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Résumé

Les processus multi-échelles, qui présentent des variations sur une large gamme d’échelles,
sont présents en physique, finance, biologie, médecine et de nombreux autres domaines. L’objectif
principal de cette thèse est de construire des modèles probabilistes de tels processus observés à
partir de peu de données et pouvant être échantillonnés numériquement. Ce sujet est crucial pour
aborder plusieurs problèmes, notamment la génération, la prédiction et les problèmes inverses
tels que la séparation de sources.

Dans cette thèse, nous introduisons les spectres en Scattering («Scattering Spectra»), qui
sont basés sur une approximation diagonale de corrélations non linéaires de coefficients d’onde-
lettes. Ils peuvent être utilisés pour construire des modèles non-Gaussiens de processus multi-
échelles, qu’il s’agisse de processus temporels, de processus temporels multi-canaux ou de pro-
cessus d’image. Nous montrons qu’ils reproduisent des propriétés statistiques importantes de
séries temporelles financières, de jets turbulents et de champs physiques.

Nous démontrons que cette représentation en «Scattering Spectra» peut être utilisée pour la
séparation de sources à partir de peu de données. Appliquée aux données sismiques sur Mars, ils
permettent de séparer avec succès les tremblements de Mars d’événements polluants transitoires
appelés «Glitches».

La prédiction sur données limitées peut être abordée en utilisant un modèle précis du pro-
cessus capable de capturer les dépendances à long terme. Nous introduisons le «Path-Shadowing
Monte-Carlo» qui est une méthode à noyau non-locale qui propose de moyenner les quantités
futures sur des chemins générés dont l’histoire passée est «proche» de l’histoire réelle (observée).
Associée à un modèle basé sur les «Scattering Spectra», cette approche permet d’obtenir des
résultats à l’état de l’art pour la prédiction de volatilité en finance et fournit des smiles d’option
qui surpassent le marché dans un jeu de trading.

Mots clés : modélisation, multi-échelle, apprentissage non-supervisé, traitement du signal
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Abstract

Multi-scale processes, which have variations on a wide-range of scales, are encountered in
Physics, Finance, Biology, Medicine and various other fields. The core purpose of this thesis
is to construct probabilistic models of such processes observed from limited data and that can
be sampled numerically. Such subject is crucial to tackle a number of problems among which
generation, prediction and inverse problems such as source separation.

In this thesis we introduce wavelet Scattering Spectra which rely on a diagonal approximation
of non-linear correlations of wavelet coefficients. They can be used to construct non-Gaussian mo-
dels of multi-scale processes, including time-processes, multi-channel time-processes and image
processes. Scattering Spectra are shown to capture important statistical properties of financial
time-series, turbulent jet and physical fields.

We show that such Scattering Spectra representation can be used to perform source se-
paration on limited data. Applied on Mars seismic data, we are able to successfully separate
Marsquakes from transient polluting events called Glitches.

Prediction on limited data can be tackled by utilizing an accurate model of the process
which captures long-range dependencies. We introduce Path-Shadowing Monte-Carlo, a non-
local kernel method which proposes to predict future quantities by averaging over generated
paths whose past history “shadows” the actual (observed) history. When combined with our
Scattering Spectra model, this approach yields state-of-the-art volatility prediction in Finance
and provides option smiles that outperform the market in a designed trading game.

Keywords : modelling, multi-scale, unsupervised learning, signal processing
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Notations

— A stochastic process, or random vector in a discrete setting, x is indexed by u in general
x(u). In this thesis we will use the following notations in three specific cases

— (univariate) x(t) where t ∈ R refers to a time index
— (multivariate) x(c, t) where c ∈ {1, . . . , C} refers to a channel index
— (multivariate) x(u1, . . . , ud) where u1, . . . , ud ∈ R refer to space variables

For simplicity we will use the notation x for both the stochastic process (random object)
and for a realization e.g. x ∈ RT , x ∈ RC×T , x ∈ RLd .

— Given a function Φ : RN → RM , instead of writing Φ(x)(λ) for the coordinate λ of Φ
applied to x We will utilize brackets when it is convenient Φ(x)[λ].

— For z ∈ C we write |z| its modulus and φ(z) its argument : z = |z|eiφ(z).
— For z ∈ C we write z∗ its complex conjugate.
— For x ∈ Cn×m identified as a matrix we write x∗ ∈ Cm×n its conjugate transpose.
— For x ∈ Cn we note :

— for p ≥ 1, ∥x∥p = (
∑n

k=1 |xk|p)
1
p the ℓp-norm.

— ∥x∥0 = Card{1 ≤ k ≤ n | xk ̸= 0} the 0-pseudonorm.
— For x ∈ Cn we write ⟨xk⟩k = 1

n

∑n
k=1 xk the average.

— For x, y ∈ Cn we write ⟨x, y⟩ =
∑n

k=1 xky
∗
k the Hermitian inner product.

— We write 1A the indicator function of a set A, 1A(x) = 1 if x ∈ A, 1A(x) = 0 if x /∈ A.
— For p > 0 we write Lp(Rd) the space of functions f : Rd → C verifying

∥f∥p :=
( ∫

Rd
|f(u)|p du

) 1
p
< +∞

where integration is performed with respect to the Lebesgue measure on Rd.
— For two functions f, g : Rd → C, the convolution of f , g, is written

f ⋆ g(u) =
∫
Rd
f(v)g(u− v) dv

and is well defined for example when f ∈ Lp(Rd), g ∈ L∞(Rd), 1 ≤ p ≤ +∞. We use the
same notation for its discrete analogous x ⋆ y(u) =

∑n
v=1 x(v)y(u− v) for x, y ∈ Cn where

the indices are considered modulo n.
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Notations

— The Fourier transform of f ∈ L1(Rd) is noted f̂ and written

f̂(ω) =
∫
Rd
f(u)e−i⟨ω,u⟩ du.

The Fourier transform is uniquely extended by density on functions f ∈ L2(Rd). The
discrete Fourier transform of a vector x = (x0, . . . , xn−1) ∈ Cn is written

x̂(ω) =
n−1∑
ℓ=0

xℓe
−i 2π

n
ℓω

— For two sequences u, v ∈ RN we write u = o(v) if ∀ϵ > 0, ∃n0,∀n ≥ n0, |un| ≤ ϵ|vn|. We
write u = O(v) if ∃C,∃n0, ∀n ≥ n0, |un| ≤ C|vn|.

— For a random vector x ∈ RN with probability distribution p : RN → R and Φ : RN → C
we write

Ep{Φ(x)} =
∫
RN

Φ(x)p(x) dx

provided that Ep{|Φ(x)|} < +∞. We will omit the notation p when there is no ambiguity
on the probability distribution : E{Φ(x)}.
For a random stationary vector x(t) we will often make use of the following property

E{⟨Φ(x(t))⟩t} = E{Φ(x(t))}

the right-hand term being independent on t.

— For a random vector x ∈ Cn and a random variable y ∈ C we write E{x|y} the conditional
expectation of x given y.
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Chapter 1
Introduction

Processes encountered in many fields are multi-scale i.e. they have variations on a wide range
of scales. For example, this is the case of a financial price time-series, or a seismic recording. In
Physics, this is the case of many two or three dimensional observations, such as the velocity of
a turbulent fluid, or the large-scale distribution of dark matter in the Universe.

The core purpose of this thesis is to build probabilistic models of multi-scale processes, from
limited observations, and that can be sampled numerically. This is an unsupervised learning
problem that can be formulated as building a distribution pθ, that can be sampled numerically,
and that approximates the distribution p of the underlying process x, observed from a single
realization x̃ ∈ RN of limited size, where θ ∈ RM are parameters with M being the dimension
of the model. The process x that we observe is assumed to be stationary, or with stationary
increments, and ergodic.

This subject is crucial to tackle a number of problems formulated in a limited data regime,
such as generation (drawing new realizations of x), but can also be used for prediction (deter-
mining an unknown set of values of x), in particular when there is no access to enough labeled
data to train a supervised algorithm. It is also crucial to tackle inverse problems such as unsu-
pervised source separation (unraveling an observed mixture of source signals) that can be made
well-posed if we assume a prior model on the sources.

The data constraint is a strong restriction that emerges from fundamental principles. We
often possess a single realization of the process x under study. In Finance, there exists a single
realization of the price process of a certain index: the historical realization. In Astrophysics, we
observe a single map of the Universe. The process x may contain long-range dependencies at
the scale of the realization size, meaning that x(u) and x(u′) are still dependent for the largest
values of u−u′. Such dependencies are hard to estimate precisely because the number of samples
of the joint distribution (x(u), x(u′)), from a single realization, is very small.

The main challenge in building models of multi-scale processes from limited data resides in
a bias-variance tradeoff that we explain below.
Model bias. Processes of interest in many domains are often non-Gaussian. For example, this
is evidenced by intermittency or time-asymmetry in certain time processes, or by the presence
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Chapter 1. Introduction

of transient structures in a two-dimensional physical field. In particular, well understood Gaus-
sian models, which are characterized by their average and covariance, fail to capture essential
properties of the process. These models are biased because they rely on a poor description of
the process under study.
Model variance. One way of improving the accuracy of a parameterized model pθ in approx-
imating the underlying distribution p is to increase the number of parameters θ ∈ RM , so as
to reproduce an enriched set of statistics Φ(x). Calibrating the model then consists in finding
a θ ∈ RM from limited data x̃ such that pθ reproduces these statistics. However, enlarging the
vector of statistics Φ increases the variance of Φ(x) which makes its estimation on limited data
x̃ harder. This means that the model pθ of the same process p may differ significantly when
estimated from one realization x̃ to the other.

Thus the number of parameters must be chosen carefully. In this thesis, we call compact
model a model pθ where the number of parameters M , referred as the model dimension, grows
as o(N) in the size N of a single realization x̃.

One of the challenge in this thesis is to leverage the multi-scale nature of observed data so
as to navigate this bias-variance tradeoff by defining a prior on the underlying distribution p. In
order to highlight the main contributions of the thesis, we present some key concepts and tools
in the literature to construct models of multi-scale processes.

1.1 Maximum entropy models

1.1.1 Promoting model diversity

In his seminal paper Jaynes [Jaynes, 1957] proposes to set up a model of p from partial
observations by maximizing its entropy. The entropy of a process distribution p is given by
H(p) = −

∫
p(x) log p(x)dx. A macrocanonical model pθ of process x can be defined as a maxi-

mum entropy distribution conditioned by the exact value of a vector of moments Epθ
{Φ(x)} = µ

where Φ : RN 7→ RM and one can chose µ = Ep{Φ(x)} for now. If they exist, they have an
exponential probability distribution

pθ(x) = Z−1
θ e−⟨θ,Φ(x)⟩, (1.1)

for a given θ ∈ RM , where M the number of parameters is also the number of statistics Φ.
Such model is the least biased, given moment constraint Epθ

{Φ(x)} = µ in the sense that it
is maximally noncommittal with regard to missing information [Jaynes, 1957]. For example,
a stationary Gaussian process p is a maximum entropy model conditioned by first and second
order moments Ep{Φ(x)}, with Φ(x) =

(
⟨x(t)⟩t , ⟨x(t− τ)x(t)⟩t

)
.

The parameters θ of the model (1.14) can be estimated through Markov Chain Monte-Carlo
methods [Lustig, 1998; Betancourt, 2017] which yield an exact, but computationally expensive
algorithm when the number of statistics Φ is large, due to the mixing time of the Markov
Chain [Levin, 2017; Bruna, 2019].

In this thesis, to avoid this computational issue, we consider microcanonical maximum en-
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1.1. Maximum entropy models

tropy models which have a maximum entropy distribution on a set

Ωϵ = {x ∈ RN | ∥Φ(x)− Φ(x̃)∥2 ≤ ϵ}.

for a certain error ϵ which is adjusted with the variance of Φ(x). We usually define Φ so that Ωϵ

is a compact set of strictly positive Lebesgue measure
∫

Ωϵ
dx, in this case, the microcanonical

model has a uniform distribution on Ωϵ.
If Φ(x) concentrates around E{Φ(x)} then the microcanonical model converges to the macro-

canonical model (1.14) when the size N of x̃ goes to ∞ and ϵ goes to 0. This is the Boltzmann
equivalence principle [Lanford, 1975; Gallagher, 2013]. The concentration of Φ(x) generally
imposes that its dimension M is small relatively to the dimension N of x.

Sampling a microcanonical model can be performed through a gradient descent on the loss
x 7→ ∥Φ(x) − Φ(x̃)∥2 from an initial realization of a Gaussian noise, which has a maximum
entropy distribution [Bruna, 2019].

Typical model failure can be formulated as a drop in the entropy of the process, for example
when the model concentrates around a single realization. Given moment constrain Epθ

{Φ(x)} =
µ in a macrocanonical model or statistical constraint ∥Φ(x) − Φ(x̃)∥2 ≤ ϵ in a microcanonical
model, the entropy maximization is a way of promoting diversity of the realizations i.e. increasing
the volume of sets of high probability [Shannon, 1948].

1.1.2 Revisiting the bias-variance tradeoff

The bias-variance tradeoff in building a model of p is made explicit in a maximum entropy
model. A maximum entropy model is maximally uncommittal with regard to missing informa-
tion [Jaynes, 1957], thus a too small number of statistics Φ(x) may fail to characterize important
properties of process x leading to a large model bias.

On the other hand, with no access to p, the moments µ = Ep{Φ(x)} need to be estimated
by Φ(x̃) on a single realization x̃ of limited size. For the model to be accurate, one needs Φ(x̃)
to be close to E{Φ(x)} which can be ensured by choosing low-variance statistics Φ(x), thus
constraining the model variance.

The main challenge in a maximum entropy model is to define statistics Φ which specify
important properties of x, so as to yield an accurate model of p, while remaining of low-variance
so that Φ(x̃) is a good estimation of Ep{Φ(x)}.

High-order moments are an example of candidate where we consider Φ to be the average
over time of polynomials in the coordinates of x. For r ∈ N∗, provided E{|x(u)|r} < +∞ the
moments E{Φ(x)} read

E{x(u1) . . . x(ur)} (1.2)

Under certain conditions [Billingsley, 2013] the infinite expansion r ∈ N provides an exact
description of the process distribution. However, they are difficult to estimate from limited
data. Indeed, high-order polynomials amplify large events which result in a large variance of
estimation. This problem is typically amplified for processes with fat-tailed distributions. Next
section focuses on candidates for Φ from the literature.
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1.2 Scale dependencies

Processes of interest in real-world data are often non-Gaussian. Designing moments E{Φ(x)}
that characterize non-Gaussian properties of the process and can be estimated on limited data
x̃ through Φ(x̃), has been an important research subject. We focus in this section on univariate
time processes and will study multivariate extensions in section 1.11.

Separating scales in a multi-scale process x can be done with a wavelet transform, that is
presented in section 1.9.1. We show that structure functions can be used to track the evolution
of the process distribution at different scales through high-order moments.

In section 1.9.2 we present scattering networks which track the distribution of wavelet coef-
ficients by rather cascading wavelet operators and modulus nonlinearity, inspired by the use of
convolutional neural networks in Machine Learning.

In section 1.9.3 we present a different approach, still relying on the wavelet coefficients, but
that now looks for scale dependencies in the joint distribution of wavelet coefficients at different
times and scales.

1.2.1 Wavelet transform and structure functions

A wavelet transform separates variations at multiple scales. It is computed with a zero-
average

∫
ψ(t)dt = 0 complex filter ψ which is localized both in the time domain and in the

Fourier domain [Y Meyer, 1992; Mallat, 1999]. The wavelet transform operator W is then

Wx(t, j) = x ⋆ ψj(t) where ψj(t) = 2−jψ(2−jt).

More specifically we can chose a wavelet ψ whose Fourier transform ψ̂(ω) =
∫
ψ(v)e−iωtdt is

mostly concentrated at frequencies ω ∈ [π, 2π]. It results that ψ̂j(ω) = ψ̂(2jω) is non-negligible
mostly in ω ∈ [2−jω, 2−j+1ω]. This provides a separation of the frequency axis into different bins
that constitutes our notion of scales. For a stationary process x, or with stationary increments,
the joint process Wx(t, j) is stationary, under certain condition on the wavelet filter [Pipiras,
2017].

Structure functions track the evolution of the distribution of wavelet coefficients at different
scales through its high-order moments

S(q, j) = E{|x ⋆ ψj(t)|q}. (1.3)

While S(2, j) does not contain more information than a Gaussian model can capture, the S(q, j)
for q ̸= 2 may differ from Gaussian statistics.

For multi-scale processes, self-similarity refers to scale invariance properties of the distribu-
tion of the process. Definition of self-similarity will be discussed in the following. At the level of
structure functions, self-similarity is characterized by a power-law on the range of scales under
study

S(q, j) = cq 2jζq . (1.4)
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1.2. Scale dependencies

Early works in multifractal analysis made use of these exponents ζq to determine the singular-
ity spectrum of a signal x which characterizes the variability of pointwise Hölder exponents of
x [Bacry, 1993; Muzy, 1994; Jaffard, 2004]. Estimation issues, inherent to high-order moments,
can be addressed by introducing modulus powers of wavelet coefficients maxima that are called
wavelet leaders [Jaffard, 2006; Wendt, 2009]. These wavelet leaders offer the advantage of not re-
quiring strong stationarity or ergodicity assumptions and can be estimated for both real positive
and negative exponents. These multiscale quantities and their scaling have been successfully
used to detect and discriminate properties of non-Gaussian processes, such as intermittency,
with applications to Medicine for example [Abry, 2010; Saës, 2022].

Building models of multi-scale processes from moments (1.16), or even from recent multiscale
quantities used in multifractal analysis, raises an important issue. Such moments do not pick-up
important non-Gaussian properties such as time-asymmetry, changing x ⋆ψj(u) into x ⋆ψj(−u)
leaves (1.16) unaffected, which is crucial to build accurate models of time-processes.

This issue also affects the fundamental question of defining self-similarity. It admits a strong
definition that states that the joint distribution of wavelet coefficients is invariant to dilation, up
to random multiplicative factors [Mandelbrot, 1997]. However, as a definition in distribution, it
cannot be tested numerically on a single realization. Structure functions provide a numerically
tractable (at least for small exponents) definition. However, as mentioned above, it provides a
weak description of the process distribution.

An important challenge is to find a notion of self-similarity based on a richer description
of the process and that can still be tested numerically on a single realization. This problem is
tackled in section 1.10.2.

1.2.2 Scattering transform

Instead of considering high-order statistics, a scattering transform Sx proposes to analyze the
time structure of wavelet coefficients Wx(t, j) at a fixed scale 2j through a cascade of wavelet
transforms and modulus non-linearities [Mallat, 2012; Bruna, 2013]. Defined up to a largest
scale 2J , it concatenates scattering coefficients Sm of different orders 0 ≤ m ≤ J

Smx(t, j1, . . . , jm) = | . . . |x ⋆ ψj1 | ⋆ ψj2 | . . . | ⋆ ψjm(t) (1.5)

for 1 ≤ j1 < . . . < jm ≤ J . Scattering moments are estimated through an empirical average
Φ(x) = ⟨Smx(t, j1, . . . , jm)⟩t.

Unlike structure functions, scattering moments are 1-Lipschitz in x. These coefficients can
also be used to analyze intermittency in multi-scale processes [Bruna, 2015]. They can be used
also in audio classification [Andén, 2018] or seismic event detection and clustering [Seydoux,
2020; Rodrıguez, 2021]. However, similarly to structure functions, they do not provide a rich
enough statistical description of the process to yield accurate models, in particular they don’t
pick up time-asymmetry.

Scattering coefficients, as well as structure functions, delete the phase of wavelet coefficients
through a modulus, in order to obtain non-zero coefficients after time-average. Time-asymmetry
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can be picked up by the phase of wavelet coefficients. Indeed, in the case of an analytical wavelet
(ψ̂ is real), the filter Imψ is an odd function and the sign of x ⋆ Imψ(t) can detect asymmetry.
An important question is to retrieve these phase dependencies in order to capture non-Gaussian
properties of x.

1.2.3 Non-linear correlations of wavelet coefficients

Another approach to build a non-Gaussian representation of time-processes is to consider
moments E{Φ(x)} in the form of correlations on a 1-Lipshitz representation R

E{Rx(t, λ)Rx(t′, λ′)∗} (1.6)

where t, t′ are time indices and λ, λ′ are indices of the representation R. For example, Machine
Learning literature provides representations R in the form of cascades of linear convolutional
operators and pointwise non-linearity that are called convolutional neural networks [Gatys, 2015;
Ustyuzhaninov, 2017]. However, this leads to a lot of correlation features M , much larger than
the size of the data N , with the risk of having large model variance. Besides, the interpretation
of the coefficients is difficult.

Dependencies across separate scales 2j ̸= 2j′ were shown to be crucial to characterize the
distribution of a multi-scale process, in particular non-Gaussian properties. For example, the
presence of a burst in a time-series or structures in an image gives rise to large coefficients
around this location [Portilla, 2000]. Authors in [Gatys, 2015; Ustyuzhaninov, 2017] actually
show that correlating feature maps obtained with filters of different size is key to obtain the best
perceptual results of texture syntheses.

Setting R = W in moments (1.19) builds a linear model in the wavelet coefficients of x. As
such, this is a Gaussian model which is not an accurate model of many processes of interest.
Such failure is explained by the fact that correlation of wavelet coefficients do not capture scale
dependencies. Indeed, for processes x with a regular power-spectrum, wavelet correlation

E{x ⋆ ψj(t)x ⋆ ψj′(t′)∗}

has a fast decay away from t = t′ and j = j′ [Wornell, 1993]. Indeed, for separate scales
2j ̸= 2j′ , the frequency supports of x ⋆ ψj(t) and x ⋆ ψj′(t′) barely overlap, due to the wavelet
scale separation. The two processes x⋆ψj(t) and x⋆ψj′(t′) thus oscillate at different frequencies
and their correlation is canceled by phase oscillations. An important question is thus to retrieve
scale dependencies through non-linear correlations.

In the context of texture generation, authors in [Portilla, 2000] propose to capture joint
time-scale dependencies through the correlation of wavelet coefficients and their modulus. This
amounts to consider the representation R = ρW in (1.19) where ρ(z) = (z, |z|) and ρWx(t, j) =(
x ⋆ ψj(t), |x ⋆ ψj(t)|

)
. We write CρW (t, t′, j, j′) the resulting correlation matrix that contains

the three correlation matrices

E{WxWx} , E{Wx |Wx|T } , E{|Wx| |Wx|T }. (1.7)
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1.3. Scattering Spectra

Taking a modulus prevents the phase cancellation effect mentioned above. Indeed, a modulus
eliminates the phase of coefficients x ⋆ ψj′ responsible for their oscillation. The process |x ⋆ ψj′ |
has a frequency support around ω = 0 which now overlaps with the frequency support of x ⋆ ψj

for j > j′.
More generally, phase harmonics go a step further in the analysis of the phase of wavelet

coefficients [Leonarduzzi, 2019; Mallat, 2020]. The phase harmonic [z]k of a complex number
z ∈ C are defined by multiplying its phase ϕ(z) by an integer k ∈ N while keeping its modulus
unchanged [z]k = |z|keikϕ(z) where z = |z|eiφ(z). Phase harmonic correlations are obtained from
(1.19) by setting R = ρW with ρ(z) =

(
[z]0, [z]1, [z]2, . . .

)
being an extension of the previous

phase-modulus operator that was restricted to k = 0 and k = 1. It yields the correlations

E{[x ⋆ ψj(t)]k[x ⋆ ψj′(t′)]k′∗}. (1.8)

For k ≥ 1 the phase-harmonic [·]k accelerates the oscillation of wavelet coefficients x ⋆ ψj(t) and
can thus be used to realign Fourier supports of wavelet coefficients x ⋆ψj(t) and x ⋆ψj′(t′) so as
to prevent the above mentioned phase cancellation effect. This enables capturing dependencies
across scales 2j ̸= 2j′ .

Now that such models consider non-linear correlation across times and scales, the number
of coefficients becomes larger than the size of a single realization. As shown in [Brochard,
2022] there is an important risk of reconstructing part of the observed realization, because the
estimation of the moments from limited data is too difficult. Phase-harmonic correlations 1.8,
estimated through time-average, showcase an imbalanced bias-variance tradeoff towards large
variance representations Φ. Compared to structure functions (1.16), they do not do not leverage
any self-similarity property of the field.

An important challenge is to characterize scale dependencies in x from a reduced set of
coefficients by leveraging the scale regularity of the process.

1.3 Scattering Spectra

Building up on the previous works we reviewed in last sections, chapter 2 introduces a
correlation-representation called Scattering Spectra, it is a compact representation of scale de-
pendencies that can be estimated on limited data.

For that we further exploit the multi-scale prior on process x in two different ways that are
exposed in the following sections.

1.3.1 Diagonal scattering covariance

We start from the phase-modulus correlations (1.7). The time structure of the envelopes
|Wx| is captured through correlations across all t, t′. However, such envelopes generally have
long-range dependencies with a regular cross-spectrum and we know that such process covari-
ance can be compressed through wavelet transform [Wornell, 1993]. Cascading a second wavelet
transform yields a scattering transform Sx = W |Wx| with Sx(t, j1, j2) = |x ⋆ ψj1 | ⋆ ψj2(t)
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(see section 1.9.2). The auto-correlation of scattering transform coefficients is E{SxSxT } =
W E{|Wx| |Wx|T }W T . This matrix considers correlations of scattering coefficients across sepa-
rate channels and are an extension of the standard scattering coefficients (1.18) of order m = 2.
For processes with a regular envelope cross-spectra, such as the ones encountered across Fi-
nance or Physics, owing to wavelet correlation compression properties [Wornell, 1993], the ma-
trix E{Sx(t, j1, j2)Sx(t′, j′

1, j
′
2)} has a sparse structure and is concentrated along its diagonal

t = t′, j′
2 = j2. We write Diag such diagonal projection.

One of the main contribution of chapter 2 is to introduce the Scattering Spectra which are
a diagonal approximation of the non-linear correlations (1.7)(

DiagE{Wx,WxT } , DiagE{Wx, |Wx|T } , DiagE{W |Wx|,W |Wx|T }
)
. (1.9)

They extend the standard wavelet power spectrum DiagE{Wx,WxT }. Sign-asymmetry, often
called skewness, is picked up by the second correlation matrix DiagE{Wx, |Wx|T }. Intermit-
tency in the process is characterized by the third matrix DiagE{W |Wx|,W |Wx|T }. These are
complex coefficients and we prove that their imaginary part captures time-asymmetry.

They are estimated by replacing E by an average over time ⟨.⟩t. For a realization x ∈ RN of
size N = T the number of time-steps, the Scattering Spectra Φ(x̃) consist of O(log3

2 T ) order 2
coefficients, much lower than T , and can thus be estimated on limited data.

We show that they provide accurate models of Financial price time-series and univariate
turbulent jet, and capture main non-Gaussian properties such as fat-tails distributions, inter-
mittency, sign-asymmetry and time-asymmetry. Interestingly, a model based on such order 2
moments is shown to reproduce higher order statistics of order up to 5.

1.3.2 Wide-sense self-similarity

As explained in section 1.9.3, the non-linear correlations (1.7) characterize scale dependencies
and capture non-Gaussian properties such as sign-asymmetry and time-asymmetry that where
not captured by structure functions (1.16).

In chapter 2 we prove that the strong definition of self-similarity defined on the distribution
of the process [Mandelbrot, 1997] implies a scaling invariance of the matrices (1.7) up to nor-
malization factors. This definition is said to be wide-sense as an analogy with the wide-sense
time-stationarity.

Wide-sense definition. Commonly used in signal processing, wide-sense time-stationarity
considers the correlation matrix across time C(t, τ) = E{x(t)x(t + τ)}. Let us assume a x has
a zero-mean E{x(t)} = 0. Process x is said to be wide-sense time-stationary if the correlation
C(t, τ) is independent on t. This thus states that matrix C is invariant to time-shift. The
phase-modulus correlation matrix CρW (t, t′, j, j′) characterizes time-scale dependencies through
the three matrices E{WxWx},E{Wx |Wx|},E{|Wx| |Wx|} (1.7). Let us reindex this matrix
as CρW (t, τ, j, a), with τ = t− t′, a = j − j′. Due to time-stationarity, this correlation does not
depend on t. Wide-sense self-similarity shows that the same property holds for the log-scales
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j, j′. In order to assert that, we need to account for the fact that the wavelet coefficients variance,
the power-spectrum, may not be constant across scales. We thus normalize the correlation CρW

by the wavelet power spectrum of x. Chapter 2 shows that for a self-similar process (in the
strong sense), the normalized phase-modulus matrix CρW (t, τ, j, a) does not depend on j, it is
invariant to scale shift

CρW (t, τ, j, a) = CρW (0, τ, 0, a). (1.10)

This is the wide-sense self-similarity definition introduced in this thesis. Fig. 1.1 (right) illus-
trates this invariance to scale shift on the matrix E{|Wx| |Wx|}.

This definition relies on a set of statistics that characterize important non-Gaussianity such
as intermittency, sign-asymmetry and time-asymmetry and that can be used to build accurate
models of p, through their Scattering Spectra reduction (1.20). Under wide-sense self-similarity,
the scattering Spectra (1.20), which compress the non-linear correlations (1.7), are proved to be
invariant to scale shift, up to renormalization,

Numerically, one can show that imposing the scale invariant Scattering Spectra recovers the
power-law scaling of structure functions (1.16) up to order 4.

Scale regularity. While self-similarity seems to be satisfied for a financial price process from
the scale of a few minutes to the scale of a decade, it is not satisfied in general e.g. for turbulent
flows. The dilation of the process x acts on the matrix CρW (j, j′− j) as a translation of its first
variable j. Scale regularity can be defined as the regularity of CρW as a function of j. In chapter
3 we compute a Fourier transform along j which yields ĈρW (ω, j′ − j). For a process with scale
regularity the coefficients ĈρW (ω, j′ − j) have a fast decay away from ω = 0. This is used to
provide a model with adaptive number of coefficients by thresholding Fourier harmonics. This
enables to build further reduced models of processes with scale regularity and helps reducing
the model variance.

Figure 1.1 – (Left) different zooms in a financial log-return time-series illustrating self-similarity.
(Right) Wide-sense self-similarity definition states that the normalized phase-modulus correla-
tion matrix CρW (t, t′, j, j′) across times t, t′ and scales j, j′ depends only on j − j′. It provides
a rich definition of self-similarity that can be tested on limited data.
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Chapter 1. Introduction

1.4 Multivariate processes

Multi-scale processes x(u) encountered in many domains are often multivariate in the sense
that they are indexed by a collection of variables u = (u1, . . . , ud) each belonging to a certain
space. We will consider two types of multivariate processes that provide two different extensions
of univariate processes.

The first type considers u = (u1, . . . , ud) ∈ Rd belonging to a d-dimensional lattice. Par-
ticular processes of interest include 2-dimensional, e.g. fracture surfaces [Lakhal, 2023], or
3-dimensional fields in Physics, e.g. dark matter fields [Villaescusa-Navarro, 2020]. In this case,
the space Rd is naturally equipped with the Euclidean norm and the signal processing tools such
as Fourier basis and wavelets can be extended. This case is addressed in section 1.11.1.

The second possible extension towards multivariate processes is to consider a process x
described as a collection of time-processes, x(t) = (x1(t), . . . , xC(t))T with t ∈ R a time variable,
but the channel c in xc(t) is arbitrary. For example, a financial index is composed of multiple
stocks c having their own price evolving over time t. While the closest neighbors of a discrete
time t are t − 1 and t + 1, what are the closest neighbors of a channel index c? This case is
addressed in section 1.11.2.

In order to build compact models, we discuss and briefly state the notion of multivariate
regularity that we rely on to build compact models of x.

1.4.1 Physical fields

Turbulent flows are important examples of physical fields, ruled by the Navier–Stokes equa-
tions. In his pioneering work in 1941, Kolmogorov [Kolmogorov, 1941a; Kolmogorov, 1 941;
Kolmogorov, 1941b] introduces a self-similar Gaussian model of turbulence which predicts that
the projection of the velocity field on a line is a stationary process whose power spectrum has a
power-law decay with exponent 2/3.

Intermittency in turbulent flows. Turbulence flows are highly non-Gaussian, and Kol-
mogorov’s initial theory was then refined to take into account intermittency, that is evidenced
by the multifractality of the field [Kolmogorov, 1962; Frisch, 1991]. One of the main question
was to interpret and include intermittency of turbulent flows in a model. The importance of
scale dependencies for explaining intermittency goes back to turbulence models called “shell
models” [Lorenz, 1963; Desnianskii, 1974; Siggia, 1978]. They consist of modeling a turbulence
by a Navier-Stokes-like equation in each “octave-shell”, which are dyadic regions in the Fourier
domain, including interaction terms between neighbor shells [Parisi, 1985].

Two-dimensional wavelets and angle dependencies. We are interested here in physical
fields as multivariate processes indexed by u belonging to Rd, with d = 2. In this case, the
univariate wavelet filters ψλ(t) mentioned above can be extended to multivariate wavelets ψj,θ(u)
that are also localized in both space and Fourier domain. The wavelet transform Wx(u, j, θ) =
x ⋆ ψj,θ(u) extracts variations of x around u at scale 2j and in the direction eθ = (cos θ, sin θ).
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1.4. Multivariate processes

The angle dependencies are crucial to characterize a number of non-Gaussian properties such
as the presence of vortices in turbulent fields or filament in cosmological fields. For example,
a filament in a field typically produces wavelet coefficients whose amplitudes are large across
several scales in the orthogonal direction of the filament but are small in the direction of the
filament. Building statistical description Φ that characterize the angle dependencies has been
studied in Physics [Allys, 2020; Brochard, 2022; Zhang, 2021]. Authors consider an extension
of the phase harmonic covariances (1.8) reviewed in section 1.9.3 that now correlates different
phase harmonics at different positions and different oriented scales (different scales and angles).
However, this representation contains an even larger number of coefficients, in particular the
number of coefficients M may exceed the number of sample of a single field realization, with the
risk of reconstructing parts of the observed signal as noticed in [Brochard, 2022], because the
estimation is too difficult. Such models showcase an imbalanced bias-variance tradeoff towards
large model variance.

One of the main question is to build a low-dimensional model of physical fields that captures
intermittency, the presence of structures like vortices, and multifractal properties of a process
observed from a single realization.

Our contribution. In order to capture scale and angle dependencies from limited data,
we introduce in chapter 3 an extension of the Scattering Spectra to physical fields in Turbu-
lence or Cosmology. Similarly to (1.20) they propose a low-dimensional approximation of the
non-linear correlation matrices E{WxWx},E{Wx |Wx|},E{|Wx| |Wx|} that now correlates dif-
ferent space positions u, u′ and different oriented scales λ, λ′. Again, this is performed through
a diagonal approximation in a second wavelet operator.

One of the main contribution of this chapter is to provide maximum entropy models of a
number of physical fields from Scattering Spectra, that produces very convincing field realizations
and that captures high-order moments studied in Cosmology such as bi-spectrum, tri-spectrum,
but also structure functions up to order 4. Maximum entropy models from a single realization
are shown on figure 1.5.

Figure 1.2 – Scattering Spectra models of physical fields. (Top) Original field. (Bottom) Sample
from our model estimated on a single realization.
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1.4.2 Multi-channel time-processes

A multi-channel time-process x(t) = (x1(t), . . . , xC(t))T is of a different nature than the
processes discussed in the previous section. The prominent example of such process in this
thesis is the price of different stocks c of the same financial index which cannot be disposed on a
line that can be traversed from left to right. It means that x(t) ∈ RC where RC is not equipped
with the euclidean norm, the true notion of distance, if it exists, is hardly accessible.

Correlation matrices. Building models of such processes requires capturing the dependencies
across different channels. The correlation matrix across channels Σ = E{x(t)Tx(t)} does contain
important information such as the financial sectors e.g. industrial, pharmaceutical. However,
building a model relying solely on the correlation matrix to model cross-channel dependencies
presents two issues. First, the correlation matrix does not characterize non-Gaussian properties
across channels such as the presence of bursts localized at the same time, for example when the
market as a whole enters a crisis. More generally, non-Gaussian properties across channels have
been evidenced through non-linear statistics by studying deviation of copulas of stock pairs to
Gaussian copulas [Chicheportiche, 2014b]. Second, estimation the correlation matrix on limited
data is a challenge [Potters, 2005; Tumminello, 2007]. Unlike for a time-correlation matrix of
a stationary process, we don’t know a predefined basis such as the Fourier basis that would
diagonalize the cross-channel correlation matrix nor do we know a wavelet transform across
channels to quasi-diagonalize it. In particular, methods based on non-linear wavelet correlations
such as [Régaldo-Saint Blancard, 2023] that were performed for 3 or 5 channels cannot be
extended on a process observed from a single realization of around 250 stocks because they
would yield much more coefficients than the size N of a single realization.

Factor models. Factor models identify a few directions w1, . . . , wr ∈ RC along channels and
focus on modeling the time structure of the univariate process ⟨w, x⟩ projected along these
directions ⟨w, x⟩(t) =

∑C
c=1wcxc(t) called a factor. In a certain sense, it looks at the few factors

whose stochastic structures rule the joint stochastic structure. The implicit prior of such models
is that the process x can be well described by a reasonable number of factors. While capturing
important non-linear dependencies across stocks, they often make simplifying assumptions on the
stochastic structure of the factors, for example they may not capture the joint time-asymmetry
of the stocks x [Reigneron, 2011].

The main challenge is to find a small number of factors, whose stochastic structure should
be modeled accurately, so as to accurately model the joint process x.

Our contribution. In chapter 4 we introduce a maximum entropy factor model that mod-
els the stochastic structure of selected factors through the Scattering Spectra introduced in
chapter 2. It consists in choosing a vector of statistics Φ(x) = (Φsingle(x),Φcross(x)) where
Φsingle(x) = ⟨Φ(xc)⟩c characterizes the average stochastic structure of stocks taken individually,
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1.5. Source separation on Mars

while Φcross(x) characterizes dependencies across channels through selected factors

Φcross(x) =
(

Φ
(
⟨w1, x⟩

)
, . . . ,Φ

(
⟨wr, x⟩

))
. (1.11)

We show that taking the first r = 10 first sparse directions obtained via dictionary learning
provides a model that reproduces the main non-Gaussian properties across stocks, including
time-asymmetry revealed through a moment of order 3. The vector of statistics (1.21) contains
only r + 1 = 11 times more statistics than in the univariate case, while the process is C = 253
larger in its size. Our model thus strongly relies on the implicit regularity that only a few factors
drive the process, at least up to the validation statistics presented in the literature.

1.5 Source separation on Mars

Unsupervised source separation is an example of inverse problem. In a simplified setting, it
aims at retrieving source signals s, n ∈ RN from the observation of a mixture signal x = s + n

with no access to separated training examples. This is an ill-posed problem that requires prior
knowledge on the sources. In certain cases n is assumed to be a noisy signal i.e. a multi-scale
signal with certain self-similar properties, and this problem can be regarded as denoising.

Classical signal-processing based source separation methods [Cardoso, 1989; Jutten, 1991;
Nandi, 1996; Cardoso, 1998; Starck, 2004; Jutten, 2004; Bobin, 2007] while being extensively
studied and well understood, often rely on overly restrictive assumptions regarding the sources,
e.g., sources being distributed according to Gaussian or Laplace distributions, which might
negatively bias the outcome of source separation [Cardoso, 1998; Parra, 2003].

On the other hand, unsupervised deep learning source separation methods [Févotte, 2009;
Drude, 2019; Wisdom, 2020; Liu, 2022; Denton, 2022; Neri, 2021] do not rely on the existence
of labeled training data and instead attempt to infer the sources based on the properties of
the observed signals. These methods make minimal assumptions about the underlying sources,
which make them a suitable choice for realistic source separation problems. Despite their suc-
cess, unsupervised source separation methods often require tremendous amount of data during
training [Wisdom, 2020], which is often infeasible in certain applications such as problem arising
in planetary space missions, e.g. due to challenges associated with data acquisition. Moreover,
generalization concerns preclude the use of data-driven methods trained on synthetic data in
real-world applications due to the discrepancies between synthetic and real data.

Recent works leverage the ability of wavelet representations Φ to accurately describe statis-
tical properties of non-Gaussian multi-scale signals [Regaldo-Saint Blancard, 2021]. Assuming
they know the process n and are able to generate as many independent realizations n1, . . . , nK ,
their idea is to define a candidate n̄ that solves statistical constraints specified by Φ. The can-
didate signal ñ is obtained through a gradient descent that is initiated at x, the mixed signal
which contains precious signal-dependent information.

In many cases of interest, such as extraterrestrial seismology, the non-stationarity of the data
prevents drawing enough independent realizations of clean signals n1, . . . , nK , and the challenge
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Chapter 1. Introduction

Figure 1.3 – Marsquake separation from limited data through Scattering Spectra.

is to build a prior knowledge of n from limited data.
In chapter 5 we consider seismic data recorded during NASA’s InSight mission on Mars. We

propose to tackle this challenge by using our Scattering Spectra representation Φ introduced in
chapter 2 which can be estimated on limited data. Plugging such statistical description in the
same framework [Regaldo-Saint Blancard, 2021] we have been able to use only 50 realizations
of the background Mars seismic noise to remove transient events such as glitch from Marsquake
data, see Fig. 1.6.

1.6 Prediction on limited data

Prediction, in the context of time-series, is the task of determining quantities Q(x̃future) ∈
RMfuture of the unknown future x̃future from a given observed past x̃past. With a mean-square
error objective, this amounts to estimating the following conditional expectation

E{Q(xfuture) | xpast = x̃past}. (1.12)

This problem arises especially in Finance where the price process x is multi-scale with long-range
dependencies. One can think of variance prediction where Q is an average of squares, or option
pricing where Q is the payoff of a call option 1.

Linear regression models propose to identify predictors h(xpast) ∈ RMpast that “correlate”
the most with Q(xfuture). Setting aside the search for best predictors h(xpast) [Ghysels, 2006;
Christiansen, 2012], this requires estimating Mpast ×Mfuture correlation coefficients on limited
data. In order to avoid overfitting, best linear methods focus on predicting few quantities, e.g.
Mfuture = 1, with a few well identified predictors h(xpast) e.g. Mpast ≤ 4 [Guyon, 2022].

Non-local kernel methods by-pass the estimation of correlation coefficients by averaging over
data points. It assigns weights to observed data points (xi

past, x
i
future), 1 ≤ n based on their

1. In this case, the expectation E is under the risk-neutral measure (see chapter 6).
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proximity to x̃past defined by a kernel k, e.g. a Gaussian kernel, and perform a weighted average

Q̄(x̃future) =
n∑

i=1
wik(x̃past, x

i
past)Q(xi

future). (1.13)

This is called a Nadaraya–Watson estimator [Nadaraya, 1964; Watson, 1964], under certain
hypotheses on process x it is an unbiased estimator of (1.22) when the number of data n→ +∞
and the kernel concentrates around x̃past [Hansen, 2008].

These methods are non-local in the sense that there are no reasons for the most similar data
xi to be near x̃past in time. For image denoising, non-local means [Buades, 2011] exploit the
same idea. In order to denoise the central pixel of a patch, their algorithm compares the patch
with all the patches in the image based on their Euclidien norm. An estimate is obtained by a
weighted average over the central pixels of the collected patches. This algorithm achieves good
denoising results, showing that the algorithms succeeds in finding similar patches, among the
few patches available in a single image, that are informative enough to denoise the current pixel.

Such method would fail for processes in Finance, which have a lot of noise. Indeed, there is
very few chances that different short realizations of financial log-returns are close to each other,
from limited data. This is to say that the volume of set of trajectories with high probability is
very large i.e. a financial price process is a process with high entropy.

Opting for a non-local kernel method, the goal is to exploit the regularity of the process in
order to be able to find enough closest paths xi with predictive power on x̃past despite the high
entropy of the process.

Figure 1.4 – Path shadowing illustration for prediction on limited data. Given an observed past
path (red) we average future quantities on paths with similar past, called shadowing paths.

In chapter 6 we propose to scan for paths xi in a dataset of generated paths from a Scattering
Spectra model of x, we call it Path Shadowing, illustrated in Fig. 1.7. This is inspired from the
study of chaotic processes. Intuitively, the shadowing property [Hammel, 1987], states that a
path which is uniformly close to a true orbit will stay close (shadow) a true path for all time.

In our case, the high entropy of the process is both a blessing and a curse. It helps a
Scattering Spectra maximum entropy model to approximate accurately the true distribution
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p. However, we need to scan a lot of paths in order to find shadowing paths. We propose to
leverage the scale invariance in the process to make this step feasible. For that we choose a
kernel that is based on a multi-scale causal representation h of the past xpast that considers
short-range and long-range past data with only a few parameters [Renaud, 2003; Renaud, 2005;
Andreux, 2018]. We also choose a kernel that is invariant to scaling x 7→ λx for λ > 0 and
dilation x(t) 7→ x(λ−1t).

Path Shadowing Monte-Carlo provides state-of-the-art volatility prediction results and can
be used to obtain option smiles whose quality is assessed through a trading game.

1.7 Outline of the thesis

The three first chapters 2,3 and 4 are devoted to building maximum entropy models of multi-
scale processes that can be estimated on limited data, by specifying the vector of statistics Φ(x)
that should be imposed.

Models of univariate non-Gaussian processes require characterizing the dependencies across
different scales. In chapter 2 we propose to start from the non-linear time-scale correlation
matrix (1.7). First, we investigate self-similar properties of this matrix and show that it can
be used to define a wide-sense definition of self-similarity. Second, we show how to reduce the
number of coefficients by performing a diagonal approximation after a second wavelet operator
which yields the Scattering Spectra. A maximum entropy model based on these moments is
evaluated for univariate turbulence and financial time-series.

Models of physical fields – two or three dimensional processes – require to characterize the
dependencies across oriented scales. In chapter 3 we propose an extended vector of statistics
Φ(x), still called Scattering Spectra, that now characterize dependencies between oriented scales.
We show in this chapter that regular dependencies in scales or angles can be leveraged by Fourier
thresholding to reduce the number of coefficients of these Scattering Spectra. We propose low-
dimensional models of two-dimensional physical fields in Turbulence and Cosmology.

Chapter 4 focuses on multivariate time-series in a specific case that is the different stocks of
a financial index. This chapter tackles the problem of characterizing dependencies across time-
series with as few coefficients as possible through modeling the time structure along selected
directions.

In the remaining chapters 5 and 6, we propose two applications that are made possible by
such models. Chapter 5 falls into the realm of inverse problems. We tackle unsupervised source
separation on limited data by plugging our model in an existing method. Results are shown
on seismic data from a space mission on Mars. Chapter 6 tackles the problem of prediction on
limited data. We introduce a non-local kernel method called Path Shadowing Monte-Carlo. It
relies heavily on a generative model of the underlying process to produce a diverse set of paths
with the correct time-dependencies.
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The work in this thesis resulted in seven papers: four submitted journal papers [Morel, 2022;
Cheng, 2024; Morel, 2023b; Aubrun, 2024], one published conference paper [Siahkoohi, 2023b],
one submitted conference paper [Siahkoohi, 2023a] and one paper in preparation [Morel, 2023a].
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Spectra Models for Physics". Submitted to a journal, 2023.

— Ali Siahkoohi, Rudy Morel, Maarten de Hoop, Erwan Allys, Grégory Sainton, Taichi
Kawamura. "Unearthing InSights into Mars: Unsupervised Source Separation with Limited
Data". International Conference on Machine Learning, 2023.
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Kawamura, Maarten de Hoop. "Martian time-series unraveled: A multi-scale nested ap-
proach with factorial variational autoencoders". Submitted to a conference, 2023.

— Rudy Morel, Stéphane Mallat, Jean-Philippe Bouchaud. "Path Shadowing Monte-Carlo".
Submitted to a conference, 2023.

— Rudy Morel, Stéphane Mallat, Jean-Philippe Bouchaud. "A maximum entropy factor
model of financial stocks". In preparation, 2023.

— Cécilia Aubrun*, Rudy Morel*, Michael Benzaquen, Jean-Philippe Bouchaud. "Riding
wavelets: A method to discover new classes of price jumps, 2024 ".
.
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Résumé détaillé de la thèse

Les processus rencontrés dans de nombreux domaines sont multi-échelles, c’est-à-dire qu’ils
présentent des variations sur une large gamme d’échelles. C’est le cas par exemple d’une série
temporelle de prix financiers, ou d’un enregistrement sismique. En physique, c’est le cas de
nombreuses observations en deux ou trois dimensions, telles que la vélocité d’un fluide turbulent,
ou la distribution à grande échelle de la matière noire dans l’univers.

Le but principal de cette thèse est de construire des modèles probabilistes de processus
multi-échelles, à partir d’observations limitées, et pouvant être échantillonnés numériquement.
Il s’agit d’un problème d’apprentissage non-supervisé qui peut être formulé comme le fait de
construire d’une distribution pθ, pouvant être échantillonnée numériquement, et qui approche la
distribution p du processus sous-jacent x, dont on observe une seule réalisation x̃ ∈ RN de taille
limitée, où θ ∈ RM sont des paramètres avec M la dimension du modèle. Dans cette thèse, on
suppose le processus x stationnaire, ou à incréments stationnaires, et ergodique.

Ce sujet est crucial pour attaquer de nombreux problèmes formulés dans un régime de
données limitées, tels que la génération (tirer de nouvelles réalisations de x), mais est également
utile pour la prédiction (déterminer un ensemble de valeurs inconnues de x), en particulier
lorsqu’il n’y a pas suffisamment de données étiquetées pour entraîner un algorithme supervisé.
Il est également crucial pour aborder des problèmes inverses tels que la séparation de source
non-supervisée (séparer deux signaux dont seule la somme est observée) qui peuvent être rendus
bien-définis si l’on suppose un modèle a priori de l’une des sources.

La contrainte des données est une restriction forte qui émerge de principes fondamentaux.
Nous possédons souvent une seule réalisation du processus x étudié. En finance, il existe une seule
réalisation du processus de prix d’un certain indice : la réalisation historique. En astrophysique,
nous observons une seule carte de l’univers. Le processus x peut contenir des dépendances à
longue portée à l’échelle de la réalisation, ce qui signifie que x(u) et x(u′) restent dépendants
pour les plus grandes valeurs de u−u′. De telles dépendances sont difficiles à estimer précisément
car le nombre d’échantillons de la distribution jointe (x(u), x(u′)), à partir d’une seule réalisation,
est très petit.

Le principal défi dans la construction de modèles de processus multi-échelles à partir de
données limitées réside dans un compromis biais-variance que nous expliquons ci-dessous.
Biais du modèle. Les processus d’intérêt dans de nombreux domaines sont souvent non-
gaussiens. Cela peut se manifester par l’intermittence ou l’asymétrie temporelle pour processus
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temporels, ou par la présence de structures transitoires dans un champ physique bidimensionnel.
En particulier, les modèles gaussiens, qui sont bien compris, caractérisés par leur moyenne et
leur covariance, échouent à capturer des propriétés essentielles du processus. Ces modèles sont
biaisés car ils reposent sur une description assez pauvre du processus étudié.
Variance du modèle. Un moyen d’améliorer la précision d’un modèle paramétrique pθ dans
l’approximation de la distribution sous-jacente p est d’augmenter le nombre de paramètres θ ∈
RM , de manière à reproduire un ensemble plus riche de statistiques Φ(x). Calibrer le modèle
consiste alors à trouver un θ ∈ RM à partir de données limitées x̃ telles que pθ reproduit ces
statistiques. Cependant, élargir le vecteur de statistiques Φ augmente sa variance, ce qui rend
son estimation sur des données limitées x̃ plus difficile. Cela signifie que le modèle pθ du même
processus p peut différer significativement lorsqu’il est estimé sur des réalisations x̃ différentes.

Ainsi, le nombre de paramètres doit être choisi avec soin. Dans cette thèse, nous appelons
modèle compact un modèle pθ dont le nombre de paramètres M , désigné comme la dimension
du modèle, croît en o(N) avec la taille N d’une seule réalisation x̃.

L’un des défis de cette thèse est de tirer parti de la nature multi-échelles des données ob-
servées afin d’arbitrer au mieux le compromis biais-variance en définissant un a priori sur la
distribution sous-jacente p. Afin de mettre en évidence les principales contributions de la thèse,
nous présentons quelques concepts clés et outils de la littérature pour construire des modèles de
processus multi-échelles.

1.8 Modèles à maximum d’entropie

1.8.1 Promouvoir la diversité des modèles

Dans son article fondateur, Jaynes [Jaynes, 1957] propose d’établir un modèle de p à partir
d’observations partielles en maximisant son entropie. L’entropie d’une distribution de processus
p est donnée par H(p) = −

∫
p(x) log p(x)dx. Un modèle macro-canonique pθ du processus x

peut être défini comme une distribution d’entropie maximale conditionnée par la valeur exacte
d’un vecteur de moments Epθ

{Φ(x)} = µ, où Φ : RN 7→ RM et où l’on choisit µ = Ep{Φ(x)}
pour l’instant. S’ils existent, ces modèles ont une distribution de probabilité exponentielle

pθ(x) = Z−1
θ e−⟨θ,Φ(x)⟩, (1.14)

pour un θ ∈ RM donné, où M est le nombre de paramètres qui est également le nombre
de statistiques Φ. Un tel modèle est le moins biaisé, étant donné une contrainte de moment
Epθ
{Φ(x)} = µ, dans le sens où il est le plus neutre possible en ce qui concerne les infor-

mations manquantes [Jaynes, 1957]. Par exemple, un processus gaussien stationnaire p est un
modèle d’entropie maximale conditionné par les moments d’ordre un et deux Ep{Φ(x)}, avec
Φ(x) =

(
⟨x(t)⟩t , ⟨x(t− τ)x(t)⟩t

)
.

Les paramètres θ du modèle (1.14) peuvent être estimés par des méthodes de Monte-Carlo
à chaînes de Markov [Lustig, 1998 ; Betancourt, 2017] qui fournissent un algorithme exact, mais
computationnellement coûteux lorsque le nombre de statistiques Φ est grand, en raison du temps
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de mélange de la chaîne de Markov [Levin, 2017 ; Bruna, 2019].
Dans cette thèse, pour éviter ce problème computationnel, nous considérons des modèles

à maximum d’entropie micro-canoniques qui ont une distribution d’entropie maximale sur un
ensemble

Ωϵ = {x ∈ RN | ∥Φ(x)− Φ(x̃)∥2 ≤ ϵ}.

pour une certaine erreur ϵ qui est ajustée à la variance de Φ(x). En général, Φ est de sorte que
Ωϵ est un ensemble compact de mesure de Lebesgue

∫
Ωϵ
dx strictement positive. Dans ce cas, le

modèle micro-canonique a une distribution uniforme sur Ωϵ.
Si Φ(x) se concentre autour de E{Φ(x)} alors le modèle micro-canonique converge vers le

modèle macro-canonique (1.14) lorsque la taille N de x̃ tend vers ∞ et ϵ tend vers 0. C’est
le principe d’équivalence de Boltzmann [Lanford, 1975 ; Gallagher, 2013]. La concentration de
Φ(x) impose généralement que sa dimension M soit petite par rapport à la dimension N de x.

Échantillonner un modèle micro-canonique peut être réalisé par une descente de gradient sur
l’erreur x 7→ ∥Φ(x) − Φ(x̃)∥2 à partir d’une réalisation initiale d’un bruit gaussien, qui a une
distribution d’entropie maximale [Bruna, 2019].

Un cas typique d’échec dans la modélisation est un modèle de faible entropie, par exemple
lorsque le modèle se concentre autour d’une seule réalisation. Étant donné la contrainte de
moment Epθ

{Φ(x)} = µ dans un modèle macro-canonique, ou la contrainte statistique ∥Φ(x)−
Φ(x̃)∥2 ≤ ϵ dans un modèle micro-canonique, maximiser l’entropie est un moyen de promouvoir
la diversité des réalisations, c’est-à-dire d’augmenter le volume des ensembles de probabilité
élevée [Shannon, 1948].

1.8.2 Revisiter le compromis biais-variance

Le compromis biais-variance dans la construction d’un modèle de p apparaît explicitement
dans un modèle d’entropie maximale. Un modèle d’entropie maximale est maximallement neutre
concernant les informations manquantes [Jaynes, 1957]. Ainsi un nombre trop petit de statis-
tiques Φ(x) peut être insuffisant pour caractériser les propriétés importantes du processus x
conduisant à un biais de modèle élevé.

D’autre part, sans accès à p, les moments µ = Ep{Φ(x)} sont estimés par Φ(x̃) sur une
seule réalisation x̃ de taille limitée. Pour que le modèle soit précis, il est nécessaire que Φ(x̃)
soit proche de E{Φ(x)}, ce qui peut être assuré en choisissant des statistiques Φ(x) de faible
variance, limitant ainsi la variance du modèle.

Le principal défi dans un modèle d’entropie maximale est de définir des statistiques Φ qui
spécifient les propriétés importantes de x, de manière à produire un modèle précis de p, tout en
restant à faible variance pour que Φ(x̃) soit une bonne estimation de Ep{Φ(x)}.

Les moments d’ordre élevé sont un candidat qui revient à définit Φ comme la moyenne
temporelle de polynômes en les coordonnées de x. Pour r ∈ N∗, en supposant que E{|x(u)|r} <
+∞, les moments E{Φ(x)} s’écrivent

E{x(u1) . . . x(ur)} (1.15)
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Sous certaines conditions [Billingsley, 2013], l’expansion infinie r ∈ N fournit une description
exacte de la distribution du processus. Cependant, ils sont difficiles à estimer à partir de données
limitées. En effet, les polynômes d’ordre élevé amplifient les événements rares, ce qui entraîne
une grande variance d’estimation. Ce problème est typiquement amplifié pour les processus avec
des distributions à queue épaisse. La prochaine section se concentre sur des candidats pour Φ
issus de la littérature.

1.9 Dépendances d’échelle

Les processus d’intérêt dans le monde réel sont souvent non-gaussiens. Concevoir des mo-
ments E{Φ(x)} qui caractérisent les propriétés non-gaussiennes du processus et qui peuvent être
estimés sur des données limitées x̃ par Φ(x̃), est un sujet de recherche important. Nous nous
concentrons dans cette section sur les processus temporels univariés et étudierons les extensions
multivariées dans la section 1.11.

Séparer les échelles dans un processus multi-échelle x peut être fait avec une transformation
en ondelettes, qui est présentée dans la section 1.9.1. Nous montrons que les fonctions de structure
peuvent être utilisées pour suivre l’évolution de la distribution du processus à différentes échelles
via des moments d’ordre élevé.

Dans la section 1.9.2, nous présentons les réseau en scattering qui charactérisent la distribu-
tion des coefficients d’ondelettes en cascadant des opérateurs d’ondelettes et des non-linéarités,
inspirés par l’utilisation de réseaux neuronaux convolutionnels en apprentissage automatique.

Dans la section 1.9.3, nous présentons une approche différente, reposant toujours sur les
coefficients d’ondelettes, mais qui recherche maintenant des dépendances d’échelle dans la dis-
tribution jointe des coefficients d’ondelettes à travers le temps et les échelles.

1.9.1 Transformée en ondelettes et fonctions de structure

Une transformation en ondelettes sépare les variations à plusieurs échelles. Elle est calculée
avec un filtre complexe ψ à moyenne nulle

∫
ψ(t)dt = 0 qui est localisé à la fois dans le do-

maine temporel et dans le domaine fréquentiel [Y Meyer, 1992 ; Mallat, 1999]. L’opérateur de
transformation en ondelettes W est alors

Wx(t, j) = x ⋆ ψj(t) où ψj(t) = 2−jψ(2−jt).

Plus spécifiquement, nous pouvons choisir une ondelette ψ dont la transformée de Fourier ψ̂(ω) =∫
ψ(v)e−iωtdt est principalement concentrée à des fréquences ω ∈ [π, 2π]. Il résulte que ψ̂j(ω) =

ψ̂(2jω) est non-négligeable principalement dans ω ∈ [2−jω, 2−j+1ω]. Cela fournit une séparation
de l’axe des fréquences en différents fenêtres qui constituent notre notion d’échelles. Pour un
processus stationnaire x, ou avec des incréments stationnaires, le processus joint Wx(t, j) est
stationnaire, sous certaines conditions sur le filtre en ondelettes [Pipiras, 2017].

Les fonctions de structure suivent l’évolution de la distribution des coefficients d’ondelettes
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à différentes échelles à travers ses moments d’ordre élevé

S(q, j) = E{|x ⋆ ψj(t)|q}. (1.16)

Bien que S(2, j) ne contienne pas plus d’informations qu’un modèle gaussien ne puisse capturer,
les S(q, j) pour q ̸= 2 peuvent différer des statistiques gaussiennes.

Pour les processus multi-échelles, l’auto-similarité fait référence aux propriétés d’invariance
d’échelle de la distribution du processus. Une définition de l’auto-similarité sera discutée dans
la suite. Au niveau des fonctions de structure, l’auto-similarité est caractérisée par une loi de
puissance sur la plage des échelles étudiée

S(q, j) = cq 2jζq . (1.17)

Les premiers travaux en analyse multifractale ont utilisé ces exposants ζq pour déterminer le
spectre de singularité d’un signal x qui caractérise la variabilité des exposants de Hölder ponc-
tuels de x [Bacry, 1993 ; Muzy, 1994 ; Jaffard, 2004]. Les problèmes d’estimation, inhérents
aux moments d’ordre élevé, peuvent être résolus en introduisant des puissances de modules de
maxima de coefficients d’ondelettes appelées wavelet leaders [Jaffard, 2006 ; Wendt, 2009]. Ces
wavelet leaders offrent l’avantage de ne pas nécessiter de fortes hypothèses de stationnarité ou
d’ergodicité et peuvent être estimés pour des exposants réels positifs et négatifs. Ces quantités
multi-échelles et leur évolution à travers les échelles ont été utilisées avec succès pour détec-
ter et discriminer les propriétés des processus non-gaussiens, tels que l’intermittence, avec des
applications en médecine par exemple [Abry, 2010 ; Saës, 2022].

La construction de modèles de processus multi-échelles à partir de moments (1.16), voire
même à partir de quantités multi-échelles récentes utilisées en analyse multifractale, possède un
désavantage de taille. De tels moments ne capturent pas le propriétés non-gaussiennes impor-
tantes telles que l’asymétrie temporelle, en modifiant x ⋆ ψj(u) en x ⋆ ψj(−u) ne modifie pas
(1.16), ce qui est crucial pour construire des modèles précis de processus temporels.

Ce problème affecte également la question fondamentale de la définition de l’auto-similarité.
Celle-ci admet une définition forte qui stipule que la distribution jointe des coefficients d’on-
delettes est invariante par dilatation, à des facteurs multiplicatifs aléatoires près [Mandelbrot,
1997]. Cependant, en tant que définition en distribution, elle ne peut pas être testée numérique-
ment sur une seule réalisation. Les fonctions de structure fournissent une définition numérique-
ment vérifiable (du moins pour de petits exposants). Cependant, comme mentionné ci-dessus,
elle fournit une description faible de la distribution du processus.

Un défi important est de trouver une notion d’auto-similarité basée sur une description plus
riche du processus et qui puisse être testée numériquement sur une seule réalisation. Ce problème
est abordé dans la section 1.10.2.

1.9.2 Transformée en scattering

Au lieu de considérer des statistiques d’ordre élevé, une transformée de scattering Sx propose
d’analyser la structure temporelle des coefficients d’ondelettes Wx(t, j) à une échelle fixe 2j à
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travers une cascade de transformations en ondelettes et de non-linéarités [Mallat, 2012 ; Bruna,
2013]. Définis jusqu’à une échelle maximale 2J , cettre transformée concatène les coefficients de
scattering Sm à différents ordres 0 ≤ m ≤ J

Smx(t, j1, . . . , jm) = | . . . |x ⋆ ψj1 | ⋆ ψj2 | . . . | ⋆ ψjm(t) (1.18)

pour 1 ≤ j1 < . . . < jm ≤ J . Les moments de scattering sont estimés par une moyenne empirique
Φ(x) = ⟨Smx(t, j1, . . . , jm)⟩t.

Contrairement aux fonctions de structure, les moments de scattering sont 1-Lipschitz en
x. Ces coefficients peuvent être utilisés pour analyser l’intermittence dans les processus multi-
échelles [Bruna, 2015]. Ils peuvent également être utilisés dans la classification audio [Andén,
2018] ou la détection et le regroupement d’événements sismiques [Seydoux, 2020 ; Rodrıguez,
2021]. Cependant, de la même manière que les fonctions de structure, ils ne fournissent pas une
description statistique assez riche du processus pour obtenir des modèles précis, en particulier
ils ne capturent pas l’asymétrie temporelle.

Les coefficients de scattering, tout comme les fonctions de structure, suppriment la phase des
coefficients d’ondelettes via un module complexe, afin d’obtenir des coefficients non nuls après
moyennage temporel. L’asymétrie temporelle peut être détectée par la phase des coefficients
d’ondelettes. En effet, dans le cas d’une ondelette analytique (ψ̂ est réelle), le filtre Imψ est une
fonction impaire et le signe de x⋆Imψ(t) détecte l’asymétrie du signal. Une question importante
est de capturer ces dépendances de phase afin de capturer les propriétés non-gaussiennes de x.

1.9.3 Corrélations non linéaires des coefficients d’ondelettes

Une autre approche pour construire une représentation non-gaussienne des processus tem-
porels consiste à considérer des moments E{Φ(x)} sous la forme de corrélations sur une repré-
sentation 1-Lipshitz R

E{Rx(t, λ)Rx(t′, λ′)∗} (1.19)

où t, t′ sont des indices temporels et λ, λ′ sont des indices de la représentation R. Par exemple,
la littérature sur l’apprentissage automatique fournit des représentations R sous la forme de
cascades d’opérateurs de convolution linéaires et de non-linéarités ponctuelles appelées réseaux
neuronaux convolutionnels [Gatys, 2015 ; Ustyuzhaninov, 2017]. Cependant, cela conduit à un
nombre énorme de coefficients corrélations M , bien plus grand que la taille N des données, avec
le risque d’avoir un modèle à grande variance. De plus, l’interprétation des coefficients est très
difficile.

Les dépendances entre différentes échelles 2j ̸= 2j′ se sont avérées cruciales pour caractériser
la distribution d’un processus multi-échelle, en particulier ses propriétés non-gaussiennes. Par
exemple, la présence d’une crise dans une série temporelle ou de structures dans une image donne
lieu à de grands coefficients au même emplacement [Portilla, 2000]. Les auteurs de [Gatys, 2015 ;
Ustyuzhaninov, 2017] montrent en fait que la corrélation de cartes à des échelles différentes est
essentielle pour obtenir les meilleurs résultats perceptuels pour la synthèse de textures.

Fixer R = W dans les moments (1.19) conduit à un modèle linéaire en les coefficients
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d’ondelettes de x. En tant que tel, il s’agit d’un modèle gaussien qui n’est pas précis pour de
nombreux processus d’intérêt.

Cette défaillance s’explique par le fait que la corrélation des coefficients d’ondelettes ne
capture pas les dépendances entre les échelles. En effet, pour les processus x avec un spectre de
puissance régulier, la corrélation d’ondelettes

E{x ⋆ ψj(t)x ⋆ ψj′(t′)∗}

décroît rapidement autour de t = t′ et j = j′ [Wornell, 1993]. En effet, pour des échelles séparées
2j ̸= 2j′ , les supports fréquentiels de x ⋆ ψj(t) et x ⋆ ψj′(t′) se chevauchent à peine, en raison de
la séparation d’échelle dû aux ondelette. Les deux processus x⋆ψj(t) et x⋆ψj′(t′) oscillent donc
à des fréquences différentes et leur corrélation est annulée par les oscillations de phase.

Une question importante est donc de retrouver les dépendances d’échelle à travers des cor-
rélations non linéaires.

1.10 Spectres en scattering

En s’appuyant sur les travaux précédents que nous avons examinés dans les dernières sections,
le chapitre 2 introduit une représentation de corrélation appelée spectres en scattering, qui est
une représentation compacte des dépendances d’échelle pouvant être estimée sur des données
limitées.

Pour cela, nous exploitons davantage le caractère multi-échelles du processus x de deux
manières différentes qui sont exposées dans les sections suivantes.

1.10.1 Covariance de coefficients de scattering

Nous partons des corrélations module-phase (1.7). La structure temporelle des enveloppes
|Wx| est capturée par des corrélations entre tous les t, t′. Cependant, de telles enveloppes ont
généralement des dépendances à longue portée avec un spectre croisé régulier et nous savons
que cette covariance de processus peut être compressée via la transformée en ondelettes [Wor-
nell, 1993]. Cascader une deuxième transformée en ondelettes produit une transformée en scat-
tering Sx = W |Wx| avec Sx(t, j1, j2) = |x ⋆ ψj1 | ⋆ ψj2(t) (voir la section 1.9.2). La ma-
trice de corrélation résultante après une deuxième transformée en ondelettes est E{SxSxT } =
W E{|Wx| |Wx|T }W T . Cette matrice considère les corrélations des coefficients de scattering
entre des canaux séparés et constitue une extension des coefficients de scattering standard (1.18)
d’ordre m = 2. Pour les processus avec des spectres croisés d’enveloppe réguliers, tels que ceux
rencontrés en finance ou en physique, grâce aux propriétés de compression de corrélation des
ondelettes [Wornell, 1993], la matrice E{Sx(t, j1, j2)Sx(t′, j′

1, j
′
2)} a une structure parcimonieuse

et est concentrée le long de sa diagonale t = t′, j′
2 = j2. Nous notons Diag une telle projection

diagonale.
Une des principales contributions du chapitre 2 est d’introduire les spectres en scattering qui
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sont une approximation diagonale des corrélations non linéaires (1.7).(
DiagE{Wx,WxT } , DiagE{Wx, |Wx|T } , DiagE{W |Wx|,W |Wx|T }

)
. (1.20)

Ils étendent le spectre de puissance standard des coefficients d’ondelettes DiagE{Wx,WxT }.
L’asymétrie de signe, souvent appelée skewness, est détectée par la deuxième matrice de corréla-
tion DiagE{Wx, |Wx|T }. L’intermittence du processus est caractérisée par la troisième matrice
DiagE{W |Wx|,W |Wx|T }. Ce sont des coefficients complexes et nous prouvons que leur partie
imaginaire capture l’asymétrie temporelle.

Ils sont estimés en remplaçant E par une moyenne temporelle ⟨.⟩t. Pour une réalisation
x ∈ RN de taille N = T , le nombre de pas de temps, les spectres en scattering Φ(x̃) consistent
en O(log3

2 T ) coefficients d’ordre 2, bien inférieurs à T , et peuvent donc être estimés sur des
données limitées.

Nous montrons qu’ils fournissent des modèles précis de séries temporelles financières et de
série de turbulence univariés, et capturent les principales propriétés non-gaussiennes telles que
les distributions à queues épaisse, l’intermittence, l’asymétrie de signe et l’asymétrie temporelle.
Fait intéressant, un modèle basé sur de tels moments d’ordre 2 est capable de reproduire les
statistiques d’ordre supérieur (jusqu’à q = 5).

1.10.2 Auto-similarité au sens large

Comme expliqué dans la section 1.9.3, les corrélations non linéaires (1.7) caractérisent les
dépendances d’échelle et capturent des propriétés non-gaussiennes telles que l’asymétrie de signe
et l’asymétrie temporelle qui n’étaient pas capturées par les fonctions de structure (1.16).

Dans le chapitre 2, nous montrons que la définition forte d’auto-similarité définie sur la
distribution du processus [Mandelbrot, 1997] implique une invariance d’échelle des matrices
(1.7), à un facteur de normalisation près. Cette définition est dite au sens large en analogie avec
la stationnarité temporelle au sens large.

Définition au sens large. Communément utilisée en traitement du signal, la stationna-
rité temporelle au sens large considère la matrice de corrélation à travers le temps C(t, τ) =
E{x(t)x(t + τ)}. Supposons que x ait une moyenne nulle E{x(t)} = 0. Le processus x est dit
stationnaire au sens large si la corrélation C(t, τ) est indépendante de t. Cela revient à dire que
la matrice C est invariante par translation temporelle. La matrice de corrélation module-phase
CρW (t, t′, j, j′) caractérise les dépendances à travers le temps et les échelle via les trois matrices
E{WxWx},E{Wx |Wx|},E{|Wx| |Wx|} (1.7). Réindexons cette matrice en CρW (t, τ, j, a), avec
τ = t− t′, a = j− j′. En raison de la stationnarité au sens large, cette corrélation ne dépend pas
de t. L’auto-similarité au sens large implique que la même propriété vaut pour les log-échelles
j, j′. Afin de l’affirmer, nous devons prendre en compte le fait que la variance des coefficients
d’ondelettes, le spectre de puissance en ondelette, n’est pas nécessairement constant à travers les
échelles. Nous normalisons donc la corrélation CρW par le spectre de puissance en ondelette de
x. Le chapitre 2 montre que pour un processus auto-similaire (au sens fort), la matrice de phase-
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module normalisée CρW (t, τ, j, a) ne dépend pas de j, elle est invariante par translation d’échelle.
C’est ce que l’on appelle l’auto-similarité au sens large, introduite dans cette thèse. La figure 1.1
(à droite) illustre cette invariance par translation d’échelle sur la matrice E{|Wx| |Wx|}.

Cette définition repose sur un ensemble de statistiques qui caractérisent des propriétés non-
gaussiennes importantes telles que l’intermittence, l’asymétrie de signe et l’asymétrie temporelle,
et qui peuvent être utilisées pour construire des modèles précis de p, via leur réduction en spectre
en scattering (1.20). En supposant l’auto-similarité au sens large, nous prouvons que les spectres
en scattering (1.20), qui compressent les corrélations non linéaires (1.7), sont invariants par
translation d’échelle, à renormalisation près.

Numériquement, on peut montrer qu’imposer des spectres en scattering invariants par chan-
gement échelle permet de retrouver la décroissance en loi de puissance des fonctions de structure
(1.16) jusqu’à l’ordre 4.

Régularité d’échelle. Bien que l’auto-similarité semble être satisfaite pour un processus de
prix financier de l’échelle de quelques minutes à l’échelle d’une décennie, elle ne l’est pas en
général, pour une série de turbulence par exemple. La dilatation du processus x agit sur la
matrice CρW (j, j′− j) comme une translation de sa première variable j. La régularité en échelle
peut être définie comme la régularité de CρW en fonction de j. Dans le chapitre 3, nous calculons
une transformée de Fourier le long de j qui donne ĈρW (ω, j′ − j). Pour un processus régulier à
travers les échelles, les coefficients ĈρW (ω, j′ − j) décroissent rapidement en ω. Cela est utilisé
pour fournir un modèle avec un nombre adaptatif de coefficients en seuillant les harmoniques de
Fourier. Cela permet de construire des modèles encore plus réduits de processus avec régularité
le long des échelles et aide à réduire la variance du modèle.

1.11 Processus Multivariés

Les processus multi-échelles x(u) rencontrés dans de nombreux domaines sont souvent multi-
variés dans le sens où ils sont indexés par une collection de variables u = (u1, . . . , ud) appartenant
chacune à un certain espace. Nous considérerons deux types de processus multivariés pour fournir
deux extensions différentes des processus univariés.

Le premier type considère u = (u1, . . . , ud) ∈ Rd appartenant à un réseau d-dimensionnel.
Cela inclue par exemple les processus bidimensionnels, comme les surfaces de fracture [Lakhal,
2023], ou les champs tridimensionnels en physique, comme les champs de matière noire [Villaescusa-
Navarro, 2020]. Dans ce cas, l’espace Rd est naturellement équipé de la norme euclidienne et nous
disposons des outils de traitement du signal tels que la transformée de Fourier ou la transformée
en ondelettes. Ce cas est abordé dans la section 1.11.1.

La deuxième extension possible vers des processus multivariés consiste à considérer un pro-
cessus x décrit comme une collection de processus temporels, x(t) = (x1(t), . . . , xC(t))T avec
t ∈ R une variable temporelle, mais avec c une variable arbitraire servant à indexer les séries
temporelles (c pour canal). Par exemple, un indice financier est composé de plusieurs actions c
ayant chacune leur propre prix évoluant au cours du temps t. Alors que les plus proches voisins
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d’un temps discret t sont t− 1 et t+ 1, quels sont les plus proches voisins d’un indice de canal
c ? Ce cas est abordé dans la section 1.11.2.

Afin de construire des modèles compacts, nous discutons et énonçons brièvement une notion
de régularité multivariée sur laquelle nous nous appuyons pour construire des modèles compacts
de x.

1.11.1 Champs physiques

Les écoulements turbulents sont des exemples importants de champs physiques, régis par
les équations de Navier-Stokes. Dans son travail pionnier en 1941, Kolmogorov [Kolmogorov,
1941a ; Kolmogorov, 1 941 ; Kolmogorov, 1941b] introduit un modèle gaussien auto-similaire de
turbulence qui prévoit que la projection du champ de vitesse sur une ligne est un processus
stationnaire dont le spectre de puissance décroît selon une loi de puissance d’exposant de 2/3.

Intermittence dans les écoulements turbulents. Les écoulements turbulents sont haute-
ment non-gaussiens, et la théorie initiale de Kolmogorov a ensuite été affinée pour rendre compte
de l’intermittence, qui est mise en évidence par la multifractalité du champ [Kolmogorov, 1962 ;
Frisch, 1991]. L’une des principales questions a été d’interpréter et d’inclure l’intermittence des
écoulements turbulents dans un modèle. L’importance des dépendances d’échelle pour expli-
quer l’intermittence remonte aux modèles de turbulence appelés "shell models" [Lorenz, 1963 ;
Desnianskii, 1974 ; Siggia, 1978]. Ils consistent à modéliser une turbulence par une équation si-
milaire à celle de Navier-Stokes dans chaque "octave shell", qui sont des régions dyadiques dans
le domaine de Fourier, avec des termes d’interaction entre les "shell" voisines [Parisi, 1985].

Ondelettes bidimensionnelles et dépendances angulaires. On s’intéresse ici aux champs
physiques comme des processus multivariés indexés par u appartenant à Rd, avec d = 2. Dans
ce cas, les filtres d’ondelettes univariées ψλ(t) mentionnés ci-dessus peuvent être étendus aux
ondelettes multivariées ψj,θ(u) qui sont également localisées à la fois dans l’espace et dans le
domaine de Fourier. La transformée en ondelettes Wx(u, j, θ) = x ⋆ψj,θ(u) extrait les variations
de x autour de u à l’échelle 2j et dans la direction eθ = (cos θ, sin θ).

Les dépendances angulaires sont cruciales pour caractériser un certain nombre de propriétés
non-gaussiennes telles que la présence de tourbillons dans des champs turbulents ou de filaments
dans des champs cosmologiques. Par exemple, un filament dans un champ produit générale-
ment des coefficients d’ondelettes dont les amplitudes sont grandes sur plusieurs échelles dans la
direction orthogonale au filament mais sont petites dans la direction du filament. La construc-
tion d’une description statistique Φ caractérisant les dépendances angulaires a été étudiée en
physique [Allys, 2020 ; Brochard, 2022 ; Zhang, 2021]. Les auteurs envisagent une extension des
covariances harmoniques de phase (1.8) examinées dans la section 1.9.3 corrélant désormais dif-
férents harmoniques de phase à différentes positions et à différentes échelles orientées (différentes
échelles et angles). Cependant, cette représentation contient un nombre encore plus grand de co-
efficients, en particulier le nombre de coefficients M peut dépasser le nombre d’échantillons d’une
seule réalisation de champ, avec le risque de reconstruire des parties du signal observé comme
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remarqué dans [Brochard, 2022], car l’estimation est trop difficile. De tels modèles mettent en
évidence un compromis biais-variance déséquilibré en faveur de la grande variance du modèle.

L’une des questions importantes est de construire un modèle compact de champs physiques
qui capture l’intermittence, la présence de structures telles que les tourbillons, et les propriétés
multifractales d’un processus observé à partir d’une seule réalisation.

Notre contribution. Afin de capturer les dépendances d’échelle et d’angle à partir de données
limitées, nous introduisons dans le chapitre 3 une extension des Spectres de Diffusion aux champs
physiques en turbulence ou en cosmologie. De manière similaire à (1.20), ils approchent de ma-
nière parcimonieuse les matrices de corrélation non linéaires E{WxWx},E{Wx |Wx|},E{|Wx| |Wx|}
qui corrèlent désormais différentes positions spatiales u, u′ et différentes échelles orientées λ, λ′.
Encore une fois, cela est possible grâce à une approximation diagonale après une seconde trans-
formée en ondelettes.

L’une des principales contributions de ce chapitre est de fournir des modèles à maximum d’en-
tropie pour une variété de champs physiques à partir des spectres en scattering, qui produisent
des réalisations de champ visuellement convaincantes et qui capturent des moments d’ordre élevé
étudiés en cosmologie tels que le bi-spectre, le tri-spectre, mais aussi les fonctions de structure
jusqu’à l’ordre 4. Des réalisations de ces modèles estimés à partir d’une seule observation sont
présentés dans la figure 1.5.

Figure 1.5 – Modèles de champs physiques à partir de leurs spectres en scattering. (Haut)
Champ observé. (Bas) Échantillon de notre modèle estimé sur une seule réalisation.

1.11.2 Processus temporels multi-canaux

Un processus temporel multi-canal x(t) = (x1(t), . . . , xC(t))T est d’une nature différente des
processus discutés dans la section précédente. L’exemple le plus important d’un tel processus
dans cette thèse est le prix de différentes actions c du même indice financier. Ces actions ne
peut pas être disposées sur une ligne pouvant être traversée de gauche à droite. Cela signifie que
x(t) ∈ RC où RC n’est pas équipé de la norme euclidienne, la véritable notion de distance, si
elle existe, est difficilement accessible.
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Matrices de corrélation. La construction de modèles de tels processus nécessite de cap-
turer les dépendances entre différents canaux. La matrice de corrélation entre canaux Σ =
E{x(t)Tx(t)} contient des informations importantes telles que les secteurs financiers, par exemple
industriel, pharmaceutique. Cependant, construire un modèle reposant uniquement sur la ma-
trice de corrélation pour modéliser les dépendances entre canaux présente deux problèmes. Pre-
mièrement, la matrice de corrélation ne caractérise pas les propriétés non-gaussiennes entre
canaux telles que la présence de crises localisées dans le temps au même moment à travers
tous les actifs. Plus généralement, des propriétés non-gaussiennes entre canaux ont été mises
en évidence par des statistiques non linéaires en étudiant l’écart des copules de paires d’actions
par rapport aux copules gaussiennes [Chicheportiche, 2014b]. Deuxièmement, l’estimation de la
matrice de corrélation sur des données limitées reste un défi [Potters, 2005 ; Tumminello, 2007].
Contrairement à une matrice de corrélation temporelle d’un processus stationnaire, nous ne
connaissons pas de base prédéfinie, telle que la base de Fourier, qui diagonaliserait la matrice
de corrélation entre canaux, ni ne connaissons une transformée en ondelettes entre canaux pour
quasi-diagonaliser celle-ci. En particulier, les méthodes basées sur les corrélations d’ondelettes
non linéaires telles que [Régaldo-Saint Blancard, 2023] qui ont été réalisées pour 3 ou 5 ca-
naux ne peuvent pas être étendues à un processus avec C = 253 actions observé à partir d’une
seule réalisation car elles produiraient beaucoup plus de coefficients que la taille N d’une seule
réalisation.

Modèles à facteurs. Les modèles à facteurs identifient quelques directions w1, . . . , wr ∈ RC

le long des canaux et se concentrent sur la modélisation de la structure temporelle du processus
univarié ⟨w, x⟩ projeté le long de ces directions ⟨w, x⟩(t) =

∑C
c=1wcxc(t) appelé facteur. Ces

modèles se concentrent sur les quelques facteurs dont la structure stochastique régit la structure
stochastique jointe. L’hypothèse implicite faites par de tels modèles est que le processus x peut
être bien décrit par un nombre raisonnable de facteurs. Bien qu’ils capturent des dépendances non
linéaires importantes entre actions, les modèles dans la littérature font souvent des hypothèses
simplificatrices sur la structure stochastique des facteurs, par exemple ils ne capturent pas
l’asymétrie temporelle jointe des actions x [Reigneron, 2011].

Le principal défi est de trouver un petit nombre de facteurs, dont la structure stochastique
se doit d’être modélisée avec précision, afin de modéliser précisément le processus joint x.

Notre contribution. Dans le chapitre 4, nous introduisons un modèle à facteurs à maximum
d’entropie qui modélise la structure stochastique de chaque facteur sélectionné par le biais des
spectres en scattering introduits dans le chapitre 2. Il consiste à choisir un vecteur de statis-
tiques Φ(x) = (Φsingle(x),Φcross(x)) où Φsingle(x) = ⟨Φ(xc)⟩c caractérise la structure stochastique
moyenne des actions prises individuellement, tandis que Φcross(x) caractérise les dépendances
entre canaux à travers des facteurs sélectionnés

Φcross(x) =
(

Φ
(
⟨w1, x⟩

)
, . . . ,Φ

(
⟨wr, x⟩

))
. (1.21)
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Nous montrons que prendre r = 10 directions parcimonieuses obtenues via l’apprentissage de
dictionnaires fournit un modèle qui reproduit les principales propriétés non-gaussiennes à travers
les actions, y compris l’asymétrie temporelle révélée par un moment d’ordre 3. Le vecteur de
statistiques (1.21) contient seulement r+1 = 11 fois plus de statistiques que dans le cas univarié,
alors que le processus est C = 253 fois plus grand en taille. Notre modèle repose donc fortement
sur la régularité implicite selon laquelle seuls quelques facteurs régissent le processus, du moins
lorsqu’ils s’agit de capturer les statistiques présentes dans la littérature.

1.12 Séparation de sources sur Mars

La séparation de sources non-supervisée est un exemple de problème inverse. Dans un cadre
simplifié, cela consiste à récupérer les signaux sources s, n ∈ RN de l’observation du signal
mélangé x = s + n sans accès à des exemples d’entraînement séparés. C’est un problème mal
défini qui nécessite des connaissances préalables sur les sources. Dans certains cas, n est supposé
être un signal bruité, c’est-à-dire un signal multi-échelle avec certaines propriétés auto-similaires,
et ce problème peut être considéré comme du débruitage.

Les méthodes classiques de séparation de sources basées sur le traitement du signal [Cardoso,
1989 ; Jutten, 1991 ; Nandi, 1996 ; Cardoso, 1998 ; Starck, 2004 ; Jutten, 2004 ; Bobin, 2007], bien
qu’ayant été largement étudiées et comprises, reposent souvent sur des hypothèses excessivement
restrictives concernant les sources, par exemple, le fait que les sources ont des distributions
gaussiennes ou de Laplace, ce qui peut biaiser négativement le résultat de la séparation de
sources [Cardoso, 1998 ; Parra, 2003].

D’autre part, les méthodes non-supervisées de séparation de sources par apprentissage pro-
fond [Févotte, 2009 ; Drude, 2019 ; Wisdom, 2020 ; Liu, 2022 ; Denton, 2022 ; Neri, 2021] ne
reposent pas sur l’existence de données d’entraînement étiquetées et tentent plutôt d’inférer les
sources en se basant sur les propriétés des signaux observés. Ces méthodes font des hypothèses
minimales sur les sources sous-jacentes, ce qui en fait un choix adapté pour des problèmes réa-
listes de séparation de sources. Malgré leur succès, les méthodes non-supervisées de séparation
de sources nécessitent souvent une quantité énorme de données pendant l’entraînement [Wis-
dom, 2020], ce qui est souvent irréalisable dans certaines applications telles que les problèmes
liés aux missions spatiales planétaires, par exemple en raison des défis liés à l’acquisition de
données. De plus, des préoccupations de généralisation excluent l’utilisation de méthodes basées
sur les données entraînées sur des données synthétiques dans les applications réelles en raison
des différences entre les données synthétiques et réelles.

Des travaux récents exploitent la capacité des représentations en ondelettes Φ à décrire
avec précision les propriétés statistiques des signaux multi-échelles non-gaussiens [Regaldo-Saint
Blancard, 2021]. En supposant que l’on a accès à des réalisations indépendantes n1, . . . , nK du
processus n, l’idée est de définir un candidat ñ qui résout les contraintes statistiques spécifiées
par Φ. Le signal candidat ñ est obtenu par descente de gradient initialisée à x, le signal mélangé
qui contient des informations précieuses sur le signal.

Dans de nombreux cas d’intérêt, tels que la sismologie extra-terrestre, la non-stationnarité
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Figure 1.6 – Séparation des tremblements de Mars à partir de données limitées grâce aux
spectres de diffusion.

des données empêche de tirer suffisamment de réalisations indépendantes de signaux propres
n1, . . . , nK , et le défi est de construire un modèle préalable de n à partir de données limitées, ce
qui est précisément l’objectif de cette thèse.

Dans le chapitre 5 nous considérons des données sismiques enregistrées lors de la mission
InSight de la NASA sur Mars. Nous proposons de relever ce défi en utilisant notre représentation
en spectre de scattering Φ introduite dans le chapitre 2 qui peut être estimée sur des données
limitées. En intégrant une telle description statistique dans le même cadre que [Regaldo-Saint
Blancard, 2021], nous avons été en mesure d’utiliser seulement 50 réalisations du bruit sismique
de fond sur Mars pour séparer les événements transitoires tels que les glitchs, des données
sismiques de Marsquake, voir Fig. 1.6.

1.13 Prédiction sur données limitées

La prédiction, dans le contexte des séries temporelles, consiste à régresser des quantités
Q(x̃future) ∈ RMfuture du futur x̃future à partir d’un passé observé donné x̃past. Avec un pour critère
la minimisation de l’erreur quadratique moyenne, cela revient à estimer l’espérance conditionnelle
suivante

E{Q(xfuture) | xpast = x̃past}. (1.22)

Ce problème se pose notamment en finance où le processus de prix x est multi-échelle avec des
dépendances à long terme. On peut penser à la prédiction de la variance future, où Q est une
moyenne de carrés, ou au prix des options où Q est le paiement d’une option d’achat 2.

Les modèles de régression linéaire proposent d’identifier les prédicteurs h(xpast) ∈ RMpast

qui "corrèlent" le plus avec Q(xfuture). En mettant de côté la recherche des meilleurs prédicteurs
h(xpast) [Ghysels, 2006 ; Christiansen, 2012], cela nécessite d’estimer Mpast×Mfuture coefficients
de corrélation sur des données limitées. Afin d’éviter le sur-apprentissage, les meilleures méthodes

2. Dans ce cas, l’espérance E est sous la mesure risque-neutre (voir chapitre 6).
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linéaires se concentrent sur la prédiction de quelques quantités, par exemple Mfuture = 1, avec
quelques prédicteurs bien identifiés h(xpast) par exemple Mpast ≤ 4 [Guyon, 2022].

Les méthodes à noyau non locales contournent l’estimation des coefficients de corrélation
en moyennant sur des données observées. Elles attribuent des poids aux données observées
(xi

past, x
i
future), 1 ≤ n en fonction de leur proximité avec x̃past définie par un noyau k, par exemple

un noyau gaussien, et effectuent une moyenne pondérée

Q̄(x̃future) =
n∑

i=1
wik(x̃past, x

i
past)Q(xi

future). (1.23)

Cela s’appelle un estimateur de Nadaraya–Watson [Nadaraya, 1964 ; Watson, 1964], sous cer-
taines hypothèses sur le processus x c’est un estimateur non biaisé de (1.22) lorsque le nombre
de données n→ +∞ et que le noyau se concentre autour de x̃past [Hansen, 2008].

Ces méthodes sont non locales dans le sens où il n’y a aucune raison pour que les données les
plus similaires xi soient proches de x̃past dans le temps. Pour le débruitage d’image, les méthodes
non locales [Buades, 2011] exploitent la même idée. Afin de débruiter le pixel central d’un patch,
leur algorithme compare le patch avec tous les autres patches de l’image en fonction de leur
norme euclidienne. Une estimation du pixel débruité est obtenue par une moyenne pondérée sur
les pixels centraux des patches collectés. Cet algorithme obtient de bons résultats de débruitage,
montrant que l’algorithme parvient à trouver des patches similaires, parmi les quelques patches
disponibles dans une seule image, qui sont suffisamment informatifs pour débruiter le pixel
actuel.

Une telle méthode échouerait pour les processus en finance, qui sont très bruités. En effet, il
y a très peu de chances que différentes réalisations courtes de log-rendements financiers soient
proches les unes des autres, à partir de données limitées. Cela signifie que le volume de l’ensemble
des trajectoires avec une probabilité élevée est très grand, c’est-à-dire qu’un processus de prix
financier est un processus avec une entropie élevée.

En optant pour une méthode à noyau non locale, l’objectif est d’exploiter la régularité du
processus afin de pouvoir trouver suffisamment de chemins proches xi avec un pouvoir prédictif
sur x̃past malgré l’entropie élevée du processus.

Dans le chapitre 6 nous proposons de rechercher des chemins xi dans un ensemble de données
de chemins générés à partir d’un modèle basé sur les spectres en scattering de x, que nous
appelons "path shadowing", illustré dans la Fig. 1.7. Cela est inspiré de l’étude des processus
chaotiques. Intuitivement, la propriété de "shadowing" [Hammel, 1987] stipule qu’un chemin qui
est uniformément proche d’une vraie orbite d’un système dynamique restera proche (ombré)
d’un vrai chemin pour toujours.

Dans notre cas, l’entropie élevée du processus est à la fois une bénédiction et un malédiction.
Elle permet de construire des modèles à maximum d’entropie à base de spectres en scattering qui
approchent correctement la vraie distribution p. Cependant, nous devons parcourir beaucoup
de chemins pour trouver des "shadowing paths". Nous proposons de tirer parti de l’invariance
d’échelle du processus pour rendre cette étape réaliste. Pour cela, nous choisissons un noyau basé
sur une représentation causale multi-échelle h du passé xpast qui prend en compte les données
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Figure 1.7 – Illustration de l’ombrage de chemin pour la prédiction sur données limitées. Étant
donné un chemin passé observé (en rouge), nous calculons une moyenne des quantités futures
sur des chemins similaires dans le passé, appelés chemins d’ombrage.

passées à courte et longue portée avec seulement quelques paramètres [Renaud, 2003 ; Renaud,
2005 ; Andreux, 2018]. Nous choisissons également un noyau invariant par changement d’échelle
x 7→ λx pour λ > 0 et par dilatation x(t) 7→ x(λ−1t).

La méthode de "Path Shadowing Monte-Carlo" fournit des résultats de prédiction de volatilité
de pointe et peut être utilisé pour obtenir des "smiles" d’options dont la qualité est évaluée à
travers un jeu de trading.

1.14 Plan de la thèse

Les trois premiers chapitres 2,3 et 4 sont consacrés à la construction de modèles à maximum
d’entropie de processus multi-échelles pouvant être estimés sur des données limitées, en spécifiant
le vecteur de statistiques Φ(x) qui doit être imposé.

Les modèles de processus non-gaussiens univariés nécessitent de caractériser les dépendances
à travers différentes échelles. Dans le chapitre 2 nous proposons de partir de la matrice de
corrélation non linéaire temps-échelle (1.7). Premièrement, nous étudions les propriétés auto-
similaires de cette matrice et montrons qu’elle peut être utilisée pour définir une définition
de l’auto-similarité au sens large. Deuxièmement, nous montrons comment réduire le nombre
de coefficients en effectuant une approximation diagonale après une deuxième transformée en
ondelettes, ce qui donne les spectres en scattering. Un modèle à maximum d’entropie basé sur
ces moments est évalué pour la turbulence unidimensionnelle et les séries temporelles financières.

Les modèles de champs physiques – pour des processus bidimensionnels ou tridimensionnels
– nécessitent de caractériser les dépendances à travers des échelles orientées. Dans le chapitre 3
nous proposons un vecteur étendu de statistiques Φ(x), toujours appelé Spectres de Diffusion,
qui caractérisent désormais les dépendances entre des échelles orientées. Nous montrons dans
ce chapitre que les dépendances régulières en échelles ou en angles peuvent être exploitées par
seuillage dans une base de Fourier, ce qui réduit le nombre de coefficients de ces spectres en
scattering. Nous proposons des modèles compactes de champs physiques bidimensionnels en
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turbulence et en cosmologie.
Le chapitre 4 se concentre sur les séries temporelles multivariées dans le cas spécifique des

différentes actions d’un indice financier. Ce chapitre aborde le problème de caractériser les dépen-
dances entre séries temporelles avec le moins de coefficients possible en modélisant la structure
temporelle le long de directions sélectionnées.

Dans les chapitres restants 5 et 6, nous proposons deux applications rendues possibles par
de tels modèles. Le chapitre 5 aborde les problèmes inverses via la séparation de sources non-
supervisée sur des données limitées. Nous intégrant notre modèle dans une méthode existante
et des résultats sont présentés sur des données sismiques d’une mission spatiale sur Mars. Le
chapitre 6 aborde le problème de la prédiction sur des données limitées. Nous introduisons une
méthode à noyau non locale appelée "Path Shadowing Monte-Carlo". Elle repose fortement sur
un modèle génératif du processus sous-jacent pour produire un ensemble diversifié de chemins
avec les bonnes dépendances temporelles.

Le travail de cette thèse a abouti à sept articles, parmi lesquels quatre articles soumis à
des journaux [Morel, 2022 ; Cheng, 2024 ; Morel, 2023b ; Aubrun, 2024], un article de conférence
publié [Siahkoohi, 2023b], un article de conférence soumis [Siahkoohi, 2023a] et un article en
préparation [Morel, 2023a] :

— Rudy Morel, Gaspar Rochette, Roberto Leonarduzzi, Jean-Philippe Bouchaud, Stéphane
Mallat. "Scale Dependencies and Self-Similar Models with Wavelet Scattering Spectra".
Soumis à un journal, 2022.

— Sihao Cheng, Rudy Morel, Erwan Allys, Brice Ménard, Stéphane Mallat. "Scattering
Spectra Models for Physics". Soumis à un journal, 2023.

— Ali Siahkoohi, Rudy Morel, Maarten de Hoop, Erwan Allys, Grégory Sainton, Taichi
Kawamura. "Unearthing InSights into Mars : Unsupervised Source Separation with Limited
Data". International Conference on Machine Learning, 2023.

— Ali Siahkoohi, Rudy Morel, Randall Balestriero, Erwan Allys, Grégory Sainton, Tai-
chi Kawamura, Maarten de Hoop. "Martian time-series unraveled : A multi-scale nested
approach with factorial variational autoencoders". Soumis à une conférence, 2023.

— Rudy Morel, Stéphane Mallat, Jean-Philippe Bouchaud. "Path Shadowing Monte-Carlo".
Soumis à une conférence, 2023.

— Rudy Morel, Stéphane Mallat, Jean-Philippe Bouchaud. "A maximum entropy factor
model of financial stocks". En préparation, 2023.

— Cécilia Aubrun*, Rudy Morel*, Michael Benzaquen, Jean-Philippe Bouchaud. "Riding
wavelets : A method to discover new classes of price jumps, 2024 ".
.
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Chapitre 2
Models of univariate time-processes : scale
dependencies through Scattering Spectra.

The first type of processes that we tackle in this chapter are univariate processes,
which depend on a single time variable, that could also be a space variable. We in-
troduce the wavelet Scattering Spectra which provide non-Gaussian models of time-
processes having stationary increments. A complex wavelet transform computes si-
gnal variations at each scale. Dependencies across scales are captured by the joint
correlation across time and scales of complex wavelet coefficients and their modulus.
This correlation matrix is nearly diagonalized by a second wavelet transform, which
defines the Scattering Spectra. We show that this vector of moments characterizes a
wide range of non-Gaussian properties of multi-scale processes. This is analyzed for
a variety of processes, including fractional Brownian motions, Poisson, multifractal
random walks and Hawkes processes. We prove that self-similar processes have Scat-
tering Spectra which are scale invariant. This property can be tested statistically
on a single realization and defines a class of wide-sense self-similar processes. We
build maximum entropy models conditioned by Scattering Spectra coefficients, and
generate new time-series with a microcanonical sampling algorithm. Applications are
shown for highly non-Gaussian financial and turbulent time-series.
This chapter is adapted from the following submitted paper. Rudy Morel, Gaspar
Rochette, Roberto Leonarduzzi, Jean-Philippe Bouchaud, Stéphane Mallat. Scale
Dependencies and Self-Similar Models with Wavelet Scattering Spectra, 2022

Foreword
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Chapter 2. Models of univariate time-processes : scale dependencies through Scattering
Spectra.
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2.1. Introduction

2.1 Introduction

Time-series having stationary increments with variations on a wide range of scales are en-
countered in physics, Finance, biology, medicine and many other fields. Such multi-scale time-
series typically include complex intermittent phenomena with local bursts of activity, and time-
asymmetries due to some form of causality. The importance of this topic was first recognized by
Mandelbrot [Mandelbrot, 1968 ; Mandelbrot, Mandelbrot, 1982] and led to a considerable body
of work on multifractal signals [Bacry, 1993 ; Muzy, 1994 ; Abry, 2000 ; Jaffard, 2004 ; Jaffard,
2006 ; Wendt, 2009 ; Leonarduzzi, 2018]. Among multi-scale processes, self-similar models have
a probability distribution which is invariant to scaling, up to multiplicative factors. To validate
numerically such models, it is however necessary to introduce weaker forms of self-similarity that
can be estimated over limited data.

Simplified multi-scale models have been introduced from marginal distributions of signal in-
crements, by Frisch and Parisi [Frisch, 1985]. They define a weak form of self-similarity from a
scale invariance of high order moments of these marginal distributions. This can be sufficient to
detect non-Gaussian distributions. Section 2.2 reviews these models together with the multifrac-
tal formalism, which replaces increments by wavelet coefficients. Marginal distributions at each
scale are simple to estimate, but they do not capture dependencies of signal variations across
scales. These dependencies are crucial to specify many properties, in particular, the existence of
transient events, which have particular signatures at multiple scales.

Models of multi-scale distributions can be defined as a maximum entropy distribution condi-
tioned by a vector of moments E{Φ(x)}. If they exist, they have an exponential probability
distribution

pθ(x) = Z−1
θ e−⟨θ,Φ(x)⟩.

for θ ∈ RM , where M is the number of moments. Maximum entropy models depend only on the
energy vector Φ(x), which needs to be chosen appropriately. Gaussian processes are maximum
entropy models conditioned by first and second order moments.

A central result of this chapter is the construction of Φ, so that E{Φ(x)} specifies scale
dependencies, and provide accurate models of multi-scale time-series. The dimension M of Φ(x)
is much smaller than the dimension of x, so that it can define a consistent mean estimator which
converges to E{Φ(x)} when the dimension of x increases. As a result, maximum entropy models
can be estimated from a single realization of x. New samples of x are generated by sampling a
microcanonical model, which approximates the macrocanonical model [Bruna, 2019].

A wavelet transform computes multi-scale signal variations. Complex wavelet coefficients
carry a complex modulus and a complex phase information. Section 2.3 proves that wavelet
coefficients are nearly uncorrelated at different scales, because their phases oscillate at different
frequencies. To measure non-linear dependencies across scales, it is tempting to move towards
higher order moments [Brillinger, 1965]. This requires to compute many moments with high
variance estimators, which gives poor numerical results over limited size time-series. Lower
variance estimators have been studied by replacing high order moments with phase harmonics
[Mallat, 2020] or by eliminating the phase with a modulus non-linearity [Bruna, 2013 ; Portilla,
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2000]. We show that scale dependencies can be captured by correlating wavelet coefficients
and their modulus. We prove that self-similar processes yield normalized correlation matrices
which are invariant to scaling. Section 2.3.3 derives a definition of wide-sense self-similarity,
which is analogous to the definition of wide-sense stationarity, where invariance to translation
of correlation matrices is replaced by an invariance to scaling.

Wavelet modulus cross-correlation matrices are too large to be estimated accurately from a
single time-series realization. Section 2.4 shows that applying a second wavelet transform defines
a scattering covariance matrix which is nearly diagonal. Dependencies across scales are captured
by diagonal scattering cross-correlation coefficients, also called scattering cross-spectrum, which
can be estimated from a single realization. We shall see that the Scattering Spectra provide an
interpretable dashboard which captures non-Gaussian properties, including bursts of activity
and time-asymmetries, as well as self-similarity.

Fractional Brownian motions, Poisson processes, multifractal random walks and Hawkes
processes are often used as models of multi-scale processes which may or may not be self-similar.
Section 2.5 shows that the Scattering Spectra reveal their specific properties. By analyzing the
Scattering Spectra of S&P financial time-series and turbulent jets, we show that none of the
mathematical models presented captures all properties of these complex time-series.

Section 2.6 defines maximum entropy models conditioned by Scattering Spectra values. We
generate time-series according to these models with the microcanonical sampling algorithm in
[Bruna, 2019]. We show that these generative models can approximate fractional Brownian
motions, multifractal random walks and Hawkes processes but also S&P financial time-series or
turbulent jets. The code used in numerical experiments is available at https://github.com/
RudyMorel/scattering_spectra.

2.2 Multi-scale moments

We consider a multi-scale random process x(t) whose increments are stationary. Gaussian
models are maximum entropy models conditioned by first and second order moments. In order
to capture non-Gaussian and self-similar properties, one can compute higher order moments of
increments. The section reviews the scaling properties of these moments.

2.2.1 Self-similarity and power spectrum

If x(t) is stationary then its increments are stationary but the reverse is not always true. For
example, a Brownian motion x has stationary increments but E{x(t)} and E{x2(t)} depend on
t [Pipiras, 2017]. The increments of a random process x(t) at intervals 2j ∈ R+ for j ∈ R are
written

δjx(t) = x(t)− x(t− 2j).

The lag 2j can also be interpreted as a scale parameter. We suppose that δjx is stationary for
any j ∈ R.

Mandelbrot et al. [Mandelbrot, 1997] introduced a strong definition of self-similarity from
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the joint distribution of increments. A process x is said to be self-similar [Mandelbrot, 1997]
up to a maximum scale 2J if for all ℓ ≥ 0 there exist real random variables Aℓ which are log
infinitely divisible and independent of x such that{

δjx(t)
}

j≤J,t≤N

d= Aℓ

{
δj−ℓx(2−ℓt)

}
j≤J,t≤N

. (2.1)

This equality is in distribution, which means that joint probability distributions of random va-
riables on the left and right hand-sides are equal for any (j1, ..., jn) and (t1, ..., tn) with n > 0.
Increments thus have joint distributions which are invariant to dilation, up to random multipli-
cative factors. The maximum scale 2J is called the integrable scale. It may be fixed, in that case
we assume that x(t) and x(t− τ) are nearly independent for τ ≫ 2J .

If increments are stationary then their auto-correlation E{δjx(t) δj′x(t−τ)} only depends on
τ . By renormalizing its Fourier transform along τ , one can mathematically define a generalized
power spectrum Px(ω) of x [Pipiras, 2017]. The non-stationarity of x appears as a singularity
of Px(ω), which tends to ∞ at ω = 0. This power spectrum specifies second order moments of
increments.

With a scaling argument, one can prove [Pipiras, 2017] that self-similar processes have a
power spectrum which is also self-similar and thus has a power-law scaling

Px(ω) = c2 |ω|−ζ2−1 (2.2)

which is singular at ω = 0.

2.2.2 Increment high order moments

First and second order moments define Gaussian maximum entropy models. In order to build
non-Gaussian multi-scale models, one can compute q order moments of increments, if they exist :

∀j ∈ R , E{|δjx(t)|q}. (2.3)

For self-similar processes, these multi-scale moments have a power-law scaling

E{|δjx(t)|q} = c̃q 2jζq . (2.4)

If x is Gaussian and self-similar then one can verify that ζq is linear in q [Pipiras, 2017]. It results
that any non-linear dependency of ζq as a function of q implies that x is not Gaussian. This was
initially proposed by Kolmogorov as a test to detect non-Gaussian properties in turbulent flows.
Under appropriate hypotheses, the multifractal theory [Jaffard, 2004] proves that (2.3) specifies
the pointwise Holder regularity of x, through a spectrum of singularity.

The moment power-law scaling (2.4) is a weak form of self-similarity which can be tested
statistically. On the other hand, the strong self-similarity definition (2.1) is highly restrictive,
often not satisfied, and impossible to be tested on a single realization. A.2 shows that the strong
distribution self-similarity (2.1) implies the weak moment self-similarity (2.4). This scaling is
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simple to test numerically but is a relatively weak characterization of self-similarity. The high
order increment moments (2.4) remain unchanged when computed on x(−t), and hence do not
detect time-asymmetries. They do not either capture dependencies of increments at different
scales 2j . Section 2.3 introduces a stronger wide-sense definition of self-similarity, which relies
on multi-scale moments that depend upon joint time-scale dependencies of x.

2.2.3 Estimation and wavelet transform

Defining consistent estimators of moments with fast convergence is necessary to compute
maximum entropy models from a single realization of x. It has been proved that a wavelet
transform yields nearly optimal estimators of second order moments for self-similar processes
[Flandrin, 1992 ; Wornell, 1993 ; Masry, 1993 ; McCoy, 1996]. We thus replace increments by a
wavelet transform, whose properties are briefly reviewed.

2.2.3.1 Wavelet transform

A wavelet ψ(t) has a fast decay away from t = 0, polynomial or exponential for example, and
a zero-average

∫
ψ(t) dt = 0. We normalize

∫
|ψ(t)|2 dt = 1. The wavelet transform computes the

variations of a signal x at each scale 2j with

Wx(t, j) = x ⋆ ψj(t) where ψj(t) = 2−jψ(2−jt).

If ψ = δ(t)− δ(t− 1) then it computes signal increments Wx(t, j) = δjx(t). To relate regularity
properties of signals from their wavelet coefficients, it is necessary to use wavelets having a better
frequency localization than a difference of Diracs [Jaffard, 2004]. We use a complex wavelet ψ
having a Fourier transform ψ̂(ω) =

∫
ψ(t) e−iωt dt which is real, and whose energy is mostly

concentrated at frequencies ω ∈ [π, 2π]. It results that ψ̂j(ω) = ψ̂(2jω) is non-negligible mostly
in ω ∈ [2−jπ, 2−j+1π]. We suppose that ψ has m ≥ 1 vanishing moments, which means that
|ψ̂(ω)| = O(|ω|m) in the neighborhood of ω = 0. We will refer to the modulus and complex
phase of Wx(t, j) as the amplitude and phase of the complex wavelet coefficient.

In the following we shall restrict the scales 2j to dyadic scales, and hence j to integers. The
wavelet transform W satisfies an energy conservation law [Mallat, 1999] specified in A.1, which
implies that it is invertible.

All numerical calculations below are performed with a complex Battle-Lemarié wavelet [Bat-
tle, 1987 ; Lemarié, 1988], restricted to positive frequencies. Figure 2.1 shows the real and ima-
ginary parts of ψ as well as its Fourier transform. It has an exponential decay away from t = 0,
it has m = 4 vanishing moments and satisfies an energy conservation law (A.1). If the input
signal is sampled at t ∈ Z then we can only compute wavelet coefficients for 2j > 1 and hence
j ≥ 1.

2.2.3.2 Wavelet covariance and spectrum

Since
∫
ψj(t)dt = 0 it results that E{x ⋆ ψj(t)} = 0. If x has stationary increments then one

can show [Pipiras, 2017] that wavelet coefficients are jointly stationary. Their covariance across
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t= 0

Re(ψ) Im(ψ)

ω= 0 π 2π

ψ̂

Figure 2.1 – Left : complex Battle-Lemarié wavelet ψ(t) as a function of t. Right : Fourier
transform ψ̂(ω) as a function of ω.

time and scale can be written from the power spectrum of x :

E{x ⋆ ψj(t)x ⋆ ψj−a(t− 2jτ)∗} = 1
2π

∫
Px(ω) ψ̂(2jω) ψ̂∗(2j−aω) eiτ2jω dω, (2.5)

for time-lag 2jτ ∈ R and scale-lag a ∈ Z. This covariance becomes negligible when |a| > 0 for
which the supports of ψ̂(ω) and ψ̂(2aω) barely overlap. Indeed, the phases of x⋆ψj and x⋆ψj−a

vary at different rates, which cancels their correlation. For processes x with a power-law decaying
power-spectrum (2.2), one can prove that such covariance has a polynomial decay away from
τ = 0 and an exponential decay away from a = 0 [Wornell, 1993]. As shown on figure 2.4a, these
coefficients are negligible for distant scales |a| > 1 and have small non-zero values for |a| = 1
because wavelets have a small frequency overlap.

The diagonal covariance values define a wavelet spectrum :

σ2
W (j) = E{|x ⋆ ψj(t)|2} = 1

2π

∫
Px(ω) |ψ̂(2jω)|2 dω. (2.6)

It integrates Px(ω) over the frequency intervals [2−jπ, 2−j+1π], where ψ̂(2jω) is mostly suppor-
ted. It does not depend upon t because of stationarity, and is thus estimated by an empirical
average

σ̃2
W (j) =

〈
|x ⋆ ψj(t)|2

〉
t
. (2.7)

2.2.3.3 Self-similar wavelet coefficients

If x is strongly self-similar according to (2.1) then A.2 derives that

∀ℓ ≥ 0 ,
{
x ⋆ ψj(t)

}
j≤J,t≤N

d= Aℓ

{
x ⋆ ψj−ℓ(2−ℓt)

}
j≤J,t≤N

. (2.8)

A.2 also proves that wavelet moments of self-similar processes have the same scaling properties
as increments in (2.4). For all q such that the moments are defined, there exists cq such that

∀j, E{|x ⋆ ψj |q} = cq 2jζq . (2.9)
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2.3 Dependencies across scales with phase-modulus wavelet cor-
relations

We saw that wavelet coefficients of stationary processes are nearly uncorrelated across scales.
Yet, next section shows that non-Gaussian processes have strong dependencies across scales.
Section 2.3.2 captures these dependencies by correlating complex wavelet coefficients and their
modulus. Section 2.3.3 shows that self-similar processes have a normalized phase-modulus wa-
velet correlation matrix which is invariant to scale shift. This invariance defines a wide-sense
self-similarity.

Figure 2.2 – Top : increments δ0x(t) of a signed Poisson process and the financial S&P daily
increments from 03/01/2000 to 10/10/2018. Middle : wavelet modulus |x ⋆ ψj(t)|. The vertical
axis corresponds to the log-scale index j which is real. Dark color represents large values. These
modulus have dependencies across scales produced by Diracs or bursts of activity. Bottom : ima-
ginary part of x ⋆ ψj(t). Red and blue colors represent negative and positive values respectively.
It shows that localized structures such as Dirac create correlation of phases across octaves, when
j increases by 1 or more.

2.3.1 Scale dependencies as a trace of non-Gaussianity

Section 2.2.3 showed that if x has stationary increments then x ⋆ ψj(t) and x ⋆ ψj′(t′) are
nearly uncorrelated if |j− j′| > 1. If x is Gaussian then these coefficients are jointly Gaussian so
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it implies that they are independent. On the contrary, we will now see that non-Gaussian time-
series exhibits crucial dependency across scales. This dependency provides important information
on non-Gaussian properties of x.

Figure 2.2 shows the wavelet transform of S&P financial signal, and of a Poisson process
whose increments have a random sign. They are calculated with the complex Battle-Lemarié
wavelet. Diracs and bursts of activity in the financial signal create high amplitude wavelet coef-
ficients, which propagate across scales. It induces strong dependencies between wavelet modulus
across scales. These dependencies also appear in the wavelet transform phase. Diracs produce
high amplitude wavelet coefficients whose phase propagates regularly across octaves, when j in-
creases by 1 or more. On the contrary, financial bursts of activity have a phase that is randomly
modified from one octave to the next. Correlations when j increases by less than 1 are due to
correlations between the wavelets themselves.

To understand this dependency phenomenon, consider a localized pattern f(t) in the neigh-
borhood of t = 0, such as a Dirac. It is randomly translated to define x(t) = f(t−U), where U is
a random variable uniformly distributed in [0, 1]. Its wavelet coefficients x⋆ψj(t) = f ⋆ψj(t−U)
are centered at t = U at all scales 2j , and are thus highly dependent. Their amplitude and phase
are a signature of the translated pattern f . It illustrates the importance of wavelet coefficient
dependencies across scales, for non-Gaussian processes.

2.3.2 Joint phase-modulus correlations across scales

This section introduces a joint wavelet phase-modulus correlation matrix which captures
dependencies of wavelet coefficients across scales. Complex wavelet coefficients have a negligible
correlation at different scales because they are supported in different frequency bands. Their
correlation is thus canceled by phase fluctuations which occur at different rates. We first realign
their frequency support with a modulus, and then compute their correlation. Correlations of
wavelet coefficient modulus were first studied by Portilla and Simoncelli [Portilla, 2000]. Their
properties are analysed in [Mallat, 2020 ; Zhang, 2021]. The joint phase-modulus correlation
matrix also preserves phase information, by correlating wavelet coefficients with and without
phases. It partly characterizes phase alignments across scales.

2.3.2.1 Non-zero correlations by removing complex phase

Eliminating the phase with a modulus can introduce correlations across scales. Indeed, let
us remind that the cross-spectrum Py,z(ω) of two jointly stationary random processes y(t) and
z(t) is the Fourier transform of their cross-correlation

Py,z(ω) =
∫

E{y(t)z(t− τ)∗} e−iτω dτ,

and the Cauchy-Schwarz inequality proves that

|Py,z(ω)|2 ≤ Py(ω)Pz(ω). (2.10)
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Figure 2.3 – Top : power spectrum of x ⋆ψj for the S&P time-series. It is mostly concentrated
in [2−jπ, 2−j+1π]. Middle : power spectrum of x ⋆ ψj−1. Bottom : power spectrum of |x ⋆ ψj−1|
is mostly concentrated in [−2−j+1π, 2−j+1π] and strongly overlaps with the power spectrum of
x ⋆ ψj .

The cross-correlation of y(t) and z(t− τ) is therefore zero if their power spectra do not overlap.
Applied to y = x⋆ψj and z = x⋆ψj−a, it verifies once again that they are essentially uncorrelated
if a ̸= 0. Indeed, their power spectrum do not overlap, as illustrated in Figure 2.3. However,
we now show that the power spectrum of y = x ⋆ ψj and z = |x ⋆ ψj−a| or of y = |x ⋆ ψj | and
z = |x ⋆ ψj−a| can overlap. They can thus have non-zero correlations, after suppressing their
mean.

The power spectrum Px(ω)|ψ̂(2j−aω)|2 of x ⋆ ψj−a has a support mostly concentrated in
[2−j+aπ, 2−j+a+1π]. A modulus eliminates the phase of x ⋆ ψj−a which oscillates at the center
frequency 3×2−j+a−1π. As a consequence, the power spectrum of |x⋆ψj−a| is centered at ω = 0,
and its energy is mostly concentrated in [−2−j+aπ, 2−j+aπ] [Mallat, 2020 ; Zhang, 2021]. This is
shown by Figure 2.3. It results that the spectrum of x ⋆ ψj and |x ⋆ ψj−a| do overlap if a > 0,
and the spectrum of |x ⋆ ψj | and |x ⋆ ψj−a| overlap for any a since they are both centered at
ω = 0.

2.3.2.2 Joint phase-modulus correlation matrix

Let us write ρ(z) = (z, |z|) for any z ∈ C. We now show how to represent the dependencies
of wavelet coefficients from joint phase-modulus correlation matrix of

ρWx = (Wx, |Wx|) =
(
x ⋆ ψj(t), |x ⋆ ψj(t)|

)
t,j
.

If x is sampled at intervals normalized to 1 and is of size T then we compute wavelet coefficients
over log2N scales 1 < 2j ≤ N corresponding to 1 ≤ j ≤ log2N . If x is stationary then
E{ρWx} = (E{Wx} , E{|Wx|}) does not depend upon t. Without loss of generality we suppose
that E{x(t)} = 0 so E{Wx(t)} = 0.

The coefficients of the joint phase-modulus correlation matrix E{ρWx (ρWx)∗} are(
E{ρWx(t, j) ρWx(t− 2jτ, j − a)∗}

)
t,τ,j,a

.
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Figure 2.4 – Modulus of the joint phase-modulus correlation E{ρWx (ρWx)T } for S&P signal.
The diagonal of this matrix (τ = 0, a = 0) is the wavelet spectrum σ2

W (j) which is not constant.
To remove such normalization effect, we plot the matrix where each coefficient (t, τ, j, a) is
divided by σW (j)σW (j − a). For the 3 matrices, each subblock is a Toeplitz correlation matrix
along time (t, t − 2jτ), for scales (j, j − a) fixed, because of time stationarity. All correlation
values are constant when j varies, which is a mark of wide-sense self-similarity.

They do not depend upon t because x is stationary. We estimate them from a single realization
of x with a time average 〈

ρWx(t, j) ρWx(t− 2jτ, j − a)∗
〉

t
.

The correlation matrix E{ρWx (ρWx)T } is composed of four submatrices(
E{WxWxT } E{Wx |Wx|T }
E{|Wx|WxT } E{|Wx| |Wx|T }

)

We show that E{WxWxT } and E{Wx |Wx|T } are sparse matrices. On the other hand, we
shall see that E{|Wx| |Wx|T } may not be sparse. The coefficients of the wavelet auto-correlation
matrix E{WxWxT } are

E{x ⋆ ψj(t)x ⋆ ψj−a(t− 2jτ)∗}. (2.11)

Section 2.2.3 explains that we can approximate it by its diagonal values which define the wavelet
spectrum. For a signal of size T , since 1 ≤ j ≤ log2N we only estimate log2N wavelet spectrum
coefficients E{|x ⋆ ψj(t)|2}.

The off-diagonal matrix E{Wx|Wx|T } is a correlation between complex wavelet coefficients
and their modulus, that we shall call phase-modulus correlation.

E{x ⋆ ψj(t) |x ⋆ ψj−a(t− 2jτ)|} (2.12)

Since E{x ⋆ ψj(t)} = 0 these correlations are also covariance coefficients. Figure 2.4b shows
that wavelet phase-modulus correlations are non-negligible for a scale shift a ≥ 0 and τ = 0.
This is expected because the power spectrum of x ⋆ ψj and |x ⋆ ψj−a| have an overlapping
support. When τ ̸= 0 they become negligible because of random phase fluctuations. Since
1 ≤ j − a < j ≤ log2 T , we only estimate 2−1 log2

2 T wavelet phase-modulus cross-spectrum
coefficients E{x ⋆ ψj(t) |x ⋆ ψj−a(t)|}.
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The coefficients of the wavelet modulus auto-correlation E{|Wx| |Wx|T } are

E{|x ⋆ ψj(t)| |x ⋆ ψj−a(t− 2jτ)|}. (2.13)

Figure 2.4c shows that the wavelet modulus correlation is nearly a full matrix. Their covariance
is obtained by subtracting the modulus means. These covariances are also a priori non-zero for
all scale shift a, because the power spectra of |x ⋆ ψj | and |x ⋆ ψj−a| have overlapping supports.
They can be non-negligible for large time shift τ , because all phases have been eliminated. The
number of time shifts is nearly equal to the signal size T . For 1 ≤ j − a ≤ a ≤ log2 T , there are
about 2−1 T log2

2 T potentially non-negligible wavelet modulus correlations, which is too large to
estimate them directly from a single realization of x. Section 2.4 shows that one can reduce the
number of correlation coefficients to log3

2N , by applying a second wavelet transform on |x⋆ψj(t)|
before calculating its auto-correlation.

2.3.2.3 Non-Gaussian properties

Phase and modulus wavelet correlations can be analyzed as particular cases of phase har-
monic correlations introduced in [Mallat, 2020]. It captures non-Gaussian properties proved
in [Zhang, 2021]. The following proposition transpose these results in our context. It proves
that the existence of non-negligible wavelet modulus covariances across scales is a mark of non-
Gaussianity. We write Cov{A,B} = E{ABT } − E{A}E{B}T .

Proposition 1. If x is Gaussian and ψ̂j ψ̂j−a = 0 then for all τ

Cov{ρWx(t, j) , ρWx(t− 2jτ, j − a)} = 0.

We indeed saw that if ψ̂jψ̂j−a = 0 then x ⋆ ψj(t) and x ⋆ ψj−a(t − 2jτ) are uncorrelated
(2.5). If x is Gaussian then they are also Gaussian and hence independent. Applying a modulus
preserves this independence and thus produces covariance coefficients which remain zero, proving
the second equality. The condition ψ̂j ψ̂j−a = 0 is verified up to a very small error for |a| > 1.
For |a| = 1, the supports of ψ̂j and ψ̂j−a have a small overlap so the product is small but not
zero. It follows from the proposition that non-zero covariance coefficients across distant scales
evidence that x is not Gaussian.

Time-asymmetry is another form of non-Gaussianity, often produced by causality pheno-
mena. Let R be the time reversal operator Rx(t) = x(−t). A process x is said to be time-
reversible if the probability distributions of Rx and x are equal. Gaussian stationary processes
are time-reversible. The following proposition shows that time-reversibility can be detected from
phase correlation coefficients.

Proposition 2. If x is time-reversible then the joint wavelet modulus correlation has a Hermi-
tian symmetry along τ :

E{ρWx(t, j) ρWx(t− 2jτ, j − a)∗} = E{ρWx(t, j)∗ ρWx(t+ 2jτ, j − a)}. (2.14)
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Time-reversibility means that x and Rx have the same distribution. Since (Rx) ⋆ ψj(t) =
x ⋆ ψj(−t)∗ it implies the equality (2.14). This Hermitian symmetry is always satisfied by the
wavelet auto-correlation coefficients (2.11) even if x is not time-reversible, but not necessarily
by phase-modulus correlations and modulus auto-correlation coefficients (2.12,2.13). If they do
not have the Hermitian symmetry (2.14) then x is not time-reversible, and hence non-Gaussian.

2.3.3 Wide-sense self-similarity

Self-similarity is defined in (2.1) and (2.8) on the process distributions, which are high-
dimensional objects, on increments or wavelet coefficients. Such properties cannot be tested
statistically on a single realization. Section 2.2 gives necessary conditions (2.4,2.9) over the mar-
ginals of increments and wavelet coefficients, which are simple to verify but provides relatively
weak characterization of self-similarity. The same difficulty appears to test that a process has
a stationary distribution. It cannot be tested statistically on a single realization. Conditions on
marginals impose that the probability distributions of x(t) for each t does not depend upon
t. It can be tested numerically but it is a weak condition. More powerful characterizations of
stationarity impose that E{x(t)} and the auto-correlation of x are invariant to time shift. The
process x is then said to be wide-sense stationary. We follow the same approach for self-similarity
by imposing a scale shift invariance on a normalized joint phase-modulus correlation matrix.

Self-similarity of increments distributions (2.1) or wavelet coefficients (2.8) are defined up
to random multiplicative factors Aℓ. We eliminate these multiplicative factors with a normali-
zed phase-modulus correlation matrix where each correlation coefficient of E{ρWx (ρWx)T } is
normalized by a product of standard deviations given by σ2

W = E{|x ⋆ ψj(t)|2} :

CρW (τ ; j, a) = E{ρWx(t, j) ρWx(t− 2jτ, j − a)∗}
σW (j)σW (j − a) .

A wavelet transform introduces explicitly a scaling parameter 2j . However, the correlations
of wavelet coefficients Wx vanish across scales, and thus can not be used directly to identify
self-similarity across scales. We define a notion of wide-sense self-similarity as a translation and
scale invariance of the mean and correlation matrix of (Wx, |Wx|).

Theorem 1 (Wide-sense self-similarity). If x is self-similar up to the scale 2J in the sense of
(2.8) then there exist c1, c2, ζ1, ζ2 such that for all j ≤ J

E{|x ⋆ ψj(t)|} = c1 2jζ1 , (2.15)

E{|x ⋆ ψj(t)|2} = c2 2jζ2 . (2.16)

and for all τ , j ≤ J , a,

CρW (τ ; j, a) = CρW (τ ; 0, a). (2.17)

The theorem is proved in A.3. A process x which satisfies the properties (2.15,2.16,2.17) is
said to be wide-sense self-similar. The appendix proves that self-similarity implies wide-sense
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similarity. Similarly to moment self-similarity (2.9), wide-sense self-similarity imposes the exis-
tence of scaling exponents ζq, but only for q = 1 and q = 2. The scaling exponent ζ2 specifies
the decay of the wavelet spectrum σW (j) = E{|x ⋆ ψj(t)|2}. The ratio between first and second
order moments is a sparsity measure on wavelet coefficients

sW (j) = E{|x ⋆ ψj(t)|}
σW (j) . (2.18)

If x is wide-sense self-similar then s2
W (j) = cs 2jζs ≤ 1, where cs = c2

1 c
−1
2 and ζs = 2ζ1 − ζ2 ≥ 0.

The lower s2
W (j) the sparser x ⋆ ψj(t). The exponent ζs is a sparsity rate which governs the

increase of sparsity when the scale decreases. If x is Gaussian then ζs = 0. If ζs > 0 then the
sparsity of x ⋆ ψj increases as j decreases. The constant cs is a sparsity multiplicative factor. If
x is Gaussian then x ⋆ ψj is also Gaussian and one can verify that cs = π/4, which is the ratio
between first and second order moments of complex Gaussian random variables.

Wide-sense self-similarity also imposes that the normalized phase-modulus correlation matrix
CρW depends only on time shift τ and scale shift a. This is a powerful second order condition,
which is sufficient to reveal existence of important self-similar properties in time-series. It applies
to the non-negligible coefficients of each of the three submatrices of CρW . Over diagonal wavelet
auto-correlation coefficients, it is already specified by (2.16). Over non-negligible phase-modulus
cross-spectrum coefficients, it imposes that

CW |W |(0; j, a) = E{Wx(t, j) |Wx(t, j − a)|}
σW (j)σW (j − a)

does not depend upon j. These coefficients are estimated by replacing each expected value by
an average on t. For self-similar processes, since these moment do not depend on j, we can
further improve this estimation by averaging them over scales. It defines an scale invariant
phase-modulus cross spectrum

CW |W |(a) =
〈
CW |W |(0; j, a)

〉
j
. (2.19)

For wavelet modulus auto-correlations (2.13), these conditions are translated into conditions
over a scattering cross-spectrum which is introduced in the next section.

Processes such as fractional Brownian motion [Mandelbrot, 1968] or multifractal random
walk [Bacry, 2001a] are self-similar and therefore wide-sense self-similar. Self-similarity cannot
be tested statistically, whereas wide-sense self-similarity is a correlation property which can
be estimated. Figure 2.4 shows that the S&P financial signal is wide-sense self-similar. Indeed
logE{|x⋆ψj(t)|} and logE{|x⋆ψj(t)|2} have a linear decay along j, and the normalized correlation
CρW is constant along its diagonals when j varies.

2.4 Scattering cross-spectrum

Section 2.3.2 explains that there are too many wavelet modulus auto-correlation coefficients
to estimate them from a single realization of x. We introduce a low-dimensional approximation of
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this auto-correlation matrix by applying a second wavelet transform, which defines a scattering
transform [Mallat, 2012]. The resulting scattering covariance is nearly diagonal and its spectra
can be estimated from a single realization.

2.4.1 Diagonal scattering cross-correlation

Section 2.2.3 explains that if x has self-similarity properties then its auto-correlation matrix
is well approximated by a diagonal matrix after applying a wavelet transform. Similarly, instead
of computing directly the auto-correlation of |Wx| =

(
|x ⋆ ψj(t)|

)
t,j

we will compute the auto-
correlation of its wavelet transform.

Applying a second wavelet transform W on |Wx| defines a scattering transform Sx =
W |Wx|, with

Sx(t; j, k) := |x ⋆ ψj | ⋆ ψk(t).

It is non-negligible only if k > j. Indeed, the Fourier transform of |x⋆ψj | is mostly concentrated
in [−2−jπ, 2−jπ]. If k ≤ j then it does not intersect the frequency interval [2−kπ, 2−k+1π] where
the energy of ψ̂k is mostly concentrated, in which case Sx(t; j, k) ≈ 0.

Since Sx = W |Wx|, its auto-correlation is

E{SxSxT } = W E{|Wx| |Wx|T }W T , (2.20)

which specifies E{|Wx| |Wx|} because W is invertible. The coefficients of E{SxSxT } are

E{|x ⋆ ψj | ⋆ ψk(t) |x ⋆ ψj−a| ⋆ ψk′(t− τ)∗}

for all time t, time shift τ , first wavelet scale j and scale shift a, and second wavelet scales
k, k′. We impose that k > j and k′ > j − a otherwise the scattering coefficients are negligible.
Applying (2.10) to y(t) = |x ⋆ ψj | ⋆ ψk(t) and z(t) = |x ⋆ ψj−a| ⋆ ψk′(t − τ) shows that this
correlation is negligible if k ̸= k′ because the spectra of y and z barely overlap. Indeed ψ̂k and
ψ̂k′ are concentrated over non-overlapping frequency intervals. Correlations for k = k′ have a
fast polynomial decay away from τ = 0 [Wornell, 1993] when the cross-spectrum of the modulus
is regular, and we thus shall only consider these scattering correlations for τ = 0. Scattering
correlations are thus calculated only for k = k′ = j − b with b < 0 and τ = 0.

We incorporate the normalization of the wavelet modulus auto-correlation by the wavelet
spectrum σ2

W (j) = E{|x ⋆ ψj(t)|2} to the scattering correlations. The normalized diagonal scat-
tering coefficients for k = k′ = j − b define a scattering cross-spectrum whose coefficients are :

CS(j, a, b) = E{|x ⋆ ψj | ⋆ ψj−b(t) |x ⋆ ψj−a| ⋆ ψj−b(t)∗}
σW (j)σW (j − a) .

Since ψj−b has a Fourier transform mostly supported in [2−j+bπ, 2−j+b+1π], CS(j, a, b) can be
interpreted as the cross-spectrum of |x⋆ψj | and |x⋆ψj−a| integrated over this frequency interval.
These cross-spectra specify intermittency phenomena which appear when the wavelet modulus
correlations (2.13) remain large on a long-range of time. If the modulus are uncorrelated in
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time across scales then CS(j, a, b) is nearly constant along b for j, a fixed. On the contrary, if
CS(j, a, b) has a fast decay in b then it implies that the modulus have long range correlations in
time.

If x is of size T then there are at most log2 T scales indices j, a and b. it shows that the
scattering transform can provide an approximation of T log2

2 T wavelet modulus auto-correlation
coefficients with log3

2 T scattering cross-spectrum coefficients.

2.4.2 Properties

The following proposition derives from Proposition 2 that the imaginary part of CS captures
time-asymmetry properties of x. The proof is in A.4.

Proposition 3. If x is Gaussian and ψ̂j ψ̂j−a = 0 then

CS(j, a, b) = 0.

If x is time-reversible then for all j, a and b the imaginary part satisfies

ImCS(j, a, b) = 0.

The following theorem proves that the self-similarity condition (2.17) on CρW can be eva-
luated on non-zero scattering coefficients.

Theorem 2. The scale invariance (2.17) of CρW implies that

∀j ≤ J , CS(j, a, b) = CS(0, a, b). (2.21)

The theorem is proved in A.4. This condition on scattering cross-spectrum coefficients is
necessary and almost sufficient to guarantee the scale invariance of the normalized wavelet mo-
dulus auto-correlation E{|Wx| |Wx|T }. To do so we would also need to impose an invariance
condition on the off-diagonal coefficients of CS but these coefficients have mostly a negligible am-
plitude. In the following, we shall thus systematically replace E{|Wx| |Wx|T } by the scattering
cross-spectrum correlation CS and assess the scale invariance from (2.21). They are estimated
by replacing expected values by a time averaging. For self-similar processes, Cs does not depend
on j. These invariant coefficients are thus estimated by averaging them over scales. It defines a
scale invariant scattering cross-spectrum

CS(a, b) = ⟨CS(j, a, b)⟩j . (2.22)

For a signal of size T , there are at most log2
2 T such coefficients.

2.5 Numerical dashboard for multi-scale processes

We show that the Scattering Spectra, defined as the multi-scale moments (2.6,2.18,2.19,2.22),
specify intermittency, time-asymmetries and self-similar properties of multi-scale processes. Next
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section studies standard mathematical models of multi-scale processes, and the following section
considers numerical financial and turbulent time-series.

2.5.1 Models of self-similar processes

We consider Brownian motions, Poisson processes, multifractal random walks and Hawkes
processes. To analyze their self-similarity properties we display and analyze their Scattering
Spectra, composed of

— σ2
W (j) : wavelet spectrum (2.6) shown in Figure 2.5a,

— s2
W (j) : wavelet sparsity factor (2.18) in Figure 2.5b,

— CW |W |(a) : scale invariant phase-modulus cross-spectrum (2.19) in Figure 2.6.

— CS(a, b) : scale invariant scattering cross-spectrum (2.22) in Figure 2.7.

Table 2.1 gives the power-law decay parameters of σ2
W and s2

W .
Expected values are estimated with empirical averages over T samples in time, as in (2.7). If

x has a finite integrable scale s, which means that x(t) and x(t′) are independent if |t− t′| > s

(see section 2.2.1), then we set the maximum wavelet scale 2J to be equal to s. When the signal
size T goes to ∞, time average estimators are consistent estimators of expected values. Indeed,
if the wavelet has a support of size α then all Scattering Spectra coefficients are expected values
of operators whose support sizes are at most 2α2J . One can thus verify that each empirical
estimator averages at least T (2αs)−1 blocks of independent coefficients, which have the same
mean because x is stationary. These empirical estimators thus converge to the expected value
when T increases, with a variance which decays at least like 2αsT−1.

In this section, we consider multi-scale processes whose integrable scale is not necessarily
finite. The maximum wavelet scale 2J is chosen to be smaller than the signal size T in order
for large scale coefficients to be well estimated. Time average estimators of Scattering Spectra
coefficients can then provide consistent estimators at all the scales smaller than 2J . The variance
decay of our estimators is not guaranteed mathematically, but it is verified numerically.

Brown. Poisson MRW Hawkes Jet S&P
ζ2 1.0 1.0 1.0 1.0 0.66 1.0
cs 0.79 × 0.66 0.65 0.67 0.61
ζs 0.00 × 0.016 0.013 0.025 0.016

Table 2.1 – Self-similarity parameters ζ2, cs, ζs, for different multi-scale processes. For the jet,
ζ2, cs, ζs are given on the self-similar range.

Fractional Brownian motion. It is a Gaussian self-similar process, studied by Mandelbrot
[Mandelbrot, 1968]. It has stationary increments and a generalized power spectrum Px(ω) =
c2 |ω|−ζ2−1. Computations are performed with ζ2 = 1, which corresponds to a standard Brownian
motion. Wavelet sparsity coefficients have a power law decay with cs = π/4 and ζs = 0 in Table
2.1, because it is a Gaussian process. Propositions 1 and 3 prove that CW |W |(a) ≈ 0 and
CS(a, b) ≈ 0 for a > 0, which is verified in Figure 2.6 and Figure 2.7. For a = 0, we also observe
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Figure 2.5 – (a) Power spectrum σ2
W (j) in (2.6) as a function of −j, which is a log frequency

index. (b) Sparsity factor s2
W (j) in (2.18) as a function of −j. Each process is shown with a

different color. Non-linear curves reveal absence of self-similarity for Poisson process and the
turbulent jet at fine scales.

in Figure 2.7 that CS(0, b) is constant, which shows that |x ⋆ ψj(t)| are uncorrelated at time
increments which are sufficiently large relatively to the scale 2j . As proved by propositions 2
and 3, the phases of CW |W | and CS are zero in Figures 2.6 and 2.7, because a Gaussian process
is time-reversible. Since Brownian motions are self-similar, the phase-modulus cross-spectrum
CW |W | and the scattering cross-spectrum CS remain constant across scales 2j .

Poisson process. It is a jump process having independent stationary increments. The number
of jumps in an interval is proportional to the intensity λ. We further suppose that each jump
is positive or negative with a probability 1/2. Its power spectrum has a power law decay with
ζ2 = 1, but it is non-Gaussian and not self similar, which clearly appears in its Scattering
Spectra. Figure 2.5b shows that log s2

W (j) in (2.23) has a slope which varies as a function of −j.
Indeed, if 2j ≪ λ−1 then [Bruna, 2015] proves that s2

W (j) ∼ 2j because

E{|x ⋆ ψj(t)|}2 ∼ λ2 22j and E{|x ⋆ ψj(t)|2} ∼ λ2 2j ,

whereas if 2j ≫ λ−1 then s2
W (j) ∼ 1 because x ⋆ ψj(t) converges in distribution to a Gaussian

white noise of variance λ2j as 2j goes to ∞ [Bruna, 2015], and hence

E{|x ⋆ ψj(t)|}2 ∼ λ 2j and E{|x ⋆ ψj(t)|2} ∼ λ 2j .

The non-self-similarity of Poisson process is also revealed by the large variations of CS(j, a, b)
along j, which appears as large error bars in Figure 2.7.

Multifractal Random Walk (MRW). It is a non-Gaussian self-similar process, whose in-
crements have scaling exponents ζq in (2.4) that are quadratic in q. Increments are computed as
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Figure 2.7 – Modulus and phase of the scale invariant scattering cross-spectrum CS(a, b) (2.22)
as a function of b. A skewed MRW and a quadratic Hawkes are shown. The parameter b is a
log-frequency. Each color curve corresponds to a different scale shift a. Error bars represent the
mean-square variations of CS(j, a, b) around CS(a, b). Non-zero phases reveal time-asymmetry
of wavelet modulus.

a product of the increment δjB of a Brownian motion with a log-normal process

δjx(t) = δjB(t) eΩj(t).

The Gaussian process Ωj(t) has an auto-correlation with a slow logarithmic decay :

Cov{Ωj(2jt),Ωj(2jt′)} = λ2 ln θ(|t− t′|),

where θ decreases linearly and is specified in [Bacry, 2001a]. Since Ωj is highly correlated in time,
it creates wavelet modulus that are also highly correlated in time with bursts of activity. The
parameter λ governs the intensity of this intermittency. If λ = 0 then the multifractal random
walk is a Brownian motion. For MRW one can prove [Bacry, 2001a] that ζs = λ2, so Table 2.1
recovers the value λ2 = ζs = 0.016.
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The scale invariant scattering cross-spectrum CS(a, b) is the power spectrum of the modulus
auto-correlation at two scales shifted by a, where b is a log-frequency index. Long range correla-
tion of wavelet modulus appears in Figure 2.7, which shows that CS(a, b) has a power-law decay
for each a.

A skewed multifractal random walk incorporates a time-asymmetry by imposing that incre-
ments in the past are correlated with the future volatility [Pochart, 2002], in order to reflect the
so-called leverage effect [Bekaert, 2000 ; Bouchaud, 2001]. This volatility is defined in Finance
as the mean square average of increments over a fixed period of time. It amounts to replacing
the Gaussian process Ωj by Ωj − k ⋆ δjB where k(t) is a strictly causal power-law convolution
kernel. The faster K decreases the shorter the scale of asymmetry. Figure 2.6 shows CW |W |(a) for
skewed MRW. As expected from Proposition 2, this time-asymmetry is revealed by the non-zero
phase of CW |W |, which implies that its imaginary part is also non-zero.

Hawkes process. It is a non-homogeneous, causal self-excited point process [Bacry, 2014 ;
Bacry, 2015], where each jump is positive or negative with probability 1/2. The jump intensity
λt depends on the average of the past-jumps with power-law decaying kernel h

λt = λ∞ + h ⋆ |dN |t,

where dNs is the signed jump measure and h ⋆ |dN |t :=
∫ t

−∞ h(t − s)|dNs|. A linear feedback
term l ⋆ dNt can be added to account for correlation between past signed increments and future
volatility.

A quadratic Hawkes model [Blanc, 2017] introduces time-asymmetric modulus dependencies
with a causal quadratic feedback of kernel k(t)

λt = λ∞ + h ⋆ |dN |t + l ⋆ dNt + |k ⋆ dNt|2.

If
∫
|h(t)| dt < 1 then a quadratic Hawkes is stationary, and if

∫
(|h(t)| + |k(t)|2) dt < 1 the

mean intensity λ is finite [Aubrun, 2021]. In numerical simulation, as in [Blanc, 2017] we set
h(t) ∼ |t|−1.2, g(t) ∼ e−0.01|t| and k(t) ∼ e−0.03|t| with

∫
(|h(t)| + |k(t)|2) dt = 0.9. As expected

from Proposition 3, Figure 2.7 shows that for this quadratic Hawkes, CS(a, b) has a non-zero
phase which reveals its modulus time-asymmetry [Zumbach, 2009].

2.5.2 Analysis of multi-scale time-series

Brownian motions, multifractal random walks and Hawkes processes are used as models of
multi-scale time-series, particularly in Finance and Turbulence [Mandelbrot, 1968 ; Mandelbrot,
1997 ; Bacry, 2001b ; Mordant, 2002 ; Bacry, 2014]. The next two paragraphs analyze the Scat-
tering Spectra of financial and turbulent time-series. Expected values are computed with time
average estimators, which introduce an estimation error.
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2.5.2.1 Finance

Finding stochastic models of financial time-series is important to compute the price of finan-
cial instruments which mitigate financial risks, such as options. A Brownian motion is a simple
first order model, on which the Black and Scholes option pricing formula is based. However,
many studies have shown strong deviations to Gaussianity, including the existence of bursts of
activity and crises. Multifractal random walks [Bacry, 2001a], Hawkes processes [Blanc, 2017]
and rough volatility models [Gatheral, 2018 ; El Euch, 2019b ; El Euch, 2019a] are among the
most popular models used to capture non-Gaussian properties of financial markets [Mandelbrot,
1963 ; Bacry, 2001b ; Chicheportiche, 2014a ; Bacry, 2015 ; Blanc, 2017 ; Gatheral, 2018]. We
consider the American stock index S&P log-prices sampled over 5 minutes from January 2000
to October 2018. A standard preprocessing is performed and is described in A.5. The resulting
signal has N = 7.5 105 samples.

Figure 2.5 and Table 2.1 show that S&P has a wavelet spectrum decay exponent ζ2 = 1,
which is the same as a Brownian motion. However, its sparsity factor cs = 0.61 ̸= π/4 ≈ 0.79
and exponent ζs = 0.016 ̸= 0, which shows that this time-series is clearly not Gaussian. These
values are matched by the MRW model, and by a Hawkes process with calibrated parameters.

The S&P scale invariant phase-modulus cross-spectrum CW |W | in Figure 2.6 is similar to
a skewed multifractal random walk (SMRW), with a strong time-asymmetry shown by a non-
zero phase, related to the leverage effect [Bekaert, 2000 ; Bouchaud, 2001]. The amplitude of
|CS(a, b)| in Figure 2.7 is similar for the S&P and the MRW. However, the phase of CS(a, b)
is non-zero for the S&P, which proves that wavelet modulus are also asymmetric in time. This
is not well captured by the SMRW model. Such an effect is referred to as the Zumbach effect
in Finance, which can be explained from causal agent reactions to past trends [Zumbach, 2009 ;
Chicheportiche, 2014a ; Blanc, 2017]. Such a modulus time-asymmetry appears in the quadratic
Hawkes model, but |CS(a, b)| has different variations along the a direction for S&P and for the
Hawkes model, presumably because of our choice of an exponentially decaying kernel k(t) (which
was calibrated on intraday data only). This analysis of the Scattering Spectra shows that none
of these mathematical models fully capture all statistical properties of the S&P time-series.

Financial signals are often believed to be self-similar. We can estimate whether the S&P sa-
tisfies the wide-sense self-similarity properties of Theorem 1. The wavelet spectrum and sparsity
factors in Figure 2.5 do indeed have a power law decay. Wide-sense self-similarity also imposes
that CW |W |(0; j, a) and CS(j, a, b) do not depend upon the scale j. Figures 2.6 and 2.7 display
their mean-square variations along j as error bars. They are of the same order as the estimation
variance of each coefficients. We thus conclude that S&P time-series has no significant deviation
from wide-sense self-similarity.

2.5.2.2 Turbulence

Kolmogorov introduced in 1941 a self-similar Gaussian model of Turbulence [Kolmogorov,
1941a ; Kolmogorov, 1 941 ; Kolmogorov, 1941b], with an asymptotic analysis of Navier-Stokes
equations at high Reynolds numbers. This analysis predicts that the projection of the velocity
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field on a line is a stationary process whose power spectrum has a power-law decay with ζ2 = 2/3.
However, turbulent time-series are highly non-Gaussian, and Kolmogorov’s initial theory was
then refined to take into account intermittency and the presence of vortices [Kolmogorov, 1962 ;
Frisch, 1991].

We study the Scattering Spectra of experimental velocity measurements along a single di-
rection, measured over a turbulent gaseous helium jet at low temperature, with a high Reynolds
number equal to 929 [Chanal, 2000]. This time-series has N = 3.5 107 samples and is thus much
larger than the S&P time-series, providing more accurate estimators of the Scattering Spectra.
The non-zero phase of CW |W |(a) and CS(a, b) in Figures 2.6 and 2.7 shows a time-asymmetry,
which results from the directionality of the jet propulsion. The quadratic Hawkes provides the
best model of CS(a, b) but it fails to accurately represent CW |W |(a).

It thus appears that none of the existing mathematical model provides accurate models of
this turbulent time-series.

Turbulence time-series may be self-similar on a frequency range limited by the Reynolds
number at low frequencies and by the fluid viscosity at high frequencies. The wavelet power
spectrum and sparsity factors in Figure 2.5 are indeed self-similar up to the finest scale j = 2,
which is the diffusion scale created by the fluid viscosity. The self-similarity error bars in Figure
2.6 and Figure 2.7 are of the same order as for the S&P. However, their amplitude is statistically
significant in this case because this time-series is 50 times larger than the S&P time-series and the
estimation variance is thus much smaller. It shows that this turbulent time-series has significant
deviations from wide-sense self-similarity.

2.6 Maximum entropy Scattering Spectra models

Brownian motions, multifractal random walks and Hawkes models are defined by a fixed
number of parameters which does not depend upon their size T . They can be calibrated on
data, but we saw they are typically too restrictive to capture all important properties of multi-
scale time-series. On the other hand, neural network models [Oord, 2016 ; Eckerli, 2021] have a
considerable flexibility but they can not be trained from a single time-series because the number
of parameters is much larger than T .

This section introduces maximum entropy models computed from the scattering spectra
energy vector Φ(x) of dimension smaller than log3

2 T and hence much smaller than T . This
energy vector is specified in the next section. It provides consistent estimators of the Scattering
Spectra for random processes having a finite integral scale. We study the approximation of
multi-scale time-series from such maximum entropy models. Section 2.6.3 shows that Scattering
Spectra models are sufficiently flexible to approximate a wide range of mathematical processes,
as well as real financial and turbulent data.

2.6.1 Scattering Spectra energy vector

We define maximum entropy models of the form pθ(x) = Z−1
θ e−⟨θ,Φ(x)⟩ for a certain θ ∈ RM ,

where the energy vector Φ(x) computes the Scattering Spectra estimation for any time-series x
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of dimension T .
The Scattering Spectra vector Φ(x) is normalized by wavelet spectrum coefficients, which

are constants estimated from a realization x̃ of the random process x that we want to model

σ̃2
W (j) =

〈
|x̃ ⋆ ψj(t)|2

〉
t
.

If x(t) has a finite integrable scale (see section 2.2.1), the estimator σ̃W of σW is consistent as
T goes to ∞.

Low-frequencies are captured by the low-pass filter φJ = ψJ+1 defined in (A.2). The Scatte-
ring Spectra energy is defined by four families of coefficients

Φ(x) =
(
Φ1(x),Φ2(x),Φ3(x),Φ4(x)

)
.

The first family provides J order 1 moment estimators squared, corresponding to wavelet sparsity
coefficients (2.18)

Φ1(x)[j] =
⟨|x ⋆ ψj(t)|⟩2t

σ̃2
W (j)

. (2.23)

The J + 1 normalized second order wavelet spectrum associated to x are computed by

Φ2(x)[j] =
〈
|x ⋆ ψj(t)|2

〉
t

σ̃2
W (j)

. (2.24)

There are J(J + 1)/2 wavelet phase-modulus cross-spectrum coefficients

Φ3(x)[j, a] =
⟨x ⋆ ψj(t) |x ⋆ ψj−a(t)|⟩t

σ̃W (j) σ̃W (j − a) . (2.25)

Finally, it includes less than J(J + 1)(J + 2)/6 scattering cross-spectrum

Φ4(x)[j, a, b] =

〈
|x ⋆ ψj | ⋆ ψj−b(t) |x ⋆ ψj−a| ⋆ ψ∗

j−b(t)
〉

t

σ̃W (j) σ̃W (j − a) .

The dimension of Φ(x) is smaller than J3 ≤ log3
2 T as soon as T ≥ 8, this is much smaller than

the dimension T of x.

2.6.2 Model validation with test moments

This section evaluates numerically the precision of maximum entropy models defined from
the Scattering Spectra energy Φ(x) 1, to approximate the probability distributions of real mathe-
matical processes and real data. The maximum entropy model pθ(x) = Z−1

θ e−⟨θ,Φ(x)⟩ is sampled
with a standard microcanonical algorithmic approach reviewed in A.6. It is computed with a
gradient descent which avoids estimating the macrocanoncial parameters θ. The choice of the
maximum wavelet scale 2J amounts to defining an integrable scale equal to 2J and hence nearly

1. the Scattering Spectra are a complex representation, for the sake of obtaining a real representation we
concatenate its real and imaginary part
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Figure 2.8 – Synthesis results. (Left) Increments δ0x(t) of original (blue) and generated
(orange) time-series. (Right) Using the same color code : cumulative marginal distribution func-
tion F (δx), log of marginal moments ⟨|δjx(t)|q⟩t as a function of j, leverage Lj(τ) and Zumbach
integral, for the Brownian, MRW (skewed), Hawkes (quadratic), turbulent jet and S&P. Leverage
and Zumbach are shown for a specific j. Error bars show the standard deviation for test moments
of order greater than 3. Though it is based on order 1 and order 2 moments, our model is able
to capture higher order moments used to reveal scaling properties as well as time-asymmetries.

independent coefficients at distances larger than 2J . Indeed, the Scattering Spectra model then
does not impose any constraint on coefficients whose distance are much larger than 2J so the
entropy maximisation yields a random process whose coefficients are nearly independent at such
distances.

Assessing the precision of a model from a dataset of samples drawn from an unknown distri-
bution is an ill-defined problem. A maximum entropy model constrains the values of moments
E{Φ(x)}. One may find errors by comparing moments which are not explicitly constrained. Such
test moments are estimated on the original time-series and on time-series generated by the model
itself. Following [Leonarduzzi, 2019], we describe test moments used in the Finance literature
to identify important differences relatively to Brownian motions. Figure 2.8 compares moment
values obtained from a Scattering Spectra model with the original time-series. The following
test moments are computed on increments δjx(t) = x(t)− x(t− 2j) which are stationary. While
our model considers dyadic scales j ∈ Z, we consider all scales 2j ∈ R+ for test moments.

Cumulative distribution F (δx) of increments δ0x(t) = x(t)− x(t− 1) at the finest scale.
Marginal high order moments described in (2.3) are estimated by time average ⟨|δjx(t)|q⟩t at

all scales 2j , for 0.3 ≤ q ≤ 3. The multi-scale properties of these moments is reviewed in Section
2.2.2.

Leverage moments measure asymmetric dependencies between past and future increments in
Finance [Bekaert, 2000 ; Bouchaud, 2001]. A leverage correlation for a time shift τ is an order 3
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moment, at any scale 2j :
Lj(τ) =

〈
δjx(t− τ)| δjx(t)|2

〉
t
.

If x has a time-reversible distribution then Lj(τ) = −Lj(−τ). Results are shown in Figure 2.8
at an intermediate scale 2j = 159 that corresponds to the day in the case of S&P. The same
scale is taken for all processes except for the Jet for which we take 2j = 1.

Zumbach moments evaluate the time-asymmetry of the volatility in Finance [Zumbach, 2009 ;
Chicheportiche, 2014a]. The volatility is the energy of increments over a time period of size 2j

Σ2
j (t) =

〈
|δ0x(u)|2

〉
t−2j≤u<t

.

A Zumbach moment for a time shift τ is an order 4 moment at a scale 2j

Zj(τ) =
〈
|δjx(t− τ)|2 Σ2

j (t)
〉

t
.

If x is time-reversible then Zj(−τ) = Zj(τ). To evaluate the time-asymmetry, Figure 2.8 shows∫ t
0(Zj(s)−Zj(−s)) ds as a function of t for a scale 2j = 159, that corresponds to the day for S&P.

This asymmetry coefficient on an order 4 moment is typically estimated with a large variance
as we shall see.

2.6.3 Generation from Scattering Spectra models

Figure 2.8 gives results of Scattering Spectra models computed from a single realization of
a Brownian motion, a skewed MRW, a quadratic Hawkes process, a turbulent jet and the S&P
financial signal. It displays realizations generated by these models and compares test moments.
For financial and turbulent data, the syntheses recover signals of size N = 7.105 with models
computed over J = 11 scales. The resulting Scattering Spectra model has 375 parameters. Figure
2.8 shows that all test moments of order 2 or below are perfectly reproduced by Scattering
Spectra models, for Brownian motion, MRW and Hawkes as well as for the turbulent jet and
S&P financial data. Marginal moments of order 1/3 ≤ q ≤ 3 are captured by our model on all
processes, which is in accordance with the well reproduced cdf.

For test moments of order 3 or 4, including the leverage and Zumbach effects that capture
time-asymmetries, we represent the variance of estimators with an error bar, which is quite large
for the Zumbach effect. Leverage is well captured for MRW, Hawkes, Jet, and remains within
the estimation error bar for S&P. Zumbach integral estimations have a much larger variance.
The main information is in the sign of this integral, when significant. This test moment is again
reproduced on both Hawkes and S&P within the estimation error. Its high variance clearly shows
the importance of using low order moments, even for time-asymmetries. Scattering Spectra
models reveal such non-Gaussian properties with a modulus and moments of order 1 and 2. In
the case of the S&P, we believe that any remaining discrepancy for the Zumbach effect comes
from our somewhat naive treatment of closing periods during the night.
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2.7 Conclusion

We introduced the Scattering Spectra which give an interpretable low-dimensional represen-
tation of processes having stationary increments. It captures their power spectrum, multi-scale
sparsity, and the dependencies of wavelet coefficients phase and modulus across scales. Wide-
sense self-similar signals have Scattering Spectra which are invariant to scale shifts, and thus
define a representation of even lower dimension.

For a time-series of size T , this Scattering Spectra is at most of dimension log3
2N . We

showed numerically that it reveals potential non-Gaussianity and self-similar properties. This
was demonstrated on mathematical multi-scale models such as fractional Brownian motions,
multifractal random walks and Hawkes processes, but also on real time-series in Finance and
Turbulence. Maximum entropy Scattering Spectra models capture essential multi-scale depen-
dency properties and can be efficiently sampled with a microcanonical approach.

Scattering Spectra models are related to generative convolutional neural networks based on
covariance matrices [Gatys, 2015]. Similarly to a one-hidden layer convolutional neural network,
it computes a cascade of two convolutions and a pointwise non-linearity. The network filters are
wavelets which are not learned. It provides a much lower dimensional representation of random
processes than usual deep convolutional neural networks, and it is furthermore interpretable.
However, it only applies to signals which are stationary or have stationary increments.

Next chapter considers a first extension towards models of multivariate processes such as
physical fields.
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Chapitre 3
Scattering Spectra models of Physical fields

Multivariate processes depending on multiple space variables are widely encountered
in Physics. This chapter constitutes an extension of the previous chapter to this
type of multivariate processes. Physicists need to characterize fields with a variety
of structures, but building probabilistic models beyond the simple Gaussian model
is often challenging, especially when the number of data samples is limited. We
introduce Scattering Spectra models that characterize scale and angle dependencies
on a field and make use of symmetry and regularity properties of physical fields
and show that they can provide accurate and compact statistical descriptions for a
wide range of fields. Providing both summary statistics and generative models, this
representation can be used for data exploration, classification, parameter inference,
and component separation in analyzing the ever-growing datasets in physics and
beyond.
This chapter is adapted from the following submitted paper. Sihao Cheng, Rudy
Morel, Erwan Allys, Brice Ménard, Stéphane Mallat. Scattering Spectra Models for
Physics, 2023.

Foreword
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3.1 Introduction

An outstanding problem in statistics is to estimate the probability distribution p(x) of high
dimensional data x from few or even one observed sample. In physics, establishing probabilistic
models of stochastic fields is also ubiquitous, from the study of condensed matter to the Universe
itself. Indeed, even if physical systems can generally be described by a set of differential equations,
it is usually not possible to fully characterize their solutions. Complex physical fields, described
here as non-Gaussian random processes x, may indeed include intermittent phenomena as well as
coherent geometric structures such as vortices or filaments. Having realistic probabilistic models
of such fields however allows for considerable applications, for instance to accurately characterize
and compare non-linear processes, or to separate different sources and solve inverse problems.
Unfortunately, no generic probabilistic model is available to describe complex physical fields
such as turbulence or cosmological observations. This chapter aims at providing such models for
stationary fields, which can be estimated from one observed sample only.

At thermal equilibrium, physical systems are usually characterized by the Gibbs probability
distribution, also called Boltzmann distribution, that depends on the energy of the systems [Lan-
dau, 2013]. For non-equilibrium systems, at a fixed time one may still specify the probability
distribution of the field with a Gibbs energy, which is an effective Hamiltonian providing a com-
pact representation of its statistics. Gibbs energy models can be defined as maximum entropy
models conditioned by appropriate moments [Jaynes, 1957]. The main difficulty is to define and
estimate the moments which specify these Gibbs energies.

For stationary fields, whose probability distributions are invariant to translation, moments
are usually computed with a Fourier transform, which diagonalizes the covariance matrix of the
field. The resulting covariance eigenvalues are the Fourier power spectrum. However, capturing
non-Gaussian properties requires to go beyond second-order moments of the field. Third and
fourth-order Fourier moments are called bispectrum and trispectrum. For a cubic d-dimensional
stationary field of length L, the number of coefficients in the raw power spectrum, bispectrum
and trispectrum are O(Ld), O(L2d) and O(L3d) respectively. High-order moment estimators
have high variance and are not robust, especially for non-Gaussian fields, because of potentially
rare outliers which are amplified. It is thus very difficult to accurately estimate these high-order
Fourier spectra from a few samples. Accurate estimations require to considerably reducing the
number of moments and eliminating the amplification effect of high-order moments.

Local conservation laws for mass, energy, momentum, charge, etc. result in continuity equa-
tions or transport equations. The resulting probability distributions of the underlying processes
thus are typically regular to deformations that approximate the local transport. These proper-
ties have motivated many researchers to use of a wavelet transform as opposed to a Fourier
transform, which provides localized descriptors. Most statistical studies have concentrated on
second-order and marginal wavelet moments [e.g., Bougeret, 1995 ; Vielva, 2004 ; Podesta, 2009]
which fail to capture important non-Gaussian properties of a field. Other studies [Ha, 2021] use
wavelet operator for interpretation with application to cosmological parameter inference, but
rely on a trained neural network model.
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In recent years, new representations have been constructed by applying point-wise non-linear
operators on the wavelet transforms of non-Gaussian fields to recover their high-order statistics.
The scattering transform, for instance, is a representation that is built by cascading wavelet
transforms and non-linear modulus [Mallat, 2012 ; Bruna, 2013]. This representation has been
used in astrophysics and cosmology [Cheng, 2021a], to study the interstellar medium [Allys,
2019 ; Saydjari, 2021], weak-lensing fields [Cheng, 2020 ; Cheng, 2021b], galaxy surveys [Valo-
giannis, 2022], or radio observations [Greig, 2022]. Other representations, which are built from
covariances of phase harmonics of wavelet transforms [Mallat, 2020 ; Zhang, 2021], have also
been used to model different astrophysical processes [Allys, 2020 ; Jeffrey, 2022 ; Régaldo-Saint
Blancard, 2023]. Such models, which can be built from a single image, have in turn enabled the
development of new component separation methods [Regaldo-Saint Blancard, 2021 ; Delouis,
2022], which can be directly applied to observational data without any particular prior model
of the components of a mixture [Auclair, 2023].

These models however suffer from a number of limitations : they are not very good at
reproducing vortices or long thin filaments, and they require an important number of coefficients
to capture dependencies between distant scales, as well as angular dependencies. Building on
those previous works, reduced scattering covariance representations have been introduced, but
only for time-series, by leveraging scale invariance as we did in chapter 2. In this chapter,
we present the Scattering Spectra, a low-dimensional representation that is able to efficiently
describe a wide range of non-Gaussian processes encountered in physics. In particular, we show
how it is possible to take into account the intrinsic regularity of physical fields to dramatically
reduce the dimension of such representations. The first part of the chapter presents maximum
entropy models and Scattering Spectra statistics, as well as their dimensional reduction. The
second part of the chapter presents a quantitative validation of these models on various two-
dimensional multiscale physical fields and discuss their limitations.
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Figure 3.1 – Steps to build a feasible model for a random field x from only one or a few
realizations. We first build a low-dimension representation Φ(x) of the random field, which
specifies a maximum entropy model. The representation Φ(x) is obtained by conducting the
wavelet transform Wx and its modulus |Wx|, and then computing the means and covariance
of all wavelet channels (Wx , |Wx|). Such a covariance matrix is further binned and sampled
using wavelets to reduce its dimensionality, which is called the Scattering Spectra S̄(x). Finally,
These Scattering Spectra are renormalized and reduced in dimension by thresholding its Fourier
coefficients along rotation and scale parameters Φ = PS̄, making use of the regularity properties
of the field. For many physical fields, this representation can be as small as only around ∼ 102

coefficients.

3.2 Methods

3.2.1 Gibbs energy of stationary fields

We review the properties of Gibbs energies resulting from maximum entropy models condi-
tioned by moment values [Geman, 1984 ; Zhu, 1997 ; Zhu, 1998]. We write x(u) a field where the
site index u belongs to a cubic d-dimensional lattice of size L. It results that x ∈ RLd .

Assume that x ∈ RLd has a probability density p(x) and consider Gibbs energy models
linearly parameterized by a vector θ = {θm}m≤M over a potential vector Φ(x) = {Φm(x)}m≤M

of dimension M

Uθ(x) = ⟨θ,Φ(x)⟩ =
M∑

m=1
θm Φm(x).

They define exponential probability models

pθ(x) = Z−1
θ e−⟨θ,Φ(x)⟩.

The model class is thus defined by the potential vector Φ(x), which needs to be chosen appro-
priately.

If it exists, the maximum entropy distribution conditioned by E{Φ(x)} is a pθ0 which belongs
to this model class. It has a maximum entropy H(pθ0) = −

∫
pθ0(x) log pθ0(x) dx under the

expected value condition ∫
Φ(x) pθ0(x) dx = E{Φ(x)}. (3.1)

In statistical physics, pθ0 is a macrocanonical model defined by a vector E{Φ(x)} of observables.
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One can verify that θ0 also minimizes the Kullback-Liebler divergence within the class

D(p∥pθ0) =
∫
p(x) log p(x)

pθ0(x) dx = H(pθ0)−H(p). (3.2)

The main topic of the chapter is to specify Φ(x) in order to define accurate maximum
entropy models for large classes of physical fields, which can be estimated from a small number
n of samples x̃i. In this section, we suppose that n = 1. Reducing the model error given by
(3.2) amounts to defining Φ which reduces the excess entropy of the model. This can be done
by enriching Φ(x) and building very high-dimensional models. However, we must also take into
account the empirical estimation error of E{Φ(x)} by Φ(x̃1), measured by E{∥Φ(x)−E{Φ(x)}∥2}.

In this chapter, as in the rest of the thesis, macrocanonical models are approximated by
microcanonical models, which have a maximum entropy over a microcanonical set of width
ϵ > 0

Ωϵ = {x ∈ RLd | ∥Φ(x)− Φ(x̃1)∥2 ≤ ϵ}. (3.3)

Appendix A.6 reviews a sampling algorithm for such model. It also explains how to extend
the definition of Ωϵ for n > 1 samples x̃i by replacing Φ(x̃1) by ⟨Φ(x̃i)⟩i. If Φ(x) concentrates
around E{Φ(x)} then the microcanonical model converges to the macrocanonical model when
the system length L goes to ∞ and ϵ goes to 0. The concentration of Φ(x) generally imposes
that its dimension M is small relatively to the dimension Ld of x. The choice of Φ(x) must
thus incorporate a trade-off between the model error (3.2) and the distance between micro and
macrocanonical distributions.

3.2.2 Fourier polyspectra potentials

Gaussian random fields are maximum entropy models conditioned on first and second-order
moments. The potential vector Φ(x) is then an empirical estimator of first and second-order
moments of x. For stationary fields, there is only one first-order moment E{x(u)} which can
be estimated with an empirical average 1 over u : ⟨x(u)⟩u. Similarly, the covariance matrix
E{x(u)x(u′)} only depends on u − u′, so only the diagonal coefficients in Fourier space are
informative, which are called the power spectrum,

E{x̂(ω) x̂(ω′)∗} with ω = ω′. (3.4)

The off-diagonal elements vanish because of phase cancellation under all possible translations,
which means the second-order moments treat Fourier coefficients independently, and cannot
describe relations or dependence between them. The diagonal elements, which can also be written
as |x̂(ω)|2, can be estimated from a single sample x by averaging |x̂(ω)|2 over frequency bins
that are large enough to reduce the estimator variance. A uniform binning and sampling along
frequencies results in power spectrum estimators with O(Ld) elements, so the Gaussian model
is compact and feasible.

1. This single moment can be directly constrained, and we do not discuss it in the following.
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However, the Gaussian random field model has limited power to describe complex struc-
tures. The majority of fields encountered in scientific research are not Gaussian. Non-Gaussianity
usually means dependence between Fourier coefficients at different frequencies. The traditional
way goes to higher orders moments of x̂, the polyspectra [Brillinger, 1965], where phase cancel-
lation implies that for stationary fields, only the following moments are informative,

E{x̂(ω1) ...x̂(ωn)} with ω1 + ...+ ωn = 0, (3.5)

while other moments are zero. These polyspectra at order n > 2 capture dependence between
n−1 independent frequencies. As the leading term, the Fourier bispectrum specifies the non-zero
third-order moments and has O(L2d) coefficients. However, bispectrum is usually not sufficient
to characterize non-Gaussian fields. For example, it vanishes if the field distribution is symmetric
p(x) = p(−x). One must then estimate fourth-order Fourier moments, the trispectrum, which
has O(L3d) coefficients.

There are two main problems for the polyspectra coefficients to become proper potential
functions Φ(x) in the maximum entropy models. First, the number of coefficients increases
sharply with the order. Second, high-order moments are not robust and difficult to estimate
from a few realizations [Huber, 1981]. For random fields with a heavy tail distribution, which
is ubiquitous in complex systems [Bak, 1987 ; Bouchaud, 1990 ; Coles, 1991 ; Kello, 2010 ; ,
2017], higher order moments may not even exist. Those two problems are common for high-
order moments and have been demonstrated in real-world applications [Dudok de Wit, 2004 ;
Lombardo, 2014]. In the following two sections, we introduce modifications to this approach to
solve those problems.

3.2.3 Wavelet polyspectra

Many physical fields exhibit multiscale structures induced by non-linear dynamics, which
implies regularity of p(x) in frequency. The wavelet transform groups Fourier frequencies by
wide logarithmic bands, providing a natural way to compress the Fourier polyspectra. The
compression not only reduces the model size but also improves estimator convergence. We use
the wavelet transform to compute a compressed power spectrum estimate, as well as a reduced set
of O(log2 L) third and O(log3 L) fourth order wavelet moments, allowing for efficient estimation
of the polyspectra.

3.2.3.1 Wavelet transform

A wavelet is a localized wave-form ψ(u) for u ∈ Rd which has a zero average
∫
Rd ψ(u) du =

0. We shall define complex-valued wavelets ψ(u) = g(u) ei⟨ξ,u⟩ where g(u) is a real window
whose Fourier transform ĝ(ω) is centered at ω = 0 so that ψ̂(k) = ĝ(ω − ξ) is localized in the
neighborhood of the frequency ξ. Fig. B.1 shows ψ and ψ̂ for a d = 2 dimensional Morlet wavelet
described in appendix B.1. The wavelet transform is defined by rotating ψ(u) with a rotation r
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in Rd and by dilating it with dyadic scales 2j > 1. It defines

ψλ(u) = 2−jd ψ(2−jr−1u) with λ = 2−j rξ . (3.6)

Its Fourier transform is ψ̂λ(ω) = ĝ(2jr−1(ω − ξ)), which is centered at the frequency λ and
concentrated in a ball whose radius is proportional to 2−j .

To decompose a field x(u) defined over a grid of width L, the wavelet is sampled on this
grid. Wavelet coefficients are calculated as convolutions with periodic boundary conditions

Wx(u, λ) = x ⋆ ψλ(u) =
∑
u′

x(u′)ψλ(u− u′). (3.7)

It measures the variations of x in a spatial neighborhood of u of length proportional to 2j , and
it depends upon the values of x̂ in a frequency neighborhood of ω = λ of length proportional to
2−j . The scale 2j is limited to 1 ≤ j ≤ J , and for practical application to fields with a finite size
L, the choice of J is limited by J < logL. Left part of Fig. 3.1 illustrates the wavelet transform
of an image.

The rotation r is chosen within a rotation group of cardinal R, where R does not depend on
L. Wavelet coefficients need to be calculated for R/2 rotations because Wx(u,−λ) = Wx(u, λ)∗

for real fields. In d = 2 dimensions, the R rotations have an angle 2πℓ/R, and we set R = 8 in
all our numerical applications, which boils down to 4 different wavelet orientations. The total
number of wavelet frequencies λ is RJ = O(logL) 2 as opposed to Ld Fourier frequencies.

A wavelet transform is also stable and invertible if ψ satisfies a Littlewood-Paley condition,
which requires an additional convolution with a low-pass scaling function ψ0 centered at the
frequency λ = 0. The specifications are detailed in appendix B.1.

3.2.3.2 Wavelet power spectrum

Given scaling regularity, one can compress the O(Ld) power spectrum coefficients into RJ =
O(logL) coefficients using a logarithmic binning defined by wavelets. This is obtained by ave-
raging the power spectrum with weight functions as the Fourier transform of wavelets, which
are band-pass windows,

〈
E{|x̂(ω)|2} |ψ̂λ(ω)|2

〉
ω
. The limited number of wavelet power spectrum

coefficients has reduced estimation variance. In fact, they are also the diagonal elements of the
wavelet covariance matrix, Wx(u, λ)Wx(u, λ)∗ = |Wx(u, λ)|2, therefore an empirical estimation
can also be written as an average over u :

M2(x)[λ] =
〈
|Wx(u, λ)|2

〉
u
. (3.8)

Similar to the power spectrum, phase cancellation due to translation invariance means that
the off-diagonal blocks i.e. the cross-correlations between different wavelet frequency bands are

2. Here we assume the choice of R is independent of field dimension d. Another possible choice is to require a
constant ratio between the radial and tangential sizes of the d-dimension oriented wavelets. Then, R is proportional
to the ratio between the surface area of a d–1-sphere and the volume of a d–1-ball, proportionally to Γ(n/2 +
1/2)/Γ(n/2). It results in an approximate scaling of RJ = O(d logL) when d is small and O(

√
d logL) when d is

large.
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nearly zero because the support of two wavelets ψ̂λ and ψ̂λ′ are almost disjoint, as illustrated in
Fig. 3.2(a).

3.2.3.3 Selected 3rd and 4th order wavelet moments

One may expect to compress the polyspectra in a similar manner with a wavelet transform,
taking advantage of the regularities of the field probability distribution. However, it is non-trivial
to logarithmically bin the polyspectra because more than one independent frequency is involved
and the phase cancellation condition needs to be considered.

To solve this problem, let us revisit the phase cancellation of two frequency bands, which
causes their correlation to be zero,

E{Wx(u, λ)Wx(u′, λ′)∗} ∼ 0 ,

for λ ̸= λ′. To create a non-zero correlation, we must realign the support of Wx(u, λ) and
Wx(u′, λ′) in Fourier space through non-linear transforms. As shown in Fig. 3.2(b), we may
apply a square modulus to one band (shown in blue) in the spatial domain, which recenters its
frequency support at origin. Indeed, |x ⋆ ψλ|2 = (x ⋆ ψλ)(x ⋆ ψλ)∗ has a Fourier support twice as
wide as that of x ⋆ψλ, and will overlap with another wavelet band with lower frequency than λ.
The transformed fields |x ⋆ ψλ|2 can be interpreted as maps of locally measured power spectra.
Correlating this map with another wavelet band x ⋆ ψ′

λ gives some third-order moments

E{|Wx|2(u, λ)Wx(u′, λ′)∗}

that are a priori non-zero. Furthermore, for wide classes of multiscale processes having regular
power spectrum, it suffices to only keep the coefficients at u = u′ because of random phase
fluctuation (see appendix B.1). For stationary random fields, they can be estimated with an
empirical average over u,

M3(x)[λ, λ′] =
〈
|Wx|2(u, λ)Wx(u, λ′)∗

〉
u
. (3.9)

Now we obtain a set of statistics characterizing the dependence of Fourier coefficients in two
wavelet bands in a collective way, which are selected third-order moments. They can be inter-
preted as a logarithmic frequency binning of certain bispectrum coefficients. There are about
R2J2 = O(log2 L) such coefficients, which is a substantial compression compared to the O(L2d)
full bispectrum coefficients.

Similarly, we consider the cross correlation between two wavelet bands both transformed by
the square modulus operation and obtain a wavelet binning of fourth-order moments,

E{|Wx(u, λ)|2 |Wx(u′, λ′)|2} − E{|Wx(u, λ)|2}E{|Wx(u′, λ′)|2}.

For stationary fields, this covariance only depends on u−u′. A further reduction of such a large
covariance function is possible because its Fourier transform over u − u′ has two properties.
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Figure 3.2 – (a) : For λ ̸= λ′ the Fourier supports of x ⋆ψλ (blue) and x ⋆ψλ′ (green) typically
do not overlap. (b) : The Fourier support of |x⋆ψλ|2 is twice larger and centered at 0 and hence
overlaps with x ⋆ ψλ′ if |λ′| ≤ |λ|. (c) : The Fourier support of |x ⋆ ψλ| is also centered at 0 and
hence overlaps with x ⋆ ψλ′ if |λ′| < |λ|.

First, it typically does not have higher frequency components than the initial wavelet transforms
involved (see Fig. 3.2) as the phase fluctuations have been eliminated by the square modulus,
and second, for fields with multiscale structures, it is regular and can be approximated with
another logarithmic frequency binning. Thus, we can compress the large covariance function
with a second wavelet transform, and estimate it by an empirical average over u :

M4(x)[λ, λ′, γ] =
〈
W |Wx|2[u, λ, γ] W |Wx|2[u, λ′, γ]∗

〉
u
, (3.10)

where (W |Wx|2)[u, λ, γ] = |x ⋆ ψλ|2 ⋆ ψγ(u), and the central frequencies of the second wavelets
verifies |λ| ≥ |λ′| > |γ|. There are about R3J3 = O(log3 L) such coefficients, which is also a
substantial compression compared to the O(L3d) full trispectrum coefficients.

3.2.4 Scattering Spectra

In general, the estimation of high-order moments has a high variance because high-order
polynomials amplify the effect of outliers. A scattering approach [Mallat, 2012 ; Bruna, 2013 ;
Cheng, 2021a] reduces the variance of these estimators by replacing |Wx|2 by |Wx|. The resulting
spectra only depend on the mean and covariance matrix of (Wx, |Wx|), which are low-order
transforms of the original field x.

Local statistics of wavelet modulus have been studied to analyze properties of image textures
[Portilla, 2000]. Their mathematical properties have been analyzed to capture non-Gaussian
characteristics of random fields [Mallat, 2020 ; Zhang, 2021] in relation to scattering moments
[Mallat, 2012 ; Bruna, 2013]. Scattering Spectra have been defined on a univariate time-process
in chapter 2, from the joint covariance of a wavelet transform and its modulus : (Wx , |Wx|).
We extend it to fields of arbitrary dimension d and length L, in relation to Fourier high-order
moments, and define models of dimension O(log3 L).
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3.2.4.1 First and second wavelet moments, sparsity

For non-Gaussian fields x, wavelet coefficients Wx(u, λ) define fields which are often sparse
[Olshausen, 1996 ; Mallat, 1999]. This is a non-Gaussian property that can be captured by first-
order wavelet moments E{|Wx[u, λ]|}. If x is a Gaussian random field then Wx(u, λ) remains
Gaussian but complex-valued so, and we have E{|W x|}2

E{|W x|2} = π
4 . This ratio decreases when the

sparsity of Wx[u, λ] increases. The expected value of |Wx| is estimated by

S1(x)[λ] = ⟨|Wx[u, λ]|⟩u (3.11)

and the ratio is calculated with the second-order wavelet spectrum estimator

S2(x)[λ] = M2(x)[λ] =
〈
|Wx|2(u, λ)

〉
u
. (3.12)

3.2.4.2 Cross-spectra between scattering channels

A scattering transform is computed by cascading modulus of wavelet coefficients and wavelet
transforms [Mallat, 2012 ; Bruna, 2013]. Let us replace |Wx|2 by |Wx| in the selected third and
fourth-order wavelet moments described in the previous section. The third order moments (3.9)
become E{|Wx(u, λ)|Wx(u, λ′)∗}. Such moments are a priori non-zero if the Fourier transforms
of |Wx(u, λ)| = |x ⋆ ψλ(u)| and Wx(u, λ′) = x ⋆ ψλ′(u) overlap. This is the case if |λ′| < |λ|
as illustrated in Fig. 3.2. Eliminating the square thus preserves non-zero moments which can
capture dependencies between different frequencies λ and λ′. The third order moment estimators
given by (3.9) can thus be replaced by lower cross-correlations between |Wx| and Wx at |λ| ≥ |λ′|

S3(x)[λ, λ′] =
〈
|Wx|(u, λ) Wx(u, λ′)∗〉

u . (3.13)

Replacing |Wx|2 by |Wx| in the fourth order wavelet moments (3.10) amounts to estimating
the covariance matrix of wavelet modulus fields |Wx|. As the u−u′ dependency of this covariance
can also be characterized by a second wavelet transform, this amounts in turn to estimate the
covariance of scattering transforms W |Wx|[u, λ, γ] = |x ⋆ ψλ| ⋆ ψγ(u)

S4(x)[λ, λ′, γ] =
〈
W |Wx|[u, λ, γ] W |Wx|[u, λ′, γ]∗

〉
u , (3.14)

for |λ| ≥ |λ′| ≥ |γ|. It provides a wavelet spectral estimation of the covariance of |Wx|.
Combining the moment estimators of Eqs. (3.11,3.12,3.13,3.14) defines a vector of Scattering

Spectra
S(x) =

(
S1(x) , S2(x) , S3(x) , S4(x)

)
. (3.15)

It provides a mean and covariance estimation of the joint wavelet and wavelet modulus vectors
(Wx, |Wx|). It resembles the second, third, and fourth-order Fourier spectra but has much fewer
coefficients and better information concentration. Considering the conditions satisfied by λ, λ′,
and γ, the exact dimension of S(x) is RJ +R2J(J − 1)/8 +R3J(J2− 1)/48, of order O(log3 L).
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3.2.4.3 Renormalization

Scattering Spectra coefficients must often be renormalized to improve the sampling of maxi-
mum entropy models. Indeed, multiscale random processes often have a power spectrum that
has a power law decay E{|x̂(ω)|2} ∼ |ω|−η over a wide range of frequencies, long-range correla-
tions corresponding to a strong decay from large to small scales. The wavelet spectrum also has
a power-law decay E{|Wx(u, λ)|2} ∼ |λ|−η. This means that if we build a maximum entropy
model with Φ(x) = S(x) then the coordinate of Φ(x) of low-frequencies λ have a much larger
amplitude and variance than at high frequencies. The microcanonical model is then dominated
by low frequencies and is unable to constrain high-frequency moments. The same issue appears
when computing the θ0 parameters of a macrocanonical model defined in (3.1), for which it
has been shown that renormalizing to 1 the variance of wavelet coefficients at all scales avoid
numerical instabilities [Marchand, 2022] 3.

We renormalize the Scattering Spectra by the variance of wavelet coefficients, σ2[λ] =
⟨S2(x̃i)[λ]⟩i, which can be estimated from a few samples. The renormalized Scattering Spec-
tra are

S̄(x) =
(
S̄1(x) , S̄2(x) , S̄3(x) , S̄4(x)

)
defined by

S̄1(x)[λ] = S1(x)[λ]
σ[λ] , S̄2(x)[λ] = S2(x)[λ]

σ2[λ] (3.16)

S̄3(x)[λ, λ′] = S3(x)[λ, λ′]
σ[λ]σ[λ′] , S̄4(x)[λ, λ′, γ] = S4(x)[λ, λ′, γ]

σ[λ]σ[λ′] .

The microcanonical models proposed in this chapter are built from these renormalized statistics
and/or their reduced version described below.

3.2.5 Dimensionality reduction for physical fields

Though much smaller than the polyspectra representation, the Scattering Spectra S̄ repre-
sentation still has a large size. Assuming isotropy and scale invariance of the field x, a first-
dimensional reduction can be performed that relies on the equivariance properties of Scattering
Spectra with respect to rotation and scaling (see appendix B.2). However, such invariances
cannot be assumed in general. In this section, we propose to construct a low-dimensional re-
presentation by only assuming regularity under rotation or scaling of the scales involved in the
Scattering Spectra representation. A simplified version of such a dimensional reduction has been
introduced in [Allys, 2019]. We refer the reader to appendix B.3 for technical details.

The goal of the reduction is to approximate the covariance coefficients S̄3 and S̄4, the most
numerous, using only a few coefficients. This can be seen as a covariance matrix estimation
problem. To do so, we first use a linear transform to sparsify the covariance matrix and then
perform a threshold clipping on the coefficients to reduce the representation. We consider a linear

3. Without such a normalization, the calculation of θ0 parameters at different frequencies is ill-conditioned,
which turns into a "critical slowing down" of iterative optimization algorithms. The proposed normalization is
closely related to Wilson renormalization.
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transform FS̄ = (S̄1, S̄2, F S̄3, F S̄4) with a pre-determined linear transform F which stands for a
2D or 3D Fourier transform along all orientations, as well as a 1D cosine transform along scales,
for S̄3 and S̄4. For fields with statistical isotropy or self-similarity, all harmonics related to the
action of global rotation and scaling on the field x should be consistent with zero, except for
the zeroth harmonic. For general physical fields, we expect the statistics S̄(x) to have regular
variations to the action of rotation or scaling of the different scales involved in its computation,
which implies that its Fourier harmonics FS̄(x) have a fast decay away from the 0-th harmonic
and FS̄(x) is a sparse representation.

Thresholding on a sparse representation is widely used in image processing for compression
[Chang, 2000]. We use threshold clipping on the sparse representation FS̄ to significantly reduce
the size of the Scattering Spectra. Furthermore, when empirically estimating large but sparse
covariance matrices such as FS, thresholding provides Stein estimators [Stein, 1956] which have
lower variance and are consistent[e.g., Donoho, 1994 ; Bickel, 2008 ; Cai, 2011 ; Fan, 2013]. As
S̄1 or S̄2 are already small, we keep all of their coefficients.

There are different strategies available to set the threshold for clipping. We adopt a simple
strategy which keeps those coefficients with µ(FS̄) > 2σ(FS̄), where µ(FS̄) and σ(FS̄) are the
means and standard deviations of individual coefficients of FS̄. These adaptive thresholding
estimators achieve a higher rate of convergence and are easy to implement [Cai, 2011]. With
multiple realizations from simulations, µ(FS̄) and σ(FS̄) can be estimated directly. In the case
where only a single sample field is available, σ(FS̄) can be estimated from different patches of
that sample field [e.g., Sherman, 2018]. We call PS̄ the coefficients after thresholding projection :

PS̄ = (S̄1, S̄2, P S̄3, P S̄4) = thresholding FS̄. (3.17)

The compact yet informative set of Scattering Spectra PS̄ is the representation Φ(x) = PS̄(x)
proposed in this chapter to construct maximum entropy models.
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Figure 3.3 – Visual comparison of realistic physical fields and those sampled from maximum
entropy models based on wavelet higher-order moments M̄ and wavelet Scattering Spectra S̄
statistics. The first row shows five example fields from physical simulations of cosmic lensing,
cosmic web, 2D turbulence, magnetic turbulence, and squeezed turbulence. The second and
third rows show syntheses based on the selected high-order wavelet statistics estimated from 100
realizations. They are obtained from a microcanonical sampling with 800 steps. The fourth and
fifth rows show similar syntheses based on the Scattering Spectra statistics, with only 200 steps
of the sampling run. This figure shows visually that the Scattering Spectra can model well the
statistical properties of morphology in many physical fields, while the high-order statistics either
fail to do so or converge at a much slower rate. To clearly show the morphology of structures at
small scales, we show a zoom-in of 128 by 128 pixels regions. Finally, to quantitatively validate
the goodness of the scattering model, we show the marginal PDF (histogram) comparison in the
last row.
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3.3 Numerical results

We have introduced maximum entropy models based on small subsets of O(log3 L) Scattering
Spectra moments S̄ and projected moments PS̄, claiming that it can provide accurate models
of large classes of multiscale physical fields, and reproduce O(L3d) power spectrum, bispectrum
and trispectrum Fourier moments. This section provides a numerical justification of this claim
with five types of 2D physical fields from realistic simulations. In order to reduce the variance
of the validation statistics, we consider in this section a model estimated on several realizations
of a field. However, our model also produces convincing realizations when estimated on a single
realization (see Fig. B.2 for a visual assessment). All computations are reproducible with the
software available on https://github.com/SihaoCheng/scattering_transform.

3.3.1 Dataset of physical fields

We use five two-dimensional physical fields to test the maximum entropy models. The five
fields are chosen to cover a range of properties in terms of scale dependence, anisotropy, sparsity,
and morphology :
(A) Cosmic lensing : simulated convergence maps of gravitational lensing effects induced by

the cosmological matter density fluctuations [Matilla, 2016 ; Gupta, 2018].
(B) Dark matter : logarithm of 2D slices of the 3D large-scale distribution of dark matter in

the Universe [Villaescusa-Navarro, 2020].
(C) 2D turbulence : turbulence vorticity fields of incompressible 2D fluid stirred at the scale

around 32 pixels, simulated from 2D Navier-Stokes equations [Schneider, 2006].
(D) Magnetic turbulence : column density of 3D isothermal magnetic-hydrodynamic (MHD)

turbulent simulations [Allys, 2019]. The field is anisotropic due to a mean magnetic field
in the horizontal direction.

(E) Anisotropic turbulence : two-dimensional slices of a set of 3D turbulence simulations [Li,
2008 ; Perlman, 2007]. To create anisotropy, we have squeezed the fields along the vertical
direction.

These simulations are sampled on a grid of 256×256 pixels with periodic boundary conditions 4

and normalized to have zero mean and unity standard deviation, respectively. Samples of each
field are displayed in the first row of Fig. 3.3. To clearly show the morphology of small-scale
structures, we zoom in to a 128×128 region.

3.3.2 Model description and visual validation

We fit our maximum entropy model using wavelet polyspectra and Scattering Spectra, res-
pectively, with the following constraint,

|| ⟨Φ(xj)⟩j − ⟨Φ(x̃i)⟩i ||
2 ≤ ϵ (3.18)

where the second average is computed on an ensemble of 100 realizations x̃i for each physical
simulation (for field D we use only 20 realizations due to the availability of simulations), and

4. When working without this condition, statistics can be computed by padding the images.
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Figure 3.4 – Validation of the scattering maximum entropy models for the five physical fields
A–E by various test statistics. The curves for field E represent the original statistics and those for
A–D are shifted upwards by an offset. In general, our Scattering Spectra models well reproduce
the validation statistics of the five physical fields.
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the field generation is performed simultaneously for 10 fields xj , making our microcanonical
model closer to its macrocanonical limit. The microcanonical sampling algorithm is described
in appendix A.6.

Examples of field generation results are given in Fig. 3.3. The second row shows samples gene-
rated based on the high-order normalized wavelet moments Φ(x) = M̄(x) = (M̄2(x), M̄3(x), M̄4(x)),
where M̄2 = S̄2, M̄3(x)[λ, λ′] = M3(x)[λ,λ′]

σ2[λ]σ[λ′] and M̄4(x)[λ, λ′] = M4(x)[λ,λ′]
σ2[λ]σ2[λ′] are defined similarly

to S̄ in (3.16). For the choice of wavelets, we use J=7 dyadic scales, and we set R = 8 which
samples 4 orientations within π, resulting in dim M̄ = 11 677 coefficients for M̄ . The third row
in Fig. 3.3 shows results from a reduced set Φ(x) = PM̄(x), which is a 2σ Fourier thresholded
representation of M̄ defined in exactly the same way as PS̄ in (3.17). The thresholding yields
dimPM̄ = 147, 286, 547, 1708, 926 for fields A–E, respectively. A visual check shows that these
models fail to recover all morphological properties in our examples especially when a threshol-
ding reduction is applied. This issue is a manifestation of the numerical instability of high-order
moments.

In the fourth row, we present sample fields modeled with the Scattering Spectra S with
dimPS̄ = 11 705 for J=7 and R=8. A visual check reveals its ability to restore coherent spatial
structures including clumps, filaments, curvy structures, etc. The low-order nature and numerical
stability of S also significantly fasten the sampling compared to the high-order moments M̄ (200
vs. 800 steps to converge). The last row shows sample fields modeled by a much smaller set PS,
which has dimPS̄ = 204, 364, 489, 615, 304 coefficients for fields A–E, respectively. This model is
∼ 102 times smaller, while generating samples visually indistinguishable from the full set model
with Φ(x) = S(x). In addition, the ratio between the dimensionality of the field dim x = Ld (the
number of pixels) and the model dim Φ is more than 100.

3.3.3 Statistical validation

We now quantify the consistency between the Scattering Spectra models and the original
fields using a set of validation statistics V (x) defined below, including marginal PDF, structure
functions SFn, power spectrum P , and normalized bispectrum B̄ and trispectrum T̄ . The vali-
dation statistics are shown in Figs. 3.3 and 3.4, where black curves represent the expected value
µoriginal of these statistics, estimated from 100 realizations x̄i of the original simulated fields
(except for field D for which we have only 20 realizations). Gray regions around the black curves
represent the standard deviations σoriginal of those statistics estimated on the original fields.
Blue curves are statistics µS̄,model estimated on fields modeled with S. Similarly, µP S̄ model are
estimated on fields modeled with the reduced set PS. Both these averages are estimated from
the 10 fields simultaneously sampled from the corresponding microcanonical models.

3.3.3.1 Validation statistics

The marginal probability distribution function (PDF) is measured as the histogram of sample
fields and shown in Fig. 3.3. It averages out all spatial information and keeps only the overall
asymmetry and sparsity properties of the field. The marginal information is not explicitly enco-
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ded in the Scattering Spectra, but for all the five physical fields we examine here, it is recovered
even with the reduced model PS̄, where only ∼ 102 Scattering Spectra coefficients are used.

Given that the high dimensionality of the full set of polyspectra coefficients, as well as the
computational cost of estimating them properly, we adopt an isotropic shell binning for the power
spectrum, bispectrum, and trispectrum. Although this reduces the number of coefficients as well
as their variance, working with isotropic statistics prevents the characterization of anisotropic
features, for instance in fields D and E, unlike with Scattering Spectra. Validation results with
these isotropic polyspectra are given in Fig. 3.4.

The shell binning is defined as follow. We first divide the Fourier space into 10 annuli with
the frequencies linearly spaced from 0 to 0.4 cycles/pixel. Then, we average the power and
poly spectra coefficients coming from the same annulus combinations. For instance, the power
spectrum yields :

P (i) = ⟨x̂(ω)x̂(−ω)⟩ω in annuli i .

To decorrelate the information from the power spectrum and higher orders, we normalized the
binned bi- and tri-spectra by P [i] :

B̄(i1, i2, i3) =
⟨x̂(ω1)x̂(ω2)x̂(ω3)⟩ωn in annuli in√

P (i1)P (i2)P (i3)
,

T̄ (i1, i2, i3, i4) =
⟨x̂(ω1)x̂(ω2)x̂(ω3)x̂[ω4]⟩ωn in annuli in√

P (i1)P (i2)P (i3)P (i4)
,

where the ωn d-dimensional wave-vectors are respectively averaged in the ithn frequency annuli,
and satisfy

∑
n ωn = 0. To clearly reveal the diversity of different type of physical fields, the

trispectrum T̄ coefficients shown in Fig. 3.4 are subtracted by the reference value of Gaussian
white noise, evaluated numerically on 1000 independent realizations. Details about the numbers
and the ordering of B̄ and T̄ are given in appendix B.4.

In Fig. 3.4 we also show the validation with structure functions, which are n-th order moments
of the field increments as a function of the lag

SFn[|∆u|] =
〈∣∣x(u)− x(u−∆u)

∣∣n〉
u
.

Initially proposed by Kolmogorov for the study of turbulent flows [Kolmogorov, 1941b], they are
widely used to analyze non-Gaussian properties of multiscale processes [Jaffard, 2004].

3.3.3.2 Comparison between original and modeled fields.

We quantify the discrepancy between the model and original field distributions by the outlier
fraction of validation statistics outside the 2σ range,

|µmodel − µoriginal|/σoriginal > 2 .

For each of the five types of fields, we observe the following fractions. The binned power spectrum
has fractions of P : 0%, 0%, 20%, 0%, 0% for the models using all S̄ statistics and 0%, 10%,
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40%, 10%, 0% for the thresholding models with PS̄. The power spectrum deviation of field C
is likely caused by the longer convergence steps required by smooth fields, as our generative
models start from white noise with strong small-scale fluctuations. Indeed increasing the steps
to 800 reduces the outlier fraction of the PS̄ model to 10%. For B̄ and T̄ , the outlier fractions
are all below 5% except for the models of field A, where the bispectrum coefficients have 13% of
outliers. Those outliers all have the smallest scale involved, and disappear if the high-frequency
cut is moved from 0.4 to 0.35 cycles/pixel. The low fractions demonstrate consistency between
our maximum entropy models and ensembles of the original physical fields.

For field A, a similar deviation is also observed in high-order structure functions. For this
field, it can be seen from Fig. 3.4 that even though many coefficients are not defined as outliers,
they all tend to have a lower value than the original ones. This effect may originate from the log-
normal tail of the cosmic density field [Coles, 1991], whose Gibbs potential includes terms in the
form of log x, in contrast to the form of |x| in scattering covariance or xn in high-order statistics.
However, regardless of this difficulty, these outliers are all still within a 3σ range, demonstrating
that the Scattering Spectra provide a good approximation though not exact model for fields
with such heavy tails.

The marginal PDF, structure functions, power spectrum and polyspectra probe different
aspects of the random field p(x). The polyspectra especially probe a huge variety of feature
configurations. For all the validation statistics, we observe general agreement between the mo-
del and original fields. Such an agreement is a non-trivial success of the Scattering Spectra model,
as those statistics are not generically constrained by the Scattering Spectra for arbitrary ran-
dom fields. They indeed significantly differ from the Scattering Spectra in the way they combine
spatial information at different frequencies and in the non-linear operation adopted. The agree-
ment implies, as we have argued, that symmetry and regularity can be used as strong inductive
bias for physical fields and the Scattering Spectra, with those priors build-in, can efficiently and
robustly model physical fields.

3.3.4 Visual interpretation of Scattering Spectra coefficients

The key advantage of the Scattering Spectra compared to usual convolutional neural networks
is their structured nature : their computation corresponds to the combination of known scales
and orientations in a fixed way. Beyond the limited number of symmetries, the structured nature
of the Scattering Spectra allows us to both quantify and interpret the morphology of structures,
which is one of the original goals to design these statistics.

The values of Scattering Spectra can be shown directly (see Fig. B.3) to analyze non-Gaussian
properties of the field. Moreover, the meaning of its coefficients can also be visualized through
our maximum entropy generative models. As one gradually changes the value of some summary
statistics, the morphology of structures in the generated fields also changes. A similar exploration
for a smaller set of scattering transform coefficients has been explored in [Cheng, 2021a], and we
show such results with the much more expressive Scattering Spectra coefficients in Fig 3.5. Such
exploration using synthesis is also similar to the feature visualization efforts for convolutional
neural networks [Olah, 2017].
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Figure 3.5 – Visual interpretation of the Scattering Spectra. The central field is one realization
of field B in physical simulations. The other four panels are generated fields with two simple
collective modifications of the Scattering Spectra coefficients.

The central panel is a realization of field B from physical simulations. The other four panels
are generated fields with two collective modifications of the Scattering Spectra : the vertical
direction shows the effect of multiplying all S̄3 and S̄4 coefficients by a factor of 1/3 or 3.
It indicates that the amplitude of S̄3 and S̄4 controls the overall non-Gaussian properties of
the field and in particular the sparsity of its structures. The horizontal direction corresponds to
adjusting the orientation dependence. We set the coefficients with parallel wavelet configurations
(i.e., S̄3(x)[||λ|, |λ′|, l1 = l2] and S̄4(x)[|λ|, |λ′|, |γ|, l1 = l2 = l3]) as references and keep them
unchanged. Then, we make the difference from other coefficients to those references to be 2
times or –2 times the original difference. Visually, it controls whether structures are more point-
like or more curvy-like in the field. In this experiment, the generated field is initialized with the
original field instead of white noise, in order to clearly show the correspondence between the
field structure and Scattering Spectra coefficients.

3.3.5 Application to identifying symmetry

As an expressive representation whose coefficients are equivariant under standard group
transformation, the Scattering Spectra can also be used to detect and identify the various statis-
tical invariances commonly present in physical fields. Besides the aforementioned rotation and
scaling invariance, more can also be included, such as the flipping of coordinate or field values.

The simplest way to check asymmetry to a transformation like rotation or flip is to check
if the Scattering Spectra S are changed after applying such a transform. A more sophistica-
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Figure 3.6 – Example of failures and applications beyond typical physical fields. The modeled
fields of the central and right panels have been recentered for easier comparison with the original
ones.

ted way that can also quantify partial symmetries is to linearly decompose S̄ into symmetric
and asymmetric parts and then compute the fraction of asymmetric coefficients surviving the
thresholding reduction. We further normalize this fraction by that in the full set :

asymmetry index = dim(PS̄asym)
dim(PS̄)

/
dim(S̄asym)

dim(S̄)
.

When it is zero, the random field p(x) should be invariant to the transform up to the expressi-
vity of our representation. For the five random fields analyzed in this study, we measure their
asymmetry indices with respect to rotation and scaling. The corresponding anisotropy and scale
dependence indices are (A) 0, 0.16 ; (B) 0, 0.53 ; (C) 0, 0.66 ; (D) 0.32, 0.45 ; (E) 0.28, 0.29. As
expected, the cosmic lensing field (field A), which consists of haloes at all scales and strengths,
is closest to isotropic and scale-free. The cosmic web (B) and 2D turbulence (C) fields are isotro-
pic but have particular physical scales above which the field becomes Gaussian, so they are not
scale-free. The last two turbulence fields have anisotropic physical input, but the latter largely
probes the ‘inertial regime’ of turbulence, which is scale-free.

3.3.6 Limitations

While a broad range of physical fields satisfy the implicit priors of the scattering covariance,
one does expect regimes for which the description will not be appropriate. The so-called φ4

field in physics comes as a first problematic example. It is the maximum entropy field under the
power spectrum and pointwise fourth-order moment x4 constraints, but this characterization is
unstable to specify a non-convex pdf which is a pointwise property as opposed to the delocalized
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Fourier moments and it is highly unstable at critical points [Marchand, 2022]. The first column
in Fig. 3.6 shows an original φ4 field at its critical temperature and that generated from the full
set of scattering covariance. In contrast to previous examples, this type of field is not successfully
reproduced. More generally, our models fail to reproduce processes whose histograms are not
regular, as in the second example of Fig. 3.6.

For physical fields with multi-scale structures, it is expected that the distribution function
p(x) does not change much under a slight deformation. When modeling such fields, it is important
to have a representation that has the same property. Being built from wavelet decomposition
and contracting operator, the Scattering Spectra also linearize small deformation in the field
space, which plays an important role in lowering its variance (see [Bruna, 2013]). However, when
modeling structured fields whose distribution functions are not regular under deformation, this
means that the generative model will simply produce structures that are “close enough” up to
small deformations. This typical type of failure is shown in the third example of Fig. 3.6.

3.4 Conclusion

We build maximum entropy models for non-Gaussian random fields based on the Scattering
Spectra statistics. Our models provide a low-dimensional structured representation that captures
key properties encountered in a wide range of stationary physical fields, namely : (i) stability
to deformations as a result of local conservation laws in Physics for mass, energy, momentum,
charge, etc ; (ii) invariance and regularity to rotation and scaling ; (iii) scale interactions typically
not described by high-order statistics ; Those are the priors included in the Scattering Spectra.

Our models provide a practical tool for generating mock fields based on some example physi-
cal fields. In sharp contrast to neural network models, our representation has the key advantage of
being interpretable and can be estimated on a few realizations. This is crucial in Physics where
generating fields in experiments or simulations is costly or when non-stationarity limits the
amount of clean recorded data. Our proposed approach enables a new range of data/simulation
analyses [e.g. Regaldo-Saint Blancard, 2021 ; Delouis, 2022], involving extensions to the modeling
of cross-regularities when multiple channels are available [e.g. Régaldo-Saint Blancard, 2023].
Next chapter considers a second extension towards multi-scale processes.
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Chapitre 4
Models of multi-channel time-processes

Many processes encountered in Medecine, Finance but also Physics, are recorded as
a collection of time-series x(t) = (x1(t), . . . , xC(t)), also called multi-channel time-
series. They exhibit a time variable and a channel variable which identifies the specific
time-series. These are multivariate processes of a different type than in the previous
chapter since the true notion of distance for this second variable, if it exists, may not
be accessible. We thus cannot build upon the models introduced in the previous chap-
ter. Instead, we leverage the Scattering Spectra models of univariate time-processes
introduced in chapter 2. We introduce a model of multi-channel time-processes that
can be estimated on limited data, in the specific case of the different stock prices of a
financial index. For that, the process x is projected on selected directions across chan-
nels. The projected processes are called factors, they are univariate time-processes.
Our model then constrains the time structure of such factors, through the Scattering
Spectra. The key challenge is to find the few factors, whose time structure are the
most informative on the joint structure of the process. By choosing a sparse basis
along channels, we obtain a model that captures important non-linear dependencies
across stocks, including order 3 moments and copula statistics introduced in the
literature.

Foreword
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4.1. Introduction

4.1 Introduction

Many multi-scale processes x of interest in Medicine, Physics and Finance are recorded as
multi-channel time-series x(t) = (x1(t), . . . , xC(t)) with C channels, possibly large C ≫ 1. In
Medicine, one can think of electroencephalogram recordings of different areas of the brain. In
Finance, one can think of the different stock prices of individual companies composing a price
index. In general, the channel index c in xc(t) is of different nature than the time index t. The
closest neighbors of a discrete time t are the times t − 1 and t + 1, but what are the “closest”
channels of a time-series channel c ? This requires a notion of proximity that is hardly accessible
in the case of different stocks.

The goal in this chapter is to build models of multi-channel multi-scale time-processes that
capture dependencies across channels and can be estimated from limited data. This chapter is
thus a second extension of chapter 2 towards multivariate processes. We will focus on the specific
case for which x is a financial index where the different channels n are the stocks composing it,
e.g. the American index, and xc(t) is the log-price of stock c at date t. This problem is crucial for
financial actors generally trading on multiple stocks at the same time and who are thus exposed
to the joint distribution of the process x.

Dependencies across stocks can be detected through the linear correlation matrix, which is
at the heart of portfolio allocation theory [Markowitz, 1952 ; Bouchaud, 2003]. Beyond requi-
ring careful cleaning of such matrix whose estimation on limited data is a challenge [Potters,
2005 ; Tumminello, 2007], these moments do not capture important non-Gaussian properties as
evidenced in [Chicheportiche, 2014b].

Factor models [Fama, 1993] decompose linearly the stocks on a small number of factors f(t),
with residuals e(t), that evolve over time, x(t) = βf(t) + e(t). The weights β parameterize the
exposure of each stock to the common factors. For example, the weights and factors can be
obtained through principal component analysis. Factor models then assume a certain stochastic
structure for each factor and residuals, which are univariate time-processes, so as to capture
important properties of the joint process x. While such models capture essential non-Gaussian
properties of the process, they often make simplifying assumptions on the stochastic structure of
the factors, for example they may not capture the joint time-asymmetry of the stocks x [Reigne-
ron, 2011 ; Chicheportiche, 2015]. The main challenge is to find the few factors whose stochastic
time structures, that should be accurately modeled, rule the joint stochastic structure of x.

Models of multi-channel multi-scale time-processes can be defined as a maximum entropy
distribution conditioned by a vector of moments E{Φ(x)} with Φ : RC×T 7→ RM . If they exist,
they have an exponential probability distribution

pθ(x) = Z−1
θ e−⟨θ,Φ(x)⟩.

for x = (x1, . . . xC) ∈ RC×T and θ ∈ RM , where M is the number of moments. Maximum
entropy models depend only on the energy vector Φ(x), which needs to be chosen appropria-
tely so as to specify dependencies across channels. Gaussian processes are maximum entropy
models conditioned by first and second order moments. As in the last chapters, for estimation
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and sampling purposes, we will consider microcanonical maximum entropy model which have
a maximum entropy distribution on the set Ωϵ = {x ∈ RC×T | ∥Φ(x) − Φ(x̃)∥ < ϵ} where x̃ is
the unique historical realization of stock prices. We refer to appendix A.6 for more details on
microcanonical models.

The main contribution of this chapter is a maximum entropy factor model of stocks that
captures important non-linear dependencies across stocks in the literature, including certain
time-asymmetries evidenced from order 3 statistics across stocks. Our model of x makes use
of the Scattering Spectra introduced in chapter 2 for univariate processes, by constraining the
Scattering Spectra of certain selected factors, which are projections of the process x along given
directions. Its dimension M scales in O(C log3

2 T ) with the number C of channels and T of time
steps. It can thus be estimated on a single realization x̃ ∈ RC×T of limited size.

Section 4.2 presents a simple model in which dependencies across stocks are imposed through
linear correlation only. This, to better outline the limitations of linear correlations across stocks.
Section 4.3 introduces our maximum entropy factor model. We investigate two types of factors,
the first ones are based on principal component directions, well-studied in Finance. The second
are based on sparse directions obtained via dictionary learning. Section 4.4 validates our proposed
factor model by estimating standard non-linear statistics across stocks which are not directly
imposed in our model.

4.2 Dependencies across channels through linear correlation

Maximum entropy models of multi-channel time-series can be written on the form

pθ(x) = Z−1
θ e−⟨β,Φsingle(x)⟩−⟨γ,Φcross(x)⟩. (4.1)

where β, γ are real vectors and Φsingle(x) depends solely on the univariate time-processes x1, . . . , xC

while Φcross(x) may depend on the joint distribution of x = (x1, . . . , xC). A microcanonical maxi-
mum entropy model has a maximum entropy distribution on the set

Ωϵ = {x ∈ RC×T | ∥Φ(x)− Φ(x̃)∥ < ϵ} (4.2)

where Φ =
(
Φsingle(x),Φcross(x)

)
and x̃ is the unique historical realization of stock prices. They

can be sampled through an approximate gradient descent algorithm (see appendix A.6).
Chapter 2 focused on building models of univariate processes. Section 4.2.1 builds on this

work to define a Φsingle(x) which characterizes the univariate stochastic structure of single stocks.
In order to build a model of the joint process, section 4.2.2 proposes a choice for Φcross(x) based
on the linear correlations across stocks. This strategy has the advantage of dealing with a well-
studied object that reveals information of sectors for example. In section 4.2.3 we investigate
the ability of such model to capture dependencies across stocks.
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4.2. Dependencies across channels through linear correlation

4.2.1 Univariate distribution of stocks

We write xc(t) the log-price of stock c on day t. Its increment on day t is called log-return
and is written

δxc(t) = xc(t)− xc(t− 1).

We assume that the log-return vector δx(t) = (δx1(t), . . . , δxC(t))T is a stationary process. Wi-
thout loss of generality we also assume that different stocks have the same zero-trend E{δxc(t)} =
0 and are of constant average volatility E{|δxc(t)|2} = 1. We write I the index of the stock

I(t) = 1
C

C∑
c=1

xc(t) (4.3)

where we choose to average uniformly the stocks, regardless of their capitalization.
In chapter 2 we built a representation Φ : RT 7→ RM1 , the Scattering Spectra, with M1

coefficients, which were shown to capture essential properties of a univariate multi-scale time-
process x1. A univariate model of xc for 1 ≤ c ≤ C can be built through the statistics Φ(xc).
Single stocks share common properties, for example the absence of auto-correlation over time,
that would enable arbitrage. In this chapter instead of modeling the time structure of each stock
individually, which is costly, we instead constrain the average distribution of single stocks by
computing the average Scattering Spectra over stocks

Φsingle(x) = ⟨Φ(xc)⟩c . (4.4)

These statistics are invariant to permutations of the stocks. They characterize the average time
structure of single stocks. This average improves the estimation of E{Φ(xc)} and reduces by a
factor C the number of coefficients used to model the distributions of individual stocks.

4.2.2 Correlation and principal directions

We aim at defining cross-statistics Φcross(x) that characterize dependencies across stocks
and that can be estimated on limited data x̃ ∈ RC×T . Linear correlation Σ = E{δx(t)T δx(t)}
between stocks at same time t is a standard choice in the literature. Its estimation through
empirical average Φcross(x) =

〈
δx(t)T δx(t)

〉
t

is difficult on a single realization x̃ because the
matrix Σ contains C2 coefficients which is fairly significant compared to the number of data
points in x̃ of size C×T . The number of stocks C is typically of a few hundreds and the number
of days T is typically of the order of a few thousands.

A stationary Gaussian process of zero-mean is fully characterized by the linear correlation
matrix Σ. It has a probability distribution of the form (4.1) with β = 0 and ⟨γ,Φcross(x)⟩ =
1
2

〈
δx(t)Σ−1δx(t)T

〉
t
, provided that Σ is invertible. The empirical correlation matrix is diagona-

lized in the PCA basis that we note P . Its columns, v1, . . . , vN , are the PCA vectors. One can
show that a Gaussian model is a maximum entropy distribution under energy constraints along
PCA directions

Φcross(x) =
(〈
|⟨v1, δx(t)⟩|2

〉
t
, . . . ,

〈
|⟨vr, δx(t)⟩|2

〉
t

)
(4.5)
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Chapter 4. Models of multi-channel time-processes

with r = C, the number of stocks. Indeed, a maximum entropy model under such constraint
satisfies that P T δxT is a multivariate independent Gaussian process. In that specific case, the
number of constraints is C instead of C2. Of course, this requires determining the principal
component directions accurately, which is a challenge.

In a general non-Gaussian case, instead of imposing the correlations one by one, we also
choose to impose correlation through the energy constraint along PCA directions (4.5), where
r can be strictly lower than C, depending on the regularity of the spectrum of the correlation
matrix Σ.

4.2.3 Failure to capture joint non-Gaussianity

We construct a benchmark microcanonical model with Φ(x) =
(
Φsingle(x),Φcross(x)

)
where

Φsingle(x) is the average Scattering Spectra over stocks (4.4), and Φcross(x) characterizes de-
pendencies across stocks through linear correlation by imposing the energy along the r = 10
first PCA directions (4.5). This model is non-Gaussian because the single stocks have a non-
Gaussian distribution characterized by Φsingle(x). It is estimated on a realization of the C = 253
S&P stocks on T = 3269 days from January 2000 to December 2012. Fig. 4.1 shows that the 10
first directions account for most of the variance.

First, we verify that the PCA directions are correctly captured, as it should be in the Gaussian
case. Fig. 4.1 shows that the first two PCA vectors are approximately captured by the benchmark
model.
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Figure 4.1 – Two first PCA directions estimated on the single S&P realization x̃ and in the
benchmark model which characterizes dependencies across stocks through linear correlation only.

In order to investigate non-linear dependencies across stocks we consider the index leverage
effect introduced in [Reigneron, 2011]. The index leverage is the standard leverage effect [Bekaert,
2000 ; Bouchaud, 2001] measured on the stock index I (4.3). It states that the correlation

LI(τ) =
〈
δI(t− τ) |δI(t)|2

〉
t

⟨|δI(t)|2⟩t
(4.6)
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4.3. Factor model based on sparse directions

is asymmetrical in τ = 0 as a consequence of the time-asymmetry of I : negative index log-return
values in the past tend to be correlated to increase in volatility in the future.

Authors in [Reigneron, 2011] decompose this effect on stock indices into two contributions.
We write σ(t) and ρ(t) respectively the instantaneous stock volatility and instantaneous corre-
lation between all pairs

σ(t)2 = 1
C

C∑
c=1
|δxc(t)|2 , ρ(t) = 1

C(C − 1)

C∑
c ̸=c′=1

δxc(t)δxc′(t)
σ2(t)

Authors in [Reigneron, 2011] evidenced the presence of two partial leverage effects

Lσ(τ) =
〈
δI(t− τ) |σ(t)|2

〉
t

⟨|δI(t)|2⟩t
, Lρ(τ) = ⟨δI(t− τ) ρ(t)⟩t

⟨|δI(t)|2⟩t
.

The first one measures the following time-asymmetry : negative index log-returns tend to be
followed by increase in the overall simultaneous volatility. The second states that negative index
returns also tends to be followed by increase in the correlation of the stock pairs, interpreted as
a panic effect.

Leverage statistics LI(τ), Lσ(τ) and Lρ(τ) are combinations of order 3 moments across chan-
nels at separate times. ⟨δxk(t− τ)δxc(t)δxc′(t)⟩t. They are shown on Fig. 4.2. The benchmark
model poorly replicates these statistics. This shows the limitations of a model based solely on
the linear correlations.
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Figure 4.2 – Index leverage correlation LI(τ) with its volatility and correlation contributions
Lσ(τ), Lρ(τ), estimated on the S&P and in the benchmark model. The leverage effect, both its
amplitude and asymmetry are poorly captured by the benchmark.

4.3 Factor model based on sparse directions

In order to capture non-linear dependencies across stocks, one could consider high-order
moments. However their estimation on limited data is hard because of the variance induced by
large events and their number is exponential in the number of stocks C.

Instead, factor models try to capture non-linear dependencies across stocks by considering
the projections of the process along few selected directions. The projected process, that becomes
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a univariate time-process is called a factor. A main challenge is to identify the few factors, whose
univariate time structure should be constrained in a maximum entropy model so as to accurately
approximate the distribution of the joint process x.

Section 4.3.1 introduces maximum entropy models based on selected factors. The factors can
be defined from PCA directions, that are delocalized directions across stocks. In section 4.3.2
we introduce directions of another nature, sparse directions, obtained via dictionary learning.

4.3.1 Maximum entropy factor model

Given a vector w = (w1, . . . , wC) ∈ RC along stocks, the projected process along this direc-
tion, called a factor, is a univariate process

⟨w, x⟩(t) =
C∑

c=1
wcxc(t). (4.7)

The factors are typically non-Gaussian processes. For example, a direction w = (0, . . . , 1, . . . 0)
with all zeros, except for one coordinate equal to 1, yields the single stocks which are non-
Gaussian [Fama, 1965]. The direction w = (1, . . . , 1) yields the index I(t) that is also non-
Gaussian. More generally, the abundance of co-jumps in stock markets [Bormetti, 2013], which
are price jumps occurring simultaneously on multiple stocks, reveals that certain sparse directions
w yield non-Gaussian factors that help describe the joint distribution of the process.

Given r directions w1, . . . , wr ∈ RC , a maximum entropy factor model of the joint process x
constrains statistics on the r factors ⟨w1, x⟩, . . . , ⟨wr, x⟩ through

Φcross(x) =
(

Φ
(
⟨w1, x⟩

)
, . . . ,Φ

(
⟨wr, x⟩

))
(4.8)

It is an extension of the statistics (4.5) that only considered the average volatility of the factors.
The main challenge is to find the directions w1, . . . wr such that the microcanonical model
supported on (4.2), which constrains the time structure of the corresponding factors through
(4.8), is a good approximation of the joint distribution p, while using as few factors as possible
in order to reduce the variance of Φcross(x).

If x is a multivariate Gaussian process then any factor ⟨w, x⟩ is a Gaussian process. In that
case, if r is the rank of the linear correlation matrix, one needs no more than r factors for model
(4.1) to describe exactly the joint distribution of x.

The previous section considered PCA directions which provide a certain information on the
dependencies across stocks. Fig. 4.3 shows the Scattering Spectra Φ(⟨v, x⟩) of the projected
process ⟨v, x⟩ averaged on the first 10 PCA directions v, averaged on the following 40 and the
remaining 203. It shows that the further the PCA vector, the more Gaussian is the projected
process, up to the Scattering Spectra. Indeed, a Gaussian process has constant sparsity factors
Φ1, zero cross-spectrum |Φ3|, and flat cross-spectrum |Φ4|. In particular, while the 10 first factors
exhibit sign-asymmetry (measured by |Φ3|) and time-asymmetry (measured by Arg Φ3), the next
50 PCA factors do not exhibit time-asymmetry any more (Arg Φ3 ≈ 0) and the 200 remaining
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PCA factors do not exhibit either of these characteristics.
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Figure 4.3 – Scattering Spectra Φ(⟨v, x⟩) of PCA factors ⟨v, x⟩. These are averaged on the 10
first PCA vectors, the 40 next vectors and the 203 remaining vectors. The first PCA factors are
highly non-Gaussian. The further the PCA vector, the more Gaussian is the process x projected
on this direction. The full interpretation of this dashboard is provided under section 2.5 of
chapter 2.

Thus, the direction that the most “factorize” the variance of δx are also more non-Gaussian.
This suggests considering a microcanonical model whose dependencies across stocks are specified
by (4.8) with w1, . . . , wr the r = 10 first PCA directions that we call PCA factor model.

4.3.2 Sparse directions

As mentioned above, there exist vectors w ∈ RC with a small number of non-zero coordinates,
called sparse directions, such that the factor ⟨w, x⟩ has large events, called co-jumps. This proves
that there exist specific sparse directions w that may reveal non-Gaussian structure across stocks,
but how to find them ?

The PCA vectors are generally delocalized in two extents. First, the PCA vectors are not
sparse and generally affect all coordinates significantly, see Fig. 4.5. Second, at each time t, all
the PCA vectors are generally affected by x(t) i.e. P Tx(t) is not sparse, see Fig. 4.4.

Let us write D ∈ RC×r a matrix whose columns are the directions w1, . . . , wr. One can show
that the r first PCA vectors satisfy the following optimization problem [Mallat, 1999]

arg min
D

E{∥x−DDTx∥22} (4.9)
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where we dropped here the dependence in t and considered x as a random column vector. The
vector DTx contains the projection of vector x on the r directions that are the columns of D.

To promote sparsity [Donoho, 2006], a dictionary [Olshausen, 1996 ; Raina, 2007] optimizes
the following loss with sparsity parameter λ > 0

arg min
D

E{1
2∥x−Dz∥

2
2 + λ∥z∥1}. (4.10)

where z = z(x,D, λ) is a certain function of x,D and λ. Optimization problem (4.9) is obtained
by taking λ = 0 and z = DTx. Vector z is called a sparse code and can be chosen so as to
minimize the following loss

z(x,D, λ) = arg min
z

1
2∥x−Dz∥

2
2 + λ∥z∥1 (4.11)

This problem is known as basis-pursuit [Chen, 2001].
In order to simplify the search for a dictionary D which is solution to the optimization

problem (4.10) with the above choice of z we assume that the columns of D are orthogonal :
DTD = Ir which imposes r ≤ C.

Solving the optimization problem (4.10) can be done by an alternating direction method [Lin,
2011]. It alternates optimization on variable z for D fixed and on variable D for z fixed. For
D fixed, one can prove that the optimal z solution to (4.11) is z = ρλ(DTx) where ρλ(u) =
sign(u) max(0, |u| −λ) for u ∈ R is the soft-thresholding operator [Zarka, 2019] which is applied
on each coordinate of vector DTx. This operation puts to zero the smallest values in DTx, this
is a sparsity step. For z fixed, the optimal D solution to (4.10) is obtained through a SVD of the
matrix E{xzT } = U∆V T trough D = UV T [Lin, 2011]. The optimization algorithm 1 consists

Algorithm 1 Learning sparse directions
Require: stocks price realization x̃ cut into several days, sparsity threshold λ
D ← Id
z ← 0
for step = 1 to 3000 do

Step1. (sparse coding)
z ← ρλ(DT x̃)
Step2. (reconstruction)
U, V ← SVD(x̃zT )
D ← UV T

end for
return D (learned dictionary)

in alternating between a sparse-coding step (soft-thresholding) and a ∥ · ∥2-reconstruction step
(SVD).

For a given value of λ we obtain an approximate solution to 4.10. We then choose the λ so
as to minimize the value of E{∥DTx∥1}. We obtain λ ≈ 0.375. We now refer to the columns of
such optimal D obtained with r = C as sparse directions.

We compare the PCA and sparse directions. Fig. 4.4 shows the projections DTx(t) for dif-
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4.3. Factor model based on sparse directions

ferent times t along the first 50 vectors for the PCA and sparse bases on 500 selected days. As
expected, at a given day t only a few sparse directions are activated, while more PCA directions
are chosen. In particular, we see that the map

Figure 4.4 – Activation map DTx(t) of the first 50 vectors in D for several times t and for two
choices of bases D : PCA or sparse basis.

Fig. 4.5 compares the PCA directions with sparse directions. While the first two sparse
directions almost coincide with the PCA directions, the following directions becomes sparser
and have supports localized on a few stocks, while the PCA vectors remain delocalized. The
support of those sparse vectors seem to contain information on the dependencies across stocks.
For example, the four largest coordinates on the 9th sparse direction (see Fig.4.5) correspond to
four stocks among which two are health maintenance organizations, one is a medical instrument
company and one is a pharmacy service company.
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Figure 4.5 – Comparison between selected PCA vectors (top) and sparse basis (bottom). While
the first vectors are close, sparse directions often have sparse coordinates. The largest coordinates
corresponding to stocks whose classification are similar.

Next section assesses the accuracy of a maximum entropy factor model based on PCA di-
rections or sparse directions.
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Chapter 4. Models of multi-channel time-processes

4.4 Numerical validation

This section evaluates the accuracy of a maximum entropy factor model based on statistics
Φsingle(x) (4.4) and Φcross(x) (4.8). We compare a factor model that chooses the first r = 10
PCA directions to a factor model that chooses the first r = 10 sparse directions. Both models
contain 1914 order 1 or order 2 coefficients, which corresponds to an average of 8 coefficients
per stock, and can thus be estimated on limited data. We evaluate these models using test mo-
ments estimated on the observed S&P stock time-series x̃ ∈ RC×T and estimated on time-series
generated by the model. In addition to the index leverage reviewed in section 4.2.3, we describe
test moments based on copulas used in the literature to evidence non-linear dependencies across
stocks.

4.4.1 Non-linear statistics

The index leverage effect (4.6) presented in section 4.2.3 is a moment of order 3 across stocks.
Fig., 4.6 shows estimates in a PCA factor model and a sparse factor model. Compared to the
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Figure 4.6 – Index leverage correlation LI(τ) with its volatility and correlation contributions
Lσ(τ),Lρ(τ), estimated on the S&P and in two maximum entropy factor models, one using PCA
directions, the other using sparse directions.

benchmark model (see Fig. 4.2), a maximum entropy factor model based on either PCA or
sparse directions captures the index leverage. There is also a volatility leverage asymmetry and
correlation leverage asymmetry in our model, whose amplitude is partially reproduced by the
two models. The fact that the two models reproduce this time-asymmetry equally is to be linked
to the two previous observations. The first PCA and sparse direction coincide (see Fig. 4.5) and
these are the first factors that bear the more time-asymmetry (see Fig. 4.3).

Copulas have been used to evidence non-linear dependencies across stocks [Chicheportiche,
2014b]. The copula of a pair of random variables (X,Y ), typically a pair of stocks, is the joint
cdf of F−1

X (X) and F−1
Y (Y ) where F−1 is an inverse of the cdf

C(X,Y )(p, q) = P(X ≤ F−1
X (p), Y ≤ F−1

Y (q)).

It is the probability that X and Y are both below their p-quantile and q-quantile respectively.
One can show that together with the laws of X and Y , the copula characterizes the joint law of
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(X,Y ) [Sklar, 1959].
Following [Chicheportiche, 2014b] we focus on a subset of the copulas, namely the diagonal

copulas p = q and anti-diagonal copulas p = 1 − q. The copulas depend on the correlation of
the pair and we average the diagonal and anti-diagonal copulas on all the pairs with a given
correlation coefficient ρ

C(p, p)(ρ) =
〈
C(xc,xc′ )(p, p)

〉
c̸=c′,corr(xc,xc′ )=ρ

, C(p, 1−p)(ρ) =
〈
C(xc,xc′ )(p, 1− p)

〉
c̸=c′,corr(xc,xc′ )=ρ

where corr is the Pearson correlation coefficient. On a finite number of stocks, the copulas are
averaged over pairs whose correlation is in a certain bin around ρ.

Figure 4.7 – (Top) ln |ρ/ cos(2πC(1
2 ,

1
2))| versus ρ for each stock pair. (Bottom) average of the

point cloud over bins of correlations. The model based on sparse directions better captures the
medial copulas C(1

2 ,
1
2).

We consider the medial point C(1
2 ,

1
2)(ρ) which is the probability that two stocks are simul-

taneously below their median. In [Chicheportiche, 2014b] authors have shown that the relation
ln |ρ/ cos(2πC(1

2 ,
1
2)(ρ))| = 0 holds for a variety of models in the literature that are called ellip-

tical models. Fig. 4.7 shows the quantities ln |ρ/ cos(2πC(1
2 ,

1
2)(ρ))| versus ρ for all the pairs in

the S&P realization and in our factor models. It shows that the factor model based on sparse
directions provide a slightly better description of the medial copulas than the model based on
PCA directions.

Authors in [Chicheportiche, 2014b] propose to evidence further non-Gaussian properties by
considering the normalized copulas which subtract copulas CG of a Gaussian pair

∆(p, p)(ρ) = C(p, p)(ρ)− CG(p, p)(ρ)
p(1− p) , ∆(p, 1− p)(ρ) = C(p, 1− p)(ρ)− CG(p, 1− p)(ρ)

p(1− p) .

It is proved in [Chicheportiche, 2014b] that these quantities have a constant limit when p → 0
or p→ 1.

They are shown on Fig. 4.8. These curves are significantly non-zero, proving that such non-
linear dependencies are present in our factor models. The model based on sparse directions
partially captures the amplitude of the curve and the evolution of its concavity along different
correlation bins, better that the model based on PCA directions, especially for correlations
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ρ > 0.35.
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Figure 4.8 – Diagonal copulas C(p, p)(ρ) (top) and anti-diagonal copulas C(p, 1−p)(ρ) of stock
pairs averaged over four bins of correlations ρ. The concavity of the curve is better reproduced
in a model based on sparse directions.

4.4.2 Random directions : a few directions to rule them all ?

In our maximum entropy factor model, the time structure along selected few factors is
constrained via the Scattering Spectra Φ. We wish to assess to which extent the time structure
of other factors is reproduced.

We consider the following score

E{∥Φ
(
⟨w, x⟩

)
− Φ

(
⟨w, x̃⟩

)
∥2} (4.12)

where w is a random direction independent on x. This score measures how good is the model
along random directions, up to our Scattering Spectra Φ. The Scattering Spectra Φ

(
⟨w, x⟩

)
and

Φ
(
⟨w, x̃⟩

)
are normalized by the wavelet power spectrum of ⟨w, x⟩ and ⟨w, x̃⟩ respectively (see

chapter 2), so that the error ∥Φ
(
⟨w, x⟩

)
−Φ

(
⟨w, x̃⟩

)
∥2 does not depend on the energy of x along

the direction w ∈ RC .
We consider two types of random directions w. The first ones are uniform on the sphere

w ∼ U(SC−1). We also wish to consider directions w that contain a few non-zero coordinates.
Such directions are called “baskets” in Finance and are of particular importance for financial
agents who often trade the same restricted number of stocks. For that we choose w ∼ U(SC−1 ∩
{w | ∥w∥0 ≤ 5}) where ∥w∥0 counts the number of non-zero coordinates. Table 4.1 shows this
score for the benchmark model presented in section 4.2.3, and the two factor models, based on
PCA directions or on sparse directions. It is estimated on 10 000 random directions w. It shows
that both models reproduce the stochastic structure of random factors much better than the
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benchmark model. Both factor models performs very closely.

random directions random baskets
benchmark 1.4 1.35

PCA directions 0.22 0.16
sparse directions 0.23 0.17

Table 4.1 – Error on the Scattering Spectra of random factors ⟨w, x⟩ along uniformly random
directions or random baskets of less than 5 stocks. Both factor models perform equally, much
better than the benchmark.

We thus conclude that the factor model based on sparse directions outperforms the model
based on PCA directions.

4.5 Conclusion

We introduced a maximum entropy factor model of multi-channel multi-scale time-processes
that can be estimated on limited data, in the specific case of different stocks of an index. We made
use of the Scattering Spectra introduced in chapter 2 in order to constrain the time structure of
the projection of the process x along certain directions.

With a sparsity criterion we identified directions, different than the well-studied PCA direc-
tions, that better characterize the joint stochastic structure of the process. A factor model based
on these sparse directions captures important non-linear dependencies across channels, such as
joint time-asymmetry observed on an order 3 moment and copulas statistics.

As a matter of fact, our model relies on an implicit regularity assumption on the process
which states that the joint stochastic structure is driven by a few number of factors. Prospective
works include quantifying more accurately this regularity. The Scattering Spectra of a process
x, introduced in chapter 2 through correlation, can be extended to Scattering cross-Spectra
by considering the same correlations across two processes x, y. We believe that a good start in
understanding the regularity across channels is to consider the matrix of scattering cross-spectra(
Φ(xc, xc′)

)
c,c′ . This very large matrix characterizes scale dependencies across all pairs of stocks

with M1C
2 coefficients, much more than the data points in a single realization x̃. We thus expect

it to have a low-dimensional structure as a consequence of the regularity across channels, that
is yet to be discovered.
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Chapitre 5
Unearthing InSights into Mars :
Unsupervised Source Separation with
Limited Data

The previous three chapters involved constructing models of multi-scale processes.
We now transition to the realm of inverse problems, which frequently arise in Physics.
Source separation involves the ill-posed problem of retrieving a set of source signals
that have been observed through a mixing operator. Solving this problem requires
prior knowledge, which is commonly incorporated by imposing regularity conditions
on the source signals, or implicitly learned through supervised or unsupervised me-
thods from existing data. While data-driven methods have shown great promise in
source separation, they often require large amounts of data, which rarely exists in
planetary space missions. To address this challenge, we propose an unsupervised
source separation scheme for domains with limited data access that involves sol-
ving an optimization problem in the wavelet Scattering Spectra space introduced in
chapter 2. We present a real-data example in which we remove transient, thermally-
induced microtilts—known as glitches—from data recorded by a seismometer during
NASA’s InSight mission on Mars. Thanks to the wavelet Scattering Spectra ability
to capture non-Gaussian properties of stochastic processes, we are able to separate
glitches using only a few glitch-free data snippets.
This chapter is adapted from the following publication. Ali Siahkoohi, Rudy Morel,
Maarten de Hoop, Erwan Allys, Grégory Sainton, Taichi Kawamura. Unearthing In-
Sights into Mars : Unsupervised Source Separation with Limited Data. International
Conference on Machine Learning, 2023.

Foreword
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Chapter 5. Unsupervised Source Separation on Mars

5.1 Introduction

Source separation is a problem of fundamental importance in the field of signal processing,
with a wide range of applications in various domains such as telecommunications [Chevreuil,
2014 ; Gay, 2012 ; Khosravy, 2020], speech processing [Pedersen, 2008 ; Chua, 2016 ; Grais, 2014],
biomedical signal processing [Adali, 2015 ; Barriga, 2003 ; Hasan, 2018] and geophysical data
processing [Ibrahim, 2014 ; Kumar, 2015 ; Scholz, 2020]. Source separation arises when multiple
source signals of interest are combined through a mixing operator. The goal is to determine
the original sources with minimal prior knowledge of the mixing process or the source signals
themselves. This makes source separation a challenging problem, as the number of sources is
usually unknown, and the sources are often non-Gaussian, nonstationary, and multi-scale.

Classical signal-processing based source separation methods [Cardoso, 1989 ; Jutten, 1991 ;
Bingham, 2000 ; Nandi, 1996 ; Cardoso, 1998 ; Starck, 2004 ; Jutten, 2004 ; Bobin, 2007] while
being extensively studied and well understood, often make simplifying assumptions regarding
the sources, e.g., sources being distributed according to Gaussian or Laplace distributions, which
might negatively bias the outcome of source separation [Cardoso, 1998 ; Parra, 2003]. To partially
address the shortcomings of classical approaches, deep learning methods have been proposed as
an alternative approach for source separation, which exploit the information in existing datasets
to learn prior information about the sources. In particular, supervised learning methods [Jang,
2003 ; Hershey, 2016 ; Ke, 2020 ; Kameoka, 2019 ; Wang, 2018] commonly rely on existence of
labeled training data and perform source separation using an end-to-end training scheme. Ho-
wever, since they require access to ground truth source signals for training, supervised methods
are limited to domains in which labeled training data is available.

On the other hand, unsupervised source separation methods [Févotte, 2009 ; Drude, 2019 ;
Wisdom, 2020 ; Liu, 2022 ; Denton, 2022 ; Neri, 2021] do not rely on the existence of labeled
training data and instead attempt to infer the sources based on the properties of the obser-
ved signals. These methods make minimal assumptions about the underlying sources, which
make them a suitable choice for realistic source separation problems. Despite their success,
unsupervised source separation methods often require tremendous amount of data during trai-
ning [Wisdom, 2020], which is often infeasible in certain applications such as problem arising
in planetary space missions, e.g., due to challenges associated with data acquisition. Moreover,
generalization concerns preclude the use of data-driven methods trained on synthetic data in
real-world applications due to the discrepancies between synthetic and real data.

To address these challenges, we propose an unsupervised source separation method applicable
to domains with limited access to data. In order to achieve this, we leverage a multi-scale prior
on the sources through the use of the Scattering Spectra introduced in chapter 2. They capture
non-Gaussian multi-scale characteristics of the sources. We perform source separation by solving
an optimization problem over the unknown sources that entails minimizing multiple carefully
selected and normalized loss functions in the wavelet Scattering Spectra representation space.
These loss function are designed to : (1) ensure data-fidelity, i.e., enforce the recovered sources
to explain the observed (mixed) data ; (2) incorporate prior knowledge in the form of limited
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(e.g., ≈ 50) training examples from one of the sources ; and (3) impose a notion of statistical
independence between the recovered sources. Our proposed method does not require any labeled
training data, and can effectively separate sources even in scenarios where access to data is
limited.

As a motivating example, we apply our approach to data recorded by a seismometer on Mars
during NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport
(InSight) mission [Giardini, 2020 ; Golombek, 2020 ; Knapmeyer-Endrun, 2020]. The InSight
lander’s seismometer—known as the SEIS instrument—detected marsquakes [Horleston, 2022 ;
Ceylan, 2022 ; Panning, 2023 ; InSight Marsquake Service, 2023] and transient atmospheric si-
gnals, such as wind and temperature changes, that provide information about the Martian
atmosphere [Stott, 2022] and enable studying the interior structure and composition of the Red
Planet [Beghein, 2022]. The signal recorded by the InSight seismometer is heavily influenced
by atmospheric activity and surface temperature [Lognonné, 2020 ; Lorenz, 2021], resulting in
a distinct daily pattern. Among different types of noise, transient thermally induced microtilts,
commonly referred to as glitches [Scholz, 2020 ; Barkaoui, 2021], are a significant component of
the noise and one of the most frequent recorded events. These glitches, hinder the downstream
analysis of the data if left uncorrected [Scholz, 2020]. We show that our method is capable of
removing glitches from the recorded data by only using a few snippets of glitch-free data.

In the following sections, after describing the related work, as a means to perform source
separation in domains with limited data, we introduce our source separation approach that
involves solving an optimization problem with loss functions defined in the wavelet Scattering
Spectra space. We present two numerical experiments : (1) a synthetic setup in which we can
quantify the accuracy of our method ; and (2) examples involving seismic data recorded during
the NASA InSight mission.

5.2 Related work

Regaldo-Saint Blancard et al. [Regaldo-Saint Blancard, 2021] introduced the notion
of components separation through a gradient descent in signal space with indirect constraints
with applications to to the separation of an astrophysical emission (polarized dust emission in
microwave) and instrumental noise. In an extensive study, Delouis, J.-M. et al. [Delouis J-M,
2022] attempts to separate the full sky observation of the dust emission with instrumental noise
using similar techniques via wavelet Scattering Spectra representations. Authors take the non-
stationarity of the signal into account by constraining statistics on several sky masks. Contrarily
to a usual denoising approach, both of these works focus primarily on recovering the statistics
of the signal of interest. In a related approach, Jeffrey et al. [Jeffrey, 2022] use a scattering
transform generative model to perform source separation in a Bayesian framework. While very
efficient, this approach requires training samples from each component, which are often not
available. Finally, Xu et al. [Xu, 2022] similarly aim to remove glitches and they develop a
supervised learning based on deglitched data obtained by existing glitch removal tools. As a
result, the accuracy of their result is limited to the accuracy of the underlying data processing
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tool, which our method avoid by being unsupervised. As we show in our examples, we are able to
detect and remove glitches that were undetected by the main deglitching software [Scholz, 2020]
developed closely by the InSight team.

5.3 Problem setup

Consider a linear mixing of unknown sources si(t), i = 1, . . . , N via a mixing operator A,

x(t) = As(t) + ν(t) = aT
1 s1(t) + n(t), (5.1)

with
s(t) = (s1(t), . . . , sN (t))T , A =

[
aT

1 · · · aT
N

]
,

n(t) = ν(t) +
N∑

i=2
aT

i si(t).
(5.2)

In the above expressions, x represents the observed data, and ν is the measurement noise. Here
we capture the noise and the mixture of all the sources except for s1 through the mixing operator
in n that does not longer depends on s1. The matrices x and s have dimensions of C × T and
N×T , respectively, where T represents the number of time samples. The mixing operator A has
dimensions of C × N . The product of aT

1 and s1(t) yields a vector of size C and we note aT
1 s1

the C × T resulting matrix, which corresponds to the contribution of source s1 exclusively in x.
Objective. The aim is to obtain a point estimate s1 given a single observation x with

the assumption that a1 is known and that we have access to a few realizations ñ1, . . . , ñK as
a training dataset. For example, in the case of separating glitches from seismic data recorded
during the NASA InSight mission, we will consider ñk to be snippets of glitch-free data and a1 to
encodes information regarding polarization. We will drop the time dependence of the quantities
in equations (5.1) and (5.2) for convenience.

5.4 Principle of the method

The inverse problem of estimating s1 from the given observed data x, as presented in equa-
tion (5.1), is ill-posed since the solution is not unique. To constrain the solution space of the
problem, we incorporate prior knowledge in the form of realizations ñ1, . . . ñK . We achieve this
through a loss function that emphasizes the wavelet Scattering Spectra representation of x−aT

1 s1

to be close to that of ñk, k = 1, . . . ,K :

Lprior (s1) := 1
K

K∑
k=1

∥∥∥Φ(x− aT
1 s1

)
− Φ

(
ñk

)∥∥∥2

2
. (5.3)
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In the above expression, Φ is the wavelet Scattering Spectra mapping as described in section
2.6.1 of chapter 2. With the prior loss defined, we impose data-consistency via :

Ldata (s1) := 1
K

K∑
k=1

∥∥∥Φ(aT
1 s1 + ñk

)
− Φ

(
x
)∥∥∥2

2
. (5.4)

The data consistency loss function Ldata promotes estimations of s1 such that for any training
example from ñ1, . . . , ñK the wavelet Scattering Spectra representation of aT

1 s1 + ñk is close to
that of the observed data.

To promote the independence of sources we make use of the Scattering cross-Spectra. The
Scattering Spectra, introduced in chapter 2, computes a diagonal approximation of a correlation-
based representation of the form ⟨RxRx∗⟩ where Rx = (Wx, |Wx|) with W a wavelet operator
and ⟨.⟩ performs an average over time. The Scattering cross-Spectra, written Φ(x, y), between two
signals x, y, are defined as the same diagonal approximation, but now on the cross-correlation
matrix ⟨RxRy∗⟩. It captures scale dependencies across two signals x and y. For the cross-
Spectra, we do not take the low-pass wavelet in W . One can prove that if two processes x, y are
independent then E{Φ(x, y)} = 0 so that Φ(x, y) ≈ 0 up to estimation error.

To promote the independence of sources, we penalize the Scattering cross-Spectra between
aT

1 s1 and ñk

Lcross(s1) := 1
K

K∑
k=1

∥∥∥Φ(aT
1 s1, ñk

)∥∥∥2

2
. (5.5)

5.5 Loss normalization

The losses described previously do not contain any weighting term for the different coefficients
of the Scattering Spectra representation. We introduce in this section a generic normalization
scheme, based on the estimated variance of certain Scattering Spectra distributions. This nor-
malization, which has been introduced in Delouis, J.-M. et al. [Delouis J-M, 2022], allows to
interpret the different loss terms in a standard form, and to include them additively in the total
loss term without overall loss weights. Let us consider first the loss term given by equation (5.3),
which compares the distance between x− aT

1 s1 and available training samples ñ1 . . . , ñK in the
wavelet Scattering Spectra representation space. Specifying explicitly the sum on the M wavelet
Scattering Spectra coefficients Φm, m = 1, . . . ,M , it yields

Lprior (s1) = 1
MK

M∑
m=1

K∑
k=1

∣∣∣Φm
(
x− aT

1 s1
)
− Φm

(
ñk

)∣∣∣2.
Let us consider the second sum in this expression. In the limit where Φm

(
x − aT

1 s1
)

is drawn
from the same distribution as the (Φm

(
ñk

)
, 1 ≤ k ≤ K), the difference Φm

(
x− aT

1 s1
)
−Φm

(
ñk

)
,

seen as a random variable, should have zero mean, and the same variance as the (Φm
(
ñk

)
, 1 ≤

k ≤ K) up to a factor 2. Denoting σ2(Φm
(
nk

))
as this variance, which can be estimated from
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(Φm
(
ñk

)
, 1 ≤ k ≤ K), this gives a natural way of normalizing the loss :

Lprior (s1) = 1
MK

M∑
m=1

K∑
k=1

∣∣∣Φm
(
x− aT

1 s1
)
− Φm

(
ñk

)∣∣∣2
σ2(Φm

(
ñk

))
or in a compressed form

Lprior (s1) = 1
K

K∑
k=1

∥∥∥Φ(x− aT
1 s1

)
− Φ

(
ñk

)∥∥∥2

2
σ2(Φ(ñk

)) , (5.6)

which takes into account the expected standard deviation of each coefficient of the Scattering
Spectra representation. This normalization allows for two things. First, it removes the norma-
lization inherent to the multi-scale structure of Φ. Indeed, coefficients involving low frequency
wavelets tend to have a larger norm. Second, it allows to interpret the loss value, which is
expected to be at best of order unity and to sum different loss terms of same magnitude.

We can introduce a similar normalization for the other loss terms. Loss term (5.4) should be
normalized by the M -dimensional vector σ2(Φ(aT

1 s1 + ñk

))
that we approximate by σ2(Φ(x +

ñk

))
, in order to have a normalization independent on s1, yielding

Ldata (s1) := 1
K

K∑
k=1

∥∥∥Φ(aT
1 s1 + ñk

)
− Φ

(
x
)∥∥∥2

2
σ2(Φ(x+ ñk

)) . (5.7)

Finally, loss term (5.5) should be normalized by σ2(Φ(aT
1 s1, ñk

))
that we approximate by

σ2(Φ(x, ñk

))
Lcross(s1) = 1

K

K∑
k=1

∥∥∥Φ(aT
1 s1, ñk

)∥∥∥2

2
σ2(Φ(x, ñk

)) , (5.8)

We can now sum the normalized loss terms defined in equations (5.6)–(5.8) to get the final
optimization problem to perform source separation

s1 := arg min
s1

[
Ldata(s1) + Lprior(s1) + Lcross(s1)

]
. (5.9)

Due to the delicate normalization of the three terms, we expect that further weighting of
the three losses using weighting hyperparameters is not necessary. We propose to initialize the
optimization problem in equation (5.9) with s1 := 0. Such choice means that n = x − aT

1 s1 is
initialized to x, which contains crucial information on the sources, as will be explained in the
next section.

We have observed that as soon as we know the statistics Φ(n), our algorithm retrieves the
unknown statistics of the source Φ(aT

1 s1). In other words the algorithm successfully separates
the sources in the Scattering Spectra space, this constitutes a convergence result, that can be
proved under simplifying assumptions (see theorem 3). Of course, in many cases as we will see
in the next section, our algorithm retrieves point estimates of s1 that is stronger.

104



5.6. Numerical experiments

Theorem 3. Let x = aT
1 s1 +n with s1 and n two independent processes. Let us assume we have

two processes s1 and n with x = aT
1 s1 + n.

Under the following assumptions :

1. n has a maximum entropy distribution under moment constraints E{Φ(n)}

2. n has a maximum entropy distribution under moment constraints E{Φ(n)}

3. E{Φ(n)} = E{Φ(n)}

4. s1 and n are independent

5. The Fourier transform p̂n of the distribution pn of n is non-zero everywhere.

one has n d= n and aT
1 s1

d= aT
1 s1 where the equality is on the distribution of the processes.

Essentially, it means that when the source n is statistically characterized by its Scattering
Spectra descriptors, the algorithm is able to retrieve statistically the other source. The theorem
is proved and its assumptions are discussed in appendix C.1. This emphasizes the choice of a
representation Φ that characterizes efficiently the stochastic structure of multi-scale processes,
which was the subject of chapter 2.

5.6 Numerical experiments

The main goal of this chapter is to derive a unsupervised approach to source separation
that is applicable in domain with limited access to training data, thanks to the wavelet Scat-
tering Spectra representation. To provide a quantitative analysis to the performance of our
approach, we first consider a stylized synthetic example that resembles challenges of real-world
data. To illustrate how our method performs in the wild, we apply our method to data re-
corded on Mars during the InSight mission. We aim to separate transient thermally induced
microtilts, i.e., glitches [Scholz, 2020 ; Barkaoui, 2021], from the recorded data by the InSight
lander’s seismometer. The code for partially reproducing the results can be found on GitHub.
Our implementation is based on the original PyTorch code for wavelet Scattering Spectra.

5.6.1 Stylized example

We consider the problem of separating glitch-like signals from increments of a multifractal
random work process [Bacry, 2001a]. This process is a typical non-Gaussian noise exhibiting
long-range dependencies and showing bursts of activity, e.g., see Figure C.1 in the appendix for
several realizations of this process. The second source signal is composed of several peaks with
exponentially decaying amplitude, with possibly different decay parameters on the left than on
the right. To obtain synthetic observed data, we sum increments of a multifractal random walk
realization, which plays the role of n in equation (5.1), with a realization of the second source.
The top three images in Figure 5.1 are the signal of interest, secondary added signal, and the
observed data, respectively.

In order to retrieve the multifractal random walk realization, we solve the optimization pro-
blem in equation (5.9) using the L-BFGS optimization algorithm [Liu, 1989] using 500 iterations.
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Chapter 5. Unsupervised Source Separation on Mars

Figure 5.1 – Unsupervised source separation applied to the multifractal random walk data.
The vertical axis is the same for all the plots.

We use a training dataset of 100 realizations of increments of a multifractal random walk, ñk. We
compute Scattering Spectra with J = 8 octaves. Given an input signal dimension of T = 2048,
this choice of parameters yields a 174-dimensional wavelet Scattering Spectra space. The bottom
two images in Figure 5.1 summarizes the results. We are able to recover the ground-truth mul-
tifractal random walk realization up to small, mostly incoherent, and seemingly random error.
To see the effect of number of training realizations on the signal recovery, we repeated the above
examples and used varying number of training samples. Figure 5.3 shows that, as expected, the
signal-to-noise ratio of the recovered sources increases the more training samples we have.

We also investigate the behavior of our source separation algorithm in case there are no
additional sources present in the signal, i.e., the observed data is a realization of the same
stochastic process as the data snippets ñ1, . . . , ñK . Ideally, the source separation algorithm
should not unnecessarily remove important signals. We present the results of this experiment in
Figure 5.2, which indeed confirms that only a negligible amount of energy has been removed from
the observed data in this case. We argue that the undesired separated signal from the observed
data by our method is mainly due to errors in estimating the Scattering Spectra statistics using
a finite amount of data snippets.

To show our method can also separate sources that are not localized in time, we consider
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Figure 5.2 – The behavior when there are no sources to be removed, i.e., the observed data is
a realization of the same stochastic process as the data snippets. The vertical axis is the same
for all the plots.

Figure 5.3 – Signal-to-noise ratio of the predicted multifractal random walk data versus number
of unsupervised samples. Shaded area indicates the 90% interval of this quantity for ten random
source separation instances.

contaminating the multifractal random walk data with a turbulent signal (see second image from
the top in Figure 5.4. Without any prior knowledge regarding this turbulent signal and by only
using 100 realizations of increments of a multifractal random walk as training samples, we are
able to recover the signal of interest with arguably low error : juxtapose the ground truth and
predicted multifractal random walk realization in Figure 5.4. The algorithm correctly removes
the low frequencies content of the turbulent jet, and makes a small, uncorrelated, random error
at high frequencies. In this case the two signals having different power spectra helps disentangling
them at high frequencies. In the above synthetic examples, the signal low frequencies are well
separated and the algorithm infers correctly the high frequencies. In the earlier example, the
presence of time localized sources would facilitate the algorithm to "interpolate" the background
noise knowing its Scattering Spectra representation. This case makes it more evident that the
initialization s1 = 0 informs the algorithm of the trajectory of the unknown source.
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Figure 5.4 – Unsupervised source separation applied to the multifractal random walk data
with a turbulent additive signal. The vertical axis is the same for all the plots.

5.6.2 Application to data from the InSight mission

InSight lander’s seismometer, SEIS, is exposed to heavy wind and temperature fluctuations.
As a result, it is subject to background noise. Glitches are a widely occurring family of noise
caused by a variety of causes [Scholz, 2020]. These glitches often appear as one-sided pulses in
seismic data and significantly affect the analysis of the data [Scholz, 2020]. In this section we
will explore the application of our proposed method in separating glitches and background noise
from the recorded seismic data on Mars.

5.6.2.1 Separating glitches

We propose to consider glitches as the source of interest s1 in the context of equation (5.1).
To perform source separation using our technique, we need snippets of data that do not contain
glitches. We select these windows of data using an existing catalog and glitches [Scholz, 2020]
and by further eye examination to ensure no glitch contaminates our dataset. In total, we collect
50 windows of length 102.4 s during sol 187 (6 June 2019) for the U component. We show four of
these windows of data in Figure 5.5. We perform optimization for glitch removal using the same
underlying scattering network architecture as the previous example using 50 training samples
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Figure 5.5 – Glitch-free snippets of the seismic data from Mars (U component).

and 1000 L-BFGS iterations. Figure 5.6 summarizes the results. The top-left image shows the
raw data. Top-right image is the baseline [Scholz, 2020] (see Appendix C.2 for description)
prediction for the glitch signal. Finally, the bottom row (from left to right) shows our predicted
deglitched data and the glitch signal separated by our approach. As confirmed by experts at
the InSight team, indeed our approach has removed a glitch that the baseline has ignored (most
likely due the spike right at the beginning of the glitch signal). More deglitching examples can
be seen in Figures C.2–C.5.

It is important to note that the separated glitch in our experiments may comprise some
non-transient, non-seismic signals, potentially arising from atmosphere-surface interactions, as
opposed to the the baseline glitch. Consequently, we anticipate the separation of these non-
seismic signals in addition to the glitch when applying our approach. This results in “noisy”
predicted glitches when compared to the baseline, which might be due to the the non-seismic
signal. With this in mind, our approach extends the notion of glitch (as understood by the
InSight team). This is one of the benefits of our unsupervised approach as the method—based
on the statistics of the training data—identifies and removes events that do not seem to belong
to the training data distribution.

Thanks to the interpretability of wavelet Scattering Spectra representations, stemming from
our comprehension of scattering coefficients and covariances, we can perform a source separation
quality control in domain where there is no access to ground truth source—as in our example.
Figure 5.7 compares the power spectra of the reconstructed background noise (recorded data),
a deglitched realization of the background noise and the mixed signal (observed data). It can
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Figure 5.6 – Unsupervised source separation for glitch removal. Juxtapose the predicted glitches
on the right. Our approach is able to remove a glitch whereas the baseline approach fails to detect
it.
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Figure 5.7 – Power spectrum of the observed signal x, the background noise n and the re-
constructed background noise x − aT

1 s1. We see that the reconstructed component statistically
agrees with a Mars seismic background noise n. The algorithm efficiently removed the low-pass
component of the signal corresponding to a glitch.

be seen that the power spectrum of the background noise is correctly retrieved. In fact, the
Scattering Spectra statistics, which extend the power spectrum, are correctly retrieved, which
is due to the loss term in equation (5.3).

5.6.2.2 Marsquake background noise separation

Marsquakes are of significant importance as they provide useful information regarding the
Mars subsurface, enabling the study of Mars’ interior [Knapmeyer-Endrun, 2021 ; Stähler, 2021 ;
Khan, 2021]. Recordings by the InSight lander’s seismometer are susceptible to background
noise and transient atmospheric signals, and here we apply our proposed unsupervised source
separation approach to separate background noise from a marsquake [InSight Marsquake Service,
2023]. To achieve this, we select about 30 hours of raw data (except for a detrending step)—
from the U component with a 20Hz sampling rate—to fully characterize various aspects of the
background noise through the wavelet Scattering Spectra representation. Next, we window the
data and use the windows as training samples from background noise (nk in the context of
equation (5.1)) with the goal of retrieving the marsquake recorded at February 3, 2022 [InSight
Marsquake Service, 2023].

We use the same network architecture as previous examples to setup the wavelet Scattering
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Figure 5.8 – Unsupervised separation of background noise, including thermally induced micro-
tilts (glitches), from a marsquake recorded by the InSight lander’s seismometer on February 3,
2022 [InSight Marsquake Service, 2023]. Approximately 30 hours of raw data from the U com-
ponent, with no recorded marsquakes, were utilized for background noise separation without
any explicit prior knowledge of marsquakes or glitches. The horizontal axis represents the UTC
time zone.

Spectra representation. We use a window size of 204.8 s and solve the optimization problem in
equation (5.9) with 200 L-BFGS iterations. The results are depicted in Figure 5.8. There are
clearly two glitches that we have successfully separated, along with the background noise. This
results is obtained merely by using 30 hours of raw data, allowing us to identify the marsquake
as a separate source due to differences in wavelet Scattering Spectra representation.

5.7 Conclusion

For source separation to be effective, prior knowledge concerning unknown sources is ne-
cessary. Data-driven source separation methods extract this information from existing datasets
during pretraining. In most cases, these methods require a large amount of data, which means
that they are not suitable for planetary science missions. To address the challenge posed by limi-
ted data, we proposed an approach based on Scattering Spectra introduced in chapter 2. Using
a Scattering Spectra space optimization problem, we were able to separate thermally induced
microtilts (glitches) from data recorded by the InSight lander’s seismometer with only a few
glitch-free data samples. In addition, we applied the same strategy to separate marsquakes from
background noise and glitches using only several hours of data with no recorded marsquake.
Our approach did not require any knowledge regarding glitches or marsquakes, and proved to be
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more robust in separating glitches from recorded seismic data on Mars than existing techniques.
An important characteristic of our approach is that it serves as an exploratory method for
unsupervised learning, particularly beneficial for investigating complex and real-world datasets.
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Chapitre 6
Path Shadowing Monte-Carlo

This chapter considers prediction on multi-scale time-series from limited data. For
financial time-series, this presents a double challenge. Firstly, accurately learning
the association between past and future is difficult due to the limited historical
data available Additionally, price paths are very noisy i.e. the price process has a
high entropy and any two snippets of data are very distant. Given a current date
with an observed past time-series, it is thus difficult to look for similar occurrences
in the past, that could offer insights into potential future scenarios. In order to
face these challenges we introduce a prediction framework called Path Shadowing
Monte-Carlo. It provides prediction of future paths given any generative model. At
any given date, it averages future quantities over generated price paths whose past
history “shadows” the actual (observed) history. We test our approach using paths
generated from a maximum entropy model of financial prices based on the Scattering
Spectra introduced in chapter 2 that we interpret here as multi-scale extensions of the
standard skewness and kurtosis widely embrassed in Finance. This model promotes
diversity of generated paths while reproducing the main statistical properties of
financial prices, including stylized facts on volatility roughness. Our method yields
state-of-the-art predictions for future realized volatility and allows one to determine
conditional option smiles for the S&P500 that outperform both the Path Dependent
Volatility model and the option market itself.
This chapter is adapted from the following submitted paper. Rudy Morel, Stéphane
Mallat, Jean-Philippe Bouchaud. Path Shadowing Monte-Carlo, 2023.

Foreword
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6.1. Introduction

6.1 Introduction

Modelling future price scenarios is crucial for risk control, for pricing and hedging contingent
claims (like options), and, possibly, for detecting arbitrage opportunities. Recently, machine
learning models such as transformers [Vaswani, 2017 ; Wen, 2022] propose to learn from data
the distribution p(x|xpast) of log-prices x conditioned on past history xpast. When trained with a
prediction loss, such models generally achieve excellent prediction results. However, their training
requires very large amount of data which is usually not available for financial prices.

On the other hand, low-parameterized generative models, i.e. models pθ of p(x) with few
parameters θ, have been extensively studied in the financial literature [Heston, 1993 ; Bacry,
2013 ; Gatheral, 2018 ; Wu, 2022 ; Guyon, 2022]. However, two main challenges come to the fore.
First, these models may not reproduce some important statistics of real financial prices due to
flawed assumptions, or due to the fact that they are calibrated on external data such as observed
option smiles. Second, it may not be straightforward to condition these models on the realized
past at a specific date, in other words, obtaining a model of p(x|xpast). Whereas conditioning
is eased by considering Markovian models with a small number of factors [Guyon, 2022], such
a strong assumption is often much too simplistic. In this chapter, we attempt to address both
challenges.

Our main contribution is to introduce a new method, that we call Path Shadowing Monte-
Carlo (PS-MC), which can be used within any generative model of p(x) to yield a model of
p(x|xpast). Our approach for modelling the distribution p(x), summarized in section 6.2, is to
define a minimal set of statistics describing financial prices that should be reproduced by the
generating process. This set should be small enough to avoid over-fitting but should focus on
“relevant” features, in a sense made precise below. This question was addressed in chapter 2,
where it was shown that a good description of multi-scale processes can be achieved through
the Scattering Spectra. Here we present such statistics, in a Finance context, as a multi-scale
extension of the classical skewness and kurtosis, this is motivated in section 6.2.

A model based on these statistics captures all important stylized facts such as fat-tail dis-
tributions, intermittency, leverage effect and the “Zumbach effect”, see chapter 2. Section 6.3
characterizes the average shape of option smiles generated by our model and shows that it cor-
rectly reproduces non-trivial power-law behaviors as a function of maturity, which were recently
argued to be a specific feature of rough volatility models [Gatheral, 2018 ; Fukasawa, 2017].

“Path shadowing” is presented in section 6.4. It consists in softening the conditioning on
a given past history xpast. In a nutshell, it amounts to scanning a large generated dataset, in
search of paths whose history closely “shadows” the actual history, see Fig. 6.3. Path Shadowing
Monte-Carlo methods then average the quantity of interest over the future of such matching
paths. This method can effectively be seen as a kernel method, with a causal path embedding
to reduce the dimensionality of recent past history.

Compared to other recent kernel methods, such as signature kernels [Salvi, 2021 ; Alden,
2022] that relies on a low-parametric model for p(x|xpast), e.g. a Heston model, Path Shadowing
Monte-Carlo relies solely on a model of p(x) and thus circumvent the conditioning of a gene-
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rative model to a given past history xpast. Its performance depends directly on the accuracy
of this generative model and its ability to produce a variety of paths with correct statistical
dependencies. Section 6.4.3 shows that when performed with our maximum entropy Scattering
Spectra model of financial prices, PS-MC yields state-of-the-art volatility prediction.

Section 6.5 uses Path Shadowing Monte-Carlo for obtaining conditional option smiles (i.e.
option prices at a given date) through Hedged Monte-Carlo with shadowing paths. By construc-
tion, such smiles depend only on the log-price process distribution p(x) and provide a coun-
terpart to smiles obtained from option market data. A “trading game” then allows us to
show that our option smiles correctly anticipate non-trivial future price movements, and out-
performs state of the art models such as the Path Dependent Volatility model of ref. [Guyon,
2022]. Codes for both our generative model and Path Shadowing Monte-Carlo are available at
https://github.com/RudyMorel/path_shadowing.

6.2 A multi-scale statistical model for financial prices

Statistical models of financial prices aim at reproducing statistics of the price process only.
Price time-series exhibit numerous non-Gaussian features, which are difficult to capture within
standard low-parametric models, whose number of parameters have been incrementally increased
in the literature over the past decades, see e.g. [Heston, 1993 ; Bacry, 2013 ; Gatheral, 2018 ;
Delemotte, 2023 ; Guyon, 2022]. An alternative route is to define a set of characteristic statistics
of (log-)prices and impose that they should be accurately reproduced by the model. We denote
as Φ(x) such statistics, for example the empirical mean and variance of log-returns Φ(x) =
(⟨δx(t)⟩t ,

〈
|δx(t)|2

〉
t). Section 6.2.1 presents maximum entropy models that allow defining models

from a given vector of statistics Φ(x). In the simple case of mean and variance, the maximum
entropy model coincides with the Gaussian random walk.

The set Φ(x) must be chosen carefully. It should contain enough relevant statistics of prices
such that the model is realistic and accurate. However, in order to avoid over-fitting, such
statistics must be well estimated on the only available historical realization of x. The construction
of a set Φ that meets these requirements, called the Scattering Spectra, was introduced in chapter
2 in the general case of multi-scale processes, which fortunately includes financial data [Bacry,
2013 ; Borland, 2005].

We show in section 6.2.2 that such statistics correspond to natural low moment multi-scale
extensions of the classical skewness and kurtosis of log-returns. We show that even the most
recent low-dimensional parametric models fail to accurately account for these statistics. Such
discrepancies turn out to be highly relevant when one wants to predict future realized volatility
and option smiles, and highlights the limitations of traditional models, which our approach
allows one to overcome.

In chapter 2, we have shown that a Scattering Spectra model properly captures the main
properties of financial log-returns, in particular of the S&P500 (the US major stock index). In the
following, we show that it also quantitatively reproduces the average behavior of option smiles
of different maturities, in particular the maturity-dependent skewness that reflects volatility
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roughness [Fukasawa, 2017] and the so-called skew-stickiness ratio [Bergomi, 2009 ; Vargas, 2015].

6.2.1 Maximum entropy models

We denote as x̃ ∈ RN the observed historical realization of log-prices over N days 1. Given a
vector of M statistics Φ(x̃) ∈ RM estimated on x̃, a maximum entropy model pθ with moment
constraint Epθ

{Φ(x)} = Φ(x̃), if it exists, has an exponential probability distribution

pθ(x) = Z−1
θ e−⟨θ,Φ(x)⟩. (6.1)

for certain θ ∈ RM .
Maximum entropy models depend only on the vector of statistics Φ(x). The model bias

can be improved by enriching the set Φ(x). However, we must take into account the problem
of estimating Φ(x) from the single realization of the process x̃. The Scattering Spectra model
imposes Epθ

{Φ(x)} = Φ(x̃), thus for pθ to be a good approximation of the true distribution p,
one needs Φ(x̃) to be close to the true Ep{Φ(x)}. This amounts to having low-variance statistics
Φ. In the next section we present a good choice of Φ, the Scattering Spectra, introduced in
chapter 2, that is we interpret in the context of Finance.

A microcanonical maximum entropy model has a maximum entropy distribution on the set

Ωϵ = {x ∈ RN | ∥Φ(x)− Φ(x̃)∥2 < ϵ}.

Drawing samples from such model is performed through an approximate algorithm based on
gradient descent, see Appendix A.6 for more details.

6.2.2 The Scattering Spectra

A standard way of characterizing the price process is through their trend, volatility, skewness
and kurtosis. These are obtained from moments of order 1, 2, 3 and 4 on log-returns

E{δx(t)} , E{δx(t)2} , E{δx(t)3} , E{δx(t)4} (6.2)

However such moments do not characterize the time-structure of log-returns, but rather their
one-point distribution. One could consider the same moments on multi-scale increments

δℓx(t) = x(t)− x(t− ℓ) (6.3)

for different lags ℓ, but we still obtain a poor description of x. For example, these moments do
not pick up time-asymmetry, since changing δx(t) into δx(−t) leaves these moments unchanged.
Another disadvantage of multi-scale increments (6.3) is that they exhibit as many scales 1 ≤
ℓ ≤ N as the number of days N , which seems redundant, specially in view of the known scale-
invariant properties of x.

1. In this chapter, we reserve the notation T for the maturity of an option, considered in next sections.
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The construction of an appropriate statistics Φ(x) was studied in chapter 2 where we in-
troduced the Scattering Spectra, applicable to multi-scale processes. They capture the main
non-Gaussian properties of financial prices : fat tailed log-return distributions, sign-asymmetry,
time-asymmetry, volatility clustering and volatility roughness. It consists of M = O(log3

2N)
statistics only, that are low-order moments (order 1 and 2 only) and can thus be accurately
estimated on the historical realization x̃ of size N .

We present here the main steps for building such Φ and we refer the reader to chapter 2 for
more details about the construction.
Step 1. Wavelet increments.

Log-prices variation have interesting structure at all scales. However, it is not necessary to
consider all scales ℓ in (6.3) to characterize them efficiently. Standard increments at scale ℓ (6.3)
are obtained by convolution of x with the filter gℓ = δ0 − δℓ. Wavelet increments replace gℓ by
wavelet filters ψj obtained by dilation of a regular mother wavelet ψ

Wx(t, j) = x ⋆ ψj(t) where ψ(t, j) = 2−jψ(2−jt). (6.4)

The mother wavelet ψ has a zero average
∫
ψ(t)dt = 0 and its Fourier transform ψ̂(ω) =∫

ψ(t) e−iωt dt, which is real, is mostly concentrated at frequencies ω ∈ [π, 2π]. All numerical
calculations in this chapter are performed with a complex Battle-Lemarié wavelet [Battle, 1987 ;
Lemarié, 1988]. Fig. 2.1 from chapter 2 shows the real and imaginary parts of ψ as well as its
Fourier transform. We refer the reader to section 2.2.3 of chapter 2 for more properties.

Analogous to (6.3), wavelet increments (6.4) can be seen as multi-scale increments at scales
ℓ = 2j . However, scales are now defined as bins of frequencies [2−jπ, 2−j+1π] corresponding to
the supports of wavelet filters ψj . The largest scale 2J is chosen to be smaller than the size N
of x̃. This yields at most log2N scales instead of N lags ℓ.

Histograms of generalized increments Wx can be constrained by order 1 and order 2 moments
E{|Wx(t, j)|}, E{|Wx(t, j)|2} which are estimated through empirical averages. The quantity

Φ1(x)[j] = ⟨|Wx(t, j)|⟩2t
⟨|Wx(t, j)|2⟩t

(6.5)

is a low-moment measure of kurtosis. Compared to its order 4 counterpart, it is less sensitive to
large values. The more peaked at zero the distribution, the smaller the value of Φ1(x) and the
higher the kurtosis [Bouchaud, 2013]. The order 2 moment is

Φ2(x)[j] =
〈
|Wx(t, j)|2

〉
t

(6.6)

and quantifies the average volatility at scale 2j on the period.
Step 2. Time-scale dependencies.

Multi-scale increments Wx(t, j) are indexed by time t and scale 2j . Such map exhibits
dependencies across time and scales that are crucial to characterize the distribution of financial
prices. For example, volatility clustering is attested by the fact that Wx(t, j) has long-range
time correlations. Beyond this well-known stylized fact, we have shown in chapter 2 that scale
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(a) Histogram (b) Struct. functions (c) Leverage

Figure 6.1 – Standard statistics of log-returns in the Scattering Spectra model (orange) com-
pared to S&P observed data (blue). Top graphs : time-series of the S&P and generated by the
model. Bottom graphs : (a) Histogram of daily log-returns δx. (b) Structure functions ⟨|δℓx(t)|q⟩t.
(c) Leverage correlation

〈
δx(t− τ)|δx(t)|2

〉
t on normalized increments. Remarkably, the model

based on low-moment spectra is able to capture up to order 5 statistics.

dependencies are crucial to fully characterize the non-Gaussian nature of time-series. Natural
descriptors for such scale dependencies are order 2, 3 and 4 moments

E{WxWx∗} , E{Wx |Wx|2} , E{|Wx|2 |Wx|2}

where the products are taken across times t, t′ and scales j, j′. In practice, estimating order
3 and order 4 moments is very difficult because of the variance induced by large events. In
order to circumvent this problem, we replace |Wx|2 by |Wx| and define the following non-linear
correlations of wavelet increments

E{WxWx∗} , E{Wx |Wx|} , E{|Wx| |Wx|} (6.7)

Owing to the compression properties of wavelets, the first matrix E{WxWx∗} is quasi-diagonal
and its diagonal coefficients are already estimated by (6.6), see chapter 2.
Step 3. Low-moment multi-scale skewness and kurtosis.

Just like for standard skewness and kurtosis that are normalized moments, we normalize the
second and third matrices E{Wx |Wx|} and E{|Wx| |Wx|} in (6.7) by E{|Wx|2}. One can show
that the only non-negligible coefficients in the third matrix are obtained for t = t′ and j ≥ j′,
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they are estimated through

Φ3(x)[j, j′] = ⟨Wx(t, j) |Wx(t, j′)|⟩t
⟨|Wx(t, j)|2⟩

1
2
t ⟨|Wx(t, j′)|2⟩

1
2
t

. (6.8)

These are multi-scale extensions of the standard low-moment skewness E{Y |Y |} of a normalized
random variable Y . Other than sign-asymmetry, these complex coefficients also measure time-
asymmetry through their phase. Indeed, if log-returns are time-reversible δx(−t) d= δx(t) then
Im Φ3(x) = 0. One typical example is the leverage asymmetric correlation.

The fourth matrix E{|Wx| |Wx|} in (6.7) contains kurtosis information. If x is Gaussian,
then for different scales j ̸= j′ the Gaussian processes Wx(t, j) and Wx(t, j′) are decorrelated,
thus independent. It follows that E{|Wx(t, j)||Wx(t′, j′)|} = E{|Wx(t, j)|}E{|Wx(t′, j′)|} and
these coefficients boil down to the low-moment kurtosis (6.5). For the log-price process x, these
coefficients capture long-range non-Gaussian correlation between volatility at different scales
j, j′ and different times t, t′.

However, matrix E{|Wx| |Wx|} contains too many coefficients to be accurately estimated
on a single realization x̃. We again rely on compression properties of wavelets to approximate
such matrix by cascading a second wavelet operator W , which yields a quasi-diagonal matrix
E{W |Wx|W |Wx|∗} where we define generalized increments of volatility as

W |Wx|(t, j1, j2) = |x ⋆ ψj1 | ⋆ ψj2(t).

The non-negligible diagonal coefficients are estimated through an empirical average which yields
for j1 ≤ j′

1 < j2

Φ4(x)[j1, j′
1, j2] = ⟨W |Wx|(t, j1, j2)W |Wx|(t, j′

1, j2)∗⟩t
⟨|Wx(t, j1)|2⟩

1
2
t ⟨|Wx(t, j′

1)|2⟩
1
2
t

. (6.9)

These are multi-scale extensions of the standard low-moment kurtosis. These complex coefficients
also capture time-asymmetry through their complex phase. If the log-return process δx is time-
reversible then Im Φ4(x) = 0.

We therefore define our Scattering Spectra Φ as the collection of (i) estimated average vola-
tility (6.6), (ii) multi-scale skewness (6.8) and (iii) multi-scale kurtosis (6.5,6.9)

Φ(x) =
(
Φ1(x),Φ2(x),Φ3(x),Φ4(x)

)
. (6.10)

In total, Φ consists of O(log3
2N) order 1 and order 2 statistics for a trajectory of size N and can

be estimated with low-variance.
Note that Φ does not rely explicitly on the one-point distribution of increments δℓx(t).

Numerical experiments have shown that slight discrepancies may appear, in particular in order
0 moments P(δℓx(t) > 0) which explicitly appear in low-moment smile expansions [Bouchaud,
2013]. We thus complement Φ3(x) with the moments

P(δℓx(t) > 0)
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for ℓ = 2j , j = 1, . . . , J , that are constrained through empirical averages ⟨sigmoid(δℓx(t))⟩t where
sigmoid(x) = (1 + e−x)−1. This adds very few coefficients to our Scattering Spectra Φ(x).

The Scattering Spectra (6.10) thus provide an enriched set of statistics that can be used
to quantify model error and interpret any discrepancy. As an example, we revisit through this
lens the state-of-the-art, low-parametric Path-Dependent Volatility (PDV) model introduced in
a paper by Guyon & Lekeufack[Guyon, 2022]. We show that several stylized facts are actually
not accurately reproduced by such a model, see Appendix D.2, Fig. D.3.

Based on the Scattering Spectra Φ, we have at our disposal a statistical model of financial
prices that can be used to generate faithful synthetic time-series (see section 6.2.1). For the
S&P time-series x̃ of size N = 5827 days, the Scattering Spectra model contains 248 ≈ N/20
real coefficients, which is the dimension of Φ(x). Log-return trajectories δx generated from the
Scattering Spectra model are shown in Fig. 6.1. Validation of the Scattering Spectra model
can be achieved by measuring observables not included in our set Φ(x) and checking whether
or not they are correctly reproduced. Standard statistics such as volatility clustering, leverage
effect and structure functions, were indeed shown to be captured by the model, see chapter 2.
These are reproduced in Fig. 6.1. While Φ(x) is composed of order 1 and order 2 moments only,
the Scattering Spectra model accurately accounts for up to order 5 moments, which is quite
remarkable. Another way to describe the multi-scale statistical properties of price time-series is
through maturity dependent option smiles, which we discuss in the next section.

6.3 The average smile as an alternative statistical characteriza-
tion

In this section we validate the Scattering Spectra model by considering historical option
pricing as an alternative, operational way to characterize the multi-scale, non-Gaussian statistics
of price time-series. The average smile is the unconditional option smile obtained by pricing
hedged options using all historical snippets of prices of length equal to the maturity of the
option [Potters, 2001 ; Bouchaud, 2013]. Even if real option smiles must be conditioned on a
specific past price path [Guyon, 2022] and are therefore almost never equal to the average smile,
its shape reveals some interesting, non-trivial properties of prices time-series, such as volatility
“roughness” (see below).

Option pricing is performed through the Hedged Monte-Carlo method [Potters, 2001], that
converts historical probabilities into “risk-neutral” ones. Options are hedged daily, with zero
interest rate, on the 6000 price snippets of lengths 150 days available from 2000 to 2023 all ini-
tialized at 100. The average implied volatilities σ(T,K) are obtained from option prices C(T,K).
Fig. 6.2 compares, for different maturities T , the average smiles using observed S&P data and
those generated with the Scattering Spectra model. We see that the model indeed reproduces the
overall shape of the smile very well. Intuitively, the level of the average smile, its asymmetry, its
concavity and its term structure are captured by Φ2 (6.6), Φ3 (6.8) and Φ1 and Φ4 (6.56.9) 2. We

2. Appendix D.1 shows in more details the parameterization of the model by studying the sensitivity of the
smile to the Scattering Spectra statistics Φ(x).
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(a) Smile
(S&P)

(b) Smile
(Scattering Spectra)

(c) Smile
(PDV)

(d) ATM skew (abs) (e) ATM kurtosis (f) Skew Stickiness

Figure 6.2 – Average option smiles estimated using S&P price data (a), in our Scattering
Spectra model (b) and in the path-dependent volatility (PDV) model (c). The Scattering Spectra
model qualitatively captures the two regimes of the ATM skew as a function of maturity (d),
with a cross-over around 20 days [Delemotte, 2023], as well as the power-law of the ATM kurtosis
(e) and the behavior of the skew-stickiness ratio (f). The PDV model, on the other hand, fails
to capture the amplitude and term structure of the ATM skew (d).

have also compared the S&P average smiles with the recent Path Dependent Volatility model
of [Guyon, 2022], which appear to be too “V-shaped”, specially for small maturities.

We now turn to a more refined analysis of the slope and curvature of these average smiles.
We denote as σATM(T ) = σ(T, 100) the at-the-money volatility and

M :=
ln( K

100)
σATM

√
T

the rescaled log-moneyness. The slope ST and curvature κT of a smile at maturity T are defined
by the order 2 expansion around the moneyness M = 0

σ(M, T ) := σATM(T )
(

1 + STM+ κTM2 + o(M2)
)

In the literature, it is customary to define the ATM skew SkewT as the slope of the smile as a
function of unscaled log-moneyness, i.e. SkewT := ST /

√
T . For most stochastic volatility models,

such skew is found to be regular when T → 0, whereas rough volatility models predict a singular
behavior SkewT ∝ TH−1/2 where H is the Hurst exponent of volatility, argued to be small,
H ≈ 0.1 [Gatheral, 2018 ; Fukasawa, 2021 ; Bayer, 2016].

Fig. 6.2d shows the absolute value of the ATM skew of the average smile for different maturi-
ties. The authors of [Delemotte, 2023] have shown using option market data that the ATM skew
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exhibits two power-law regimes pertaining to short and long maturities, with a cutoff between the
two regimes around 20 days. Strikingly, we also observe this behavior on the average smile of the
S&P, which ony depends on the price process, with no reference to actual option markets. The
Scattering Spectra model tracks remarkably well such a behavior. The scaling of log-volatility
increments characteristic of rough volatility models [Gatheral, 2018] or multifractal models [Ba-
cry, 2013] is in fact encoded in the model through the coefficients E{|W |Wx|(t, j1, j2)|2} included
in Φ4(x) (6.9). These consider instantaneous volatility |Wx(t, j1)| at scale 2j1 and its increments
at scales 2j2 .

The Scattering Spectra model furthermore captures two more subtle stylized facts of option
smiles :

— The ATM curvature κT , related to a low moment kurtosis [Bouchaud, 2013], is well captu-
red and behaves as a power-law of T , both for the S&P and within the Scattering Spectra
model. The PDV model, on the other hand, slightly overestimates κT for small T and
underestimates it a large T (see Fig. 6.2e).

— The instantaneous change of ATM volatility σATM(T ) induced by a change in underlying
price can be linearly regressed on δx. This defines the skew-stickiness ratio RT through
the following regression [Bergomi, 2009 ; Vargas, 2015]

δσATM(T ) = −RT SkewT × δx+ ϵ

As shown in [Vargas, 2015], RT has a non-trivial dependence on maturity. Fig. 6.2f shows
that the Scattering Spectra model again reproduces quite well such a dependence.

6.4 Path Shadowing Monte-Carlo & volatility predictions

The average smile exercise of the previous section is interesting insofar as it allows one to
test the ability of various models to capture the distribution of price changes over different
maturities. However, it fails to inform us on the power of the model to actually predict, at a
given date, the distribution of price changes forward in time. Of course, this is what finance is
all about and we now introduce a framework to do precisely that.

We first assume that the real world is at least approximately stationary, in the sense that it
can be approximated by a statistical model with fixed, time-independent parameters. Of course,
this can only be true if the model is rich enough to generate time-series that superficially appear
non-stationary – such as the ones shown in Fig. 6.1, with alternating periods of high and low
volatility that are actually described by the same model.

If this is the case, then given the past history x̃past at current time t, a model-free method for
predicting the unknown future x̃future is to look for occurrences similar to x̃past in the historical
realization of log-prices. If such occurrences can be found, what happened thereafter provides
some information about the unknown future x̃future at the current time t.

Finding exact occurrences of course happens with vanishing probability. We therefore in-
troduce an embedding h(x̃past) that reduces the dimensionality of past trajectories and define
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shadowing paths as paths x whose past history h(xpast) is close to h(x̃past) in a certain sense.
Furthermore, instead of scanning the historical past, we propose in this section to scan a long
dataset of paths generated using the model presented in section 6.2.

These shadowing paths are then used as inputs of our proposed Path Shadowing Monte-
Carlo (PS-MC) method, which allows us to obtain state-of-the-art predictions for future realized
volatility. The method will be extended in the next section 6.5 to option pricing.

Figure 6.3 – Path shadowing. Given current past history x̃past (red), we scan for paths x
(black) in a generated dataset whose past history satisfies xpast ≈ x̃past. Such paths x are said to
shadow x̃past, they provide insights on the future. Predictions are obtained through Monte-Carlo
on such shadowing paths.

6.4.1 The Path Shadowing Monte-Carlo method

We first separate a log-price path x ∈ RN into its past xpast = (x(t), t ≤ 0) and future
xfuture = (x(t), t > 0)

x = (xpast , xfuture)

Let Q(xfuture, t) be a quantity we want to predict, for example the average realized variance
in the next T days Q(xfuture, t) :=

∑t+T
u=t |δxu|2/T . In the following section, we write Q(x) :=

Q(xfuture, t) for simplicity. An optimal prediction of Q(x) for the mean square error as a function
of the observed past x̃past is given by the conditional expectation

E{Q(x) | xpast = x̃past} (6.11)

with E the expectation under the true distribution p(x) of log-prices. The goal is to estimate
such conditional expectation.

Let us for a moment omit the conditioning on the past. The standard Monte-Carlo method
estimates expectations using a finite number of realizations x1, . . . , xn drawn from p(x) as

1
n

n∑
k=1

Q(xk) (6.12)
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which converges to E{Q(x)} as n→ +∞ under independence of x1, . . . , xn and integrability of
Q(x) .

In theory, such method could apply to estimate (6.11), however it would require finding paths
xk such that xk

past = x̃past, which is all but impossible for data of finite size.
To tackle this problem, we relax strict conditioning on x̃past and consider paths x whose past

xpast is close to x̃past in a certain sense. In order to account for possible long-range dependencies,
we would like to consider a long past x̃past. However, finding paths xpast at a given distance
from x̃past becomes exponentially difficult as the size of the path grows – this is the curse of
dimensionality. In order to control the dimension, we consider a path embedding h(xpast) ∈ RM .
Given a threshold η > 0 we define the set of η-shadowing paths as

Hη(x̃past) = {x ∈ RN | ∥h(xpast)− h(x̃past)∥ < η} (6.13)

For example, h(x) = δx considers past log-returns, and hence log-price paths up to an additive
constant. Our choice of h is detailed in the next section. The term shadowing is freely inspired by
the shadowing principle in chaotic dynamical systems [Anosov, 1969 ; Sinai, 1972 ; Bowen, 1975 ;
Hammel, 1987]. The idea is that for a certain small η, paths in Hη(x̃past) can be considered as
true realizations of the process that can be used to faithfully compute observables.

Path Shadowing Monte-Carlo is a Monte-Carlo method on shadowing paths. It is a predictive
method since shadowing paths span over the future. Unlike a standard Monte-Carlo method,
not all paths should have the same weight since ∥h(xk

past)−h(x̃past)∥ is not uniform in k. This is
to say, certain paths shadow more accurately xpast than others and should be considered as more
likely to be extensions of the observed x̃past. Path Shadowing Monte-Carlo estimates (6.11) by
averaging Q(x) on paths x1, . . . , xn with weights w1, . . . , wn. This yields the following estimator

1
n

n∑
k=1

wkQ(xk), (6.14)

called the Nadaraya–Watson estimator [Nadaraya, 1964 ; Watson, 1964]. In the following, we
choose Gaussian weights, to wit

wk = c exp
[
−
∥h(xk

past)− h(x̃past)∥2

2η2

]

with c such that 1
n

∑n
k=1wk = 1. The set of shadowing paths Hη(x̃past) (6.13) can be defined as

the set of all paths that are one standard deviation away from x̃past for the Gaussian kernel.
The following theorem proves the convergence of the estimator (6.14) under standard hypo-

theses.

Theorem 4 (Path Shadowing Monte-Carlo Method). If Q is continuous with E{Q(x)} <

+∞ and the distribution p of x is continuous with p(x) > 0 for all x ∈ RN , then given
x1, . . . , xn, . . . independent realizations of x, the Path Shadowing Monte-Carlo estimator with
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h(x) = x converges almost surely

1
n

n∑
k=1

wkQ(xk) −→ E{Q(x) | xpast = x̃past}

for a certain limit n→ +∞ and η → 0.

The proof is in Appendix D.3. The continuity assumptions as well as the assumption that p >
0 are technical assumptions and can be softened ; note that the pθ in our model 6.1 satisfies them.
We refer the reader to [Hansen, 2008] for convergence theorems under more generic hypotheses.

Path Shadowing Monte-Carlo is a kernel method on log-price paths using a Gaussian kernel.
It is a fully non-local method in the sense that the collected paths xk may be far away in the past
from x̃past, possibly in a generated dataset of paths, contrary to non-local means [Buades, 2011]
that only consider neighborhoods of a patch. Such non-locality is in practice what ensures the
independence condition in theorem 4.

6.4.2 Generating shadowing paths

Collecting enough shadowing paths from the historical realization of S&P is unrealistic. The
set Hη(x̃past) will contain almost no paths for reasonable values of η, required to be small for
the method to converge.

We thus propose to scan for paths x1, . . . xn in a long generated dataset of log-prices, allowing
us to take n≫ 1 and selective shadowing threshold η ≪ 1. This however immediately introduces
a modelling error, due to the fact that we are estimating (6.11) where E is now the expectation
with regard to the model distribution and not the true distribution p(x).

A good model should generate trajectories that capture the long-range dependencies in order
for the shadowing paths to have predictive power on the future of x̃past. It should also generate a
variety of realistic scenarios in order to find enough paths in Hη(x̃past) for small η. As discussed
in section 6.2 the Scattering Spectra based model precisely meets these requirements : it is
realistic, in the sense that it accurately captures many stylized facts of financial time-series, and
it is versatile, in the sense that its maximum entropy formulation allows us to generate easily
a very large number of representative samples. Furthermore, should our generative algorithm
produce occasionally unrealistic paths, such paths would be given a very small weight w and
would not contribute to the estimation of Q(x). Shadowing Monte-Carlo is thus robust to outliers
in the generated set of paths. Another aspect of our method is that the dataset can be generated
once and can be scanned again and again for several prediction dates.

A crucial point for PS-MC to give good results is to understand how the path embedding
h affects the notion of path proximity. Such embedding should be chosen adequately. It should
pick relevant features of xpast to predict the quantity of interest Q(x), while remaining low-
dimensional such that enough paths can be found in Hη(x̃past) for small η. The naive embedding
h(x) =

(
δx(t),−Mpast + 1 ≤ t ≤ 0

)
∈ RMpast limits the past horizon Mpast which is also the

dimensionality of h.
We propose a representation h that again leverages the scale-invariance of x in the same
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way our Scattering Spectra framework does, and incorporates the influence of distant past while
remaining low-dimensional. It consists of multi-scale increments in the past with a power-law
decaying weight

hα,β(x) =
(x(t)− x(t− ℓ)

ℓβ
, ℓ = ⌊αm⌋ , m = 1, 2, . . .

)
(6.15)

for a certain α > 1 so that the past is progressively coarse-grained, and β ≥ 0 so that the far
away past is progressively discounted. For a given x̃past we choose η to be equal to η̄∥h(x̃past)∥
for certain h̄ > 0, which amounts to normalize the distance ∥h(xpast)− h(x̃past)∥ by ∥h(x̃past)∥.
Such h is a discretization of a continuous h that satisfies scaling and dilation equivariance, see
Appendix D.4. In practice we truncate the progression ⌊α1⌋, ⌊α2⌋, . . . in order for the span of h
to be bounded by 126 trading days in the past (corresponding to half a year).

The main parameters are thus α, β and η̄. Parameter α determines the dimensionality of
the path embedding hα,β, small α yields high-dimensional embedding. Parameter β rules the
relative importance of distant past to recent past in the selection of shadowing paths. Large
β > 0 means that the recent past bears more weight. Finally, there is a bias-variance trade-off
in the choice of η̄. When η̄ ≪ 1 only the closest path will be used for averaging, leading to
large variance estimator (6.14). When η̄ ≫ 1 then all paths are averaged uniformly, including
paths whose past xpast has nothing to do with x̃past, thus deteriorating the bias of our PS-MC
estimator.

6.4.3 Volatility prediction

As a meaningful application of Path Shadowing Monte-Carlo, we consider in this section the
prediction of the future daily realized variance over T days, for several values of T :

QT (x) = 252
T

T∑
t=1
|δxt|2. (6.16)

We consider all 2112 dates from January 2015 to March 2023. For each of them we consider the
realized variance over T = 1, 7, 25, 75, 150 days.

Our PS-MC method (6.14) uses paths generated from the model presented in section 6.2. We
compute the Scattering Spectra statistics (6.10) on observed 3772 S&P log-prices from January
2000 to December 2014, such that all our predictions are out-of-sample. From such statistics
we generate 32 768 trajectories of same size 3772 (see Fig. D.4 for examples), that represents
n ≈ 115 million paths x1, . . . , xn of size 126+150 days. For a given x̃past we scan such dataset
and select the 50 000 closest paths in the sense of the distance induced by embedding (6.15),
parameterized by α, β. While this scanning step is fastidious, it can be fully parallelized. We
then perform a weighted average on those closest paths, parameterized by η̄.

Parameters α, β, η̄ are calibrated using our generative model itself, in order to avoid any
over-fitting on the limited train data from S&P. We choose those parameters such that QT (x)
is optimally predicted within the model. More precisely, we take 1100 snippets x̃past from the
generated dataset, for which we have access to x̃future. We obtain an estimate of QT for these
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1100 dates and T = 7, 25, 75, 150. We then choose the best α, β, η̄ so as to maximize the R2

score between prediction and true values of the Scattering Spectra model itself. This yields the
following optimal parameters : α = 1.15, β = 0.9, η̄ = 0.075 and a path embedding hα,β of
dimension 34.

Let us note that these optimal values barely change when predicting realized variance at
different maturities. This is because of the scale-invariance of both the model and of the path
embedding. Note also that α = 1.15 in (6.15) means that the values ℓ = 1, 2, 3, 4 appear multiple
times. This amounts to ascribing an even larger weight to small time lags.

Number of days T 1 7 25 75 150
Benchmark -0.16 0.43 -0.05 -0.58 -0.79

Path Dependent Vol 0.37 0.56 0.29 -0.01 -0.08
Path Shadowing MC 0.32 0.56 0.33 0.07 0.01

Table 6.1 – Prediction of realized daily volatility through Path Shadowing Monte-Carlo (R2

scores). The PS-MC method based on Scattering Spectra outperforms the recently introduced
PDV model [Guyon, 2022] at all time-scales ≥ 7 days, and upholds predictive power up to a
period of ≈ 150 days. For T = 1 day, however, the PDV model performs best. The benchmark
is simply the realized variance on the T previous days.

The prediction quality is measured through the R2 score on future volatility estimates and
are shown in Table 6.1 for different maturities T . As a simple benchmark we consider the
realized variance on the T previous days as a predictor of QT (x). As a second, more challenging,
benchmark we consider the recent path dependent volatility (PDV) model introduced in [Guyon,
2022], which reads √

QT (x) = β0 + β1F1,t + β2
√
F2,t (6.17)

with F1,t = k1 ⋆ δx(t) , F2,t = k2 ⋆ |δx|2(t),

where k1 and k2 are two power-law kernels acting on past returns and past absolute returns. We
take the very same kernels as specified in [Guyon, 2022] but optimize the regression coefficients
β0(T ), β1(T ), β2(T ) for each maturity T separately, on the same train period as for PS-MC, i.e.
from January 2000 to December 2014. 3

Using the very same shadowing paths for all maturities, our Path Shadowing Monte-Carlo
method outperforms both the naive benchmark and the PDV model for all maturities from
T > 7 days, and ties with PDV for T = 7 days, see Table 6.1. In particular, our method upholds
predictive power up to ≈ 150 days, which none of the two other methods are capable of. This is,
we believe, due to the scale-invariance of both the Scattering Spectra generative model and our
choice of path embedding (6.15). Again, we insist on the fact that the PDV model parameters
are refitted for each maturity T whereas the Scattering Spectra model is calibrated once and for
all.

3. Note that the authors of Ref. [Guyon, 2022] estimate realized daily variance using 5-min ticks for better
estimation, but the scores we obtain with daily ticks are actually similar for the longest maturities T = 3 and
T = 5 that were tested in their study. Hence, we do not think that using 5-min ticks would substantially change
the conclusions reached below for T ≥ 7 days.
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These results vindicate both the generative model presented in section 6.2 and the PS-MC
method of the present section. In particular the Scattering Specra generative model, based on
182 parameters, is not over-fitting the training dataset.

6.5 Option pricing & trading games

In section 6.3, we have used the Hedged Monte-Carlo method to price options unconditionally
within the Scattering Spectra model, i.e. by averaging over all possible price paths of a given
length T . This allowed us to obtain average smiles as a function of maturity, which we compared
to those obtained using the same procedure but with real S&P trajectories.

Now, at a given date, option prices reflect anticipations of the market, conditioned on present
market conditions – in particular the past price trajectory – and any available information about
the future, such as earning announcements, dividends, political events, etc. Of course, such events
cannot be directly captured by a purely statistical model, however faithful it might be. Still, it
is interesting to run the exercise of pricing option smiles that anticipates the future solely based
on the past of underlying price process.

In this section we investigate this question by combining the Scattering Spectra generative
model presented in section 6.2 with Path Shadowing introduced in section 6.4. Option prices
are then obtained by upgrading the Hedged Monte-Carlo method [Potters, 2001] with, as an
input, shadowing paths generated by the model. The overall level of the resulting smiles at time
t is nothing but the prediction of the future realized volatility for t′ ∈ [t, t + T ], which was
already investigated in the previous section. We now extend such prediction to the full shape of
the smile. We assess the quality of our smiles by trading a buy-sell signal on options whenever
the model option smile is telling us that the option is under-priced or over-priced compared to
another smile model, or of the option market itself.

6.5.1 Path Shadowing hedged Monte-Carlo

Hedged Monte-Carlo (HMC) [Potters, 2001] enables one to use time-series of prices to com-
pute the option prices. It iteratively determines the optimal price and hedging strategy by
minimizing the expected financial risk of a portfolio containing the option to be priced and its
hedge, at all times t = T − 1, T − 2, . . . , 0. The expected risk is computed as an average over
paths, which in the present context are the shadowing paths, based on the notion of distance
induced by the path embedding h, (6.15). This defines the Path Shadowing Hedged Monte-Carlo
(PS-HMC) that can be used in a versatile way to price any derivative contract. We use the same
Gaussian weights given by Eq. (6.14) and the very same parameters α, β, η detailed in section
6.4.3, that are optimal for volatility prediction within the model itself.

Fig. 6.4 shows the resulting smiles as a function of rescaled log-moneyness, for different
maturities and at 3 typical dates. As one would have hoped, the level, but also the slope and
the curvature of those smiles do depend on the chosen date, and more precisely on the actual
path trajectory of the price before that date.
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Figure 6.4 – Conditional smiles obtained from hedged Monte-Carlo on shadowing paths ge-
nerated using the Scattering Spectra model at 3 different dates, 2018-10-23, 2019-06-14 and
2020-02-26. Note that the level, the slope and the curvature of those smiles strongly depend on
the chosen date.

6.5.2 Validation through trading game

In order to assess the quality of the smiles predicted by the Scattering Spectra model, we set
up the following trading game. We trade call options at several dates t on the option market.
We neglect bid-ask spread and consider the option price CMKT(t, T,K) to be the quoted mid-
price. We denote σMKT(t, T,K) the observed implied volatility and σmodel(t, T,K) the implied
volatility computed within the model that we decide to trade with.

We then test the following trading strategy : buy the corresponding option from the market
whenever we deemed it under-priced, i.e. σMKT(t, T,K) < σmodel(t, T,K) or sell it if we deem
it over-priced σMKT(t, T,K) > σmodel(t, T,K). We then follow the hedged option until maturity
and register the corresponding profit or loss associated to the trade.

The buy-sell signal of such strategy is thus given by

ϵt =
{

+1 if σMKT(t, T,K) < σmodel(t, T,K),
−1 if σMKT(t, T,K) > σmodel(t, T,K).

The un-hedged forward P&Lt(T,K) of one transaction is obtained as

P&Lt(T,K) = vtϵt

(
(ext+T −K)+ − CMKT(t, T,K)

)
(6.18)

where vt is the volume of option traded. In order to remove non-stationary effect due to the
long-term change in the value of the underlying, we take vt = 100/St = 100e−xt which amounts
to trade options on percentage of variation of the underlying rather than the underlying itself.

To reduce the variance of the strategy, we hedge the option using a simple Black-Scholes
delta-hedge with a constant volatility 0.2. Such delta-hedge gives zero profit on average but
reduces greatly (although not optimally, see [Potters, 2001]) the variance of P&Lt.
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In the following, we will consider the model smile σmodel to be given either by the smile
computed in the Scattering Spectra model using PS-HMC or the smile computed in a Path
Dependent model [Guyon, 2022], both using HMC. The two models are calibrated using the
same data in the train period i.e. January 2000-December 2014. As in the previous section, the
PDV model parameters are furthermore optimized for each maturity T independently, whereas
the Scattering Spectra model is parameterized once and for all with the Scattering Spectra
determined in the train period.

The trading game is then in both cases played out-of-sample, for all 2112 dates t from
January 2015 to May 2023. We choose 5 maturities T = 8, 25, 50, 75, 150 and 9 strikes at
constant rescaled log-moneyness M = −2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2.

Detailed P&Ls over 3 different periods of 3 year each are shown in Fig. 6.5. Their variance
across dates t is shown in Fig. D.5 in Appendix D.5. For most maturities and strikes, the trading
game using the Scattering Spectra model yields positive P&Ls and clearly outperforms the
trading game using the PDV model. In fact, one can directly play the Scattering Spectra model
against the PDV model without any reference to the actual option market, fully confirming that
the Scattering Spectra outperforms PDV for almost all maturities and strikes, see Appendix D.5
and in particular Fig. D.9.

Since the P&Ls are of the same order of magnitude across different strikes and maturities, we
average them over all the maturities and strikes. Table 6.2 shows such grand averages and reveals
that the trading game using the Scattering Spectra model is significantly more profitable than
using the PDV model, with furthermore less variance across different periods. This is confirmed
by the aggregated P&Ls over time, see Fig. 6.6.

full period 2015-2017 2018-2020 2021-2023
PDV 0.03 ± 0.05 0.15 ± 0.03 -0.12 ± 0.08 0.07 ± 0.04

Scattering Spectra 0.13 ± 0.05 0.14 ± 0.03 0.14 ± 0.07 0.11 ± 0.04

Table 6.2 – Average P&L of the trading game against the S&P market using the PDV model
or using the Scattering Spectra model. Detailed P&Ls are shown in Fig. 6.5.
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Figure 6.5 – P&Ls of the trading game against the S&P market with a PDV model or with the
Scattering Spectra model. Each heat-map corresponds to a 3 years period, from top to bottom
(2015-2017, 2018-2020, 2021-2023).

Figure 6.6 – Aggregated P&Ls of the trading game against the S&P market with a PDV model
or with the Scattering Spectra model. Each heat-map corresponds to a 3 years period, from top
to bottom (2015-2017, 2018-2020, 2021-2023).
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6.6 Conclusion

We presented a statistical model of financial prices based on the Scattering Spectra intro-
duced in chapter 2. Scattering Spectra are multi-scale extensions of the standard skewness and
kurtosis. Such a model achieves a tradeoff between accuracy and diversity. It captures main
statistical properties of prices as well as recently discovered scaling properties of option smiles.
As a maximum entropy model with a small number of constraints, our Scattering Spectra model
also avoids over-fitting.

We then introduced Path Shadowing Monte-Carlo (PS-MC) which enables building models
of forward looking probabilities p(x|xpast) from any generative model of p(x). Combined with
our statistical model of prices, PS-MC provides state-of-the-art volatility predictions. Shadowing
paths can also be used to obtain option smiles that depend only on the distribution of the price
process. A trading game allowed us to show that the Scattering Spectra model better anticipates
future price movements than other recently introduced models.

One limitation of PS-MC is that it requires to scan a large dataset of generated paths for
delivering good performances. This scanning step could be done more efficiently. In particular,
could one find “typical” price paths that should be frequently selected for prediction in order to
save intensive scanning efforts ?

Beyond prediction, we believe that Path Shadowing is a way of tackling other burning ques-
tions in Finance, such as typicality : how typical or atypical is a given sequence of price changes ?
Another highly relevant extension is towards the description of multivariate time-series. We hope
to address these issues in the near future using the methods introduced in this work.
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Chapitre 7
Conclusion

This thesis introduces models of multi-scale processes that can be estimated using limited
data. These models serve multiple purposes, including data generation, source separation, and
prediction.

7.1 Summary of contributions

7.1.1 Scattering Spectra

The first important problem tackled in this thesis is to define a vector of statistics that
specifies key properties of multi-scale, stationary, ergodic, non-Gaussian processes x which are
commonly encountered in various fields such as Finance and Physics, and that can be estimated
on limited data.

While state-of-the-art representations, based on phase-harmonics [Portilla, 2000 ; Zhang,
2021], introduced non-linear correlations that capture scale dependencies, which are crucial to
model non-Gaussianity, they exhibit too many coefficients resulting in large model variance.

A main contribution of this thesis is to introduce the Scattering Spectra, a reduced repre-
sentation of scale dependencies which leverages the multi-scale nature of the data. It is achieved
through a diagonal approximation, after a second wavelet transform, of the joint correlation
across time and scales of wavelet coefficients and their modulus. It extends the standard scatte-
ring moments of order 1 [Mallat, 2012 ; Bruna, 2013], by computing correlation across separate
scale channels.

When incorporated into a source separation framework [Regaldo-Saint Blancard, 2021], this
representation demonstrates the ability to effectively separate transient events in Mars seismic
data known as glitches and to clean observed Marsquakes which are essential to the study of
the interior of Mars.

Maximum entropy models based on Scattering Spectra are shown to provide accurate mo-
dels of financial and turbulent time-series. They can be extended to two-dimensional fields and
provide a compact characterization of dependencies between oriented scales.

Multi-channel models of time-series can be constructed by constraining the Scattering Spec-
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tra of certain factors. Such models are shown to reproduce important non-linear dependencies
across financial stocks, including joint time-asymmetry.

7.1.2 Wide-Sense Self-Similarity

Among multi-scale processes self-similar processes exhibit some form of scale invariance. An
important problem is to define and detect this scale regularity on limited data.

The main characterizations of self-similarity are based on structure functions, which involve
high-order moments on wavelet coefficients, and assume they have a power-law scaling. Multifrac-
tal analysis then relates the scaling exponents to properties of the signal. While this can be used
successfully to discriminate and evidence non-trivial scaling behaviors in the data, this provides
a relatively weak characterization of self-similarity in the extent that the structure functions do
not pick up important non-Gaussian properties such as sign-asymmetry or time-asymmetry.

A main contribution of this thesis is to introduce a wide-sense definition of self-similarity
similar to the widely adopted wide-sense definition of time-stationarity in signal processing. This
definitions posits that the joint correlation of wavelet coefficients and their modulus across times
and scales is invariant to scale shift, up to a power-spectrum normalization.

Such characterization can be tested numerically and can be used to evidence self-similarity
in a financial time-series of prices from the scale of a few minutes to the scale of a decade.

This wide-sense characterization also provides a way of reducing models of self-similar pro-
cesses, or processes with scale regularity in a broader sense. This enables building models of
multi-scale physical fields from very few statistics.

7.1.3 Path Shadowing Monte-Carlo

Another problem we tackle in this thesis is the prediction of multi-scale time-series from
limited data. This involves estimating conditional expectation of future quantities conditioned
on a given observed past history.

Important reference methods include linear regression and kernel methods. The lack of data
constrains linear model to simplistic relations between the past time-series and the quantities to
predict. Non-local kernel methods average predictions on “close” data points with a proximity
notion given by a kernel. However, when dealing with financial processes characterized by high
entropy and significant noise, finding ’close’ paths from limited observed data becomes infeasible.

Inspired by non-local methods, we introduced Path Shadowing Monte-Carlo, which proposes
to average predictions over generated data from our Scattering Spectra model. This method
exploits the ability of our model to generate a variety of paths with accurate long-range depen-
dencies. We show that it yields state-of-the-art volatility prediction in Finance as well as option
pricing through a trading game.
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7.2 Perspectives

7.2.1 Multivariate self-similarity

The characterization of joint self-similarity across multiple time-series remains a relatively
unexplored area of research. One of the reasons for this is the absence, to date, of a natural exten-
sion in a generic setting for the standard structure function tools that underlie the multifractal
formalism. Interesting attempts have been made to establish the existence of a multivariate
multifractal formalism in specific cases under synchronicity hypotheses [Jaffard, 2019].

For sake of simplicity, let us consider the case of two time-series x and y. A correlation-based
representation E{ρWx (ρWx)T } can be naturally extended to the case of multi-channel processes
by considering E{ρWx (ρWy)T }. This matrix characterizes important non-linear dependencies,
as it was demonstrated in the case of physical fields [Régaldo-Saint Blancard, 2023]. Can we
extend the wide-sense self-similarity introduced in chapter 2 as an invariance to scale shift on
the matrix E{ρWx (ρWy)T } ? Can we identify a low-dimensional structure on E{ρWx (ρWy)T }
as a consequence of joint self-similarity ?

7.2.2 Optimal directions in a maximum entropy factor model

Chapter 4 introduced a model of a multi-channel time process x(t) = (x1(t), . . . , xC(t)) by
choosing a small number of directions w1, . . . , wr ∈ RC for which the time-structure of the
process projected on these directions ⟨w, x⟩ is essential to capture the joint time-structure of
x. For that we chose two types of directions, well-known PCA directions and sparse directions,
obtained by dictionary learning. These directions are defined independently of the problem of
modeling x.

A question remains : what are “optimal” directions w1, . . . , wr ∈ RN across channels whose
projections ⟨w, x⟩ drive the joint process ? Which criteria should be used to pose the optimization
problem ? Do they coincide with known bases e.g. PCA or dictionary bases ? If such optimal
directions exist, what information do they reveal on the structure across channels ?

7.2.3 Towards a mathematical understanding of Transformers

Transformer models have been widely used in the recent years for a number of tasks, in-
cluding prediction on time-series or images [Vaswani, 2017 ; Ranftl, 2021 ; Wen, 2022]. They
provide state-of-the-art results when trained on large, if not huge, amounts of data. One of the
key distinguishing features of Transformers is the use of attention mechanisms, which efficiently
capture the influence of potentially distant past information. The attention layer learns asso-
ciations between ’keys’ and ’queries’ mapped to corresponding ’values’ using a kernel-defined
mechanism. Multiple attention layers are then cascaded within the Transformer architecture.

Drawing an analogy with Path Shadowing Monte-Carlo, our method establishes a similar
association using generated predefined keys, a query based on past history, and the value to be
predicted. This is achieved through a kernel method that incorporates information from distant
paths via a multi-scale embedding. Unlike the attention mechanism in Transformers, our Path
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Shadowing Monte-Carlo approach only necessitates a single realization of limited size. Can we
develop a simplified model of attention layer that remains efficient even with limited data ?
Additionally, what role does the depth play in Transformer architectures ?

7.2.4 Typicality of an observed realization

The main limitation of Path Shadowing Monte-Carlo introduced in chapter 6 is that it
requires to find predictive paths that are close to the observed past history, thus confronting
directly the entropy of the process. This algorithm is inefficient because many scanned paths are
discarded.

From another perspective, this raises the question of identifying “typical” paths i.e. which
are frequently selected by the algorithm for prediction at a given date. Beyond improving com-
putational efficiency of Path Shadowing Monte-Carlo, we believe that path shadowing could be
used to define a notion of typicality with respect to a maximum entropy model.
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Annexe A
Appendices for Chapter 2

A.1 Wavelet transform properties

We impose that the wavelet ψ satisfies the following energy conservation law called Littlewood-
Paley equality

∀ω > 0 ,
+∞∑

j=−∞
|ψ̂(2jω)|2 = 1. (A.1)

A Battle-Lemarié wavelet [Battle, 1987 ; Lemarié, 1988] is an example of such wavelet. The
wavelet transform is computed up to a largest scale 2J which is smaller than the signal size
N . The signal lower frequencies in [−2−Jπ, 2−Jπ] are captured by a low-pass filter φJ(t) whose
Fourier transform is

φ̂J(ω) =
( +∞∑

j=J+1
|ψ̂(2jω)|2

)1/2
. (A.2)

One can verify that it has a unit integral
∫
φJ(t) dt = 1. To simplify notations, we write this

low-pass filter as a last scale wavelet ψJ+1 = φJ , and Wx(t, J + 1) = x ⋆ ψJ+1(t). By applying
the Parseval formula, we derive from (A.1) that for all x with ∥x∥2 =

∫
|x(t)|2 dt <∞

∥Wx∥2 =
J+1∑

j=−∞
∥x ⋆ ψj∥2 = ∥x∥2.

The wavelet transform W preserves the norm and is therefore invertible, with a stable inverse.
Properties of signal increments are carried over to wavelet coefficients by observing that

wavelet coefficients are obtained by filtering signal increments δjx(t) = x(t) − x(t − 2j) with a
dilated integrable filter :

x ⋆ ψj(t) = δjx ⋆ θj(t) where θj(t) = 2−jθ(2−jt), (A.3)

where filter θ is obtained from ψ through θ̂(ω) = ψ̂(ω) / (1− e−iω). This is because 1− ei2jω is
the Fourier transform of δ(t) − δ(t − 2j), the filter that creates increments. From (A.3) we get
that if δjx(t) is stationary then x ⋆ ψj(t) is also stationary.
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A.2 Proof that strong distribution self-similarity implies weak
moment self-similarity.

Let x be a stationary process that is self-similar according to (2.1). For q ∈ R, marginal
moments are written S(q, j) = E{|δjx(t)|q}. They do not depend upon t. For all ℓ ≥ 0, j ≤ J ,
self-similarity implies that marginal distributions are equal : δjx(2ℓt) d= Aℓ δj−ℓx(t). On order q
moments, since Aℓ is independent from x this yields

S(q, j) = E{Aq
ℓ}S(q, j − ℓ).

Since the factors (Aℓ)ℓ are log-infinitely divisible, for all ℓ1, ℓ2 ≥ 0 E{Aq
ℓ1+ℓ2

} = E{Aq
ℓ1
}E{Aq

ℓ2
}.

This implies that logE{Aq
ℓ} is linear in ℓ which means there exists ζq such that E{Aq

ℓ} = 2jζq .
By defining S̃(q, j) = 2−jζqS(q, j), we obtain S̃(q, j) = S̃(q, j − ℓ) for all j ≤ J, ℓ ≥ 0, which
implies that S̃(q, j) is equal to a constant c̃q which does not depend on j

S(q, j) = E{|δjx(t)|q} = c̃q2jζq . (A.4)

Let us now establish the same property for wavelet coefficients. According to the self-
similarity property (2.1), wavelet coefficients satisfy (2.8). Indeed, one has :

x ⋆ ψj(2ℓt) = δjx ⋆ θj(2ℓt) thanks to (A.3)

= δjx(2ℓ·) ⋆ θj−ℓ(t) as θj are dilated filters
d= Aℓ δj−ℓx ⋆ θj−ℓ(t) by self-similarity (2.1)

= Aℓ x ⋆ ψj−ℓ(t) thanks to (A.3)

Increments δjx(t) are a special case where ψj = δ(t) − δ(t − 2j). For general wavelets ψj the
same proof than for increments holds, there exists cq such that for the same ζq :

E{|x ⋆ ψj(t)|q} = cq2jζq .

A.3 Proof that strong distribution self-similarity implies wide-
sense self-similarity

Let x be a process with stationary increments that is self-similar and thus satisfies (2.8). For
q = 1 and q = 2, A.2 proves that E{|x ⋆ ψj(t)|} = c1 2jζ1 and

σ2
W (j) = E{|x ⋆ ψj(t)|2} = c2 2jζ2 , (A.5)

which proves (2.15) and (2.16).
The equality in distribution (2.8) implies that for τ, j, a fixed we have(

x ⋆ ψj(t), x ⋆ ψj−a(t− 2jτ)
)

d= Aℓ

(
x ⋆ ψj−ℓ(2−ℓt), x ⋆ ψj−a(2−ℓt− 2j−ℓτ)

)
(A.6)
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Applying ρ and taking expected value gives

E{ρWx(t, j) ρWx(t− 2jτ, j − a)} = 2ℓζ2E{ρWx(t, j − ℓ) ρWx(t− 2j−ℓτ, j − a− ℓ)}, (A.7)

because of stationarity and E{A2
ℓ} = 2ℓζ2 . Normalized correlations CρW (τ ; j, a) are obtained by

dividing by σW (j)σW (j − a). It results from (A.5) that

2ℓζ2σW (j)−1σW (j − a)−1 = σW (j − ℓ)−1σW (j − a− ℓ)−1

and hence
CρW (τ ; j, a) = CρW (τ, j − ℓ, a).

Taking j = ℓ proves (2.17).

A.4 Proof of proposition 3 and theorem 2

Let x be a Gaussian process with stationary increments and assume that ψ̂jψ̂j−a = 0. Then
for any τ , x ⋆ ψj(t) and x ⋆ ψj−a(t − τ) are decorrelated because their power spectra do not
overlap. Since x is Gaussian these are also Gaussian. It implies that the processes x ⋆ ψj(t)
and x ⋆ ψj−a(t) are independent. In particular, |x ⋆ ψj | ⋆ ψj−b(t) and |x ⋆ ψj−a| ⋆ ψj−b(t) are
independent. Their correlation is thus zero and CS(j, a, b) = 0.

Let x be a time-reversible process with stationary increments. Thanks to proposition 2 we
know that CρW has the Hermitian symmetry : CρW (τ ; j, a) = CρW (−τ ; j, a)∗. Let us write C|W |

the subblock of this matrix composed of the normalized modulus auto-correlation

C|W |(τ ; j, a) = E{|x ⋆ ψj(t)| |x ⋆ ψj−a(t− 2jτ)|}
σW (j)σW (j − a)

We derive from (2.20) that the scattering cross-spectrum CS satisfies :

CS(j, a, b) =
∫

τ
C|W |(· ; j, a) ⋆ ψ−b(τ) ψ−b(τ)∗dτ. (A.8)

With Rx(t) = x(−t), the Hermitian symmetry of C|W | implies that

CS(j, a, b) =
∫

τ
RC|W |(· ; j, a)∗ ⋆ ψ−b(τ) ψ−b(τ)∗dτ

=
∫

τ
C|W |(· ; j, a)∗ ⋆ Rψ−b(−τ) ψ−b(τ)∗dτ

=
∫

τ
C|W |(· ; j, a)∗ ⋆ ψ∗

−b(−τ) ψ−b(τ)∗dτ

=
∫

τ
C|W |(· ; j, a)∗ ⋆ ψ∗

−b(−τ) ψ−b(−τ)dτ

= C∗
S(j, a, b)

because Rψ−b = ψ∗
−b. It proves that ImCS(j, a, b) = 0 which proves proposition 3.
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Under scale invariance (2.17) CρW (τ ; j, a) = CρW (τ ; 0, a). As a subblock, one has also
C|W |(τ ; j, a) = C|W |(τ ; 0, a). In particular, the equation (A.8) that expresses CS from C|W |

implies CS(j, a, b) = CS(0, a, b) which proves theorem 2.

A.5 Financial data preprocessing

We use a standard preprocessing on S&P data which accounts for missing values, overnight
period, intraday seasonality and tick effect. It is performed on 5min increments of S&P from
January 3rd 2000 to October 10th 2018 which represents 751 116 values.

Missing values, 17 956 5min increments, are replaced by independent Gaussian values with
zero mean and standard deviation observed at this time of the day.

Intraday seasonality is the fact that the volatility is larger at certain typical hours of the
day : it is a non-stationary effect. It is removed by dividing 5min increments by the average
volatility profile over all days.

The overnight period corresponds to the first bin at the beginning of each day. The cor-
responding increments are generally larger than other 5min increments. That again creates a
non-stationarity effect that can be attenuated by dividing each overnight increment by their
average volatility on all days.

Prices of S&P are present on a grid with certain tick size. Hence, 5min increments are discrete
with many values equal to 0 or to plus/minus the tick size. This tick effect is present only for
high-frequency increments and hence breaks the scale invariance property at high frequency. To
remove it we apply a low-pass filter to x that amounts to a moving average on small windows
of 15 minutes.

A.6 Microcanonical sampling

Given n observed samples x̃1, . . . , x̃n ∈ RN of a process, e.g. time-series N = T , multi-channel
time-series N = C × T , d-dimensional field N = Ld, with possibly n = 1, a microcanonical set
is defined as follows :

Ωϵ =
{
x1, . . . , xm ∈ RN | ∥ ⟨Φ(xj)⟩j − ⟨Φ(x̃i)⟩i ∥2 < ϵ

}
. (A.9)

Where x1, . . . , xm are multiple realizations considered simultaneously, enabling parallel genera-
tion. Microcanonical models are maximum entropy distributions over Ωϵ. Due to the average
over j in ⟨Φ(xj)⟩j the x1, . . . , xm share the same distribution. When choosing Φ to be the Scat-
tering Spectra, the set Ωϵ is compact, thus a microcanonical model has a uniform distribution
over this set. Increasing the number of samples n, depending on data availability, reduces the
variance of ⟨Φ(x̃i)⟩i which concentrates around E{Φ(x)}. This reduces the information about a
specific realization which is contained in ⟨Φ(x̃i)⟩i, thus limiting over-fitting.

Sampling from the microcanonical model amounts to drawing a realization from a uniform
distribution in Ωϵ. We approximate this sampling with a gradient descent algorithm studied
in [Bruna, 2019]. This algorithm progressively transports a white Gaussian noise distribution,
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which has a higher entropy than the microcanonical model, into distributions supported in Ωϵ.
This is done with a gradient descent on ℓ(y1, . . . , ym) = ∥ ⟨Φ(yj)⟩j − ⟨Φ(x̃i)⟩i ∥2, where the yj

are initialized as independent realizations of white noises. At each iteration, the yi are updated
with the L-BFGS-B algorithm, which is a quasi-Newton method that uses an estimate of the
Hessian matrix. In practice, we perform 200 gradient descent steps which yield a typical error
ϵ ≈ 10−4.

It is proved in [Bruna, 2019] that this algorithm converges to a distribution that has the same
symmetries as Φ(x), similarly to the microcanonical one. However, it has been shown that this
algorithm recovers a maximum entropy distribution in Ωϵ only under appropriate conditions
and that such gradient descent models may differ, in general, from maximum entropy ones.
Nevertheless, these algorithms provide powerful sampling methods to approximate large classes
of high-dimensional stationary processes, while being much faster and computationally tractable
than alternative MCMC algorithms.
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B.1 Wavelets in Rd and scattering covariances

(a) Real ψ (b) Imag ψ (c) ψ̂

Figure B.1 – Real and imaginary parts of a Morlet wavelet ψ(u) and its Fourier transform
ψ̂(ω), used in numerical calculations.

A Morlet wavelet ψ defined on Rd is the product of a Gaussian envelope with a sinusoidal
wave

ψ(u) = gσ(u)(ei⟨ξ,u⟩ − c) with gσ(u) = 1
(σ
√

2π)d
e− ∥u∥2

2σ2 ,

where c is chosen so that
∫
ψ(u) du = 0 1. Such a wavelet recovers variations around scale 2j

in the direction of ξ. It is invariant to any rotation of Rd that fixes ξ. In practice we choose
ξ = (3π/4, 0, . . . , 0) and σ = 0.8. For simplifying equations in appendices we assume ∥ξ∥ = 1,
without loss of generality. To recover variations at other scales and in other directions we define
the wavelet filters

ψλ(u) = 2−jdψ(2−jr−1u) with λ = 2−jr−1ξ

1. In practice, the envelope gσ is an elliptical Gaussian window to increase the angular resolution of ψ, but
this does not virtually modify our discussion.
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for (j, r) ∈ R × SO(d). In Fourier, ψ̂λ is a Gaussian centered in λ substracted by a Gaussian
centered in 0 so that ψ̂λ(0) = 0

ψ̂λ(ω) = ψ̂(2−jr−1ω) with ψ̂(ω) = e− σ2
2 ∥ω−ξ∥2 − c e− σ2

2 ∥ω∥2

We shall restrict the scales 2j to dyadic scales, hence taking j integer, and restrict the
rotations to a discrete subgroup Γ of SO(d) of order 2d− 1 [Y Meyer, 1992]. In dimension d = 2
such a group can be parameterized by one angle, in dimension d = 3 it can be parameterized by
2 angles. We write Λ = Z× Γ the group that defines filters ψλ from ψ.

To guarantee that the wavelet transform W (defined in (3.7)) is invertible and satisfies an
energy conservation, we impose that the ψλ satisfy the following Littlewood-Paley inequality for
0 < δ < 1

∀ω ̸= 0 , 1− δ ≤
∑
λ∈Λ
|ψ̂λ(ω)|2 ≤ 1 + δ.

For fields defined on a cubic d-dimensional lattice of length L, the wavelets ψλ are discretized
accordingly. The wavelet transform is computed up to the largest scale 2J which is smaller than
length L so as to achieve a reasonable estimate of low-frequency moments, even on a single
realization. The lower frequencies of x in the ball |ω| ≤ 2J are captured by a low-pass filter ψ0

which is a Gaussian centered in ω = 0 in Fourier ψ̂0(ω) = c0 exp(−σ2
0∥ω∥2/2) with σ0 = σ 2J−1.

The Littlewood-Paley inequality now reads :

∀ω ̸= 0 , 1− δ ≤ |ψ0(ω)|2 +
∑

|λ|−1≤2J

|ψ̂λ(ω)|2 ≤ 1 + δ.

By applying the Parseval formula we derive that for all x

(1− δ)∥x∥2 ≤ ∥Wx∥2 ≤ (1 + δ)∥x∥2

which insures that W preserves the norm of x, up to a relative error of δ, and is therefore
invertible, with stable inverse. For the wavelet used for syntheses of physical fields in chapter 3,
we have δ ≈ 0.8.

Covariance of wavelet coefficients Wx(u, λ) can be written from the power spectrum P (ω)
of x

E{Wx(u, λ)Wx(u′, λ′)∗} = 1
2π

∫
P (ω)ψ̂λ(ω)ψ̂λ′(ω)ei⟨u−u′,ω⟩dω.

It implies that this correlation is zero if the supports of ψ̂λ and ψ̂λ′ do not overlap. For the speci-
fied wavelets, as soon as λ ̸= λ′, these supports barely overlap and E{Wx(u, λ)Wx(u′, λ′)∗} ≈ 0.
Moreover, since x is stationary, the covariance E{Wx(u, λ)Wx(u′, λ′)∗} only depends on u− u′

and have a fast decay when the power spectrum P (ω) is regular. Thus, even if dependencies
across separate scales may exist, they are not captured by correlation.

Taking the modulus of wavelet coefficients removes complex phase oscillations and thus
recenter the frequency support of Wx(u, λ). Indeed, the power spectrum Pλ(ω) of x ⋆ ψλ is
mostly supported in a ball ∥ω − λ∥ ≤ 2−jσ−1 which does not overlap with the Fourier support
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of the power spectrum Pλ′(ω) of x ⋆ ψλ′ . Taking a modulus on x ⋆ ψλ′ eliminates the phase
which oscillates at the central frequency λ′. As a consequence, the power spectrum of |x ⋆ ψλ′ |
is centered at ω = 0 and its energy is mostly concentrated in ∥ω∥ ≤ 2−jσ−1 which now may
overlap with the support of Pλ(ω) as can be seen in Fig. 3.2. The power spectra of |Wx(u, λ)|
and |Wx(u, λ′)|, both centered at zero, also overlap.

We now justify taking u = u′ in order 3 moments given by (3.9). The cross spectrum Pλ,λ′

between Wx(u, λ) and |Wx(u, λ′)| is assumed regular for the fields considered in chapter 3. In
that case one can approximate such cross-spectrum using wavelets, which gives the moments
E{WWx(u, λ, γ)W |Wx|(u, λ′, γ)}. However, the left-hand-side WWx(u, λ, γ) is negligible when
λ ̸= γ because Fourier support of wavelets ψλ and ψγ barely overlap. The resulting coefficients

E{WWx(u, λ, λ)W |Wx|(u, λ′, λ)} = 1
2π

∫
Pλ,λ′(ω)|ψ̂λ|2dω

average Pλ,λ′(ω) in a ball ∥ω∥ ≤ 2−jσ−1 through |ψ̂λ|2. However, Pλ,λ′(ω) is already concentrated
in this ball. We thus remove |ψ̂λ|2 which yields E{Wx(u, λ) |Wx|(u, λ′)}.

The following proposition shows that Scattering Spectra reveal non-Gaussianity in a field x.

Proposition 4. Let x be a stationary process.

1. If x is Gaussian then for any separate scales λ, λ′, meaning that ψ̂λψ̂λ′ = 0

E{S̄1(x)} = π

4 ,

E{S̄3(x)[λ, λ′]} = 0 and E{S̄4(x)[λ, λ′, γ]} = 0.

2. If x is symmetric i.e. p(−x) = p(x) then

E{S̄3(x)} = 0.

3. If x is invariant by rotation of angle π i.e. p(x(−u)) = p(x(u)) then

ImE{S̄3(x)} = 0 and ImE{S̄4(x)} = 0.

Démonstration. If x is Gaussian then Wx(u, λ) is also Gaussian and the ratio between its
first and second order moment is π/4. If ψ̂λψ̂λ′ = 0 then Wx(u, λ) and Wx(u, λ′) are de-
correlated, since (Wx(u, λ),Wx(u, λ′)) is Gaussian, this implies that Wx(u, λ) and Wx(u, λ′)
are independent. Thus, Wx(u, λ) and |Wx(u, λ′)| are independent, so are W |Wx|(u, λ, γ) and
W |Wx|(u, λ′, γ) which proves 1. Point 2. is proved by observing that S3(−x) = S3(x) and point
3. by observing that S3(x(−u)) = S3(x)∗ and S4(x(−u)) = S4(x)∗.

For the physical fields studied in chapter 3, such coefficients are non-zero, thus revealing
their non-Gaussianity Fig.B.3.
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Figure B.2 – Visual assessment of our model based on S̄ with 11 641 coefficients estimated on
a single realization (top). Generated fields (bottom) show very good visual quality.

B.2 Equivariance and invariance to rotations and scaling

The Scattering Spectra are computed from wavelet transforms, which are equivariant to
rotations and scalings. We show that Scattering Spectra inherit these equivariance properties.
If p(x) is isotropic or self-similar, then one can build isotropic or self-similar maximum entropy
models by averaging renormalized Scattering Spectra over rotations or scales, which reduces
both the variance and dimensionality of S̄.

To avoid discretization and boundary issues for rotations and scaling, we consider fields
x(u) defined over continuous variables u ∈ Rd, and establish the mathematical results in this
framework. For this purpose, the sum in the wavelet transform defined in (3.7) is replaced by
an integral over Rd. Wavelets are dilated by 2j for j ∈ Z and rotated by r in a rotation group
G of cardinal R. In dimension d = 2, these rotations have an angle 2πℓ/R.

Proposition 5. For r ∈ G with xr(u) = x(r−1u) one has

S(xr)[λ, λ′, γ] = S(x)[rλ, rλ′, rγ]. (B.1)

For j ∈ Z with xj(u) = x(2−ju) one has

S(xj)[λ, λ′, γ] = S(x)[2jλ, 2jλ′, 2jγ]. (B.2)

Proof. It follows from the equivariance of wavelet coefficients, Wxr(u, λ) = Wx(r−1u, rλ) and
Wxj(u, λ) = Wx(2−ju, 2jλ).

Isotropic fields x have a distribution that is invariant to rotation xr
d= x for all r ∈ G.

Self-similar fields x have a distribution that is invariant to scaling, up to random multiplicative
factors xj

d= Ajx for all j ≥ 0 [Mandelbrot, 1997]. For such fields, we show that the expected
Scattering Spectra exhibit invariance to rotation or scaling of their indices, and thus have a
lower-dimensional structure. For that purpose we used normalized Scattering Spectra coefficient
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S̄(x) defined (3.16), where the normalization is done by σ2[λ] = E{|Wx(u, λ)|2}.

Proposition 6. If x is isotropic then for any r ∈ G

E{S̄(x)[rλ, rλ′, rγ]} = E{S̄(x)[λ, λ′, γ]}. (B.3)

If x is self-similar at scales 2j ≤ 2J then

E{S1(x)[λ]} = c1|λ|−ζ1 , E{S2(x)[λ]} = c2|λ|−ζ2 (B.4)

E{S̄3(x)[2jλ, 2jλ′]} = E{S̄3(x)[λ, λ′]} (B.5)

E{S̄4(x)[2jλ, 2jλ′, 2jγ]} = E{S̄4(x)[λ, λ′, γ]} (B.6)

Proof. Let us assume x is isotropic xr
d= x. It implies that E{S(xr)} = E{S(x)}. Thanks to the

equivariance property of (B.1) one gets the invariance property on S : E{S(x)[rλ, rλ′, rγ]} =
E{S(x)[λ, λ′, γ]}. We obtain (B.3) by dividing this equation by E{S2(x)[rλ]} = E{S2(x)[λ]}.
Let us assume x is self-similar, xj

d= Ajx. In that case one has Aj+j′
d= AjAj′ , taking order

1 and order 2 moments, this implies E{Aj} = 2−jζ1 and E{A2
j} = 2−jζ2 for certain power-

law exponents ζ1, ζ2. Now from self-similarity and equivariance property given by (B.2) one
has E{S1(x)[2jλ]} = E{Aj}E{S1(x)[λ]} = 2−jζ1E{S1(x)[λ]}. Taking 2−j = |λ| one obtains
E{S1(x)[λ]} = c1|λ|−ζ1 with c1 = E{S1(x)[|λ|−1λ]} independent on |λ|. With the same reaso-
ning on S2 we obtain (B.4). From self-similarity and equivariance property given (B.2), we get
similarly : E{S3(x)[2jλ, 2jλ′]} = 2−jζ2E{S3(x)[λ, λ′]}. Dividing by E{S2(x)[λ]} = c2|λ|−ζ2 yields
(B.5). We obtain (B.6) similarly, which proves the proposition.

The wavelet coefficient renormalization is necessary to ensure that the Scattering Spectra
are invariant to scaling. As explained in [Marchand, 2022], it is directly related to Wilson renor-
malization, which yields macrocanonical parameters (physical couplings) that remain constant
across scales (fixed point) at phase transitions, where the field becomes self-similar.

If x is isotropic, then (B.3) implies that〈
S̄(x)[rλ, rλ′, rγ]

〉
r∈G

(B.7)

is an unbiased estimator of E{S̄(x)[λ, λ′, γ]} with lower variance than S̄(x)[λ, λ′, γ]. Choosing
Φ(x) =

〈
S̄(x)[rλ, rλ′, rγ]

〉
r∈G

also reduces the dimension of our model by a factor R. Since this
representation is invariant to rotations of x in G, the macrocanonical and microcanonical models
defined from it are also invariant to these rotations.

Similarly, if x is self similar on a range of scales 2j ≤ 2J , then (B.5) and (B.6) implies that〈
S̄3(x)[2jλ, 2jλ′]

〉
j
,
〈
S̄4(x)[2jλ, 2jλ′, 2jγ]

〉
j

(B.8)

where the average is taken on all scales j such that (2j |λ|)−1 ≤ 2J , (2j |λ′|)−1 ≤ 2J , (2j |γ|)−1 ≤
2J , are unbiased estimators of E{S̄3(x)[λ, λ′]} and E{S̄4(x)[λ, λ′, γ]} with lower variance than
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S̄3(x) and S̄4(x). Choosing Φ(x) =
(
S̄1(x), S̄2(x),

〈
S̄3(x)

〉
j
,
〈
S̄4(x)

〉
j

)
reduces the dimension of

our model by at most a factor logL. The resulting maximum entropy model is not necessarily
self-similar due to the presence of scale-dependent moments E{S̄1(x)} and E{S̄2(x)}. However,
if S̄1(x)[λ] and S̄2(x)[λ] have a power-law decay along λ our model becomes self-similar.
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Figure B.3 – Visualization of Scattering Spectra S̄ for different physical fields. Power-spectrum
S2 and sparsity factors S̄1 are averaged along all angles (amount to taking the 0-th angle Fourier
harmonic). We only show the 0-th angle Fourier harmonic and 0-th scale Fourier harmonic for
order 3 and order 4-moment estimators S̄3 and S̄4. Thus, the quantities that are shown are
invariant to the rotation of the field, and the last two rows (S̄3, S̄4 are furthermore invariant
to scaling). Non-zero coefficients S̄3 show that the cosmic lensing and cosmic web fields are
not invariant to sign flip. This is due to the presence of high positive peaks on the former
and filaments on the latter. The large amplitude of envelope coefficients S̄4 on the last 2 fields
indicate long-range spatial dependencies as evidenced by the presence of structures at the level
of the map.
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B.3 Dimension reduction with Fourier thresholding

We give in this appendix the details of the dimensional reduction of S̄ into PS̄, which is
done by Fourier projectors of S̄(x) along rotations and scales, estimated by thresholding. This
dimensional reduction based on regular variations of the dependence of S̄ on different scales,
allows for a representation of lower variance, bringing the microcanonical and macrocanonical
models closer together.

We concentrate on the two-dimensional case d = 2 corresponding to numerical applications.
The rotation group is then Abelian and defined by a single angle parameter, which simplifies the
Fourier transform calculation. However, the same approach applies to non-commutative groups
G of rotations in Rd for d > 2, with their Fourier transform. Each wavelet frequency is defined
in (3.6) by λ = 2−jrℓξ, where rℓ is a rotation of angle 2πℓ/R. To guaranty that the Scattering
Spectra frequencies satisfy |λ| ≤ |λ′| < |γ|, we write

λ = 2−j1rℓ1ξ , λ
′ = 2−j1−arℓ2ξ , γ = 2−j1−brℓ3ξ

with 0 ≤ a < b ≤ J − j1 and J < logL. It leads to a scale and angle reparametrization of the
Scattering Spectra :

S̄(x)[λ, λ′, γ] = S̄(x)[j1, a, b, ℓ1, ℓ2, ℓ3].

If S̄(x) has regular variations as a function of rotations then its three-dimensional Fourier
transform along the (ℓ1, ℓ2, ℓ3) has coefficients of negligible amplitude at high frequencies, which
can thus be eliminated. One can also take advantage of regularities along scales. Since 1 ≤ j1 ≤ J
varies on an interval without periodicity, the Fourier transform is replaced by a cosine transform
along j1 for a and b fixed. We could also perform a cosine transform along the scale shift a and
b, but this is not done in numerical applications because their range of variations is small and
j-dependent. The Fourier transforms along j1 is however sufficient to identify scale-invariance,
since one then expects S̄ to only depend on a and b, see appendix B.2. We write F S̄(x) the
Fourier transform of S̄(x) along (ℓ1, ℓ2, ℓ3) and its cosine transform along j1.

Since F is unitary, it preserves the estimator variance :

σ2
S̄

= E{∥
〈
FS̄(xi)

〉
i
− E{FS̄(x)}∥2}. (B.9)

Ideally, the estimation error of E{FS̄(x)} is reduced by eliminating its coefficients whose squa-
red amplitude is smaller than the variance of the empirical estimation error. It amounts to
suppressing all coefficients having a variance that is larger than the bias resulting from their
elimination. However, we can not implement this optimal "oracle" decision because we do not
know E{FS̄(x)}. In chapter 3, we instead apply an approximate thresholding algorithm, which
eliminates small amplitude coefficients of S̄(x) below a threshold proportional to their standard
deviation, as discussed in the main text. This thresholding algorithm is adaptive and the se-
lected coefficients vary from one process to another. For each process studied, an ensemble of
between 20 to 100 samples xi were used to empirically estimate the average and variance of
FS̄, called µ(FS̄) and σ(FS̄). The coefficients which have been kept are those that individually
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verify µ(FS̄) > 2σ(FS̄).
A projected Scattering Spectra

Φ(x) = P S̄(x)

is computed with a linear Fourier projection P which eliminates all coefficients of FS̄(x) cor-
responding to coefficients of

〈
FS̄(xi)

〉
i

below their threshold. The efficiency of this projected
scattering is the variance reduction ratio σ2

P S̄
/σ2

S̄
with

σ2
P S̄

= E{∥
〈
PS̄(xi)

〉
i
− E{PS̄(x)}∥2}. (B.10)

If p(x) is isotropic or self-similar then we expect that P is a low-frequency projector along
global rotations (which act similarly on all li coordinates) or scalings (which act on j), which
corresponds to the averages described in (B.7) and (B.8). The Fourier projection P is however
much more general and can adapt to unknown regularities of p(x) along rotations and scales.

B.4 Number of coefficients for shell binned polyspectra

For a 2D field, there are originally O(L4) bispectrum coefficients in total, as there are two
independent frequencies in the bispectrum and each has two dimensions. If we take Nbin linear
frequency bins along each side of L lattice points, the coefficients to be estimated is reduced to
O(N4

bin). A rotation and parity average will further reduce and better estimate the bispectrum
coefficients, which eliminates one dimension and leads to ∼ 1

A3
3
· 12Nbin · 34N

2
bin · 12 = 1

32N
3
bin binned

coefficients, where 1/A3
3 = 1

6 is the repeated counting of the three-frequency combinations in
bispectrum, 1

2Nbin is the number of choice of k1, given rotation invariance, 3
4 is the number of

choice of k2 given the requirement that each k is within the L× L lattice in Fourier space and
k1 + k2 + k3 = 0, and the factor 1

2 comes from parity average.
For 2D fields, the shell-binned bispectrum is essentially a fast way to compute the rotation

and parity average of the bispectrum. It does not mix very different configurations, because
a given set of |k1|, |k2|, |k3| combined with the condition k1 + k2 + k3 = 0 uniquely set the
configuration up to free rotations. The number of coefficients is of the order ∼ 1

8N
3
bin (the

scaling power is 3 rather than 2d = 4 because the orientation average eliminates one degree
of freedom). For our choice of Nbin = 10, there are 151 shell-binned bispectrum coefficients.
Similarly, the shell-binned trispectrum T̄ has 651 ∼ 1

16N
4
bin coefficients. Note that the shell-

binning for trispectrum is more aggressive, because in 2D the same set of |k1|, |k2|, |k3|, |k4| may
come from different combinations k1, k2, k3, k4 even if the condition k1 + k2 + k3 + k4 = 0 is
applied.

The ordering of B̄ and T̄ shown in Fig. 3.4 is determined in a nested way. The frequency
annuli are labeled by i from small to large |k|. To remove redundant coefficients, we require
i1 ≤ i2 ≤ i3(≤ i4) and order them first by i1 in increasing order ; when two binning configurations
have the same i1, they are then ordered by i2 and so on.
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C.1 Source Separation Guarantees

We prove theorem 1, discuss its assumptions for the deglitching example applied to data from
Mars, and show how our implementation relates to these assumptions. For sake of simplicity we
take a1 = 1.

Proof. Part I. One can prove that there exists a unique process n that maximises entropy under
moment constraint E{Φ(n)}, its distribution takes the form pn(·) = Z−1

θ e−⟨θ,Φ(·)⟩ for certain
Lagrange multipliers θ ∈ RM where M is the dimension of Φ. Assumptions 1, 2, 3 imply that n
and n̄ are the same unique process, meaning pn = pn̄.
Part II. Due to the independence of s1, n and s̄1, n̄ (4) we have px = ps1 ⋆ pn and px = ps̄1 ⋆ pn̄.
Since pn̄ = pn we get ps1 ⋆ pn = ps̄1 ⋆ pn̄. This is a measure deconvolution problem. Taking the
Fourier transform on measures yields

(p̂s1 − p̂s̄1) p̂n = 0.

Under assumption 5 we get ps̄1 = ps1 , which proves the theorem.

Assumption 1 is the main assumption. It implies that the processes n is fully determined by
the values E{Φ(n)}, since there is a unique distribution satisfying 1. A maximum entropy process
n under correlation constraints E{nnT } is a Gaussian process. A wavelet Scattering Covariance
captures non-linear correlations, assumption 1 tells us that process n is a non-Gaussian noise fully
characterized by E{Φ(n)}. Now, the Scattering Covariance E{Φ(n)} was shown to characterize a
wide range of non-Gaussian noises, see chapter 2. In our case, the Mars seismic background noise
n may not be fully characterized by its Scattering Covariance E{Φ(n)}, so that assumption 1 is
only verified approximately, depending on the descriptive power of the representation E{Φ(n)}
for n.

Assumption 2 is approximately verified, requiring the entropy of x to be close to the entropy
of n, which is typically the case of time-localized signals such as glitch, of comparable amplitude
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than n. The gradient descent algorithm implements 2, reconstructed n̄ is initialized to x and is
updated until Φ(x) matches the Φ(nk).

Assumption 3 is imposed through the loss term Lprior, up to estimation error of Φ(n) on a
finite number of realizations.

Assumption 4 relates to the loss term Lcross that imposes statistical independence up to the
cross-Scattering Covariance.

Assumption 5 is a technical assumption satisfied for a Gaussian noise n for which the Fourier
transform of pn is a Gaussian. A non-Gaussian noise n satisfying 1 has a distribution of the form
pn(·) = Z−1

θ e−⟨θ,Φ(·)⟩. Apart from the coefficients Ave(S(n)), the scattering covariance Φ is
quadratic in n, thus we may assume 5 is still satisfied.

C.2 Baseline method

The glitch detection algorithm that we use as baseline is developed by Scholz et al. [Scholz,
2020] and consists of several processing steps applied to seismic data :

— Decimation : The data is downsampled to a uniform rate of two samples per second to
ensure consistent parameterization and improve computational efficiency ;

— Deconvolution and band-pass filtering : Instrument response is removed from each com-
ponent, transforming the data into acceleration. Additional band-pass filtering is also ap-
plied to highlight the significant features of acceleration ;

— Time derivative calculation : The time derivative of the filtered acceleration data is com-
puted, resulting in acceleration steps becoming impulse-like signals ;

— Glitch detection : A constant threshold is applied to the time derivative to identify glitches.
A window length is introduced to avoid false triggers on subsequent samples that are part
of the same glitch event, serving as a safeguard against spurious detections.

After glitch detection, removal is based on obtaining a model (template) for the glitch signa-
tures, followed by a separation techniques that assumes the observed data as a linear combination
of the glitch and the glitch spike. To characterize each detected glitch, a glitch model is em-
ployed, consisting of three parameters : an amplitude scaling factor, an offset, and a linear trend
parameter. The modeling process entails solving a nonlinear least squares data fitting problem
to determine these parameters. Subsequently, the deglitched data is obtained by subtracting the
fitted glitch (excluding the offset and linear trend) from the original data.

In comparison to our approach, the glitch modeling step in the mentioned method could
be a significant limitation. Unlike their method, we do not make any assumptions about the
functional form of the glitch or the unknown source. Instead, we focus on learning the wavelet
scattering covariance statistics of the background noise. This allows us to overcome the potential
limitations associated with explicitly modeling the glitches.
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Figure C.1 – Realizations of increments of the multifractal random walk process.

C.3 Multifractal random Walk realizations

Figure C.1 shows realizations of the multifractal random walk process used in the stylized
example.

Figure C.2 – Unsupervised source separation for glitch removal.

Figure C.3 – Unsupervised source separation for glitch removal.

Figure C.4 – Unsupervised source separation for glitch removal.
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Figure C.5 – Unsupervised source separation for glitch removal.

Figure C.6 – Unsupervised separation of glitches from seismic data recorded during sol 187
(June 6, 2019) from 17 :08 to 00 :55 Martian local time (the horizontal axis is in UTC time
zone). The raw data is depicted in black, with the predicted deglitched data overlaid, represented
by the baseline method in red and the proposed method in blue. The high-amplitude “spikes”
observed in the raw waveform correspond to glitches. A successful deglitching outcome should
exclude these spikes. Our deglitching results effectively separate a significant number of these
high-amplitude events, whereas the baseline method fails to address a considerable portion of
them.

C.4 Additional glitch separation results

Here we provide more results regarding separating glitches from the seismic data recorded
during the NASA InSight mission. Figures C.2–C.5 provide glitch removal results for a more
diverse set of glitches using the same setup as described in section 5.6.2.1.

We provide more comprehensive deglitching results by applying our approach to perform
glitch separation on the U component for the nighttime (17 :08–00 :55 LMST) during sol 187
(June 6, 2019), as the glitches during the day are often obscured by daytime noise. We used
a set of 50 snippets with window size of 204.8 s and solved the source separation optimization
problem using 200 L-BFGS iterations.

Our results indicate that the baseline method appears to overlook several anomalies in the
U component that we believe to be glitches. In contrast, our method not only detects all the
glitches identified by the baseline method, but it also recognizes a significant number of additional
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Figure C.7 – Three zoomed-in time intervals from Figure C.6 to facilitate a detailed perfor-
mance comparison between the baseline (red) and the proposed deglitching results. Both out-
comes are overlaid on the raw waveform shown in black. The glitches manifest as high-amplitude
one-sided pulses in the raw waveform, which we intend to separate. Within each of the aforemen-
tioned time intervals, it is evident that the baseline approach falls short in effectively separating
several glitches. The horizontal axis represents the UTC time zone.

glitches. Although it is true that our method appears to detect more glitches than the baseline,
we must recognize that the baseline is the only dependable reference for identifying glitches and
further verification by InSight experts is necessary to confirm the legitimacy of the identified
events as glitches.

C.5 Additional marsquake background noise separation results

We present additional results on the separation of marsquake background noise and glitches,
showcasing different marsquake characteristics. The first example pertains to a marsquake recor-
ded on January 2, 2022 [InSight Marsquake Service, 2023]. This particular marsquake exhibits a
larger amplitude and a longer coda wave compared to the one presented in Figure 5.8. Although
the background noise appears negligible and is not readily visible in the raw waveform, this
provides an opportunity to demonstrate the effectiveness of our unsupervised source separation
method when one source (the marsquake in this case) dominates in amplitude.

To achieve the separation of background noise, we selected approximately 36 hours of de-
trended raw data from the U component with a sampling rate of 20Hz. This ensured an accurate
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Figure C.8 – Unsupervised separation of background noise and glitches from a marsquake
recorded by the InSight lander’s seismometer on January 2, 2022 [InSight Marsquake Service,
2023]. Approximately 36 hours of raw data from the U component were used without any
additional prior knowledge of marsquakes or glitches. The horizontal axis is in UTC time zone.

estimation of the wavelet scattering covariance statistics. The network architecture used is the
same as in previous examples, and we employed a window size of 204.8,s. By solving the optimi-
zation problem outlined in equation (5.9) with 200 L-BFGS iterations, we obtained the results
depicted in Figure C.8. Notably, glitches occurring just before the P-wave arrival and towards
the end of the marsquake were successfully separated. Moreover, the separated background
noise exhibits a stationary characteristic, which is desirable as it indicates minimal leakage of
the marsquake signal.

The final example involves a marsquake recorded on July 26, 2019 [InSight Marsquake Ser-
vice, 2023]. Separating the background noise in this case proves more challenging, as the P-wave
arrival is barely discernible in the raw waveform shown in the top panel of Figure C.9. Fur-
thermore, the presence of background noise masks the detection of the S-wave, as well as the
secondary PP- and SS-wave arrivals. To address these complexities and achieve accurate sepa-
ration of the marsquake while minimizing signal leakage, we require 95 hours of detrended raw
data from the U component. A window size of 409.6 s is used, and the optimization problem
in equation (5.9) is solved with 200 L-BFGS iterations. The results are depicted in Figure C.9,
where the separated marsquake is distinctly delineated. The accuracy of our approach is further
confirmed by the independently picked arrival times by the InSight team [Scholz, 2020], shown as
dotted lines in Figure C.9. The alignment between their picked arrival times and our separated
marsquake serves as validation for the accuracy of our method.
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Figure C.9 – Unsupervised separation of background noise and glitches from a marsquake
recorded by the InSight lander’s seismometer on July 26, 2019 [InSight Marsquake Service, 2023].
Approximately 95 hours of raw data from the U component were used without any additional
prior knowledge of marsquakes or glitches. The horizontal axis is in UTC time zone.
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Annexe D
Appendices for Chapter 6

D.1 Smile sensitivity in the Scattering Spectra model

The Scattering Spectra model defined in (6.1) depends only on the estimated values Φ(x̃)
of the Scattering Spectra estimated on a single realization x̃ of S&P. This models gives an
unconditional smile shown in Fig. 6.2b.

We are interested in the change in this unconditional smile in the case where the statistics
Φ(x̃) change significantly. Thanks to the interpretation of Scattering Spectra coefficients, we can
see what happens to the smile if the market is “more skewed” or “more kurtic” for example.

Here we focus on the shape of the smiles. Of course, changing the amplitude of Φ2, which
is equivalent to increasing the overall volatility of the model, only moves the overall level of the
smile up or down.

These sensitivities in general can be seen as amplifying or reducing the departure of the
price process from a Gaussian process xGaussian, also called Black-Scholes model, with the same
average volatility, meaning the same value of Φ2(x̃).

new statistics = (1− λ)Φ(xGaussian) + λΦ(x̃).

If λ < 1 the corresponding model should be “closer” to a Black-Scholes model, if λ > 1 the
corresponding model should become less “Gaussian”. Fig. D.1 shows 4 directions of change that
are detailed below.
Skewness |Φ3(x)|. The skewness coefficients Φ3(xGaussian) should be zero for a Gaussian process.
We consider a model of x with modified statistics

Φ3(x) = λΦ3(x̃)

for 3 values of λ. For λ = 0, the modeled process is not skewed, meaning that an increment
trajectory δx is equally likely as a trajectory −δx. Unsurprisingly, we get smiles that are sym-
metrical atM = 0. For λ = 1 we get the same smile as in the Scattering Spectra model of S&P.
For λ = 1.3, the smile has a higher downward slope, as expected.
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Time-asymmetry Im Φ(x). Our representation Φ is complex-valued. While Φ1,Φ2 are real,
skewness Φ3 and kurtosis Φ4 may have non-zero imaginary parts that were shown to characte-
rize certain types of time-asymmetry. We consider a model x whose statistics are

Φ(x) = Re Φ(x̃).

It is thus time-reversible, i.e. a trajectory x(t) is equally likely as x(−t). We notice that its smiles
are symmetrical, but compared to the previous case, these are not symmetrical around M = 0
but around values M > 0 depending on the maturity. This is consistent since the process still
has non-zero skewness |Φ3(x)|.
Kurtosis Φ1. For a Gaussian process, Φ1(xGaussian) = π/4. We consider a model x with modified
statistics

Φ1(x) = (1− λ)π4 + λΦ1(x̃).

For λ = 0.5, the model is less kurtic than the S&P, it shows smiles that tend to flatten around
a straight line with negative slope. For λ = 1.75, the model is more kurtic and the smiles have
more curvature, as expected.
Kurtosis Φ4. We consider a model x with modified statistics

Φ4(x) = (1− λ)Φ4(xGaussian) + λΦ4(x̃).

The change in smiles for two different values λ = 0.5, 1.5 seem small compared to the other
effects presented, however such changes impacts a lot the trajectories.
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D.2. The Path Dependent Volatility Model

Figure D.1 – Smile sensitivity to change in Scattering Spectra statistics Φ(x̃), decomposed
as changes in skewness |Φ3(x)|, time-asymmetry Im Φ(x), kurtosis Φ1(x) or kurtosis |Φ4(x)|.
A value λ < 1 indicates respectively, no skewness, no time-asymmetry, less kurtosis. A factor
λ = 1 does not change the statistics Φ(x̃) estimated on S&P. Besides well-known influence of the
skewness and kurtosis on the shape of the smile, the Scattering Spectra Φ(x) also decompose
the contribution of time-asymmetry in the shape of the smile.

D.2 The Path Dependent Volatility Model

The path-dependent volatility (PDV) model introduced in [Guyon, 2022] consists of a 4-
factor Markovian model with 9 parameters. Writing the price process as St = S0e

xt , it assumes
that

dSt

St
= σtdWt,

σt = σ(R1,t, R2,t),

σ(R1, R2) = β0 + β1R1 + β2R2

R1,t =
∫ t

−∞
K1(t− u)dSu

Su

R2,t =
∫ t

−∞
K2(t− u)

(dSu

Su

)2
Among these parameters, 6 are used to parameterize the kernels K1,K2 both being a linear com-
bination of exponentials, and 3 are the regression coefficients β0, β1, β2. The 6 kernel parameters
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Figure D.2 – The Scattering Spectra : a statistical dashboard for financial prices. We compare
these statistics in a Scattering Spectra model and path-dependent volatility (PDV) model to
the one estimated on the S&P500.

are set to the optimal values presented in [Guyon, 2022] (parameter set 1, table 8, “Realistic
paths”).

To obtain unconditional smiles in the PDV model, the 3 regression coefficients β0, β1, β2 are
set to the optimal values presented in [Guyon, 2022] so that the PDV model we present here
is exactly the same as in [Guyon, 2022]. The process is evolved with 10 steps per day until it
reaches a stationary regimes. In such regime, the Scattering Spectra Φ(x) are shown in Fig.D.2
and are compared to the ones estimated in a Scattering Spectra model and on the S&P500
log-price time series x̃ consisting of N = 5827 days from January 2000 to April 2023.

It shows that kurtosis Φ1(x) and skewness Φ3(x) have a significant mismatch with S&P500
data. Looking at the log-return trajectories shown in Fig. D.3 we indeed notice clear qualitative
discrepancies, in particular we notice abnormal negative values, which can also be observed on
price trajectories. In [Guyon, 2022] we can indeed see that these trajectories exhibit price drops
that are more abrupt than those of the S&P500. In Fig. D.3 we see that structure functions (b)
and, quite strikingly, the leverage effect (c) are poorly reproduced.

To obtain good conditional smiles, to be used in trading games (see section 6.5), we had to
recalibrate the parameters β0(T ), β1(T ), β2(T ) for each maturity T independently, this in order
to provide the best prediction of the future realized variance, that is the overall level of the
smile.
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(a) Histogram (b) Struct. functions (c) Leverage

Figure D.3 – Standard statistics in a low parametric model (orange) of the S&P (blue). We
chose a path-dependent volatlity model PDV. (a) Histogram of daily log-returns δx. (b) Structure
functions E{|δℓx(t)|q}. (c) Leverage correlation E{δx(t− τ)|δx(t)|2}.

Figure D.4 – (Top) Historical S&P log-returns from 2000 to 2014. (Bottom) Generated syn-
theses from the Scattering Spectra model, which are scanned for shadowing paths.

D.3 Proof of theorem 4

Let us write wk = cngη(xk − x̃) where

gη(x) = (η
√

2π)−N ′
e

− 1
2η2 ∥xpast∥2

163



Chapter D. Appendices for Chapter 6

is a Gaussian kernel with N ′ being the dimension of xpast and cn is such that 1
n

∑
wk = 1. We

write Q̄ the estimator

Q̄ = 1
n

n∑
k=1

wkQ(xk).

We prove the convergence of Q̄ to E{Q(x) | xpast = x̃past} almost surely by first taking the limit
n→ +∞ and then η → 0.
Limit n→∞. One can calculate c−1

n = 1
n

∑
gη(xk) so that one has

Q̄ =
1
n

∑n
k=1 gη(xk − x̃)Q(xk)

1
n

∑n
k=1 gη(xk − x̃)

.

Since gη is bounded one has E{gη(x− x̃)|Q(x)|} < +∞ and E{gη(x− x̃)} < +∞. From the law
of large numbers, knowing that E{gη(x− x̃)} > 0, it follows

Q̄ −→
n→+∞

E{gη(x− x̃)Q(x)}
E{gη(x− x̃)} .

Limit η → 0. We will make use of the following lemma of approximation by convolution, proved
in [Evans, 2022].

Lemma 1. If f ∈ C0 ∩ L1 then for all x̃ ∈ RN

gη ⋆ f(x̃) −→
η→0

∫
f(x̃past, xfuture)dxfuture.

Let us notice that E{gη(x − x̃)} =
∫
gη(x̃ − x)p(x)dx = gη ⋆ p(x̃), and E{gη(x − x̃)Q(x)} =

gη ⋆ (Qp)(x̃). Since E{Q(x)} < +∞ one has Qp ∈ L1, p being a probability distribution one also
has p ∈ L1. From the lemma we get :

E{gη(x− x̃)Q(x)}
E{gη(x− x̃)} −→

η→0

∫
Q(x̃past, xfuture)p(x̃past, xfuture)dxfuture∫

p(x̃past, xfuture)dxfuture
,

where the denominator is non-zero because p(x) > 0 for all x ∈ RN . The former term being
E{Q(x) | xpast = x̃past}, this proves the theorem.

D.4 Choice of representation h

The following proposition shows that the choice of h in chapter 6 (6.15) induces equivariance
properties on the set of shadowing paths Hη(x̃past). We recall that we chose η = η̂∥h(x̃past)∥
for a fixed η̂. These equivariance properties are proved on continuously sampled paths xpast =
(x(t), t < 0) with t ∈ R. In that case, we still write hα,β the continuously sampled analogue

hα,β(x) =
(x(0)− x(−ℓ)

ℓβ
, ℓ = αm , m ∈ Z

)
which is now of infinite dimension.
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Proposition 7. For h = hα,β with α > 0 and β > 1 one has
1. (Multiplication equivariance) for λ > 0

Hη(λ x̃past) = λ.Hη(x̃past)

2. (Dilation equivariance) writing Γx(t) = x(αt)

Hη(Γx̃past) = Γ.Hη(x̃past)

Proof. The first equivariance follows directly from the fact that hα,β is itself equivariant to
multiplication hα,β(λxpast) = λhα,β(xpast). For dilation, one has

hα,β(Γxpast) =
(x(0)− x(−αℓ)

ℓβ
, ℓ = αm , m ∈ Z

)
= αβ

(x(0)− x(−ℓ)
ℓβ

, ℓ = αm+1 , m ∈ Z
)

This means that hα,β(Γxpast) is equal to hα,β(xpast) up to a shift in indices and up to a multi-
plicative constant. It follows that

∥hα,β(Γxpast)− hα,β(Γx̃past)∥ = αβ∥hα,β(xpast)− hα,β(x̃past)∥.

Now, normalizing by ∥hα,β(Γx̃past)∥ = αβ∥hα,β(x̃past)∥ yields Hη(Γx̃past) = Γ.Hη(x̃past).

D.5 Additional trading game statistics

In addition to the P&Ls and aggregated P&Ls of a trading game played against the option
market shown in Figs. 6.5,6.6, we show in Figs. D.5,D.6 the standard deviation and winning
rate, defined as the average number of times payoff of the hedged-option exceeds its initial price.

In the remaining figures, we also show the statistical results of the trading game between
PDV and Scattering Spectra. These results do not require option market data (but require actual
price series of the underlying) and directly test the relative quality of purely statistical price
models. As seen in Fig. D.9, trading game unequivocally favours the Scattering Spectra model
framework over the PDV model.
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Figure D.5 – Standard deviation of P&Ls when playing the Scattering Spectra model vs. S&P
or PDV model vs. S&P. Each heat-map corresponds to a 3 years period, from top to bottom
(2015-2017, 2018-2020, 2021-2023).
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Figure D.6 – Rate of winning trades when playing the Scattering Spectra model vs. S&P or
PDV model vs. S&P. Each heat-map corresponds to a 3 years period, from top to bottom (2015-
2017, 2018-2020, 2021-2023).

Figure D.7 – P&Ls average (left) and standard deviation (right) when playing the Scattering
Spectra model against PDV model. Each heat-map corresponds to a 3 years period, from top to
bottom (2015-2017, 2018-2020, 2021-2023).
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Figure D.8 – Rate of winning trades when playing the Scattering Spectra model against PDV
model. Each heat-map corresponds to a 3 years period, from top to bottom (2015-2017, 2018-
2020, 2021-2023).

Figure D.9 – Aggregated P&L when playing the Scattering Spectra model vs. PDV model.
Each heat-map corresponds to a 3 years period, from top to bottom (2015-2017, 2018-2020,
2021-2023).
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MOTS CLÉS

modélisation, multi-échelle, apprentissage non-supervisé, traitement du signal

RÉSUMÉ

Les processus multi-échelles, qui présentent des variations sur une large gamme d’échelles, sont présents en physique,
finance, biologie, médecine et de nombreux autres domaines. L’objectif principal de cette thèse est de construire des
modèles probabilistes de tels processus observés à partir de peu de données et pouvant être échantillonnés numéri-
quement. Ce sujet est crucial pour aborder plusieurs problèmes, notamment la génération, la prédiction et les problèmes
inverses tels que la séparation de sources.
Dans cette thèse, nous introduisons les spectres en Scattering («Scattering Spectra»), qui sont basés sur une approxi-
mation diagonale de corrélations non linéaires de coefficients d’ondelettes. Ils peuvent être utilisés pour construire des
modèles non-Gaussiens de processus multi-échelles, qu’il s’agisse de processus temporels, de processus temporels
multi-canaux ou de processus d’image. Nous montrons qu’ils reproduisent des propriétés statistiques importantes de
séries temporelles financières, de jets turbulents et de champs physiques.
Nous démontrons que cette représentation en «Scattering Spectra» peut être utilisée pour la séparation de sources
à partir de peu de données. Appliquée aux données sismiques sur Mars, ils permettent de séparer avec succès les
tremblements de Mars d’événements polluants transitoires appelés «Glitches».

La prédiction sur données limitées peut être abordée en utilisant un modèle précis du processus capable de capturer

les dépendances à long terme. Nous introduisons le «Path-Shadowing Monte-Carlo» qui est une méthode à noyau non-

locale qui propose de moyenner les quantités futures sur des chemins générés dont l’histoire passée est «proche» de

l’histoire réelle (observée). Associée à un modèle basé sur les «Scattering Spectra», cette approche permet d’obtenir des

résultats à l’état de l’art pour la prédiction de volatilité en finance et fournit des smiles d’option qui surpassent le marché

dans un jeu de trading.

ABSTRACT

Multi-scale processes, which have variations on a wide-range of scales, are encountered in Physics, Finance, Biology,
Medicine and various other fields. The core purpose of this thesis is to construct probabilistic models of such processes
observed from limited data and that can be sampled numerically. Such subject is crucial to tackle a number of problems
among which generation, prediction and inverse problems such as source separation.
In this thesis we introduce wavelet Scattering Spectra which rely on a diagonal approximation of non-linear correla-
tions of wavelet coefficients. They can be used to construct non-Gaussian models of multi-scale processes, including
time-processes, multi-channel time-processes and image processes. Scattering Spectra are shown to capture important
statistical properties of financial time-series, turbulent jet and physical fields.
We show that such Scattering Spectra representation can be used to perform source separation on limited data. Applied
on Mars seismic data, we are able to successfully separate Marsquakes from transient polluting events called Glitches.

Prediction on limited data can be tackled by utilizing an accurate model of the process which captures long-range de-

pendencies. We introduce Path-Shadowing Monte-Carlo, a non-local kernel method which proposes to predict future

quantities by averaging over generated paths whose past history “shadows” the actual (observed) history. When combi-

ned with our Scattering Spectra model, this approach yields state-of-the-art volatility prediction in Finance and provides

option smiles that outperform the market in a designed trading game.

KEYWORDS

modelling, multi-scale, unsupervised learning, signal processing
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