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Abstract
Since my post-doctorate, I have mainly worked on the foundation of data and knowledge management.
In my habilitation, I focus on some of my main contributions over the following questions: reasoning
of logical formula over relational instance, reasoning and evaluating queries over trees, and reasoning
over circuits.

My contributions are organised into three parts: a dialogue between logical reasoning and reasoning
over trees; a dialogue between tree evaluation and querying circuit and finally a dialogue between the
explanation of query evaluation and circuits.

The first part focuses on translating logical problems into reasoning problems over trees and vice
versa. First, I present different reductions of reasoning on fixpoint logic into reasoning on tree automata
in order to obtain some efficient upper bound over the logical reasoning. Secondly, I explain how the
validity problem of a tree automata into a union of conjunctive queries can be used to prove different
lower bounds on logical reasoning.

In the second part, I present an approach proposed by my co-authors and me to reduce different
problems of enumeration of solutions of tree automata evaluation over trees into the same enumeration
problems over a particular kind of circuit allowing to solve this problem efficiently.

Finally, I present different results on the computation of provenance for Datalog, a well-known
recursive language for querying databases. First, I present an approach based on techniques presented
in previous parts giving an FPT algorithm to compute efficiently the Boolean provenance for a subclass
of Datalog programs. Then, I present a discussion about different semantics to compute the provenance
for Datalog comparing them together and following some desired properties.

1



Résumé
Mon habilitation porte principalement sur les résultats fondamentaux que j’ai développé depuis mon
post-doctorat. Ceux-ci se sont focalisés sur la relation entre différents questions: les raisonnements
sur les formules logiques dans le cadre relationnel, le raisonnement et l’évaluation de requêtes sur les
arbres et l’évaluation sur les circuit logiques.

Dans le cadre de mes travaux sur la gestion des connaissances, j’ai étudié le raisonnement sur de
formules de logiques avec point fixes. J’ai travaillé sur la réduction des problèmes de raisonnements
sur des instances relationnelles vers des problèmes de raisonnements sur les arbres et vice versa. Ces
travaux ont porté sur la traduction de formule logique en automate d’arbres permettant d’obtenir des
bornes supérieures sur les raisonnements de formules et sur la traduction du problème de validité
d’un automate d’arbre au regard d’une requête conjonctive dans un problème de raisonnement sur la
logique étudiée permettant d’obtenir des bornes inférieures sur ce dernier problème. En particulier,
nous étudions une logique de point fixe appelée GNFP-UP et montrant les bornes inférieures pour
l’inclusion de programmes Monadic Datalog qui était une question ouverte dans la communauté.

Le deuxième grand axe de recherche sur lequel j’ai travaillé est la relation entre les circuits logiques
et l’évaluation de requêtes sur les arbres et les mots. Nous montrons que la trace de l’évaluation d’une
requête MSO sur un arbre, appelée provenance peut être décrite au travers un circuit booléen possédant
une structure particulière appelée d-DNNF de même que les réponses de cette requête. Au travers
l’étude de ce type de circuit, nous avons pu redémontrer que l’énumération des réponses peut se faire
avec un précalcul linéaire et un délai constant et que nous pouvions mettre à jour efficacement le circuit
sous-jacent. Nous avons étendu notre approche pour énumérer les réponses suivant un ordre donné
par une fonction d’agrégation sur les valeurs des réponses:

Pour finir, j’ai travaillé sur la notion de provenance et sa représentation en circuit. La notion de
provenance en base de données est une méthode permettant de représenter et calculer différentes
informations autour de l’évaluation des données. Une représentation par circuits permet de représenter
efficacement tout un ensemble de provenances. Plusieurs questions se posent dans ce cadre, comment
bien définir la notion de provenance, comment l’évaluer efficacement et dans quel contexte. Tout
d’abord, nous avons proposé une approche FPT pour calculer la provenance booléenne pour un sous
langage de Datalog sur une instance ICG en utilisant des techniques développées dans les autres parties.
Nous investiguons aussi différentes sémantiques pour la provenance afin de comprendre les limitations.
La définition classique de la provenance pour Datalog impose de raisonner sur un nombre infini de
structures limitant son usage. Nous comparons ces différentes sémantiques entre elles mais aussi au
regard de propriétés désirées.
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Chapter 1

Introduction

The following document is a synthesis of my research activity since my PhD defence in February 2011.
After my PhD, I did a post-doctorate at Oxford University. I joined CNRS in October 2013 at LIFL

which became CRIStAL in 2015. From 2013 to 2017, I was a member of the Links team and since 2017 I
have been a member of the SPIRALS team. My research activities have focused on Foundation Data and
Knowledge Management. My research was in particular motivated by Knowledge management on the
web until 2017. Since I have arrived at SPIRALS, I have also been doing research in the management of
knowledge inside applications and not only inside Knowledge management systems. This has led me to
study different problems such as the security of knowledge, the explanation of queries as well as the
logical reasoning in the development of applications. Moreover, I have started to apply my research
into the domain of biocomputing and digital humanities: in literature, law and history.

My Habilitation will mainly summarize some of the theoretical results that I have developed since
my postdoctorate. I focus on the study of the relation between the following questions: reasoning
on fixpoint logical formula over relational data, reasoning and evaluation of query over trees and the
evaluation of logical circuit. In particular, these papers have linked different fields such as Database
Theory, Knowledge Representation and Formal Methods. My works were published and presented at
the main conferences of these different domains.

1.1 Context

The complexity of data management has raised some peaks over the last decades with the proliferation
of different sources of data, in particular through data accessible on the Web.

Due to this proliferation of sources and the amount of data that they generated, different problems
have been raised: how to manage the heterogeneity of the data to query it efficiently; how to manage
data which is less structured for example used in NoSQL paradigms such as JSON and Graph Databases
and text; how to query efficiently data when data is incomplete and uncertain; how to query efficiently
data when the number of answers is huge and more generally how to answer complex queries and how
to understand how the data does satisfy the query. These questions have been intensively studied in
different communities over the last decades in particular in the communities of Database Theory and
Knowledge Representation.

A general approach to deal with these problems has been to use logical formulas. Logical formulas
have been always at the core of data management in particular for relational databases. Hidden through
the standard language SQL, it is the core of query languages for databases. Thanks to the results of Codd,
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chapter 1. introduction

it is possible to transform any First-order-Logic into an algebraic relational expression that then can
be optimized into an efficient execution plan using appropriate algorithms for each algebraic operator.
More generally, logic has been at the core of many approaches to solve the problems expressed above.

The heterogeneity of the data has different reasons: (i) in the relational model, the schemas of the
data are different; (ii) the data have different formats/representations. In the first case, the data is stored
in different relational databases having different schemas. It is a classical problem as companies can
have inside their organisation their data stored at different places and when data comes from different
sources. A classical approach for dealing with data coming from different schemas is to create a new
schema used as a reference. Each other schema is linked to this new schema by explaining how to
transfer the data from a schema to a reference schema. The classical setting to describe such links
between schema is based on particular First-Order formulas called Tuple Generated Dependencies (TGDs).
Thus, there are two manners to query the data over the reference schema: first the data from each source
is transformed into data from the reference schema. It is important to notice that this transformation
creates new data which were not in the initial source. This problem has been studied in the context of
data exchange [KPT06]. It was established that there is a canonical instance that can be created through
a procedure called the chase. This procedure has different variants that all create a canonical instance
and all are called chase. The other approach for querying efficiently the reference schema is to rewrite
the query into different queries over the different source schemas and to combine the answers of these
queries.

The heterogeneity of data is also brought by different representations/formats of data such as trees
with XML and JSON formats. The representation of data on a graph has become very popular with
Graph Databases and RDF graphs. Query languages over data graphs have introduced or highlighted
different new features such as regular path queries and more generally, recursive queries and finally
ontologies. Understanding and managing these new representations and queries has been a challenge.
In particular, mixing ontologies and recursivity is a complex problem that has brought a lot of attention
in the last decades. Finally, managing text has brought a lot of attention through data extraction with a
new formalism proposed by IBM: spanners [PFKK19]. Spanner is a query language to extract substrings
from a text and to reason on them through (Datalog) rules.

When publishing information on theWeb, it often happens that some of the data is missing/unknown.
To avoid a complete lack of information about the missing data and to express the fact that data is
missing, it has been proposed to express some knowledge about the missing/unknown data. This
knowledge is often expressed through logical rules expressed in different languages like TGDs or
Description Logic. In the context of missing or unknown data, the classical question is to query data by
taking into account these missing data, which is called certain query answering. In the same manner
as for the heterogeneity of schema, the missing data can take any possible value and therefore when
querying data while taking into account missing data, the approach is to check if the query is satisfied by
any instance containing the initial database and satisfying the rules describing the knowledge. Because
the domain of the value is usually infinite, it is needed in principle to check an infinite number of
instances. Thankfully, if the rules are expressed by TGDs and the query possibly recursive is closed
under homomorphism, there exists a notion of canonical instance and there exists a procedure called
chase to build this canonical instance. The problem of certain query answering can be reduced to the
problem of evaluating the query over this canonical instance. Unfortunately, this canonical instance
can be infinite following the properties of the rules and therefore, it cannot be built in practice. There
exist different approaches to deal with this problem by representing finitely an infinite instance or
rewriting the query into another query such that the evaluation of the last one is equivalent to a certain
query answering the first one. Even though certain query answering over TGDs is undecidable, there
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chapter 1. introduction

exist different dialects for which this task is computable. Different techniques are used to prove the
decidability such that the finiteness of the chase the boundedness of the chase’s treewidth. This last
property leads to reducing the certain query answering problem to some reasoning over MSO formula
over trees. The certain query answering problem can also be reduced to a classical query evaluation for
another query.

Data on theWeb is also uncertain. Different approaches have been proposed to deal with uncertainty:
numerical ones assign scores/probabilities to each fact and then some score for the evaluation of the
query is computed following the score on the facts. In the context, numerical score like for fuzzy
logic, the score is computed by changing the classical operators as follows: 𝑥^ 𝑦 tominp𝑥, 𝑦q, 𝑥_ 𝑦
to maxp𝑥, 𝑦q and  𝑥 to 1� 𝑥. In the context of the probabilistic evaluation, the probabilistic values
assigned to the fact of the database express the probability that a tuple appears in a possible world
and the probability of the query evaluation is based on the probabilities of the possible worlds on
which the query is satisfied. More recently, the numerical score for the contribution proposed in
the artificial intelligence community such that Shapley value score. More generally, the problem of
uncertainty implies a better understanding of the contribution of the tuples to the result of a query. The
database community presented different frameworks under the name of provenance which describe such
contribution of tuples through logical formula. Interestingly, [DFKM22, JS13] made some interesting
connections between provenance and numerical approaches to deal with uncertainty.

Finally, the appearance of a massive amount of data implies revisiting some approaches to evaluate
queries. It is well known that different classes of queries have different data complexity. Remember, data
complexity is the complexity only depending on the size of the data and not on the size of the query.
For example, general recursive queries such as Datalog queries are ptime-complete when conjunctive
queries are in AC-0 data complexity. Moreover, classical plan optimisation is principally focused on
first-order queries and even more on conjunctive queries. Therefore, understanding when a recursive
query can be rewritten into a first-order query can lead to an important performance optimisation of
the query. In the same manner, the combined complexity of conjunctive query has been deeply studied
and different notions of decompositions over the conjunctive formula to obtain a fine-grained combined
complexity. For example, acyclic queries can be evaluated in polynomial time in combined complexity
as the opposite of np-complete complexity in general. Therefore, it is interesting to understand when a
query can be rewritten into a simpler query.

The query evaluation of an enormous amount of data implies that the number of answers can be
too voluminous even though the user does not need all the answers. A classical manner to avoid this
is to limit the number to a certain amount for example by using the SQL command LIMIT. Another
approach for dealing with a huge amount of answers is to provide a partial set of answers and then
deliver new partial sets following the user’s wish for results delivered by a search engine.

1.2 Challenges

1.2.1 Reasoning on Recursive Logical Formulae

During the previous section, we noticed that several important questions and tasks can be reduced to
some reasoning over logical formulas more particularly the satisfiability of the formula, ie knowing if a
model is satisfying this formula. For example, the problem of containment of a query 𝑄1 into another
𝑄2 under the constraints Σ can be reduced to the problem of satisfying the formula 𝑄1 ^ 𝑄2 ^ Σ,
the problem of certain query answering for a set of rules Σ, a query 𝑄 and instance 𝐼 can be reduced
to the problem of the satisfiability of 𝑄𝐼 ^ Σ^ 𝑄 where 𝑄𝐼 is the formula stating that the facts in
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chapter 1. introduction

𝐼 are true. Even though all these problems are undecidable in the general case, there has been a lot
of progress in finding subclasses of queries and rules to obtain decidability results. In parallel with
these results on specific problems, different decidable fixpoint logics such as GF, GFP, GNF, and GNFP
have been proposed. Often the specific cases of decidability problems on certain query answers can be
reduced to the satisfiability of these logics.

During the last decade, containment of recursive queries possible under constraints, certain query
answering for conjunctive queries or recursive queries have brought a lot of attention. Even though
recursive query languages such as Datalog were proposed in the 80s, we have observed a new wave of
popularity over the last two decades. Indeed, querying graph databases may require looking for nodes
that are connected through unbounded paths having some properties. These kinds of queries cannot
be expressed by First Order logic but by Fixpoint logic. More interestingly, the basic queries such that
conjunctive regular path queries cannot be captured by classical recursive languages having decidability
containment such as Monadic Datalog or Fixpoint Logics having their satisfiability decidable such as
GNFP. It is interesting to understand if there is a logic or recursive query language that can express
conjunctive regular path queries.

Several classical problems such as the containment of decidable subclasses of datalog programs, and
certain query answering for a union of conjunctive queries under different classes of rules do not have
their exact complexity known. For example, the question of containment of monadic datalog programs
is a problem known to be in 2exptime since the end of the 80s. However, for more than two decades,
the lower bound of this problem was not known. In the same manner, several subclasses of TGDs for
which certain query answering did not have their precise complexity known.

1.2.2 Efficient Complexity for Enumeration

One of the trendy studied techniques to deal with a massive amount of answers is the framework
of enumeration. This framework proposes to operate an efficient preprocessing that computes an
efficient representation of the answers to the query and a method to enumerate one by one the answers
computed in the preprocessing via an efficient method. The manner to measure the complexity of such
an approach is to measure first the complexity of the preprocessing and the complexity to compute the
next answer from the previous answer and the preprocessed structure. A naive approach is to compute
classically the set of answers of then enumerate them one by one. In this context, the complexity of
the preprocessing will be the same as the classical computing evaluation of the query and the delay
between two answers is constant in the size of the database. From this remark, we can notice that
the enumeration process is in general a trade-off between the preprocessing and the delay. Previous
works have focused on subclasses of queries for which the complexity of preprocessing is linear and
the complexity of the delay is constant both in the size of the database. This question has been studied
for different data representations: words, trees and relational and also for more complex queries such
as queries with aggregation associating values to the answers and such as the enumeration following
the rank given by the values. However, the understanding of maintaining the representation of the
answers when the data is updated was an open question in the context of trees.

1.2.3 Efficient Complexity for dealing with explanation of queries

The problem of uncertain data has been dealt with different approaches some numerical associating
confidence score or probabilities to the tuples or a more symbolic approach by using a formula repre-
senting the sets of tuples of the database contributing to the answers. This last notion is also called
provenance in the database community but it could be named as lineage. There exist different notions of
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chapter 1. introduction

provenance following the details of contributions that are wanted by the users. Interestingly, [GKT07]
made some connections between the numerical evaluations and the symbolic approaches through
the notion of semiring by showing that some confidence scores can computed as a specialisation of
some more general specifications. Some other results [JS13] explored this connection showing that the
notion of probabilistic evaluation can be efficient if the Boolean provenance of a query can as some
particular form. This approach has made links between Database Theory and Knowledge Compilation.
This notion of provenance through semi-ring and their representation via circuits has brought a lot of
attention in the community and different questions of efficient computation and representation have
been studied. This problem is in particular important in the context of recursive queries. Indeed, by
using classical semi-ring In this context, classical semi-rings can be used but more specific semi-rings
should be used. Different properties over the semi-ring have been proposed to obtain a well-defined
and finite representation of semi-ring provenance over recursive queries [KNP�24].

1.3 My contributions

1.3.1 Reasonning on Fixpoint Logical Formulae

My main contributions on reasoning on logical formulae are on recursive queries and fixpoint formulas
such as containment of recursive queries, certain query answering for recursive queries or with rules
having some recursive parts. These contributions can be classified in two parts: one on the increase
of expressiveness of subclasses of recursive queries and fixpoint queries which have some decidable
properties and another about establishing new lower bounds.

For the first part, [RK13] established a more expressive fragment of Datalog which the containment
is decidable because belonging to the intersection of Datalog and MSO. Interestingly, this new fragment
captures regular conjunctive queries. Unfortunately, its complexity established is elementary. In
[BKR15], we present the exact complexity of the containment problem of queries of this language.
We also extend this query language to capture decidable query language outside MSO with a similar
complexity. Our results also allow us to capture conjunctive regular conjunctive queries and reproof
classic results over them. By using the same approach, we extend GNFP to another decidable logics
which capture conjunctive regular path queries. These results use a property called tree decomposition.
Intuitively, most of the reasoning tasks over logical formulas are to construct an instance showing
that the property over the formula is true. The tree decomposition technique/property is satisfied by a
formula iff if there exists an instance satisfying the formula (model) then there exists a model with a
tree shape. The tree-shape property allows us to reduce a problem from a general relational structure
to an equivalent one over trees which is expressible in MSO. This property allows us to translate the
problem of satisfiability over any instance to a satisfiability problem into an MSO formula over (infinite)
trees. This problem is well-known to be decidable.

Thanks to this approach, many decidability results have been obtained, however, this approach does
not provide in general the exact complexity of the problem. To obtain the exact complexity, I worked
on different translation of logic formulas into tree automata

� for the containment of Datalog in the union of conjunctive queries to obtain better complexity
for subclasses of Datalog queries [BBV16, BBV19] which are used in the context of querying data
accessible through access patterns.

� for understanding the complexity highly expressible recursive queries expressible in Datalog
called GQ [BKR15] and its generalisation for highly expressive fixpoint logics [BMMP16], [BL16].
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chapter 1. introduction

These techniques are based on a new kind of tree automata called pointed tree automata which
select and evaluate a tree automata starting from a particular node in the tree.

� for rewriting logical formulas into more efficient subclasses. For example, we proposed techniques
[BBV17],[BBV19] to check if it is possible to rewrite a logical formula in GNPF using k variables
into a GFP formula and propose a rewriting of the initial formula.

In another way, if some previous results had some well-known upper bounds as the containment
of monadic datalog in a union of conjunctive queries [CGKV88], the lower bound of its problem was
not known. We established a general framework by establishing new results for the question of the
validity of a language described by a tree automata into a tree pattern query, i.e. checking that each tree
satisfying the tree automata also satisfies the tree pattern query. We study this problem for different
schemas that the tree pattern can use: child-or-self ... Thanks to these results, we reduce classical
reasoning problems on fixpoint logics and subclasses to related validity problems for different class of
schema and thus obtaining lower bounds for the different problems. The establishment of the results
over trees is published in [BBGS20] and it was used in different contexts, in particular for closing the
exact complexity of the containement of Monadic Datalog queries which was an open problem for 20
years in [BBS12].

Two of these results received prizes, [BBV17] received the best paper award for track B of ICALP
2017 and [BKR15] was a distinguished paper (honorary mention) at IJCAI 2015.

1.3.2 Efficient Compact representation for answers based on circuits applied to
Enumeration

The second axe of research has been the link between logical circuits and evaluation of queries over
trees and words. As presented before, Enumeration is a framework based on computing a compact
representation of the answers of the query and then to enumerate the answers following a possible
order or not. We have studied this problem in the context of MSO queries over trees and words. We
introduce a new framework which represents the set of solutions into classes of logical circuits which
are known thanks to the Knowledge Compilation community. We then studied the different problems
on the circuit representation.

This approach started by defining a notion of the provenance of the evaluation of a MSO formula
over trees [ABS15a] during the PhD of Antoine Amarilli whom I informally co-advised. These results
show that Boolean provenance of MSO over trees can be computed in linear time in the size of the tree
and that the computed circuit has a particular form called d-DNNF and therefore, different tasks such
that probabilistic evaluation over trees can be done in linear time. This result was known but it showed
the interest of looking at our approach.

Based on these results and by noticing that the provenance of the evaluation of the MSO formula 𝑄
can be seen as describing a compact representation of the set of answers of another MSO formula 𝑄1,
we investigated the general problem of computing compact representation. Through the progress in
our work, we proposed different equivalent presentations of circuits, d-DNNF, d-DNNF set circuits or
d-DNNF multivalued circuits which are all computable in linear time in the size of the tree. We then
studied the different problems that we were interested in: enumeration of answers, ranked enumeration
and finally updating the compact representation of the study. Thanks to this circuit representation,
we propose a novel approach to compute enumeration over MSO trees [ABJM17]. This result was
proved before with two completely different approaches [Bag06, KS13]. Thanks to the links between the
circuit structure and the tree structure, we were able to prove that we can efficiently update the circuit
structure when the tree structure is updated [ABMN19b]. Some of these results rely on an unpublished
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work [KMN22]. To finish our work on classical enumeration, we studied the problem of combined
complexity: in [FRU�18], an open question was asked about the combined complexity of enumeration
on nondeterministic automata. The previous results were established when deterministic automata
expressed queries. We proved that for words and trees, the complexity can be done in polynomial time
in the size of the query and linear time in the data in [ABMN19a, ABMN21] and [ABMN19b].

Finally, we studied the problem of ranked enumeration over words and trees when different aggre-
gation procedures for assigning values to the answers of the query. In [BGJR21], we study the rank
enumeration for words when the value attached to the answers is obtained by aggregating values
attached to the edges of the automata giving a value associated with the accepting run of the automata.
In [ABCM24], we study aggregations of values associated with the nodes of trees belonging to the
answers in the same setting as [DK19, DHK22, TGR22].

The paper [ABMN19a] got a SIGMOD Research Highlights in 2020.

1.3.3 Efficient Complexity for dealing with explanation of recursive queries

In the context of recursive queries, the problem of definition and representation of semi-ring prove-
nance has been heavily studied to find a more compact [DMRT14] representation through circuits
and different definitions of semi-ring for finite representations. In this context, we have proposed
another representation called cycluit that can construct a more compact representation of a circuit
of recursive queries for the boolean provenance. [ABMS19]. These cycluits can be seen as recursive
circuits over the internal gates. Secondly, in [BBPT22a], we studied different propositions of computing
the provenance based on execution semantics and we compare them together trough different properties
that we introduce.

1.4 Other works

My full list of publications can be found in the appendix Section 5. Most of my other works have been
on reasoning on different formula logics for different applications such as security and provenance. The
line of work not presented in this manuscript is on Data-centric Workflow. This is a line of research
that tries to model different applications through their transformation of data. It is in line with the
work of active databases [Wid96], relational transducer [AVFY00] and relational machines [AVV97]
developed in the 90s and the notion of business/tuple artefact [KV17] developed in 2000. In this context,
I have worked on the notion of explanation in the context of different settings, distributed or centralized
based on the tuple artefact framework. We established in [BDM16] a notion of provenance for the
tuple-artifact approach and used it for different kinds of explanations. In [BDM20], we focus on a
compact algebraic representation for tuple artefacts based on particular kinds of updates. Finally in
[ABV18], we studied the explanation problem in a distributed setting; we provided a methodology to
rewrite the workflow/programs to introduce better explanations for the users.

1.5 Organization of the manuscript

This manuscript highlights some selected results of my research since my PhD defence in February
2011. Detailed proofs and algorithms can be found in the original papers. I have chosen to highlight
three research directions:

11
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� The dialogue between logic and trees where I present the main translation approach from logic
over databases to automata over trees and how to reduce some problems over trees to logic ones
to obtain the main lower results. These results were published in [BBV16, BBGS20].

� The dialogue between trees and circuit where I present the main technique to compute a compact
computation of the answers of a MSO formula over trees. Then, the two main algorithms
to enumerate and rank enumeration are presented. Finally, I discuss the principles behind
maintaining the compact representation of the answers through updates of the tree. The results
were published in [ABMN19b, ABCM24].

� The dialogue between logic and circuit. I discuss the problem of evaluating provenance for
Datalog queries. First, I give a new efficient representation of circuit called cycluits in order to
obtain a FPT algorithm for a subclasse of Datalog program. Then, we explore different definitions
of the computation of the provenance for Datalog and their impact. The results were published
in [ABMS19] and [BBPT22a].
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Chapter 2

Dialog between Logic and Trees

In the context of fixpoint logics, there exists a family of fixpoint having their satisfiability decidable:
GFP, UNFP and GNFPUP. The approach to obtain decidability relies on the fact that the satisfiability can
be restrained to check for instances that can be encoded through (infinite) trees. It is sufficient to encode
the fixpoint formula into an MSO formula over the tree encoding. With the rise of Graph Databases, new
kinds of recursive queries such as conjunctive regular path queries are not expressible with previous
fixpoint logics. We studied a logics GNFP-UP which captures such queries in a more general manner.
We also study query languages based on Datalog in [BKR15] for which the containement problem is
decidable. These languages are captured by our fixpoint logic.

We also studied lower bounds of fixpoint logics and containment of recursive queries [BBGS20].
We presented that these questions can be reduced to some relevant problems over trees.

In this chapter, I will focus on two main techniques:(i) the technique developed in [BBV16] and
[BKR15] to translate a logical formula in GNFP-UP into a tree automata used to obtain the exact
complexity of the satisfiability result and their applications;(ii) the techniques developed in [BBGS20] to
reduce a reasoning problem into a validity problem over trees to obtain lower bounds of the complexity
of the reasoning problem. I will first introduce the preliminaries.

2.1 GNFP-UP and Automata Translation

The Guarded Fragment (GF) [ANvB98] is a fragment of first-order logic obtained by requiring in
existential quantification D𝑥.𝜑p𝑥q that 𝜑 be of the form𝑅p𝑥q^𝜑1p𝑥q, where𝑅p𝑥q is an atom containing
all free variables of 𝜑1, and requiring in universal quantification that 𝜑 be of the form 𝑅p𝑥q Ñ 𝜑1p𝑥q,
where 𝑅 is as above. The Guarded Negation Fragment (GNF) [BtCS15] is an even more expressive
decidable language, allowing unrestricted existential quantification but restricting negation to be of the
form 𝑅p𝑥q ^  𝜑1p𝑥q, with 𝑅 as above.

Given a formula 𝜑p𝑥1 . . . 𝑥𝑚, 𝑦1 . . . 𝑦𝑛q over some signature 𝜎 in which an 𝑚-ary second-order
variable𝑋 occurs freely and positively in 𝜑, and given a 𝜎-structure A and some fixed valuation 𝜌 for 𝑦,
we can define a new𝑚-ary relation: the relation is defined as the limit of a monotone sequence 𝑋0 . . .,
starting with 𝑋0 � H and then setting 𝑋𝑖�1 to be the set of 𝑎 such that 𝜑 holds when extending 𝜌
with the interpretation of𝑋 as𝑋𝑖 and 𝑥 as 𝑎. Emphasizing the distinction between 𝑥 and 𝑦, we call 𝑥
the fixpoint variables and 𝑦 the parameter variables. Informally, during the fixpoint process, the fixpoint
variables change in each iteration, while the parameter variables stay the same. Formulas in LFP can
use relations defined using a fixpoint constructor like this, in addition to relations in 𝜎.
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Guarded Fixpoint Logic (denoted GFP or 𝜇GF) [GW99] extends GF with a fixpoint operator while
maintaining decidability. The fixpoint constructor is restricted in two ways: the parameter variables 𝑦
must be empty, and the fixpoint relation itself cannot be used as a guard. Guarded Negation Fixpoint
Logic (GNFP) [BtCS15] adds fixpoint constructors to GNF with similar restrictions. It is known that the
second restriction on these fixpoint logics is essential for decidability [GW99]. But what about the first?
It certainly seemed important for the proofs of decidability; [GHO02] states that

”It should be stressed that the presence of extra first-order parameters in fixed-point
operations as well as the use of second-order variables and fixed points as guards is
disallowed in 𝜇GF. These restrictions are essential for keeping the semantics invariant
under guarded bisimulation. For instance, with the use of a first-order parameter ... one can
define the transitive closure of a binary relation ... However, the transitive closure query is
not invariant under guarded bisimulation and it is known that adding transitive closure to
GF produces an undecidable logic [Grä99].”

In this section, we show that the parameter restriction can indeed be loosened. We introduce a
variation of GNFP, denoted GNFP-UP, where the fixpoint variables of any fixpoint need to be guarded,
but the fixpoint can carry additional unguarded parameters. One can write a GNFP-UP formula holding
on the transitive closure of a binary relation. But such a formula cannot be used as a guard, and thus
assertions that a binary relation is transitive (the key to undecidability in [Grä99]) cannot be expressed.
GNFP-UP can express many properties related to transitivity, such as assertions of paths with certain
properties (see the discussion of conjunctive regular path queries with inverse in Section 2.1.9).

The decidability of GFP is proven using an elegant high-level argument [Grä02]: one shows that
satisfiable formulas must have tree-like models, and thus satisfiability can be reduced to satisfiability
of a Monadic Second Order Logic sentence over trees, decidable via Rabin’s theorem [Rab69]. A finer
argument shows that from a GFP formula 𝜑 one can effectively create a tree automaton 𝒜𝜑 which is
non-empty exactly when 𝜑 is satisfiable. By analyzing the complexity of this automaton construction,
Grädel and Walukiewicz derived a 2-ExpTime bound on satisfiability [GW99].

We begin by showing that the high-level argument easily extends to give decidability of GNFP-UP.
The finer analysis of the complexity of GNFP-UP satisfiability requires more work. Because of negation
and quantification in our logic, one might expect that the complexity would be a tower of exponentials
based on the quantifier alternation. However, we show that the complexity is controlled by the
parameter depth of the formula: informally, this is a number that measures the number of times we
change parameters while passing from a formula to a subformula. We give elementary bounds for each
parameter depth while proving that the complexity is non-elementary (but still primitive recursive)
when the depth is not restricted. Each parameter depth includes formulas of arbitrary quantifier
alternation; we avoid unnecessary exponential blowups by identifying pieces of the GNFP-UP formulas
that behave like GNFP. We also show that some interesting logics fit within low parameter depth.

2.1.1 Preliminaries

We work with finite relational signatures 𝜎. We use 𝑥,𝑦, . . . (respectively,𝑋,𝑌 , . . . ) to denote vectors
of first-order (respectively, second-order) variables. For a formula 𝜑, we write freep𝜑q to denote the
free first-order variables of 𝜑, and write 𝜑p𝑥q to indicate that these free variables are among 𝑥. If we
want to emphasize that there are also free second-order variables𝑋 , we write 𝜑p𝑥,𝑋q. We often use
𝛼 to denote atomic formulas, an d if we write 𝛼p𝑥q then we assume that the free first-order variables in
𝛼 are precisely 𝑥. The width of 𝜑, denoted widthp𝜑q, is the maximum number of free variables in any
subformula of 𝜑, and the width of a signature 𝜎 is the maximum arity of its relations.
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2.1.2 FixPoint Logics

We briefly review the semantics of the fixpoint operator. Take some𝛼p𝑥q^𝜑p𝑥, 𝑋,𝑌 qwhere𝑋 appears
only positively. Then it induces amonotone operator𝑈 ÞÑ 𝒪A,𝑉

𝜑 p𝑈q :� t𝑎 : A, 𝑈,𝑉 |ù 𝛼p𝑎q ^ 𝜑p𝑎, 𝑋,𝑌 qu
on every structure A with valuation 𝑉 for 𝑌 , and this operator has a unique least fixpoint.

One way to obtain this least fixpoint is based on fixpoint approximants. Given some ordinal 𝛽, the
fixpoint approximant 𝜑𝛽pA,𝑉 q of 𝜑 on A,𝑉 is defined such that

𝜑0pA,𝑉 q :� H

𝜑𝛽�1pA,𝑉 q :� 𝒪A,𝑉
𝜑 p𝜑𝛽pA,𝑉 qq

𝜑𝛽pA,𝑉 q :�
¤
𝛽1 𝛽

𝜑𝛽
1
pA,𝑉 q where 𝛽 is a limit ordinal.

We let𝜑8pA,𝑉 q :�
�
𝛽 𝜑

𝛽pA,𝑉 q denote the least fixpoint based on this operation. Thus, rlfp𝑥
𝑋 .𝛼p𝑥q^

𝜑p𝑥, 𝑋,𝑌 qs defines a new predicate named𝑋 of arity |𝑥|, andA,𝑉 ,𝑎 |ù rlfp𝑥
𝑋 .𝛼p𝑥q^𝜑p𝑥, 𝑋,𝑌 qsp𝑥q

iff 𝑎 P 𝜑8pA,𝑉 q. If 𝑉 is empty or understood in context, we just write 𝜑8pAq.
It is often convenient to allow simultaneous fixpoints (also known as vectorial fixpoints). These are

fixpoints of the form rlfp𝑥𝑖
𝑋𝑖
.𝑆sp𝑥q where 𝑆 is a system of equations$''&
''%
𝑋1,𝑥1 :� 𝛼1p𝑥1q ^ 𝜑1p𝑥1, 𝑋1, . . . , 𝑋𝑗 ,𝑌 q
...
𝑋𝑗 ,𝑥𝑗 :� 𝛼𝑗p𝑥𝑗q ^ 𝜑𝑗p𝑥𝑗 , 𝑋1, . . . , 𝑋𝑗 ,𝑌 q

where𝑋1, . . . , 𝑋𝑗 occur only positively. Such a system can be viewed as defining a monotone operation
on a vector of 𝑗 valuations, where the 𝑖-th component in the vector is the set of tuples satisfying 𝑋𝑖

(i.e. the 𝑖-th component is the valuation for 𝑋𝑖). The formula rlfp𝑥𝑖
𝑋𝑖
.𝑆sp𝑥q expresses that 𝑥 is a tuple

in the 𝑖-th component of the least fixpoint defined by this operation. Simultaneous points can be
eliminated in favour of traditional points using what is known as the Bekic principle [AN01]. This
can be done using a recursive procedure that eliminates a component of the simultaneous fixpoint
by in-lining this formula in the other expressions. This in-lining process preserves any guardedness
properties of the fixpoints, so we can allow simultaneous fixpoints in GNFP, UNFP, and GFP without
changing the expressivity of these logics.

2.1.3 Guarded Logics

An atomic formula 𝛼 is a guard for variables 𝑥 if 𝛼 uses every variable in 𝑥. We say 𝛼 is a guard for a
formula 𝜑 if it is a guard for the free variables in 𝜑. This means freep𝛼q � freep𝜑q. Guards can take
the form J (if 𝜑 is a sentence) or the form 𝑥 � 𝑥 (if 𝜑 has one free variable 𝑥). A strict guard for a
formula 𝜑 is a guard such that the free variables of 𝛼 are identical to the free variables in 𝜑; that is
freep𝛼q � freep𝜑q. For example, 𝑅𝑥𝑦 could serve as a strict guard for D𝑧.p𝑅𝑦𝑧 ^𝑅𝑧𝑥q.

We can also talk about guardedness within a structure A. Any set of elements of size at most 1
is considered to be both guarded and strictly guarded. Otherwise, we say a set 𝑈 of elements in the
domain of A is guarded in A if there is some atom 𝛼p𝑎q such that every element in 𝑈 appears in 𝑎. In
the special case that this atom uses precisely the elements in 𝑈 and no more, then we say 𝑈 is strictly
guarded in A.

If we want to emphasize that the guards come from a certain signature 𝜎1, then we will say 𝜎1-
guarded or strictly 𝜎1-guarded.
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2.1.4 Basics of guarded logics

The Guarded Negation Fragment of FO [BtCS15] (denoted GNF) is built up inductively according to the
grammar 𝜑 ::� 𝑅𝑥 | D𝑥.𝜑 | 𝜑_ 𝜑 | 𝜑^ 𝜑 | 𝛼p𝑥q ^  𝜑p𝑥q where 𝑅 is either a relation symbol or the
equality relation, and 𝛼 is a guard for 𝜑. If we restrict 𝛼 to be an equality, then each negated formula
can be rewritten to use at most one free variable; this is the Unary Negation Fragment, UNF [StC13].
GNF is also related to the Guarded Fragment [Grä02] (GF), typically defined via the grammar 𝜑 ::�
𝑅𝑥 | D𝑥.

�
𝛼p𝑥𝑦q ^ 𝜑p𝑥𝑦q

�
| 𝜑_ 𝜑 | 𝜑^ 𝜑 |  𝜑p𝑥q where 𝑅 is either a relation symbol or the equality

relation, and 𝛼 is a guard for 𝜑. Here it is the quantification that is guarded, rather than negation. GNF
subsumes GF sentences and UNF formulas. GNF also subsumes GF formulas in which the free variables
are guarded.

The fixpoint extensions of these logics (denoted GNFP, UNFP, and GFP) extend the base logic with
formulas rlfp𝑥

𝑋 .𝛼p𝑥q ^ 𝜑p𝑥, 𝑋,𝑌 qsp𝑥q where (i) 𝛼p𝑥q is a guard for 𝑥, (ii) 𝑋 only appears positively
in 𝜑, (iii) second-order variables like𝑋 cannot be used as guards. Some alternative (but equi-expressive)
ways to define the fixpoint extension are discussed in [BBtC13]; in all of the definitions, the important
feature is that tuples in the fixpoint are guarded by an atom in the original signature. In UNFP, there
is an additional requirement that only unary or 0-ary predicates can be defined using the fixpoint
operators. GNFP subsumes both GFP sentences and UNFP formulas. These logics are all contained in
LFP, the fixpoint extension of FO.

We will be interested in varying the signatures considered, and in distinguishing more finely which
relations can be used in guards. If we want to emphasize the relational signature 𝜎 being used, then
we will write, e.g., GNFPr𝜎s. For 𝜎1 � 𝜎, we let GNFPr𝜎, 𝜎1s denote the logic built up as in GNFP but
allowing only equality or relations 𝑅 P 𝜎 at the atomic step and only guards 𝛼 using equality or
relations 𝑅 P 𝜎1. We define GFPr𝜎, 𝜎1s similarly. Note that UNFPr𝜎s is equivalent to GNFPr𝜎,Hs, since
if the only guards are equality guards, then the formula can be rewritten to use only unary negation
and monadic fixpoints.

2.1.5 GNFP-UP

Free and bound variables The notion of free vs. bound second-order variables is standard. In
particular, 𝑌 is free in 𝜑p𝑦, 𝑧, 𝑌,𝑍q but bound in rlfp𝑧

𝑌,𝑦 . 𝜑sp𝑡q. We assume no second-order variable
𝑌 is bound by more than one fixpoint operator, so each bound second-order variable 𝑌 identifies a
unique fixpoint. If 𝑌 identifies a fixpoint with parameters 𝑧, then paramsp𝑌 q :� 𝑧, the parameters

associated with the second-order variable 𝑌 .
We use freep𝜑q to denote the free first-order variables in 𝜑. It is defined recursively. For atoms 𝑅𝑡

with 𝑅 P 𝜎 and 𝑡 a tuple consisting of constants and variables, the free first-order variables are just
the variables in 𝑡. For 𝑌 𝑡 with 𝑌 a second-order variable, freep𝑌 𝑡q is the union of the variables in 𝑡
and paramsp𝑌 q. For boolean connectives, freep𝜑1 ^ 𝜑2q � freep𝜑1 _ 𝜑2q � freep𝜑1q Y freep𝜑2q, and
freep 𝜑q � freep𝜑q. For quantification, freepD𝑥.𝜑q � freep𝜑qz t𝑥u. Finally, for rlfp𝑧

𝑌,𝑦 . 𝜑sp𝑡q, the free
first-order variables consist of the parameter variables 𝑧 together with the variables in 𝑡.

The parameters in 𝜑 consist of the union of paramsp𝑌 q for all second-order variables 𝑌 occurring
in 𝜑; we let paramsp𝜑q denote the subset of these parameters that occur free in 𝜑.

GNFP-UP Guarded negation fixpoint logic with unguarded parameters (GNFP-UP) is the fragment of
LFP that allows unguarded parameter variables in fixpoint definitions, but requires fixpoint variables and
negation to be guarded. Formally, a GNFP-UPr𝜎s formula 𝜑 is generated recursively from the following
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grammar:

𝜑 ::� 𝑅 𝑡 | 𝑌 𝑡 | 𝜑^ 𝜑 | 𝜑_ 𝜑 | D𝑦.𝜑 |

𝛼^ 𝜑 where freep𝜑q � freep𝛼q |

rlfp𝑧
𝑌,𝑦 . gddp𝑦q ^ 𝜑p𝑦, 𝑧, 𝑌,𝑍qsp𝑡q for 𝜑 positive in 𝑌

where 𝑡 is a tuple of variables or constants, 𝑅𝑡 and 𝛼 are atoms using a relation in 𝜎 or �, and gddp𝑦q
is defined below.

Guardedness The guardedness predicate gddp𝑦q asserts 𝑦 is guarded by an atom in 𝜎 or �. It can be
understood as an abbreviation for the disjunction of existentially quantified atoms that use a relation
from 𝜎 or � and involve all of the variables in 𝑦. Because of this, only guarded relations can be defined
using fixpoints in GNFP-UP: i.e. any tuple of elements in the relation defined by the fixpoint formula
must already be guarded by an atom in the base signature 𝜎. Note that the relations defined using a
fixpoint operator cannot be used as guards.

The parameters 𝑧 are not required to be guarded in the fixpoint definition. However, for negation,
parameters are treated like other variables and must be guarded. For example, if 𝛼p𝑥q is an atomic
formula over 𝜎, and 𝑌 identifies a fixpoint with parameters 𝑧, then 𝛼p𝑥q^ 𝑌 𝑥 is not permitted since
𝑌 implicitly uses parameters 𝑧 and these parameters are not guarded by 𝛼 (since the free variables in
𝑌 𝑥 are really 𝑥 and 𝑧).

A formula 𝜑 that includes free first-order variables 𝑥 is 𝑥-guarded if it is logically equivalent to
gddp𝑥q^𝜑. If freep𝜑q � 𝑥 and 𝜑 is 𝑥-guarded, then we say it is answer-guarded. Sentences or formulas
with one free variable are always answer-guarded since we can use a trivial guard like 𝑥 � 𝑥. For
readability purposes, we often omit such trivial guards.

Normal form A conjunctive query (CQ) is D𝑦.𝜓 for 𝜓 a conjunction of atoms. A union of conjunctive

queries (UCQ) is a disjunction of CQs. Such queries are expressible in GNF. It is helpful to work
with GNFP-UP in a normal form that highlights the fact that GNFP-UP formulas can be built up from
UCQ-shaped formulas using guarded negation and guarded fixpoints with parameters.

Formally, A normal form GNFP-UPr𝜎s formula 𝜑 or 𝜓 is generated recursively from the following
grammars:

𝜑 ::�
�
𝑖 D𝑦𝑖.

�
𝑗 𝜓𝑖𝑗

𝜓 ::� 𝑅 𝑡 | 𝑌 𝑡 | 𝛼^ 𝜑 where freep𝜑q � freep𝛼q |

rlfp𝑧
𝑌𝑚,𝑦𝑚

.𝑆sp𝑡q

where 𝑡 is a tuple of variables or constants, 𝑅𝑡 and 𝛼 are atoms using a relation in 𝜎 or �, and 𝑆 is a
system with equations of the form 𝑌,𝑦 :� gddp𝑦q ^ 𝜑p𝑦, 𝑧,𝑌 ,𝑍q, as described earlier.

Any GNFP-UP formula can be converted into normal form in a canonical way. The width of a
GNFP-UP formula is the maximum number of free variables used in any subformula after the formula is
converted into normal form. We write pGNFP-UPq𝑘r𝜎s for GNFP-UP formulas of width 𝑘.

GNFP-UP vs. GNFP A good example to keep in mind is that GNFP-UP can express the transitive closure
of a binary relation 𝑅.
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Example 1 Suppose 𝑅 is a binary relation in 𝜎. Consider the following GNFP-UPr𝜎s-formula:

𝜑p𝑥, 𝑧q :� rlfp𝑧𝑌,𝑦 . 𝑅 𝑦𝑧 _ D𝑦
1.p𝑅𝑦𝑦1 ^ 𝑌 𝑦1qsp𝑥q .

Observe that 𝜑 has two free variables, the variable 𝑥 being tested in the fixpoint and the parameter variable

𝑧. The formula 𝜑p𝑥, 𝑧q expresses that there is some𝑅-path from element 𝑥 to 𝑧, i.e. p𝑥, 𝑧q is in the transitive
closure of 𝑅.

We can express that 𝑥 participates in an 𝑅-cycle by using the formula 𝜑p𝑥, 𝑥q.
We cannot express that the structure is strongly 𝑅-connected, since this would require unguarded

negation, but we can say every pair of guarded elements is 𝑅-connected:  D𝑥𝑧.pgddp𝑥, 𝑧q ^  𝜑p𝑥, 𝑧qq P
GNFP-UP.

The sentence  D𝑥𝑧.p𝜑p𝑥, 𝑧q ^  𝑅𝑥𝑧q _ p𝑅𝑥𝑧 ^ 𝜑p𝑥, 𝑧qq that says 𝑅 is transitively closed is not

in GNFP-UP, since we cannot use the fixpoint relation defined by 𝜑 as a guard for  𝑅𝑥𝑧.

In LFP, it is always possible to eliminate the use of parameters by increasing the arity of the defined
fixpoint predicates and passing the parameters explicitly in the fixpoint. This is not usually possible in
our context, because the fixpoint variables are required to be guarded. Indeed, it can be shown that
the transitive closure of a binary relation 𝑅 cannot be expressed in GNFP (the fragment of GNFP-UP in
which fixpoints do not use any parameters).

Proposition 1 GNFP-UP is strictly more expressive than GNFP, even over finite structures.

2.1.6 Tree-Like Property

Our results rely heavily on a different model theoretic property, called the tree-like model property.
We review now what it means for a relational structure to be “tree-like”. Roughly speaking, these are
structures that can be decomposed into a tree form. Formally, a tree decomposition of a structure M
consists of a tree p𝑉,𝐸q and a function 𝜆 assigning to each vertex 𝑣 P 𝑉 a subset 𝜆p𝑣q of elements in
the domain ofM, so that the following hold:

� For each atom 𝑅𝑐1 . . . 𝑐𝑛 that holds in M, there is a 𝑣 such that 𝜆p𝑣q includes each element of
𝑐1 . . . 𝑐𝑛.

� For each domain element 𝑒 in the domain ofM, the set of nodes

t𝑣 P 𝑉 : 𝑒 P 𝜆p𝑣qu

is a connected subset of the tree. In other words, for any two vertices 𝑣1, 𝑣2 such that 𝑒 P 𝜆p𝑣1q
and 𝑒 P 𝜆p𝑣2q, there is a path between 𝑣1 and 𝑣2 such that 𝑒 P 𝜆p𝑢q for every node 𝑢 on this path.

The width of a decomposition is one less than the maximum size of 𝜆p𝑣q over any element 𝑣 P 𝑉 . The
subsets 𝜆p𝑣q of M are called bags of the decomposition, so structures of tree-width 𝑘 � 1 have bags of
size at most 𝑘.

GNFP (and hence UNFP and GFP) has the tree-like model property [BtCS15]: if 𝜑 is satisfiable, then 𝜑
is satisfiable over structures with tree decompositions of some bounded tree-width. In fact satisfiable
GNFP𝑘 formulas have satisfying structures of tree-width 𝑘 � 1. Satisfiable GFP sentences have an even
stronger property: each bag in the decomposition describes a guarded set of elements, so the width of
the tree decomposition is bounded by the maximum arity of the relations.

It is well-known that structures of tree-width 𝑘�1 can be encoded by labelled trees over an alphabet
that depends only on the signature 𝜎 of the structure and 𝑘. Our encoding scheme will make use of
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trees with both node and edge labels, i.e. trees over a transition system signature 𝜎𝑘. Each node in a
tree code represents atomic information over at most 𝑘 elements, so the signature 𝜎𝑘 includes unary
predicates to indicate the number of elements represented at that node, and the atomic relations that
hold those elements. The signature includes binary predicates that indicate the overlap and relationship
between the names of elements encoded in neighbouring nodes of the tree. Formally, 𝜎𝑘 contains the
following relations:

� There are unary relations 𝐷𝑛 P 𝜎𝑘 for 𝑛 P t0, . . . , 𝑘u, to indicate the number of elements
represented at each node. We call these domain predicates since they are used to specify the
number of domain elements encoded at a given node.

� For every relation 𝑅 P 𝜎 of arity 𝑛 and every sequence 𝑖 � 𝑖1 . . . 𝑖𝑛 over t1, . . . , 𝑘u, there is a
unary relation 𝑅𝑖 P 𝜎𝑘 to indicate that the tuple of elements coded by 𝑖 is a tuple of elements in
𝑅. For example, if 𝑇 is a ternary relation in 𝜎 and 𝑎𝑖 is the element coded by name 𝑖 in some
node, then 𝑇3,1,3 indicates that 𝑇 p𝑎3, 𝑎1, 𝑎3q holds.

� For every partial 1-1 map 𝜌 from t1, . . . , 𝑘u to t1, . . . , 𝑘u, there is a binary relation 𝐸𝜌 P 𝜎𝑘 to
indicate the relationship between the names of elements in neighbouring nodes. For example, if
p𝑢, 𝑣q P 𝐸𝜌 and 𝜌p3q � 1, then the element with name 3 in 𝑢 is the same as the element with
name 1 in 𝑣.

For a unary relation𝑅𝑖, wewrite indicesp𝑅𝑖q to denote the set of elements from t1, . . . , 𝑘u appearing
in 𝑖. We will refer to the elements of t1, . . . , 𝑘u as indices or names.

For nodes 𝑢, 𝑣 in a 𝜎𝑘-tree 𝒯 and names 𝑖, 𝑗, we will say p𝑢, 𝑖q is equivalent to p𝑣, 𝑗q if there is
a simple undirected path 𝑢 � 𝑢1𝑢2 . . . 𝑢𝑛 � 𝑣 in 𝒯 , and 𝜌1, . . . , 𝜌𝑛�1 such that p𝑢𝑖, 𝑢𝑖�1q P 𝐸

𝒯
𝜌𝑖 or

p𝑢𝑖�1, 𝑢𝑖q P 𝐸
𝒯
𝜌�1
𝑖

, and p𝜌𝑛�1 � � � � � 𝜌1qp𝑖q � 𝑗. In words, the 𝑖-th element in node 𝑢 corresponds to
the 𝑗-th element in node 𝑣, based on the composition of edge labels (or their inverses) on the simple
path between 𝑢 and 𝑣. We write r𝑢, 𝑖s for the equivalence class based on this equivalence relation.

Given some sub signature 𝜎1 � 𝜎 and some set of indices 𝐼 � t1, . . . , 𝑘u, we say that 𝑅𝑖 P 𝜎𝑘
is a 𝜎1-guard for 𝐼 if indicesp𝑅𝑖q � 𝐼 and 𝑅 P 𝜎1. Likewise, 𝑅𝑖 P 𝜎𝑘 is a strict 𝜎1-guard for 𝐼 if
indicesp𝑅𝑖q � 𝐼 and 𝑅 P 𝜎1. Given a set 𝜏 of unary relations from 𝜎𝑘 we say 𝐼 is 𝜎1-guarded in 𝜏 if
|𝐼| ¤ 1 or there is some 𝑅𝑖 P 𝜏 that is a 𝜎1-guard for 𝐼 . Similarly, we say 𝐼 is strictly 𝜎1-guarded in 𝜏 if
|𝐼| ¤ 1 or there is some 𝑅𝑖 P 𝜏 that is a strict 𝜎1-guard for 𝐼 .

Given some 𝜎𝑘-tree 𝒯 , we say 𝒯 is consistent if it satisfies certain natural conditions that ensure
that the tree corresponds to a code of some tree decomposition of a 𝜎-structure:

1. there is exactly one domain predicate 𝐷𝑖 that holds at each node, and the root 𝑣0 is in 𝐷𝒯
0 ;

2. edge labels respect the domain predicates: if 𝑢 P 𝐷𝒯
𝑚, 𝑣 P 𝐷𝒯

𝑛 , and p𝑢, 𝑣q P 𝐸𝒯
𝜌 , then domp𝜌q �

t1, . . . ,𝑚u and rngp𝜌q � t1, . . . , 𝑛u;
3. node labels respect the domain predicates: if 𝑣 P 𝐷𝒯

𝑛 and 𝑣 P 𝑅𝒯
𝑖 , then indicesp𝑅𝑖q � t1, . . . , 𝑛u;

4. neighbouring node labels agree on shared names: if 𝑢 P 𝑅𝒯
𝑖 , p𝑢, 𝑣q P 𝐸𝒯

𝜌 , and indicesp𝑅𝑖q �

domp𝜌q, then 𝑣 P 𝑅𝒯
𝜌p𝑖q; similarly, if 𝑣 P 𝑅𝒯

𝑖 , p𝑢, 𝑣q P 𝐸𝒯
𝜌 , and indicesp𝑅𝑖q � rngp𝜌q, then

𝑢 P 𝑅𝒯
𝜌�1p𝑖q;

where 𝑃 𝒯 denotes the interpretation of relation 𝑃 in 𝒯 .
It is now easy to verify the fact mentioned at the beginning of this subsection: tree decompositions

of every 𝜎-structure of tree-width 𝑘 � 1 can be encoded in consistent 𝜎𝑘-trees.
The next step is to describe how a consistent 𝜎𝑘-tree can be decoded to an actual 𝜎-structure. The

decoding of 𝒯 is the 𝜎-structure Dp𝒯 q where the universe is the set
tr𝑣, 𝑖s : 𝑣 P domp𝒯 q and 𝑖 P t1, . . . , 𝑘uu
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and a tuple pr𝑣1, 𝑖1s, . . . , r𝑣𝑟, 𝑖𝑟sq is in 𝑅Dp𝒯 q iff there is some node 𝑤 P domp𝒯 q such that 𝑤 P 𝑅𝑗1...𝑗𝑟
and r𝑤, 𝑗𝑚s � r𝑣𝑚, 𝑖𝑚s for all𝑚 P t1, . . . , 𝑟u.

Finally, we introduce some notation related to 𝜎𝑘. We often use 𝜏 to denote a node label, and 𝜏p𝑣q
to denote the label at some node 𝑣 in a tree. We write EdgeLabels for the set of functions 𝜌 such
that the binary predicate 𝐸𝜌 is in 𝜎𝑘. We write NodeLabels for the set of internally consistent node
labels, i.e. the set consisting of sets of unary predicates from 𝜎𝑘 that satisfy properties (1) and (3) in the
definition of consistency above.

2.1.7 Automata

We define two automaton models that can function on trees that have an unbounded (possibly infinite)
branching degree. This is because the tree codes derived from the unravellings described earlier may
have this unbounded branching. We describe these automata below but will assume familiarity with
standard automata theory over infinite structures (see, e.g., [Tho97]).

Fix a transition system signature Σ consisting of unary relations Σ𝑝 and binary relations Σ𝑎 (for
the node labels and edge labels, respectively).

A 2-way alternating 𝜇-automaton 𝒜 is a tuple xΣ, 𝑄𝐸 , 𝑄𝐴, 𝑞0, 𝛿,Ωy where 𝑄 :� 𝑄𝐸 Y 𝑄𝐴 is a
finite set of states partitioned into states 𝑄𝐸 controlled by Eve and states 𝑄𝐴 controlled by Adam, and
𝑞0 P 𝑄 is the initial state. The transition function has the form

𝛿 : 𝑄� 𝒫pΣ𝑝q Ñ 𝒫pDir� Σ𝑎 �𝑄q

where Dir � tÒ, 0, Óu is the set of possible directions (up Ò, stay 0, down Ó). The acceptance condition
is a parity condition specified by Ω : 𝑄 Ñ Pri, which maps each state to a priority in a finite set of
priorities Pri.

Let 𝒯 be a tree over Σ, and let 𝒯 p𝑣q denote the set of unary propositions in Σ𝑝 that hold at 𝑣.
The notion of acceptance of 𝒯 by 𝒜 starting at node 𝑣0 P domp𝒯 q is defined in terms of a game

𝒢p𝒜, 𝒯 , 𝑣0q. The arena is 𝑄� domp𝒯 q, and the initial position is p𝑞0, 𝑣0q. From a position p𝑞, 𝑣q with
𝑞 P 𝑄𝐸 (respectively, 𝑞 P 𝑄𝐴), Eve (respectively Adam) selects p𝑑, 𝑎, 𝑟q P 𝛿p𝑞, 𝒯 p𝑣qq, and an 𝑎-neighbor
𝑤 of 𝑣 in direction 𝑑 (note if 𝑑 � 0, then 𝑣 is considered the only option, and we sometimes write just
p0, 𝑟q instead of p0, 𝑎, 𝑟q). The game continues from position p𝑟, 𝑤q.

A play in 𝒢p𝒜, 𝒯 , 𝑣0q is a sequence p𝑞0, 𝑣0q, p𝑞1, 𝑣1q, p𝑞2, 𝑣2q, . . . of moves in the game. Such a play
is winning for Eve if the parity condition is satisfied: the maximum priority that occurs infinitely often
in Ωp𝑞0q,Ωp𝑞1q, . . . is even.

A strategy for one of the players is a function that returns the next choice for that player given the
history of the play. If the function depends only on the current position (rather than the full history),
then it is positional. Choosing a strategy for both players fixes a play in 𝒢p𝒜, 𝒯 , 𝑣0q. A play 𝜋 is
compatible with a strategy 𝜁 if there is a strategy for the other player such that 𝜁 and 𝜁 1 yield 𝜋. A
strategy is winning for Eve if every play compatible with it is winning.

We write 𝐿𝑣0p𝒜q for the set of trees 𝒯 such that Eve has a winning strategy in 𝒢p𝒜, 𝒯 , 𝑣0q. If 𝑣0 is
the root of 𝒯 , then we just write 𝐿p𝒜q to denote the language of 𝒜.

The dual of a 2-way alternating 𝜇-automaton 𝒜 is the automaton 𝒜1 obtained from 𝒜 by switching
𝑄𝐴 and 𝑄𝐸 , and incrementing each priority by 1 (i.e. Ω1p𝑞q :� Ωp𝑞q � 1). This has the effect of
switching the roles of the two players, so the resulting automaton accepts the complement of 𝐿p𝒜q.

These 2-way alternating 𝜇-automata are essentially the same as the automata used in [Grä02]; we
use slightly different notation here and allow directions stay, up, and down, rather than just stay and
‘move to neighbour’.
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We are also interested in a type of automaton on trees with arbitrary branching that operates in a
1-way, nondeterministic fashion. These automata were introduced by Janin-Walukiewicz [JW95, JW96];
we follow the presentation given in [DH00]. A 𝜇-automaton ℳ is a tuple xΣ𝑝,Σ𝑎, 𝑄, 𝑞0, 𝛿,Ωy. where
the transition function now has the form

𝛿 : 𝑄� 𝒫pΣ𝑝q Ñ 𝒫p𝒫pΣ𝑎 �𝑄qq.

Again, the acceptance condition is a parity condition specified by Ω. As before, we define acceptance
of 𝒯 from a node 𝑣0 P domp𝒯 q based on a game 𝒢p𝒜, 𝒯 , 𝑣0q. The arena is 𝑄 � domp𝒯 q, and the
initial position is p𝑞0, 𝑣0q. From a position p𝑞, 𝑣q, Eve selects some 𝑆 P 𝛿p𝑞, 𝒯 p𝑣qq, and a marking of
every successor of 𝑣 with a set of states such that (i) for all p𝑎, 𝑟q P 𝑆, there is some 𝑎-successor whose
marking includes 𝑟, and (ii) for all 𝑎-successors 𝑤 of 𝑣, if 𝑟 is in the marking of 𝑤, then there is some
p𝑎, 𝑟q P 𝑆. Adam then selects some successor 𝑤 of 𝑣 and a state 𝑟 in the marking of 𝑤 chosen by Eve,
and the game continues from position p𝑟, 𝑤q. A winning play and strategy is defined as above.

Properties of 𝜇-automata These automata are bisimulation invariant on trees.

Proposition 1 (JaninW95) Let 𝒜 be a 2-way alternating 𝜇-automaton or a 𝜇-automaton. For all trees

𝒯 , if 𝒯 P 𝐿p𝒜q and 𝒯 1
is bisimilar to 𝒯 , then 𝒯 1 P 𝐿p𝒜q.

These automata models also have nice closure properties.

Proposition 2 2-way alternating 𝜇-automata are closed under:

� Intersection: Let 𝒜1 and 𝒜2 be 2-way alternating 𝜇-automata. Then we can construct a 2-way

alternating 𝜇-automaton 𝒜 such that 𝐿p𝒜q � 𝐿p𝒜1q X 𝐿p𝒜2q, and the size of 𝒜 is linear in

|𝒜1|� |𝒜2|.
� Union: Let𝒜1 and𝒜2 be 2-way alternating 𝜇-automata. Then we can construct a 2-way alternating

𝜇-automaton 𝒜 such that 𝐿p𝒜q � 𝐿p𝒜1q Y 𝐿p𝒜2q, and the size of 𝒜 is linear in |𝒜1|� |𝒜2|.
� Complement: Let𝒜 be a 2-way alternating 𝜇-automaton. Then we can construct a 2-way alternating

𝜇-automaton 𝒜1
of size at most |𝒜| such that 𝐿p𝒜1q is the complement of 𝐿p𝒜q.

It is straightforward to construct a 2-way alternating 𝜇-automaton that is equivalent to a given
𝜇-automaton. Moreover, it is known that 𝜇-automata, 2-way alternating 𝜇-automata and the 𝜇-calculus
are equivalent over trees (this follows from [JW95]).

Theorem 1 ([JW95]) Given 𝜑 P L𝜇rΣs, we can construct a 𝜇-automaton 𝒜 such that 𝐿p𝒜q is the set of
Σ-trees such that 𝒯 |ù 𝜑.

Likewise, given a 𝜇-automaton or 2-way alternating 𝜇-automaton𝒜 over signatureΣ, we can construct
𝜑 P L𝜇rΣs such that 𝐿p𝒜q is the set of Σ-trees such that 𝒯 |ù 𝜑.

A 1-way alternating automaton is an automaton that uses only directions l and r. A (1-way)
nondeterministic automaton is a 1-way alternating automaton such that every transition function
formula is of the form

�
𝑖 pl, 𝑞

𝑖
lq ^ pr, 𝑞

𝑖
rq.
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Closure properties We recall some closure properties of these automata First, the automata that we
are using are closed under union and intersection (of their languages).

Proposition 2 2-way alternating parity tree automata and 1-way nondeterministic parity tree automata

are closed under union and intersection, with only a polynomial blow-up in the number of states and overall

size.

For example, this means that if we are given 2-way alternating parity tree automata 𝒜1 and 𝒜2, then
we can construct in P a 2-way alternating parity tree automaton 𝒜 such that 𝐿p𝒜q � 𝐿p𝒜1q X 𝐿p𝒜2q.
In automaton constructions, when we say, e.g., “take the intersection of 𝒜1 and 𝒜2”, we mean take this
automaton 𝒜 such that 𝐿p𝒜q � 𝐿p𝒜1q X 𝐿p𝒜2q.

Another important language operation is projection. Let 𝐿1 be a language of trees over propositions
ΣY t𝑃 u. The projection of 𝐿1 with respect to 𝑃 is the language of trees 𝒯 over Σ such that there is
some 𝒯 1 P 𝐿1 such that 𝒯 and 𝒯 1 agree on all propositions in Σ. Projection is easy for nondeterministic
automata since the valuation for the projected proposition can be guessed by Eve.

Proposition 3 1-way nondeterministic parity tree automata are closed under projection, with no change

in the number of states and overall size.

Finally, complementation is easy for alternating automata by taking the dual automaton, obtained
by switching conjunctions and disjunctions in the transition function, and incrementing all of the
priorities by one.

Proposition 4 2-way alternating parity tree automata are closed under complementation, with no change

in the number of states and overall size.

Connections between 2-way and 1-way automata It was shown by Vardi [Var98] that 2-way
alternating parity tree automata can be converted to equivalent 1-way nondeterministic automata, with
an exponential blow-up.

Theorem 1 ([Var98]) Let 𝒜 be a 2-way alternating parity tree automaton. We can construct a 1-way

nondeterministic parity tree automaton 𝒜1
such that 𝐿p𝒜q � 𝐿p𝒜1q. The number of states of 𝒜1

is

exponential in the number of states of 𝒜, but the number of priorities of 𝒜1
is linear in the number of

priorities of 𝒜.

1-way nondeterministic tree automata can be seen as a special case of 2-way alternating automata,
so the previous theorem shows that 1-way nondeterministic and 2-way alternating parity automata are
equivalent, in terms of their ability to recognize trees starting from the root.

We need another conversion from 1-way nondeterministic to 2-way alternating automata that we
call localization. This is the process by which a 1-way nondeterministic automaton that is running on
trees with extra information about some predicate annotated on the tree is converted to an equivalent
2-way alternating automaton that operates on trees without these annotations, but under the assumption
that these predicates hold only locally at the position the 2-way automaton is launched from. A similar
localization idea is present in prior work (see, e.g., [BCK�14, BKR15]).

Theorem 2 Let Σ1 :� Σ Y t𝑃1, . . . , 𝑃𝑗u. Let 𝒜1
be a 1-way nondeterministic parity automaton on

Σ1-trees. We can construct a 2-way alternating parity automaton 𝒜 on Σ-trees such that for all Σ-trees 𝒯
and 𝑣 P domp𝒯 q,

𝒜1
accepts 𝒯 1

from the root iff 𝒜 accepts 𝒯 from 𝑣,
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where 𝒯 1
is the Σ1-tree obtained from 𝒯 by setting 𝑃 𝒯 1

1 � � � � � 𝑃 𝒯 1

𝑗 � t𝑣u. The number of states of 𝒜 is

linear in the number of states of 𝒜1
, and the overall size is linear in the size of 𝒜1

.

Emptiness testing Finally, we make use of the well-known fact that language emptiness of tree
automata is decidable.

Theorem 3 ([EJ88],[Var98]) For 1-way nondeterministic parity tree automata, emptiness is decidable in

time polynomial in the number of states and exponential in the number of priorities. For 2-way alternating

parity automata, it is decidable in time exponential in the number of states and priorities.

2.1.8 Translation from Logic to Automata

In this subsection, we construct automata for 𝜃 in GNFP-UPr𝜎s. Before we give some details of the
construction, it is helpful to consider how automata can be used to analyze fixpoints.

Using localized automata for fixpoints Testing whether some tuple 𝑡 is in the least fixpoint
rlfp𝑧

𝑌,𝑦 . 𝜑s in some structure A and for some fixed valuation of the parameters (and any other free
variables) can be viewed as a game. Positions in this game consist of the current tuple 𝑦 being tested in
the fixpoint, with the initial position being 𝑡. In general, in position 𝑦, one round of the game consists
of the following:

� Eve chooses some valuation for 𝑌 such that 𝜑p𝑦, 𝑌 q holds (if it is not possible, she loses), then
� Adam chooses tuple 𝑦1 P 𝑌 (if it is not possible, he loses), and the game proceeds to the next
round in position 𝑦1.

Adam wins if the game continues forever.
The idea is that if 𝑡 is really in the least fixpoint, then it must be added in some fixpoint approximant.

This gives Eve a strategy for choosing 𝑌 at each stage in the game, in such a way that after finitely
many challenges by Adam, she should be able to guess the empty valuation.

When the fixpoint can consist of only guarded tuples, there is a version of this game on a tree
encoding 𝒯 of a structure, that can be implemented using tree automata. We start with an automaton
𝒜𝜑 for the body 𝜑 of the fixpoint. We start with localized versions of this automaton because we need
to launch different versions based on Adam’s challenges. A local assignment 𝑏{𝑦 for 𝑏 � 𝑏1 . . . 𝑏𝑛 P 𝑈

𝑛
𝑘

and 𝑦 � 𝑦1 . . . 𝑦𝑛 is a mapping such that 𝑦𝑖 ÞÑ 𝑏𝑖. A node 𝑣 in 𝒯 with 𝑏 � 𝑣 and a local assignment
𝑏{𝑦, specifies a valuation for encode𝑦. We say it is local since the free variable markers for 𝑦 would
all appear locally in 𝑣. If we have an automaton 𝒜 running on trees with free variable markers for 𝑦,
we say that we localize 𝒜 to 𝑏{𝑦 if we apply the localization theorem (Theorem 2) to the predicates
𝑉𝑏𝑖{𝑦𝑖 , and then eliminate the dependence on any other 𝑉𝑐{𝑦𝑖 for 𝑐 � 𝑏𝑖 by always assuming these
predicates do not hold. This results in an automaton that simulates 𝒜 under the assumption that the
free variables 𝑦 correspond to the elements r𝑣, 𝑏s, but it no longer relies on free variable markers for 𝑦.
These localized automata are important because they can be launched to test that a tuple of elements
that appear together in a node satisfy some property — without having the markers for this tuple
explicitly written on the tree.

We now describe the version of the fixpoint game using localized automata. Initially, Eve navigates
to a node in 𝒯 carrying 𝑡, and launches the appropriate localized 𝒜𝜑 from there. In general, the game
proceeds as follows:
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� Eve and Adam simulate some localized version of 𝒜𝜑. During the simulation, Eve can guess a
valuation for 𝑌 (recall that 𝒜𝜑 runs on trees with an annotation describing the valuation for the
second-order variable 𝑌 , and that information is missing from 𝒯 ). Because 𝑌 can only contain
guarded tuples, this amounts to guessing an annotation of the tree with this valuation.

� When Eve guesses some 𝑦1 P 𝑌 , Adam can either continue the simulation, or challenge her on
this assertion. A challenge corresponds to launching a new localized copy of 𝒜𝜑 from the node
carrying 𝑦1 (again, we know that 𝑦1 must be present locally in a node, since any tuple in the
fixpoint must be guarded).

After each challenge, the game continues as before (with the new copy of 𝒜𝜑 being simulated, Eve
guessing a new valuation for 𝑌 , etc.). Adam wins if he challenges infinitely often, or if the game
stabilizes in some simulation of 𝒜𝜑 where he wins.

Assuming we have localized automata for 𝜑, we can implement this game using a 2-way alternating
parity automaton. We assign a large odd priority (larger than the priorities in 𝒜𝜑) to the states where
Adam challenges, so that he wins if he is able to challenge infinitely many times; the other priorities
are just inherited from 𝒜𝜑. Simultaneous fixpoints can be handled similarly.

To analyze the fixpoints like this, our inductive automaton construction must produce 2-way
localized automata at each stage — if we did not, then each time we reached a fixpoint and needed
localized automata for the body of the fixpoint, we would get an exponential blow-up. For GFP and
GNFP, we can define directly the localized versions of the automata using a state set of size at most singly
exponential in the size of the input formula. However, by adding parameters in GNFP-UP, this direct
definition of a localized version becomes more challenging. We are forced to construct non-localized
automata at some points — namely, for subformulas that introduce new parameters — and then apply
Theorems 1 and 2, resulting in an exponential blow-up. The parameter depth is a measure of how many
of these blow-ups occur.

Construction We now describe more details of the construction of an automaton for normal form
𝜃 P GNFP-UPr𝜎s. First, it is straightforward to construct an automaton that checks consistency:

Proposition 5 There is a 2-way alternating parity tree automaton 𝒞 that checks whether or not a 𝜎𝑘-tree
(possibly extended with additional free variable markers for 𝑧 and 𝑍) is consistent. The size of 𝒞 is at most

exponential in p|𝜎|� |𝑧|� |𝑍|q � |𝑈𝑘|𝑘.

Hence, we can concentrate on defining an automaton for 𝜃 that runs on consistent trees and accepts
iff the decoding of the consistent input tree satisfies 𝜃.

The main theorem states that the size of the automaton for 𝜃 is a tower of exponentials whose
height depends on the pdepth. Given a function 𝑓 , we write exp𝑛𝑓 p𝑚q for a tower of exponentials of
height 𝑛 based on 𝑓 , i.e. exp0𝑓 p𝑚q � 𝑚 and exp𝑛𝑓 p𝑚q � 2𝑓pexp

𝑛�1
𝑓 p𝑚qq.

Theorem 4 For normal form 𝜃 P pGNFP-UPq𝑘r𝜎s with

pdepthp𝜃q ¥ 1, we can construct a 2-way alternating parity tree automaton 𝒜𝜃 such that for all consistent

𝜎𝑘-trees 𝒯 , Dp𝒯 q |ù 𝜃 iff 𝒯 P 𝐿p𝒜𝜃q, and the size of 𝒜𝜃 is at most ppdepthp𝜃q � 1q-exponential in |𝜃|.
More precisely, there is a polynomial function 𝑓 independent of 𝜃 such that the size is at most

exp
pdepthp𝜃q
𝑓 p𝑓p𝑚q � 2𝑓p𝑘𝑙𝑟qq where 𝑚 � |𝜃|, 𝑙 � |constp𝜎q|, and 𝑟 � rankCQp𝜎q (see definitions be-

low).
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The main factor affecting the output size is the pdepth, since this determines the height of the tower
of exponentials. However, for more precise bounds, the other factors affecting the size are the size of
the formula 𝜃, the width 𝑘, the number of constants in 𝜎, and the CQ-rank (the maximum number of
conjuncts 𝜓𝑖 in any CQ-shaped subformula D𝑥.

�
𝑖 𝜓𝑖 for non-empty 𝑥).

The proof of Theorem 4 is by induction on |𝜃|, and constructs localized 2-way automata for subfor-
mulas of 𝜃. For GNFP subformulas, it is known from [BtCCV15] how to construct 2-way automata:1

Lemma 1 ([BtCCV15]) Let 𝜓p𝑦,𝑍q P GNFP𝑘r𝜎1s in normal form. Then for every local assignment 𝑏{𝑦,

we can construct a 2-way alternating parity tree automaton 𝒜𝑏{𝑦
𝜓 such that for all consistent 𝜎̃1𝑘-trees

p𝒯 ,𝑍Ñq and for all nodes 𝑤 P domp𝒯 q with 𝑏 � 𝑤,

Dp𝒯 q, r𝑤, 𝑏s,𝑍 |ù 𝜓 iff 𝒜𝑏{𝑦
𝜓 accepts p𝒯 ,𝑍Ñq from 𝑤.

There is a polynomial function 𝑓 independent of 𝜓 such that the number of states for all such localized

automata is at most 𝑁 :� 𝑓p𝑚q � 2𝑓p𝑘𝑙𝑟q where 𝑚 � |𝜓|, 𝑙 � |constp𝜎1q|, and 𝑟 � rankCQp𝜓q. The
number of priorities in each automaton is linear in |𝜓|. The overall size is at most exponential in |𝜎1| �𝑁 .

We use these automata for GNFP as building blocks for our GNFP-UP construction. Recall that pdepth
0 formulas can always be viewed as GNFP formulas. We can also transform parts of the formula into
GNFP formulas over a slightly different signature.

For this purpose, given 𝜓 P pGNFP-UPq𝑘r𝜎s with paramsp𝜓q � 𝑧, define the augmented signature

𝜎𝑧,𝜓 to be the signature 𝜎 together with additional constants 𝑧 P 𝑧 and subformula predicates 𝐹𝜂 for
subformulas 𝜂 with paramsp𝜂q � 𝑧. For such 𝜂, the arity of 𝐹𝜂 is usually |freep𝜂qz paramsp𝜂q|; in
the special case that 𝜂 is a fixpoint formula, then the arity of 𝐹𝜂 is the arity of this fixpoint predicate.
Then we can transform the outer part of a GNFP-UP formula to a GNFP formula over this augmented
signature. We can only perform this transformation on the outer part of the formula that uses the same
set of parameters. Consider 𝜂 P pGNFP-UPq𝑘r𝜎s with freep𝜂q � 𝑦𝑧 and paramsp𝜂q � 𝑧. We define
transform𝑧p𝜂q P GNFP𝑘r𝜎𝑧,𝜂s inductively as follows:

transform𝑧p𝑅 𝑡q :� 𝑅 𝑡 transform𝑧p𝑌 𝑡q :� 𝑌 𝑡

transform𝑧p𝛼^ 𝜑q :� 𝛼^ transform𝑧Xfreep𝜑qp𝜑q

transform𝑧prlfp
𝑧1

𝑋,𝑥 .𝑆sp𝑡qq :�#
𝐹
rlfp𝑧1

𝑋,𝑥 .𝑆sp𝑡q
𝑡 if there is 𝜑𝑗 P 𝑆 with paramsp𝜑𝑗q � 𝑧

rlfp𝑋,𝑥 .𝑆
1sp𝑡q o.w.

where 𝑆1 is the result of applying transform𝑧 to each 𝜑𝑗 P 𝑆
transform𝑧p

�
𝑖 D𝑥𝑖.

�
𝑗 𝜓𝑖𝑗q :�#

𝐹�
𝑖 D𝑥𝑖.

�
𝑗 𝜓𝑖𝑗

𝑦 if there is 𝑖, 𝑗 such that paramsp𝜓𝑖𝑗q � 𝑧�
𝑖 D𝑥𝑖.

�
𝑗 transform𝑧Xfreep𝜓𝑖𝑗qp𝜓𝑖𝑗q o.w.

The GNFP formula obtained using this transformation is “equivalent” to the GNFP-UP formula, under
the assumption that the additional predicates in the augmented signature are interpreted in the expected
way. It does not increase the width, CQ-rank, or the size of the formula.

1[BtCCV15] used a different encoding of the tree-like models, but the adaptation to the encoding here requires only minor
technical changes.
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If the transformation applied to 𝜂 only introduces 𝐹𝜂1 for strict subformulas 𝜂1 of 𝜂, then we say
the transformation is helpful. In a helpful transformation, all occurrences of these new predicates 𝐹𝜂1
appear under a guard of freep𝜂1qz paramsp𝜂1q. Another way to understand the parameter depth is to
say that the parameter depth measures the number of unhelpful breakpoints we reach as we try to
transform the entire formula using this operation.

The main idea of the construction, is to transform the outer part of the formula into a GNFP formula.
If the transformation is helpful, we can then use the GNFP automaton for the outer part of the formula,
and plug-in inductively defined automata checking the subformulas. When this is not possible, we must
use different techniques which result in an exponential blow-up at these stages.

This leads to our main result for this work:

Theorem 5 Satisfiability for 𝜃 P GNFP-UP is decidable in ppdepthp𝜃q � 2q-ExpTime.

2.1.9 Expressivity examples

In this subsection, we give some examples showing that GNFP-UP subsumes and extends a wide range
of logics. This provides evidence of its power, and explains some of the good properties of these
previously-studied logics.

To help study the power of GNFP-UP, we first define a way to measure how the parameters are
used. Roughly speaking, the parameter depth is the maximum number of nested parameter changes.
We define pdepth𝑧p𝜂q inductively as follows:

pdepth𝑧p𝑅 𝑡q � pdepth𝑧p𝑌 𝑡q :� 0

pdepth𝑧p𝛼^ 𝜑q :� pdepth𝑧Xfreep𝜑qp𝜑q

pdepth𝑧p
�
𝑖 D𝑥𝑖.

�
𝑗 𝜓𝑖𝑗q :� max𝑖 𝑝𝑖 s.t.

𝑝𝑖 :�

#
1�max𝑗 pdepthparamsp𝜓𝑖𝑗q

p𝜓𝑖𝑗q if D𝑗.paramsp𝜓𝑖𝑗q � 𝑧

max𝑗 pdepth𝑧p𝜓𝑖𝑗q otherwise

pdepth𝑧prlfp
𝑧1

𝑋𝑚,𝑥𝑚
.𝑆sp𝑡qq :�#

1�max𝜑𝑗P𝑆 pdepthparamsp𝜑𝑗q
p𝜑𝑗q if D𝑗.paramsp𝜑𝑗q � 𝑧

max𝜑𝑗P𝑆 pdepth𝑧p𝜑𝑗q otherwise
.

The parameter depth pdepthp𝜑q for normal form 𝜑 P GNFP-UP is just pdepthfreep𝜑qp𝜑q. For 𝜑 not
necessarily in normal form, we define it to be the pdepth after converting to normal form.

Observe that a formula that does not use any parameters has pdepth 0. Even a formula that does use
parameters can have pdepth 0 if all of its parameters actually come from free variables of the formula.
This is because parameters like this can be viewed as constants since they have a fixed interpretation in
any structure. Because of this, if 𝜑 P GNFP-UPr𝜎s with pdepthp𝜑q � 0 and paramsp𝜑q � 𝑧, then we
can view 𝜑 as a GNFP formula without parameters, over the signature 𝜎 extended with extra constants
𝑧.

In general, the pdepth increases when we pass through a subformula that introduces more parame-
ters. This can happen when passing through existential quantification that introduces a variable that is
later used as a parameter (see the third case in the pdepth definition), or it can happen when passing
through a fixpoint definition that introduces a fixpoint variable that is later used as a parameter (see
the fourth case).

Later, we will see that the parameter depth is the major factor impacting the complexity of satisfia-
bility testing.
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Traditional guarded logics GNFP-UP subsumes all of the previously mentioned guarded logics (and
their fixpoint extensions), including GFP sentences, UNFP formulas, and GNFP formulas. Unsurprisingly,
these traditional guarded logics without parameters can be expressed as GNFP-UP formulas of pdepth 0.

Navigational queries There are several languages for navigational queries in graph databases, where
the signature 𝜎 consists only of binary and unary relations. For these languages, a regular expression 𝐸
over symbols 𝑅,𝑅� coming from binary relations 𝑅 P 𝜎 can be seen as defining a navigation relation

that holds for p𝑥, 𝑦q exactly when there is some path between 𝑥 and 𝑦 matching 𝐸. A conjunctive 2-way

regular path query (C2RPQ) [CDLV00] is just a CQ over such expressions. This notion of C2RPQ has
not only been used for expressing queries but also inside rule languages and logics. We studied in
[ABBV18] a problem of certain query answering for a notion of transitivity in the rules. This fragment
can be captured by GNFP-UP and the techniques developed here can be directly for this work. Finally,
C2RPQ have been integrated to a logic r-UNF [JLMS18] to subsume different works on reasoning with
constraints integrating C2RPQ inside the rules and C2RPQ. They developed similar techniques as the
one presented in this work. Interestingly, we could reproof their upper bound by noticing that the
regular path queries can be captured by efficient tree automata.

Example 2 Consider some C2RPQ over signature 𝜎. Let Σ :� t𝑅,𝑅� : 𝑅 is a binary relation in 𝜎u.
Given a regular expression 𝐸 over Σ, we can capture the navigation relation defined by it using a

GNFP-UP formula 𝐸1
. We start with a finite state automaton 𝒜 � xΣ, 𝑄, 𝑞0,∆, 𝐹 y for 𝐸 and write a

GNFP-UPr𝜎s formula with simultaneous fixpoints 𝐸1p𝑥, 𝑦q :� rlfp𝑦𝑋0,𝑥
. 𝑆sp𝑥q which has a second-order

variable𝑋𝑖 for each state 𝑞𝑖 P 𝑄, and the equation for the 𝑖-th component𝑋𝑖, 𝑥𝑖 in 𝑆 captures the possible

transitions from state 𝑞𝑖: ª
p𝑞𝑖,𝑇,𝑞𝑗qPΔ

D𝑧.p𝜒𝑇 p𝑥𝑖, 𝑧q ^𝑋𝑗 𝑧q _

#
𝑥𝑖 � 𝑦 if 𝑖 P 𝐹

K if 𝑖 R 𝐹

where 𝜒𝑇 p𝑥𝑖, 𝑧q is 𝑅𝑥𝑖𝑧 if 𝑇 � 𝑅 and 𝑅𝑧𝑥𝑖 if 𝑇 � 𝑅�
.

Once we have 𝐸1
in GNFP-UP for each regular expression 𝐸 appearing in the C2RPQ, it is easy to

translate into GNFP-UP by replacing each𝐸p𝑥, 𝑦q in the C2RPQ by𝐸1p𝑥, 𝑦q. These GNFP-UP formulas have

parameter depth 1: the GNFP-UP formula𝐸1p𝑥, 𝑦q for each regular expression predicate𝐸p𝑥, 𝑦q has pdepth
0; when these are substituted in the CQ, the resulting formula has pdepth at most 1 since the existential

quantification may introduce variables that are used as parameters in the inner formulas. GNFP-UP can

also express unions of C2RPQs.

We can in fact replace regular expressions in C2RPQs by a variant of propositional dynamic logic

(PDL). PDL consists of programs (defining binary relations within a labelled graph) and tests (defining
unary relations within a graph) defined by mutual recursion. Programs contain all binary relation
symbols and are closed under concatenation, union, and Kleene star. Tests contain all unary relation
symbols and are closed under boolean operations. Given a test 𝑡, we can define a program 𝑡? that
returns pairs p𝑥, 𝑥q such that 𝑥 is in the unary relation defined by 𝑡, and given a program 𝑃 we can
form a test x𝑃 y, defining a relation consisting of pairs p𝑢, 𝑢q such that there exists 𝑣 with p𝑢, 𝑣q in
the language described by 𝑃 . We let CQPDL denote the language of conjunctive queries where binary
relations can be PDL programs. Clearly, this subsumes C2RPQs, and it also subsumes extensions defined
in the description logic literature [BCOS14]. If 𝑃 is restricted to be a traditional regular expression,
then the corresponding GNFP-UP formula for x𝑃 y has pdepth at most 1. By writing expressions with
more complicated nesting of these tests, however, these formulas can reach higher parameter depth
levels.
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Fragments of Datalog Datalog is a syntax for expressing the negation-free fragment of least fixpoint
logic. It is heavily used to express database queries that involve some form of recursion. We argue
that all the previously defined fragments of Datalog that have decidable static analysis problems are
contained in GNFP-UP.

Formally, a Datalog query is specified by

Π � xEDBΠ, IDBΠ,RulesΠ, goaly

where the extensional predicates EDBΠ and intensional predicates IDBΠ are disjoint sets, RulesΠ consists
of formulas of the form 𝑅p𝑥1 . . . 𝑥𝑛q Ð 𝜓p𝑥𝑦q where 𝑅 is an IDB predicate and 𝜓 is a conjunction of
atoms, and goal is a distinguished member of IDBΠ. Given some structure A we can evaluate goal in the
structure obtained from A by firing the rules of Π until a fixpoint has been reached. For a structure A
and query Π we let ΠpAq be the value of the predicate goal so obtained. A boolean Datalog query is one
where the goal predicate is 0-ary, and hence the query defines a boolean function on input structures.

Monadic Datalog restricts the IDBs to have arity 1. In this case, it is possible to express the query
using a UNFP formula with simultaneous fixpoints without parameters. Frontier-guarded Datalog allows
the use of intensional predicates with unrestricted arities, but for each rule 𝑅p𝑥1 . . . 𝑥𝑛q Ð 𝜓p𝑥𝑦q, the
variables 𝑥1 . . . 𝑥𝑛 in the head of the rule, must appear in a single EDB atom appearing in the body 𝜓.
This subsumes monadic Datalog since the single head variable in the monadic Datalog rules can be
trivially guarded. Frontier-guarded Datalog can be expressed in GNFP. No parameters are necessary, so
the parameter depth is 0.

The flag and check queries introduced in [RK13, BKR15] are based on fragments of Datalog queries
that have been shown to have decidable analysis problems.

One family consists of themonadically defined queries (MQs). These are of the form D𝑦.ΠwhereΠ is
a Monadic Datalog query, the goal predicate is nullary, and the rules use special symbols 𝑧. The answers
to the query are (projections of) assignments to the special symbols for which the corresponding
Monadic Datalog query evaluates to true. The idea is that the special symbols serve as flags for potential
answers to the query, and the Datalog query checks if the flags mark actual answers.

Example 3 (based on [BKR15]) The transitive closure of a binary relation 𝑅 can be expressed by the

MQ Π with special symbols 𝑧1, 𝑧2 where Π is

𝑈p𝑦q Ð 𝑅𝑧1𝑦 𝑈p𝑦q Ð 𝑈𝑥^𝑅𝑥𝑦 hitpq Ð 𝑈𝑧2 .

The answer to the query would consist of all pairs p𝑎1, 𝑎2q for which the rules imply hit under the standard

Datalog semantics, when interpreting 𝑧1 as 𝑎1 and 𝑧2 as 𝑎2.
In UNFP-UP, this is 𝜓p𝑧1, 𝑧2q :� rlfp

𝑧1,𝑧2
ℎ𝑖𝑡,H .𝑆spq where

𝑆 :�

#
𝑈, 𝑦 :� 𝑅𝑧1𝑦 _ D𝑥.p𝑈𝑥^𝑅𝑥𝑦q

ℎ𝑖𝑡,H :� 𝑈𝑧2

Notice that the special symbols become parameters. Because it is a nullary predicate, the fixpoint is nullary

too.

We can translate an arbitrary MQ D𝑦.Π with special symbols 𝑧 using a similar method: the monadic
Datalog query becomes a simultaneous fixpoint𝜓1 in GNFP-UP, with the special symbols 𝑧 as parameters,
and the special nullary hit predicate as the goal predicate. The MQ itself can then be written in GNFP-UP
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as D𝑦.𝜓1p𝑧q. The resulting formula has pdepth at most 1, since 𝜓1p𝑧q has pdepth 0, and D𝑦.𝜓1p𝑧q may
project some of the parameters (the previous example only has pdepth 0 because there is no such
projection).

In [RK13], they also consider a nested version of these flag and check queries. An𝑚-nested MQ is
one where the monadic Datalog query is allowed to use predicates defined by p𝑚� 1q-nested MQs in
the rule bodies (but these predicates cannot be used as guards); a 1-nested MQ is just the MQ defined
above. In general, we can translate an𝑚-nested MQ query into a GNFP-UP formula of pdepth at most
𝑚. [BKR15] defines other variants of flag and check queries; all of them can be similarly captured in
GNFP-UP.

A Datalog queryΠ1 is contained in a Datalog queryΠ2 if for all input structures A,Π1pAq � Π2pAq.
Similarly given a sentence 𝜑 in some logic, we say Datalog query Π1 is contained in Π2 relative to 𝜑 if
Π1pAq � Π2pAq for all A satisfying 𝜑. GNFP-UP can express the Datalog queries in the fragments above.
Moreover, since it is closed under boolean combinations for sentences, it can also express containment of
two boolean queries within each fragment, and containment relative to sentences 𝜑 that are expressible
in GNFP-UP.

2.2 Lower bounds

2.2.1 Introduction

In this section, we study two problems of interest, with strong connections: containment of monadic
datalog, validity problems on trees, In [BBGS20], we established a technique based on the reduction
of tree validity to MDL containment that allows us to push the 2-ExpTime lower bound to the MDL
containment problem. We recall here, the main results. The encoding to reduce the validity problem
into the containment problem can be found in [BBGS20]. We first give the formal definitions of Datalog
and containment.

2.2.2 Definitions

Datalog A datalog program [AHV95] over 𝜎 consists of:

1. A set of rules of the form 𝐴Ð 𝜑, where 𝜑 is a conjunction of atoms over 𝜎, and 𝐴 is an atom
over 𝜎. We say 𝐴 is the head and 𝜑 the body of the rule. We require that every variable occurring
in the head of a rule 𝑟 also occurs in its body.

2. A distinguished predicate goal of 𝜎 which occurs in the head of a rule, referred to as the goal
predicate.

The relational symbols that do not occur in the head of any rule are the input or extensional predicates,
while the others are intensional predicates. Similarly, the extensional (resp., intensional) signature of a
program is the set of extensional (resp., intensional) predicates used by the program. Monadic datalog
(MDL) denotes the sublanguage where all intensional predicates are monadic (unary), except for the
goal predicate which can be either unary or nullary (in the latter case, we say that the program is
Boolean).

For a datalog program 𝑃 , an intensional predicate 𝑅 of 𝑃 , and an instance 𝐼 interpreting the input
predicates, we define the evaluation of 𝑅 on 𝐼 , denoted 𝑅p𝐼q, as the union of the relations 𝑃𝑘p𝑅, 𝐼q
defined via the following process, starting with 𝑃0p𝑅, 𝐼q � H:

1. Let 𝐼𝑘 be the expansion of 𝐼 with 𝑃𝑘p𝑅, 𝐼q for all intensional 𝑅.
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2. If 𝑟 is a rule with 𝑅p𝑥1 . . . 𝑥𝑙q in the head, 𝑤 the variables of 𝑟 not present in the head, and
𝜑p𝑥,𝑤q the body of 𝑟, let 𝑃𝑘�1p𝑟, 𝐼q be defined by: t𝑐 P domppq𝐼q𝑙 | 𝐼𝑘 |ù D𝑤 𝜑p𝑐,𝑤qu where
domppq𝐼q is the active domain of 𝐼 .

3. Let then 𝑃𝑘�1p𝑅, 𝐼q denote the union of 𝑃𝑘�1p𝑟, 𝐼q over all 𝑟 with 𝑅 in the head.

Finally, the query result of 𝑃 on 𝐼 , denoted 𝑃 p𝐼q, is the evaluation of the goal predicate of 𝑃 on 𝐼 .
We often assume 𝑃 is Boolean, in which case the result of the program on 𝐼 is the Boolean “true” iff
goalpq holds in 𝐼 , and we simply say that 𝐼 is a model of 𝑃 or that 𝐼 satisfies 𝑃 . We alternatively refer
to a datalog query, rather than to a datalog program, to emphasize that we are only interested in the
evaluation on the goal predicate.

Under these semantics, it is easy to check that any UCQ can be transformed in linear time into an
equivalent MDL query, that does not involve any intensional predicate apart from goal.

Containment Themain problemwe deal with in this work is the classical notion of query containment

[AHV95].

Definition 1 Let 𝑄 and 𝑄1
be two queries over a signature 𝜎. We say 𝑄 is contained in 𝑄1

, denoted

𝑄 � 𝑄1
, if, for any instance 𝐼 over 𝜎, 𝑄p𝐼q � 𝑄1p𝐼q.

Above we have defined containment in terms of the evaluation of 𝑄 over all instances, finite and
infinite. However a simple (and well-known) argument shows that this coincides with containment
when only finite instances are considered. If there is an instance 𝐼 and tuple 𝑡 such that 𝑡 P 𝑄p𝐼q,
𝑡 R 𝑄1p𝐼q, then the fact that 𝑡 P 𝑄p𝐼q is guaranteed by a finite collection of facts 𝐼0 in 𝐼 . Thus 𝐼0
witnesses that 𝑄 is not contained in 𝑄1 over finite instances. Given this equivalence, throughout this
work we will assume that instances are finite. For finite instances 𝐼 , there will be a finite 𝑘 such that the
evaluation of datalog 𝑄 will be 𝑃𝑘�1pgoal, 𝐼q for goal the goal predicate.

Example 4 Consider the following MDL program 𝑃 that determines whether there is a path in a graph 𝐺
from a node marked with the unary predicate 𝑆 to one marked with the unary predicate 𝑇 :

goalpq Ð 𝑇 p𝑥q ^ Reachablep𝑥q

Reachablep𝑦q Ð 𝐺p𝑥, 𝑦q ^ Reachablep𝑥q

Reachablep𝑥q Ð 𝑅p𝑥q

Now consider the UCQs:

𝑄1 : D𝑥D𝑦 𝑅p𝑥q ^𝐺p𝑥, 𝑦q ^ 𝑇 p𝑦q

𝑄2 : pD𝑥 𝑅p𝑥q ^ 𝑇 p𝑥qq _ pD𝑥
1D𝑦1 𝐺p𝑥1, 𝑦1qq

We have that 𝑃 � 𝑄1 but 𝑃 � 𝑄2: indeed, if 𝐼 is the instance made of the facts 𝑅p𝑎q and 𝑇 p𝑎q, 𝐼 is
a model of 𝑃 , but not a model of 𝑄1. And in any model of 𝑃 , either the first rule defining Reachable is

used, and then the second disjunct of 𝑄2 holds, or only the second rule defining Reachable is used, and

then the first disjunct of 𝑄2 holds.
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2.2.2.1 Trees and Tree Validity

Our results for the lower bound of datalog containment have a tight connection with “universality” or
“validity” problems for queries over trees: given a schema describing a set of trees and a Boolean query
over trees, does every tree satisfy the query? There are many variants of the problem, depending on
the exact signature of trees used. We will thus define several signatures below.

Let Λ be a finite non-empty set of labels. We will consider the settings of both binary and unranked
trees. Many of our lower bounds will work in the restricted setting of binary trees. For binary trees
with labels from Λ, the following signature is natural.

The relational signature of ordered, labeled, binary trees, denoted𝒮bin
Ch1,2, contains the binary predicates

FirstChild, SecondChild, unary Root, Leaf predicates, and Label𝛼 predicates for all 𝛼 P Λ.
A tree 𝑇 over 𝒮bin

Ch1,2 is a relational instance such that:

1. the non-empty Label𝑇𝛼 ’s for 𝛼 P Λ form a partition of domppq𝑇 q (one can thus talk about the
label of a node 𝑛, which is the 𝛼 P Λ such that 𝑛 P Label𝑇𝛼 );

2. FirstChild𝑇 and SecondChild𝑇 are one-to-one partial mappings with the same domain (the set of
internal nodes), whose complement is Leaf𝑇 (the set of leaves), and with disjoint ranges;

3. the inverses of FirstChild𝑇 and SecondChild𝑇 are one-to-one partial mappings;
4. D𝑥FirstChildp𝑥, 𝑥q _ SecondChildp𝑥, 𝑥q does not hold;
5. Root𝑇 contains exactly one element (the root 𝑟 of 𝑇 ), and the following formula does not hold

for 𝑟: D𝑥FirstChildp𝑥, 𝑟q _ SecondChildp𝑥, 𝑟q.

We denote as 𝒮bin
Ch1,2,Child (resp., 𝒮bin

Ch1,2,Child,Child?
) the relational signature containing all the relations

of 𝒮bin
Ch1,2 together with a binary Child relation (resp., binary Child and Child? relations). A tree 𝑇 over

𝒮bin
Ch1,2,Child is a relational instance that verifies the same axioms as a tree over 𝒮bin

Ch1,2, where Child
𝑇 is

the disjoint union of FirstChild𝑇 and SecondChild𝑇 . A tree over 𝒮bin
Ch1,2,Child,Child?

has the additional
requirement that @𝑥@𝑦 Child?p𝑥, 𝑦q Ø pChildp𝑥, 𝑦q _ 𝑥 � 𝑦q holds.

Note that we omit the label alphabet Λ from notation such as 𝒮bin
Ch1,2 for readability. Our upper

bound results concerning 𝒮bin
Ch1,2 and 𝒮bin

Ch1,2,Child will hold for any label set Λ, while in our lower bounds
we will usually show hardness for any label set of size at least 2.

The relational signature of unordered, labeled, unranked trees, denoted 𝒮unranked
Child , is made out of

the binary predicate Child together with the unary Root, Leaf , and Label𝛼. A tree over 𝒮unranked
Child is a

relational instance such that:

1. the non-empty Label𝑇𝛼 ’s for 𝛼 P Λ form a partition of domppq𝑇 q;
2. Child𝑇 is a tree in the usual sense, whose root is the only element of Root𝑇 and whose leaves are

exactly the elements of Leaf𝑇 .

We sometimes consider as special cases trees formed of a single node (i.e., trees such that |domppq𝑇 q| �
1); we call them root-only trees.

Example 5 Consider the simple abstract tree with a root labeled 𝛼 and two children labeled 𝛽 and 𝛾
respectively represented here with the root at the top:

𝛼

𝛽 𝛾
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In the four signatures introduced, this tree can be represented as the following collection of facts:

all four signatures Rootp𝑟q, Label𝛼p𝑟q, Label𝛽p𝑓q, Leafp𝑓q, Label𝛾p𝑠q, Leafp𝑠q
𝒮bin
Ch1,2 FirstChildp𝑟, 𝑓q, SecondChildp𝑟, 𝑠q

𝒮bin
Ch1,2,Child FirstChildp𝑟, 𝑓q, SecondChildp𝑟, 𝑠q,Childp𝑟, 𝑓q,Childp𝑟, 𝑠q

𝒮bin
Ch1,2,Child,Child?

FirstChildp𝑟, 𝑓q, SecondChildp𝑟, 𝑠q,Childp𝑟, 𝑓q,Childp𝑟, 𝑠q,Child?p𝑟, 𝑟q,

Child?p𝑓, 𝑓q,Child?p𝑠, 𝑠q,Child?p𝑟, 𝑓q,Child?p𝑟, 𝑠q
𝒮unranked
Child Childp𝑟, 𝑓q,Childp𝑟, 𝑠q

We will consider several methods for defining families of trees, in particular tree automata and
document type definitions (DTDs). We define them formally in the binary case.

Definition 2 A nondeterministic tree automaton on binary trees (or 𝐵𝑁𝑇𝐴) over finite alphabet Λ is

of the form pΩ,∆0,∆, 𝐹 q, where Ω (the control states) is a finite set, ∆0 � Λ � Ω, ∆ � Ω2 � Λ � Ω,
and 𝐹 � Ω. A run 𝜌 of a 𝐵𝑁𝑇𝐴 over a Λ-labeled binary tree is an assignment of states to nodes. A run is

accepting if for all leaves 𝑙 labeled with 𝛼 P Λ, p𝛼, 𝜌p𝑙qq P ∆0; the root is assigned a state in 𝐹 ; and if 𝑛
has left and right children 𝑛1 and 𝑛2 respectively and label 𝛼, then p𝜌p𝑛1q, 𝜌p𝑛2q, 𝛼, 𝜌p𝑛qq P ∆.

A deterministic tree automaton on binary trees (𝐵𝐷𝑇𝐴) over Λ is a 𝐵𝑁𝑇𝐴 in which for every

p𝑞1, 𝑞2, 𝑎q P Ω
2 � Λ, there is at most one 𝑞 such that p𝑞1, 𝑞2, 𝑎, 𝑞q P ∆.

The set of all binary trees having an accepting run of 𝐵𝑁𝑇𝐴 𝐴 is the language of 𝐴, noted 𝐿p𝐴q.
Such a language is then said to be regular.

A nondeterministic tree automaton over ranked trees (𝑁𝑇𝐴𝑅𝑘) is defined similarly, but with
∆ �

�
𝑖¤𝑟 Ω

𝑖 � Λ� Ω for some 𝑟. Such an automaton expects trees in which the outdegree of each
vertex is at most 𝑟. The notion of deterministic tree automaton over ranked trees (𝐷𝑇𝐴𝑅𝑘), the language
of such an automaton, and regularity of a language of ranked trees is defined analogously to above.

We will also make use of the corresponding notion of nondeterministic tree automaton over
unranked trees,𝑁𝑇𝐴𝑈𝑛𝑟 and of a regular language for unranked trees, see [GS97]. We will not need to
know the definition of a 𝑁𝑇𝐴𝑈𝑛𝑟 , since most of the results involving 𝑁𝑇𝐴𝑈𝑛𝑟 will come from prior
work. We will use the following simple facts relating 𝑁𝑇𝐴𝑈𝑛𝑟 to their ranked counterparts:

� A 𝐵𝑁𝑇𝐴, and more generally an 𝑁𝑇𝐴𝑅𝑘 , is a special case of a 𝑁𝑇𝐴𝑈𝑛𝑟 , since we can enforce
a restriction on the rank with an automaton.

� A witness for the non-emptiness of an 𝑁𝑇𝐴𝑈𝑛𝑟 𝐴 can always be taken to have rank polynomial
in the size of 𝐴. This can be shown by just “trimming” a witness.

A DTD for binary trees over Λ (𝐵𝐷𝑇𝐷) is a pair p𝑑, 𝑙0q where 𝑑 is a function from Λ to 2pΛ�ΛqYt𝜖u

giving the constraints over the labels of the children of a node; 𝑙0, an element of Λ, is the root label. A
binary tree 𝑡 is accepted by a 𝐵𝐷𝑇𝐷 p𝑑, 𝑙0q if (i) for any node 𝑛 labeled 𝑎, if 𝑛 is a leaf then 𝜖 P 𝑑p𝑎q
and, otherwise, if 𝑏 and 𝑐 are the labels of the first and second children of 𝑛 then p𝑏, 𝑐q P 𝑑p𝑎q; (ii) the
root of 𝑡 is labeled by 𝑙0. The set of all trees accepted by a 𝐵𝐷𝑇𝐷 𝐷 is the language of𝐷, noted 𝐿p𝐷q.
The standard notion of a DTD [Nev02] is for unranked trees. For clarity and to keep a uniform notation
we refer to these as 𝑈𝐷𝑇𝐷s. For these, 𝑑 is a function from Λ to regular expressions over Λ. The
notion of acceptance of an unranked tree by a 𝑈𝐷𝑇𝐷 is standard, and we will not have need of it here.
We will need the well-known and simple fact that 𝐵𝐷𝑇𝐷s can be turned into 𝐵𝑁𝑇𝐴s accepting the
same language in linear time, and similarly for the unranked case.
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Definition 3 A query on one of the signatures is valid over an automaton or DTD appropriate for that

signature (e.g., 𝐵𝑁𝑇𝐴 or 𝐵𝐷𝑇𝐷 for a signature for binary trees) if for all trees that satisfy the schema,

the query returns true. A query is valid with respect to a set of node labels if the query returns true on all

trees over that set of node labels.

2.2.3 Results on Tree Validity Problems

First, we overview the results on tree validity that are either explicitly in prior work, can be derived
with little effort from prior work, or are easy to derive directly.

We first note that validity over all trees is tractable for CQs over 𝒮unranked
Child , 𝒮bin

Ch1,2, 𝒮bin
Ch1,2,Child, and

𝒮bin
Ch1,2,Child,Child?

. Apart from this very special case, the best upper bound known for the tree validity
problems we consider is 2-ExpTime. Indeed, in [BMS08, Theorem 11], validity of a query over 𝒮unranked

Child

with respect to an 𝑁𝑇𝐴𝑈𝑛𝑟 was shown to be in 2-ExpTime for CQs. This 2-ExpTime upper bound
actually holds for all considered problems on tree validity. For most of our signatures, such a bound can
be obtained as follows. Convert the UCQ 𝑄 to an exponential-sized tree automaton (e.g., 𝐵𝑁𝑇𝐴 for
signatures appropriate to binary trees) 𝐴𝑄 in exponential time. See, for example, [ABS15b, Proposition
B.1] for this conversion. Then using standard automata techniques [CDG�02] we can determinize 𝐴𝑄
in exponential time, complement it, and intersect it with the automaton representing the schema in
polynomial time. Finally, we can test the resulting automaton for emptiness in polynomial time. In the
case of 𝒮bin

Ch1,2,Child,Child?
, we first convert a UCQ 𝑄 over 𝒮bin

Ch1,2,Child,Child?
to a positive existential query

𝑄1 over 𝒮bin
Ch1,2,Child. The query 𝑄1 can be converted in exponential time to an alternating automaton

over trees. The construction is a standard induction: the atoms are converted to automata that work
over trees with the free variables annotated on the tree. Conjunction and disjunction are done using the
closure properties of alternating automata, which allow positive Boolean combinations in the transition
function. Existential quantification can be assumed to be outermost, and requires projecting out the
annotations. This can be done by converting the alternating automata to a non-deterministic automata
in exponential time; for non-deterministic automata the projection step is straightforward. Emptiness
of alternating automata can be checked in exponential time [CDG�02], which gives the 2-ExpTime
bound.

Let us now discuss existing lower bounds. The validity problem with respect to DTDs over 𝒮unranked
Child

has been studied in [BMS13]. [BMS13, Theorem 12] shows that the validity problem for 𝒮unranked
Child is

ExpTime-hard for child-only tree-pattern queries. Given that one can convert these straightforwardly to
CQs, we obtain ExpTime-hardness of the validity problem for CQs (and thus UCQs) with respect to
𝑈𝐷𝑇𝐷 and 𝑁𝑇𝐴𝑈𝑛𝑟 .

Inspection of prior work easily shows the lower bound carries over to the 𝒮bin
Ch1,2,Child signature and,

consequently, to the 𝒮bin
Ch1,2,Child,Child?

signature, as we now explain. Theorem 12 of [BMS13] relies on
Theorem 11 in the same paper, whose proof involves a reduction from finding a winning strategy in a
game on tiling systems [Chl86, Rectangle Tiling Game]. Critically, the number of possible moves in
this strategy is bounded, by the number of different tiles, which is fixed. Thus the trees involved in the
hardness proof are actually ranked. Now, we use a standard encoding of 𝑏-ranked trees as binary trees
where every node 𝑛 with at most 𝑏 children is replaced with a binary subtree of height exactly rlog2p𝑏qs
whose leaves are the children of 𝑛. This means that, in the CQ, we replace every Child atom with a
chain of rlog2p𝑏qs child atoms. In the DTD, we enumerate the bounded number of possible words for
the labels of children of every node label, and choose fresh node labels for every such possible word
and every position in the binary tree encoding the unranked Child relation. It then becomes easy to
transform the 𝑈𝐷𝑇𝐷 on unranked trees into a 𝐵𝐷𝑇𝐷 on the encoded binary trees.
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Table 2.1: Summary of results on the complexity of tree validity of CQs and UCQs, over various tree
signatures and with respect to DTDs, tree automata, or all trees

;
lower bounds w.r.t. tree automata are transferred to lower bounds w.r.t. DTDs

CQ UCQ CQ UCQ
Signature (DTD or tree automaton) (DTD or tree automaton) (all trees) (all trees)

𝒮unranked
Child ExpTime-complete ExpTime-complete P ExpTime-complete

𝒮bin
Ch1,2 in ExpTime ExpTime-complete P ExpTime-complete

𝒮bin
Ch1,2,Child ExpTime-complete ExpTime-complete P ExpTime-complete

𝒮bin
Ch1,2,Child,Child?

2-ExpTime-complete 2-ExpTime-complete P 2-ExpTime-complete

Table 2.2: Summary of results on the complexity of query containment.

Query containment setting Containment Upper bound Lower bound

MDL in MDL 2-ExpTime-complete [CGKV88, Thm 7.2] [BBGS20]
MDL in UCQ 2-ExpTime-complete [CGKV88, Thm 7.2] [BBGS20]
MDL in CQ 2-ExpTime-complete [CGKV88, Thm 7.2] [BBGS20]
Datalog in UCQ 2-ExpTime-complete [CV97, Thm 5.12] [CV97, Thm 5.15]

In [BBGS20], we establish tight complexity bounds for the validity of CQs and UCQs over all four
tree signatures introduced (𝒮unranked

Child , 𝒮bin
Ch1,2, 𝒮bin

Ch1,2,Child, and 𝒮bin
Ch1,2,Child,Child?

) with respect to DTDs,
tree automata, and over all trees. The results are summarized in Table 2.1. The results on validity over
all trees refer to the combined complexity of the problem that takes as input both the query and label
set, determining if the query is valid for that label set. There is one exception where a tight bound is
still open: the case of CQs over 𝒮bin

Ch1,2 with respect to 𝐵𝐷𝑇𝐷s or 𝐵𝑁𝑇𝐴s. In all other cases (beyond
the trivial P case of CQs over all trees), we establish 2-ExpTime-completeness (for 𝒮bin

Ch1,2,Child,Child?
)

and ExpTime-completeness (for the other three signatures).

2.2.4 Results on Containment for MDL and Access Constraints

The upper bound of containment of MDL queries in UCQs is in 2-ExpTime by [CGKV88] (indeed, this
holds also for containment of two MDL queries [CGKV88] or for Datalog in UCQs [CV92, CV97]). In
[BBGS20], we show that this problem is 2-ExpTime-hard, thus obtaining a tight characterization of its
complexity.

Table 2.2 summarizes these results and provides references to the corresponding theorems.
The reduction of validity of trees to obtain a lower bound has also been adapted and used for

proving other lower bounds for logic satisfiability [BBV16], containment of other Datalog sublanguages
[BKR15] and certain query answering [BL16, BMMP16].
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Chapter 3

From Trees to Logic

Evaluation of MSO over trees has brought a lot of attention over the past forty years due to the
interesting properties which this language has. It has an efficient evaluation which linear in the size of
the tree and this property extends to more complex results such as counting, probabilistic evaluation and
enumeration. All these problems have been well studied. In this chapter, I propose to approach these
problems through the lens of circuits. I focus on the problems of enumeration. During our different
studies, we introduced different kinds of circuits to represent the answers of a MSO query to obtain the
desired results. In the rest of the chapter, I will focus on a particular representation called multivalued
circuits, this kind of circuit is particularly useful for obtaining tight results for the different enumeration
problems for MSO formulas with first-order free variables. Finally, I focus on the equivalent definition
of MSO formula based on Tree automata.

After presenting the preliminaries, I present the construction of the multivalued circuit for tree
automata which is the base of different results. I then state the main results for enumeration and rank
enumeration and the main bricks of the algorithm.

3.1 Preliminaries

In order to define the notion of answer of queries, we need to define the notion of assignment.

Assignments. For two finite sets 𝐷 of values and 𝑋 of variables, an assignment on domain 𝐷 and

variables 𝑋 is a mapping from 𝑋 to 𝐷. We write 𝐷𝑋 the set of such assignments. We can see
assignments as sets of singleton assignments, where a singleton assignment is an expression of the form
r𝑥Ñ 𝑑s with 𝑥 P 𝑋 and 𝑑 P 𝐷.

Two assignments 𝜏 P 𝐷𝑌 and 𝜎 P 𝐷𝑍 are compatible, written 𝜏 � 𝜎, if we have 𝜏p𝑥q � 𝜎p𝑥q for
every 𝑥 P 𝑌 X 𝑍 . In this case, we denote by 𝜏 ' 𝜎 the assignment of 𝐷𝑌Y𝑍 defined following the
natural join, i.e., for 𝑦 P 𝑌 z𝑍 we set p𝜏 ' 𝜎qp𝑦q :� 𝜏p𝑦q, for 𝑧 P 𝑍z𝑌 we set p𝜏 ' 𝜎qp𝑧q :� 𝜎p𝑧q, and
for 𝑥 P 𝑍 X 𝑌 , we set p𝜏 ' 𝜎qp𝑥q to the common value 𝜏p𝑥q � 𝜎p𝑥q. Two assignments 𝜏 P 𝐷𝑌 and
𝜎 P 𝐷𝑍 are disjoint if 𝑌 X 𝑍 � H: then they are always compatible and 𝜏 ' 𝜎 corresponds to the
relational product, which we write 𝜏 � 𝜎.

Given 𝑅 � 𝐷𝑌 and 𝑆 � 𝐷𝑍 , we define 𝑅^ 𝑆 � t𝜏 ' 𝜎 | 𝜏 P 𝑅, 𝜎 P 𝑆, 𝜏 � 𝜎u: this is a subset
of 𝐷𝑌Y𝑍 . Note how, if the domain is 𝐷 � t0, 1u, then this corresponds to the usual conjunction for
Boolean functions, and in general we can see it as a relational join, or a relational product whenever
𝑌 X 𝑍 � H. Further, we define 𝑅_ 𝑆 � t𝜏 P 𝐷𝑌Y𝑍 | 𝜏 |𝑌 P 𝑅 or 𝜏 |𝑍 P 𝑆u, which is again a subset
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of 𝐷𝑌Y𝑍 . Again observe how, when 𝐷 � t0, 1u, this corresponds to disjunction; and in general, we
can see this as a relational union except that assignments over 𝑌 and 𝑍 are each implicitly completed
in all possible ways to assignments over 𝑌 Y 𝑍 .

3.1.1 Trees and Automata

We define words, trees, and valuations, present our automata and a homogenization lemma, and state
our problem.

Trees. We work with trees that are all rooted and ordered, i.e., there is an order on the children of
each node. Given a set Λ of tree labels, a Λ-tree 𝑇 (or tree when Λ is clear from context) is a pair of a
rooted tree (also written 𝑇 ) and of a labeling function 𝜆 that maps each node 𝑛 of 𝑇 to a label 𝜆p𝑛q P Λ.
We write Leafp𝑇 q for the set of leaves of 𝑇 . We abuse notation and identify 𝑇 with its set of nodes, i.e.,
we can write that Leafp𝑇 q � 𝑇 . An internal node is a node of 𝑇 zLeafp𝑇 q. All trees in this part will be
binary, i.e., every internal node has exactly two children, which we refer to as left and right child.

When evaluating a query with variables𝒳 on aΛ-tree 𝑇 , we will see its possible results as valuations:
an 𝒳 -valuation of 𝑇 is a function 𝜈 : Leafp𝑇 q Ñ 2𝒳 that assigns to every leaf 𝑛 of 𝑇 a set of variables
𝜈p𝑛q � 𝒳 called the annotation of 𝑛. Note that our variables are second-order, i.e., each variable can be
interpreted as a set of nodes of 𝑇 . We represent v concisely as assignments: an 𝒳 -assignment is a set 𝑆
of singletons which are pairs of the form x𝑍 : 𝑛y, where 𝑍 P 𝒳 and 𝑛 P Leafp𝑇 q.

Tree Variable Automata We will write our query on trees using tree automata that can express, e.g.,
queries in monadic second-order logic (MSO): see [TW68] and [ABJM19, Appendix E.1].

Formally, a tree variable automaton TVA on binary Λ-trees for variable set 𝒳 (or Λ,𝒳 -TVA) is
a tuple 𝐴 � p𝑄, 𝜄, 𝛿, 𝐹 q, where 𝑄 is a finite set of states, 𝜄 � Λ � 2𝒳 � 𝑄 is the initial relation,
𝛿 � Λ�𝑄�𝑄�𝑄 is the transition relation, and 𝐹 � 𝑄 is the set of final states. The size |𝐴| of 𝐴 is
|𝑄| � |𝜄| � |𝛿|. This definition only applies to binary Λ-trees.

To simplify notation we often see 𝛿 as a tuple of functions, i.e., for each 𝑙 P Λ we have a function
𝛿𝑙 : 𝑄�𝑄Ñ 2𝑄 defined by 𝛿𝑙p𝑞1, 𝑞2q � t𝑞 P 𝑄 | p𝑙, 𝑞1, 𝑞2, 𝑞q P 𝛿u: this intuitively tells us to which
states the automaton can transition on an internal node with label 𝑙 when the states of the two children
are respectively 𝑞1 and 𝑞2. Note that, following our definition of a valuation and of 𝜄, the automaton is
only reading annotations on leaf nodes.

Having fixed Λ and 𝒳 , given a Λ-tree 𝑇 and an 𝒳 -valuation 𝜈 of 𝑇 , given a Λ,𝒳 -TVA 𝐴 �
p𝑄, 𝜄, 𝛿, 𝐹 q, a run of 𝐴 on 𝑇 under 𝜈 is a function 𝜌 : 𝑇 Ñ 𝑄 satisfying the following:

� For every 𝑛 P Leafp𝑇 q, we have p𝜆p𝑛q, 𝜈p𝑛q, 𝜌p𝑛qq P 𝜄;
� For every internal node 𝑛 with label 𝑙 and children 𝑛1, 𝑛2, we have 𝜌p𝑛q P 𝛿𝑙p𝜌p𝑛1q, 𝜌p𝑛2qq.

The run is accepting if it maps the root of 𝑇 to a state in 𝐹 , and we say that 𝐴 accepts 𝑇 under 𝜈 if there
is an accepting run of𝐴 on 𝑇 under 𝜈. The satisfying valuations of𝐴 on 𝑇 is the set of the 𝒳 -valuations
𝜈 of 𝑇 such that𝐴 accepts 𝑇 under 𝜈, and the satisfying assignments are the corresponding assignments
𝛼p𝜈q. Thus, the automaton 𝐴 defines a query on Λ-trees with second-order variables 𝒳 , and its results
on a Λ-tree 𝑇 are the satisfying assignments of 𝐴 on 𝑇 .

Homogenization. It will be useful to assume a homogenization property on automata. Given a
Λ,𝒳 -TVA 𝐴 � p𝑄, 𝜄, 𝛿, 𝐹 q, we call 𝑞 P 𝑄 a 0-state if there is some Λ-tree 𝑇 and run 𝜌 of 𝐴 on 𝑇
that maps the root of 𝑇 to 𝑞 under the empty 𝒳 -valuation 𝜈H of 𝑇 defined as 𝜈Hp𝑛q :� H for each
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𝑛 P Leafp𝑇 q. We call 𝑞 a 1-state if there is some Λ-tree 𝑇 and run 𝜌 of 𝐴 on 𝑇 mapping the root
of 𝑇 to 𝑞 under some non-empty 𝒳 -valuation, i.e., a valuation 𝜈 different from the empty valuation.
Intuitively, a 0-state is a state that 𝐴 can reach by reading a tree annotated by the empty valuation, and
a 1-state can be reached by reading a tree with at least one non-empty annotation. In general, a state
can be both a 0-state and a 1-state, or it can be neither if there is no way to reach it. We say that 𝐴 is
homogenized if every state is either a 0-state or a 1-state and no state is both a 0-state and a 1-state. We
can easily make automata homogenized, by duplicating the states to remember if we have already seen
a non-empty annotation:

Lemma 2 Given a Λ,𝒳 -TVA 𝐴, we can compute in linear time a Λ,𝒳 -TVA 𝐴1 which is homogenized

and equivalent to 𝐴.

3.1.2 Enumeration problem

Our goal is to efficiently enumerate the results of queries on trees. The inputs to the problem are the
Λ-tree 𝑇 and the query given as a Λ,𝒳 -TVA 𝐴, with Λ the tree alphabet and 𝒳 the variables. The
output is the set of the satisfying assignments of 𝐴 and 𝑇 . We present an enumeration algorithm to
produce them, which first runs a preprocessing phase on 𝐴 and 𝑇 : we compute a concise representation
of the output as an multivalued circuit. Second, the enumeration phase produces each result to the query,
with no duplicates, while bounding the maximal delay between two successive answers. Third, our
algorithm must handle updates to 𝑇 , i.e., given an edit operation on 𝑇 , efficiently update the assignment
circuit and index and restart the enumeration on the updated tree.

Our main result shows how to solve this problem with preprocessing linear in 𝑇 and polynomial
in 𝐴; with delay independent from 𝑇 , polynomial in 𝐴, and linear in each produced assignment; and
with update time logarithmic in 𝑇 and polynomial in 𝐴.

3.1.3 Rank Enumeration

Ranking functions. Our notion of ranking functions will give a score to each assignment, but
to state their properties we define them on partial assignments. Formally, a partial assignment is a
mapping 𝜈 : 𝑋 Ñ 𝐷 Y tKu, where K is a fresh symbol representing undefined. We denote by 𝐷𝑋 the
set of partial assignments on a domain 𝐷 and variables 𝑋 . The support suppp𝜈q of 𝜈 is the subset of 𝑋
on which 𝜈 is defined. We extend the definitions of compatibility, of ', and of disjointness, to partial
assignments in the expected way.

We then consider ranking functions defined by partial assignments 𝐷𝑋 , on which we will impose
subset-monotonicity. Formally, a p𝐷,𝑋q-ranking function 𝑤 is a function1 𝐷𝑋 Ñ R that gives a score
to every partial assignment. Such a ranking function induces a weak ordering2 ¨ on 𝐷𝑋 , with 𝜇 ¨ 𝜇1

defined as 𝑤p𝜇q ¤ 𝑤p𝜇1q. We always assume that ranking functions can be computed efficiently, i.e.,
with running time that only depends on 𝑋 , not 𝐷.

By a slight notational abuse, we define the score 𝑤p𝜏q of partial assignment 𝜏 P 𝐷𝑌 with 𝑌 � 𝑋
by seeing 𝜏 as a partial assignment on𝑋 which is implicitly extended by assigning K to every 𝑧 P 𝑋z𝑌 .
Following earlier work [DK19, TGR22, DHK22], we then restrict our study to ranking functions that
are subset-monotone [TGR22]:

1As usual, when we write R, we assume a suitable representation, e.g., as floating-point numbers.
2Recall that a weak ordering ¨ on 𝐴 is a total preorder on 𝐴, i.e., ¨ is transitive and we have either 𝑥 ¨ 𝑦 or 𝑦 ¨ 𝑥 for

every 𝑥, 𝑦 P 𝐴. In particular, it can be the case that two distinct elements 𝑥 and 𝑦 are tied, i.e., 𝑥 ¨ 𝑦 and 𝑦 ¨ 𝑥.
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Definition 4 A p𝐷,𝑋q-ranking function 𝑤 : 𝐷𝑋 Ñ R is subset-monotone if for every 𝑌 � 𝑋 and

partial assignments 𝜏1, 𝜏2 P 𝐷𝑌
such that 𝑤p𝜏1q ¤ 𝑤p𝜏2q, for every partial assignment 𝜎 P 𝐷𝑋z𝑌

(so

disjoint with 𝜏1 and 𝜏2), we have 𝑤p𝜎 � 𝜏1q ¤ 𝑤p𝜎 � 𝜏2q.

We use in particular the following consequence of subset-monotonicity (, where we call 𝜏 P 𝐷𝑋

maximal (or maximum) for 𝑤 : 𝐷𝑋 Ñ R when for every 𝜏 1 P 𝐷𝑋 we have 𝑤p𝜏 1q ¤ 𝜏p𝜏q:

Lemma 1 Let 𝑅 � 𝐷𝑌
and 𝑆 � 𝐷𝑍

with 𝑌 X 𝑍 � H, and let 𝑤 : 𝐷𝑌Y𝑍 Ñ R be subset-monotone. If

𝜏 is a maximal element of 𝑅 and 𝜎 is a maximal element of 𝑆 with respect to 𝑤, then 𝜏 � 𝜎 is a maximal

element of 𝑅^ 𝑆 with respect to 𝑤.

We give a few examples of subset-monotone ranking functions. Let𝑊 : 𝑋 �𝐷 Ñ R be a function
assigning scores to singleton assignments, and define the p𝐷,𝑋q-ranking function sum𝑊 : 𝐷𝑋 Ñ R by
sum𝑊 p𝜏q �

°
𝑥P𝑋,𝜏p𝑥q�K𝑊 p𝑥, 𝜏p𝑥qq. Then sum𝑊 is subset-monotone. Similarly definemax𝑊 : 𝐷𝑋 Ñ

R bymax𝑊 p𝜏q � max𝑥P𝑋,𝜏p𝑥q�K𝑊 p𝑥, 𝜏p𝑥qq, or prod𝑊 in a similar manner (with non-negative scores
for singletons); then these are again subset-monotone. In particular, we can use sum𝑊 to encode
lexicographic orderings on 𝐷𝑋 .

Enumeration and problem statement. Our goal in this article is to efficiently enumerate the
satisfying assignments of circuits in nonincreasing order according to a ranking function. We will
in particular apply this for the ranked enumeration of the answers to MSO queries on trees. We call
this problem RankEnum. Formally, the input to RankEnum consists of a multivalued circuit 𝐶 on
domain 𝐷 and variables 𝑋 , and a p𝐷,𝑋q-ranking function 𝑤 that is subset-monotone. The output
to enumerate consists of all of relp𝐶q, without duplicates, in nonincreasing order of scores (with ties
broken arbitrarily).

Formally, we work in the RAM model on words of logarithmic size [AHU74], where memory cells
can represent integers of value polynomial in the input length, and on which arithmetic operations
take constant time. We will in particular allocate arrays of polynomial size in constant time, using lazy
initialization [GJ22]. We measure the performance of our algorithms in the framework of enumeration

algorithms, where we distinguish two phases. First, in the preprocessing phase, the algorithm reads the
input and builds internal data structures. We measure the running time of this phase as a function
of the input; in general, the best possible bound is linear preprocessing, e.g., preprocessing in 𝑂p|𝐶|q.
Second, in the enumeration phase, the algorithm produces the assignments, one after the other, without
duplicates, and in nonincreasing order of scores; the order of assignments that are tied according to the
ranking function is not specified. The delay is the maximal time that the enumeration phase can take to
produce the next assignment, or to conclude that none are left. We measure the delay as a function of
the input, as a function of the produced assignments (which each have size |𝑋|), and also as a function
of the number of results that have been produced so far.

3.2 Construction of the circuit for deterministic tree automata over
trees

We present in this section how to represent efficiently the answers of evaluation of tree automata over
trees via circuit.
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Multivalued circuits. A multivalued circuit 𝐶 on domain 𝐷 and variables 𝑋 is a DAG with
labelled vertices which are called gates. The circuit also has a distinguished gate 𝑟 called the output gate
of 𝐶 . Gates having no incoming edges are called inputs of 𝐶 . Moreover, we have:

� Every input of 𝐷 is labeled with a pair of the form x𝑥 : 𝑑y with 𝑥 P 𝑋 and 𝑑 P 𝐷;
� there exists two constant gates labeled by J or J gates.
� Every other gate of 𝐷 is labeled with either _ (a _-gate) or ^ (a ^-gate).

We denote by |𝐶| the number of edges in 𝐶 .
Given a gate 𝑣 of 𝐶 , the inputs of 𝑣 are the gates 𝑤 of 𝐶 such that there is a directed edge from 𝑤 to

𝑣. The set of variables below 𝑣, denoted by var 1, is then the set of variables 𝑥 P 𝑋 such that there is an
input 𝑤 which is labeled by x𝑥 : 𝑑y for some 𝑑 P 𝐷 and which has a directed path to 𝑣. Equivalently, if
𝑣 is an input labeled by x𝑥 : 𝑑y then var 1 :� t𝑥u, otherwise var 1 :�

�𝑘
𝑖�1 var 1 where 𝑣1, . . . , 𝑣𝑘 are

the inputs of 𝑣. We assume that the set 𝑋 of variables of the circuit is equal to var 1 for 𝑟 the output
gate of 𝐶 : this can be enforced without loss of generality up to removing useless variables from 𝑋 .

For each gate 𝑣 of 𝐶 , the set of assignments relp𝑣q � 𝐷var 1
of 𝑣 is defined inductively as follows.

If 𝑣 is an input labelled by x𝑥 : 𝑑y, then relp𝑣q contains only the assignment r𝑥 ÞÑ 𝑑s. Otherwise, if 𝑣
is an internal gate with inputs 𝑣1, . . . , 𝑣𝑘 then relp𝑣q :� relp𝑣1q op � � � op relp𝑣𝑘q where op P t_,^u
is the label of 𝑣. The set of assignments relp𝐶q of 𝐶 is that of its output gate. Note that, if 𝐷 � t0, 1u,
then the set of assignments of 𝐶 precisely corresponds to its satisfying valuations when we see 𝐶 as a
Boolean circuit in the usual sense.

We say that a ^-gate 𝑣 is decomposable if all its inputs are on disjoint sets of variables; formally, for
every pair of inputs 𝑣1 � 𝑣2 of 𝑣, we have var 1 X var 1 � H. A _-gate 𝑣 is smooth if all its inputs
have the same set of variables (so that implicit completion does not occur); formally, for every pair
of inputs 𝑣1, 𝑣2 of 𝑣, we have var 1 � var 1. A _-gate 𝑣 is deterministic if every assignment of 𝑣 is
computed by only one of its inputs; formally, for every pair of inputs 𝑣1 � 𝑣2 of 𝑣, if 𝜏 P relp𝑣q then
either 𝜏 |var 1 R relp𝑣1q or 𝜏 |var 1 R relp𝑣2q.

Let 𝑣 be an internal gate with inputs 𝑣1, . . . , 𝑣𝑘. Observe that if 𝑣 is decomposable, then relp𝑣q ��𝑘
𝑖�1 relp𝑣𝑖q. If 𝑣 is smooth then relp𝑣q �

�𝑘
𝑖�1 relp𝑣𝑖q. If moreover 𝑣 is deterministic, then relp𝑣q ��𝑘

𝑖�1 relp𝑣𝑖q, where Z denotes disjoint union. Accordingly, we denote decomposable ^-nodes as
�-nodes, denote smooth _-nodes as Y-nodes, and denote smooth deterministic _-nodes as Z-nodes.

A multivalued circuit is decomposable (resp., smooth, deterministic) if every ^-gate is decomposable
(resp., every _-gate is smooth, every _-gate is deterministic). A multivalued DNNF on domain 𝐷 and

variables 𝑋 is then a decomposable multivalued circuit on 𝐷 and 𝑋 . A multivalued d-DNNF on domain

𝐷 and variables 𝑋 is a deterministic multivalued DNNF on 𝐷 and 𝑋 . In this chapter, we only work
with circuits that are both decomposable and smooth, i.e., smooth multivalued DNNFs. Note that
smoothness can be ensured on Boolean circuits in quadratic time [SdBBA19], and the same can be done
on multivalued circuits.

Building multivalued Circuits We have defined the multivalued circuits that we want to compute,
defined the notion of a DNNF and a width parameter for them. We can now state our main result for
this section, namely, that we can efficiently construct multivalued circuits. Observe that, while the
depth of the circuit depends on the input tree, the width only depends on |𝑄|, which will be crucial for
our delay bounds.

Lemma 3 Given any binary Λ-tree 𝑇 and homogenized Λ,𝒳 -TVA 𝐴 � p𝑄, 𝜄, 𝛿, 𝐹 q, we can construct in

time 𝑂p|𝑇 | � |𝐴|q a DNNF 𝐶 which is a multivalued circuit of 𝐴 and 𝑇 , a v-tree 𝒯 , and a structuring

function from 𝐶 to 𝒯 , such that 𝐶 has width |𝑄| and depth 𝑂pheightp𝑇 qq.
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Proof 1 We construct 𝒯 by taking 𝑇 , removing all node labels, and labeling each leaf node 𝑛 by the set of

singletons x𝒳 : 𝑛y: note that 𝒯 is indeed a v-tree for the set of variables 𝐶var 1tx𝑍 : 𝑛y | 𝑍 P 𝒳 , 𝑛 P 𝑇 u
of 𝐶 given by the definition of multivalued circuits.

We now present the construction of 𝐶 bottom up. We first describe the case of a leaf node 𝑛 of 𝑇 with

label 𝑙 P Λ. In this case, we construct the box 𝐵𝑛 for 𝑛 as follows:

� For every 0-state 𝑞 of 𝐴, we set 𝛾p𝑛, 𝑞q to be a J-gate if p𝑙,H, 𝑞q P 𝜄, and a K-gate otherwise.
� For every 1-state 𝑞 of 𝐴 with no tuples of the form p𝑙,𝒴, 𝑞q in 𝜄, we set 𝛾p𝑛, 𝑞q to be a K-gate.
� For every 1-state 𝑞 of 𝐴 with at least one tuple of the form p𝑙,𝒴, 𝑞q, we set 𝛾p𝑛, 𝑞q to be a _-gate

having as inputs one variable gate labelled by x𝒴 : 𝑛y for each 𝒴 � 𝒳 such that p𝑙,𝒴, 𝑞q P 𝜄. Note
that 𝒴 is then nonempty because 𝑞 is a 1-state.

It is clear that 𝐵𝑛 has at most |𝑄| _-gates and that all restrictions for DNNFs are met.

For an inner node 𝑛 of 𝑇 with label 𝑙 and child nodes 𝑛1 and 𝑛2, we construct the box 𝐵𝑛 as follows.

First, for every 0-state of 𝐴, we set 𝛾p𝑛, 𝑞q to be a J-gate if and only if there are states 𝑞1 and 𝑞2 in 𝐴
such that p𝑞1, 𝑞2, 𝑞q P 𝛿𝑙 and 𝛾p𝑛1, 𝑞1q and 𝛾p𝑛2, 𝑞2q are both J-gates. Otherwise, we set 𝛾p𝑛, 𝑞q to be a
K-gate.

Second, for every 1-state 𝑞 of𝐴 and every triple p𝑞1, 𝑞2, 𝑞q P 𝛿𝑙, let 𝑔1 :� 𝛾p𝑛1, 𝑞1q and 𝑔2 :� 𝛾p𝑛2, 𝑞2q.
We define a gate 𝑔𝑞1,𝑞2 such that we have the equality:

Sp𝑔𝑞1,𝑞2q � Sp𝑔1q � Sp𝑔2q (*)

but while respecting the rule that J and K-gates can never be used as input to another gate. Specifically:

� If one of 𝑔1, 𝑔2 is a K-gate, we set 𝑔
𝑞1,𝑞2

to be a K-gate, which clearly satisfies (*);

� If one of 𝑔1, 𝑔2 is a J-gate, we set 𝑔
𝑞1,𝑞2

to be the other gate; this also satisfies (*);

� Otherwise we set 𝑔𝑞1,𝑞2 to be a � gate with inputs 𝑔1 and 𝑔2.

Having created the necessary gates 𝑔𝑞1,𝑞2 for the triples of 𝛿𝑙, we now create 𝛾p𝑛, 𝑞q for every 1-state 𝑞 as a
gate that satisfies:

Sp𝛾p𝑛, 𝑞qq �
¤

p𝑞1,𝑞2,𝑞qP𝛿𝑙

Sp𝑔𝑞1,𝑞2q (**)

Specifically:

� If all 𝑔𝑞1,𝑞2 in the union are K-gates (in particular if the union is empty), we set 𝛾p𝑛, 𝑞q to also be a
K-gate, respecting (**);

� Otherwise we exclude all K-gates from the union and set 𝛾p𝑛, 𝑞q to be a Y-gate, which has all

remaining gates 𝑔𝑞1,𝑞2 as input, satisfying (**).

We can easily check that all rules of multivalued circuits are respected. In particular, all Y-gates and
�-gates have the right fan-in. To check that we never use J and K as input to another gate, the only

subtlety is that, when defining the Y-gate 𝛾p𝑛, 𝑞q for a 1-state 𝑞, we must check that 𝑔𝑞1,𝑞2 can never be a

J-gate, but this is because one of 𝑞1 and 𝑞2 must be a 1-state, hence it cannot be a 0-state because 𝐴 is

homogenized; now it can be seen by induction that whenever 𝛾p𝑛1, 𝑞1q is a J-gate then 𝑞1 is a 0-state. It is
also clear that the definition of a DNNF is respected, in particular, the inputs to �-gates are Y-gates in the

two child boxes.

In terms of accounting, it is clear that there are at most |𝑄| Y-gates in each 𝐵𝑛, that the depth of the

circuit is as stated, and the construction of the whole circuit is in time 𝑂p|𝐴| � |𝑇 |q as promised. Last, a
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straightforward bottom-up induction on 𝑇 shows that the gates 𝛾p𝑛, 𝑞q capture the correct set for any 𝑛,
i.e., that for any leaf node 𝑛 and any 𝑞 P 𝑄 we have:

Sp𝛾p𝑛, 𝑞qq � tx𝒴 : 𝑛y | p𝜆p𝑛q,𝒴, 𝑞q P 𝜄u

and for any internal node 𝑛 with label 𝑙 and children 𝑛1 and 𝑛2 and any 𝑞 P 𝑄 we clearly have the

following, by (*) and (**) (and their analogues in the case of 0-states):

Sp𝛾p𝑛, 𝑞qq �
¤

p𝑞1,𝑞2,𝑞qP𝛿𝑙

Sp𝛾p𝑛1, 𝑞1qq � Sp𝛾p𝑛2, 𝑞2qq

Hence, the construction is correct, which concludes the proof.

In our original paper [ABJM17], we studied the enumeration of theMSO formula for a representation
of the answer using Boolean circuits and in particular d-DNNF circuits. This representation brings
several difficulties. First, the representation of an assignment of the variables is defined through a set
of variables of the form   𝑥 : 𝑎 ¡ where 𝑥 is a first-order variable and 𝑎 is a value or of the form
  𝑋 : 𝑎 ¡ where 𝑋 is a second order variable. For the assignments of first-order variables, we impose
that our circuits accept only valuations for which for each free variable 𝑥, there exists only one variable
of the form   𝑥 : 𝑎 ¡ assigned to the value J. The classical results for enumerating valuations for
d-DNNF give a linear delay in the size of the valuations. Unfortunately, this result is not sufficient as
the number of variables in the translation in the representation of the set of answers implies a valuation
of size linear in the size of the tree. Therefore, with the classical approaches, we could not get the
known results: linear time preprocessing and constant delay. For solving, this problem we focus on
enumerating assignments i.e. only the variables assigned to J. For representing these assignments, we
used different equivalent representations: zero suppressed semantics [ABJM17], set circuits [ABMN19b]
and finally multivalue circuits [ABCM24].

In this section, we restate our result for multi-value circuits and we represent our algorithm through
a more flexible pattern.

Theorem 6 For any constant 𝑛 P N, we can solve the enumeration problem on an input smooth multival-

ued d-DNNF circuit 𝐶 with 𝑛 variables , with preprocessing 𝑂p|𝐶|q and delay 𝑂p1q

The main idea of the enumeration is not to enumerate exactly an assignment but to enumerate the
^-gates and the variables gates of the circuits defining an assignment. We can notice that because our
multivalue circuits have a constant number of variables, the subtree composed of only ^-gates defining
the assignment has a constant size.

The main difficulty when enumerating such subtree is to go through the _ gates to find the next
possible ^-gate. Due to the fact, that the number of _ gates to go through to go from one ^ gate to the
another can be linear in the size of the tree.

To that, we want to create for each _ gate which stores the descendant ^ gates reachable using _
gates.

We can notice that we can build such sets through a bottom-up evaluation, however, we need some
particular properties to get the best-known result:

� First, the structure should be functional, i.e. update operations do not change the initial structure.
Because the circuit is a †the sets can be shared by different gates.

� Secondly, this structure should have the following operations :
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– Initialize, in time 𝑂p1q, which produces an empty queue;
– Push, in time 𝑂p1q, which adds an element to the set
– Get, in time 𝑂p1q, which either indicates that 𝑄 is empty or otherwise returns an element

of the set which is considered the first element of the queue
– Pop, in time 𝑂p1q which returns the storing all the pairs of 𝑄 except 𝑝;
– Union, in time 𝑂p1q, which takes as input a second queue 𝑄1 and returns a queue over the

elements of 𝑄 and 𝑄1.
In [ABJM19], we present a structure to get the desired bounds. We can notice that once we get

the structure, we can enumerate the subtrees using these sets in the straightforward manner. For
enumerating, the assignemnents at a ^ with two subcircuits 𝐶1 and 𝐶2. It is sufficient to compose each
assignment of 𝐶1 each assignement of 𝐶2 by enumerating the assignement of 𝐶1 and 𝐶2 in two nested
loops.

3.2.1 Updates

As the enumeration of answers of MSO over trees was solved, there was a lot of attention to how to
update the compact representation of the answers when the tree is updated. [LM14] is the first paper
presenting results showing that enumeration can done with a linear preprocessing, a logarithmic delay
and the structure can be updated in logarithmic square. One of the complexity comes from the shape of
a tree. Indeed a tree can have very diverse shapes for the same size. This paper uses a previous result
showing that any tree can be balanced in linear time such that its depth is logarithmic square. Their
enumeration result was with a linear preprocessing and a logarithm delay.

Some other papers are focused on enumeration for words [NS18] obtaining the desired complexity
which is linear time preprocessing, a constant delay and a logarithmic time for updating the structure.

In [ABMN19b], we present a generic approach for dealing with updates for any techniques using a
bottom-up evaluation over d-DNNF. We restate this approach with the following lemma.

Lemma 4 Let 𝜑 be a MSO formula with first-order free variables. Let 𝑇 be a tree. Let 𝐶𝜑,𝑇 be the

multivalue circuit representing the solution of 𝜑p𝑇 q. Let 𝑈 be a sequence of updates over the tree. Let 𝑛 be

the number of nodes and its ancestors are impacted by 𝑈 . There exists a transformation 𝐶𝜑,𝑇 in 𝐶𝑈p𝜑𝑇 q of
complexity linear in 𝑛 and the set of impacted gates closed under ancestor is linear in |𝑈 |.

Thus, we can notice that the complexity of maintaining the circuit depends principally of the depth
of trees. Fortunately, there exist two main results showing that a tree can be balanced to another tree
such that any MSO formula over the first tree can be translated into another MSO formula on the second
tree. [BPV04] presents an approach to balance a tree with a depth of 𝑂plog2p|𝑇 |q such that for each
update on 𝑇 implies that log2p|𝑇 |q nodes (closed under ancestors) on 𝑇 1 are affected. [KMN22] presents
an approach to balance a tree with a depth of 𝑂plogp|𝑇 |q such that for each update on 𝑇 implies that
logp|𝑇 |q nodes (closed under ancestors) on 𝑇 1 are affected. For information [KMN22] is a revision of
[Nie18].

In the context of enumeration, we can notice that the initial structures needed for the enumeration
are built in a bottom-up manner and therefore maintaining the number of initial structures is linear in
the number of gates of the circuits impacted by the update. By combining these remarks, we obtain the
following result proved in [ABMN19b].

Corrollary 1 Let 𝜑 be a MSO formula with first-order free variables. Let 𝑇 be a tree. The enumeration of

𝜑p𝑇 q can be performed with a linear time preprocessing a constant delay and maintenance of updates in

logp|𝑇 |q.
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3.3 Enumerations for multi-valued d-DNNF circuits

We present the main part of an algorithm for smooth multivalued DNNF circuits that are further
assumed to be deterministic, but which achieves linear-time preprocessing and delay 𝑂plogp𝐾 � 1qq,
where 𝐾 denotes the number of satisfying assignments produced so far. This proves the following
result.

Theorem 7 For any constant 𝑛 P N, we can solve theRankEnum problem on an input smooth multivalued

d-DNNF circuit 𝐶 with 𝑛 variables and a subset-monotone ranking function, with preprocessing 𝑂p|𝐶|q
and delay 𝑂plogp𝐾 � 1qq, where𝐾 is the number of assignments produced so far.

The idea is similar as the enumeration, we try to enumerate the ^-gates and variable gates defining
the assignements. However, we need to keep an order over the partial assignements which can be
done using queues. In order to quickly “jump” over Z-gates, we can use a particular queue, Brodal
queue, presented below. Secondly, we describe briefely the algorithm to handle � gates during the
enumeration. Details can be find in [ABCM24].

Brodal queues. Similar to [BGJR21], our algorithms will use priority queues, in a specific im-
plementation called a (functional) Brodal queue [BO96]. Intuitively, Brodal queues are priority queues
which support union operations in 𝑂p1q, and which are purely functional in the sense that operations
return a queue without destroying the input queue(s). More precisely, a Brodal queue is a data structure
which stores a set of priority-data pairs of the form pp : foo,d : barqwhere foo is a real number and bar
an arbitrary piece of data, supporting operations defined below. Brodal queues are purely functional
and persistent, i.e., for any operation applied to some input Brodal queues, we obtain as output a new
Brodal queue 𝑄1, such that the input queues can still be used. Note that the structures of 𝑄1 and the
input Brodal queues may be sharing locations in memory; this is in fact necessary, e.g., to guarantee
constant-time bounds. However, this is done transparently, and both 𝑄1 and the input Brodal queues
can be used afterwards3. Brodal queues support the following:

� Initialize, in time 𝑂p1q, which produces an empty queue;
� Push, in time 𝑂p1q, which adds to 𝑄 a priority-data pair;
� Find-Max, in time 𝑂p1q, which either indicates that 𝑄 is empty or otherwise returns some pair
pp : foo,d : barq with foo being maximal among the priority-data pairs stored in 𝑄 (ties are
broken arbitrarily);

� Pop-Max, in time 𝑂plogp|𝑄|qq, which either indicates that 𝑄 is empty or returns two values: first,
the pair 𝑝 returned by Find-Max, second a queue storing all the pairs of 𝑄 except 𝑝;

� Union, in time 𝑂p1q, which takes as input a second Brodal queue 𝑄1 and returns a queue over the
elements of 𝑄 and 𝑄1.

The preprocessing initialize the structures in order to ranked enumerate the partial assignements.
In particular, the �-gate reachables from a path of _-gates are collected and ranked in linear time
thanks to Brodal queues.

The main complexity comes from the enumeration of the � gate. Intuivily, a � gate does need to
ranked enumerate a product of two sets.

3This is similar to how persistent linked lists can be modified by removing the head element or concatenating with a new
head element. Such operations can run in constant time and return the modified version of the list without invalidating the
original list; with both lists transparently sharing some memory locations.
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We explainn how given as input two tables (indexed starting from 1) 𝐴,𝐵 of reals of size 𝑛1, 𝑛2
sorted in nonincreasing order, we can enumerate the set of integer pairs tp𝑖, 𝑗q | p𝑖, 𝑗q P t1, . . . , 𝑛1u �
t1, . . . , 𝑛2uu, in nonincreasing order of the score 𝐴r𝑖s d 𝐵r𝑗s, with 𝑂p1q preprocessing and a de-
lay 𝑂plog𝐾q where𝐾 is the number of pairs outputted so far.

Intuitively, this will be applied at every �-gate 𝑔, with r𝑛1s (resp., r𝑛2s) representing the satisfying
valuations of the first (resp., second) input of 𝑔 sorted in nonincreasing order, as in the table𝐴 (resp.,𝐵).
. We initialize a two-dimensional bit table 𝑅 of size 𝑛1 � 𝑛2 to contain only zeroes (again using lazy
initialization [GJ22, Section 2.5]), whose role will be to remember which pairs have been seen so far,
and a priority queue 𝑄 containing only the pair pp : 𝐴r1s d 𝐵r1s, d : p1, 1qq; we set 𝑅r1, 1s to true
because the pair p1, 1q has been seen. Then, while the queue is not empty, we do the following. We
pop (call Pop-Max) from 𝑄, obtaining a priority-data pair of the form pp : 𝐴r𝑖s d𝐵r𝑗s, d : p𝑖, 𝑗qq. We
output the pair p𝑖, 𝑗q. Then, for each p𝑝, 𝑞q P tp𝑖� 1, 𝑗q, p𝑖, 𝑗 � 1qu that is in the r𝑛1s � r𝑛2s grid, if the
pair p𝑝, 𝑞q has not been seen before, then we push into 𝑄 the pair pp : 𝐴r𝑝s d 𝐵r𝑞s, d : p𝑝, 𝑞qq and
mark p𝑝, 𝑞q as seen in 𝑅.

We last move on to the enumeration phase. We first give a high-level description of how the
enumeration phase works, before presenting the details.

The operationGetp𝑔, 𝑗q. Wewill define a recursive operationGet, running in complexity𝑂plogp𝐾 � 1qq,
that applies to a gate 𝑔 and integer 1 ¤ 𝑗 ¤ 𝑖𝑔 � 1 and does the following. If 𝑗 ¤ 𝑖𝑔 then Getp𝑔, 𝑗q
simply returns the satisfying assignment of 𝑔 that is stored in 𝑇𝑔r𝑗s (i.e., this assignment has already
been computed). Otherwise, if 𝑗 � 𝑖𝑔 � 1, then Getp𝑔, 𝑗q finds the next assignment to be enumerated,
inserts it into 𝑇𝑔 , and returns that assignment. Note that, in this case, calling Getp𝑔, 𝑗q modifies the
memory for 𝑔 and some other gates 𝑔1. Specifically, it modifies the tables 𝑇𝑔1 and 𝑅𝑔1 , the queues 𝑄𝑔1 ,
and the integers 𝑖𝑔1 for various gates 𝑔1 having a directed path to 𝑔 (including 𝑔1 � 𝑔).

When we are not executing an operation Get, the memory will satisfy the following invariants, for
every 𝑔 of 𝐶 :

� The table 𝑇𝑔 contains assignments 𝜏 P relp𝑔q, ordered by nonincreasing score and with no
duplicates; and 𝑖𝑔 is the current size of 𝑇𝑔 ;

� For any assignment 𝜏 P relp𝑔q that does not occur in 𝑇𝑔 , it is no larger than the last assignment
in 𝑇𝑔 , i.e., we have 𝑤p𝜏q ¤ 𝑤p𝑇𝑔r𝑖𝑔sq.

� The queues 𝑄𝑔 will also satisfy some invariants, which will be presented later.
� The tables𝑅𝑔 for the�-gates record whether we have already seen pairs of satisfying assignments
of the two children, similarly to how this is done in the 𝐴d𝐵 algorithm.

The tables 𝑇𝑔 store the assignments in the order in which we find them, which is compatible with the
ranking function. This allows us, in particular, to obtain in constant time the 𝑗-th satisfying assignment
of relp𝑔q if it has already been computed, i.e., if 𝑗 ¤ 𝑖𝑔 . The reason why we keep the assignments in the
tables 𝑇𝑔 is because we may reach the gate 𝑔 via many different paths throughout the enumeration,
and these paths may be at many different stages of the enumeration on 𝑔.

At the top level, if we can implementGetwhile satisfying the invariants above, then the enumeration
phase of the algorithm is simple to describe: for 𝑗 ranging from 1 to #𝑟, we output Getp𝑟, 𝑗q, where 𝑟
is the output gate of 𝐶 .

Implementing Get. We first explain the intended semantics of data values in the queues 𝑄𝑏:
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� If 𝑔 is aZ-gate then𝑄𝑏 will always contain pairs of the form pp : 𝑤p𝜏q, d : p𝑔1, 𝑗, 𝜏qq where 𝑔1 P
exitp𝑔q and 𝑗 P t1, . . . , 𝑖𝑔1�1u and 𝜏 P relp𝑔1q, and the idea is that at the end of the enumeration 𝜏
will be stored at position 𝑗 in 𝑇𝑔1 .

� If 𝑔 is a�-gate, letting 𝑔11 and 𝑔12 be the input gates, then𝑄𝑏 will always contain pairs of the form
pp : 𝑤p𝜏1 � 𝜏2q, d : p𝑗1, 𝑗2, 𝜏1, 𝜏2qq with 𝜏𝑖 P relp𝑔𝑖q and at the end of the enumeration 𝜏𝑖 will
be at position 𝑗𝑖 in 𝑇𝑔𝑖 with 𝑗𝑖 P t1, . . . , 𝑖𝑔1𝑖 � 1u for all 𝑖 P t1, 2u.

� If 𝑔 is an input gate, then𝑄𝑏 initially contains the only assignment captured by 𝑔, becomes empty
the first time we call Getp𝑔, 1q, and remains empty thereafter.
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Dialog between Logic and Circuit

The notion of provenance is a key notion to describe the contribution of the tuples to satisfying a query.
The classical notion is called Boolean Provenance. Its definition states that it represents all the subsets
of the database satisfying the query. Different extensions have been proposed and most of these notions
have been unified through a common framework based on semi-ring in [GKT07]. Different provenance
definitions are equivalent to the computation of the value based on a particular semi-ring. Each fact
in the database is assigned to a value of the semi-ring. [GKT07] explains how to compute for each
positive operator of relational algebra p𝜎,�,', 𝜋q and each tuple resulting from applying this operator.
It generalized for Datalog programs through their notions of proof trees by summing the provenance of
each proof tree which is equal to the product of the value of the extensional facts in it. This notion
has been adopted in the database community; however it has some issues. First of all, the number of
proof trees of the same answer can be infinite. Following the semi-ring, it is possible that the sum of
infinite values is not defined. Secondly, the size of the provenance can be enormous and despite that
the complexity is polynomial in the time of the database, in practice it is not reasonable to compute the
full provenance by using classical formula values.

The problem of the infinite number of proof trees has been studied differently, the work [KNP�24]
studied semi-ring where it is possible to obtain a finite representation of the provenance even when
there is an infinite number of proof trees. The KR community also started to study a new definition
of provenance which is not based on proof trees. For the size of provenance, [DMRT14] proposed a
notion of compact representation of formula based on circuits. [DGM18] proposes a notion of sampling
of provenance based on patterns in order to avoid computing the full provenance.

In this chapter, we present the main results of [ABMS19] and [BBPT22a]. [ABMS19] proposes a
new notion of circuits called cycluits that allow us to get a parameterized complexity over the size
of the provenance. [BBPT22a] studies different alternative definitions of provenance to try to avoid
the problem of infinite proof trees. We analyze the advantages and disadvantages of these different
definitions.

4.1 Preliminaries

The notion of Datalog is defined in Subsection 2.2.2. We present other semantics of Datalog that will be
used in this chapter.
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Semantics

The semantics of Datalog can classically be defined in threeways: throughmodels, fixpoints or derivation
trees. All three definitions rely on the notion of homomorphism: a homomorphism from a set 𝒜 of
atoms to a set ℬ of atoms is a function ℎ : 𝒟p𝒜q Ñ 𝒟pℬq such that ℎp𝑡q � 𝑡 for all 𝑡 P C, and
𝑝p𝑡1, . . . , 𝑡𝑛q P 𝒜 implies ℎp𝑝p𝑡1, � � � , 𝑡𝑛qq :� 𝑝pℎp𝑡1q, . . . , ℎp𝑡𝑛qq P ℬ. We denote by ℎp𝒜q the set
tℎp𝑝p𝑡1, . . . , 𝑡𝑛qq | 𝑝p𝑡1, . . . , 𝑡𝑛q P 𝒜u. The homomorphism definition is extended to conjunctions of
atoms by viewing them as the sets of atoms they contain.

A set 𝐼 of facts is amodel of a rule 𝑟 :� 𝜑p𝑥,𝑦q Ñ 𝜓p𝑥q, denoted by 𝐼 |ù 𝑟, if every homomorphism
ℎ from 𝜑p𝑥,𝑦q to 𝐼 is also a homomorphism from 𝜓p𝑥q to 𝐼 ; it is a model of a Datalog program Σ if
𝐼 |ù 𝑟 for every 𝑟 P Σ; it is a model of a database 𝐷 if 𝐷 � 𝐼 . A fact 𝛼 is entailed by 𝐷 and Σ, denoted
Σ, 𝐷 |ù 𝛼, if 𝛼 P 𝐼 for every model 𝐼 of Σ and 𝐷.

Example 6 Let Σ contain the rules 𝐵p𝑥q Ñ 𝐴p𝑥q, 𝑅p𝑥, 𝑦q ^ 𝐴p𝑦q Ñ 𝐵p𝑥q, and 𝑅p𝑥, 𝑦q Ñ 𝑅p𝑦, 𝑥q,
and𝐷 :� t𝐵p𝑎q, 𝐵p𝑏q, 𝑅p𝑎, 𝑏q, 𝑅p𝑏, 𝑎qu. Each model of𝐷 and Σ contains all facts in𝐷 as well as 𝐴p𝑎q
and 𝐴p𝑏q, which are thus entailed by Σ, 𝐷.

An equivalent way to define the entailment of a fact 𝛼 by 𝐷 and Σ is to check if there is a
homomorphism from 𝛼 to a specific model, defined as the least fixpoint containing 𝐷 of the immediate
consequence operator: An immediate consequence for 𝐷 and Σ is either 𝛼 P 𝐷, or 𝛼 such that there
exists a rule 𝑟 :� 𝜑p𝑥,𝑦q Ñ 𝜓p𝑥q and a homomorphism ℎ from 𝜑p𝑥,𝑦q to 𝐷 such that ℎp𝜓p𝑥qq � 𝛼.

Finally, a third definition relies on derivation trees.

Definition 5 (Derivation Tree) A derivation tree 𝑡 of a fact 𝛼 w.r.t. a database 𝐷 and a program

Σ is a finite tree whose leaves are labelled by facts from 𝐷 and non-leaf nodes are labeled by triples

p𝑝p𝑡1, . . . , 𝑡𝑚q, 𝑟, ℎq where

� 𝑝p𝑡1, . . . , 𝑡𝑚q is a fact over the schema 𝒮pΣq;
� 𝑟 is a rule from Σ of the form 𝜑p𝑥,𝑦q Ñ 𝑝p𝑥q;
� ℎ is a homomorphism from 𝜑p𝑥,𝑦q to the facts of the labels of the node children, such that ℎp𝑝p𝑥qq �
𝑝p𝑡1, . . . , 𝑡𝑚q;

� there is a bijection 𝑓 between the node children and the atoms of 𝜑p𝑥,𝑦q, such that for every

𝑞p𝑧q P 𝜑p𝑥,𝑦q, 𝑓p𝑞p𝑧qq is of the form pℎp𝑞p𝑧qq, 𝑟1, ℎ1q or is a leaf labeled by ℎp𝑞p𝑧qq.

Moreover, if p𝑝p𝑡1, � � � , 𝑡𝑚q, 𝑟, ℎq or 𝑝p𝑡1, � � � , 𝑡𝑚q is the root of 𝑡, then 𝑝p𝑡1, � � � , 𝑡𝑚q � 𝛼.

Example 7 Let Σ contain 𝑟1 :� 𝑅p𝑥, 𝑦q Ñ 𝐻p𝑥, 𝑥q, 𝑟2 :� 𝑅p𝑥, 𝑦q Ñ 𝐻p𝑥, 𝑦q and 𝑟3 :� 𝑆p𝑥, 𝑦, 𝑧q ^
𝑆p𝑥, 𝑧, 𝑦q Ñ 𝐻p𝑥, 𝑥q. If 𝐷 � t𝑅p𝑎, 𝑎q, 𝑆p𝑎, 𝑏, 𝑐q, 𝑆p𝑎, 𝑐, 𝑏qu, then the fact 𝛼 :� 𝐻p𝑎, 𝑎q has the

following derivation trees

p𝛼, 𝑟1, ℎq

𝑅p𝑎, 𝑎q

p𝛼, 𝑟2, ℎq

𝑅p𝑎, 𝑎q

p𝛼, 𝑟3, ℎ3q

𝑆p𝑎, 𝑏, 𝑐q𝑆p𝑎, 𝑐, 𝑏q

p𝛼, 𝑟3, ℎ
1
3q

𝑆p𝑎, 𝑐, 𝑏q𝑆p𝑎, 𝑏, 𝑐q
where ℎp𝑥q �

ℎp𝑦q � 𝑎, ℎ3p𝑥q � 𝑎, ℎ3p𝑦q � 𝑏, ℎ3p𝑧q � 𝑐 and ℎ13p𝑥q � 𝑎, ℎ13p𝑦q � 𝑐, ℎ13p𝑧q � 𝑏.

Note that when the program at hand is recursive (i.e., the dependency graph of its predicates contains
cycles) a fact may have infinitely many derivation trees.
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4.1.1 Annotated Databases

To equip databases with extra information, their facts might be annotated with, e.g., trust levels,
clearance degree required to access them, or identifiers to track how they are used.

In the framework of semiring provenance, annotations are elements of algebraic structures known as
commutative semirings. A semiring K � p𝐾,�K,�K, 0K, 1Kq is a set𝐾 with distinguished elements
0K and 1K, equipped with two binary operators: �K, called the addition, which is an associative and
commutative operator with identity 0K, and �K, called the multiplication, which is an associative
operator with identity 1K. It also holds that �K distributes over �K, and 0K is annihilating for �K.
When multiplication is commutative, the semiring is said to be commutative. We use the convention
according to which multiplication is applied before addition to omit parentheses. We omit the subscript
of operators and distinguished elements when there is no ambiguity.

Definition 6 An annotated database is a triple p𝐷,K, 𝜆q where 𝐷 is a database, K �
p𝐾,�K,�K, 0K, 1Kq is a semiring, and 𝜆 : 𝐷 ÞÑ 𝐾zt0Ku maps facts into semiring elements differ-

ent from 0K.

Example 8 (Ex. 6 cont’d) The semiring N � pN,�,�, 0, 1q of the natural numbers equipped with the

usual operations is used for bag semantics. The tropical semiringT � pR8� ,min,�,8, 0q is used to compute

minimal-cost paths. We define 𝜆N : 𝐷 ÞÑ Nzt0u by 𝜆Np𝐵p𝑎qq � 3, 𝜆Np𝐵p𝑏qq � 1, 𝜆Np𝑅p𝑎, 𝑏qq �
2, 𝜆Np𝑅p𝑏, 𝑎qq � 1; And 𝜆T : 𝐷 ÞÑ R� by 𝜆Tp𝐵p𝑎qq � 10, 𝜆Tp𝐵p𝑏qq � 1, 𝜆Tp𝑅p𝑎, 𝑏qq � 5,
𝜆Tp𝑅p𝑏, 𝑎qq � 2.

We next list some possible properties of semirings. A semiring is� -idempotent (resp.�-idempotent)
if for every 𝑎 P 𝐾 , 𝑎� 𝑎 � 𝑎 (resp. 𝑎� 𝑎 � 𝑎). It is absorptive if for every 𝑎, 𝑏 P 𝐾 , 𝑎� 𝑏� 𝑎 � 𝑎. It is
positive if for every 𝑎, 𝑏 P 𝐾 , 𝑎 � 𝑏 � 0 if and only if (𝑎 � 0 or 𝑏 � 0), and 𝑎 � 𝑏 � 0 if and only if
𝑎 � 𝑏 � 0. Finally, an important class is that of 𝜔-continuous commutative semirings in which infinite
sums are well-defined. Given a semiring, we define the binary relation � such that 𝑎 � 𝑏 if and only
if there exists 𝑐 P 𝐾 such that 𝑎 � 𝑐 � 𝑏. A commutative semiring is 𝜔-continuous if � is a partial
order, every (infinite) 𝜔-chain 𝑎0 � 𝑎1 � 𝑎2 . . . has a least upper bound suppp𝑎𝑖q𝑖PNq, and for every 𝑎,
𝑎� suppp𝑎𝑖q𝑖PNq � suppp𝑎� 𝑎𝑖q𝑖PNq and 𝑎� suppp𝑎𝑖q𝑖PNq � suppp𝑎� 𝑎𝑖q𝑖PNq.

The semantics of queries from the positive relational algebra, and in particular of UCQs, over
annotated databases is defined inductively on the structure of the query [GKT07]. Intuitively, joint use
of data (conjunction) corresponds to multiplication, and alternative use of data (union or projection)
corresponds to addition.

Example 9 (Ex. 8 cont’d) The BCQ D𝑥𝑦 p𝑅p𝑥, 𝑦q^𝐵p𝑦qq is entailed from p𝐷,N, 𝜆Nq with multiplicity

𝜆Np𝑅p𝑎, 𝑏qq � 𝜆Np𝐵p𝑏qq � 𝜆Np𝑅p𝑏, 𝑎qq � 𝜆Np𝐵p𝑎qq � 5, and from p𝐷,T, 𝜆Tq with minimal cost

minp𝜆Tp𝑅p𝑎, 𝑏qq � 𝜆Tp𝐵p𝑏qq, 𝜆Tp𝑅p𝑏, 𝑎qq � 𝜆Tp𝐵p𝑎qqq � 6.

A semantics of Datalog over annotated databases has been defined by [GKT07] using derivation trees,
that we shall name the all-tree semantics. It associates to each fact 𝛼 entailed by Σ and 𝐷 the following
sum, where 𝑇Σ

𝐷p𝛼q is the set of all derivation trees for 𝛼 w.r.t. Σ and 𝐷 and Λp𝑡q :�
±
𝑣 is a leaf of 𝑡 𝜆p𝑣q

is the K-annotation of the derivation tree 𝑡 (since K is commutative, the result of the product is
well-defined).

𝒫ATpΣ, 𝐷,K, 𝜆, 𝛼q :�
¸

𝑡P𝑇Σ
𝐷p𝛼q

Λp𝑡q.
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Since 𝑇Σ
𝐷p𝛼q may be infinite, 𝒫AT is well-defined for all Σ, p𝐷,K, 𝜆q and 𝛼 only in the case where K is

𝜔-continuous.

Example 10 (Ex. 8 cont’d) The fact 𝛼 :� 𝐴p𝑎q is entailed with minimal cost: 𝒫ATpΣ, 𝐷,T, 𝜆T, 𝛼q �
min𝑡P𝑇Σ

𝐷p𝛼q
Σ𝑣 is a leaf of 𝑡𝜆Tp𝑣q � 3. Since N is not 𝜔-continuous, 𝒫ATpΣ, 𝐷,N, 𝜆N, 𝛼q is not defined.

4.1.2 Provenance Semirings

Provenance semirings have been introduced to abstract from a particular semiring by associating a
unique provenance token to each fact of the database, and building expressions that trace their use.
Given a set 𝑋 of variables that annotate the database, a provenance semiring Provp𝑋q is a semiring
over a space of provenance expressions with variables from 𝑋 .

Various such semirings were introduced in the context of relational databases [Gre09]: The most
expressive annotations are provided by the provenance polynomials semiring Nr𝑋s of polynomials with
coefficients from N and variables from 𝑋 , and the usual operations. Less general provenance semirings
include, for example, the semiring Br𝑋s of polynomials with Boolean coefficients, and the semiring
PosBoolp𝑋qof positive Boolean expressions.

In the Datalog context, it is important to allow for infinite provenance expressions, as there can be
infinitely many derivation trees. A formal power series with variables from 𝑋 and coefficients from𝐾
is a mapping that associates to each monomial over 𝑋 a coefficient in𝐾 . A formal power series 𝑆 can
be written as a possibly infinite sum 𝑆 � Σ𝑚Pmonp𝑋q𝑆p𝑚q𝑚 where monp𝑋q is the set of monomials
over 𝑋 and 𝑆p𝑚q is the coefficient of the monomial𝑚. The set of formal power series with variables
from 𝑋 and coefficients from𝐾 is denoted𝐾J𝑋K. [GKT07] define the Datalog provenance semiring as
the semiring N8J𝑋K of formal power series with coefficients from N8 � NY t8u.

A semiring homomorphism from K � p𝐾,�K,�K, 0K, 1Kq to K1 � p𝐾 1,�K1 ,�K1 , 0K1 , 1K1q is a
mapping ℎ : 𝐾 Ñ 𝐾 1 such that ℎp0Kq � 0K1 , ℎp1Kq � 1K1 , and for all 𝑎, 𝑏 P 𝐾 , ℎp𝑎 �K 𝑏q �
ℎp𝑎q �K1 ℎp𝑏q and ℎp𝑎 �K 𝑏q � ℎp𝑎q �K1 ℎp𝑏q. A semiring homomorphism between 𝜔-continuous
semirings is 𝜔-continuous if it preserves least upper bounds: ℎpsuppp𝑎𝑖q𝑖PNqq � supppℎp𝑎𝑖qq𝑖PNq.

Following [DMRT14] , we say that a provenance semiring Provp𝑋q specializes correctly to a
semiring K, if any valuation 𝜈 : 𝑋 Ñ 𝐾 extends uniquely to a (𝜔-continuous if Provp𝑋q and K
are 𝜔-continuous) semiring homomorphism ℎ : Provp𝑋q Ñ 𝐾 , allowing the computations for K to
factor through the computations for Provp𝑋q. A provenance semiring Provp𝑋q is universal for a set of
semirings if it specializes correctly to each semiring of this set. [GKT07] showed that Nr𝑋s is universal
for commutative semirings, and N8J𝑋K is universal for commutative 𝜔-continuous semirings.

4.2 Cycluit

In this section at computing efficiently, the notion of Boolean provenance for a particular kind of datalog
program called ICG-Datalog program.

Datalog with stratified negation [AHV95] allows negated intensional atoms in bodies, but requires 𝑃
to have a stratification, i.e., an ordered partition 𝑃1 \ � � � \ 𝑃𝑛 of the rules where:

1. Each 𝑅 P 𝜎int has a stratum 𝜁p𝑅q P t1, . . . , 𝑛u such that all rules with 𝑅 in the head are in 𝑃𝜁p𝑅q;
2. For any 1 ¤ 𝑖 ¤ 𝑛 and 𝜎int-atom 𝑅pzq in a body of a rule of 𝑃𝑖, we have 𝜁p𝑅q ¤ 𝑖;
3. For any 1 ¤ 𝑖 ¤ 𝑛 and negated 𝜎int-atom 𝑅pzq in a body of 𝑃𝑖, we have 𝜁p𝑅q   𝑖.
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The stratification ensures that we can define the semantics of a stratified Datalog program by computing
its interpretation for strata 𝑃1, . . . , 𝑃𝑛 in order: atoms in bodies always depend on a lower stratum, and
negated atoms depend on strictly lower strata, whose interpretation was already fixed. Hence, there is
a unique least fixpoint and 𝐼 |ù 𝑃 is well-defined.

Example 11 The following stratified Datalog program, with 𝜎 � t𝑅u and 𝜎int � t𝑇,Goalu, and strata
𝑃1, 𝑃2, tests if there are two elements that are not connected by a directed 𝑅-path:

𝑃1 : 𝑇 p𝑥, 𝑦q Ð 𝑅p𝑥, 𝑦q, 𝑇 p𝑥, 𝑦q Ð 𝑅p𝑥, 𝑧q ^ 𝑇 p𝑧, 𝑦q 𝑃2 : Goalpq Ð  𝑇 p𝑥, 𝑦q

Definition 7 Let 𝑃 be a stratified Datalog program. An intensional literal 𝐴pxq or  𝐴pxq in a rule

body 𝜓 of 𝑃 is clique-guarded if, for any two variables 𝑥𝑖 � 𝑥𝑗 of x, 𝑥𝑖 and 𝑥𝑗 co-occur in some extensional

atom of 𝜓. 𝑃 is intensional-clique-guarded (ICG) if, for any rule 𝑅pxq Ð 𝜓px,yq, every intensional
literal in 𝜓 is clique-guarded in 𝜓. The body size of 𝑃 is the maximal number of atoms in the body of its

rules, multiplied by its arity.

We will also use these cycluits as a new powerful tool to compute (Boolean) provenance information,
i.e., a representation of how the query result depends on the input data:

Definition 8 A (Boolean) valuation of a set 𝑆 is a function 𝜈 : 𝑆 Ñ t0, 1u. A Boolean function 𝜑 on

variables 𝑆 is a mapping that associates to each valuation 𝜈 of 𝑆 a Boolean value in t0, 1u called the

evaluation of 𝜑 according to 𝜈; for consistency with further notation, we write it 𝜈p𝜑q. The provenance of
a query 𝑄 on an instance 𝐼 is the Boolean function 𝜑, whose variables are the facts of 𝐼 , which is defined

as follows: for any valuation 𝜈 of the facts of 𝐼 , we have 𝜈p𝜑q � 1 iff the subinstance t𝐹 P 𝐼 | 𝜈p𝐹 q � 1u
satisfies 𝑄.

We can represent Boolean provenance as Boolean formulae [IL84, GKT07], or (more recently) as
Boolean circuits [DMRT14, ABS15a]. We first introduce monotone cycluits (monotone Boolean circuits
with cycles), for which we define a semantics (in terms of the Boolean function that they express); we
also show that cycluits can be evaluated in linear time, given a valuation.

We now define the semantics of monotone cycluits. A (Boolean) valuation of 𝐶 is a function
𝜈 : 𝐶inp Ñ t0, 1u indicating the value of the input gates. As for standard monotone circuits, a valuation
yields an evaluation 𝜈 1 : 𝐶 Ñ t0, 1u, that we will define shortly, indicating the value of each gate under
the valuation 𝜈: we abuse notation and write 𝜈p𝐶q P t0, 1u for the evaluation result, i.e., 𝜈 1p𝑔0q where
𝑔0 is the output gate of 𝐶 . The Boolean function captured by a cycluit 𝐶 is thus the Boolean function
𝜑 on 𝐶inp defined by 𝜈p𝜑q :� 𝜈p𝐶q for each valuation 𝜈 of 𝐶inp. We define the evaluation 𝜈 1 from 𝜈
by a least fixed-point computation: we set all input gates to their value by 𝜈, and other gates to 0. We
then iterate until the evaluation no longer changes, by evaluating OR-gates to 1 whenever some input
evaluates to 1, and AND-gates to 1 whenever all their inputs evaluate to 1.

The main result is that the computation of provenance of ICG-Datalog is FPT-linear in combined

complexity, when parameterized by the body size of the program and the instance treewidth.

Theorem 8 Given an ICG-Datalog program 𝑃 of body size 𝑘P and a relational instance 𝐼 of treewidth
𝑘I, we can construct in FPT-linear time in |𝐼| � |𝑃 | (parameterized by 𝑘P and 𝑘I) a representation of the

provenance of 𝑃 on 𝐼 as a stratified cycluit. Further, for fixed 𝑘I, this cycluit has treewidth 𝑂p|𝑃 |q.

The idea of the proof of this theorem relies on the constructions proposed in Subsection 2.1.8 and
Section 3.2. By using the tree width of the instance, it is possible to encode of the instance into a tree
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encoding. By using this encoding, the ICG-Datalog program can be translated into a particular two way
alternating automata called SATWA (details in [ABMS19]) by using a similar idea developped in Section
2.1.8. Finally, we can obtain a circuit to compute the provenance and not the set of answers with a
similar approach presented in Section 3.2. However, the differences come by computing the provenance
directly by using a two-way alternating tree automata and not a deterministic tree automata.

Theorem 9 Given an ICG-Datalog program 𝑃 of body size 𝑘P and 𝑘I P N, we can build in FPT-linear

time in |𝑃 | (parameterized by 𝑘P, 𝑘I) a SATWA 𝐴𝑃 testing 𝑃 for treewidth 𝑘I.

Theorem 10 For any fixed alphabet Γ, given a Γ-SATWA 𝐴 and a Γ-tree 𝒯 , we can build a stratified

cycluit capturing the provenance of 𝐴 on 𝒯 in time 𝑂p|𝐴| � |𝒯 |q. Moreover, this stratified cycluit has

treewidth 𝑂p|𝐴|q.

Finally, we look at the expressivity of ICG Datalog program

Guarded negation fragments. ICG-Datalog can express different guarded logics specifically
GNF. Indeed, when putting GNF formulae in GN-normal form [BtCS15] or even weak GN-normal form

[BtCV14], we can translate them to ICG-Datalog, and we can use the CQ-rank parameter [BtCV14]
(that measures the maximal number of atoms in conjunctions) to control the body size parameter.

Recursive languages. The use of fixpoints in ICG-Datalog, in particular, allows us to capture the
combined tractability of interesting recursive languages. First, observe that our guardedness requirement
becomes trivial when all intensional predicates are monadic (arity-one), so our main result implies that
monadic Datalog of bounded body size is tractable in combined complexity on treelike instances. This
is reminiscent of the results of [GPW10]:

Second, ICG-Datalog can capture two-way regular path queries (2RPQs) [CDLV00, Bar13], a well-
known query language in the context of graph databases and knowledge bases:

ICG-Datalog allows us to capture this result for Boolean 2RPQs on treelike instances. In fact, the
above result extends to SAC2RPQs, which are trees of 2RPQs with no multi-edges or loops. We can
prove the following result, for Boolean 2RPQs and SAC2RPQs, which further implies compilability to
automata (and efficient compilation of provenance representations). We do not know whether this
extends to the more general classes studied in [BRV14].

However ICG-Datalog cannot express GNFP-UP formulas as ICG-Datalog cannot express general
2CRPQs.

4.3 Alternative Semantics

In this section we propose several natural ways of defining the semantics of Datalog over annotated
databases, and investigate their connections. We have seen that the semantics of Datalog can equivalently
be defined through models, fixpoints or derivation trees. The semantics we propose also fall into
these three approaches. For presentation purposes, we see each semantics as a partial function 𝒫
that associates to a Datalog program, annotated database p𝐷,K, 𝜆q, and fact 𝛼, a semiring element
𝒫pΣ, 𝐷,K, 𝜆, 𝛼q.
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4.3.1 Model-Based Semantics

We first investigate two provenance semantics based on Datalog’s model-theoretic semantics. In both
cases, we will define interpretations p𝐼, 𝜇𝐼q where 𝐼 is a set of facts and 𝜇𝐼 is a function that annotates
facts of 𝐼 , and formulate requirements for them to be models of Σ and p𝐷,K, 𝜆q, extending standard
models of Σ and 𝐷 with fact annotations.

Annotated Model-based

[HK17] define two bag semantics in the context of data exchange: the incognizant and cognizant

semantics. The difference between them arise from the two different semantics of bag union: the
incognizant semantics uses the maximum-based union, while the cognizant semantics uses the sum-
based union.

In more details, both semantics are based on the following semantics for source-to-target tuple
generating dependencies (s-t tgds): a pair p𝐼, 𝐽q of source and target instances satisfies an s-t tgd
𝑞1p𝑥q Ñ 𝑞2p𝑥q if for every answer 𝑎 to 𝑞1 over 𝐼 , 𝑎 is an answer to 𝑞2 over 𝐽 with at least the same
multiplicity. Given a set of s-t tgds Σ and a source 𝐼 , a target 𝐽 is an incognizant solution for 𝐼 w.r.t. Σ if
p𝐼, 𝐽q satisfies every s-t tgd in Σ. It is a cognizant solution if for every 𝑟 P Σ, there is a target instance 𝐽𝑟
such that p𝐼, 𝐽𝑟q satisfies 𝑟 and Z𝐽𝑟 � 𝐽 , where Z denotes the sum-union of bags (i.e., the multiplicity
of each element of the sum-union is equal to the sum of its multiplicities). The incognizant (resp.
cognizant) certain answers to a query 𝑞 w.r.t. Σ on 𝐼 are defined using bag intersection of the answers
over the incognizant (resp. cognizant) solutions for 𝐼 w.r.t. Σ, i.e., the multiplicity of an answer is the
minimum of its multiplicities over the solutions. Note that for BCQs, the only possible certain answer
is the empty tuple.

For example, considerΣ � t𝐵p𝑥q Ñ 𝐴p𝑥q, 𝐶p𝑥q Ñ 𝐴p𝑥qu and𝐷 � tp𝐵p𝑎q, 1q, p𝐶p𝑎q, 1qu. Under
the incognizant semantics, the multiplicity of the certain answer of the Boolean query 𝐴p𝑎q w.r.t. Σ and
𝐷 is 1 while under the cognizant semantics it is 2. Indeed, 𝐽 � tp𝐴p𝑎q, 1qu is an incognizant solution
for𝐷 w.r.t. Σ as it satisfies both s-t tgds, but is not a cognizant solution as the sum of multiplicities that
arise from the two rules is 2.

It is easy to show that the cognizant semantics is equivalent to 𝒫AT on the counting semiring
N � pN,�,�, 0, 1q, and thus coincides with the classical bag semantics for Datalog. However, we
have seen that the incognizant and cognizant semantics differ. Moreover, note that in the field of
ontology-based data access, the bag semantics defined by [NKK�19] for DL-Lite𝑅 coincides with the
incognizant semantics, thus disagrees with the classical Datalog bag semantics [MPR90, GKT07].

We hence define a provenance semantics that coincides with these semantics when used with the
counting semiring. Since it is based on greatest lower bounds, it is defined on a restricted class of
semirings.

Let K � p𝐾,�,�, 0, 1q be a commutative 𝜔-continuous semiring such that for every 𝐾 1 � 𝐾 ,
the greatest lower bound infp𝐾 1q of 𝐾 1 is well defined (i.e., there exists a unique 𝑧 P 𝐾 such that
𝑧 � 𝑥 for every 𝑥 P 𝐾 1 and every 𝑧1 such that 𝑧1 � 𝑥 for every 𝑥 P 𝐾 1 is such that 𝑧1 � 𝑧), Σ be a
Datalog program, and p𝐷,K, 𝜆q be an annotated database. We define K-annotated interpretations as
pairs p𝐼, 𝜇𝐼q where 𝐼 is a set of facts, and 𝜇𝐼 is a function from 𝐼 to 𝐾 . We say that a K-annotated
interpretation p𝐼, 𝜇𝐼q is a model of Σ and p𝐷,K, 𝜆q, denoted by p𝐼, 𝜇𝐼q |ù pΣ, 𝐷,K, 𝜆q, if

1. 𝐷 � 𝐼 , and for every 𝛼 P 𝐷, 𝜆p𝛼q � 𝜇𝐼p𝛼q;
2. for every 𝜑p𝑥,𝑦q Ñ 𝐻p𝑥q in Σ, whenever there is a homomorphism ℎ : 𝜑p𝑥,𝑦q ÞÑ 𝐼 , then
ℎp𝐻p𝑥qq P 𝐼 and

¸
ℎ1:𝜑p𝑥,𝑦qÞÑ𝐼,ℎ1p𝑥q�ℎp𝑥q

¹
𝛽Pℎ1p𝜑p𝑥,𝑦qq

𝜇𝐼p𝛽q � 𝜇𝐼pℎp𝐻p𝑥qqq.
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The annotated model-based provenance semantics 𝒫AM is defined by

𝒫AMpΣ, 𝐷,K, 𝜆, 𝛼q :� infpt𝜇𝐼p𝛼q|p𝐼, 𝜇𝐼q|ùpΣ, 𝐷,K, 𝜆quq.

Set-Annotated Model-based

We adapt the work on provenance for the description logics DL-Lite𝑅 and ℰℒℋ𝑟 [CLO�19, BOPP20],
where the semiring is assumed to be a �-idempotent provenance semiring Provp𝑋q and rules are also
annotated. Annotated models of annotated knowledge bases are defined as set of facts annotated with
sets of monomials from Provp𝑋q. Given a fact 𝛼 and a monomial𝑚 over 𝑋 , pΣ, 𝐷,Provp𝑋q, 𝜆𝑋q |ù
p𝛼,𝑚q holds when𝑚 belongs to the annotation set of 𝛼 in every models of Σ and p𝐷,Provp𝑋q, 𝜆𝑋q.

To obtain an analog provenance semantics for Datalog, we define interpretations which associate
facts with (possibly infinite) sets of annotations, and formulate the requirements for them to be models
of Σ and p𝐷,K, 𝜆q.

Let K � p𝐾,�,�, 0, 1q be a commutative 𝜔-continuous semiring, Σ be a Datalog program, and
p𝐷,K, 𝜆q be an annotated database. We define K-set-annotated interpretations as pairs p𝐼, 𝜇𝐼q where
𝐼 is a set of facts, and 𝜇𝐼 is a function from 𝐼 to the power-set of 𝐾 . We say that a K-set-annotated
interpretation p𝐼, 𝜇𝐼q is a model of Σ and p𝐷,K, 𝜆q, denoted by p𝐼, 𝜇𝐼q |ù pΣ, 𝐷,K, 𝜆q, if

1. 𝐷 � 𝐼 , and for every 𝛼 P 𝐷, 𝜆p𝛼q P 𝜇𝐼p𝛼q;
2. for every 𝜑p𝑥,𝑦q Ñ 𝐻p𝑥q in Σ, whenever there is a homomorphism ℎ : 𝜑p𝑥,𝑦q ÞÑ 𝐼 , then
ℎp𝐻p𝑥qq P 𝐼 and if ℎp𝜑p𝑥,𝑦qq � 𝛽1 ^ � � � ^ 𝛽𝑛, tΠ𝑛𝑖�1𝑘𝑖 | p𝑘1, . . . , 𝑘𝑛q P 𝜇𝐼p𝛽1q � � � � �
𝜇𝐼p𝛽𝑛qu � 𝜇𝐼pℎp𝐻p𝑥qqq.

The set-annotated model-based provenance semantics 𝒫SAM is defined by

𝒫SAMpΣ, 𝐷,K, 𝜆, 𝛼q :�
¸

𝑘P
�

p𝐼,𝜇𝐼 q|ùpΣ,𝐷,K,𝜆q
𝜇𝐼p𝛼q

𝑘.

Connections between semantics

Let � be the binary relation between provenance semantics such that 𝒫 � 𝒫 1 if and only if
𝒫pΣ, 𝐷,K, 𝜆, 𝛼q � 𝒫 1pΣ, 𝐷,K, 𝜆, 𝛼q for everyΣ, p𝐷,K, 𝜆q and 𝛼 on which𝒫 and𝒫 1 are well-defined.

Proposition 6 The following holds:

𝒫AM � 𝒫AT
and 𝒫SAM � 𝒫AT.

Moreover 𝒫AM and 𝒫SAM are incomparable.
Despite of their inherently different approaches, 𝒫AM, 𝒫SAM and 𝒫AT coincide on a large class of

semirings.

Proposition 7 If K is a commutative � -idempotent 𝜔-continuous semiring, then for every Σ, p𝐷,K, 𝜆q,
and 𝛼, 𝒫AMpΣ, 𝐷,K, 𝜆, 𝛼q � 𝒫SAMpΣ, 𝐷,K, 𝜆, 𝛼q � 𝒫ATpΣ, 𝐷,K, 𝜆, 𝛼q.

Additional insights on the connection between definitions can be gained by considering the prove-
nance semiring N8J𝑋K: the monomials with non-zero coefficients are the same with all semantics but
their coefficients may differ (𝒫AT leading to the highest coefficients by Proposition 6).

Proposition 8 Let 𝜆𝑋 be an injective function from 𝐷 to 𝑋 .
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� A monomial occurs in 𝒫ATpΣ, 𝐷,N8J𝑋K, 𝜆𝑋 , 𝛼q if and only if it occurs in

𝒫AMpΣ, 𝐷,N8J𝑋K, 𝜆𝑋 , 𝛼q.
� 𝒫SAMpΣ, 𝐷,N8J𝑋K, 𝜆𝑋 , 𝛼q is obtained by setting all non-zero coefficients to 1 in

𝒫ATpΣ, 𝐷,N8J𝑋K, 𝜆𝑋 , 𝛼q.

4.3.2 Execution- and Tree-Based Semantics

We saw that when annotations are present there is more than one way to define a model-based semantics
for Datalog and that it differs from the all-tree semantics. We now investigate definitions based on
classical Datalog evaluation algorithms.

We extend the notion of immediate consequence operator describing the application of rules onto
facts, with the computation of annotation. To this end, we introduce the annotation aware immediate

consequence operator 𝑇Σ. Applying 𝑇Σ on a set of annotated facts p𝐼,K, 𝜆q results in p𝐼𝑇Σ ,K, 𝜆𝑇Σq
where 𝐼𝑇Σ is the result of applying the immediate consequence operator to Σ and 𝐼 , and 𝜆𝑇Σ annotates
facts in 𝐼𝑇Σ with the relational provenance (over p𝐼,K, 𝜆q) of the UCQ formed by the bodies of the
rules that create them. Formally,

𝐼𝑇Σ :� t𝐻p𝑎q | 𝐼 |ù D𝑦 𝜑p𝑎,𝑦q , 𝜑p𝑥,𝑦q Ñ 𝐻p𝑥q P Σu

𝜆𝑇Σp𝐻p𝑎qq :�
¸

ℎp𝑥q�𝑎, 𝐼|ùℎp𝜑p𝑥,𝑦qq
𝜑p𝑥,𝑦qÑ𝐻p𝑥qPΣ

¹
𝛽Pℎp𝜑p𝑥,𝑦qq

𝜆p𝛽q

We define a union operator for annotated databases (over the same semiring): p𝐼,K, 𝜆q Y
p𝐼 1,K, 𝜆1q :� p𝐼 Y 𝐼 1,K, 𝜆2q where 𝜆2p𝛼q :� 𝜆p𝛼q � 𝜆1p𝛼q where we slightly abuse notation by
setting 𝜆p𝛼q � 0 if 𝛼 R 𝐼 , and 𝜆1p𝛼q � 0 if 𝛼 R 𝐼 1.

Naive Evaluation / All Trees

In the naive evaluation algorithm, all rules are applied in parallel until a fixpoint is reached. The
‘annotation aware’ version of it is as follows: We set 𝐼0npΣ, 𝐷,K, 𝜆q :� p𝐷,K, 𝜆q, and define inductively
𝐼𝑖�1
n pΣ, 𝐷,K, 𝜆q :� 𝑇Σp𝐼

𝑖
npΣ, 𝐷,K, 𝜆qq Y p𝐷,K, 𝜆q. Note that the subscript n of 𝐼n is an abbreviation

for ‘naive’, and the superscript 𝑖 indicates how many times 𝑇Σ was applied.
Let p𝐼𝑖n,K, 𝜆𝑖nq denote 𝐼𝑖npΣ, 𝐷,K, 𝜆q. We say that 𝐼𝑖npΣ, 𝐷,K, 𝜆q converges if there is some 𝑘 such

that 𝐼ℓn � 𝐼𝑘n for every ℓ ¥ 𝑘, and supp𝜆𝑖np𝛼qq exists for every 𝛼 P 𝐼𝑘n .

Proposition 9 For every Σ, 𝐷,K, 𝜆, if K is 𝜔-continuous then 𝐼𝑖npΣ, 𝐷,K, 𝜆q converges.

In this case, we define 𝐼8n :� 𝐼𝑘n and 𝜆8n :� sup𝑖Ñ8 𝜆
𝑖
n. The naive execution provenance semantics 𝒫NE

is defined by

𝒫NEpΣ, 𝐷,K, 𝜆, 𝛼q :�
"
𝜆8n p𝛼q 𝛼 P 𝐼8n

0 otherwise

and is equivalent to the all-tree semantics.

Proposition 10 It holds that 𝒫NE � 𝒫AT
.
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Optimized Naive Evaluation / Minimal Depth Trees

We consider an optimized version of the naive algorithm that stops as soon as the desired fact is derived.
We define the ‘annotation aware’ version of this algorithm by 𝐼0o,𝛼pΣ, 𝐷,K, 𝜆q :� p𝐷,K, 𝜆q, and

𝐼𝑖�1
o,𝛼 pΣ, 𝐷,K, 𝜆q :� "

𝑇Σp𝐼
𝑖
o,𝛼pΣ, 𝐷,K, 𝜆qq Y p𝐷,K, 𝜆q 𝛼 R 𝐼𝑖o,𝛼

𝐼𝑖o,𝛼pΣ, 𝐷,K, 𝜆q otherwise

where 𝐼𝑖o,𝛼 is such that 𝐼𝑖o,𝛼pΣ, 𝐷,K, 𝜆q :� p𝐼𝑖o,𝛼,K, 𝜆𝑖o,𝛼q.

Proposition 11 For every Σ, 𝐷,K, 𝜆, and 𝛼 such that Σ, 𝐷 |ù 𝛼 , there exists 𝑘 ¥ 0 such that

𝐼𝑘o,𝛼pΣ, 𝐷,K, 𝜆q � 𝐼ℓo,𝛼pΣ, 𝐷,K, 𝜆q for every ℓ ¥ 𝑘.

With 𝑘 as provided by Proposition 11, we define the optimized execution provenance semantics 𝒫OE

by:

𝒫OEpΣ, 𝐷,K, 𝜆, 𝛼q :�
"
𝜆𝑘o,𝛼p𝛼q 𝛼 P 𝐼𝑘o,𝛼

0 otherwise

We show that an equivalent tree-based semantics can be obtained by considering only minimal depth
trees for the desired fact. This approach has been considered useful, for example to present a ‘small
proof’ for debugging [ZSS20]. Formally, let depthp𝑡q denote the depth of tree 𝑡. We say that 𝑡 P 𝑇Σ

𝐷p𝛼q
is of minimal depth if for every 𝑡1 P 𝑇Σ

𝐷p𝛼q it holds that depthp𝑡q ¤ depthp𝑡1q. The minimal depth tree

provenance semantics 𝒫MDT is defined by

𝒫MDTpΣ, 𝐷,K, 𝜆, 𝛼q :�
¸

𝑡P𝑇Σ
𝐷p𝛼q

is of minimal depth

Λp𝑡q

and is equivalent to the optimized naive execution.

Proposition 12 It holds that 𝒫OE � 𝒫MDT.

Seminaive Evaluation / Hereditary Minimal Depth Trees

In the seminaive evaluation algorithm, facts are derived only once. We introduce a new consequence
operator ∆Σ that derives only new facts and is defined as follows: ∆Σp𝐼,K, 𝜆q :� p𝐼ΔΣ

,K, 𝜆ΔΣ
q

where 𝑇Σp𝐼,K, 𝜆q :� p𝐼𝑇Σ ,K, 𝜆𝑇Σq, 𝐼ΔΣ
:� 𝐼𝑇Σz𝐼 , and 𝜆ΔΣ

is the restriction of 𝜆𝑇Σ to 𝐼ΔΣ
. We can

now define the annotation aware version of the seminaive evaluation: 𝐼0snpΣ, 𝐷,K, 𝜆q :� p𝐷,K, 𝜆q
and 𝐼𝑖�1

sn pΣ, 𝐷,K, 𝜆q :� 𝐼𝑖snpΣ, 𝐷,K, 𝜆q Y∆Σp𝐼
𝑖
snpΣ, 𝐷,K, 𝜆qq.

Proposition 13 propsemi For every Σ, 𝐷,K, 𝜆, there exists 𝑘 ¥ 0 such that 𝐼𝑘snpΣ, 𝐷,K, 𝜆q �
𝐼ℓsnpΣ, 𝐷,K, 𝜆q for every ℓ ¥ 𝑘.

Note that, unlike in Proposition 9, we do not require K to be 𝜔-continuous. With 𝑘 provided by
Proposition 13, the seminaive execution provenance semantics 𝒫SNE is defined by

𝒫SNEpΣ, 𝐷,K, 𝜆, 𝛼q :�
"
𝜆𝑘sn 𝛼 P 𝐼𝑘sn
0 otherwise
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To capture this with the tree-based approach we need to further restrict all subtrees to be of minimal
depth. Formally, a derivation tree 𝑡 P 𝑇Σ

𝐷p𝛼q is a hereditary minimal-depth (derivation) tree if for every
node 𝑛 of 𝑡 labeled by p𝛽, 𝑟, ℎq, the subtree 𝑡𝛽 with root 𝑛 is a minimal-depth derivation tree for 𝛽. The
hereditary minimal depth tree provenance semantics 𝒫HMDT is defined by

𝒫HMDTpΣ, 𝐷,K, 𝜆, 𝛼q :�
¸

𝑡P𝑇Σ
𝐷p𝛼q

is hereditary minimal-depth

Λp𝑡q

and is equivalent to the seminaive execution.

Proposition 14 It holds that 𝒫SNE � 𝒫HMDT.

4.3.3 Non-Recursive Tree-Based Semantics

Both execution-based semantics 𝒫OE and 𝒫SNE take into account finite subsets of derivation trees (and
hence converge). Is there a more informative tree-based semantics (i.e., one that takes into account
a bigger subset of derivation trees) that still converges? We present such a semantics based on the
intuition that deriving a fact from itself is redundant.

Formally, a non-recursive (derivation) tree is a derivation tree that does not contain two nodes labeled
with the same fact and such that one is the descendant of the other. The non-recursive tree provenance
semantics 𝒫NRT is defined by

𝒫NRTpΣ, 𝐷,K, 𝜆, 𝛼q :�
¸

𝑡P𝑇Σ
𝐷p𝛼q

is non-recursive

Λp𝑡q.

Connections between semantics

Next proposition follows from the fact that hereditary minimal-depth trees are of minimal-depth and
non recursive. The sets of minimal depth trees and non-recursive trees are incomparable, so that
𝒫NRT � 𝒫MDT and 𝒫MDT � 𝒫NRT.

Proposition 15 The following hold:

𝒫HMDT � 𝒫NRT � 𝒫AT
and 𝒫HMDT � 𝒫MDT � 𝒫AT

Moreover 𝒫NRT and 𝒫AT coincide on specific semirings.

Proposition 16 For every Σ, 𝐷,K, 𝜆 and 𝛼, if K is a commutative absorptive 𝜔-continuous semiring,

then 𝒫NRTpΣ, 𝐷,K, 𝜆, 𝛼q � 𝒫ATpΣ, 𝐷,K, 𝜆, 𝛼q.

If K is not absorptive, there exists Σ, p𝐷,K, 𝜆q and 𝛼 such that 𝒫NRTpΣ, 𝐷,K, 𝜆, 𝛼q �
𝒫ATpΣ, 𝐷,K, 𝜆, 𝛼q, even in the case where K is � -idempotent and �-idempotent: Let Σ consist
of the rule 𝐴p𝑥q ^ 𝐵p𝑥q Ñ 𝐴p𝑥q and 𝐷 � t𝐴p𝑎q, 𝐵p𝑎qu. Then 𝒫NRTpΣ, 𝐷,K, 𝜆, 𝐴p𝑎qq � 𝜆p𝐴p𝑎qq
while 𝒫ATpΣ, 𝐷,K, 𝜆, 𝐴p𝑎qq � 𝜆p𝐴p𝑎qq � 𝜆p𝐴p𝑎qq � 𝜆p𝐵p𝑎qq.

The other semantics differ even under strong restrictions.
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4.3.4 Basics Properties

We provide a framework allowing to compare the provenance semantics presented in the previous
section. It is clear that they all fulfill the following definition.

Definition 9 (Provenance semantics) A provenance semantics is a partial function that assigns to a

Datalog program Σ, annotated database p𝐷,K, 𝜆q and fact 𝛼, an element 𝒫pΣ, 𝐷,K, 𝜆, 𝛼q in 𝐾 such

that:

1. Σ, 𝐷 �|ù 𝛼 implies 𝒫pΣ, 𝐷,K, 𝜆, 𝛼q � 0K.
2. If K is positive, 𝒫pΣ, 𝐷,K, 𝜆, 𝛼q � 0K implies Σ, 𝐷 �|ù 𝛼.

We call the semiring domain of 𝒫 the maximal set 𝑆 of semirings such that 𝒫pΣ, 𝐷,K, 𝜆, 𝛼q is defined
for every K P 𝑆, and every Σ, p𝐷,K, 𝜆q and 𝛼.

Intuitively, Definition 9 means that the semantics reflects fact (non)-entailment. It is extremely
permissive: We could define such a semantics that associates to each entailed fact a random semiring
element different from zero, and does not bring any information beyond facts entailment. In the sequel,
we state and discuss a number of properties that may be expected to be satisfied by a provenance
semantics.

When not stated otherwise, 𝒫 , Σ, 𝐷, K, 𝜆 and 𝛼 denote respectively an arbitrary provenance
semantics, Datalog program, database, commutative semiring p𝐾,�,�, 0, 1q, function from 𝐷 to
𝐾zt0u, and fact. We phrase properties as conditions, and say that 𝒫 satisfies a property if it satisfies
the condition. We also denote by 𝜆𝑋 an injective function 𝜆𝑋 : 𝐷 ÞÑ 𝑋 .

4.3.5 Compatibility with Classical Notions

Property 1 is a sanity check: if a Datalog program amounts to a UCQ, the provenance should be the
same as the one defined for relational databases [GKT07]. A Datalog program Σ is UCQ-defined if its
rules are of the form 𝜑p𝑥,𝑦q Ñ 𝐻p𝑥q where 𝐻 is a predicate that does not occur in the body of any
rule. In this case, the equivalent UCQ 𝑄Σ of Σ is

�
𝜑p𝑥,𝑦qÑ𝐻p𝑥qPΣ D𝑦𝜑p𝑥,𝑦q.

Property 1 (Algebra Consistency) If Σ is UCQ-defined with rule head𝐻p𝑥q and𝐻 R 𝒮p𝐷q, then for

every tuple 𝑎 of same arity as 𝑥, the relational provenance of 𝑄Σp𝑎q is equal to 𝒫pΣ, 𝐷,K, 𝜆,𝐻p𝑎qq.

While Property 1 considers the behavior of a provenance semantics on a restricted class of queries,
we can alternatively consider its behavior on a specific semiring. Boolean provenance has a very
natural definition, based on the database subsets that entail the query, and is widely used, notably for
probabilistic databases [Sen17], but also for ontology-mediated query explanation (e.g., in Datalog�{�
or description logics [CLMV19, CLMV20]). It is formalized with the semiring PosBoolp𝑋q.

Property 2 (Boolean Compatibility)

𝒫pΣ, 𝐷,PosBoolp𝑋q, 𝜆𝑋 , 𝛼q �
ª
𝐷1�𝐷
Σ,𝐷1|ù𝛼

©
𝛽P𝐷1

𝜆𝑋p𝛽q

Property 2 expresses ‘insensibility’ to syntax, that is, every provenance semantics that satisfies
Property 2 agrees on equivalent programs (i.e., those that have the same models) for the semiring
PosBoolp𝑋q. This is related to ideas from [Gre09] on the provenance of equivalent UCQs.
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4.3.6 Compatibility with Specialization

Semiring provenance has been introduced to abstract from the particular semiring at hand, and factor
the computations in some provenance semiring which specializes correctly to any semiring of interest.
The next property allows one to do so, and is thus highly desirable.

Property 3 (Commutation with Homomorphisms) If there is a semiring homomorphism ℎ from

K1 to K2, then ℎp𝒫pΣ, 𝐷,K1, 𝜆, 𝛼qq � 𝒫pΣ, 𝐷,K2, ℎ � 𝜆, 𝛼q.

We call Property 3 restricted to 𝜔-continuous homomorphisms Commutation with 𝜔-Continuous
Homomorphisms.

Specializing correctly is all the more useful when𝒫 is well-defined for a lot of semirings, in particular
on all commutative or at least all commutative 𝜔-continuous semirings.

Property 4 (Any (𝜔-Continuous) Semiring) 𝒫 satisfies the Any Semiring Property (resp. Any 𝜔-
Continuous Semiring Property) if the semiring domain of 𝒫 contains the set of all commutative (resp.

commutative 𝜔-continuous) semirings.

4.3.7 Joint and Alternative Use of the Data

How is the actual usage of the data reflected in the provenance semantics? The next property formalizes
that multiplication reflects joint use of the data, and addition alternative use. For the rest of this section,
we set goal to be a nullary predicate not in 𝒮pΣq Y 𝒮p𝐷q.

Property 5 (Joint and Alternative Use) For all tuples of facts p𝛼1
1, � � � , 𝛼

1
𝑛1
q, . . . , p𝛼𝑚1 , � � � , 𝛼

𝑚
𝑛𝑚
q, it

holds that

𝒫pΣ1, 𝐷,K, 𝜆, goalq � Σ𝑚𝑖�1Π
𝑛𝑖
𝑗�1𝒫pΣ, 𝐷,K, 𝜆, 𝛼

𝑖
𝑗q

where Σ1 � ΣY t
�𝑛𝑖
𝑗�1 𝛼

𝑖
𝑗 Ñ goal | 1 ¤ 𝑖 ¤ 𝑚u.

We weaken the above by referring to each mode separately:

Property 6 (Joint Use) For all facts 𝛼1, � � � , 𝛼𝑛,

𝒫pΣ1, 𝐷,K, 𝜆, goalq � Π𝑛𝑗�1𝒫pΣ, 𝐷,K, 𝜆, 𝛼𝑗q

where Σ1 � ΣY t
�𝑛
𝑗�1 𝛼𝑗 Ñ goalu.

Property 7 (Alternative Use) For all facts 𝛼1, � � � , 𝛼𝑚,

𝒫pΣ1, 𝐷,K, 𝜆, goalq � Σ𝑚𝑖�1𝒫pΣ, 𝐷,K, 𝜆, 𝛼𝑖q

where Σ1 � ΣY t𝛼𝑖 Ñ goal | 1 ¤ 𝑖 ¤ 𝑚u.
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4.3.8 Fact Roles in Entailment.

After considering how facts can be combined or used alternatively to entail a result, we ponder their
possible roles w.r.t. the entailment. Property 8 asserts that the original annotation of a fact takes part in
the provenance of its entailment.

Property 8 (Self) If 𝛼 P 𝐷, then 𝜆p𝛼q � 𝒫pΣ, 𝐷,K, 𝜆, 𝛼q.

Moreover, if a database fact cannot be alternatively derived using the rules, then its provenance
should be exactly its original annotation. To phrase this property we use the grounding Σ𝐷 ofΣw.r.t.𝐷,
defined by Σ𝐷 � tℎp𝜑p𝑥,𝑦qq Ñ ℎp𝐻p𝑥qq | 𝜑p𝑥,𝑦q Ñ 𝐻p𝑥q P Σ, ℎ : 𝑥Y 𝑦 ÞÑ 𝒟p𝐷qu. It holds that
Σ, 𝐷 |ù 𝛼 if and only if Σ𝐷, 𝐷 |ù 𝛼.

Property 9 (Parsimony) If𝛼 P 𝐷 does not occur in any rule head inΣ𝐷 then𝒫pΣ, 𝐷,K, 𝜆, 𝛼q � 𝜆p𝛼q.

Property 10 states that 𝒫 reflects the necessity of a fact for the entailment. We say that 𝛽 P 𝐷 is
necessary to Σ, 𝐷 |ù 𝛼 if Σ, 𝐷zt𝛽u �|ù 𝛼, and denote by Nec the set of such facts.

Property 10 (Necessary Facts) There exists 𝑒 P 𝐾 such that 𝒫pΣ, 𝐷,K, 𝜆, 𝛼q � Π𝛽PNec𝜆p𝛽q � 𝑒.

A fact is usable to Σ, 𝐷 |ù 𝛼 if it occurs in some derivation tree in 𝑇Σ
𝐷p𝛼q. Usable facts are related

to the notion of lineage [CWW00] and can be defined without resorting to derivation trees. Intuitively,
if a fact is not usable to derive another fact, it should not have any influence on its provenance.

Property 11 (Non-Usable Facts) For every 𝜆1 that differs from 𝜆 only on facts that are not usable to

Σ, 𝐷 |ù 𝛼, it holds that 𝒫pΣ, 𝐷,K, 𝜆, 𝛼q � 𝒫pΣ, 𝐷,K, 𝜆1, 𝛼q.

4.3.9 Data Modification

The last two properties indicate how provenance is impacted when facts are inserted or deleted.

Property 12 (Insertion) For every p𝐷1,K, 𝜆1q such that 𝐷 X𝐷1 � H,

𝒫pΣ, 𝐷,K, 𝜆, 𝛼q � 𝒫pΣ, 𝐷1,K, 𝜆1, 𝛼q

� 𝒫pΣ, 𝐷 Y𝐷1,K, 𝜆Y 𝜆1, 𝛼q.

Maintaining provenance upon fact deletion is very useful in practice. We formalize this using a
provenance semiring, which allows us to keep track of the facts. A partial evaluation of a provenance
expression 𝑝p𝑋q over variables 𝑋 is an expression obtained from 𝑝p𝑋q by replacing some of the
variables by a given value.

Property 13 (Deletion) For every provenance semiring Provp𝑋q and 𝐷1 � 𝐷, if 𝜆1 is the re-

striction of 𝜆𝑋 to 𝐷1
and ∆ � 𝐷z𝐷1

, then 𝒫pΣ, 𝐷1,Provp𝑋q, 𝜆1, 𝛼q is equal to the partial

evaluation of 𝒫pΣ, 𝐷,Provp𝑋q, 𝜆𝑋 , 𝛼q obtained by setting the annotations of facts in ∆ to 0:
𝒫pΣ, 𝐷,Provp𝑋q, 𝜆𝑋 , 𝛼qrt𝜆𝑋p𝑥q � 0u𝑥PΔs.

4.3.10 Semantics Analysis w.r.t. Properties

In this subsection, we analyze the semantics proposed in Section 4.3 w.r.t. the properties introduced in
Section 4.3.4. The properties each semantics satisfies are summarized in Table 4.1. Proofs of the positive
cases are given in the appendix of [BBPT22b]

59



chapter 4. dialog between logic and circuit

𝒫AT 𝒫NRT 𝒫MDT 𝒫HMDT 𝒫AM 𝒫SAM

Algebra Consistency ✓ ✓ ✓ ✓
Boolean Compat. ✓ ✓ ✓ ✓

Com. with Hom. ✓ ✓ ✓
Com. with 𝜔-Cont. ✓ ✓ ✓ ✓
Any Semiring ✓ ✓ ✓
Any 𝜔-Cont. Sem. ✓ ✓ ✓ ✓ ✓

Joint and Alt. Use ✓ ✓
Joint Use ✓ ✓ ✓ ✓
Alternative Use ✓ ✓

Self ✓ ✓ ✓ ✓ ✓ ✓
Parsimony ✓ ✓ ✓ ✓ ✓ ✓
Necessary Facts ✓ ✓ ✓ ✓ ✓
Non-Usable Facts ✓ ✓ ✓ ✓ ✓ ✓

Insertion ✓ ✓
Deletion ✓ ✓ ✓ ✓

Table 4.1: Does a property hold for a provenance semantics?
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Conclusion

This manuscript has focused on my work about the dialogue between Logic, Tree and Circuit and some
of my main theoretical results about them.

Over the last five years, I have also worked on applying these results to different cases. Thanks to
my colleagues in SPIRALS team, I have found several use cases for applying and extending my work. In
the context Software engineering, models are a key approach in order to configure applications built
from different composents in particular in the context of distributed computation. In this context, an
approach has been proposed to describe different configurations of an application by using a language
of description called Feature Model [MP14]. Interestingly, this language is equivalent to the notion
of even trees presented in [SA07]. Despite most of the querying problems over Feature Models are
np-hard, by using a compilation method through d-DNNF thanks to the system d4, we are investigating
practical query processing over Feature Model. Another model for describing distribution systems
is based on logic to describe the properties of the systems. Unfortunately, it is complex to check the
consistency or the redundancy of these logical descriptions. As the language is very expressive, the
problem is undecidable and only partial approaches to solve this problem. We are investigating if the
works in satisfiability in logic such as Description Logics, GNFO can be used in this context to give exact
answers. Within another axe of the team, I have also started different security problems such as security
on access control [BBtC�21, BBJT21, BBJT19], analyzing AdBlocker through logical approaches.

Through other collaborations, I have started to work on Digital Humanities: on similarity of theatre
plays based on the notion of parametrized edition distance on words by co-advising Aaron Boussidan
with Philippe Gambette. I have been working with Ekaterina Nechaeva, Simon Bliudze and Lionel
Seinturier on the management of uncertain data in History in particular through the lens of provenance.

With Philippe Gambette, Sarah Berkemer and Lionel Seinturier, we are investigating the use of
Datalog to query phylogenetic networks used in Bio Computing.

More generally, my current research aims to build more trusted systems in particular through the
lens of data management: by adapting general techniques in database management to specific problems
from other fields as presented earlier, by understanding how to create collaborative systems which
respect the law. On this last point, I have worked with Juliette Sénéchal and Lionel Seinturier for a year
on understanding European Legal texts and their impacts on building systems in particular through
data management. In particular, we have answered different concertations of the CNIL, the French
authority monitoring the use of the data in society regarding the regulations. These concertations have
been done to improve their notes to help users how to manage their data.

Building systems that manage data in a trustworthy manner is what will lead my research in the
next years.
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