes in the
predictive model.

3. The number of modes needed to achieve a good phase reconstruction. The
presence of aliasing in the Shack-Hartmann slopes requires the estimation of
more modes to better reconstruct the lower order modes; with a sufficient
number of estimated modes the regularized phase reconstruction within the
Kalman filter (see Section 4.3.3.4) can reduce the effect of aliasing in the
phase reconstruction.

Further discussion on the required number of modes for the controller is given in
Section 7.3 based on the end-to-end simulation results for the controller.

6.2. Comparison to Other Methods
This section offers a review and comparison of predictive controllers that share
similarities with the predictive controller presented in this chapter. The methods
compared have in common that they all use the combination of LQG controller
and autoregressive models (scalar or vectorial) as controller structure.
This review is organized in the different possibilities to model turbulence evolution

as an autoregressive model. Most predictive models are based on the frozen flow
assumption, so they try to model the translation of the phase of each layer due to
the presence of frozen flow. This is achieved as a combination of a choice of modal

131



6. Higher-Order VAR Zernike LQG
6.2. Comparison to Other Methods

basis and a choice of autoregressive model structure. Three different methods are
discussed here:

1. Covariance-based translation: The encoding of the translation in the spatio-
temporal covariances that define the autoregressive model. This is the most
flexible method, allowing the phase to be represented in a zonal basis, any
modal basis, or even the Shack-Hartman WFS slopes space.

2. Explicit zonal representation translation: The phase is represented using a
zonal representation, phase translation is conducted by interpolation of zonal
values, and the autoregressive model is the matrix representation of such an
interpolation.

3. Explicit Fourier domain translation: The phase is represented as Fourier
modes, the phase translation is conducted in the Fourier domain, where
it corresponds to a phase shift of the Fourier modes coefficients, and the
autoregressive model is fitted from the dynamics associated to the temporal
evolution of the coefficients due to such a phase shift.

Each of these methods presents its own advantages and disadvantages, which
are briefly stated here from my point of view. While many criteria are possible to
weight those, this thesis defines the identification of the predictive model as the
main metric, both from analytical computations thanks to priors and from using a
data-based identification. The purpose of this section is not to provide a discussion
of the pros and cons of each method, but to establish links between the method
presented in this thesis and other methods in the literature.

6.2.1. Covariance-Based Translation
Translation representation method: The principle of this method has been
extensively discussed in Chapter 5. In brief, the method computes an autoregressive
mode using the spatio-temporal covariance matrices of the underlying process.
When the covariance matrices are computed analytically, the frozen flow assumption
can be used to compute the temporal statistics from the spatial ones, resulting in
implicit modeling of the frozen flow layer translation. When the covariances are
identified from data this method can capture both the frozen flow as well as other
kinds of temporal evolution such as mechanical vibrations and boiling turbulence.

Foundational work: Already the pioneering work of Anderson et al. (Anderson
1991; Paschall and Anderson 1993) identified a diagonal autoregressive model using
a Zernike modal basis and assuming frozen flow. They do not use autoregressive
models explicitly; instead, they fit shaping filters to the autocorrelation functions
between the modes, which are actually equivalent to a first-order autoregressive
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(Markovian) process. The model used to compute the autocorrelation functions ac-
counts for the wind speed and direction of each layer; however, the cross-correlations
between modes are not modeled, and only diagonal autoregressive predictive mod-
els are used. They claim that cross-correlation is still introduced at the process
covariance matrix, but this will only be used in the update step of the Kalman
filter, but not for prediction, but as it is shown in Section 7.3 this does not benefit
the prediction.

Equivalent methods: Several methods have used the identification of analytical
covariances using a zonal representation or a Zernike modal basis as this work does.
Whiteley et al. (1998a) proposed a predictive model similar to the one used in

this thesis, but for tip-tilt correction in the presence of moving targets. The model
uses an MMSE estimator to compute a prediction of the tip and tilt modes based
on the delayed measurement of these modes and higher-order Zernike polynomials;
the phase is modeled only at the pupil of the telescope. The temporal covariances
are computed in a fashion similar to the method described in Section 4.2.5.2, also
based on the frozen flow assumption and a known wind thanks to the angular
tracking speed and the distance to the target and also using only the phase at the
pupil of the telescope. This work did not incorporate the predictive model in a
controller, they only used the method to provide potential gains as in Chapter 5.
Gavel and Wiberg (2003) developed a similar idea but using a zonal basis.
Correia et al. (2014) proposed this method again under the name of spatio-angular

predictor and extended it to the prediction of the complete set of modes corrected
by a tomographic system for astronomy for its use within a LQG controller. The
method benefited of the analytical computation of the spatio-temporal covariances
from priors to compute the covariances at the correction direction, where they
cannot be directly measured. The two main differences with respect to this method
are that (1) this thesis proposes to use higher order VAR models, since, at least
for LEO satellite applications, this shows to provide a significant performance
improvement and (2) the application of the method to single mode fiber coupling.
The same work was presented in Correia et al. (2015) and Jackson et al. (2015)

using a zonal basis, equivalent to Gavel and Wiberg (2003); Prengère et al. (2020)
extended this method to a VAR(2) model and showed performance gains with
respect to the Markovian assumption originally proposed by Gavel and Wiberg
(2003). Previously, Piatrou and Roggemann (2007) had implemented the zonal
model of Gavel and Wiberg (2003) as an LQG in a similar manner as the method
of Correia et al. (2015) and Prengère et al. (2020) but using the modeling phase of
each layer separately. Historically, Correia et at. introduced the prediction only at
the pupil, since this method in the context of multi object adaptive optics (MOAO)
systems; while the previous works (Piatrou and Roggemann 2007) were applied to
multi conjugated adaptive optics (MCAO), where the estimation of each layer is
necessary and not an inconvenient. Finally, the predictive version Cranney et al.
(2020) of the learn & apply (L&A) by Vidal et al. (2010) is equivalent to pupil
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plane covariance modeling but using slopes.

Data-based methods: All the previous methods used analytical computations;
other works have implemented similar prediction algorithms based on the iden-
tification of VAR modes from data. These models have favored the use of slope
space models, since this is the measurement space of the WFS and does require
less calibrations (Hinnen et al. 2007; Doelman et al. 2011); the work of Kelemu
et al. (2022) is highlighted here since it is applied to LEO downlinks and it suggest
the use of a VAR(2) model. Data-based method using modal based also exist in
the literature: Sinquin et al. (2020) uses a Zernike modal basis to allow prediction
of low orders only and Guyon and Males (2017) uses data-based methods that
generate an optimal modal basis for prediction with a VAR(1) model.

Boiling turbulence methods: Some models have used boiling models that only
use the wind norm as AR(1) Le Roux et al. (2003) and AR(2) Petit et al. (2008),
including laboratory Sivo et al. (2012) and on-sky Sivo et al. (2014).

Choice of phase representation: The bibliographical review in this section
has shown that a similar method to that of this thesis has also been developed by
Prengère et al. (2020) and Kelemu et al. (2022). A thorough comparison of those
two methods with respect to the one presented in this thesis would be of great
scientific interest, but it was not possible to conduct it during this thesis due to
time constraints. Nevertheless, some remarks are possible:

– The predictive controller presented in this chapter uses a Zernike polynomial
representation, an equivalent approach to this controller has been already
presented in a zonal basis by Prengère et al. (2020). A possible question to
be considered is whether one of both options is more convenient.

– In general and assuming a similar spatial frequency content, the Zernike and
the zonal bases are equivalent; since none of them account for the temporal
dynamics in their definition, they should not have better performance in terms
of prediction, as it could be the case of empirical orthogonal functions (EOF )
(Guyon and Males 2017).

– The zonal basis offers some advantages since it is not defined over a circular
pupil, but only over the points of interest; this is not the case for the Zernike
modal basis, since they are defined over a circle. Even if annular Zernike
polynomials exist, they cannot benefit from the analytical computation of
their spatio-temporal covariances. This may be a problem for the Zernike
polynomials in the presence of telescope obscuration since it will need to
estimate the phase at points where no direct measurements are available. On
the other hand, the use of a modal basis is helpful if the predictive model is
applied only to a subset of modes Sinquin et al. (2020).
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– As already mentioned, the use of the slope space is particularly interesting for
data-based methods, since this is the native space of the WFS and requires
fewer calibrations. Nevertheless, in the absence of phase reconstruction, such
a method suffers from aliasing present in the slopes. It is still necessary to
thoroughly study the behavior of aliasing in slope-based predictive controllers.

– Compared to zonal and modal bases with equivalent frequency content, the
slopes space needs roughly twice the number of states.

6.2.2. Explicit Zonal Representation Translation
Using a zonal representation of the phase at one layer, it is possible to predict the
evolution of the phase by shifting this layer in the direction of the layer velocity by
an increment (∆x,∆y) = (−Vx∆t,−Vy∆t). For a phase φl(xi,yi, k), corresponding
to the phase of layer l sampled at coordinates (xi,yi) at time k, the future phase
can be computed as:

φl(xi,yi, k + 1) = φl(xi +∆x,yi +∆y, k) , (6.16)

where the desired phase points are computed by bi-linear interpolation of the
measured phase grid.
Since only the phase within the pupil is known, the points outside the pupil

cannot be interpolated. This means that the new crescent of turbulence introduced
in a circular pupil cannot be predicted in this manner. Different ways of dealing
with these problems are possible, from assuming that the phase outside the pupil is
zero or periodic, to trying to estimate the phase outside the pupil to then perform
the shifting (Juvenal et al. 2015b; Cranney et al. 2018b; Prengère et al. 2020).
Bi-linear interpolation can be computed as a convolution operation, and convolu-

tion operations can be optimized using Fourier transforms. As a result, under the
assumption of this kind of evolution, it is possible to use optimized by algorithms
that use Fourier transforms for faster computations. Some works have used this
structure to apply optimized versions of the LQG controller such as the discrete
Kalman filter (DKF ), an optimization of the Kalman filter that takes advantage of
the structure of the spatio-temporal evolution of turbulence to reduce the compu-
tational load to compute an approximation of the Kalman gain matrix based on
Fourier transform computations. Note, Fourier transforms are used here for a more
efficient computation of the controller, not to use a Fourier domain control. Even
if the shifting operation is applied by layer, the resulting evolution model can be
expressed for the phase on the pupil plane only. This method was first suggested
by Massioni et al. (2011), initially for turbulence in the pupil plane and extended
by Gilles et al. (2013) in a multilayer estimation approach for tomographic control
applications.
Under the assumption of the shift-invariant transform, the spatio-temporal

covariance matrices of the zonal representation of the phase also have a particular
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structure, known as block Toeplitz with Toeplitz block (BTTB). Cranney et al.
(2017) suggested a method to identify the spatio-temporal covariance matrices
required to compute a first-order VAR model with constraints on them so that the
resulting model can be used within the DFK of Massioni et al. (2011). The method
predicts the phase at the pupil and does not require knowledge of turbulence or
wind profiles. The same structure of the spatio-temporal covariance matrices has
been used to compute more efficient tomographic reconstructors (Ono et al. 2018).
The method was extended in Cranney et al. (2018a) to constrain the identification
to guarantee the stability of the identified model and in Cranney et al. (2018b) to
deal with the crescent that cannot be modeled by shifting.
The motivation for this method has been to reduce the computational needs of

40m class telescopes in tomographic settings. The complexity of the methods is
not justified for the systems considered in the applications of this thesis.
A different approach by Juvénal et al. (2016) uses an explicit shift operation on

a Zernike modal basis by zonal sampling of the basis. By doing this, the proposed
method can use the traditional boiling turbulence methods on the Zernike basis
plus the explicit effect of shifting due to frozen flow. The disadvantage of this
method is the crescent problem and the need to model each layer independently,
which increases the computational cost of the controller.

6.2.3. Explicit Fourier Domain Translation
Phase shifting can be modeled in the Fourier domain with two main advantages.
Additionally, the Fourier domain offers a great advantage from a control system
point of view, since the modes of the Fourier basis are spatially and temporally
independent, allowing the design of a separate controller for each of the modes.
A Fourier modal basis for the representation of phase can be computed as the

two-dimensional discrete Fourier transform of the phase sampled on a (N × N)
points grid with sampling distance d corresponding to the DM sampling:

Φ(u, v, k) = F{φ(x, y, k)} =
N−1∑
u=0

N−1∑
v=0

φ(x, y, k)e−2πi(xu+yv)/N , (6.17)

where Φ(u, v, k) is the coefficient associated with the mode with the pair of spatial
frequencies (u, v) at a discrete time step k, and F defines the two-dimensional
discrete Fourier transform. The Fourier coefficients can be obtained from Shack-
Hartmann slopes measurements thanks to a Fourier transform phase reconstructor
Poyneer et al. (2002).
The translation of the mode is given by a phase shift in the Fourier domain for

each of the Fourier coefficients:

Φ(u, v, k + 1) = Φ(k, l, k)e2πi(
∆x
d
l+

∆y
d
k) . (6.18)

The resulting phase can be obtained by computing the inverse Fourier transform:
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φ(x, y, k) = F−1{Φ(u, v, k)} =
1

N2

N−1∑
k=0

N−1∑
l=0

Φ(u, v, k)e2πi(xu+yv)/N , (6.19)

where F−1 defines the two-dimensional discrete inverse Fourier transform.
The predictive Fourier control (PFC ) method proposed by Poyneer et al. (2007)

combines the use of shifting in the Fourier domain and an LQG controller to design
a predictive controller for adaptive optics under frozen flow. When considering a
unique layer of turbulence, the temporal PSD of the Fourier coefficient will have a
unique peak at a spatial frequency:

ν = −(uVx + vVy)

Nd
. (6.20)

An AR(1) model can be fit to the temporal PSD of the layer to identify a
predictive model; this identification uses the peak of the PSD and its power
level to identify the model without any other information than the close-loop
measurements from a Fourier domain phase reconstructor. The details of the peak
finding algorithm when turbulence is composed of several layers can be found
in Poyneer et al. (2007); Poyneer et al. (2023) updated the algorithm to a new
state space formulation and demonstrated this method in a laboratory emulation.
Since the Fourier modes (and the layers) are decorrelated spatially and temporally,
an LQG controller can be designed for each layer and each mode, reducing the
computational cost of the controller.
The use of this method is more suitable for AO systems that already use Fourier

methods for phase reconstruction, since it requires the computation of the Fourier
transform of the data. Fowler et al. (2022) pointed problems with the identification
of the method in the case of continuous wind profiles, but this can be circumvented
if the wind data are known a priori. Additionally, it is not clear to the author how
this method deals with the crescent problem in the shifting.

6.3. Data-Based Identification
This section provides suggestions on the data-based identification of the controller
proposed in this chapter. Implementing a data-based identification for the controller
is beyond the scope of this thesis; nevertheless, it is useful to relate the findings of
this thesis to a potential data-based identification of the controller.

6.3.1. Identification of Spatio-Temporal Covariance Matrices
The main strategy suggested here is to rely on the closed-loop measurements of the
Shack-Hartmann for the identification of the spatio-temporal covariance matrices
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necessary to compute the predictive model while the AO is in operation. Such a
method would benefit from all the developments presented in this thesis, since the
structure of the controller would be the same; the only difference would be that
the data-based computation of the spatio-temporal covariance matrices instead of
their analytical computation.
In this thesis, the baseline identification method is the computation of those

covariance matrices using analytical formulas; this assumes the prior knowledge of
the atmospheric turbulence C2

n profile, the natural wind profile, and the apparent
wind profile. Thus, this thesis assumes that those priors are known before computing
the model and relies on external metrology sources for the identification of the
C2
n profile and, optionally, the natural wind profile, although the latter can be

neglected in some cases (see Section 5.2.7); whereas the apparent wind can be
computed from a known satellite orbit.
Even if the model presented here can represent the wind explicitly, the same

model can be identified from data without explicit modeling of the layer shifting,
this was proved in Section Section 5.2.6, where the spatio-temporal covariance
matrices necessary to compute the VAR model were computed using the sample
cross-covariance.

Data-based Identification Advantages

The advantage of a data-based identification of the spatio-temporal covariances is
that in this case the resulting model will capture not only the frozen flow behavior,
but also other disturbances such as dome seeing, boiling turbulence, or mechanical
vibrations. The use of the closed-loop WFS measurements as metrology source for
the data-based identification also enables the update of the predictive model along
the trajectory of the LEO satellite.

Measurement Concept

The identification method proposed for the predictive controller model developed
in this thesis is the use of the spatio-temporal covariance matrices for the identi-
fication of a vector autoregressive process using the Yule-Walker equations; the
method provides two advantages for the identification of the model: (1) Allows
to compute the VAR model from its spatio-temporal covariance matrices, which
can be computed analytically or measured from data; (2) the resulting model is
guaranteed to be stable and does not require stability constraints as those searched
in Cranney et al. (2018a).
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Remark

This concept has already been tested by Kelemu et al. (2022) using a controller
based on a VAR(2) model in the slopes space with very promising results
for its application in predictive control. The concept is very interesting and
should be emulated. However, the published results, although targeted for
LEO downlinks use horizontal links simulations and their VAR(2) vs. VAR(1)
tests do not allow to see the expected improvements in the case of LEO
downlinks. They use an oversampled Shack-Hartmann to reduce the aliasing
effect. Overall, this work is very interesting and should be merged with the
findings of this thesis towards a future controller.

Requirements for the Data-Based Identification

The possible requirements for such an identification method are summarized below:

1. It shall use the Shack-Hartmann closed-loop measurements as primary data,
with the satellite downlink as beacon.

2. It shall be robust to the measurement noise present in the Shack-Hartmann
data.

3. It shall also provide a way to identify the statistics of the higher-order models
necessary to reduce the effect of aliasing in the phase reconstruction within
the associated controller.

4. It shall be recursive to enable the online update of the predictive model during
the satellite trajectory.

The remainder of this section discusses how these requirements are satisfied.

Comparison to Tomographic Methods

As discussed in Chapter 5, the problems of temporal prediction and tomographic
reconstruction are very similar in their nature and techniques. Most tomographic
reconstructors are based on an MMSE (Wallner 1983; Whiteley et al. 1998b; Fusco
et al. 2001) reconstructor that uses the covariances between the phases at the
measurement directions and the correction direction; this is similar to the predictive
modes such as the one discussed in this thesis, which is also based on such a MMSE
solution but in this case applied to the covariances between the past phases and
the future.
Nevertheless, there is an important difference between these two cases: For

temporal prediction for the LEO satellite downlink, it is possible to measure both
the past phases and the future phases (just with a delay) and compute the necessary
covariance matrices; while tomographic reconstructors never measure the phase in
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the correction direction. Instead, tomographic reconstructions need to identify the
turbulence profile and compute the covariance matrices using analytical models.
The identification of the profile can use an external metrology source or identify the
profile from the measurements of the multiple WFSs available in the tomographic
AO system.

Remark

The temporal covariance matrices can be measured in the case of the LEO
downlink correction, since the corrected direction is the same as the measured
direction; this is not the case in the tomographic cases Correia et al. (2014,
2015); Cranney et al. (2020), the temporal covariance matrices cannot be
measured, as no measurement is available in the corrected direction.

Remark

The case of the LEO and GEO satellite uplinks are equivalent even closer
to tomographic problems, since the measurement and correction directions
are different. In this case, the covariance matrices can only be computed
analytically and an identification method based on the downlink would be
very beneficial.
This difference is noteworthy because the predictive controller can be

identified directly from data by means of a sample covariance estimator.

Pitfalls of Naı̈ve Covariance Matrix Estimation

The identification of the predictive model can be based on the computation of the
necessary covariance matrices from data using the sample covariance estimator in
Section 4.2.5.3; nevertheless, two possible problems may arise from such a näıve
estimation:

1. The covariance estimator shall converge fast with respect to the change in
turbulence conditions.

2. To reduce the effect of aliasing, the predictive controller needs the statistics
of the modes of higher order than those that can be properly measured by
the WFS ; if this modes cannot be properly measured by the WFS it will be
difficult to identify their statistics from these measurements.
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Remark

The need for this convergence has not been identified yet; in the tests carried
out during this thesis, the identification of the matrices was possible using
between 5000 and 10000 time steps, corresponding to around 3 s and 6 s of
data recording at fsamp = 1500Hz, respectively. Nevertheless, within the
simulation, the phase was projected onto a Zernike polynomial basis without
any measurement noise; while in a instrumental implementation a Shack-
Hartmann wavefront sensor and a phase reconstruction step are needed. As a
result, new problems may arise during the estimation of covariance matrices
that can be mitigated with the techniques discussed in this section.

6.3.2. Learn & Apply Method
The learn & apply (L&A) method suggested by Vidal et al. (2010) is a very good
source as a baseline of the identification strategy, since it deals with problems
similar to those discussed above but for the case of tomographic reconstructors.
The L&A is a method for identifying a tomographic reconstructor using data from
several WFSs. This method is, in fact, very close to the predictive controller used in
this thesis, since it only identifies the phase in the pupil plane; in fact, it can be seen
as a specific implementation of the method of Correia et al. (2014) but, instead of
using the covariances between phase vectors reconstructed on a Zernike polynomial
basis, it uses the slopes measurements directly, avoiding additional calibration steps.
In the following I present the method and the necessary extensions that it would
require for its use for LEO satellite applications.
The method requires the covariances between the measurement and the correction

direction, with the advantage that in this case it is only required at the pupil plane
and not per layer as most tomographic reconstructions. As a result, at least part of
these covariance matrices can be directly measured: the measurement-measurement
covariances between different measurement directions can be estimated from the
data; only the measurement-correction covariances cannot because the correction
direction is not measured.
The main idea of the L&A method is to use a model of the covariance matrices

that depends on different system parameters such as: the geometric configuration
of the WFSs, possibly including the registration parameters between them; the
altitude of each turbulence layer; the strength of each layer; etc. The measurement-
measurement covariance matrices can be computed from data and the model can
be fitted to them to obtain the parameters the parameters necessary for the rest of
the covariances.

Remark

The Learn & Apply measurements are open-loop, while their application to
the LEO tracking case would require pseudo-open-loop measurements.
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The method is therefore divided into two steps:

1. Learn: Compute the covariance matrices from the data and fit a parametric
model of the covariances to the measured covariance matrices.

2. Apply : Compute the covariance matrices from the fitted parameters, including
the correction direction (not measured) thanks to the retrieved profile.

Thanks to these, four different problems are addressed:

1. The identification of the parameters that link the measurements between
different wavefront sensors.

2. The acceleration of the convergence of the measurement.

3. The retrieval of the turbulence profile.

4. The computation of the covariances that cannot be measured directly thanks
to the retrieved parameters (profile and WFSs registration parameters).

The first is not relevant for the case of LEO satellite downlink since it does not
have several WFSs. The second will be discussed in Section 6.3.2. The third could
be used in the case of the LEO satellite downlink to improve convergence or to
compute higher order modes that cannot be estimated with the WFS measurements
to reduce aliasing. Finally, the fourth is not necessary in the case of the LEO
downlink, but it could be helpful for the GEO and LEO uplinks due to the presence
of point ahead angle in the precompensation.

Remark

Cranney et al. (2020) has also extended the LA method to prediction. In
this case, the article uses the fitted spatial model to compute the temporal
model too, since in this case it cannot measure the temporal correlations at
the direction of correction, as it was also the case for Correia et al. (2014,
2015). In the LEO satellite downlink case the temporal covariance matrices
can be measured directly, so there is no need for a model; however, the model
could be used to improve the convergence or to compute higher order modes
for aliasing.

Improvement of Convergence

The acceleration of convergence is achieved thanks to the fitting of the model
with an initial guess of the parameters, which helps by adding constraints based
on physical priors to the covariance matrices and reduces the required number
of samples for the estimation by imposing a structure on the model; the work
of Martin et al. (2012) extended the study of the convergence of the covariance
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matrix estimation and proposed an new model that allows faster fitting to improve
convergence.
The need of this convergence for the case of temporal prediction needs to be

studied; if necessary, it could be used, but to do this, it is necessary to make some
modifications that will be discussed in Section 6.3.2.
Two other options are possible to improve the convergence of the of the covariance

estimation without a model: (1) The use of a recursive covariance estimation, for
example, using recursive least squares (van Kooten et al. 2019; Haffert et al. 2021;
van Kooten et al. 2022), can also help to reduce this convergence issue without
the need of fitting; (2) since the matrix structure in terms of non-zero entries and
the order of magnitude of the entries are known, another option would be to use
matrix tapering (Furrer et al. 2006; Ollila and Breloy 2021). These options are
more interesting and should be investigated further since they would not require
any optimization step and would allow the update of the model, see Section 6.4.

Profile Identification from LEO Downlink Beacon

The Learn & Apply method requires a modification to be used in with the mea-
surement geometry of prediction in LEO satellite applications. The LA is able to
retrieve the profile based on the measurement of the pupil plane covariances thanks
to the fact that it uses several WFS measurements from different angles, which
allows one to compute discriminate the layer heights by triangulation. Similar
methods are also used for turbulence metrology, such as slope detection and ranging
(SLODAR) (Wilson 2002; Butterley et al. 2006; Guesalaga et al. 2014); see Martin
et al. (2016) for a comparison of the LA and those methods.
The work of Laidlaw et al. (Laidlaw et al. 2020, 2022) have worked on extending

the models of SLODAR with the information of the wind layers. At the moment
the method can still not discriminate layers in altitude, but only the strength and
velocity of each layer, for the case of LEO tacking the altitude of the layers could be
computed from assuming that only apparent wind is present, leading to complete
retrieval of the profile using an LA like method.

Remark

Other single-source profile retrieval are possible (Habib et al. 2006; Védrenne
et al. 2007; Tokovinin and Kornilov 2007); they use scintillation measurements
and the associated correlations to discriminate the layer height. However,
these methods require additional calibrations to measure scintillation, a
significant increase of the number of variables in the estimation problem, and
are limited to weak disturbances. However, these methodologies should still be
taken into account, as they provide strong synergies with the work of Lognoné
et al. (2022) for the estimation of the point-ahead angle anisoplanatism for
GEO feeder links overcompensation by also using scintillation measurements
in an MMSE method.
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Identification of Higher Order Models

In order to reduce the effect of aliasing in the controller, the predictive controller
requires an increase of the modes considered. This allows the phase reconstruction
within the Kalman filter to better estimate the phase from aliased measurements.
Section 7.3 will provide a detailed discussion on the effect of aliasing in the predictive
controller and possible remedies.
When the predictive controller is identified from an analytical model, it is possible

to compute as many modes as necessary. However, if the predictive controller is to
be identified from WFS data, the identification of the higher order modes that are
measurable but biased by aliasing will be challenging.
This is a challenge that still requires further optimizations; here, three solutions

are envisioned, although not further investigated within this thesis:

1. Reconstruct more modes using an MAP phase reconstructor based on the
theoretical spatial covariance matrix, which only requires r0 but not the
profile.

2. Use the fitted atmospheric profile from the L&A to compute the covariances
analytically.

3. Use an over sampled Shack-Hartmann WFS to reduce aliasing. In this case
there is no need to estimate more modes, only the modes to be corrected
are estimated, but now they are not aliased. This could be done in optical
communications case since there is more flux available; however, it comes
with an additional computational cost, since it will increase the number of
pixels in the SH detector, as well as the number of slopes to be processed.

6.3.3. Other Identification Methods
Another option for the data-based identification of the predictive model is to use
general subspace identification methods (Chiuso et al. 2007) on modes (Sinquin
et al. 2020), zonal basis, or slopes, that identify a state-space model from the
closed-loop measurements.
The methods based on principal component analysis (PCA) can produce data-

based identification of VAR models on an orthogonal modal basis that is optimized
for the turbulence spatial statistics, in the case of PCA (Beghi et al. 2007), or
in the spatio-temporal ones, in the case of dynamic mode decomposition (DMD)
(Shaffer et al. 2021) and its related method the empirical orthogonal functions
(EOF ) (Guyon and Males 2017). It should be noted that if DMD methods are
used, their higher order version (Le Clainche and Vega 2017) would lead to the
same performance improvements observed with the VAR models. This method
can lead to predictive models with an optimized number of modes, but since the
modes depend on the turbulence statistics, they will need to be updated with the
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adaptation of the controller, which adds additional complexity. Finally, the lack of
physical constraints on the identification leads to slower convergence of the model
identification.

6.4. Model Update and Adaptation
In LEO satellite applications, satellite tracking implies a fast change in the line
of sight. Consequently, predictive models, which are specific to the turbulence
conditions, must be frequently updated to maintain their performance. A com-
prehensive examination of predictive controller adaptation is beyond this thesis’s
scope, though some insights are provided below.
Two different model identification philosophies are possible:

1. Use the model identification based on analytical computations to precompute
the controller model.

2. Identify the predictive model recursively from data.

In both cases, two different controller update strategies are suggested:

1. Update the model at every time step within the Kalman filter; this leads to a
smooth trajectory since the variation of the model is not very big.

2. Update the model less frequently and use the method by Raynaud et al. (2016)
to ensure a bumpless switching between controllers.

6.4.1. Analytical Model Update
The main advantage of the identification method proposed in this thesis is that
the predictive model and the Kalman filter can be precomputed for the entire orbit
before satellite tracking starts. Assuming that the turbulence profile (and possibly
the natural wind profile) is available from another metrology source, the profile can
be measured prior to the satellite tracking and extrapolated to all elevations from
which the satellite will be observed by projecting it. The apparent wind component
can be computed from the knowledge of the satellite.

6.4.2. Data-Based Recursive Model Update
As discussed in Section 6.3 the predictive method necessary for the controller can
be computed from its covariance matrices. These matrices could be estimated
recursively and used to compute a new predictive model at each time step after
their update. This idea has been applied by van Kooten et al. (2019, 2020,
2022) to compute an MMSE predictor from covariance matrices computed with a
recursive sample covariance estimator. The recursive update of the inverse of the
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measurement-measurement covariance matrix provides computational savings. A
forgetting factor is included to account for the change in turbulence conditions.
Alternatively, a recursive identification of the VAR model without the estimation

of the spatio-temporal covariance matrices could be done. Haffert et al. (2021)
suggested a data-based VAR identification method that uses recursive least squares
instead of the Yule-Walker equations with estimated covariance matrices.

∗ ∗ ∗

Summary

This chapter presented the predictive controller developed during this thesis,
as well as possible improvements and extensions to it. The controller uses
as a predictive model a Zernike polynomial phase representation and a VAR
process identified from the analytical computation of the turbulence spatio-
temporal covariance matrices. A second order VAR process is used, since
it leads to an important increase with respect to the first order as seen in
Section 5.2.3.
Compared to other methods, we find that the covariance matrices have

several advantages. When identified from data, they can capture all types of
turbulence, not only turbulence frozen flow. They can also benefit from the
computation analytical formulas for their computation or, in the case of their
data-based identification, from many robust covariance estimation methods
from the literature, including all the methods in tomographic adaptive optics
and adaptive optics turbulence profiling.
It has been highlighted that the analytical evaluation of those presents

several advantages, but that their data-based identification should also be
further investigated. It has also been seen how, in the case of LEO downlink,
the spatio-temporal covariance matrices can be measured directly by the WFS.
Finally, the spatio-temporal covariance matrices can be estimated recursively
to allow the adaptation of the controller to adapt to the change in turbulence
conditions during the orbit of the satellite.
The next chapter provides end-to-end simulations of the controller and

studies the gains in performance associated with its use.
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Introduction

This chapter reports the end-to-end simulation results for the predictive
controller proposed in this thesis. First, the performance of the controller is
evaluated in terms of residual variance and compared to the AO error budget
as a cross-validation of the simulation and the budgets; the results are also
compared to the predictability assessment in Chapter 5 to evaluate if the
expected gains due to prediction are achieved. Second, the performance is
evaluated in terms of the metrics relevant for each application: fiber coupling
for communications and the Strehl ratio for satellite observation. The end-
to-end simulations also serve to study the impact of phase reconstruction
and aliasing, which are not properly accounted for in the analytical modeling
presented so far.

7.1. Simulation Methodology
End-to-end simulations are crucial in the development of controllers for adaptive
optics systems. They provide a realistic model of various factors that could affect
the controller during operation, including phenomena like aliasing in the wavefront
sensor measurements. The simulations provide access to data that may be difficult
to obtain in a lab environment, e.g. perfect measurement of phase, thereby making
it easier to study the system’s performance. The outcomes of these simulations
serve as a performance model to validate the actual implementation of controllers
in a real-world adaptive optics system.
The controller proposed in Chapter 6 is tested in the present chapter by means

of end-to-end simulations. Section 7.1.1 provides an overview of the simulation
strategy for the predictive controller evaluation. The details of the end-to-end
simulation implementation are given in Section 7.1.2. The results for the simulations
are reported and analyzed in the rest of this chapter.

7.1.1. Simulation Strategy
The first simulation of the controller employs a simplified AO system model, with
results detailed in Section 7.2. This simulation is designed for better comparison
with the MMSE predictability assessment. It uses an ideal wavefront sensor that
directly measures Zernike polynomials, thereby eliminating issues related to modal
reconstruction from Shack-Hartmann WFS slopes. The deformable mirror in the
simulation is also ideal, perfectly fitting the Zernike polynomials without error.
In Section 7.3, the introduction of a realistic Shack-Hartmann wavefront sensor

into the simulations shows that aliasing in slope measurements significantly degrades
the controller performance. This section delves into the origins of this problem and
proposes different solutions to address it.
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After mitigating the effect of aliasing in the controller, the results of the end-to-
end simulations for the controller applied to the different AO system configurations
defined in Chapter 3 are analyzed in terms of residual phase variance. These results
are compared with the theoretical expectations from the AO error budgets and
the turbulence predictability assessment presented in Chapter 5. This analysis
is complemented by Section 7.5, where the same simulations are carried out at a
lower AO loop frequency to evaluate the feasibility of reducing system requirements
using predictive control.
Finally, Section 7.6 and Section 7.7 report the analysis of the coupling performance

and the Strehl ratio, respectively, for the end-to-end simulations carried out.

7.1.2. Simulations Implementation
The present section gives a brief description of the implementation of the end-to-end
simulations reported in this chapter.

Operating point: In order to reduce the number of simulations conducted, all
the simulations presented in this chapter correspond to an elevation of 30◦, unless
stated otherwise. A complete assessment of the controller performance across a
LEO orbit would require simulations at all possible elevations. The aim of this
thesis is not to provide a detailed analysis of the performance of any controller
but to study the behavior of the controllers at the relevant regimes and compare
those to the analytical performance assessments that allow the extrapolation of
performances to other elevations.
An elevation of 30◦ is chosen since it is the case where the temporal error is the

highest without facing too strong turbulence (see Figure 3.11), where the strong
perturbation regime will pose additional challenges to the AO loop. Within this
thesis, the performance of the predictive controller is only evaluated in the weak
perturbation regime; an extension of the controller to the strong perturbation
regime, especially the work under strong scintillation conditions, is a natural
continuation of the work in this thesis.

Turbulence distorted electromagnetic field at the pupil: The atmosphere
is simulated as a profile of phase screens (around 40 layers) that simulate the
atmospheric layers. The phase screens are generated using the method of extrusion
of phase screens by Assémat et al. (2006) and Fried and Clark (2008). A geometric
propagation of the electric field from each of the layers to the pupil is used;
no diffractive effects in phase or amplitude (i.e. scintillation) are part of the
simulations. The use of geometric phase propagation reduced the computation time
of the simulations and also enabled the analysis of residual phase without having
to deal with phase unwrapping. This is also a common choice for the simulation of
AO controllers (Correia et al. 2015; Prengére et al. 2020).
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Wavefront sensor model: A geometric Shack-Hartmann WFS model is used.
The model computes the slopes of the phase by computing the average phase
difference between the edges of each subpupil; as a result, this model only accounts
for the effect of phase in the Shack-Hartmann WFS and neglects scintillation.
The simplified simulations presented in 7.2 use an ideal wavefront sensor that can
directly measure Zernike modes; this is implemented as a direct projection of the
turbulent phase at the telescope pupil onto the Zernike modes considered.

Measurement SNR levels: In order to test the controller at different measure-
ment noise levels, the SNR is defined using Equation 3.17. For the geometric SH
model, the measurement noise is computed in the slopes space, in units of pixels
squared and added to the slopes measurements as a zero-mean Gaussian random
variable with the variance computed using the formula provided. For the case
of the ideal WFS, the noise per Zernike coefficient is computed using the noise
propagation formulas from Rigaut and Gendron (1992).

pyGAOS simulation tool: All end-to-end adaptive optics simulations were
performed using the Python geometric adaptive optics simulator (pyGAOS ); a tool I
developed this tool as part of my thesis. Its core is a Python implementation of many
different IDL codes by ONERA that have been reorganized and extended for the
simulations of this thesis. All the functionalities are wrapped in an object-oriented
architecture that allows the parametrization of simulations and the extension of
the simulator, especially for the development of new control solutions. Despite its
name, pyGAOS can also work with complex field inputs, for example, coming from
the TURANDOT optical propagation tool.

Controllers: The pyGAOS simulator is able to run an arbitrary number of
controllers for the same end-to-end simulation. All controllers see the same open-
loop turbulence and have the same DM and WFS models. At every iteration
of the simulation loop, the controller applies its corrected phase and measures
the residual phase, then runs a routine to compute the next command based on
the measurement and the data stored in the internal buffers of the controller.
This common structure allows the implementation of new controllers and their
comparison to others.

Integral action controller: The simulations presented in this chapter will use
a scalar-optimized integrator as a comparison to the predictive controller. The
scalar optimization is not the ultimate performance that could be achieved with an
integral action controller, since it would be possible to use modal optimization, but
it provides a sufficient benchmark. In any case, the integral action controller should
have much lower performance than the predictive controller, so the comparison
of the two is deemed enough to illustrate the two possible regimes in the system
performance: with and without predictive control.
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Residual phase variance: The results of the end-to-end simulations for the AO
controllers are first reported in terms of their phase variance. This allows a better
comparison of the results to the AO budgets and other theoretical predictions such
as the predictability assessment from Chapter 5.

Additional performance metrics: Apart from the analysis of the residual phase
variances, the analysis of the end-to-end simulations in this chapter will focus on
two performance metrics, one per application considered: (1) The coupling into an
optical fiber and the depth and frequency of fadings (see Section 3.3.2.1), for the
case of optical communications; and (2) the Strehl ratio (see Section 3.3.1.2), for
the satellite observation application.

7.2. Ideal Wavefront Sensor and Deformable Mirror
We first report and analyze the results of the simulations of the controller using
simplified models for the wavefront sensor and deformable mirror, which can
measure and correct, respectively, a given set of Zernike polynomials.
A Shack-Hartmann wavefront sensor measures local wavefront slopes, necessitat-

ing modal reconstruction to obtain wavefronts represented in a Zernike polynomial
basis (see Section 2.4.5). Modal reconstruction introduces errors, including those
stemming from poorly observed modes, numerical computations, measurement
noise in the WFS, and aliasing. Similarly, deformable mirror influence functions
cannot perfectly match the shape of Zernike polynomials. Initially, we avoid these
errors to focus on the comparison of the performance of the predictive controller
with respect to the predictability assessment in Chapter 5; since the predictive
model used for both the controller and the predictability assessment is the same,
the comparison is direct.

Remark

The results of similar simulations were presented at the IEEE International
Conference on Space Optical Systems and Applications (ICSOS) 2022 work-
shop as a talk without proceeding and at the SPIE Astronomical Telescopes
+ Instrumentation 2022 conference as a talk with proceeding Robles et al.
(2022).

Despite its inherent limitations, simulating an idealized system holds value in the
development and validation of the predictive controller’s performance for various
purposes:

– To verify the implementation of the LQG controller.

– To compare the results of the simulations with the AO error budget.
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– To compare the results of the simulations with the MMSE predictability
assessment presented in Chapter 5.1.

7.2.1. Comparison with the MMSE Predictability Assessment
Table 7.1 reports the results of the simulations. Simulations were carried out for the
two smaller systems: LISA and ODISSEE. Two controllers were simulated: a scalar
optimized integral action controller and the predictive controller. Both systems
were modeled with a WFS and DM that can measure and correct, respectively, a
Zernike polynomial basis with maximum radial order nmax = 10.
The average residual phase variance of the simulation is reported in three different

terms:

– ϕ∥, the phase projected onto the DM, which corresponds to the temporal error
and the measurement noise error. There is no aliasing since an ideal WFS is
used, for the case of the simulations with a realistic Shack-Hartmann WFS
this will also include the errors due to phase reconstruction and aliasing.

– ϕ⊥, the phase orthogonal to the DM, which corresponds to the fitting error.
This term is the same for all controllers, as it depends only on the spatial
frequencies of turbulence that can be corrected by the DM.

– ϕres, the sum of both terms.

The simulations use SNR = 100, so the measurement noise is negligible here.
The simulations use a time series of 10000 steps per case. The table also gives the
theoretical predictions using the MMSE predictability assessment, since the basis
used is the same as the one used by the WFS and the DM, the comparison here is
straightforward. The results are also compared with the AO error budgets from
Table 3.2.

Remark

This thesis quantifies the gain from prediction as the percentage of temporal
error remaining after prediction. Consequently, lower percentage values
indicate superior prediction performance.

Firstly, the fitting error is consistent with the values of the error budget; the
differences observed can be attributed to the lack of statistical convergence, since
a unique simulation is used for each case, corresponding to a unique statistical
realization of each phase screen.
In the same way, the integrator performance in terms of temporal error is in

accordance with the error budgets for both cases. However, it is worse than
the one given by the MMSE for the no prediction, R(s=2,p=0)

MMSE . This behavior is
consistent with all simulations, which implies that the no-prediction MMSE may be
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optimistic with respect to the integrator; if this was true, the gains due to predictive
control with respect to the integrator could be even higher than expected from
the MMSE predictability assessment. One possible explanation for the optimistic
behavior of the MMSE assessment is that it is closer to the performance of a modal
gain optimized integrator (under the assumption of no measurement noise); this
hypothesis would require further investigation to be confirmed.
The performance of the predictive controller in terms of temporal error is con-

sistent with the MMSE assessment for both cases. The observed gains are better
than for the MMSE assessment due to the poorer performance of the integrator
with respect to the case of no prediction. Once again, the observed discrepancies
can be attributed to statistical convergence within the simulations; this assertion
is supported by the fact that the simplified LQG implementation presented in this
section is equivalent to the application of the predictive model to a time series as
presented in Section 5.2.6, see the next remark box.

Table 7.1.: Results for the simplified E2E controller simulation and comparison with
respect to the predictability assessment. Results are given in variance of the residual
phase with units of rad2.

LISA ODISSEE

Integrator, ϕ∥ 2.665 · 10−1 7.243 · 10−1

Integrator, ϕ⊥ 4.465 · 10−1 5.325 · 10−1

Integrator, ϕres 7.130 · 10−1 1.257

LQG-VAR(2), ϕ∥ 3.382 · 10−2 4.238 · 10−2

LQG-VAR(2), ϕ⊥ 4.465 · 10−1 5.325 · 10−1

LQG-VAR(2), ϕres 4.804 · 10−1 5.748 · 10−1

Theo. R(s=2,p=0)
MMSE , ϕ∥ 1.571 · 10−1 5.638 · 10−1

Theo. R(s=2,p=2)
MMSE , ϕ∥ 3.866 · 10−2 5.088 · 10−2

Gain LQG-VAR(2) (%) 12.69 5.85

Gain Theo. MMSE (%) 24.61 9.02

153



7. Predictive Controller Results
7.2. Ideal Wavefront Sensor and Deformable Mirror

Remark

In the context of the simplified simulation of the predictive controller in this
section, the application of the LQG is analogous to the iterative implementa-
tion of the predictor, as discussed in Section 5.2.6.
Since no measurement noise, modal reconstruction errors, or DM mismatch

are considered, the LQG merely executes the predictive model. Under these
assumptions, the input data utilized by the predictive model for prediction
computation lack uncertainty, resulting in prediction error as the only source
of error.

7.2.2. Behavior in the Presence of Measurement Noise
In the absence of modeling errors in the turbulence evolution model (i.e. the
predictive model) utilized by the Kalman filter, the LQG controller delivers optimal
noise filtering. However, this optimality is not guaranteed when using an arbitrary
predictive model, such as a vector autoregressive model in a Zernike modal basis,
to approximate the real turbulence evolution caused by the combined effect of the
shifting of each layer. Therefore, this test was conducted to determine that the
LQG controller does not amplify noise due to modeling errors.

The controller was simulated at different SNR levels to test its behavior in
the presence of noise; Table 7.2 presents the results of these simulations for the
ODISSEE system.

For all noise levels, the predictive controller consistently outperforms the inte-
grator. When measurement noise levels increase significantly, the performance of
both controllers is driven by the propagation of measurement noise throughout the
control system; here the importance of temporal error and the use of prediction
decreases, but LQG still provides performance improvements thanks to its optimal
filtering of measurement noise by the LQG controller. Notably, the predictive
controller does not exhibit any unusual noise behavior that could be attributed to
modeling errors in the predictive model.

7.2.3. Conclusions
The initial tests involving a simplified implementation of the predictive controller
served the purpose of verifying the implementation of the LQG controller and its
predictive model. The performance achieved aligns with the MMSE predictability
assessment, which promises significant performance gains if it can be maintained
by a final controller implementation.
Furthermore, the simulations conducted with increasing noise levels demonstrated

that the predictive controller does not amplify measurement noise due to modeling
error and consistently outperforms the integral controller, even at high noise levels.
The next step in the testing of predictive controllers involves incorporating a

realistic deformable mirror and, notably, a realistic wavefront sensor to investigate
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Table 7.2.: Performance of the controller as a function of SNR, ODISSEE case at 30◦

elevation. Results are given in variance of the residual phase with units of rad2.

SNR 1 5 10 30

Integrator, ϕ∥ 1.660 8.109 · 10−1 7.454 · 10−1 7.268 · 10−1

Integrator, ϕ⊥ 5.325 · 10−1 5.325 · 10−1 5.325 · 10−1 5.325 · 10−1

Integrator, ϕres 2.199 1.343 1.278 1.259

LQG-VAR(2), ϕ∥ 8.111 · 10−1 1.746 · 10−1 9.934 · 10−2 5.466 · 10−2

LQG-VAR(2), ϕ⊥ 5.325 · 10−1 5.325 · 10−1 5.325 · 10−1 5.325 · 10−1

LQG-VAR(2), ϕres 1.344 7.070 · 10−1 6.318 · 10−1 5.871 · 10−1

Gain (%) 48.85 21.53 13.33 7.52

SNR 50 100 500

Integrator, ϕ∥ 7.251 · 10−1 7.243 · 10−1 7.241 · 10−1

Integrator, ϕ⊥ 5.325 · 10−1 5.325 · 10−1 5.325 · 10−1

Integrator, ϕres 1.258 1.257 1.257

LQG-VAR(2), ϕ∥ 4.708 · 10−2 4.238 · 10−2 4.014 · 10−2

LQG-VAR(2), ϕ⊥ 5.325 · 10−1 5.325 · 10−1 5.325 · 10−1

LQG-VAR(2), ϕres 5.795 · 10−1 5.748 · 10−1 5.726 · 10−1

Gain (%) 6.49 5.85 5.54

the controller’s behavior when phase reconstruction becomes necessary and the
presence of aliasing propagates across it.
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7.3. Effect of Aliasing and Modal Reconstruction

7.3.1. Problem Statement
The introduction of a Shack-Hartmann wavefront sensor in the simulations brings
two new problems:

1. The need for phase reconstruction from the SH slope space to the Zernike
modal basis used by the controller.

2. The presence of aliasing in the SH measurements, which can be seen as an
additional noise term that will propagate within the phase reconstruction.

This is also true for the integral controller, where the phase reconstruction is
computed by the control matrix (see Section 2.4.2) from the slopes space to the
DM actuator space, with the aliasing error in the slopes propagating to the residual
phase variance as a given by Equation 2.5.2.2. This section presents a study of the
effect of these problems on the predictive controller and possible solutions to them.
As stated in Section 4.3.3.4, the Kalman filter within the LQG includes the

phase reconstruction of the measured wavefront from the slope measurements. This
reconstruction is similar to a MAP reconstruction, but enhanced with the iterative
estimation and temporal information that the Kalman filter adds with respect to
static estimators.

Remark

Performing a phase reconstruction is not necessarily a disadvantage. As for
traditional adaptive optics (see Section 2.4.5) modal reconstruction achieves
better noise rejection by truncating modes with low SNR and both modal
and zonal phase reconstruction provide (at least partially) dealiasing of the
slope measurements.

7.3.2. Aliasing in Predictive Controllers
For LQG controllers, the aliasing error propagates in the controller and causes
greater errors (Petit et al. 2009; Kulcsár et al. 2012; Juvénal et al. 2018). As a
result, a solution to decrease aliasing needs to be considered in the design of this
kind of controller.
Three main alternatives exist in order to reduce aliasing in a LQG controller:

1. Spatial filtering of the PSF before the wavefront sensor.

2. Conducting phase reconstruction on higher spatial frequencies, i.e. increasing
the number of models considered in the controller.

3. Increasing the number of subpupils (i.e. oversampling) in the Shack-Hartmann.
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Spatial filtering (Poyneer and Macintosh 2004; Fusco et al. 2005) allows filtering
out all high-spatial frequencies that cannot be corrected by the DM but contribute
to aliasing. This strategy is feasible for coronographic applications where it is
possible to do spatial filtering on the close to diffraction-limited PSF delivered by
an extreme AO system with very high performance.
Increasing the number of subapertures in the Shack-Hartmann wavefront sensor

increases the maximum sampling frequency and reduces the amount of spectrum
folding that affects the spatial frequencies that can be corrected by the DM. The
drawback of this method is that it increases the size of the matrices involved in
the controller computation, since the number of measurements increases and the
photon flux needs to be split among more subapertures, reducing the SNR per
subaperture.
Reconstructing higher frequencies with a phase reconstructor regularized with

the phase statistics (such as the MAP reconstructor) decreases the aliasing error
in the spatial frequencies of interest. In the case of modal controllers, this is
equivalent to reconstructing more Zernike polynomial radial orders Petit et al.
(2009); Juvénal et al. (2018), while in the case of zonal controllers, it is equivalent
to oversampling the zonal reconstruction basis (Prengére et al. 2020). Prengére et al.
(2020) establish the oversampling necessary to correct for aliasing by conducting
end-to-end simulations with oversampling factors and choosing the one for which
performance converges. The rest of this section is devoted to an analysis of the
propagation of aliasing error in the case of the modal reconstruction into Zernike
polynomials.
Additionally, a fourth method is presented by Poyneer and Véran (2010) to treat

aliasing in the case of Fourier space predictive control (Poyneer et al. 2007); the
method is able to identify the aliased components in the Fourier spectrum and
filter them out.

7.3.3. Analytical Study of Modal Reconstruction with MAP
To gain deeper insight into the errors associated with the modal reconstruction
within the LQG predictive controller, a study of the performance of the modal
reconstruction using the MAP estimator was conducted. This analysis will help to
understand the performance limitations observed in the end-to-end simulations of
the predictive controller.

7.3.4. Methodology
As stated in Section 4.3.3.4, the MAP estimator is equivalent to a static Kalman
filter. Since the MAP estimator performance is easier to analyze, it is used as a
proxy to understand the behavior of the modal reconstruction within the Kalman
filter. This analysis is similar to the one presented in Quirós-Pacheco et al. (2010)
for the case of modal gain optimization for tomographic adaptive optics.
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Juvénal et al. (2018) already provided an analysis of the aliasing error as a
function of the number of modes considered in the LQG controller, this time
using a transfer function model of the LQG. The advantage of their model is that
it includes the propagation of the aliasing error in the closed-loop, whereas the
analysis presented here only accounts for an approximation of the open-loop phase
reconstruction. However, the results of the suggested approach have been proven
to be consistent with the behavior of the LQG, and the analysis has the advantage
that it is expressed in terms of covariance matrices as in the rest of the controller
modeling.

Modeling of the problem using the Zernike polynomials: The Zernike poly-
nomials are used to model the problem, and several bases are defined:

– The turbulent phase at the telescope pupil is projected onto a modal basis
containing the first Nt Zernike polynomials, piston mode not included, or the
equivalent ntur radial order, resulting in the vector ϕtur ∈ RNt×1. Since this
basis has a finite number of modes, the variance of the modes not considered by
this truncation constitutes a modeling error, commonly known as superfitting.

– The number of modes considered in the estimation defines the vector ϕest ∈
RNe×1, where Ne is the number of estimated Zernike polynomials and nest the
equivalent radial order.

– The AO system DM corrects only a set of Zernike modes, ϕcor ∈ RNc×1, where
Nc is the number of corrected Zernike polynomials and ncor the equivalent
radial order.

– The modes between Nc and Nt correspond to the fitting error, with Nc ≤ Ne.

MAP reconstructor: Consider the resulting measurement vector of a Shack-
Hartmann wavefront sensor represented by a linear model when facing turbulence
projected on a Zernike modal basis:

y = Mest
WFSϕ

est , (7.1)

where Mest
WFS ∈ RNs×Ne is the interaction matrix between the Zernike polynomial

basis and the WFS, with Ns the number of slope measurements provided by the
WFS, and y ∈ RNs×1 is the resulting slopes measurement vector.

We search to minimize the reconstruction error:

ϕest − RMAPM
est
WFSϕ

est , (7.2)

where RMAP ∈ RNe×Ns is the MAP reconstructor. The MAP reconstructor is
computed as:
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RMAP = Σϕest(Mest
WFS)

⊤ (Mest
WFSΣϕest(Mest

WFS)
⊤ + αΣw

)−1
, (7.3)

where Σϕest ∈ RNe×Ne corresponds to the covariance matrix of the wavefront,
Σw ∈ RNs×Ns is the covariance matrix of the measurement noise, and α is a fudge
factor that can be tuned to act as regularization parameter to compensate for
possible modeling errors.

Remark

While the theoretical formalisim of the Kalman filter ensures that its estimates
will be optimal, its practical implementation requires the use of fudge factors.
Fudge factors are artificial adjustments made to the Kalman filter matrices to
compensate for modeling inaccuracies in any of these matrices. These factors
are usually applied to the measurement noise and process noise covariance
matrices, and can also be seen as the empirical tuning of these matrices.
Traditionally, fudge factors in AO systems have been applied to the noise

covariance matrix. Increasing the noise of the covariance matrix has two
effects: (1) It helps the numerical stability of the phase reconstruction by pro-
viding a Tikhonov regularization, and (2) it introduces the uncertainty in the
measurement model by increasing the noise associated with the measurements.
If the uncertainty is not in the measurement but in the predictive model,

the fudge factor should be applied to the process noise covariance matrix
instead. This is the case where temporal prediction is the main goal, such as
in this thesis; so probably the system would benefit from both fudge factors,
one for the prediction, and one for the phase reconstruction.

MAP reconstruction error: The total reconstruction error will be the sum of
the reconstruction error and the propagation of noise in the reconstructor.
The reconstruction error is defined as:

ϕest − RMAPM
tur
WFSϕ

tur , (7.4)

where Mtur
WFS ∈ RNs×Nt is the interaction matrix between the Zernike polynomial

basis until Ns and the WFS, using Nt > Ne allows to compute the reconstruction
error accounting for the contribution of the turbulence that is not estimated,
necessary to account for the effect of aliasing. The reconstruction error covariance
matrix can be computed as:

Σe = Σϕest − RMAPM
tur
WFSΣϕturϕest

−Σ⊤
ϕestϕtur(Mtur

WFS)
⊤R⊤

MAP

+ RMAPM
tur
WFSΣϕtur(Mtur

WFS)
⊤R⊤

MAP ,

(7.5)
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where ΣϕturϕestinRNt×Ne is the cross-covariance matrix between the vectors ϕtur

and ϕest.
The reconstructor matrix, RMAP ∈ RNe×Ns , can be truncated to be an (Nc ×Ns)

matrix to consider only the reconstruction of the modes of interest, in this case the
modes to be corrected.
The reconstruction error is computed as:

σ2
ϕ = Tr

(
ΓΣeΓ

⊤) , (7.6)

where Γ is a matrix that truncates the covariance matrix to account for only the
modes that are corrected, i.e. up to Nc.
The propagation of the measurement noise across the reconstructor, assuming

that measurement noise and the wavefront phase are statistically uncorrelated, is
computed as:

σ2
w = Tr

(
ΓRMAPΣwR

⊤
MAPΓ

⊤) . (7.7)

During this study, the systems under study will have a fixed ncor depending on
their DM while nest will be varied to study the behavior of aliasing with respect to
the number of corrected modes.

Remark

Using a higher number of modes for the computation of theMAP reconstructor
will lead to better performance in the estimation. At the same time, the
final size of RMAP after truncation is (Nc ×Ns) and it does not depend on
Ne, so the MAP reconstruction can be computed with as many modes as
possible for better performance without increasing the size of the reconstructor
once computed. This is not the case for phase reconstruction within the
Kalman filter, where the number of states in the controller will be Ne, i.e.
no truncation possible, so increasing it will lead to additional computational
cost.

Cases considered: Two of the four AO systems are used here to illustrate the
different system parameters and regimes:

– Case 1: The ODISSEE system, with an 8× 8 subapertures Shack-Hartmann
WFS and able to correct ncor = 10 Zernike polynomial radial orders. This
corresponds to the strategy of reconstructing more modes to de-aliase the
measurements.

– Case 2: The ODISSEE++ system, with a 16 × 16 subapertures Shack-
Hartmann WFS and able to correct ncor = 20 Zernike polynomial radial
orders. This corresponds to the strategy of reconstructing more modes to de-
aliase the measurements, but with a system that has higher spatial sampling
of the phase, which should reduce aliasing too.
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– Case 3: The LISA and the FEELINGS cases, whoseWFS and DM correspond
to the two previous cases, respectively.

– Case 4: The ODISSEE system, with a 16× 16 subapertures Shack-Hartmann
WFS and able to correct ncor = 10 Zernike polynomial radial orders. This
corresponds to the strategy of oversampling the WFS with respect to the DM
actuator number to reduce aliasing.

– Case 5: The ODISSEE and ODISSEE++ systems but with telescope aperture
obscuration.

For the provided examples, the atmospheric turbulence profile corresponding to
each AO system is used at 30◦ elevation.

7.3.5. Case 1: 8× 8 SH and ncor = 10 DM
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Figure 7.1.: Analytical MAP reconstruction performance, ODISSEE, 8×8 SH, ncor = 10,
several SNRs. From left to right, phase reconstruction, noise propagation variance, and
total error variance; all according to the maximum radial order of estimated modes, nest;
each curve has units of phase variance in rad2 error for the corrected modes.

Figure 7.1 shows the results for this case. The different error terms are plotted
for a range of SNR levels. A fudge factor of α = 1 is used in Equation 7.3. The
following observations are possible:

– Increasing the number of modes that are considered in the reconstruction
reduces the reconstruction error.
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– A good convergence in the reconstruction error is achieved for a reconstruction
of two times the initial spatial sampling frequency; in this case, nest = 20 for
the initial n = 10 that the 8× 8 SH samples properly.

– At high SNR, the reconstruction blows up and produces results that are
significantly worse than the aliasing levels in traditional integrator controllers.
These bad results are limited to an intermediate number of reconstructed
modes; the reconstruction does not blow up if the number of modes is high
enough. Reconstruction of more modes is necessary not only to improve
reconstruction performance (as in the low SNR case) but also to avoid the
reconstructor blowing up; this increases computational cost. The exact cause
of this bump remains unclear, since the reconstructor assigns more variance
to these modes than the total variance in the wavefront. The bump appears
when the maximum number of modes estimated is equivalent to the maximum
frequency measured by the Shack-Hartmann wavefront sensor; the modes
with radial orders closed to the maximum frequency of the WFS are the ones
that have the most aliasing error, so the reason for the presence of such a
bump should be related to it.

– Even if a large number of modes is used, the reconstruction error remains
significant within the error budget. In this case, it accounts for roughly
9 · 10−2 rad2, compared to 1.699 · 10−1 rad2 of the aliasing error in the AO
budget (see Table 3.2), so MAP is able to reduce the aliasing, but the term is
still present.

– At low SNR, the noise propagation also contributes to the total reconstruction
error, which slightly reduces performance. At high SNR, the shape of noise
propagation shows a large bump for a limited number of estimated modes,
but the noise level is non-significant.

So far, it has been observed that at high SNR values the MAP reconstruction
is not numerically stable and shows a bump in performance that leads to a total
performance loss. We show here how the use of a fudge factor, α, can help reduce
this effect, Figure 7.2 reports these results of the same experiment, this time with
an SNR = 100 and different fudge factors. The following observations are possible:

– The right choice of fudge factor leads to a performance that is similar to the
one observed with lower SNR values. The fudge factor can be understood
as an artificial increase of the noise present in the measurements that makes
that the estimator weights more the statistical priors in the reconstruction
with respect to the measurement itself.

– To achieve the limit performance for the modal reconstruction, it is still
necessary to increase the number of estimated modes.
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Figure 7.2.: Analytical MAP reconstruction performance, ODISSEE, 8×8 SH, ncor = 10,
SNR = 100, several fudge factors. From left to right, phase reconstruction, noise
propagation variance, and total error variance; all according to the maximum radial order
of estimated modes, nest; each curve has units of phase variance in rad2 error for the
corrected modes.

In conclusion, the interest of the fudge factor would be to use an intermediate
performance level, in this case, the fudge factor avoids the bump due to numerical
instability an high SNR. On the other hand, this requires tuning the fudge factor
either by trial and error or by computing analytical curves as the ones presented in
this analysis.
The results presented so far are based on analytical computations based on

covariance matrices. These results are completed with the numerical simulation
of the MAP controller performance computed analytically and the simulated
performance using a time series of the phase screens simulation; the simulations
are reported in Figure 7.3. All the numerical simulations use a grid of 256× 256
pixels for the representation of the phase. The pupil turbulence time used for this
experiment is the same as used for the simulation of the ODISSEE end-to-end
controller simulations. Two different cases are shown: (a) without a fudge factor
(α = 1) and (b) with the best fudge factor according to Figure 7.2. It can be
observed that in both cases the simulation results match the theoretical predictions
relatively well, which allows us to verify the analysis presented here. Note that the
deviation in case (b) appears to be larger due to the absence of an estimation error
bump, causing a difference in scale between both plots.
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Figure 7.3.: Numerical verification of the MAP reconstruction performance for ODIS-
SEE, 8 × 8 SH, ncor = 10, SNR = 100. Total phase reconstruction error according to
the maximum radial order of the estimated modes, nest; each curve has units of phase
variance in rad2 error for the corrected modes. Two different cases are shown: (a) without
a fudge factor (α = 1) and (b) with the best fudge factor according to Figure 7.2.

7.3.6. Case 2: 16× 16 SH and ncor = 20 DM
Figure 7.4 reports the result of the MAP analysis for the ODISSEE++ case. The
following observations are possible:

– The behavior is similar to the 8× 8 SH since both the number of corrected
modes and the sampling of the Shack-Hartmann are scaled by a factor two.

– From a performance point of view, with respect to the 8× 8 SH there is less
energy in the aliased modes since the sampling of the SH is now twice as
high, i.e. less fitting error equals less aliasing error, which leads to an increase
in the phase variance of the reconstructed error.

– The bump seems to appear only at the highest SNR = 500.

– The main difference is in the end-to-end simulation, reported in Figure 7.5,
since in this case the simulation has significantly poorer performance than the
analytical result. This difference has also been observed in the similar case of
the FEELINGS system (Figure 7.6b) as well as in the controller simulations;
no reason could be found for this error, which is not present in the smaller
8× 8 system.
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Figure 7.4.: Analytical MAP reconstruction performance, ODISSEE++, 16× 16 SH,
ncor = 20, several SNRs. From left to right, phase reconstruction, noise propagation
variance, and total error variance; all according to the maximum radial order of estimated
modes, nest; each curve has units of phase variance in rad2 error for the corrected modes.
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Figure 7.5.: Numerical verification of the MAP reconstruction performance for ODIS-
SEE++, 16× 16 SH, ncor = 20, SNR = 100, no fudge factor. Total phase reconstruction
error according to the maximum radial order of the estimated modes, nest; each curve
has units of phase variance in rad2 error for the corrected modes.

7.3.7. Case 3: LISA and FEELINGS
The same analysis conducted above for the ODISSEE and ODISSEE++ systems is
reported in Figure 7.6 for the LISA and FEELINGS systems. The absolute errors
vary slightly due to the use of a different profile and telescope diameter size, but
the trends are similar to the results found for the other two systems.
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(a) LISA, 8× 8 SH, ncor = 10.
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(b) FEELINGS, 16× 16 SH, ncor = 20.

Figure 7.6.: Numerical verification of the MAP reconstruction performance for the
communication systems. Total phase reconstruction error according to the maximum
radial order of the estimated modes, nest; each curve has units of phase variance in rad2

error for the corrected modes.

7.3.8. Case 4: Oversampled 16× 16 SH and ncor = 10 DM
The use of an oversampled Shack-Hartmann WFS is included in this study, although
it will not be further investigated as part of this thesis. The results of the analytical
MAP study for the ODISSEE system with an oversampling of the SH from 8× 8
to 16× 16 subpupils are reported in Figure 7.7 and Figure 7.8 for all SNR values
and for SNR = 100 with different values of the fudge factor, respectively. The
following observations are possible:

– Oversampling obtains better performance than when using the 8 × 8 case,
even when using a lower number of reconstructed modes. Thus, oversampling
proves to be a good solution to avoid increasing the computational load and
the need of tuning, even if increasing the number of slopes used also has an
impact on the computational cost of the Kalman filter.

– For high SNR values oversampling provides flat (better said oscillating)
performance as a function of the number of reconstructed modes.

– The use of a fudge factor corrects this and reach an improvement of one order
of magnitude with respect to the 8× 8 case.

– At low SNRs the performance is better that at higher SNRs, but this is not
true anymore when the noise propagation across the reconstructor is also
accounted for.

In fact, the oversampling of the Shack-Hartmann extends the maximum spatial
frequency that can be measured, and therefore the radial order for which aliasing
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occurs. As a result, the results for the 8× 8 sensor are shifted, including the bump;
thus, if fudge factor is not used at high SNR the estimation error when estimating
radial orders between 20 and 24 will explode.
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Figure 7.7.: Analytical MAP reconstruction performance, ODISSEE, 16 × 16 SH,
ncor = 10, several SNRs. From left to right, phase reconstruction, noise propagation
variance, and total error variance; all according to the maximum radial order of estimated
modes, nest; each curve has units of phase variance in rad2 error for the corrected modes.

7.3.9. Case 5: Effect of Telescope Aperture Obscuration
So far in these tests, no telescope aperture obscuration has been considered. Figure
7.9 reports the end-to-end results of the MAP reconstructor in this case. The same
modes (full-aperture Zernike modes) are used as modal basis. In both cases, the
MAP is able to reconstruct the modal basis, but with a loss in the reconstruction
performance compared to the results without obscuration given in Figure 7.3 and
Figure 7.3.

7.3.10. Conclusions
Summary of the findings: A summary of the conclusions of the MAP study
and a extrapolation to the LQG controller performance is presented below:

– In the case of the LQG controller, if aliasing is not properly handled, for
example using a fudge factor or estimating more modes than the corrected
modes, its effect will be greater than for integral controllers and will result in
a total loss of performance.
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Figure 7.8.: Analytical MAP reconstruction performance, ODISSEE, 16 × 16 SH,
ncor = 10, SNR = 100, several fudge factors. From left to right, phase reconstruction,
noise propagation variance, and total error variance; all according to the maximum radial
order of estimated modes, nest; each curve has units of phase variance in rad2 error for
the corrected modes.
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(a) ODISSEE, 8× 8 SH, ncor = 10
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(b) ODISSEE++, 16× 16 SH, ncor = 20.

Figure 7.9.: Numerical verification of the MAP reconstruction performance in the
presence of a 25% obscuration, SNR = 100, no fudge factor. Total phase reconstruction
error according to the maximum radial order of the estimated modes, nest; each curve
has units of phase variance in rad2 error for the corrected modes.

– Even with proper aliasing handling, it is not possible to reconstruct Zernike
polynomials from slope measurements with arbitrary accuracy. A modal
reconstruction error will always be present and, in most cases, it will be higher
or similar to the prediction error. This reconstruction error is a mix of aliasing
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and the mismatch between the slope space and the reconstruction basis.

– The use of modal reconstruction with statistical priors reduces the recon-
struction error, i.e. the aliasing, at the cost of increased computational
cost.

– When using an oversampled SH, special attention needs to be taken to
the behavior at high SNR since the results show that to reach the best
performance it is necessary to use a fudge factor, regardless of the number of
modes reconstructed.

– The reconstruction performance converges when the number of estimated
modes corresponds to roughly twice the spatial frequency of the SH.

– Introducing a fudge factor allows us to achieve the same behavior as with a
lower SNR, i.e. no blow-up. As a result, using a fudge factor it is possible
to avoid the blow-up without increasing the number of modes. However, it
requires tuning of the fudge factor.

– Reconstructing more modes is more costly from a computational point of
view but it does not require any tuning, only the availability of the statistics
for the reconstructed modes.

– There exists a trade-off between fudge factor, number of modes, and final per-
formance that can be optimized to keep a good performance while containing
the computational complexity.

Repercussion in laboratory testing: The fact that phase estimation is more
robust at low SNRs is especially relevant for laboratory testing; first tests may
be done at high SNR thinking that it will provide better conditions when it will
actually lead to more challenging conditions.

Extrapolation to zonal reconstruction: A similar analysis should be conducted
for the case of the zonal reconstructor as in Prengére et al. (2020). The use of a
zonal reconstructor may have the advantage of having better performance in the
presence of a telescope obscuration, since the base is only defined within the valid
pupil. Although this thesis will not compare the analysis presented with a zonal
basis reconstruction like the one conducted by Prengére et al. (2020), the number of
resulting states reconstructed should be roughly the same since both methods need
more or less the same number of states to represent a given frequency coverage.
Annex C contains an analysis of the equivalence between the frequency coverage of
the Zernike polynomial basis and the zonal basis.
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Comparison to similar results: The results here are consistent with the exam-
ples used in the literature, for example, Sinquin et al. (2020) reconstructs 495 modes
for a 14× 14 Shack-Hartmann, i.e. 30 radial orders, corresponding to roughly twice
the spatial frequency of the Shack-Hartmann sampling, the same result obtained by
Juvénal et al. (2018) and in this thesis. In the zonal space, Prengère et al. (2020)
goes even further using a factor of three with respect to the sampling of the SH,
this time using a zonal basis.

Impact on the predictive model identification: The preferred solution for
reducing the impact of aliasing is to increase the number of modes required. This
means that the statistics of the turbulence projected onto the modal basis need
to be available up to the modes used. Given that the Shack-Hartmann wavefront
sensor cannot properly measure the modes that are beyond its spatial sampling
frequency, a data-based identification will not be able to identify those modes; as
a result, the analytical computation of the model may be necessary. The priors
necessary for this computation, mainly the turbulence profile, could come from an
external metrology source or use a similar approach to the learn and apply method;
see Section 6.3.2.
Note that in the case of the MAP only the spatial covariance matrix of the

turbulence is necessary, while in the case of the Kalman filter, also the spatio-
temporal covariance matrices need to be identified, since the predictive model must
also increase the number of modes used.

Extension of the analysis: This section discussed an analytical study of the
MAP reconstructor as a modal reconstructor from the Shack-Hartmann slopes to
the Zernike polynomials. This analysis could be extended to include also temporal
prediction as in Chapter 5 to combine the limitations of temporal prediction using
slope measurements instead of the Zernike polynomial coefficients, an assumption
made in the predictability assessment that cannot be used in real systems, since no
wavefront sensor can measure those directly.

7.4. End-to-End Simulations
Table 7.3 shows the results for the end-to-end simulations of the four adaptive
optics systems considered in this thesis using a number of modes high enough to
achieve the best possible reduction of aliasing. For the LISA and ODISSEE cases
this is equivalent to nest = 20 for ncor = 10, i.e. Ne = 230; while for FEELINGS
and ODISSEE++ it is nest = 40 for ncor = 20, i.e. Ne = 860. The number of
states for the LQG controller is twice Ne, since a second-order vector autoregressive
model is used.
The theoretical MMSE assessment of the residual phase variance for ϕ∥ does

not contain aliasing, neither for the integrator nor for the LQG. The simulations
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Table 7.3.: Results for the controller simulations using an increased number of modes.
Results are given in variance of the residual phase with units of rad2.

LISA FEELINGS ODISSEE ODISSEE++

Integrator, ϕ∥ 3.154 · 10−1 1.721 · 10−1 8.996 · 10−1 9.242 · 10−1

Integrator, ϕ⊥ 3.574 · 10−1 2.589 · 10−1 4.947 · 10−1 1.552 · 10−1

Integrator, ϕres 6.727 · 10−1 4.311 · 10−1 1.394 1.079

LQG-VAR(2), ϕ∥ 1.154 · 10−1 9.424 · 10−2 1.549 · 10−1 1.177 · 10−1

LQG-VAR(2), ϕ⊥ 3.575 · 10−1 2.590 · 10−1 4.948 · 10−1 1.552 · 10−1

LQG-VAR(2), ϕres 4.729 · 10−1 3.532 · 10−1 6.497 · 10−1 2.729 · 10−1

Theo. R(s=2,p=0)
MMSE , ϕ∥ 1.571 · 10−1 6.043 · 10−2 5.638 · 10−1 6.824 · 10−1

Theo. R(s=2,p=2)
MMSE , ϕ∥ 3.866 · 10−2 7.151 · 10−3 5.088 · 10−2 7.085 · 10−2

AO error budget, ϕ∥ 3.414 · 10−1 1.573 · 10−1 8.588 · 10−1 8.684 · 10−1

Gain LQG-VAR(2) (%) 36.60 54.75 17.22 14.72

Gain Theo. MMSE (%) 24.61 11.83 9.02 10.38

contain aliasing for both, so the comparison is fair, but in this case, ϕ∥ contains
both the prediction error and the propagation of phase reconstruction error, which
is affected by aliasing. For the case of the integral controller, ϕ∥ can be compared
to the sum of the temporal error and aliasing error terms in the AO error budgets
reported in Table 3.2; this values are reported in the Table 7.3 as well.
In comparison of the integrator performance to the AO error budget, both the

ϕ∥ corresponding to the temporal and aliasing error terms in the budget, as well
as ϕ⊥ corresponding to the fitting error, are within less than a 10%, with these
differences mainly attributed to the statistical convergence of the simulation due
to the finite number of simulation time steps and the unique statistical realization
per phase screen.
Compared to the integrator, the LQG for the LISA system has reduced the

residual phase variance in the DM space to 36.60% of the same value for the
integrator. However, the result is far from the theoretical prediction: 1.154·10−1 rad2

vs. 3.866 · 10−2 rad2. This loss in performance is due to the effect of phase
reconstruction, which according to Figure 7.6a is of around 8 · 10−2 rad2. This error
propagates across the predictive model, leading to the reported performance. As a
result, it is the phase reconstruction error that limits the LQG performance and
not the prediction. However, since the integrator also suffers from aliasing, the
relative performance gains are still similar to those in the case without aliasing.
The same behavior is found for the ODISSEE and ODISSEE++ systems.
For the FEELINGS system, the relative gain with respect to the integrator is
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less, since it only reduces the residual variance in the DM space to 54.75%. The
performance of the LQG can still be explained by the limits of modal reconstruction,
since according to Figure 7.6b it will be limited to around 7 · 10−2 rad2, and after
propagation across the predictive model, will amount to 9.424 · 10−2 rad2. The
only difference here is that the temporal error for this system is so little that the
residual phase on the DM space is mainly driven by the reconstruction error, so
the gains with respect to the integral controller come only from the improvement
of the reconstruction, but not from a reduction of temporal error.
In conclusion, the predictive controller can still provide gains, but those are

reduced with respect to the MMSE predictability assessment since the presence
of modal reconstruction error and its propagation across the predictive controller
increases the residual phase variance. Nevertheless, the relative gains with respect
to the integral controller are very promising; the effect of these gains will be
evaluated in the next sections with respect to the Strehl ratio and the coupling
gains.

7.5. Reduction of the Loop Sampling Frequency
Previous results in this chapter have shown how the use of temporal prediction
reduces the temporal error in adaptive optics. Temporal error is the driver of
the loop frequency in an adaptive optics system; usually, the loop frequency is
increased to reduce the impact of temporal error. The increase of the loop frequency
impacts the system design and imposes different technological challenges: (1) it
requires that components such as the DM and the WFS detector work at the
required frequency; (2) it limits the time available for the computations necessary
to compute the next command; and (3) it limits the integration time available for
wavefront sensing. If predictive control can be used as an alternative to increasing
the loop frequency, all these constraints can be relaxed. This was already shown
using the MMSE predictability assessment method in Section 5.2.5; these results
are now verified with end-to-end simulations.
Table 7.4 shows the results of simulations similar to the previous section but

for the case of a reduction of the AO loop frequency by a factor of two. The
FEELINGS system achieves roughly the same performance for the predictive
controller at 2250Hz than the integrator at 4500Hz. For the ODISSEE++ system,
the performance of the predictive controller is even better than the performance
of the integrator at twice the sampling speed, so it is possible to achieve a gain
performance and at the same time reduce the sampling frequency of the loop.
This is probably a very optimistic case, but it shows a promising gain for this
application.
For communication applications, where the flux available for wavefront sensing is

relatively high, a reduction in the loop sampling frequency can be used to reduce
the cost and complexity of the AO system. For satellite observation applications,
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Table 7.4.: Results for the controller simulations reducing the AO loop frequency by a
factor of two. Results are given in variance of the residual phase with units of rad2.

ODISSEE++ FEELINGS

fsamp 750Hz 1500Hz 2250Hz 4500Hz

Integrator, ϕ∥ 2.660 9.242 · 10−1 3.192 · 10−1 1.721 · 10−1

Integrator, ϕ⊥ 1.549 · 10−1 1.552 · 10−1 2.574 · 10−1 2.589 · 10−1

Integrator, ϕres 2.814 1.079 5.766 · 10−1 4.311 · 10−1

LQG-VAR(2), ϕ∥ 3.679 · 10−1 1.177 · 10−1 1.917 · 10−1 9.424 · 10−2

LQG-VAR(2), ϕ⊥ 1.549 · 10−1 1.552 · 10−1 2.575 · 10−1 2.590 · 10−1

LQG-VAR(2), ϕres 5.228 · 10−1 2.729 · 10−1 4.492 · 10−1 3.532 · 10−1

Gain LQG-VAR(2) (%) 13.83 12.74 60.06 54.75

where wavefront sensing operates at low SNR values, reducing the loop frequency
leads to an increase of the time available for wavefront sensing, improving the
system performance, and especially enabling the imaging of fainter targets.

7.6. Effect of Fadings
The previous sections showed the gains in adaptive optics performance thanks to
the reduction of temporal error by the use of a predictive controller; this discussion
was in terms of residual phase variance, a metric that is the closest to the adaptive
optics correction of phase distortions and that allows comparison to analytical
performance expectations. This section will study the impact of these gains in
terms of a metric that is more relevant for the laser communication application:
the effect of phase correction in single-mode fiber coupling and the reduction of
fadings in this coupling.
Figure 7.10 shows the coupling time series for the three simulated cases (LISA

system and FEELINGS at two loop frequencies), while Figure 7.11 reports the
CDF of each of the coupling time series.

For the LISA system it can be observed how the use of the integrator provides
a clear fading reduction from around 7 dB to around 3.5 dB at a probability of
P = 1 · 10−3. For the FEELINGS case the gains are not very big, barely 1 dB,
but the integrator in this case does not have any fading to be avoided, so its
performance is already very good. When analyzing the coupling of the slower
FEELINGS system, running at 2.25 kHz, the integrator shows some fadings, going
up to around 6 dB at a probability of P = 1 · 10−3. The LQG has the ability to
decrease fading effects; in fact, it achieves a performance similar to that of the
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integrator at half the sampling frequency. These results demonstrate how the
predictive controller can reduce fadings.
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Figure 7.10.: Coupled flux time series for different controller simulations.

Influence of tip and tilt modes: One may wonder why the fadings are reduced
by the predictive controller even if there is still a big remaining fitting error and
even aliasing. A possible hypothesis is that, at this regime of correction, the
fadings are mainly caused by tip and tilt aberrations. To test this hypothesis,
the same simulations were modified to provide a synthetic perfect tip and tilt
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Figure 7.11.: Coupled flux CDF for different controller simulations.

correction, the coupling results for this case are reported in Figure 7.12. It can be
observed how the performance with a perfect tip-tilt correction provides around
half the improvement in the reduction of the fading fluctuations, while for the LQG
controller, the difference is very low since the error in tip and tilt is already low.
These results suggest that a tip-tilt-only predictive controller may reduce at least

part of the fadings and simplify the controller. Another option that has not been
investigated is the effect of aliasing in coupling. Since coupling is mainly influenced
by tip, tilt, and other lower-order modes and aliasing only affects higher-order
modes, the controller only needs to provide the prediction and high-performance
correction of those modes. The controller can be simplified by reducing the number
of estimated modes, and only needs to avoid performance blow-up due to the
aliasing propagation.

7.7. Strehl Ratio
In the same way that coupling efficiency was used to evaluate the performance
of post-adaptive optics performance in laser communication systems, Strehl ratio
is used here as a performance metric for the satellite observation systems, i.e.
ODISSEE and ODISSEE++.

Here the Strehl ratio is calculated as the ratio between the average of the absolute
value of the aberrated OTF and the same value for the diffraction-limited OTF.
Figure 7.13 and Figure 7.14 show the time series of the Strehl ratio for both

ODISSEE and ODISSEE++, respectively. These results are summarized in Table
7.5. The results are very promising, in all cases the predictive controller provides
a significant gain in Strehl. The most interesting result is again the fact that the
predictive controller delivers a performance similar or better than the integrator,
even the ODISSEE system with an LQG is able to deliver a better performance
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Figure 7.12.: Coupled flux CDF for different controller simulations with perfect tip-tilt
correction.

than ODISSEE++ with an integrator. If this kind of performance can be obtained
on sky, it would suppose a great increase of performance or conversely a significant
increase in the objects that can be observed, since the flux available for wavefront
sensing could be duplicated by decreasing the loop frequency by a factor of two.
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Figure 7.14.: End-to-end simulation Strehl ratio time series for the ODISSEE++ system.

Table 7.5.: End-to-end simulation Strehl ratio results, units of %.

Integrator LQG

ODISSEE 29.63± 5.10 53.10± 2.95

ODISSEE++ 39.50± 6.33 76.75± 1.26

ODISSEE++ (750Hz) 22.17± 4.92 62.48± 4.10

Summary

This chapter provided end-to-end simulations of the predictive controller
developed during this thesis. The end-to-end simulations serve as a proof of
concept for the predictive controller and establish a performance benchmark
for the laboratory verification of the controller. Additionally, they also serve
as a digital twin, facilitating the testing of the controller in an actual adaptive
optics system.
The performance of the predictive controller was compared, in terms of

residual phase variance, with an integral controller that employs an optimized
scalar gain. The controller performance was also compared with the pre-
dictability assessment presented in Chapter 5, which shows good agreement.
This chapter also presented a detailed analysis of the effect of modal

reconstruction errors and aliasing in the controller; this analysis used the
MAP reconstructor as a proxy for the Kalman filter modal reconstruction.
The analysis identified that the propagation of aliasing within the Kalman
filter at high SNR values is higher and leads to a total loss of performance;
this effect can be compensated for by estimating more modes or using a fudge
factor. At least at high SNR values, the effect of phase reconstruction and
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aliasing needs to be mitigated with those solutions; otherwise, the performance
loss is total. The analysis defined the need to use more modes in the LQG
controller than the modes that are corrected, with the number of modes
necessary roughly equivalent to a spatial frequency twice as high as the
wavefront sensor sampling. The analysis also showed the influence of the
fudge factor on improving the modal reconstruction within the MAP and the
Kalman filter.
After the study of the effect of aliasing on the controller, the rest of the

chapter focused on the evaluation of the performance of the controller in the
different applications considered. Predictive control has been observed to
help reduce the AO loop frequency by a factor of two while maintaining a
performance similar to that of the integral action controller. For fiber coupling,
predictive control proved effective in reducing fadings. However, a system
study would be necessary to quantify the exact gains for a communication
system by comparing the fading statistics to its link budget.
In summary, the predictive controller developed in this thesis and predictive

control in general are identified as a promising solution for the improvement
of the performance of adaptive optics systems in the applications considered.
Several recommendations for the further development of this solution are
derived from the results presented in this chapter:

– The controller could be optimized to reduce the number of modes that
are used and to reduce its computational cost. This can be done by
reducing the modes that are predicted to only tip and tilt, or a larger
set of low-order modes.

– For communications systems and fiber coupling, the possibility of using
fewer modes and working with an acceptable aliasing error should be
studied; this error is concentrated in the higher corrected orders, while
the coupling depends mostly on the low order ones.

– For satellite observation, the priority would be the reduction of sampling
frequency, since this will increase the flux available for wavefront sensing
and, therefore, the objects that can be imaged. An optimization of the
number of modes estimated for the aliasing error mitigation should be
studied; depending on the required performance, it may be interesting to
avoid the blow-up of the reconstruction performance without searching
for the maximum reconstruction performance to keep the number of
estimated modes reasonable.

Moreover, the controller presented here should be further compared to
the slopes and zonal based controllers. This comparison should take into
account the aliasing and noise propagation of each controller, its identification
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and calibration, and other facts such as performance in the case of pupil
obscuration.
The robustness of the controller with respect to modeling errors derived from

the difference between the identified model and the real turbulence evolution
should also be studied further; this error may come from the limitation of
the identification or from the change in turbulence conditions with elevation
if the controller is not updated with enough frequency.
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Introduction

The purpose of my thesis is to contribute to the improvement of adaptive
optics assisted LEO-to-ground optical links. At low elevations, the length of
the line of sight increases, and so does the volume of turbulence traversed and
the resulting turbulence strength. Stronger turbulence and longer propagation
lengths lead to more important amplitude distortions on the wavefront. These
amplitude distortions manifest themselves as irradiance spatial fluctuations at
the pupil plane of the telescope, also known as scintillation. The fluctuations
that are close to the size of the telescope contribute to the fluctuation of
the collected power by the pupil, while the fluctuations smaller that the
pupil will have the same effect but at the Shack-Hartmann subpupil level,
causing extinctions of some of the subpupil due to the lack of flux on them
among other effects. The temporal variation of scintillation is given by the
displacement of the layers under the frozen flow assumption, and for LEO
satellites it will be particularly fast due to the presence of apparent wind. The
operation of adaptive optics under scintillation conditions is very challenging
and is not yet well studied, as other applications such as astronomy do not
need to operate at low elevations. A laboratory emulator for these conditions
will allow testing and developing adaptive optics systems, components, and
algorithms in a controlled but realistic environment. The close match of the
numerical simulations of the bench to its behavior will allow the comparison
and understanding of the effects of scintillation on adaptive optics systems,
still not fully understood and yet to be mitigated in the path to enable the
operation of adaptive optics assisted optical links at low elevations.
When I started my PhD I inherited the PICOLO bench that had been

designed, procured, and aligned by my team. Before the bench was aligned,
Louis Le Leuch conducted a first phase characterization of the phase screens
using a Shack-Hartmann wavefront sensor for the acceptance of the screens.
After the integration and alignment of the bench, I took it over and prepared
all the calibrations necessary for the characterization of the bench and the
routines for the post-processing of the data; I also adapted and conducted
the TURANDOT numerical simulations of the bench. The bench was first
presented before the start of my PhD by Marie-Thérèse Velluet as a talk in the
SPIE Remote Sensing 2020 conference (Velluet et al. 2020) and summarizes
the previous work on the bench before my arrival.
The present chapter reproduces verbatim the article I wrote on the devel-

opment and characterization of the bench, published as Robles et al. (2023).
The article describes the methodology for the design of the bench, including
a discussion on the characteristics of turbulence that are of importance for
the application considered and what is the best method to produce it, as
well as the main phases of the bench definition, in particular the different
steps followed to optimize and validate the sampling of the turbulence vol-
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ume by only three layers and the down-scaling of the experimental setup to
be representative of phase and scintillation effects. The second part of the
article is devoted to the characterization of the phase and scintillation of the
turbulence produced by the bench and a comparison to numerical simulations,
the main contribution of this thesis to the article. Finally, we discuss the
perspective of upgrading the bench to meet future needs.
The emulator will serve as a testing platform for adaptive optics systems and

other free-space optical communication components under strong turbulence
conditions, especially for LEO satellite downlinks. Some of preliminary tests
conducted during this thesis are presented in the Chapter 9.
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Emulating and characterizing strong turbulence

conditions for space-to-ground optical links:

The PICOLO bench

P. Robles, C. Petit, M.-T. Velluet, L. Le Leuch, A. Montmerle-Bonnefois, L.
Paillier, J.-M. Conan, F. Cassaing, J. Montri, B. Neichel, N. Védrenne

Published in
the Journal of Astronomical Telescopes, Instruments, and Systems (2023)

Abstract: We present a method to develop a turbulence emulation bench
for low-Earth-orbit satellite-to-ground optical communication links under strong
turbulence. We provide guidelines to characterize the spatio-temporal dynamics
of phase disturbances and scintillation produced by the emulator on a laser beam.
We implemented such an emulator for a link at 10◦ elevation and discuss here its
design method and characterization. The characterization results are compared to
numerical simulations; this characterization results in the validation of a digital
twin of the emulator. The emulator will serve as a testing platform for adaptive
optics systems and other free-space optical communication components under
strong turbulence conditions.

8.1. Context
Optical communication between satellites and optical ground stations will deliver
high speed data transfer between space and Earth (Voland et al. 2019; Hauschildt
et al. 2019). In the case of low Earth orbit (LEO) satellites, higher throughput
would enable direct-to-Earth (DTE ) links, which download high resolution sensor
data directly from the satellite hosting the payload to the ground. DTE links serve
as an alternative to geostationary satellite relay architectures, which may not be
available for small constellations.
High data-rate optical communications rely on single-mode fiber coupling for

different techniques such as optical amplification and coherent detection. Unfortu-
nately, the atmospheric turbulence present in the few tens of kilometers close to the
ground impacts the quality of the optical beam and hinders fiber coupling (Shaklan
and Roddier 1988), leading to a reduction of the possible data rate due to signal
fading (Giggenbach 2008). Atmospheric turbulence causes phase distortions on the
wavefront of the transmitted laser beam. The use of adaptive optics (AO) provides
phase correction of the wavefront and thus improves coupling. However, unlike
in traditional astronomical applications, LEO-to-ground links may face strong
turbulence conditions that lead to amplitude distortions. The amplitude distor-
tions result in spatio-temporal variations in optical intensity known as scintillation
(Fante 1975). Scintillation causes variations in the intensity of the received optical
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signal (Yura and McKinley 1983) and impairments in the wavefront measurements
(Barchers et al. 2002). Two factors lead to this strong turbulence regime. First,
LEO links need to work at low elevation angles (desirably down to 10◦) in order
to extend the link duration. At these angles, the propagation distance in the
atmosphere is very long (> 50 km), leading to a longer propagation path and a
larger volume of turbulence crossed, increasing the total turbulence distortion
strength. Second, day-time operation faces stronger turbulence due to temperature
gradients caused by solar radiation.
In order to test AO systems and optical communication components under strong

turbulence, ONERA has developed the PICOLO bench (Velluet et al. 2020): a
turbulence emulation for a LEO-to-ground optical link. This laboratory emulator
will complement the current efforts in numerical simulations (Vedrenne et al. 2012)
and experimental tests (Petit et al. 2022). The development of satellite-to-ground
links requires extensive testing of the different subsystems. Testing with satellites
(Boroson and Robinson 2014; Fischer et al. 2015; Petit et al. 2016) is limited by link
duration and the lack of LEO satellites equipped with onboard optical terminals.
Different ground-to-ground experiments (Brady et al. 2017; Bitachon et al. 2022;
Bonnefois et al. 2022) have been designed to replicate the conditions of those
links, but it is difficult to achieve realistic and reproducible turbulence conditions.
Turbulence emulators (Qu and Djordjevic 2016; Brady et al. 2019; Kudielka et al.
2019) provide well-known, reproducible, and available optical turbulence conditions
that enable the testing of AO systems and other optical communication components.
The originality of this work is three-fold: first, this emulator is one of the

few systems representative of low elevation LEO-to-ground links including phase
but also scintillation effects emulation; second, we provide a thorough laboratory
characterization of these effects and compare them to numerical simulations; and
third, we have produced a digital twin of the laboratory emulator. The digital
twin complements the experimental validation of new instrumental concepts in a
two-stage process: first, it is used to assess the expected performances and, later,
to interpret the experimental results.

8.2. Optical Turbulence Emulation
Most approaches and experiments for turbulence emulation have been developed for
either astronomical cases (i.e. weak turbulence) or horizontal links (DiComo et al.
2016) (i.e. constant turbulence profile), but those do not cover the specific needs
of the propagation channel of a LEO-to-ground link at low elevation: multi-layer
profile, strong turbulence, and high layer translation speeds. Having multiple layers
of turbulence is necessary since satellite-to-ground links are slanted links that go
across different atmospheric altitudes. The strong turbulence is a result either
of day-light conditions, where turbulence is stronger due to solar radiation, or
of low elevations, where the path across the turbulence is longer and therefore
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turbulence is stronger. Per-layer translation speeds are higher for LEO links since
there are two different components: Natural wind and apparent wind. Natural wind
corresponds to the atmospheric local wind that causes a shifting of the different
turbulence layers; its vertical profile depends on the dynamics of the atmosphere.
Apparent wind corresponds to the apparent translation of the different turbulence
layers due to the relative movement of the line-of-sight with respect to the layers
during satellite tracking. The apparent wind speed depends on the angular tracking
velocity of the telescope and the distance to a given layer. These speeds are typically
an order of magnitude higher at the upper atmospheric layers than the typical wind
speeds in astronomical applications and therefore, they represent an additional
emulation challenge.
Different methods are available for generating laser beam distortions similar

to the ones caused by atmospheric turbulence in a laboratory setup. We discuss
briefly the methods available (see (Jolissaint 2006) for a more detailed overview)
and motivate our choice for the emulator design. We distinguish three methods for
turbulence production: passive screens, active screens, and turbulence chambers.
Passive phase screens (Butler et al. 2003; Mantravadi et al. 2004) use an optical

surface with a fixed phase mask structure providing the optical path difference
(OPD) corresponding to atmospheric turbulence distortions. This mask can be in
transmission or reflection. The OPD is generated by controlling the thickness of
the surface in a homogeneous optical index medium, or by using a controlled inho-
mogeneous optical index. The phase screens are often mounted on a rotating stage,
which produces a shift that approximates the linear displacement of atmospheric
turbulence layers due to wind. Since the phase mask pattern used is specified by
the user, the phase screens produce deterministic turbulence and can implement
profiles by employing one layer per screen. This is a method that has been preferred
by several astronomical projects (Thomas 2004; Hippler et al. 2006a; Roberts et al.
2018; Mieda et al. 2018). The OPD is engraved on the optical surface by different
methods such as index matching by Lexitek (Mantravadi et al. 2004; Zhou et al.
2017), acrylic paint spraying (Thomas 2004; Rampy et al. 2010) or the cumulative
etching by OPD Technologies (Hippler et al. 2006b) used by several AO systems
coordinated by the European Southern Observatory (ESO). This approach ensures
an accurate control of the phase distortion but loses versatility, as the distortions
are not reconfigurable except by changing the phase screens.
Active phase screens use optical devices such as spatial light modulator (SLM )

(Rickenstorff et al. 2016) and liquid crystal (LC ) (Giles et al. 2000; Corley et al.
2010) devices as phase modulators that act as reconfigurable phase screens. Those
are able to produce a linear phase displacement (unlike the rotating static phase
screens, which only approximate it) and can also combine it with boiling turbulence,
as their phase mask is fully programmable. Likewise passive phase screens, active
phase screens also create deterministic turbulence and can represent multi-layer
profiles. Unfortunately, these solutions pose problems of polarization conservation,
chromatism and, more importantly, are limited in reconfiguration rate. Deformable
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mirrors (Tyson and Frazier 2001) can provide a higher reconfiguration rate and
achromaticity, but present problems related to cost, spatial frequencies, and opto-
mechanical design for multi-layer arrangements.
Turbulent fluid chambers create turbulence by mixing two fluids at different

temperatures. For example, hot air turbulence chambers (Keskin et al. 2006) use two
streams of hot and cold air. The turbulence strength can be modified by changing
the temperature difference between the two streams, while the wind speed can be
regulated by the speed of the fans that inject them into the chamber. Nevertheless,
this method is not able to produce the turbulence strength profile characteristic
of slanted links, neither is able to produce the wind speed profile derived from
satellite tracking apparent wind. Additionally, the turbulence produced cannot be
reproduced in a deterministic manner.
A completely different alternative (Geisler et al. 2019) to turbulence emulation

uses a variable optical attenuator to create fade profiles in an optical fiber signal
derived from numerical simulations (incorporating both turbulence disturbances
and the AO system). This is a cost-effective solution to emulate a communication
channel under the effect of turbulence, with AO correction or not. However, this
method requires knowledge of the fiber coupling statistics with AO correction
(Canuet et al. 2018), which are not available for complex AO operating conditions
such as strong turbulence or feeder links precompensation (Lognoné et al. 2022).
Although most turbulence emulators described in the literature target astronom-

ical applications, some were developed for optical communication. For instance,
the bench in (Brady et al. 2019) is dedicated to the validation of an AO for
ground-to-satellite uplink pre-compensation. It is composed of a single phase screen
and presents an underestimated beam wandering due to a scaling problem. The
emulator in (Kudielka et al. 2019) is representative of an uplink at 30◦ elevation,
so it does not focus on a strong turbulence case and the effect of scintillation.
Finally, the work in (Qu and Djordjevic 2016) uses two SLMs with an intermediate
reflection to produce a second footprint on each SLM, obtaining four different phase
screens. The emulated link corresponds to strong atmospheric turbulence, but
the link is horizontal and there is no detailed characterization of the scintillation
produced on the beam. In summary, the existing emulators target different cases,
and therefore answer trade-offs different from ours, while, at the same time, a
detailed methodology for the characterization of phase and amplitude fluctuations
is usually lacking.
For our emulator, we decided to use passive phase screens mounted on rotation

stages, with the possibility of using an SLM to introduce additional boiling turbu-
lence or bursts of turbulence. Several criteria were considered in this decision: (1)
to specify a precise turbulence strength with the correct statistics, (2) to reproduce
the delivered turbulence conditions, (3) to produce strong enough turbulence (high
phase modulation dynamic), and (4) to be able to adjust the speed of every layer
to the strong apparent displacements due to satellite tracking.
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8.3. Bench Definition
The definition of the bench started with the selection of a reference turbulence
profile. We compressed the profile to a three-layer profile that could be implemented
on the bench as phase screens (see Section 8.3.1). The profile was then geometrically
scaled to reduce its size so it could fit on an optical table (see Section 8.3.2). We
specified and procured the manufacturing of the three phase screens according to
the selected three-layer profile (see Section 8.3.3). Finally, we designed the opto-
mechanics that allow propagating a laser beam through the turbulence emulator
and providing the generated turbulence to a client system and an analysis camera
(see Section 8.3.4).

8.3.1. Turbulence Profile Compression
We used as a reference profile a modified Hufnagel-Valley 5/7 model (Valley 1980)
(following the ITU -R P.1621-2 recommendation) with a turbulence strength at
the ground surface level of C2

n = 1 · 10−13m−2/3 and an upper-level wind speed of
Vrms = 21m/s that influences the turbulence strength of the upper layers of the
atmosphere. Another possibility for the profile selection is to use a database of in
situ C2

n profile measurements to define typical or worst-case profiles (Farley et al.
2019; Chabé et al. 2020). Note, that our overall emulator design methodology does
not depend on the selection of the reference profile.
The reference profile was first compressed to a 50-layer profile to allow Monte-

Carlo numerical simulations. The compression to 50 layers is carried by optimization
of layer height and strength under the condition of keeping constant the following
turbulence integrated parameters: r0 as a quantification of the phase distortion
strength, θ0 for the anisoplanatism, and σ2

χ for the scintillation strength. The
method is similar to the methods presented in Saxenhuber et al. (2017) but includes
the scintillation effects too.
A second profile compression was necessary to reduce the number of phase

screens required for the implementation of the emulator. The number of layers, and
therefore phase screens, on the emulator, should be limited in order to reduce the
system’s complexity and cost. At the same time, a multi-layer profile is also needed
to generate a representative turbulence profile: with the proper representation of
phase and scintillation effects and the corresponding temporal dynamics derived
from the natural and apparent wind profiles. Additionally, the use of several
screens limits the periodicity in the generated turbulence (see Section 8.4.2.5 for a
discussion on the periodicity).
We decided to use three layers since we consider that three layers allow rep-

resenting qualitatively the scintillation characteristics of the link. In fact, the
scintillation irradiation pattern depends on both turbulence strength and prop-
agation distance, therefore we can design each of the three layers to represent
one of the possible combinations and its resulting scintillation. The first layer is
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located at the telescope pupil and emulates the atmospheric ground layer: very
strong in turbulence but with short propagation distance, so negligible scintillation
contribution. The time evolution of this layer is mainly driven by natural wind, i.e.
slow layer speed (typical order of magnitude 10m/s). The second layer is located
at a more significant propagation distance. This will produce a typical size of
the irradiation pattern smaller than the size of the telescope pupil. When using
a Shack-Hartmann wavefront sensor, the typical size of the irradiation pattern is
similar to the size of one of the subpupils, so scintillation contributes to the flux
variation at the subpupil level, impairing wavefront sensing. The third layer will
be located far away and will represent the free atmosphere: weaker turbulence but
with a long propagation path. The resulting typical size of the irradiation pattern
will have a size close to the telescope pupil, which contributes to the variation of
available flux with time, and therefore the stability of the signal regardless of the
AO performance. The temporal evolution of the second and third layers is mostly
driven by the apparent wind component due to LEO satellite tracking, i.e. very
fast layer speed (typical order of magnitude 150m/s).
While 50 layers are enough to properly represent the original turbulence profile,

the restriction to three layers poses a greater challenge. The first layer was fixed
to be at the telescope pupil. The positions and strengths of the second and third
layers were found using the same optimization based on integrated parameters as
for the 50-layer profile. The natural wind velocity profile was chosen as 10, 15, and
30 m/s respectively, while the apparent wind is computed from the satellite tracking
slew rate and the distance to the corresponding layer. We consider a 10◦ elevation
and an orbit altitude of 500 km that result in a slew rate of 3.834mrad · s−1.
Table 8.1 reports the integrated parameters of the 50-layer and the three-layer

profiles. It can be observed that the compression of the profile managed to keep
the targeted integrated parameters very close. A more detailed comparison of the
50-layer and the three-layer profiles is available in Velluet et al. (2020).

Table 8.1.: Integrated turbulence parameters for the 50-layer profile and the compressed
three-layer profile.

Parameter 50-layer Three-layer

r0 (cm) 2.56 2.56

θ0 (µrad) 1.75 1.68

τ0 (µs) 338 315

σ2
χ 0.58 0.58
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8.3.2. Propagation Path Geometrical Scaling
We performed a down-scaling of the link geometry in order to fit it within a
laboratory optical table. The complete process is a trade-off between available
technologies for phase screen manufacturing (including resolution and stroke), opto-
mechanical design, and required space (as we wish to keep the system compact).
We provide a simplified discussion of this trade-off.

To achieve a physically equivalent system in terms of turbulence and diffractive
effects, the down-scaling must preserve the following dimensionless groups constant:
D/

√
λL for layer at distance L and a telescope of diameter D to be representative

of scintillation effects on the pupil due to each layer; D/r0 and the contribution
to it of each layer through the C2

n · dz profile; and finally V/ (D · fsamp), which
relates the layer displacement in a sampling interval to the size of the pupil. In the
following, for each parameter X we use the notation Xsky for its value on sky and
Xbench for its effective value on the bench and express the relationships between
them.
Conservation of scintillation effects leads to:

Dbench =

√
Lsky

Lbench

·Dsky , (8.1)

Dbench/Dsky =
√
Lsky/Lbench is a geometric compression factor defined by the

ratio between the initial and final propagation lengths. The maximum propagation
distance available from the top layer to the telescope will therefore drive the scaling
of the telescope diameter. At the same time, reducing the total propagation distance
requires reducing the telescope diameter too. The telescope diameter in the bench
defines the beam footprint on the phase screens, therefore it cannot be reduced
too much, otherwise, the resolution of the manufacturing of the screens limits the
turbulence that can be achieved.
Considering conservation of D/r0, the turbulence strength is down-scaled as:

r0,bench =
Dbench

Dsky

· r0,sky . (8.2)

To obtain the downscaling of the C2
n · dz of every layer, we use r0,bench. Since the

relative C2
n · dz profile is conserved, the absolute values of C2

n · dz can be scaled to
achieve r0,bench.
Finally, each layer’s velocity depends on two factors: the relationship between

diameters and a temporal scaling factor. For a given layer the velocity is down-scaled
as:

Vbench =
Dbench

Dsky

· fsamp,bench

fsamp,sky

· Vsky =
Dbench

Dsky

· 1
τ
· Vsky . (8.3)

The first factor of the last right hand term is related to the previously defined
geometric compression factor. The second factor, τ = fsamp,sky/fsamp,bench, is a
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time scaling factor and it allows a temporal down-scaling of the layer speeds, by
operating the bench at lower sampling frequency. As a result, any time interval
∆tsky on the original system is equivalent to ∆tbench = τ ·∆tsky on the down-scaled
system.
For example, for an AO system working at a 5 kHz sampling frequency on-sky

and 50Hz on the bench, the equivalent time scaling factor is τ = 5000/50 = 100,
this means that everything on the emulator runs 100 times slower than on-sky. For
the same reason, to acquire a time series of ∆tsky = 60 s of duration, it would be
necessary to record during ∆tbench = τ ·∆tsky = 100 · 60 s = 100min on the bench.
Ideally, one would test a system with τ = 1, so the system operates at its nominal

frequency. Two different factors make temporal scaling convenient: first, reducing
the rotational speed of the phase screens, and second, allowing the use of slower
components in the emulator or client system. Indeed, due to the apparent wind
speed of the LEO satellite, the upper layer speed is quite high; so high that the
rotational speed of the phase screen to achieve such a layer velocity would push
the limits of the rotation stage and produce possible vibrations and safety issues in
case of component malfunction. In addition, the PICOLO bench is dedicated to
the development and testing of new concepts and systems, cases in which it may
not be possible to run certain components as fast as in operational conditions on
sky. Temporal scaling is then a useful option. As an example, operating at a slower
time scale also allows the use of an SLM, located in the pupil, whose operation
is usually limited at 50Hz, to add user-defined non-stationary turbulence, bursts,
or specific perturbations. Finally, during the characterization of the bench, the
infrared camera used is limited to an acquisition frequency of 100Hz, so the scaling
was also necessary during the characterization to obtain an equivalent sampling
frequency of 10 kHz.
Note that the geometrical scaling of the emulator is independent of the diam-

eter chosen for the telescope since the relationships are all in terms of the ratio
Dbench/Dsky =

√
Lsky/Lbench. If one would like to change the telescope diame-

ter, one could compute Dbench using Equation 8.1 and the optical propagation
characteristics in the emulator would not change.
In the following, we provide the scaling for our implementation of the emulator.

We wish to have a telescope diameter in the bench equivalent to Dsky = 40 cm
diameter telescope on-sky. The results of the scaling exercise are summarized in
Table 8.2. From the top layer, the propagation distance towards the telescope is
Lsky = 57 km on sky, and we want to limit the maximum propagation distance
on the bench to 1.4m. Equation 8.1 leads to a telescope pupil of Dbench = 2mm.
The wavelength is the same on the bench: λsky = λbench = 1.55 µm. For the
temporal down-scaling, we consider two scenarios: one where a fsamp,sky = 5kHz is
equivalent to fsamp,bench = 2kHz, close to the current AO systems, and one where
fsamp,sky = 5kHz is equivalent to fsamp,bench = 50Hz for testing new components
that cannot work at higher rates at the moment. The layer velocities in the table
are reported for the later case, fsamp,bench = 50Hz, they must be multiplied by 40
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for an AO loop running at fsamp,bench = 2kHz. These values lead to acceptable
specifications for the procurement of the phase screens and their rotating stages
while achieving a compact bench design.

Table 8.2.: Resulting geometric down-scaling for the different phase screens.

Parameter On-sky Bench

Propagation distance 57 km 1.4m

Pupil diameter 0.4m 2mm

Wavelength, λ, (µm) 1.55 1.55

Layer 1

Position, z 0m (pupil) 0m (pupil)

Wind speed, V , (m/s) 10.00 5 · 10−4

Layer 2

Position, z 2.88 km 0.072m

Wind speed, V , (m/s) 26.04 1.3 · 10−3

Layer 3

Position, z 57.8 km 1.4m

Wind speed, V , (m/s) 250.84 1.2 · 10−2

8.3.3. Phase Screen Specification
The phase screens have been manufactured by the company SILIOS Technologies.
We have provided the phase screen specification as a 2D phase map of the desired
phase. The maps were generated from the specified r0 and L0 for each layer and
with a von Kármán spectrum. The maps were scaled to keep the same relationship
with respect to the telescope diameter after the down-scaling of the bench. The
phase screens are manufactured with a 40 µm resolution, that for a Dbench = 2mm
and Dsky = 0.4m is equivalent to a maximum spatial frequency representation of
62.5 cycle ·m−1 on-sky.
The technical constraints in the manufacturing process led to reducing the turbu-

lence strength in PS1, the strongest layer, since the resulting peak-to-valley distance
in the screen was not attainable. This resulted in a change of the specification of
C2
n · dz from 4.615 · 10−11m

1
3 to 2.545 · 10−11m

1
3 . The change in the turbulence

strength of PS1 results in a change of the global r0 from 2.6 cm to 3.3 cm, while
the scintillation characteristics remain the same, since PS1 is located at the pupil
of the telescope. This loss of turbulence strength was considered acceptable since
it does not affect the scintillation characteristics.
Table 8.3 summarizes the different profiles used in this work. All C2

n · dz
values provided correspond to the on-sky values, i.e. before down-scaling. All
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Table 8.3.: Summary of the different three-layer profiles considered in this work.

Layer z
C2
n · dz (m

1
3 )

Compressed Specified Measured

Layer 1 0m (pupil) 4.615 · 10−11 2.545 · 10−11 2.563 · 10−11

Layer 2 2.88 km 1.605 · 10−11 1.616 · 10−11 1.396 · 10−11

Layer 3 57.8 km 8.492 · 10−13 8.553 · 10−13 1.015 · 10−12

the numerical simulations conducted in this work simulate the equivalent on-sky
system and therefore use these values. The ”compressed” profile corresponds
to the compression from the original 50-layer profile to a three-layer profile (see
Section 8.3.1). The ”specified” profile corresponds to the profile specified to the
phase screen manufacturer, where the strength of layer 1 had to be reduced due
to manufacturing constraints (see Section 8.3.3). Finally, the ”measured” profile
corresponds to the profile measured during the phase characterization of the screens
(see Section 8.4.1). This is the profile used in Section 8.4.2 for the numerical
simulations that are compared to the characterization measurements, it is therefore
considered as the most representative with respect to the experimental setup.

8.3.4. Opto-mechanical Design
Figure 8.1 depicts the opto-mechanical layout of the bench, while Figure 8.2 provides
an image of the bench implementation. The main optical path is marked with a
red line. A laser source is injected in the bench using a fibre collimator. A first
phase screen (PS3) is positioned close to the source at the highest altitude, while
PS2 is close to the ground and PS1 is located as close as possible to the entrance
pupil of the telescope. The screens are placed on rotation stages. Two mirrors
mounted on tip-tilt stages allow proper alignment of the input beam. A filter wheel
equipped with neutral density filters allows different power attenuation levels on
the laser input.
The telescope is emulated by a combination of lenses. The entrance pupil of the

telescope is located at a mechanical stop in front of the first lens of the telescope.
We use afocal lens systems to re-image the pupil plane and re-scale it. The output
beam of the telescope is finally collimated. A periscope is placed at the output
of this main path to ease coupling with a client system. The second path (in
blue) is dedicated to the analysis of the perturbated beam. A beamsplitter picks a
fraction of the flux and sends it to a near-infrared camera. A flip lens allows to
switch between focal plane and pupil plane imaging on the camera. Three planes
are conjugated to the entrance pupil (marked with a purple arrow): the first may
accept a SLM, though it is a plane mirror for the moment; the second to the first
mirror of the output periscope; and the third to the infrared camera (if in pupil
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imaging configuration). The emulator is integrated on a 600mm× 900mm optical
breadboard.

Figure 8.1.: Opto-mechanical design of the PICOLO turbulence emulator.

Figure 8.2.: Image of the implementation of the PICOLO bench.
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(a) PSF, PS1. (b) PSF, PS2. (c) PSF, PS3. (d) PSF, all.

(e) Pupil, PS1. (f) Pupil, PS2. (g) Pupil, PS3. (h) Pupil, all.

Figure 8.3.: Exemplary experimental acquisitions of short-exposure PSF and pupil
images for the different phase screen configurations.

8.4. Characterization
We present here our methodology for the characterization of the turbulent link
channel emulator. The goal of this characterization is to ensure that the phase
screens have been properly manufactured, that the emulator produces the correct
turbulence conditions, and that those are understood.
We provide measurements of both phase and scintillation on both a per-screen

basis and for the three-screen configuration. The study of scintillation covers both
its spatial and temporal behavior. We also compare the results to a numerical
simulation of the emulator using TURANDOT (Vedrenne et al. 2012), an optical
physics propagation tool developed by ONERA for CNES (the French Space
Agency). The result of this comparison is a digital twin of the PICOLO bench
to support cross-validation between experiments and simulations during future
developments.

8.4.1. Phase Characterization
Different methods are possible to characterize the phase introduced by the phase
screens and verify that they provide the desired phase distortions in terms of phase
variance and spectrum. A first method (Tokovinin 2002) uses the measurement
of the full-width-half-maximum of the long-exposure seeing-limited point spread
function (PSF ) and compares it to the theoretical expectation from the prescribed
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phase. This method is not applicable on the bench in our case due to both the
strong beam wander (resulting in PSF cropping) and speckles in the PSF derived
from the strong turbulence conditions (see Figure 8.3). Alternatively, we chose
to use a dedicated set-up to measure wavefront slopes with a Shack-Hartmann
wavefront sensor, reconstruct the phase associated with these measurements, and
compare the reconstructed phase statistics to the statistics of the prescribed phase
screens. The phase reconstruction is conducted using a Zernike polynomials basis,
obtaining modal variances for each mode. To compare the estimated modal phase
variances to the screen prescription, a theoretical model of these variances assuming
a von Kármán spectrum is fitted using the two model parameters: the Fried number
(r0) and outer scale (L0). The fitting provides an estimation of these two parameters,
which can be compared to corresponding values for each of the prescribed phase
screens. The details of this method and the required setup are discussed in the
next section.
The phase characterization presented here was the method used to accept the

phase screens from the manufacturer, while further characterization was conducted
after acceptance. The characterization of the scintillation power spectral densities
in Section 8.4.2 provides supplementary phase verification, since the scintillation
characteristics depend on the phase.

8.4.1.1. Measurement Setup

We first obtained Shack-Hartmann measurements of the phase screens, to achieve
that we illuminated a circular section of the phase screen with a collimated laser
source at a wavelength λ = 1.55 µm. A 4f imaging relay was used to conjugate the
footprint of the collimated beam on the phase screen to the pupil of the Shack-
Hartmann wavefront sensor. Conjugation of the planes avoids further propagation
of the wave between the phase screen and the wavefront sensor, which would produce
scintillation and therefore bias the wavefront measurement. The Shack-Hartmann
wavefront sensor used is an Imagine Optic HASO4 SWIR 1550, which is capable of
providing absolute slope measurements thanks to the calibration provided by its
manufacturer.
The collimator beam footprint was placed at the same distance from the center

of rotation of the phase screen as used in the bench. Different samples of the screen
were taken by rotating the screen. We decided to measure only the disk that will
be illuminated during the rotation of the phase screens since the distance between
the rotation center and the beam footprint is constant. This strategy ignores the
rest of the screen and provides a limited number of measurements, however, it
corresponds to a characterization of the only area of the phase screen that is used.
The total number of statistically independent measurements available is around
50 per phase screen; although overlapping measurements were used to average
measurement noise even if they do not bring statistical convergence. The same
discussion applies to the scintillation characterization.
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The acquired slope measurements were used to reconstruct the Zernike coefficients
(using the least-squares method (Cubalchini 1979)) for each spatial sample; the
variance of each coefficient across all samples provides an estimation of the variance
for the corresponding Zernike mode. We chose to reconstruct up to the 10th Zernike
polynomials radial order, considering the number of available Shack-Hartmann
subpupils. The resulting Zernike modes variances were averaged by radial order
and fitted to their theoretical values assuming a von Kármán spectrum Andrews
and Phillips (2005) using as fitting parameters the Fried number (r0) and outer
scale (L0). The fitting was computed by solving a non-linear least squares problem
using a Levenberg-Marquardt optimization routine. Special attention needs to
be paid to the fitting: The modal variance of the atmospheric turbulence follows
a power law with very different orders of magnitudes between radial orders (see
Figure 8.4); if the least squares cost function is computed using all modal variances,
the low order modes, which have bigger variances, will dominate the fitting and
bias the estimation. In the von Kármán spectrum, the low radial order modes are
influenced by both the outer scale and the Fried parameter, while the high radial
order modes are only influenced by r0. As a result, r0 can be estimated by first
fitting the high radial orders to a von Kármán spectrum with a fixed outer scale;
we use the Kolmogorov spectrum which is equivalent to an infinite outer scale. A
second fitting of all modal variances is used to estimate L0, this time assuming a
von Kármán spectrum with the previously estimated r0 as a fixed parameter.

8.4.1.2. Results

Figure 8.4 illustrates, for the case ofPS2, the measured Zernike coefficient variances
averaged per radial order and a comparison to the best fit to a von Kármán spectrum.
The close fitting of the measurements to the theoretical spectrum shape confirms
that the measured phase follows the power law of the von Kármán spectrum. The
deviations at higher radial orders (i.e. high spatial frequencies) are related to noise
propagation and the reconstruction of higher Zernike orders (aliasing effect). The
results of the Zernike mode variance fitting for the three screens are summarized
in Table 8.4 by means of the resulting r0 and L0 estimates. In terms of relative
error between the expected and the measured quantities, r0 error is 10% in the
worst case, while for L0 it can be as high as 65%. The bigger mismatch in L0 can
be explained by the difficulty of estimating the variance at low spatial frequencies
with a limited number of measurements; since low frequencies have fewer periods
over one measurement, it is necessary to use more measurements to estimate low
spatial frequencies than to estimate high frequencies. This lack of accuracy could be
improved in the future by increasing the number of available phase measurements
by measuring all the phase screen area and not only the annular section that is
illuminated during the operation of the bench.
In conclusion, these results provide an estimation of the r0 and L0 of the screens

and confirm that they follow the desired von Kármán spectrum in their spatial
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Figure 8.4.: Reconstructed Zernike mode variances vs. their fit to a von Kármán
spectrum for PS2.

Table 8.4.: Reconstructed Zernike mode variances fitting results to von Kármán spec-
trum.

Screen D/r0 theo. D/r0 meas. L0/D theo. L0/D meas.

PS1 8.889 8.964 3.000 3.945

PS2 6.780 6.227 3.000 8.585

PS3 1.159 1.292 10.000 16.592

statistics. This first characterization allowed us to test the quality of the phase
screens and accept them. The later characterization of the scintillation presented in
the next section served as a supplementary characterization of the phase produced
by the screens. We also used the measured per-screen r0 to derive the equivalent
C2
n · dz for each screen, reported in Table 8.3 as ”measured” profile. These values

were used for the numerical simulations of the wave propagation in the bench.

8.4.2. Scintillation Characterization
Optical wave scintillation, unlike phase, can be directly measured as intensity on
the pupil plane. We characterized the scintillation on the emulator by analyzing
images of irradiance patterns on the pupil using a matrix detector. The scintillation
characterization was conducted in both spatial and temporal domains. We compared
the measured results to a numerical simulation of the same propagation case. This
results in a cross-validation of the specification of the phase screens and the resulting
spatial and temporal signatures for scintillation.
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8.4.2.1. Measurement Setup

As pointed out in Section 8.3.4, the bench allows pupil imaging by an afocal
telescope that relays the pupil plane from the telescope entrance aperture to an
imaging matrix detector. This allows recording the irradiance distribution (i.e.
sampled value proportional to the irradiance on each pixel in W ·m−2) over the
pupil of the system, which is used to characterize the scintillation.
The acquisitions are taken in two different ways for spatial and temporal charac-

terization. For spatial characterization, the phase screens are rotated so that for
every acquisition the beam footprints on the screen do not overlap. In this way, we
reduce the spatial correlation between measurements. For temporal characteriza-
tion, the phase screens are rotated to a speed that produces the equivalent layer
velocity for the given layer, achieving the desired temporal correlation.
For the spatial characterization, the integration time and the screen rotational

speed were adjusted to reduce the displacement during exposure to less than a tenth
of the pixel size, therefore negligible. In the case of the temporal characterization,
the 50µs exposure time used is equivalent to a 500 ns exposure time on-sky (see
the temporal compression discussed in Section 8.3.2) and as a result negligible too.
The bottom row of Figure 8.3 presents a typical image of the experimental

acquisitions of pupil irradiance patterns used for scintillation characterization.
We carried all characterizations first on a per-screen basis and later with the three

screens together. The individual screen characterization provides the verification
of every screen, while the three-screen setup characterizes the operating conditions
of the bench.
The fiber collimator used as source (i.e. emitter) beam has a 7mm beam waist

diameter at the pupil of the telescope, while the pupil is 2mm. This results in a
truncated Gaussian illumination pattern on the pupil. The effect of the Gaussian
shape and its wandering was confirmed to be negligible via numerical simulations.
As a result, the rest of the numerical simulations conducted do not model this
effect and consider a homogeneous illumination pattern.

8.4.2.2. Numerical Simulations

We compared the experimental results to numerical simulations using the optical
propagation code TURANDOT. The numerical simulation does not use the phase
maps specified to the manufacturer. Instead, it generates phase screens with von
Kármán statistics and a C2

n · dz reported as ”measured” profile in Table 8.3, which
was derived from the fitting of r0 summarized in Table 8.4. As a consequence, the
results of the numerical simulations are expected to be statistically equivalent to
the perturbations generated by the emulator, but not strictly the same. For spatial
characterization statistics, each realization uses news statistically independent draws
of the phase screens from the prescribed C2

n · dz. For the temporal characteristics,
a time series is generated from a unique realization of the phase screens, for each
time step the layers are shifted according to their wind speed achieving the time
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series. After propagation, the irradiance over the pupil is computed, obtaining the
equivalent of the experimental measurements. Once the equivalent data to the
experiment is produced, experiment and simulation data are post-processed in the
same fashion.
The numerical simulations do not contain any measurement noise in the resulting

irradiance. This is not the case for the experimental measurements, where read-out
noise and shot noise are not negligible. The laser power was adjusted to be as high
as possible during the characterization. This is limited by the saturation of the
matrix detector pixels due to the finite dynamic range, while the dynamic range
(i.e. variance) of the scintillation speckles increases with the turbulence strength.

8.4.2.3. Characterization Metrics

We characterize scintillation by two main metrics: the power spectral density of
the normalized irradiance distribution over the pupil and the scintillation index.
First, we define a normalization of I(x, y, k), the irradiance distribution across

the spatial coordinates x and y, with k being either a temporal or an ensemble
index:

Ī(x, y, k) = I(x, y, k)− ⟨I⟩k(x, y)
⟨I⟩k(x, y)

. (8.4)

The bracket operation corresponds to the sample average of the magnitude,
defined in general as:

⟨I(x, y, k)⟩x,y,k = ΣNx
ix=1Σ

Ny

iy=1Σ
Nk
ik=1X(xix , yiy , kik)/ (Nx ·Ny ·Nk) , (8.5)

while in this case it is ⟨I(x, y, k)⟩k = ΣNk
ik=1X(x, y, kik)/Nk. Note that the

normalization is different for each pixel over the pupil of the telescope, therefore
it allows the comparison of the scintillation regardless of the average irradiance
impinging on the pupil, i.e. it removes any fixed irradiance pattern.
The scintillation index is defined as the variance of the normalized irradiance

distribution:

σ2
Ī = Var

(
Ī
)
= ⟨
(
Ī − ⟨Ī⟩

)2⟩ = ⟨Ī2⟩
⟨Ī⟩2 − 1 (8.6)

The variance of the normalized irradiance field can be computed either as a
sample variance of the normalized pixel values or from the integral of their power
spectral density. For the spatial scintillation index, the sample variance is computed
for all pixels in the pupil for each acquisition and then the resulting variances are
averaged for all realizations:

σ2
Ī = ⟨Varx,y

(
Ī(x, y, k)

)
⟩k = ⟨⟨

(
Ī − ⟨Ī⟩x,y

)2⟩x,y⟩k . (8.7)
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The temporal computation is the same but computed per pixel using all the
samples in the time series of every pixel and then averaged across all pixels:

σ2
Ī = ⟨Vark

(
Ī(x, y, k)

)
⟩x,y = ⟨⟨

(
Ī − ⟨Ī⟩k

)2⟩k⟩x,y . (8.8)

We also compute the spatial and temporal PSD of the scintillation patterns.
For the spatial characterization, we compute a 2D PSD (using a 2D fast Fourier
transform) for every acquisition and then we compute the average of the 2D PSDs
of all acquisitions. After computation of the azimuthal average, the spatial PSD is
reported as a 1D PSD. For the temporal PSD computation, we compute the 1D
PSD (using the Welch method) of the per-pixel irradiance time series and then
take an average of all PSDs for all pixels.
For the temporal characterization, we also provide the pupil-averaged flux. To

compute this we do a spatial average of the normalized irradiance across all pixels
for every acquisition, obtaining a unique time series that is analyzed as the per-pixel
time series. This is a proxy measurement of the effect of scintillation on the flux
measurement of a mono-detector on the focal image plane but computed on the
pupil plane from the measurement of the matrix detector. This measurement
may be of interest to assess the performance of mono-detectors in these conditions.
Nevertheless, this approximation neglects the variation of the angle of arrival, which
may lead to a loss of flux if the mono-detector is not large enough.

8.4.2.4. Spatial Scintillation Results

The left column of Figure 8.5 presents the spatial 1D PSD forPS2, PS3, and the
three-screen profile respectively. The solid line labeled PICOLO, corresponds to the
experimental measurements, while the dashed line, labeled TURANDOT, depicts
the numerical simulation result. In all cases, both lines overlap for the most for
the most part. At least three different factors can explain these deviations: (1)
The manufacturing defects and limitations of the phase screens, (2) the presence
of noise in the irradiance measurements, and (3) the presence of aliasing due to
the finite sampling of the irradiance. In any case, those deviations do not result
in strong deviations of the total variance; Figure 8.6 illustrates this by reporting
the cumulative integral for each of the PSD. Note also that the low and high
frequencies have low power and their contribution to the variance is small, so it is
the contribution of any small difference between the spectra.
With respect to the manufacturing process effects, the highest spatial frequency

present in the phase screens is about 60 cycles/m, corresponding to a 40µm pixel
size in the phase screens with a 2mm beam diameter and an equivalent 0.4m
telescope diameter on sky. Any frequency beyond that one is not supposed to
be correctly represented by the phase screen; in addition, the phase screens were
subject to a subpixel smoothing process by the manufacturer to remove high-
frequency defects, this process could also affect the spatial frequencies close to
the.
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Regarding measurement noise, we can distinguish two different contributions:
detector read-out noise and photon noise. Detector read-out noise can be estimated
by taking dark frames with the characterization camera and its PSD subtracted
from the irradiance one. The presented data was corrected from the data, although
its effect is negligible in the variance and in the power spectral densities. The
contribution of photon noise cannot be easily estimated, since by definition the
irradiance measurements under strong scintillation have a high dynamic range, it
is therefore not possible to measure the spectrum of this contribution, and the
measurements reported contain this signature.
The presence of aliasing has not been quantified either. In conclusion, although

it is not possible to allocate the deviations measured to one of the possible causes
stated, those are small and have a negligible contribution to the scintillation index.
Instead, we highlight the good fitting of all the cut-off frequencies that define
the main spectrum features. SincePS2 is stronger in turbulence, it is closer to
scintillation saturation and, therefore, the PSD of the spatial scintillation presents
two regimes with cut-offs (Andrews et al. 1999; Sechaud et al. 1999) at a spatial
frequency proportional to r0/λz and 1/r0, while the weaker PS3 has its only cut-off
at a spatial frequency proportional to 1/

√
λz, where z is the propagation distance

from the layer to the telescope pupil plane.

Table 8.5.: Spatial scintillation index comparison between numerical simulation and
experiment.

PS1 PS2 PS3 All

TURANDOT 0.000± 0.000 0.985± 0.006 0.767± 0.018 2.050± 0.020

PICOLO 0.102 0.972 0.770 2.090

Table 8.5 provides a comparison of the spatial scintillation indices for both
numerical simulation and experiment. The scintillation index is computed as the
sample variance of the normalized irradiance measurements (see Section 8.4.2.3).
For PS1, the expected scintillation index is zero since the screen is located at
the pupil of the telescope and there is no propagation distance. This is the case
in the numerical simulation, while in the experimental setup, we measure some
scintillation. The reason for this is two-fold. First, it is not physically possible to
place the screen exactly at the pupil, so there is some propagation. For example,
the same screen placed at a distance of 1mm from the telescope pupil results in
an equivalent distance of 40m on sky and would lead to a scintillation index of
0.064. Second, some diffractive effects are observed (see filament-like structures
in the pupil PS1 image in Figure 8.3) that also contribute to the inhomogeneity
of the pupil illumination. Nevertheless, as can be observed in the three-screen
configuration, the scintillation from phase screen 1 does not result in a significant
contribution.
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(b) Temporal, PS2 at P2.

10−1 100 101 102

Spatial frequency [cycles/m]

10−6

10−5

10−4

10−3

10−2

10−1

P
S

D
(Ī
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(c) Spatial, PS3 at P3.
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(d) Temporal, PS3 at P3.
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Figure 8.5.: Spatial and temporal one-dimensional power spectral densities of the
normalized irradiance distributions produced by the phase screens.

Regarding the uncertainty quantification of the results, we provide the error bars
for the numerical simulation. The uncertainty of the numerical simulation is due to
the statistical convergence of the results. For the computation of the error bars, we
used a bootstrapping method, where we divided the available number of samples
in groups and computed the average scintillation index from it, where the error
bars correspond to the standard deviation among all results.
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(b) Temporal, PS2 at P2.
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(f) Temporal, three screens.

Figure 8.6.: Cumulative sum of spatial and temporal one-dimensional power spectral
densities of the normalized irradiance distributions produced by the phase screens.

8.4.2.5. Temporal Scintillation Results

The right column of Figure 8.5 presents the temporal 1D PSD for PS2, PS3, and
the three-screen profile respectively. The solid line labeled PICOLO, corresponds
to the experimental measurement, while the dashed line, labeled TURANDOT,
depicts the numerical simulation result. In all cases, the cut-off frequencyAndrews
and Phillips (2005) is proportional to V/

√
z/k, with V the transversal velocity of
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the layer, and k = 2π/λ the angular wavenumber. The experimental curves show
in this case a noise floor at high frequencies, especially for PS2, where the curve
has a different floor to the noise floor from the simulation. The causes for these
noise floors are the same as for the spatial spectra, since the temporal spectra
are given by filtering of the spatial spectra due to the shifting of the layers. Both
PS3 and the three-layer case show in the TURANDOT case a bump on the high
frequencies due to a simulation artifact currently being analyzed. Apart from this,
the fit of the curves and their cut-offs shows a satisfactory agreement between the
simulation and experiment.
Table 8.6 provides a comparison of the temporal scintillation indices for both

numerical simulation and experiment. The scintillation index is computed as the
sample variance of the normalized irradiance measurements (see Section 8.4.2.3).
Note that, following the ergodicity hypothesis, the scintillation indices in this
table should be the same as the spatial scintillation indices reported in Table 8.5,
which proves to be consistent with our results. We provide the error bars for the
temporal simulation with all phase screens computed as the standard deviation
of the scintillation indices computed for five simulations of the same case with
different random seeds for the phase screen generation.

Table 8.6.: Temporal scintillation index comparison between numerical simulation and
experiment.

PS1 PS2 PS3 All

TURANDOT 0.000 1.056 0.692 2.055± 0.052

PICOLO 0.101 0.968 0.765 2.138

Finally, we study the variation of the integrated flux after PICOLO. This
computation is based on the time series resulting from the averaging of the intensity
measurements for every pupil pixel at every frame. Note, this is not an equivalent
of the coupled flux, since it does not take into account the phase and amplitude
effects in the coupling into a single mode fiber. Even with perfect AO (i.e. phase)
correction, the mismatch between the wavefront amplitude and the Gaussian mode
of the fiber will cause further losses that are not accounted for in this measurement.
This measurement is closer to the flux measured by a mono-detector big enough
that the variation of the angle of arrival due to turbulence and the PSF size does
not cause a loss of flux during the measurement of the time series, i.e. the power
in the bucket at the telescope aperture level.
Figure 8.7 shows a part of the time series obtained, both for the experiment,

labeled PICOLO, and the numerical simulation, labeled TURANDOT. The time
series is further analyzed by computing its PSD, shown in Figure 8.8, while a
histogram of the time series is provided in Figure 8.9. The comparison of the
PSD shows how the time series have the same time characteristics, including the
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two regimes with cut-offs around 500Hz and 1000Hz. At high frequencies, the
experimental results a similar noise floor to the one observed in the temporal
spectra. The same high-frequency noise presence can be observed in the time series
plot. The shape of the histograms is similar too and the variance of the power
(reported in the same figure), equivalent to the scintillation index of the irradiation
pattern filtered by the pupil, is also close.
We take this opportunity to discuss the periodicity of the turbulence generated.

Note that the emulator only uses a small area of the phase screen, which is the
ring resulting from the illumination of the circular beam footprint when the screen
rotates. The screens rotate to generate the displacement equivalent to the one
produced by the wind for each layer. After a given period of time, the screen
completes a turn and the beam starts sampling the same phase distortion as
previously, generating a periodic behavior. This effect is diminished by the fact
that there are three phase screens rotating at different speeds, so the combination of
the three reduces the periodicity of the overall turbulence. The previous statement is
true for the phase disturbance since the three screens participate in it. We computed
the period for this case, and it corresponds to hours, longer than the typical minute
scale time series expected from the emulator. Still, for the scintillation, this period
is reduced, since only PS2 and PS3 are involved. Note that both phase and
scintillation contribute to fiber coupling, so the periodicity of the coupled flux will
be impacted. Finally, the case of the pupil averaged flux presented above is the
one most affected by periodicity. Since the speckles produced by PS2 are much
smaller than the pupil size, their effect is averaged out in this metric, and only
the PS3 speckles (similar in size to the pupil) contribute to it. As a result, the
pupil-averaged flux shows a periodicity corresponding to the time that it takes
PS3 to complete a rotation. For the time series presented above, over a total
duration of 1 s we detected a total of 7 periods by computing its autocorrelation,
corresponding to the 7 rotations of the screen during that amount of time. All
these periodical effects are limitations of the emulator that once understood are
considered of minor importance since they result from the limitation in the number
of phase screens that are used, which answers a trade-off between physical fidelity
and setup complexity and cost.

8.5. Operating Conditions
Table 8.7 summarizes the effective parameters of the bench after the characterization
reported in this work.

8.6. Conclusion
We have presented the methodology for the design and characterization of a
turbulence emulator representative of a downlink between a LEO satellite and a
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Figure 8.7.: Zoom in on the time series of the pupil averaged flux.
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Table 8.7.: Operating conditions of the turbulence delivered by the emulator.

Name Value Comment

Pupil diameter 40 cm Equivalent telescope size.

Wavelength 1.55 µm

Exit pupil diameter 3.3mm
Telescope pupil conjugated to periscope
mirror. Interface to client systems.

Orbit height 500 km

Culmination point 90◦

Distance to satellite 1965 km

Satellite trackign speed 2mrad · s−1

Line-of-sight elevation 10◦

r0 3.39 cm
Sum from the per-layer results in Table
8.4.

D/r0 11.8 From the r0 reported above.

θ0 1.603 µrad Computed from formula for the ”measured”
profile in Table 8.3.

τ0 3.125 µs Computed from formula for the ”measured”
profile in Table 8.3.

σ2
I 2.138

Temporal scintillation index, as measured
in the characterization (see Table 8.6).

ground station at 10◦ elevation. The bench is able to simulate both the strong
turbulence conditions at low elevation, as well as the dynamics due to the fast
apparent wind caused by the satellite motion. The emulator is able to host different
instruments by coupling them to its exit pupil. Therefore, the emulator is able to
provide a long time series of the disturbed field at the pupil of a telescope under
realistic turbulence conditions.
The characterization presented proves that the bench delivers the turbulence

conditions expected. This includes a detailed characterization of the scintillation
conditions, which is necessary for future investigations regarding the performance of
AO systems under scintillation. The agreement found with respect to the numerical
simulation motivates the use of the numerical simulation as a digital twin of the
bench for performance estimations before testing components on the bench.
As a result, ONERA has a testing platform for future AO systems (wavefront

measurement and control laws) under strong turbulence perturbations (scintillation
and unsteady turbulence). ONERA uses this platform for its own research and
also offers access to it to the community (Billaud et al. 2022). The system will be
used to test new AO and free-space optical communication concepts and integrate
and validate them before on-sky campaigns. For example, the integration and
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testing of the AO system for ONERA’s FEELINGS ground station (Petit et al.
2022), study Shack-Hartmann wavefront sensors under scintillation conditions
and how to improve their performance, test new AO control algorithms (such as
predictive control (Robles et al. 2022)), test new turbulence correction concepts
such as photonic integrated circuit (PIC ) (Billaud et al. 2022) and test new
telecommunication components or digital signal processing architectures. An
upgrade of the bench to add the effect of anisoplanatism in the feeder links
(Vedrenne et al. 2017) cases is currently under study.
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Introduction

This chapter presents my work towards the experimental demonstration of
the implementation of the predictive controller developed in this thesis, using
the LISA adaptive optics bench and the PICOLO turbulence emulator.
The chapter provides an overview of the strategy followed for this demon-

stration and reports the steps accomplished during my thesis. These steps
include the coupling between the adaptive optics system and the turbulence
emulator, the optimization and calibration of the fiber coupling, and the
validation of an integral control law.

The aim of this laboratory experiment is to replicate the results of end-to-
end adaptive optics simulations to cross-validate the simulation and experi-
ment and to investigate the practical implementation of this kind of control
law. During this thesis these goals were achieved for an integral controller,
the tests with the predictive controller will be the subject of future research.
Future work on this setup will enable studying the behavior of the controller

under scintillation and testing different model identification strategies for
the predictive model. Other adaptive optics control and wavefront sensing
techniques will be tested on the same setup. All these developments will lead
to the final implementation of a predictive controller in FEELINGS (Petit
et al. 2022), ONERA’s optical ground station for GEO-feeder links research.
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9.1. Towards a Predictive Controller Demonstration
Figure 9.1 represents the different steps of the plan for the preparation of the
demonstration of the predictive controller using the LISA adaptive optics system
and the PICOLO bench emulator:

1. Characterization of PICOLO + development of a digital twin: To facilitate
the performance assessment and comparison of experimental results to nu-
merical simulations using the turbulence-distorted beam provided by the
PICOLO emulator, an initial characterization of the emulator’s distortions
is requisite. During this thesis, such a characterization was conducted and
is reported in Chapter 8. This characterization includes the development of
numerical simulations for optical propagation across the emulator and their
subsequent comparison to laboratory measurements. These simulations result
in digital twin of the emulator than can be used for end-to-end adaptive optics
simulations.

2. Optimization and calibration of the coupling: The main metric used to evaluate
the performance of the AO correction will be the single-mode fiber coupling.
Conducting fiber coupling experiments requires proper alignment and opti-
mization of the setup in order to maximize the coupling in diffraction-limited
conditions before introducing turbulence distortions. These optimizations
include the coupling between the adaptive optics system and the exit pupil of
the telescope, the optimization of the coupling using the precision alignment
stage included in the fiber injection module, and the optimization of the
adaptive optics reference state (i.e. reference slopes).

3. Characterization of temporal behavior: The implementation of the adaptive
optics loop in a RTC requires the verification of the temporal behavior of
the loop, especially the characterization of the loop delay. Without this
characterization, the adaptive optics temporal error assessment would be
biased.

4. Implementation of the LQG on the RTC: In order to implement the predictive
controller on the RTC, the LQG control structure needs to be implemented.
The basic LQG structure is a general observer-based control that can be
used to implement many different control algorithms. Once this structure is
available, implementing the LQG requires the computation of the different
matrices involved. Some of these matrices need to be calibrated; the calibration
needs of the predictive controller will be an output of such a demonstration.

5. Comparison to simulations: The final stage of the demonstration implies
the comparison of the laboratory performance to the expected performance
using all the tools developed during this thesis: adaptive optics error budgets,
end-to-end simulations, and emulator digital twin.
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Figure 9.1.: Strategy for the demonstration of the predictive controller using the
PICOLO bench. Green and gray ticks represent the tasks accomplished and partially
accomplished during this thesis, respectively.

Remark

The plans and preliminary results for the validation of the adaptive optics
predictive controller were presented in a talk titled ”Laboratory validation of
an adaptive optics predictive controller for LEO satellite tracking applications”
at the COAT 2023 conference in Durham (United Kingdom).

The remainder of this chapter reports the contribution of this thesis to the
demonstation and outlines the open points and future work necessary to conclude
it.

9.2. LISA Adaptive Optics System
The LIght and Small Adaptive optics (LISA) adaptive optics system is a compact
adaptive optics bench designed by ONERA. The bench has been used for conducting
AO-assisted LEO-to-ground links at the Observatoire de la Côte d’Azur (OCA)
using the Metrology and Optics (MEO) telescope (Lim et al. 2018; Phung et al.
2021). Details on the telescope and the tracking implementation can be found in
Phung et al. (2021).
LISA uses a Shack-Hartmann wavefront sensor with 8 × 8 square subpupils,

where the field of each subpupil spans 10× 10 pixels on the detector at Shannon
sampling. The WFS camera is a RAPTOR Owl camera based on InGaAs PIN
photodiods with 320× 256 pixels and a 80% quantum efficiency at 1.55 µm. The
slope computation algorithm is a thresholded center of gravity. The threshold value
is adjusted to limit the detector read-out noise background effect on the slopes
computation. The phase correction is performed by an ALPAO magnetic DM with
97 actuators, used in a 9× 9 configuration; each actuator can provide a maximum
±5 µm stroke. The AO loop runs on an RTC implemented in a Linux personal
computer; the RTC implements a set of features for wavefront sensing and control.
Figure 9.2 shows the LISA adaptive optics system; an overview of its optical

path is provided below:
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1. The input beam is injected on the system using its entrance pupil. The stop
of the system is defined by stop aperture located at the DM ; the entrance
pupil of the system is located upstream of the DM and corresponds to the
image of the stop by an afocal system.

2. In the image, a reference point source is used, located at the bottom-right
corner of the image. The beam moves leftward from the source along the
green path, toward the DM. The source is composed of an optical fiber and a
collimating lens focused on the fiber end to provide a collimated beam. These
two elements (fiber and collimating lens) are not part of the setup once LISA
coupled to PICOLO ; see Section 9.3 for a description of this coupling.

3. The other two lenses between the source and the DM correspond to the afocal
system that relays the stop so that the entrance pupil of the system is more
accessible.

4. The beam follows the green path toward the DM and arrives at a first
beamsplitter (BS1). The transmission path of the beamsplitter goes to the
WFS ; the reflection path continues along the pink path, the fiber injection
path.

5. The pink path arrives at the second beamsplitter (BS2). The transmission
path of the beamsplitter goes to the fiber injection module (FIM ); the reflection
path continues toward the green path. The FIM is composed of an SMF
attached to a fiber collimator. The fiber collimator is mounted on a 5-axis
motorized stage for precision alignment. The the end of the SMF is coupled
to the injection photodiode (PDI).

6. The blue path corresponds to a focal plane of the beam on the reference
photodiode (PDR) used for the computation of the coupling efficiency. Both
photodiodes are Femto ST photodiode detectors.

7. Finally, the orange path can be used by inserting a flip mirror into the blue
path to focus the beam on an InGaAs camera (IMG) to obtain post-AO PSF
images of the system.
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Figure 9.2.: LISA adaptive optics system. The input beam is injected on the system
using its entrance pupil, located in front of the DM ; in this case a focal plane point source
(SRC) is used. Different colors are used to indicate the beam path until the different
points in the bench.

9.3. Coupling to the PICOLO Turbulence Emulator
The coupling between the PICOLO turbulence emulator and the LISA adaptive
optics bench requires matching the exit pupil of the former (located after the
periscope) and the entrance pupil of the latter (located upstream of the DM ). An
afocal telescope allows the demagnification of the beam to match the two pupil
sizes, as well as the folding of the beam to accommodate the two systems on an
optical table. Figure 9.4 illustrates this setup:

1. The PICOLO bench is on the right side of the picture, with the LISA bench
on the left side.

2. A (distorted) beam is delivered by PICOLO at its exit pupil, located after its
periscope (PM1 and PM2 mirrors in the image).
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3. The afocal system consists of two lenses (L1 and L2 in the image) and a
folding mirror (FM1) between them.

4. A second folding mirror (FM2) is located on the first rail of LISA. Both
folding mirrors allow for tip-tilt adjustments to co-align the two pupils both
in line of sigh (two angles) as in decenters (two shifts), thus the need of four
degrees of freedom.

Figure 9.3.: Coupling between the PICOLO turbulence emulator and the LISA adaptive
optics bench.

Before coupling, both benches were aligned separately. Since the LISA bench
does not have an internal source for alignment, an external source was used; see
Figure 9.2. The coupling between the two benches followed three steps:

1. First, the distance between different mechanical references (i.e., the periscope
and the two folding mirrors) was measured to accommodate the two benches
on the optical table.

2. A microscope was utilized to aid in alignment by measuring the conjugation
of various planes, including the stop at the DM, the exit pupils of LISA and
PICOLO, as well as the telescope stop and its exit pupil before the periscope.
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3. The fine alignment between the two pupils used the tip-tilt degrees of freedom
of the two folding mirrors. The pupil match was measured using the measure-
ment of the PICOLO beam on the Shack-Hartman detector by generating
an image of 8 × 8 pixels where each pixel was computed as the sum of all
pixels within one subpupil, i.e. a map of the flux for each subpupil. All phase
screens on the PICOLO bench were removed during this process to have a
flat reference beam.

9.4. Coupling Optimization
The coupling SMF has a mode that has a Gaussian intensity profile and a flat
wavefront, while in the absence of scintillation, a perfectly corrected field will have
a uniform amplitude and a flat phase, which limits the theoretical maximum value
for coupling to 82% (Shaklan and Roddier 1988). This maximum coupling can only
be obtained in ideal conditions where the alignment of the bench is perfect and the
optics in the system present no aberrations. These conditions are not met under
experimental conditions, where the maximum coupling performance will be lower;
however, to reach the best coupling possible, an optimization of the coupling under
diffraction-limited conditions is conducted during the calibration of the bench.

Figure 9.4.: Zoom in the coupling path of the LISA system. The blue line marks the
optical path across the system toward the SMF. The beam is focused onto the SMF
using two lenses: LC1 and LC2 (a fiber collimator). The alignment between the two
lenses is crucial for coupling, so a picomotor alignment stage is used for fine tuning.

The corrected beam is focused and injected into the SMF using two lenses LC1
and LC2. The latter is a fiber collimator and therefore provides high-precision
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alignment with respect to the fiber. As a result, the alignment between the optical
collimator and the fiber is crucial to achieve maximum coupling; a study of the
sensitivity of this alignment is given in Lim et al. (2018). A 5-axis picomotor align-
ment stage is used to perform this alignment, which implements three translation
directions and two rotations (the two rotation axes orthogonal to the propagation
direction), with < 30 nm and 1 µrad resolution.
The alignment provided by the precision alignment stage is not enough to achieve

maximum coupling, since it cannot correct for the defocus between the lenses or
other aberrations, such as astigmatism or coma, produced by the misalignment of
the bench. Nevertheless, these aberrations can be corrected by AO by providing a
set of reference slopes that account for them.
Optimization of the non-common path aberration is performed by adjustment

of the reference slopes, i.e. the set point of the AO loop. The reference slopes
are obtained by generation of reference slopes using a geometrical model of the
Shack-Hartmann to convert Zernike modes to slopes offsets. A sequential manual
optimization is performed to find the best combination of aberrations that give the
best coupling. Alternatively, this procedure could be automated using a stochastic
gradient method to optimize the coupling (Saab 2017).

9.5. Coupling Measurements
The LISA system has two InGaAs PIN monodetectors with 300µm diameter that
are used to compute the coupling efficiency into the single-mode fiber after AO
correction.
Notation: For each photodetector, three possible power measurements are con-

sidered: PFS, P SMF, PMMF, corresponding to the power measured by free-space
focusing of the beam on the monodetector, focusing the beam on a SMF and
focusing it on a multi-mode fiber (MMF ), respectively.
Theoreticaly, the coupling efficiency is given by the overlap integral between

the fiber mode and the complex amplitude of the beam after AO correction, as
discussed in Section 3.3.2.1. Experimentally, coupling efficiency can be measured
as the ratio between the power coupled in the fiber, P SMF

I and the power before
the fiber PFS

I :

ρ =
P SMF
I

PFS
I

. (9.1)

P SMF
I is the quantity measured during the experiments using an SMF coupled

to the photodiode PDI. PFS
I cannot be measured directly, neither during operation

nor during calibration, since it is not physically accessible due to optomechanical
constraints. Instead, a part of the flux is split to a different optical path to be
measured by a second photodiode, the reference photodiode (PDR), to measure
PFS
R . Unfortunately, PFS

R and PFS
I are not equivalent, since the transmission losses
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on the optical paths are different. This difference needs therefore to be calibrated
by measuring this ratio on the bench. Since the optomechanics of the system make
it impossible to measure the power in front of the fiber, a multi-mode fiber is used
as an approximation under the assumption that it is able to couple the flux even
in the presence of residual aberrations, i.e. PFS

I ≈ PMMF
I . Putting this together:

ρ =
P SMF
I

PFS
R

P SF
R

PMMF
I

PMMF
I

PFS
I

. (9.2)

In summary:

– PSMF
I /PFS

R is measured during the AO operation by the reference and injection
photodiodes.

– PSF
R /PMMF

I is a calibration constant that can be measured before using the
bench by placing a multi-mode fiber in the fiber injection mode.

– PMMF
I /PFS

I accounts for the difference coupling losses of the multi-mode fiber,
since the assumption is that the modal coupling is perfect PFS

I ≈ PMMF
I , this

factor is assumed to be 1.

Table 9.1 gives the results of these measurements for the calibrations conducted
during the experiment on 13/03/2023.

Table 9.1.: Coupling calibrations for the 13/03/2023 experiment. (∗) assumed quantity,
(†) computed quantity.

PSMF
I /PFS

R
PSF
R /PMMF

I
PMMF
I /PFS

I ρ

0.686 0.711 1∗ 0.488†

The value obtained for the maximum coupling after injection optimization,
ρ = 0.488, is in line with the value of ρ = 0.47 reported in Lim et al. (2018); see this
publication for a budget of the SMF coupling that accounts for all the tolerances
in the alignment that justify this value in coupling.
The calibration explained above allows to measure the coupling efficiency during

AO operation by measuring the power coupled into the SMF and the power
measured at the reference photodector. The maximum coupling value, ρ can also
be used to normalize the experimental measurements so they can be compared
with numerical simulations that are free of alignment errors.

9.6. Integrator Validation
Before the implementation of the LQG controller can be conducted, it is necessary
to study and understand the AO system performances for a simpler controller
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such as the integral action controller. This section discusses the experimental
implementation of such a controller in the LISA adaptive optics bench and its
validation and comparison against numerical simulations.

9.6.1. RTC Implementation
The integral control implemented on the RTC using the same structure that is
needed for the LQG. This allowed not only to validate the performance of the
integral controller, but to verify the implementation of the control structure that is
common to the LQG.
All control laws implemented on the LISA RTC use the following observer

structure:

xk+1 = M1xk +M2 (yk +M3uk−1) , (9.3)

uk+1 = M4xk+1 , (9.4)

where M1, M2, M3, and M4 are used to define the specific control law.
The implementation of the integrator using this structure defines:

xk = uk . (9.5)

The rest of the matrices are M1 = I, M3 = 0, M4 = I, and:

M2 = −gMctrl , (9.6)

where g is the integrator gain and Mctrl is the control matrix of the system
computed as discussed in Section 2.4.2.
The same structure can be used to implement the LQG controller. The matrices

involved here are not the control matrix, but the matrices discussed in Section
6.1.1. As stated in Section 6.1.1, the matrices needed for the implementation of the
predictive controller must be obtained from calibration, in addition to the predictive
model matrices that are obtained using the identification method described in this
thesis.

9.6.2. Temporal Characterization
A characterization of the rejection transfer function of the integral controller was
conducted. This characterization allows to compare and fit the measurement of
the rejection transfer function to its theoretical model to characterize the delay
present in the AO loop.
The rejection transfer function is estimated from experimental measurements

of open and closed-loop slopes for an AO loop frequency of 2 kHz. The slope
measurements are transformed to the DM command space (space used by the
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integrator) using the control matrix. The power spectral density of each of the
time series is computed using the Welch method and the ratio of the closed-loop
over the open-loop PSDs is the rejection transfer function, more precisely, the
gain of the complex transfer function, since the phase is not characterized. This
method is based on the transfer model presented in Dessenne et al. (1999) and
assumes the absence of measurement noise and aliasing in the slope measurements;
the theoretical model for the rejection transfer function can be found in the same
reference.
Figure 9.5 plots the rejection transfer function measured in the LISA adaptive

optics system. The turbulence used for the measurement only included the first
phase screen of the PICOLO bench, located at the pupil, to avoid any scintillation.
The best fit of the theoretical rejection transfer function is colored red for comparison.
The RTF has two parameters, the gain of the integrator and the delay of the loop;
only the latter was used as fitting parameter, since the former is known to certainty.
The best fit of the RTF was for a delay of τ = 2 frames.
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Figure 9.5.: Comparison of the integrator rejection transfer function measured on the
laboratory vs. its theoretical model.

The temporal characterization presented in this section demonstrated that the
integrator provides the expected disturbance rejection and measured the delay in
the AO loop. The next section presents the results of the integrator in terms of
coupling and compares it to computational end-to-end simulations.
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9.6.3. Results
The experiment was conducted for an AO loop frequency of 2 kHz, only the first
phase screen of the PICOLO bench was used, with a layer speed of 10m · s−1

on sky. The integrator was set to a gain of g = 0.4. The same integrator was
simulated using end-to-end simulations similar to the ones presented in Chapter 7.
The predictive controller developed in this thesis was also simulated, with a total
number of modes corresponding to the first n = 24 radial orders of the Zernike
polynomials, i.e. 324 modes.
Figure 9.6 plots the comparison of the results of the experiment and the numerical

simulations. The experimental coupling measurements were calibrated using the
procedure described on the same scale as the numerical simulations, i.e. the
coupling results were divided by the maximum coupling under diffraction-limited
conditions, reported in Table 9.1. The comparison of the experimental results of
the integrator and its simulation give similar results in CDF and average coupling.
Only a difference of less than 2 dB is observed at P = 1 · 10−3, the origin of this
difference needs to be investigated further. The results of the predictive controller
simulation serve as a demonstration of the potential gains in coupling thanks to
predictive control; a significant gain of more than 2 dB at P = 1 · 10−3 could be
expected, according to the simulation results.
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Figure 9.6.: Coupling efficiency results, comparison between the experiment (integral
action controller) and the numerical simulations (integral action controller and predictive
controller.

Thanks to the characterization of the PICOLO bench, its coupling to the
LISA AO bench, and characterization of the coupling, the next step, i.e. LQG
implementation, now only relies on the computation of the required matrices based
on PICOLO turbulence profile.
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∗ ∗ ∗

Summary

This chapter discussed the strategy for the experimental validation of the
predictive controller developed during this thesis using the LISA adaptive
optics system and the PICOLO turbulence emulator.
This thesis advanced towards this demonstration with the characterization

of the PICOLO bench (reported in Chapter 8) and with the first preliminary
tests of the LISA adaptive optics system and PICOLO. Unfortunately, com-
pleting the demonstration of the predictive controller was not possible during
this thesis due to time constraints.
The chapter presented the LISA adaptive optics bench and the procedure

for coupling optimization and characterization that will allow the study of
coupled flux efficiency with adaptive optics correction.
The chapter also showed some preliminary results with the coupling statis-

tics with an integral controller. These results showed good agreement with
the numerical end-to-end simulations of the PICOLO turbulence emulator
and LISA AO system developed during this thesis. The simulations were
completed by a simulation of the predictive controller in this scenario, which
showed the promising performance improvements that predictive control may
bring. The output of this work is a digital twin of the PICOLO and LISA
benches that will serve to investigate performance and robustness of different
control laws in the setup.
Further work beyond this thesis is planned at ONERA to finish this demon-

stration. The setup developed during this thesis will contribute to the first
demonstration of the predictive controller, which in the future will also in-
clude the study of different predictive model identification strategies, the
robustness of the control law with respect to scintillation, and potential
improvements of the control law to improve its performance under strong
scintillation conditions.
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Summary and Conclusions
The work presented in this manuscript focused on improving the atmospheric
turbulence correction of adaptive optics in the case of LEO-to-ground optical
downlinks and imaging of satellites from ground-based telescopes.
In Chapter 1 I introduced the origin of optical turbulence and its effects on a

beam propagating across it. I showed how the phase aberrations introduced by
atmospheric turbulence will also become amplitude distortions through propagation,
especially in strong turbulence cases, leading to irradiance fluctuations across the
pupil of the telescope, known as scintillation. I also introduced the statistical
description of turbulence and its representation as a projection on a Zernike
polynomial basis, which is the core of the identification of the predictive models
introduced later in this manuscript.
In Chapter 2 I presented the principle of adaptive optics and its components. The

chapter also gave an introduction to adaptive optics control and the importance of
delay, a concept crucial to this thesis as it is the origin of the need for predictive
control. Finally, I introduced the concept of adaptive optics budget, the main tool
for the design and performance assessment of adaptive optics systems.
Chapter 3 described the effect of atmospheric turbulence on the imaging quality of

telescopes and on fiber coupling and communication systems. I also introduced the
different systems considered in the case studies of this manuscript. Four different
systems were introduced, two for optical communications and two for satellite
observation, covering two system specifications, one more performing and complex
and one simpler and with lower cost.
In Chapter 4 I discussed the two main elements of the predictive controller of

this thesis and most controllers in the literature: autoregressive models and the
LQG controller as a predictive controller. I highlighted how the LQG controller
incorporates three necessary tasks that many adaptive optics systems implement
separately: (1) phase reconstruction from the wavefront sensor slope space to the
desired phase space (zonal, modal or DM space), (2) controller gain optimization
and (3) estimation of the future phase to reduce the effect of time delay between
measurement and correction, i.e. predictive control.
In Chapter 5 I presented the turbulence predictability method originally intro-

duced in Conan et al. (2023) and applied it to the systems under study. I analyzed
both the predictability of the systems, as well as the possibility to reduce the AO
loop frequency. The method showed very promising gains for most of the systems.
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Only the FEELINGS systems seemed to already have a very good performance
in terms of temporal error. Other findings include the need need of higher order
VAR models to achieve greater prediction performance in the case of LEO satellite
applications for adaptive optics.
Chapter 6 presented the predictive controller developed in this thesis: the high-

order VAR Zernike LQG. I discussed how the model is identified and its similarities
to the predictor used in Chapter 5. I also provided an analysis of possible data-
identification schemes that could lead to an online identification of the controller
and its adaptation along the LEO trajectory.
Chapter 7 provided the end-to-end simulations for the controller in different

scenarios. A first simulation used a simplified wavefront sensor and deformable
mirror to verify the performance of the predictive model within the LQG and to
compare it with the predictability assessment; the comparison proved that under
the simplified conditions the controller can achieve the performance expected by the
assessment. This simulation was also used to show the robustness of the controller
with respect to measurement noise. The introduction of a Shack-Hartmann wave-
front sensor in the simulations requires that the controller also performs a modal
reconstruction from slope measurements to the Zernike polynomials used by the
predictive model. This and the presence of aliasing cause an additional error in the
controller that if it is not managed properly results in an error that is much bigger
than the aliasing error present in the classical integral action controller. I proposed
an analysis of this reconstruction using the MAP reconstructor as a proxy for the
reconstruction within the Kalman filter. The MAP reconstructor was used to study
the optimal number of modes necessary to decrease the reconstruction error, the
influence of the fudge factor, and measurement noise in this reconstruction. While
a fudge factor can be used to improve the reconstruction performance without
increasing the number of reconstructed modes, the recommendation of this thesis
is to reconstruct more modes (roughly the equivalent modes to twice the sampling
frequency of the Shack-Hartmann). The end-to-end simulations of the controller
showed how predictive controllers significantly reduce temporal error in adaptive
optics systems. The impact of this reduction in the specific performance metrics of
the system depends on the rest of the AO budget and the nature of the metric. For
single mode fiber coupling, predictive control is able to reduce fadings; for satellite
observation, the reduction of the residual variance leads to strong improvements in
Strehl ratio. In all cases, predictive controllers can be used to relax the adaptive
optics loop frequency to half of the nominal one while maintaining the performance
of an integral controller. For satellite observation, this means imaging of fainter
targets.
Chapter 8 reported the work of my work on the scintillation characterization

of the PICOLO turbulence emulator for LEO-to-ground links under strong tur-
bulence conditions. I conducted the experimental measurements of scintillation
on the bench, first per screen and later for the complete turbulence profile, and
compared it to numerical simulations using the TURANDOT simulation code. The
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characterization showed that the bench delivers the scintillation features expected
and the resulting digital twin can now be used to compare the performance of
the experiments in the bench to computational simulations. This characterization
is critical to prepare further experimental validation of innovative concepts in
wavefront sensing and control to allow adaptive optics to cope with scintillation at
low elevation. To prepare for this future work I also performed the first experiments
with the emulator using the LISA adaptive optics system as I reported in Chapter
9.

Limitations and Recommendations
This section presents my recommendations based on the results of this thesis and
their limitations. My particular suggestions are outlined below:

1. This thesis defined a set of four adaptive optics systems and their associated
turbulence profiles trying to cover the most common operating points and
situations. Although the methodology proposed can be applied to any system
and the trends observed should be consistent for other operating points, only
a case study for each system in consideration could give definitive results.

2. The identification method in this thesis, based on analytical expressions of
the angular covariances between the coefficients of turbulent phase projected
onto a Zernike polynomial basis, has great value not only for theoretical
evaluations, but also for an on sky implementation and adaptation of the
controller thanks to priors. Still, a method based on the identification of
the spatio-temporal covariance matrices from data, following the discussion
in Section 6.3 should be investigated, especially one based on the recursive
identification to allow the adaptation of the predictive model across the LEO
satellite trajectory.

3. It has been shown how the computational cost of the predictive controller
needs to increase to reduce the propagation of aliasing across the controller’s
modal reconstruction and predictive model. For the case of fiber coupling,
the higher-order models have less effect on fadings; the proposed controller
could be simplified by reducing the number of modes that are predicted.

4. Slope space controllers should be further investigated due to their ease of
identification and fewer needs of calibrations, especially in the cases where
aliasing in higher-order modes may not be tolerated.

5. This thesis limited the testing of the controller to phase-only wavefront distor-
tions and a geometric propagation of the turbulent phase. The performance
of the predictive controller should be tested at strong turbulence conditions.
Two points will be crucial: (1) The analytical formulas for the computation of
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phase statistics may not work under strong turbulence conditions and highly
diffracted phase; here the use of a data-based identification may be required
to obtain those statistics. (2) The robustness of the controller to scintillation
effects on wavefront sensing should be studied too.

6. The predictive controller presented in this thesis could be extended to be
combined with the approach proposed by Lognoné et al. (2022), which proposes
an estimator of the point-ahead angle of optical uplinks using phase and
scintillation statistics.

7. The predictive controller could also be extended to other applications such as
high-performance adaptive optics for high-contrast imaging coronographs or
laser directed energy systems.

8. The use of predictive control may be used as a mitigation technique for
the effects of scintillation on the Shack-Hartmann wavefront sensor. The
presence of scintillation will cause subpupil extinctions due to low flux over
the subpupil; the lacking measurements can be replaced with predictions of
the phase, i.e. no update step if there is no measurement, instead of using
a poor measurement. Two additional techniques can be used to make the
controller more robust to scintillation:

a) The use of a sequential Kalman filter that updates slope measurements
independently (assuming no correlation between measurement noise in
the slope measurements, an assumption already in use) and skip the
update step when the slope measurement is annotated as not valid due
to the effects of scintillation; in this case only the prediction step will be
used.

b) The use of a zonal basis to maximize the decoupling between points
in the telescope’s pupil. The presence of scintillation will mean that
some areas of the pupil will have no flux; reconstructing the phase over
the pupil may impose strong constraints and worsen the reconstruction
of points that do not have scintillation problems. The use of a zonal
basis for control may help to deal with wavefront where there are no
measurements available for several points in the pupil.

9. The next step in the development of the predictive controller should its
laboratory demonstration using the PICOLO turbulence emulator before its
on-sky validation. This thesis started this work but could not finish it. A first
demonstration should use only one phase screen at the pupil of the telescope
to avoid any scintillation effect. Later, the bench can also be used to test
the controller under strong turbulence conditions and scintillation. Different
identification methods can also be tested on the bench.
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K. J. Åström. Introduction to Stochastic Control Theory. Academic Press, New
York, 1970. ISBN 978-0-08-095579-7. (Cited on page: 86)

M. T. Banet and M. F. Spencer. Compensated-beacon adaptive optics using least-
squares phase reconstruction. Optics Express, 28(24):36902–36914, Nov. 2020.
ISSN 1094-4087. doi:10.1364/OE.409134. (Cited on page: 36)

J. D. Barchers, D. L. Fried, and D. J. Link. Evaluation of the performance of
Hartmann sensors in strong scintillation. Applied Optics, 41(6):1012, Feb. 2002.
ISSN 0003-6935, 1539-4522. doi:10.1364/AO.41.001012. (Cited on page: 185)

A. Beghi, A. Cenedese, and A. Masiero. Atmospheric turbulence prediction: A
PCA approach. In 2007 46th IEEE Conference on Decision and Control, pages
566–571, Dec. 2007. doi:10.1109/CDC.2007.4434459. (Cited on pages: 73, 144)

A. Billaud, A. Reeves, A. Orieux, H. Friew, F. Gomez, S. Bernard, T. Michel,
D. Allioux, J. Poliak, R. M. Calvo, and O. Pinel. Turbulence Mitigation via
Multi-Plane Light Conversion and Coherent Optical Combination on a 200 m
and a 10 km Link. In 2022 IEEE International Conference on Space Optical
Systems and Applications (ICSOS), pages 85–92, Kyoto City, Japan, Mar. 2022.
IEEE. ISBN 978-1-66543-439-3. doi:10.1109/ICSOS53063.2022.9749710. (Cited
on pages: 208, 209)

B. I. Bitachon, Y. Horst, L. Kulmer, T. Blatter, K. Keller, A. M. Bonnefois, J.-M.
Conan, C. Lim, J. Montri, P. Perrault, C. Petit, B. Sorrente, N. Védrenne,
D. Matter, L. Pommarel, H. Lindberg, L. Francou, A. L. Kernec, A. Maho,
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A. Origné, A. Pavlov, D. Perret, C. Petit, J. Pragt, P. Puget, P. Rabou, J. Ramos,
F. Rigal, S. Rochat, R. Roelfsema, G. Rousset, A. Roux, B. Salasnich, J.-F.
Sauvage, A. Sevin, C. Soenke, E. Stadler, M. Suarez, M. Turatto, and L. We-
ber. Discovery of a planetary-mass companion within the gap of the transition
disk around PDS 70. Astronomy & Astrophysics, 617:A44, Sept. 2018. ISSN
0004-6361, 1432-0746. doi:10.1051/0004-6361/201832957. (Cited on page: 73)

O. Keskin, L. Jolissaint, and C. Bradley. Hot-air optical turbulence generator for
the testing of adaptive optics systems: Principles and characterization. Applied
Optics, 45(20):4888–4897, July 2006. ISSN 2155-3165. doi:10.1364/AO.45.004888.
(Cited on page: 187)

A. Kolmogorov. The Local Structure of Turbulence in Incompressible Viscous Fluid
for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady, 30:301–305,
Jan. 1941. ISSN 0002-3264. (Cited on page: 7)

K. Kudielka, E. Fischer, and T. Dreischer. Numerical prediction and experimen-
tal validation of irradiance fluctuations in a pre-compensated optical feeder
link. In International Conference on Space Optics — ICSO 2018, volume
11180, page 111805N. International Society for Optics and Photonics, July 2019.
doi:10.1117/12.2536122. (Cited on pages: 185, 187)

C. Kulcsár, H.-F. Raynaud, C. Petit, J.-M. Conan, and P. V. de Lesegno. Optimal
control, observers and integrators in adaptive optics. Optics Express, 14(17):7464,
Aug. 2006. ISSN 1094-4087. doi:10.1364/OE.14.007464. (Cited on pages: 71, 88)

C. Kulcsár, H.-F. Raynaud, C. Petit, and J.-M. Conan. Minimum variance predic-
tion and control for adaptive optics. Automatica, 48(9):1939–1954, Sept. 2012.

239

https://doi.org/10.1051/0004-6361/201832957
https://doi.org/10.1364/AO.45.004888
https://doi.org/10.1117/12.2536122
https://doi.org/10.1364/OE.14.007464


Bibliography

ISSN 0005-1098. doi:10.1016/j.automatica.2012.03.030. (Cited on pages: 73, 88,
95 et 156)

C. Kulcsár, H.-F. Raynaud, J.-M. Conan, R. JuvÃ©nal, and C. Correia. Towards
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J. Lochard, N. de Guembecker, P. Chéoux-Damas, X. Calmet, E. Giraud, A. Jullien,
M. Ghezal, L. Barthe, J.-F. Chouteau, L. Coret, G. Artaud, L. Perret, P. Vialle-
font, and E. Cazala-Hourcade. LASIN optical link on-board CO3D constellation.
In International Conference on Space Optics — ICSO 2022, volume 12777, pages
375–383. SPIE, July 2023. doi:10.1117/12.2689018. (Cited on page: 47)

P. Lognone, A. M. Bonnefois, J.-M. Conan, L. Paillier, C. Petit, C. B. Lim,
S. Meimon, J. Montri, J.-F. Sauvage, and N. Vedrenne. New Results From
the 2021 FEEDELIO Experiment - a Focus on Reciprocity. In 2022 IEEE
International Conference on Space Optical Systems and Applications (ICSOS),
pages 261–266, Kyoto City, Japan, Mar. 2022. IEEE. ISBN 978-1-66543-439-3.
doi:10.1109/ICSOS53063.2022.9749723. (Cited on page: 41)
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M. Schöck and E. J. Spillar. Method for a quantitative investigation of the
frozen flow hypothesis. JOSA A, 17(9):1650–1658, Sept. 2000. ISSN 1520-8532.
doi:10.1364/JOSAA.17.001650. (Cited on page: 10)

249

https://doi.org/10.1016/S0079-6638(08)70204-X
https://doi.org/10.1364/AO.48.001812
https://doi.org/10.1364/JOSAA.18.000143
https://doi.org/10.1007/978-3-642-85070-7
https://doi.org/10.1117/12.856942
https://doi.org/10.20353/K3T4CP1131541
https://doi.org/10.1364/AO.56.002621
https://doi.org/10.1364/JOSAA.17.001650


Bibliography
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A. Mathematical Notation

A.1. Covariance and Cross-covariance Matrices
We define the covariance matrix of a vector of random variables X as:

ΣX = E
{
(X − µX) (X − µX)⊤

}
. (A.1)

where µX = E{X} is the vector containing the expected value of X.
We define the cross-covariance matrix of two vectors of random variables X and

Y as:

ΣXY = E
{
(X − µX) (Y − µY )

⊤
}
, (A.2)

where µX = E{X} and µY = E{Y } are the vectors that contain the expected
values of X and Y .

We usually work with zero-mean random variables, such as turbulence. Therefore,
the previous expressions can be simplified to:

ΣX = E
{
XX⊤} (A.3)

and

ΣXY = E
{
XY ⊤} . (A.4)

The covariance matrix is symmetric, since:

Σ⊤
X = E

{
XX⊤}⊤ = E

{(
XX⊤)⊤} = E

{
XX⊤} = ΣX (A.5)

The cross-covariance matrix transpose gives:

Σ⊤
XY = E

{
XY ⊤}⊤ = E

{(
XY ⊤)⊤} = E

{
XY ⊤}⊤ = ΣY X (A.6)

A.2. Auto-covariance Matrix
Consider a vectorial stochastic process where each entry of the vector

X = (X1, X2, . . . , Xn)
⊤ (A.7)
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A. Mathematical Notation
A.2. Auto-covariance Matrix

is a stochastic process {X}t. We define its autocovariance as the covariance of
the process with itself at different past points.

ΓX(τ) = E
{
(Xt − µt) (Xt−τ − µt−τ )

⊤
}
, (A.8)

where τ is the lag time.
In the case of zero-mean processes such as piston-removed atmospheric turbulence

we can write:

ΓX(τ) = E
{
XtX

⊤
t−τ
}
, (A.9)

The negative auto-covariances can be computed with the transpose of the auto-
covariance matrix:

ΓX(τ)⊤ = E
{
XtX

⊤
t−τ
}⊤

= E
{(

XtX
⊤
t−τ
)⊤}

= E
{
Xt−τX

⊤
t

}⊤
= ΓX(−τ) (A.10)
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B. Derivation of the Minimum Mean
Square Error Estimator
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B.1. Derivation of the MMSE Estimator without
Measurement Noise

We recover the definition of the minimum square error from Equation 5.4:

MSE = Tr
(
E
{
x̃x̃⊤}) = Tr

(
E
{
(x− x̂) (x− x̂)⊤

})
(B.1)

We search the linear estimator RMMSE that minimizes the MSE of the estimate:

x̂ = RMMSEy (B.2)

so that

min
RMMSE

MSE (RMMSE) . (B.3)

We compute the MSE associated to the estimate to then minimize it and solve
for RMMSE, the optimal estimator:

MSE (RMMSE) = Tr
(
E
{
(x− Ry) (x− Ry)⊤

})
(B.4)

MSE (RMMSE) = Tr
(
E
{
xx⊤ − Ryx⊤ − xy⊤R⊤ + Ryy⊤R⊤}) (B.5)

MSE (RMMSE) = Tr
(
Σxx − RΣyx −ΣxyR

⊤ + RΣyyR
⊤) (B.6)

∂MSE (RMMSE)

∂RMMSE

= 0 (B.7)
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B. Derivation of the Minimum Mean Square Error Estimator
B.2. Derivation of the MMSE Estimator with Measurement Noise

We remind the following properties related to the matrices A, B, and C, the
vector x, and the derivatives of their trace:

1. ∂A/∂B⊤ =
(
∂A⊤/∂B

)⊤
2. (∂/∂B) [Tr(BA)] = (∂/∂B)

[
Tr
(
A⊤B

)]
= (∂/∂B) [Tr(AB)] = A⊤

3. (∂/∂B)
[
Tr
(
B⊤A

)]
= (∂/∂B)

[
Tr
(
BA⊤)] = A

4. (∂/∂B) [Tr(ABC)] = A⊤C⊤

5. (∂/∂B)
[
Tr
(
BAB⊤)] = 2BA

Compute the derivative of each term:

• (∂/∂R) [Tr(Σxx)] = 0

• (∂/∂R) [Tr(−ΣxyR)] = −Σxy, using rule 2.

• (∂/∂R) [Tr(−RΣyx)] = −Σ⊤
yx = −Σxy, using rule 2.

• (∂/∂R)
[
Tr
(
RΣyyR

⊤)] = 2RΣyy, using rule 5.

Writing all together:

∂MSE (R)

∂R
= 2RΣyy − 2Σxy = 0 (B.8)

Solving for R:

R = Σxy (Σyy)
−1 (B.9)

B.2. Derivation of the MMSE Estimator with
Measurement Noise

We can extend the method to the case of measurement noise in the measurement
vector, y, used for the estimation. The measurement equation is:

y = Dx+w (B.10)

where D is the linear measurement model and w is a Gaussian white noise vector
with zero mean and covariance matrix Cw. In this case, the estimate will be:

x̂ = Ry = R (Dx+w) (B.11)

This gives an estimation error:
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B.2. Derivation of the MMSE Estimator with Measurement Noise

x̃ = x− R (Dx+w) (B.12)

Computing the covariance matrix of the estimation error:

E
{
x̃x̃⊤} = E

{
(x− RDx− Rw) (x− RDx− Rw)⊤

}
(B.13)

= E
{
(x− RDx− Rw)

(
x⊤ − x⊤D⊤R⊤ −w⊤R⊤)} (B.14)

Expanding the previous expression:

E
{
x̃x̃⊤} = E

{
xx⊤}− E

{
xx⊤}D⊤R⊤ − E

{
xw⊤}R⊤

− RDE
{
xx⊤}+ RDE

{
xx⊤}D⊤R⊤ + RDE

{
xw⊤}R⊤

− RE
{
wx⊤}+ RE

{
wx⊤}D⊤R⊤ + RE

{
ww⊤}R⊤

(B.15)

Eliminating the cross-covariances between x and w, since they are statistically
independent:

E
{
x̃x̃⊤} = E

{
xx⊤}− E

{
xx⊤}D⊤R⊤

− RDE
{
xx⊤}+ RDE

{
xx⊤}D⊤R⊤

+ RE
{
ww⊤}R⊤

(B.16)

We now minimize each of the terms of the sum:

• (∂/∂R)
[
Tr
(
E
{
xx⊤})] = 0, since it does not depend on R.

• (∂/∂R)
[
Tr
(
−E
{
xx⊤}D⊤R⊤)] = −E

{
xx⊤}D⊤, using rule 2.

• (∂/∂R)
[
Tr
(
−RDE

{
xx⊤})] = −E

{
xx⊤}D⊤, using rule 2.

• (∂/∂R)
[
Tr
(
RDE

{
xx⊤}D⊤R⊤)] = 2RDE

{
xx⊤}D⊤, using rule 5.

• (∂/∂R)
[
Tr
(
RE
{
ww⊤}R⊤)] = 2RE

{
ww⊤}, using rule 5.

Writing all together:

∂MSE (R)

∂R
= 2RDE

{
xx⊤}D⊤ + 2RE

{
ww⊤}− 2E

{
xx⊤}D⊤ = 0 (B.17)

Solving for R:

RMMSE = E
{
xx⊤}D⊤ (DE

{
xx⊤}D⊤ + E

{
ww⊤})−1

(B.18)
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B. Derivation of the Minimum Mean Square Error Estimator
B.2. Derivation of the MMSE Estimator with Measurement Noise

Remark

The minimum mean square error (MMSE) estimator is here equivalent to the
maximum a posteriori (MAP) estimator since for Gaussian random variables
the mean and the mode are equivalent. Quirós-Pacheco et al. (2010) extended
this analysis for the study of aliasing propagation in the reconstruction of
Shack-Hartmann (SH) measurements.

The estimation error of the estimator presented in Equation B.18 can be computed
by substituting into Equation B.16 and it is equal to:

E
{
(x− x̂MMSE) (x− x̂MMSE)

⊤
}
=
(
D⊤Σ−1

w D +Σ−1
x

)−1
(B.19)
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C. Frequency Coverage of Zernike
Polynomials vs. Zonal Basis

We want to compare the number of variables that are necessary for both bases
to represent the same frequency coverage. We start by defining the frequency
coverage of the Shack-Hartmann wavefront sensor. The maximum spatial sampling
frequency is given by:

κSH =
1

2dsp
, (C.1)

where dsp is the subpupil pitch. The subpupil pitch is computed in terms of the
number of subpupils Nsp and the telescope diameter D as:

dsp =
D

Nsp

. (C.2)

The number of phase points that can be computed per subpupil is 4, assuming
Fried geometry, the number of unique phase points for a grid of Nsp×Nsp subpupils
is:

NSH = (Nsp + 1)2 , (C.3)

As a result, the spatial sampling frequency as a function of the number of
subpupils is:

κSH =
Nsp

2D
. (C.4)

which is also the number of variables related to the number of subpupils used.
Note, this does not count for not illuminated subpupils due to the telescope aperture
shape and its obscuration.
For the Zernike polynomials, their equivalent spatial frequency is defined in terms

of their radial order n:

κZ ≈ 0.37
(n+ 1)

D
. (C.5)

For a given maximum radial order nmax in a Zernike polynomial basis, the Noll
index jNoll,max of the last polynomial is:
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C. Frequency Coverage of Zernike Polynomials vs. Zonal Basis

jNoll,max =
nmax(nmax + 3)

2
+ 1 . (C.6)

Therefore, the number of modes (piston mode removed) is given by:

NZ =
nmax(nmax + 3)

2
, (C.7)

which is also the number of variables related to the maximum radial order used.
We search for the number of Zernike polynomials equivalent to a given number

of Shack-Hartmann subpupils. For this we set κZ = κSH and solve for n:

n ≈ Nsp/2

0.37
− 1 . (C.8)

Finally, we consider for our comparison the case of a SH wavefront sensor with
Nsp subpupils. Normally, the sampling of the sensor allows reconstruction of four
points per subpupil, but an oversampling of the reconstruction modal basis is
possible if a regularized reconstructor such as the MAP is used. In this case, it
is possible to reconstruct phase points equivalent to the stencil given by a virtual
subpupil grid of Noversamp · Nsp, so the number of oversampled phase points can
be computed by substituting this ”number of virtual subpupils” in Equation C.3.
Oversampling in the Zernike modal basis allows for more flexibility since it can be
done for any additional Zernike polynomials desired.
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Figure C.1.: Comparison of the spatial frequency coverage vs. the number of required
variables for a zonal and a Zernike polynomial basis. The zonal basis is oversampled as
a multiple of the number of subpupils in the system, Nsp, or an equivalent number of
radial orders, nmax.
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C. Frequency Coverage of Zernike Polynomials vs. Zonal Basis

Conclusions:

– Both zonal and Zernike basis require a similar number of variables for covering
the same range of spatial frequencies.

– The modal representation provides a finer control of the number of variables
(all crosses in the plot are one possible option). This allows for example an
intermediate number of variables w.r.t. to the zonal options.
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Abstract: Adaptive optics temporal error is a key contributor to the overall system error budget.
In the framework of adaptive optics design, this term sets constraints on the choice of the loop
sampling frequency. This is of particular concern for applications aiming at moving targets which
are more stringent in terms of temporal error due to the strong apparent winds induced by the
target motion. A question then arises: can we use turbulence temporal prediction to alleviate
the temporal error? We present here a simple theoretical formalism that allows estimating the
standard temporal error, meaning the error obtained without temporal prediction, as well as the
error reduction brought by optimal linear prediction based on turbulence priors. This formalism
allows quantifying the temporal error ahead of the development of dedicated control laws, and
the analysis brings a better insight on the prediction efficiency. These developments are then
illustrated on two scenarios involving scrolling satellites: the observation of a LEO satellite and
LEO to ground optical links.

© 2023 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Adaptive optics is now awell spread technique for applications that require a real timemitigation of
turbulence. Among these applications one can cite: ground based astronomy, space surveillance,
free space optical links for telecom, quantum communication and frequency dissemination .
Establishing models of the various contributors that limit the performance, that is the so-called
adaptive optics error budget, is a key aspect for the design of such systems . The temporal error is
the limitation induced by the temporal evolution of the turbulent phase during the loop delay, that
is the time difference between the sensing of the perturbation and its correction. The temporal
error is often an important contributor to the overall error budget. It even becomes a critical issue
in conditions involving a fast evolution of the turbulent phase, such as in the case of satellite
tracking scenarios that are associated to strong apparent winds .
The characterization of the turbulence temporal dynamics and of the related temporal error,

in the frozen flow hypothesis, goes back to late 70s with the pioneering work of Greenwood
(Greenwood-1977) later revisited in [Fried-1990] and to the progressive definition of the
turbulence coherence time g0 (RoddierGilliLund-1982, Fried-1990). These seminal works
however do not consider a correction on a finite number of modes defined on a finite aperture..
There have been parallel developments based on modal desciption (see for instance (Hogge

and Butts, 1976), (Roddier et al., 1993), (Conan et al., 1995)). These references clearly show that,
in the frozen flow hypothesis, the temporal statistics, correlation or power spectral density (PSD),
can directly be inferred from the spatial statistics (Kolmogorov or Von Kárman spectrum) and
spatial correlations described in (Valley and Wandzura, 1979). (Roddier et al., 1993) underlines



the similarity between temporal and angular correlations, the latter corresponding to the so-called
anisoplanatism effect (Valley, 1980) (Chassat, 1989) (+ thèse Chassat en 1992). Indeed, both
temporal and angular correlations are derived from the same basic equations describing the spatial
correlations in a given turbulent layer. These works have then been developed and extended based
on the three above mentioned points of view: spatial aspects (Takato and Yamaguchi, 1995),
temporal aspects (Whiteley et al., 1998b) and (Pachter and Oppenheimer, 2002) that accounts
for the motion of both aperture and source, or anisoplanatism aspects (Whiteley et al., 1998c).
Beyond the statistical characterization, the aim is to use correlations to estimate AO error terms
and eventually to reduce these error terms based on the use of such prior information. (Roddier et
al., 1993) and (Conan et al., 1995) estimate the temporal error in the presence of loop delay with a
standard control modeled respectively by a mere finite difference in time and an approximation of
the rejection transfer function of an integrator. Among the first publications suggesting exploiting
priors to improve correction we can cite (Olivier and Gavel, 1994) that analyses the capacity to
reduce tilt anisoplanatism, and (Ellerbroek, 1994) that presents optimal control for wide field AO.
We now restrict our analysis to publications that have exploited these original ideas through a
modal MMSE formalism. Several publications of this vein have developed and applied such a
modal MMSE formalism, in the absence of temporal considerations, in the context of optimal
multi-mode AO correction in the presence of anisoplanatism (Whiteley et al., 1998c), for TT
estimation issues with NGS and LGS (Whiteley et al., 1998d), for wide field AO (Fusco et
al., 2001) and later (Neichel et al., 2009) (Vidal et al., 2010). We stress the fact that we have
recently presented an extension of the modal MMSE approach (based on phase and scintillation
measurements) that allows a strong reduction of the impact of point ahead angle anisoplanatism
on ground-satellite uplinks (Lognoné et al. 2023). The same MMSE approach has also been
applied to temporal prediction so as to reduce tilt temporal error in the presence of loop delay
(Whiteley et al., 1998a) (Whiteley, 1999), these publications however consider a prediction based
only on the last available measurement. One finds a similar MMSE approach in the performance
analysis of complex tomographic AO configurations (Ono et al., 2016) including both priors on
anisoplanatism as well as temporal effects, this time with an account of several past measurements
and not only of the last one. This paper also heritates from (Correia et al., 2014) and (Correia et
al., 2015) that address tomographic AO from a more general control perspective based on LQG
approaches.

Our article focuses on multi-mode single conjugate AO and more precisely aims at providing
a simple analytical formalism able to estimate the temporal error without and with prediction.
Prediction is based on the MMSE formalism of the previously cited articles and includes the
use of multiple past measurements. Following previous references the system is simplified: no
account of a specific wavefront sensor device, 2 frame delay loop (although formalism could be
easily extended to other values), standard control modeled by finite difference in time, priors
assumed to be known with no error, etc... Given the approximations made, our formalism aims at
giving a lower bound of the temporal error. It also provides insights on the gains brought by
temporal prediction. These are key elements to guide the system and control developments.
The formalism is then applied to two LEO satellite tracking scenarios involving a ground

telescope equipped with AO: optical telecommunication on downlink between the satellite and the
ground, and observation of the satellite from ground. These cases have the interest to represent
two major applications with active developments and important strategic stakes . Besides, the
question of temporal prediction is very critical in these cases due to the fast slewrate with LEO
satellites. They are therefore perfect candidates to illustrate the assets of the present analysis.
The outline is as follows: Sect. 2 describes the theoretical formalism used to assess the

temporal error and gives a first illustration on a tutorial scalar case; Sect. 3 defines the telecom
and satellite observation scenarios retained; Sect. 4 presents the prediction error results with
static and MMSE prediction and Sect. 5 analyses the results obtained.



2. Turbulence temporal prediction formalism

This section describes the theoretical formalism and the associated hypotheses. Section 2.1 gives
the problem statement and defines the notion of temporal prediction. Section 2.2 introduces the
notion of static and MMSE prediction while the expression of the associated prediction errors
are given in Sect. 2.3. So as to obtain straightaway a good insight on the formalism and its
potentiality, it is applied in Sect. 2.4 to a conceptual scalar case tutorial. Section 2.5 finally
describes the vectorial model used to describe the turbulent phase and explains how the statistical
priors can be obtained.

2.1. Phase prediction: problem statement

We first start with the problem statement as well as the description of the main hypothesis. The
main physical quantity at stake here is the turbulent phase in the pupil plane. A discrete-time
description is used as in most AO modeling publications [JMC][cite few articles] . The pupil
plane turbulent phase at time step : , denoted q: , is described here by a vector of # components
corresponding for instance to the coefficients of a modal expansion. The detailed physical
description of the turbulent phase is the object of Sect. 2.5. The sampling time is denoted CB0<? .

This article aims at giving a quantitative assessment of the ability to predict the turbulent phase
ahead of time. Although the formalism could be easily extended, we particularize to the question
of a 2 step ahead prediction , representative of a typical 2 frame AO loop delay. The question
is therefore the prediction of q:+2 knowing current and past phases {q: , q:−1, q:−2 . . . }, and
the evaluation of the associated prediction error. This question may seem rather conceptual,
however, as already explained in the introduction, this analysis is analogous to the evaluation of
the temporal error of a 2 frame delay AO system in the ideal case of a direct measurement of the
phase (no explicit wavefront sensor, no noise), of a direct correction of the phase (no explicit DM
geometry) and without explicit feedback loop and control. We indeed seek for an estimation of
this ultimate temporal error so as to obtain a lower bound of the temporal error achievable with
practical control laws on practical systems, and to provide tools allowing a better understanding
of the temporal prediction efficiency for specific scenarios.

2.2. Static and optimal prediction

Again the aim is to assess the performance when predicting q:+2 from past phase data that
are assumed to be available. Two prediction estimators are considered hereafter: a plain static
prediction and an optimal prediction based on physical priors.

We call static prediction the estimation given simply by the last available data q: , hence with
the implicit assumption that the turbulent phase is static (no temporal evolution). The estimate
therefore simply reads:

q̂BC0C82:+2 = 'BC0C82 H
30C0
: = q: . (1)

which is a particular linear estimation with 'BC0C82 = �3 (identity) and H30C0: = q: . We choose
the wording "static prediction" since this indeed can be seen as a prediction with a simplistic
static prior, we admit, though, that it could also be referred to as "no prediction".
The optimal prediction is the prediction that minimizes the variance of the prediction error

defined as the difference between the true value and its estimate: q̃:+2 = q:+2 − q̂:+2. It therefore
minimizes the quadratic criterion � (



q̃:+2

2), where � () denotes the mathematical expectation.
This optimal estimation is given by the so-called MMSE estimator. In the following we consider
an MMSE estimation based on a finite number  of known current and past phase steps. The
vector of  known data then reads:

H30C0: = (q: , q:−1, q:−2, . . . , q:−( −1) )) . (2)



Influence of the value chosen for  will be investigated in Sect. 4.2. Assuming joint zero-mean
Gaussian statistics for the variable to be estimated q:+2 and the data vector H30C0: leads to an
MMSE estimate that is linear in the data in the form:

q̂<<B4:+2 = '<<B4 H
30C0
: = Γ (C30C0)−1 H30C0: , (3)

where Γ = �
(
q:+2 (H30C0: ))

)
and C30C0 = �

(
H30C0: (H30C0: ))

)
. The MMSE prediction matrix

'<<B4 therefore builds on supposedly known statistical priors: namely the covariance matrices of
q:+2 with H30C0: and H30C0: with H30C0: respectively. Note that this MMSE formalism is identical
to the original temporal prediction approach proposed in (Whiteley1998a, Whiteley1999). The
equations are also identical even though the data vector is extended here to include  time
steps instead of a single one, a feature that is shown to be essential to obtain efficient temporal
prediction (see Sect. 2.4 and 4).

We also stress that the MMSE estimation of Eq. 3 does not take a recursive form, an asset that
would be intrinsic of LQG control that can be seen as a natural extension of MMSE prediction
in the context of AO real time control. The present MMSE expression is however perfectly
satisfactory for the prediction efficiency analysis performed in the present paper, in which we
recall that control issues are left aside.

2.3. Prediction error

As introduced in the previous paragraph, the prediction error q̃:+2 is by definition the difference
between the true value and its estimate: q̃:+2 = q:+2 − q̂:+2. It is statistically characterized by
the prediction error covariance matrix C4AA = �

(
q̃:+2

(
q̃:+2

)) )
from which one can deduce the

prediction error variance for each phase component (diagonal elements of C4AA ) or the overall
prediction error variance (trace of C4AA that is the sum of its diagonal elements).

Before considering the specific static and MMSE prediction estimators, we consider the general
case of a linear estimator of the form q̃:+2 = ' H30C0: . It is straightforward to show that general
form of the prediction error covariance matrix for estimators of this class reads:

C4AA = Cq − ' Γ) − Γ') + ' C30C0 ') . (4)

From Eqs. 4 and 1 one can then easily derive the prediction covariance matrix for the static
prediction:

CBC0C824AA = 2Cq − Γ − Γ) . (5)

While for the optimal prediction the prediction, when exploiting its specific form given in Eq. 3,
the error covariance matrix can be simplified in the form:

C<<B44AA = Cq − '<<B4Γ) . (6)

The questions raised here are the following: can the prediction error be significantly reduced
by applying an optimal prediction instead of a static one? If so, what is the influence of the
number of time steps  in the data vector? We show, in the next section, through a simple scalar
tutorial, that the answer to these questions depends on the signal temporal dynamics. We then
precise in Section 2.5 how the temporal dynamics of the turbulent phase can be deduced from
physical models.

2.4. Scalar tutorial

Before addressing the issue of turbulence prediction, we present a brief scalar case tutorial for a
better insight into the formalism developed here. Besides, although they may seem naive, these



scalar case results will be very valuable for the interpretation of the turbulent prediction results
that are discussed in Sect. 5.

The prediction is then applied to a simple scalar signal with temporal dynamics described by a
second order autoregressive model (AR2). We express the dynamical AR2 model following the
harmonic form described in (CyrilPetitOptExpr2008):

q: = 01q:−1 + 02q:−2 + a: (7)

01 = 2 exp
(−2cb 50/ 5B0<?

)
cos

(
2c

√
1 − b2 50/ 5B0<?

)
(8)

02 = − exp
(−4cb 50/ 5B0<?

)
, (9)

where a is a white zero mean Gaussian noise of variance f2
a , b is the damping coefficient, 50

is the natural frequency and 5B0<? = 1/CB0<? is the sampling frequency. The interest of the
harmonic form is to introduce the notion of natural frequency, and in turn of relative natural
frequency 50/ 5B0<? , a parameter that is shown hereafter to play a key role. Besides, as we will
see in Sect. 5, this notion will have its counterpart for turbulence prediction.

Such an AR2 process is characterized by three parameters: either {f2
a , 01, 02} or equivalently

by {f2
a , b, 50}. For a given set of such parameters it is straightforward to compute the signal

variance f2
q = E

(
q2
:

)
as well as its correlation function W(@) = E

(
q:q:+@

)
. The correlation

function is for instance given by:

W(0) = f2
q ; (10)

W(1) =
01

1 − 02
f2
q ; (11)

W(@) = 01W(@ − 1) + 02W(@ − 2) for @ ≥ 2 . (12)

These temporal correlations are the only ingredients needed in Eqs. 3, 5 and 6 to obtain the
prediction error covariance matrices that are simply here a scalar error variance. For instance the
static prediction error variance simply reads CBC0C824AA = 2

(
f2
q − W(2)

)
. Its is worth underlying

that the static prediction error only depends on the signal variance and the 2 step correlation,
hence only two parameters while the AR2 process is characterized by three. In the meantime the
MMSE prediction, that can use several time steps of data, can be shown to exploit more broadly
the signal temporal dynamics. Conversely, we expect that MMSE performance shall depend
intimately on this dynamics.
Based on this latter observation, we construct the following test cases: we consider a well

damped system with b = 0.8, and we compute the MMSE prediction error variance (for different
number of time steps  in the data vector) as a function of the relative natural frequency 50/ 5B0<? ,
while adjusting f2

q so as to maintain the static error variance constant to an arbitrary value, set to
0.01. The results are summarized in Table 1.

50/ 5B0<? 0.001 0.004 0.016 0.064

Signal variance f2
q 63.6 4.04 0.269 0.0221

CBC0C824AA /C<<B44AA for  = 1 1.00004 1.00062 1.00939 1.12756 max/min=1.13

CBC0C824AA /C<<B44AA for  >= 2 40.3 10.5 3.06 1.41 max/min=28.5

Table 1. Signal variance f2
q and MMSE prediction gain CBC0C824AA /C<<B44AA for various

relative natural frequencies 50/ 5B0<? while static prediction error is kept constant to
an arbitrary value set to 0.01.



Firstly, we observe that MMSE prediction with a single time step data ( = 1) gives poor gains.
Secondly, the optimal gain is reached with  = 2 time steps: using more time steps does not
provide any additional benefit. It can indeed be shown theoretically that for any autoregressive
signal of order = the optimal prediction is reached for  = = (H. Lütkepohl, New introduction
to multiple time series analysis. Berlin: New York: Springer, 2005). This means that, for an
AR2 signal, MMSE prediction based on  = 2 time step data captures, and exploits, the whole
temporal dynamics. In this particular case, it can even be shown that the optimal prediction
comes down to iterating the deterministic part of the AR expression, iterating here twice for the
two step ahead prediction.

Besides, the results obtained on the large variety of scenarios that we have, somewhat artificially,
constructed are in the end rather intuitive. On the one hand, a signal that is is strong (large
signal variance) and slow (small relative natural frequency) can logically lead to the same static
prediction error as a weaker but faster signal. On the second hand, these scenarios are shown
to lead to very diverse performance in terms of optimal prediction (MMSE with  = 2): the
prediction gain spans values between 1.41 and more than 40. Although this result may seem
astonishing at first sight, it appears, as might have been suspected, that slow signals, with respect
to sampling time, that is having a small relative natural frequency, and hence strong temporal
correlations, can be much more efficiently predicted few steps ahead than fast signals. At the limit,
a white noise is "infinitely fast" and has no temporal correlation, hence a very poor prediction
that merely comes down to the signal mean value.
An intermediate conclusion is therefore that the formalism presented here easily allows to

estimate the gain brought by optimal prediction. Obviously the predictability of a signal is
inherently related to its temporal dynamics. The objective of Sect. 2.5 is to describe the priors
available to describe such dynamics for the turbulent phase, while the rest of the paper exploits
these priors to assess prediction performance for observation of, as well as for ground-space
optical links with, slewing LEO satellites.

2.5. Turbulent phase description and priors

As mentioned in Sect. 2.1, the turbulent phase in the ground-station pupil at time step : ,
is described by a vector of # components: q: =

(
q:;1, q:;2, . . . , q:;#

)) . Moreover, we
particularize here to the case where these components are the coefficients of a modal expansion
on the Zernike basis (Noll-1976). We recall that this resultant phase observed in the reception
aperture is the sum of individual contributions coming from turbulent layers in the volume along
the line of sight. Taking the usual description in statistically independent discrete individual
layers one can write in the case of ! layers and in the geometrical optics approximation :

q: =
!∑
;=1

i:,; (13)

where i:,; is the phase at step : and in the layer ; in the form of a vector of # Zernike coefficients
defined on a support corresponding to the foot-print given by the on-axis projection onto the layer
; of the ground aperture support. Based on this model, the computation of the temporal correlation
matrices of the type �

(
q:

(
q:+@

)) )
can be deduced from individual layer contributions of the

type �
(
i:

(
i:+@

)) )
which in turn correspond to the correlation between the Zernike coefficients

in an on-axis aperture foot-print and those obtained in a foot-print shifted by @ CB0<? \l where
\l is the wind vector at layer ; (see Fig. 1).

The wind vector is either the natural wind at layer ; or the composition of the natural wind plus
an apparent wind induced by the satellite tracking. The apparent wind depends on the distance I;
between the ground aperture and the layer ;. Its norm is simply given the product of the slewrate
¤\ (in rad/s) by I; .



Fig. 1. Principle sketch describing the geometry used to express the temporal priors.
[Figure To Be Updated for better consistency with notations in the paragraph]

The temporal priors described here are similar to those used in the seminal work by Whiteley,
although these articles were only focused on tip-tilt prediction without using higher orders.
Incidently we see from the above considerations and from the general MMSE formalism

described in Sect. 2.2 and 2.3 that the prediction estimator and associated error can expressed
solely from the statistics of the resultant phase in the telescope aperture that can be easily
described on the Zernike basis.

3. Application scenarios: description and rationale

In this section, we describe the application scenarios. The rationale is to define two scenarios
involving satellite scrolling with some diversity, as well as some commonalities, so as to compare
temporal errors and gains brought by MMSE prediction. We now motivate the choice of the
observation scenarios and discuss the associated turbulence conditions.

Two applications of strong interest for the community are, on one hand, LEO-to-ground optical
telecommunications with typical sub-meter telescopes and, on the other hand, LEO satellite
observation from earth, using meter size telescopes. Besides, since turbulent phase temporal
dynamics is driven by wind speed but also by the telescope diameter (Roddier-1993, Conan-1995),
these two configurations seem favorable to explore temporal error and prediction aspects in
diverse circumstances.
Of course, operational and turbulence conditions are specific to each of the two applications.

Satellite observation is mostly performed at night, in the visible, using typically sunlight back-
scattered by the target, generally with ground telescopes located in astronomical sites. While
optical telecommunication is performed in the near infrared and has to face stronger turbulence
conditions due to night and day operation, in locations not necessarily being astronomical sites.

More precisely, we consider, on the one hand, a LEO satellite observation system, with a 1.5 m
telescope, operating in nighttime in a good site. Imaging is performed at 850 nm, based on
back-scattered sunlight. The Onera ODISSEE system is considered as a baseline for this system.
On the second hand, we consider a LEO-to-ground optical telecommunication system, with a
0.4 m telescope, working in daytime, at 1550 nm. The LISA AO system can be considered as a
typical case.
We choose similar satellite parameters: a LEO satellite evolving at a 700 km altitude, with

a culmination at an elevation of 60◦. Observations are however considered at two different
elevations: the satellite observation is performed at an elevation of 40◦, as usually one shall
await favorable conditions such as reduced distance to the target (for higher resolution and return
flux) and improved turbulence conditions, while the telecommunication case is considered at an
elevation of 20◦ elevation. This lower value of the latter elevation is motivated by the need to
extend the time range of communication, considering in the meantime that flux is less an issue in
this framework.



Again, we do not claim that the two selected scenarios are representative of all possible systems
and observation conditions. They are however inspired from actual configurations and they will
be shown to provide a good illustration of the diversity in terms of temporal predictability.
Let us first recall the definition of the integrated parameters used here to characterize the

turbulence conditions: the Fried parameter A0, which characterizes the overall turbulence strength
integrated along the line of sight, the coherence time g0, which characterizes the temporal
evolution of the wavefront, the isoplanatic angle \0, which characterizes the angular evolution of
the wavefront.
Considering the long distance to the satellite one can take the expressions of these quantities

for a descending plane wave propagation. The Fried parameter (Fried-1966) then reads:

A0 =

[
0.423

(
2c
_

)2 ∫ I<0G

0
�2
= (I) 3I

]−3/5
, (14)

where �2
= (I) is the refractive index structure constant that characterizes the distribution of the

turbulence strength along the line of sight, I being the distance to the ground aperture, and
I<0G the distance beyond which turbulence is assumed to be negligible. The coherence time
(RoddierGilliLund-1982,Fried-1990) is given by:

g0 =

[
2.91

(
2c
_

)2 ∫ I<0G

0
+ (I)5/3�2

= (I) 3I
]−3/5

, (15)

where + (I) is the norm of the wind speed projected in a plane perpendicular to the line of sight.
The coherence time can also be expressed (RoddierGilliLund-1982) as g0 = 0.314 A0/+̄ where +̄
is the mean wind speed defined as follows:

+̄ =

[ ∫ I<0G

0 + (I)5/3�2
= (I) 3I∫ I<0G

0 �2
= (I) 3I

]3/5
, (16)

While the isoplanatic angle (Fried-1982) is given by:

\0 =

[
2.91

(
2c
_

)2 ∫ I<0G

0
I5/3�2

= (I) 3I
]−3/5

. (17)

We first consider hereafter the limiting case referred to as "slew rate only" that corresponds to
a wind equal to the apparent wind induced by the satellite tracking, in the absence of natural wind
contributions. In this limiting case + (I) = ¤\I where ¤\ is the slewrate (in rad/s) that corresponds
to the satellite apparent motion in the sky. Consequently it is obvious from the above equations
that the coherence time, in this particular case, reads: g0 = \0/ ¤\ . Hence a particular interest for
\0 for the satellite tracking scenarios even without any considerations of anisoplanatism effects.
This limiting case allows us to compare the two scenarios with temporal dynamics exclusively
induced by the satellite tracking. The influence of an additional natural wind is considered in
a second step. For the sake of simplicity apparent wind and natural wind, when present, are
considered hereafter colinear and along the x-axis. Note also that the present analysis focuses on
phase effects, scintillation is therefore not considered.

Despite the specificities of these two scenarios, we have tried to preserve key parameters so as
to simplify the interpretation of the results.

We pay a particular attention to the following quantities:

• Ratio diameter over Fried parameter �/A0: conserving this ratio allows to compare the
two scenarios with a similar turbulence level. In practice, one can indeed justify relevant



observation conditions that ensure the same �/A0 in both scenarios exploiting the fact that
the scenarios differ in terms of telescope diameter, wavelength, elevation and day/night
conditions (see discussion hereafter on the �2

= profile selection).

• Ratio diameter over turbulence outer scale �/!0 : conserving this ratio, together with
�/A0, allows to ensure an identical low order mode variance for the two test cases, despite
the change in diameter. The outer-scale !0 is therefore adjusted accordingly.

• Sampling time CB0<?: this is of course a key parameter for temporal error assessment; we
decided, as a baseline, to compare systems with the same sampling frequency; possibility
to relax CB0<? thanks to MMSE prediction is discussed in a second step.

Fig. 2. Vertical Hufnagel-Valley turbulence profiles taken from the recommendation
ITU-RP.1621-1: �2

= as a function of altitude for telecom (solid line) and satellite
observation (dashed line) scenarios.

Concerning the choice of the turbulence profile that is the distribution of the �2
= in altitude,

from which is in turn deduced the distribution along the line of sight, we use the Hufnagel-Valley
profile (Valley-1980) taken from the ITU recommendation ITU-RP.1621-1. This model is
parameterized by the value of the �2

= at the ground level �0 and the so-called "high-altitude
root-mean-square wind speed", denoted E'"( , that allows to adjust the high altitude strength.
The latter term E'"( is set here to the standard value 21 m/s. While �0 is set to 1.38 10−13 and
3.59 10−15 respectively for the telecom and satellite observation scenarios. The values of �0
ensure the conservation of �/A0 (found equal to 12) in both scenarios. Having a higher value of
�0 for the telecom case is consistent with the daytime observation. The two selected profiles are
displayed in Fig. 2. One can note that the free atmosphere turbulence, corresponding here to
altitudes above 1 km, is identical for the two scenarios.

Table 2 summarizes the main parameters of the two scenarios.

4. Prediction performance assessment

We now apply the formalism of Sect. 2 to the two application scenarios described in Sect. 3 so
as to assess the temporal error with static and MMSE prediction. The analysis is performed on
90 Zernike polynomials (radial orders 1 to 12 included, Zernike mode 2 to 91). The slew rate
only case is addressed in Sect. 4.1 and 4.2 and the impact of a natural wind, in addition to the
apparent wind induced by slew rate, is studied in Sect. 4.3.



Parameter Telecommunication Observation

diameter D (m) 0.4 1.5

wavelength (nm) 1550 850

satellite distance (km) 1583 1021

elevation (◦) 20 40

slew rate ¤\ (mrad/s) 2.8 5.9

A0 (cm) 3.3 12.5

!0 (m) 12 45

\0 (`rad) 4.8 6.6

+̄ (m/s) 6 35

g0 (ms) 1.73 1.12

5B0<? (Hz) 2500 2500

�/A0 12 12

�/!0 30 30

Table 2. Summary of the observation conditions and of the turbulence parameters for
the telecommunication and satellite observation cases in the slew rate only case.

4.1. Modal variance performance

This section presents the two step ahead prediction performance in terms of variance of the
prediction error as a function of the Zernike mode number. We compare the static prediction and
the MMSE prediction. MMSE prediction is performed for now with a data vector that includes
 = 10 time steps to ensure a certain convergence. The convergence with  is discussed in detail
in Sect. 4.2. Results are presented in Fig. 3.
MMSE prediction is shown to provide a significant variance reduction. In the telecom case,

the tip-tilt variance (averaged over the two modes) is divided by a factor 6.7, while the overall
variance (summed over the 90 modes) is divided by 13. The gain is even more impressive for the
satellite observation case, factors 35 and 210 respectively.
Note that unlike Von Kárman turbulence variance that depends solely on the Zernike radial

order, the prediction error variance is specific to each mode. For instance, the first two points
(Zernike number 2 and 3) correspond to tip and tilt modes. The prediction error variance is
larger for tip (pointing mode along the apparent wind direction) than for tilt (pointing mode
orthogonal to the wind direction). This is a direct consequence of the well known property
that the mode along the wind has more energy in the high frequencies of its temporal spectrum
(Roddier-JOSAA1993) hence a faster evolution. The tip variance remains larger also with MMSE
prediction. The variances of higher order modes are also impacted by the relative orientation of
the mode with respect to the wind direction.

4.2. Impact of the number of data time steps

We now study the MMSE prediction convergence with respect to the number of data time steps  .
The results are given in Fig. 4. We observe huge step when moving from 1 data sample to 2 data
samples. Minor improvements are still obtained when increasing further  . The convergence is



Fig. 3. Modal variance versus Zernike number: Von Kárman turbulence variance
[crosses], static prediction [stars] and MMSE prediction error [diamonds]. Slewing
rate only case with two step ahead prediction. Left graph corresponds to the telecom
scenario, and right graph to the satellite observation scenario.

slightly slower for the telecom scenario. In any case convergence is clearly reached with  = 10
the value selected in the previous section.
These curves clearly show that the turbulence dynamics is not strictly equivalent to a second

order autoregressive process, otherwise convergence would be strictly obtained for  = 2 (see
Sect. 2.4). It still appears that an AR2 model could be an acceptable approximation. Of course
the main effect noticeable on this curves is the fact that, even at convergence, MMSE prediction
is much more efficient in the satellite observation scenario, which was already observed in the
previous section. This difference in behavior is discussed in Sect. 5.

Fig. 4. Overall phase variance (sum over the 90 Zernike modes) with MMSE prediction
versus the number of data time steps. For comparison, the variance obtained with static
prediction is indicated arbitrarily at  = 0. Slewing rate only case with two step ahead
prediction. Left graph corresponds to the telecom scenario, and right graph to the
satellite observation scenario.

4.3. Impact of the natural wind

Previous results have been obtained in the limiting case said "slew rate only" in the absence of
natural wind. To confirm the previous results in a more realistic scenario we have also estimated
the prediction performance with natural wind added to the slew rate induced apparent wind. For
the sake of simplicity we have taken a constant 10 m/s natural wind in the same direction as the
apparent wind.
The results are displayed in Fig. 5. MMSE prediction again provides a significant variance

reduction. In the telecom case, the tip-tilt variance (averaged over the two modes) is divided



by a factor 16, while the overall variance (summed over the 90 modes) is divided by 24. The
gain is again more impressive for the satellite observation case, factors 34 and 212 respectively.
Compared to the slew rate only case, gains are increased for telecom case, while they remain
almost unchanged for satellite observation scenario. Convergence is still almost reached with
two time steps, and is slightly faster, for the telecom scenario, than in the slew rate only case.

Fig. 5. Top row: Modal variance versus Zernike number (see symbol description in
Fig. 3). Overall phase variance (sum over the 90 Zernike modes) with MMSE prediction
versus the number of data time steps. For comparison, the variance obtained with static
prediction is indicated arbitrarily at  = 0. Case of slewing rate plus 10 m/s natural
wind, with two step ahead prediction. Left column corresponds to the telecom scenario,
and right column to the satellite observation scenario.

4.4. Relaxation of the sampling frequency

As demonstrated in the previous sections, for a given sampling frequency, MMSE prediction
provides a large reduction of the temporal error. Conversely MMSE prediction can allow to
alleviate the sampling frequency while preserving performance. So as to illustrate this point,
we have used our analytical tool to find, for each case considered in this section, the sampling
frequency that provides an MMSE prediction temporal error equal to that of static prediction at
the original sampling frequency of 2500 Hz. In the absence of natural wind, respectively for
the telecom and satellite observation scenario, we obtain 1150 and 650 Hz, hence a reduction
by a factor 2.2 and 3.8. In the case of a 10 m/s natural wind the relaxed sampling frequencies
become 750 and 600 Hz. Prediction therefore allows a very significant relaxation of the sampling
frequency. As might have been expected, relaxation is more important for the satellite observation
cases for which prediction efficiency is better. The final choice of the sampling frequency is of
course a complex system trade-off. One can however say that for satellite observation where flux
is limited, the high potential of prediction in terms of reduction sampling frequency reduction is
a very valuable asset that should alleviate the wavefront sensing contraints. In the telecom case,



flux is less an issue but a relaxed sampling frequency can reduce system complexity, hardware
constraints (DM dynamics...) and eventually cost.

5. Discussion

In order to go beyond the simple assessment of the prediction performance, we now give here an
interpretation of the results, and explain the difference in terms of predictability between the two
scenarios considered. This analysis will be supported by parallels made with the scalar tutorial
of the Sect. 2.4.

Hereafter, when giving numerical values we always give sequencially the value for the telecom
scenario and then for the satellite observation scenario, separated by the word "respectively". We
first discuss the limiting case with slew rate only and later broaden the discussion to the case
with an additional natural wind.

Firstly, we stress the fact that for the two scenarios selected the temporal error with static
prediction is of the same order: 0.11 respectively 0.23 rad2. Besides, these two values are
approximately in the ratio of the respective g0 to the 5/3 which confirms that the modal temporal
error evaluated here still follows, for a given loop sampling frequency, the dependency in 1/g5/3

0
given by Fried (Fried-1990). However as already underlined in Sect. 2.4, the static prediction
error only depends on the variance and 2 step correlation. Balancing these two terms can
therefore lead to similar temporal error for very different signal dynamics and does not presume
the prediction ability of the MMSE estimator.
Secondly, we recall that in the slew rate only case g0 = \0/ ¤\, we can therefore deduce that

this quantity is, similarly to the isoplanatic angle \0, essentially driven by the free atmosphere.
From Eq. 15 one can compute that the contribution to the term 1/g5/3

0 of the layers above 1 km in
altitude. We indeed find that they represent a very large proportion, found here equal to 94%
respectively 99%.

Thirdly, if we then focus on these main contributors, that is the turbulence contributions above
1 km in altitude, we can compute that the �/A0 associated to this high altitude slab is respectively
--- and ... for the two scenarios accounting for their specific elevation, wavelength and
diameter. Hence a high altitude �/A0 multiplied by about 5 when going from the telecom to the
satellite observation case.
Fourthly, one can estimate the apparent wind speed for instance at this 1 km altitude

corresponding to a distance to the ground aperture of 2900 respectively 1555 m owing to the
respective elevation. We find 8, respectively 9 m/s. Moreover it is of interest to compare the
ratio +/� that is related to the cut-off frequency of the modal temporal PSD (Roddier-1993,
Conan-1995). We obtain 20, respectively 6 Hz. Of course, all these values are multiplied by 10
when considering the jet stream layer at an altitude of 10 km rather than the preceding altitude
of 1 km. For instance the ratio +/� now reaches 200 Hz in the telecom scenario. This ratio
+/� drives the intrinsic turbulent temporal dynamics and can be seen as the counterpart of the
natural frequency 50 of Sect. 2.4. The fact that +/�, and hence +/�/ 5B0<?, is larger for the
telcom case than for the satellite observation case therefore denotes faster temporal decorrelation
similarly to the cases with larger 50/ 5B0<? in Sect. 2.4.

Lastly, all things considered, and still for the high altitude layers that are, in the slew rate only
case, the major contributors to the temporal error, we can state that: the satellite observation
dynamics corresponds, relatively to the telecom case, to a turbulence that is stronger (high altitude
�/A0 multiplied by 5) but also much slower (ratio +/�/ 5B0<? reduced by factor ≈ 3). We are
therefore exactly in the conditions described in Sect. 2.4 where, indeed, much larger MMSE
prediction gains were obtained with strong and slow signals, that is with large variance and small
relative natural frequency.
This analysis now leads us to formulate a number of warnings. For what concerns temporal

dynamics and hence MMSE predictability, the integrated parameters given in Table 2 are far



from sufficient and can sometimes be misleading. The mean wind speed could for instance give
the impression that the satellite observation turbulence is fast and difficult to predict. It is actually
easy to show that the adjustment of the ground �2

= modifies strongly the mean wind speed while
having little effect on the turbulence dynamics and predictability since wind speed, in the slew
only case, is nearly zero near the ground. Similarly, the value of �/A0 for the whole profile gives
the overall strength of the turbulence but gives no information on the energy of the layers that
contribute significantly to the prediction error.
Concerning the results with slew rate together with natural wind (see Sect. 4.3), obviously it

adds near ground contributions to the prediction error since the wind speed is dominated by the
natural wind in this region. For the telecom case it therefore adds a strong turbulence component
(daytime conditions correspond to strong ground �2

=) with a reasonable wind (10 m/s), and in
turn a rather small +/�/ 5B0<? , hence a strong and relatively slow component that is favorable
to MMSE prediction. And indeed the prediction gain is increased compared to slew rate only.
For the satellite observation case, predictability was already quite high and the gains are little
affected by the presence of this near ground component, limited anyway in strength since the
ground �2

= is smaller in this scenario.

6. Conclusion

Temporal error is a key contributor to the AO error budget and is often a major issue for
applications involving moving targets. We present a simple theoretical formalism that allows
to estimate the temporal error for any linear prediction. This analytical formalism is based on
a modal expansion of the resulting phase in the ground aperture and on its associated modal
temporal correlations that are easily deduced from Von Kárman statistics and assumptions on
the wind. This formalism allows to assess both temporal error with static prediction, sometimes
referred to as no prediction at all, and with an MMSE prediction based on an adjustable number
 of past data.
The formalism is applied to two application scenarios: a LEO to ground telecom link, with

a ground aperture of a few decimeters, and the observation of a LEO from the ground with a
metric telescope. Prediction performance is shown to quickly converge with  (2 time steps
nearly reaches convergence). Gains brought by MMSE temporal prediction are large and also
shown to be very dependent of the configuration: gains of about a decade are obtained in the
telecom case while it reaches several decades for the satellite observation.

This therefore gives a perfect illustration that with scenarios having a similar static prediction
error, one can obtain very different prediction capacities with optimal methods that exploit the
temporal dynamics of the perturbation. Thanks to a didactic scalar tutorial and to a refined
analysis of the selected scenarios, the difference in behavior is shown to be related to the balance
between the signal strength and speed of evolution with respect to the sampling time. A balance
in which the telescope diameter plays an essential role.

The formalism therefore allows, for given observation scenarios, to quickly grasp perspectives
of gain brought by temporal prediction. Considering the simplifying approximations made, our
approach also gives an estimation of the lower bound of the temporal error one may expect.
These elements can guide the control developments and help the performance validation. We
have also shown that important gains brought by prediction can also be exploited to relax the
sampling time while maintaining good performance. Such trade-offs are essential even in early
stage of system design. For satellite observation, reducing the AO loop frequency means a larger
wavefront sensor exposure time which is a strong asset when flux is limited. For the telecom case
it means reduced complexity and relaxed constraints on the components (DM dynamics...).
We stress the fact that for ground to satellite optical uplinks another major contributor to the

AO error budget is related to point-ahead anisoplanatism. To limit this effect, we have recently
proposed (Lognoné-OptExpr-2023) an innovative strategy, based again on an MMSE estimator,



so as to obtain an efficient angular prediction at point ahead. We plan to combine angular and
temporal prediction in future developments.
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