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Abstract

In hard real-time systems, encountered for example in the transportation, energy
or medical domains, programs must not only provide a functionally correct result
but also guarantee timing constraints. Our researches focus on timing models
and analyses which aim to get precise bounds on execution time and delays.
Generally, these models focus on a single hardware or software aspect. On the
hardware side, our models and analyses focus on cache memories, memory bus
arbitration and memory access ways in multi-core and many-core platforms. As
part of software analysis, we took benefit from the infeasible path elimination
during analysis: the idea is that the computation of the worst-case execution
time should ignore paths that are not semantically possible. Additionally, we
have shown that a better integration of software and hardware analyses leads
to more precise bounds. In the context of multi-core timing systems, we have
shown that timing analysis can benefit both from a better knowledge of software
and hardware, and from the integration of timing analysis with the last step of
implementation. We show how and where our work leads to changing the point
of view on timing analysis in order to improve it. Finally, we expose the current
state of the art and which gaps must still be filled to obtain a complete and
efficient timing analysis.

Résumé

Les travaux présentés se situent dans le contexte des systèmes temps-réel cri-
tiques où les programmes ne doivent pas seulement être corrects mais aussi re-
specter des contraintes temporelles sous-peine de dommages importants. Parmi
les domaines concernés sont ceux de l’énergie, des transports, le médical et
l’espace. Nous nous intéressons particulièrement aux modèles et analyses qui
permettent d’obtenir une borne garantie des temps d’exécution et délais. Pour
réaliser ces analyses temporelles, des modèles du logiciel et du matériel sont
nécessaires. Ces modèles et les analyses qui les utilisent se concentrent sou-
vent sur un seul aspect du matériel ou du logiciel. Nos travaux ont permis
d’obtenir des analyses plus précises etou efficaces de la mémoire cache, des ar-
bitres de bus mémoire, et des structures d’accès mémoire dans les plateformes
multi-cœur et pluri-cœur (groupement de multi-cœur). Du côté du logiciel,
nos travaux ont exploité l’élimination de chemins d’exécution infaisables lors
de l’analyse pour éviter que le temps d’exécution pire-cas ne corresponde à un
chemin d’exécution qui n’est pas possible sémantiquement. Une autre partie de
nos travaux a permis d’obtenir des bornes plus précises du temps d’exécution
en travaillant sur des analyses conjointes du matériel et du logiciel. Pour les
plateformes multi-cœurs, nos travaux ont montré qu’un gain de précision était
possible au travers d’une meilleure prise en compte des structures logicielles
et matérielles mais aussi d’une intégration des analyses temporelles avec les
dernières phases d’implémentation (orchestration de code). Dans ce rapport,
nous montrons en quoi nos travaux ont permis de changer le point de vue sur
l’analyse temporelle et de la faire évoluer. Enfin, ce rapport termine par un ex-
posé de la situation actuelle et des avancées nécessaires pour obtenir des analyses
temporelles complètes et efficaces.
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8 CHAPTER 1. INTRODUCTION

Among the embedded systems, some are subject to timing requirements
where the program execution must not only fulfil a correct functional execution,
but also a bounded duration (execution time). The timing constraints may come
from different sources, among them: some hardware behavior (e.g. minimum
inter-arrival delay of censored data) or safety timing requirements (e.g. the
minimum delay to deploy an airbag). Most of the embedded systems are subject
to timing requirements that do not impact human safety; e.g. video quality of
service.

Our work is in the context of hard real-time systems, where any requirements
must be fulfilled. Most of the industrial users or collaborators are in the trans-
portation domain (automotive, avionics) or medical device domain. In such
domains the functional and non-functional constraints must be guaranteed.

For instance, the timing constraints may consider a maximum execution time
delay for a program or an application, an inter-arrival delay on data calculation
to be sent, or a deadline to be respected.

To better understand the context, we need to give more details on what are
the characteristics of the hardware and software that we consider. We consider
software at different levels and getting different characteristics:

� high-level design: such as SCADE-Lustre codes, The specific properties
that we consider are: the data-flow model where any application may be
described by a precedence graph –each node is a program and each edge
represents a communication and a constraint on the execution of the target
node after the execution of the source node–, some specific properties due
to the synchronous paradigm or the specificity of Lustre/SCADE;

� C level: at this level some semantic properties may be useful for timing
analysis;

� binary level: that is the code that will be executed and must be consid-
ered by the timing analysis, for most of our binary analysis we do not
directly analyze the code but an extracted model containing the necessary
information. For that aim we use a timing analysis tool: generally the
OTAWA academic tool [2].

The hardware elements and platforms we consider are:

� cache memory : this small memory is placed close to the execution core to
get faster access to data and/or instructions. As it is small, it can only
contain a subset of the memory and needs to often load new content from
the distant memory.

� memory bus: a shared memory may be accessed by each processing ele-
ment (or core). A memory bus is used to access this memory and needs to
be arbitrated to select which core may access the shared memory among
the cores requesting accesses: this is the role of a bus arbiter.

� multi-core or cluster : it refers to a set of cores sharing a local memory.
Each core may have an instruction and/or data cache memory. A memory
bus and its arbitration is used to access the shared memory.

� Banked memory : this multi-core memory can be partitioned and each
partition may get a limited access by a core or a set of cores.
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� Many-core: it is composed of a set of clusters (multi-core) that are com-
municating through a Network-On-Chip (NoC) or a specific memory bus
for inter-cluster memory transfer– e.g. Advanced eXtensible Interface.
The many-core may contain a global large memory, but we do not focus
on this kind of memory and consider only the set of cluster memories.

The execution time of a program or application may vary largely. The main
reasons for the variation of exection time are:

� the use of a hardware platform with a behavior that depends on the context
(e.g. cache memory where the access delay is short in the case that the
accessed memory content is already in the cache, and very long in the case
where the content needs to be loaded from main memory);

� the software structure (e.g. each conditional structure as a if-then-else
leads to different execution time depending on the condition; the use of
execution modes may lead to part of the program that are executed only
in a specific context);

� the way the software is implemented on the hardware platform (e.g. access
to shared data may vary depending on if it is mapped to a local memory or
global one, but also depending on which programs may access this memory
region simultaneously).

Traditionally, hard real-time systems were implemented on simple single-
core platforms with limited variable timing behavior. However, the massive use
of multi-core platforms and the growing complexity of algorithms and collected
data, leads to the use of multi or many-core platforms for hard real-time systems.
This opened a set of research work to adapt the development process of such
systems. In this report, we focus on the timing analysis and the implementation
(orchestration code generation) of critical applications on multi-core platforms.

As part of the timing analysis, we focus on the estimation of worst-case ex-
ecution time (a bound on the execution-time of a program when executed in
isolation – no interruption, preemption or any interference), the estimation of
the worst-case response time (a bound on the execution time of a program in-
cluding any impact of other program executed on the same hardware platform),
the estimation of cache-related preemption delay (a bound on the delay due
to cache memory accesses during a preemption), the estimation of interference
delay (a bound on the delay due to shared resources in multi-core platforms).

The timing analysis process was usually composed of a set of analyses that
were studied separately and not really integrated to the synthesis process. This
lead to an issue as regards the complexity of these steps and opened the oppor-
tunity of more integrated approaches. In this context, we worked on the inte-
gration of the timing analysis and the synthesis of application. The complexity
may largely be reduced by a better knowledge on the hardware and software
structures. In this report we focus on the implementation of data-flow applica-
tions (such as the one generated from SCADE/Lustre) on multi-core platforms
with shared banked memory (e.g. Kalray MPPA platforms).

In this report we show how we got more precise and/or more efficient timing
analysis. First, we focus separately on hardware analysis (cache memory and
multi/many-core memory communication interference)–in Part I– and software
semantic analysis (infeasible path)–in Part II. From what we learnt on both
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sides, we show how we implement data-flow applications on multi-core platforms
with integration of interference analysis during the synthesis –in Part III.

In this report, we do not go into the details of our analyses nor the state of
the art that may be found in our papers, rather we focus on the way our work
contributed to the timing analysis process. Our aim is to discuss future work
and open questions related to our research context. For that, in each part, there
are specific discussion chapters. In the last part IV we highlight where our work
did change the point of view of the community (research or industry) and we
enlarge the discussion on what still needs to advance to get a fully guaranteed
timing analysis process that is precise and scalable.



Part I

Hardware models and
analyses
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The main collaborators for this part are:

Cache analysis Valentin Touzeau (PhD student [3]), David Monniaux, Jan
Reineke, Bai Zhenyu and Maeva Ramarijaona.

CRPD Sebastien Altmeyer, Rob Davis, Jan Reineke, Guillaume Phavorin,
Pascal Richard, Joël Goossens, Laurent George, Thomas Chapeaux.

Multi-core Hamza Rihani (PhD student [4]), Matheus Schuh (PhD student [5]),
Matthieu Moy, Pascal Raymond, Juan Rivas, Joël Goossens, Sebastian
Altmeyer, Rob Davis, Jan Reineke.

In the timing analysis process, we denote as hardware analysis, any analy-
sis that relies on the behavior of a hardware component. Such an analysis is
not fully separated from the software, as a timing analysis focuses on a given
program. The idea is to rely on a sufficient software abstraction to get enough
information on the software, but not too much that would lead to a high analysis
complexity. Traditionally, in the single-core WCET analysis, the common soft-
ware model was the control flow graph [6]. However, for each micro-architectural
analysis, the software model level may be different. For instance, a pipeline
analysis relies on each instruction and its operand. In this chapter we focus
on cache memory and interference analysis in multi-core. For each analysis we
give the convenient software model and the main ideas behind the corresponding
hardware analysis, what we built upon the state-of-the-art and how our work
contributes more precise and more efficient timing analysis.
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Chapter 2

Cache memory

As said in the introduction, a cache memory is a small memory close to the core
or pipeline to keep fast access to a subset of the memory content. Each time
there is a granted access to a memory block, the block is first searched into the
cache memory: in case the block is in the cache –referred to as a hit, it may
be directly sent back to the core; in case the block is not cached –referred to as
a miss, it needs to be loaded from the main memory. A main memory access
spends ten to hundreds times more cycles than a cache access.

How a cache analysis could help the timing analysis process. If there
is no cache analysis, any access needs to be considered as a miss and accounted
as the worst delay. This is extremely pessimistic. A cache analysis helps in
refining this pessimism by classifying as hit a part of the memory accesses for
which the delay is reduced to a cache access delay instead of a main memory
access delay. In this Section we focus on two kinds of cache analysis. The first
one considers a program executed in isolation (no interruption, no preemption,
no interference) and aims at classifying each memory access as a hit or a miss.
The second one, considers the complementary case and looks for the additional
misses due to a preemption: Cache Related Preemption Delay (CRPD).

Each time a block1 is loaded in the cache, there is an eviction of one block
that was in the cache. The selection of which block to be evicted is done by a
replacement policy. There exist a set of replacement policies, but in this report
we mainly focus on the “Least recently Used” policy (LRU). The main reason
for this choice is the predictability of LRU [9].

A cache memory may be dedicated to instructions or data, or a unified cache
may be used for both. A data cache analysis needs a preliminary analysis to
compute the data addresses. In this report, we focus only on pure instruction
cache.

2.1 Precise and efficient cache analysis

A cache analysis is based on the following model elements:

1To simplify we ignore the cache line and consider that a memory block is a line. For
further details please refer to the corresponding papers [7, 8, 3].

15



16 CHAPTER 2. CACHE MEMORY

� a software model with two mandatory entities:

Memory block this is the entity that corresponds to what can be ac-
cessed from or loaded in the cache memory.

Control flow block this is the entity that corresponds to the possible
execution paths; there is a new entity when there is a conditional test
in the program, or when there are two possible previous instructions.

Both entities must be encoded in the software model.

� a cache model with:

Cache content representation the cache content is mainly composed
of the memory block identifiers.

Evolution upon a miss or a hit this is the model of the replacement
policy; this should represent an order between blocks such that the
“next to be evicted” is identified, but also the evolution of block
placement in this order upon a hit or a miss.

Evolution due to the execution path this encodes the impact of the
execution path upon the cache model; the whole content of the cache
can not be represented in the model (complexity issue), thus, at each
point where two execution paths are joined, the timing analysis may
select the abstracted content to keep in the model.

Among the existing cache analyses, the main difference is the way they deal
with the cache model – see [3] for more details and references. Some analyses
keep the whole cache content and do not abstract so much. Even if they are
very precise models, the main drawback is the complexity of the analysis that
will not scale with large cache size or program due to the memory space the
analysis needs to keep all cache contents. That’s why some analyses focus on
finding the “good” abstracted content that limits the model size. The model used
by the approaches relying on abstract interpretation, gains in complexity by a
smart combination of two abstractions: a “must” cache content that contains
only blocks that are always in the cache at a program point, and a “may” cache
content that contains blocks that may be cached at a point. The combination
of these two abstractions lead to a good opportunity to not keep all possible
cache states, but still contains enough information to classify accesses as a hit
or a miss.

In this analysis based on abstract interpretation, blocks are classified as
“must hit”, “must miss” and “unknown”. Our work is based on the observation
that in the “unknown” category there are two kinds of memory accesses: accesses
for which both a hit or a miss are possible depending on the execution path,
and, accesses which the analysis can not classify as a hit or a miss due to the
abstract model. Our work on cache analysis aims at refining the classification
for accesses in the second category.

Based on the observation that some analyses are (i) very precise but do not
scale, and others are (ii) very efficient but can still be refined, we worked first
on a model improvement for the first kind of analysis (i) that inspired us to find
a way to refine the second category of analysis (ii).

In both cases we introduce a new category for the cache accesses classifica-
tion [8]. In previous analyses they use “must hit”, must“miss” and “unknown”
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categories. Our aim is to refine the “unknown” category to distinguish between
accesses that are “unclassified” due to the fact that both hit and miss are pos-
sible from those where the category is “unknown” due to the abstraction used
in the analysis. For that aim, we add the “definitely unknown” category: both
a hit and miss are possible due to the execution path. This new category has
been introduced in [8].

Based on this new category, both approaches presented hereafter may start
upon a pre-analysis that would previously classify accesses in the three categories
where no refinement is possible “definitely unknown”, “must hit” and “must
miss”. Among the set of remaining “unclassified” accesses from this pre-analysis,
accesses may be refined by a second analysis.

2.1.1 A new model for more precise analysis

Refining the set of accesses that could not be classified by the pre-analysis, is
the aim of our approach [8]. In this initial approach we explored a model with a
model-checker. The novelty of our approach is in the way we model the problem.

Our model extracts only the part of the software and cache models that have
an influence on the classification of one block. This “focused cache model” on
a given block a keeps only the previous accesses for which a new access after
the access to a would have an influence on the position (age) of block a and
thus on its future eviction. Furthermore, only the necessary part of the software
model (control flow graph) where this set of memory blocks influencing block a
are acessed is kept.

The “block focusing” analysis has been introduced in [8]. Even if the “block
focusing” limits the size of the model, this method keeps all possible elements
of this refined cache model and may lead to a scalability issue. However, it has
been a first step for us to reach the next approach.

2.1.2 A new model for a precise and efficient analysis

As we have seen, we look for analysis to refine the cache accesses classification
for “unclassified” accesses. We introduced a new method to reach that aim that
is precise and efficient [7]. We have seen that with the previous method, the
analysis is precise but still not so scalable when the size of the model grows.
The main idea to reach this efficiency is to reduce the model depending on what
is the target category: we use a partial order and keep only the minimal (resp.
maximal) elements when looking for cache misses (resp. hits). The efficiency
is also reached by a good implementation using zero-suppressed binary decision
diagrams (ZDDs).

Again, we use the “focused model” previously introduced to limit the scope
to the block under analysis. Additionally, we keep only maximal (minimal)
elements to look for hit (miss) accesses. For instance, consider blocks b, c and d
that may contribute to the cache classification of block a; consider also that b
is encountered on one path and b, c, d are all encountered on another path: to
classify a as a “always hit” it is not necessary to keep the set where only b is
encountered as b is also on the second path.

This approach has been introduced in [7]. The results shows an analysis
speed up that can reach a factor of 950 compared to our previous approach [8].
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Furthermore, the average slowdown of the analysis is only of 4.12 compared to
previous less precise cache analysis [9].

2.1.3 Studies for other replacement policies and other con-
text

First, we can have a look at the complexity of analyzing other replacement
strategies. In [10], David Monniaux and Valentin Touzeau formalized the clas-
sification of memory accesses as hits or misses: the theoretical complexity of
finding a path leading to a hit/miss depending on the replacement policy. They
have shown that this problem is NP-hard for LRU, while other common re-
placement policies, namely PLRU, FIFO and NMRU, lead to a PSPACE-hard
classification problem. This confirms the conclusion that LRU is the most pre-
dictable replacement strategy [9]. Note that as introduced by Jan Reineke,
there is a way to bound the number of misses for other replacement strategies
depending on the bound on the number of misses in the case of LRU.

We made an attempt at using our approach for PLRU replacement strat-
egy [3, 11]. The main idea was to find another model for the PLRU cache. The
main issue with the PLRU models is that they are hard to abstract with enough
precision. The collecting semantics, keeping all reachable states, is not scalable.
Our model as previous ones [12] is not very precise, but its implementation is
more efficient than previous ones.

We studied a use of our exact analysis for security [3] as part of the master
Internship of Maeva Ramarijaona. This analysis aims at highlighting program
points at which the execution path could be guessed from a hit/miss classifica-
tion. Most of the definitely unknown accesses may lead to a potential security
leak as both hit and miss are possible depending on the execution path. The
idea is to highlight the program point where this access is and what it is giving
as information on the execution path.

These two preliminary works reuse some concepts of our exact cache analysis:
the idea of an efficient cache model implementation and the definitely unknown
classification. Our exact analysis already inspired the community and extension
of our ideas and work have been proposed, for instance: the use of ZDDs for
better WCET analysis implementation [13] and a complementary exact analysis
for persistence [14]. A cache block may be initially a miss and later always hit,
when the cache access is in a loop for instance: the persistence analysis is an
additional analysis that studies specifically this point.

2.2 Cache-related preemption delay

We have seen that cache memory analysis may be precise and efficient. How-
ever, the previously presented analyses ignore any impact of other executing
tasks. In the work presented here, we focus on the impact other executing tasks
may have on the cache content. More specifically, we focus on the case of pre-
emptions: a task of higher priority may stop the execution of an executing task
to be executed, the previously executing task continuing its execution after this
higher-priority task finishes. This is referred to a preemption and during this
preemption, the preempting task uses the shared cache memory. Thus, the
preempting task may evict cache content of the preempted task. If this cache
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content was in the cache but not reused later in the execution of the preempted
task, the eviction have no effect on the preempted task. However, in case that
the evicted memory blocks were reused later on in the preempted task execution,
the blocks must be reloaded when necessary: this impacts the execution time of
the preempted task. The upper-bound on the delay due to preemption is named
the Cache-Related Preemption Delay. Note that there are other sources of delay
in case of preemption, such as the context switch cost due to the changes of
program pointer and other internal resources. We do not focus on these other
delays in this report.

In our work, we studied new cache analysis to get a more precise CRPD
estimation and how to integrate the CRPD into schedulability analysis. As part
of schedulability analysis, we mainly took into account the estimation of the
Worst-Case Response Time (WCRT) that is the upper-bound on the time from
a task being released until it finishes execution taking into account the effect
of other executing tasks. Our work on CRPD is not recent, that’s why some
subsequent work, based on our work, is also mentioned.

2.2.1 CRPD analysis

We focus here on the cache analysis we introduced to get more precise CRPD.
The software model that is used for the CRPD estimation is based on an ab-
stract cache state at each program point: any program point being a potential
preemption point, the CRPD is estimated at each point where the cache content
evolves. This is quite similar to the cache analysis and must include control flow
and memory block entities.

There are two main ways of bounding the number of additional misses due
to preemption:

UCB Useful Cache Block: this cache analysis identifies at each program point
the memory blocks that may be in cache and may be accessed later on
the execution path without being evicted. This next access is a hit and
may become a miss in case of eviction of the useful cache blocks during a
preemption.

ECB Evicting Cache Block: this cache analysis is on the preempting task and
gives the set of memory blocks used in each cache set. These blocks may
evict the useful cache blocks and thus lead to eviction.

Both UCB and ECB may be used independently or combined to better bound
the number of evicted cache blocks due to a preemption. For a recent state of
the art, please see [15].

The main improvement we made on the cache analysis for CRPD estimation
was two fold:

1. the definitely cached useful cache block [16, 17]: UCB analysis and cache
analysis for WCET are considered independent. Based on this observation,
we have shown that some misses are accounted for as part of the WCET
estimation and in the CRPD. That’s why we introduced the definitely
cached-useful cache block to avoid double counting the CRPD misses that
were already part of the WCET estimation.
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2. the resilience analysis [18]: the UCB and ECB analysis are two indepen-
dent analyses, we observed that some misses were accounted for in the
CRPD, but there were not enough cache accesses of the preempting task
to evict some UCB. We introduced the resilience analysis to estimate for
each UCB, the number of ECB that were necessary to evict it. From the
UCB point of view, its resilience is the number of accesses that can be
made before its eviction.

The CRPD analysis may be done on any cache configuration but only direct-
mapped and LRU set associative caches leads to possible integration of CRPD
costs in schedulability analysis. We have shown in [19] that due to the presence
of timing anomalies that may be due to other replacement strategies, LRU is
the only replacement strategy that is compatible with the CRPD analysis for
set-associative caches.

Additionally we studied the way the hardware could be adapted to better
consider the preemption. We essentially worked in two axes: a replacement
strategy dedicated to the preemption [20], and a better memory mapping and
cache or scratchpad use, for instance in [21]. Our main conclusion on this topic
is that it depends not only on hardware but also on the size and properties of
the software. The best adaptation should be done with hardware and software
in mind.

2.2.2 Integration of CRPD into timing analysis

To work on the impact of CRPD on the Worst-Case Response Time, the software
model is at higher level than the ones necessary for cache and CRPD analyses.
At this level, the software is generally defined by:

� the WCET of each task,

� the deadline for each task,

� the priorities of tasks.

To add the CRPD in this software model, the main CRPD bounds we use are:

UCB the set of CRPD estimations for a preempted task (UCB-only)

ECB the CRPD estimation based on the preempting task only (ECB-only)

Comb the set of CRPD estimations when both preempting and preempted task
are used (combined-UCB-ECB)

Note that the set of CRPD values is usually used to extract the worst-case value,
but a multiset with the number of possible preemption points leading to a each
CRPD estimation may also be used.

In our work, we look for the best way to integrate the CRPD bound into
schedulability analysis varying on: the method to estimate the bound on the
CRPD (using UCB, ECB, or combined approach) and the order of the task to
be accounted for as UCB or ECB among the potential preempting tasks and
preempted tasks (higher priority tasks, for instance). We studied deeply this
problem depending on the category of scheduling algorithm: fixed priority [22,
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23], EDF [24]. Also, we studied in [25] how to integrate the CRPD analysis into
probabilistic WCET analysis.

Note that, as we have shown in [26] this way of considering the CRPD as an
additional bound changes the complexity of the scheduling problem: the usual
scheduling algorithms are not any more optimal (RM, DM and job-level ones
such as EDF) and the problem becomes NP-hard with CRPD. We also show
in [27] that no online algorithm can be optimal for the problem of scheduling a
set of jobs when considering preemption delays.

2.2.3 Our work as a basis for further work

Our last work on the topic was published in 2014 [24] (2017 for the complex-
ity [27]). Since that publication, a set of subsequent research work built upon
our work. We do not give an exhaustive list here but only the main research
axis as part of the CRPD analysis, and one reference to find them.

Our work has been used as a basis for extension to:

� additionally consider the persistence in the CRPD problem [15],

� integrate the CRPD to shared cache memory analyses [15],

� place the preemption points or estimate the threshold [28],

� partition cache [29].



22 CHAPTER 2. CACHE MEMORY



Chapter 3

Multi-core interference
analysis

As seen in previous sections, the cache memory is a shared resource that may be
modelled precisely by static analysis for timing analysis. In a multi-core, there
are a set of such shared resources. As in a single-core, each core is the first
shared resource where some tasks may be executed or even preempted. Each
core may have a private cache memory that may be analyzed using previously
presented analysis. In this chapter we focus on shared resources that can be
accessed by more than one core. For such a resource, an arbiter is generally used
to decide on the shared resource access. We are mainly interested in analyzing
the interference on the bus memory access and its arbiter.

In the multi-core we consider, each core may get a private cache memory
or separated private data and instruction caches. An arbitrated memory bus is
used to access a shared memory. In some of our work, this local memory may be
banked: partitioned and with limited access by a subset of cores. We consider
also many-core platforms where a set of multi-cores are linked by a Network-
On-Chip or specific transmission ways. Our collaboration with Kalray lead to
a natural application of our work to their MPPA platforms as an instance of
possible platforms.

When considering interference on shared memory bus accesses, the software
model considers the number of accesses to the shared memory per core: in the
presence of cache, this corresponds to the number of cache misses; otherwise, it
corresponds to the largest number of memory accesses. Note that this worst-case
number of accesses may not be encountered along the worst-case execution path.
To keep a guaranteed bound, the WCET analysis giving the worst-case path and
the worst-case number of accesses must be identified in two separated steps. In
our context, we consider usually that this worst-case number of accesses is given
by a WCET tool such as OTAWA [2].

To start this section, we focus on how the interference delay may be taken
into account as part of the timing analysis process. In a second section, an
overview on our work on the bus analysis is presented. The end of this section
presents an overview on the multi-core timing analysis survey we published,
with the 4 categories of research work that we identified.
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3.1 Integration into timing analysis

In this section, we consider that an upper-bound on the delay due to interference
is given. The next step is the integration of this delay into the timing analysis
process. To keep a guaranteed upper-bound on the timing analysis process, the
separated estimation of interference delay is based on two properties: it must
be correctly integrated to the other timing analysis bounds (composability),
and the interference must not create any timing anomaly or unbounded domino
effect [30]. The composability is quite natural and is taken into account in
the work summarized in this section. The compositionality is still an open
question and will be discussed in Section 4.2. Note that our work is based on a
compositionality hypothesis.

The Multi-Core Response-Time Analysis (MRTA) [31] is our work upon
which we built all work on interference analysis and multi-core timing analysis
and implementation. The main idea of MRTA is based on composability and
compositionality properties: any delay may be added to the WCET of a task.
Thus, the response time of a task is composed of the WCET of a task plus any
additional delay that may be incurred due to the execution of other tasks on the
platform. In our original work [31], we considered the cache-related preemption
delay, the delay due to scratchpad use, the DRAM memory accesses and the
delay due to shared memory access (more details on this last point in the next
section). Any additional detail may be found in the papers. The main take
away message from this work was ”let’s see the multi-core implementation as an
isolated implementation and a set of delays due to shared resources”. It seems
simple some years later but it opened a large set of work on analysis of the
different delays and the way they may be integrated into response time analysis
or into scheduling and mapping considerations. Also, from this work we realized
that an integration of code implementation and timing analysis could be a good
way to get more precise timing analysis and better implementation.

3.2 Bus models

As we have seen, we denote by a “bus” a way to access a shared memory and a
”bus arbiter” makes the decision that must be taken on which of the processing
element or core may access the shared memory as soon as there is a conflict
(simultaneous access). In the original MRTA work [31], we bound the delay to
access shared memory when one traditional bus arbiter is used (First In First
Out, Priority, Round Robin, TDMA). This bound is based on the number of
memory accesses of the task under analysis combined with the number of mem-
ory accesses of any other tasks that executes during the response time of the
task under analysis and thus may generate interference delay on this response
time. We reused this main ideas to analyze the memory bus used in the Kalray
MPPA Bostan and Coolidge platforms [4, 32, 5]. We combined the one level
bus arbiter equation to build an equation of the multi-level arbiters of these
platforms ((i) all interference sources in a cluster, (ii) additional interference
sources that comes from outside the cluster, (iii) considering a memory access
that goes from a cluster to the memory of another cluster). The second level
implies that we integrated a real-time calculus analysis corresponding to the
NoC transfer in the Bostan platform [33]. For the Coolidge Platform, we con-
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sidered and integrated a transfer inter-cluster by a crossbar (AXI) [5]. Again,
those equations and analysis are used as a basis for the integration of timing
analysis and implementation processes that will be seen in Part III.

3.3 About the Survey on multi-core timing anal-
ysis [1]

The idea is not to provide the survey in this report but to summarize the main
take-away messages. With that aim, we present the classification of multi-core
timing analysis and draw the main conclusions.

In the survey [1] we covered multi-core timing analysis from the first work
on the topic in 2006 to 2018. The survey covers timing analysis that explicitly
considers costs due to shared resource access. We identified four main categories:

Full integration This category covers works that integrate software analyses
of all tasks and the shared resource analysis. In other words, any com-
bination of shared resource access is considered and precisely taken into
account in the timing analysis. This category of work leads to very precise
bounds, but with very high complexity of the timing analysis process. This
category needs a hardware/software model and our work in this category
is presented in Chapter 7.

Temporal isolation In this category, interference is avoided by use of time-
division hardware such as a TDMA bus, or by software isolation (schedul-
ing). This isolation may be total or partial. Using isolation may be a
good way to simplify the analysis process and ensure no interference. Our
work on the topic considers a hardware/software model and is presented
in Chapter 7.

Integrating Interference Effects into Schedulability Analysis In this cat-
egory, an interference delay is estimated and taken into account as part of
the schedulability analysis. Our work on the topic has just been presented
in the previous sections (Sections 3.1 and 3.2) and also used as part of the
hardware/software analysis in Chapter 8.

Mapping and scheduling In this category, the interference delays are taken
into account in the problem of finding an optimal placement of memory
sections and tasks. For a large part of our work, we consider this step as
given. However, we started to study an improvement of this step to better
integrate the communication costs (shared memory accesses) in Chapter 8.

Most of the discussion points are common to this report and the survey
paper [1], that’s why we do not summarize them here but rather summarize
them in some discussion sections of the report.
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Chapter 4

Discussion on hardware
analyses

In this Chapter, we point out the difficulties in hardware analyses and draw a
general view. Remember that our hardware analyses are not fully disconnected
from software but are based on a very simplified view on the software: for
instance, a control flow graph with memory block notions, for cache analysis,
or a worst-case number of memory accesses for interference analysis.

Note that this chapter does not aim at giving future work that is presented
in Section 10.

4.1 Complexity

A global remark on hardware analyses is that the analysis complexity may be
a real difficulty in transfering our analyses to industrial applications. On the
cache analysis side, we found a way to implement the analysis such that it scales
well. However, on a large part of hardware analyses, the complexity is a big
issue.

One way to reduce the complexity, is to limit the number of analysis states/size.
This reduction may be driven by some software properties (cut or simplified
model). For that aim a better integration of software and hardware seems a
good opportunity. For instance, instead of considering each task as a potential
interfering task, a better knowledge on when and where memory accesses take
place may help in this complexity reduction

4.2 Timing anomaly and compositionality

All our hardware analyses are based on an additional delay in case of a bad
scenario (cache miss, interference on the bus). The hypothesis that a local bad
scenario leads to a longer execution time in global terms is strong and relies on
the absence of timing anomalies (or bounded effect).

Some recent work observed that timing anomalies may happen in very simple
hardware platforms. A good hope is given by research that works on how
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to avoid timing anomalies by creating a new platform or only avoiding some
mechanisms in the processor [34, 35].

In parallel, we did some experiments that have shown that the actual point
of view on the timing anomalies may be too strong. In a platform with in-
terference on memory accesses, timing analysis considers a large set of delays
on memory bus accesses that seem to absorb the effect of timing anomaly [36].
Some complementary work also proved the absence of timing anomalies for a
given application to be executed on a given platform [37]. Another way is to
consider timing anomalies in the analysis [38, 13].

All that shows that considering a timing compositional platform where each
local additionnal delay may be added to build a bound on the execution time
or response time, is already possible in some platforms and on-going research
should help to keep it possible.



Part II

Software models and
analyses
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The main collaborators for this part are:

High-level analysis Catherine Vigouroux, Pascal Raymond, Fabienne Car-
rier, Mihail Asavoae, Rémy Boutonnet.

LRA Catherine Vigouroux, Pascal Raymond, Nicolas Halbwachs, Erwan Jahier.

All members of the W-SEPT ANR project.

All analyses presented in the previous part consider all execution pathes as
feasible. This means that there is no semantics associated with the control flow
graph or other used software model. However, in a program tpically not every
combination of pathes is feasible. A simple example is a program that would
get a different path depending on the input value: “if (x < 3)” at a program
point and “if (x == 6)” later on in sequence. On this short example we see that
without any change of variable x both conditional statements will never be true
on the same execution path. Considering any path as feasible,it may lead to the
worst-case path executing both contradicting conditions (an infeasible path).

In this part we present some analyses that we introduce to take into account
infeasible paths. Semantic analysis is generally done on higher code levels than
the final binary code. The main workflow used in the approaches presented
in this Part consists of analyzing the code where the information is: at high-
design level –on Lustre code– and at C level. In a second step, the results are
transferred to binary level where the WCET estimation is. We do not consider
this transfer when presenting the analysis and discuss it in Section 6.1.

In this part, we focus on the impact of semantic analyses on the WCET es-
timation. In this context, we focus on execution paths: how to extract semantic
properties and how to express them (Chapter 5). In Chapter 6, we discuss how
to transfer the results to the timing analysis (binary level) and the software
model level to integrate semantic analysis into timing analysis.
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Chapter 5

Semantic analyses for
WCET

When we mention a “feasible path” we refer to the real execution path that is
on the binary level. As said previously, we do not analyze at binary level but on
higher levels. Nevertheless, the binary level is where the WCET analysis is and
where the final expression of our semantic properties will be. At the binary level,
we saw that the semantic model is the Control Flow Graph; for C-level semantic
analysis, we also work on the control flow graph and keep only the properties
for which the control flow graph elements are traceable to the binary level. For
higher levels, we better use the high-level structure and the traceability are not
only on the control flow but also on some higher level entities.

We classify previous work in [39] based on the way they focus on 3 main
steps: how the semantic properties are extracted, how they are expressed, and
how they are exploited in WCET analysis. Additionally, we distinguish the
software level under analysis: Model-based design, programming language level
(C level generally) or binary level.

From this classification we observed that they was a need to analyze model-
based design properties as they are at binary level. In other words, a semantic
analysis that would only focus on high-level properties faces difficulties to trans-
fer and exploit those properties on the binary level that is the target code. The
following section presents our work on Lustre applications that partially answers
this question.

Our second axis of work on semantic analysis focuses on the analysis of C
language. We started from the observation that previous work was limited to
very simple semantic properties and use Linear Relation Analysis to enlarge the
scope of properties.

5.1 Infeasible executions due to high-level de-
sign

At high-level, the code usually intrinsically contains some properties on the
control flow. For instance, a sequential code generated from an automaton may
contain generated code corresponding to two exclusive automaton states that are
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never both executed on the same execution path. However, if those two states
code are transformed along the code generation and the compilation steps, it
may be a useless property for the WCET estimation based on the binary code.
In our work [40], the verification step uses a model-checker at Lustre level where
we limited the properties to the elements we could still observe at the binary level
and could lead to infeasible path properties. We extracted properties following
two algorithms: (i) extract all possible properties and transfer them to binary
level, (ii) formulate binary control flow properties and verify them at a high-level.
All our properties are exploited as additional integer linear constraints that are
used to estimate the worst-case path (Implicit Path Enumeration Technique).

Our results show that in some programs our infeasible path analysis could
largely improve the WCET analysis (up to 50% better estimation) [40]. This
result concerns mainly the automaton code generation.

5.1.1 Our work as a basis for further work

The main take-away message that has been used is ”model-based design level
is a good one to improve WCET”. From this message, the timing analysis of
synchronous programs has been more studied as in [41, 42].

5.2 Identifying infeasible paths with Linear Re-
lation Analysis

On a programming level, we focus on C code analysis [43]. We use Linear
Relation Analysis to extract properties on the number of executions of some
program points. This counter analysis leads to the extraction of properties that
were not yet exploited by previous work. The results in terms of improvement
are good as soon as there is an interesting property that is nested in a loop: the
impact of the property is more visible as it is valuable for all iterations of the
loop. In other terms, this method is the most interesting as soon as there are a
lot of loops with correlation between the number of executions of parts of the
loops, or if the paths are strongly unbalanced (conditional statement lead to a
path that is quite long and has much more weight in the worst-case path than
its dual path).

This work has been reused in the security community in [44]: the properties
on counters are used as a way to give properties that should not evolve over
time and lead to attack detection.



Chapter 6

Discussion on semantic
analysis and software model

The improvement due to semantic analysis is large. Thus, why not an inte-
gration of such analysis in any timing analysis? We discuss in this chapter
the issue of the traceability that comes with any semantic analysis that is at a
higher level than the executable one. Additionally, we discuss the way semantics
should be taken into account in timing analysis with a trade-of between analysis
complexity and improvement: what is the good software model?

6.1 Semantic analysis transfer and Traceability

Any semantic property on a higher level than binary has an impact on the
timing analysis if and only if this property holds on the binary level. For such a
semantic analysis, a semantic property must be extracted from the application,
expressed in a way that may be used in the timing analysis and transferred to
the binary level (this was the main axis of our W-SEPT ANR project [45]1). To
express our semantic properties we mainly translate them into the path analysis.
The Implicit Path Enumeration Technique (IPET) is an ILP formulation whose
objective function estimates the worst-case execution time solving a system of
constraints. The constraints describe the control flow where the variables are
a basic block number of executions along the worst-case path or its worst-case
execution time bound. The type of properties that may be expressed using this
method has been studied in [46].

The transfer of properties to the binary level takes place in code generator
and compilation stages. In our work we used the compilation debug information
to ensure that the property was still valid at the binary level, we ignore the
property in the opposite case or in case of any doubt. The problem of traceability
has been studied in the community [47] and some analyses have been integrated
into compilers as in [48]. It is a mandatory step that is interdependent of the
compiler and the selected optimization steps. This could explain why semantic
analysis is generally not used in timing analysis tools.

To avoid traceability issues, a few works introduced semantic analysis at

1http://wsept.inria.fr/
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binary level [49, 50]. It is a good opportunity to integrate semantic analysis.
However, it is hard to retrieve high-level properties on the binary code, even
some properties at C level may be hard to detect at this low level. This leads
to an interesting open problem: how to detect, with binary code analysis, prop-
erties that may be found at higher levels?

6.2 Software models

A question still arises: is there any software model that would be more adapted
to WCET analysis ? For hardware analysis, the main model is the CFG. For
software analysis, the good model is the one that makes possible the expression
of the properties to be integrated in the analysis. In any case, we notice that
this level can not be independent of the complementary analysis. Thus, there
may be a possible improvement by better integration of software and hardware
analysis.

First, the question arises: what can be adapted? when this integration may
be done? In the following Part we adapt the software to better serve the timing
analysis and also be better adapted to hardware specificity. This way we found
a better integration of hardware and software analysis by integrating timing
analysis and implementation. As this will be done on multi-core platforms with
data-flow applications, we will use a data-flow graph as the software model.
This software model will be used at an entry parameter, but also modified ,if
necessary, during the implementation process.



Part III

Hardware/software models,
analyses and

implementation
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As we have seen in previous parts, whenever one aims at a hardware tim-
ing analysis, a software model is necessary because this hardware analysis is
dedicated to a specific code. Also, whenever one aims at a semantic analysis,
a traceability step is mandatory to transfer the properties to the binary level,
where the software is executed on a hardware platform. From these observations
we guess that more precise analyses should be derived with hardware/software
analysis where both analyses may be closely related.

In this part, we first focus on a precise bus analysis that includes execution
path details to better estimate the bus delays. It uses the observation that some
bus accesses are close and may be treated in the same bus slot without getting
any wait on the bus for the second access. Furthermore, we show that a feasible
path analysis may be integrated into the worst-case path analysis. The main
idea is to limit the worst-case path analysis to feasible paths. The good point
of both hardware/software analyses is the precision of the results. However,
we also observe that a close integration of some timing analysis steps leads
to poor scalability. On multi-core analysis where there is a set of hardware
and software elements, such a precise analysis would not be possible on real
industrial programs. That’s why we looked for a higher-level integration on a
less precise model but a better use of hardware and software properties.

In a second chapter, we focus on multi-core timing analysis and show how
a higher-level hardware/software analysis can give both precise and scalable
results. To obtain this result, we integrate the timing analysis with the last
step of the implementation: this way we can play with the code generation
and a precise hardware use to better know and analyze the interference. The
hardware interference analysis uses the software knowledge and the software is
implemented according to the hardware knowledge.

In a third chapter, we discuss the influence of the hardware architecture on
all this integrated process. We also make some observations on the tradeoff
between interference analysis and isolation.
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Chapter 7

Local Hardware/Software
models

By local, we mean a focus on a part of the hardware features or software entity.
With this focus, the dedicated model is comprehensive and the corresponding
timing analysis is precise.

In this Chapter, we cover two local analyses that integrate execution path
and hardware analysis. The execution path leads to a refinement of the analysis:
no infeasible path appears in the model and the hardware model may better
integrate different execution paths.

In both cases the software model is at the level of control flow graph basic
block with information about execution path conditions (if-then-else of loop
conditions). The first analysis aims at better integrating semantic analysis and
processor pipeline analysis. The second analysis, uses semantic analyses and
processor timings to get a more precise analysis of a memory bus.

7.1 Feasible paths encoding

From the observation that usual WCET analyses do not deal with execution
path analysis but integrate semantic properties, we introduced an analysis that
only considers feasible paths [51]. For that aim, we describe the semantic of the
program under analysis as a set of properties that may have an influence on
the execution path. At each execution path entity (CFG basic block) there is a
corresponding upper bound on its execution time. Then we look for the longest
execution of the program that preserves the semantic properties.

For our proof-of-concept [51], we consider the LLVM bitcode level and gener-
ate a first-order formula that gives a model of the code semantics that influences
the execution path. For that aim, the single static assignment of LLVM bitcode
helps to get a simpler model. We add to this model a notion of basic block
(boolean that expresses when a basic block is executed along the worst-case
path) and the corresponding worst-case bounds. Using an optimization modulo
theory we look for the longest path preserving the semantic properties. This
initial model leads to a very complex solving, we add some cuts to help the
solver: these cuts are mainly encoding that a sequence of basic blocks must not
have an execution time longer than the sum of the basic blocks execution time.
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With this analysis we have shown that integrating semantic and hardware
analysis may lead to good WCET bounds. The level of semantic analysis is
lower than in usual WCET analysis and leads to a more precise WCET bound.
However, obtaining a more precise bound is at the price of a higher analysis
complexity.

7.2 Precise bus model

With a TDMA bus, a core gets an access to the bus during a window of time that
is cyclically attributed to each core. A worst-case bound for a TDMA bus con-
siders that each access waits for the cycle length ((#core− 1)XwindowLength.
To improve this result, from cache analysis and semantic analysis, we intro-
duced an analysis that encodes the path semantics and the distance between two
memory accesses [52]. With this refined model, we encode the interleaving of
the bus window and the memory accesses.

As in the previous analysis, we encode the semantics and the timing that we
solve with optimization modulo theory. The software model considers smaller
basic blocks than the usual CFG ones, each memory access is a memory block
frontier (only one memory access per block).

This analysis leads to very precise worst-case bounds for programs executed
on a multi-core with TDMA bus memory. The main contribution for this work
is to show that a more precise analysis is possible, but at the price of higher
complexity. Furthermore, TDMA has a predictability property: no need of any
information of what happens on other cores due to the temporal isolation that
allows us to use only a local analysis. With any other bus arbiter, the inter-
ference would have much more complexity and lead to intractable complexity.
This experiment shows that it is good for the hardware analysis precision to get
a detailed software model, but this fine grained level may not be the good one
for this hardware/software analysis.

7.3 Our work as a basis for further work

Our work inspired other hardware/software SMT models for WCET analysis:
binary semantic analysis [53], cache analysis [54]. Furthermore, our work leads
to a particular SMT model [55] that has been used as an example to improve
the SMT solving : optimization modulo theory [56].



Chapter 8

Implementation and timing
analysis Integration

In this chapter, we work on the integration of implementation and timing anal-
ysis. By implementation we mean the last step where the memory mapping
takes place, the task placement and the orchestration code generation (task
synchronisation and time-triggered implementation of the DAG). We observed
that this last step of the implementation could deliver precious detailed infor-
mation that are useful for timing analysis. Additionally, the timing analysis
process could feed this implementation step to better orchestrate the execution.
We are not any more estimating the WCET, that is considered as a parameter
of the schedulability test that we consider here: worst-case response time as
seen in Chapter 3.

On one side, there is the software to be analyzed, to get a better knowledge
of the communication phases and the memory usage, we use the data-flow graph
level. In the DAG we use, the useful entities are:

� each node is a program

� each edge represents:

– a precedence: the target node can not start before the end of the
source one

– a communication: the source node may write some data to commu-
nicate to the target node.

For our work, we use DAG generated from Lustre or SCADE applications. How-
ever, our process may be used for any application with the above characteristics.

Furthermore, we use an additional property of such DAG code: the code
phase. This code is usually generated with a first phase that is used to read the
data; followed by a phase that executes the node code working with the data
read; in a last phase, the computed values are written to be communicated to
the next nodes in the DAG. The good property of a phased execution model is
its separation of shared memory accesses and local memory accesses. We use it
to refine the interference delay estimation and also to better avoid them during
implementation. Also. we adapt this phased execution model to better fit the
hardware we target and the property of the DAG.
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On the other side, there is the hardware where the program will be executed,
a better usage of this hardware platform is based on some of its characteristics:

� a banked memory : each core may access a dedicated bank, or may commu-
nicate by accessing other banks (note that it generalizes to any partitioned
memory);

� a compositional core: interference delay may be integrated by additional
delay;

� a good knowledge of any memory access delay and hardware specificity
that may impact the execution timings.

For our work, we target the Kalray MPPA platforms (Bostan and Coolidge)
as instances of platforms with these characteristics. The main reason is the
good knowledge of the platforms details due to our close collaborations with
the Kalray company.

From this software model and hardware knowledge, we may proceed to aim at
a good hardware/software analysis by the integration of the last implementation
phase and the timing analysis (interference delay, schedulability test, scheduling
and mapping).

First, we present the way we integrate these analyses. Second, we show
different implementation possibilities and compare them to get feedback on our
integrated process. Last, we give some hint about how to improve the mapping
of the DAG to a clustered many-core platform.

8.1 Multi-Core Interference Analysis: MIA

The integration of the last implementation step and the timing analysis leads
to a better knowledge on the configuration of hardware and software to be
analyzed, and a better implementation that takes into account the software
characteristics and the way to avoid some interference.

On the last implementation step, we can modify/act on:

� where to place shared memory and private memory : any access to the same
memory bank has a potential for interference due to the shared memory
bus;

� where to place each task to be executed : which node on which core;

� when to start the task execution: preserving the precedence and software
properties, the release date plays a role on the time-triggered implemen-
tation, and is a key point to get a precise interference delay estimation.

We introduced a 2-phased implementation [57], instead of the traditional
3-phased (read-execute-write). As the DAG gives information on when and
which communication are played, we observed that the implementation does
not benefit from having both a read and a write phase, rather one may be
enough. In fact, the knowledge of which nodes communicate, may duplicate the
interference observed on the communications phases if the read and write phases
are used. Instead, we use a remote write where any read to shared resource is
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local, only the communication write phases accesses another bank, the bank
associated with the node that is the target of the communication.

On the question of the interference analysis, using the 2-phased implemen-
tation, the interference may be observed when a write happens during the ex-
ecution of a node on the target core, or when two write phases may happen
simultaneously. The most used implementation method consists of modifying
the phases scheduling such that those phases may never happen simultaneously.
A second way is to add some delay to the timing bound of nodes to integrate
the interference delay, but at the price that the global response time may be
very large with the integration of any potential interference. We observed that
the interference in our context does not impact so much the timing as it is lim-
ited in time and number of memory accesses. We further introduce a method
to evaluate the interference precisely and adjust the global timing [57, 4]. For
this, we analyse one period of the DAG execution. The interference is evaluated
chronologically and a delay is added to the node WCET. The release date of the
communicating nodes (the one that is impacted by a precedence) are estimated
finely depending on the interference delay. This way instead of adding isolation
delay everywhere or adding interference delay that impacts the whole DAG, the
interference delay is precise and the impact minimized.

This method has shown very good results and was the first step to evalu-
ate further and integrate additional timing analyses stages (scheduling, map-
ping). We applied this method to multi-core and multi-cluster (many-core)
platforms [57, 33]. This work lead to the MIA tool [4] that from a DAG and
timings evaluates the interference delay and assigns the release dates. This tool
already progressed, the initial version [4] has been re-implemented with a more
scalable algorithm [58] and additional features [5].

8.2 Predictable Execution models

To study the behavior of our integrated approach, we compare in [59] a dif-
ferent memory mapping combined with 3- or 2-phased implementation and the
use of isolation vs. interference delay integration. As memory mapping and
orchestration we compare:

� a memory-centric approach where any shared memory access is managed
by a dedicated task that is mapped to a dedicated core and a dedicated
bank. Interference is limited to the read by the shared-memory task of
each produced data.

� a dedicated shared memory bank accessed by each node during the read
and/or write phases. The interference is limited to all accesses to this
shared memory bank.

� a local memory model where each node executes locally, reads in its pre-
decessors memory and writes to its successors memory.

As implementation model we compare:

� isolation vs. interference: full isolation of the phases that could interfere
vs. integration in MIA and estimation of release date depending on the
interference delay.
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� 3-phased vs. 2-phased model : our remote write model is compared against
the traditional 3-phased model in all configurations we use.

We compare all configurations picking a memory model, interference/isolation
and 2/3 phases. We introduced some scheduling algorithm when a choice is
possible in the phases order (for instance, which of the following read phases is
scheduled when the previous node ends its execution).

This study has shown that for our context (DAG implementation, multi-core
with fast access banked memory, application that fits in this memory), our 2-
phased remote-write with interference delay integration was more efficient and
the interference delays cause less waiting than the full isolation. About the two
other memory mappings, the memory centric model has been introduced for
distant memory and do not behave well in our context: sequential communi-
cation phases, only the execute phase may benefit from concurrent execution.
The dedicated shared memory bank generates also a large set of interference on
this shared bank. Both models are incomparable as each one behaves better
in a specific context. We even implemented our study on two platforms and
the trends were similar [5]. Our 2-phased model with integration of interference
delays always behaves better.

The fully isolated model is generally used in industry, it gives the feeling that
no problem may be caused due to interference. With our work we show that an
intermediate approach with orchestrated code to limit interference seems more
convenient in terms of efficiency and gives the expected guarantees in term of
safety.

8.3 Mapping nodes to cores and clusters

For all work mentioned in this chapter, we consider given the mapping of task
to core and clusters. Lately, we observed that among the mapping algorithms
which focus on the placement of task on cores and clusters, none of them were
guided by the communication size and placement. As the communication is
a key point to better limit interference, we aim at a new mapping algorithm
guided by the communication costs. Our first attempt [5] showed that the idea
of guiding the task placement by the communication weight and the memory
size is a good idea.

8.4 Our work as a basis for further work

Our integrated process has been used as proof-of-concept in two industrial
projects1 [60]. Our work as been integrated in the SCADE tool chain as a
last implementation step. As part of the research community, our integrated
process inspired other ones on the implementation process [61, 60, 62], the
memory mapping [63, 64], the interference limitation [65] and the execution
model [66, 67, 68].

1CAPACITES and ES3CAP
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In this report, we summarize our work in timing analysis and its integration
into the implementation process. From hardware model for timing analysis and
software analysis for timing analysis, we observe that both suffer a high com-
plexity to go further into analysis precision. Thus we combined them such that
both benefit from details from the other one. Finally, for the implementation of
DAG applications to multi-core platforms, we integrate timing analysis into the
last implementation stage to get a timing analysis that benefit from implemen-
tation details and a time-triggered implementation that takes precisely timing
analysis into account, including interference delays.

On the hardware models and analysis, we focus on two aspects, cache anal-
ysis and interference analysis on the memory bus. We introduced a new way to
analyze cache memory by a better efficiency of the analysis in two ways: larger
classification (less unclassified accesses) and good implementation of the anal-
ysis. Also, we study cache analysis in the context of preemptions, introducing
analyses and different approaches to integrate it into the timing analysis process.
We introduce a way to integrate interference delay into worst-case response time
analysis and add some interference models for the memory bus.

On the software analysis, we introduce some infeasible path analyses to ex-
tract semantic properties that refine the worst-case execution time bound.

We introduce two local hardware/software analyses. We integrate (i) an in-
feasible path analysis to a hardware model and (ii) a path analysis to a bus
model. Finally, we integrate hardware/software timing analysis to the last im-
plementation step. This way we get more precise interference analysis by a good
knowledge of hardware and software to which we add details about the exact re-
lease dates from the implementation; also, we get a better implementation with
release dates that are fixed depending on interference delays.
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Chapter 9

Where our work did change
the point of view

Our work can be seen as a set of bricks in the timing analysis house. Some of
them changed the communities point of view on the analysis and methods.

Our cache analysis has been introduced when the community thought that
this topic could not be improved and was an almost closed topic. With our
analysis we contributed to change the point of view on cache analysis: we have
shown that the analysis could still gain in precision and above all we have shown
that cache analysis could be very efficient with a good implementation.

Our work on infeasible paths has shown that there is room for large improve-
ments with a better integration of semantic properties. At the design high-level,
industry has shown a large interest in our work where they look for a better
consideration of the characteristics of applications. Our work did open the door
for future work on this topic where taking into account application modes, for
instance, could be a good start.

Our work on cache-related preemption delay did open the door to a large set
of work on a better integration of hardware cost into timing analysis. This open
door lead us to the integration of interference analysis on the same model. This
work on multi-core response-time analysis has been a pioneer work to better
understand and integrate interference into timing analysis.

Finally, our integration of timing analysis and implementation has been a
good proof-of-concept to show that isolation is not the only way to consider
for critical application implementation. Our interference model combined with
our 2-phased implementation led to efficient and precise analysis that starts to
change the timing analysis process and its integration with implementation.
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Chapter 10

The future opportunity to
make all in one: where we
are

We have shown good progress in the timing analysis process. All that raises
open questions on the combination of analysis and improvement on the general
process.

In our research community, work usually focus on one timing analysis step
and there have been few progress on the combination of them. There is room
for improvement by a better combination of the timing analyses. For instance,
the following analyses could be better integrated:

� cache analysis and CRPD : we have shown with our “definitely cached use-
ful cache block” that both analyses get complementary results, however,
as far as I know, there have been very few advances in their integration.
Could there be one cache analysis that would serve both for WCET and
WCRT and give complementary and more precise results?

� cache analysis and interference analysis: in our work we consider the
“worst-case number of accesses” that is the number of misses on the cache
memory. However, integrating a better knowledge on which accesses they
are, when they happen and how their “miss delay” is accounted as part of
the WCET combines with the “interference delay” accounted as part of the
WCRT could lead to more precise timing analysis and better integration
of these separated steps.

� semantic analysis and timing analysis: as we have shown, semantic anal-
ysis refines the software model used in hardware analysis. This opens the
door for improvement of all these analyses as far as a way for a good in-
tegration (traceability vs. low-level analysis) of these properties is found.
For instance, high-level properties give information on reused code from
one period to the next one that could be integrated into the cache analysis.

� semantic properties and interference: similarly, interference analysis could
gain from a better knowledge of high-level properties. For instance, a

53



54CHAPTER 10. THE FUTUREOPPORTUNITY TOMAKEALL IN ONE:WHEREWEARE

knowledge of modes could lead to infeasible path analysis in the DAG
that could refine our analyses and implementation steps.

The integration of timing analysis steps in industrial processes could be eased
by a refinement of the timing analysis method. The big picture on the different
steps to combine is hard to get. There is a large door opened to better clarify
timing analyses and better integrate into the industrial implementation process.

With the start of the CAOTIC project (Collaborative Action On Timing
Interference), we will work in the next years on a better integration of interfer-
ence analysis in timing analyses, including the timing compositionality. With
the help of an industrial committee of 10 partners we will get feedback on our
methods and try to go into a better integration of all timing analysis steps and
implementation.
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[49] J. Ruiz, H. Cassé, and M. de Michiel, “Working around loops for infeasi-
ble path detection in binary programs,” in 2017 IEEE 17th International
Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 1–10, 2017.
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