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Scientific career overview

I began my academic career in 1992 at Paris X University1 as an associate professor. At that
time, I was working on artificial neural networks for the modeling of biological networks [A2],
[C1-C3] and for image compression [A1-A3]. I was rapidly involved in collaborative projects
between the Centre de Mathématiques et de Leurs Applications (CMLA) at Ecole Normale
Supérieure de Cachan (ENSC) and industrial partners, and became very interested in statistical
and machine learning for the monitoring of industrial processes. Neural networks associated
with more classical signal processing techniques were introduced early in 1994 for the health
monitoring of the Vulcain engine of the Ariane rocket in an initial collaboration with the CNES
and SEP [Anx: Miriad Tec. Reports].

In October 1999, I left my position at Paris X University to participate in the creation of
Miriad Technologies, a private company co-founded by Robert Azencott. The creation of the
company was an opportunity to test my scientific experience, developed through previous in-
dustrial partnerships. At that time, it was particularly innovative and challenging to propose
the development of ad hoc solutions with original mathematical concepts implemented in light
software. During this period, I held a Research and Development position and was in charge
of the "Proof of concepts" (POC) division: given an industrial problem, my work was, first, to
develop a methodology using statistics or machine learning tools, and to then implement the
solution to evaluate the performances on raw operational data. The originality of our approach
was to combine, very soon, machine-learning techniques with more classical methods such as
statistics or signal processing to answer to industrial needs. We developed our own software,
called Miriad Process, for Rapid Application Development of POCs. In order to answer fre-
quently asked problems, we created new tools to mine industrial data such as an innovative
method based on a mutual information ratio and entropy to be able to rank the factors respon-
sible for a quality defect. This method made it possible to detect non-linear relationships and
was also used for variable selection before regression models [C6, E2]. An accomplishment
that I am particularly proud of was the development of a method able to automatically diag-
nose over-consumption for industrial compressors based on operational data analysis. During
a six-month field validation, this method showed excellent performances for detection. For the
following two years, I worked as a project manager to supervise the development of indus-
trial software, to monitor the first industrial applications, and to implement the software in the
United States for Air Liquid America [C5]. Until now, this software had been used to monitor
on-line working compressors at the Operational Control Command in Houston, Texas (USA).

1today Paris Ouest Nanterre La Défense University
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Most of the projects at Miriad were developed under non-disclosure agreements and were not
published in academic journals. Technical reports were, however, systematically written for
each POC and delivered to the concerned clients or partners. For six years, I had the incred-
ible opportunity of working on various applications for more than twenty different industrial
partners [Anx: Miriad Tec. Reports] and of participating in the challenging adventure of a start-
up that aimed at selling innovative software solutions based on statistical or machine-learning
methodologies.

Because I wanted to spend more time on research than on development, I chose to return to
my academic position at Paris X in October 2005, whenMiriad Technologies turned to focus ex-
clusively on business applications. During the following three years, I took part in the scientific
and administrativework of the EuropeanprojectsADHER (AutomatedDiagnosis forHelicopter
Engines and Rotating parts, Eu 030907) and Innotex (INNOvation within the TEXtile manufac-
turing lines in Europe, Eu 030312) that were transferred fromMiriad Technologies to the CMLA
at ENSC, my former lab, where I naturally returned to work. With J. Wang, wemade significant
efforts to develop a method based on predictive modeling to monitor helicopter engines using
a massive data analysis of vibration and contextual flight data. We delivered a corresponding
software used by RSL and Eurocopter and the method has received excellent feedback from
the field [E7, E11]. Working for data mining applications, I was involved in the TRACE Euro-
pean project (TRAffic Causation Analysis in Europe), mining one of the largest databases for
car accidents in Europe, the German In-Depth Accident Study data base (GIDAS). Within the
framework of this project, we introduced a greedy algorithm based on a mutual information
ratio to quantify the root causes of car accidents [E2, C8].

In October 2009, I was offered an associate professor position at Paris Diderot University in
the Laboratoire de Probabilités et Modèles Aléatoires (LPMA). This environment provided me
the opportunity to discover and to investigate new research directions based on mathematical
statistics. With K. Tribouley, we introduced a test procedure to compare tail indices and applied
this procedure to compare the risk behaviors of a panel of different financial data [A7]. Chal-
lenging `1-penalization methods, a very effective procedure with no optimization, were devel-
oped for prediction in high dimension, in collaboration with D. Picard [A8, A12], and extended
to the case of grouping variables [A9]. This model was used in the functional regression frame-
work to model and forecast intra-day electrical consumption signals, within the framework of
a scientific partnership with RTE2 [A11, A13]. A software was also developed and delivered
to RTE. During the same time, collaborations with the CEA were initiated, with S. Delattre, to
develop dedicated estimation end interpolation tools for thermodynamic experiments [C9].

My former experience in the R&D of industrial applications strongly influences my research
today. My aim is towork onnew statistical ormachine learningmethods butwith an operational
purpose always in mind. My extensive experience both in research and in development helped
me to create a link between academic skills and industrial issues. The need for Data Science and
predictivemodeling in private companies has increased in recent years andmany opportunities
in this area have emerged for public laboratories. However, I find that it is always a challenging
task to successfully develop innovative scientific research and to respond, at the same time, to
a real operational need. From my point of view, specific structures are still needed to make

2Résau de Transport d’ Electricité

viii



the bridge between the two worlds and to transform statistical innovative methods into useful
operational software. Since I have returned to my associate professor/researcher position at
the university, I havemade significant efforts to develop original scientific collaborations within
the academic framework with Snecma (2009), Air Liquide (2010), RTE (2011-2015) and the CEA
(2012-2015).

Since 2014, I supervise the PHD thesis of Mina Abdel-Sayed, in collaboration with G. Faÿ,
Centrale Supelec, and SAFRAN for the detection of potential failures in high dimensional spec-
trograms [C10].

Teaching activities
At Paris X, I introduced the use of software computation and statistical software very early

in 1992 to teach statistics in the Mathematics Department. The lectures, created for and ad-
dressed to Master students, were quite innovative at that time and I was invited to present that
experience in international workshops [T1-T3]. I deeply rely today on the practical experience
I acquired through my previous industrial collaborations for my lectures. The pedagogical line
I have built over the last years prevents me from introducing statistical theory without present-
ing any application perspectives or practical software applications. Starting with any type of
numerical operational data, I aim at interacting with the students about the practical function-
alities that can be implemented using statistics or machine-learning methodologies. I provide,
at the same time, the related benefits or drawbacks of uses in potential applications [T4]. Due to
the recent emergence of various open databases, this approach ismuch easier to carry out today.
I use a similar approach for undergraduate andMaster students, obviously with differences de-
pending on their academic background. Consistent with this pedagogical point of view, I was
asked to give lectures at the Master level at Paris Diderot University (2009-.), at the Ecole Cen-
trale de Paris with N. Vayatis (2008-.) and at the Ecole Normale Supérieure with C. Zalc (2010-.).
At ENS, I developed a dedicated course for using statistics in the research of students working
in other divisions (geographic, social and human sciences).

Tremendous and rapid progress in the implementation of automatic decision making pro-
cesses can be easily made within the industry by introducing dedicated and appropriate teach-
ing linked to the presentation of real operational applications and their associated added value.
To address this specific need, the Snecma Company asked me to create a three-day data mining
and predictivemodeling course to help aeronautic engineers to apply statistics and datamining
tools to their research activities, which took place in 2013, and which should soon be extended
to other divisions.
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Introduction

As mentioned by Breiman [2001] fifteen years ago, there are "Two cultures in the use of statistical mod-
eling to reach conclusions from the data". The first culture found its roots in the mathematical and
statistical community and is mostly interested by a theoretical research in statistics "exploring inference,
hypotheses testing and asymptotic" and today "oracle inequalities". The second culture emerged nearly
fifty years ago initially driven by the computer science and the electrical engineering community. At
the opposite of the first one, this culture deals with algorithmic modeling to catch relationships between
inputs and outputs. Model validation is exclusively performed by predictive accuracy, measured on raw
data [Vapnik, 1982]. For a long time, these two cultures have worked beside each other. Besse et al. [2001]
have provided an introduction to Data Mining in the form of a reflection about the interactions between
Data processing and Statistics collaborating in the analysis of large sets of data. From both sides, practical
and theoretical interrogations have progressively emerged such as:

-How is it possible to use in practice the conclusions of a theorem which "assume that the data are
generated by the following model...? [Breiman, 2001]

-Are the theoretical assumptions, which explicitly guarantee asymptotic convergence or oracle in-
equalities, computable? in a given time?

-Could we propose heuristics to calibrate theoretical parameters, to link theory and practice?
-Should we trust the prediction results provided by a "black box" calibrated on data without theoret-

ical guarantee on the underlaying statistical distribution ?
-Can we industrialize softwares based on statistical or machine learning algorithms?

Since the beginning of my career, I have felt the need to mix the two cultures and my successive
works have progressively formedmyviews about algorithmic and theoreticalmodeling. Thismanuscript
presents selected examples of my contribution to possible answers to the previous questions.

Inspired by the practical use ofHighDimensional (HD) linearmodels, the first chapter of thismanuscript
presents an alternative procedure to the `1 penalizationmethod (LASSO) called Learning Out of Leaders
(LOL), developed in collaboration with G. Kerkyachariana, D. Picard and K. Tribouley. This procedure
is simply based on thresholding to estimate the coefficients of a sparse model, and does not need any op-
timization step. As Restricted Isometric Properties (RIP) or restricted eigenvalues conditions [Bühlmann
and Van De Geer, 2011] are needed to prove oracle inequalities for the LASSO, the theoretical behavior
of the LOL procedure is driven by a simple index, called the empirical coherence, which can be easily
computed from the data. The consistency relies on exponential bounds, leading to minimax and adap-
tive results for a wide class of sparse parameters, with (quasi) no restriction on the number of regressors.
Benefits of using the LOL procedure are particularly apparent in ultra large dimensions when the com-
putational optimization cost of the `1 procedures may be a potential hurdle. To make a bridge between
the theoretical setting and the practical use of the procedure, we have introduced a heuristic, to be able to
compute data driven thresholds. Implementation for large experimental designs or for real applications
demonstrates the ability of the procedure to yield adapted calibration values.
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In 2011, V. Lefieux and L. Teyssier-Maillard from the Research andDevelopment department of RTE4

asked us a practical question: "Is it possible to built forecast models in the electricity consumption field which
would rely on very few parameters and would be easy to calibrate -without the need of human expertise- and which,
at the same time, would show good performances?". Theoretical and practical advances were required in
order to meet RTE’ s demands and chapter II presents an application of the functional use of the HD
regression model to approximate and to forecast the intra day load curves using sparse linear models.
Data mining on an historical set of data was first performed to catch relevant functional features, which
appeared to be essential to built sparse models. The final forecast was computed using an aggregation of
different forecast experts. A software is currently running at RTE which investigates the performances
of the methodology on new operational data.

In the hope of taking advantages of a prior knowledge, group structures may be introduced in a re-
gression model. Chapter III shows that the LOL procedure can be easily extended to estimate or discard
groups of coefficients with a theoretical behavior similar to the Group Lasso, but again with a cheaper
computational cost as in Chapter I. When no prior relation is imposed on the design, a major and diffi-
cult question is how to infer such a good structure automatically from the data, in order to improve the
prediction performances. To optimize the rate of convergence of the Group LOL procedure, with D. Pi-
card and K. Tribouley, we proposed a Boosting Grouping strategy to reorganize the initial predictors into
relevant groups. This data driven strategy addressed the question of choosing the number of groups, as
the distribution of the initial predictors across the groups by scattering then gathering the variables. A
software package of the Group LOL algorithm has been developed and used on an experimental neuro-
science data set by [Mairal and Yu, 2013]. Complementary numerical experiments showed the practical
benefits of the Boosting Grouping strategy.

At the opposite of mathematical statistics, a Data Science project does not start with mathematical
assumptions but with raw data and operational requirements as recently underlined byWickham [2014].
The final statistical model is often the "tip of the iceberg" and can not even emerge if a large part of the
work is not previously devoted to exploration, cleaning, pre-processing... Based on my 6 year expe-
riences at Miriad Technologies start-up and my long experience in academic/industrial collaborations
since 1999, the last chapter focuses on embedding statistical or machine learning algorithms within in-
dustrial software applications. For illustration, two success stories of monitoring, based on predictive
modeling, are presented, which started as proof of concepts and finally led to softwares, deployed in the
industry for daily uses. In the Miriad Technologies framework, we developed, the SPEC software, which
provides a methodology to monitor and to diagnose overconsumption for large compressors working
in the industry. Within the European project ADHER, we developed a software to provide Automatic
Diagnosis for Helicopter Engines and Rotating parts.

4This work has been realized thanks to contractual collaborations with Réseau transport électrique (RTE) from
2010 to 2015
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Chapter 1

High dimensional linear models

The work presented in this chapter has been performed through a collaboration with G. Kerkyachariana,
D. Picard and K. Tribouley. It has been published in:

A12 M.Mougeot, D. Picard, K. Tribouley. (2014) LOL selection in high dimension. Computational Statistics
& Data Analysis p 743-757.

A8 M. Mougeot, D. Picard, K. Tribouley (2012) Learning Out of Leaders. J. R. Stat. Soc. Ser. B Stat.
Methodol. p 1–39.

A5 G. Kerkyachariana, M. Mougeot, D. Picard, K. Tribouley. (2009) Learning Out of Leaders. Multiscale,
Nonlinear and Adaptive Approximation (2009), p 293–322.

—

Today, it is usual to observe data sets with more variables than the number of observations. For
example, in aeronautics, high dimensional spectrogram images are generated for few engine tests [C10]
and in genomic, gene expression are often studied given a huge number of initial genes compared to a
relatively low number of observations [Bickel et al., 2009a]. High Dimensional (HD) models have today
a lot of practical applications.
The linear model:
A simple yet very useful model is the linear model:

Yi = Xiβ+ εi (1.1)

where Yi is the target variable and Xi = (Xi,1, . . . , Xi,p) are the p covariates (where the constant param-
eter is included, Xi,1 = 1) and εi is a non observed random Gaussian error,N(0, σ2)with {εi, 1 ≤ i ≤ n}
independent. The unknown parameters β ∈ Rp are frequently estimated by minimizing the `2 norm
(which may be normalized by the number n of observations):

β̂OLS = min
β

1

n
||Y − Xβ||2`2

where Y is a (n, 1) vector containing the target observations, X is the (n, p) design matrix and β is the
(p, 1) coefficient vector.

Various objectives can lead to analyze data using a linear model:
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High dimensional linear models

- regarding data mining applications, information about the "most" significant coefficients, brings
knowledge about the important features which linearly explain the target [Guyon and Elisseeff,
2003]. For example, for the European TRACE project, (generalized) linear models were, in partic-
ular, studied to understand the TRaffic Accident causations in Germany [E2].

- Regarding predictive modeling applications, once the coefficients β̂ are estimated, and given new
values of the co variables xnew, the target prediction, ŷnew = ynewβ̂, may be computed and used,
for example, for forecasting purpose as to predict the intra day load curves in the electricity area
[A13].

- knowing the observed value of the target, ynew may help for the monitoring or diagnosis of this
new observation based on the residual analysis of ynew − ŷnew [C5, E11] as develop in the SPEC
or the ADHER project.

When the number of observations exceeds the number of variables (n > p), and when the variables are
not correlated, the covariance matrix XtX is of full rank p. The solution is, in this case, unique and well
known: β̂ = (XtX)−1XtY.
The High dimensional linear model:
When the number of variables is large compared to the number of observations (p > n), or when strong
linear dependencies exist, the covariance matrix XtX is non invertible. As it is technically possible to
compute a particularly solution of β̂ with the help of the pseudo-inverse, this method does not provide
any feedback on the informative variables, because of the existence of an infinity of solution. In the "p>n"
setup, it is however often the case that a small number of variables brings a substantial explanatory power.
Such models which a small number of variables are more interpretable and often preferred. To achieve
an accurate estimation, one needs to select the "right" variables and so to determine which parameters
βj, j = 1, . . . , p are not equal to zero. A first approach is to introduce some constraints on the number of
coefficients and to compute β̂ by solving:

min
β

1

n
||Y − Xβ||2`2 subject to ||β||`0 ≤ s (1.2)

where ||β||`0 is the number of nonzero components of β and s > 0 a positive parameter. Solving 1.2 is a
NP-hard problem and this is not a scalable approach in the high dimensional setup.

1.1 `1 penalization

The Lasso.
In 1996, the Lasso1 fundamental paper of Tibshirani brings a first practical answer to the untractable
"n>p" setup by replacing the non convex `0 normwith the `1 convex norm [Tibshirani, 1996] and proposes
to compute β̂ by solving:

min
β

1

n
||Y − Xβ||2`2 subject to ||β||`1 ≤ s (1.3)

which is equivalent to minimize the Lagrange form:

min
β

1

n
||Y − Xβ||2`2 + λ||β||`1 (1.4)

where λ ≥ 0 is a regularization parameter. Because of the nature of the `1 constraint on the coefficients,
making the regularization parameter λ value "sufficiently" large induces some of the coefficient values

1Least Absolute Shrinkage and Selection Operator

6



`1 penalization

to be theoretically exactly zero and provides a sparse solution [Tibshirani, 1996]. From a computational
point of view, in contrast to the `0 norm, which requires an exhaustive search, the Lasso optimization
problem can be solved more efficiently by solving a quadratic programming. When the goal is to select
an appropriate value for λ by cross validation, the LARS algorithm introduced by Efron et al. [2004]
uses a regularization path, to compute an estimation of βλ for many values of λ, with a computational
complexity of the order of O(npmin(n, p)).

The Dantzig selector.
In 2005, the Dantzig selector introduced by Candes and Tao [Candes and Tao, 2005], proposed to solve
the `1 minimization on the coefficients with a regularization on the residuals:

min ||β||`1 subject to |
1

n
XT (Y − Xβ)|∞ ≤ λ (1.5)

Both procedures Lasso and Dantzig are computationally efficient and adapted to the high dimen-
sional setup. The Lasso procedure can be achieved using a quadratic program and the Dantzig proce-
dure using a linear program. Either from a theoretical or from a practical point of view, they exhibit
similar behavior [Bertin et al., 2011, Bickel et al., 2009b, Efron et al., 2007].

Key assumptions.
To guarantee nice statistical properties for the Lasso or the Dantzig procedures, key assumptions on the
sparsity of β and on properties of the Gram matrix are needed. Different types of indices have been
introduced these last years to provide assumptions on the Gram matrix, G = 1

n
XtX, and to prove ora-

cle inequalities. A detailed overview of all these restrictive assumptions for prediction and selection is
available in [Van De Geer et al., 2009]. Massart et al. [2011] analyze the performance of the LASSO as a
regularization algorithm rather than a variable selection procedure.

Candes and Tao [2005] introduced the first indices, the S-Restricted Isometry Constant, δXS , and the Re-
stricted Orthogonality Constants, θS,S ′ , to characterize a design matrix X for sparse recovery purpose:

− δXS , is defined by the smallest number such that (1 − δXS )||β||22 ≤ ||Xβ||22 ≤ (1 + δXS )||β||
2
2 for every

vector β ∈ Rp with ||β||`0 ≤ S.

− θS,S ′ computes the restricted correlations between two sparse vectors α,β ∈ Rp with disjoint sets
and is defined as the smallest quantity such that | < Xβ,Xα > | ≤ θS,S ′ ||β||`2 ||α||`2 with ||α||`0 ≤ S
and ||β||`0 ≤ S ′ Small values of restricted orthogonality constant indicate that disjoint subsets of
covariates span nearly orthogonal subspaces.

Theoretical results.
For the Dantzig selector, Candes and Tao [2007] first established oracle inequalities in selection, Under
Uniform Uncertainty Principle (UUP), which roughly said that for any small set of predictors, the S vectors
are nearly orthogonal to each other, and that the model is identifiable.

Theorem 1 (Candes and Tao [2007]). Considering X a (n, p) design matrix, for any S sparse vector, β ∈ Rp,
such that (δ2S + θS,2S < 1), when choosing λ =

√
2σ2 log(p)/n then with large probability, the estimation β̂

computed with the Dantzig selector obeys:

||β− β̂||2`2 ≤ �Sσ2
logp
n

where � represents a universal constant.
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Donoho [2006], Meinshausen and Yu [2009] introduced another index, called the S-sparse minimal
eigenvalue of G, ϕmin(S), to characterize the sparsity of the design:

ϕmin(S) = minβ:||β||`0≤bSc
βTGβ
βTβ

.

Restricted eigenvalues assumption leads also to similar oracle inequalities (but with different universal
constants) for the Lasso or the Dantzig procedure in selection (similar to theorem 1) or in prediction
(theorem 2), [Bickel et al., 2009b, Meinshausen and Yu, 2009].

Theorem 2 (Bickel et al. [2009b]). X is a (n, p) design matrix. For any S-sparse vector of parameters,β ∈ Rp,
such that ϕmin(2S) > cθS,2S, c constant, when choosing λ = A

√
σ2 log(p)/n, A > 2

√
2, then with large

probability, the prediction Xβ̂ computed with the Dantzig selector or the Lasso, obeys:

||Xβ− Xβ̂||2`2 ≤ �Sσ2 log p

where � represents a universal constant.

The relations between all previous indices are discussed in Bühlmann and Van De Geer [2011].

From a practical point of view, the restricted isometry, orthogonality, or eigenvalue indices are unrealistic
to verify for a given designmatrixXwhenp is large andwhen the number of coefficients S is not too small.
Computing the S restricted isometry constants δS of the design matrix for all subset variables is equaled

to
(
S
p

)
. However, it should be mentioned that the bounds of those indices are theoretically known

for some specific matrices as Gaussian ensembles [Candes and Tao, 2005]. The Gaussian assumption is
usually not verified in real life applications and checking those conditions is (currently) intractable.

Candès and Plan [2009] introduced the empirical coherence τn to prove oracle inequalities for the
Lasso procedure, defined by:

τn = sup
6̀=m

| < X.,`, X.,m > |

||X.,`||`2 ||X.,m||`2

A condition on the coherence, τn ≤ �/ log(p), associated with a sparsity assumption on β, β ∈ Rp

(||β||`0 || ≤ S) and S ≤ �p/||X||2 log(p)) shows that the Lasso estimate with λ = 2
√
2log(p)/n has, with a

large probability, a prediction `2 error similar to theorem 2.
At the opposite to other indices, the empirical coherence can be, in practice, easily computed to check

the theoretical assumptions.

Theorem 3 (Candès and Plan [2009]). ConsideringX an (n, p) design matrix with τn ≤ c/ log(p) (c constant)
and the parameter β ∈ Rp taken form the generic S sparse model, (||β||`0 || ≤ S), such that S ≤ c0p/[||X||2 log(p)],
(c0 constant) the Lasso estimate with λ = 2

√
2log(p)/n, with a large probability, satisfies

||Xβ− Xβ̂||2`2 ≤ �Sσ2 log p

where � represents a universal constant.
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Two-step procedures
Using the Dantzig or the Lasso procedure with a regularization factor defined as in Theorem 1 leads
to bias in estimating the sparse regression coefficients [Candes and Tao, 2007]. To reduce the bias, two-
step procedures involving `1 penalization, have been introduced in the HD regression framework. The
penalizedmethods are first used to select a first bunch of co variables, then the final estimated coefficients
are computed by OLS on the pre-selected variables [Candes and Tao, 2007, Candès and Plan, 2009].

Fan and Lv [2008] provide an alternative two-step procedure called Sure Independence Screening
(SIS) for a HD linear model. The SIS procedure selects the "first most" correlated covariates with the
target variable Y (in absolute value), then the coefficients of the restricted model are estimated using the
Dantzig Selector or the Lasso. Using an intensive simulation, they showed the benefits of a first selection
of variables before using the Lasso.

The Dantzig or the Lasso procedures both rely on optimization. In ultra-large dimensions, the compu-
tational optimization cost of these procedures is a potential hurdle ant it is therefore interesting to study
procedures well designed for ultra-high dimensional models, associated with easy checkable conditions
on the data.

1.2 Thresholdings

In a joint work with D. Picard and K. Tribouley, we developed an alternative procedure for the linear
model in the "p>n" setup, without any optimization phase and with easily checkable assumptions. The
essential motivation was to provide a very simple procedure, based on a small number of thresholding steps
easy to use in practice and with good theoretical properties. This procedure, called Learning Out of
Leaders (LOL), can be viewed as a simple "explanation" of `1-minimizations [A8].

1.2.1 Learning out of Leaders
In the LOL procedure, the design matrix X is assumed to have normalized columns such that:

1

n

n∑
i=1

X2i` = 1, ∀ ` = 1 . . . , p. (1.6)

For clarity, the procedure is here presented with the help of a pseudo-code. As input, the LOL pro-
cedure requires data for the target Y, the designmatrix X, and the value of two tuning parameters λ1 and
λ2 which define the level of the thresholds. The outputs of the procedure are the estimated coefficient β̂
and the predicted target Ŷ = Xβ̂.

(Ŷ, β̂)← LOL(X, Y, λ1, λ2)

Table 1.1: Definition of LOL procedure: input= (X, Y, λ1, λ2), output= (β̂, Ŷ)

• Initialization. An upper bound on the number of predictors, N∗, that may be selected during the
procedure is computed. This bounddepends on the empirical coherence τn and on a precision parameter
ν (Table 1.2):
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ν = 0.5 for example ν ∈]0, 1[
τn ← n−1 max` 6=m |

∑n
i=1 Xi`Xim| empirical coherence

N∗ ← b ν
τn
c upper bound for the cardinal of the leader set

Table 1.2: LOL initialization part.

The theoretical performances of the LOL procedure are driven by the empirical coherence as will be
presented in theorem 4. In practical applications, the value of this index is used to check the ability of
LOL to perform the regression, before any computation.

• Step1: thresholding. The LOL procedure solves the problem of the choice of the regressors in a
crude way by adaptively selecting the regressors which are the "most correlated" with the target and
which shown an absolute correlation higher than the λ1 threshold. The selected regressors are called
"the leaders".

For ` = 1 : p
β̃` ← 1

n

∑n
i=1 Xi`Yi Compute the ’correlations’

β̃`
∗ ← β̃`I{|β̃`| ≥ λ1} Threshold

EndFor
B ← {`, β̃`

∗
6= 0} Set of leaders

If #B > N∗
indices← order(|β̃|) Order the largest ’correlations’
B ← indices[1 : N∗] Take the indices associated to the N−th largest

End(if)

Table 1.3: "Find the leaders" (LOL/step1)

• Step2: OLS.As the number of leaders is then lower thanN∗ (and not correlated for small empirical
coherence), the regression is now stable, and LOL procedure regresses the target on the leaders (Table
1.4):

β̂|B ← (Xt|BX|B)
−1Φ|BY {Least square estimators}

Table 1.4: Ordinary Least Square on the leaders (LOL/step2)

• Step3: thresholding. The LOL procedure thresholds again the estimated coefficients taking into
account, at this step, the noise level (Table 1.5).

The second step selects then the most significant coefficients given the noise of the model. When the
value of the empirical coherence is weak (close to zero), τn ∼ 0 and when the covariables are normalized
1.2.1, it should be noted that the correlations computed, at step 1, provide a direct estimation of the
coefficients: β̂ ∼ XtY/n.
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β̂∗|B ← β̂|B I{|β̂|B | ≥ λ2} Threshold
β̂∗|Bc ← 0

Table 1.5: Last thresholding on the estimated coefficients (LOL/step3)

Illustration of the Learning Out of Leaders procedure
The following examples outline the simplicity of the LOL procedure. We consider the classical frame-
work where the predictors are realizations of Gaussian variables. Observations are simulated from the
model Y = Xβ + ε, ε is a Gaussian vector with a Signal over Noise Ratio equaled to 5 (SNR = 5). To
facilitate the model interpretation, we take S nonzero coefficients equaled to βl = 2. A high sparsity
example (S = 10, left figures) and a lower sparsity example (S = 50, right figures) are analyzed for a HD
framework with n = 400 and p = 2000 (τn ∼ 0.25).

Figure 1.1 illustrates the first step of LOL for the selection of the leaders. All the scalar products |X`tY|
for ` = 1, . . . p = 2000 are computed and represented on the graph; the threshold λ1 is indicated with a
horizontal line (the data driven calibration of the threshold will be discussed later). The leaders, above
the λ1 threshold, are labeled with a small blue cross. The variables which should be rightly selected are
indicated with a green dot (true model). When the sparsity is high (S small as in the left part of figure
1.1) and when the predictors are independent, the values of the scalar products of the predictors, really
involved in the model, are close to the value of the coefficients |β`| ∼ 2.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

Figure 1.1: < X`, Y >, ` = 1...p, p = 2000, n = 400. Left: S = 10; right: S = 50. The horizontal
line is the first auto-driven threshold, λ1.

We observe that, in Figure 1.1 left, the reduction of the dimension is very high, after the first step
of the procedure: N = 144 leaders over the p = 2000 initial predictors are selected. In this case, the
variables, associated with a (real) nonzero coefficient, are all selected in the leader set. In the right part
of Figure 1.1, the sparsity decreases to S = 50, some scalar products associated to theoretical significant
coefficients fall under the threshold λ1, the corresponding variables are not selected as leaders during
the first thresholding step. In this case, three variables, which should be kept, are eliminated during the
first step and are definitively lost for selection.

Figure 1.2 illustrates the effect of the second thresholding on the estimated coefficients after OLS. For
the S = 10 experiment, the set of zero and nonzero coefficients β̂` are well separated. The procedure
performs in this situation quite well neither false positive (FP) nor false negative (FN) are observed.
For the right experiment, the separation between both clusters is not so straight and misses detections
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(triangular pattern) as false detections (cross not circled) are observed and in this particularly case FN= 8
and FP= 7.
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Figure 1.2: Estimations of β` coefficients with p = 2000, n = 400. Left: S = 10. Right: S = 50.
The horizontal line is the last auto-driven threshold, λ2 (see calibration section).

1.2.2 Main theoretical results
It is well known that, when the regressors are normalized and orthogonal, `1-minimization corresponds
to soft thresholding which itself is close to hard thresholding [Bühlmann and Van De Geer, 2011]. In this
case, it is natural to expect that thresholding should perform well, at least, in cases that are not too far
from the orthonormal conditions which correspond to small coherence conditions.

The following sections present the theoretical performances of the LOL procedure in prediction and
in selection. Two different viewpoints are presented: when the empirical coherence is supposed to be
upper bounded by

√
log(p)/n or not.

For prediction, the criterion of performance, denoted byd(β̂∗, β)2 is defined as the empirical quadratic
distance between the predicted variables and their expected values:

d(β̂∗, β)2 =
1

n

n∑
i=1

(
Ŷi − EYi

)2

case 1: Sparsity assumption and upper bounded coherence

The sparsity constraint on β is introduced using the sets B0(S,M) (or Bq(M)),M > 0, [A8] where:

Bq(M) := {β ∈ Rp, ||β‖lq ≤M} for q ∈ (0, 1],

and

B0(S,M) := {β ∈ Rp,
p∑
j=1

I{βj 6= 0} ≤ S, ‖β‖l1 ≤M}.

For simplicity, theoretical results are stated only with the B0(S,M) constraints on the coefficients.
Complementary results using lq balls constraints may be available in [A8].
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When the empirical coherence is not too high (upper bounded), the LOL procedure is able to provide
a consistent estimation of Y = Xβ + ε, by choosing the adequate thresholds λ1 and λ2, even in ultra
high dimension, when the ε vector is assumed to be independent Gaussian variables N (0, σ2) (or sub
gaussian). The following exponential bounds are obtained [A8]:

Theorem 4. Assuming that the coherence τn ≤ c
√

logp
n

, the number of covariables p ≤ exp(c ′n), and choosing

the thresholds λ1 = C1
√

logp
n

and λ2 = C2
√

logp
n

, we get for any S < ν/τn:

sup
β∈ B0(S,M)

P
(
d(β̂∗, β) > η

)
≤

 4e−γnη
2 for η2 ≥ D S logp

n

1 for η2 ≤ D S logp
n

where ν is a fixed parameter and c, c ′, C1, C2, D, η are positive constants.

The "naive" approach, proposed by the LOL procedure, requires to have a strong assumption on the
value of the empirical coherence (τn ≤ O(

√
log(p)/n)) in contrast to many `1 basedmethods which only

require to have the coherence upper bounded by some constant or by the inverse log-dimension (τn ≤
c

log(p) , c constant) as previously presented. The theoretical framework of LOL implies to be very "close" to
an identity correlation matrix, in which case the predictors are decorrelated and standard thresholding
methods for orthonormal bases may be applied.
Corollary 1. Under the same assumptions as in Theorem 4, we have:

sup
B0(S,M)

Ed(β̂∗, β)2 ≤ �
(
S log p
n

)
.
• For variable selection, LOL has also the ability to recover properly the regression coefficients:

Theorem 5. Under the same assumptions as in Theorem 4, we have

sup
B0(S,M)

E‖β̂∗ − β‖2l2 ≤ �
(
S log p
n

)
.

The convergence rates for the `2 prediction or estimation error are similar to those obtained for `1-
penalization method (theorems 1, 2).

Under the coherence assumption: τn ≤ c
√
log(p)/n, essential to ensure the RIP conditions, the LOL

procedure is minimax [A8].

Focus on the first step:
To emphasize the role of the first step of LOL (in comparison to SIS for instance), we give results

concerning the LOL procedure deprived from its second step by enforcing λ2 = 0.

Theorem 6. Assume that p ≤ O
(√

n
logn

)
and τn ≤ c

√
logn
n

, choosing the thresholds λ1 = C1

√
logn
n

and

λ2 = 0, such that, we get for any S < ν/τn:

sup
B0(S,M)

Ed(β̂,β)2 ≤ �
(
S logn
n

)
.
where ν in (0, 1) is fixed and c, C1, D are positive constant.

13



High dimensional linear models

When the number of regressors p is small, theorem 6 shows that LOL deprived from the second
thresholding remains optimal.

case 2: Sparsity and threshold assumption

This section describes another perspective on the performance of LOL. We do not assume anymore that
the empirical coherence is upper bounded and satisfies τn ≤ c

√
log(p)/n and the values of the thresh-

olds λ1 and λ2 are known.

The assumptions concern the set V(S,M) of parameters β defined by :

1. The `1 norm of the coefficients is bounded by a positive parameterM: ‖β‖l1 ≤M,

2. The Sparsity is defined by the small number of "significant" coefficients, S such that:
# {` ∈ {1, . . . , p}, |β`| ≥ λ2/2} ≤ S

3. which does not exceed the maximum number of leaders, N∗, selected in the algorithm:∑
(`)>N∗ |β(`)| ≤ c1

(
S logp
nτn

)1/2
4. The biais of leader selection does not exceed the target rate:∑p

`=1 |β`|
2 I{|β`| ≤ 2λ1} ≤ c22

S logp
n

The right exponential decreasing of the confidence is here achieved on a set V(S,M) of β parameters:

Theorem 7. Let S,M > 0, fix the precision ν in (0, 1). If λ1 ≥
(
T1

(
logp
n

)1/2
∨ T2 τn

)
and λ2 ≤ λ1 (T1,

T2 positive constants) then:

sup
α∈ V(S,M)

P
(
d(β̂∗, β) > η

)
≤


4e−γnη

2 for η2 ≥ D
(
S logp
n

∨ Sτ2n

)
,

1 for η2 ≤ D
(
S logp
n

∨ Sτ2n

) (1.7)

D and γ positive constants depending on ν, σ2,M, c0, c1, c2.

The following corollary details the behavior of the expectation of the average prediction error for the
LOL procedure, in this case.

Corollary 2. Under the same assumptions as in Theorem 7, we get

sup
V(S,M)

Ed(β̂∗, β)2 ≤ �
(
S log p
n

∨ Sτ2n

)
for some positive constant D′ depending on ν, σ2,M, c0, c1, c2 and r.

Theorem 7 reflects the theoretical behavior of LOL for prediction, even in case of deterioration due
to high coherence or a bad choice of the thresholds. The value of the empirical coherence, which can be
easily computed on the data, warns the user, before any computation, of the quality of the result. This
is a tremendous benefit compared to other assumptions often used for `1 penalization methods. For a
very low empirical coherence value, the complexity of LOL procedure is smaller than most optimization
methods.
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Comparison with other two-step procedures
The LOL procedure can be connected to the family of orthonormal matching pursuit algorithms as well
as to the greedy algorithms [Needell and Tropp, 2009, Tropp and Gilbert, 2007]. The main advantage of
LOL compared, with this kind of algorithms, is that there is no iterative search for the leaders. All the
leaders are selected in one shot and the procedure stops just after the second step.

Comparing LOLwith other two-step procedures as for example, SIS2-Dantzig, SIS-Lasso, SIS-SCAD3,
shows that the second step of LOL is much less sophisticated since it consists of computing a least square
estimate followed by thresholding. In SIS, the purpose of the first step is essentially to reduce the number
of variables, to stabilize and improve the performances of the subsequent optimization algorithms (Lasso,
Dantzig or SCAD), so it is truly a preprocessing, as it does not affect the theoretical results since the
Dantzig, Lasso or SCAD are already optimal procedures. In SIS, many more regressors are kept since
the default value is comparable with n log(n), whereas the number of leaders in the first step of LOL
is bounded by N = ν/τn, which in standard cases is comparable to

√
n/log(p). In LOL, the first step

affects the results in amuch strongerway than for SIS. The second step is not even conceivablewithout the
strong primary variable selection ensuring that thresholding the least square estimate of the coefficients
has a meaning (which is not so when it is not uniquely defined).

Of course, as for SIS - giving rise to iterative SIS- LOL can be iterated, and iterative LOL may be also
an interesting algorithm. LOL is trading computational complexity for statistical control.

1.2.3 Heuristics for calibration
The (λ1, λ2) thresholds are critical parameters for the LOL procedure. The quality of the results depends
directly on their values (or their choice). Unfortunately, their theoretical values depend on constant (or
parameter as for example σ2), which are unavailable in practice. At this stage, even if LOL seems to be
an appealing procedure from a theoretical point of view, it is perfectly useless if we can not propose a
data-driven methodology to calibrate, in practice, those parameters. This is a remaining question which
appears for many procedures as for the Lasso or the Dantzig procedures for concerning the choice of the
value of the regularization parameter. The performance of the final linearmodel directly depends on this
critical choice. Cross validation is often used to compute adequate data-driven parameters [Arlot et al.,
2010, Hastie et al., 2009]. In model selection, Birgé and Massart [2007] proposed the "slope heuristic"
data driven procedure to calibrate the penalty [Baudry et al., 2012]. Donoho and Jin [2008] proposed to
the high criticism thresholding to achieve optimal phase diagram.

For the LOL procedure, a challenging question is how to choose the threshold based on the data?
At step 1 of the procedure, the sparsity and the coherence assumptions suggest that the law of the
cross-product (in absolute value) should be a mixture of two distributions: one for the "leaders" (high
correlations- positive mean) and one for the others (very small correlations- zero mean). Since the
first threshold λ1 is used to select the leaders, we propose to adaptively split the set of "correlations"
{K`, ` = 1, . . . , p}, into two clusters in such a way that the leaders are forming one of the two clusters.
Many algorithms can be used to split an empirical distribution into two clusters regarding some hypoth-
esis on the underlying data (gaussian mixtures) or not (K means, K = 2), hierarchical clustering...

Inspired by the work of Breiman et al. [1984], we propose the following heuristics, based on the
deviance function, to compute the thresholds. The boundary between the clusters is computed by min-
imizing the variance between the two classes after computing the absolute value of the correlations.
More precisely, the correlations between each covariate Xj, 1 ≤ j ≤ p, and the target Y are computed,
Zj = | < Xj, Y > | then ranked |Z|(1) ≤ |Z|(2) ≤ . . . ≤ |Z|(p).

2SIS: Sure Independence Screening
3Smoothly Clipped Absolute Deviation
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We consider the deviance function defined by:

dev(JZ) =
J∑
j=1

(
|Z|(j) − |Z|

(J−)
)2

+

m∑
j=J+1

(
|Z|(j) − |Z|

(J+)
)2

where |Z|
(J−)

and |Z|
(J+)

are the empirical means of the |Z|(j)’s for respectively j = 1, . . . , J and j =
J+ 1, . . . , p. We choose as threshold level

λ1 = |Z|(Ĵ) for Ĵ = Arg min
j=1,...m

dev(JZ).

The same procedure is used to threshold adaptively the estimated coefficients β̂` obtained by linear
regression on the leaders with Z = (β̂1, . . . , β̂m)wherem designs the number of selected leaders. Again
the distribution of the β̂` provides two clusters: one cluster associated to the largest coefficients (in ab-
solute value) corresponding to the nonzero coefficients and one cluster composed of coefficients close to
zero, which should not be involved in the model. The frontier between the two clusters, which defines
λ2, is again computed by minimizing the deviance between the two classes of regression coefficients.

This updating procedure is denoted LOLA for "LOLwith adaptation". This calibrationmethod of the
thresholds was used in all numerical experiments and applications using LOLA algorithm and appears
to bring practically good thresholding values in the high dimensional framework [A8, A11, A12, A13].
In practical applications, an additional algorithmic improvement performs a second regression using the
final set of selected predictors only involved in the model: the estimators of the (nonzero) coefficients are
then slightly more accurate [A8].

1.3 Numerical experiments

When a new statistical procedure is introduced, as the LOL procedure, the practical behavior of the
procedure as the impact of the calibration of the parameters (here the data driven thresholds) needs to
be fully understood. To fulfill this objective, the following experimental design may be advised:

• Before using the procedure for real applications, it is necessary to evaluate its performances in a
practical framework where theoretical assumptions may be checked. In this case, random sim-
ulations of the underlying model are particularly well adapted to evaluate the performances for
selection and estimation for high to ultra high dimension.

• Investigating practical behavior of the procedure when low coherence assumptions are not strictly
satisfied is also particularly informative. This is true for the HD framework when the theoretical
assumptions appeared to be somehow strong compared to some practical results. Observing good
practical behavior of a procedure, evenwhen going beyond the initial theoretical assumptionsmay
help to relax afterwards the former assumptions in the theoretical framework.

• Challenging to similar "off the shelves" solutions is valuable to evaluate if one procedure may
outperform the others in some area.

Before being used for real applications [A11, A13], the LOL procedure has been extensively studied
trough simulations [A8, A12]. We briefly recall the main lessons from the experimental design used for
the LOL procedure. More details can be found in [A8, A12].
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Numerical experiments

Experimental protocol
If not specified, the (n×p)designmatrixX is filledwith i.i.d gaussian variable such that Y = Xβ+ε,β and
the signal over noise ratio is given. For such designmatrix, the empirical coherence valuemay reach large
value: for example: τn ∼ 0.5 for p = 1000 and n = 10. As it is explained before, the value of τn provides
information, before any computation, about the theoretical accuracy of the LOL procedure. Figure 1.3
(right) shows the evolution of the empirical coherence as a function of

√
log(p)/n which may allow to

compute the constant c introduced in Theorem 4. We observe that, for a given number of variables, the
empirical coherence strongly increases when the number of observations decreases.
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Figure 1.3: Y−axis: Average empirical coherence, τn, computed from K = 500 realizations of a
designmatrix filled with iid Gaussian variables. X−axis:

√
n (left) or

√
log(p)
n (right) for p = 100

(dashdot line or triangle -green), p = 1000 (solid line or square -red), p = 10000 (dash line or
circle -blue). K = 500

1.3.1 Ultrahigh dimension
The low complexity of the LOL procedure shows particulary benefits in ultra high dimension, for exam-
ple up to p = 20000 for n = 400 observations. For small sparsity levels, the performances of LOL reach
the inverse of the simulated Signal over Noise Ratio. As expected, the performances decrease when the
values of the sparsity level S/n or the indeterminacy 1− n/p increases [A8].

1.3.2 Two-step procedures
Compared to other two-step procedures (SIS-Lasso, SIS-Scad, Lasso-Reg), the LOL procedure shows also
good behavior. As expected, all the procedure performances depend on the sparsity and on the noise
(SNR). As expected, then LOL procedure shows particularly benefits over the other procedures when
the SNR is small or when the sparsity S is high [A8].

1.3.3 Beyond theoretical assumptions
Embedding real data in a high dimensional framework:
The performances of LOL were evaluated using real data but embedded in a high dimensional frame-
work. The data are "the Communities and Crime data" UCI machine learning data base repository. The
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target variable Y (n = 1000 observations) denotes the total number of violent crimes per 100K popu-
lation and the initial p = 101 regressors included in the data set involve indicators of the community,
such as the percentage of the population considered as urban, the median family income or involve law
enforcement, such as the per capita number of police officers, percentage of officers assigned to drug
units... In order to evaluate the LOL procedure, we first select a benchmark model computed using a
stepwise procedure where it appears that p0 = 14 regressors are finally selected among the p = 101
initial regressors.

The LOL procedure is applied on the previous data, embedded in a high dimensional space by
adding artificially variables whose laws mimic the different underlying statistical distributions of the
p0 = 14 original variables [A12]. Here, we added 1000 independent randomvariables distributed accord-
ing to seven different laws: Normal, lognormal, Bernoulli, Uniform, exponential with scale parameter 2,
Student T(2), T(3) in equal proportion. The final size of the regressors set is then p = 7101. The results
(obtained with K = 1000 runs) in terms of predictive error are particularly satisfactory: the prediction
error computed for LOL procedure (working artificially in high dimension) is similar to the prediction er-
ror computed with the stepwise model (working in low dimension). For the LOL procedure, the error is
0.3519 (0.0070) to be compared to 0.3433 (0) for the OLS methods in small dimensionality p0 = 14. LOL
reduces drastically the dimensionality since the selectedmodels are of size 10.2320 (1.4854). The selected
variables are among the good ones: less than one artificial variable per run (among 7000 candidates) is
wrongly selected [A12].

1.4 Conclusions

The LOL procedure brings a very simple answer to the estimation of the coefficients of a linear model
in high dimension. The theoretical behavior of the procedure depends on assumptions on the design
matrix (via the empirical coherence), on the underlying linear model (via the sparsity of the coefficients,
the noise) and on the choice of two thresholds which are successively applied on the set of cross prod-
ucts between the predictors and the target, and on the estimated coefficients. Associated with the LOL
procedure, we propose a simple heuristic, with no cross-validation, which appears to bring appropriate
calibration values for various applications. However, it should be underlined that the low complexity of
the algorithm has a cost: a strong assumption of the bound of the empirical coherence.

When the low coherence assumption is not satisfied, the theoretical behavior of the procedure is not
guaranteed anymore. However, some numerical experiments demonstrated that the practical uses may
still behavewell. This appropriate behavior has an answer: the empirical coherence depends on the set of
correlations computed between all the normalized predictors, and all correlations do not have the same
"practical" impact in the LOL procedure. Predictors which show strong correlations and which are not
correlated to the target -and so not involved in the true model - will be easily removed at the first step of
the procedure, and consequently will not have any impact on the estimation procedure. On the opposite,
predictors which are both correlated to the target and correlated to some others predictors are selected as
leaders, in the first step. In this case, they induce an instability of the estimation. Introducing a structure
of groups in the linear model answers to the question of dealing with intra and inter correlations and is
presented later in Chapter 3.
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Chapter 2

Functional regression, sparse model
and forecast: application to electrical
consumption

The work presented in this chapter has been performed through a collaboration with V. Lefieux, L.
Maillard-Teyssier from RTE and D. Picard, K. Tribouley from Paris Diderot University. It has been pub-
lished in:

A13 M. Mougeot, D. Picard, V. Lefieux, L. Maillard-Teyssier. (2015) Modeling and Stochastic Learning for
Forecasting in High Dimension. Springer Lecture Notes in Statistics, p161-182.

A11 M. Mougeot, D. Picard, K. Tribouley. (2013) Sparse approximation and fit of intraday load curves in a
high dimensional framework. Advances in Adaptive Data Analysis p 1-23.

—

Nowadays, one big challenge in the industry is to be able to automatically analyze operational data
for decision making processes and forecasting is a major issue. RTE, the French electricity transmission
system operator, is responsible for operating, maintaining and developing the high and extra high volt-
age transmission network. RTE should guarantee the supply. As the electrical power cannot be stored,
anticipating the French electricity demand is crucial and helps to ensure the permanent balance between
generation and consumption at all times. Figure 2.1 shows, as an example, the French National electric-
ity consumption signal during one week of consumption. One major operational need for RTE is to get
every day, for example at 5 pm, a consumption forecast for the next day.

During the last years, the electricity consumption models have been continuously upgraded by inte-
grating more and more variables, including calendar effect, demographic and economic variables [Hyn-
dman and Fan, 2010] as well as weather conditions, thanks to the improvement of the sensor technology
in climatology (wind, satellite cloud cover, grid temperature...). Models have become complex, hard to
analyze, and most of them suffer from an over-parametrization. In a context where electricity consump-
tion strongly evolves, the calibration of all the internal parameters becomes problematic and induces a
low adaptability and reactivity of these kind of models.

Our work began in 2011 with a practical question asked from the R&D department of RTE by V.
Lefieux and L. Maillard-Teyssier. The question was: "Is it possible to built forecast models in the electricity
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Figure 2.1: one week of electrical consumption signal from Monday January 25th to Sunday
January 31th 2010, 30’ sample, horizontal units in hours

consumption field which would rely on very few parameters and would be easy to calibrate -without the need of
human expertise- and which, at the same time, would show good performances?". At that time, there was no
obvious answer, as it was commonly admitted that many contextual variables may be influential for the
electricity consumption prediction. However, it was also known that a robust and efficient prediction has
to rely on a small number of well chosen predictors. With D. Picard and K. Tribouley, we addressed the
RTE questions during two successive academic/industrial collaborations between the LPMA and RTE
from 2011 to 2014 [A11, A13]. To answer the question, we investigated the use of HD sparse functional
regression, first to model, and then to forecast the intra-day load curves. During this project, we devel-
oped a generic method which may be used in other applications requiring forecasting time series which
exhibit regularly noisy patterns over periodic time windows.

Themain steps of themethod are presented hereafter, andwill be developed in the following sections.

1. Data Mining and knowledge discovery of the intra-day load curves. The first task of the project
is dedicated to mine the intra-day load signals on an historical database in order to create relevant
inputs for a predictive model.

• To avoid the effects of dimensionality in the analysis of the set of electrical curves, a first
sparse representation of the functional intra-day signals is provided using a generic dictio-
nary of functions.

• Using the previous sparse representation, the intra-day load signals are studied in a low di-
mensional space and a clustering analysis is performed to check if some underlying statistical
structure may be exhibited in the historical set of signals.

2. Modeling the intra-day load curve.

• Based on the previous cluster analysis, a pattern variable is created, in order to be able to
introduce relevant shape information in the predictive model.

• Besides the pattern variables, exogenous meteorological variables are introduced to built the
final predictive model for the intra-day load curves.

3. Forecasting. The forecast of the intra-day load curves relies on an information retrieval task. For-
mer estimated coefficients are retrieved and are plugged in the predictive model.

• The estimated coefficients are chosen given a strategy which relies on a comparison between
the calendar ormeteorological information of the following day and the same information al-
ready available in the historical database (also nearest neighbormethod). Different strategies
lead to different forecast experts.
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• The final forecast is provided using an weighted aggregation of the bunch of statistical ex-
perts.

This methodology is today available in a dedicated software delivered to RTE for complementary
validation, in a more operational environment [Bourriga and Lefieux, 2014].

2.1 Functional regression and HD linear models

For electrical demand forecasting, various models have already been proposed. Time series analysis
have been widely used through various models as for examples ARIMAmodels [Hagan and Behr, 1987],
[Chakhchoukh et al., 2009], nonparametric regression [Poggi, 1994], neural networks Marin et al. [2002]
and exponential smoothing [Christiaanse, 1971, Taylor, 2010, 2012]. Aggregation of large sets of time
series predictors has also been proposed [Devaine et al., 2013]. Functional data analysis has also been
investigatedwhere the daily electricity load ismodeled as curves [Antoniadis et al., 2006, Cho et al., 2013,
Cugliari, 2011, Devijver, 2014].

In our case, to naturally integrate the strong daily time dependencies observed in the electricity con-
sumption series (Figure 2.1), we model each intra-day signal as a functional data. The entire time series
signal Y is split intoN sub signals (Y1, . . . , Yt, . . . , YN)where Yt ∈ Rn denotes the sub signal of length n
for the tth day: Yt = (Yt,1, . . . , Yt,i, . . . , Yt,n).

Each day t, the curve Yt is modeled in a supervised learning setting where each time unit signal, t,
is considered as a unknown function ft to be learned. As the electricity consumption data are regularly
spaced (issued every half hour), we observe Yt,i, i = 1 . . . nwith n = 48.

The following functional regression model is considered:

Yt,i = ft(i/n) + εt,i for i = 1, . . . , n (2.1)

where εt,i are iid Gaussian N (0, σ2) for some positive constant σ2.
A dictionary made of p functions, D = {g1, . . . , gp} is introduced in order to explain the unknown

function ft, which is the written as:

ft =

p∑
`=1

βt,` g` + ht (2.2)

where the g` functions of the dictionary are normalized with respect to the empirical measure:

∀` = 1, . . . , p, 1

n

n∑
i=1

g2` (i/n) = 1.

and ht is a ’small’ function (in absolute value).
Combining (2.1) and (2.2), the functional regression model is written as follows:

Yt,i =

p∑
`=1

βt,`g`(i/n) + ht(i/n) + εt,i, i = 1, . . . , n

and coincides with the linear model:

Yt = Xβt + ut + εt (2.3)

where X denotes the matrix with general term Xi,` = g`(i/n) and where ut,i = ht(i/n).
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In order to estimate ft, the unknown parameters βt are computed, by minimizing:

||Yt − Xβt||
2
`2

.
In the p ≥ n setup, a sparsity condition on βt should be assumed to solve this problem. The LOLA

algorithm, already presented in the previous chapter is used to select and estimate the coefficients β̂t:

(Ŷt, β̂t) = LOLA(X, Yt)

Performances of the fit of each daily curve Yt is computed using the usual Root Mean Square Error
(RMSE) or the Mean Absolute Percentage Error (MAPE) error, more used in the electricity consumption
field:

RMSEt =

√√√√ 1

n

n∑
i=1

(
Ŷt,i − Yt,i

)2
MAPEt = 100 ∗

1

n

n∑
i=1

∣∣∣∣∣1− Ŷt,i

Yt,i

∣∣∣∣∣
Remark. In the functional regression framework, the consistency of the LOL procedure, already pre-
sented in theorem 4 of Chapter 1 is guaranteed when the ui, 1 ≤ i ≤ n are "relatively small" that is when
one can make the assumption that supi=1,...,n |ui| ≤ c0

√
1
n
with c0 constant. This assumption means

that the curve Yt may be well approximated on the dictionary D [A8].

2.2 Mining the curves using sparse approximation

One week of electricity consumption signal, as presented in Figure 2.1, exhibits daily patterns. These
daily patterns are common when observing times series which correspond to the average of local behav-
iors of users such as consumption or production. The shape of the day characterizes typical behaviors
of electricity consumption. Being able to understand these kind of behaviors on first hand and to link
them, for example, to contextual data on a second hand, is a crucial point which may help to reduce the
apparent variability of the global problem by introducing contextual analysis. Introducing knowledge of
the underlying statistical structure in amodel of fit and forecast will improve themodel performances. In
the field of electricity consumption, it is well known that daily curves are mostly explained by calendar
and climate factors. French electricity consumption is known to be larger in winter than in summer and
typical profiles can be observed depending on the type of days Cugliari [2011]. In most applications, in
order to integrate the calendar information, the set of days is simply split on "apriori" calendar bases.
For example, Taylor [2012] uses a partition of size 20. Splitting the different days into 5 groups (Monday,
Friday, Saturday, Sunday and the others) subdivided by the four seasons Winter, Spring, Summer and
Autumn for French and British consumption data. To study the Spanish consumption, Marin et al. [2002]
use Kohonenmaps to build groups of consumption. We propose here to learn adaptively the representa-
tive ’patterns of consumption’ using the sparse representation of the intra-day curves to avoid the effects
of dimensionality, on a large set of historical data.

2.2.1 Choice of a generic dictionary
The choice of a generic dictionary, D, to get a sparse representation and a good approximation of the
curves is a central issue. At the opposite to the theoretical framework, for ’real’ data, we can not just
assume that an "adequate" dictionary exists, we have also to built it in practice. A fundamental question
is how to choose the functions of the dictionary? Unfortunately, there is no universal answer but it is
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Mining the curves using sparse approximation

however possible to follow some basic guidelines. The nominal shape of the daily signals brings a first
answer. Signals exhibiting smooth periodic shapes may be sparsely represented using trigonometric
bases. When abrupt variations are observed in a relatively short amount of time, Haar functions may
be more appropriate to capture localized irregularities. When the signals exhibit various features as
periodicity and abrupt variations, the choice of a mixed dictionary combining different bases may offer
a sparser representation than using independently on or the other bases.

For the intra-day load curves, different dictionaries of functions were analyzed. As periodicity and
abrupt variations appeared in the signal, Haar, Fourier, Wavelets (DB7) basis and a mixed dictionary
composed of Fourier andHaar functions were tested, and the coefficients were computedwith the LOLA
algorithm. For the French National electricity consumption, N = 2800 sub signals of length n = 48
(half hour sampling) are extracted from the global consumption signal, sampled every half hour, from
January 1st, 2003 toAugust 31th, 2010. The first practical study shows that the average sparsity, S̄ strongly
differs between the dictionaries, from a highest sparsity for Fourier basis equaled to S̄trigo = 5.5 to a
lowest sparsity for DB7 basis equaled S̄DB7 = 9.4 [A11]. Haar and DB7 dictionaries seem to be the
less appropriate bases because they need in average more coefficients, and show the highest RMSE and
MAPE errors. Themixed dictionary improves the quality of restorationwith respect to theMAPE aswell
to the RMSE errors. Moreover, the mixed dictionary appears to perform better than the Fourier basis for
the approximation of the signals around the peaks of consumption which are well captured with the
Haar functions [A11].

Studying the intra-day load signals in a low dimensional space. It appears here that, a subset of 20
functions over the p = 62 initial functions of the mixed dictionary are called to adjust 99% of the daily
signals [A11]. The set of signals can then be analyzed in a lower dimensional space using their sparse
representations, because all the intra-day load signals share the same subset of functions of the dictionary.
It should be underlined that unless introducing any constraints for computed the approximation of the
intra-day signals, no guarantee exists that the set of curves share the same support.
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Figure 2.2: Clustering of the 2800 intra-day load curves using a two step K means algorithm:
size (4 main clusters in color) and shape (centroids of subclasses in gray) effects.
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2.2.2 Mining and clustering to define adaptive patterns of consumption

When receiving data from a given application, a first usual task is to mine the data to get a global under-
standing and to analyze if any specific underlying structure may be observed which may be helpful for
predictive modeling. In marketing applications, for example, this task is systematically done to provide
a previous segmentation of consumers before any modeling. In the electricity consumption application,
in order to catch potential structural information, a segmentation of the set of the intra-day load curves
is performed. To avoid to damage the classification by the curse of dimensionality and to get robust
results, it is crucial to use data which do not lie in a too large dimensional space. For that reason, we
use the previous sparse representation of the curves on the mixed dictionary to perform the clustering.
At this step, many different algorithms may be used for the clustering. We choose the K-means algo-
rithm for its simplicity but associated with an analysis of the stability of the number K, in order to catch
the right number of groups [A11]. For the electricity consumption application, K = 8 different clusters
emerged, characterized with different size and shape as shown in Figure 2.2. At this step, each cluster
may be summarized by a pattern of consumption. The patterns of consumption are the different curves
which correspond to the centroid of each cluster.

2.2.3 Patterns of consumption as endogenous variable

Mining the set of historical curves ismainly a descriptive task and the result of theK-means algorithm i.e.
the adaptive clusters is, at this step, useless for predictivemodeling as, in particular, the curve Yt has to be
known in advance to be able to get its associate pattern of consumption. In order to exploit the underlying
structure of adaptive clusters for predictive modeling, one needs to be able to describe each cluster with
the help of generic variables, as for example calendar variableswhichmay be known before prediction (in
order to be used in the prediction). This correspondence makes then possible to characterize in advance
any day, first by its calendar status then by an associated pattern. In the context of forecast, the calendar
interpretation of the clusters is absolutely necessary. For the electricity consumption application, in order
to understand the potential calendar features caught by the clusters, the distribution of the type of days
and months has been first analyzed for each computed cluster. For the set of intra-day load curves, an
interpretation of each cluster in term of calendar statements is provided. Each cluster is described using
a code defining a period of the year using the day (1 to 7 from Monday to Sunday) and the month (1 to
12 for January to December); the set of periods making a partition of the year [A11].

Based on the calendar interpretation of the clusters, a pattern variable calledGt is defined. Gt has the
same number of modalities than the number of clusters as presented in figure 2.3. Each modality of Gt
is computed as the average of the intra-day load curves on an historical set of data given the definition of
corresponding days andmonths of the cluster. It sould be noted that due to the calendar reinterpretation,
the modalities of Gt may be slightly different to the centroids computed with the Kmeans algorithm.

2.3 Modeling

Up to now, the main objective of this work was to find a generic dictionary to get a sparse representation
of the signals, to perform a clustering formining the approximated curves and to define a pattern variable
computed on a calendar representation of the clusters. The following section introduces themodelwhich
will be finally used to forecast.
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Figure 2.3: Modalities of the pattern variable Gt. In this specific case, 10 modalities are com-
puted (2 more groups for specific "ejp" days and Christmas vacations)

2.3.1 Sparse model and adaptive dictionary for modeling the curves
Based on the previous work of segmentation, we propose to approximate the intra-day signal Yt using
an adaptive dictionary. The design matrix of the generic dictionary X is replaced, in equation 2.3, by
Xt = [Pt Mt] where:

• Pt = [Gt Yt−7] is the concatenation of Gt the group variable previously defined and of Yt−7 the
intra-day curve one week before t. Pt defined the pattern variables. The size of Pt is (48, 2).

• Mt defines a non linear summary of the variations and sizes of temperature, cloud cover or wind
all over the French territory [A13]. The size ofMt is (48, 12). Mt defined the Exogenous variables.

The linear model for the daily load curve is

Yt = Xtβt + ut + εt (2.4)

where the unknown parameter βt belongs to Rp (p = 14).
It should be stressed that the adaptive dictionary, Xt, is directly issue of the first data mining task,

and that it is designed to offer a very high sparsity representation. We observe than, in average, S̄ = 2.5
nonzero coefficients are used to approximate the last year of electricity consumption defined by 365 intra-
day load signals from September 1st 2009 to August 31th 2010), with a average MAPE error equaled to
1.24% (median 1.05%). On the sameperiod, themixeddictionarydefinedwith generic functions provides
an average sparsity of S̄mixed = 7.0, with an average MAPE error of 1.43% [A11]. In this case, it should
be underline that we do not use the benefit of the Learning Out of Learning Algorithm to work in a high
dimensional framework but, either its ability to select the most appropriate functions of the dictionary.

2.4 Forecasting

To forecast the intra-day load curve Ỹt of the day t, we refer to the previous linear model and writes:

Ỹt = Xt β̃t

The matrix Xt = [Pt Mt] is known before t.

• Pt = [Gt Yt−7] defines the patterns of day t. Based on calendar statements, the modality of Gt is
known before t as the curve Yt−7 which is the one week ahead intra-day load curve.
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• The meteorological variables, Mt, are here supposed to be known. In real applications, these
variables will be provided by Meteo France, the French agency for weather prediction.

Themain issue here is to provide β̃t. Our approachwill be to chose a "good candidate" for β̃t, among
the set of already estimated coefficients β̂u computed for the past intra-day load curves (u < t). This
strategy is motivated by the fact that the linear model introduced in equation (2.4) appears to be a good
model to approximate the intra-day load curve and is moreover a sparse model which relies only on a
small number of coefficients.

2.4.1 The experts
For one day, similar causes of weather or calendar conditions or identical groups of consumption should
provide similar effects and then a similar electricity consumption. A collection of expert forecasters is
here introduced. Each expert has its own strategywhich consists to compare the day t at hand to referring
scenarios extracted from the past i.e. finding, in the past, a day t∗which is closest according to its strategy
to the day t. In order to retrieve t∗, different strategies are introduced. A strategy, called s, is a function
defined from T to T , where T denotes the set of indices of the different days. For any t ∈ T , we have:
s(t) = t∗ < t. A forecasting Expert is then simply associated to a strategy s and provides a forecast of the
intra-day load signal of the next day t by plugging-in the approximated coefficients β̂s(t) calculated at
day s(t) chosen by strategy s:

Ỹt
s
= Xtβ̂s(t)

A practical question is ’How to choose the experts’ ? Many factors are known to have a potential
impact on the electricity consumption. Time-lag specialized experts are introducedwhich simply retrieve
the estimated coefficients corresponding to the day before or the day, one week before. Meteorological
experts retrieve the estimated coefficients corresponding to the closest temperature, nebulosity or wind
using `2 or sup distances. Up to 17 strategies are introduced, in this application, to potentially forecast
the intra-day load curves [A13].

2.4.2 Aggregation
It appears that the experts perform independently well depending on days, or meteorological issues.
But no one among them achieves the best performance most all the time [A13]. There is an obvious need
to combine them. In the recent years, many interesting theoretical results as well as practical simula-
tions have been obtained using aggregation and especially exponential penalization: see Juditsky and
Nemirovski [2000], Catoni [2004], Dalalyan and Tsybakov [2007], Tsybakov [2003]. Among those ref-
erences, some of them are dedicated to the prediction of time series or individual sequences, Devaine
et al. [2013], Gaillard and Goude [2014]. A crucial problem is however to find appropriate weights for
each expert. In this context of prediction, this is a challenging issue which can give rise to very sophis-
ticated procedures. For the sake of simplicity we present here a very understandable and manageable
one, which only records the approximation properties of each expert and penalizes those with poor ap-
proximation results. More precisely, let us recall thatM is the set of strategies introduced above, and Ŷs
the forecasting expert computed with the strategy s. The aggregated expert is a weighted sum of all the
consumption forecasts provided by the different experts:

Ŷt =

∑
s∈MwstỸ

s
t∑

s∈Mwst

where wst are positive weights depending on the day t and the strategy s.
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As explained above, our procedure penalizes by putting small weights, on the strategies which were
not able to approximate well the signal at s(t): e.g. the weightswst depend in an exponential way on the
l2 error of ‖Ys(t) − Ŷs(t)||22:

wst = exp(−‖Ys(t) − Ŷs(t)‖22/θ)

θ > 0 is a standard tuning parameter (also called temperature parameter with reference to statistical
physics). Practically, this parameter is chosen using cross validation on the past. Using aggregation with
exponential weights, we observe that the MAPE is much smaller than the different errors computed for
each individual experts showing the benefits of the different contributions.

2.4.3 Performances

Figures 2.4 and 2.5 give a graphical illustration of forecast for two different weeks chosen in winter and
spring. We observe that forecasts aremore accurate during spring periods thanwinter periods. In Figure
2.5, local maxima seem to be overestimated, while local minima are underestimated.
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Figure 2.4: Forecast (solid blue line) and observed (dashed dark line) electricity consumption
for a winter week from Monday February 1st to Sunday January 7th 2010.
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Figure 2.5: Forecast (solid blue line) and observed (dashed dark line) electricity consumption
for a spring week from Monday June 14th to Sunday June 21th 2010.

If we were able to find each day the best strategy to apply, the oracle MAPE average error over one
year would be equal to 1.44% (standard deviation 0.74%), which is very similar to the approximation
MAPE error of 1.70%computed over the same period and a satisfactory performance for these prediction
experts. The aggregation of the specialized experts shows an error MAPE of 2.18% (std 1.2%) which
competes favorably with actual automatic operational forecasts (before any manually tuning) [A13].
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2.5 Software

As previously mentioned, the modules for functional regression, sparse modeling estimation and fore-
cast have been developed during two successive collaborations between RTE and LPMA from 2011 to
2013 [A11], [A13]. All the algorithmic work of the project was delivered to RTE in 2011 for the mod-
eling part and in 2013 for the forecasting part. The Matlab codes are currently running at RTE which
investigates the performances of the methodology on new data [Bourriga and Lefieux, 2014].

2.6 Conclusions

Theoretical and practical advances have been required in order tomeet RTE’s demand. The LearningOut
of Leaders algorithm has been applied for the functional regression models. The data mining analysis
on the historical set of data which is always a very time consuming task, was essential to built adap-
tive dictionaries providing sparse models for the intra-day load curves, and to indirectly guarantee the
theoretical assumptions needed for LOL procedure.

The methodology based on sparse functional regression models and aggregation of experts appears
to be generic, andmaybe applied to other areas as for examplewater consumption forecast ormonitoring.

As usual, the presentation of this work, at this stage, raises immediately new questions and new
perspectives of practical and theoretical works.

• Concerning the reduction of dimension of the set of intra-day load curves, performed before the
clustering task, the work on the Grouping Learning Out of Leaders procedure (see Chapter 3)
should help to implement multi-task learning to guarantee a reduction of dimension and, at the
same time, the same support across all the curves.

• To improve the forecast, more experts will be introduced in the future. The method of aggregation
should be diversified according to the feedback of the short term forecasting platform.

• Due to the operational needs, different adaptations of the forecast will be provided. Particularly,
the horizon forecast should be extended to 48 hours, or more and the method should be adapted
to choose the delivery time of prediction, according to business constraints.

• Finally, confidence intervals should be provided for the forecast, which raise novel theoretical ques-
tions.
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Chapter 3

Grouping the variables for HD linear
models

The work presented in this chapter has been performed through a collaboration with D. Picard and K.
Tribouley. It has been published in:

A10 M.Mougeot, D. Picard, K. Tribouley. (2013)Grouping Strategies and Thresholding for High Dimensional
Linear Models rejoinder. Journal of Statistical Planning and Inference 143, p 1457-1465.

A9 M. Mougeot, D. Picard, K. Tribouley. (2013) Grouping Strategies and Thresholding for High Dimensional
Linear Models, with discussion Journal of Statistical Planning and Inference 143, p 1417-1438.

—

With the hope of taking advantage of prior knowledge, relations between covariates may be intro-
duced in a linear model. For example, in gene expression analysis, genes from the same biological path-
way can be considered as belonging to the same group and, in this situation, it is desirable to take into
account, in the analysis of such data, an "a priori" group structure [Huang et al., 2012]. Moreover, such
a group structure may improve the prediction performance and/or the interpretability of the models
compared to standard HD linear models, [Friedman et al., 2010].

We consider here the HD linear model studied in Chapter [1]:

Yi = Xiβ+ εi, i = 1, . . . , n (3.1)

with a group structure on the predictors, εi is a non observed random Gaussian error, N(0, σ2).

In this Chapter, k denotes the number of predictors and the set of predictors is distributed into p groups
denoted by G1, . . . ,Gp with G = G1⊕ . . .⊕Gp defining a partition of the k initial predictor indices. A same
predictor can not belong to different groups (non-overlapping case) and we consider that the number of
predictors k exceeds the number n of observations. An important application of HD linear models with
groups is the multi-task learning. In this specific case, T successive linear models (the tasks), 1 ≤ t ≤ T ,
are considered:

Y
(t)
i = X

(t)
i β

(t) + ε
(t)
i , t = 1, . . . , T, i = 1, . . . , n0 (3.2)
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withn0 observations andp common covariates between the tasks. This set ofmodels can be reformulated
as a single regression problemwith a structure of groups by setting k = pT , n = n0T and identifying the
vector of coefficients β ∈ Rp by the concatenation of the vectors β(1), . . . β(T). The groups Gj, 1 ≤ j ≤ p
are defined by the tasks across the T initial linear models.

3.1 Group penalization

Considering HD linear models with a structure of groups, each group of variables is treated as a "unit"
[Friedman et al., 2010, Huang et al., 2012]. All predictor coefficients in the same group should behave
similarly: simultaneously be estimated or discarded. In 2006, the Group Lasso, as a natural extension
of the Lasso, introduced in the penalty function the `2 norm of the coefficients for groups of variables
[Yuan and Lin, 2006] to solve the optimization problem:

min
β

1

n
||Y −

p∑
j=1

XGjβGj ||
2
`2

+

p∑
j=1

λj||βGj ||`2 (3.3)

where λ1, . . . , λp are positive regularization parameters (whichmay be equaled). XGj andβGj correspond
respectively to the sub design matrix and the coefficients of the group Gj (1 ≤ j ≤ p).

Assuming a group sparsity property, meaning that only a few variables belonging to a few groups
are effectively relevant, the Group Lasso provides a sparse solution, at a group level: within a group,
either all of variables, or none of them, are selected. Oracle inequalities have been established, for the
Group Lasso estimator, for prediction and estimation errors based on restricted eigenvalue or coherence
assumptions [Bach, 2008, Lounici et al., 2011, Yuan and Lin, 2006]. The Restricted eigenvalue conditions
imply, in the Group case, to compute minimal eigenvalue of sub normalized Gram matrices. As in stan-
dard HD linear model, checking those conditions is (presently) computationally intractable.

Under "strong group sparsity" assumptions, meaning that a small number of groups of "reasonable"
size contains all the relevant variables and under group sparse eigenvalue conditions, Huang et al. [2010]
show that the Group Lasso may be superior to the standard Lasso. Lounici et al. [2011] demonstrate that
the Group Lasso can even provide smaller prediction and estimation errors than the Lasso.

3.2 Thresholdings with groups

As the LOLprocedure is a counterpart of Lasso orDantzig algorithms for ordinary sparsity, we introduce
with D. Picard and K. Tribouley, the Group LOL procedure, which takes into account a group structure
in the parameter estimation [A9], [A10]. As LOL, the Group LOL is a two-step blockwise thresholding
procedure with no optimization. The group LOL procedure has been discussed in [Meinshausen, 2013],
[Obozinski, 2013], [van de Geer, 2013], and [Yuan, 2013] and Mairal and Yu [2013] have provided an
evaluation on the use of the procedure on a real application.

Structured Coherence

To handle groups and tasks, a (re) indexation of the columns of the design matrix X is provided. X(j,t)

denotes the variable registered in the jth group Gj for position (task) t. The design matrix is here sup-
posed to be normalized such that 1

n

∑n
i=1 X

2
i,` = 1, 1 ≤ ` ≤ k. Γ = XtX denotes the Gram matrix of

X.
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Groups may have different sizes and tj = #(Gj) defines the cardinal of the group Gj, 1 ≤ j ≤ p with∑
j tj = k.
To characterized the correlations of the "underlying" task andgroup structures, two coherence indices

depending either on groups (denoted by γBG) or tasks (denoted by γBT ) are introduced.

• The coherence between different tasks, with no restriction on the group membership is defined
by:

γBT := sup
(j,j′)∈{1,...,p}2

sup
t∈{1,...,tj},t′∈{1,...,tj′ },t6=t′

∣∣Γ(j,t)(j′,t′)∣∣ (3.4)

• The coherence for the same task but between different groups is defined by::

γBG := sup
(j,j′)∈{1,...,p}2,j6=j′

sup
t∈{1,...,tj∧tj′ }

∣∣Γ(j,t)(j′,t)∣∣ . (3.5)

Figure 3.1 illustrates the computation of γBT and γBG, on an example.

Coherence between tasks

Group 1 Group 2

x1 x2 x3 x4 x5

Tasks 1 2 3 1 2

Coherence between groups

Group 1 Group 2

x1 x2 x3 x4 x5

Tasks 1 2 3 1 2

Figure 3.1: Illustration of the computation of coherence indices between tasks (γBT left) and
groups (γBG right) for a design matrix with k = 5 variables spread in p = 2 groups.

The coherence of the design matrix X (denoted by γ in this Chapter) is then "split" in two indices
such that γ = γBT ∨ γBG. In the multi-task or in the no group case, we may observed that γBT = 0.

3.2.1 Learning Out of Leaders algorithm with groups
The Group-LOL procedure is presented, as for the LOL procedure, with the help of a pseudo code with
the group structure, G, added as input to the procedure.

(Ŷ, β̂)← GroupLOL(X,G, Y, λ1, λ2)

Table 3.1: Definition of GroupLOL procedure: input= (X,G, Y, λ1, λ2), output= (β̂, Ŷ).
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The parameters λ1, λ2 define the levels of blockwise thresholdswhich play a similar role as the tuning
thresholding parameters in the LOL procedure.

• Initialization:
An upper bound of the number of groups, N∗, that may be lately selected during the procedure, is

first computed regarding the values of the index τ∗ = t∗γBT + γBG and the precision parameter, ν, of
the procedure where t∗ = maxj=1...ptj corresponds to the maximal size of the number of variables in
the groups.

N∗ = ν/τ∗ upper bound for the number of the group leaders, τ∗ = t∗ γBT + γBG

Table 3.2: GroupLOL initialization part.

The term τ∗ is an essential quantity which will appear in the rate of convergence of the estimated
coefficients (see Theorem 8). In the no group case, γBT = 0, the index τ∗ is just the empirical coherence
of the designmatrix. In this case, the upper boundN∗ is also the same as in the LOL procedure (γ = γBG,
τ∗ = γ).

• Step1: Find the group leaders by thresholding.
The Group-LOL procedure selects at most B groups (and consequently the corresponding predictors

inside each selected groups)which are "globally" themost correlated to the target regarding the "amount"
of correlation brought by the overall predictors in each group and the value of the blockwise threshold
λ1.

R` =
∑n
i=1 Yi Xi` predictor "correlation", ` = 1 . . . k

ρ2j =
∑
t=1,...,tj

R2(j,t) := ‖R‖
2
Gj,2 . Group Gj overall correlation, j = 1, . . . , p,

B =
{
j = 1, . . . , p, ρ2j ≥

(
ρ2(N∗) ∨ λ

2
1

)}
with ρ2(1) ≥ . . . ≥ ρ2(j) ≥ . . . ≥ ρ2(p)

GB = ∪j∈BGj Group leaders

Table 3.3: "Find the group leaders" by blockwise thresholding (GroupLOL/step1)

The set GB corresponds to the set of predictors selected at the end of step 1, for the B groups. If the
first tuning parameter λ1 is chosen such that λ21 > ρ21, B is empty and, in this particularly case, all the
estimated coefficients are equal to zero β̂ = 0.

• Step2: OLS. Group-LOL regresses the target on the set of predictors (GB) belonging to the group
leaders (Table 3.4).

• Step3: Block thresholding.
A second blockwise thresholding is applied on the estimated coefficients where λ2 is the second

thresholding parameter (Table 3.5)
The Group LOL procedure provides similar results to the Group Lasso. All the coefficients corre-

sponding to not selected groups in step 1 or step 2 are tuned to zero. In the no group case (k = n, t∗ = 1),
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β̂(B) = [XtGBXGB ]
−1XGBY. β̂ estimation

β̂GB = β̂(B)
β̂Gc
B
= 0 G = GB ⊕ GcB

Table 3.4: Ordinary Least Square on the Group leaders (GroupLOL/step2)

β̂∗` = β̂` I{ ‖β̂‖Gj,2 ≥ λ2} ∀` = (j, t) ∈ {1, . . . , k}

Table 3.5: Last blockwise thresholding on the estimated coefficients (GroupLOL/step3)

the Group LOL is similar to LOL procedure.

3.2.2 Main theoretical results
To guarantee the consistency of the Group LOL procedure, the following key assumptions are defined
on the design matrix X (a1:a2), on the β coefficients (a3), on the structure of tasks and groups G (a4) and
on the noise ε (a5):

(a1-a2) Homogeneity and normalization of the designmatrix is assumed. For simplicity, we suppose here that
we have the same number n of available observations across the predictors:

∑n
i=1(Xi,`)

2/n = 1,
for 1 ≤ ` ≤ k.

(a3) Group sparsity condition on the "size" of the unknown coefficients is defined by a combination of `q
between-blocks with `1 block norms. We then assume that there exist q ≤ 1 andM > 0 such that:

p∑
j=1

‖βGj‖q ≤Mq. (Ag4)

(a4) The precision ν of the Group LOL procedure (ν ∈]0, 1[) is supposed
to be greater that the index τ∗ equal to t∗ γBT + γBG ≤ ν.

(a5) Conditions on the noise: ε is a vector of i.i.d. variables N (0, σ2). A sub-Gaussian distribution may
be also considered with zero mean and variance σ2.

It should be underlined that most of these assumptions are easy to check on the data, especially
compared to RIP conditions on sub normalized Gram matrices as for the group Lasso.

Regarding the previous assumptions (a1-a5), Theorem 8 provides the convergence rate of the esti-
mation of the coefficients β̂ computed with the Group-LOL procedure when the threshold parameters
λ1, λ2 are properly chosen [A9]. The values of the thresholds λ1 and λ2 depend on the design matrix (for
the values of n and log(p)), of the structure of tasks and groups (for the value of t∗ and τ∗), on the β
coefficients (for theM -group sparsity), and on the noise level(σ).

Theorem 8. Assuming assumptions a1− a5, we get:

E‖β̂∗ − β‖22 ≤ �
[
t∗ ∨ log p

n
∨ (t∗ γBT + γBG)

2

]1−q/2
where � is a constant depending onM, ν, σ2, λ1, λ2.
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Deduced from Theorem 8, the following key features have a direct impact of the sharpness of the
procedure:

• the architecture of the structure induced by the term t∗∨log(p)
n

• the correlation across tasks and groups induced by the index τ∗ = t∗γBT + γBG.

- the group sparsity of the vector β characterized by
∑p
j=1 ‖βGj‖q ≤ (M)q.

van de Geer [2013] shows that under coherence conditions, the Group Lasso achieves the same rate
of convergence as the Group LOL, up to logarithmic terms.

3.2.3 Grouping versus no grouping

From an estimation point of view, it is easy to propose simple examples of HD linear models for which a
specific group structure does not bring any benefits. For example, ifwe consider amodel characterized by
a small number of significant variables each of them scattered in different groups containing also many
other variables with no significant coefficients, even if the group procedure may select some "significant"
groups and variables, a huge number of no significant variables will be, at the same time, selected. In this
specific case, it is obvious that the group structure will deteriorate the estimation. However, if an "ap-
propriate" structure exists (which may be characterized by some group sparsity assumptions), [Huang
et al., 2010] show that, better results compared to standard HD linear models can be obtained using a
group algorithm, as for example the Group Lasso.

The following example explains and quantifies, for a specific case, the gain that can be expected
from the Group LOL compared to the original LOL procedure [A10]. We consider a situation where the
parameter β has ST non-zero coordinates which are all equal to γ and we consider p = k/T groups of
covariates with the same size T characterized by γBT ∼ 0 and γBG = γ

√
log(k)/n. The following table

shows the rate of convergence when comparing grouping versus without-grouping, depending on the
places of the contributing β coefficients in the different groups [A10].

LOL Group LOL/optimal case Group LOL/worse case

Rates ST(γ2 +
log k
n

) S(γ2 + T
n
+

log k/T
n

) ST(γ2 + T
n
+

log k/T
n

)

• Group LOL/optimal case corresponds to the case where the non-zero coefficients are all gathered
in S groups (of size T ), while

• Group LOL/worse case corresponds to the case where they are scattered in ST groups.

This simple example emphasis that we gain in grouping by taking groups of relatively small size
(less than log(p)/n) . With no appropriate groups, the price to pay may be heavy compared to the no
group case, especially when γBT is not zero and when the maximal size of groups, t∗ is high.

Base on the previous results (Theorem 8) and on the possibility to improve the rate by a smart distri-
bution of the predictors into the groups, we propose a data driven strategy to built the groups in order
to boost the rate.
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3.3 Data driven strategies to built relevant groups

In some applications, the structure of the groups is driven by some precise requirements. In this specific
cases, compared to standard HD linear models, the objective of the Group Lasso or the Group LOL
procedures is to estimate the coefficients of the variables belonging to the most relevant groups. In
various cases, however, there is no obvious grouping at hand. In this direction of research, Zhao et al.
[2009] proposed, to use a robust version of the K-means to group the features. Bühlmann et al. [2013]
proposed a bottom-up agglomerative clustering algorithm based on canonical correlations.

To boost the rate of convergence of the Group LOL procedure (Theorem 8), we propose a data-driven
strategy first to compute the appropriate number of groups then to fill the groups and tasks with the
appropriate variables.

In order to introduce our boosting grouping strategy (BG), two preliminary ways of building the
groups (called strategies) are first introduced relying on gathering either scattering the variables [A9] in
the groups. An extensive simulation study illustrates, at the end of this section, the practical benefits of
the BG strategy.

Gathering
Assuming that the number of groups (p) is known, a natural idea in order to design a predictive model
with groups is to ’gather’ the p covariables of the design matrix X regarding their "correlation" value
with the target (for weak coherence assumptions). The "Gathered Grouping" (GG) strategy gathers the
variables exhibiting similar absolute correlation values with the target Y. The p different groups are then
filled by using the ordered indices:

G1 = { (1), . . . , (bk/pc) }, . . . ,Gp = { (k− bk/pc), . . . , (k) }

where (`) denotes the index associated to the ranking quantity |R(`)| where R` =< X`, Y >, 1 ≤ ` ≤ k.
In low coherence cases, the index value brings a prior information about the significativeness of the

co-variables. This approach let to built groups characterized by a strong group sparsity [Huang et al.,
2010] (a few groups are effectively relevant).

At the opposite, without taking any care on the correlation between the target and the predictors,
the Gathering at Random (GR) strategy gathers in each group k/p randomly chosen variables among
the k initial regressors (without replacement). On the opposite to the GR strategy, this last strategy does
obviously not bring any clever groups.

Scattering and boosting the rates with the Group LOL
In order to increase the rate of convergence, the following quantity which only depends on the arrange-
ment of the co- variables into the groups (and not on the target) has to be smaller as possible:√

t∗ ∨ log p
n

∨ {t∗ γBT + γBG} (3.6)

We propose a "Boosting rate with Grouping" strategy (called BG), which addresses, at the same time,
the question of choosing the number of groups (p), as an "optimal" repartition of the predictors inside
the groups. The BG strategy first selects, in the initial design matrix, the most p∗ correlated predictors
(step1), then scatters them into p∗ groups taking care to decrease as much as possible the γBT index
(without increasing log p/n) (step2). The remaining predictors are finally gathered in the different tasks
and groups (step3), taking care of the group sparsity assumption. The three steps are detailed hereafter:
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BG (step 1/3): Determination of the number of groups
The overall correlation of predictors are sorted in descending order such that:
γ = max`>` ′ |Γ`` ′ | ≥ . . . ≥ |min`>` ′ Γ`` ′ | ≥ 0.
The cardinal, denoted by p(u) of the set of predictors Du, characterized by a correlation higher than

γ/uwith u > 0 is computed:
p(u) = #Du with Du = {` ∈ {1, . . . , k}, ∃`′ ∈ {1, . . . , k} \ {`} such that |Γ``′ | > γ/u}.

In the BG strategy, the appropriate number of groups p∗ satisfies p∗ = p(u∗) = bk/u∗c, where u∗ gives
the size of groups (for simplicity, we consider that k/u∗ is an integer).

Figure 3.2 illustrates the evolution of the function g(u) = k/u and p(u) = #Du for i.i.d. Gaussian
variables, n = 200, k = 1000.
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Figure 3.2: X-axis: Common size t1. Y−axis: number p of groups. Solid line: g(u) = k/u.
Dashed line: p(u) for ρ = 0.5, π = 20% (see simulation part). Dot dashed line: p(u) ∗ logp(u)).
Dot lines: corresponding u1, u2 positions. n = 200, k = 1000, SNR = 5.

BG (step 2/3): Scattering the most correlated predictors across the groups
The p∗ elements ofDu∗ are affected to the task "number one" of each group. This repartition provides

γBT = γ/u∗, t∗ = u∗, γBG = γ and consequently t∗γBT + γBG ≤ 2 ∗ γ
As soon as γ ≥ c[log p/n]1/2, under the appropriate assumptions a1 − a5, Theorem 8 provides for

the BG strategy:

E‖β̂∗ − β‖22 ≤ � (γ)
2−q

. (3.7)

BG (step 3/3): Gathering the predictors
Before the completion of the groups, the groups are re arranged by sorting the correlation indicators

associated to the delegates: R(1) ≥ . . . ≥ R(p∗). This means that G1 contains the delegate `1 such that
R`1 = YtX.`1 takes the largest correlation value (equal to R(1)) and Gp∗ has the delegate with the smallest
R`p∗ correlation value (equal to R(p∗)). The groups are then built such that the R’s are as homogeneous
as possible in each group and as close as possible to their delegate. Grouping starts by ranking the
remaining R’s (i.e. not associated to a delegate): R(1) ≥ . . . ≥ R(k−p∗). The p∗ different groups are then
successively filled by using the ranking indices:

G1 = { `1, (1), . . . , (bk/p∗c) − 1 }, . . . ,Gp∗ = { `p∗ , (k− p
∗ − bk/p∗c) + 1), . . . , (k− p∗) }.
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Without taking any care on the correlation between the target and the predictors, The Boosting at
Random strategy (BR), fill the groups completed randomly (except for step 2): the k − p∗ variables are
spread out randomly into the p∗ groups.

3.4 Numerical experiments and applications

Extensive simulations were conducted to explore the benefits of the different grouping structures using
the Group LOL procedure [A9]. We just recall the experimental design as the main results.

3.4.1 Experimental design

The design matrix X is a standard Gaussian n × k matrix. Each column vector X·` is centered and nor-
malized, 1 ≤ ` ≤ k. The target observations Y are computed using Y = Xβ+W where β is a vector of size
k whose coordinates are zero except for S coefficients which are equal to β` = (−1)b` |z`| for ` = 1, . . . , S
where the b’s are i.i.d. Rademacher variables and the z’s are i.i.d. N (5, 1) variables. ε are i.i.d. variables
N (0, σ2). The variance σ2 of the noise is chosen such that the SNR (signal over noise ratio) is close to 5
which corresponds to a middle noise level. To introduce some dependency between the regressors, we
chose randomly bπkc variables among the k initial regressors (π = 5%, 10%, 20%), which are the charac-
terized by a mutual correlation equaled to ρ (ρ = 0.0, 0.6, 0.8). This method has the advantage to tune
accurately the number of correlated variables as well as the amount of correlation between the variables.

Benefits of boosted grouping

The performances of the different grouping strategies are presented in Figure 3.3 for different sparsity
levels S and different levels of dependence (ρ, π). For each strategy (either GG, GR, BG, BR strategies as
defined previously), the relative prediction error EY = ‖Y − Ŷ‖22/‖Y‖22 is computed on the target Y.
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Figure 3.3: Performances (relative prediction error) computed for different grouping strategies
(average over K = 100 repetitions). Left: no correlation between predictors, π = 0, ρ = 0.
Center:π = 0.2, ρ = 0.6. Right: strong rate of correlation and high correlation values, π = 0.4,
ρ = 0.8

We observe that the Boosting Grouping strategy always shows the lowest relative prediction error,
for the different cases. TheBG strategy takes especially advantageswhen strong correlation are observed
in the design. For instance, when ρ and π are significatively high (ρ = 0.8 and π = 0.4), the boosting
procedure clearly shows substantial benefits as illustrated in Figure 3.3. In the no-dependency case (π =
0), when the sparsity is high (S = 10, 20, 30), similar performances are obtained for any grouping strategy
which seems clearly understandable.

Comparison with the Group Lasso

The Group-LOL procedure associated to the Boosting Grouping strategy (BG) has been compared with
the Group Lasso. Both group procedures are built using the boosting strategy (BG) and cross-validation
are both used to determine the final model.

Comparison of the prediction results show similar behaviors when there is no high correlation be-
tween the co variables (π = 0) or when the sparsity (S = 50) is small. In the other cases (especially
when the sparsity is large i.e. S small), Group-LOL always outperforms the group lasso [A9]. To end
this comparison, we should add a few words about computational aspects. Regarding the complexity of
the different methods, Group-LOL has a strong advantage over the Group Lasso. The Group Lasso algo-
rithm is based on an optimization procedure which can be time consumingwhile Group-LOL procedure
solves the penalized regression using two thresholding steps and a classical regression.

3.4.2 Catching feature with the grouping strategy
Mairal and Yu [2013] have investigated the Group LOL procedure for neuroscience data and proved that
the method shows satisfactory performances in this context but was, in their case, not especially suitable
in catching interesting features. The following example shows that this ’can’ nevertheless happen [A10].

Going back to fit the global electrical consumption in France using high dimensional sparse methods
as introduced in Chapter [2] the variable Y of interest is a daily electrical signal recorded each half hour
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presented in Figure 3.4. Such intraday load curves can be explained using both types of variables: climate
variables are essential (basically temperature recorded on the same day at different spots in France) and
these curves show also typical shape features which are generally well captured using dictionaries of
functions such as wavelet bases, the Fourier basis or combination of both types of dictionaries, with the
serious issue that these dictionary functions happen to be highly correlated with the climate variables
and very often disappear in sparse representations.
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Figure 3.4: Electrical consumption signal

We consider the following dictionary D = {E,C, S,H, T } composed of a family of k = 114 hetero-
geneous functions including a set of climate functions recorded all over France during the same day as
illustrated in Figure 3.5 and a set of generic shape functions from the trigonometric and Haar bases:

• E is the constant function: E(t) = I {[0, 1[}(t),

• C = {C1, . . . , C31} are the cosine functions with increasing frequencies:

C`(t) =
√
2 cos(2π(2`− 2)t)

• S = {S1, . . . , S31} are the sine functions with increasing frequencies:

S`(t) =
√
2 sin(2π(2`− 1)t)

• H = {H2, . . . , H31} are the Haar functions with increasing frequencies:

H`(t) = ψj,k(t) = 2
j/2ψ(2jt− k) where ψ = I {[0, 1/2[}− I {[1/2, 1[}

• T = {T1, . . . , T20} are the 20 temperature functions recorded at different spots represented Figure
3.5.

The BG procedure is used to organize the functional predictors into different groups. p = 35 del-
egates emerge from the dictionary D. The set of delegates is composed of all the 20 temperature (T),
the constant (E), 3 cosine functions, 4 sine functions, and 7 Haar wavelets. All the 15 generic functions
(constant, cosine, sine, and Haar) selected in the delegate set are strongly correlated to the temperature

39



Grouping variables for high dimensional linear models

Figure 3.5: French temperature spots
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Figure 3.6: "Correlation" between the consumption signal and the various dictionary functions.
The chosen delegates, for LOL procedure, are tagged with a red star.

signals and are described in Figure 3.6. At this step, we observe that the set of delegates brings mean-
ingful patterns and mostly catch the climate information, which is known to have a high impact on the
electrical consumption.

The 79 (k − 35, k = 114) remaining functions are then gathered in the p = 35 groups following the
repartition rule of BG procedure. Each group is then defined by 3 or 4 functions. For illustration, Figure
3.6 gives the composition of two groups. The first group is composed of one Temperature and 2 Haar
functions (tag ’1’, Figure 3.6), second group of one Temperature and one sine function and one Haar
function (tag 3). As expected, the coherence for the tasks is weak (γBT = 0.35 and γBG = 0.99). Note also
that this step in not only depending on the dictionary but also incorporate information on the signal Y.
In order to compare the benefits of grouping versus non grouping, the LOL procedure is also performed
on these data.

WhenGroup LOL is used, the relative prediction error equals 0.75%. 24 regressors allocated among 8
groups are requested: THS-THH-THH-TCS-TCST-HHTC-STSH. Hence we find at the end asmeaningful
functions 8 temperature (’T’), 3 cosine (’C’), 5 sine (’S’) and 8 haar (’H’) functions.

For LOL, we impose the same number (24) of selected functions as for Group LOL to induce fair
comparison. In this case, the selected functions computed by LOL are:
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Figure 3.7: Model of the consumption signal (black-solid line) using Group LOL (red-dahsed
line) and LOL (blue dot dashed line).

T-T-C-T-E-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-S-C described by 20 temperature (’T’),
2 cosine (’C’), 1 sine (’S’) and the constant (’E’) functions. LOL selects, as expected, all the functions
strongly correlated with the target consumption signal. Nevertheless, these functions are also strongly
correlatedwhich each others and bring redundant information. The LOL relative prediction error equals
1.86%, which is 2.5 time greater than Group LOL relative error.

Figure 3.7 shows the consumption signal and the fitted signals computed either with Group LOL
or with LOL procedure. Notice that one big benefit of the BG procedure is to impose diversity and as
a consequence, Group LOL algorithm selects different families of functions (temperature, cosine, sine,
haar, constant) which improves seriously the fitting result. We agree with Mairal and Yu [2013] that
the groups formed on real data by an automatic procedure, as the BG procedure, are not always easily
interpreted by the experts of the field. Nevertheless, as it is the case here, imposing diversity as a key
principle may be helpful for the interpretation and may also induce a better precision.

3.5 Software

A software package was developed for the Group LOL procedure and published [S6]. This package was
used by J. Mairal & B. Yu on an experiment neuroscience data set. They conclude that the "Group-LOL
method performed relatively well given complexity and data [Mairal and Yu, 2013].

3.6 Conclusions

This experimental study shows that true benefits can be obtained using a grouping approach for HD
linear models even in the case where there is no prior knowledge on the groups. However, the results
are highly relying on the grouping strategy. The boosting strategy brings a satisfactory answer to the
grouping problemwhen no prior information is available on the structured sparsity. This strategy is very
easy to implement and especially well adapted when a strong correlation exists between the regressors
in the case of high sparsity.
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Chapter 4

Industrialization of statistical or
machine learning algorithms

I started the work presented in this chapter, in october 1999, when I left my position at Paris X University
to participate in the creation of Miriad Technologies, a private company specialized in the elaboration of
decision making softwares based on operational data. I had then the opportunity to be involved in many
industrial projects and to work in a scientific collaboration with R. Azencott, J. Besnard, B. Durand, O.
Cherif, F. Gautier, K. Fakhr-Eddine, O. Gérard, J. Lacaille, J.F. Legrand, A. Maazi from Miriad Technolo-
gies (and many others...). Most of these projects, as I already mentioned in my career overview, were
developed under non disclosure agreement and were not published in academic journals. However,
technical reports were systematically written and delivered to the clients [Anx: Miriad Tec. Reports].

When I took my academic position back, similar works were provided with R. Azencott and J. Wang
at Centre deMathématiques et de Leurs Applications at Ecole Normale Supérieure de Cachan, in the Eu-
ropean projects ADHER (Automated Diagnosis for Helicopter Engines and Rotating parts, Eu 030907),
Innotex (INNOvation within the TEXtile manufacturing lines in Europe, Eu 030312) and TRACE (TRAf-
fic Causation Analysis in Europe). Parts of this work have been published in:

C5 O. Cadet, C. Harper, M. Mougeot (2005)Monitoring Energy Performance of Compressors with an innova-
tive auto-adaptive approach. Instrumentation System and Automation -ISA- Chicago.

E2 R. Azencott, J.P. Kreiss, M. Mougeot, P. Pastor, M. Pfeiffer, S. Siebert, T. Zangmeister. (2007) Analysis
Methods for Accident Causation Studies. TRACE European project No. 027763.

E11 ADHER (2009)Automated Diagnosis for Helicopter Engines and Rotating parts Publishable final activity
report (2009), ADHER FP6/Aeronautics project AST5-CT-2006-030907.

E1-E10 see European Project section

—

4.1 From research to development: step by step

When I was working at Miriad Technologies or when I was working as an associate professor, I have
initiated many collaborations with industrial partners. Most of these collaborations were oriented to-
wards the research and development of innovative solutions, relying on statistics or machine learning
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methodologies. The final aim was always to be used in an operational environment through a software.
To succeed in this objective (deployment in an operational environment) and according to my former
experiences, I noticed that this kind of projects always followed the same successive tasks:

1. interviews before project (task 0),

2. Proof of concept (POC) (task 1),

3. pilot software (task 2),

4. industrial software (task 3).

It should be underlined that Go/NoGo decisions always end each task. To be honest, for various
reasons, most of the projects end after the first POC task (due to financial, technical, human reasons).

Having the opportunity to perform all successive tasks may be seen as a success.

4.1.1 Before the project
Before being able to effectively start a collaboration, a necessary task for the researcher, who will be po-
tentially involved in the future project, is to deeply understand the operational requirement, to translate
the operational need into a statistical or mathematical question, to sketch a first solution, to be able to
give some clues, and finally to convince the industrial partner that the solutionwill meet his requirement.
This preliminary work needs to be performed before any data analysis or before any contractual collabo-
ration, in a relatively short period of time, and this is often a challenging task! In order to achieve this first
phase, short technical interviews are conducted to ensure that a solution could be provided. Sometimes,
alternative solutions need to be imagined and proposed as it does not seem possible to answer directly
to the first operational need.

According to my former experience, this tasks needs to be take in charge by a Researcher (or a former
Researcher) and a Seller. The Miriad Technologies experience has shown that without deep scientific
skills, it was impossible to sell any Proof of Concept.

4.1.2 Proof of concept (POC)
A collaboration always starts with, what is called, a proof of concept (POC): regarding the industrial re-
quirement and a set of historical data, a methodology based on mathematical or statistical tools, is elab-
orated to prove the concept. As mentioned by [Breiman, 2001] and [Wickham, 2014], this work needs
to:

- "Live with the data before you plunge into modeling",
- Search for a model that gives a good solution, either algorithmic or theoretical,
- evaluate the prediction accuracy on test data sets to characterize how good the model is.

For all these tasks, the computer is an indispensable partner associated with more or less elaborated
programming languages such as Matlab, Python,R, SAS, SPPS... with statistical or machine learning
packages.

Of course, the development of a POC needs statistical knowledge. However, all tasks corresponding
to a better understanding of the data are also essential. For example, interviews with human experts to
better understand the process, exploration of the data base to get tidy data, visualization of the data to
get intuitions on the modeling are also very important.

The development of a POC is never a straight line from rawdata to amodel. Exploratory data analysis
and modeling tasks are, most of the time, very imbricated. At the end of the POC, communicating the
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results is an essential step. If the industrial partner does not understand nor "feel" the solution, he will
not believe in its use in an operational environment, and the story will end just after the POC!

Exploratory analysis and modeling clues.
An initial work, for which people do not have often many considerations but which is a necessary

part of the project is to "check" the statistical value of the data set. During this task, very basic treatments
may be extremely useful to exhibit potential data inconsistency, before any modeling. When the data
set corresponds to a deep historical period, it is common to observe storage modifications such as unit
changes or sensor modifications.... Some basic rules are usually defined, during the first preprocessing
of data cleaning, to keep or to discard numerical values or variables. When the number of variables is
not too large, up to 100 (for instance), the visualization of the empirical distributions of the variables
always brings an added-value, to check the data, but also to get some clues and some intuition on the
potential underlying statistical model. Segmentation or quantification may follow this step to extract
relevant behaviors regarding multi modal distributions.

Modeling.
The final mathematical or statistical solution is never given before a project. Both problem and data

progressively lead to the solution. During a POC, starting from data, we have to imagine and provide
an answer to the operational needs. The best available solution to a data problem might be either a
stochastic model or an algorithmic model. Programs are developed to apply the methodology to a set
of operational data and to evaluate the performances of different models. Very often, a bunch of models
(parametric/non parametric) are tested, and the criterion to compare the model is often the predictive
accuracy and complexity plays a major role.

Software tools.
AtMiriad Technologies, during 6 years, we developed a proprietary RapidApplicationDevelopment

(RAD) called Miriad Process which has been progressively enhanced with the different methodologies
introduced, developed and programmed during the successive Proof of concepts [Lacaille, 2003]. The
Miriad process tool helped us to perform proof of concepts more rapidly. The former tool used inMiriad
can be today compared to SAS entreprise minerr.

Today, I use Matab, R or Python for the development of the POC, depending on the data, and de-
pending on contractual specifications. The R language, which does not provide ascendant compatibility,
is, according to my experience, not always welcomed in some companies.

Deliverable.
The deliverable of the POC is always a report describing themethod and the associated performances

computed, with different models, on test data sets.

POC illustration.
At Miriad Technologies, most of the industrial customers were interested in the design and the eval-

uation of automatic monitoring systems [MiriadTecReports]. Amongmany others, POCwere conducted
for electricitymonitoring [Mougeot, 2000], welding anomalydetection[Mougeot andFakhr-eddine, 2002],
chemical reactors [Mougeot and Layeillon, 2004, Mougeot and Maazi, 2000, Mougeot et al., 2003], and
equipment monitoring [Mougeot, 2003, 2005],

4.1.3 Pilot
Given the results of a POC, and if the industrial partner can expect some benefits from the industrializa-
tion of the method, the development of a pilot software is usually the next step. The statistical method-
ology is then implemented into a prototype software. The algorithmic solution, developed during the
POC period, is upgraded to be used in an industrial environment and to offer a more robust behavior.
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The statistical methodology is packed into a "component" (compiled or not), and data base connections
(such as Human Machine Interfaces) are added and developed. During this phase, a site of industrial
production is carefully chosen to follow, in an operational environment and over a given period of time, the
performances of the methodology. This well help to evaluate precisely the benefits and the return on
investment of the method and sometimes to compare it to existing "home made" solutions.

4.1.4 Industrial software
When the use of the prototype shows added value in the operational context, a software package may
be developed, then integrated into the IT system of the industrial partner to be finally deployed on other
industrial sites of production for decisionmaking processes. Whereas a POC requires exclusively statisti-
cal skills, the two last steps (pilot and deployment of an industrial software) require more computational
abilities. It should be stressed that feedbacks from the operational field always bring relevant information regard-
ing the behavior of the method in a real environment and systematically raise new methodological questions and
technical points which must be analysed to improve the solution. It is often necessary, during the two last
phases, to update the mathematical or statistical methodology developed during the first research phase
to assess, in an operational context, the first performances obtained off line. From my point of view, to
ensure awin towin global project, statistical skills must be involved until the end of an innovative project
using machine learning or statistical knowledge and not replaced directly after the POC by exclusively
computational abilities.

It should be stressed that collaborating with an industrial partner implies to be able to communicate
throughout the project period, and to able to bring technical elements during all steps, in order to show
that the current R&D has an added value for the company. According to my former experiences, a large
majority of projects ends after the first POC step: most of the time because the evaluated performances
do not convince the partner of any added value or because they do not reach the profitability target.

The following sections detail two success stories of valorization of research initiatives, I am partic-
ulary proud of. Both applications concerned sensor based health monitoring for industrial equipment
with predictive modeling and were transformed into software packages.

4.2 Embedding R&D in Software

The first application deals with the "diagnosis of over consumption for compressors" (SPEC+), and the
second one with "Automated Diagnosis for Helicopter Engine and Rotating parts" (ADHER).

4.2.1 Monitoring Energy Performance of compressors
Adecision support software package for detecting excessive power consumption on individual compres-
sors has been developed as a Miriad Technologies R&D project from 2001 to 2004 [C5]. The project suc-
cessfully followed with success the three successive phases: POC (1)/ Pilot (2)/ Deployment (3). Large
compressors are high energy consumers and critical elements for the production and distribution of air
gases (oxygen, nitrogen,argon...). Themonitoring of the health of these equipments is essential to be able
to guarantee the production of gas and to control the energy costs. Online monitoring helps to optimize
maintenance operations and to avoid sudden break-downs. The development of the SPEC+ project was
characterized by three steps:

1. A Proof of concept was first dedicated, off line, to the design of a statistical methodology to auto-
matically diagnose the over consumption of compressors and to evaluate the prediction accuracy
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on a set of historical data.
2. A pilot: a software component was developed then installed to monitor 5 compressors, during

6 months, on an operational site (Air Liquide/France/Dunkerque) and to evaluate the potential
return of investments.

3. The SPEC+ software package, including Human Interface Machine (HMI), Data base connection
and the R&D component, was finally developed and installed in the Operational Control Center
(Air Liquide America/Houston/US) to supervise more than 50 compressors, spread among 10
production plants on the Gulf coast [C5].

The statistical method introduced tomonitor the compressors are presented hereafter. Themethod is
generic and can be used to monitor other types of equipments. Points, specifically linked to compressor
equipment are voluntarily discarded.

From predictive modeling to diagnosis

A full instrumented compressor owns sensors which record continuously up to 6 measures: electrical
consumption, flow, input pressure, output pressure, water temperature and gas temperature. All these
measures are not always available and depend on the level of instrumentation of each compressor in
the plants. The Supervisory Control and Data Acquisition system (SCADA) let to retrieve periodically
data for each compressor (for example, hourly sample rate). The aim of the SPEC+ POC was to design
a method to be able to diagnose power over consumption on individual compressors. For this project,
the method was defined in two steps: first the monitoring of the electrical consumption using predictive
models then the diagnosis of potential over consumption based on a stochastic regression model. For
each variable, a light preprocessing defined by a bandpass filter was, as usual, introduced to handle
measurement errors.

Equipment modeling. For each compressor, we propose to introduce a stochastic regression model
to explain the electrical consumption (target variable Y) regarding the other available contextual variables
(X) by: Y = g(X)+ε. The function g is defined on the space of the available contextual variables and g(X)
defines the part of the target variable which can be predicted by the contextual variables. ε is the residue
of the decomposition and is considered as a random disturbance. Given an historical data set, D of (Y, X),
automatic learning of the regression model comprises two successive parts: deterministic learning for
the conditional density estimation (ĝD) and random part estimation for the probability distribution of
ε. As the prediction needs to be accurate, different methods of estimation of g need in practice to be
investigated and evaluated on the data. Most of the time of the POC is usually devoted to the elaboration
of an "appropriate" estimation of function g. In the SPEC+ regression model, g is a globally non linear
function composed of different sub-linear models which are automatically defined and tuned given the
empirical distribution of co variables. The parameters of the model should be estimated on a set of data,
which are supposed to contain "no" over consumption.

Equipment monitoring and diagnosis. For a new observation (ynew, xnew), the monitoring of the
equipment (here the compressor) is provided by the computation of the deviation between the observed
and predicted target value ε̂new = ynew− ĝD(xnew) and by the probabilistic evaluation of this deviation
regarding the distribution of ε. A statistical fitting test is naturally proposed to diagnose the health of the
equipment: testing the null hypothesis "usual healthy working equipment " against the alternative "non
usual work" (which can be interpreted as no healthy behavior given the choice of the target variable). The
diagnosis of the equipment is provided by the computation of the p value, pnew = Proba(ε > ε̂new) and
its comparison to a given level of risk, regarding the distribution of ε. Figure 4.1 presents the diagram of
the methodology presented in [C5].
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Figure 4.1: SPEC+ design as presented in [C5]

During the 6 months of this POC, a benchmark comparing the SPEC+ model and the existing home
made models developed by Air Liquide was conducted by Air Liquide. The SPEC+model, evaluated on
7 different compressors, showed the best performances with an average prediction accuracy below 1%
which met Air Liquide requirements.

Monitoring the model

The monitoring method of consumption aims to be used through a supervision software in an Opera-
tional Control Center followingmany compressors (up to 50). For each equipment (compressor), amodel
is calibrated using a given set of historical data, and by consequence, each compressor diagnosis strongly
depends on the underlying statistical distribution estimated, given the reference set of data. If the ref-
erence statistical distribution does not reflect the current work of the compressor, the diagnosis may be
inappropriate. For example, it is well known that compressor efficiency depends on outside temperature:
compressors are globally more efficient in winter than in summer. If the set of co variables does not con-
tain any temperature information, a model calibrated with summer data will not be able to trigger any
over consumption alarms in winter, because of a negative bias. At the opposite, such a model calibrated
with winter data will continuously trigger alarms in summer, because of a positive bias. An important
feature is then to be able to recalibrate the model with new data, if necessary. When implementing a self
calibrated component in an operational field, it is essential to introduce in parallel an indication of the
adequation between the current observations and themodel (the reference set of data). For that purpose,
a goodness of fit test can be introduced for the co variables comparing the current distribution of data
used for diagnosis and the historical distribution. This is well known for a statistician, but, without such
feature, the solution won’t be able to be used over a long period of time, in an operational context. In
the SPEC+ application, an input validity score was introduced to warn the operators of an inappropriate
running model [C5].
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The SPEC+ Software

Figure 4.2 shows two screenshots of the Human Machine Interface of SPEC+ software. In the left part of
the figure, no diagnosis of over consumption was provided, however the model was diagnosed as inap-
propriate (yellow flag under the green light). In the right part, an over consumption alarm is triggered
with an appropriate model.

Figure 4.2: SPEC+ HMI.

Operational feed-backs

A first pilot program was launched in France in 2003, where the SPEC+ methodology was evaluated on
line on an Air Separation Unit (ASU) for 6 months. The development of a full software package helped,
afterwards in August 2005, to evaluate the benefits of the methodology in the USA on the Air Liquide
Gulf Coast Pipeline plants. As part of Customer Acceptance Test, a series of tests were conducted on
compressors in order to ensure that the software tool correctly detects online cases of over consumption.
The performances of the software were directly evaluated by an Air Liquide team. In all cases, the soft-
ware tool correctly detected over consumption on the compressor as there was no obvious indication
available in SCADA that the compressor was in over consumption. The performances of the software
fully met Air Liquide expectation. The good results from the validation field as well as an insight on
implementation and validation of the final product were communicated by Air Liquid America at The
Instrumentation, Systems and Automation Society [C5].

4.2.2 Automated Diagnosis for Helicopter Engines and Rotating parts
Asecondproject of healthmonitoring Iwas involved in, was developed in the framework of the European
project ADHER project from 2008 to 2009 and focus on "Automated Diagnosis for Helicopter Engines
and Rotating parts". As for the SPEC+ project, the "heart" of the monitoring system relies on predictive
modeling. Due to the nature of the data (vibration data), a huge amount of preprocessing were realized
in order to implement sparse and efficient models. The ADHER software, developed in collaboration
with J. Wang, successfully passed the two successive phases which are necessary for the valorization of
a new methodology in the industry: from a Research to a Development project [E11]. The last phase
(deployment) was not in the initial scope of the European project. ADHER project has been developed
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under a non-disclosure agreement to ensure data and process confidentiality, but a global final activity
report was published from the European consortium [E11].

To give a short introduction on the industrial background, helicopters availability, in-flight reliabil-
ity, and low cost maintenance are major concerns for helicopter operators. Nowadays, accelerometers
and shaft speed sensors are installed on helicopter critical components. Most of the data, recorded by on
board sensors on engine and rotating parts, are systematically analyzed after each flight to provide mon-
itoring of the equipment and to help diagnose potential failures as soon as possible. Monitoring systems
are, most of the time, exclusively based on the analysis of the vibrations linked to shaft speed signals. In
aeronautics, several contextual variables such as load, thermodynamics parameters or flight conditions
are known to influence vibration regimes, and these contextual variables may take very different values
between flights or even during flights. Methods to analyze vibration data taking into account contextual
information are missing frommost of these monitoring software based tools. Some of the main scientific
and technological objectives of the ADHER project were to define innovative auto-adaptive algorithms
enabling data-driven automatic learning to analyze empirical time evolutions of sensor data and to gen-
erate anticipative health diagnosis, taking into account context variables. These algorithms were tested
on helicopter fleet vibration data to evaluate the feasibility of automated health monitoring of helicopter
fleets.

Massive operational fleet data

The project database included data from 4 helicopters, recorded from 2004 to 2006. A total amount of
2000 flight hours were recorded through a set of discontinuous 10 sec intervals. This data base contains
45 000 flight records of 10 sec for the 4 aircrafts. In this data base, only 115 records corresponded to
existing failures ( 0.2%). Each intervalwas characterized by vibration rawdata recorded from18 vibration
sensors sampled at 48 KHz and by 6 contextual variables sampled at only 10 Hz. A strong difference of
sampling rate was observed between vibration signals (48kHz) and contextual variables (10Hz). For a
10 sec interval, as 480 000 values were available for vibration, only 100 values were available for one
contextual variable. A size of 100GB was necessary to store the whole initial data base size, which can
be qualified as a relatively "Big data" data base.

Main features extraction

Before being able to implement any predictive model, a very large amount of work was dedicated to
extract relevant features from vibration signals, according to physicalmechanical properties Klein [2006].
For example, the vibration signals were first sampled according to the shaft speed, and power spectrum
of the re-sampled signals were then computed. Estimation of energies at given spectrum pointers (]20)
were extracted to characterize the use of specific gear and teeth features [E11]. Average and tendency
indicators were simply extracted from the 10 Hz sampled contextual variables.

Modeling and diagnosis

After a huge preprocessing task, unitary predictive models were introduced to monitor specific energy
pointer, as a target variable function of the indicators of the contextual variables. In the ADHER project,
SVM with Gaussian Kernel were used to estimate the conditional density (function g) in a similar way
that in the SPEC+ project. The final diagnosis was computed using an aggregation of the results pro-
vided by the 80 unitary predictive models implemented to monitor the equipment (rotating part of the
helicopter). The diagnosis thresholds were computed using the available 10 sec records tagged with
failure.
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Software evaluation and testing

The diagnosis software was installed and evaluated by both companies: RSL and Eurocopter using real
vibration data of a new helicopter fleet which were not included in the database used for self-learning
software tools development. The test database included data from time periods corresponding to both
normal and abnormal behavior of mechanical components. The "normal" and "abnormal" databases
included respectively 350 flight hours from 7 helicopters : 230 flight hours of normal flights (880 vibration
recordings) and 120 flight hours of abnormal flights (158 vibration recordings) corresponding to 3 types
of failure. The testing results show that no Missed Detections were detected by the software and False
Alarm Rate of 15 alarms per 1000 flight hours is estimated approximated results of 350 flight hours.
These performances were qualified as very "good" results by the consortium [E11].

4.3 Health equipment monitoring with predictive modeling

Nowadays, a challenge for Health Usage Monitoring System (HUMS) is to implement automated low
cost condition based maintenance systems as an alternative to equipment periodic inspections. Exist-
ing HUMS technologies, which generally propose in general basic diagnoses on data sensor and which
simply rely on fixed alarm thresholds tend to generate high rate of false alarms. In this context, predic-
tive models designed with contextual variables, may bring an efficient answer to the question of health
monitoring.

4.3.1 Supervised classification vs anomaly detection
When the objective is to predict the health status of an industrial equipment, it may seem natural, at a
first glance, to define a binary target variable to code the equipment status (0/1 for normal or abnor-
mal work) and to train a classification model to explain the status of the equipment function of some co
variables. These kinds of approaches, often used in Banks or Insurances companies for scoring, rely on
the availability of historical databases, storing both the status and the explanatory variables for many
observations. For health equipment monitoring, when the classification framework is chosen (and it is
sometimes the case...), it quickly appears to be inappropriate. The status of the equipment is rarely avail-
able in the databases and if so, the alarm frequency corresponding to the abnormalworking status ismost
of the time extremely low. In this case, classificationmodels are inappropriate. Specific experimental de-
signs are sometimes proposed in order to get supervised data from both status to calibrate classification
method, but they often take a long time and are costly. Moreover, they are barely representative of usual
operational work.

In this apparently unsupervised context, one needs to choose regression models, to monitor then
diagnose the equipment. With an expert of the field, a target quantitative variable (Y) is provided which
can be linked to the health of the equipment given the values of some contextual variables (X) which are
recorded and which are known to influence the evolution of the target variable.

4.3.2 Expert knowledge vs knowledge extraction
In order to be robust, a predictive model needs to use the right "inputs". Integrating, manually, appro-
priate knowledge into the model after interviews or discussions with human experts may be extremely
valuable. Combination of both data-driven models and expert knowledge are, to my humble opinion,
the wiser option, and especially for applications providing a huge amount of data. For example, in the
ADHER project, the available data were defined by vibration data at a high sampling rate. The monitor-
ing of the energy at some specific frequencies was directly linked to well known failures and, in this case
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expert knowledge was essential to extract the good features. Knowledge is also fundamental for driving
decisions in the development of model. Expert knowledge should always be required in order to obtain
information to provide relevant variables for the desired research objectives. The best predictive models are
fundamentally influenced by a modeler combining expert and context knowledge of the problem. However, when
it is not possible, automatic statistical investigation may supply.

At Miriad Technologies, Mutual information ratio (MIR) based on conditional entropy were com-
puted to quantify the relationships between two random variables X and Y [Lacaille, 2003]: mutual in-
formation ratio is model-independent and can also be used, before modeling, to select the most relevant
variables. In themultivariate framework, we developed a greedy algorithmbased onMIR to select, based
on the data, a small group of variables with a high mutual information ratio. It was used to mine the
GIDAS database, one of the largest German In-Depth Accident Study [C5].

4.3.3 Robustness of an automatic decision in an operational environment
During a proof of concept, statistical models are built, calibrated and tested off line given usually well
chosen historical data. When the models are running online, a key point is to be sure that the current
models are well calibrated regarding the tasks of monitoring and diagnosis they have to provide. Con-
sequently, one must be notified when the calibration of the models becomes obsolete. When a decision
making software is used by people with statistical skills, they can easily detect an inappropriate model
by themselves, and the task of updating a new model is usually performed manually. In an operational
context, users are, most of the time, not statisticians, and the solution must guarantee by itself the use of
an appropriate model. As it may be dangerous, for diagnosis purpose, to update the models automat-
ically, it is at least possible to warn the operators that a model may be out of order and that the results
provided by the monitoring software should not be taking temporarily taken into account. Without any
such a feature, operational users will quickly give up a solution based on self learning algorithms.

4.4 Conclusions

Nowadays, information systems are systematically installed in industrial environment. Industrialization
of statistical ormachine learning algorithms becomes a key tool for decisionmaking processes and in par-
ticular for health monitoring. The need for "data analysis" (in the large sense) and predictive modeling
in private companies has increased in recent years. Mathematics, and in particularly statistics, appears
as an essential asset for innovation and competitiveness [CMI and AMIES, 2015]. Consequently, many
collaboration opportunities in this area have emerged for public laboratories. However, it is always a
challenging task to successfully develop innovative scientific research and to respond, at the same time,
to a real operational need. Frommy point of view, specific structures are still needed to make the bridge
between the two worlds (the Academic Research and] the Development and to transform statistical inno-
vative methods into useful operational software.

Recently, the way to handle Proof of concepts may have changed for large companies. Today, a POC
may not be realized through a one to one partnership between an industrial and a research team but may
be realized throughopen competitions proposed throughdifferentweb sites (cf Kaggle or datascience.net
). The codes, developed for the POC, are submitted to the competition web site and the corresponding
performances are automatically computed. This let to work many teams in parallel on the same subject
and to select at the end the best solutions.
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Perspectives

A central objective of my work will remain to develop links between statistical or machine learning ad-
vances and industrial applications. To illustrate this general direction, I propose further developments
of the work presented in Chapter 2, "From functional regression to electrical consumption forecast", that
will be representative of my future projects.

• Practical choice of a generic dictionary for a sparse representation. Concerning the functional
regression in high dimension, the assumptions of having a "sparse representation on a given dictio-
nary of functions" is crucial. The choice of elaborating such a dictionary is however not straight-
forward. Up to now, the generic dictionary designed to produce a sparse representation of the
functional signals has been elaborated manually. For the set of intra day load curves, the sparsity
of different dictionaries has been studied and the Haar and Trigonometric dictionary has finally
be chosen. Because of the low coherence assumption of the Learning Out of Leader algorithm, it
is not possible at the present time to aggregate a large set of bases and to automatically select the
best set of functions to obtain the "sparsest" representation. More generally, finding an algorithm
able to automatically propose the best set of generic functions belonging to different basis in a
reasonable computational time is a first challenging question.

• Variable selection, feature extraction and grouping A second research direction will be to study
in the modeling context the benefits of an automatic variable representation. An important point
would be to take into account the constraints of designing algorithms with a relative complexity
to allow handling the requested large number of variables. For the modeling of the intra day load
curves, a large set ofmeteorological variableswere initially available (39 for temperature and cloud
covering signals, and 293 for wind signals). These variables exhibited strong correlations due to
spatial relations. In this context, up to this time, we chose to extract some basic features (min,
max...), but more elaborate methods such as automatic grouping or model based clustering may
be introduced to take into account the spatio-temporal relationships between these variables.

• Probabilistic forecast. A very challenging direction of research for improving the forecast of the
intra day load curve, so far only provided by a simple curve, could be to compute probabilistic
forecast using confidence intervals. Up to now, most of the confidence intervals are built point by
point and, practically, bootstrap methods are used to provide envelopes around the curve. A col-
laborationwith a teamwith theoretical expertise could lead to proposemore functional confidence
intervals around critical points of the curves.

Parts of these research directionswill be developedwithin the framework of the ANRproject FOREWER,
in which I lead the task "From resource distribution to power consumption". Most of the statistical com-
ponents of the FOREWER were directly designed based on the experience acquired in the RTE project.
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Teaching
Regardingmy teaching activity, a project close tomy heart is to create a datamining course based on data
acquired with connected objects carried by students such as accelerometer sensors. Various questions
may be asked analyzing those data, as for example, the monitoring of the activity of a single subject or a
comparison of the activity of a subject relative to the others. Different levels of analysismay be introduced
using aggregated (daily) or raw data (signals). The project would aim to introduce the different data
mining methodologies (regression, classification, clustering) and to illustrate their use by analyzing the
data acquired by each student (or by the cohort of the class). One of the main technical difficulties would
be to be able to extract the raw data from the connected objects. To overcome this difficulty, I propose to
establish collaborations with the physics department in order to design the appropriate sensors during
a preliminary joint work.

Industrialization of R&D
In the past years, I developed a strong experience in the use of machine learning or statistics to industri-
alize a solution. To undertake that kind of project, you need to be successively a salesman to quantify the
costs, a lawyer to set up the contract, a researcher to design the solution, a computer scientist to code the
program, and a support service to answer the potential questions of the users. Moreover, complementary
developments are often necessary to publish the method and the results. Of course, nobody cumulates
all these expertises but still, it is necessary to develop at least some basic knowledge in all these fields.

Nowadays, various structures emerge that aim to facilitate public-private collaborations. For exam-
ple, the AMIES agency promotes meetings between industrials and researchers to favor collaborations.
The "Société d’Activation et de Transfert Technologique" (SATT) helps for the valorization of the con-
tracts. Nevertheless, beyond organizing the first contact, a lot could be done to support the research
teams along the whole collaboration process. This is particularly challenging in the field of mathemat-
ics, which accounts today for 15% of the French Gross Domestic Product [CMI and AMIES, 2015]. Based
on my past experience in R&D, I could play an active role to contribute to this objective.
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