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Foreword

The objective of this manuscript is to provide a coherent survey of the work we have done on multi-
objective combinatorial optimization since we defended our PhD thesis in December 2009.

We started working on multi-objective combinatorial optimization during our PhD thesis, which was
about the development of new metaheuristics to solve multi-objective combinatorial optimization problems.
More precisely, the goal was to develop new heuristic methods that generate good approximations of Pareto-
optimal sets in small running times. The methods have been applied to the multi-objective traveling salesman
problem, the multi-objective multidimensional knapsack problem, and an application in radiotherapy treat-
ment.

Thenceforth, during a short research stay at the Université Pierre et Marie Curie (the former Sorbonne
Université) and a post-doctoral stay at the Université Lumière Lyon 2, we started working on new domi-
nance relations and rank-dependent aggregators, mainly the Lorenz dominance (with Lucie Galand) and the
Choquet integral (with Antoine Rolland). We also have accomplished a post-doctoral stay at the Université
Catholique de Louvain in Belgium, where we worked on the multi-objective scheduling of the operating the-
ater and on a machine learning project aiming to predict academic success. This last subject is somewhat
outside our main area of research and will not be discussed in this manuscript.

In parallel, we have continued working on the adaptation of metaheuristics to multi-objective problems,
and more particularly in some ways to improve the two-phase Pareto local search that we have developed
during our PhD thesis. Some very-large scale neighborhood search has been developed to solve the multi-
objective set covering problem (with Daniel Tuyttens). A new data structure has been developed to accelerate
the operation of non-dominance checking (with Andrzej Jaszkiewicz). We also have worked on different
applications with some researchers met during a research stay at the Universal Federal Fluminense (Niteroi,
Brazil).

During the last years, we have mainly worked on interactive methods (preferences of the DM are learned
during the search) to solve multi-objective combinatorial problems. A new exact method has been developed
(with Nawal Benabbou) and local search and genetic algorithms have been adapted. A large part of this
work has been realized in the context of the supervision of the PhD thesis of Cassandre Leroy at Sorbonne
Université. The title was “Incremental elicitation combined with heuristic methods for solving multi-objective
combinatorial optimization problems". We were co-supervising her thesis with Nawal Benabbou, and the
Director was Patrice Perny. The defense took place on December 5, 2022.

Our research is mainly based on developing new algorithms to solve combinatorial problems. Many of the
methods developed are heuristics, and their quality is evaluated through intensive experiments on academic
problems. Due to limited number of pages, we won’t be able to present all experimental results, only few
results, tables and figures will be shown. We prefer to focus on showing the ideas behind the methods, often
through small didactic examples. Detailed experimental results could be found in the related papers, that
are all available on our personal web page2. In the same spirit, most of the proofs associated with the various
properties developed in this manuscript will not be detailed.

We also point out that between January 2016 and January 2018, we took a sabbatical leave for spousal
follow-up in Ireland. After a 6-month research stay at IBM Dublin, we worked as a data scientist for
the Technological University of Dublin in Ireland. We worked mainly on data clustering, synthetic data
generation (i.e., creating “random” data-sets that resemble actual company data), and on a visualization
tool that combines the opinions expressed in customer feedback and spatio-temporal data. All these results-
oriented works will not be exposed in this manuscript.

Finally, we want to specify that, as requested by Sorbonne Université, this document must be of about
fifty pages, must present all our main research results, and situate it in relation to international literature.
A perspective on further research should also be included.

2https://webia.lip6.fr/~lustt/
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Main acronyms and notations

• MOCO: Multi-Objective Combinatorial Optimization

• MCDA: Multiple-Criteria Decision Analysis

• p: number of objectives

• P: set of objective numbers, i.e., {1, . . . , p}

• x: feasible solution

• y: point in objective space (image of a feasible solution)

• fi(x): objective function (number i)

• X : feasible set of a MOCO problem, or set of alternatives of a MCDA problem

• Y: image of X in the objective space

• ≻P : Pareto dominance

• ⪰P : weak Pareto dominance

• >P : strict Pareto dominance

• XE : Pareto-optimal set

• YE : Pareto front

• XN : non-dominated set or Pareto archive

• YN : set of mutually Pareto non-dominated points

• XL: Lorenz-optimal set

• XC : Choquet-optimal set

• DM: Decision-Maker

• WS: Weighted Sum

• OWA: Ordered Weighted Average

• PLS: Pareto Local Search

• TSP: Traveling Salesman Problem

• BOTSP: Bi-Objective TSP

• MOTSP: Multi-Objective TSP

• MOKP: Multi-Objective Knapsack Problem

• MOSTP: Multi-Objective Spanning Tree Problem

IV



1 Introduction
Combinatorial optimization problems are ubiquitous in our society. They appear in many applications:
production, scheduling, logistics, timetables design, transport, and more. Combinatorial optimization consists
in determining an optimal solution from a finite discrete set of feasible solutions (i.e., solutions that respect
the constraints of the combinatorial optimization problem under study). A function, defined by a decision-
maker (DM), is generally used to evaluate the solutions, which can correspond to a cost, a gain, an utility or
any other criterion (or objective). A good knowledge of the problem is essential for the choice of the criterion
to be optimized. Indeed, a poor definition of the criterion can lead to the generation of solutions that do
not correspond to the preferences of the DM. However, many real world decision contexts require taking into
account more than one criterion: some criteria evaluating quantitative issues (performance, duration, cost,
etc.) and sometimes other measuring qualitative issues (environmental aspects, customer opinions, etc.).
These criteria are often conflicting and heterogeneous, but considering explicitly them enables the DM(s) to
appreciate the possible trade-offs and to progress towards the definition of a best compromise solution.

A common way to solve multi-objective combinatorial optimization problems is to generate all compromise
solutions. A compromise solution is a solution such that the value of the solution for one objective cannot be
improved without negatively affecting at least one of the other objectives. These solutions are more formally
called Pareto-optimal solutions, a notion that will be properly defined in the next section. Multi-objective
optimization is an important area of research [81], but more complex than single-objective optimization,
given that the notion of optimality is no longer direct.

During our doctoral thesis research, we primarily assumed that the DM had no established preferences
regarding the criteria or certain solutions. Therefore, the main approach we studied was the generation of all
Pareto-optimal solutions, since it is impossible to differentiate between these solutions. The set of Pareto-
optimal solutions can then be proposed to the DM, who is then free to choose the solution that best matches
her preferences.

Multi-objective combinatorial optimization problems are difficult to solve. The generation of the set of
Pareto-optimal solutions becomes increasingly burdensome with the number of criteria, even for medium size
instances of multi-objective problems. This is mainly due to the following two reasons. First, the number
of Pareto-optimal solutions grows exponentially with the number of criteria [81]. Second, for most multi-
objective combinatorial optimization problems, the associated decision problem is NP-complete, even if the
underlying single objective problem can be solved in polynomial time. Owing to these major computational
difficulties, exact algorithms aiming at generating the entire Pareto-optimal set can only be used for small-size
instances of multi-objective problems. In the case of larger instances, heuristic approaches are commonly
employed to yield high-quality approximations within a practical processing time. The heuristics are usually
generated from more high-level concepts: the metaheuristics.

Metaheuristics for solving multi-objective combinatorial problems
Metaheuristics are general concepts [105, 126, 240] used for heuristic solving of combinatorial optimization
problems, including both intensification techniques to explore promising regions of the search space and di-
versification techniques to explore the search space as much as possible. Metaheuristics are often employed
to generate heuristics for a specific combinatorial optimization problem. Metaheuristics, being initially de-
veloped to solve single-objective optimization problems, had to be adapted to deal with multi-objective
problems. The first adaptations date from the 1990s, with the multi-objective simulated annealing [224, 251].

In our PhD thesis, we have developed a powerful adaptation of local search for solving multi-objective
combinatorial optimization problems: the two-phase Pareto local search (2PPLS). The method has been
applied to several multi-objective combinatorial optimization problems: the traveling salesman problem, the
knapsack problem and to a combinatorial optimization problem encountered in radiotherapy, which amounts
to decomposing an integer non-negative matrix into a linear combination of binary matrices [84]. After our
thesis, we have made a few improvements to the method (in particular the use of a specific data structure
for handling the problem of dominance checking), and solved other applications. All these results will be
summarized in Section 2. This section will also contain a small survey about the methods (exact and heuristic)
used to solve multi-objective combinatorial optimization problems.

Lorenz dominance
For some problems, the Pareto dominance is not sufficiently restrictive. Let’s take the example of assigning
objects to certain agents. Each agent expresses her interest in each of the items (through a utility function),
and the goal is to find an allocation such that all the agents are satisfied with the solution. We can model this

1



problem as a multi-objective combinatorial optimization problem: the utility received by each agent corre-
sponds to one distinct objective. In order to satisfy all agents, it is important to generate fair solutions, i.e.,
solutions in which no agent appears to be disadvantaged. However, Pareto dominance does not incorporate
the notion of equity at all. Many unfair solutions will be generated, i.e., solutions that are good for some
agents but bad for the others. One way to integrate fairness in multi-objective combinatorial optimization is
to use Lorenz dominance. Lorenz dominance is a refinement of Pareto dominance, which allows generating
solutions that establish a good compromise between the total values of the utilities received by the agents,
and the minimal value of the utility received by one of the agents. We have developed a new exact method to
generate all Lorenz optimal solutions of bi-objective combinatorial problems. The ideas behind this method
will be presented in Section 3.

Choquet integral
Another way to deal with multi-objective optimization problems is to aggregate the different objectives in
order to obtain a problem with a single criterion to be optimized. Though, the problem with this type
of approach is that, first, it exists multiple aggregation functions, and it is not easy to select the most
appropriate one. Second, an aggregation function often requires some parameters, like weights associated to
each criterion, which are not easy to set. As a result, there is a high risk that the resulting solution will not
fully match the DM’s preferences.

In Section 4, we present an original approach using an aggregation function, the Choquet integral, but
without the previously mentioned disadvantages. Indeed, the Choquet integral [109] is a general aggregation
function, that can model many different aggregators, like the weighted sum, the operators OWA [261] or
WOWA [248]. Nevertheless, the use of such aggregation function complicates the search for preferred solu-
tions, on the one hand in the learning of the preferential parameters, generally more sophisticated than a
set of weights (a capacity for the Choquet integral, which is a set function, with an exponential number of
parameters according to the number of objectives), and on the other hand in the search for optimal solutions
since the non-linearity of these aggregation functions leads to solving NP-hard combinatorial optimization
problems, even when the mono-objective version of these problems is polynomial [102]. To avoid the need to
determine the parameters of the Choquet integral beforehand, our approach consists in generating the set of
solutions that are optimal for at least one set of parameters of the Choquet integral. This approach has two
advantages: the parameters of the Choquet integral do not need to be determined and, in the end, a set of
solutions of smaller size comparing to the set of Pareto-optimal solutions is proposed to the DM.

Interactive methods and preference learning
A last possibility studied in this manuscript to solve a multi-objective combinatorial optimization problem
is to interact with the DM along the process of generation of the solutions [193]. Indeed, it may suffice to
partially learn the preferences of the DM to determine her preferred solution among all the feasible solutions
of the considered multi-objective problem. Furthermore, these preferences can be learned during the solving
process. Consequently, interactive methods handle both the learning of preferences and the resolution of the
resulting optimization problem, relying on a partial and dynamic learning of the preferences of the DM in
order to direct the search straightly toward favored solutions [185, 215].

Learning a DM’s preferences is a fundamental area of artificial intelligence (AI), particularly when AI is
used to assist human beings in their decision-making. If we take the example of deciding on an itinerary for
a road-trip, the various criteria to be taken into account (distance, cost, landscapes crossed, environmental
aspects, etc.) and the colossal number of possible options often make decision-making difficult and tedious for
human beings. In the context of these problems, AI can help the DM by accelerating her decision-making by
efficiently learning her subjective preferences. This involves asking the DM the right questions (for example,
by asking to compare certain solutions) and considerably reducing the number of possible options, by focusing
on those solutions that represent a good compromise in the eyes of the DM. Note that in multi-objective
combinatorial optimization problems, the set of options to be compared is not explicitly defined (as the size
of this set is exponential, like for the road trip problem), but only implicitly given through the structure of
the problem (e.g., a graph representing all the roads between cities).

A crucial issue in interactive methods is to limit the number of queries presented to the DM, so that
determining her preferred solutions is not a tedious process. Another challenge is to guarantee the quality
of the solution proposed. Section 5 will focus on interactive methods and preference elicitation, for solving
classic multi-objective combinatorial problems, and problems under matroid constraints, with exact and
heuristic methods.
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2 Exact and heuristic methods for solving multi-objective combina-
torial optimization problems

2.1 Multi-objective combinatorial optimization
We first define a general multi-objective combinatorial optimization (MOCO) problem. Let’s consider a
discrete finite set of n elements, E = {e1, e2, . . . , en} and p cost functions c(e) that associate to each element
e ∈ E a multidimensional cost vector (c1(e), c2(e), . . . , cp(e)) with ci : E → R,∀i ∈ P = {1, . . . , p}. The
elements of E are generally linked to a combinatorial structure (e.g., a graph, a tree, a matroid, etc.). Let
X a feasible set, defined by a set of constraints on the set E, such that X is a subset of the power set of E
(X ⊆ 2E = {0, 1}n). For example, for the spanning tree problem, E represents the set of edges of a graph,
while X is the set including all the spanning trees of the graph. Note that X is generally not explicitly
given (due to its exponential size) but implicitly given through the structure and/or constraints on E. Each
solution x ∈ X is evaluated through p objective functions fi, ∀i ∈ P, that associates to x a real value, i.e.,
fi : X → R, for i ∈ P. Usually the value associated with the objective i of a feasible solution x is simply
equal to the sum of the costs of the elements present in x, i.e., fi(x) =

∑
e∈x

ci(e), for i ∈ P. The cost vector

associated with a feasible solution x is denoted by y(x) = (f1(x), . . . , fp(x)) ∈ Rp. We therefore have that
the image of the admissible set in the objective space is defined by Y = {y(x) : x ∈ X} ⊂ Rp. Note that in
this manuscript, we will consider that all objective functions are commensurable (i.e., same unit and same
scale). Then a general MOCO problem comes down to the following problem3:

minimize
x∈X

(
f1(x), . . . , fp(x)

)
This means we are trying to find a solution x that optimizes all the objective functions at the same time.
Unfortunately, this problem is often unsolvable. Indeed, the objective functions are generally conflicting, i.e.,
a solution optimal for one objective function is not necessarily optimal for the others. Therefore, in MOCO,
solutions are habitually compared through their images in the objective space (also called points) with the
Pareto dominance relation.

Definition 1. Pareto dominance relation: we say that a point u = (u1, ..., up) ∈ Rp Pareto dominates a
point v = (v1, ..., vp) ∈ Rp if, and only if, uk ≤ vk,∀ k ∈ P ∧ ∃ k ∈ P : uk < vk. We denote this relation by
u ≻P v.

For the sake of simplicity, we will use the dominance relation for solutions as well, i.e., a solution x Pareto
dominates a solution x′ if and only if the point corresponding to x Pareto dominates the point corresponding
to x′: x ≻P x′ ⇔ y(x) ≻P y(x′).

We can now define a Pareto-optimal solution.

Definition 2. Pareto-optimal solution: a feasible solution x∗ ∈ X is called Pareto-optimal (or efficient) if
there is no other feasible solution x ∈ X such that y(x) ≻P y(x∗).

For these solutions, it is not possible to improve the value of one of the criteria without deteriorating at
least one other criterion.

The set of all Pareto-optimal solutions is called the Pareto-optimal set, and is denoted by XE . The image
in the objective space of a Pareto-optimal solution is called a Pareto non-dominated point. The set of Pareto
non-dominated points corresponds to the Pareto front, and is denoted by YE . Note that we can have that
two or more different solutions can correspond to the same point in the objective space. Such solutions will
be called equivalent solutions. If an exact method is used to generate XE , in theory, the method needs to
generate all equivalent Pareto-optimal solutions (a Pareto-optimal set which contains all equivalent solutions
is sometimes called a maximal Pareto-optimal set). However, in practice, we are generally satisfied to obtain
a unique corresponding solution for each Pareto non-dominated point (a minimal Pareto-optimal set). Note
that it is the same as in single-objective optimization, where only one optimal solution is usually sought.

We now define two auxiliary dominance relation.

Definition 3. Weak Pareto dominance relation: we say that a point u = (u1, ..., up) ∈ Rp weakly Pareto
dominates a point v = (v1, ..., vp) ∈ Rp if, and only if, u ≻P v or u = v. We denote this relation by u ⪰P v.

Definition 4. Strict Pareto dominance relation: we say that a point u = (u1, ..., up) ∈ Rp strictly Pareto
dominates a point v = (v1, ..., vp) ∈ Rp if, and only if, uk < vk,∀ k ∈ P. We denote this relation by u >P v.

3the case of maximization can be reduced to minimization by a simple change of sign.
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Definition 5. Weak Pareto-optimal solution: a feasible solution x∗ ∈ X is called weak Pareto-optimal (or
weakly-efficient) if there is no other feasible solution x ∈ X such that y(x) >P y(x∗).

The set of all weak Pareto-optimal solutions is called the weak Pareto-optimal set, and is denoted by
XwE .

Example 1. We consider in this example the bi-objective traveling salesman problem (BOTSP). Let V be
a set of n vertices, denoted by {1, . . . , n}, and E a set of edges, denoted by {(i, j) : i ̸= j, i, j ∈ {1, . . . , n}},
connecting the vertices two by two. Two cost functions associate to each edge e a two-dimensional cost vector
(c1(e), c2(e)). A feasible solution to this problem is a cycle that visits each vertex exactly once (Hamiltonian
cycle). The value associated with the objective i of a feasible solution x is equal to the sum of the costs of the
edges present in x, i.e., fi(x) =

∑
e∈x

ci(e), for i ∈ {1, 2}. Let’s consider the following instance of this problem,

with n = 5, represented by the following graph:
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For the symmetric TSP (the problem is symmetric when the cost from a vertex i to a vertex j is equal to
the cost from the vertex j to the vertex i), there are exactly (n−1)!

2 feasible solutions. For this instance with
n = 5 nodes, there are thus 12 feasible solutions. The feasible solutions and their evaluation according to the
two cost functions are given in the following table.

Solution Evaluation
x1 = (1, 2, 3, 4, 5) (25, 16)
x2 = (1, 2, 3, 5, 4) (17, 25)
x3 = (1, 2, 4, 3, 5) (21, 21)
x4 = (1, 2, 4, 5, 3) (19, 20)
x5 = (1, 2, 5, 3, 4) (14, 25)
x6 = (1, 2, 5, 4, 3) (20, 15)
x7 = (1, 3, 2, 4, 5) (26, 14)
x8 = (1, 3, 2, 5, 4) (19, 18)
x9 = (1, 3, 4, 2, 5) (23, 14)
x10 = (1, 3, 5, 2, 4) (15, 23)
x11 = (1, 4, 2, 3, 5) (20, 24)
x12 = (1, 4, 3, 2, 5) (21, 19)

For example, the solution x1 = (1, 2, 3, 4, 5) corresponds to the following cycle: 1→ 2→ 3→ 4→ 5→ 1.
Note that the representation of a cycle is not unique: this same cycle could have been represented by the
solution (3, 4, 5, 1, 2) or even by the solution (5, 4, 3, 2, 1) (given the symmetric cost).

On the right of the table, we have represented in the objective space the 2-dimensional points corresponding
to the evaluation of each feasible solution. We see that the Pareto front YE is composed of 5 Pareto non-
dominated points: {(14, 25), (15, 23), (19, 18), (20, 15), (23, 14)} (represented by the 5 large filled circles). The
Pareto-optimal set XE is thus equal to {x5, x10, x8, x6, x9}. Note that there is also one weak Pareto-optimal
solution: x7 (y(x7) = (26, 14)).

In MOCO, there exists an important classification of the Pareto-optimal solutions: supported Pareto-
optimal solutions and unsupported Pareto-optimal solutions. The images of the supported solutions in the
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objective space are located on the convex hull of the Pareto front, and the images of the unsupported solutions
are located inside the convex hull of the Pareto front. More precisely, we can characterize these solutions as
follows [81]:

Definition 6. Supported Pareto-optimal solution: a solution x is a supported Pareto-optimal solution if and
only if there exists a strictly positive weight vector λ (λk > 0,∀ k ∈ P) such that x is an optimal solution to

the weighted sum (WS) single-objective problem: min
x∈X

p∑
k=1

λk fk(x).

A Pareto-optimal solution which is not supported is simply called a Pareto unsupported optimal solution.

Example 2. For the BOTSP instance of Example 1, it can be shown that there exists 4 supported Pareto-
optimal solutions (given in the table below), and one unsupported optimal solution (x8). On the right of
the table, we have represented some of the edges of the convex hull of the Pareto front (black line). We see
that all supported Pareto-optimal points (represented by filled points) are located on these edges. We have
also drawn right triangles (dotted lines) between each consecutive supported points. An unsupported point is
always located inside these triangles, and we see that it is the case for the point (19, 18) corresponding to the
image of the unsupported Pareto-optimal solution x8. We note that the unsupported Pareto-optimal solution
x8 establishes the best compromise between the two objective functions, and it is therefore essential not to
restrict the search to supported solutions only.

In the table, we have also added the values of λ1 (the first component of the weight vector (λ1, λ2) of the
WS, with λ2 = 1− λ1) for which a supported solution is optimal according to the corresponding WS. We see
that the solution x10 is only optimal for a small range of values ([ 8

13 ,
2
3 ]) (which represents only about 5% of

the possible values). There is thus less chance to generate this solution if a WS with a random weight set was
used.

Supported solutions Evaluations λ1
∗

x5 = (1, 2, 5, 3, 4) (14, 25) [ 23 , 1[
x10 = (1, 3, 5, 2, 4) (15, 23) [ 8

13 ,
2
3 ]

x6 = (1, 2, 5, 4, 3) (20, 15) [ 14 ,
8
13 ]

x9 = (1, 3, 4, 2, 5) (23, 14) ]0, 1
4 ]

Note that in bi-objective optimization, the set of supported Pareto-optimal solutions can be easily com-
puted with a dichotomic search [9, 56] which gives the different weighting vectors that allow to generate all
supported solutions (more details will be given in Section 2.2.6).

2.2 Exact methods for solving MOCO problems
2.2.1 Main difficulties

MOCO problems are hard to solve. We point out three major difficulties:

1. NP-hardness of these problems even when the associated single-objective problem is of polynomial
complexity: e.g., the multi-objective assignment, the multi-objective spanning tree and the multi-
objective shortest path problems are NP-hard [85]. The decision problem related to a multi-objective
problem is as follows: “Given d ∈ Rp, does there exist x ∈ X such that (f1(x), . . . , fp(x)) ⪰P d ?” For
many MOCO problems, the decision problem is NP-complete, even in the bi-objective case.

2. Intractability: as there is not generally a unique optimal solution when multiple objectives are involved,
the number of Pareto-optimal solutions turns out to be a crucial point in assessing the difficulty of the
problem. It leads us to the notion of intractability [81].

5



Definition 7. A MOCO problem is called intractable if the number of Pareto-optimal solutions can be
exponential in the size of the instance.

Unfortunately, most MOCO problems are intractable [81]. Indeed, for many MOCO problems, it is
possible to create instances such that each feasible solution corresponds to a distinct non-dominated
Pareto point.

3. The presence of unsupported Pareto-optimal solutions (i.e., not localized on the edges of the convex hull
of the Pareto front), more difficult to generate than supported Pareto-optimal solutions, as these solu-
tions are not optimal for any WS. Moreover, generally, the number of unsupported solutions increases
exponentially with the instance size, while the number of supported has polynomial growth.

In the following, we briefly review the state of the art of existing exact methods for solving MOCO
problems (for a full survey, see the recent paper of Halffmann et al. [118]).

2.2.2 Adaptation of single-objective polynomial algorithms

We start by examining a few adaptations of single-objective polynomial algorithms to multi-objective opti-
mization. Unfortunately, it is not trivial to adapt single-objective algorithms to the multi-objective case. We
give some examples for the multi-objective spanning tree and the multi-objective shortest path.

Multi-objective spanning tree

In 1985, Corley [59] was the first to try to adapt the Prim algorithm to solve the multi-objective spanning
tree problem. We remind the problem and the idea of the Prim algorithm. From a graph G = (V,E) with a
set V of n vertices and a set E of evaluated edges (such that the graph is connected), the goal is to find a
subset of edges such that the graph is connected and that the total sum of the cost associated to each edge is
minimized. The algorithm operates by building a tree one vertex at a time. From an arbitrary starting vertex,
at each step the minimal cost edge connecting the tree to another vertex is added, if no cycle is formed, until
(n − 1) edges have been selected to form a spanning tree. The idea of Corley to adapt the single-objective
Prim algorithm is simple: instead of choosing the minimal cost edge, all Pareto non-dominated edges are
considered to be added to the vertex, and a forest is built, from which each tree is considered as new starting
point for applying the algorithm. Unfortunately, it has been shown that Pareto dominated spanning trees
may be returned by the algorithm (see, e.g., [151] for an example). Hamacher and Ruhe [119] tried to improve
the adaptation of Corley by eliminating the dominated trees at each step of the algorithm. Unfortunately, it
does not work as well, as some Pareto-optimal spanning trees may be omitted (see e.g., [142] for an example).
Another option to solve the multi-objective spanning tree problem is to adapt the Kruskal algorithm [149],
and using the property discovered by Serafini [223] in 1987 stipulating that there exists a topological order of
the edges of the graph G such that the greedy algorithm applied to this order yields a Pareto-optimal span-
ning tree. Unfortunately, the problem of identifying the appropriate topological orders is not easy to solve [81].

Multi-objective shortest path

For the multi-objective shortest path, we have that although a Pareto-optimal path is always composed
of efficient sub-paths between vertices along the path, the composition of efficient sub-paths does not yield
necessarily a Pareto-optimal path (see e.g., [81] for an example).

2.2.3 Connectedness of Pareto-optimal solutions

One can also have the idea to use neighborhood search to generate all Pareto-optimal solutions. It comes
from the observation that Pareto-optimal solutions can be truly closed in the decision space, differing by only
a few number of variable values. We first define the notion of neighborhood:

Definition 8. A neighborhood is a mapping function N : X → 2X that assigns to any solution x ∈ X a set
of solutions N (x) ⊂ 2X . N (x) is called the neighborhood of x, and a solution x′ ∈ N (x) is called a neighbor
of x.

We now define the notion of adjacency graph following the definition of Gorski et al. [106].

Definition 9. The adjacency graph G = (V,E) of the Pareto-optimal solutions of a given MOCO problem is
defined as follows: the set of vertices V represents the Pareto-optimal solutions of the MOCO problem. An
edge is introduced between all pairs of vertices which are neighbors with respect to the considered definition of
neighborhood of the MOCO problem. These edges form the set E.
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We can now define the notion of connectedness of Pareto-optimal solutions.

Definition 10. The set XE of all Pareto-optimal solutions of a given MOCO problem is said to be connected,
if and only if, its corresponding adjacency graph G is connected.

Example 3. A popular neighborhood for the TSP is the 2-opt neighborhood. This neighborhood works as
follows: from a solution, two edges are removed, and are replaced by two other edges to form a new solution.
It is illustrated below for an instance with 5 vertices. Starting from the solution (1,2,3,4,5) the edges (1,2)
and (3,4) are removed and replaced by the edges (1,3) and (2,4) (there exists only one possibility to form a
new solution).
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1
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34

5

All combinations of two edges are considered. In this way, a set of new solutions can be generated. For
the 2-opt neighborhood, its size is in O(n2) ( (n)(n−3)

2 ) more precisely).
In the figure below, we show the connectdness graph of the instance of the bi-objective TSP of Example 1.

The vertices represent the 5 Pareto-optimal solutions, and an edge between two vertices mean that the two
solutions associated to the two vertices are neighbors according to the 2-opt neighborhood. We remark that,
for this small instance, the graph is connected, which means that it would be possible to generate all the
Pareto-optimal solutions by using the 2-opt neighborhood, if it was applied from one of the Pareto-optimal
solutions.

x5

x10

x8x6

x9

Unfortunately, Ehrgott and Klamroth [83] and Gorski et al. [106] found instances for many MOCO prob-
lems (i.e., shortest path, minimum cost flow, minimum spanning tree, knapsack and assignment problems)
for which the set XE is not connected. However, using neighborhood search can be used to provide good
approximations of the Pareto-optimal set, as it will be shown in Section 2.4.1.

In the following, we present some general techniques to generate all Pareto-optimal solutions of MOCO
problems. We first focus on classic techniques and then on more specific techniques.

2.2.4 ϵ-constraint method

The ϵ-constraint method is a one of the first method developed for solving MOCO problems. The method
has been introduced by Haimes et al. [117] in 1971. In the ϵ-constraint method, one of the objective functions
is optimized while the other objective functions are put as constraints, in the following way:{

minimize
x∈X

fk(x)

subject to fi(x) ≤ ϵi, i ∈ P \ {k}
The ϵ-constraint method has the advantage of being adaptable to any MOCO problems following a suitable

adaptation of the constraints. On the other hand, this method modifies the structure of the original problem
by adding constraints, which can make the problem more difficult to solve. However, many improvements
have been made to the method (especially by partitioning the search space into distinct zones) [33, 139, 154,
156, 181, 183, 241, 270]. We have ourselves applied the method to a multi-objective scheduling problem in
the operating room, taking into account a balanced allocation of nurses’ skills [179].
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2.2.5 Branch and bound method

The branch and bound method [152] is a method that works by implicit enumeration of the feasible set. As
a single-objective method, it uses bounds on the optimal value of sub-problems, enabling the elimination of
partial solutions by detecting that they cannot lead to optimal solutions. The simplest bounds that could be
used in multi-objective optimization are the ideal and nadir points, defined as follows:

Definition 11. The ideal point of a MOCO problem denoted as zI is the point composed of the best coordinates
of all Pareto non-dominated points, i.e., zIk = min

y∈YE

yk,∀ k ∈ P.

Definition 12. The nadir point of a MOCO problem denoted as zN is the point composed of the worst
coordinates of all Pareto non-dominated points, i.e., zNk = max

y∈YE

yk,∀ k ∈ P.

Example 4. For the MOCO problem of Example 1, it can be easily seen that the ideal point zI is equal to
(14, 14) and the nadir point zN is equal to (23, 25).

However, to effectively adapt the branch and bound method to MOCO problems, it is necessary to use
more elaborate bounds, composed of a set of points. Effective adaptations of branch and bound have been
proposed by Sourd and Spanjaard [232] for solving the bi-objective spanning tree problem and by Ulungu
and Teghem [250] for solving the bi-objective knapsack problem. A recent effective adaptation of branch and
bound to problems with more than two objectives have been realized by Forget et al. [94] (in about one hour
of computing time, they can solve instances of the knapsack problem with 50 objects and 3 objectives, or 20
objects and 5 objectives). For a full review, see the survey of Przybylski and Gandibleux [207].

2.2.6 Two-phase method

The two-phase method is a general approach for solving MOCO problems, introduced by Ulungu and Teghem
[249] in 1995 for solving bi-objective problems. In the first phase, the set of supported Pareto-optimal solutions
is generated and in the second phase, using the non-dominated zone of the objective space formed by the
supported Pareto-optimal points (i.e., the zone where new Pareto non-dominated points could be found),
enumeration techniques are used to generate the unsupported Pareto-optimal solutions. In the first phase,
a series of WS problems are solved. Indeed, a supported Pareto-optimal solutions is necessarily optimal
for a WS problem with strictly positive weight. For problems with two objectives, there exist an efficient
algorithm for generating all sets of weights corresponding to supported Pareto-optimal points. The method,
independently proposed by Cohon [56] and Aneja and Nair [9], is recursive and is based on generation of
normal lines to the lines connecting two already detected adjacent supported Pareto-optimal points. The
normal lines give the new weight directions that would enable to potentially get new supported Pareto-optimal
points.

Example 5. Let’s go back to Example 1. Let’s suppose that the solution x5 (evaluation equal to (14, 25)) and
x9 (evaluation equal to (23, 14)) have been previously generated. Then to find new supported Pareto-optimal
solutions, a new weighted set, corresponding to the normal vector to the line connecting the two points (see
the figure at bottom left) is determined. A new supported Pareto-optimal solution is generated by solving a
WS problem with this weight set. The solution x6 is obtained (evaluation equal to (20, 15)) and two new WS
problems will need to be solved, as shown in the figure at bottom right.
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Unfortunately, this method does not work for problems with more than two objectives. Indeed, as
shown by Przybylski et al. [209], with at least three objectives, normal directions to the hyper-plans passing
through three adjacent supported Pareto-optimal points can have negative values and therefore not leading to
supported Pareto-optimal solutions by solving WS problems with these weights. Adaptations of the method
to deal with problems with more than two objectives were nevertheless achieved quite recently (the first
method dates back to 2010) [35, 194, 209, 210].

In the second phase, enumeration techniques are used. Branch and bound approaches were initially
developed [249] but lately, the most successful approach was using k-ranking algorithms, that are methods
that generate the k-best solutions to an optimization problem (see e.g., [252] for a k-best algorithm for the
TSP). It works by discovering unsupported Pareto-optimal solutions in ascending order of value obtained by
WS problems [208, 211, 233].

2.2.7 Tchebychev aggregation functions

In this section, we consider the weighted Tchebychev norm for generating the Pareto-optimal set of a MOCO
problem.

Definition 13. The weighted Tchebychev norm is defined as follows:

fT (x) = max
i∈P

λi|fi(x)− zr| with λi > 0 and
p∑

i=1

λi = 1

The point zr is a reference point, generally the ideal point.
The use of this norm was suggested by Bowman [39] in 1976. However, by optimizing this norm we can

generate only weakly Pareto-optimal solutions. Therefore, Steuer and Choo [234] proposed the augmented
weighted Tchebychev norm, where the sum of the values of all objective functions multiplied by some constant
coefficient ϵ has been added.

Definition 14. The augmented weighted Tchebychev norm is defined as follows:

fAT (x) = max
i∈P

λi|fi(x)− zr|+ ϵ

p∑
i=1

|fi(x)| with λi ≥ 0 and
p∑

i=1

λi = 1, ϵ ≥ 0, λi + ϵ > 0, i ∈ P

This new norm has mainly been used in interactive methods (see Section 5). To our knowledge, it is
only in 2012 with the work of Dächert et al. [78] that the method has been successfully applied for solving
MOCO problems. They have showed that it is not possible to use one single coefficient ϵ to generate the
Pareto-optimal set, and it is necessary to adapt the coefficient according to the problem instance and the
choice of the reference point. The method was then improved by Holzmann and Smith [125] by the use of a
weighted augmented term, which allows simplifying the determination of ϵ.

2.3 Approximation algorithms with performance guarantee
An alternative to exact methods are approximation algorithms with performance guarantee. Approximation
algorithms are mainly based on the ϵ-dominance relation, defined as follows.

Definition 15. ϵ-dominance relation: we say that a point u = (u1, ..., up) ∈ Rp ϵ-Pareto dominates a point
v = (v1, ..., vp) ∈ Rp if, and only if, uk ≤ (1 + ϵ)vk,∀ k ∈ P and ϵ > 0. We denote this relation by u ⪰ϵ v.

We can now define the notion of (1 + ϵ)-approximation of a Pareto-optimal set.

Definition 16. A set X of feasible solutions is called an (1+ ϵ)-approximation if, for every feasible solution
x ∈ X , there exists a solution in X that ϵ-Pareto dominates x.

Finding (1 + ϵ)-approximations has gained a lot of attention since the seminal work of Papadimitriou
and Yannakakis [196], showing that any multi-objective problems admits an ϵ-Pareto set of fully polynomial
cardinality (under very weak assumptions). Moreover, they give a complete characterization of multi-objective
problems for which (1 + ϵ)-approximations can be obtained in polynomial time according to the size of
the instances. Following these results, researchers have undertaken numerous studies on approximation
methods designed to address specific problems like knapsack, shortest path, matching, traveling salesman,
and others. Additionally, efforts have been directed towards diminishing the size of approximations, exploring
approximations consisting of supported solutions only, and investigating approximations with exact values
for at least one of the objectives.

However, we have not carried out any research on this subject, and although it is a very interesting one,
we will not go into the methods and issues involved. We recommend that interested readers refer to the
recent survey of Herzel et al. [123].
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2.4 Metaheuristics for solving MOCO problems
Due to the relative inefficiency of exact methods to solve high-size instances of MOCO problems, many
metaheuristics (MHs) have been adapted with the aim of getting good approximations of the Pareto-optimal
set. One common point between all multi-objective metaheuristics (i.e., adaptation of MHs to MO problems,
denoted by MOMHs) is that they all manage a non-dominated set (or Pareto archive), which is a set of
potentially Pareto-optimal solutions, in the sense that the solutions in the set are solutions that are not
dominated by any other solutions found so far. However, we cannot prove that the solutions are Pareto-
optimal, since generally MOMHS do not explore all the search space and cannot provide guarantees that the
solutions generated are Pareto-optimal. Also, in the Pareto archive, if two different solutions correspond to
the same point, usually only one solution is kept in the archive. We define more formally a Pareto archive
below. To do this, we first need to define the mutually non-dominated relation between two solutions.

Definition 17. Mutually non-dominated relation: we say that two solutions are mutually non-dominated or
non-dominated w.r.t. each other if neither one of the two solutions dominates the other one.

Definition 18. Non-dominated set (or Pareto archive) (XN ): a set of distinct feasible solutions such that any
pair of solutions in the set are mutually non-dominated, i.e ∀x ∈ XN ,∄x′ ∈ XN |x′ ≻ x. The representation
of XN in the objective space is denoted by YN .

A solution belonging to a non-dominated set will be called a non-dominated solution or a potentially
Pareto-optimal solution. In MOMHs, the Pareto archive is constantly updated with new solutions, in order
to keep only mutually non-dominated solutions. This is an important operation that needs to be performed
efficiently. Different ways to manage the Pareto archive will be presented in Section 2.5.

The goal of any metaheuristic is to return the best possible approximation of the Pareto-optimal set,
denoted by X̃E , according to the available computation time. Different indicators can be used to measure the
quality of the approximation. If the Pareto-optimal set is available, one can measure, e.g., the proportion of
Pareto-optimal solutions generated and the average distance between the Pareto front and the approximation.
However, the Pareto-optimal set is not always available. In this case, the most popular quality indicator is
the hypervolume [268], which is in line with the Pareto dominance relation. Its calculation is not trivial as
the number of objectives increases, but a number of efficient methods have recently been developed [113, 131].
For a full review of quality indicators, see the survey of Zitzler et al. [269].

2.4.1 Pareto local search

Pareto Local Search (PLS) is a powerful adaptation of simple local search [127] based on improving moves to
multi-objective optimization, developed independently by many authors [10, 82, 197, 239] at the beginning
of the 2000s. The idea of PLS can also be found in older papers related to the multi-objective spanning tree
problem [7, 119]. Its principle is very simple: starting from an initial population of non-dominated solutions
(i.e., a non-dominated set, that can be composed of one single feasible solution), a neighborhood function
is applied to each solution of the population with the aim of generating new non-dominated solutions. The
neighborhood is then applied to each new non-dominated solution found, until no more improvement is
possible, i.e., a Pareto local optimal set has been found. A Pareto local optimum set is a set of solutions
that has no improving solutions in its neighborhood. A Pareto archive of unlimited size is used to store all
non-dominated solutions found.

Two main advantages of PLS over more elaborated methods is that, first, PLS does not need any numeric
parameters, and second, it always ends [10] (i.e., there is no need to introduce stopping rules).

There are slightly different versions of PLS according to the way the neighborhood is applied. There
are versions where the neighborhood is only applied from non-dominated solutions [197, 239] and there are
versions where the neighborhood can sometimes be applied from dominated solutions [10, 82, 128]. We will
present here a version where the neighborhood can occasionally be applied from dominated solutions. The
general algorithm of our version of PLS works as follows (see Algorithm 1). Two entries are needed: an initial
population P composed of non-dominated solutions and a neighborhood function N (x). The method returns
an approximation X̃E of the Pareto-optimal set XE .

First, all the solutions in P are added to the approximation X̃E . Then a solution s (the current solution)
is selected from P , and the neighborhood of s is explored, i.e., for a solution s we generate all its neighbors.
Let s′ be a neighbor solution of s. If s does not weakly Pareto dominate s′, we update the approximation X̃E

with s′ (that is s′ is added to X̃E if no solution in XE Pareto dominates s′, and all solutions Pareto dominated
by s′ are removed from X̃E). Then if s′ has been added to X̃E , s′ is added to P and its neighborhood will
be later explored. The solution s is removed from P and the method starts again the exploration of the
neighborhood from another solution of P . The method stops naturally when P becomes empty.
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Note that we can have some dominated solutions in P , as a solution previously added could be dominated
by a new solution. However, this does not append frequently, since a solution is added to P only if the solution
is not dominated according to the solutions in X̃E (and thus not dominated according to the solutions in
P ). One way to deal with only non-dominated solutions is to also update the population P , but it could be
a bit time-consuming, and allowing some dominated solutions brings diversity. Another way is to do as in
the PLS version of Paquete et al. [197], where no population P is used: the solutions are directly picked up
from the archive X̃E . In this way, the neighborhood is always applied from a non-dominated solution. On
the other hand, this requires the use of a flag on each solution of X̃E that states if the neighborhood of the
solution has been explored or not.

Note also that in this version the neighborhood of a solution is fully explored (best improvement explo-
ration), but some authors have studied other possibilities, like stopping the neighborhood exploration once
a non-dominated neighbor has been found (first improvement exploration) [74, 161]. Liefooghe et al. [161]
have also studied the way the solution is selected from P and the use of a bounded archive as well.

Algorithm 1 Pareto Local Search (PLS)
IN ↓: an instance of a MOCO problem, an initial population of mutually non-dominated solutions P , a neighborhood
function N (x).
OUT ↑: an approximation X̃E of the efficient set XE .

- -| Initialization of X̃E

X̃E ← P
while P ̸= ∅ do

- -| Random selection of a solution s of P
s← Select(P )
- -| Generation of all the neighbors s′ of s
for all s′ ∈ N (s) do

if f(s) ⪰̸ f(s′) then
if Update(X̃E ↕,s′ ↓) then

P ← P ∪ {s′}
P ← P \ {s}

return X̃E

where the procedure Update() updates a set of non-dominated solutions X̃E with a new solution and returns true
if the new solution has been added to this set.

Example 6. We illustrate in the following figures the main ideas of PLS, through the first iterations of the
PLS method applied to the instance of the bi-objective TSP of Example 1.

Iteration 1: Iteration 2:
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Iteration 3: Iteration 4:

We start PLS from one single solution: solution x1 = (1, 2, 3, 4, 5) with an evaluation equal to (25,16).
The current solution x1 is represented in the objective space by the empty black circle on the left figure of
Iteration 1. Using the 2-opt neighborhood, x1 has five neighbors, represented on the same figures with filled
black circles. Three of them are non-dominated and constitutes the current approximation of the Pareto front,
which are represented in the objective space by the filled black circles, on the right figure of Iteration 1. The
other figures also represent the neighborhood exploration of one solution of the population, and the current
approximation of the Pareto front. We see that at the end of iteration 3, the exact Pareto front has been
generated (corresponding to the five Pareto-optimal solutions given in Example 1). However, the method will
continue to explore the neighborhood from the solution of the population P until the population is empty.

Because of its simplicity and effectiveness, PLS serves as a crucial element in some of the best approaches
for tackling MOCO problems [61, 137, 171]. PLS has also been used in other contexts, e.g., for solving schedul-
ing problems [55, 76, 245], multi-agent problems [128] or multi-objective Markov decision processes [144].

Also, many improvements and modifications of PLS have been realized since the first versions appeared.
Without going into details, we list below some of these studies:

• Inja et al. [128] have proposed the queued PLS. They studied the integration of dominated solutions
in the population P in order to bring some diversity: k (between 2 and 10) candidates locally not
dominated by the current solution s are randomly selected from the neighborhood. They also proposed
a genetic version of PLS. The principle is as follows: mutation and re-combinations operators are
applied to the local optimum set found at the end of an execution of PLS. The modified set is then
used as a new starting population for PLS. This process is applied until a stopping criterion is met
(limited number of iterations or computation time). The method has been applied to multi-objective
coordination graph problems, which are single-state problems from the multi-agent literature in which
agents must work together in order to obtain a shared (vector-valued) reward.

• Dubois-Lacoste et al. [77] have studied the anytime behavior of PLS. Indeed, as PLS has a natural
stopping criterion, there is no guarantee that the method will obtain good results if the method was
stopped earlier (e.g., because of some limited computation time or unknown available computation
time). This is why it is often interesting to get a method which is able to obtain the best results
possible according to the available computation time. The authors improved the anytime behavior of
PLS by improving the selection of the solution in P and by modifying the neighborhood exploration.

• Jaszkiewicz [132] have studied adaptations of PLS to deal with many-objective combinatorial opti-
mization problems (p ≥ 3). Indeed, for problems with at least 3 objectives, PLS is quite inefficient
because there can be many non-dominated solutions in the neighborhood, which results in slow con-
vergence of the method. Moreover, the process of updating large Pareto archives with new solutions
could become time-consuming. For these reasons, Jaszkiewicz proposed a new mechanism for selecting
solutions whose neighborhood is explored. Only some “promising” solutions, i.e., solutions that are the
best for weighted Tchebychev scalarizing functions, are selected for neighborhood exploration. More-
over, a partial exploration of the neighborhood is considered. The method has been experimented on
the multi-objective TSP (MOTSP).

• Drugan and Thierens [73, 74] have studied the use of stochastic perturbation operators (mainly mutation
operations), to restart PLS when a Pareto local optimum set has been reached. The method has been
experimented on bi-objective quadratic assignment problems.
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2.4.2 Two-phase Pareto local search

The Two-Phase Pareto Local Search (2PPLS) has been developed during our PhD thesis [171]: the method
simply consists in applying PLS from a high-quality initial population. In our first version of 2PPLS the
method was only designed for solving bi-objective combinatorial problems and the initial population was
composed of a good approximation of the supported Pareto-optimal solutions. An adaptation of the exact
Aneja and Nair method (see Section 2.2.1) has been developed, in order to be able to use a heuristic instead
of an exact method to solve the single-objective problems resulting from the linear weighted aggregation of
the objectives.

The method has been applied to two classic MOCO problems:

1. The bi-objective TSP, for which we obtained state-of-the-art results (at the time of the publication of the
results). We have also introduced some speed-up techniques to improve the neighborhood (composed
of 2-opt moves) exploration and to be able to solve high-size instances (until 1000 cities) [171].

2. The multi-objective knapsack problem, for which also state-of-the-art results have been obtained, thanks
to the use of very large scale neighborhood technique, which allows an efficient exploration of the
neighborhood of a solution [176].

Some improvements to the method have been developed by some authors, we briefly list them below:

• Cornu et al. [61] have developed the “Perturbed Decomposition Algorithm” (PDA). The method com-
bines intelligently different ideas from 2PPLS, decomposition and data perturbation. A decomposition-
based approach divides a MOCO problem into a set of equally distributed aggregated sub-problems [265].
These sub-problems are simultaneously optimized in a collaborative manner. Each sub-problem is
characterized by a weight that determines a distinct search direction. Additionally, each sub-problem
maintains its best solution based on the chosen aggregation function. The data perturbation technique
consists in generating single-objective instances using linear aggregation, with some perturbations that
bring some small modifications to the data. In this way, when a single-objective solver is used to solve
the perturbed instance, the solution generated will depend on the perturbations, and this allows to get
a diversified set of solutions for one single-objective instance (and unsupported Pareto-optimal solutions
can be generated even if a linear aggregation of the objectives combined with an exact solver is used).
We have ourselves introduced the data perturbation technique for multi-objective optimization [175].
With this new method, they obtained new state-of-the-art results for the MOTSP.

• Shi et al. [226, 227] have proposed PPLS/D for Parallel Pareto Local Search Based on Decomposition. In
this method, the original search space is divided into some sub-regions and PLS is applied independently
in each of these sub-regions. The method is applied to unconstrained binary quadratic programming
problems and to the MOTSP with at most four objectives.

• We have made a few improvements to 2PPLS ourselves [133]: instead of using the heuristic adaptation
of Aneja and Nair in the first phase, we simply generate a specified number L of single-objective
problems (with a weighted linear aggregation of the objectives) to be solved, which allows bringing
more flexibility and allows setting the best value of CPU time spent during the first phase by setting an
appropriate value for L. We also have studied the integration of solutions obtained by weighted linear
aggregations, during the execution of PLS. All these improvements have been tested on the MOTSP.

Application to the bi-objective pollution-routing problem

We have applied 2PPLS to solve a variant of the vehicle routing problem that arises in the context of
green logistics, called the bi-objective pollution-routing problem (bPRP) [62]. The two conflicting objectives
considered are the minimization of the CO2 emissions and the costs related to driver’s wages. We present in
more details the problem below.

Let G = (V,A) be a complete and directed graph with a set V = {0, . . . , n} of vertices and a set
A = {(i, j) : i, j ∈ V; i ̸= j} of arcs. The depot is represented by vertex 0 whereas the set of customers is
denoted by V ′ = V \ {0}. Each customer i ∈ V ′ has a non-negative demand qi, a time interval [ai, bi] when
it can be served, and a service time ti. The travel distance between a pair of vertices i and j is given by dij ,
(i, j) ∈ A. A set K = {1, . . . , r} of homogeneous vehicles with capacity Q is available at the depot. Drivers
are assumed to be paid per unit of time, and CO2 emissions are assumed to be proportional to vehicle fuel
consumption, which in turn is dependent on environment and traffic-related parameters such as vehicle type,
speed, load, acceleration and congestion [17, 67]. Let νij and fij be the vehicle speed and the vehicle load
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on arc (i, j), respectively. The amount of CO2 emissions associated with travel from i to j can be computed
as follows:

Fij(νij , fij , dij) = ξ(µNV + wγαijνij + γαijfijνij + βγν3ij)dij/νij , (1)

where ξ and γ are constants related to fuel properties, β and w are associated with vehicle characteristics
and αij is a constant that depends on road characteristics and vehicle acceleration. Moreover, µ is the
engine friction factor, N is the engine speed, V is the engine displacement. The equation (1) is based on
the comprehensive emissions model described by Barth et al. [14] and Barth and Boriboonsomsin [13]. The
parameter values adopted in the bPRP can be found in [68, 148].

The bPRP aims at designing a set of routes by deciding the arcs to be included in the solution as well
as their associated vehicle speeds, in order to minimize the two aforementioned objectives, while respecting
time window constraints. Hence, if we consider fc and fd as the cost associated with fuel consumption and
labor activities, respectively, the bPRP objective functions can be expressed as follows:

minimize f1(x) = fc
∑

(i,j)∈S

Fij(νij , fij , dij) (2)

minimize f2(x) = fd
∑
i∈V′

si, (3)

where x is a feasible solution (set of routes), S is the set of arcs in x, Fij(.) corresponds to the amount of CO2

emissions as given in Eq. (1), and si represents the total time spent on a route that has the vertex i ∈ V ′ as
the last visit before returning to the depot.

Note that we can consider the bPRP as a multi-objective mixed integer linear program (MOMILP) since
one has to perform binary decisions, i.e., by deciding whether an arc must be included in the solution or
not, as well as continuous decisions, i.e., by deciding the vehicle speed over each selected arc. Motivated by
real-life aspects, the selected speeds must respect lower (VMIN ) and upper (VMAX) bounds, which come from
the problem definition. According to Bektaş and Laporte [17], the speed at which a vehicle travels on arc
(i, j) is imposed by traffic regulations. Nevertheless, it is important to emphasize that in the PRP definition,
traffic conditions are not taken into account. Hence, the vehicles are allowed to travel at any speed within a
given interval.

For solving the single-objective PRPs obtained from the linear weighted aggregation of the objectives,
necessary to the first phase of 2PPLS, we have used the algorithm proposed by Kramer et al. [148], which is
to the best of our knowledge the best heuristic method available for solving the single-objective PRP. Their
multi-start matheuristic, called ILS-SP-SOA, combines iterated local search (ILS) [167] with a set partitioning
(SP) approach and a speed optimization algorithm (SOA).

Different neighborhoods have been used in the second phase of 2PPLS. Indeed, for this problem, it is not
enough to just use a 2-opt neighborhood to optimize the routes, since it is also necessary to determine which
vehicles will deliver which client. Therefore, other neighborhoods have been added, such as the shift operator
(a customer is moved from one route to another one) or the swap operator (two customers in two different
routes are switched).

Extensive computational experiments over existing benchmark instances show that this adaptation of
2PPLS leads to better results in less CPU time when compared to those obtained by state-of-the-art methods
(see [62] for more details).

2.4.3 Variable neighborhood search

In 2PPLS, the method generally stops when a Pareto local optimum set is obtained. We have proposed a new
strategy to escape from Pareto local optimal set [178], based on the variable neighborhood search technique
(VNS) [120]. Once a Pareto local optimum set has been found according to a neighborhood, we increase the
size of the neighborhood in order to generate new potentially Pareto-optimal solutions and to escape from
the Pareto local optimum set. The pseudocode of 2PPLS with VNS is given by Algorithm 2.

Compared to Algorithm 1, the algorithm needs different neighborhood functions Nk(x), identified by their
size k, with k ∈ {kmin, kmin + 1, . . . , kmax}, with kmin the minimal size and kmax the maximal size. As PLS,
the method needs as entry an initial population P composed of non-dominated solutions.

The method starts by exploring the neighborhood of each solution s of the population P . The neighbor-
hood structure initially used is the smallest (k = kmin). If a neighbor s′ is not weakly dominated by the
current solution s, we update the archive X̃E with the solution s′. If s′ has been added to X̃E , s′ is added
to an auxiliary population Pa for future exploration. We then associate a value to the solution s, equal to k,
that is the neighborhood size. Once the neighborhood of all the solutions s in P has been explored, if the

14



Algorithm 2 PLS with VNS
.

IN ↓: an instance of a MOCO problem, an initial population of mutually non-dominated solutions P , neighborhood
functions Nk(x) (k ∈ {kmin, . . . , kmax}).
OUT ↑: an approximation X̃E of the efficient set XE .

- -| Initialization of X̃E

X̃E ← P
- -| Initialization of the neighborhood size
k ← kmin

- -| Initialization of an auxiliary population
Pa ← ∅
repeat

while P ̸= ∅ do
- -| Generation of all neighbors s′ of each solution s ∈ P
for all s ∈ P do

for all s′ ∈ Nk(s) do
if f(s) ⪰̸ f(s′) then

if Update(X̃E ↕,s′ ↓) then
Pa ← Pa ∪ {s′}

k(s)← k
if Pa ̸= ∅ then

- -| P is composed of the new generated solutions
P ← Pa

- -| Reinitialization of Pa

Pa ← ∅
- -| We start again with the smallest neighborhood structure
k ← kmin

else
- -| We use a larger neighborhood structure
k ← k + 1
- -| We use as population the solutions of X̃E that are not already Pareto local optimum for Nk(x)

P ← {x ∈ X̃E | k(x) < k}
until k > kmax

return X̃E

auxiliary population is not empty, we start again the neighborhood exploration with the solution s in Pa,
while maintaining the smallest neighborhood structure. Otherwise, if Pa is empty, that means that a Pareto
local optimum set according to the neighborhood of size k has been reached. We thus increase the size of
the neighborhood k by one unity (k ← k + 1). The neighborhood exploration is then re-iterated from the
solutions in X̃E that are not already Pareto local optimum for the neighborhood of size k. Note that, in
general, a solution Pareto local optimum for the neighborhood of size k is not necessary Pareto local optimum
for the neighborhood of size (k− 1). That is why, after considering a larger neighborhood, we always restart
the search with the smallest neighborhood structure.

Application to the multi-objective set covering problem

In this section, we show how to adapt PLS+VNS to the MO version of the set covering problem. In the
MO set covering problem (MOSCP), we have a set of m rows (or items), and each row can be covered by a
subset of n columns (or sets). To each column j, p costs cjl (l ∈ P) are associated. The MOSCP consists in
determining a subset of columns, among the n columns, such that all the rows are covered by at least one
column and that the total costs are minimized.

More precisely, the MOSCP is defined as follows:

(MOSCP)



minimize fl(x) =

n∑
j=1

cjlxj l ∈ P

s.t.
n∑

j=1

tijxj ≥ 1 i ∈ {1, . . . ,m}

xj ∈ {0, 1} j ∈ {1, . . . , n}
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with x the decision vector, formed of the binary variables xj (xj = 1 means that the column j is in the
solution) and t, a binary covering matrix, such that tij is equal to 1 if the column j covers the row i and
equal to 0 otherwise. It is assumed that all coefficients cjl are non-negative integer. The data associated to
the MOSCP are thus a cost matrix of size (n x p) and a covering matrix of size (m x n). There are many
applications related to the SCP [80]. For example, a classic application in the selection of a set of employees
to accomplish a set of tasks. Each task needs some skills from the employees, and each employee has a set
of skills. The goal is to select the smallest subset of employees such that all tasks can be realized by at least
one employee with the required skill.

As the single-objective version of the SCP is NP-Hard [103], the MOSCP is NP-Hard too. We have
thus applied PLS+VNS to the problem to generate a good approximation of the Pareto-optimal set. With
local search, the larger the neighborhood, the better the quality of the local optimum obtained. However, by
increasing the size of the neighborhood, the time to explore the neighborhood becomes higher. Therefore,
using a larger neighborhood does not necessary give rise to a more effective method. If we want to keep
reasonable running times while using a large neighborhood, an efficient strategy has to be implemented in
order to explore the neighborhood.

We have thus used a large neighborhood search (LNS) [204, 225] technique. LNS was introduced by Shaw
[225] in 1998 to solve the vehicle routing problem. With LNS, the neighborhood exploration consists of two
parts: a destroy method and a repair method. The destroy method destructs some parts of the current solu-
tion, while the repair method rebuilds the destroyed solution. The LNS belongs to the class of neighborhood
search known as very large scale neighborhood search (VLSNS) [4]. These two neighborhood exploration
techniques often cause some confusion. Contrary to LNS, in VLSNS, the neighborhood is usually restricted
to a neighborhood that can be searched efficiently. Ahuja et al. [4] defines three methods used in VLSNS to
explore the neighborhood: variable depth methods, network flow based improvement methods and methods
based on restriction to subclasses solvable in polynomial time. Therefore, VLSNS is not only a large neigh-
borhood (furthermore the definition of large is imprecise), but essentially a neighborhood that uses a specific
method to explore efficiently a large neighborhood.

VLSNS and LNS are very popular in single-objective optimization [4, 204]. For example, the Lin-
Kernighan heuristic [162], one of the best heuristics for solving the single-objective TSP, is based on VLSNS.
On the other hand, there is almost no study of LNS/VLSNS for solving MOCO problems. To our knowl-
edge, the only known result is the LS of Angel et al. [10], which integrates a dynasearch neighborhood (the
neighborhood is explored with dynamic programming) to solve the BOTSP.

For our adaptation of VNS to solve the MOSCP, as the size of the neighborhood will be kept relatively
small, a VLSNS is not necessary. Nevertheless, we have retained the destruction and repair methods from
LNS. Starting from a current solution, called xc, the aim of LNS is to produce a set of neighbors of high
quality, in a reasonable CPU time. The general technique that we have used for solving the MOSCP is the
following:

1. Destroy method: Identification of a set of variables candidates to be removed from xc (set O)

2. Repair method:

• Identification of a set of variables, not in xc, candidates to be added (set I)
• Creation of a residual MO problem formed by the variables belonging to {O ∪ I}, and the con-

straints not anymore fulfilled (that is the items not anymore covered, in the case of the MOSCP).

• Resolution of the residual problem: a set of potentially Pareto-optimal solutions of this problem is
produced. The potentially Pareto-optimal solutions of the residual problem are then merged with
the unmodified variables of xc to produce the neighbors.

The details about the adaptation of LNS to the MOSCP can be found in the related paper [178].
The method has been applied to different size instances, from small instances (100 columns, 10 rows) to

bigger instances (1000 columns, 100 rows), with 2 objectives. The results obtained by PLS+VNS gives a
proportion of Pareto non-dominated points generated included between 21% and 92%, with a running time
always less than 45 seconds. We have also applied the method to solve three-objective instances. However,
the method needs about 30 min to generate 11039 potentially Pareto-optimal solutions of an instance with
60 rows and 600 columns, while for the instance of the same size, with two objectives, only 25 seconds were
needed, to generate 221 solutions. We see that increasing the number of objectives considerably increases
the number of potentially Pareto-optimal solutions to generate, and therefore the computational time. One
way to limit the computational time is to limit the number of potentially Pareto-optimal solutions generated.
In order to do so, we have proceeded in the following way: we maintain a hypergrid in the objective space,
dynamically updated according to the minimum and maximum values of the solutions for each objective,
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and we measure the mean density of the hypergrid, calculated as follows. It is equal to the number of non-
dominated points generated divided by the number of hypercubes of the hypergrid that contain at least one
non-dominated point. The hypergrid allows thus to obtain information concerning the distribution of the
solutions in the objective space and to stop the search once enough solutions have been generated. Here,
we will simply stop the method when the mean density of the hypergrid attains a certain threshold. Using
this technique, we are able to control the running time of PLS+VNS, and getting approximations with a
good distribution of the non-dominated points. More details about the experiments and the results can be
found in [178]. At the time of the publication (2014), we obtained state-of-the-art results. Note that since,
the results have been improved by Weerasena et al. [256], by using a heuristic adaptation of the branch and
bound method.

Application to the multi-objective open-pit mining operational planning problem

We have also applied PLS+VNS to the multi-objective open-pit mining operational planning problem [55].
In this particular problem, there is a set of mining pits, a set of trucks and a set of load equipment’s. The main
objective is to create a final product by blending ores sourced from various mining pits. The key consideration
is to minimize three conflicting factors: deviations in production and quality targets, along with optimizing the
number of trucks required during the production process. Through computational experiments, it has been
demonstrated that PLS+VNS method exhibits clear superiority compared to the adaptation of NSGA-II [64].

Application to the bi-objective direct marketing campaign

A last problem on which we have adopted PLS+VNS appears in cross-selling campaigns [54]. The objective
is to present the appropriate products to customers in order to maximize the expected profit. However, this
must be achieved while adhering to purchasing constraints defined by investors. The two objectives are the
maximization of the total profit generated by the promotion campaign and the minimization of risk-adjusted
return, which is assessed using the Sharpe ratio—a measure of reward-to-variability.

2.5 ND-Tree: a data structure and algorithm for the dynamic non-dominance
problem

In this section, we consider the dynamic non-dominance problem [218], i.e., the problem of updating a Pareto
archive with a new candidate solution x. We formally define this problem as follows. Let’s consider a
candidate solution x and a Pareto archive XN . The problem is to update XN with x and consists in the
following operations. If x is weakly dominated by at least one solution in XN , x is discarded and XN remains
unchanged. Otherwise, x is added to XN . Moreover, if some solutions in XN are dominated by x, all these
solutions are removed from XN , in order to keep only mutually non-dominated solutions (see Algorithm 3).

Algorithm 3 DynamicNonDominance
IN ↓: a new candidate solution x
IN-OUT ↕: a Pareto archive XN

if (∄x′ ∈ XN | x′ ⪰ x) then
XN ← XN ∪ {x}
for all (x′ ∈ XN |x ≻ x′) do

XN ← XN\{x′}
return XN

Note that if there already exists a solution x′ in XN with the same evaluation according to the p objective
functions (i.e., fi(x) = fi(x

′),∀i ∈ P), x is not added to XN since the weakly Pareto dominance relation is
used in the algorithm.

The dynamic non-dominance appears in many MOMHs, but also in exact methods, e.g., in multi-objective
dynamic programming approaches when it is necessary to update partial solutions obtained at different
states [16, 138]. The time needed to update a Pareto archive generally increases with a growing number
of objectives and a growing number of solutions. In some cases, it may become a crucial part of the total
running time of the multi-objective method and, it is essential to use an efficient method to update a Pareto
archive.

A small variation of the dynamic problem is the static non-dominance problem, where one has to find the
set of non-dominated solutions XN among a set of solutions X. In general, static problems can be solved more
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effectively than their dynamic counterparts since they have access to richer information [97, 114, 150, 205].
However, in many multi-objective methods, it is not possible to store all candidate solutions and then solving
the static non-dominance problem. Indeed, many MOMHs use the Pareto archive during the run of the
algorithm, i.e., the Pareto archive is not just the final output of the algorithm. For example, PLS works
directly with the Pareto archive and only solutions from the archive are added to a population for future
neighborhood exploration. In the MOMH developed by Deb et al. [65], one of the parents is selected from
the Pareto archive. Therefore, in such methods, computation of the Pareto archive cannot be postponed at
the end of the algorithm. Also, saving all solutions generated can be very demanding in terms of memory.

2.5.1 Brief state of the art

Here, we present some of the methods and data structures proposed in the literature for dealing with the
dynamic non-dominance problem. This review is not supposed to be exhaustive. Other methods can be
found in [89, 220] and reviews in [5, 188, 219]. We describe linear list, quad-tree and one recent method,
M-Front [72]. Note that, in the following, a solution that weakly dominates another will sometimes be called
a covering solution.

Linear List

With this structure, a new solution is compared to all solutions in the list until a covering solution is found,
or all solutions are checked. The solution is only added if it is non-dominated w.r.t. all solutions in the list,
that is, in the worst case we need to browse the whole list before adding a solution. The complexity in terms
of number of solutions comparison is thus in O(N) with N the size of the list. When only two objectives are
considered, we can use the following specific property: if we sort the list according to one objective (let’s say
the first), the non-dominated list is also sorted according to the second objective. Therefore, in broad terms,
updating the list can be efficiently done in the following way. We first determine the potential position i
of the new candidate solution in the sorted list according to its value for the first objective, with a binary
search. If the new solution is not dominated by the preceding one in the list (if there is one), it is certain
that the new solution is not dominated by any solutions of the list (as the solutions after position i have a
higher value for the first objective) and can be inserted at position i. If the new solution has been added, we
need to check if there are some dominated solutions: we browse the next solutions in the list, until a solution
with a better evaluation according to the second objective is found. Any solutions discovered with a lower
evaluation score for the second objective must be eliminated, as they are dominated by the new solution.

The worst-case complexity is still in O(N) since it can happen that a new solution has to be compared to
all the other solutions (in the special case where we add a new solution in the first position and all the solu-
tions in the sorted list are dominated by this new solution). But on average, experiments have showed that
the behavior of this structure for handling bi-objective updating problems is much better than the simple list.

Quad-tree

The use of quad-tree for storing potentially Pareto-optimal solutions was proposed by Habenicht [116]
and further developed by Sun and Steuer [236] and Mostaghim and Teich [187]. In quad-tree, a tree is used
to store the solutions and solutions are located in both internal nodes and leaves. Each node may have p2

children corresponding to each possible combination of results of comparisons on each objective, where a
solution can either be better or worse. In the case of mutually non-dominated points, (p2 − 2) children are
possible, since the combinations corresponding to dominating or covered solutions are not necessary. Quad-
tree allows for a fast checking if a new solution is dominated or covered. A weak point of this data structure
is that when an existing solution is deleted, its whole subtree must be reinserted into the structure. As a
result, eliminating a dominated solution is generally costly.

M-Front

M-Front has been proposed by Drozdík et al. [72] in 2015. The general idea of M-Front is as follows.
There are p sorted lists of solutions on each objective. Then reference points are used to reduce the number
of comparisons needed on each sorted list. A reference point is a point closed to the new candidate point. To
find reference points, M-Front uses the k-d tree data structure. The k-d tree is a binary tree, in which each
intermediate node divides the space into two parts based on a value of one objective. While going down the
tree, the algorithm cycles over particular objectives, selecting one objective for each level.
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2.5.2 ND-Tree-based update

We have proposed a new method, called ND-Tree-based update, for the dynamic non-dominance prob-
lem [134]. The method is based on a dynamic division of the objective space into hyper-rectangles, which
allows avoiding many comparisons of objective function values. The main data structure on which is based
the method is a tree, called a ND-Tree.

In the presentation of the method, we will directly use the representations of the solutions in objective
space, i.e., points. We recall that the image of a Pareto archive XN in the objective space is denoted by YN .
Of course, to each point is associated a solution but considering only points is sufficient (and more simple)
for the presentation of the method.

We first define the notions of (approximate) local ideal and nadir points of a subset of points.

Definition 19. The local ideal point of a subset S ⊆ YN denoted as zI(S) is the point in the objective space
composed of the best coordinates of all points belonging to S, i.e., zIk(S) = min

y∈S
yk,∀ k ∈ P. A point ẑI(S)

such that ẑI(S) ⪰ zI(S) will be called an approximate local ideal point.

Naturally, the (approximate) local ideal point weakly dominates all points in S.

Definition 20. The local nadir point of a subset S ⊆ YN denoted as zN (S) is the point in the objective space
composed of the worst coordinates of all points belonging to S, i.e., zNk (S) = max

y∈S
yk,∀ k ∈ P. A point ẑN (S)

such that ẑN (S) ⪯ zN (S) will be called an approximate local nadir point.

Naturally, the (approximate) local nadir point is weakly dominated by all points in S.

The primary concept behind the ND-Tree-based update method is to split the whole set of non-dominated
points into subsets of points located close in the objective space, similarly to the clustering process in machine
learning [87]. Each subset of points is represented by a local ideal point and a local nadir point, and thanks
to different properties related to these points, it will be possible to avoid many comparisons when a new
point is added to the Pareto archive.

This is illustrated through the following example, for a 2-objective problem.

Example 7. Let’s consider a set S = {(14, 25), (15, 23), (17, 18), (19, 16), (20, 15), (23, 14)} composed of 6
non-dominated points. The representation of S in the objective space is given in the figure below (on the
left). We have also represented the local ideal point zI(S) = (14, 14) and the local nadir point zN (S) =
(23, 25). At this time, the ND-Tree is only composed of one node, to which is associated a triplet equal
to (S,zI(S),zN (S)). Let’s consider now that a new non-dominated point, equal to (16, 20) must be added,
and that the maximal size of the set of points associated to a node is equal to 6. As now the number
of non-dominated points is equal to 7, we cannot associate the new point to the current node, and it is
necessary to split the set of points. On the figure below (on the right) we have split the set of points into two
subsets, S1 = {(14, 25), (15, 23), (16, 20), (17, 18)} and S2 = {(19, 16), (20, 15), (23, 14)}. Each subset has a
local ideal and a local nadir point. We have that zI(S1) = (14, 18), zN (S1) = (17, 25), zI(S2) = (19, 14) and
zN (S2) = (23, 16).

The representation of the ND-Tree data structure is now the following:
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(S,zI(S),zN (S))

(S1,zI(S1),zN (S1)) (S2,zI(S2),zN (S2))

with S = S1 ∪ S2. As soon as a subset of points attains its predefined maximal size, the subset will be
divided again into smaller subsets, and new nodes will be added to the ND-Tree.

More formally, the ND-Tree structure is defined in the subsequent way.

Definition 21. The ND-Tree data structure is a tree with the following properties:

1. With each node n is associated a triplet constituted of a set of non-dominated points S(n), an approxi-
mate ideal point ẑI(S(n)) and an approximate nadir point ẑN (S(n)).

2. For each leaf node, S(n) is equal to a list L(n) of non-dominated points.

3. For each internal node n, S(n) is equal to the union of the disjoint sets associated with all the children
of n.

4. If n′ is a child of n, then ẑI(S(n)) ⪰ ẑI(S(n′)) and ẑN (S(n′)) ⪰ ẑN (S(n)).

We now present how the ND-Tree is used to update efficiently a Pareto archive. The core concept is to
take advantage of the local ideal points and nadir points to limit the number of comparisons. Local ideal
points and nadir points are used as follows. Consider a subset S ⊆ YN composed of mutually non-dominated
points, limited by an approximate local ideal point ẑI(S) and an approximate local nadir points ẑN (S). In
other words, all points in S are contained in the axes-parallel hyper-rectangle defined by ẑI(S) and ẑN (S).
We now define the following simple properties that allow to compare a new candidate point y to the whole
set S. These properties are given by considering approximate ideal and nadir points, but of course, there are
still valid for exact ideal and nadir points.

Property 1. If y is weakly dominated by the approximate nadir point ẑN (S), then y is weakly dominated by
each point in S and thus can be rejected.

Property 2. If y weakly dominates the approximate ideal point ẑI(S), then each point in S is weakly
dominated by y and all points of S can be discarded.

Proof. These two properties are a straightforward consequence of the transitivity of the weakly dominance
relation.

Property 3. If y is non-dominated w.r.t. both the approximate nadir point ẑN (S) and approximate ideal
point ẑI(S), then y is non-dominated w.r.t. each point in S.

Proof. If y is non-dominated w.r.t. ẑN (S) then there is at least one objective on which y is worse than ẑN (S)
and thus worse than each point in S on the same objective. If y is non-dominated w.r.t. ẑI(S) then there
is at least one objective on which y is better than ẑI(S) and thus better than each point in S on the same
objective. So, there is at least one objective on which y is better and at least one objective on which y is
worse than each point in S.

Example 8. In the following figure, we illustrate the three properties in the bi-objective case. We consider
the same set S as in Example 7 and a candidate point y1 = (25, 27). We see that y1 is weakly dominated by
the nadir point zN (S) and thus dominated by each point in S; the point y1 can thus be rejected (Property 1).
Let’s now consider the candidate point y2 = (13, 12). This point dominates the local point zI(S) and thus all
points of S can be discarded (Property 2). Finally, if we consider the points y3 = (13, 27) or y4 = (25, 12),
we see that there are both non-dominated with respect to zN (S) and zI(S), and thus non-dominated to all
points in S (Property 3).

20



If none of the above properties holds, i.e., y is neither weakly dominated by ẑN (S), does not weakly
dominate ẑI(S), nor is non-dominated w.r.t. both ẑN (S) and ẑI(S), then three situations are possible:

1. y is non-dominated w.r.t. all points in S.

2. y is weakly dominated by some points in S.

3. y dominates some points in S.

This can be shown by giving cases for each of the situations.
Consider for example a set S = {(1, 1, 1), (0, 2, 2), (2, 2, 0)}. We have zI(S) = (0, 1, 0) and zN (S) =

(2, 2, 2). Consider the three following points: y1 = (0, 3, 0), y2 = (1, 1, 2) and y3 = (1, 1, 0). For each of this
point, it is easy to check that none of the three properties holds, i.e., none of the points is weakly dominated
by zN (S), none of the points weakly dominates zI(S), and none of the points is non-dominated w.r.t both
zN (S) and zI(S). The situation 1 occurs for y1: y1 is non-dominated w.r.t all points in S. The situation 2
occurs for y2: y2 is dominated by (1,1,1) (and thus also weakly dominated) and the situation 3 occurs for y3:
y3 dominates (2,2,0).

However, if one of the properties is satisfied by the new candidate point y, it allows comparing y to all
points in the set S, by just comparing it to the local ideal and nadir points of S, without the need for further
comparisons to individual points belonging to S. Comparisons to individual points of S are only necessary
if none of the three properties hold. Intuitively, the closer the approximate local ideal and nadir points,
the more likely that one of the properties is satisfied. That is why it is interesting to split the whole set of
non-dominated points into subsets of points located close in the objective space.

We now present the main principles of the ND-Tree-based update method. We initially aim to determine
whether the new point y is weakly dominated or non-dominated w.r.t. all points in YN by going through
the nodes of the ND-Tree and skipping children (and their subtrees) for which Property 3 holds. For a
node n, if the new point is dominated by ẑN (S(n)) it is immediately rejected (Property 1). If ẑI(S(n)) is
weakly dominated, the node and its whole subtree is deleted (Property 2). Otherwise, if ẑI(S(n)) ⪰ y or
y ⪰ ẑN (S(n)), the node needs to be analyzed. If n is an internal node, we call the algorithm recursively for
each child. If n is a leaf node, y may be dominated by or dominate some points of the list L(n) associated to
the node n and it is necessary to browse the whole list L(n). If a point dominating y is found, y is rejected,
and if a point dominated by y is found, the point is deleted from L(n).

If after updating ND-Tree the new point y was found to be non-dominated, it is inserted by adding it to
a close leaf. To find a proper leaf, we start from the root and always select a child with the closest distance
to y. As a distance measure, we use the Euclidean distance to the middle point, i.e., a point lying in the
middle of the line segment connecting the approximate ideal and the approximate nadir points.

Once we have reached a leaf node, we add the point y to the list L(n) of the node and possibly update the
ideal and nadir points of the node n. However, if the size of L(n) becomes larger than the maximum allowed
size for the list, we need to split the node into a predefined number of children. To create children that
contain points that are more similar to each other than to those in other children, we use a simple clustering
heuristic based on Euclidean distance [122].

The approximate local ideal and nadir points are updated only when a point is added. We do not update
them when points are removed, since it is a more time-consuming operation. This is why we deal with
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approximate local ideal and nadir points.

Computational complexity

We have shown that the ND-Tree-based update method has still a O(N) time complexity. Indeed, there
are some particular cases where we need to compare the new point to each intermediate node of the tree. We
are not aware of any result showing that the worst-case time complexity of any algorithm for the dynamic
non-dominance problem may be lower than O(N) in terms of point comparisons. So, our method does not
improve the worst-case complexity but according to our experiments performs significantly better in practical
cases (see the following section).

Computational experiments

We have compared the performances of the ND-Tree-based update method (simply called ND-Tree in the
following) with three other methods in two different cases:

1. Results for artificially generated sets which allow us to easily control the number of points in the sets
and the quality of the points. We used convex, non-convex and clustered set of points, with 100 000
points.

2. Results for sets generated by a MOMH, namely MOEA/D [265] for the MO knapsack problem.
MOEA/D was run for at least 100 000 iterations and the first 100 000 points generated by the al-
gorithm were stored.

We have used the simple list, the sorted list (only for the bi-objective case), quad-tree, M-Front and ND-
Tree to dynamically update the Pareto archive by considering the points of the different sets. For ND-Tree,
we have used 20 as the maximum size of the list associated to a leaf and p+ 1 as the number of children (p
is equal to the number of objectives). These values of the parameters were found to perform well in many
cases.

ND-Tree performed the best in terms of CPU time for all artificial test sets with three and more objectives.
In some cases the differences to other methods are of two orders of magnitude, and in some cases the difference
to the second-best method is of one order of magnitude. ND-Tree also behaves very predictably, its execution
time increasing slowly as the number of objectives and the number of non-dominated points increase. For
bi-objective instances, the sorted list remains the best choice.

We give in Table 1 the results from the comparisons with instances generated by MOEA/D. The results
confirm that the observations made for artificial sets also hold in the case of real sets. ND-Tree is the fastest
method for three and more objectives. Note that in this table, it is the sorted list (and not the simple list)
which is used for 2-objective instances.

p |YN | List Quad-Tree M-Front ND-Tree
2 140 9 265 57 24
3 1789 529 793 211 89
4 5405 3011 2813 885 272
5 10126 6930 5136 2903 478
6 16074 12689 8615 7765 804

Table 1: Comparison of running times (in ms) of ND-Tree with the list (sorted list for 2 objectives), quad-tree
and M-Front.

These good results have been recently confirmed by Fieldsend [90] in 2020. He compared ND-Tree with 7
data structures, including the list, quad-tree and M-Front. He used artificial sets using normal distribution
for the objective vectors. He also studied the integration of the data structure into a MOMH, namely the
PAES algorithm of Knowles and Corne [141], but rather than using a bounded archive, an unbounded archive
was used. For both experiments, he found that ND-Tree generally performed better.

Recent improvements

• Very recently, Lang [153] has presented different techniques for improving the efficiency of the ND-Tree-
based update method. The main idea is to rebuild the ND-tree at intervals, with new strategies for
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updating the lower and upper bounds in each node. Indeed, one drawback of the ND-Tree structure is
that the tree is not re-balanced during its use, and after certain iterations it could be very unbalanced,
which could increase the number of comparisons required on the nodes. Lang showed that these
improvements can lead to significant speedups over using the original method, in particular for higher
dimensions.

• Nan et al. [189] have used ND-Tree inside a MO genetic algorithm and delays the update of the Pareto
archive. The main idea is to reverse the order of solutions with respect to their generated time when
updating the archive. The experimental results suggest that the ND-Tree approach assisted by the
proposed reverse strategy is much faster than the original ND-Tree approach in obtaining the final
archive.

• Fieldsend [91] have studied how to modify ND-Tree such that the structure becomes an active source
of parent solutions to directly exploit during an optimization run for a genetic algorithm.

• In his PhD thesis, Cornu [60] have developed two new data structures for updating a Pareto archive:

– a self-balancing binary search tree (AVL) dedicated to the bi-objective case, called AVL-Archive.

– a self-balancing k-ary search tree, called NDR*-Archive.

Contrary to ND-Tree, these two data structures have balanced methods, and they take advantage of a
principle often present when storing data in an online environment: the temporal and spatial locality.
Temporal locality refers to the reuse of specific data within a relatively small-time duration, while
spatial locality refers to the use of data elements within relatively close storage locations. The two data
structures perform really well and outperforms ND-Tree. Unfortunately, the results were not published
outside the thesis and did not have the impact they should have had.
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3 Lorenz dominance in multi-objective combinatorial optimization
In the preceding sections, we have considered the Pareto dominance relation to discriminate between the
feasible solutions of a multi-objective problem. Despite this, the number of feasible solutions not dominated
according to the Pareto dominance relation can be very large (in particular when the number of objectives
is higher than two), which could make a final choice of one (or a few) solution(s) among the non-dominated
ones difficult for a DM.

In this section, we will thus consider a more restrictive dominance relation than the Pareto dominance
relation, the Lorenz dominance, which is particularly well suited to deal with multi-agent combinatorial
optimization problems.

3.1 Lorenz dominance
In many real-life decision problems, there is not one single DM, but several DMs (or agents) whose preferences
must be taken into account. Multi-agent combinatorial optimization problems deals with problems where
several agents are involved. When the preferences are cardinal, the agents express their preferences over the
alternatives through utility functions, each agent having her own utility function to maximize. Therefore, a
solution is evaluated by a vector of utilities, where a component represents the utility of an agent for this
solution.

Using the Pareto dominance to discriminate between the solutions proves insufficient, since a Pareto-
optimal solution cannot be fair to all agents (an agent might be completely disadvantaged compared to the
others), as shown in the following example.

Example 9. The following table displays the utilities (score between 1 and 9) given by four agents (a1, a2,
a3 and a4) to four items (i1, i2, i3, i4). We look for the best assignment possible of the items to the agents
(an agent can receive only one item, and an item can be assigned to only one agent).

i1 i2 i3 i4
a1 4 8 2 1
a2 8 6 5 2
a3 9 4 4 7
a4 3 6 1 1

There are 24 assignments possible (4!). Let’s consider that a feasible assignment is evaluated through a four-
component vector u, where each component ui corresponds to the utility of the item assigned to the agent ai.
Let’s note a feasible assignment as a 4-tuple, where the value of the element at position i represents the index
of the item assigned to the agent ai.
Among all the feasible assignments, there are 8 Pareto-optimal assignments, given in the following table.

Solution Evaluation
x1 = (1, 3, 4, 2) (4, 5, 7, 6)
x2 = (2, 1, 4, 3) (8, 8, 7, 1)
x3 = (2, 3, 1, 4) (8, 5, 9, 1)
x4 = (2, 3, 4, 1) (8, 5, 7, 3)
x5 = (3, 1, 4, 2) (2, 8, 7, 6)
x6 = (3, 2, 1, 4) (2, 6, 9, 1)
x7 = (3, 4, 1, 2) (2, 2, 9, 6)
x8 = (4, 3, 1, 2) (1, 5, 9, 6)

However, among these solutions there are many solutions that are not fair: solution x8 gives the worst
item possible for agent a1, same for solution x7 for agent a2, and same for solutions x2, x3 and x6 for agent
a4. We can therefore see that it would be necessary to use more restrictive relations that incorporate fairness.

Ensuring fairness between several agents reveals to be a tricky question. The notion of fairness has been
widely investigated in economics and social choice and has lead to different definitions. In economics, some
measures of inequality of outcome distributions have been proposed, as the Gini index [70] or the Atkinson
index [11]. In welfare economics, one refers to social welfare functions to evaluate the relative goodness of
the alternatives with respect to the individual utilities [221].

The classic utilitarian criterion consists in evaluating a solution according to the sum of the utilities of
the agents. However, it is insensitive to the distribution of the total sum of the individual’s utilities [222]
and can provide unfair solutions since it allows compensations between strongly satisfied agents and poorly
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satisfied ones. For example, a solution with a utility vector equal to (200, 1) is better than a solution with the
utility vector (100, 100). The classic egalitarian criterion (or its lexicographical refinement) overcomes this
drawback by evaluating a solution with respect to the utility of its least satisfied agent (which is equivalent
to the max min criterion). However, by focusing only on the utility of one agent (the least satisfied), high
quality solutions can be eliminated by this aggregation function. For example, a solution with a utility-vector
(100, 100, 100, 100) is better than a solution with a utility-vector (99, 200, 200, 200), while this last solution is
much better for three of the agents and just a little worse for the first agent. Some other aggregation functions,
such as the Ordered Weighting Average (OWA) [261], enable to favor solutions for which the utilities of the
agents are well-balanced, but they require an additional preferential information (appropriate weights).

An elegant refinement of the Pareto dominance to deal with fairness is the Lorenz dominance. The notion
of Lorenz dominance has been proposed in economics to measure the inequalities in income distributions. It
refines the Pareto dominance by selecting only the better distributed solutions. Roughly speaking, the Lorenz
dominance enables to select all Pareto-optimal solutions that realize well-balanced compromises between the
utilities of the agents, while not eliminating high-performance solutions. It encompasses the utilitarian and the
egalitarian criterion. It has been used to characterize equitable solutions in multi-objective optimization [146,
147] and robust solutions in decision under uncertainty [200]. It has also been studied within the framework
of convex-cone theory [264] in multi-objective programming [12], and in metaheuristics [49, 159].

The Lorenz dominance relies on the construction of particular vectors, called generalized Lorenz vectors,
that are obtained as follows.

Definition 22. The generalized Lorenz vector (or simply Lorenz vector) of y ∈ Rp is the vector L(y) ∈ Rp

defined by: L(y) = (y(1), y(1) + y(2), . . . , y(1) + y(2) + . . . + y(p)), where (y(1), y(2), . . . , y(p)) represents the
components of y sorted from the worst to the best (i.e., y(1) ≥ y(2) ≥ . . . ≥ y(p) in the case of minimization
and y(1) ≤ y(2) ≤ . . . ≤ y(p) in the case of maximization).

Definition 23. Lorenz dominance relation: we say that a point u = (u1, ..., up) ∈ Rp Lorenz dominates a
point v = (v1, ..., vp) ∈ Rp if, and only if L(u) ≻P L(v). We denote this relation by u ≻L v.

Definition 24. Weakly Lorenz dominance relation: we say that a point u = (u1, ..., up) ∈ Rp weakly Lorenz
dominates a point v = (v1, ..., vp) ∈ Rp if, and only if L(u) ⪰P L(v). We denote this relation by u ⪰L v.

Definition 25. Lorenz-optimal solution: a feasible solution x∗ ∈ X is called Lorenz-optimal if there is no
other feasible solution x ∈ X such that y(x) ≻L y(x∗).

The space in which the generalized Lorenz vectors of a solution x are represented is called the Lorenz
space. The Lorenz-optimal set denoted by XL contains all the Lorenz-optimal solutions. The image of the
Lorenz-optimal set in objective space is denoted by YL.

Example 10. In the following table, we indicate the Lorenz vector associated to each Pareto-optimal solution
of the multi-agent assignment problem of Example 9. If we compare the Lorenz vectors with the Pareto
dominance relation, we can easily check that only three are Pareto non-dominated (represented in bold).
Therefore, only the corresponding solutions (x1, x2 and x4) are Lorenz-optimal solutions. We see that the
solution x2 is the best for the sum of the utilities (the sum is given by the last component of the Lorenz
vector). Solution x1 is the best for the maxmin criterion (given by the first component of the Lorenz vector),
while solution x4 establishes a good compromise between these two criteria.

Solution Evaluation Lorenz vector
x1 = (1, 3, 4, 2) (4, 5, 7, 6) (4,9,15,22)
x2 = (2, 1, 4, 3) (8, 8, 7, 1) (1,8,16,24)
x3 = (2, 3, 1, 4) (8, 5, 9, 1) (1, 6, 14, 23)
x4 = (2, 3, 4, 1) (8, 5, 7, 3) (3,8,15,23)
x5 = (3, 1, 4, 2) (2, 8, 7, 6) (2, 8, 15, 23)
x6 = (3, 2, 1, 4) (2, 6, 9, 1) (1, 3, 9, 18)
x7 = (3, 4, 1, 2) (2, 2, 9, 6) (2, 4, 10, 19)
x8 = (4, 3, 1, 2) (1, 5, 9, 6) (1, 6, 12, 21)

We see thus through this example the interest of using the Lorenz dominance, since solutions presenting a
good compromise between the utilitarian criterion and the egalitarian criterion are also generated.

We now illustrate, through a small example, the Lorenz dominance relation (in minimization), both in
objective space and Lorenz space.
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Example 11. Let’s consider the point y = (6, 3). All the points Lorenz dominated by y are in the hatched
area called “Lorenz worse” in the bi-objective space of Figure 1 (left part). The points that Lorenz dominate
y are in the hatched area called “Lorenz better” in the same figure. To illustrate the Lorenz dominance, the
symmetric point of y, the point (3,6), is also represented in the figure by a circle. The points that are not
located in the hatched area are incomparable to y with Lorenz dominance (there are either better for L2(y(x))
but have a worse value for L1(y(x)) or there are worse for L1(y(x) but better for L2(y(x)). The generalized
Lorenz vector of the point (6, 3), that is the point (6, 9), is represented in the Lorenz space (right part of the
figure). Note that in this space, we cannot have any point (z1, z2) such that z2 > 2 ∗ z1 since for any point y
we have L2(y) = y1 + y2 ≤ 2 ∗max(y1, y2) = 2 ∗ L1(y).
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Figure 1: Representation of the Lorenz dominance.

The Lorenz dominance is closely related to the notion of Pigou-Dalton transfers. In social choice theory,
a Pigou-Dalton transfer is an income transfer from a richer to a poorer person by an amount less than or
equal to their initial income difference.

Definition 26. Transfer principle [121]: let y ∈ Rp such that yi > yj for some i, j. Then for all ε such that
0 ≤ ε ≤ yi− yj, y− ε · ei + ε ej ≿L y where ei (resp. ej) is the vector whose ith (resp. jth) component equals
1, all others being 0.

This principle means that for some cost-vector y ∈ Rp with yi > yj , slightly increasing yj and decreasing
yi while preserving the mean of the costs would produce a better distribution of the costs, and consequently a
more balanced solution. For example, the distribution of the vector y = (20, 20) is better than the distribution
of the vector y′ = (10, 30), since it can be obtained from y′ by a transfer of size 10. This principle enables to
compare vectors with the same mean. Note that using a similar transfer of size greater than 20 would increase
the inequality between utilities distribution. This explains why the transfers must have a size ε ≤ yi − yj .

The generalized Lorenz extension that we consider here enables to compare vectors with different means
thanks to the Pareto-monotonicity property [229], which means that if a vector y1 Pareto dominates another
vector y2 then y1 Lorenz dominates y2.

Definition 27. Pareto-monotonicity: ∀y1, y2 ∈ Rp, y1 ≻P y2 ⇒ y1 ≻L y2 (and y1 ≿P y2 ⇒ y1 ≿L y2).

If we look again at Example 9, we can now explain why, e.g., x3 is Lorenz dominated by x2. We have
that y(x2) = (8, 8, 7, 1) ≻P (8, 7, 7, 1). Therefore, y(x2) ≻L (8, 7, 7, 1) by the Pareto-monotinicity principle.
Furthermore, we have that (8, 7, 7, 1) ≻L y(x3) = (8, 5, 9, 1) by the transfer principle (transfer of 2 from
the third agent to the second agent). By transitivity, we have that y(x2) ≻L y(x3) and x3 is thus Lorenz
dominated by x2.

3.2 Methods for generating all Lorenz-optimal solutions
We are now interested in generating all Lorenz-optimal solutions of a MOCO problem (or a multi-agent
problem where the utilities received by the agents represent the different objective functions). Following
Definition 23, finding the Lorenz-optimal solutions to a MOCO problem is equivalent to identifying the
Pareto-optimal solutions for the same MOCO problem, with the costs being represented by the generalized
Lorenz vectors:
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minimize
x∈X

L
(
f1(x), . . . , fp(x)

)
where L

(
f1(x), . . . , fp(x)

)
= (f(1)(x), f(1)(x) + f(2)(x), . . . , f(1)(x) + f(2)(x) + . . .+ f(p)(x)).

In the special case where p = 2, the two objective functions to be minimized are: L1(f(x)) = max(f1(x), f2(x))
and L2(f(x)) = f1(x) + f2(x). We thus look for solutions that establish a good compromise between the
value of the worst performance and the sum of the costs.

Example 12. In the following table, we give the Lorenz vectors associated to each solution of the bi-objective
TSP of Example 1. We have also represented in the following figure (on the right) the Lorenz vectors in
the Lorenz space. We see that there are only 2 Lorenz-optimal solutions, x8 and x6, with y(x8) = (19, 18),
L(y(x8)) = (19, 37), y(x6) = (20, 15) and L(y(x6) = (20, 35). The solution x8 is the best solution for L1(f(x))
and x6 is the best solution for L2(f(x)).

Solution Evaluation Lorenz vector
x1 = (1, 2, 3, 4, 5) (25, 16) (25, 41)
x2 = (1, 2, 3, 5, 4) (17, 25) (25, 42)
x3 = (1, 2, 4, 3, 5) (21, 21) (21, 42)
x4 = (1, 2, 4, 5, 3) (19, 20) (20, 39)
x5 = (1, 2, 5, 3, 4) (14, 25) (25, 39)
x6 = (1, 2, 5, 4, 3) (20, 15) (20,35)
x7 = (1, 3, 2, 4, 5) (26, 14) (26, 40)
x8 = (1, 3, 2, 5, 4) (19, 18) (19,37)
x9 = (1, 3, 4, 2, 5) (23, 14) (23, 37)
x10 = (1, 3, 5, 2, 4) (15, 23) (23, 38)
x11 = (1, 4, 2, 3, 5) (20, 24) (24, 44)
x12 = (1, 4, 3, 2, 5) (21, 19) (21, 40)

The Lorenz-optimal solutions could be generated through a two-stage procedure that first generates all
Pareto-optimal solutions and second selects only the Lorenz-optimal ones among them (since a Lorenz-optimal
solution is necessarily a Pareto-optimal solution). But the efficiency of the two-stage procedure depends on
the efficiency of the procedure that generates the Pareto-optimal solutions. Besides, the number of Lorenz-
optimal solutions can be very small compared to the number of Pareto-optimal solutions, which would make
the two-stage procedure inefficient. To give an example, we have used the exact Pareto-optimal set of the bi-
objective knapsack instances produced by Bazgan et al. [16] to determine the proportions of Lorenz-optimal
solutions among the Pareto-optimal solutions. Generally, the proportion is equal to around 5%, except
for positively correlated instances, where the proportion can reach 25%. Indeed, as the two objectives are
correlated, there are many solutions with close values, which gives many good candidates for fair solutions.
Similar results have been obtained for the bi-objective TSP, for which the proportion was always less than
3%. It would therefore be interesting to develop methods that directly generate the Lorenz-optimal solutions.

3.2.1 Algorithmic issues

Intractability As for the Pareto dominance, we can study if there are MOCO problems for which the number
of Lorenz-optimal solutions is exponential in the size of the instance. The bi-objective shortest path problem,
the bi-objective spanning tree problem and the bi-agent Markov decision process problem have been proved
intractable when looking for Lorenz-optimal solutions [200, 201]. As Ehrgott did in a Pareto optimization
setting [81], one can show that even the following simple unconstrained problem is intractable when Lorenz
dominance is considered. The multi-objective unconstrained (MOUC) problem is defined as follows:

minimize
x∈{0,1}n

n∑
i=1

cikxi k ∈ P

Proposition 1. Problem MOUC is intractable for Lorenz optimization.

Proof. For p = 2, by setting ci1 = 2(i−1) and ci2 = −2i, we obtain Y = {(0, 0), (1,−2), (2,−4), . . . , (2n −
1,−2n+1+2)}. If we represent the generalized Lorenz vectors of all y ∈ Y, we obtain: L(Y) = {(0, 0), (1,−1),
(2,−2), . . . , (2n − 1,−2n + 1)}. We remark that all the generalized Lorenz vectors have the same sum
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(L1 + L2 = 0) and a distinct value on the first dimension L1 (and consequently on the second dimension L2

as well). Thus, all the generalized Lorenz vectors are Pareto non-dominated in the Lorenz space. Then we
have YL = Y. Furthermore, by construction, each feasible solution has a distinct image in the objective space,
i.e., |Y| = |X |. As the number of feasible solution is equal to |X | = 2n, we have thus |XL| = |YL| = 2n.

NP-completeness The complexity of MOCO problems with Lorenz dominance is defined by the complexity
of its decision version: “Given d ∈ Rp, does there exist x ∈ X such that (f1(x), . . . , fp(x)) ⪰L d ?”. The
decision version of the bi-objective shortest path problem and the bi-objective spanning tree problem has
been proved NP-complete for Lorenz dominance [200]. Besides, one can easily show that the decision version
of the MOUC problem is also NP-complete (see [98] for a proof).

Other difficulties In addition to the previous complexity results, the determination of Lorenz-optimal
solutions can encounter another algorithmic issue. It has indeed been shown for some Lorenz optimization
problems that one cannot resort directly to an approach based on the Lorenz-optimality of partial solutions,
like dynamic programming or greedy procedures [199, 201].

Example 13. Let’s consider an instance of the MOUC problem with n = 3, k = 2 and c1 = (1,−1),
c2 = (−2, 2) and c3 = (2,−2). The cost vector c1 Lorenz dominates the cost-vectors c2 and c3. However, the
only Lorenz-optimal solution of this instance is x = (0, 1, 1), with an evaluation equal to (0, 0). We see that
in this solution, x1 = 0 while c1 Lorenz dominates c2 and c3. Therefore, a greedy algorithm would first set
x1 = 1 but any solution with x1 = 1 is Lorenz dominated by x = (0, 1, 1).

Example 13 shows that, even for the simple unconstrained problem, one cannot determine the Lorenz-
optimal solutions from Lorenz non-dominated partial solutions.

3.2.2 Short state-of-the-art

To our knowledge, only a few works address the problem of Lorenz optimization for MOCO problems. We
now briefly list the methods proposed in the literature.
Ranking method. The ranking method has been proposed by Perny et al. [200] in a robust optimization
setting. This method works simply by computing the solutions in non-decreasing order of their sum using a k-
best algorithm. Indeed, the sum of the objective values correspond to the last component of the Lorenz vector.
Therefore, a solution minimizing the sum is weakly Lorenz Pareto-optimal. It is then necessary to define a
valid stopping criterion for stopping the k-best algorithm. The stopping criterion is based on the following
proposition: a vector (y1, . . . , yp) Lorenz dominates any vector (y′1, . . . , y′p) such that

∑p
i=1 y

′
i > p · y(1) where

y(1) = max(y1, . . . , yp). Consequently, once the ranking algorithm generates a solution for which the stopping
criterion is satisfied, the method can be stopped as all Lorenz-optimal solutions have been generated. This
method can be used with any number of objectives, but its efficiency strongly relies on the efficiency of the
k-best algorithm. Moreover, effective k-best algorithms are only known for few combinatorial optimization
problems [86].
ε-Constraint based method. This method, proposed by Baatar and Wiecek [12], is based on the classic ε-
constraint procedure for generating the Pareto-optimal solutions (see Section 2.2.4) of MOCO problems. Each
Lorenz-optimal solution is computed by solving two mathematical programs with appropriate constraints and
objective functions. First, a solution that minimizes the sum of the objective values is generated. The best
value obtained is called zϵ. Second, a solution that minimizes the Euclidean norm of the outcome vector is
determined with the constraints that the sum of the objective values has to be equal to zϵ. It can be shown
that this solution is Lorenz-optimal. This method works with any number of objectives, but solving such
mathematical programs can be inefficient in practice. Moreover, the authors have not tested their methods
on practical problems.
Dynamic programming based method. One cannot use directly a dynamic programming procedure
to generate the Lorenz-optimal solutions to a MOCO problem (see Section 3.2.1). However, since dynamic
programming can be used with Pareto dominance, and since Lorenz-optimal solutions are also Pareto-optimal,
Perny and Spanjaard [199] have proposed to adapt a multi-objective dynamic programming based procedure
to Lorenz optimization by adding a valid dominance rule.

3.2.3 Ordered weighted average

It is possible to transpose the notion of supported Pareto-optimal solutions to Lorenz dominance by applying
the definitions in the Lorenz space. In that respect, we define supported Lorenz-optimal solutions as follows.
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Definition 28. Supported Lorenz-optimal solution: a solution x is a supported Lorenz-optimal solution if
and only if there exists a strictly positive weight vector λ (λk > 0,∀ k ∈ P) such that x is an optimal solution

to the weighted sum single-objective problem defined on the Lorenz vector of f(x): min
x∈X

p∑
k=1

λk Lk(f(x)), where

f(1)(x) ≥ f(2)(x) ≥ . . . ≥ f(p)(x).

Note that
∑p

k=1 λk Lk(f(x)) = (
∑p

k=1 λk)f(1)(x) + (λ2 + . . . λp)f(2)(x) + . . .+ λpf(p)(x). Let w be a weight
vector defined by wk =

∑p
i=k λi, then

∑p
k=1 λk Lk(f(x)) = w1f(1)(x) + w2f(2)(x) + . . .+ wpf(p)(x).

Such an aggregation function is well-known in fair optimization, it corresponds to a particular family of
Ordered Weighted Averages (OWA), where the weights are strictly decreasing. The OWA function has been
introduced by Yager [261]:

Definition 29. Given a vector y ∈ Rp and a weighting vector w ∈ [0, 1]p, the ordered weighted average

(OWA) of y with respect to w is defined by: fowa(y, w) =

p∑
k=1

wky(k) where y(1) ≥ . . . ≥ y(p).

Ogryczak [192] has shown that any solution minimizing an OWA function with strictly decreasing and
strictly positive weights is Lorenz-optimal (and more precisely supported Lorenz-optimal). However, in
general, there exist Lorenz-optimal solutions that do not optimize any OWA functions. We call these solu-
tions unsupported Lorenz-optimal solutions. The geometric interpretation of the supported and unsupported
Lorenz-optimal solutions is exactly the same as the geometric interpretation with Pareto dominance, but in
the Lorenz space (with the Lorenz vectors) instead of the objective space.

Unfortunately, there are no trivial relations between the supported Lorenz-optimal solutions and sup-
ported Pareto-optimal solutions or between the unsupported Lorenz-optimal solutions and unsupported
Pareto-optimal solutions, as illustrated in the following example.

Example 14. Let’s consider a MOCO problem presenting 4 Pareto-optimal solutions: x1 with f(x1) =
(6, 18), x2 with f(x2) = (9, 16), x3 with f(x3) = (12, 14) and x4 with f(x4) = (20, 2). The generalized
Lorenz vectors of the 4 solutions are all Pareto non-dominated: L(f(x1)) = (18, 24), L(f(x2)) = (16, 25),
L(f(x3)) = (14, 26) and L(f(x4)) = (20, 22). It means that the 4 solutions are Lorenz-optimal solutions.
In this simple example, we have a supported Pareto-optimal solution that is not supported Lorenz-optimal
solution (x1), a solution that is unsupported in both space (x2), a supported Lorenz-optimal solution that
is an unsupported Pareto-optimal solution (x3) and a solution that is supported in both spaces (x4). The
representation of these points in the objective space and the Lorenz space is given in the following figure.

Objective space: Lorenz space:

3.3 New methods for two objectives
In this section, we present the main ideas behind the two methods we have developed for generating Lorenz-
optimal solutions of bi-objective combinatorial optimization problems. The goal is to define methods that
produce a set of Lorenz-optimal solutions such that to each Lorenz non-dominated point corresponds to at
least one Lorenz-optimal solution in the set produced (i.e., a minimal complete set).
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Straight adaptation of the two-phase method

The two-phase approach is a method used to generate Pareto-optimal solutions for MOCO problems with
two objectives (see Section 2.2.6). We describe only at a high level how this method can be adapted in order
to generate Lorenz-optimal solutions of bi-objective combinatorial optimization problems. The adaptation
closely follows the original method. As the name of the method suggests it, the method works in two distinct
phases:
Phase 1: generation of all supported Lorenz-optimal solutions. This consists in applying the first phase of the
original two-phase method for Pareto optimization in the Lorenz space instead of the objective space. This
amounts to optimizing OWA functions with different weights until all supported Lorenz-optimal solutions
have been generated. The weight sets w used in the different OWA functions are defined by wk =

∑p
i=k λi

(k ∈ P) from the weight sets λ defined in the Lorenz space and computed by the dichotomic search.
Phase 2: generation of all unsupported Lorenz-optimal solutions. The supported Lorenz points generated at
Phase 1 are used to reduce the search space, since for bi-objective problems, unsupported Lorenz-optimal
solutions are always located, in the Lorenz space, in the interior of the right triangle defined by two adjacent
supported Lorenz-optimal points. The exploration of the triangles can be performed with a branch and
bound algorithm or with a k-best algorithm.

Even if this straight adaptation of the two-phase method is theoretically interesting, the main drawback
is in the first phase: the OWA function to be optimized is non-linear and therefore even generating only
the supported Lorenz-optimal solutions could be computationally expensive. We propose in the next section
another method where the optimization of OWA functions is avoided.

Supported Pareto-efficient solutions based method

Even though there is no trivial relation between the supported Pareto and Lorenz-optimal sets, we show in
this section that, in the case of two objectives, there are interesting properties on the location of the Lorenz-
optimal solutions with respect to the location of some supported Pareto-optimal solutions in the objective
space.

Before presenting the properties, let’s introduce some notations. We denote by Oi ⊂ R2
≥ the space in

the positive orthant of the objective space where all the points y are such that yi ≥ yj for j ̸= i. More
formally, O1 = {y ∈ R2

≥, y1 ≥ y2} and O2 = {y ∈ R2
≥, y2 ≥ y1}. The bisector is the line y1 = y2 in the

objective space. Let’s consider x1 an optimal solution to leximin
(
f1(x) + f2(x),max(f1(x), f2(x))

)
, i.e., a

solution that minimizes the sum of both objective functions, and among all solutions that minimize the sum,
it is a solution with a minimal value for the max(f1(x), f2(x)) objective. This is a Lorenz-optimal solution
since L1(f(x)) = max(f1(x), f2(x)) and L2(f(x)) = f1(x) + f2(x). Let’s denote by y1 the evaluation of x1

in objective space. In this section, we suppose, w.l.o.g., that y11 > y12 , i.e., y1 ∈ O1. Let x2 be a supported
Pareto-optimal solution corresponding to the point y2 such that y2 is in O2 and minimizes the cost of the
second objective among all the supported Pareto non-dominated points in O2 (or if exceptionally there are
no points in O2, y2 corresponds to the supported Pareto point in O1 with the highest value for the second
objective). We will also use the notion of “betweenness" in the sequel: we say that a point y is between two
points yi and yj (i ̸= j) in the objective space when yi1 ≤ y1 ≤ yj1.

Proposition 2. All supported Pareto-optimal solutions x such that y(x) ∈ O1 and y2(x) > y12 are supported
Lorenz-optimal [98].

Proposition 3. The image in objective space of all Lorenz-optimal solutions are between y1 and y2 [98].

Example 15. We illustrate these two properties in the following figures. In the figure on the left, we have
represented the 5 Pareto non-dominated points of the instance of the bi-objective TSP of Example 1. We have
also added the bisector (i.e., the line "y1 = y2"), and in dashed line, the line of equation "y1+y2 = 35" (35 is
equal to the minimal value for f1(x) + f2(x) obtained by the point (20, 15)). The point y1 corresponds to the
point (20, 15) and the point y2 to the point (15, 23). All the Lorenz non-dominated points should be located
between these two points. Indeed, y1 is the best solution for the sum of objectives and is Lorenz non-dominated.
Therefore, new Lorenz non-dominated points can only be found on the left of y1, near the bisector (i.e., points
better for the max(f1(x), f2(x)) objective). Beyond y2, it is not possible to find Lorenz non-dominated points,
since all the points will be worse for both objectives. The triangle, where new Lorenz non-dominated points
could be found, has been represented with red lines. We see that there exists another Lorenz non-dominated
point, the point (19, 18) which corresponds to the best solution for the max(f1(x), f2(x)) objective. On the
right, we have represented another situation, where this time, there are more supported Pareto-optimal points
located between y1 and the bisector. The red triangles represent the zones where new Lorenz non-dominated
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points could be found (and we see that in each of this triangle there is a Pareto unsupported point which is
Lorenz non-dominated). In total, there are 6 Lorenz non-dominated points (all the points except y2).

We have used these properties to define a new two-phase method based on the computation of a subset
of the supported Pareto-optimal solutions. This new method is called method SP in the sequel.
Phase 1. The first phase of the method SP consists in generating all the supported non-dominated points
located between y1 and y2. From Property 2, we indeed know that all these solutions, except perhaps solution
x2 (with f(x2) = y2), are supported Lorenz-optimal. In order to do so, one first needs to find a solution x1

that optimizes leximin
(
f1(x) + f2(x),max(f1(x), f2(x))

)
. Then three cases can occur:

1. f1(x
1) = f2(x

1): in this case, f(x1) is the only Lorenz non-dominated point of the problem, since it
optimizes both L2 and L1: the method SP stops and returns the solution x1.

2. f1(x
1) > f2(x

1) (i.e., f(x1) ∈ O1): in this case, we perform a dichotomic search between the points
f(x1) and f(x3) where x3 optimizes min

x∈X
(f1(x)). Note that we only need to compute at most one point

y2 in O2, and consequently the search is mainly performed in O1.

3. f1(x
1) < f2(x

1) (i.e., f(x1) ∈ O2): analogous to case 2.

For the cases 2 and 3, the supported Pareto-optimal point y2 is also stored.

Phase 2. Let Y be the set of points generated during Phase 1. To each point y of Y is associated an area
in the objective space containing all the points that are not Lorenz dominated by y (called the Lorenz non-
dominance zone of y). The intersection of all the Lorenz non-dominance zones of the points in Y defines the
search zone to be explored in Phase 2 (see Example 15 for an illustration of these search zones).

The exploration of each of the zones consists in enumerating solutions with respect to the weighted sum
with the weighting vector w defined such that two consecutive Pareto-optimal supported points have the
same weighted sum. The enumeration is performed with a k-best algorithm. Once all the Lorenz non-
dominance zones have been explored, the method SP can stop, as all the Lorenz non-dominated points have
been detected.

3.4 Experimental results
The method has been applied to the bi-objective shortest path problem (BOSPP) and to the bi-objective
set covering problem (BOSCP). For the BOSPP the method has been compared to two other methods: the
ranking method and an extension of dynamic programming to Lorenz optimization (see Section 3.2.2). For
the BOSCP, the method has been compared to the ranking method and to the Pareto method of Florios
and Mavrotas [93], based on the ε-constraint (all Pareto-optimal solutions are then filtered to retain only
the Lorenz-optimal solutions). The results showed that the proposed method was particularly efficient for
“unbalanced” instances of the problems, that is, instances where the values of the two objectives do not follow
the same distributions. Indeed, for these types of instances, the number of Lorenz-optimal solutions tends
to be higher, that makes the SP method particularly effective compared to the ranking method. Indeed,
the ranking method explores only one (large) zone of the objective space, while the SP method explores
many (small) zones of the objective space. When the number of Lorenz-optimal solutions is high, the size
of the zone to be explored by the ranking algorithm could be large, which could make its exploration very
time-consuming. Full experimental results can be found in Galand and Lust [98].
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4 Choquet integral in multi-objective combinatorial optimization
In this section we examine a general aggregation function, the Choquet integral, and its use in MOCO
problems.

4.1 Presentation
The Choquet integral [52] is one of the most powerful tools in multicriteria decision-making [109, 112]. A
Choquet integral can be seen as an integral on a non-additive measure (also called a capacity or a fuzzy mea-
sure). It presents extremely wide expressive capabilities and can model many specific aggregation operators,
including, but not limited to, the WS, the minimum, the maximum, all the statistic quantiles, the OWA
operator [261], the weighted OWA operator [248], etc.

However, this high expressiveness capability has a price: while the definition of a simple WS operator
with p criteria requires (p− 1) parameters, the definition of the Choquet integral with p criteria requires the
setting of (2p − 2) values, which can be a problem even for low values of p.

Many approaches have been studied to identify the parameters of the Choquet integral [111]. Generally,
questions are asked to the DM and the information obtained is represented by linear constraints over the set
of parameters. An optimization problem is then solved in order to find a set of parameters that minimizes
the error according to the information given by the DM.

The approach considered in this section is quite different: we will not try to identify the parameters of the
Choquet integral but given a set of solutions evaluated according to p criteria we will compute the solutions
that are optimal for at least one parameter set of the Choquet integral. Therefore, the parameters of the
Choquet integral will not have to be determined. Instead, a set of solutions of smaller size compared to the set
of Pareto-optimal solutions (which can be very huge in the case of multi-objective or multi-agent combinatorial
problems, as seen in the preceding sections) will be presented to the DM. Each solution proposed will have
interesting properties since they optimize the Choquet integral for at least one set of parameters. Also, by
computing all the Choquet-optimal solutions, all the solutions that optimize one of the operators that the
Choquet integral can model will be generated.

The first application is multi-criteria decision-making [107]: the DM needs to choose an alternative among
a set of alternatives; each alternative being evaluated according to a set of p criteria. No alternative Pareto
dominates another, and therefore no alternative can be a priori rejected. However, if we plan to use the
Choquet integral in order to select the best alternative according to the preferences of the DM, we can first
generate the solutions that are optimal for at least one Choquet integral. This can be done in the absence of
the DM. In the end, a set smaller than the Pareto-optimal set could be proposed.

Another application of the method is in MOCO. To solve a MOCO problem, three different approaches
are usually followed. In the a posteriori approach, all the Pareto-optimal solutions are first generated (see
Section 2). Then the DM is free to choose among all Pareto-optimal solutions the one that corresponds the
best to her preferences. Another possibility, called the a priori approach, is to first ask the DM what are her
preferences among all the objectives and to compute an aggregation function with specified parameters [112].
The aggregation function is then optimized and at the end, only one solution is generally proposed to the
DM. A last possibility is to interact with the DM along the process of generation of the solutions [193] (see
next Section).

We study in this section an original approach, between the a posteriori approach and the a priori approach,
that consists in trying to find the set of solutions that are potentially optimal for at least one set of parameters
of an aggregation function, and more specifically in this section the Choquet integral.

Some papers already deal with the optimization of the Choquet integral of MOCO problems [95, 100, 101]
but only when the Choquet integral is completely defined. Galand et al. [101] have developed a method
to optimize a Choquet integral for multi-objective spanning trees problems and multi-objective knapsack
problems. They present a condition (named preference for interior points) that characterizes capacities
favoring well-balanced solutions. For both problems studied, they introduce a linear bound of the Choquet
integral and propose a branch and bound algorithm using this bound. Multi-objective shortest path problems
have also been investigated by the same authors [100]. They use a branch and bound algorithm and an
enumeration algorithm, based on a ranking approach. Fouchal et al. [95] study the same problem: generating
a Choquet-optimal solution given a capacity. They apply their algorithm to the multi-objective shortest path
problem. They introduce Choquet dominance rules that they integrate within the label setting algorithm
of Martins [180], based on dynamic programming.
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4.2 Definitions
The Choquet integral has been introduced by Choquet [52] in 1953 and has been intensively studied, partic-
ularly in the field of multicriteria decision analysis, by several authors (see [107, 109, 112] for a review).

We first define the notion of capacity, on which the Choquet integral is based.

Definition 30. A capacity is a set function v: 2P → [0, 1] such that:

• v(∅) = 0, v(P) = 1 (boundary conditions)

• ∀A,B ∈ 2P , A ⊆ B ⇒ v(A) ≤ v(B) (monotonicity conditions)

Therefore, for each subset of objectives A ⊆ P, v(A) represents the importance of the coalition A.

Definition 31. The Choquet integral of a vector y ∈ Rp with respect to a capacity v is defined by:

fC
v (y) =

p∑
i=1

(
v(Y(i))− v(Y(i+1))

)
y(i)

=

p∑
i=1

(y(i) − y(i−1))v(Y(i))

where (y(1), . . . , y(p)) is a permutation of the components of y such that 0 = y(0) ≤ y(1) ≤ . . . ≤ y(p) and
Y(i) = {j ∈ P, yj ≥ y(i)} = {(i), (i+ 1), . . . , (p)} for 0 ≤ i ≤ p and Y(p+1) = ∅.

Example 16. Let’s consider the following four alternatives for choosing a bike, evaluated according to three
criteria (speed, weight, comfort) on a scale going from 0 (the worst value) to 20 (the best value).

speed weight comfort
Road bike 17 18 7

Mountain bike 11 9 15
Gravel bike 14 14 10
City bike 9 8 17

Let’s consider that the DM desires a fast bike, not too heavy and with a minimum of comfort. Let’s
suppose that the following capacity v has been elicitated: v({1}) = 0.4, v({2}) = 0.4, v({3}) = 0.2, v({1, 2}) =
0.4, v({1, 3}) = 0.6, v({2, 3}) = 0.9. We have that the Choquet integral associated to the road bike is equal
to 7 + (17 − 7) ∗ v({1, 2}) + (18 − 17) ∗ v({2}) = 7 + 10 ∗ 0.4 + 0.4 = 11.4, that to the mountain bike
is equal to 9 + (11 − 9) ∗ v({1, 3}) + (15 − 11) ∗ v({3}) = 9 + 2 ∗ 0.6 + 4 ∗ 0.2 = 11, that to the gravel
bike is equal to 10 + (14 − 10) ∗ v({1, 2}) + (14 − 14) ∗ v({1}) = 11.6 and that to the city bike is equal to
8 + (9 − 8) ∗ v({1, 3}) + (17 − 9) ∗ v({3}) = 10.2. According to this capacity, the gravel bike is the best
choice. Let’s notice that if a WS was used, the gravel bike would never have been the first choice. Indeed, let
us consider the weight set (w1,w2,w3) with w3 = (1 − w1 − w2) and w1, w2, w3 ≥ 0. To be better than the
road bike for the WS, it can be easily shown that the following constraint on the weights has to be satisfied:
6w1 +7w2 ≤ 3. And to be better than the mountain bike, we have this constraint: 8w1 +10w2 ≥ 5. It is easy
to check that there are no positive values for w1 and w2 that respect these two constraints.

We can also define the Choquet integral through the Möbius representation [214] of the capacity. Any set
function v: 2P → [0, 1] can be uniquely expressed in terms of its Möbius representation by:

v(A) =
∑
B⊆A

mv(B) ∀A ⊆ P

where the set function mv : 2P → R is called the Möbius transform or Möbius representation of v and is
given by

mv(A) =
∑
B⊆A

(−1)(a−b)v(B) ∀A ⊆ P

where a and b are the cardinals of A and B.
A set of 2p coefficients mv(A) (A ⊆ P) corresponds to a capacity if it satisfies the boundary and mono-

tonicity conditions [51]:

1. mv(∅) = 0,
∑
A⊆P

mv(A) = 1
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2.
∑

B⊆A, i∈B

mv(B) ≥ 0 ∀A ⊆ P,∀i ∈ P

We can now write the Choquet integral using the Möbius coefficients. The Choquet integral of a vector
y ∈ Rp with respect to a capacity v is defined as follows:

fC
v (y) =

∑
A⊆P

mv(A)min
i∈A

yi

The Choquet integral is a powerful tool but suffers from a high number of parameters (2p), that are difficult
to interpret. However, there are some measures that have been developed to get a better understanding of
the particular values of a capacity. For example, given a capacity, the Shapley index has been proposed
to summarize the importance of an individual criterion [262]. The interaction index can summarize the
interactions between different criteria [111]. Moreover, they are many tools that have been developed for
capacity identification in the context of the Choquet integral [110]. Note that our goal is not to elicitate a
capacity for a Choquet integral, but to generate a subset of solutions such that each solution is optimal for
at least one Choquet integral.

4.3 Characterization of Choquet-optimal solutions
We define now more precisely the notion of Choquet-optimal solution and Choquet-optimal set. Let’s consider
X representing a set of alternatives (coming from a multicriteria decision-making problem) or a set of feasible
solutions (coming from a MOCO problem). All criteria have to be maximized. Let V be the collection of all
capacities.

Definition 32. A Choquet-optimal solution is a feasible solution xC ∈ X such that:

∃v ∈ V : xC ∈ argmax
x∈X

fC
v (y(x))

Definition 33. A Choquet-optimal set XC is defined as follows:

XC =
⋃
v∈V

argmax
x∈X

fC
v (y(x))

As the Choquet integral is an increasing function of its arguments, we have that:

Proposition 4. xC ∈ XC ⇒ xC ∈ XwE.

The image of a Choquet-optimal solution in objective space is called a Choquet-optimal point, denoted
by yC , and the set of all Choquet-optimal points is denoted by YC . Note that Choquet-optimal solutions
are sometimes called potentially Choquet-optimal solutions [42], in particular in the context of interactive
methods, where Choquet-optimal solutions are good candidates to be the preferred solution of the DM at
the end of the procedure.

A simple way to generate all Choquet-optimal solutions would be to generate the set V and for each
capacity v ∈ V to look for the best solution for the Choquet integral. However, the size of V is infinite, and
moreover, optimizing a Choquet integral is not trivial in the case of MOCO problems since it is a non-linear
function. Therefore, we have proposed an original method to generate all Choquet-optimal solutions, which
is based on WS optimal solutions, i.e., solutions that optimize a WS (with positive weights). The main idea
is the following: for a set of points whose components are in the same order, the Choquet integral reduces to
a simple WS. Indeed, in this case fC

v (y) =
∑p

i=1

(
v(Yi)− v(Yi+1)

)
yi and as v is monotonic for the inclusion,

we have (v(Yi)−v(Yi−1) ≥ 0). Therefore, to be a Choquet-optimal solution, it is necessary to optimize a WS
in the subspace where the solution is located (e.g., f1(x) ≥ f2(x) ≥ . . . ≥ fp(x)). However, it is not sufficient.
For example, let us consider the following set of four alternatives evaluated according to two criteria (to be
maximized), i.e., Y = {y1 = (1, 10), y2 = (2, 7), y3 = (6, 5), y4 = (10, 1)}. We have that y1 and y2 are both
optimal points for the WS if one restrict to the subspace (f2(x) ≥ f1(x)) (since there are only two points in
this subspace). However, the point y2 is not Choquet-optimal: indeed to be Choquet-optimal, we need that
fC
v (y2) ≥ fC

v (y1), i.e., v2 ≤ 0.25, and fC
v (y2) ≥ fC

v (y3), i.e., 5v2 ≥ 3 + v1, which is impossible if v2 ≤ 0.25.
More formally, let σ be a permutation on P and Σ the set of all permutations on P. Let Oσ be the subset

of points y ∈ Rp such that y ∈ Oσ ⇐⇒ yσ1
≥ yσ2

≥ . . . ≥ yσp
. Let pOσ

be the following application:

pOσ
: Rp → Rp, (pOσ

(y))σi
= (min(yσ1

, . . . , yσi
)),∀i ∈ P
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For example, if p = 3, for the permutation (2,3,1), we have:

pOσ
(y) =

(
min(y2, y3, y1), y2,min(y2, y3)

)
We denote by POσ

(Y) the set containing the points obtained by applying the application pOσ
(y) to all

the points y ∈ Y. As (pOσ
(y))σ1

≥ (pOσ
(y))σ2

≥ . . . ≥ (pOσ
(y))σp

, we have POσ
(Y) ⊆ Oσ.

Then the new characterization of the Choquet-optimal points that we have proposed is the following.

Proposition 5.
YC =

⋃
σ∈Σ

Y ∩WS(POσ
(Y))

where WS(POσ
(Y) designs the set of WS-optimal points of the set POσ

(Y) [173].
This proposition characterizes the points that are Choquet-optimal points as being the points that opti-

mize a WS in the subspace Oσ, where all projections of the points y ∈ Y with pOσ
(y) have been included.

Example 17. If we go back to Example 16, we can now easily show that all alternatives are Choquet-
optimal. We first determine if the point (17, 18, 7) is Choquet-optimal. The permutation associated to this
point is σ = (2, 1, 3) and so pOσ (y) =

(
min(y1, y2), y2,min(y1, y2, y3)

)
. By applying the application to all

the other points, we obtain POσ (Y) = {(17, 18, 7), (9, 9, 9), (14, 14, 10), (8, 8, 8)}. We clearly see that the point
(17, 18, 7) optimizes a WS in this set, as it has the best values for the first and second objective.

For the points (11, 9, 15) and (9, 8, 17), we have the following permutation and projections (they both
optimize a WS in POσ

(Y) and are thus Choquet-optimal):

17 18 7 7 7 17
11 9 15 11 9 15
14 14 10 10 10 10
9 8 17 9 8 17

σ = (3, 1, 2), pOσ (y) =
(
min(y1, y3),min(y1, y2, y3), y3

)

For the point (14, 14, 10), we have the following permutation and projections:

17 18 7 17 17 7
11 9 15 11 9 9
14 14 10 14 14 10
9 8 17 9 8 8

σ = (1, 2, 3), pOσ
(y) =

(
y1,min(y1, y2),min(y1, y2, y3)

)

4.4 Generation of Choquet-optimal solutions
From Proposition 5 we have deduced an algorithm to generate the set XC containing all the Choquet-optimal
solutions of a MOCO problem (with p objective functions to be maximized). The principle is the following.

For all the permutations σ on P, we have to:

1. Determine the projections with the application pOσ . However, among the projections, only the Pareto
non-dominated points are interesting (since if a point is Pareto-dominated, its WS is inferior to the
WS of at least another point). Therefore, to determine the projections, the following MOCO problem
(called Pσ, with p objective functions to maximize) has to be solved:

max
x∈X\Xσ

(fσ1
(x),min(fσ1

(x), fσ2
(x)), . . . ,min(fσ1

(x), fσ2
(x), . . . , fσp

(x)))

where Xσ is the set such that x ∈ Xσ ⇐⇒ fσ1(x) ≥ fσ2(x) ≥ . . . ≥ fσp(x).

2. Generate all WS-optimal solutions in Xσ, while adding the points obtained from Pσ.

The main lines of the algorithm are given in Algorithm 4.

Example 18. Let’s consider a knapsack problem with two objective functions f1(x) and f2(x) to maxi-
mize, and 12 feasible solutions, evaluated as follows: y(x1) = (29, 0), y(x2) = (28, 1), y(x3) = (27, 4),
y(x4) = (24, 5), y(x5) = (23, 6), y(x6) = (21, 8), y(x7) = (17, 9), y(x8) = (15, 10), y(x9) = (13, 11),
y(x10) = (10, 12), y(x11) = (9, 13), y(x12) = (0, 14). The representation of the points in the objective
space in given in Figure 2 (left part). We remark that all feasible solutions are Pareto-optimal. To determine
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the Choquet-optimal solutions, only two permutations need to be examined: σ1 = (1, 2) and σ2 = (2, 1). Let’s
first consider the permutation σ1. The following MOCO problem Pσ1

, in x ∈ X\Xσ1
, needs to be solved:

max
x∈X\Xσ1

(f1(x),min(f1(x), f2(x))). As X\Xσ1 is equal to Xσ2 , the problem Pσ1 simply boils down to the fol-

lowing single-objective problem: max
x∈Xσ2

f1(x) (as x ∈ Xσ2
⇔ f2(x) ≥ f1(x)). We obtain the solution x10,

with f(x10) = (10, 12). We apply pOσ1
on (10, 12) and we obtain pOσ1

(10, 12) = (10, 10). Then we generate
all WS in Xσ1

, with the additional point (10, 10). We see on Figure 2 (right part, blue points) that there
are 4 WS-optimal points, i.e., y(x1) = (29, 0), y(x3) = (27, 4), y(x6) = (21, 8) and y(x9) = (13, 11). Let’s
now consider the permutation σ2. The following MOCO problem Pσ2 , in x ∈ X\Xσ2 , needs to be solved:
max

x∈X\Xσ2

(f2(x),min(f1(x), f2(x))). As X\Xσ2 is equal to Xσ1 , the problem Pσ2 simply boils down to the fol-

lowing single-objective problem: max
x∈Xσ1

f2(x). We obtain the solution x9, with y(x9) = (13, 11). By applying

pOσ2
on this point, we find the point (11, 11). Then we generate all WS in Xσ2

, with the additional point
(11, 11). We see on Figure 2 (right part, red points) that there are 3 WS-optimal points, i.e., y(x10) = (10, 12),
y(x11) = (9, 13) and y(x12) = (0, 14). On this example, we have thus two Choquet-optimal points that are not
WS-optimal points: y(x10) = (10, 12) and y(x9) = (13, 11). Note that x9 is OWA-optimal (as this solution is
optimal for maxmin(f1(x), f2(x))) but the solution x10 is not OWA-optimal (as the point (10, 12) is Lorenz
dominated by the point (13, 11)).

Figure 2: Pareto front and Choquet-optimal solutions of a bi-objective knapsack problem.

Algorithm 4 Generation of XC

IN ↓: a MOCO problem with p objectives to be maximized
OUT ↑: the set XC

Let σ be a permutation on P, and Σ the set of all permutations
Let Xσ be the set such that x ∈ Xσ ⇐⇒ fσ1(x) ≥ fσ2(x) ≥ . . . ≥ fσp(x)
XC ← {}
for all σ ∈ Σ do

- -| Determination of the projections:
Solve the following MOCO problem, called Pσ, in x ∈ X\Xσ:
max

x∈X\Xσ

(fσ1(x),min(fσ1(x), fσ2(x)), . . . ,min(fσ1(x), fσ2(x), . . . , fσp(x)))

Let YPσ the Pareto non-dominated points obtained from solving (Pσ)
Generate the set of all WS-optimal solutions in Xσ (denoted by Xwsσ ), while adding the points obtained from
POσ (YPσ ).
XC ← XC ∪ Xwsσ

return XC
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Numerical experiments

We have applied the Algorithm 4 to generate the Choquet-optimal solutions of instances of the bi-objective
knapsack problem (bKP) and the bi-objective spanning tree problem (bSTP). For the bKP, the CPU time
needed to generate all Choquet-optimal solutions was just a little bit higher than the CPU needed to generate
all WS-optimal solutions, and much lower than the generation of all Pareto-optimal solutions. For the bSTP,
the running time of Algorithm 4 is much higher than the generation of WS-optimal solutions. Indeed,
while WS problems can be solved in polynomial time (with the Prim algorithm [206] for example), for the
generation of the Choquet-optimal solutions we need to solve the spanning tree problem with an additional
constraint (f1(x) ≥ f2(x) or f2(x) ≥ f1(x)), which is NP-Hard [2]. However, for some instances, it is very
interesting to generate the Choquet-optimal solutions instead of the WS-optimal solutions. In Figure 3, we
have represented the WS-optimal points (on the left) and the Choquet-optimal points (on the right) of a
particular instance of the bi-objective spanning tree problem introduced by Knowles et al. [143]. These type
of instances are considered as hard because there are many Pareto non-dominated points located far away
from any supported Pareto non-dominated points.

Figure 3: WS-optimal points and Choquet-optimal points for a bi-objective STP instance.

We observe through this figure the interest to generate the Choquet-optimal solutions comparing to the
generation of the WS-optimal solutions: with the WS, no solution in the middle of the Pareto front is
generated.

Unfortunately, we were not able to generate Choquet-optimal solutions for MOCO problems with more
than two objectives. Indeed, e.g., for problems with three objectives, the MOCO problem Pσ that needs
to be solved in Algorithm 4 boils down to a bi-objective problem with additional constraints, which is hard
to solve. Moreover, all permutations on P have to be considered, and the number of permutations increase
exponentially according to the number of objectives.

For problems with more than two objectives, we have however generated the Choquet-optimal points for
explicit sets of alternatives, from size going from 100 to 3000, and for a number of objectives going from 2 to
7, in less running times than a method based on linear programming [173].

4.5 2-additive Choquet integrals
A Choquet integral is a versatile aggregation operator, as it can express preferences to a wider set of solutions
than a WS, through the use of a non-additive capacity. However, this model needs also a wider set of
parameters to capture this non-additivity ((2p − 2) parameters to set). For this reason, the concept of k-
additivity has been introduced by Grabisch [108] to find a compromise between the expressiveness of the
model and the number of needed parameters.

Definition 34. A capacity v is said to be k-additive if:

• ∀A ⊆ P,mv(A) = 0 if card(A) > k

• ∃A ⊆ P such that card(A) = k and mv(A) ̸= 0
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We have introduced a sufficient condition to produce 2-additive Choquet-optimal solutions of MOCO
problems [174]. We have also presented an algorithm to obtain these solutions based on this condition.
However, only a subset of the 2-additive Choquet-optimal solutions can be generated (but in our experiments
at least 98% of these solutions were generated).

4.6 Additional result
Given the effort required to define the parameters of the Choquet integral in relation to the WS, we have
studied the interest of using the Choquet integral instead of the WS [169]. More precisely, for different
alternatives evaluated with p criteria, we have evaluated the probability that an alternative optimzing a
defined Choquet integral could not have been obtained with a simple WS. This is particularly important
in the general context where the alternatives to compare are not explicitly given but are obtained from a
MOCO problem. Indeed, in different works [42, 95, 100, 101, 102], the authors define a Choquet integral
and then search for an optimal solution according to the defined Choquet integral. Two difficulties are thus
introduced: the elicitation of the Choquet integral and the optimization of the Choquet integral for the
particular multi-objective problem studied. Given this complexity, it is worth studying the real strength of
the Choquet integral and to see whether a simpler method (the WS) could not have been used to obtain the
same optimal solution.

To our knowledge, only one group of authors have performed experiments to assess the powerfulness of the
Choquet integral. Meyer and Pirlot [184] have compared the ability of related models to represent rankings of
alternatives. They compare different aggregators, including the WS, the Choquet integral and additive value
functions. To do so, they randomly generate alternatives and define a ranking of the alternatives. Then they
check if the models can represent the ranking. They show that the Choquet integral model can represent
significantly more orders than the WS, and that the difference becomes quite large when the number of
criteria is high. If their work can appear similar to our study, there are two important differences. First,
they considered rankings of alternatives, while we checked only the ability of an aggregator to reach one
optimal alternative. Second, given a set of alternatives we do not pick up randomly a best alternative, as
they did, but we generate randomly a Choquet integral (with a uniform law, thanks to the method developed
by Combarro et al. [57]), and check if the alternative optimizing the Choquet integral could not have been
obtained with a WS too. Therefore, a probability has been defined, according to the set of possible Choquet
integrals, and not according to the set of possible alternatives.

The results showed that the maximal value that this probability can take is close to one, when the
number of criteria is higher than four. However, to reach this high probability, particular data sets have been
constructed, in favor of the Choquet integral. When the number of WS-optimal alternatives increases in a
set, the probability decreases rapidly, and particularly if the number of criteria is higher than four.
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5 Interactive methods

5.1 Introduction
We study in this section interactive approaches to solve MOCO problems. In these approaches, repeated
interactions with the DM are carried out in order to direct the exploration of the search space. Generally, a
parameterized aggregation function is used to take into account the feedback from the DM as the optimization
progresses. The parameters of the aggregation function are adapted at each stage to integrate the DM’s
information.

One of the first interactive method developed is the STEM method [31], developed in 1971, for solving
interactively multi-objective linear problems. At each step of the method, a Pareto-optimal solution is
selected using an augmented weighted Tchebyshev norm and presented to the DM. If the solution is suitable,
the exploration stops. If not, the DM indicates an objective on which she is prepared to degrade the
performance, as well as a limit value for this degradation. Following this work, many other interactive
methods have been developed, aiming to improve the STEM method. Vincke [253] proposed an interactive
method whose aim is to facilitate the dialogue with the DM and to minimize the calculation steps. Zionts and
Wallenius [267] presented a method where the DM is requested to provide answers to “yes and no” questions
regarding certain trade-offs that she likes or dislikes. Steuer and Choo [234] also used the augmented weighted
Tchebyshev norm, but the DM is asked to select her favorite solutions among a subset of solutions. Teghem
et al. [243] have extended the STEM method to deal with stochastic programming problems. Korhonen
and Laakso [145] proposed a method based on aspiration levels, defining “reference directions” to guide the
search for an optimal solution. They use a graphical interface to help the DM throughout the interactive
process. A full review of these methods can be found in the survey of Shin and Ravindran [228]. Many
of these methods have been then adapted to solve multi-objective mixed-integer, integer and combinatorial
optimization problems (see the survey of Alves and Clímaco [6]).

More recently, preference elicitation techniques developed in the AI domain have been integrated into
interactive methods for solving MOCO problems. Designing efficient preference elicitation procedures to
support decision-making in combinatorial domains is one of the hot topics of algorithmic decision theory.
On non-combinatorial domains, various model-based approaches are already available for preference learn-
ing. The elicitation process consists in analyzing preference statements provided by the DM to assess the
parameters of the decision model and determine an optimal solution (see, e.g., [24, 38, 46, 50, 96, 244]).
Within this stream of research, incremental approaches are of special interest because they aim to analyze
the set of feasible solutions in order to identify the critical preference information needed to find the optimal
alternative. By a careful selection of preference queries, they make it possible to determine the optimal choice
within large sets, using a reasonably small number of questions [38, 50].

The incremental approach was efficiently used in various decision contexts such as multi-attribute utility
theory or multicriteria decision-making [43, 215, 258], decision-making under risk [50, 115, 202, 255] and
collective decision-making [168]. However, extending these approaches for decision support on combinatorial
domains is more challenging due to the implicit definition of the set of solutions and the huge number
of feasible solutions. In order to overcome this problem, several contributions aim in combining standard
solution procedures with incremental preference elicitation. Examples can be found in various contexts such
as constraint satisfaction [104], committee election [22], matching [75], sequential decision-making under risk
[212, 257] and fair multi-agent optimization [37].

In multi-objective optimization, the search procedure combines the generation of Pareto-optimal solutions
with preferences queries allowing a progressive reduction of the uncertainty attached to the parameters of
the preference aggregation model, in order to progressively focus the exploration on the most attractive
solutions [21]. Various attempts to interleave incremental preference elicitation methods and constructive
algorithms have been proposed. The basic principle consists in constructing the optimal solution from optimal
sub-solutions using the available preference information, and to ask new preference information by comparing
partial solutions when necessary. This has been successfully applied by Benabbou and Perny [23] to greedy
algorithms, dynamic programming, A∗ and branch-and-bound procedures.

In this section, we will develop different interactive methods based on incremental elicitation, i.e., a general
exact method, a genetic algorithm and specific adaptions of greedy and local search for matroid optimization.
The methods are all based on three major assumptions:

1. An aggregation function with unknown parameters is used to model the preferences of the DM.

2. Questions to the DM are in the form of pairwise comparisons between feasible solutions (or partial
solutions in the particular case of the greedy algorithm). The DM is able to answer every preference
questions, without ever getting it wrong.

39



3. Minimax regret approaches are used to determine the most promising solution under the preference
imprecision.

5.2 Generalities
We assume here that the DM’s preferences over solutions can be represented by a parameterized scalarizing
function fω that is linear in its parameters ω. A solution x ∈ X is preferred to a solution x′ ∈ X if and only
if fω(y(x)) ≤ fω(y(x

′)). To give a few examples, the function fω can be a WS, an OWA operator (with an
unknwon weight set ω) or a Choquet integral (with an unknown capacity ω). We also assume that the set of
parameters ω is not known initially. Instead, we consider a set Θ of pairs (possibly empty) (a, b) ∈ Rp × Rp

such that the evaluation vector a is known to be preferred to the evaluation vector b. This set can be obtained
by asking preference queries to the DM. Let ΩΘ be the set of all parameters ω that are compatible with Θ,
i.e., all parameters ω that satisfy the constraints fω(a) ≤ fω(b) for all (a, b) ∈ Θ. Note that since fω is
linear in ω, ΩΘ is represented by a convex polyhedron. The problem is now to determine the most promising
solution under the preference imprecision (defined by ΩΘ). To do so, we use the minimax regret approach
([38]), which is commonly used to make robust recommendations under preference imprecision in various
decision contexts. It is based on the following definitions:

Definition 35 (Pairwise Max Regret). The Pairwise Max Regret (PMR) of solution x ∈ X with respect to
solution x′ ∈ X is:

PMR(x, x′,ΩΘ) = max
ω∈ΩΘ

{fω(y(x))− fω(y(x
′))}

In other words, PMR(x, x′,ΩΘ) is the worst-case loss when recommending solution x instead of solution
x′ (note that PMR(x, x′,ΩΘ) = maxω∈ΩΘ{fω(y(x′))− fω(y(x))} if fw needs to be maximized).

Definition 36 (Max Regret). The Max Regret (MR) of a solution x ∈ X is:

MR(x,X ,ΩΘ) = max
x′∈X

PMR(x, x′,ΩΘ)

Thus MR(x,X ,ΩΘ) is the worst-case loss when selecting the solution x instead of any other feasible
solution x′ ∈ X . We can now define the minimax regret:

Definition 37 (MiniMax Regret). The MiniMax Regret (MMR) of a set X is:

MMR(X ,ΩΘ) = min
x∈X

MR(x,X ,ΩΘ)

According to the minimax regret criterion, an optimal solution is a solution that achieves the minimax
regret (i.e., any solution in argminx∈X MR(x,X ,ΩΘ)), allowing to minimize the worst-case loss. Note that
if MMR(X ,ΩΘ) = 0, then any optimal solution for the minimax regret criterion is necessarily optimal
according to the DM’s preferences.

Example 19. We illustrate PMR calculations using Example 16 data (choosing a bike). We consider that
the set Θ is initially empty and that the preference model is a WS. We first compute the PMRs for each pair
of alternatives. We obtain the following table:

Road bike Mountain bike Gravel bike City bike
Road bike / 8 3 10

Mountain bike 9 / 5 2
Gravel bike 4 5 / 7
City bike 10 2 6 /

Note that as Θ is empty, the set ΩΘ is composed of all positive weights. If we add the constraint
∑3

i=1 ωi =
1, the extreme points of the convex polyhedron representing ΩΘ are (1, 0, 0), (0, 1, 0) and (0, 0, 1). The PMRs
values are thus simply equal to the maximal difference of performance for one of the criteria between two
alternatives (i.e., in this simple case there is no need for a linear program to calculate the PMRs). The max
regret associated to the road bike is thus equal to 10 (because if we recommend the road bike while the city
bike is the favorite bike of the DM, there is a loss of 10 according to the comfort criterion), the max regret of
the mountain bike is equal to 9, the max regret of the gravel bike is equal to 7 and the max regret of the city
bike is equal to 10. Therefore, the solution of minimax regret is the gravel bike.
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5.3 Exact method
5.3.1 Presentation

We have proposed a simple exact regret-based interactive method for the determination of a solution according
to the DM’s preferences [19]. The method is exact in the sense that, if the DM answers correctly to all pairwise
comparisons between feasible solutions, the solution recommended at the end of the procedure will have a
minimax regret equal to zero and will be thus optimal. Note that the value MMR(X ,ΩΘ) can only decrease
when inserting new preference information in Θ, as observed in previous works [24]. Therefore, we have also
adapted the method to produce near-optimal solutions, that is we bound the minimax regret of the final
solution to a small value (equal to δ), to limit the number of questions asked.

The main principle of the method, called IEEP (for Incremental Elicitation based on Extreme Points), is
as follows. At each iteration step, we generate a set of promising solutions using the extreme points of the
polyhedron representing ΩΘ (the set of admissible parameters). We ask then the DM to compare two of these
solutions and, we update ΩΘ according to her answer. The method is stopped whenever a (near-)optimal
solution is detected (i.e., a solution x ∈ X such that MR(x,X ,ΩΘ) ≤ δ holds). More precisely, taking as
input an instance of a MOCO problem P , a tolerance threshold δ ≥ 0, a scalarizing function fω with unknown
parameters ω and an initial set of preference statements Θ, our algorithm iterates as follows:

1. First, the set of all extreme points of the polyhedron ΩΘ is generated4. This set is denoted by EPΘ

and is equal to {ω1, ω2, . . . , ωk, . . . , ωq}, with q = |EPΘ|.

2. Then, for every point ωk ∈ EPΘ, the instance of P is solved by considering the precise scalarizing
function fωk (ωk is seen as a weight set). For each scalarizing function, fωk the corresponding optimal
solution is denoted by xk.

3. Finally, the MMR(XΘ,ΩΘ) value is computed, where XΘ = {xk : k ∈ {1, . . . , q}}. If this value is
strictly larger than δ, then the DM is asked to compare two solutions x, x′ ∈ XΘ and ΩΘ is updated
by imposing the linear constraint fω(x) ≤ fω(x

′) (or fω(x) ≥ fω(x
′) depending on her answer); the

algorithm stops otherwise.

The following proposition establishes the validity of IEEP:

Proposition 6. For any positive tolerance threshold δ, the algorithm IEEP returns a solution x∗ ∈ X such
that the inequality MR(x∗,X ,ΩΘ) ≤ δ holds [19].

Note that following the addition of preferences information Θ, the set XΘ can be filtered. Indeed, let us
consider a new partial preference relation, called ⪰Θ, that extends Θ and the Pareto dominance ⪰P .

Definition 38. Θ-preference dominance relation: we say that a point u = (u1, ..., up) ∈ Rp is Θ-preferred
to a point v = (v1, ..., vp) ∈ Rp if, and only if, g(u) ≻P g(v), where g(.) is a vector function defined
as follows: Rp → Rq; g(y) → (fω1(y), fω2(y), . . . , fωk(y), . . . , fωq (y)), with fωk representing the scalarizing
function obtained with the extreme point ωk (we consider that there are q extreme points associated to the
convex polyhedron representing the set of all parameters that are compatible with Θ). We denote this relation
by u ≻Θ v.

This dominance relations directly results from the linearity of the parameterized scalarizing function fω
with respect to its parameters [259].

Example 20. Let’s go back to Example 16. Let’s consider that the parameterized scalarazing function fω
is a WS and that the DM tell us that she prefers the mountain bike to the city bike. Therefore, we have
Θ = {((11, 9, 15), (9, 8, 17))} and EPΘ = {(1, 0, 0), (0, 1, 0), ( 12 , 0,

1
2 ), (0,

2
3 ,

1
3 )}. We can now compute g(y) for

each alternative. We obtain g((17, 18, 7)) = (17, 18, 12, 43
3 ), g((11, 9, 15)) = (11, 9, 13, 11), g((14, 14, 10)) =

(14, 14, 12, 38
3 ) and g((9, 8, 17)) = (8, 9, 13, 11). We see thus now that the road bike is preferred to the gravel

bike (as (17, 18, 12, 43
3 ) Pareto dominates (14, 14, 12, 38

3 )), and of course, the mountain bike is preferred to
the city bike ((11, 9, 13, 11) Pareto dominates (8, 9, 13, 11)). Therefore, it remains only two alternatives: the
road bike and the mountain bike.

We will now illustrate how the IEEP method works, with the help of an example.

Example 21. Let’s consider the multi-objective spanning tree problem (MOSTP) with 5 nodes and 7 edges
given in Figure 4. Each edge is evaluated with respect to 3 objectives. Assume that the DM’s preferences can
be represented by a WS, noted fω, with unknown parameters ω. Our goal is to determine an optimal spanning
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Figure 4: A MOSPT instance with 5 vertices and 3 objectives.

tree for the DM (δ = 0), i.e., a connected acyclic sub-graph with 5 nodes that is fω-optimal. We now apply
IEEP on this instance, starting with an empty set of preference statements (i.e., Θ = ∅).
Initialization: As Θ = ∅, ΩΘ is initialized to the set of all weighting vectors ω = (ω1, ω2, ω3) ∈ [0, 1]3 such
that ω1+ω2+ω3 = 1. In Figure 5, ΩΘ is represented by the triangle ABC in the space (ω1, ω2); the value ω3

is implicitly defined by ω3 = 1−ω1−ω2. Hence, the initial extreme points are the vectors of the natural basis
of the Euclidean space, corresponding to Pareto dominance; in other words, we have EPΘ = {ω1, ω2, ω3} with
ω1 = (1, 0, 0), ω2 = (0, 1, 0) and ω3 = (0, 0, 1). We then optimize according to all weighting vectors in EPΘ

using the Prim algorithm [206], and we obtain the following three solutions: for ω1, we have a spanning tree
x1 evaluated by f(x1) = (15, 17, 14); for ω2, we obtain a spanning tree x2 with f(x2) = (23, 8, 16); for ω3, we
find a spanning tree x3 such that f(x3) = (17, 16, 11). Hence, we have XΘ = {x1, x2, x3}.
Iteration step 1: Since MMR(XΘ,ΩΘ) = 8 > δ = 0, we ask the DM to compare two solutions in XΘ,
say x1 and x2. Assume that the DM prefers x2. In that case, we perform the following updates: Θ =
{((23, 8, 16), (15, 17, 14))} and ΩΘ = {ω : fω(23, 8, 16) ≤ fω(15, 17, 14)}. We then compute the extreme points
of ΩΘ and we obtain EPΘ = {ω1, ω2, ω3} with ω1 = (0.53, 0.47, 0), ω2 = (0, 1, 0) and ω3 = (0, 0.18, 0.82).
In Figure 6, ΩΘ is represented by the triangle BFE. We optimize according to these weights, and we obtain
XΘ = {x4, x2, x3} with f(x4) = (19, 9, 14).
Iteration step 2: Here MMR(XΘ,ΩΘ) = 1.18 > δ = 0. Therefore, we ask the DM to compare two solutions
in XΘ, say x3 and x2. Assume she prefers x3. We obtain Θ = {((23, 8, 16), (15, 17, 14)), ((17, 16, 11), (23, 8, 16))}
and ΩΘ = {ω : fω(23, 8, 16) ≤ fω(15, 17, 14) ∧ fω(17, 16, 11) ≤ fω(23, 8, 16)}. We compute the corresponding
extreme points, which are given by EPΘ = {(0.43, 0.42, 0.15), (0, 0.18, 0.82), (0, 0.38, 0.62)} (see triangle HGE
in Figure 7). We optimize according to these weights, and we obtain XΘ = {x3, x5} (after filtering with the
Θ-preference dominance relation) with f(x5) = (19, 9, 14).
Iteration step 3: Now MMR(XΘ,ΩΘ) = 1.18 > δ = 0. Therefore, we ask the DM to compare x3 and
x5. Assuming that she prefers x5, we update Θ by inserting the preference statement ((19, 9, 14), (17, 16, 11))
and we update ΩΘ by imposing the following additional constraint: fω(19, 9, 14) ≤ fω(17, 16, 11). The corre-
sponding extreme points are given by EPΘ = {(0.18, 0.28, 0.54), (0, 0.3, 0.7), (0, 0.38, 0.62), (0.43, 0.42, 0.15)}
(see Figure 8). Now, the set XΘ only includes one spanning tree x3 (after filtering) and y(x3) = (19, 9, 14).
Finally, the algorithm stops (since we have MMR(XΘ,ΩΘ) = 0 ≤ δ = 0) and it returns the solution x3

(which is guaranteed to be the optimal solution for the DM).
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5.3.2 Experimental results

We have applied IEEP to two MOCO problems: the MOSTP and the MOTSP. We have assumed that the
DM’s preferences can be represented by a WS fω, with weights ω = (ω1, . . . , ωn) not known initially. An

4This can be obtained by a polyhedral geometry library like polymake (https://polymake.org).
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important procedure of our approach is the selection of the two solutions to be compared from the set XΘ

(after filtering with the preference dominance relation). Throughout our experiments, we have tested three
different selection methods:

• Random: The two solutions are randomly chosen in XΘ.

• Max-Dist: We compute the Euclidean distance between all solutions in the objective space, and we
choose a pair of solutions maximizing the distance.

• CSS: The Current Solution Strategy (CSS) consists in selecting a solution x minimizing the max regret,
and one of its best challengers arbitrary chosen in the set argmaxx′ PMR(x, x′,ΩΘ) [38]. For instance,
in Example 16, with this strategy, the two solutions to be compared would be the gravel bike (the
solution of minimax regret) and the city bike (its best challenger).

Note that these three strategies are equivalent when only considering two objectives, since the number of
extreme points is always equal to two in this particular case.

Multi-objective spanning tree

We were able to solve instances with up to 100 nodes and 6 objectives in less than 1 minute. We have noticed
that Max-Dist is the best strategy for minimizing the number of generated preference queries. More precisely,
for all instances, the preferred solution is detected with less than 40 queries and the optimality is established
after at most 50 queries. In fact, we can reduce even further the number of preference queries by considering
a strictly positive tolerance threshold; to give an example, if we set δ = 0.1 (i.e., 10% of the initial regret),
then our algorithm combined with Max-Dist strategy generates at most 20 queries in all considered instances,
for an error never exceeding 5%.

We have also compared IEEP to the state-of-the-art method proposed by Benabbou and Perny [20]. The
latter consists essentially in integrating incremental elicitation into the Prim algorithm (this method is called
IE-Prim hereafter). The main difference between IE-Prim and IEEP is that IE-Prim is constructive: queries
are not asked on complete solutions but on partial solutions. We have observed that IEEP outperforms
IE-Prim in all settings, allowing the running time and the number of queries to be divided by three in our
biggest instances.

Multi-objective traveling salesman problem

Similar results have been obtained for the MOTSP. Instances with up to 100 vertices and 6 objectives
have been solved, in less than 10 minutes (the running times are much higher for the MOTSP than for the
MOSTP as the TSP is much more difficult to solve exactly with known preferences). Max-Dist remains the
best strategy for minimizing the number of generated preference queries.

More details on instances, implementations and results can be found in our related paper [19].

5.4 Genetic algorithm
5.4.1 Presentation

Our exact method is efficient, but limited to relatively small instances. Moreover, it is almost impossible
to apply the method with the Choquet integral as a scalarizing function. Indeed, the method requires the
determination of the extreme points of the polyhedron representing the preferences, and the number of
extreme points for preferences modeled with the Choquet integral quickly becomes too large [57]. Therefore,
we present in this section an interactive method based on an evolutionary algorithm.

During these past few years, integrating preferences into evolutionary algorithms has become increasingly
popular, see e.g., [40, 260] for some surveys. Due to the high number of different interactive methods that
has been developed, Xin et al. [260] have recently established a taxonomy identifying the important factors to
differentiate these methods. Four essential design factors are defined: interaction pattern (how the interaction
with the DM is scheduled during the run), preference information (how the preference information is obtained
from the DM), preference model (utility function, dominance relation or decision rules), and search engine
(how the interesting solutions are produced, e.g., mathematical programming techniques or heuristics).

For the new method developed in this section, the interaction with the DM is done during the run, the
preference information is retrieved from pairwise comparisons, the preference model is a utility/aggregation
function and the search engine can be both mathematical programming techniques or heuristics. To the best
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of our knowledge, the existing methods that share the same factors are: the Interactive Evolutionary Meta-
heuristic (IEM) [203], the Interactive Pareto Memetic Algorithm (IPMA) [130], the Progressively Interactive
Evolutionary Multi-Objective approach using Value Functions (PI-EMOVF) [66], the Necessary-preference-
enhanced Evolutionary Multi-objective Optimizer (NEMO) [41], the Brain-Computer Evolutionary Multi-
objective Optimization Algorithm (BC-EMOA) [15], the Interactive Non-dominated Sorting algorithm with
Preference Model called INSPM [198], the Evolutionary Multiple Objective optimization guided by interac-
tive Stochastic Ordinal Regression (EMOSOR) [246] and the Decomposition-Based Interactive Evolutionary
Algorithm for Multiple Objective Optimization (DBIEA) [247]. All but the first two of these methods have
been adapted for solving continuous multi-objective problems, and they have not been tested in MOCO
problems. The first two methods only consider utility functions based on linear or Tchebyshev aggregation.
In IEM, linear programming techniques are used to learn the parameters of the utility function, whereas an
internal genetic algorithm is employed in IPMA. In [130], IEM and IPMA were directly compared and IPMA
achieved better results on the considered MOTSP instances. IPMA follows the classical steps of genetic
algorithms while generating pairwise comparison queries periodically to reduce the set of possible utility
functions. The frequency of preference queries is controlled by a comparison probability, which is progres-
sively reduced during the search. Instead, our algorithm uses regret-based incremental elicitation techniques
to select informative preference queries and generates promising solutions during the search. As a result, our
method generates at most 25 queries on existing MOTSP instances with 300 cities and 7 objectives, whereas
IPMA needs between 30 and 60 queries on smaller instances (150 cities and 6 objectives).

In the numerical section, we have compared the results obtained by our algorithm to that of a new version
of NEMO called NEMO-II [42]. NEMO follows the same scheme as NSGA-II [64] (the reference algorithm for
solving continuous multi-objective problems), except that the dominance relation used in the sorting step is
replaced by a necessary preference relation which is built from the available preference information (expressed
in terms of pairwise comparisons of solutions): a solution a is necessarily preferred to a solution b if, and
only if, a is at least as good as b for all value functions compatible with the available preference data. The
main difference between NEMO and NEMO-II lies in the computation of the necessary preference relation:
NEMO requires solving a quadratic number of linear programs in the worst-case, whereas NEMO-II only
performs a linear number of such optimizations. Moreover, NEMO-II is able to handle inconsistencies in the
information provided by the DM: if at some point there is no value function compatible with the collected
preference information, then the constraints related to the oldest pairwise comparisons are removed until the
feasibility is restored. NEMO-II is also able to switch from a simple preference model (a WS) to a more
sophisticated one (the 2-additive Choquet integral) in order to capture more complex decision behaviors.

5.4.2 Regret-based incremental genetic algorithm

The interactive genetic algorithm that we have proposed uses regret-based incremental elicitation techniques
to select individuals from a population. Our algorithm, called RIGA for Regret-based Incremental Genetic
Algorithm, follows the traditional scheme of genetic algorithms but differs in the following way:

• The population P is composed of pairs (ω, xω), where ω is a possible instance of the preference param-
eters and solution xω is near optimal for the scalarazing function fω.

• The crossover and mutation operators are applied on parameter instances (not on solutions).

Initial Population To generate the initial population, we have to generate a set of possible preference
parameters. Then, for every generated parameter ω, we must determine a solution xω that is (near-)optimal
for the precise scalarizing function fω. To do so, we use an existing poly-time solving algorithm (e.g., Prim
algorithm for the MOSTP with a WS). These parameters could be generated uniformly at random, leading
to a poly-time initialization phase. However, we propose instead to generate the extreme points of the
polyhedron ΩΘ, as it gives better results in practice.

Crossover and Mutation As already mentioned, we perform crossovers and mutations on parameter
vectors (not on solutions). For every resulting parameter vector ω, we proceed as follows: we determine a
solution xω that is fω-optimal (or almost) using an existing efficient solving method, and then we add the pair
(ω, xω) in the population P . To obtain a population of the desired size, we create new parameter vectors by
means of convex combinations of vectors in P . This crossover operator is of particular interest in optimization
problems with imprecise preference parameters because it only generates new admissible parameters from
admissible parameters. In our experiments, we create a new parameter vector ω from two parameter vectors
ω′, ω′′ in P as follows:

ω = λω′ + (1− λ)ω′′
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where λ ∈ (0, 1) is generated uniformly at random. Then, given a mutation rate µ, we perform Gaus-
sian mutations on single objectives. This mutation operator yields very good results in practice, but more
sophisticated operators would be worth investigating.

Selection To create the new generation, we select K promising pairs from the population P as follows:

• First, we determine a (near-)optimal solution in population P by means of a regret-based incremental
elicitation approach. More precisely, let XP be the set of all solutions in P . While MMR(XP ,ΩΘ) > δ,
the DM is asked to compare two solutions x and x′, and state which one is preferred over the other
one. The set ΩΘ of admissible parameters is then updated by inserting the linear constraint fω(x) ≤
fω(x

′) or fω(x) ≥ fω(x
′), depending on her answer. In our experiments, we use the CSS to generate

the preference queries. Once the value MMR(XP ,ΩΘ) drops below the threshold δ, we stop asking
queries and select a solution x∗ that is optimal for the minimax regret criterion, i.e., a solution x∗ in
argminx∈XP

MR(x,XP ,ΩΘ).

• Then, we compute the distance in objective space between x∗ and x for every pair (ω, x) in P and we
select the K pairs that minimize the distance to breed the next generation. In our experiments, we use
the Euclidean distance, but other distances would be worth investigating.

Termination RIGA stops after M steps and returns a solution arbitrary chosen in argminx∈XP
MR(x,XP ,ΩΘ),

where P is the last generated population.
Note that RIGA has different tunable parameters: S the size of the population (generated by crossovers

and mutations), K < S the number of pairs selected for the next generation and M the number of generations.

5.4.3 Performance guarantees

We have shown the following result.

Proposition 7. For any MOCO problem with preferences represented by a WS, an OWA operator or more
generally by a Choquet integral, if the problem can be solved (exactly or approximately) in polynomial time
(in the problem size) when the preferences are precisely known, then RIGA can be implemented in such way
that it runs in polynomial time and asks no more than a polynomial number of queries [27].

Now we present an execution of RIGA on a small instance of the MOTSP.

Example 22. We consider an instance of the MOTSP with 6 cities and p = 3 cost functions to be minimized
(see Figure 9). We assume here that the DM’s preferences over Hamiltonian cycles can be represented by an
OWA operator. We now apply RIGA on this instance with δ = 0, S = 5, K = 2, M = 2.
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Figure 9: A MOTSP instance with 6 vertices and 3 objectives.

Initialization phase: The set of admissible weighting vectors is initially defined by ΩΘ = {ω = (ω1, ω2, ω3) ∈
[0, 1]3 : ω1 + ω2 + ω3 = 1 and ω1 ≤ ω2 ≤ ω3}. Note that we can assume that ΩΘ is represented by a convex
polyhedron throughout this subsection, since any constraint of the type fω(a) ≤ fω(b) is linear in ω for any
fixed performance vectors a, b. In Figure 10, the initial set ΩΘ is represented by the triangle ABC in the space
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Figure 12: ΩΘ after 2 queries.

(ω1, ω2), ω3 being implicitly defined by ω3 = 1−ω1−ω2. The extreme points of ΩΘ are (0, 0.5, 0.5), ( 13 ,
1
3 ,

1
3 )

and (0, 0, 1).

Initial population: In order to generate the initial population, we determine one near-optimal solution
for each extreme point of the polyhedron ΩΘ (using a local search procedure, for example). We obtain P =
{(ωA, xA), (ωB , xB), (ωC , xC)} where ωA = (0, 0.5, 0.5), ωB = ( 13 ,

1
3 ,

1
3 ), ω

C = (0, 0, 1), y(xA) = (49, 52, 60),
y(xB) = (39, 50, 66), and y(xC) = (56, 57, 58).

First iteration step: Since |P | = 3 and S = 5, we need to generate 2 more pairs. Applying the crossover
operator on ωA = (0, 0.5, 0.5) and ωB = ( 13 ,

1
3 ,

1
3 ), and then performing a Gaussian mutation on the first

objective, we obtain the following vector ω1 = (0.27, 0.33, 0.40). The function fω1 is then optimized, resulting
in the generation of the solution x1 whose cost vector is (39, 50, 66). The pair (ω1, x1) is then inserted in
P . When applying the crossover operator on ωB = ( 13 ,

1
3 ,

1
3 ) and ωC = (0, 0, 1), and after performing a

Gaussian mutation on the second objective, we obtain ω2 = (0.27, 0.33, 0.40) and cycle x2 whose cost vector
is (56, 57, 58). The pair (ω2, x2) is then inserted into P . Now we have a complete population.

The selection stage begins. We ask queries to the DM until MMR(XP ,ΩΘ) ≤ δ = 0, where XP =
(xA, xB , xC , x1, x2). Since MMR(XP ,ΩΘ) = 2 > 0, we ask the DM to compare two solutions in XP , say xA

and xB. Let’s suppose that the DM answers: “solution xA is better than solution xB”.
Then Θ (the set of preference statements) is updated by adding the pair (y(xA), y(xB)); thus we have

Θ = {((49, 52, 60), (39, 50, 66))}. Consequently, the set of admissible parameters ΩΘ is restricted by the linear
constraint fω(y(xA)) ≤ fω(y(x

B)), i.e., ω2 ≤ 3
4 − 2ω1. Now ΩΘ is represented by the triangle DCE in Figure

11, and we have MMR(XP ,ΩΘ) = 2 > 0. Since the minimax regret is above the threshold, we ask the DM to
compare two solutions in XP , say xC and xB. The DM tells us that she prefers solution xB to solution xC .
We then update Θ by inserting the pair ((49, 52, 60), (56, 57, 58)) and we restrict ΩΘ by imposing the linear
constraint fω(y(xA)) ≤ fω(y(x

C)), i.e., ω2 ≤ 2
7 −

9
7ω1 (ΩΘ is now represented by DCFG in Figure 12). Now

we have MMR(XP ,ΩΘ) = MR(xA, XP ,ΩΘ) = 0. We must select solutions for the next population. Here
we have x∗ = xA. Since K = 2, we need to select one more pair for the next generation. We choose xC as it
is the closest solution to x∗, according to the Euclidean distance. Thus, we have P = {(ωC , xC), (ωA, xA)}
for the next iteration step.

Second iteration step: Since |P | = 2 and S = 5, we have to generate three more pairs. After applying the
crossover and mutation operators on ωA and ωC , we obtain (0, 0.41, 0.59), (0, 0.21, 0.79) and (0, 0.18, 0.82).
We then optimize the corresponding OWA functions and, we obtain solutions x3, x4 and x5 whose cost
vectors are y(x3) = (49, 52, 60), y(x4) = (56, 57, 58) and y(x5) = (56, 57, 58) respectively. Therefore, we have
P = {(ωA, xA), (ωC , xC), (ω3, x3), (ω4, x4), (ω5, x5)}. Since MMR(XP ,ΩΘ) = MR(xA, XP ,ΩΘ) = 0 ≤ δ,
we do not need to ask a new query. At this step, we have x∗ = xA.

Since M = 2, RIGA only performs two iteration steps and then stops by returning the solution x∗ = xA

(corresponding to the cycle 2−0−3−1−5−4−2), which is here optimal according to the DM’s preferences.

5.4.4 Experimental results

We have experimented the method on two problems: the MOTSP and the multi-objective knapsack problem
(MOKP). Three different aggregation functions have been tested: the WS, the OWA operator and the
Choquet integral. We have compared RIGA to:

• the Interactive Local Search (ILS): ILS is a regret-based local search that we have developed [26, 27]
recently. The method starts from a promising solution generated using a heuristic method. Then, we
move from solution to solution using a neighborhood function. In order to select the next solution,
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preference queries are asked to discriminate between Pareto non-dominated solutions within neighbor-
hoods. More precisely, at every iteration step, we ask queries until the minimax regret drops below a
given threshold δ, and then we move to a neighbor solution that minimizes the max regret. The method
stops when no improving solutions are found in the neighborhood.

• the Necessary-preference-enhanced Evolutionary Multi-objective Optimizer (NEMO-II) [42]: in this
genetic algorithm, the mutation and crossover operators are applied on solutions (instead of weighting
vectors), and a tournament selection method is used to construct populations. At every iteration
step, linear programming is used to rank the solutions in the current population, using the collected
preference information and the crowding distance. In this method, one preference query is generated
every 10 generations: the DM is asked to compare two potentially good solutions selected among those
in the current population.

• a two-phase method: this method consists in first constructing the Pareto set (or an approximation
of this set), and then applying the CSS strategy on this set until the minimax regret drops below a
threshold δ ≥ 0.

• the Incremental Elicitation based on Extreme Points (IEEP) (see Section 5.3).

We were able to solve instances of the MOKP with up to 100 items and 6 objectives (in less than 30
seconds), and instances of the MOTSP with up to 300 cities and 6 objectives (in less than 4 minutes). For
the MOKP, the error was never more than 0.71% and the number of queries was always less than 15. For
the MOTSP, the error was never more than 1.37% and the number of queries was always less than 33 (this
high number has been attained when solving the larger instances with 6 objectives and the Choquet integral
as scalarazing function). The RIGA method outperforms all the other methods used in the benchmark, in
terms of running time, error and number of queries.

From the experiments, it is worth noting that the IEEP method was unable to solve instances with
the Choquet integral with more than 3 criteria, in a reasonable time (less than 30 minutes). This can
be explained by the fact that the number of extreme points of the polyhedron representing the parameter
imprecision increases with the number of criteria. For example, after 25 queries, the number of extreme
points is approximately equal to 4500 for problems involving 4 criteria.

The two-phase method also proved to be very expensive in terms of computation time, which underlines
the fact that it is very relevant to interleave elicitation and optimization.

Full results can be found in the PhD Thesis of Leroy [157].

5.5 Interactive methods for solving MOCO problems under matroid constraints
In this section, we study the particular case of MOCO problems under matroid constraints. We have proposed
two interactive methods, based on greedy search and local search, for solving these problems. Two publications
are related to this section. In [29], we studied linear functions, while in [30] we considered submodular
functions. As submodular functions are also linear, we will focus here only on submodular functions.

5.5.1 Matroid optimization

We consider the problem of finding an independent set of maximum weight in a matroid. A matroid M is
a pair (E, I) where E is a set of size n (called the ground set) and I ⊆ 2E is a non-empty collection of sets
(called the independent sets) such that, for all X,Y ∈ 2E , the following properties hold:

(A1): The empty set is independent, i.e., ∅ ∈ I

(A2): (Y ∈ I and X ⊆ Y )⇒ X ∈ I.

(A3): (X ∈ I and Y ∈ I and |Y | > |X|)⇒ ∃e ∈ Y \X such that X ∪ {e} ∈ I.

Axiom A2 is sometimes called the hereditary property, whereas A3 is known as the augmentation property.
Axiom A2 implies that all maximal independent sets (w.r.t set inclusion) have the same cardinality. A
maximal independent set is called a basis of the matroid, and the set of all bases will be denoted by B. The
cardinality of a basis is called the rank of the matroid (denoted by r(M)). A special focus will be given to
the uniform matroid, which is defined by I = {X ⊆ E : |X| ≤ k} for a given positive integer k ≤ n. In the
numerical tests, we will also consider the partition matroid which is defined by a collection D = {D1, . . . , Dq}
of q disjoints subsets of E, a positive integer di ≤ |Di| for all i ∈ {1, . . . , q} and I = {X ⊆ ∪qi=1Di : ∀i ∈
{1, . . . , q}, |X ∩Di| ≤ di}.
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The problem of finding a maximum weight independent set in a matroid (simply called “matroid optimiza-
tion” problem) can be defined as follows: given a matroid M = (E, I), we want to compute maxX∈I z(X)
where z is a positive set function defined on 2E measuring the weight (or utility) of any subset of E. Here, we
assume that z is monotonic with respect to set inclusion (i.e., z(X) ≤ z(Y ) for all X ⊂ Y ⊆ E). Note that
the latter assumption implies that we can focus on the bases of the matroid when searching for an optimal
independent subset. The optimization of a set function under a matroid constraint has received much atten-
tion since the seminal work of Edmonds [79]. This problem has for example multiple applications in various
contexts such as recruitment, committee election, combinatorial auctions, scheduling, resource allocation,
facility location and sensor placement. Various algorithms are now available to solve this problem, either to
optimality or approximately, for specific classes of set functions [47, 186, 190, 191, 217, 230, 254].

Example 23. A famous matroid optimization problem is the minimum spanning tree problem. Let’s consider
the following simple complete graph composed of 3 nodes. The set E of the corresponding matroid contains all
edges of the graph, i.e., E = {(1, 2), (2, 3), (1, 3)} and the set I of independent sets is composed of all subsets
of edges that do not form any cycle, that is: I = {∅, {(1, 2)}, {(1, 3)}, {(2, 3)}, {(1, 2), (1, 3)}, {(1, 2), (2, 3)},
{(1, 3), (2, 3)}} (this matroid is sometimes called the graphic matroid). Let’s consider the following positive
set function z measuring the weight of any independent set X, equal to z(X) = max

e∈E
c(e) −

∑
x∈X

c(x), where

c(e) represents the cost associated to an edge e. Then the matroid optimization problem consists in searching
for a base of maximum weight which is equivalent to the minimum spanning tree problem (the optimal basis
is here equal to {(1, 2), (1, 3)}).

1

23

32

7

When the set function is additive (i.e., the value of any set is defined as the sum of the values of its ele-
ments), it is well known, after Edmonds [79], that the problem can be efficiently solved by a greedy algorithm.
However, preferences are not always representable by additive functions due to possible interactions among
elements. In decision theory, the additivity of utilities is often relaxed and submodular utility functions are
frequently used to guarantee a principle of diminishing returns [3, 155, 254]. This principle states that adding
an element to a smaller set has more value than adding it to a larger set, formally the set function z should
satisfy the following property: z(X ∪ {i})− z(X) ≥ z(Y ∪ {i})− z(Y ) whenever X ⊆ Y and i /∈ Y . This is
known to be equivalent to submodularity of function z defined by: z(X ∪ Y ) + z(X ∩ Y ) ≤ z(X) + z(Y ) for
all X,Y .

The maximization of a submodular function is NP-hard in general because it includes the max-cut problem
as special case [47]. Approximate greedy and local search algorithms have been proposed for the maximization
problem, and some interesting worst case bounds on the quality of the approximations returned are known [47,
191, 230, 254].

We assume here that z is a set function representing the subjective preferences of a DM: for any two
sets X,Y ∈ 2E , X is preferred to Y if and only if z(X) ≥ z(Y ). Hence, finding a maximum weight basis
amounts to determining an optimal basis according to the DM’s preferences. Moreover, we assume that z
is initially not known. Instead, we are given a (possibly empty) set Θ of pairs (X,Y ) ∈ I × I such that
X is known to be preferred to Y by the DM. Such preference data can be obtained by asking comparison
queries to the DM (i.e., by asking the DM to compare two subsets and state which one is preferred). Let Z
be the uncertainty set implicitly defined as the set of all functions z that are compatible with Θ, i.e., such
that z(X) ≥ z(Y ) for all (X,Y ) ∈ Θ. The problem is now to determine the most promising basis under
preference imprecision. To this end, we consider the minimax regret decision criterion (as done previously).
We give below the definitions of pairwise max regrets (PMR), max regret (MR) and minimax regret (MMR)
in the context of matroid optimization.

Definition 39. For any collection of sets S ⊆ 2E and for any two sets X,Y ∈ S:
PMR(X,Y, Z) = maxz∈Z{z(Y )− z(X)}
MR(X,S, Z) = maxY ∈S PMR(X,Y, Z)
MMR(S, Z) = minX∈S MR(X,S, Z)

For matroid optimization problems, computing the MMR value at every step of the elicitation procedure
may induce prohibitive computation times, as it may require to compute the pairwise max regrets for all

48



pairs of distinct bases in B. Therefore, as done in the preceding sections, we propose to combine search
and regret-based incremental elicitation to reduce both computation times and number of queries. More
precisely, preference queries are generated during the search to progressively reduce the set Z until being
able to determine a (near-)optimal basis.

5.5.2 An interactive greedy algorithm

For problems where z is exactly observable, good approximate solutions can be constructed using the following
simple greedy algorithm: starting from X = ∅, the idea is to select an element e ∈ E\X that maximizes the
marginal contribution to X, i.e.,

∆(e|X) = z(X ∪ {e})− z(X) (4)

without loosing the independence property. The algorithm stops when no more element can be added to
X (the set X is a basis at the end of the procedure). For monotonic submodular set functions, this greedy
algorithm has an approximation ratio of (1− 1

e ) ≈ 0.63 for the uniform matroid and an approximation ratio
of 1

2 in the general case [92, 191].
For problems where the set function w is imprecisely known, we propose an interactive version of the greedy

algorithm that generates preference queries only when it is necessary to discriminate between some elements.
More precisely, queries are generated only when the available preference data is not sufficient to identify an
element that could be added to the set X, to ensure that the returned basis is a good approximate solution
with provable guarantees. We implement this idea by computing minimax regrets on sets S = {X ∪{e} : e ∈
E\X s.t. X ∪{e} ∈ I}, asking preference queries at step i until MMR(S,W ) drops below a given threshold
δi ≥ 0, where δi is a fraction of the tolerance threshold δ such that

∑r(M)
i=1 δi = δ (see Algorithm 5).

Algorithm 5 Interactive Greedy Algorithm

IN ↓: M=(E, I): a matroid, δ: a tolerance threshold, Z: a set of set functions.
OUT ↑: a (near-)optimal basis X.
X ← ∅
Ec ← E
for i ∈ {1, . . . , r(M)} do
S ← {X ∪ {e} : e ∈ Ec}
while MMR(S, Z) > δi do

Ask the DM to compare two elements of S
Update Z according to the DM’s answer

Select e ∈ Ec such that MR(X ∪ {e},S, Z) ≤ δi and move e from Ec to X
Remove from Ec all elements e such that X ∪ {e} ̸∈ I

return X

We now present an execution of our algorithm on a small example.

Example 24. We consider in this example the maximum coverage problem over a uniform matroid. In this
problem, we have a set of q elements: V = {v1, . . . , vq} and a family of n subsets E = {S1, . . . , Sn}. Each
subset covers some elements. As each element has a utility, the goal is to select a limited number k of subsets
such that the sum of the utilities of the covered elements are maximized.

We study the following instances: q = 10 and n = 8. The 8 subsets are defined as follows: S1 =
{v3, v4, v5}, S2 = {v1, v3}, S3 = {v6, v10}, S4 = {v2, v8}, S5 = {v7, v9}, S6 = {v6, v7, v10}, S7 = {v2, v8}, S8 =
{v1, v3, v5}. A feasible solution is a collection of subsets X ⊆ E such that |X|≤k (here we set k = 2), and
the goal is to identify a feasible solution X maximizing the following set function z(X) defined on 2E:

z(X) =
∑

v∈
⋃

S∈X S

u(v) (5)

where u(v) ≥ 0 is the utility of an element v ∈ V . In that case, it can be proved that w is monotone and
submodular [124]. We further assume that all elements v ∈ V are evaluated with respect to 3 criteria (denoted
by u1, u2, and u3), and their evaluations are given in Table 2. Then, the utility of any element v ∈ V is:

u(v) =

3∑
i=1

λiui(v) (6)

where λ = (λ1, λ2, λ3) ∈ R+ represents the value system of the DM.

49



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
u1 4 2 2 3 7 6 8 7 7 1
u2 5 7 1 2 3 1 5 1 9 1
u3 4 5 3 7 2 5 3 8 4 4

Table 2: Performance vectors attached to elements in Example 1.

We start the execution with no preference data, and therefore we have to consider all weighting vectors ω
in the set ΩΘ = {ω ∈ [0, 1]3 :

∑3
i=1 ωi = 1}, which implicitly defines the uncertainty set Z using Equations (5-

6). In Figure 13, ΩΘ is represented by the triangle ABC in the space (ω1, ω2), ω3 being implicitly defined by
ω3 = 1 − ω1 − ω2. Now, let’s execute the Algorithm 5 with δ = 0. Note that only two iteration steps will be
needed, as the rank of the uniform matroid is equal to k = 2.

First iteration step: We have X = ∅ and Ec = E, and therefore S = E. Since MMR(S, Z) = 6 > 0,
the DM is asked to compare two elements of S, say S5 and S7. Let’s consider that she prefers S5. Then
Z is updated by imposing the constraint z({S5}) ≥ z({S7}) which amounts to restricting ΩΘ by imposing
ω2 ≥ 1

2 − ω1. Now ΩΘ is represented by the polyhedron BCDE in Figure 14. Since MMR(S, Z) = 2.5,
the DM is asked to compare two subsets, say S5 and S6. Let’s consider that she preferred S5. Then, Z is
updated by imposing the constraint z({S5})≥ z({S6}), which amounts to further restricting ΩΘ by imposing
ω2 ≥ 5

12 −
5
12ω1. Now ΩΘ is represented by the polyhedron BCFE in Figure 15. We have MMR(S,W ) =

MR({S5},S, Z) = 0, and therefore S5 is added to X.
Second iteration step: We have X = {S5} and Ec = E\{S5}, and therefore S = {{S5}∪{S} : S ∈ Ec}.

Since MMR(S, Z) = 1.5, we ask the DM to compare two elements of S, say {S5, S8} and {S5, S7}. Let’s
consider that the DM prefers {S5, S8}. The uncertainty set Z is therefore updated by imposing z({S5, S8}) ≥
z({S5, S7}), i.e., λ2 ≥ 1 − 8

3λ1. Now ΩΘ is represented by the triangle BGC in Figure 16. Since we have
MMR(S, Z) = MR({S5, S8},S, Z) = 0, then the subset S8 is added to X.

As |X| = k = 2, the algorithm stops and returns X = {S5, S8} which is the optimal solution for this
instance. This shows that we are able to make good recommendations without knowing λ precisely (here only
3 queries are needed).
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•
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1

Figure 13: Initial set ΩΘ.
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Figure 14: 1 query.
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Figure 15: 2 queries.
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Figure 16: 3 queries.

We have provided theoretical guarantees on the quality of the returned solution [30].

Proposition 8. Let Zf be the final set Z when Algorithm 5 stops. For the uniform matroid, Algorithm 5 is
guaranteed to return a basis X such that:

∀w ∈ Zf , z(X) ≥
(
1− 1

e

)
z(X∗)− δ, where X∗ ∈ argmax

Y ∈I
z(Y ).

And a more general result (for any type of matroids):

Proposition 9. Let Zf be the final set Z when Algorithm 5 stops. Algorithm 5 is guaranteed to return a
basis X such that:

∀z ∈ Zf , z(X) ≥ 1

2

(
z(X∗)− δ

)
, where X∗ ∈ argmax

Y ∈I
z(Y ).

5.5.3 An interactive local search

We consider now another efficient way of constructing a good approximate solution to matroid optimization
problems with monotonic submodular functions. More precisely, we focus on the following simple local
search approach: starting from an arbitrary basis X, the idea is to replace one element e ∈ X by an element
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e′ ∈ E\X such that X ∪ {e′}\{e} belongs to I and is better than X. This simple exchange principle can
be iterated until reaching a local optimum. When z is exactly observable, the local search algorithm has
an approximation ratio of 1/2, even in the special case of the uniform matroid [92]. When z is not known,
the local search algorithm can be combined with a preference elicitation method, which collects preference
data only when it is necessary to identify improving swaps. To implement this idea, we have proposed the
Algorithm 6 where N (X) is the neighborhood of the basis X (i.e., the set of bases that differ from X by
exactly one element). The procedure ComputeInitialBasis called in line 1 can be any heuristic providing a
good starting solution.

Algorithm 6 Interactive Local Search Algorithm

IN ↓: M=(E, I): a matroid, δ: a tolerance threshold, Z: a set of set functions.
OUT ↑: a (near-)optimal basis X.
X ← ComputeInitialBasis(M)
improve ← true
while improve do
N (X)← {X ′ ∈ B : |{X \X ′} ∪ {X ′ \X}| = 2}
S ← N (X) ∪ {X}
while MMR(S, Z) > δ/r(M) do

Ask the DM to compare two elements of S
Update Z according to the DM’s answer

if MR(X,S, Z) ≤ δ/r(M) then
improve ← false

else
X ←RandomSelect(argminX′∈N (X) MR(X ′,S, Z))

return X

The following proposition shows that the basis returned by Algorithm 6 is a good approximate solu-
tion [30].

Proposition 10. Let Zf be the final set z when Algorithm 6 stops. Algorithm 6 is guaranteed to return a
basis X such that:

∀z ∈ Zf , z(X) ≥ 1

2

(
z(X∗)− δ

)
, where X∗ ∈ argmax

Y ∈I
z(Y ).

5.5.4 Experimental results

We have tested the two algorithms on two problems: the maximum coverage problem and the collective
subset selection problem [231]. Two matroid constraints have been considered for each problem: the uniform
matroid and the partition matroid. The algorithms were evaluated through three performance indicators:
number of queries, computation times and empirical error, expressed as a percentage from the optimal
solution. Two tolerance thresholds have been used: δ = 0 and δ = 20% of the initial maximum regret (to
reduce the number of preference queries). We have considered instances of the maximum coverage problem
with a set V = {v1, . . . , vq} of q = 100 elements, and a family E of n = 80 subsets of V . The family of
subsets is generated as suggested by Resende [213]. The utility of an element v ∈ V is defined by a WS
uλ(v) =

∑p
i=1 λiui(v) where ui is the evaluation of v on criterion i ∈ P. Utilities are randomly generated

within [1, 10] and three values of p are considered: p = 4, 6, and 8. The DM’s preferences are then represented
by a submodular monotone set function w defined by:

z(X) =
∑

v∈
⋃

S∈X S

uλ(v)

for any X ⊆ E. For the uniform matroid, we focus on subsets of size at most k = 16, i.e., I = {X ⊂ E :
|X| ≤ 16}. For the partition matroid, set E is randomly partitioned into q = 4 sets D = {D1, . . . , Dq}, and at
most di = 4 elements can be selected for all i ∈ {1, . . . , q}, i.e., I = {X ⊆ E : ∀i ∈ {1, . . . , 4}, |X ∩Di| ≤ 4}.
To generate preference queries during the execution of our algorithms, we use the CSS.

For δ = 0, we have observed that the interactive greedy algorithm was outperformed by the interactive
local search procedures: the interactive greedy algorithm was about 10 times slower on average and asked
more preference queries. We also observed that using δ = 0.2 allows to significantly reduce the number of
queries, without increasing the error too much (max 2.3%). Finally, we observed that our algorithms perform
better on the uniform matroid than on the partition matroid which is a little more complex.

For the collective subset selection problem, we observed that the interactive greedy algorithm outper-
formed the interactive local search procedure.

51



6 Conclusion and future work

Exact and heuristic methods for solving MOCO problems
In Section 2 we have presented exact and heuristic methods with the aim of generating Pareto-optimal sets
of MOCO problems. While the first exact methods developed were only able to solve small size instances of
MOCO problems, the recent developments have allowed to solve bigger size instances. For example, with the
method of Tamby and Vanderpooten [241] based on the ϵ-constraint method and a division of the search space
into zones, instances of the MO knapsack problem presenting more than 8 000 Pareto non-dominated points
(50 items, 5 objectives) could be solved in reasonable CPU time (about 1 hour). For the MO assignment
problem, instances with more than 24 000 Pareto non-dominated could be solved (n = 20, 4 objectives).
With heuristic methods, more than 250 000 Pareto non-dominated points for instances of the MOTSP could
be generated with the method of Cornu et al. [61] (300 cities, 3 objectives). Dealing with such high size
set of points in heuristic methods was made possible mainly by the development of new data structures and
methods for archiving a non-dominated set. However, generating large sets, while theoretically interesting,
does not seem to be very useful in practice. Indeed, it becomes very difficult for the DM to interpret such
sets, who is often more interested in smaller sets.

Good representation

If the use of Pareto dominance is still necessary, it is crucial to find out a compact representation of the
Pareto-optimal set in order to present DMs with a manageable collection of points that accurately describe
the various options. The main challenge of methods aiming to generate a compact representation is to decide
which solutions to keep and which to discard as new ones are generated. Three properties are often used
to measure the quality of a representation: coverage (each Pareto-dominated point is either represented or
covered by at least one point in the representation), spacing (ensures that there is adequate spacing between
any two points within the representation) and cardinality (to minimize, in order to keep the representation
as manageable as possible) [88, 216]. To achieve these properties, the ϵ-dominance relation (see Definition 15
in Section 2.3) is often employed.

For heuristic methods, as the coverage property is more difficult to achieve, it is more common to use
indicator-based methods which rely on a quality indicator (e.g., the hypervolume [44] or the ϵ-indicator [45]),
or even decomposition-based [265] methods, which are based on a division of the MOCO problem into several
single-objective problems (see the recent survey of Li et al. [158]).

In Section 2.5, we have presented a method for updating a Pareto archive, based on the ND-Tree data
structure, which is an unbounded archive. It would be interesting to study how to adapt the method for
bounded archives. As in ND-Tree a division of the objective space is performed using a clustering approach,
the idea would be to limit the number of points in each cluster. The challenge is to select the best represen-
tative points in order to keep high-quality approximations.

Other dominance relations

In Section 5, we have defined the Θ-preference dominance relation, i.e., a dominance relation where some
preference information Θ is taken into account (see Definition 38 in Section 5.3.1). Kaddani et al. [136] have
provided exact methods to generate the non-dominated set according to this preference dominance relation
(they assume that the DM’s preferences can be represented by a WS). We have also studied the integration of
this preference relation into PLS [170]. Nonetheless, adapting PLS proved to be a challenging task. Indeed,
when little or no information is available, the dominance relation provides enough diversity to guarantee
a good exploration of the search space. When more information is integrated into the preference relation,
the method converges much faster, but the search space is less explored, which can lead to the generation
of solutions of poorer quality. It would therefore be interesting to develop an adaptive PLS method, i.e.,
one capable of adapting to the dominance relation. Indeed, the more restricted the dominance relationship,
the more necessary it is to add search diversification mechanisms (e.g., adding dominated solutions to the
population). This topic is also closely linked to the automatic algorithm configuration domain [195], would
deserve to be studied in the context of PLS with preference information. A step further will be to dynami-
cally updating the parameters of the algorithm according to the instances or to the behavior of the algorithm
during the search [34], and to attain an “any-time” behavior, i.e., whatever the time allowed to the algorithm,
the best set of parameters is used in order to get the best approximation that is possible to reach for the
time considered [71, 77].
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Machine learning based methods

In recent years, interest in machine learning (ML) techniques to address CO problems has grown consid-
erably [32]. One of the reasons for this increased attention is the considerable number of practical problems
that have to be solved repeatedly with slight variations in the input parameters. Consequently, it is possible
to improve performance with ML by targeting specific problem distributions, as traditional solvers lack the
ability to identify similarities with previously encountered instances. Note that CO techniques (e.g., meta-
heuristics) have also been used to address ML problems, in particular for the general problem of extracting
information from large data sets [69].

As Bengio et al. [32] points out, there are two main paradigms for using ML in CO: the first involves
approximating expert knowledge through imitation (supervised learning [63]), while the second aims to go
beyond this knowledge by learning new policies through experience (reinforcement learning [238]). The
authors also classify the different strategies employed to achieve these goals into three distinct groups. The
first category involves the direct replacement of conventional methods by ML models. The second category
uses ML to refine algorithm parameters, including initializing algorithms with candidate solutions. The third
approach, perhaps the most extensively studied, revolves around a hybridization of techniques. For example,
there is a considerable body of literature on exploiting ML to improve exact solvers by replacing repetitive
decision processes in traditional algorithms, e.g., best-cut prediction or node and variable selection in branch
and bound methods.

Concerning the direct application of ML techniques to solve MO problems, to our knowledge, there are
only very few results. Even for single-objective optimization, there are still no completely convincing results,
and existing classical solvers still outperform approaches derived directly from ML [135]. Instead, methods
are used to reduce the size of problems. For example, Sun [237] tries to predict the probability of an edge
belonging to an optimal solution of the TSP. Using prediction techniques for the MOTSP problem seems an
ambitious challenge. Indeed, an edge usually belongs to several Pareto-optimal solutions. The idea would
therefore be to predict the frequency of occurrence of an edge in the Pareto-optimal solutions. We had
already carried out similar work in the context of the bi-objective TSP, where the aim was to reduce the set
of candidate edges for 2-opt moves in a local search [171]. The approach was instead based on generating some
supported Pareto-optimal solutions and observing the frequency of occurrence of edges in these solutions. It
would therefore be interesting to compare this technique with a pure ML approach. This could be done by
using specific ML techniques for graph learning, namely graph neural networks (GNNs) [48, 165]. GNN is a
promising deep learning approach for graph-based learning. The fundamental design principle behind GNNs
is the use of pairwise message passing, enabling graph nodes to continuously refine their representations
through iterative information exchange with their neighboring nodes. To our knowledge, GNNs has only
been applied to solve a MO facility location problem [164] and it would be exciting to adapt it for other
MOCO problems.

We have not found in the literature any ML method combined with exact approaches to solve MOCO
problems. However, there is an extensive literature on the application of ML methods, particularly deep
reinforcement learning (DRL) methods, to heuristically solve MOCO problems [140, 160, 163, 263, 266]. DRL,
is a branch of machine learning that unites RL with deep learning. RL focuses on the task of a computational
agent acquiring decision-making abilities through iterative experimentation. DRL extends this approach by
integrating deep learning techniques, enabling agents to make decisions based on unprocessed input data,
using artificial neural networks. In the literature, learning-based techniques for addressing combinatorial
optimization problems can be broadly categorized into two groups: end-to-end DRL approaches and heuristic
search methods that are guided by DRL. Most of the DRL techniques to solve MOCO problems are end-to-
end approaches: the MOCO problem is decomposed into several single-objective CO problems, and then a
single model or multiple models are used to solve these sub-problems [140, 266]. One prospect would therefore
be to integrate DRL techniques to guide the local search methods presented in Section 2.

Lorenz dominance
In Section 3, we have presented the Lorenz dominance and its use in multi-agent combinatorial optimization
problems for generating fair solutions. An efficient algorithm for generating all Lorenz-optimal solutions of
bi-objective CO problems has been presented. Its extension to problems with more than two objectives is a
natural perspective. Another point that would be worth to be studied in the following: Lorenz dominance
allows generating fair solutions for multi-agent problems. However, in some applications, it can happen that
an auxiliary cost function must be taken into account. Let’s consider for example an allocation problem
where each agent has some preferences for the items to be allocated, and the allocation of an item to an
agent has a certain cost. In this case, the goal is to find a fair allocation between the agents, while minimizing
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the total allocation cost. Therefore, the problem goes back to the minimization of a linear function (the cost
function) under the constraint that the solutions are fair (i.e., Lorenz-optimal). This topic has been widely
studied in the context of Pareto dominance (finding a solution that optimizes a linear function under the
constraint that the solution is Pareto-optimal) [1, 36, 166, 242]. For solving this problem, a simple method
would be to compute solutions in non-decreasing order of the cost function using a k-best algorithm, until a
Lorenz-optimal solution has been generated (a Lorenz efficiency test will be thus needed, to be able to decide
if a solution is Lorenz-optimal or not). However, if the solution minimizing the cost function is far to be
Lorenz-optimal, the convergence of the method could be really slow. It would be more relevant to investigate
the recent ideas developed for Pareto dominance, based on a decomposition of the search region into a union
of search zones (i.e., subset of the objective space where new non-dominated points can be found) [242].

Choquet integral
In Section 4 we have presented a method for generating all Choquet-optimal solutions of MOCO problems.
The method is however only effective for bi-objective problems. We have tried to develop a method for
generating only the 2-additive Choquet-optimal, but only a subset of the 2-additive Choquet-optimal points
could be generated. More experiments will be needed to show the differences between WS optimal solutions,
Choquet-optimal solutions and 2-additive Choquet optimal solutions of MOCO problems. It will also be
interesting to study what brings exactly and concretely (for a DM) the 2-additive Choquet optimal solutions
that are not WS optimal solutions, given that they are harder to compute.

Interactive methods
In Section 5 we have presented different interactive methods for solving MOCO problems: an exact method
(IEEP), a genetic algorithm (RIGA) and a specific greedy/local search for problems under matroid con-
straints. All the methods are based on the same principle: a function linear with respect to its (unknown)
parameters is used to represent the preferences of the DM, the preference information is retrieved from pair-
wise comparisons and min-max regret approaches are used to ensure the convergence of the methods. A
primary limitation of these methods is that the preference model must be chosen at the start of the method,
with no option to change the model during the resolution process. More flexibility will be thus needed, to be
able to change the model during the resolution, according to the preferences indicated by the DM, as in the
case of the evolutionary algorithm developed by Branke et al. [42]. Starting with the Choquet integral could
also be an option, as this operator is general and can model many different ones, but our experiments showed
that it was much more difficult to optimize. Moreover, in our study comparing WS-optimal points and
Choquet-optimal point [169], it has been demonstrated that the probability to generate a Choquet optimal
point which is not WS-optimal is very low for MOCO problems.

We would also like to take a closer look at the choice of the two solutions to be compared. Indeed, in
most of our experiments, we used the CSS strategy, which consists in selecting a solution minimizing the
max regret, and one of its best challengers [38]. However, in our experiments with IEEP, we have seen
that it is not always the best strategy for minimizing the number of questions put to the DM. Indeed, if
the solution minimizing the max regret is the preferred solution of the DM (but some more iterations are
needed before the method converges), this solution will correspond to the solution of minimax regret, and the
pairwise comparison put to the DM will always contain this solution, which does not bring much diversity.
Ciomek et al. [53] have proposed different heuristic strategies for selecting the best pairwise comparisons in
the context of MCDA problems. It will be interesting to see if these strategies could be integrated in our
methods for solving MOCO problems.

Finally, the matroid problems we have dealt with only concern the maximization of a monotone submod-
ular function. However, it would be also possible to study the minimization of submodular functions [182].
Surprisingly, the properties of algorithms for the minimization case differ strongly from algorithms developed
for maximization [129]. For example, the problem of finding a minimum-cost cut in a graph can be solved
with the Stoer-Wagner algorithm [235] in polynomial time, while finding a maximum-value cut in a graph is
NP-hard [58]. On the other hand, the minimization of submodular functions under constraints becomes more
difficult. For example, applying the greedy algorithm to the minimization of a submodular function under
the uniform matroid constraint has a performance guarantee depending on the “curvature” of the submodular
function [8]. The closer the curvature is to 0, the closer the function is to being modular (i.e., linear). So,
for a totally linear function, the greedy algorithm is guaranteed to find the optimal solution, whereas for a
highly “curved” submodular function, there is no longer any guarantee (whereas there is a guarantee of (1− 1

e )
whatever the curvature of the curve for maximization). For these problems, it would be thus advisable to
study new approaches in order to obtain performance guarantees.
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