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Introduction

My scientific interest lies in the field of applied mathematics and specifically in scientific computation.
I work on the creation and improvement of numerical schemes for free surface flow problems. I am
also interested in the interaction of numerical schemes with the selected asymptotic mathematical
models.

My activity on the topic started as graduate student when I was working on my master thesis
and I started studying the nonlinear shallow water equations [63] for the first time. We numerically
studied the propagation, run-up and rundown of long surface waves in one and two horizontal
dimensions (1HD and 2HD respectively), and the simulation of waves formed by sliding masses
using a finite volume (FV) scheme for the nonlinear shallow water equations [62].

During my phd studies we developed and compared two numerical schemes for the solution
of the nonlinear shallow water equations (NSWE) on unstructured meshes. A node centered FV
scheme (NCFV) and a cell centered FV scheme (CCFV) which are both second order in space and
time [65]. At the same time I familiarized myself with the family of asymptotic models [72, 157]
and developed a well balanced shock-capturing hybrid FV-Finite Difference (FD) scheme for two
extended Boussineq-type (BT) models in one horizontal direction (1HD) [135]. A follow up is the
implementation of an unstructured, higher order, FV numerical scheme for a set of two horizontal
dimensions (2HD) BT equations [136] and its numerical treatment when wave breaking occurs
[137].

This manuscript presents the core of my scientific activity on numerical schemes for depth
averaged models and beyond, after I joined the Inria research center at the University of Bordeaux.
Section 0.1 attempts to put my work into context and give a summary of my contributions.

0.1 My contributions

My work over the last ten years can be divided into three main categories:

1. Study of depth-averaged asymptotic models

2. Development of numerical schemes in one and two horizontal dimensions (1HD and 2HD
respectively)

3. Study of wave breaking for Boussinesq-type models

1
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The reader can find below a summary of my contributions in the field of nonlinear water wave
dynamics in BT models. I owe a big part of these to my colleagues, especially to Mario Ricchiuto
at Inria of the University of Bordeaux, Andrea Filippini at BRGM, Luca Arpaia at CNR ISMAR
(National Institute of Marine Sciences), Venice, Subodh Joshi Shell Technology Center, Bangalore,
Nghi Vu Van at Ho Chi Minh City University Of Transport in Vietnam and Paola Bacigaluppi at
Dept. of Civil, Environmental and Geomatic Engineering ETH.

Study of depth-averaged asymptotic modes. The first part, the most recent, comes from the
experience I gained over the last ten years working in the Cardamon team at Inria of the University of
Bordeaux. Recently in [146] we went back to the fundamental question of whether full nonlinearity
in weakly dispersive BT models is a necessity. We reconsidered the tests first used in the literature
to address this issue, as well as a number of more demanding issues. We also consider different
families of weakly nonlinear BT models, with different shoaling characteristics, especially when
nonlinear waves are involved. Our study allows us to point out that for many cases, it is quite hard
to conclude whether full nonlinearity is really necessary. There are a few discriminant cases, which
are unfortunately not those mostly used in the literature proposing new models or new numerical
methods. Two main conclusions can be extracted from this work:

• Benchmarking habits for BT models need to be slightly revised and

• Fully nonlinear models allow us to safely approach problems of different natures and involving
highly nonlinear waves. As a rule of thumb, weakly nonlinear models can still be safely used
in many problems of practical interest not involving planar nonbreaking wavefronts reflecting
on steep coastal structures in deep waters. This is true even for the quite complex urban runup
of nonlinear waves.

Numerical schemes for BT models. I have also worked on the implementation of numerical
schemes for depth-averaged models in 1HD and 2HD, see for example [97, 138, 92]. The depth-
averaged models used, are the enhanced fully non linear weakly dispersive equations of Green-
Nagdhi [157] but the schemes proposed can be extend to other weakly nonlinear models, see for
example [135], that can be written in a pseudo balanced law form.

The procedure that we follow is a two-step solution composed of a first step where the non-
hydrostatic source terms is recovered by inverting the elliptic coercive operator associated to the
dispersive effects; a second step which involves the solution of the hyperbolic shallow water system
with the source term, computed in the previous phase, which accounts for the non-hydrostatic
effects. In this hybrid approach we combine a finite volume (FV) and a finite element (FE) method.
The FV method is used to solve the underlying hyperbolic shallow water system, while a standard
P 1 finite element method is used to solve the elliptic system associated to the dispersive correction.
Of course this is not restrictive and other methods can be used see for example [136, 135, 91]. The
most important contributions from these works that we can highlight are:
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• We demonstrate the potentially catastrophic results that can occur if one is unaware of the
interaction between modeling errors and discretization errors when discretizing BT models.
The usage of lower order scheme in space and time can create terms that will significantly
affect the dispersion error of your asymptotic model. In other words special attention has to
be given to the study of interaction of the error of the scheme and the error of the model.

• The elliptic component has to be discretized with at least a second order method.

• In 2HD on unstructured meshes, when a FV scheme is used in the hyperbolic part and
continuous FE in the elliptic part, we must be very careful with the representation of the
data and how to handle the incomplete norm that is generated by the variational formulation.

Wave breaking and applications of the BT models. An other part that i have also worked on is
the simulation of wave breaking when using BT equations. More precisely during my years in the
Cardamom team we attempted to deepen the understanding of the sensitivity of two wave breaking
closures. The hybrid, and an eddy viscosity closure that involves a partial differential equation for
the main physical quantities (TKE).

The hybrid is one of the most used wave breaking closure in the last fifteen years. This approach
is based on a local coupling of the dispersive propagation model with the shallow water equations. It
is a simple method in which one first detects breaking regions, and in these the dispersive terms are
suppressed. In these breaking regions thus one solves the non-linear shallow water (NSW) equations
which allow to model a breaker as a shock. Through this discontinuity mass and momentum are
conserved, while total energy is dissipated, thus modeling the energy dissipation due to breaking.

The starting point of this part of my work has been that this technique has a major limitation
in the stability of the coupling which introduces spurious oscillations at the interface between the
breaking and the non breaking region (see chapter 5 for details). The objective of my work [145]
was to study the sensitivity of the two wave breaking closures with respect to the mesh size and with
attention to the possibility of obtaining gird independent results. An other objective was to provide
some understanding of the sensitivity of this dissipation to the mesh size. We tried to gain an insight
into the mechanism actually responsible for wave breaking by providing a quantitative description
of the different contributions to the dissipation mechanism, differentiating those associated to the
numerical scheme from those introduced at the PDE level. Finally we showed equal capabilities of
the approaches studied in reproducing simple as well as complex transformations, while showing
the substantial difference in the underling dissipation mechanisms.

A follow up section of this work was to study the sensitivity of wave breaking simulation to the
variation of the parameters used from the triggering conditions and the breaking models themselves
[129, 142]. Both of them use case depended/ad/hoc parameters which affect the numerical solution
while changing. We used the sensitivity indices computed by means of analysis of variance to
provide the sensitivity of wave breaking simulation to the variation of breaking parameters. As a
result we can safely say that
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• Both approaches allow to describe correctly wave transformation and breaking at large scales
(at least with a rather standard implementation).

• When using the eddy viscosity approach the numerical dissipation plays a negligible role.
This motivates the look for non-dissipative/energy conserving numerical methods.

• We gave some insights into physics of non-linear and dispersive waves, specifically during
the breaking and the run-up phases.

• The analysis quantitatively distinguishes between the two prominent approaches for modeling
the breaking of the waves, viz., the hybrid method and the TKE model for wave breaking.

• The eddy viscosity approach clearly shows a reduced sensitivity to the mesh compared to the
hybrid one.

The problem of oscillations appearing in the hybrid wave breaking closure inspired the work on
coupling methods for phase-resolving coastal wave models, with some initial results are discussed
in [102] and chapter 5.

In the framework of the French research project TANDEM, dedicated to tsunami modeling, a
series of benchmarks has been set up, addressing the various stages of a tsunami event: generation,
propagation, run-up and inundation. We presented in [141] the results of five codes involving both
depth-averaged Boussinesq and fully 3D Navier-Stokes equations, aimed at being applicable to
tsunami modeling. The codes are evaluated on a flow involving propagation, run-up, overtopping
and reflection of the waves on two-dimensional reefs, and compared with the experimental data
produced from a set of laboratory experiments [228]. We also presented some representative test
cases in which we compared different numerical codes to identify the strengths and weaknesses of
the models [258]. These benchmarking test cases are part of a database built from existing literature,
with validation data from reference simulations, theoretical solutions, or lab experiments. They
cover the main stages of a tsunami’s life: 1) generation, 2) propagation, 3) run-up and submersion,
and 4) impact.

In the same spirit, but with greater emphasis on the context of applications in [143] we presented
a numerical study of long wave conditions, in the old Venetian port of Chania (in the island of
Crete, Greece) using two different BT models. The two models are used to determine the resonant
frequencies, amplitudes and modes of the entire harbor basin.

The manuscript is organized according these outlined divisions: Chapter 1 introduces various
weakly dispersive BT models in a pseudo-conservative form. These models are tested using the
most classical benchmarking cases available in the literature. Specifically, we examine models with
different nonlinear properties. After a brief analysis of their linear and nonlinear characteristics,
we compare them to assess the necessity of fully nonlinear models. All of the results are mesh
independent solutions obtained by numerical schemes under the same set of reference. The proposed
numerical scheme for the fully nonlinear equations in 1HD (but also similar for the other models) is
introduced in Chapter 2 while Chapter 3 outlines its extension to 2HD. Each chapter highlights
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numerical difficulties and challenges associated to the models and the schemes. Chapter 4 is
dedicated to wave breaking for BT models and outlines a sensitivity analysis of different wave
breaking closures both for weakly and fully nonlinear BT models. Finally in chapter 5 my current
and future activity is discussed.
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Chapter 1

Weakly dispersive Boussinesq-type models

No one can dispute the importance of the Boussinesq-type (BT) models in coastal engineering.
In the last 50 years, significant developments have been achieved both at the level of modeling,
as well as in the development of related numerical methods. BT models are depth-integrated,
phase resolving models for surface wave propagation. Two main parameters characterize them.
The first is the dispersion parameter µ, which is the ratio of the reference water depth d over the
characteristic wavelength L. The second is the non dimensional parameter ε, defined as the ratio
of the characteristic wave amplitude α0 over d. Very long waves are characterized by negligible
values of µ2. In this case, the well known system of shallow water, or Saint-Venant, equations
are recovered. In near shore applications, involving wave transformations and their impact in
coastal structures, the most widely used models are the so-called weakly-dispersive, obtained for
µ2 � 1, and neglecting all effects of order O(µ4). This chapter focuses on this class of Boussinesq
models. Note that all these PDE systems involve weak dispersive perturbations of the shallow water
equations, and usually involve the inversion of an elliptic operator in the time advancement of the
depth averaged velocity.

Within weakly dispersive BT equations, we further distinguish two important sub-families.
Weakly nonlinear Boussinesq models are obtained assuming that ε ≈ O(µ2), which allows to
neglect all effects of order O(µ4, εµ2). This Ansatz results in PDE systems which can be written
as the nonlinear shallow water equations with a linear dispersive perturbation. The linearity of the
dispersive operator results, in time independence of the elliptic equation.

A large number of the best known models in the coastal engineering community belong to
this class. For example, the simple model of Boussinesq [29] and Peregrine’s [212] equations.
Peregrine’s equations, so called the standard Boussinesq equations, written in terms of depth averaged
velocity are limited to relativity shallow water. Approximately up to when depth is grater than one
fifth of the equivalent deep water wavelength. During the 90’s considerably effort has been made to
extend the validity and the applicability of the standard Boussinesq equations to deeper waters (or
shorter waves). For example the enhanced models by Nwogu [198], Madsen and Sorensen [177] or
Beji and Nadoka [15]. These extended models provide a more accurate representation of phase and
group velocities in intermediate water, with a water depth to wavelength ratio of up to 1/2. They are
sometimes referred to as low-order enhanced Boussinesq-type equations.

7
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The linear character of the dispersive operator, of these models, translates in its time independent
nature which allows efficient implementation strategies for its inversion [222].

There exist a number of known codes implementing these models, e.g., BOUSS-2D by the US
Army [197], DHI’s commercial platform MIKE21 [70], the code BOSZ initially developed at U. of
Hawaii [227], or the more recent open source platform CELERIS [247, 248].

The BT models obtained assuming that ε = O(1) are referred to as fully nonlinear. In this
case the depth averaged equations involve a strongly nonlinear dispersive operator, making the
associated numerical resolution inherently more expensive. However, this choice is without doubt
physically more relevant, and provides the well known models of Serre [231], Green-Nagdhi [109],
and enhanced variants discussed e.g., in [270], [51], [176], [155],[50], or [59]. A model of this
type is implemented in many operational codes among which the most well known are probably
FUNWAVE [234, 235, 185], Coulwave [172] and Uhaina [91], but similar models have been implemented
in other platforms as the open source projects Basilisk [169], among others.

Note that other parameters may be introduced to characterize depth averaged equations in terms
of mild (or not) slope, presence (or not) of surface tension effects etc. For an extensive review on
the BT models we refer to [158, 150, 36]. In this work, we will limit our study to the impact of
full/weak non-linearity.

As already mentioned, fully nonlinear models are more complex than weakly nonlinear, and
require the inversion of a nonlinear, and thus time dependent, elliptic operator at every time step. The
natural question arising in this case is whether this additional complexity and computational cost is
necessary. Many think that this issue is fully answered in the landmark paper by Wei et al. [270]
which concludes that full non-linearity is absolutely necessary to correctly predict water depths.
Yet, the literature is still filled with simulations using weakly nonlinear models, showing accurate
predictions of wave height and phase, for now almost standard cases, in both small amplitude and
configurations close to/or of incipient breaking.

In this chapter, we go back to the question of whether full non-linearity in weakly dispersive BT
models is a necessity. We re-consider the tests by [270], as well as a number of more demanding
results. We also consider different families of weakly nonlinear BT models, with different shoaling
characteristics. As demonstrated, for many cases it is quite hard to conclude in favor of one class of
model or another. There are, however, a few discriminant cases in which the water depth predictions
are negatively affected by the lack of full non-linearity. However, these cases are rarely used in the
literature proposing new numerical methods or, more importantly, dispersive PDE models.

1.1 Weakly dispersive Boussinesq PDE models

In this section we briefly describe the Boussinesq systems used in this work, and recall some of their
significant properties. As mentioned in the introduction, the BT models derived since the 1990 are
numerous. In this work we use some of the most well known among these.
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Figure 1.1: Description of the free surface flow problem and main notation.

1.1.1 Weakly nonlinear BT equations

Among the weakly nonlinear models these of Madsen and Sørensen [179, 178] and Nwogu’s [198]
are two typical and widely used. The two have quite comparable linear dispersion properties,
but different shoaling characteristics. For this reason, we also consider the model Nwogu-Abbott
introduced in [95], which has the exact same linear properties of the Nwogu equations, but is only
equal to the latter within an O(εµ2, µ4) correction allowing to write all the dispersive terms using
derivatives of the volume flux rather than of the velocity. As shown in [95], this leads to a system
which behaves like Nwogu’s for small amplitude waves, but much closer to that one of Madsen and
Sørensen in more nonlinear regimes.

All these models are written in a pseudo balanced law form:

ht + ∇ · q = Dh

Ut +∇ · (u⊗ q) + gh∇η + cf (h,q)q = DDDq

on Ω× [0, t] ⊂ R2 × R+ (1.1)

where h is the total water depth and q the volume flux hu, with u as the depth averaged velocity.
The free surface is denoted here by η = h+b with b(x, y) the topography sources. The friction term
cfq in this work is approximated with the usual Manning law cf = gn2

M ||u||/h4/3 with nM as the
Manning coefficient. We note that all the dispersive terms are on the right hand sides of (1.1). The
definition of Dh, of DDDq, and of the pseud-momentum variables U allows to distinguish between
different models.

The equations of Madsen and Sørensen This system is a dispersion-enhanced variant of the
Abbott equations, which are an equivalent of Peregrine’s [212] within an O(εµ2, µ4) correction,
allowing to write all the dispersive terms using derivatives of the volume flux rather than of the
velocity [95]. In two space dimensions, the equations are obtained from (1.1) setting Dh = 0, and

DDDq = Bgd2∇∇ · (d∇η) (1.2)
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where d = d(x, y) = h0 − b(x, y) is the still water depth. The momentum variable is defined by

U = q−
(
B +

1

3

)
d2∇(∇ · q)−

− d

[
1

3
(∇d⊗∇q) +

1

6

(
∇d⊗ (∇q)⊥

)
− 1

6

(
(∇d)⊥ ⊗∇q

)]
. (1.3)

The value of B = 1/15 is that for which the phase relation of the system matches a second-order
Padé approximation of the exact phase of the Euler equations [179].

The equations of Nwogu Introduced in [198] this BT model is obtained from Peregrine’s by
replacing the depth averaged velocity with a velocity at an arbitrary distance form the still water
level zθ. The value zθ = −0.531d is the one that optimizes the dispersion relation of the system
with respect to the Euler equations. The model is defined as in (1.1) with

Dh = −∇ ·
[(

z2
θ

2
− d2

6

)
d∇(∇ · u) +

(
zθ +

d

2

)
d∇[∇ · (du)]

]
, (1.4)

DDDq = −uDh + ht
z2
θ

2
∇(∇ · u) + htzθ∇(∇ · du) and (1.5)

U = q + h

[
z2
θ

2
∇(∇ · u) + zθ∇(∇ · du)

]
. (1.6)

The equations of Nwogu-Abbott These equations are derived starting from these of Nwogu and
in the aim to find an asymptotically equivalent system in an amplitude-volume flux form, which
degenerates to the same linearized equations of [198]. This derivation, as described in [95], involves
incorporating correction terms of orderO(εµ2, µ4) to transition from derivatives of du to derivatives
of q. In this case, the equations are written as in (1.1) but now we haveDDDq = 0 thus:

Dh = −∇ ·
[(

z2
θ

2
− d2

6

)
d∇∇ · (q

d
) +

(
zθ +

d

2

)
d∇∇ · q

]
, (1.7)

U = q +
dz2

θ

2
∇
(
∇ ·
(q

d

))
+ dzθ∇(∇ · q). (1.8)

1.1.2 Fully nonlinear BT modelling: the enhanced Green-Naghdi equations

Maybe one of the most well know fully nonlinear Boussinesq models are the equations of [109].
The study of improved formulations of these equations and their numerical approximation has been
the object of intense efforts in the past 15 years, one can refer e.g., to [26], [103], [190], [202], [159],
[217], [59], [80], [164], [205], [158], [214], [250], [259], [47], [48] (and many others). Here we
consider the enhanced equations in the form used in [97] and [138] reading as in (1.1) with Dh = 0,
UUU = [h, qqq]T and

DDDq =
gh∇η
α

+ ΨΨΨ, (1.9)

where ΨΨΨ is the solution of the elliptic problem

(I + αT )ΨΨΨ = W −R. (1.10)
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We define
W = −gh

α
∇η and R = hQ

(qqq
h

)
(1.11)

where the operators T, and Q are, respectively,

T (·) = −1

3
∇
(
h3∇ · (·)

h

)
− h2

2

(
∇ · (·)

h

)
∇b+

1

2
∇
(
h2∇b · (·)

h

)
+

+ h

(
∇b · (·)

h

)
∇b, (1.12)

Q(·) =
2

3h
∇
(
h3
(
∇(·)1 · ∇⊥(·)2 + (∇ · (·))2))+

+ h2
(
∇(·)1 · ∇⊥(·)2 + (∇ · (·))2)∇b+

+
1

2h
∇
(
h2
(

(·) ·
(

(·) · ∇
)
∇b
))

+
(

(·) ·
(

(·) · ∇
)
∇b
)
∇b. (1.13)

(·)1 and (·)2 indicates respectively the first and second component of the vector (·) and ∇⊥ states
for the normal gradient operator. α is a parameter used to improve the dispersion properties of the
model with respect to those of the full Euler equations. When the parameter a is set to the value
of 1.159, it leads to the enhanced Green-Naghdi (eGN) model [155]. By setting α = 1 we recover
the classical Green-Naghdi equations. We write the operator T in such a way as to guarantee its
inversion properties and the coercivity of the operator (I + αT ), see [95] and [145] for further
details.

The operator T (·) plays a key role, as its inversion is necessary to be able to obtain evolution
equations for the physical variables. T (·) can be written in compact form involving two operators
S1(·), S2(·) and their adjoints S?1(·), S?2(·), as:

T (·) = S?1

(
hS1

(
(·)
h

))
+ S?2

(
hS2

(
(·)
h

))
(1.14)

where

S1(·) =
h√
3
∇ · (·)−

√
3

2
∇b · (·), S2 =

1

2
∇b · (·). (1.15)

Note that this formulation is essential to show the coercivity of the operator (I + αT ), see [97] and
referenced therein for further details.

The linear dispersion and shoaling properties of the fully nonlinear GN and eGN models are
comparable to those of the weakly nonlinear models of Peregrine and Madsen and Sorensen respectively.
The latter are extensively described in [93]. On the other hand, the nonlinear shoaling properties of
a weakly/strongly nonlinear model is not easy to be examined analytically. As discussed in [93], one
way to test the nonlinear shoaling properties of a model is by performing the test of Grilli et al. [110].
The test consists of a solitary wave with relative amplitude α/h0 = 0.2m, propagating on a water
depth of 0.44m and shoaling on to a constant slope of 1 : 35. Ten wave gauges have been placed
along the flume to measure the free surface elevation. All of them are placed before the breaking
point with the last one being the closest to the breaking point. Figure 1.2 compares the experimental



12 CHAPTER 1. WEAKLY DISPERSIVE BOUSSINESQ-TYPE MODELS

wave’s envelope with the result performed by four weakly non-linear models: Peregrine (P) [212],
Abbott (A) [1], Madsen and Sorensen (MS) [178] and the MSP system. The last one is a modified
system of Peregrine’s equations written in a wave amplitude-velocity form, see [93, 95] for further
details. In this work, we performed the same test on the fully nonlinear GN and eGN models and
we added the computed results on the figure. Our result has been obtained using the discretization
method presented in this work and it is a grid convergent solution, such that the plotted curve can
be seen as genuine representations of the behavior of the model. We can observe that as soon as
the nonlinear effects dominate (this happens close the breaking region) the phenomenon is better
reproduced by the fully nonlinear models and even better by the eGN equations used in this work.

Figure 1.2: Wave envelope on the 9 gauges along the domain. Comparison between different weakly
nonlinear models, GN, eGN and the experimental data. A-Abbot model, P-Peregrin model, MS-
Madsen and Sorensen, MSP-Madsen and Sorensen in velocity form.

1.1.3 A summary on the model properties

Water waves transform in both pase and energy, due to shoaling, refraction, diffraction and reflection.
The degree of refraction, diffraction and reflection depends on dispersion relation while the degree
of shoaling mainly depends on the shoaling coefficient which in turns depends on the topography
steepness. To highlight the fundamental properties of asymptotic mathematical models, such as
those described in subsection 1.1, we turn our focus to the fully nonlinear weakly dispersive model
of the GN equation. An analogous process can be applied to other Boussinesq-type (BT) models.

Linear Dispersion Properties

In the BT equations, linear dispersion properties are extracted by linearizing the model around
a certain base state, typically the resting state. Linearization involves perturbing the equations
about this state and analyzing the resulting linear system. The dispersion relation, governing
the propagation of linear waves, can be derived from this linearized system. It characterizes the
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relationship between wave frequency and wave number, thereby unveiling how waves of different
wavelengths propagate through the medium. More precisely in 1HD, the linearized GN equations
without topography terms read as:

ηt + dux = 0 (1.16)

dut + gdηx = φl (1.17)

(I + αTl)φl = Tl(gdηx) (1.18)

where
Tl =

1

3
d2(·)xx. (1.19)

Using the above equality in 1.18 we get:(
I − α

3
d2∂xx

)
φl = −g

3
d3ηxxx (1.20)

We introduce a solution W = [h, hu] expressed in the form of a Fourier mode W = Ŵeνt+jkx

with ν = ξ + jω. ω denotes the phase of the mode, ξ represents the rate of amplification/damping
and k is the wavenumber of the Fourier mode. Thus, the system becomes:

νη̂ + jkdû = 0 (1.21)

νû+ jkgη̂ =
g

3
jk3d2η̂

(
1 +

α

3
d2k2

)−1

. (1.22)

The characteristic polynomial associated with the system’s matrix is

ν2 − (jk)2gd+
g

3
(jk)2k2d3

(
1 +

α

3
d2k2

)−1

= 0 (1.23)

and after some calculus we obtain form the imaginary part of 1.23 that ξ = 0 and from the real part
that

ω2
eGN = gdk2

(
1 + α−1

3
k2d2

)
1 + α

3
k3d2

. (1.24)

α = 1.159 is the indicated value [155] that optimizes the above relation with respect to the Airy
theory. The linear dispersion relation for the nominal values of the models’ constants proposed
in literature is reported on the left picture on 1.3a. In the classical near-shore window of values
kd ∈ [0, π], all models provide errors below 2% wrt the Airy theory [239]. We highlight that the
Nwogu and Nwogu-Abbott models have the same linearized form, so the same phase relation. The
usual choice of parameters provides a monotone relation only for the MS and GN model. The
Nwogu and eGN equations pass from phase lag to phase advance when going from long to short
waves, the crossing taking place within the frequency window considered for the Nwogu model.

Linear Shoaling Properties

Linear shoaling properties concern the behavior of linear waves as they encounter variations in water
depth. Using again the linearized eGN equation, we can investigate wave shoaling by introducing
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a slowly depth-varying profile, b = b(x). Higher order derivatives of the bathymetry are neglected.
Analyzing how the linearized waves evolve as they propagate into shallower regions provides
insights into how wave characteristics, such as amplitude and wavelength, change in response
to varying bathymetry. As before we introduce to our system a solution of the form η(x) =

α(x)ej(ωt−ψ(x)) with ψx = k(x) considering that α(x), h(x) and k(x) are slowing varying functions.
Collecting the terms containing first order derivatives of α, k and h and after some algebraic manipulations
we get:

αx
α

= −S hx
h

(1.25)

where S is called the shoaling coefficient and is defined as:

S = (α3 − α2α4)/α1. (1.26)

For the eGN equations

α1 = 2

(
1− αA

3B
k2d2 +

4

3
(α− 1)k4d4

)
, (1.27)

α2 = 1− αA

3B
k2d2 + 2(α− 1)k4d4, (1.28)

α3 = 1− αA
B
k2d2 + 2(α− 1)k4d4, (1.29)

α4 = −1− Ω

Ω
, (1.30)

with A = 1 + α−1
3
, B = 1 + α

3
and Ω = 2(1 + α−1

3A
k2d2 − α

3B
k4d4).

The analysis, for different models,can be found in [178, 72] and more recently in [139] and
[93]. Figure 1.3b presents graphically the value of S for each model. The standard values for the
MS equations are optimized in terms of linear shoaling, and this is clearly visible in the picture. In
the linear case, the eGN shows an over shoaling behaviour for short waves, while the Nwogu and
GN models under-predict the linear increase in height.

Nonlinear Dispersion

In an irregular sea state, waves of various frequencies interact, producing additional waves at
combined frequencies, both sums and differences, due to the nonlinear dynamics at the water’s
surface. These interactions arise from the sea’s nonlinear behavior near the surface. Both fully and
weakly nonlinear BT equations are able to simulate the generation of the higher order forced waves.
Following [198, 179] and having as a model the dimensionless eGN system [155], on a constant
bathymetry, we introduce solutions of the form

η(x) = α1cos(ξ) + εα2cos(2ξ) (1.31)

u(x) = u1cos(ξ) + εu2cos(2ξ) (1.32)
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where ξ = ωt−kx and all of the variables are written in a dimensionless form. We collect the terms
of order O(ε), this leads (

m11 m12

m21 m22

)(
a2

u2

)
=
a2

1

d

(
F1

F2

)
(1.33)

where m11 = 2ω, m12 = −2kd, m21 = −2k + µ2

6
16d2k3, m22 = 2ω + 8

3
µ2αd2k2ω, F1 = ω and

F2 = ω2

2kd
+ 4

3
µ2αω2dk− 7

3
µ2dkω2− 3d2k3

(
µ2

6
(1− α)

)
. Using the dispersion relationship 1.24 we

get the solution

a2 =
a2

1

d

(
F1m22 − F2m12

m11m22 −m21m12

)
. (1.34)

The reference for a2 is the Stokes second-order solution [72]

aStokess =
1

4

a2
1

d
µkd coth(kµd)(3 coth2(kµd)− 1). (1.35)

We also report at figure 1.3c, the amplification of second order Stokes-waves obtained with the
second order analysis accounting for O(ε) effects (see also [95] ) for all the considered models.
The plot shows that amplitudes are systematically under-predicted for the models in amplitude-flux
form, and in particular for the MS and NA models considered here. When some non-linearity is
accounted for the Nwogu model, an over-prediction in the amplitude occurs up to values kd ≈ 1.7.
The same holds true for all the well known amplitude-velocity models as shown in [95] and in
contrast with what the linear shoaling shows. Clearly, this behaviour is not universal for BT models,
which is also a part of the motivation of this work.

Numerical approximation, wet/dry treatment, and breaking closure

Numerical framework: The numerical discretization of the system (1.1) is performed on unstructured
mesh discretizations of the physical domain, and brings together work from the present author and
her collaborators in the past 10 years. A detailed description can be found in chapters 2 and 3 of
this document.

It relies on two main components: a high-order node-centered finite volume solver and a nodal
elliptic solver. The finite volume solver, detailed in [136], [97], and [138], evolves the vector (h U)

using Roe fluxes with modifications for wet/dry fronts and bathymetric source balance. Third-
order accurate fluxes are obtained using quadratic polynomial reconstructions, based on either
the classical MUSCL approach or a compact iterative Green-Gauss method [138]. Discontinuity
capturing is achieved using limiters like van Albada or the high-order limiter from [188]. Time
integration employs a third-order explicit Strong Stability Preserving Runge-Kutta method.

The elliptic systems are discretized with classicalH1 second order linear finite elements, stabilized
by numerical dissipation in the fluxes, for the type of Id − grad div PDE. Fully nonlinear models
require time-dependent systems involving depth h, necessitating assembly and inversion at each
time step, which is another computational overhead to account for full non-linearity.The appropriate
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considered.
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formulation of boundary condition for this step is an open research area, especially on non-straight
boundaries. Usually ad-hoc techniques involving sponge layers, and internal wave generators are
used in combination with simple treatmentsof the elliptic component. The interested reader can
refer to [156], [133] and [196].

For a detailed description of the deduced numerical schemes, we refer to chapter 2 and 3 for
1HD and 2HD respectively. We would also like to stress that unless otherwise specified, all results
presented below are grid independent.

Wet/dry transitions: In wet/dry fronts, special care needs to be taken into account to keep the
well balancing of the scheme, and avoid the blow up of the velocities. This involves modifications
to the states used to evaluate the numerical fluxes, as well as of the numerical gradient of the
bathymetry, which are somewhat classical in the approximation of the shallow water equations.
We refer to [43], [44], [136], [137], [219], [6].

For dispersive models, an important issue is related to the so-called ”dispersive run-up/rundown”.
Weakly nonlinear models include in their dispersion operator the still water level d(x, y), which is a
somewhat problem dependent variable. Above the level d = 0, corresponding to the initial position
of the shorelines, d(x, y) becomes negative. In these regions the dispersive corrections do not have
any meaning, so they are turned off. For cases involving moving waves interacting with shorelines,
we can clearly see a different behaviour compared to the fully nonlinear GN model, for which
dispersion depends on the local depth, and allows retaining the dispersive terms up to the current
position of the wet/dry boundary. In contrast, the fully nonlinear GN model involves the actual
depth h in the dispersive terms. These are in practice numerically limited only close to the current
location of the wet/dry front, thus also computed in initially dry regions.

Wave breaking: Last but not least, an appropriate closure is required to account for the dissipation
in breaking waves. There are many approaches to obtain such a closure. The interested reader is
referred to [137] and [145]. Furthermore, Chapter 4 is devoted to our work on wave breaking for
BT models. A wave breaking closure consists of two parts: a detection step and a dissipation
mechanism. To obtain the results presented in this chapter, we use the simple, local, and robust
detection criteria proposed in [137] and [97]. Concerning the dissipation mechanism, the results
presented in 1.2 and 1.3 have been obtained with two approaches discussed in chapter 4 and can
also be found in [145].

1.2 One dimensional benchmarks

Shoaling of a solitary wave

This is a benchmark used in two landmark papers [110, 270]. In the first the authors discuss
comparisons between experimental data and a fully nonlinear/dispersive potential model. The
second paper uses this benchmark to compare fully and weakly nonlinear variants of a Boussinesq
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model, based on Nwogu’s [198] equations, with the experimental and potential results. The benchmark
setup is simple. The computational domain consists of a ramp of constant slope, whose toe is located
at x = 0 m. The depth on the left of the ramp is d = 0.44 m. A solitary wave of amplitude A = εd

propagates and shoals on the ramp. Here, differently from [270], we compare weakly Boussinesq
models with different linear and non-linear shoaling characteristics, as well as the fully nonlinear
eGN code. For all the models, the usual analytical sech2 solitary wave shape is used to initialize the
computation.

We start from the case ε = 0.2, with a slope s = 1 : 35, and report the wave heights measured
at different wave gauges along the slope in figure 1.4. On the left we compare the experimental
data to the fully nonlinear eGN results as well as to those obtained with the weakly nonlinear model
of Nwogu. On the right we compare the data with the results of the fully nonlinear equations and
with those obtained with the equations of Madsen and Sørensen (MS), and Nwogu-Abbott (NA).
The result on the left is essentially that discussed in [270]. Note that the weakly nonlinear model
provides a large overestimation of the wave heights. The right figure, however, is much different, the
weakly nonlinear MS and NA models providing a small underestimation of the elevations. Similar
results have been obtained in [95] using as initial data for each model its own semi-analytical soliton
shape.

Figure 1.4: Free surface elevation on the wave gauges 1, 3, 5, 7, 9 for GN and Nwogu (up left), and
for MS, NA, and GN (up right). Relative wave height computed with all the models on a 1:15 slope
(down).
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Next, following the test performed in [270], different solitary waves of non-linearity ε = 0.3, 0.45, 0.6

shoal on a slope of s = 1 : 15, and we plot the envelopes of the wave peaks along the shoal. The
results are plotted at the bottom image of figure 1.4 (soliton non-linearity increasing from left to right
curves). The ted circles represent the experimental breaking point of each wave. Our results confirm
only partly these by [270]. Indeed, for the equations of Nwogu, the breaking point is "missed"
by the model, which predict a substantial wave over-shoaling. The more nonlinear the wave, the
stronger the over-prediction. However, the weakly nonlinear equations written in amplitude flux
form provide results much closer to the fully nonlinear model, and a reasonable approximation of
the wave peak at the breaking point. This is somewhat in contrast with the dogmatic view that all
the weakly nonlinear models over predict wave heights, and that provide wrong values of the free
surface elevation. In figure 1.5, we report the envelope of the wave, for all the different models and
the experimental data. In addition we show the mesh independence of the solution as we refine the
mesh using a grid resolution from dx = 0.02 m up to dx = 0.0025 m.

Note that in [95], it has thoroughly be shown that weakly nonlinear models written starting from
Peregrine’s equations, thus with linear dispersive effects expressed as space-time derivatives of the
velocity, have very close nonlinear behaviour. Indeed, results similar to those of Nwogu’s model
can be obtained with other BT systems, e.g., Peregrine’s [212], Beji-Nadaoka [15], etc., see also
[95].

To conclude, despite showing important differences in the nonlinear behaviour of the models,
this benchmark does not settle the question on whether full non-linearity is necessary, the models in
amplitude-flux form following relatively closely the fully nonlinear model up to the breaking point
as demonstrated in figure 1.4.

Undular bore propagation

The propagation of undular bores is also a classical problem, studied e.g., in [211] and [270], and for
which well known experiments also exist e.g., [90], [257]. The initial setup is essentially the same as
in [270]. We consider a computational domain of 300 m with wall conditions at both domain ends.
A transition between uniform flow and still water is initially centered at x = 0 m, with velocity and
surface elevation given by

u =
1

2
u0

(
1− tanh(

x

a
)
)
, η = u+

1

4
u2, (1.36)

where u0 is the velocity of uniform flow from the left boundary and a set to 5 m as in [270]. We
consider two initial states with jumps in the initial surface elevation η0 = 0.1 and 0.3, which also
correspond to non-linearity values ε = 0.1 and ε = 0.3, and to Froude numbers Fr = 1.07 and
1.22, respectively. Both waves evolve in undulating bores propagating through the channel. The
amplitude as well as the wavelength of the oscillations depend on the initial data.

As in [270] we plot the bore profiles at different (dimensionless) times t′ = 50, 60, and 70, where
t′ =

√
gd
L
t. The results are shown on figure 1.6. As one could expect, for the least nonlinear case,
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Figure 1.5: Wave envelopes for ε = 0.2, s = 1 : 15. Mesh convergence of the solution for all the
models.

the models provide nearly identical results, with only slight over-amplification of the oscillations by
the Nwogu model, and even less visible under amplifications for the MS and NA models. As the
non-linearity grows these differences become more visible. The wave heights predicted by Nwogu’s
model are substantially larger compared to the eGN solution. Note that the latter has been shown
to provide results almost identical to a fully nonlinear potential model [49]. On the contrary, both
the MS and NA models underestimate the amplitude of the oscillation. Note that this difference in
behaviour is somewhat in-line with the second order analysis done in [95] showing that amplitudes
of Stokes-waves are systematically under-predicted by BT models in amplitude-flux, while models
in amplitude-velocity underestimate very short and over estimate longer waves (see also figure 1).

To have a more quantitative view of these differences, we look at the dependence of the amplitudes
of the secondary waves on the Froude number. Experimental data are also available for this from
Favre [90] and Treske [257]. So simulations are run by considering different values of u0 corresponding
to bore Froude numbers in between 1 and 1.3. Amplitudes are computed as the difference between
the heights of the first peak and the first trough. On figure 1.7, in the left picture, we report the
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peak/trough elevations Amax and Amin. The amplitude plot shows a growth with the Froude number
which looks perfectly linear. For Fr roughly ≤ 1.15 all the models provide similar predictions,
all close to the experimental values. For more nonlinear situations, we see three family of models:
the weakly nonlinear model of Nwogu over-predicting the amplitude; the models of MS and NA
under-predicting the amplitudes; the fully nonlinear eGN model in between the previous two, and
somewhat closer to the experiments.

It is worth mentioning that as the Froude number increases, the difference of the result for
Nwogu’s equations with respect to the data (and to the eGN results), is at least twice as much as that
of the other weakly nonlinear models which remain in a range of amplitudes reasonably close to the
data. From the right figure, we can see that the elevation of the first trough does not change much
with the Froude number, so the behaviour observed is really associated to the dynamics of the first
peak which grows much faster with models in amplitude-velocity form, as Nwogu’s, as remarked at
the end of the previous section, see also [95].

This benchmark also does show the impact of the nonlinear behavior of the models. However,
looking at the amplitudes of figure 1.7, the improvement of using the fully nonlinear eGN model is
not striking, compared to the MS and NA.

Monochromatic waves on a submerged bar

We consider the laboratory experiments performed by Beji and Battjes [14] on monochromatic
waves over a submerged bar. The initial conditions can be found in [146]. The experimental set
up was designed to investigate both frequency dispersion characteristics of monochromatic waves,
and non-linear interactions. This is possibly the most popular set of benchmarks in the literature on
numerical models for dispersive free surface waves. We refer to the original reference for the setup,
or to one of the numerous papers using this test, see e.g., [136], [222], [137], [95], [8].

We consider here two cases. The first is a mildly dispersive case corresponding to an incoming
wave of amplitude A = 0.01 m. The non-linearity and dispersion parameters are ε = 0.025 and
µ = 0.11, respectively. The second corresponds to a mildly nonlinear case where the amplitude
of the incoming wave is A = 0.054 m, and non-linearity and dispersion equals to ε = 0.125 and
µ = 0.083, respectively. In the second case, the breaking point is reached and wave breaking is
observed above the plateau of the submerged bar. Wave breaking is modeled for this case with the
hybrid approach discussed in chapter 4 for all the BT models considered.

The first case involving incoming waves with minute non-linearity, we expect all models to
behave similarly. This is absolutely the case, as can be seen in the upper part of figure 1.8. The
plot reports a few periods of the water elevation time series in the gauge placed at x = 14 m
right next of the bar plateau. The results of the eGN, MS and Nwogu model are compared to the
experimental data. This gauge allows to include effects of both the increased non-linearity acquired
at the end of the shoaling phase, and dispersive effects during the propagation along the plateau.
The numerical results obtained with the enhanced Green-Naghdi model, and those obtained with
the MS and Nwogu models are extremely close to one another.
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Figure 1.6: Evolution of an undular bore. Up: ε = 0.1. Down: ε= 0.3

For the mildly nonlinear case, with wave breaking, one might expect to see a substantial difference
between different weakly nonlinear models, and with respect to the fully nonlinear one. The bottom
of the picture on figure 1.8 reports the results for this case in terms of water elevation time series
reported at x = 13 m , in correspondence of which incipient breaking is observed. The results
obtained with the enhanced Green-Naghdi model, those obtained with the MS model, and those
provided by Nwogu’s equations using the identical wave breaking detection, and hybrid breaking
closure, and the same mesh size of 4 cm, are essentially the same.

Although it is a widely used benchmark, this test appears to have limited sensitivity to the level
of linearity included in the BT models, unless of course the breaking closure is eliminated and
nonphysical regimes are approximated, as demonstrated in [95].

Propagation, breaking, and over-topping of a reef

We consider now a more complex case, involving highly nonlinear waves. It consists of the propagation,
breaking and reef over topping of a soliton, investigated numerically and experimentally in [226],
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Figure 1.7: Undular bore propagation. +: Data of Treske and Favre, o: Numerical simulations. Left:
Wave Amplitude for different Froude numbers. Right: Maximum and minimum wave heights for
different Froude numbers.

and numerically in several other more recent works ( [254, 227, 145, 141] ). The geometry of the
problem consists of a reef with a constant fore slope 1/10, hiding on the lee side a shallow flat with
a wall on its right end. A sketch of the geometry and the initial condition are plotted on figures
1.9 and 1.10. Water depth distributions at time series in 14 wave gauges have been measured in the
flume experiments of [226]. A detailed description of thetest case is provided in section 4.3.5.

A solitary wave of offshore non-linearity ε = 0.3 propagates on the left of the reef. Simulations
with all the BT models of sections 1.1.1 and 1.1.2 are discussed. Breaking is modelled using the
Turbulent Kinetic Energy (TKE) closure (see chapter 4 and [145]). We visualize the results via a
few snapshots of the free surface distribution and water elevation series in 4 gauges (WG4-WG8-
WG10-WG14) located at x = 21, 26, 28, 37 m.

During propagation there is hardly any difference in the results as seen in the top left picture
on figure 1.11. Minor differences are observed at the end of the shoaling phase (top right on figure
1.11), and during over topping with the MS and NA models giving almost identical water depth
distributions, and Nwogu’s model giving the most strongly damped wave, possibly as a result of the
slight over-shoaling observed in the top left picture triggering wave breaking a little earlier. After the
over topping , we see the generation of a highly nonlinear bore propagating in the shallow area, mid-
left picture on figure 1.11. Here again we see differences in the nature of the bore (some dispersion
still appearing in the MS and eGN results), or in its speed and magnitude (faster and stronger for
Nwogu’s model). In the next snapshot (mid-right picture on figure 1.11), we see the propagation of
the wall reflected bore for which all models are again in phase. Perhaps a main feature to remark is
the fact that the first backwash on the front side is stronger with Nwogu’s model. After the reflected
bore over-tops the reef (bottom-left picture on figure 1.11) we see a weak dispersive jump on the
front side of the reef, and a secondary reflected more in the shallow area. On the shallow side, the
results of Nwogu’s model now lag phase compared to the others. This is even clearer in the wall
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Figure 1.8: Up: Free surface elevation for eGN, MS, and Nwogu’s models for the case where initial
wave’s amplitude is A=0.01 m (non breaking case). Down: Free surface elevation for eGN, MS and
Nwogu’s models when A=0.054 m (breaking case).

reflection of the bore in the bottom-right picture on figure 1.11. The same figure shows the second
backwash on the front side of the reef, for which all models are close to one another.

Although it is relevant for simulating the inundation process despite its non-linearity, this test
does not provide a means to distinguish between the advantages of using fully nonlinear and weakly
nonlinear BT models. The differences observed, when not minor, are mostly originating in shallow
areas. This suggests that they may be more closely related to the parametrization of wave breaking
closure and of the wet/dry treatment, than to the choice of the propagation model. A study on
the sensitivity of breaking closures is presented in chapter 4. The interested reader can refer also
to [129], or to [141] for a thorough study of this case using the hybrid closure. In addition, a
comparison of different codes on this particular test case is performed in [141]. So far, we think to
see a sort of trend, suggesting that weakly-nonlinear amplitude-flux models such as the MS and NA
provide consistently results close to the fully nonlinear eGN model up to the breaking point. This
will be contradicted in the following benchmarks.
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Figure 1.9: Solitary wave over topping a reef: Experimental set up.

4 8 10 14

Figure 1.10: Solitary wave over topping a reef: Initial conditions.

Extreme run-up on a vertical barrier

Introduced in [260], this benchmark is relevant for wave structure applications, as e.g., the design
of coastal structures like sea walls and breakwaters. The core of the problem is to correctly predict
the wall run-up which can exceed six times their initial wave amplitude due to the interaction of
steepening and dispersion processes. The setup involves a wave tank with flat bottom of depth
d = 10 m and length 2L. The actual physical domain is from 0 to L while from L to 2L a mirror
image of the initial wave is placed. A picture of the domain is presented in figure 1.12. This
symmetric arrangement allows to free the analysis of the dependence of numerical wall boundary
fluxes at the point x = L. In [260] the problem is studied using the free surface Euler equations,
and the classical (non enhanced) Green-Naghdi equations. Here we perform the study with all the
BT models discussed in section 1.1.3. Both the effects of changing the non-linearity and dispersion
parameters are investigated.
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Figure 1.11: Solitary wave over topping a reef: free surface snapshots.

The initial conditions are given by a linear wave multiplied by an envelope function i.e

η(x) = W (x)α0 sin k0(x− x0), (1.37)

u(x) = W (x)α0
ω0

dk0

sin k0(x− x0) (1.38)

where

W (x) =
1

2
tanh

(
x− x0

δ

)
− 1

2
tanh

(
x− x0 −Nwλ0

δ

)
. (1.39)

We denote λ0 = 2π
k

as the initial wavelength, and with x0 and α0 as the initial position and amplitude
of the wave, respectively. The main parameters that characterize the initial conditions are the
frequency ω0, which depends on the dispersion relation of the propagation model, the amplitude
α0, and the initial wave’s location x0 or in other words, the wave’s distance from the wall. The
remaining parameters Nw and δ denote, respectively, the number of waves in the physical domain,
set to 3 like in [260], and a thickness parameter affecting the wave dynamics set to 0.2λ0 as in the
original reference.

We first examine the effect of the wavelength on the run-up. For a fixed initial wave amplitude
α0 = 0.05d we span the range λ0/d ∈ [30, 625], roughly corresponding to µ ∈ [0.0016, 0.033].
In all simulations we set L = 6λ0. The maximum run-up as a function of the initial wavelength is
plotted in the left picture on figure 1.13 for all the BT models considered. The reference solution of
the Euler model is taken from [260]. For this case the situation is clearly reversed compared to the
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Figure 1.12: Extreme run-up on a vertical barrier: set up of the test case.

previous. The fully nonlinear models are quite close to the reference as expected, with the enhanced
model providing the best results. In this case, the amplitude-flux models, namely MS and NA,
provide a considerable underestimation of the run-up (up to 15%) for a wide range of wavelengths.
The classical Nwogu equations instead perform quite well, as well as the eGN model, for the longest
waves, reversing the trend set up from the previous benchmarks. For short waves, the Nwogu model
still shows a noticeable over-prediction of the run-up, compared to the Euler equations. Only the
fully nonlinear model provides a correct prediction of these waves, the weakly nonlinear equations
in amplitude-flux form still underestimating the run-up.

Next, as in [260], we examine the effect of the normalized initial amplitude, for a fixed wavelength
set to λ0 = 125d, roughly corresponding to a value µ ≈ 8×10−3. We consider non-linearities in the
range of ε = α0/d ∈ [0.01, 0.15]. The resulting maximum run-up is plotted for all the models in the
right picture on figure 1.13 (reference solution of the Euler model taken from [260]). For small non-
linearity ε ≤ 0.02 all the models provide almost superimposed results, with a small underestimation
of the run-up height, compared to the Euler equations. As in [260] we observe a sharp transition
taking place in the range of 0.02 < ε < 0.05. This is the region in which the run-up regime changes
from linear to fully nonlinear. Above ε = 0.05, some sort of equilibrium is attained between all the
processes, with the Euler equations providing run-up values all close to about Rmax = 6d. Both
the slopes in the second phase, as well as the run-up values and slopes in the third show significant
differences between the models. For both the MS and NA models, the run-up increase in the second
phase is slower, and reaches a value roughly 10% lower than all other models. In the last phase,
we see a decrease in run-up, leading for the most nonlinear waves to an underestimation of the
run-up of the order of 25% compared to the Euler equations. All the remaining models, including
the weakly nonlinear Nwogu equations, provide a close transition in the second phase, all reaching
values of Rmax/d in between 5.5 and 5.75 for ε = 0.05, and with values of for higher non-linearities
considerably closer to the Euler model than the MS and NA equations.

Note that, for the range of kd used in this test, the difference between the weakly nonlinear
models is somewhat in line with the second order analysis recalled in section 1.1.3 (cf. bottom
picture in figure 1.3), and already invoked to interpret the results observed for the propagation
of undular bores. Also, it is important to stress that for all the waves considered, the hypothesis
ε = O(µ2) underlying the weakly nonlinear models is violated systematically, the non-linearity



28 CHAPTER 1. WEAKLY DISPERSIVE BOUSSINESQ-TYPE MODELS

Figure 1.13: Normalized maximum run-up vs non-dimensional initial wave- length for different BT
models. Left: fixed α0 = 0.05d. Right: fixed λ0 = 125d.

exceeding this limit by at least one order of magnitude. Despite of this, we are far from breaking
conditions (we experimentally confirmed that the breaking sensor is far from breaking onset). So
all the weakly nonlinear propagation models are used well outside their initial Ansatz.

It is interesting to see in figure 1.14 the comparison of the time series of the run-up at the wall
for the different BT models. We present the time series for two initial wave amplitudes, α0 = 0.1d

and α0 = 0.15d. We focus on the first dispersive wave, where 16 < ω0t < 20 in order to best
appreciate the differences. All the weakly nonlinear models written in an amplitude-flux form (MS
and NA) produce results with a slight phase lag and, as seen above, an under-prediction of the
amplitudes of the trailing waves compared to these of the eGN equations. The later are close to
the Euler equations, see [260], while Nwogu’s model shows a phase advance that increases as the
non-linearity of the initial wave grows.

Long distance propagation, shoaling and run-up of a rectangular wave

This test case was first proposed as a benchmark for tsunami-type surface wave simulation codes
in [17], as a part of the French project TANDEM on tsunami hazard forecasting, led by the French
Atomic Energy Commission. The main idea was to compare the codes based on different mathematical
models, from Euler to BT and shallow water equations, regarding the dynamics of wave train
propagation and run-up on the vertical walls of the domain. It involves the formation of an undular
bore which propagates over a large distance, shoals on a near coastal bathymetry, and finally runs up
on a vertical wall. The computational domain consists of a numerical wave tank of 30 km length and
50 m depth. The sloping bed of 1:125 is placed at the right part of the domain, where x ∈ [25, 29]

km followed by flat shelf where the water depth is constant and equals 18 m. The initial conditions
of the free surface elevation are:
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Figure 1.14: Run-up at the wall for two initial wave amplitudes α0 = 0.1d (left) and α0 = 0.15d
(right) and fixed λ0 = 125d.

η(x) =


5 km, if 0 ≤ x < 1900 m

2.5(1− tanh(229.756 x
2000
− 1)), if 1900 m ≤ x ≤ 2100 m

0, if 2100 m < x ≤ 30000 m

. (1.40)

Wall boundary conditions are imposed at both ends of the domain figure 1.15 shows the first
hour of the wave’s life, including its propagation, shoaling, and reflection on the right and left
walls. At a large scale, the numerical solution provided by all models appear almost identical, at
least up to the first reflection. However, some differences in phase and secondary wave structure
can be observed after the first reflection. These differences are compensated during propagation
toward the left wall, and the position and structure of the wave up to the 5th or 6th peak is quite
similar for all models before and after the second reflection ( middle- and bottom- right pictures
on figure 1.15 ), except perhaps from a larger phase advance and amplitude over-prediction for the
Nwogu model. A closer look of the run-up of the waves on the vertical right wall is provided in
figure 1.16. This plot allows to better visualize the differences between all models. We see again
a clear under-estimation of the maximum run-up from the amplitude-flux weakly nonlinear models
by 15%-20% compared to the eGN equations. Note that the reference value of the maximum run-up
[17] is of about 24.5 m, which means that the eGN model already provides and underestimation
of roughly 18.4%, and the MS and NA models have errors of 30%-35% wrt this value. These are
much worse numbers than for the previous case. We suspect that the implementation of the wall
boundary conditions may affect these values and we are investigating this point. The message is,
however that as for the previous case, weakly nonlinear BT models which seem to perform well in
other quite nonlinear cases, under estimate substantially the run-up on vertical walls. The tendency
to over-predict amplitudes somehow leads to better results for the Nwogu model for this case as for
the previous.
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Figure 1.15: Propagation, shoaling, and wall reflection of the undular bore. A zoom on the wave
trains is presented in the right column.

1.3 Two dimensional benchmarks

Bore propagation in a trapezoidal channel

We consider now a well known two dimensional variant of the bore propagation problem. The
problem is similar, but involves topographic variations across the section which has a trapezoidal
shape. As illustrated by the experimental work of [257], and by the numerical and theoretical
study of [49], the bore dynamics are much more complex in this case. More precisely, Treske
already showed that the secondary wave field has strong variations in crest height across the channel
section. Additionally, variations in frequency content are observed, which depend on the Froude
number. A transition occurs at a critical value of Frt = 1.15. According to [49] for Froude numbers
above Frt, the flow is truly multi-dimensional. The waves along the centerline of the channel are
similar to the Favre waves and have higher amplitudes, while much longer and less steep waves are
observed on the banks. Below Frt the flow is quasi-one dimensional, with longer waves of higher
amplitudes on the channel banks. In this regime, the same wavelength is observed all across the
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Figure 1.16: Run up of the wave on the right end. A zoom of the peak is presented in the right
column.

section. This benchmark features quite nonlinear waves, with Froude numbers approaching, and
locally exceeding, the breaking limit.

We performed simulations for a range of Froude numbers from 1.05 to 1.25 using the eGN,
Nwogu and Nwogu-Abbott models. This range of numbers contains the transition, and remains
below the transition to a fully breaking bore along the whole channel section. The computational
domain of 27566 nodes, consist of a channel with (x, y) ∈ [0, 25] m ×[0, 1.5] m in which half
of the channel is placed. More details about the set up of the problem can be found in [49]. Free
surface visualizations for Froude numbers 1.05, and 1.25, are shown in figure 1.17 . We can visually
see the appearance of more oscillations along the same length of channel shown, and the presence
of stronger cross-sectional waves for higher Froude numbers. To confirm these observations, the
distribution of the free surface elevation along the banks and centerline are presented in the two
upper illustrations of figure 1.17 for the three models.

Following [49] we post-processed the results to provide a more quantitative assessment. In
particular, we have estimated the height of the first peak and trough, and the wavelength. The
results of the wavelength are compared at the bottom of figure 1.18 with the experimental data of
[257]. More results can be found in [146]. The main difference observed among the models is
related to the wave amplitudes after the transition, i.e, for Froude numbers higher than 1.15. This
is roughly the limit after which wave breaking starts taking place close to the banks. The computed
wavelengths before and after the transition are almost identical for all models. The only difference
observed is for the model of Nwogu in which the transition seems to take place for slightly lower
Froude numbers. This is related to the over-shoal of the wave on the banks, leading to earlier
breaking and possibly earlier transition.

Despite the strong non-linearities involved, and Froude numbers close to (or higher than) the
breaking point, the nature of the weakly-nonlinear BT model used in the simulations does not seem
to affect too much the prediction of both amplitudes, and wavelengths.
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Figure 1.17: 2 dimensional free surface elevation for: eGN (left), Nwogu (centered), NA (right), at
t ≈ 13.5 s. The Froude number is 1.05 (up) and 1.25 (down).

Partial Dam Break

The dam break problem is a classical benchmark test case and has been widely studied, see e.g.,
[191], [6]. We will use here the partial dam failure case to test the behavior of the bore after
the collapse of an asymmetric dam. We consider a square domain with dimensions of [0, 200] m
× [0, 200] m where a dam is placed at 95 m separating two basins containing water depths of 10 m
and 6 m, respectively. The dam is simulated as a rigid topography of 30 m. The sudden collapse of
the dam leads to the formation of a bore that advances into the lower basin and a depression wave
advancing into the left basin.

Figure 1.19 presents the numerical solution obtained using the eGN, Nwogu, and Nwogu-Abbott
models at time t = 10 s. It shows the free surface elevation and the corresponding contours.
Additionally, a cross-section of the solutions along the domain and in the dam center is provided,
which can be seen in the bottom-right picture. The observations here are inline with these obtained
from the 1D experiments. Nwogu’s model overestimates the amplitude of the leading wave and
exhibits a greater phase advance of the secondary waves compared to both the eGN and Nwogu-
Abbott models.
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The seaside test case

The last test case presented is the laboratory benchmark test case for tsunami inundation through
an urban waterfront. The physical model was a 1:50 scale mock-up of the town Seaside, Oregon,
designed to observe the complex tsunami flow around macro-roughness structure such as buildings,
which are treated as impermeable rectangular blocks. The laboratory benchmark took place in
the Oregon State University. It served as a blind benchmark test case for the NTHMP Mapping
and Modelling Benchmarking Workshop: Tsunami Currents and as a benchmark test case for the
project TANDEM [122]. Numerical predictions using fully nonlinear BT equations can be found in
[209] and [138]. The numerical test setup is as follows: a rectangular domain with dimensions 42 m
in the x direction and 14.5 m in the y direction is discretized using an unstructured triangulation. It
consists of 172,854 nodes and is refined in the region where the buildings are located. The maximum
side of the triangles is href ≈ 0.7 m and the minimum href ≈ 0.03 m. The individual structures and
buildings are approximated as steep-sided topography, and a Manning coefficient of nM = 0.01 is
used, as suggested in the TANDEM project. The available experimental data involve the topography,
the forcing signal and the time series of the waves measured at the wave gauges. The forcing signal
is entering the computational domain through the left boundary and wall boundary conditions are
placed elsewhere. The computational domain, including the placement of 31 wave gauges, are
depicted in figure 1.20. The wave gauges are positioned between the buildings to measure the free
surface.

The incoming solitary wave shoals and breaks close to the seawall and then floods an urban
area which contains buildings of different heights. A detailed description of the behaviour of the
free surface elevation is found in [209] and [138]. Figure 1.21 shows snapshots of the free surface
elevation, for each model, at t ≈ 30 s during the flooding of the urban area.

Figure 1.22 presents the free surface elevation for selected wave gauges, with additional results
of wave gauges’ available in [146]. The numerical results obtained from the Nwogu, Nwogu-Abbott,
and Green-Naghdi equations are compared with experimental data. We observe that almost all
the numerical results closely match the experimental data in most of the wave gauges, and that
particularly for the first wave, these are almost indistinguishable. However, a difference in the
arrival time of the secondary wave, occurring around 60 s, is observed at the wave gauges located
in front of the buildings.

Overall, when examining the visualizations of the free surface and the time histories at the
gauges for this challenging case, we do not observe significant disparities in the main flow characteristics.
However, a noteworthy distinction arises in shallow areas, particularly in initially dry flooding
zones, where all weakly nonlinear models do not incorporate dispersion. This distinction also
impacts certain previous tests conducted. This explains in our opinion the details of the wave
gauge histories for this tests which somewhat favour the fully nonlinear model, especially maybe for
Locations A and B. The differences are primarily in small details; however, it is worth noting that
some of these results could potentially be enhanced through the process of "tuning" the roughness
parameter.
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1.4 Summary

In chapter 1 we reviewed a certain number of benchmarks for dispersive wave propagation models.
It is not simple to draw clear conclusions. One disappointing fact is perhaps that, when considering
both amplitude-flux and amplitude-velocity weakly-nonlinear models, many well known and common
test cases are not adequate to reveal differences between fully nonlinear and weakly nonlinear
equations. This is the case even for quite nonlinear problems in which the breaking point is reached
and exceeded.

One exception are perhaps Favre waves. Indeed, bore propagation on flat topography shows
some advantage of having full non-linearity in a short window of high Froude numbers close to the
breaking limit. The relatively more recent benchmarks proposed in [260] and [17] allow to highlight
more clearly the need of full non-linearity at least when considering wave run-up on vertical walls,
already for mild offshore non-linearity, and as long as breaking conditions are not reached.

These are however relatively academic tests. In complex physical benchmarks with bathymetric
variations, wave breaking, and wet/dry transitions, both in one and two space dimensions, it seems
much harder to draw clear conclusions. For models which are well known to over-estimate wave
amplitudes (as Nwogu’s model) we do observe some early breaking affecting the overall wave
dynamics. This is however not the case with all weakly-nonlinear models. Details of the secondary
waves appearing in complex problems as e.g., the Seaside case, also show some impact of not
including full-non-linearity, which is certainly related to the inability of weakly nonlinear models
to represent some weak dispersive propagation as soon as it takes place above the initial shoreline.
However, the differences are again not striking. Some genuinely 2D extensions of the 1D cases
which reveal most clearly the need of non-linearity, while being of physical and engineering relevance,
with possibly openly available reference solutions or experimental data, seem still missing in the
literature.

We thus draw two main conclusions. The first is that benchmarking habits need to be slightly
revised. Authors, editors, and reviewers must be more careful in considering/suggesting appropriately
chosen tests, so that when new models/schemes are proposed their capability for highly nonlinear
propagation are clearly highlighted together with all other aspects (phase prediction, breaking location
and strength, etc). Also it should be always underlined when a benchmark, although involving
highly nonlinear waves, is not sensitive to the fully/weakly nonlinear nature of the model. This
work by no means aims at performing this task, which is possibly to be performed with a larger set
of models/codes. The second conclusion we draw from our tests is that of course fully nonlinear
models allow to safely approach problems of different nature and involving highly nonlinear waves.
However, as a rule of thumb, weakly nonlinear models can still be safely used in many problems of
practical interest not involving planar non-breaking wave fronts reflecting on steep coastal structures
in deep waters. This is true even for quite complex urban run-up of nonlinear waves, as seen in the
Seaside example.

Finally, is the use of fully non-linear models a necessity or a luxury? Into the humble opinion of
the author, full non-linearity is neither luxury nor necessity. There is a large class of problems for
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which both appropriately chosen weakly and fully nonlinear models provide reasonable answers.
Therefore, it is up to the user to be aware of the differences existing, and choose which of these
models is most suited for his application.

In the following two chapters, we analytically describe the numerical procedure we derived
to solve the weakly dispersive models introduced in this chapter. Specifically, we focus on the
fully non-linear weakly dispersive equations of Green-Naghdi [109], but the same approach can be
applied to any other Boussinesq-type model.
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Figure 1.18: Up: Free surface profile for Froude numbers 1.05 and 1.2. Down: Wavelength vs
Froude numbers x: Data of Treske (1994) axis, +: data of Treske (1994) banks, circle and triangles:
simulated values on the channel axis, squares stars and hexagrams: simulated values on the banks.
Circle and square: eGN, upwards pointing triangle and hexagram: Nwogu, downwards pointing
triangle and star : NA.
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Figure 1.19: Partial dam break: free surface elevation at t = 10 s for NA (up left), Nwogu (up right),
and eGN (down left). Cross-section along the center of the dam (down right).
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Figure 1.20: Seaside test case: Numerical set-up.

Figure 1.21: 2 dimensional free surface elevation for: eGN (left), Nwogu (centered), and NA (right)
at t ≈ 30 s.
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Figure 1.22: Free surface elevation measured on selected wave gauges.
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Chapter 2

Numerical methods in 1D

Over the past few decades, the accurate mathematical and numerical simulation of water wave
propagation in near-shore areas has garnered significant attention. These simulations have largely
taken the place of laboratory experiments within the coastal engineering field. Significant efforts
have been made in the development of depth averaged models or in the improvement of the existing
ones, in order to give accurate description of the nonlinear and non-hydrostatic propagation over
complex bathymetries. The Boussinsq-type (BT) models along with the nonlinear shallow water
equations belong to the family of depth averaged models. Initially the BT models started to be
discretized using the very classical Finite Difference (FD) method, see for example [16] [178],
[176], [198], and [270]. The popularity of the finite difference (FD) method can be attributed to
its ability to easily approximate higher-order derivatives and to the well-structured linear systems
it produces, which can be efficiently solved (e.g., tri-diagonal systems). However, a significant
drawback of the FD approach is that it requires structured spatial meshes for 2D simulations, even
in irregular domains, which can result in a loss of accuracy.

Recently, classical finite volume (FV) schemes of the Godunov type have been adapted to solve
enhanced Boussinesq-type equations in one spatial dimension. In these adaptations, the FV method
is employed to handle the nonlinear shallow water components of the equations, while the dispersive
terms are discretized using finite difference (FD) schemes. This results in the creation of hybrid
FV/FD schemes. For 1HD the reader can refer in [168, 139, 228, 235, 236, 26]. The hybrid
schemes exploit the flexibility and shock-capturing capabilities of the FV approach in the context of
dispersive models. This approach proves to be particularly beneficial for interactions between short
and long waves. Moreover, by eliminating the higher order Boussinesq terms, the solution can be
turned to a fully FV solution of the nonlinear shallow water equations (NSWE), if required. The
hybrid approach on structured meshes, has been extended also to 2HD [252, 149, 253].

The use of unstructured meshes for 2HD complex geometries favors the use of FV and Finite
Element (FE) methods. While there are numerous works that use the FV method to solve the
non linear shallow water equations, see for example [62, 65, 3, 256, 37], there are few that use it
exclusively for solving BT equations [136, 137, 64, 81]. On the other hand, the use of FE methods,
continuous/discontinuous in the solution of BT models exists since the 90’s and continues to this
day, see for example [84, 237, 88, 165, 262, 77, 91]. The hybrid approach (FV/FE) on unstructured
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meshes has also been proposed in [138, 130].
The last decade there is an increased interest on the discretization and the use of the fully

nonlinear weakly dispersive equations of Green-Naghdi (GN) [109]. The interested reader can
refer to [74, 56, 57, 50, 26, 159, 164, 23, 190, 80, 182, 47, 113, 217, 105, 5, 251, 104, 206].
From the numerical point of view the GN equations have been discretized using different numerical
techniques. We can distinguish them into three main categories. The first one is the classical two
steps solutions procedure which is composed by a first step where the non hydrostatic source term
is recovered by inverting the elliptic coersive operator associated to the dispersive effects. The
second step involves the solution of the hyperbolic shallow water system with the source term
computed in the previous phase, which accounts for the non-hydraustatic effects see for example
[144, 80, 105, 26, 159, 251]. The second category of numerical schemes is the projection method
[208] and the last one is the hyperbolic approximation [90, 41], that avoids the elliptic step in solving
the GN equations.

Our work focuses on the first category of numerical schemes for the fully nonlinear and weakly
dispersive equations of GN. This chapter presents and analyzes the proposed schemes in one-
dimensional (1D), while the following chapter extends the analysis to two-dimensional (2D) problems.

2.1 A scheme for the fully nonlinear weakly dispersive model

2.1.1 Mathematical Formulation

In this chapter we refer to the improved Green-Naghdi (GN) system of equations in the form
proposed by [26].We recall that this formulation has been recovered by adding some terms ofO(µ2)

to the momentum equation in order to improve the frequency dispersion description of the original
GN model (see also 1.1.3). In the following we use the notation sketched in figure 1.1, thus we
denote h(x, t) = h0 +η(x, t)−b(x) the total water depth and u(x, t) the flow velocity (being η(x, t)

the free surface elevation with respect to the water rest state, h0 a reference depth and b(x) the
topography variation).

The system of equations (1.1), (1.9)-(1.13) can be written in its one-dimensional form as:

ht + (hu)x = 0 (2.1)

(I + αT )

[
(hu)t + (hu2)x + g

α− 1

α
hηx

]
+
g

α
hηx + hQ(u) = 0

where the non-linear operator Q(·) is defined by

Q(·) = 2hhx(·)2
x +

4

3
h2(·)x(·)xx + bxh(·)2

x + bxxh(·)(·)x +

[
bxxhx +

1

2
hbxxx + bxbxx

]
(·)2 (2.2)

and T (·) is

T (·) = −1

3
h2(·)xx −

1

3
hhx(·)x +

(
h2
x

3
+
h

3
hxx

)
(·) +

(
bxhx +

bxx
2
h+ b2

x

)
(·) (2.3)
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According to [159] the above formulation does not require the computation of third order
derivatives, while this is necessary in the standard formulation of the GN system. Moreover, the
presence of the operator (I + αT ) makes the model very stable with respect to high frequency
perturbations, which is of highest interest for numerical computations.

2.1.2 Discretization strategy : elliptic-hyperbolic decoupling

To discretize system (2.1) we first recast it in the following way:

ht + (hu)x = 0 (2.4)

(I + αT )
[
(hu)t + (hu2)x + ghηx

]
− T (ghηx) + hQ(u) = 0

This allows the operator (I + αT ) to be applied to the full shallow water residual. This form
suggests a possible decoupling of the elliptic part of the problem from the hyperbolic one, which is
obtained as follow :

(I + αT )φ = W −R (2.5)

ht + (hu)x = 0 (2.6)

(hu)t + (hu2)x + ghηx = φ

having also defined W = gT (hηx) and R = hQ(u) . Given an initial solution, the system above
can now be solved in two independent steps :

1. An elliptic step solving for the non-hydrostatic term φ ;

2. An hyperbolic step evolving the flow variables .

Note that our formulation differs from the ones previously proposed in literature (see e.g. [80])
as it allows the enhancement of an existing shallow water code by the addition of a purely algebraic
term to the discrete momentum balance. It has the additional advantage of being a priori able to
embed wave breaking effects in the elliptic phase, thus remaining completely non-intrusive w.r.t. the
hyperbolic code. To evaluate this simplified and flexible strategy, we will investigate the accuracy
and robustness obtainable when the two steps above are each solved with a different numerical
method. Our aim is to allow the choice of the method most appropriate and efficient for each step
and to provide a simple technique to enhance shallow water codes including genuinely nonlinear
dispersive effects.

Note also that we purposely use here the word decoupling and not splitting. Indeed, the elliptic
phase does not involve any time derivative, so this is not a splitting method, at least not in the sense
used in [26] or in [240]. In particular, our approach provides an unspilt spatial discretisation of

ht + (hu)x = 0

(hu)t + (hu2)x + ghηx = (I + αT )−1 [T (ghηx)− hQ(u)]
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This results in systems of Ordinary Differential Equations (ODEs), which can be evolved in time
by any of the known high order time integration methods without any other source of error that the
truncation of the spatial discretizations involved and of the ODE integrators.

Based on previous works like for e.g. [222], we have chosen to implement a standard C0

Galerkin finite element method for the elliptic phase and to discretize the hyperbolic part by either
a high order finite volume (FV), or by a stabilized continuous finite element (FE) method. Time
integration is performed with three different methods, involving both multi-stage and multi-step
approaches. The resulting hybrid algorithms are analyzed and compared. Of course, other hybrid
methods can be obtained e.g. by choosing different approaches for the hyperbolic phase, as e.g.
the discontinuous Galerkin method [276, 274], the residual distribution method [220], or other time
discretization techniques.

Here we will study the potential of a formulation which can be easily generalised on arbitrary
unstructured meshes. In particular, we will consider the method obtained by only inverting in the
elliptic phase the matrices generated when considering a P 1 finite element approximation. As we
will show, provided that a third order method is used in the hyperbolic phase, this choice already
gives dispersion properties equivalent to those of a fourth order method. As we will see later, the
additional advantage of this approach, is to allow a direct embedding of wave breaking either by
simply neglecting the non-hydrostatic contribution in the hyperbolic phase, or even with a tighter
coupling of the two phases using the breaking indicator to smoothly turn off φ in the elliptic phase.

The objective of the following sections is to discuss the proposed methods. The analysis of the
dispersion error of the resulting scheme is then provided in section §2.3, while the treatment of wave
breaking is discussed in chapter 4.

2.1.3 Spatial domain discretization and notation

Let [0, L] be the spatial domain, we consider a tessellation composed of elements [xi, xi+1]. We
set in general ∆x = mini(xi+1 − xi). For simplicity we assume in the following that the points are
equally spaced, so that xi+1 − xi = ∆x ∀i, but non-uniform meshes can be used with the same
methods discussed here with very little modifications. For a given node i, we will denote by Ci the
cell [xi−1/2 xi+1/2], with xi+1/2 − xi−1/2 = ∆x.

On this mesh, we will denote by ϕi the standard hat shaped C0 continuous Lagrange basis
functions, and we will denote by U∆x the piecewise continuous polynomial obtained as

U∆x(x, t) =
∑
i

ϕi(x)Ui(t) .

In this paper we consider the case of P 1 piecewise linear polynomials.

2.1.4 Elliptic phase : continuous finite element formulation

The first step for solving system (2.6) is to compute separately the value of the auxiliary variable
φ from (2.5). In this work we discretize equation (2.5) by means of a standard C0 Galerkin finite
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element approach. This discretization strategy passes by the writing of the variational form of
the equation. The actual discretization is obtained by evaluating all the integrals by a numerical
quadrature over each element of the discretization, with the assumption of piecewise linear variation
of all the quantities involved h∆x, η∆x, b∆x, u∆x, φ∆x. Defining Φ = [φ1(t), φ2(t), ..., φN(t)]T

and U = [u1(t), u2(t), ..., uN(t)]T , the final form of the Galerkin approximation of the problem
can be written as:

(MG + αT)Φ = W− R (2.7)

W = Tδ (2.8)

R = Q[h, U ] (2.9)

with δ an approximation of gh ηx. The matrix MG is the Galerkin mass matrix, whose entries are

MG
i,j =

L∫
0

ϕiϕj (2.10)

The matrix T(h∆x, b∆x) is deduced immediately from the variational form of (2.3), by evaluating
aT (ϕi, ϕj). All computations done, we obtain (partial derivatives now denoted by ∂(·) for the sake
of clarity)

Ti,j(h∆x, b∆x) =
1

3

L∫
0

∂xϕi h
2
∆x ∂xϕj −

1

3

L∫
0

∂xϕi h∆x ∂xh∆x ϕj +

+
1

2

L∫
0

ϕi ∂xb∆x ∂xh∆x ϕj −
1

2

L∫
0

∂xϕi h∆x ∂xb∆x ϕj +

− 1

2

L∫
0

ϕi h∆x ∂xb∆x ∂xϕj +

L∫
0

ϕi (∂xb∆x)
2 ϕj

(2.11)

having developed all the derivatives of 1/h∆x terms in order to to explicitly remove the singularity
w.r.t. h.

Proceeding similarly, we obtain for the operator Q(h∆x, u∆x, b∆x, δb∆x)

Qi,j(h∆x, u∆x, b∆x, δb∆x) = − 2

3

L∫
0

∂xϕi h
3
∆x (∂xu∆x)

2 +

L∫
0

ϕi ∂xb∆x h
2
∆x (∂xu∆x)

2 +

+

L∫
0

ϕi δb∆x h
2
∆x u∆x ∂xu∆x +

L∫
0

ϕi δb∆x h∆x ∂xh∆x u∆x +

+
1

2

L∫
0

ϕi ∂xδb∆x h
2
∆x u∆x +

L∫
0

ϕi ∂xb∆x δb∆x h∆x u∆x

(2.12)
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The arrays δ and δb contain nodal values of auxiliary variables introduced to handle the third order
derivatives. In particular, we have

(MGδ)i =

L∫
0

ϕi g h∆x ∂xη∆x (2.13)

(MGδb)i = −
L∫

0

∂xϕi ∂xb∆x (2.14)

The linear systems (2.13) and (2.14) can be solved very efficiently, being MG symmetric, positive
defined and constant. On the contrary, the properties of the matrix (MG + αT) cannot be known a
priori. However, the continuous finite element formulation used here inherits the coercivity property
of the corresponding continuous operator T , for which the interested reader can refer to [4]. While
ensuring the existence of an inverse for this matrix, its computation, required in the solution of the
linear algebraic system (2.7), remains the most computationally demanding process of our approach.
In particular, matrix inversions have been performed using the Intel® oneAPI Math Kernel

Library (oneMKL). For the MG matix, we have stored the constant LU decomposition, which,
on the contrary, has to be re-computed at each time step for (MG + αT).

The kind of discretization performed allows many degrees of freedom in the management of
the several Galerkin mass matrices MG which appear in it and that can be lumped (or not) always
remaining second order accurate. The optimization of the linear dispersion properties of the resulting
schemes (see section §2.3), together with the research of the simplest configuration possible, led
us to the choice of performing the lumping only in equation (2.14). This does not affect the linear
dispersion properties of the scheme, due to the fact that Q is nonlinear and that b is time-independent;
so δb can be computed once at the beginning of the calculus and kept all along the simulation.

2.1.5 Hyperbolic phase : Finite Volume Scheme

Setting U = [h, hu]T , we will use the FV scheme to write the equations for averages of U over the
cells Ci, namely for

Ui(t) =
1

∆x

∫
Ci

U(x, t) .

Using (2.5)-(2.6), and following [20, 40, 125, 195], the semi-discrete form of the equations can
now be written as :

d

dt
Ui = − 1

∆x

[
Fi+1/2 − Fi−1/2

]
+

1

∆x
∆Sb i + Φ (2.15)

where Fi±1/2 and ∆Sbi are the numerical fluxes at each cell interface and the numerical topography
source respectively. The last term is where the link with the elliptic phase is made. In particular, it
stands:

Φ =
1

∆x

∫
Ci

(
0

φ∆x

)
=

1

8

(
0

φi−1 + 6φi + φi+1

)
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having integrated exactly over Ci the piecewise linear polynomial φ∆x obtained from the elliptic
phase discussed in the previous subsection. The numerical fluxes Fi±1/2 at the cell interfaces
can be evaluated by means of an exact or approximate Riemann solver. In this work we used the
approximate Riemann solver of Roe [225] along with an upwind discretization of the topography
source. The source terms are numerical treated as to satisfy the C-property and can be easily
incorporated in this solver. The numerical fluxes in (2.15) are defined as:

Fi+1/2 = Fi+1/2(UL
i+1/2,U

R
i+1/2) =

1

2

(
F(UR

i+1/2) + F(UL
i+1/2)

)
− 1

2
|A|i+1/2∆i+1/2U (2.16)

where ∆(·)i+1/2 = (·)Ri+1/2 − (·)Li+1/2. Ai+1/2 is the Roe average Jacobian matrix and is equal to
[X|Λ|X−1]i+1/2, where Xi+1/2 and X−1

i+1/2 are the left and right eigenvector matrices respectively
and Λ is the diagonal matrix with the eigenvalues in the diagonal.

The numerical integration with the upwind scheme presented up to now lead to approximations
that are only first order accurate, if a constant distribution is assumed in each computational cell
Ci. To achieve higher accuracy we evaluate the left and right states using a third order MUSCL
extrapolation scheme [267, 148]. The reconstruction is performed for the variables [h, u] as well as
for the topography b. For the (i + 1/2) interface the reconstructed values of the total water depth
can be written as

hLi+1/2 =hi +
ψ(ri)

4

[
(1− κ)∆hi−1/2 + (1 + κ)∆hi+1/2

]
hRi+1/2 =hi+1 −

ψ(ri+1)

4

[
(1− κ)∆hi+3/2 + (1 + κ)∆hi+1/2

] (2.17)

where ψ is the limiter function with ri =
∆hi−1/2

∆hi+1/2
, and where third order of accuracy in smooth

regions is obtained for κ = 1/3. In this work the widely known MIN-MODE and MC limiters are
used [163].

In the numerical solution, the correct discrete balance between the numerical fluxes and the
numerical topography source is very important. A scheme that respects this balance is known in
the literature as a well-balanced scheme. As it has been shown in [20], an upwind descretization
approach should also be used for the bed topography term Sb to avoid non-physical oscillations in
the solution by satisfying the C-property in hydrostatic flow conditions (flow at rest). To satisfy
the exact C-property, the topography source term must be linearized in the same way and evaluated
in the same state (Roe-averaged state) as the flux terms. Of course, if an other Riemann solver is
employed (e.g. HLL, HLLC) for the computation of the numerical fluxes, a different technique
should be used, see for example [228, 255]. In this work, following [20, 125], the source term in
(2.15) contains the following two terms

∆Sb, i = S−b, i+1/2(UL
i+1/2,U

R
i+1/2) + S+

b, i−1/2(UL
i−1/2,U

R
i−1/2) (2.18)

where

S+
b i+1/2(UL

i+1/2,U
R
i+1/2) =

1

2

[
X(I + Λ−1|Λ|)X−1

]
i+1/2

S̃b i+1/2(UL
i+1/2,U

R
i+1/2)

S−b i+1/2(UL
i+1/2,U

R
i+1/2) =

1

2

[
X(I−Λ−1|Λ|)X−1

]
i+1/2

S̃b i+1/2(UL
i+1/2,U

R
i+1/2)

(2.19)
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and with

S̃b i+1/2(UL
i+1/2,U

R
i+1/2) =

 0

−gh
L + hR

2

(
bR − bL

)

i+1/2

. (2.20)

For the first order scheme, using the relation above, the discretization of the numerical flux term
balances with the one of the topography source term for hydrostatic conditions. This gives in each
mesh cell: u = 0 and bR − bL = −

(
hR − hL

)
. While this holds for the first order scheme, this is

not the case when using higher reconstructions as we do here. In this case, following [125, 195], we
include the additional correction term S?b for maintaining the correct balance i.e.

∆Sb i = S−b i+1/2 + S+
b i−1/2 + S?b

(
UL
i+1/2,U

R
i−1/2

)
(2.21)

with

S?b
(
UL
i+1/2,U

R
i−1/2

)
=

 0

−g
hRi−1/2 + hLi+1/2

2

(
bRi−1/2 − bLi+1/2

)
 .

2.1.6 Hyperbolic phase : Finite Element Scheme

Two FE methods are considered here. The first is a classical C0 Galerkin approximation of the
two equations (2.6). For an internal node i, the discrete continuous Galerkin equations are readily
obtained by evaluating the integrals (set q = hu)

L∫
0

ϕi∂th∆x −
L∫

0

∂xϕiq∆x = 0

L∫
0

ϕi∂tq∆x −
L∫

0

∂xϕi

[
q2

∆x

h∆x

+ g
h2

∆x

2

]
−

L∫
0

ϕiS̃b =

L∫
0

ϕiφ∆x

(2.22)

with S̃b = −gh∂xb. With the notation of the previous section, the integrals can be approximated as
[222]

MG d

dt
U = −1

2
[F(Ui+1)− F(Ui−1)] +

1

2
S̃b i+1/2 +

1

2
S̃b i−1/2 + Φ

G
(2.23)

where MG is the Galerkin mass matrix defined in (2.10).
By analogy with (2.15), we use the notation Φ for the contribution of the non-hydrostatic terms,
which in this case is given by

Φ
G

= MGΦ . (2.24)

As shown in [262, 222], scheme (2.23) is fourth order accurate in space on regular meshes, when
the shallow water limit is considered.
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To obtain a discretization with some shock capturing capabilities, we consider the upwind
stabilized method used in [222, 8, 7] (see also [126]). In particular, introducing the local residual

R∆x =

(
∂th∆x + ∂xq∆x

∂tq∆x + ∂x(q
2
∆x/h∆x + gh2

∆x/2)− S̃b − φ∆x

)
, (2.25)

obtained by replacing in the continuous equations the discrete approximation of the unknowns, we
consider the streamline upwind scheme :

MG d

dt
U = −1

2
[F(Ui+1)− F(Ui−1)] +

1

2
S̃b i+1/2 +

1

2
S̃b i−1/2 + Φ

G −
1∑
j=0

xi+j∫
xi+j−1

A∂xϕi τSU R∆x .

In the last expression, the matrix τSU is a scaling parameter in practice defined as [126, 222]

τSU =
∆x

2
|A|−1 .

With this definition, using (2.25), one easily shows that the streamline upwind scheme can be written
as

MSU d

dt
U = −

[
Fi+1/2(Ui,Ui+1)− Fi+1/2(Ui−1,Ui)

]
+ S−b i+1/2(Ui,Ui+1) + S+

b i−1/2(Ui−1,Ui) Φ
SU

(2.26)

where the numerical fluxes and sources have exactly the same expression as in (2.16) and (2.19)
respectively, and where the entries of the Streamline Upwind mass matrix now couple the h and q
ODEs and depend on the sign of the shallow water flux Jacobian matrix A. In particular[
MSUV

]
i

=
∆x

6
Vi−1+

2∆x

3
Vi+

∆x

6
Vi+1+

∆x

4
sign(Ai−1/2)

(
Vi−1+Vi

)
−∆x

4
sign(Ai+1/2)

(
Vi+1+Vi

)
(2.27)

By analogy with (2.15), we have used the notation Φ for the contribution of the non-hydrostatic
terms, which in this case is given by

Φ
SU

= MSUΦ .

As shown in [222, 8, 7], to which we refer for all additional details, the stabilized FE method (2.26)
is third order accurate in space when the shallow water limit is considered, and it preserves exactly
steady state still flat free surface states.

Finally, in order to handle moving bores and dry areas, we introduce as in [7] the following
nonlinear splitting of the mass matrix (sc stands for shock capturing) :[

MSU-scV
]
i

= ∆xVi+ψi+1/2
∆x

2

[
1

3

(
Vi+1 −Vi

)
−

sign(Ai+1/2)

2

(
Vi+1 + Vi

)]
+ψi−1/2

∆x

2

[
1

3

(
Vi−1 −Vi

)
+

sign(Ai−1/2)

2

(
Vi−1 + Vi

)] (2.28)

The final form of the scheme reads

MSU-sc d

dt
U = −

[
Fi+1/2(Ui,Ui+1)− Fi+1/2(Ui−1,Ui)

]
+ S−b i+1/2(Ui,Ui+1) + S+

b i−1/2(Ui−1,Ui)∆xΦ
SU-sc

(2.29)
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The quantity ψi±1/2 in (2.28) is a limiter function. For ψ = 0 the scheme reduces to the first
order version of Roe’s scheme, which is basically the first order version of (2.15). For ψ = 1 the
third order finite element method (2.26) is recovered. Any function can be used to detect smooth
areas and dry or shocked regions.

Here, we use the smoothness sensor proposed in [8, 7] and based on two different approximations
of the curvature of the free surface elevation η :

ψi+1/2 = min(ψi, ψi+1) , ψi = min

(
1, α

|
∫ L

0
ϕi∂xη∆x|

|
∫ L

0
∂xϕi∂xη∆x + Vi|

)

where Vi is obtained as the fourth order finite difference approximation of ∂xxηi, and with α = 1
9

as
in [8, 7].

2.1.7 Well-balancing, wet/dry front treatment, mass conservation

In order to identify the dry cells we use the technique described in [221, 219]. In particular,
we introduce two threshold parameters εwdh and εwdu , acting independently on the water height
and the velocity respectively. So, if H on a node is less that εwdh , that node is considered as
dry. This parameter is very small, compared to the mesh size (typical values range are between
10−9 − 10−6 m). The second parameter is used to avoid division by zero and is set to

εwdu =
∆x2

L2

with L the length of the spatial domain. If on a node h ≤ εwdu , the velocity in that node is set to
zero. To avoid loosing mass, and guarantee absolute mass conservation, we follow the treatments
proposed in [65, 39, 166] where the total mass in nodes with h ≤ εwdu is redistributed uniformly to
the rest of the domain.

Furthermore, the presence of dry areas should not affect the ability of the schemes to preserve
steady states involving flat free surface still water. To ensure this property, we use a standard
technique consisting in redefining the bed elevation at the emerging dry cell [40, 39] as:

∆b =

hL if hL > εwdh and hR ≤ εwdh and bR < (bR − bL)

(bL − bR) otherwise
(2.30)

when a wet/dry front exists between computational cells with (reconstructed) face values L and R.
For both FV and FE schemes this modification is applied in the computation of the source term S̃b.
A similar treatment holds if R is wet and L dry. Just for the FV scheme and for the flow in motion
over adverse slopes, further modifications are made following [43, 135]. Finally, and as to properly
detect regions in proximity of dry areas, we use an exponential filter proposed in [221, 219]. This
exponential function is embedded in the limiters and activated whenever the limiter is on.
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2.2 Time integration, boundary conditions, and friction

2.2.1 High order time integration methods

Similarly to the spatial domain, the temporal domain is discretized by a set of non-overlapping slabs
[tn, tn+1]. We will denote by ∆tn+1 = tn+1− tn. For generality, three different time discretizations
are compared in this work. One is a method quite classical in the context of Boussinesq-type
numerical models, while the other two have been chosen as representatives of boundedness or strong
stability preserving methods. For all of these methods, the time step is computed by means of the
CFL condition

∆tn+1 = CFL
∆x

max
i

(|uni |+
√
ghni )

(2.31)

For the shallow water equations, the stability condition for the first order methods used here is
CFLc = 1 when using the first order explicit Euler method. Following [108, 210], we will speak
of effective CFL as the ratio CFLc/p, with p the number of right hand side evaluations in one time
step.

The first time integration scheme we consider is the Adams Bashforth-Adams Moulton (AM)
predictor-corrector method, well known in the community of Boussinesq modelling [269, 228]. For
the ODE

U′ = L(U) (2.32)

this time integration scheme requires two stages :

1. Predictor stage (Adams-Basforth method)

Up = Un +
∆t

12

[
23L(Un)− 16L(Un−1) + 5L(Un−2)

]
(2.33)

2. Corrector stage (Adams-Moulton method)

Un+1 = Un +
∆t

24

[
9L(Up) + 19L(Un)− 5L(Un−1) + L(Un−2)

]
(2.34)

The Adams predictor corrector has stability properties close to those of the explicit Euler scheme,
with respect to which we thus have an affective CFL of 1/2 (2 stages for the same time step
magnitude). The method is obtained by a combination of Lagrange polynomial extrapolation, and
polynomial interpolation to evaluate the integral of L in the interval [tn, tn+1]. For the autonomous
ODE (2.32), fourth order of accuracy can be easily shown by standard truncation error analysis. The
technique used to derive the method can be generalized to include variable time step sizes, but this
is way beyond the scope of this paper. A simple technique to account for variable time step sizes,
while keeping constant the coefficients in the scheme, is to re-correct iteratively with the Adams-
Moulton step, stopping when the relative magnitude of the correction is below a given treshold (cf.
[269, 228, 85]). In practice, however, the improvement brought by this multi-corrector procedure
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are very small, and a single correction is already enough to obtain accurate results also for variable
step sizes (see [269]).

We also test the three stages third order SSP Runge-Kutta (RK3) scheme reading [108]

Up =Un + ∆tL(Un)

U2p =
3

4
Un +

1

4
Up +

∆t

4
L(Up)

Un+1 =
1

3
Un +

2

3
U2p +

2∆t

3
L(U2p)

(2.35)

The RK3 belongs to the family of strong stability preserving multi-stage methods with positive
coefficients, inheriting the same stability properties of the explicit Euler scheme. In particular,
compared to the latter, the RK3 has a CFL condition of 1, giving an effective CFL of 1/3.

Lastly, we have tested the third order extrapolated backward differencing method (eBDF3) [154]
reading

αn+1U
n+1+αnU

n+αn−1U
n−1+αn−2U

n−2 = βn L(Un)+βn−1 L(Un−1)+βn−2 L(Un−2) (2.36)

where the weights take the form

αn+1 =
1

∆tn+1
+

1

∆tn+1 + ∆tn
+

1

∆tn+1 + ∆tn + ∆tn−1
,

αn = −(∆tn+1 + ∆tn)(∆tn+1 + ∆tn + ∆tn−1)

∆tn+1∆tn(∆tn + ∆tn−1)

αn−1 =
∆tn+1(∆tn+1 + ∆tn + ∆tn−1)

(∆tn+1 + ∆tn)∆tn∆tn−1
,

αn−2 = − ∆tn+1(∆tn+1 + ∆tn)

(∆tn+1 + ∆tn + ∆tn−1)(∆tn + ∆tn−1)∆tn−1

and

βn =
(∆tn+1 + ∆tn)(∆tn+1 + ∆tn + ∆tn−1)

∆tn(∆tn + ∆tn−1)
, βn−1 = −∆tn+1(∆tn+1 + ∆tn + ∆tn−1)

∆tn∆tn−1
,

βn−2 =
∆tn+1(∆tn+1 + ∆tn)

(∆tn + ∆tn−1)∆tn−1

The eBDf3 is part of a family of high order explicit multi step methods verifying, under a time step
restriction, the same boundedness preserving property of the explicit Euler scheme. Compared to
the latter, the eBDf3 has a stability condition of CFL= 1/3 [127], which gives the same effective
CFL of the RK3 method.

2.2.2 Boundary conditions and internal source function

To define differential problems, boundary conditions must be introduced. In this work we use
two types of boundary conditions, depending on the examined test case: solid (reflective) wall
and absorbing boundary conditions. For the FV scheme with third-order MUSCL reconstruction,
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the reconstructed values on the first and last cell of the computational domain are computed using
neighbouring ghost cells. More informations can be found at [135] . For the FE schemes, ghost cells
are in no need since it is a node centered scheme and the degrees of freedom are located directly on
the physical boundary.

Absorbing boundaries are also applied in order to dissipate completely the energy of the incoming
waves, trying at the same time to eliminate any non physical reflection. This kind of boundaries
require the definition of a sponge layer in which the surface elevation and the momentum are damped
by multiplying their values by a coefficient m(x) defined as [137]

m(x) =

√
1−

(
x− d(x)

Ls

)2

. (2.37)

Ls is the sponge layer width and d(x) is the normal distance between the cell center with coordinates
x and the absorbing boundary. Typical values for the sponge layer width are related to the wavelenght
of the incoming wave: L ≤ Ls ≤ 1.5L. Thus, longer wavelengths require longer sponge layers.

Wave generation in the model is achieved by using the internal wave generator of Wei et al.
[268]. In [268] the wave generator of free surface waves is introduced as a source function added
to the mass equation. It is derived using the equations of Nwogu [198], but it can be used for many
types of Boussinesq-type equations by changing the dispersion relation used in the generator. In
this work, as to be compatible with the equations of GN, we use the dispersion relation (1.24).

2.2.3 Friction terms discretization

An explicit treatment of the friction can produce numerical oscillations [39, 194, 193] when the
roughness coefficient is high. For this reason, we use the technique proposed by [39, 193]. More
precisely, for all schemes, at the end of each time step, we have :

(hu)n+1
i = (hu)?i − g(hSf )

n+1
i ∆tn (2.38)

where all the values signed with ? are the values computed without the friction. Using (Sf )i =

(uRf )i = ui
N2
m||ui||
h

4/3
i

and substituting in the above equation, we have :

(hu)n+1
i = (hu)?i − g(huRf )

n+1
i ∆tn = (hu)?i − g(hu)n+1

i

[
(1− θ)(Rf )

n+1
i + θ(Rf )

n
i

]
∆tn (2.39)

with Nm being the Manning roughness coefficient. Now, by separating explicit and implicit part
and by assuming that Rn+1

f = R?
f , we can write:

(hu)n+1
i =

(hu)?i − θg(hu)ni (Rf )
n
i ∆tn

1 + (1− θ)g(Rf )?i∆t
n

(2.40)

When the implicitness parameter θ is set to zero, the friction source term is computed in a completely
implicit manner, while it is computed in a totally explicit point wise manner when θ = 1 . In all
the computations shown in this work the value θ = 0 has been used. This modification, albeit very
robust, makes the scheme locally first order in time when friction is dominating. This is especially
the case in wet-dry fronts. Techniques to construct high order variants for the eBFD and Runge-
Kutta methods are discussed in [128, 52], and will be exploited in the future.
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2.3 Semi-discrete error analyses

2.3.1 Time continuous analysis

The analytical expression of the linear dispersion relation for the present model has been already
given in chapter 1 and will be here rewritten (with d = h0 since the bottom is flat):

ω2
GN = gh0k

2 1 + α−1
3
k2h2

0

1 + α
3
k2h2

0

. (2.41)

As already explained, this relation can be recovered by means of a Fourier analysis on a horizontal
bottom performed on the linearized system of equations:

(I + αTLIN)φ = TLIN(gh0ηx) (2.42)

ηt + h0ux = 0 (2.43)

h0ut + gh0ηx = φ

where h0 represents the constant water depth and TLIN(·) = −1
3
h2

0(·)xx.

Having a low dispersion error w.r.t. the model, is of paramount importance for any numerical
scheme that wants to be applied to the study of near-shore wave propagation. In this section we will
perform an analysis on the discrete dispersion relations of the several schemes here implemented:
continuous finite element (with and without the upwind stabilization) and finite volume; comparing
them and finding the best possible configuration of the discretization which minimizes the dispersion
error.

We performe our analysis replacing the nodal values of η and u in each discretized scheme
by a propagating Fourier mode Wi = W0e

ν∆xt+jkxi; where ν∆x = ξ∆x + jω∆x and ξ∆x and ω∆x

represents respectively the amplification rate and the phase speed, while k is the wave number of
the Fourier mode. The algebraic expression obtained in such a way can be easily rewritten in terms
of the nodal value Wi, using relations of the type Wi±1 = e±jk∆x. The resulting system of equations
constitutes a complex eigenvalue problem, whose solution is the dispersion factor ν∆x.

The dispersion formula obtained are hard to interpret, so we choose to present the results in the
form of comparison plots, in which the dispersion error curves of the model are compared among
them and w.r.t. the ones given by second (FD2) and fourth (FD4) order finite different discretization
schemes. For the sake of brevity and clarity, in the following, we will just present the concluding
remarks. The reader can refer to [97] for more details.
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Finite element

When also the hyperbolic part is discretized with the centered Galerkin FE scheme described in
(2.23), the system obtained for the nodal values of a Fourier mode is(

M̃
G − αh2

0

3
S̃

G
)
φi = −gh

3
0

3
T̃

G
(

M̃
G
)−1

ηi (2.44)

M̃
G
ν∆xηi + h0F̃

G
ui = 0 (2.45)

M̃
G
ν∆xui + gF̃

G
ηi =

1

h0

M̃
G
φi

While different expressions are obtained for the second and third equations when other schemes are
used in the hyperbolic phase, note that the first one remains the same in all the cases considered.
The discrete phase ω∆x is computed by imposing that the above linear system admits a non-trivial
solution, and hence that the associated matrix has zero determinant.

The results obtained from (1.24) are summarized in figure 2.1 in terms of the relative dispersion
error w.r.t. the exact phase (2.41). The curves are obtained for the two values kh0 = 0.5 and
kh0 = 2.5, corresponding to a long and to a short(er) wave (or equivalently to shallow and deep
waters) respectively, and plotted against the inverse of the number of nodes per wavelength N . The
relative errors of the FD2 and FD4 finite difference schemes are also reported as a reference (see
[97] for detailed expressions). The pictures show that the centered Galerkin scheme provides a
dispersion error which is comparable or better that the fourth order finite difference method.

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

1/N

|ω
S
c
h
e
m

e−
ω

G
N
|/
ω

G
N

 

 

FD2
FD4
Galerkin

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

1/N

|ω
S
c
h
e
m

e−
ω

G
N
|/
ω

G
N

 

 

FD2
FD4
Galerkin

Figure 2.1: Dispersion error for the centered Galerkin FE scheme for kh0 = 0.5 (left) and kh0 = 2.5

(right): comparison w.r.t. the FD2 and FD4 schemes.

In section §2.1.4 we mentioned some implementation choices associated to the finite element
solution of the elliptic problem (2.5). These boil down to the type of quadrature used to evaluate
some of the integrals, or, in other words, to the use of mass lumping for the mass matrices appearing
in equations (2.7), (2.13) and (2.14). The first two, in particular, influence the form of the Φ̃LIN

injected in the hyperbolic component. We have studied the impact of this choice with interesting
results. Four possibilities exist, for which explicit calculations are provided in our work [97]:



56 CHAPTER 2. NUMERICAL METHODS IN 1D

1. mass lumping is performed in both (2.7) and (2.13), in which case the elliptic solver is exactly
the same obtained with the FD2 method ;

2. mass lumping is only performed in the computation of the auxiliary variable (2.13), and not
in (2.7). In this case, the elliptic system is not identical to the FD2 one, however the third
order derivative formula obtained is exactly the same as the one used in FD2 ;

3. no mass lumping is performed for the auxiliary variable (2.13), while (2.7) is lumped. In this
case, the elliptic system is the same as the FD2 one, however, its right hand side contains an
approximation of the third order derivatives obtained starting from an L2 projection of the
gradients of the free surface ;

4. no mass lumping is performed, leading to the first in (2.44) ;
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Figure 2.2: Dispersion error of the Galerkin scheme for kh0 = 0.5 (left) and kh0 = 2.5 (right):
impact of lumping strategy.

The differences between these four cases are visualized in figure 2.2 for the continuous Galerkin
scheme, showing that in deep waters the first and second configurations provide a considerable
increase in error. This clearly means that the most relevant parameter is the approximation of the
third order derivative. It appears from the results that the use of an improved approximation of the
free surface gradient in the third order derivatives is the key element to reduce the dispersion error.
In particular, the configurations 1 and 2 provide errors of the same magnitudes as the FD2 scheme,
despite the fact that the hyperbolic phase, and part of the elliptic phase, are not the same. These are
precisely the cases in which the approximation of the third order operator is the same as in FD2.

SUPG scheme

We repeat the analysis for the upwind stabilized finite element scheme (SUPG). We refer to [97]
for details and analytical expressions. Please, note that a system similar to (2.44)-(2.45) has to be
analyzed and, in particular, that the first equation of this system is exactly the equation (2.44) itself.

In figure 2.3, we visualize the impact of the mass lumping strategy on the dispersion error, as
done for the un-stabilized method . Also in this case, for short waves/deep waters the largest errors
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are obtained whenever the third order derivatives are approximated with the simple FD2 formula
(cases 1 and 2). In the other two cases, involving an improved treatment of this term, we obtain
errors comparable or even smaller than those of the non-stabilized method, confirming the results
already obtained in [222].
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Figure 2.3: Dispersion error of the SUPG scheme for kh0 = 0.5 (left) and the kh0 = 2.5 (right):
impact of lumping strategy.

Finite volume

We repeat the same exercise for the finite volume scheme. Here we have, of course to be more
careful since the evolving quantities are the averaged values in a cell and not the nodal values like
in the finite element. Again, we need to replace a Fourier mode into our scheme. So we assume
that for a wavenumber k, the solution has the form U = U0e

νht+jkx, with j the imaginary unit, and
where νh = ξh + jωh and ξh, ωh represent the discrete amplification rate and phase respectively.
We can indeed find that

Ūi =

∫ xi+1/2

xi−1/2

U0e
νt+jkx =

Ui

jµh

(ej
µh
2 − e−j

µh
2 ) =

Ui

jµh

2 sin(
µh

2
) (2.46)

with Ui = U0e
νht+jkxi , and µh = kh. Using this relation consistently, and replacing in the one-

dimensional version of the scheme we obtain

j (νhC −B) ηi + h0Aui = 0

gAηi + j (νhC −B)ui = −µh
1

h0

MFVDηi.
(2.47)

The right hand side of the second equation is the inverse of the Fourier symbol of the finite element
discretization of the elliptic equation reducing in 1D to a Poisson equation (cf. e.g. [97]). The
coefficients A, B, C D are reported in [138]. The impact of the definition of the matrix MFV

arising depending on the quadrature of Φ is also provided. Only the most significant results are left
here for clarity. These are obtained when all matrices are evaluated exactly as we can see also in
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figure 2.6. Straightforward computations show that the phase speed provided by the discrete scheme
is :

ω2
h = (ghA2 + µMFVAD)/C2. (2.48)

Figure 2.4 plots the relative dispersion errors (rde) |ωs − ωgn|/ωgn with respect to the dispersion
relation of the eGN equations (2.41). For comparison and sake of reference, we also plot in the
same pictures the relative dispersion errors provided by a second and fourth order finite difference
schemes (see [97, 222] for the full expressions). The pictures show that dispersion error of our
scheme is smaller or close to the one of FD4 depending on the number of nodes per wavelength.
For completeness, we also plot on figure 2.5 the error |ωs − ωairy|/ωairy with respect to the exact
dispersion relation ω2

airy = gk2 tanh(kh0). We observe there a kind of compensation between the
discretization and modeling errors, so that for N = 15 and kh > 1.5 the scheme has a lower
error w.r.t the exact dispersion relation than it has wrt the Green-Naghdi one. This is related to the
interaction of the phase advance/lag error of the scheme and the form of the phase of the Boussinesq
model. This finding may be used in the future as a design criterion for low order (second and third)
schemes in the context of Boussinesq models.
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Figure 2.4: Dispersion error with respect to ωgn for nodes per wave length N = 5 and N = 15

For completeness, figure 2.6 reports the main findings for the hybrid Galerkin-FV scheme
of section §2.1.5. Once more, the critical element to obtain low errors in deeper waters is the
approximation of the third order derivative. The use of the FD2 approximation for this term (cases
1 and 2) provides error levels comparable to those of the FD2 scheme. The improvement in the
approximation of the nodal gradient (2.13) leads to a reduction of the error of a factor three or four,
providing errors close to those of the FD4 method. The best results are obtained in this case when
no mass lumping is performed.

Time continuous analysis: summary

This analysis has allowed to highlight the following results. First, the behaviour of the schemes is
quite similar, despite the different treatment of the hyperbolic part. It appears that the treatment of
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Figure 2.5: Dispersion error with respect to ωairy for nodes per wave length N = 5 and N = 15
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Figure 2.6: Dispersion error for the FV scheme for kh0 = 0.5 (left) and the kh0 = 2.5 (right):
impact of lumping strategy.

the third order derivatives is very important, and in particular that the use of exact quadrature in the
L2 projection defining the auxiliary variable (2.13), is fundamental to reduce the error for deeper
water/shorter waves. When no lumping is performed, the errors are similar or smaller than those
provided by fourth order finite differences.

Finally, these similarities allow to provide a general recipe for the elliptic solver, as, for all the
methods involved, the choice of the approach 4 allows to reduce the dispersion errors to those of the
FD4 scheme or below. A summary of the resulting error curves is reported on figure 2.7 confirming
the above observations.

2.4 Numerical tests and results

Since most of the standard numerical tests were presented in the previous chapter, we will only
present three test cases here to confirm the performance of our scheme
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Figure 2.7: Dispersion error of FD2, FD4, Galerkin, SUPG, and FV schemes. Left: kh0 = 0.5.
Right: kh0 = 2.5.

2.4.1 Space-time grid convergence

We perform a convergence analysis w.r.t to space and time step size. The physical case considered
is the propagation of a solitary wave over a flat bed, with depth h0 = 10m, and with ε = 0.2. The
domain is of 2000m, [0, 2000] and the initial wave was placed in x0 = 1000m. For this case,
an analytical solution is available. The test case is performed on a set of six meshes with dx =

5, 2.5, 1.25, 0.625, 0.3125, 0.1562m, and with corresponding time step sizes refined according
to (2.31), with CFL≈ 0.2. At T = 1sec the relative error EL2(h) = ||hnum − hex||2/||hex||2 on the
total water depth is computed, where hnum is the numerical solution and hex is the analytical one.

The convergence of the L2 error is plotted in Figure 2.8, where the slopes 2.5 and 3 are also
plotted for reference. Similar behaviours are observed with other norms. The slopes obtained from
the error reveal convergence rates in between 2.5 and 3 for all the combinations, showing that the
dominant component of the error is the one related to the spatial discretization.
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Figure 2.8: Convergence rates for the FV scheme (left) the SUPG scheme (center) and the Galerkin
scheme (right)
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2.4.2 Influence of mesh regularity

In order to assess the influence of mesh regularity on the results, we present some examples of
computations on perturbed point distributions, obtained from uniform ones by displacing all the
points by a factor of ρi∆x (with ρi a random number such that |ρi| ≤ 0.2, and with ∆x the initial
mesh size). For completeness we consider both a smooth case, and a non smooth one.

The first test involves the interaction of two symmetric solitary waves in a flat frictionless
channel. This head-on collision is characterized by the change of shape, along with a small phase-
shift of the waves as a consequence of the nonlinearity and dispersion. We consider a channel
200m long with h0 = 1m, and two solitary waves with an equal initial hight of A/h0 = 0.3, initially
centered at x = 60 m and x = 140 m. The computational parameters used are CFL value 0.2, number
of nodes 4000 and domain x ∈ [0, 200m].

Figure 2.9 shows the surface profiles of the solitary waves in time t = 5, 11 and 17sec for the
SUPG (up) and the FV model (down) respectively (virtually identical results are obtained with the
Galerkin method). Each subfigure compares the numerical solutions obtained from the uniform and
the non-uniform meshes. The waves initially propagate undisturbed until they collide. After the
collision, as expected, the waves are transformed and a dispersive tail appears. The influence of
mesh irregularity is clearly negligible.
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Figure 2.9: Surface profiles of solitary waves at times t = 5, 11, 17sec with A/h0 propagate in
opposite directions for SUPG (up) and FV (down) schemes.

As a non-smooth example, we repeat on a perturbed mesh the computation of a solitary wave
run-up on a plane beach. The results obtained are shown on figure 2.10 for both the hybrid FV
and SUPG methods, using the Adams-Moulton time integration. Comparing to the results of the
previous section, we can again see that the influence of mesh regularity is very small, and perhaps
the main impact of the irregularity is on the efficiency of the limiters implemented in detecting the
shocks, especially for the SUPG scheme. This is clearly a topic for future improvement.
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Figure 2.10: Comparison on a solitary wave run-up on a plane beach, for the FV scheme and the
SUPG scheme using a non-uniform mesh

2.4.3 Solitary wave on a composite beach

One of the benchmark methods for tsunami model validation and verification according to the
NOOA center for tsunami research is the problem the propagation of a solitary wave over a composite
beach which simulates the Revere beach in Massachusetts. A physical model was constructed at
the Coastal Engineering Research Center in Vicksburg, Mississippi by the U.S. Army Corps of
Engineers. The configuration of the problem can be found in [159]. The setup of the problem is
shown in figure 2.11. The wave gauges, where the time series of the surface elevation is examined,
are placed at x =15.04, 17.22, 19.04, 20.86, 22.33, 22.80m. Two cases are implemented and tested
in this work. The first one is the propagation and breaking of a solitary wave of ε = 0.3 and the
second one involves a solitary wave of higher non-linearity of ε = 0.7. The computational domain
used is of 27.23m, x ∈ [−5, 23.23] , with the initial solitary placed at x = 0m and h0 = 0.218m.
The CFL number is set to 0.2 and dx = 0.046m. A sponge layer of 2m is placed at the left boundary
while a vertical wall is placed at the right boundary. For the surface variation criterion , γ is set equal
to 0.6.

Figure 2.12 shows the comparison between the experimental data (red circles) and the numerical
results. Again, blue line denotes the numerical results produced by the FV scheme while green
dotted line denotes the results given by the SUPG scheme. The solitary travels down the domain,
shoals and break between the second and the third wave gauges. After breaking it continues to
travel onshore until it hits the wall, reflects and starts to propagate offshore. We observe a very good
match between the experimental data and the numerical results for almost all the wave gauges.

In figure 2.13 the numerical results along with the experimental data for the second case (ε =

0.7) are presented. The solitary wave is highly non-linear and presents the same behavior. It
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Figure 2.11: Initial conditions of the solitary wave on a composite beach
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Figure 2.12: Time series of the free surface elevation at the wave gauges for the solitary of non-
linearity ε = 0.3

breaks between the second and the third wave gauges, reflects on the wall and travels offshore.
The numerical results are in agreement with the experimental data. We must notice that after
the reflection of the solitary, the numerical results produced by the FV scheme are slightly ahead
compared to the ones produced by the SUPG scheme and the experimental data.

2.5 Summary

In this chapter we proposed and studied a flexible and unsplit strategy to enhance a shallow water
code to embed the fully-nonlinear weakly dispersive effects of the Green–Naghdi equations. We
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Figure 2.13: Time series of the free surface elevation at the wave gauges for the solitary of non-
linearity ε = 0.7

have proposed a decoupled unsplit formulation which allows to enhance a (hyperbolic) shallow
water code by a purely algebraic correction to the discrete momentum equation. This correction can
be computed from the solution of a stationary elliptic problem to embed both the fully-nonlinear
weakly dispersive effects, and wave breaking. We investigated different discretization techniques
for the two different phases and we derived both a time and space continuous dispersion analysis
to compute the discrete dispersion relationship of our schemes. Our results show that the proposed
method has enormous potential as a non-intrusive enhancement technique for the existing shallow
water models. Indeed, the next chapter presents it’s extension into two spatial dimensions.



Chapter 3

A numerical method in 2D

This chapter describes the extension of our 1HD hybrid scheme in 2HD on unstructured meshes.
More precisely, and like before, we re-write the standard form of the equations by splitting the
original system in its elliptic and hyperbolic parts, through the definition of a new variable, accounting
for the dispersive effects and having the role of a non-hydrostatic pressure gradient in the shallow
water equations. We consider a two-step solution procedure. In the first step we compute a
source term by inverting the elliptic coercive operator associated to the dispersive effects; then in a
hyperbolic step we evolve the flow variables by using the non-linear shallow water equations, with
all non-hydrostatic effects accounted by the source computed in the elliptic phase. The advantages
of this procedure are firstly that the GN equations are used for propagation and shoaling, while
locally reverting to the non-linear shallow water equations to model energy dissipation in breaking
regions. Secondly and from the numerical point of view, this strategy allows each step to be solved
with an appropriate numerical method on arbitrary unstructured meshes. We propose a hybrid finite
element (FE) finite volume (FV) scheme, where the elliptic part of the system is discretized by
means of the continuous Galerkin FE method and the hyperbolic part is discretized using a third-
order node-centred finite volume (FV) technique. Furthermore a number of issues are addressed.
For example the issue of the compatible data representation, in the hyperbolic and the elliptic phase,
the well-posedness of the solution which is highly affected by the choice of the numerical fluxes
used in the hyperbolic step, and the accuracy of the model which is affected by the non-consistent
reconstruction of the derivatives on the unstructured meshes. The performance of the numerical
model obtained is extensively validated against experimental measurements from a series of relevant
benchmark problems.

65
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3.1 Solution strategy and geometrical notation

To numerically solve (1.1), (1.9)-(1.13) we rewrite the system of two dimensional enhanced GN
equations as:

ht +∇ · q = 0, (3.1)

qt +∇ ·
(

q⊗ q

h

)
+ gh∇η = Φ (3.2)

(I + αT ) Ψ = W −R, (3.3)

Φ = Ψ +
gh

α
∇η (3.4)

by splitting the original system in its elliptic and hyperbolic parts, through the definition of the new
variable Φ = [φx, φy]

T . Φ accounts for the dispersive effects and has the role of a non-hydrostatic
pressure gradient in the Shallow water equations. We define

W = − gh

α
∇η

R = hQ
(q

h

) (3.5)

where the operators T (·) and Q(·) are (1.12) and (1.13) respectively. In this work we solve (3.1)-
(3.4) using a hybrid Finite Element (FE)- Finite volume (FV) scheme where the elliptic part of the
system is discretized by means of the continuous Galerkin FE method. The hyperbolic part of the
system is discretized by the two dimensional formulation of the finite volume scheme inspired by
the works [136, 137]. We refer to the work [136], which has been proven to be a robust scheme,
capable of simulating wave transformations providing accurate results in complex scenarios and
over two dimensional unstructured triangular meshes.

So we consider a triangulation of the spatial domain which we denote by Ωh, with the roman
h denoting the largest element diameter. In the approach developed here, we will both make use
of elements defined by each of the non-overlapping triangles of the mesh, as well as of a median-
dual partition in order to generate non-overlapping nodal control volumes. Let us denote by K the
generic triangular element, and by Ki the set of elements sharing node i. We then denote by Ci the
median dual cell obtained by joining the gravity centers of the triangles in Ki with the midpoints of

the edges meeting in i. Simple geometry shows that |Ci| =
∑

K∈Ki

|K|
3

. We also define Di as the set of

nodes connected to i. For any j ∈ Di, the shared portion of boundary of Ci and Cj is named ∂Cij ,
and it is composed by the union of two segments connecting the barycenters of the two triangles
sharing the edge ij with the edge midpoint (see figure 3.1). The boundary of the median dual cell
of i can thus be defined as: ∂Ci =

∑
j∈Ki

∂Cij . Moreover, we define rij the vector connecting nodes i

and j Note finally, that the intersection of Ci intersects each element K ∈ Ki can be split into two
half cells associated to the two edges stemming from i. The half cell containing node j is denoted
by CK

ij , and we set Cij =
⋃
K∈Ki

⋂
Kj
CK
ij so that Ci =

⋃
j∈Di Cij .
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3.2 Hyperbolic step: third order FV scheme and derivatives
recovery via successive corrections

For simplicity we rewrite the system of conservation laws (3.1)-(3.2) as

Ut +∇ · F(U) = Sb + Φi. (3.6)

with U = [h, q]T , F = [q, q ⊗ q/h + gh2I2]T , with I2 the rank 2 identity matrix, and with
Sb = −[0, gh∇b]T . The FV integration over each computational cell Ci leads to the semi-discrete
form of the scheme as:

∂Ui

∂t
+

1

|Ci|
∑
j∈Di

∫
∂Cij

F̂ · n =
1

|Ci|
∑
j∈Di

∫
Cij

Sb + Φi , (3.7)

where Ui is the volume averaged value of U over Ci, n is the unitary outward vector normal
to ∂Ci, and with Φi =

∫
Ci

Φ evaluated using numerical quadrature (cf. section §5). In the above
expression, F̂ is the numerical flux defined here using the approximate Riemann solver of [225]. The
method used here is relatively standard and we will not provide much details. It is based on a well
balanced formulation of the integrals of the fluxes and of the bathymetry source, as well as a robust
modification of the reconstruction and numerical flux to cope with the wet/dry transition. We refer
the interested reader to e.g. [19, 39, 45], and to [136, 140] for some details on our implementation.

To reach high-order spatial accuracy, we have to reconstruct each component of the physical
variables and bed topography. Following the classical strategy by [269] (cf also [234, 136] and [97]),
to reduce the introduction of spurious numerical dispersion we avoid second order approximations
for the hyperbolic terms, and look into the design of a fully third order method. This is achieved
in this work by means of a successive correction method which iteratively improves derivatives
computed by means of the standard Green-Gauss formula. This allows to construct k-exact polynomials
with all local operations, requiring only the exchange of information between adjacent cells. In
particular for a third order method we need a quadratic polynomial requiring the knowledge of
gradient and Hessian of the variables in the dual cell. The standard Green-Gauss formula is unfortunately
not well suited for general unstructured meshes on which it provides first order derivatives which
are at most consistent (1st order accurate), and second derivatives which may event be inconsistent.
There are many methods to overcome this: from the classical least square method used in k-exact
method by Barth in [11, 9, 10], to more recent ones used in [263, 264, 278] and [53]. The basic
limitation of most of the above methods is the computational cost, related to the need of solving a
more or less large linear system, and the complexity of the implementation, related to the need of
assembling and using an enlarged stencil.

We follow here the method first proposed by [30, 119, 118] and more recently in [215]. In
the references the authors constructed a generalized hybridization of Green-Gauss and Least square
methods, called quasi-Green method, which results in a first-order accurate gradient on unstructured
meshes. A successive correction method allows the construction of consistent gradient and Hessian
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on unstructured meshes. The idea of the corrections is to impose exact consistency with the monomials
of appropriate degree. A thorough discussion and the general derivation of the method can be found
in [215, 186] to which we refer for details. All the above works are using cell centered methods.
In our work we have extended the approach to node centered finite volumes. Very recently (and
independently on this work) [233] and [232] also provided a similar re-formulation for the linear
advection equation and of the incompressible Euler equations.

In our work, we develop a node centered successive correction method for the hyperbolic
nonlinear shallow water system, and appropriately combine it with a slope limiter to handle bores
and hydraulic jumps. To our knowledge this is the first time that a nodal variant of the successive
reconstruction technique is used for a hyperbolic system and combined with a limiter. We recall
hereafter the basic steps to obtain a third order reconstruction. Most of the formulas allowing the
implementation are provided in [146].

Figure 3.1: Notation and volume area used in the successive correction method

3.2.1 Polynomial expansion and derivative reconstruction via successive corrections

The reconstruction problem consists in defining a piece-wise polynomial of degree k that approximates
f(x) to the (k+ 1)th order of accuracy. Our aim is to calculate approximations of the solution to the
faces of the cells. To do this, we use high order polynomials obtained by Taylor expansions. Let us
introduce the vector and tensor moments

δ
(1)
Gi

(x) = (x− xGi) ,

δ
(2)
Gi

(x) = δ
(1)
Gi
⊗ δ(1)

Gi
= (x− xGi)⊗ (x− xGi)

(3.8)

For a third order scheme (k = 2) a conservative approximation is of the form [12, 201]

fi(x) = f̄ |Gi + D
(1)
f |Gi · (x− xGi) +

1

2
D

(2)
f |Gi :

(
δ

(2)
Gi

(x)−M (2)
i

)
, (3.9)
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where where Dk
f |Gi represents the order k spatial derivative of f (gradient, Hessian, etc) at the

gravity center xGi , and where the A : B operator denotes the element by element lumped matrix
product

A : B =
∑
i,j

AijBij .

The matrix Mi contains the geometric moments:

M
(2)
i =

∫
Ci

δ
(2)
Gi

Note that these geometric moments are mesh dependent quantities that can be pre-computed via
numerical quadrature and stored (cf. [146] for mode details). The cell polynomials thus defined
guarantee the conservation property

1

|C|i

∫
Ci

fi(x)dS = f̄ |Gi .

The crucial step is to computation of the spatial derivatives with the desired accuracy.

First derivatives

To get the first derivative at the gravity center ofCi, we apply the quasi-Green gradient approximation.
This consists in a Green-Gauss reconstruction with a correction restoring the consistency of the
operator on general meshes [186]. We end up with an operator approximating the gradient to first
order accuracy on general meshes as (cf again figure 3.1 for the notation):

D
(1,o1)
f |Gi = M−1

1

∑
j∈Di

[
wK2
ij f̄i + (1− wK1

ij )f̄j
]
nK1
ij . (3.10)

where the superscript o1 denotes that the approximation is first order accurate, and with the weights
wij computed based on the relative distance of the cell center’s xi to its face:

wK1
ij =

sK1
ij · n

K1
ij

rij · nK1
ij

, sK1
ij =

1

2
xK1
G +

1

4
(xi + xj) (3.11)

and similarly for wK2
ij . The 2 × 2 matrix (M1)i corrects the gradient to ensure its consistency. It is

computed by imposing that for f = x we have D
(1,o1)
x |Gi = (1, 0), and similarly for f = y we have

D
(1,o1)
y |Gi = (0, 1). This leads to:

M1i = [
∑
j∈Di

wK1
ij (xGj − xGi)⊗ nK1

ij + wK2
ij (xGj − xGi)⊗ nK2

ij ]T (3.12)

As the geometrical moments, this correction matrix is mesh dependent, but can be pre-computed
and stored before the simulations. The first order gradient D

(1,o1)
f |Gi allows to construct polynomials

with second order of accuracy at most.
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Second derivatives and second order corrected gradients

Once consistent first derivatives are available in all cells, we can proceed to a second iteration which
will provide consistent second derivatives and improved gradients. As previously stated, a first order
approximation of the second derivatives is enough to guarantee third order of accuracy for the overall
polynomial (3.9). Unfortunately, unless the mesh presents special symmetries, applying (3.10) twice
results in an inconsistent approximation of D

(2)
f |Gi . We denote hereafter this approximation as

D
(2,o0)
f |Gi = D(1,o1)(D

(1,o1)
f )|Gi

The idea is to correct this quantity as done for the gradient

D
(2,o1)
f |Gi = M−1

2i
D

(2,o0)
f |Gi = M−1

2i
D(1,o1)(D

(1,o1)
f )|Gi (3.13)

As for the gradient, the correction matrix M2i can be computed component by component by
requiring the approximation to be consistent when applied to x⊗x, so that for example (D

(2,o1)

x2 |Gi)11 =

2, (D
(2,o1)

y2 |Gi)22 = 2, (D
(2,o1)
yx |Gi)12 = 1, etc. It can be shown [117] that M2i ca be obtained by a

double application of the first derivative of first order derivative to (x−xGi)⊗(x−xGi). For brevity
we omit here the expressions obtained, which are reported in detail in [146].

The computation of a first order accurate second order derivative is not enough to achieve third
order accuracy in the reconstruction. We also have to correct the approximation of the first derivative
for it to be at least second order. To obtain a correction strategy, we can compare the Taylor
series development of the exact gradient with the one obtained using the available reconstructed
derivatives:

∇f exact = ∇f
∣∣
Gi

+∇(∇f)
∣∣
Gi
· (x− xGi) +O(h2)

= D(1),(o1)
x |Gi +O(h) + D

(2),(o1)
f |Gi · (x− xGi) +O(h2)

(3.14)

The first order remainder on the second line, is due to the poor accuracy of the available gradient.
For the gradient to be second order the second line should provide an exact answer for f = (x −
xGi)⊗ (x− xGi). This is precisely the strategy suggested in [186, 215] to correct the gradient. So
in practice we set

D(1,o2)|Gi = D(1,fo)|Gi +M o2
1i

D(2,o1)|Gi , (3.15)

where M o2
1i

is obtained by requiring the errors in the second line of (3.14) to vanish when f =

(x−xGi)⊗ (x−xGi). For our 2D case M o2
1i

is a 2×3 matrix of the form (full expressions available
in [146]):

M o2
1 = −

[
(αi)x − xGi (βi)x (γi)x − yGi

(αi)y (βi)y − yGi (γi)y − xGi

]
.

Note that all of the above matrices are only involved in local operations (involving nearest
neighbors), they can all be pre-computed and stored during a pre-processing step, and then used to
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update the gradients by simple matrix-vector multiplications. There is no need of solving multiple
linear systems. These are the main advantages of this method.

Unfortunately, the correction matrices seem to have no theoretical property guaranteeing their
irreversibility. However, in all the cases that we examined here and in the references using the
same approach, no problem was ever observed even in quite irregular meshes. Another issue is
how to preserve the accuracy near boundaries. In this work we have been only concerned with
two conditions: symmetry or periodic conditions along straight lines. In both cases we have used
ghost cells. For the symmetry/slip wall conditions we have defined the ghost values on a locally
mirrored mesh on which scalar quantities (depth and bathymetry) have been copied, and vectors
rotated by 180◦ wrt normal. In this framework, third order of accuracy can be obtained easily
only for straight boundaries for which two layers of elements are mirrored in order to have enough
stencil to compute the successive correction derivatives. Periodic conditions are imposed simply by
extending the connectivity of the mesh to include the correspondence of the periodic boundaries so
that all the geometrical quantities, as well as the residuals account for periodicity.

Capturing of non-smooth solutions and limiting

In order to prevent oscillations from developing in the numerical solution we use the slope limiter
proposed by Michalak and Ollivier-Gooch in [188], for higher order MUSCL numerical schemes
on unstructured meshes using a cell centered fv scheme for the Euler equations. Following the spirit
of the above work we write the limited form of the higher order reconstruction in the middle point
M of an edge connecting the nodes i and j, as

fi(xM) = f̄ |Gi + LimM

(
D

(1)
f |Gi · (xM − xGi) +

1

2
D

(2)
f |Gi :

(
δ

(2)
Gi

(xM)−M (2)
i

))
. (3.16)

The design of the slope limiter requires three steps. First we have to find the minimum (δf)iminand
the maximum values (δf)imax of the difference f̄ |Gj − f̄ |Gi . in the stencil formed by the cell i and
all the direct neighbors j. Then we compute the unlimited reconstructed value f(x)M and finally
we compute the maximum allowable value for Limi as:

LimM =


g ((δf)imin) if f(x)M − f̄i > 0,

g ((δf)imax) if f(x)M − f̄i < 0,

1 if f(x)M − f̄i = 0

(3.17)

where g(x) = x2+2x
x2+x+2

.

3.2.2 Numerical verification for smooth and non-smooth flows

We provide here a quick verification of the hyperbolic step. First we consider the smooth traveling
vortex solution proposed by [221], and widely used in literature to measure the accuracy of discretizations
for the shallow water equations. Please refer to [221] for the precise definition of the test. We
compute the solution at a specific time, as prescribed in the reference, on a series of regular and
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irregular unstructured grids. The reference size of the coarsest mesh is h = 0.107573, which
is reduced to half at each refinement step. The convergence of the depth error is reported on
figure 3.2. Following the discussion in section 4 we performed the test in both structured and
unstructured meshes confirming that the Green-Gauss reconstruction on unstructured meshes, spoils
the convergence since is not able to produce consistent gradients. The picture confirms that the
nominal accuracy is measured in practice in third order case when the derivatives are recovered via
the successive correction approach. For the second order case the Green-Gauss is consistent with
the gradient so the order of convergence is 2 interdependently of the mesh. The results are omitted
for brevity.
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Figure 3.2: Error decay for the third order scheme. Representative structure (center) and unstructure
meshes (right).

We then consider the Monai valley benchmark [167], a classical test inspired by a flume experiment
reproducing a scaled version of the 1993 the Hokkaido-Nansei-Oki tsunami impact on the Monai
valley. The test involves bore formation, propagation, and reflection, as well runup. Following
[220], we have run the experiment on an unstructured grid adapted to the bathymetry variations, and
we show the wave patterns obtained at time 16.5s (see figure 3.3) with the second and third order
schemes, as well as the water height times series in two of the gauges of the experiment (figure 3.4).

Figure 3.3: Monai valley: 3D view at time t=14.5 and t=16.5 s using the third order scheme.
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Figure 3.4: Monai valley: Free surface elevation at gauges 5 and 7.

3.3 Finite element solver for dispersive effects

Following the classical strategy [269], we now couple the non-dispersive hyperbolic solver to a
second order solver for the physical weakly-dispersive effects. To this end, we propose to compute
the auxiliary variable Ψ in (3.3) by means of a standard nodal P 1 (continuous) finite element (FE)
method. Note that there is a notable change now in the meaning of the data associated to a mesh
node i. The FV method evolves median dual cell averages which are in general different from the
values of the variables at the nodes, used in the FE method. Similarly, we need to transfer from
one representation to the other the derivatives of the depth and of the velocity appearing both in the
coefficients in the operator T (equation (1.12) and equations (1.14)-(1.15)), and the right hand side
where derivatives appear both in the definition of W and of R (cf. (3.5) and (1.13)). We will get
back to this point in the next subsection.

The definitions of the operator T , S1(·) and S2(·), from (1.14) and (1.15) respectively, lead to
the following variational form of the elliptic equation (3.3)∫

Ω

ν ·Ψ + α

∫
Ω

S1(ν)hS1

(Ψ

h

)
+ α

∫
Ω

S2(ν)hS2

(Ψ

h

)
= RHS + BCs , (3.18)

or equivalently using (1.15)∫
Ω

{
1

3

(
h∇ · ν − 3

2
∇b · ν

)(
h2∇ ·

(Ψ

h

)
− 3

2
∇b ·Ψ

)
+

1

4
(∇b · ν)(∇b ·Ψ)

}
= RHS + BCs ,

(3.19)
with RHS a variational approximation of the term W − R. BCs are the boundary condition terms
which we briefly discuss below. The value of Φ, required in the hyperbolic step, is recovered nodally
from (3.4).

To obtain a fully discrete approximation of (3.19) we now consider the finite element approximation

Ψh =
∑
K∈Ωh

∑
j∈K

ϕjΨj (3.20)

where span{ϕj}j∈Ωh
is the classical continuous P 1 finite element space. We similarly introduce

discrete approximations hh, bh, ηh, and uh for the elevations and velocity, as well as elemental
discrete approximations of their first and second derivatives. Some options to provide these definitions
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and the solution we propose are discussed in the next subsection. The fully discrete variational form
is expressed in terms of the array of the nodal values {Ψj}j∈Ωh

, which by abuse of notation we also
label Ψ.

(M + αT(hh, bh))Ψ = W(hh, bh)− R(hh, bh,uh) (3.21)

where the matrices on the left hand side are sparse 2×2 block matrices. In particular, M is the mass
matrix with entries

[M]mnij = δmn
∑

K∈Ki
⋂
Kj

∫
K

ϕi ϕj , (3.22)

while the entries of T(hh, bh) are evaluated using the relation h2∇ · (Ψ/h) = h∇ ·Ψ−Ψ · ∇h as

[T(hh, bh)]mnij =
∑

K∈Ki
⋂
Kj

∫
K

{
1

3

(
hh∂Xmϕi −

3

2
ϕi (∂Xmb)h

)(
hh∂Xnϕj −

3

2
ϕj (∂Xnb)h − ϕj(∂Xnh)h

)

+
1

4
ϕi (∂Xmb)h ϕj (∂Xnb)h

}
(3.23)

Note that in the above expression the mn indices run over the spatial components of the unknown,
while ij run over the mesh nodes.

Finally the right hand side terms are defined as

W(hh, bh) = − g
α

∑
K∈Ki

∫
K

ϕi hh(∇η)h (3.24)

and

R(hh, bh,uh) =
∑
K∈Ki

RK

RK =− 2

3

∫
Ωh

∇ϕi h3
h

(
(∇u)h · (∇⊥v)h + (∇ · u)2

h

)
+

∫
Ωh

ϕi h
2
h

(
(∇u)h · (∇⊥v)h + (∇ · u)2

h

)
(∇b)h

− 1

2

∫
Ωh

∇ϕi h2
h

(
(D

(2)
b )h : (uh ⊗ uh)

)
+

∫
Ωh

ϕi hh

(
(D

(2)
b )h : (uh ⊗ uh)

)
(∇b)h .

(3.25)

having used the notation of section §4.1.1 for the Hessian of the bathymetry D
(2)
b , and for its term

by term product with the tensorised velocity.
Once the local polynomials representing h, b, u and their derivatives are defined over the

element, all the above formulas can be evaluated by means of a sufficiently accurate quadrature
formula. In practice we have used here a 6 points symmetric formula exact for polynomials of
degree 4 taken from [76]. This definition is the objective of the next section.
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3.4 Finite element/volume coupling: consistency and well-posedness
considerations

This section provides some additional constraints on some of the numerical choices possible with
the method proposed. These are justified by means of some theoretical (albeit heuristic) arguments,
as well as by strong numerical evidence. We consider first the issue of ensuring a compatible data
representation in the two phases of the computation. This will give an indication on how to use FV
data in the FE solver (and vice-versa). We then provide a few comments on the well-posedness of
the overall procedure which show the importance of using dissipative numerical fluxes.

3.4.1 Consistency: using FV data in the FE solver and vice-versa

We start by recalling that the two approaches being used to solve the equations are based on different
representation of the data. The FV scheme evolves the solution averages Ui over the dual cells
Ci, and local polynomials within the cells are reconstructed using essentially all the neighboring
information. The FE method uses a collocated nodal representation, and within each element the
polynomial variation is obtained by interpolating the data available at the nodes.

Although both methods used unknowns associated to the mesh nodes, their meaning is substantially
different. More importantly, the approximation of the derivatives has an impact on the accuracy of
the right hand sides of the elliptic problem. For this reason we have chosen here to proceed as
follows:

• when passing the FV solution to the elliptic solver we sample the reconstructed polynomials
and their derivatives at the nodes:

fi = f̄ |Gi + D
(1)
f |Gi · (xi − xGi) +

1

2
D

(2)
f |Gi :

(
δ

(2)
Gi

(xi)−M (2)
i

)
.

(∇f)i = D
(1,o2)
f |Gi + D

(2,o1)
f |Gi · (xi − xGi)

(D
(2)
f )i = D

(2,o1)
f |Gi

(3.26)

We then use these nodal values as a basis for a linear finite element approximation, so within
any element K ∈ Ωh we set:

fh =
∑
j∈K

ϕjfj , (∇f)h =
∑
j∈K

ϕj(∇f)j , (D
(2)
f )h =

∑
j∈K

ϕj(D
(2)
f )j .

This, combined with the successive corrections method, allows to ensure on general meshes
the second order of accuracy of all the first derivative terms (of h, b, and u) appearing in
(3.24), (3.25), and (3.23), and at least first order for the second derivatives of the bathymetry
in (3.25). For configurations with high curvature in the topography, this is not enough and this
value should be improved. A possible solution in relative simple cases, as those considered
here, is to use the point-wise analytical value.
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• The nodal finite element values Ψi are used to compute the post-processed average non-
hydrostatic term

Φi :=

∫
Ci

Ψh +
g

α

∫
Ci

hh(∇η)h

this formula are evaluated by splitting the integral in local contributions over the quadrangular
shapes Ci

⋂
K, then further splitting the quadrangles in triangles by joining the node i to the

the gravity center of K, and then by using numerical quadrature on each sub-triangle.

Note that these choices have a direct impact on the theoretical accuracy attainable by the method.
To see this, let us write an estimate on the local truncation error, for simplicity in the case of flat
bathymetry.

We start by recasting (1.1), (1.9)-(1.13) in dimensionless form. Using the standard fully nonlinear
scaling leading to the Green-Naghdi system (see e.g.[155, 159] as well as [73] section §5) one easily
shows that (3.1)-(3.4) can be written in dimensionless form as

∂th+ ∇ · q = 0

∂tq+ ∇ ·
(q⊗ q

h

)
+ h∇h = µ

(
Ψ +

h

α
∇h
)

(I+µαT )Ψ = −h
α
∇h+ hQ(u)

(3.27)

where we recall that µ = h2
0/λ

2 is the ratio of the reference depth on reference wavelength, and
measures the shallowness and magnitude of dispersion. More importantly, as already recalled in
the introduction, the above model is an approximation of the full non-linear free surface potential
equations within an asymptotic error of O(µ2) [155]. We now consider an exact smooth solution,
and combine (3.27) with (3.6) to write the following local error:

TEi =
1

|Ci|

∫
Ci

(
Uex
i (x)−Uex(x)

)
+

1

|Ci|

∫
Ci

∑
j∈Di

∫
∂Cij

(
F̂(Uex

i (x),Uex
j (x))− F(Uex(x))

)
+

µ

|Ci|

∫
Ci

(
Ψex
h +

hex
h

α
∇hex

h −Ψex − hex

α
∇hex

) (3.28)

having denoted by Uex
i (x) the reconstructed polynomial obtained starting from the averages of a

smooth exact solution Uex(x), and similarly by hex
h the finite element approximation of exact nodal

data. We can now proceed to a term by term estimation of the right hand side. The first one
is, by construction, equal to zero for quadratic polynomials, giving a rest of order O(h3), and a
similar result is easily proven for the second term too (see e.g. [265] §2). The last one requires an
evaluation of the error of the solution of the elliptic step. Standard finite element error estimates
for elliptic equations (see e.g. [55, 87, 31]) rely firstly on a consistency assessment involving
two main components: an estimate of the interpolation error for the solution, an estimate of the
residual error, related to the approximation of the right hand side of the problem. For linear finite
elements, the approximation error in L2 norm is of an order O(h2). Concerning the right hand side,
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an inspection of (3.25) reveals that the limiting factor, for constant bathymetry, is the accuracy in
the approximation of the derivatives of the velocity. This indicates that, provided that the gradient
approximation is second order accurate on general meshes, the consistency of the scheme is of
order O(µh2), which is within the modeling error as soon as h = O(µ). The scheme is thus second
order accurate wrt the mesh size. However, when the shallow water sub-system is approximated
to third order, we gain a factor µ in error without any increase in the cost of approximation of the
elliptic problem which is the most computational intensive part of the model. Since µ is small in
all applications for which the model is relevant, this gain is in principle non-negligible. This is
essentially the same rationale behind the method of [269], extended to unstructured grids.

To confirm numerically the impact of these choices, we consider a traveling solitary wave which
is an exact solution of the GN equations for α = 1. Depth and velocity are known analytically and
given by:

h(x, y, t) = h0 + α0sech2(k(x− c ∗ t)) , u(x, y, t) = c

(
1− h0

h(x, y)

)
(3.29)

with h0 the still water depth, α0 the wave’s amplitude, and with k =
√

3α0/4h2
0(h0 + α0), and

c =
√
g(h0 + α0). Although this is essentially a 1D solution, we have run it on 2D unstructured

triangulations (rightmost picture on figure 3.2) to perform a grid convergence. In figure 3.5 (left),
we compare the results obtained by using the correctly sampled values of the solution and of its
derivatives at the nodes, as discussed above (orange curve), against the result (blue curve) obtained
by passing the nodal average as it is, and using it to construct the finite element approximation,
including the elemental derivatives computed on each element as (∇u)h =

∑
j∈K ∇ϕjuj . The result

shows the importance of accounting for the meaning of the data in the FE/FV coupling to attain the
proper convergence rate with mesh size. Concerning the impact of using the extra correction in the
polynomial reconstruction in the hyperbolic phase, from comparing curves in figure 3.5 (left) and
(right), we see that this relatively inexpensive extra iteration allows an error reduction roughly of a
factor 5.

3.4.2 A comment on well-posedness

The choice of the numerical fluxes plays a fundamental for the robustness of the hyperbolic step in
the presence of irregular solutions, for which the use of dissipative/upwind fluxes is necessary (cf.
sections §4.1.3 and §4.2). When considering the propagation of smooth dispersive waves one may
think that non-dissipative fluxes could be more appropriate. It turns out that for the method proposed
here this is not case, and numerical dissipation plays a major role also in the propagation region. To
show this, we will consider the simplified setting of the linearized dimensionless equations without
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Figure 3.5: Error decay for the solitary wave. Left: hyperbolic step with second order successive
correction. Right: hyperbolic step with third order successive correction. Orange: consistently
sampled FV data used in the FE step. Blue: nodal averages in the FE step.

bathymetry, which can be written as

(
I − αµ(∇∇·)

)
Ψ = −∇η

α

∂tη + ∇ · u = 0

∂tu + ∇η = µΨ + µ
∇η
α

(3.30)

Despite the scheme having been derived and coded for the above form, for the discussion of this
section it is more appropriate to start from the more classical formulation

∂tη = − ∇ · u(
I − αµ(∇∇·)

)
∂tu = −

(
I − (1− α)µ(∇∇·)

)
∇η

(3.31)

The operator to be inverted to evolve the velocity u (as well as to pre-compute Ψ) is a grad-div
operator, quite common in the modelling of e.g. electromagnetic waves. The important aspect of
this type of equation is that it is naturally formulated in the functional space of vectors H(div), as
its variational form involves the scalar product

(v,u)Ω :=

∫
Ω

v · u + αµ

∫
Ω

∇ · v · ∇ · u (3.32)

which readily generates the equivalent squared H(div) norm u2 +αµ(∇·u)2. It is well known that,
despite the symmetry of the bilinear form induced by the equation, H1 finite elements, as the one
used here to solve the elliptic problem, are not well posed as prone to spurious modes related to the
rotational of the solution. For electromagnetic waves this is a long time known fact [61, 60, 115].
Divergence conforming elements allow of course to side-step this issue.
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To use H1 elements, which are easier to implement, and better suited to be coupled with a
hyperbolic solver something needs to be done. Usually, this is achieved by introducing, at the PDE
level or in the scheme, a regularizing operator that stabilizes the spurious modes otherwise not
controlled by the incomplete norm generated by the variational formulation (or equivalently (3.32)).
In our method this is essentially the case. However, we do not modify the elliptic solver. The
stabilization is embedded in the hyperbolic evolution step, and associated to the form of the upwind
finite volume numerical fluxes which embed a discrete Laplacian which plays a crucial role.

To provide some heuristics into this mechanism, we consider the following regularized explicit
discrete in time linear equivalent of the GN system

ηn+1 − ηn

∆t
−∇ · (εηh∇η)n = − ∇ · un(

I − αµ(∇∇·)
)un+1 − un

∆t
−∇ · (εuh∇u)n = −

(
I − (1− α)µ(∇∇·)

)
∇ηn

(3.33)

The regularization here is explicitly added in the form of an artificial diffusion terms, which in
reality stems from the use of upwind numerical fluxes. The above system can be seen as some space
continuous equivalent of the fully discrete scheme, somewhat similarly to the modified equation in
finite difference methods [266]. In particular, the coefficients εηh and εuh depend on the numerical
flux. For the dimensionless linearized problem under consideration, these can be both approximated
by εηh = εuh ≈ C h for some mesh dependent constant C, which we assume for simplicity to be
diagonal. Note that this implies that the divergence acting in the second term in each equation is
applied line by line.

To show the impact of numerical dissipation we proceed as follows. We start by introducing at
each time step the Helmholtz/Hodge decomposition of the velocity vector [123, 124, 22]

un = ∇φn1 +∇⊥φn2 (3.34)

where the orthogonal nabla operator ∇⊥ = (∂y,−∂x) being the equivalent of the rotational in the
2D plane. We then introduce this decomposition into the second in (3.33), and look for closure
equations for the two potentials. Using the div-free property of the second component of the
decomposition, the first relation we can write is that

∇⊥φn+1
2 −∇⊥φn2

∆t
+
(
I−αµ(∇∇·)

)∇φn+1
1 −∇φn1

∆t
−∇·(εu∇u)n = −

(
I−(1−α)µ(∇∇·)

)
∇ηn

(3.35)
We now apply the −∇⊥· operator, and use the identity∇⊥ · ∇ = 0. This allows to write

−∇⊥ · ∇
⊥φn+1

2 −∇⊥φn2
∆t

+∇⊥∇ · (εuh∇u)n = 0 (3.36)

The first conclusion we can draw is that for εuh = 0 then an admissible solution is that φ2 is
constant in time. In other words, at any time step the velocity field is defined up to an arbitrary
rotational component ∇⊥φ2 not seen by the scheme. This is essentially a spurious mode, which is
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not controlled and may prevent the discrete solution to converge.

We now consider the case in which the numerical dissipation is present. With the hypothesis
that εuh is diagonal and that the∇· is applied line by line, simple manipulations show that

−∇⊥ · ∇⊥φ2 =−∆φ2

∇⊥∇ · (εuh∇u)n =−∆2φ2

(3.37)

with ∆ the usual Laplace operator. This allows to write (3.35) as

−∆

(
φn+1

2 − φn2
∆t

− εuh∆φn2

)
= 0 (3.38)

For uniform and homogeneous boundary conditions, we may deduce that

φn+1
2 − φn2

∆t
− εuh∆φn2 = 0 . (3.39)

This shows that in presence of numerical dissipation, spurious rotational effects are smoothed
according to a parabolic operator with a smoothing rate proportional to the numerical dissipation.

We propose some numerical evidence to confirm the above observations by studying again the
grid convergence of the solitary wave solution (3.29). We perform the following experiment. On
one hand, we solve the nonlinear shallow water equations forced with Φ = Φexact obtained by
replacing (3.29) in the momentum equation. This corresponds to imposing the solitary wave as a
manufactured solution (cf [224]). On the other, we solve the full system including the dispersive
terms for which (3.29) is an exact solution if α = 1. In both cases, we perform a grid convergence
with centered numerical fluxes, as well as with the full upwind flux.

We perform the computations up to time t = 0.1 on 7 unstructured meshes starting with a
triangulation with 328 triangles, and then halving the mesh size. The results are reported in figure
3.6 for the second order (left), and third order (right) polynomial reconstruction in the hyperbolic
fluxes. For the shallow water equations with manufactured solution all configurations converge. The
centered fluxes fail to provide third order of accuracy, at least on the meshes considered however, full
second order is observed. For the GN system, the error obtained with centered fluxes quickly stalls,
and error or even solution blow-up is observed on the last meshes for the final time considered. Full
convergence is restored with the upwind fluxes, confirming our heuristics that numerical dissipation
is sufficient to control the growth of spurious modes.

3.5 Stability and dissipation

While the well-posedness in 2D can be justified with the arguments of section 3.4.2, in one dimension
the Fourier analysis (see section 2.3) provides a characterization of the linear stability of monochromatic
waves in terms of the discrete wave amplification rate ξh. We recall here the system that we obtained
after we replace the Fourier mode inti our scheme:
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Figure 3.6: Solitary wave. Left: second order successive correction. Right: third order successive
correction. Blue: shallow water with upwind fluxes and manufactured solution. Orange: shallow
water with centered fluxes and manufactured solution. Yellow: Green-Naghdi with upwind fluxes.
Magenta: Green-Naghdi with centered fluxes.

j (νhC −B) ηi + h0Aui = 0

gAηi + j (νhC −B)ui = −µh
1

h0

MFVDηi.
(3.40)

For the upwind schemes we can obtain from the above system, the relation:

ξh =
B

C
(3.41)

where the coefficients B and C are

B =
ck

µ

(
−115

48
sin(

µ

2
) +

61

48
sin(

3µ

2
)− 15

48
sin(

5µ

2
) +

1

48
sin(

7µ

2
)

)
(3.42)

C = 2 sin(
µ

2
). (3.43)

for the case of third order successive reconstructions, and

B =
ck

µ

(
−10

4
sin(

µ

2
) +

5

4
sin(

3µ

2
)− 1

4
sin(

5µ

2
)

)
(3.44)

and C is the same as before, for the second order successive reconstruction.
Figure 3.7 plots the numerical wave amplification for three different choices of number of points

per wavelength. We can see that the amplification rate is negative, which means the schemes are
stable. Of course the presence of damping constrains somewhat the number of nodes per wavelength
required to resolve long time/distance propagation, although considerably less for the third order
scheme, as the plot suggests. For the fully centered discretizations, the spectral analysis provides
systematically ξh = 0.
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Figure 3.7: Numerical amplification rate as a function of the reduced wavenumber kh when using
the second (left) and the third (right) order reconstruction in the hyperbolic part, for different choices
of the number of points per wavelength Nλ

3.6 Boundary conditions and wave generation

In this work, we have implemented periodic, fully reflective/wall and absorbing boundary conditions.
In the case of wall boundary conditions, the elliptic solver is modified in boundary nodes to set the
conditions

Φ · n = 0⇒ Ψ · n = −h∇η · n
α

∂nΦ · τ = 0⇒ ∂n(Ψ · τ + h
∇η · τ
α

) = 0

For straight walls the first condition is a consequence of u · n = 0, while the second forces the
rotational components of Φ to zero at the walls. This latter condition is consistent with∇∧Φ = 0,
which can be easily proved for the continuous equation used in the bulk. In practice we modify both
the RHS and matrix of the elliptic system to account for these conditions. In the hyperbolic solver
we also make sure that u · n = 0 by modifying the hyperbolic fluxes and source and removing the
normal component.
Absorbing boundaries are applied in order to dissipate completely the energy of the incoming waves,
trying at the same time to eliminate any non-physical reflection. This kind of boundaries requires
the definition of a sponge layer in which the surface elevation and the momentum are damped by
multiplying their values by the coefficient:

m(x) =

√
1−

(
x− d(x)

Ls

)2

.

where Ls is the sponge layer width and d(x) is the normal distance between the cell center with
coordinates x and the absorbing boundary. Typical values of the sponge width are related to the
wave length λ of the incoming wave and usually are: λ ≤ Ls ≤ 1.5λ.

Finally, a large number of numerical tests demand the generation of monochromatic waves. One
very common approach is to use an internal wave generator. This means, generating the waves
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inside the computational domain avoiding issues that may arise from boundaries. In this work we
make use of the internal wave generator, firstly described in [270]. In our scheme this is obtained
by adding a source term to the mass equation, as described in [222] and references therein.

3.7 Numerical validation and benchmarking

3.7.1 Grid convergence for the solitary wave

We return to the exact solitary wave to compare on figure 3.8 the errors obtained when using the
second (blue lines) and third order (orange lines) reconstructions. Convergence plots are reported
for the free surface, and for Φ. We observe that using the third order scheme in the hyperbolic
step, thus passing from O(h2) to O(µh2), allows an increasing slope and a more or less consistent
reduction of the error by a factor between 3 and 5.
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Figure 3.8: Error decay for second and third order schemes for h and Φ .

3.7.2 Circular shoal

Whalin [272] studied the focusing effected induced by a semi-circular shoal on wave trains of
different periods. The wave tank used is of 6.096m wide and 25.6m long. A semi-circular shoal
was placed at the middle portion of the tank leading the water depth to decrease from 0.4572m at
the wave maker region to 0.1524m to the end of the tank. This test case has been used by many
authors in order to test the dispersive properties of their models, see for example [178, 16, 262, 88,
252, 136, 222] in which a detailed description of the set up of the case can be found. The three test
cases that have been reproduced here are:

(a) T = 1s, A = 0.039m, h0/λ=0.306 and ε = 0.085

(b) T = 2s, A = 0.015m, h0/λ=0.117 and ε = 0.033

(c) T = 3s, A = 0.0136m, h0/λ=0.075 and ε = 0.030
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where T is the wave period, A the wave height and λ the wave length. Wave gauges are placed
along the center line to record the time series of the free surface elevation, which are analyzed in
the frequency domain using a Discrete Fourier Transform (DFT) to obtain the first three harmonic
amplitudes. The computational domain used is [−10, 36] × [0, 6.096]m. Periodic waves are
generated using the internal generator placed at x = 4m and sponge layers of 6m are placed at
the left and right end of the domain. Reflective boundary conditions are imposed at the remaining
boundaries. For the computation of the first case a triangular grid was used, consisting of triangles
with side lengths hx = 0.05m and hy = 0.1m leading to a mesh of N = 56211 nodes. For the
last two cases the grid consists of equilateral triangles, with hN = 0.01m leading to a mesh of
N = 28151 nodes. The CFL value used was 0.5.
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Figure 3.9: Wave diffraction over a semi-circular shoal. Case (a): Left: Computed free surface data
along the centerline of the domain. Right: comparison of the DFT of the numerical data over the
centerline with experimental data. Dashed line second order scheme, continuous line third order
scheme.

For all the test cases, the incoming waves are linear in the deeper portion of the tank and they
are steepening due to the wave shoaling. Wave energy gradually spreads out to higher harmonics,
which increase in amplitude in the shoaling region. For both case (a) and (b) the agreement between
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Figure 3.10: Wave diffraction over a semi-circular shoal. Case (b): Left: Computed free surface
elevation at time t = 40sec. Right: comparison of the DFT of numerical data over the center-line
with experimental data. Dashed line second order scheme, continuous line third order scheme.

the numerical and experimental data is quite satisfactory for all the harmonics, while in the last
test case (c) the numerical results overestimate the first harmonic and underestimate the other two.
This behavior has also been observed by other authors [178, 16, 252, 165] and the discrepancies
are attributed to the shorter evolution distance of this test case or to the presence of free reflected
waves. We compare the numerical solution obtained using the third order scheme (continuous line)
and the second order scheme (dashed line) in the hyperbolic part. The difference, as expected, is
more pronounced in the first two cases were the waves are shorter.

3.7.3 Elliptic shoal

This test case studies the refraction and diffraction of a regular wave over a complex bathymetry and
it is a reproduction of the experiment of [18]. It is mainly used to verify models based on mild-slope
equations but also the extended Boussinesq-type equations. The numerical domain is 20m wide and
22m long, with x ∈ [−10, 10] and y ∈ [−17, 15]. The bathymetry consists of an elliptic shoal
placed on a ramp of constant slope forming a 20o angle with the x-axis. The maximum water depth
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Figure 3.11: Wave diffraction over a semi-circular shoal. Case (b): Left: Computed free surface
elevation at time t = 40sec. Right: comparison of the DFT of the numerical data over the center-line
with experimental data. Dashed line second order scheme, continuous line third order scheme.

is h0 = 0.45m at the wave maker’s position, which is placed at y = −13m. The bathymetry set up
can be found in [136, 222] and references therein. The monochromatic wave’s characteristics are:
period T = 1s and amplitude a = 0.0232m corresponding to a non linearity degree ε = a/h = 0.3.
The normalized time average wave height was measured in eight different sections (see figure ).
Wall boundary conditions are imposed on the left and right boundaries, while sponge layers of 4m

are placed at the bottom and top ends of the domain. In this test case, we used an unstructured grid
refined in the region of the shoal. In particular the grid size in the y-direction varies from hy ≈ 0.1m

on the top and bottom boundaries, to hy = 0.05m in the region around the shoal. The simulation
period is 50sec and the CLF used is 0.5. A three dimensional view of the water elevation at the
final time is reported on figure 3.12. In order to compare the numerical results with the experimental
data [18], time series of the water elevation have been extracted in sections 1-8 during the last 25sec

of the simulation. The time series are analyzed using the zero-up crossing technique to isolate
single waves and to compute the averaged wave height. The results are normalized by the incoming
wave height 2a = 0.0464m and are reported on figures 3.13 and 3.14. The agreement between the
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numerical results and the experimental data are satisfactory and comparable to the results given by
the literature ([222],[252], [262]).

Figure 3.12: Wave diffraction over an elliptic shoal: 3D view of the free surface elevation at time
t = 50sec.
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Figure 3.13: Wave diffraction over an elliptic shoal: Normalized wave height from sections 1 to 4.
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Figure 3.14: Wave diffraction over an elliptic shoal: Normalised wave height from sections 5 to 8.

3.7.4 Solitary interacting with a cylinder

In this test case we examine numerically the propagation and scattering of a solitary wave with
a vertical cylinder. The laboratory experiment [75] investigates the interaction of the wave with
the cylinder and it has been used by [132, 136] and references therein to validate their numerical
models. The numerical domain used here is x × y ∈ [0, 14m] × [0, 0.55m] . A vertical cylinder
of diameter 0.16m was placed at (x0, y0) = (8.5, 0.275). The solitary has amplitude A = 0.0375m

and it is placed at x = 4m. The undisturbed water depth is h0 = 0.15m, so the nonlinearity of
the wave is ε = 0.25. Six wave gauges were recording the free surface elevation and were located
at: wg1 = (8.4, 0.275), wg2 = (8.5, 0.170), wg3 = (8.5, 0.045), wg4 = (8.6, 0.275), wg5 =

(8.975, 0.275), wg6 = (9.375, 0.275). The mesh has 11345 nodes and it is refined around the
cylinder. Figure 3.15 presents the 3d view of the free surface elevation after 4 sec, when the solitary
interacts with the cylinder. This interaction causes the generation of scattering waves that propagate
downstream while the rest of the wave recovers to a solitary wave and propagates upstream. The
first wave that interacts with the cylinder and propagates upstream is computed quite accurately
compared to the experimental data as seen in figures 3.16-3.18. The reflected waves, even though
are better resolved compared to the ones that can be found in the bibliography [132, 136] , still
presents some discrepancies compared to the experimental data. This may indicate that a fully
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dispersive model is needed for this case.

Figure 3.15: 3D view of the free surface elevation. Interaction of the solitary wave with the vertical
cylinder.
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Figure 3.16: Free surface elevation at wave gauges 1 and 2
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Figure 3.17: Free surface elevation at wave gauges 3 and 4

3.7.5 Solitary wave breaking on a 3D reef

Swigler et Lynett (2011) performed laboratory experiments at the O.H. Hinsdale Wave Research
Laboratory of Oregon State University to study the specific phenomena which occurs when a
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Figure 3.18: Free surface elevation at wave gauges 5 and 6

tsunami like wave approaches the coast: namely the shoaling, refraction, breaking and run-up of
the wave. Many authors have used this case to validate their codes, since it is quite demanding and
involves multiple physical phenomena correct representation. The computational domain is 48.8m

long and 26.5m wide. Figure 3.19 shows the test set up along with the position of the wave gauges.
The topography is determined from a laser scan and it consists of a slope of 1:30 connected with
a triangular reef flat submerged between 0.75m and 0.9m below the still water level. The offshore
shelf edge has an elevation of 0.71m with the apex located at x=12.6m. The steepest slope of the
shelf is at the apex and becomes milder moving along the shelf edge toward the basin side walls. A
concrete cone is also placed at the apex of the reef between x=14m and 20m. It has a diameter of
6m and a height of 0.45m The planar beach continues up to x=31m and then becomes level until the
back of the basin. Nine wave gauges were placed into the basin in order to measure the variation
of the free surface elevation: gauges 1, 2, 3, 7 were located at y = 0m and x = 7.5, 13, 21, 25m

gauges 4, 5, 6, 8 were located at y = 5m and x = 7.5, 13, 21, 25m, while gauge 10 have been set
at y = 10m and x = 25m.

A hybrid strategy is implemented in the scheme as to account for the wave breaking that occurs
after the wave’s shoaling. The strategy is analytically explained in chapter 5. Compared to the
experimental case, the computational domain has been extended from x = 0m to x = −5m in
order to be able to completely contain the initial solitary wave. It has been discretized by means
of two different unstructured grids. The first one is adapted to the bed curvature, as shown in 3.19,
and characterized by reference maximum and minimum size respectively: max(hK) = 0.3m and
min(hK) = 0.125m. The second one is a triangular, non-refined grid of hk = 0.3. A solitary wave
of amplitude A = 0.39m, corresponding to ε = 0.5, is initially placed in x = 0 and wall reflecting
boundary conditions are imposed in each boundary of the domain. We used a Manning coefficient
Nm = 0.014 for representing bed roughness. A CFL number of 0.5 was used, together with γ = 0.6

for the breaking detection criterion.

Figure 3.20 shows the computed free water surface at different time instants, using the refined
mesh. With white color we denote the time evolution of the breaking regions detected by the criteria
of the breaking mechanism. As the solitary wave propagates towards the beach it shoals, increases
its steepness and nonlinearity, up to a breaking point at t = 5s on the center line of the domain,
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Figure 3.19: Solitary wave propagation over a three dimensional reef: Close up view of the adapted
mesh used for the computation(right) and positioning of wave gauges (left)

when it reaches the apex of the triangular shelf. At t = 6.5s the central part of the wave has
completely overtopped the concrete cone, while on the two sides, the surge continues to shoal,
diffracting around the base of the cone. By t = 8.5s, the refracted and diffracted waves collide on
the lee side of the shelf. After t = 9s, the water starts to withdraw from the con top and a bore-front
forms, from the combined waves after the diffraction, and propagates on the shelf behind the cone
and then onshore. After t = 15s, a new bore is created from the the drawn-down of the water and
collides with the refracted waves.

The next figure 3.21 plots the computed free surface time series on the wave gauges 1- 9 against
the experimental data using the two grids. Green color represents the numerical results obtained
using the coarser mesh and blue color the ones obtained using the refined mesh. Both cases show
the same behavior, although the results obtained with the coarser mesh are more diffusive in the
secondary waves, as expected. The arrival of the first incoming wave is correctly captured in gauges
1 and 2, as it is for the refracted and diffracted waves at the lee side of the cone, as can be seen from
gauge 3. The signal at the gauges located at the north side of the cone indicates that wave shoaling,
breaking and propagation on the shelf is accurately predicted, together with the complex nonlinear
interaction between diffracted and refracted waves.

3.8 Summary

In this chapter we presented a hybrid numerical approach for the solution of the Green-Naghdi
equations on unstructured meshes. We split the original system in a hyperbolic and an elliptic part.
For the hyperbolic part, we used a third order, in space, node centered FV scheme. We achieve
a third order reconstruction of the physical variables by means of a successive correction method
which iteratively improves derivatives computed by means of the standard Green-Gauss formula.
This approach guarantees global third order accuracy even on unstructured meshes. In order to
prevent oscillations on non smooth solutions, we used a slope limiter [188] applied for a first time
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on a node centered scheme using the derivative reconstruction via the successive correction. We
coupled the non-dispersive hyperbolic solver to a second order solver for the physical weakly
dispersive effects. We used the standard P1 FE method for this part. We ensured compatible
data representation in the two phases of the computations, since both methods evolve unknowns
associated to the mesh nodes, but with a totally different meaning.

We examined the impact of this different data representation on the theoretical accuracy, by
writing an estimate of the local truncation error for constant bathymetry, concluding that, providing
a second order accurate gradient on general meshes, the consistency of the scheme is of order
O(µh2). The importance of accounting for the meaning of the data in the FE/FV coupling has also
been confirmed by performing a convergence test.

An other conclusion of this work is related to the choice of the numerical fluxes in the hyperbolic
step. It turns out that we have to use dissipative/upwind fluxes in order to stabilize the incomplete
norm generated by the variational formulation, since we use H1 finite elements, in the elliptic step.
We provided numerical evidences to confirm this fact by studying again grid convergence.

Finally we showed that, using the third order scheme in the hyperbolic step, it allows a consistent
reduction of the error by a factor between 3 and 5.
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Figure 3.20: Solitary wave propagation over a three dimensional reef: evolution of fee surface
solution. The white area represents the region where wave breaking is detected and the NLSW
equations are solved.
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Figure 3.21: Solitary wave propagation over a three dimensional reef: computed time series of the
free surface elevation on gauges positions (green : coarse uniform mesh; blue : refined mesh; red :
experiments).



Chapter 4

Wave breaking closures for BT models

4.1 Wave breaking closures: a summary

One of the most important physical mechanisms that plays a significant role in on near-shore
dynamics is the wave breaking. For this reason is crucial to incorporate dissipation mechanisms
to the relevant wave propagation models. These equations are obtained under the hypotheses of
ideal, and most often irrotational flow, and cannot account for the transformation processes taking
place in breaking regions. In time-dependent Boussinesq-type models, such as those examined in
the previous chapters, three distinct methods, hereafter wave breaking closures, have been applied
separate or in combinations. The three main wave breaking closures are the surface roller, the eddy
viscosity approach and the hybrid model. Detailed reviews on the topic can be found in [46, 137, 99].

A wave breaking closure typically consists of two components. The first part includes the
criteria used to identify and initiate wave breaking, sometimes also determining when it ends. The
second part involves the dissipation mechanism that simulates how the energy from wave breaking
is dispersed. Based on the review by [213] onset breaking criteria can be categorized as geometric,
dynamic and kinematic. The geometric criteria encompass aspects such as wave steepness, wave
asymmetry and skewness, and wave crest-front face steepness. In phase-averaged models, breaking
criteria mainly fall within the geometric category. For instance, the critical front slope introduced by
Schaffer et al [230], or the velocity gradient limit proposed by Zelt [275] and used also by [151, 51].
Additionally, there have been proposals for combining geometric criteria, as discussed by [137] in
their numerical implementation. A similar approach of the later is used by Kennedy et al. [147]
where they replace the spatial velocity gradient by the time derivative of the free surface elevation.
Papoutselis et al. [203] have employed analogous strategies more recently. Other approaches are
based on factors like the acceleration of the free surface [46], the critical surface Froude criterion
[8], the Froude number at the wave trough position [200], or the criterion introduced by [252] that
uses the similarity between spilling breakers and moving hydraulic jumps. Considerable effort has
also been made on the kinematic criteria which are often based on the relationship between the crest
particle velocity and the wave phase speed with wave breaking occurs when the ratio of the particle
velocity over celerity is greater than one. Recently [13] proposed a different ratio for the triggering

95
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of breaking on indeterminate and deep water and [69] verified this ratio for all water depths using a
large eddy simulation/volume of fluid model [68] and a fully nonlinear potential flow solver using a
boundary element method [111, 112]. An extensive review on the criteria of wave breaking can be
found in [99].

Wave breaking has been incorporated into BT models by means of different artificial techniques.
The surface roller model, the vorticity model and the eddy viscosity model are three types of
additional momentum dissipation methods. The first attempt to simulate wave breaking using a
Lagrangian Boussinesq model, was proposed by Zelt [275] introducing a dissipation term in the
momentum equation. This term controls the dissipation of energy produced by the wave breaking
and it is governed by the value of an eddy viscosity coefficient which must be calibrated with
experimental data. Of course, different calibration is needed for different sets of equations. The
same approach has been followed from Wei and Kirby [271]. Karambas and Koutitas [131] used also
an eddy viscosity mechanism with the limitation that the formulation was not momentum preserving
and the setup prediction in the inner surf zone (in the investigation of the performance for periodic
waves) was very poor. Kennedy et al. [147] followed [275] but with extensions to provide a more
realistic description of the initiation and cessation of wave breaking resulting in a more accurate
portrayal of wave height and setup when regular waves break on planar beaches. Many researchers
through the years have used this approach , or simple modifications of this see for e.g [228, 171, 58].
Although, the eddy viscosity model is a very successful one and intensively used, we have sown in
some previous works [137, 139] that the largest disadvantage in the classical formulation [147]
is that, in some special cases, such as stationary hydraulic jumps, wave breaking initiation is not
recognized and that even modifying the inception mechanism, the amount of the viscosity obtained
is not enough for this type of breakers. Additionally, [58] showed that Kennedy et al.’s eddy
viscosity breaking model could hardly predict simultaneously accurate wave height and asymmetry
along the surf zone. An other criticisms to this approach is that, while simple, no direct physical
meaning can be attributed to the scaling coefficients involved in the definition of the viscosity [58].
For this reason we have looked at an extended approach involving partial differential equations to
describe the key physical quantities like the turbulent kinetic energy, the energy dissipation, eddy
viscosity, and so on. We will delve into this in the next section. More precisely, in this approach,
the definition of the eddy viscosity involves its computation over the breaking event by solving the
turbulent kinetic energy equation (TKE) after the breaking onset. This approach has been introduced
by Nwogu [199] and followed by many others [83, 277, 67, 223, 106, 145]. Very recently it has also
been used by [99] in order to improve Kennedy’s [147] model. Last but not least, very recently a
new fully non linear model, for coast waves, capable of describing also breaking has been derived
by [134]. The model’s variables are the fluid depth, the average velocity and the enstrophy, which
includes the large-scale turbulence effects. Breaking is detected when a sudden increase of enstropy
occurs and it is the impact of the enstrophy that is handling the dissipation due to breaking. There
is no additional dissipation source in the model.

A more relevant physical definition of the effects of breaking on the large scale flow has been
attempted using the so-called roller models see for example [241, 238, 180, 58, 246]. While
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based on a better physical background, these models still require some ad-hoc definition of a
momentum dissipation, and require some calibration [192]. A more advanced version of these roller
models has been proposed in [33], and more recently extended in [261]. These models attempt
at accounting for variations along the depth of some of the physical quantities (eddy viscosity,
horizontal velocity), thus going beyond the irrotational hypothesis when computing the vorticity
and/or dissipation generated in breaking regions. While promising in principle, these models are
more complex to implement, require an additional vertical discretization, and have so far been
applied only to simple configurations.

An other option and possibly the most used in this time [252, 137, 234, 97, 138, 159, 46] is
the hybrid wave breaking closure approach. It is based on the local coupling of the dispersive
propagation model with the nonlinear shallow water equations. The rational behind this is that the
energy dissipation of broken waves are well characterized by the shocks produced by the NSWE
[38, 26] while the rest of the flow can accurately be described by dispersive equations. It is a
simple method in which one first detects breaking regions, and in these the dispersive terms are
suppressed. In these breaking regions thus one solves the non-linear shallow water (NSW) equations
which allow to model a breaker as a shock. Through this discontinuity mass and momentum are
conserved, while total energy is dissipated, thus modelling the energy dissipation due to breaking.
The idea was first introduced in [252] in order to exploit the Finite Volume (FV) technique as to
simulate discontinuous phenomena such as wave breaking and run-up. As pointed out in some
works like [252, 234, 97], this approach has a major limitation in the stability of the coupling which
introduces spurious oscillations at the interface between the breaking and non-breaking region. This
phenomenon has been observed by many [77, 152] but is unfortunately poorly documented in the
literature. Recently we tried to formulate the problem and reveal its sensitivity to mesh refining
[145]. The problem described falls within a broader category of research involving the coupling
of dispersive and non-dispersive models. This area of study is indeed quite active and has gained
significant attention in recent years [102, 160, 207].

Going back to the hybrid wave breaking closure, one of the issues not fully addressed is the
role of numerical dissipation in curing the flow of oscillations. Some researchers advocate for the
use of more robust limiting procedures, as demonstrated by [103] and [77], to stabilize numerical
solutions. For instance, Duran [77] proposes degrading the accuracy of numerical discretization near
the shallow water-Boussinesq interface. This adjustment effectively increases numerical dissipation,
thereby mitigating numerical perturbations on relatively coarse meshes. However, the sensitivity of
this closure to grid size remains uncertain.

To demonstrate this point we consider the following motivational example involving the shoaling
and breaking of a solitary wave on a slope. This example is part of a set of very classical benchmarks
by [242]. Here, we present results for a breaking case (wave nonlinearity equal to 0.28), in which we
set manually the transition region according to its known position from the experiments. Compared
to actual simulations with the hybrid method, note that this eliminates one of the causes of instability:
the intermittency of the detection. We then perform simulations degrading the numerical scheme
at the interface between the Boussinesq and shallow water regions, and in all the shallow water
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region. In these areas we use the most non-oscillatory and robust possible choice: the first order
upwind finite volume method.We consider in 4.1 results in two very close time instants, on three
meshes. The red line shows the detection flag separating the Boussinesq and shallow water regions
(one indicates the breaking region, and zero the Boussinesq region). The figures show that: no
instabilities whatsoever are observed in the largest gradient region (which will become the bore).
An oscillation is instead triggered at the interface, and its blow up is almost instantaneous on the
finest mesh, despite the fact that the most dissipative approach available has been used.

Figure 4.1: Solitary wave breaking on a slope: hybrid treatment with order reduction at the coupling
interface. Wave height at times t = 4.5258 s, 4.5267 s (top and bottom rows), on mesh sizes (from
left to right) ∆x = 0.01 m, 0.005 m, 0.001 m .

Grid convergence analysis for breaking cases are quite rare in literature. The only exception we
are aware of is the single computation shown in [235] in which the authors observe convergence
in time averaged quantities, but report the appearance of increasing oscillations in the point-wise
values of the solution without further notice. Clarifying these aspects is of paramount importance.
Indeed if one cannot be sure that the mesh size allows the numerical dissipation to be sufficiently
large, the initiation of the numerical instabilities may be confused with physical/dispersive effects.
A control of this flaw is of course also needed if one wishes for example to use mesh adaptation in
breaking regions.

Our work in [145] investigates the above issues for choices of propagation models and wave
breaking closures representative of classical and well known models such as BOUSS-2D [67],
FunWave [270, 235], Coulwave [171], BOSZ [226, 228],MIKE21,TUCWave [136, 137],Uhaina
[94] and others. We thus used two enhanced weakly dispersive Boussinesq models: the weakly
nonlinear model of Nwogu (used e.g. in BOUSS-2D, BOSZ, and TUCWave), and a frequency
enhanced variant of the fully nonlinear Green–Naghdi equations (with similar properties to those
used in Funwave and Coulwave). We compared the hybrid approach to an eddy viscosity model.
Note that with the eddy viscosity closure the breaking wave fronts are smoother than those obtained
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with the hybrid method which relies on the approximation of these fronts as shocks. For this reason
when using the hybrid approach one has to carefully choose the conservative form used to solve
the model, which is essential to recover the right jump conditions, and some form of limiting to
avoid the creation of additional spurious numerical oscillations in correspondence of the shock
[135, 137, 136].The original definition of an eddy viscosity model [147] has been previously shown
to have difficulties in handling steady hydraulic jumps [137]. For this reason we have chosen to use
an approach based on the solution of a partial differential equation for the turbulent kinetic energy,
similar to the one studied with BOUSS-2D [67].

The representative wave propagation models that we used, as we mentioned earlier, are the one
of Nwogu’s and the enhanced Green-Naghdi (see chapter 1 for details). The numerical treatment
of both systems, is done using an implicit treatment of the dissipative components (friction and/or
turbulent dissipation). In particular, the kernel of both models is the hyperbolic component which
rules the evolution of the water level and flux variables. Consider then non-overlapping temporal
slabs [tn, tn+1], with ∆tn+1 = tn+1 − tn. The hyperbolic evolution is performed with the two-
stages Adams Bashforth-Adams Moulton predictor-corrector method. For the models’ numerical
discretization in space, the reader can refer to chapter 3 of this document. Concerning the dispersive
terms, the Dq contribution in (1.6) is discretized using finite differences. While for the hyperbolic
component the minimization of the dispersion error requires at least a third order approximation,
this is not the case for the higher derivatives in the dispersive terms (see [269, 97] and chapter
3 for more details on this issue). Here, following our previous work [135], the second and third
order order derivatives in (1.6) are treated by means of second order central differencing. We have
to highlight that the only difference with the work described in chapter 3 is the treatment of the
friction and the turbulent dissipation (if present). They are embedded in an implicit manner, by
appropriately correcting the velocity values. The reader can refer to [145] for more information.

4.1.1 Trigger mechanism

As already stated, Boussinesq equations are unable to describe both the overturning of waves, and
the dissipation of kinetic energy originated during wave breaking.A physical closure is necessary.
Generally, this closure consists of two main steps. The first one is a trigger mechanism allowing
to localize in space and time the initiation and the termination of breaking. The second one is
a mechanism introducing a dissipation of total energy in the model. This paper focuses on two
techniques to define the second element, which are discussed in some detail in the following sections.
In both cases, the triggering of wave breaking is done following the criteria proposed in [137, 97]
which have been found simple and robust. The idea is to introduce a flagging strategy based on the
following conditions:

• the surface variation criterion: a cell is flagged if |ηt| ≥ γ
√
gH , with γ ∈ [0.3, 0.65]

depending on the type of breaker;

• the local slope angle criterion: a cell is flagged if ||∇η|| ≥ tanϕc, with critical angle ϕc ∈
[15◦, 30◦] depending on the flow configuration.
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The first criterion is usually active in correspondence of moving waves and has the advantage
of being completely local. The second criterion acts in a complementary manner, and allows
to detect stationary or slow-moving hydraulic jumps [228, 137]. Flagged cells are grouped to
form a breaking region. This region is either enlarged to account for the typical roller length,
as suggested in [137, 249], or deactivated, depending on the value of the Froude number Fr2 =

Hmax(Hmax + Hmin)/(2H2
min), defined starting from the minimum and maximum wave height in

the flagged zone. The interested reader can refer to [249, 137, 8] and references therein for mode
details regarding the implementation of these detection criteria.

4.1.2 Hybrid wave breaking model

This closure attempts to exploit the properties of hyperbolic conservation laws embedded with
an entropy inequality. For the shallow water equations, in particular, the mathematical entropy
coincides with the total energy [245, 121, 243, 244, 98, 273]. At the continuous level, while
conserved in smooth regions, entropy/total energy is dissipated in discontinuous weak solutions.
Provided that the numerical scheme introduces the correct amount of dissipation in shocks [245,
244, 98, 273], this lends itself naturally for the wave breaking closure, This approach is in itself neat
and simple. It has the limitation that the form of the dissipation is, at best, fixed by that determined
by the shallow-water Rankine-Hugoniot jump conditions. This quantity can be analytically computed
and it is given by (see e.g. [218] chapter 1.6, and [24])

Dsw = g

√
g
Hmax +Hmin

2HmaxHmin

(Hmax −Hmin)3

4
(4.1)

This is however a parameter free definition of the dissipation which has been proved to reproduce
quite well the large scale decay of the total energy in for several types of breaking waves, and
with several different underlying propagation models and relative numerical discretizations [252,
253, 235, 137, 159, 8, 95]. The implementation of this closure is somewhat trivial once the wave
detection algorithm discussed earlier has been properly set up. For the Nwogu’s equations, it boils
down to locally turning off in the whole flagged region the dispersive source Dq and Dh, in (1.5)
and (1.4) respectively. Similarly, for the GN system, the nodal values of Dq in (1.9) are set to zero
in the breaking region.

The most limiting aspect of this approach is the switch between the non-hydrostatic and the
hydrostatic equations. What has been reported by many authors in a more or less marked way, is
the difficulty of performing this switch in a stable manner. Unless coarse grids are considered, with
eventually the addition of local regularization numerical dissipation terms, several authors have
reported the appearance of strong oscillations [235, 137, 97, 78]. These artifacts tend to become
stronger and stronger as the mesh is refined. To our knowledge, there are no studies in literature
reporting fully grid converged solutions with this approach due to this problem. An exception to
this is perhaps one result reported in [235] showing some convergence (on only 3 grids) of the
time averaged wave heights and setup, even though increasing oscillations in the local profiles are
reported for the same test. This behaviour clearly poses a limitation in terms of potential for local
automatic adaptation of the mesh, and its investigation is one of the objectives of this article.
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4.1.3 Eddy viscosity closure via a PDE based TKE model

The use of an eddy viscosity model to provide the dissipation required for the breaking closure is one
of the earliest approaches [275]. The definition of this artificial viscosity is the key of this approach,
as well as the way in which it enters the Boussinesq equations. On of the most common approaches,
due to Kennedy and collaborators [147] (see also [228, 137, 139, 170] and references therein),
involves a definition of the eddy viscosity based essentially on the variation in time of the free
surface elevation. This term is then embedded in a viscous flux in the momentum equation. There
exist improved variants of this idea, allowing to embed a richer physical description of the vertical
kinematics and of the effects of turbulence (e.g. the so-called roller models). Some approaches
explicitly embed the effects of the dynamics of vorticity (roller-models) [34, 261], others include
partial differential equations for an average turbulent kinetic energy [199, 277], and other introduce
a multi-layer description embedding PDEs for a turbulent layer flowing on top and interacting with
the bulk of the wave, well representative of spilling flows [35, 173, 189, 223, 106]. Simpler methods
have attempted at improving the behaviour of the total energy dissipation by also including a water
elevation viscosity [58]. In this work, we have chosen to adopt a model of intermediate complexity
based on the solution of an additional PDE, weakly coupled to the main Boussinesq system of
equations. In particular consider the approach initially proposed by Nwogu [199] who used a
standard TKE (turbulent kinetic energy) equation coupled to he fully non-linear equations of Wei
et al. [270]. A highly non-linear Boussinesq model with the same turbulence wave breaking model
of Nwogu has been used by Elnaggar and Watanabe [82]. More recent work on the same model is
discussed in [277] where the TKE equation is manipulated to obtain a PDE for the eddy viscosity
which is coupled to a fully nonlinear fully dispersive Green-Naghdi model. Here we propose a
variant of the model proposed by Nwogu modified according to some of the definitions proposed
in [277], as well as some definition which improve the consistency of the model with the wave
breaking detection criteria we adopt.

Following [216, 277], the eddy viscosity is determined from the amount of the turbulent kinetic
energy k, produced by the wave breaking, and a turbulent length scale `t :

vt = Cν
√
k`t (4.2)

In k − L turbulence models [187, 2] (see also [277]), the constant Cν is usually set to Cν =

(0.09)1/4 ≈ 0.55 which is the value used here. We now need a model for the computation of k
and `t. Differently from the models discussed in [187, 2], here we adopt a one equation approach
in which only one PDE is solved for k, while the for `t, inspired by the definition used in [277], we
use a vertical average mixing length defined as

`t = κH

where κ is a constant controlling the width and intensity of the breaking. The length `t is expected
to be of the order of the wave height [199], so κ is a case dependent constant. Concerning turbulent
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kinetic energy, it can be shown that in three space dimensions the following transport equations
holds [216]

kt + u · ∇k = D + P − E (4.3)

withD,P , and E , diffusion, production and dissipation (or destruction) terms respectively. Definitions
and possible expressions of these quantities in terms of mean flow quantities can be found e.g. in the
book [216]. When coupling (4.3) with a depth averaged Boussinesq model, several approximations
are possible. Here we will combine some of the elements suggested in [199] and in [277] in order
to obtain a model simple to implement, to be compared to the hybrid approach. First of all, we will
assume that both k (and hence νt) and its transport dynamics are constant along the depth, so that
(4.3) can be replaced by a zero-th order approximation involving only depth averaged quantities,
namely

(Hk)t + (Huk)x = HD +HP +HE . (4.4)

For the definition of the terms on the right hand side of (4.4) we have followed [199]. In particular,
we have for the diffusion and destruction terms

HD = Hσνtkxx , HE = −HCD
k3/2

`t
(4.5)

where, following [199, 277], we have setCD = C3
ν . The constant σ allows to control the smoothness

of the TKE, and hence of the breaking viscosity, in the breaking region. Concerning the production
term, the model used is again the one suggested in [199] assuming this quantity to depend on the
vertical gradient of the velocity at the free surface. Following the notation of (4.3), and denoting the
velocity at the free surface by us = u(t, x, y, z = η), we have

HP = HB(t, x)µP usz · usz

As in [199], the turbulent viscosity µP appearing in the production term is defined based on a mixing
length hypothesis assuming a balance between production and dissipation, namely

µP =
`2
t√
CD

√
usz · usz

so that we end with

HP = HB(t, x)
`2
t√
CD

(usz · usz)3/2. (4.6)

In [199] the parameter B is equal to 0 or 1 depending on a wave breaking criterion. In the reference
the criterion used is based on the ratio between the free surface velocity and the wave celerity being
larger than one. Here, for simplicity B is set to one in the breaking regions detected exactly as
discussed in the beginning of section §4.1. This also allows to detect wave breaking in the same
way for the TKE and hybrid approach. Having fixed the values of Cν and CD, the only “tunable”
parameters are κ and σ.
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Lastly, we need to be able to evaluate the depth averaged and free surface velocities for both
Boussinesq models, as well as the value of the vertical gradient of the velocity at the free surface.
For this we use the vertical asymptotic development underlying the two models. In the weakly
nonlinear case, this development can be used to write the following relations [198, 157]

u(z) = ua −
(z2

2
− d2

6

)
uaxx − (z +

d

2
)(dua)xx

giving the free surface vertical gradient

usz = −ηuaxx − (dua)xx. (4.7)

and the depth averaged (within the asymptotic accuracy) velocity required for the transport term in
(4.4)

u = ua +
((za)2

2
− d2

6

)
uaxx + (za +

d

2
)(dua)xx (4.8)

The GN equations directly provide a value of the depth averaged speed, while the fully nonlinear
asymptotic development allows to write

u(z) = u−
[z2

2
−
(H2

6
− H(H − d)

2

)]
uxx −

[
z −

(H
2
− d
)]

(du)xx

which yields a similar expression for the vertical gradient of the free surface velocity, this time in
function of the depth averaged velocity u:

usz = −ηuxx − (du)xx. (4.9)

The fully discrete distribution of the nodal values of the TKE is obtained by integrating equation
(4.4) with a semi implicit approach. Before the predictor step (2.33) is applied to the Boussinesq
models, the nodal TKEs are evolved by first applying an explicit Euler update involving a third order
MUSCL upwind discretisation of the transport operator (Huk)x, essentially the same presented in
section chapter 1 for the shallow water equations. To avoid spurious negative values in this phase,
the min-mod limiter is applied [157]. The predicted values k∗i are then corrected by means of
diagonally semi-implicit relaxation iterations similar to those used for the breaking dissipation and
reading (

∆x

∆t
+

2σvnt,i
∆x

)
(km+1
i − kmi ) = ∆x

kmi − k∗i
∆t

+ σvnt,i
kmi+1 − 2kmi + kmi−1

∆x

+

(
B`2

t,i√
CD

(usz)
3/2
i

)n
− CD

(
k

3/2
i

`t,i

)n

with an initial condition, k0 = k∗. For the benchmarks discussed in this chapter, 4 or 5 relaxation
iterations are used unless otherwise stated. Where necessary, depth averaged velocity (for the
Nwogu model) and velocity gradient at the free surface (for both Boussinesq models) are obtained
by a second order central finite difference approximation of (4.8), (4.7), and (4.9).

As a final note, we will keep in the following the notation TKE when referring to this closure, as
this eddy viscosity method clearly relies on the solution of the PDE for the turbulent kinetic energy.
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4.2 Discussion on the dissipation mechanisms

One of the key aspects concerning the numerical modelling of wave breaking is the notion of
dissipation. As discussed in the introduction, the mechanisms related to the transformation of
potential energy into mechanical energy, and its subsequent dissipation, are not embedded in Boussinesq
models that we study which stem from a potential description of the flow. The role of the closure
model is thus to mimic these mechanisms. Clearly the main interest in the closure is to be able to
predict correctly the dynamics of wave heights and (in the multidimensional case) currents. It is
however interesting to understand what is the underlying dissipation mechanism active during the
numerical breaking process. The main question we want to contribute to answer to in this paper is
how much the numerical method is involved in this process, and if it is at all. We provide here a short
discussion of this aspect, and suggest quantities which we will use in the numerical applications to
quantify the contributions to the breaking process of the numerics, as well as of the PDE model
itself.A proper formulation of this analysis requires a formal definition of what is the energy to be
dissipated for the propagation models under consideration. This has to be done at the continuous
level, but of course we must be able to provide an appropriate discrete translation of this energy
conservation/dissipation statement.

When looking at the discrete models, even for the GN equations it is still a matter of research
how to devise a numerical method with a clear associated discrete energy conservation statement.For
hyperbolic systems, including the shallow water equations, there is a clear and well established
theory now allowing to construct methods which are exactly entropy-conservative or entropy stable
see [145] and references therein. Unfortunately, the construction of exactly energy preserving
schemes for dispersive equations is still a subject of research citations.

In order to be able to provide some quantitative information on the sources of dissipation, we
had to make some choices, and some hypotheses. We start by recasting our PDE models as the
shallow water system plus a dispersive source

∂tU + ∂xF(U)− Sb − Sf −Rwb = DDD

This is a form similar to (1.1), except that in the above equation the left hand side only contains
the shallow water terms and the eddy viscosity model Rwb, if present. All the dispersive terms are
included in DDD. We then look at the contributions to the balance of the shallow water total energy,
whose time variation can be expressed as (see e.g. [243, 245, 244])

∂tE = Vt∂tU = −Vt(∂xF(U)− Sb − Sf −Rwb −DDD)

with E = H(gH + u2)/2 + gHb, and having denoted by Vt the transpose of the array of the so-
called energy (or entropy, or symmetrizing) variables Vt = [gη − u2/2, u]. For both numerical
models tested, we can easily provide a nodal discrete analog of the last expression which, using the
notation of (2.16), reads

∂tEi = Vt
i∂tUi = −Vt

i

(
−LSWi − Sf i −Rwb i −DDDi

)
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Neglecting the boundary conditions (or assuming periodic or null the boundary fluxes), the total
variation of the shallow water energy can be deduced using the explicit form LSWi and of the central
and upwind contributions in the bathymetry terms [20, 135, 79, 43, 6]. The final result can be recast
as ∑

i≥1

∆x ∂tEi =
∑
i≥1

∆xVt
i∂tUi =

∑
i≥1

∆FEi −Dupwind −Dfriction −Dvis + ∆EDDD .

We can now try to say more on the terms on the right hand side. It seems quite reasonable to assume
that wave breaking is not associated to the dispersive contributions. This means that we will leave
out of the analysis the contributions of the dispersive source ∆EDDD =

∑
i V

t
iDDDi. Another term which

in principle one would expect not to contribute to the analysis, is the centered part of the flux which
enters the above expression via the terms

∆FEi = −Vt
i

(
FC
i+1/2 − FC

i+1/2 +
gHi+1/2

2
∆i+1/2[0, b]t +

gHi−1/2

2
∆i−1/2[0, b]t

)
.

This is where the analysis provided in e.g. [244, 98] is most useful. Without going into much detail,
the references provide a very simple rule to define the centered flux for which one can show that
∆FEi = Hi+1/2 − Hi−1/2, with Hi±1/2 consistent numerical approximations of the total energy
flux. This algebraic relation leads to the conclusion

∑
i≥1 ∆FEi = 0 exactly, whether the solution

is continuous or not. This means that, even if slightly different implementations of the central flux
are used, this quantity is in principle not relevant for our analysis.

This leaves three quantities to be monitored, associated to the numerical (upwind) dissipation

Dupwind =
∑
i≥1

{
∆Vt

i+1/2

(
1

2
|A|i+1/2∆i+1/2U +

gHi+1/2

2
sign(A)i+1/2∆i+1/2[0, b]t

)}
,

and to the friction and wave breaking (eddy viscosity) model

Dfriction =
∑
i≥1

gHi Sfi u
2
i and Dvis =

∑
i≥1

νt,i+1/2Hi+1/2

(
∆i+1/2u

)2
.

Note that with the spatial discretization choices made both Dfriction and Dvis are clearly positive
definite. The same cannot be said a-priori about the upwind dissipation Dupwind. To be sure of the
positivity of this term, indeed one should have implemented the dissipation in terms of variations
of the entropy variables [244, 98, 273], instead of using in the numerical flux variations at cell
interfaces of the conservative variables, as done in standard implementations of the upwind flux.
Furthermore, this term involves both the reconstruction and the limiter, the latter only in the shallow
water regions associated to wave breaking when using the hybrid approach of section §4.1. This
makes it a perfect candidate to monitor the impact of the numerical choices and their contribution
to the wave breaking process, and when possible compare these contributions to those of the eddy
viscosity and friction terms. This analysis has been performed for three of the benchmarks proposed,
involving both periodic and non periodic waves, dry areas, as well as pure propagating bores. Note
that in practice the above expressions have to be evaluated in post-processing, by saving the different
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terms evaluated during the computations. The time stepping of course also plays a role in this
analysis. The interested reader can refer to [245] for a discussion on this. To minimize these effects,
while keeping as much as possible of the actual terms computed in the code and used to obtain the
numerical solutions, in all the cases presented we have used tn+1/2 half time-step evaluations of
these terms by averaging values at tn and tn+1.

4.3 Numerical results

4.3.1 Wave breaking over a bar

This test case of Beji and Battjes [14] examines the sinusoidal wave propagation over a submerged
bar. The scope of this test case is to investigate the frequency dispersion characteristic and non-
linear interaction of complex wave propagation phenomena. A sketch of the problem is provided
in figure 4.2. The computational domain is x ∈ [0, 35m], with sponge layers placed at both ends.
Periodic waves were generated at x = 10m over a mean water depth of 0.4m. Wave height and
period are set to a = 0.054m, and T = 2.5s, corresponding to a dispersion parameter kh ≈ 0.52.
Waves propagate over submerged trapezoidal bar with a toe at x = 15m, a front slope of 1 : 20, a
2m long plateau of 0.3m height, and a lee slope of 1 : 10. More informations on the experiment can
be found in [14] and in the references using this test case for model validation [97, 137, 153, 249].

Figure 4.2: Wave breaking over a bar: problem sketch, and position of the gauges

Concerning the model parameters, for this highly unsteady problem the surface variation detection
parameter γ (cf. section §4) is the one more sensitive to the onset of breaking. For the computations
performed here we have set γ = 0.3 . The parameters used for the TKE are not the same for the two
Boussinesq propagation models. In particular, we have set κGN = 2.8 and σGN = 1.2 for the GN
equations, while κN = 3.2 and σN = 1.2 for the Nwogu system.

Experimental data are available in several wave gauges placed before, on top, and after the
bar. Here we focus on three gauges (cf. figure 4.2) placed before the toe of the bar, gauge 1 at
x = 16m, on top of the plateau, gauge 3 at x = 23m, and on the lee slope, gauge 5 at x = 26m.
We will discuss numerical results obtained on three different meshes of size 4cm, 2cm, and 1cm.
For the Nwogu model, we could not run the hybrid breaking simulations on the last mesh due to
instabilities at the Boussinesq-shallow water interface. Similarly, when using the hybrid approach
we could not go below ∆x = 1cm when using the GN model for propagation. Note also that the
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results discussed here are those obtained after a transient of 36 seconds, differently from what is
done e.g. in [97, 137], where the four first waves are analyzed. The results are presented in figures
4.3, 4.5 and 4.6, for gauges 1,3, and 5, respectively.

Figure 4.3 allows to visualize the behaviour of the models at the toe of the bar, right at the end
of the wave propagation region. This gauge allows to highlight the initial asymmetry of the waves,
essentially due to the interaction with the submerged bar. Some preliminary observations can be
made. Firstly, the fully nonlinear model (left column) seems to capture better the shape of the
waves, the weakly nonlinear one providing a signal which is slightly too peaky. Secondly, we see
already at this stage that while the TKE model (blue curves) shows little sensitivity to the mesh size,
the signals obtained with the hybrid approach (green curves) depend strongly on this parameter. We
can clearly see on the intermediate and fine mesh (in the GN case) higher frequency components
absent in the TKE results. These components are generated in correspondence of the boundary of
the wave breaking region, as it can be clearly seen in the snapshots of figure 4.4. These instabilities
become stronger as the mesh is refined, and may ultimately lead to the blow up of the solution, as it
is the case for the Nwogu model on the fines mesh, and of the GN model on finer meshes.

Figure 4.3: Time series of surface elevation at wave gauge 1 for the GN (left) and Nwogu (right)
models using the TKE (blue) and Hybrid (green) wave breaking closure. Mesh size is 0.04, 0.02,
0.01m from top to bottom.
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Figure 4.4: Snapshots of the flow for the GN (left) and Nwogu (right models) using the TKE (blue)
and Hybrid (green) wave breaking closure. Mesh size is 0.02m

Figure 4.5: Time series of surface elevation at wave gauge 3 for the GN (left) and Nwogu (right)
models using the TKE (blue) and Hybrid (green) wave breaking closure. Mesh size is 0.04, 0.02,
0.01m from top to bottom.

Figures 4.5 and 4.6 confirm the preliminary observations made for the first gauge. In particular
we can clearly see the strong dependence of the results of the hybrid model on the mesh size. For
this approach we can also see how the breaking waves are represented as very sharp fronts. For
the GN model, on the coarse mesh breaking stops early enough for the signal in these two gauges
to be smooth. This however leads to a noticeable phase lag. As the mesh is refined, the waves
break more strongly. This leads clearly to an improvement on the phase. This behaviour curiously
is not observed for the Nwogu model which shows strong and sharp breaking fronts already on the
coarsest mesh level, with a correct phase. This allows to highlight the need of tailoring the choice
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of the breaking detection criterion to the propagation model. Here the same parameters have been
used for both. Nevertheless, both set of results allow to visually see the appearance of spurious
higher frequencies in the signal. These are the result of the coupling between the dispersive and
non-dispersive regions. For the weakly non-linear model (right column) we can see the inception
of the instability already on the medium resolution used here in figure 4.6. This is less evident for
the GN model, which still provides numerical solutions on the finer level used. We where however
unable to refine once more the mesh without solution blow up.

The TKE approach is clearly less sensitive, at least for this test, to both the choice of the model
parametrization, and the mesh size. This is summarized in figure 4.7, showing a grid convergence for
the gauge 3. We also would like to remark that, for Nwogu’s equations and for plunging breakers,
Demirbliek and Nwogu in [66] resorted to a more complex TKE closure with a PDE for the B
coefficient in the production term (4.6). We found out that the simplified formulation adopted here,
combined with the physical criteria for the initiation and termination of the process discussed in the
beginning of section §4 can simulate reasonably well plunging wave breakers.

Figure 4.6: Time series of surface elevation at wave gauge 5 for the GN (left) and Nwogu (right)
models using the TKE (blue) and Hybrid (green) wave breaking closure. Mesh size is 0.04, 0.02,
0.01m from top to bottom.
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Figure 4.7: Time series of surface elevation at wave gauge 3: grid convergence for the GN (left) and
Nwogu (right) models using the TKE (up) and Hybrid (down) wave breaking closure. Mesh size:
0.04m (blue), 0.02m (green), 0.01m (cyan).

Dissipation mechanisms

We report in figures 4.8 and 4.9 the time evolution of the dissipation terms active for this test:
Dupwind (in blue) and Dvis (in green). The flow is periodic so we focused on 5 periods from time
12s to time 14s. The results show the dissipation flashing when the tallest wave approaches the
bar, and then reducing as the breaking process continues on top of the bar. Also, the inception of
breaking for the Nwogu model has a phase advance of about one second which can be explained
by the over-shoaling characteristics of this model [95, 110]. The results for the GN model, figure
4.8, allow the following remarks. The role of numerical dissipation Dupwind when using the eddy
viscosity closure (left column) is extremely small. This term definitely does not contribute at all to
the breaking process. On the second mesh, its values approach machine zero. On the contrary, in
the case of the hybrid closure, Dupwind is doing all the job. We can also see that the on the coarser
mesh the area under the dissipation bells is larger, which means that the overall contribution in time
to the energy dissipation is more important. When using the model of Nwogu, figures 4.9, we can
see again, from the left column, that the numerical dissipation plays no role in the breaking process,
and it quickly reaches very low values. The right column allows to visualize the inception of the
numerical instabilities (top figure) and their blow up (bottom figure). Note that for the finer meshes
used in figure 8 the behaviour observed for the GN and in general for the TKE closure are the same.
Also, we stress once more that further halving the mesh size was not possible for the GN. The finest
computation we could perform until the final time is for ∆x = 0.008.

The behaviour observed allows to clearly demonstrate that the numerical dissipation has no
impact on the computations performed with the TKE closure. This means that with this closure one
could (or should) in principle use a non-dissipative numerical method to discretize the PDEs. The
results, at least those for the GN equations, also show that the overall numerical dissipation when
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using the hybrid approach is larger on coarser meshes.

Figure 4.8: Energy dissipation profile for GN model using the TKE (left) and the Hybrid (right)
closures for ∆x = 0.04 (top) and ∆x = 0.02 (bottom)

Figure 4.9: Energy dissipation profile for Nwogu model using the TKE (left) and the Hybrid (right)
closures for ∆x = 0.04 (top) and ∆x = 0.02 (bottom)

4.3.2 Solitary waves breaking on a slope

One of the most intensively studied problems in long wave modelling is the solitary wave run-up on
a plane beach, see for example [242, 80, 137, 253, 275, 226, 56] among others. In this test case we
want to study propagation, breaking and run-up of a solitary wave over a planar beach with a slope
1 : 19.85. With this famous test case we asses the ability of our model to describe shoreline motions
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and wave breaking when it occurs. The incident wave height considered in this case is A/d = 0.28

with d = 1, so according to Synolakis [242] the wave breaks strongly both in the run-up and in the
rundown phase of the motion. The GN and Nwogu’s equations are tested and compared, using for
each one the turbulent kinetic energy wave breaking model and the hybrid wave breaking model.
The same holds for all the test cases that follows.

The computation domain is of 120m, where x ∈ [−20, 100]. The CFL used is 0.3 and sponge
layer was applied off-shore with length Ls = 5m. A Manning coefficient of nm = 0.01 was used
to define the glass surface roughness used in the experiments. As before, computations have been
run on three different meshes with size ∆x = [0.025, 0.0125, 0 .0063m]. The parameters of the
wave breaking criteria used in this test case are γ = 0.6 and φc = 30o for both models. To properly
capture the hydraulic jump generated at during backwash, the TKE parameters depend here both
on the propagation model and on the type of breaking criterion satisfied. In particular, for unsteady
waves the surface time variation criterion is the one activated. In this case we use κGN = 0.75,
σGN = 0.9 for the GN model and κN = 0.8, σN = 1.5 for Nwogu’s model. If the slope criterion
is activated, we use instead higher values , namely we set κGN = 1.5, σGN = 15.5 and κN = 1.5,
σN = 1.5.

Figure 4.10 compares the numerical surface profiles for the GN equations and the experimental
measurements. The same is plotted for Nwogu’s equations in figure 4.11. The numerical solution
was obtained using ∆x = 0.05m. As expected, both mathematical models produced similar
behaviour. Until time t

√
g/h = 10 the solitary propagates to the shore and the two wave breaking

models produce, as expected, identical results since wave breaking hasn’t started yet. As expected
the Nwogu’s model gives a wave which overshoals and breaks slightly earlier compared to the
one produced by the GN equations. The experimental wave breaks around t

√
g/h = 20. The

numerical solution for the hybrid model is represented like a bore storing the water spilled from the
breaking wave behind the front. At time t

√
g/h = 20 the turbulence model represents the solution

as a triangular bore considerably closer to the experimental data than the hybrid one. Similar
behaviour has been observed by other researchers that used eddy viscosity models [147, 226, 275].
At time t

√
g/h = 25 the bore collapses at the shore, and both approaches show good qualitative

agreement with the data. After that the wave starts to run-up, with a maximum run-up occurring
at t
√
g/h = 45. As the water recedes, a breaking wave is created near the still water level. The

numerical solution is approximated as a hydraulic jump for both numerical models. It is fully
resolved using both breaking models, since the breaking criterion recognizes the hydraulic jump
and the NSW equations are used for the hybrid model while the proper amount of viscosity is added
by the turbulent kinetic energy model.

Figures 4.12 and 4.13 show the numerical results for both breaking phases (at time t
√
g/h = 20

and t
√
g/h = 60 respectively) while refining the mesh. Up to the authors knowledge it is the first

time that such a study is performed for a (quasi-)steady hydraulic jump for an eddy viscosity type
model. The first set of figures depict the breaking of the wave which travels on-shore for both GN
(left column) and Nwogus equations (right column). We can clearly see the oscillatory nature of
the hybrid wave breaking mechanism. The profiles obtained indicate some sort of convergence of
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Figure 4.10: Free surface elevation of solitary wave run-up on a plane beach for the GN model.

the mean. However this is completely spoiled by the oscillations produced due to the switching
between the two sets of equations. On the contrary the turbulent kinetic energy wave breaking
mechanism remains stable and gives a convergent solution for both sets of equations . The second
set of figures plot the same for the hydraulic jump formed at backwash. The difference between the
two approaches is more accentuated here. It is quite hard to see a convergence for the hybrid results,
while this is clearly the case for the TKE ones. We must mention that the GN equations combined
with the hybrid model is blowing up after t

√
g/h = 60 for ∆x = 0.0063, while Nwogu’s equations

are more sensitive to the hybrid formulation since numerical solution is obtained only for the fist
two meshes.

We have repeated this test for a more non-linear initial wave with ε = 0.5, on the mesh with
∆x = 0.025m. The results obtained at incipient breaking before the runup and during backwash are
reported on figure 4.14. As before the hybrid mechanism produces oscillations, in both breakers,
and it is very unstable for Nwogu model. Oscillations are clearly visible for the GN results with the
hybrid breaking. Smooth capturing of the breakers is obtained also in this case with the TKE model.
Figures 4.15 and 4.16 show again, the numerical results for both breaking phases while refining the
meshes for the turbulent kinetic energy mechanism. The Hybrid closure is not converging since the
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Figure 4.11: Free surface elevation of solitary wave run-up on a plane beach for Nwogu’s model.

oscillatory nature of the mechanism is more pronounced in this case.

Dissipation mechanisms

For both cases we now look at the contributions to the dissipation of energy. In this case, all
three sources of dissipation are active: numerical dissipation Dupwind, dissipation due to friction
Dfriction, and the dissipation due to the eddy viscosity Dvis when using the TKE closure. Let
us first focus on the results for a nonlinearity of 0.28 reported in figures 4.17- 4.18 for the GN
and Nwogu models. The results with the Nwogu model are on coarser meshes to allow some
comparison on the behaviour of the hybrid closure on different meshes. The figures allow to see
the dynamics of dissipation associated to the different phases of the flow. The fist breaking of the
incoming wave is seen in all figures around time 5s, with the Nwogu model again showing earlier
breaking certainly due to its over-shoaling characteristics. As the wave reaches higher bathymetries
and the runup process starts, the friction takes over and dominates the flow, with no or very little
contributions form the other terms. Dissipation is reduced to zero at the end of the runup, and if
increases again during backwash, with again the friction dominating, and the other terms providing
again non negligible contributions around time 17s− 20s when the hydraulic jump is formed. Note
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Figure 4.12: Breaking bore on different meshes for the GN (left) and Nwogu’s (right) models, using
the TKE (up) and the hybrid (down) wave breaking closure.

that these contributions arise from integrals in space. So the plot may lead to confusion as to which
mechanism allows to capture the hydraulic jump. Indeed, the friction contributions are localized
in the region very close to the wet/dry interface, and they would not allow to capture the hydraulic
jump.

Looking at the behaviour of the different terms on the meshes considered, we can remark again
that when using the TKE closure the numerical dissipation Dupwind is not contributing, or providing
very small contributions, throughout the flow. In he case of the hybrid closure, we can again see
that it is indeed Dupwind that provides dissipation during breaking. We can also see from figure
4.17 that this contribution is slightly larger on the coarser mesh, even though is is less clear that in
the previous case. The oscillations observed during backwash in both the viscous contribution and
numerical dissipation are associated to the intermittency of the breaking detection criterion. which
is certainly something to be improved in the future. Finally, we remark that the behaviour for finer
meshes is exactly the same, and that the finest meshes on which we managed to run this case until
the final time with the hybrid closure are those mentioned earlier, namely ∆x = 0.0063m for the
GN model, and ∆x = 0.025 for the Nwogu model.

We perform the same analysis for the case with a nonlinearity of 0.5. The results are reported
on figures 4.19- 4.20. As mentioned already, in this case we could only run the Nwogu model with
hybrid closure on the coarsest resolution of ∆x = 0.1m. The dynamics observed in the figures are
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Figure 4.13: Hydraulic jump on different meshes for the GN (left) and Nwogu’s (right) models,
using the TKE (up) and the hybrid (down) wave breaking closure.

very similar to those of the previous case. Of course in this case the first breaking occurs earlier
(around 2s) with the Nwogu model again providing an earlier breaking. We can again again see
the friction dissipation taking over during the runup process, then decreasing, and increasing again
during backwash. As before, breaking is re-activated to capture the hydraulic jump forming during
backwash. We can again remark that when using the TKE closure the numerical dissipation is
not contributing to the process, which is dominated by the terms embedded in the PDE. On the
contrary, it is the numerical dissipation term that rules the dynamics of breaking. We can also see
quite clearly that a considerable reduction of this contribution is obtained with mesh refinement.
Again, the contributions of Dvis and of Dupwind are quite oscilaltory during the backwash, and this
is related to the intermittency of the detection mechanism. The meshes shown here are the finest we
could run this case on until the final time with the hybrid closure.

As for the previous case, this analysis shows that when using the eddy viscosity closure the
numerical dissipation plays very little or no role. This is motivation to look for non-dissipative/energy
conserving schemes in this context. The mesh size seems to have an impact on the magnitude of the
overall dissipation introduced during breaking. Finer meshes providing overall less dissipation. The
TKE closure is very little sensitive to the mesh. This analysis also shows a very interesting interplay
between the breaking and fiction dynamics.
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Figure 4.14: Breaking in the run-up (up) and the run-down (down) phase for GN (left) and Nwogu’s
equations (right) for ε = 0.5,using the TKE (blue) and the hybrid (green) wave breaking closure.
Mesh size is 0.025m.

Figure 4.15: Breaking bore on different meshes for the GN (left) and Nwogu’s (right) models for
ε = 0.5, using the TKE wave breaking closure. Mesh size is 0.025m.

4.3.3 Bore propagation and dissipation in function of the Froude number

We consider in this test case the propagation of a breaking bore over a flat bottom. We have chosen
this benchmark as its simple setting allows to perform some quantitative comparison between the
discrete energy dissipation terms analyzed in the paper, and the exact theoretical shallow water
dissipation, equation (4.1), for different values of the Froude number. The test is defined by an
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Figure 4.16: Hydraulic jump on different meshes for the GN (left) and Nwogu’s (right) models for
ε = 0.5, using the TKE wave breaking closure. Mesh size is 0.025m.

Figure 4.17: Energy dissipation profile for GN model using the TKE (left) and the Hybrid (right)
closures on three different meshes: ∆x = 0.025, 0.0125m from top to bottom. The nonlinearity of
the wave is 0.28.

initial step which transforms to a bore. The initial solution is defined byh(x, 0) = 1
2
(db − da)(1− tanh x

a
) + da

u(x, 0) = 1
2
(ub − ua)(1− tanh x

a
) + ua,

(4.10)

where da and db are the water depth in front and behind the bore, ua and ub the corresponding depth-
averaged velocities. In our case ua = 0, da = 1m and a = 2m. For each Froude number (Fr), ub
and db are computed, solving the mass and momentum conservation conditions across the bore. For
Fr > 1.4 the initial step evolves into a breaking bore. More informations on the test case can be
found in [249] and references therein.

The computational domain used is x ∈ [−150, 150] m, CFL = 0.2 and ∆x = 0.1 m.
For this type of wave the parameter most sensitive to the onset of breaking is the time derivative
of the elevation γ, which we have set here to γ = 0.4. For the turbulence model we have used
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Figure 4.18: Energy dissipation profile for Nwogu model using the TKE (left) and the Hybrid (right)
closures on three different meshes: ∆x = 0.05, 0.025m from top to bottom. The nonlinearity of the
wave is 0.28.

Figure 4.19: Energy dissipation profile for GN model using the TKE (left) and the Hybrid (right)
closures on two different meshes: ∆x = 0.1, 0.05m from top to bottom. The nonlinearity of the
wave is 0.5.

κGN = κN = 1.5, σGN = σN = 0.8 for the GN and Nwogu equations respectively. Figure 4.21
shows the propagated bore at t = 0, 1, 15s for the two models for a Froude number Fr = 2. The
bore is breaking as it propagates through the channel, and a slightly different behaviour is observed
for the two breaking closures. Hybrid breaking provides a travelling shock, for both propagation
models, while the turbulent closure presents a more diffusive behaviour, with a small overshoot
before the bore for the GN model.
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Figure 4.20: Energy dissipation profile for Nwogu model using the TKE (left) and the Hybrid (right)
closures on three different meshes: ∆x = 0.1, 0.05m from top to bottom.The nonlinearity of the
wave is 0.5.

The terms related to the upwind dissipation and to eddy viscosity evolve during the transformation
of the solution into a bore, as shown on figure 4.21, and quickly converge to a steady (in time) value,
which is plotted in figures 4.22 and 4.23 against the shallow water dissipation (4.1), for different
Froude numbers and on different meshes. Note that in this case, the wave breaking interface is
located in correspondence of a constant solution region. This makes this case easier compared
to the previous ones. This also reduces a lot the impact of mesh size on the final value of the
dissipation, essentially dictated by the jump in water height. Nevertheless, exactly as the previous
cases with the hybrid approach the initial development of the solution shows instabilities, for meshes
finer that those reported in the figures, solution blow up. For the GN model, and for the range of
Froude numbers tested, the TKE dissipation is within 10-15% of the value predicted by (4.1), while
the upwind terms basically provide a negligible contribution. Conversely, these terms are, when
using the hybrid approach, within 6% of (4.1). As in the previous tests, this allows to demonstrate
that the numerical dissipation does not contribute to the dynamics of wave breaking when using
the TKE eddy viscosity closure. It also shows that the particular choice of eddy viscosity we
performed allows to reproduce with some accuracy the behaviour with Froude number predicted
by the classical formula (4.1). Similar conclusions can be drawn for the Nwogu model by looking
at figure 4.23.

4.3.4 Wave height and setup prediction

The analysis of [24] shows that wave setup is very sensitive to the dissipation mechanism in wave
breaking. So this is an interesting parameter to study for our purposes. To investigate this aspect
we consider two of the experiments performed by Hansen and Svendsen [120]. These experimental
studies consider several different regular waves shoaling and breaking on a sloping beach. Many
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Figure 4.21: Free surface profiles at t = 0, 1, 15s of hydraulic bores with Fr = 2.0. Left: GN
model. Right: Nwogu model.
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Figure 4.22: Energy dissipation profile for GN model using turbulent closure (left) and hybrid
closure (right).
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Figure 4.23: Energy dissipation profile for Nwogu model using turbulent closure (left) and hybrid
closure (right).

authors have used these tests to validate their models and the associated breaking closures [147,
253, 137, 235, 58].

We consider here two cases, one involving a spilling breaker, the second involving a plunging
breaker. Regular waves are generated over a 0.36 m horizontal bottom, propagated shoaled and
broke over a slope of 1 : 32.26. In the spilling breaking case (test number 05041) the regular
wave’s period T is 2.0s, and the wave’s height H is 0.036 m. The second test case (test number
03041) is a strong plunging breaking case with T = 3.33s and H = 0.043m. The tests have been
run on a 52 m long domain x ∈ [−26 26] m, discretized with cells of ∆x = 0.02 m, and with
CFL = 0.3. A sponge layer is applied offshore with length Ls = 5 m. The wave making internal
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source was placed 14.78 m offshore from the toe of the beach, and bottom friction is neglected. The
free surface elevation, recorded at wave gauges which placed every 0.1 m., is analysed to compute
the mean wave height, and the position of the mean water level (MWL). The value of γ in the
surface variation criterion equals to 0.5 for both models. Concerning the wave breaking closures,
we have set κGN = 0.8, σGN = 0.05 and κN = 0.8, σN = 0.4, for the two GN and Nwogu models
respectively.

Figure 4.24: Computed and measured wave heights (left) and set-up (right) using two different
equations. Test number 05041 (spilling breaking). Top: GN equations. Bottom: Nwogu equations.
Blue line- TKE closure, green line- Hybrid closure.

The numerical results obtained for the two cases considered are reported on figures 4.24 and
4.25, in terms of wave height (left) and mean water level (right). As before, the blue lines in the
figures refer to the TKE results, while the green ones to the hybrid wave breaking, and the top row
report the computations of the GN model, while the bottom ones the results of the Nwogu equations.

For the spilling case, figure 4.24 seems to indicate that in all cases the detection criterion
provides an early breaking. This of course alters the strength of the numerical breaking, which
is less intense. This translates in a wave height decrease slower than the experimental one. Even so,
the computations compare reasonably well with the experiments, especially when compared with
results in the published literature [147, 253, 137, 235, 58]. This is confirmed by the mean water
level plots. Although we can clearly observe the early start of setup, due to the early breaking, the
slopes of the numerical signals are quite close to those of the experimental ones. According to the
analysis of [24] this shows that the amount of dissipation introduced is correct. We stress that the
differences between the TKE and hybrid approach are minor, even though we tend to consider the
results obtained with the turbulence model slightly better in terms of both wave height and slope of
the setup.
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Figure 4.25: Computed and measured wave heights (left) and set-up (right). Test number 03041
(plunging breaking). Top: GN equations. Bottom: Nwogu equations. Blue line- TKE closure,
green line- Hybrid closure.

For the plunging case, figure 4.25, the agreement with the experimental values is even better.
We can see that the breaking location is detected correctly in this case, even though both the GN
and the Nwogu model provide an underestimation of the shoaling with both breaking closures. The
wave height decrease is predicted with a slightly smaller slope, but the agreement with the data is
quite satisfactory. The setup prediction is very good, with both location of the breaker and slope
reproduced correctly by all models.

Some conclusions can be drawn from the implementation of this numerical test case. The first
one is that both wave breaking closures allow to detect and handle both spilling and plunging
breaking of regular waves. We stress that the parametrisation used for TKE closure is the same
for the two cases considered. This shows the potential of this type of approach to provide a robust
accurate energy dissipation rate, independently on the number of nodal points per wavelength, and
on the nonlinearity of the problem.

4.3.5 Application: propagation, breaking, and overtopping of a 2D reef

This next test case is reported as a complex application in order to show the potential of the
modelling choices evaluated here to handle the interaction of the whole range of phenomena:
dispersive propagation, shoaling, breaking, overtopping, reflection. The benchmark considered was
initially proposed in [226, 226], and later used by several authors for validation [254, 95, 141]. The
problem involves a bathymetry consisting of a reef with a fore slope of 1/12 and a crest of 0.2m

reef crest and an offshore water depth of 2.5m. The reef crest is exposed by 0.06m and hides on the
lee side a flat with a depth of 0.14m. Water height distributions at several time instants and water
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height time series in 14 wave gauges have been measured in the flume experiments at Oregon State
University within the PhD work of V. Roeber [226] (see also [226]). A sketch of the reef geometry,
showing the positioning of the wave gauges, is reported in figure 4.26. The initial state consists
of a solitary wave of amplitude a = 0.75m which propagates onshore, shoals and breaks in front
of the reef crest. Walls are present at both ends of the domain. We refer to [226, 228] for a more
detailed description of the experimental and computational setup. Our results have been computed
on a mesh with size ∆x = 0.05, and setting CFL = 0.3. Manning friction has been used, with a
Manning coefficient nm = 0.012. Both wave breaking detection criteria are used with γ = 0.6 and
φc = 30o. Concerning the TKE closure κGN = 0.75, σGN = 0.8 and κN = 1.2, σN = 1.5 but when
a hydraulic jump is detected the values are set to κGN = 1.5, σGN = 15.5 and κN = 3.5, σN = 16.

Figure 4.26: 2D reef geometry and wave gauge locations. Adapted from [228].

To visualise the results we group snapshots of the free surface in three phases : propagation and
shoaling of the initial soliton (figure 4.27); overtopping and formation, propagation and reflection
of a bores on the lee side of the reef (figure 4.28); secondary overtopping, with formation of a quasi-
steady hydraulic jump and of an undular bore (figure 4.29). In all the figures, the top rows report
the results obtained with the GN model, the bottom rows refer to the results of the Nwogu model,
the blue lines are those obtained with the TKE breaking model, and the green lines are those of the
hybrid breaking treatment. Symbols refer to the experimental values provided in [226].

The figures show that all models allow, on this mesh resolution, a quite satisfactory prediction
of the water height. The differences between different choices appear to be minor. We can mention
that, at least in our implementation both the fully and the weakly nonlinear models tend to predict
the moving bores on the lee side with some phase advance. This, at least in our implementation, is
more pronounced for the fully nonlinear GN mode, as we can see e.g. on figure 4.28 (central and
right column). This behaviour is independent on the breaking closure adopted. We can also remark
that when using the hybrid wave breaking with the Nwogu equations some over-prediction of the
amplitude of the undulating bores is observed.

To have some more insight in the capabilities of the models, we analyze the water height time
series in gauges WG5, WG9, WG10, and WG12. The plots are reported on figures 4.30 and 4.31.
The dispersive propagation of the waves is visible in WG5 and, at for the fore side undulating bores,
in WG9. We can see that all the models capture correctly the shoaling of the initial solitary, and that
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despite a visible phase lag, provide a quite reasonable amplitude and frequency of the undulating
bores on the fore side, as it can be seen e.g. in the WG5 series on figure 4.30, for times larger than
70s, and in WG9 after 80s. In WG5 we can see again the over-amplification of the amplitude of the
undular bores for the Nwogu’s model with hybrid wave breaking.

Concerning breaking, we can see the first breaker approximation very well reproduced from the
WG9 series at time around 34.5s. The hydraulic jump forming at 55s is also well reproduced in
amplitude, albeit with a phase advance. Similar observations can be made when looking at figure
4.31. The WG12 results, in particular, show an excellent agreement for the first four bores. All
the models give an under-prediction of the water level behind the slowly moving hydraulic jump
which forms behind the main right-going bore (time 38s). The first reflected bore at time roughly
50s, as well as the second hydraulic jump forming after the second overtopping (time 60s) are also
very well captured by the models. The later reflections present instead a visible phase error, albeit
correct in amplitude. Lastly, the WG10 results in the same figure show a nice capturing of the first
two overtopping phases, although an over-prediction of the water height is also observed. The later
overtoppings are affected by a phase advance already mentioned for the bores responsible for them.

Overall we consider the results quite good for all the models. Some of the differences w.r.t.
the experimental water heights we are convinced that are also due to the definition of this quantity
in presence of air entrainment at the free surface, as it was the case for the experimental breakers.
We stress very strongly that with the current implementation the simple TKE breaking closure can
handle without any problem simultaneous breakers of different types, and of different intensities.
For this test, as for all the others analyzed in the paper, the fully nonlinear GN model with TKE
closure provides the most robust combination.
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Figure 4.27: Overtopping of a 2D reef. Propagation, shoaling, and overtopping phases.Top row:
GN model. Bottom row: Nwogu model. Blue lines: TKE breaking closure. Green Lines: hybrid
wave breaking closure. Left: t = 31.8036s. Middle: t = 32.8132s. Right: t = 34.5801s.

4.4 Parameter sensitivity analysis of selected wave breaking closures

Another part of our work on wave breaking for Boussinesq-type modes has been on the understanding
of this mechanism. In this work, that has been published in [129], we systematically analyze the
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Figure 4.28: Overtopping of a 2D reef. Bore formation and propagation behind the reef. Top row:
GN model. Bottom row: Nwogu model. Blue lines: TKE breaking closure. Green Lines: hybrid
wave breaking closure. Left: t = 35.5897s. Middle: t = 40.7894s. Right: t = 49.5732s.

0 10 20 30 40 50 60 70 80
−0.2

−0.1

0

0.1

0.2

0.3

0.4

x(m)

η
/h

t =56.5397s

0 10 20 30 40 50 60 70 80
−0.2

−0.1

0

0.1

0.2

0.3

0.4

x(m)

η
/h

t =56.5397s

0 10 20 30 40 50 60 70 80
−0.2

−0.1

0

0.1

0.2

0.3

0.4

x(m)

η
/h

t =60.7297s

0 10 20 30 40 50 60 70 80
−0.2

−0.1

0

0.1

0.2

0.3

0.4

x(m)

η
/h

t =60.7297s

0 10 20 30 40 50 60 70 80
−0.2

−0.1

0

0.1

0.2

0.3

0.4

x(m)

η
/h

t =76.7325s

0 10 20 30 40 50 60 70 80
−0.2

−0.1

0

0.1

0.2

0.3

0.4

x(m)

η
/h

t =76.7325s

Figure 4.29: Overtopping of a 2D reef. Second overtopping and undular bore formation. Top row:
GN model. Bottom row: Nwogu model. Blue lines: TKE breaking closure. Green Lines: hybrid
wave breaking closure. Left: t = 56.5397s. Middle: t = 60.7297s. Right: t = 76.7325.

effect of various parameters on the performance of two models for wave breaking. The hybrid and
the TKE wave breaking model. In particular, we performed the Analysis of Variance (ANOVA)
which gives First and Total-order Sobol’s indices, quantifying the sensitivities of specified output
metrics to the input parameters. Prior to performing the ANOVA analysis, we first obtain a Gaussian
Process Regression metamodel of the high-fidelity CFD model. We quantify the sensitivities using
several deterministic metrics such as the maximum height of the wave, the location of the breaking
of the wave, the maximum run-up, the time-series values at several gauges, as well as stochastic
metrics such as the skewness, asymmetry, and kurtosis of the time-series of the wave at several
gauge locations. We study various configurations of the classical problem involving the run-up of
solitary waves on a slope. Additionally, we investigate the time-evolution of the Sobol indices at
specific gauge locations. The importance of this analysis is twofold. First, this analysis helps us
gain insights into the physics of nonlinear and dispersive waves, specifically during the breaking
and run-up phases. Secondly, our analysis quantitatively distinguishes between the two prominent
approaches for modeling wave breaking, namely the hybrid method and the TKE model.
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Figure 4.30: Overtopping of a 2D reef. Free surface time series in wave gauges WG5 (left) and
WG9 (right). Top row: GN model. Bottom row: Nwogu model. Blue lines: TKE breaking closure.
Green Lines: hybrid wave breaking closure.

4.4.1 Sensitivity Analysis Model

The Analysis of Variance (ANOVA), first proposed by Sobol et. al. [174, 175], is a powerful
technique for global sensitivity analysis. Later, an improved algorithm was proposed by Saltelli
et. al. to reduce the computational cost of ANOVA [229]. A comprehensive review of the global
sensitivity analysis methods, including the ANOVA technique, is given by Iooss and Lemaítre in
[21]. Here, we briefly describe the ANOVA method to find out Sobol indices, that characterize the
sensitivity of the model output with respect to contribution of each of the input parameters. Consider
X ∈ Ω ⊂ Rd, d ∈ N to be a random variable and let f(X) ∈ L2(Ω) be a square integrable function
on domain Ω = [0, 1]d. ANOVA decomposition of f quantifies the variance of the function output
in terms of the input parameters (or a combination of the input parameters), and is given as follows
(see [21, 174] and the references therein).

f(X) = f0 +
∑

1≤i≤d

fi(Xi) +
∑

1≤i<j≤d

fij (Xi, Xj) + ...+ f12...d (X) (4.11)

under the condition imposed by the following equation:∫ 1

0

fi1,i2,...,is (xi1 , ..., xis) dxik = 0, 1 ≤ k ≤ s, {i1, ..., is} ⊆ {1, ..., d}. (4.12)

Here, f0 is the expected value of the function f , which is quantified by E[Y ] for each random
variable Y = f(X). The univariate function fi(Xi) = E[Y |Xi]− E[Y ] quantifies contribution due
to each random variable Y = f(X). The bivariate function fij (Xi, Xj) = E (Y |xi, xj)−F0−Fi−Fj
quantifies the joint contribution of each pair of input parameters covering all possible combinations.
Similarly, the rest of the terms quantify the higher-order effects. It is possible to get a similar
decomposition of the variance of the function f(·) as follows [21],
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Figure 4.31: Overtopping of a 2D reef. Free surface time series in wave gauges WG10 (left) and
WG12 (right). Top row: GN model. Bottom row: Nwogu model. Blue lines: TKE breaking closure.
Green Lines: hybrid wave breaking closure.

V ar(Y ) =
d∑
i=1

Di(Y ) +
d∑
i<j

Dij(Y ) + ...+D12...d(Y ), (4.13)

where, Di(Y ) = V ar[E(Y |Xi)], Dij(Y ) = V ar[E(Y |Xi, Xj)] − (Di(Y ) +Dj(Y )) and so on for
the higher order terms. This decomposition is known as ANOVA decomposition. Finally, the Sobol’
indices are given as (refer [21, 174]),

Si =
Di(Y )

V ar(Y )
, Sij =

Dij(Y )

V ar(Y )
, Higher Order Terms (4.14)

Further, the Total Order (TO) Sobol’ indices combine the lower-order and higher-order terms and
are given by:

STi = Si +
∑
i<j

Sij +
∑

j 6=i,k 6=i,j<k

Sijk + Higher Order Terms (4.15)

Note that two-parameters (as well as three-, four- etc.) interactions involving xi are already accounted
in Si, the same way that three-parameters contributions to the variance are also hidden in the two-
parameters contributions, and so on. For this reason, the sum of all the total indices usually larger
than 1.

To perform the sensitivity analysis in this work we used the UQlab-The framework for Uncertainty
Quantification [183]. More precisely, we use the sensitivity analysis module which contains the
methods for global sensitivity analysis that quantitatively measure the importance of each input
parameter. We construct a surrogate model (meta-model) of our computational model prior to the
Sobol sensitivity analysis. The surrogate model is a functional approximation of our computational
model and is faster to evaluate. It is constructed using a relatively small number of input parameters
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and corresponding output results from our computational model. This way, we reduce the total
computational cost to a great extend. In this work we use the Kriging (or Gaussian process regression)
metamodel. A review on Kriging metamodeling can be found in [162, 86].

4.4.2 Case study: propagation, breaking and runup of a solitary wave

We study, once again,the very well know solitary wave over a slope test case [242] (see section
4.3.2 for the setup). It is based on the work of Synolakis [242], where solitary waves with various
nonlinearities ε = A/h0 were studied experimentally and numerically. For simplicity, we only
investigate the breaking and runup processes and their sensitivity to the different physical and model
parameters. This already will provide a quite large spectrum of results and information related to
the closure models. The computational domain is [−20, 80]m and the numerical parameters are
constant and set to ∆x = 0.05, cfl = 0.1. They are intentionally kept relatively small as to limit
the numerical diffusion in the results. Figure 4.32 confirms that the computed solution, presented at
time 6.4sec (i.e. already breaking), does not change as ∆x is refined and that we are still far from
the fine mesh instabilities highlighted for the hybrid closure in [145] and analysed in the previous
section. We record time series of the surface elevation in 10 wave gauges every 0.5m from x = 0

to x = 3.5, plus two additional at x = 4.0, and 5.0m. In this spatial window, we have observed
wave-breaking occurs for all the examined waves.
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Figure 4.32: Computed solution, at early breaking for the hybrid(left) and the TKE (right) closures
using ∆x = 0.05m and ∆x = 0.025m.

We introduced uncertainties in both the model set up and the model parameters. In particular,
wave amplitude, slope of the beach, and Manning friction coefficient are assumed to vary uniformly
in the ranges A ∈ [0.1, 0.6], slope ∈ [−1/15, −1/25], Nm ∈ [0.009, 0.075] respectively. All of
the possible combinations of these parameters cover most of the practical scenarios. Uncertainty is
introduced also in all the parameters of the breaking models.

For completeness, Figure 4.33 shows the evolution of the free surface, compared to the experimental
data of [242], computed in the deterministic setting: slope = −1/19.85, A = 0.28, Nm = 0.01.
For these computations, the wave breaking closure models have been parametrized using values
proposed in literature [145, 97, 252]: γ = 0.6, θ = 0.53 and Cv = 10 κb = 2.5 and σb = 20

for the TKE model. As the wave approximates the shore and shoals it is clear that the two models,
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as expected, give identical results since wave-breaking has not started yet. The breaking procedure
starts around t = 4.79sec. Both the hybrid closure and the TKE model represent the solution as
a triangular bore, albeit with a different resolution of the peak which is kept smoother and higher
by the TKE approach. At time t ∼ 7.9sec the bore collapses on the shore and the wave starts to
run-up. For this particular case both numerical solutions provide a good qualitative agreement with
the data. We highlight here that the objective of this work is not so much related to which method
best predicts the available data, but to provide some quantitative measures of the variability of the
outputs wrt changes in the input parameters. In the current study, the variations of the flow quantities
with numerical parameters, and more particularly mesh size, is not included. As already said, the
interested reader is referred to the previous work [145, 8] for a detailed analysis of this aspect.
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Figure 4.33: Time evolution of the free surface (deterministic). Yellow line: Hybrid wbc, blue line:
TKE wbc.

Model outputs and post-processing

An important point is the definition of the output observables to be used in the analysis. We will
start by considering the sensitivities of the location of the breaking point, the wave height at the
breaking point, the maximum wave height at the wave gauges and the maximum run-up.

To have a more detailed picture of the evolution of the wave as it shoals and breaks, we will also
consider a set of statistical outputs. There exist several works that examine them in the context of
BT models, see for example [147, 255]. A measure to examine the left-right differences in a wave
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is the wave asymmetry which is defines as

As =
< H(η3) >

< η2 >3/2
(4.16)

where H is the Hilbert transformation and < · > denotes the mean operator. A similar information
is provided by wave skewness, which is a measure of crest-trough shape. It is defined as

Sk =
< η3 >

< η2 >3/2
. (4.17)

Finally, the kurtosis will allow to estimate whether the wave is heavy tailed or light tailed with
respect to the normal distribution. It is defined as

Ks =
1
n

∑
(ηi− < η >)4(

1
n

∑
(ηi− < η >)2

)2 (4.18)

where n is the length of the time series data in the wave gauge.

4.4.3 Parameter sensitivity analysis

Besides the variations in the physical parameters already discussed, we consider uncertainties in
the parameters of the models, involved in the detection (γ and θ) for both models and the energy
dissipation for the TKE model (κ, Cv, σ). In particular we assume the the uniform distributions
γ ∈ [0.3, 0.8], θ ∈ [0.32, 0.6] and κ ∈ [0.5, 2.5], Cv ∈ [5, 15], and σ ∈ [10, 25]. Note that the
last three parameters appear only in the TKE model.

Figure 4.34 presents the First and Total order Sobol indices for the physical outputs, including
the results in wave gauges. The results indicate that the amplitude of the wave is mainly the
dominant parameter for the maximum wave height at the wave gauges and on the location of
the breaking point for the hybrid model while for the TKE, κ plays also a significant role in the
formation of the maximum wave height at the wave gauges offshore. As expected, and for both
models, friction affects the maximum wave height at x = 0m, which is located on the initially dry
slope. The parameter γ affects the location of the breaking point in the hybrid wbc but surprisingly
plays no role in the TKE. An interesting outcome is the one of the runup process. Only the physical
parameters are those who affect the maximum runup with the slope of the topography affecting only
the hybrid wbc. We have to highlight here that all the second order Sobol indices are less that 0.1

(not shown). This indicates a small correlation between input parameters.
So, as a general conclusion we can say that the model parameters have a significantly smaller

impact on the outputs than the problem setup parameters, with the exception of γ that does affect
the breaking point location when using the hybrid wbc and κ that affects the maximum wave hight
on the wave gauges. Among the problem parameters, the amplitude turns out to be the dominating
one, followed by the friction. The slope has a somewhat smaller impact on the runup and that too
only for the hybrid closure. To go further we look at the statistical parameters of the water elevation
signals in the gauges. The results are summarized in figures 4.35 and 4.36 for the hybrid and the
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Figure 4.34: First (circles) and Total (squares) Sobol Indices for the output parameters using the
hybrid and TKE (squares) wbcs.

TKE wave breaking closures respectively. Wave amplitude, slope, and friction coefficient have the
largest impact, while the indices of γ and θ are close to zero and they are not presented. When using
the TKE model the only model parameter that shows sensitivity is κ and this only for the kurtosis.
The asymmetry is largely controlled by the amplitude. This is especially true in the first gauges,
close to the collapse of the wave (impact of amplitude), and to the runup/backwash (slope). The
slope shows bigger sensitivity when the TKE closure is used.
Skewness and kurtosis present a different sensitivity profile for the two models revealing the different
way of simulating propagating bores since the hybrid model represents the solution as a triangular
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bore with a sharp front and TKE as a bore with a smother and higher peak. When we use the hybrid
wbc the skewness is highly affected by the amplitude as the wave breaks and collapses on the slope
(first gauges). The impact of the slope and the amplitude are equally dominating the shoaling phase,
with friction playing a smaller but not a negligible role. For the TKE wbc the behavior of the
parameters are more clear since only the wave’s amplitude and friction are dominating the process.
The impact of the slope is only visible as the wave collapses on the slope.
The thickness of the wave tails, measured by the kurtosis, is controlled mainly by slope and friction
as sown in figure 4.35 on the right. The first has a much higher sensitivity in the intermediate gauges
suggesting that its impact is related to the propagation, while the impact of the friction more to the
backwash. The results show that for the hybrid closure model the wave-breaking parameters have
considerably smaller contributions to the shape of the wave. Finally the kurtosis, when we use the
TKE wbc, is dominated by the wave’s amplitude and the slope but also κ sows some sensitivity. We
recall that κ controls both the magnitude of the eddy viscosity as well as the dissipation of turbulent
kinetic energy. The latter may affect the rate at which the eddy viscosity is reduced in space, thus
affecting the wave tail
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Figure 4.35: First order Sobol indices for Asymmetry, Kurtosis and Skewness measured on the wave
gauges using the hybrid closure.
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Figure 4.36: First order Sobol indices for Asymmetry, Kurtosis and Skewness measured on the wave
gauges using the TKE closure.
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Discussion on the convergence of the sensitivity indices

One of the main questions that can arise in this study is how the results are changing with respect
to the numerical resolution. The answer to this question is twofold. The first aspect concerns
the change of the physical output as the mesh is refined and is largely covered in [145]. We briefly
report that the study performed in [145] has involved a systematic analysis of the behavior of the two
closures for different mesh sizes, the study of dynamics of breaking through dissipation monitors.
Thorough evidence of the equivalent capabilities of the two approaches to provide satisfactory
results has been given. The results indicate that both closure approaches allow to describe correctly
wave breaking at large scales and when we use the TKE the numerical dissipation plays a negligible
role. The results also showed a reduced sensitivity to the mesh of this approach compared to the
hybrid one.
The second issue that arises is the convergence of the statistical outputs as the mesh is refined. We
investigate here this aspect by considering the variations of the statistics on four different meshes
of sizes ∆x ∈ [0.05, 0.025, 0.025, 0.0125m]. Note that in this analysis we made sure that on each
mesh the metamodel built for the sensitivity analysis has converged in terms of number of samples
for each output value and for each mesh.

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Wave height at the breaking point

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Location of the breaking point

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Maximum wave height at x=2.5m

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Maximum wave height at x=5.0m

Figure 4.37: Sensitivity indices using different meshes for both closures.
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Figure 4.37 presents the sensitivity indices for the four output parameters, the wave hight and
the location on the breaking point, and the maximum wave hight at the wave gauges at x = 2.5m

and x = 5.0m. The input parameters of the closures are varied within 50% of their initial value. We
plot only the indices that are more than 0.1. As expected, for the hybrid wbc the indices are almost
constant for the coarser meshes while they start to diverge when the mesh is finer. As explained
in [145] for finer meshes, and when we use the hybrid model, abrupt and spurious oscillations are
introduced at the interface between the breaking and the nonbreaking region. This of course spoils
the solution and consequently affects the sensitivity analysis. On the other hand when using the TKE
wbc, the indices are almost the same for all the different discretizations proving that the solution is
not changing when we vary the input parameters of the closure.

Sensitivity analysis with respect to runup

One of the most relevant outputs for risk assessment is the maximum runup. It is well understood
that waves with higher amplitudes have higher impact on the coast, or in other words higher
maximum runup. To investigate this, we look at the variability of the latter with respect to physical
parameters. The maximum run-up as a function of the wave’s amplitudes (for fixed slope=1/19.85, Nm =

0.01) is reported in the leftmost pictures in Figure 4.38 for both wave breaking closures. For
comparison, the experimental data [242] are also plotted. We also report in the figure the dependence
of the maximum runup on the slope (for fixed A = 0.28 and Nm = 0.01),and on the Manning
coefficient (for fixed slope=1/19.85 and A = 0.28). The metamodel predictions for different values
of the wave breaking parameter γ are plotted.

Above the amplitude ∼ 0.15 the maximum run-up increases almost linearly with A. The
metamodel predictions are quite close to the data. For the hybrid wbc, the impact of the wave
breaking parameter γ is not uniform over the range of amplitudes. Relevant variations of runup are
only observed for intermediate values of A, when sensibly reducing γ (early breaking), and for the
highest amplitudes when delaying too much the detection (highest values of γ). The local maximum
variations of runup observed are of the order of ∼5-7%, the predictions remaining relatively close
to the experimental data.

In the same spirit we fix the TKE closure by setting κ = 0.5, Cν = 5.0, σ = 10.0, and evaluate
the impact of γ, of the slope and of the friction coefficient. The plots obtained are reported at the
bottom of figure 4.38. For the amplitude dependence, we see that the match with the data in the
plot against the dependence is very good. We also note a behavior much different than the one of
the hybrid closure. In accordance to the sobol indices presented in the previous section we confirm
that, for the present closure the wave breaking detection has virtually no effect.

The variability of the runup with the slope and the Manning has however a different behavior,
for the hybrid closure. When lowering the value of the detection parameter (early breaking), we see
a systematic impact of the order of ∼ 9-10% over the entire range of slopes. A weaker dependence
on the slope is observed when using the TKE closure.

A similar, to the variability of the runup with the slope, trend is observed, for the hybrid model,
when looking at the dependence with the Manning coefficient. The lowest value of the parameter γ
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Figure 4.38: Run up as a function of wave’s amplitude were slope=1/19.85, Nm = 0.01 (left), of
slope were A = 0.28, Nm = 0.01 (center) and of the Nm number were slope=1/19.85, A = 0.28

(right). Using the hybrid (up) and the TKE (down) wave breaking closures.

leading consistently to variations of the runup of the order of the maximum observed when changing
the amplitude. This suggests that the runup may be more tolerant to some input error on the wave
amplitude, while the correct parametrization of the breaking detection for the hybrid closure is more
crucial when we have uncertainties in the slope and friction. The runup dependence on the Manning
coefficient for the two closures is very similar.
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Figure 4.39: Run up as a function of wave’s amplitude were slope=1/19.85, Nm = 0.01 (left), of
slope were A = 0.28, Nm = 0.01 (center) and of the Nm number were slope=1/19.85, A = 0.28

(right).

Finally and for the TKE, we fix γ = 0.6 and vary the other input parameters. The resulting
behavior is the one reported on Figure 4.39. Again we see a secondary and almost negligible impact
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of the model parameters on the runup. This is quite interesting as it means that the value predicted
is quite robust with respect to the parametrization of the wave breaking, and mostly controlled by
the problem setup.

A solitary wave of ε = 0.28 over a slope

For completeness we now focus on the impact of the model parameters alone, for the fixed nominal
values of the physical parameters: A = 0.28, slope=−1/19.85 and Nm = 0.01. For the hybrid
closure, we are left only with the γ and θ parameters controlling wave breaking detection, and we
have seen already that the first has a dominant contribution to output variations in the general case.
As usual for the second wave breaking closure we have both the initiation and diffusive parameters
that control the analysis. Figure 4.40 shows the first and total Sobol indices for some of the examined
outputs. We can see that breaking detection, and in particular γ, has a major impact on the maximum
wave heights. Large contributions to the variance also come from κ and Cν , which in particular are
the only dominating parameters for the run-up. We see here also a non-negligible difference between
some first and Total indices, indicating the presence of some important interactions on the maximum
wave’s height. More precisely at WG 1 (x = 0m) and WG 6 (x = 2.5m) the second order index for
γ and κ is 0.17 and 0.109 respectively.

Pointwise spatial distributions and temporal evolutions of sensitivities

For fixed values of the problem parameters, we see a similar behaviour of the Sobol indices in Figure
4.41 for the wave moments in the wave gauges. The γ parameter is responsible for almost 100%
of the variance, except in the intermediate regions (breaking area), and in the last gauge. For the
TKE, in Figure 4.42, wave’s asymmetry and kurtosis are affected mainly by the parameters κ and
Cν , i.e. from the dissipation and production term in the transport equation (4.4). On the other hand,
skewness, i.e the crest to trough shape, is mainly affected by Cν which probably controls the kinetic
energy cutoff before and after the breaking front.

To try to understand how θ still affects the solution, we report on Figure 4.43 the variance of
dimensionless outputs for fixed values of γ for the hybrid closure. More precisely, the wave height at
the breaking point (whbp) and the maximum height for the wave (mwh) at x = 0, 2.5, and 3m are
scaled by the initial amplitude of the wave, and the location of the breaking point (bp) is scaled by
the initial position of the solitary. Finally, the run-up values are scaled by the experimental values
for the specific case. We see that variations above 1% are only observed for the position of the
breaking point, and for the maximum wave height at breaking point and at x = 2.5, corresponding
to the initial shoreline. In particular, for all these outputs we see a clear increase variance above
a certain threshold of γ. This is the sign that above this value breaking detection is related to the
second criterion. This is visualized in the right picture on the figure showing the variation of the
position of the breaking point with γ for different samples of the metamodel. Above a critical value
of γ this position only depends on θ.

To have a better insight we study the evolution of the water depth in the whole domain in space
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Figure 4.40: First (blue) and Total (red) Sobol Indices for the run-up and the maximum wave height
at WG1 and WG6 using the TKE wbc.
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Figure 4.41: First order Sobol indices for Asymmetry, Kurtosis and Skewness measured on the wave
gauges, when A = 0.28m.

by freezing the time in specific characteristic time spots. This means that we look at the spatial
evolution of the sensitivity indices of the free surface elevation, shown in the left plot in Figure
4.45. The spatial distribution is computed at t = 6.0sec, i.e. during the breaking process. Red
line denotes the location of the closest wave gauge, i.e. WG 10. Since γ is the dominant parameter
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Figure 4.42: First order Sobol indices for Asymmetry, Kurtosis and Skewness measured on the wave
gauges.
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of the location of the bp.

in the whole domain we want to check where exactly it plays a crucial role, that is why we plot
right next to the figure the absolute mean deviation of the water depth over the water depth, at
t = 6sec. We observe that the maximum mean deviation is 25%, compered to the mean water
depth, and occurs between 3m and 4m. After this region the deviation is less than 5%, so γ is still
the dominant parameter but in negligible changes of the water depth. The temporal distribution 4.44
of the sensitivity indices is computed for the free surface elevation recorded at WG10 (x = 5.0m)
and WG6 (x = 2.5m). Like before, θ is not the dominant parameter while the bore is breaking. To
confirm how much it contributes we plot again the deviation of the free surface elevation. We can
see that the maximum deviation grows as the wave propagates on shore reaching more than 90%,
meaning that mainly γ is affecting the bore front.

We perform the same exercise but for the TKE closure. In 4.46 we report the spatial evolution
of the water depth, sensitivity indices and absolute mean deviation of the water depth, at times
representative of incipient t = 6sec., and after collapsing on the shore (t = 8.2sec). Its clear that in
the early breaking time γ and κ are the predominant parameters affecting the water depth until 6m
in the domain. More precisely the deviation of the water depth compared to the mean water depth
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Figure 4.44: Temporal evolution of the First Order SI and deviation of the free surface elevation, at
WG10 and WG 6.
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Figure 4.45: Spatial evolution of the First order SI and the deviation of water depth at t = 6.0s.

is maximum 2.5%. This shows the robustness of the TKE model in contrast to the hybrid where the
maximum deviation at the same time is 25%. After the collapse of the bore on the shore κ and Cv
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are taking the lead and strongly affect the free surface elevation especially, the front of the wave.
This is confirmed by the absolute mean deviation of the water depth shown in the low right figure
of 4.46.
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Figure 4.46: Spatial evolution of the Sobol indices and the absolute mean deviation for t = 6, 8.2s.

Next we study their temporal evolution in the wave gauges. For WG 10 the absolute mean
deviation is almost zero, meaning that the parameters are not affecting the evolution of the free
surface elevation. We report in Figure 4.47 , and for the sake of completeness the results for WG6.
The absolute mean deviation reaches almost 40% within the time interval 6 to 7seconds where
the most important parameters are κ and Cν . A consistent behavior is observed in all the WG’s
verifying that the wave-breaking mechanism is “following” the wave as it breaks until its collapse
on the shore.

4.5 Summary

We have considered the issue of wave breaking closure when using weakly dispersive Boussinesq
propagation models. We studied weakly and fully nonlinear models representative of classical and
well known models/codes such as BOUSS-2D [67], Funwave [235], Coulwave [89, 172], BOSZ
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Figure 4.47: Temporal evolution of the Sobol indices and the absolute mean deviation of the free
surface at WG6.

[226], MIKE21 [70], TUCWave [136, 137], and others. We have in particular focused on the
enhanced equations of Nwogu [198], and on a frequency enhanced version of the Green-Naghdi
system in the form proposed in [26, 97]. We have compared the now popular hybrid closure initially
proposed in [252], with an eddy viscosity closure based on an adaptation of the turbulent kinetic
energy closure model of [199], modified to be consistent with the detection mechanisms proposed
of [137, 97], and also used here. The study performed has involved: a systematic analysis of the
behaviour of the two closures for different mesh sizes; the use of dissipation monitors, consistent
with the available theory of entropy dissipation for conservation laws [245], to study the dynamics
of breaking for several cases; thorough evidence of the equivalent capabilities of the two approaches
to provide satisfactory results.

Our results indicate that indeed, at least with the (rather standard) implementation proposed
here, both closure approaches allow to describe correctly wave transformation and breaking at large
scales. We have shown that when using the TKE eddy viscosity closure the numerical dissipation
plays a negligible role, which motivates to look for non-dissipative/energy conserving numerical
methods in the future. Also, the results clearly show the reduced sensitivity to the mesh of this
approach compared to the hybrid one. The analysis of the wave breaking of solitary waves on a
slope also has allowed to quantitatively study the interplay of the dissipation introduced by friction,
eddy viscosity, and numerical dissipation.

Of course, one has to keep in mind that the computational cost required by the TKE closure
is higher then the one of the hybrid closure. We judge this overhead justified by the increased
robustness.

This preliminary study would benefit from further investigation using both improved numerics
(e.g. energy preserving approximations in the propagation region), as well as improved models
for both the propagation and for the breaking. The models considered at the moment present a
dependence on the parameters of the detection criteria, as well as on the coefficients of the TKE
equation. Improved models, including the effects of vertical variations of the flow in both the
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propagation and breaking may be considered in future studies (see e.g. [33, 261, 106]).

Concerning the study on the parameters of the models using a solitary wave propagation over a
slope test case, we conclude that, for the hybrid model, the initial amplitude of the wave is the most
dominant parameter corresponding to almost every output metric before the run-up. The shape of
the wave depends on the initial amplitude, and also on the slope of the beach during the run-up. The
kurtosis of the wave is affected by mostly the slope of the beach and the friction coefficient. For
the hybrid model, the statistical metrics are most affected by the wave-dependent input parameters.
Among the model-specific parameters such as γ and θ, the former one has the most effect on the
statistical metrics, more so after the value of γ > 0.3. θ, although not a dominant parameter for
wave breaking, does contribute to the tail of the wave post breaking.

For the TKE model, the Sobol indices indicate that the wave amplitude is the most dominant
parameter for the deterministic metrics, similar to the hybrid model. However, when the amplitude
and the slope values are fixed, it emerges that κ and Cv are the parameters which most affect the
output metrics.

It is also seen that, among the two candidate models, the hybrid model shows a significant effect
of γ on the run-up of the wave, in contrast to the TKE model, which shows almost no effect of
changes in γ. Further, in the case of the hybrid model, the effect of γ is less sensitive to changes
in the initial amplitude when the slope and the friction parameters are fixed. This implies that,
when using the hybrid model, small errors in the slope or the friction parameters may manifest
into considerable errors in the prediction of the maximum run-up. On the other hand, the TKE
model doesn’t show a similar effect of γ on the run-up process over a range of values for the initial
amplitude, friction and the slope parameters. However, once we fix the value of γ, the predicted
run-up of the waves reflects a larger influence of the friction and the slope parameters compared
to the initial amplitude of the wave when the TKE model parameters are varied. Thus, it can be
concluded that the run-up predicted by either of the models may be more sensitive to the errors in
the measurement of the friction or the slope parameters, in comparison to the initial amplitude of
the waves, and will depend on the choice of γ for the hybrid model and the model parameters for
the TKE model.

Finally, the absolute mean deviation of the free surface elevation measured at the wave gauges
reveals that the hybrid model can lead to large differences between the observed values of the free
surface elevation and the mean free surface elevation, up to 90%. On the other hand TKE model is
more robust mainly on the off-shore region.

We have to note the differences of the Sobol indices for the statistical parameters between the
two wave-breaking closures, see Figures 4.35 and 4.36. This is due to the fact that the wave-breaking
closures simulate the breaking wave in a different way. The hybrid closure simulates the breaking
wave as a traveling bore while the one obtained using the TKE closure has a smoother propagating
front.
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Chapter 5

Conclusions and future work

5.1 Conclusion

Over the last decade, my research has significantly contributed to the field of nonlinear water wave
dynamics particularly in the context of Boussinesq-type (BT) models. The most important topics
of my work during the last ten years at Inria of the University of Bordeaux are summarized in this
manuscript. We can divide this work into three main areas. The study of depth averaged asymptotic
models, the development of high order numerical schemes in one and two dimensions for these
models, and the study of wave breaking mechanisms for BT models.

In the study of depth-averaged asymptotic modes, we revisited the fundamental question of the
necessity of full nonlinearity in weakly dispersive BT models. Through a detailed examination
and comparison of various weakly nonlinear BT models, we identified critical cases where full
nonlinearity is essential, thereby advocating for a revision of benchmarking habits for BT models.
This work underscored that while fully nonlinear models are crucial for addressing problems involving
highly nonlinear waves, weakly nonlinear models remain effective for many practical applications
not involving planar nonbreaking wavefronts reflecting on steep coastal structures.

My contributions to the development of numerical schemes have advanced the implementation
of depth-averaged models. We show that hybrid schemes, that are flexible and easy to implement,
is a good choice for asymptotic models. In this approach we highlighted the interaction between
modeling and discretization errors, which one must take into account. Key findings include the
necessity of second-order methods for elliptic components and the careful representation of data in
unstructured grids. These insights are crucial to ensure accurate and stable numerical simulations
of BT models.

In the study of wave breaking, our research focused on the sensitivity of wave breaking closures,
particularly the hybrid and eddy viscosity approaches. We addressed the stability issues of the
hybrid method and provided a quantitative description of the dissipation mechanisms. Our findings
demonstrated that while both approaches can accurately model wave transformation and breaking,
the eddy viscosity approach shows reduced sensitivity to mesh size and less numerical dissipation.

Overall, my contributions have advanced the formal understanding of numerical systems for
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depth-averaged mathematical models and have clarified the mechanisms of wave breaking in BT
models. My work has not only improved theoretical insights but also enhanced the accuracy and
stability of numerical simulations in the field of noninear water wave dynamics.

5.2 Current activity and future work

This last section presents my current activity and what is that planned for the next 4 years. These
include collaborations and activities that have already been funded or applied for funding.

5.2.1 Coupling methods of phase-resolving coastal wave models

This project lies within the framework of the PhD of Jose Galaz that Antoine Rousseau and I are
co-supervising. Dr Jose Galaz defended his thesis on 26th of June 2024 and we submitted parts
of this work for publication. In this work we study how to couple different phase-resolving water
wave models that have been developed since the mid 19th century, namely Boussinesq-type and
Saint-Venant (or Non Linear Shallow Water ) that they are commonly employed in the study of
nearshore wave propagation. A detailed analysis can be found in Galaz’s PhD thesis [101]. Here
we will attempt to highlight some parts of the work that is still ongoing.

Despite the existence of numerous models and coupling examples, there is still no clear consensus
on the artifacts and issues caused by these strategies, nor is there a well-defined method for analyzing
and comparing them. To address this problem, our research employs a domain decomposition
approach, based on the principle that 3D water wave models (such as Euler or Navier-Stokes) are
the ideal reference solution.

In particular, for one of the most popular coupling methods used for modeling wave breaking
on BT equations, the hybrid model, it was noted that many authors [235, 145, 253] had reported
different types of such artifacts. We categorize them in three main categories: (I) Oscillations, (II)
Instabilities, and (III) Mesh dependent solutions. The objectives of this work are threefold.

1. Develop new couple phase-resolving coastal wave models.

2. Study and explain the source of any artifacts observed.

3. Contribute to their mathematical justification (as approximations to the 3D model).

In order to complete these goals it is necessary to define the concept of the ideal coupled model.
The ideal coupled model is the one closest to the 3D model, with the 3D model taken, for example,
as the free-surface Euler or Navier Stokes equations. This principle stems from the observation that,
similar to regular BT or SV models, the primary reason for not using the highly accurate 3D model
in most scenarios is its substantial complexity and computational expense. This concept is already
employed in the literature to justify the use of both linear and non-linear BT models.

This work is divided in two parts. First we propose new coupled models and we evaluate
them through numerical experiments. We identify specific hypotheses about their accuracy and
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limitations. Subsequently, a theoretical framework is developed to prove these hypotheses mathematically,
utilizing the one-way coupled model as an intermediate reference to distinguish between expected
and unexpected effects and categorize errors relative to the 3D solution. The total error is split in
three parts—coupling error, Cauchy-model error, and half-line-model error—and these concepts are
applied to the linear coupling of Saint-Venant and Boussinesq models using the so called ’hybrid’
model. The analysis confirms that the coupling error accounts for wave reflections at the interfaces,
and varies with the direction of propagation. Moreover, thanks to the choice of the one-way model
as the intermediate reference solution, this analysis proves several important properties such as the
well-posedness and the asymptotic size of the reflections. Additionally, the work also addresses
the weak-wellposedness of the Cauchy problem for the B model and its implications for mesh-
dependent solutions that have been reported. As a byproduct, a new result for the half-line problem
of the linear B model is obtained for a more general class of boundary data, including a description
of the dispersive boundary layer, which had not been addressed in the literature yet. The proposed
pragmatic definition of coupling error aligns with and extends existing notions from the literature.
It can be readily applied to other BT models, discrete equations, linear and nonlinear cases (at least
numerically), as well as other coupling techniques.

One overarching conclusion is that the one-way model proves to be the optimal coupled model
when dealing with a vertical interface (static switch) and initial conditions located on one side of the
interface. This holds true regardless of the nonlinearity regime and aligns with Dubach’s observation
that absorbing conditions are also the optimal choice. Beyond Dubach’s statement, this model offers
insight into what occurs on the other side of the interface in the reference solution. While this model
has many limitations for practical computations, it is very useful for quantifying the coupling error
and assessing the performance of a given coupled model. The conclusions drawn, up to now, from
this study regarding the main objectives are:

1. We have studied new coupled models which they also displayed some or all of the artifacts
that the hybrid model had too, that is to say: (I) Oscillations, (II) Instabilities, and/or (III) Mesh-
dependent solutions.

2. We demonstrate that issue (II), Instabilities, is a problem at the discrete level, not the
continuous one. This was done first numerically in the nonlinear case and then theoretically in
the linear case. Additionally, it was shown that the source of problem (III), Mesh-dependent
solutions, appears at the continuous level, regardless of the discrete scheme chosen. This is done
both numerically and theoretically. The problem arises from the weak well-posedness of the BT
models: because it is not possible to remove the term that contains the derivative of the initial
data in the continuity estimate of the BT model, mesh-dependent waves that are neglectable for the
SV model are significant in the BT model, leading to completely different solutions and possible
negative depths and instabilities on different mesh sizes. These oscillations could be triggered
by any small perturbation regardless of their source (discretization, source terms, etc), but the
nonphysical amplification happens at the continuous level. This is assuming a transmission from the
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SV to the B model through a horizontal interface, i.e., through the initial condition of the Cauchy
problem. It is also demonstrated that the source of problem (I), Oscillations, is at the continuous
level too, but it was proved that the oscillations are reflected waves emanating from the interface,
that are asymptotically small at order O(µ2). This was discovered numerically and theoretically
demonstrated. It also confirms a conjecture of Shi et et al. [235], observed from numerical results.
It was also proved that the size of these reflections is larger when waves are initially supported in
the SV subdomain than in the B subdomain.
In addition to addressing problems (I) to (III) for the second objective, we discussed other effects
anticipated from the coupling of linear equations. These are presented as expected outcomes of
the models, in contrast to the unexpected artifacts of the previous three problems. We examined
the horizontal interface (transmission through initial conditions). Due to the causality principle,
transmission can only occur one way—forward in time. Consequently, the wavelength of the waves
does not change as a result of switching equations. We also studied the vertical interface (static
switch) based on the behavior of the one-way model. Unlike the horizontal interface, the primary
effect here is an artificial refraction that changes the wavelengths inversely to the phase speed
change. Additionally, for wave propagation from SV to B subdomains, short waves that do not
conform to the B model’s dispersion relation are filtered out through a distance of O(µ2). This is
a characteristic of the half-line problem of the Boussinesq equations, represented by a dispersive
boundary layer of length O(µ).The analysis of the half-line linear BT problems is a novel result not
previously documented in the literature, although the dispersive boundary layer had been identified
in the nonlinear case [32, 161]. Moreover, these findings are likely applicable to the coupling of
other linear BT models.

3. The justification for coupling with a horizontal interface (initial conditions) relies solely on
the existing literature that addresses the Cauchy problems, as referenced in [157]. By "justification,"
we mean proving the well-posedness of the model and demonstrating that its solution approximates
the 3D model. To justify the coupled models in the case of a vertical interface (static switch), we
proposed quantifying three types of errors: 1. Cauchy model error, 2. Half-line model error and
3.Coupling error. The sum of these three errors provides an upper bound for the total error relative
to the 3D model. However, only the third type of error, the coupling error, is directly related to the
coupling technique. The other two errors pertain to the error estimates for the Cauchy problems and
half-line problems of each equation with respect to the 3D model and not directly to the coupling
itself. The computation of the coupling error is straightforward and can be applied to any phase-
resolving model, regardless of nonlinearity. It is simply the difference from the one-way model.
One main limitation of this metric is the assumption that the support must be on one side of the
vertical interface. Under the assumption of linearity, we discuss and prove that the initial support
can be split into two functions, each supported on one side of the interface. These can then be used
as references in the superposition of two one-way models. Whether this approach is effective with
nonlinear models remains an open question.

Our analysis reveals that the coupling error is entirely due to reflections originating at the
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interface. These reflections cause the mesh-independent small oscillations (problem (I) Oscillations)
found in the literature. Additionally, using Fourier analysis, we obtained an explicit integral representation
of the solution. This representation allows us to quantify the continuity, the asymptotic size O(µ2)

of the coupling error/reflections, and the effect of directionality.
The work that remains to be done concerns the proof of weakly well posedness on the nonlinear

problem on the whole domain. We also need to examine the stability of the numerical scheme for the
hybrid model using for example the weakly nonlinear BT equation and last but not least to compute
the coupling error for the fully nonlinear BT equations.

5.2.2 IMEX schemes for low Froude numbers

The next project is a joint work with Martin Parisot and the PostDoc Ralph Lteif form Cardamom
team at Inria of the Univeristy of Bordeaux. The objective of this work is the implementation of an
Implicit-Explicit scheme (IMEX) for flows in low Froude numbers. This is in the frame of the ANR
Lagon project (2022-2026). The scope of Lagoon is to increase the computational performance of
the common modeling platform UHAINA, in order to upgrade it as an efficient and accurate tool
for storm-surge predictions in different future climate scenarios. To achieve this goal and produce
results which go beyond the state-of-the-art, one of the planned developments is the development
and analysis of a robust and efficient hight order numerical scheme for the shallow water flows in
the low Froude numbers. The reason is that, for oceanic and coastal simulations, the Froude number
of the flow can vary from 1 near the coast to two or three orders of magnitude less offshore. In
deep sea, the classical hyperbolic schemes are inadequate [114] as the time step restricted by the
CFL condition is dramatically reduced and thus realistic simulations are impossible. The solution
to this bottleneck is to solve a part of the system implicitly, thus leading to IMEX schemes. In
the context of semi implicit discretization, advection is discretized explicitly, while pressure (i.e
water level) is handled implicitly. As a result, the stability condition is constrained only by the main
flow speed, which approaches zero in the low Froude limit. Therefore, semi-implicit schemes are
significantly more efficient than explicit methods in the low Froude limit. Additionally, they exhibit
less numerical viscosity and offer more accurate resolution since the implicit terms do not require
numerical stabilization.

The idea here is to limit the size and number of linear systems to be solved so we use as a
starting point the CPR scheme [208] which if first order accurate both in space and in time. The
CPR approach is a fully diagonal segregated method which only relies on the implicit treatment
of the water height and hybrid mass fluxes using explicit velocities. The method allows to avoid
resolution of large linear systems.

In the context of IMEX schemes and to archive a high-order time integration, several Runge-
Kutta schemes can be found in the literature see for example [71] and [27] and references therein.
However, to limit the number of linear systems to solve, we focus on the simple Crank-Nicolson
schemes. For the space discretization, a classical second order MUSCL reconstruction is used.

We implemented the scheme both in one and two horizontal dimensions. We test the convergence
rates for moving and steady solutions both for high and low Froude numbers. Furthermore, we
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conduct a comparative analysis of CPU times between the ImEx and explicit schemes, revealing
important computational savings with the ImEx scheme particularly under the low Froude regime.
We are currently working on the analysis of the scheme in its linearized version to study the stability
properties.

5.2.3 Discrete well balanced schemes for hyperbolic equations

An other project that I am involved is the implementation of discrete well balanced schemes for
hyperbolic equations. This is a joint work with Dr Mario Ricchiuto from Inria Bordeaux and Carlos
Pares form the University of Malaga, Spain. Inspired by the approximate well-balanced schemes
introduced e.g in [42] and [107] we aim at constructing a method whose discrete steady states are
solutions of arbitrary very high order ODE integrators. However, as in [181] we embed this property
directly in the scheme, so that the ODE integrator is never actually applied to solve the local Cauchy
problem. To achieve this, we work in the WENO finite difference setting already explored in [204].
As in [54] we apply the WENO reconstruction to a global flux assembled nodewise as the sum
of the physical flux and a source primitive. The novel idea is to compute the source primitive
by means of very high order multi-step ODE methods applied on the finite difference grid. We
obtain in this way a local well balanced splitting of a source integral with weights depending on the
ODE integrator. As in [4] this approach is referred to as global flux quadrature of the source. The
discrete solutions of our schemes are the solutions of the underlying ODE integrator by cosntruction.
In practice, we combine WENO flux reconstructions of orders from 3 to 7, with Adams-Multon
or Adams-Bashford methods of orders up to 8. The results confirm that the steady accuracy of
the scheme is independent on the order of the WENO approximation, and only depends on the
consistency of the ODE method. For our approach moreover the two are independent, which is a
very interesting improvement compared to [181]. Moreover, as in the last reference our approach
does not require to explicitly solve the Cauchy problem, which differentiates our approach from the
one of [42, 107]. Applications to scalar balance laws and to the shallow water equations confirm all
the desired properties. Other systems will aslo be examined.

5.2.4 On the design of an improved Boussinesq model for real applications:
equilibrium between accuracy and performances

The computational cost of modeling coastal flooding using Boussinesq-type models in real scenarios
is a significant limitation. Current models struggle to achieve the high resolution and extensive
simulation scenarios required to assess community risks from coastal hazards and climate change.
This project aims to develop an enhanced Boussinesq-type model within the UHAINA hydrodynamic
code, specifically tailored for real-life applications. The focus will be on optimizing a combination
of modeling choices (such as dispersive or non-dispersive, full or weak nonlinearity, scalar or vector
dispersion terms) and numerical choices (including numerical dispersion/dissipation, local accuracy
order in space, and local accuracy order in time) to align with the relevant physical processes. As a
result, we aim to gain at least an order of magnitude in the performance of our simulations without
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affecting the phenomenological representation in the context of real applications. Our progress
will be evaluated by simulating coastal areas affected by strong swells in the Nouvelle-Aquitaine
region (NVA). We will model the impact of historical storms in the area and compare our results
with existing measurements. This project is a collaboration with BRGM, whose funding allows
us to recruit a PhD student starting in April 2024. The student is being co-supervised Dr. Andrea
Filippini from BRGM, Dr Mario Ricchiuto from Cardamom and myself.

The error produced by a modeling tool is the result of the composition/compensation of the
error of the asymptotic model and that of the numerical scheme. To achieve our goals, we will focus
on two main areas: (i) a mathematical study of the equations and analysis of their linear and non-
linear properties for describing dispersive processes; (ii) the design of a new strategy for solving the
mathematical model that does not aim for accuracy, but practically accepts an approximation error
due to the speed of execution. More precisely, the work flow that we are currently following is:

• Benchmark the performance of the code in its current state on 2D academic test cases and on
the targeted real-world application(s).

• Mathematical study of the model implemented in UHAINA [94] and analysis of its linear
and non-linear properties. Construction of an improved Boussinesq model with simpler
resolution, without significant loss of precision in phenomenological representation. Validation
on targeted test cases.

• Final benchmarking of the code and application to the study of wave propagation and extreme
events on the coast of the NVA region.

BRGM will also provide data for historical events at sites in NVA region subject to strong wave
regimes.

The work to be carried out will provide an improved model, numerical scheme, and solution
strategy explicitly designed to optimize the balance between accuracy and speed in real-world
applications. Leveraging these combined strengths, we aim to achieve efficient numerical simulations,
up to an order of magnitude faster than current capabilities, using a wave-by-wave model for the
overtopping of extensive coastal sections (several tens of kilometers).

All the work will be implemented in the code UHAINA [96, 94], a phase-resolving free surface
wave model. More precisely UHAINA is a 2DH hydrodynamic model for coastal applications,
whose hydrostatic core is already an operational tool for real applications. Its non-hydrostatic
module solves the fully non-linear and weakly dispersive enhanced Green-Naghdi equations with
an efficient and flexible approach [137, 97], incorporating a local hybrid closure for wave breaking.
UHAINA is built on the Aerosol platform, offering extensive capabilities such as arbitrary high-
order finite element discretizations, hybrid meshes, and an advanced programming environment
optimized for performance and high-performance computing (HPC). It is co-developed by Cardamom
and Cagire teams of Inria and BRGM.

With these advancements, UHAINA will be capable of conducting studies over much larger
areas than other currently available modeling tools. Additionally, we will be able to run simulations
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in significantly shorter times and/or increase the number of simulations, which will be beneficial
for probabilistic approaches (especially in the context of climate change) and for developing meta-
models.

5.2.5 European project RESCUER HORIZON-MSCA-2022-DN 101119437

The Doctoral Network (DN) RESCUER (Resilient Solutions for Coastal, Urban, Estuarine and
Riverine Environments) aims to train 10 young researchers (Fellows) to tackle medium to long term
water challenges, focusing on forecasting and modeling of coastal, riverine, and urban flooding and
associated water quality issues. The DN will leverage advances in the numerical treatment of multi-
scale and multi-physics problems made in the past decade, into models to address the pressing needs
in the practical modeling of hydrodynamic phenomena with the goal of improving overall safety of
coastal and riverine areas.

The outcome of this project will be a suite of universal, highly efficient, and accurate numerical
models covering the whole spectrum of hazards induced by sea and river forcing actions, such as
wave run-up and overtopping, coastal and urban flooding, water-quality issues, bed and riverbank
erosion. These multi-physics models validated using data from dedicated laboratory campaigns and
collected at a selected field site (Senigallia, Italy) and put into service by our commercial partners
will be able to provide a complete picture of potentially hazardous conditions on the coast. The
models will be used on an operational basis as well as tools for risk assessment and mitigation
planning and to provide guidance for decision makers. An Early Warning System can be envisaged
as an outlook of the present work beyond the project duration.

RESCUER integrates four research themes: WP1: Coastal modeling and hazards focusing on
phase-resolved wave forecasting tools such as shallow-water and Boussinesq models, and the study
of wave processes and hazards related to infragravity waves and waves propagating over steep bed
topography; WP2: River and estuary; dynamics focusing on flow and sediment transport in the
river/estuary contact area, and to study sediment transport over saturated subsurface flow; WP3:
Urban flooding focusing on the construction of numerical models; WP4: Water quality focusing
on the spreading of pollutants and the kinetics of decomposition. Two more WP’s complete the
project. WP6: Communication, Dissemination and Exploitation and WP7: Network management
and coordination. We are leading WP6 and we are participating in WP3 with one fellow student.

Leading WP6 requires having a comprehensive overview of the entire project and detailed
information on the results of all work packages. This responsibility necessitates dedicating a portion
of my working hours to ensure effective coordination and integration of findings across the project.

The scientific objective of WP3 is to improve the modeling of urban floods and include effects of
small-scale, e.g. gates and openings. The objective of our work in this working package is to develop
a modeling framework for urban flooding simulations that integrates precise representations of
topography and built structures using the Discontinuous Galerkin (DG) numerical method. Ensuring
high-resolution descriptions of both coastlines and structures, with accuracies of maybe less than a
meter, is crucial for accurately depicting flooding dynamics. The primary challenge lies in managing
complex and irregular bathymetric data represented by polynomials on unstructured grids. This



5.2. CURRENT ACTIVITY AND FUTURE WORK 153

framework must effectively handle interactions between irregular bathymetric data and flooding
fronts (wet/dry transitions), potentially incorporating non-submerged floating structures. A well-
balanced scheme is imperative to avoid spurious and non-physical waves arising from numerical
discretization-induced bathymetric variations.

The idea is to explore sub-cell models and sub-cell resolution strategies combined with some
nonlinear numerical method. For example one avenue of exploration lies in the usage of sub-cell
approximations that may allow to construct well balanced schemes preserving the high resolution
see for eg [184, 100]. Further more the integration of sub cell techniques can be instrumental in
maintaining water positivity around wet/dry areas [116].

It is known that high order DG methods may produce spurious oscillations in the presence of
discontinuities or steeply varying gradients, i.e. Gibbs phenomenon [116], so a possible way to
treat this is the sub cell nonlinear approximations for the topography, as to avoid these spurious
oscillations. Furthermore, the integration of individual cell models could be extended to deal
with friction phenomena and adapting to the presence of floating structures, allowing an integrated
simulation framework that captures a variety of real-world scenarios [28].

Anticipated outcomes include improvement on academic tests, and applications in operational
context to realistic events, and experiments from other partners benefiting from consortium data.
The resulting numerical scheme will be applied to a case study of urban flooding, with comparisons
made against experimental data provided by project’s partners.

A PhD student, whom i will supervise, will start working on the project on October 1st.

5.2.6 Comparison of different numerical schemes for dispersive flows in real
case scenarios

This work is a part of a lager project called CORALI (COnnaissances inteRdisciplinaires pour une
meilleure Adaptation face aux risques LIttoraux/InteRdisciplinary knowledge for better Adaptation
in the face of LIttoral risks) which is funded by the Regional Program of Nouvelle Aquitaine called
PSGAR (Ambitious Regional Scientific Projects).

Our work lies on the region of wave transformation from the open sea to the coast. As waves
propagate from the deep ocean to the coast, they undergo multiple transformations, and significant
progress has been made in understanding and numerically simulating these processes over the past
few decades. Different models and codes can be used for the study of waves’ transformation. Codes
based on phase-averaged models or on phase resolving models. The latter ones has the advantage
that explicitly represent waves and allow for a much more realistic reproduction of these phenomena.
In Cardamom team we developed different numerical schemes for phase-resolving models.

In this project, we will study and compare various numerical schemes for phase-resolving
models. These schemes have already been developed [137],[206] or are currently in development
(see Section 5.2.4). Additionally, a postdoctoral position will be available in 2025 to support this
endeavor.
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5.2.7 Adaptive meshes for tsunami simulations

The project is a part of the PC Outre-mer funded by the IRIMA Programme and leaded by IPGP.
It belongs to the WP2: Tsunami risks: Estimating damage and socio-economic impacts. The
challenge of WP2 is to build a toolchain and methodologies that link advanced mathematical and
numerical models with geophysical, geological, civil engineering, geographical, and economic data
to conduct an analysis of hazards, risks, and socio-economic impacts (including buildings and
infrastructure) related to tsunamis generated by landslides in a seismo-volcanic context (including
cascading effects). Distant field scenarios such as earthquakes will also be considered to complement
the study.

Our part lies on the developing of accurate tsunami modeling tools by integrating adaptive
meshing methods and incorporating phenomena that can affect the magnitude of a tsunami (e.g.
tides, structures etc). The first step is to enhance the performance of the code that we will use, i.e
UHAINA, through the implementation of dynamic and non-stationary mesh adaptation techniques,
coupling with MMG. MMG is an open-source remeshing software package. It offers volatile
capabilities, in 2D, 3D and in parallel capabilities. A given mesh is transformed by a series of
local mesh modifications to a new mesh adapted to a given metric field, which specifies the local
sizes and orientations of the orientations of the elements. MMG is being developed by an industrial
consortium, which guarantees its robustness and cutting-edge capabilities.

Static meshes are inefficient for tsunami simulations, where an impulsive wave is initially concentrated
in a narrow region and then propagates over a certain distance. We will investigate metric-based
mesh adaptation, where the entire domain is remeshed to optimize the size and orientation of the
elements. This allows us to adjust the total number of vertices throughout the simulation as the
waves develop within the domain and to move vertices between remeshing steps.

Te second step is the development of error models for dispersive flows. This task is very
innovative, with very little or almost no prior work found int the literature. This project is a joint
collaboration with Dr Nicolas Barral and Dr Mario Ricchiuto form Cardamom team.

5.2.8 Tidal bore and bathymetry

Last but not least I am participating in the ANR BABA: Tidal Bore and Bathymetry (Augmented) a
research project that aims to understand the hydro-sedimentary dynamics related to the propagation
of a tidal bore in internal estuaries. The author participates in WP5: Theoretical modeling and
numerical simulations. In WP5, we will attempt to address numerically the question of characterizing
the hydrodynamic processes and regimes having the largest potential impact on morphological
modifications. The work by [49] has highlighted the existence of two modes of propagation of
a bore, of which one is essentially hydrostatic, the other fully non-hydrostatic. The second mode
involving vertical kinematics of much larger magnitudes is clearly more prone to produce particle
suspensions and may be more interesting for morphodynamical chances. Note that these modes
have been not only produced in numerical models but observed in measurements in artificial and
natural environments [257, 25].
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Additionally, it’s essential to consider the dynamics of vorticity and its interaction with the
boundary layers, which play a crucial role in the actual morphological changes caused by the bore.
To address these issues, WP5 introduces additional layers of depth to the hierarchy of investigation
tools used in BABA. Specifically, to complement laboratory and in situ measurements, we will
employ three families of models with increasing fidelity.

The author, a postdoctoral student, and DR Mario Ricchiuto from the Cardamom team will
handle the lowest fidelity level, represented by depth-integrated models. We will utilize the solver
SLOWS, as referenced in [138] and [49]. This model has the advantage of a reduced computational
cost, which should allow its application for all cases, including the in situ ones covered in other
WPs.

5.2.9 Modeling of wave dispersion including porosity

We are currently working with Dr Nghi Vu Van form the Ho Chi Minh City University Of Transport
in Vietnam on the simulation of dispersive waves in porous media. In our recent work [144] we
introduced a conservative form of the extended Boussinesq equations for waves in porous media.
This model can be used in both porous and non-porous media since it does not requires any boundary
condition at the interface between the porous and non-porous media. A hybrid Finite Volume/Finite
Difference (FV/FD) scheme [135] is used to solve the conservative form of the extended Boussinesq
equations for waves in porous media. The model is validated with experimental data for solitary
waves interacting with porous structures and a porous dam break in a one-dimensional flow. At the
moment, we are working on the two layer model with dispersion and porosity and the idea is to
extend the model to 2HD.
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