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Pr. Jean MARTINET Rapporteur
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Université de Lille
Pr. Ioan Marius BILASCO Directeur de thèse
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Abstract

A substantial amount of visual data is publicly released on a daily basis, with a
significant portion of this data comprising videos. This has rendered video analy-
sis an important endeavor in the computer vision field. Among the various video
analysis tasks, Human Action Recognition (HAR) holds significant importance due
to its applications across numerous domains, such as surveillance, human-machine
interaction, autonomous vehicles, healthcare, security, and military sectors. Deep
convolutional neural networks currently stand as the state-of-the-art for HAR. How-
ever, these networks come with high computational costs, which limit their usage
on energy-constrained devices. They also rely generally on supervised learning,
which necessitates vast amounts of labeled data for training. Spiking neural networks
(SNNs) are models that process the information in the form of low-energy spikes,
instead of regular values. These third generation neural network can overcome the
bottlenecks of traditional Artificial Neural Networks (ANNs), when implemented on
neuromorphic hardware, such as the widespread energy efficiency problem. However,
supervised SNN training methods, like ANN-to-SNN conversion and spiking back-
propagation, have their own limitations, such as the requirement of a large amount
of labeled data for training. On the other hand, SNNs can leverage unsupervised
learning rules, such as the Spike Timing-Dependent Plasticity (STDP) rule, reduc-
ing their dependency on labeled data. Despite these advantages, unsupervised SNNs
still face challenges in reaching the performance levels of ANNs on complex data.
Thus, understanding how an STDP-based SNN can efficiently learn spatio-temporal
features becomes crucial in the pursuit of enhancing their performance for human
action recognition tasks. This thesis covers knowledge in computer vision and mo-
tion modeling, as well as SNN topics. In this manuscript, our main objective is to
learn spatio-temporal features and perform video analysis with SNNs in an unsu-
pervised manner using the STDP learning rule. We investigate ways to close the
performance gap between SNNs and their non-spiking counterparts when process-
ing spatio-temporal data. Therefore, the first contribution in this manuscript is to
study the feature extraction capabilities of an STDP-based Convolutional Spiking
Neural Network (CSNN) with different static representations of motion. Motion
modeling methods are introduced, categorized into frame-based and shot-based rep-
resentations, and processed using a 2D CSNN. This produces a clear baseline of the
capability of these models to extract spatio-temporal features from different types of
motion representations. Our second contribution is to present the first STDP-based



3D CSNN model that can extract spatio-temporal features naturally from videos,
without requiring extra motion modeling steps. This model outperforms 2D CSNNs
for video analysis, especially with longer videos. Then, in our third contribution,
we explore the possibility of reducing the number of parameters of these networks
by attempting spiking separated spatial and temporal convolutions (S3TCs). This
not only reduces the computational cost of these networks even further, but also
potentially reduces the complexity for implementing these networks on neuromorphic
hardware. S3TCs outperform 3D CSNNs, and produce a higher spiking activity at
the output, which potentially reduces the severity of the spike vanishing problem.
Our fourth contribution introduces spiking STDP-based two-stream CSNNs. Two-
stream methods are effective spatio-temporal feature extraction methods, with state-
of-the-art performance on HAR tasks in the non-spiking domain. Therefore, we use
spiking spatial and temporal streams based on CSNNs to obtain spatio-temporal
features. This produces an assessment of the capability of these unsupervised STDP-
based models to extract effective spatio-temporal features in the spiking domain.



Résumé

Chaque jour, une quantité importante de données visuelles est rendue publique, dont
une grande partie est constituée de vidéos. L’analyse vidéo est donc devenue une
tâche importante dans le domaine de la vision par ordinateur. Parmi les différentes
tâches d’analyse vidéo, la reconnaissance des action humaines (HAR) revêt une im-
portance significative en raison de ses applications dans de nombreux domaines,
tels que la surveillance, les interactions homme-machine, les véhicules autonomes,
la santé, la sécurité et le secteur militaire. Les réseaux neuronaux convolutionnels
profonds constituent actuellement l’état de l’art en matière de reconnaissance des
actions humaines, mais leur coût de calcul élevé limite leur utilisation sur les ap-
pareils à faible consommation d’énergie. En outre, ils reposent exclusivement sur
l’apprentissage supervisé, qui nécessite de grandes quantités de données étiquetées
pour leurs formation. Les réseaux neuronaux à impulsions (SNN) sont des modèles
qui traitent les informations sous forme d’impulsions à faible énergie, au lieu de
valeurs numériques. Ces derniers peuvent surmonter les goulots d’étranglement des
réseaux neuronaux artificiels (RNA) traditionnels tels que le problème de l’efficacité
énergétique, lorsqu’ils sont mis en œuvre sur du matériel neuromorphique. Toute-
fois, les méthodes d’apprentissage supervisé des SNN, telles que la conversion ANN-
SNN et la rétropropagation à impulsions, ont leurs propres limites, notamment la
nécessité d’une grande quantité de données étiquetées pour l’apprentissage. D’autre
part, les SNN peuvent tirer parti de règles d’apprentissage non supervisées, telles
que la règle de plasticité fonction du temps d’occurrence des impulsions (STDP), ce
qui réduit leur dépendance aux données étiquetées. Malgré ces avantages, les SNN
non supervisés doivent encore relever des défis pour atteindre les niveaux de perfor-
mance des ANN sur des données complexes. Ainsi, comprendre comment un SNN
basé sur la STDP peut apprendre efficacement les caractéristiques spatio-temporelles
devient crucial dans la poursuite de l’amélioration de leur performance pour les
tâches d’HAR. Cette thèse couvre les connaissances en vision par ordinateur et en
modélisation du mouvement, ainsi que les sujets relatifs aux SNN. Dans cette thèse,
notre objectif principal est d’apprendre des caractéristiques spatio-temporelles et ef-
fectuer une analyse vidéo avec des SNN de manière non supervisée en utilisant la
règle d’apprentissage STDP. Nous étudions les moyens de combler l’écart de perfor-
mance entre les SNN et leurs homologues non impulsionnels lors du traitement des
données spatio-temporelles. Par conséquent, la première contribution de cette thèse
est d’étudier les capacités d’extraction de caractéristiques d’un réseau neuronal



convolutif à impulsion (CSNN) basé sur la STDP avec différentes représentations
statiques du mouvement. Les méthodes de modélisation du mouvement sont in-
troduites, catégorisées en représentations basées sur les trames ou basées sur les
séquences, et traitées à l’aide d’un CSNN 2D. On obtient ainsi un référentiel clair de
la capacité de ces modèles à extraire des caractéristiques spatio-temporelles à partir
de différents types de représentations du mouvement. Notre deuxième contribution
est de présenter le premier modèle CSNN 3D basé sur la STDP qui peut extraire des
caractéristiques spatio-temporelles naturellement à partir de vidéos, sans nécessiter
d’étapes supplémentaires de modélisation du mouvement. Ce modèle est plus per-
formant que les CSNN 2D pour l’analyse vidéo, en particulier pour les vidéos plus
longues. Ensuite, dans notre troisième contribution, nous explorons la possibilité
de réduire le nombre de paramètres de ces réseaux en essayant des convolutions
spatiales et temporelles séparées (S3TC). Cela permet non seulement de réduire da-
vantage le nombre de paramètres entrâınables de ces réseaux, mais aussi de réduire
potentiellement la complexité matérielle pour leur mise en œuvre sur du matériel neu-
romorphique. Les S3TC sont plus performants que les CSNN 3D et produisent une
activité plus élevée à la sortie, ce qui réduit potentiellement l’ampleur du problème
de disparition des impulsions. Notre quatrième contribution présente des CSNN à
deux flux basés sur la STDP. Les méthodes à deux flux sont des méthodes efficaces
d’extraction de caractéristiques spatio-temporelles, avec des performances de pointe
sur les tâches HAR dans le domaine traditionnel. Par conséquent, nous utilisons
des flux spatiaux et temporels à impulsions basés sur des CSNN pour obtenir des
caractéristiques spatio-temporelles. Cela permet d’évaluer la capacité de ces modèles
non supervisés basés sur les STDP à extraire des caractéristiques spatio-temporelles
efficaces dans le domaine des impulsions.
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Chapter 1

Introduction

In recent years, there has been an increasing surge in visual data across various
domains, with a large portion constituting video data. A study conducted by Ericsson
revealed that videos accounted for approximately 70 percent of all global mobile
network traffic in 2023 [1]. Video analysis is an important field within computer
vision, especially considering the difficulty for humans to analyze the vast amount of
video data generated every day. Video analysis involves understanding the content of
videos (e.g., identifying specific persons or objects), and has applications in various
domains like smart surveillance, autonomous vehicles, robotics, human-computer
interaction, content recommendation, and video editing.

One of the key tasks in video analysis is Human Action Recognition (HAR), which
aims to identify human actions in videos. HAR faces challenges such as variations
in motion characteristics, similarities between different actions, and changing envi-
ronmental settings. Other important tasks in video analysis include object tracking,
which focuses on tracking targets within videos; event detection, which automati-
cally identifies specific events in videos, not necessarily related to humans; and video
segmentation, which divides videos into different segments or regions.

Motion modeling, which is computationally representing the movement of objects
in a sequence of images or videos, is particularly essential for HAR, as it helps capture
movement patterns specific to action classes. Developing computational models for
motion is crucial for HAR applications.

There are numerous different approaches for video analysis, and they can be sep-
arated into two main groups: hand-crafted methods and learning-based methods [2].
Hand-crafted methods rely on the careful selection of some interesting features from
the video. This careful selection requires human engineering. Learning methods can
extract features automatically from videos, unlike hand-crafted methods. They are
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often based on deep neural networks made of numerous layers. The current state-of-
the-art methods for video analysis in computer vision are deep learning solutions [2],
which include models like Convolutional neural networks (CNNs) [3] and two-stream
methods [4].

A major drawback of these deep learning solutions, is that they are known
for their high computational costs, especially in complex tasks and when dealing
with large datasets, raising environmental concerns. The prolonged use of powerful
GPUs contributes to pollution, as highlighted by studies like [5, 6]. Moreover, this
high computational cost makes it challenging to implement these models on energy-
constrained devices, because they can quickly deplete battery life. While there is
a move toward more energy-efficient algorithms and edge computing to mitigate
these concerns, energy efficiency remains a significant challenge as the demand for
computer vision applications continues to grow, and sustainability becomes a key
consideration in technology development. In the era of the Internet of Things (IoT),
where sensors are integrated into physical devices, IoT applications are being used in
various sectors such as smart cities, agriculture, and retail. Consequently, reducing
the computational expenses associated with computer vision methods that are often
used with IoT applications becomes a pressing need. This reduction can facilitate
the implementation of these applications on a wider range of devices.

Another drawback of these deep learning computer vision models is that they
heavily rely on large amounts of labeled data for supervised training, which necessi-
tates human involvement, demanding considerable resources and time for collection
and annotation. It is essential to highlight the orders of magnitude required for
effective training of deep learning computer vision models in well-established tasks,
such as image classification or object detection. These orders of magnitude range
from tens of thousands to several million labeled instances, as seen in datasets like
ImageNet [7].

To address these issues, alternative methods with reduced computational costs
are recommended. This led to a shift towards alternative computational models. In
this context, Spiking Neural Networks (SNNs) have emerged as a promising approach
for video analysis. SNNs present an opportunity to overcome the limitations posed
by traditional techniques, opening new avenues for more energy-efficient and envi-
ronmentally conscious video analysis methods [8]. The main source of inspiration
behind SNNs is the brain, which only consumes around 20 W of power and performs
extremely complex computations [9]. Therefore, the neurons of these third genera-
tion neural networks mimic some features of the spiking neurons in the brain [10]. It
is important to note that these networks only mimic some aspects of the brain, and
do not perform as well as the brain with complex computations. Unlike traditional
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Artificial Neural Networks (ANNs), which have continuous-valued activations, SNNs
process the information in the form of impulses that are referred to as spikes. These
networks hold the potential to perform video analysis tasks like HAR at a lower cost.

There exist various neuromorphic hardware platforms facilitating the implemen-
tation of SNNs, including TrueNorth [11], SpiNNaker [12], BrainScaleS-2 [13], Tian-
jic [14], and Loihi [15]. While digital chips like Loihi enable STDP training, analog
neuromorphic hardware stands out as particularly compelling for STDP applica-
tions. They take up significantly less area and consume less energy compared to
digital chips [16], and their capability of in-memory computation circumvents the
necessity for external memory. Memristor-based analog technology, in particular,
holds significant promise for STDP-based learning, due to their inherent ability to
emulate synaptic plasticity.

SNNs are energy efficient when implemented on ultra-low power neuromorphic
hardware [12, 17], which makes them attractive candidates for applications on de-
vices with limited energy, such as real-time video analysis on edge devices. However,
current SNN training methods that achieve high classification rates, like ANN-to-
SNN [18] conversion and surrogate gradient-based methods [19], still have certain
limitations, like needing large amounts of labeled data, and using global computa-
tions that are difficult to implement with ultra-low power neuromorphic hardware.
SNNs trained in an unsupervised manner with the Spike Timing-Dependent Plas-
ticity (STDP) rule use local computations that give them the advantage of being
easier for efficient neuromorphic hardware implementation. Moreover, the unsuper-
vised nature of these networks can be leveraged to reduce the amount of labeled data
needed for training.

STDP-based training also facilitates on-chip learning, which promotes user data
privacy. Edge device users are becoming more and more aware of the importance
of not sharing their personal information to external servers. An example of this
is the voice privacy problem, which has risen from the fact that our voices contain
sensitive data about us [20]. The same applies to face recognition applications, that
raise biometric security concerns [21]. Also, more and more laws are being issued to
protect user data; a famous one is the General Data Protection Regulation (GDPR)
issued by the European Union. With the rise of IoT applications, which are finding
their way into every home, like with home automation applications, on-chip learning
has become a requirement. Therefore, designing technologies that permit on-chip
learning and processing in an efficient and effective manner has to be addressed.

The energy efficiency that results from processing information using spikes has
made Dynamic Vision Sensor (DVS) [22] cameras the most recent trend for providing
spiking input data to SNNs. SNNs trained with event data captured from DVS
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cameras are frequently discussed in the existing literature [23–25]. These cameras
can be used to create spiking datasets tailored for video analysis tasks, such as the
DVS Gesture Dataset [26] which is recorded with a DVS camera for spiking hand
gesture recognition. Additionally, SNNs can be supplied with input from micro-
Doppler data from radars [27], sensor data from wearable devices [28] and sensors
from smartphones [29] [30]. We find that not all applications of SNNs necessitate
the use of sensors or DVS cameras. Frame-based applications with SNNs are also
essential due to the vast volume of frame-based video data being generated daily.
Frame-based video analysis with SNNs becomes imperative for cost-effective analysis.

In this manuscript, we explore the potential of spiking neural networks trained
in an unsupervised manner with the Spike Timing-Dependent Plasticity (STDP)
learning rule for HAR. We investigate the strengths and limitations of STDP-based
SNNs in capturing and exploiting spatio-temporal information. Additionally, we
develop novel methodologies and architectures to process video data with minimal
energy and supervision if implemented on neuromorphic hardware.

1.1 Motivation

Video analysis is useful in numerous applications, and is expected to gain even more
prominence in the upcoming years. Some of these applications can be implemented on
energy-constrained devices, which raises energy and computation limitation concerns.
For instance, applications used on mobile devices often need to send requests to deep
models stored on remote servers because of computation limitations. However, if
computations could be performed locally, it would not only reduce computational
costs, but also enhance security and user privacy [31].

As previously mentioned, the current state-of-the-art methods used in computer
vision are neural networks. These networks present challenges when it comes to
energy efficiency. Due to their high energy consumption, these models heavily rely on
powerful GPUs for quicker operation. Nevertheless, deploying them on devices with
limited energy poses significant challenges [8, 31]. Additionally, concerns about the
environmental impact of prolonged GPU usage [5, 6] have surfaced. These concerns
illustrate the impact of carbon emissions related to the energy required for training
a neural network model on the environment. Furthermore, these models are trained
using supervised learning methods, which means that they require large amounts of
labeled data for training. This led to the exploration of alternative methods with
lower computational costs, such as SNNs that are implementable on a wider range
of devices.
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By opting for SNNs over traditional Deep Neural Networks (DNNs) in video
analysis, the following advantages can be achieved:

• Energy efficiency and local computations: Spiking neural networks are more
energy-efficient compared to their DNN counterparts [8]. This is due to the fact
that these networks process the information in the form of low energy action
potentials, in addition to the sparse nature of spiking activity. This reduces
computational requirements and can enable the implementation of low-power
neuromorphic hardware for real-time video analysis applications. STDP-based
SNNs can conduct their training and perform their computations locally [31].
This could allow the training of the SNN to be done in a wide range of de-
vices, including smartphones, which results in advantages, like promoting more
security.

• Unsupervised learning: SNNs can be trained using unsupervised Hebbian learn-
ing methods such as STDP [32]. This eliminates the need for a large amount
of labeled data, which otherwise would require costly human intervention.

1.2 Major challenges

Video analysis using SNNs is a relatively new research field. Due to its relative
novelty, this topic has limited existing research, particularly in the context of unsu-
pervised STDP-based feature learning for video analysis. Consequently, this domain
presents several significant challenges that need to be addressed.

• Challenge 1: Video data processing for motion modeling — STDP-based SNNs
have demonstrated their capability to extract pertinent spatial information
from static images [31]. These models could also be used for video analysis
by sequentially processing individual frames. However, this approach would
disregard the motion information between successive frames, necessitating the
development of methods capable of modeling the motion inherent in videos,
similar to what has been done with other computer vision models [33]. This
is essential to enable spatio-temporal processing using the currently available
2D SNN architectures. However, as a result of the novelty of STDP-based
SNNs for video analysis, the information available concerning the suitable input
information and motion modeling for effective processing of videos by these
models is insufficient.
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• Challenge 2: Network architecture design for motion modeling — Designing
effective network architectures for SNNs remains an open challenge. There has
been limited work concerning computer vision architectures for video analy-
sis in the spiking domain; some examples are [34], [35], and [36]. However,
there is currently not enough research addressing spatio-temporal computer
vision architectures for video analysis with unsupervised STDP learning, even
though these networks promote user information security, energy efficiency and
a lower dependence on labeled data. Designing network architectures for SNNs
requires considering the encoding/decoding mechanisms, learning algorithms,
and hardware constraints specific to spiking neural models [37].

• Challenge 3: Network complexity and hardware limitations — Video analysis
tasks often require modeling complex spatio-temporal relationships. Balancing
the network complexity to achieve high accuracy without sacrificing computa-
tional efficiency is crucial for practical implementation. This is because hard-
ware connectivity architectures have some resource constraints (i.e., the total
number of neurons/core may not exceed 1,024 with Loihi chip [15]). Imple-
menting SNNs for video analysis on resource-constrained hardware platforms
can be challenging due to the computational requirements of spatio-temporal
data processing. Adapting SNN architectures and training algorithms to antici-
pate the accommodation of hardware limitations is an important consideration.

• Challenge 4: The spike vanishing problem — It is factual that deeper ANN
architectures can learn more complex features [38]; however, the case of multi-
layer STDP-based SNNs remains an open research challenge [31]. This is
attributed to the fact that multiple spikes are aggregated within neurons to
trigger a smaller amount of output spikes, resulting in diminished spiking ac-
tivity in subsequent layers. This loss of spike information is known as the spike
vanishing problem.

Overcoming these challenges will lead to more robust, efficient, and accurate
spiking neural network-based video analysis systems, which brings us one step closer
to unlocking the full potential of SNNs in analyzing visual data.

1.3 Contributions

This section provides a summary of the contributions presented in this manuscript,
which address the challenges of video analysis with SNNs discussed in Section 1.2.
These contributions consist of:
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• Video analysis with 2D Convolutional Spiking Neural Networks (CSNNs) using
various static representations of motion: As previously mentioned, 2D STDP-
based CSNNs exist for images, so we take advantage of this model and use
it for video analysis. The representation of the input data is very important
for the learning process of neural networks. Therefore, we take on the task
of motion modeling to extract static representations of motion from videos.
We divide these representations into two groups, which are the frame-based
and the shot-based representations. Then, we analyze the behavior of SNNs
with these representations in order to better understand their performance.
This contribution presents a comparative analysis of the performance of these
spiking networks with different static representations of motion, incorporating
novel static representations of motion. This analysis addresses Challenge 1
mentioned in Section 1.2 and sheds light on the efficacy of the introduced
representations

• Extending 2D CSNNs into 3D CSNNs: 3D CSNNs are fully spiking solutions
that can extract effective spatio-temporal features from videos. To the best
of our knowledge, this contribution is the first work that presents 3D CSNNs
trained with STDP in an unsupervised manner. We compare the performance
of this network to that of a 2D CSNN, and we conclude that the performance
of 3D CSNNs is superior. This contribution addresses Challenge 2 mentioned
in Section 1.2.

• Spiking Separated Spatial and Temporal Convolutions (S3TC): 3D spiking con-
volutional kernels can be separated into 2D and 1D kernels that account for the
spatial and temporal dimensions, respectively. We compare the performance
of 3D and separated spiking kernels and conclude that separated spiking con-
volutions can improve the performance of spiking models while reducing the
number of parameters, promoting potentially easier hardware implementation
and lower computational cost. S3TC can also increase the spiking activity at
the output of a layer, therefore decreasing the severity of the spike vanishing
problem as well. This contribution addresses the Challenges 3 and 4 mentioned
in Section 1.2.

• Spiking two-stream methods with STDP-based convolutional SNNs: An effec-
tive method for video analysis is the use of two-stream methods [4]. Yet, to the
best of our knowledge, this method has not been explored with unsupervised
STDP in the spiking domain. Therefore, we transpose two-stream methods to
the spiking domain, and we use five different temporal stream configurations to
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better understand the performance of these networks. This contribution also
addresses Challenge 2 mentioned in Section 1.2.

1.4 Outline

The structure of this manuscript is as follows.
Chapter 2 introduces video analysis, outlining its tasks, challenges, and presenting

some widely-used algorithms. It discusses state-of-the-art techniques and methodolo-
gies in video analysis, emphasizing the difficulties associated with capturing temporal
dynamics.

Chapter 3 offers a comprehensive understanding of essential concepts and princi-
ples of SNNs. This chapter also highlights the advantages of SNNs over traditional
neural networks and provides an overview of SNNs, along with a concise presenta-
tion of spiking neurons, training approaches, and neural coding techniques used for
converting pixels into spikes.

Chapter 4 introduces the baseline architecture, and model choices carefully se-
lected from the literature to be used in the contributions.

In Chapter 5, we perform video analysis using STDP-based 2D CSNNs, and
evaluate its performance on two benchmark HAR datasets.

Chapter 6 presents our proposed 3D CSNN for video analysis, where we show
the advantages of this fully spiking model over the already existing 2D CSNN. We
evaluate the performance of 3D CNNs on two benchmark HAR datasets.

In Chapter 7, we improve the performance and reduce the number of parameters
of a fully spiking solution by introducing our spiking separated spatial and temporal
convolutions model (S3CT). We present comprehensive experimental results that
compare between S3TC networks and the previously mentioned 3D CSNNs using a
performance evaluation on three benchmark datasets.

Chapter 8 presents spiking two-stream methods, where we transpose the effec-
tive two-stream model for video analysis into the spiking domain, and evaluate its
performance on four benchmark HAR datasets.

Finally, Chapter 9 concludes the thesis by summarizing the contributions, high-
lighting the implications of our work, and outlining potential directions for future
research.
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Part II

Background
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The objective of this part is to provide a comprehensive foundation for the con-
tributions, and it is divided into three chapters. It provides an introduction to video
analysis in Chapter 2, describes the specificities of SNNs in Chapter 3, and explains
the choices that are a basis for our research pursuit in Chapter 4.

In Chapter 2, we provide an overview of video analysis. We describe some of its
diverse tasks, focusing particularly on Human Action Recognition (HAR). We then
present the challenges inherent to HAR, along with a discussion of pertinent HAR
datasets. Following this, we introduce the general components of a video analysis
system, accompanied by an introduction to feature extraction methods, split into
two principal categories: hand-crafted techniques and deep learning approaches. The
chapter is concluded with a summary, where we highlight some of the effective deep
learning architectures employed for HAR. Specifically, we find Convolutional Neural
Networks (CNNs) and two-stream methods, to be suitable for implementation in the
spiking domain within the scope of this study.

In Chapter 3, we present the fundamental concepts and theories related to SNNs.
These include an exploration of diverse spiking neuron types, methods to transform
data into spikes, training mechanisms of SNNs, and their applications within the do-
main of video analysis. An understanding of these concepts serves as the foundation
for our subsequent chapters, where we take a deeper plunge into the specific aspects
of SNNs for video analysis.

Finally, Chapter 4 presents the mechanisms that we have carefully selected from
the literature to lay the foundations of our research. These mechanisms encompass,
among others, our chosen spiking neuron model, the preferred method for transform-
ing video data into spikes, and the SNN learning rule that we will need to train our
network. These choices establish the groundwork for our research.
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Chapter 2

Background: Video Analysis

Video analysis is the process of understanding the content within a video, which
involves the extraction of valuable information from the video data, including spatio-
temporal patterns. This task is fundamental in the field of computer vision and has
diverse applications in creating intelligent systems that have a variety of capabilities,
including interpreting and responding to human actions. The utility of video analysis
is widespread, serving as an important technology in various domains, including
smart surveillance, healthcare, and autonomous vehicles.

While the human brain effortlessly processes visual data, video analysis presents
a challenge for machines. This is because machines interpret visual information
represented as pixel matrices, which can be influenced by various factors like lighting,
viewpoint, and a variety of patterns within an object or a class of objects (e.g. shape,
color). These factors can significantly alter the values within these matrices, thereby
complicating the task of visual analysis.

As the volume of visual data demanding analysis continues to rise, it has become
impractical to rely solely on human effort for processing such large quantities of
videos. Consequently, there has been a compelling need to develop video analysis
algorithms that can be useful for a number of tasks. Some of these tasks are the
following:

• Human Action Recognition (HAR): Human action recognition is the task of
identifying human actions within a video [39]. This task can be used in many
applications, like smart surveillance systems, human-machine interaction, and
robotics for characterizing human behavior [40], and has witnessed an increas-
ing interest throughout the years [39–42]. This task presents challenges, some
of which are variations in the motion characteristics of actions (e.g., jogging
can occur at different speeds), inter-class similarities (e.g., fast jogging might
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resemble running, while slow jogging might resemble walking), and environ-
mental settings (e.g., dynamic backgrounds which make it more difficult to
localize the human) [39].

• Person/object tracking: Object tracking involves following specific targets within
a sequence of video frames, serving various applications such as surveillance [43].
This task can include a series of sub-tasks, like object detection. One approach
involves tracking by detection, which employs a detection algorithm to identify
target locations and then links them together; this method heavily relies on the
accuracy of the object detection algorithm [44]. Other methods leverage the
exploitation of temporal variations in video sequences for end-to-end tracking,
as seen in recent studies like [45].

• Event detection: Event detection involves the automatic identification of spe-
cific salient occurrences in videos that, unlike HAR, do not necessarily involve
humans [46]. Some examples of these salient events could be natural disas-
ters [47], social media posts [47], and violent sequences in movies [48].

• Video segmentation: Video segmentation is the task of dividing a video into
different segments or regions, often with the goal of identifying and isolating
distinct objects, scenes, or actions within the video [49]. Video segmentation
also includes motion segmentation, which is the task of identifying the inde-
pendently moving regions in a video and separating them from each other,
or from the background motion [50], and background modeling for foreground
detection [51].

We are specifically interested in modeling motion for HAR because of its diverse
range of applications across various domains [40], [52]. HAR requires capturing the
movement patterns present in a video, because human actions are characterized by
distinct motion sequences. This is referred to as motion modeling, and it requires
developing computational models that describe how objects in the video move over
time, like the one modeled in Figure 2.1.

In the subsequent sections of this chapter, we will discuss the challenges associ-
ated with HAR, and explore some currently available HAR datasets in Section 2.1.
Following this, we describe the elements of a standard video analysis system in Sec-
tion 2.2. This system can employ either hand-crafted feature extraction techniques
or feature learning methods, which are explained in Sections 2.3 and 2.4 respectively.
Finally, we provide in Section 2.5 a summary and a conclusion, which bring to focus
the pertinent models that inspire our contributions in subsequent chapters.
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Figure 2.1: Motion modeling with optical flow, (a) a person walking, (b) the optical
flow vectors that result from the motion, (c) the histogram of oriented optical flow
feature trajectories. Figure from [53].

2.1 Challenges & datasets in HAR

Understanding the challenges of HAR datasets is crucial for developing accurate
models that can analyze human activities in various environments. We begin by
explaining what constitutes a video. A video is a sequence of frames captured one
after the other in a timely manner, which creates the illusion of continuous motion.
Each frame is a matrix of pixels, where each pixel has an intensity. Therefore, a
video can be seen as a 4D tensor of size lw× lh× lc× ltd where lw and lh are the width
and height of the frames, lc is their number of channels (e.g. lc = 1 for grayscale
frames, lc = 3 for RGB frames), and ltd is the temporal depth of the tensor i.e., the
number of frames in the video sample.

There are certain visual data challenges that are shared by both image and video
data, which can affect the interpretability of the data. These challenges arise from
the fact that visual data is perceived by computers as pixel values, which can vary
depending on factors like the acquisition device, viewpoint, and illumination. Chang-
ing the viewpoint, such as capturing the same scene from different angles, results in
significant changes in pixel values. Similarly, variations in illumination, such as cap-
turing an image at night versus during the day, further contribute to the fluctuations
in these values.
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Another layer of complexity is added to these challenges with video analysis,
as variations in visual data can occur not only between individual frames but also
across different frames within the video sequence (e.g., viewpoint and illumination
can change within the same video).

In the context of action classification, HAR presents specific additional challenges.
As the number of distinct classes or class samples increases, the potential for overlap
between classes in pixel space also rises. Consequently, accurately distinguishing and
classifying similar actions becomes more difficult. HAR challenges also encompass
motion variations, scenery changes, diverse settings, and interpersonal differences
among video subjects. For a HAR algorithm to be considered effective, it must be
robust to these variations and deliver consistent performance even in the presence of
noise.

These challenges are reflected in the existing HAR datasets. There are numerous
publicly available frame-based video datasets used for HAR, and several of them are
detailed in Table 2.1 along with their challenges in Table 2.2. Some of them are
early and simple datasets, like the KTH [54] and Weizmann [55] datasets. The KTH
dataset [54] contains 600 videos of 25 subjects, performing 6 actions in 4 scenarios,
and the Weizmann dataset [55] contains 90 videos of 9 subjects performing 10 actions.
Other datasets are slightly more complex. For example, the Inria XMAS dataset [56]
is made up of 11 actions and 1148 sequences with different actors, cameras, and view-
points, which brings additional complexity. Another challenging dataset is the UCF
sports action dataset [57]. This dataset contains 150 videos of 10 actions, and is made
up of realistic videos, and has numerous challenges such as variations in settings, the
presence of other individuals, objects, and animals within the videos, and varying
viewpoints. Some other well-known action recognition datasets are the UCF101 [58]
dataset, which includes a wide range of human actions, the HMDB51 [59] dataset,
which consists of videos of 51 action classes from different sources, the Hollywood-
2 [60] dataset, which contains 12 actions and 10 classes of scenes distributed over
3669 video clips from movies, and the Kinetics [61] dataset, which is a large-scale
action recognition dataset comprising over 500,000 video clips covering 600 human
action classes with at least 600 video clips for each action class. Among the wide
variety of frame-based video datasets used for HAR, the challenges associated with
the eight prominent datasets introduced here are summarized in Table 2.2. These
challenges encompass a range of factors, such as setting variations (e.g., indoor and
outdoor recordings), the presence of similar actions (e.g., jogging and running), dif-
ferent viewpoints captured from various angles, subject occlusion caused by objects
or subjects partially obstructing the action, the complexity of managing large-scale
datasets with numerous distinct classes, and the complexity of dealing with realistic
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videos sourced from environments outside the controlled settings of a laboratory,
including movie scenes and sports events. The progress in dataset complexity re-
flects the advancements of HAR systems, and the available datasets offer increasing
challenges to evaluate new paradigms in HAR with different levels of maturity.

Summary # Actions # Videos # Subjects Resolution Year
KTH [54] 6 600 25 160× 120 2004

Weizmann [55] 10 90 9 180× 140 2005

IXMAS [56] 11 1148 10 48× 64 2006

UCF Sports [57] 10 150 - - 2009

Hollywood-2 [60] 12 3669 - - 2009

HMDB51 [59] 51 6849 - 320× 240 2011

UCF101 [58] 101 13,320 - 320× 240 2012

Kinetics [61] 600 500,000 - - 2017

Table 2.1: The characteristics of human action recognition datasets.

Challenges
setting

variations
similar
actions

different
viewpoints

subject
occlusion

large-scale
dataset

realistic
videos

KTH [54] ✓ ✓

Weizmann [55] ✓

IXMAS [56] ✓ ✓

UCF Sports [57] ✓ ✓ ✓ ✓

Hollywood-2 [60] ✓ ✓ ✓ ✓ ✓ ✓

HMDB51 [59] ✓ ✓ ✓ ✓ ✓ ✓

UCF101 [58] ✓ ✓ ✓ ✓ ✓ ✓

Kinetics [61] ✓ ✓ ✓ ✓ ✓ ✓

Table 2.2: The challenges of human action recognition datasets.

2.2 A video analysis system for HAR

A video analysis system consists of several essential blocks shown in Figure 2.2: pre-
processing, feature extraction, and feature classification. The input to the system
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is a video, which undergoes pre-processing as an optional step to prepare it for
subsequent analysis tasks. Pre-processing may involve tasks like noise removal or
reduction, data normalization, and problematic artifact removal. Pre-processing can
also involve methods that extract motion from video data to highlight motion-related
patterns, which facilitates the extraction of relevant temporal information crucial for
subsequent analysis tasks.

An example of this is pre-processing with optical flow, which involves analyzing
the motion between two successive frames in an image sequence or video. Optical
flow provides motion vectors, from one frame to the next. Two main types of optical
flow are sparse optical flow, which focuses on specific interest points [62], and dense
optical flow, which considers motion for all points in the frame [63].

Figure 2.2: General stages of video analysis.

Unlike the pre-processing step, which is optional, the feature extraction step is
essential for video analysis. The relevant extracted features are distinctive patterns,
resulting in output feature vectors that serve as inputs to a classifier. These features
mitigate the challenges of HAR by building representations that are invariant to a
number of factors like illumination, translation, viewpoint, etc. The classifier assigns
appropriate labels to the data, which allows the distinguishing of different activities
within the video. This classifier is typically a supervised machine learning model.

Feature extraction methods can vary in the literature, and include hand-crafted
as well as deep learning approaches. The choice of a particular approach depends on
various factors, including the complexity of the task at hand, the available compu-
tational resources, and the specific constraints of the application, such as the need
for robust performance in the presence of noisy or limited data.

2.3 Hand-crafted methods

Hand-crafted methods require human expertise in designing the feature extraction
process, and they rely on the manual engineering of the features needed for a partic-
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ular task. Feature extraction with hand-crafted methods is generally separated into
multiple stages, as shown in Figure 2.3. First, a feature detector is required in order
to detect regions of interest, which are key points where unique characteristics or
patterns are present in the visual data. Detecting them makes it possible to extract
relevant information. Then, descriptors are used to represent the visual information
from this region of interest in a quantifiable manner. The output feature vectors are
then transformed into a single feature vector, facilitating the classification process by
providing an informative representation of the essential visual cues. Then, a classifier
is used to perform the action classification.

Figure 2.3: Stages of video analysis with hand-crafted methods.

2.3.1 Detectors

There are numerous options for the detection of points or regions of interest that are
used for video analysis. These detectors are usually inspired from spatial detectors
used for images, and have been extended for video analysis. Some of them are
sparse and detect only points of interest, which have significant variations in space
and time [64], while others are dense [65], which sample the appearance and motion
variations in all regions over the entire video. Dense sampling of local features
has proven better effectiveness in classification tasks [65, 66]. Some pertinent hand-
crafted detectors, varying in sparsity and density, are listed here:

• Space-Time Interest Points (STIPs): Space-time interest points [64] are an
extension of spatial interest points, and they represent the points of significant
local variations in both space and time. The detection of these points is based
on Harris and Forstner detectors, where the Harris detector [67] is a corner
detector. With STIP, spatio-temporal corners are detected with the 3D Harris
detector [64], where a spatio-temporal corner is an image region containing a
spatial corner whose velocity vector is changing [68]. However, this method is
not effective when the motion is subtle [68].

• 3D Scale-Invariant Feature Transform (SIFT-3D): The Scale Invariant Fea-
ture Transform (SIFT) computes scale-invariant coordinates of local patterns
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(blobs, corners) from image data. A Difference-of-Gaussians operator is applied
to an image to obtain SIFT interest points. This operation involves creating
copies of the same image smoothed with Gaussian kernels of different standard
deviations, calculating the differences between these images, and then selecting
the extremas (peaks) of these values as SIFT interest points. These interest
points are scale invariant as they are local extremas in the scale space, allowing
their scales to be normalized or adjusted. Additionally, they are rotation in-
variant, as a principal orientation is calculated for each SIFT interest point [69].
SIFT-3D is a spatio-temporal extension of SIFT, and it is also made up of a
detector and a descriptor. It detects key points and extracts descriptors from
different scales and orientations in a 3D space [70]. SIFT-3D can be employed
to identify distinctive points in videos that can be used to track motion and
describe the appearance of objects or body parts, which is useful for human
action recognition.

• Enhanced Speeded-Up Robust Features (ESURF): ESURF [71] is an enhanced
version of the Speeded-Up Robust Features (SURF) [72] algorithm. It de-
tects key points and generates descriptors that are robust to changes in scale,
rotation, and lighting. The detection of interest points is done using the de-
terminant of the Hessian matrix. This process involves convolving the image
with a series of box filters at different scales, and then computing the Hessian
matrix using the derivatives of these convolutions. The determinant of the Hes-
sian matrix is used to measure the local changes around a point, and interest
points are detected at locations where the determinant of the Hessian matrix
is maximized. ESURF retains the core principles of SURF, but it incorporates
further optimizations and adjustments to enhance its performance in various
applications, and can be applied to extract features from video frames.

• Trajectories: Trajectories permit tracking a given spatial point over time, which
captures the local motion information from videos [65]. The Kanade–Lucas–Tomasi
(KLT) tracker [73] is a tracker which includes a detector, and can be used to
extract trajectories. It is slightly denser than STIP [65] because it only detects
features in the spatial dimension. This method detects points of interest that
are identified using a corner detection algorithm like the Harris corner detector
or the Shi-Tomasi corner detector [74]. Then, the optical flow at these points of
interest between two consecutive frames is computed using the Lucas-Kanade
algorithm, and these motion vectors are linked from frame to frame in order to
track corners. The KLT tracker is also paired with the Harris3D interest points
in some work [75]. This tracker is also used in [76] to capture long-duration
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trajectories.

• Dense Trajectories: Dense trajectories were introduced in [65]. They sample
feature points on a dense grid in each frame and track them using a dense
optical flow algorithm, instead of the sparse one used in the KLT tracker. This
provides a good coverage of the video features and smoothness constraints,
which allows relatively robust tracking of fast and irregular motion patterns.

• Cuboids: Cuboids were introduced in [68]. With cuboids, some subtle move-
ments that are ignored by the STIP method can be detected. The detection
of motion with cuboids requires first the definition of a response function,
similarly to other detection methods. This response function is calculated by
applying separable linear filters, which are a 2D Gaussian smoothing kernel,
applied only along the spatial dimensions, and 1D Gabor filters applied in the
temporal dimension [68]. This response function detects interest points when
it reaches a local maxima.

2.3.2 Descriptors

With hand-crafted methods, the detectors mentioned above require descriptors, which
can represent and quantify the visual information around the detected key point.
Some descriptors that can be used for spatio-temporal feature extraction extend the
work done for spatial feature extraction, like 3D Histograms of Oriented Gradients
(HOG-3D) [77], 3D Scale-Invariant Feature Transform (SIFT-3D) [70] and Enhanced
Speeded-Up Robust Features (ESURF) [71].

• 3D Histogram of Oriented Gradients (HOG3D): Histogram of oriented gra-
dients (HOG) [78] generates a compact representation of features within an
image. Gradients represent changes in pixel values and can highlight edges
and textures. This technique involves computing gradient vectors at each po-
sition around the key-point. Gradient vectors are then organized into a his-
togram, with the histogram’s bins representing specific orientation ranges. The
magnitudes are aggregated within these bins, creating a condensed represen-
tation of the pattern around the key-point. HOG3D is the extension of HOG
which calculates the distribution of gradients in a 3D space. In the context
of human action recognition, videos are considered as spatio-temporal volumes
and the key HOG concepts can be generalized to 3D [77]. HOG3D captures
not only the appearance but also the motion characteristics in the volume
around a key-point. Similar to HOG, HOG3D computes gradient vectors in
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spatial and temporal dimensions. These computed gradients are then orga-
nized into a three-dimensional histogram, with the bins representing specific
spatio-temporal orientation ranges [77].

• Histogram of Optical Flow (HOF): HOF [79] is an optical flow-based descriptor
capable of extracting motion features from sequences of images. HOF is a
histogram of orientations of the optical flow vectors [80]. This descriptor has
the advantage of being insensitive to variations in lighting and clutter.

HOF can highlight motion patterns and dynamics in videos. It is effective for
recognizing actions that involve specific motion directions or patterns [79].

• Motion Boundary Histograms (MBH): MBH [65] is another descriptor that
has been introduced for action recognition. This descriptor computes the
derivatives separately for the horizontal and vertical components of the op-
tical flow. Motion boundaries represent the locations where changes in motion
occur. With this descriptor, information like camera motion is removed by
disregarding constant motion, while information like motion boundaries are
kept. Motion boundaries provide a robust descriptor; this makes MBH an ef-
fective descriptor that significantly outperforms other hand-crafted descriptors
for HAR [65].

After the extraction of descriptors, the set of feature vectors needs to be trans-
formed into a single vector that can be fed into a machine learning model. A typical
approach that can be used is the bag-of-features approach, also known as the bag-of-
visual-words representation [81]. This method involves the construction of a visual
vocabulary containing a set of learned visual words that characterize the distinctive
visual elements present within the data. These visual words encapsulate the dom-
inant patterns found in the descriptors. By employing the bag-of-words approach,
the data dimensionality is further reduced, resulting in a simplified yet informative
representation of the visual content. Then this data is introduced it into a classi-
fier [65].

2.4 Learning methods

Unlike hand-crafted methods that require expert engineering to design appropriate
features for recognition, deep learning methods offer the capability to learn features
directly and automatically from visual data. Deep learning models use trainable
feature extractors followed by trainable classifiers, allowing for end-to-end learning.
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In this manuscript, the focus on neural networks is driven by their exceptional ability
to automatically capture complex patterns and hierarchical representations from
complex data, making them well-suited for action recognition tasks.

Artificial neural networks (ANNs) are loosely inspired by the biological neural
networks in the human brain. They consist of layers of artificial neurons. These
neurons process and transmit information through synapses, where synapses carry
strengths referred to as weights. A neuron is a computational unit that takes inputs
from one or multiple sources. It applies a linear combination of these inputs using
weights and then applies an activation function to produce an output, as shown in
Figure 2.4 and represented in Equation 2.1:

y = fa

 nb∑
i=1

WiXi + b

 (2.1)

where y is the output value, fa is the activation function, nb is the number of inputs,
W is the weight vector of the synapse, X is the input vector, and b is a bias value
that allows the model to fit the data better.

The activation function of a neuron is used to introduce non-linearity to the
model, enabling it to learn complex patterns and relationships in the data. The
most famous examples are the sigmoid and Rectified Linear Unit (ReLU) activation
functions. The sigmoid function squashes its input to a range between 0 and 1, while
the ReLU function outputs the input directly if it is positive and zero otherwise.

A typical ANN is made up of multiple layers, usually an input and an output
layer, with one or more hidden layers in between. The network is considered as Fully
Connected (FC) if each neuron in one layer is connected to all the neurons in the
subsequent layer, as shown in Figure 2.5. This figure shows a Feed-Forward (FF)
neural network that transmits the information in a forward direction from the input
layer through one or more hidden layers, ultimately reaching the output layer. The
weights associated with the connections between neurons are adjusted during the
training process, used to optimize the network’s performance.

A fundamental algorithm used in training ANNs, known as back-propagation [82],
which is short for “back-propagation of errors”. It is a supervised learning rule that
optimizes the network’s parameters by calculating the error through a comparison
of the predicted output with the ground truth and minimizing a cost function that
measures the discrepancy between them. Ground truth refers to the known correct
output corresponding to the provided input. The back-propagation algorithm uses
a forward pass, where each neuron in the network computes the output to send to
the next layer, and a backward pass where the error computed at the output of the
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Figure 2.4: A neuron.

Figure 2.5: A neural network.
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network is back-propagated to optimize the network weights starting from the output
layer up till the input layer. The weight updates are determined by the gradient of
the error with respect to the network’s weights. This process is repeated multiple
times in order to reduce the error and try to reach a global minimum of the cost
function.

The feature learning process involves updating weights over multiple epochs,
where an epoch represents one complete iteration through the entire training dataset,
to learn significant patterns and representations from the input data. As the net-
work progresses through the epochs, these learned features gradually align with the
patterns present in the input data, enabling the network to refine the representations
that are used for classification. When local minimum is reached, the network is con-
sidered as trained, and the parameters of the network are preserved. It is important
to note that while some neurons serve as feature learners and are trained as feature
extractors, others function as classifiers.

The architecture of the network plays a role in feature extraction, where the ar-
rangement and connections of the layers of the network influence the nature of the
learned features. For instance, deeper architectures can often extract more com-
plex features [83], while shallower architectures tend to capture simpler and more
fundamental patterns, as shown in Figure 2.6.

Video analysis requires the network to take the temporal relationship between the
video frames into account. Many deep architectures have been designed for video
classification tasks. These models have been successful in learning and understanding
patterns, dynamics, and temporal dependencies in sequences of data. In this section,
we explore three prevalent topologies often used in HAR: Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs), and two-stream networks.

2.4.1 Convolutional neural networks

Convolutional Neural Networks (CNNs) are feed forward networks that have proven
to be effective with visual data analysis like image classification or segmentation [38,
85], as well as video analysis [86]. They operate based on the principle of data locality,
which involves using data elements from nearby locations to extract relevant features
and patterns among neighboring pixels. A discrete 2D convolution computes the
amount of overlap between an input image A and a convolutional kernel B denoted
as A ∗B [31] as shown in Figure 2.7, and represented by Equation 2.2:
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Figure 2.6: A CNN extracts more sophisticated, higher-level features as it goes
deeper [84].
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(2.2)

where A is an input image of size lw × lh, B is a 2D convolutional kernel of size
fw × fh, and (x, y) is a location in the input image.

The convolution process begins by placing the filter, also known as a convolutional
kernel, over the top-left corner of the input data, initiating the sliding process with
a step size lstride across the entire input. This kernel is positioned in a way that
aligns its elements with the corresponding pixel values within the chosen region.
For each pixel, a dot product is computed between the values of the kernel and
the image pixel values it covers. This multiplication and summation process results
in a single numerical value, which is the response to the kernel, as explained in
Figure 2.7. Repeating this procedure across the entire input data yields an output
feature map. Each value in this map corresponds to the result of the dot product
operation performed at a specific location. In essence, each position in the output
feature map represents the degree of similarity between the pattern of the kernel
and the patterns present in the input data in the corresponding region. Padding
pixels represented by lpad can be added at the border of the image to ensure that the
filter adequately covers the boundaries, preventing information loss and maintaining
spatial dimensions in the output feature map.

A CNN contains one or more convolutional layers, and each layer has multiple
filters which correspond to neurons. Neurons corresponding to the same filter are
duplicated at all locations and share weights, allowing them to collectively cover the
entire visual field and mimic the sliding over the input of the convolution operation.

Performing a convolution operation with fk 2D kernels will result in a feature
map vector made up of a set of fk feature maps according to Equations 2.3, 2.4, 2.5
from [31]:

lw(i) =
lw(i− 1) + 2lpad − fw

lstride
+ 1 (2.3)

lh(i) =
lh(i− 1) + 2lpad − fh

lstride
+ 1 (2.4)

lc(i) = fk (2.5)

where lw and lh are the new width and height of the output feature maps, lc is the
channel dimension of the output feature map vector, lpad represents the padding, and
lstride represents the stride.
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Figure 2.7: A 2D convolution operation.

Thus, through this convolutional operation, we compute responses from the input
data that measure the presence of certain patterns or characteristics, enabling the
subsequent layers of the neural network to learn more complex patterns by composing
the patterns detected previously. CNNs take advantage of the nature of visual data,
where neighboring pixels have meaningful relationships. These relationships can be
characterized by metrics such as pixel adjacency and connectivity [87].

Compared to fully connected networks, the number of trainable parameters is
reduced due to the sharing of parameters, which involves the application of the same
set of weights across the entire input sample. This fewer number of parameters
renders CNNs more computationally efficient and enables them to handle larger
inputs. Additionally, it serves to limit the effects of overfitting, where the network
closely learns the training data and struggles to generalize. Moreover, this parameter
sharing property allows CNNs to be trained effectively with a substantial yet practical
amount of training data.

2D convolutions are widely used for image analysis, effectively capturing spatial
patterns and features within individual frames. However, when applied directly to
video data, 2D convolutions exhibit limitations in effectively processing temporal
information, as they do not inherently account for the sequential changes between
frames. Consequently, this approach fails to capture the dynamic changes and tem-
poral dependencies present in video data, resulting in incomplete representations of
the underlying motion patterns.

To overcome these limitations, 3D convolutions [88] were introduced as a natu-
ral extension of 2D convolutions, incorporating an additional temporal dimension to
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handle spatio-temporal information. 3D convolutions enable the kernel to slide across
three dimensions, including width, height, and time, in contrast to 2D convolutions
that slide in two dimensions only, as shown in Figure 2.8. 3D convolutions facilitate
the extraction of both spatial and temporal features simultaneously. This enhance-
ment allows 3D CNNs to effectively capture motion patterns in video data, leading
to better representations for tasks such as action recognition. It is considered as the
most natural way to deal with spatio-temporal information by some authors [89].

In summary, neurons in convolution layers are connected to a subset of neurons
in the previous layer. A convolutional layer is made up of a set of fk convolutional
kernels that perform the convolution operation on the input visual data in order to
extract meaningful patterns. These kernels can be 2D of size fw × fh or 3D of size
fw × fh × ftd depending on the nature of the visual input (i.e., image or video) and
considering grayscale data where the number of channels is one, where fw, fh, and
ftd represent the filter width, height and temporal depth.

A 3D convolution operation with fk filters will also result in a set of fk feature
maps according to Equations 2.3, 2.4, 2.5, but these feature maps also have an extra
dimension ltd, for time represented by Equation 2.6:

ltd(i) =
ltd(i− 1) + 2lpad − ftd

lstride
+ 1 (2.6)

CNNs are primarily composed of sequential convolutional layers, with pooling
layers in between to downsample the data, as shown in Figure 2.9. These pooling
layers also improve spatial invariance, and add more non-linearity [31]. As with
FC layers, the stacking of convolutional layers enables the learning of hierarchical
patterns with increasing complexity. Each convolutional layer processes the input
data to extract simple visual features in the initial layers and progressively learns
more complex visual patterns as the data passes through deeper layers. This hier-
archical pattern learning is made possible by the ability of the convolutional layers
to capture local patterns in the initial layers and combine them to recognize more
complex structures in subsequent layers. Then, the feature maps at the output of
the last layer can be linearized into a one-dimensional array, which can subsequently
be introduced into FC layers that act as a classifier.

As mentioned previously, a 3D convolution has the advantage of dealing explicitly
with temporal data using its third dimension dedicated to time. However, these
models also have several issues. For instance, they have more trainable parameters
than 2D models, which consequently increases their computational cost and makes
the optimization of these parameters more difficult. As a result, these models can be
energy-consuming, which renders running them on devices with limited energy very
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Figure 2.8: A (a) 2D convolution and (b) 3D convolution.

Figure 2.9: Example of a CNN topology from [31].
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Figure 2.10: Factorizing (a) a 3D convolutional kernel into (b) separated spatial (2D)
and temporal (1D) convolutions.

challenging. This, in addition to the environmental concerns of running powerful
GPUs for extended periods of time [5,6], initiated the search for alternative methods
that have a lower computational cost, and are easier to train, among which are
separable convolutions [90]. With separable convolutions, a single large convolution
kernel is separated into two or more smaller kernels, as shown in Figure 2.10: the
complex 3D kernel of Figure 2.10(a), which can slide along both spatial and temporal
dimensions, is factorized into a 2D kernel in Figure 2.10(b), that slides along the
spatial dimensions only to extract spatial data first, followed by a 1D kernel which
slides along the temporal dimension, and extracts temporal features, such as motion.

Separable convolutions adopted in networks like MobileNets [90] and Xception [91]
have succeeded in decreasing the number of parameters of these networks while
maintaining their performance. Moreover, gains in accuracy have been recorded
when factorizing a 3D convolution into a 2D spatial convolution and a 1D temporal
convolution [92]. In [92], the authors attribute this gain in accuracy to additional
nonlinearities added by the separated convolutions compared to using a 3D convolu-
tion. They argue that these nonlinearities render the model capable of representing
more complex functions. They also add that 2D and 1D filters are easier to optimize
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than 3D filters.
In this section, we have observed that CNNs can process spatial and temporal

features via 2D and 3D convolutions. Other models, such as Recurrent Neural Net-
works (RNNs), are also capable of extracting these features, and handling sequential
data to capture temporal dependencies. We will further examine this topic in the
next section.

2.4.2 Recurrent neural networks

Recurrent Neural Networks (RNNs) are networks with cyclic connections, which can
process sequential data by maintaining hidden states that retain information over
time. This can make them suitable for human action recognition tasks, because hu-
man movements are encoded in a sequence of successive samples in time, and RNNs
can exploit the temporal correlations in the data [93]. An RNN cell has a feedback
connection so that it can keep track of its previous output, and is made up of input,
output and hidden nodes. A single RNN node is illustrated in Figure 2.11. This
node takes two inputs, which are the current input xt and the preceding hidden
state ht−1, and updates its hidden state ht and output yt as indicated by Equa-
tions 2.7 and 2.8 from [93], respectively:

ht = fa(WxhXt +Whhht−1 + bh) (2.7)

yt = fa(Whyht + by) (2.8)

where X is the input vector, Wxh, Whh, and Why are the weights for the input-
to-hidden connection, hidden-to-hidden recurrent connection, and hidden-to-output
connection, respectively; bh and by are the biases for the hidden and output states,
respectively, and fa is the activation function associated with each node.
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Figure 2.11: An RNN cell from [94]
.

Backpropagation Through Time (BPTT) [95] is a supervised training algorithm
adapted from the classical backpropagation algorithm for RNNs. This algorithm
involves unfolding the node over time, as illustrated in Figure 2.11, treating it as
a deep feedforward network, and applying standard backpropagation to update the
weights of the model. In standard RNNs, the gradients of the loss function become
extremely small as the network undergoes backpropagation through time. As a
result, the updates to the parameters of the model become negligible, leading to
halted learning.

Long Short-Term Memory (LSTM) networks [96] are a variant of RNNs that
have been constructed to address the vanishing gradient problem with vanilla RNNs.
LSTMs have a more complex architecture than vanilla RNNs, incorporating memory
cells, input gates, output gates, and forget gates. These gates permit the LSTM to
store, retrieve, and forget information over long sequences [93, 97].

Gated Recurrent Units (GRUs) were introduced as a less complex alternative
to LSTMs that can also capture long-term temporal dependencies [98, 99]. These
networks have less gating mechanisms than LSTMs, and they aim to strike a balance
between model complexity and performance.

Reservoir computing [100] is another common recurrent architecture that consists
of an input layer, a reservoir, and a readout (output) layer. The reservoir is made
up of a group of randomly interconnected neurons, which enable the transformation
of the input into a higher-dimensional space. In the output layer, a linear classifier
is adequate for distinguishing the various states of the reservoir [101].

In order to use RNNs for HAR, some work suggests to pre-process the HAR
videos with pose estimation algorithms capable of extracting the landmarks of the
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person [102]. Then, these landmarks are sent into an LSTM. However, these meth-
ods are not ideal when there is some object in the context, because pose estimation
algorithms usually only focus on the landmarks of the human and discard spatial
information. Therefore, other methods have emerged, like combining RNNs and
CNNs. One method to conserve the temporal component in a sequence of images is
training CNNs on this sequence of static images and extract local features from the
input sequence, then use recurrent neural networks (RNNs) in order to capture their
temporal dependencies [103]. These models can be used to detect patterns in HAR
videos.

2.4.3 Two-stream networks

Two-stream networks are able to extract different types of features from the same
video sample, as shown in Figure 2.12. These networks are inspired by the visual
processing system in the human brain, which has a ventral and a dorsal stream
that extract different visual information. The ventral stream is called the ”vision-
for-perception” pathway, while the other is the ”vision-for-action” pathway [104].
Inspired by this, two-stream methods extract appearance information by using a
designated spatial stream, while the motion information is extracted by a temporal
stream. Then, the information extracted from both streams is concatenated and sent
into a classifier.

Figure 2.12: General two-stream architecture from [105].

These networks have shown good performance with video analysis, even when
using limited training data [4]. The spatial stream in these models typically extracts
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spatial information from a single video frame [4]. However, recent literature indi-
cates a shift towards favoring the processing of multiple frames through the spatial
stream to better represent spatial information [106–109], as opposed to relying solely
on a single frame. For example, in [109], the authors select 10 RGB frames and
apply average pooling on these frames to merge them into one frame. This frame is
then processed by the spatial stream to extract spatial features. The preference for
using multiple frames instead of relying solely on a single one in the spatial stream is
because using only one frame might not capture the intricate spatial context essen-
tial for accurate classification. By extracting multiple spatial feature maps through
the spatial stream, the resulting output encapsulates the rich complexity of spatial
information, enhancing the capacity of the model for effective classification.

Some authors use RNNs, LSTMs and 3D CNNs as streams in two-stream net-
work architectures [110–112]. They show a benefit in using spatio-temporal streams
that already extract spatio-temporal features. Some work also uses pose or skeleton
information, like in [111], where the authors show that two-stream methods that are
based on 3D CNNs can be improved by adding a stream for pose estimation. In the
case of action recognition, actions can manifest significant variations in appearance
and motion across different instances of a video. By modeling spatial and temporal
aspects separately, two-stream networks can better handle these variations, which
leads to better performance.

2.5 Summary and conclusion

Deep learning methods, particularly CNNs, have demonstrated superior performance
in human action recognition (HAR) compared to traditional hand-crafted features [113].
While there is ongoing debate about the comparative efficacy of CNNs, RNNs, and
LSTMs, literature suggests that CNNs tend to outperform the latter, especially in
scenarios involving longer sequences of data [114].
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KTH Weizmann UCF101
3D CNN [3] 90.20% - -

3D CNN [115] 94.90% 97.2% -

3D CNN + LSTM [116] 94.39% - -

RNN + HOG3D [117] 93.28% - -

Two-Stream [118] 98.83% 99.10% -

3D CNN [88] - - 85.20%

DB-LSTM [119] - - 91.21%

Two-Stream [4] - - 88.0%

Two-Stream [120] - - 92.5%

Table 2.3: Performance of deep learning methods on benchmark datasets.

The comparative analysis presented in Table 2.3 underscores the effectiveness of
these deep learning methods in human action recognition tasks. Notably, 3D CNNs
emerge as models capable of extracting spatio-temporal features by incorporating the
time dimension, avoiding the added complexity of gates, feedback loops, and memory
associated with RNNs and LSTMs. Additionally, Two-stream methods, as depicted
in Table 2.3, showcase state-of-the-art performance on certain HAR datasets. These
methods offer a compelling approach by integrating spatial and temporal information,
making them effective spatio-temporal architectures for addressing the challenges of
HAR. Their capability to capture both appearance and motion aspects inherent in
video data contributes to an overall improvement in recognition accuracy. Neverthe-
less, it is essential to acknowledge that all these methods possess inherent limitations
associated with ANNs. Some of these limitations were introduced in Chapter 1 and
are reiterated here:

• Vanishing or exploding gradients: Gradients used for weight updates may be-
come extremely large or small during supervised training, leading to slow con-
vergence or instability [121], [122].

• Limited memory and computational resources: Traditional ANNs demand sub-
stantial computational resources and memory, posing challenges for large-scale
implementation [123], [124].

• Dependency on large labeled datasets: ANNs require large labeled datasets for
effective training, necessitating costly human intervention for labeling.
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• Environmental concerns: The use of powerful GPUs for extended periods
raises environmental concerns related to carbon footprint and energy consump-
tion [5], [6].

These limitations have prompted a search for alternative methods with lower compu-
tational costs and reduced susceptibility to these issues. Consequently, transferring
some of these methods to the spiking domain could mitigate the severity of these
limitations.
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Chapter 3

Background: Spiking Neural
Networks

Spiking neural networks (SNNs) are third generation neural networks that process the
information in the form of low-energy spikes instead of continuous numerical values
like with non-spiking ANNs, as shown in Figure 3.1. A regular neuron processes
information by applying a linear combination of its inputs, each modulated by weights
that act as magnifiers, amplifying or attenuating the input based on their respective
strengths. Then, the neuron applies an activation function to produce an output, as
explained in Chapter 2 on page 26.

In contrast, SNNs are event-driven with sparse activation, which means that the
neurons of these networks process events spread through time, called spikes, and
that only a subset of neurons in the network are active at any given time. This pre-
vents unnecessary calculations when there is no significant input, and thus increases
computational efficiency. These networks also allow parallelizing their training and
inference processes, hence speeding them up. The advantages of SNNs over ANNs
are efficient information processing when implemented on dedicated hardware, and
event-based asynchronous computations [8, 125,126].

3.1 Principles of spiking neurons

3.1.1 Spiking neuron models

SNNs use spiking neurons to communicate with spike trains, where a spike represents
an electrical pulse also known as an action potential. These neurons have a membrane
potential and a firing threshold. They receive and accumulate spikes over time, which
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Figure 3.1: A comparison between an artificial neuron and a spiking neuron. The
structure is common between ANNs and SNNs, However, (a) an artificial neuron
receives numerical values to compute an output numerical value, while (b) a spiking
neuron receives sparse events called spikes and generates a sequence of output spikes.
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incrementally raises their membrane potential, until their threshold is crossed. This
prompts the neuron to fire an output spike, and its membrane potential goes back to
its resting state, as shown in Figure 3.2. Then, the neuron enters a refractory period
during which its membrane potential is unresponsive to incoming spikes.

Figure 3.2: The evolution of a basic spiking neuron’s membrane potential in response
to an incoming spike train.

There are many types of spiking neuron models that vary in biological plausibility
and complexity. The simpler neurons are easier to implement with neuromorphic
hardware, while the more complex models promote more biological integrity. One of
the earliest and most important models in computational neuroscience [127] is the
Hodgkin-Huxley model [128], which is relatively complex and extremely expensive
to implement [127]. To understand this model, it is necessary to look at how a
spike is generated in a biological neuron. The membrane of a biological neuron has
sodium ions (Na+) and potassium ions (K+) on both its interior and exterior surfaces.
These ions carry positive charges, and typically, there is a greater concentration of
positive charge on the exterior, maintaining the cell membrane’s resting state at a
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Figure 3.3: The action potential moves down an axon like a wave, opening voltage-
gated channels along the length of the axon. The dotted, blue channels represent
voltage-gated sodium channels; the striped, green channels represent voltage-gated
potassium channels. From [129], this figure is licensed under a Creative Commons
Attribution Non-Commercial Share-Alike (CC-BY-NC-SA) 4.0 International License.

resting potential of -70mv. These ions traverse potassium and sodium pumps, which
further increase the positive charge on the exterior surface of the membrane, by
allowing more sodium ions to exit than potassium ions to enter. After a certain
sodium construction on the outside, sodium gates open as a result of the potential
increase, and permit the excess sodium that is accumulated on the exterior, to flow
into the interior of the cell, generating an electrical potential difference. This, in
turn, increases the interior potential and triggers the opening of potassium gates,
enabling positive potassium ions to flow outward, restoring the resting potential.
This electrical potential difference propagates along the axon of the cell through
the action of sodium and potassium gates that are along the axon. This allows the
propagation of an action potential, as shown in Figure 3.3.

This Hodgkin-Huxley model is represented using four equations which reproduce
a neurons’ membrane current (I) in Equation 3.1, sodium current INa in Equation 3.2,
potassium current IK in Equation 3.3, and leakage current Il in Equation 3.4:
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I = Cm
dVm

dt
+ ḡKn

4(Vm − VK) + ḡNam
3h(Vm − VNa) + ḡl(Vm − Vl) (3.1)

INa(t) = ḡNam(Vm)
3h(Vm)(Vm − ENa) (3.2)

IK(t) = ḡKn(Vm)
4(Vm − EK) (3.3)

Il = gl(Vm − Vl) (3.4)

where Vm is the membrane potential, ḡK is the maximal potassium conductance, n
is the activation gating variable for potassium, responsible for opening the potas-
sium gate, VK is the potassium potential, ḡNa is the maximal sodium conductance,
m is the activation gating variable for sodium, responsible for opening the sodium
gate, VNa is the sodium potential, Vl is the leakage potential that account for the
natural permeability of the membrane to ions, Il is the leakage current, Cm is the
membrane capacitance, h is the inactivation gating variable responsible for closing
the sodium gate, ENa is the sodium reversal potential, EK is the potassium reversal
potential, and gl is the maximal leakage conductance. These equations explain how
the excitability of a neuron is affected by the changes in ion channel conductance
and gating variables.

The FitzHugh-Nagumo model [130] is a simplified version of the Hodgkin-Huxley
model, which provides insights into neuronal excitability by modeling the activation
and deactivation dynamics of a spiking neuron using nullclines (i.e., a curve or set of
points in a phase space). An external stimulus Iext affects the membrane potential
Vm and the linear recovery variable y. The recovery variable reflects the return to
the baseline state of specific ion channels within a neuron membrane, y represents
sodium channel reactivation and potassium channel deactivation. When Iext crosses
a certain threshold, spikes are generated, then Vm and y go back to their resting
values. This model is represented by the following equations of a cubic nullcline in
Equation 3.5 and a linear nullcline in Equation 3.6:

dVm

dt
= Vm −

V 3
m

3
− y +RIext (3.5)

τ
dy

dt
= Vm + a− by. (3.6)

where Vm is the membrane potential, y is a linear recovery variable associated with
a recovery process, Iext is the external input current, R is a constant (typically set
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to 0.1) that represents resistance, τ is a small positive constant that determines the
timescale separation between Vm and y, and a and b are constants that control the
nullclines of the system.

The Hindmarsh-Rose models [131] are designed to capture a broader range of neu-
ronal behaviors and can replicate more realistic spiking patterns than the FitzHugh-
Nagumo model. This model is described by the following equations, which repro-
duce the membrane potential of a neuron Vm in Equation 3.7, the variable y in
Equation 3.8, associated with the rate of transport of sodium and potassium ions
and referred to as the spiking variable, and the slow adaptation variable z in Equa-
tion 3.9, which models the slow adaptive process, corresponding to an adaptation
current that increases with every spike, leading to a decrease in the firing rate:

dVm

dt
= y − aV 3

m + bV 2
m − z + Iext, (3.7)

dy

dt
= c− dV 2

m − y, (3.8)

dz

dt
= r[s(Vm − Vr)− z] (3.9)

where Vm represents the membrane potential, a and b are constants affecting the
cubic and quadratic terms, and Iext is an external current, c and d are constants that
influence the dynamics of the y variable, r is a positive constant, s is the sigmoid
function often used to capture the slow adaptation, and Vr is the resting potential.

Izhikevich’s model [132] is a simple and computationally efficient spiking neuron
model that can replicate a wide range of spiking patterns found in biological neurons.
This model is represented by the following Equations 3.10 and 3.11:

dVm

dt
= 0.04V 2

m + 5Vm + 140− y + Iext, (3.10)

dy

dt
= a(bVm − y) (3.11)

where Vm represents the membrane potential, y is a recovery variable, Iext is an ex-
ternal input current, a is a timescale constant that determines the rate of recovery,
and b influences the sensitivity of the recovery variable to changes in the membrane
potential.
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he integrate-and-fire (IF) model [133] is the simplest neuron model to date, and
despite its simplicity, it is effective in performing visual pattern learning tasks [31].
This model integrates incoming spikes and fires an action potential when its threshold
is reached, and it is represented by the following equations:

cmVm(t) = Vr +
∑
i∈E

Wifs(t− ti)

Vm(t)← Vr when Vm(t) ≥ Vth(t)
(3.12)

fs(x) =

{
1, if x ≥ 0

0, otherwise
(3.13)

where cm is the membrane capacitance, Vm is the membrane potential, E represents
the set of incoming spikes, Wi is the weight of the synapse carrying the i-th spike, ti
represents the timestamp of the i-th spike, and fs is the kernel of spikes.

A slightly more complex model is the leaky integrate-and-fire (LIF) model [134],
which includes a leak term to gradually decrease the membrane potential over time
in the absence of input spikes, as shown in Figure 3.4. This leak simulates the passive
ionic currents across the neuron membrane, and makes this neuron model closer to
biology. This model is represented by the following equation from [31]:

τleak
dVm

dt
= [Vm(t)− Vr] + rm

∑
i∈E

Wifs(t− ti)

Vm(t)← Vr when Vm(t) ≥ Vth(t)

(3.14)

where τleak = rmcm the time constant that controls the shape of the leak, rm is the
membrane resistance, cm is the membrane capacitance, and fs is the kernel of spikes
(Equation 3.13).
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Figure 3.4: The evolution of a LIF spiking neuron’s membrane potential in response
to an incoming spike train.

A slightly more biologically plausible neuron model is the Current-based Leaky
Integrate-and-Fire (CUBA-LIF) model. This spiking neuron accounts for the tem-
poral dynamics of the post-synaptic current. Similarly to LIF, it shows a decay
in the membrane potential in the absence of spiking activity. However, it also has
another exponentially decaying term, which is the synaptic current. The dynamics
of this neuron for pre-synaptic neurons j connected to a post-synaptic neuron i are
presented in Equations 3.15 and 3.16 from [135]:

τs
dIi(t)

dt
= −Ii(t) +

∑
j

Wij

∑
tj,m<t

δ(t− tj,m) (3.15)

τm
dVmi

(t)

dt
= −(Vmi

(t)− Vr) + Ii(t) (3.16)

where τm is the time constant for the membrane potential Vm(t), τs is the time
constant for the synaptic current I(t), δ(t) is the Dirac function representing the
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kernel of spikes, tj,m<t is the firing time of the m− th spike generated by the j − th
presynaptic neuron, synaptic weights between neurons i and j are denoted as Wij,
and Vr is the resting potential.

3.1.2 Neural coding

Spiking neural networks process data in the form of spikes. Therefore, there is a
need to transform input data into spike trains. In this manuscript, we focus on
independent input data presented to the spiking neurons one sample at a time. Each
sample is shown to a neuron for a given time frame considered the exposition period
also known as texposition in [31]. All neural codings can be generalized to a continuous
input setting by adjusting the time frame accordingly. There are many neural coding
schemes that permit transforming input values into spikes. We list the major ones
below:

• Rate coding: This method represents input intensity fin(x) through Poisson
spike trains obtained using a Poisson process: fin(x) = t ∼ Poisson(x), where
t is the spike train and the frequency of spikes corresponds to the input value
x ∈ [0, 1].

The rate coding scheme is constrained by a prolonged processing period and
slow information transmission [136], which is due to the fact that obtaining
a precise assessment of the encoded values requires the neurons to integrate
numerous spikes across each input connection. Therefore, this leads to the
incorporation of latency within the network, as each neuron requires adequate
time to assimilate several spikes before generating new ones.

• Temporal coding: This method represents input intensities by the timestamps
of spikes. There are multiple variants of temporal coding, which include:

– Rank order coding [137], which implicates that the order of spike occur-
rences represents the encoded input value. This coding scheme relies on
the ranking of spike timings across multiple neurons to encode informa-
tion. The more strongly activated neurons tend to fire earlier than weakly
activated ones, and the resulting spike pattern encodes the information
about the input sample [138]. This neural coding can be represented in a
way that depicts its impact directly on the neuron, as done in [138]. Alter-
natively, this encoding can also be represented in a manner independent
of the neuron model, as demonstrated in Equation 3.17:
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fin(xi) = r(xi)×
1

n
(3.17)

where xi is an input value, X = (x1, x2, . . . , xn) is the set of incoming
connections, and r(xi) is the rank of xi in X.

– Latency coding [139]: This coding represents the value using the firing
timestamp of the neuron. This signifies that earlier timestamps are as-
signed to inputs with higher intensities, while inputs with lower intensities
are assigned later timestamps. This encoding is represented by Equa-
tion 3.18 from [31]:

fin(x) = (1.0− x)× texposition (3.18)

where fin is the resulting spike timestamp, x ∈ [0, 1] is the input value,
and texposition represents the presentation duration for one sample. This
equation keeps the spike timestamp inversely proportional to the value of
the input. As the input intensity increases, the spike timestamp decreases,
resulting in earlier spiking. This reflects the concept of latency coding,
where the stronger stimuli result in faster neural responses.

A variant of latency coding is Time-To-First Spike (TTFS) coding [140],
which is similar in spirit to latency coding, but produces spikes using a
different, possibly non-linear function of the input [136].

• Phase coding: This coding involves the encoding of information by the relative
timing of neurons’ spikes with respect to the phase of an ongoing oscillatory
rhythm. This phenomenon has been observed in the hippocampus and olfactory
system [136, 141]. In [142], a simple phase coding scheme is presented by
converting input values into their binary representations, where a bit of value
“1” signals the presence of a spike in a given phase. For encoding pixel intensity
ranging from 0 to 255, one can use 8 phases. Each bit position corresponds
to a phase. So, for an input value, the number of spikes generated equals the
number of ones in its binary representation and each spike is assigned to the
phase corresponding to its originating a bit in the binary representation. Over
a period, the weight carried by a spike changes periodically according to the
phase, as shown in Figure 3.5, and this change is defined by Equation 3.19
from [136].

Ws(t) = 2−[(1+mod(t−1,ϕ))] (3.19)

where Ws(t) represents the spike weight at time t, ϕ represents the phase, and
mod represents the modulus function.
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Figure 3.5: Different types of neural coding from [136]. This figure shows how an
input pixel is encoded into spikes in four different ways. Rate coding, time-to-first-
spike coding, phase coding, and burst coding.

• Burst coding: This coding scheme enables robust and effective information
processing by sending a burst of spikes instead of one spike [143]. Burst coding
carries the information in the number of spikes (Ns) and the Inter-Spike Interval
(ISI) in the burst [136]. The ISI represents the distance between the spikes in
the burst. This scheme is represented by the Equations 3.20 and 3.21 from [136].

Ns(x) = ⌈Nmaxx⌉ (3.20)

ISI(x) =

{
⌈−(Tmax − Tmin)x+ Tmax⌉ if Ns > 1

Tmax otherwise
(3.21)

where Nmax is the maximum number of spikes, x ∈ [0, 1] is the input value,
⌈.⌉ is the ceiling function, and Tmin and Tmax are the minimum and maximum
intervals, respectively. The ISI is confined in [Tmin, Tmax].

3.2 Training spiking neural networks

The spiking neurons of SNNs are connected via synapses, which are fundamental
units for information processing with neural networks. Synaptic plasticity is the
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ability of synapses to change their strength (weight) according to the spiking activity
patterns and the employed learning rules. SNNs incorporate the concept of synaptic
plasticity in order to emulate the learning functionalities of biological neurons. The
weights of the synapses directly affect the firing ability of the neuron: a low synaptic
weight reduces the contribution of the input in prompting the post-synaptic neuron to
fire when a spike is received, while a high synaptic weight increases this contribution.
SNNs are trained by modulating synaptic weights and other parameters, like neuron
thresholds, in order to learn significant patterns from input data. The most common
SNN training models featured in the literature are based on one of the following
three methods:

• ANN-to-SNN conversion [144], which trains a regular ANN and then transfers
the learned weights to an SNN,

• Spiking back-propagation [145,146], which is a supervised technique for direct
SNN training,

• Hebbian learning [8,32,147], which is a biologically plausible learning rule simi-
lar to the learning in the brain. This type of rule enables the use of unsupervised
learning with SNNs.

3.2.1 ANN to SNN conversion

ANN-to-SNN conversion is the process of converting an ANN into a SNN while con-
serving the network’s functionality and performance. This method requires training
a regular ANN using back-propagation or any other training algorithm. Then the
trained weights of this ANN are converted to be used with a spiking neural network.
This conversion usually consists of scaling the weights and adjusting them to the
suitable range for the chosen spiking neuron model [144,148].

Although competitive results are reached with this method, it still requires train-
ing a regular ANN first. Therefore, this method has many of the same bottlenecks
that SNNs should help avoid. These methods also usually require complicated post-
conversion processes like weight normalization and threshold balancing [149].

3.2.2 Spiking back-propagation

Spiking back-propagation is a supervised training rule specifically designed for train-
ing SNNs. It is a variant of the back-propagation algorithm [82]. This algorithm
optimizes the weights of the network by computing the error, which is based on the
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cost function of the desired output and the predicted output. This error is back-
propagated, starting from the output layer and moving backward through the layers
of the network. This classical back-propagation approach can only be applied to
neurons that have continuous and differentiable activation functions and deal with
continuous values. This method cannot be applied to SNNs without modification,
because one cannot calculate the gradient of a spike, since spikes are not differen-
tiable [150]. Spiking back-propagation is an SNN training approach that adapts the
traditional back-propagation algorithm to accommodate the spiking behavior.

There are some approaches to solve this problem, such as considering membrane
potentials of spiking neurons as differentiable signals [150] and using surrogate or
approximate gradients [8,145,146,151]. In [151], the authors train a spatio-temporal
SNN using a supervised Spatio-Temporal Back-Propagation (STBP) algorithm with
surrogate gradients as approximate derivatives of spike activity. The STBP algorithm
allows error propagation in both the spatial and temporal domains. Spiking back-
propagation could be used with recurrent architectures like LSTM-based SNNs [152].

Spike-based back-propagation is successful in training SNNs, but it is computa-
tionally expensive and requires a large amount of data for training. The computa-
tional demands of this method does not promote efficient on-chip learning [153].

3.2.3 Hebbian learning

Hebbian plasticity is a principle that indicates that the strength of a synapse be-
tween two neurons is based on the correlation of the activities of these neurons. In
other words, as stated by Donald O. Hebb: “Neurons that fire together, wire to-
gether [154]”. Hebbian learning is frequently used to train SNNs, and this training
can be supervised [155], unsupervised [156], or self-supervised [157].

Hebbian learning is based on the change of synaptic plasticity according to cor-
relations between a neuron’s pre-synaptic (input) and post-synaptic (output) activ-
ities [154]. There are only few synaptic plasticity rules used for SNNs. The primary
synaptic plasticity rule used for training SNNs is Spike Timing-Dependent Plasticity
(STDP). Another plasticity rule is the Spike-Driven Synaptic Plasticity (SDSP) [158],
but it has very few applications with SNNs [159]. Depending on the choice of hy-
perparameters, this learning rule can result in inconsistent impact on the learning
process, with the same incoming input. With SDSP, some parameter settings may
lead to spurious learning [159].

In this section, we only discuss STDP and its variants, then we explain the
concepts of neuronal inhibition and homeostasis, which are required to apply STDP
effectively over a layer of neurons.
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3.2.3.1 STDP

STDP is a biologically plausible Hebbian learning rule [160] that can be used in su-
pervised learning [126], or unsupervised learning [31,32]. In this manuscript, we focus
on unsupervised learning paradigms with STDP, as they do not require supervision
and can be implemented on ultra-low power hardware.

Figure 3.6: (a) The biological STDP rule, (b) The multiplicative STDP rule, (c) The
mirrored STDP rule.

The STDP learning rule is used to train SNNs for many tasks, including object
recognition [156], as well as action classification [161]. STDP adjusts the synaptic
weights based on the relative timing of spikes [162]. Specifically, it strengthens or
weakens the synapse between neurons depending on the local correlations of spike
timings: if a pre-synaptic spike is fired briefly before a post-synaptic spike, the
synapse is strengthened, and this strengthening is referred to as Long-Term Poten-
tiation (LTP “pre before post”); conversely, if a post-synaptic spike is fired briefly
before a pre-synaptic spike, the synapse is weakened, which is referred to as Long-
Term Depression (LTD “post before pre”) [156, 161–164]. This enables the network
to learn patterns by reinforcing connections that conveyed spikes involved in gener-
ating the output spike, while weakening connections that did not participate and,
therefore, are unrelated to the pattern to be recognized. There are some variations
of STDP which are mentioned and explained in [147], including:

• Biological STDP: This learning rule [9] is the basic type of STDP observed in
biology. Its update function is represented in Figure 3.6(b). This rule applies
LTP and LTD to the synaptic weight depending on the difference in firing time
between the pre-synaptic and post-synaptic neurons, and the amplitude of the
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weight update depends on how far in time the input spike is from the output
spike. This learning rule is represented in Equation 3.22 [31]:

∆w =

ηwe
− tpost−tpre

τSTDP , if tpre ≤ tpost

−ηwe
− tpre−tpost

τSTDP , otherwise
(3.22)

where tpre and tpost are the timestamps for input and output spikes respectively,
ηw is the learning rate and τSTDP is the time constant responsible for the STDP
learning window.

There are some approximations of this rule, which are the additive, and the
multiplicative STDP:

• Additive STDP (Add-STDP): The additive STDP depends only on the sign of
the time difference between the pre- and post-synaptic neuron spike. However,
the absence of weight dependence makes it unstable [165]. Therefore, additive
STDP requires hard boundaries to secure the stability of weight dynamics.
This results in the weights being closer to the upper and lower bounds, leading
to mostly binary weights (0 or 1), due to a saturation effect [31, 147]. The
weight update for this learning rule is represented in Equation 3.23:

∆w =

{
ηw+, if δt ≤ 0

−ηw−, otherwise
(3.23)

where δt = tpre− tpost is the relative timing of the spike pair, ηw+ is a constant
learning rate for LTP and ηw− is a constant learning rate for LTD.

• Multiplicative STDP (Mult-STDP): The multiplicative STDP is similar to the
additive STDP, but it has weight dependence, making this rule slightly more
complex than additive STDP [31]. This counters the saturation effect, but con-
sequently weakens the competition among synapses, because weaker synapses
have the potential to catch up due to the proportionally larger impact of mul-
tiplication on smaller weights, and can result in weakly skewed weight distri-
butions [165]. In some neuroscience research [165], the weight dependence with
multiplicative STDP occurs solely during the depreciation phase, while the po-
tentiation is constant like with additive STDP. In the general case, the weight
update with this learning rule is represented in Equation 3.24:

∆w =

ηw+e
−β

w−wmin
wmax−wmin , if δt ≤ 0

−ηw−e
−β wmax−w

wmax−wmin , otherwise
(3.24)
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where δt = tpre− tpost is the relative timing of the spike pair, ηw+ is a constant
learning rate for LTP and ηw− is a constant learning rate for LTD.

• Mirror STDP (M-STDP): The main proposition of M-STDP [166] is that the
LTP time window should be centered around the outgoing spike, making the
update value symmetric, as shown in the update function represented in Fig-
ure 3.6(c). This approach allows for the long-term potentiation (LTP) to hap-
pen even when the time difference between the outgoing and incoming spike is
negative, rather than long-term depression (LTD), which neglects the causal-
ity underlined by Hebbian learning. This type of STDP is useful for training
networks that use frequency coding [167].

• Probabilistic STDP (P-STDP): This learning rule introduced by [168] yields
weights with a probabilistic interpretation after convergence. With P-STDP,
the magnitude of the weight adjustment with LTP is related exponentially to
the current value of weight w. This rule has amplification parameters a+ for
LTP and a− for LDT, whose magnitudes are kept within a ratio of 4/3. This
rule is represented by Equation 3.25 from [168]:

∆w =

{
a+. exp

−w, if tpre ≤ tpost

−a−, otherwise
(3.25)

where tpre and tpost are the timestamps for the input and output spikes, respec-
tively.

• Reversed STDP (Rev-STDP): This type of STDP occurs in top-down synapses
in the brain (synapses where post-synaptic activity precedes pre-synaptic ac-
tivity). With this rule, the order of pre- and post-synaptic spikes is reversed
compared to the standard STDP rule [169]. Therefore, LTP and LTD are re-
versed: if a pre-synaptic spike is fired before a post-synaptic spike within a
certain time window, LTD occurs. This rule is used when there is classical
feed-forward communication and feed-backward communication (in the oppo-
site direction) together in the same network. This rule results in more stable
weight distributions when the learning is biased towards depression [147,169].

• Triplet STDP (T-STDP): This form of STDP operates on the premise that the
mechanisms underlying long-term potentiation (LTP) and long-term depression
(LTD) are influenced not only by the correlation between a single pair of post-
synaptic and pre-synaptic spikes, but also by the correlation within a triplet,

55



which can involve either two pre-synaptic and one post-synaptic spikes of the
same synapse, or one pre-synaptic spike and two post-synaptic spikes) [170].
Triplet STDP can be used to train SNNs for input patterns consisting of higher-
order spatio-temporal correlations than pair-based STDP, which will not be
able to distinguish any higher-than-pairwise correlations. However, this type
of STDP is useful for rate-based patterns [171].

3.2.3.2 Inhibition

Inhibition refers to the reduction or suppression of the activity of certain neurons.
This phenomenon is observed in the brain, and is a central mechanism for the regula-
tion of cortical activity [172]. Inhibition plays a crucial role in shaping the dynamics
of the SNN. It balances between excitatory and inhibitory mechanisms of neurons,
and can permit the dynamic control of the output of spiking neurons [173]. Winner-
Takes-All (WTA) inhibition is a method commonly used during training [174, 175].
This inhibition rule dictates that the first neuron that fires a spike is considered the
winner neuron. This neuron sends an inhibitory signal to its peers in order to silence
them. This method is effective with unsupervised STDP-based learning [176], it
creates a competition between the neurons and ensures that they learn different pat-
terns by preventing neurons from firing output spikes and, consequently, triggering
STDP updates for the same input pattern. This allows the network to learn more
significant, less correlated features.

3.2.3.3 Homeostasis

WTA inhibition can cause some neurons to overpower other neurons, because some
neurons have a tendency to fire more spikes than others. This can cause the network
to become stuck in a state where the same few active neurons are firing all the time,
leaving the other neurons quiet. In order to avoid this and ensure the stability of
the network, a homeostasis mechanism is needed. The adaptive threshold method
introduced in [177] is one way to insure the homeostasis of the system. This method
follows Intrinsic Plasticity (IP) principles in which, when the neuron is highly active,
IP weakens the synapses, and when the activity is low, it strengthens the synapses.
Thus, it adjusts the neuron threshold based on its activity level, ensuring that neu-
rons respond appropriately to varying input intensities.

Another method is Spike Frequency Adaptation (SFA) [178], which is a mecha-
nism used to regulate the firing rates of the neurons of the network. SFA helps keep
the neuron’s activity within a desired range by incorporating an adaptation current.
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This current gradually builds up with spiking activity and opposes the input current,
which leads to reduced firing rates.

An effective threshold adaptation method is the Leaky Adaptive Threshold (LAT)
introduced in [177]. This method adjusts the thresholds of all neurons after one
neuron fires: the threshold of the firing neuron is increased, while the thresholds of
the other neurons are decreased, to promote a balanced activity among neurons.

Another threshold adaptation method, used alongside LAT in the state-of-the-art
STDP-based SNN for image analysis [31], is the target timestamp threshold adap-
tation method from [83]. This method prompts the neurons to fire at a pre-defined
target timestamp t̂: this allows them to learn specific patterns while maintaining the
homeostasis of the network. The thresholds of all neurons (winners and losers), are
adapted each time a neuron fires or receives an inhibitory spike, so that their firing
time converges towards this target timestamp.

3.2.4 Hybrid learning

Effectively training SNNs poses challenges within both supervised and unsupervised
learning paradigms. The limitations of networks trained exclusively using STDP,
coupled with issues like overfitting and unstable convergence behaviors in the spiking
back-propagation algorithm, have stimulated the development of hybrid learning
algorithms [153].

Hybrid learning represents a novel strategy to train SNNs, it combines the ad-
vantages of supervised and unsupervised learning techniques. This approach allows
SNNs to extract meaningful patterns from input data through pre-training, subse-
quently followed by gradient descent-based supervised optimization [153]. Compared
to a purely gradient descent-based training devoid of pre-training, the hybrid learn-
ing approach demonstrates distinct advantages. It fosters heightened robustness,
expedites the training process, and augments the network’s capacity for generaliza-
tion [153,179].

3.3 SNNs for HAR

SNNs have the potential for energy-efficient spatio-temporal feature learning from
frame-based videos, spike streams from DVS cameras, and other sources like wearable
devices, as previously mentioned in Chapter 1. In this section, we explore the work
concerning spike-based HAR in the literature, primarily focusing on frame-based
applications. This emphasis is important, because the application of SNNs should
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not be restricted solely to DVS data or sensor data; frame-based videos also neces-
sitate analysis. Frame-based videos are an appropriate input for tasks that require
fine-grained spatial analysis, such as object detection or semantic segmentation. Ad-
ditionally, some important tasks concern pre-recorded videos such as online content
filtering, and violent cartoon detection [36]. In this section, we focus on HAR with
SNNs based on different learning paradigms.

Unsupervised learning: There are some successful application of SNNs with un-
supervised learning based on Gene Regulatory Networks (GRNs) paired with the
Bienenstock-Cooper-Munro (BCM) model. Gene regulatory networks are inspired
from biology. They can identify the regulatory relationships of genes, which can
explain how cells function [180]. In artificial neural networks, GRNs can be used
to regulate elements such as the synaptic plasticity of a BCM-based SNN [181].
BCM models the synaptic plasticity of spiking neural networks by simulating intrin-
sic plasticity through the modulation of a specific threshold. Essentially, in response
to post-synaptic activity, the threshold adjusts dynamically. When post-synaptic
activity deviates significantly from its average, the threshold decreases or increases
accordingly, impacting the ease or difficulty of increasing synaptic weights. Then, this
threshold is utilized to update the synaptic weights; if the post-synaptic plasticity
surpasses the threshold, the synapse undergoes potentiation; otherwise, it undergoes
depression [182]. In [181] the authors use GRN dynamics to regulate the plasticity
and meta-plasticity of a BCM model. They use the Covariance Matrix Adaptation
(CMA) evolution strategy to automatically generate the parameters of GRN dynam-
ics that yield the optimal performance of the BCM model for specific tasks. They
test their network with the KTH dataset and achieve a classification rate of 84%,
but they remove the problematic “jogging” class, which is easily confused with the
”running” class. It gives the network an unfair advantage and makes it incompa-
rable to other work with this benchmark dataset. They also do not disclose their
experimental protocol for the Weizmann dataset.

Another unsupervised learning method for SNNs, which is also based on gene
regulatory networks for action recognition, is presented in [183]. They test their
GRN-BCM-based SNN model with the KTH and Weizmann datasets and achieve a
recognition rate of 84.81% with KTH and 74.44% with Weizmann. However, they
do not use the standard protocols either. They use four-fold cross-validation to test
the efficiency of their model in behavior recognition. The original video sequences
are randomly partitioned into four subsamples. For each run, three-fourths of the
videos are used for training and the rest are used for test and validation. This gives
an unfair advantage for their network and makes it incomparable to any results we
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get using the standard protocol.
Another approach involves a heterogeneous recurrent spiking neural network

(HRSNN) introduced in [184] with unsupervised learning for spatio-temporal classi-
fication tasks for videos. They also do not use the standard KTH protocol.

Supervised learning: Within supervised learning paradigms, SNNs have made
remarkable achievements. In [36] the authors use a deep convolutional SNN called
SpikeConvFlowNet to detect violent activities in videos. They use a spiking su-
pervised two-stream architecture with IF neurons. This network is made up of an
RGB stream, an optical flow stream, a merging block, and fully-connected layers.
SpikeConvFlowNet is based on convolutional blocks, where each block is made up of
a 2D convolution operation followed by a 2D average pooling operation. This net-
work is trained using the spiking back-propagation algorithm, and the approximated
derivatives for IF neuron activations from [150].

Although there is a scarcity of literature exploring spiking two-stream methods,
In [185], the authors introduce a deep two-stream SNN based on a spiking ResNet50
architecture and a recurrent spiking neural network (RSNN) fusion module. They
use ANN-to-SNN conversion with their own hybrid conversion method. However,
ANN-to-SNN conversion still requires the training to be done with a non-spiking
ANN, thus reducing the energy efficiency benefits.

Spiking ResNets are used frequently in the SNN literature, as evident in [186,187].
Another instance is found in [188], where the authors present a spatio-temporal
Spiking ResNet (STS-ResNet). This SNN is trained with a hybrid SNN training
approach, where the authors pre-initialize the weights of their network with non-
spiking pre-training, after which they perform ANN-to-SNN conversion. Then, they
use skip connections to simulate a spiking ResNet architecture that they train using
the STBP method mentioned in [151]. Both of these methods have the limitations
that were discussed in Sections 3.2.1 and 3.2.2.

A supervised method for action recognition with SNNs is introduced in [189],
where the authors introduce a novel descriptor that relies on joint entropy of dif-
ference in magnitude and orientation of the optical flow vectors in order to model
human actions. They compute the optical flow using a Pyramid–Warping–Cost vol-
ume Network (PWCNet), and apply their feature descriptor. They aggregate the
information across frames for long-term temporal dependency, using a spiking neural
network. They obtain classification rates of 74.46% and 86.93% on the HMDB51
and UCF101 datasets, respectively.

Furthermore, an SNN with a Liquid State Machine (LSM) multi-layer architecture
is presented in [190]. This network is evaluated on the KTH dataset and achieves a
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recognition rate of 92.08% when using layers with 2000 spiking neurons. Layers with
fewer neurons gave inferior results. They did not use the standard KTH protocol
either.

Recurrent Neural Networks (RNNs) have also been explored in the literature for
HAR. In [191], a Temporal Spiking Recurrent Neural Network (TSRNN) is intro-
duced. They use temporal pooling operations, where the pooling is implemented at
the level of multiple frames instead of the pixels of the same frame. They use GRUs
instead of LSTM cells, and they introduce a novel message passing bridge which
allows the RNN to correct its contaminated memory, which refers to information
erroneously predicted.

There is limited existing research addressing the issue of using spatio-temporal
networks from computer vision in the spiking domain. An example of this is apply-
ing 3D convolutions for video analysis with SNNs. In [192], the authors combine 3D
convolutional SNNs with RNNs, utilizing the supervised Spike Layer Error Reassign-
ment (SLAYER) training mechanism for network training.

Reinforcement learning: In [161], an SNN trained with Reward-modulated Spike
Timing-Dependent Plasticity (R-STDP) is introduced. It is based on reinforcement
learning, which optimizes the synaptic weights according to the reward or punish-
ment signal that it receives from the decision layer. This system is simpler and more
computationally efficient than supervised learning rules [161]. The authors present
a convolutional SNN, and they use gradient filters with four different orientations in
their feature extraction layer to extract oriented edges, which results in four feature
maps per frame. Their method has recognition rates of 94.44% and 92.50% on the
Weizmann and KTH datasets, respectively. However, they use the KTH dataset with
a different protocol, in which 70% of the samples are considered as the training set,
and the remaining 30% of the samples are used for testing. This also confers an unfair
advantage to their results compared to using the standard KTH protocol, render-
ing their results incomparable to other studies utilizing the same benchmark dataset.

In summary, given the limited existing research, building a strong understand-
ing of the performance of SNNs with video analysis tasks is crucial for driving
the progress in promising and exciting directions. However, the field of SNNs
lacks standardized evaluation protocols, making it challenging to directly compare
and replicate results across different studies. We find that the currently exist-
ing work with SNNs that is evaluated on frame-based video analysis benchmark
datasets does not follow the standard computer vision protocols for these benchmark
datasets [183] [161] [193] [161]. While these methods show potential, deviations from
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standardized protocols need to be addressed for fair comparisons and meaningful
advancements.

3.4 Summary and conclusion

This chapter explores the dominant neural coding mechanisms, like temporal cod-
ing, which is an efficient neural coding method in terms of data transfer speed and
energy consumption. Temporal coding offers distinct advantages over rate coding by
encoding information within spike timestamps. The high spike count required for
rate coding makes temporal coding a more efficient alternative [156]. Additionally,
adhering to biological principles, where minimal variation in spike amplitude and du-
ration is observed, underscores the significance of spike timing as the primary carrier
of information [156].

This chapter has also explored supervised and unsupervised learning techniques
within the SNN framework. While supervised approaches like ANN-to-SNN conver-
sion and spiking backpropagation prioritize achieving high recognition rates, they
may overlook key advantages of SNNs, such as potential energy efficiency during
training on dedicated hardware. The reliance of ANN-to-SNN conversion on a regular
ANN for training limits its advantages compared to a fully spiking model. Similarly,
spiking backpropagation, despite being adapted for direct SNN training, presents
notable limitations: it demands substantial labeled data for effective training and
involves non-local computations, complicating implementation on low or ultra-low
power neuromorphic hardware.

In contrast, unsupervised learning techniques conduct direct SNN training, fea-
ture local computations, and are more straightforward to implement on neuromor-
phic hardware [31]. This approach aligns better with the inherent SNN structure
and eliminates the need for abundant labeled data for learning significant features.
However, despite the potential advantages of unsupervised Hebbian SNN training
techniques, they remain unexplored enough for video analysis.

There is a gap in the literature regarding unsupervised spatio-temporal STDP-
based models for video analysis, which hold the potential to develop cost-efficient,
secure, and easily implementable video analysis systems on neuromorphic hardware.
Upon reviewing existing literature, we have noted the significant advantages offered
by CNNs in processing visual data. However, we identify a research deficiency con-
cerning STDP-based CSNNs and STDP-based spiking spatio-temporal methods for
video analysis in general. As a result, we deem unsupervised STDP-based CSNNs
as crucial focal points in our research. Our objective is to extract spatio-temporal
features from videos using STDP-based SNNs.
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Chapter 4

Foundation Architecture

Unsupervised STDP-based CSNNs are crucial focal points in our research. Our
objective is to extract spatio-temporal features from videos with STDP-based SNNs.
The first step to achieve this is establishing a foundation model for our CSNNs,
which will serve as a basis to handle video analysis in the subsequent contribution
chapters. This baseline model is illustrated in Figure 4.1, and elaborated upon in
this chapter.

Figure 4.1: General recognition pipeline that serves as a basis in the subsequent
contribution chapters.

4.1 On-center/off-center filtering

Pre-processing is often necessary for an STDP-based SNN to effectively learn visual
features from frame-based visual information with temporal coding. This is because
STDP tends to capture correlations among early spikes; hence, the interesting fea-
tures should be present in the earlier spikes for the network to learn aspects such
as shape or texture patterns. Therefore, STDP-based SNNs need to be fed salient
information like edges. Otherwise, the sum of input patterns becomes close to zero
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with dark patches, and very high with bright patches, which leads the kernels to
converge towards similar or uninformative patterns [31].

A commonly used technique is on-center/off-center filtering. This filter is made
to mimic cells in the human retina called retinal ganglion cells [194]. The on cells are
activated by an increase in the intensity of light, while the off cells are activated by
a decrease in the intensity of light [195]. The on-center/off-surround receptive field
has a maximum activation when the light stimuli are in the center, and is inhibited
when the light stimuli are in the surrounding region. Inversely, the off-center/on-
surround receptive field is activated by light stimuli in the surrounding region, while
it is inhibited by light stimuli in the center. This filter is useful in applications with
CNNs [196], as well as SNNs [31].

Video frames are pre-processed one at a time using this on-center/off-center fil-
ter, which is mathematically modeled by a Difference-of-Gaussians (DoG) filter. The
edges of each frame are extracted by convolving the input frame with a kernel of dif-
ferences of Gaussians with different spatial scales, as shown in Equation 4.1 from [31]:

DoGs,σ1,σ2(x, y) = I(x, y) ∗ (Gs,σ1 −Gs,σ2) (4.1)

where I is the input image, ∗ is the convolution operator and Gs,σ is a zero-mean
normalized Gaussian kernel of size s×s and standard deviation σ. This 2D Gaussian
kernel is defined as [31]:

Gs,σ(u, v) =
e−

u2+v2

2σ2∑µ
i=−µ

∑µ
j=−µ e

− i2+j2

2σ2

, u, v ∈ [−µ, µ], µ =

⌊
s

2

⌋
. (4.2)

The positive and negative values generated from this filtering process are sep-
arated into two channels, where the positive one represents the on cells, and the
negative one represents the off cells as shown in Equations 4.3 and 4.4 from [31]:

xon = max(0,DoG(x, y)) (4.3)

xoff = max(0,−DoG(x, y)) (4.4)

4.2 The IF neuron model and latency coding

The most used spiking neuron for computer vision tasks are the IF and LIF neu-
rons [197]. The leak of LIF neurons gradually reduces the membrane potential over
time, which may lead to the initial spikes being forgotten and giving more significance
to subsequent spikes. This is not advantageous for visual data, as the earliest spikes
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could potentially contain the most critical information [139]. Therefore, the spiking
neurons most suitable for our work are the integrate-and-fire (IF) neurons [133], de-
scribed in Chapter 3. These neurons are effective in visual pattern learning, which
may not require the more complex mechanisms like bursting or leak adopted by other
neuron models. Another major advantage of this model is that it uses fewer hyper-
parameters compared to other models, which facilitates hyper-parameter search [31].
We use a simplified version of the equations which represent the IF neuron discussed
in Chapter 3 (page 46), where we set cm = 1 and Vr = 0 , as shown in Equation 4.5:

Vm(t) = Vr +
∑
i∈E

Wifs(t− ti)

Vm(t)← Vr when Vm(t) ≥ Vth(t)
(4.5)

fs(t− ti) =

{
1, if t ≥ ti

0, otherwise
(4.6)

where E represents the set of incoming spikes, wi is the weight of the synapse carry-
ing the i-th spike, ti represents the timestamp of the i-th spike, and fs is the kernel
of spikes.

SNNs that use IF neurons have been used together with multiple different neu-
ral coding schemes. Temporal coding schemes have shown the highest classification
accuracy, fastest inference speed, and lowest energy consumption with these mod-
els [136, 198]. Previous work shows that with visual data analysis, one spike per
neuron per sample is effective [31,199]. Therefore, we have selected temporal latency
coding as our preferred neural coding method to transform input videos from pixels
into spiking data. We recall the equation of latency coding discussed in the preceding
Chapter 3 (page 49):

fin(x) = (1.0− x)× texposition (4.7)

where fin is the resulting spike timestamp for the neuron, x ∈ [0, 1] is the input value,
and texposition represents the presentation duration for one sample.

4.3 Spiking 2D convolutions

2D spiking convolutional layers, as introduced in [31], have fk trainable kernels, each
with dimensions fw× fh. Each filter is represented by a neuron that establishes con-
nections with fw×fh inputs from the preceding layer, as shown in Figure 4.2. These
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Figure 4.2: The neighborhood of an output neuron at (x, y) is a plane, and n1, n2,
and n3 are competing neurons at the same location. The channel dimension is not
drawn in this figure.

convolutional filters traverse the spatial dimensions of an input, sized lw × lh × lc,
where lw, lh and lc are the width, height, and channel dimensions, respectively, with
a designated stride (representing the step between successive positions). Mathemati-
cally, the operation of a spiking 2D convolution with an IF neuron, at a given location
(x, y) in the input, can be expressed as detailed in Equation 4.8.

Vmx,y,k
(t) =

∑
i∈E

Wn(xi),j(yi),ki,k × fs(t− ti) (4.8)

where Vm(t) is the neuron membrane potential at time t, x, y and k are the coordi-
nates of the neuron in the width, height, and channel dimensions, respectively, W is
the trainable synaptic weight tensor, n() and j() are functions that map the location
of the input neuron to the corresponding location in the weight tensor, and fs is the
kernel of spikes represented in Equation 4.6.

4.4 The STDP learning rule

Supervised SNN training techniques, such as ANN-to-SNN conversion and spiking
backpropagation, have several limitations, as discussed in Chapter 3. Consequently,
we advocate for unsupervised learning through STDP as a more favorable SNN
training approach. It helps reduce the need for large amounts of labeled data, since
the training of features is done without supervision, although some labeled data
is still needed to train the subsequent supervised classifier. Moreover, the locality
of this learning rule can facilitate implementation on neuromorphic hardware, as
highlighted in [31].
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Weights are initialized with a random uniform distribution with W ∼ U(0, 1).
The stability of these weights greatly depends on the type of STDP used [147].

We choose the biological STDP rule [9] for its stability and superior performance
compared to other types of STDP when applied to visual tasks [31]. As mentioned
in Chapter 3 (page 54), this learning rule is characterized by Equation 4.9 [31]:

∆w =

ηwe
− tpost−tpre

τSTDP if tpre ≤ tpost

−ηwe
− tpre−tpost

τSTDP otherwise
(4.9)

where tpre and tpost are the timestamps for input and output spikes respectively, ηw
is the learning rate and τSTDP is the time constant responsible for the STDP learning
window.

This equation computes weight updates, which happens when the membrane
voltage, discussed in the previous section, Vmx,y,k

(t) surpasses the threshold Vth(t) of
the IF neuron (i.e. when an output spike is fired).

4.5 Threshold adaptation method

In this manuscript, we use WTA inhibition, explained in Chapter 3 (page 56). There-
fore, to avoid having a state where one neuron fires all the time and dominates the
others, we also need threshold adaptation to maintain the homeostasis of the system.

We use two threshold adaptation methods. The main threshold adaptation
method used to maintain the homeostasis of our system is the Leaky Adaptive
Threshold (LAT) [177]. We also use the target timestamp threshold adaptation
method from [83], which is used in conjunction with LAT in the state-of-the-art 2D
CSNN in [31]. This method prompts the neurons to fire at a pre-defined target
timestamp t̂. This allows biasing the model to learn specific patterns while also
contributing to maintaining the homeostasis of the network.

The thresholds of all neurons (winners and losers), are adapted each time a neuron
fires or receives an inhibitory spike, so that their firing time converges towards this
target timestamp [31]. The thresholds are updated according to Equations 4.10,
which represents the target timestamp threshold adaptation, Equation 4.11 for LAT,
and 4.12 which shows how the membrane threshold is updated according to both
threshold adaptation methods:

∆1
th = −ηth(t− t̂) (4.10)
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∆2
th =

{
ηth, if ti = min{t0, ..., tN}
− ηth

ld(n)
, otherwise

(4.11)

Vth(t) = max(thmin, Vth(t− 1) + ∆1
th +∆2

th) (4.12)

where t is the timestamp at which the neuron fires, ηth is the threshold learning
rate, ld is the number of neurons that are in competition in the layer, ti is the firing
timestamp of neuron i, min{t0, ..., tN} is the minimum timestamp, which corresponds
to the neuron that fired first, thmin is the minimum possible threshold value [31], and
N the number of neurons in the layer.

4.6 Algorithm

The training algorithm for the 2D CSNN is presented in Algorithm 1. During the
training of a 2D spiking convolutional layer, for each input sample, a specific fixed
number of patches npatches are randomly selected from the input tensor. These patches
are used as input to train the feature learning algorithm, which produces the dictio-
nary of learned features. This strategy prevents the simultaneous update of the same
filter at numerous locations, thereby enhancing the convergence of the network, as
explained in [31].

In the training process of an SNN, only one patch is considered at a time, hence
a single column is activated, which eliminates the need for inter-column communi-
cations. Here, a column refers to a collective group of neurons situated at identical
positions across different depths of feature maps. Once a neuron in the column fires
a spike, it inhibits the other neurons in the column and its weights and threshold are
updated. During training, the input spikes that contributed to the firing of the out-
put spike are kept track of. Each synapse that has carried a spike that contributed
to firing an output spike is strengthened, while all other synapses of the neuron,
that did not contribute, are weakened. This enables learning meaningful patterns
by the convolutional kernels. When the training for one patch is done, the param-
eters including weights and thresholds are replicated across other columns filter by
filter [31].
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Algorithm 1 Train function for one input sample patch

function train(input spikes, input time)
Vm ← [0, 0, ..., 0] ▷ Neuron activations are set to zero
for all spike in input spikes do

for findx from 0 to fk do
Vm[findx]← Vm[findx] + weights[spike.x, spike.y, spike.z, findx]
if Vm[findx] < Vth[findx] then

skip to next iteration
end if
for fn from 0 to fk do ▷ Neuron thresholds converge towards t̂

Vth[fn]← Vth[fn]− ηth ∗ (spike.time− t̂)
if fn = findx then

Vth[fn]← Vth[fn] + ηth ▷ Increase Vth of the neuron that fired
else

Vth[fn]← Vth[fn]− ηth/(fk − 1) ▷ Decrease Vth of neurons that did not fire
end if
Vth[fn]← max(thmin, Vth[fn]) ▷ Ensure a minimum threshold value

end for
for x from 0 to fw do ▷ STDP updates: synapses of the neuron that fired

for y from 0 to fh do
for k from 0 to lc do

pre← input time[x, y, k] ▷ pre synaptic spike timestamp
post← spike.time ▷ post synaptic spike timestamp
if pre ≤ post then

W [x, y, k, findx]← W [x, y, k, findx] + ηwe
− tpost−tpre

τSTDP ▷ Apply LTP
else

W [x, y, k, findx]← W [x, y, k, findx]− ηwe
− tpre−tpost

τSTDP ▷ Apply LTD
end if

end for
end for

end for
return ▷ WTA inhibition, go to the next patch of spikes

end for
end for

end function
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4.7 Classifier

The spiking feature maps produced at the output of the network are then converted
back into non-spiking representations prior to classification. This conversion is per-
formed because we use a non-spiking classifier in this manuscript. Latency coding
was used to generate these spikes, therefore, the inverse of this coding function can
generate the output feature maps. Also, the output of the network must take into
account the effect of the target timestamp threshold adaptation represented by the
parameter t̂, as shown in Equation 4.13 from [31]:

fout(t) = min

1.0,max

(
0.0, 1.0− t− t̂

texposition − t̂

) (4.13)

with fout the converted value, t the spike timestamp from the feature map, which is
zero if there is no spike, texposition the duration of presentation of the sample, and t̂
the target timestamp.

The resulting non-spiking feature maps undergo sum pooling to reduce their di-
mensions into a standard size. They are then linearized into vectors, and finally
introduced into the classifier. We use a Support Vector Machine (SVM) to clas-
sify the extracted features. Any other supervised method can be used for the final
classification; we chose an SVM because it is standard and effective with default
hyperparameters.

4.8 Video processing approaches with SNNs

Considering the lack of an STDP-based CSNN for video feature learning in the cur-
rent literature, we extend the state-of-the-art STDP-based 2D CSNN [31], originally
designed for image feature learning, to be applicable for video analysis. This exten-
sion is achievable by processing individual frames and subsequently incorporating an
additional step to combine the resulting feature maps, as illustrated in Figure 4.3
(a). This enables elementary video processing with a 2D CSNN without the need for
temporal information processing by the CSNN.

Another approach is to concatenate the video frames to preserve the temporal
information before converting the sample into spikes, as shown in Figure 4.3 (b), and
then processing it with the 2D CSNN. These two approaches do not require changing
the architecture of the 2D CSNN.

Transforming the entire video into a 4D tensor of spikes and introducing it into
a spatio-temporal version of this CSNN for spatio-temporal processing, as shown in
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Figure 4.3 (c) can open many new avenues regarding video analysis.
In this manuscript, we present our contributions, where in the first chapter, we

use pre-processing methods to model motion in the spatial domain for video analysis
using settings like in Figure 4.3 (a) and (b), then we introduce spatio-temporal SNNs
using settings in Figure 4.3 (c), in subsequent chapters.

Figure 4.3: Video processing with (a) A 2D SNN with one input frame at a time and
feature concatenation at the output of the CSNN. (b) A 2D SNN with concatenated
frames as input. (c) A spatio-temporal SNN, with a video tensor as input.

4.9 Datasets with their protocols and implemen-

tation details

The KTH [54], Weizmann [55], UCF-sports [57] and IXMAS [56] datasets are used
to evaluate the contributions in this manuscript.

For the KTH dataset, the subjects 11, 12, 13, 14, 15, 16, 17 and 18 are used for
training, while 02, 03, 05, 06, 07, 08, 09, 10 and 22 are used for testing, and subjects
19, 20, 21, 23, 24, 25, 01, 04 are used for validation, as indicated in the KTH protocol.
Experiments with the IXMAS and Weizmann datasets are done using the leave-one-
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subject-out strategy. The protocol used for the UCF sports dataset is to randomly
select one-third of the videos for each action class for testing, while the remaining
two-thirds are used for training.

In our contributions, we conduct the experiments with either three or five runs
due to the lengthy processing time required by the simulator, which can extend up
to 40 hours. LOSO protocols demand numerous experiments, sometimes totaling up
to 230 hours. Another reason is exhaustive hyperparameter tuning, which requires
running these large experiments a large number of times.

To shorten the running time of experiments, we take subsets of the video frames
(like in [115] and [3]): the specificities of these subsets depend on the experiments,
and will be detailed in the related sections. We scale down the frame sizes to half
of their original sizes for processing speed reasons. We measure the classification
accuracy (in %) on the test set for all experiments.

4.10 Summary

We have opted for an unsupervised STDP-based CSNN composed of Integrate-and-
Fire (IF) neurons [133]. These neurons are connected by synapses in a convolutional
manner, with trainable weights initialized with a normal distribution and trained
with the biological STDP learning rule. To ensure the learning of distinctive pat-
terns, we employ Winner-Takes-All (WTA) inhibition during training. To maintain
network homeostasis, we use LAT [177] as the threshold adaptation mechanism.
Moreover, we incorporate the target timestamp threshold adaptation [83], which not
only contributes to homeostasis but also primarily aims to bias the network towards
acquiring a specific type of features. These choices encompass the ones used in the
state-of-the-art architecture for STDP-based feature learning with image analysis
presented in [31].

We pre-process videos from frame-based datasets with an on-center/off-center
filter for the extraction of edges [196]. Then, the response to the filter undergo
transformation into spiking input data through temporal latency coding [200]. This
prepared data is then fed into the STDP-based SNN, which processes the data,
extracts the features, and gives feature maps as an output. These feature maps then
undergo sum pooling to reduce their size before classification. We use a supervised
classifier to classify the features that are extracted in an unsupervised manner by
the SNN.

This foundational architecture serves as the baseline for our forthcoming contri-
butions that aim for video analysis using unsupervised STDP-based SNNs.
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Part III

Contributions
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Chapter 5

Static Representations of Motion

Spiking neural networks trained with unsupervised STDP for video analysis are not
addressed enough in the literature, as discussed in Chapter 3. However, these net-
works have the potential for efficient low-energy video analysis. Therefore, it is
prominent to study the behaviors of these networks with motion data. A 2D CSNN,
like the one introduced in Chapter 4, is explicitly designed to process static informa-
tion, such as images. When we employ a 2D CSNN to analyze video samples, it only
extracts appearance information from each individual frame, thereby discarding valu-
able motion information between the video frames. However, there are handcrafted
methods that can preserve the temporal component between video frames, enabling
a 2D CSNN to perform video analysis without requiring any changes to its network
architecture.

The motion representations presented in this chapter are based on dense optical
flow [63] and can be optionally accompanied by fusion techniques [86]. This enables
2D CSNNs to perform video analysis while preserving motion information between
frames, thereby providing an assessment of the performance of 2D CSNNs in action
recognition.

We begin by a discussion on data fusion techniques [86], where we explain their
utility in enabling 2D CSNNs to process videos. Then, we discuss the concept of
frame subtraction as an optional pre-processing method that we use primarily to
get rid of the static background pixels, which may impact the performance of mod-
els that use temporal coding. However, frame-subtraction does not only eliminate
static background pixels, it also extracts elementary motion information, therefore
feeding the model directly with motion information rather than appearance data.
Following that, we introduce methods for extracting motion information from videos
and generating static representations that encode this motion. Finally, we evaluate
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these static representations using the pipeline introduced in Chapter 4, equipped
with a one-layer CSNN. In this chapter, we use a single-layer CSNN because multi-
layer CSNNs trained with STDP are still immature and considered an open research
problem [83].

The main contributions of this chapter are summarized as follows:

• we use an STDP-based unsupervised 2D CSNN model initially created for
image analysis, to learn spatio-temporal patterns for video analysis;

• we implement six handcrafted optical flow-based motion representations, which
we categorize into two groups: four frame-based and two shot-based representa-
tions. Notably, two of the frame-based methods and both shot-based methods
are our distinctive contributions to the field of handcrafted motion modeling;

• we evaluate and compare the performance of the 2D CSNN with these repre-
sentations on both the KTH and Weizmann action recognition datasets;

• we provide an analysis of the effects of frame subtraction on the performance
of the 2D CSNN.

5.1 Fusion techniques

2D CSNNs do not inherently handle motion information. Consequently, it is nec-
essary to preserve this motion, which permits understanding how visual patterns
change over time. One approach to achieve this is through data fusion [86]. Fusion
enables the analysis of combined information from a subset of video frames by a 2D
CSNN, ensuring that temporal information within the sequence is preserved. There
are different types of fusion techniques that can be applied in conjunction with neu-
ral networks: early, late, and slow fusion [86]. Early fusion is done by fusing the
input frames together into one representation, before processing the sample, thus
presenting the entire video clip, which implicitly contains motion, to the 2D CSNN
in the spatial domain. On the other hand, late fusion occurs after the 2D CSNN has
processed the frames and generated feature maps: these feature maps are fused to-
gether to create one representation. Slow fusion is a mix of early and late fusion, such
that deeper layers of the network process more global information in both spatial
and temporal dimensions [86], but this method is not applicable with our single-layer
architecture.

The fusion methods discussed in this section are applicable with different types
of input data. They can be applied to raw video frames, or frames that have been
pre-processed to encode motion.
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Figure 5.1: (a) Early fusion and (b) Late fusion.

5.1.1 Early fusion

The early fusion method presented in [86] extends the convolution across time in the
first layer of the network. This combines information across multiple frames imme-
diately at the pixel level, and requires the convolution kernel to contain a temporal
dimension, as explained in [86]. In this chapter, we are interested in processing a
video sample successfully without altering the architecture of the 2D CSNN, or its
kernel dimensions. To achieve this, we have implemented our early fusion method
as a pre-processing step to the video samples, as shown in Figure 5.1 (a). This
approach transforms the video sample into a single frame before any processing oc-
curs within the CSNN. This intertwined representation is intended to permit the
2D CSNN kernel to learn local motion patterns across the sample. The consecutive
frames are concatenated to form one large frame in a row-by-row manner, as shown
in Figure 5.2 (a) and represented by Equation 5.1, or a column-by-column manner,
as shown in Figure 5.2 (b) and represented by Equation 5.2:

Io(x, r) = In(x, y) with r = y × ltd + n (5.1)

Io(c, y) = In(x, y) with c = x× ltd + n (5.2)

where In is the input frame of width lw, height lh, and index n, ltd is the total
number of input frames, Io is the output frame of width lw and height lh × ltd for
Equation 5.1, and of width lw× ltd and height lh for Equation 5.2, r is the row index,
c is the column index, and x ∈ [0, lw − 1] and y ∈ [0, lh− 1] are the pixel coordinates
in the horizontal and vertical dimensions in the original frame, respectively.
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Figure 5.2: Early fusion: multiple input frames are fused together (a) row by row,
or (b) column by column.

5.1.2 Late fusion

Late fusion is implemented as an independent post-processing technique that does
not change the network architecture of the 2D CSNN, as shown in Figure 5.1 (b).
The video is processed frame by frame, by the CSNN, and the resulting output
feature maps are fused together. This fusion can be done in multiple ways. One
way is simply concatenating the output feature maps and linearize the resulting
map before sending it as one large linear vector into the classifier. Another method
for implementing late fusion involves sum pooling the output feature maps in the
temporal dimension, after they have been transformed back into regular values from
spikes, before reaching the classifier.

5.2 Frame subtraction

A pre-processing method that discards irrelevant edges, like the ones in the back-
ground, could be useful with CSNNs that use DoG filtering and temporal coding. A
straightforward approach to achieve this is to focus on extracting edges in motion
and discarding static pixels in HAR videos. This can be done by subtracting each
pair of consecutive frames.

This provides positive or negative values depending on pixel variations, and re-
moves the stationary spatial information, as shown in Figure 5.3 (a). The latency
coding that we use requires input values to be positive, but the on-center/off-center
filter introduced in Equation 4.1 handles negative inputs natively. Still, there are dif-
ferent ways to represent the values resulting from the difference in pixel illumination.
The pixel difference between successive frames is represented by Equation 5.3:

P n
d (x, y) = In(x, y)− In+1(x, y) (5.3)

The output frame that results from frame subtraction can be handled as follows:
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Figure 5.3: (a) Frame subtraction. (b) Empty frame elimination. (c) Dropping some
frames in order to capture a full action in a smaller video clip.

• take the absolute value of the resulting values:

Ino (x, y) = |P n
d (x, y)|, (5.4)

• separate the positive and negative values into two different channels, and take
the absolute value of the negative ones:

Ino =


Ino (x, y, c1) = P n

d (x, y) if P
n
d (x, y) ≥ 0

Ino (x, y, c1) = 0 if P n
d (x, y) ≤ 0

Ino (x, y, c2) = 0 if P n
d (x, y) > 0

Ino (x, y, c2) = |P n
d (x, y)| otherwise,

(5.5)

• retain the negative values as they are, to be handled by the on-center/off-center
filter, which would produce edges of regions in motion:

Ino (x, y) = P n
d (x, y) (5.6)

where In is the input frame of index n ∈ [0, ltd− 2], Ino is the output frame resulting
from frame subtraction, c1 and c2 are channels of Ino , P

n
d is the pixel difference value

represented by Equation 5.3, and (x, y) are the pixel coordinates.
Frame subtraction is an optional pre-processing step. However, it changes the

nature of the data that the subsequent process will receive from spatial information
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to raw motion information, as the values after subtraction are pixel changes. It
can be followed by movement detection for empty frame elimination, as shown in
Figure 5.3 (b), in order to avoid processing empty frames. This is done by setting a
threshold value on the sum of pixels in the frame that results from subtraction. If
its sum of pixels is lower than the threshold θm, then frame Ino is dropped, as shown
in Equation 5.7:.

Drop Ino if
∑
x

∑
y

Ino (x, y) < θm. (5.7)

Finally, this method can include systematical frame dropping of two frames be-
tween each two selected frames, regardless of whether the frame is empty or not,
as shown in Figure 5.3 (c), in order to shorten the video and have a more compact
representation of the action in a shorter clip.

5.3 Optical flow-based motion representations

Optical flow can estimate the motion between two consecutive frames in a video, as
mentioned in Section 2.3. In this section, we use Farneback’s dense optical flow [63]
and explore six static video representations. We then evaluate the performance of a
2D CSNN with these representations. We split these representations into two cate-
gories, which are frame-based and shot-based representations.

Frame-based representations process a video clip, focusing on modeling the mo-
tion between each pair of consecutive frames at a time. This results in processed
individual frames that are static representations of motion. Taken individually, a
single frame does not contain enough motion to represent an entire action. This is
because the difference between some actions, such as clapping and waving, are subtle
and require the consideration of multiple frames for proper differentiation. There-
fore, fusion methods are required in conjunction with frame-based representations to
incorporate a greater number of frames as input for a 2D CSNN. Figure 5.4 shows a
classification pipeline using a static representation of motion with early or late fusion.
The resulting representation after fusion contains enough motion data to represent
the entire clip.

Shot-based representations extract motion information from more than two frames
at a time, and transform this motion into a static representation of the entire video
clip. Therefore, fusion methods are not needed with these representations, as they
inherently involve some type of early fusion, as illustrated in Figure 5.5.
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Figure 5.4: A frame-based representation of an HAR video taken as input to a 2D
CSNN. (a) Early fusion. (b) Late fusion.

Figure 5.5: A shot-based representation of an HAR video taken as input by a 2D
CSNN.

In the rest of this section, we detail four frame-based and two shot-based static
representations of motion.

5.3.1 Frame-based methods

Displacement (DXDY) This representation is done by taking the raw dense optical
flow displacement in the horizontal and vertical directions, and storing them into a
two-channel frame, as shown in Equation 5.8, and illustrated in Figure 5.6 (B). The
negative values are dealt with by the on-center/off-center filter.

Ino (x, y, c1) = OFn
x(x, y)

Ino (x, y, c2) = OFn
y (x, y)

(5.8)

where Ino is the output frame with channels c1 and c2, n is the frame index, OFx and
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Figure 5.6: A waving action. (A) The original frames. (B) The DXDY representation
(in RGB, R: 0, G: OFn

x, B: OFn
y ). (C) The OA representation (in HSV, H: orientation,

S: 0, V: amplitude). (D) The CC representation (in RGB, R: OFn
x, G: OFn

y , B: the
moving part of the original grayscale image). (E) The CCOA representation (in
RGB, R: OFn

x, G: OFn
y , B: the average of the optical flow RGB values).

OFy are the horizontal and vertical components of the optical flow vectors, respec-
tively, and (x, y) are the pixel coordinates.

Orientation and Amplitude (OA) With this representation, the optical flow
displacement in the horizontal and vertical directions are computed as the magnitude
and orientation of optical flow, as defined in Equations 5.9 and 5.10:

magnitude(x, y) =
√

OFx(x, y)2 +OFy(x, y)2 (5.9)

orientation(x, y) = arctan

(
OFy(x, y)

OFx(x, y)

)
(5.10)

where OFx(x, y) is the horizontal component of the optical flow vector at position
(x, y), and OFy(x, y) is its vertical component. Since orientation data is periodic, it
is difficult to apply latency coding to it. Thus, optical flow is displayed in the HSV
color space, using orientation as the hue component and magnitude as the value
component, then converted into the RGB color space, as shown in Figure 5.6 (C).

Composite Channels (CC) This representation joins spatial and temporal infor-
mation. It includes the optical flow displacement OFx and OFy that are placed sepa-
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rately in the first two channels. Then we incorporate the grayscale information of the
moving parts from the original image into the third channel. We compute the moving
parts of the subject by subtracting pixels of successive frames In(x, y) − In+1(x, y)
at every location (x, y). If the difference is zero, then this pixel at this location is
stationary, and is set to 0 in the output channel. If this difference is non-zero, then
this pixel is not stationary, and is set to In(x, y) in the third channel of the CC
frame. This way, we keep the gray scale spatial information of the moving part of
the subject. Therefore, CC collects the spatial and temporal information in the same
frame, as shown in Figure 5.6 (D), and expressed in Equation 5.11. The negative
values are also handled by the on-center/off-center filter.

Ino =


Ino (x, y, c1) = OFn

x(x, y)

Ino (x, y, c2) = OFn
y (x, y)

Ino (x, y, c3) =

{
In(x, y), if In(x, y)− In+1(x, y) ̸= 0

0, otherwise,

(5.11)

where In is the input frame at index n, Ino is the output frame at index n with
channels c1, c2 and c3, and OFx and OFy are the horizontal and vertical compo-
nents of optical flow vectors, respectively. This frame-based method will allow an
assessment of the importance of the added spatial information for HAR with CSNNs.

Composite Channels with Orientation and Amplitude (CCOA) This repre-
sentation is another version of the composite channels representation, but we replace
the gray scale information in the third channel with the average of the three (RGB)
channels of the OA representation, as shown in Figure 5.6 (E), and represented in
Equation 5.12.

Ino =


Ino (x, y, c1) = OFn

x(x, y)

Ino (x, y, c2) = OFn
y (x, y)

Ino (x, y, c3) =

{
OAn(x,y,R)+OAn(x,y,G)+OAn(x,y,B)

3
, if In(x, y)− In+1(x, y) ̸= 0

0, otherwise,

(5.12)
where In is the input frame of index n, Ino is the output frame with channels c1,
c2 and c3, and OAn is the RGB frame of optical flow amplitude and orientation,
computed from Equations 5.9 and 5.10, as stated earlier. This method, compared
to CC, allows us to assess the importance of spatio-temporal composite channels,
instead of optical flow vectors only.
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5.3.2 Shot-based methods

Edge grid (EG) This method groups the movement information of a video into
a composite grid. We start by extracting the optical flow vectors from each two
consecutive frames, as shown in Figure 5.7 (B). Then, the horizontal and vertical
components of optical flow vectors OFn

x and OFn
y are combined into a single channel

by retaining their maximum values InOF (x, y) = max(OFn
x(x, y),OFn

y (x, y)). Simul-
taneously, the edges of each frame are extracted using the Canny edge detection
method [201], as shown in Figure 5.7 (C); we note Incanny the response of the Canny
detector for frame In. The optical flow channel and the response of the Canny detec-
tor are multiplied pixel by pixel, so that edge locations are supplied with movement
information in the resulting response: Inmoving edge(x, y) = InOF (x, y) × Incanny(x, y).
This process is applied to 3.p.q frames to produce 3.p.q Inmoving edge frames, where p
and q are the desired vertical and horizontal dimensions of the grid.

Then, EG cells Ioi,j are formed by regrouping three consecutive Inmoving edge images
into a single, 3-channel frame, as shown in Figure 5.7 (D). Each EG cell (Ioi,j)
has the same size as the Imoving edge images. EG cell construction is expressed in
Equation 5.13:

Ioi,j(x, y) =


Ioi,j(x, y, c1) = Inmoving edge(x, y)

Ioi,j(x, y, c2) = In+1
moving edge(x, y)

Ioi,j(x, y, c3) = In+2
moving edge(x, y)

(5.13)

where n = 3.i.q + 3.j, i ∈ [0, p− 1], and j ∈ [0, q − 1]. Finally, the p.q Io frames are
arranged into a grid of dimension p× q, as shown in Figure 5.7 (E).

The edges represent significant local changes in intensity, and edges that contain
motion can be interesting information for STDP-based CSNNs, since they require
edges, as explained in Section 4.1.

Motion grid (MG) This method groups the movement information of several
optical flow frames into a composite grid. Each optical flow frame is separated
into four separate frames representing the displacement in four different directions,
and put one after the other in the grid, as shown in Figure 5.8.The motion dis-
placement in four different directions used in this method is represented in Equa-
tions 5.14, 5.15, 5.16, and 5.17:

M l(x, y) =
|OFx(x, y)| −OFx(x, y)

2
(5.14)
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Figure 5.7: Constructing an edge grid includes: (A) taking a video sequence, (B)
extracting the optical flow vectors between the consecutive frames, (C) extracting
the canny edges of the original frames, (D) supplying edge locations with movement
information by multiplying the response of the Canny detector with the optical flow
data, and forming EG cells by regrouping three consecutive Imoving edge into a three-
channel frame, and (E) assembling these frames to form a p× q grid.
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Figure 5.8: Constructing a motion grid includes: (A) taking a video sequence, (B)
extracting the optical flow of the consecutive frames, (C) separating the motion into
four different directions, and (D) assembling the grid.

M r(x, y) =
|OFx(x, y)|+OFx(x, y)

2
(5.15)

Mu(x, y) =
|OFy(x, y)| −OFy(x, y)

2
(5.16)

Md(x, y) =
|OFy(x, y)|+OFy(x, y)

2
(5.17)

where OFx and OFy represent the horizontal and vertical components of the optical
flow vectors, Mu(x, y) is the upwards displacement at pixel (x, y), Md(x, y) the
downwards displacement, M l(x, y) is the displacement to the left, andM r(x, y) is the
displacement to the right. The input video, consisting of p.q frames, will yield a total
of 4.p.q frames after the separation of each frame into four different motion directions.
Subsequently, these frames are combined into a motion grid with dimensions 4.p× q,
as shown in Figure 5.8 (D), and represented in the matrix 5.18.

MG =

M
r
o1,1

M l
o1,1

Mu
o1,1

Md
o1,1

. . . M r
o1,q

M l
o1,q

Mu
o1,q

Md
o1,q

...
. . .

...
M r

op,1
M l

op,1
Mu

op,1
Md

op,1
. . . M r

op,qM
l
op,qM

u
op,qM

d
op,q

 (5.18)
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STDP
ηw = 0.1, τSTDP = 0.1, W ∼ U(0, 1)

Threshold Adaptation

t̂KTH = 0.75, thmin = 1.0, ηth = 1.0,
t̂Weizmann = 0.75, Vth(0) ∼ N (8, 1)

Difference-of-Gaussian
σ1 = 1.0, σ2 = 4.0, s = 7.0

Table 5.1: The meta-parameter values used in the experiments.

5.4 Evaluation

5.4.1 Datasets and implementation details

The KTH and Weizmann datasets, previously mentioned in Section 2.1, are used to
evaluate these methods, following the protocols described in Section 4.9. Each sample
from both datasets is made up of 10 frames for frame-based representations, 45 frames
are used to collect 15 EG cells, and construct a 5× 3 grid for the EG representation.
48 optical flow frames to construct a 4 × 12 grid for the MG representation, where
each frame is horizontally spread into 4 direction frames, resulting in a 16× 12 grid.

Sum pooling is used at the output of the CSNN to limit the spatial size of the
feature maps before classification. No sum pooling is done in the temporal dimension.

For the experiments where frame subtraction is applied, we choose Equation 5.4
for these experiments, where we set all negative values to their absolute value.

The meta-parameter values used in these experiments are presented in Table 5.1.
Different numbers and sizes of convolutional kernels were tested, but we only report
the most suitable values: 128 convolutional kernels of size 5 × 5, with no padding
and a stride of 1.

5.4.2 Baseline performance evaluation of 2D CSNNs

A baseline is needed in order to accurately assess the performance of the CSNN with
each type of motion representation. Therefore, we test the performance of the CSNN
on raw videos without any pre-processing. We use early and late fusion techniques
in order to conserve the temporal components of the videos. Table 5.2 (A) shows
these results with a sum pooling that renders the output feature map size as 2×2, as
used for image analysis in [31]. By decreasing the sum pooling severity to one that
renders the final feature map size as 20× 20, we get the results in Table 5.2 (B).
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Dataset KTH Weizmann KTH + FS Weizmann + FS

(A) Feature map size 2× 2
Early Fusion 24.50 22.11 30.52 20.73

Late Fusion 26.38 21.03 35.26 23.58

(B) Feature map size 20× 20
Early Fusion 58.95 53.76 58.02 63.76

Late Fusion 65.12 59.32 68.52 62.28

Table 5.2: Classification rate in % using early and late fusion with the KTH and
Weizmann datasets as raw frames, and with frame subtraction (FS).

The most significant conclusion drawn from these results is the substantial impact
that sum pooling can have on the performance. The results presented in Table 5.2
(B) consistently outperform those in Table 5.2 (A), where the sum pooling renders
the feature maps significantly smaller, resulting in a substantial loss of detail. Hence,
it is evident that the excessive dimension reduction caused by sum pooling should
be avoided when aiming to reduce the size of the output feature maps.

Another noteworthy finding is that using frame subtraction (FS) leads to im-
proved classification rates when employing late fusion, although this is not always
the case with early fusion. For instance, in the Weizmann dataset (Table 5.2 (A)),
FS results in a decrease in the classification rate. Furthermore, it was observed
that late fusion consistently outperforms early fusion with the KTH dataset with all
experiments, sometimes exhibiting an advantage of up to 10 percentage points.

With regard to the Weizmann dataset, late fusion demonstrates competitive per-
formance with early fusion, surpassing it in most scenarios. The best results on both
the KTH and Weizmann datasets are achieved when using frame subtraction in com-
bination with late fusion. The only exception is the last column in Table 5.2 (B),
where early fusion with frame subtraction yields the best performance.

These initial results leave us leaning towards adopting late fusion and frame
subtraction in future experiments.

5.4.3 Performance analysis of 2D CSNNs using static repre-
sentations of motion

In this section, we showcase the performance of a 2D CSNN using the static repre-
sentations of motion that were previously presented in Section 5.3. The frame-based
methods are tested with both early and late fusion, while the shot-based methods
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are considered as a type of early fusion, as the motion information is integrated into
a grid prior to processing. The results in Table 5.3 (A) show the performance of the
CSNN with the static representations of motion, with a sum pooling that reduces
drastically the spatial size of feature maps to 2× 2. Table 5.3 (B) presents the same
results but with a larger sum pooling output size, which results in feature maps of
size 20× 20.

These results were designed using frame subtraction before all the representations
except the edge grid, which is based on edge extraction, making FS less effective. The
results in Table 5.3 (A) show that the shot-based methods outperform frame-based
methods with the KTH dataset, as shown with EG [63.01% - 77.93%], compared to
DXDY [28.70% - 68.36%], while the performance of the CSNN with these methods
falls short with the Weizmann dataset, as shown with MG [28.86% - 66.21%] in
comparison to frame-based methods, as shown with OA [50.42% - 71.88%], because
the Weizmann videos are sparser and shorter than the KTH dataset videos, which
leads to smaller grid sizes in EG and MG. This indicates that the CSNN performs
well with representations that contain at least one full cycle of motion, and that more
training samples than the number provided by the Weizmann dataset are needed.

To further illustrate this point, following the initial experiments, we conducted
additional experiments for the EG to investigate the impact of increasing the number
of training samples. We replicated the experiment presented in Table 5.3 (B), where
we used the Weizmann dataset represented with EG, and achieved a classification
rate of 55.08%. We increased the number of training samples from 83 to 250. This
data augmentation process was accomplished by collecting supplementary samples
from the same video. As mentioned earlier, we build a sample clip by skipping two
frames every three frames, starting from the first frame of the video. To build more
samples, we follow the same process, but starting from a random position, producing
different clips from the same video. Training the network with the augmented dataset
has increased the classification rate to 67.44%. It shows that more training samples
can indeed ameliorate the performance of shot-based methods with the Weizmann
dataset.
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Dataset KTH Weizmann
Fusion Method Early Late Early Late

(A) Feature map size 2× 2
DXDY 26.85 28.70 12.86 11.11

OA 41.05 45.83 50.42 44.44

CC 45.78 54.21 36.75 30.68

CCOA 57.87 46.60 45.70 50.91

EG 63.01 - 43.83 -

MG 77.69 - 28.86 -

(B) Feature map size 20× 20
DXDY 58.49 68.36 54.25 67.95

OA 54.32 61.57 61.88 71.88

CC 62.81 66.82 63.25 70.43

CCOA 52.31 67.59 65.21 64.99

EG 77.93 - 55.08 -

MG 77.78 - 66.21 -

Table 5.3: Classification rate in % using early fusion and late fusion with the KTH
and Weizmann datasets pre-processed with frame subtraction (except for EG) and
the static representations of motion. These representations are horizontal and ver-
tical displacements (DXDY), orientation and amplitude (OA), composite channels
(CC), composite channels with orientation and amplitude (CCOA), edge grid(EG),
motion grid (MG).

5.4.4 Effects of frame subtraction on the performance of 2D
CSNNs

The previous results were conducted based on the initial benchmark. This section
evaluates the effects of frame subtraction on the results by performing an ablation
study. Therefore, we re-run all experiments, skipping the FS step, except for EG,
which was not evaluated with FS in Table 5.3.

Table 5.4 contains the performance of the CSNN with the static representations of
motion without frame subtraction, and with a sum pooling that renders the feature
map size as 20× 20. These results reveal two observations.

• Our first observation is that there is an enhancement in the performance of
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the CSNN when applied to the KTH dataset in conjunction with late fusion.
This indicates that FS excessively discards spatial information like texture,
particularly with the CCOA method, which shows an increase of around 5 p.p.
in classification rate with the KTH dataset when omitting FS. This is due to
the discard of texture by FS, which decreases the performance of these optical
flow-based methods: optical flow needs textured patches to trace pixels, so FS
makes it more difficult to produce accurate motion vectors.

• Our second observation pertains to a notable decrease in performance across the
Weizmann dataset when FS is omitted. This decline is primarily attributed to
FS’s ability to eliminate background noise, which is prevalent in the Weizmann
dataset but not as pronounced in the KTH dataset. As illustrated in Figure 5.9,
the edges of this noisy background are detected by the on-center/off-center filter
and are learned by the CSNN. This leads to a reduction in performance with the
Weizmann dataset. The large pixel values associated with these background
edges, as shown in Figure 5.9 (c), result in latency coding transforming these
values into early spikes, which are more likely to prompt the neuron to spike
before the integration of spikes encoding pixels of the subject in action.

These observations may appear to present a slight contradiction to the results
in Table 5.2, where using FS was beneficial, but this discrepancy arises because the
table featured raw videos rather than optical flow-based static representations of
motion.

Dataset KTH Weizmann
Fusion Method Early Late Early Late

DXDY 55.25 70.52 56.84 64.36

OA 32.56 71.76 52.69 64.96

CC 45.37 66.67 57.32 64.62

CCOA 45.83 72.38 59.32 63.76

MG 74.07 - 57.69 -

Table 5.4: Classification rate in % using early fusion and late fusion with the KTH
and Weizmann datasets as pre-processed with the static representations of motion,
without prior FS filtering.
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Figure 5.9: The information filtered by an on-center/off-center filter with the KTH
dataset using (a) raw frames and (b) frame subtraction, and the Weizmann dataset
using (c) raw frames and (d) frame subtraction.

5.5 Conclusion

This study was carried out in order to give an assessment of the effect of different
data representations on spatio-temporal feature learning. Although the performance
of these CSNNs is still not competitive with that of non-spiking ANNs, this assess-
ment provides a solution for 2D CSNNs to process video data, and gives a better
understanding of the type of information required for a 2D CSNN to extract spatio-
temporal features. In addition, it is crucial to highlight that our spatio-temporal
features were extracted without supervision, distinguishing them from their non-
spiking counterparts, making it more difficult to reach the performance levels of
fully-supervised solutions.

The result of testing these representations on an SNNs trained with STDP yields
several conclusions. The first conclusion is that the best performance is recorded
with shot-based methods when there is more than one cycle of motion, like in the
case of the MG and EG representation with KTH dataset videos (77.93% for EG
and 77.78% for MG in Table 5.3). The same representations gave inferior results
using the Weizmann dataset, because the actions in most videos are performed only
once, and the videos are not long enough to fill this grid with multiple cycles of mo-
tion. However, these methods outperform frame-based methods when they represent
more than one complete cycle of the action being performed. Therefore, shot-based
methods serve as a good starting point in improving human action recognition with
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SNNs.
Static representations of motion, in addition to early and late data fusion meth-

ods, permit 2D CSNNs to perform spatio-temporal feature extraction, which is nec-
essary for HAR. Our second conclusion is that velocity distribution of the moving
components in the videos is a very important aspect in action classification. When
employing a pre-processing method for motion modeling that emphasizes this aspect,
such as CCOA, which includes information comprising optical flow vectors, the clas-
sification system can achieve higher classification rates (72.38% in Table 5.4 with the
KTH dataset) than frame-based methods that include gray scale information, like
CC.

Our third conclusion is that FS decreases the performance of optical flow-based
methods, because optical flow needs textured patches to trace pixels. However,
frame subtraction is still useful when the dataset contains a significant amount of
background noise.

These static representations of motion are all based on the Farneback dense op-
tical flow. As a result, they inherit the computational complexity of optical flow,
which is O(l ·w ·h), where l represents the number of levels for pyramid calculations,
and w and h denote the width and height of the input, respectively. Any factors
that are negligible compared to h and w are disregarded. This analysis is grounded
in the OpenCV implementation.

The methods presented in this chapter expand upon this foundation, each intro-
ducing additional computations. These additional computations do not increase the
theoretical complexity, but do add some overhead to the computation time. The
method requiring the fewest computations is the DXDY method, as it directly en-
codes the horizontal and vertical components of the optical flow as raw vectors. Next
is the OA method, which involves additional computations for the conversion from
HSV to the RGB color space. The CC method also directly encodes the horizontal
and vertical components of the optical flow as raw vectors in its first two channels,
but it also preserves the grayscale data of the moving part of the subject in the
third channel. This entails the extra computation of frame subtraction to identify
the mask that will retain the moving part by discerning the non-zero values and
then recording their locations in the third channel of the frame. Subsequently, the
CCOA method records the average value of optical flow in the third channel instead
of grayscale data. This necessitates even more computations.

The MG method requires optical flow extraction, followed by the separation of
this optical flow into four different directions, and the copy of this information at their
location in the grid. However, since it is a shot-based method, the number of frames
used depends on the size parameters of the motion grid. This MG method involves
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fewer steps to construct than the EG method, which requires optical flow extraction
multiplied by the result of Canny edge detection, making it more computationally
expensive.

We provide the computational time measurements for each method in Python
with NumPy and OpenCV on the 600 videos of the KTH dataset in Table 5.5. This
table shows the methods and their associated total time to process 600 15-frame
video samples, averaged over 100 repetitions:

methods average time (seconds) overhead (%)

Raw Images → OF 35.06 -

Raw Images → OF → DXDY 36.31 3.56

Raw Images → OF → OA 36.84 5.07

Raw Images → OF → CC 36.18 3.19

Raw Images → OF → CCOA 42.97 22.56

Raw Images → OF → MG 37.26 6.27

Raw Images → OF → EG 43.08 22.87

Table 5.5: The average processing time (in seconds) of 600 15-frame videos for various
static representations of motion, averaged over 100 runs, including overhead (in %)
relative to optical flow method.

Based on the data presented in Table 5.5, it is evident that there is a limited
increase in processing time across the various methods compared to the baseline OF
computation (around 35 seconds). This indicates that the additional computations
introduced by each method slightly impact the overall computation time.
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Chapter 6

3D Convolutional Spiking Neural
Networks

Spatio-temporal feature extraction with STDP-based 2D CSNNs has been explored
in Chapter 5. These networks are originally designed for static data analysis, and
have been paired with motion modeling techniques and adapted for video analysis
tasks. Throughout our investigation, we observed that to extract spatio-temporal
information using these models, additional non-spiking motion modeling steps are
necessary. However, these non-spiking motion modeling methods are computation-
ally costly, and implementing them on neuromorphic hardware would be challenging.
Additionally, the features learned with such methods are derived from pre-processed
data, which alters the unbiased dynamic spatio-temporal patterns we aim to learn.
One significant obstacle is the need to minimize or eliminate the reliance on non-
spiking pre-processing techniques for modeling motion with STDP-based CSNNs,
all while ensuring the capability to extract relevant spatio-temporal features from
videos.

Fully spiking solutions are more promising, cost-effective methods for video anal-
ysis. Building upon the insights gained in the previous chapter concerning the perfor-
mance of STDP-based 2D CSNNs for HAR, we now turn our attention to the explo-
ration of spatio-temporal STDP-based CSNNs, specifically 3D CSNNs. In Chapter 3,
we observed that unsupervised STDP involves local computations. Therefore, using
unsupervised STDP could potentially facilitate the extension of a conventional 2D
CSNN, which processes information in spatial dimensions, into a spatio-temporal
3D CSNN architecture for videos, which processes information in both spatial and
temporal dimensions.

In this chapter, we address building a 3D CSNN model trained in an unsupervised
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manner with the STDP learning rule. This model can learn spatio-temporal patterns
found in videos by sliding its convolutional kernels in the temporal dimension as well
as in the spatial ones. This extra dimension does increase the number of parameters
of a 3D CSNN compared to a 2D CSNN, but its computational cost is still very
low compared to non-spiking CNNs. To the best of our knowledge, Unsupervised
STDP-based 3D CSNNs remain unexplored in the context of video analysis, even
though they offer a cost-effective processing approach in theory.

The 3D CSNN introduced in this chapter can extract spatio-temporal features
from videos naturally without relying on non-spiking pre-processing methods that
are difficult for hardware implementation like the ones in Section 5.3. We validate
this in the context of HAR, and we compare this model to its 2D equivalent in order
to reach an accurate assessment of their performance. Then we list the benefits and
drawbacks of each method. The main contributions of this chapter are summarized
as follows:

• we present a spiking model for 3D convolution that allows learning spatio-
temporal patterns with STDP in an unsupervised manner;

• we include this 3D convolution model into a state-of-the art spiking architecture
for unsupervised feature learning;

• we evaluate and compare the performance of 2D and 3D CSNNs on both of
the KTH and Weizmann action recognition datasets, as raw videos and after
motion information extraction;

• we give an analysis of the effects of the main hyperparameters on the perfor-
mance of a 3D convolutional SNN.

6.1 Spiking 3D convolutions

The kernels of a 3D CSNN can slide along the temporal dimension of the input tensor
in addition to the spatial ones, and extract spatio-temporal features that correspond
to space-time patterns occurring in the input video, as illustrated in Figure 6.1. This
figure illustrates a 3D convolutional kernel temporally split, capturing the motion
occurring in a video at different times, in principle.

The virtual movement of 3D convolutional kernels can be visualized as going
through the three dimensions, width, height, and temporal depth, in steps deter-
mined by the stride in each dimension. Each neuron in the convolution output
processes a local volume of the data sample in space and time. A 3D convolution
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Figure 6.1: An idealization of a 3D kernel of size 5 × 5 × 4 capturing a space-time
pattern from a video clip.

Figure 6.2: The neighborhood of a neuron at (x, y, z) is a volume, and n1, n2, and
n3 are competing neurons at the same location during the training phase.

layer is therefore defined by a set of fk trainable kernels, with sizes fw × fh × ftd,
where fw and fh represent the width and height of a kernel respectively, and ftd is
the temporal size of the kernel. Similarly to 2D convolution, but with the extra di-
mension, each neuron of a layer is connected to fw×fh×ftd inputs from the previous
layer, as illustrated in Figure 6.2. The coordinates of a neuron or a spike in this 3D
model are now x, y, z, and k. 3D spiking convolution can be formalized as:

Vmx,y,z,k
(t) =

∑
i∈E

Wn(xi),j(yi),m(zi),ki,k × fs(t− ti) (6.1)

fs(t− ti) =

{
1 if t ≥ ti

0 otherwise
(6.2)

where Vm(t) is the neuron membrane potential at time t, x, y, z and k are the

97



coordinates of the neuron in the width, height, temporal and channel dimensions,
respectively,W is the trainable synaptic weight tensor, n(), j(), andm() are functions
that map the location of the input to the corresponding location in the weight tensor
in the spatial and temporal dimensions, and fs is the kernel of spikes represented in
Equation 4.6.

Similarly to Section 4.2, when the membrane potential Vmx,y,z,k
(t) crosses the

threshold potential Vth(t), STDP learning occurs, so Equations 4.9 (page 65) is ap-
plied to update the synaptic weights, and the Equations 4.12 4.11 4.10 (page 66) are
applied to update the thresholds of the network. It is important to note that the
threshold adaptation rule and the biological STDP rule are the same in both 2D and
3D architectures, as they are independent of the input and kernel dimensions.

The training and testing processes are then the same as in the case of 2D convo-
lution, explained in Chapter 4. With spiking 2D convolutions in [31], a fixed number
of patches were randomly selected for training the 2D kernels, as mentioned in Sec-
tion 4.4. However, this fixed number of patches is not suitable for the variation in
input sample size for HAR. Therefore, for each input sample, we choose a specific
number nsampling of spatial locations in order to ensure that the number of random
patches is enough to cover the input sample, the determination of nsampling is based
on the dimensions of the input sample and the convolutional kernel, as shown in
Equation 6.3:

nsampling =
2× lw × lh
fw × fh

(6.3)

For 3D CSNNs, we need to update this sampling number according to Equa-
tion 6.4 to account for the temporal dimension of size ltd. We increase the sampling
constant to 3 in order to insure a large enough sampling number to cover the temporal
dimension:

nsampling =
3× lw × lh × ltd
fw × fh × ftd

(6.4)

6.2 The network pipeline

The core pipeline in this chapter consists of a multi-layer CSNN, which is made up
of convolution and max pooling layers. These spiking networks are trained layer-
wise, i.e., each layer is trained independently, starting from the first layer. Then
the weights of the trained layer are set aside during the training of the subsequent
layers. During the testing phase, all neurons are active and layers are processed
sequentially, i.e., all the input spikes of one layer are processed before processing the
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Figure 6.3: Network topology with 2D convolutions.

next layer. So, the output feature maps of one layer provide the input spike trains
for the subsequent layer.

A 2D version of this pipeline is illustrated in Figure 6.3. The process begins with
the analysis of the input video on a frame-by-frame basis. Each frame undergoes
on-center/off-center filtering. Subsequently, latency coding is applied to convert the
filtered data into spikes. These spikes are then processed through spiking convolution
and max pooling layers, to give spiking output feature maps. Then, the output
converter from Section 4.7, Equation 4.13 (page 69) is used to convert the spikes
back into continuous values. These output feature maps are reduced in size through
spatial sum pooling, for more efficient handling by the classifier.

Since 2D convolutions only process the spatial dimensions of the input, they
discard any temporal information. Therefore, these output feature maps are spa-
tial. In this work, instead of resorting to costly pre-processing, and to keep the
results comparable with those of a 3D CSNN, spatio-temporal feature extraction
with 2D CSNNs is achieved by replacing the spatial sum pooling in Figure 6.3 by
spatio-temporal sum pooling. This joins the output feature maps over the temporal
dimension into one feature map per kernel, and simultaneously reduces the spatial
size of these output feature maps. This creates a sort of late fusion that integrates
feature maps across the entire video sequence, as shown in Figure 6.4. Finally, the
resulting data is linearized and input into a classifier.

The 3D CSNN takes a video sample as input, in the form of a 4D tensor where
the temporal depth corresponds to the number of frames per video, as shown in
Figure 6.5. The same general pipeline is used for the 3D CSNN, where the video
sample undergoes on-center/off-center filtering, then latency coding, and then the
processing through convolution and max pooling layers. The difference is that spiking
2D convolution layers are replaced by spiking 3D convolution layers that process the
space-time volume directly, and the max pooling layers apply to the space-time
volume, over both spatial and temporal dimensions. Our pipeline for the multi-layer
3D CSNN, is shown in Figure 6.6.
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Figure 6.4: Spatio-temporal feature extraction with a 2D architecture from a five-
frame video clip, and with k kernels.

Figure 6.5: Introducing an input video for spatio-temporal feature extraction using
a 3D architecture.
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Figure 6.6: Network topology with 3D convolutions.

The dimensions of the output feature maps of this network are also decreased
using sum pooling, and then linearized, as shown in Figure 6.6. We use temporal sum
pooling at the output of our 3D CSNN to ensure that the outputs of both networks
are of similar size. This is because, in Chapter 5, we saw that the feature map size
can affect the performance of the classifier. Therefore, for a fair comparison, both
networks need to have similar output feature map sizes. This output is introduced
into a support vector machine (SVM) with a linear kernel, which performs the action
classification.

6.3 Evaluation

6.3.1 Datasets and implementation details

Experiments are performed on the KTH [54] and Weizmann [55] datasets, previously
mentioned in Section 2.1, following the protocols described in Section 4.9. We report
the experiments with 8 and 20 frames per video in order to have a comprehensive
comparison between the performance of spiking 2D convolutions and spiking 3D
convolutions with different video clip sizes. We skip one frame between each two
consecutive frames in order to make sure to capture a full cycle of the performed
action. Similarly to Chapter 5, we scale down the frame sizes of both datasets to
half of their original sizes for processing speed reasons. We measure the classification
accuracy (in %) on the test set for all experiments. Each experiment was run three
times, and we report the average accuracy over the three runs.

In this chapter, to assess the individual performance of each layer within multi-
layer architectures, we incorporate an SVM after each layer solely for evaluating the
features learned by that layer.

The meta-parameter values used in these experiments are presented in Table 6.1.
No padding is used for the convolutions. The convolutional kernels of 2D layers use
a stride of 1 in all dimensions, while those of 3D layers use a stride of 1 in spatial
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STDP
ηw = 0.1, τSTDP = 0.1, W ∼ U(0, 1)

Threshold Adaptation

t̂KTH = (0.65, 0.3, 0.1), thmin = 1.0, ηth = 1.0,
t̂Weizmann = (0.75, 0.55, 0.15), Vth(0) ∼ N (8, 1)

Difference-of-Gaussian
σ1 = 1.0, σ2 = 4.0, s = 7.0

Table 6.1: The hyperparameter values used in the experiments. The t̂ tuple corre-
spond to the values of t̂ used for each layer, respectively.

dimensions, and a stride of 2 in the temporal dimension. The max pooling layers
use a kernel of size 2× 2 and a stride of 2× 2 for the 2D setup, and a kernel of size
2× 2× 2 and a stride of 2× 2× 2 for the 3D setup.

The videos are presented to the SNNs either as raw frames, or pre-processed
with the frame subtraction method described in Equation 5.4 (page) 78. We use
this method in order to see the ability of the SNNs to classify input information
that consists purely of motion, and to assess the performance of 3D CSNNs without
the issue of the noisy background patterns observed with the Weizmann dataset
mentioned in the previous chapter. In the rest of this section, experiments are
performed on raw frames unless otherwise specified.

In the following, we conduct experiments aimed at providing comprehensive com-
parisons between 2D and 3D CSNNs in various settings. First, we explore the impact
of the target timestamp on the performance of our single-layer and multi-layer 2D
and 3D CSNN architectures. Following this, we investigate the influence of kernel
size and video length on multi-layer 2D and 3D CSNN architectures. Finally, we
examine the effects of frame subtraction on the performance of these models.

6.3.2 Spike selectivity with target timestamp threshold adap-
tation

The threshold adaptation method detailed in Section 4.5 (page 66) requires choosing
a target timestamp t̂ towards which the firing time of the neuron must converge.
This target timestamp impacts the patterns learned by the neurons [83]. If the
neuron thresholds are low, the learned patterns would have only to integrate a few
spikes that represent the most salient part of the sample, while if the neurons had
large thresholds, more spikes would be integrated, and more detailed patterns can be
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Dataset KTH Weizmann

t̂ 0.1 0.65 0.15 0.75

2D CSNN 56.84 56.94 47.26 48.63

3D CSNN 55.09 57.56 51.45 49.49

Table 6.2: Average classification rates in % of KTH and Weizmann dataset (8-frame
videos) over 3 runs, as a function of different t̂ values with 2D and 3D single-layer
architectures.

learned [83]. Therefore, this target timestamp value, which affect the convergence of
the thresholds of the neurons, allows us to be more or less selective with the spikes
that are used in the learning. This mechanism not only allows us to control spike
selectivity, but it also has another advantage, which is that it reduces the impact of
initial values for neuron thresholds, which are randomly initialized [83]. However, the
optimal target timestamp value can vary with different types of input information,
and is selected for a given dataset using trial and error, with regard to a validation
set.

Training single-layer CSNN architectures with raw videos filtered by an on-
center/off-center filter to generate edges as input yields the results shown in Ta-
ble 6.2. The convolutional kernel sizes used are 5×5 for 2D CSNNs and 5×5×2 for
3D CSNNs. These results show the effect of having high or low spike selectivity on
the resulting classification rates, where we use small and large values of target times-
tamps with single-layer 2D and 3D architectures. These initial results show that 3D
CSNNs outperform 2D CSNNs in most cases, but severe spike selectivity limited the
benefits of 3D CSNNs with the KTH dataset, where using a t̂ = 0.1 gave a better re-
sult with 2D CSNNs in Table 6.2. The KTH dataset is characterized by large motion
patterns, which makes a larger t̂ a more suitable option, because integrating fewer
spikes makes it more difficult to properly train the larger 3D convolutional kernel.

On the other hand, a similar severe spike selectivity (t̂ = 0.15), resulted in ben-
efiting the performance of 3D CSNNs with the Weizmann dataset. This is due to
the large ratio of noisy background edges to relevant edges in the Weizmann dataset.
There are much less noisy background edges in the KTH dataset, as shown in Fig-
ure 6.7, so it does not benefit from severe spike selectivity. This increased spike
selectivity benefited the classification with the Weizmann dataset by only taking the
most salient part of the sample into account, which reduces the effect of noise.

We also explore the effect of t̂ on multi-layer architectures, with both 2D and
3D CSNNs. We start by investigating the effect of high selectivity of spikes in the
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Figure 6.7: The edges extracted by the on-center/off-center filter for a KTH and a
Weizmann frame. (a) The KTH frame on channel, (b) The KTH frame off channel,
(c) The Weizmann frame on channel, and (d) The Weizmann frame off channel

first layer, by choosing a small t̂. This leads to solely prompting some neurons with
low thresholds to fire in response to the earliest received spikes, which represent
the stronger edges. Therefore, it is not giving a chance for neurons with higher
thresholds to fire, which leads to completely ignoring the details represented by the
parts of the sample with weaker edges. This high spike selectivity degrades the
learning in subsequent layers, because too few spikes can be integrated. t̂ needs
to be large enough to promote neural activity and learning in subsequent layers.
Therefore, one might use a high t̂ in all the layers with the KTH dataset, in order
to capture large patterns throughout all layers. This results in oversaturated feature
maps, as shown in Figure 6.8, which cause inconsistent performance with the KTH
dataset, and decrease classification rates in subsequent layers, as shown in Table 6.3.
However, increasing the selectivity over layers, by decreasing t̂, promotes sparsity of
the learned features, and improves the performance throughout the layers, as shown
in Table 6.3. Therefore, with multi-layer CSNNs, the values of t̂must be large enough
in initial layers, and then gradually decreased in order to promote the sparsity of the
output feature maps.

Therefore, for the rest of the experimental procedure, the t̂ values for the KTH
dataset will be (0.65, 0.3, 0.1) for the three layers of the 2D and 3D architectures.
Similarly, the t̂ values for the Weizmann dataset will be (0.75, 0.55, 0.15) for the three
layers of the 2D and 3D architectures. These values were chosen by an exhaustive
trial-and-error process, using a validation set.
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Figure 6.8: The feature maps that result from processing a KTH clip, frame by frame,
with (a) t̂ = 0.65 in the first layer, (b) t̂ = 0.65 in the second layer, (c) t̂ = 0.65 in
the third layer, (d) t̂ = 0.65 in the first layer, (e) t̂ = 0.3 in the second layer, and (f)
t̂ = 0.1 in the third layer.

t̂ = (0.65, 0.65, 0.65) t̂ = (0.65, 0.3, 0.1)
Layers Conv1 Conv2 Conv3 Conv1 Conv2 Conv3

2D CSNN 55.89 53.80 52.67 59.72 59.10 62.35

3D CSNN 55.47 52.60 55.21 56.33 61.42 63.43

Table 6.3: Average classification rates in % on the KTH dataset (8-frame videos)
over 3 runs, as a function of t̂ values for three convolutional layers, with 2D and 3D
multi-layer architectures.
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6.3.3 Varied kernel sizes and video lengths

The convolutional kernel size has a direct effect on the learned features, so, in this
section, we present the classification rates obtained using different convolutional
kernel sizes with both 2D and 3D architectures. Tables 6.4 and 6.5 show the results
obtained on KTH using 8 frames per video and 20 frames per video, respectively.

In Table 6.4, the classification rates obtained with a 3D convolutional SNN are
slightly higher than those obtained with a 2D convolutional SNN architecture. The
best classification rate is 63.43%, obtained with a 3D model that has a kernel size of
5× 5× 2; this is only slightly higher than the classification rate of 62.35% obtained
with a 2D CSNN that has a kernel size of 5 × 5. However, Table 6.5 shows that a
larger video length decreases the performance of 2D CSNNs. This is partially due
to the information saturation that results from pooling the features extracted by
the 2D CSNN: it results in a sample that is harder to classify for the SVM than
a sample made up of fewer frames. Therefore, we can deduce that 2D CSNNs are
better suited for shorter video clips. On the other hand, 3D convolution does not
have this problem, because the temporal information extraction does not depend on
aggregation using spatio-temporal pooling, but on the temporal nature of the kernel
itself. However, as previously mentioned, we do use spatio-temporal pooling at the
output of our 3D CSNN in order to keep similar feature map sizes for fair comparison.

Another reason for why 2D CSNNs are better suited for shorter video clips is
the redundancy of spatial features learned by the 2D CSNN: the spatial kernels
learn similar features from similar frames, e.g. the stationary parts of the subject
performing the action. The impact of redundancy is decreased with 3D CSNNs as a
result of their ability to encode changes over time.

Table 6.5 shows that 3D convolutional SNNs perform significantly better than 2D
convolutional SNNs with longer video sequences. However, this significant increase
is only obtained in the first two layers; there is a decrease in classification rate for the
third layer. This behavior suggests that the length of the video affects the learning
in subsequent layers for multi-layer architectures. This is due to the challenge of
finding a suitable value for t̂, that, which is still an open research problem.

For the rest of this chapter, we use video samples made up of 8 frames for 2D
CSNNs, and 20 frames for 3D CSNNs, to compare them in regard to their most
convenient settings. The chosen kernel sizes are 5× 5 and 5× 5× 2 for the 2D and
3D CSNNs, respectively.
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fw × fh × ftd #Kernels L1, L2, L3 L1 L2 L3
3D CSNN 3× 3× 2 16, 32, 64 54.63 56.33 56.33

3× 3× 3 16, 32, 64 52.16 57.10 57.56
3D CSNN 5× 5× 2 16, 32, 64 56.33 61.42 63.43

5× 5× 3 16, 32, 64 55.32 62.73 62.04
3D CSNN 7× 7× 2 16, 32, 64 55.40 60.80 56.94

7× 7× 3 16, 32, 64 54.01 56.64 39.81
3D CSNN 9× 9× 2 16, 32, 64 56.94 59.14 49.54

9× 9× 3 16, 32, 64 57.41 60.65 39.51

2D CSNN 3× 3 16, 32, 64 48.38 48.15 47.22
2D CSNN 5× 5 16, 32, 64 59.72 59.10 62.35
2D CSNN 7× 7 16, 32, 64 57.99 58.80 60.76
2D CSNN 9× 9 16, 32, 64 54.78 59.10 41.20

Table 6.4: Average classification rates in % on the KTH dataset (8-frame videos) over
3 runs, as a function of different convolutional kernel sizes for 2D and 3D CSNNs.

fw × fh × ftd #Kernels L1, L2, L3 L1 L2 L3
3D CSNN 3× 3× 2 16, 32, 64 65.59 67.59 63.27

3× 3× 3 16, 32, 64 61.46 65.51 65.16
3D CSNN 5× 5× 2 16, 32, 64 62.19 68.21 63.12

5× 5× 3 16, 32, 64 62.04 67.59 64.35
3D CSNN 7× 7× 2 16, 32, 64 62.19 67.59 59.26

7× 7× 3 16, 32, 64 59.49 62.50 49.31
3D CSNN 9× 9× 2 16, 32, 64 60.19 62.96 38.66

9× 9× 3 16, 32, 64 62.96 65.74 49.31

2D CSNN 3× 3 16, 32, 64 45.37 51.39 50.93
2D CSNN 5× 5 16, 32, 64 54.63 58.80 50.93
2D CSNN 7× 7 16, 32, 64 52.31 56.94 44.91
2D CSNN 9× 9 16, 32, 64 55.09 54.63 28.70

Table 6.5: Average classification rates in % on the KTH dataset (20-frame videos)
over 3 runs, as a function of different convolutional kernel sizes for 2D and 3D CSNNs.
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6.3.4 With/without frame subtraction

We compare the performance of 3D and 2D CSNNs to study the behavior of these
networks with motion information as input, which offers a better assessment of the
comparison with diverse natures of data, in addition to their performance when a
part of the spatial information is eliminated. We evaluate the performance of these
architectures with motion information by applying frame subtraction to the input.
Table 6.7 shows the performance of each architecture using raw frames as input. The
results of Table 6.6 acknowledge that 3D CSNNs yield better results than 2D CSNNs
in all cases. Table 6.7 shows the performance of each architecture, using frames
filtered with FS as input. We see that the motion information that results from FS
has improved the classification rates with both the 2D and 3D architectures, so it
is interesting to quantitatively compare the feature maps provided by these models
with and without frame subtraction, which also provides some insight on the effect
of the reduced spatial information on the learned patterns.

In Figure 6.9, comparing the feature maps extracted when the input video is pre-
processed with frame subtraction (+FS) shows that frame subtraction has removed
the fixed parts of the subject’s body from the input frames, and highlights the
moving parts of the subject (i.e., the hand in this boxing action). Therefore, the
improvement in the classification rate is due to the network learning only from the
movement which is significant to identify an action; however, frame subtraction may
be less relevant when motion is subtle or when appearance is needed in classifying
the action (e.g., when objects are involved).

This amelioration in performance after frame subtraction can also be attributed
to the nature of the neural coding. Latency coding transforms the brightest pixels
into the latest spikes, which are integrated first by the neuron. This means that bright
stationary background pixels, which correspond to salient edges in the background,
carry no relevant information but can also largely contribute to prompting the neuron
to fire, which perturbs the learning. However, with frame subtraction, all stationary
background pixels are eliminated, which improves the performance.

The feature maps obtained by the 2D CSNN and the 3D CSNN in Figure 6.9
seem mostly similar. This is because this specific sample has been classified correctly
by both architectures. Figure 6.10 shows the feature maps obtained by 2D and 3D
architectures for a walking sample that has been classified incorrectly by the 2D
CSNN, but correctly by the 3D CSNN. We see that the 2D CSNN failed to learn
features that are significant enough to classify the sample from spatial information.
The 3D CSNN was able to learn and focus on motion information, which enabled it
to classify the walking action correctly.

Introducing motion as an input to a 3D CSNN has allowed it to learn variations
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in motion, such as acceleration, which is beneficial when the network is required to
classify actions that are similar in form but different in speed, i.e., walking, running
and jogging videos in the KTH dataset. The experiments conducted in this section
show that 3D CSNNs trained with STDP can learn spatio-temporal features that
are relevant. This also highlights the importance of convolution in the temporal
dimension during spatio-temporal feature extraction with spiking models.

Dataset KTH Weizmann
Layers Conv1 Conv2 Conv3 Conv1 Conv2 Conv3

2D CSNN 57.78 58.61 58.80 48.12 55.38 55.98

3D CSNN 60.80 67.90 64.20 52.96 60.55 57.92

Table 6.6: Average classification rates in % with 2D and 3D multi-layer SNNs using
the KTH and Weizmann datasets, as raw videos, over 3 runs. We use 8-frame videos
for 2D architectures and 20-frame videos for 3D architectures.

Dataset KTH Weizmann
Layers Conv1 Conv2 Conv3 Conv1 Conv2 Conv3

2D 61.57 61.11 61.11 60.43 61.28 62.39

3D 69.75 72.53 66.05 61.28 61.54 64.62

Table 6.7: Classification rates in % with 2D and 3D multi-layer SNNs using the KTH
and Weizmann datasets, as motion information extracted using frame subtraction,
over 3 runs. We use 8-frame videos for 2D architectures and 20-frame videos for 3D
architectures.

6.4 Conclusion

This chapter introduces STDP-based 3D CSNNs that learn features for action recog-
nition. We give an assessment of 2D and 3D convolutional spiking neural network
architectures trained in an unsupervised manner with STDP and challenged with ac-
tion recognition datasets. Although the performance of these spatio-temporal CSNNs
still does not compete with that of non-spiking CNNs, they present an initial spatio-
temporal STDP-based CSNN capable of extracting spatio-temporal features without
costly pre-processing. The results of this assessment yield several conclusions.

109



Figure 6.9: The feature maps in the first layer of the 2D and 3D CSNN models from
a KTH boxing video, with (+FS) and without frame subtraction. This sample was
correctly classified in all cases. 1) The raw video frames, 2) Feature maps of the 2D
CSNN, 3) Feature maps of the 2D CSNNs with frame subtraction, 4) Feature maps
with 3D CSNNs, and 5) Feature maps of the 3D CSNNs with frame subtraction.

The first one is that unsupervised STDP-based 3D CSNNs can learn visual fea-
tures of actions, with minimal pre-processing (i.e., DoG filtering). This is thanks
to their third dimension dedicated to time, and the capability of their 3D kernels
to slide in the spatial and temporal dimensions simultaneously, extracting relevant
space-time features for action classification.

The second conclusion is that these models are not only capable of learning
space-time features, but they also outperform 2D CSNNs, especially with longer
videos. 2D CSNNs require extra steps in order to model motion, like temporal sum
pooling or concatenation before the classifier. This allows the final feature maps
to be representative of the motion happening amongst the video frames. However,
these workarounds can only function for a limited video length. If we increase the
number of frames undergoing temporal sum pooling, we obtain excessively complex
data. If we use concatenation instead, the final feature map size is too large to be
handled effectively by the classifier. This is no longer a problem with 3D CSNNs
that are able to extract spatio-temporal feature maps directly.

The third conclusion is that using a multi-layer architectures requires an exhaus-
tive search to find the suitable hyperparameters that permit learning in subsequent
layers. The appropriate t̂ that is used to control the target timestamp threshold
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Figure 6.10: The feature maps of the three layers of the 2D and 3D multi-layer SNN
models from a KTH walking video. 1) The raw video frames, 2) Layer 1 spatial
feature maps, 3) Layer 2 spatial feature maps, 4) Layer 3 spatial feature maps,
5) Layer 1 spatio-temporal feature maps, 6) Layer 2 spatio-temporal feature maps,
7) Layer 3 spatio-temporal feature maps. This sample has been classified incorrectly
by the 2D CSNN, while being classified correctly by the 3D CSNN.
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adaptation mechanism should be selective enough to control the learned patterns,
but also permit enough spike integration for the sake of the learning in subsequent
layers. We believe that using permissive to restrictive selectivity by decreasing the
target timestamp value throughout the layers is promising.

Finally, our last conclusion concerns the use of frame subtraction to assess the
performance of both 2D and 3D CSNNs architectures. We conclude that frame
subtraction improves the performance of both architectures because it allows the
elimination of stationary background pixels that raise irrelevant features. Without
FS, these pixels are transformed into very early spikes using latency coding, and
they cause the neuron to fire erroneously. It is fair to say that even in this setting,
3D CSNNs still outperform 2D CSNNs. This shows once again their superiority for
HAR video analysis.

The 3D convolutional spiking neural networks tested in this work serve as a good
building block in improving human action recognition with unsupervised STDP-
based spiking models. The performance of unsupervised STDP-based SNNs is still far
behind that of state-of-the-art CNNs. However, it should be noted that our features
are learned without supervision, which presents inherent challenges. Unsupervised
learning, unlike supervised learning, lacks access to ground truth labels, making
it more difficult to train and evaluate models effectively. This complexity in the
learning process, in part, may explain the performance gap observed between our
SNNs and CNNs trained with supervised methods. Yet, further research is still
needed to improve the performance of CSNNs.
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Chapter 7

Spiking Separable Convolutions

A 3D convolutional spiking neural network (CSNN) has the advantage of being a fully
spiking solution for learning motion patterns. Therefore, as explained in Chapter 6,
it can be used for video analysis in the spiking domain, without needing additional
non-spiking processes to extract the temporal components of videos. However, simi-
larly to traditional methods, spiking 3D convolutions increase the number of param-
eters with respect to spiking 2D convolutions. This can make it harder to construct
this model with neuromorphic hardware, since the number of required connections
are increased. Some neuromorphic hardware allows the implementation of arbitrary
multigraph networks, but the resource constraints of the core should be taken into
consideration [15]. Moreover, this increased number of parameters also increases the
computational costs with regard to 2D CSNNs. Therefore, it is important to find
methods that can reduce the number of parameters while conserving the same per-
formance as spiking 3D CSNNs. Separated convolutions, as explained in Chapter 2
(page 33), are a solution to the increased number of parameters that has been used
in the CNN-related literature [90] [91], but has not yet been explored in the spiking
domain.

In this chapter, we present Spiking Separated Spatial and Temporal Convolutions
(S3TCs), where we reduce the number of parameters in a spiking spatio-temporal 3D
convolution by factorizing it into two separate smaller spatial and temporal convo-
lutions. We train these CSNNs in an unsupervised manner using the STDP learning
rule. S3TCs are expected to be more efficient and hardware friendlier spiking solu-
tions than 3D CSNNs for video analysis. To the best of our knowledge, our work
is the first to address the subject of separated convolutions with spiking neural net-
works. Our hypothesis is that simpler 2D and 1D kernels in S3TCs can enhance
STDP-based learning by capturing more patterns, thereby prompting the neurons
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to fire more spikes. Since STDP updates are triggered by neuron firing events, this
increased activity can lead to an increased frequency of updates.

This chapter is a building block towards improving the performance of spatio-
temporal spiking models, while promoting hardware friendliness and energy effi-
ciency. The main contributions of this chapter are summarized as follows:

• we introduce Spiking Separated Spatial and Temporal Convolutions (S3TCs);

• we evaluate the performance of S3TC models with different kernel sizes on the
KTH [54], Weizmann [55], and IXMAS [56] datasets;

• we compare the performance of S3TCs to that of spiking 3D convolution from
Chapter 6, and we conclude that S3TCs can achieve better performance;

• we show that using smaller kernel sizes along with STDP, to a certain extent,
prompts the neurons to fire more spikes, thus increasing the network activity
and improving the learning.

In the following sections, we begin by providing the number of trainable param-
eters in a 3D CSNN, which offers insights into the computational costs associated
with these networks. Then, we introduce S3TCs, highlighting their smaller number
of training parameters compared to 3D CSNNs. In subsequent sections, we discuss
the impact of kernel size on both network architectures. We then proceed to exam-
ine and compare the spiking activity between 3D CSNNs and S3TCs, along with its
influence on network performance.

7.1 Parameter study of 3D CSNN

The 3D CSNN introduced in Chapter 6 has fk complex 3D trainable kernels of sizes
fw×fh×ftd, where fw and fh represent the width and height of the kernel respectively,
and ftd is the temporal size of the kernel. These 3D kernels permit spatio-temporal
feature extraction from videos, but have a larger number of parameters than their
2D counterpart. These numbers of trainable parameters P2D for 2D and P3D for 3D
kernels are introduced in Equation 7.1 and 7.2, respectively:

|P2D| = fk × nc × fw × fh (7.1)

|P3D| = fk × nc × fw × fh × ftd (7.2)

where fk is the number of kernels, nc is the number of input channels, fw, fh, and ftd
represent the width and height and temporal dimension of the kernel, respectively.
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7.2 Spiking separated spatial & temporal convo-

lutions

With separable convolutions, the kernel connectivity of the spiking 3D convolution
layer introduced in Chapter 6 can be broken down into two parts: space-wise and
time-wise convolutions, as shown in Figure 7.1.

Figure 7.1: Separable spatial and temporal convolutions.

In the first phase, a 2D kernel crosses over the spatial dimension of the input,
one frame at a time, so this kernel has a dimension of fw × fh × 1. This results in
spatial feature maps as an output of the first phase. In the second phase, with the
time-wise convolution, we compute a linear combination of the previous outputs by
undergoing a 1×1×ftd convolution in the temporal dimension to extract meaningful
temporal information from the spatial feature maps. The same training algorithm
introduced in Chapter 4 (page 67) still applies for training the 2D layer of the S3TC
block. The network is trained layer-wise: after the 2D layer is trained, its weights
remain constant, and the output of this layer serves as the input spikes that are used
to train the 1D block, following the same algorithm. The threshold adaptation and
STDP update mechanisms of the 1D block are the same as their 2D counterparts,
since they are independent of input dimension.

Spiking separated convolution can be formalized as Equation 7.3 for the space-
wise convolution, and as Equation 7.4 for the time-wise convolution:

Vmx,y,k
(t) =

∑
i∈Es

Wn(xi),j(yi),ki,k × fs(t− ti) (7.3)
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Vmz,k
(t) =

∑
i∈Et

Wm(zi),ki,k × fs(t− ti) (7.4)

fs(t− ti) =

{
1 if t ≥ ti

0 otherwise
(7.5)

where fs is the kernel of spikes, Vm is the potential of the neuron membrane at time
t, and x, y, z, and k are the coordinates of the spike in the width, height, time, and
channel dimensions, respectively. W is the trainable synaptic weight matrix, n(),
j(), and m() are functions that are used to map the location of the input neuron to
the corresponding location in the weight matrix, and Es and Et are the sets of input
connections in the spatial and temporal neighborhoods, respectively.

The number of parameters PS3TC required for training S3TCs is:

|PS3TC | = fk × nc × (fw × fh + ftd) (7.6)

This number of parameters is lower than that of a spiking 3D convolution in
Equation 7.2, therefore this reduced parameter count would also translate to lower
energy consumption, which aligns well with the need for energy-efficient solutions for
implementation on devices with limited energy.

7.3 Evaluation

7.3.1 Datasets and implementation details

Experiments are performed on the KTH [54], Weizmann [55] and IXMAS [56] datasets,
previously introduced in Section 2.1 (page 17). The protocols used are mentioned in
Section 4.9 (page 70).

We use the same on-center/off-center filter [196] detailed in Chapter 4 (page 63).
The value of the target timestamp t̂ discussed in Section 6.3.2 (page 102) is specific

for each dataset. Similarly to the preceding chapters, we use a value of t̂ = 0.65
for the KTH dataset and a value of t̂ = 0.75 for the Weizmann dataset, for both
convolutional layers. For the IXMAS dataset, we use t̂ = 0.65, which was determined
using an exhaustive search. A spatio-temporal pooling is applied at the end of each
network, in order to limit the size of the output feature maps to 20 × 20 × 2. The
neuron thresholds are randomly initialized with a normal distribution Vth ∼ N (µ, σ2)
with a mean of µ = 8 and variance of σ2 = 0.1 for all experiments, except those with
a kernel size of 3, where we decrease the mean to 7, as shown in Table 7.2. This
is needed because very small kernel sizes mean fewer synapses, which results in no
initial spiking activity when threshold values are too high.
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STDP
ηw = 0.1, τSTDP = 0.1, W ∼ U(0, 1)

Threshold Adaptation

t̂KTH = t̂IXMAS = (0.65, 0.65), t̂Weizmann = (0.75, 0.75)
thmin = 1.0, ηth = 1.0

Difference-of-Gaussian
σ1 = 1.0, σ2 = 4.0, s = 7.0

Table 7.1: The hyperparameter values used in the experiments.

kernel size µ σ2

3 7 0.1

5 8 0.1

7 8 0.1

9 8 0.1

10 8 0.1

Table 7.2: The values of the mean µ and variance σ2 selected for the Gaussian
distribution Vth ∼ N (µ, σ2) which randomly initializes the threshold for each kernel
size.
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We use 10 frames per video, and we also skip three frames between each two
selected frames in order to make sure to capture a full cycle of the performed action.
We scale down the frame sizes to half of their original sizes for processing speed
reasons. We measure the classification accuracy (in %) on the test set for all exper-
iments. Each experiment was run three times, and we report the average accuracy
over the three runs. Each SNN is trained independently, and an SVM with a linear
kernel is placed at the end of each neural network.

7.3.2 3D CSNNs vs. S3TCs

We implement separated convolutions for five different kernel sizes. For the sake of
limiting the possible kernel size combinations, we use the same size f for both the
spatial and temporal kernels. Each 3D convolution has a kernel size of f × f × f ,
while the kernel sizes of its corresponding separated convolutions are f × f × 1 for
the spatial convolution and 1×1×f for the temporal one. The most commonly used
kernel size is f = 3 in the literature [90, 91, 202]. However, larger kernel sizes like
f = 5 and f = 7 have shown to give better results in [203]. We extend this idea by
also using kernel sizes of f = 9 and f = 10, with the aim of exploring whether further
increases in kernel size can provide additional performance gains, in the context of
spiking networks. Table 7.3 shows the results of experiments with different kernel
sizes.

These results show that separated convolutions can achieve competitive perfor-
mance with 3D convolution, while having less parameters. S3TC shows a consistent
amelioration in performance against its 3D CSNN counterpart with the KTH dataset,
with the best performance being 70.52% recorded in Table 7.3 (C). This result is an
amelioration of around 6 p.p. from the best performance of the 3D CSNN. The best
performance with the Weizmann dataset is also recorded in Table 7.3 (C), where an
amelioration of around 7.6 p.p. is recorded. However, with a larger kernel size of 10,
separated convolutions start to fall slightly behind the performance of 3D CSNNs
(around 1 p.p.). On the other hand, with the IXMAS dataset, smaller kernel sizes
make the performance of our S3TC fall slightly behind the performance of 3D CSNNs
(around 1 p.p.). With larger kernel sizes, S3TCs outperform 3D CSNNs, with a dif-
ference that can go up till around 12p.p. This shows the importance of choosing an
appropriate kernel size for these datasets.
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(A) Kernel size = 3
Dataset 3D Convolutions Separated Convolutions
KTH 59.41 60.65

IXMAS 53.81 52.26

Weizmann 56.58 59.29

(B) Kernel size = 5
Dataset 3D Convolutions Separated Convolutions
KTH 61.88 69.29

IXMAS 51.56 51.44

Weizmann 57.61 66.24

(C) Kernel size = 7
Dataset 3D Convolutions Separated Convolutions
KTH 64.20 70.52

IXMAS 40.74 48.87

Weizmann 57.09 65.78

(D) Kernel size = 9
Dataset 3D Convolutions Separated Convolutions
KTH 62.81 65.43

IXMAS 34.01 46.46

Weizmann 56.50 64.62

(E) Kernel size = 10
Dataset 3D Convolutions Separated Convolutions
KTH 60.65 61.11

IXMAS 27.94 38.50

Weizmann 58.09 57.12

Table 7.3: Classification rates in % (average ± standard deviation) for the KTH, IX-
MAS, and Weizmann datasets (10 frames per video) over 3 runs with 3D convolution
and separated convolutions.
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7.3.3 Kernel size impact

As explained in the previous section, different datasets have different ideal kernel
sizes for the separated convolutions, as shown in Table 7.3 (i.e., f = 7 for the KTH
dataset, f = 3 for IXMAS, and f = 5 for Weizmann). This is because these datasets
have different scales and resolutions, which would impact the optimal kernel size.
The results in Table 7.3 also show that kernel size has more impact on the results
with separated convolution. For instance, with the KTH dataset, changing the kernel
size from f = 3 to f = 7 using 3D convolutions has an impact of around 5 p.p., while
with separated convolutions, the impact is around 10p.p. In summary, tailoring kernel
sizes to the unique characteristics of each dataset showcases the nuanced nature of
separated spatial and temporal convolutional operations.

In the context of action recognition, the spatial kernels are responsible for ex-
tracting a series of positions taken by a subject in successive frames. However, these
kernels cannot learn the temporal patterns that model the relationship between these
extracted features. The larger the spatial kernel, up to some extent, the easier it is to
capture and define the patterns of the subject in the video frames. The 1D temporal
kernels model the time dimension, thus combining the output feature maps of the
2D kernels into more discriminant combinations that include motion. Larger ker-
nels provide a better extraction of these moving patterns with datasets that exhibit
significant variations or large movements relative to the frame size, like the KTH
dataset. Smaller kernels are needed for datasets that exhibit smaller variations, like
the Weizmann dataset. Hence, the performance of spiking separated convolutions,
much like 3D convolutions, relies significantly on selecting suitable hyperparameter
values. However, S3TC is even more responsive to these values than 3D convolutions.

7.3.4 Spiking activity

Separated convolutions can outperform regular 3D convolutions for most datasets.
This behavior is similar to the one observed with non-spiking networks in [92], where
they specify that 2D and 1D kernels are easier to optimize with supervised learning
than 3D kernels. This kernel optimization with backpropagation is done by calcu-
lating the gradients of the loss, as previously explained in Chapter 3 (page 51), with
respect to each kernel in a CNN, and an optimization algorithm like stochastic gra-
dient descent is used to update the kernel weights, where the weights are gradually
updated over multiple epochs to improve the ability of the network to detect rele-
vant features in the data. However, this same kernel optimization process does not
happen with STDP, where we use unsupervised learning, and not gradient descent.
Therefore, simpler kernel optimization cannot be the direct reason for the improved
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Figure 7.2: The number of spikes fired by separable spatial and temporal convolutions
compared to 3D convolutions with kernel sizes of 5, 7 and 9 using the KTH dataset.

performance we witness with spiking models. STDP is a local learning rule that
is independent of dimension, because it acts on the synapse connecting each two
neurons independently of the others.

In the case of our unsupervised spiking model, we observe that more spikes are
fired when using separated convolutions than its 3D counterpart, as shown in Fig-
ure 7.2. This is due to the simplicity of the 2D spatial and 1D temporal kernels,
which enables them to respond more often to the input than the more complex 3D
kernels. For kernels with fewer parameters, the number of possible combinations of
input spike patterns that could trigger an output spike is significantly lower than
that of a larger kernel. This results in firing a larger number of output spikes with
separated convolutions and increases the activity of the network, which contributes
to higher accuracy.

Firing a larger number of output spikes can help counteract the spike vanishing
problem discussed in Chapter 1 (page 7). This problem is a significant challenge en-
countered with SNNs, and has kept deep STDP-based SNNs an open research topic
till this day [167]. It results from spiking neurons needing to integrate many spikes
to reach their threshold and fire one output spike, which reduces the spiking activity
in subsequent layers, and hinders learning. Therefore, the fact that separated convo-
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lutions produce a greater number of output spikes makes them more advantageous
than 3D CSNNs for training multi-layer spiking models.

7.4 Conclusion

Spiking neural networks can offer an energy-efficient solution on neuromorphic hard-
ware. However, the usage of 3D convolutions, which are suitable for video analysis,
increases the number of parameters, making training more challenging and poten-
tially leading to more complex hardware requirements. To mitigate this issue, we
opt to reduce the number of parameters in the network by replacing 3D convolutions
with separated convolutions. In this chapter, we factorize a single 3D spiking convo-
lution into two separate spatial and temporal spiking convolutions. This separation
decreases the number of needed parameters, and can improve the performance when
using sufficiently large kernels. The difference in performance between 3D convo-
lutions and separable convolutions is highly dependent on choosing the appropriate
kernel size.

Our first conclusion is that the optimum kernel sizes vary from one dataset to
another depending on their motion variations. If the ratio of significant motion to
background is small, larger kernels may not be ideal, like with the Weizmann dataset.
Otherwise, smaller kernels could provide more benefit.

A second conclusion is that spiking separated convolutions can outperform 3D
convolutions due to their smaller number of parameters, which leads to capturing
more patterns and thus firing more spikes. There is a proportional relationship
between the number of input spikes in a layer and the quality of the learned kernels.
This is because the number of spikes needs to be sufficient to allow the kernels to
converge and learn meaningful patterns effectively. The increased spiking activity at
the output of S3TC layers compared to their 3D counterparts makes these networks
more attractive candidates than 3D CSNNs for multi-layer architectures, since it
diminishes the severity of the spike vanishing problem by promoting more activity
at the outputs of its layers.

Although the performance of these S3TCs is not competitive with that of non-
spiking methods, they present an initial spatio-temporal model based on STDP that
can extract features without supervision. In contrast, the non-spiking methods dis-
cussed in the literature necessitate significant amounts of annotated data for effective
training, unlike S3TCs, reducing the reliance on labeled data.
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Chapter 8

Spiking Two-stream Networks

Two-stream networks are spatio-temporal models specifically designed for effective
video analysis [86], as discussed in Chapter 2 (page 36). When compared to other
deep methods, they exhibit state-of-the-art accuracy on certain action recognition
datasets [2]. However, the strong performance of these models, like most deep ANNs,
comes with a considerable computational cost [8], and requires large amounts of
labeled data for back-propagation. These issues of traditional two-stream networks
can be mitigated by using STDP-based CSNNs as spiking streams, which can learn
visual features in an unsupervised manner, mitigating the reliance of the recognition
pipeline on labeled data.

Spiking two-stream networks harness the advantages of both SNNs and two-
stream architectures. These methods have been introduced previously in [185], where
the authors introduce a deep two-stream SNN based on a spiking ResNet50 architec-
ture and a recurrent spiking neural network (RSNN) fusion module. They employ
ANN-to-SNN conversion with their unique hybrid method. However, ANN-to-SNN
conversion still necessitates training with a non-spiking ANN, diminishing the energy
efficiency gains.

The use of two-stream methods in conjunction with unsupervised STDP-based
learning in the spiking domain has not yet been explored.

In this chapter, we explore the effectiveness of unsupervised STDP-based two-
stream CSNNs in learning spatio-temporal features for HAR with reduced computa-
tional and labeling costs, compared to non-spiking two-stream methods. To do so,
we adopt a mixed classification pipeline, in which unsupervised 2D or 3D CSNNs are
used to learn visual features to be fed to a supervised classifier. The main contribu-
tions of this chapter are summarized as follows:

• we present a two-stream spiking convolutional model, and we investigate mo-
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Figure 8.1: The general two-stream architecture.

tion modeling with five different types of temporal streams in Section 8.1;

• we evaluate and compare the performance of two-stream spiking convolutional
models with our different temporal streams on the KTH [54], Weizmann [55],
IXMAS [56], and UCF Sports [57] action recognition datasets in Section 7.3.

8.1 Two-stream architectures

Two-stream networks have two different streams used for extracting different types
of features from the same video sample, as shown in Figure 8.1. These networks are
effective in scenarios where both the spatial appearance and temporal dynamics of
the visual data are beneficial, like HAR.

The network takes a video clip as input. The appearance information is extracted
by the spatial stream, and the motion information is extracted by the temporal
stream. Then the information extracted from both streams is concatenated and sent
into the classifier.

By leveraging the complementary strengths of spatial and temporal processing,
two-stream networks enhance the ability to analyze complex visual patterns in HAR
videos.

8.1.1 The spatial stream

The spatial stream used in this chapter is an unsupervised STDP-based 2D CSNN,
which is responsible for extracting appearance information from the video. It extends
the recognition pipeline from Figure 4.1 in Chapter 4 (page 63)(classification step
excluded) to process videos. Our approach is displayed in Figure 8.2. It consists in
processing multiple spatial frames separately, producing a set of spiking feature maps
for each frame in the video. The feature maps are subsequently combined through
sum pooling. This process generates a single set of feature maps that effectively
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Figure 8.2: Architecture of the spatial stream. This architecture replaces the box
labeled ”Spatial stream CSNN” in Figure 8.1
.

represents the prominent spatial features within the whole video clip. The resulting
feature maps are then ready for fusion with the output of the temporal stream.

This approach differs from the method adopted in conventional two-stream meth-
ods. Typically, these methods only use a single frame from the video, selected either
randomly from a subset of frames, or through an algorithm that identifies the most
relevant frame for accurately depicting the silhouette of the subject for a specific
class, which requires some supervision [204]. With some action recognition datasets,
selecting a frame randomly can lead to similar frames between actions. For instance,
in a video of people clapping, the selected frame should capture the moment when
the subject’s hands touch, as choosing any other frame might make it seem like they
are waving. Supervised frame selection methods, on the other side, are not suited to
our goals, since we aim at non-supervised feature learning. As a result, we opt to use
multiple frames and extract multiple spatial feature maps using our spatial stream.

8.1.2 The temporal stream

The temporal stream tackles the temporal dynamics of videos, focusing on identi-
fying and extracting motion-related features. We explore five distinct streams to
capture temporal data from videos: four temporal stream configurations that use a
2D pipeline, as shown in Figure 8.3, and one configuration that uses a 3D pipeline,
as shown in Figure 8.4. All of these configurations are inspired by previous chapters.

• Early Fusion: Taking advantage of the early fusion method described in Sec-
tion 5.1.1 (page 76), which implicitly provides elementary motion information,
we evaluate the capability of the SNN to acquire spatio-temporal patterns from
data processed using this technique. This early fusion method allows the CSNN
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Figure 8.3: Architecture of the temporal streams based on 2D convolutions. This
architecture replaces the box labeled ”Temporal stream CSNN” in Figure 8.1

to process the entire video clip as one sample, which maintains the temporal
information between video frames without requiring the use of complex hand-
crafted motion modeling methods such as optical flow. We aim to determine
whether the feature maps extracted by the temporal stream with this elemen-
tary motion modeling method complement those of the spatial stream.

• Optical flow: Optical flow is the most commonly used form of temporal infor-
mation in non-spiking two-stream methods [4, 205, 206]. We apply a motion
modeling method, based on Farneback’s dense optical flow [63], to the tempo-
ral stream in our spiking models and assess the relevance of motion patterns
obtained through this conventional technique in the context of spiking two-
stream networks. Similarly to what is explained in Section 5.3.1 (page 81),
we compute the magnitude and orientation of optical flow vectors using Equa-
tions 5.9 and 5.10 (page 81). As explained in Section 5.3.1, since orienta-
tion data is periodic and difficult to apply latency coding, the optical flow is
displayed in the HSV color space, then converted into the RGB color space.
Finally, latency coding is applied to the resulting frame.

• Frame subtraction: There are simpler ways for motion modeling for the tempo-
ral stream than optical flow, which require fewer computations. Therefore, we
investigate the performance of the spiking two-stream CSNN when using frame
subtraction for motion extraction in the temporal stream. This method is de-
scribed in Section 5.2, Equation 5.4 (page 78). We find this method suitable for
the temporal stream as it offers a straightforward motion extraction technique,
excluding static shape-related details like texture. The question arises whether
the spatial stream can effectively compensate for this omission.

• Motion Grid: We also assess the performance of our spiking two-stream network
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Figure 8.4: Architecture of the spiking two-stream network with temporal stream
based on 3D convolutions.

using shot-based methods explained in Section 5.3.2 (page 83) for the temporal
stream. We use the motion grid because of its demonstrated effectiveness for
HAR with STDP-based SNNs, as demonstrated in Chapter 5.

Motion modeling with the motion grid method requires collecting the optical
flow of each two consecutive frames, and separate the displacement information
into four different directions. Each direction is collected in a separate sub-
frame. Then these sub-frames are joined together to construct the grid, as
described in Section 5.3.2 (page 83).

• Spatio-temporal data: Lastly, we address whether including redundant spa-
tial and temporal data is beneficial. With two-stream methods, the temporal
stream was originally intended to only extract temporal features, while the spa-
tial stream extracts the appearance information. Yet, authors in [111] claim
that it is more effective to fuse a spatial stream with a spatio-temporal stream
that uses 3D CNNs. In this work, we replace the temporal stream by the
3D convolutional spiking neural network introduced in Chapter 6 to extract
spatio-temporal information. This aims at checking if the same amelioration
in performance is attainable in the spiking domain as that attained in the non-
spiking domain with traditional 3D CNNs. Figure 8.4 shows the architecture
of the streams used in this case.
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Learning
fk = 64

Input settings
ltd = 10 for all experiments, except MG: ltd = 48

STDP
ηw = 0.1, τSTDP = 0.1, W ∼ U(0, 1)

Threshold Adaptation
thmin = 1.0, ηth = 1.0,

Vth(0) ∼ N (8, 1)
Difference-of-Gaussian
s = 7.0, σ1 = 1.0, σ2 = 4.0

Table 8.1: The hyperparameter values used in the experiments.

8.2 Evaluation

This section provides the details of our experiments. First, we present the datasets,
along with the implementation details and the hyperparameters of our network.
Then, we show the results of implementing and testing our spiking two-stream neural
network, where we evaluate the individual performance of the spatial and temporal
streams, in addition to the performance of the complete architecture.

8.2.1 Datasets and implementation details

We use the KTH, Weizmann, IXMAS and UCF-Sports action recognition datasets
which were previously introduced in 2.1 (page 17). Their evaluation protocols were
described in Section 4.9 (page 70).

The hyperparameters used in this chapter are presented in Table 8.1. We use the
same 2D on-center/off-center as in previous chapters, with the same values of σ1 and
σ2.

The convolutional layer of each stream has fk = 64 kernels for all settings. The
two-stream CSNN uses the spatial stream of Figure 8.2 for all experiments with a
convolutional kernel size of 5×5. The 2D temporal streams also have a convolutional
kernel size of 5 × 5. The 3D temporal stream has a convolutional kernel size of
5× 5× 2, where the kernel size in the temporal dimension is small in order to detect
small motion variations, which proved beneficial compared to a temporal size of 3
(see Table 6.4, page 107). The value of the target timestamp t̂ that is discussed in

128



Section 4.5 (page 66) is specific to each dataset. We use a value of t̂ = 0.65 for the
KTH, IXMAS and UCF Sports datasets, and a value of t̂ = 0.75 for the Weizmann
dataset, which has smaller motion variations because the camera is further away
from the subjects than in other datasets. The size of the output feature maps is set
to 20×20×2, except for the streams that use a single-frame representation of motion
as a pre-processing, i.e. early fusion and motion grid, in which case the feature map
size is set to 20× 20× 1.

We use 10 frames per video, skipping three frames between each two selected
frames. This number of frames per sample is fixed in all experiments except the
motion grid, which uses 48 frames to construct one grid. As mentioned in Sec-
tion 4.9 (page 70), we also scale down the frame sizes to half of their original sizes
for processing speed reasons.

After the spiking feature maps are obtained at the output, they are converted
back into non-spiking feature maps using Equation 4.7 (page 69), as in previous
chapters. Spatio-temporal sum-pooling is used at the output of each CSNN.

We measure the classification accuracy (in %) on the test set for all experiments.
Each experiment is run three times, and we report the average accuracy over the
three runs. Each CSNN stream is trained independently and an SVM is placed at
the end of each stream, in order to have an accurate measure of performance for the
feature maps before and after fusion.

8.2.2 Performance with varied temporal stream configura-
tions

In this section, we study the effects of using different temporal configurations within
the two-stream architectures. Tables 8.2, 8.3, 8.4, 8.5, and 8.6 show the results of
experiments where the spatial stream processes raw video frames, and the tempo-
ral streams use early fusion, optical flow, frame subtraction, motion grid, or 3D
convolution, respectively.

The results in Table 8.2 show that the performance of the spatial stream with
raw videos is better than that of the temporal stream, which uses early fusion for
motion modeling. This is because we implement temporal pooling at the end of the
spatial stream, in order to join the output feature maps together. This is equivalent
to a sort of late fusion, and, as shown in [86] and in our results in Chapter 5, late
fusion has a better performance than early fusion with CNNs and with STDP-based
CSNNs. Nevertheless, fusing both streams gives superior results to the individual
performance of those streams with all datasets, except for the Weizmann dataset.
With this dataset, fusing the features together did not give any added value, and thus
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Dataset Raw video (2D conv) EF (2D conv) Fused
KTH 54.01 52.16 55.71

UCF Sports 35.33 26.67 38.00

IXMAS 43.46 38.44 48.54

Weizmann 52.31 51.91 51.91

Table 8.2: Classification rates in % on the KTH, UCF Sports, IXMAS, andWeizmann
datasets (10 frames per video) over 3 runs. The spatial stream uses raw frames, and
the temporal stream uses early fusion (EF).

Dataset Raw video (2D conv) OF (2D conv) Fused
KTH 54.01 61.73 64.51

UCF Sports 35.33 38.00 40.00

IXMAS 43.46 61.41 62.52

Weizmann 52.31 65.84 66.21

Table 8.3: Classification rates in % on the KTH, UCF Sports, IXMAS, andWeizmann
datasets (10 frames per video) over 3 runs. The spatial stream uses raw frames, and
the temporal stream uses optical flow (OF).

did not result in a better classification rate. This is a consequence of noise patterns
that are learned by the spatial stream, as we will discuss later in Section 8.3.

The results in Table 8.3 show that the difference in performance between the
temporal stream that extracts features from optical flow data and the raw spatial
stream can be large (more than 10 p.p.). Yet, this does not affect the fact that the
temporal and spatial recognition streams are complementary, because their fusion
systematically improves the results over having only one stream or the other. There-
fore, with spiking models, the streams do not have to have similar performance in
order for the fusion to be beneficial.

The same applies to the results displayed in Table 8.4, where some experiments
show a significant difference in performance between the streams. The features ex-
tracted by these two streams are diverse and complementary: one of them extracts
appearance information, while the other one extracts features from edges of motion,
because a DoG filter is applied after frame subtraction. These results further show
that these networks leverage the strengths of each stream, resulting in improved
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Dataset Raw video (2D conv) FS (2D conv) Fused
KTH 54.01 64.97 67.75

UCF Sports 35.33 38.33 38.67

IXMAS 43.46 60.93 61.69

Weizmann 52.31 71.23 63.45

Table 8.4: Classification rates in % on the KTH, UCF Sports, IXMAS, andWeizmann
datasets (10 frames per video) over 3 runs. The spatial stream uses raw frames, and
the temporal stream uses frame subtraction (FS).

Dataset Raw video (2D conv) MG (2D conv) Fused
KTH 54.01 66.82 67.28

UCF Sports 35.33 46.00 50.67

IXMAS 43.46 60.50 63.83

Weizmann 52.31 70.77 68.52

Table 8.5: Classification rates in % on the KTH, UCF Sports, IXMAS, andWeizmann
datasets (10 frames per video) over 3 runs. The spatial stream uses raw frames, and
the temporal stream uses the motion grid (MG) motion modeling.

performance when fusing the spatial and temporal feature maps.
Table 8.5 shows the result of fusing the spatial stream feature maps with those

extracted by using a single frame representation of motion. The same behavior as
above is observed: the temporal stream that uses the motion grid representation
significantly outperforms the spatial one, and yet the fusion performance is still
ameliorated.

Table 8.6 shows the results of combining the features extracted by a 2D CSNN
with those of a 3D CSNN. These results show that combining spatial features with
spatio-temporal features does not systematically show notable improvement with
all datasets. This is because the 3D CSNN is already able to extract the appear-
ance information extracted by the spatial stream, in addition to temporal features.
Therefore, adding the spatial features coming from the spatial stream to the spatio-
temporal one results in information redundancy that does not always help ameliorate
the results. However, the results do ameliorate after fusion with the IXMAS dataset.
This is because convolutional neural networks are less effective when extracting spa-
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Dataset Raw video (2D conv) Raw video (3D conv) Fused
KTH 54.01 61.27 54.48

UCF Sports 35.33 52.00 48.67

IXMAS 43.46 55.33 55.54

Weizmann 52.31 55.41 55.07

Table 8.6: Classification rates in % on the KTH, UCF Sports, IXMAS, andWeizmann
datasets (10 frames per video) over 3 runs. The spatial stream uses raw frames, and
the temporal stream uses 3D Convolution.

Dataset FS (2D conv) Raw video (3D conv) Fused
KTH 64.97 61.27 64.35

UCF Sports 38.33 52.00 43.33

IXMAS 60.93 55.33 62.39

Weizmann 71.23 55.41 60.31

Table 8.7: Classification rates in % on the KTH, UCF Sports, IXMAS and Weizmann
datasets (10 frames per video) over 3 runs. The spatial stream uses frame subtraction
with 2D convolution, and the temporal stream uses raw frames with 3D convolution.

tial information from datasets with different viewpoints, like the IXMAS dataset,
because very different image observations can be obtained from observing the same
action from different viewpoints [39]. What was observed in [39] still applies for
STDP-based learning, where having several viewpoints increases the number of pat-
terns to learn. This decreases the feature redundancy, and thus makes the fusion
beneficial. In the same spirit, we check if the same effect applies to adding addi-
tional temporal information for some temporal redundancy. Table 8.7 shows the
results of the fusion between a stream that uses frame subtraction and another that
uses 3D convolution. These results show that redundant temporal information does
not systematically ameliorate the fusion performance. Again, the only recorded ame-
lioration is with the IXMAS dataset due to an increased number of patterns to learn
from several viewpoints. These results support the initial claim that adding redun-
dant information regardless of its nature (spatial or temporal) to spatio-temporal
information does not always result in better performance.
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Figure 8.5: Raw videos and spatial stream feature maps as samples of the (a) KTH,
(b) UCF Sports, (c) IXMAS, and (d) Weizmann datasets.

8.3 Discussion

In some experiments, the variance of the UCF Sports dataset remains zero regardless
of the different seeds used, owing to the limited number of samples. Among various
seeds, not always the same samples were recognized, but overall, the same number
of correctly classified samples was observed.

Results show that the individual stream performances of the spiking networks do
not have to be similar so that their fusion achieves better performance. Moreover,
fusing spatial and temporal information is usually beneficial, even when the tempo-
ral stream records less performance than the spatial one. These results also show
that spiking models can effectively learn spatial as well as temporal features with
STDP, and that the fusion performance is related to the nature of the fused fea-
tures. This is visible when fusing spatial information obtained from a raw video with
motion information obtained from the same video pre-processed with optical flow
extraction. This delivers a richness in the resulting fused spatio-temporal features,
and thus ameliorates the results. On the other hand, fusing spatial features with
spatio-temporal features generally gives no improvement in performance, as shown
in Tables 8.6 and 8.7, except when there are notable variations in the patterns of the
same action, such as in the case of videos shot from different viewpoints. This makes
it more difficult to learn representative features, and therefore the spatio-temporal
CSNN can benefit from additional support from another stream.

The results of applying the two-stream method to the Weizmann dataset, in
Tables 8.2, 8.4 and 8.5, show a decline in performance after fusion. As previously
mentioned, the extracted feature maps, as shown in Figure 8.5, contain a significant
amount of background noise learned by the CSNN with the Weizmann dataset, as
opposed to the other datasets. This sensitivity to spatial noise is due to the fact
that STDP relies on the precise timing of spikes to update the synaptic weights. In
the presence of spatial noise, the larger, noisy pixel values will be translated into
earlier spikes by latency coding. This will facilitate their integration by the neuron,
causing it to fire erroneously. This leads to unreliable updates in synaptic strengths

133



Figure 8.6: A video sample filtered using a DoG filter. We display both the on and
off channels with (a) no minimum pixel intensity (b) its corresponding extracted
feature map (c) a minimum pixel intensity of 10 (d) its corresponding feature map
(e) a minimum pixel intensity of 20 (f) its corresponding feature maps.

and degrades the network performance.
We attempted reducing this noise by applying a Gaussian filter to both the spatial

and temporal streams. The noise has slightly decreased, but it was not fully removed,
and it still affected the fusion result. Therefore, in order to confirm our hypothesis
concerning the impact of noise on the Weizmann dataset, we resort to a different
method for noise reduction. We use a minimum pixel intensity as a cutoff value for
the DoG filter, thus eliminating all the pixels of the DoG response whose intensity
is lower than this value.

When using a minimum pixel intensity of 10, the classification rates of the in-
dividual streams increase as a result of noise reduction, as shown in Table 8.8 (a).
This occurs with most streams, except the one using frame subtraction. The spatial
noise with this stream is not significant; therefore, the loss of information from the
cutoff has a greater degrading impact on the performance than the gain of perfor-
mance attributed to noise reduction. With a cutoff value of 10, the noise is not
fully removed, as shown in Figure 8.6 (d), and therefore the fusion is still ineffective.
However, when increasing the minimum DoG response to 20, the classification rates

134



(a) Cutoff = 10
Raw video (2D conv) EF (2D conv) Fused

59.32 65.61 67.35

Raw video (2D conv) OF (2D conv) Fused
59.32 60.43 62.91

Raw video (2D conv) FS (2D conv) Fused
59.32 59.91 58.80

Raw video (2D conv) MG (2D conv) Fused
59.32 72.17 59.57

Raw video (2D conv) Raw video (3D conv) Fused
59.32 55.61 57.58

(b) Cutoff = 20
Raw video (2D conv) EF (2D conv) Fused

47.83 48.75 50.43

Raw video (2D conv) OF (2D conv) Fused
47.83 57.21 59.69

Raw video (2D conv) FS (2D conv) Fused
47.83 48.21 51.05

Raw video (2D conv) MG (2D conv) Fused
47.83 30.83 48.72

Raw video (2D conv) Raw video (3D conv) Fused
47.83 50.71 48.66

Table 8.8: Classification rates in % of the Weizmann dataset (10 frames per video)
over 3 runs: (a) with a minimum pixel intensity of 10, (b) with a minimum pixel
intensity of 20.

135



of the individual streams are significantly decreased, as shown in Table 8.8. This is
a result of discarding a large amount of the information while trying to discard the
noise. However, with this configuration, the fusion operation is no longer affected by
the spatial noise. This successful fusion performance highlights the effects of noise
on spiking two-stream methods. This indicates that there is a need for alternative
noise reduction methods that improve the feature fusion without compromising the
information. Moreover, the feature fusion with 3D convolution is still unsuccessful
because the extracted features are still redundant in both streams, which is consistent
with our previous conclusions.

8.4 Conclusion

In this chapter, we focused on transposing a popular deep learning method to the
spiking domain. We present spiking two-stream methods, which allow 2D CSNNs to
extract spatio-temporal information from videos: we implement two-stream methods
and a number of spatio-temporal or temporal streams using STDP-based CSNNs,
and we gather the following conclusions:

• spiking two-stream methods trained with unsupervised STDP can successfully
extract spatio-temporal features from action recognition videos;

• spiking spatial and temporal streams are complementary with all the chosen
temporal stream configurations;

• spatio-temporal streams (like 3D CSNNs), used in addition to a spatial stream,
lead to information redundancy and does not give effective results with STDP-
based two-stream spiking models;

• spiking neural networks trained with STDP and employing latency coding are
sensitive to significant spatial noise.

STDP-based unsupervised two-stream SNNs can effectively integrate cost-effective
computations with robust spatio-temporal information processing. These models
represent a significant stride for video analysis with spiking models. While the per-
formance of these spiking two-stream networks has yet to match that of non-spiking
methods, they introduce an initial STDP-based spatio-temporal model capable of
extracting features without supervision. In contrast, the non-spiking methods intro-
duced in the literature require large amounts of annotated data for effective training.
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Part IV

Conclusion and Future Work
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this manuscript, we addressed video analysis using feature learning with SNNs
trained in an unsupervised manner with the STDP learning rule, and we have pre-
sented four key contributions.

The first contribution presented in Chapter 5 of this manuscript demonstrates the
capability of 2D CSNNs to perform video classification by processing motion infor-
mation that is modeled in the spatial domain as static representations of motion. We
discuss two categories for these static representations, shot-based and frame-based
representations. In the case of frame-based representations, they solely model the
motion between each two consecutive frames. Therefore, data fusion methods are
required to incorporate more than just two frames, because actions cannot be differ-
entiated accurately using only two frames. On the other hand, shot-based methods
effectively encapsulate at least one complete action cycle because they inherently con-
tain early fusion. These innovative representations offer a more descriptive modeling
of the data, which makes it easier to process by the 2D CSNN.

Our findings highlight that motion modeling is essential for HAR with STDP-
based 2D CSNNs. We establish that shot-based methods offer a more complete data
representation than frame-based methods, as reflected in the superior performance
of the CSNN with these methods. We observed that the sum pooling of output
feature maps should not be too severe, otherwise it can hinder the performance of
the SVM. We also conclude that frame subtraction can be beneficial in the presence
of spatial background noise, but detrimental when dealing with optical-flow-based
data or scenarios where spatial information is of significant importance. Finally, We
conclude that STDP-based CSNNs need more than simple fusion techniques, like
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early and late fusion, to process sequences of frames effectively for HAR.
Our second contribution introduces a spatio-temporal spiking solution for ac-

tion recognition, which is unsupervised STDP-based 3D CSNNs. This model has a
temporal dimension dedicated to time, which enables them to learn spatio-temporal
features from videos naturally and without needing extra processes like the ones
mentioned in Chapter 5. Through a comparative analysis of 2D CSNNs and 3D
CSNNs, both operating on raw frames, we establish that 3D CSNNs have a superior
performance to 2D CSNNs for the task of human action recognition. It is important
to note that our spatio-temporal features are learned without supervision, which
is more difficult than supervised alternatives. Additionally, we conclude that the
application of multi-layer architectures necessitates an exhaustive search to identify
optimal hyperparameters to facilitate subsequent layer learning. This contribution
addresses the challenge of SNN network architecture designs for motion modeling
described in Chapter 1, and particularly the limited availability of spatio-temporal
STDP-based models tailored for video analysis.

Our third contribution addresses the environmental and hardware limitation con-
cerns that arise from using 3D CSNN architectures. Although these fully spiking
solutions have a superior performance to their 2D counterparts, they have a greater
number of parameters. We present spiking separated spatial and temporal convo-
lutions, which are a fully spiking solution with fewer parameters than 3D CSNNs.
These networks have lower computational complexity and promote potential eas-
ier hardware implementation. We conclude that spiking separated convolutions can
outperform 3D convolutions due to the simplicity of their kernels, which leads to
responding to more patterns and thus firing more spikes. Moreover, we conclude
that optimal kernel sizes vary across datasets, depending on the diversity of motion
patterns to be captured.

Our fourth and final contribution addresses the lack of network architecture de-
signs for unsupervised STDP-based SNNs. Specifically, a spiking version of two-
stream methods, which are state-of-the-art networks for HAR. These methods har-
ness spiking spatial and temporal streams, which are complementary with most
chosen temporal stream configurations. However, we observe that spatio-temporal
streams, like 3D CSNNs, can cause information redundancy and negatively affect
the results with these spiking models. Finally, we conclude that these models are
sensitive to significant spatial noise, which degrades their performance.

The findings and contributions presented within this manuscript serve as build-
ing blocks towards advancing the task of human action recognition through spiking
models trained with unsupervised STDP. By closely examining the limitations of
current SNNs, we propose new spiking methods which are able to perform video
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feature learning without supervision. Our end goal is to use spiking models to ex-
tract important patterns in videos without resorting to costly workarounds. We also
explore diverse spiking architectures, like the spiking separated convolutions and
two-stream methods, which can improve performance while also being compatible
with neuromorphic hardware. These findings are a step forward in using SNNs for
video analysis, and open up compelling possibilities for future progress in this area.

9.2 Future work

The preceding chapters have explored various aspects of STDP-based CSNNs in
the context of motion modeling and video analysis. As we consider the potential
advancements and extensions of this research, it becomes imperative to provide an
overview of the perspectives and driving forces that underpin the proposed future
work.

In the subsequent sections, we outline the key areas of research and development
that hold promise for advancing the current understanding and implementation of
SNNs in video analysis. Each subsection highlights specific avenues for exploration,
emphasizing the need to introduce spiking solutions for various stages of the video
analysis pipeline. By addressing these aspects, we aim to expand the capabilities
and effectiveness of spiking neural networks, paving the way for cost-effective video
understanding and motion modeling.

9.2.1 Spiking shot-based motion modeling

2D CSNN cannot conserve the temporal information present between frames in
videos, because these methods are solely capable of spatial feature extraction, as dis-
cussed in Chapter 5. 2D CSNNs need motion modeling methods as a pre-processing
step in order to extract the temporal dynamics inherent in videos. Non-spiking mo-
tion modeling methods are not natively computationally efficient, and are difficult
to implement with hardware. Therefore, a spiking pre-processing method for motion
modeling can be useful in conserving the temporal information, without being too
costly, and can still be implementable on neuromorphic hardware.

In Chapter 5, we demonstrate the superiority of shot-based methods for video
analysis. Therefore, spiking versions of these methods can be interesting avenues for
future work. An example of this would be a spiking motion grid, which can be created
by replacing the non-spiking optical flow method with another motion modeling
method that is implementable on hardware, like the Reichardt detector [207]. Then
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the motion displacements can be collected, and the grid can be built as a fully spiking
solution.

This would be useful for creating a fully spiking solution for STDP-based spiking
two-stream methods. The two-stream methods presented in Chapter 8 use classical
pre-processing methods that are non-spiking. However, fully spiking SNNs represent
a pivotal step towards harnessing the true power and efficiency of SNNs for complex
tasks like video analysis. Therefore, future work shall focus on creating a fully spiking
two-stream solution.

9.2.2 Multi-layer SNN

Chapter 6 introduces a multi-layer fully-spiking model which necessitates a careful
selection of hyperparameters that govern various aspects of the network’s operation,
such as learning rates, kernel sizes, and threshold adaptation parameters. Decreasing
the complexity of choosing these parameters has the potential to promote the usage of
spiking models. This opens the door for other research questions, like what methods
can be used to set hyperparameters automatically [208], and how to improve the
extraction of relevant space-time features with an end-to-end SNN. The work in [208]
serves as a relevant reference in automated hyperparameter tuning that could be
extended to suit the specifics of the multi-layer fully-spiking model.

The S3TC architecture discussed in Chapter 7 could prove advantageous in this
context as well. This is because S3TCs exhibit higher spiking activity at its output
than a 3D convolutional layer, which is beneficial for subsequent layer learning within
SNNs.

9.2.3 Multi-stream S3TC architecture

In Chapter 7, we discuss the need to tailor kernel sizes to capture relevant spatio-
temporal information from datasets with different characteristics. Therefore, a promis-
ing avenue for future work would involve using a multi-stream architecture with sep-
arated convolutional networks. Some streams would have a large kernel size, and
others would have a small kernel size. This approach would enable the extraction
of relevant information about both small and large motion patterns, which leads to
better generalization across datasets.
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9.2.4 2D CSNN with memory

In previous chapters, we have seen the advantages of spatio-temporal architectures
with CSNNs, and we have tackled the problem of reducing the computational costs
of CSNNs by using separated convolutions. However, these networks are deeper than
3D CSNNs, which means that they require training two layers instead of one.

As a future work, we would like to create a CSNN that is spatio-temporal, has
the number of parameters associated with a 2D CSNN, and does not require two
layers to get the spatio-temporal data. Therefore, we opt for a solution that is a
spatio-temporal 2D CSNN with memory.

This can be done by adapting the nature of the IF neuron, instead of adding
feedback loops for memory. The nature of the neuron could be adapted in a way
that instead of re-setting the internal voltage to zero when introducing a new sample,
we can instead apply a leak to this voltage, which brings it down to 35% of its value.
This allows the neuron to keep some memory from one frame to the next in the
video. It would allow the network to process sequential data with a 2D architecture,
and capture the motion using the history of the voltage in the neuron.
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Appendix A

Acronyms

ADD-STDP: Additive Spatio-Temporal Back-Propagation.
ANN: Artificial Neural Network.
ATIS: Asynchronous Time-Based Image Sensor.
BCM: Bienenstock-Cooper-Munro.
BP: Back Propagation.
BPTT: Back Propagation Through Time.
CC: Composite Channels representation.
CCOA: Composite Channels with Orientation and Amplitude representation.
CMA: Covariance Matrix Adaptation.
CNN: Convolutional Neural Network.
CSNN: Convolutional Spiking Neural Network.
DNN: Deep Neural Network.
DoG: Difference of Gaussians.
DVS: Dynamic Vision Sensor.
DXDY: Displacement in X and Y Directions representation.
EG: Edge Grid.
ESURF: Enhanced Speeded-Up Robust Features.
FC: Fully Connected Layer.
FF: Feed Forward Layer.
FS: Frame Subtraction.
GRN: Gene Regulatory Network.
GRUs: Gated Recurrent Units.
HAR: Human Action Recognition.
HOG: Histogram of Oriented Gradients.
HOF: Histogram of Optical Flow.
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HRSNN: Heterogeneous Recurrent Spiking Neural Network.
IF: Integrate-and-Fire.
IoT: Internet of Things.
ISI: Inter-Spike Interval.
KLT: Kanade–Lucas–Tomasi Tracker.
LAT: Leaky Adaptive Threshold.
LIF: Leaky Integrate-and-Fire.
LSTM: Long Short-Term Memory.
LSM: Liquid State Machine.
LTD: Long-Term Depression.
LTP: Long-Term Potentiation.
M-STDP: Mirror Spike Timing-Dependent Plasticity.
MBH: Motion Boundary Histograms.
MG: Motion Grid.
Mult-STDP: Multiplicative Spatio-Temporal Back-Propagation.
OF : Optical Flow.
OA: Orientation and Amplitude Representation.
P-STDP: Probabilistic Spike Timing-Dependent Plasticity.
ReLU: Rectified Linear Unit.
ResNet: Residual Network.
Rev-STDP: Reversed Spike Timing-Dependent Plasticity.
RNN: Recurrent Neural Network.
R-STDP: Reward-Modulated Spike Timing-Dependent Plasticity.
SD: Spatial Domain.
SDSP: Spike-Driven Synaptic Plasticity.
SLAYER: Spike Layer Error Reassignment.
SFA: Spike Frequency Adaptation.
SIFT: Scale-Invariant Feature Transform.
SNN: Spiking Neural Network.
S-STDP: Stable Spike Timing-Dependent Plasticity.
SVM: Support Vector Machine.
S3TC: Spiking Separated Spatial and Temporal Convolution.
STS-ResNet: Spatio-Temporal Spiking Residual Network.
STBP: Spatio-Temporal Back-Propagation.
STDP: Spike Timing-Dependent Plasticity.
SURF: Speeded-Up Robust Features.
TSRNN: Temporal Spiking Recurrent Neural Network.
T-STDP: Triplet Spike Timing-Dependent Plasticity.
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TD: Temporal Domain.
TTFS: Time-to-First Spike encoding.
WTA: Winner-Takes-All.
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Appendix B

List of Symbols

Generic Parameters:

x Pixel coordinates in the horizontal dimension.
y Pixel coordinates in the vertical dimension.
U Uniform distribution.
N Normal distribution.
µ Mean of distribution.
σ2 Variance of distribution.
Wxh Weight for the input-to-hidden connection.
Whh Hidden-to-hidden recurrent connection.
Why Hidden-to-output connection.
bh Bias for the hidden state.
by Bias for the output state.

Network parameters:

lw Width of the input frames.
lh Height of the input frames.
lc Number of input channels.
ltd Temporal depth of the input.
nsampling Number of input patches.
X Input vector.
x ∈ [0, 1] Input value.
fw Width of the filter.
fh Height of the filter.
ftd Temporal depth of the filter.
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fk Number of filters.
lpad Padding pixels.
lstride Stride of the kernel.
P2D Number of parameters of a 2D spiking convolution.
P3D Number of parameters of a 3D spiking convolution.
PS3TC Number of parameters of an S3TC.
nc Number of channels.

Pre-Processing Parameters:

θm Threshold of the sum of pixel frames channels.
DoG Difference-of-Gaussians filter.
G Gaussian kernel.
σ1, σ2 Standard deviations of Gaussians.
xon On channel.
xoff Off channel.
s Size of Gaussian kernel.

Video and frame processing:

n Index in a sequence.
I Input frame.
c1, c2, c3 Image channels.
Io Output frames.
r Row index.
c Column index.
Pd Pixel difference.
p Number of rows of a shot-based grid.
q Number of columns of a shot-based grid.
Mu Upwards displacement of the optical flow vector.
Md Downwards displacement of the optical flow vector.
M l Displacement to the left of the optical flow vector.
M r Displacement to the right of the optical flow vector.
∗ Convolution operator.
OFx Horizontal component of the optical flow vector.
OFy Vertical component of the optical flow vector.
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Neuron and synaptic plasticity:

fa Activation function.
W Synaptic weight matrix.
b Bias.
Vm Neuron membrane potential.
Vth Neuronal threshold.
t̂ Target timestamp.
∆th Change in neural threshold.
x Coordinates of the spike in the width dimension.
y Coordinates of the spike in the height dimension.
z Coordinates of the spike in the time dimension.
k Coordinates of the spike in the channel dimension.
n(), j(), m() Functions that map the location of the input neuron to the

corresponding location in the weight matrix.
∆w Change in synaptic weight.
ηw Weight learning rate.
ηw+ A constant learning rate for LTP.
ηw− A constant learning rate for LTD.
a+ Amplification parameter of LTP.
a− Amplification parameter of LTD.
τSTDP Time constant for the STDP learning window.
t Neuron firing timestamp.
ηth Threshold learning rate.
ld Number of neurons that are in competition in the layer.
ti Firing timestamp of neuron i.
tpre Timestamp for input spikes.
tpost Timestamp for output spikes.
min{t0, ..., tN} Minimum timestamp.
thmin Minimum possible threshold value.
E Set of incoming spikes.
Es Set of incoming spikes of neurons in the spatial neighborhood.
Et Set of incoming spikes of neurons in the temporal neighborhood.
i Spike index.
δt Relative timing of a pre-synaptic and post-synaptic spike pair.
fs Kernel of spikes.
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Neural coding properties:

texposition Presentation duration for one sample.
r(xi) The rank of the input.
ISI Inter-spike interval.
Ns Number of spikes in a burst.
Tmax Maximum inter-spike interval.
Tmin Minimum inter-spike interval.
ws Variable spike weight for phase coding.
ϕ Phase.
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