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du Laboratoire de Mécanique des Fluides et d’Accoustique
Ecole Centrale de Lyon, Université de Lyon, CNRS
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Part I

Contributions to the
description of turbulence in

fluids and plasmas





Introduction

Turbulence is a fascinating mixture of randomness and coherence. On the one
hand, the randomness of the phenomenon naturally motivates the use of a statis-
tical characterization of the turbulent flow properties and the search for theories
that can describe and predict these statistics. The coherence, on the other hand,
makes it tempting to look at the intriguing beauty of instantaneous vorticity
fields and to identify generic mechanisms that describe the dynamics of coherent
flow structures. Both approaches are complementary, but in general it is hard
to transpose concepts of one approach to the other. For this to be successful,
statistical theories should be able to describe the statistical imprint of coher-
ence and generic mechanisms of the dynamics of coherent structures should be
characterized statistically. The rapid increase of computational resources and
the development of advanced experimental techniques have helped the research
community to obtain a detailed description of individual flow-structures, and
instantaneous flow realizations. The simulations of turbulence which are carried
out and the data obtained from experiments yield a wealth of information, and
most statistics are now accessible. However, the accumulation of information
does not directly increase our understanding of turbulent flows.

The understanding of a phenomenon is a mixture of intuition based on simple
phenomenological models and the development of theories which explain (and
ideally predict) the features observed in simulations and experiments. In the
case of turbulence, the development of a theory is a long-lasting quest and no
entirely satisfactory theory is available which takes into account all features of
a turbulent flow. In the following chapter we will highlight the reason for this:
the strong nonlinear mode coupling and the inherent Lagrangian character of
turbulent movement.

The closest mankind has come to a theory of turbulence is the Direct Interac-
tion Approximation (DIA) which is discussed in detail in chapter 2. However, as
soon as one considers problems involving anisotropy or inhomogeneity, the appli-
cation of DIA-based theories becomes immediately a formidable task. Complex
flows have however many features in common with isotropic turbulence, in par-
ticular with respect to the interaction between scales, and the study of isotropic
turbulence does significantly contribute to a better understanding of turbulent
flows in general. In chapter 3 isotropic turbulence is studied using DIA-based
approaches. Armed with the understanding of these flows, we can now address
more complicated systems. In the second part of the manuscript, chapters 4–6,
we investigate the dynamics of plasma turbulence and two-dimensional turbu-
lence in wall-bounded geometry. The presence of plasma density gradients,
strong magnetic fields and confining walls considerably complicates the descrip-
tion of the flow properties. In these chapters we will therefore mainly rely on
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Direct Numerical Simulations and we try to understand the flow features using
phenomenological models and parametric studies.

First, in the following pages, an outline is given of the main results presented
in this manuscript.



Outline

This outline summarizes the results presented in the following six
chapters. Some key results are presented and references are given to
the relevant journal articles.

Chapter 1: Turbulence and the strength of the
nonlinearity

The Reynolds number is defined as

RL =
UL

ν
, (1)

with L a typical lengthscale characterizing the size of the largest (energetically
important) flow structures and U the rms velocity. The physical interpretation
is that RL number measures the ratio between inertial effects and viscous effects.
If we write the Navier-Stokes equations as

∂tu = N + ν∆u, (2)

with N = −(u · ∇u + ∇p), then the Reynolds number could be alternatively
defined by

R∗ =

√
<N ·N >√

< (ν∆u) · (ν∆u) >
. (3)
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Figure 1: Left: the energy spectrum for a forced turbulent flow at a Taylor-
scale Reynolds number Rλ = 4000. Right: the spectrum of the mean square
nonlinearity for the same flow and the spectrum of the pressure gradient.
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If we define the power spectrum of the mean-square nonlinearity and of the
viscous term such that ∫

w(k)dk = < |N |2 >∫
Υ(k)dk = < |ν∆u|2 >, (4)

one can define the scale-dependent Reynolds number,

R∗(k) =

√
w(k)

Υ(k)
. (5)

As observed in Figure 1, the nonlinear term scales as

w(k) ∼ U2ε2/3k1/3. (6)

Substituting this and Kolmogorov scaling, E(k) ∼ ε2/3k−5/3, into the Reynolds
number (5), it is found that the Kolmogorov scale is not only a function of the
energy dissipation and viscosity, but also of the large-scale sweeping velocity. We
know from observation in experiments and simulations that this is not the case,
and something in the above reasoning is not correct. The problem is related
to a key-feature of Kolmogorov’s theory, namely the locality of interaction is
only satisfied in the Lagrangian reference frame, where the influence of large-
scale sweeping is eliminated. This shows the importance of the Lagrangian
description of turbulence if one is interested in its multi-scale character.

Chapter 2: The Direct Interaction Approxima-
tion

The DIA is a perturbation method. The influence of the nonlinearity on the
dynamics of the flow is treated perturbatively. The obvious problem is that this
nonlinearity is not small, and perturbation methods only work adequately in the
limit of a small perturbation around a certain equilibrium state. In a turbulent
flow a large number of triads (velocity fluctuations at three different positions in
wavenumber space) are involved in the nonlinear interaction. The influence of
one individual triad compared to the cumulative influence of all possible triads
should become infinitesimally small if the total number of triad interactions
tends to infinity. This ratio of the influence of one individual triad, compared
to the cumulative influence of all other triads is the small parameter used in the
DIA. A peculiarity of this perturbation approach is that we perturb about the
actual state that is unknown and not about a known linear solution. DIA can
treat systems which are far from Gaussian, as long as the weak-dependence and
maximum randomness conditions are fullfilled.

The derivation of triple and quadruple correlations of a nonlinear evolv-
ing quantity (such as the velocity) is described in section 2.3. Whereas this
procedure for the derivation of triple correlations is relatively well known, the
procedure to derive the expression for quadruple correlations is not.

The DIA applied to the velocity in a Eulerian reference frame yields results
which do not agree with Kolmogorov’s phenomenological theory about energy
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Figure 2: Left: when a turbulent flow develops from an intial state in which the
energy is confined at the large scales, the energy spectrum is given by a self-
similar form different from classical Kolmogorov scaling. Right: a flow governed
by the truncated Euler equations can have an energy spectrum which exhibits
a Kolmogorov inertial range in coexistence with modes in thermal equilibrium
at the smallest wave-lengths [2].

transfer. The reason is that DIA involves multiple time-correlations which mea-
sure the time-scale on which distinct Fourier-modes interact, and in the Eule-
rian reference frame, decorrelation is dominated by large-scale sweeping. The
sweeping time-scale is however not the time-scale which determines the energy
transfer and the time-correlations measured in the Eulerian reference frame are
therefore not the appropriate ones to describe the local (in scale space) energy
tranfer on which Kolmogorov’s theory is based. This problem of DIA can be
solved by recasting the approximation into a Lagrangian reference frame. This
shows that the scale-locality assumption of Kolmogorov is directly linked to the
Lagrangian character of the time-correlation of the Fourier modes.

In order to obtain a single-time description, one can use an assumption for
the functional dependence of the time-correlations. The unknown quantity to
specify is then a Lagrangian memory time which can be specified in several
ways. We proposed a procedure, yielding the Lagrangian Markovianized Field
Approximation (LMFA), in which this time-scale is determined using the anal-
ogy between the fluid particle displacement and the advection of a non-diffusive
passive scalar [1].

Chapter 3: Studies on the dynamics of isotropic
turbulence

The statistical equilibrium state of a set of Fourier modes governed by the
Galerkin-truncated Euler equations is thermal equilibrium with an equipartition
of energy between the modes. The nonlinearity of the Navier-Stokes equations is
identical to the nonlinearity of the Euler equations and one can therefore expect
that if the energy distribution of a turbulent flow is far from this equilibrium,
the nonlinearity will act in such a way as to approach it. In the initial stage,
this will generate a transient self-similar energy distribution which is not the
same as the one observed for constant flux cascades. The steeper slope, with
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a power-law exponent of order 1.89, has not yet been described by a simple
dimensional analysis [3] (Figure 2, left).

At later times, when the energy is transported to scales fine enough for the
viscous stress to act, an equilibrium will be observed (for high enough Reynolds
numbers) between the flux towards the small scales and the viscous dissipation
of energy at these scales. Exactly the same equilibrium is observed in the
Galerkin-truncated Euler equations, where the thermalized modes act on the
non-equilibrium modes as an eddy viscous process [2] (Figure 2, right).

The energy piles thus up at the largest wavenumbers for the three-dimensional
truncated system. Two-dimensional turbulence shows a tendency to transfer the
energy to the smallest wavenumbers. The way the energy accumulates at the
low-wave-number end can be regulated by adding a friction. If this friction be-
comes very localized in space, by using a high-order hypo-friction, the energy
sink acts like a wavenumber truncation [4] and bottlenecks at the large scales
of the flow are observed.

The energy transfer in three-dimensional turbulence is considered in more
detail in sections 3.2 and 3.3. First we consider the time-reversibility of the
nonlinearity. The Euler equations are invariant under the simultaneous change
t→ −t and u→ −u. This implies that if in an Euler flow we change the sign of
the velocity at every point of space, the flow will evolve backwards to its initial
condition. This symmetry is not retained by the Navier-Stokes equations in the
dissipation range since the viscous term does not share the same symmetry. To
what extent the Navier-Stokes equations retain this reversibility is an important
issue in Large Eddy Simulations [5].

Subsequently we link the energy-flux to the normalized dissipation rate
εL/U3, in order to explain the variability of the latter in different flow situations
[6]. In another study we link the energy flux to the physical-space third-order
structure function. This quantity and its normalized value, the skewness, are
investigated as a function of the Reynolds number and it is shown that the
Reynolds-number corrections to asymptotic scaling laws are of the order of the
intermittency corrections, which makes it complicated to disentangle the two
types of corrections [7].

Adding a periodically fluctuating forcing to the large scales, the filter prop-
erties of the turbulent energy cascade can be evaluated. The energy cascade acts
as a low-pass filter with a characteristic frequency dependence proportional to
ω−3, with ω the frequency [8]. In a follow-up investigation we show how one
can construct a multiple scale turbulence model which takes into account the
non-local interactions which are responsible for the filtering-characteristics of
the energy cascade [9].

The last section of chapter 3 discusses the phenomenon of depletion of non-
linearity. It is observed that turbulence displays the perhaps surprising property,
that it locally tends to a state in which the strength of the nonlinear term is
reduced, compared to a random ensemble of independent Fourier modes with
the same kinetic energy (see Figure 3). This depletion of nonlinearity seems to
be a quite general property of systems containing a quadratic nonlinearity. We
tested the concept of depletion of nonlinearity for the case of a passive scalar
advected by turbulence. The scalar equation is linear, but the advection term
plays for the scalar a similar role as the nonlinearity of the Navier-Stokes equa-
tions with respect of the coupling of different modes. It was found that also the
dynamics of the scalar tend to a state depleted of advection. In particular in
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Figure 3: Left: spectrum of the nonlinear term (as in figure 1.3) and the same
spectrum computed assuming the velocity-field to consist of independent (Gaus-
sian) Fourier modes. Right: the ratio of the two spectra.

the small scales of the scalar it was observed that the strength of the advection
term was reduced substantially compared to its Gaussian estimate.

Chapter 4: Magnetized plasmas and two-dimensional
turbulence

In chapter 4 a brief introduction is given to the fluid models that can be used
to describe a fusion plasma. It is shown how one can derive a fluid descrip-
tion, starting from the kinetic equation for the distribution function of the
space-velocity evolution of the particles constituting a plasma. The two-fluid
description due to Hasegawa and Wakatani, relevant to describe the dynamics
of the edge turbulence of tokamaks, is introduced and it is shown how to sim-
plify this description to a charge neutral MHD description. The influence of a
strong magnetic field on a conducting fluid or plasma is recalled, focusing on
the tendency towards a 2.5-dimensional dynamics [10], see Figure 4.

This 2.5-dimensional dynamics is equivalent to the mixing of a passive scalar
in two-dimensional turbulence. We therefore also present an investigation on
this latter subject in Chapter 4, in which we link the scaling of the velocity-scalar
cross-correlation to the Lagrangian velocity correlation time [11].

Chapter 5: Lagrangian statistics in 2D fluid and
plasma turbulence

In Chapter 5 we present results for the Lagrangian acceleration, which is the
right hand side of the Navier Stokes equations, evaluated on a trajectory. X(x, t),

a(X, t) = −1

ρ
∇p(X, t) + ν∆u(X, t) + f(X, t). (7)

The dominant contribution to the acceleration is the pressure gradient. The
PDF of the acceleration will therefore closely ressemble the PDF of the pressure
gradient. It is argued that even in a Gaussian velocity field the acceleration is
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Figure 4: Quasi-static MHD turbulence behaves as two-and-a-half-dimensional
turbulence. The perpendicular velocity advects the parallel velocity as were it
a passive scalar. This behavior is illustrated by considering the energy spectra.
The energy spectra of the perpendicular velocity (solid lines) display a steep
inertial range behavior with a spectral exponent of the order three or four, as
is usual for two-dimensional turbulence. The spectrum of the third velocity
component (dotted lines) displays a Batchelor-type behavior, as is expected in
the case of advection by a velocity field with a steep energy distribution. The
lower two curves are obtained using DNS, the upper four curves are EDQNM
results.

not Gaussian. Intermittency can thus not straightforwardly be measured by the
non-Gaussianity of the velocity-time increments or the Lagrangian acceleration.
A more precise definition is needed if one wants to employ the term intermittency
to denote the anomalous features of turbulence [12].

The origin of the non-Gaussian shape of the acceleration PDFs is investigated
in drift-wave turbulence. The interesting feature of the latter system is that it
contains an adjustable parameter (unlike the Navier-Stokes equations), which
allows to regulate the correlation time of the Lagrangian dynamics. This was
done systematically and the influence on the shape of the PDFs was assessed
[13].

In further studies, we addressed the influence of walls on the acceleration by
performing simulations of decaying [14] and forced [15] two-dimensional turbu-
lence in which we compared the statistics of a flow in a periodic domain with the
statistics of a flow in a wall bounded domain. We showed that the differences
in shape in the PDFs between the wall-bounded and periodic geometry are a
robust feature and that the entrophy level influences strongly the shape of the
PDFs.

An additional question on the statistical distribution of the acceleration is its
link to regions of strong vorticity, or strong shear layers. The link between flow
topology and acceleration was studied in reference [16]. In order to separate the
flow in topologically distinct regions the Okubo-Weiss criterion was used. It was
shown that, to some extent, the origin of the characteristic shape of the PDFs
can be attributed to the intermittency of the flow topology. A large part of the
flow is topologically quiescent, and the Lagrangian acceleration in this part is
strongly peaked around zero. The contributions of the topologically more active
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Figure 5: Velocity field in a toroidal fusion plasma, as obtained by our sim-
ulations. The streamlines, which show the direction of the velocity field, are
coloured using the value of the toroidal velocity.

regions leads to tails that are raised. Considering these topologically more active
regions by themselves, the PDFs are close to exponential, as would be expected
for Gaussian velocity fields.

Chapter 6: Self-organization in magnetohydrody-
namic turbulence

In turbulence certain quantities are conserved by the governing equations in
the absence of viscosity. For the three-dimensional hydrodynamic case these
invariants are the energy and the helicity. In the case of MHD, more invariants
can be identified. The inviscid invariants determine the dynamics of the system
(in a statistical sense). As a function of the initial conditions, one can predict
in certain cases towards which state a system evolves. We investigated these
dynamics in a system of two-dimensional MHD, confined by isolating boundaries
[17].

In a subsequent study we investigated the generation and transport of an-
gular momentum in two-dimensional MHD. We showed that a two-dimensional
MHD flow, confined in non-circular boundaries is spun-up rapidly and this effect
is even more important when the initial magnetic energy is increased [18, 19].

The exciting study of the influence of the geometry and transport coefficients
on the toroidal rotation of fusion plasmas is presented in section 6.3. This topic
is exciting since plasmas in toroidal fusion confinement devices are known to
rotate for a reason which is not well understood. This rotation, seems to be
an important ingredient in a transition to a much-improved confinement state
and may be a prerequisite for future toroidal nuclear reactors (such as ITER) to
function. In Figure 5 we show results of the flowfield generated through visco-
resistive instabilities in toroidal geometry, in which the shape of the boundaries
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and the magnetic field are chosen similar to tokamak geometry. It is shown
that, when raising the Lundquist number, a dominantly toroidal velocity field
is spontaneously generated. If the up-down symmetry of the cross-section is
broken, toroidal angular momentum is generated [20].



Chapter 1

Turbulence and the
strength of the nonlinearity

1.1 A description in scale space

The Navier-Stokes equations for incompressible, unit density flow, read as

∂tu+ u · ∇u = −∇p+ ν∆u, ∇ · u = 0. (1.1)

The nonlinearity of the Navier-Stokes equations gives rise to a wide range of in-
teracting different length-scales in a turbulent flow. To describe this multi-scale
dynamics of turbulence, one needs an appropriate scale-space description. Dif-
ferent complete orthonormal bases are available to describe the multi-scale char-
acter of turbulent flows. Examples are the Fourier-, wavelet- and Chebyshev-
decomposition. The Chebyshev decomposition is convenient to study wall-
bounded flow-geometries confined between parallel planes, the wavelet- de-
composition allows a simultaneous scale-position description and the Fourier-
description is the optimal basis to describe the scale-space distribution of general
statistically homogeneous vector-fields. In the following chapters, a substantial
part of the work focuses on homogeneous turbulence such that the Fourier de-
scription is adopted to decribe the flow.

Let us briefly discuss the Navier-Stokes equations in Fourier-space. If one
wants to determine the pressure for a given velocity field, one needs to solve the
Laplace equation, obtained by taking the divergence of (1.1), yielding

∆p = −∇ · (u · ∇u). (1.2)

To solve this equation one needs to integrate over the whole space domain.
However, if we Fourier-transform this last equation, and use the fact that a
derivation with respect to x becomes a multiplication by ik, we obtain

p̂ =
ik

k2
· ̂(u · ∇u). (1.3)

The pressure is thus the non-solenoidal part of the nonlinear term.1 This allows

1A solenoidal vector field is a field which is incompressible. The divergence is thus zero.
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us to write the Fourier-transformed Navier-Stokes equations as,(
∂t + νk2

)
ui(k) = − i

2
Pijm(k)

∫∫
uj(p)um(q)δ(k − p− q)dpdq. (1.4)

where summation over repeated indices is implied and the operator Pijm(k) is
given by

Pijm(k) = kjPim(k) + kmPij(k) with (1.5)

Pij(k) = δij − kikjk−2. (1.6)

This operator removes the non-solenoidal part from the Navier-Stokes nonlinear-
ity, which is the role of the pressure. The viscous term becomes a multiplication
of the velocity of mode k by νk2, and is thus determined locally in Fourier
space. The fact that the pressure has been eliminated from equation (1.1) by
using the incompressibility constraint is an important advantage of the Fourier-
space formulation. Furthermore, the scale interaction is directly visible in the
convolution integral, which displays the dependence on the wavevectors p, q,
that take values everywhere in Fourier-space. It is this term, incorporating both
the advection and the pressure term, that generates the multi-scale dynamics.

A particular useful quantity to quantify the multi-scale activity of the Fourier
modes is the energy spectrum, which is defined as the kinetic energy distribution
between scales, such that2 ∫ ∞

0

E(k)dk =
1

2
uiui, (1.9)

where the overline denotes a suitable average. The wavenumber k is here related
to the scale size of a turbulent structure. Rigorously, 2π/k is the wavelength of a
continuous periodic wave. In order to get an intuitive understanding of dynamics
and for general hand-waving phenomenology, it is often convenient to use a
description of a turbulent flow consisting of eddies [21]. There is no generally
accepted and precise definition of an eddy. Following Tennekes and Lumley [21],
we can use the following tentative definition: An eddy of wavenumber k may
be thought of as some disturbance containing energy in the vicinity of k. The
ensemble of eddies of wavenumber k will then constitute a band in the energy
spectrum, cf. Figure 1.1.

Since in Fourier space the divergence is proportional to the scalar product of the wavevector
and the vector, the solenoidal part of the vector field is perpendicular to the wave vector. The
non-solenoidal, or potential, part of the vector is parallel to the wavevector. The pressure,
which is the scalar product of the wavevector and the nonlinearity (multiplied by ik−2), is
therefore the non-solenoidal part of the latter.

2The kinetic energy contained by a Fourier mode is given by ui(k)ui(k)∗/2. For quanties
which are real in physical space (which is the case for the velocity) the Fourier transform is
an even function of the wave-vector, such that ui(k)∗ = ui(−k). The average total energy of
all wave-vectors together is then

1

2
uiui =

1

2

∫
ui(k)ui(−k)dk. (1.7)

If we are only interested in the distribution over scales, or equivalently the wavenumber, and
not in the directional dependence, we can move to spherical coordinates, writing,

1

2

∫
ui(k)ui(−k)dk =

∫ ∞
0

[∫ 2π

0

∫ π

0

1

2
ui(k)ui(−k)k2 sin(θ)dθdφ

]
dk. (1.8)

The term in square brackets is the energy spectrum E(k).



1.1 A description in scale space 19

Figure 1.1: The energy spectrum gives the scale distribution of the kinetic
energy. The wavenumber k corresponds to the wavenumber of a base-function
(a sine-function in the case of Fourier-series). The inverse of the wavenumber is
thus proportional to the wave-length. Phenomenologically, if one considers all
eddies of a typical size, they will together contribute to a band in the energy
spectrum.

An eddy is then a localized structure, similar in shape to a wavelet (e.g. [22]),
but with this difference that we give a physical meaning to an eddy, related to
a flow structure. Whereas a wavelet is simply a mathematical tool to describe
a localized disturbance of a certain size, an eddy is a flow structure which
can be sheared, dissipated, advected and rotated. The eddy-concept is in my
opinion important for the physical understanding of a turbulent flow, but one
should always be extremely careful in using the eddy-concept to predict flow
properties. Rather should they be considered a cartoon picture to explain a
posteriori concepts which are derived more rigorously using theories applied
to the dynamics of Fourier modes (or other base functions such as wavelets).
For example, the concept of scale-local interactions can be illustrated using a
cartoon of a large eddy advecting a small eddy without distorting it (see Figure
1.2) but the validity of the concept should be tested by considering scale-locality
functions, rigorously defined in Fourier-space [23]. The intrinsic triadic character
induced by the nonlinear mode-coupling does then show that the picture is more
complicated than the cartoon suggested (see for example the debate on the local
transfer driven by nonlocal interactions [24, 25, 26]).

In our investigations we try to follow the following approach: results are ob-
tained using simulations of the discretized partial differential equations or using
an adapted closure model, and subsequently results are interpreted using intu-
itive concepts, which are suitable for general handwaving. We stress here that
this handwaving without the supporting results is considerably less valuable.
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Figure 1.2: Cartoon of the concept of scale locality, as applied to the mixing
of a scalar blob. Left: eddies much larger than the blob-size will advect the
blob without distorting it, whereas much smaller scales will only nibble-off the
boundaries. Right: an eddie of comparable size will efficiently deform the blob.

1.2 Scale-dependence of the nonlinear interac-
tion

Closure theories, simulations and experiments all indicate that at high Reynolds
numbers, the energy spectrum contains a range that is, to a good approximation,
given by [27]:

E(k) ∼ ε2/3k−5/3, (1.10)

in which ε is the energy flux among scales, equal to the dissipation rate of
kinetic energy in the statistically stationary case. This inertial range extends
roughly from k0 ∼ 2π/L to kη ∼ 2π/η, in which η is the scale where the viscous
effects become important. The above scaling, due to Kolmogorov, reflects the
local character of the energy flux through scales from the large scales, where
the energy is injected by some large scale instability, to the small scales where
viscous stresses become important. In what now follows we will explain that
this inertial range behavior is intrinsically reflecting the Lagrangian character of
the underlying energy transfer mechanism. For this we will start by considering
the scale dependence of the Reynolds number.

The Reynolds number is defined as

RL =
UL

ν
, (1.11)

with L a typical lengthscale characterizing the size of the largest (energetically
important) flow structures and U the rms velocity. The physical interpretation
that we find in every textbook on fluid dynamics is that the Reynolds number
measures the ratio between inertial effects and viscous effects. If we write the
Navier-Stokes equations as

∂tu = N + ν∆u, (1.12)

with N = −(u · ∇u + ∇p), then the Reynolds number could be alternatively
defined by

R∗ =

√
<N ·N >√

< (ν∆u) · (ν∆u) >
, (1.13)

which is a more precise (but far less practical) measure of the ratio of the effects
of inertia and viscosity. Note that we take both the advection and pressure term
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together in this definition of the inertial effects, which seems logical in the light
of equation (1.4). Taking in this definition of the Reynolds number only the
advection term would not change qualitatively the picture that we are about to
describe.

If on the largest scales, of order L and with typical velocity U , all the velocity
gradients are of order U/L, and the second derivatives of order U/L2, then it
is easy to see that R∗ ∼ RL. The Reynolds number gives thus the ratio of
the strength of the inertial effects to the viscous effects at the large scales. The
direct effects of viscous stresses are indeed not directly influencing the dynamics
of the large scales in very large Reynolds number turbulence. But how does this
ratio evolve as a function of scale? Let us for simplicity consider the isotropic
case. In scale space we can rigorously define

w(k) = 4πk2 <N(k) ·N(−k) >, (1.14)

which is the power spectrum of the mean-square nonlinearity defined such that∫
w(k)dk =< |N |2 > . (1.15)

It represents the distribution over scales of the strength of the inertial effects.
Similarly we can define the scale distribution of the viscous contribution to the
Navier-Stokes equation,

Υ(k) = 4πk2 < νk2u(k) · u(−k)νk2 > = 2νk4E(k), (1.16)∫
Υ(k)dk = < |ν∆u|2 > . (1.17)

How does this Reynolds number,

R∗(k) =

√
w(k)

Υ(k)
, (1.18)

behave as a function of scale?
Closure theories3, that will be introduced in the next chapter, give for the

spectrum w(k),
w(k) ∼ U2ε2/3k1/3. (1.19)

Results are given in Figure 1.3. In the inertial range we therefore have

R∗(k) =

√
U2ε2/3k1/3

ν2ε2/3k7/3
=

U

νk
. (1.20)

In which we used Taylor’s relation ε ∼ U3/L to relate ε, L, U . At the scale
at which inertia and viscous effects become comparable this Reynolds number
should become of order unity. Solving R∗(k) = 1 we find

k∗ =
U

ν
= R

1/4
L kη. (1.21)

3We expect that simulations and experiments should give the same result, but this quantity
has not been significantly studied at present so that we rely on our closure results. All the
results presented in this chapter are obtained using closures which will be discussed in chapter
2. In the present chapter the results only serve as an illustration of the ideas and the tool
which is used to obtain them is not so relevant. The advantage of closure is that high Reynolds
numbers can be considered such that clear scaling ranges are visible.
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Figure 1.3: Left: the energy spectrum for a forced turbulent flow at a Taylor-
scale Reynolds number Rλ = 4000. Right: the spectrum of the mean square
nonlinearity for the same flow and the spectrum of the pressure gradient. All
results in this chapter are obtained using a closure of the Eddy-Damped Quasi-
Normal Markovian type. See section 2.5 on the details of this approach.

Figure 1.4: Left: we consider a model energy spectrum and we arbitrarily divide
the scales into large scales and small scales. Right: the enstrophy spectrum,
characterizing the mean square value of the velocity gradients is obtained by
multiplying the energy spectrum by k2.

in which kη = ε1/4/ν3/4 is the Kolmogorov scale. The scale k∗ should determine
the beginning of the dissipation range. It is very interesting that the scale k∗
which is the scale at which the viscous effects become dominant is much larger
than the Kolmogorov scale kη for very high Reynolds numbers, since kη is also
defined as the scale where the viscous effects become dominant. We would
therefore have expected that k∗ ≈ kη, independent of the Reynolds number.
This paradoxical result brings us immediately to a key issue in the description
of scale interactions and Kolmogorov’s inertial range theory.

Let us introduce an arbitrary separation of velocity into large u< and small
u> scales,

u = u< + u>. (1.22)

For convenience we assume that the energy distribution of the turbulent flow
that we consider is given by a long inertial range distribution, extending from
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k0 to kη:

E(k) = Ckε
2/3k−5/3 for k0 < k < kη

= 0 elsewhere, (1.23)

with Ck the Kolmogorov constant. Arbitrarily, scales u(k) with |k| ≡ k < k1

are considered large scales and scales with k > k1 are considered small. At the
very high Reynolds number we consider in this example we have chosen k1 such
that k0 � k1 � kη as illustrated in Figure 1.4.

We can compute the magnitude of the energy of the large and small scales,
respectively, as

1

2
u<i u

<
i =

∫ k1

k0

E(k)dk =
2

3
Ckε

2/3
(
k
−2/3
0 − k−2/3

1

)
≈ 2

3
Ckε

2/3k
−2/3
0

1

2
u>i u

>
i =

∫ kη

k1

E(k)dk ≈ 2

3
Ckε

2/3k
−2/3
1 , (1.24)

and for the magnitude of the square of the gradients, which is given by the
integral of the enstrophy spectrum, 2k2E(k) we have,

∂u<i
∂xj

∂u<i
∂xj

=

∫ k1

k0

2k2E(k)dk =
3

2
Ckε

2/3
(
k

4/3
1 − k4/3

0

)
≈ 3

2
Ckε

2/3k
4/3
1

∂u>i
∂xj

∂u>i
∂xj

=

∫ kη

k1

2k2E(k)dk ≈ 3

2
Ckε

2/3k4/3
η . (1.25)

Since we considered k0 � k1 � kη, we have therefore

|u<|
|u>| � 1 and

|∇u>|
|∇u<| � 1. (1.26)

The advection term can then be roughly estimated by

u · ∇u = (u> + u<) · (∇u> +∇u<) (1.27)

≈ u< · ∇u>, (1.28)

which immediately shows the coupling of large and small scales which dominates
the dynamics of the advection term. The small scale gradients are swept around
by large scale velocity fluctuations.

In the beginning of this section we mentioned that the inertial range is di-
rectly related to the energy transfer among different length-scales. The sweep-
ing interactions just described are not the interactions which govern the energy
transfer. This can be illustrated by adding a large uniform velocity U0 to the
velocity field. This should not change the energy transfer, but it does change the
value of u·∇u→ (u+U0)·∇u. We should therefore not use Kolmogorov’s scal-
ing in evaluating R∗(k), since the latter characterizes the sweeping interaction
and not the energy transfer.
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If we place ourselves in a reference frame in which the inter-scale transfer
is clearly decoupled from the large-scale sweeping effect, the energy transfer
should be more correctly evaluated. Therefore we consider the dynamics in a
Lagrangian reference frame [28]. Doing so, we have

Dtu = −∇p+ ν∆u. (1.29)

In this Lagrangian frame the nonlinear interaction is given by the pressure
gradient and not by the advection, which has become part of the material time
derivative D/Dt ≡ (∂t + u · ∇). We recall here that the pressure term is part
of the nonlinear interaction, as is clear from relation (1.3). We can now define
a new dimensionless (Reynolds-number-like) quantity, in which it is not the
complete nonlinear term (advection plus pressure gradient) which is compared
to the viscous term, but only the pressure gradient term. We therefore introduce
the mean-square pressure gradient spectrum,

wp(k) = 4πk2 < ∇p(k) · ∇p(−k) >, (1.30)

and since in the inertial range (see Figure 1.3 (right)),

wp(k) ∼ ε4/3k−1/3, (1.31)

we now have

R∗(k) =

√
wp(k)

2νk4E(k)
∼ ε1/3k2/3

νk2
. (1.32)

In this case the Reynolds number is order unity around the Kolmogorov scale,
so that k∗ ∼ kη as we would expect it. The Lagrangian description is therefore
most natural if we want to consider the importance of scale interactions with
respect to energy transfer without considering the effect of sweeping by the large
scales. Kolmogorov scaling is thus directly tied to the Lagrangian dynamics of
a turbulent flow4. This is important in the formulation of a statistical theory of
turbulence (chapter 2). Chapter 5 focuses on the Lagrangian statistics obtained
in two-dimensional turbulence and in plasma turbulence.

1.3 Multi-scale dynamics of the scalar field

The evolution equation for the advection of a scalar quantity with a diffusivity
α is

∂tθ + u · ∇θ = α∆θ. (1.33)

We consider in the remainder only passive scalars such as small temperature
fluctuations or dye concentration, meaning that the scalar quantity does not
influence the velocity field. The above equation is linear in the sense that every
term in the equation is proportional to θ. No quadratic terms appear and
also, no nonlocally determined terms like the pressure appear. However, the
advection term involves both the velocity field and the scalar field and hereby

4Note that we can evaluate the Reynolds number based on the pressure gradient equally
well in the Eulerian frame and it is therefore not a completely Lagrangian quantity. But the
fact that we decouple the pressure gradient from the advection term in evaluating the strength
of the nonlinearity is only a logical thing to do if one considers the Lagrangian dynamics.
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the scalar displays a multiscale dynamics, like the turbulent velocity. This is
clear if we consider the convolution term in the Fourier transform of the above
equation, (

∂t + αk2
)
θ(k) = −iki

∫∫
ui(p)θ(q)δ(k − p− q)dpdq. (1.34)

Since this equation is slightly less complicated than the Navier-Stokes equations,
but contains the same multi-scale character, it can be hoped that an understand-
ing of the dynamics of a scalar leads to deeper insights into the dynamics of the
Navier-Stokes equations. This is not certain. Changing an equation can help
understand the influence of certain effects, but often the behavior of the mod-
ified system changes completely with respect to the system governed by the
original equations. A good example is the equation that was proposed by J.M.
Burgers [29] as a one dimensional equivalent of Navier-Stokes,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (1.35)

The nonlinearity in this equation has the same structure as the Navier-Stokes
equations, but the absence of the regularizing pressure term leads to the forma-
tion of shocks in the evolution of the velocity u. These discontinuities lead to
an inertial range behavior proportional to k−2 for the energy spectrum of Burg-
ers’ equations, whereas “naive” Kolmogorov arguments would yield a k−5/3

wavenumber dependence. We mention an interesting investigation on this sub-
ject [30] which shows that closure can correctly predict this shock-dominated
Burgers-turbulence. On one hand, the scalar advection problem has in common
with the Burgers dynamics that no pressure is present in the equation. On the
other hand the multiscale-dynamics of the passive scalar share the scaling prop-
erties with Navier-Stokes turbulence with respect to the constant flux inertial
range. Indeed, we can consider the multi-scale distribution of passive scalar
variance, given by Eθ(k), the scalar spectrum, defined such that∫ ∞

0

Eθ(k)dk =
1

2
θ2. (1.36)

It was suggested by Obukhov and Corrsin [31, 32] that the scalar spectrum
scales as

Eθ(k) ∼ εθε−1/3k−5/3. (1.37)

And this scaling is akin to Kolmogorov’s constant flux inertial range (1.10).
Let us now reconsider the issue that was discussed in section 1.2. How can

we define a scale dependent Péclet number? Classically, the Péclet number is
defined as

Pe =
UL

α
, (1.38)

and the interpretation is that it measures the ratio of the strength of the advec-
tion, compared to diffusion. Clearly we can redefine a scale dependent Péclet
number, analogously to equation (1.39),

Pe∗(k) =

√
wθ(k)

2αk4Eθ(k)
, (1.39)
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Figure 1.5: Left: scalar variance spectrum at a Rλ = 4000 and Pr = 1. A clear
Corrsin-Obukhov scaling range is present. Right: spectrum of the advection
term for the same case.

with
wθ(k) = 4πk2

〈(
û · ∇θ(k)

)(
û · ∇θ(−k)

)〉
, (1.40)

such that ∫
wθ(k)dk = (u · ∇θ)2. (1.41)

The spectra Eθ(k) and wθ(k) for unit Prandtl number (which means that the
diffusivity α is equal to the viscosity ν), are shown in Figure 1.5.

Closure predicts (as for the mean-square nonlinearity spectrum in Figure
1.3) that the spectrum of the mean-square advection scales proportional to
k1/3. More precisely, the scaling is

wθ(k) ∼ U2εθε
−1/3k1/3. (1.42)

Substituting this scaling and the Corrsin-Obukhov scaling (1.37) in the above
expression for Pe∗(k) and determining where the effects of diffusion and iner-
tia become comparable, we find exactly the same problem as for the velocity
dynamics: large-scale sweeping dominates the advection of the small scales.
What was our solution for the velocity? We reformulated our problem in the
Lagrangian frame. What happens if we do that for the scalar? In that case the
equation becomes

Dθ

Dt
= α∆θ. (1.43)

There is something funny happening here: by reformulating the scalar problem
in the Lagrangian frame, it is found that the only effect influencing the scalar
evolution is the diffusion. Reformulating a scale-dependent Péclet number in
Lagrangian coordinates would therefore give a value of zero at all scales, in-
dependent of the velocity dynamics, since the advection term is not explicitly
appearing in the equation. This immediately points out that considering the
advection-diffusion equation of the scalar might not be the correct way of study-
ing the multi-scale dynamics of a scalar advected by a velocity field. This seems
strange at first sight, but let us think some more about this. A scalar blob of
uniform scalar concentration in a velocity field will give birth to smaller scales
through the stretching of the blob. Within the blob, the value of the scalar re-
mains constant. Following a fluid particle, the value of the scalar will not change
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in the absence of diffusion. The stretching will however directly influence the
gradients of the scalar, which is not directly visible in the advection-diffusion
equation. It is clearly present if one writes down the equation for the evolution
of the gradient of the scalar. Defining

γi =
∂θ

∂xi
, (1.44)

the equation for the advection-stretching-diffusion becomes in the Lagrangian
frame:

Dγi
Dt

= −∂uj
∂xi

γj + α
∂2γi
∂x2

j

. (1.45)

We can now define a spectrum measuring the strength of the stretching term,
the first term on the RHS, compared to the diffusion of scalar the gradient. This
will be left for further research, but it is expected that a local Péclet number
based on the stretching and the diffusion of the scalar gradient will correctly
indicate the Batchelor scale at which the diffusion becomes comparable to the
stretching effects.

The problem of scalar advection will be further discussed in chapter 3 and
4. In particular, the non-Gaussianity of the scalar advection will be considered
in section 3.4. In Chapter 4, the advection of a passive scalar will be discussed
in relation to the dynamics of magnetized plasma and conducting fluids in the
presence of a strong magnetic field.

1.4 The multi-scale dynamics of a magnetic field
advected by turbulence

The evolution equation for the advection of a vector χ is

∂tχ+ u · ∇χ = χ · ∇u+ η∆χ. (1.46)

This equation governs the advection of the vorticity, ω = ∇× u as well as the
advection of a magnetic field b. In the first case it corresponds simply to the
curl of the Navier-Stokes equations. In the second case the magnetic field is
advected by the velocity field, and it retro-acts on the latter by the Lorentz
force, FL = (∇×b)×b, which should be added to the RHS of the Navier-Stokes
equations. The interaction of these two-fields, the velocity field and the magnetic
field, makes the dynamics of the flow dynamics richer. A new dimensionless
parameter is introduced, the magnetic Prandtl number. But even fixing this
parameter, the dynamics have gained enormously in free parameters, depending
on the boundary conditions, and forcing schemes. Universality does not seem to
be easily observed in MHD [33]. The Kolmogorov-Richardson energy cascade,
reasonably well established in fluid turbulence, is immediately questionable in
MHD, since scale interactions become more nonlocal. Local isotropy is here
suppressed by the inherent anisotropy of the magnetic field.

Applications of MHD include the dynamics of accretion-disks, fusion reac-
tors, solar-wind, planetary (and solar) dynamos, the interstellar medium and
industrial processes involving liquid metals. In particular we will focus on the
application of MHD to the modeling of fusion-plasma devices and more about
this will be discussed in chapter 4 and 6.
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Chapter 2

The Direct Interaction
Approximation

An attempt has been made recently to develop an exact theory of
homogeneous turbulence in which all the statistical moments of the
velocity field are derived analytically from the Navier-Stokes equation
(...) [34].

2.1 Introduction and notation

Statistical theories of turbulence have to deal, one way or another, with the
closure problem, which consists in the fact that the averaged Navier-Stokes
equations contain more unknowns than equations. This is due to the nonlinear
term, which, when averaged, introduces additional unknowns to the system1.
Analytical closure approaches are an attempt to overcome this problem by relat-
ing the unknowns by physical assumptions to the known quantities and hereby
reducing the number of unknowns or increasing the number of equations. Early
approaches, such as the quasi-normal approach [37, 38, 39], in which the un-
closed hierarchy of moments was closed by assuming joint-Gaussian statistics of
the fourth order moments of Fourier-modes of the velocity field, did not yield
physical results. Negative kinetic energy distributions were observed as a conse-
quence of that closure assumption [40], as was carefully suggested by Kraichnan
[41].

A great step forward was the introduction of the Direct Interaction Approx-
imation (DIA) [34]. In the following we will focus on the DIA and consequently
on the contributions of Kraichnan to the theoretical description of turbulence.
This evidently does not credit all scientists that have contributed to turbulence
theory and the present chapter is certainly not an exhaustive review on the sub-
ject. It rather discusses contributions that have inspired, and are at the basis
of, our own investigations.

1A quadratic term is actually not necessary to create a closure problem. Already the
product of two stochastic fields leads to the closure problem. This is, for example, the case
in the scalar advection equation. This equation is linear, but the advection term leads to a
closure problem after averaging, if the velocity field is random. Only in the particular case of
a delta-correlated advecting velocity, the scalar equation can be solved exactly [35, 36].
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For the sake of readibility, we introduce a symbolic notation in which the
Navier-Stokes equations are written in a compact form. First we write the
continuous form of the Navier-Stokes equations,

[
∂

∂t
+ νk2]uk(k, t) = − i

2
Pkpq(k)

∫∫
δk−p−qup(p, t)uq(q, t)dpdq,

using the discrete Fourier representation,

[
∂

∂t
+ νk2]uk(k, t) = − i

2

∑
p,q

δk,p+qPkpq(k)up(p, t)uq(q, t), (2.1)

in which the wave-vectors are a discrete representation of the flow in a cyclic
box of size L. In the case in which L→∞, both representations are equivalent.
This system is now written in a more general form [42], which represents also
other quadratic systems,

(∂t + νk)yk =
∑
p,q

Akpqypyq. (2.2)

The index k of yk does not indicate a vector index like the index i in ui(k, t), but
labels the complete mode ui(k, t). Similarly yp, yq indicate the modes up(p, t)
and uq(q, t) and νk represents νk2. This notation is much lighter than the full
expression, which is the main reason to introduce it, but it does not explicitly
show all the vector indices contained in the Navier-Stokes equation. For this
reason we do not implicitly sum over repeated indices, as is usual using Einstein’s
index notation convention. The

∑
p,q in the above expression represents the

convolution product. Expression (2.2) is more general than the Navier-Stokes
system, because it can represent different systems depending on the definition
of Akpq, yk and νk. For Navier-Stokes we have the operator

Akpq → −
i

2
Pkpq(k). (2.3)

Burgers’ equation (1.35) can be represented by the same equation by changing
the operator to

Akpq → −
i

2
(qpδkp + pqδkp) . (2.4)

In the following, quantities are evaluated at the present time instant if not
further specified. If a quantity is evaluated at a different time, t = s, the
quantity will be distinguished by adding a dash y′. In section 2.3.2, we will
need quantities at two different time-instants in history and the quantities at
t = s and t = s′ will be indicated by y′ and y′′ respectively.

The evolution equation for the mode distribution of kinetic energy of ykyk/2,
called the Lin equation, can now be written

(∂t + 2νk)ykyk/2 =
∑
p,q

Akpqykypyq. (2.5)

The overline denotes an ensemble average. In order to get a closed expression
for the energy transfer, one needs to find an expression for the triple correlation
Skpq ≡ ykypyq. Such an expression will be derived in section 2.3.1. Recall that
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in the previous chapter, to characterize the strength of the nonlinear interaction,
we focused on the mean-square nonlinearity, which is the square of the RHS of
the last equation (2.2),

wk =
∑
p,q

∑
m,n

AkmnAkpqypyqymyn, (2.6)

and so one needs an expression for Qpqmn ≡ ypyqymyn. This expression will be
derived in section 2.3.2.

2.2 The weak dependence hypothesis and max-
imum randomness

The DIA is a perturbation method. The influence of the nonlinearity on the
dynamics of the flow is treated perturbatively. The obvious problem is that this
nonlinearity is not small, and perturbation methods only work adequately in the
limit of a small perturbation around a certain equilibrium state2. Kraichnan
found however a clever way to define an equilibrium state and a small pertur-
bation. In order to explain how he did this, we will first discuss a conventional
perturbation method applied to equation (2.2), in order to obtain an expression
for Skpq ≡ ykypyq.

In a conventional perturbation, one expands about a linear state y(0), which
in the case of Navier-Stokes turbulence is given by the solution to the linear
problem,

(∂t + νk)yk = 0. (2.7)

For the case of decaying turbulence from an initial condition yk(t = 0), this
would correspond to purely viscous decay without any mode-coupling induced
by the nonlinear term. The solution to this problem, the linear state y(0), is

y
(0)
k = G

(0)
k (t)yk(t = 0), (2.8)

with G
(0)
k = exp(−νkt) the linear Green’s function. The quantity y

(0)
k is thus

a velocity mode decaying solely under the influence of viscosity. If we take
nonlinearity into account as a small perturbation, the first order perturbed

2We will completely omit the discussion of wave-turbulence or weak-turbulence. In that
case a linear term in the governing equations is dominant and waves (such as Rossby waves
in rapidly rotating turbulence, or Alfvén waves in the presence of a strong magnetic field) are
present. If the frequency of these waves is much larger than the inverse of the nonlinear time-
scale, and if the nonlinearity is weak compared to the linear effect, the wave-turbulence closure
can be used to close the system. This means that a rigorous perturbation procedure can be
carried out, leading to closed expressions for the weak and slow nonlinear interactions between
rapidly oscillating wave-packets. We could ask what we can learn from wave-turbulence clo-
sures to better understand strong turbulence? The triad interactions are in principle the same,
however, the resonance condition on the wave-frequency selects a small fraction of the inter-
actions. The resonance broadening, when the nonlinearity becomes more important, makes
the number of interactions tend to the ones that would be important in DIA. However, the
applicability conditions for the wave-turbulence closure are not fulfilled anymore. For details
on wave-turbulence we refer to a recent treatise on the subject [43].
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solution is given by

yk ≈ y(0)
k +

∫ t

0

G
(0)
k (s)

∑
p,q

Akpqy
′(0)
p y′(0)

q ds︸ ︷︷ ︸
y
(1)
k

. (2.9)

We recall here that the dash y′ indicates evaluation at t = s. The superscripts
(0) and (1) indicate the order of the perturbation. This expression is obtained

by using the linear Green’s function G
(0)
k = exp(−νkt) and assuming the non-

linearity to be small compared to the viscous effects, which allows to invert the
linear operator (∂t+νk). We can obtain a solution at second order by perturbing

the y
′(0)
p and y

′(0)
q yielding

yk ≈ y
(0)
k +

∫ t

0

G
(0)
k (s)

∑
p,q

Akpqy
′(0)
p y′(0)

q ds︸ ︷︷ ︸
y
(1)
k

+ 2

∫ t

0

∫ t

0

G
(0)
k (s)G(0)

p (s′)
∑
p,q

∑
m,n

AkpqApmny
′(0)
q y′′(0)

m y′′(0)
n ds′ds+ ...︸ ︷︷ ︸

y
(2)
k

,

(2.10)

in which terms of order y4 are represented by dots. The factor two appears
because of p, q symmetry. Substituting this in the triple correlation Skpq =
ykypyq, we find

Skpq ≈ (y
(0)
k + y

(1)
k + ...)(y

(0)
p + y

(1)
p + ...)(y

(0)
q + y

(1)
q + ...)

≈ y
(0)
k y

(0)
p y

(0)
q +

∫ t

0

G(0)(s)
∑
m,n

Akmny
′(0)
m y

′(0)
n y

(0)
p y

(0)
q ds+ ...,(2.11)

In which we showed explicitly only one of the three first order corrections. This
expansion should give correct behavior as long as

|
∑
j,k Akpqypyq

νkyk
| � 1. (2.12)

In terms of the Navier-Stokes equation this means√
N(k) ·N(−k)

νk2u(k) · u(−k)νk2
� 1, (2.13)

which is, apart from the ensemble average, the square root of the scale dependent
Reynolds number R∗(k) discussed in the previous chapter. In turbulence R∗(k)
is generally not small, in particular in the large scales. As mentioned before, a
conventional expansion does therefore not give a useful approximation to high
Reynolds number turbulence. Another, relevant, small parameter is needed and
we will explain now how we can define one.
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Figure 2.1: The number of possible triad interactions involving mode k increases
rapidly with the number of modes present in the domain. We illustrate all
possible triad interactions in the case of a system consisting of only 3, 4, 5 modes
respectively. In a system containing a large number of modes N , this number
increases roughly proportional to N2.

As discussed before, the nonlinear term introduces an interaction between
all Fourier modes which satisfy k = p+ q (or between k and p, q in our model
equation). For every mode k in the Navier-Stokes equations,

[
∂

∂t
+ νk2]uk(k, t) = − i

2

∑
p,q

δk,p+qPkpq(k)up(p, t)uq(q, t), (2.14)

all possible combinations k = p + q are contained in the convolution. If the
number of modes is large, the number of triad-interactions between k and the
other modes increases rapidly. If the system consists of only 3 modes, only one
triad interaction is possible. If there are four modes present, the number of
triads is 3 and when N modes are present, this number is

Ni =

N−2∑
p=1

p =
(N − 1)(N − 2)

2
∼ N2 (for N →∞). (2.15)

These possible interactions are shown in Figure 2.1 for N = 3, 4, 5.
Let us now consider one individual triad, and isolate its influence from the

rest of all possible triads. If the number of modes is large, the influence of this
single triad, compared to the N2 other modes should become infinitesimally
small. It is therefore reasonable to assume that in an infinitely large domain, in
which the mode density goes to infinity, the influence of one triad, compared to
the cumulative influence of all other triads goes to zero. This ratio is the small
parameter, and the fact that this parameter tends to zero is called the weak
dependence hypothesis.

We should note here that there is a bound on the validity of this assumption.
Consider the case in which our domain, containing a large number of modes,
is filled with modes which are all unexcited, except for three excited modes
with a very large excitation. In this case the influence of this single triad can
not be considered small with respect to the sum of all other triads. Kraichnan
excluded such pathological situations from the DIA by invoking the maximum
randomness assumption [34]. However, not all situations which violate the weak
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dependence assumption are pathological. A typical situation where DIA fails is
the very long time behavior of forced, high Reynolds number two-dimensional
turbulence. In this case, the energy will start to pile-up in the modes with
largest wavelength, as is common in Bose-Einstein condensates. The physical
structures related to this state are two counter-rotating vortices (in the case of
a periodic domain). The energy spectrum of this state is proportional to k−3

(see for example [44]). DIA predicts a condensate, consisting of a single peak
in the energy spectrum at the first wavenumber (see figure 3.4). The fact that
DIA fails here is probably related to the fact that we cannot ignore the triad-
interactions involving this typical scale, since almost all energy is contained in
this scale. Intuitively it is clear that the weak dependence assumption might
be violated in this case. Having said this, it should be admitted that the weak
dependence hypothesis seems very plausible in most other turbulent systems.

Let us now repeat the perturbation series using this weak-dependence as-
sumption. The state that we will perturb about is the velocity field that we
would have if all triads were retained except for one. The properties of this sys-
tem should therefore be very close to the complete system, since one triad should
not contribute significantly compared to the sum of all the other. Let us denote
this particular triad, which is not acting in the dynamics of the unperturbed
velocity field, by (yk, yp, yq). We write again the perturbation approach

yk ≈ y(0)
k + 2

∫ t

0

Gk(s)Akpqy
(0)
p y(0)

q ds︸ ︷︷ ︸
y
(1)
k

, (2.16)

in which y
(0)
k is thus the almost complete system, only independent of modes

yp and yq, and y
(1)
k interacts exclusively with yp, yq. If we compare with (2.9)

we observe that y
(1)
k does not contain the sum over p, q, which is present in the

original equation, but only yp, yq themselves. This is because only one triad is
removed. The factor 2 appears since the model equation is symmetric in p, q
so that the single triad appears both as k, p, q and as k, q, p in the nonlinear
interaction. G is now the response function which characterizes the response
of a velocity mode yk → yk + δyk on an infinitesimal random force fk applied

to the RHS of (2.2). The difference of Gk(s) with G
(0)
k (t) in the conventional

perturbation is that now the Green’s function is not the solution of the linear
equation, but of the full system and is an additional unknown. We need therefore
an expression for Gk(s) as a function of known quantities and this expression is
derived in section 2.3.3.

The velocity is thus decomposed into a part in which y
(0)
k is independent of

modes yp, yq plus the direct interaction part, containing only the interaction
yk, yp, yq. A peculiarity of this perturbation approach is that we perturb about
the actual state that is unknown and not about a known linear solution. The
DIA is therefore an implicit approach in some sense. The perturbation should

be valid if |y(0)
k | � |y

(1)
k |. Surprisingly enough, investigations that focused on

the direct validation of this weak interaction assumption are very scarce [45, 46].
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2.3 The DIA procedure applied to triple and
quadruple correlation functions

2.3.1 Derivation of the DIA for triple correlations

As mentioned in the beginning of this section, DIA is a perturbation method

so that yk → y
(0)
k + y

(1)
k + y

(2)
k + y

(3)
k + .... The triple correlation Skpq thereby

becomes

SDIAkpq = y
(0)
k y

(0)
p y

(0)
q +

(
y

(1)
k y

(0)
p y

(0)
q + y

(0)
k y

(1)
p y

(0)
q + y

(0)
k y

(0)
p y

(1)
q

)
+
(
y

(1)
k y

(1)
p y

(0)
q + y

(1)
k y

(0)
p y

(1)
q + y

(0)
k y

(1)
p y

(1)
q +

y
(2)
k y

(0)
p y

(0)
q + y

(0)
k y

(2)
p y

(0)
q + y

(0)
k y

(0)
p y

(2)
q

)
+

higher order contributions. (2.17)

Subsequently we retain the contribution y
(0)
k y

(0)
p y

(0)
q which is determined by the

full velocity field from which the influence of the single mode k, p, q is removed,
and the first order direct-interaction contributions, the three terms in brackets

on the first line of (2.17). For the case of Navier-Stokes turbulence, y
(0)
k y

(0)
p y

(0)
q

corresponds to uk(−k)(0)up(p)(0)uq(q)(0), from which the interaction of the
triad between −k+p+q is removed. When considering the instantaneous field
yk, the contribution of a single triad is small so that the perturbation approach
should be valid. However, when considering the correlation involved in the en-
ergy transfer, this triad is the only contributing triad. So the non-perturbed

triple correlation y
(0)
k y

(0)
p y

(0)
q does not contribute to the transfer. The first order

terms are evaluated by substituting the DIA contribution for these quantities.
Let us consider one of the three of these contributions,

y
(1)
k y

(0)
p y

(0)
q = 2

∫ t

0

Gk(s)Akpq y
(0)
p y

(0)
q y′(0)

p y′(0)
q ds

= 2

∫ t

0

Gk(s)Akpq y
(0)
p y′(0)

p y
(0)
q y′(0)

q ds, (2.18)

which yields for the Navier-Stokes equations,

uk(−k)(1)up(p)uq(q) = i

∫ t

0

G(−k, s)Pkmn(k) up(p)uq(q)u′m(−p)u′n(−q)ds

= i

∫ t

0

G(−k, s)Pkmn(k) up(p)u′m(−p) uq(q)u′n(−q)ds,

(2.19)

in which the second line follows from the first line using the weak-dependence
principle. The weak dependence assumption is here a consequence of spatial
homogeneity [34] (see also [47] for a discussion of this property). The same

procedure is followed for the quantities y
(0)
k y

(1)
p y

(0)
q and y

(0)
k y

(0)
p y

(1)
q , so that an

expression for the evolution of yky′k is obtained containing only yky′k and Gk.
For the moment Gk is an unknown.
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2.3.2 DIA for quadruple correlations

Several interesting quantities, characterizing the non-Gaussianity of a turbulent
flow are functions of quadruple correlations of the velocity field. Among these
quantities are the pressure variance, dissipation rate fluctuations and the vari-
ance of the nonlinear term. As stressed in the previous section, the DIA does
not assume Gaussianity of the fourth order moments. It is therefore interesting
to investigate what it predicts for the non-Gaussianity of these quantities. We
therefore focus in this section on the derivation of a closed DIA expression for
the quantity Qpqmn ≡ ypyqymyn.

Building on the weak dependence assumption, we again remove one triad
from the interaction, the k, p, q triad, so that we obtain as a first order quantity

y
(0)
p y

(0)
q y

(0)
m y

(0)
n + y

(1)
p y

(0)
q y

(0)
m y

(0)
n + ... (2.20)

with the y
(0)
p independent of q, k and

y(1)
p = 2

∫ t

0

Gp(s)Apkqy
′
k

(0)
y′q

(0)
ds. (2.21)

This does not yield a closed expression, and the DIA perturbation needs to be
carried out up to second order. A question is now how to do that. We remove
from the original field a second triad, this time the k,m, n triad, so that

yp = y(0)
p + y(1)

p + y(2)
p , (2.22)

with y
(0)
p independent of k, p, q and of k,m, n.

y(2)
p = 4

∫ t

0

∫ s

0

Gp(s)Gk(s′)ApkqAkmny
′′
m

(0)
y′′n

(0)
y′q

(0)
ds′ds. (2.23)

Substituting (2.22) in Qpqmn, one obtains

ypyqymyn = y
(0)
p y

(0)
q y

(0)
m y

(0)
n︸ ︷︷ ︸

zeroth order

+
(
y

(1)
p y

(0)
q y

(0)
m y

(0)
n + 3 more

)
︸ ︷︷ ︸

first order

+

(
y

(1)
p y

(1)
q y

(0)
m y

(0)
n + 5 more + y

(2)
p y

(0)
q y

(0)
m y

(0)
n + 3 more

)
︸ ︷︷ ︸

second order

+higher order. (2.24)

Evaluating the different terms we find that the zeroth order correlation does not
vanish. As for even moments of independent (Gaussian) Fourier modes we have
now a non-zero contribution from the field from which the two triad interactions
are removed. The first order contributions contain quintuple correlations, which
will vanish according to the weak dependence principle. It is in this case there-
fore the second order contribution which is the first nonvanishing contribution.
Two types of contributions do appear here, 6 contributions with two y(1)’s and
4 contributions with one y(2). Of the former six contributions, two are zero,

y
(1)
p y

(1)
q y

(0)
m y

(0)
n = y

(0)
p y

(0)
q y

(1)
m y

(1)
n = 0. (2.25)

This can be seen by substituting the y
(1)
p ’s into these expressions and considering

which are the direct interaction triads. The final expression contains thus one
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zeroth order contribution and 8 second order contributions. We will explicitly
show two of these eight contributions:

y
(1)
p y

(0)
q y

(1)
m y

(0)
n = 4

∫ t

0

∫ t

0

Gp(s)Gm(s′)AmknApkqy′k
(0)y′′k

(0) yq(0)y′q
(0) yn(0)y′′n

(0)ds′ds

y
(2)
p y

(0)
q y

(0)
m y

(0)
n = 4

∫ t

0

∫ s

0

Gp(s)Gk(s′)ApkqAkmny
(0)
m y′′m

(0) y
(0)
n y′′n

(0) y′q
(0)y

(0)
q ds′ds.

(2.26)

In principle, we have obtained a closed expression, apart from the response
function. In practice, there is still quite some algebra to work out the final
expressions to evaluate.

2.3.3 The mean response function

For the linear, viscous problem, the Green’s-function is given by

Gk = G
(0)
k = e−νk

2(t−t0)H(t− t0), (2.27)

with H(t − t0) the Heaviside function. For convenience we used t0 = 0 in
the foregoing. Using this Green-function to describe the time-decorrelation of
the nonlinear term leads to the Quasi-Normal approximation. In turbulent
flows, the decorrelation is not only due to the viscous diffusion, but also, and
dominantly, due to the nonlinear mode coupling, which is not taken into account
in the viscous Green’s function. If one would therefore use the viscous response
function in the derived expressions for triple correlations, the correlations would
be overestimated, since the decorrelation is too slow. This yields a transfer
which is so strong that the energy is pumped out of large turbulent scales at
an unphysically large rate so that the energy spectrum becomes negative at
certain wavenumbers. Negative kinetic energy is of course intolerable if one is
looking for a correct physical description and therefore one needs to derive a
correct form for the Green’s function of a turbulent flow. This can be done self-
consistently using the DIA.

The correct mean response function which appears in the DIA expressions for
the moments of yk, is the response of the system to an infinitesimal perturbation.
Adding an infinitesimally small random forcing term to the right hand side of
(2.2),

(∂t + νk)yk =
∑
p,q

Akpqypyq + fkδ(t− s), (2.28)

we will now define the average response function as

Gk(t, s) = δyk(t)/fk(s), (2.29)

in which we show the two time arguments for clarity. The quantity δyk(t)
represents the difference induced on yk through the presence of fk, not to confuse
with the time impulse delta function δ(t). Retaining only terms linear in δyk(t)
(since |δyk(t)/yk| � 1, terms involving (δyk(t))2 will be negligible), we obtain
for t > s,

(∂t + νk)δyk = 2
∑
p,q

Akpqδypyq, (2.30)
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in which p, q symmetry is used. Applying the DIA to this equation, one obtains
straightforwardly an equation for Gk(t, s) as a function of yky′k. A closed sys-

tem is thereby obtained with an equation for yky′k (closed using the expression
obtained for the triple correlations Skpq) and an equation for Gk(t, s).

The fact that yky′k and Gk are two-time quantities puts certain restrictions
on their definition, in particular with respect to the reference frame in which
the approximation should be defined. We will discuss this issue in section 2.4.

2.3.4 DIA and Gaussianity

The DIA yields the same expressions as the quasi-normal approximation differ-
ing only in the form of the response function. It is therefore often mistakenly
assumed that DIA is a variant on the Quasi-normal approach only differing
from the latter by the treatment of the response function. However, we did
not invoke the assumption of Gaussianity in the whole derivation. The oper-
ations that we applied invoking the weak-dependence assumption are clearly
valid for a Gaussian quantity, but the fact that it holds does not imply that
the quantity is Gaussian (see for example reference [46]). It can be shown that
this formal ressemblance between DIA and QN is rather a coincidence for the
treatment of triple correlations, and that it does not hold for higher correlations.
In particular, QN theory assumes close to Gaussian statistics, whereas DIA can
treat systems which are far from Gaussian, as long as the weak-dependence and
maximum randomness conditions are fullfilled. We further note that the quasi-
normal approach would per definition neglect the fourth order cummulants ob-
tained in the previous section, since the fourth-order correlations are assumed
Gaussian. One could propose an adapted version of the quasi-normal approach,
in which the fourth-order correlations are not assumed Gaussian, but in which
the sixth order correlations are. This would not yield the same expression as ob-
tained by the DIA, and the resulting expression becomes much more elaborate
than the above expression.

2.4 A Lagrangian formulation of turbulence the-
ory

As a result of the DIA, Kraichnan determined that the energy distribution
should be proportional to k−3/2 with k the wavenumber. This is in disagreement
with Kolmogorov’s phenomenological theory proposed in 1941 [27]. In the 1961
turbulence conference where Kraichnan presented his DIA, the first very high
Reynolds number measurements of the energy spectrum were also presented
[48]. These measurements convincingly confirmed that the energy spectrum
was approximately proportional to k−5/3. Kolmogorov’s arguments were based
on scale-locality, which means that at very high Reynolds numbers, in which
the forcing scale is much larger than the dissipative scale, the energy flux εf (k)
at intermediate scales is only determined by the energy at these scales and the
local timescale,

εf (k) ∼ kE(k)

τ(k)
, (2.31)
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Figure 2.2: Left: an Eulerian observer M(~x) measures a time-correlation of a
structure of size l. He deduces the correlation time τ = l/U , with U the large
scale (sweeping) velocity that translates the structure.

so that

E(k) ∼ τ(k)εf (k)

k
, (2.32)

in which kE(k) represents the energy around k and τ(k) is the local timescale. If
this local timescale is determined by the local eddy turnover-time, (k

√
kE(k))−1,

one finds

E(k) ∼ εf (k)2/3k−5/3, (2.33)

and a quasi-static evolution of the energy spectrum at large k implies εf (k) ≈ ε.
The DIA suggested however

E(k) ∼ τE(k)εf (k)

k
, (2.34)

in which τE(k) is not a local time, but the time it takes an eddy of size l to
be swept a distance of order l by the large scale velocity, roughly given by√∫

E(k)dk. This sweeping time gives indeed the correlation time associated to

an eddy measured by an Eulerian probe. Figure 2.2 illustrates this timescale.
What we would like the time-scale to measure is the correlation-time of an

eddy of a certain scale, i.e. , the time it takes for this scale to decorrelate and
give its energy to other scales. If we now add a uniform velocity U to our
flow, the dynamics of the interscale transfer should not change. Clearly, our
turbulence should decay exactly the same if we would put our experimental
set-up on a train moving with a constant velocity. However, for the observer in
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Figure 2.3: The abridged Lagrangian History DIA uses a semi-Lagrangian coor-
dinate system. One point is evaluated along a trajectory and the second one is
fixed in space. The second time-argument of the velocities indicates the position
on the trajectory that passes through the labeling point at the time indicated
by the first time-argument.

the non-moving laboratory frame, the correlation time has changed from

τE(k) =
l√∫
E(k)dk

→ τE(k) =
l√∫

E(k)dk + U
. (2.35)

This spurious effect is also known as violation of Gallilean invariance. Kraichnan
himself pointed out this problem with DIA [49]. Since DIA is a two-time theory,
it takes into account the time-history of the correlations of Fourier modes. In
the original formulation of DIA, this time-history is computed at a fixed point
in the laboratory frame and is therefore sensitive to this sweeping effect. An
Eulerian observer can not distinguish the decorrelation of a Fourier mode by
nonlinear distortion (such as vortex stretching, straining or other multi-scale
processes), from decorrelation by the sweeping of an arbitrary large scale or
flow component.

This problem of DIA can be solved by recasting the approximation into a
Lagrangian reference frame [28]. The variable that is now considered as the
representative is the Lagrangian velocity u(x, t|t′) defined as the velocity at
time t′ of a fluid particle which is at point x at time t. This definition implies
that u(x, t|t) is equivalent to the Eulerian velocity u(x, t) (see Figure 2.3 for an
illustration of this coordinate frame). By doing so, the dynamics of a Fourier
mode at a certain scale becomes insensitive to the sweeping of an arbitrary
large flow scale. This shows that the scale-locality assumption of Kolmogorov is
directly linked to the Lagrangian character of the time-correlation of the Fourier
modes as was illustrated in section 1.2.

The biggest drawback for using the Lagrangian DIA is perhaps its analytical
complexity, in particular due to the dependence of the time-history of Fourier
modes over Lagrangian trajectories. Indeed, the velocity covariance

ui(x, t|t′)uj(x′, t|t′′), (2.36)

becomes now a function of 4 variables instead of 2. In order to deal with this,
approximations have been proposed which model this time history. A first
approximation, leading to the abridged Lagrangian-history DIA is to consider
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Figure 2.4: An incompressible velocity field is, in Fourier-space, perpendicular
to the wave-vector. It is the pressure gradient which removes the divergent part.
If we consider a velocity-test-field governed by the Navier-Stokes equations from
which the pressure term is removed, in general a potential part uc, parallel to
the wave-vector will be created. By considering simultaneously the dynamics of
this test-field and the Navier-Stokes dynamics, one can estimate the influence
of the pressure.

the case in which one of the velocities is evaluated at a fixed point. This still
yields a rather complicated model and further approximations will be discussed
in the following section.

2.5 Markovianization

As noted above, a self-consistent theory with correct inertial range behavior
should be dealing with the Lagrangian two-time quantities,

yky′k and Gk(t, s) = δyk/f ′k, (2.37)

in which the yi are thus evaluated on particle trajectories, instead of on fixed
points, as would be the case in an Eulerian theory. If the two-time quantities are
not of direct interest, but one wants to determine single-time statistics like ykyk,
one can use a Markovianized approximation of the theory. Markovianization
means in this context that to evaluate quantities at time t, we do not use infor-
mation on times previous to t (but it does not assume zero-correlation between
quantities at different time-instants). It should be noted that Markovianization
introduces necessarily additional assumptions into the theory. However, Marko-
vianization is a logical thing to do if one wants to evaluate DIA numerically,
since the memory requirements to evaluate the dynamics will increase in time
because the DIA equations depend on the entire history of the flow. So either
truncation of the time-history or Markovianization is helpful in evaluating the
long-time dynamics.

Markovianization implies the assumption of a functional time-dependence of
the quantities Rk(t, s) and Gk(t, s) with Rk(t, s) defined as

yky′k = ykykRk(t, s). (2.38)
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As an example we take the DIA triple correlation defined in expression (2.18)
and we rewrite it,

y
(1)
k y

(0)
p y

(0)
q = 2

∫ t

0

Gk(t, s)Akpq ypy′pyqy
′
qds (2.39)

= 2Akpq Θkpqypypyqyq, (2.40)

with

Θkpq =

∫ t

0

Gk(t, s)Rp(t, s)Rq(t, s)ds. (2.41)

The quantity Θkpq has the dimension time and corresponds thus to a Lagrangian
time-scale, characterizing the simultaneous correlations of the modes k, p, q.
The time-correlations Rk(t, s) and Gk(t, s) should be equal to unity at t = s
and should tend smoothly to zero at long times. Obvious choices are then
exponential time-dependence or Gaussian time-dependence. An exponential
time-dependence can actually not be correct, since the time-correlation should
be continuous and invariant under the transformation t → −t. Indeed, in the
absence of viscosity the complete dynamics should be time-reversible (see section
3.2). A Gaussian time-dependence could be assumed to get correct behavior
around zero. It was however shown that the results are relatively insensitive
to the exact choice [50] and an exponential time-dependence has the advantage
that it simplifies the resulting integrals, which can be evaluated analytically3.
The fact that the precise form is not so important comes from the fact that
we do not use the correlation functions themselves in the resulting model, but
only their integral over time. In the following we will assume an exponential
time-dependence of the form

Rk(t, s) = exp

[
−|t− s|

τk

]
. (2.42)

We can integrate both sides of this expression with respect to s to obtain an
expression for τk,

τk =

∫ t

t0

Rk(t, s)ds

(
1− exp

[
−|t− t0|

τk

])−1

. (2.43)

For the sake of simplicity, we will consider here the case in which the turbulence
has been created a time long before we evaluate it, by taking the limit of t0
tending towards −∞, so that ∫ t

t0

Rk(t, s)ds ≈ τk. (2.44)

If we also assume an exponential dependence for the response function, with a
correlation time τGk , the triple correlation time becomes now

Θkpq =
1

(τGk )−1 + (τp)−1 + (τq)−1
. (2.45)

3In the case of the quantity Θijk, a Gaussian time-dependence can also be evaluated
analytically. However, the timescales that appear in the second order perturbation terms,
needed to evaluate the DIA expression for the quadruple correlations, involve double time-
integrals and analytical evaluation of the timescale becomes difficult if the time-correlations
are assumed to be Gaussian.
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The timescales τGk and τk remain to be determined. They should take into
account the Galilean invariant character of the time-history. Therefore decorre-
lation should only be caused by the decorrelation through the effects of pressure
and viscous stresses and not through the effect of advection, since it is this
advection which is responsible for the violation of Galilean invariance (section
1.2). The decorrelation by viscous stresses does not need modeling, since we
can obtain an exact expression for this linear process, but the decorrelation by
the pressure, involving scale-interactions is more delicate. Kraichnan proposed
an elegant way of modeling the pressure decorrelation by pointing out that the
effect of pressure is to remove the energy which is contained in Fourier-modes
parallel to the wavevector [51]. By solving an equation for a vector-field, the
test-field, which is governed by pressureless dynamics, the time-scale at which
energy is transferred towards the parallel modes is taken as the decorrelation
time of the Fourier modes. This mechanism is illustrated in figure 2.4. Another
way to measure the decorrelation is to write an equation for the displacement
vector of a fluid particle, as will be done in section 2.7.

The timescales τGk and τk are in principle not equal. They would be equal in
a system in thermal equilibrium, since in that case the Fluctuation-Dissipation
theorem (FDT) holds. The FDT states that the time-correlation of fluctuations
of a system in thermal equilibrium is equal to the time-response to infinitesimal
perturbations. In turbulence, the response to an infinitesimal perturbation is
exactly the response function, Gk(t, s). The perturbations are the velocity fluc-
tuations and their time correlation is given by the normalized two-time velocity
correlation. The FDT for a turbulent flow is therefore

Rk(t, s) ≡ yky′k/ykyk = Gk(t, s) +Gk(s, t). (2.46)

On the right hand side the sum of the two response-functions is needed since the
response Gk(t, s) is only non-zero for t > s. Evidently, there will be no response
to an infinitesimal perturbation before the perturbation is applied. Turbulence
is of course far from thermal equilibrium (see also section 3.1), however the
FDT seems rather robust and approximately holds for turbulent flows if Eule-
rian quantities are considered at inertial range scales [52]. This is because both
a Fourier mode and the impulse response are mainly decorrelated through the
same mechanism, which is the large-scale sweeping of the small scales. However,
for Lagrangian quantities, the correlation time of the fluctuations seems to be
larger than the correlation time of an infinitesimal perturbation [23, 52], and
according to Lagrangian DIA, the correlation time of the velocity-fluctuations is
approximately 1.8 times larger than the one associated to the response function.
Surprisingly enough, if the Lagrangian velocity is chosen in a slightly different
way, as is done in Kaneda’s variant of Lagrangian DIA, called Lagrangian Renor-
malized Approximation (LRA) [53, 54], FDT holds as an exact result. However,
this seems to be rather a coincidence, since for higher orders of the LRA the
FDT is not exactly satisfied [55]. However, this result shows that the FDT is
at least approximately valid. We choose therefore in general the timescales in
(2.45) equal.

Most Markovian theories share the structure (2.45) but differ in the way in
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which the time-scale Θkpq is determined. Prescribing

Gk(t, s) = exp

−(t− s)

λ
√∫ k

0

k2E(k)dk︸ ︷︷ ︸
eddy damping

+νk2


H(t− s), (2.47)

yields the Eddy-Damped Quasi-Normal Markovian (EDQNM) closure for isotropic
turbulence [56], with λ a model parameter determining the Kolmogorov constant
(i.e. the proportionality factor in expression (1.10)). The particular choice of
the eddy-damping determines the precise behavior of the closure4. We note here
that the EDQNM approximation can also be derived in a less formal manner by
adding a damping term to the Quasi-Normal approximation and Markovianiz-
ing the resulting expression. In particular in the presence of linear effects such
as shear or rotation, a more heuristic approach, starting from a rapid-distortion
expression seems to be more convenient [59].

2.6 A Langevin-model for the Direct Interaction
Approximation

DIA describes not only the multiscale structure of turbulence but also the non-
Markovian (or multi-time) character. An important property of DIA is its
realizability. This means that the energy spectrum is non-negative, which was
not the case for the Quasi-Normal approximation. This property can be proven
because the DIA equations correspond to the dynamics of a generalized Langevin
equation for the velocity (e.g. reference [60]), which implies that the energy and
all other even moments of the velocity field are positive.

Let us outline this in more detail. The classical Langevin equation [61],
describing the velocity of a particle in Brownian motion is given by

du

dt
= −λu+ f, (2.48)

in which f is a random forcing term, which is generally chosen white in time,
and λ is a friction, the inverse of which corresponds to the time-memory of the
velocity dynamics. In the generalized Langevin model, both λ and f are now
functions of the response function, the energy spectrum and a Gaussian velocity
field with the same energy spectrum as the velocity field.

4Orszag, in the original version of EDQNM, simply proposed the dimensionally correct
time-scale τ(k) ∼ ε−1/3k−2/3, whereas Pouquet et al. [57] proposed the now more popular
Heisenberg straining time-scale used in expression (2.47). This scale represents the straining
of the small-scales by the large-scales. If we would also like to take into account the straining
of the large-scales by the small scales, we could modify this expression as described in [58]
but this modification did not seem to induce significant modifications for three-dimensional
turbulence.
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The DIA Langevin model is given by [60],

(∂t + νk)yk = −
∫ t

0

ηk(t, s)yk(s)ds+ qk (2.49)

ηk(t, s) = −4
∑
p,q

AkpqApqkGp(t, s)yqy′q (2.50)

qk =
∑
p,q

Akpqξp(t)ξ
′
q(t), (2.51)

with ξk(t) and ξ′k(t) independent stochastic processes which have the same time-
space covariance as the fluctuating field5

ξk(t)ξk(t′) = yky′k. (2.53)

Equation (2.49) replaces the original (Navier-Stokes) equations,

(∂t + νk)yk =
∑
p,q

Akpqypyq. (2.54)

At first sight the model equation seems more complicated than the original. It
has however the advantage that it is only linear dependent on the turbulent
fluctuation yk. To obtain statistics, one could simulate the above equation for
a given spectral velocity distribution.

We have now

yk(t′) =

∫ t′

0

Gk(t′, s)qk(s)ds. (2.55)

In the Direct Interaction Approximation, this is only true for infinitesimal vari-
ations of yk(t). For the above model equations this holds for larger variations
since the model equation has become effectively linear in yk(t). Therefore, what
holds for small time variations should also be true for large time-differences.
Using this relation, we find that the equation for yky′k is the same as obtained
by using the DIA. This model equation therefore yields the same statistics as
DIA and does so for all moments. Since the moments are directly computed
from a velocity field, the even moments are necessarily positive.

With respect to the existence of a Langevin equation for the DIA system we
can read Moffatt’s comment in the proceedings of the 2011 turbulence conference
in Marseille (in a paragraph discussing the realizability of the DIA): ... and this
because it was an exact closure for a physically realisable dynamical system,
although unfortunately not the Navier-Stokes system ... Of course we can agree
that if the DIA applied to the Navier-Stokes equation could be proven to give
identical statistics as the Navier-Stokes equations, we would be very happy. But
this is the whole problem with turbulence theory: it has not proven possible to
derive solutions of the Navier-Stokes equations for a general turbulent flow.
Therefore this critique is not appropriate. Let us assume that it is possible to
derive a Langevin equation from the Navier-Stokes equations. The real question

5Note that this is a choice, and other formulations of q are possible as long as

qk(t)qk(t′) = 2
∑
p,q

AkpqAkpqypy′p yqy
′
q . (2.52)



46 The Direct Interaction Approximation

is then whether the dynamics of Kraichnan’s DIA model equation are the same
as those of this perfect Langevin model.

This generalized Langevin-equation discussed above is given at a fixed point,
not moving with the fluid particle as (2.48). In principle, the equation could
(and should) be defined in a Lagrangian frame, for the reasons discussed in 2.4.
For the Lagrangian DIA, no model equation is known. Realizability has thus
not been rigorously proven. For the Markovian variants of the theory a model
is known. We mention the Test Field Model (TFM) Langevin equation [51],

(∂t + νk)yk = −ηkyk + qk (2.56)

ηk = −4
∑
p,q

AkpqApqkΘpqkyqy′q (2.57)

qk =
∑
p,q

AkpqΘ
1/2
kpqω(t)ξpξ

′
q, (2.58)

with ω(t) a white noise process. We observed a problem with this model. It
correctly gives the energy transfer (triple correlations) as predicted by the TFM.
However, it does not for the mean-square nonlinearity. Computing the quantity

Wk =
∑
p,q

∑
m,n

AkmnAkpqypyqymyn

= (−ηkyk + qk)(−ηkyk + qk), (2.59)

we find that the mean-square nonlinearity becomes proportional to Θ. This can
not be correct in general. At short times, if the initial conditions are Gaussian,
the mean-square nonlinearity is not zero, but we expect this quantity to have
a value of the order of a Gaussian field (zeroth order contribution in equation
(2.24)). According to the predictions of the TFM or EDQNM Langevin model
we obtain a vanishing mean-square nonlinearity at short times, since Θ is zero at
short times, since it measures the effective decorrelation time of the dependent
Fourier modes. So the Markovian Langevin model seems to be correct only in
predictions of the energy transfer, but not necessarily for higher order quantities
in which non-zero Gaussian contributions are present.

2.7 A Lagrangian Markovianized Field Approx-
imation

In general, single-time two-point closures that are derived from the Direct Inter-
action Approximation by Markovianization yield agreement with Kolmogorov’s
scaling arguments, if the Lagrangian character of the time-history is properly
taken into account. Since the displacement vector of a fluid particle is the time
integral of the Lagrangian velocity, it contains information on the Lagrangian
correlation-time of a fluid particle. Kaneda’s Lagrangian Renormalized Approx-
imation [53] is based on this idea. In our contribution [1], we used the analogy
between the dynamics of a passive scalar fluctuation in the presence of a mean,
uniform scalar gradient, and the displacement of a fluid particle to attain the
same goal: determining the Lagrangian correlation time of a turbulent flow. Let
us now discuss this analogy, which was previously suggested by Batchelor [62].
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Figure 2.5: In the presence of a mean scalar gradient, the value of scalar fluctu-
ations c is proportional to the displacement distance of a fluid particle parallel
with the direction of the mean gradient dC/dy.

We start with a smooth scalar field with a mean scalar gradient of value Γ,
chosen in the y-direction in our example. We have therefore the mean value of
the scalar at point x, y given by

θ̄(x, y) = θ̄(x, 0) + yΓ, (2.60)

and we will choose θ̄(x, 0) = 0 for convenience. Figure 2.5 shows this situa-
tion. Initially we assume that all scalar fluctuations are equal to zero. Let us
now consider a fluid particle which is initially at point M0 = (x0, y0) in this
scalar field. Its total scalar value (mean plus fluctuation) is then θ = θ̄ = y0Γ,
since initially fluctuations are zero. This particle is transported by a velocity
fluctuation v′ of the fluid to point M = (x1, y1). If we neglect the influence of
diffusion, the total scalar value of this fluid particle has not changed and is still
θ = y0Γ. However, the mean scalar field is a function of y, and at y1 this value
is θ̄(y1) = y1Γ so that the value of the fluctuation is

θ′ ≡ θ − θ̄ = y0Γ− y1Γ = −∆yΓ. (2.61)

We see thus directly that the value of the fluctuation of the scalar field is minus
the displacement times the value of the mean gradient. Let us go one step
further to illustrate how one can determine the correlation time of a turbulent
flow using this analogy.

For times as long as the correlation time of the turbulence, we have ∆y ≈
v′T , which shows that

θ′ = −Γv′T . (2.62)

Multiplying both sides by v′ and averaging, we find

v′θ′ = −Γv′v′T , (2.63)

in which we considered T to be the average correlation time of the turbulence.
To simplify we choose, without loss of generality (since the scalar equation is



48 The Direct Interaction Approximation

linear) the value of Γ = −1, so that we find for the correlation time of the flow,

T =
v′θ′

v′v′
. (2.64)

This is the analogy that we mentioned and that we use to derive the markovian
closure model shown in the now following manuscript.
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A new single-time two-point closure is proposed, in which the equation for the two-point correlation
between the displacement of a fluid particle and the velocity allows one to estimate a Lagrangian
timescale. This timescale is used to specify the nonlinear damping of triple correlations in the
closure. A closed set of equations is obtained without ad hoc constants. Taking advantage of the
analogy between particle displacements and scalar fluctuations in isotropic turbulence subjected to
a mean scalar gradient, the model is numerically integrated. Results for the energy spectrum are in
agreement with classical scaling predictions. An estimate for the Kolmogorov constant is
obtained. © 2006 American Institute of Physics. �DOI: 10.1063/1.2185683�

Two-point single-time closures are efficient and useful
tools for studying homogeneous turbulence. Among existing
single-time theories, the eddy damped quasi-normal Markov-
ian theory �EDQNM�, originally proposed by Orszag1 �see
also Leith2� for isotropic turbulence, has been used to inves-
tigate a broad range of fundamental problems in turbulence.
Examples are: scalar decay in isotropic turbulence,3,4 rotating
turbulence,5 stratified turbulence,6 magnetohydrodynamics,7

relative dispersion,8 homogeneous shear,9,10 isotropic turbu-
lence with a mean scalar gradient,11,12 decay of turbulence in
a wall bounded domain,13 compressible turbulence,14 two-
dimensional turbulence,15 premixed flame propagation.16

Without being exhaustive, this list illustrates the variety of
problems that have been addressed using this single-time
closure. EDQNM was also used to propose subgrid models
for large-eddy simulation.17,18 One common feature of all
these works is that they rely on the original heuristic assump-
tion of EDQNM: the presence of an eddy damping term. The
eddy damping is an essential ingredient of the EDQNM clo-
sure, as it represents the nonlinear damping of the triple cor-
relations, necessary to obtain inertial range spectra in agree-
ment with classical Kolmogorov19 theory. It should be
pointed out that in the case of weakly nonlinear wave-
turbulence, only the presence of the damping is mandatory.5

A convenient specification of its form is of primary impor-
tance as soon as strong turbulence is considered. In the case
of EDQNM, the eddy damping is specified by dimensional
analysis and an ad hoc constant is introduced in the model.
For other closures such as the test field model proposed by
Kraichnan,20 in which an auxiliary velocity field that does
not respect the incompressibility constraint is introduced, the
damping is deduced from a more sophisticated analysis, but
an ad hoc constant still has to be introduced �of order unity
in the case of the test field model�.

More elaborate are the two-point two-time closures pro-
posed by Kraichnan �DIA, for direct interaction
approximation21�, obtained by perturbation techniques ap-
plied to the Navier-Stokes equations. The Eulerian formula-

tion of DIA, violating the principle of statistical Galilean
invariance and therefore being incompatible with a K−5/3

Kolmogorov inertial range, was reformulated in a Lagrang-
ian framework. The Lagrangian history DIA �LHDIA�,22 its
abridged versions,22,23 as well as the version of Kaneda,24 are
known to yield predictions in agreement with Kolmogorov
spectra without introducing any ad hoc constant. The price
one has to pay is the complexity of the models that depend
on the entire Lagrangian history of the flow, in contrast to the
single-time theories.

It is known that the EDQNM equations for isotropic tur-
bulence can be obtained from two-time theories by assuming
an exponential decay of both the response function and the
two-time correlations. The eddy damping then corresponds
to the inverse of the correlation time of the turbulent velocity
field. In the framework of a Lagrangian formulation of the
theories, this correlation time has to be defined along fluid
particle trajectories, and indeed, a definition corresponding to
LHDIA for isotropic turbulence can be found in Kraichnan:22

��K,t� = �
0

t E�K,t�s�
E�K,t�

ds �1�

with E�K , t� the energy spectrum and E�K , t �s� the Lagrang-
ian two-time energy spectrum �definitions are given below�.

In the EDQNM model, this time is modeled as a func-
tion of E�K , t� and K, yielding by dimensional analysis:

���K,t��−1 = ��K,t� = ��K3E�K,t� . �2�

Another variant, nonlocal in wave-number space, is the ex-
pression proposed in Pouquet et al.:15

���K,t��−1 = ��K,t� = ���
0

K

S2E�S,t�dS . �3�

At high Reynolds number, both formulations lead to

��K,t� � K−2/3 �4�

in the inertial range of the spectra, mimicking the scaling that
the Lagrangian correlation time scale is expected to follow in
agreement with Kolmogorov theory. The constant � �or �� isa�Author to whom correspondence should be addressed.
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specified to obtain the desired value of the Kolmogorov con-
stant.

The aim of the present letter is to derive a single-time
closure that does not contain ad hoc specification of the
damping term nor adjustable constant. The eddy damping
timescale will be determined within the closure, the key el-
ement of the model being the use of Eq. �1�.

The Lagrangian two-time spectral tensor is defined by

�ij�K,t�s� = FTx−x��	ui�x,t�uj
L�x�,t�s�
� �s � t� , �5�

in which FTx−x� denotes a Fourier transform with respect to
x−x�. uj

L�x� , t �s� is defined as the velocity measured at time
s within the fluid element that passes through the point x� at
time t. In isotropic turbulence, the two-time energy spectrum
E�K , t �s� is related to this tensor by the relation

Pij�K�
E�K,t�s�

4�K2 = �ij�K,t�s� �6�

with Pij�K�= ��ij −KiKj /K2�. E�K , t �s� is a key quantity as it
appears in Eq. �1� giving the timescale that has to be speci-
fied in the closure. It is a two-time Lagrangian quantity and
is therefore difficult to evaluate in the framework of a one-
time closure. However, only the time integral of E�K , t �s� is
required to express ��K , t�. This integral satisfies

Pij�K�
4�K2 �

0

t

E�K,t�s�ds

= FTx−x���ui�x,t��
0

t

uj
L�x�,t�s�ds
� . �7�

The integral of the Lagrangian velocity along the trajectory
in �7� is the displacement of a fluid particle. Calling aj this
displacement,

aj�x,t� = Xj�x,t�t� − Xj�x,t�t = 0� = �
0

t

uj
L�x,t�s�ds �8�

and

Xj�x,t�t� = xj , �9�

�7� can be written as

Pij�K�
4�K2 �

0

t

E�K,t�s�ds = Fuiaj
�K,t� , �10�

with

Fuiaj
�K,t� = FTx−x��	ui�x,t�aj�x�,t�
� . �11�

In isotropic incompressible turbulence, this quantity can be
expressed as �Lumley25�

Fuiaj
�K,t� =

Pij�K�
4�K2 Fua�K,t� , �12�

and therefore expression �1� can be recasted as a function of
one-time Eulerian quantities only:

��K,t� =
Fua�K,t�
E�K,t�

. �13�

This expression forms the basis of the single-time two-point
closure proposed in this paper. In the following, a way to
obtain an expression for Fua�K , t� will be proposed that to-
gether with the equation for E�K , t� and relation �13� leads to
a closed set of equations.

From the Navier-Stokes equations and the equation for
the displacement of a fluid particle,

daj�x,t�
dt

= uj�x,t� , �14�

a one-time two-point closure for E�K , t� and Fua�K , t� in iso-
tropic turbulence �and alternatively for �ij�K , t� and
Fuiaj

�K , t� for anisotropic turbulence� can straightforwardly
be written, by applying the quasi-normal approximation and
Markovian assumption and expressing the relaxation time of
the triple correlations using �13�. In the present letter, instead
of deriving the evolution equation for Fua�K , t�, we adopt a
simpler approach, taking advantage of the analogy existing
between the fluid particle displacement and an advected non-
diffusive scalar field. This analogy will permit us to express
the closure model using only existing published equations.
As pointed out by Batchelor,26 a nondiffusive passive scalar
in isotropic turbulence with a mean scalar gradient obeys the
same equation as the displacement of a fluid particle. Con-
sidering an isotropic turbulence initially free from passive
scalar fluctuations on which, at t=0, a mean scalar gradient

is imposed in an arbitrary direction, �	̄ /�xj, the interaction
of the velocity field with the scalar gradient produces a scalar
fluctuation 
 governed by

d
�x,t�
dt

= −
�	̄

�xj
uj�x,t� . �15�

Integrating �15� over the Lagrangian trajectory of the fluid
particle that arrives at time t at position x yields


�x,t� = −
�	̄

�xj
�Xj�x,t�t� − Xj�x,t�t = 0�� = −

�	̄

�xj
aj�x,t�

�16�

and the correlation between 
�x� , t� and ui�x , t� can be ex-
pressed as

	ui�x,t�
�x�,t�
 = −
�	̄

�xj
	ui�x,t�aj�x�,t�
 . �17�

For isotropic turbulence without loss of generality, the direc-
tion of the gradient can arbitrarily be specified; for example,
x3. Equation �17� then leads to

Fu3
�K,t� = −
�	̄

�x3
Fu3a3

�K,t� �18�

with Fu3
�K , t� defined as the scalar flux spectrum �see, for
example, O’Gorman and Pullin27�, or introducing Fua�K , t�
as in Eq. �13�:
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Fu3
�K,t� = −
2

3

�	̄

�x3
Fua�K,t� , �19�

since isotropy implies that Fu1a1
=Fu2a2

=Fu3a3
= 2

3Fua.
One can also arbitrarily specify the value of the gradient,

since the scalar equation is linear. Choosing �	̄ /�x3=−3/2
simplifies the formulation. With this particular value of the
gradient, Eq. �19� simply expresses the identity between the
spectrum of the scalar flux of the nondiffusive scalar and the
spectrum of the velocity-displacement correlation. Hence, it
is straightforward to use the EDQNM model proposed by
Herr et al.11 or Bos et al.12 for the scalar flux spectrum to
calculate Fu3
�K , t�=Fua�K , t� �in this work we use the for-
mulation of Bos et al.�. The equations for E�K , t� and
Fua�K , t� will be solved simultaneously to calculate the en-
ergy spectrum in isotropic turbulence and to evaluate the
damping term using �18� that now takes the form

��K,t� = ���K,t��−1 =
E�K,t�

Fu3
�K,t�
. �20�

The evolution equation for the energy spectrum is

� �

�t
+ 2�K2�E�K,t� = TNL�K,t� , �21�

in which the expression for the nonlinear transfer TNL is the
classical single-time two-point closure expression �Orszag1�:

TNL�K,t� =� �
�

	�K,P,Q��xy + z3��K2PE�P,t�E�Q,t�

− P3E�Q,t�E�K,t��
dPdQ

PQ
, �22�

where � is a band in P ,Q space so that the three wave
vectors K, P, Q form a triangle. x ,y ,z are the respective
cosines of the angles opposite to the sides K , P ,Q of the
triangle formed from K ,P ,Q. The characteristic time
	�K , P ,Q� is defined as

	�K,P,Q� =
1 − exp�− 
KPQ � t�


KPQ
�23�

with


KPQ = ��K2 + P2 + Q2� + ��K,t� + ��P,t� + ��Q,t� .

�24�

The difference with the EDQNM model1 is that the eddy
damping in the equations is no longer heuristically specified,
but is calculated using relation �20�.

The equation for Fu3
�K , t� is

� �

�t
+ �K2�Fu3
�K,t� = P�K,t� + Tu3


NL �K,t� + ��K,t� ,

�25�

which is the equation of Ref. 12 in the particular case of a
nondiffusive scalar. In �25�, P�K , t� is a term that in this case
can be interpreted as the production of scalar flux by the

mean scalar gradient, such that P�K , t�=− 2
3 ��	̄ /�x3�E�K , t�

=E�K , t�. The expressions for the nonlinear terms Tu3

NL �K , t�

and ��K , t� are not reproduced here �Eqs. �14� and �15� of
Ref. 12�. These closed terms are exactly the same as in the
case of the EDQNM model, except that the eddy damping is
determined by Eq. �20�. More specifically, in relation �16� of
Ref. 12,


KPQ
F = 
��K� + 
��P� + 
��Q� + ��K2 + P2� , �26�


� is replaced by �, and 
� is still zero, as in Bos.12

The model is applied to the decay of isotropic turbulence
by numerically integrating Eqs. �21� and �25�. The energy
spectrum is initialized by

E�K,0� = BK4e−2K2/KL
2
, �27�

with K0=1, KL=10, and B determined so that the initial ki-
netic energy is equal to 1. The energy spectrum was evalu-
ated during the period of self-similar decay. Spectra are
shown at R�=150, 500, and 1500. The results in Fig. 1 show
that a K−5/3 inertial range is obtained for the energy spec-
trum. The value of the Kolmogorov constant is estimated to
be 1.73, as can be seen when the spectrum is shown in com-
pensated form. It has to be reminded that in the case of the
EDQNM closure this value is not a prediction of the model,
but has to be specified by choosing the constant �. The value
of CK=1.73 can be obtained with EDQNM by choosing the
value �=0.49 in expression �3�. A detailed comparison be-
tween the EDQNM model and the present closure deserves
further attention.

The results in Fig. 1 suggest that the present model
yields a reasonable estimate of the Lagrangian timescale in

FIG. 1. Top: energy spectrum at R�=150, 500, and 1500; bottom: compen-
sated form.
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isotropic turbulence. It would be useful to compare the
present results to estimations of the timescale provided by
direct numerical simulation using the method proposed in
Lee et al.28 �see also Gotoh et al.29� or to higher Reynolds
number data provided by large-eddy simulation.30
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2.8 Perspectives

An a posteriori consistency check of the weak dependence
hypothesis

As discussed in section 2.2, the direct interaction approximation is based on the
assumption that the influence of an individual triad interaction on a turbulent
flow is small compared to the sum of all other interactions. The velocity is

thus decomposed into a part in which y
(0)
k is independent of modes yp, yq plus

the direct interaction part y
(1)
k , which is the part of the velocity which directly

interacts with modes yp, yq.
This assumption, called weak dependence, seems plausible in the limit of a

true homogeneous flow, i.e. , a domain with an infinite size. In this case the
mode density tends to infinity and the influence of one triad interaction, most
probably, tends to zero. Tests of this assumption were carried out by Goto and
Kida [45, 46] for well chosen model systems. Their tests focused on the response
function and transfer function obtained by applying DIA (or what they called
SDIP) to a system for which the exact solution was known.

An alternative approach would be to compute directly the smallness of the
single triad velocity compared to the full velocity. This would consist in checking

that |y(0)
k | � |y

(1)
k |, or alternatively,

yky′k
(1)

yky′k
(0)
� 1, (2.65)

with

yky′k
(1)

=

∫ t

0

ds

∫ t

0

ds′G(t, s)G(t, s′)AijkAijky
′
jy
′
ky
′
jy
′
k. (2.66)

In a discrete Fourier series, the mode density of a Fourier-series is a function of
kL, with k the wavenumber and L the box-size. At a fixed k, the mode-density
will therefore increase when the box-size is increased. In the dissipation range,
the number of active modes decreases rapidly and at very large k the number
of excited modes becomes negligible. At fixed L, the mode density will thus
decrease as a function of k. The two limits, k → ∞ and L → ∞ are perhaps
not exchangeable, so that the weak-dependence assumption might be not valid
in the dissipation range. In closure this could be checked a posteriori. If the
closure gives results invalidating the weak-dependence hypothesis, it gives a hint
about the limits of closure theories of the DIA family.

One example where weak dependence seems to break down was discussed
in section 2.2. This is the condensation of energy in the largest wavelength in
two-dimensional turbulence. Another case where DIA seems to fail is in the
prediction of the dissipation rate fluctuations. This small scale intermittency
[65] can be explained since in the far dissipation range, i.e. at very small scales,
the flow becomes relatively smooth and only very sparse energetic fluctuations
determine the energy spectrum. The sparseness of the energy fluctuations can be
characterized using the flatness of the velocity fluctuations at a certain scale. We
investigated the scale-dependent flatness using wavelet-based tools (see Figure
2.6) in both isotropic and anisotropic turbulence. It was observed that this
sparseness becomes even stronger in anisotropic turbulence. It is possible that
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Figure 2.6: Left: The energy spectrum measures the (variance of the) fluc-
tuations of the kinetic energy as a function of scale. The blue stars indicate
the standard deviation of the fluctuations of the energy spectrum. These are
thus the fluctuations of the variance, related to fourth order velocity statistics.
Right: The scale-dependent flatness measures the fluctuations of the fluctua-
tions of kinetic energy at a given scale. The increase of the flatness at the small
scales indicates the strong (relative) fluctuations of the energy spectrum in the
dissipation range. The analysis was performed on a database of isotropic and
anisotropic turbulent flows [63]. Here we show the results for the isotropic flow.
More details are given in reference [64].

this sparseness of energetic regions in the very small scales of turbulence might
well violate the weak dependence assumption.

Change of representatives

The Abridged Lagrangian History DIA predicts a Kolmogorov constant of the
order 1.7. This is the correct order of magnitude but perhaps slightly above
the value obtained in experiment and DNS. The value of the Corrsin-Obukhov
constant, which is the equivalent of the Kolmogorov constant for the convective-
inertial range in three-dimensional passive scalar turbulence, is underestimated
by a factor of order two. This underestimation can be traced back to an over-
estimation of the coherence of the scalar along particle trajectories. A change
of representatives might lead to a better prediction of this quantity. In the
original case, DIA is applied to the velocity fluctuations, but why not consider
other quantities such as the strain or vorticity. Kraichnan and Herring (see
also Gotoh and Kaneda) [66, 67, 68] derived the equations for the abridged
Lagrangian-history DIA, applied to the strain rate. This improved the predic-
tions for both the Kolmogorov and Corrsin-Obukhov constant. As suggested in
section 1.3, it is more natural to consider the scalar gradient. Otherwise the
Lagrangian Péclet number will be of order zero. The extension of the LMFA
closure (section 2.7) to describe the advection of a scalar gradient seems an
interesting perspective.
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Theory beyond DIA

In Kraichnan’s 1989 paper on non-Gaussian statistics [69], in which DIA was
applied to higher order statistics, it became clear that DIA did not correctly pre-
dict dissipation rate fluctuations and pressure fluctuations. This inspired him to
propose other theoretical approaches to model the fine statistics of turbulence.
One of these is the mapping closure [70, 71] another one the constrained deci-
mation scheme [72]. The first one was not completely successful in describing
turbulence, but was useful to study mixing. The constrained decimation scheme
might be a good approach, but it has not been studied significantly [73]. We
will not discuss these approaches here any further but these might be interesting
directions for further research.
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Chapter 3

Studies on the dynamics of
isotropic turbulence

3.1 Gaussianity, statistical mechanics and relax-
ation to thermal equilibrium

A Gaussian field does not contain structures. It represents a state of pure
randomness in which all the modes which constitute the field are statistically
independent. If one therefore wants to measure the coherence of a field, which
is one of the aims of the present chapter, a logical thing is to compare with a
Gaussian field. We will first digress a little from the actual problem of turbulence
and discuss some features of a Gaussian field. Subsequently we will describe how
turbulence develops from a Gaussian initial state.

We consider the Fourier transform of a three-dimensional field, which in the
following will represent the velocity field or the scalar fluctuation field. Let us
in this section concentrate on the velocity field. Instead of the coordinate x, we
now have the wavevector k that indicates the position of a vector or scalar. The
Fourier-transformed quantities are complex. Each component of the vector is
therefore determined by its norm and its phase (or equivalently by its real and
imaginary parts). The important property of a Gaussian field is that this phase
is a random variable. This translates the fact that there are no structures. A well
localized object in physical space can in the Fourier decomposition be written
as the sum of an infinite number of sine functions. To reconstruct the object in
physical space it is important to have the correct phases, otherwise the sum of
the sine-functions will not describe the object. Therefore, by randomizing the
phases all knowledge about the shape and location of the object is lost.

It is possible to construct random Gaussian fields with different variance
distributions with respect to the lengthscale. In the case of white noise the
variance of the velocity fluctuations of a particular mode is independent of its
wavelength. But since in three dimensions the number of modes with a given
length is proportional to k2 (see equation (1.8)), the cumulative energy of all
modes with the same length will lead to an energy spectrum proportional to
k2. In Figure 3.1 we sketch the energy distribution of a three-dimensional field
consisting of Gaussian white noise, compared to a typical energy distribution of a
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Figure 3.1: White noise is characterized by a statistical equipartition of energy
over all modes. For a three-dimensional vector-field, this yields an energy-
spectrum proportional to the wavenumber squared, since the energy-spectrum
is defined as the integral over a spherical surface of radius k of the three-
dimensional energy distribution in Fourier-space. A typical developed turbu-
lent flow has a different distribution, with a peak around the integral scale-
wavenumber and a rapid fall-off at large wavenumbers.

turbulent flow. Modes in thermal equilibrium will have such a white noise energy
distribution. One can argue that this type of distribution is irrelevant for the
description of turbulence, in which the energy is generally dominant in the large
scales so that the distribution is far from thermal equilibrium. It can however be
shown that the Euler equations will relax to a state displaying such a behavior if
a Galerkin trunctation is applied to the system [74], and the nonlinearity of the
Euler equations is identical to the nonlinearity of the Navier-Stokes equations.1

Scrutinizing the behavior of the Euler equations might therefore, perhaps, help
to understand the nonlinear behavior of the Navier-Stokes equations.

In order to study the non-Gaussianity induced by the nonlinear term in
the Navier-Stokes or Euler equations, one can perform the following (numeri-
cal) experiment: we start with an initial Gaussian energy distribution confined
to the large scales, i.e., the small wavenumbers, of a Galerkin truncated set
of modes. This system is not in thermal equilibrium since the energy is not
equally distributed over the different wavemodes. However, a Gaussian vector
field will, on average, not transfer energy to modes of another wavenumber shell.
This can easily be seen by the fact that the mean transfer between modes is
directly related to the skewness of the distribution, or rather the skewness of its
gradients, and this skewness is on average zero in a Gaussian field. Some non-
Gaussianity needs to be developed from the initial Gaussian state to relax to
equilibrium, since the initial conditions are not in statistical equilibrium. This

1Formally, a Galerkin truncation is the application of a linear, low-pass filtering operator
on the velocity field and its evolution equation, which sets all Fourier harmonics with k > kf to
zero. A Galerkin truncation thus simply means that we consider a fixed range of wavemodes,
limited by a cut-off wavenumber kf and modes with k ≤ kf do not interact with modes
k > kf (and a similar cut-off is considered at the infrared end of the spectrum). All pseudo-
spectral direct numerical simulations use a Galerkin truncation since the available computer
power is not infinite. A turbulent flow is then discretized on a finite number of modes and the
parameters are chosen such that the energy at the largest available wavenumbers is sufficiently
small such that the truncation does not influence the scales of interest.
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Figure 3.2: The development of the nonlinear cascade of energy governed by
the Euler or Navier-Stokes equations displays a scaling which is not the same
as proposed by Kolmogorov for constant flux cascades. The steeper slope, with
a power-law exponent of order 1.89, has not yet been described by a simple
dimensional analysis [3].

non-Gaussianity needs to be due to the quadratic term in the Euler-equations,
since the pressure term only ensures incompressibility and will be zero if the
nonlinear term is zero (at least in isotropic flow in a periodic domain this is the
case). The way in which this system will relax to this equilibrium-state is per-
haps one of the cleanest situations to study the non-Gaussianity of turbulence,
since no non-Gaussian forcing or initial condition is imposed, so that all non-
Gaussian features stem directly from the nonlinear dynamics of the Euler equa-
tions. The end-state, which is the thermal equilibrium state, is Gaussian again.
The ensemble of Fourier-modes will thus only transiently be non-Gaussian. This
non-Gaussian transient, in which energy is transferred from an initial Gaussian
state with non-equipartitioned energy to a thermal equilibrium follows a two-
stage procedure, which will now be described.

Self-similarity of the second kind. In the initial stage the scales will pass
their energy to smaller and smaller scales in a completely inertial way, mean-
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ing that no viscous damping is experienced by the modes. This stage should
be identical for both Navier-Stokes dynamics at very high Reynolds number
and Euler-dynamics, since the viscous term is neglibible if the initially excited
modes are confined to a sufficiently small wavenumber range2. It was recently
shown for MHD turbulence in the weak wave turbulence limit [76] that in this
stage the energy distribution displays a power-law behaviour with an exponent
which is not simply deducable from dimensional analysis. We showed that the
same behavior was observed in closures for the Navier-Stokes equations with a
powerlaw scaling of the energy spectrum with an exponent between −5/3 and
−2. In Figure 3.2 (from [3]) we illustrate this behavior in an EDQNM computa-
tion. We note here that in this particular simulation not the Euler equations are
considered but the Navier-Stokes equations at very high Reynolds number. As
stated before, it is expected that during the initial stage this difference will not
be important for the dynamics. Currently, no dimensional analysis is known to
predict or explain the value of the power-law exponent, like the one proposed by
Kolmogorov for the inertial range energy spectrum of a high-Reynolds number
turbulent flow. Its value is numerically close to the fraction −17/9 ≈ −1.89,
but it is for the moment not even clear if a dimensional analysis predicting this
exponent and corresponding to the physical mechanism should exist. It could
be a typical example of self-similarity of the second kind [77].

If the system were not truncated, the cascade would continue indefinitely
to small scales. The typical timescale of the smaller scales that are created is
increasingly small so that, if the cascade would proceed in a self-similar way, an
infinite wavenumber would be reached in a finite time. This singular behavior,
the finite time singularity, is related to the blow-up of the Euler equations, and
is still an issue of debate, and the question whether this blow-up exists in high-
Reynolds number turbulence is far from settled. Numerical simulations have to
deal with enormous amounts of computational power, combined with efficient
mesh-refinement schemes in the hope to capture fine enough scales in which the
singular behavior will take place or, on the contrary, where the cascade will be
arrested. A mechanism which arrests the cascade, should necessarily suppress
the nonlinearity of the Euler equations (at least locally in physical space). Only
if the nonlinearity is suppressed sufficiently the Euler equations can be saved
from blow-up. The suppression of nonlinearity will be the subject of section
3.4. In the present section we consider a Galerkin truncated system so that the
smallest scale is limited by the largest wavenumber of the Fourier domain and
the question of blow-up is not directly relevant.

Truncated Euler and effective viscosity. In the second stage of the evolu-
tion, the smallest scales of the system have received energy and the energy piles
up at these modes, filling up a reservoir of thermalized modes, displaying a k2

spectrum. At this point the modes transferring energy will experience a damp-
ing. Indeed, the thermalized modes will act, through non-local interaction, as
an effective viscosity on the active modes and the latter will behave as in a con-
stant flux energy cascade, obeying approximately the Kolmogorov 1941 inertial
range phenomenology. This transient behavior is illustrated in Figure 3.3. We

2An interesting study on this subject is reported in reference [75], where is evaluated, for
2D magnetohydrodynamic turbulence, until what time the evolution of the viscous and the
ideal equations yield the same results.
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Figure 3.3: When the truncated Euler equations are solved starting from an
initial condition in which the energy is confined to the large scales, the dynamics
will tend to relax the system to a state in thermal equilibrium. In this final state
the energy spectrum is proportional to k2. During the transient a Kolmogorov
inertial range can coexist with modes in thermal equilibrium at the smallest
wave-lengths. These thermalized modes act as an effective viscosity on the
modes out of equilibrium [2].

note that this behavior was predicted by Kraichnan in 1975 [78]. A numerical
study was carried out and reported in reference [79]. In a first version of this
manuscript, the authors proposed two different estimates for the local minimum
of the energy-spectrum between the inertial range and the thermalized range.
In reference [2] we showed which estimate adequately describes this minimum.

Bottlenecks, hyperviscosity and hypofriction. The final state of the
truncated system will consist of statistically stationary Fourier modes, display-
ing an energy spectrum proportional to k2. The transient nonlinear and non-
Gaussian phase shares the essential feature of nonlinear mode-coupling with real
Navier-Stokes turbulence. Another, indirect, link between the thermalization
observed in the truncated Euler equations and Navier-Stokes turbulence was
proposed by Uriel Frisch and coworkers [80]. They started from the observation
that if the Laplacian in the viscous term of the Navier-Stokes equations was
replaced by a power of the Laplacian (as is usual in hyper-viscous approaches3),
the dynamics of the system will tend asymptotically to the truncated dynam-
ics if the power of the Laplacian tends to infinity. For a power unity, i.e. the
normal viscous operator, the dynamics will already very slightly mimic the ther-
malization at large scales, and a small pile up of energy will be observed in the
dissipation range. This interpretation of the so-called bottleneck effect as an
incomplete thermalization links the dynamics of the Navier-Stokes equations to
the truncated Euler equation. We showed that the same game can be played in

3Hyperviscosity [81] is generally used to concentrate the influence of the viscous dissipation
to a small range of wavenumbers, in order to enlarge the inertial range, which is defined as
the range in which viscosity and forcing are negligible.
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two-dimensional turbulence, in which a pile-up of energy at large scales can be
expected if one uses a hypo-friction [4]. This friction consists of adding a term
to the RHS of the Navier-Stokes equations,

(
∂t + νk2

)
ui(k) = − i

2
Pijm(k)

∫∫
uj(p)um(q)δ(k − p− q)dpdq − k−2αui(k).

(3.1)
The parameter α determines the locality of this friction in wavenumber space.
The value α = 0 corresponds to linear Ekman friction. High values lead to
bottlenecks at the large scales of the flow due to a mechanism similar to the one
discovered by Frisch and coworkers. Results are illustrated in Figure 3.4).

3.2 Third-order moments and inertial range en-
ergy flux

We still did not answer the question how non-Gaussian the transient from
Gaussian initial conditions to a final, thermalized state is. To characterize
non-Gaussianity, one can compare statistics of a flow to those obtained from a
Gaussian field. We will consider two quantities, the skewness, which is related to
triple velocity correlations and the mean-square nonlinearity, a quantity which
contains quadruple velocity correlations. In a Gaussian field all odd moments of
the field-variable are zero. Hereby it can be shown that no net energy transfer
can take place, since this is related to the third-order moment of the velocity
field. Therefore the energy transfer in a turbulent flow is a direct measure of
the non-Gaussianity. In the present section we will discuss the energy transfer
in more detail, in particular focusing on its scale dependence in physical space,
its symmetry and on the difference between the energy flux and the viscous
dissipation rate.

Reversibility of the nonlinear interaction. The nonlinear terms of the
Euler equations and the Navier-Stokes equations are identical. If the Reynolds
number of a flow is very large, the large scales are negligibly influenced by the
viscosity and should thus obey the same symmetries as the Euler equations.
The Euler equations are invariant under the simultaneous change t → −t and
u → −u. This implies that if in an Euler flow we change the sign of the
velocity at every point of space, the flow will evolve backwards to its initial
condition. This symmetry is not retained by the Navier-Stokes equations in
the dissipation range since the viscous term does not share the same symmetry.
But for scales approximately free from dissipative effects this should hold and
this property is discussed in Figure 3.5. In the development of Large Eddy
Simulation techniques, this property is often used to defend or attack subgrid-
models. In our recent investigation [5] we argue that the use of this criterion
in the judgment of subgrid-models is incompatible with the fundamental idea
behind Large Eddy Simulation. Indeed, if we want to model the small scales,
assumptions are needed, and these assumptions determine the reversibility (or
irreversibility) of the subgrid dynamics.
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Figure 3.4: The existence of a large-scale bottleneck in 2D turbulence is di-
rectly related to the process of energy condensation, the pile up of energy at
wavenumbers corresponding to the domain size. In two-dimensional turbulence
a friction is often used to either model a physical process, or to simply avoid the
pile up of energy at the large scales. The parameter α corresponds to the order
of the friction term in equation (3.1). The careless use of hypo-friction (α > 0)
might reduce the inertial range of the energy spectrum through the appearance
of bottlenecks due to the friction term [4].
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Figure 3.5: The Euler-equations are time-reversible. The Navier-stokes equa-
tions are not. At high Reynolds numbers the influence of the viscosity is small
on the large-scales. The dynamics of these scales should thus be approximately
time-reversible. On the left we show an arbitrary division of the flow-scales
into large and small scales. On the right we show the evolution of the energy
contained in the large scales. At t = 0 the velocity is reversed, u→ −u, and it
is observed that for this case (called RR; NN is the unmodified flow) at short
times the energy flows back to the large-scales as would be expected in the case
of Euler-dynamics. At longer times the energy flow reverses a second time and
is directed towards the small scales. The details of this study can be found in
reference [5].

Third order structure functions. The nonlinear transfer can be related to
the third-order structure function in physical space4. Both wavenumber spectra
and structure functions measure scale distributions of moments of the velocity
field. An exact correspondence between the two types of quantities exists. Well
known examples of the relations between second- and third-order structure func-
tions on the one hand and energy and transfer spectra on the other can be found
in reference [7]. Even though the relations exist, the transformations are not
always bijective. For example, if an energy distribution in wavenumber-space
is steeper than k−3, the corresponding second order structure function will be-
come insensitive to the exponent and will show a scale-distribution following a
power-law proportional to r2, corresponding to a perfectly smooth velocity dis-
tribution. With respect to this aspect, wavenumber spectra (or wavelets with a
sufficiently number of vanishing moments) are more sensitive tools, since they
can probe the wavenumber distribution of these steep energy distributions.

When it comes to higher order statistics, δun for n > 2, most investiga-

4The longitudinal structure function of order n, is defined by

δun = [(u(x)− u(x + r)) · (r/r)]n. (3.2)

The relation to the energy transfer is

DLLL(r) = r

∫ ∞
0

T (k)g(kr)dk, (3.3)

with

g(x) = 12
3 (sinx− x cosx)− x2 sinx

x5
. (3.4)

The complete derivation of this expression is given in reference [7].
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Figure 3.6: The normalized dissipation rate is defined as Cε = εL/U3 in which ε
is the viscous dissipation rate and L and U correspond to the integral length and
velocity scales, respectively. U3/L corresponds roughly to the rate at which the
large scales loose their energy through nonlinear interaction. This energy will
cascade to the small scales and will there be dissipated. In a steady state the
energy flux and dissipation are statistically identical at high enough Reynolds
number (at low Reynolds numbers the energy-flux is smaller since the large
scales are directly dissipated by viscous dissipation). In unsteady turbulence,
the cascade-time, or time it takes for the energy to reach the smallest scales,
introduces an imbalance which is characterized by a variation of Cε. In the
figure this is illustrated by comparing stationary, forced turbulence (indicated
by F) with a canonical case of unsteady turbulence: freely decaying turbulence
(indicated by D). The curves correspond to a simplified model prediction of the
Reynolds number behaviour based on this idea of a cascade time. From [6].
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tions have focused on structure functions rather than wavenumber spectra, in
particular to measure the deviations from Kolmogorov’s 1941 proposition for
inertial range scaling. This issue, addressing so-called anomalous scaling, has
received a disproportionate amount of attention5. The original work suggest-
ing a possible correction to Kolmogorov’s prediction for the energy spectrum
(or structure function), was due to Kolmogorov himself [82] and presented at
a famous conference in Marseille 50 years ago. Kolmogorov’s self-criticism was
motivated by the observation that scale-dependent fluctuations of the energy
dissipation rate introduce an additional possible parameter in the dynamics of
the inertial range, so that the scale dependence of the energy spectrum cannot
be determined by dimensional analysis only, as was the case for the 1941 theory.
These scale dependent fluctuations of the dissipation rate were indeed observed.
As correctly pointed out by Kraichnan [83], however, the relevant quantity de-
termining the inertial range is not the energy dissipation, but the energy flux
through scales. Even though these quantities have the same mean value in a
statistically stationary state, they are not necessarily the same, since they re-
flect different physical mechanisms. The energy flux represents the nonlinear
interaction between modes, whereas the energy dissipation corresponds to the
diffusion of momentum fluctuations through the action of viscous stresses. Note
that for the same reason the normalized dissipation rate epsilonL/U3, a quan-
tity which in numerous engineering turbulence models is taken to be constant,
is a function of the type of flow considered (see the discussion in the caption of
Figure 3.6).

From first principles, i.e., starting from the Navier-Stokes equations, it has
not been possible yet to prove or disprove the existence of anomalous scaling. In
favour of the partisans of anomalous scaling we can mention that it is possible
to show deviations from normal, dimensional scaling, for structure functions of
a passive scalar advected by a model velocity field [36]. Similarly, anomalous
scaling can be shown to exist for the Burgers’ equation. Both examples differ
from the Navier-Stokes equation by the absence of a pressure term. Experiments
seem to indicate anomalous scaling [84]. However, it is not evident to disentangle
anomalous effects from effects which reduce the extent of the inertial range, such
as the finiteness of the Reynolds number and the energy input in the large scales
by some forcing mechanism. This issue is addressed in [7], in which it is shown
that for Reynolds numbers currently available in simulations and experiments
the deviations from Kolmogorov scaling as described by formalisms describing
anomalous scaling are of the same order of magnitude as finite Reynolds number
effects for second order structure functions (Figure 3.7).

3.3 Periodically forced turbulence

In many engineering applications, controlling the turbulent motions of a fluid
flow is a major issue. Control can be either passive or active. In both cases a
turbulent flow is perturbed in such a way that the turbulence is either damped

5Perhaps this tremendous amount of attention for anomalous scaling was due to the fact
that in between 1941 and 1961 the k−5/3 scaling of the energy spectrum was one of the only
robust universal features of high Reynolds number turbulence. Its questioning (however small
the correction is) removed one of the only solid corner-stones from the description of turbulent
flows.
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Figure 3.7: In the framework of Kolmogorov’s 1941 theory, the skewness of
the velocity increments should display a scale-independent plateau at very high
Reynolds numbers. In his 1962 theory this was not any longer the case and a
power-law was predicted with a small power-law coefficient. Formalisms such
as multifractality were applied to hydrodynamic turbulence to describe these
effects, which are absent in two-point closure theories. However, at least at the
level of the velocity increment skewness, this power-law coefficient is of the same
order of magnitude as finite Reynolds number corrections for Reynolds numbers
up to roughly 104. This is a very high value which has not yet been obtained
in controlled experiments. In the figure results of an EDQNM simulation, the
multifractal formalism and a wind-tunnel experience for the velocity increment
skewness are compared at a Taylor-scale Reynolds number of 2500. From [7].
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Figure 3.8: In reference [8] we characterized the filter properties of the turbulent
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frequency dependence proportional to ω−3, with ω the frequency. The periodic
part of the dissipation ε1 is denoted by ε̃ in the text.

or enhanced. At which lengthscale and with which frequency can we control
the turbulent flow in the most efficient way? We carried out an analytical
study, completed by two-point closure simulations to determine the response of
a turbulent flow to a periodic forcing.

Isotropic turbulence is considered, forced by a forcing P in a narrow band
of wavenumbers. The kinetic energy budget can be written as

κ̇ = P − ε. (3.5)

The forcing consists of a steady part plus a small periodic sinusoidal contribu-
tion. The smallness of the periodic part allowed to consider the response of the
flow on the perturbation in a linear manner, which implies that both the kinetic
energy κ and dissipation ε can be decomposed in a steady part plus a sinusoidal
contribution,

P (t) = P̄ + P̃ cos(ωt) (3.6)

κ(t) = κ̄+ κ̃ cos(ωt+ φκ) (3.7)

ε(t) = ε̄+ ε̃ cos(ωt+ φε). (3.8)

The whole problem is now to determine the amplitudes κ̃, ε̃, the phase-shifts
φκ and φε as a function of the forcing frequency. It is straightforward to show
that the steady part of the flow obeys P̄ = ε̄, which gives for the fluctuations,

−ωκ̃ sin(ωt+ φκ) = P̃ cos(ωt) + ε̃ cos(ωt+ φε). (3.9)

From this relation the limits ω → 0 and ω →∞ can be determined. In the very
slow, quasi-static limit, the left hand side of the last expression vanishes and
P̃ ≈ ε̃. For very high frequencies the turbulence has no time to respond and only
the forcing scale is perturbed. In this case, the perturbed dissipation is very
small, at high enough Reynolds number, and the perturbed kinetic energy will be
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Figure 3.9: A periodic forcing can only influence scales with an intrinsic fre-
quency that is larger than or of the same order as the forcing frequency. This
can be seen as the locality of interaction principle in the frequency domain. The
frequency of scales increases with wavenumber, so that at high forcing frequen-
cies only the smallest scales are modulated.

proportional to P̃ /ω. The frequency dependence of the dissipation and kinetic
energy in both these limits is trivial and the investigation of this dependence
will not contribute to a better understanding of the response of a turbulent flow
to external forcing. The true challenge in the current setting is to understand
how the nonlinear interaction between the different lengthscales is influenced by
the forcing. We therefore focused on the response of the modulated dissipation
ε̃(ω). This quantity will translate how the energy cascade transmits information
from the large to the small scales. It is tempting to describe the energy cascade
as a low pass-filter and we will try to characterize how the large frequencies are
filtered out. The frequency response is shown in figure 3.8.

The constant value for ω → 0 and the ω−1 behavior for ω →∞ correspond to
the trivial limits we just mentioned. The truly interesting part of the frequency
response is the decay between these two limits. For high Reynolds numbers this
fall-off of the frequency response is proportional to ω−3. This behavior will be
explained phenomenologically in the following.

If we accept that a scale cannot adapt to a perturbation if the perturbation
is at a higher temporal frequency than its intrinsic frequency (the inverse of the
eddy turnover time τ(k)) then we can identify a length-scale k−1

ω which separates
a region of scale-space with small scales that can adapt to the frequency and a
region with large scales, too slow to adapt to the frequency

τ(kω) ≈ ω−1. (3.10)

This situation is sketched in Figure 3.9.
Let us consider the case that we are interested in, where this frequency

corresponds to an eddy frequency somewhere in the inertial range and typically
the frequency is determined by the local energy flux and wavenumber. We find

τ(kω) ∼ ε̄−1/3k−2/3
ω ≈ ω−1. (3.11)

The question now is how energy can be transferred from the forcing scale towards
the region with k > kω which can respond fast enough to respond to the forcing.
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Kω
Kp

Figure 3.10: A typical non-local triad with the large forcing scale, corresponding
to wavevector Kf interacting with a smaller scale with wavevector Kω.

Since the scales kF < k < kω cannot transmit the information, a stepwise
cascade cannot succeed this task. The only mechanism is by a direct interaction
between the forcing scale and the scales k > kω. In other words, by means of
non-local interactions.

To what extent are these non-local interactions efficient enough to trans-
fer directly the energy? It was shown by Kraichnan [50] (see also [85]) that
the amount of energy transfer by nonlinear interactions, compared to the total
transfer, is a function of the disparity parameter, defined by the ratio of the
wavenumbers of the triad involved in the transfer:

s =
Longest Leg

Shortest Leg
(3.12)

which in our case corresponds to s ≈ kω/kp. Such a triad of wavenumbers is
sketched in Figure 3.10. The transfer is then given by

εf (K, s)

εTotalf (K)
∼ s−4/3. (3.13)

since the total flux of energy is approximately given by the relation

εTotalf ∼ k̃

T , (3.14)

with T the eddy turnover time of the forcing scales, and since k̃ ∼ P/ω, one
finds that

εf (K, s) ∼ ω−3. (3.15)

The filter characteristics of the energy cascade are thus determined by non-
local interactions between modes at the forcing scale and inertial range modes
with a typical frequency larger than ω. In a follow-up contribution we showed
how one can construct a multiple scale turbulence model which takes into ac-
count these non-local interactions. The manuscript reporting on this investiga-
tion is attached at the end of this chapter.

3.4 Depletion of nonlinearity in turbulent flows

Written in Fourier-Space the Navier-Stokes equations (1.4) consist of three con-
tributions: the time-derivative, the dissipation and the complete nonlinear term
(RHS of equation (1.4)). The time-derivative and dissipation are local quan-
tities in scale space whereas, as mentioned above, the nonlinear term couples
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Figure 3.11: Left: spectrum of the nonlinear term (as in figure 1.3) and the
same spectrum computed assuming the velocity-field to consist of independent
(Gaussian) Fourier modes. Right: the ratio of the two spectra.

all different lengthscales. This nonlinearity is responsible for the net energy
cascade between scales. An important feature of turbulence is that the differ-
ent (Fourier) modes are not independent. This dependence is hidden in the
phase correlations in a Fourier-transformed turbulent field. If these phases are
random, we have noise. It should however be noted that the nonlinear term
is not zero in noise. At every point in a Gaussian field one can evaluate the
nonlinearity

N = u · ∇u+∇p (3.16)

and its value is generally nonzero. On average its value is zero, but this is also
the case in turbulence. The norm of the nonlinear term can also be evaluated in
both noise and turbulence. What can we expect if we compare these quantities?

It is observed that turbulence displays the perhaps surprising property, that
it locally tends to a state in which the strength of the nonlinear term is re-
duced, compared to a random ensemble of independent Fourier modes with the
same kinetic energy. This depletion of nonlinearity seems to be a quite general
property of systems containing a quadratic nonlinearity as was suggested by
Kraichnan and Panda [86].

In order to better understand the multi-scale dynamics underlying this prop-
erty, it is interesting to consider the scale distribution of the strength of the
nonlinear term, which was already discussed in section 1.2,∫ ∞

0

w(k)dk = NiNi. (3.17)

The mean-square nonlinearity is not a conserved quantity (of the Euler equa-
tions) in contrast to the kinetic energy, and its inertial range behavior is there-
fore not determined by a flux argument such as the kinetic energy spectrum.
The spectral distribution of nonlinearity w(k), computed by closure6, is given

6In one of the original papers introducing DIA [34], it was already mentioned that the
theory was applicable to describe statistical moments of arbitrary order. It was however not
until thirty years later that it was shown by Kraichnan and coworkers [69] how this could be
done in practice. In that investigation it was outlined how arbitrary order cumulants (the
non-Gaussian contributions) can be computed by DIA. In particular, the spectrum of the
nonlinear term was shown to be predicted correctly.
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by (Figure 3.11),

w(k) ∼ uiuiε2/3k1/3. (3.18)

This is indeed observed both in a Gaussian field and in a turbulent field. How-
ever, deviations from the Gaussian distribution of nonlinearity are observed at
all scales. The strength of the nonlinearity seems to be reduced through the
dependence of the Fourier modes in both the inertial range and the dissipa-
tion range. Only in the forced scales the nonlinearity is super-Gaussian.7 It is
tempting to relate the observed results to structures. Since a field consisting of
independent Fourier modes is completely structureless, or incoherent, the cur-
rent results are not inconsistent with the presence of structures in the dissipation
range.

The manifestation of depletion of nonlinearity is quite dramatic in two-
dimensional turbulence. If we consider the rather academic case of freely evolv-
ing two-dimensional turbulence in a periodic domain, the end state, long before
all energy is dissipated, consists of a longliving counter-rotating vortex pair.
This final state, in which nonlinear interaction is almost completely absent can
be predicted by statistical mechanics, as was first suggested by Onsager [88]. A
first, successful approach, based on the dynamics of point-vortices, was carried
out by Joyce and Montgomery [89, 90]. They showed that an entropy could be
defined based on the vorticity. By optimizing this vorticity under constraints
they succeeded to describe the most probable final state. Numerical simulations
of the two-dimensional Navier-Stokes equations in a periodic domain showed
that the theory was very successful in describing the dynamics [91]. Robert and
Sommeria [92] and Miller [93] formalized this approach mathematically for a
continuous distribution of vorticity. In axisymmetric three-dimensional turbu-
lence progress has recently be made to apply statistical mechanics in a predictive
way [94, 95]. For non-axisymmetric three-dimensional turbulence no fully suc-
cessful attempts can be reported. However, the fact that an important depletion
of nonlinearity is observed in both two- and three-dimensional turbulence, gives
some hope that some features can be predicted in three dimensions by sim-
ilar approaches. This constitutes an exciting challenge in turbulence theory
research.

In a recent investigation, which is included at the end of this chapter, we
tested the concept of depletion of nonlinearity for the case of a passive scalar
advected by turbulence. The scalar equation is linear, but the advection term
plays for the scalar a similar role as the nonlinearity of the Navier-Stokes equa-
tions with respect of the coupling of different modes. Indeed all products of
fields correspond to convolution products in Fourier space, which couple all dif-
ferent length scales. It was found that also the dynamics of the scalar tend to
a state depleted of advection. In particular in the small scales of the scalar it
was observed that the strength of the advection term was reduced substantially
compared to its Gaussian estimate. In the case of the scalar this phenomenon
might be related to the appearance of fronts, since fronts are stabilized when
the scalar gradient is perpendicular to the velocity field, as is the case when
the advection term is reduced. This hypothesis should however be carefully
checked since fronts are insensitive to the sweeping of very large scales whereas
the depletion of advection is directly influenced by sweeping (as was discussed

7This effect of non-Gaussianity in the inertial range might be related to the parameter α
modeled in the tetrad model for the evolution of velocity gradient dynamics [87].
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in section 1.3).
In both the case of the turbulent velocity field and the mixing of a passive

scalar, the statistical imprint of coherence can thus be probed by computing the
depletion of nonlinearity. It is for the moment, however, far from clear what
the relation is between the generation of scalar fronts and coherent structures
on the one hand and depletion of nonlinearity and advection on the other. It is
our opinion that such a relation must not be excluded. It might seem surprising
that, if the depression of nonlinearity is linked to coherent structures, it could be
captured by statistical closures. Indeed it is often mistakenly assumed that these
statistical approaches cannot predict anything on structure related issues since
all phase-information is averaged out. The apparent contradiction disappears if
one admits that that structures are a dynamical consequence of the underlying
equations and the statistical theories are derived from these equations. It is
therefore not completely surprising that, if the assumptions used in deriving
the closures are physically sound, the statistics observed from closures can be
related to the structures observed in experiments and simulations.
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Periodically forced turbulence is used as a test case to evaluate the predictions of two-equation and
multiple-scale turbulence models in unsteady flows. The limitations of the two-equation model are
shown to originate in the basic assumption of spectral equilibrium. A multiple-scale model based on
a picture of stepwise energy cascade overcomes some of these limitations, but the absence of
nonlocal interactions proves to lead to poor predictions of the time variation of the dissipation rate.
A new multiple-scale model that includes nonlocal interactions is proposed and shown to reproduce
the main features of the frequency response correctly. © 2009 American Institute of Physics.
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A basic premise of one point closures such as the k-�
model is the hypothesis of “spectral equilibrium,” which jus-
tifies two distinct roles of the dissipation rate �: On the one
hand, it appears in the energy balance, defined as a correla-
tion of velocity gradients, hence a small-scale quantity; on
the other hand, it is used phenomenologically to describe
large-scale transport properties. The most basic formulation
of the latter is Kolmogorov’s hypothesis ��k3/2 /L, where k
is the turbulent kinetic energy and L is a length scale char-
acteristic of the largest scales of motion; equivalent formu-
lations include �t�k2 /�, the formula for turbulent viscosity,
or ��k /�, the formula for the turbulent time scale. The
Kolmogorov theory, or more general assumptions of self-
similarity of all scales of motion, justifies all of these
proportionalities,1 although the constants of proportionality
need not coincide in all self-similar flows.2

However, turbulence models are not needed to describe
self-similar flows, which merely serve as calibration cases;
models are needed to describe departure from self-similarity,
when spectral equilibrium becomes a strong constraint on
turbulence evolution. In a study of a flow in which turbu-
lence evolves from a steady state to a self-similar time-
dependent state,3 the implications of the departure from spec-
tral equilibrium were investigated. This departure was
connected to transient failure of the Tennekes–Lumley
balance4 and to the consequent relevance of small-scale dy-
namics for the large scales. The breakdown of spectral equi-
librium has also been observed in engineering flows includ-
ing turbulent diffusers and wakes.5

The limitations of the spectral equilibrium hypothesis
are very well known in the modeling literature and have led
to proposals for multiple-scale models6 that more realistically
address the complexity of the nonlinear interactions in turbu-
lent flows. This letter reports on some investigations of
multiple-scale models applied to an especially simple and
attractive test case for transient turbulence: periodically
forced turbulence.7–9 This problem arises when isotropic
incompressible turbulence, maintained in a steady state by
a large-scale isotropic forcing with total amplitude p̄, is
subjected to a small time-dependent periodic perturbation

with amplitude p̃: p�t�= p̄+ p̃ cos��t�, such that the ratio
p̃ / p̄�1 and such that the forcing length scale does not
depend on time. The phase-averaged kinetic energy k can

then be decomposed into a mean k̄ and a periodic part

k̃���cos��t+�k����, with �k the phase shift between the
forcing and the kinetic energy. Similarly, the viscous dissipa-

tion rate can be written as �= �̄+ �̃���cos��t+������; k̄ and �̄

are related to the time-independent forcing length scale L̄ by

L̄� k̄3/2 / �̄. The periodic parts of k and � are sinusoidal, such

as the forcing because p̃ / p̄�1. The functions k̃���, �̃���,
�k���, and �����, which characterize the linearized response
of steady state turbulence to periodic perturbation of the
forcing, can be called the linear response functions.

We will use periodically forced turbulence as a test case
to evaluate the ability of multiple-scale models to predict the
dynamics of time-dependent turbulence. It will first be
shown that the unsteady predictions of multiple-scale models
are significantly better than the predictions of a two-equation
model. However, an elementary multiple-scale model
based on the heuristic picture of stepwise energy cascade is
found to have limitations in predicting the unsteady dissipa-
tion rate. A multiple-scale model that includes the possibility
of nonlocal interactions is proposed; it is shown that this
model can capture some fine features of the unsteady energy
dissipation.

The linear response functions were determined in recent
work10 using the eddy-damped quasi-normal Markovian
�EDQNM� closure theory, which was shown to compare very
well to available low Reynolds number experimental, and
direct numerical simulation �DNS� data. Comparison with
high Reynolds number data for linear response functions
would be desirable, but such data is not yet available. Briefly
summarizing the major conclusions, the two-equation model
is satisfactory both in the static limit �→0, in which the
phase shifts �k ,�� vanish, and in the frozen limit �→�, in

which k̃��−1 and �k�	 /2. However, this agreement is
trivial; only the results at intermediate frequencies provide a
real test of the model. The two-equation model reproduces
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the function k̃��� reasonably well, but the transition from the
static limit �k�0 to the frozen limit �k�	 /2 occurs over a
frequency range that is much too wide. The amplitude �̃���
is not satisfactory: a range in which �̃��−3 at high Reynolds
numbers is absent. We note that since observations of the
modulated dissipation rate are very difficult, and relevant
high Reynolds number data are not yet available, the
EDQNM results for this quantity remain theoretical predic-
tions; they are nevertheless supported by arguments10 based
on the well-established role of distant interactions in turbu-
lence. Finally, the two-equation model also makes the incor-
rect prediction that �k=�� regardless of �.

We investigate whether these predictions can be im-
proved using multiple-scale modeling following the ideas of
Schiestel.6 Multiple-scale models can be considered numeri-
cal methods for spectral closures, with significant modifica-
tions designed to permit reasonable accuracy at a very low
order of discretization. Thus, whereas a numerical imple-
mentation of a spectral closure would solve for the energy
spectrum at perhaps hundreds of discrete wavenumbers 
i, in
Schiestel’s formulation, the energy spectrum is divided into a
relatively small number of wavenumber shells 
i−1�
�
i;
for each shell, equations are written for two scalar descrip-
tors: the fluctuation energy contained in the shell and the net
energy flux into it. To enhance the accuracy possible with a
relatively small number of shells, Schiestel allowed the par-
tition wavenumbers 
i to be functions of time. A schematic
picture of the resulting discretized energy cascade is given in
Fig. 1, following Lumley.11

The starting point for the analytical formulation is the
Lin equation governing the energy spectrum E�
 , t�,

� �

�t
+ �
2�E�
,t� = P�
,t� −

�F�
,t�
�


. �1�

In this equation � is the viscosity, P�
 , t� the forcing term,
and F�
 , t� is the energy flux across wavenumber 
. Schiestel
applied the Kovaznay model12

F�
,t� = C
5/2E�
,t�3/2, �2�

with C a parameter which determines the Kolmogorov con-
stant. This model represents a stepwise cascade of energy in
spectral space from small to large 
 and reproduces a 
−5/3

inertial range. Figure 1 would correspond to a stepwise cas-
cade if the dashed lines were absent.

To obtain a multiple-scale model, write the equation for
the time derivative of the spectral energy flux F�
 , t�,

Ḟ�
,t� =
3

2

F�
,t�
E�
,t�

Ė�
,t� . �3�

From the viewpoint of Schiestel’s analysis, we have assumed
that the partition wavenumbers are constant in time. This
assumption seems appropriate for this problem, in which the
forcing wavenumber is fixed. The production scales are as-
sumed to be confined to low 
, and the dissipation to high 

�a more general description including finite-Reynolds num-
ber effects or broadband forcing will not be attempted here�.
For 
 in the inertial range, Eq. �1� becomes

Ė�
,t� = −
�F�
,t�

�

. �4�

We combine this with Eqs. �2� and �3� to obtain

Ḟ�
,t� = −
3

2

F�
,t�
E�
,t�

�F�
,t�
�


. �5�

A discrete model is obtained by splitting the spectral domain
into n shells as illustrated in Fig. 1. The energy in shell i is
ei�E�
i��
i. The spectral flux f i�F�
i� and the time de-
rivative is �F�
i , t� /�k��f i− f i−1� /�
i so that we obtain

ḟ i = −
3

2

f i

ei
�f i − f i−1�, 1 � i � n . �6�

Integrating Eq. �4� over each shell gives the partial energy
balance equations

ėi = − �f i − f i−1�, 1 � i � n , �7�

in which all f i and ei are functions only of time. The oscil-
lating production term p̃, assumed to act at the small wave-
numbers, is identified with f0, the flux entering shell 1. Fur-
thermore, the high Reynolds numbers case is considered in
which we assume that the viscous dissipation takes place at
the last wavenumber shell: �= fn. This assumption makes it
unnecessary to introduce partial dissipation rates for each
shell and corresponding equations of motion. A special fea-
ture of the Kovaznay model is that the partition wavenum-
bers do not appear in the model.

By choosing n=1, one obtains a two-equation model;
the equation for f1 becomes the dissipation rate equation
�̇= �3 /2��� /k��P−��. Note that the two model constants, gen-
erally called C�1 and C�2 in literature, are equal, which al-
lows the study of statistically stationary isotropic turbulence.
Consistency with homogeneous shear flow, or with any prob-
lem in which the forcing length scale increases as a power
law or exponential in time,13 requires C�1
C�2.

Choosing n�2 should improve the predictions by intro-
ducing the possibility of spectral imbalance, a necessary re-
quirement if the same model is to be applied to both forced
and decaying turbulence;2 imbalance is possible because the
partial fluxes f i with 1� i�n−1 and the dissipation �= fn are
independent.

FIG. 1. �Color online� Schematic of a discretized energy cascade. The solid
arrows indicate the energy fluxes between neighboring wavenumber shells.
The dashed lines indicate the nonlocal fluxes between spectrally remote
shells. Note that a similar picture can be found in a paper by Lumley
�Ref. 11�.
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The unsteady behavior of this model is now assessed as
follows. Beginning with a steady state with shell energies ēi

such that p̄= f̄ i= �̄, the periodic perturbation p̃ cos��t� is
added to the forcing. Describing the periodic response

in terms of complex amplitudes k̂��� and �̂��� so that

k̃���= 	k̂���	 and tan �k���=Jk̂��� /Rk̂��� with the obvious
analogs for �, the equations for the periodic part of the partial
kinetic energies and local fluxes become

i�êi = − � f̂ i − f̂ i−1�, i� f̂ i = −
3

2

f̄ i

ēi

� f̂ i − f̂ i−1� . �8�

The resulting linear system is easily solved analytically for

êi��� and f̂ i��� in terms of the periodic forcing perturbation

p̃ and the parameters ēi and f̄ i.

Figure 2 compares the results for the amplitude k̃���
and phase shift �k��� for models with n=1 to n=7 wave-
number shells. Also shown are results obtained in EDQNM
computations10 at Reynolds number R�=1000, with

R��15RL
1/2 and RL= �2k̄ /3�1/2L̄ /�. It has been shown10 that

at low �, k̃��� should tend to a plateau and that at large �,

k̃��� follows a power-law proportional to �−1. Confirming

the conclusion of Bos et al.,10 k̃��� is in reasonable agree-
ment with EDQNM even for the two-equation model n=1,
although this agreement improves significantly as the num-
ber of wavenumber partitions n increases.

The error in the two-equation model prediction of k̃���
is a too gradual transition from the plateau to the �−1 region.
This defect appears more prominently in the phase �k���:
Although all models give the correct static and frozen limits,
the two-equation model transitions much too gradually, and
only the models with n�2 are in close agreement with
EDQNM. The relatively rapid transition in the energy phase
shift therefore appears as a typical multiple-scale effect. Evi-
dently, in this problem, the small scales are not simply
“slaved” to the large scales through a constant dissipation
rate as is assumed in a two-equation model; instead, they are
dynamically independent and have a strong effect on what is
apparently a purely large-scale property.

It has also been demonstrated10 that the response func-
tion �̃��� follows at high � a power-law proportional to �−3

up to the Kolmogorov frequency ��� �̄ /�. For ����, �̃���
becomes proportional to �−1. These results are shown for
comparison in the graph on the left side of Fig. 3 �the phase
shift �� proves difficult to compute with any confidence be-
cause of the extremely small amplitudes involved, therefore
comparisons are omitted�.

The agreement of �̃��� given by the multiple-scale
model Eq. �8� with the EDQNM results is very good down to

values �̃ / p̃=10−3 for n�3 �note that k̃��� and �̃��� are pro-
portional to p̃, and p̃ is chosen unity without loss of gener-
ality�. However for smaller values of �̃ / p̃, the discrete model
starts to diverge from the EDQNM results, especially for
large n. It is easily shown that for this model, the leading
order contributions at high � are proportional to �−n: Indeed,

recursive solution of the equations for f̂ i in Eq. �8� shows

that f̃ i��−ip̃. Thus, only if n=3 can we obtain
�̃�����−3, but this is the result of a coincidence, which
disappears if the number of partition wavenumbers is in-
creased. This difficulty reflects a limitation of the multiple-
scale model: Eq. �5� implies a linear first-order partial differ-

ential equation for F̂ in which disturbances in F propagate
along characteristics; this property is probably significantly
compromised by a finite dimensional approximate model.

It has been shown10 that nonlocal interactions are re-
sponsible for the �−3 range. Nonlocal interactions are repre-
sented in Fig. 1 by dashed lines. Such interactions do not
occur in the model Eqs. �6� and �7� because quantities in
shell i depend only on its nearest neighbor, shell i−1. The
absence of nonlocal interactions will be even more signifi-
cant in problems in which the role of nonlocality is greater,
as in the Batchelor regime of the passive scalar14 and in
magnetohydrodynamics �MHD�.15

To address this problem, a new multiple-scale model will
now be derived including the effect of nonlocal interactions.
We start from a simple spectral model containing nonlocal
interactions due to Ellison,12
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FIG. 2. �Color online� Linear response functions k̃��� �left� and �k���
�right� for the multiple-scale model based on the Kovaznay spectral closure
�6�. The 7 curves in each graph correspond to models with n=1,2 , . . . ,7
spectral shells and n increases in the direction of the arrow. The theoretical
amplitude prediction �−1 is indicated by a straight line. Also shown are the
results of EDQNM simulations �symbols�. The frequency � is normalized

by the large-scale frequency �̄ / k̄.
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FIG. 3. �Color online� Frequency response function �̃��� for the model
based on the Kovaznay closure �8� �left� and for the model based on the
Ellison closure �11� �right�. The 7 curves in each graph correspond to
n=1,2 , . . . ,7 and n increases in the direction of the arrow. The theoretical
prediction �−3 is indicated by the straight lines. Also shown are the results
of EDQNM simulations �symbols�.
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F�
,t� = C�

0





2E�
,t�d
�1/2


E�
,t� . �9�

Applying the same procedure as to the Kovaznay model, the
partial energy balance Eq. �7� is unchanged, but Eq. �6� is
replaced by

ḟ i = −
f i

ei
�f i − f i−1� −

f i

2

� p=1
i 
p

2�fp − fp−1�
� p=1

i 
p
2ep

. �10�

This expression contains the wavenumbers 
i because non-
local interactions, which depend on the spacing between the
wave-number partitions, have been retained. The specifica-
tion of the 
i becomes part of the model. We will use a
logarithmic discretization with 
i=
1ri−1 in which r is a
model parameter which determines the logarithmic grid size.
Using this discretization, the ratio 
n /
1=rn−1 so that a large
range of scales can be considered by increasing r. Note that
if a linear discretization is used, 
n /
1= �n�
 /1�
�=n so
that the number of partitions for high Reynolds numbers be-
comes prohibitively large. Using the logarithmic discretiza-
tion, the model for periodic forcing becomes

ḟ̂ i = −
f̄ i

ēi

� f̂ i − f̂ i−1� −
f̄ i

2

� p=1
i r2�p−1�� f̂ p − f̂ p−1�

� p=1
i r2�p−1�ēp

, �11�

with the same partial energy equations as in Eq. �8�. Again,
when n=1 the model reduces to a two-equation model. For
n�1 the model differs from the previous model through the
interaction term which couples wave-number shell i with all
wavenumber shells p=1, . . . , i. The response functions de-
pend on both n and r, which will be chosen through a com-
promise between computational cost and precision.

The results for �̃��� obtained from Eq. �11� with r=3
and 1�n�7 wavenumber partitions are shown in the graph
on the right side of Fig. 3. In the same figure, EDQNM
results10 at R�=1000 are shown. The agreement with
EDQNM is very good down to values �̃ / p̃=10−3 for
3
n
7, and for n=7, agreement is good down to
�̃ / p̃=10−6. We conclude that the model including nonlocal
interactions Eq. �11� makes better predictions of �̃ than the
model Eq. �8�, in which nonlocal interactions are absent. The

predictions of Eq. �11� �not shown� for k̃��� and �k��� very
nearly coincide with the results obtained using Eq. �8�.

To conclude, we have found that in the problem of peri-
odically forced turbulence, a two-equation model only gives

satisfactory predictions for k̃��� and �k��� at asymptotically

high and low frequencies. The predictions at intermediate
frequencies are improved by using a multiple-scale model
based on the heuristic picture of stepwise energy cascade, the
Kovaznay model. In particular, this model correctly predicts
the rapid jump of the phase shift �k��� between the static
and frozen limits. The multiple-scale model based on the
Ellison closure includes nonlocal effects, and leads to better
agreement with EDQNM, including the high Reynolds num-
ber �−3 scaling range for �̃���.10 Both models give practi-
cally indistinguishable results for the amplitude and phase of
the oscillating kinetic energy, which is not strongly influ-
enced by nonlocal interactions. Our approach suggests how
one might construct reduced order models for phenomena
dominated by significant nonlocal interactions, such as the
Batchelor range of the passive scalar and some cases of
MHD.

We would like to acknowledge the interesting and
thoughtful comments of the referees, which led to significant
modifications of the paper.
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Direct numerical simulation data show that the variance of the coupling term
in passive scalar advection by a random velocity field is smaller than it would
be if the velocity and scalar fields were statistically independent. This effect is
analogous to the “depression of nonlinearity” in hydrodynamic turbulence. We
show that the trends observed in the numerical data are qualitatively consistent
with the predictions of closure theories related to Kraichnan’s direct interaction
approximation. The phenomenon is demonstrated over a range of Prandtl numbers.
In the inertial-convective range the depletion is approximately constant with respect
to wavenumber. The effect is weaker in the Batchelor range. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4731302]

I. INTRODUCTION

The modal amplitudes in the Fourier decomposition of any homogeneous random field are
uncorrelated. In a Gaussian random field, they are also statistically independent; but in homoge-
neous turbulence, nonlinearity produces statistical dependence among the amplitudes. The simplest
consequence is that the third-order correlations representing energy transfer, which would vanish in
a Gaussian random field, do not vanish in homogeneous turbulence.

Some further consequences of statistical dependence of Fourier amplitudes in homogeneous
turbulence were considered in an important paper by Chen et al.,1 which compared various fourth-
order moments with the corresponding moments in a Gaussian random field with the same second-
order properties as the turbulent velocity field (the construction of such Gaussian surrogates is
sometimes called “kinematic simulation”2, 3). Among the quantities investigated by Chen et al. was
the variance of the fluctuating nonlinear term in the Navier-Stokes equations,

〈|u(x, t) · ∇u(x, t) + ∇ p(x, t)|2〉. (1)

It had been observed4 that this quantity is significantly smaller in a turbulent velocity field than
in its Gaussian counterpart; that is, there is a significant (negative) cumulant contribution to the
fourth order moment defined by Eq. (1). One of the mechanisms which can lead to this depression
of nonlinearity is the preferential alignment of velocity and vorticity, also called Beltramization.5

However, this preferential alignment is not the only non-trivial mechanism which is consistent with
the depression of nonlinearity; we will return to this issue in Sec. V.

From the viewpoint of a Fourier analysis of the spectrum of the correlation in Eq. (1), the
depression of nonlinearity is a consequence of statistical dependence of the uncorrelated Fourier
amplitudes that enter the expression for this spectrum. One finding of Chen et al. was that this
phenomenon appears to be well predicted by Kraichnan’s6 direct interaction approximation (DIA).
The successful prediction of a nonzero fourth-order cumulant by a closure theory might seem
unexpected or even surprising, since from the very beginning, closure theories have been associated
with cumulant discard hypotheses;7 the debate between Kraichnan and Proudman at the famous
1961 Marseille conference8 centered on this issue.24 The computation of a nonzero cumulant and
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the favorable comparison with data perhaps vindicate, somewhat after the fact, Kraichnan’s assertion
at that time,9 that DIA does not assume (or imply) the vanishing of fourth order cumulants.

In the present work, we will show that an effect of statistical dependence of Fourier amplitudes
analogous to depression of nonlinearity also appears in the advection of a passive scalar θ . Thus,
we consider the scalar analog of the moment in Eq. (1): the variance of fluctuations of the bilinear
scalar-velocity coupling

〈(u(x, t) · ∇θ (x, t))2〉. (2)

Herring and Métais10 have shown that this quantity is smaller in passive scalar advection than it
would be if the Fourier amplitudes of velocity and scalar were statistically independent, even at the
more refined level of Fourier spectra. We confirm their conclusions using higher resolution DNS
data, and following Chen et al., show that closures related to the DIA predict trends consistent with
the data.

A different perspective on non-Gaussian properties of turbulence is provided by recent detailed
studies of the properties of realizations of turbulent velocity fields. Such studies, made possible by
high resolution direct numerical simulations,11 reveal the existence of flow structures such as vortex
tubes and sheets, and spotty regions of very high dissipation; in comparison, since a Gaussian random
field is simply space- and time-filtered white noise, it is expected to be essentially “featureless.”
This viewpoint makes the existence of such structures the most significant effect of non-Gaussianity
in turbulence. In the present paper, we focus on a statistical characterization of non-Gaussian
features in turbulence and do not investigate features of the instantaneous flow realizations. We
suggest, however, that investigating the connections between this physical space perspective and the
viewpoint of dependence among Fourier modes can be a useful direction for future research.

The paper is organized as follows: in Sec. II the theoretical considerations leading to closure
expressions for the mean-square advection term are given. Section III presents details of the numerical
evaluation of cumulant corrections. Section IV presents comparisons between closure computations
and direct numerical simulation data. Section V contains a discussion of the results. Conclusions are
drawn in Sec. VI.

II. ANALYSIS

We consider the advection of a passive scalar in homogeneous turbulence. The governing
equation is

[
∂t + αk2

]
θ (k, t) = −iki

∫
d pdq δ(k − p − q)θ ( p, t)ui (q, t) + fθ (k, t), (3)

where α denotes the scalar diffusivity and fθ (k, t) is a source of scalar fluctuations that we will
assume confined to the large scales. By analogy to Chen et al., we consider the contribution of each
Fourier mode to the variance of the velocity-scalar coupling term. It is defined by

Wθ (k, t) = ki k j

∫
d p dq

∫
d p′ dq ′ δ(k − p − q)δ(k + p′ + q ′)〈θ ( p, t)ui (q, t)θ ( p′, t)u j (q ′, t)〉.

(4)

The integral of Wθ (k, t) over all wavevectors is equal to the moment in Eq. (2),∫
dk Wθ (k, t) = 〈[u(x, t) · ∇θ (x, t)]2〉. (5)

Without introducing any assumptions, we can write

Wθ (k, t) = W G
θ (k, t) + W C

θ (k, t), (6)

where W G
θ (k, t) is evaluated assuming the independence of the Fourier amplitudes in Eq. (4) and

W C
θ (k, t) is a cumulant correction. In the following we will consider the isotropic case. In that case
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the velocity and scalar are uncorrelated. Then

W G
θ (k, t) = ki k j

∫
d p dq δ(k − p − q) Uθ ( p, t)Ui j (q, t), (7)

where

Ui j (k, t) = 〈ui (k, t)u j (−k, t)〉 (8)

is the single-time velocity autocorrelation and

Uθ (k, t) = 〈θ (k, t)θ (−k, t)〉 (9)

is the single-time scalar autocorrelation.
We now analyze Wθ using Kraichnan’s DIA theory. There are many equivalent formulations of

this theory, but for this analysis, the Langevin model formulation12 is the most convenient. The DIA
Langevin model for passive scalar advection replaces the exact governing equation Eq. (3) by

[
∂t + αk2

]
θ(k, t) +

∫ t

0
ds ηθ (k; t, s)θ(k, s) = −iki

∫
d pdq δ(k − p − q)ξθ ( p, t)ξi (q, t) + fθ (k, t),

(10)
where ξ θ and ξ i are independent Gaussian random variables with the same two-time correlation
functions as θ and ui,

〈ξθ (k, t)ξθ (−k, t ′)〉 = 〈θ (k, t)θ (−k, t ′)〉 = Uθ (k; t, t ′), (11)

〈ξi (k, t)ξ j (−k, t ′)〉 = 〈ui (k, t)u j (−k, t ′)〉 = Ui j (k; t, t ′), (12)

and the damping function ηθ is defined as

ηθ (k; t, t ′) = ki k j

∫
d p dq δ(k − p − q) Gθ ( p; t, t ′)Ui j (q; t, t ′). (13)

Here, Gθ is the response function, defined as the inverse of the (formally) linear operator on the left
side of Eq. (10). This linearity allows us to write, ignoring the contribution of the scalar source term,

θ (k, t) = −iki

∫ t

0
ds Gθ (k; t, s)

∫
d pdq δ(k − p − q)ξθ ( p, s)ξi (q, s). (14)

This brings up an important feature of DIA, namely that it is not closed in terms of the correlation
function alone. The introduction of the response function is one major contribution of DIA to
turbulence theory.25 DIA provides equations of motion for both Gθ and the correlation function Uθ

related to the model Eq. (10). We refer to Ref. 13 for details.
Paraphrasing Kraichnan’s own description of DIA, we see that it first replaces the nonlinear

coupling by a random forcing by surrogate statistically independent random fields with the same
second-order properties as the actual fields; this step suppresses any statistical dependence among
Fourier modes that develops under the exact evolution. These dependences are then modeled by the
damping provided by ηθ ; then the transfer of scalar fluctuations between modes is treated in DIA as
the result of this damping acting against the forcing. Perhaps the most important qualitative feature
to note is that the theory requires two-time statistics: this complication is inevitable given that DIA
attempts to describe complex bilinear interactions by means of second-order statistics alone.

Thus, DIA can be described as the replacement

−iki

∫
d pdq δ(k − p − q)θ ( p, t)ui (q, t) → −

[∫ t

0
ds ηθ (k; t, s)θ (k, s)

+ iki

∫
d pdq δ(k − p − q)ξθ ( p, t)ξi (q, t)

]
, (15)

where the arrow simply indicates modeling; at this point, there is no assertion about an “approxima-
tion.” Then the DIA model for the variance of the advection term is the variance of the right side of
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Eq. (15):〈∣∣∣∣
∫ t

0
ds ηθ (k; t, s)θ (k, s) + iki

∫
d pdq δ(k − p − q)ξθ ( p, t)ξi (q, t)

∣∣∣∣
2
〉

=
∫ t

0
ds

∫ t

0
ds ′ ηθ (k; t, s)ηθ (k; t, s ′)〈θ (k, s)θ (−k, s ′)〉 (16)

− 2iki

∫
d pdq δ(k − p − q)

∫ t

0
ds ηθ (k; t, s) 〈ξθ (− p, t)ξi (−q, t)θ (k, s)〉 (17)

+ ki k j

∫
d pdq

∫
d p′dq ′ δ(k − p − q)δ(k − p′ − q ′)〈ξθ ( p, t)ξi (q, t)ξθ (− p′, t)ξ j (−q ′, t)〉.

(18)

The rules for correlations of Gaussian variables, and the relations Eqs. (11) and (12) give for the
term in Eq. (18),

ki k j

∫
d pdq

∫
d p′dq ′ δ(k − p − q)δ(−k − p′ − q ′)〈ξθ ( p, t)ξi (q, t)ξθ ( p′, t)ξi (q ′, t)〉

= ki k j

∫
d pdq δ(k − p − q)Uθ ( p, t)Ui j (q, t) = W G

θ (k, t), (19)

so that, as was evident from its definition, this term simply reproduces the Gaussian contribution
Eq. (7). The remaining terms are cumulant corrections. Obviously, the term in Eq. (16) is simply∫ t

0
ds

∫ t

0
ds ′ ηθ (k; t, s)ηθ (k; t, s ′)〈θ (k, s)θ (−k, s ′)〉

= ki k j kmkn

∫ t

0
ds

∫ t

0
ds ′

∫
d p dq δ(k − p − q)

∫
d p′ dq ′ δ(k − p′ − q ′)

× Gθ ( p; t, s)Ui j (q; t, s)Gθ ( p′; t, s ′)Umn(q ′; t, s ′)Uθ (k; s, s ′), (20)

where we have used the definition Eq. (13) of ηθ .
The term in Eq. (17) is evaluated by expressing θ in terms of the ξ θ and ξ i using Eq. (14), so

that

−2iki

∫
d pdq δ(k − p − q)

∫ t

0
ds ηθ (k; t, s) 〈ξθ (− p, t)ξi (−q, t)θ (k, s)〉

= −2iki (−ik j )
∫

d pdq
∫

d p′′dq ′′ δ(k − p − q)δ(k − p′′ − q ′′)
∫ t

0
ds

×
∫ s

0
ds ′ ηθ (k; t, s)Gθ (k; s, s ′)

× 〈
ξθ (− p, t)ξi (−q, t)ξθ ( p′′, s ′)ξ j (q ′′, s ′)

〉
= −2ki k j kmkn

∫
d pdq

∫
d p′dq ′ δ(k − p − q)δ(k − p′ − q ′)

∫ t

0
ds

∫ s

0
ds ′

×Gθ ( p′; t, s)Umn(q ′; t, s)Gθ (k; s, s ′)Uθ ( p; t, s ′)Ui j (q; t, s ′). (21)

The cumulant contribution W C
θ is the sum of the results of Eqs. (20) and (21). But to express the

result in the most transparent form, it will be useful to reformulate Eq. (20) somewhat: abbreviating
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the integrand for simplicity,∫ t

0
ds

∫ t

0
ds ′ I( p, q, p′, q ′; t, s, s ′) =

(∫ t

0
ds

∫ s

0
ds ′ +

∫ t

0
ds

∫ t

s
ds ′

)
I( p, q, p′, q ′; t, s, s ′)

=
(∫ t

0
ds

∫ s

0
ds ′ +

∫ t

0
ds ′

∫ s ′

0
ds

)
I( p, q, p′, q ′; t, s, s ′), (22)

where the order of integration has been interchanged in the second term. Since the integrand is
invariant under the simultaneous interchanges of s, s′ and p, p′, we obviously have∫ t

0
ds

∫ t

0
ds ′ I( p, q, p′, q ′; t, s, s ′) = 2

∫ t

0
ds

∫ s

0
ds ′ I( p, q, p′, q ′; t, s, s ′), (23)

so we can write∫ t

0
ds

∫ t

0
ds ′ ηθ (k; t, s)ηθ (k; t, s ′)〈θ (k, s)θ (−k, s ′)〉

= 2ki k j kmkn

∫ t

0
ds

∫ s

0
ds ′

∫
d p dq δ(k − p − q)

∫
d p′ dq ′ δ(k − p′ − q ′)

×Gθ ( p; t, s)Ui j (q; t, s)Gθ ( p′; t, s ′)Umn(q ′; t, s ′)Uθ (k; s, s ′). (24)

Interchanging indices (ij) and (mn) and the wavevector arguments ( p, q) and ( p′, q ′) and adding the
result of Eq. (21), we obtain

W C
θ (k, t) = −2ki k j kmkn

∫
d p dq

∫
d p′ dq ′ δ(k − p − q)δ(k − p′ − q ′)

×
∫ t

0
ds

∫ s

0
ds ′ Ui j (q; t, s)Umn(q ′; t, s ′)

× [
Gθ ( p; t, s)Gθ ( p′; t, s ′)Uθ (k; s, s ′) − Gθ ( p′; t, s)Gθ (k; s, s ′)Uθ ( p; t, s ′)

]
. (25)

This expression makes clear an important property of the DIA cumulant correction, namely that
it vanishes identically, independently of the velocity field, in the scalar non-diffusive truncated
ensemble when diffusivity α = 0 and a maximum wavenumber is imposed on the scalar fluctuations.
This equilibrium ensemble is Gaussian, therefore all cumulants vanish. The proof follows from the
properties of this system, that the scalar field is in steady-state equipartition, so that Uθ (k, t) is a
constant, and the fluctuation-dissipation relation

Uθ (k; t, t ′) = Uθ (k)[Gθ (k; t, t ′) + Gθ (k; t ′, t)] (26)

holds. (Note that the response function is causal: Gθ (k; t, t ′) = 0 for t′ > t.) Substituting these
relations in Eq. (25) shows at once that W C

θ ≡ 0 independently of the velocity field, as required.
We remark that this conclusion is a non-trivial check of the DIA calculation, since DIA only treats
moments, and the multipoint probability density functions play no explicit role.

It is easily verified that the same result holds for the cumulant corrections to the mean-square
nonlinearity in the analysis of the velocity field.

III. NUMERICAL EVALUATION OF THE DIA CUMULANT CORRECTIONS

At this point, we introduce the assumption that the velocity field is time stationary and that
the scalar field is maintained in a steady state by a scalar source term. Then numerical evaluation
is greatly simplified by expressing the results in terms of spectra rather than correlations. If Wθ (k)
depends only on k = |k|, then the corresponding spectrum is

wθ (k) =
∮

d S(k) Wθ (k) = 4πk2Wθ (k) (27)
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and, corresponding to Eq. (6), we have

wθ (k) = wG
θ (k) + wC

θ (k). (28)

We introduce the usual energy and scalar fluctuation spectra by

Ui j (k) = 1

4πk2
E(k)(δi j − k−2ki k j ) Uθ (k) = 1

2πk2
Eθ (k). (29)

With these simplifications, Eq. (7) can be reformulated, following procedures that are standard
in the closure literature, as

wG
θ (k) = k3

∫
	

(1 − z2)E(p)Eθ (q)
dp

p

dq

q
, (30)

where, as usual, the integration region 	 indicates that the wavenumbers k, p, q are the sides of a
triangle and z is the cosine of the angle between the sides of lengths k and p. The time integrations
in Eq. (25) are evaluated by replacing the two-time quantities by functions of time difference only,
then passing to the steady state limit t → ∞. Since we wanted to be able to compute the cumulants
under a variety of conditions, we found it expedient to make the double time integrations of Eq. (25)
analytically computable by assuming simple exponential time-dependence

Gθ (k; t − t ′) = e−ηθ (k)(t−t ′) H (t − t ′), Uθ (k; t − t ′) = Uθ (k)e−ηθ (k)|t−t ′|,

Ui j (k; t − t ′) = Ui j (k)e−ηθ (k)|t−t ′|. (31)

As usual, H(s) is the “Heaviside function” equal to one for s > 0 and zero otherwise; we have
also introduced a “fluctuation-dissipation” relation in which the damping function ηθ is the same
in the scalar response function Gθ and two-time correlation function Uθ . The very commonly
introduced exponential ansatz for the two-time dependence is also made by Herring and Métais;10

we emphasize that we use it entirely in the interest of analytical simplicity, and no assertion is
made that it approximates the two-time response that would actually be predicted by DIA. But since
two-time statistics enter our results only after integration over all time-differences, any resulting
errors are unlikely to be qualitatively important.

After making all of these simplifications, the cumulant spectrum is evaluated as

wC
θ (k) = 1

2

∫
	

dp

p

dq

q

∫
	′

dp′

p′
dq ′

q ′ (1 − z2)kq2 E(p)(1 − z′2)kq ′2 E(p′)

× [(

kpqp′q ′ + 
kp′q ′ pq

)
Eθ (k) − 2
kpqp′q ′ (k/q)2 Eθ (q)

]
, (32)

where 	′ indicates that the wavenumbers k, p′, q′ are the sides of a triangle, z′ is the cosine of the
angle between the sides of lengths k and p′, and the time integrals yield


kpqp′q ′ = 1

ηθ (k) + η(p′) + ηθ (q ′)
1

η(p) + ηθ (q) + η(p′) + ηθ (q ′)
. (33)

The spectra E(k) and Eθ (k) are evaluated using EDQNM (Eddy-Damped Quasi-Normal Marko-
vian) closures14, 15[

∂

∂t
+ 2νk2

]
E(k) =

∫
	

�(k, p, q)[xy + z3]pE(q)
[
k2 E(p) − p2 E(k)

] dpdq

pq
+ F(k), (34)

[
∂

∂t
+ 2αk2

]
Eθ (k) =

∫
	

�θ (k, p, q)[1 − y2]k E(q)
[
k2 Eθ (p) − p2 Eθ (k)

] dpdq

pq
+ Fθ (k), (35)

in which F(k) and Fθ (k) are external forcing terms confined to the smallest wavenumbers (both F(k)
and Fθ (k) are unity for k ≤ 2 and zero elsewhere), x is the cosine of the angle between the sides
of lengths p and q, and y is the cosine of the angle between the sides of lengths k and q. The triad
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relaxation times �(k, p, q) and �θ (k, p, q) are

� = 1

η(k) + η(p) + η(q)
, �θ = 1

ηθ (k) + η(p) + ηθ (q)
. (36)

We use the (inverse) time-scales

η(k) = λ

√∫ k

0
E(r )dr + νk2, ηθ (k) = λθ

√∫ k

0
E(r )dr + αk2 (37)

and we set the constants λ = λθ = 0.5. Note that η and ηθ are the same quantities that appear
in Eq. (31). An interesting perspective for future work would be the use of a Lagrangian two-
time theory16, 17 or a self-consistent Markovian closure18, 19 to evaluate the cumulants, which would
avoid the introduction of adjustable constants and ad hoc formulation of damping time-scales.
Computations are carried out on a logarithmically spaced grid with 36 gridpoints per octave and
results are evaluated when a steady state is reached.

IV. NUMERICAL COMPARISONS

In this section, we confirm the reduction of mean-square advection in DNS data,10 and compare
the results with closure predictions. We have computed the scalar spectrum and energy spectrum
by closure theory as described in Sec. III and the parameters have been chosen to match the
DNS as closely as possible. The DNS database used is from high resolution (10243 gridpoint)
pseudospectral direct numerical simulations of a passive scalar advected by isotropic turbulence.20

The force terms for the velocity and scalar fluctuations are random-Gaussian and delta-correlated in
time (and solenoidal for the velocity forcing), acting in the wave-number range 1 ≤ k ≤ 2. In these
simulations the Reynolds number based on the Taylor microscale is equal to 427 and the Prandtl
number Pr = ν/α = 1. The resolution is higher than that used in the simulations of both Herring
and Métais10 and Chen et al.1

Using DNS data, wθ (k) can be determined from Eqs. (4) and (27). The contribution wG
θ (k) is

obtained by randomizing the phases of the Fourier amplitudes of θ (x, t); this randomization will yield
scalar fields with statistically independent Fourier amplitudes without changing the wavenumber
spectra. This independence, not the probability density function itself, is the key property for us. The
fields are therefore random-phase fields and the amplitude statistics are not necessarily Gaussian.

Figure 1 compares the scalar variance spectra in DNS and the closure computations at Rλ = 427
and Pr = 1. The inset shows the energy spectra. The wavenumber of these results is normalized by
the Kolmogorov scale, which is equal to the Batchelor scale for unit Prandtl number. Good agreement
is observed between the DNS results and the EDQNM results. A Corrsin-Obukhov inertial range for
the scalar spectrum and a Kolmogorov inertial range for the energy spectrum, both approximately
proportional to k−5/3 are clearly observed.

In Figure 2, left, the spectrum of the advection term wθ (k) is shown, as well as its Gaussian
estimate. These spectra, for both closure and DNS, display an increasing trend in the inertial range
and peak around the Batchelor scale. The peak of wθ (k) is smaller than the Gaussian value, which
indicates a reduction of mean-square advection. This reduction is more clearly observed in Figure 2,
right, in which we display the measure of the departure from Gaussianity, the ratio wθ (k)/wG

θ (k);10

the analogous quantity for the velocity field was introduced by Kraichnan and Panda.4 The ratio
departs noticeably from the Gaussian values over the entire wavenumber range, and a significant
depression of the wθ (k) compared to the Gaussian value is observed at scales larger than the forcing
scales. The region where wθ (k)/wG

θ (k) < 1 extends over the entire inertial-convective range. These
general trends, including the observation that wθ (k)/wG

θ (k) > 1 at large scales, are consistent with
previous observations.1, 10 The results in Figures 1 and 2 show that the closure yields results in good
agreement with the DNS.
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FIG. 1. DNS and theoretical results for the scalar spectra in isotropic turbulence at a Taylor-scale Reynolds number of 427
and Pr = 1. In the inset the energy spectra are shown.

The ratio of the measured variance to the value assuming independence of the Fourier amplitudes,

ρθ = 〈(u · ∇θ )2〉
〈|u|2〉〈|∇θ |2〉 =

∫ ∞

0
wθ (k)dk∫ ∞

0
wG

θ (k)dk
(38)

is also of interest. Figure 2 (left) shows that the spectrum wθ (k) is an increasing function of the
wavenumber, consequently its integral is dominated by the small scales, where the variance is
reduced. The DNS value for ρθ is 0.41 and the closure value is 0.54. These values are consistent
with the previous reported results: Herring and Métais10 quotes a value for ρθ of about 0.5 in the
scalar case, and Kraichnan and Panda4 reported the value 0.57 for the comparable ratio of the mean-
square nonlinearity. We conclude that the effect we investigate is observed in DNS and closure and
is of comparable magnitude in both.
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FIG. 2. DNS and theoretical results in isotropic turbulence at a Taylor-scale Reynolds number of 427 and Pr = 1. Left:
Spectrum of the mean square advection term of the scalar equation in isotropic turbulence. Also shown are the Gaussian
spectra (thin lines). Right: Ratio of the spectra to the Gaussian spectra.
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FIG. 3. Closure results for the spectrum of the scalar variance at a Taylor-scale Reynolds number of 427 and Pr
= 0.01, . . . , 100. Inset: Energy spectrum.

In problems involving passive scalars, the dependence on Prandtl number is always of interest.
We investigate the effect of the Prandtl number on the reduction of mean-square advection by varying
the Prandtl number from 0.01 to 100 at a fixed Reynolds number Rλ = 427. There is no DNS data
available for these cases, in particular for the high Prandtl number cases, so we limit the discussion
to closure predictions. Figures 3 and 4 show the closure results. In Figure 3 we show the scalar
spectrum for five different Prandtl numbers. At low Prandtl numbers the k−17/3 spectrum is observed
and at large Pr we observe a k−1 spectrum.21, 22

Figure 4 (left) shows the spectrum of the advection term. For all Pr , this spectrum is an
increasing function of the wavenumber. At the highest value of Pr , the spectrum seems to approach
its Gaussian estimate. Figure 4 (right) shows wθ (k)/wG

θ (k). It is clearly observed that the spectrum
is under its Gaussian value for all scales, except the forced scales, but the precise behavior seems to
depend strongly on the Prandtl number. In the inertial-convective range the depletion is approximately
constant with respect to wavenumber. The effect is weaker in the Batchelor range.

The numerical values of ρθ are displayed in Figure 5. The value ranges from a minimum of
ρθ = 0.38 at Pr = 0.1 to a maximum of ρθ = 0.8 at Pr = 100. This change is non-negligible,
but the trend is rather weak if we consider that Pr changes over four orders of magnitude in our
simulations. The reduction of advection seems thus an effect which is persistent, but becomes weaker
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FIG. 4. Closure results for the spectrum of the mean square advection term at a Taylor-scale Reynolds number of 427 and
Pr = 0.01, . . . , 100. Also shown are the Gaussian spectra (thin lines). Right: Ratio of the spectra to the Gaussian spectra.
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FIG. 5. The mean square advection term of the scalar equation in isotropic turbulence compared to its Gaussian value as a
function of the Prandtl number at a Taylor-scale Reynolds number of 427.

for high values of the Prandtl number. Its amount is mainly determined by the precise behavior of
the cumulant-spectrum around the scale where the spectrum wθ (k) peaks.

V. DISCUSSION: MECHANISMS OF THE SUPPRESSION OF ADVECTION

The analysis of the variance of the nonlinear term in the Navier-Stokes equations by Chen et al.1

was motivated in part by the suggestion of Levich and Tsinober23 of the possibility of Beltramization,
the preferential alignment of velocity and vorticity in turbulence. Since the nonlinear term can be
written as

∇−2∇ × ∇ × (ω(x) × u(x)), (39)

with ω = ∇ × u the vorticity, this alignment will obviously reduce the magnitude of the nonlinear
term, and hence will also reduce the intensity of its fluctuations, which is consistent with the observed
depression of nonlinearity.

Another mechanism consistent with depression of nonlinearity was identified by Kraichnan
and Panda,4 who noted that the nonlinearity also vanishes if the Lamb vector λ(x) ≡ ω(x) × u(x)
is a potential field (λ(x) = ∇�(x)), so that it lies in the null-space of the double curl operator in
Eq. (39). These two possibilities are illustrated in Figure 6 (left). Both possibilities can contribute to
the depression of nonlinearity in turbulent flows.

The situation is much simpler for scalar advection. For the passive scalar, the equivalent of
Beltramization would be the identical vanishing of the scalar flux vector γ = uθ ; this trivial case
can be ignored. The only non-trivial way to reduce the advection term is for the scalar flux vector to

FIG. 6. Left, top: Velocity Beltramization and bottom: depression of nonlinearity through alignment of the Lamb-vector and
the wavevector. Right: Depletion of advection in physical and Fourier space. The scalar flux vector is defined as γ = uθ .
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be divergence-free, so that

∇ · γ = u · ∇θ ≈ 0. (40)

This corresponds to the case in which the velocity is perpendicular to the scalar gradient, as illustrated
in Figure 6 (right). It is evident that if the variance of the advection term is smaller in passive scalar
advection than in a jointly Gaussian random field, then u and ∇θ must be more likely to be orthogonal
in passive scalar advection than in a jointly Gaussian random field.

VI. CONCLUSIONS

We have shown that the closure computation of the fourth order cumulant that enters in the
depression of nonlinearity in hydrodynamic turbulence1 can be applied to passive scalar advection.
Corresponding to depression of nonlinearity is a reduction of the variance of the advection term,
which is connected to a tendency of the velocity vector to align perpendicular to the scalar gradient.
Study at the level of Fourier spectra shows that the reduction of advection is approximately constant
in the inertial-convective range and becomes weaker in the viscous-convective (Batchelor) range.
Closure related to the DIA gives satisfactory predictions in comparison to DNS data. Closure predicts
that the phenomenon persists at both low and high Prandtl numbers although there is a weak but
noticeable tendency for the mean-square advection to return to the Gaussian value as the Prandtl
number increases.
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3.5 Perspectives

Is the observed state an extremum predictable by varia-
tional methods?

We investigate whether the observed state in which the advection is reduced is
the minimum advection state given a fixed variance (or another fixed quantity).
We therefore use a standard variational method. We define the Lagrangian,

Λ =

∫
(u · ∇θ)2 − βθ2dV, (3.19)

in which β is a Lagrange multiplier. We will consider an imposed velocity field
so that only the scalar and the scalar gradients can evolve in time. In order to
have an extremum, the variation of Λ needs to be zero. This implies (in two
dimensions)

δΛ =

∫
∂Λ

∂θ
− d

dx

∂Λ

∂(∂θ/∂x)
− d

dy

∂Λ

∂(∂θ/∂y)
dx dy = 0, (3.20)

which gives,

θ = − 1

β
∇ · [(u · ∇θ)u] . (3.21)

If a scatterplot of the results of a simulation or experiment of scalar mixing will
yield a linear relation between θ and ∇ · [(u · ∇θ)u], then we will have shown
that the mixing process minimizes the advection term for a given value of the
scalar variance. This would have important implications, in particular for the
interpretation of the depletion of nonlinearity in Navier-Stokes turbulence. This
remains to be done.

The origin of non-vanishing anisotropy of the passive scalar
field, forced by a mean gradient

In three-dimensional isotropic turbulence, the gradients of the scalar field and
velocity field are determined by the smallest scales. One of Kolmogorov’s as-
sumptions on turbulent flows, is that at high enough Reynolds numbers the
velocity field should be approximately isotropic at the small scales, even when
the large scales are not so. This assumption of local isotropy of the small scales
is approximately valid in most high Reynolds numbers turbulent flows. A well
known counter-example is the small scale structure of the scalar field in the
presence of a uniform imposed gradient. In this case, the skewness of the scalar-
gradients aligned with the mean gradient,

Sθ =
〈(∂θ/∂x3)3〉
〈(∂θ/∂x3)2〉3/2 , (3.22)

is of order unity, and does not seem to decrease with Reynolds number [96]. In
an isotropic passive scalar field this quantity should be zero. Arguments have
been presented to explain this puzzling observation [97]. But in my opinion
no satisfactory explanation is given. In section 2.7, we exploited the analogy
between a passive scalar field generated by a uniform imposed gradient on an
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isotropic turbulence and the displacement of fluid particles. We will try to give
an explanation of the non-vanishing skewness Sθ, using this analogy.

The rationale is as follows: the scalar field possesses an anisotropy, due to
the direction of the mean gradient. However, the displacement field is isotropic,
and the scalar is obtained by projecting the displacement on a typical direction.
The displacement field is given by the equation,

∂Xi

∂t
+ uj

∂Xi

∂xj
= ui (3.23)

and the general displacement variance tensor can be defined by

ΦXij (k) = Xi(k)Xj(k)∗. (3.24)

In an isotropic field, this tensor can be decomposed into a solenoidal part and
a potential part,

ΦXij (k) = Fs(k)Pij(k) + Fp(k)Πij(k), (3.25)

with Πij(k) = kikj/k
2.

The passive scalar spectrum is now obtained by considering one component
of the trace, for example, if the mean gradient is imposed in the x3 direction,

Φθ(k) = ΦX33(k) = (1−µ2)Fs(k)+µ2Fp(k) = Fs(k)+µ2(Fp(k)−Fs(k)), (3.26)

where µ = k3/k, the cosine of the angle between the wavevector and the direction
of the gradient. It is directly seen that this quantity is inherently anisotropic if
Fp(k) 6= Fs(k). Small scale isotropy will only be retrieved if

lim
k→∞

Fp(k)− Fs(k)

Fs(k)
→ 0. (3.27)

This does however not imply that the skewness Sθ of the scalar gradients van-
ishes at small scales. As a counter example we can consider the case of an
isotropic velocity field. The skewness of the gradients of such a field is not zero
at small scales. I will derive the closure expressions for Fp(k), Fs(k), analyze
their inertial range behavior, and compute the prediction for Sθ.

Depletion of nonlinearity in inhomogeneous turbulence

In the framework of the PhD project of Andrey Pushkarev, we investigate the
depletion of nonlinearity in wall-bounded flow by means of Direct Numerical
Simulation. In Figure 3.12 we show preliminary results on the turbulent flow
decaying between two parallel walls. It is observed that the mean-square non-
linearity, normalized by the product of enstrophy and energy, is unaffected in
the center of the domain, but that strongly super-Gaussian values are observed
near the boundaries. The interpretation of these results and the investigation
of the case of stationary channel flow are currently in progress.
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Figure 3.12: Left: isovalues of the enstrophy in decaying wall bounded turbu-
lence. Right: the normalized value of the mean-square nonlinearity compared
to observations in freely decaying turbulence in a periodic domain.



Chapter 4

Magnetized plasmas and
two-dimensional turbulence

4.1 Introduction: the fluid mechanics of fusion
plasmas

Most of the existing magnetically confined fusion plasmas move and are tur-
bulent, which is sometimes quite a problem. Indeed, in order to get a nuclear
fusion reaction started, and to keep it going, one needs to obtain high tempera-
tures and the hot plasma is supposed to be kept in place by the magnetic field.
The amount of energy created by a fusion reaction is measured by the triple-
product nTτ , in which n is the plasma density, T the temperature and τ the
confinement time. If the plasma deviates too far from its equilibrium position,
and if convective plasma movements transport heat from the center to the edge
of the plasma, the temperature can drop so that the fusion reaction stops, and
wall components can be damaged after contact with the plasma. Intuitively
it is quite understandable that keeping the plasma in place is not an obvious
task, since the plasma core is ideally at a temperature of several hundreds of
thousands of degrees (hotter than the sun), while the outside, at only a meter
distance or so, is at room temperature. Extremely large temperature, pressure
and density gradients are thus present, which combined with the curvature of
the magnetic field lead to an uncountable number of instabilities.

To understand the origin and dynamics of the turbulent movements of fusion
plasmas, it is important to first briefly describe the magnetic geometry of these
plasmas. At the high temperatures at which fusion-reactions can be sustained,
gases will get ionized, which means that electrons get decoupled from the ions. A
magnetic field can then be used for confinement of this gas of charged particles.
Charged particles will describe a helical motion around magnetic field lines, due
to the Lorentz force, which exerts a force on the particles both perpendicular
to their velocity and perpendicular to the magnetic field. If we neglect all other
forces on the particle, the velocity will evolve according to

mv̇ = qv × b, (4.1)

with m the mass, q the charge and v the velocity of the particle. b is the
magnetic field, that we will choose homogeneous in this example. For a finite
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Figure 4.1: Left: in a uniform magnetic field particles will describe a helical
motion around the field lines. In the plane perpendicular to the magnetic field
the trajectory is circular with a fixed radius rl. Right: as soon as the magnetic
field is non-uniform, rl will become a function of position. The particle will
therefore drift in a direction perpendicular to the gradient of the magnetic field.

initial velocity of the ion or electron, this will lead to a circular motion around
a magnetic field line with (Larmor or gyro)-radius

rl =
mv⊥
|q|b , (4.2)

with b the strength of the magnetic field and v⊥ the norm of the velocity of the
particle in the plane perpendicular to the magnetic field. The movement of the
plasma in the direction perpendicular to the magnetic field is thus constrained.
Since the Lorentz force only acts in the plane perpendicular to the magnetic
field, the particles can freely move in the direction of the magnetic field. By
closing the magnetic field on itself in a torus, the ions and electrons will at least
not escape at the ends of the magnetic field lines. However, when bending the
magnetic field, necessarily inhomogeneities in the magnetic field strength will
be induced, and due to this inhomogeneity the particles will drift and escape
from the magnetic field. Let us describe this drift.

If, in a plane perpendicular to the magnetic field, the magnetic field is not
homogeneous, the Lorentz force on the particles will vary during one circular
orbit of the particle. On one side of the orbit the magnetic field is stronger than
on the other. Thereby the circular motion will be deformed since the radius of
the orbit-radius is inversely proportional to the magnetic field strength [equation
(4.2)]. Since the orbits are no longer circular, a net velocity will result, also called
drift velocity. The mechanism is sketched in Figure 4.1.

To solve this problem, the magnetic field is not only bended, but also twisted,
so that the magnetic field is helically twisted on the torus. This twist is gen-
erated by superposing a poloidal magnetic field on the toroidal magnetic field
(the definition of the poloidal and toroidal direction are shown in Figure 4.2).
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Figure 4.2: In most magnetic fusion devices the magnetic field contains a
toroidal (T) and poloidal (P) magnetic component. The radial direction is
indicated by (R).

The pitch at which it is twisted is called the safety-factor (number of toroidal
turns for one poloidal turn) since it is directly related to an MHD instability
which is dangerous in the sense that it will make the magnetic field escape
from its initial position, leading to a loss of the plasma, also called a disrup-
tion. The most promising fusion reactor designs are toroidally shaped with
a helically twisted magnetic field. We can mention in this context tokamaks,
stellarators and reversed field pinches (RFPs), which differ only in the gener-
ation and precise geometry of the poloidal magnetic field. In stellarators both
the toroidal and poloidal magnetic field are externally imposed. In the other
two-geometries, tokamaks and RFPs, the toroidal magnetic field is imposed by
external coils, but the poloidal field is generated by a toroidal current which
is induced. In tokamaks the so-generated poloidal field is several times weaker
than the toroidal field. In the RFP the current is relatively strong, correspond-
ing to several poloidal windings of the magnetic field for one toroidal winding.
This magnetic geometry is unstable and the plasma self-organizes strongly into
a magnetic field which reverses near the edges with respect to what would be
expected from considering the magnetic field induced by the toroidal current
without self-organization. Until relatively recently this process was explained
by the tendency of a system to minimize its energy under constraints [98]. It
is now understood that the relaxation mechanism is rather related to a fun-
damental plasma-instability, the tearing mode, which leads to a relaxed, but
dynamically active quasi-single-helicity state [99].

Even without considering the MHD instabilities, the confinement of the
plasma is problematic. If MHD instabilities are controlled, the confinement
would in principle be good enough such that room-size tokamaks would be a
viable energy source. The coulomb interactions (electrostatic interactions be-
tween the individual charged particles) degrade the plasma confinement, but this
degradation is not large enough to prevent a small tokamak from producing en-
ergy. However, the coulomb interactions are not the only source of transport.
There are also turbulent plasma movements.

In fusion plasmas a certain class of electrostatic instabilities (which means
that the instability is not caused by the dynamics of the magnetic field) is almost
impossible to avoid, leading to small scale turbulent behavior. In particular in
the edge of the plasma, turbulent motion is almost always present. It is this
turbulence which is one of the main problems that are responsible for the fact
that fusion is not yet a generally used energy source. Chapter 5 will be partly
dedicated to the investigation of this micro-turbulence.
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Figure 4.3: A rough sketch of the magnetic energy needed to obtain a triple-
product value for both Low-confinement (L) mode experiments and High-
confinement (H) mode experiments. The predicted value of H-mode operation
of ITER is based on an extrapolation of roughly one order of magnitude in mag-
netic energy. The magnetic energy is approximately proportional to the size of
the machine.

It was found that, increasing the machine-size, the overall confinement time
increased and, extrapolating, the goal of energy production could in principle
be attained if large enough machines could be constructed. In these larger ma-
chines the influence of the edge turbulence seems to become of a lesser relative
importance. Plotting triple product nTτ against machine-size it was however
concluded that, in order to reach the value for ignition, the machines should be
so large that the technical difficulties would make their construction sheer im-
possible. Fortunately, in the 1980’s it was observed that some kind of transition
takes place for certain plasma parameters, which reduces the level of turbulence
[101]. This transition from a low to a high confinement state (LH-transition),
showed that, according to an extrapolation, the construction of igniting fusion
reactors would be feasible and the construction of ITER is based on this belief.
Figure 4.3 illustrates this extrapolation.

The precise origin of the LH-transition is today still not clarified. Experimen-
talists know how to produce such a state in their machine by pushing the right
buttons, but the physics-picture is still far from complete. It seems that there
is a strong link with plasma rotation. A plasma can be spun-up by injecting
beams of neutral particles, thereby directly increasing the angular momentum.
But even in the absence of external momentum sources, a tokamak seems to ro-
tate in the toroidal direction. The first systematic studies of this phenomenon
can be attributed to Rice and coworkers (see [102] for an overview). There still
is a lot of speculation on the origin of spontaneous rotation and a number of
mechanisms has been proposed (See for example reference [103] for a review).
Chapter 6 will be dedicated to the investigation of large-scale plasma flow, and
the spontaneous generation of angular momentum, within the MHD framework.

Before discussing micro-turbulence and self-organization, we will first give
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an outline of the physical models used to study these plasma phenomena and we
will point out the importance of the imposed magnetic field for the dynamics.

4.2 A fluid description of plasma dynamics

A plasma is a gas in which the electrons and ions are detached from one another.
This separation called ionization takes normally place at high temperatures.
Since the molecules are not charge neutral any more, the plasma will interact
with magnetic fields. The same happens in metals, in which electrons are also
detached. The dynamics of plasmas and liquid metals therefore share some
dynamical properties.

Let us recall the Maxwell equations, which describe the dynamics of the
electromagnetic fields E and b.

∇ · b = 0 (4.3)

∂b

∂t
= −∇×E (4.4)

∇ ·E =
q

ε0
(4.5)

∇× b = µ0j + µ0ε0
∂E

∂t
, (4.6)

in which ε0 is the permettivity and µ0 the permeability of vacuum. These
quantities are related to the speed of light by c = 1/

√
ε0µ0. j is the current

density. A charged particle with charge q and mass m in such a field will
experience two forces, one due to the electric field, the other due to the magnetic
field. Its velocity will then evolve according to

mv̇ = q (E + v × b) . (4.7)

If one would track all ions and electrons and compute the changes that their
movements induce on the electromagnetic fields, one obtains a complete descrip-
tion of the plasma. This is the most fundamental description of a plasma. Every
particle is described by its position and its velocity. The complete description
at time t is thus given by the six dimensional function f(xn,vn, t) in which n
labels a particular particle. The evolution of f is given by the kinetic equation,

∂tf + v · ∇xf + v̇ · ∇vf = 0, (4.8)

in which ∇x and ∇v indicate partial derivatives with respect to position and ve-
locity respectively. In general, one is interested in the average behavior and not
in individual particles, so that one averages over a large ensemble of equivalent
particle distributions,

∂tf + v · ∇xf + v̇ · ∇vf = R. (4.9)

v̇ is given by expression (4.7). The term R appears since v · ∇xf 6= v · ∇xf ,
just like in the turbulence closure problem, where the average introduces the
Reynolds stress. This term is called the interaction term since it corresponds
to the interaction of the different particles, and no precise form for R exists for
most cases. One model is to take into account purely elastic collisions between
the different particles.
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For most practical purposes one is interested in the collective behavior of
the plasma at scales much larger than the mean-free path. In these cases a fluid
description is most useful.1 Braginskii [105] derived fluid equations starting from
the above kinetic description for the case of a plasma consisting of electrons and
a single type of ions. Using the relations,

na =

∫
fadv, ua = n−1

a

∫
favadv, (4.10)

one obtains continuum equations for the collective behavior of the plasma, with
ua the velocity and na the particle density of species a, a being here i for the
ion fluid or e for the electron fluid. The resulting equations are

∂tna +∇ · (naua) = 0 (4.11)

mana (∂tua + ua · ∇ua) = ∇ · ¯̄Pa + qana (E + ua ×B) +Ra. (4.12)

The tensor ¯̄P is given by

Pij = pδij + πij with

πij = −η
[
∂ui
∂xj

+
∂uj
∂xi

]
+

2

3
δij
∂up
∂xp

. (4.13)

This expression, with η a viscosity, depending on temperature and density,
does not hold in the presence of a strong magnetic field. In that case, dif-
ferent viscosities act depending on the orientation of the strain tensor with re-
spect to the magnetic field. Expressions for this more complicated case can
be found in Braginskii [105]. Analogously, an equation can be derived for
Ta = (3na)−1

∫
fama(va − ua)2dv. This set of equations, together with the

Maxwell equations forms a closed set, if the viscous stress ¯̄πa, the interaction
term Ra and similar terms in the equation for Ta are specified.

In the following we will consider two sets of approximations leading to dif-
ferent fluid descriptions. The first description is electrostatic and considers two
fluids, an ion and an electron fluid, which have distinct features. The second is
the magnetohydrodynamic description, in which the electrons and ions in each
fluid particle move together, so that only one fluid has to be considered.

4.3 Electrostatic drift-wave turbulence: the
Hasegawa-Wakatani model

To illustrate some features of the two-fluid description, we will consider one
particular set of model-equations, which is due to Hasegawa and Wakatani
[106, 107]. We will first describe the approximations which lead to this model.
To start with, this approach is electrostatic, which means that the magnetic

1We will not discuss Gyrokinetics here. In that approach the individual dynamics of
electrons and ions in the presence of a magnetic field is considered, but the fast circular
movement of the ions and electrons around the magnetic fieldlines (charged particles will
describe a circular motion perpendicular to the magnetic field) is averaged out and hereby the
smallest relevant time-scales increase by a considerable number of orders of magnitude. The
resolution of the so-obtained dynamics is still time-consuming but modern super computers
can currently compute some tokamak-relevant plasma flows within a reasonable amount of
time. See [104] for a recent review on the topic.
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Figure 4.4: In our studies of drift-wave turbulence we consider a square domain.
This domain represents a small slab near the edge of a tokamak, perpendicular
to the magnetic field. The x-direction of our slab then corresponds roughly to
the radial direction, and the y-coordinate represents the poloidal direction. The
combination of turbulent velocity fluctuations and a strong density gradient Γ
lead then to a turbulent flux of plasma in the radial direction. Figure taken
from reference [12].

field is fixed. Since in the edge of fusion plasmas the electrostatic turbulence
evolves on a small time-scale compared to the time-scale of the magnetic field,
this approximation is useful to study the dynamics of the micro-turbulence
disentangled from the large-scale dynamics. In particular in the edge of fu-
sion plasmas, this micro-turbulence is an unavoidable feature. In the edge the
plasma density rapidly falls off. In the present model, the equilibrium plasma
density profile is considered to be given, with a radial dependence, n0(r). The
magnetic field is not only considered constant, but also spatially uniform. These
two approximations hold approximately in the plasma edge, and in Figure 4.4,
we show the geometry which is considered in our investigations of electrostatic
drift-wave turbulence.

We start by writing the four equations, which form the starting point of
our model. These are the Braginskii fluid equations (4.11) for the ions and the
electrons

∂tni +∇ · (niui) = 0 (4.14)

mini (∂tui + ui · ∇ui) = ∇ · ¯̄Pa + eni (E + ui ×B) +Ri (4.15)

∂tne +∇ · (neue) = 0 (4.16)

mene (∂tue + ue · ∇ue) = ∇ · ¯̄Pe − ene (E + ue ×B)−Ri, (4.17)

in which we used that Ri = −Re, as will be explained later. These eight equa-
tions contain 10 variables: the three components of the ion-fluid-velocity, the
three components of the electron-fluid-velocity, the plasma densities ne and ni
and the two pressures. We assume here that the viscosities involved in ¯̄Pa are
known. We will consider the equation of state pa = naTa, and neglect tempera-
ture gradients, so that we have a closed system. The set of approximations that
we will introduce below will lead to a final model containing only two equations,
one for the plasma density fluctuations and one for the ion fluid vorticity.

The first step in deriving this model is to consider the ion-momentum equa-
tion. In the strong magnetic field approximation, we introduce the small pa-
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rameter
1

ωci

∂

∂t
� 1. (4.18)

This means that the typical time-scales of the fluid movement are much larger
than the plasma-oscillations, with ωci = eb/mi. It can then directly be seen
by an order of magnitude analysis that the leading order terms in the ion-
momentum equation (4.15) are the ones proportional to e, so that

ui × b = −E. (4.19)

Taking the vector product with b at each side, we obtain for the leading-order
ion velocity

uE×b =
E × b
b2

. (4.20)

This is the E×b velocity, which is two-dimensional in a uni-directional magnetic
field. Furthermore, it can be easily checked that this velocity is incompressible
in the present case. An important feature of this velocity is that it is identical
for ions and electrons since it does not depend on the mass and charge of the
particles. In the present case we will also be interested in the sub-dominant
contribution. For that we pose ui = uE×b+up and substitute this into equation
(4.15). To next order the ion-moment equation reads then,

mini(dt + µ∆)uE×b = −∇pi + nieu
p × b. (4.21)

We used expression (4.13) to explicit the stress term. The interaction term R
is neglected in this equation, since, due to the large mass ratio, ion-electron
collisions do not influence the ion-dynamics much2. Let us consider the case in
which the E × b velocity is zero. In this case we obtain an expression for up by
taking again the vector product with b on the RHS. This yields,

up = (nieB
2)−1∇pi × b. (4.22)

It was assumed that temperature gradients were negligible, so that, using the
equation of state p = nT , we obtain

up =
T

nieB2
∇ni × b. (4.23)

The presence of a radial gradient of plasma density gives thus rise to a poloidal
velocity. If the E×b is not zero, we have that the inertia of the ion-fluid directly
influences this velocity, up which is called the polarization velocity. Like the
E × b velocity, it is also perpendicular to the magnetic field, but unlike it, it is
not divergence free. Taking the curl of equation (4.21), we find for the E × b -
vorticity (ωE×b = ez · (∇× uE×b))

mini(dt + µ∆)ωE×b = nie(−b∇ · up), (4.24)

so that

1

ωci
(dt + µ∆)ωE×b = −∇ · up. (4.25)

2The ratio of the masses of the ions and the electrons is comparable to the ratio of the
mass of a football to a fly.
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This shows that the divergence of the polarization-velocity acts as a source (or
sink) term in the equation for the E×b -vorticity. Since its value is proportional
to the particle mass, it is much larger for the ions. The ion-continuity equation
will link this divergence to the plasma density fluctuations. This equation is

∂tn+∇ · (uin) = 0. (4.26)

We assume adiabatic electrons so that the ion density is equal to the electron
density. Here and in the following we drop therefore the indices on n. Substi-
tuting the total velocity (E × b plus polarization) and using the fact that the
E × b -velocity is divergence free, we write,

∂tn+ u · ∇n = −n∇ · up → ∇ · up = −dt lnn. (4.27)

The electron continuity equation is

∂tn+∇ · (uen) = 0. (4.28)

The polarization velocity is small for the electrons, since it is related to the
inertia and the electron mass is small. We therefore neglect it in the plane,
compared to the E × b-velocity,

∂tn+ uE×b · ∇⊥n = −∇||(ue||n) = ∇||(J||/e), (4.29)

in which the last equality follows from the fact that the parallel ion-velocity is
approximately negligible compared to the parallel electron velocity.3 The final
expression, which closes the system should express J|| as a function of n, ω. This
relation is derived from the electron momentum equation,

men(dt + µ∆)ue = −∇pe − ne(E + ue × b) +Re. (4.30)

In this equation the interaction term can not be neglected, but the inertia
can, as well as the parallel viscous drag. The interaction term is given by
R = η(niui−neue) = ηJ/e.4 We write the equation for the parallel component,
J||,

0 = −∇||pe − neEz + ηJ||/e. (4.32)

Using the equation of state p = nT and neglecting temperature gradients, we
obtain

J||/e =
Ten0

η
∇||
(
n

n0
− φe

Te

)
. (4.33)

At this point we have obtained a closed set of equations. We can combine (4.25),
(4.27), (4.29), (4.33), which yields

1

ωci
(dt + µ∆)ωE×b =

Ten0

η
∇2
||

(
n

n0
− φe

Te

)
(4.34)

∂tn+ uE×b · ∇⊥n =
Ten0

η
∇2
||

(
n

n0
− φe

Te

)
. (4.35)

3The ion velocity dynamics are two-dimensional to first and second order. The electron
dynamics are however three-dimensional. Since the mass ratio is so large, the plasma seems
to behave as a two-dimensional fluid. However, the parallel electron dynamics are essential to
trigger the drift-wave instability.

4The interaction term is given by

R = −nme (ve − vi) νei. (4.31)

where νei is the frequency of coulomb-collisions between ions and electrons. We have Ri =
−Re since elastic collisions are considered.
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Figure 4.5: A diamagnetic drift is present in magnetized plasmas, both perpen-
dicular to the magnetic field and to the density gradient.

The density is assumed to fluctuate around an imposed equilibrium distribution,
with small fluctuations ñ, so that ln(n) ≈ ln(n0)+ñ/n0. Also, assuming that the
parallel dynamics are dominated by modes with a narrow frequency distribution,
∇2
|| can be chosen constant and equal to −k2

||.

In the case of adiabatic electrons (electrons that move rapidly and without
friction along the field lines), the electron density distribution is given by n =
n0 exp(φe/Te). In this case, we find

ñ

n0
=
φ̃e

Te
. (4.36)

In this case the system reduces to the Hasegawa-Mima system [108], a system
of equations equivalent to the Charney-geostrophic equations, describing the
dynamics of a thin layer of fluid on a rotating sphere (an obvious simplification
of the atmosphere). Both the Hasegawa-Wakatani model and the Charney-
Hasegawa-Mima (CHM) model allow wave-like solutions. In the present con-
figuration, these drift-waves are perpendicular to both the magnetic field and
the density gradient, and they propagate with the polarization velocity. In the
HW model, these waves are unstable and a saturated turbulent state results, an
instability which is absent in the CHM model. The HW system does therefore
contain an internal forcing, where the energy is coming from the imposed den-
sity gradient. The essential feature leading to this instability is the finite time
it takes for the electrons to restore charge neutrality.

In the case in which the friction of the electrons is large, the time it takes to
restore charge-neutrality becomes large and the effective coupling between the
density fluctuations and the electrostatic potential becomes weak. In this case
the HW model behaves as a two-dimensional Navier-Stokes flow with a large-
scale forcing term, advecting a passive scalar which is fed through the presence
of a uniform scalar gradient. A more detailed description of this fluid analogy is
given in reference [12]. In Figure 4.6 the vorticity field in the saturated nonlinear
state is shown for different values of the electron-adiabaticity.
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Figure 4.6: Vorticity field in the fully nonlinear saturated state of the HW model
in slab-geometry. Left: when the electrons move slowly in the parallel direction
(perpendicular to the plane of the figure), the resulting perpendicular flow (in
the plane of the figure) ressembles two-dimensional Navier-Stokes turbulence
forced at the large scales. Right: the electrons are nearly adiabatic and the
behavior in the plane is close to shallow water dynamics. From reference [12].

4.4 The MHD approximation

In the special case in which every fluid particle is charge neutral (ni = ne ≡ n),
one can derive an equation for the fluid particles by summing equations (4.14).
This yields the MagnetoHydroDynamic (MHD) approximation. Neglecting the
electron inertia we have

min

(
∂

∂t
+ vi · ∇

)
vi = −∇p+ J ×B, (4.37)

in which p = pi+pe is the total pressure and vi ≈ u is the plasma velocity. The
evolution equation of the magnetic field is described by the Faraday-Maxwell
equation,

∂B

∂t
= −∇×E, (4.38)

and the relation between the electric field E and the magnetic and velocity field
is given by Ohm’s law,

E = J/σ − u×B, (4.39)

with σ the electric conductivity. Finally, the relation between the magnetic field
and the current density is

µ0J = ∇×B, (4.40)

in which the displacement current has been neglected (which is a good approx-
imation for typical velocities which are small compared to the speed of light),
and in which µ0 is the magnetic permeability of vacuum. In the incompressible
and isothermal case the above set of equations is closed if we add the continuity
equation for the velocity ∇ · u = 0. The density of a fluid element is equal to

ρ = (mi +me)n. (4.41)
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We normalize the magnetic fluctuations b → (µ0ρ)b, which allows to simplify
the above equations to(

∂

∂t
+ u · ∇

)
u = −1

ρ
∇p+∇×B ×B (4.42)

∂B

∂t
= ∇× u×B + η∆B, (4.43)

with the magnetic diffusivity η = (σµ0)−1.

The MHD approximation is very good for the description of the dynamics
of liquid metals, which are encountered in industrial applications (e.g. reference
[109]) or in the description of the dynamo problem [110]. Typical plasma appli-
cations in which the MHD approximation gives good results are the solar wind
[111] and the reversed field pinch fusion device [98]. That the latter applica-
tion seems to be well described by MHD is actually rather surprising. Charge
neutrality is normally rather well verified in plasmas with a high collision rate,
since a large number of collisions improves the Maxwellianity of the charge dis-
tribution. In fusion plasmas the mean free path is however of the same order
of magnitude as the machine dimensions. Fortunately, the helical motion of the
particles around the imposed magnetic field prevents the particles from escaping
and collisions happen every once in a while, enough for charge neutrality to be
approximately restored.

4.5 A strong magnetic field and two-
dimensionalization

As explained before, in a magnetic field, a moving charged particle experiences
the Lorentz force, perpendicular to both the magnetic field and the direction of
movement. Moving parallel to the field, this force vanishes. This immediately
shows the intrinsic anisotropic character of MHD turbulence. Whereas a uniform
velocity does not influence the dynamics of a turbulent flow, since one can define
a reference frame moving with the velocity, there is no such transformation to get
rid of the influence of the magnetic field on the velocity. Fundamentally MHD
flows are therefore anisotropic. Even if only isotropically distributed magnetic
field fluctuations are present in a flow, the influence of these on velocity scales
much smaller than the typical lengthscale of the isotropic magnetic fluctuations,
is equivalent to the presence of a large-scale magnetic field.

Let us now focus on the case in which a strong uniform magnetic field is
present. This case was theoretically addressed by Montgomery and Turner
[112] and first simulated in two dimensions in [113]. In [112] it was suggested
that the dynamics of the system in this case would rapidly evolve towards a
case in which the system consists of two parts. First a two-dimensional system,
perpendicular to the magnetic field, second an Alfvén wave contribution. In the
case of low magnetic Prandtl number, i.e. a magnetic diffusivity compared to
the kinematic viscosity, the Alfvén-wave part of the dynamics is rapidly damped
out. Indeed, these waves exist only since magnetic field lines are frozen into the
fluid if the magnetic diffusivity tends to zero.

This case of quasistatic MHD turbulence, in which a uniform magnetic field is
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Figure 4.7: Two and a half dimensional turbulence

present and the magnetic Prandtl number is small5, was investigated in Favier
et al. [114, 10]. In particular it was observed and explained how the results
from linear analysis disagreed with results from Direct Numerical Simulations
and EDQNM simulations. Linear analysis [115] predicts that at long times
the ratio of parallel kinetic energy to perpendicular kinetic energy tends to a
value of two. We explained that this is not observed due to fairly simple non-
linear effect. Indeed, the system perpendicular to the magnetic field tends to
a two-dimensional behavior, and two-dimensional turbulence at high enough
Reynolds number tends to conserve the kinetic energy. The parallel dynamics
are at long times similar to the behavior of a passive scalar, advected by the
two-dimensional perpendicular motions. This state of a velocity field in which
the two perpendicular velocity components mix the third component, without
feedback of this third component on the perpendicular dynamics was baptized
two-and-a-half dimensional turbulence by Montgomery and Turner [116], a ter-
minology which can be used more generally for situations in which three com-
ponents of the fluctuation field are considered, but only two components of the
wave-vector. Since the mixing of a passive scalar (in the present case the par-
allel velocity component) is characterized by a direct cascade toward the small,
dissipative scales, the parallel kinetic energy is more rapidly dissipated than the
perpendicular kinetic energy, which explains why the linear analysis (which does
not take into account the rapid nonlinear cascade of the parallel kinetic energy)
fails.

In Figure 4.8, results are shown from DNS and EDQNM during the regime

5The quasistatic description is in particular useful in the description of liquid metals.
However, the tendency toward two-dimensionalization is generally observed in all systems of
conducting fluids and plasmas in which a strong magnetic field is present. The precise form
of the anisotropy and the mechanisms involved in the two-dimensionalization may differ from
case to case.
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Figure 4.8: Quasi-static MHD turbulence behaves as two-and-a-half-dimensional
turbulence. The perpendicular velocity advects the parallel velocity as were it
a passive scalar. This behavior is illustrated by considering the energy spectra.
The energy spectra of the perpendicular velocity (solid lines) display a steep
inertial range behavior with a spectral exponent of the order three or four, as
is usual for two-dimensional turbulence. The spectrum of the third velocity
component (dotted lines) displays a Batchelor-type behavior, as is expected in
the case of advection by a velocity field with a steep energy distribution. The
lower two curves are obtained using DNS, the upper four curves are EDQNM
results. From reference [10].

in which the parallel kinetic energy is advected as were it a passive scalar by the
quasi-two-dimensional motion of velocity fluctuations perpendicular to the mag-
netic field. In this case, of freely evolving two-dimensional turbulence advecting
a passive scalar, the inertial range scaling of the parallel velocity is expected
to be close to Batchelor scaling [117], whereas the parallel kinetic energy is ex-
pected to be characterized by a k−3 enstrophy cascade type of spectrum (as will
be explained in more detail in the next section).

4.6 Mixing in two-dimensional turbulence

In the following manuscript the behavior of a passive scalar, advected by two-
dimensional turbulence, is addressed in more detail. At first sight it might seem
unappropiate to present these two-dimensional Navier-Stokes turbulence results
in this chapter. As we discussed however in section 4.3, the drift-wave turbulence
dynamics in the limit of a small adiabaticity are equivalent to two-dimensional
turbulence advecting a passive scalar. The only difference is that in the latter
case an external forcing is needed to study statistically stationary flows, whereas
the HW system contains an internal instability. We also observed in the previ-
ous section that quasi-static MHD turbulence tends to a two-dimensional fluid
turbulence limit, advecting the parallel velocity as a passive scalar.

In the now presented investigation we study therefore a flow which is rel-
evant for both charge-neutral plasma dynamics and two-fluid descriptions. In
particular we will focus on the turbulent flux of scalar in the down-gradient
direction. This is the relevant quantity for radial turbulent transport in fu-
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sion plasmas. The transported quantity can be the concentration of impurities,
or can be heat or toroidal momentum. In the following manuscript, the self-
similarity of the spectral distribution is characterized by quantifying the scaling
exponents in the inertial range of the scalar flux spectrum. Both phenomeno-
logical arguments and DNS are used for this characterization. Related studies
for three-dimensional turbulence both in isotropic and sheared turbulence can
be found in references [118, 119].
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I. INTRODUCTION

In the present work we consider the spectral distribution
of the passive scalar flux in two-dimensional incompressible
Navier–Stokes turbulence. The scalar flux appears as the un-
closed quantity in the Reynolds averaged equation for the
mean scalar field: separating the velocity and passive scalar

field into mean and fluctuations, u=u+u� and �= �̄+��, the
equation for the mean scalar field reads

� �̄

�t
+ ūj

� �̄

�xj
= �

�2�̄

�xj
2 −

�uj���

�xj
, �1�

where � is the diffusivity of the scalar and the overbar de-
notes an ensemble average. The last term of this equation

contains the correlation uj���, which is called the scalar flux.
It is the term which represents the influence of the turbulent
fluctuations on the mean scalar profile. Since it is the un-
closed term in the Reynolds averaged equations, it needs to
be modeled, e.g., by means of an eddy diffusivity. To pro-
pose correct models for the scalar flux, understanding of the
physics of the turbulent flux is needed. For an overview of
models for the scalar flux, we refer to the book by Schiestel,1

the work by Rogers et al.,2 or more recently the model de-
rived by Wikström et al.3 For the more complicated case of
the scalar flux in the presence of shear and rotation, see the
work by Brethouwer.4 These studies focus on three-
dimensional turbulence.

We consider statistically homogeneous velocity and sca-
lar fields so that we can investigate the scale distribution of
the turbulent scalar flux by means of Fourier spectra. The
Fourier spectrum related to the scalar flux is defined as

Fuj�
�k� = �

��k�
F�x−x��uj��x,t����x�,t��d��k� , �2�

in which ��k� is a circular wavenumber shell with radius k,
the wavenumber, and F �x−x��¯ � denotes the Fourier trans-
form with respect to the separation vector x−x�. This defi-
nition is such that by construction we have

�
0

�

Fuj�
�k�dk = uj���, �3�

which illustrates that the scalar flux spectrum characterizes
the contribution of different lengthscales �or wavenumbers�
to the scalar flux. This spectrum is also called the scalar-
velocity cospectrum since it is defined as the real part of the
scalar-velocity correlation in Fourier space. The imaginary
part is called the quadrature spectrum. The quadrature spec-
trum does not contribute to the scalar flux in physical space
and we therefore concentrate on the cospectrum.

Academically the least complicated case to study the tur-
bulent scalar flux is, as proposed by Corrsin,5 isotropic tur-
bulence on which we impose a stationary uniform mean sca-

lar gradient ��̄ /�x1��, arbitrarily chosen in the x1-direction.
In this case there exists one nonzero component of the scalar
flux, aligned with the gradient. The other component is zero.
We consider this case and in particular, we focus on the
inertial range scaling of the scalar flux spectrum. We will in
the following drop the subscripts and denote the cospectrum
by F�k�. We will also drop the primes and denote the fluc-
tuations of velocity and scalar by u and �, respectively. Be-
fore starting the study of the scaling in two-dimensional tur-
bulence, we briefly discuss the results obtained in the related
case of three-dimensional turbulence. Lumley6,7 predicted
that at high Reynolds numbers the inertial range should fall
off as k−7/3. Indeed he predicted the inertial range to be given
by

F�k� � ��1/3k−7/3, �4�

with � the dissipation of kinetic energy, or more precisely the
energy flux at scale k. This scaling was investigated experi-
mentally in the atmospheric boundary layer8 and in decaying
grid turbulence at Taylor-scale Reynolds numbers up to R�

=600.9,10 In these grid-turbulence experiments it was found
that the �7/3 scaling was not observed at this Reynolds
number. It was subsequently proposed11 that the inertial
range exponent might be �2 instead of �7/3. However, in
closure calculations, it was shown that the �2 scaling was a

PHYSICS OF FLUIDS 21, 115105 �2009�

1070-6631/2009/21�11�/115105/8/$25.00 © 2009 American Institute of Physics21, 115105-1

Downloaded 22 Apr 2011 to 156.18.40.43. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



low-Reynolds number effect and that the �7/3 scaling
should be observed at higher Reynolds numbers.12,13 This
was confirmed by the work of O’Gorman and Pullin14 and
recent direct numerical simulations �DNSs�.15

In the case of two-dimensional turbulence only few stud-
ies address the problem of the scaling of the scalar flux spec-
trum. Let us recall that in two-dimensional turbulence, in
which the energy is injected at a wavenumber ki, two cas-
cades can be observed: first an energy cascade toward the
large scales and, second, an enstrophy cascade to the small
scales. If the injection scale is much smaller than the domain
size and much larger than the range in which the viscous
stresses become important, both cascades are characterized
by power-law scaling.16–18 We focus on these inertial ranges,
which we will denote by IC for the inverse energy cascade
and FC for the forward enstrophy cascade range. In particu-
lar we investigate the wavenumber dependence of the scalar
flux spectrum in these ranges.

One of the few works investigating the scaling of the
scalar flux spectrum in two-dimensional turbulence is Ref.
19, which mentions that the scalar flux spectrum can be
roughly estimated by

F�k� 	 E�k�1/2E��k�1/2, �5�

in which the scalar variance spectrum is defined as

E��k,t� =
1

2
�

��k�
F�x−x����x,t���x�,t��d��k� . �6�

In the inverse cascade �IC� range, where both the energy
spectrum E�k� and the scalar variance spectrum E��k� are
known to obey the Kolmogorov–Obukhov scaling,20,21 this
would lead to a k−5/3 inertial range. Close observation of the
numerical results in Ref. 19 shows that this is not the case.

In the present paper we show that this k−5/3 inertial range
prediction does not correspond to the physics of the problem.
Phenomenological scalings for the inertial ranges in both the
IC and the forward enstrophy cascade will be proposed for
the scalar flux spectrum F�k� and the scalar variance spec-
trum E��k� for the cases of unity and small Schmidt number
�the Schmidt number is defined as the ratio of the diffusivity
of momentum to that of the scalar, Sc=	 /�, and is identical
to the Prandtl number when the passive scalar is tempera-
ture�. DNSs are carried out to verify the validity of the
predictions.

Note that since the scalar fluctuations are produced by a
mean gradient, the scalar fluctuations are in principle not
isotropic, but axisymmetric around the direction of the gra-
dient. It was shown22,23 that in the case of three-dimensional
isotropic turbulence the spectral distribution of scalar flux
can be described by a single scalar function. The distribution
of scalar variance can be described by two scalar functions.
In the present work, by integrating over wavenumber shells
�Eqs. �2� and �6��, we eliminate the angle dependence. A
detailed study of the anisotropy of the scalar field will not be
performed in the present work.

II. LINK BETWEEN THE LAGRANGIAN TIMESCALE
AND SCALAR FLUX SPECTRUM

The phenomenological scaling for the scalar flux pro-
posed in the present work is based on the direct relation
which exists between the scalar field and the Lagrangian dy-
namics of the turbulent velocity field. We therefore first dis-
cuss this link. Kraichnan proposed in the framework of the
Lagrangian history direct interaction approximation24 that
the dominant spectral timescale characterizing the inertial
range dynamics can be estimated by


�k,t� = �
0

t E�k,t�s�
E�k,t�

ds =
1

E�k,t��0

t

E�k,t�s�ds . �7�

This quantity was investigated numerically in Ref. 25. The
energy spectrum is the spherically averaged Fourier trans-
form of the two-point velocity correlation,

E�k,t� =
1

2
�

��k�
F�x−x��ui�x,t�ui�x�,t��d��k� . �8�

E�k , t �s� is the equivalent spectrum in which the Eulerian
velocity ui�x� , t� is replaced by ui�x� , t �s�, which is defined
as the velocity at time s of a fluid particle which arrives at
point x� at time t. The definition of ui�x� , t �s� is illustrated in
Fig. 1. The definition of E�k , t �s� is thus

E�k,t�s� =
1

2
�

��k�
F�x−x��ui�x,t�ui�x�,t�s��d��k� . �9�

By definition E�k , t � t� coincides with the Eulerian spectrum
E�k , t�. An interesting property of Eq. �7� is that the integral
can be explicited by integrating ui�x , t �s� along its trajectory.

�
0

t

E�k,t�s�ds =
1

2
�

��k�
F�x−x�
ui�x,t��

0

t

ui�x�,t�s�ds�d��k�

=
1

2
�

��k�
F�x−x��ui�x,t�Xi�x�,t��d��k� . �10�

Instead of the two-time quantity ui�x� , t �s�, the expression
now contains the single-time displacement vector of the fluid
particle, Xi�x� , t�, corresponding to the vector pointing from
its position at t=0 to its position at t, x�, or, in other words,
the trajectory. The link between the scalar flux spectrum and
the integral of E�k , t �s� becomes evident if we compare the

FIG. 1. �Color online� Representation of the Lagrangian two-point velocity
correlation.
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evolution equation of a nondiffusive passive scalar fluctua-
tion � in the presence of a mean scalar gradient,

��

�t
+ uj

��

�xj
= − �u1, �11�

with the equation of the x1-component of the Lagrangian
position vector Xi�x , t�:

dX1

dt
=

�X1

�t
+ uj

�X1

�xj
= u1. �12�

Indeed, both equations are identical, only differing by a fac-
tor −�. As was already stated in Ref. 26, the scalar fluctua-
tion is therefore proportional to the displacement of a fluid
particle in the direction of the gradient. In the limit of van-
ishing diffusivity, relation �7� can thus be recasted, using
Eqs. �2� and �10� as in Ref. 27:


�k� =
�−1F�k�

E�k�
. �13�

If the energy spectrum and the Lagrangian timescale are
known, the scalar flux spectrum is given by relation �13�.

A. Prediction of the scaling of the scalar flux
spectrum at large and unity Schmidt number

Dimensional analysis and phenomenological rea-
soning24,28 give that at a scale l�k−1 the Lagrangian time-
scale should be approximately given by l /u�l� in which the
typical velocity u�l� can be estimated to be of the order of
�kE�k�. This yields an estimation for the timescale 
�k�,


�k� � �k3E�k��−1/2. �14�

Combining this relation with Eq. �13� yields an estimation
for the scalar flux inertial range scaling,

F�k� � ��E�k�
k3 , �15�

which is a direct relation between inertial range scaling of
the scalar flux spectrum and the energy spectrum. In three-
dimensional turbulence, using Kolmogorov scaling for the
energy spectrum,

E�k� � �2/3k−5/3, �16�

leads to classical scaling for the scalar flux spectrum,

F�k� � ��1/3k−7/3. �17�

In two-dimensional turbulence this scaling should hold in the
IC range where Kolmogorov scaling is expected. In the for-
ward enstrophy cascade range, the energy spectrum is pre-
dicted to scale as16–18

E�k� � �2/3k−3, �18�

with � as the flux of enstrophy in the direct cascade. This
scaling was later refined introducing logarithmic
corrections,29,30

E�k� � �2/3k−3/ln�k/ki�1/3, �19�

with ki as the wavenumber corresponding to the energy in-
jection. We neglect this correction as a first approach. For
this forward entrophy cascade range �15� yields the scaling

F�k� � ��1/3k−3. �20�

It should be noted that the preceding analysis supposes a
high Schmidt number. Indeed, the analogy between the po-
sition of a fluid particle and a scalar fluctuation �Eqs. �11�
and �12�� is exact for infinite Schmidt number. However, the
effect of the Schmidt number for Sc larger than one is
small.22,31 O’Gorman and Pullin14 showed that when chang-
ing the Schmidt number from 1 to 104, the shape of the
scalar flux spectrum was only little affected. We now explain
this.

The equation for the cospectrum can be derived directly
from the scalar advection-diffusion equation combined with
the Navier–Stokes equation �e.g., Refs. 12 and 22�. It reads


 �

�t
+ �	 + ��k2�F�k� = −

2

3
�E�k� + Tu�

NL�k� . �21�

The left hand side contains the time derivative and the influ-
ence of viscosity 	 and scalar diffusivity �. We consider the
statistically stationary state in which the time-derivative term
drops. The first term on the right hand side is the production
of scalar flux by interaction of the velocity field with the
mean scalar gradient �. The last term is the nonlinear inter-
action which contains two contributions: a purely conserva-
tive nonlinear interaction which sums to zero by integration
over wavenumbers and a purely destructive pressure scram-
bling term which annihilates the correlation between scalar
and velocity fluctuations. The viscous-diffusive term can be
written as

�	 + ��k2F�k� = 	�1 + Sc−1�k2F�k� . �22�

This term changes only by a factor of 2 when the Schmidt
number goes from 1 to �. The influence of the Schmidt
number for Sc larger than one is therefore small.

B. Prediction of the scaling of the scalar flux spectrum
at small Schmidt number

In the case of Sc→0 we do expect the above reasoning
to change. We now discuss this case of small Schmidt
number.

When the diffusivity becomes very large �keeping 	 con-
stant to retain an inertial range for the energy spectrum�, the
influence of the nonlinear terms in Eq. �21� will become
small, since the diffusive timescale becomes smaller than the
nonlinear timescale �such as the eddy turnover time�. The
production term is then directly balanced by the diffusive
term. In this case Eq. �21� reduces to the equilibrium

�k2F�k� = − 2
3�E�k� , �23�

which yields
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F�k� = −
2�E�k�

3�k2 . �24�

O’Gorman and Pullin14 obtained the same expression in
three dimensions. In the IC range this should yield a k−11/3

scaling and in the FC range a k−5 scaling.
In Sec. IV results of DNSs of isotropic 2D turbulence

with an imposed mean scalar gradient are presented to check
the relations:

�−1F�k� � 

�1/3k−7/3 IC for Sc � 1,

�1/3k−3 FC for Sc � 1,

�−1�2/3k−11/3 IC for Sc 
 1,

�−1�2/3k−5 FC for Sc 
 1.
� �25�

III. PREDICTIONS FOR THE SPECTRUM
OF THE PASSIVE SCALAR VARIANCE

It is expected that the scalar variance spectrum displays
Batchelor scaling32 in the forward enstrophy cascade as was
experimentally demonstrated by33

E��k� � ���−1/3k−1, �26�

with �� the �diffusive� destruction rate of passive scalar fluc-
tuations. In the IC, Corrsin–Obukhov scaling is expected.

E��k� � ���−1/3k−5/3. �27�

The equation for the scalar variance spectrum reads


 �

�t
+ 2�k2�E��k� = − F�k�� + T�

NL�k� , �28�

with T�
NL�k� being the nonlinear transfer term. For very small

Schmidt number this equation can again be linearized, yield-
ing for the statistically stationary state

E��k� =
− F�k��

2�k2 . �29�

This gives, using Eq. �24�,

E��k� =
E�k��2

3�2k4 . �30�

For the scalar variance, our predictions are therefore

E��k� � 

���−1/3k−5/3 IC for Sc � 1,

���−1/3k−1 FC for Sc � 1,

�2�−2�2/3k−17/3 IC for Sc 
 1,

�2�−2�2/3k−7 FC for Sc 
 1.
� �31�

IV. NUMERICAL VERIFICATION OF THE PROPOSED
INERTIAL RANGE SCALINGS

A. Numerical method

Simulations are performed using a standard pseudospec-
tral method.34 The simulations are fully dealiased and the
resolution is 10242 gridpoints for a square periodic domain
of size 2�. The time is advanced using a second order
Adams–Bashforth time-stepping scheme.

The equations for the vorticity field and scalar field are

��

�t
+ uj

��

�xj
= �− 1��+1	�

�2��

�xj
2� + f − �

�−2�

�xj
−2 , �32�

��

�t
+ uj

��

�xj
= �− 1���+1���

�2���

�xj
2��

− �u1, �33�

with the vorticity �=ez · ���u�, f a random-phase isotropic
forcing localized in a band in wavenumber-space with a
time-correlation equal to the timestep. The parameters � and
�� are integers equal to one in the case of Newtonian viscos-
ity and diffusivity and equal to 8 in the case of hyperviscos-
ity or hyperdiffusivity. The mean gradient � is in all cases
taken equal to 1 so that the scalar flux, and its spectrum, is
dominantly negative.

In all cases, hyperviscosity is used to concentrate the
influence of the viscous term at the highest wavenumbers.
This allows to increase the extent of the inertial range, which
is the main subject in the present work. Equivalently the
scalar variance is removed at the largest wavenumbers by a
hyperdiffusive term except in the case of small Schmidt
number. Since in that case the diffusive term becomes the
dominant mechanism, the scaling is directly affected by the
type of diffusion, as can be seen in expressions �23� and �29�.
In that case we therefore use a “normal” Laplacian diffusive
term ���=1�. In two-dimensional turbulence the energy
shows a tendency to cascade to smaller wavenumbers, i.e., to
larger scales. To avoid a pile-up of energy at the smallest
wavenumber linear Rayleigh friction �the last term in Eq.
�32�� is used, with � equal to unity.

Two different fully developed turbulent flows are inves-
tigated. First the IC range, in which the forcing is localized
in a wavenumber shell around ki=210. In this case the for-
ward enstrophy range is reduced to less than an octave and a
full decade of IC inertial range is observed in the simula-
tions. Second the forward enstrophy range. In this case the
forcing is localized around ki=8, and the IC range is absent
since the friction acts strongly in the region k�ki. Param-
eters used in the simulations are summarized in Table I. Also
shown are some average values of some typical turbulence
quantities.

In both velocity fields two different cases are considered
for the passive scalar. One at Sc=1, with hyperdiffusivity
���=8� and one at small Schmidt number and ��=1. It is not
straightforward to define Schmidt numbers for these cases.
The precise definition of the Schmidt numbers is however
not important for the present study, but what is important is
the location of the inertial ranges and the ranges where dif-
fusivity becomes important. These ranges can be determined
as follows. We define a wavenumber k� at which the nonlin-
ear timescale 
�k� becomes of the order of the diffusive time-
scale ��k2�−1. If k� is in the inertial range, we can estimate its
value by using expression �14� and the inertial range scalings
�16� and �18�. This yields k���� /�3�1/4 in the IC and
k���� /�3�1/6 in the forward cascade. The wavenumber k�

marks the crossover between an inertial-convective range
and an inertial-diffusive range. We will call unity Schmidt
number cases, these cases in which both viscosity and diffu-
sivity mainly act in the last two octaves of the energy and
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scalar spectra, i.e., k� is of the order of the viscous wave-
number, �� /	3�1/4. The direct influence of the viscosity and
diffusivity is then small for wavenumbers smaller than ap-
proximately 100. In the case of small Sc, a normal diffusive
term is used since the scaling depends directly on the Laplac-
ian. The diffusivity is here taken large enough for it to act at
all scales, including the large scales, i.e., k� is of the order of,
or smaller than ke, the wavenumber at which the energy
spectrum peaks.

Simulations are performed until a statistically stationary
flow is obtained. The spectra are subsequently obtained by
averaging over a time interval of approximately 300 time
units, until a relatively smooth spectrum is obtained. This
corresponds to 270 Te for the IC-range and 540 Te for the
FC-range. The large-scale turnover time Te is here defined as
Te=1 / �ke� u�2 �1/2�.

B. Results

In Fig. 2 visualizations of various quantities are shown at
an arbitrary time. It is observed that the vorticity field con-
tains clear vortical structures in the forward cascade. In the
IC the vorticity field seems almost structureless. However,
closer inspection shows small vortical structures. Visualiza-
tion of the stream function shows more clearly that these
structures are present. The scalar field shows how fluctua-
tions of passive scalar are created by interaction of the flow
with the mean scalar gradient. In the IC case this scalar field
is almost structureless, but shows patches of scalar fluctua-
tion. We also displayed the instantaneous scalar flux, which
is the product of the x1-component of the velocity with the
scalar field. Both positive and negative values of the flux are
observed. The mean value is however smaller than zero
�since the mean gradient is positive�, so that the net flux is
nonzero.

In Fig. 3 visualizations are shown for the scalar field and

the scalar flux for the small Schmidt number case. Vorticity
fields and stream function are not shown, since they are
qualitatively the same as in Fig. 2. Due to the large diffusiv-
ity, all scalar gradients are rapidly smoothed out, so that in
both the IC and FC case the scalar field consists of large
blobs. The scalar flux fields are characterized by a finer
structure.

In Fig. 4 wavenumber spectra are shown for the energy,
scalar variance, and scalar flux. In the IC case, classical
Kolmogorov scaling proportional to k−5/3 holds for E�k� in
the inertial range. The scalar variance spectrum E��k� is also

TABLE I. Details of the simulations. Parameters used in the simulations and
average values of some typical turbulence quantities. These quantities are
averaged over space and time during a time interval of approximately 300

time units. The correlation coefficient �u� is defined as �u�=u� /�u2�2 and
analogous for �v�.

IC, Sc=1 FC, Sc=1 IC, Sc
1 FC, Sc
1

ki 210 8 210 8

ke 9 4 9 4

� 8 8 8 8

�� 8 8 1 1

	� 1�10−38 1�10−35 1�10−38 1�10−35

��� 1�10−35 1�10−32 10 10

�t 5�10−4 10−4 5�10−4 10−4

u2 1�10−2 0.2 1�10−2 0.2

v2 1�10−2 0.2 1�10−2 0.2

�2 0.1 0.9 5�10−8 1.4�10−5

u� −1.5�10−2 �0.1 −1.5�10−5 −1.2�10−3

v� 4�10−4 2.4�10−3 −4�10−8 9�10−7

�u� �0.45 �0.3 �0.6 �0.7

�v� 1�10−2 6�10−3 −2�10−3 5�10−4

−100 −80 −60 −40 −20 0 20 40 60 80 100

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 −5 −4 −3 −2 −1 0 1 2 3 4 5

Inverse Cascade Forward Cascade

ω

ψ

θ

uθ

FIG. 2. �Color online� Visualizations of �from top to bottom� vorticity,
streamfunction, scalar fluctuations, scalar flux. Left: IC. Right: forward cas-
cade. The Schmidt number is unity. The mean scalar gradient is in the
horizontal direction.
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proportional to k−5/3 as can be expected from Corrsin–
Obukhov arguments, but showing an important prediffusive
bump. This bump is frequently observed in spectra of the
scalar variance, e.g., Refs. 9 and 35. The scalar flux spectrum
is proportional to k−7/3, which is in disagreement with ex-
pression �5� proposed as a rough estimate by Smith et al.,19

and in perfect agreement with expression �25�, which corre-
sponds to classical Lumley scaling. Zero crossings are ob-
served so that not the whole spectrum has the same sign.

In the FC range, the energy spectrum is approximately
proportional to k−3, but slightly steeper for the wavenumbers
close to the injection scale ki. Taking into account the loga-
rithmic correction, the agreement with the prediction im-
proves even more. The scalar variance spectrum E��k� shows
a Batchelor regime32 proportional to k−1. The scalar flux
spectrum does show a scaling close to the scaling of the
energy spectrum, especially for the absolute value of the
spectrum. It is observed that the spectrum changes sign at
several wavenumbers. These sign changes were also ob-
served in the investigation of the scalar flux by the stretched
spiral vortex model for three-dimensional turbulence.23 The
spectrum of the planar contribution of the Lundgren vortex
to the scalar flux showed equivalent negative excursions. We
therefore relate this behavior to the roll-up of the scalar field
by large coherent vortices. Indeed, a fluid particle which re-
mains for a long time trapped in a vortical structure will
contribute both positively and negatively to the scalar flux.

As can be observed in Fig. 5, at small Schmidt number,
excellent agreement is observed with the predictions. In the
IC range, F�k� is proportional to k−11/3 and E��k� to k−17/3. In
the FC range, F�k� is proportional to k−5 and E��k� to k−7.

V. CONCLUSION

In this work the scaling of the scalar flux spectrum in
two-dimensional isotropic turbulence was addressed. Phe-
nomenological arguments based on Lagrangian dynamics
were proposed leading to the following predictions for the
inertial range scaling of the scalar flux spectrum:

�−1F�k� � 

�1/3k−7/3 IC for Sc � 1,

�1/3k−3 FC for Sc � 1,

�−1�2/3k−11/3 IC for Sc 
 1,

�−1�2/3k−5 FC for Sc 
 1,
� �34�

and for the scalar variance spectrum,

E��k� � 

���−1/3k−5/3 IC for Sc � 1,

���−1/3k−1 FC for Sc � 1,

�2�−2�2/3k−17/3 IC for Sc 
 1,

�2�−2�2/3k−7 FC for Sc 
 1.
� �35�

It was shown by DNS that in the IC the scalar flux spectrum
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−0.015 −0.01 −0.005 0 0.005 0.01 0.015

−4 −3 −2 −1 0 1 2 3 4
−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025

Inverse Cascade Forward Cascade

θ

uθ

×10−4

×10−4

FIG. 3. �Color online� Visualizations of scalar fluctuations �top�, scalar flux
�bottom�, in the IC �left� and in the forward cascade �right� for the case of
small Schmidt number.
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FIG. 4. �Color online� The energy spectrum, scalar flux spectrum and scalar
variance spectrum for Sc=1. Top: the case of large wavenumber forcing
�inverse energy cascade�. Bottom: the case of small wavenumber forcing
�forward entrophy cascade�. The solid lines are dimensional predictions
given by Eqs. �25� and �31�. In the FC case also the log-corrected k−3 scaling
is shown for the energy spectrum, which almost superposes the normal k−3

scaling. Dots indicate positive values of the scalar flux spectrum.

115105-6 Bos et al. Phys. Fluids 21, 115105 �2009�

Downloaded 22 Apr 2011 to 156.18.40.43. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



is proportional to k−7/3, in perfect agreement with the scaling
arguments. The scalar variance shows Corrsin–Obukhov
scaling, proportional to k−5/3. In the direct enstrophy cascade
the energy spectrum obeys a log-corrected k−3 scaling and
the scalar spectrum displays Batchelor scaling proportional
to k−1. The scalar flux spectrum shows important positive and
negative contributions, probably related to the presence of
long-living coherent structures. The absolute value of the
spectrum shows a scaling close to k−3. At small Schmidt
number, excellent agreement is observed with the predic-
tions. The scalar flux spectrum scales here as k−11/3 in the IC
case and k−5 in the FC case. The scalar spectrum is propor-
tional to k−17/3 �IC� and k−7 �FC�.
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116 Magnetized plasmas and two-dimensional turbulence



Chapter 5

Lagrangian statistics in 2D
fluid and plasma turbulence

5.1 Time-correlations and intermittency of the
Lagrangian acceleration in turbulence

It was already mentioned in the beginning of this manuscript that the nonlinear
term of the Navier-Stokes equations couples different lengthscales. This was
illustrated by noticing that a multiplication of two fields becomes a convolution
when we consider the Fourier transform. A convolution involves an integral over
all wavenumbers and thereby the scales are coupled. The multi-scale character
is the most challenging feature for the theoretical description of a turbulent flow.
In order to get an insight into the variety of scales and their importance, mul-
tiple point statistics were considered. The most straightforward statistic is the
energy spectrum or second-order structure function. These quantities contain
the information on the energy distribution of the different scales. The small
scale limits of these quantities are directly linked to the velocity gradients in
the flow and thereby to the energy dissipation. Third order spectra or struc-
ture functions are related to the energy transfer mechanism and fourth order
velocity statistics are directly linked to the fluctuations around an energy dis-
tribution, the fluctuations of the fluctuations. Higher orders are related to even
finer statistics. Probability density functions contain the entire hierarchy of mo-
ments. The probability density function of the velocity fluctuations is close to
a Gaussian in three dimensional turbulence. This does however not mean that
the velocity is a close to Gaussian variable. Indeed, the small scale multi-point
statistics of the velocity are highly non-Gaussian, which can be seen by consid-
ering the PDF of the velocity gradients, and this would not be the case if the
velocity were Gaussian. If the velocity modes were independent, the velocity
gradients would also be Gaussian. The multi-scale information can be obtained
by considering PDFs of velocity increments, or their Fourier transforms1.

1Note that the PDF of the Fourier transform of the velocity is Gaussian. To observe the
non-Gaussianity in Fourier space a possibility is to consider the PDF of the Fourier transform
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Turbulence is not only a multiple-lengthscale phenomenon but also a multi-
ple time-scale phenomenon. The study of time-correlations deserves therefore,
in principle, as much attention as the space-correlations do. Hot-wire measure-
ments in wind-tunnel turbulence give time series. However, these time series
generally give information on the lengthscale correlations of a flow. By using
Taylor’s frozen turbulence assumption [120], the time-series are transformed
into space-series. Indeed, if the mean velocity of the flow in a wind-tunnel
is large compared to the characteristic velocity of the turbulent fluctuations,
the time-series ressemble an instantaneous cut through a homogeneous decay-
ing turbulent flow at a given time instant. So not much information about
the time-scales is obtained in this way. One could hope that if we measure
the time-correlations in a non-moving isotropic turbulent flow (e.g. generated
by synthetic jets [121]), one would have a better chance. In fact this hardly
improves the situation and will only give insight in the time-correlation of the
largest eddies. Indeed, even in the absence of a mean flow, a small turbulent
structure will be swept along the measurement point on a time-scale small com-
pared to its intrinsic correlation time. So again we recover the measurement of
a frozen Eulerian small scale turbulence, in which the largest flow structures of
our turbulence are now playing the same role as the mean flow in the windtunnel
experiments [21]. This is the same effect discussed in section 1.2.

How can we then measure the time correlations associated to scales smaller
than the integral flow scales? To get rid of the influence of the sweeping of
the large scales, one can try to follow a scale while it is swept around. In
other words, our measuring probe will now move with the velocity. This is
the Lagrangian reference frame. Measurements in the Lagrangian reference
frame can thus unravel the temporal structure of turbulence. The velocity
space increments, related to the spatial structure of turbulence in the Eulerian
frame, have their Lagrangian counterpart, the velocity-time increments in the
Lagrangian frame (but their relationship is not trivial [122]). In homogenous and
stationary turbulence, the statistical distribution of the Lagrangian velocity can
be shown to be identical to the statistical distribution of the Eulerian velocity.
This is simply due to the fact that a fluid particle will have an equal probability
to sample any position in space. Single-time statistics are thereby equal to the
single-point statistics, a property called ergodicity. The PDF of the Lagrangian
velocity is therefore, like the Eulerian, close to Gaussian. Other quantities in
a turbulent flow are not necessarily Gaussian. A good example of this is the
pressure. Imagine the velocity field is random and the modes independent.
Its statistics are then Gaussian. One can now determine the pressure field by
solving a Poisson-equation. The pressure is given by

p(x) = FT−1

[
−ρkikj

k2
ûi(k)⊗ ûj(k)

]
. (5.1)

The important point is here that the convolution on the right hand involves
products of the Gaussian field. And the pdf of the product of two Gaussian
variables is not Gaussian. More precisely, it was shown analytically in reference
[123] that expression (5.2) yields pdfs with exponential tails for the pressure
and for the pressure gradient, if the velocity is Gaussian. We also checked this
numerically and confirmed this observation (see also reference [124]). This has

of the velocity increments, δûL(k) = er · û(k)
[
1− eik·r

]
.
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Figure 5.1: The acceleration of a fluid particle can always be decomposed into a
component parallel to the trajectory and a component which is perpendicular.
These two components of the Lagrangian acceleration are correlated over a much
larger time-scale than the acceleration in arbitrary directions.

implications for the interpretation of results for the Lagrangian acceleration,
which is the right hand side of the Navier Stokes equations, evaluated on a
trajectory X(x, t),

a(X, t) = −1

ρ
∇p(X, t) + ν∆u(X, t) + f(X, t). (5.2)

The dominant contribution to the acceleration is the pressure gradient [125].
The pdf of the acceleration will therefore closely ressemble the pdf of the pressure
gradient. Even in a Gaussian velocity field the acceleration is therefore not
Gaussian. Intermittency can thus not straightforwardly be measured by the
non-Gaussianity of the velocity-time increments or the Lagrangian acceleration.
A more precise definition is needed if one wants to employ the term intermittency
to denote the anomalous features of turbulence. Again, as in section 3.4, one
should compare to the case in which the flow-field is Gaussian. This need to
compare with the statistics obtained in a flow consisting of independent modes
is one of the messages in the following paper.

It was observed in simulations [126] that the PDF of the Lagrangian accel-
eration was indeed non Gaussian (as can be expected) and the tails of the PDF
were shallower than exponential. This was confirmed in experiments [127, 128].
A phenomenological explanation was given in [129], arguing that long temporal
correlations of the acceleration-field in the Lagrangian frame were responsible
for the flaring tails of the acceleration PDF. In particular it is the norm of the
accelation that is correlated over long time-intervals. A fluid particle in vortical
motion changes direction on a very short time-scale such that the components
of the acceleration in a Eulerian reference frame are decorrelated very rapidly.
If the reference frame is aligned and moving with the trajectory, such as in
Figure 5.1, the correlations are correlated over a much longer time. In such a
frame, the time-correlation of the acceleration is related to the life-time of a flow
structure or the time a fluid particle remains trapped in a flow structure. This



120 Lagrangian statistics in 2D fluid and plasma turbulence

seems plausible, but the relation between the shape of the PDF and the time-
correlations is not clearly proven hereby. It would be nice if we could vary the
correlation time of the acceleration (or its norm), and check what the influence is
on the shape of the PDF. This is of course not straightforward in Navier-Stokes
turbulence. However, in the two-fluid plasma model of Hasegawa and Wakatani
(as derived in section 4.3), the adiabaticity parameter exactly plays this role.
The parallel electron dynamics tends to neutralize electric field fluctuations and
the adiabaticity parameter regulates the rate at which this is happening. Very
slow electron movement along the perpendicular magnetic field will allow the
flow structures to have a long correlation time, whereas quasi-adiabatic elec-
tron behavior limits strongly the lifetime of the structures. By acting on the
adiabaticity parameter we therefore have a way to modify the correlation time
of the Lagrangian dynamics. Subsequently we can investigate how this changes
the shape of the PDFs. This study has been carried out and is reported in the
following manuscript.



Origin of Lagrangian Intermittency in Drift-Wave Turbulence

B. Kadoch,1 W. J. T. Bos,2 and K. Schneider1

1M2P2, CNRS UMR 6181 & CMI, Ecole Centrale de Marseille, Universités d’Aix-Marseille, Marseille, France
2LMFA, CNRS UMR 5509, Ecole Centrale de Lyon - Université de Lyon, Ecully, France

(Received 26 February 2010; published 27 September 2010)

The Lagrangian velocity statistics of dissipative drift-wave turbulence are investigated. For large values

of the adiabaticity (or small collisionality), the probability density function of the Lagrangian acceleration

shows exponential tails, as opposed to the stretched exponential or algebraic tails, generally observed for

the highly intermittent acceleration of Navier-Stokes turbulence. This exponential distribution is shown to

be a robust feature independent of the Reynolds number. For small adiabaticity, algebraic tails are

observed, suggesting the strong influence of point-vortex-like dynamics on the acceleration. A causal

connection is found between the shape of the probability density function and the autocorrelation of the

norm of the acceleration.

DOI: 10.1103/PhysRevLett.105.145001 PACS numbers: 52.25.Fi, 52.35.Ra, 52.55.Fa

Turbulence is one of the main actors in degrading the
confinement quality of magnetically confined fusion plas-
mas. This so-called micro-turbulence in the edge of plasma
fusion devices, such as tokamaks, is commonly admitted to
be of electrostatic nature [1,2]. A typical instability leading
to this turbulent motion is the drift-wave instability,
present in plasmas with a strong magnetic field and a
temperature or pressure gradient. Turbulence leads to an
enhanced diffusivity and its average influence can be char-
acterized by transport coefficients which represent the
mean influence of turbulent motion as an enhanced fluid
property [3]. Reviews on the use of transport coefficients in
fusion devices are given in [4,5]. Transport coefficients
allow us to describe the mean transport on the level of
second order moments such as the variance of the impurity
density, kinetic energy, and fluxes. The spatial and tempo-
ral fluctuations around these variances are however not
described by such an approach, since they are directly
related to fourth-order moments. These fourth-order mo-
ments will give a rough description of the intermittent
properties of the turbulence: is the transport bursty, corre-
sponding to non-Gaussian fluctuations or diffusive so that
it could be modeled by a Gaussian process? Indeed, if the
turbulent transport is dominated by rare but strong events,
the impact on the confinement quality will be different
from the case where a Gaussian process governs the trans-
port. In three-dimensional fluid turbulence it is now well
established that the velocity displays near Gaussian statis-
tics but that the velocity gradients and acceleration are
characterized by probability density functions (PDFs) with
strongly non-Gaussian tails [6,7]. In two dimensions it was
shown that Lagrangian statistics can be strongly non-
Gaussian even when the Eulerian statistics are perfectly
Gaussian [8]. The present investigation is dedicated to the
characterization of Lagrangian intermittency in the close-
to-two-dimensional dynamics of electrostatic plasma
turbulence.

Intermittency can be investigated through the statistical
properties of velocity increments �u, which can be defined
both in an Eulerian and in a Lagrangian reference frame.
Lagrangian velocity increments are defined as �uðt; �Þ ¼
uðtþ �Þ � uðtÞ, where uðtÞ is the Lagrangian velocity, i.e.,
the velocity of a passive tracer monitored on its trajectory
as a function of time. When the shape of the PDF of the
velocity increments varies as a function of �, the statistics
are usually said to be intermittent, even though this
definition can be criticized [9]. At smallest �, the PDFs
approach the shape of the acceleration PDF, which is
generally non-Gaussian in turbulent flows.
The study of the Lagrangian dynamics of fluid turbulence

is now possible in controlled turbulence experiments in
which small solid tracer particles are followed in the flow
(e.g., [10–12]) and numerical simulations of the Navier-
Stokes equations [6]. Whereas the experimental tracing of
particles in fusion reactors introduces problems related to
the extreme conditions in controlled fusion, tracing of
particles in numerical simulations of drift-wave turbulence
is perfectly possible. In a recent study [9], we presented
detailed results on the Lagrangian statistics obtained in
simulations of drift-wave turbulence, within the context of
the Hasegawa-Wakatani model [13,14]. In the present
Letter we will focus on the non-Gaussianity of the accel-
eration statistics. In particular, we will investigate the influ-
ence of the Reynolds number and the collisionality on the
statistics and wewill propose explanations for the observed
behavior.
The Hasegawa-Wakatani model can be derived from the

Braginskii two-fluid description [15], considering an ion
fluid and an electron fluid in the presence of a fixed
magnetic field, assuming isothermal inertialess electrons
and cold ions. For details on the derivation of the 2D slab
version of Hasegawa-Wakatani equation, we refer, e.g., to
[16]. The model assumptions yield eventually a closed
set of equations, describing the vorticity ! ¼ r2� of the
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E� B motion (with � the electrostatic potential) and the
advection of the plasma density fluctuations n:

�
@

@t
� �r2

�
r2� ¼ ½r2�;�� þ cð�� nÞ; (1)

�
@

@t
�Dr2

�
n ¼ ½n;�� � u � r lnðhniÞ þ cð�� nÞ; (2)

in which all quantities are suitably normalized as in
[17]. The model equations closely resemble the two-
dimensional Navier-Stokes equations combined with the
advection equation for a scalar n, representing here the
fluctuations of the plasma density around a mean profile.
Small-scale damping is introduced through the Laplacians,
with � and D denoting viscosity and diffusivity, respec-
tively. Nonlinearities are written as Poisson brackets
½a; b� ¼ @a

@x
@b
@y � @a

@y
@b
@x . The source term in the above equa-

tion is the mean plasma-density profile hni, which is as-
sumed to be exponentially decaying in the x direction and
homogeneous in the y direction, so that Eq. (2) reduces to
the advection of a scalar fluctuation with respect to an
imposed uniform mean scalar gradient. The electrostatic
potential � plays for the E� B velocity the role of a
stream-function, u ¼ r?�, i.e., ux ¼ �@�=@y and uy ¼
@�=@x. The Lagrangian acceleration of tracer particles,
advected by the E� B velocity is then

a L ¼ @r?�
@t

þ ½�;r?��

¼ �rpþ �r2u�r?
r2

½cðn��Þ�; (3)

where p is the pressure. The adiabaticity c is given by

c ¼ Tek
2
z

e2n0�!ci

; (4)

with Te the electron-temperature, kz the effective parallel
wave number, e the electron charge, n0 the reference
plasma density, � the electron resistivity and !ci the ion-
gyro-frequency. The adiabaticity is therefore determined
by the electron resistivity, which is strongest in the edge of
fusion devices, where the temperature drops. The propor-
tionality to k2z , the square of the dominant wave number in
the parallel direction, is a simplification which allows us to
reduce the model towards a two-dimensional system. Since
the strong magnetic field homogenizes the parallel dynam-
ics, the perpendicular E� B velocity field is close to two-
dimensional. This, in combination with the incompressi-
bility of the E� B velocity and the assumption that the
parallel dynamics is governed by a narrow spectrum
peaked around a constant value kz, allows us to use the
above set of equations for the scalars ! and n.

The coupling term cð�� nÞ permits the system to access
a saturated turbulent state even in the absence of external
forcing. This is the main difference with the equations
describing the two-dimensional mixing of a scalar in fluid
turbulence. It is related to the presence of the parallel
current density, which couples the two equations and gives

rise to an electrostatic plasma instability leading to a satu-
rated turbulent state in which the energy is drawn from the
imposed mean plasma-density profile. The collisionality of
the ions and electrons plays a key role in the model. If the
collisionality tends to a large value, hence c becomes small,
the equations tend to a hydrodynamic 2D limit in which
long-living vortices are observed. It was found in [9] that the
Lagrangian acceleration in this case showed a very inter-
mittent behavior, reflected by probability density functions
with heavy tails. For intermediate values of c the flow is
called quasiadiabatic. The PDFs of the acceleration in this
regime tend to exponential distributions.
One remaining open question is whether this intermit-

tent behavior is a Reynolds number effect. Indeed in three-
dimensional Navier-Stokes turbulence [12,18] the flatness
of the acceleration PDF increases as a function of the
Reynolds number for the Reynolds numbers currently
available. In the present investigation this Reynolds-
number dependence is analyzed by exploiting the results
of a set of direct numerical simulations of the Hasegawa-
Wakatani model for varying Reynolds number.
Another issue is the relation between the time-

correlation of the norm of the acceleration and the mani-
festation of intermittency as proposed by Mordant et al.
[19]. The present study will allow us to assess this relation
for the different regimes.
Equations (1) and (2) were solved in a double-periodic

domain of size 642 using a fully dealiased pseudospectral
method at a resolution of 10242 gridpoints, starting from
Gaussian random initial conditions. In the saturated, fully
developed turbulent flow 104 particles were injected,
equally spaced, and their velocity and acceleration were
monitored during a large number of large-scale turnover
times (� 400Te). The eddy turnover time Te obtained in

the different regimes, defined as 1=
ffiffiffiffiffiffiffi
W

p
where W is the

rms vorticity, is of the same order of magnitude, �0:4.
Details on the simulations of Eqs. (1) and (2) can be found
in [9] and on the Lagrangian part of the study in [20] in
which a similar investigation was performed for Navier-
Stokes turbulence. The adiabaticity is varied between c ¼
0:01 and c ¼ 2, to obtain different flow regimes.
Visualizations of the vorticity field for two flow regimes
are shown in Fig. 1.
In Fig. 2, the PDFs of the Lagrangian acceleration are

shown for different values of c. It is observed that the PDF
evolves from a close to exponential shape for large c to an
algebraic shape for c ¼ 0:01. To check if this is merely an
effect of the Reynolds number, we performed simulations at
different Reynolds numbers, which is here defined as R� ¼
�U=�, with U the rms velocity and � ¼ U=W , an in-
trinsic scale of the turbulence. This Reynolds number was
varied by a factor 6. The Prandtl number was chosen equal
to one for all simulations. The results are shown in Fig. 3,
where it is observed that the Reynolds number only slightly
influences the shape of the PDFs. Therefore we need to find
an alternative explanation for the difference in shapes of the
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accelerations for the two different flow regimes. The ex-
ponential distributions can be explained as follows: it was
argued in [21] that an exponential distribution for the pres-
sure gradient PDF can be obtained from random Gaussian
(nonintermittent) velocity fields by simply solving a
Poisson-equation to obtain the pressure and subsequently
computing the gradient, without considering the nonlinear
dynamics of the Navier-Stokes equations. It can be seen
from Eq. (3) that the pressure gradient is directly related to
the Lagrangian acceleration. The shape of the PDFs for the
cases for moderate and large c simply shows that the flow is
not intermittent from a Lagrangian point of view, but gov-
erned by a Gaussian-like diffusion process.

More puzzling are the algebraic tails, found for small c.
In the inset of Fig. 3 we show that the tails show a close to
algebraic behavior of the form pðaÞ � 1=a� with � of the
order 2. It is interesting to note that the shape of the PDFs
obtained in the hydrodynamic case closely resembles the
results obtained for point-vortices. Indeed, in Ref. [22] the
point-vortex model, introduced by Onsager [23] and
Townsend [24], was used to study the influence of point
vortices on the Lagrangian acceleration of passive tracers.
In their work, the acceleration PDF was to leading order

given by pðaÞ � 1=a5=3. In this light the results for the
quasihydrodynamic flow seem to be at least partially
explained by the presence of vortical structures as observed

in Fig. 1. The exponent of the power-law tails of the accel-
eration PDF is close to the value�5=3 as in the point-vortex
study. Even better agreement might be obtained by compar-
ing with vortex-interaction models using vortices with a
finite extension [25] (such as the Burger’s vortex).
It remains to be explained why this is not the case for the

quasiadiabatic case. As observed in Fig. 1, in this case the
drift-waves also seem to organize into vortical structures.
However the lifetime of these structures is shorter [26].
The parallel dynamics are thus responsible for the change
in lifetime of the vortices. For higher adiabaticity, electro-
static fluctuations are rapidly smoothed out through the
parallel current. Vortices do then not exist long enough to
influence the acceleration statistics intermittently. In this
sense the long-time correlations seem to be essential to
obtain the algebraic tails in the acceleration PDF. The
centripetal component of the acceleration is constant in a
purely circular orbit, and this is captured by the autocorre-
lation of the norm of the acceleration, which can therefore
be directly related to the lifetime of the vortical structures.
This is checked in Fig. 4. For all curves, time is normalized
by the time at which the autocorrelation of the x compo-
nent of the acceleration is minimum. This timescale can be
qualitatively related to the timescale of the average circular
motion of fluid particles. The autocorrelation of the accel-
eration components displays a behavior similar to what is
observed in three-dimensional Navier-Stokes turbulence,
with a rapid decrease and a negative dip. This dip becomes
less pronounced for lower values of c. It is observed that in
the cases in which a closer to exponential decay of the
acceleration PDFs is observed, the autocorrelation of
the norm decorrelates faster than in the cases in which

FIG. 1 (color online). Visualizations of the vorticity field for two
different values of the adiabaticity. Left: c ¼ 0:01, right: c ¼ 0:7.
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the PDFs are algebraically decaying. Indeed the time cor-
relations of the norm become longer for small adiabatic-
ities. This constitutes a proof of the direct relation between
the time-correlation of the norm of the acceleration and
Lagrangian intermittency as proposed in [19]. A way to
numerically check the assumption of the role played by
time correlations of the norm of the acceleration within a
point-vortex model would be to vary the lifetime of the
vortices. If short enough lifetimes are imposed, exponen-
tial tails are probably obtained.

The main conclusion of the present work is that the
electrostatic turbulence studied here is not intermittent
once the adiabaticity is large enough. This corresponds to
the case in which the parallel structures have a short enough
wavelength (or high parallel wave number) or small colli-
sionality. Intermittency due to electrostatic vortex structures
is therefore expected to be stronger near the edge of fusion
plasmas, where the collisionality becomes more important.

In the present Letter, the transition between long-living
structures and short-lived wavy structures takes place some-
where in between c ¼ 0:1 andc ¼ 0:7. In reality the parallel
spectrum is broadband and we assumed its peak around a
certain frequency to obtain the simplified two-dimensional
model. If the full three-dimensionalmodel is considered, the
dynamics will probably be a mixture between the different
cases, dominated by a certain peak-wave number. Also the
conclusions of this Letter relate to the dynamics captured
within the present model, i.e., homogeneous electrostatic
turbulence fed by a strong plasma-density gradient.

For larger adiabaticity (c > 0:7), which is expected to
correspond to a situation further away from the edge or for
colder plasmas, the statistics of this kind of turbulence are
close to what would be expected from a Gaussian system.
This study suggests that with respect to transport coeffi-
cients, microturbulence can be modeled by a Gaussian
diffusion process with some additional rare point vortices
if the adiabaticity is small enough (c < 0:7). This does not
imply that plasma turbulence is not intermittent, only that
its origin is not due to the mechanism contained in the

present slab geometry if the adiabaticity is large enough. It
could be interesting to carry out a similar study in a more
complete geometry, such as in the study by Holland et al.
[27]. In their work, dynamic regimes containing long-
living vortices were observed, directly related to the
large-scale zonal flows. However, no fully developed tur-
bulent state was considered. Studying the turbulent
Lagrangian dynamics in such a geometry constitutes an
interesting perspective.
Salah Neffaa is acknowledged for the validation of the

numerical code, and Diego del-Castillo-Negrete,
Sadruddin Benkadda, and Shimpei Futatani for stimulating
interaction.
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5.2 The influence of walls on Lagrangian statis-
tics

The non-Gaussianity of the Lagrangian acceleration is thus not a direct measure
for the statistical dependence of the modes of a turbulent flow. Its deviations
from an exponential distribution are, however. In three dimensional turbulence
the PDF of the acceleration presents, at high Reynolds numbers, tails which
are significantly wider than exponential. These flaring tails imply that fluid
particles experience very strong accelerations, but that these extreme events
are relatively rare (but more frequent than in a Gaussian velocity field). The
PDFs measured in different experimental set-ups show often universal features
but also persistent differences. The question as to what extent the flow geometry
influences the shape of the statistics deserved therefore attention. We addressed
this question by performing simulations of decaying two-dimensional turbulence
in which we compared the statistics of a flow in a periodic domain with the
statistics of a flow in a wall bounded domain. It was observed that the pdfs of
the acceleration in the wall-bounded domain showed algebraic tails, whereas in
the periodic domain the pdfs were closer to exponential. Qualitative insights
were obtained about where the strong values of the acceleration originated [14].
These results are illustrated in Figure 5.2.

However, two-dimensional turbulence has the peculiarity that the enstrophy
is dissipated much more rapidly than the energy. Since the entrophy is directly
proportional to the energy dissipation, the system rapidly evolves to a state
with almost constant energy, unless enstrophy is produced somewhere. In a
periodic domain the enstrophy production is zero. However, in a wall bounded
domain the walls act as an enstrophy source. This means that in the presence of
walls the energy will be dissipated more rapidly. It is therefore hard to compare
the statistics of the flows obtained in the two-different geometries. In order to
improve the comparability of the statistics, we normalized the velocity field by
the rms velocity before computing the statistics. This corrects for the different
decay-rate of the flows. It does however not correct for the different decrease
in the intrinsic Reynolds number, which is related to the range of interacting
lengthscales. This Reynolds number decays faster in the wall-bounded case, and
normalizing the velocity does not correct for this.

We therefore carried out a study in which we added a large-scale forcing
to the flows. This would allow us to avoid the problem of the energy decay.
However, the presence of a forcing in two-dimensional turbulence also needs
the introduction of a damping term, in particular in periodic geometry, since
the inverse cascade of energy will lead to a pile-up of energy in the smallest
allowed wave-mode, eventually leading to an unphysically large energy in the
largest flow scale. This means that the system contains a large number of pa-
rameters: the friction wave-length, the friction strength, the forcing-wavelength,
time-correlation and strength, and the viscosity. Despite this large number of
parameters we managed to create flows that seemed to be comparable with
respect to the amount of energy and Reynolds number in the two different ge-
ometries. As a result the differences in shape in the PDFs became much smaller
then in the decaying case. However, the influence of the walls remained mea-
surable and in particular the enstrophy level seemed to influence the statistics
[15].
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Figure 5.2: The influence of solid (no-slip) boundaries on the Lagrangian
statistics in two-dimensional turbulence are investigated by comparing two-
dimensional flow with and without walls. The PDF of the acceleration sig-
nificantly changes its shape (left) when boundaries are present. An illustration
of a trajectory, coloured by the value of the norm of the acceleration is shown
in the right figure.

5.3 The influence of flow topology

It is very tempting to link the non-Gaussian features observed in the Lagrangian
dynamics of turbulent flows to flow structures. However, a long-lasting problem
is to identify the effect of a coherent structure on a flow, since one then needs to
define the coherent structure, and this is often a matter of taste and/or vigorous
debate. It can be asked whether the quest for a definition of a coherent structure,
isolated from the incoherent flow-field even makes sense.

For example, a great idea was the apophatic definition proposed in [130]: a
coherent structure is what remains if the incoherent part of a flow is removed.
The incoherent part was then defined by the fully independent modes, in other
words the noise. The resulting coherent flow possessed a number of degrees of
freedom which was greatly reduced, compared to the total number of degrees
of freedom needed to simulate the entire flow. Roughly, about only one percent
of the total number of degrees of freedom is needed to capture all energetically
important features of a statistically stationary turbulent flow and almost all
dissipative features. In particular, the conclusion of this definition of a coherent
structure implies that the coherent structures contain almost all the energy and
enstrophy of the system. If the coherent structures are removed, almost nothing
is left and if one wants to consider the coherent structures alone, almost the full
flow is retained, so that this approach does not yield a tractable system amenable
to a simple statistical description2.

It is possible to avoid this issue by considering the influence of the flow
topology, without trying to define a coherent structure. We can for example
reformulate the question and ask whether regions of strong vorticity lead to

2Since the original flow in the cited reference corresponds to a Direct Numerical Simulation
(DNS) of three-dimensional isotropic turbulence projected on 2563 Fourier modes, 1% still
corresponds to 5.105 degrees of freedom. So whereas the the reduction is impressive, and
the technique certainly deserves to be exploited to propose efficient numerical computation of
turbulence, we cannot consider the resulting set of modes a low-dimensional system.
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extreme events, or strong shear layers. The link between flow topology and
acceleration was studied in reference [16]. In order to separate the flow in
topologically distinct regions the Okubo-Weiss criterion was used. This criterion
is defined by [131]:

Q = s2 − ω2

= 2∆p

(5.3)

With s2 = s2
1 +s2

2 and s1 = ∂xu−∂yv and s2 = ∂xv+∂yu. In elliptic regions the
vorticity dominates and ω2 > s2 so that Q is negative. In hyperbolic regions the
strain dominates, ω2 < s2, and Q is positive. This criterion is not necessarily
adapted to define coherent structures, since the definition of coherent structures
is vague. However, we can objectively separate a flow into elliptic and hyperbolic
regions by using the above criterion.

We used the above criterion to analyze the influence of the flow topology on
Lagrangian statistics. Forced two-dimensional turbulence was considered and
at each time, the value of Q was computed for the flow-field. In Figure 5.3 (top
right) the probability density function of the Weiss field is shown, indicating
how much the different values of Q appear in the flow. It is observed that
the PDF is strongly skewed, showing a non-negligible chance of occurences of
strong negative values of Q, smaller than several standard deviations σQ (the
Lagrangian and Eulerian PDFs coincide due to ergodicity). Subsequently, we
arbitrarily separate the flow-field into three subspaces, the part of the flow with
Q smaller then −σQ, the part with Q > σQ and the remaining intermediate Q-
valued part of the flow. We then determine statistics within the three subspaces.
In 5.3 (top left) we show a particle trajectory, in which the color of the trajectory
changes when it changes its local value ofQ, according to the above defined limit-
values. In 5.3 (bottom left) we show the PDFs of the Lagrangian acceleration,
corresponding to these different topological regions. In particular, it is observed
that in the elliptic and hyperbolic regions the tails of the PDFs are not “flaring”
significantly, but are close to exponential. The typical shape of the PDFs is
rather caused by a large peak in the PDFs around zero for the intermediate
Q values. To some extent, the origin of the characteristic shape of the PDFs
can be attributed to the intermittency of the flow topology. A large part of
the flow is topologically quiescent, and the Lagrangian acceleration in this part
is strongly peaked around zero. The contributions of the topologically more
extreme regions leads to tails that are raised. Considering these topologically
more active regions by themselves, the PDFs are close to exponential, as would
be expected for Gaussian velocity fields.

In a related study [132], we investigated the flow-topology of drift wave
turbulence. In Figure 5.4 we show the probability density function of the Q-
parameter for two distinct values of the adiabaticity. As discussed in the pre-
vious section, this parameter controls the time-correlations of the velocity field.
In the case of strong adiabaticity, vortical structures do not have a long life-
time and very strong vorticity fluctuations are very rare. However in the case in
which the adiabaticity is small, strong and extreme vortical regions persist and
the PDF of the Q parameter is much closer to what is observed in Navier-Stokes
turbulence.



128 Lagrangian statistics in 2D fluid and plasma turbulence

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-30 -25 -20 -15 -10 -5  0  5  10

P
D

F

Lagrangian  and Eulerian Weiss

Lagrangian
Eulerian

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

-600 -400 -200  0  200  400  600

P
D

F

 Conditional Lagrangian acceleration

Q<-σ
-σ<Q<σ

σ<Q
aL
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5.4 Perspectives

Lagrangian spectra in two and three dimensions computed
from markovian closures

In principle, all the Galilean invariant closures discussed in chapter 2 contain
information on the Lagrangian correlation times of the turbulent velocity field.
Some results are obtained using closure to study Lagrangian quantities [23, 133],
but a large number of quantities is unexplored. This seems a promising direction
in order to study the asymptotic behavior of Lagrangian statistics. Indeed, the
Reynolds numbers needed to observe clear scaling ranges are even larger for La-
grangian than for Eulerian quantities. Closure can help to study the Reynolds
number dependence of the scaling of Lagrangian spectra to bridge the gap be-
tween low Reynolds number observations and asymptotic scaling predictions.

The dynamics of drift-wave turbulence in wall bounded ge-
ometry

The self-organization of drift-wave turbulence in a plasma column was studied
both experimentally and numerically in the group of George Tynan [134]. It
was observed that a poloidally spinning plasma resulted from the drift-wave
turbulence zonal flow interaction (see reference [135] for a review on zonal flows
and [136] for a review on experimental studies of the subject). The numerical
methods we use to study wall bounded flows (6.3) allow to easily change flow
geometry and flow-parameters. The influence of the shape of the geometry on
the generation of zonal flows in drift-wave turbulence deserves further study.
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Chapter 6

Self-organization in
magnetohydrodynamic
turbulence

6.1 Decay and final states

Inviscid invariants, defined as quantities that are conserved by a system in the
absence of viscosity, determine to a large extent the dynamics of a system. An
important example is the kinetic energy of a three-dimensional turbulent flow.
Since this quantity cannot be dissipated if the viscosity is zero, the nonlinear
interactions can only redistribute the quantity over different modes. From a
statistical mechanics point of view, one expects that this redistribution will act
in such a way as to increase some kind of entropy of the system. Since the trun-
cated Euler-system admits a solution in thermal equilibrium (corresponding to
a maximum entropy state), it is tempting to expect that the nonlinear interac-
tions will on average redistribute the energy in such a way as to approach this
equilibrium. The equilibrium for the three-dimensional, mirror invariant, Euler-
equations corresponds to an equipartition of energy between the different modes
(see section 3.1). In most turbulent flows in nature, instabilities inject energy
in large scales so that the initial condition is far from this equipartitioned state.
In order to approach the equilibrium, the system will transfer, on average, its
energy towards smaller scales. If the energy input into the system is statistically
steady, a constant flux of energy through scale-space is expected, better known
as the cascade. Phenomenological arguments about scale-interaction-locality
then lead to predictions for the energy spectrum.

In two-dimensional turbulence, more than one invariant exist. The kinetic
energy is one of them. All squared functions of the vorticity are also invariants.
The only variants that survive a Galerkin truncation are the enstrophy and
the energy. We therefore give more importance to these two quantities. A
simple argument due to Fjørtoft shows that the nonlinear interaction of modes
cannot transfer both energy and enstrophy in the same direction. The enstrophy
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spectrum is related to the energy spectrum by the relation1,

Z(k) = k2E(k), (6.4)

in which ∫
Z(k)dk =

1

2
ωiωi. (6.5)

The (truncated inviscid) equilibrium energy distribution of two-dimensional tur-
bulence is of the form

E(k) ∼ k

β + αk2
, (6.6)

in which α and β are constants for a given flow-geometry. For large k this
spectrum is proportional to k−1. The enstrophy spectrum is thus proportional to
k. For large k this corresponds to an equipartition of the enstrophy2. Kraichnan
suggested [137] that if the system is to evolve towards such a distribution, the
enstrophy will on average be transferred to the small scales, which implies that
energy will tend to transfer to the large scales. This is indeed observed in two-
dimensional turbulence. This clearly shows the importance of the invariants for
the evolution of turbulent flows.

In the case of MHD, even more invariants can be identified. In the two-
dimensional case we can mention the total energy E, which is the sum of the
kinetic and magnetic energy, the mean-square vector potential A and the cross-
helicity Hc. Again these inviscid invariants determine the dynamics of the sys-
tem as was shown in an investigation by Ting, Matthaeus and Montgomery
[138]. They studied, using low resolution DNS, the dynamics of 2D MHD for a
large variety of initial conditions, and they determined towards which state the
system evolves. It was observed that the results were well predicted by a varia-
tional computation in which the energy was minimized subject to constraints on
the quantities A and Hc. In total, four qualitatively different dynamical behav-
iors were identified. These behaviors were: the Navier-Stokes behavior (for very
small initial magnetic field), magnetically dominated behavior, (for initial mag-
netic field comparable or larger than the velocity field and small cross-helicity),
dynamic alignment (for substantial initial cross-helicity) and a kind of transition

1This relation can be shown as follows. The vorticity is given in Fourier space by the
relation

ωi(k) = iεijkkjuk(k). (6.1)

Since the vorticity is solenoidal, the spectral correlation tensor of the vorticity has the form

ωi(k)ωj(−k) = Pij(k)
Z(k)

4πk2
. (6.2)

The enstrophy spectrum is thus given by

Z(k) = 2πk2ωi(k)ωi(−k)

= 2πk2
[
εijkεimnkjkmuk(k)un(−k)

]
= 2πk2

[
(δjmδkn − δjnδkm)kjkmuk(k)un(−k)

]
= 2πk4

[
ui(k)ui(−k)

]
= k2E(k). (6.3)

2In two dimensions, equipartition distributions over wave-vectors yield a power-spectrum
proportional to k. This comes from the fact that we now do not integrate a constant function
(the energy per mode) over a spherical shell 4πk2dk, as in three dimensions, but over a circular
shell 2πkdk.
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Figure 6.1: Vorticity at different instants. From top to bottom: regime I, regime II, regime
III and regime IV; from left to right: t = 5, t = 40 and in the last column the time coresponds
to t = 250 for regime I and t = 1250 for regimes II, III and IV. From reference [17].
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Figure 6.2: Top: Alignment of the velocity and magnetic field in the ’transition’-
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anti-alignment of the two vector-fields is observed. This is a clear manifesta-
tion of depletion of nonlinearity in 2D MHD. Bottom: alignment of velocity
and vorticity in decaying isotropic turbulence (preliminary results by Andrey
Pushkarev).

state, sometimes tending to the magnetically dominated regime, sometimes to
the the dynamic alignment regime.

In a recent study [17], we investigated how the dynamics change when the
system is confined by isolating boundaries. Flow visualizations are shown in Fig-
ure 6.1. The boundary conditions were chosen such that the normal component
of the magnetic field vanishes at the wall. The presence of these boundaries did
not show the appearance of qualitatively different regimes, i.e., the four identi-
fied regimes survived. However, our simulations, at higher resolution than the
study by Ting et al. showed that the Navier-Stokes regime does not survive
at arbitrarily high Reynolds number, unless the magnetic field is chosen van-
ishingly small in the beginning. The small-scale dynamo effect, with its ability
to (transiently) amplify a seed magnetic field will lead to a state in which the
Lorentz force is not negligible if the initial Reynolds number is strong enough
and the magnetic field is not too small (See also the study by Biskamp and
Welter [139]).

In our investigation we observed that the transition state corresponds to
a state in which locally the magnetic field and the velocity field are strongly
aligned (Figure 6.2). If only a subregion were considered, the cross-helicity
would be strong. The sum of the different subregions leads however to a van-
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Figure 6.3: Scatter plots of (from left to right) ω vs ψ, a vs ψ and a vs j for the
magnetically dominated regime, at the latest time instant t = 250.

ishing cross-helicity for the total field. This phenomenology can be compared
to a 3D flow in which the velocity and the vorticity locally align, leading to
local helicity fluctuations, summing up to zero for the total flow (Figure 6.2,
bottom). In both cases this leads to a reduction of the strength of the nonlinear
term3. Again this is thus a manifestation of the phenomenon of depletion of
nonlinearity (as discussed in section 3.4). In other investigations in the same
year, the same dynamics were reported [140, 141].

It was shown by Joyce and Montgomery [89] that in hydrodynamic periodic
two-dimensional flows a long lasting final state is reached, depleted from nonlin-
earity. This state is characterized by a functional relation between the vorticity
and the streamfunction of the form ω ∼ sinh(ψ). That a functional relation
leads to a state, depleted from nonlinearity is easily shown from the equation
for the vorticity:

(∂t − ν∆)ω = [ω, ψ], (6.7)

with the Poisson bracket defined as [a, b] = (∂a/∂x)(∂b/∂y)− (∂a/∂y)(∂b/∂x).
A functional relation ω = F (ψ) leads to a vanishing Poisson bracket,

[ω, ψ] =
∂ω

∂x

∂ψ(ω)

∂y
− ∂ω

∂y

∂ψ(ω)

∂x
(6.8)

=
∂ω

∂x

∂ψ(ω)

∂ω

∂ω

∂y
− ∂ω

∂y

∂ψ(ω)

∂ω

∂ω

∂x
= 0. (6.9)

If we consider now the equations for incompressible MHD:

(∂t − ν∆)ω = [ω, ψ]− [a, j] (6.10)

(∂t − η∆)a = [a, ψ], (6.11)

we see that two nonlinearities play a role: [ω, ψ] and [a, j]. The term [a, ψ]
can be considered as a pseudo-nonlinearity if ψ is regarded as given (see also
our discussion on depletion of advection 3.4). Although important theoretical
progress has been made in the comprehension of final states [142, 143] no an-
alytical nontrivial solution is presently known for the case of decaying MHD
turbulence. It was however shown in Kinney et al. [144] that close to functional

3That alignment of the magnetic field with the velocity field leads to a depletion of the
nonlinear interaction can be seen by rewriting the equations for u and b as equations for
z+ ≡ u + b and z− ≡ u − b. In these equations the nonlinear term appears in the form
z+ · ∇z−. This term is minimized when u ≈ ±b.
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relations do exist in homogeneous two-dimensional MHD turbulence. In figure
6.3 we show for the magnetically dominated regime scatter plots corresponding
to the three nonlinearities.

We observe a well defined nonlinear functional relation ω(ψ). Clearly, we
have a non trivial final state. The plot a vs. j shows a straight line, which
corresponds to a vanishing Lorentz-force: the magnetic field does not interact
with the velocity field during this final period of decay.

6.2 Spin-up

A new quantity which appears as soon as boundaries are added to the flow (in
contrast to periodic geometry) is the angular momentum, defined by∫

r × u dS. (6.12)

The angular momentum quantifies to what extent the flow contains a preferen-
tial large-scale swirling structure. The generation of angular momentum from
initial conditions free from angular momentum is thus an example of symmetry
breaking. The transport of angular momentum is important in the dynamics
of planetary accretion disks. The mechanism in which angular momentum is
transported in these disks has recently aroused the interest of the astronomi-
cal community. Indeed, in these disks, in Keplerian motion, angular motion is
transported in the radial direction at a rate which can only be explained by
turbulent motion, since their dynamics are essentially inviscid. However the
flows are linearly stable according to hydrodynamic stability criteria. A possi-
ble mechanism to trigger turbulence is then the magneto-rotational instability
e.g. [145]. Experimental studies in this area use the Taylor-Couette set-up which
represents certain features of accretion disks e.g. [146, 147]. For the moment
the mechanism remains poorly understood, in particular since the dimensionless
numbers characterizing accretion disks are difficultly attainable in experimental
set-ups and since the boundary conditions seem to play an important role [148].

Another major manifestation of angular momentum transport and gener-
ation is the intrinsic rotation of fusion plasmas which we will discuss in the
following section.

Academically, one of the most simple settings in which we can study the
generation and transport of angular momentum is the case of two-dimensional
Navier-Stokes turbulence. It was discovered in [149] that angular momentum
was spontaneously created from random initial conditions as soon as the confin-
ing boundaries are not axisymmetric. We investigated this phenomenon, called
spin-up, in two-dimensional MHD and the results are presented in the following
article.
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The generation of large coherent structures of the size of
the flow domain is a generic feature of two-dimensional
(2D) turbulence. Indeed, due to the inverse energy cascade,
2D flows show a tendency to create space filling structures.
The nature of these structures and the way they are pro-
duced vary from flow to flow. In the context of Navier-
Stokes turbulence, the generation of a large-scale domain-
filling structure was predicted by Kraichnan [1] and ob-
served in the case of forced turbulence in a periodic domain
in which energy condenses at the smallest possible wave
number modes [2,3]. In forced wall-bounded flows, this
was reproduced numerically [4] and experimentally [5],
and it was shown that a large-scale rotating structure
emerges, which dramatically reduces the level of the tur-
bulent fluctuations [6].

A similar observation can be made in fusion plasmas, in
which the dynamics share many features with 2D flows due
to the imposed magnetic field. It is often assumed that in
these plasmas, large-scale poloidal structures, called zonal
flows, are beneficial for the confinement as they suppress
turbulence and shear apart radially extended structures,
which are largely responsible for anomalous transport
[7–9]. The hereby created transport barriers might play a
key role in the transition to an improved confinement state
(H mode) [10]. In the case of MHD turbulence, the role of
rotation was shown to have a similar effect on the flow,
reducing the velocity fluctuations and hereby stabilizing
the magnetic field [11]. In the present Letter, we will
continue the investigation of wall-bounded nonideal
MHD. The generation of zonal flows through the absence
of charge neutrality will not be addressed (charge neutral-
ity being implied by the one-field MHD approximation).
However, MHD allows for an affordable global description
of nonuniform magnetoplasmas [12]. The present work
could be related to the L-H transition through the benefi-
cial effects of large-scale poloidal rotation (which is ob-
served in the present work) on the confinement of the
plasma. The present study is also motivated by the obser-

vation that MHD-equilibria in toroidal geometry imply
finite flow-fields due to the presence of nonzero viscosity
and resistivity [12–14]. In these works, nonideal MHD
steady states were investigated in both the limit of small
and large viscosity. In each case, it was shown that the
steady state contains nonvanishing velocity fields, at odds
with classical static equilibria, on which decades of con-
finement research are based. In the present work, we will
not consider steady states, but we will investigate the full
nonlinear relaxation of nonideal MHD with nontrivial
boundary conditions in two space dimensions. The resis-
tivity and viscosity are nonzero but small, allowing for a
turbulent flow. This approach cannot take into account
toroidal velocities and nonuniform toroidal magnetic fields
and the extension of the present approach to three dimen-
sions constitutes therefore an important direction for fur-
ther research.
In the case of decaying Navier-Stokes turbulence, it is

shown that the self-organization in a periodic domain will
lead to a final state, consisting of two, noninteracting,
counterrotating vortices [15]. This picture changes how-
ever in the presence of no-slip walls. In this case, the flow
relaxes to a state with or without angular momentum,
depending on the shape of the domain [16–18]. Indeed,
in circular domains without initial angular momentum the
flow generally relaxes to a state free from angular momen-
tum [19], whereas as soon as the axisymmetry is broken
the flow relaxes to a state containing a domain filling
structure, containing significant angular momentum [20].
Theoretical progress has been made to explain the phe-
nomenon in the inviscid case, based on a model of inter-
acting vortices [21–23].
In the case of bounded two-dimensional MHD, it is not

known, up to now, to which kind of state the flow relaxes,
and this will be addressed in the present Letter. We inves-
tigate the case in which both the magnetic field and the
velocity field cannot penetrate into the walls. The velocity
field obeys the no-slip condition at the wall, whereas the
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tangential component of the magnetic field can freely
evolve, allowing a net current through the domain. We
will focus however in the present study on the case in
which no net current is initially present.

We start by writing the governing equations. In the
present case, we define two angular momenta: a kinetic
and a magnetic one,

Lu ¼
Z
�
ez � ðr� uÞdA; LB ¼

Z
�
ez � ðr�BÞdA

(1)

in which � is the flow domain, r the position vector with
respect to the center of the domain, and u and B the
velocity and magnetic-field vector, respectively. Through
integration by parts, these quantities can also be expressed
as a function of the stream function c ¼ r�2! and vector
potential a ¼ r�2j, respectively, with j ¼ jez ¼ r� B
the current density and ! ¼ !ez ¼ r� u, the vorticity

Lu ¼ �2
Z
�
c dA; LB ¼ �2

Z
�
adA; (2)

in which a and c are chosen to be zero at the wall.
A large value of the angular momentum can generally be

associated with the presence of a large-scale vortical struc-
ture. By analogy, we can anticipate that a large value of LB

corresponds to a large-scale current density structure, and
we baptize the quantity LB angular field. The evolution
equations for Lu and LB can be derived following the
procedure described in Maassen [24], by time deriving
Eqs. (1) and using the MHD equations

@u

@t
þ ðu � rÞu ¼ �rpþ j� Bþ �r2u (3)

@B

@t
¼ r� ðu� BÞ þ �r2B (4)

together with r � u ¼ 0 and r �B ¼ 0. The pressure is
denoted by p, and � and � are the kinematic viscosity and
magnetic diffusivity, respectively. If we write the Lorentz
force in the form

j � B ¼ � 1

2
rB2 þ ðB � rÞB; (5)

we can absorb the first term into the pressure term of the
Navier-Stokes equations by introducing the modified pres-
sure p� ¼ pþ B2=2. The ðB � rÞB term does not induce
new terms in the equation for Lu. It vanishes in a similar
way as the nonlinear term ðu � rÞu does, using r � B ¼ 0
and B � nj@� ¼ 0. The equation for Lu becomes

dLu

dt
¼ �

I
@�

!ðr � nÞdsþ
I
@�

p�r � ds: (6)

The only difference with respect to the hydrodynamic case
[18] is the pressure which is now replaced by the modified
pressure p�. In most fusion plasmas, the quantity � ¼
p=B2 � 1 to insure confinement, which means that the
magnetic part of the pressure dominates. It is important to

note that the pressure term in Eq. (6) vanishes in axisym-
metric domains. In this work, we therefore consider both a
circular and a square domain to analyze the influence of
this term.
The derivation of the equation for LB is analogous to the

derivation for Lu. The resulting equation is

dLB

dt
¼ �

I
@�

jðr � nÞds� 2�I: (7)

We observe that there is a term involving the net current I
through the domain defined by I ¼ R

� jezdA. This term is

the equivalent of the circulation in the hydrodynamic case,
which is zero due to the no-slip walls. The net current is
however not imperatively zero as the tangential magnetic
field does not vanish at the wall. Nevertheless, a net current
will not be generated if it is initially zero, which is the case
in the present work.
We performed computations in two different geome-

tries: a square of size D ¼ 2 and a circular geometry
with a diameter D ¼ 2:24. A description of the generation
of the initial conditions and the numerical scheme, a spec-
tral method with volume penalization, are given in [25].
The initial velocity and magnetic field consist of correlated
Gaussian noise with vanishing cross-helicity

R
� u �BdA.

The magnetic Prandtl number, �=� is equal to one. The
initial Reynolds number, based on the domain size, isffiffiffiffiffiffiffiffiffi
2Eu

p
D=� and yields 1960. The ratio of the magnetic and

kinetic energy EB=Eu ¼ 2:3, with Eu ¼ 1
2

R
� juj2dA and

EB ¼ 1
2

R
� jBj2dA. The resolution of the simulations is

5122 Fourier modes. In each geometry, 10 runs were
performed starting from different statistical realizations
with the same initial parameters. The numerical value of
a and c is not automatically zero at the domain boundary.
This is accomplished a posteriori by substracting a con-
stant value at each point in the domain.
In Fig. 1, snapshots of the stream function and vector

potential are shown at t� ¼ 0:75, 3, 12 with t� ¼
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Euðt ¼ 0Þp

=D. It can be inferred from (2) that these
quantities should give a good visual interpretation of the
presence of angular momentum and field. At time-instant
t� ¼ 0:75, in which inertial effects are dominant over
viscous effects, it is well visible that the velocity field
self-organizes into a large domain-filling structure in the
square geometry, whereas in the circular geometry, several
structures are observed. At t� ¼ 3, a large structure appears
also in the magnetic field in the square geometry. At t� ¼
12, the large-scale velocity and magnetic structures in the
square domain are (anti-)aligned. In the circular domain,
the tendency to create domain-filling structures is weaker,
even though the magnetic field in the circular domain
shows some evidence of the formation of a large current
structure at t� ¼ 12. To characterize the relaxation of the
flows in both geometries, we also show in Fig. 1 the decay
of the kinetic and magnetic energy in both domains, as well
as the absolute value of the cosine of the alignment angle.

PRL 101, 235003 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

5 DECEMBER 2008

235003-2



A continuous decrease of kinetic and magnetic energy is
observed and a continuous increase of global alignment.

At this moderate Reynolds number, spin-up, i.e., sponta-
neous generation of angular momentum, does not occur in
every flow realization. Also, the criterion what is strong or
weak spin-up is rather arbitrary. We therefore focus first on
mean quantities to illustrate the general tendency to spin-
up. In Fig. 2, we show the absolute value of the angular
momentum, averaged over 10 runs. We take the absolute
value because there is no preferential direction of the
spin-up so that an average of the angular momentum
would yield values close to zero for all cases. The time
evolution of hjLuji and hjLBji is shown for both the square
and the circular geometry. h�i denotes the average over 10
realizations. The quantities are normalized by Luð0Þ ¼
krk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hEuðt ¼ 0Þip

and LBð0Þ ¼ krk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih2EBðt ¼ 0Þip

,
with krk2 the Euclidean norm of r. The quantity LuðtÞ
corresponds to the value of the angular momentum of a
flow in solid-body rotation with kinetic energy hEuðtÞi,
which is the flow which optimizes the value of the angular
momentum for a given kinetic energy. By analogy,LBðtÞ is
used to normalize the angular field. The following is
observed: at short times Lu rapidly increases in the square,
but does not increase in the circular geometry. The value of
LB also increases in the square, but delayed with respect to
Lu. In the circular geometry, an increase of LB is also
observed. In the inset, the values of hjLuji and hjLBji are
plotted normalized byLuðtÞ andLBðtÞ. This normalization
has the advantage to correct for the decay of the kinetic and
magnetic energy but has the disadvantage that it is sensitive
to selective decay [26] so that at long times, we observe
generation of angular momentum in each case even if its
absolute value might be small. In the following, we will
give, where possible, an explanation for the 4 curves in
Fig. 2.

First, in the square geometry, a strong spin-up of the
velocity field is observed. In the hydrodynamic case, it was
argued in [18,20] that the pressure term triggers the spin-up
in the square geometry. The magnetic field enhances the
pressure term through the magnetic pressure (p� ¼ pþ
B2=2). If in the present case it is also the pressure term in

(6) which triggers the spin-up, the effect could be enhanced
by increasing the magnetic fluctuation strength B2. This is
illustrated in Fig. 2 (bottom). For one run in which spin-up
was observed, the initial magnetic fluctuations are in-
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FIG. 2 (color online). Top: Time evolution of the absolute
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over all realizations, normalized by Luð0Þ and LBð0Þ, respec-
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try, normalized byLuð0Þ. The influence of the magnetic pressure
on the spin-up in the square container is illustrated by changing
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10-4

10-3

10-2

10-1

100

 0  1  2  3  4  5  6
 t* 

Eu Square
EB Square

Eu Circle
EB Circle

 0

 0.2

 0.4

 0  3  6

<
| c

os
 θ

|>
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creased from EB=Eu ¼ 2:3 up to EB=Eu ¼ 10 and 16.7,
while keeping the initial Eu fixed. The resulting spin-up is
significantly stronger.

Second, for Lu in the circular geometry, like in the
hydrodynamic case [19], no spontaneous spin-up is ob-
served. Increasing the magnetic-field strength does only
weakly influence this result (Fig. 2, bottom).

Third, the interpretation of the generation of the angular
field in the square geometry is less straightforward, as
Eq. (7) does not contain a pressure term. The tendency to
create large-scale magnetic structures can be attributed to
the selective decay mechanism [27], which was recently
shown to persist in bounded geometries [25]. This does
however not explain the symmetry breaking or angular
momentum generation, which is the main issue of the
present work. A possible trigger for the spin-up could be
alignment. It is well known that the magnetic field and the
velocity field tend to align so that the nonlinear term in the
equation for j (or B) vanishes. Hence, the magnetic field
tends to an alignment with the velocity field which ac-
quired angular momentum through the modified pressure
term. It is therefore expected that the magnetic spin-up
follows the hydrodynamic spin-up after a time scale cor-
responding to the alignment. Indeed, LB spins-up shortly
after Lu. The cosine of the angle between u and B, mea-
suring the global alignment, is plotted in the inset of
Fig. 1 (right). A tendency towards global alignment is
observed for long times.

Fourth, in the circular geometry, the weak spin-up of the
magnetic field is surprising. Higher resolution simulations
are needed to clarify whether this is a viscous effect and/or
a statistically more probable (maximum entropy) state. In
this context we can refer to [23], where, based on point-
vortices, it was shown that two types of most probable
states exist in a circular domain: a double vortex, free from
angular momentum and an axisymmetric flow, with finite
angular momentum. This work neglected the influence of
viscosity so that it is not clear how the angular momentum
is acquired in the circular geometry.

We now resume our findings. Rapid generation of angu-
lar momentum takes place in bounded MHD turbulence, as
long as the geometry is nonaxisymmetric. The effect is
enhanced by the magnetic pressure. On a slower time scale
also, magnetic spin-up is observed in both geometries. It is
not clear how this angular field is created. Both alignment
and selective decay could be possible explanations.

We want to stress the implications of the present study
for confinement research. Fusion plasmas are wall bounded
and not axisymmetric so that even in the case of charge
neutrality the plasma might have a tendency to create zonal
flows and zonal fields, depending on the geometry of the
cross-section of the plasma and the strength of the mag-
netic fluctuations. The present work opens several perspec-
tives for future research, such as the influence of Prm, Re,
and, in particular, the extension to three dimensions in

which the effects of imposed magnetic fields, currents,
and toroidal velocities can be taken into account.
We acknowledge valuable discussions with Herman

Clercx, David Montgomery, and Geert Keetels. This
work was supported by the ANR under Contract
No. M2TFP.
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6.3 Work in progress and perspectives: 3 Di-
mensional self-organization of fusion plas-
mas

In the foregoing two sections, large-scale self-organization was considered in
two-dimensional MHD turbulence. In the present section we will discuss two
manifestations of this phenomenon in three-dimensional plasmas in toroidal ge-
ometry. The investigation of these phenomena is work in progress within the
PhD project of Jorge Morales. The first phenomenon is the intrinsic rotation
observed in fusion plasmas. The second is the quasi-single helicity state which
improves the confinement in reversed field pinches. Our feeling is that both
effects might be strongly related. Let us first explain the context and then our
approach.

6.3.1 Plasma movement in tokamaks and RFPs

Intrinsic rotation of tokamaks. The intrinsic rotation of fusion plasmas is
currently in the center of attention of fusion research since it seems to be one
of the factors which is responsible for the LH-transition. By intrinsic rotation
we understand the tendency of a fusion plasma to start rotating even in the ab-
sence of external momentum input. The toroidal velocities can reach values of
kilometers per second [102]. Despite all the recent efforts, the understanding of
this is only partial. Several mechanisms are proposed but no consensus on this
topic exists for the moment [103]. On the level of description of MHD, pioneer-
ing work was carried out by Montgomery and coworkers [150, 151, 152, 153].
They showed that steady states in toroidal geometries imperatively contain
non-vanishing velocity-fields which strongly depend on the geometry. The fact
that Montgomery and coworkers showed that steady states of resistive MHD in
toroidal geometries imperatively contain non-vanishing flow-fields is surprising
and slightly controversial, taking into account that decades of fusion research
are based on static toroidal MHD equilibria, which are only possible in the ab-
sence of viscosity and resistivity. Their studies were essentially two-dimensional,
assuming symmetries in the third direction. The extension to three dimensions
of these studies is important to evaluate to what extent intrinsic rotation is
caused by MHD effects.

Appearance of single helicity states in the reversed field pinch. The
reversed field pinch (RFP) is a toroidal fusion plasma device. The difference with
respect to the tokamak geometry is that the toroidal and poloidal magnetic fields
have the same order of magnitude in a RFP, whereas in a tokamak the toroidal
field is several times larger than the poloidal field. This magnetic configuration
leads to a much stronger tendency to develop MHD instabilities. The resulting
turbulent state has for a long time demotivated the fusion community to focus
on RFPs as a viable candidate for controlled fusion. Indeed, the coexistence
of a large number of helical modes with different poloidal and toroidal mode
numbers lead to a poor confinement quality. However, in 2000 it became clear
that the plasma instabilities not only give rise to these chaotic multi-helicity
states, but in some cases can lead to steady, self-organized states yielding an
enhanced confinement [154]. These states are called quasi-single helicity states,
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Figure 6.4: Left: helical instabilities are observed for high enouch values of the
pinch ratio or Hartmann number. Right: comparison of the dissipation of the
kinetic energy observed in our simulations with the results of reference [155].

since their spatial form is close to a single helical perturbation in the core of
the RFP. The chaos within this structure is significantly lower than what is
observed in the multiple helicity states, and the observed temperature much
higher, making the RFP a more serious candidate for nuclear fusion.

6.3.2 Numerical methods to study three-dimensional MHD
self-organization in toroidal geometry

Since a strong magnetic field renders the dynamics of a magnetized plasma
close to two-dimensional, it is tempting to project conclusions drawn from re-
sults of purely two-dimensional investigations onto three dimensional phenom-
ena. One mechanism of self-organization is the spin-up mechanism, discussed
in the previous section, which was discovered in two-dimensional hydrodynam-
ics [156, 149, 157]. These studies showed that turbulent fluctuations contained
in non-axisymmetric boundaries tend to organize into one space-filling swirling
structure. We showed in section 6.2 the influence of the shape of the boundary
on the generation of swirling structures in charge neutral plasma. It is obvi-
ous that these 2D results are not directly transposable to magnetically confined
toroidal plasmas, in which the imposed magnetic field is toroidally curved and
helically twisted. However the possibility that a similar self-organization might
take place in three-dimensions definitely triggers our curiosity.

The extension of the numerical method to three-dimensions is unavoidable
if we want to investigate the self-organization of MHD flows in a toroidally con-
fined domain. In order to investigate the precise role of the confining geometry
on the plasma flow by numerical simulation, a flexible and accurate tool is there-
fore required, which allows to easily change the geometry. A preliminary study
of such a method applied to MHD can be found in [158]. The procedure, which
we already used in the studies in the previous sections to study MHD turbulence
in two dimensions is based on the volume penalization technique [159], which is
a specific immersed boundary method. The MHD equations are computed in a
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periodic domain and the solid boundaries are modeled by a drag term,

∂tu = ...− χ(x)

ηu
(u− u0) (6.13)

∂tb = ...− χ(x)

ηb
(b− b0), (6.14)

where χ(x) is a mask-function which is zero in the fluid or plasma and unity in
the walls, u0 and b0 are the velocity field and magnetic field which we impose
in the walls. For b = 0, In the limit ηu → 0 the system tends to Navier-Stokes
turbulence with no-slip boundary conditions. The extension of this method to
MHD was first used in [17]. Recently, Jorge Morales, PhD student at the LMFA
laboratory, performed the first simulations using this method in cylindrical and
toroidal geometry, which we will now discuss.

MHD instabilities in cylindrical geometry. As a first test-case we study
the confinement in a cylindrical plasma and its transition to turbulence. This
case of a three-dimensional periodic cylindrical plasma within the MHD approx-
imation was considered in Shan, Montgomery and Chen [155]. The numerical
code they used was based on orthonormal basis-functions adapted to fit cylindri-
cal or spherical boundary conditions. These Chandrasekar-Kendall eigenfunc-
tions are a natural choice to discretize the space confined in cylindrical geometry.
However, no fast transform, equivalent to the Fast-Fourier-Transform is known
for these functions, so that their computation was entirely spectral. This limits
the resolution of the equation to low resolution. In 1991, the maximum number
of modes that could possibly used in a computation over a meaningful number
of time-steps was of the order of 1000. For comparison, pseudo-spectral simu-
lations were in the same year possible for a resolution of 2403 ≈ 1.4 107 modes
[160]. Presently, state of the art pseudo-spectral simulations are performed at
a resolution of 40963 ≈ 7 1010 modes. But even at their modest resolution,
Shan et al. obtained interesting results for the dynamics induced by the typi-
cal helical structure of the magnetic field. An explanation for the performance
of the method is that the first unstable modes are given directly by low-order
Chandrasekar-Kendall eigenfunctions.

In Shan et al. the boundary conditions are chosen to be “no penetration”
for the velocity and the magnetic field and zero normal vorticity and current at
the wall. These conditions are implied by standard no slip conditions, but do
not imply them. Physically, the magnetic field behaves as if the outer domain
is a perfect conductor (zero normal magnetic field), coated on the inside by a
insulating layer (zero normal current). Apparently these boundary conditions
are not completely different from what is observed in fusion plasmas. The
boundary conditions for the velocity do not correspond to a simple physical
situation, but are in practice not very different from no-slip boundary conditions.
They are in particular chosen since they are easily implemented using this type of
discretization (see also [161]). The electric field is imposed by fixing the electric
field at the wall. Since at the wall the values for the velocity are very small,
this roughly corresponds to a fixed axial current density at the wall of value
E0/η. In the static regime, the current density will be constant throughout the
cross-section S and the value of the total mean current will thus be I0 = SE0/η.
The value of this electric field was gradually increased. At sufficiently low values
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Figure 6.5: Viscoresistive instabilities generate toroidal flows. The details of the
flow are determined by the geometry of the toroidal device and the magnetic
field structure. Preliminary results.

of the electric field, its only influence is the generation of a mean current in the
axial direction. This current logically induces a azimuthal magnetic field. The
sum of the axial and azimuthal components yields a helically twisted magnetic
field, similar to the magnetic geometry imposed in fusion-devices. At a certain
threshold value of the electric field, the system becomes dynamically active
and a helical velocity mode appears. This mode seems to appear in order to
reduce the total dissipation (resistive and viscous) of the system. Apparently the
system tends to a state in which the dissipation is minimized (perhaps again
a manifestation of the depletion of nonlinearity). In the dynamically active
regime, the u×b contribution to the electric field will counteract this current so
that the mean value will be lower than I0. At higher values of the electric field
a multi-mode state appears, still laminar and periodic. At even higher values,
the system becomes turbulent and a continuous spectrum of excited modes is
observed.

Two control parameters can be identified to trigger the instability and lead-
ing to helical velocity perturbations: the pinch ratio, measuring the ratio of
the poloidal magnetic field to the toroidal magnetic field, and the Hartmann
number [162, 163, 99]. Our first goal was to closely reproduce the results by
Shan et al. for as far as this is possible using the slightly different boundary
conditions. This goal was reached as is shown in Figure 6.4. We illustrate the
first unstable modes which appear in the cylindrical plasma and we show the
quantitative agreement with [155] for the dissipation rate of the kinetic energy.

Results in toroidal geometry. The exciting study of the influence of the
geometry and transport coefficients on the toroidal rotation is currently un-
dertaken. In Figure 6.5 we show preliminary results of the flowfield generated
through visco-resistive instabilities in toroidal geometry, in which the shape of
the boundaries and the magnetic field are chosen similar to tokamak geometry.
These results are discussed in detail in the following publication4. A further in-

4This publication has been added to the manuscript after the date of the presentation.
However, it seems relevant to add it to the manuscript since the results were presented during
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vestigation will focus on the appearance of quasi-single helicity states in toroidal
geometry. In that study we will increase the value of the pinch ratio of the mag-
netic field compared to the tokamak related studies.

Magnetohydrodynamics and fusion plasmas. A word of caution is per-
haps not inappropriate here. Most certainly our approach cannot be claimed
to take into account all the physics observed in fusion plasmas and we do not
pretend it does. In order to understand what happens in detail in a particular
toroidal machine, incompressible MHD is certainly not a fine enough descrip-
tion. However, the current investigations try to describe generic mechanisms
observed in fusion plasmas at the crudest level capable of reproducing some
of the physics, which is MHD for some mechanisms and might be a more so-
phisticated description for others. As long as we do not know what can be
explained by the simplest approach, it does not seem necessary to use more
complex plasma descriptions.

the defense.
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of a nonzero toroidal angular momentum.
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Introduction.—The magnetic confinement of fusion
plasmas is strongly influenced by turbulent fluctuations.
These fluctuations degrade the quality of the confinement
and thereby reduce the performance of the fusion reactor. It
was discovered three decades ago [1] that, under certain
circumstances, the turbulent activity is reduced, leading to
a better confinement. Still today the understanding of this
low-to-high-confinement transition is far from complete.
There is, however, strong evidence that large toroidal
velocities of the plasma are a feature that is either at the
origin, or a consequence of, the mechanism that is respon-
sible for this transition [2,3]. Large toroidal velocities, of
the order of several kilometers per second, are observed
even in the absence of external momentum input. Several
mechanisms are put forward to explain the toroidal rota-
tion, mostly based on the turbulent transport of toroidal
momentum generated at the tokamak edge (e.g., in
Refs. [4–6]). In this Letter we present a mechanism which
seems to be generic, since it is observed even in one of the
coarsest descriptions of a fusion plasma: viscoresistive
magnetohydrodynamics (MHD).

A MHD description of fusion plasmas.—In the MHD
description, the plasma is described as a charge-neutral
conducting fluid. MHD, despite its low level of complexity
compared to kinetic descriptions or two-fluid descriptions,
already gives rise to a wealth of intricate phenomena and
its analytical treatment is only possible in some simplified
cases, either in the absence of velocity fields [7,8] or in the
absence of nonlinear interactions [9]. Wewill come back to
these analytical approaches, but before that, we present
the equations that we consider. These are the dimensionless
incompressible viscoresistive MHD equations for the ve-
locity field u and for the magnetic field B, in Alfvénic
units [10],

@u

@t
�M�1r2u ¼ �r

�
Pþ 1

2
u2
�
þ u�!þ j� B;

(1)

@B

@t
¼ �r�E; (2)

E ¼ S�1j� ½u�B�; (3)

r � u ¼ 0; r �B ¼ 0; (4)

with the current density j ¼ r� B, the vorticity ! ¼
r� u, the pressure P, and the electric field E. These
equations are nondimensionalized using the toroidal
Alfvén speed CA ¼ B0=

ffiffiffiffiffiffiffiffiffiffi
��0

p
as typical velocity, with

B0 the reference toroidal magnetic field at the center of
the torus (R ¼ R0), � the density, and �0 the magnetic
constant. The reference length L (see Fig. 1) is the diame-
ter of the cross section for the circular case and is the minor
diameter for the asymmetric D shape (L ¼ 1:88 for both
geometries). The dynamics are then governed by the initial
and boundary conditions of the problem, and two dimen-
sionless quantities: the viscous Lundquist number (M) and
the Lundquist number (S) defined as

FIG. 1. Cross sections of the toroidal geometries considered in
the present work. The toroidal angle is labeled � and the poloidal
one ’.
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M ¼ CAL

�
; S ¼ CAL

�
; (5)

with � the magnetic diffusivity and � the kinematic vis-
cosity. The ratio of these two quantities is the magnetic
Prandtl number Pr ¼ �=�, which we have chosen unity in
the present study, thereby reducing the number of free
parameters, which characterize the magnetofluid, to one,
the viscous Lundquist number. Previous investigations in-
dicate that it is the geometric mean of the viscosity and the
magnetic diffusivity which determines the dynamics
[11,12]. In setting the Prandtl number to one, a change in
the Lundquist numbers,M or S, is equivalent to a change in
the Hartmann number.

Let us now go back to the analytical description of
viscoresistive MHD. In the static case in which u ¼ 0,
Eq. (1) reduces to an equilibrium

rP ¼ j� B: (6)

In a cylindrical geometry this equilibrium can be achieved
by various magnetic configurations such as the z pinch or
the � pinch [13]. In toroidal geometry it is problematic to
obtain such an equilibrium, as we will now explain. We
consider the case in which the driving toroidal electric field
is curl-free within the plasma, over times of interest, such
that E� � 1=R. Further we assume the toroidal magnetic
field to obey the same scaling, which follows from the
integration of Ampère’s law on a toroidal loop. In the
simplest case, we choose a space-uniform electrical con-
ductivity such that the toroidal current induced by the
electric field is also given by the same dependence, so
that the externally imposed magnetic field and toroidal,
laminar, voltage-driven current density are given by,

B0ðRÞ ¼ B0

R0

R
e�; J0ðRÞ ¼ J0

R0

R
e�: (7)

Computing the Lorentz force resulting from these toroidal
fields, taking into account the poloidal magnetic field
induced by J0, results in a force field which is not curl-
free [14]. Since the curl of the pressure gradient is neces-
sarily zero, the equilibrium described by (6) becomes
impossible and additional terms of Eq. (1) need to be taken
into account to balance the equation. Since all other terms
in (1) are proportional to (or quadratic in) the velocity, the
resulting state must be dynamic. That is, a toroidal plasma,
described by viscoresistive MHD, confined by curl-free
toroidal electric and magnetic fields, necessarily moves.

It is true that the rationale described above depends on
the choice of the electric conductivity, which was assumed
to be uniform. It was however shown [15,16] that to satisfy
(6) in a torus, very unusual profiles of the electrical con-
ductivity must be assumed. We omit these rather unphys-
ical cases and focus on the dynamical plasma behavior
which results for the simplest, uniform, conductivity
profile.

It follows from the foregoing that it is necessary to take
into account all other terms in the MHD equations, and
analytical treatment becomes impossible unless symme-
tries are assumed. To study the full dynamicswe are obliged
to solve numerically the system and this is what is done in
the present investigation. Such fully three-dimensional non-
stationary simulations, taking into account all relevant time
and space scales, are computationally demanding and only
quite recently have the necessary resources and numerical
methods become available to do such simulations.
Equations (1)–(4) are discretized with a Fourier pseudo-
spectral method on a Cartesian grid. To impose the bound-
ary conditions we use the volume-penalization technique, a
method of the immersed boundary type, which we consider
a good compromise between the ease of implementation,
flexibility in geometry, and the numerical cost of the simu-
lation. Results for two-dimensional MHD can be found in
Ref. [17]. We recently extended this method to study the
three-dimensional viscoresistive MHD equations [18], and
in the present Letter we present the results of three-
dimensional simulations in two toroidal geometries.
Results of numerical simulations.—Details of the nu-

merical method are given in Ref. [18]. Simulations are
carried out on a cubic domain of size 2� consisting of
2563 grid points for the highest values of M. The initial
condition for the simulations is zero magnetic fluctuations
and zero velocity, and no-slip velocity boundary conditions
are imposed. We consider the boundaries of the fluid
domain as perfectly conducting and coated with an infi-
nitely thin layer of insulator. Thereby the normal compo-
nent at the wall of the magnetic and current density fields
vanishes. We impose toroidal magnetic and current density

FIG. 2 (color online). Streamlines colored by the value of the
toroidal velocity, u� for M ¼ 15 (top) and M ¼ 150 (bottom) in
the geometry with circular cross section. Only a part of the
toroidal domain is shown.
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fields given by Eq. (7). The Biot-Savart law is used to
determine the poloidal magnetic field induced by the to-
roidal current J0ðRÞ. All the simulations presented in this
communication are performed with B0 ¼ 0:8 and
J0 ¼ 0:3. This corresponds, for both geometries, to a pinch
ratio � � 0:16, defined as the ratio between the wall-
averaged poloidal and the volume-averaged toroidal mag-
netic field (� ¼ �B’=hB�i). The only parameter that we

vary is the Lundquist number M. The simulations are time
dependent and they are stopped when a dynamical steady
state is reached.

The results in Fig. 2 show the presence of a poloidal
flow, a pair of counterrotating vortices in the r-’ plane. For
small M the dynamics are dominantly poloidal, as is ex-
pected. Indeed, in the limit of vanishing nonlinearity,
Bates and Montgomery [9] showed analytically that the
steady state solution is a pair of poloidally rotating vorti-
ces, aligned with the toroidal direction. For nonzero

nonlinearity, i.e., by increasing M, the vortices start mov-
ing in the toroidal direction, both in the opposite direction.
Their toroidal velocity increases with the Lundquist
number M in the two considered geometries. The three-
dimensional velocity streamlines show a substantial
change of topology from dominantly poloidal to domi-
nantly toroidal flow (see Fig. 2, bottom). This is quantified
in Fig. 3, where we observe that the principal direction of
the flow motion is toroidal ifM is raised beyond�40. The
square toroidal velocity saturates for increasing M at a
value of �86% of the total square velocity. This toroidal
organization of the flow is consistent with the tendency of
the velocity field to align with the magnetic field, as is
illustrated in the inset of Fig. 3, where we compute the
average (over the toroidal domain) of the absolute value of
the cosine of the angle between the velocity and magnetic
field. This quantity is equal to one if the velocity and
magnetic field are perfectly aligned or antialigned. It is
shown that the trend towards a toroidal velocity follows
exactly the same M dependence as the alignment.
This tendency towards a dominant toroidal flow is simi-

lar for the torus with the asymmetric cross section as is
shown in Fig. 3, while the alignment is even more pro-
nounced. In both geometries, the generated velocity field
contains non-negligible fluctuations. The quantities u0 and
B0 denote the fluctuations around the azimuthally averaged
instantaneous velocity and magnetic field, respectively.
At M ¼ 3008 in the D-shaped geometry, u0rms=urms ¼
6:7� 10�2, B0

rms=Brms ¼ 1:5� 10�3 and urms=Brms ¼
3:2� 10�3. The rms values correspond here to volume
averages over the toroidal domain. A detailed investigation
of the spatial distribution of these fluctuations and its
dependence on M will be presented elsewhere.
A fundamental difference is observed between the flows

that are generated in the two geometries. The volume-
averaged toroidal angular momentum is defined by

hL�i ¼ 1

V

Z
V
Ru�dV: (8)

FIG. 4 (color online). Azimuthally averaged flow visualizations: toroidal velocity u� for M ¼ 15 (a), M ¼ 752 (b), and M ¼ 3008
(c). (d) Toroidal velocity profiles along a vertical cut. The position of these cuts is indicated in (a), (b), (c) by a dotted vertical line.

FIG. 3 (color online). The ratio of the mean-square toroidal
velocity to the total mean-square velocity hu2�i=hju2ji as a

function of M. In the inset we show the average over the domain
of the absolute value of the cosine of the angle between the
velocity field and magnetic field.
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For the torus with circular cross section, this quantity is
zero to a good computational approximation, due to the up-
down symmetry of the observed flow. However, for the
torus with asymmetric cross section this is not the case. For
low M, a poloidal pair of counterrotating vortices appears
(see Fig. 4 for azimuthally averaged flow visualizations,
and toroidal velocity profiles along a vertical cut) as for the
circular cross section. Similarly, if the viscous Lundquist
number is increased, an important toroidal flow develops.
Unlike the symmetric case, there is a breaking of the
symmetry in the flow and the part of the flow moving in
the negative direction (the red zone) becomes larger at the
expense of the part of the flow which moves in the positive
toroidal direction (blue zone). This symmetry breaking,
illustrated in Fig. 4, leads to the development of a net
toroidal flow. The toroidal angular momentum becomes
hereby nonzero (see Fig. 5). Its normalized value increases
significantly with the viscous Lundquist number. The ob-
served influence of up-down symmetry is consistent with
axisymmetric time-independent computations [10] and
is also observed in gyrokinetic simulations and experi-
ments [19,20].

It is presently not clear if the velocity profile observed in
our simulations will change qualitatively when M is in-
creased further and a transition to another flow topology
cannot be excluded. Also have we not yet investigated the
influence of the magnetic Prandtl number. It is at this point
perhaps important to say that we do not know what the
viscosity should be to approximate the dynamics of experi-
ments. However, the fact that this feature is observed in
fully resolved simulations of the viscoresistive MHD equa-
tions is a result of major importance, since it shows how
intrinsic toroidal rotation is present in one of the coarsest
global descriptions of a fusion plasma, without invoking
arguments on charge non-neutrality or kinetic theory.

Conclusion.—We want to summarize the results that
we obtained: considering curl-free toroidal electric and

magnetic fields and constant transport coefficients, visco-
resistive magnetofluids spontaneously generate velocity
fields. This velocity field aligns (or antialigns) with the
magnetic field, thereby generating a toroidal component.
This is a nonlinear effect which becomes negligible in the
limit of small Lundquist number. Furthermore, toroidal
angular momentum is created, if the up-down symmetry
of the torus is broken.
By its simplification, both in terms of the used model

equations, as well as in terms of the parameter range
chosen for the properties of the conducting fluid, our
investigation should be considered academic rather than
directly applicable to the detailed description of existing
machines. At the same time, since MHD does give a rough
description of laboratory plasmas, the mechanism that we
have described should be present, at least qualitatively, in
existing devices. The observed MHD self-organization
thereby seems to be of major importance for the magneti-
cally confined fusion community.
This work was supported by the contract SiCoMHD

(ANR-Blanc 2011-045), computing time was supplied by
IDRIS, project 22206.
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Conclusion

It is hard to write a conclusion to this manuscript since a conclusion implies
something final. Most of the investigations in this manuscript are not the final
word on the subject. Even on a subject as old and well-discussed as isotropic
turbulence, still a lot of questions are open and a fully satisfactory theory is
still lacking. In complex situations such as the dynamics of fusion plasmas,
the hope of such a theory is not even a goal since so many physical mechanisms
play a role, one of which is the poorly understood phenomena called turbulence.
Even the most academic case of isothermal, incompressible MHD confined in
a toroidal geometry gives rise to a wealth of phenomena that we are far from
understanding at a detailed level. Let me therefore finish this manuscript by
the only appropriate concluding remarks [164]: Further research is needed!
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