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Abstract

This manuscript presents an overview of my research activities in the study of
the multimode coupling in microwave optomechanical circuits and phonon-
cavity nanomechanics, and the topics that will be pursued based on cur-
rent advances. The studies start with the experimental realisation of a mi-
crowave optomechanical platform to investigate on-chip phonon thermome-
try in a single-tone pumping scheme and optomechanically induced trans-
parency/amplifications in a double-tone driving scheme. The same physics
and experimental techniques are then transferred in investigations of mechan-
ical phonon-phonon interactions in phonon-cavity nanomechanics, consisting
of two distinct and capacitively coupled membrane resonators, analogous to
optomechanics. To understand how energy is coherently transferred in cou-
pled multimodes, semi-classical and classical models of microwave optome-
chanical circuits and phonon-cavity systems have been developed according to
different drive configurations. In addition, by integrating microwave interfer-
ometry with a scanning tip, I have experimentally extended the applications
of scanning microwave microscopy to image mechanical vibration modes of a
membrane. Using these mode coupling techniques, the energy, in the form of
phonons, can be coherently transferred between the scanning tip and its cou-
pled membrane resonators. These experimental results are based not only on
our efforts in theoretical analysis, but also on advanced microwave setups and
novel silicon nitride membrane nanoelectromechanical systems developed by
using advanced nanofabrication techniques. These achievements and accumu-
lated techniques allow ongoing research activities to focus on the exploration
of computational functions and quantum sensing in coupled mechanical res-
onators and microwave optomechanical systems.
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1. Introduction

I start studying physics in high school by learning the basic properties of a harmonic oscillator.
Throughout various physics textbooks, single or coupled oscillators are frequently employed as
ideal models to elucidate a wide array of systems in both physics and engineering. For instance,
the theoretical modeling of modern quantum superconducting circuits and Josephson junction
qubits is grounded in the principles of harmonic oscillators with additional nonlinearities. Mi-
cro/nanoelectromechanical resonators (MEMS/NEMS) have been recognized for decades for
their diverse sensing applications. Beyond their role as sensors, these resonators serve as ideal
models and multifunctional elements, particularly in hybrid mechanical resonator systems and
coupled nanomechanical networks. Their inherent weak nonlinearities present opportunities
for exploring advanced signal processing and computing functions. Additionally, these devices
enable the coupling of mechanical degrees of freedom with external signals extending beyond
wavelength. Therefore, the potential applications of MEMS/NEMS are vast and should not
and will not be confined to sensor applications alone. This is what motivates me to work
in the field of microwave optomechanical devices (a nanoelectromechanical resonator coupled
with a microwave cavity) and coupled nanoelectromechanical systems.

This manuscript is used to apply for a “habilitation à diriger des recherches” (HDR) in France.
Therefore, it is written to give a brief overview of my primary research (after obtaining a
permanent position) in the highly interdisciplinary fields: microwave optomechanics and nano-
electromechanics. The total scientific part of the manuscript is about 60 pages, according to
“advices”. It consists of 4 chapters and an additional chapter for introducing the research topic
that will be carried out in the next few years. Each chapter starts with a general introduction
to the background of the subject and includes small parts of the derived analytical calculations
to guide and understand our experimental results.

The chapter 2 focuses on developing microwave optomechanical devices, including the the-
oretical part of using electrical circuit model to describe classical nature of the microwave
optomechanical properties, and the experiment of microwave optomechanical thermometry in
a single-tone driving scheme and optomechanically induced amplification/transparency in a
double-tone driving scheme. Measurement results are well described by our electrical circuit
model. The chapter 3 presents an analogy of an optomechanical system using two capacitively
coupled distinct membrane resonators. By implementing double-tone techniques, we are able
to coherently manipulate the energy transfer between the resonators using parametric coupling
based on electrostatic forces. In addition, the unique device scheme allows us to observe “anti-
damping” effects in both vibrating membranes that cannot be achieved in typical microwave
optomechanical device. The experimental results have been well fitted using our derivations
of electromechanical phonon-cavity model. It provides a method for routing signals in com-
plex coupled multimode systems. The chapter 4 shows a novel platform based on scanning
microwave microscopy integrated with microwave interferometry. The scanning tip, which acts
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as a suspended top gate, is used to drive and spatially map the tiny displacements of a mem-
brane resonator, without the need for physical contact with the sample. In addition, we can
coherently control the energy cycling between the tip vibration mode and the membrane mode.
This novel platform not only extends the applications of scanning microwave microscopy, but
it also offers a new method of investigating mechanical properties of the resonator when it is
integrated in a complex electrical circuit. All of these research achievements, which are pre-
sented in chapter 2, 3, and 4, are based on the low noise microwave readout setup and the
silicon nitride membrane resonators that I have developed in IEMN clean-room. The details of
setup and nanofabrication process are given in the 5 chapter.

These progresses made in research to date serve as critical building blocks for the exploration
of computational and sensing functionalities within coupled NEMS/MEMS networks. These
advances have led me to initiate investigations into neuron-inspired computing through the
use of the nonlinearity in the coupled NEMS networks within a microwave optomechanical
platform. To date, we have made progress in reservoir computing by creating coupled vir-
tual nodes (analogous to coupled neural networks) in a single NEMS. In addition, we have
already demonstrated the potential of thermal sensing using a single nanoelectromechanical
resonator. The focus is now on extending thermal sensing capabilities to coupled networks and
exploring quantum sensing methods. More details of the perspective are described in chapter 6.

So far, I have supervised two PhD students and both of them obtained degrees, including Dylan
CATTIAUX (co-supervised by Eddy Collin) and Hao XU (co-supervised by Didier Theron).
Each student had more than 3 international publications with me. One of the students won
the GDR-MecaQ 2021 thesis prize. Now, I am supervising the 3rd PhD student Loic FLIS
(co-supervised by Didier Theron) from the Sep. 2023 to now. I have supervised three postdocs,
two of whom have gone on to become researchers. I also supervised two Masters students, one
of whom had a scientific publication under my supervision. Besides supervising students, I also
coordinated and participated in 9 research projects. Several international and national collabo-
rations have been established, including fruitful collaborations with NEEL in Grenoble, LOMA
in Bordeaux, the University of Southampton in UK, attached to the European microkelvin
platform (EMP) network, and so on. In addition, since 2018, I have been serving as a member
of the scientific committee of GDR-mecaQ for several years and coordinated this GDR annual
meeting in Lille in 2023. More details have been included in my CV.

I am happy to share my little personal pleasure: all the parameters of the nanofabrication pro-
cess used to make the capacitively coupled membranes, as well as all the Mathematica/Python
codes I wrote for the calculations associated with this manuscript. If you are interested, please
contact me: xin.zhou@cnrs.fr
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2. Microwave optomechanical circuits:
probe and readout nanomechanical
resonator through the cavity force

In the last decades, great scientific successes have been achieved in cavity optomechanics, which
uses laser photons to explore the interaction between optical fields and mechanical motion [1].
Cavity optomechanics allows to cool down suspended micro-mirrors and to excite cold atom
clouds through the radiation-pressure effect, which enables the investigation of mechanical sys-
tems in the quantum regime [2, 3, 4]. Optical forces also offer a method to enhance the resolution
of nano-mechanical sensors through the optical spring effect [5]. Optomechancial platforms are
thus both model systems containing rich physics to be explored [1], but also unique sensors able
to detect extremely tiny forces/displacements, especially in the quantum regime as foreseen in
the 80’s [6]. Besides, the amazing sensitivity of optomechanics for displacement detection lead
to the tour de force detection of the long-thought gravitational waves [7].

Over the past 20 years, circuit quantum electrodynamics (cQED) has made significant advances
in the control and measurement of quantum states using superconducting circuits, leading to
breakthroughs in quantum computing and quantum information processing [8, 9, 10, 11, 12].
These achievements have enabled more precise manipulation of qubits, which has facilitated the
development of scalable quantum technologies. Inspired by the achievements of the QED, re-
searchers eventually started to use microwave photons confined in a superconducting resonator
to probe micro/nano-mechanical oscillators, leading to the new experimental field of microwave
optomechanics [13]. It inherits the abundant physical and technological properties emerging
from cavity optomechanics, and benefits from the capabilities of microwave circuit designs.
Especially, low temperature experiments performed in this wavelength range allow the use of
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Figure 2.1: Schematic diagram comparing a generic optomechanical system (top) and an
electrical RLC circuit (bottom). See text for the color code.
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quantum electronics components such as Josephson parametric amplifiers [14]. Building on mi-
crowave optomechanical schemes, sideband cooling of mechanical motion down to the quantum
ground state and entanglement of massive mechanical oscillators have been recently achieved
[15, 16]. Moreover, microwave optomechanical platforms with cavity-enhanced sensitivity have
been built, squeezing the classical thermal fluctuations of the mechanical element [17, 18, 19].
The latter clearly demonstrates that optomechanics is not only reserved for frontiers experi-
ments in quantum mechanics, but represents also a new resource for classical devices with novel
applications.

2.1. Basic principle of optomechanics

2.1.1. Cavity optomechanics, described by Hamiltonian formulation

Within circuit QED, Hamiltonian formulations adapted to various quantum circuits have been
developed using the mathematical toolbox of quantum mechanics. This has been achieved
by quantizing (i.e. promoting to operators) variables of electrical engineering (e.g. voltage,
current) and building the corresponding generic quantum circuit theory [20, 9, 21]. The prop-
agation of signals in coplanar waveguides (CPW) is characterized by the movement of bosonic
modes, such as photons, while localized modes describe signal propagation in RLC resonators.
To effectively describe driving fields and detected signals, input-output theory and quantum
noise formalisms are essential, particularly within the framework of the quantum version of the
fluctuation-dissipation theorem as applied to superconducting circuits [22, 23]. This theoretical
framework draws upon works such as those by Gardiner and Clerk [24, 25]. Quantum electric
circuit theory allows for the modelling of nonlinear features and dissipation, which are critical
for understanding device performance and advancing circuit design. Notably, quantum-limited
Josephson amplifiers are modeled by treating Josephson junctions as tunable nonlinear induc-
tors, as demonstrated in studies by Vijay and Zhou [26, 27]. The quantum electrodynamic
(QED) formalism has been elaborated upon for mechanical transducers, effectively bridging
concepts from quantum optics and quantum electronics. In most theoretical work, formalisms
based on quantum operators have been widely used to describe optomechanical properties.

If we use Hamiltonian to describe two uncoupled modes, the optical (ωcav) and mechanical (Ωm)
modes, it can be represented by two harmonic oscillators:

Ĥ0 = ℏωcavâ
†â+ ℏΩmb̂

†b̂, (2.1)

where both â and b̂ are quantum operators, with relations of [â, â†] = 1 and [b̂, b̂†] = 1. The
total photon number confined in the cavity nc and the total phonon number nm occupied by
the mechanical oscillator are defined by â†â = nc and b̂†b̂ = nm. For a mechanical oscillator,
it is easy to link the mechanical displacement x and momentum p with the operators b̂ and b̂†,
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with

b̂ =

√
k

2ℏΩm

x̂+ i
1√

2mℏΩm

p̂,

b̂† =

√
k

2ℏΩm

x̂− i
1√

2mℏΩm

p̂.

(2.2)

In the case of the optical cavity with a movable end mirror, as shown in Fig.2.1, the parametric
coupling exists between the optical cavity and the mechanical vibration. Because the cavity
mode will be modulated by the mechanical displacement,

ωcav(x) ≈ ωcav + x
∂ωcav

∂x
. (2.3)

The coupling rate between the optical mode and the mechanical mode is therefore given by

G = −∂ωcav

∂x
, (2.4)

through the definition of the optical frequency shift per displacement. Then, the Hamiltonian
for a description of two coupled modes in optomechanics arrives The coupling rate between the
optical mode and the mechanical mode is therefore given by

Ĥc = ℏωcavâ
†â+ ℏΩmb̂

†b̂+ ℏGâ†â(b̂+ b̂†)

√
ℏ

2mΩm

, (2.5)

with x̂ = (b̂ + b̂†)
√

ℏ
2mΩm

. The mechanical zero-point fluctuation amplitude is defined to be

xzep=
√

ℏ
2mΩm

, the mechanical displacement generated by quantum noise. Thus, the other

definition of coupling rate g0, so called single photon coupling rate, arrives g0 = Gxzep. The
Eq.2.5 can be re-written in form of g0,

Ĥc = ℏωcavâ
†â+ ℏΩmb̂

†b̂+ ℏg0â†â(b̂+ b̂†). (2.6)

Based on the input-output theory, the dynamic equation of the operator is given by

∂â

∂t
=

1

iℏ
[â, Ĥc]−

κt
2
â+

√
κcâin (2.7)

Here, the κt represents the total damping rate of the optical cavity, including internal (κi) and
external (κc) damping rate, κt = κc + κi. The κc denotes the energy exchange rate between the
external and internal cavity components. The operator â defines the energy confined inside the
cavity. To understand the output signal of the cavity âout that will be detected, the input-output
theory is mandatory, described by

âin(t) + âout(t) =
√
κtâ(t). (2.8)

If we consider â = a(t)e−iωt and put into Eq.2.6-2.7, the cavity field amplitude âin becomes

∂â

∂t
= −κt

2
â+ i[(ω − ωcav) +Gx̂]â+

√
κcâin (2.9)
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To linearize the Hamiltonian in Eq.2.5, an approximation has been made to split the cavity
field into an average coherent amplitude < â > = ᾱ and a fluctuation term δâ

â = ᾱ + δâ,

x̂ = x̄+ δx̂.
(2.10)

Therefore, the static solution gives the steady state, with

ᾱ = −
√
κc

i(∆−Gx̄)− κt

2

ain,

x̄ = −ℏGᾱ2

mΩ2
.

(2.11)

The intra-cavity average photon number is nc = |ᾱ|2. Now, we consider a force generated by
the electromagnetic fields confined inside the cavity, F = -ℏGâ†â. Its small fluctuation δF =
-ℏGᾱ(δa + δa∗). Now, we take expressions of δa and δx into account in order to present the
back-action effect,

δ̇a(t) = (i∆− κt/2)δa(t)− iGāδx(t), (2.12)

and

δ̈x(t) + γmδ̇x(t) + Ω2
mδx(t) = −ℏGā

meff

(δa(t) + δa∗(t)) . (2.13)

Note that δ̇a(t) will be fourier transferred into frequency domain, to be −iΩδa(Ω). In the
rotation frame, the solution of δa is given by

δa(Ω) =
Gā

(∆ + Ω) + iκt/2
δx(Ω),

δa∗(Ω) =
Gā

(∆− Ω)− iκt/2
δx(Ω).

(2.14)

Then, the small variations of back-action force δF are given by

δFrp(Ω) =− ℏGā (δa(Ω) + δa∗(Ω))

=− ℏG2n̄c

(
∆+Ω

(∆ + Ω)2 + (κ/2)2
+

∆− Ω

(∆− Ω)2 + (κ/2)2

)
δx(Ω)

+ iℏG2n̄c

(
κc/2

(∆ + Ω)2 + (κt/2)2
− κc/2

(∆− Ω)2 + (κt/2)2

)
δx(Ω).

(2.15)

If we compare Eq.2.15 with Eq.2.13, it is evident that δF modify the susceptibility of the coupled
mechanical resonator. The real part contributes to the modifications of mechanical resonance
frequency Ω2

m and the imaginary part gives the modifications of the initial mechanical damping
rate γm,

δγ =
ℏG2n̄c

2meffΩm

(
κc

(∆ + Ωm)2 + (κ/2)2
− κc

(∆− Ωm)2 + (κt/2)2

)
,

δΩ2 =
ℏG2n̄c

meff

(
∆+Ωm

(∆ + Ωm)2 + (κt/2)2
+

∆− Ωm

(∆− Ωm)2 + (κt/2)2

)
.

(2.16)
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Then, the mechanical damping rate becomes γeff = γm + δγ, so-called optomechanical damp-
ing effect. While, the new resonance frequency modified to be Ω2

eff = Ω2
m + δΩ2, so-called

optical spring effect [1]. This semi-classic method has been widely used for deducing the for-
mulas of optomechanical systems. To describe the quantum features in optomechanics, the
general method is to write input to be in the form of the quantum noise, instead of using input
signal, in Eq.2.7. More attention should be paid to the order of the operators when calculating
correlations. In addition, although the Hamiltonian formulation is used to describe the typical
optomechanical system, the semi-classical method is widely used for derivations to linearize
and simplify the Hamiltonian.

2.1.2. Microwave optomechanics, modeled by a LCR circuit

For microwave optomechanics, although its basic principle and relevant applications are not
restricted to quantum mechanics, today the full classical circuit model has not yet been pre-
sented, despite useful pioneering discussions [1]. Therefore, the theoretical framework used for
all experiments, even if purely classical in nature, is still based on the Hamiltonian derived
from quantum optics [1]. This means that the physical description is overly complex, losing
sight of the real (classical) nature of most properties, and that the connection between circuit
parameters and optomechanical properties is not clearly identified, whereas it is a need for
design and optimization.

2.1.3. Equivalent circuits, input-output expression, dynamics equa-
tion, and calculation approachs

To build the LCR circuit model, I start to consider two widely used equivalent circuits for
microwave optomechanics in current experiments, with different input and output designs, as
shown in Fig. 2.2. The microwave cavity consists of a simple LCkRin circuit. The coupled
nanomechanical resonator, acting as a movable capacitor, Cg(x), is coupled to this LCkRin. In
Fig. 2.2 (a) we show the electric schematic of a bi-directional coupling: the RLC resonator
couples evanescently to a nearby transmission line with an effective capacitance Cc [28, 15, 29].
If we define the damping rate the cavity as κex, then κex/2 = κL = κR. In Fig. 2.2 (b), only one
port is connected to the device, requiring thus the use of a specific nonreciprocal component
(e.g. like a circulator) to separate the drive signal from the response (reflection mode) [30].
This is equivalent to scheme (a), with κex = κL and κR = 0.

The second key point is to build the input-output expression for the circuit model. We shall
consider in the following a single port configuration, e.g Fig. 2.2 (b), the extension to the
other models being straightforward from what has been said above. Whenever necessary, this
correspondence will be explicitly discussed. The circuits shown in Fig. 2.2 are a combination of
transmission lines (the coaxial cables) and lumped elements (RLC, Z0 impedances, and source).
The first step of the modelling is thus to get rid of the coaxial elements, in order to model an
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(a) (b)

(c)

Figure 2.2: Schematic diagram comparing a generic microwave optomechanical LCR circuit
(a) readout in transmission method, (b) readout in reflection method. (c) equivalent parallel
circuit, from the voltage source to a current source

ideal lumped circuit. To start with, we consider the source Vrf which generates the incoming
wave ϕin, with ϕ(t) =

∫ t
V (t′)dt′. In schemes (b) of Fig. 2.2, the drive port is terminated by an

(almost) open circuit since the coupling capacitance is very small (Ccω Z0 ≪ 1). The incoming
wave is thus almost fully reflected, and the standing wave voltage on the input capacitor is
Vd ≈ 2Vrf [31]. On the other hand for scheme (b), the transmission line is almost unperturbed
by the coupling element Cc, and the incoming wave travels toward the output port (almost)
preserving its magnitude; on the coupling capacitor we have Vd ≈ Vrf.
Applying Norton’s theorem, we transform the series voltage source input circuit into a parallel
RC, which drives a total current Id across it. This is shown in Fig. 2.2 (b), with finally the total
loaded RLC resonator design. The effective components of the Norton drive circuit are defined
from the real and imaginary parts of the complex admittance Yc(ω) = [Z0+1/(iCcω)]

−1, in the
limit Ccω Z0 ≪ 1 (weak coupling):

Rex =
1

(ωcCc)2 Z0

, (2.17)

with the approximation ω ≈ ωc. Here, the i is the imaginary unit. The ℜ[Yc(ω)] contributes to
the Rex, with ℜ[Yc(ω)] = 1/Rex. The imaginary part of Yc, with ℑ[Yc(ω)] ≈ iωcCc links the Id
and the voltage. The current Id flowing into the resonator then writes:

Id ≈ iωcCc Vd. (2.18)

The detected voltage is calculated from the current flowing through the amplifier’s impedance
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Z0. For circuits Fig. 2.2 (b), this simply leads to:

Vout ≈ −ω2
cCcZ0 ϕ, (2.19)

assuming again ω ≈ ωc. (We do not report here the contribution from the incoming wave that
eventually travels to the amplifier.) For circuit (a), the evanescent coupling leads to a loading
composed of two impedances Z0 in parallel (half of the signal is fed back to the voltage source):

Vout ≈ −ω2
cCc

Z0

2
ϕ. (2.20)

The classical dynamics equation that describes this problem writes:

d

dt

(
(Cc + Ck + Cg[x])

dϕ

dt

)
+

(
1

Rex

+
1

Rin

)
dϕ

dt
+

1

L
ϕ

= Id + Inoise.

(2.21)

It should be noted that the value of ϕ is the biased flux inside the microwave cavity, not the
detected value. In the experiment, the readout value should be calculated through input-output
theory, based on the Eq. 2.19 or Eq.2.20, depending on the numbers of the coupled port used
in the readout circuits.

2.1.4. Damping rate of the microwave cavity

In the following, we will consider small motion, which is always true in optomechanical circuits.
Because the typical displacement of a nanomechanical resonator is in the order of a few nm.
And the coupling capacitance between the movable element and its gate, Cg(x), is always much
smaller than the coupling capacitance Cc. We therefore write Cg(x) ≈ Cg(0)+x(t)×dCg(0)/dx,
defining the total (static) capacitance Ct = Cc +Ck +Cg(0) [32, 33]. Cg(0) corresponds to the
contribution of the mobile element when at rest, while Cc comes from the slight “leakage” of the
cavity mode into the coaxial lines. The rates are then defined from the electronic components:

κt = κex + κc, (2.22)

κex =
1

RexCt

=
(ωcCc)

2 Z0

Ct

, (2.23)

κin =
1

RinCt

. (2.24)

In the two-port case, one simply defines R1 and R2 leading to 1/Rex = 1/R1 + 1/R2, and
similarly 1/Rt = 1/Rex + 1/Rin; we write the corresponding quality factors Qi = ωc/κi (with
i = in, ex, t). Besides, the microwave resonance of the loaded RLC circuit is given by ωc =
1/
√
LCt. From Eq. 2.22 to Eq. 2.24, it is straightforward to see that if one would like to control
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the energy leaking rate between external and internal cavity, the readout speed of internal filed
ϕ, the value of Cc should be carefully considered in the circuit design. Besides, it also can
be engineered by modifying the coupled impedance environment, the value Z0. The internal
damping rate of the circuit is modeled through Rin, leading to a κin decay rate (measuring
the decay toward internal degrees of freedom). Usually, the internal damping is caused by the
material losses. For instance, in order to reduce the microwave dissipation from the dielectric
layer on a silicon substrate, researchers prefer to choose quartz or sapphire substrate for the
fabrication of superconducting quantum circuits. The total decay rate of the microwave mode
is then κt = κex + κin.

2.1.5. Coupling rate in the microwave optomechanical circuits

When we look at the definition of the coupling rate in optomechanics, Eq.2.4, it is not difficult
to find the relation between the coupling rate G and the coupling capacitance Cg in microwave
optomechanical system.

G = −∂ωc

∂x
,

= − 1√
L

∂Ct

∂x
,

=
ωc

2Ct

∂Cg(x)

∂x
.

(2.25)

Therefore, in order to increase the coupling rate value G in the circuit, it is necessary to have
a higher coupling capacitance between the mechanical resonator and the cavity.

2.1.6. Calculation approaches

The drive current writes Id(t) =
1
2
Ipe

−iωpt + c.c. with ωp the frequency at which the microwave
pumping is applied and Ip its (complex) amplitude. We introduce the frequency detuning
∆ = ωp − ωc. From Eq. (2.18), Ip is derived from the input voltage drive amplitude Vp. Note
that impedances are expressed in the standard electronics language assuming A0 exp(+iωt)
time-dependencies. The writing should be adapted for full A0 exp(−iωt) + c.c. expressions.
The mechanical displacement is written as x(t) = 1

2
x0(t)e

−iΩmt + c.c. with x0(t) the (complex)
motion amplitude translated in frequency around Ωm, the mechanical resonance frequency of
the movable element. This amplitude is a stochastic variable: the Brownian motion of the
moving element thermalized at temperature Tm, in the absence of the back-action from the
circuit.

The terms where motion x(t) multiplies flux ϕ(t) in Eq. (2.21) then generate harmonics at
ωn = ωp+nΩm, with n ∈ Z: this phenomenon is known as nonlinear mixing. We can thus find
an exact solution using the ansatz:

ϕ(t) =
+∞∑

n=−∞

ϕn(t) =
+∞∑

n=−∞

1

2
µn(t)e

−i(ωp+nΩm)t + c.c., (2.26)

15



when injected in Eq. (2.21) generates a system of coupled equations for the µn (complex)
amplitudes. In order to match the decomposition, the white noise component is thus naturally
written as Inoise =

∑
n

1
2
δIn(t)e

−i(ωp+nΩm)t+c.c. with δIn(t) the (complex) amplitude translated
at frenquency ωp+nΩm. From the full comb, we thus keep only n = −1, 0,+1 which we rename
in ’l’ (low), ’p’ (pump) and ’h’ (high) respectively for clarity. Here, the mechanical resonance
frequency Ωm is much smaller than the resonance frequency of microwave cavity ωc, Ωm ≪ ωc,
which is considered as a standard experimental condition in microwave optomechanics.

With the approximation ωl ≈ ωp ≈ ωh ≈ ωc, we solve the Eq.2.21 by considering the cavity
is pumped at the frequency ωp. Then, the flux amplitudes inside the cavity acting on the
mechanical oscillator are:

µp(t) = +
i

2

(
Ip
ωcCt

+
δIp(t)

ωcCt

)
χp,

µl(t) = +
i

2

(
Gx∗0(t)µp(t) +

δIl(t)

ωcCt

)
χl,

µh(t) = +
i

2

(
Gx0(t)µp(t) +

δIh(t)

ωcCt

)
χh,

(2.27)

having defined:

χp =
1

−i∆+ κt

2

, (2.28)

χl =
1

−i (∆− Ωm) +
κt

2

, (2.29)

χh =
1

−i (∆ + Ωm) +
κt

2

, (2.30)

the cavity susceptibilities associated to each spectral component. The two satellite signals µl

and µh at ωp±Ωm are generated by the pump tone µp. When the pump tone is at the resonance
frequency ωp = ωc, it yields ∆ = 0, giving µl = µh. We call it as green pump. While, when
the ∆ ̸= 0 but with ∆ ≈ Ωm, one of the generated satellite signals around ωc has the higher
amplitude. The other one is suppressed due to out-of-the-cavity bandwidth.

2.1.7. Classical features of optomechanics in single-tone driving scheme

Back-action of cavity forces: optical spring effect and damping effect

From Eq.2.28 to Eq.2.30, a cavity force F0 can be generated because of the pump tone, δF0(ω) =

+iG
2

[
δIh(ω)µ

∗
p χh − δI∗l (ω)µp χ

∗
l

]
. Together with the Langevin force, they will modulate the

mechanical susceptibilities.

x0(ω) = χm(ω) [L0(ω) + δF0(ω)] , (2.31)
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where we have defined:

χm(ω) =
1

2mΩm

(
−ω − iΓm

2

)
+ Σ

, (2.32)

Σ = −iG
2

ωc

(
Ctω

2
c |µp|2

2

) [
χh − χ∗

l

]
. (2.33)

Taking real and imaginary parts of Σ, we see from Eq. (2.32) that the optomechanical interac-
tion is responsible for a frequency shift δΩm and an additional damping term Γopt:

δΩm = G2 1

ωc (2mΩm)

(
Ctω

2
c |µp|2

2

)
×[

∆+Ωm

(∆ + Ωm)2 + (κt

2
)2

+
∆− Ωm

(∆− Ωm)2 + (κt

2
)2

]
, (2.34)

Γopt = G2 1

ωc (2mΩm)

(
Ctω

2
c |µp|2

2

)
×[

κt
(∆ + Ωm)2 + (κt

2
)2

− κt
(∆− Ωm)2 + (κt

2
)2

]
. (2.35)

It is consistent with Eq.2.16, derived by using quantum operators in section 2.1.1. But compared
to Hamiltonian formalism, this model of an electric circuit combines many parameters that are
accessible to experiments. Moreover, the derivations directly tell the truth that the cavity force
in optomechanics is a kind of electrostatic force and is generated by frequency conversions in
microwave optomechanics.

Besides, the energy Ec stored in the microwave resonator writes:

Ec =
Ctω

2
c |µp|2

2
= Pin κex |χp|2 ,

= nc ℏωc.

(2.36)

From Eq.2.34 and Eq.2.35, it is easy to see that both coupling rate G and photon numbers
nc play important role in optomecanical effects. In the microwave optomechanical system, the
high quality factor of the microwave cavity and the high capacitive coupling value Cg between
the cavity and the coupled mechanical resonators are both significant factors to consider.

Sideband asymmetry

As discussed above (see Eq.2.27), when the microwave cavity is pumped, two satellite signals
will be generated. Their values not only rely on the pump amplitude µp but also on the noise
δIi. This noise can be quantum noise or thermal noise. An interesting point is that the cross-
correlations between the cavity noise and the mechanical motion will contribute to the output

17



of the spectrum, as described in Eq.2.37 and Eq.2.38.

Sµl
(ω) = |µp|2G2Sx0(ω)

4
|χl|2 +

RtSδIn

4

κt
Ctω2

c

|χl|2

+
|µp|2G2κt

2ωc

[i(χ∗
mχl − χmχ

∗
l )]

RtSδIn

4
|χl|2, (2.37)

Sµh
(ω) = |µp|2G2Sx0(ω)

4
|χh|2 +

RtSδIn

4

κt
Ctω2

c

|χh|2

+
|µp|2G2κt

2ωc

[i(χmχh − χ∗
mχ

∗
h)]

RtSδIn

4
|χh|2. (2.38)

The last terms in Eq.2.37 and Eq.2.38 correspond to cross-correlations between the cavity noise
current and the motion. Besides, the output of the spectrum also relies on the cross-correction
between the cavity noise and the noise of the detection background, as shown in Eq.2.39 and
Eq.2.40.

Sµl,δVl
(ω) = +

2(ωcCcZ0)

ωcCt

[χl + χ∗
l ]
RexSδIn

4
(2.39)

+ |µp|2G2(ωcCcZ0)
[
i(χ2

l χ
∗
m − χ∗

l
2χm)

] RexSδIn

4
,

Sµh,δVh
(ω) = +

2(ωcCcZ0)

ωcCt

[χh + χ∗
h]
RexSδIn

4
(2.40)

+ |µp|2G2(ωcCcZ0)
[
i(χ2

hχm − χ∗
h
2χ∗

m)
] RexSδIn

4
.

These products from cross-correlation can be recast into apparent stochastic force, back af-
fecting the mechanical motions. For instance, we define a temperature for the detection port
as RexSInoise = RexSδIn/4 = kBTex and the background noise becomes 2kBTex. The cross-
correlations between the detection background and the cavity noise give extra force noise δFex l

and δFex h.

For the “blue” pumping scheme, only the ’l’ sideband is measurable in the sideband-resolved
limit. Injecting ∆ = +Ωm in the above mentioned equations, we obtain:

SδFex l
= 2mΓeff kB (+2Tc − Tex)

Ωm

ωc

, (2.41)

with Tc and Tex the temperatures of the cavity and the detection port respectively.
Similarly for the “red” pumping scheme, with ∆ = −Ωm and looking at the ’h’ sideband we
have:

SδFex h
= 2mΓeff kB (+Tex − 2Tc)

Ωm

ωc

. (2.42)

In both expressions, Γeff = Γm +Γopt but Γopt is different: negative for the “blue” scheme, and
positive for the “red” one. However, for low drive powers Γopt ≈ 0 and Γeff ≈ Γm. In this case,
a very simple result emerges: the two apparent force noises are opposite, a result referred to in
the literature as sideband asymmetry [1, 34]. But here, the feature is purely classical, and by
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no means a signature of quantum fluctuations.

In the case of a “green” pumping scheme, ∆ = 0 and both sidebands can be measured at
the same time. The resulting expressions for the cross-correlation apparent stochastic force
components are:

SδFex l
= 2mΓm kB (+Tex)

Ωm

ωc

,

SδFex h
= 2mΓm kB (−Tex)

Ωm

ωc

, (2.43)

again in the sideband-resolved limit. Eqs. (2.43) are very similar to Eqs. (2.41,2.42): again the
two forces are opposite, but this time they depend only on Tex.

Let us consider the case of an ideally thermalized system were Tc = Tex = Tm. Then in the
limit Γopt ≈ 0, sideband asymmetry measured by comparing the ’l’ peak in “blue” pumping
Eq. (2.41) with the ’h’ peak in “red” Eq. (2.42) gives strictly the same result as the direct
comparison of the two sidebands Eqs. (2.43) observed with a “green” scheme. Besides, the
sideband asymmetry effect simply renormalizes the observed mechanical temperature by Tm →
Tm(1 + Ωm/ωc) on the ’l’ side, and by Tm → Tm(1−Ωm/ωc) on the ’h’ side; since Ωm/ωc ≪ 1,
this effect can be safely neglected in this case. One needs to artificially create a situation
where Tm ≪ Tex to make the sideband asymmetry detectable (e.g. by sideband cooling the
mechanical mode, and injecting noise through the microwave port) [34]. As soon as T → 0 K,
the classical picture breaks down and all features should be interpreted in the framework of
quantum mechanics; including sideband asymmetry. A recent experiment has demonstrated
very good agreement with this formalism, without free parameters [35].

Classical analogue

The main optomechanical results applying to the “green” pumping scheme (ωp ≈ ωc) are com-
pared in Tab. 2.1 in the classical and quantum regimes. Here, the δE is the output of energy for
the cavity. Once we want to make a straightforward comparison, the energy in classical states
can be re-written in the form of photon numbers, with a universal expression δE = ncℏω. The
key point revealed by the classical modelling is that all features have a classical analogue; only
the T → 0 K quantities are a true signature of quantumness, which highlights the importance of
calibrations in all conducted experiments. More details are present in our previous publication
[36].

2.2. Microwave single-tone manipulations: on-chip op-

tomechanical thermometry

Primary thermometers are those whose temperature can be calculated directly from the reading
of a physical parameter using a known physical law, which does not need to be calibrated by
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Quantity Quantum limit Classical limit

Simp
x SδF

κt

κex
ℏ2/4 1

2
κt

κex
kBTc δE/(ω

2
c )

Sig ∝ x2zpf/2 ∝ kBTm/(2mΩ2
m)

Noise ∝ x2zpf ∝
√
δE kBTc/(

√
2mΩmωc)

Sig/Noise 1/2 kBTmωc/(
√
2
√
δE kBTc Ωm)

Table 2.1: Simp
x SδF product, signal Sig, noise Noise and signal-to-noise ratio in the quantum

and classical limits (the latter are given at the optimal nc for the “green” pumping scheme; δE
energy detection resolution and Tc cavity temperature, see text).

other thermometers. They are needed to calibrate thermometers and are of interest to indus-
try. Today, the cryostat market is growing rapidly, driven by increased demand for cryostats
in healthcare (nuclear magnetic resonance imaging), the aerospace industry and scientific in-
strumentation. However, the cryogenic industry and research activities are facing the problem
of the lack of suitable primary thermometers with the following properties: a wide working
temperature range (10 mK- 300 K), high accuracy, and integration in a small space. Today,
most cryostats have to be equipped with several different thermometers, which not only take
up a significant amount of space, but also require additional wiring and complex calibration.

The operating temperature range of the primary thermometer is determined by the physics on
which it is based. For example, the operating range of the Coulomb blockade primary ther-
mometer is limited in the low and intermediate Coulomb blockade regime (typically < 20K)
and the superconducting quantum interference device (SQUIDs) thermometer is limited by
the transition temperature of the superconducting material [37]. In addition, some of these
well-developed primary thermometers require additional protection (e.g. anti-magnetic for the
SQUID thermometer) or are sensitive to magnetic fields (e.g. Pt NMR), making them difficult
to integrate on-chip.

Microwave optomechanical circuits offer a method to read out the phonon occupation numbers
nm of the coupled nanomechanical resonators through cavity force. The basic principle is to use
a “light” microwave signal pumping system at frequency ωp = ωc + Ωm, called blue sideband
pumping. Based on the RLC circuit model (see Eq. 2.27), the spectrum existing inside the
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Figure 2.3: Left: comparison of this project with the state of the art. ’Secondary’ means
that they must be calibrated by other thermometers, ’ULT’ is T< = 30mK. Right: schematic
diagram of microwave optomechanical phonon thermometry.

cavity at the frequency around ωc is given by:

Sµl
(ω) = |µp|2G2Sx0(ω)

4
|χl|2 +

RtSδIn

4

κt
Ctω2

c

|χl|2

+
|µp|2G2κt

2ωc

[i(χ∗
mχl − χmχ

∗
l )]
RtSδIn

4
|χl|2 ,

(2.44)

with

2π

∫
Sx0dω = x2zpfnm

Γm

Γeff

. (2.45)

It is easy to see that the phonons from the MEMS has been amplified by the microwave pump
amplitude µp, as shown in Figure 2.3. The gain of this amplification can be obtained by mea-
suring the noise spectral density corresponding to different pump powers. Consequently, the
initial number of phonons nm will be obtained by removing the gain of the optomechanical
amplification from the measured output signals. To assess accuracy, we will compare the nm

measured by our thermometer with temperatures measured by other commercial thermometers,
such as resistors.

Figure 2.4 shows the measurement results of a microwave thermometry, measured between 20
mK and 1 K. In the blue sideband pumping scheme, the phonon occupation numbers of the
mechanical resonator increase with increasing pump amplitude. We, therefore, observe that
the integrated area of Sx0 increases as shown in the Fig.2.4. Through careful calibrations of the
gain in blue sideband pumping, The true detected temperature Tmode can be read, consistent
with the cryostat temperature. However, as the pump amplitude increases in the red sideband
pumping scheme, the measured areas of the spectral density Sx0 increase initially and then
become saturated. The more numbers of phonons will be pumped out at the higher pump
power, yielding the weaker signal for detection, whose readout is limited by the sensitivity of
the detection chain, e.g. the amplifier.
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Figure 2.4: Left: Area of measured spectrum density of the nanomechanical resonator as a
function of pump power Pin, corresponding to different pump schemes. The inset figure is
one example of the measured spectrum density of a nanomechanical resonator in a microwave
optomechanical circuit. Right: The mode temperature as a function of cryostat temperature.
These data have been published by author [29].

2.3. Microwave double-tone manipulations: optomechan-

ically induced transparency and amplifications

The microwave optomechanical systems also give access to the double-tone operations, probing
the microwave cavity and pumping the cavity at its sideband. To describe this operation, we
can re-write Eq.2.21 to be

Is
CT0

=

(
1 +

2G

ωc

X

)
ϕ̈+

(
kT +

2G

ωc

d

dt
X

)
ϕ̇+ ω2

cϕ, (2.46)

with solutions in the form of ϕ[ω] = µ
2
e−iωt + µ∗

2
eiωt and X[Ω] = µx

2
e−iΩt + µ∗

x

2
eiωt. Note that the

internal filed in the cavity ϕ should be re-written in a form of ϕ = ϕs[ωs] + ϕp[ωp], in which
ϕ[ωs] is generated by the sideband pump Ip and will create interference with the probe signal
(Is) at the frequency ωs. When the interferences become constructive, the probe signal will be
amplified. For destructive interference, the probe signal will be suppressed due to destructive
interference. The solution of Eq.2.46 is given by

µp =
Ip

Ct0 (ωc
2 − ωp

2 − iωpkt)

µ∗
s =

Isωc +Gµx
∗µp

∗ωpωsCt0

ωcCt0 (ωc
2 − ωs

2 + iωskt)

(2.47)

It gives a back-action force fback to the mechanical resonator

fback = ωpGCt0

(
µsµp

∗

2
eiΩt +

µs
∗µp

2
e−iΩt

)
. (2.48)
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Figure 2.5: 2D plots the signal gain in blue sideband pumping scheme, corresponding to both
signal and pump frequency detuning. Top figures show the measurement results, down figures
are the calculation results. In calculation, we used experimental parameters: g0 = 0.8 Hz,
ωc/(2π) =5.98 GHz, Ωm/(2π) ∼3.7 MHz, κt/(2π) ∼ 105 Hz, pump power=-65 dBm, signal=-
110 dBm, γm0 is the initial bandwidth of NEMS.

This cavity force will play the same role as in the single-tone driving scheme (see Eq.2.31),
modulating the mechanical damping rate and resonance frequency. When we consider the
nanomechanical resonator is driven by the cavity force, µx arrives

µx =
µ∗
sµp

meff

ωpGCt0

2Ω
(
Ωm − Ω− i̇γm

2

) , (2.49)

with Ω = ωp − ωs, with Ω > 0 in the blue sideband pumping condition and Ω < 0 for the red
sideband configuration. When one puts expressions of µp and µs in Eq.2.47 to Eq.2.49, we get
expression of mechanical displacement µx in this two-tone driving scheme

µx =− GPinSinωp

meff Ω(iγm + 2Ω− 2Ωm)Ct0

(
ω2
c − ω2

p − iωpkT
)
(ω2

c − ω2
s + iωskT )

× 1(
1 +

G2Pinµ∗
pω

2
pωs

meff Ωωc(iγm+2Ω−2Ωm)(ω2
c−ω2

p−iωpkT )(ω2
c−ω2

s+iωskT )

) . (2.50)

Gain =1− ikc

ωc − ωs + ikt
2

±

ig20kcnc(
iγm
2

+ Ω− Ωm

) (
ωc − ωs +

ikt
2

)((
ωc − ωs +

ikt
2

)
± g20nc

( iγm
2

+Ω−Ωm)

) (2.51)
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If we re-write the output as a signal gain, µout/µin (see Eq.2.51. The symbol ”±” is taken
to be ”-” for the red sideband pump tone and ”+” for the blue sideband pump tone.), it is
easy to see the effects of interference between the cavity susceptibility and the mechanical
susceptibility. Such kind interference is generated from the microwave photons created by
frequency mixing between the probe signal inside the cavity and the pump tone at the cavity’s
sideband. This interference has also been observed in two coupled nanomechanical resonators at
room temperature (see section3.1.1). In the experiment, the resonance frequency of microwave
cavity is set as a frequency reference, with ∆ = ωp −Ωs, and the probe signal is sweep through
taking the pump tone as the reference (Ω = ωp−ωs), giving ωc−ωs = Ω−∆. Figure 2.5 shows
both the measurement and calculation results based on Eq.2.51, in a blue sideband pumping
scheme. The results can be fitted quite well by this analytical expression, derived in the electric
circuit model. A small signal gain can be generated because of the constructive interference
between the probe tone and the pump tone. As the mechanical damping rate γm increases
with temperature, the efficiency of these constructive perturbations decreases, resulting in a
decrease in gain. Note that if the cavity is pumped at its red sideband, destructive interference
will occur, resulting in transparency of the probe signal [38, 39, 40].

2.4. Summary of chapter-2

We have introduced a generic classical electric circuit model that mirrors the conventional
quantum treatment of optomechanics. Through this analytical framework, connections be-
tween circuit parameters and quantum optics quantities are established, crucial for design and
optimization purposes. These two approaches are interchangeable under the condition that
temperatures are sufficiently high for both mechanical and electromagnetic degrees of freedom.
This classical electric circuit model has been exploited to design microwave optomechanical cir-
cuits and fit experimental results [29]. It not only adapts to a single-tone driving scheme, but
can also be upgraded to a multi-tone driving configuration. In addition to theoretical modelling,
on-chip thermometry and optomechanically induced amplification/transparency have been ex-
perimentally demonstrated. The development of microwave on-chip thermometry will solve the
problem of lack of thermometry in the ultra-low temperature range (T < 10 mK). The working
temperature of this on-chip thermometry is limited by the superconducting material (Nb thin
film). Nevertheless, with a microwave cavity capable of operating across a broad temperature
spectrum, the concept of microwave optomechanical thermometry becomes applicable across
various temperature ranges, from room temperature to ultra-low temperatures, leveraging tech-
niques such as 3D cavity design. This is the reason that we also developed 3D microwave cavity
(see section 5.1.3). The optomechanically induced amplification/transparency can be further
exploited for microwave tunable amplifiers/filters. Different driving schemes also demonstrate
the flexibilities of optomechanical operations.
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3. Coupled membrane nanoelectrome-
chanical resonators, for phonon-cavity
nanoelectromechanics

Micro- and nano-electromechanical systems, allowing mechanical displacements to couple with
electrical and optical signals, are extensively studied for various applications and fundamental
research [41, 42, 43, 44, 45]. The specific features of tiny scale and high quality factor reso-
nances are attractive for sensing applications [46, 47, 48, 49, 50]. Their intrinsic nonlinearity
and mechanical transduction design have been implemented for developing logic gates [51, 52],
radio frequency (rf) amplifiers [53] and memory nodes [54]. In recent years, the study of mode
coupling, which exists between different mechanical modes in a single system but also between
different resonators, attracts great research interests. Because they allow to transmit infor-
mation between mechanical modes [55, 56] and to filter signals in different frequency bands
through controlling transfers of energy [57]. In addition to these applied possibilities, such
devices can also be viewed as model systems to implement mechanical analogues of some other
phenomena [58]. Coupled mechanical modes are crucial for extending the signal of nanome-
chanical resonators to coupled NEMS/MEMS networks, in order to explore multifunctional
nanoelectromechanical systems.

As such, one of the successful examples exploiting mechanical mode coupling is the concept of
“phonon-cavity” [59, 60], inspired by recent achievements in optomechanics. Optomechanics,
which studies interactions between the mechanical vibrations and photons confined in a cav-
ity, offers a powerful platform for many engineering applications, from sensing (e.g. detecting
thermal Brownian motion) to the generation of mechanical self-sustained oscillations, and even
the storage of light [61, 62, 39]. In order for the two coupled mechanical modes to exploit the
rich physics available with optomechanics, the phonon-cavity scheme is built by implementing
the mode with the higher resonance frequency Ω1 as a phonon cavity in analogy with the op-
tical/microwave one, and then pumping it with a signal at frequency ∼ Ω1 ± Ω2. Here, Ω2 is
the resonance frequency of the other mode. The concept of phonon-cavity not only enables
the two coupled mechanical modes to inherit those interesting functions of optomechanics, but
also further enriches existing optomechanical applications, in both classical and potentially the
quantum regime [60, 63, 64, 65].

Up to now, in most phonon-cavity schemes, the coupling is created between different me-
chanical modes with a single resonator by means of an intrinsic nonlinearity, or between dif-
ferent resonators by using physical connections to transmit a displacement-induced tension
[60, 55, 46, 66, 67, 68]. However, mechanical coupling design yields implementation com-
plexities in optimizing the coupling between distinct and distributed resonators, and poses a
challenge for electromechanical devices desiring higher resonance frequencies and flexible tun-
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Cm(x1, x2)

x1(t)

x2(t)
d

Figure 3.1: Left: SEM image of the device consisting of an Al membrane on top capaci-
tively coupled to a silicon nitride membrane below. Bottom: Schematic diagram of the device
structure and the corresponding equivalent capacitor consisting of two movable parallel plates.
Right: mechanical responses of both membrane resonators, measured at room temperature.

ability. Compared to mechanical coupling designs, electrostatic coupling schemes are widely
implemented in diverse electrical integrated systems. It allows to implement the coupling of
distributed resonators experiencing nano-scale displacements, but also to drive/detect indepen-
dently each resonator of the coupled system [69, 70]. However, it is still challenging to achieve
directly coupled distinct mechanical resonators via capacitive coupling, especially for compact
schemes.

Therefore, we have developed a new nanoelectromechanical scheme, consisting of an Al drum
suspended on top of a silicon nitride membrane drum, as shown in Fig3.1. Both resonators can
be driven and detected independently. The device fabrication process is introduced in chapter
5 section5.2. This device design offers an opportunity to study mode coupling. Moreover, it
provides the advantage of low power manipulations as the vibration membranes exhibit a high
coupling rate with external circuits. This is especially evident in microwave optomechanical
systems [71].

In this chapter, I present coherent energy transfers between two capacitively coupled and dis-
tinct electromechanical resonators by leveraging this silicon nitride membrane resonator. We
explore phonon-cavity electromechanics based on a simple theoretical model which is analogous
to optomechanics. At room temperature, we experimentally demonstrate electromechanically
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induced transparency and amplification of the input signal by controlling the electromechanical
energy transfers (in the form of phonons) to create signal interferences in the coupled system.
We observe mechanical anti-damping effects (with respect to the applied driving tone) in both
coupled drums generated by the phonon-cavity force, exhibiting the trend expected by the
theoretical model. These results indicate that this new type of device design could serve for
phonon-based information processing in both classical and quantum regimes, and is potentially
useful for building multifunctional compact mechanical systems.

3.1. Transparency and amplification, in a single side-

band pumping scheme

As introduced in Section 2.3, transparency and amplification are created based on a two-tone
drive scheme that generates destructive and constructive interference between the probe signal
and the signal generated by photon cycling in optomechanical circuits. Both phenomena can
be served in many coupled systems, also in coupled mechanical system. The simplest way is
to make an analogy to the optomechanical system by choosing the resonator with the higher
resonant frequency as the cavity, the so-called phonon cavity. The two-tone driving method
is to use one signal to probe one of the coupled resonators and the other signal to pump the
phonon cavity at its sideband.

In the year 2020 [71], I have achieved a silicon nitride membrane nanoelectromechanical res-
onator. This unique device design consists of two membrane resonators, which is advantageous
for studying phonon-cavity nanoelectromechanics. As shown in figure 3.1, the device scheme
is equivalent to a capacitor consisting of two movable parallel plates. Both of them have res-
onance frequencies in MHz range, far from each other. Therefore, we can choose a silicon
nitride membrane having the Ωm/(2π) > 8 MHz as the phonon-cavity. Its typical bandwidth is
γc(SiN)/(2π) < 103 Hz. In a standard microwave optomechanical circuit, the damping rate of
the couple mechanical resonator γm is much smaller than that of microwave cavity γc, γm < γc.
However, in this phonon-cavity system, the damping rate of Al membrane γm(Al) is much
higher than the “cavity” damping rate, with “γm > γc”. It means the energy-leaking speed of
the coupled resonator (here, Al membrane) is much faster than that of the cavity (the silicon
nitride membrane).

3.1.1. Modelling of capacitively coupled two membranes

The parametric coupling between two membranes is established in this electromechanical model
by leveraging the electrostatic force, which is dependent on the mechanical displacement of
both resonators. This simple device structure allows to consider two parametrically coupled
electromechanical resonators as a single capacitor Cg (X1, X2) consisting of two parallel and
movable membranes. The mechanical displacement of each membrane is described by X1(t)
and X2(t) resonating at the frequency Ω1 and Ω2, with Ω1 > Ω2. We therefore model these two
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coupled drums in the linear response regime, driven by an electrostatic force

F1,2(t) =
(Vdc + Vac)

2

2

∂

∂X1,2

Cg (X1, X2) , (3.1)

via the following equations of motion for the displacement X1(t) and X2(t),

Ẍ1 + γ1Ẋ1 + Ω2
1X1 =

VacVdc
dm1

Cg0

[
1− 2(X2 −X1)

d

]
,

Ẍ2 + γ2Ẋ2 + Ω2
2X2 =

VacVdc
dm2

Cg0

[
−1 +

2(X2 −X1)

d

]
.

(3.2)

Here, the γ1,2 is the mechanical damping rate, the m1,2 is the effective mass, and Cg0 is the ini-
tial capacitance between two membranes separated by a distance d. The driving force F1,2(t) is
modeled as a simple parallel plate capacitor, and the force is truncated at the Taylor expansion
of the Cg(x), ≈ Cg0(1 − x

d
+ x2

d2
), with x(t)=X2(t) − X1(t). In the Eq.3.2, an approxima-

tion 2VdcVac + V 2
ac ≈ 2VdcVac has been made by considering a general case in measurements:

Vdc ≫ |Vac|. The static contribution V 2
dc has been dropped of the equation since it cannot drive

resonantly the modes; note however that this term can be employed to tune the resonance
frequencies [71]. We shall not refer to this possibility in the present work.

To demonstrate phonon-cavity in a two-tone driving scheme, the membrane having the higher
resonance frequency is chosen as phonon-cavity (with index 1). The other coupled mechanical
resonator with the lower resonance frequency is marked with index 2. We exploit one driving
tone with frequency Ωd to weakly probe one of the coupled membranes around Ω1 or Ω2 and the
other one with frequency Ωp to pump the phonon-cavity at its sideband∼ Ω1±Ω2. Therefore, we
also write Vac in the form of Vac(Ωp,Ωd) =

µp

2
e−iΩpt+µd

2
e−iΩdt+c.c. The Eq.3.2 can be analytically

solved in the rotating frame through looking for the displacement driven by the probe signal,

X1(2)(t)=
x1(2)(t)

2
e−iΩdt + c.c and the displacement of the other coupled membrane generated by

the frequency mixing between the probe and the pump signals, X2(1)(t)=
x2(1)(t)

2
e−i(Ωp∓Ωd)t+ c.c.

The x1(2) is the slowly varying complex amplitudes of mechanical displacements.

First, we drive the phonon-cavity at the frequency with small amplitude around its resonance
frequency Ω1 with the frequency detuning δ, Ωd=Ω1+δ. (a) Pump the photon-cavity at its red
sideband with the frequency ∆ detuned from Ω1-Ω2, Ωp=Ω1-Ω2+∆. Based on an approximation
that Ω2

1 − Ω2
d ≈ 2Ω1(Ω1 − Ωd), the analytical solution of Eq.3.2 gives

x1 =
fd

2m1Ω1

1
1
χ1

− |fp|2χ2

4m1m2d2Ω1Ω2

,

x2 = −
f ∗
p

2m2Ω2

x1
d
χ2

(3.3)

(b) For pumping the photon-cavity at its blue sideband at the frequency Ωp=Ω1+Ω2+∆, it
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arrives

x1 =
fd

2m1Ω1

1
1
χ1

+ |fp|2χ2

4m1m2d2Ω1Ω2

,

x∗2 =
f ∗
p

2m2Ω2

x1
d
χ2

(3.4)

Here, we define the susceptibility of the phonon-cavity χ1 and the mechanical susceptibility χ2

corresponding to both red and blue sideband pumping the phonon-cavity.

χ1 =
1

−δ − iγ1
2

,

χ2 =
1

∆− δ − iγ2
2

,
(3.5)

The fp = Cg0Vdcµp

d
and fd = Cg0Vdcµd

d
are complex amplitudes respectively corresponding to the

pumping and driving force. To have analogues of optomechanical system, we define the coupling

strength as G = ∂Ω1

∂X2
≈ ∂Ω1

∂Cg

∂Cg

∂X2
≈-Ω1

2d
. It gives single phonon coupling strength g0=G

√
ℏ

2m2Ω2
,

where
√

ℏ
2m2Ω2

is the zero-point fluctuations of the coupled membrane with resonance frequency

Ω2. Therefore, the term of |fp|2
4m1m2d2Ω1Ω2

can be re-written as npg
2
0 through making a definition

of the phonon number np ≈ 2|fp|2
m1Ω2

1

1
ℏΩp

, generated by the pump tone. Then, Eq.3.4 becomes:

x1 =
fd

2m1Ω1

1

χ−1
1 ± npg20χ2

, (3.6)

where “-” and “+” symbols correspond to “red” and “blue” sideband pumping scheme.

Second, we probe the coupled membrane at the frequency around its resonance frequency
Ω2 with the frequency detuning δ, Ωd=Ω2+δ. Similarly, an approximation of Ω2

2 − Ω2
d ≈

2Ω2(Ω2−Ωd) has been made. For pumping the photon-cavity at its red sideband, the analytical
solution of Eq.3.2 gives

x2 = − fd
2m2Ω2

1

χ−1
2 − npg20χ1

,

x1 = −
f ∗
p

2m1Ω1

x2
d
χ1,

χ1 =
1

−∆− δ − iγ1
2

,

χ2 =
1

−δ − iγ2
2

.

(3.7)
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For the blue sideband pumping, it arrives

x2 = − fd
2m2Ω2

1

χ−1
2 − npg20χ

∗
1

,

x∗1 = −
f ∗
p

2m1Ω1

x2
d
χ∗
1,

χ∗
1 =

1

δ −∆+ iγ1
2

,

χ2 =
1

−δ − iγ2
2

.

(3.8)

3.1.2. Analytical calculation for single-tone sideband pumping scheme:
analogy to optomechanical damping effect

The two parallel membranes can be likened to the two coupled movable mirrors in optomechan-
ics. Thus, it is interesting to verify the “phonon-cavity” forces back-action effects on both mem-
branes. Here, we define the phonon-cavity is sideband pumped at Ωp = Ω1 + β, where β is the
frequency detuning from the resonance frequency of the phonon-cavity Ω1. The mechanical dis-
placement of the coupled membrane (with the index 2) is written as x2(t) =

1
2
δx2(t)e

−iΩ2t+ c.c,
where the complex amplitude of δx2(t) is the Brownian motion of the the membrane(2) [36].
The terms where motion x2(t) multiplies pump amplitude in Eq.3.2 generate harmonics at
Ωn = Ωp + nΩ2, with n ∈ Z. The solution can be found in the form of the ansatz,

x(t) =
+∞∑

n=−∞

δx(t)

2
e−i(Ωp+nΩ2)t + c.c. (3.9)

In this work, we are interested only in schemes of n = ±1, corresponding to the “down” and
“up” sideband of the pump signals at the frequency Ω− = Ωp − Ω2 and Ω+ = Ωp + Ω2. The
solution of the phonon-cavity motion equation in Eq.3.2 is given by

x− =
e−iΩ−t

2

fpδx
∗
2

m1d

1

Ω2
1 − Ω2

− − iΩ−γ1
+ c.c,

x+ =
e−iΩ+t

2

fpδx2
m1d

1

Ω2
1 − Ω2

+ − iΩ+γ1
+ c.c.

(3.10)

It yields an extra force, fcav =
fp
d
x∗− +

f∗
p

d
x+ + c.c, biasing on the membrane(2), which modifies

the initial mechanical susceptibility to become

χ2(Ω) =
1

2m2Ω2

1

(−Ω− iγ2
2
) + Σ

,

Σ =
|fp|2

4m1m2d2Ω1Ω2

(
Ω2 + β − iγ1

2

(Ω2 + β)2 +
γ2
1

4

−
Ω2 − β − iγ1

2

(Ω2 − β)2 +
γ2
1

4

)
(3.11)
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The imaginary part of Σ modifies the mechanical damping rate γ2, yielding additional damping
γopt

γopt = npg
2
0

[
γ1

(Ω2 + β)2 +
γ2
1

4

− γ1

(Ω2 − β)2 +
γ2
1

4

]
. (3.12)

The real part of Σ contributes to a frequency shift of Ω2,

δΩ2 = −npg
2
0

[
β + Ω2

(Ω2 + β)2 +
γ2
1

4

− Ω2 − β

(Ω2 − β)2 +
γ2
1

4

]
. (3.13)

Both expressions of Eq.3.12 and Eq.3.13 refer to “optical damping effect” and “optical spring
effect” in optomechanics. The fcav corresponds to the phonon-cavity force, originating from
energy confined in the capacitor that consistsof two capacitively coupled membranes.
Using same method, we could get the dynamical backaction effects on the phonon-cavity,

γopt(cavity) = npg
2
0

[
γ2

(Ω2 − 2Ω1 − β)2 +
γ2
2

4

− γ2

(Ω2 − β)2 +
γ2
2

4

]
,

δΩ1 = npg
2
0

[
Ω2 − 2Ω1 − β

(Ω2 − 2Ω1 − β)2 +
γ2
2

4

+
Ω2 − β

(Ω2 − β)2 +
γ2
2

4

]
.

(3.14)

3.1.3. Two-tone measurement results of the coupled membranes

In order to build the interference process, one of the key points is that the unprobed mechan-
ical resonator should provide enough phonons to be fed back by the pump tone, generating
interference with the initial probe tone. In addition, these two coupled electromechanical res-
onators can be driven and read out separately, we can thus probe one of the resonators without
damaging the excitation states of the phonon-cavity. Energies, in the form of phonons, can be
coherently cycled between both systems.

Figure 3.2 shows two-tone measurement results of the coupled silicon nitride membrane and
Al membrane, at room temperature. In a red sideband pumping scheme, (a) electromechanical
response of the phonon-cavity measured with driving amplitudes Vdc = 4 V, Vac(Ωd) = 1 mVp,
Vac(Ωp) = 70 mVp, and probed at Ωd = Ω1 + δ; (b) mechanical response of the Al drum mea-
sured with driving amplitudes Vdc = 2 V, Vac(Ωd) = 3 mVp, Vac(Ωp) = 100 mVp, and probed
at Ωd = Ω2 + δ. In a blue sideband pumping scheme, (c) the phonon-cavity response obtained
with driving amplitudes Vdc = 4 V, Vac(Ωd) = 0.7 mVp, Vac(Ωp) = 70 mVp, and probed at Ωd

= Ω1 + δ; (d) simultaneously measured the corresponding spectra at the frequency Ωp − Ωd.
The ∆ is the frequency detuning regarding the pump tone, with Ωp=Ω1 ± Ω2+∆ for a red or
blue sideband pumping scheme. (e)-(h) Simulation results for the measurements shown in (a)-
(d), which were performed by using the theoretical model described in Eq.3.3, Eq.3.4, Eq.3.7,
Eq.3.8. All experimental parameters are mentioned above. The measurement results can be
qualitatively fitted well by using our model.
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Figure 3.2: Electromehanically induced transparency and amplification in two capacitively
coupled membranes. On the top, measurement results; the bottom: calculation results.
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For standard microwave optomechanical circuits, the cavity is fabricated on the chip and cannot
be in a vibration state. It is therefore not possible to observe the cavity forces affecting the
other side of the “microwave mirror”, in analogy to optical systems. Compared to microwave
optomechanical circuits, the phonon-cavity system offers more flexibility in understanding how
the “cavity forces” affect two parallel and movable “mirrors”.

Figure 3.3 shows measurement results of linewidth of both Al and silicon nitride membrane,
which are decreasing as a function of the ac pump power [V 2

ac(Ωp)], as shown in black squares.
The dc bias is Vdc = 4V, the probing voltage Vac(Ωd) ≈ 500 µV for the Al drum and the
probing voltage Vac(Ωd) ≈ 200 µV for the SiN drum. Red lines are linear fits of the data. The
white squares with blue edges are calculation results based on our model and experimental
parameters mentioned above. There is a small offset between the measurement and calculation
results, which could be induced by inaccuracy in the device parameters, e.g. d, m1, and m2.
We can see that the pump tone adds energy from external to this coupled system and makes
anti-damping effects on both movable subjects. Because both resonators are coupled through
the same electrostatic force.

3.2. Multi-tone driving: Squeezing mechanical motion

in multi-mode coupling

As discussed earlier, in an optomechanical scheme, single-sideband pumping of the cavity will
produce optical damping effects in a single-tone driving scheme, because of the back-action
effects. Then, double pump operation offers a method to cancel the back-action effects from the
pump tone. It is called back-action evading measurements, in standard optomechanical system.
This method offers measurements with sensitivities that exceed the standard quantum limit,
and potentially allows for the generation of quantum squeezed states [72]. In our phonon-cavity
nanoelectromechanical system, we also can perform such an operation to squeeze signal with
more degrees of freedom compared with standard 2ω parametric pumping [27]. We therefore
rewrite the basic equations of motion of two membranes as Eq.3.15

Ẍ1 + γ1Ẋ1 + Ω2
1(1 + p1)X1 = η1

[
1− 2(X2 −X1)

d

]
(
+∞∑
i

Vi[ωi] + Vdc)
2,

Ẍ2 + γ2Ẋ2 + Ω2
2(1 + p2)X2 = η2

[
−1 +

2(X2 −X1)

d

]
(
+∞∑
i

Vi[ωi] + Vdc)
2,

(3.15)

by considering multi-tone driving and the parametric modifications of the spring constant in
each nanomechanical resonator. The X(t)1,2 is the mechanical displacement, with frequency
around resonance frequency Ω1,2. The γ1,2 is the mechanical damping rate of the membrane.
The p1,2 = δκ1,2/κ1,2 indicates the modulations of spring constant κ1,2. The η1,2 = Cg/(dm1,2)
is the device parameter, determined by the effective mass m1,2 of the membrane ’1’ and ’2’ and
the capacitance Cg between two membranes which are separated with an initial distance d. In
this work, we focus on investigations of double pump effects in a phonon-cavity nanoelectrome-
chanical system. We thus keep only i = r, d, b, which we rename in ’r’ (red), and ’b’ (blue)
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sideband pump tone, and ’d’ for the driving tone, respectively. The electrostatic force acting
on both membranes are created through combinations of a dc signal Vdc and the high frequency
signals, with an amplitude Vi carrying the angular frequency ωi. The three-tone operation is
designed to use two pump tones to pump the resonator with the higher resonance frequency
in this coupled system at its red and blue sidebands, respectively. At the same time, one of
the resonators is probed by the third tone around its resonance frequency. The signal for the
red pump tone is written as Vr[ωr] =

1
2
µre

−(iωrt+φr) + c.c, with µr the complex amplitude of
the red pump tone and the frequency ωr = Ω1 − Ω2. The same definition of Vb[ωb] is applied
for the blue pump tone with the frequency ωb = Ω1 + Ω2 and the phase φr. The mechanical
displacement X(t)1,2 is written as X(t)1,2 = x1,2

2
e−iωt+ϵ + c.c with x1,2 the complex amplitude

of motion translated in frequency around the resonance frequency of the membrane Ω1,2. For
the probe tone, we first consider the third tone Vd[ωd] =

1
2
µde

−(iωdt+ϵ) + c.c, to probe at the
aluminum membrane’s resonance frequency, ωd = Ω2.

The basic method of solving this kind of coupled motion equation is to first find the solution
of the un-probed motions, here the X1,

−iΩ1γ1
x1
2

+
1

2
p1Ω

2
1(
1

2
e−iϕr−iϕb µr µb)x

∗
1 = −2 η1

d
Vdc(

1

2
e−iϕr µrx2 +

1

2
e−iϕb µbx

∗
2). (3.16)

The second term in the Eq.3.16 comes from the frequency mixing of the two pump tones (the
blue and the red pump), which contributes to the parametric modification of the diaphragm
spring constant. The most interesting thing is that the parametric modulations have a phase-
dependent characteristic. On the right-hand side of the Eq.3.16, both terms play role of driving
forces. One may notice that the mixing terms between the one of the pump tone and the
driving tone (e.g µrµd, µbµ

∗
d) will also generate driving forces, acting on X1. Considering the

experimental settings, Vdc ≫ µd, these terms can be therefore neglected. They result from the
electrostatic coupling, as a function of the mechanical displacement of membrane X2.

−iΩ2γ2
x2
2

+
1

2
p2Ω

2
2(
1

2
eiϕr−iϕb µ∗

r µb)x
∗
2 = −η2 e−iϵ Vdc µd −

2 η2
d
Vdc(

1

2
eiϕr µ∗

rx1 +
1

2
e−iϕb µbx

∗
1).

(3.17)
The same method is applied to have the the motion equation Eq.3.17.The approximation,
µrµb ≫ µ2

d, is made because the probe tone is always much smaller than the pump tone in the
real experiment. Expressions of both X1 and X2 can be obtained by solving Eq.3.16, Eq.3.17,
and their conjugate expressions. It is easy to see that the displacements of the two coupled
membranes have a phase dependence characteristic, regardless of whether they are probed or
not, as shown in Fig.3.4. In other words, the noise carried by both nanomechanical resonators
can be squeezed by double pump tones, at the same time.

In the experiment, the 3rd tone is used to probe one of the coupled resonators, with a small
amplitude in the order of a few hundred µV. If we take the probe signal as a reference, the
double pump will bring a relative phase in the rotation frame. We call it the red phase ϕr and
the blue phase ϕb. Figure 3.5 shows the measurement results of the probe signal around Ω1,
presenting phase-sensitive effects. In the quadrature plane, squeezing the signal in this double
pump scheme is not as simple as a standard 2Ω parametric pumping in mechanical system [73].
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Figure 3.4: Calculation results of the X1 and X2 as a function of demodulation phase, when
the Al mechanical resonator is probed at its resonance frequency.

(a) (b) (c) (d)

Figure 3.5: (a) probe signal amplitude, as a function of the blue pump phase and the red pump
phase. (c) Parametric plots of two quadratures of the probe signal. Gray squares correspond
to the pump off and red squares are measured based on the double pump scheme. Both (b)
and (d) are calculation results based on Eq.3.16 and Eq.3.17.

Because two phases are deducted from each other, it looks more like two coupled rings in the
quadrature plane. Such operations can be used to squeeze signals/noise or explore phase-based
logic gates.

3.3. Summary of chapter 3

In contrast to traditional microwave optomechanical circuits, the phonon-cavity nanoelectrome-
chanics offers a distinct advantage: it enables direct probing of the low-frequency resonator
without compromising the energy confined within the ’cavity’. Because, in nanoelectromechan-
ical system, the dissipation mainly come from mechanical properties. This approach not only en-
hances our understanding of optomechanics through investigations of coupled nanomechanical
systems but also capitalizes on the rich physics of optomechanics. This richness enables coher-
ent signal routing within the coupled system, the development of the tunable filters/amplifiers
in radio frequency ranges, and the exploration of novel types of logic gates. Importantly,
these studies lay the groundwork for realizing networks of coupled oscillators in
multifunctional mechanical systems.
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4. A scanning tip combined with mi-
crowave interferometry for mapping
mechanical vibrations

To date, a variety of sensitive transduction schemes have been achieved for the detection and
manipulation of nanomechanical resonators. These mainly include methods based on electrical
detection or optical interferometry. The former technology is widely used for testing electrically
integrated nanomechanical systems, which requires the design and nanofabrication of on-chip
circuits to detect and control vibrating elements. However, this technique does not have the
spatial resolution required to study localised mechanical vibrations. On the other hand, opti-
cal interferometry offers high sensitivity in terms of spatial resolution and direct transmission
of the detected signals. Unfortunately, it is challenging to detect the resonators made of the
materials with transparent or low reflectivity characteristics. Integrating optical interferome-
try into a cryostat for low-temperature measurements is also not straightforward. In recent
years, taking advantage of the decreasing size of the vibrating elements, both probe microscopy
[74, 75, 76, 77] and electron microscopy [78, 79] have also been developed. They not only facili-
tate the readout of these mechanical resonators with extremely small interaction volumes (such
as carbon nanotubes), but also open up access to the study of local mechanical properties [78],
engineering mechanical impedance [76], and hybridised nanomechanical systems [75]. However,
so far, in most previous relevant works on probe microscopy, the scanning tips act as an ac-
tive sensing/probing element and one relies on complex phase-locked loops, photo-detectors, or
additional driving circuits on the chip. Also, for the electron microscopy, it still needs an ad-
ditional force source to excite nano-vibrations of the massive element, which poses a challenge
for combinations with standard electron microscopy chambers.

Scanning microwave microscopy (SMM) has demonstrated its ability to detect capacitances at
the aF scale and their variations, enabling the characterisation of a wide range of materials
[80, 81]. It allows us to take advantage of the high sensitivity of microwave technologies and
the spatial resolution of the scanning tip. In recent years, microwave interferometry has been
used to detect tiny displacements of MEMS that enables both the drive and the detection sig-
nals to be transmitted through a single gate electrode [71, 82]. These previous works inspired
me to extend the SMM approach by integrating with microwave interferometry to detect and
manipulate the nanomechanical vibrations of a massive resonator through a single scanning tip
for the first time. Besides, SMM integrated in SEM has been achieved several years in IEMN.
Unfortunately, its application is limited to the characterisation of materials, and fewer and
fewer people are using it.

In this chapter, I show the ability of the SMM to spatially image nanomechanical vibration
modes, without contact with the vibrating silicon nitride membrane. It enables the investiga-
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tion of spatial dependencies (over the membrane size) while scanning the tip position. I will
also present coherent energy transfers between the scanning tip and the membrane resonators
through parametric coupling, based on phonon-cavity nanoelectromechanics [82]. Typical op-
tomechanical features were observed in this phonon-cavity electromechanics, including “op-
tomechanical damping effects” and electromechanically induced transparency. Our work not
only extends the current applications of SMM, but also demonstrates that this system provides
a novel platform for the detection of nanomechanical systems integrated into a complex circuit
[29]. Furthermore, it may serve as a valuable tool for investigating phonon-phonon interactions
where precise control of the interactions is required [83, 84]. Some parts of experimental results
have been recently published [85].

4.1. Measurement setup

The whole setup consists of two parts. One is the setup of scanning microwave microscopy 4.1.1,
used for operations of the scanning tip positions. The other part is microwave interferometry,
which is exploited to drive and to read the mechanical vibrations 4.1.2. Both two parts are well
separated for the operation and measurement. The more technical details of the setup can be
found in the supporting information parts of our publication [85].

4.1.1. Setup of Scanning Microwave Microscopy

The experimental setup consists of an atomic force microscopy (AFM) which can work in con-
tact mode. For this, we choose the general deflection laser approach using a fiber-coupled
laser source Fabry-Perot (λ= 635 nm, 2 mW) to generate the optical beam. A feedthrough
passage allows the connection of the optical fiber into the SEM chamber. After reflection on
the cantilever, the optical beam is detected on a quadrant photodiode giving deflection, fric-
tion, and sum signals. A modified 25Pt300D cantilever from Rocky Mountain Nanotechnology
(see at https://rmnano.com/) redesigned to support a transverse electromagnetic mode (TEM)
through a propagating microstrip structure with a signal line of 300×100 µm is first mounted
on the probe holder. The alignment of the laser spot on the cantilever is performed before the
set-up is placed under vacuum. We tune the PSD (power spectrum density) and laser collimator
positions to align the spot with the PSD center position. For the beam being focalized on the
cantilever, we adjust the PSD positioners and monitor the detected signals to set the horizontal
and vertical deflection values near zero and maximize the sum signal. The laser power is then
set to 2 mW.

In this measurement setup, we exploit a metallic tip as a suspended and movable top gate, which
is soldered onto a 50 Ω impedance PCB. The nanoelectromechanical resonator, measured in this
work, is a silicon nitride circular membrane, ≈ 90 nm in thickness and a ≈ 16 µm in radius, as
shown in Fig.4.1(b). The fabrication process of this silicon nitride membrane has been reported
in [71]. The sample is fixed on the nano-positioner with X-Y-Z relative displacements up to a
nanometer precision. The tip is glued on a printed circuit board (PCB) and the membrane is
grounded through bonding wires. During the measurement, the membrane is held in a vacuum
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Figure 4.1: (a) Photo image of setup inside the vacuum chamber, (b) SEM image of a metallic
tip suspended on the top of the silicon nitride circular membrane.

chamber (below ∼ 5 × 10−4 mbar) at room temperature. A scanning electron microscope
(SEM) has also been installed in this vacuum chamber. Figure 4.1 (b) shows SEM images of
the scanning tip and the membranes. The tip is not perpendicular to the sample surface and
forms a small angle with the Z axis.

4.1.2. High-frequency setup for driving and reading out of mechan-
ical motions

The high-frequency setup consists of two parts, as shown in Fig.4.2. The first part is the gen-
eration of electrostatic forces to excite mechanical motion, which is generated by combining
Vdc and Vac signals through a bias tee. The second part is the readout scheme where we use
microwave interferometry. The microwave signal of the frequency ω, analogous to a laser beam,
is shone directly onto the mechanical resonator. Due to non-linearity, the reflected microwave
signal carries the mechanical signal at frequency ω + Ωm. A microwave circulator is used to
separate the reflected microwave signal from the input probe signal. This reflected signal is
read by frequency down-conversion using a microwave mixer, followed by a Zurich Instrument
locking amplifier (UHFLI). A single port on the tip combines both drive and readout signals.
All the high-frequency setup for driving and reading the mechanical movements is kept in the
atmosphere.
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Figure 4.2: Schematic diagram of the high frequency electrical set-up for both driving and
detection of the chip.

4.2. Image the mode shape

The spatial mode shape of a circular membrane, ψm,n(r, ϕ), is described by

ψm,n(r, ϕ) = A0 · Cos(mϕ) · Jm(
αm,nr

a
), (4.1)

with m and n respectively denoting the azimuth and radial mode number. The r and ϕ are
the polar coordinates, and αm,n is determined from the solutions of the n-th Bessel function of
the first kind Jm(αm,n) = 0 under the condition r = a [86]. The A0 is a normalization value
chosen such that the ψm,n=1, where the motion is maximum. Its eigenfrequency Ωm,n thus can
be identified from the value of the ratio Ωm,n/Ω0,1, which follows the corresponding ratio of
αm,n/α0,1 [71].

The procedure of mapping mechanical mode shapes begins with positioning the tip relative
to the membrane. The SEM is employed to help the alignment of the tip and the mem-
brane, as shown in Fig. 4.1. After calibrations of the tip position, the tip is then positioned
on top of the membrane at a fixed height H. To excite mechanical vibrations, an electro-
static force F is generated between the tip and the coupled membrane at the frequency Ωd,
F = ∂Cg(µ)

∂µ
VdcVac · Cos(Ωdt), though the combination of a dc voltage Vdc and a ac signal

Vac ·Cos(Ωdt). Here, µ is the mechanical displacement. The readout of the mechanical motion
relies on the microwave interferometry [71]. A microwave signal at the frequency ω/2π = 6 GHz
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Figure 4.3: Top: measured amplitude of the resonance peaks as a function of spatial position
(X-Y), corresponding to each vibration mode Ω0,1/(2π) ≈ 8.82 MHz, Ω1,1/(2π) ≈ 14.06 MHz,
and Ω0,2/(2π) ≈ 20.25 MHz. Inset, the calculation results of the expected modes, based on
Eq.4.1. Bottom: mechanical response of the silicon nitride membrane, measured at the location
in the X-Y plane corresponding to the maximum signal amplitude.

is directly shined to the membrane through the same tip. The reflected signal at the frequency
ω + Ωd is then read out by a lock-in amplifier after frequency down-conversion. Three reso-
nance frequencies have been detected. Their correspondence mechanical modes can be easily
identified from the ratio of these resonance frequencies. See the method described in Eq.4.1.
The resonance frequency gradually drifted towards a relatively lower frequency each time the
SEM was switched on and off. It could be induced by the deposition of amorphous carbon due
to the organic residues in the SEM chamber [87]. After a few months of measurement, the first
mode drifts a few hundred kHz.

To map the vibration mode, we sweep the tip position in the X-Y plane with a step of 2 µm while
exciting the membrane’s vibration with constant external ac and dc signals. The spatial mode
maps depicting the vibrations of the circular membrane are generated by plotting the amplitude
of the detected signal at the resonance frequency as a function of the tip position in the X-Y
plane, as shown in Fig. 4.3. These measurement results reflect the relative vibration amplitudes
of the nanomechanical membrane, as the amplitude of the detected electrical signal is directly
proportional to the mechanical vibration amplitude [71]. Compared with the vibration of
a circular membrane based on Eq. 4.1, these measurement results reveal a minor spatial
asymmetry. This is due to the imperfect alignment between the tip and the Z-axis of the chip.
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Figure 4.4: Top: (a) White noise amplitude I and Q, (b) Spectrum of membrane resonator,
excited by external white noise, (c) Linewidth of membrane resonator as a function of noise
amplitude, corresponding to different DC bias, (d) Area versus input white noise amplitude Vpp.
Each area is obtained by integrating the measurement results of the noise spectrum density,
e.g. the data shown in the (b).

4.3. Artificial heating of the silicon nitride membrane by

stochastic forces through the scanning tip

Here is a demonstration of artificial heating of the membrane through the tip. To do so, a
noise source is connected to the tip through a home-made band pass filter. The white noise
is filtered around the resonant frequency of the membrane. We then verify whether the noise
is white noise. The statistics of both quadratures of the noise amplitude were measured and
are presented as Gaussian distributions, as shown in Figure 4.4 (a). Figure 4.4 (b) shows a
spectral density of the membrane that is excited by the stochastic forces. In other words, the
input white noise artificially heats up the membrane resonator. The temperature of the mode
increases as the amplitude of the noise increases because the integrated area of the spectral
density increases. It has been observed that the linewidth of the nanomechanical resonator
displays random variations. It may be due low-frequency noise-induced self-heating of the tip
itself.
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Figure 4.5: Spectral density of membrane’s displacements, measured by exciting the membrane
through external stochastic forces.

Besides, in order to test the sensitivity of this tip detection scheme, we also tried to add the
minimal white noise to the tip in order to have the thermal Brownian motion of the membrane
just above the noise floor of the detection chain, as shown in Fig.4.5. The detected noise floor
is around 1.12 pm/

√
Hz and the detected peak is 20 fm/

√
Hz out of the noise floor. Note that

the measured spectrum density presents the same detection sensitivity that we obtained from
two coupled membrane resonators (without tip) [88]. The conversion between the detected
amplitude (v) and the vibration (m) is based on the microwave interferometry methods (see
Section5.1.2, Eq.5.3). The transduction factor in this SMM measurement is 1.2 ×1011V 2/m2,
the same order of the optical interferometer used in the detection of graphene nanodrums
(3.75×1011V 2/m2) [89].

4.4. Parametrical coupling between the tip and the mem-

brane

As described above, the tip is capacitively coupled to the membrane. Therefore, by modulating
the capacitance between two spatially separated mechanical modes, a parametric coupling can
be created. It allows to coherently manipulate energy transfer between two modes, here, the
tip mode and the membrane mode. Here, we probe the membrane and pump its blue sideband
at the frequency Ωtip + Ωm. Thus it is a two-tone measurement. The basic principle has been
described in section 3.1.1. Figure 4.6 (a) shows a mechanical response of the membrane, when
it is blue sideband pump. Because the γtip is smaller than that of the membrane, its mechanical
responses are projected within the bandwidth of the membrane’s resonance. In this blue side-
band pumping scheme, the linewidth of the tip is γtip/(2π) = 15 Hz, which is smaller than the
initial linewidth when there is no pump tone. The pump tone generates the phonon cavity force
acting on the tip by modulating its susceptibility, and further the linewidth. The blue pump
tone reduces the line width of the tip, known in optomechanics as the anti-damping effect. It
may therefore provide an opportunity to improve the sensitivity of a conventional scanning tip
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Figure 4.6: Left: mechanical responses of the membrane resonator, when it is blue sideband
pumped. The illustration is a zoomed-in measurement of the tip response. Right: spectra
density, detected around the Ωm.

by taking advantage of the blue sideband pumping technique.

In comparison to the double drum coupling (see chapter 3), it is easier to observe the ther-
mal Brownian motion spectrum density of the tip in this tip-drum coupled system. Be-
cause the tip is clamped at a single side and its spring constant is quite small, ∼ 18 N/m
(https://www.rmnano.com/technical-data and https://www.rmnano.com/substrates). Thus,
we use a single tone, no probe tone, to pump the membrane at its blue sideband to amplify
the initial thermal Brownian motions. As shown in Fig. 4.6(b), the linewidth is quite small,
γtip/(2π) < 1 Hz. The frequency responses exhibit unstable states (self-oscillations), the fre-
quency randomly shifting and the amplitude randomly beating.

4.5. Mechancial damping, induced by detection scheme

The scanning tip gives spatial resolution in imaging of the mechanical damping. Figure 4.7
(a) shows Vdc dependence of the mechanical linewidth, measured in the centre of the mem-
brane with Vac = 30 mVp, with H = 300 nm for the square with black and white colors, H =
400 nm for the white dots. We see a monotonous increase with Vdc. Here, the H is the dis-
tance between the tip and the surface of the coupled membrane. It is clear that the linewidth
corresponding to Vdc around 1 V is about 50 % of the value measured with Vdc > 7 V. Be-
sides, the linewidth also presents a tip-height dependence, as shown in Fig.4.7 (b). It gives
the impression that mechanical damping is tuned by the external electrostatic forces. However,
it is quite different from previous reports that damping exhibited a quadratic behavior [90, 78].

Here, we develop a capacitive circuit damping model to understand this phenomenon. We
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(b) Linewidth of the membrane as a function of the tip height, measured at Vdc = 5 V and Vac
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define the current passing in the Al/silicon nitride layer to be

I = dQc/dt

≈ (V · dCg/dx)(dx/dt) + CgdV/dt.
(4.2)

The first term corresponds to the displacement current and the second term comes from the
capacitance current. Considering the definition of mechanical displacement µ(t) = µ0 ·Sin(Ωmt)
and V = Vdc + Vac · Sin(Ωmt), the expression of the current passing through resonator is
given by I ≈ (Vdc + Vac)

Cg0

H
µ0Ωm · Cos(Ωmt) + Cg0ΩmVac · Cos(Ωmt), in the condition of the

Vdc ≫ Vac and with the approximation that ∂Cg/∂µ ≈ Cg0/H. The Cg0 and H are the
coupling capacitance between the tip and the coupled membrane, and the distance between
them respectively. Therefore, the energy dissipated per period by the displacement current
becomes

Edis ≈ R

∫ 2π/Ωm

0

I2dt,∫ 2π/Ωm

0

I2dt = (
V 2
dcµ0

H
+ 2VacVdc)πΩmC

2
g0

µ0

H
.

(4.3)

The total kinetic energy stored in the resonator Ek is given by Ek = 1
2
meff · Ω2

m · µ2
0, where

meff is the effective mass of the vibrating element. Considering the definition of quality factor,

Q = 2πEk/Edis

= meffΩmH
2/(RV 2C2

g0).
(4.4)

The total damping of the nanomechanical system γm arrives

γm ≈ γ0 +
(V 2

dc + 2VacVdc
H
µ0
)C2

g0

meffH2
·R. (4.5)
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Now, we analyze the resistance resulting dissipation in the equivalent RLC circuit model for the
capacitive drive and detection scheme. In the well-known analogy, the mechanical resistance
Rm = γ0meff/(Vdc∂Cg/∂µ)

2 [91, 92]. Considering the fabrication process of the membrane
resonator, the high-resistive silicon substrate may contribute to a parallel circuit with the
membrane suspended on its top. This can be caused by the thin layer of aluminium deposited
on the membrane reaching the part of the silicon substrate through these holes. We therefore
assume the existence of a resistive element with conductance σ0, parallel to Rm in the device
scheme. It gives the total equivalent resistance R

R =
1

σ0(1 + ϵ · V 2
dc)
,

ϵ =
1

meff · γ0 · σ0
(
∂Cg

∂µ
)2
. (4.6)

The measurement results of the linewidth as a function of Vdc and as a function of tip height,
shown in Fig.4.7, can be well fit by this analytical model, based on the Eq.4.5.

4.6. Summary of chapter-4

A novel platform based on scanning microwave microscopy has been integrated with microwave
interferometry. The scanning tip, which acts as a suspended top gate, is used to drive and de-
tect the tiny displacements of a nanomechanical resonator without the need for physical contact
with the sample. The scanning tip, with its features of spatial resolution, has demonstrated its
unique ability to image the mechanical vibration mode and to investigate the linear damping
properties in the membrane. In addition, manipulations of energy coherently transferred in two
spatially separated mechanical modes have been demonstrated in this parametrically coupled
tip-membrane system. This novel platform not only extends the current applications of SMM
to the MEMS/NEMS domain but also provides a unique opportunity to study electromechan-
ical properties at the nanoscale, in particular to conveniently study these vibrating elements
embedded in a complex circuit, such as microwave optomechanical circuits [29]. For instance, in
standard microwave optomechanical circuits, the nanoelectromechanical resonator is integrated
with LC superconducting circuits and cannot directly connect to external circuits for testing.
But, with this SMM technology, it is feasible to in-situ characterize the mechanical properties.
Besides, the concept of this experimental configuration will further facilitate research activities
to go beyond the current frontiers of quantum sensing and quantum engineering. For example,
it can be used to study a few numbers of phonon tunneling and non-reciprocal phonon transfer
across vacuum through quantum fluctuations [83, 84], by taking advantage of microwave read-
out schemes which feature high sensitivity and low heating effects. In addition, it also gives
access to study Casimir effects and thermal dynamics in both classical and quantum regimes.

It is difficult to compare this scanning microwave microscopy technique with other developed
scanning tip techniques, such as the atomic force microscopes (AFM), scanning tunneling mi-
croscope (STM), or laser interferometry. Regarding the resolution and noise level, this scanning
microwave microscopy cannot reach the current state of the art in imaging vibration modes.
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This microwave scanning probe technique relies on electrostatic interactions between the tip
and its coupled membrane. It is therefore necessary to have a relatively large tip size and a
small distance between the tip and the membrane, to obtain sufficient detectable signals. Then
it has no advantage over AFM and laser interferometry in terms of high spatial resolution. The
key aspect here is that microwave techniques are directly compatible with quantum electronics,
and especially the toolbox developed for microwave optomechanics. Besides, microwave pho-
tons are much less energetic than optical photons and suit much better cryogenic environments.
In this respect, the developed technology here beats qualitatively all others (STM, AFM) which
cannot compete on that level.

46



5. Experimental setups and development
of silicon nitride membrane electrome-
chanical resonators

The experimental setups have been designed to characterize microwave optomechanical devices
and nanoelectromechanical resonators, in a capacitive coupling scheme. Because capacitive
transducers are extremely sensitive and can act as passive vibration elements in their coupled
systems. The setup work consists of circuit design, wiring measurement chains, sample holder
fabrications, programming control codes, and so on. Three measurement schemes have been
developed for microwave optomechanical devices: 2D superconducting microwave cavity cou-
pled with NEMS (for low temperature measurement only), microwave optomechanical hybrid
circuit, and 3D microwave cavity coupled with NEMS.

After arriving at IEMN, I also started to consider a novel device design to develop an electrome-
chanical resonator with excellent mechanical properties at room temperature while ensuring ef-
fective coupling with external circuits. It is also desirable for microwave optomechanical circuits
(see discussions in 2.1.5). Because the coupling rate between the silicon nitride doubly-clamped
beam and the microwave cavity is quite low [29]. Based on fruitful discussions on the fabri-
cation process with the Litho team in IEMN, silicon nitride membrane nanoelectromechanical
resonators have been achieved. The unique feature enables the exploration of multi-modes in
microwave optomechanical circuits and phonon-cavity electromechanical functions with a large
coupling rate. These building blocks are essential for the pursuit of neuron-inspired computing
functions using NEMS networks.

5.1. Setup: integration of microwave optomechanics and

microwave interferometry

So far, I have developed several measurement setups for measuring microwave optomechanical
devices and electromechanical resonators, at various temperature ranges, from 2D to 3D mi-
crowave cavities. All these designs are based on the mechanical resonator being capacitively
coupled to external circuits or similar devices. The reason for choosing a capacitive coupling
scheme is that it offers high sensitivities and its integrated circuit can be passive with low
dissipation. All readout method in my work relies on microwave technologies, in the frequency
range between 1 GHz to 12 GHz.
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• Sample holder 

thermometer for calibration 

Figure 5.1: Simplified common wiring of the experimental platforms; the different levels within
the demagnetization cryostat are shown with their respective temperature. SS stands for stain-
less steel, NbTi for niobium titanium, and Cu for Copper coaxial cables (50-Ohms impedance).
The boxed elements are added and removed depending on the experimental run.

5.1.1. Low temperature microwave optomechanical platform

The first microwave optomechanical setup is for ultra-low temperature measurement, which I
have developed in the institute NEEL (UBT group) 2016, Grenoble, with Eddy Collin. Figure
5.1 shows both a simplified schematic diagram of wiring the nuclear adiabatic demagnetization
cryostat and setup photos [29]. They are built around a cryogenic HEMT placed at about 4
K and two circulators mounted on the mixing chamber of the dilution units. On the nuclear
adiabatic demagnetization cryostat, it is a Caltech 1–12 GHz bandwidth with a measured noise
of about 15 K (50 photons at 6 GHz). The (dashed-green) boxed component below the HEMT
in Fig. 5.1 represents a power combiner used to realize an opposition line. The cryogenic
HEMT is linear enough so this protection is not necessary. This choice is made because of
space constraints: feeding an extra microwave opposition line in the nuclear adiabatic demag-
netization cryostat is very demanding. The filtering of the injection lines (dc and microwave)
is also described in Fig.5.1. The key point for building this kind of setup is to pay attention
to give enough thermal contacts to the samples and avoid thermal decoupling and extra signal
losses in both driving and detection chains. Each line and component has been calibrated in
several cooling down and arming up cycles, although running such kind adiabatic demagne-
tization cryostat is extremely painful. Thanks R. R. Gazizulin for help in running this crazy
cryostat ! Until now, this setup is still in service for many experiments in Neel. With this
setup, the NEEL group has successfully achieved passive cooling of a mechanical resonator to
its quantum ground state using a microwave optomechanical readout scheme [93].

The sample, mounted on this setup is designed to be a single transmission line coupled with
a superconducting microwave cavity through a coupling capacitor, as described in Fig.2.2(a).
Thus, the setup adapts to the measurement of microwave signal in the form of transmission.
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Figure 5.2: Top-left: Sonnect simulation results of a microwave resonator with lumped element
design. The rest are SEM images of the fabricated superconducting microwave cavity coupled
with doubly-clamped beam nanomechanical resonators.

Figure 5.2 shows SEM images of a typical microwave optomechanical circuit. The microwave
cavities are realized through laser lithography and reactive ion etching of a 120 nm thick layer
of niobium (Nb). The NEMS mechanical element we use as an on-chip thermometer is made
from 80-nm-thick high-stress silicon nitride (SiN, 0.9 GPa), grown on top of silicon. It is a 50
µm long doubly clamped beam of width 300 nm. It is covered by a 30-nm layer of aluminum
(Al), capacitively coupled to the cavity through a 100 nm gap. The aluminum part is patterned
using standard e-beam lithography and lift-off, while the beam is released through RIE etching
of the silicon nitride followed by a selective XeF2 silicon etching. The silicon nitride is not
removed below the niobium layer.

To achieve the desired cavity forces and photon numbers, a large Qc is necessary (see Eq.2.36).
As a result, the NEMS has been designed to be effectively isolated from external circuits. It
is therefore difficult to drive/probe mechanical resonators with rf signals. It is only reachable
by microwave signals in the form of microwave photons through the cavity forces. Besides, it
only works at low temperatures below the transition temperature of Nb thin film, serving for
quantum circuits.

5.1.2. Setup for measuring nanomechanical resonators and microwave
optomechanical hybrid circuit, in a wide temperature range

To explore the practical application of optomechanical devices, I developed a second setup that
integrates the microwave optomechanical scheme with microwave interferometry [71]. The mi-
crowave cavity is built based on a microstrip line with λ/4 wavelength on PCB, capacitively
coupled to two parallel microstrip lines, as shown in Fig.5.4 (a) and (b). Its quality factor is
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Cavity on PCB, with 

resonance frequency wc

(d)

Figure 5.3: schematic diagram of measurement setup, in which the microwave cavity on the
PCB part is marked in caramel color. The microwave cavity makes capacitive coupling with
silicon nitride drum (purple color) via bonding wires connecting to its suspended top-gate. The
SiN drum, covered with Al thin film, connects to two microstrip transmission lines through
bonding wires. One is for driving the mechanical resonator and the other one is for detecting
mechanical motion through a microwave reflection scheme.

obtained through standard transmission measurement. The whole design work is performed
based on COMSOL multiphysics. At the resonance frequency, the electric field inside the cavity
reaches the maximum value in the terminal part of the center microstrip line, as shown in Fig.
5.4 (a). The nanomechanical resonator is fabricated on a silicon chip with 50 Ohm impedance
pads to prevent additional losses from microwave signals. It is then connected to the terminal
part of the center microstrip line through bonding wires. This design allows for flexibility in
changing samples. However, this flexibility comes at the cost of lower quality factor
values and poor confinement of the electromagnetic field inside the cavity. The
simulation result, shown in Fig.5.4 (b), presents a high-quality factor c. However, the cavity al-
ways suffers from high-frequency losses from the printed circuit board (PCB) layer, impedance
mismatch from the chip, and heating effects. The quality factor measured in the experiments
is around 100. The decision to create the microwave cavity on a PCB was inspired by the work
of Eva Weig’s group, now at TUM in Germany.

The microwave interferometry is integrated with the microwave optomechanical scheme, shown
in Fig. 5.3. It is well adapted to the readout of the capacitively coupled NEMS/MEMS. To
better understand how it works, an electrical circuit model is made for analysis.

The mechanical resonator can be treated as a movable capacitor Cm(x), which connects a stray
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(a) (c)

(b)

Figure 5.4: (a) COMSOL multiphysics simulation of a microstrip line with λ/4 wavelength on
PCB. (b) Simulation results of S11 and S21. (C) Photo image of PCB bonded with a NEMS
chip.
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Cm(x)

Z0
Cs

x(t)
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Figure 5.5: Left, the equivalent circuit of reflectometry. The Z0 = 50 Ohm is the impedance
of the detection part and Vµw is the microwave amplitude with frequency ω delivered to the
mechanical resonator. Right, its equivalent parallel RC circuit.
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capacitor Cs induced by electrode pads. From Norton’s theorem, it can be transferred to a
parallel circuit, as shown in Fig.5.5, where the total capacitance Ct = Cs+Cm(x) and equivalent
resistance Rex = 1/(ω2C2

t Z0). As the Cm(x) is a function of the mechanical displacement x(t),
we rewrite it as Ct = Ct0-Cmx(t)/d where Ct0 is the total static capacitance and d is the initial
distance between the drum resonator and its coupling gate. It can be described by a motion
equation of the flux ϕ biased on the Cm(x),

(Ct0 −
Cmx

d
)
∂2ϕ

∂t2
− Cm

d

∂x

∂t

∂ϕ

∂t
+

1

Rx

∂ϕ

∂t
= Id, (5.1)

where Id = iωCtVµw, which can be written in form of Id(t) = 1
2
Ie−iωt + c.c.. Here, the I

is the complex amplitude of the current. The mechanical displacement is written as x(t) =
1
2
A(t)e−iΩmt+c.c. with A the (complex) amplitude translated in frequency around the mechan-

ical resonance frequency Ωm. We can thus find an exact solution using the ansatz:

ϕ(t) =
+∞∑

n=−∞

ϕn(t) =
+∞∑

n=−∞

1

2
µn(t)e

−i(ω+nΩm)t + c.c. (5.2)

We look for the solution Vout corresponding to the frequency ω + Ωm, which was measured in
the experiment. By solving motion equation 5.1 and considering input-output theory [36], the
output signal is given by

Vout = ωZ0
Cm

d

|x|
2
Vµw. (5.3)

Here, we take several reasonable approximations, ω/(ω + Ωm) ∼ 1 and ωCt0Z0 ≪ 1. This is
because the ω ≫ Ωm and typical stray capacitance of Cs is in pF range. Based on Eq.5.3, we
can obtain the mechanical displacement of x through this microwave reflectometry scheme. In
the setup, we use the ac signal generated by the Lockin to excite the mechanical displacement
x(t) and probe it through a microwave signal Vµw with power of 10 dBm and frequency ω =
4.8 GHz. As explained above, it generates a reflected signal around Vout. For the measurement,
we convert the Vout to a low frequency signal around Ωm by demodulating it with a signal ω
through a frequency mixer.

5.1.3. Setup for 3D-cavity optomechanical hybrid circuits, in a wide
temperature range

Optomechanics is not limited to quantum regimes. However, to date, most microwave op-
tomechanical cavity experimental platforms require cryogenic temperatures. Its applications
are mainly limited by the quality factor of the microwave cavity as most microwave optome-
chanical circuits are made of superconducting materials, having very low quality factor at the
temperature higher than the transition temperature of superconductivity. Although we have
developed the cavity on PCB, the low-quality factor (Qc ∼ 100) requires a higher working
power for optomechanical operations. Therefore, we are considering developing a 3D cavity
platform to explore optomechanical devices over a wide working temperature range. The 3D
cavity design allows electromagnetic fields to be well confined within the cavity, suppressing
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Figure 5.6: (a)Simulation results of electromagnetic field in 3D microwave cavity, for the TE00

mode. (b) Photo image of 3D Al microwave cavity with a silicon nitride chip. (c) Low-
temperature measurement results of 3D cavity inserted with a chip. Three modes have been
observed.

the effects of surface losses for microwave signals [94].

The COMSOL multiphysics is exploited to design the 3D cavity using standard SMA connectors
as the emission antenna. As shown in the figure.5.6(a), the coupled chip is placed at the
centre of the cavity to capture the transverse electric (TE) mode. On the chip, the coupled
nanomechanical resonators will be connected to two on-chip antennas to couple with the TE00

mode. The chip embedded in the cavity always induces extra damping losses that decrease the
quality factor, especially for coupling silicon nitride devices. In the experiment, the best Qc

obtained from silicon nitride wafers is around Qc ∼3000 at 4K. The other alternative solution is
to use the bonding-chip technique to couple the silicon nitride membrane to electrodes fabricated
on the sapphire substrates. So far, we are still optimizing the device design in order to adapt
the 3D cavity scheme.

5.2. Development of silicon nitride membrane nanome-

chanical resonators

Silicon nitride strings and membranes, fabricated from pre-stressed thin films, have emerged
as promising devices [95, 96]. They have nanogram (ng) effective mass meff and easily achieve
MHz range resonance frequency with a high quality factor Q [97], as the pre-stress is well known
for diluting the dissipation [96, 98]. Silicon nitride based micro- and nano-electromechanical
systems allow electrical signals to couple with a mechanical degree of freedom and give ac-
cess to electrical integration on-chip. They are of interest for both fundamental science and
applications, from room temperature to mK temperature. Because of those unique proper-
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ties mentioned above, Silicon nitride nano-electromechanical resonators have been exploited
through their coupling to a microwave cavity, implementing an electric analog of optomechan-
ics [1, 36].

However, the insulating feature greatly limits implementations of silicon nitride mechanical
resonators in electrical systems, because a purely dielectric actuation and detection scheme is
particularly weak. Up to now, composite silicon nitride doubly-clamped beams are one of the
simplest and widely used device structures, in which the suspended beam is covered with a thin
metal layer to generate the capacitive coupling with a side-gate. Ameliorations of coupling ca-
pacitance, for a beam structure, are normally achieved by increasing its length through lowering
the resonance frequency (Ωm) or using a demanding technique to reduce the vacuum gap [99].
Non-metallized silicon nitride beams, driven by dielectric force, provide an alternative electrical
integration scheme with a high Q feature ∼ 105 at room temperature [100]. Unfortunately, its
typical coupling factor is quite low in microwave optomechanical platforms ∼ 70 Hz/nm [18].
Therefore this MEMS/NEMS conception based on a doubly clamped beam structure leaves
limited space for making trade-offs among the coupling strength, Ωm and Qm.

For this reason, silicon nitride membranes with the specificity of a high surface-to-volume ratio
motivate researchers to explore electrical integration, because they can have strong coupling
with the surrounding electrical circuits. For silicon nitride based nanomechanical resonators,
if we are to bridge the gap between fundamental research and the electronics industry, it is
essential to explore new device designs that allow scalable architectures, integration of multiple
devices, and well-controlled capacitive coupling. Thus, there is a strong motivation to explore
new types of membrane resonators, with large electrical coupling effects and good mechanical
properties at room and low temperature.

Between 2019 and 2020, I have developed a two-coupled membrane nanoelectromechanical sys-
tem alone in clean-room, as shown in Fig.3.1. The system comprises a silicon nitride membrane
capacitively coupled to an aluminium drumhead resonator. It provides access to explore a room-
temperature electromechanical system that mimics a phonon-cavity, similar to optomechanics.
Additionally, it allows for a silicon nitride membrane that is well-coupled with external electrical
circuits, with a coupling rate increased by at least 10 times [71]. The whole process is inspired
by the reflow process used in the fabrication of the air-bridge for superconducting circuits [101].

Figure 5.7 (a)-(g) shows the fabrication process of silicon nitride drum nanoelectromechanical
resonators. We define the diameter of the drum by using electron beam (EB) resist CSAR62 to
pattern circularly symmetric holes. The drum is released from the Si substrate by reactive ion
etching (RIE) of the silicon nitride layer (SF6: Ar = 10 sccm : 10 sccm, for 6.5 min) through
these opened holes, followed by a selective XeF2 silicon etching. These holes occupy about 40
% ∼ 45 % of the SiN drum area. For XeF2 etching process, the selection rate between silicon
nitride and the silicon is around ∼1/100. Its suspended top-gate is fabricated by using EB resist
PMMA as a top-gate support through soft-bake at the temperature of 140 0C and reflowed at
170 0C. Then, we deposit the second layer EB resist MMA (methyl methacrylate) and the third
layer diluted CSAR resist on the top of the support resist and pattern the gate structure. This
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Figure 5.7: (a-g) Schema of fabrication processes. (a) starting from silicon nitride/Si wafer, (b)
pattern holes for etching process (c) release silicon nitride (SiN) from Si substrate, (d) deposit
Al thin film (e) pattern EB resist as a support (f) pattern top-gate and deposited Al metal (g)
final device structure. (h) SEM image of the suspended silicon nitride drum, (i) SEM image of
the bottom Al/silicon nitride drum

special process requires the development of a CSAR resist followed by the development of the
MMA layer. For the metal depositions, we first perform Ar ion etching process to clean the
sample and then use electron beam evaporation to deposit the thin films. All bonding pads on
the chip are designed to be 50 Ohm impedance for microwave signals. The SEM image of the
final device is shown in Fig.3.1.

In studies of silicon nitride beams and membrane resonators, it’s widely acknowledged that
higher tensile stress can lead to increased Q, attributed to the enhanced stored energy resulting
from the stress [96, 102]. As previously discussed, the quality factor of a vibrating membrane
is contingent upon both device dimensions and the tensile stress of the material. Hence, to
ensure a reasonable comparison, we opted to reference results reported in the literature for
a silicon nitride membrane with similar dimensions and tensile stress. In our investigation,
we observed that the quality factor of a high-stress drum covered with a 25 nm Al thin film
(with a diameter of 20 µm) reaches approximately 2.4× 104 at room temperature. This value
aligns closely with that of a bare silicon nitride drum detected by optical interferometry [103].
Notably, our ultra-clean nanofabrication process enables silicon nitride circular membrane to
exhibit capacitive coupling without introducing additional dissipation to the device.

Besides, to verify whether the plate or membrane model is suitable for our drums, we evaluate
the ratio between the tension in the drum and its bending rigidity, σ2πhR/(Dr/R), where
σ2πhR is the tension with the drum and Dr = Erh3

12(1−v2)
is the flexural rigidity in the plane of
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Figure 5.8: Brownian spectrum of the first mode (01) measured on the Stokes peaks, corre-
sponding to different pump powers.

the drum, v is the Poisson’s ratio, h is the thickness of the film, Eris Young’s modulus, and R
is the radius of the drum [104, 105]. For the silicon nitride drum, by using parameters of σ ∼ in
the range from 0.8 GPa to 1.0 GPa, R = 18 µm, h = 80 nm, v ∼0.3, Er = 240 GPa (for silicon
nitride), the value of σ2πhR/(Dr/R) will be in the range from 1.1×104 to 1.4×104, exhibiting
the tension-dominant property. Therefore, silicon nitride drum follows the membrane model.
While, for our Al drum, it gives σ2πhR/(Dr/R) ∼26 by using device parameters of σ ∼ 15
MPa [106], R = 20 µm, h ∼ 550 nm, v ∼0.3, and Er = 69 GPa (for Al). Compared with the
silicon nitride drum, this Al drum approaches to the plate model, but is still a membrane.

One of the drum resonators, fabricated with the low-stress silicon nitride membrane has been
integrated with a microwave cavity on PCB (see section 5.1.2 and Fig.5.4), through bonding
wires. Figure 5.8. (b) shows spectra density of the first mechanical mode Ω01 corresponding to
different pump powers. The optical damping effect is clearly observed. Through the measure-
ment of γm as a function of pump power, the optomechanical coupling rate G can be obtained,
10 times higher than that of doubly-clamped beam structure (with the same length) [71].

5.3. Summary of chapter-5

In this chapter, I have presented three microwave optomechanical readout schemes. For the
experiment where the mechanical resonator is to be accessible only by microwave photons, the
cavity with the high quality factor is mandatory. It is better to avoid adding the DC or rf

56



signals to the drive system, as shown in subsections 5.1.1 and 5.1.3. Because they will introduce
extra damping for the confined microwave photons. While, the hybrid readout method, com-
bining microwave cavity and microwave interferometry, provides access to low-frequency drive
lines. It gives more degrees of freedom for manipulations. However, there is a trade-off between
the flexibility from low-frequency local drive and the well-confined electromagnetic fields in the
cavity.

The unique device usually acts as a unique tool. It provides enough space to explore device
innovations and unexplored physics. I have been fortunate to achieve the first silicon nitride
membrane nanoelectromechanical resonator using a CMOS-compatible nanofabrication process.
The mechanical properties of this circular membrane resonator reach the current state of the
art. With this device, silicon nitride membranes are no longer restricted to optical applications.
In addition, the design of the device actually consists of the other aluminium membrane, in
addition to the silicon nitride one. The whole device can be treated electrically as two movable
parallel plates, forming a capacitor. So far, based on this device, we have achieved integra-
tion silicon nitride membrane in microwave optomechanical system [71], coupling of distinct
nanomechanical resoantors for room temperature phonon-cavity electromechanics [82], investi-
gations of stochastic switching by using Duffing nonlinearity [88], imaging mechanical mode by
using scanning microwave tip (under review of Nano Lett 2024.), multi-tone driving coupled
NEMS, and the dark mode in the coupled NEMS (Oral presentation in CMD31, not published
yet in 2024).
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6. Perspective: Coupled NEMS/MEMS
network based physical computing
and quantum sensing

This chapter refers to the unpublished research results based on the Chist-ERA NOEMIA and
ANR-MORETOME projects. The contexts of this chapter are available on request from the
author.

6.1. Reservoir computing

6.2. Synchronization of NEMS networks in microwave

optomechanical circuits, for pursuing smart sensing

6.3. Nanomechanical resonator in microwave optome-

chanical scheme for quantum sensing
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