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1
General introduction
1.1. NANOPARTICLE LIQUID CRYSTALS

Matter composed of anisotropic building blocks (e.g. rod- or disk-shaped mesogens) display
structural and dynamic aspects that are much richer than their spherical counterparts. Their key
asset is that the interactions – be they of a direct nature or represented by some potential of mean
force – are intrinsically dependent on the orientations of the constituents. A prominent manifes-
tation is the formation of liquid crystals [1]. The most basic liquid crystal state is characterized
by long-ranged orientational order in which the main particle axes are oriented along a com-
mon director (see Fig. 1.1b and Fig. 1.2b). Alternatively, the structure may exhibit additional
long-ranged positional order in one or two dimensions. For rod-shaped particles, the most com-
mon of such lower symmetry phases is the smectic or lamellar phases (Fig. 1.1c), characterized
by a uni-dimensional periodic stacking of membranes in which rods adopt a bi-dimensional
fluid-like structure. For discotic particles, columnar phases usually arise at thermodynamic
conditions favoring a partial freezing of the positional degree of freedom. These structures are
composed of a bi-dimensional lattice (usually hexagonal) of columns of stacked disks. Within
these columns the particle centres-of-mass are organized in a disordered manner with no long-
ranged positional order. It should be stressed that the structures discussed so far represent all
but the most basic liquid crystals and that a vast range of supplementary liquid crystalline states
can be expected depending on the symmetry properties of the mesogens under consideration.
For example, particle interactions may reflect shapes with a reduced particle symmetry such as
biaxial, non-convex, or polar nanoparticles (which lack head-tail-symmetry), represent parti-
cles that are chiral (e.g. helices), or any combination thereof. Fig. 1.1e illustrates the profound
impact of the presence of weak particle chirality; the interactions impart a helical precession
of the direction of local alignment (referred to as the director) leading to a cholesteric or chiral
nematic phase.

The phenomenology of phase transitions enables a broad distinction between molecular liq-
uid crystals, usually referred to as thermotropic liquid crystals and lyotropic ones. For ther-
motropic systems transformations from one phase to another are primarily of an enthalpic nature
since the thermodynamic properties are governed by attractive forces between the molecules
(related to van der Waals dispersion, or hydrogen-bonding). Consequently, temperature is the
main control parameter and a sequence of states with reduced symmetry (e.g. isotropic, ne-
matic, smectic, solid) is observed upon cooling the system.

Lyotropic liquid crystals, on the other hand, consist of nanoparticles or amphiphilic meso-
gens dispersed in a solvent. Here, the morphology of phases is broadly similar to the one
established for thermotropics but the phase behaviour is controlled primarily by the solvent con-
ditions and the concentration of the constituents, rather than temperature. Prominent examples
are amphiphilic molecules self-assembling into micellar structures that may adopt complicated
topologies ranging from lamellar to bicontinuous cubic phases [2]. The focus of this thesis

1



2 1. GENERAL INTRODUCTION

FIGURE 1.1. Examples of basic liquid crystals formed by rod-like molecules or nanoparticles.

(a) Isotropic (b) Nematic (c) Columnar
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FIGURE 1.2. Examples of nematic and columnar liquid crystals composed of plate-
shaped particles.

will be on anisotropic colloidal particles whose intrinsic shape, unlike those of micelles, is not
subject to fluctuations induced by changes of the solvent composition. Instead the shape is
“quenched” by the synthetic procedure generating colloidal suspensions of colloidal particles
with a prescribed size and shape. The relevance of studying nano-particle-based lyotropic liquid
crystals resides in important advances in nano-particle synthesis leading to a plethora of shapes
and interactions with exciting ordering properties [3]. In the natural world, inspiration can be
found in self-assembly of filamentous biomolecules such as DNA [4], and viruses consisting
of semi-flexible rod-shaped mesogens [5]. The latter has proven an excellent model system to
study fundamental problems in soft condensed matter physics [6].

An important aspect that sets most lyotropic systems apart from their thermotropic counter-
parts is that the building blocks are hardly ever identical; they are polydisperse. Anisotropic
colloids with a distinct rod- or disk-shape are prone to forming polydisperse mixtures whether
the synthesis procedure is controlled or of a natural origin [7,8]. Basic examples range from clay
suspension composed of thin sheets with variable diameter [9], mineral rods with strong length
polydispersity [10–12], variable-length filamentous biopolymers such as cellulose nanocrys-
tals [13] or actin [14], to polydisperse carbon-based nanotubes (CNTs) [15] and graphene oxide
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sheets [16]. The implications of size and shape disparity on the equilibrium phase behaviour
as well as on the bulk rheological properties has been the subject of intense experimental and
theoretical research over the past decades.

Most discotic colloidal systems (notably clays) consist of charged disk- or sheet-like meso-
gens. The disposition of surface charges of clay particles can be very complicated as the chem-
ical composition of the edge surfaces tends to be different from that of the flat surfaces. Further
complications arise from the fact that the particle dimensions and surface charge densities are
strongly non-uniform. The considerable polydispersity in size, charge and composition inherent
to clay systems have severely hampered their fundamental study.

The focus of the work described in this thesis is to gain a better understanding of some of the
fundamental properties underpinning the structure and dynamics of these systems. We shall ad-
dress three basic themes. The first deals with the profound implications of soft interactions and
“patchiness”, in particular those of a chiral nature, on the mesoscopic order of nematic phases.
The second theme relates to intricate effects of particle shape, in particular non-convexity and
their effect on the phase behaviour of discotic systems. The third theme departs from simple
passive systems by moving to so-called active liquid crystals. Here, the building blocks are not
passively diffusing across their surroundings but are self-propelled. This leads to a new class
of living liquid crystals that operate out of thermal equilibrium. Rather than tackling the full
complexity of the nanoparticles under scrutiny and their intricate surface-chemical properties,
we resort to simple models, coarse-grained interactions and tractable theoretical concepts that
allow us to acquire important qualitative insights into the (non-)equilibrium self-assembly be-
haviour of these systems. As we shall see shortly, the concept of an effective particle shape often
suffices to learn a great deal about the phase behaviour and dynamics of lyotropic systems. The
notion of “shape matters” ties in naturally with the concept of entropic phase transitions that we
shall discuss next.

1.2. SHAPE MATTERS: ENTROPIC PHASE TRANSITIONS

For purely spherical particles, the discussion about whether a fluid-solid transition can be
generated by steep repulsive interactions alone or whether atractive forces are a prerequisite
dates back to the fifties of the previous century. Using computer simulations Alder, Wainwright
and others [17, 18] were the first to show that freezing does occur in a fluid of purely hard
spheres. Subsequent work by Hoover and Ree [19] confirmed that if the hard-sphere pack-
ing fraction exceeds 49.4 % a fluid spontaneously freezes into a crystalline solid phase with
a packing fraction of 54.5 %. Later on, computer simulations by Frenkel et al. reported the
spontaneous formation of of smectic and columnar liquid crystals upon densifying systems of
respectively hard rods [20] and hard platelets [21, 22]. These types of ordering transitions are
usually referred to as entropic phase transition for reasons that become clear if we realize that
the equilibrium state of a system kept at constant temperature T is found from minimizing the
Helmholtz free energy F :

F = U − TS (1.1)

where S denotes the total entropy of the system and U =
∑

i uij is the internal energy assuming
this quantity to be defined as a pairwise addition of interparticle potentials uij between particles
i and j. If the interactions are strictly hard, then uij →∞ if the hard cores of the objects overlap
and uij = 0 otherwise. Invoking Boltzmann statistics, i.e. the probability of finding a particle
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A B

FIGURE 1.3. (A) Illustration of the excluded volume of two cylindrical rods of length
L and diameter D at mutual orientation γ. Rod alignment leads to a strong reduction
of the excluded volume represented by the lozenge-shaped figure. (B) The excluded-
volume figure of a pair of inifinitely thin hard rings is much more complicated due to the
non-convexity and interpenetrability of the particles. The consequences for the ordering
properties within the context of Onsager’s theory will be demonstrated in Chaper 4.

configuration of energy U is given by exp(−U/kBT ) (where kB denotes Boltzmann’s constant),
then immediately tells us that any allowable configuration must consists of non-overlapping par-
ticles with associated internal energy U = 0. Clearly, temperature T then becomes completely
irrelevant and a minimization of the free energy simply amounts to a maximization of the en-
tropy. Of course, the argument that ordered states (e.g. a crystal of hard spheres or an aligned
fluid of hard rods) can become thermodynamically stable wth respect to an orderless isotropic
fluid based on entropic consideration alone seems counterintuitive at first since one is tempted
to associate ordered states with a lower entropy rather than a higher entropy.

That this is not necessarily the case is most clearly illustrated by considering the so-called
free volume which is the available portion of translational phase space each particle is allowed to
explore. Naturally, this free volume is maximal in a dilute isotropic fluid and minimal (virtually
zero) if the particles are arranged in a close packed lattice. At intermediate, liquid states, the
free volume will be severely compromised as the particles becomes increasingly crowded. For
hard spheres, there is a critical packing fraction where the particles will be able to better explore
translational phase space by adopting an (fcc) lattice arrangement than they would if liquid order
were maintained at the same packing fraction. In other words, in crowded conditions, a solid-
like arrangement of spheres will correspond to a higher entropy than a liquid of equal packing
packing. This implies that the solid state is thermodynamically favored in these conditions.

The general mechanism underpinning entropic phase transitions can therefore be understood
as follows: although the particles lose entropy because the density – in terms of orientational
and/or positional degrees of freedom – is no longer uniform, this loss is more than offset by
a simultaneous gain of translational entropy, i.e. the available space per particle – the average
free volume – increases as the particles align into a nematic fluid or freeze into a crystal lattice.
In Chapter 4 we will demonstrate a subtle display of the ordering properties of hard rings (see
Fig. 1.3B) where non-convexity and interpenetrability can lead to surprising phase behaviour.
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We reiterate that the non-trivial self-assembly of these shape-persistent rings [23] is of purely
entropic origin and can be rationalized from geometric considerations alone [24].

1.3. ONSAGER’S THEORY AND BEYOND

Onsager’s key insight was that the ordering transition for rodlike mesogens, the isotropic-to-
nematic transition, is indeed an entropic one and can be analyzed based on entropic arguments
alone. Rather than embark on technical exposition of his theory (the reader is referred to On-
sager’s original paper [25] as well as some excellent reviews [26,27] for details) we will attempt
to give an intuitive sketch of the main ingredients. Onsager’s theory basically hinges on two
principal entropic quantities that are competing with each other. Let us assume an ensemble of
slender rigid needles in a fluid state of uniform particle density ρ = N/V at a fixed volume V
and temperature T , and focus on the orientational phase space the rods adopt in a fully isotropic
and nematic configuration. If we associate each rod orientation on the unit sphere as a separate
state we may associate and orientational entropy defines as the ratio of the number of explorable
orientational states:

Sor
N
∼ kB ln(# orientational states) (1.2)

Since in a nematic phase the rod orientation vectors are strongly restricted along either poles of
the unit sphere we infer that the orientational entropy Sor of a nematic is always smaller than
that of an isotropic fluid at comparable particle concentration. The next consideration concerns
the free volume of an ensemble of rods. Thus, in addition to the orientational entropy there is a
configurational entropy, basically quantifying how much translational phase space each rod can
explore. This entropy is most conveniently expressed in terms of an excluded volume and reads:

Sfree
N
∼ −kB

Vexcl
V

(1.3)

The key approximation that makes Onsager’s theory both insightful and tractable is to consider
only pair-interactions between slender rods (the so-called second virial approximation) in which
case the average free volume can roughly be expressed as a sum of independent pair excluded
volumes:

Vfree ∼
N

2
〈vijexcl〉orientational states of rods i and j (1.4)

The meaning of the excluded volume is clarified in Fig. 1.3. Considering long hard rods we
immediately infer that the excluded volume (indicated by the lozenge-shaped figure) is strongly
orientation-dependent; it is greatly reduced when the rods align (such as in the nematic state)
compared to random (isotropic) orientations where “end-to-side” pair configurations are more
frequent. The smaller the excluded volume swept out as the cylinders move around with their
impenetrable surfaces in close contact, the greater the free volume and the higher the transla-
tional entropy. While nematic order always lowers the orientation entropy it in fact increases
the excluded volume entropy. It is precisely this trade-off between different entropic contribu-
tions that underpins the entropic transitions discussed in the previous paragraph. The critical
packing fraction at which an isotropic-nematic ordering can be expected roughly corresponds to
the situation when the bare particle volume is of the same order as its average excluded volume,



6 1. GENERAL INTRODUCTION

i.e.:

φIN ∝
volume per particle

average excluded volume per particle
(1.5)

Simple scaling considerations for thin cylinders then prompt us to infer that the volume scales
as ∝ LD2 whereas the excluded volume typically obeys L2D. Whence:

φIN ∝
D

L
(1.6)

Clearly, the more slender the rods (large L/D) the lower the critical packing fraction at which
the transition can be expected. Strictly, in the Onsager limit L/D →∞ the transition occurs in
the ultra-dilute regime where a pair-interaction-only approximation seems entirely justified.

Onsager’s theory has been tremendously helpful in understanding the equilibrium properties
of rodlike mesogens and, to a much lesser extent, discotic particles where the second-virial
assumption is a much more severe approximation. It should, however, be plain that Onsager’s
arguments are no longer applicable to dense fluids of hard spheres (e.g. to describe the entropic
fluid-solid transition) where many-body correlations prevail. These strongly correlated systems
call for much more sophisticated considerations from liquid state theory [28, 29] or density
functional theory [30] that we will not discuss in this work.

Attempts to go beyond Onsager’s second-virial approach have met with variable success [31].
These approaches usually involve integral equation or geometric density functional methods
whose applicability is often restricted to isotropic fluids [32, 33], models with parallel or re-
stricted orientations [34] or particles with vanishing thickness [35, 36]. A generalisation of the
fundamental measure approach towards arbitrarily shaped hard convex bodies provides a poten-
tially promising avenue to address more realistic models for liquid crystal ordering [37]. The
influence of higher-body correlations can in principle be assessed numerically [38] (at least for
isotropic systems) but the convergence of the virial expansion for the free energy is not guaran-
teed for dense fluids of hard cut-spheres [39]. Alternatively, Scaled Particle Theory (SPT) can
be used to incorporate higher virial terms in an indirect manner [40].

Going back to the experimental systems of nanorods and platelets mentioned in the beginning
it is obvious that a simple hard-particle picture is often too simple to arrive at a satisfactory
description of the systems under consideration and that various extensions and modifications of
Onsager’s theory are necessary. The most topical ones involve attempts to account for:

1. Multicomponent mixtures of rod, disks, board-shaped or non-convex particles

2. Non-uniform systems (smectic, columnar phases, interfaces, effect of solid substrates)

3. Effect of external aligning (electromagnetic) fields

4. Semi-flexibility

5. Electrostatic interactions and other long-ranged “soft” interactions (e.g. depletion attraction)

6. Chirality

7. Activity, self-propulsion and other non-equilibrium conditions (e.g. shear flow)
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Needless to say that considerable progress has been made along these lines since Onsager’s
original publication and it would go way too far to review all these developments within the
scope of this work. In the main body of this work we will illustrate the rich phenomenol-
ogy brought about by some of the topics listed above. The role of chirality (Topic 6) on the
mesostructure of nematic phases will be extensively discussed in Chapter 2, while the subtle ef-
fect of electrostatic repulsion and intrinsic soft “patchiness” of rod- and plate-shaped particles
(Topic 5) will be discussed in Chapter 3. In Chapter 4 we will demonstrate the surprising effect
of shape non-convexity (Topic 1) on the phase behavior of hard anisotropic particles. We hope
that these examples will convince the reader of the predictive power and versatility of Onsager’s
second-virial theory even when applied beyond the strict bounds of applicability as formulated
in his original paper.

1.4. FROM HARD TO SOFT INTERACTIONS

While the seminal view of Onsager that the repulsive inflexible core of a particle gives rise
to orientationally ordered phases is now very well established, the specific nature of the dis-
persive and polar interactions can have an important influence on the macroscopic structures
that are observed. Interactions between nanoparticles in real systems are never truly hard and
taking into account the full molecular complexity of the system under scrutiny (nanoparticle
surface, composition of the solvent) necessitates a process called coarse-graining to arrive at
manageable model potentials.

1.4.1. Bridging length scales by coarse graining
The current best-practice for modelling nanoparticle suspensions is based first on an analysis

of molecular interactions, exploring the choice of materials at the molecular scale, and second,
on a transfer of this information to the macro-scale through simplified thermodynamic or sta-
tistical mechanical models (such as Onsager’s theory in case of anisotropic building blocks).
Transferring knowledge from the molecular scale to the macroscopic is by no means trivial and
usually requires a process known as coarse-graining. This is aimed at integrating out the de-
tails of the molecules, such as the explicit conformations of a polymer molecule, the precise
localization of charges on a polyelectrolyte or hydrogen bonds on a protein, to give simplified
potentials describing the interaction between complex nanoparticles. These effective interac-
tions depend only on a limited set of physically relevant parameters. Below we will illustrate
several examples in more detail.

1.4.2. The spirit of van der Waals
The presence of additional soft interactions give rise to enthalpic contribution to the free

energy that we will account for in the spirit of a simple van der Waals approximation. This
presupposes that these soft interaction act as a perturbation to the entropic hard-core contribu-
tion, Eq. (1.3), discussed previously in the context of Onsager’s theory. The additional internal
energy contribution to Eq. (1.1) takes the form of a simple mean-field correction term [41–45]:

U ∼ 1

2

N2

V

〈∫
no core overlap

drijuij(rij)

〉
orientational states of rods i and j

(1.7)

where uij represents a potential of mean force between the particles and rij denotes their centre-
of-mass distance vector. The complicating factor here is that the soft potential depends on the
orientations of the nanoparticles and must be integrated over the space complementary to the
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A B

FIGURE 1.4. (a) The presence of surface charges creates an electric double layer
around the surface of the nanoparticle surface (a simple sphere in this case). The strongly
non-uniform distribution of counter- and co-ions is dictated by the Poisson-Boltzmann
equation and gives rise to a soft repulsive potential around the spherical surface. Far
from the surface the extent of electrostatic screening is given by the Debye length κ−1

[Eq. (1.10)]. (b) The presence of non-adsorbing polymers or other depletions agents
(whose size is usually smaller than the spherical nanoparticles) produces an effective at-
tractive potential between the spheres according to the depletion scenario. If the spheres
are at close proximity, the polymers are depleted away from the inner space between the
spheres in dictated by the overlap of the depletion zones (hatched area). This creates an
osmotic imbalance around the spherical surfaces pushing the spheres together.

excluded volume. i.e. the domain in which the hard cores of the particles do not overlap (see
Fig. 1.3 for the case of spherocylinders). We stress however that this modification is purely
technical and that it is straightforward to draw a parallel between the previous expression and
the attraction (or cohesion) contribution to the original van der Waals equation of state for a
non-ideal gas:(
P +

N2

V
a

)
(V −Nb) = NkBT (1.8)

where a corresponds to the bracketed term in Eq. (1.7) which has units [energy × volume].
Clearly, in case of attractive forces |uij| < 0, thence a < 0 and the cohesive intermolecular
forces cause a reduction of the pressure P . Similarly, b relates to the excluded volume of a
spherical particle – equal to 8 times its bare volume – and quantifies (albeit only qualitatively)
the reduction of free volume with increasing particle concentration. Let us now briefly discuss
the origin of some of the long-ranged forces that might be at play in colloidal systems.

1.4.3. Effective potentials
Electrostatics. The presence of surface charges creates an inhomogeneous distribution of
counter- and co-ions around the surface of the nanoparticle, as illustrated in Fig. 1.4. This
so-called electric double layer imparts a long-ranged repulsive interaction among the particles
and can have profound effects on the ordering properties of colloidal particles [46]. Within
the coarse-grained picture one can envisage the effective surface charge, as well as the dielec-
tric properties and ionic strength of the embedding solvent to be the key factors determining
the characteristics of this effective interaction. The precise distribution of the ions around the
surface of a charged object is dictated by Poisson-Boltzmann equation in which it is assumed
that mutual correlations between the micro-ions can be neglected (i.e. they behave as an ideal
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gas) and the solvent behaves as a continuum [47]. The highly non-linear equation can be lin-
earized if the surface potential is weak or when attention is restricted to the far-field limit (if
the distance between the screened charged surfaces is large). The linearized form is amenable
to analytical solution for simple surfaces geometries and the effective potential between two of
those surfaces can be calculated in closed form. For example, the effective potential for two
simple point-like macro-ions takes the form of a screened Coulomb or Yukawa potential:

uij
kBT

= Q2λB
exp(−κrij)

rij
(1.9)

where Q the total or effective surface charge on the particle surface, λB = e2/4πεrkBT denotes
the Bjerrum length in terms of the elementary charge e and the relative dielectric permittivity
εr (yielding about 0.7nm for water room temperature). The other important length-scale κ−1

pertains to the extent of the electric double layer and sets the degree to which the charged surface
of the nanoparticle is screened by the counter-ions:

κ2 = 4πλB

M∑
s=1

ρsz
2
s (1.10)

The screening length is chiefly controlled by the ionic strength via the concentration ρs of the
various ion species s = 1, . . .M (each with valence zs) present in the solvent. The screened
Coulomb potential essentially transforms into the celebrated DLVO potential [47], widely em-
ployed in colloid and interface science, when combined with the van der Waals potential,
uij ∼ −u0/r

6
ij , describing dispersion attractions that become prevalent when the dielectric

contrast between the nanoparticles and the solvent becomes considerable and when the parti-
cles are capable of approaching each other closely. This could happen when the electrostatic
screening length κ−1 is much smaller than the typical particle dimension (e.g. in case of added
salt) and the van der Waals forces trigger (irreversible) flocculation of the colloids leading to
a loss of thermodynamic stability of the colloidal suspension. Key challenges arise when at-
tempting to generalize the effective electrostatic potentials to non-isotropic nanoparticles, in
particular discotic particles [48]. For infinitely slender rods, a simple screened line charge
model, as proposed and analyzed by Onsager in his original paper [25], has proven an efficient
route to capturing the main effects of electrostatic correlations on the ordering properties of stiff
polyelectrolytes [49]. A more detailed discussion about the possibilities and limitations of the
screened-Coulomb potential for rod- and disk-shaped particles will be given in Chapter 3. In
that chapter we provide a simple generalization of Onsager’s theory along the lines of Eq. (1.7)
that allows us to capture the impact of soft interactions using a superposition of simple spherical
segment potentials.
Chirality. A similar approach is adopted in Chapter 2 where the distribution of surface charges
(or soft sites residing on the rod surface) is distinctly helical imparting a distinctly chiral signa-
ture onto the effective interactions between the rods. In this case there is a supplementary soft
interaction coupling to the rod orientatation vector û of each rod i and j (see Fig. 1.3) and their
centre-of-mass distance vector rij through the following generic pseudo-scalar expression:

uij ∼ εf(rij)(ûi · ûj)(ûi × ûj · rij) (1.11)

Note that this effective potential is distinctly chiral due to lack of inversion symmetry (the po-
tential changes under a transformation rij → −rij) while preserving basic head-tail symmetry
uij(ûi/j) = uij(−ûi/j). The microscopic details that are responsible for transmitting chirality



10 1. GENERAL INTRODUCTION

right-handed left-handed

molecular 
pitch

1/2 mesoscopic pitch

FIGURE 1.5. Interactions between the helical molecular structure of elongated bio-
molecules, such as the α-helix amino-acid DNA, could be described on a coarse-grained
level using a rod with an effective chiral electrostatic “patchiness” in terms of a molecu-
lar pitch length and handedness (left or right). The implications of molecular chirality on
the helical mesostructure (in particular, the mesoscopic pitch) of chiral nematic phases
remains a challenging issue as will be shown in Chapter 2.

can be subsumed into some effective chiral amplitude ε and decay function f(rij) expressing
the typical range over which chiral forces are transmitted. These properties as well as the impli-
ciation for the helical mesostructure of cholesteric nematic phases (depicted in Fig. 1.1e) will
be analyzed in detail in Chapter 2.
Depletion. Another example of a commonly adopted effective potential concerns the presence
of non-adsorbing agents (note that ions do not qualify as non-adsorbing due to their inherent
Coulomb attraction) embedded in an ensemble of much bigger nanoparticles. The effect of the
agents on the self-assembly properties of the bigger particles can often be successfully captured
by invoking the concept of depletion attraction [50] as illustrated in Fig. 1.4b. Similar to the
Yukawa form, while the depletion potential remains relatively tractable for simple spherical
particles the quantity becomes highly non-trivial owing to the intrinsic orientation-dependence
of the depletion zones and their overlap conditions when generalized to suspensions involving
rod- or disk-shaped nanoparticles. Within the realm of van der Waals theory (Eq. (1.7)) the
depletion attraction between non-isotropic particles could formally be expressed as follows

U ∼ −1

2

N2

V
Πdep

〈∫
no core overlap,

depletion zone overlap

drijv
dep
ij (rij)

〉
orientational states of rods i and j

(1.12)

In arriving at this expression, a simple free-volume concept has been invoked in which the
depletion agents are considered to be mutually non-interacting and the effective attraction po-
tential between the nanoparticles is proportional to the overlap volume vdepij of the depletion
zones of particles i and j (see Fig. 1.4b) and the osmotic pressure Πdep exerted by the depletion
agents [50].

1.4.4. Entropic patchiness
Mixing non-isotropic colloidal shapes with non-adsorbing polymers lead to so-called en-

tropic patchiness; the strength of the attractive depletion force depends on the mutual particle
orientation since the overlap volume of the depletion zones is not invariant with a change of
the nanoparticle orientation [51]. Within the context of this thesis, we wish to underscore
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that whenever the soft interactions are purely repulsive, such as in the case of electrostatic-
mediated chirality described in Chapter 2 or charged disks considered in Chapter 3, the intrinsic
orientation-dependency of the interactions leads to a patchiness that is of purely entropic origin.
A clear manifestation of entropic patchiness regulated by shape along are the rigid macrocyles
discussed in Chapter 4 where the interpenetrability of the rings may, under certain circum-
stances, favor face-to-rim configurations over face-to-face ones (see also Fig. 1.3).

1.5. FROM PASSIVE TO LIVING LIQUID CRYSTALS

In the second part of this thesis, we depart from the concept of ordering properties of com-
mon nanoparticles and explore the possibilities of using the simple coarse-grained models and
effective potentials introduced before to describe so-called active or living soft matter [52, 53].
Analogous to liquid crystals, the building blocks of living matter are often non-isotropic and
many of the basic geometric considerations carry over to describing basic interaction between
motile organisms [54]. For instance, bacteria and other motile microorganisms often possess a
rod-like shaped cell bodies with a strong tendency to align when they swim in close proximity
to each other(Fig. 1.7). Such systems, interacting either directly or indirectly via the medium,
are generically capable of emergent behaviour at large scales [55–58], leading to swarming or
flocking behaviour [52, 59] or complex vortical states [60–64].

1.5.1. Active matter
The essential difference with common lyotropic liquid crystals is that while the constituents

of passive systems are subject to passive Brownian motion due to molecular collisions em-
bedded solvent molecular, active particles are self-propelled due to some internal propulsion
mechanism. Examples of active particles are bacteria that are capable of taking up energy from
its surroundings and engage in propelled motion through actuation of their flagellae. This type
of motion is not persistent but subject to fluctuations, for instance, the flagellae may disentangle
and reorient the cell-body through a sequence of run-and-tumble events as illustrated in Fig. 1.6.
At large time scales the bacterial trajectory can be viewed as the results of an active diffusion
process enabling us to make predictions based using well-established stochastic models [65].
Since each particle carries an “internal motor” constantly converting chemical energy into me-
chanical work (propulsion) they operate essentially out of thermal equilibrium. It should be
understood that active systems are different from other classes of driven systems as the energy
input is internal to the medium (i.e. located on each unit) and does not act at the boundaries or
via external fields.

In view of the strict non-equilibrium nature of these systems, the tools of classical equilibrium
thermodynamics (such as minimization of the Helmholtz free energy Eq. (1.1)) are no longer
appropriate to study their ordering behaviour. Instead, one must resort to resolving the equa-
tions of motion of the individual particles by accounting for the (pair) interactions using simple
coarse-grained models. This will be briefly illustrated in the last paragraphs of this chapter.

1.5.2. System dimensionality
Attempts to study active matter using theoretical modelling are often greatly simplified by

considering bi-dimensional systems. The advantage is usually based purely on the ease with
which these systems can be visualized. In addition, simulations and other numerical approaches
are often less computationally cumbersome in reduced dimensions. However, inspiration can
also be found in many experimental situations where a two-dimensional model description
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FIGURE 1.6. Many motile bacteria exhibit run-and-tumble behaviour consisting of a
run stage in which bundled flagella provide propulsion and a short phase in which the
flagellae disentangle and reorient the bacterial cell body (tumbling event). The typical
trajectory of a bacterium can be described as an active diffusion process (right cartoon).

seems more appropriate. For example, self-propelled agents resembling two-dimensional be-
haviour can be realised in a number of ways including autonomously navigating bacteria and
other microbes confined to free-standing thin films [62], moving near a solid surface [66] or a
liquid-gas interface [61, 67], polar granular rods vibrating on a flat surface [68, 69], and even
pedestrians moving in complex environments [70]. Last not least, colloidal dispersions consti-
tute ideal model systems not only for investigating passive matter [71, 72] but also for living
matter consisting of self-motile units. Over the last decade, a number of distinctly different re-
alizations of active colloidal particles have been proposed. These include Janus particles driven
by catalytic processes [73, 74] or thermophoretic [75] gradients, particles propelled by artifi-
cial flagellae [76] and surface waves [77, 78] driven in an external magnetic field. Most of
these particle are anisotropic, i.e. rod-shaped rather than spherical and their shape is found to
play a crucial role in determining the spatio-temporal behaviour [79, 80]. Confining systems to
quasi-planar geometries allows for a direct visualisation of the particles by means of real-space
microscopy and provides fascinating opportunities to study the single-particle and collective
behaviour of micro-swimmers.

1.5.3. Dry versus wet flocks
The role of the medium play an important role and allows a distinction between dry and wet

systems. Indeed, dry flocks can be viewed as a manifestation of a living liquid crystal showing
a complex spatio-temporal behavior [81] even though the non-isotropic constituents (birds, in-
sects) are no longer of microscopic size. The same holds for certain wet flocks, such as schools
of fish, where the swimming locomotion and the corresponding hydrodynamic interactions be-
tween the agents mediated via the embedding solvent (water) plays an important role. In the
micro-world, the hydrodynamics of swimming locomotion remains a serious complication in
describing interacting micro-organisms. An important distinction between swimming at micro-
or macroscopic length scales is that the Reynolds number, defined as

Re =
inertial forces
viscous forces

=
L0vs
η

(1.13)
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wet flock dry flock

FIGURE 1.7. Pair interactions between active, self-propelled organisms suggest strong
aligning properties. At the many-body scale self-propulsion leads to the formation of
non-equilibrium emergent states such as flocks in which the medium plays and important
role. Left: wet flock of sliding myxobacteria. Right: dry flock of birds.

is very small in the former case. Taking typical values for the bacterial swimming speed
vs ∼ 10µm/s, size L0 ∼ 1µm and kinematic viscosity of water η = 10−6m2/s yields
Re ∼ 10−5. Locomotion at these ultra-low Reynolds numbers has important consequences
for the propulsion and swimming mechanics of bacteria operating essentially in the Stokes’
regime of the Navier-Stokes equation. As formulated in a beautiful paper by Purcell [82], the
complete dominance of viscous over inertial forces renders the fluid flow instantaneous so that
only micro-organisms performing swimming stroke cycles that are time-irreversible are capable
of net propulsion in these conditions (this is coined the “scallop theorem”).

When studying many-particle systems, resolving and intercorrelating the stroke-induced flow
field around each particle becomes a completely impracticable enterprise and one needs to re-
sort to simple, coarse-grained, pairwise additive potentials that can be employed in computer
simulation [83]. For dense collections of bacteria, there is strong experimental evidence that
far-field hydrodynamical interactions between bacterial cell bodies are far less important than
direct collisions, particularly when the bacteria are confined in quasi-2D set-ups where hydro-
dynamic interactions are strongly screened [58]. Near-field hydrodynamic flows are notoriously
difficult to quantify [84]. For dense collections of swimmers, however, it is not unreasonable to
assume that the near-field effects can be subsumed into an effective short-ranged repulsive po-
tential. This simplification leads to a so-called self-propelled rod (SPR), explained in Fig. 1.8.
The physics generated by this model in relation to real bacterial fluids will be discussed in
further detail in Chapter 5.

1.5.4. Active diffusion in wet flocks: some basic considerations
We shall now attempt to briefly sketch how one could go about studying the ordering proper-

ties of an ensemble of active particles using considerations from equilibrium thermodynamics
as considered in paragraph 1 of this chapter. Let us denote P (s, t) as the probability to find
a active particle at a certain position and orientation, collectively denoted by the generalized
coordinate s = {r, û} and time t. The time-evolution of this probability is described by the
following diffusion equation [85, 86]:

∂tP (s, t) = −∇ · ζ−1

T · (jtrans + jactive)− ζRR̂ · jrot

in terms of a translational Stokes’ friction tensor ζT and a rotational friction factor ζR. If we ne-
glect many-body hydrodynamics interactions between the particles, then these quantities encode
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the single-particle hydrodynamic friction of the particles governed primarily by their aspect ra-
tio L/D (introduced in Section 1.3). We have implicitly assumed that the system is ‘wet’ and
that particles move in the overdamped limit, that is, we focus at time scales much larger than
those associated with solvent relaxation and particle inertia, so that the propulsion velocity is
proportional to some effective thrust force ft divided by the parallel translational friction each
rod experiences as it moves through the fluid:

vs ∼
ft
ζ‖

(1.14)

This defines an active current coupled to the main orientation û of the self-propelled rods:

jactive = P (s, t)ftû (1.15)

The other two currents encode the correlation between the particles. Within the framework
of dynamic density functional theory [87, 88] it is possible to connect these non-equilibrium
currents to the equilibrium excess Helmholtz free energy Eq. (1.1) in the following way:

jtrans = P (s, t)∇δFex[P ]

δP (s, t)
(1.16)

and a similar contribution for the orientational correlations (representing collisional torques):

jrot = P (s, t)R̂δFex[P ]

δP (s, t)
(1.17)

in terms of a rotation gradient operator R̂. Expressions for the (excess) Helmholtz free energy,
which is now an explicit functional of the probability distribution P , can be constructed using
geometric considerations along the lines of the excluded-volume concept illustrated in Fig. 1.3
[54]. Typically, this would give an excess free energy of the following form:

Fex ∼
1

2
kBT

∫
dsP (s, t)

∫
ds′P (s′, t)Θ(s, s′) (1.18)

wher the step function Θ yields unity in case of core overlap and zero otherwise. It is easily
verified that the free-volume entropy Eq. (1.3) is recovered from the above expression for a
spatially homogeneous system where the probability function reduces to P = (N/V ) times the
orientational probability. Needless to say that these quasi-equilibrium approaches to modeling
active matter are highly approximative as they do not account for correlations that are generated
by the non-equilibrium currents themselves (so called dynamical correlations) or correlations
arising from the coupling of the complicated hydrodynamic flow fields generated by the swim-
mers [84] (cf. Fig. 1.8).

1.5.5. Shape matters in the biological world
Building on the considerations above we can propose an equivalent route to studying the

ordering properties of active matter by focussing on the trajectories of individual SPRs. In the
overdamped limit, the positional trajectory of a rod i at coordinates {ri, ûi} is dictated by the
Langevin equation which essentially represents a balance of the principal forces acting on each
rod:

ζT · ∂tri(t)︸ ︷︷ ︸
frictional force

= ftûi(t)︸ ︷︷ ︸
active force

−∇iU({s(t)})︸ ︷︷ ︸
interaction force

+ fR,i(t)︸ ︷︷ ︸
stochastic force

(1.19)

with the latter embodying some random force describing the Brownian force fluctuations ex-
erted by the embedding solvent molecules. The active force is explicitly coupled to the rod
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A

B

C

FIGURE 1.8. (A) A typical bacterial swimmer is force-free and can be modelled as a
simple force dipole consisting of a pushing force and an opposing drag force (red ar-
rows), as demonstrated for the case of a pusher-type swimmer such as E. Coli or B.
Subtilis. The stroke-averaged far-field fluid flow generated around the cell body repre-
sents a dipolar field where the average fluid velocity decays with distance as 1/r2 away
from the bacterial body. The black arrow indicates the direction of propulsion. (B)
Dense bacterial fluids of B. Subtilis confined in quasi-2D chambers are characterized by
short-ranged steric repulsions prevailing over long-ranged hydrodynamic interactions.
(C) Self-propelled rod (SPR) representation of a bacteria of typical aspect-ratio `/λ

consisting of a rigid array of steeply repulsive segments (interacting through a Yukawa
potential Eq. (1.9)) at site-site distance rij and centre-of-mass distance vector ∆r. Each
rod is auto-propelled through an overdamped frictional medium via some effective thrust
force ft directed along the main axis û.

orientation ûi. The interaction force depends implicitly on the rod orientations and is derived
from the total potential energy U({s(t)}) = U(ri(t), ûi(t), . . . , rN(t), ûN(t)) which now de-
pends on the coordinates of all N rods in the system. We remark that a numerical solution of
Eq. (1.19) in principle enables an exact treatment of the rod-rod correlations beyond the simple
second-virial approximation considered thus far. The above equation needs to be supplemented
with a similar one describing a torque balance on each rod i:

ζR∂tûi︸ ︷︷ ︸
frictional torque

= −∇ûU({s})︸ ︷︷ ︸
interaction torque

+ τR,i︸︷︷︸
stochastic torque

(1.20)

In Chapter 5 we will demonstrate that this simulation scheme allows us to study the subtle role
of particle shape on the emergent states of active rods [89]. Most notably, it turns out that
propulsion and short-repulsive interactions (the SPR model) can lead to turbulent states at high
particle concentration and large particle aspect ratio [90]. This type of active turbulence is rou-
tinely observed in microbial suspensions of Bacillus Subtilis [91]. A detailed analysis of the
flow properties of this novel type of low Reynolds number turbulent flow will be made in Chap-
ter 5. Despite the overwhelming complexity of bacterial locomotion and interactions we will
demonstrate that the main features of the flow field can be described using a simple hard-rod
(SPR) model coupled to simple linear, overdamped propulsion. In Chapter 6 we follow up on
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our study of particle shape in living liquid crystals by focussing on varying the particle sym-
metry of the SPRs. The objective is to investigate the role of broken particle symmetry (polar
and non-convex particle shapes) on the emergent behaviour. We will demonstrate that a bro-
ken for-aft symmetry (producing polar swimmers) can dramatically change the mesostructure,
depending on whether the particles are propelled along or anti-parallel to the polar symmetry
axis. The respective emergent states correspond to flocking behaviour and colony formation
driven by motility-induced phase separation [92]. These phenomena are a unique consequence
of the non-equilibrium, propulsive behaviour of the constituents and are unseen in passive liquid
crystals.
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Shape and entropic patchiness in passive liquid
crystals





2
Supramolecular helix inversions in
cholesteric phases

ABSTRACT
We investigate the pitch sensitivity of cholesteric phases of helicoidal patchy cylinders
as a generic model for chiral (bio-)polymers and helix-shaped colloidal rods. The be-
haviour of the macroscopic cholesteric pitch is studied from microscopic principles by
invoking a simple density functional theory generalised to accommodate weakly twisted
director fields. Upon changing the degree of alignment along the local helicoidal di-
rector we find that cholesteric phases exhibit a sudden sense inversion whereby the
cholesteric phase changes from left-to-right-handed and vice versa. Since the local
alignment is governed by thermodynamic variables such as density, temperature or the
amplitude of an external directional field such pitch sense inversions can be expected
in systems of helical mesogens of both thermotropic and lyotropic origin. We show that
the spontaneous change of helical symmetry is a direct consequence of an antagonistic
effective torque between helical particles with a certain prescribed internal helicity. The
results may help opening up new routes towards precise control of the helical handed-
ness of chiral assemblies by a judicious choice of external control parameters.

2.1. INTRODUCTION

Over the past decades considerable research effort has been devoted to understanding the
manifestation of macroscopic chirality in lyotropic liquid crystals consisting of colloidal parti-
cles or stiff polymers immersed in a solvent. In addition to a number of synthetic helical poly-
mers such as polyisocyanates [93,94] and polysilanes [95] which form cholesteric phases in or-
ganic solvents there is a large class of helical bio-polymers which are known to form cholesteric
phases in water. Examples are DNA [4,96] and the rod-like fd-virus [5], polypeptides [97,98],
chiral micelles [99], polysaccharides [100], and microfibrillar cellulose derivatives [101] and
chitin [102]. In these systems, the cholesteric pitch is strongly dependent upon the particle con-
centration, temperature as well as solvent properties such as the ionic strength. The effect of
these individual factors on the macroscopic pitch has been the subject of intense experimental
research [96, 103–112].

The connection between the molecular interactions responsible for chirality on the micro-
scopic scale and the structure of the macroscopic cholesteric phase is very subtle and has
been a long-standing challenge in the physics of liquid crystals [1]. The chiral nature of most
biomacromolecules originates from a spatially non-uniform distribution of charges and dipole
moments residing on the molecule. The most prominent example is the double-helix backbone
structure of the phosphate groups in DNA. Combining the electrostatic interactions with the
intrinsic conformation of the molecule allows for a coarse-grained description in terms of an
effective chiral shape. Examples are bent-core or banana-shaped molecules [113, 114] where
the mesogen shape is primarily responsible for chirality. Many other helical bio-polymers and

19
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FIGURE 2.1. Cylinder of dimensions (`, δ) enwrapped with a helical segment potential
with internal pitch length p. The helix sense can be right-handed (R) or left-handed (L).

microfibrillar assemblies of chiral molecules (such as cellulose) can be mapped onto effective
chiral objects such as a threaded cylinder [113, 115], twisted rod [102, 116] or semi-flexible
helix [117].

Despite recent progress in the simulation domain [118,119] a common theoretical framework
capable of rationalising the pitch trends of cholesteric materials starting from the microscopic
properties of the constituents remains elusive. In this paper we endeavour to make a first step
in this direction by considering a semi-analytical density functional treatment of cholesteric as-
semblies starting from a generic helical segment model. To establish a microscopic understand-
ing of the subtle connection between micro- and macrochirality we start by deriving the effective
chiral potential between two slender helical objects as a generic model for chiral nanoparticles
with arbitrary internal helicity. Next, the implications of such chiral potentials on the structure
and symmetry of a cholesteric phase will be addressed using statistical mechanical theory. Our
chiral potential has a simple pseudo-scalar form similar to the ones derived from more explicit
electrostatic models in which chiral interactions are mediated through helically arranged local
dipoles [120]. Owing to its tractable form the pseudoscalar chiral potential is routinely invoked
in particle simulations of cholesteric mesophases [121]. It can also be combined with a Maier-
Saupe mean-field theory [122, 123], or with a bare hard-core model and treated with a virial
theory [25, 124, 125] to study the structural properties of the cholesteric phase. In this work
we shall use an extended Onsager theory, due to Straley [113], as a microscopic framework to
assess the pitch sensitivity with respect to the helical properties of the constituents as well as
the thermodynamic state of the system.

The magnitude and symmetry of the cholesteric pitch turn out to be sensitive to not only
the microscopic pitch but also the degree of alignment along the helical director field. The lat-
ter, in turn, can be steered by the density (lyotropics), temperature (thermotropics) or by some
directional external field. To illustrate the concept, we show that a helix with fixed internal
pitch may self-assemble into both right- and left-handed chiral phases whose handedness may
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spontaneously switch depending on the thermodynamic state of the system. Such pitch inver-
sions have been found in various experimental observations [126, 127] but a sound statistical
mechanical underpinning of these phenomena is lacking mainly because the construction of
generic, predictive models is strongly impeded by the complicated physico-chemical nature of
many thermotropic liquid crystals.

2.2. SOFT HELIX MODEL

Let us consider a pair of strongly elongated helices each described by a linear array of rigidly
linked soft segments with a radially symmetric interaction potential us(r) wrapped around a
cylindrical backbone [see Fig. 2.1]. In the continuum limit the potential Uh between two helices
with length ` depending on the centre-of-mass distance r12 and solid orientation angles Ωi

formally reads:

vUh =

∫ `/2

−`/2
dt1

∫ `/2

−`/2
dt2us(|r12 + s1 − s2|), (2.1)

where si(ti,Ω1) denotes the local segment position of rod i parameterized by ti. A helix of
diameter δ can be defined by invoking a molecular orthornormal basis {ûi, v̂, ŵi} (i = 1, 2) in
terms of the longitudinal orientation vector û and auxiliary unit vectors v̂ = û1× û2/|û1× û2|
and ŵi = ûi × v̂. The contour vector of helix i = 1, 2 then takes on the form

si = ri +
ti
2

ûi +
δ

2
{cos(qti + ψi)v̂ + sin(qti + ψi)ŵi} , (2.2)

with q = 2π/p the internal helical pitch such that q > 0 corresponds to a right-handed (R)
helix and q < 0 to a left-handed (L) one. Since a helical object is not invariant with respect
to rotations about its longitudinal axis ûi the pair potential must explicitly depend on a set of
(internal) azimuthal angles 0 ≤ ψi ≤ 2π. To derive a simple expression for the chiral potential
associated with the rather intractable form Eq. (3.3) we follow the procedure outlined in an
earlier paper [128]. First, we focus on strongly elongated helices and expand Uh for small
width-to-length ratio δ/` � 1. The leading order term is of O((δ/`)2) and embodies all chiral
contributions for slender helices. The next step is to mitigate the multi-angular dependency
of Uh by constructing an angle-averaged chiral potential Ūc obtained by preaveraging over
the internal azimuthal angles. To this end we impose the Helmholtz free energy of the angle-
averaged potential to be equal to that of the full angle-dependent potential [129]. Setting the
thermal energy kBT to unity we may write the potential of mean force in the following way:

Ūc = − ln 〈exp[−Uh]〉ψ = 〈Uh〉ψ −
1

2

〈
U2
h

〉
ψ

+ · · · , (2.3)

where the brackets denote a double integral over the internal angles 〈.〉ψ = (2π)−2
∫ 2π

0
dψ1dψ2.

The last term can be identified with the strength of the azimuthal fluctuations and is obtained
by expanding the free energy up to quadratic order in Uh. It can be readily shown that the
simple average yields zero (〈Uh〉ψ = 0) so that only the quadratic fluctuation term survives.
This is consistent with the notion that the azimuthal helix-helix correlations play a key role in
stabilising cholesteric order, as discussed in [130]. Physical justification of the expansion above
relies on the observation that in most experimental systems the cholesteric twist deformation
is weak (� `). As a result, the chiral contribution to Uh which is the only part responsible
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for the formation of a helical director field is generally much smaller than the thermal energy.
The integrations over the azimuthal angles are trivial and all contributions invariant under a
parity transformation r12 → −r12 are non-chiral and may be discarded. Combining all relevant
contributions leads us to the following compact expression for the chiral potential between two
strongly elongated helices with δ/`� 1:

Ūc(r12; û1, û2) ' 1

4

(
δ

`

)2

F(r12, q)(û1 × û2 · `−1r12). (2.4)

The term between brackets is a chiral pseudo-scalar which changes sign under a parity trans-
formation and is routinely imposed to describe chiral interactions [120]. We show that this
form naturally emerges as the leading-order chiral potential for slender helical objects. Most
importantly, however, our prefactor provides direct access to the microscopic helical pitch via:

F(r12, q) = 〈u′s(r̃12) cos q`t1〉t〈u′s(r̃12)t2 sin q`t1〉t, (2.5)

in terms of the double contour average 〈·〉t =
∫ 1

−1
dt1dt2, intersegment force

u′s(x) = −∂us(x)

∂x
(2.6)

and linear segment distance

r̃2
12 = `−2r2

12 +
1

4
(t1û1 − t2û2)2. (2.7)

In order to appeal to both lyotropic and thermotropic assemblies of helical building blocks we
may consider two different segment potentials. First, a (repulsive) Yukawa segment potential

us(r) = u0
exp(−κ|r|)
|r|

(2.8)

with κ an inverse electrostatic screening length, provides a relevant description of charge-
stabilised colloidal helices whose self-assembly properties are governed mainly by particle
concentration. To make a connection to thermotropic systems, we consider a van der Waals
(vdW) form

us(r) = −u0

r6
(2.9)

in which case the system temperature rather than concentration constitutes the chief thermody-
namic control parameter owing to the long-ranged attractive interparticle forces. The amplitudes
u0 > 0 pertain to various electrophysical properties (surface charge, dielectric constant etcetera)
of the individual helices which we do not need to not specify here.

Irrespective of the nature of the segment potential the chiral potential exhibits an intricate
angular dependence (Fig. 2.2). Results are shown for a particular interhelix distance of 0.1`

but the overall features do not change qualitatively for different values, provided the distance
remains larger than the core diameter δ. In particular, the amplitude and direction of the effective
torque each helix experiences depends sensitively on its local orientational freedom. Since the
latter is tuned primarily by density or temperature we expect a highly non-trivial response of
the cholesteric symmetry upon variation of these quantities. Two observations in Fig. 2.2 hint
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FIGURE 2.2. Angular variation of the near-field chiral potential [Eq. (2.4)] at fixed rod
distance 0.1` depends sensitively on the molecular pitch q. The curve for q` = 4 reveals
a double minimum at opposing twist angle γ, irrespective of the nature of the interactions
as demonstrated for two different segment potentials us. The extrema have been scaled
to unity to facilitate comparison.

at a subtle relationship between the helical properties of the individual particles and those of the
macroscopic phase. First, for q = 4 the sign of the effective torque

τ ∼ −
(
∂Ūc
∂γ

)
γ=0

(2.10)

at small mutual angle γ(û1, û2) is opposite to that of the other helices shown. This implies that
helices may stabilise a cholesteric helix sense with opposite symmetry in the asymptotic limit of
strong alignment (viz. very large concentrations) [125]. A second, more implicit, observation is
that for certain values of q, the local and global minima correspond to opposite torque directions.
The consequence is that the symmetry of the effective microscopic torque experienced by each
helix due to correlations with its neighbours depends crucially on the degree of local alignment
along the helical director.

2.3. ONSAGER-STRALEY THEORY

To scrutinise the effect of these subtleties on the macroscale we invoke a simple Onsager-
type theory appropriately generalised for weakly helical director fields with pitch k � `−1

[27, 131]. The Helmholtz free energy density F per unit volume V depends on the one-particle
orientational distribution f(û) reads up to quadratic order in k:

F

V
= ρ

∫
dûf(û)(ln[ρVf(û)]− 1) +

2∑
n=0

Kn(−k)n

n!
, (2.11)

with ρ the particle number density and V the immaterial thermal volume of a helix. Eq. (2.11)
reflects a balance between the ideal mixing and (local) orientational entropy and the excess
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free energy accounting for helix-helix interactions on the second-virial level in terms of the
following angular averages [27]

Kn[f ] =
ρ2

2

∫
dû1

∫
dû2[∂nf(û1)f(û2)]Mn(û1, û2), (2.12)

in terms of the derivatives ∂0 = 1, and

∂1 = u2⊥∂û2 ,

∂2 = u1⊥∂û1u2⊥∂û2 , (2.13)

acting on f with (‖,⊥) denoting the vector component along and transverse to the cholesteric
pitch direction. The reference term,K0 is associated with an untwisted nematic system, whereas
K1 embodies an effective torque-field emerging from the chiral potential. K2 represent a twist
elastic energy counteracting the helical deformation of the director field. The kernels Eq. (2.12)
are entirely microscopic and are given by higher-order spatial averages of the Mayer function
of the helical pair potential

Mn = −
∫
dr12r

n
12‖(e

−Uh − 1). (2.14)

If we assume helix envelope to consist of a cylindrical hard inner core of diameter δ, then

M0 = 2`2δ̄| sin γ|, (2.15)

identical to the excluded volume vex of the cylinder-shaped helical envelope. The soft potential
can be subsumed into an effective, angle-dependent diameter δ̄ = ε(γ)δ. The orientation-
dependent prefactor reads

ε(γ) = 1 +

∫ ∞
1

dx(1− exp[−us(x) cos2(γ)]). (2.16)

which reduces to unity for strictly hard rods (us = 0). The cosine term reflects the intrinsic
tendency of attractive helix pairs to align and repulsive ones to adopt a perpendicular configu-
ration [132]. Similar arguments can be applied to the twist elastic constant in which case the
kernel is represented by some higher-dimensional excluded volume

M2 =
1

6
`4δ̄| sin γ|(u2

1‖ + u2
2‖). (2.17)

The symmetry ofM1 dictates that the torque-field constantK1 depend only on the pseudo-scalar
contribution ro the helix potential [Eq. (2.4)]. Recalling that Ūc � 1 and adopting a simple van
der Waals ansatz one arives at a tractable form

M1 '
∫
/∈vex

dr12r12‖Ūc(r12, û1, û2), (2.18)

where the spatial integral runs over the space complementary to the excluded volume vex of the
helix envelope.
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FIGURE 2.3. (a) Cholesteric pitch length pc versus concentration for a system of helical
Yukawa rods with κ` = 20 and δ/` = 1/50 for different values of the internal pitch
q`. (b) Same result plotted against the local nematic order parameter S. A pitch sense
inversion (right-handed↔ left-handed) occurs for q` = 4 and q` = 7.

2.4. PITCH INVERSION

Most helically organised assemblies known in experiment possess a pitch length much larger
than the molecular size. It is therefore reasonable to suppose that the local nematic order is
only marginally affected by the twisted director field. In this situation the local orientational
distribution of the main helix axis f(û) can be established from a formal minimisation of the
nematic free energy [Eq. (2.11), setting k = 0] so that

f(û) = N exp(−c
∫
dû′ε(γ)| sin γ|f(û′)), (2.19)

where the constantN ensures normalisation and c = ρ`2δ defines a dimensionless concentration
measure. From f ∗ one can extract the nematic order parameter along the local director n̂ via

S =

∫
dûf(û)P2(û · n̂) (2.20)

with P2(x) = 3
2
x2− 1

2
a Legendre polynomial. The ratio of the microscopic constantsKi define

the equilibrium cholesteric pitch

k =
K1[f ]

K2[f ]
(2.21)

This result naturally follows from the extremum condition ∂F/∂k = 0 and reflects a balance
between the torque-field and twist elastic contributions to the free energy. In keeping with the
internal pitch we identify k∗ > 0 with a right-handed (R) helical director field and k∗ < 0

with a left-handed (L) one. With this, we have established the desired connection between
thermodynamic variables (concentration or temperature) and cholesteric pitch k∗ for helical
particles with arbitrary internal pitch q.
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To illustrate the pitch sensitivity of cholesteric assemblies we now focus exclusively on ly-
otropic cholesterics composed of Yukawa helices for which the concentration c constitutes the
main thermodynamic parameter. The results in Fig. 2.3 show the variation of the cholesteric
pitch length with c for different values of the internal pitch q. The cholesteric pitch has been
normalised to its value corresponding to the cholesteric phase at coexistence with the isotropic
phase (c = 6.28 setting u0 = 1) to avoid having to make an explicit reference to the physico-
chemical helix details that go into u0 [128].

The helices corresponding to Fig. 2.3 all possess a right-handed symmetry and one would
naively expect the cholesteric phase to adopt the same symmetry. Fig. 3 shows that this is
indeed the case for q` = 3 and q` = 6 where the cholesteric sense remains right-handed (R)
throughout the probed concentration range, but not for q` = 4 and q` = 7. In the latter cases
a more complicated scenario if found in which a R-cholesteric phase transforms into a L-phase
upon increasing c. The critical value at which the sense inversion occurs is found to be c ≈ 17.6

for the weakly coiled (q` = 4) and c ≈ 11.4 for the strongly coiled ones (q` = 7). The transition
from R to L is continuous and must be associated with a diverging pitch length

pc ∝
1

|c− c∗|
(2.22)

at the inversion point c∗ where the system becomes nematic. For c < c∗ the pitch strongly de-
creases upon lowering c and a distinct unwinding of the helical director field occurs close to the
transition towards the isotropic phase. Symmetry prescribes the same sequence of pitch changes
to occur for left-handed helices with the sense changing R→ L upon dilution. Independent of
q the cholesteric becomes more strongly coiled upon increasing concentration and the pitch
length attains a simple proportionality pc ∝ 1/c in the asymptotic concentration limit [133].

Eq. (2.4) presents a schematic overview of the interrelation between microscopic and
cholesteric chirality. We can infer that pitch inversions upon change of local nematic align-
ment only occur in certain q interval while absent in others. The pitch amplitude (Fig. 2.4b)
depends sensitively on q with the pronounced extremum around |q|` ∼ 3 revealing an optimal
‘twisting strength’ for moderately coiled nanohelices [128]. As alluded to in Fig. 2.2, the sense
inversion is imbedded in the intricate dependence of the chiral potential on the microscopic
twist angle γ. A prerequisite for the pitch inversion is the presence of an antagonistic effect in
the azimuthally averaged interhelix potential represented by minima located at opposite sign of
the angle γ between the main helix axes. The ratio at which these minima are sampled depends
crucially on the degree of nematic alignment around the local director and a change of nematic
order (by varying particle concentration or temperature) allows the helix pairs to preferentially
adopt either a positive or negative twist which then proliferates towards the formation of a left-
or right-handed director field.

In view of the similarity between the scenarios depicted in Fig. 2.2 one can envisage an anal-
ogous pitch inversion for attractive van der Waals segment potentials. This situation would
correspond to thermotropic helical assemblies where a change of temperature kBT/u0 (at fixed
pressure) provides the main driving force for liquid crystal order. The present theory could
therefore also be used to model thermotropic systems of coiled molecules in which a similar
complex interplay between micro- and macrochirality can be expected by variation of tempera-
ture.
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FIGURE 2.4. (a) Relation between the cholesteric pitch k and internal pitch q as a
function of the degree of local nematic order S. The sign and strength of the cholesteric
pitch (in reduced units) is indicated by colour coding. The white zones refer to nematic
regions (q = 0) connecting the two helical senses. (b) Absolute value of the cholesteric
pitch k` for two values of the local nematic order parameter.

2.5. TESTING THE PREDICTIONS USING COMPUTER SIMULATION

We use large scale molecular dynamics simulations of a simple model system consisting of
an achiral spherocylindrical backbone dressed with soft Yukawa patches forming a helical ar-
rangement. Our particular focus is on finding evidence for so-called pitch inversions, where a
sudden change of the cholesteric sense is produced upon a change of particle density at fixed
molecular pitch. These inversions have recently been conjectured from Onsager-type theories
for chiral nematics (disccussed in the first part of this chapeter) and hard helices [134] suggest-
ing that these inversions are somehow inherent to a nematic organization of helical nanoparti-
cles. These theories are, however, based on the second-virial approximation and do not capture
particle correlations beyond mere pairs [25]. Moreover they are mean-field theories in which
thermal fluctuations of the particle density, orientations and fluctuations in the (local) nematic
director orientation are neglected. A careful molecular simulation study capable of accounting
for these effects is therefore necessary and timely, in particular, in view of the subtle balance of
torques that underpin these helical inversions.

Our inspiration for focussing on long-ranged chiral interactions stems from the observation
of chiral nematic order in colloidal suspension of filamentous fd virus rods [135]. Grelet et
al. [107] have attempted to study the mechanism behind the twist by coating the fd virus with
a thick layer of polymer in order to suppress the short-range chiral interactions and to treat the
virus as a sterically stabilized colloid. The nematic phase, however, remains twisted and the
pitch depends markedly on the salt concentration suggesting that the supramolecular twist must
be due to weak but long-ranged electrostatic forces reaching beyond the distance shielded off
by the polymer coating. A related study on another filamentous virus (M13) argues that the
observation of left-handed cholesteric phases formed by right-handed chiral viruses is also due
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to a subtle competition between electrostatic interparticle forces [136]. A similar conclusion is
reached in the case of chiral phases of DNA [137, 138].

Although the focus of this paper is on the competition between short-range steric and long-
range chiral electrostatic repulsions it is worth mentioning the extensive body of work done
on hard helices [139–142], where chirality is transmitted via steric interactions emerging from
the helical shape [134, 143–145]. Following up on the early work of Straley [146] on hard
threaded rods, density functional theory (DFT) [147] was used to show that right-handed helices
yield left-handed cholesterics at large microscopic pitch, and right-handed cholesterics if the
microscopic pitch is small [134, 143]. This behavior is ascribed to small excluded-volumes
differences between left- and right-handed twist on the pair level. Whilst the geometry of the
hard helix is the main parameter defining the sense of orientation, the degree of local alignment
(as determined by the particle density) also plays a crucial role and may bring about pitch
inversions at fixed internal helicity [144]. We reproduce these pitch inversions in our model
for soft chirality and confirm their robustness with respect to fluctuations and multi-particle
correlations that were hitherto neglected in these theoretical studies.

Particle-based simulation of chiral nematics is a non-trivial task and has been a long-standing
challenge in computer modelling of liquid crystals [148, 149]. The first complication is that
the cholesteric pitch is usually much larger than the size of the simulation box. This requires
simulating very large systems even though the computational burden can be alleviated some-
what using twisted boundary conditions, or by using a simulation box taking the shape of a
hexagonal prism which accommodates for larger pitches [148]. The second, more serious prob-
lem is that the two opposing planes perpendicular to the helix axis are periodic. This implies
that, unless the system dimension along the helix axis exactly matches an integer times half the
cholesteric pitch, the periodicity of the boundaries is incompatible with the natural helical order
and a spurious torque is imparted onto the system. Two main workarounds have been devel-
oped to allow the pitch to be measured without the aforementioned bias. The first is replacing
the two sides perpendicular to the twist direction by two opposing hard walls, thus confining
the system to a slab geometry. This breaks the periodicity along the helix axis and lifts the
undesired interactions introduced by the periodic boundary conditions [150–153]. A disadvan-
tage of this method is that the system loses its bulk properties near the boundaries due to the
depletion forces exerted by the walls. The second approach, by contrast, takes advantage of the
unphysical strain imparted by the periodicity and samples the average torque density the system
experiences when the rods are constrained to adopt an unwisted (nematic) or a twisted config-
uration (nematic director making a half turn across the box dimension) [154, 155]. Assuming
the equilibrium twist to reside somewhere between the imposed untwisted and overtwisted one,
one can compute the equilibrium pitch (and also the twist elastic constant) simultaneously via
a simple interpolation procedure.

Most simulation studies of cholesterics reported so far rely on pairwise interactions which
can be split into chiral and achiral parts. The intermolecular potential is usually based on
some orientation-dependent Gay-Berne [154,156], Lennard-Jones [153] or hard-spherocylinder
[150–152] reference potential imparting nematic order supplemented with a simple pseudoscalar-
type interaction potential encoding chirality. Alternatively, chirality can be introduced by the
addition of chiral dopants [157] or induced by a chiral surface [121]. The routinely used pseu-
doscalar potential is similar to the one proposed for soft helices [158] with the important differ-
ence that, in the latter, the molecular twist and handedness follow directly from the geometric
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FIGURE 2.5. Geometry of a helical patchy rod. (a) Each rod is composed of 21 fused
WCA spheres representing a spherocylinder with aspect ratio L/σ = 10. (b) A particle
is composed of a bare achiral backbone supplemented with a left- or right-handed helix.
The helix is discretized into a finite number of repulsive Yukawa patches represented as
soft spheres. The interaction range of the patches equals twice the sphere diameter.

features and interaction potential of the helices rather than having to be prescribed as input
parameters. To our knowledge, the present paper provides the first simulation study aimed at
measuring helical pitches for a simple model of chiral patchy cylinders where the interactions
can be split into a achiral and achiral part, and where the molecular pitch can be controlled
explicitly by subtle changes in the spatial arrangement of the patches.

2.6. SIMULATION MODEL

In our model, each molecule is composed of a hard rodlike backbone superimposed with a
Yukawa helix [128, 158], as illustrated in Fig. 2.5. The rod is modelled as a linear rigid body
composed of 21 fused spheres, each interacting with the spheres from neighbouring rods via a
Weeks-Chandler-Andersen potential

VWCA(r) =

4ε
[(

σ
r

)12 −
(
σ
r

)6
]

+ ε r < 21/6σ,

0 r ≥ 21/6σ,

where r is the centre-of-mass distance between the spheres and σ is the approximate diameter
of the repulsive core and ε is the interaction strength in units of the thermal energy kBT (in
terms of Boltzmann’s constant kB and temperature T ). We take σ = 1.0, thus serving as our
unit of length, and fix ε = 1.0. The rod length is set at L = 10σ. The helix is discretized into
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FIGURE 2.6. Snapshot of the untwisted and twisted systems where the patchy rods
are colored according to their orientations. (a) A schematic illustration of the different
length scales of the system; the microscopic pitch with magnitude p and the supramolec-
ular, cholesteric pitch with length P . In this representation the main rod direction is iden-
tified with the local nematic director. The molecular pitches considered in this paper are
of the scale of rod length p ∼ L, whereas the macroscopic pitches are much larger than
the rod length (P � L). (b) Snapshots of the untwisted and twisted states viewed from
two different angles. The director in the twisted phase revolves by a half turn along the
z-direction. The boundaries along the z-axis are fully periodic. The centers of Yukawa
patches are indicated by small dark dots on the surface of the rods. The pitch of the
twisted state has magnitude 2Lz and is significantly smaller than the equilibrium pitch
P , which typically ranges from 10Lz to 50Lz .

np repulsive Yukawa patches with the potential

VY(r) = Ap
e−κ|r|

|r|
(2.23)

where κ = 2.0σ is the screening length. The potential is cut-off and shifted to zero at rc = 5σ.
To ascertain that the total Yukawa repulsion between two molecules is constant and independent
of the discretization of the spiral, the patch amplitudeAp is normalized by the number of patches
via Ap = A/n2

p. Unless otherwise stated, np = 5 for all systems simulated. The centres of the
patches are located on the surface of the rod (distance σ/2 from the main axis) and its helical
layout is described by a microscopic pitch p which can be right-handed or left-handed. For
reasons of basic symmetry we only consider rods with a left-handed microscopic pitch.

To sample the statistics of the many-body system we use a dynamical integrator for rigid bod-
ies [159,160], which has recently been implemented within the molecular simulator LAMMPS
[161]. The system is composed of N = 6534 rigid molecules in a canonical (NV T ) ensemble
and periodic boundary conditions in all three Cartesian directions are applied. A Nosé-Hoover
thermostat with chains [162] is used to ensure a constant system temperature. The simulation
box is rectangular with dimensions Lz = 2Lx = 2Ly and volume V = LxLyLz. We define the
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packing fraction of the bare rods via

φ =
N

V

(π
6
σ3 +

π

4
Lσ2

)
(2.24)

ignoring any contributions from the patches and assuming that the segmented rod can be
mapped onto a hard spherocylinder [163]. For simplicity the terms density and packing fraction
both refer to φ. The time step in all simulations is fixed at ∆t = 0.003.

As alluded to in the introduction, simulating a twisted nematic without bias from the peri-
odic boundaries requires the macroscopic half pitch length to be exactly a multiple of the box
dimension [148]. Since we do not know the equilibrium pitch a priori an alternative strategy
must be implemented. Here, we follow the procedure of [155] which consists of measuring
the average torque density of an ensemble of rods adopting an artificial twist imposed by the
periodic boundaries. As shown in Fig. 2.6, the system is simulated in two metastable states
with macroscopic twist defined by a wavenumber k = 0 (untwisted, nematic) and k = −π/Lz
(half turn twist), with the latter corresponding to the left-handed macroscopic twist. Although
compatibility with the periodic boundary condition along the z-direction is guaranteed in both
cases, the systems are both metastable [154, 155] because the imposed twist will be different
from the equilibrium one.

The equilibrium pitch can be computed as follows. Let us denote the z-component of the
torque vector between particle i and j as τ zij . Similarly, we denote rzij as the z-component of the
distance vector between the centre of particle i and j. From this we define the tensor component

Πzz = −1

2

N∑
i=1

N∑
j 6=i

rzij
(
τ zij − τ zji

)
,

representing the torque per unit area. We denote the averages of Πzz as 〈Πzz〉0 for the untwisted
sample and 〈Πzz〉k for the half-turn twisted one with k = −π/Lz. The equilibrium macroscopic
pitch can then be obtained from

P = −2π

k

(
〈Πzz〉k − 〈Πzz〉0
〈Πzz〉0

)
= − 2πV

〈Πzz〉0
K2, (2.25)

The pitch P is right-handed if P > 0 and left-handed if P < 0. An important advantage of the
method is that it allows for a simultaneous measurement of the twist elastic constant K2 which
follows from

K2 =
〈Πzz〉k − 〈Πzz〉0

V k
. (2.26)

It turns out that, with the setup outlined in Fig. 2.6, the tensor components Πzz can be measured
without difficulty since the metastability of the untwisted and overtwisted states is sufficiently
strong to guarantee good statistics.

All simulations are initiated from a cubic crystal composed of molecules with random az-
imuthal angles and with their main axes aligned along the x direction. The untwisted nematic
is generated by melting the crystal during an equilibration run of 2 · 106 time steps. The
twisted state is prepared by imposing two hard walls at the top and bottom side of the sim-
ulation box and by applying an external torque onto the rods, consisting of two force fields of
opposite sign (force dipole), −~F (z) and ~F (z), acting on either end segment of the spherocylin-
der. The direction of the force describes a half turn along the z axis and is parameterized by
~F (z) = 100 · (cos(πz/L), sin(πz/L), 0) with 0 < z < Lz. A cubic crystalline starting con-
figuration is then allowed to relax during an equilibration run of 106 steps while the imposed
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external fields enforce the system to adopt the desired half-turn twist with the local director
residing in the xy-plane of the simulation box. The external torque field and the confining walls
are subsequently removed, and the system is equilibrated for another 2 ·106 steps while remain-
ing in the twisted state. The length of the production run is 5 · 106 steps with averages of Πzz

calculated every 5 · 103 steps. The simulation runs at a speed of 106 steps which takes about
15 hours on 4 processors. The chosen system size is sufficiently large to ensure that finite size
effects are negligible in our analysis.

2.7. RESULTS

2.7.1. The choice of parameters and phase behavior
Since our focus is on nematics, we must restrict the range of packing fractions to the relevant

region where nematic order is stable against smectic order at large packing fraction, and against
isotropic order at low density. An additional requirement is that the density must be high enough
to keep the constrained twisted nematic stable during the production run. We find that this
stability is no longer guaranteed at densities close to the nematic-isotropic transition. In what
follows, we briefly discuss the choice of parameters, in particular the rod geometry and its effect
on the phase behavior.

If the rod aspect ratio is small the density region over which the nematic is stable is nar-
row [163], and the metastability of the twisted nematic is too weak. If the rods are too long, the
simulations become computationally expensive because larg systems with large nearest neigh-
bor cells need to be considered. We find that L = 10σ provides the optimal aspect ratio. In
view of the conditions above, we consider packing fractions in the range 0.34 ≤ φ < 0.43. The
upper bound of this interval is the nematic-smectic transition density of the achiral patchless
rods, which is in a very good agreement with earlier predictions for hard spherocylinders [163].
The lower bound is a safe estimate of the lowest density at which the imposed twisted nematic
can be kept stable during the course of the simulation run.

As for the phase stability of the nematic, the addition of repulsive patches to the spherocylin-
drical backbone produces two distinct effects. First, the effective aspect ratio is reduced. The
phase diagram of hard spherocylinders [163–165] then implies that the interval of the nematic
stability should become narrower and shift to higher packing fractions. Second, the patches
increase the effective density of the system. We find that the increased density has a more
pronounced impact on the phase boundaries than the reduction of the aspect ratio. The net
implication is that both the isotropic-nematic and nematic-smectic transition densities shift to
smaller packing fractions φwhen the amplitudeA grows larger. We found that the phase bound-
aries are also affected by changes in the microscopic pitch. For example, a nematic system with
A = 1000, np = 5 and φ = 0.37 crosses over into a smectic for large microscopic pitches
p > 15. We stress that all results shown in this paper are in the stable nematic range. Data
points corresponding to systems that are believed to be affected by long-lived smectic fluctua-
tions are indicated by open symbols in all figures.

We finally mention that kinetically arrested structures such as a Wigner glass [166,167] may
occur in systems with long range interactions. To ensure that we steer clear of dynamically ar-
rested states, we monitor the diffusive properties of the particles at the densest phases simulated.
The translational diffusion constant is defined as

D = lim
t→∞

〈r2(t)〉
6t

(2.27)
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FIGURE 2.7. Dependence of the macroscopic pitch on the discretization of the Yukawa
spiral into np Yukawa patches. The two-patch rod model (np = 2) is non-chiral and pro-
duces a large pitch 843L resembling an untwisted nematic. All systems have a packing
fraction φ = 0.35, amplitude A = 1000, and microscopic pitch p = 1.25L. The solid
line is drawn to guide the eye.

where 〈r2(t)〉 is the mean square displacement. The smallest diffusion constant we measure is
D = 5 · 10−5 for a system with Ap = 20 and φ = 0.42. This implies that during the production
run, a rod traverses an average distance of 25D = 2.5L and that there are no signs of dynamic
arrest.

2.7.2. Pitch versus density: spontaneous sense inversion
Let us first address the sensitivity of the pitch on the discretization of the Yukawa spiral.

The results in Fig. 2.7 show that the use of 5 patches constitutes a good approximation of a
continuous spiral [158], in which case the number of patches would be infinite. We find that
using a larger number of patches puts a considerable burden on the simulation time, due to the
long-range interactions, with only limited extra accuracy.

Next, we scrutinize the effect of particle density. The results in Fig. 2.8 exhibit a common
trend where the cholesteric pitch decreases systematically with concentration. The scaling of
the pitch with density around the isotropic-nematic transition density φ0 reveals a simple power
law

P ∝ (φ− φ0)α, (2.28)

with exponent α ≈ −1 in quantitative accord with theoretical predictions [125, 133] and in
qualitative agreement with experimental results on fd virus suspensions at reduced salt concen-
tration [107] .

Examples of spontaneous inversions of the macroscopic helical symmetry can be gleaned
from Fig. 2.9, Here, the direction of twist suddenly changes from left to right upon variation
of the density. Comparing the low density regions of Figs. 2.9 and 2.8 reveals that the twist is
systematically negative for the weaker amplitude, and positive for the stronger amplitude. The
effect of the amplitude on the helical symmetry is further examined in Fig. 2.10(a). It is very
plausible that the helical inversion with amplitude originates from packing effects as well (cf.
Fig. 2.9) given the enhanced effective system density at increasing amplitude.
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FIGURE 2.8. Variation of the macroscopic pitch with packing fraction for a system
with Ap = 20 and p = 1.2L. The fit is shown on a double log-scale (inset) with the
isotropic-nematic transition density estimated as φ0 ≈ 0.26. Shown below are snapshots
at different densities close to the nematic-smectic transition.

The density at which the inversion occurs can be lowered by a slight reduction of the mi-
croscopic pitch as is evident from Fig. 2.9. This observation tallies with predictions from
DFT [158] where the critical degree of local alignment (proportional to rod density) at which the
inversion takes place drops upon decreasing the molecular pitch. A remarkable feature is that
the magnitude of the macroscopic pitch P should strictly diverge at the inversion point where
the cholesteric should unwind completely and form a nematic phase even though the rods are
distinctly chiral. None of the systems with a density close to the inversion point are affected by
fluctuations pertaining to smectic layering as can be seen from the snapshots attached. There is
no sign of an anomalous increase of the twist elastic resistance near the critical density as will
be demonstrated in the next paragraph.

The handedness of the macroscopic pitch P can also be changed by modifying the micro-
scopic pitch p. The direct correlation between the microscopic and macroscopic pitch is high-
lighted in Fig. 2.10(b) and confirms the interrelationship to be highly non-trivial. More im-
portantly, it illustrates the possibility of cholesteric helix inversions induced by changes in the
molecular conformation affecting the internal helicity of the constituents. These conformational
modifications may, in turn, be governed by changes in temperature in case of thermotropic as-
semblies.

Some insight into the microscopic origin of the pitch inversion can be gathered from
analysing the torque per unit area in the untwisted phase. Equation (2.25) implies that an
inversion (|P | → ∞) occurs when the net twist propensity vanishes, i.e., 〈Πzz〉0 → 0.
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FIGURE 2.9. Cholesteric pitch inversion as a function of the packing fraction for chiral
amplitude Ap = 10 and two different values of microscopic pitch p. Below are the
typical snapshots of the system at different densities and p = 1.2L. The last snapshot
exhibits a slow onset of smectic fluctuations. Drawn lines are curves fitted on the form
P = P0(φ− φ∗)−1 with offset P0 and inversion density φ∗.
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FIGURE 2.10. (a) Pitch inversion as a function of the strength of Yukawa amplitude
Ap for φ = 0.35 and p = 1.2L. (b) Pitch inversion with respect to the magnitude of the
microscopic pitch for φ = 0.36 and Ap = 10.

Assuming a pairwise additive interaction, we can split the torque into a chiral part corre-
sponding to the Yukawa patches and a nonchiral part representing the backbone segments,
〈Πzz〉0 = 〈Πa

zz〉0 + 〈Πc
zz〉0. A pitch inversion can then be identified with a balance of mean

torque densities: 〈Πa
zz〉0 = −〈Πc

zz〉0. The results in Figures 2.11(a) and (b) show that 〈Πa
zz〉0

remains negative throughout the density interval while 〈Πc
zz〉0, changes sign going from small

to large density. The rapid upswing from negative to positive observed in the chiral contri-
bution 〈Πc

zz〉0 outweighs the negative contribution of the achiral torque 〈Πa
zz〉0 and causes the
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FIGURE 2.11. (a,b) Torques versus packing fraction for untwisted systems with Ap =

10 and two different values of the microscopic pitch p. (c,d) Corresponding macroscopic
pitches P (cf. Fig. 2.9).

cholesteric to twist from left- to right-handed. From this we can conclude that the sense inver-
sion is entirely driven by the chiral part of rod potential. Moreover, the intermolecular torque
generated by the helical patches may either have a positive or negative signature depending on
the density of the underlying nematic structure as put forward by theory [158].

Close inspection of Fig. 2.11(b) reveals that 〈Πc
zz〉0 has a local minimum just before the onset

of the fast growth, where the linear fit yields a negative gradient at low densities and positive
gradient at high densities. This suggests the existence of an optimum density in the transition
region where the negative twist is maximal and hints at a sudden emergence of a positive torque
contribution at a critical density.

In case of a scenario with no pitch inversion (Fig. 2.8), the contribution of the chiral part
〈Πc

zz〉0 is strictly positive (results are not shown) and their values are significantly larger than
the contributions of the achiral part 〈Πa

zz〉0, which are systematically negative. Therefore, in this
situation the orientation of the macroscopic pitch remains right-handed throughout the nematic
density range.

2.7.3. Twist elastic constant versus packing fraction
It is worthwhile to briefly embark on a detailed analysis of the twist elastic constants K2

emerging from our simulation data. This is particularly so in view of the complications en-
countered in measuring the elastic properties of liquid crystals in simulation [148, 169, 170]
and because of their importance in the interpretation of experimental results [1]. To date, sys-
tematic simulation studies measuring the twist (and other) elastic constants and their variation
with particle density remain scarce and insufficient data points make it difficult to discern clear
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FIGURE 2.12. Twist elastic constant versus packing fraction for rods with microscopic
pitch p = 1.2L, and different values of the patch amplitudeAp. Filled symbols represent
simulation results. The empty ones correspond to smectic samples. The values for
Ap = 0 (patchless rods) are in fair agreement with the prediction from fundamental
measure theory (FMT) for hard spherocylinders [168]. Error bars are calculated from
the covariance of 103 measurements of 〈Πzz〉k and 〈Πzz〉0. The error bars for Ap > 0

are not displayed but are of comparable magnitude.

trends [171, 172]. Here we aim to partly fill the gap by carefully mapping out the density-
dependence of the twist mode using the spherocylinder model.

Similar to the pitch, the elastic constant can be readily obtained from the torque density
contributions according to Eq. (2.26). The results for the bare spherocylinders are shown in
Fig. 2.12 and compared with predictions from fundamental measure density functional the-
ory [168]. It is striking to observe that K2 seems to grow linearly with density without showing
any sign of divergence close to the nematic-smectic transition as has been often conjectured in
view of the generic incompatibility between lamellar order and twist [173, 174]. Our results,
however, suggest that the slow growth with density extends smoothly to regions where smectic
fluctuations become predominant. A similar trend is observed for the patchy rods; although the
amplitude of K2 is enhanced upon increasing the amplitude of the Yukawa patches, its (near-
)linear density dependence is preserved. We stress that in view of the large errors incurred
and because of finite size effects that may play a role at larger packing fractions where smec-
tic fluctuations become long-ranged and long-lived the results in Fig. 2.12 can only provide a
qualitative, yet valuable guideline.

2.7.4. Pitch measurement in slab geometry
In addition to the torque-based technique we have also attempted to determine the macro-

scopic pitch using Monte Carlo simulations of a similar model (hard spherocylinders plus he-
lical Yukawa patches) in which the rods are confined between two hard walls [150, 152]. The
walls enforce the nematic to align along the xy-plane and at the same time break the periodicity
along the z-axis, thus ensuring that particle orientations are not coupled through the boundaries
imposed along the twist direction. The macroscopic pitch can then be estimated from the twist
of the local nematic director ~n(z) by sampling bulk statistics far from the boundaries. However,
in our simulations, we observe large fluctuations in the density close to the walls, which point
to the formation of a smectic wetting layer. These smectic layers show signs of dynamic arrest
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and misalignment across the periodic boundaries in the xy-plane. As a consequence, they im-
part a strong spurious twist onto the system and suppress the natural weak twist favored by the
Yukawa spirals. Even though the effect of the hard walls is negligible around the center of the
simulation box, where bulk behavior should be recovered, we believe that the presence of these
long-lived smectic fluctuations undermines the suitability of the hard-wall method for measur-
ing macroscopic pitches in a bias-free manner, at least for the model system and concentration
ranges investigated here.

2.8. DISCUSSION & CONCLUSION

We propose a course-grained helical segment model to study chiral self-organisation in ly-
otropic or thermotropic assemblies of helical mesogens. From the general pair potential we
extract an algebraic chiral potential similar to the pseudoscalar form [120] widely used to de-
scribe long-ranged chiral dispersion forces. Whereas the pseudoscalar model potential usually
requires an unknown adjustable prefactor, our agebraic form provides explicit reference to the
molecular helicity. By combining the potential with a simple Onsager-Straley theory we study
the cholesteric pitchdouble as a function of the magnitude and sense of the pitch as well the ther-
modynamic state. The cholesteric handedness is not a priori dictated by the symmetry of the
individual helices but depends sensitively on the precise value of the internal pitch and the ther-
modynamic state of the system. We map out the precise conditions under which right-handed
helices generate left-handed chiral phases and vice versa. The antagonistic effect of helical in-
teractions is consistent with experimental observations in M13 virus systems [175] and various
types of DNA [4, 118] where left-handed cholesteric phases are formed from right-handed he-
lical polyelectrolyte conformations. Small variations in the shape of the helical coil, induced
by e.g. a change of temperature, may lead to a sense inversion of the helical director. Such
inversions have been found in thermotropic (solvent free) polypeptides [126], cellulose deriva-
tives [127], and in mixtures of right-handed cholesterol chloride and left-handed cholesterol
myristate [176].

We have tested the theoretical scenario for soft chirality using large-scale simulations of
cholesteric phases of helical patchy rods. The simulations confirm a delicate relation between
chirality on the molecular scale and the macroscopic scale. In particular, we have established
that the magnitude and handedness of the cholesteric pitch can be carefully tuned by the pack-
ing fraction of the system, by the magnitude and sign of the microscopic pitch and that it shows
a marked sensitivity with respect to the strength of the chiral interactions. While left-handed
helical rods twist into left-handed cholesterics at low packing fractions (or at weak chiral in-
teractions) they form right-handed cholesterics at higher packing fractions (or at strong chiral
interactions).

We show that the density at which the pitch inversion occurs depends on the microscopic
pitch; the observed trend is in line with recent theoretical predictions for soft helices. In the
absence of pitch inversion, the pitch can be described by a simple algebraic density scaling
P ∝ φ−1, in good agreement with experimental observations in chiral nematics of filamentous
virus particles and theoretical predictions. Irrespective of the patchyness of the rods, we find that
the twist elastic constant of a nematic phase of repulsive spherocylinders grows linearly with
packing fraction even in the proximity of the nematic-smectic transition, contrary to common
belief where an anomalous growth or divergence is expected close to the transition [1].
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Future efforts could be aimed at a careful measurement of orientational pair-correlation func-
tions and effective pair-twisting potentials with the aim to investigate whether the mechanism
behind the cholesteric sense inversion reported in our simulation can somehow be connected
to the effective double-minimum twisting potential established in theory [Fig. 2.2]; the min-
ima are located at opposite signs of the intermolecular angle and suggest that i) helices with
a certain molecular pitch have the propensity to twist in both directions and ii) the preferred
twist direction is dictated by the amount of local orientational freedom the helices experience.
The data for the effective multi-particle torque density of the helices reported here point to a
mechanism very similar to the one put forward in the theory. Above all, our simulation results
clearly demonstrate the robustness of these chirality inversions in twisted nematics of helical
mesogens. They are not artefacts of the second-virial (and other approximations) inherent to
the theory. Nor are they suppressed by fluctuations in the director field or by density fluctuations
generating local smectic order.

On a more ambitious level, it would be intriguing to investigate to what extent kinetic factors
contribute to the handedness of the macroscopic pitch. Recent simulation studies show that the
chirality of fibrillar aggregates not only depends on the chirality of the constituent fibres but also
on the kinetic pathway of the self-assembly process [177]. A temporal change, for instance, in
the local ionic strength may affect the binding sites between the filaments, thereby changing the
molecular helicity which, in turn, may lead to chirality inversion on the fibre scale [178].

Short-fragment DNA strands may polymerize into longer units which subsequently self-
organize into cholesteric phases. Recent attempts have been made [179] to model these systems
from a theoretical (DFT) perspective, focussing solely on shape chirality. The challenge here
would be to include electrostatic chirality (on a coarse-grained level as done here) and see how
both effects combined influence the pitch sensitivity and, indeed, the stability of the cholesteric
state itself. In case of pronounced shape chirality, other chiral nematic phases different from the
cholesteric may prevail and pair correlation functions measuring correlations between e.g. the
azimuthal helix orientations could shed light on the stability of so-called twist-bend [180, 181]
or screw-like nematics [140] which may emerge in these systems.

The presented models for soft chirality could be interpreted as a benchmark for complex
biomacromolecules such as DNA and fd which are characterised by a helical distribution of
charged surface groups. Other lyotropic cholesteric systems, such as cellulose and chitin mi-
crofibers in solution could also be conceived as charged rods with a twisted charge distribu-
tion [102]. A more accurate description of the pitch sensitivity, particularly for DNA systems,
could be achieved by taking into account the steric contributions associated with the helical
backbone of the chains as well as the influence of chain flexibility. The latter is believed to play
an important role in the cholesteric self-organization of DNA and fd virus rods but its precise
implications remain obscure and need to be addressed from a theoretical perspective.
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3
Generalized Onsager theory for strongly
anisometric patchy colloids

ABSTRACT
The implications of soft ‘patchy’ interactions on the orientational disorder-order tran-
sition of strongly elongated colloidal rods and flat disks is studied within a simple
Onsager-van der Waals density functional theory. The theory provides a generic frame-
work for studying the liquid crystal phase behaviour of highly anisometric cylindrical
colloids which carry a distinct geometrical pattern of repulsive or attractive soft inter-
actions localised on the particle surface. In this paper we apply our theory to the case
of charged rods and disks for which the local electrostatic interactions can be described
by a screened-Coulomb potential. We consider infinitely thin rod like cylinders with a
uniform line charge and infinitely thin discotic cylinders with several distinctly differ-
ent surface charge patterns. Irrespective of the backbone shape the isotropic-nematic
phase diagrams of charged colloids feature a generic destabilization of nematic order
at low ionic strength, a dramatic narrowing of the biphasic density region and a reen-
trant phenomenon upon reducing the electrostatic screening. The low screening regime
is characterized by a complete suppression of nematic order in favour of positionally
ordered liquid crystal phases.

3.1. INTRODUCTION

Many colloidal dispersions, such as natural clays, and (bio-)macromolecular systems consist
of rod- or disk-shaped mesogens whose intrinsic ability to form liquid crystalline order gives
rise to unique rheological and optical properties [1]. Despite their abundance in nature, the
statistical mechanics of fluids containing non-anisometric particles in general (and oblate ones
in particular) has received far less attention than that of their spherical counterparts. The pos-
sibility of a first-order disorder-order transition from an isotropic to a nematic phase was first
established theoretically by Onsager [25] in the late 1940s. Although originally devised for
rod-like particles in solution, his theory also makes qualitative predictions for plate-like parti-
cles based on the central idea that orientation-dependent harshly repulsive interactions alone are
responsible for stabilizing nematic order. Subsequent numerical studies have fully established
the phase diagram of hard prolate [182–187] and oblate hard cylinders [22, 188, 189]. Owing
to the simplicity of the interaction potential hard-body systems constitute an essential bench-
mark for the study of liquid crystals and their phase stability. Temperature becomes merely
an irrelevant scaling factor in the free energy and the phase behaviour is fully determined by
the volume fraction occupied by the particles and the aspect ratio. At high volume fraction
additional entropy-driven disorder-order transitions occurs where a nematic fluid transforms
into positionally ordered phases [20]. Depending on the cylinder aspect ratio the system may
develop a smectic phase, characterized by a one-dimensional periodic modulation along the
nematic director, or a columnar phase consisting of columns with a liquid internal structure

41
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self-assembled into a two-dimensional crystal lattice. Similar to nematic order, the formation
of smectic, columnar or fully crystalline structures is based entirely on entropic grounds [21];
the loss of configurational entropy associated with (partial) crystalline arrangement is more than
offset by a simultaneous increase in translational entropy, that is, the average free space each
particle can explore becomes larger in the ordered phase.

In most practical cases, however, particle interactions are never truly hard and additional en-
thalpic contributions play a role in the free energy of the system. Long-ranged interactions usu-
ally originate from the presence of surface charges leading to electrostatic repulsions between
colloids [46,47] or traces of other colloidal components such as non-adsorbing polymers, which
act as depletion agents and give rise to effective attractive interactions [50, 190]. Other site-
specific interactions may originate from hydrogen-bonding [191] or end-functionalized poly-
mers such as DNA grafted onto the colloid surface [192]. Depending on their nature (repulsive
or attractive), interaction range, and topological arrangement on the particle surface these site-
specific directional interactions may greatly affect the self-assembly properties of anisometric
particles [193–195]. In this context it is also worth mentioning recent progress in the fabrica-
tion of anisometric colloids with ‘patchy’ interactions [196, 197] where the interplay between
patchiness and the anisometric backbone shape offers a rich and intriguing repertoire of novel
structures [198].

These recent developments suggest the need for a comprehensive theory for lyotropic systems
which explicitly accounts for these patchy interactions. The aim of the present paper is to
set up such a theory by combining the classic Onsager theory for slender hard bodies with a
mean-field van der Waals treatment for the additional long-ranged interactions [41–45]. Most
molecular-field type theories developed to date focus on rod-like mesogens with dispersion
interactions represented by an orientation-dependent potential with some radially symmetric
spatial variation, akin to a Maier-Saupe form [199–202]. Here, we shall lay out the framework
for the more general case of slender rod and disk-shaped cylinders carrying site interactions
with arbitrary integrable form and spatial arrangement. By exploiting the simple second-virial
structure of the Onsager reference free energy we show that these soft patchy interactions, on
the mean-field level, give rise to a non-trivial orientation-dependent van der Waals (or molecular
field) term which strongly affects the disorder-order transition in the fluid state.

We illustrate its practical use by focusing on isotropic-to-nematic and nematic-to-smectic
or columnar phase transitions in systems of charged prolate and discotic colloid in the salt-
dominated regime, a subject of considerable research interest given that natural clays consist of
strongly charged colloids. The majority of clays are composed of sheet-like minerals colloids
[203, 204] but rod-shaped mineral colloids may display similar properties [205–207]. It is still
largely unclear how the interplay between particle shape and electrostatics controls the structure
and dynamics of clay systems. The fundamental understanding is further complicated by the
fact that both the magnitude and sign of the local charge density may vary significantly along the
particle surface. For instance, under certain chemical conditions laponite platelets [208] adopt
opposite face and rim-charges and the intrinsic patchiness of the electrostatic interactions may
lead to unusual liquid behaviour [209]. Incorporating these patchy interactions into a state-of-
the-art statistical physical machinery to extract structural information remains a daunting task.
Headway can be made by using computer simulation where a number of coarse-grained models
for non-isometric charged colloids have been studied over the past decade [210–215].
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With the present theory we aim to set a first step towards linking microscopic patchiness
of soft interactions to liquid crystal stability for strongly anisometric colloids. We apply the
generalized Onsager theory to the case of charged cylinders interacting through an effective
Yukawa potential and demonstrate a generic destabilization and non-monotonic narrowing of
the biphasic gap upon reducing the electrostatic screening. The influence of the geometric
pattern of the charge patches can be incorporated explicitly by means of a form factor as shown
for disklike colloids. The present calculations, however, merely serve an illustrative purpose
and the main goal is to open up viable routes to studying more complicated surface charge
architectures of clay nano sheets [216–219] or anisotropic Janus particles [220,221]. Moreover,
the theory can be further refined by using effective paremeters, pertaining to the backbone shape,
charge density, screening constant etcetera, in order to enable more quantitative predictions for
highly charged anisometric colloids.

Although the Onsager treatment is strictly limited to low to moderate density, it offers pos-
sibilities to assess the stability of high-density liquid crystal phases on the level of a simple
bifurcation analysis [222]. We show that it is possible to extend the generalized-Onsager
form into a full density functional form by using a judiciously chosen parametric form for
the one-body density. This holds promise for incorporating soft interactions into more so-
phisticated hard-body density functionals such as those based on fundamental measure theory
[37,223,224], weighted-density approximations [187], renormalized Onsager theories [45,225],
or cell-theories [182, 186, 226]. The use of reliable non-local reference free energy functionals
is expected give a more quantitative account of patchy rods or disks with broken translational
symmetry induced by a high particle density, geometric confinement [227] or surfaces [228].
The generalized Onsager theory bears some resemblance to other interaction-site models such
PRISM/RISM theories [31, 32] which have been invoked to study the thermodynamic proper-
ties of isotropic plate fluids but have not yet proven capable of treating liquid crystal phases at
higher particle densities. The effect of attractive interparticle forces on the bulk phase behaviour
of ionic liquid crystals has been scrutinized in [229] using a mean-field theory of the Gay-Berne
potential for ellipsoidal mesogens.

3.2. MEAN-FIELD ONSAGER THEORY FOR SOFT PATCHY POTENTIALS

Let us consider a system of N infinitely thin colloidal cylindrical disks or rods with length L
and diameter D at positions {rN} and orientations {ΩN} in a 3D volume V at temperature T .
We assume the particle shape to be maximally anisotropic so that the aspect ratio L/D → ∞
(infinitely elongated rods) and L/D ↓ 0 (infinitely flat disks). In the fluid state, the particle
density ρ = N/V is homogeneous throughout space. Following Onsager’s classical theory [25]
we may write the Helmholtz free energy as follows:

βF

N
∼ lnVρ+ 〈ln 4πf(Ω)〉 − ρ

2

〈〈∫
V

drΦ(r; Ω1,Ω2)

〉〉
, (3.1)

with β−1 = kBT in terms of Boltzmann’s constant kB and V the total thermal volume of a
cylinder including contributions from the rotational momenta. The brackets denote orientation
averages 〈·〉 =

∫
dΩf(Ω)(·) and 〈〈·〉〉 =

∫∫
dΩ1dΩ2f(Ω1)f(Ω2)(·) in terms of the orientational

distribution function (ODF) f(Ω) which expresses the probability for a cylinder to adopt a
solid angle Ω on the 2D unit sphere. The shape of the ODF allows us to distinguish between
isotropic order, where f = 1/4π, and nematic order where f is some peaked function. Particle
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interactions are incorporated on the second-virial level via a spatial integral over the Mayer
function:

Φ(r; Ω1,Ω2) = e−βU(r;Ω1,Ω2) − 1, (3.2)

which depends on the pair potential U between two cylinders with centre-of-mass distance
r = r1 − r2. In our model we shall assume each particle to consist of a cylindrical hard core
(HC) with diameter D and height L supplemented with a soft interaction potential Us describ-
ing (effective) long-ranged interaction with neighboring particles. These soft interactions can
either be repulsive or attractive and may originate from effective interparticle forces between
the colloids under the influence of depletion effects [50], polymers end-grafted onto the colloid
surface [29] or electrostatics [47]. The corresponding potential is unlikely to be a simple radi-
ally symmetric function but rather emerges from a particular spatial arrangement of interaction
sites located on the cylinder surface. In the latter case the soft potential is given by a summation
over site-site interactions which are assumed to have a radially symmetric form u(r) ∗

Us(r; Ω1,Ω2) =
∑
l,m

u(|r + sl(Ω1)− sm(Ω2)|), (3.3)

where si denotes the distance vector between site l located on the surface of cylinder 1 and the
centre-of-mass r1. The total pair potential thus reads:

U(r; Ω1,Ω2) =

{
∞ if hard cores overlap

Us(r; Ω1,Ω2) otherwise.
(3.4)

For hard cylinders (Us = 0) the spatial integral over the Mayer function yields the excluded
volume between two cylinders at fixed orientations. In the limit of maximal cylinder anisotropy
one obtains [25]:

vexcl(γ) = −
∫
V

drΦHC(r; Ω1,Ω2) = v0| sin γ|, (3.5)

with v0 = 2L2D for needles (L/D → ∞) and v0 = πD3/2 for disks (L/D ↓ 0). γ(Ω1,Ω2)

denotes the enclosed angle between the normal vectors of two cylinders. The total free energy
of the fluid can be compactly written as:

βF

N
∼ lnVρ+ 〈ln 4πf(Ω)〉+

ρ

2
〈〈vexcl(γ)〉〉+

ρ

2

〈〈∫
r/∈vexcl

dr
(
1− e−βUs(r;Ω1,Ω2)

)〉〉
. (3.6)

The spatial integral in the final term runs over the space complementary to the finite excluded
volume manifold formed by the hard cores of two cylinders at fixed orientations. The last
term can be interpreted as an effective excluded volume but a direct calculation of this quantity
poses some serious technical difficulties [230]. A more tractable expression can be obtained by
adopting a mean-field form which can be obtained by taking the limit βUs � 1 in the second-
virial term. Eq. (3.6) can then be recast into a form resembling a generalised van der Waals free
energy:

βF

N
∼ lnVρ+ 〈ln 4πf(Ω)〉+

ρ

2
〈〈vexcl(γ)〉〉+

βρ

2
(a0 − 〈〈a1(Ω1,Ω2)〉〉) , (3.7)

∗This form represents a simplified subset of more general orientation-dependent segment potentials of the form
u(r; Ω

(l)
1 ,Ω

(m)
2 ), such as for e.g. segment dipoles, where u depends on the orientation Ω

(l)
1 of site vector l with

respect to the molecular frame of particle 1.
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where the contributions a0 and a1 can be identified as van der Waals constants emerging from
spatial averages of the soft potential. The non-trivial one, a1, runs over the excluded volume
manifold of the cylinders:

a1(Ω1,Ω2) =

∫
r∈vexcl

drUs(r; Ω1,Ω2), (3.8)

whereas a0 represents an integration over the entire spatial volume V :

a0 =

∫
V

drUs(r; Ω1,Ω2)

=
∑
l,m

∫
V

dru(|r + sl(Ω1)− sm(Ω2)|). (3.9)

Introducing a linear coordinate transformation y→ r + sl(Ω1)− sm(Ω2) (with Jacobian unity)
yields a trivial constant:

a0 =
∑
l,m

∫
V

dyu(|y|) = 4π

∫ ∞
0

drr2u(r) = cst, (3.10)

independent of the mutual cylinder orientation. In arriving at Eq. (3.10) we have tacitly assumed
that the spatial integral over the soft part of the pair potential is bounded. For this to be true, the
site potential must be less singular than 1/r3 such that its 3D Fourier transform (FT) exists:

û(q) = 4π

∫ ∞
0

drr2 sin qr

qr
u(r). (3.11)

Steep repulsive potentials such as the repulsive Coulomb (u ∼ r−1) or the attractive van der
Waals dispersion potential [129] (u ∼ −r−6) do not qualify and our treatment is therefore
limited to cases such as the screened-Coulomb (Yukawa) potential [47] or various bounded
potentials such as Gaussian [231, 232], square-well [233, 234] or linear ramp potentials which
routinely arise from free-volume type theories for depletion interactions [50] or as effective
potentials for end-grafted polymers [29]. We remark that the free energy Eq. (3.7) represents
a hybrid between the second-virial approach, which is valid at low particle densities, and the
mean-field approximation, accurate at high particle density. For charged cylinders it will be
shown that the theory represent a simplified alternative to a more formal variational hard-core
PB theory for anisometric colloids developed by Lue and co-workers [235, 236].

We shall now proceed with analysing the non-trivial van-der-Waals contribution Eq. (3.8).
In view of the existing FT it is expedient to recast the spatial integral in Eq. (3.7) in reciprocal
space. The analysis is further facilitated by using the linear transform introduced right after
Eq. (3.9). After some rearranging the angle-dependent van der Waals term Eq. (3.8) can be
factorized in Fourier space in the following way:

a1(Ω1,Ω2) =
1

(2π)3

∫
dqû(q)W (q; Ω1)W (−q; Ω2)v̂excl(q; Ω1,Ω2), (3.12)

in terms of the FT of the excluded volume manifold of two cylinders (calculated in the Appen-
dix):

v̂excl(q; Ω1,Ω2) =

∫
r∈vexcl

dreiq·r

= v0| sin γ|F(q; Ω1,Ω2), (3.13)
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where the expressions for F are given explicitly in the Appendix. The contribution W pertains
to a FT of the spatial resolution of the interaction sites according to:

W (q; Ωα) =
∑
l

eiq·sl(Ωα), α = 1, 2 (3.14)

which may be interpreted as a form factor reflecting the internal structure of the interaction
sites on the particle surface. The simplest case, a point segment located at the centre-of-mass
thus corresponds to s1 = s2 = 0 so that W = 1. More complicated configurations shall be
considered in the next Section.

Next, the equilibrium form of the ODF is obtained by a formal minimization of Eq. (3.7) :

δ

δf

(
βF

N
− λ〈1〉

)
= 0, (3.15)

where the Lagrange parameter λ ensures the ODF to be normalised on the unit sphere. The
associated self-consistency equation for the ODF reads:

f(Ω1) = Z−1 exp [−ρ 〈(vexcl(Ω1,Ω2)− βa1(Ω1,Ω2))〉2] , (3.16)

with normalisation constant Z = 〈exp[·]〉1. It is easy to see that the isotropic solution f = cst,
i.e., all orientations being equally probable, is a trivial solution of the stationarity condition.
Beyond a critical particle density non-trivial nematic solutions will appear which can be ob-
tained by numerically solving Eq. (3.16) [237]. Once the equilibrium ODF is established for
a given density phase equilibria between isotropic and nematic states can be investigated by
equating the pressure P and chemical potential µ in both states. These are obtained by standard
thermodynamic derivatives of the free energy Eq. (3.7):

βP = ρ+
ρ2

2
〈〈vexcl(Ω1,Ω2) + βa0 − βa1(Ω1,Ω2)〉〉

βµ = ln ρV + 〈ln 4πf(Ω)〉+ ρ 〈〈vexcl(Ω1,Ω2) + βa0 − βa1(Ω1,Ω2)〉〉 . (3.17)

The thermodynamic properties of the isotropic-nematic transition can be calculated by numeri-
cally solving these coexistence equation in combination with Eq. (3.16), the stationarity condi-
tion for the ODF. Collective orientation order of cylinders with orientation unit vector û order
can be probed by introducing a common nematic director n̂ and defining nematic order param-
eters such as:

Sn = 〈Pn(û · n̂)〉, (3.18)

where Pn represents a nth-order Legendre polynomial (e.g. P2(x) = (3x2 − 1)/2). Odd
contributions of Sn are strictly zero for non-polar phases and S2 is routinely used to discriminate
isotropic order (S2 = 0) from uniaxial nematic order S2 6= 0.

3.3. GENERALIZED SCREENED-COULOMB POTENTIAL FOR CYLINDERS

In this section we shall consider a simple model for charged anisotropic colloidal particles.
Let us consider two disk-shaped macro-ions with total surface charge Z in a electrolyte solu-
tion with ionic strength determined by the counter ions and additional co- and counter ions due
to added salt. Formally, the electrostatic potential around the charged surface of a macro-ion
in an ionic solution with a given ionic strength can be obtained from the non-linear Poisson-
Boltzmann (PB) equation [47]. This theory neglects any correlations between micro-ions and
assumes the solvent to be treated as a continuous medium with a given dielectric constant. In
the Debye-Hückel approximation, valid if the electrostatic potential at the macro-ion surface is



3.3. GENERALIZED SCREENED-COULOMB POTENTIAL FOR CYLINDERS 47

smaller than the thermal energy, the PB equation can be linearized and the electrostatic interac-
tion between two point macro-ions with equal charge ±Ze in a dielectric solvent with relative
permittivity εr is given by the screened-Coulomb or Yukawa form:

βu0(r) = Z2λB
e−κr

r
, (3.19)

with ε0 the dielectric permittivity in vacuum, r the distance between the macro-ions, λB =

βe2/4πε0εr the Bjerrum length (λB = 0.7 nm for water at T = 298K) and κ−1 the Debye
screening length which measures the extent of the electric double layer. In the limit of strong
electrostatic screening, the screening factor is proportional to κ = (8πλBρ0)1/2 with ρ0 the
concentration of added 1:1 electrolyte. In general, for highly charged colloids non-linear effects
of the PB equation can be accounted for by invoking a cell approximation [238] which assumes
a fully crystalline structure where each particle is compartmentalized in Wigner-Seitz cells or a
so-called Jellium model [239] where a tagged particle is exposed to a structureless background
made up by its neighboring particles. Both methods allow for a solution of the full non-linear PB
equation for an isolated colloidal with the effect of the surrounding charged particles subsumed
into a suitable boundary condition. This procedure yields so-called effective values for the
charge Zeff < Z and Debye screening constant κeff which can be used to achieve accurate
predictions for the thermodynamic properties (e.g. osmotic pressure) of fluids of highly charged
spheres [240]. We will briefly touch upon these effective parameters in paragraph C of this
section. We reiterate that we focus here on the high-salt regime where use of the linearized
form Eq. (3.19) combined with effective electrostatic parameters is deemed appropriate. The
low-screening regime requires a lot more care due the fact that the effective interaction becomes
inherently dependent on the macroion density. As a consequence, the free energy contains
non-trivial volume terms which may have important implications for the fluid phase behaviour
[241–243].

The FT of the Yukawa potential is given by a simple Lorentzian:

û(q) = Z2λB
4π

q2 + κ2
. (3.20)

The spatial average over Eq. (3.19) yields for a0:

βa0 = 4πZ2λBκ
−2. (3.21)

We may generalize the screened-Coulomb potential for a cylindrical object by imposing the
total effective electrostatic potential be given by a sum over n identical Yukawa sites located on
the cylinder surface. As per Eq. (3.3) the pair potential is given by :

βUs =
Z2λB
n2

∑
i,j<n

exp[−κ|r + si(Ω1)− sj(Ω2)|
|r + si(Ω1)− sj(Ω2)|

. (3.22)

Next, we shall first specify this expression for the case of slender rods and subsequently for flat
cylindrical disks.

3.3.1. Needle limit
In case of infinitely slender charged rods, we assume a continuous distribution of sites lo-

cated along the normal unit vector û running through the centre-of-mass of the cylinder. The
result is a double integration along the one-dimensional contours of the rod pair. Defining a
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dimensionless contour parameter `i, so that s(Ωα) = `αLûα the generalized screened-Coulomb
potential between rodlike particles can be written as:

βUs = Z2λB

∫ 1
2

− 1
2

d`1

∫ 1
2

− 1
2

d`2
exp[−κ|r + L(`1û1 − `2û2)|
|r + L(`1û1 − `2û2)|

. (3.23)

A closed-form solution of the electrostatic rod potential was reported in [244] and a generalized
DLVO form for rodlike macro-ions has been analyzed in [245, 246]. A tractable form for the
electrostatic potential between infinitely stretched linear charges was used by Onsager in his
seminal paper [25, 49] based on a limiting form for κL→∞ [247].

Since our focus is on a simple van der Waals description for uniform fluids (ρ = cst), the
compound form of Eq. (3.23) naturally deconvolutes into a spherically symmetric kernel û(q)

and form factor W (cf. Eq. (3.12)). It is obvious that such a factorization becomes much more
complicated in the columnar, smectic or crystalline states where inhomogeneities in the density
field are intricately coupled to the distance-variation of the electrostatic potential. This we shall
see in more detail in the next Section. We may specify the form factor by considering a linear
array of interaction sites [248]. In the continuum limit Eq. (3.14) becomes:

Wneedle(q; Ωα) =

∫ 1
2

− 1
2

d`αe
−iLq·ûα

= j0

(
L

2
q · ûα

)
, α = 1, 2 (3.24)

with j0(x) = sin x/x a spherical Bessel function. With this the orientation-dependent van der
Waals constant Eq. (3.12) for rods is completely specified. The remaining 3D integration over
reciprocal space must be carried out numerically for every orientation. Note that an evaluation
in real space would confront us with a five-fold numerical integration since Eq. (3.23) cannot
be solved analytically. To facilitate the integration over q-space we adopt a particle-based frame
{û1, û2, v̂} introduced in the Appendix. This allows us to reexpress the dot products in terms
of the angle γ between the main axis of the rod pair via:

Lq · û1 = q1 + q2 cos γ

Lq · û2 = q1 cos γ + q2

Dq · v̂ = q3, (3.25)

and
∫
dq = (L2D)−1| sin γ|

∏
i≤3

∫∞
−∞ dqi. The integration over q3 can be carried out analyti-

cally and the remaining expression can be simplified by taking the leading order contribution
in the needle limit x = D/L � 1. The mean-field contribution a1(γ) for strongly elongated
charged rods then reads in normalized form:

a1(γ)

a0

=
1

4π2
(1− e−κD) sin2 γ

∫ ∞
−∞

dq1

∫ ∞
−∞

dq2j
2
0(Lq · û1)j2

0(Lq · û2). (3.26)

Recalling that a0 ∝ κ−2 one can infer that a1 vanishes in the limit of infinite screening κD →∞
and diverges in the Coulomb limit (κD ↓ 0) [249] as one would intuitively expect.

3.3.2. Flat disk limit
We now turn to the case of infinitely thin disks. Similar to the needles we assume a continuous

charge distribution along circular surface of the disk which is most conveniently parameterized
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.

FIGURE 3.1. Sketch of three possible surface charge patterns for infinitely thin disks.
From left to right: uniform distribution over the circular face with diameter D (“face”),
one-dimensional distribution along the outermost circular contour (“rim”) and a discrete
hexagonal arrangement (“hex”).

by invoking the particle-based coordinate frame (see Appendix) so that:

s(Ωα) =
D

2
rα(v̂ cos ξα + ŵα sin ξα), (3.27)

where 0 ≤ rα ≤ 1 and 0 ≤ ξα ≤ 2π. The electrostatic potential between two flat disks at fixed
orientations is represented by a four-fold integral:

βUs = Z2λB
1

π2

∏
α=1,2

∫ 1

0

drαrα

∫ 2π

0

dξα
exp[−κ|r + s(Ω1)− s(Ω2)|
|r + s(Ω1)− s(Ω2)|

. (3.28)

The form factor associated with a discotic arrangement of surface charges is given by the cosine
transform of Eq. (3.27):

Wface(q; Ωα) =
1

π

∫ 1

0

drαrα

∫ 2π

0

dξα cos(q · s(Ωα))

= 2J1(q̃α)/q̃α, (3.29)

with Jn(x) a Bessel function of the first kind and q̃α =
[
(D

2
q · ŵα)2 + (D

2
q · v̂)2

]1/2. We may
also consider the situation where the charges are distributed along the circular rim of the disk
(Fig. 3.1). The corresponding form factor simply follows from Eq. (3.27) and Eq. (3.28) by
setting rα = 1 and integrating over the remaining angular part:

Wrim(q; Ωα) =
1

2π

∫ 2π

0

dξα cos(
D

2
(v̂ cos ξα + ŵα sin ξα))

= J0(q̃α). (3.30)

Alternatively, we may consider a discrete hexagonal arrangement of surface charges (see
Fig. 3.1), in which case the form factor becomes:

Whex(q; Ωα) =
1

7

(
1 + cos(Dq · v̂) + 2 cos(

D

2
q · v̂) cos(

D
√

3

2
q · ŵα) + (v̂↔ ŵα)

)
.

(3.31)

The last term ensures the form factor to remain invariant with respect to a rotation in the v̂, ŵα

plane so that Whex attains the same symmetry as the expressions for the “face” and “rim” pat-
terns. The additional angular correlations naturally arise from the discrete nature of the hexag-
onal pattern. In view of the fluid phases considered here they are deemed of negligible im-
portance. We remark that all form factors approach the radially symmetric limit (W = 1)
in the macroscopic limit q ↓ 0. Similar to the needle case the FT definition of the van der
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FIGURE 3.2. Aligning potential of mean force (in dimensionless units) for infinitely
thin Yukawa disks with a homogeneous distribution of screened charges covering the
circular surface of the disk. Shown are curves for different ionic strengths κD. Near-
parallel disk orientations (γ ∼ 0) are strongly disfavored.

Waals contribution Eq. (3.12) reduces the dimensionality of the problem to a straightforward
integration over 3D q-space whereas the real-space route would confront us with an intractable
seven-fold integration. Analogous to Eq. (3.25) the integration over reciprocal space can be pa-
rameterized using the particle-based frame for disks (see Appendix): Dq · ŵ1 = q1 + q2 cos γ,
Dq · ŵ2 = q1 cos γ + q2, and Dq · v̂ = q3 so that a1 depends only on enclosed angle γ between
the normal vectors of the disks as should be the case for apolar uniaxial cylinders.

Judging from Eq. (3.16) it is evident that a1 can be identified with an aligning potential
of mean force Vmf(Ω) reflecting the average potential incurred by the soft potential of all the
surrounding cylinders. This potential is inherently density-dependent and reads:

Vmf(Ω) = −ρ
∫
dΩ′a1(γ(Ω,Ω′))f(Ω′), (3.32)

where the ODF f depends implicitly on ρ. Its angular dependence generally disfavours parallel
orientations as illustrated in Fig. 3.2 for the case of disks with a continuous distribution of
Yukawa sites (“face”). Similar monotonically decreasing functions are obtained for rods with
the screening constant κD governing the typical range of the potential. We reiterate that a1(γ)

represents a distance-averaged orientational mean-field potential which is only applicable in
the context of uniform isotropic or nematic fluids. The spatially resolved electrostatic potential
for charged disks bears an intricate coupling between the mutual orientation and centre-of-
mass separation distance of the disk pair such that, at least in the far-field limit, coaxial pair
configurations are favored over planar ones (see Eq. (3.33)) [211,250]. At high particle density,
the interplay between near-field steric and far-field electrostatic forces may drive the formation
of liquid crystalline structures with unusual positional and orientational microstructure [212,
215] and significantly affect the stability of smectic and columnar order as we shall see in a
later section of this chapter.

3.3.3. Second-virial coefficient for highly charged disks
In this Section we shall look at an alternative route towards incorporating electrostatic in-

teractions into the Onsager density functional theory for the case of highly charged discotic
colloids. The objective is to make an estimate of the total second-virial coefficient of a charged
disk. The orientational dependence of this quantity gives us an idea of the effective shape (ani-
sometry) of a charged discotic object and its propensity to form orientationally ordered phases
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at various screening conditions [230, 251]. To circumvent the computational burden associ-
ated with a spatial integration of the Mayer function for segment potentials we shall consider a
tractable form for the electrostatic potential that can be obtained from Poisson-Boltzmann the-
ory for discotic macro-ions using a multi-pole expansion of the formal expression Eq. (3.28) for
uniformly charged disks. In the far-field limit, a generalized Yukawa potential for anisotropic
colloids can be recast into the following form [211, 250]:

Us(r; Ω1,Ω2) = Z2
effλBξ(κD, ϑ1)ξ(κD, ϑ2)

e−κr

r
. (3.33)

The anisotropy function ξ(κD, ϑ) depends on the screening parameter κ and the angle ϑ be-
tween the centre-of-mass distance vector r̂ and disk normal û such that cosϑ = r̂ · û. Generally
ξ increases with ϑ and reaches a maximum at ϑ = π/2. Eq. (3.33) tells us that the orientation-
dependence of the electrostatic potential is retained in the far-field limit and that stacked pair
configurations are energetically favored over co-planar ones, irrespective of the centre-of-mass
separation distance r. For highly charged colloidal disks the strong coupling between the macro-
and micro-ion charges leads to non-linear effects (such as counterion condensation) which can
be quantified from the non-linear PB equation. The non-linearities can be taken into account
by replacing the bare charge by an effective renormalized charge Zeff. Its saturation value [215]
depends on the screening parameter and can be estimated as Zsat

effλB/D ≈ 0.5κD + 1.12. An
approximate form for the anisotropy function is given by [211]:

ξ(κD, ϑ) = 2
I1

(
κD
2

sinϑ
)

κD
2

sinϑ
, (3.34)

with sinϑ = (1 − (r̂ · û)2)1/2 and I1(x) a modified Bessel function of the first kind. Within
Onsager’s original second-virial approximation the excess free energy is proportional to the
second-virial coefficientB2 embodied by the last two terms of Eq. (3.6). The excess free energy
can thus be compactly written as:
βFex
N

= −ρ
2
〈〈β1(Ω1,Ω2)〉〉 = ρB2, (3.35)

where the cluster integral β1 is given by a spatial integral of the Mayer function Eq. (3.2). For
the electrostatic part we need to integrate over the space complementary to the excluded volume
between two infinitely thin disks for which we may invoke the parameterization Eq. (3.52)
proposed in the Appendix. The cluster integral then becomes:

β1(γ) = −vexcl(γ) +

(∫
V

dr−
∏
i=1,3

∫ 1

−1

dtiJcc

)
Φ(ti; γ), (3.36)

with Jcc = D3

8
| sin γ|[(1− t21)1/2 + (1− t22)1/2] the Jacobian associated with the transformation

from the Cartesian lab frame to the particle frame and Φ the Mayer function given by Eq. (3.2).
Since both volume integrals are defined within the latter frame the orientation degrees of free-
dom naturally condense into a single angle γ between the disk normals. Comparing Eq. (3.36)
to the van der Waals form for patchy cylinders Eq. (3.12) we see that both expressions involve
a 3D integration in Fourier or real space which can be numerically resolved without difficulty.

3.4. RESULTS FOR THE ISOTROPIC-NEMATIC TRANSITION

In this section we shall look into the isotropic-nematic phase diagram for charged cylinders
in the extreme aspect ratio limit. Let us first concentrate on the case of infinitely elongated
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FIGURE 3.3. (a) Isotropic-Nematic phase diagram for charged elongated colloidal rods
(L/D → ∞) for three different values of the Yukawa amplitude σ2λBD. Plotted are
the coexistence densities c = ρL2D versus ionic strength κD. (b) Osmotic pressure P
at coexistence. (c-d) Orientational order parameters S2 and S4 quantifying the nematic
and cubatic order of the nematic phase.

rodlike cylinders with L/D → ∞. The physical quantities of interest are the dimensionless
concentration c = ρL2D, the charge Z, and the amplitude of the screened Coulomb potential.
It is customary to define a linear charge density σ indicating the number of elementary charges
per unit length so that the total rod charge Z = σL leads to a dimensionless amplitude σ2DλB.
If we take a typical rod diameter of D ∼ 10nm the Yukawa amplitudes in Fig. 3.3 corresponds
to a linear charge density σ of several elementary charges per nm. Furthermore we consider
the case of excess salt so that the screening constant κ does not depend on the colloid concen-
tration. The phase diagram in Fig. 3.3 features a dramatic narrowing of the biphasic gap at low
ionic strength and a significant weakening of nematic order of the coexisting nematic phase.
The negative sign of S4 reflects an increased propensity for the rods to adopt perpendicular pair
configurations at low screening so as to minimize the overlap of their electric double layers.
This is a manifestation of the so-called “electrostatic twist” for line charges which has been
quantified in detail in [49]. The rapid variation of the binodal densities at low ionic strength
reveals a marked re-entrant phase separation effect. A homogeneous isotropic sample at fixed
particle density (say c ∼ 5.3) undergoes a sequence of phase transformations upon increasing
the ionic strength. First, the system exhibits isotropic-nematic phase coexistence with a weak
density contrast. Second, the sample reverts to a homogenous isotropic state before re-entering
into a phase-separation with a strong density difference between the coexisting phases. The
isotropic-nematic transitition vanishes completely below a critical screening constant which is
roughly constant to the line charge. The narrowing of the phase gap and upward shift of the tran-
sition density as the strength of the electrostatic interaction potential increases are both generic
features of charged anisometric colloids consistent with predictions from previous mean-field
theories for rods in the Coulomb limit [249], and at finite screening [49].
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We remark that most colloidal systems consist of highly charged colloidal objects and that
non-linear effects arising from the PB equation must be taken into account. As alluded to before,
this can be done by retaining the linearized Debye-Hückel form and using a “dressed” renormal-
ized line charge σeff which depends, in general, on the macro-ion density, shape and salt concen-
tration. Despite the highly non-trivial relation between these quantities it is possible to derive
simple analytical estimates for the saturation value, such that, for strongly elongated cylinders
one can write σsat

effλB ∼ κD [252]. However, within the current scheme serious complications
arise when simply replacing σ by σeff in case of strong screening since (σsat

eff)
2λBD � 1 and

the isotropic-nematic transition will be completely obstructed by the denematizing mean-field
potential a1(γ). This spurious outcome could be remedied, at least in part, by carrying over
part of the harshly repulsive near-field electrostatic potential into the second virial cofficient
e.g. by introducing an effective diameter Deff > D. This opens up ways to designing optimized
schemes that combine an effective particle shape with an appropriately rescaled aligning back-
ground potential capturing the far-field electrostatics at high particle density. These ideas have
been pursued in detail in [235, 236] and [230] and shall not be further discussed here.

Let us now turn to the case of charged disks. The isotropic-nematic phase diagram emerging
from the Onsager-van der Waals theory for the various charge patterns depicted in Fig. 3.1 is
shown in Fig. 3.4. Similar to the case of rods we observe a marked weakening of nematic order
and a narrowing of the biphasic gap. The overall shape of the binodals does not depend too sen-
sitively on the amplitude provided that Z2λB/D ∼ O(10) at most. Similar to what is observed
for rods the isotropic-nematic ceases to exist below a critical ionic strength. This effect is most
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FIGURE 3.5. Effective excluded volume −β1(γ) between highly charged disks
with diameter D = 35λB interacting via the orientation-dependent Yukawa potential
Eq. (3.33). The black solid line indicates the bare excluded volume of hard disks.

noticeable for disks with a continuous charge distribution along the face or rim. For disks with
a discrete hexagonal charge patterns the window of stable nematic order is somewhat larger
in terms of ionic strength. The curvature of the binodals point to a reentrant phase separation
phenomenon similar to the case of rods in Fig. 3.3. For highly charged disks, the suppres-
sion of nematic order is even more drastic and is borne out from the second-virial free energy
Eq. (3.35) using the orientation-dependent Yukawa potential Eq. (3.33). No stable isotropic-
nematic was found in the experimentally relevant range of disk diameters 35λB < D < 200λB
and densities. The lack of nematic stability can be inferred from Fig. 3.5 illustrating the effective
excluded volume −β1 of a charged disk. Although the volume depends strongly on the ionic
strength its angular variation remains very weak throughout. The effective shape of a highly
charged colloidal disk resembles that of a slightly deformed spherical object whose anisometry
is insufficient to generate a thermodynamically stable orientational disorder-order transition.
Like for the rod case, improved schemes could be envisaged for the strong-coupling regime by
combining an effective disk shape with a suitably chosen amplitude for the mean-field aligning
potential a1(γ).

3.5. STABILITY OF LIQUID CRYSTAL PHASES WITH POSITIONAL ORDER

Possible phase transitions to spatially inhomogeneous states with smectic or columnar order
can be investigated by recasting the mean-field Onsager into a functional form depending on the
one-body density field ρ(r,Ω) [27]. Within the framework of classical density-functional theory
(DFT) the free energy functional needs to be minimised with respect to ρ to yield the unique
equilibrium density profile for a given chemical potential, temperature and external potential
[28]. In this work, we shall adopt a simple stability analysis [253, 254] by assuming a weak
periodic density modulation with wave-vector k and amplitude ε:

ρ(r,Ω) = ρ0f0(Ω) + εf ∗(Ω) cos(k · r), (3.37)

superimposed onto the one-body density ρ0(r,Ω) = ρ0f0(Ω) of the spatially homogeneous
phase. Beyond a particular value of the bulk density such a periodic density perturbation will
lead to a reduction of the free energy and the homogeneous bulk phase will become marginally
unstable. The so-called bifurcation point can be found by inserting Eq. (3.37) into the density
functional and Taylor-expanding up to second order in ε. The resulting bifurcation condition is
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represented by a linear eigenvalue equation [255]:

f ∗(Ω1) = ρ0f0(Ω1)

∫
dΩ2f

∗(Ω2)Φ̂(k; Ω1,Ω2), (3.38)

in terms of the cosine transformed Mayer function:

Φ̂(k; Ω1,Ω2) =

∫
drΦ(r; Ω1,Ω2) cos(k · r). (3.39)

The eigenvector f ∗(Ω) probes the angular distribution in the new phase and reflects the intrinsic
coupling between positional and orientational order. A bifurcation to the positionally modulated
state occurs at the wave vector k that generates the smallest eigenvalue ρ0 > 0 of Eq. (3.38). If
we neglect the translation-rotation coupling then f ∗(Ω) = f0(Ω) and the bifurcation condition
takes the form of a divergence of the static structure factor S(k):

S(k)−1 = (1− ρ0〈〈Φ̂(k; Ω1,Ω2)〉〉) = 0. (3.40)

By applying the van der Waals approximation outlined in Sec. II, Φ̂ can be expressed as a sum
of the hard-core contribution and a part that encodes the effect of the soft potential. Eliminating
the angular dependency of the excluded volume v̂excl and form factor W for notational brevity
one arrives at the following expression for the Mayer kernel in Fourier space:

Φ̂(k) = −v̂excl(k)− û(k) +
1

(2π)3

∫
dqû(q)W (q)W (−q)v̂excl(k− q). (3.41)

The Fourier integral presents a non-trivial mode-coupling term that convolutes the imposed den-
sity wave with the modes describing the distance-dependence of the soft interactions. The solu-
tion of Eq. (3.40) (or Eq. (3.38)) for particles with full orientational degrees of freedom poses a
substantial technical task and we shall simplify matters by considering the more tractable case
of parallel cylinders. Let us equate the particle frame to the lab frame {x̂, ŷ, ẑ} with the cylin-
der normals pointing along ẑ. The excluded volume of two parallel cylinders is again a cylinder
with volume 2πLD2. In Fourier space the excluded volume takes the following form:

v̂excl(q) = 2πLD2j0(Lq · ẑ)
J1(
√

(Dq · x̂)2 + (Dq · ŷ)2)
1
2

√
(Dq · x̂)2 + (Dq · ŷ)2.

(3.42)

Due to the parallel orientation it is no longer possible to take the limit of infinite particle ani-
sometry since the excluded volume vanishes in both limits (similar to setting γ = 0 in Eq. (3.5)).
Therefore we shall consider the case D/L� x (rods) and L/D � x (disks) with x a small but
finite number and use the volume fraction φ = (π/4)LD2ρ0 as a convenient measure for the
particle concentration.

We may probe instabilities pertaining to smectic order by identifying k = kS{0, 0, 1}, a one-
dimensional periodic modulation along the nematic director. Hexagonal columnar order can be
parametrized by a linear superposition of three modulations with wavectors k1 = kC{0, 1, 0},
k2 = kC{

√
3

2
, 1

2
, 0}, and k3 = kC{−

√
3

2
, 1

2
, 0} describing a two-dimensional triangular lattice

perpendicular to the director.
The results in Fig. 3.6 reveal a marked stabilization of columnar at the expense of smectic

order for rodlike cylinders at low ionic strength. This outcome is in accordance with previous
numerical results for Yukawa rods in a strong external aligning field [222]. Needless to say
that the transition values are merely qualitative and that the volume fractions can be brought
down to more realistic values, for instance, by using an effective second-virial theory based on
a resummation of higher virial coefficient (e.g. using Parsons’ theory [225]). For hard parallel
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FIGURE 3.6. (a) Variation of the nematic-smectic (NS) and nematic-columnar (NC)
bifurcation density with ionic strength κD for parallel charged rods with aspect ratio
L/D = 50 and (b) parallel disks with surface charge patterns indicated in Fig. 1
(D/L = 10, Z2λB/D = 10). Solid curves indicate Nematic-Smectic (NS) bifurca-
tions, dotted curves Nematic-Columnar (NC) instabilities.

cylinders the nematic-smectic always pre-empts the nematic-columnar one irrespective of the
aspect ratio x. This implies that the parallel approximation fares rather badly for hard discotic
systems which are known to form columnar phases only [22, 256]. Nevertheless some general
trends for can be gleaned from Fig. 3.6b such as an apparently stabilization of smectic order for
uniformly charged disks in the low screening regime. The prevalence of smectic order has been
recently reported in weakly screened discotic systems [257]. As for the other charge patterns,
the observation from Fig. 3.6 that both smectic and columnar-type order are destabilized upon
reducing the screening could hint at more complicated instability mechanisms prevailing in the
low screening region, such as those pertaining to crystalline order where both longitudinal and
transverse density modulations compete with spatial inhomogeneities in the director field [215].

We wish to underline that the approach outlined above is generic in that it provides a sim-
ple route to gauge the effect of soft interactions on the stability of positionally ordered liquid
crystals. It can be applied to a vast range of model systems with various segment potentials
(provided integrable) and form factors. Instabilities from nematic to other liquid crystals sym-
metries or three-dimensional crystals (e.g. fcc or bcc) can easily be included by adapting the k

vectors to the desired Bravais lattice. In order to describe fully crystalline states we may exploit
the fact that particles are strongly localized around their lattice site to construct an appropriate
density functional representation for the excess Helmholtz free energy. In the following, we
shall briefly sketch the approach outlined in Refs. [258, 259]. The central assumption is that
the density profile of the solid consists of Gaussian peaks centred on a predefined lattice vec-
tor {Ri} factorized with the orientational probability (ODF) f(Ω). If we assume a spatially
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homogeneous director field the one-body density can be written as:

ρ(r,Ω) = f(Ω)
N∑
i=1

G(r−Ri), (3.43)

with

G(r−Ri) =
(α
π

)3/2

exp[−α(r−Ri)
2], (3.44)

where α is a parameter which describes how localised the particles are around each lattice site.
If we assume the proportion of lattice defects to be negligible, each lattice site should contain
only one particle as reflected in the normalisation of Eq. (3.44). The excess free energy of the
system can be expressed in terms of the following Fourier integral:

Fex = −kBT
2

∑
i 6=j

1

(2π)3

∫
dkeik·RijĜ(k)2〈〈Φ̂(k; Ω,Ω′)〉〉, (3.45)

in terms of the FT of the orientation-dependent Mayer kernel Eq. (3.41), and the Gaussian
weight Ĝ(k) = exp(−k2/4α). In general the radially symmetric form Eq. (3.44) is justified
only if particles are strongly localized around their lattice points (α � 1) so that the den-
sity peaks are not affected by the symmetry of the underlying lattice. The total free energy is
obtained by combining the excess free energy with the ideal free energy associated with the
Gaussian parameterization:

Fid = NkBT

{
3

2
ln

(
V2α

π

)
− 5

2
+ 〈ln f(Ω)〉

}
. (3.46)

Next, the free energy must be minimized with respect to the localization parameter α, the set of
relevant lattice constants corresponding to the imposed lattice symmetry [260] and f(Ω). This
simple variational scheme allows one to compare the stability of various crystal symmetries as
a function of density and interaction range and strength. In addition, due to the translation-
orientation coupling via f both aligned and rotationally disordered, plastic crystal states can
be included. Phase transitions between fluid and crystal phases can be probed by equating the
pressure and chemical potential emerging from the Gaussian free energy with those of the fluid
phases Eq. (3.17).

3.6. CONCLUDING REMARKS

We have proposed a generalized Onsager theory for strongly non-spherical colloidal particles
with an intrinsic patchiness in the interaction potential. The theory supplements the second-
virial reference free energy for the hard-core interaction with a first-order perturbative (van der
Waals) term which captures the directional soft interactions between the rods or the disks. As
such, the theory interpolates between the low density regime, where the second-virial approxi-
mation holds, and the high density regime where the mean-field approach is accurate. We have
aimed at formulating a generic framework that should be applicable to a wide range of particle
shapes, ranging from elongated rods to flat, sheet-like disks with an arbitrary spatial organi-
zation of interactions sites distributed along the colloid surface. By recasting the mean-field
contribution in terms a Fourier series the excess free energy naturally factorizes into three main
contributions; the site-site interaction potential, the shape of the colloidal hard-core, and a form
factor associated with the spatial arrangement of the interaction site residing on each particle.
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As a test case we have applied our theory to investigate orientation disorder-order transi-
tions in fluids of charged rods and disks with a uniform, localized or discretized surface charge
pattern. The results for the isotropic-nematic phase diagram and the instability analysis of trans-
verse and longitudinal freezing of a nematic fluid in the high-density regime reveal a picture that
is consistent with results from experiment and particle simulation.

Evidence for the trends predicted by our theory can be drawn from various experimental
observations that we will summarily discuss next. A reduction of the biphasic gap as well
as indications of a non-monotonic dependence of the isotropic- (cholesteric) nematic phase
boundaries upon decreasing ionic strength have been reported in systems of stiff fd rods [261].
A similar reduction of the phase gap was reported for rigid tobacco mosaic virus (TMV) rods
[262] and high aspect-ratio zirconium phosphate platelets [263]. The marked destabilization and
indeed complete absence of nematic order for charged platelets at low ionic strength (Fig. 3.4) is
in line with results from recent simulation of particles with a hard-core Yukawa potential [215].
In addition, charged gibbsite platelets cease to form stable nematic phases at low ionic strength
in favor of columnar order [264]. As for the high-density regime, a crossover from smectic
order to a more intricate ordered state upon decreasing ionic strength has been observed in
concentrated systems of TMV rods [265]. However, it is not fully clear whether these structures
are really columnar or represent three-dimensional crystalline order. A much more convincing
account of the preference of hexagonal columnar over smectic order of elongated charged rods
(see Fig. 3.6a) has been reported for semiflexible fd virus rods [266]. Conversely, the tendency
of charged platelets to self-assemble into layered structures, hinted at by the results in Fig. 3.6b,
was highlighted in recent studies of charged niobate nanosheets [267] and gibbsite platelets
at low-screening solvent conditions [257]. Recent simulation work on discotic systems with
explicit point charges demonstrates that similar layered, smectic phases may be formed by
oppositely charged oblate mesogens [210].

These observations lend credence to our theory as a practical tool to assess the influence of
soft patchy interactions on the liquid crystal phase diagram of non-isometric colloids. Although
the focus of this study is on the liquid crystal fluid phases that emerge at relatively low particle
density, the stability of spatially ordered liquid crystals at higher particle concentration can
also be scrutinized using a simple bifurcation analysis while fully crystalline phases can be
expediently accounted for using a Gaussian parameterization for the one-body density often
used in density functional theories of freezing.

We remark that the present theory is amenable to various extensions towards more compli-
cated systems. Colloidal dispersions composed of non-spherical particles are rarely monodis-
perse but are often characterized by a continuous spread in particle sizes. The polydisperse
nature of the colloid shape and/or the amplitude of the soft interactions can be incorporated
in a straightforward manner [268, 269]. Bio-colloids such as stiff viral rods [107] and DNA
are commonly characterized by an intrinsic helical patchiness which has profound implications
on the mesostructure in bulk and confinement [270]. The present theory could be extended to
relate the mesoscopic chirality of twisted nematics to the intrinsic helical form factor of the
colloid [128].

Last not least, similar to systems of spherical subunits [271, 272], more accurate reference
free energies could be employed which should give a more reliable account of correlations in
systems of less anisometric colloids (dumbbells, thick platelets, polyhedra) which routinely
form highly ordered (liquid) crystals at high particle volume fraction [273, 274].
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FIGURE 3.7. The excluded-volume manifold of two infinitely slender cylindrical
rods (L/D → ∞) is a parallelepiped spanned by the particle-based coordinate frame
{û1, û2, v̂} (left figure) whereas that of two infinitely thin disks (L/D ↓ 0) is repre-
sented by a sphero-cuboid (right figure). Both manifolds correspond to the case where
the cylinders are perpendicular to each other (û1 ⊥ û2).

APPENDIX: EXCLUDED VOLUME OF STRONGLY ANISOMETRIC CYLINDERS

In this Appendix we derive expressions for the FT of the excluded volume manifold of two
infinitely slender rods and disks, featured in Eq. (3.12) of the main text. The excluded volume of
two hard cylinders at fixed angle γ is a parallelepiped which can be parameterized by switching
from the laboratory frame to a particle frame spanned by the normal orientational unit vectors
ûα of the cylinder pair. Let us define the additional unit vectors:

v̂| sin γ| = û1 × û2

ŵα = ûα × v̂ (α = 1, 2), (3.47)

so that {ûα, v̂, ŵα} are two orthonormal basis sets in 3D. The centre-of-mass distance vector
can be uniquely decomposed in terms of these basis vectors:

r = (r · ûα)ûα + (r · v̂)v̂ + (r · ŵα)ŵα. (3.48)

The leading order contribution to the excluded-volume body is of O(L2D) and stems from the
overlap of the cylindrical parts of the cylinders. This resulting parallelepiped can be parameter-
ized as follows:

rcc =
L

2
t1û1 +

L

2
t2û2 +Dt3v̂, (3.49)

with −1 ≤ ti ≤ 1 for i = 1, 2, 3. The Jacobian associated with the coordinate transformation is
Jcc = 1

4
L2D| sin γ|. The FT of the parallelepiped is thus given by:

v̂excl(Ω1,Ω2) =

∫
drcce

iq·rcc

= Jcc
∏
i<3

∫ 1

−1

dti cos(q · rCC)

= v0| sin γ|F(q; Ω1,Ω2), (3.50)

where v0 = 2L2D. Using that
∫ 1

−1
dx cos(ax + b) = 2j0(x) cos b one obtains for strongly

elongated cylinders:

F(q; Ω1,Ω2) = j0(
L

2
q · û1)j0(

L

2
q · û2)j0(Dq · v̂), (needles), (3.51)

in terms of the spherical Bessel function j0(x) = sinx/x. A similar procedure can be carried
out for disk-shaped cylinders. Two infinitely flat cylinders overlap if the separation r of their
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centre-of-mass is in a sphero-cuboid (see Fig. 3.7) which can be parameterized as follows:

rcc = −D
2
t1ŵ1 −

D

2
t2ŵ2 +

D

2
t3[(1− t21)1/2 + (1− t22)1/2]v̂, (3.52)

with −1 ≤ ti ≤ 1 for i = 1, 2, 3. The Jacobian associated with the transformation from the lab
to the particle frame is drcc = Jccdt1d2dt3 with Jcc = D3

8
| sin γ|[(1−t21)1/2+(1−t22)1/2]. Similar

to the case of rods the FT of the excluded volume figure is cast into a cosine transform according
to Eq. (3.50) substituting v0 = πD3/2 for disks. The shape function F , however, requires a bit
more effort in this case. First, the integration over t3 can be carried out straightforwardly using
the relation involving the spherical Bessel function mentioned above Eq. (3.51). This yields:

F =
1

πDq · v̂

∫ 1

−1

dt1

∫ 1

−1

dt2 cos(
D

2
t1q·ŵ1 +

D

2
t2q·ŵ2) sin{[(1−t21)1/2 +(1−t22)1/2]

D

2
q·v̂}.

(3.53)

The double integral can be split into single integrals using standard trigonometric manipula-
tions. Rearranging terms gives the final expression for infinitely flat discotic cylinders:

F(q; Ω1,Ω2) =
1

πDq · v̂
(A1B2 + A2B1), (disks), (3.54)

in terms of the orientation-dependent functions:

Aα =

∫ 1

−1

dt cos(
D

2
tq · ŵα) cos(

D

2
(1− t2)1/2q · v̂)

Bα =

∫ 1

−1

dt cos(
D

2
tq · ŵα) sin(

D

2
(1− t2)1/2q · v̂). (3.55)

The last integral can be solved in closed form by substituting t = cos θ and invoking Catalan’s
integral representation of Bessel functions [275]:

J0(
√
β2 − α2) =

1

π

∫ π

0

dθeα cos θ cos(β sin θ), (3.56)

with Jn(x) a Bessel function of the first kind. With this, the solution of Eq. (3.55) can be found
by taking the partial derivative to α on both sides and rearranging terms:

Bα =
π

2
(q · v̂)J1(q̃α)/(q̃α), (3.57)

where q̃α =
[
(D

2
q · ŵα)2 + (D

2
q · v̂)2

]1/2. Despite the similarity between A and B there is no
closed analytical expression available forA but the one-dimensional integral is readily evaluated
using standard numerical integration routines.



4
Empty smectics of hard nanorings: insights
from a second-virial theory

ABSTRACT
Inspired by recent simulations on highly open liquid crystalline structures formed by
rigid planar nanorings we present a simple theoretical framework explaining the preva-
lence of smectic over nematic ordering in systems of ring-shaped objects. The key part
of our study is a calculation of the excluded volume of such non-convex particles in the
limit of vanishing thickness to diameter ratio. Using a simple stability analysis we then
show that dilute systems of ring-shaped particles have a strong propensity to order into
smectic structures with an unusual antinematic order while solid disks of the same di-
mensions exhibit nematic order. Since our model rings have zero internal volume these
smectic structures are essential empty, resembling the strongly porous structures found
in simulation. We argue that the antinematic intralamellar order of the rings plays an
essential role in stabilizing these novel smectic structures.

4.1. INTRODUCTION

By virtue of their orientation-dependent interactions, non-spherical nanoparticles are capable
of displaying a much richer phase morphology than their spherical counterparts. Prominent ex-
amples are liquid crystal mesophases which are characterized by broken orientational symmetry
(nematic order) combined with long-ranged periodicity in one, two or sometimes three (such
as in cholesteric blue phases) spatial dimensions [1]. The nature of the simplest liquid crystal,
the nematic fluid, has received a sound statistical-mechanical basis with the classical theory
of Onsager [25] in which it is argued that steric repulsion alone can favor nematic states with
long-range particle alignment over disordered (isotropic) fluids provided the particle concentra-
tion is sufficiently high. Experimental examples of liquid crystal formation driven by convex
non-spherical particle shapes (rods, disks) are quite plentiful in colloid physics [7]. Recent ad-
vances in nanoparticle fabrication have led to colloidal or polymeric particles with more compli-
cated, non-convex shapes [276, 277] with examples ranging from lock-and-key colloids [278],
bowl-shaped [279] and hollow spheres [280] to bent-core [281] and shape-persistent macrocy-
cles [282, 283]. Clearly, investigating the spontaneous self-assembly of these intricate particle
shapes poses an intriguing challenge to the modelling community [284].

While Onsager-type mean-field theories have been successfully employed to predict the
structure and bulk phase behaviour of simple convex bodies (rods, plates, boards, etc.) and
their mixtures, their application to systems of non-convex particle shapes is of more recent
date [134, 180, 285, 286]. The studies appeared to date have underlined the notion that broken
particle symmetry may give rise to intricate periodicity in nematics, involving cubatic [286]
or helical mesostructures [134, 141]. A recent computer experiment on assemblies of planar
nanorings of different shapes and sizes has revealed striking examples of lamellar order which
seems greatly facilitated by the hollow shape of the rings [23, 287]. Stable smectic structures
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emerge quite generically provided ample interpenetrability of the rings is guaranteed, i.e., the
rings should be sufficiently thin but need not be perfectly round (e.g. regular polygonal rings
with at least 4 sides also exhibit smectic order) [23]. An example of a porous smectic phase
formed by rigid circular rings is presented in Fig. 4.1.

These smectic structures are remarkable for two reasons. First, they are strongly porous
since the rings are hollow and therefore have a very small internal volume. This feature is
important in view of many materials applications (e.g. the fabrication of photonic crystals)
which requires structures with long-ranged periodicity but a low packing fraction as in inverse
opals [288]. Other examples of ‘empty’ liquids or liquid crystals include laponite suspension
[209], swollen lamellar phases of clay sheets [289], and columnar phases of imogolite rods
[290]. In these systems, long-ranged electrostatic interactions between the particles are believed
to be responsible for order at ultralow-packing order, rather than short-ranged steric interactions
related to some non-convex particle shape. The second surprising feature is that the rings are
ordered anti-nematically, that is, the particle orientation vectors preferentially lie in a plane
perpendicular to the nematic director, contrary to what is found in most discotic liquid crystals.
Evidence of anti-nematicity was found in some soft-interaction models for clay particles [215]
and deformable dendrimers [291]. It is quite surprising to see this type of order emerging in
simple systems of nanorings which interact only through steric repulsion without the need to
apply an external field [292].

In this paper we give a theoretical underpinning for the emergence of empty smectic struc-
tures in ring assemblies starting from a simple hard-interaction model treated within a second-
virial theory. The approach fully accounts for the non-convex shape of the particles but restricts
interactions to pairs only. We show that the theory is capable of reproducing the main features
observed in the simulations, namely the prevalence of smectic over nematic order along with a
correct assessment of the local antinematic alignment and lamellar spacing. Mixing rings with
regular convex disks produces a crossover from smectic to standard nematic order suggesting
that the stability of smectic order must be due to the non-convexity of the rings and their marked
propensity to interpenetrate. We also argue the antinematic or planar nematic order of the rings
within the smectic layers to be one of the main contributing factors to smectic stability as it
enables the system to retain a much higher degree of orientational entropy than it would if the
particles were aligned nematically along a common director.

4.2. STABILITY OF THE ISOTROPIC FLUID AGAINST LIQUID CRYSTALLINE

ORDER

Without loss of generality we set the thermal energy kBT = 1 as the unit of energy (kB
is Boltzmann’s constant and T temperature). The Helmholtz free energy F of a non-uniform
fluid of non-spherical particles is expressed in terms of the one-body density ρ(r, û). In the
second-virial approximation it reads [25, 27, 38, 293]:

F [ρ] = µ0+

∫
drdûρ(r, û) ln[Vρ(r, û)−1]− 1

2

∫
drdû

∫
dr′dû′Φ(∆r, û, û′)ρ(r, û)ρ(r′, û′),

(4.1)

with V the total thermal volume of the particle including contributions from the rotational
momenta. The key quantity here is the Mayer function Φ = e−U − 1 defined in terms of
the orientation-dependent pair potential U(∆r, û, û′) between two non-spherical objects with
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FIGURE 4.1. Representative configuration of the smectic-A (SmA) phase formed by
a system of N = 500 rigid rings obtained by molecular dynamics simulations. This
system is modelled as a collection of nb = 56 tangent beads of diameter σ interacting
via a soft WCA potential. The radius of the rings (from the centre of the particles to the
centre of the peripheral beads) is r = 8.92σ. The particle density is ρr3 = Nr3/V =

1.5 which corresponds to a very low packing fraction φ = πNnbσ
3/(6V ) = 0.062. The

system has been replicated along the direction of the layers to aid the visualisation of
the SmA phase. The typical lamellar spacing is indicated by λ∗. The rings are aligned
anti-nematically with their normals pointing perpendicular to the lamellar director n̂.
Traces of inter-layer rings with transverse, nematic order are visible in the centre of the
image.

centre-of-mass distance ∆r = r − r′ and orientation vectors û and û′. The chemical potential
µ0 ensures proper normalization of the one-body density, i.e.

∫
drdûρ(r, û) = N .

If the particle interactions are strictly hard, which is the case here, then Φ = −1 if the cores
overlap and Φ = 0 otherwise. Configurations involving any number of particle overlaps yield
an infinite potential energy and are infinitely improbable. All allowable particle configurations
therefore have zero potential energy and the Helmholtz free energy is governed by entropic
contributions alone. This is encoded in Eq. (4.1) where the first term represents the exact trans-
lational and orientational entropy of an ensemble of freely rotating non-spherical particles –
both entropies are maximal in a uniform isotropic fluid – whereas the approximate second con-
tribution accounts for the so-called packing entropy of hard particles by considering only inter-
actions between pairs. Since there are no enthalpic contributions, temperature becomes a mere
scaling factor and the overall particle concentration constitutes the only relevant thermodynamic
parameter. Strictly, the second-virial free energy formulated above is only expected to be quan-
titatively reliable for strongly elongated hard rods, in line with Onsager’s original idea [25].
Although far less accurate for rings or discotic bodies where higher-order virial contribution
are expected to remain important even at low particle concentration [39, 294], the theory does
provide important qualitative guidance as to the liquid crystal structure formation of those types
of particle shapes while remaining numerically manageable.
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At low particle density the particles will form an isotropic fluid with uniform particle con-
centration ρ0 = N/V and random orientations so that the one-body density is a simple constant
ρ(r, û) = ρ0/4π. At higher concentration particle-particle interactions will drive liquid crys-
talline order of some nature. In order to probe this in more detail we apply a perturbation to the
isotropic state by considering an arbitrary density modulation characterized by some wavevec-
tor q [295]:

ρ(r, û) =
ρ0

4π
+ δρ̂(û)e−iq·r. (4.2)

where the amplitude is required to be infinitesimally small, i.e. |δρ̂(û)| � 1. This perturbation
may signify any type of liquid crystalline order such as nematic, smectic, columnar or even full
crystalline order. The perturbation brings about a change in free energy which formally reads
up to quadratic order in the amplitude:

δ2F =

∫
dûdû′

{
4πδûû′

ρ0

− Φ̂q(û, û′)

}
δρ̂(û)δρ̂(û′), (4.3)

where Φ̂q represents the Fourier transform (FT) of the Mayer function which for hard interac-
tions reduces to a Fourier transform of the excluded volume at fixed particle orientation:

Φ̂q(û, û′) =

∫
d∆rΦ(∆r, û, û′)eiq·∆r

= −
∫
Voverlap(û,û′)

d∆reiq·∆r. (4.4)

Local stability of the isotropic fluid against liquid crystalline order requires that δ2F be positive,
whereas loss of stability happens when δ2F = 0. The state-point (particle density ρ0) at which
this occurs is referred to as a bifurcation point indicating the emergence of liquid crystalline
order with a free energy lower than that of the isotropic fluid at the same particle concentration.
The bifurcation condition can be established by factorizing the perturbation δρ̂(û) = εf ∗(û)

(with ε� 1) and rearranging terms into the following eigenvalue equation [293, 296]:

f ∗(û) =
ρ0

4π

∫
dû′f ∗(û′)Φ̂q(û, û′), (4.5)

where f ∗(û) is the eigenfunction marking the orientational distribution of the particles in the
incipient ‘new’ phase.

The stability analysis entails seeking the wave-vector, encoding some prescribed density
modulation, that produces the lowest eigenvalue ρ0. The latter is identified as the bifurcation
density. The simplest liquid crystalline instability is the nematic. This state is characterized
by a uniform density but a non-uniform orientation probability in which the particles adopt a
certain degree of alignment along a common nematic director denoted by n̂. The bifurcation
towards the nematic is particularly straightforward to gauge since there is no periodicity (q = 0)
while the incipient orientation distribution takes on the form of a simple Legendre polynomial
f ∗(û · n̂) = P2(û · n̂)/4π (with P2(x) = 3

2
cos2 x− 1

2
) [297]. The isotropic-nematic bifurcation

density then simply follows from Eq. (4.5) after some basic rearrangements:

ρ∗0 =
〈(P2(t))2〉t

〈〈P2(t)P2(t′)〈B2(û, û′)〉∆ϕ〉t〉t′
, (4.6)

with t = û · n̂ the projection of the particle vector onto the nematic director and ∆ϕ the
azimuthal angles describing the relative particle orientation in the plane perpendicular to the
director so that we may parameterize (û, û′) → (t, t′,∆ϕ). The brackets denote averages over
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(a) (b)

FIGURE 4.2. Visualization of the excluded volume of a pair of infinitely thin hard
rings (a) and disks (b) with radius r = D/2 at fixed mutual orientation defined within
a particle-based frame spanned by the three unit vectors. The overlap figure of rings is
strongly non-convex and contains sharp inward cusps.

the polar projections, 〈·〉t =
∫ 1

−1
dt, and azimuthal orientations 〈·〉∆ϕ = (2π)−1

∫ 2π

0
d∆ϕ. The

key ingredient here is the second-virial coefficient

B2(û, û′) =
1

2
Φ̂0(û, û′) (4.7)

defined as the excluded volume per particle [25]. For slender uniaxial particles (needles, disks,
rings) this quantity is strongly orientation-dependent and scales as B2(û, û′) ∝ | sin γ| in terms
of the enclosed angle γ between the main particle vectors. The corresponding bifurcation den-
sity then simply follows from ρ∗0 = 4/〈〈B2〉〉I in terms of isotropic average of the second virial
coefficient [297].

4.3. EXCLUDED VOLUME OF RIGID RINGS AND DISKS

The key quantity of interest here is the excluded volume between the two hard objects at
fixed mutual orientation defined as the figure swept out as one object moves around the other at
closest contact. The excluded volume of spherical particles is simply another spherical object
with twice the radius of its constituents. Anisotropic objects, however, produce much more
complicated geometries depending on their mutual orientation. Fig. 4.2 depicts the excluded
volume manifolds for the particles under scrutiny; hollow rings and filled disks. Both objects
are characterized by a diameter D = 2r and a thickness L which is assumed asymptotically
small so that L/D ↓ 0. The rings are infinitely thin and are not allowed to interlock. Thus, both
objects have an internal volume tending to zero, but a finite excluded-volume which is non-
trivially orientation-dependent. Clearly, the figure associated with the excluded-volume zone
of two rings is highly-non-convex due to the interpenetrability of the particles. This gives rise
to sharp cusps located at the four square edges of the figure which join together at the centre-
of-mass of the body (Fig. 4.2), reflecting the possibility of a complete overlap of mathematical
rings at mutual perpendicular orientation û1 · û2 = 0, a configuration resembling the gimbals of
a gyroscope. Complete overlap of disks is not possible unless the particles are strictly parallel
(û1 · û2 → 1) in which case the overlap volume vanishes. The main challenge confronting us
is to parameterize the non-convex overlap manifold associated with the rings. While several
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routes are conceivable, we find that the most expedient one involves computing the overlap
between a ring and a disk as sketched in Fig. 4.3. Let us first define a particle-based frame
from the normal vectors û1 and û2 of a pair of disks or rings. Defining the additional unit
vectors v̂ = û1 × û2/|û1 × û2| and ŵi = ûi × v̂ so that {ûi, v̂, ŵi} (with i = 1, 2) we
obtain two orthonormal frames. The excluded volume is most conveniently parameterized in
the non-orthogonal, rhombic {ŵ1, v̂, ŵ2} frame with unit volume |û1 × û2| = | sin γ|.

First, we parameterize the circular parts (I) as follows

rA
I = −dv̂ + t1 sin ξv̂ + t1 cos ξŵ1 + t3ŵ2

rB
I = dv̂ − t1 sin ξv̂ + t1 cos ξŵ1 + t3ŵ2, (4.8)

with integration limits 0 < t1 < r, −r < t3 < r and 0 < ξ < 2π and d = (r2− t23)
1
2 the centre-

to-centre distance of the fused circles. For the circle segments (II) we use the same form as
above but with the angular integration replaced by − cos d

r
< ξ < cos d

r
. Finally, the triangular

parts (III) can be parameterized via

rA
III = −t1v̂ + t2ŵ1 + t3ŵ2

rB
III = t1v̂ + t2ŵ1 + t3ŵ2, (4.9)

with 0 < t1 < d, −(t3− t1 tan d
r
) < t2 < (t3− t1 tan d

r
), −r < t3 < r. The FT of the excluded

volume per particle (i.e. the second virial coefficient) for a ring-disk (RD) pair is given by a
linear combination of the three contributions via

B̂RD
2q =

∑
A,B

[∫
drIe

iq·rI −
∫
drIIe

iq·rII +

∫
drIIIe

iq·rIII
]
. (4.10)

The integrals can be worked out by invoking the coordinate transformations
∫
dri →

∫
dt1
∫
dt3
∫
dξJi

(i = I, II) and
∫
drIII →

∫
dt1
∫
dt2
∫
dt3JIII with Ji being the Jacobian matrix associated with

the transformation. While the results for arbitrary non-zero wavevector cannot be obtained in
closed form, the actual excluded volume can be retrieved analytically from the zero wavenum-
ber limit B̂RD

2q↓0 = BRD
2 which yields

BRD
2 = D3

(
1

3
+
π

8

)
| sin γ|. (4.11)

The FT of the second-virial coefficient between two rings (RR) is now easily obtained from

B̂RR
2q = B̂RD

2q + B̂DR
2q − B̂DD

2q . (4.12)

The contribution for disks (DD) in Fourier space has been derived in Ref. [298] and can be
readily reconstructed from Fig. 4.3 by considering the convex hull of the dimer area (no cusps,
see dotted lines in Fig. 4.3) resembling a 2D spherocylinder. Also here, the zero wavelength
limit is well-known and yields the excluded-volume between two infinitely thin hard disks with
diameter D, namely BDD

2 = π
4
D3| sin γ|. The result for two rings then follows from Eq. (4.12)

and turns out

BRR
2 =

2

3
D3| sin γ|. (4.13)

The ratio BRR
2 /BDD

2 = 8/3π ≈ 0.85 indicating that the excluded volume of hollow rings is
only about 15 % smaller than that of disks providing the particle pairs have the same diameter
and mutual orientation. The finite wavenumber values of the second-virial coefficients were
obtained by numerically solving the contour integrals in Eq. (4.10) using standard numerical
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IIIIII

FIGURE 4.3. Overlap between a ring and a disk; rolling the disk around the circle in
the {ŵ1, v̂}-plane at fixed mutual orientation projects a typical dimer composed of two
overlapping circles with radius r = D/2. Its surface can be calculated by decomposing
the area into a circular section (I, checkerboard), a circle segment (II, stripes), and a
triangular section (III, waves). The dotted lines in the top-right sketch denotes the convex
hull of the fused circles.

integration packages [299]. These values then numerically define the kernel of the eigenvalue
equation Eq. (4.5) which is subsequently solved using a matrix diagonalization routine by dis-
cretizing the orientational phase space in terms of a discrete number of polar (0 < θ < π) and
azimuthal (0 < ϕ < 2π) angles with respect to the nematic director. Note that the polar angle,
measuring the projection of the particle normal onto the nematic director via cos θ = û · n̂, is
the only relevant angle for describing uniaxial nematic order we consider here.

4.4. RESULTS FOR A BINARY MIXTURE OF RINGS AND DISKS

We now have all the ingredients to investigate the various instabilities that might occur in the
isotropic fluid. In order to smoothly interpolate between the convex disk and non-convex ring
shape we will consider a binary mixture of the two. Let us define x as the mole fraction of rings,
then the FT of the second virial coefficient of the mixture can be approximated by:

B̂mix
2q = (1− x)2B̂DD

2q + (1− x)xB̂DR
2q + x(1− x)B̂RD

2q + x2B̂RR
2q . (4.14)

We stress that this form is a simplified one; it presupposes that both species undergo the same
spatial density modulation and that there are no compositional fluctuations contributing to the
loss of stability of the isotropic fluid. A more elaborate treatment allowing for a full coupling
between orientational, positional and compositional degrees of freedom is realizable but goes
beyond the scope of the present work. The isotropic-nematic instability (I-N) is the easiest to
establish from Eq. (4.6). Given that the second-virial coefficients of rings and disks only differ
by a constant prefactor we can immediately deduce that the I-N instability of pure rings (x = 1)
should occur at a density which is a factor 3π/8 ≈ 1.17 higher than that of the disks. Of course,
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FIGURE 4.4. (a) Bifurcations in a binary isotropic fluid mixture of hard nanodisks and
rings. Shown are the normalized particle density ρ∗0r

3 plotted versus the mole fraction
x of rings. The emergent type of liquid crystalline order is given by the curve with the
lowest density. Pure rings (x = 1) exhibit a direct transition from isotropic to smectic
order whereas pure systems of disks (x = 0) form a nematic phase. (b) Characteristic
lamellar distance λ∗ corresponding to the smectic phase expressed in units of the particle
diameter D.

we need to keep in mind that the nematic phase need not be the first stable phase as transitions
to smectic or columnar order might pre-empt it. The smectic A (SmA) phase is characterized by
a unidirectional density modulation along the nematic director whereas columnar order implies
two-dimensional ordering in the plane perpendicular to n̂. We thus decompose q = D · n̂ with
D = q‖n̂n̂+q⊥(I− n̂n̂) such that (q‖ > 0, q⊥ = 0) imposes smectic order and (q‖ = 0, q⊥ > 0)
columnar order.

Fig. 4.4 provides an overview of the main results. The two principal instability modes, the
isotropic-nematic (I-N) and the isotropic-smectic (I-SmA) one, are shown in Fig. 4.4a. Natu-
rally, the one with the lowest density represents the physically relevant instability as it indicates
the first new phase appearing upon densification of the isotropic fluid. While an isotropic fluid
of pure disks (x = 0) becomes nematic, a dilute system of rings shows a clear tendency to form
smectic phases at higher concentration without the intervention of nematic order. This is in
agreement with what has been observed in the simulations [23]. The isotropic-smectic bifurca-
tion is located at ρ∗0r

3 ≈ 0.7 pre-empting the I-N one (ρ∗0r
3 = 3/π ≈ 0.95) by more than 25 %.

In order to estimate the location of the first-order I-N transition we may employ the exact nu-
merical results from Onsager theory for infinitely thin hard rods, namely ρ(I)

0 〈B2〉I = 3.29 and
ρ

(N)
0 〈B2〉I = 4.19 [26] and renormalize these values for the ring case by using the isotropized

second-virial 〈BRR
2 〉I = 4r3π/3 from Eq. (4.13). From this we estimate the I-N coexistence

densities ρ(I)
0 r3 ≈ 0.786 and ρ

(N)
0 r3 ≈ 1.001 (black dots in Fig. 4.4a). Clearly, the I-SmA
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bifurcation lies well below the estimated I-N transition so it may be safely assumed that the
transition to the smectic phase pre-empts any onset of nematic order.

Irrespective of composition, we found that the isotropic-columnar (I-Col) bifurcation (results
not shown) is always located at densities well above the other curves so columnar order does not
interfere with the other modes even though the I-Col bifurcation density shifts to considerably
smaller values going from pure disks to pure rings. Our linear bifurcation analysis does not
provide information about the order of the I-SmA transition. In the simulations the transition
was found to be first-order [23]. This scenario could, in principle, be confirmed theoretically by
expanding the bifurcation analysis to higher order which we will not pursue here.

We reiterate that the smectic structures predicted by our analysis are essentially empty be-
cause of the following: i) the transition takes place at finite particle concentration, and ii) the
rings have a vanishing internal volume. This scenario is in stark contrast with columnar phases
emerging from dense nematic systems of infinitely thin disks. Here, even though the internal
volume of the disks vanishes upon reducing the aspect ratio L/D ↓ 0, the critical particle con-
centration at which the N-Col transition occurs diverges in such a way that the product of the
two quantities, the packing fraction, always attains a finite value of around 40 to 45 % [300,301].
Upon increasing the mole fraction of disks (x < 1) the I-N transition exhibits a shallow down-
ward trend reflecting the very similar excluded volumes of the rings and disks (their prefactors
differ only by 15 %). The I-SmA instability, however, abruptly terminates below some critical
mole fraction of disks. This indicates a complete absence of the smectic mode for the pure
disks at least coming from the isotropic phase. The disruptive effect of the disks on the smectic
structure is also reflected in the lamellar spacing [Fig. 4.4b] which rapidly grows up to almost
twice the ring diameter upon increasing the fraction of disks. These large spacings are unlikely
to occur spontaneously and it is conceivable that equimolar ring-disk mixtures are prone to form
segregated binary smectic structures in which each component obeys a different smectic peri-
odicity and/or internal orientational order. The discussion of this interesting problem is beyond
the scope of the present work and will be discussed in a future paper.

The eigenfunctions provide information about the orientational order the particles adopted
by the emerging phase. Examples for the pure systems are shown Fig. 4.5. As expected,
the nematic phase of disks clearly exhibits P2 type order with the disk normals pointing on
average along the nematic director. The rings, on the other hand, are characterized by a typi-
cal anti-nematic order in which the ring normals preferentially point perpendicular to the ne-
matic director (hence the peak at θ = π/2). This is in complete accordance with the struc-
tures that have been established in the simulation model [23]. In view of the normalization
of ρ(r, û) [Eq. (4.2)] the eigenfunctions must obey

∫ 1

0
d(cos θ)f ∗(θ) = 0. While the incipient

nematic order of the disks follows the typical P2 form [Fig. 4.5a], the antinematic order of
the rings cannot be fitted to such a form [Fig. 4.5b]. The nematic order parameter is given by
S ∝ ε

∫ 1

0
d(cos θ)f ∗(θ)P2(cos θ) (ε > 0) and yields S = ε/5 for the disks [302] and a very

similar but negative value for the rings, S ≈ −0.2ε (note that perfect antinematic order gives
S = −0.5). In-plane biaxiality, in which the rings normals adopt a preferred direction within
the lamellar plane, is not accounted for here but its influence appears very weak in the simula-
tion [23]. We do not expect biaxiality to affect the stability or structure of the smectic phases,
at least in the concentration ranges explored thus far.
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FIGURE 4.5. Characteristic eigenfunctions f∗ (from Eq. (4.5)) indicating the preferred
orientational order in the new phase: (a) nematic phases of pure disks show regular
uniaxial nematic order, whereas smectic phases of pure disks exhibit typical antinematic
order (b). The orientational distribution of the rings in the smectic phase deviates from
the standard second-order Legendre polynomial form (black curve).

We now wish to briefly illustrate the role of antinematic order in the stabilization of smectic
structures by analyzing the orientational entropy. Let us assume that the normalized orienta-
tional probability density in a strongly ordered regular uniaxial nematic phase can be described
by a simple Gaussian

fN(θ) ∼ α

4π
e−

α
2
θ2 (4.15)

complemented with its mirror form fN(π − θ) for the probability density anti-parallel to the
director [26]. The variational parameter α is proportional to the nematic order parameter and
we require α� 1. The distribution in the antinematic (AN) phase is peaked around the perpen-
dicular polar angle θ = π

2
and the Gaussian distribution reads

fAN(θ) ∼
√

α

(2π)3
e−

α
2 (π2−θ)

2

(4.16)

in normalized form [303]. The orientational entropy per particle associated with these distribu-
tions is defined as

σor ∝ −kB
∫
dûf(û) ln[4πf(û)] (4.17)

and yields σor
I = 0 for the isotropic phase,

σor
N ∼ −kB lnα (4.18)

for the nematic and

σor
AN ∼ −

1

2
kB lnα (4.19)
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for the antinematic phase up to leading order in α � 1. From this observation we infer that
the orientational entropy of the antinematic phase is much higher than that of the nematic phase
at least in the limit of asymptotically strong alignment. This provides a clue as to why smec-
tic order might be preferred over nematic order. The antinematic organization of the rings is
primarily driven by the additional free volume that is generated when the ring centres-of-mass
are co-planar and their normal vectors are mutually perpendicular as observed in the simula-
tions [23]. In this configuration the rings are allowed to interpenetrate completely (cf. the cusp
in Fig. 4.2a). A similar reduction of pair excluded volume could have been achieved by a sim-
ple nematic alignment of the ring normals but the associated orientational entropy would be
much smaller. Antinematic smectic order then may become thermodynamically favorable over
simple nematic alignment if the gain in orientational entropy outweighs the reduction of the
translational entropy of the smectic associated with its lamellar structure.

4.5. CONCLUSIONS

Inspired by recent simulation evidence of novel porous lamellar structures formed in assem-
blies of nano-rings, we have proposed a simple second-virial route to investigating the onset
of liquid crystal order in systems of hard ring- and disk-shaped objects, as well as mixtures of
both species. Our main finding is that a simple, non-ideal fluid description based on the virial
expansion, originally devised for regular convex bodies, is also capable of predicting the salient
features of liquid crystalline order in assemblies non-convex, hollow particles. Our simple
second-virial theory predicts the emergence of smectic phases at finite particle concentration
along with the typical lamellar spacing as well as an antinematic intralamellar orientational
order. Since our model is based on mathematical rings with no internal volume, the pack-
ing fraction of these smectic phases is essentially zero, indicating empty structures. We have
rationalized the stability of these smectics (with respect to regular nematic phases) from the
favorable orientational entropy associated with the antinematic orientational order of the rings
within the smectic layers.
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5
Meso-scale turbulence in living fluids

ABSTRACT

Turbulence is ubiquitous, from oceanic currents to small-scale biological and quantum
systems. Self-sustained turbulent motion in microbial suspensions presents an intrigu-
ing example of collective dynamical behavior amongst the simplest forms of life, and is
important for fluid mixing and molecular transport on the microscale. The mathemat-
ical characterization of turbulence phenomena in active non-equilibrium fluids proves
even more difficult than for conventional liquids or gases. It is not known which features
of turbulent phases in living matter are universal or system-specific, or which general-
izations of the Navier-Stokes equations are able to describe them adequately. Here, we
combine experiments, particle simulations, and continuum theory to identify the statis-
tical properties of self-sustained meso-scale turbulence in active systems. To study how
dimensionality and boundary conditions affect collective bacterial dynamics, we mea-
sured energy spectra and structure functions in dense Bacillus subtilis suspensions in
quasi-2D and 3D geometries. Our experimental results for the bacterial flow statistics
agree well with predictions from a minimal model for self-propelled rods, suggesting that
at high concentrations the collective motion of the bacteria is dominated by short-range
interactions. To provide a basis for future theoretical studies, we propose a minimal
continuum model for incompressible bacterial flow. A detailed numerical analysis of
the 2D case shows that this theory can reproduce many of the experimentally observed
features of self-sustained active turbulence.

5.1. INTRODUCTION

Simple forms of life, like amoebae or bacteria, self-organize into remarkable macroscopic
patterns [55, 56], ranging from extended networks [304, 305] to complex vortices [60–63, 306]
and swarms [59]. These structures often bear a striking resemblance to assemblies of higher or-
ganisms (e.g., flocks of birds [307] or schools of fish [308,309]), and present important biologi-
cal model systems to study non-equilibrium phases and their transitions [52,310,311]. A partic-
ularly interesting manifestation of collective behavior in microbial suspensions is the emergence
of meso-scale turbulent motion [61,62,91,312]. Driven by the microorganisms’ self-propulsion
and their mutual interactions, such self-sustained ‘active turbulence’ can have profound ef-
fects on nutrient mixing and molecular transport in microbiological systems [56, 313–315].
However, in spite of recent progress [67, 312, 316, 317], the phenomenology of turbulent bac-
terial dynamics is scarcely understood, and a commonly accepted theoretical description is
lacking [52, 56, 318]. The latter fact may not be surprising given that a comprehensive math-
ematical characterization of turbulence in conventional fluids has remained elusive after more
than a century of intense research [319].

In view of the various physical and chemical pathways through which bacteria may com-
municate [55, 59, 320], a basic yet unsolved problem is to identify those interactions that are

75
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responsible for the emergence of collective behavior in dense suspensions [56–58]. Answer-
ing this question is essential for understanding whether physical mechanisms such as flagellar
bundling or hydrodynamic long-range interactions are relevant to collective bacterial motion; it
is also crucial for constraining the vast number of theoretical models that have been proposed
during the past two decades [52,56,312,321,322], but have yet to be tested against experiments.
An equally important, unresolved issue pertains to the ‘universality’ of turbulent phenomena in
active systems and their relation to turbulence in passive fluids [319]. In ordinary liquids and
gases, such as water or air, turbulent vortices form due to external forcing if the Reynolds num-
ber, the ratio of inertial to viscous forces, is very large (Re� 1). By contrast, bacteria provide
an internal microscopic forcing and operate at Re ∼ 10−5 [82]. It is therefore unclear how, or to
what extent, the characteristics of self-sustained turbulent states in microbial suspensions differ
from those of classical turbulence in passive fluids.

Here, we combine numerical simulations, high-speed microscopic imaging and continuum
theory to identify generic statistical properties of active turbulent motion in dense bacterial sys-
tems, using Bacillus subtilis as a model organism. Unlike previous investigations of collective
bacterial swimming in 2D free-standing films [62] and 3D bulk suspensions with liquid-gas in-
terfaces [61,67,317], we conducted experiments in closed quasi-2D and 3D microfluidic cham-
bers to minimize external influences and to compare the effects of boundary conditions and
dimensionality. Our analysis focusses on traditional turbulence measures, such as energy spec-
tra and velocity structure functions [319, 323, 324]. These quantities have been widely studied
for turbulent high-Re Navier-Stokes flow [319,325–330], but their characteristics are largely un-
known for active fluids. We compare our experimental results with large-scale simulations of a
2D minimal model for self-propelled rods (SPRs). In the past, similar models [331] have proven
useful for identifying generic aspects of flocking and swarming in active systems [332,333]. We
find that, although the SPR model neglects details of bacterial cell-cell interactions, it is able
to reproduce many features of our experimental data, suggesting that collective bacterial dy-
namics in dense suspensions is dominated by short-range interactions [58]. We complement
our experiments and particle-based simulation studies by identifying a minimal field theory
for incompressible active flow that combines elements from the Toner-Tu [52, 310, 311] and
Swift-Hohenberg [334] theories. A detailed numerical analysis of the 2D case shows that this
continuum model could provide a viable basis for future theoretical investigations of active
turbulence.

5.2. RESULTS

Bacteria may form homogeneous vortex patterns only if their volume fraction is sufficiently
large (> 20%). At such high concentrations, steric repulsion and other short-range interactions
(e.g., lubrication forces, flagellar bundling of neighboring cells) can be expected to govern phys-
ical reorientation and alignment, whereas chemotaxis is suppressed due to a rapid equilibration
of chemical concentration gradients. Similarly, Brownian motion effects are likely to become
less important in the collision-dominated high-density regime [335]. Recent direct measure-
ments of individual Escherichia coli flow fields [58] suggest that hydrodynamic far-field effects
are negligible for bacterial reorientation, especially when bacteria swim close to a no-slip sur-
face. Earlier experiments [62, 67, 317] on 2D films and 3D bulk suspensions also show that
the average swimming speeds of individual bacteria (typically of the order of 10 µm/s in isola-
tion [58, 62]) can be enhanced up to five times through collective hydrodynamic effects. In the
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simplest approximation, however, a sufficiently dense bacterial suspension can be viewed as a
system of deterministic, self-propelled, rod-like particles with an effective swimming speed V
(for B. subtilis at volume fractions φ ∼ 40% we find V ∼ 30 to 100µm/s depending on oxygen
concentration and boundary conditions). One of our objectives here is to test such a minimal
model against experiments and to provide systematic guidance for more accurate future models.

5.2.1. Non-Equilibrium Phase Diagram of the SPR Model
To identify generic requirements for the formation of turbulent phases in active systems, we

performed simulations of a minimal 2D SPR model with periodic boundary conditions (see
supplementary information (SI) at the end of this chapter for details). In its simplest form, the
model assumes that a rod-shaped self-propelled particle moves deterministically in the over-
damped low-Re regime with an effective swimming speed V , while interacting with the other
particles by steric forces. Mutual repulsion is implemented by discretizing each rod into spher-
ical segments and imposing a repulsive Yukawa force potential ∼ exp(−r/λ)/r, where r is
the distance, between the segments of any two rods (i.e., the decay length λ > 0 defines the
effective diameter of a rod of length `). If two sufficiently long rods perform a pair-collision,
this short-range interaction results in an effective nematic (apolar) alignment, before the rods
become pushed apart by the repulsive force.

Depending on the effective volume filling fraction φ and the rod aspect ratio a, both defined
in terms of the scale parameter λ and rod length `, the SPR model exhibits a range of qualita-
tively different dynamical phases (Fig. 5.1). The numerically estimated non-equilibrium phase
diagram (Fig. 5.1A) illustrates the importance of the effective particle ‘shape’ in 2D: Upon in-
creasing φ, short rods undergo a transition from a dilute state (D), with little or no cooperative
motion, to a jammed state (J); this transition can be identified by the mean square displacement
per particle, which drops off nearly two orders in magnitude along the transition curve. By con-
trast, very long rods (a > 13) do not jam at moderate filling fractions but exhibit swarming (S)
behavior and large spatiotemporal density fluctuations. Generally, the transitions from the dilute
phase (D) to cooperative motion (regions S, B and T) can be characterized by the Onsager over-
lap density [25]. Upon increasing φ further, very long rods tend to assemble in homogeneous
lanes (L), corresponding to quasi-smectic regions of local polar order; the swarming-to-laning
transition is signaled by a discontinuous increase in the correlation length of the two-particle
velocity correlation function. The swarming (S) and laning (L) phases adjoin a so-called active
bionematic [91] phase (B), where vortices and extended jet-like structures coexist [317, 336];
this phase is characterized by large fluctuations of the local vortex density. Most importantly for
the present study, however, the SPR model predicts homogeneous turbulent states (T) at high
filling fractions and intermediate aspect ratios 3 . a . 13, a range that covers typical bacterial
values (e.g., 2 . a . 4 for E. coli and 6 . a . 10 for B. subtilis). The transition between
bionematic and turbulent phase is also signaled by the velocity distribution, which changes from
a bimodal shape in the B-phase to a Gaussian in the T-phase.

5.2.2. Homogeneous turbulent phase in the SPR Model
A typical turbulent flow state as found in the simulations, and the associated (pseudo-scalar)

2D vorticity field ω = ∇ ∧ v̂ = εij∂ivj , are shown in Fig. 5.2A (throughout, ε12 = −ε21 =

1, ε11 = ε22 = 0, and we adopt a summation convention for equal lower indices, so that
ω = ∂1v2 − ∂2v1 = ∂xvy − ∂yvx in 2D). The mean local flow field v̂(t, r) at time t and posi-
tion r was constructed by binning and averaging individual particle velocities, using a spatial
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FIGURE 5.1. (A) Schematic non-equilibrium phase diagram of the 2D SPR model
and snapshots of six distinct phases from simluations: D-dilute state, J-jamming, S-
swarming, B-bionematic phase, T-turbulence, L-laning. Our analysis focusses on the
turbulent regime T. (B) Enstrophy Ω in units (V/λ)2 for different aspect ratios a = `/λ,
obtained from SPR simulations with N ∼ 104 ÷ 105 particles. The maxima of the
enstrophy indicate the optimal filling fraction for active turbulence and mixing at a given
value of the aspect ratio a. Note that values φ > 1 are possible due to the softness of the
repulsive force (see SI Text for simulation parameters).

resolution similar to that in our experiments (see SI Text). To characterize the emergence of
homogeneous turbulence in the SPR model in terms of particle geometry a and effective vol-
ume fraction φ, we quantify the vortical energy through the enstrophy [319, 323, 324] per unit
area, Ω = 1

2

〈
|ω(t, r)|2

〉
, where brackets 〈 · 〉 indicate spatial averages and overbars denote time

averages. For slender rods (a ≥ 3) the mean enstrophy Ω exhibits a maximum when plotted
versus the volume fraction φ (Fig. 5.1B). This maximum coincides approximately with the tran-
sition from the bionematic to the turbulent phase; in a bacterial suspension, it corresponds to
the optimal concentration for fluid mixing. Typical aspect ratios of bacterial cell bodies lie in
the range 2 . a . 10; hence, homogeneous bacterial turbulence should be observable in 2D
for a rather broad range of filling fractions.

5.2.3. Experiments
We test the SPR model against experimental observations of B. subtilis at high filling fractions

(φ & 40%, see Materials and Methods). In contrast to recent investigations in 2D free-standing
films [62] and open 3D bulk suspensions [61, 67, 91, 317], bacteria were confined in closed mi-
crofluidic chambers to minimize oxygen gradients that may cause anisotropic streaming of the
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FIGURE 5.2. Snapshots of vorticity fields ω(t, r) and streamlines of the corresponding
velocity fields v̂(t, r) in the turbulent regime, as obtained from (A) simulations of the
deterministic SPR model (a = 5, φ = 0.84), from (B) quasi-2D bacteria experiments,
and (C) continuum theory. The range of the simulation data in (C) was adapted to the
experimental field of view (217 µm× 217 µm) by matching the typical vortex size (scale
bars 50µm). Simulation parameters are summarized in the SI Text.

oxytactic B. subtilis bacteria [56]. To study the effects of dimensionality and boundary condi-
tions, experiments were performed with two different set-ups: quasi-2D microfluidic chambers
with a vertical height H less or equal to the individual body length of B. subtilis (∼ 5µm),
and 3D chambers with H ∼ 80µm. To focus on the collective dynamics of the microorgan-
isms rather than the solvent flow [67, 337], we determined the mean local motion of B. subtilis
directly using particle imaging velocimetry (PIV, see SI Text); a typical snapshot is shown in
Fig. 5.2B.

5.2.4. Continuum theory
The analytical understanding of turbulence phenomena hinges on the availability of simple,

yet sufficiently accurate continuum models [319]. Considerable efforts have been made to con-
struct effective field theories for active systems [52,64,310–312,321,322,338,339] but most of
them have yet to be tested quantitatively against experiments. Many continuum models distin-
guish solvent velocity, bacterial velocity and/or orientational order parameter fields, resulting
in a prohibitively large number of phenomenological parameters and making comparison with
experiments very difficult. Aiming to identify a minimal hydrodynamic model of self-sustained
meso-scale turbulence, we propose a simplified continuum theory for incompressible active
fluids, by focussing solely on the experimentally accessible velocity field v(t, r) and assuming
that v also reflects, at least approximately, the local orientation of bacteria. By construction, our
theory will not be applicable to regimes where density fluctuations are large (e.g., swarming or
flocking), but it can provide a useful basis for quantitative comparisons with particle simulations
and experiments at high concentrations.

We next summarize the model equations; a detailed motivation is given in the SI Text. Since
our experiments suggest that density fluctuations are negligible we postulate incompressibility,
∇ · v = ∂ivi = 0. The dynamics of v is governed by the generalized Navier-Stokes equation

(∂t + v · ∇)v = −∇p− (α + β|v|2)v +∇ · E, (5.1)

where p denotes pressure. The (α, β)-terms in Eq. (5.1) correspond effectively to a quartic
Landau-type velocity potential, as in the classical Toner-Tu model [52, 310, 311]. For α > 0

and β > 0, the fluid is damped to a globally disordered state with v = 0, whereas for α < 0

a global polar ordering is induced. However, such global polar ordering is not observed in
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suspensions of swimming bacteria, suggesting that other instability mechanisms prevail [339].
Mathematically, this means that one must either introduce additional order parameters [339]
(such as concentration fields, Q-tensors, etc.) or that Eq. (5.1) must be made ‘more non-local’
by including higher-order derivatives via the stress-tensor [334]. Here, we examine the latter
approach by postulating that the components of the symmetric and trace-free rate-of-strain E

tensor are given by

Eij = Γ0(∂ivj + ∂jvi)− Γ24 (∂ivj + ∂jvi) + S qij, (5.2)

where4 = ∇2 denotes the d-dimensional Laplacian, and

qij = vivj −
δij
d
|v|2 (5.3)

is a mean-field approximation to the Q-tensor representing active stresses due to swimming
(δij is the Kronecker tensor). Although the S-term does not affect the linear stability of the
model, general hydrodynamic considerations [338] suggest that S < 0 for pusher-swimmers
like B. subtilis. More importantly, however, the stability analysis in the SI Text implies that the
(Γ0,Γ2)-terms in Eq. (5.24) provide the simplest generic description of self-sustained meso-
scale turbulence in incompressible active fluids. For Γ0 < 0 and Γ2 > 0, the model exhibits
a range of unstable modes that results in turbulent states as shown in Fig. 5.2C. Intuitively,
the (Γ0,Γ2)-terms describe intermediate-range interactions, and their role in Fourier-space is
similar to that of the Landau-potential in velocity space (see SI Text for details). We therefore
expect that Eqs. (5.1)-(5.3) apply to a wide class of quasi-incompressible active fluids. To
compare the continuum model with our experiments and particle simulations, we next study
traditional turbulence measures, such as velocity structure functions and kinetic flow spectra.

5.2.5. Velocity Structure Functions
Building on Kolmogorov’s seminal work [340], a large part of the classical turbulence liter-

ature [319, 323, 325–327, 329, 330] focuses on identifying the distribution of the flow velocity
increments δv(t, r,R) = v(t, r + R)− v(t, r). The statistics of the latter is commonly charac-
terized in terms of the longitudinal and transverse projections, δv|| = R̂ · δv and δv⊥ = T̂ · δv,
where T̂ = (εijR̂j) denotes a unit vector perpendicular to the unit shift vector R̂ = R/|R|. The
separation-dependent statistical moments of δv|| and δv⊥ define the longitudinal and transverse
velocity structure functions

Sn||,⊥(R) :=
〈(
δv||,⊥

)n〉
, n = 1, 2, . . . . (5.4)

These functions have been intensely studied in turbulent high-Re fluids [319,323,324,330], but
are unknown for active flow. For isotropic steady-state turbulence, spatial averages 〈 · 〉 as in
Eq. (5.4) become time-independent, and the moments Sn||,⊥ reduce to functions of the distance
R = |R|.

Velocity (increment) distributions and structure functions for our numerical and experimental
data are summarized in Fig. 5.3. For the SPR model, statistical quantifiers can be constructed
either from the raw particle data or from pre-binned flow field data. The two methods produce
similar results, and figures show averages based on individual particle velocities. Generally, we
find that both the 2D SPR model and the 2D continuum simulations are capable of reproducing
the experimentally measured quasi-2D flow histograms (Fig. 5.3A,B) and structure functions
(Fig. 5.3C). The maxima of the even transverse structure S2n

⊥ signal a typical vortex size Rv,
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FIGURE 5.3. Velocity statistics of self-sustained turbulent phases in active suspen-
sions. (A) The marginal distributions of the normalized Cartesian velocity components
[vi − 〈vi〉]/[〈v2

i 〉 − 〈vi〉2]
1/2
i=x,y are approximately Gaussian (thin grey line) for exper-

iments, SPR model and continuum theory. (B) The distributions of the longitudinal
and transverse velocity increments δv||,⊥, normalized by their first and second moments
S1,2
||,⊥ are shown for three different separations R. The weakly non-Gaussian features

for the SPR model vanish when a small rotational noise [58] is added to the simula-
tions. (C) Longitudinal and transverse velocity structure functions Sn||,⊥ normalized by

〈v2〉n/2. The maxima of the even transverse structure functions S2k
⊥ reflect the typical

vortex size Rv which is significantly larger in the 3D experiments. Experimental and
theoretical data points are spatio-temporal averages over two orthogonal directions in
(A) and (B), and all directions in (C), yielding a typical sample size > 106 per plotted
data point in (C). Histograms and structure functions for quasi-2D (3D) curves were ob-
tained by combining PIV data from two movies, respectively, representing an average
over 2x1000 (15x300) frames. Simulation parameters are identical to those in Fig. 5.2
and summarized in the SI Text. Errorbars are smaller than symbols and not shown.

which is substantially larger in 3D bulk flow than in quasi-2D bacterial flow. Unlike their coun-
terparts in high-Re Navier-Stokes flow [319, 323], the structure functions of active turbulence
exhibit only a small region of power law growth for ` . R� Rv and flatten at larger distances
(Fig. 5.3C).

5.2.6. Velocity Correlations and Flow Spectra
The energy spectrum E(k), formally defined by 〈v2〉 = 2

∫∞
0
E(k)dk, reflects the accu-

mulation of kinetic energy over different length scales. By virtue of the Wiener-Khinchine
theorem [319], E(k) can be estimated by Fourier-transformation of the equal-time two-point
velocity correlation function, yielding in d dimensions

Ed(k) =
kd−1

Cd

∫
ddR e−ik·R 〈v̂(t, r) · v̂(t, r + R)〉, (5.5)

where C2 = 2π and C3 = 4π. Normalized velocity correlation functions 〈v̂(t, r) · v̂(t, r + R)〉
and spectra Ed(k) for our data are summarized in Fig. 5.4. The crossover from positive to
negative correlations indicates again the typical vortex size Rv, in agreement with Fig. 5.3C
and previous findings for open 3D bulk systems [61, 91].
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FIGURE 5.4. Equal-time velocity correlation functions (VCFs), normalized to unity at
R = `, and flow spectra for the 2D SPR model (a = 5, φ = 0.84), B. subtilis experi-
ments, and 2D continuum theory based on the same data as in Fig. 5.3. (A) The minima
of the VCFs reflect the characteristic vortex size Rv [336]. Data points present averages
over all directions and time steps to maximize sample size. (B) For bulk turbulence
(red squares) the 3D spectrum E3(k) is plotted (k` = 2π/`), the other curves show 2D
spectra E2(k). Spectra for the 2D continuum theory and quasi-2D experimental data are
in good agreement; those of the 2D SPR model and the 3D bacterial data show simi-
lar asymptotic scaling but exhibit an intermediate plateau region (spectra multiplied by
constants for better visibility and comparison).

In bacterial suspensions, the microorganisms inject kinetic energy on small scales R ∼ `,
setting the upper bound k` = 2π/` for the spectral range of the bacterial fluid. For both ex-
periments and simulations, we observe turbulent vortices on scales R > `, which formally
correspond to the energy-inertial range k < k` in classical 2D turbulence [323, 324]. Our ex-
perimental and numerical data suggest asymptotic power law scaling regimes for small and
large k-values (see Fig. 5.4B), but the power-law exponents differ from the characteristic k−5/3-
decay of 2D Kolmogorov-Kraichnan turbulence [328]; see discussion below. The spectra for
the 2D continuum model and the quasi-2D bacteria experiments are in good agreement, both
showing large-k scaling with approximately E(k) ∼ k−8/3 and small-k scaling with roughly
E(k) ∼ k+5/3. The asymptotic spectra for the 2D SPR model and the 3D experimental data
look qualitatively similar, but do also exhibit an intermediate plateau region which indicates
that kinetic energy is more evenly distributed over a range of scales.

5.3. DISCUSSION AND CONCLUSIONS

5.3.1. SPR Model vs. Experiment
The deterministic SPR model provides an oversimplified description of the bacterial dynam-

ics, as it neglects not only elastic properties of flagella and cell body, but also hydrodynamic
interactions and orientational fluctuations due to intrinsic swimming variability and thermal ef-
fects [58,335]. Notwithstanding, such a minimal model reproduces remarkably well the flow ve-
locity distributions and the structure functions from our quasi-2D B. subtilis experiments and the
2D continuum simulations (Fig. 5.3), while also capturing the transition from bionematic [317]
to turbulent behavior at high concentrations. This implies that hydrodynamic interactions per
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se are not required for the formation of self-sustained turbulence in dense suspensions – self-
propulsion, a rod-like shape and volume exclusion interactions are sufficient (this raises the
question whether the optimization of collective behavior may have been a factor in the evolu-
tion of bacterial shapes). However, to achieve a better quantitative agreement, particle-based
future studies should focus on more realistic models that account for hydrodynamic near-field
interactions and intrinsic randomness in bacterial swimming [58]. The experimental results
presented above provide a benchmark for (in)validating such microscopic models [341].

5.3.2. Continuum Model and ‘Universality’
The good agreement of the structure functions, spatial and temporal flow correlations (see

also Fig. S1), and spectra from the 2D continuum theory with those from the quasi-2D experi-
ments suggests that this theory could be a viable model for dense suspensions. Since the insta-
bility mechanism in the continuum theory arises from a generic small-wave number expansion
in Fourier-space (see SI Text), that is analogous to the Landau-expansion in order-parameter
space for second-order phase-transitions, we expect that the model applies to a wide range of
quasi-incompressible active fluids. This would imply that meso-scale turbulent structures in
these systems share ‘universal’ long-wave length characteristics. We note that the theory as for-
mulated in Eqs. (5.1) only accounts for leading terms up to fourth-order and, therefore, becomes
inaccurate for large velocities and wave numbers (see tails in Figs. 3A,B and 4B). Nevertheless,
this continuum model appears to capture the main statistical and dynamical features of the ex-
perimental data. Important future challenges include the analytical prediction of active flow
spectra from Eqs. (5.1)-(5.3), detailed numerical studies of 3D bacterial bulk flows, and com-
parisons of our experimental and numerical data with Q-tensor models and other multi-order
parameter theories [52, 56, 312, 321, 322].

5.3.3. Dimensionality, Boundaries and Hydrodynamic Interactions
The quasi-2D experiments allow us to compare with 2D simulations that come close to ex-

perimental system sizes. Free-standing thin films [62], which are more prone to intrinsic in-
stabilities and external fluctuations, provide an alternative, but non-equivalent realization of a
2D bacterial fluid. The crucial difference between 2D films and our quasi-2D set-up is that the
presence of no-slip boundaries in our experiments suppresses hydrodynamic long-range interac-
tions between bacteria due to cancellation effects from the hydrodynamic images: An isolated
dipole-like swimmer (as E. coli [58] and, most likely, B. subtilis) creates a stroke-averaged
far-field flow that decays as ∼ 1/r2 with distance r in a 3D fluid. When the same swimmer
moves parallel to a nearby solid surface in an otherwise semi-infinite fluid, the flow compo-
nents parallel to the boundary decay faster ∼ 1/r3 [58]. If, however, the swimmer is closely
confined between two parallel no-slip walls, as in our quasi-2D experiments with H ∼ 4 µm,
then the flow field becomes exponentially damped at distances |r| � H [342]. By contrast,
in free-standing 2D films the flow field generated by an isolated microorganism has a much
longer range ∼ 1/r [315, 343], suggesting that hydrodynamic interactions could play a more
important role for collective behavior in these systems [62]. The fact that the typical vortex size
in 3D is larger than in quasi-2D sample chambers could be an indication of stronger short-to-
intermediate-distance hydrodynamic coupling in 3D bulk flow; it would therefore be interesting
to perform a similar analysis for thin-film data [62]. Generally, however, we expect hydrody-
namic far-field interactions to be less important for the dynamics in very dense suspensions due
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to mutual hydrodynamic screening [344] and the small magnitude of bacterial flows fields [58],
but they could act as a destabilizing noise [64, 345].

5.3.4. Low-Re vs. High-Re Turbulence
Conventional high-Re turbulence arises from energy input on large scales (e.g., stirring or

shearing). In 3D flow the injected energy is redistributed to smaller scales via an energy-inertial
downward cascade withE3 ∼ k−5/3 [319]. In 2D films, due to the suppression of vortex stretch-
ing [323, 324], there can be both an energy-inertial upward cascade with E2 ∼ k−5/3 and an
enstrophy-transfer downward cascade with E2 ∼ k−3 [328]. Remarkably, viscoelastic polymer
solutions can exhibit turbulent features (e.g., spectral power law scaling) at Reynolds numbers
as low as 10−3, facilitated by a slow nonlinear response to external shear due to long intrinsic
relaxation times of the polymers [346, 347]. Our simulations and experiments suggest asymp-
totic spectral power law decays towards the bacterial energy injection scale k` = 2π/` that
resemble the energy-inertial regime of classical turbulence but, due to viscous damping by the
low-Re solvent, extend over a smaller range of length scales (roughly up to 10`). The latter fact
is reminiscent of viscoelastic turbulence [346], although the underlying physical mechanisms
are very different.

In conclusion, bacterial or, more generally, self-sustained ‘active turbulence’, shares some
qualitative characteristics with classical turbulence on small scales while differing on larger
scales. Our detailed statistical analysis shows that, as with inertial turbulence, a complete quan-
titative understanding of turbulent behavior in active systems poses a challenging task. The
combined experimental, theoretical and numerical results presented here may provide both qual-
itative and quantitative guidance for future studies that aim at identifying the basic principles of
dynamical self-organization in living fluids.
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5.4. SUPPLEMENTARY INFORMATION

5.4.1. Materials
B. subtilis cells (wild type strain 168) were streaked from a -80◦C stock onto an LB medium

plate containing 1.5% agar. The plates were incubated at 37◦C for 12 h. A single colony from
the plates was used to inoculate an overnight culture in tryptone broth (1% tryptone, 0.5%
NaCl in H2O), which was then back-diluted 1:200 into 50 mL of fresh tryptone broth, and
grown at 37◦ C on a shaker to mid-log phase. The culture was then concentrated 100× by
centrifugation at 4000×g for 3 min, and the pellet was resuspended by gentle vortexing, to not
shear off the flagella. The concentrated culture was loaded into a polydimethylsiloxane (PDMS)
microfluidic device, which was then sealed to reduce background fluid motion. The microfluidic
device consisted of cylindrical measurement chambers (radius 100 µm, height 4 µm for quasi-
2D measurements, and radius 750 µm, height 80 µm for 3D measurements). The samples were
imaged in bright field with a 40×/NA 1.4 oil immersion objective on a Nikon TI-E microscope.
Images were acquired at 40 fps in 2D (camera: Pike, Allied Vision Technologies), and 100 fps
in 3D (camera: Phantom v9.1, Vision Research). Compared with measurements in quasi-2D
chambers at the same frame rate, the vertical superposition of bacteria leads to a reduced image
quality in 3D samples; we therefore recorded the flow in 3D suspensions at a higher frame rate.
For the 3D measurements, we imaged at the bottom and in the middle of the chamber, while for
the quasi-2D measurements, we imaged in the middle of the chamber.

5.4.2. Dynamics of the SPR Model
We simulate a system of N rigid rods of length `, moving in a 2D volume A with periodic

boundary conditions. Steric rod-rod interactions are represented by a segment model, i.e., each
rod is partitioned into n equidistant segments (Fig. 5.5). All segments from different rods
interact with each other via a Yukawa potential [348]. The pair potential of two rods α and
β, that have orientation unit vectors {ûα, ûβ} and are separated by the center-of-mass distance
∆rαβ , is given by

Uαβ =
U0

n2

n∑
i=1

n∑
j=1

exp[−rαβij /λ]

rαβij
. (5.6)

Here, U0 is the potential amplitude, λ the screening length, and

rαβij = |∆rαβ + (liû
α − ljûβ)| (5.7)

the distance between the ith segment of rod α and the jth segment of rod β, with li ∈ [−(` −
λ)/2, (`− λ)/2] denoting the position of segment i along the symmetry axis of the rod α. The
screening length λ defines the effective diameter of the segments. The ‘shape’ of a rod of length
` is then determined by the aspect ratio

a = `/λ. (5.8)

The case a = 1 corresponds to a single Yukawa point particle (n = 1). For a > 1, the number
of segments per rod is fixed as n = 3 for 1 < a ≤ 3 and n = b9a/8e for a > 3 with b·e denoting
the nearest integer.

Considering the dynamical regime relevant to microorganisms, we assume that the motion of
the SPRs is overdamped due to solvent friction (zero Reynolds number limit Re = 0). Since
we are interested in the collision-dominated dynamics in dense bacterial suspensions, we ne-
glect thermal and intrinsic [58] fluctuations of the bacterial orientation and restrict our study
to deterministic motions. With these simplifying assumptions, the equations of motion for the
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FIGURE 5.5. Sketch of the SPR model. Each rod is represented by n = 5 repulsive
Yukawa segments and has an aspect ratio a = `/λ. Self-propulsion is provided by
a constant force F acting along the main rod axis indicated by the orientational unit
vector û. The total rod pair potential is obtained by a sum over all Yukawa segment
pairs with distance rij according to Eq. (5.10).

center-of-mass rα(t) and orientation ûα(t) of an SPR are of first order in time and can be written
in the compact form

fT ·
d

dt
rα = F ûα −∇rαU, (5.9)

fR ·
d

dt
ûα = −∇ûαU. (5.10)

Here, F is a constant self-motility force acting along the longitudinal axis of each rod, U =

(1/2)
∑

β,α:β 6=α U
αβ the total potential energy,∇û denotes the gradient on the unit circle, and

fT = f0

[
f‖ûû + f⊥(I− ûû)

]
, (5.11)

fR = f0 fRI (5.12)

are the translational and rotational friction tensors (I is the 2D unit tensor) with a Stokesian
friction coefficent f0. The dimensionless geometric factors {f‖, f⊥, fR} depend solely on the
aspect ratio a, and we adopt the standard expressions for rod-like macromolecules, as given in
Ref. [349]

2π

f||
= ln a− 0.207 +

0.980

a
− 0.133

a2
, (5.13)

4π

f||
= ln a+ 0.839 +

0.185

a
+

0.233

a2
, (5.14)

πa2

3fR
= ln a− 0.662 +

0.917

a
− 0.050

a2
. (5.15)

We note that after multiplication with the inverse matrix f−1
T , Eq. (5.9) can be rewritten as

d

dt
rα = V ûα − f−1

T · ∇rαU, (5.16)
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where

V =
F

f0f||
(5.17)

defines the self-swimming speed of a non-interacting SPR. When comparing with dense bacte-
rial suspensions, however, V should be interpreted as an effective parameter that is of the order
of the mean self-swimming speed of a bacterium in suspension.

5.4.3. Simulations
In our simulations, we adopted characteristic units such that λ = 1, F = 1, and f0 = 1, which

means that distance is measured in units of λ, velocity in units of F/f0, time in units of λf0/F

and energy in units of Fλ. After rescaling to dimensionless coordinates, three relevant system
parameters remain: The dimensionless Yukawa amplitude Ũ0 = U0/(Fλ), which determines
the hardness of the rod interactions relative to their characteristic propulsion energy, the aspect
ratio a, and the effective volume fraction of the system

φ =
N

A

[
λ(`− λ) +

πλ2

4

]
, (5.18)

where A is the simulation volume. For sufficiently hard rods, the general dynamical be-
havior is only weakly dependent on the Yukawa amplitude, and we performed simulations
for Ũ0 = 250, 455, 500, 555, 625, 1250. This leaves us with the rod shape a and volume fraction
φ as the primary parameters. We simulated the evolution of the many-body SPR model as a
function of time τ = tF/λf0 in a square box of length L with periodic boundary conditions
at volume fractions in the range 0.05 < φ < 0.9. Numerical studies were carried out using
a time discretization ∆τ = 0.002ρ−1/2, where ρ = Nλ2/A with typically N = 104 ÷ 105

rods per simulation. Initial configurations, generated from a rectangular lattice of aligned rods
with û pointing randomly up or down were allowed to relax during an interval τ = 1000 be-
fore statistics is gathered over an interval τ = 20L with L = (N/ρ)1/2 the dimension of the
simulation box (in units of λ). Velocity vector fields v̂(t, r) were constructed by measuring
the average centre-of-mass velocity within small sub-cells centered around the position r, as
described below.

In order to test for finite size effects, we simulated two different system sizes: ‘small’ systems
with N = 1 · 104 particles and ‘large’ systems with N = 4 · 104 particles at the same filling
fraction φ. Generally, we found that statistical quantifiers are robust with respect to changes in
the particle number N , provided N is at least of O(104).

5.4.4. Analysis of Simulation Data
The microscopic velocities of the SPRs follow directly from the equations of motion (5.9)

and (5.10). From the particle velocities we construct effective flow fields by projecting the
particle positions onto a 2D cubic grid {(i, j) | 1 ≤ i, j ≤ G} and measuring the average
velocity U(t; i, j) in each bin (i, j) at a given time t. 2D vorticity maps for the SPR model
were computed from such averaged flow field data. To increase the spatial resolution of the
flow field, we allowed neighboring bins to have a 75% overlap (the same overlap was used in
the PIV analysis of experimental data, see below). For instance, for a large system N = 4 · 104

particles and a total box length L ∼ 80`, we used a bin width of δ = 1.31` so that each sub-cell
contains approximately 10 rods. In this case, the resulting cubic grid consists ofG×G = 97×97

overlapping cells. We verified that the statistical properties of the flow fields remained robust
under moderate variations of the bin size. We generally found that results are stable if the bin
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FIGURE 5.6. Estimation of bacterial aspect ratios. (A) Micrograph showing a ran-
domly selected 2D layer from a diluted B. subtilis suspension. (B) Bacterial shapes
were manually fitted by capped cylinders (pink) and pixel counts were used to obtain
the histogram in (C); mean value 6.3 ± 1.2.

size is moderately larger than the SPR length δ & `. However, if the bin size is chosen too large,
δ � `, structural information about vortices is lost.

For the SPR model, statistical quantifiers can be constructed either from the raw particle
data or from pre-averaged effective flow fields. Both methods produce qualitatively similar
results for the velocity statistics but quantitative differences of several percent are noticable. The
results in the main text show results that were obtained by direct averaging of individual SPR
velocities. The schematic phase diagram and the enstrophy curves in Fig. 5.1 were computed
using a Yukawa amplitude U0 = 250. The SPR results (velocity histograms, structure functions,
spectra, etc.) in the results shown in the main text are based on parameters U0 = 455, a =

5, φ = 0.84, as these values yield good quantitative agreement with the 2D experimental data.

5.4.5. Analysis of Experimental Data
Imaging Parameters. Microscope images of dense B. subtilis suspensions (volume fractions
φ ∼ 0.4) were recorded at frame rate f , corresponding to a time interval ∆t = tk − tk−1 = 1/f

between subsequent frames k = 1, . . . , K. For the quasi-2D experiments we used an image
resolution of 700 pix × 700 pix with conversion rate 0.31 µm/pix and frame rate f = 40 Hz,
and for the 3D experiments 768 pix × 768 pix with 0.29 µm/pix and f = 100 Hz.
Particle Imaging Velocimetry (PIV). To extract the local flow field components from the
experimental movie data, we used the commercial particle PIV software Dantec Flow Manager.
The PIV algorithm estimates the 2D velocity field UP (tk; i, j) at time tk on a 2D cubic grid. In
our analysis, we used averaging windows of size 32 pix × 32 pix, which roughly corresponds
to 2` × 2` in terms of the mean bacterial length ` ∼ 4.8µm for B. subtilis and is sufficiently
large to contain ∼ 10 bacteria but still small enough to resolve spatial flow field structures on
the order of a few bacterial lengths. The distance between neighboring grid points was chosen
to generate a 75% overlap between neighbouring bins. This corresponds to the highest spatial
resolution that is achievable within this software for the given window size, resulting in a grid
of size G×G = 84× 84 for the quasi-2D data, and G×G = 93× 93 for the 3D data.
Estimation of Bacterial Aspect Ratios. The aspect ratios of B. subtilis bacteria were deter-
mined directly from our imaging data, by analyzing a representative sample (randomly selected
2D layer) of bacteria from a diluted suspension (Fig. 5.6A). Bacterial shapes were fitted by
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capped cylinders (Fig. 5.6B) and the pixel counts were used to determine the histogram shown
Fig. 5.6C, yielding a mean aspect ratio 6.3 ± 1.2.
Correction of Systematic Errors. Flow field reconstruction via PIV can introduce systematic
errors due to pixel locking (PL) [317]. We correct our flow field data UP (tk; i, j) obtained
from the PIV algorithm for PL errors by using a calibration procedure similar to the one that is
described in detail in the Appendix of Ref. [317]. The only minor modification adopted here
is that, instead of generating a look-up table, we fitted the periodic residual errors by using
trigonometric functions which were then used to reconstruct the corrected flow field U from
UP . Furthermore, we also corrected U for small systematic drift effects (e.g., due to weak
oxygen gradients caused by the inlets of the microfluidic chambers), by subtracting the mean
flow velocity

〈U〉 =
1

K

∑
tk

〈U(tk)〉 =
1

K

∑
tk

1

G2

∑
i,j

U(tk; i, j) (5.19)

from the calibrated data U(tk; i, j), yielding the corrected data

u(tk; i, j) = U(tk; i, j)− 〈U〉 (5.20)

used in our statistical analysis. The subtraction of the constant 〈U〉 does not affect the statistics
of velocity increments, but modifies the values obtained for the total kinetic energy or the energy
spectrum. Generally, we found that, while the shape of the velocity histograms can be strongly
affected by PL effects, the velocity structure functions are not very sensitive (< 1%) to the PL
correction.

5.4.6. Continuum Model
We discuss the basic considerations that lead to the continuum model defined by Eq. (5.1)

of the main text. This model aims to provide a phenomenological description of quasi-
incompressible, active fluids by combining elements from the Toner-Tu theory [81, 311] and
the Swift-Hohenberg theory [334]. After summarizing the underlying ideas, we will present a
linear stability analysis for the 2D case and conclude by commenting on the numerical imple-
mentation and parameter choices in our 2D simulations.
Basic Assumptions. Our main objective is to identify a minimal continuum theory that exhibits
self-sustained dynamical vortex structures similar to those observed in the SPR simulations
and in the B. subtilis experiments. To this end, we focus on the limit of very high bacterial
concentrations (filling fractions). The model is based on two main assumptions that are guided
by insights from the experiments and particle simulations:

1. At sufficiently high concentrations, the bacterial (or SPR) suspension becomes, in good ap-
proximation, an incompressible fluid.

2. The dynamics of the bacterial fluid can be captured by a single vectorial order parameter
field, the mean flow velocity v(t,x), which in good approximation also reflects the local
average orientation of the bacteria.

The incompressibility assumption appears to be justified by the fact that density fluctuations
are very small in both our experiments and SPR simulations (< 5%), provided the particle
density is sufficiently large. The second assumption is more debatable since, in general, mean
velocity and mean orientation of the bacteria could decouple (e.g., if long-range hydrodynamic
interactions are important). Our SPR simulations on the other hand suggest that, for very high
filling fractions, orientation and velocity are strongly correlated. We therefore expect that the
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second assumption is reasonable for dense suspensions but becomes invalid at lower concentra-
tions when bacteria assemble in inhomogeneous swarm-like structures [333]. In this flocking
regime, see region (S) in Fig. 5.1A of the main text, more complex theories that take into account
a locally varying bacterial concentration and distinguish between solvent velocity field, mean
bacterial velocity field v(t,x) and mean bacterial orientation field provide a more adequate de-
scription of bacterial suspensions [312,338,339]. Another possible extension is the inclusion of
additional higher-moment order-parameter fields like the Q-tensor [322, 350], which encodes
local fluctuations in the particle orientations. Due to the very large number of unknown coef-
ficients, however, it seems very difficult if not impossible to constrain such more sophisticated
models with the presently available experimental data. Here, we assume that the experimentally
observed behavior can be reproduced from a suitably designed theory that only utilizes the flow
field v which can be measured experimentally by PIV or tracking methods.
Field Equations. The incompressibility assumption is implemented by demanding that the
flow field v(t,x) be divergence-free,

∇ · v = ∂ivi = 0, i = 1, . . . , d, (5.21)

where d is the number of space dimensions (throughout, we assume a sum over equal lower in-
dices). We further postulate that the dynamics of v is governed by a generalized d-dimensional
Navier-Stokes equation of the form

(∂t + v · ∇)v = −∇p− (α + β|v|2)v +∇ · E, (5.22)

where the pressure p is the Lagrange multiplier for the incompressibility condition, α and β are
parameters, and the rate-of-strain tensor E depends on v as specified below.

The second contribution on the rhs. of Eq. (5.22) is a typical local driving term as known
from the Toner-Tu model [81, 311]. This term effectively corresponds to a quartic Landau-
potential for the velocity order-parameter field v. Stability requires that β ≥ 0, while α is
allowed to take positive or negative values. In the absence of other driving mechanisms, the
Toner-Tu term drives the fluid to an isotropic equilibrium state with v = 0 if α > 0, whereas
for α < 0 and β > 0 the velocity potential becomes ‘bistable’, leading to global polar ordering
with characteristic speed

v0 =
√
|α|/β. (5.23)

To close the model equations, we still need to specify E in terms of v and its derivatives.
Using guidance from the theory of active nematics [339], we postulate the components of the
symmetric and trace-free rate-of-strain tensor E to have the form

Eij = Γ0(∂ivj + ∂jvi)− Γ24 (∂ivj + ∂jvi) + S qij, (5.24)

where4 = ∇2 is the d-dimensional Laplacian, and

qij = vivj −
δij
d
|v|2 (5.25)

is a mean-field approximation to the Q-tensor (recalling our assumption that the direction of
the velocity field coincides with mean local swimmer orientation), with the Kronecker-symbol
δij denoting elements of the unit matrix I. For Γ0 > 0 and S = 0 = Γ2, Eq. (5.24) reduces
to the usual rate-of-strain tensor of a conventional fluid with viscosity Γ0. However, to obtain
a minimal model of self-sustained turbulence in active suspensions, we shall allow for negative
values Γ0 < 0 while demanding in this case that Γ2 > 0 to ensure stability of the theory (see
detailed stability analysis below). The additional S-term in Eq. (5.24) presents an active stress
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contribution (in mean-field approximation) as known from theories of active nematics [339].
General hydrodynamic considerations [338] suggest that S > 0 for puller-type swimmers (e.g.,
algae), whereas S < 0 for pushers such as B. subtilis. Intuitively, one may regard the two Γ-
terms in Eq. (5.24) as arising from a systematic (linear in v) expansion of the stress-tensor, with
the higher-order derivatives (Γ2-term) accounting for longer-range multi-particle interactions.

Inserting Eq. (5.24) into Eq. (5.22), and defining

λ0 = 1− S, λ1 = −S/d, (5.26)

we obtain

(∂t + λ0v · ∇)v = −∇p+ λ1∇v2 − (α + β|v|2)v + Γ04v − Γ242v. (5.27)

As we shall see below, the two Γ-terms in Eq. (5.27), which are reminiscent of the higher-order
derivatives in the Swift-Hohenberg theory [334], are essential for the formation of quasi-chaotic
flow patterns in this model. These linear terms provide a simple (if not the simplest) generic
description of turbulent instabilities in dense bacterial suspensions – and the resulting theory
agrees remarkably with well both our experiments and particle simulations. More generally, we
expect Eq. (5.27) to provide a satisfactory phenomenological description whenever interaction
terms in more complex field theories, that lead to instabilities in the v-field, can be effectively
approximated by a fourth-order Taylor expansion in Fourier space, which is likely to be the case
for a wide range of active systems. Phrased differently, the last two terms in Eq. (5.27) may be
regarded as the Fourier-space analogue of the Toner-Tu driving terms, which correspond to a
series expansion in terms of the order parameter.

Before presenting a linear stability analysis for the ‘minimal’ continuum model defined by
Eqs. (5.21) and (5.27), let us still note that it is straightforward to construct extensions of the
theory, e.g., by including density fluctuations or coupling to concentration fields.
2D Stability Analysis. We perform a stability analysis for the 2D case relevant to our particle
simulations and quasi-2D experiments, assuming that Γ0 < 0 and β > 0, Γ2 > 0.

For arbitrary values of α, Eqs. (5.21) and (5.27) have a fixed point that corresponds to a
disordered isotropic state

Si : (v, p) = (0, p0), (5.28)

where p0 is a pressure constant. For α < 0, an additional class of fixed points arises, corre-
sponding to a manifold of globally ordered polar states

Sp : (v, p) = (v0, p0), (5.29)

where {bfv0 is constant vector with arbitrary orientation and fixed swimming speed |v0| =√
|α|/β =: v0.

(i) Stability of the disordered isotropic state Si. Linearizing Eqs. (5.21) and (5.27) for small
velocity and pressure perturbations around the isotropic state, v = ε and p = p0 + η with
|η| � |p0|, we have to leading order

0 = ∇ · ε, (5.30)

∂tε = −∇η − αε+ Γ04ε− Γ242ε. (5.31)

Considering perturbations of the form

(η, ε) = (η̂, ε̂)eik·x+σt (5.32)
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and defining k = |k|, we find

0 = k · ε̂ (5.33)

σε̂ = −iη̂k− (α + Γ0k
2 + Γ2k

4)ε̂. (5.34)

Multiplying the second equation by k and using the incompressibility condition implies that
η̂ = 0 and, therefore,

σ(k) = −(α + Γ0k
2 + Γ2k

4). (5.35)

Assuming Γ0 < 0 and Γ2 > 0, we find an unstable band of modes with σ(k) > 0 for k2
− <

k2 < k2
+, where

k2
± =

|Γ0|
Γ2

(
1

2
±

√
1

4
− αΓ2

|Γ0|2

)
(5.36)

provided that

4α < |Γ0|2/Γ2. (5.37)

Note that for α < 0 the isotropic state is generally unstable with respect to long-wave length
(small-k) perturbations.

(ii) Stability of the ordered polar state Sp. We next perform a similar analysis for the polar
state (v0, p0), which exists for α < 0. This state corresponds to all particles swimming in the
same direction. In this case, when considering small deviations

v = v0 + ε, p = p0 + η, (5.38)

it is useful to distinguish perturbations perpendicular and parallel to v0, by writing ε = ε||+ ε⊥
where v0 · ε⊥ = 0 and v0 · ε|| = v0ε||. Without loss of generality, we may choose v0 to point
along the x-axis, v0 = v0ex. Adopting this convention, we have ε|| = (ε||, 0) and ε⊥ = (0, ε⊥),
and to leading order

|v|2 ' v2
0 + 2v0ε||. (5.39)

Again considering exponential perturbations of the form

(η, ε||, ε⊥) = (η̂, ε̂||, ε̂⊥) eik·x+σt, (5.40)

we find in linear approximation

0 = k · ε̂, (5.41)

σ ε̂ = −i(η̂ − 2v0λ1ε̂||)k + Aε̂, (5.42)

where

A =

(
2α 0

0 0

)
− (Γ0k

2 + Γ2k
4 + iλ0kxv0)I (5.43)

with I denoting the identity matrix. Multiplying Eq. (5.42) with ik, and using the incompress-
ibility condition (5.41), gives

η̂ = 2v0λ1ε|| − i
k · (Aε̂)
k2

. (5.44)

Inserting this into Eq. (5.42) and defining A⊥ = Π(k)A, where

Πij(k) := δij −
kikj
k2

(5.45)
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is the orthogonal projector of k, we obtain

σ ε̂ = A⊥ ε̂. (5.46)

The eigenvalue spetrum of the matrix A⊥ is given by

σ(k) ∈
{

0,−
(

Γ0k
2 + Γ2k

4 − 2α
k2
x

k2

)
− iλ0v0kx

}
. (5.47)

The zero eigenvalues correspond to the Goldstone modes. The non-zero eigenvalues have eigen-
vectors (−ky, kx), implying that, for Γ0 < 0, there will be a range of exponentially growing
k-modes in the direction perpendicular to k.

We may thus summarize: Eqs. (5.35) and (5.47) show that, for α < 0 and Γ0 < 0, the two
fixed points become simultaneously unstable, indicating the existence of a quasi-stationary spa-
tially inhomogeneous dynamic attractor. By contrast, for Γ0 > 0 the polar state becomes stable,
as evident from Eq. (5.47). More generally, the above analysis suggests that the combination of
the two Γ-terms is arguably the simplest linear way of constructing a v-only theory with non-
trivial stationary dynamics within the class of ‘standard’ partial differential equations. We note
that, in principle, it would also be possible to generate similar instabilities by combining odd or
fractional powers of k in Eqs. (5.35) and (5.47); this would be somewhat similar to replacing the
quartic Landau potential by a more general function of |v|. However, when considering eigen-
value spectra based on odd or non-integer powers of k, the underlying dynamical equations
in position space would correspond to fractional partial differential equations. One may spec-
ulate that such fractional models could potentially be useful for modeling active suspensions
with long-range or other types of more complex interactions. The comparison with our quasi-
2D experiments, however, illustrates that Eqs. (5.21) and (5.27) provide a useful continuum
description of dense bacterial suspensions.
Guidance for Numerical Parameters Estimation. The minimal model from in Eqs. (5.21)
and (5.27) features a relatively small number of parameters, which can be constrained by com-
parison with experiments. For α < 0 the polar velocity v0 =

√
|α|/β should be approximately

equal to the swimming speed of a bacterium in suspension. Γ0 and Γ2 define characteristic
length and velocity scales

Λ =
√

Γ2/|Γ0|, VΓ =
√
|Γ0|3/Γ2, (5.48)

that can be roughly estimated from the characteristic vortex size and swimming velocity of the
bacteria, thereby yielding approximate values for Γ0 and Γ2 that can be used as starting points
for systematic parameter scans in numerical simulations.

Furthermore, the parameter α defines a characteristic damping (acceleration) time-scale

τα = 1/|α| (5.49)

in the isotropic case α > 0 (polar case α < 0). To obtain turbulent states, this time scale τα
must be much larger than the time scale for the growth of instabilities

τΓ = Γ2/|Γ0|2, (5.50)

which roughly correspond to the maximum of the real part of σ(k) in Eqs. (5.35) and (5.47).
Hence, the criterion for active mesoscale turbulence can be formulated as

R :=
τα
τΓ

=
|Γ0|2

Γ2|α|
� 1, (5.51)
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parameter rescaled value value units
in simulations

box size L π 150 µm
VΓ 1 25 µm/s
α −1 −0.5 1/s
β 0.5 4× 10−4 s/µm2

Γ0 −0.045 −53 µm2/s
Γ2 |Γ0|3 245 µm4/s
S −2.5 −2.5 1

TABLE 5.1.

which is consistent with Eq. (5.37). In this regime, simulation time steps must be chosen much
smaller than τΓ.

As stated above, for pusher-type swimmers like E. coli or B. subtilis, the dimensionless ne-
matic order parameter S should be negative [338]. Intuitively, negative values of S increase
both the convective non-linearity (via λ0) and the local pressure (via λ1). In our simulations,
we found that moderate values |S| ∼ (1÷ 3) typically produce good agreement with our exper-
imental data.

Finally, the parameter β in the fourth-order term of the Landau potential determines the
damping of large velocities. To reproduce the Gaussian velocity statistics observed in experi-
ments, β must be chosen sufficiently small in simulations. It should be stressed that the quartic
velocity potentials, which essentially arises from a small-|v| expansion, becomes inaccurate
for large velocities. Therefore, one cannot expect that hydrodynamic models that are based on
such Landau-type approximations correctly capture the tails of the velocity statistics in bacte-
rial suspensions. Nevertheless, as our study shows, these models are able to describe the main
phenomenological aspects of active meso-scale turbulence.
Simulation Parameters. In our 2D simulations of Eqs. (5.21) and (5.27), we use periodic
boundary conditions and adopt characteristic units such that the length L of the quadratic sim-
ulation box is given by L = π and the velocity scale by VΓ =

√
|Γ0|3/Γ2 = 1. The remaining

parameters are tuned such that the flow characteristics (number of vortices, spectral properties,
etc.) in the simulated volume match the experimental quasi-2D data for B. subtilis as closely
as possible. To compare simulation results with experiments, we assume that v0 ∼ 35µm/s in
physical units while fixing the conversion factor for the box length L such that the typical vortex
size in the experiments agrees with that in the simulations. For example, for the parameters used
in the results of the main text (which are listed in Table 5.1), the length of the simulation box
corresponds to L ∼ 150µm, which is comparable to the experimental field of view and implies
that simulation time is measured in units of T0 = (L/π)/VΓ ∼ 1.9 s. Hence, one minute in
real time equals a simulation period T ∼ 30 in characteristic units. After systematically scan-
ning a wide range of parameters, we found that the following values yield good agreement with
the quasi-2D B. subtilis experiments: With these parameters, the continuum model correctly
reproduces the main equal-time statistical quantifiers (see Fig. 5.3 and Fig. 5.4) and also the
approximately exponential decay of the two-time autocorrelations 〈v(t, r)v(t′, r)〉 of the quasi-
2D experimental data (see Fig. 5.7 below). For both experiments and simulations, the typical
correlation time is of the order of 0.5 s which corresponds approximately to the ratio of vortex
size (a few `) and polar speed v0.
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FIGURE 5.7. The two-time velocity autocorrelation functions (VACFs)
〈v(t, r)v(t′, r)〉, normalized by 〈v2〉, decay approximately exponentially for both
experimental and model data. To rescale the time-axis, we used for the SPR model the
rod length ` and v0 = V , where V is free rod speed as defined by Eq. (5.17), whereas
for the experiments and the continuum theory we used the bacterial length ` = 4.8µm
and v0 =

√
|α|/β = 35µm/s as obtained from the parameters given in the Table above.

The good quantitative agreement shows that the 2D continuum theory can reproduce
not only the main characteristics of equal-time statistics but also the most relevant
dynamical features of the quasi-2D B. subtilis experiments.

Numerical Methods. To simulate the 2D continuum model with periodic boundary conditions,
we used a pseudo-spectral algorithm as commonly employed in computational fluid dynam-
ics [351]. The model equations were transformed into Fourier space and the resulting set of
ordinary differential equations were solved numerically by an integrating factor method that
solves the linear terms exactly [352]. The results are cross checked with an implicit-explicit
Euler integration [353]. In both schemes, nonlinear terms were treated carefully by implement-
ing the 2/3 rule to suppress aliasing errors [354]. This means that, for quadratic nonlinearities,
wave-vectors corresponding to wavelengths larger than 2/3 of the box size are set to zero and,
similarly, for higher order terms. Therefore, the effective spatial grid-size is smaller than the
one used in the fluid solver. In our simulations, we tested different effective grid-sizes, ranging
from 64× 64 to 256× 256 lattice points. Typical time steps used were of the order ∆t = 10−4

in dimensionless units as introduced above (specifically, ∆t = 2 × 10−4 for the figures in the
main text). To ensure that the flow vector fields remain divergence-free, the hydrodynamic pres-
sure p is calculated in a pressure correction routine. Our fluid solver was written in Matlab and
stability of the code was verified for a wide range of parameters.

Simulations were initiated with isotropic randomly chosen flow field configuration v(0,x)

and were allowed to relax for 104 time steps, before data for flow velocity fields were stored.
Thereafter, snapshots were generated with a separation of 1000 time steps between successive
outputs. In our statistical analysis we typically used data from ∼ 900 snapshots.
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6
Controlling active self-assembly through
broken particle shape symmetry

ABSTRACT

Many structural properties of conventional passive materials are known to arise from the
symmetries of their microscopic constituents. By contrast, it is largely unclear how the
interplay between particle shape and self-propulsion controls the meso- and macroscale
behavior of active matter. Here, we use large-scale simulations of homo- and heteroge-
neous self-propelled particle systems to identify generic effects of broken particle sym-
metry on collective motion. We find that even small violations of fore-aft symmetry lead
to fundamentally different collective behaviors, which may facilitate demixing of differ-
ently shaped species as well as the spontaneous formation of stable micro-rotors. These
results suggest that variation of particle shape yields robust physical mechanisms to
control self-assembly of active matter, with possibly profound implications for biology
and materials design.

6.1. INTRODUCTION

Physical and chemical properties of conventional materials depend critically on the sym-
metries of their microscopic constituents [355–359]. The perhaps best-known examples are
carbon allotropes [360], such as diamond or graphite, which exhibit vastly different elastic and
optical characteristics reflecting the tetrahedral or planar structure of their elementary build-
ing blocks. Whilst the relation between microscopic symmetries and macroscopic properties
of passive materials has been intensely studied both experimentally [358, 361, 362] and the-
oretically [355–357, 363], comparatively little is known about how constituent shape affects
structure formation and collective motion in active matter [52, 90, 364–367]. Rapid progress
in the fabrication of colloids [368] and Janus particles [369] with broken spherical [370] and
cylindrical [371] symmetries [Fig. 6.1(a)] suggests the need for systematic theoretical studies
to help identify generic principles for the design and self-assembly of novel active matter states.
Additional biophysical motivation stems from the still limited understanding about the role of
cell-shape [372, 373] in the evolution of multicellular behavior [90, 374]. Although the relative
importance of chemical, hydrodynamic and steric interactions for collective microbial motion
is still under debate [58, 375], recent experiments [376] have shown that the different surface-
scattering laws of sperm and Chlamydomonas cells arise from their effective dynamical shapes,
that is the volumes swept by their cilia during swimming [Fig. 6.1(b,c)]: Sperms can be viewed
as forward-swimming cones that tend to accumulate at surfaces since, after an aligning colli-
sion, their velocity vector points into the boundary. By contrast, biflagellate Chlamydomonas
algae resemble backward-swimming cones, departing from lateral boundaries at a narrowly dis-
tributed angle set by the ciliary beat [376]. These observations raise the question whether similar
shape-induced steric effects suffice to explain various types of collective microbial dynamics.

97
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FIGURE 6.1. Actual and effective dynamical shapes of various microswimmers, and
simplified representation in the SPP model. (a) L-shaped self-driven colloid [371].
Image kindly provided by F. Kümmel and C. Bechinger. (b) Superimposed phase-
contrast micrographs (Zeiss Axiovert, 40×, NA0.6) of swimming bull sperm. On time-
scales larger than the beat period ∼ 0.1s, the cell mimics a forward-swimming cone.
(c) A Chlamydomonas alga (63×, NA1.3), confined to quasi-2D motion, resembles a
backward-swimming triangle. (d) Non-convex crescent shaped Selenomonas bovis bac-
terium with flagella; reprinted with kind permission from Ref. [377]. (e) The SPP model
approximates different shapes by combinations of rigidly linked spheres.

In this paper, we show that even small violations of fore-aft symmetry may lead to fun-
damentally different modes of collective motion in active systems. By analyzing large-scale
simulations of two-dimensional (2D) self-propelled particle (SPP) systems, we find that the
effective particle shape plays a key role in interpolating between two distinctly different col-
lective behaviours commonly encountered in active systems, namely front-like cooperative mo-
tion [378, 379] and the formation of active droplets [380] resembling multicellular colonies.
These qualitatively different behaviors facilitate spontaneous demixing of inhomogeneous sys-
tems, suggesting that the combination of particle shape and self-propulsion might have been a
relevant evolutionary factor and also offering robust tuning mechanisms for the self-assembly
of active materials. To illustrate the latter fact, we will demonstrate that non-convex SPPs
[Fig. 6.1(d,e)] can self-assemble into active rotors.

6.2. MODEL

We simulate N SPPs in 2D, each driven by a constant self-propulsion force Fa of fixed direc-
tion in the body frame. The 2D case is practically relevant as colloids and microorganisms often
experience strong geometric confinement such as solid surfaces and interfaces [376, 381, 382].
Focussing on two important classes of shapes, we compare convex polar SPPs (s+) with
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‘antipolar ’ (s−), and non-convex crescent-shaped c+-SPPs with ‘anticrescents’ (c−), as de-
fined in Fig. 6.1(e). Particles are assumed to move in the overdamped low-Reynolds number
regime [82], interacting with each other only by steric repulsion. Interparticle forces and torques
are calculated by discretizing each SPP into i = 1, . . . , n equidistant spherical segments with
effective diameter λi. Defining λijαβ = (λiα + λjβ)/2, the total pair potential:

Uαβ =
1

n2

n∑
i,j=1

u

(
rijαβ

λijαβ

)
(6.1)

of two SPPs α and β depends on their orientation unit vectors {û1, û2} and center-of-mass
distance ∆rαβ = r1 − r2 through the segment distance rijαβ = |∆rαβ + eiα − ejβ|, where the
vectors eiα denote the position of segment i relative to the mass center r1 with respect to the
body frame. Throughout, we adopt a repulsive short-range potential

u(x) = u0
exp(−|x|)

x2
(6.2)

with amplitude u0 > 0 and consider minimal deterministic equations of motion for the positions
r1(t) and orientations

ûα(t) = {sinϕα(t), cosϕα(t)} (6.3)

by balancing active and steric forces and torques,

fT · ∂tr1 = −∇r1U + Faû1,

fR · ∂tϕα = −∇ϕαU, (6.4)

where U = 1
2

∑
α 6=β Uαβ) represents the total potential energy. The one-particle translational

and rotational friction tensors fT and fR can be decomposed into parallel, perpendicular and
rotational contributions which depend solely on the aspect ratio a for which we specify below
effective values depending on the SPP shape [349] (see Eq. (5.15) in the previous chapter).
Eq. (6.4) neglects thermal or intrinsic Brownian noise [58] and hydrodynamic interactions,
which is acceptable at intermediate-to-high concentrations when particle collision dominate
the dynamics [58, 90] and when nearby no-slip boundaries suppress hydrodynamic forces.

We integrated Eq. (6.4) numerically using a square simulation box (area A) with periodic
boundary conditions. The initial condition was a cubic SPP-lattice with motility directions cho-
sen randomly. In simulations with more than one species, particles were randomly distributed
on the lattice. The distance between neighboring SPP segments was kept small to avoid cross-
ing of SPPs [Fig. 6.1(e)]. To reduce the number of parameters in simulations, Eq. (6.4) was
rewritten in terms of the dimensionless time τ = tv0/λ, adopting the largest segment diame-
ter λ as length unit and the self-propulsion speed v0 = Fa/||fT || of a noninteracting SPP as
velocity unit. The rescaled potential amplitude ũ0 = u0/(Faλ) has little or no effect on the col-
lective behavior as long as ũ0 > 10 and the SPP dynamics is governed by the volume fraction
φ = Nσ/A, with σ the area per particle, and the intrinsic shape parameters of the SPPs (aspect
ratio, polarity, curvature, etc.).
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FIGURE 6.2. Simulation results for uniform systems of convex particles, see also
Supplemental Movies 1 and 2. (a,b) Time-dependent speed v in units of v0 and trajec-
tories (insets) of 3 colliding s+-SPPs and s−-SPPs. (c,d) s+-SPPs form aligned fronts,
whereas s−-SPPs exhibit clustering. Color encodes the horizontal velocity component
vx (N = 104, |p| = 0.33, φ = 0.05). (e,f) Static structure factor S(q) at different
volume filling fractions φ. Insets: Comparison of S(q) for s+-SPPs (red) and s−-SPPs
(blue) at two different filling fractions φ. (g) The peak of S(0) at p ≈ −0.5 indi-
cates an optimal polarity for cluster formation. (h) Average velocity 〈v〉 for SPPs with
p = ±0.33 (dashed/open symbol) and rotational diffusion coefficient Dr of a tagged
SPP (solid/filled symbols).

6.3. RESULTS

6.3.1. Convex SPPs
We first consider convex polar s+-SPPs and antipolar s−-SPPs [Fig. 6.1(e)], composed of

n = 3 equidistant spherical segments ∗ and representing prototypical polar swimmers with
broken fore-aft symmetry

Uαβ(û1, û2) 6= Uαβ(û1,−û2) (6.5)

The geometric polarity

p =
λa − λf

λa + λf
(6.6)

is quantified in terms of the dimensions λf/a of the fore/aft segments, so that p > 0 for s+-SPPs,
p < 0 for s−-SPPs, and p = 0 for apolar rodlike SPPs. The effective aspect ratio is defined by
a = `/λ = 1 + ε/2, with ε ∈ [0.1, 1] and p ∈ [−0.8, 0.8] in simulations.

The broken fore-aft symmetry results in fundamentally different collective behaviors of s+-
SPPs and s−-SPPs, caused by their qualitatively different steric collision laws [Fig. 6.2 and
Supplemental Movies 1 and 2]. Polar s+-SPPs tend to align and experience only small speed
changes during collisions, whereas antipolar s− particles scatter broadly and experience a strong
reduction of their speeds during the collision process [Fig. 6.2(a,b)]. On the mesoscopic level,

∗The approximative representation of convex shapes by a finite number of spheres leads to small non-convex
intrusions [Fig. 6.1(e)] but these do not affect collective motion for the shape parameters used in our study. We
verified in test simulations that finer discretizations with n > 3 produce the same collective dynamics as those with
n = 3.
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these two collision scenarios translate into distinctly different patterns [Fig. 6.2(c,d)]. Polar s+-
SPPs form aligned large-scale swarms that move cooperatively along a spontaneously chosen
common axis [378], whereas antipolar s− SPPs tend to form droplets that nucleate slowly from
an initially homogeneous suspension. Whilst this droplet formation may appear visually sim-
ilar to chemotactic aggregation [86, 383], the underlying mechanism is purely dynamic and is
intimately linked to a density-dependent particle motility irrespective of the nature of the direct
particle interaction [380, 384].

The clustering instability can be quantified in terms of the static structure factor, defined as

S(q) =
1

N
〈ρq(τ)ρ−q(τ)〉 (6.7)

which is directly related to the number fluctuations in the limit of vanishing wavevector q via

S(0) =
〈N2〉 − 〈N〉2

〈N〉
(6.8)

shown in Fig. 6.2(e,f). In our simulations, we estimate S(0) ≈ S(qmin) where qmin = 2π/
√
A/4

is the smallest permissible wave-number for a periodic simulation box of length
√
A. For s−-

SPPs, a discontinuity in S(0) with increasing φ marks the onset of the clustering instability
at a volume filling fraction of φ ∼ 0.05 [Fig. 6.2(f)]. This transition is significantly weaker
for the s+-SPPs [Fig. 6.2(e)]. In particular, plotting S(0) as a function of polarity p reveal that
p ≈ −0.5 is optimal for the self-assembly of clusters [Fig. 6.2(g)], corroborating that for convex
polar SPPs the propensity to cluster depends crucially on the self-propulsion direction relative
to the broken fore-aft symmetry. The differences in the collective behavior of s+-SPPs and
s−-SPPs become most prominent at intermediate packing fractions φ ∼ 5% to 10%, a regime
that can be achieved in suspensions of swimming microbes [385] and active colloids [386]. At
very low or very high values of φ, these differences vanish since the SPPs become effectively
non-interacting (low φ) or too strongly hindered due to packing effects (large φ).

To characterize in more detail the effects of shape on collective motions in homogeneous
systems, we measured the mean speed 〈v〉 and the effective rotational diffusion coefficient

Dr = lim
τ→∞

〈(∆ϕ(τ))2〉
2τ

(6.9)

from the mean-squared angular deviation (MSAD) of the orientation angle ϕ. When plotted as
a function of the filling fraction φ, both 〈v〉 and Dr exhibit steep jumps for s− while varying
more smoothly for s+ [Fig. 6.2(h)]. These jumps signal the onset of a non-equilibrium phase
separation for s−-SPPs. A similar phenomenon was reported recently for a generalized Viscek
model [387] and for active Brownian spheres [388], suggesting that this may be a generic feature
of active systems with density-dependent mobility [384, 386].

The qualitatively different collective behaviors of s+ and s− SPPs suggest a simple shape-
induced mechanism for demixing in active systems, which could be of relevance for the segrega-
tion of species in microbiological systems. To test this idea, we simulated binary mixtures with
equal numbers of s+-SPPs and s−-SPPs. These simulations showed that such systems do in-
deed segregate into dense droplets of s−-SPPs that are almost completely devoid of s+-particles
[Fig. 6.3(a,b)]. Whilst interspecies demixing is generally attributed to a strong disparity in
particle motility [389] it is striking to observe a similar phenomenon in particle mixtures with
identical microscopic motility.

The particle motions within the colony-like droplets exhibit clear signatures of dynamic het-
erogeneity, as s−-SPPs tend to move faster in the core of a droplet [Fig. 6.3(c,d)]. In contrast to
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FIGURE 6.3. Demixing of s+-SPPs and s−-SPPs in an equimolar binary suspension,
see also Supplemental Movies 3 and 4. (a) Snapshots of the center-of-mass positions
for N = 104 SPPs with |p| = 0.67 and φ = 0.05. (b-d) Region enclosed by dashed
box in (a). Color in (c,d) encodes the translational speed v and rotational velocity ω =

|∂ϕ/∂τ | of each SPP.

the surrounding s+-swarms, the total net velocity of each s−-colony is very small so that they
are virtually immobile. Moreover, it could be observed that s+-SPPs tend to accumulate at the
outer regions of the droplets [Fig. 6.3(b)], reminiscent of bacterial cells accumulating on the
surfaces of algal colonies. In addition to their potential biological implications, these findings
further demonstrate that mixtures of suitably shaped convex SPPs can provide a basis for the
targeted self-assembly of active colloids in layers or shells.

6.3.2. Non-convex SPPs
To explore the potential of another important classes of particle shapes for the self-assembly

of active matter, we complement the above considerations by discussing the case of non-
convex particles, using crescent-shaped c+-SPPs and c−-anticrescents [Fig. 6.1(e)] as represen-
tative examples. Non-convex self-propelled colloids were recently realized in experiments by
Kümmel et al. [371], and non-convex shapes can also be found in various bacteria [373, 377],
see Fig. 6.1(e), but their collective behavior has not yet been systematically investigated. In
our simulations, we implemented crescent-shaped SPPs composed of n = b2L/λe overlap-
ping spherical segments (diameter λ), equidistantly spaced on a circular arc of fixed length
L = 2αR. We quantify the degree of non-convexity through the dimensionless curvature pa-
rameter κ = λ/R = 2λα/L, defined such that straight rods are recovered in the limit α→ 0 at
constant arc length L. The effective aspect ratio a = `/δ of the c±-SPPs is determined by the
dimensions

` = λ+ L
sinα

α

δ = λ+ L
(1− cosα

2α
(6.10)

Similar to the convex case (Figs. 6.2, 6.3), the trajectories of two or more colliding crescents
depend sensitively on the swimming direction relative to the broken fore-aft symmetry, resulting
in distinctly different meso-scale structures [Fig. 6.4(a,b)]. For a mixture containing equal
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FIGURE 6.4. Segregation and spontaneous self-assembly of c−-rotors in an equimolar
binary mixture of non-convex SPPs, cf. Supplemental Movie 5. (a) Snapshot of simula-
tion with N = 2× 103, κ = 0.2, α = π, φ = 0.08. (b) Enlarged view of yellow-shaded
area in (a). (c) Rotational velocity ω = ∂ϕ/∂τ indicated by color coding. Insets depict
snapshots of clusters composed of c−-crescents rotating clockwise (ω < 0) or counter-
clockwise (ω > 0). (d) A pronounced peak of the structure factor signals the formation
c−-rotors which spin almost ballistically (lower left inset).

numbers of c±-SPPs, we again find segregation of the different particle types. More importantly,
however, the c−-SPPs assemble into clockwise or counter-clockwise spinning rotors [Fig. 6.4(a-
c)], characterized by a strongly superdiffusive (almost ballistic) collective rotational motion
with MSAD

〈(∆ϕ)2〉 ∝ τ γ (6.11)

where γ ≈ 1.9 [Fig. 6.4(d)]. By contrast, the c+-SPPs very rarely cluster beyond pairs or
triplets, exhibiting only weakly superdiffusive rotational motion with exponent γ ≈ 1.3. Test
simulations showed that c−-rotors are robust against thermal fluctuations, whereas the small
c+-clusters decay rapidly in the presence of noise. Generally, this basic example illustrates how
subtle differences in curvature that break fore-aft symmetry, combined with self-propulsion,
can be exploited to self-assemble micro-rotors [381,382,390] from linearly moving non-convex
objects.

6.4. DISCUSSION & CONCLUSIONS

In this work, we have used large-scale 2D SPP simulations to investigate how particle sym-
metry affects active collective motion at surfaces and interfaces. SPP simulations have proven
useful in the past for understanding generic aspects of collective behavior in bacterial suspen-
sions [90] and other active systems [79, 89, 322, 389, 391], but such earlier studies focussed
almost exclusively on fore-aft symmetric (e.g., spherical or rod-like) particles [379]. Our re-
sults show that even subtle violations of fore-aft symmetry can lead to profound changes in
the collective dynamics of active colloids or microorganisms, promising new strategies for the
self-assembly of active matter. The systematic classification of macroscopic material properties
in terms of microscopic constituent symmetries [355–357, 363] has been very fruitful for the
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understanding for conventional passive matter. We therefore believe that, with regard to fu-
ture applications, it is worthwhile to continue exploring more systematically, both theoretically
and experimentally, the interplay between geometric particle symmetries and self-propulsion in
active systems.

From a theoretical perspective, simplified shape-based models can provide a useful concep-
tual link between abstract Viscek-type vector-based theories [65, 387, 392] and more accurate
microscopic models [393]. With regard to microbiological systems, the usefulness of such
geometric approaches depends on the collision time-scale of the organisms, which determines
whether time-averaged ‘shapes’, as shown in Fig. 6.1(b,c), are sufficiently accurate approxima-
tions to the most relevant interaction effects. However, recent experiments on microbial surface
interactions [376], as well as the results in Figs. 6.2 and 6.3, suggest that shape-induced effects,
in conjunction with chemical sensing and hydrodynamic effects, could indeed be a relevant fac-
tor in microbial processes such as collective sperm swimming or algal colony formation. Last
but not least, in view of the current rapid progress in the fabrication of active colloids [371] and
in the manipulation of microbial shapes [373,394], we expect that the above results can provide
useful guidance for the controlled self-assembly of active (e.g., layered or rotating) mesoscale
structures in the near future.



7
Perspectives
Below we will give a a brief description of some of the current projects. These constitute a
natural extension of the material presented in the main part of this thesis. The main focus is on
spatially non-uniform and confined systems, in particular lamellar systems as well as on hybrid
liquid-crystalline materials.

Swimmer dynamics in lamellar media

By and large, most artificial microswimmers considered so far are embedded in a simple
Newtonian fluid [53]. Many microorganisms in their natural environment, however, are ex-
posed to much more complex media, which are more appropriately described by complex non-
Newtonian fluids. Examples range from the motion of cilia and spermatozoa in mucus to bac-
teria in the host tissue and nematodes migrating though soil. Recent efforts aimed at gaining a
better understanding of the role of the complex environment involve studying microswimming
in non-Newtonian solvents such as viscoelastic fluids [395], in liquid crystalline environments

Motivated by recent experiments on “living liquid crystals” (i.e., bacteria swimming in a
nematic background) [396], we set out to studying long-time swimmer diffusion in a nematic
liquid crystalline solvent, assuming that the swimming direction is coupled to the local nematic
director. Our focus is on determining the effects of thermal nematic director fluctuations on the
swimmer’s motion.

While active particles moving through an isotropic fluid exhibit conventional diffusive be-
havior, we observe anomalous diffusion of an active particle moving in an anisotropic nematic
background. The translational motion parallel to the nematic director shows ballistic behavior,
but the long-time transverse motion is superdiffusive, with an anomalous logarithmic scaling.
This behavior is predicted by a hydrodynamic theory for a swimmer whose temporal swim-
ming direction is coupled to a fluctuating nematic director. A straightforward scaling analysis
prompts us to propose that the lateral MSD (the contribution perpendicular to the nematic di-
rector n(τ)) behaves as:

〈(∆r⊥)2〉 ∝ τ(ln τ)β (7.1)

The scaling prediction is universal for any collection of self-propelled elements (e.g., bacteria
or active rods) moving in a nematic or lamellar background, provided only that the swimmers
are sufficiently dilute that their interactions with each other can be neglected and that they do
not perform hairpin turns. For a nematic phase, for which β = 1, the predictions have been
corroborated using simulations of active particle diffusion in a simple Lebwohl-Lasher lattice
model for a nematic liquid crystal [397].

Current investigations involve probing swimmer dynamics in lamellar (smectic) phases where
additional membrane-type fluctuations are expected to affect the swimmer mobility. To simulate
this we use an off-lattice soft mesogen potential generating isotropic, nematic, smectic phases

105



106 7. PERSPECTIVES

0

0.0005

0.001

0.0015

0.002

0.0025

-2 -1 0 1 2 3 4 5 6 7

SmA

N

0.0001

0.001

1 10

slope 1

slope 0.5

N

SmA

A B

FIGURE 7.1. (A) MSD of a swimmer moving through a nematic and smectic medium.
Shown is the contribution perpendicular to the nematic director. The dynamics is anoma-
lous and exhibits a distinct long-time logarithmic behavior with scaling exponent β ≈ 1

for the nematic and β ≈ 0.5 for the lamellar phase. A typical snapshot of the lamellar
phase formed by soft nematogens is depicted in (B).

upon decreases temperature. For the isotropic phase the common mobility scenario of ballistic
short-time motion followed by long-time diffusive motion (β = 0) is observed. By lowering
the temperature, the medium can be changed from isotropic to nematic and finally smectic
(Fig. 7.1B). An overview of our findings thus far is given in Fig. 7.1.

Collaborations: Prof. J. Toner, Oregon University (USA), Prof. H. Löwen, University of
Düsseldorf (Germany)
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FIGURE 7.2. Mixing chiral fd rods with non-adsorbing dextran polymer generates
strong side-to-side depletion attractions between the rods which stimulates the formation
of smectic membranes or rafts with an internal twist [358]. Preliminary predictions from
Onsager-Straley theory modified to describe twisted rods residing on a 2D membranes
demonstrate that the twist systematically increases near the edges of the membrane, in
line with observations from experiments and computer simulation.

Twist in smectic membranes

Mixing colloidal rods, such as filamentous fd rods, with non-adsorbing polymer may create
an interesting range of mesophase morphologies. The presence of the polymer induces strong
depletion interaction and a distinct entropic patchiness between interacting rods. The latter is
due to the non-uniform depletion forces causing rods to preferentially adopt side-by-side con-
figuration that stabilize the formation of so-called smectic membranes (Fig. 7.2). Since the fd
rods possess a distinctly helical surface structure, the forces transmitted between the rods are
intrinsically chiral [107]. These chiral interactions proliferate to the mesoscale via a twist in
the membrane. Experimental measurements strongly suggest that the twist angle ϕ, decrib-
ing the deflection of the local director with respect to the membrane normal, exhibits a strong
spatial non-uniformity as a function of the distance from the core of the membrane [398]. In
particular, the twist appears to be generically stronger at the edge compared to the (bulk) cen-
ter of the membrane. These observations are surprising in view of the fact that the average
rod density remains uniform across the membrane. Current investigations are concerned with
modifying Onsager-Straley theory for bulk cholesterics (described in Chapter 2) to predict di-
rector twist in a fluid membrane of chiral rods whose centre-of-mass are constricted to reside
on a two-dimensional plane. The key feature emerging from the theoretical analysis is that the
twist elasticity of the rods in the membrane is strongly dependent on the twist angle ϕ. This
qualitatively explains why the director twist in these membranes is non-uniformly increasing
when moving away from the membrane core (Fig. 7.2, right panel). Monte Carlo computer
simulations of simple hard spherocylinders mixed with penetrable hard spheres (the so-called
Asakura Oosawa model [50]) will be employed to test the theoretical predictions. The predic-
tions of our microscopic theory will also be compared to various continuum theories that have
been proposed to describe director twist in smectic membranes [399].

Collaborations: Prof. T. Schilling, University of Freiburg (Germany), Dr. E. Grelet, CRPP
Bordeaux (France)
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FIGURE 7.3. A cholesteric phase (with pitch P ) composed of helical rods exposed
to an external field Uext that couples to the rod mass centers develops a gradient in the
rod concentration. At the inversion point, where the global twist vanishes (1/P →∞),
this gradient may give rise to a supramolecular tendril perversion (commonly found in
helical plant tendrils [401]) where a crossover from one handedness to the other via a
defect zone (perversion) develops along the pitch axis of the helix.

Spatially non-uniform cholesterics

Most experimental realizations as well as theoretical descriptions of lyotropic cholesteric
liquid crystals to date have focussed on homogeneous systems in which the rod concentration,
as opposed to the rod orientation, is uniform across the system. In this project, we build upon
the Onsager-Straley theory for twisted nematics and study the effect of weak concentration
gradients, generated by some external potential, on the cholesteric twist [400]. We plan to
apply our theory to chiral nematics of nanohelices in which the supramolecular helix sense is
known to spontaneously change sign upon variation of particle concentration, passing through
a so-called inversion point at which the mesoscopic twist vanishes (Fig. 7.3). Current efforts
are focussed on simulating a coarse-grained model for soft helices and applying an external
field coupling to the local density. The resulting concentration gradients could be associated
with those generated by e.g. laser-optical traps, a temperature gradient, solvent evaporation
or particle sedimentation or it can be induced by the presence of a substrate or interface. The
response of the mesoscopic twist under the influence of the field strength will be measured
and compared to theoretical predictions. A particularly interesting scenario could arise if the
cholesteric state is near a so-called inversion point characterized by an overall concentration
where the global twist vanishes. An imposed concentration gradient could, for example, give
rise to a supramolecular rendition of a tendril perversion [401] in which sections of left- and
right-handed twist are connected via a defect region. This is illustrated in Fig. 7.3.
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FIGURE 7.4. Schematic diagrams of the director field around nanorods with
homeotropic boundary conditions for (A) strong, (B) intermediate and (C) weak sur-
face anchoring strength. The top schematics in (A,B) show the defect line (bulk and
surface red closed loops) placement in the case of particles with relatively strong (A)
or finite-strength (B) boundary conditions, which differ from the case of thin nanorods
with weak surface boundary conditions.

Hybrid molecular-colloidal liquid crystals

Colloidal rods immersed in low-molecular weight liquid crystalline host medium (such as
5CB) experience much more intricate interactions than in the case of simple isotropic me-
dia. Elastic distortions of the molecular director field induced by the presence of colloidal
particles result in defect-mediated elastic colloidal interactions (see Fig. 7.4), which emerge to
minimize the free energy cost of the colloidal inclusions and may stabilize colloidal crystals
of various symmetry. Most colloidal particle shapes studied thus far were spheres or weakly
shape-anisotropic rods and discs, surface-treated to impart strong boundary conditions to har-
ness the elastic interactions for self-assembly with well-defined relative particle positions and
orientations enslaved to the nematic director. In this project we plan to study high-aspect-ratio
inorganic colloidal nanorods and nanodisks, which spontaneously form their own nematic states
when dispersed in both isotropic and nematic phases of the liquid crystalline host. We aim to ex-
plore the phase behaviour and elastic properties of the hybrid materials using a combination of
experiments and theoretical modelling based on mean-field Onsager-type approaches discussed
in this thesis (see Chapter 3). The challenge will be to account for the effect of temperature-
dependent surface anchoring on the single-particle orientation, whereas on a multi-particle level
elasticity-mediated dipolar and quadrupolar interactions influencing the colloidal ordering prop-
erties need to be accounted for.

Collaborations: Prof. I. Smalyukh, University of Colorado (Boulder, USA)
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6. C. Ferreiro-Córdova and H. H. Wensink
Spinodal instabilities in polydisperse lyotropic nematics
Journal of Chemical Physics, 145, 244904 (2016),
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[371] F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, and C. Bechinger.
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