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Avant-propos

Ce mémoire d’habilitation à diriger des recherches résume les recherches que j’ai menées
depuis l’obtention de mon doctorat en mars 2014 à l’École Polytecnique de Turin (Politecnico
di Torino). Mes recherches en biostatistique se sont principalement concentrées sur les méthodes
bayésiennes et la modélisation mathématique pour les petits échantillons et les essais cliniques,
avec un intérêt particulier pour les phases précoces. Mon objectif principal est d’utiliser davan-
tage d’informations disponibles dans la conception et l’analyse des essais cliniques, afin de mieux
décrire et expliquer la relation dose-réponse (toxicité ou efficacité).

Mes contributions à l’amélioration des essais cliniques grâce à des informations supplémen-
taires peuvent être classées en deux catégories principales : d’une part en intégrant davantage
d’informations recueillies pendant les essais eux-mêmes (informations internes) et d’autre part
en considérant des sources de données externes supplémentaires (informations externes).

Les informations internes font référence aux données générées au sein de l’essai lui-même. Cela
inclut mes recherches sur l’incorporation de la pharmacocinétique et de la pharmacodynamique
dans les essais d’escalade de dose de phase I [Ursino et al., 2017, Gerard et al., 2022]. En outre, j’ai
étudié l’utilisation de données provenant de cycles multiples [Ursino et al., 2022] et de plusieurs
variables de toxicité [Ursino et al., 2019] dans le même contexte recherche de dose, ainsi que la
mise en œuvre d’un design bayésien qui couvre les essais “seamless" de phase II et III [Duputel
et al., 2023].

Mes travaux sur l’incorporation de sources de données externes englobent le développement
de distributions a priori par le biais de l’analyse de données provenant d’essais cliniques antérieurs
[Ollier et al., 2020], l’élicitation d’experts [Thall et al., 2019], ainsi que mes travaux sur la méta-
analyse des études de recherche de dose [Ursino et al., 2021] et la consolidation des résultats de
multiples études (précliniques) sur de petits échantillons [Boulet et al., 2024].

Après un premier chapitre qui présente le contexte de mes travaux, les quatre derniers cha-
pitres abordent ces catégories plus en détail. Pour garder ce document concis, il n’inclut ni
résultats exhaustifs ni détails des simulations ; il est recommandé aux lecteurs de se référer aux
publications originales pour une compréhension approfondie. Il est aussi important de souligner
que ce résumé ne couvre pas l’intégralité de mes recherches précédentes. Néanmoins, dans chaque
chapitre, j’ai décrit au moins un travail dont je suis le premier ou le co-premier auteur et un
travail que j’ai supervisé.

Depuis novembre 2023, j’ai demandé une autorisation à diriger une thèse (ADT) et en colla-
boration avec Emmanuelle Comets, je co-supervise la thèse de Axel Vuorinen, qui se concentre
sur l’utilisation de la modélisation PK/PD dans les essais de plateforme de phase I/II (travail
financé par une subvention MESSIDORE 2022/2023 dont je suis l’investigateur principal). Ce
travail, ainsi que d’autres que je mène actuellement dans d’autres financés par des appels à
projet, où je suis responsable de tâche ou de groupe (work package leader), seront cités à la fin
de chaque chapitre.
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Introduction
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The main goal of this manuscript is to clearly show the work I have done since completing
my PhD, sharing the journey, the progression and evolution of my research interests but also
highlights the contribution to the academic community. My research in biostatistics has pri-
marily focused on Bayesian methods and mathematical modeling for small samples and clinical
trials, with a special interest in the early phases. I aim to leverage additional available data in
both designing and analyzing clinical studies to better describe and explain the dose-response
relationship (toxicity or efficacy).

In this chapter, I will provide a succinct introduction to the topics that form the foundation
of my research works. The aim is not to delve deeply into each subject, but rather to outline
the essential elements, paving the way for a more detailed introduction in subsequent chapters.

1.1 Drug development

Drug development is a complex and rigorous process, designed to ensure that any new
medication is both safe and effective before it reaches the public. It is conducted under the
strict oversight of health regulatory agencies. In the United States, this role is fulfilled by
the Food and Drug Administration (FDA), while in the European Union, it is managed by
the European Medicines Agency (EMA). This journey from laboratory to pharmacy shelves is
meticulously structured into preclinical and subsequent clinical phases (Figure 1.1), each with
distinct objectives and methodologies.

Preclinical Phase: Before human trials can begin, the preclinical phase serves as a crucial
initial step, where the safety and efficacy of a compound are evaluated in vitro (e.g., petri

Figure 1.1 – Scheme of drug development.
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dishes) and in vivo (in living organism, e.g., animal models). This stage aims to understand
the pharmacokinetics (PK, how the body affects a drug) and pharmacodynamics (PD, how
a drug affects the body) of the compound. Researchers assess the toxicity, dosing, and
potential side effects to ensure the compound safety profile warrants further study in
humans.

Phase I: The first phase of clinical trials involves a small group (20-100) of healthy volunteers,
or patients in oncology or in vulnerable populations, and focuses primarily on assessing the
safety of the drug, determining safe dosage ranges, and identifying side effects. Another
goal is to establish the drug PK and PD in humans.

Phase II: This phase aims to evaluate the efficacy of the drug, alongside further safety assess-
ment. It involves a larger group of participants (100-300) who have the condition that
the drug is intended to treat. Phase II helps to determine the optimal dose and provide
preliminary evidence on the drug effectiveness.

Phase III: Involving an even larger group of participants (1000-3000), this phase aims to con-
firm the drug’s efficacy, monitor side effects, compare it to commonly used treatments,
and collect information that will allow the drug to be used safely. This phase is critical
for the drug approval process, providing the detailed data regulatory authorities need to
approve or reject a drug for public use.

Phase IV: Conducted after the drug has been approved and is on the market, this phase
involves the post-marketing surveillance of the drug performance in a real-world setting.
It aims to detect any rare or long-term adverse effects over a larger population and longer
time period, ensuring the drug ongoing safety and effectiveness.

Each phase of clinical research is crucial for the assessment of new drugs, ensuring that only safe
and effective treatments reach the public. Typically, each phase is conducted sequentially, and a
drug advances to the next phase only upon successful completion of the current one. However,
as discussed later in this chapter, it is possible to integrate multiple phases into a single trial or
protocol.

1.2 Early phase clinical trials

In early-stage clinical trials, including Phase I and Phase I/II (that is combining Phases I and
II simultaneously or sequentially), researchers conduct dose-finding studies to assess drug safety
and PK in humans. These initial trials, often with healthy volunteers, seek to determine the safe
dosage range and toxicity relationship of promising new treatments. In cases of severe diseases
like cancer or for specific populations such as children, patients with limited treatment options
may participate in Phase I trials due to the potential high toxicity of therapies. These trials
focus on identifying the maximum tolerated dose (MTD), typically defined by the likelihood
of dose-limiting toxicity (DLT), which is often based on initial treatment cycle data, especially
in oncology. Phase I trials are usually structured with predetermined doses, cohort sizes, and
stopping rules. The dose closest to the desired toxicity probability is deemed the MTD, upon
reaching the maximum sample size. This MTD then helps establish a recommended dose for
further trials. Then, the Phase II stages assess a drug’s efficacy in patients, often using PD
markers to understand the dose-response relationship based on specific biomarkers.
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Ethical considerations prevent simple random designs; instead, trials use response-adaptive
sequential designs to find the appropriate dose with minimal participants, avoiding excessive
toxicity or ineffective doses. These trials sequentially enroll patients into small cohorts, with
adaptive dose-escalation strategies often relying on Bayesian methods to incorporate existing
data and adjust the trial design in real-time. The goal is to quickly pinpoint drugs with thera-
peutic potential and identify the patient groups they benefit the most. The process starts with
the first cohort receiving the lowest dose level. Subsequent cohorts are then given increasing
doses, advancing until the MTD is identified or the maximum sample size is reached. Dose
decisions for future cohorts are based on a statistical model that integrates data from all prior
cohorts to optimize dose-escalation and minimize the risk of harmful or ineffective dosing. The
three primary categories of these early-phase trial designs are: rule-based designs, model-based
designs and model-assisted designs.

Rule-based designs, like the traditional “3+3" approach, have been standard for years in
escalating patient doses [Storer, 1989]. In this memoryless design, three patients form a cohort;
if no severe toxicity is observed, the dose increases. If two patients experience severe toxicity, the
trial halts, considering the previous dose as the MTD. If one patient has severe toxicity, three
more are added; if another has severe toxicity, the trial stops, or else it continues. Despite their
simplicity, these designs are less effective at finding the correct MTD compared to model-based
designs, which are slowly gaining popularity.

Model-based designs, such as the Continual Reassessment Method (CRM) [O’Quigley et al.,
1990] or the Bayesian Linear Regression Model (BLRM) [Neuenschwander et al., 2008], use
a parametric model for dose-toxicity relationships and are more efficient in dose escalation.
The CRM employs a model-based strategy that continuously updates the probability of DLT
based on patient responses. The dose-DLT function is typically parametrized as P (DLT |xk) =
F (xk,θ), where F is a monotonically increasing function, often chosen to be a logistic function,
θ represents the parameters of this function (only one in the simplest case), which are updated
as the trial progresses, and xk the pseudo-doses, also called effective doses, which represents the
prior believes on toxicity probability for doses x1, · · · , xK (on a panel of K doses). As each
cohort of patients is treated and observed for DLTs, the data are used to update θ using Bayes’
theorem, refining the estimate of the MTD. The primary goal of CRM is to identify the dose level
closest to a target toxicity rate, typically set between 20% and 33%. This is done by calculating
the posterior distribution of θ, used to compute the toxicity probability for each dose level, and
selecting the dose for the next cohort of patients that is estimated to be closest to the target
toxicity rate.

Model-assisted designs blend the straightforwardness of rule-based designs with the preci-
sion of model-based approaches. They use statistical models for decision-making but maintain
simple pre-trial rules for dose adjustments. Examples include the modified toxicity probability
interval (mTPI) [Ji et al., 2010] and Bayesian optimal interval (BOIN) designs [Liu and Yuan,
2015]. These models are user-friendly yet capitalize on detailed statistical insights for dose
determination.

As previously mentioned, traditional methods for estimating the MTD typically focus on
short-term DLTs (first therapy cycle only) and often simplify drug dosage in models as a pseudo-
dose, overlooking multiple drug intakes. In the following chapter, I will present my work that
expands on this conventional approach. Additionally, while it was once assumed that both tox-
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icity and efficacy of cytotoxic drugs in oncology increase with dosage, this paradigm does not
apply to certain contemporary drugs, such as those used in immunology. The recent Optimus
project illustrates that, in some cases, “less is more” [Shah et al., 2021]. Therefore, the optimiza-
tion processes in drug development aimed at minimizing toxicity and maximizing benefit should
begin in the early phases [Fourie Zirkelbach et al., 2022], and the drug’s PK/PD profile plays a
crucial role.

1.3 Pharmacokinetics/Pharmacodynamics

Clinical pharmacology hinges on the principle that the potency of drug effects, including
both efficacy and toxicity, correlates with its concentration in the body. PK explores how drug
levels fluctuate over time following administration, while PD examines how these concentrations
influence biological or physiological responses via biomarkers. In essence, PK describes the body
effects on the drug, and PD details the drug effects on the body. PK/PD modeling is employed
to define the connection between dosage, scheduling, and the drug overall impact. Typically,
drug levels for PK models are tracked through regular blood sampling post-administration. For
PD analysis, corresponding biomarkers are monitored to assess the drug effect.

PK examines the journey of a drug through the body over time, involving absorption, distri-
bution, metabolism, and excretion (ADME). Absorption is how a drug enters the bloodstream
from its administration site, affected by the route of administration which determines its bioavail-
ability, the proportion of the drug that reaches the systemic circulation. Once absorbed, the
drug circulates to body tissues, with the volume of distribution reflecting the theoretical vol-
ume needed to achieve the observed plasma concentrations. Metabolism, primarily occurring
in organs like the liver, transforms the drug to a more water-soluble form for easier excretion,
typically through the kidneys or feces. Excretion rate is quantified by the drug clearance rate,
indicating the volume of blood from which the drug is removed per time unit. These ADME
processes collectively determine the drug plasma levels and tissue exposure, which in turn in-
fluence its therapeutic and pharmacological effects. PK metrics such as the area under the
curve (AUC) or peak plasma concentration (Cmax) are used to describe the drug exposure pro-
file. Non-compartmental analysis (NCA) calculates PK parameters from actual concentration
measurements without assuming any particular model. NCA is typically used to assess drug
exposure levels, for instance, calculating the area under the curve (AUC) using the trapezoidal
rule, as well as other parameters like clearance.

Conversely, PK compartmental analysis is a mathematical modeling approach where the
body is conceptualized as a system of compartments that represent groups of tissues with simi-
lar blood flow and drug affinity characteristics. The most basic model is the one-compartment
model, which considers the entire body as a single, homogeneous compartment where the drug
concentration is uniformly distributed. More complex models can include multiple compart-
ments, representing different tissue groups or organs with their specific drug absorption, dis-
tribution, and elimination characteristics [Gabrielsson and Weiner, 2007]. PK analysis usually
hinges on differential equations that define the rates of change in drug concentration within these
compartments. For PD analysis, the most common equations utilized to explain how drug con-
centrations impact biological systems include the fixed, linear, log-linear, Emax, sigmoid Emax,
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and indirect PD response models [Gabrielsson and Weiner, 2007].
Population PK(/PD) (pop-PK/PD) modeling is a technique that aggregates individual pa-

tient data into a cohesive compartmental model, adept at handling variations both within and
across patients. The essence of pop-PK modeling lies in its ability to delineate a population PK
profile, essentially capturing the characteristics of an “average" patient. It aims to elucidate the
variability in drug concentrations (/effects) experienced among patients over time. Incorporating
covariate information such as age, gender, body weight, and renal or hepatic function into pop-
PK models enables the identification of factors driving PK variability within a population. This
understanding is vital, as PK variations can significantly influence drug safety profiles. Insights
garnered from pop-PK modeling facilitate the selection of suitable dosages for specific popu-
lations or subgroups, enhancing therapeutic efficacy and safety. Although a population-level
approach reduces the need for extensive data collection on each individual, it demands more
computational resources. This is attributed to its reliance on nonlinear mixed-effect models,
which are more complex than the simpler non-compartmental PK models.

One of the key outcomes of PK/PD analysis is the characterization of the dose-response
relationship. This relationship helps in determining the optimal dosing regimen for a drug,
aiming to maximize therapeutic effects while minimizing adverse effects. Additionally, PK/PD
modeling can be used in drug development to predict outcomes of dosing regimens (as it will
be shown in one of my work of this manuscript), to support clinical trial design, and to inform
drug labeling and regulatory decisions.

1.4 Seamless trials

Contrasting with conventional clinical trials, seamless clinical trials integrate multiple phases
into a single adaptive design study, streamlining the process. This approach, also known as a
combined-phase study, simplifies the trial structure by blending phases with interim assessments,
saving time and requiring fewer participants. It accelerates the evaluation of a drug efficacy and
safety, offering a more streamlined route to drug development. While early discussions may
reference Phase I/II trials, seamless designs are typically more relevant to Phase II/III stages.
In this case, the seamless design begins like a standard Phase II trial, focusing on preliminary
efficacy, optimal dose-finding, and safety profiling. Upon achieving certain predetermined crite-
ria, the trial then transitions into the Phase III stage, expanding its scope to confirm efficacy
and further evaluate safety in a larger patient population. This transition is often based on in-
terim analyses, which are preplanned points where the accumulated data are reviewed to make
decisions about the course of the trial.

Seamless trials can be classified as “operationally seamless” when their phases follow one
another but remain distinct, and as “inferentially seamless” (or “adaptive seamless”) when in-
formation from all stages is incorporated into the final analysis [Maca et al., 2006]. Adaptive
features allow modifications to the trial based on interim results without undermining its in-
tegrity or validity. These modifications can include dose adjustments, sample size re-estimation,
or even the dropping of ineffective treatment arms.

However, seamless designs are not without challenges. They require careful planning, with
clear criteria for transition and robust statistical methods to ensure that interim decisions do
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Figure 1.2 – Illustration of the classification scheme employed in this manuscript.

not introduce bias [Bretz et al., 2006, 2009]. Regulatory considerations must also be taken
into account, as these designs can complicate the interpretation of results [U.S. Food and Drug
Administration (FDA), 2018].

1.5 Outline of the manuscript

My contributions to enhancing clinical trials, whatever the phase, through additional infor-
mation can be categorized into two main groups: the use of internal and external data sources,
as illustrated in Figure 1.2.

Internal information refers to data generated within the trial itself. This includes my re-
search on incorporating PK and PD measures in dose-finding Phase I trials [Ursino et al., 2017,
Gerard et al., 2022]. Additionally, I have explored the utilization of data from multiple cy-
cles [Ursino et al., 2022] and various toxicity endpoints [Ursino et al., 2019] within the same
dose-finding context, as well as implementing a Bayesian seamless design that spans Phase II
and III trials [Duputel et al., 2023].

On the other hand, external information encompasses the development of prior distributions
via the analysis of data from previous clinical trials [Ollier et al., 2020] or through expert elicita-
tion [Thall et al., 2019]. It also covers my work on meta-analysis of dose-finding studies [Ursino
et al., 2021] and the consolidation of results from multiple small sample size (preclinical) stud-
ies [Boulet et al., 2024].

The following four chapters will delve into these categories in more detail. To maintain
simplicity, comprehensive results or simulation setups are not provided here; readers are encour-
aged to consult the original papers for full insights. It is also worth noting that this summary
does not encompass all my previous work, with additional papers mentioned in the discussions.
Intentionally, I have chosen to highlight at least one piece of work where I serve as the primary
or co-primary author, alongside one project under my supervision.
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In this chapter I will firstly illustrate the work I have done at the beginning of my first
postdoc [Ursino et al., 2017]. My aim was to assess whether incorporating PK measurements into
the dose-escalation process improves the final estimation or the decision-making in dose-finding
studies. Therefore, the first source of internal information I worked on is PK measurements. This
initial study was further developed by Emma Gerard, a PhD student under my co-supervision,
to explore drug scheduling by integrating PD analysis [Gerard et al., 2022]. Unlike the first
work, in this one we focused on the use of PK/PD only at the end of the clinical study, to make
sure we could estimate complex models. In the remainder of this chapter, I will write a brief
introduction to complement that of the previous chapter and show the reason behind the two
research papers. Afterwards, I will summarize the two papers, focusing mainly on methods and
results, and the last section will be devoted to discussion.

2.1 Introduction

In Phase I clinical trials, dose-finding and PK/PD assessments often occur simultaneously
but are usually reported separately. A 2009 review of over 300 published Phase I oncology
trials [Comets and Zohar, 2009] revealed that 84% acknowledged PK as a primary goal alongside
determining the MTD, yet conducted and presented these analyses independently. Only 12%
retrospectively linked toxicities or MTD to PK data, with no trials using PK data to influence
dose allocation in real-time. Retrospective analyses showed a significant correlation between
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toxicity and PK metrics in some studies [Broker et al., 2006, Ajani et al., 2005], but others found
no clear relationship [Fracasso et al., 2005]. This suggests the potential, yet unexplored, impact
of integrating PK data into dose allocation decisions on MTD determination. When I started
to work in this topic, only few methods have been developed to integrate pharmacokinetics
information into dose-finding studies. For instance, pharmacologically guided Phase I trials, as
discussed in Collins et al. [1990], leverage preclinical PK data to determine the range of doses
to be tested in dose-escalation studies, but not the dose-escalation procedure. A modification of
the CRM, where the parametric dose-response function accounts for both drug dosage and a PK
measure of exposure, were proposed by Piantadosi and Liu [1996]. An two-levels approach was
suggested by Patterson et al. [1999] and Whitehead et al. [2007], who advocated for a Bayesian
procedure with a nested hierarchical structure. This method utilizes PK/PD data to establish
an overall dose-response relationship, treating PK/PD measurements as dependent variables in
one model. Another application is found in O’Quigley et al. [2010], where, within the context of
bridging studies, the dose corresponding to an average PK response was determined using linear
regression models.

As briefly mentioned in the previous chapter, PK/PD analysis could inform the refinement
of drug schedules. The National Cancer Institute (NCI) defines a drug schedule as a precise plan
that outlines the method and timing for administering treatment, aiming to maximize safety
while preserving the treatment potential efficacy for future use. Although it is logical to assume
that higher doses may result in increased toxicity, determining the exact relationship between
toxicity and various schedules for the same cumulative dose remains a challenge [Musuamba
et al., 2017, Bullock et al., 2017]. Physicians can examine how changes in dose-sequence, the
timing, and amount of dosages over time, impact patient outcomes. Research in immunology field
suggests starting with a lower dose and gradually increasing it may lessen acute toxicities [Chen
et al., 2019], while a higher initial loading dose could improve effectiveness. Therefore, dose-
finding studies may investigate different dose sequences, even with identical cumulative doses, to
find the optimal sequence. At the time of the starting of our work, several methodological works
have focused on developing prospective approaches for determining the optimal schedule across
various treatment regimens. Notably, works by Braun et al. [2005], Braun et al. [2007], Liu and
Braun [2009], and Zhang and Braun [2013] have suggested focusing the evaluation of time to
toxicity over the more traditional binary outcome, to refine both the dose and its timing. Wages
et al. [2014] introduced the concept of viewing dose-schedule optimization as a two-dimensional
challenge, adapting the partial order continual reassessment method (POCRM), which was orig-
inally designed for combination drug trials. Furthermore, Lyu et al. [2018] proposed a hybrid
approach that combines algorithmic and model-based strategies for determining the sequence
of dosages across multiple treatment cycles.However, only few approaches incorporate PK/PD
data directly into the design for prospective dose allocation. For example, Günhan et al. [2020]
introduced a Bayesian adaptive model based on time-to-event and a latent PK principle.

2.2 PK and dose-finding

In this work, I explored the influence of adding PK measurement for calculating the prob-
abilities of toxicity (pT ) [Ursino et al., 2017]. The traditional approach directly links pT with
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the administered dose. This method requires a statistical model that establishes a relationship
between pT and the dose level. When adding the PK measures, two paths can be followed. In
the first, PK measurements are added as covariates for pT along with the dose. In the second,
two separate estimation processes are involved. Initially, one model estimates the probability
of toxicity given a specific PK measure of exposure or parameter (e.g., P (Y = 1|AUC = x)).
Concurrently, another model predicts the distribution of the PK measure for any given dose
(P (AUC = x|d)). The overall probability of toxicity for a dose is then derived by integrating
these two models, formulated as pT (d) =

∫
x P (Y = 1|AUC = x)P (AUC = x|d). Different mod-

els and variations have been tested in the cited article, however, for the sake of simplicity, only
two main models are presented in this manuscript and compared to the standard CRM. There-
fore, we are focusing at the estimation of the DLT probability at the end of the first therapy
cycle.

Before describing the models, let us introduce the notation used in this work. Let us define
dk as a specific dose within the set D comprising K doses (d1, d2, . . . , dK), and let di from D

be the dose administered to the i-th participant. The variable yi represents a binary outcome,
taking the value 1 if the i-th participant experiences a DLT and 0 otherwise. Additionally,
zi denotes the logarithm of the AUC for the i-th patient’s drug exposure. Then, pT refers to
the probability of experiencing toxicity, while β indicates the vector of regression coefficients
(expressed in non-bold format when referring to a single parameter). The term n specifies the
total number of participants in the study. The target probability of toxicity is represented by
δT . When the symbolˆis placed above a parameter, it generally denotes the parameter posterior
mean. Any additional symbols or notations specific to a particular model will be introduced as
needed in the description of that model.

2.2.1 PKCOV

The first model, referred to as PKCOV, adapts the framework initially presented by Pianta-
dosi and Liu [1996], maintaining the concept of incorporating PK as a covariate of the toxicity
probability using the logit link. In this model, the dose-toxicity relationship is defined as:

logit(pT (dk,∆zdk ,β)) = −β0 + β1 log(dk) + β2∆zdk ∀dk ∈ D,

where β = (β1, β2), β0 is a constant, and ∆zdk represents the difference between the popu-
lation’s logarithmic AUC at dose dk and z, the individual’s logarithmic AUC at the same dose.
Assuming a underlying linear PK model, the two covariates, dose and ∆z, should be uncor-
related as ∆z depends on PK parameters like the clearance, not on the dose. Uniform priors
have been assigned to β1 and β2, treating them as independent variables where the joint density
function is expressed as f(β1, β2) = (u1 − l1)

−1(u2 − l2)
−1, with u1 and l1 denoting the upper

and lower bounds of β1’s uniform distribution U(l1, u1), and similarly, u2 and l2 for β2, U(l2, u2).
The binomial likelihood after enrolling n patients is given by:

Ln(β|y) =
n∏

j=1

[pT (dj ,∆zdj ,β)]
yj [1− pT (dj ,∆zdj ,β)]

1−yj ,

where pT is substituted with its specific expression derived from inverting the equation above.
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Dose Allocation Rules: The selection of the dose for the subsequent cohort is based on
identifying the dose dk from the set D whose posterior probability of toxicity,

pT (dk, β̂1) =
1

1 + eβ0−β̂1 log(dk)
dk ∈ D, (2.1)

is nearest to the predetermined target probability. In other words, the next dose to be adminis-
tered, di+1, is the one that minimizes the absolute difference between pT (dk, β̂1) and the target
probability θ, formalized as di+1 = argmindk

|pT (dk, β̂1)− δT |. Following the original methodol-
ogy, ∆zdk is set to zero, its expected value, in Eq. 2.2.1. As an additional rule, the ‘no-skipping
dose’ guideline ensures that di+1 is chosen from D∗ ⊂ D, a subset of D that includes all previ-
ously tested doses plus the next level up, assuming not all doses have been explored yet. The
final estimate for the MTD is represented by dn+1, indicating the dose recommended for the
(n+1)th participant if they were to be enrolled in the trial.

2.2.2 PKLOGIT

The second approach, which we refer to as PKLOGIT, adapts a model originally developed
by Patterson et al. [1999] and Whitehead et al. [2001] for hierarchical modeling in cross-over
trials. By modifying this model for use in non-cross-over trials, specifically by eliminating
random effects and implementing an underlying one-compartment PK model, we establish a
Bayesian linear regression framework for z, that is

zi|β, ν ∼ N
(
β0 + β1 log di, ν

2
)
.

Here, β = (β0, β1), and the prior distributions for β|ν and ν are given by β|ν ∼ N2

(
m, ν2G

)
and ν ∼ Beta (a, b), respectively. The matrix G is a diagonal matrix, and the constants m, G,
a, and b are selected based on prior knowledge. Diverging from the original formulation, a beta
distribution is chosen for ν to account for its association with the inter-individual variability
in clearance, a key PK parameter, with the assumption that its value lies between 0 and 1,
reflecting the expected range of variability. Then, drawing inspiration from Whitehead et al.
[2007], we utilize zi instead of the dose di as the covariate in the logit function for the probability
of toxicity (pT ), that is,

logit(pT (z,β)) = −β3 + β4z,

where the prior distribution for β = (β3, β4) is a bivariate uniform distribution, defined as
f(β3, β4) = (u3 − l3)

−1(u4 − l4)
−1, with u3 and l3 being the upper and lower bounds of the

uniform distribution for β3, U(l3, u3), and u4 and l4 for β4, U(l4, u4).
Dose Allocation Rules: the dose for the next patient is selected based on the predictive

probability that closely matches the target probability δT , as defined by:

P (yi+1 = 1|β̂i) = E

[
1

1 + eβ̂3−β̂4z

]
=

∫
1

1 + eβ̂3−β̂4z
g(z) dz,

where g represents the predictive normal density of z given β̂ and now β = (β1, β2, β3, β4). Sim-
ilar to the previous method, a no-skipping dose rule is implemented, and the MTD is identified
as the dose dk ∈ D recommended for the (n+ 1)th subject.
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2.2.3 Results

To assess the performance of the methods, we conducted a simulation study. In our simu-
lation framework, the relationship between toxicity and PK exposure, specifically the AUC, is
a focal point. This necessitates a departure from the conventional method of simulating toxi-
city in dose-finding studies, where probabilities of experiencing toxic effects are pre-defined for
each dose level and patient responses are simulated using Bernoulli distributions. Instead, our
approach requires the simulation of PK data as a preliminary step, subsequently linking this
data to toxicity outcomes. To implement this method, we utilized a case study based on the
PK model for the TGF-β inhibitor LY2157299 in patients with glioma, as detailed in previous
research by Gueorguieva et al. [2014], Bueno et al. [2008] and Lestini et al. [2015]. We simulated
several scenarios with 6 doses and different position of the MTD. It was achieved modifying the
threshold on AUC to define the DLT occurrence or increasing and decreasing the inter-individual
variability in PK parameters. More details are given in Ursino et al. [2017]. As anticipated, the
classical CRM was included for comparison.

In the simulation study, 1000 trials were conducted for each scenario. Each trial involved a
cohort size of a single patient, a total fixed sample size of 30 patients and a target toxicity of 20%.
The trial started with a one-by-one dose escalation, moving sequentially from the lowest to the
next dose level for each new patient. This escalation continued until the occurrence of the first
instance of toxicity. At this point, the trial transitioned to a two-stage design, incorporating the
chosen model for further dose evaluation and decisions. If toxicity is observed at any point during
the trial, the specified methods are applied at the conclusion of the trial to make comprehensive
assessments and recommendations.

Table 2.1 shows the results in terms of percentage of final selection, percentage of allocation
and number of DLTs in four scenarios extracted from the original article Ursino et al. [2017].
PKCOV and PKLOGIT demonstrate comparable performance metrics in terms of their ability to
identify MTD. PKCOV shows a slight tendency towards recommending higher doses, which could
increase the risk of overdosing. However, they are both outperformed by the CRM. In further
analyses, we explored the precision of each method in estimating the dose-toxicity relationship.
This was conducted by examining their estimates of the probability of toxicity across various
tested doses, with sample sizes incrementally increasing from 20 to 100. This approach was
designed to assess how effectively and accurately each method converges to the true dose-toxicity
relationship as more data become available. For scenario D, the findings are illustrated in
Figure 2.1 where the true probabilities of toxicity, utilized in the simulations, are marked by
black horizontal lines. Each curve within the figure represents the median estimate of the
probability of toxicity for each method across 1000 simulations, offering a visual comparison of
their performance. Figure 2.1 demonstrates that all methods accurately estimate the probability
of toxicity at the MTD, aligning with earlier findings regarding their efficacy in MTD selection.
An interesting observation from the analysis is the distinct capability of PKLOGIT to accurately
estimate the probability of toxicity across a broader range of dose levels, beyond just the MTD
and its adjacent doses. This is evidenced by the true probability of toxicity falling within the
first and third quartiles of the estimated probability distribution.
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Table 2.1 – Percentage of dose selection at the end of the trials, percentage of dose allocation in parenthesis
and median, minimum and maximum number of DLT for several scenarios. Real percentage of toxicity of each
dose is written in italics.

Method % dose selection number of DLTs
1 2 3 4 5 6 median (n) min - max

Scenario A 0.001 0.05 0.10 0.20 0.35 0.45
PKCOV 0.054 0.015 0.177 0.550 0.163 0.041 6 1 - 11

(0.087) (0.067) (0.188) (0.370) (0.172) (0.116)
PKLOGIT 0.066 0.032 0.276 0.530 0.088 0.008 5 1 - 10

(0.117) (0.105) (0.251) (0.350) (0.112) (0.065)
CRM 0.020 0.014 0.196 0.600 0.161 0.009 6 1 - 11

(0.058) (0.076) (0.215) (0.410) (0.176) (0.065)
Scenario B 0.021 0.139 0.199 0.29 0.40 0.467

PKCOV 0.190 0.161 0.358 0.243 0.040 0.008 7 1 - 13
(0.207) (0.166) (0.266) (0.226) (0.081) (0.054)

PKLOGIT 0.169 0.283 0.336 0.172 0.029 0.011 6 1 - 12
(0.235) (0.257) (0.239) (0.165) (0.056) (0.048)

CRM 0.031 0.239 0.436 0.262 0.029 0.003 6 1 - 12
(0.096) (0.239) (0.313) (0.245) (0.072) (0.034)

Scenario C 0 0 0.001 0.025 0.184 0.385
PKCOV 0 0 0 0.080 0.672 0.248 6 2 - 10

(0.033) (0.033) (0.038) (0.164) (0.424) (0.308)
PKLOGIT 0 0 0 0.143 0.747 0.110 5 1 - 10

(0.034) (0.036) (0.055) (0.240) (0.443) (0.193)
CRM 0 0 0 0.093 0.762 0.145 5 2 - 9

(0.033) (0.033) (0.038) (0.183) (0.492) (0.220)
Scenario D 0.019 0.135 0.195 0.286 0.398 0.466

PKCOV 0.193 0.144 0.322 0.287 0.048 0.006 6.5 1 - 13
(0.218) (0.163) (0.242) (0.239) (0.085) (0.053)

PKLOGIT 0.197 0.212 0.330 0.208 0.040 0.013 6 1 - 12
(0.242) (0.213) (0.250) (0.185) (0.067) (0.043)

CRM 0.015 0.240 0.429 0.275 0.038 0.003 6 1 - 12
(0.084) (0.249) (0.308) (0.248) (0.077) (0.033)

2.3 PK/PD and drug schedule

Since we saw that incorporating PK into the dose-allocation procedure in dose-finding clini-
cal studies enhances understanding of the relationship between dosage and toxicity, we explore
if it could help in understanding more complex relationship. The inspiration for this study came
from the first-in-human dose escalation trial of SAR440234, given as a monotherapy to patients
with relapsed or refractory acute myeloid leukemia, high-risk myelodysplastic syndrome, or B-cell
acute lymphoblastic leukemia (NCT03594955). The therapy induces the release of inflammatory
cytokines, which can lead to cytokine release syndrome (CRS). CRS, a systemic inflammatory
response, represents a frequent adverse effect of T-cell engaging bispecific antibodies, like blina-
tumomab, a dual-targeting anti-CD19/CD3 antibody [Shimabukuro-Vornhagen et al., 2018]. In
literature, the correlation between cytokine peaks and CRS severity has been explored [Teachey
et al., 2016], with findings indicating that adjusting the drug dosage can mitigate CRS effects,
especially when the initial dose is administered in progressively smaller steps [Chen et al., 2019].
Consequently, this study adopted an intrapatient dose escalation strategy, starting with lower
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Figure 2.1 – Plot of three estimated probabilities (p1, p3 and p5) of toxicity versus sample size for scenario
D for PKCOV, PKLOGIT and CRM. Each quadrant shows the three estimated probabilities using a method.
Median, first and third quartile over 1000 simulations of the corresponding estimated probabilities are plotted.
The black horizontal lines represent the true probability. From below, the first is for p1, the second for p3 and
the last for p5.

doses and gradually increasing to a higher maintenance dose, to minimize CRS occurences [Bois-
sel et al., 2018]. Figure 2.2 shows how the intrapatient dose escalation could reduce the cytokine
peak. We suggest retrospectively modeling the binary toxicity endpoint alongside the cytokine
profile, which serves as the continuous PD response, to understand the relationship between
dose sequence and PD. This approach aims to identify the maximum tolerated dose sequence
(MTDS) by the trial conclusion. The work was performed by Emma Gerard, a PhD student
(CIFRE) I have co-supervised [Gerard et al., 2022]. In the following, a summary of the work
and the results.

Similar to the earlier section, we begin by introducing new notation for this part. Define
D = {d1, ..., dL} as the set of possible doses for patient administration, with dl < dl+1. The
subset S = {S1, ..., SK} represents the set of dose sequences to be evaluated in the trial. Each
dose sequence, Sk ∈ S, for k ∈ {1, ...,K}, consists of a series of J doses, Sk = (dk,1, dk,2, ..., dk,J),
administered at specific times t = (t1, t2, ..., tJ), where each dk,j belongs to D for j ∈ 1, ..., J . The
subsequence Sk,j includes doses in Sk up to the jth dose, Sk,j = (dk,1, dk,2, ..., dk,j), for j < J .
Let the trial include n ∈ N patients. The binary toxicity response for patient i after the jth dose
is Yi,j , and Yi represents the overall toxicity response for patient i across all administrations.
Consider s̃i = (di,1, di,2, ..., di,J) ∈ S as the designated dose-sequence for the ith patient. It is
assumed that the treatment is discontinued upon the occurrence of toxicity, with ji marking
the final dose administered to patient i. The actual sequence administered, denoted as si =

(di,1, di,2, ..., di,ji), is a subset of s̃i, where si equals s̃i if no toxicity is observed. The subsequence
si,j represents the portion of si up to the jth dose, with j ≤ ji.

The objective is to identify the MTDS by the trial end, defined as the dose-sequence with a
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Figure 2.2 – Concentration (left) and cytokine (right) profiles of three patients, each one receiving a different
dose-sequence with intrapatient escalation administered on days 1, 5, 9, 13, and 17. Horizontal lines represent
the maximum peak of cytokine observed after each dose-sequence.

toxicity probability nearest to a predefined target toxicity rate δT . Thus, MTDS = Sk⋆ , where
k⋆ = argmin

k
|pT (Sk)− δT |.

We assumed that a PD endpoint, computed from a continuous PD profile of a biomarker,
serves as a link in the dose-toxicity relationship. A first model will focus on the relationship
between the dose-sequence and the PD endpoint, and a second model will describe the connection
between the PD endpoint and the toxicity response. Combining these models will create a
pathway from the dose-sequence to the toxicity response, aiding in the determination of the
MTDS.

2.3.1 Dose sequence - PD response model

This model represents a classical population PK/PD model. Let C(t) represent the contin-
uous concentration of the drug, and E(t) denote the continuous PD response related to toxicity
at time t. These can be described by nonlinear mixed models as follows:

C(t) = f (1)
(
θ
(1)
i , t

)
+ g(1)

(
θ
(1)
i , t, ξ1

)
ε(1),

E(t) = f (2)
(
θ
(2)
i , t

)
+ g(2)

(
θ
(2)
i , t, ξ2

)
ε(2),

(2.2)

where f (1) and f (2) are the structural models that typically arise from differential equa-
tions grounded in biological principles. The parameter vector specific to the ith patient,
θi =

(
θ
(1)
i , θ

(2)
i

)
, often takes the form θi = µeηi , incorporating both fixed effects µ and random

effects ηi. The random effects ηi follow a normal distribution with mean zero and variance-
covariance matrix Ω, denoted as ηi ∼ N (0,Ω). This framework allows for the modeling of
individual patient variability in drug concentration and PD response over time.
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The functions g(1) and g(2) represents the error models, which are influenced by additional
parameters ξ1 and ξ2, respectively. These error models account for the variability in the data that
is not explained by the structural models. The variables ε(1) and ε(2) represent standard Gaussian
noise factors that introduce randomness into the system. Common types of error models include:
(i) the constant model, where the error function is defined as g(l)

(
θ
(l)
i , t, ξl = a

)
= a; (ii) the

proportional model, where the error function is g(l)
(
θ
(l)
i , t, ξl = b

)
= bf (l)

(
θ
(l)
i , t

)
; and (iii) the

combinations of the constant and proportional models. The models selected for this study, which
also generated Figure 2.2, are detailed in the original manuscript.

2.3.2 PD endpoint - toxicity model

We proposed two ways to model the link between the PD endpoint and the toxicity. We use
r : r(θi, si,j) to represent a function emerging from the PK/PD models, which calculates the
value of the PD endpoint (such as the peak level of a biomarker) following the administration
of the dose sequence si,j , considering the individual’s PK/PD parameters θi. Additionally,
R : R(θi, si,j) is defined as a function that outputs a vector containing all PD endpoints (like
all biomarker peaks) observed after the administration of the sequence si,j , tailored to the
individual’s PK/PD parameters θi. For convenience, for patient i, these notions are simplified
as ri,j = r (θi, si,j) and Ri,j = R (θi, si,j), with Ri denoting the vector of all PD endpoints up to
Ri,ji . Furthermore, let rMi = maxl∈{1,...,ji}(ri,l) symbolize the summary PD endpoint (such as
the highest biomarker peak), presumed to correlate with toxicity, recorded for patient i.

To establish the prior distributions, we use (r̄M1 , r̄M2 , ...r̄MK ) to represent the reference
values of the maximum PD endpoint across all dose sequences in the trial, denoted by
(S1, ..., SK). These reference values can be derived from population averages, where r̄Mk =

max (r (µ, Sk,1) , ..., r (µ, Sk)), with µ representing the vector of fixed effects in the PK/PD model.
In the next sections, the two proposed statistical models are presented.

Bayesian PD logistical model

We suggest a Bayesian logistic model to establish a connection between the overall binary
toxicity response of patient i, who receives the sequence si, and their summary PD endpoint
indicative of toxicity. The relationship is formulated as follows:

logit (P (Yi = 1)) = β0 + β1 log

(
rMi
r̄MkT

)
= logit

(
π1
(
(β0, β1) , r

M
i

))
. (2.3)

In this model, a positive β1 indicates that the probability of toxicity increases with the value of
the summary PD endpoint. The PD endpoint is normalized for the purpose of prior elicitation
using r̄MkT , which is the reference value for the dose-sequence SkT anticipated to have a toxicity
probability of δT . This approach simplifies the complexity by not accounting for the longitu-
dinal biomarker values, operating under the assumption that toxicity is directly related to the
summary PD endpoint rather than a cumulative effect of the biomarker profile. Nevertheless,
the influence of previous drug administrations is implicitly incorporated in the determination of
the biomarker through the PK/PD model.
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In setting up the prior distributions for our Bayesian logistic model, we adopt a normal
distribution for the intercept, β0, expressed as β0 ∼ N (β̄0, σ

2
β0
), and a gamma distribution

for the slope, β1, to guarantee its positivity, formulated as β1 ∼ γ(α1,
α1

β̄1
). Here, α1 is the

shape parameter of the gamma distribution, with β̄0 and β̄1 representing the expected values
(means) of β0 and β1, respectively. The mean of the intercept, β̄0, is determined to be the
logit transformation of the target toxicity rate δT , derived from the logistic model equation with
rMi = r̄MkT . This sets a baseline around which the model intercept is centered. To estimate β̄1,
the slope’s mean, initial guesses of the toxicity probabilities for each dose sequence (S1, ..., SK)

are utilized, with pkT = δT for the reference sequence SkT . The estimation of β̄1 can proceed in
two ways:

1. Using only one dose-sequence, not including the reference sequence SkT , by setting
π1
((
β̄0, β̄1

)
, r̄Mk

)
= pk for a single k ̸= kT .

2. Employing multiple sequences, specifically those adjacent to the reference sequence (e.g.,
SkT−1 and SkT+1), to minimize the squared difference between the estimated and actual
toxicity probabilities for these sequences:

β̄1 = argmin
β1

kT+1∑
k=kT−1

(
pk − π1

((
β̄0, β1

)
, r̄Mk

))2
.

Bayesian PD hierarchical model

In this methodology, we posit that toxicity occurs in patients when their PD response sur-
passes a patient-specific, yet unidentified, threshold. To accommodate the interindividual vari-
ability in susceptibility to toxicity, we introduce a continuous latent variable, Zi, for each patient.
This variable symbolizes the unique toxicity threshold corresponding to the PD response for that
individual. Diverging from earlier strategies, we now approach the modeling of toxicity following
each drug administration through a Bayesian hierarchical model:

Yi,j =


0 if Zi > log

(
ri,j

r̄Mk50

)

1 if Zi ≤ log

(
ri,j

r̄Mk50

)
Zi ∼ N (µz, τ

2
z )

(2.4)

where r̄Mk50 serves as the reference value for the dose-sequence Sk50 , which is initially estimated
to have a 50% probability of inducing toxicity in patients. Although this model incorporates ele-
ments reminiscent of a probit model, primarily through its handling of variability and threshold
effects, it diverges in its core mechanism. Specifically, the initial part of the equation operates
as a deterministic step function, indicating a direct, non-probabilistic transition once the PD
response exceeds a certain threshold. The inclusion of a random effect introduces a layer of
complexity that aligns the model with certain aspects of probit models. Here, τ2z symbolizes
the variance between subjects, reflecting the diversity in individual toxicity thresholds. This
parameter controls how information is shared or “borrowed” across the patient population.
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When evaluating a new patient i with a vector of biomarker endpoints Ri, the probability

of experiencing toxicity can be predicted using the formula P (Yi = 1) = Fz

(
log

(
rMi
r̄Mk50

))
=

π2
((
µz, τ

2
z

)
, rMi

)
, where Fz represents the cumulative distribution function (CDF) of a normal

distribution with mean µz and variance τ2z . Regarding prior distributions, for µz, a normal
distribution µz ∼ N (0, σ2

µz
) is chosen, reflecting a neutral initial stance regarding the central

tendency of the toxicity threshold distribution across the population. The choice of a half-
Cauchy distribution for τz, τz ∼ half-Cauchy(0, σ2

τz), follows the guidance of Gelman [2006],
acknowledging the potential for τz to be close to zero.

2.3.3 Dose sequence-toxicity model

The posterior toxicity probability for a given dose sequence Sk is calculated by integrating
over all potential values of the PD endpoint within the toxicity model. Due to the complexity
of this integration, which often precludes an analytical solution, the posterior toxicity probabil-
ity for sequence Sk is approximated through simulation. This involves generating an M -sized
hypothetical cohort of patients, each assigned a posterior toxicity probability, resulting in an M -
vector of probabilities (pT (Sk)

(1), ..., pT (Sk)
(M)). The overall posterior toxicity probability for

sequence Sk is then determined by averaging these individual probabilities, yielding the posterior

mean p̂T (Sk) =
1

M

M∑
m=1

pT (Sk)
(m).

2.3.4 Results

In our study, we explored four distinct toxicity scenarios altering the positioning of the MTDS
within each scenario. We analyzed six dose-sequences across all scenarios, with each sequence
consisting of seven dose administrations scheduled on days 1, 5, 9, 13, 17, 21, and 25. More
details on PK/PD and toxicity data generation are given in the published article [Gerard et al.,
2022]. For the first three scenarios, the MTDS was identified at different sequences: in scenario
1, the MTDS was found at sequence S4; scenario 2 placed the MTDS at sequence S2; in scenario
3, the MTDS shifted to sequence S6. Scenario 4 presented a unique case where two sequences,
S4 and S5, were both viable candidates for the MTDS designation.

In our analysis, we simulated 1000 trials for each of the four toxicity scenarios, targeting
a toxicity probability (δT ) of 0.3. We focused on assessing the impact of two traditional dose
escalation designs: the 3+3 design and the CRM with a 2-parameter logistic regression model.
These methods were applied with cohorts of size 3, aiming for a total sample size of 30 patients
in each trial. For the CRM, we based the working model (the initial guesses of the toxicity
probabilities) on data from the first scenario. Table 2.2 shows the results in terms of proportions
of correct selection (PCS) and the mean sample size. Across all scenarios, the PCS for both
the Bayesian PD logistical model and the Bayesian PD hierarchical model showed similarity,
indicating that both proposed models are effective in identifying the MTDS. Moreover, these
methods demonstrated a superior performance over traditional dose escalation designs in the
majority of scenarios tested. For scenarios 1, 2, and 4, our methods were able to accurately select
the MTDS in over 10% more trials than the 3+3 design. Particularly noteworthy was scenario
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Table 2.2 – Proportions that each sequence is being selected as the MTDS over the 1000 trials for the 4 toxicity
scenarios and the 2 dose allocation designs, either the 3+3 design or the CRM. For each scenario, the PCS on the
true MTDS are represented in bold. For each dose allocation design, the mean sample size at each dose-sequence
is displayed.

S1 S2 S3 S4 S5 S6

Scenario 1 0.08 0.11 0.15 0.3 0.44 0.52

3+3

Mean sample size 3.6 3.5 3.5 3 1.6 0.4
Bayesian PD logistical model 8.6 5.9 19 42.2 19.6 4.7
Bayesian PD hierarchical model 7.5 7.6 19.1 43.8 18.6 3.4
3+3 13.9 16.1 32.2 27.6 8.6 1.6

CRM

Mean sample size 4.2 3.7 5.6 8.8 5.6 2.1
Bayesian PD logistical model 0 1.2 15.5 64.6 15.5 3.2
Bayesian PD hierarchical model 0 0.8 12.8 64.3 19.4 2.7
Logistic CRM 0 1.4 15.1 50.4 27.1 6

Scenario 2 0.15 0.3 0.44 0.52 0.69 0.83

3+3

Mean sample size 4 3.6 1.8 0.5 0.1 0
Bayesian PD logistical model 27.2 42.5 24.7 5.2 0.4 0
Bayesian PD hierarchical model 29.3 41.2 24.3 4.8 0.4 0
3+3 57.3 31 9.8 1.7 0.2 0

CRM

Mean sample size 8.7 11.1 7.5 2.3 0.3 0
Bayesian PD logistical model 14.8 65.9 17.4 1.7 0.2 0
Bayesian PD hierarchical model 12.3 66.2 18.9 2.6 0 0
Logistic CRM 12.5 56 26.7 4.7 0.1 0

Scenario 3 0.01 0.02 0.05 0.09 0.17 0.3

3+3

Mean sample size 3.1 3.1 3.4 3.6 3.5 3
Bayesian PD logistical model 0.3 0.6 2 9.9 21.9 65.3
Bayesian PD hierarchical model 0.1 0.8 2 9.3 23.8 64
3+3 0.9 2 9.3 17.5 33.9 36.4

CRM

Mean sample size 3.1 3 3.1 3.6 5.4 11.8
Bayesian PD logistical model 0 0 0 0.8 21.2 78
Bayesian PD hierarchical model 0 0 0 0.4 19.9 79.7
Logistic CRM 0 0 0 1.1 19.2 79.7

Scenario 4 0.04 0.08 0.15 0.26 0.32 0.43

3+3

Mean sample size 3.4 3.6 3.6 3.1 2 0.9
Bayesian PD logistical model 3.5 5.5 21.1 30.2 23 16.7
Bayesian PD hierarchical model 2.7 6.2 19.6 33.3 24 14.2
3+3 8.4 17.2 29.2 24.1 15.4 5.7

CRM

Mean sample size 3.5 3.5 5.2 7 5.9 4.8
Bayesian PD logistical model 0 0.2 11.6 34.7 30.2 23.3
Bayesian PD hierarchical model 0 0.2 9.2 37.3 34 19.3
Logistic CRM 0 0.6 9.7 28 34.4 27.3
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3, where our methods exceeded the 3+3 design’s accuracy by more than 20%. Compared to the
CRM, our methods showed an improvement of approximately 10% in PCS for scenarios 1 and
2, underscoring their robustness in these settings. In scenario 3, the performance of all methods
was closely matched. Scenario 4 presented a nuanced outcome; the Bayesian PD logistical model
and CRM achieved similar overall PCS rates (64.9% and 62.4%, respectively), but the Bayesian
PD hierarchical model outperformed both (with a PCS of 71.3%), showcasing its particular
strength in this scenario.

As expected, one of the primary advantages of our methods is their ability to model the
comprehensive relationship between dose-sequences and toxicity. This feature is particularly
valuable because it allows for the recommendation of dose-sequences not originally included
in the trial for further investigation in subsequent expansion studies. Consider a hypothetical
scenario within a CRM design framework where the panel of dose-sequences overlooks the actual
MTDS. In this scenario, dose-sequence S3 = (5, 10, 25, 50, 50, 50, 50) µg/kg results in under-
dosing, while sequence S4 = (10, 25, 50, 100, 150, 150, 150) µg/kg leads to overdosing (Figure 2.3).
The estimated toxicity probabilities highlight a discernible gap between sequences S3 and S4,
suggesting the existence of an optimal dose-sequence that has not been tested yet, potentially
lying between these two sequences. Our methods ability to predict the toxicity probability of a
new, untested sequence, Snew = (10, 25, 50, 100, 100, 100, 100) µg/kg, demonstrates a significant
advantage over the CRM. The CRM limitation stems from its reliance on a predefined working
model based on the set of tested sequences, rendering it incapable of estimating the toxicity
probabilities for sequences that were not part of the original trial design. In contrast, both
of our proposed Bayesian models, through their comprehensive modeling of the dose-toxicity
relationship, enable the prediction of toxicity probabilities for new sequences. This predictive
power is illustrated in Figure 2.3, where Snew is shown to have a toxicity probability aligning
more closely with the target toxicity level. Consequently, this new sequence can be recommended
for testing in expansion cohorts.

2.4 Discussion

Dose-finding methods can be broadly classified according to two different types of approaches,
the “dose-estimators” and the “dose-finders” [Rosenberger and Haines, 2002]. In the first case,
the aim is to estimate the entire dose-response curve, and to determine the dose associated with
a given percentile of the dose-response curve. Model-based approaches combined with optimal
design belong to this framework [Bornkamp et al., 2007]. The second case is the approach usually
applied in the oncology setting. The aim is to hone in on the MTD between the doses tested
in the trial, without estimating the entire dose-response (dose-toxicity) curve [O’Quigley et al.,
1990, Whitehead and Brunier, 1995], implying that the results are mostly valid for the doses
tested. The CRM, since it is built directly to take care of a discrete number of doses, is a “dose-
finder” method. On the other hand, PK methods are more “dose-estimators” methods, since they
try to estimate the entire dose-response curve, and only in the last step of the method do they
focus on the discrete set of candidate doses. In that case, extrapolation (or interpolation) to the
entire dose-toxicity curve is a natural extension. Our results show that dose-finder approaches
hone in on the MTD in an efficient way, but that the probability of toxicity was estimated poorly
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Figure 2.3 – Violin plots of the estimated toxicity probabilities, for an additional scenario where the panel of
dose-sequences missed the true MTDS, on 1000 CRM trials with 30 patients each. Horizontal lines on the density
estimates represent the median and first and third quantiles of the distributions and the plus sign represents the
mean. The dashed line represents the toxicity target and the solid line represents the true toxicity probabilities.

for doses far from the MTD. Dose-estimators on the other hand allowed us to better estimate
the probabilities of toxicities throughout the range of doses, which make them more useful when
considering the entire drug development process.

It was confirmed in the second work (that was also extended to a bivariate case [Gerard
et al., 2021]). This research demonstrated that incorporating PK/PD information significantly
enhances the accuracy of proportion of correct selection when the toxicity-generating process
is reasonably understood and approximated. This addition facilitates improved estimation of
sequence-toxicity curves by enabling more extensive information sharing across sequences. Fur-
thermore, these methodologies enable us to identify and recommend additional sequences for
expansion cohorts.

The concept of integrating PK/PD modeling into dose-finding studies has been further ex-
plored by other researchers. The following are some examples. Günhan et al. [2020] introduced
the Time-To-Event PK model, which I mentioned earlier in the introduction. Su et al. [2022] cre-
ated the Semi-mechanistic Dose-Finding framework, which employs three interconnected models
integrating PK and PD outcomes. Lastly, Micallef et al. [2022] proposed the Exposure Driven
Escalation With Overdose Control method, an advancement of PKLOGIT that substitutes the
AUC-dose relationship with a real pop-PK analysis.

Therefore, employing PK/PD analysis in the dose-escalation process or decision-making
appears very promising. However, further research is necessary to address practical challenges,
such as the unavailability of PK/PD samples after each patient’s sampling, and technical issues,
including the requirement for ample data for estimating PK/PD parameters and assessing model
relevance.
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In this chapter, I will outline three contributions I have made to leveraging alternative inter-
nal data beyond PK/PD in clinical trials. These contributions are presented not in chronological
order but in a sequence that builds upon the narrative from the previous chapter. Indeed, still
within the context of dose-finding, I introduced a model designed to manage multiple treatment
cycles [Ursino et al., 2022], addressing a concern akin to dose scheduling, explored in Chap-
ter 2, but applied to several cycles (here with a stable dose). Remaining in the dose-finding
framework, but transitioning to a Phase I/II context, I developed a dose-finding strategy that
accounts for dual toxicity types along with an efficacy measure for treating newborns experi-
encing seizures [Ursino et al., 2019]. Interesting to say, this design was then immediately used
for the clinical study, which was recently finished and the final analysis of which is underway.
Finally, moving to seamless Phase II/III trials, I co-supervised a PhD student, Benjamin Du-
putel, in a project that aimed to integrate binary Phase II outcomes into the survival analysis
of Phase III trials [Duputel et al., 2023]. Mirroring the structure of the previous chapter, the
rest of this chapter will start with a brief introduction to set the stage for the three discussed
papers, elucidating the motivations. Following that, I will summarize each of the three papers,
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with a focus on the methodologies employed and the results obtained. The concluding section
will be dedicated to a discussion.

3.1 Introduction

As stated in Chapter 1, in oncology, dose-finding trials for both cytotoxic and molecularly
targeted drugs are crucial for establishing the MTD of a new medication, which is typically
based on the incidence of patients experiencing short-term DLTs observed during the study.
However, the emergence of DLTs may be delayed, possibly due to the drug pharmacokinetics or
the accumulated dosage. For instance, research by Postel-Vinay et al. [2014] on Phase I trials
of molecularly targeted agents revealed a higher frequency of DLTs after the first cycle (1087
vs. 936 in the first cycle), leading to the recommendation that “evaluation of the recommended
Phase 2 dose should consider all available data from any cycle.” The time-to-event continual
reassessment method (TITE-CRM) [Cheung and Chappell, 2000], viewed as an adaptation of the
CRM with adjustments for time, represents an early endeavor to incorporate DLT observations
over a larger monitoring period. Nonetheless, this approach treats all patients who suffer DLTs as
equally influential in the analysis, regardless of when the DLT occurs. More recently, a Bayesian
approach has been introduced to estimate the conditional probability of encountering a DLT in
each cycle, given the absence of DLTs in preceding cycles [Fernandes et al., 2016]. This model
includes three parameters designed to capture the impact of the initial dose, the cumulative
effect of the drug, and the body developed resistance over time. Nonetheless, to avoid biased
estimates, it is crucial to apply a highly informative prior for the parameter associated with
acquired resistance.

Another situation in early phase arise when distinct toxicity/efficacy types should be consid-
ered separately. This may be because toxicities have different generative mechanisms or occur
or can be measured at different times. In this context, previous attempts include incorporating
elicited numerical utilities for composite outcomes derived from two efficacy measures and one
safety outcome [Thall et al., 2014]. Alternatively, modeling three outcomes - toxicity, efficacy,
and a surrogate efficacy endpoint - through a trivariate continual reassessment method, offers a
different approach to managing multiple trial outcomes [Zhong et al., 2012].

Moving to later clinical trial phases, seamless designs represent a notable class in clinical
trial methodology, merging multiple trial phases within a single protocol, unlike traditional
approaches where Phase II and III trials are conducted separately [Bretz et al., 2006]. Seamless
trials can be categorized as “operationally seamless” when phases are sequential but distinct,
and “adaptive seamless” when data from all phases contribute to the final analysis [Maca et al.,
2006]. This adaptive approach involves making adjustments based on interim data reviews,
posing statistical challenges related to multiple comparisons and the need for controlling the
familywise error rate due to selection processes and interim analyses [Stallard, 2011, Stallard
et al., 2015, Quan et al., 2020, Friede et al., 2012, 2020]. While Bayesian inference is well-
suited for these seamless trial designs, there have been limited endeavors to integrate Bayesian
inference into Phase II/III seamless designs [Chapple and Thall, 2019]. Examples include the use
of Bayesian methodologies for selecting treatments [Schmidli et al., 2007, Kimani et al., 2009],
or for choosing sub-populations [Brannath et al., 2009].
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3.2 DICE: Dose-fInding CumulativE

In this work, we suggest a cumulative modeling strategy for Phase I adaptive clinical trials
aiming to model the probability of experiencing DLTs by considering the cumulative impact of
the administered drug. This approach seeks to identify the most suitable MTDS (maximum
tolerated dose sequence) from a range of predefined dose sequences [Ursino et al., 2022]. As a
reminder, even if I use the same acronym as before, here we are seeking to find the MTDS over
several cycles and without PK/PD measurements, whereas in Chapter 2, we were interested in
the sequence within the same cycle.

As usual, I will review the specific notation used in this work, which is very similar to
that presented in the second work of Chapter 2. Let us consider K as the total number of
cycles planned for the trial. Define S = {s̄1, . . . , s̄J} as the set comprising all possible J pre-
determined sequences of doses to be administered throughout the trial. Each sequence, s̄j =

{d[j,1], . . . , d[j,K]}, is ordered such that d[j,k] ≤ d[j+1,k] for every cycle k from 1 to K and for all
sequence indices j from 1 to J − 1, ensuring no two sequences s̄j and s̄j+1 are identical. For
the i-th participant, di,k represents the planned dosing sequence across cycles k = 1, . . . ,K. It
is important to note that a participant may not receive all planned dosages but only up to the
point of experiencing a DLT, after which treatment is discontinued. For this participant, let Yi,k
denote the binary outcome indicating the occurrence of a DLT at cycle k. We propose modeling
the cumulative probability of toxicity by cycle k as

P

(
k∑

m=1

Yi,m ≥ 1

)
= fθ(di,1, k,Di,k), (3.1)

where fθ(.) is a specific parametric link function and Di,k =
∑k

m=2 di,m for k > 1, and is 0 for
k = 1. The likelihood contribution of the i-th participant is then given by

Li(θ|yi,ki) =
(
1− fθ(di,1, ki, Di,ki−1)

)1−yi,ki ×
(
fθ(di,1, ki, Di,ki)− fθ(di,1, ki − 1, Di,ki−1)

)yi,ki ,
where ki is the last cycle completed by the i-th participant and yi,ki reflects the outcome at
that cycle. For n patients enrolled in the study, the overall likelihood is expressed as L(θ|y) =∏n

i=1 Li(θ|yi,ki), integrating the individual likelihood contributions from each patient. To choose
the parametric function of Eq. 3.1, we suggest modifying the Bayesian logistic regression model
as described by Neuenschwander et al. [2008], to accommodate the cumulative dose effects with
the following formulation:

fθ(di,1, k,Di,k) = logit−1

[
α+ exp(β) log

(
di,1
d∗

)
+ exp(γ) log

(
Di,k

D∗ + 1

)]
,

where d∗ signifies the initial dose in the sequence s̄∗ ∈ S, identified as the most probable MTDS
prior to the trial, and D∗ represents the total cumulative dose across the sequence s̄∗. The
term +1 alongside exp(γ) ensures a non-negative effect of cumulative dosing: a negative log
value would erroneously suggest a decrease in the cumulative toxicity probability relative to the
initial dose impact, which is conceptually flawed as the cumulative toxicity risk should logically
increase or remain constant. The parameters θ = {α, β, γ} serve distinct roles: α correlates
with the toxicity probability at the reference dose d∗ in the first cycle, exp(β) shapes the initial
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toxicity curve, and exp(γ) quantifies the incremental toxicity risk attributed to cumulative dosing
across cycles. Independent normal prior distributions are assigned to the three parameters:
α ∼ N (µα, σ

2
α), β ∼ N (µβ, σ

2
β), and γ ∼ N (µγ , σ

2
γ).

3.2.1 Dose-finding design

The allocation of dose sequences to patients is dynamically adjusted after each cohort of
L patients joins the trial. Initially, the first cohort of L patients is assigned the s̄1 dose se-
quence. The toxicity probability for a given theoretical dose sequence j within the panel S is
mathematically computed as

pT (s̄j) = fθ

(
d[j,1],K,

K∑
m=2

d[j,m]

)
. (3.2)

Given that pT (.) in Eq. 3.2 relies on the unknown parameters θ which can be estimated through
Bayesian inference, we use its estimated version p̂T (.). After the first patient of a subsequent
cohort is enrolled, we update the posterior distribution of the parameters θ = {α, β, γ} utilizing
all collected data, including from those patients who have not encountered a DLT and those
who have not completed the full number of cycles (ki < K). Then, p̂T (.) is recalculated using
these updated posterior distributions ppost(α, β, γ). For estimating p̂T , various approaches can
be considered. We recommend employing the predictive probability of toxicity, namely, the ex-
pected value of pT (s̄j) according to the posterior distribution Eppost(α,β,γ)[pT (s̄j)], or the median
of these predicted probabilities, which corresponds to the median of the posterior distribution
of pT (s̄j).

The dose sequence for the forthcoming cohort is selected based on the estimated toxicity
probability that most closely aligns with the predefined target δT , as defined by

s̄next = argmin
j

|p̂T (s̄j)− δT |.

Upon the trial conclusion, the estimated MTDS for up to cycle k, denoted as MTDSk, is identified
as the sequence truncated at cycle k whose estimated probability of toxicity is nearest to the
predetermined target δT . This is mathematically expressed as

MTDSk = argmin
j

|p̂T (s̄j,k)− δT |,

where s̄j,k represents the sequence s̄j shortened to cycle k. Consequently, the estimated MTDS
accounting for all predefined cycles is represented as MTDSK . For simplicity, we will refer
to MTDSK simply as MTDS from this point forward. To mitigate the risk of unnecessarily
subjecting patients to highly toxic dose sequences, we propose two precautionary measures. The
first is the implementation of a “no-skipping” rule, which stipulates that a new dose sequence j

cannot be allocated to a cohort unless the immediately preceding dose sequence j − 1 has been
administered to at least one patient before. The second safety measure hinges on the posterior
probability of toxicity associated with the initial dose sequence. The trial is halted at any phase
if the following condition is met:

Ppost (pT (s̄1) > δT (1 + ε)) > τT ,
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where τT denotes a predetermined probability threshold, typically set between 0.8 and 0.99, and
ε represents the maximum allowable relative error in the targeted toxicity probability.

This methodology, henceforth referred to as DICE (Dose-fInding CumulativE), leverages
Bayesian estimation techniques and allows for its application from the outset of the trial, im-
mediately after the first participating patient completes the initial cycle. As usual, early in the
trial the choice of prior distributions significantly influences the escalation of dose sequences.

3.2.2 Results

We assessed the performance of our method across six distinct scenarios, each characterized
by variations within five dose sequences (J = 5), spanning five cycles (K = 5). These dose
sequences were established by maintaining consistent dose levels throughout. The six scenarios
yielded different MTDS across panel positions according to the target δT = 0.3. We modeled
patient accrual at a steady rate of one per month and assumed that each cycle would precisely
last one month, thereby limiting patient observation to a maximum of five months. For compre-
hensive evaluation, we conducted 5000 independent simulations for each scenario. For further
information and in-depth analysis, readers are encouraged to consult the original published
paper.

Table 3.1 shows the results of simulations comparing our proposed method, the DICE, with
the TITE-CRM and a benchmark standard. The metrics used for this comparison include the
frequency at which the MTDS is correctly selected, the distribution of dose allocations among
participants, and the average number of DLTs per trial. For both the DICE and TITE-CRM,
data are provided for scenarios involving cohorts of 1 and 3 patients respectively.

On average, DICE demonstrated operating characteristics similar to those of TITE-CRM
regarding the selection of dose sequences. However, DICE exhibited enhanced performance in
scenarios where the MTDS was positioned in the second half of the sequence panel, showing a
proportion of correct selection (PCS) rate increase of about 10% in Scenario 1 and nearly double
the PCS in Scenario 3 for cohorts of 3 patients. Conversely, TITE-CRM had a slight advantage
over DICE when the MTDS was in the first half of the panel. This pattern was also reflected
in the distribution of dose sequence allocations. Furthermore, although the number of DLTs
recorded was within a similar range for both methods, DICE reported an average of 1 or 2 more
DLTs. This result is expected, as DICE is based on a larger number of parameters that need to
be estimated compared to TITE-CRM. Moreover, utilizing the DICE methodology at the trial
end allows clinicians to forecast the toxicity probabilities for sequences that comprise fewer cycles
than initially planned, specifically MTDSk for k < K. As illustrated in Figure 3.1, the selection
frequencies of the MTDS for a reduced number of cycles are displayed, for example, MTDS4 in
Scenario 2, which involves only 4 cycles, and MTDS3 in Scenario 5, with just 3 cycles. In the
shortened Scenario 2, the accurate MTDS4 corresponds to sequence 5, with DICE achieving a
PCS of around 70%, irrespective of the cohort size. Meanwhile, for the shortened Scenario 5,
where the true MTDS3 aligns with sequence 2, the PCS is about 60%.



26 Chapter 3. Design for multiple endpoints and phases

Table 3.1 – Results of the 5000 simulated trials for the six proposed scenarios for each method. The proportion
of the selected MTDS, proportion of dose allocation and number of DLTs are shown. In bold, the results regarding
the true MTDS in each scenario are shown.

Method Dose sequence selection Dose sequence allocation DLTs
- cohort None 1 2 3 4 5 1 2 3 4 5 M (Q1, Q3)
Scenario 1
ptox 0.11 0.20 0.30 0.50 0.65
DICE - 1 0.002 0.009 0.157 0.665 0.165 0.003 0.064 0.159 0.448 0.221 0.107 11 (9, 12)
TITE-CRM - 1 0.004 0.023 0.3 0.571 0.1 0.002 0.143 0.271 0.363 0.153 0.069 9 (7, 11)
DICE - 3 0.001 0.012 0.175 0.624 0.181 0.008 0.137 0.23 0.401 0.179 0.053 9 (8, 10)
TITE-CRM - 3 0.003 0.026 0.352 0.533 0.085 0.001 0.211 0.333 0.334 0.106 0.016 7 (6, 9)
benchmark 0 0.043 0.336 0.578 0.043 0.001

Scenario 2
ptox 0.03 0.06 0.15 0.30 0.50
DICE - 1 0 0 0.001 0.126 0.73 0.143 0.036 0.04 0.153 0.431 0.341 10 (9, 11)
TITE-CRM - 1 0 0 0.004 0.208 0.68 0.108 0.046 0.066 0.211 0.397 0.28 9 (8, 10)
DICE - 3 0 0 0.001 0.139 0.677 0.183 0.104 0.113 0.204 0.337 0.242 8 (7, 9)
TITE-CRM - 3 0 0 0.004 0.236 0.644 0.116 0.113 0.13 0.255 0.341 0.161 7 (6, 8)
benchmark 0 0 0.008 0.183 0.756 0.053

Scenario 3
ptox 0.06 0.09 0.15 0.22 0.30
DICE - 1 0 0 0.006 0.142 0.201 0.651 0.043 0.05 0.177 0.182 0.547 7 (6, 8)
TITE-CRM - 1 0.001 0.001 0.025 0.145 0.33 0.499 0.075 0.098 0.176 0.25 0.401 6 (5, 8)
DICE - 3 0 0 0.003 0.082 0.238 0.677 0.108 0.116 0.201 0.208 0.367 6 (5, 7)
TITE-CRM - 3 0.001 0.001 0.046 0.229 0.393 0.33 0.147 0.184 0.261 0.238 0.17 5 (4, 6)
benchmark 0 0.004 0.017 0.115 0.373 0.492

Scenario 4
ptox 0.20 0.30 0.45 0.65 0.80
DICE - 1 0.011 0.188 0.452 0.339 0.009 0 0.221 0.326 0.368 0.062 0.023 11 (9, 12)
TITE-CRM - 1 0.038 0.26 0.54 0.16 0.003 0 0.411 0.374 0.169 0.033 0.012 9 (7, 10)
DICE - 3 0.007 0.197 0.47 0.311 0.015 0.001 0.261 0.377 0.299 0.053 0.01 10 (9, 11)
TITE-CRM - 3 0.029 0.284 0.557 0.128 0.002 0 0.483 0.383 0.12 0.013 0.001 8 (7, 9)
benchmark 0 0.339 0.558 0.103 0 0

Scenario 5
ptox 0.30 0.50 0.70 0.85 0.95
DICE - 1 0.098 0.707 0.186 0.009 0 0 0.558 0.287 0.117 0.027 0.012 12 (11, 14)
TITE-CRM - 1 0.158 0.721 0.121 0 0 0 0.723 0.201 0.048 0.018 0.009 10 (9, 12)
DICE - 3 0.083 0.733 0.179 0.005 0 0 0.591 0.313 0.087 0.008 0 12 (10, 13)
TITE-CRM - 3 0.131 0.737 0.131 0.001 0 0 0.743 0.222 0.033 0.002 0 10 (8, 12)
benchmark 0 0.929 0.07 0 0 0

Scenario 6
ptox 0.10 0.20 0.30 0.40 0.50
DICE - 1 0 0.015 0.163 0.523 0.24 0.059 0.084 0.174 0.438 0.198 0.106 9 (8, 11)
TITE-CRM - 1 0.005 0.022 0.337 0.445 0.171 0.021 0.188 0.321 0.307 0.14 0.045 7 (6, 9)
DICE - 3 0 0.012 0.153 0.503 0.247 0.085 0.128 0.227 0.397 0.165 0.083 9 (8, 10))
TITE-CRM - 3 0.003 0.022 0.403 0.434 0.127 0.011 0.248 0.384 0.275 0.081 0.012 7 (5, 8)
benchmark 0 0.015 0.294 0.489 0.172 0.031
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Figure 3.1 – Simulation study: Probability of sequence selection using the model predictions at earlier cycles
than the predefined window. Left panel: selection based on predicted cumulative probability of toxicity at cycle
4 in scenario 2; Right panel: selection based on predicted cumulative probability of toxicity at cycle 3 in scenario
(x-axis 0 indicating no sequence recommendation at the end of the trial)

3.3 Dose-finding design with two toxicities and an efficacy end-
point

In this work, I proposed a Bayesian design for Phase I-II of the LEVNEONAT trial (Leve-
tiracetam Treatment of Neonatal Seizures: Safety and Efficacy Phase II Study, with registration
number NCT 02229123 listed on ClinicalTrials.gov) aimed at determining the optimal dosage of
Levetiracetam for first line neonatal seizure treatment. The optimal dosage is identified as one
associated with a toxicity threshold below 10% and an efficacy exceeding 60%. Here, efficacy is
defined as achieving at least an 80% decrease in seizure burden subsequent to the administration
of the loading dose. This trial poses several challenges: (i) besides the standard short-term DLT
measurements, we aim to assess hearing loss, which cannot be evaluated in real-time and is only
confirmable on day 30; (ii) there may be a need to administer an additional medication (A2)
during treatment (maintenance doses) if Levetiracetam proves to be insufficiently effective, prior
to the DLT evaluation; (iii) as newborns can be enrolled at any time, our models must rapidly
generate results, enabling the pharmacy to prepare the appropriate dose level; (iv) the low target
toxicity threshold of 10% may result in the trial persistently allocating low doses if DLTs appear
early in the trial. To address these challenges, we develop a model that includes one endpoint for
efficacy and two endpoints for toxicity (see Figure 3.2 for a simplified trial overview), employing
a pseudo-likelihood method for inference.

In the following, three statistical models that establish the link between dose levels and
their effects on efficacy, as well as short-term (denoted T1) and long-term toxicity (denoted
T2) are outlined. These frameworks will serve as the basis for determining the appropriate
dose allocation and selection. It is important to note that the association between the drug
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Figure 3.2 – LEVNEONAT clinical trial: doses and endpoint measurements scheme. The loading dose (LD) is
given at time 0 and after four hours the efficacy endpoint is evaluated. Up to 8 maintenance doses (one quarter
of LD), are administrated between hours 6 and 64. The investigators have the option to add a second agent
A2 as a rescue medication. After 6 days, the first toxicity endpoint (short-term toxicity) is measured while the
long-term toxicity endpoint (i.e., hearing loss) is assessed after 30 days or when the neonate is released from the
hospital, whatever occurs first.

effectiveness and toxicity has been excluded from consideration due to its minimal impact in
prior research. Consider dk as the initial dose, with dk belonging to the set {d1, d2, . . . , dK},
and d[i] representing the dose given to the i-th participant. Let yE,i denote a binary indicator of
efficacy, assigning a value of 1 when the i-th participant shows positive effects and 0 otherwise.
Similarly, yT1,i is a binary indicator for short-term toxicity T1, and yT2,i for long-term toxicity
T2, each taking a value of 1 when the respective adverse effect is observed and 0 if not.

3.3.1 Dose-efficacy model

Levetiracetam is introduced with an initial loading dose dk, succeeded by maintenance doses
that are a quarter of the loading dose. The drug effectiveness is assessed prior to the starting
of maintenance dosing, relying solely on dk. The probability of efficacy for a patient receiving
a specific dose x is represented by pE(x) = P (yE,i = 1|d[i] = x). To describe the relationship
between dose and efficacy, we employ essentially the CRM adapted for efficacy, that is a logistic
model as follows:

logit(pE(x)) = α1 + eβ1x, x ∈ {d̃1, . . . , d̃K}; (3.3)

where α1 and β1 symbolize the intercept and slope parameters, respectively. The term d̃k refers
to the “effective” dose, conceived as the preliminary estimate of the probability of efficacy tied to
dose dk. This effective dose is determined by setting values for α1, β1, and pE and then reversing
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Eq. 3.3. The intercept α1 is set at a value of 3, though alternative values can be selected for
different applications. The parameter β1 is assigned a normal prior distribution with a mean of
0 and a standard deviation of 1.34 [Cheung, 2011].

3.3.2 Short-term toxicity model

The evaluation of short-term toxicity (T1) occurs within six days of beginning treatment. A
notable challenge, as depicted in Figure 3.2, arises when clinicians adjust the treatment regimen
due to Levetiracetam perceived insufficient efficacy in reducing seizures. This adjustment might
include decreasing or discontinuing the maintenance dose of Levetiracetam and introducing
an additional medication (A2) to enhance therapeutic outcomes. Consequently, modeling T1

becomes more intricate than in typical dose-finding studies due to the potential confounding
effects of A2 on the assessment of Levetiracetam toxicity. This complication arises because,
upon observing toxicity following the addition of A2, it is unclear whether the adverse effects
are attributable to Levetiracetam, A2, or a combination of both. Additionally, the relatively
brief assessment window for T1 (six days) is further complicated by the continuous admission
of new patients who require immediate care. This situation leads to what is known as the
“late-onset outcome” dilemma, where the ongoing enrollment and treatment initiation for new
patients can disrupt the timely and adaptive dose assignment based on the incomplete toxicity
evaluations of previously admitted neonates.

We firstly tackle the issue of possible late-onset outcomes (still referred to T1). We will
now refer to yT1,i as yi. Based on discussions with researchers, it was determined that T1 is
more likely to manifest at the onset of the 0-6 day evaluation period. Consequently, a modified
TITE-CRM [Cheung and Chappell, 2000, Braun, 2006] was developed to manage this challenge
of late-onset toxicity. This approach defines Ti as the time until toxicity occurrence for the i-th
patient, with Tmax representing the maximum duration of the toxicity assessment period for T1,
which is 6 days. Starting from the principle of conditional distribution for t ≤ T , we derive:

P (Ti ≤ t|xi) = P (Ti ≤ t|xi, yi = 1)× P (yi = 1|xi).

Here, P (yi = 1|xi) signifies the probability of experiencing short-term DLT for a patient admin-
istered dose x, denoted as pT1(x). This probability is modeled using a one-parameter logistic
model, as follows:

logit(pT1(x)) = α2 + eγ1x, x ∈ {d̄1, . . . , d̄K}.

In this model, α2 is a fixed intercept, γ1 represents the unknown slope parameter, and d̄k refers
to the “effective” dose, which are the prior estimates of short-term DLT for dose dk. Similar to
the efficacy model, this formulation presupposes that toxicity T1 increases in a dose-dependent
manner. For γ1, a normal prior distribution is assumed with γ1 ∼ N(0, 1.34), and α2 is set at 3.

For the maximum evaluation period, denoted as Tmax, which is 6 days, we adopt a method-
ology akin to Braun [2006], presuming the normalized time until toxicity, t/Tmax, adheres to a
Beta distribution, Beta(1, ζ). This leads to the following expression:

P (Ti ≤ t|xi, Yi = 1) = 1−
(
1− t

Tmax

)ζ

, ζ > 0.
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By setting the first parameter of the Beta distribution to 1, we simplify the model, yet retain
sufficient flexibility to depict various patterns of time until toxicity occurs. Moreover, ensuring
the sum of the Beta distribution parameters exceeds 1 eliminates the possibility of a U-shaped
distribution for the time to toxicity, which is considered implausible in this context. Given the
small sample size and the even smaller number of observed toxicities in the trial, selecting a
suitable prior for ζ is essential to mitigate the risk of highly uncertain estimates. The prior
distribution for ζ is elicited through consultation with clinicians. In the LEVNEONAT clinical
trial, ζ was treated uniformly across all doses to simplify the model. However, based on the
principle of monotonicity, that higher doses lead to earlier toxicity, it is feasible to make ζ dose-
dependent by defining ζi = zλk , where λ is a negative value. This approach entails transforming
dk into zk, a value constrained within the interval [0, 1].

To address the confounding problem arising from the potential introduction of a new agent
A2 during the maintenance dose phase, we face the challenge of distinguishing whether observed
toxicities are due to Levetiracetam, A2, or a combination of both. Our approach involves the
creation of a pseudo observation y∗i , which estimates the likelihood that the toxicity can be
attributed to the maintenance doses of Levetiracetam. Specifically, ni represents the number
of maintenance doses administered to the i-th patient, and xi,m refers to the actual dosage
received during these maintenance phases (or the corresponding loading dose, given their direct
correlation). Considering the observed toxicity outcome yi, we introduce a pseudo observation
defined as:

y∗i = w(ni, xi,m)yi,

where the weighting function is given by:

w(ni, xi,m) =

{
fw(ni, xi,m)τ, if A2 is introduced
1, otherwise,

(3.4)

with fw(ni, xi,m) being a predetermined function and the constant τ < 1 reflecting the prob-
ability that the toxicity results from Levetiracetam, assuming the full regimen of maintenance
doses is administered. The value of τ should be determined in consultation with clinical experts.
Essentially, this formula suggests that if A2 is not added, the actual outcome yi is entirely at-
tributed to Levetiracetam, warranting a weight of 1. Conversely, if A2 is incorporated into the
regimen, the attributed fraction of toxicity, fw(ni, xi,m)τ , is considered to be due to Levetirac-
etam. We propose utilizing the function:

fw(ni, xi,m) =
eγnixi,m − 1

eγNMxK − 1
,

where NM represents the maximum number of maintenance doses outlined in the study protocol,
xK indicates the dosage for the highest dose level, and γ serves as a calibration parameter. This
formula is designed to progressively increase the proportion of toxicity attributed to Levetirac-
etam in relation to the cumulative maintenance doses received by a patient. Specifically, when
the new agent A2 is incorporated without any maintenance doses having been administered
(ni = 0), the function fw(ni = 0, xi,m) equals zero, leading to y∗i = 0, implying that toxicity is
primarily associated with A2. Conversely, when the full regimen of maintenance doses is deliv-
ered at the highest dosage (ni = NM , xi,m = xK), the function fw(ni = NM , xi,m = xK) equals
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Figure 3.3 – Values of fw for several doses, 30, 40, 50 and 60 mg/Kg , versus the number of maintenance doses
and for three γ values.

one, making y∗i = τyi, which reflects the scenario where the observed toxicity is fully considered
to be attributable to Levetiracetam, assuming the influence of A2 is proportionally adjusted by
τ . In the LEVNEONAT trial, informed by prior research and discussions with medical experts,
τ was established at 0.8, and γ was determined to be 0.002. Ideally, these parameters, τ and
γ, would be derived from the trial data; however, they cannot be distinctly identified due to
the complete overlap in the effects of Levetiracetam and A2. Therefore, sensitivity analysis is
employed as a method to evaluate the effectiveness and stability of the selected values for τ and
γ. Exploring different values of γ reveals its impact on the weighting function fw across the
four dosing levels. An increase in γ tends to reduce the weights to zero except for the last few
maintenance doses, whereas a decrease in γ results in a more linear distribution of weights. The
initial formula for fw assigns a zero weight to toxicities when no maintenance doses are admin-
istered. If there is a preference to allocate a weight greater than zero under such circumstances,
an alternative formulation could be employed:

w(ni, xi,m) =

{
τL + fw(ni, xi,m)(τ − τL), if A2 is added
1, otherwise,

where τL signifies the weight assigned at the loading dose (uniform across all doses for simplicity).
Another approach, not covered in this work, involves directly obtaining each weight from clinical
practitioners.
Combining all the elements, for n neonates treated in the trial, the pseudo likelihood for T1 is
formulated as follows:

QL1(γ1|y, α1, ζ) ∝
n∏

i=1

([
1−

(
1− ui

Tmax

)ζ
]
pT1

)y∗i
(
1−

[
1−

(
1− ui

Tmax

)ζ
]
pT1

)(1−y∗i )

.

This equation represents the pseudo likelihood, termed so because the likelihood derived from
it does not precisely reflect the true likelihood due to the empirical weighting of the toxicity
probability pT1.
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3.3.3 Long-term toxicity model

Contrary to short-term toxicity T1, which may manifest at any point from day 0 to 6, long-
term toxicity T2 (e.g., hearing loss) is only assessable on day 30, even though it could develop well
before this date, as illustrated in Figure 3.2. Given the potential of T1 to predict T2, we express
the probability of T2 given the dose and the occurrence of T1 as pT2(x, yT1) = P (yT2 = 1|x, yT1).
This relationship is stated using the logistic model:

logit(pT2(x, yT1)) = α3 + eδ1x+ eδ2yT1, x ∈ {ḋ1, . . . , ḋK}. (3.5)

Here, {ḋ1, . . . , ḋK} represent the “effective” doses, corresponding to prior estimates of the prob-
ability of T2 toxicity for each dose level. α3 is a fixed parameter, while δ1 and δ2 are parameters
to be determined. The model assumes both eδ1 and eδ2 are positive, indicating an increased
likelihood of experiencing T2 for patients who have encountered short-term toxicity T1 or have
been administered a higher dose. A time-to-event model is not utilized for T2 because its
occurrence cannot be monitored in real-time; it is only measurable on day 30. Like T1, the
measurement of T2 is confounded by the potential introduction of agent A2. To address this,
we apply the same pseudo observation technique, substituting the actual observed outcome yT2

with y∗T2 = w(nm, xm)yT2, where w(nm, xm) follows the formula provided by Eq. 3.4. For con-
sistency, we also replace yT1 in Eq. (3.5) with y∗T1, utilizing the same adjusted value as in the T1

model. Let n∗ represent the number of patients who have successfully undergone the evaluation
for long-term toxicity T2. The pseudo-likelihood for this scenario is expressed as:

QL2(.) =
n∗∏
i=1

[
pT2(x[i], y

∗
T1,i)

]y∗T2,i
[
1− pT2(x[i], y

∗
T1,i)

]1−y∗T2,i .

The parameters δ1 and δ2 are assumed to follow a normal distribution with mean 0 and standard
deviation 1.34, and α3 is fixed at 3. The model specified in Eq. 3.5 outlines the conditional prob-
ability of observing yT2 given yT1. The overall likelihood of yT2, denoted as pT2, is determined
through the law of total probability.

3.3.4 Avoiding stickiness

It is recognized that premature occurrences of short-term toxicity can significantly influence
the dose allocation strategy, particularly when the targeted probability lies within the distri-
bution tails. A “greedy” algorithm may become entrenched in a sub-optimal action because it
continuously selects this sub-optimal choice. Adopting the methodology of Resche-Rigon et al.
[2008, 2010], we apply adaptive “relevance weights” (denoted as wri(.)) to the previously dis-
cussed pseudo-likelihood for T1. These weights are dynamically adjusted based on the current
patient accrual within the trial and the incidence of short-term toxicities observed at each dosage
level. Specifically, for any given dose k, let nalloc,dk represent the number of patients assigned
to that dose, and nDLT,dk denote the number of patients who have experienced toxicity. Within
the context of the LEVNEONAT clinical trial, a tailored weighting scheme is implemented as
follows:

wri(yi, di) =

1, if yi = 0

min
(
max

(
π
nalloc,di
nmax

+ (1− π)
nDLT,di
nalloc,di

,
nalloc,di
nmax

)
, 1
)
, if yi = 1.
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Here, nmax is a preset constant often related to the desired probability target, and π is a mixture
constant that integrates the proportion of patients allocated to dose i with the observed toxicity
rate at that dose. Once nmax patients have been allocated to each dose level, all weights adjust
to 1.

3.3.5 Dose allocation rule

The objective is to allocate a dose to each new cohort patient(s) that balances maximal
efficacy with acceptable safety. If all doses are too toxic or not effective enough, the trial will
stop. Upon enrolling n neonates, out of which n2, n2 ≤ n, have completed the full follow-up
until the evaluation of T2, the dose for the subsequent cohort is chosen from a pool of doses
that satisfy a set of predefined criteria. These criteria are based on current estimates of the
probabilities and include:

■ P (pT1 > δT1 + ε1) < g(n)

■ P (pT2 > δT2 + ε2) < g(n2)
1n2>1

■ P (pE < δE − εE) < g2(n)
1n>11 .

Here, ε1, ε2, and εE are constants that are predetermined and discussed further in the trial
protocol. In conclusion, the selection process prioritizes the highest effective dose within the
bounds of toxicity constraints. The notation 1(...) denotes the indicator function, which takes
the value of one when the specified condition is satisfied and zero otherwise. This mechanism
ensures that constraints related to T2 and efficacy only impact dose selection decisions when
relevant data is available. To accommodate the evolving nature of the trial, adaptive thresholds
g(n) and g2(n) are suggested. These thresholds are dynamically adjusted based on the number
of participants already enrolled in the trial and for whom data has been collected:

g(n) = max

(
0.5, 0.9

1

1 + 0.025n

)
g2(n) = max

(
0.5, 0.9

1

1 + 0.02n

)
.

The parameters εE , ε1, and ε2 were determined to be 0.02 each, based on a sensitivity analysis
conducted in the context of the LEVNEONAT clinical trial, where the thresholds δT1 = δT2 = 0.1

for toxicity and δE = 0.6 for efficacy were established. In situations where no dose meets the
eligibility criteria the trial is discontinued. As extra conditions, which overlap with the previous
set as the trial evolves, the trial is stopped if the likelihood of the first dose being excessively
toxic (P (pT1 > δT1|d1) > 0.9 or P (pT2 > δT2|d1) > 0.9) or the last dose being insufficiently
efficacious (P (pE < δE |dK) > 0.9) exceeds 90%. Additionally, the no-skipping rule is enforced,
requiring that at least one patient is treated with every preceding dose level before advancing
to a higher dose.

Upon concluding the trial, the minimum effective dose (de,min) is identified as the dose
that minimizes the absolute difference between the estimated probability of efficacy (p̂E(d))
and the efficacy threshold (δe), across all considered doses (D). Similarly, the MTD (dt,max)
is determined as the minimum of the doses that minimize the absolute differences between the
estimated probabilities of toxicities (p̂T1(d), p̂T2(d)) and the toxicity thresholds (δT1, δT2). The
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recommended dose at the trial conclusion equals dt,max provided de,min ≤ dt,max; otherwise, no
dose is recommended. The estimated probabilities p̂E(d), p̂T1, and p̂T2(d) are calculated as the
posterior median values given the dose d.

3.3.6 Results

Design performances have been tested via extensive simulation studies. For each scenario, we
simulated 1000 trials with four dose levels. We established a cohort size of two newborns per dose
level and total sample sizes of 30, 40, and 50 neonates for each trial, with the assumption that one
newborn would be enrolled every 15 days. For detailed information on how the scenarios were
generated, please consult the published paper. We tested either the approach with relevance
weights (M1) or the one without them (M2) within the pseudo-likelihood framework. To assess
the effectiveness of our design proposal, we compared the percentage of correct dose selection
(PCS) upon trial conclusion. Obtained results in six relevant scenarios are shown in Tables 3.2
and 3.3.

In Scenario 1, without the addition of drug A2, Model M1 (represented by squares in the
table) achieved a higher PCS than Model M2 (indicated by triangles in the table), with a
PCS exceeding 67% for groups of 30 or more patients. This scenario examined the impact of
relevance weights. In Scenario 2, which was similar to Scenario 1 but included the use of A2

with a probability of pa = 0.5, once again the PCS for M1 surpassed that of M2. Scenario 3,
where the optimal dose under toxicity constraints was the last one in the sequence and included
A2, saw PCS values exceeding 80% with M1. Scenario 4 suggested that while all administered
doses were deemed safe, only the last dose achieved the desired efficacy goal of 60%. Here, PCS
values were above 71% for both models across all sample sizes. Scenario 5 aimed to assess a
situation where the probability of T1 remained constant, but the probability for T2 increased
with the addition of A2. In this scenario, M2 showed higher PCS for groups of 30 patients.
Scenario 6 modeled T1 and T2 as independent from each other, resulting in observed PCS rates
around 60% for both models across all sample sizes.

3.4 Bayesian seamless Phase II/III trials with correlated survival
endpoints

In this section, I transition from dose-finding to seamless Phase II/III trials. The focus
is on examining how information can be transferred between Phase II and Phase III when
employing two distinct but related efficacy endpoints (as for T2 and T1 in my earlier work
within the context of toxicity, but now in the context of efficacy). In particular, in this work,
done by a PhD student I have co-supervised, the objective was to develop and evaluate Bayesian
operationally seamless Phase II/III trial designs that employ a binary endpoint for Phase II and
a time-to-event endpoint for Phase III [Duputel et al., 2023]. Upon concluding Phase II, arm
selection relies on posterior probabilities for assessing futility and on predictive probabilities for
making selection decisions. The results from Phase II are subsequently integrated into the prior
distributions, this is why it continues to be operationally seamless, for a time-to-event model in
Phase III.
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Table 3.2 – Results for the first three scenarios in term of right dose selection are shown for sample size of
30, 40 and 50 neonates. In the second column, values for pT1, pT2, pE , along with pa, pT1|A2 and pT2|A2 used
in simulations are summarized for each dose. In the third column, the percentage of correct selection (PCS) is
given through a plot where the PCS is plotted versus sample size. Squares refer to M1 results, triangles refer to
M2 ones.

dose PCS
1 2 3 4

Scenario 1
pT1,true 0.001 0.01 0.1 0.2
pT2,true 0.001 0.01 0.1 0.2
pE,true 0.6 0.7 0.8 0.9
pa = 0

Recommended dose 3
Scenario 2
pT1,true 0.001 0.01 0.1 0.2
pT2,true 0.001 0.01 0.1 0.2
pE,true 0.6 0.7 0.8 0.9
pa = 0.5
pT1|A2,true 0.005 0.05 0.15 0.25
pT2|A2,true 0.005 0.05 0.15 0.25

Recommended dose 3
Scenario 3
pT1,true 0.001 0.001 0.01 0.1
pT2,true 0.001 0.006 0.026 0.09
pE,true 0.5 0.6 0.7 0.8
pa = 0.5
pT1|A2,true 0.005 0.005 0.05 0.15
pT2|A2,true 0.005 0.005 0.05 0.15

Recommended dose 4
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Table 3.3 – Results for the last three scenarios in term of right dose selection are shown for sample size of
30, 40 and 50 neonates.In the second column, values for pT1, pT2, pE , along with pa, pT1|A2 and pT2|A2 used
in simulations are summarized for each dose. In the third column, the percentage of correct selection (PCS) is
given through a plot where the PCS is plotted versus sample size. Squares refer to M1 results triangles refer to
M2 ones.

dose PCS
1 2 3 4

Scenario 4
pT1,true 0.001 0.005 0.01 0.05
pT2,true 0.001 0.007 0.015 0.05
pE,true 0.3 0.4 0.5 0.6
pa = 0.5
pT1|A2,true 0.005 0.009 0.012 0.06
pT2|A2,true 0.005 0.009 0.012 0.06

Recommended dose 4
Scenario 5
pT1,true 0.01 0.1 0.25 0.35
pT2,true 0.009 0.1 0.18 0.26
pE,true 0.6 0.7 0.8 0.9
pa = 0.5
pT1|A2,true 0.01 0.1 0.25 0.35
pT2|A2,true 0.01 0.1 0.25 0.35

Recommended dose 2
Scenario 6
pT1,true 0.001 0.01 0.1 0.2
pT2,true 0.01 0.1 0.2 0.3
pE,true 0.6 0.7 0.8 0.9
pa = 0.5
pT1|A2,true 0.005 0.05 0.15 0.25
pT2|A2,true 0.005 0.05 0.15 0.25

Recommended dose 2
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Figure 3.4 – Scheme of the seamless design, with a Phase II involving binary outcomes, that is, mortality rate
at a prespecified time, and a Phase III with a time-to-event endpoint.

The binary outcomes for the Phase II stage and the survival outcomes for the Phase III
stage are derived from Atalante-1 (NCT02654587), our motivational study that features only
two arms. However, we suggest expanding this design framework to accommodate multiple
treatment arms during the initial stage, as depicted in Figure 3.4. For ease of explanation and
analysis, we have chosen to adopt a 1:1 randomization ratio across both stages.

Let us consider k as the index for the K treatments in the trial, with k = 0 representing
the control group. The maximum sample size for the Phase II stage for each treatment group is
denoted by Nk, and for the Phase III stage, the maximum sample size for the selected treatment
arm (k̃ = 1) and the control arm (k̃ = 0) is represented by Mk̃. The time to event (e.g., death)
for individuals in Phase II and Phase III are indicated by ti,k, with i ∈ {1, . . . , Nk}, and ti,k̃,
with i ∈ {1, . . . ,Mk̃}, respectively. Similarly, ci,k and ci,k̃ stand for the censoring times for each
participant. For each participant, the observation is either the event time or the censoring time
(indicating loss to follow-up or being alive at the study conclusion). For individuals in Phase II,
yi,k marks the earlier of the two times (event or censor), and νi,k is the event indicator, that is
yi,k = min(ti,k, ci,k) with ti,k, ci,k > 0 and

νi,k =

{
1 if yi,k = ti,k ⇐⇒ ti,k ≤ ci,k
0 if yi,k = ci,k ⇐⇒ ti,k > ci,k

.

12Let Dk represent the dataset from group k, where Dk = {Nk,yk,νk}k=0,...K . In this repre-
sentation, yk and νk are vectors of length Nk that group all observed values of yi,k (the time
of the first occurrence between event or censor for each participant) and νi,k (the event indica-
tor, signifying whether the event of interest or censoring occurred first), respectively, for each
treatment group indexed by k from 0 to K. Similarly, Dk̃ is defined for k̃ = 0, 1 in the Phase
III.

3.4.1 Stage 1 - Phase II

At this stage, a binary primary endpoint is defined as survival status at a specific time point,
t∗, which for our case is set at 12 months. The outcomes are categorized into two groups: those
who die before reaching t∗ and those who are still alive at that time. To simplify, patients who
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are censored before t∗ are not included in the calculation of the survival rate, though imputation
techniques can be applied to address this issue. The analysis for Phase II is scheduled to occur
once Nk patients in each group k have been enrolled and completed the follow-up period. The
survival indicator at time t∗ for patient i in group k, denoted as y∗i,k, is defined as follows:

y∗i,k =

{
1 if yi,k ≥ t∗

0 if yi,k < t∗,
(3.6)

where i ∈ {1, . . . , nk}, and nk ≤ Nk represents the count of noncensored patients in group
k. Let pk represent the probability of survival at time t∗ for group k, which lies within the
interval [0,1]. The sum of survival indicators y∗i,k follows a Binomial distribution,

∑
y∗i,k ∼

Binomial(nk, pk). To facilitate inference on pk, we employ a logit link function, that is, pk =

logit−1(θk), where θk = θ0 + µk for k = 1, . . . ,K, and θ0 is the parameter for the control arm,
with p0 = logit−1(θ0). For the Bayesian framework, normal prior distributions are specified, with
µk following N (µ̃k, σ

2
k), and θ0 following N (µ0, σ

2
0). Historical data pertaining to the control

group can inform the hyperparameters, and µ̃k might be set to 0 to adopt a conservative stance
assuming no treatment effect. While a beta-binomial model could alternatively be used for each
arm analysis, the suggested model not only facilitates quicker interpretation of treatment effects
but also allows for further model complexity enhancements. Such enhancements might include
hierarchical structures, incorporation of dosage levels within treatment groups, or establishing
a dose-response relationship for specific groups.

At the conclusion of Phase II, the objective is to identify the most promising treatment arm.
This is achieved through a two-step algorithm:

1. Futility rule: Initially, any treatment arms that fail to surpass a specified threshold, τ1, for
the posterior probability of demonstrating a superior survival rate compared to the control
arm, expressed as P(pk − p0 > 0|Dk) < τ1, are eliminated from further consideration.

2. Selection of the most promising arm: From the remaining arms, the one exhibiting the
highest predictive probability of success is chosen for the Phase III survival study. Success
here is defined by the likelihood that a future patient will survive at least one year under the
treatment. In the context of a binomial distribution, this predictive probability aligns with
the expected value of the posterior distribution of pk, calculated as

∫
pkπpost(pk|yk) dpk.

If the futility rule leads to the disqualification of all treatment arms, the trial is concluded.
Interchanging the order of the two steps does not affect the outcome.

3.4.2 Stage 2 - Phase III

Upon the identification of the most promising treatment arm, the study progresses to Phase
III, focusing on a survival endpoint. For modeling the survival times, we opt for the Weibull
distribution, though it is worth noting that alternative parametric distributions could also be
applicable. The chosen parametrization for regression analysis involves the shape parameter α

and scale parameter γk̃, using the notation W (α, γk̃). The probability density function is thus
defined as:

f(t|α, γk̃) =
α

γk̃

(
t

γk̃

)α−1

exp

(
−
(

t

γk̃

)α)
,
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with the condition that α > 0 and γk̃ > 0, where k̃ = 0 for the control arm and k̃ = 1 for the
selected treatment arm. In this Weibull survival regression framework, the shape parameter α is
shared between the two arms, indicating a common survival pattern curvature, whereas the scale
parameter γk̃ varies across arms, reflecting differences in the survival times scaling between the
control and the treatment groups. For each arm in the study, the survival function associated
with the time to event or censoring is expressed as:

S(yi,k̃|α, γk̃) = exp

(
−
(
yi,k̃
γk̃

)α)
,

and the likelihood for Mk̃ patients accrued in arm k̃, which accommodates censored data, is
given by:

L(α, γ0, γ1|D) =
1∏

k̃=0

Mk̃∏
i=1

f(yi,k̃|α, γk̃)
νi,k̃S(yi,k̃|α, γk̃)

(1−νi,k̃),

where yi,k̃ denotes the observed time (event or censoring) for individual i in the k̃-th group,
and νi,k̃ is the indicator of whether this observed time is due to an event (1) or censoring (0).
To facilitate more stable inference, the log transformation of the scale parameter, βk̃ = log(γk̃),
is estimated for each arm k̃. To close the Bayesian model for Phase III, incorporating prior
distributions for the parameters α, β0, β1 is essential. Here, we discuss two methodologies that
utilize outcomes from Phase II for setting these priors.

In the first approach, called the ESS (Effective Sample Size) approach, the prior for the shape
parameter α is chosen to be an Inverse Gamma distribution, π(α) = InverseGamma(ρ, κ), with
both ρ and κ being greater than zero. For the scale parameters βk̃, normal distributions are se-
lected, π(βk̃) = N (µk̃, σ

2
k̃
), with σk̃ > 0 indicating the standard deviation. The hyperparameter

µk̃ for each βk̃ is derived from the survival rates estimated at the end of Phase II, specifically at
time t∗. This estimation leverages the survival function relationship:

p̃k̃ = exp

(
−
(

t∗

exp(βk̃)

)α)
,

where p̃k̃ represents the estimated survival rate for the k̃-th arm, typically determined by the
posterior mean or median of the survival probability at time t∗. Assuming a fixed value for α

(denoted as α̃, often set to 1 for simplicity), the mean µk̃ for the prior distribution of each βk̃
can be calculated using the formula:

µk̃ = log

(
−t∗

log
(
p̃k̃
)1/α̃

)
.

The standard deviation parameters, σk̃, are determined to correspond with a desired ESS, a
concept that reflects the amount of information encapsulated within the prior distribution, akin
to the inclusion of an equivalent number of additional patients in the analysis. Different method-
ologies for calculating ESS are discussed in the literature [Morita et al., 2008, Neuenschwander
et al., 2020, Wiesenfarth and Calderazzo, 2020], however, applying these ESS concepts directly
to time-to-event models poses certain challenges. Therefore, we propose applying a novel ESS
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Figure 3.5 – Information vs. sample size and censoring rate and the estimated regression lines.

concept based on the unit information principle [Liang et al., 2008], a concept that originates
from frequentist statistics but is equally applicable in Bayesian settings. The unit information,
Iu, represents the information contributed by a single subject, often defined as the Fisher infor-
mation matrix normalized by the sample size. In Bayesian terms, it can be thought of as the
inverse of the variance of the posterior distribution per sample unit. To achieve an ESS of n∗, we
adjust the standard deviation parameter, σk̃, such that it aligns with the unit information scaled
by n∗, specifically: σk̃ = (n∗Iu)−1/2. This scaling ensures that the prior influence is equivalent to
adding n∗ hypothetical subjects to the analysis. The calculation of Iu is linked to the statistical
model in use and is derived from examining the expected relationship between sample sizes and
the variance of posterior estimates. In the context of survival analysis, the censoring rate (cr)
also affects the unit information, necessitating a formulation where σk̃ accounts for both the
sample size and the censoring rate, rendering it as: σk̃ = (I(n∗, cr))

−1/2 (Figure 3.5).
In the second approach, called the likelihood approach, for determining the joint prior dis-

tribution of α, β0, β1 we leverage the binary likelihood derived from Phase II data, employing
the Weibull distribution to model survival times. This method integrates the survival function
S(t∗|α, exp(βk̃)) for the binary outcome observed at time t∗ (the predefined survival threshold),
across both treatment arms (control and selected treatment arm). The prior distribution is
formulated as follows:

π(α, β0, β1) ∝
1∏

k̃=0

S(t∗|α, exp(βk̃))
yk̃
(
1− S(t∗|α, exp(βk̃))

)nk̃−yk̃ π(α)π(βk̃),
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where π(α) and π(βk̃) are chosen to be noninformative priors, potentially following the same
distributions as those used in the ESS approach. Here, nk̃ represents the total number of patients
analyzed at Phase II in arm k̃, and yk̃ =

∑
y∗
i,k̃

signifies the number of patients who survived
until t∗ in the same arm.

The determination of the treatment superiority over the control arm in the final analysis
hinges on the parameter denoting the treatment effect, ∆ = β1 − β0. The criterion for asserting
the treatment superiority is that the posterior probability of ∆ being greater than zero exceeds
a predetermined threshold, τ2: P (∆ > 0) > τ2. This approach mirrors the rationale behind
one-sided hypothesis testing in frequentist statistics, where τ2 is commonly set to 0.975 to
align with a 95% confidence level for the superiority margin. In scenarios requiring a more
pronounced treatment effect or where a noninferiority margin (ζu) is permissible, the criterion
can be adjusted to: P (∆ > ζu) > τ2. This adjustment allows for flexibility in defining what
constitutes a clinically meaningful difference between the treatment and control arms, taking
into account both statistical significance and clinical relevance.

3.4.3 Results

In our comprehensive simulation study, we assessed the performance of five distinct trial de-
signs, including a frequentist operationally seamless method (F-OP) as the primary benchmark.
In the F-OP design, both stages of the trial, Phase II and Phase III, are outlined within the
same protocol and conducted sequentially. However, only the data collected during Phase III
are utilized to make the final determination regarding the treatment efficacy. Importantly, this
approach does not necessitate an adjustment for Type I error, given that the interim analysis at
the end of Phase II does not influence the statistical inference for the final claim. The Bayesian
operational counterpart, identified as B-OPwinf, employs a weakly informative prior for the
second stage of the trial. This approach is characterized by an ESS of 1, with specific hyperpa-
rameters for the prior distribution set as ρ = 10 and κ = 9. The alternative Bayesian method,
denoted as B-OPinfESS, incorporates an informative prior, tailored through the ESS approach.

This method calculates the standard deviation parameter, σk̃, as: σk̃ =
(
I(nk̃, ĉr,k̃)

)−1/2
, lever-

aging all nk̃ Phase II patients in arm k̃ who were not censored before 12 months, alongside
the empirical censoring rate ĉr,k̃ observed in Phase III for the same treatment arm. The fourth
method, labeled B-OPinLIK, adopts the same foundational principles as B-OPinfESS but dis-
tinguishes itself by constructing the informative prior through a likelihood-based approach. The
fifth method introduced for comparative analysis is a purely Bayesian inferential design, denoted
as B-INFER. Unlike the operational designs, B-INFER undertakes a comprehensive analysis at
the trial conclusion, utilizing the actual survival times from all patients across both phases. This
means that for B-INFER, detailed survival data, including the time of death for each patient
from both the control and selected treatment arms from Phase II, are followed up, recorded, and
analyzed, beyond the binary outcomes initially used for selection decisions at the end of Phase
II. Weakly informative priors, similar to those employed in B-OPwinf, are utilized in B-INFER
to ensure a minimal prior influence. For all Bayesian designs discussed, including B-INFER, the
efficacy threshold τ2 is set at 0.975. This threshold is selected to align with the traditional 2.5%
significance level used in frequentist hypothesis testing (although we know that they are not the
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Figure 3.6 – Results in terms of simulated type one error. On the left-hand side, the percentage of trials that
were stopped at the futility analysis at the end of Phase II in scenario 1 is shown. On the right-hand side, the
percentage of trials where the treatment arm was erroneously claimed to be superior is shown. Straight lines
refer to no futility rule applied, that is, τ = 0 and ζT = −1, while dashed lines refer to τ = 0.4 and ζT = −0.025.

same theoretically). To assess the operating characteristics, including simulated Type I error
rates and power, of the various trial designs discussed, four principal scenarios were identified
for detailed analysis. For each scenario, 1000 trial simulations were conducted.

Figure 3.6 illustrates the outcomes for five trial designs under scenario 1. Applying a futility
threshold τ = 0.4 or ζT = −0.025 leads to the cessation of 22.1% and 26.7% of trials at the
interim stage for Bayesian and frequentist designs, respectively. Without futility analysis (τ = 0

or ζT = −1), the Type I error rate varies between 1.8% (B-OPwinf) and 2.4% (B-OPinfESS).
With futility, errors range from 1.4% to 2.2%.

Figure 3.7 presents power results in scenarios 2, 3, and 4, highlighting the frequency of correct
arm selection for both Bayesian and frequentist methods under identical futility thresholds.
Futility generally decreases correct selections by about 5 points, correlating with the rate of
early trial terminations. B-OPwinf performs comparably to F-OP. B-OPinfESS shows similar or
marginally lower correct claim rates than B-INFER, with B-OPinfLIK effectiveness positioned
between the two other Bayesian operational designs.

3.5 Discussion

The first study, DICE was designed to enable the prediction of outcomes across different
treatment cycles assessed in the trial. Making reliable predictions, which involves accurately es-
timating the likelihood of toxicity for various sequences and cycles, is a crucial aspect of this new
approach. For example, if it turns out that the treatment is effective with fewer cycles at later
evaluations, DICE could adjust its toxicity probability estimates and update the recommended
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Figure 3.7 – Results in terms of simulated power. Each plot line represents one scenario. In the first column,
the percentages of correct arm selection at the end of Phase II are shown for the Bayesian methods and the
frequentist one. In the second column, the percentages of final Phase III correct claims associated with each
design are given. Straight lines refer to no futility rule applied, that is, τ = 0 and ζT = −1, while dashed lines
refer to τ = 0.4 and ζT = −0.03.
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MTDS accordingly. While DICE has the potential to predict outcomes for untested sequences,
like different doses or more cycles, we must be very cautious about these predictions, especially
when they involve doses or cycles not previously tested (this would be a form of extrapolation).
Unlike the methods that used PK/PD data, this approach has limited information sharing. An-
other challenge is the requirement for a predefined order of dose sequences based on toxicity risk.
If this order is not clear, we may need to reconsider the no-skipping rule. The DICE forces and
weakness are related to the discussion on the “dose-estimators” and the “dose-finders” done in the
previous chapter. It is challenging to outperform simpler models like the TITE-CRM, which are
specifically designed for a single purpose (identifying the MTD). However, more complex models
could facilitate future optimization and still deliver performance comparable to the simpler ones
on MTD (or MTDS) finding.

The second work represents a modeling exercise tailored to a particular case study. The
simulation study for the proposed method suggests it offers a balanced compromise between
model complexity, achieving high probability of correct selection, and maintaining a reasonable
number of both short and long-term toxicities, even with the limitations of a small sample
size. The incorporation of clinical relevance weights has proven beneficial in ensuring the dose
allocation process progresses smoothly without being stuck. Even if the work was tailored for the
LEVNEONAT trial, the methodology itself is versatile and can be adapted to various scenarios by
modifying different model components, such as the time-to-event distribution and the relevance
weights. To effectively customize this method, it is essential to foster close cooperation among
statisticians, physicians, and other collaborators involved in the trial. Expert elicitation played
a crucial role in this work, particularly in setting the shape of the time-to-event distributions
and other design parameters, allowing the model to be estimated. This approach simplified the
final model to a level that it could be estimated within a timeframe acceptable for practical
hospital procedures.

Finally, in the third work, we delved into the application of the Bayesian approach in seamless
Phase II/III study designs, specifically focusing on how information transfer can occur between
different yet related endpoints. We introduced two methods for establishing informative priors.
The first method, known as the ESS approach, assesses the appropriate amount of unit infor-
mation for a Weibull survival regression, finding a linear correlation in our setting, although the
ESS might change with the survival rate in other models. The second method, the likelihood
approach, integrates information at the binomial level instead of the survival level, leading to
less informative prior distributions. However, using only Phase II data to estimate potential
dropout rates might deliver more substantial information than that obtained from actual Phase
III participants, given that a censored patient provides less data than one who experiences the
event in the survival analysis. While enhancing study power, this method risks increasing Type
I errors in inferentially seamless designs. A more cautious strategy might involve reducing the
number of patients used to create the prior distribution to mitigate this risk. As it is stan-
dard with such designs, conducting a simulation study is necessary to examine the operating
characteristics.
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This chapter marks our step into exploring the use of external data, contrasting with the
internal sources discussed in Chapters 2 and 3. I will detail two studies: the first focuses on
Phase I dose-finding studies where external information comes from an external clinical trial; the
second delves into the context of a randomized Phase II study, incorporating experts’ elicitation
as external information. In the first work, I briefly present the work I have conducted on
building prior distributions in Bayesian inference, incorporating external data into the actual
study. In Ollier et al. [2020], a project conducted by a PhD student under my co-supervision,
we introduced a power prior approach for utilizing data from a previous clinical trial within the
context of Phase I bridging studies, specifically from Caucasians to Asians, where there is a study
already performed with Caucasian participants and a new prospective study is planned with
Asian participants. Then, in the second study where I am a co-first author, we explore the use
of expert elicitation to build prior distributions for analyzing a randomized Phase II trial [Thall
et al., 2019]. This approach is especially beneficial for rare diseases with limited sample sizes,
where seeking external opinions can aid in building appropriate prior distributions. Maintaining
the organization of the priors chapters, this section begins with a succinct introduction to frame
the discussion around the two works. Subsequently, I will provide summaries of these papers,
concentrating on the methodologies utilized and the findings achieved. The chapter will conclude
with a brief discussion.
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4.1 Introduction

The use of Bayesian inference in the design, conducting, and analysis of clinical trials is be-
coming more common. One of its key benefits is the ability to incorporate external information,
such as data from prior clinical trials, electronic health records, medical publications, and ex-
perts’ opinions into the statistical analysis. This capability can lead to smaller required sample
sizes while enhancing the study statistical power [Hobbs et al., 2011, Röver and Friede, 2020, van
Rosmalen et al., 2018]. Nonetheless, the integration of external data sources into the prior dis-
tribution must be approached with caution, as these inputs can either contradict or strengthen
the derived posterior outcomes. Several techniques for incorporating historical data into prior
distributions are highlighted in the literature, including: the power prior (PP), the commen-
surate prior and the meta-analytic predictive (MAP) prior. When using the PP approach, the
quantity of information to be utilized in the prior is determined by assigning a weight to the
prior data [Ibrahim and Chen, 2000, Neuenschwander et al., 2009]. This weight acts as a power
parameter and ranges from 0 to 1, where 0 signifies a non-informative prior and 1 indicates full
borrowing from the prior. However, the process of determining this parameter is subjective and
may result in incorrect specification of the prior if not executed properly [Ibrahim et al., 2015].
The commensurate priors aims at quantifying the level of similarity between the informative
prior distribution and the likelihood [Hobbs et al., 2011, 2012]. In this setting, the researchers
introduce a commensurability parameter, which is estimated after observing the trial data in-
corporated in the likelihood. Concerning commensurability, Schmidli et al. [2014] proposed a
meta-analytic approach utilizing the MAP where the parameters are considered exchangeable
across trials.

Another way to build prior distributions is considering expert opinions. Numerous re-
searchers across a variety of disciplines have tackled the challenges of gathering expert opin-
ions, formulating prior beliefs based on these opinions, and conducting Bayesian analysis with
them. Methods for eliciting priors, as discussed by several researchers [Johnson et al., 2010, Sav-
age, 1971, Chaloner and Duncan, 1983, Kadane and Wolfson, 1998, O’Hagan, 1998, Chaloner
and Rhame, 2001, Kuhnert et al., 2010], focus on establishing foundational beliefs for Bayesian
model-based clinical trials and medical applications [Spiegelhalter et al., 1994, Tan et al., 2003,
Hiance et al., 2009], employing graphical techniques for prior elicitation [Johnson et al., 2010,
DuMouchel, 1988, Chaloner et al., 1993], and integrating priors with expert insights [Clemen and
Winkler, 1999, Moatti et al., 2013]. A comprehensive overview of these discussions is presented
by O’Hagan et al. [2006].

Regarding prior calibration, the Effective Sample Size (ESS) method enables the interpre-
tation of the parametric prior as the number of hypothetical patients considered in developing
the prior distribution [Morita et al., 2008, 2010, 2012]. ESS serves as a measure of the prior
distribution informativeness, providing a way to quantify it. Other definitions and modification
of the ESS notion can be found in recent literature [Neuenschwander et al., 2020, Wiesenfarth
and Calderazzo, 2020].
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4.2 Adaptive power prior for bridging study

In Ollier et al. [2020], our objective is to introduce a novel methodology that leverages data
from a previously conducted fixed historical trial to aid in the design and dose-allocation for an
upcoming clinical trial, such as in bridging studies. Bridging studies aim to close the gap on
aspects like efficacy, comorbidities, safety, and dosing schedules across different populations. As
per the guidelines of the International Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use E5 (ICH-E5), a bridging study for a medication is characterized
as an extra research conducted within a new group, such as a different ethnic demographic, to
establish a link to new clinical data regarding safety, efficacy, and dose-response [ICH, 1998].
We suggest an adaptive prior approach (APP) that is formulated on a criterion combining
the power prior, the ESS, and the Hellinger distance. The ESS is utilized to determine the
maximum amount of information desired, the power prior for incorporating historical data, and
the Hellinger distance for adjusting the extent of data borrowing in case of prior-data conflict.

As usual, we begin by establishing the notation. Let us consider θ as the parameter or group
of parameters of interest. For the sake of clarity, we will present all notations as though dealing
with a single dimension, yet the principles can be readily extended to multi-dimensional vectors
and matrices. Let D0 represent the historical data, denoted by D0 = {yj}n0 , where n0 is the
sample size of D0, and L(θ|D0) the likelihood of θ given D0. Similarly, let D represent the
current data, D = {yi}n, with n being the sample size for D, and L(θ|D) the likelihood of θ
based on D. We introduce an adaptive power prior, πAPP , defined as follows:

πAPP (θ) =
L(θ|D0)

α0(1−γ)π0(θ)∫
L(θ|D0)α0(1−γ)π0(θ)dθ

, (4.1)

where π0 is a non-informative prior for θ, and the conventional power prior parameter [Ibrahim
and Chen, 2000] is divided into two components, 0 ≤ α0 ≤ 1 and 0 ≤ γ ≤ 1. These two
new parameters, α0 and γ, referred to as the “quantity of information” and “commensurability”
parameters respectively, are assigned specific meanings. Therefore, we recommend a two-step
method to establish their values.

4.2.1 Quantity of information parameter value

In the initial phase, α0 is selected to establish a cap on the maximum amount of information
it is preferable to incorporate. During this step, γ is provisionally assigned a value of 0, and the
ESS for the adaptive power prior, denoted by Eq. 4.1, is calculated as s = ESS[πAPP (θ|γ =

0)] = α0ESS[L(θ|D0)]+ESS[π0(θ)], where L(θ|D0) is considered as a distribution [Morita et al.,
2008]. If a highly non-informative prior is opted for π0, such as an improper uniform distribution
when feasible, the second component of the sum, ESS[π0(θ)] = s0, approaches zero. Given that
L(θ|D0) encompasses n0 observations, it is logical to consider that the ESS could nearly equal
n0. The resultant ESS is thus expressed as s ≈ α0n0 + s0, showing a linear relation with
α0. Consequently, to achieve a specified desirable ESS, s∗, for the analysis ahead, α0 can be
determined by reversing the aforementioned equation, i.e., α0 = (s∗ − s0)/n0. α0 acts as a limit
to the information borrowed, given that ESS[πAPP (θ|γ = 0)] > ESS[πAPP (θ|γ > 0)]. The
optimal s∗ is contingent upon the application and the sample size n of the current data. Except
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in unusual circumstances, it is typically agreed that s∗ < n to prevent the prior distributions
from overshadowing the actual data.

4.2.2 Commensurability parameter value

In the subsequent step, we determine the commensurability parameter, γ, which is crucial
for addressing potential discrepancies between the historical and current datasets. When these
datasets significantly diverge, adopting a non-informative prior is advisable; conversely, when
they exhibit similarity, full data borrowing is favored. We recommend associating γ with a
metric that evaluates the distance between the two datasets, namely, between D0 and D. We
look for a metric which yield a value within the range of 0 to 1, escalating to its peak when
the datasets markedly differ, and diminishing to zero as D0 and D become more aligned. Thus,
we suggest employing an empirical Bayes technique that utilizes the Hellinger distance between
normalized likelihoods, as follows

d2(D0, D) =
1

2

∫ √ L(θ|D)∫
L(θ|D)dθ

−

√√√√ L(θ|D0)
n
n0∫

L(θ|D0)
n
n0 dθ

2

dθ (4.2)

where d2 denotes the square of the Hellinger distance. In this formulation, L(θ|D0) is ad-
justed by a factor of n/n0 to make it comparable to L(θ|D), considering that the his-
torical data likelihood, L(θ|D0), is presumed to be more precise or exhibit less variance
due to a larger sample size (n0 ≥ n). For the Bernoulli case, where each yi follows a
Bernoulli distribution, the likelihood function given the historical data, L(θ|D0), is expressed
as p

∑
n0

yi(1 − p)
n0−

∑
n0

yi . Upon incorporating the exponent, the adjusted likelihood becomes
L(θ|D0)

n/n0 = pnȳn0 (1− p)n−nȳn0 , where ȳn0 = (
∑

n0
yi)/n0. This formulation ensures that the

mean of the dataset is maintained, facilitating a comparison between the historical and current
likelihoods in terms of their variability. Similarly, in the Gaussian scenario, where yi is nor-
mally distributed with mean µ and variance σ2, the likelihood function for the historical data is
given by L(θ|D0) = (2πσ2)−n0/2 exp

(
−(2σ2)−1

∑
n0
(yi − µ)2

)
. Adjusting for the exponent, we

obtain L(θ|D0)
n/n0 = (2πσ2)−n/2 exp

(
−(2σ2)−1n

(∑
n0
(yi − µ)2

)
/n0

)
. Here, by representing∑

n0
(yi − µ)2 as n0(

∑
n0
(yi − µ)2)/n0, it becomes clear that the quantity

∑
n0
(yi − µ)2)/n0 is

conserved, albeit scaled to reflect a sample size of n. It is important to note that Eq. 4.2 initially
assumes n0 ≥ n, but it can be adapted for a more general scenario as follows:

d2(D0, D) =
1

2

∫ 
√√√√ L(θ|D)min(1,

n0
n
)∫

L(θ|D)min(1,
n0
n
)dθ

−

√√√√ L(θ|D0)
min(1, n

n0
)∫

L(θ|D0)
min(1, n

n0
)
dθ

2

dθ. (4.3)

Subsequently, γ is defined as the square root of d2(D0, D), taking into account only the real
root. This method can be applied universally for any c-roots. The parameter γ can be derived
from any power of d, as γ = dc(D0, D) ∈ [0, 1] for all c ∈ R+. Using values of c greater than
1 will diminish the computed distance, facilitating more extensive data borrowing. Conversely,
values less than 1 will adopt a more cautious stance, augmenting the computed distance and
thus minimizing the extent of data borrowing.
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Figure 4.1 – Dose allocation and toxicity representation for the historical data. On the x-axis, the number
given to the accrued patient is shown, while, on the y-axis, it is marked at which dose s/he was allocated. A
circle denotes that the patient did not experience any DLT, while a cross indicates that the patient had at least
a DLT. The historical trial followed a CRM design with 6 doses, di, i = 1, . . . , 6, and generating probabilities
of toxicity at each dose equals to pT (d1) = 0.05, pT (d2) = 0.07, pT (d3) = 0.2, pT (d4) = 0.4, pT (d5) = 0.5 and
pT (d6) = 0.55. This specific trial was chosen since the estimated probabilities of toxicities were similar to the
generating ones.

4.2.3 Results

We implement the APP approach in Phase I bridging studies that utilize the CRM for their
design. Specifically, we select the logistic model for this purpose, logit(pi) = a+exp(β)d̃i, where
pi denotes the toxicity probability at dose level i, a = 3 is a fixed parameter, d̃i represents the
“effective” dose which is essentially the prior estimate of the toxicity probability associated with
dose level i, and β is the parameter of interest that is to be estimated. Via simulations, we
tested several version of the APP approach. The traditional CRM, where either γ = 1 or α = 0

is applied across all cohorts to guarantee that no historical data is incorporated, will henceforth
be referred to as P_NI. AP_L represents the model where γ is set to

√
d2(D0, D) and features

a linear ESS, denoted as s∗(n) = n. The variant termed AP_S is identical to the previous
model but adjusts γ to 4

√
d2(D0, D), effectively setting the square root of the Hellinger distance

as the value for γ. AP_SOC denotes the AP_S model coupled with Occam’s window (that is
α = αI(α > τα), where I is the indicator function), setting the threshold τα to 0.2, with the
ESS term replaced with s∗(n) = min(n, 20). Other variants have been assessed in the original
manuscript [Ollier et al., 2020]. Regarding the simulation setting, for each scenario, 1000 trials
are simulated. In terms of design, each trial was structured to have a maximum of 30 patients,
encompassing six dose levels, with each cohort consisting of a single patient. Additionally, the
no-skipping rule was used. We built five scenarios with a target toxicity of 20% and Figure 4.1
shows the historical data D0.

Table 4.1 shows the main results: the percentage of correct selection (PCS), the percentage
of dose allocation and the number of DLTs, each for six different scenarios.
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Method % dose selection DLTs % dose selection DLTs
1 2 3 4 5 6 median 0 1 2 3 4 5 6 median

(Q1, Q3) (Q1, Q3)
Scenario 1 Scenario 2
ptox 0.001 0.01 0.05 0.07 0.2 0.4 0.01 0.05 0.07 0.2 0.4 0.5
P_NI 0 0 2 28 54 16 5 (5, 6) 0 1 25 61 12 1 6 (5, 7)
AP_L 0 0 8 37 39 16 4 (4, 5) 0 0 45 48 6 1 5 (4, 6)
AP_S 0 0 6 32 47 15 5 (4, 5) 0 0 37 54 8 0 5 (4, 6)
AP_SOC 0 0 3 28 52 17 5 (5, 6) 0 0 30 58 11 1 5 (5, 6)

Scenario 3 Scenario 4
ptox 0.05 0.07 0.2 0.4 0.5 0.55 0.07 0.2 0.4 0.5 0.55 0.65
P_NI 1 18 70 11 0 0 6 (5, 7) 17 68 15 0 0 0 6 (6, 8)
AP_L 0 9 87 4 0 0 6 (5, 7) 11 61 28 0 0 0 7 (6, 8)
AP_S 0 11 84 5 0 0 6 (5, 7) 15 63 22 0 0 0 7 (6, 8)
AP_SOC 1 11 80 8 0 0 6 (5, 7) 18 62 19 0 0 0 7 (6, 8)

Scenario 5 Scenario 6
ptox 0.2 0.4 0.5 0.55 0.65 0.7 0.35 0.45 0.5 0.6 0.7 0.8
P_NI 86 14 1 0 0 0 8 (7, 9) 88 10 2 0 0 0 0 9 (8, 10)
AP_L 77 22 1 0 0 0 8 (7, 9) 86 10 3 1 0 0 0 9 (8, 10.25)
AP_S 79 20 1 0 0 0 8 (7, 9) 86 10 2 1 0 0 0 9 (8, 10)
AP_SOC 86 13 1 0 0 0 8 (7, 9) 88 10 2 1 0 0 0 9 (8, 10)

Table 4.1 – Results for each method and each scenario in terms of the percentage of dose selection at the end of
the trial and median number of DLTs, along with the first (Q1) and the third (Q3) quartiles. At the beginning
of each scenario section, the true probabilities used for the scenario simulation are displayed. All methods were
provided with stopping rules for scenario 6.

We also investigated the convergence trend of α for AP_SOC by expanding the trial sample
size to up to 100 patients and utilizing Eq. 4.3 to calculate the distance for γ. The findings
are illustrated in Figure 4.2 which displays the median α value along with the first and third
quartiles for scenarios 1, 2, and 3. In the third scenario, which favors full data borrowing, the
median α exhibits an upward trend, and the range between the quartiles narrows as the sample
size increases. Beyond 70 patients, α consistently exceeds 0.4. For scenario 1, the median, first,
and third quartiles all align, each being zero. In scenario 2, the median rises to 0.20 with around
20 patients but then sharply falls back to zero, with the third quartile also dropping to zero
after 40 patients. Given that scenarios 4 and 5 mirrored the outcomes of scenarios 2 and 1,
respectively, they were not included in the plot.

In Figure 4.3, we presented the dose allocation and toxicity outcomes of a trial simulated
under scenario 3, comparing the use of a non-informative prior (illustrated on the left side)
with that of the AP_SOC (shown on the right side). The dose allocation strategies for both
approaches are identical up to the 14th patient. Beyond this point, AP_SOC maintains the
MTD level, in contrast to P_NI, which adopts a more conservative approach by lowering the
dose level.

4.3 Parametric mixture priors from elicited histograms

In this work, where I am co-first author, we introduce a Bayesian approach for building a
parametric prior concerning two parameters of treatment effects, using graphical data obtained
from expert physicians. This approach was developed to be applied in a study (NEPHROMYCY,
NCT01092962) involving children with idiopathic nephrotic syndrome to assess the efficacy of
two treatments, that is, cyclophosphamide versus Mycophenolate Mofetil (MMF). The approach
involves creating histograms for the treatment parameters by each expert physician, based on the
technique proposed by Johnson et al. [2010]. These histograms help in defining a marginal prior
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Figure 4.2 – Evolution of the α value in model AP_SOC for a sample size going up to 100 patients. The
median and the first and third quartiles are plotted for scenario 1 (SC1), scenario 2 (SC2) and scenario 3 (SC3).

for each treatment effect, described by its central tendency and precision, for every physician.
These marginals are then combined, taking into account a distribution of latent effects among
the physicians, to form a bivariate prior. Finally, an aggregate prior is formed by merging the
individual priors from all participating physicians. In the following, I will details all these steps,
starting by setting the notation.

For each participant, labeled as the ith subject in the dataset, where i ranges from 1 to n,
the treatment received is represented by τi, the outcome observed is denoted as Yi, and the
covariates associated with each subject are indicated by Zi = (Zi,1, . . . , Zi,q). The treatments
are indexed by j = 1, 2, and θj,i represents the expected outcome Yi given the treatment τi = j

and the covariates Zi. The overall effect of treatment j is determined by calculating the average
effect across the nj subjects who received treatment j,

θ̄j =

∫
θj,i(z)fZ(z)dz =

1

nj

nj∑
i=1

θj,i,

where fZ denotes the patient covariate distribution. For each treatment, indicated by j = 1, 2,
the overall effect, denoted as θ̄j , is calculated by averaging the outcomes across all subjects
within the treatment group, treating each subject’s covariates equally within their respective
groups. If we do not have information on subject covariates and assume all subjects are similar,
then the expected outcome for treatment j is uniform across all nj subjects, meaning θj,1 =

. . . = θj,nj = θ̄j .
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Figure 4.3 – Dose allocation representation for the same trial using P_NI (left) and AP_SOC2 (right). Each
point represents a patient, a circle indicates no toxicity, and a cross indicates toxicity.

4.3.1 Probability models for the physicians’ marginal priors

For experts numbered k = 1, . . . ,K, who provide the histograms for θ̄1 and θ̄2, we establish a
marginal model for each kth physician’s prior regarding θ̄j . This involves assuming a parametric
distribution pj,k(θ̄j |µj,k, γj,k), where µj,k signifies the location parameter, and γj,k > 0 represents
the precision parameter, for both treatments j = 1, 2. The rationale behind defining the marginal
distributions in terms of location and precision parameters is to simplify the examination of how
the posterior inferences are influenced by prior biases and their informativeness. The marginal
distributions of [θ̄1|µ1,k, γ1,k] and [θ̄2|µ2,k, γ2,k] are specified based on the frailties associated with
the kth physician. Following this, a bivariate prior is constructed by averaging the product of
these conditional marginals across the distribution of frailties.

For binary outcomes Y , where the θj,k represent probabilities, the beta distribution serves
as a suitable and adaptable choice for parametric priors. Temporarily setting aside the indices
j, k, the beta probability density function with mean µ and variance µ(1− µ)/(1 + γ) is defined
as:

p(x|µ, γ) = xµγ−1(1− x)(1−µ)γ−1

B(µγ, (1− µ)γ)
, 0 < x < 1,

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) and Γ(·) is the gamma function. Here, a higher γ value
indicates increased precision.

For continuous outcomes Y , the normal distribution, characterized by mean µ and precision
parameter γ = 1/var(θ), is an appropriate prior family selection. In cases where Y represents
an event time or another non-negative random variable, multiple two-parameter models can be
formulated in terms of location and precision parameters. A versatile model for the θj,k prior is
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the gamma distribution with mean µ and precision γ, whose pdf is expressed as:

p(x|µ, γ) = (µγ)µ
2γxµ

2γ−1e−µγx

Γ(µ2γ)
, x > 0.

To derive priors for θ̄1 and θ̄2, the parametric models p1,k(θ̄1|µ1,k, γ1,k) and p2,k(θ̄2|µ2,k, γ2,k)

are matched to the histograms provided by the kth physician. This process results in the de-
termination of the hyperparameters µ1,k, γ1,k, µ2,k, γ2,k for each physician, indexed from k = 1

to K. A numerical technique is described in the original manuscript [Thall et al., 2019]. Given
that both marginal prior distributions p2,k and p2,k originate from the same physician, it is
assumed from the outset that there is a correlation between θ̄1 and θ̄2 for each physician. To
formally establish this association, we introduce two approaches that are similar yet distinct.
Both methods utilize bivariate latent effects related to the physician (frailties) to encourage a
prior correlation within-physician between θ̄1 and θ̄2.

4.3.2 First method for computing prior hyperparameters

In Method 1, to set up physician-specific priors for (θ̄1, θ̄2), the parameters µj,k and γj,k are
each connected to a linear term. This term consists of the sum of a real-valued parameter and
a latent physician effect. Specifically, let εk = (εk,µ, εk,γ), for k = 1, . . . ,K, represent pairs of
real-valued latent physician effects. These pairs are independent and identically distributed (iid)
and follow a bivariate normal distribution.

εk ∼ N(0,Σ) = N

(
0,

[
σ2
ε,µ ρσε,µσε,γ

ρσε,µσε,γ σ2
ε,γ

])
. (4.4)

Let σ = (σε,µ, σε,γ , ρ) represent the parameters of the bivariate normal distribution, denoted
as pε(xµ, xγ |σ) for any pair (xµ, xγ) within R2. The functions gµ and gγ are identified as
appropriate link functions to transform these parameters. When each θ̄j signifies a probability,
options for gµ include the logit, probit, or complementary log-log link, depending on the specific
modeling needs. For µj,k, which can either be real-valued or strictly positive, the identity link
or the log link are suitable, respectively. Given that γj,k must always be positive, the log link is
utilized for gγ .

In Method 1, the approach is based on the assumption that the transformations of the
parameters µj,k and γj,k through their respective link functions gµ and gγ are expressed as
follows:

gµ(µj,k) = υj,k,µ + εk,µ

gγ(γj,k) = υj,k,γ + εk,γ , (4.5)

Here, υj,k,µ represents the real-valued location parameters and υj,k,γ denotes the real-
valued precision parameters for each treatment j and physician k. Denoting υk =
(υ1,k,µ, υ2,k,µ, υ1,k,γ , υ2,k,γ), the joint prior is

pk(θ̄1, θ̄2|υk,σ) =

∫
R2

{ ∏
j=1,2

pj,k(θ̄j | g−1
µ (υj,k,µ + xµ), g

−1
γ (υj,k,γ + xγ))

}
pε(xµ, xγ |σ) dxµdxγ .
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It is crucial to note that for each kth physician expert, the information gathered from the
two elicited histograms is limited to enabling the calculation of numerical values for µ1,k, γ1,k,
µ2,k, and γ2,k only. There is no elicited prior information on the parameters σ = (ρ, σε,µ, σε,γ).
Therefore, the numerical values for these hyperparameters must be pre-specified. As detailed
below, our second method for calculating hyperparameters does yield numerical values for σ,
primarily by utilizing the information found in physician covariates. Therefore, to finalize the
prior specification when applying Method 1, we adopt the numerical values of σ that are derived
using Method 2.

4.3.3 Second method for computing prior hyperparameters

Method 2, another strategy for developing physician-specific priors for (θ̄1, θ̄2), takes into
account the covariate vectors of physicians, X1, . . . ,XK , whenever such data is available. This
method enhances the model for pj,k(θ̄j |µj,k, γj,k) by incorporating a regression structure, making
it suitable for cases where it is necessary for the priors to reflect the impact of physician covariates
on both µj,k and γj,k. Unlike Method 1, Method 2 utilizes the values µ1,k, γ1,k, µ2,k, γ2,k derived
from fitting the parametric models p1,k(θ̄1|µ1,k, γ1,k) and p2,k(θ̄2|µ2,k, γ2,k) to the histograms
provided by physicians, but it does so in a distinctly different manner. For Method 2, the latent
physician effects are as before, but for each k, we assume that

gµ(µj,k) = υj,µ + βµXk + εk,µ + eµ (4.6)

gγ(γj,k) = υj,γ + βγXk + εk,γ + eγ ,

where e = (eµ, eγ) ∼ N2(0,
(
σ0 0
0 σ0

)
) are error terms.

In Method 2, we represent the coefficients as β = (βµ,βγ), and define the marginal distribu-
tions of θ̄1 and θ̄2, taking into account both the physician covariates Xk and the latent physician
effects εk, as follows:

pj,k(θ̄1|υj,µ, υj,γ ,β,Xk, εk)

for j = 1, 2. In this regression-based approach, there are four constant intercepts, υ =

(υ1,µ, υ1,γ , υ2,µ, υ2,γ), which are applied universally across all physicians to maintain the model
identifiability. This contrasts with the method used in Method 1, where intercept parameters
could vary for each physician (k = 1, . . . ,K). Hence, Method 2 accounts for differences between
physicians through their respective covariates, marking a significant departure from the approach
in Method 1. In Method 2, the inclusion of physician covariate data enables the calculation of
numerical values for the hyperparameters (υ,β,σ) within the physician’s covariate regression
model.

To apply Method 2, hyperparameter values are determined by treating the location and
dispersion parameters, derived from the elicited histograms, as pseudo outcomes. The hyperpa-
rameter vector (υ,β,σ) is considered as pseudo parameters. By fitting a regression model and
using the estimated pseudo parameters as the prior means for (υ,β,σ) in the marginal priors
{pj,k(θ̄j |Xk,υ,β,σ), j = 1, 2, k = 1, . . . ,K}, we obtain these hyperparameter values. This
process can be conducted through various methods, which typically yield very similar numerical
outcomes. In our case, we did it via Bayesian inference and details on prior distributions are
given in Thall et al. [2019].
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The posterior means derived from the nonlinear Bayesian regression model are utilized as the
hyperparameters for the marginal priors specific to each physician. For the kth physician, the
joint prior of (θ̄1, θ̄2) is established similarly to Method 1, by integrating over the distribution
of bivariate physician effects. The joint prior can be represented as:

pk(θ̄1, θ̄2|υ,β,σ,Xk) =

∫
R2

 ∏
j=1,2

pj,k
{
θ̄j |g−1

µ (υj,µ + βµXk + xµ), g
−1
γ (υj,γ + βγXk + xµ)

} pε(xµ, xγ |σ) dxµdxγ .

In Method 2, the bivariate priors for all K physicians share the same hyperparameter vectors
(υ,β,σ), making the prior pk unique to the kth physician through the physician’s covariate vector
Xk only.

4.3.4 Mixture priors

Once the K bivariate physician-specific parametric priors have been established through
either Method 1 or Method 2, let w = (w1, . . . , wK) represent the weights assigned to each
physician, with these weights totaling 1. The aggregate prior for (θ̄1, θ̄2) using Method 1 is
formulated as a mixture model:

p(θ̄1, θ̄2|υ1, · · · ,υK ,σ) =

K∑
k=1

wk pk(θ̄1, θ̄2|υk,σ),

Similarly, the combined prior using Method 2 is defined as:

p(θ̄1, θ̄2|υ,β,σ,X1, · · · ,XK) =

K∑
k=1

wk pk(θ̄1, θ̄2|υ,β,σ,Xk).

The determination of the physician weights, w, can be approached through various methods,
with three possibilities presented here. To empirically construct w, one approach involves fitting
a likelihood model for [Yi|τi,Zi] to the dataset Dn, where τi represents the treatment admin-
istered to patient i. The maximum likelihood estimates of the parameters for each pair (j, i)

are denoted by θ̂
(like)
j,i , assembling these into a 2n-vector θ̂

(like)
comprising all such estimates.

An alternative method involves deriving estimates as posterior means under a Bayesian frame-
work, employing non-informative pseudo priors to guide the inference process without strong
prior assumptions. For each treatment group, j = 1, 2, the empirical mean of θj derived from
the elicited histogram of physician k is represented by θ̂

(elicited)
j,k . The correspondence between

the mean vectors θ̂
(elicited)

k = (θ̂
(elicited)
1,k , θ̂

(elicited)
2,k ) calculated from each physician’s provided his-

tograms and the 2n vector of likelihood-based estimates, θ̂
(like)

, is measured through the mean
absolute deviation as follows:

∥∥θ̂(elicited)

k − θ̂
(like)∥∥ =

1

2n

2∑
j=1

n∑
i=1

∣∣∣∣θ̂(elicited)j,k − θ̂
(like)
j,i

∣∣∣∣.
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A smaller deviation,
∥∥θ̂(elicited)

k − θ̂
(like)∥∥, indicates a higher level of agreement. Thus, physician

weights are assigned inversely proportional to this deviation, ensuring that physicians whose
elicited means are closer to the data-based estimates have higher weights:

wk =

∥∥θ̂(elicited)

k − θ̂
(like)∥∥−1∑K

r=1

∥∥θ̂(elicited)

r − θ̂
(like)∥∥−1

.

When physician covariates are accessible, another approach to determine the physician weights
involves utilizing these covariates. Assuming all physician covariates are positive and that a
higher value of Xk,l indicates a higher reliability for physician k (for instance, Xk,l might repre-
sent years of experience), the weights can be established as follows:

wk =
1

q

q∑
l=1

Xk,l∑K
r=1Xr,l

.

In this formula, a greater ratio of Xk,l/
∑K

r=1Xr,l signifies a higher relative reliability of physician
k’s opinion based on the lth covariate. Averaging over l = 1, · · · , q implies that each covariate
is considered equally significant. Under this weighting scheme, especially when applied with
Method 2, each physician’s covariate information is utilized in a twofold manner: firstly, to
derive the specific prior pk for that physician, and secondly, to calculate the weight wk. This
dual use of covariate data aims to ensure that the more reliable or experienced physicians have a
greater influence on the overall prior. An alternative, simpler approach is to assign equal weight
to all physicians, with every wk set to 1/K, treating each physician’s opinion as equally valid
regardless of their specific covariates or experience.

4.3.5 Application to elicited data

Figure 4.4 shows the elicited histograms and the corresponding fitted beta distributions for
the parameters θ1 and θ2, for a subset of three out of the seventeen physicians who contributed
to the elicitation phase of the NEPHROMYCY trial. The process of eliciting these histograms
involved physicians allocating a fixed number of “stickers” across different outcome probabilities,
which then visually represented their beliefs regarding the treatment effects. In instances where
physicians allocated fewer than 20 stickers for any histogram, adjustments were made to nor-
malize these histograms, ensuring the total probability mass equaled 1 before proceeding with
the beta distribution fitting.

The contour plots, in Figure 4.5, visualize the distribution of estimates for (µ, γ) derived
from the beta distributions fitted to the elicited histograms of the 17 physicians participating
in the study. These plots are organized to present the data for cyclophosphamide on the left
and for MMF on the right, offering a comparative view of the physicians’ beliefs regarding
the two treatments. Additionally, histograms of the marginal distributions for the physician-
specific estimates of µ (displayed at the top of the figure) and γ (shown on the right side)
complement the contour plots. These histograms for µ1 (associated with cyclophosphamide)
and µ2 (associated with MMF) indicate that, on average, the physicians perceived MMF as
having a higher probability of response compared to cyclophosphamide. However, there is noted
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Figure 4.4 – Elicited histograms and fitted beta priors for θ1 (left hand side - cyclophosphamide) and θ2 (right
hand side - MMF) for three of the 17 physicians who participated in the elicitation process in planning the
NEPHROMYCY trial.

variability among physicians’ opinions. Furthermore, the histograms for the precision parameters
γ1 and γ2 exhibit a high level of dispersion but share remarkably similar shapes, with the majority
of the distribution’s mass concentrated between the values of 30 and 70.

Finally, the computed hyperparameters were

Σ =

[
0.399 −0.003

−0.003 0.634

]

with (ν1,µ, ν2,µ, ν1,γ , ν2,γ) = ( -0.708 , 0.237 , 3.387 , 3.395), βµ = (0.173, -0.049, -0.053), and βγ

= (-0.185, 0.239, 0.334). Figure 4.6 shows the two joint prior distributions for (θ̄1, θ̄2) obtained
using these values by Methods 1 and 2, using equal physician weights for the mixture. When
comparing the priors resulting from Method 1 and Method 2, the smoother surface generated by
Method 2, as opposed to the bimodal distribution produced by Method 1, suggests that Method
2 generated a more informative prior distribution.

4.3.6 Sensitivity to prior bias and informativeness

In conducting a sensitivity analysis of posterior inferences to the prior, both Method 1 and
Method 2 define expert-specific location and precision parameters differently, adapting to the
specifics of each method. For Method 1, the location parameters for each expert and treatment
are denoted as ξj,k = υj,k,µ and the precision parameters as χj,k = υj,k,γ . In contrast, Method
2 employs a regression-based approach, where the location parameters are defined as ξj,k =

υj,µ+βµXk, and the precision parameters as χj,k = υj,γ +βγXk, incorporating the influence of
physician covariates Xk. To assess the sensitivity of the posterior inferences to these priors, we
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Figure 4.5 – Contour plots of estimated (µ, γ) for each expert in the domain (0, 1)×R+ for the estimate prior
response probabilities of Cyclophosphamide (left hand side) and MMF (right hand side). Marginal histograms
are plotted on the top for µ and right-hand side for γ.

consider transformations on the vectors of location parameters ξj = (ξj,1, . . . , ξj,K) and precision
parameters χj = (χj,1, . . . , χj,K) for j = 1, 2. These transformations aim to adjust the prior
location (bias) and informativeness.

For adjusting the prior location, a sensitivity parameter ϕ ranging from 0 to 1 is introduced.
This parameter shifts the focus between the two sets of location parameters by replacing ξ2
with (1− ϕ)ξ1 + ϕξ2. The value of ϕ = 1 retains the original bias (between treatments) of the
unadjusted prior, whereas reducing ϕ towards 0 decreases the prior bias, with ϕ = 0 eliminating
the bias entirely (ξ2 = ξ1, making the prior bias 0).

For the prior precision, the introduction of a scale sensitivity parameter λ, which varies
between 0 < λ ≤ 1, allows for an adjustment in the informativeness of the priors. By applying
λ to χj for both j = 1 and j = 2, the original prior precision is retained at λ = 1, signifying no
change in informativeness. Conversely, as λ decreases towards 0, the priors for both treatment
effects become progressively less informative, reflecting increased uncertainty in the prior beliefs
about the treatment effects. This mechanism for altering the precision parameters facilitates
a comprehensive sensitivity analysis, enabling the evaluation of how variations in the assumed
precision of prior information impact the posterior inferences. By comparing posterior outcomes
derived under these adjusted priors to those obtained from the unmodified priors (ϕ, λ = (1,1)),
researchers can discern the degree to which their conclusions are sensitive to changes in the
precision of the priors.

Several posterior quantities can be of particular importance. These quantities offer insights
into whether one treatment is superior to another by a predefined margin, δθ, or whether the
treatments can be considered equivalent within a specified tolerance, ε. For example: (i) Poste-
rior Probability of Superiority, to evaluate whether treatment 2 (θ2) is superior to treatment 1
(θ1) by at least δθ, one computes the posterior probability: πS

1,2,ϕ,δ(δ) = Pϕ,λ(θ1+ δθ < θ2|data).
(ii) Symmetric Probability of Difference, where the interest might be in the probability that the
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Method 1

Method 2

Figure 4.6 – 3-dimensional plots of prior distributions of (θ̄1, θ̄2) using Method 1 (top row) and Method 2
(bottom row), with equal physician weights. For Method 2, the covariates Xk were the logarithm of the number
of year as paediatrician, the logarithm of the average number of patients consulted per year, and a binary indicator
of whether the physician had training in clinical trial methodology.

absolute difference between treatments exceeds δθ, regardless of which treatment is superior.
This is given by: Pϕ,λ(|θ1 − θ2| > δθ|data). (iii) Posterior Probability of Equivalence, when the
goal is to establish the equivalence of an experimental treatment (treatment 2) to a standard
treatment (treatment 1) within a margin of ε, the relevant posterior probability is: πE

1,2,ϕ,δ(ε),

indexed by the prior transformation parameters (ϕ, λ). (iv) Lastly, the 95% posterior credible
interval (CI) for θ2 − θ1, which we denote by CI95,ϕ,λ(θ2 − θ1).

To demonstrate how a sensitivity analysis of prior-to-posterior transformations can be con-
ducted, let us consider a hypothetical scenario inspired by the NEPHROMYCY trial data. In
this scenario, a dataset is simulated with binary responses for two treatment groups, each consist-
ing of 35 patients. The true effectiveness rates (θ1,true and θ2,true) for both treatments are set at
40%. However, in the simulation, treatment 1 shows effectiveness in 14 out of 35 children (40%),
and treatment 2 shows a slightly higher effectiveness in 16 out of 35 children (approximately
45.7%).
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Table 4.2 – Prior-to-posterior sensitivity analyses performed on a 70-patient dataset with 14/35 responses in
arm 1 and 16/35 responses in arm 2. The prior was constructed using Method 1 and equal physician weights,
was transformed for each (ϕ, λ) pair, and the posterior quantities πE

1,2,ϕ,λ(.05) = Pr(θ1 − .05 < θ2 | data, ϕ, λ),
πS
1,2,ϕ,λ(.15) = Pr(θ1 + .15 < θ2 | data, ϕ, λ) and CI95,ϕ,λ(θ2 − θ1 | data) then were computed.

λ = 1 λ = 0.75 λ = 0.5 λ = 0.25

πE
1,2,ϕ,δ(.05) 0.92 0.88 0.84 0.77

ϕ = 1 πS
1,2,ϕ,λ(.15) 0.24 0.22 0.21 0.18

CI95,ϕ,λ(θ2 − θ1) (-0.09, 0.27) (-0.13, 0.26) (-0.17, 0.27) (-0.20, 0.27)
πE
1,2,ϕ,λ(.05) 0.77 0.76 0.75 0.75

ϕ = 0.5 πS
1,2,ϕ,δ(.15) 0.17 0.17 0.15 0.16

CI95,ϕ,λ(θ2 − θ1) (-0.18, 0.26) (-0.2, 0.26) (-0.19, 0.26) (-0.19, 0.25)
πE
1,2,ϕ,λ(.05) 0.77 0.75 0.76 0.74

ϕ = 0 πS
1,2,ϕ,λ(.15) 0.16 0.15 0.15 0.15

CI95,ϕ,λ(θ2 − θ1) (-0.19, 0.26) (-0.21, 0.26) (-0.2, 0.26) (-0.20, 0.25)

For the sensitivity analysis, a range of prior configurations is generated using Method 1
with equal weights for all physicians. This involves adjusting the priors across a matrix of
(ϕ, λ) pairs, with ϕ taking values of 1, 0.5, and 0, and λ set at 1, 0.75, 0.50, and 0.25. These
adjustments aim to explore how changes in the prior bias (ϕ) and informativeness (λ) affect the
posterior outcomes. In Table 4.2, the posterior probabilities of .05-equivalence πE

1,2,ϕ,δ(.05) =
Pr(θ1 − .05 < θ2|data, ϕ, δ) and .15-superiority πS

1,2,ϕ,δ(.15) = Pr(θ1 + .15 < θ2|data, ϕ, δ), and
the posterior 95% credible interval CI95,ϕ,λ(θ2 − θ1 | data), are reported in each cell.

With no adjustment in prior location (ϕ = 1), the probability that treatment 2 is practically
equivalent to treatment 1 within a 0.05 margin decreases to 0.77 when the prior precision is
reduced to 25% (λ = .25), reflecting a prior effective sample size of about 17.5. For partial (ϕ =

0.5) or complete (ϕ = 0) shifts in prior location, the equivalence probability (πE
1,2,ϕ,δ(.05)) varies

slightly, remaining within a range of 0.74 to 0.77, indicating a degree of robustness to changes
in prior bias and informativeness. The posterior probability of 0.15-superiority (πS

1,2,ϕ,δ(.15))
for the original prior settings (ϕ = 1) starts at 0.24 and decreases to 0.18 as λ reduces from
1 to 0.25, showing sensitivity to reductions in prior precision. Conversely, for shifted priors
(ϕ = 0.5 or 0), this probability remains relatively stable, between 0.15 and 0.17, regardless
of λ, indicating insensitivity to changes in prior informativeness under these conditions. The
upper limit of the posterior 95% credible interval for θ2 − θ1 stays consistent across all tested
(ϕ, λ) values, suggesting that the potential maximum difference between treatments does not
vary with adjustments in the priors. However, the lower limit is sensitive to changes in λ when
ϕ = 1, shifting from -0.09 to -0.20 as λ decreases, which implies increasing uncertainty about the
minimum difference between treatments with less informative priors. For shifted priors (ϕ = 0.5

or 0), the lower limit of the credible interval remains largely unaffected by variations in λ.
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4.4 Discussion

In this chapter, I discussed two approaches for incorporating external information into prior
distributions. The first approach involves leveraging data from previous clinical trials and eval-
uating potential conflicts between prior data and new data. According to our simulations, the
degree of information borrowing varied, averaging between 0.3 and 0.5, depending on the method
used, in situations where there was no data conflict. Although there may be a desire to bor-
row more extensively in such cases, it typically involves balancing the advantages against the
potential risks. Notably, this is our first work to employ the Hellinger distance as a measure
for assessing the compatibility between prior distributions and new data. This metric has sub-
sequently been applied in further research, including Ollier et al. [2021] on the examination of
the similarity between two completed trials within a bridging context, Calderazzo et al. [2023]
on the investigations into studies resulted inconclusive by the Covid-19 pandemic, and Boulet
et al. [2024], which is outlined in the following chapter. For instance, in Ollier et al. [2021], we
coupled Eq. 4.3, which captures the entire dose-response curve distance, with a separate MTD
distance metric that focuses on the disparity in point estimates. This dual approach allows us to
derive more nuanced insights into dose behavior across two distinct populations (such as Cau-
casians and Asians, as outlined in our initial study) after conducting studies within each group.
We implemented this methodology on real published datasets, and Figure 4.7 presents some of
the visual outcomes. It is important to note that the synthetic datasets were built to exhibit:
similarity in MTDs and dose-response curves (synthetic-1), similarity in MTDs but differences
in dose-response curves (synthetic-2), and differences in both MTDs and dose-response curves
(synthetic-3).

In the second approach, we have developed a method to create informative parametric mix-
ture priors for treatment parameters, using histograms from expert physician inputs, to enhance
randomized trials with limited sample sizes. Our approach, adaptable for binary, continuous, or
time-to-event data, includes versions that consider physician covariates and offers three strategies
for physician weighting in the mixture prior, resulting in six unique versions. Given the inher-
ent debate over integrating expert opinion into Bayesian analysis priors, we have also proposed
a clear strategy for constructing alternative priors through location adjustments and precision
changes. This allows for a thorough sensitivity analysis, providing a solid foundation for in-
formed decisions regarding the comparative effectiveness of treatments. It is worth mentioning
that several adapted and/or simplified versions of our methodology are now implemented in two
clinical trials: POOMA (NCT04554108), for primary endpoint analysis (this work initiated with
my supervision of the internship of a master 2 level student), and TREOCAPA (NCT04459117),
for safety analyses, though, in the latter, histograms were not utilized to further streamline the
elicitation process. Two manuscripts detailing these applications are in the planning stages, as
I aim to provide comprehensive guidelines to the broader community based on my experiences
in both theoretical method development and practical application.
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Figure 4.7 – Gradient plot representing the distance between dose–toxicity curves (y-axis), and between MTDs
(x-axis). The intensity of the color varies along with the increasing distance value and coherence. Small
dose–toxicity distance and high MTD distance is incoherent, as such it is plotted in a darker color.
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Unlike previous chapters where I concentrated on incorporating external or internal informa-
tion into trial analyses, here I shift focus to leveraging data from completed studies to enhance
the findings. Therefore, the two studies I will present here are related to the meta-analysis field.
In the first work, I proposed a Bayesian mixed-effect model for meta-analysis of dose-finding
trials [Ursino et al., 2021]. The second work, done by a postdoc student I have co-supervised,
regards a framework to combine information of several preclinical trial before stepping to the
first-in-man clinical trial [Boulet et al., 2024]. Following the structure of previous chapters, this
section starts with a brief introduction to set the context for the two works discussed. Next,
I will offer summaries of these studies, focusing on the methodologies applied and the results
obtained. The chapter will end with a concise discussion.

5.1 Introduction

Several dose-finding studies are frequently carried out, featuring variations in how the drug
is administered or the range of doses tested. Given that adverse effects may not necessarily
correspond to the targeted condition, it could be beneficial to aggregate data from various
studies. Table 5.1 shows an example on sorafenib (BAY 43-9006), which is a kinase inhibitor
approved for the treatment of advanced renal cell carcinoma, hepatocellular carcinoma, and
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Table 5.1 – The results of 14 studies on sorafenib monotherapy. For each dose considered in each trial, the
numbers of patients experiencing DLT events, and the total numbers of exposed patients are given.

Dose (mg)
Study 100 200 300 400 600 800 1000
Clark et al. [2005] 0/3 0/3 1/4 1/6 3/3
Awada et al. [2005] 0/4 0/3 1/5 1/10 7/12 1/3
Moore et al. [2005] 0/3 1/6 0/8 3/7
Strumberg et al. [2005] 1/5 1/6 0/15 4/14 2/7
Minami et al. [2008] 0/3 1/12 0/6 1/6
Miller et al. [2009] 8/34 6/20
Nabors et al. [2011] 0/3 1/6 0/3 1/5 3/3
Chen et al. [2014] 0/3 1/16
Jia et al. [2013] 3/4
Borthakur et al. [2011]-1 0/3 0/15 2/8
Borthakur et al. [2011]-2 0/3 1/7 2/6
Crump et al. [2010]-1 0/4 1/6 0/6 1/6
Crump et al. [2010]-2 0/3 1/6 0/3 2/6
Furuse et al. [2008] 0/12 1/14

radioactive iodine resistant advanced thyroid carcinoma. When integrating data from different
trials, it is crucial to account for two main types of variability. First, there can be variations in
the results due to factors such as differences in the study demographics or the ways in which
toxicities are defined and measured. These differences can affect the estimated probabilities of
toxicity. Second, the actual effects of the treatment, even when measured on a comparative scale,
may differ from one study to another. Traditional meta-analysis methods tackle the first issue by
grouping data according to the study. Random-effects meta-analyses address the second issue by
allowing for variability in the treatment effects across studies. Estimating the relevant variance
component and properly incorporating the uncertainty of this estimation into the inference of
significant model parameters poses a challenge, particularly when the meta-analysis includes
only a few studies [Friede et al., 2017]. Zohar et al. [2011] introduced a meta-analysis strategy
specifically for Phase I clinical trials in oncology, aiming to aggregate data while acknowledging
the sequential progression typical of these trials to more accurately determine the overall MTD.
Nevertheless, this approach overlooked several critical aspects characteristic of phase I trials.
Firstly, it combined data from trials with varying administration schedules, potentially leading
to differing toxicity profiles. Secondly, it did not consider heterogeneity between trials, which
could result in imprecise conclusions.

Meta-analysis approaches can also be valuable in aggregating information from the preclin-
ical stage to the clinical phase. During preclinical research, such as in vitro, in vivo, and in
silico experiments, the PK, PD, and toxicological profiles of a medication are assessed prior to
initiating first-in-human (FIH) trials. Typically, these studies are examined separately, and the
determination of the human dosage range does not fully utilize the insights obtained from all
experiments. Integrating all preclinical findings via inferential methods can be notably beneficial
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in establishing a more accurate initial dosage and dosage spectrum for humans. When studies
are conducted in a sequential manner and the outcomes can be interconnected (through math-
ematical transformations, for instance), it becomes straightforward to incorporate the analysis
within a Bayesian framework that updates posterior knowledge with each new set of data. For
instance, in the realms of preclinical and clinical research, La Gamba et al. [2019] systematically
incorporate findings from preclinical studies into a Bayesian PK/PD model, where the posterior
distributions from one study serve as the prior distributions for the next. Furthermore, the
Bayesian methodology has been broadly applied to leverage data from one group to enhance
the analysis of another group. For example, Zheng and Hampson [2020] utilize preclinical data
from animals to inform the design and prior distributions for a Phase I clinical trial through a
Bayesian decision-theoretic framework, and Zheng et al. [2020] adopt a meta-analytic strategy
for similar purposes.

5.2 Random-effects meta-analysis of Phase I

In Ursino et al. [2021], we introduce an innovative meta-analysis methodology for Phase
I clinical trials in oncology. We have expanded upon the binomial-normal hierarchical model
(BNHM), which is traditionally applied in meta-analyses of studies focusing on a single dose.
The new method considers all doses tested in a trial for the meta-analysis, while also accounting
for the variability between different trials.

As usual we start by setting the notation. Let k represent the index of the study, ranging from
1 to K, and i denote the index of the dose level, within the set I = {1, . . . , I}, where all doses
di utilized across the K trials are arranged in ascending order. We introduce δi,j as a measure
to determine the proximity or distance between different doses. This can be straightforwardly
defined as the linear difference (δi,j = di − dj). However, in numerous instances, it may be
more appropriate to consider the relative differences between dose levels on a logarithmic scale
(δi,j = log(di) − log(dj) = log

(
di
dj

)
). Alternatively, considering unit increments for adjacent

doses (δi,j = i − j) might be another viable approach. For study k, the number of patients
treated at dose i is denoted by nik, and Xik represents the number of patients who experienced
a DLT. We suggest the following model formulation:

Xik ∼ Binomial(nik, pik)

logit(pik) =
∑
j≤i

µj + bik

where pik is the toxicity probability of dose i in the kth study, modeled on the logit scale.
If dose i is not utilized in study k, then it is assumed nik = Xik = 0, and thus it does not
affect the likelihood, following the convention that 00 = 1. The model incorporates fixed effects,
with µ1 on the real line and µi on the positive real line for i > 1, consistent across all studies,
ensuring progressively increasing mean toxicity probabilities with higher doses. Random effects
are introduced to address the variability between studies, with study-specific vectors bk following
a normal distribution N(0,Σ), where 0 is a zero vector of dimension I and Σ denotes the
variance-covariance matrix.
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5.2.1 Gaussian process for the random effects

In our model for the random effects, we account for the position of dose di within the dose
continuum without enforcing a monotonic relationship among the elements of bk. Instead, we
utilize a relatively straightforward class of Gaussian processes. This model incorporates two
notable scenarios: independent and identical residuals across all dose levels. To bridge the gap
between these two scenarios, we implement a stationary Ornstein-Uhlenbeck process (OUP) to
model the covariance, described as

σ2
i,j = σ2

m exp

(
−|δi,j |

ℓ

)
where σ2

m is the marginal variance, and ℓ > 0 acts as a smoothness parameter. This parameter
controls the rate at which autocorrelation diminishes, making residuals less dependent on each
other based on their distance δi,j [Uhlenbeck and Ornstein, 1930]. On smaller scales, relative
to ℓ, the OUP mimics a Wiener process (or Brownian motion), aligning with the concept that
knowledge about the residual at a specific dose diminishes as we move further away, with incre-
ments behaving in an (approximately) additive manner similar to the fixed effects model. For
extreme values of ℓ, approaching 0 or infinity, the model predicts either independent or identical
residuals across all doses, respectively. It is necessary to define prior distributions for both the
marginal variance σ2

m and the OUP distance parameter ℓ.

5.2.2 Gamma process for fixed effects prior distributions

The model construction, which defines the common effect through the addition of unknown
increments, aligns it with the category of stochastic processes frequently utilized as nonparamet-
ric approaches to modeling unknown functions. This approach suggests that the priors for these
increments could be derived from stochastic processes. A particularly suitable model class for
this purpose is characterized by infinitely divisible probability distributions, ensuring that the
summation of any two increments remains within the same distribution family, thereby main-
taining model consistency [Steutel, 1979]. Given the requirement for strictly positive increments
corresponding to increasing doses, the Gamma process emerges as a fitting choice for this sce-
nario [Lawless and Crowder, 2004]. The Gamma distribution, defined by two parameters: the
shape (s > 0) and the scale (θ > 0), has a mean of sθ and a variance of sθ2. By designating
the first dose (d1) as the reference dose, we introduce the prior distributions within a Gamma
process framework as follows:

µ1 ∼ N(µ∗, σ∗), (5.1)

µi ∼ Gamma(s = δ∗i,i−1κ, θ) for i > 1. (5.2)

This model allows δ∗ to match the dose increments (δ) used in defining the random effects or to
employ a different metric. The model further necessitates specifying the hyperparameters µ∗,
σ∗, κ, and θ, with κ and θ influencing the model behavior on unit increments, that we consider
via a re-parametrization in terms of a slope (a = κθ) and a coefficient of variation (c = 1/

√
κ).

This re-parametrization reveals that lower c values suggest a nearly linear relationship in (logit)
toxicity, while higher c values introduce the potential for non-linearity. In the scenario of pure
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Table 5.2 – Settings and parameters in the 9 simulation scenarios. ℓ was chosen equal to 1 for all scenarios. OUP:
Ornstein-Uhlenbeck process; CRM: continual reassessment method; 3+3: 3+3 algorithm design. a: p⋆ =(0.15,
0.20, 0.33, 0,45, 0.55, 0.60, 0.65); b: p⋆ =(0.05, 0.10, 0.15, 0.33, 0.60, 0.70, 0.75); c: p⋆ =(0.05, 0.07, 0.11, 0.20,
0.33, 0.45, 0.50); d: p⋆ =(0.04, 0.05, 0.07, 0.12, 0.20, 0.33, 0.45).

Scenario
Fixed effect

Random effect Study designs
true p⋆

1 a) OUP, σm = 0.3 CRM and 3+3
2 b) OUP, σm = 0.3 CRM and 3+3
3 c) OUP, σm = 0.3 CRM and 3+3
4 d) OUP, σm = 0.3 CRM and 3+3
5 b) OUP, σm = 0.6 CRM and 3+3

6
b) Σ =

[
exp

(
− |δi,j |

ℓ

)
σiσj

]
CRM and 3+3

and σ = (0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6)

7 c) Σ =

[
exp

(
− δ2i,j

2ℓ2

)
σ2
m

]
, σm = 0.3 CRM and 3+3

8 c) OUP, σm = 0.3 Only 3+3
9 c) OUP, σm = 0.3 Only CRM

linearity, the model essentially becomes a logistic model, which, when dose increments are defined
on a logarithmic scale, represents a specific instance of the Emax model.

5.2.3 MTD estimation

Various methods have been developed for determining the MTD; one widely accepted ap-
proach involves using posterior mean estimates of parameters to identify the MTD as the dose
level with an estimated probability of DLT that most closely aligns with a predefined target,
δT , within the range of [0,1]. In a meta-analysis framework, emphasis might be placed on the
cumulative fixed effect. Therefore, we can express the probability of toxicity for dose i as:

πi = logit−1

 i∑
j=1

µj


where the inverse logit function is defined as logit−1(x) = (1 + exp(−x))−1. Based on this,
the MTD is determined by finding the dose dj for which the difference between the posterior
expectation of πi and the target δT is minimized:

MTD = dj , where j = argmin
i

|E[πi|x]− δT |

Thus, the MTD corresponds to the dose with an estimated overall mean response that most
closely matches the target. An alternative to using the posterior mean in this calculation involves
applying the posterior median, offering a different perspective on estimating the MTD.
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Figure 5.1 – Posterior distribution for probability of toxicity for each dose level in the sorafenib example.

5.2.4 Results

We conducted a comprehensive simulation study to assess the performance features of our
proposed methodology (referred to as MADF henceforth), with a focus on comparing the accu-
racy of correct MTD selection to that of the ZKO [Zohar et al., 2011] method across various
test scenarios. These scenarios, outlined in Table 5.2, include different MTD placements, het-
erogeneity frameworks, and trial designs, totaling nine distinct settings for evaluation. Table 5.3
presents the outcomes in terms of the frequency of selecting the MTD, highlighting the propor-
tion of correct selections (PCS) in bold for the MADF method compared to the ZKO method
across meta-analyses incorporating 10 studies each. MADF achieves a PCS ranging from 61%
to 92%, outperforming ZKO, which has PCS rates between 50% and 72%. This disparity in
PCS rates is anticipated as ZKO does not consider trial heterogeneity, often leading to a higher
selection rate of overdoses compared to MADF. For instance, in Scenario 1, with the MTD iden-
tified at dose level 3, MADF rate of recommending overly toxic doses is 34%, compared to ZKO
41%. The PCS rates tend to decline with an increase in the σ value, as observed in Scenario 5,
yet remain consistent even when there is a misestimation of random effects, as seen in Scenarios
6 and 7.

We applied the MADF method to the sorafenib example. Figure 5.1 illustrates the posterior
distribution for the toxicity probability linked with each dose level in the study.
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Table 5.3 – Proportion of dose selection using 10 studies in each meta-analysis. The proportion of correct
MTD selection in each scenario is written in bold. MADF: proposed method; ZKO: Zohar et al. [2011] method;
#patients: median (first quartile - third quartile) number of patients allocated to each dose.

Dose levels
1 2 3 4 5 6 7

Scenario 1
MADF 0.000 0.082 0.612 0.305 0.001 0.000 0.000
ZKO 0.022 0.190 0.496 0.253 0.034 0.002 0.003
#patients 31 (23, 41) 31 (23, 41) 54 (43, 65) 15 (9, 23) 6 (3, 12) 2 (0, 6) 0 (0, 3)

Scenario 2
MADF 0.000 0.000 0.032 0.920 0.048 0.000 0.000
ZKO 0.000 0.002 0.052 0.695 0.233 0.013 0.005
#patients 22 (18, 26) 26 (20, 32) 29 (23, 37) 59 (50, 68) 14 (9, 20) 5 (0, 9) 0 (0, 3)

Scenario 3
MADF 0.000 0.000 0.000 0.084 0.834 0.082 0.000
ZKO 0.000 0.000 0.002 0.075 0.676 0.216 0.031
#patients 22 (17, 26) 23 (19, 29) 26 (20, 33) 29 (22, 38) 45 (36, 54) 11.5 (6, 18) 6 (2, 12)

Scenario 4
MADF 0.000 0.000 0.000 0.000 0.228 0.758 0.014
ZKO 0.000 0.000 0.000 0.001 0.131 0.680 0.188
#patients 43 (37, 51) 43 (37, 51) 24 (19, 31) 26 (20, 34) 26 (20, 33) 40 (32, 48) 11 (6, 18)

Scenario 5
MADF 0.000 0.000 0.085 0.781 0.134 0.000 0.000
ZKO 0.004 0.037 0.162 0.561 0.215 0.017 0.004
#patients 24 (19, 31) 27 (20, 35) 28 (21, 37) 51 (41, 59) 13 (8, 20) 6 (2, 12) 0 (0, 6)

Scenario 6
MADF 0.000 0.000 0.019 0.882 0.099 0.000 0.000
ZKO 0.000 0.000 0.022 0.665 0.287 0.015 0.011
#patients 21 (17, 26) 25 (20, 30) 30 (23, 37) 61 (53, 69) 14 (8, 20) 5 (0, 9) 0 (0, 4)

Scenario 7
MADF 0.000 0.000 0.000 0.069 0.830 0.101 0.000
ZKO 0.000 0.000 0.002 0.075 0.653 0.245 0.025
#patients 22 (18, 26) 22.5 (18, 28) 27 (20, 33.25) 30 (23, 38) 45 (36, 54) 12 (6, 18) 6 (3, 12)

Scenario 8
MADF 0.000 0.000 0.000 0.150 0.773 0.077 0.000
ZKO 0.000 0.000 0.002 0.078 0.591 0.295 0.034
#patients 24 (18, 27) 24 (18, 27) 24 (18, 27) 24 (18, 27) 30 (24, 36) 9 (3, 12) 3 (0, 6)

Scenario 9
MADF 0.000 0.000 0.000 0.064 0.837 0.099 0.000
ZKO 0.000 0.000 0.001 0.076 0.715 0.194 0.014
#patients 20 (16, 25) 24 (18, 31) 30 (23, 39) 37 (27, 47) 60 (49, 71) 15 (9, 23) 10 (4, 16)
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5.3 Bayesian framework for multi-source data integration

In this work [Boulet et al., 2024], where I co-supervised a postdoc, our goal is to introduce a
Bayesian framework designed for the integration of data from multiple sources, which is adapt-
able and can be customized to meet the particular research question at hand. In details we focus
on preclinical stage and we develop a framework that recognizes the similarities among preclin-
ical studies, enabling the utilization of all pertinent data. Specifically, our strategy is to handle
data from various sources (such as cell cultures, mice, etc.) more effectively than conventional
methods, in order to enhance the prediction of critical human-related metrics like the Minimal
Anticipated Biological Effect Level (MABEL), No Observed Adverse Effect Level (NOAEL),
Minimal Effective Dose (MED), MTD, and others. We suppose that the development strategy
encompasses K preclinical investigations, which are to be conducted or, at the very least, se-
quentially evaluated prior to the FIH trial. These studies focus on identical outcomes that can
be interpreted through various methods, contingent on the specifics of each study. Our aim
is to identify, through suitable extrapolation, transformation or linkage functions, the relevant
quantities, such as the MTD, or an appropriate dose range for a FIH dose-ranging study. We
introduce a Bayesian framework consisting of four steps (illustrated in Figure 5.2):

1. Initially, we estimate the parameters for each outcome.

2. Subsequently, we employ extrapolation using predetermined formulas to deduce the pa-
rameter distribution in humans for each criterion.

3. Next, we assess the consistency/compatibility of posterior distributions through a
divergence-based metric.

4. Lastly, we integrate the chosen posterior distributions utilizing an expanded version of the
Bayes formula.

5.3.1 First step: parameters estimation

For each of the K preclinical studies, identified by k ranging from 1 to K, the outcomes yk

recorded in the kth study are considered. These outcomes may be consistent across studies or, if
differing, can contribute to determining the relevant doses, dr, with r spanning from 1 to R, where
R represents the total number of target doses (such as MABEL, NOAEL, MED, MTD, etc.).
In every study k, Bayesian models, either fixed-effect or mixed-effect and potentially nonlinear,
denoted as fk(yk,θk), are applied to estimate the dose-outcome relationships, which include
PK/PD measures for efficacy or toxicity. These models are fitted using Markov chain Monte
Carlo (MCMC) techniques, with the introduction of weakly-informative prior distributions for
the model parameters θk. The specific functions fk(.) and the parameter vectors θk might
vary between studies, including differences in dimensionality or being tailored to each study.
For instance, a study with a single outcome per subject might employ a fixed-effect model,
whereas longitudinal studies could opt for mixed-effect models, maintaining the same structure
for population effects but incorporating random effects for certain parameters.

For the first study, selection of prior distributions is guided by external pre-existing knowl-
edge. In the absence of such knowledge, non-informative prior distributions are employed. For
subsequent studies, should there be a link between any component of θk−1 and an element of θk,
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Figure 5.2 – Scheme of the four steps of the Bayesian framework.

prior distributions are derived from the estimated posterior means of the parameters from the
preceding study, k − 1. This process may include extrapolation between studies when needed,
utilizing methodologies akin to those mentioned in subsequent steps, and is complemented by
the use of suitably large standard deviations. Employing non-informative or weakly informative
prior distributions at this stage is crucial to avoid redundant inclusion of the same data in the
final stage of the framework. This approach ensures that the effective sample sizes (ESS) [Morita
et al., 2008], as well as the influence of each preclinical study within the final analysis, remain
comparable.

5.3.2 Second step: extrapolation to human

In the previous phase, the focus was on extrapolating data from one preclinical study to
another via prior distributions. Now, our attention shifts to extrapolating preclinical findings
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to human applications. For each study k, we extrapolate the preclinical results (the estimated
parameters) onto human models using predefined transformation formulas gk(.), resulting in
θhuman
k = gk(θk). Here, θhuman

k denotes the vector of parameters extrapolated to humans from
the kth study. These transformation formulas might also be employed in the preceding step for
inter-study extrapolation for prior distributions.

In the Bayesian framework, this transformation is applied directly to the posterior parameter
distributions to acquire the posterior distributions of the extrapolated parameters, in accordance
with the random variable transformation theorem. Subsequently, the human-relevant doses,
dr = dr,k(θ

human
k ), where dr,k(.) links the extrapolated human parameter vector θhuman

k from
the kth study to the desired dose dr, are calculated either analytically or through Monte Carlo
simulations. The resulting posterior distributions of dr, πpost

k (dr), are then obtained either
through direct application of the random variable transformation theorem or approximated
using Monte Carlo methods. It is important to note that this paper does not primarily focus on
addressing the uncertainties associated with the fixed parameters used in extrapolation scaling,
though this could be a topic for future research.

5.3.3 Third step: commensurability checking and posterior selection

At this stage, our objective is to evaluate the predicted human dose distributions, denoted
as Dk,r ∼ πpost

k (dr) for each dose r, across all K studies and identify those that appear most
alike. In practical scenarios, it might be more suitable to initially choose the predicted human
dose distribution(s) from the study (or studies) deemed most relevant, and subsequently, select
additional distributions that closely match these. This process can be effortlessly tailored to
accommodate such specific situations, although this work does not elaborate on this particular
adaptation.

The direct comparison of posterior distributions is challenging due to the varying amounts of
information they contain, influenced by the sample size of their respective studies. A method to
enhance the comparability between two posterior distributions involves adjusting the likelihood
of the study with a larger sample size, as suggested by Ollier et al. [2020]. This adjustment
requires re-evaluating one of the datasets and deciding on a discount factor, a process that is
relatively straightforward for fixed effect models but more complex for mixed effects models,
especially in longitudinal studies. Drawing inspiration from the concept of ESS, we suggest
transforming posterior distributions to approximate a Gaussian distribution, which are then
normalized to match the highest variance observed. In our case study,

D∗
k,r =

max
h∈K

Sh,r

Sk,r
log(Dk,r) +

(
1−

max
h∈K

Sh,r

Sk,r

)
Mk,r ∼ πpost

k (d∗r), (5.3)

for k ∈ {1, ...,K}, where Mk,r = E(logDk,r) and S2
k,r = V ar(logDk,r) are respectively the

mean and the variance of logDk,r. This approach normalizes the distributions across studies
while preserving their original means. This normalization is achieved through a logarithmic
transformation of the dose to facilitate Gaussian assumption, though other transformations may
be preferred in different contexts. According to Morita et al. [2008], the ESS for a normal
distribution in a model with known variance is determined by the prior variance, allowing the
ESS of our transformed distributions to be considered equal under a “Gaussian dose model".
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After ensuring the posterior distributions are comparable, we assess the similarity of the
adjusted distributions πpost

k (d∗r) across different studies, specifically between studies k1 and k2
where k1, k2 ∈ {1, ...,K} and k1 ̸= k2, using the Hellinger distance for each dose r. This distance

is defined as Hr(Dk1 , Dk2) =

[
1
2

∫ (√
πpost
k1

(d∗r)−
√
πpost
k2

(d∗r)
)2

dd∗r

] 1
2

. The Hellinger distance is

chosen for its properties: it ranges between 0 and 1, is symmetric, and simplifies the definition
of consistency between study results. A Hellinger distance nearing 0 implies a high degree of
consistency among the predicted human dose distributions across the studies, whereas a distance
approaching 1 suggests a lack of agreement between them.

To determine which studies proceed to the subsequent phase, an algorithm incorporating a
threshold derived from Hellinger distance measurements is necessary. For situations with a lim-
ited number of studies, developing specialized algorithms with straightforward decision criteria
is feasible. In more intricate scenarios, clustering techniques may be employed. We recommend
conducting simulations on chosen scenarios that are pertinent to optimize the algorithm and
setting the threshold based on the precision of these results. For every scenario deemed suitable,
we identify studies viewed as consistent and thus to be carried forward to the final step. This
involves creating a binary indicator “true response” for each study comparison, assigned a value
of 1 if the studies are theoretically similar in the scenario and 0 if not. Through simulation,
we then calculate the Hellinger distances between studies. For each potential threshold value
on this distance, we generate a “predicted response” indicator, which is 1 if the distance falls
below the threshold and 0 otherwise. The selection of the threshold is guided by the relationship
between accuracy and the Hellinger distance threshold.

Upon concluding this phase, studies that demonstrate consistency are chosen for further
analysis. In cases where no studies form a “cluster” due to their similarity, only the findings
from the study deemed most relevant are carried forward to the next step.

5.3.4 Fourth step: merging the selected posterior distributions

Let K represent the set of indices for the preclinical studies, with K = {1, 2, . . . ,K}. We
define K′ ⊂ K as the subset of studies chosen in the previous step. The extrapolated dose
distributions πpost

k′ (dr), for each k′ ∈ K′, are integrated using a modified version of Bayes’
theorem to deduce the final predicted dose distribution dr for humans as follows:

π(dr) ∝
∏

k′∈K′

πpost
k′ (dr). (5.4)

Eq. 5.4 is applicable when the selected distributions, denoted by K′, share a common support or
at least a portion of it. This condition prevents scenarios where the multiplicative term would be
zero almost everywhere within the domain. Specifically, it addresses cases where one distribution
is virtually zero in regions where others are nonzero. Additionally, the integrability of the second
term in the equation is assured if the distributions in K′ (or all but one) are bounded. While
this boundedness is a sufficient condition for integrability, it is not mandatory. For instance,
the multiplication of U-shaped (or J-shaped or inverse J-shaped) Beta distribution densities still
results in a beta distribution. In the context of sequential Bayesian analyses, where the poste-
rior distribution from one study is utilized as the prior for the subsequent study within a series
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of K iterations of the same study design, the ultimate posterior distribution is represented as
πpost
K (θ) ∝ πprior (θ)

∏K
k=1 L(θ|datak). Assuming that πprior (θ) is significantly non-informative,

and considering K − 1 similarly non-informative improper distributions adjacent to each like-
lihood function, it is possible to interpret each pair of product terms (the kth likelihood and
its corresponding non-informative improper distribution) as a posterior distribution. Therefore,
Eq. 5.4 can be viewed as a broadening of Bayes’ theorem. Given that informative prior distribu-
tions would result in their information being accounted for multiple times (specifically, Card(K′)

times), it is recommended to employ non-informative prior distributions.
Eq. 5.4 gives the final dose distribution, incorporating all pertinent information for subse-

quent inference; namely, the expected value (or median) may serve as a point estimate, with
credible intervals providing insight into the distribution variability. It is important to note that
if, in the preceding step, only the most pertinent study was selected, Eq. 5.4 simplifies to that
study posterior distribution. This approach utilizes the original dose posterior distributions,
not those modified by Eq. 5.3, thus, it does not presume any of the predicted human dose
distributions to follow a Gaussian model.

5.3.5 Results

To demonstrate and assess our methodology, we employ the preclinical and clinical devel-
opment of galunisertib (LY2157299 - the same used in the second chapter) as a case study,
generating various simulation scenarios around it. Semi-mechanistic modeling was adopted to
predict a safe dosing regimen for Phase I study from data in mouse, rat and dog [Bueno et al.,
2008, Gueorguieva et al., 2014]. Allometric scaling, which integrated data from mouse, rat,
and dog studies, was utilized to extrapolate PK parameters to humans. We focus on two main
scenario: (1) where all species should give consistent results; (2) where the rat study results are
inconsistent with the other two species. Data generation and simulations details are given in
Boulet et al. [2024]. In this section, only results on MTD are shown.

In Figure 5.3(a), scenario 1 illustrates that using data from all animal species often leads to
an accurate estimation of the MTD, with the Bayesian method estimating the MTD at 515 mg
(with a standard deviation of 48 mg), closely aligning with the true value of 502 mg. In contrast,
scenario 2 shows a slight overestimation of the MTD at 561 mg (with a standard deviation of 296
mg). Furthermore, the 95% credible interval (CrI95) length is significantly wider when solely dog
data is utilized (the conventional method) for MTD estimation, as compared to the proposed
method (referenced in Figure 5.3(b)). Specifically, the average CrI95 length using only dog data
is approximately 300 mg (with a standard deviation of 47 mg), in stark contrast to the shorter
lengths of 165 mg and 242 mg (with standard deviations of 26 mg and 153 mg, respectively) for
scenarios 1 and 2 when employing the proposed method.

Moreover, Figure 5.4 shows the results of the framework applied to a single simulation run.

5.4 Discussion

In the first work, we introduced a novel approach for conducting random-effects meta-analysis
of Phase I dose-finding trials, utilizing a Gaussian process for the random effects structure
and a Gamma process for the prior distributions of fixed effects. This method enables more
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Figure 5.3 – Estimated MTD in humans (a) and the length of the 95% credibility interval (CrI95) (b) for
scenarios 1 and 2 for the Bayesian approach and using the standard approach (that is, only study 3 - dog - data)
over 500 replications, under the assumption that ωV,1 = 0.7 for mouse. MTD: Maximum tolerated dose. This
figure appears in color in the electronic version of this article.

information sharing between closer dose levels, reducing the correlation as the distance between
doses increases. For instance, within a dose panel, the correlation between dose levels 3 and 4
is stronger than between levels 1 and 4, with the degree of correlation logically dependent on
the distance rather than a fixed value. The Gamma process ensures adherence to the expected
monotonic increase in toxicity. We advise against estimating the entire Gamma process due
to the typically insufficient data for accurate parameter estimation in meta-analyses, despite
the larger dataset compared to individual trials. Our focus was on modeling toxicities for
the specific doses investigated in the trials. However, with ample data allowing for a reliable
estimation of the Gamma process, the full model could potentially enable dose interpolation or
extrapolation across a continuous range. It is worth mentioning that in a subsequent study,
we introduced a simplified version of this meta-analysis by adopting a more straightforward
two-stage approach [Röver et al., 2022]. Both methods were then applied in a work regarding
meta-analyses of Phase I dose-finding studies of protein kinase inhibitors in oncology. This was
part of an internship that I co-supervised, with the manuscript currently undergoing its first
round of revisions. Through this applied work, we gained deeper insights into the strengths
and limitations of each model. For instance, the two-stage approach necessitates estimable
logistic regression for each trial and results in the exclusion of some trials where no DLT occurs,
potentially leading to an overestimation of toxicities. Conversely, the method we describe here
can result in a bivariate posterior probability of toxicity for certain doses, influenced by the trials
substantial heterogeneity. However, overall, both approaches produced consistent results.

In the second study, we introduced a Bayesian framework designed for the integration of data
from multiple sources, specifically tailored for extrapolating doses from preclinical to clinical
phases. Particularly, steps 3 and 4 of our approach called for innovative methodologies. This
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Figure 5.4 – Maximum tolerated dose (MTD) distributions for one simulated dataset in scenarios 1 and 2, for
the Bayesian approach. Extrapolated preclinical studies (1 - mouse, 2 - rat, 3 - dog) to human MTD distributions
(from Step 2) and final predicted MTD distribution (from Step 4) in the dataset from scenario 1 (a) and from
scenario 2 (b); transformed extrapolated MTD distributions and Hellinger distances (from Step 3) in the dataset
from scenario 1 (c) and from scenario 2 (d). The Hellinger distances equal to 1 are due to approximation in
computation.

novel framework enhances the utilization of all available data compared to conventional methods,
thereby diminishing uncertainty in predictions and potentially facilitating more efficient dose
selection. A significant benefit of the Bayesian framework is its ability to yield the posterior
distribution of extrapolated doses, irrespective of the distribution shape. This capability allows
for the consideration of metrics beyond just the mean value or credible intervals, including
distribution asymmetry, peak, or other summary statistics. Additionally, the framework offers
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considerable flexibility; various submodels (such as linear, generalized, mixed-effect models) can
be tailored to fit the specific outcomes of the study and may vary across different studies.

I view this work as a foundation for future enhancements and investigations. Indeed, when
incorporating more than three studies, a clustering technique could prove more effective than
an ad-hoc algorithm. This approach could identify main clusters of responses, which could then
inform the design of FIH trials, including the selection of doses and the determination of prior
distributions. Additionally, exploring metrics beyond the Hellinger distance could be beneficial
for developing the clustering procedures.





Chapter 6

Perspectives

In this chapter, building on my previous research, I will show a few perspectives I intend to
explore further in the upcoming period. I have already obtained funding through grants and
collaborations to hire PhDs, postdocs, or engineers for these projects.

Firstly, I plan to continue exploring the use of PK/PD in dose-finding. Indeed, in the
BEEP (Bayesian methods for Early Enriched Platform trials) project, of which I am principal
investigator, one of the main axes is devoted to develop platform clinical trials for Phase I/II
using PK/PD modeling. Since we are focusing on early phases of clinical trial, in this setting
“platform” cannot be linked to classical randomized clinical trial. Nevertheless, as in the original
definition, early platform phases will allow for flexibility, such as adding new arm or stopping
treatments for futility (and/or safety in our case). For example, after sufficient data on the drug
have been collected, it becomes possible to propose and incorporate a new arm with alternative
schedules into the ongoing trial using the prediction of the efficacy and toxicity probability of
untested doses/sequences via the PK/PD modeling.

Regarding other internal information in early clinical development, in collaboration with
the ECSTRRA research team (affiliated to CRESS-UMR 1153), we will explore the enrichment
designs in these early phases (starting in BEEP and then continuing via the project SMATCH,
“Clinical study and trial designs for the evaluation of models and DMDs for their translation
to patient’s care”, of the PEPR Santé Numerique program). These methods have rarely been
applied in dose-finding studies, despite the critical importance of identifying an optimal dose
for the subsequent development of a drug within a target population. We plan to work on a
Bayesian framework for dose-finding that incorporates hierarchical modeling. This will enable
consideration of population subgroups in connection with drug toxicity and effectiveness. The
framework will include rules for ordering and stopping across these strata, facilitating dynamic
dose adjustment and the exchange of information between different groups.

In SMATCH, I am also leading a task where I plan to extend the framework to integrate
multi-source data. I will explore and adapt other metrics, probably still divergence-based, to
serve as indicators of agreement between posterior distributions. Given that the informational
content of each distribution is influenced by the sample size of its source, I will implement trans-
formations to standardize all distributions for equitable comparison, but I will explore different
standardization way, not only based on the ESS principle. We will address and quantify het-
erogeneity through modified clustering methodologies. Additionally, a comprehensive Bayesian
solution will be introduced as an alternative to traditional meta-analysis, encompassing both
non-parametric and semi-parametric methods. This work will be first done for univariate end-
points, as in the work of Boulet et al. [2024] regarding the MTD, to decide which information to
carry on in priors for clinical trials. Then, this work will be adapted and extended to check the
agreement between curves, for example the entire dose-response curve or a longitudinal path.
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Indeed, in the DIGPHAT (Digital Pharmacological Twins) projects of the PEPR Santé Nu-
merique program, I am workpackage leader and we wish to build pharmacological digital twin
by linking and checking all existing models regarding a specific condition.

Regarding PK/PD and mechanistic modeling once more, I wish to account for uncertainties
in the extrapolation process (preclinical to clinical or adults to children, for example), which
can lead to inconsistencies not necessarily due to discrepancies between previous data and ac-
tual trial data. I will refine models for simulating patients in silico as part of the INVENTS
EU project (Innovative designs, extrapolation, simulation methods and evidence tools for rare
diseases addressing regulatory needs).

Another field I plan to explore in the medium term regards the evaluation of Artificial
Intelligence (AI) algorithms in digital medical devices (DMDs) via clinical trials. This will be
part of both the SMATCH project (as indicated by its full name) and the Meditwin project,
which aims to create personalized virtual twins of organs, metabolism, and cancerous tumors
for improved diagnosis and treatment. Indeed, agile AI algorithms in DMDs face regulatory
challenges due to their constant updates. These devices, incorporating AI that requires frequent
re-calibration, undergo analytical validation using health data sets but must secure clinical
approval through expensive clinical trials. Therefore, exploring the potential of synthetic data
(in silico) and internal extrapolation across software versions could turn out to be indispensable.
Different models will be necessary depending on the DMD type and aims, whether for prevention,
treatment administration, or other purposes.

In this final chapter, I have outlined several (though not all) projects I aim to address in the
medium term, spanning the next 1 to 5 years. These projects remain connected to the field of
clinical trials. This is not surprising, since I will be a co-leader of the third research axis of the
HeKA team, focusing on “Data and model-driven designs for next generation clinical trials”.
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