
HAL Id: tel-04697323
https://hal.science/tel-04697323v1

Submitted on 13 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact and anytime heuristic search for the Time
Dependent Traveling Salesman Problem with Time

Windows
Romain Fontaine

To cite this version:
Romain Fontaine. Exact and anytime heuristic search for the Time Dependent Traveling Sales-
man Problem with Time Windows. Computer Science [cs]. INSA Lyon, 2024. English. �NNT :
2024ISAL0067�. �tel-04697323�

https://hal.science/tel-04697323v1
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 2024ISAL0067

THESE de DOCTORAT DE L’INSA LYON,
membre de l’Université de Lyon

Ecole Doctorale No 512
Informatique et Mathématiques

Spécialité / discipline de doctorat :
Informatique

Soutenue publiquement le 09/07/2024, par :

Romain Fontaine

Exact and anytime heuristic search for the
Time Dependent Traveling Salesman

Problem with Time Windows

Devant le jury composé de :

PRALET Cédric Directeur de Recherche ONERA Rapporteur
SCHAUS Pierre Professeur des Universités UC Louvain Rapporteur
BILLOT Romain Professeur des Universités IMT Atlantique Examinateur

SOLNON Christine Professeure des Universités INSA Lyon Directrice de thèse
DIBANGOYE Jilles S. Maître de Conférences HDR University of Groningen Co-directeur de thèse

Département de la Formation par la Recherche
et des Études Doctorales (FEDORA)

Bâtiment INSA direction, 1er étage
37, av. J. Capelle
69621 Villeurbanne Cédex
fedora@insa-lyon.fr

Référence : TH1123_FONTAINE Romain

L’INSA Lyon a mis en place une procédure de contrôle systématique via un outil de
détection de similitudes (logiciel Compilatio). Après le dépôt du manuscrit de thèse,
celui-ci est analysé par l’outil. Pour tout taux de similarité supérieur à 10%, le manuscrit
est vérifié par l’équipe de FEDORA. Il s’agit notamment d’exclure les auto-citations, à
condition qu’elles soient correctement référencées avec citation expresse dans le
manuscrit.

Par ce document, il est attesté que ce manuscrit, dans la forme communiquée par la
personne doctorante à l’INSA Lyon, satisfait aux exigences de l’Etablissement concernant
le taux maximal de similitude admissible.

Département FEDORA – INSA Lyon - Ecoles Doctorales

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

ED 206

CHIMIE

CHIMIE DE LYON

https ://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr

M. Stéphane DANIELE
C2P2-CPE LYON-UMR 5265
Bâtiment F308, BP 2077
43 Boulevard du 11 novembre 1918
69616 Villeurbanne
directeur@edchimie-lyon.fr

ED 341

E2M2

ÉVOLUTION, ÉCOSYSTÈME, MICROBIOLOGIE, MODÉLISATION

http ://e2m2.universite-lyon.fr
Sec. : Bénédicte LANZA
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.e2m2@univ-lyon1.fr

Mme Sandrine CHARLES
Université Claude Bernard Lyon 1
UFR Biosciences
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69622 Villeurbanne CEDEX
e2m2.codir@listes.univ-lyon1.fr

ED 205

EDISS

INTERDISCIPLINAIRE SCIENCES-SANTÉ

http ://ediss.universite-lyon.fr
Sec. : Bénédicte LANZA
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.ediss@univ-lyon1.fr

Mme Sylvie RICARD-BLUM
Laboratoire ICBMS - UMR 5246 CNRS - Université Lyon 1
Bâtiment Raulin - 2ème étage Nord
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
Tél : +33(0)4 72 44 82 32
sylvie.ricard-blum@univ-lyon1.fr

ED 34

EDML

MATÉRIAUX DE LYON

http ://ed34.universite-lyon.fr
Sec. : Yann DE ORDENANA
Tél : 04.72.18.62.44

yann.de-ordenana@ec-lyon.fr

M. Stéphane BENAYOUN
Ecole Centrale de Lyon
Laboratoire LTDS
36 avenue Guy de Collongue
69134 Ecully CEDEX
Tél : 04.72.18.64.37
stephane.benayoun@ec-lyon.fr

ED 160

EEA

ÉLECTRONIQUE, ÉLECTROTECHNIQUE, AUTOMATIQUE

https ://edeea.universite-lyon.fr
Sec. : Philomène TRECOURT
Bâtiment Direction INSA Lyon
Tél : 04.72.43.71.70

secretariat.edeea@insa-lyon.fr

M. Philippe DELACHARTRE
INSA LYON
Laboratoire CREATIS
Bâtiment Blaise Pascal, 7 avenue Jean Capelle
69621 Villeurbanne CEDEX
Tél : 04.72.43.88.63
philippe.delachartre@insa-lyon.fr

ED 512

INFOMATHS

INFORMATIQUE ET MATHÉMATIQUES

http ://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Hamamache KHEDDOUCI
Université Claude Bernard Lyon 1
Bât. Nautibus
43, Boulevard du 11 novembre 1918
69 622 Villeurbanne Cedex France
Tél : 04.72.44.83.69
direction.infomaths@listes.univ-lyon1.fr

ED 162

MEGA

MÉCANIQUE, ÉNERGÉTIQUE, GÉNIE CIVIL, ACOUSTIQUE

http ://edmega.universite-lyon.fr
Sec. : Philomène TRECOURT
Tél : 04.72.43.71.70
Bâtiment Direction INSA Lyon
mega@insa-lyon.fr

M. Etienne PARIZET
INSA Lyon
Laboratoire LVA
Bâtiment St. Exupéry
25 bis av. Jean Capelle
69621 Villeurbanne CEDEX
etienne.parizet@insa-lyon.fr

ED 483

ScSo

ScSo1

https ://edsciencessociales.universite-lyon.fr
Sec. : Mélina FAVETON
Tél : 04.78.69.77.79
melina.faveton@univ-lyon2.fr

M. Bruno MILLY (INSA : J.Y. TOUSSAINT)
Univ. Lyon 2 Campus Berges du Rhône
18, quai Claude Bernard
69365 LYON CEDEX 07
Bureau BEL 319
bruno.milly@univ-lyon2.fr

1. ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

iv

Abstract

The Time Dependent (TD) Traveling Salesman Problem (TSP) is a generalization of the TSP
which allows one to take traffic conditions into account when planning tours in an urban context:
travel times between points to visit depend on departure times instead of being constant. The
TD-TSPTW further generalizes this problem by adding Time Window constraints, i.e., constraints
on visit times. Existing exact approaches such as Integer Linear Programming and Dynamic
Programming usually do not scale well; heuristic approaches scale better but provide no guarantees
on solution quality.

In this thesis, we introduce a new exact and anytime solving approach for the TD-TSPTW which
aims at quickly providing approximate solutions and gradually improving them until proving
optimality. We first show how to reduce the TD-TSPTW to the search for a best path in a
state-transition graph. We provide an overview of existing search algorithms, with a focus on exact
and anytime extensions of A*, and introduce a new one by hybridizing two of them. We show
how to combine these exact and anytime search algorithms with local search – in order to faster
find solutions of higher quality – and with bounding and time window constraint propagation – in
order to filter the search space. Finally, we provide extensive experimental results to (i) validate
our main design choices, (ii) compare our approach to state-of-the-art solving approaches on
various TD benchmarks with different degrees of realism and different temporal granularities
and (iii) compare TD solving approaches to recent TSPTW solvers on constant benchmarks.
These experimental results show us that our approach offers a good compromise between the
time needed to find good solutions and the time needed to find optimal solutions and prove their
optimality for both TD and constant TSPTW instances.

Keywords: Combinatorial Optimization, Traveling Salesman Problem, Time Window constraints,
Time-Dependent travel times, Dynamic Programming, Exact and Anytime Search Algorithms, A*
algorithm, Scalability.

v

vi Abstract

Résumé

Le problème du voyageur de commerce (TSP, pour Traveling Salesman Problem) dépendant du
temps (TD, pour Time Dependent) est une généralisation du TSP qui permet de prendre en
compte les conditions de trafic lors de la planification de tournées en milieu urbain : les temps
de trajet varient en fonction des horaires de départ au lieu d’être constants. Le TD-TSPTW
généralise ce problème en associant à chaque point de passage une fenêtre temporelle (TW, pour
Time Window) qui restreint les horaires de visite. Les approches de résolution exactes telles
que la programmation linéaire en nombres entiers ou la programmation dynamique passent mal
à l’échelle, tandis que les approches heuristiques ne garantissent pas la qualité des solutions
obtenues.

Dans cette thèse, nous proposons une nouvelle approche exacte et anytime pour le TD-TSPTW
visant à obtenir rapidement des solutions approchées puis à les améliorer progressivement jusqu’à
prouver leur optimalité. Nous montrons d’abord comment rapporter le TD-TSPTW à une recherche
de meilleur chemin dans un graphe états-transitions. Nous décrivons ensuite des algorithmes
permettant de résoudre ce problème en nous concentrant sur les extensions exactes et anytime
d’A*, et en proposons une nouvelle par hybridation. Nous montrons comment combiner ces
algorithmes avec de la recherche locale – afin de trouver plus rapidement de meilleures solutions –
ainsi qu’avec des bornes et de la propagation de contraintes de TW – afin de réduire la taille de
l’espace de recherche. Enfin, nous fournissons des résultats expérimentaux visant à (i) valider
nos principaux choix de conception, (ii) comparer notre approche à l’état de l’art en considérant
des benchmarks ayant différents degrés de réalisme et différentes granularités temporelles et (iii)
comparer ces approches TD à de récents solveurs pour le TSPTW dans le cas constant. Ces
résultats montrent que notre approche apporte un bon compromis entre le temps nécessaire pour
(i) trouver de bonnes solutions et (ii) trouver des solutions optimales et prouver leur optimalité,
aussi bien dans le cas TD que dans le cas constant.

Mots-clés : Optimisation Combinatoire, Problème du Voyageur de Commerce, Contraintes de
fenêtres temporelles, Temps de trajets Time-Dependent, Programmation Dynamique, Algorithmes
de recherche Exacts et Anytime, Algorithme A*, Passage à l’échelle.

vii

viii Résumé

Contents

Introduction 1

Glossary 5

Notations 7

I Background 9

1 Time Dependent TSP with Time Windows 11
1.1 Definitions and notations . 12
1.2 On Time Dependent travel time functions . 16

1.2.1 Devising time-dependent travel time functions from realistic data 16
1.2.2 Modeling time-dependent travel time functions 17

1.3 Propagation of TW constraints . 20
1.4 State-of-the-art solving approaches . 23
1.5 Classic benchmarks . 25
1.6 Discussion . 30

2 Dynamic Programming 31
2.1 Dynamic Programming (DP) for the TSP . 32
2.2 DP formulations for generalizations of the TSP 36

2.2.1 Time-Dependent travel times . 36
2.2.2 Time Window constraints . 37
2.2.3 Precedence constraints . 38
2.2.4 Discussion . 38

2.3 Improving DP’s scalability . 38
2.3.1 Restricted Dynamic Programming . 39
2.3.2 Computing lower bounds through relaxed state spaces 39

2.4 Frameworks related to DP . 40
2.4.1 Multivalued Decision Diagrams . 40
2.4.2 Domain-Independent Dynamic Programming 41

2.5 Discussion . 42

3 Planning Problems 43
3.1 Definition of Planning Problems . 44
3.2 Uninformed search algorithms . 46

3.2.1 Depth-First Search . 48
3.2.2 Breadth-First Search . 50
3.2.3 Dijkstra’s shortest path algorithm . 51

3.3 Informed search . 52
3.3.1 Heuristic functions . 52
3.3.2 A* algorithm . 53
3.3.3 Exact and Anytime Search (EAS) algorithms related to A* 56

3.4 Discussion . 60

ix

II Proposed solving approach 61

4 Exact and Anytime Search (EAS) for the TD-TSPTWm 63
4.1 Dynamic Programming model and state transition graph 64
4.2 Instantiation of EAS algorithms . 69

4.2.1 Anytime Weighted A* . 71
4.2.2 Iterative Beam Search . 72
4.2.3 Anytime Column Search . 74
4.2.4 Anytime Window A* . 76
4.2.5 Discussion . 76

4.3 Implementation of EAS algorithms . 78
4.3.1 A*-like algorithms . 79
4.3.2 Iterative Beam Search . 81
4.3.3 Anytime Window A* . 83

4.4 Computation of lower bounds h . 84
4.4.1 Definition of constant costs . 85
4.4.2 Definition of the graph Gs used to compute h(s) 85
4.4.3 Feasibility bound hFEA . 87
4.4.4 Outgoing/Incoming Arcs bound hOIA . 87
4.4.5 Minimum Spanning Arborescence bound hMSA 88
4.4.6 Discussion . 89

4.5 Discussion . 90

5 Combining EAS with TW constraint propagation and local search 91
5.1 Overview of the proposed approach . 92
5.2 Time Window constraint propagation . 93

5.2.1 Propagation of constraints during resolution 93
5.2.2 Adaptations of rules in absence of triangle inequality 94

5.3 Local Search . 95
5.4 Greedy computation of an initial solution . 96
5.5 Discussion . 96

III Experimental results 97

6 Experimental comparison of different EAS algorithms 99
6.1 Experimental setting . 99
6.2 Preliminary experiments . 101
6.3 Parameter tuning . 104
6.4 Validation of implementation choices . 107
6.5 Overall comparison . 110
6.6 Discussion . 111

7 Experimental comparison with state-of-the-art approaches on TD benchmarks113
7.1 Experimental setting . 113
7.2 Benchmark BAri19 . 115
7.3 Benchmark BVu20 . 119
7.4 Benchmark BRif20 . 121
7.5 Discussion . 125

x CONTENTS

8 Experimental comparison with other approaches on constant benchmarks 127
8.1 Experimental setting . 127
8.2 Classic benchmarks . 130
8.3 Benchmark Bc

Rif20 . 133
8.4 Discussion . 136

Conclusion 137

List of Figures 142

List of Tables 144

List of Algorithms 145

Bibliography 147

xiContents

xii CONTENTS

Introduction

With the increase in the number of individual cars and in the density of population in urban and
peri-urban areas, congestion of transportation infrastructures has become a major issue: it has
well-known hazardous effects on the environment and on the quality of life of inhabitants. Such
congestions lead to variations in traffic conditions which need to be taken into account when
planning itineraries or tours, whether for transportation of passengers or goods.

Taking into account traffic conditions when planning itineraries or tours has been made possible
by the availability of traffic data (which may come, e.g., from physical sensors placed on the road
networks or from increasingly widespread mobile navigation services), which in turn permitted to
build predictive models [Sal19].

From an academical point of view, finding optimal tours is often associated to the well-known
Traveling Salesman Problem (TSP): given a list of points to visit and pairwise travel times between
them, solving this problem requires finding the fastest route which visits each point once before
returning to its starting point. The time-dependent TSP (TD-TSP) [MD92] generalizes the TSP
by modeling variations in traffic conditions throughout the day and thus allows one to plan tours
in a urban context. The TSP with Time Windows (TSPTW) is another generalization of the
TSP, which consists in restricting the set of possible visit times at each location. In this thesis, we
consider a combination of both these generalizations (i.e., the TD-TSPTW), in which (i) travel
times are time-dependent (TD) and (ii) hard Time Window (TW) constraints are associated
to each location. TW constraints are pertinent both in the context of delivery tours (in order
to model the availability of customers), for on-demand passenger transportation (which may be
multi-modal), and – more generally – whenever synchronization is necessary.

The relevance of considering TD travel times when planning tours in an urban context has been
studied on realistic data in [RCS20]: results have shown that considering TD travel times when
planning (instead of assuming them to be constant) tends to lead to fewer constraint violations.
Minimizing the chances of such violations is critical when considering on-demand passenger
transportation, as such a service is unlikely to be accepted by end-users if it is not the case.

The TSP is NP-Hard and the size of the search space grows exponentially with respect to the
number of locations to visit (unless P = NP). Obviously, the presence of TW constraints reduces
the number of possibilities, but makes it harder to find feasible solutions. Moreover, optimizing
with TD travel times may, depending on the solving approach adopted, bring additional difficulties.
Although the TD-TSP was introduced more than thirty years ago, the TD-TSPTW has recently

1

received a lot of attention (e.g., [Ari+19], [Vu+20], [LMS22], [Pra23]). Nevertheless, existing exact
approaches – which are usually based on Integer Linear Programming or Dynamic Programming
(DP) – have the advantage of providing guarantees on the quality of the solutions found, but
typically do not scale well and may fail to provide a solution within reasonable space and time
constraints. On the other hand, heuristic approaches have better scaling abilities but are not able
to provide guarantees on solution quality.

Consequently, we propose a TD-TSPTW solving approach which seeks to get the best of both
worlds by being both exact and anytime (i.e., able to quickly provide approximate solutions).
Such hybrid approaches aim to be more scalable than purely exact approaches, which fail to
provide a solution when lacking space and time resources to prove optimality.

Thesis outline and contributions. This thesis is composed of three parts: in Chapters 1 to 3, we
introduce fundamental notions which are necessary to understand our solving approach. We then
introduce our solving approach in Chapters 4 and 5 and provide extensive experimental results in
Chapters 6 to 8.

In Chapter 1, we formally define the TD-TSPTW, present common objective functions (in this
thesis, we consider the makespan objective), and study how the TD-TSPTW relates to other
routing problems. We then provide an overview of existing solving approaches and describe classic
TW constraint propagation rules. Also, we discuss how TD travel time functions may be obtained
from real-world data and describe common ways to represent these functions. Finally, we provide
an overview of benchmarks commonly used to evaluate TD-TSPTW solvers: we show that some
of them are based on unrealistic assumptions and consequently suggest more realistic alternatives.

In Chapter 2, we show how Dynamic Programming may be used to solve the TSP and some of
its variants. We also discuss of classic techniques which may be used to improve its scalability,
and present problem-agnostic optimization frameworks related to this paradigm.

In Chapter 3, we show how optimization problems such as the TSP may be solved by looking for
optimal paths in state transition graphs. Of course, the size of these graphs may grow too large for
fundamental shortest path algorithms to be able to solve large problem instances. Consequently,
we describe the A* algorithm – which uses heuristic functions to search more efficiently – before
providing an overview and a taxonomy of existing Exact and Anytime Search (EAS) algorithms
related to A*.

In Chapter 4, we describe how to instantiate EAS algorithms to solve the TD-TSPTW in a
scalable way: we start by defining a state transition graph associated to its DP formulation and
then instantiate four EAS algorithms to solve it. We compare these algorithms by highlighting
their similarities and differences, which leads us to proposing an improved version of an existing
EAS algorithm. Also, we discuss major – yet often disregarded – implementation issues regarding
data structures and show that obvious implementations of A* are not necessarily suited to all
EAS algorithms. Finally, we introduce three heuristic functions for the TD-TSPTW and describe
how they differ from those used in related works: these functions are used by EAS algorithms to

2 Introduction

guide search and to prune the search space.

In Chapter 5, we propose to enhance the performance of our solving approach by combining EAS
algorithms with (i) a local search procedure which tries to improve the solutions found, and (ii)
TW constraint propagation, in order to reduce the size of the search space and to compute tighter
bounds.

In Chapter 6, we experimentally validate the relevance of our solving approach’s key components
and compare four EAS algorithms after having tuned their parameters and studied the influence
of various implementation decisions.

In Chapter 7, we experimentally compare three variants of our solving approach – which only
differ in the heuristic function used – to state-of-the-art solvers. We consider both (i) benchmarks
commonly used to evaluate TD-TSPTW solving approaches and (ii) a benchmark with more
realistic TD travel time functions. Finally, we study how these solvers’ performance varies when
considering TD travel time functions with different degrees of realism and different temporal
granularities. Results show us that our approach (i) offers a good compromise between the time
needed to find good solutions and the time needed to find optimal solutions and to prove their
optimality, and (ii) is relatively robust to increases in the granularity of TD travel time functions.

Finally, in Chapter 8, we study how TD-TSPTW solvers compete with various recent TSPTW
solving approaches when considering benchmarks in which travel times are constant.

Publications. The TD-TSPTW solving approach we propose and part of the experimental results
have been published in [FDS23b]:

Romain Fontaine, Jilles Dibangoye, and Christine Solnon. “Exact and anytime approach for
solving the time dependent traveling salesman problem with time windows”. In: European
Journal of Operational Research 311.3 (2023). issn: 0377-2217

These works were presented during the 2023 edition of the national ROADEF conference1 (our
paper was one of the six finalists out of thirteen candidates for the best paper award) and during
the doctoral program of CP20232.

1Romain Fontaine, Jilles Dibangoye, and Christine Solnon. “Exact and Anytime Approach for Solving the Time
Dependent Traveling Salesman Problem with Time Windows”. In: 24ème congrès annuel de la Société Française
de Recherche Opérationnelle et d’Aide à la Décision. 2023

2International Conference on Principles and Practice of Constraint Programming.

3

4 Glossary

Glossary

Abbreviation Meaning

BFS Breadth-First Search
DAG Directed Acyclic Graph
DFS Depth-First Search
DP Dynamic Programming

EAS Exact and Anytime Search
FIFO First-In, First-Out
LDT Latest Departure Time
OTW Overlapping Time Windows
RDP Restricted Dynamic Programming
SOP Sequential Ordering Problem

TD-TSPTW Time-Dependent Traveling Salesman Problem with Time Windows

5

6 Glossary

Notations

Category Notation Description

Sets |A| Cardinality of A
2A Power set of A

[i, j] All integers from i to j included (∅ whenever i > j)
[i, j[All integers from i to j excluded (∅ whenever i ≥ j)

N Set of natural numbers, 0 included
N+ Set of natural numbers, 0 excluded
R+

0 Set of non-negative real numbers

TD-TSPTW (V, c, e, l) TD-TSPTW instance p. 12
V = {0, 1, ..., n} Vertex Set p. 12
C = V \ {0, n} Customer Set p. 12

ci,j(t)
Travel time from i to j when departing
from i at time t p. 12

ai,j(t) Arrival time at j when departing from i at time t p. 12
a−1
i,j (t) LDT from i to reach j no later than time t p. 13

ei Earliest visiting time of vertex i p. 12
li Latest visiting time of vertex i p. 12

t↑[ei,li] TW-aware time at vertex i p. 12
GPR = (V,R) Precedence graph p. 20
GUA = (V, E) Usable arcs graph p. 20

TD travel times K = [0,K[Set of time-steps p. 17

DP GST = (N ,A, w) State transition graph p. 34

Planning (SP ,AP , s0, sf, F, τ, cP) Planning problem p. 44
SP Set of states p. 44
AP Set of actions p. 44

s0, sf Initial and final states p. 44
F (s) Set of feasible actions in state s p. 44

τ(s, a) State resulting from applying action a in state s p. 44
cP (s, a) Cost of applying action a in state s p. 44

GP
ST

State transition graph associated to
planning problem P

p. 45

Shortest paths g(s) Upper bound on the cost-so-far to reach state s p. 47
g∗(s) Optimal cost-so-far to reach state s p. 47
h(s) Lower bound on the cost-to-go from state s p. 52
h∗(s) Optimal cost-to-go from state s p. 52

f(s) = g(s) + h(s) Evaluation function of state s p. 52

Solving approach LDT (i, j) LDT from i to reach j no later than its deadline p. 85
ci,j Lower bound on the travel cost from i to j p. 85

Gs = (Vs, Es) Subgraph associated to state s p. 85

7

8 Notations

I
Background

Part

9

1 Time Dependent TSP with Time
Windows

Chapter

Contents
1.1 Definitions and notations . 12

1.2 On Time Dependent travel time functions 16

1.2.1 Devising time-dependent travel time functions from realistic data 16

1.2.2 Modeling time-dependent travel time functions 17

1.3 Propagation of TW constraints . 20

1.4 State-of-the-art solving approaches . 23

1.5 Classic benchmarks . 25

1.6 Discussion . 30

The Traveling Salesman Problem (TSP) consists in finding a tour of minimal cost visiting a given
set of locations and returning to the origin location. The Time-Dependent TSP (TD-TSP) [MD92]
is a generalization of the TSP in which travel times vary throughout the day, thus allowing one
to take traffic conditions into account when planning tours in an urban context. The TSP with
Time Windows (TSPTW) [CMT81] generalizes the TSP by adding hard time window constraints
which restrict the possible visit times at each location, and thus the set of feasible tours. The
subject of this thesis is the TD-TSPTW, which considers both time-dependent travel times and
time window constraints.

In this chapter, we first formalize the general problem of the TD-TSPTW in Section 1.1. We
then briefly present how TD travel times are obtained and modeled in Section 1.2, and describe
commonly used TW constraint propagation techniques in Section 1.3. We finally present state-of-
the-art solving approaches in Section 1.4 and benchmarks commonly used to evaluate them in
Section 1.5.

11

1.1 Definitions and notations

A TD-TSPTW instance is defined as a tuple (V, c, e, l), where V denotes the set of vertices to
visit and c : V × V × N→ N the TD-travel time matrix. Each vertex i ∈ V has an earliest visit
time ei ∈ N and a latest visit time li ∈ N. In this thesis, we consider that all times are integers.
This assumption is not unrealistic given floating point values may be transformed into integer
values through multiplication by a constant coefficient.

More precisely, the set of vertices to visit is defined as V = {0, . . . , n} where 0 is the origin
vertex and n the destination vertex (in practice, 0 and n may refer to the same location, i.e.,
the depot). For convenience, we note C = V \ {0, n} the set of customer vertices. Each vertex
i ∈ V must be visited during time interval [ei, li]. Consequently, planning happens during time
horizon H = [e0, ln], and each TW is contained in H, i.e., [ei, li] ⊆ H,∀i ∈ V. It is possible to
arrive earlier than time ei on vertex i but, in this case, it is necessary to wait on i until time ei.
Given a time t and a TW [ei, li], we note t↑[ei,li] the TW-aware time that includes a waiting time
whenever t < ei and returns ∞ whenever t > li, i.e.,

t↑[ei,li] =

{
max (ei, t) if t ≤ li
∞ if t > li

(1.1)

Given a pair of vertices i, j ∈ V, we note ci,j the TD travel time function such that ci,j(t) is
the travel time from i to j when leaving i at time t. For convenience, we note ai,j the arrival
time function such that ai,j(t) = t+ ci,j(t). We assume that TD travel time functions satisfy the
First-In First-Out (FIFO) property (see, e.g., [IGP03]). This property ensures that every arrival
time function ai,j is non-decreasing, i.e., ∀t1, t2 ∈ H, t1 < t2 ⇒ ai,j(t1) ≤ ai,j(t2), or equivalently
that ci,j has a minimum slope of −1. In other words, when traveling from i to j, delaying the
departure from i cannot allow one to arrive sooner at j. We illustrate this property on two travel
time functions in Figure 1.1. We also assume that travel time functions satisfy triangle inequality,
i.e., ∀i, j, k ∈ V, ∀t ∈ H, aj,k(ai,j(t)) ≤ ai,k(t).

0 1 2 3 4 5 6

Time t

0

1

2

3

4

5

6

f
(t

) f=ci,j

f=ai,j

f=a−1
i,j

(a) Non-FIFO travel time function

0 1 2 3 4 5 6

Time t

0

1

2

3

4

5

6

f
(t

)

(b) FIFO travel time function

Figure 1.1: Illustration of the FIFO property. Blue curves are TD travel time functions ci,j , orange
curves are the corresponding arrival time functions ai,j . Left: the FIFO property is not satisfied as ai,j
decreases between t = 1 and t = 2. Right: the FIFO property is satisified (i.e., ai,j is non-decreasing) and
the inverse arrival time function a−1i,j is displayed in green.

12 CHAPTER 1. TIME DEPENDENT TSP WITH TIME WINDOWS

The inverse of ai,j is denoted a−1
i,j : a

−1
i,j (t) represents the time at which vertex i must be left

to arrive on vertex j at time t. However, we only require travel time functions ci,j to satisfy
the FIFO property and do not assume that arrival time functions ai,j are bijective: therefore,
when traveling from vertex i to vertex j, (i) it might not be possible to reach j at time t, and
(ii) multiple departure times t′ may allow one to reach j at time t (this occurs when ai,j has
constant parts). Consequently, we define a−1

i,j (t) as the latest departure time t′ from vertex i
allowing one to reach vertex j no later than time t, i.e., a−1

i,j (t) = argmaxt′∈H {ai,j(t′) ≤ t}. By
the FIFO property, ai,j(t) is non-decreasing: its inverse can therefore be computed in logarithmic
time through binary search. We illustrate a sample inverse arrival time function in Figure 1.1b.

Note that service (or processing) times si ∈ N may be associated to vertices i ∈ C in order to
model the time required to serve customers. More precisely, TW of vertex i ∈ C constrains its
service to start during time range [ei, li]: consequently, the range of possible departure times from
i is shifted to the interval [ei + si, li + si]. For clarity – and without loss of generality – we do not
consider service times in this thesis, given one can straightforwardly handle them by using an
alternative travel time function c′i,j that includes si, i.e.,

c′i,j(t) =

{
si + ci,j(t+ si) if i ∈ C
ci,j(t) otherwise.

(1.2)

We define a candidate solution to the TD-TSPTW as a couple (t0, p) where t0 ∈ [e0, l0] is the
departure time from the origin vertex and p a permutation of vertex set V starting from vertex 0

and ending on vertex n. We note p[i] the ith vertex of p. Given a vertex index i ∈ [0;n] and a
candidate solution (t0, p), we note vt(t0, p, i) the visit time at the ith vertex of path p that departs
from the origin vertex 0 at time t0, and recursively define it as:

vt(t0, p, i) =

t0 if i = 0

ap[i−1],p[i](vt(t0, p, i− 1))↑[ep[i],lp[i]] otherwise.
(1.3)

A candidate solution (t0, p) is feasible if it respects TW constraints at each visited vertex, i.e., if
vt(t0, p, n) ≤ ln (given t↑[ei,li] =∞ whenever t > li).

Objective functions. When considering the general case of seeking a Hamiltonian path of minimal
duration, the objective value of a feasible solution (t0, p) is the difference between the visit time
at the destination vertex n and the departure time from the origin vertex 0, i.e., vt(t0, p, n)− t0.
This criterion is known as the duration objective, and we refer to this variant of the problem as
the TD-TSPTWd. Solving this problem requires finding a feasible solution of minimal duration
(i.e., both a starting time t0 and a Hamiltonian path p) or proving that no such solution exists.

Another objective is the travel time objective: as its name implies, it consists in minimizing the
sum of travel times, i.e., waiting times are excluded from the objective function. More formally,
the travel time of a feasible solution (t0, p) is defined as:

∑n−1
i=0 cp[i],p[i+1](vt(t0, p, i)). We refer to

this variant of the problem as the TD-TSPTWΣt.

131.1. Definitions and notations

Another common objective criterion is the makespan objective, for which the goal is to minimize
the arrival time at the destination vertex n, i.e., vt(t0, p, n). When TD travel time functions
satisfy the FIFO property, this implies that t0 = e0, given delaying departure from the origin
vertex cannot allow one to arrive sooner at the destination vertex. In this thesis, we focus on
the makespan objective and refer to this variant of the problem as the TD-TSPTWm. The
TD-TSPTWm can be seen as a specific case of the TD-TSPTWd in which the departure time
from the origin vertex is fixed (i.e., e0 = l0 = t0).

Special cases. In the absence of TWs (i.e., when ei = 0 and li =∞, ∀i ∈ V), the problem is called
TD-TSPd and it is equivalent to the TD-TSPΣt. Moreover, when the departure time from the
origin vertex is fixed (i.e., when e0 = l0), the TD-TSPd becomes equivalent to the TD-TSPm.

In the case where travel times ci,j are constant, the TD-TSP and the TD-TSPTW respectively
correspond to the TSP and the TSPTW. In the TSPTW, the duration and makespan objectives
are analogous to their time-dependent counterparts, and are sometimes respectively referred to as
the Minimum Tour Completion Problem (MTCP) and the Minimum Tour Duration Problem
(MTDP). Note that the TSPTWΣt – contrarily to the TD-TSPTWΣt – does not require optimizing
the departure time from the origin vertex (i.e., t0 = e0), given a later starting time t0 cannot lead
to a shorter overall travel time. We summarize in Table 1.1 the main variants of the TD-TSPTW
and the differences between these problems.

Problem
Time-dependent
travel times

TW
constraints

Variable
starting time Objective function

TD-TSPTWm 3 3 makespan
TD-TSPTWd 3 3 3 duration
TD-TSPTWΣt 3 3 3 travel time
TD-TSPm 3 makespan
TD-TSPd 3 3 duration ⇐⇒ travel time
TSPTWm 3 makespan
TSPTWd 3 3 duration
TSPTWΣt 3 travel time

TSP makespan ⇐⇒ duration
⇐⇒ travel time

Table 1.1: Summary of TD-TSPTW variants and special cases. Starting time t0 is either variable (i.e.,
t0 ∈ [e0, l0]) or fixed (i.e., t0 = e0).

As we shall see in Section 1.3, precedence relations between vertices can often be inferred in
routing problems with TWs. They are typically exploited in solvers to discard partial solutions
that cannot lead to feasible solutions due to TW constraints. The TSPTW is therefore related to
the Sequential Orienteering Problem (SOP) [Asc+93], in which the set of feasible solutions is
constrained by precedence relations between vertices instead of TWs.

Also note that the TSPTWm is equivalent to the single-machine scheduling problem with task-
dependent setup times, release dates and due dates (denoted 1|rjdj |Cmax in the notation of
[Gra+79]).

14 CHAPTER 1. TIME DEPENDENT TSP WITH TIME WINDOWS

Finally, it is worth mentionning that solving the TD-TSPTW is not only useful for finding optimal
Hamiltonian paths in an urban context: for instance, a problem consisting in planning the actions
of satellites observing the Earth has been formulated as a TD-TSPTWm in [Pra23].

Complexity. The decision variant of the TSP, i.e., determining whether or not a tour no longer
than L ∈ N exists, is an NP-Complete problem given it is more general than the Hamiltonian
Cycle problem, one of Karp’s twenty-one original NP-Complete problems [Kar72]. Consequently,
the associated optimization problem is NP-Hard, similarly to each generalization of the TSP
discussed above. Moreover, [Sav85] demonstrated that finding a feasible solution for the TSPTW
(without any bound on the tour length) is a strongly NP-Complete problem, even in the special
case where costs are symmetric.

Note however that the TD-TSPTWm may be solved in polynomial time when, given a constant k,
at most k TWs overlap during the time horizon. In this case, the original problem instance of size
n may be split into at most n

k subproblems of size n′ ≤ k, which can be solved sequentially e.g., in
O
(
k2 · 2k · nk

)
time using Dynamic Programming (we describe how this paradigm may be used to

solve the TSP and some of its variants in Chapter 2). Such algorithms are called fixed-parameter
tractable (FPT) and are studied in the context of scheduling problems with TWs in [HM23].

Discussion. We have seen that the TD-TSPTW generalizes multiple classic problems, and that it
has been considered with several objective functions. The difficulty of this problem stems from
the fact that the number of possible Hamiltonian paths grows exponentially with respect to the
number of vertices to visit. The presence of TWs however restricts the set of feasible solutions,
but the size of this set is further increased when the starting time from the origin vertex needs to
be optimized, e.g., in the TD-TSPTWd.

Routing problems constrained with TWs may have no feasible solution: in this case, one can
consider flexible TWs [FA20], which consist in allowing TW violations to a certain extent and
trying to minimize both the travel costs and the penalties incurred by these violations. Orienteering
problems with TWs [TPF23] do not require all customers to be visited: resolution therefore consists
in selecting a subset of customers to visit and finding the associated optimal visit order, while
respecting TW constraints and maximizing rewards associated to each visited customer. [Kho+22]
studied the TD Orienteering problem with TWs and TD profits, in which the reward collected at
each customer is proportional to the duration of the visit.

Yet another option is to consider more general Vehicle Routing Problems (VRPs), in which
planning is done for a fleet of vehicles instead of a single vehicle. In the TD-VRPTW [MD92], a
demand is associated to each customer and vehicles have a fixed capacity: one must plan a route
for each vehicle such that (i) all customers are visited within their TW, (ii) capacity constraints
are respected, and (iii) the sum of each vehicle’s makespan is minimal.

151.1. Definitions and notations

1.2 On Time Dependent travel time functions

In this thesis, we focus on solving the TD-TSPTWm and assume the availability of TD travel
time functions ci,j(t) providing – for each pair of distinct vertices (i, j) ∈ V2 – the shortest travel
time from vertex i to j when departing from i at time t.

Obtaining and modeling these functions is a research topic in itself. Nonetheless, we briefly
describe how these travel time functions can be obtained from real-world traffic data, given it
has been shown that finer-grained data lead to higher quality results [RCS20], but potentially to
harder problem instances. Note that these considerations seem to rarely be taken into account,
as many solvers are evaluated on purely artificial data which – as we shall see in Section 1.5 –
sometimes make unrealistic assumptions.

1.2.1 Devising time-dependent travel time functions from realistic data

Customer graph and road network. Recall that a TSP instance is defined by a complete graph on a
set of vertices V . This graph is called a customer graph, as its vertices either represent customers
or the starting and ending locations of the Hamiltonian path. When vertices of a TSP instance
represent physical locations, travel costs may, for example, represent the distance, travel time, or
the fuel consumption when traveling between pairs of vertices. In this case, travel costs in the
customer graph can be obtained by computing optimal paths in the underlying road network.

More precisely, the road network is a directed graph GRN = (VRN, ERN, cRN) in which ERN is the
set of (oriented) road segments, VRN the set of road segment endpoints, and cRN : E → N the
cost of traveling on each of these segments. Given a set of vertices to visit V ⊆ VRN, the travel
cost between two vertices {i, j} ⊆ V is obtained by computing an optimal path from i to j in
GRN. This can be achieved in polynomial time using classic shortest path algorithms.

The customer graph is therefore an abstraction of the road network which allows one, when
tackling the TSP, to focus on finding an optimal visit order.

Time-dependent travel times in the road network. A similar idea is used to model time-dependent
variants of the TSP, although determining time-dependent travel times in the customer graph
requires knowing time-dependent travel times on each arc of the road network.

In the real world, these time-dependent travel times can be estimated from physical sensors that
measure the flow and density of traffic on each individual road segment. Figure 1.2 illustrates the
distribution of these sensors in part of the road network of Lyon, France: notice that the sensors’
spatial coverage is relatively low – less than 8% of road links are equipped with sensors – and
traffic information is therefore unavailable for entire neighborhoods.

In [ALS15], this lack of data was compensated by interpolating sensor information between
neighboring links, taking into account streets directions. In [RCS20], authors went further and

16 CHAPTER 1. TIME DEPENDENT TSP WITH TIME WINDOWS

Figure 1.2: Spatial distribution of traffic sensors on the road network of Villeurbanne and two districts
(the third and the sixth) of Lyon (figure courtesy of [RCS20]). Yellow dots represent the locations of traffic
sensors.

estimated missing information through fine-grained simulation of traffic flows, based on the
available sensor data and estimations of transportation demands in the area.

Once the road network time-dependent travel times cRN are known, travel times in the customer
graph of a TD-TSP instance are obtained – as we have seen for the TSP – by computing optimal
paths between each relevant pair of vertices in the road network. [ALS15] generalized this step to
time-dependent travel times by computing time-dependent fastest paths for each pair of locations
and each possible departure time. This allows one to model the fact that the fastest path may
depend on the departure time, i.e., that path optimality may depend on traffic conditions.

These shortest paths can be computed efficiently (i.e., in polynomial time) using an adaptation
of Dijkstra’s algorithm (e.g., see [Agu16]), provided that time-dependent travel time functions
satisfy the FIFO property. When this property is not verified, this problem becomes NP-Hard
[KS93] as waiting for an arbitrary amount of time on vertices may be beneficial.

1.2.2 Modeling time-dependent travel time functions

In this section, we describe common ways to model time-dependent travel time functions, whether
in the context of the customer graph or when considering a road network.

The two models we consider rely on piecewise constant functions defined over a time horizon
H = [0, T [partitioned into K intervals (or time-steps) K = [0,K − 1], i.e.,

H = [0, T [=
⋃
k∈K

[Tk, Tk+1[(1.4)

We note κ : H → K the function that determines the time-step k containing a given time t.
Without loss of generality, we assume that time-steps have uniform lengths, i.e., Tk = k ∗ T

K , which

171.2. On Time Dependent travel time functions

allows one to compute κ in constant time, i.e., κ(t) =
⌊
t
T ∗K

⌋
(when it is not the case, it can be

done efficiently through binary search, or by mapping each time to its associated time-step).

Piecewise constant travel time functions

Early works on TD problems, whether in the context of shortest paths [CH66] or routing problems
[Mal89], modeled TD travel time functions as piecewise constant functions τi,j associating a travel
time to each time-step. This model has recently been used by [ALS15] and [RCS20], both for
representing time-dependent travel times in the road network and in the customer graph.

Of course, as illustrated in Figure 1.3a, the TD travel time function τi,j ◦ κ obtained from the
piecewise constant function τi,j is likely not to verify the FIFO property due to discretization.
A travel time function ci,j(t) satisfying the FIFO property is therefore obtained by applying
transformations to τi,j ◦ κ when necessary, i.e., by replacing constant parts of these functions by
linear pieces in order to guarantee a minimum slope of −1 in ci,j(t).

[MD92] obtains a travel time function ci,j verifying the FIFO property from τi,j ◦ κ using a
minimal set of changes: transitions in travel time between time-steps are smoothed only when the
travel time decreases (i.e., τi,j(k) > τi,j(k + 1)) by considering a linear piece with a slope of −1

instead of the original constant piece during the last τi,j(k)− τi,j(k+ 1) time units of time-step k,
as illustrated in Figure 1.3b, i.e.,

ci,j(t) =

min(τi,j(k), τi,j(k + 1) + Tk+1 − t) if τi,j(k) > τi,j(k + 1)

τi,j(k) otherwise.
(1.5)

Where k = κ(t) is the time-step containing time t, and Tk+1 − t denotes the time left before the
beginning of time-step k + 1.

Departure time t

T
ra

ve
l/

ar
ri

va
l

ti
m

es

(τi,j ◦κ)(t)

ci,j(t)

ai,j(t)

(a) No transformation

Departure time t

(b) Transformation from [MD92]

Departure time t

(c) Transformation from [FGG04]

Figure 1.3: Illustration of FIFO transformations on a piecewise constant TD travel time function τi,j
with three time-steps. Transitions between time-steps are represented by grey vertical lines; τi,j ◦ κ is the
original piecewise constant function, ci,j the TD travel time function obtained after transformation, and
ai,j the arrival time function associated to ci,j . Horizontal and vertical scales are identical.

18 CHAPTER 1. TIME DEPENDENT TSP WITH TIME WINDOWS

[FGG04] later proposed an algorithm to make these functions both FIFO and continuous by
smoothing transitions in travel times between each pair of contiguous time-steps, both on increases
and on decreases in travel times, as illustrated in Figure 1.3c. It consists in using a linear piece
with an arbitrarily large but finite slope when travel time increases, and a slope greater than or
equal to −1 on decreases. Half of the linear piece from time-step k to k + 1 lies on the current
time-step k, and the other half on time-step k + 1.

Piecewise constant travel speed functions

The Ichoua, Gendreau, Potvin (IGP) model [IGP03] allows one to compactly represent TD travel
time functions that are both continuous and verify the FIFO property. A TD travel time function
is computed from a constant travel distance di,j and a piecewise constant TD speed function
vi,j associating a travel speed to each time-step. In this model, travel may happen over multiple
time-steps, and thus be performed at different speeds. Each unit of time traveling during time-step
k allows one to reduce the remaining distance of vi,j(k) units. The IGP algorithm introduced in
[IGP03] iteratively computes TD travel time ci,j(t) in linear time with respect to the number of
time-steps, i.e., in O(K) time.

[Agu16] avoids running the IGP algorithm for each possible departure time by precomputing a
piecewise linear travel time function. This allows one to compute TD travel times more efficiently,
and it is achieved by determining a set of breakpoints between which travel times can be linearly
interpolated.

Triangle inequality

Provided ideal TD travel time functions, triangle inequality holds in the customer graph. In
practice, however, this property may not always be satisfied, e.g., due to discretization and FIFO
transformation when considering piecewise constant TD travel times, or because of rounding.

Although this property is trivial to ensure in the case of constant travel times (i.e., by computing
shortest paths between all pairs of vertices in polynomial time), it is not the case when considering
TD travel times: it would indeed be expensive – both in space and time – to compute and
memorize TD fastest paths between each pair of vertices and for each possible departure time.
Another possibility consists in computing TD fastest paths on each query to the travel time
function ci,j(t): this option does not require additional space but is likely to lead to redundant
computations.

In the next section, we describe a set of rules commonly used to, amongst others, infer precedence
relations between vertices in order to obtain a tighter but equivalent problem formulation (i.e.,
containing the same set of feasible solutions). Some of these rules can be implemented efficiently
provided triangle inequality holds: when it is not the case, they may lead to mistakenly excluding
feasible solutions; we discuss this issue more in depth in Section 5.2.

191.2. On Time Dependent travel time functions

Discussion

In this section, we have seen how travel time functions may be obtained from real world data that
may, for instance, come from traffic data collected by physical sensors placed on road networks. We
have also described two ways to model TD travel time functions efficiently both in terms of space
and time, namely (i) a model based on piecewise constant travel times – including transformations
to ensure the FIFO property – and (ii) the IGP model, which assumes piecewise constant travel
speeds and constant distances.

The main motivation behind the IGP model is to provide continuous travel time functions, given
that in reality, travel times fluctuate continuously instead of making discrete “jumps”. One could
argue that a piecewise constant function with a fine enough temporal granularity (i.e., with a large
enough number of time-steps) would tend to minimize the individual heights of these “jumps”.

However, the IGP model assumes constant distances between vertices, which seems unrealistic
when representing travel times in a customer graph: it indeed fails to model the fact that the
sequence of road segments used to travel between vertices (i.e., a fastest path in the underlying
road network) may change according to traffic conditions. On the other hand, piecewise constant
travel time functions are able to take this consideration into account, and therefore seems more
suited than the IGP model to represent real-world data, as we shall see in Section 1.5 when
describing classic TD-TSPTWm benchmarks. Note that in [Ben+21], authors managed to model
such alternative paths by using the IGP model to represent TD travel times at the scale of the
road network: the problem is also tackled at this scale, which tends to cause scalability issues in
real-life networks.

1.3 Propagation of TW constraints

Most existing approaches for solving routing problems constrained with TWs use a set of prepro-
cessing rules. This preprocessing aims to produce a “tighter” but equivalent formulation of the
original problem, i.e., both formulations contain the exact same sets of feasible solutions.

This is achieved using a set of local rules that tighten TWs [DDS92], recognize that some arcs cannot
belong to a feasible solution [Lan+93] and infer precedence constraints between vertices [Des+95].
Their usefulness is studied in [AFG01] and they have been generalized to the TD-TSPTW in
[MMM17].

20 CHAPTER 1. TIME DEPENDENT TSP WITH TIME WINDOWS

These rules operate on two sets E and R:

� E denotes the set of edges that can potentially be used to travel from a vertex to its
successor in a feasible solution. We note GUA = (V, E) the digraph of usable arcs. Initially,
E = {(0, i), (i, n), (i, j) : i, j ∈ C ∧ i 6= j}.

� R is the set of precedence relations: it contains couples (i, j) such that vertex i must be
visited before vertex j in a feasible solution (intermediate vertices may be visited between i
and j). We note GPR = (V,R) the precedence digraph. Initially, R = {(0, i), (i, n) : i ∈ C}.

These rules seek to (i) remove edges from E , (ii) add edges to R and (iii) increase release times ei
and decrease deadlines li of vertices i ∈ V. More precisely, these rules can remove an arc (i, j)

from E when they manage to prove that all solutions visiting vertex j immediately after vertex i
are infeasible. Similarly, they can add an arc (i, j) to R when they prove that all solutions visiting
vertex j before vertex i are infeasible.

Arc removal and inference of precedence relations. A first set of rules is used to prove that some
arcs cannot be used in a feasible solution (i.e., by removing arcs from E), or to infer precedence
relations between vertices (i.e., by adding arcs to R). We name these two rules PFR1 and PFR2

given they are based on path feasibility, and define them as:

� PFR1: given a pair of distinct vertices i, j ∈ V, if ai,j(ei) > lj then vertex j cannot be
reached on time when departing as early as possible from vertex i: consequently, arc (i, j)

is removed from E and arc (j, i) is added to R.

� PFR2: a subpath 〈i, j, k〉 is infeasible if vertices j or k cannot be reached on time when
departing as early as possible from i, i.e., if ai,j(ei) > lj or aj,k(max{ej , ai,j(ei)}) > lk.
Given a pair of distinct vertices i, j ∈ V, if there exists a vertex k ∈ V \ {i, j} such that
subpaths 〈i, j, k〉 and 〈k, i, j〉 are both infeasible, then arc (i, j) is removed from E . If subpath
〈i, k, j〉 is also infeasible, then arc (j, i) is added to R.

The second set of rules ensures the transitive closure of R and exploits precedence relations in R
to filter E :

� Given three distinct vertices i, j, k ∈ V, if {(i, j), (j, k)} ⊆ R, then arc (i, k) is added to R
and removed from E .

� For each (i, j) ∈ R, arc (j, i) is removed from E .

211.3. Propagation of TW constraints

Tightening of TWs. The last set of rules is used to tighten TWs by trying to increase the release
time ei and to decrease the deadline li of vertices i ∈ V, based on (i) TWs of other vertices,
(ii) travel times, and (iii) the set of usable arcs E . We name these Tightening Rules TR1 through
TR4, illustrate them in Figure 1.4, and define them as:

� TR1: if a vertex k ∈ V \ {0} can only be reached past its release time ek when departing as
early as possible from each of its predecessors, then ek can be increased, i.e.,

ek ← max

{
ek, min

(i,k)∈E
ai,k(ei)

}
,∀k ∈ V \ {0} (1.6)

� TR2: if departing as early as possible from vertex k ∈ V \ {n} leads to arriving too early at
each of its successors, then its release time ek can be increased, i.e.,

ek ← max

{
ek, min

(k,i)∈E
a−1
k,i (ei)

}
,∀k ∈ V \ {n} (1.7)

� TR3: if departing at late as possible from vertex k ∈ V \ {n} leads to arriving too late at
each of its successors, then its deadline lk can be decreased, i.e.,

lk ← min

{
lk, max

(k,i)∈E
a−1
k,i (li)

}
,∀k ∈ V \ {n} (1.8)

� TR4: if a vertex k ∈ V \ {0} can only be reached before its deadline lk when departing as
late as possible from each of its predecessors, then lk can be decreased, i.e.,

lk ← min

{
lk, max

(i,k)∈E
ai,k(li)

}
,∀k ∈ V \ {0} (1.9)

All of these rules are applied until reaching a fixed point in which no more rule can be applied.
They may prove that a given instance has no feasible solution, e.g., when a vertex in V \ {n} has
no outgoing edge in E , when a vertex in V \ {0} has no incoming edge in E , or when R contains a
cycle.

x
3 4 5 6 7

y
1 2 3 4 5 6 7

z
4 5 6 7

(a) TR1:
ey←min(ax,y(ex),

az,y(ez))

4 5 6 7

1 2 3 4 5 6 7

6 7

(b) TR2:
ey←min(a−1y,x(ex),

a−1y,z(ez))

1 2 3

1 2 3 4 5 6 7

1 2 3 4 5

(c) TR3:
ly←max(a−1y,x(lx),

a−1y,z(lz))

1 2 3 4

1 2 3 4 5 6 7

1 2 3 4

(d) TR4:
ly←max(ax,y(lx),

az,y(lz))

Figure 1.4: Illustration of the four TW tigthening rules. TW of vertex y is tightened using TWs of x
and z and constant travel times cx,y = cy,x = 1, cy,z = cz,y = 2. In (a) and (d), y has two incoming arcs
in E : (x, y) and (z, y). In (b) and (c), y has two outgoing arcs in E : (y, x) and (y, z). Discarded parts of
TWs are represented in red.

22 CHAPTER 1. TIME DEPENDENT TSP WITH TIME WINDOWS

As we have seen in Section 1.2, TD travel time functions are imperfect and may not satisfy
triangle inequality due to discretization or rounding of travel times. Also recall that it would be
impractical to ensure it. Rules PFR1 and PFR2 assume that this property is satisfied: when it is
not the case, they may erroneously rule out feasible solutions. We therefore provide an adaptation
of these rules in Section 5.2.

1.4 State-of-the-art solving approaches

Since its introduction in 1992 by [MD92], different approaches have been proposed to solve the
TD-TSP (or its variants) and a review may be found in [GGG15]. Many approaches are based on
metaheuristics such as, for example, Ant Colony Optimization [Don+08], Tabu Search [IGP03;
Gmi+21], or Large Neighborhood Search [Sun+20]. In this section, we focus on exact approaches,
i.e., approaches that are able to prove the optimality of the computed solutions.

Constraint Programming. [ALS15] have introduced the global constraint TDNoOverlap which
ensures that a set of tasks is not overlapping when transition times between tasks are time-
dependent. This constraint may be used to solve the TD-TSPTW, and it is much more efficient
than classical CP models for the TD-TSPTW (based on allDifferent constraints), but it is not
competitive with state-of-the-art ILP approaches.

Integer Linear Programming. State-of-the-art exact approaches for the TSP are usually based on
ILP [Coo+11]. However, the integration of time within ILP models (to add TW constraints or to
exploit TD cost functions, for example) usually strongly degrades performance. Time may be
discretized into time-steps, but this either dramatically increases the number of variables (when
considering fine steps) or reduces solution quality (when considering coarse steps). [BS19] have
introduced Dynamic Discretization Discovery to overcome this issue by dynamically refining
time-steps to strengthen time-indexed ILP models. This approach is used by [Vu+20] for solving
the TD-TSPTW under both the makespan and duration objectives. It performs best on instances
with very tight TWs, and it dominates the Branch and Cut approach of [MMM17]. A stronger
relaxation was proposed by [VHV22] to improve performance on the TD-TSPTWd.

[CGG14] represents time-dependent travel times using the Ichoua, Gendreau, Potvin (IGP) model,
introduced by [IGP03] and presented in Subsection 1.2.2. Recall that in this model, the distance
between two vertices is assumed to be constant (i.e., the same sequence of road segments is always
used to travel between two vertices), whereas travel speeds are time-dependent and are defined
by piecewise-constant functions: during time-step k ∈ K, the travel speed from i to j is constant
and denoted vijk. Authors propose to decompose vijk in three factors vijk = uijbkδijk, where:

� uij is the maximum travel speed from i to j during the whole time horizon (i.e., uij =

maxk∈K vijk),

� bk is the best congestion factor over all arcs during time-step k (i.e., bk = maxi,j∈V vijk/uij),

231.4. State-of-the-art solving approaches

� δijk represents the degradation of the congestion factor of arc (i, j) during time-step k (i.e.,
δijk = vijk/(uijbk)).

A key parameter is ∆, the smallest value of all δijk values (i.e., ∆ = mini,j∈V,k∈K δijk): When
∆ = 1, all arcs (i, j) have the same congestion factor bk for all time-steps k ∈ K. In this case, the
TD-TSP can be solved as a classic asymmetric TSP with constant travel times. When ∆ < 1, the
optimal solution computed when assuming ∆ = 1 provides a lower bound which is used in the
branch-and-bound algorithm of [Ari+18]. [Ari+19] tackles the TD-TSPTWm by enhancing this
algorithm’s branching strategy with a dominance rule induced by TWs. This approach performs
best when all arcs share rather similar congestion patterns, i.e., when ∆ is very close to 1.

Dynamic Programming. The Dynamic Programming (DP) approach proposed by [Bel62] for the
TSP has been extended to handle TD cost functions by [MD96] and TWs by [CMT81]. It has
also been extended to Vehicle Routing Problems (VRPs) in [Hoo16] and to TD-VRPs in [RCS20].
Because the solving approach we propose for the TD-TSPTWm in Chapters 4 and 5 is based on
DP, we only briefly list relevant approaches in this section and study DP more in depth in the
context of the TSP in Chapter 2.

As the number of states explored by DP for the TSP is in O(n · 2n), different approaches have
been proposed to avoid combinatorial explosion. A first possibility is to consider a relaxed state
space, where some states are merged into a single one – as proposed by [CMT81] for the TSPTWm,
[BMR12] for the TSPTWΣt, and [TI17] for the TSPTWd. In this case, the optimal solution in the
relaxed state space provides a lower bound. [LMS22] extended this approach to time-dependent
travel time functions – considering both the makespan and duration objectives – and introduced
the ti-tour relaxation which outperforms ILP approaches of [Ari+19] and [Vu+20]. It is not
anytime as it does not yield approximate solutions during search: it either provides the optimal
solution – given enough time and memory – or no solution at all.

Another possibility is to use Restricted DP (RDP), introduced by [MD96], where an upper bound
is computed by limiting the number of states stored at each level to the H best ones. RDP is
neither exact nor anytime as a single approximate solution is computed at the final layer.

More recently, [Pra23] proposed to solve the TD-TSPTWm by combining DP with Large Neigh-
borhood Search (LNS). Starting from an initial solution that may violate constraints, it consists in
iteratively performing a sequence of destroy and repair operations (i.e., removing and re-inserting
customers) to try to find better solutions. Solutions are repaired by exploring all possible reinser-
tions using DP, allowing one to obtain locally optimal paths from solutions in which customers
have been removed. In the destroy phase, customer removals are constrained in such a way that
the repair phase has bounded space and time complexities, exploiting the fact that hard TW
constraints reduce the size of the DP search space. Diversity is increased through the use of
perturbations and restarts. Note that this approach is not purely exact, although it manages to
close instances with relatively tight TWs when it finds a solution whose cost is equal to a lower
bound computed at the beginning of resolution. We nonetheless present this approach given it is

24 CHAPTER 1. TIME DEPENDENT TSP WITH TIME WINDOWS

the state-of-the-art for quickly finding optimal or close-to-optimal solutions both when considering
the TD-TSPTWm and the TSPTWm.

Table 1.2 summarizes the approaches we experimentally compare to our solver in Chapter 7.

Ref. Name Type Objective

[Ari+19] Ari19 LP - Relaxation to the TSPTWm makespan
[Vu+20] Vu20 LP - Dynamic time discretization makespan, duration
[LMS22] Ler22 DP - State Space Relaxations makespan, duration
[Pra23] Pra23 DP - Large Neighborhood Search makespan

Table 1.2: TD-TSPTWm solvers experimentally evaluated in Chapter 7.

1.5 Classic benchmarks

In this section, we introduce benchmarks commonly used to evaluate recent TD-TSPTWm solving
approaches. Because these benchmarks are typically based on randomly generated TD travel time
functions, we highlight their weaknesses and also present the benchmark of [RCS20] which aims
to provide realistic TD travel time functions.

The hardness of a TD-TSPTW instance depends on multiple factors, including the number of
vertices |V|, the tightness of TWs, as well as the granularity (i.e., the number of time-steps |K|)
and variability of TD travel time functions.

In order to compare the tightness of instances generated with different models, we compute the
percentage of customer pairs that have Overlapping TWs and note it OTW, i.e.,

OTW = 100 ∗ |{{i, j} ⊆ C : [ei, li] ∩ [ej , lj] 6= ∅}|
|{{i, j} ⊆ C}| (1.10)

We compare the variability of TD travel time functions through value 0 ≤ ∆ ≤ 1. Recall from
Section 1.4 that the solving approach for the TD-TSPTWm of [Ari+19] manages to compute tight
lower bounds when ∆ is close to 1, i.e., when TD travel speeds of all arcs vary rather uniformly
throughout the time horizon.

Benchmark BAri19. This benchmark has been used by [Ari+19] to evaluate Ari19. It has been ran-
domly generated according to the following parameters: the number of vertices n ∈ {16, 21, 31, 41},
the congestion factor ∆ ∈ {.70, .80, .90, .95, .98}, the traffic pattern P ∈ {B1, B2} and the TW
tightness β ∈ {0, 0.25, 0.50, 1}. There are 30 instances for each combination (n, β,∆, P), leading
to a total of 4800 instances.

TWs are generated in a way that guarantees instance feasibility: starting from a randomly
generated tour in which vertex i ∈ V is visited at time vi, TWs are placed around vi and the
release time ei is reduced by a factor of β to widen TWs. More formally, TWs are obtained by
setting ei = max (0, β · (vi − 40)) and li = vi + 40, ∀i ∈ V. Therefore, the smaller β, the wider

251.5. Classic benchmarks

β = 0 β = 0.25 β = 0.50 β = 1

(a) Benchmark BAri19 (n = 41)
w = 150 w = 40

(b) Benchmark BVu20 (n = 60)

Figure 1.5: Distribution of customers’ TWs on sample instances. The horizontal axis represents the time
horizon; each horizontal line represents the TW of a customer. Customer TWs are presented, from bottom
to top on the vertical axis, in increasing lexicographical order (li, ei). We do not present a sample TW
distribution for BRif20 as TWs are generated using the same model as BAri19.

the TWs: the resulting layout is illustrated in Figure 1.5a on a sample instance, and the average
OTW for instances with β = 0 (resp. 0.25, 0.50, and 1) is equal to 100 (resp. 90, 67, and 15).

TD travel times of this benchmark have been randomly generated according to a rather simple
model: customers are randomly distributed in three concentric circular zones Z1, Z2, and Z3.
Euclidean distances between vertices in this plane are used together with TD travel speed functions
to compute TD travel times using the IGP model described in Subsection 1.2.2: a single TD
travel speed function sZi(k) is defined for each of the three zones, i.e., all arcs originating from a
vertex in zone z share the same travel speed function sz(k).

These three functions are obtained, for all instances, from a single and arbitrary piecewise constant
function sbase(k) composed of 73 time-steps by increasing congestion (i.e., decreasing speeds) at
certain times. In practice, congestion exclusively happens during morning and evening hours (i.e.,
in the first 24 and last 25 time-steps, respectively), parameter P determines which two zones
become congested, and parameter ∆ defines the degree of congestion: if zone Z1 is the most
congested zone according to P , then sZ1(k) = δZ1(k) · sbase(k), where δZ1(k) ∈ {∆, 1}, ∀k ∈ K.
We illustrate in Figure 1.6 the TD travel speeds used in instance class P = B1,∆ = 0.70 (i.e.,
instances with maximal congestion) and refer the reader to [Ari+19] for more details.

Some of the weaknesses of such TD travel time functions are inherent to the IGP model, i.e.,
distances are assumed to be constant, which leads to assuming that the fastest path between two
vertices in the road network does not change throughout the day. In this specific benchmark,
(i) distances are symmetric, which disregards the potential presence of one-way streets and, more
importantly, (ii) speeds vary rather homogeneously on all arcs throughout the planning horizon.

26 CHAPTER 1. TIME DEPENDENT TSP WITH TIME WINDOWS

0.00

0.25

0.50

0.75

1.00

S
p

ee
d

/c
on

ge
st

io
n

fa
ct

or

Base speeds sbase(k)

Time-steps k

Congestion factors δzi(k)

z1

z2

z3

Speeds szi(k)=sbase(k) · δzi(k)

Figure 1.6: Travel time functions of BAri19 instances when P = B1 and ∆ = 0.70. The base travel speed
function (left) is identical for all instances of BAri19; congestion factors (center) depend exclusively on P
and ∆ and are used to decrease travel speeds (right) in specific zones (here, z2 and z3) during the morning
and evening hours.

Benchmark BVu20. [Vu+20] introduced an extension of BAri19 in which TD travel time functions
are generated using the same model, but the number of vertices has been increased to n ∈
{60, 80, 100} and only four values of ∆ are considered, i.e., ∆ ∈ {0.70, 0.80, 0.90, 0.98}.

Also, TWs are obtained in a different way: instead of determining TW widths with parameter
β, TWs have a fixed width of w time units, where w ∈ {40, 60, 80, 100, 120, 150}, i.e., parameter
w is used to set ei = max

(
0, vi − w

2

)
and li = vi + w

2 , where vi is the visit time at vertex i in a
random tour. There are 10 instances for each combination of (n,w,∆), leading to a total of 720
instances. As illustrated in Figure 1.5b, most TWs of this benchmark are much tighter than those
of BAri19: the average OTW over the 120 instances with w = 40 (resp. 60, 80, 100, 120, and 150)
is equal to 5 (resp. 8, 11, 14, 16, and 20).

Benchmark BRif20. In order to evaluate our approach on more realistic TD cost functions, we
consider the benchmark introduced by [RCS20] and refer to it as BRif20. As we have seen in
Section 1.2, TD cost functions of this benchmark were generated by computing shortest paths in
the road network of Lyon for all possible departure times, using a realistic traffic simulation built
from real-world data. Different piecewise-constant TD cost functions are available: they depend
on two parameters σ and l that respectively determine the spatial and temporal granularities of
traffic data. In this thesis, we consider the finest granularities, i.e., ideal spatial coverage (σ = 100)
and 6-minute time-steps (l = 6). TD travel time functions are defined over a time horizon of
twelve hours and are therefore composed of 120 time-steps.

Because we are interested in comparing the performance of various TD-TSPTWm solvers on
benchmarks with both artificial and realistic TD travel time functions while keeping most other
parameters equal, we do not use the original TWs of BRif20 but instead generated new TWs using a
model similar to the one used for BAri19. We therefore consider instances with n ∈ {21, 31, 41} and
TW tightness is controlled by β ∈ {0, 0.25, 0.50, 1}. There are 150 instances for each combination
of (n, β), leading to a total of 1800 instances. The average OTW over the 450 instances with
β = 0 (resp. 0.25, 0.50, and 1) is equal to 100 (resp. 86, 62, and 16).

271.5. Classic benchmarks

Note that, in BRif20, value ∆ cannot be controlled. Moreover, unlike in BAri19 and BVu20 where
three rather similar speed functions are shared amongst all arcs, each arc has its own TD travel
time function which may vary independently from the others: consequently, increasing the number
of vertices also increases the number of distinct speed functions, which tends to decrease the
value of ∆. In Figure 1.7, we illustrate this phenomenon and also show that ∆ decreases when
considering finer time-steps.

In the subset of instances we consider (i.e., |K| = 120 and n ∈ {21, 31, 41}), ∆ is always smaller
than 0.23 and has an average value of 0.09, which is significantly smaller than the lowest value of
0.70 considered in both BAri19 and BVu20. More generally, Figure 1.7 shows us that ∆ is lower
than 0.70 even for small instances with few time-steps.

11 21 31 41 51 61

Instance size n

12

30

60

120

N
u

m
b

er
o
f

ti
m

e-
st

ep
s
|K
|

0.48 0.37 0.28 0.31 0.25 0.24

0.37 0.27 0.18 0.18 0.16 0.13

0.28 0.19 0.11 0.12 0.09 0.08

0.20 0.12 0.07 0.08 0.06 0.05

0.0

0.1

0.2

0.3

0.4

0.5

C
o
n

gestion
factor

∆

Figure 1.7: Mean ∆ values on TD instances of BRif20 with ideal spatial granularity (i.e., , σ = 100 and
|K| > 1). Instances are grouped by size n and number of time-steps in TD travel time functions |K|.

Other notable benchmarks. [Agu16] proposed a TD-TSPTW benchmark which consists in TD
travel time functions composed of 6-minute time-steps that originate from the same sensor data as
BRif20. [Agu16] estimated missing sensor information through interpolation, whereas BRif20 aims
to provide more realistic information by obtaining this data from a traffic simulator. Instances
may contain extra precedence constraints, associate either one or two TWs to each vertex and
sizes range in n ∈ {10, 20, 30, 50, 100}.

Original TWs of BRif20 are obtained by dividing the time horizon into 2, 4, or 6 disjoint TWs and
uniformly assigning them to customers [RCS20]. Unlike many TW generation models, TWs are
not generated from the visit times in a TD-TSP solution and instance feasibility is not guaranteed.
This model appears to be sensible when considering some real world use-case in which customers
can choose a desired time range amongst a limited set of disjoint time slots.

More recently, [Pra23] introduced a TD-TSPTWm benchmark which does not consider vehicle
routing on a road network, but instead consists in planning observations of satellites orbiting
around the Earth. In this context, TD travel times and TWs depend on the altitude of satellites
and on their (time-dependent) relative position to the observed areas.

28 CHAPTER 1. TIME DEPENDENT TSP WITH TIME WINDOWS

Discussion. In this section, we have introduced TD benchmarks commonly used to evaluate TD-
TSPTW solvers. Because of weaknesses in TD travel time functions in some of these benchmarks,
we also consider an additional benchmark designed to provide realistic TD travel times. These
benchmarks differ both in instance sizes, TW widths, and TD travel time functions: we provide a
summary of their features in Table 1.3, and consider these three benchmarks when comparing
TD-TSPTWm solvers in Chapter 7.

Note that TW generation schemes generally guarantee instance feasibility, but this assumption
is unlikely to always hold when considering real-world problem instances. Solving infeasible
instances require proving that no solution satisfying TW constraints exist. Such a proof can
only be achieved by exact solving approaches: it may be trivial to obtain (e.g., using the TW
constraint propagation rules described in Section 1.3), or may instead require enumerating an
exponential number of partial solutions.

Finally, we compared TD travel time functions through metric ∆, which has been used by [Ari+19]
to generate artificial travel time functions for which relatively tight TD-TSPTWm lower bounds
can be computed. This metric allows one to compare how homogeneously TD travel speeds vary
over the time horizon. It however has limits: indeed, it considers that travel is possible on all arcs
during the entire time horizon, failing to recognize that TWs reduce the set of times when travel
is possible.

TD travel times ∆(%) TWs
Name Ref. Inst. sizes n Model |K| Min. Mean Max. Width OTW (%)
BAri19 [Ari+19] {16, 21, 31, 41} IGP 72 70 87 98 β = 0 100

β = 0.25 90
β = 0.50 67
β = 1 15

BVu20 [Vu+20] {60, 80, 100} IGP 72 70 85 98 w = 150 20
w = 120 16
w = 100 14
w = 80 11
w = 60 8
w = 40 5

BRif20 [RCS20] {21, 31, 41} Piecewise const. 120 1 9 23 β = 0 100
β = 0.25 86
β = 0.50 62
β = 1 13

Table 1.3: Overview of the three TD-TSPTW benchmarks considered for experimental evaluation in
Chapter 7. Column |K| contains the number of time-steps in time-dependent travel time functions. Column
OTW contains the mean OTW over all instances, in percentage, for each benchmark and TW width.

291.5. Classic benchmarks

1.6 Discussion

In this chapter, we have formalized the TD-TSPTW under different objective functions and
described special cases of this problem. We then studied how realistic TD travel time functions
may be obtained and modeled, and presented a set of rules commonly used to obtain a tighter
problem formulation from travel times and TW constraints. We finally presented state-of-the-art
solving approaches for the TD-TSPTWm and benchmarks commonly used to evaluate them.

In Chapter 2, we show how Dynamic Programming (DP) may be used to solve the TSP and its
TD or TW-constrained counterparts. While DP is both exact and flexible, its scalability is limited:
we therefore discuss of scalable algorithms that can be used to solve such planning problems in
Chapter 3, before presenting our solving approach for the TD-TSPTWm in Chapters 4 and 5.

30 CHAPTER 1. TIME DEPENDENT TSP WITH TIME WINDOWS

2 Dynamic Programming

Chapter

Contents
2.1 Dynamic Programming (DP) for the TSP 32

2.2 DP formulations for generalizations of the TSP 36

2.2.1 Time-Dependent travel times . 36

2.2.2 Time Window constraints . 37

2.2.3 Precedence constraints . 38

2.2.4 Discussion . 38

2.3 Improving DP’s scalability . 38

2.3.1 Restricted Dynamic Programming . 39

2.3.2 Computing lower bounds through relaxed state spaces 39

2.4 Frameworks related to DP . 40

2.4.1 Multivalued Decision Diagrams . 40

2.4.2 Domain-Independent Dynamic Programming 41

2.5 Discussion . 42

Dynamic Programming (DP) is an exact method that can be used to solve discrete optimization
problems such as shortest path problems and routing problems, including the TD-TSPTW.
Similarly to the Divide-and-Conquer paradigm, DP consists in (i) recursively decomposing the
problem to solve into smaller subproblems, and (ii) combining their solutions to solve the original
problem. Quick-Sort is an example of a Divide-and-Conquer sorting algorithm: it consists in
partitioning the values to be sorted into two parts in such a way that the values of the first part
are smaller than the values of the second part, before recursively sorting both parts separately.

DP however differs from Divide-and-Conquer because it exploits the fact that some subproblems
overlap, i.e., that the solution of a single subproblem is often a prerequisite to solve multiple
larger subproblems. These redundant computations are avoided by memorizing the solution to
each subproblem the first time it is solved, and reusing the memorized solution whenever the
same subproblem is encountered again.

This chapter focuses on DP because this paradigm is used by multiple state-of-the-art solving
approaches for the TD-TSPTW, including the one we propose in Chapters 4 and 5. Moreover, this
paradigm has the advantages of being both exact and flexible, which may explain why original
formulations of the TD-TSP and the TSPTW were based on DP.

31

We first describe a DP model to solve the TSP in Section 2.1. We then illustrate DP’s flexibility in
Section 2.2 by showing how it can be extended to handle generalizations of the TSP by considering
time-dependent travel times and TW constraints. Because DP requires exponential space and
time to solve these problems, we describe classic and problem-independent techniques used to
improve its scalability in Section 2.3. We finally present recent declarative frameworks that are
based on or borrow ideas from this paradigm in Section 2.4.

2.1 Dynamic Programming for the TSP

Recall from Chapter 1 that the Traveling Salesman Problem (TSP) is an NP-Hard discrete
optimization problem in which the goal is to find a shortest tour that visits a set of locations and
returns to its starting point. For self-containedness, we provide a TSP definition that is broad
enough to later be extended to handle time-dependent travel times and time window constraints
in Section 2.2.

A TSP instance is defined by a complete directed graph with vertices V and non-negative travel
costs ci,j associated to each arc (i, j) ∈ V2, which are not necessarily symmetric. In vertex set
V = {0, . . . , n}, we distinguish two special vertices, 0 and n, which respectively denote the origin
and destination vertices. In practice, 0 and n may refer to the same location: in this case, the
origin vertex may be chosen arbitrarily, as solutions to the TSP are cycles. For convenience, we
note C the set of customer vertices C = V \ {0, n}. A solution to this problem is a shortest path
from 0 to n that visits each customer vertex exactly once, i.e., a permutation of the customer set
C leading to a Hamiltonian path of minimal cost.

A naive way to solve this problem is to perform an exhaustive search in O(|C|!) time, i.e., to
enumerate every permutation of the customer set C in order to find an optimal solution.

DP formulation. The DP formulation for solving the TSP was independently proposed in 1962
by Bellman [Bel62] and by Held and Karp [HK62], and is often referred to as the Held-Karp
algorithm.

This formulation consists in defining a subproblem as finding a shortest path from the origin
vertex 0 to a vertex i ∈ V while visiting exactly once each vertex of a set S ⊆ V. A subproblem
is therefore defined as a couple (i,S) ∈ V × 2V , such that {0, i} ⊆ S. Subproblem (i,S) is also
called a state, and i and S are called state variables. We note p(i,S) the optimal value associated
to state (i,S), i.e., the cost of a shortest path from 0 to i that visits each vertex of S exactly
once. Recall that solving the TSP requires determining the cost of a shortest path from vertex 0

to vertex n visiting each vertex of V once, i.e., it requires computing p(n,V).

32 CHAPTER 2. DYNAMIC PROGRAMMING

Bellman equations or recurrence equations define how to recursively compute the optimal value
associated to any given state. They exploit the fact that the TSP – using this state definition –
has an optimal substructure, i.e., a subproblem can be solved by combining the optimal solutions
of simpler subproblems. These equations may be formulated as:

p(i,S) =

c0,i if S = {0, i} (2.1a)

min
j∈S\{0,i}

(p(j,S \ {i}) + cj,i) otherwise. (2.1b)

Equation 2.1a describes the base case of the recurrence relation by providing the value of trivial
subproblems, i.e., subproblems (i,S) for which a single vertex has been visited after departing
from the origin vertex (i.e., S = {0, i}). Optimal values associated to these subproblems are equal
to the travel cost from the origin vertex 0 to a vertex i ∈ V, i.e., c0,i.

Equation 2.1b – the induction case – solves a given subproblem by splitting it into smaller
subproblems and combining their solutions. More precisely, it considers all possible ways to obtain
an optimal path for a given state (i,S) by decomposing it into |S| − 2 smaller subproblems that
end on a vertex j ∈ S \ {0, i} and visit intermediate vertices S \ {i}. The solutions to these
subproblems are first extended by using one more arc from j to i of cost cj,i, and then combined
by only retaining a least-cost alternative.

Resolution. A solving algorithm is obtained straightforwardly from the recurrence equations by
using memoization, as described in Algorithm 2.1. This algorithm starts from the main problem
(n,V) and recursively breaks it down into smaller subproblems until reaching the base cases.
Memoization consists in memorizing the value associated to each state the first time it is computed
(Lines 2-4) and reusing this value in subsequent calls. Memoization is necessary in order to avoid
performing redundant computations: it allows one to exploit the fact that subproblems overlap, i.e.,
that the solution to a given subproblem is usually required to solve multiple larger subproblems.

Algorithm 2.1: Recursive computation of p(i,S)

input :A vertex i ∈ V and a subset of vertices S ⊆ V such that {0, i} ⊆ S
output : p(i,S) ∈ R+

0 , the cost of a shortest path from 0 to i visiting each vertex of S once
global variable :an initially empty map m associating a real value to every state (i′,S ′) encountered

during resolution

1 function p-rec(i,S):
2 if (i,S) 6∈ m then
3 if S = {0, i} then set m(i,S) to c0,i;
4 else set m(i,S) to minj∈S\{0,i} (p-rec(j,S \ {i}) + cj,i);

5 return m(i,S);

332.1. Dynamic Programming for the TSP

Relation to computing shortest paths. The recursive formulation of function p defines a weighted
Directed Acyclic Graph (DAG), in which each node represents a state (i,S). There exists an edge
with weight ci,i′ from subproblem s = (i,S) to subproblem s′ = (i′,S ′) if subproblem s is a direct
prerequisite to solve s′, i.e., iff p-rec(i′,S ′) calls p-rec(i,S).

This graph represents dependencies between subproblems, and also models weighted transitions
between states. We can see the DP resolution of the TSP as a shortest path problem in this
graph, provided we consider an extra initial state s0 = (0, {0}) that represents the state in which
no customer has yet been visited and the salesman is located at the origin vertex 0. This initial
state is linked to the states defined in the base case of the recurrence equations. Solving this DP
problem is then akin to finding a shortest path form initial state s0 to final state sf = (n,V) in
this state transition graph.

More formally, we define this state transition graph as a layered and weighted DAG GST =

(N ,A, w). The set of states N is partitioned into n + 1 layers (or stages): we note N l the
set of states that belong to layer l ∈ [1, n+ 1]. More precisely, set N l contains all states (i,S)

such that |S| = l, i.e., states are grouped according to the number of visited vertices |S|, and
N =

⋃
l∈[1,n+1]N l.

The first and last layers each contain a single state, i.e.,N 1 = {s0} andN n+1 = {sf}. Intermediate
layers l ∈ [2, n] contain all states (i,S) such that i ∈ C, and S has cardinality l, is a subset of
V \ {n} and contains both 0 and i, i.e.,

N l =
{

(i,S) ∈ C × 2V\{n} : {0, i} ⊆ S ∧ |S| = l
}
,∀l ∈ [2, n] (2.2)

Transitions only exist between states of consecutive layers: more specifically, given a layer l ∈ [1, n],
there exists an edge from s = (i,S) ∈ N l to s′ = (i′,S ′) ∈ N l+1 with weight w(s, s′) = ci,i′ iff
S ∪ {i′} = S ′, i.e.,

A =
⋃

l∈[1,n]

{
((i,S), (i′,S ′)) ∈ N l ×N l+1 : S ∪

{
i′
}

= S ′
}

(2.3)

Note that p(i,S) denotes the cost of a shortest path from the initial state s0 to (i,S) in this DAG:
consequently, solving the problem is equivalent to finding a shortest path from s0 to sf = (n,V)

in GST. We illustrate in Figure 2.2 the state transition graph GST associated to the asymmetric
TSP instance of Figure 2.1.

Also notice that the size of this state transition graph grows exponentially with respect to the
number of vertices to visit, given states exist for each subset of V. Algorithm 2.1 is just one way
to compute such shortest paths; optimal values associated to each state may be computed in
any topological ordering of GST. We study shortest path algorithms more in depth in Chapter 3,
including algorithms designed for scalability in the context of limited space and time resources.

34 CHAPTER 2. DYNAMIC PROGRAMMING

d A

B C

1

2

3 4
3

3
2

1

(a) Graph representation

0 1 4 3
2 0 3 2
3 3 0 1
3 2 1 0

d

d
A

A

B

B

C

C

(b) Cost matrix c

Figure 2.1: Sample TSP instance with three customer vertices C = {A,B,C}. Vertex d represents both
the origin and the destination. The optimal solution is 〈d,A,C,B, d〉 and has a cost of 7 units.

s0=(d, {d})

(A, {d,A}) (B, {d,B}) (C, {d,C})

(B, {d,A,B}) (C, {d,A,C}) (A, {d,A,B}) (C, {d,B,C}) (A, {d,A,C}) (B, {d,B,C})

(C, {d,A,B,C}) (B, {d,A,B,C}) (A, {d,A,B,C})

sf=(d′, {d,A,B,C, d′})

1
4

3

3 2 3 1 2 1

1 12 23 3

3
3

2

l = 1

l = 2

l = 3

l = 4

l = 5

Figure 2.2: DP state transition graph for the asymmetric TSP instance of Figure 2.1. Vertices represent
subproblems and arcs represent weighted transitions between states. Paths start from and end at vertex d;
we refer to the destination vertex as d′. The shortest path from s0 to sf is represented in blue.

Computing optimal visit orders. For the sake of simplicity, we have so far focused on computing
the cost of an optimal solution and disregarded the computation of an optimal vertex ordering.
Algorithm 2.2 describes how to compute this ordering for any given state – after having computed
its optimal value – by recursively tracing back the decisions that lead to it.

Algorithm 2.2: Recursive computation of an optimal path after resolution
input :A subproblem (i,S) for which the solution needs to be computed

A map m associating to each state its optimal value
output :An optimal solution to subproblem (i,S)

1 function TSP-path(i,S):
2 if S = {0, i} then
3 return 〈0, i〉;
4 else
5 foreach vertex j ∈ S \ {0, i} do
6 if m(j,S \ {i}) + cj,i = m(i,S) then
7 return TSP-path(j,S \ {i})+〈i〉;

352.1. Dynamic Programming for the TSP

Complexity analysis. The space and time complexities of Algorithm 2.1 naturally flow from the
state definition and the recurrence equations. Because i ∈ V and S ⊆ V, there are O

(
|V| · 2|V|

)
possible states for which value p(i,S) must be computed and memorized. The induction case of
the recurrence relation combines the solutions of |S| − 2 ≤ |V| subproblems. Consequently, this
algorithm requires O

(
|V| · 2|V|

)
space and O

(
|V|2 · 2|V|

)
time.

Discussion. In this section, we have seen that DP is faster than exhaustive search to solve the TSP.
These gains in running time is achieved by memorizing solutions to overlapping subproblems, and
therefore comes at the expense of an exponential space complexity. Consequently, DP alone only
allows one to solve relatively small problem instances: it fails to provide an optimal solution within
reasonable space and time constraints otherwise. Note that DP is not an anytime approach (unlike,
e.g., Branch-and-Bound approaches): in other words, it does not output a sequence of solutions of
increasing quality, but instead outputs a single optimal solution at the end of resolution.

We have also shown that solving this problem using DP is equivalent to computing shortest paths
in a state transition graph; in Chapter 3, we discuss of shortest paths algorithms that aim to
be more scalable by (i) avoiding to consider provably suboptimal paths, and (ii) by seeking to
provide a sequence of solutions of increasing quality in order to provide the best possible solution
under space and time constraints.

2.2 DP formulations for generalizations of the TSP

In this section, we illustrate DP’s flexibility by adapting our model to solve generalizations of the
TSP: we separately model the main variants of the TSP which are relevant to later tackle the
TD-TSPTWm in Chapter 4. Similarly to the TSP, these variants can be expressed using only
state variables (i,S): we therefore model them by providing alternative definitions of p(i,S).

2.2.1 Time-Dependent travel times

As presented in Chapter 1, the Time-Dependent TSP (TD-TSP) is a generalization of the TSP in
which the travel time between vertices i and j is a function of the departure time from i, i.e.,
ci,j(t) denotes the travel time from i to j when departing from i at time t. More precisely, we
consider the TD-TSPm in which the departure time t0 from the origin vertex 0 is fixed.

The DP model for solving the TD-TSPm was first introduced by [MD96]. When the FIFO property
is satisfied (see Section 1.1), TD travel times are trivially integrated into the recurrence equations
of the TSP. In this case, p(i,S) denotes the earliest arrival time at vertex i when departing from
the origin vertex 0 at time t0 and visiting each vertex of S once. It may be defined as follows:

p(i,S) =

t0+c0,i(t0) if S = {0, i} (2.4a)

min
j∈S\{0,i}

[p(j,S \ {i}) + cj,i(p(j,S \ {i}))] otherwise. (2.4b)

36 CHAPTER 2. DYNAMIC PROGRAMMING

When it is possible to wait before departing from a vertex and TD travel time functions do not
satisfy the FIFO property, the principle of optimality does not hold [MD96] and these equations
are no longer valid, given it may be possible to arrive sooner by waiting. In this thesis, we assume
TD travel time functions satisfy the FIFO property.

2.2.2 Time Window constraints

Recall from Chapter 1 that the TSP with Time Windows (TSP-TW) generalizes the TSP by
restricting the visit time at each vertex i ∈ V to belong to a time interval [ei; li]. Also recall that
we note t↑[ei;li] the TW-aware visiting time at vertex i, which includes a waiting time until ei in
case of early arrival (i.e., t < ei), returns infinity when arriving too late (i.e., t > li), and returns
t when arriving on time (i.e., ei ≤ t ≤ li).

In this thesis, we consider the makespan objective: the goal is to find a Hamiltonian path departing
from the origin vertex 0 at time e0 such that (i) TW constraints are satisfied and (ii) the arrival
time at the destination vertex n is minimal. In this context, p(i,S) denotes the earliest visit time
at vertex i when departing from vertex 0 at time e0 and visiting each vertex of S during its TW.
The DP formulation for solving the TSPTWm was originally introduced by [CMT81] and consists
in defining p(i,S) as:

p(i,S) =

(e0+c0,i)↑[ei,li] if S = {0, i} (2.5a)

min
j∈S\{0,i}

(p(j,S \ {i}) + cj,i)↑[ei,li] otherwise. (2.5b)

The Bellman equations of the TSP are generalized relatively easily to the TSPTWm because TW
constraints involve visiting times – i.e., the objective function – and can be verified using state
variable i.

They are however not as straightforward to extend to the TSPTWΣt, i.e., the travel time objective,
in which waiting times are excluded from the objective function. In this case, for any given state
(i,S), it is both desirable to minimize the arrival time – in order to maximize the slack time,
i.e., the time left to visit the remaining vertices V \ S within their TWs – and the travel time.
Greedily minimizing either of these objectives is not sufficient as they may be conflicting: it
is therefore necessary to associate to each subproblem (i,S) a set of Pareto-optimal solutions
with respect to both these objectives. The recurrence equations to solve this problem involve
an extra state variable t (see, e.g., [BMR12]): in this case, the problem is solved by computing
mint∈[en,ln] p(n,V, t), where p(i,S, t) represents the minimum travel time to visit vertex i at time
t when departing from the origin vertex 0 at time e0 and visiting each vertex of S during its
TW. A similar reasoning may be used to obtain a DP formulation for the TSPTWd, in which the
departure time from the origin vertex is a decision variable.

372.2. DP formulations for generalizations of the TSP

2.2.3 Precedence constraints

When considering routing problems in which visit times are constrained by TWs, precedence
constraints between vertices can often be inferred from TWs and travel times, as we have seen in
Section 1.3. More generally, some applications involve solving an asymmetric TSP with precedence
constraints. This problem is called the Sequential Ordering Problem (SOP) [Asc+93]. These
precedence constraints may be represented by a directed graph GPR = (V,R) in which (i, j) ∈ R
requires vertex i to be visited before vertex j. We assume that R is transitively closed, i.e.,
(i, j) ∈ R ∧ (j, k) ∈ R =⇒ (i, k) ∈ R.

We model this problem using DP by setting p(i,S) =∞ whenever constraints are violated, i.e.,
when any of i’s predecessors have not yet been visited. More formally, we note pred(i) the set
of predecessors of vertex i, i.e., pred(i) = {j ∈ V : (j, i) ∈ R}, and set p(i,S) = ∞ whenever
pred(i) 6⊆ S.

2.2.4 Discussion

We have seen that it is relatively straightforward to extend the DP model of the TSP to handle
generalizations of this problem when they can be expressed using only state variables i and S.
Indeed, time-dependent travel times are handled seamlessly and without increasing the size of
the state space. Hard TW constraints are also straightforward to integrate: such hard constraints
allow DP to solve larger problem instances since they typically reduce the number of states, given
states which have no feasible solution can be discarded. On the other hand, note that modeling
some TSP variants require using additional state variables, which tends to increase the size of the
state space. We advise the reader to refer to [Hoo16; RCS20] for DP formulations of other TSP
variants, including Vehicle Routing Problems.

In Chapter 4, we present a single DP model to solve the TD-TSPTW under the makespan
objective, i.e., a model that handles both time-dependent travel times and TW constraints. In
the next section, we discuss of generic frameworks which leverage DP’s flexibility and allow one
to solve DP problems in a declarative way.

2.3 Improving DP’s scalability

When considering NP-Hard optimization problems such as the TSP, DP does not manage to solve
large problem instances due to its exponential space and time complexities. Richard Bellman coined
this problem the curse of dimensionality [Bel57], which is sometimes referred to as combinatorial
explosion. When considering the TSP, it is based on the observation that each additional customer
to visit roughly doubles the time and space requirements for resolution.

In this section, we present general techniques which allow one to compute upper and lower bounds

38 CHAPTER 2. DYNAMIC PROGRAMMING

using DP. We discuss bounding more in depth in Chapter 3 when tackling optimization problems
by looking for optimal paths in state space graphs, and use it in our solving approach for the
TD-TSPTWm in Chapter 4.

2.3.1 Restricted Dynamic Programming

Restricted Dynamic Programming (RDP) has been introduced by [MD96] in order to find ap-
proximate solutions to Time-Dependent TSP instances too large to be solved optimally using
DP, due to its exponential space and time requirements. RDP consists in limiting the number of
states considered at each level of the state space to the H ∈ N+ most promising ones. In this
application, authors consider as most promising the states with the lowest value, assuming they
are more likely to lead to higher-quality solutions.

Of course, RDP is not exact and only allows one to compute an upper bound on the optimal
solution cost, i.e., it can provide suboptimal solutions as it typically discards (or prunes) some
states. Note that RDP may fail to find a feasible solution in presence of constraints. More generally,
RDP may be used to compute an upper bound on the cost of the shortest path from any state
s to the final stat sf in the state transition graph GST. Parameter H allows one to obtain a
trade-off between computation time and solution quality: when H =∞, RDP is equivalent to the
optimal DP algorithm in which no states are discarded; when H = 1, it is purely greedy and has
a quadratic time complexity.

Notice that the criterion used to rank the states from most to least promising is inexpensive to
compute but relatively near-sighted: in Chapter 3, we present generalizations of this algorithm
which prioritize states not only according to their value (i.e., their cost-so-far) but also according
to an estimate of the remaining cost to obtain a complete Hamiltonian path (i.e., their estimated
cost-to-go to reach the final state sf).

2.3.2 Computing lower bounds through relaxed state spaces

State Space Relaxations (SSRs) [CMT81] consist in mapping the original state space to another
state space of smaller size, in such a way that solving the relaxed problem provides lower bounds
in the original problem. Recall from Section 1.4 that [LMS22] prunes the TD-TSPTW search
space using lower bounds computed through SSRs.

This mapping is defined by a function translating the original state variables to one or more
relaxed state variables. A single relaxed state typically represents several states in the original
search space; there exist transitions between relaxed states whenever a transition exists between
the original states they represent. When multiple transitions exist between relaxed states, only
the one of minimal cost is retained.

Relaxed state spaces are often obtained by ignoring some constraints to make the problem easier

392.3. Improving DP’s scalability

to solve. A relaxed state space overapproximates the set of feasible solutions in the original
problem, i.e., a feasible solution in the relaxed state space is not necessarily a feasible solution in
the original state space, but the converse is true.

For example, a simple relaxation for the TSP would be the n-path relaxation [CMT81]: instead
of considering the original state variables (i,S), only the cardinality of set S is considered, i.e.,
state variables (i, |S|) are used. Using this relaxed state definition, the optimal value associated
to state (i, |S|) denotes the cost of the shortest path from 0 to i that visits |S| vertices, which
relaxes the constraint that each customer must be visited exactly once. This relaxed state space
is considerably smaller than the original one since it has a polynomial size of O

(
|V|2

)
. Of course,

using a mapping that leads to a larger relaxed state space tends to lead to tighter bounds, but
also to higher computational costs.

More generally, solving the problem in such a relaxed state space allows one to compute a lower
bound on the cost of the shortest path from a given state s to the final state sf in the state
transition graph GST.

2.4 Frameworks related to DP

In this section, we describe two problem-independent frameworks used to solve optimization
problems that are related to or based on Dynamic Programming. These frameworks are exact
and achieve scalability by being anytime, i.e., they provide a sequence of solutions of increasing
quality before finding the optimal solution and proving its optimality. Intermediate solutions
provide upper bounds on the cost of the optimal solution and are used together with lower bounds
in order to prune the search space. These frameworks have been used to tackle routing problems
and share similarities with our solving approach for the TD-TSPTWm described in Chapter 4.

2.4.1 Multivalued Decision Diagrams

[Ber+16] provides a review on Multivalued Decision Diagrams (MDDs), a general framework
for solving combinatorial optimization problems, which resembles DP on several aspects (see
[Hoo13] for an analysis of the relationship between these two paradigms). MDDs represent a
problem as a set of variables, domains associated to each of these variables, as well as a set of
constraints. Exact MDDs, similarly to DP, consist in compactly representing the set of feasible
solutions to a given problem as a layered DAG. Each vertex of this DAG represents an assignment
of values to a subset of variables such that constraints are respected. A value is assigned to a
new variable at each layer of this graph. The first layer contains a single vertex – the root r – in
which no variables have been assigned, and the last layer a single vertex t – the target – in which
all variables have been assigned. The set of feasible solutions is therefore encoded by paths from
vertex r to vertex t. An objective function can be handled by associating a weight to each arc
of the DAG, which represents the influence of a given assignment on the value of the objective

40 CHAPTER 2. DYNAMIC PROGRAMMING

function. This effectively encodes the set of optimal solutions as the set of optimal paths from r

to t.

Similarly to DP, exact MDDs suffer from the curse of dimensionality when the size of the state
space grows exponentially with respect to the problem instance size. Consequently, two MDDs
variants are used: Relaxed MDDs are computed by merging states through a user-provided
procedure in order to compute lower bounds by overapproximating the solution set. Restricted
MDDs consist in limiting the number of states considered at each layer of the DAG, which result
in an underapproximation of the solution set and therefore upper bounds. Note that computing
Restricted MDDs is analogous to Restricted DP, and that the concept of Relaxed MDDs is similar
to performing DP in a relaxed state space.

Exact, restricted and relaxed MDDs are then combined into a generic branch-and-bound solving
algorithm which is both exact and anytime, i.e., which outputs a sequence of solutions of increasing
quality until proving optimality (given enough time and memory).

This approach was improved in [Gil+21] by computing new bounds (some of them being problem-
specific), in [GS22] by using Large Neighborhood Search to try to improve the solutions found,
and in [RCR23] by reusing MDDs generated in previous iterations of the algorithm. Results are
presented for several problems – including the TSPTW – for each of these extensions.

2.4.2 Domain-Independent Dynamic Programming

[KB23a] recently introduced Domain-Independent Dynamic Programming (DIDP), a DP-based
discrete optimization framework. As it names implies, it is a problem-agnostic approach to
model and solve problems that can be formulated using DP. It aims to be declarative, i.e., to
decouple modeling and resolution, similarly to other model-based approaches such as Constraint
Programming (CP) and Mixed-Integer Programming (MIP).

DIDP provides a new modeling language which allows one to define state variables, initial and
target states, constraints, as well as transitions between states and their cost. The problem
is solved by finding an optimal path in a state transition graph; this search may be guided
by a user-provided function associating to each state a lower bound on the remaining cost to
reach a target state. DIDP originally used a generalization of A* able to handle different cost
algebras, outperforming MIP and CP models on various problems, including the TSPTWΣt and
the Capacitated Vehicle Routing Problem (i.e., a routing problem with multiple vehicles and
capacity constraints). The framework was also extended to solve these problems using exact and
anytime search algorithms in [KB23c], and augmented with Large Neighborhood Search in order
to converge faster towards quality solutions in [KB23b].

412.4. Frameworks related to DP

2.5 Discussion

In this chapter, we have seen that DP is a paradigm that can be used to solve discrete optimization
problems such as the TSP faster than brute-force approaches: this gain in efficiency is achieved by
recursively decomposing problems into simpler subproblems and combining their solutions, while
taking advantage of the fact that subproblems often overlap. We also defined a state transition
graph which allows one to see the DP resolution of the TSP as a shortest path problem. However,
when tackling NP-Hard problems such as the TSP, DP does not scale well because it requires
solving and memorizing the solution to a number of subproblems which grows exponentially with
respect to the instance size. Consequently, DP fails to provide a solution on large enough instance
sizes given reasonable space and time constraints.

To improve the scalability of DP models, we have studied general techniques to compute lower and
upper bounds, which may be used – as we shall see in the next chapter – to prune the state space.
We also illustrated the flexibility of DP by generalizing a TSP model to handle time-dependent
travel times – without increasing the size of the search space – and hard TW constraints, which
tend to decrease the size of the search space and thus to improve scalability. We then presented
problem-independent frameworks related to DP, which achieve scalability by tackling problems
in an anytime manner, i.e., by first providing approximate solutions before finding an optimal
solution and proving its optimality.

In Chapter 3, we study how discrete optimization problems such as the TSP can be solved by
searching for optimal paths in state transition graphs: we first consider classic algorithms and
then study Exact and Anytime Search (EAS) algorithms for improved scalability. In Chapter 4,
we (i) present a DP model for the TD-TSPTWm and formalize its associated state transition
graph, (ii) instantiate four EAS algorithms which seek to provide the best possible solution under
time and memory constraints and (iii) describe three lower bounds for the TD-TSPTWm, which
are used by EAS algorithms to guide search and to prune the search space.

42 CHAPTER 2. DYNAMIC PROGRAMMING

3 Planning Problems

Chapter

Contents
3.1 Definition of Planning Problems . 44

3.2 Uninformed search algorithms . 46

3.2.1 Depth-First Search . 48

3.2.2 Breadth-First Search . 50

3.2.3 Dijkstra’s shortest path algorithm . 51

3.3 Informed search . 52

3.3.1 Heuristic functions . 52

3.3.2 A* algorithm . 53

3.3.3 Exact and Anytime Search (EAS) algorithms related to A* 56

3.4 Discussion . 60

Planning is an important field of Artificial Intelligence (AI) which consists in, given a description
of an environment, devising a sequence of actions to reach a goal. Many constrained optimization
problems can be modeled as planning problems, e.g., the Traveling Salesman Problem (TSP) and
its variants. A planning problem can be solved by searching for a best path in its associated state
transition graph, using classic algorithms such as Dijkstra’s algorithm or A*.

However, for some problems (e.g., the TSP), the size of the state transition graph grows exponen-
tially with respect to the instance size. In this context, classic shortest path algorithms require
exponential amounts of time and memory and therefore do not scale well enough to solve large
problem instances. We therefore consider anytime shortest paths algorithms: these algorithms
seek to quickly find an approximate solution and keep searching for better solutions as long as
space and time resources are available. We focus on anytime algorithms which are also exact,
i.e., which are able to prove that a given solution is optimal, or that no solution satisfying the
constraints exists.

In this chapter, we first define planning problems and state transition graphs in Section 3.1. We
then present uninformed graph search algorithms which are able to tackle small instances of these
problems in Section 3.2. Finally, in Section 3.3, we consider (i) informed search and (ii) Exact
and Anytime Search (EAS) algorithms, for improved scalability.

43

3.1 Definition of Planning Problems

Planning, i.e., determining an action plan to reach one’s goal, is a fundamental field of AI. Given
a formal description of (i) the initial state, (ii) a goal state to reach, and (iii) the actions available
in a given state as well as their outcome, a planner outputs a sequence of actions. This sequence
of actions, when performed in an environment matching the initial state description, will change
the environment to reach the goal state. One can seek any plan, i.e., any sequence of actions
leading to the goal, or an optimal plan according to some objective function (e.g., the number
of actions). This class of problems may be solved by finding an optimal path in a graph where
nodes represent states, and edges between them represent actions.

We illustrate the main concepts studied in this chapter through examples on the blocks world
problem: this problem consists in rearranging a set of n cubic blocks distributed on k stacks.
Blocks are stacked vertically: a block is either located on top of a single other block, or at the
bottom of a stack. A robot has the goal of changing the initial blocks configuration by moving
them to reach an ideal configuration. The robot can only move a single block at a time, i.e., it
is only able to take a block located on the top of its stack, and has to immediately place it on
top of a (possibly empty) different stack. In Figure 3.1, we illustrate a sample instance of this
problem: Figure 3.1a introduces an arbitrary initial state. Figure 3.1b represents this state after
moving block C, previously on top of stack 1, to the top of stack 2. Figure 3.1c represents the
desired state in which all blocks are placed on stack 2 in alphabetical order, from top to bottom.

B

A

C D

0 1 2

(a) Initial state s0

B

A C

D

0 1 2

(b) Intermediate state s1

B

A

C

D

0 1 2

(c) Goal state sf

Figure 3.1: Sample states of the blocks world problem with n = 4 blocks (A, B, C and D) and k = 3
stacks (0, 1 and 2).

Planning Problems. A planning problem is defined by a tuple (SP ,AP , s0, sf, F, τ, cP), where SP
andAP respectively represent the set of states and the set of actions. States s0, sf ∈ SP respectively
denote the initial and final (also known as terminal or goal) states. Function F : SP → 2AP

associates to every state a set of feasible actions. Given a state s ∈ SP \ sf and a feasible action
a ∈ F (s), the transition function τ : SP ×AP → SP determines the resulting state, and the cost
function cP : SP ×AP → R+

0 determines the cost of this transition.

Without loss of generality, we assume (i) a single initial state s0 and a single final state sf, and
(ii) that in any given state, each action leads to a different outcome, i.e., |{τ(s, a) : a ∈ F (s)}| =
|F (s)| ,∀s ∈ SP .

44 CHAPTER 3. PLANNING PROBLEMS

In the blocks world, a state is defined as a permutation of n blocks, partitioned into k (possibly
empty) subsequences. Because actions consist in moving a block from one stack to another, we
define an action as a pair of stacks (i, j) such that i, j ∈ [0, k − 1] and i 6= j. A feasible action
(i, j) consists in moving the top block of a non-empty stack i to the top of stack j.

In our example from Figure 3.1, six actions are feasible in state s0 since no stack is empty. State
s1 is obtained from s0 by performing action (1, 2), i.e., τ(s0, (1, 2)) = s1. When considering
state s1 from Figure 3.1b, stack 1 is empty so only four actions are possible, i.e., F (s1) =

{(0, 1), (0, 2), (2, 0), (2, 1)}.

A solution to a given planning problem is an ordered sequence of actions π = 〈a1, . . . , ak〉
which leads to final state sf when iteratively applied to the initial state s0. Starting from
s0, the sequence of states obtained is 〈s1, . . . , sk = sf〉, such that all actions are feasible (i.e.,
ai ∈ F (si−1) ∧ si = τ(si−1, ai),∀i ∈ [1, k]). Solution π has length k. In this thesis, we assume
that the cost of a solution is equal to the sum of the costs associated to each action taken, i.e.,∑k

i=1 cP (si−1, ai).

When considering our example from Figure 3.1, a sequence of actions allowing one to reach sf
from s0 is π = 〈(1, 2), (0, 1), (0, 2), (1, 2)〉. This solution has a minimal length of four actions.

State transition graph. One may solve a given planning problem by looking for best paths in
its associated state transition graph (or state space graph). More precisely, the state transition
graph associated to a planning problem P = (SP ,AP , s0, sf, F, τ, cP) is the weighted digraph
GP

ST = (N ,A, w) such that N = SP and edge set A ⊆ N × N represents directed transitions
between states. Edge (s, s′) belongs to A if and only if there exists an action a ∈ F (s) such
that τ(s, a) = s′. The cost function cP is used to associate a weight w to edge (s, s′), i.e.,
w(s, s′) = cP (s, a).

In the state transition graph GP
ST, a solution p = 〈s0, . . . , sk = sf〉 to problem P is a path from

s0 to sf such that (si−1, si) ∈ A,∀i ∈ [1, k]. The cost of this path is the sum of its edges’ weights,
i.e.,

∑k
i=1w(si−1, si).

When considering the blocks world problem, actions are reversible: in a given state s, performing
action (i, j) immediately after action (j, i) leads us back to state s. State transition graphs
modelling instances of this problem are therefore not directed. Also note that the number of
nodes in this graph grows exponentially with respect to the input parameters n and k.

We consider two main classes of planning problems:

� Decision planning problems are solved by finding a feasible solution, or by proving that
no such solution exists. They can be solved by looking for a path from s0 to sf in a state
transition graph.

� Optimization planning problems consist in finding an optimal solution, which can be
achieved by looking for an optimal path from s0 to sf in a state transition graph. They are

453.1. Definition of Planning Problems

a generalization of decision planning problems.

Note that finding a feasible solution can be difficult depending on the problem tackled: for
instance, recall from Chapter 1 that it is trivial to find a solution to the TSP (any ordering of the
customer set is a feasible solution), but it is NP-Complete when considering the TSPTW, i.e.,
when hard constraints on visit times are associated to each customer.

Modeling the TSP as a planning problem. We may formulate the TSP as an optimization planning
problem P = (SP ,AP , s0, sf, F, τ, cP). Recall from the DP formulation of the TSP presented
in Chapter 2 that (i) states are pairs (i,S) such that {0, i} ⊆ S ⊆ V, (ii) the initial state is
s0 = (0, {0}) and (iii) the final state is sf = (n,V). Therefore, the set of states is SP ⊆ V × 2V ,
and an action consists in visiting a yet unvisited vertex, i.e., AP = V \ {0}. More precisely, the
destination vertex n can only be reached if all customer vertices C have been visited: therefore, the
set of feasible actions given a state (i,S) is F (i,S) = {n} when C = S \ {0}, and F (i,S) = C \ S
otherwise. Given a state s = (i,S) and a feasible action a ∈ F (i,S), applying action a to state s
has cost cP ((i,S), a) = ci,a and leads to state τ((i,S), a) = (a,S ∪ {a}).

Problem P may be solved by finding an optimal path from s0 to sf in its associated state transition
graph GP

ST = (N ,A, w). Note that GP
ST is equivalent to the graph GST previously defined in

Section 2.1.

3.2 Uninformed search algorithms

We first consider uninformed search algorithms which allow one to compute paths between the
nodes of a graph. These algorithms are able to solve a planning problem P by finding a path
between s0 and sf in its associated state transition graph GP

ST. Recall that the size of this graph
may grow exponentially with respect to the input parameters (e.g., in the blocks world, |N | grows
exponentially with respect to n and k) and may therefore not fit in memory. Also note that it may
not be necessary to consider all nodes of the graph to solve the problem. Consequently, the graph
is represented implicitly, as opposed to using an explicit representation such as an adjacency
matrix or list. In other words, the graph is not stored in memory before starting the search, but
it is computed gradually instead: initially, only one node is known, i.e., the initial state s0. Once
a node is known, it may be expanded : expanding a node means generating all of its successors s′

such that (s, s′) ∈ A and memorizing those that are reached for the first time.

Search algorithms introduced below gradually explore the search space, expanding one node at
a time, starting from the initial state s0. During search, the set of nodes N is partitioned into
three sets open, closed and unseen:

� The open set contains the nodes that are known but not yet expanded. This set represents
candidate nodes for future expansions.

� The closed set contains the nodes that have already been expanded.

46 CHAPTER 3. PLANNING PROBLEMS

� The unseen set represents the remaining nodes, i.e., N \ (open ∪ closed). These nodes are
not direct successors of closed nodes (i.e., s′ ∈ closed ∧ s ∈ unseen =⇒ (s′, s) 6∈ A). They
are either reachable from open nodes (directly or indirectly), or not reachable from the
initial state s0.

Initially, we have open = {s0} and closed = ∅. Because open, closed and unseen form a partition
of the set of states N , we implicitly represent the unseen set, i.e., open and closed are memorized
and used to determine whether or not a given node s belongs to unseen (i.e., s ∈ unseen ⇐⇒
s 6∈ open ∪ closed). Also, when expanding node s, we compute all of its successors s′ at once,
given it may be expensive to compute its set of feasible actions F (s).

Given a state s ∈ N , we note g∗(s) the cost of the shortest path from s0 to s in GP
ST (when

no such path exists, g∗(s) = ∞). The cost of the optimal solution is therefore g∗(sf). Also, we
note g(s) an upper bound on g∗(s), i.e., g∗(s) ≤ g(s) ≤ ∞. When computing shortest paths, g(s)

represents the cost of the best-known path to reach s from s0 (i.e., the best-known cost-so-far to
reach s). For all nodes s ∈ open ∪ closed, g(s) is memorized explicitly. However, in the case of an
unseen node s, g(s) is equal to infinity (i.e., no path from s0 to s has yet been found) so this
value is not memorized.

Algorithm 3.1 introduces a generic graph search algorithm. Initially, the open set only contains
the initial state s0, the closed set is empty, and g(s0) is set to 0 (Lines 2-5). At each iteration of
loop L7-14, an open node s is expanded by (i) moving s from open to closed, and (ii) considering
each of its unseen successors for later expansion by moving them to open and memorizing their
g-value. This process is repeated until (i) the open set becomes empty, or (ii) the goal node sf
becomes closed. This algorithm proves that no path from s0 to sf exists if the open set becomes
empty before finding sf, i.e., it proves that the problem as no solution.

At any given time, nodes belonging to open ∪ closed are necessarily reachable from s0 (i.e.,
s ∈ open ∪ closed ⇐⇒ g(s) <∞). There is no such guarantee for unseen nodes since no path
from s0 to each node s ∈ unseen has been discovered yet (i.e., s ∈ unseen ⇐⇒ g(s) = ∞).
However, if such a path does exist, it necessarily goes through at least one node of open. Because
open nodes are potential stepping stones for reaching unseen (or undiscovered) nodes from closed

nodes, this set is often referred to as the frontier or fringe.

In order to be able to compute the resulting path, we use a map π : N → N which associates s
to s′ when first generating s′ in order to remember that s leads to it (L14). Map π allows us to
compute a path from s0 to any node s ∈ open ∪ closed by recursively looking at its predecessor
until reaching s0 (see function path defined in Algorithm 3.1).

This algorithm is generic because it does not specify in which order open nodes should be expanded
at L8. In the following sections, we introduce Depth-First Search and Breadth-First Search, two
special cases of this algorithm obtained by defining this expansion order. Depending on this order
and on the properties of the graph, sets open and closed may provide optimality guarantees for
the g-values associated to the states they contain.

473.2. Uninformed search algorithms

Algorithm 3.1: Generic graph search algorithm
1 function search(GP

ST, s0, sf):
input : a state transition graph GP

ST = (N ,A, w) with initial state s0 and final state sf
output : a couple (c, p)
postrel. : if there exists a path from s0 to sf in GP

ST, then p is a path from s0 to sf and c is the
cost of path p. Otherwise, p is an empty sequence and c =∞.

2 let open be a set of states initialized to {s0};
3 let closed be a set of states initialized to ∅;
4 let g be a map associating a real value to each state in open ∪ closed;
5 set g(s0) to 0;
6 let π be a map associating a state to each state in (open ∪ closed) \ {s0};
7 while open 6= ∅ do
8 remove a state s from open and add it to closed;
9 if s = sf then return (g(s), path(s, π, s0));

10 foreach state s′ such that (s, s′) ∈ A do
11 if s′ 6∈ open ∪ closed then
12 set g(s′) to g(s) + w(s, s′);
13 add s′ to open;
14 set π(s′) to s;

15 return (∞, 〈〉);

16 function path(s, π, s0):
input : a state s, map π : N → N and initial state s0
precond. : s is reachable from s0, i.e., s ∈ open ∪ closed
output : a sequence of states 〈s0, s1, . . . , sk〉 such that sk = s and si = π(si+1),∀i ∈ [0, k − 1]

17 if s = s0 then return 〈s0〉;
18 return path(π(s), π, s0)+〈s〉;

3.2.1 Depth-First Search

Depth-First Search (DFS) is a special case of the generic Algorithm 3.1 in which the open set
behaves like a stack, i.e., DFS iteratively expands the state most recently added to open. When
considering a graph with unit weights, DFS expands, at each iteration, an open node with maximal
g-value.

As its name implies, its strategy is to go as deep as possible in the graph. DFS recursively expands
all unseen successors of a given node s, starting from the initial state s0. When all successors of s
have been expanded, DFS backtracks and recursively expands open successors of s’s predecessor,
i.e., π(s).

Figure 3.2a illustrates the behavior of DFS on an example graph. DFS first expands nodes s0, a,
d and h before reaching a dead-end. It therefore backtracks to node s0 (i.e., the most recently
expanded node with open successors), and reaches the goal state through path 〈s0, b, e, sf〉.

This implementation of DFS performs duplicate detection, i.e., it guarantees that each node is
expanded at most once. This is achieved by memorizing both the open and closed sets in order
to only add unseen nodes to the open set upon expansion. DFS with duplicate detection has a
time complexity of O(|N |+ |A|) and a space complexity of O(|N |).

48 CHAPTER 3. PLANNING PROBLEMS

s01

a2 b5 c

d3 e6 f g

h4 sf7 i

(a) With duplicate detection.

s0{1}

a{2} b{5} c

d{3, 6} e{8} f g

h{4, 7} sf{9} i

(b) Without duplicate detection.

Figure 3.2: Illustration of two variants of DFS on a sample graph. Edges are considered from left to
right. Nodes belonging to the open, closed and unseen sets are respectively represented in grey, black and
white. Left: closed nodes are memorized, so each node is expanded at most once (the iteration in which a
node is expanded is displayed on its left). Right: closed nodes are not memorized, so a given node i is
expanded each time a new elementary path from s0 to i is found (the set of iterations in which a node is
expanded is displayed on its left). This graph has two elementary solutions 〈s0, b, e, sf〉 and 〈s0, c, sf〉.

Alternatively, DFS can be implemented without duplicate detection in order to reduce its space
complexity. In this case, the open set is represented implicitly on the call stack, and the closed set,
g-values and π-values are not memorized. This may lead DFS to expand multiple times the same
state. In addition to the implicit open set, this implementation of DFS memorizes the current path
in order to avoid expanding nodes that would introduce a cycle in it. This guarantees termination
in finite graphs and allows one to compute the path found from s0 to sf (which was previously
computed using π-values). Its space complexity is in O(bd), where d is the depth of the graph
(i.e., the length in arcs of the longest elementary path from the root), and b is its branching factor
(i.e., the maximum number of direct successors of any node in the graph). Figure 3.2b illustrates
the behavior of this variant of DFS and the associated node re-expansions: nodes d and h are
expanded twice because (i) d can be reached both through nodes a and b from the initial state s0,
and (ii) h is a successor of d.

While performing duplicate detection is not necessary in the special case of trees, it may have
a significant impact on time complexity in the general case, especially on graphs which contain
many redundant paths, i.e., when nodes can be reached from s0 through multiple paths. Recall
from Chapter 2 how using Dynamic Programming reduces the time complexity of solving a TSP
instance with n customers from O(n!) to O

(
n2 · 2n

)
, at the expense of an exponential space

complexity (i.e., O(n · 2n)). In this case, not performing duplicate detection reduces the space
complexity but cancels out the benefits of memoization, leading us back to a factortial time
complexity.

493.2. Uninformed search algorithms

3.2.2 Breadth-First Search

Breadth-First Search (BFS, also known as uniform cost search) is a graph search algorithm which
computes shortest paths in uniformly weighted graphs (i.e., w(i, j) = c,∀(i, j) ∈ A ∧ c > 0).
Consequently, BFS solves optimization planning problems by providing an optimal solution with
respect to the number of actions it contains. When considering BFS, we assume all arcs have unit
weight, i.e., w(i, j) = 1,∀(i, j) ∈ A. We shall relax this assumption in the next subsection, when
considering Dijkstra’s algorithm.

BFS is obtained from Algorithm 3.1 by expanding the state which was least recently added to
open, i.e., by representing the open set as a FIFO (First In, First Out) queue. Because weights
are assumed to be uniform, BFS iteratively expands an open node with minimal g-value, until
finding an optimal path to sf.

Consequently, BFS guarantees that:

� all nodes located at a distance k of the initial state s0 are expanded before any node located
at a distance k + 1 of s0,

� the best-known path from s0 to every discovered node is optimal, i.e., s ∈ open∪closed =⇒
g(s) = g∗(s),

� at any given time, the difference in g-value between two open states never exceeds one (i.e.,
maxs∈open g(s)−mins∈open g(s) ≤ 1).

Also, in BFS, we note g the minimum g-value of any state in open, i.e., g = mins∈open {g(s)}.
Notice that, at the beginning of each iteration, g provides a lower bound on g∗(sf), the cost of
the optimal path from s0 to sf.

Similarly to DFS with duplicate detection, BFS has a time complexity of O(|N |+ |A|) and a
space complexity in O(|N |) as both open and closed sets must be memorized. The behavior of
BFS is illustrated on a sample graph in Figure 3.3.

s01

a2 b3 c4

d5 e6 f g

h sf7 i

Figure 3.3: Illustration of BFS on a sample graph with uniform weights and two elementary solutions –
〈s0, c, sf〉 and 〈s0, b, e, sf〉 – of respective lengths 2 and 3. The iteration in which a closed node is expanded
is displayed on its left. BFS finds the optimal solution 〈s0, c, sf〉.

50 CHAPTER 3. PLANNING PROBLEMS

3.2.3 Dijkstra’s shortest path algorithm

Dijkstra’s algorithm was introduced in [Dij59] and generalizes BFS to graphs with non-uniform
and non-negative weights. It is based on Bellman’s optimality principle, i.e., if the optimal path
from node A to node C is known to go through node B, then the subpath from A to B is also
optimal. Similarly to BFS, Dijkstra’s algorithm expands at each iteration an open state s with
minimal g(s). However, because costs are not necessarily uniform, Dijkstra’s algorithm (i) relies
on a priority queue instead of a queue, and (ii) only guarantees that g(s) – the cost of best-known
path from s0 to s – is optimal once s is closed (whereas BFS guarantees this for both open and
closed nodes due to weight uniformity).

Because g-values are not guaranteed to be optimal for open states, the condition at Lines 11-14
of Algorithm 3.1 must be adapted. It is sufficient for DFS and BFS, because the former does not
seek shortest paths, and the latter assumed unit weights. Dijkstra’s algorithm however requires a
more general arc relaxation procedure.

In the context of shortest paths algorithms, relaxing an arc (i, j) ∈ A means to consider using arc
(i, j) to reach j from s0, i.e., it consists in trying to improve the current best-known path to j by
appending arc (i, j) to the current best-known path to i. If the best-known cost-so-far to reach j
is improved when going through i (i.e., g(j) > g(i) + w(i, j)), then it is updated by setting g(j)

to g(i) + w(i, j).

When expanding node s, Dijkstra’s algorithm relaxes all arcs (s, s′) ∈ A using Algorithm 3.2.
Condition of Line 2 is always true when s′ ∈ unseen (given g(s) = ∞, ∀s ∈ unseen) and it is
always false when s′ ∈ closed (because s ∈ closed =⇒ g(s) = g∗(s)). States s′ ∈ open are only
considered if going through s leads to an improvement of the current best-known path to s′. At
Lines 3-5, we update g(s′), ensure that s′ belongs to open, and memorize that s led to s′.

Algorithm 3.2: Relaxation of arc (s, s′) in Dijkstra’s algorithm
1 procedure dijkstra-relax(s, s′, w, open, g, π):

input : arc (s, s′) ∈ A and weights w : A → R+
0

input/output : the open set, maps g : N → R+
0 and π : N → N

2 if g(s) + w(s, s′) < g(s′) then
// s′ 6∈ closed

3 set g(s′) to g(s) + w(s, s′);
4 ensure that s′ belongs to the open set;
5 set π(s′) to s;

Dijkstra’s algorithm relies on a priority queue to represent the open set. This abstract data
structure allows one to (i) insert new nodes, (ii) update the g-value of an existing node, (iii) extract
a node with minimal g-value. These three operations are respectively known as insert , decrease-key ,
and extract-min.

Because Dijkstra’s algorithm performs O(|A|) insert and decrease-key operations, and O(|N |)
extract-min operations, the time complexity of this algorithm strongly depends on the priority

513.2. Uninformed search algorithms

queue implementation. Common implementations consist in:

� Using a hash map associating to each state its (i) g-value and (ii) whether or not it belongs
to open. The insert and decrease-key operations are performed in O(1) time, but extract-min
requires a linear search in O(|N |) time to find the open state with minimal g-value. In this
case, Dijkstra’s algorithm runs in O

(
|A|+ |N |2

)
= O

(
|N |2

)
time.

� Using a Binary Heap [Wil64] allows one to perform all three operations in logarithmic time,
which results in a O((|A|+ |N |) log |N |) time complexity.

� Using a Fibonacci Heap [FT87] also performs extract-min in logarithmic time, but handles
insert and decrease-key operations in amortized constant time, leading to an overall time
complexity of O(|A|+ |N | log |N |).

Note that, for both types of heaps, efficiently performing the decrease-key operation on arbitrary
nodes requires knowing the position of each node in the heap. This is usually achieved by storing
and maintaining this information in an associative data structure (e.g., a hash map).

The first alternative should be preferred for dense graphs (i.e., graphs for which |A| is close to
|N |2). Otherwise, binary heaps are generally used in practice because of the constant factors and
programming complexity of Fibonacci Heaps [Cor+09].

3.3 Informed search

Informed search algorithms use problem-specific information to guide the search towards the
goal, i.e., to avoid the exploration of unpromising regions of the search space. This information is
integrated to graph search algorithms in the form of a heuristic function h. The heuristic value
h(s) of a state s ∈ N is an estimate of the cost of reaching the goal state sf from s.

We first introduce heuristic functions and their main properties in Subsection 3.3.1 before
presenting the A* algorithm – a generalization of Dijkstra’s algorithm which uses a heuristic
function to guide the search – in Subsection 3.3.2. Finally, Subsection 3.3.3, we discuss of exact
and anytime search algorithms which (i) are related to A* and (ii) aim to improve its scalability.

3.3.1 Heuristic functions

A heuristic function h : N → R+
0 associates to each state s ∈ N an estimate of the cost of

the shortest path from s to sf. For convenience, we note h∗(s) the perfect heuristic (or optimal
heuristic) which returns the cost of the shortest path from s to the final state sf, and h0(s) the null
heuristic which always returns 0. Two main properties may be associated to heuristic functions:
admissibility and consistency.

A heuristic function h is admissible if it never overestimates the cost of the shortest path between

52 CHAPTER 3. PLANNING PROBLEMS

s and the final state sf, i.e., h(s) ≤ h∗(s), ∀s ∈ N . Because of this relation to h∗, admissible
heuristics are often referred to as lower bounds.

A heuristic function h is consistent or monotone when h(sf) = 0 and h(s) ≤ w(s, s′) + h(s′) for
all arcs (s, s′) ∈ A. All consistent heuristics are admissible, but the converse is not true (e.g.,
setting h(s0) = h∗(s0) and h(s) = 0,∀s ∈ N \ {s0} in a graph where weights are strictly positive,
g∗(sf) <∞ and (s0, sf) 6∈ A leads to an admissible but inconsistent heuristic).

Admissible and consistent heuristics may be derived by solving a relaxed problem: this simpler
problem is usually (i) less constrained and (ii) solved in polynomial time.

To illustrate the concept of admissible heuristic functions when searching, let us consider our
example of the blocks world: we may define a heuristic function h1(s) which returns the number
of misplaced blocks in s, i.e., the number of blocks which are not on the same stack as in the
goal state. This heuristic function is a lower bound on h∗(s) because (i) at least one action is
required to move each of these misplaced blocks, and (ii) the ordering constraint on the stacks
of the goal state is relaxed. When considering our sample states from Figure 3.1, h1-values for
states s0, s1 and sf are respectively 3, 2 and 0 (their respective h∗-values are 4, 3 and 0).

3.3.2 A* algorithm

A* is an informed search algorithm introduced by [HNR68]. It belongs to the family of Best-First
Search algorithms, as it iteratively expands the most promising open node and thus tries to
avoid exploring unpromising regions of the graph. A* uses a guide (or evaluation function) f to
rank nodes from most to least promising. The guide function is defined as f(s) = g(s) + h(s),
where g(s) is the best-known cost-so-far from s0 to s, and h(s) is an admissible heuristic function
which estimates the cost-to-go to reach sf from node s. Provided an admissible heuristic h, A*
is guaranteed to return the optimal solution. Consequently, in the rest of this dissertation, we
always assume the heuristic function h is admissible.

A* is obtained from Algorithm 3.1 by (i) expanding a node with minimal f -value at each iteration,
and (ii) relaxing arcs using Algorithm 3.3. In the special case where the heuristic function h is
consistent, A* can be seen as a generalization of Dijkstra’s algorithm which iteratively expands
an open node with minimal f -value instead of the one with minimal g-value.

However, when guiding search with an admissible but inconsistent heuristic, A* may have to
re-expand nodes: indeed, it does not guarantee that the g-value of closed nodes is optimal, i.e., it
may expand open nodes with suboptimal g-values. Finding an improved path to a closed node
s requires expanding it again to propagate this improvement in g-value to all of its successors.
Therefore, when finding an improved path to an already expanded node s′, s′ is removed from
the closed set and inserted back into open for later consideration (L4-6 of Algorithm 3.3). In
Figure 3.4, we provide a sample graph and an admissible but inconsistent heuristic which leads
A* to expand the same node twice.

533.3. Informed search

Algorithm 3.3: Relaxation of arc (s, s′) in A*
1 procedure A*-relax(s, s′, w, h, open, closed, g, π):

input : arc (s, s′) ∈ A, weights w : A → R+
0 and an heuristic function h : N → R+

0

input/output : the open and closed sets, maps g : N → R+
0 and π : N → N

2 if g(s′) > g(s) + w(s, s′) then
3 set g(s′) to g(s) + w(s, s′);
4 if h is inconsistent and s′ ∈ closed then
5 remove s′ from the closed set;

6 ensure that s′ belongs to the open set;
7 set π(s′) to s;

s0

h(s0) = 2, h∗(s0) = 6

a
h(a) = 4

h∗(a) = 5
b

h(b) = 1

h∗(b) = 4

sf

h(sf) = 0, h∗(sf) = 0

1 3
1

4

Figure 3.4: Example of an admissible but inconsistent heuristic. Heuristic h is admissible because
h(s) ≤ h∗(s) for each state s ∈ {s0, a, b, sf}, but it is not consistent given h(a) ≤ w(a, b) + h(b) does not
hold. In this case, A* expands node b twice.

Recall that Dijkstra’s algorithm and BFS can compute a lower bound g based on the minimum
g-value amongst open states. Similarly in A*, f = mins∈open {f(s)} provides, at the beginning of
each iteration, a lower bound on g∗(sf), i.e., the cost of the optimal path from s0 to sf.

In Figure 3.5, we schematically compare the set of states expanded by informed and uninformed
search algorithms. Uninformed search has to consider all states with g(s) < g∗(sf), whereas
informed search only considers the subset of these nodes for which f(s) < g∗(sf). While uninformed
search explores the search space uniformly by expanding nodes in increasing order of g, informed
search is biased towards nodes expected to be close to the goal state sf. In Figure 3.5, state si
is expanded by both types of algorithms, state sj is not considered by informed search because
f(sj) > g∗(st), and state sk is considered by neither approaches given g(sk) > g∗(st).

Although A* tends to expand less nodes than Dijkstra’s algorithm because it guides the search using
external information, it has the same space and time complexities as it degenerates into Dijkstra’s
algorithm when using the null heuristic h0. Additionally, A* requires O(|N |) calls to the heuristic
function. Note that using h1, a more informed heuristic than h2 (i.e., h1(s) ≥ h2(s), ∀s ∈ N , and
∃s ∈ N such that h1(s) > h2(s)), does not necessarily guarantee faster solving times, since there
is a trade-off between the time required to compute the heuristic function and the number of
node expansions it avoids. It has also been proven that, given a consistent heuristic h, no exact
algorithm – starting search from s0 and using the same heuristic information – can expand fewer
nodes than A* to solve the problem [DP85].

54 CHAPTER 3. PLANNING PROBLEMS

f(s) ≤ g∗(sf)

g(s) ≤ g∗(sf)

s0 sf
si

sj
sk

Figure 3.5: Schematic comparison of Dijkstra’s algorithm (in blue) and A* using an admissible heuristic
(in green) when looking for a shortest path from s0 to sf. Light shades of blue (resp. green) denote states
with low g-values (resp f -values), and darker shades denote higher values.

Many strategies have been developped to improve the scalability of A*, such as:

� Bidirectional search [Poh69] and, more specifically, Bidirectional A* [Poh71; KK97] consists
in starting a backward search from the final node sf in addition to the regular forward
search from the initial node s0; a solution is found when both search frontiers intersect.
Note that this strategy can only be applied when the search operators are reversible, i.e.,
when it is possible to compute inverse costs and transitions.

� Iterative Deepening A* (IDA*) [Kor85] iteratively performs partial depth-first searches.
These searches are limited by a f -value threshold which is increased after each unsuccessful
iteration, i.e., IDA* trades node re-expansions for memory.

� Recursive Best-First Search (RBFS) [Kor93] is space optimized variant of A* which only uses
O(bd) space (i.e., linear space with respect to the depth of the graph). This is achieved by
backtracking and re-expanding nodes instead of explicitly maintaining open and closed sets.
RBFS is therefore not able to perform duplicate detection: as we have seen in Subsection 3.2.1
for DFS, this may lead to exponential increases in time complexity in the general case.

� Enhanced A* (EA*) [II99], consists in computing an upper bound on g∗(sf) before starting
the search and discarding states which are known to be unable to improve it, thereby
reducing the size of the open set (this technique is called bounding and will be covered more
in depth when considering exact and anytime search algorithms in Subsection 3.3.3).

� Partial Expansion A* (PEA*) [YMI00] also seeks to limit the number of open nodes, but
achieves it at the price of node re-expansions. When expanding a node s, PEA* only adds
its most promising successors to open. Completeness is ensured by adding s back to open to
be fully expanded later, and its cutoff f -value is stored to determine which of its successors
have not yet been considered.

Although these approaches do improve on drawbacks of A*, they still require exponential space or
time to provide a solution. Consequently, we do not describe them in depth but instead consider
exact and anytime search algorithms, which are less likely to fail to provide a solution in large

553.3. Informed search

enough search spaces because of space or time constraints.

3.3.3 Exact and Anytime Search (EAS) algorithms related to A*

We have seen that the space and time complexities of A* depend on the size of the state transition
graph on which it operates. However, in some problems such as the TSP or the blocks world,
the size of this graph grows exponentially with respect to the instance size. In this context, A*
requires exponential time and memory to find the optimal solution, i.e., it may have to expand
and store an exponential number of nodes. In other words, A* does not scale well, and it may –
on large enough problem instances – either (i) not terminate within a reasonable time, or (ii) run
out of memory before having found any solution.

Anytime algorithms seek to decrease the probability of such a failure by trying to output a
sequence of solutions of increasing quality instead of – like A* – a single but optimal solution.
Of course, they still may fail to find a solution under the time and memory limits. Anytime
solvers are well suited to real-world planning problems in which computation time is limited and
potentially uncertain [LGT03; HZ07].

We do not consider non-exact anytime algorithms, i.e., algorithms which do not provide optimality
guarantees. We instead focus on exact (or complete) anytime algorithms, i.e., algorithms which
are also able to prove (i) that the last solution found is optimal, or (ii) that no solution exists.
Unlike A*, which both finds the optimal solution and proves its optimality at the same time,
Exact and Anytime Search (EAS) algorithms first find a sequence of solutions of increasing quality
before proving the optimality of the last solution found.

We do not consider online planning algorithms either as they are more suited to unknown or
stochastic environments in which individual decisions must be taken quickly and have uncertain
outcomes [HZ07; RN10]. Unlike offline planning algorithms, which compute a complete solution
before executing any “real-world” actions, online planning algorithms interleave planning and
action execution, and therefore typically expand only one path at a time. A notable example of
online planning algorithm is Learning Real-Time A* (LRTA*) [Kor90]. It assumes the goal node
sf can be reached from every node of the graph, and iteratively refines heuristic values h from
experience by performing a series of trials.

General principles

EAS algorithms related to A* have recently received a lot of attention [TR10; Lib20; KB23c]. In
particular, [LF21] won the 2018 ROADEF/EURO challenge using such an algorithm. Like A*,
these EAS algorithms (i) use an an admissible (but not necessarily consistent) heuristic function
h(s), (ii) guide the search using an evaluation function in the form of f(s) = g(s) + h(s), and
(iii) usually maintain open and closed sets, progressively refining the best-known g-value for each
state they contain.

56 CHAPTER 3. PLANNING PROBLEMS

EAS algorithms typically expand states in a different order than A*. Indeed, approximate solutions
can only be found if one allows expanding states with possibly suboptimal g-values. Consequently,
some nodes may have to be expanded multiple times (similarly to A*, when guided by an
admissible but inconsistent heuristic).

Generally, EAS algorithms rely on pruning in order to save time and memory by discarding nodes.
We distinguish two main kinds of pruning strategies, inadmissible pruning and admissible pruning.

Inadmissible pruning (or heuristic pruning) consists in discarding states which may belong to
the optimal path from s0 to sf in order to reduce the size of the search space and to potentially
find approximate solutions quickly. EAS algorithms typically recover from this by repeatedly
restarting the search using weaker pruning rules until the entire search space has been considered
and optimality is proven. Adopting this strategy requires re-expanding nodes, which may lead to
time overheads when it is expensive to compute the successors of a node or the heuristic h.

On the other hand, admissible pruning consists in discarding states which are guaranteed not to
belong to the optimal path from s0 to sf. This type of pruning is said to be admissible because the
algorithm remains exact. Bounding is a type of admissible pruning, which consists in discarding
nodes that cannot improve the current best-known solution of cost g(sf), i.e., nodes s for which
f(s) = g(s) + h(s) ≥ g(sf). Note that A* also avoids expanding a subset of these nodes (i.e., the
ones with f(s) > g∗(sf), as it expands states in increasing order of f -values), but it has to store
all of them in open given no upper bound on g∗(s0) is known before finding the optimal solution
(i.e., g(sf) =∞ until the final state sf is expanded).

Most of these algorithms are able to compute some suboptimality bounds (i.e., upper bounds on
the relative error g(sf)

g∗(sf)
), based on (i) the cost of the current best-known solution and (ii) the

minimum f -value amongst the states which belong to the fringe.

EAS algorithms often have parameters which allow one to find a balance between (i) the time
required to find a first solution and its quality, (ii) the frequency at which solutions can be
found, (iii) the overall convergence and solving speeds. More generally, they allow one to balance
exploration (or diversification) and exploitation (or intensification), i.e., best-first and depth-first
behaviors, respectively. As in A*, the heuristic function plays an important role on the overall
speed and memory use.

Taxonomy

Table 3.1 presents a high-level comparison of EAS algorithms related to A*: they are listed in
chronological order and compared in terms of (i) their expansion strategy, and (ii) the space and
time trade-off they propose.

Recall that A* is purely best-first and is therefore not anytime. EAS algorithms use an alternative
expansion strategy to introduce a depth-first behavior while trying to strike a balance between
exploration and exploitation. We distinguish three kinds of expansion strategies, i.e., the algorithms

573.3. Informed search

Expansion strategy Space-time trade-off

Name Ref.
Weighted
heuristic

Breadth
constraints

Depth
constraints

Duplicate
detection

Memory
bounded

AWA* [ZH02] 3 3
ARA* [LGT03] 3 3
BSS [ZH05] 3 3 a

AWinA* [ACK07] 3 3
AWRBFS [HZ07] 3 3
CBFS [KSJ09] 3 3

RWA* [RTR10] 3 3 b

MAWinA* [VAC11] 3 3 a

ANA* [Van+11] 3 3
ACS [Vad+12] 3 3
APS [VAC16] 3 3

IBS [Lib+20] 3 3 b

RandWA* [BSZ21] 3 3

Table 3.1: High-level comparison of EAS algorithms related to A*, in terms of expansion strategies as
well as space and time trade-offs. Caveats: aPerforms partial duplicate detection, bRe-expands nodes due
to restarts.

considered either:

� rank the open states using a weighted evaluation function, i.e., prioritize nodes with low
h-values,

� use breadth constraints, i.e., limit the number of nodes expanded in each layer of the search
graph, or

� use depth constraints, i.e., restrict node expansions based on their depth.

We also differentiate these algorithms according to the space and time trade-off they provide. On
one side of this spectrum, algorithms have a bounded space complexity; on the other side of this
spectrum, algorithms use memory to perform duplicate detection and thus avoid wasting time
performing redundant node expansions. Detecting that multiple paths lead to the same state
requires memorizing open and closed states as well as their g-values; it is therefore orthogonal to
having a bounded space complexity. Note however that (i) some memory-bounded algorithms are
able to perform partial duplicate detection, and (ii) some algorithms perform duplicate detection
but re-expand nodes because of restarts.

Other desirable properties include (i) having a small number of parameters to tune, (ii) the ability
to quickly provide a first solution, and (iii) the frequency at which solutions may be reported. We
do not discuss these properties in details in this chapter as they are not trivial to evaluate in the
general case (e.g., they may depend on the topology of the state transition graph).

We now briefly introduce each of the three expansion strategies used by these EAS algorithms to
make A* more depth-first.

58 CHAPTER 3. PLANNING PROBLEMS

Weighted heuristics

Weighted A* (WA*) [Poh70] is an incomplete extension of A* which prioritizes the open nodes
using a weighted evaluation function fw(s). Given an admissible heuristic function h(s) and a
weight w > 1, the weighted evaluation function is defined as fw(s) = g(s)+w ·h(s). This weighted
evaluation function artificially increases the heuristic estimate and therefore makes the nodes
close to the goal look more appealing, i.e., it makes A* more “depth-first”. The weighted heuristic
w · h is said to be w-admissible and guarantees that the solution found is at most w times worse
than the optimal solution, i.e., g∗(sf) ≤ g(sf) ≤ w · g∗(sf). Because this heuristic is not necessarily
consistent, WA* may have to re-expand nodes. WA* is purely greedy when w tends to ∞ and
degenerates into A* when w = 1.

Anytime Weighted A* (AWA*) [ZH02; HZ07] is an exact and anytime extension of WA* which
(i) continues the search after finding a solution, and (ii) proves optimality when the open set
becomes empty. AWA* performs bounding and computes suboptimality bounds using the un-
weighted evaluation function f . Anytime Weighted RBFS (AWRBFS) [HZ07] adopts a similar
strategy but only requires O(bd) space through backtracking and node re-expansions.

Anytime Repairing A* (ARA*) [LGT03; Lik+08] and Restarting Weighted A* (RWA*) [RTR10]
progressively decrease the weight w to converge faster and to obtain tighter suboptimality bounds.
RWA* restarts the search after having found a solution in order to bring diversity, and memorizes
g-values and h-values in order to reuse previous search effort.

More recently, approaches were proposed to avoid parameter tuning, i.e., to avoid adjusting the
weight w (and its decrease schedule, in the case of ARA* and RWA*). These include Anytime
Nonparametric A* (ANA*) [Van+11], which adjusts the weight using the cost of the current
best-known solution, and Randomized Weighted A* (RandWA*) [BSZ21], which operates with a
set of weights and randomly chooses one before each expansion.

Breadth-constrained

Beam Search [Low76] is an incomplete search algorithm which only expands the B most promising
nodes at each level of the state transition graph; the remaining nodes, if any, are inadmissibly
pruned. This algorithm is very similar to the concept of Restricted Dynamic Programming
discussed in Chapter 2. Many EAS algorithms related to A* use such breadth-constraints to
obtain a more depth-first behavior.

For example, Cyclic Best First Search1 (CBFS) [KSJ09] iteratively expands the single most
promising node at each level of the state transition graph, and proves optimality when no state
remains open. Unlike Beam Search, it does not inadmissibly prune the least promising nodes but
stores them in an open set instead. Anytime Column Search (ACS) [Vad+12] generalizes CBFS
by iteratively expanding the B most promising states at each level of the state transition graph.

1CBFS was originally named Distributed Best First Search (DBFS).

593.3. Informed search

Iterative Beam Search (IBS) [Lib+20] repeatedly performs beam searches from the initial state
s0 and geometrically increases B between iterations to achieve completeness. Beam-Stack Search
(BSS) [ZH05], unlike IBS, achieves completeness by backtracking instead of restarting search, and
uses only O(Bd) space. Anytime Pack Search (APS) [VAC16] consists in running a series of beam
searches which start from the B most promising open nodes instead of the initial state s0.

Depth-constrained

Anytime Window A* (AWinA*) [ACK07] is an anytime extension of A* which restricts node
expansions based on node depths. It relies on an incomplete search procedure called Window A*
(WinA*), which takes as parameter a depth tolerance tol. This procedure, like A*, iteratively
expands a most promising open state. It however keeps track of the level k of the deepest state
expanded yet (initially, k = −∞), and only considers open nodes located deeper than level k,
with a tolerance of tol levels. In other words, WinA* expands, at each iteration, a most promising
open state such that its depth is greater than k − tol.

AWinA* repeatedly calls this procedure with an increasing tolerance tol (i.e., depth constraints
are progressively weakened), and proves optimality when the open set becomes empty. The first
WinA* call operates with no tolerance (i.e., tol = 0) and the search is purely depth-first (as
expanding a node at level k restricts later expansions to levels deeper than k). Tolerance tol is
incremented after each call to the WinA* procedure to gradually make it more best-first. WinA*
degenerates into A* when tol becomes equal to the depth of the goal node.

Memory bounded Anytime Window A* (MAWinA*) [VAC11] is a memory-bounded extension
of AWinA*. It generates successor nodes one at a time, and enforces a limit on the size of the
open and closed sets. When needed, MAWinA* “forgets” one of the least promising nodes and, if
necessary, marks its parent as open to ensure that the forgotten node can be re-generated later.

3.4 Discussion

In this chapter, we have introduced the fundamentals of planning through state space search. We
have seen that classic algorithms such as Dijkstra’s algorithm or A* do not scale well enough for
solving problems in which the size of the state transition graph grows exponentially with respect
to the size of the input instance. We therefore presented and categorized various EAS algorithms
related to A*: these algorithms are also guided by a heuristic function, but – unlike A* – they
seek to provide the best possible solution given a limited amount of space and time.

In the next chapter, we tackle the TD-TSPTWm by defining a state transition graph based on its
DP formulation and proposing three heuristic functions. We also describe ACS, AWA*, AWinA*
and IBS more in depth by instantiating these algorithms to solve the TD-TSPTWm. Additionally,
we highlight similarities and differences between these EAS algorithms before comparing them
experimentally in Chapter 6.

60 CHAPTER 3. PLANNING PROBLEMS

II
Proposed solving approach

Part

61

4 Exact and Anytime Search (EAS)
for the TD-TSPTWm

Chapter

Contents
4.1 Dynamic Programming model and state transition graph 64

4.2 Instantiation of EAS algorithms . 69

4.2.1 Anytime Weighted A* . 71

4.2.2 Iterative Beam Search . 72

4.2.3 Anytime Column Search . 74

4.2.4 Anytime Window A* . 76

4.2.5 Discussion . 76

4.3 Implementation of EAS algorithms . 78

4.3.1 A*-like algorithms . 79

4.3.2 Iterative Beam Search . 81

4.3.3 Anytime Window A* . 83

4.4 Computation of lower bounds h . 84

4.4.1 Definition of constant costs . 85

4.4.2 Definition of the graph Gs used to compute h(s) 85

4.4.3 Feasibility bound hFEA . 87

4.4.4 Outgoing/Incoming Arcs bound hOIA 87

4.4.5 Minimum Spanning Arborescence bound hMSA 88

4.4.6 Discussion . 89

4.5 Discussion . 90

We have seen in Chapter 2 that DP can be used to solve the TSP and some of its variants. Also
recall that such a problem can be solved by computing a shortest path in a state transition graph,
e.g., using Exact and Anytime Search (EAS) algorithms (see Chapter 3). In this chapter, we
propose to use EAS algorithms to solve the TD-TSPTWm by looking for shortest paths in the
state transition graph associated to its DP formulation.

We first provide in Section 4.1 a DP formulation for the TD-TSPTWm, define the associated state
transition graph and provide a simple solving algorithm which is exact but not anytime. Then, in

63

Section 4.2, we instantiate four EAS algorithms to the TD-TSPTWm, study their similarities and
differences, and propose a new EAS algorithm by hybridizing two of them. In Section 4.3, we
discuss major implementation decisions and propose novel and efficient ways to implement some
of these algorithms. Finally, in Section 4.4, we introduce three lower bounding functions which
are used by EAS algorithms to guide search and to prune the state space.

In the next chapter, we describe how we combine EAS algorithms with (i) TW constraint
propagation, in order to reduce the size of the search space, and (ii) a local search procedure
which tries to improve the solutions found.

4.1 Dynamic Programming model and state transition graph

In this section, we present a DP model for the TD-TSPTWm, define the state transition graph
associated to it and show how it may be used to solve the problem using a simple shortest path
algorithm which is exact but not anytime.

DP formulation. Recall from Chapter 1 that a TD-TSPTWm instance is defined as a tuple
(V, c, e, l) in which V is the set of vertices and c : V × V × N → N a matrix of TD travel time
functions verifying the FIFO property. The visit time at vertex i ∈ V is constrained to time
interval [ei, li]. Special vertices 0 ∈ V and n ∈ V denote the origin and destination vertices: solving
the TD-TSPTWm requires finding a path that departs from 0 at time e0 and ends on vertex n as
early as possible while visiting each vertex of set V during its TW.

For convenience, we note a : V × V × N→ N the arrival time function (i.e., ai,j(t) = t+ ci,j(t))
and t↑[ei;li] the TW-aware visiting time at vertex i, which includes a waiting time until ei in case
of early arrival (i.e., t < ei), returns infinity when arriving too late (i.e., t > li), and returns t
when arriving during the TW (i.e., ei ≤ t ≤ li).

Also recall that we note GPR = (V,R) the precedence graph and GUA = (V, E) the usable arcs
graph associated to a TD-TSPTWm instance (see the TW constraint propagation rules defined
in Section 1.3).

The Bellman equations for the TD-TSPTWm may be formulated as follows:

p(i,S) =

a0,i(e0)↑[ei,li] if S = {0, i}
minj∈S\{0,i} aj,i(p(j,S \ {i}))↑[ei,li] otherwise.

(4.1)

Value p(i,S) denotes earliest visit time at vertex i when departing from the origin vertex 0 at
time e0 and visiting each vertex of S during its TW; when TW constraints cannot be satisfied,
then p(i,S) =∞.

These equations do not take into account precedence constraints R and usable arcs E . In the next
paragraph, we define the state transition graph associated to these equations while taking R and

64 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

E into account.

State transition graph. Recall that in Chapter 2, we defined nodes of the TSP’s DP state transition
graph as couples (i,S): arcs represented weighted transitions between nodes, i.e., transition between
nodes (i,S) and (i′,S ′) had weight ci,i′ . However, when considering TD travel times, it becomes
necessary to know the departure time from vertex i in order to determine the travel time from
i to i′. The departure time from vertex i is also required to handle TW constraints given it
determines the arrival time on i′: depending on this arrival time, (i) a waiting time may increase
the transition cost or (ii) the transition may be infeasible. In other words, in the induction case of
Equation 4.1, the transition cost from state (j,S \ {i}) to state (i,S) is a function of p(j,S \ {i}),
whereas it is the constant cj,i when considering the TSP.

Consequently, we define states as triples (i,S, t) such that {0, i} ⊆ S ⊆ V and t ∈ [ei, li]. A given
state (i,S, t) belongs to the state transition graph if there exists a path that visits vertex i at
time t when departing from vertex 0 at time e0 and visiting each vertex of S during its TW. We
now define the state transition graph more formally as a planning problem based on this state
definition.

In the initial state, only the origin vertex 0 has been visited and it must be departed from at
time e0, i.e., s0 = (0, {0}, e0). Contrarily to the TSP, the TD-TSPTWm may have multiple final
states, i.e., a final state (n,V, t) exists for each time t ∈ [en, ln] such that there exists a path
departing from vertex 0 at time e0 and arriving on vertex n at time t while visiting each vertex
of V during its TW. We therefore determine whether or not a state is final through predicate
final(i,S, t) ⇐⇒ i = n ∧ S = V.

Given a state s = (i,S, t), an action consists in visiting an additional vertex j ∈ V \ S: the set of
actions is therefore defined as AP = V \ {0}. An action j ∈ AP is feasible in state s if (i) vertex j
has not yet been visited, (ii) arc (i, j) may be used in a feasible solution, (iii) all vertices that
must precede j have already been visited and (iv) the TW constraint at j is satisfied, i.e.,

F (i,S, t) = {j ∈ V \ S : (i, j) ∈ E ∧ pred(j) ⊆ S ∧ ai,j(t) ≤ lj} (4.2)

where pred(j) denotes the set of vertices that must be visited before vertex j, i.e., pred(j) =

{k ∈ V : (k, j) ∈ R}. Note that precedence constraints implicitly prevent one from reaching the
destination vertex n before having visited all other vertices.

Given a state s = (i,S, t) and a feasible action j ∈ F (i,S, t), transition function τ determines the
state s′ = (j,S ∪ {j}, t′) obtained when applying action j to state s. Value t′ denotes the visit
time at vertex j: it depends on both (i) the arrival time on j when departing from i at time t
and (ii) the potential waiting time for the opening of j, i.e.,

τ((i,S, t), j) =
(
j,S ∪ {j},max (ej , ai,j(t))

)
(4.3)

Because we consider the makespan objective, the cost of this transition includes both the travel

654.1. Dynamic Programming model and state transition graph

time and the potential waiting time, i.e.,

cP ((i,S, t), j) = max (ej , ai,j(t))− t (4.4)

We call this planning problem P = (SP ,AP , s0, final, F, τ, cP). As we have seen in Chapter 3,
this problem may be solved by looking for a shortest path from the initial state s0 to a final state
in the state transition graph GP

ST = (N ,A, w) associated to P .

We illustrate in Figure 4.2 the state transition graph associated to the TSPTWm instance of
Figure 4.1 (for simplicity and without loss of generality, we consider constant travel times). This
graph encodes the three feasible solutions of the instance: a single path exists from s0 to final
state (n,V, 7), and two optimal paths lead to final state (n,V, 6).

d A

B

C

d′

[0,0] [0,4]

[2,7]

[0,7]

[0,7]
1

1

2

2

1

1

3
1

2

Figure 4.1: Sample TSPTW instance with three customer vertices C = {A,B,C}. Vertices d and d′
repectively represent the origin and the destination. This instance has three feasible solutions 〈d,B,A,C, d′〉,
〈d,A,C,B, d′〉 and 〈d,C,A,B, d′〉 with respective makespans 7, 6 and 6 time units.

(d, {d}, 0)

(A, {d,A}, 1) (B, {d,B}, 2) (C, {d,C}, 2)

(B, {d,A,B}, 3) (C, {d,A,C}, 2) (A, {d,A,B}, 4) (C, {d,B,C}, 5) (A, {d,A,C}, 3) (B, {d,B,C}, 5)

(C, {d,A,B,C}, 6) (C, {d,A,B,C}, 5) (B, {d,A,B,C}, 5)

(d′, {d,A,B,C,d′}, 7) (d′, {d,A,B,C,d′}, 6)

1
2

2

2 1 2 3 1 3

3 31 2

2 1

|S|=1

|S|=2

|S|=3

|S|=4

|S|=5

Figure 4.2: State transition graph associated to the TSPTWm instance of Figure 4.1. Dominated states
are represented in red. A red arrow from state s to state s′ indicates that s is dominated by s′.

Notice that in the graph of Figure 4.2, the cost of all paths from s0 to a given state (i,S, t)
is equal to t. More generally, all paths from s0 to (i,S, t) ∈ N have a cost of t − e0: this
comes from the relation between τ and cP , i.e., function τ could be alternatively defined as
τ((i,S, t), j) = (j,S ∪ {j}, t+ cP ((i,S, t), j)).

This is specific to the makespan objective, in which (i) the departure time from the origin vertex
is fixed and (ii) waiting times are included in the objective function. In other words, given a state
(i,S, t), the visit time t at vertex i is the objective to minimize, and it is also used to compute
transition costs and transition feasibility.

66 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

Dominance relation. Given two states s, s′ ∈ N such that s = (i,S, t), s′ = (i,S, t′) and t < t′,
it is not necessary to consider s′ to compute an optimal solution, as formalized in Equation 4.1.
Indeed, it is cheaper to reach s than s′ from s0, and reaching a final state from s (resp. s′) requires
finding a path departing from i at time t (resp. t′) which arrives as early as possible on n while
visiting each vertex of V \ S during its TW: a later departure from i cannot allow one to visit n
earlier (i) by the FIFO property and (ii) because less “slack time” is available to visit the remaining
vertices within their TW. State s is said to dominate s′, which we define as the predicate:

dominates((i,S, t),
(
i′,S ′, t′

)
) ⇐⇒ i = i′ ∧ S = S ′ ∧ t < t′ (4.5)

In Figure 4.2, state s1 = (C, {d,A,B,C}, 5) dominates s′1 = (C, {d,A,B,C}, 6). In both these
states, only the destination vertex d′ is left to be visited: while s1 leads to a final state (i.e.,
d′ ∈ F (s1)), d′ cannot be reached on time in state s′1 (i.e., d′ 6∈ F (s′1)).

Note that, when seeking to obtain approximate solutions quickly (e.g., in EAS algorithms), it is
necessary to consider dominated states as long as no better alternative is known (i.e., one may
expand a dominated state s′ provided that no state s such that dominates(s, s′) has yet been
found). The reason for this is twofold:

� It takes exponential time to prove that a state (i,S, t) is not dominated (i.e., it requires
computing p(i,S)).

� In GP
ST, the path associated to a suboptimal solution necessarily goes through dominated

states (e.g., the dominated state (d′, {d,A,B,C, d′}, 7) in Figure 4.2).

In the algorithms presented in this chapter, we handle dominance implicitly by (i) memorizing
the best-known value associated to each subproblem (i,S) in a map g and (ii) only expanding
states (i,S, t) such that t = g(i,S). Exact and non-anytime algorithms only expand states for
which g(i,S) is known to be optimal, i.e., g(i,S) = p(i,S).

Basic solving algorithm. Algorithm 4.1 computes the optimal value associated to each subproblem
(i,S) by expanding all non-dominated states of GP

ST in breadth-first order (see Subsection 3.2.2),
starting from the initial state. More precisely, it considers subproblems (i,S) by increasing order of
size |S| while memorizing in a map g the best-known value associated to each feasible subproblem.
Subproblems (i,S) for which a solution is known are stored either in the open or in the closed
set. A given subproblem belongs to closed if and only if its associated state has already been
expanded.

Initially, only the optimal value of the trivial subproblem (0, {0}) is known. At Lines 3-4, this
subproblem is added to the open set and its optimal value e0 is stored in g. Each iteration of loop
L5-11 uses the optimal value of feasible subproblems of size k ∈ [1, |V| − 1] to solve subproblems
of size k + 1. More precisely, loop L6-11 considers all open subproblems of size k: each iteration
removes from open and adds to closed a subproblem (i,S) such that |S| = k. Then, the associated
state s = (i,S, t) such that t = g(i,S) is expanded (L8-11): for each successor s′ = (i′,S ′, t′) of

674.1. Dynamic Programming model and state transition graph

Algorithm 4.1: Layer-wise computation of the optimal value associated to each subproblem (i,S)

input : Transitions A of GP
ST, vertex set V, the departure time e0 from the origin vertex 0 ∈ V

1 let g be an empty map associating to each subproblem (i,S) its best-known value;
2 let open and closed be empty sets of subproblems;
3 add subproblem (0, {0}) to open;
4 set g(0, {0}) to e0;
5 foreach layer k ∈ [1, |V| − 1] do
6 foreach subproblem (i,S) ∈ open such that |S| = k do
7 remove (i,S) from open and add it to closed;
8 foreach state s′ = (i′,S ′, t′) such that (s, s′) ∈ A, with s = (i,S, g(i,S)) do
9 if (i′,S ′) 6∈ open or t′ < g(i′,S ′) then

10 ensure that (i′,S ′) belongs to open;
11 set g(i′,S ′) to t′;

state s, we ensure that (i′,S ′) belongs to open and update the best-known value associated to
(i′,S ′) by setting g(i′,S ′) to t′ if (i) no solution to this subproblem was previously known (i.e.,
(i′,S ′) 6∈ open) or (ii) a new best-known solution has been found (i.e., t′ < g(i′,S ′)).

This algorithm exploits the layered structure of the graph by expanding states in a topological
order of GP

ST, i.e., it takes advantage of the fact that subproblems of a given size k ∈ [2,V] only
directly depend on subproblems of size k − 1. Consequently, value g(i,S) is guaranteed to be
optimal (i.e., g(i,S) = p(i,S)) for all closed subproblems and, more generally, for all subproblems
of size [1, k + 1] at the end of each iteration of loop L5-11 (if such a subproblem (i,S) does not
belong to open ∪ closed, then it has no feasible solution, i.e., p(i,S) =∞).

If a feasible solution exists, this algorithm provides us with the optimal makespan g(n,V): an
actual customer ordering of optimal makespan can be reconstructed in O

(
|V|2

)
time from the

optimal values stored in map g using the method presented in Section 2.1.

Implementation. Throughout this chapter, we discuss of major implementation decisions given
these choices have an impact on the overall space and time requirements. In particular, each
algorithm we consider needs to perform a specific set of operations efficiently on map g and on
the open and closed sets. We first describe the data structures used to implement Algorithm 4.1,
given it shares similarities with the EAS algorithms we shall consider in Section 4.2, and also
propose an efficient way to compute transitions A.

We store feasible subproblems of each layer k ∈ [1, |V|] in a hash map m[k]. Map m[k] associates
to each subproblem (i,S) ∈ open ∪ closed of size k its best-known value. This allows us to:

� iterate in linear time over all subproblems stored in m[k],

� determine in average constant time whether or not a given subproblem (i,S) belongs to
open ∪ closed and to read and update its associated best-known value, and

� insert a new subproblem and its value in amortized constant time.

Also, we use bitsets to compactly represent set S in a subproblem (i,S). Apart from being

68 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

space-efficient, bitsets also allow one to efficiently perform set operations. For instance, assuming
integers encoded on 64 bits and provided V contains at most 64 elements, the set of feasible
actions F (i,S, t) may be computed in linear time (F is defined in Equation 4.2 and implicitly
used at Line 8 of Algorithm 4.1 to obtain successor states).

More precisely, set V is represented as a bitset and the adjacency matrix E as an array of
|V| bitsets (we note E [i] the ith bitset of this array, such that E [i] = {j ∈ V : (i, j) ∈ E}). We
compute in constant time a superset F+(i,S, t) of the feasible actions in a state (i,S, t), i.e.,
F+(i,S, t) = {j ∈ V \ S : (i, j) ∈ E} = (V\S)∩E [i]. We also encode pred(j) = {i ∈ V : (i, j) ∈ R}
as a bitset for each vertex j ∈ V , and obtain F (i,S, t) in linear time with respect to |F+(i,S, t)|
by verifying that pred(j) ⊆ S and that the TW at j is respected. More generally, when V contains
more than 64 elements, bitsets are represented by arrays of

⌈
|V|
64

⌉
integers, and each set operation

is performed in O(|V|) time.

Discussion. Algorithm 4.1 is exact but has exponential space and time complexities. Consequently,
it may fail to provide a solution when considering large enough graphs. In the next section, we
instantiate EAS algorithms to solve the TD-TSPTWm. Contrarily to this algorithm, they may
expand dominated states (i.e., states (i,S, t) for which t = g(i,S) > p(i,S)), which enables them
to provide approximate solutions. The cost of these approximate solutions are upper bounds on
the optimal solution cost, which are used to perform bounding, i.e., prune the search space using
admissible heuristics.

Bounding may be incorporated to Algorithm 4.1 by noticing that ln is a trivial upper bound on
the optimal makespan, if a feasible solution exists. Provided an admissible heuristic h associating
to each state s = (i,S, t) a lower bound on the cost of the shortest path from s to a final state in
GP

ST, one may tighten the condition of L9 by also verifying that state s′ = (i′,S ′, t′) may lead to
a feasible solution, i.e., that t′ + h(i′,S ′, t′) ≤ ln.

Note that the set of feasible actions F defined in Equation 4.2 could be tightened by noticing
that a state (i,S, t) is guaranteed not to lead to a feasible solution if there exists an unvisited
vertex j ∈ V \ S such that ai,j(t) > lj , provided triangle inequality holds (see, e.g., [Dum+95]).
We handle this case when computing lower bounds h(i,S, t) (covered in Section 4.4) by returning
∞ whenever a state is proven not to lead to a feasible solution.

4.2 Instantiation of EAS algorithms

In this section, we consider four of the A*-related EAS algorithms presented in Chapter 3 and
instantiate them to solve the TD-TSPTWm. We consider algorithms based on each expansion
strategy from the taxonomy we provided in Subsection 3.3.3: Anytime Weighted A* (AWA*)
based on weighted heuristics, Anytime Column Search (ACS) based on breadth constraints, and
Anytime Window A* (AWinA*) based on depth constraints. We also consider Iterative Beam
Search (IBS), a second algorithm based on breadth constraints: we study how it relates to ACS

694.2. Instantiation of EAS algorithms

and propose an improved version of IBS which re-expands fewer nodes.

We do not consider memory-bounded algorithms as detecting duplicate states is crucial in graphs
with many redundant paths: this is the case when considering the DP state transition graph of
the TD-TSPTWm, given each subproblem (i,S) has O(|S|!) solutions.

In Chapter 6, we experimentally compare these EAS algorithms and tune their parameters. We
also study the impact of different implementation decisions, which highlights the computational
cost of node re-expansions (e.g., when restarting search after having inadmissibly pruned nodes).

Before describing the four EAS algorithms we consider, we first remind the reader of the main
principles on which they rely by presenting them in the particular context of the TD-TSPTWm.

Specifics of the TD-TSPTWm. EAS algorithms require an admissible heuristic function h. Given
a state s, h(s) is a lower bound on h∗(s), the cost of an optimal path from s to a final state in
GP

ST. Of course, state s may not lead to a final state due to TW constraints, i.e., h∗(s) = ∞:
admissible heuristics may detect this, and in turn return ∞.

The evaluation function f associated to a subproblem (i,S) is obtained by summing the best-
known value associated to (i,S) to the heuristic value of state s = (i,S, t) such that t = g(i,S).
More formally, f is defined as f(i,S) = g(i,S) + h(s): f(i,S) is a lower bound on the cost of an
optimal path from s0 to a final state which goes through the current best-known state associated
to subproblem (i,S). We propose and describe three consistent heuristics h for the TD-TSPTWm

in Section 4.4.

The evaluation function is used (i) to determine which state should be expanded next and (ii) to
bound states, provided an upper bound ub on the optimal makespan: initially, ub = ln + 1 and
subproblems (i,S) for which f(i,S) ≥ ub may be pruned. Each time a solution of makespan
m < ub is found, ub is set to m in order to prevent considering paths leading to solutions worse
than or equivalent to the current best-known solution.

Similarly to Algorithm 4.1, the majority of these algorithms operate on open and closed sets. The
closed set contains subproblems (i,S) such that state (i,S, g(i,S)) has already been expanded,
although g(i,S) is no longer guaranteed to be optimal. The open set contains subproblems (i,S)

such that state (i,S, g(i,S)) (i) needs to be expanded, and (ii) may lead to a solution of makespan
lower than ub, i.e., f(i,S) < ub.

We start by instantiating Anytime Weighted A* to solve the TD-TSPTWm because this algorithm
is very similar to A* and thus relatively simple.

70 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

4.2.1 Anytime Weighted A*

Anytime Weighted A* (AWA*) [ZH02; HZ07] is a generalization of A*: provided a heuristic
function h and a heuristic weight w ∈ R such that w ≥ 1, AWA* determines the most promising
open node to expand using a weighted evaluation function fw, such that fw(s) = g(s) + w · h(s).

When w > 1, the heuristic estimate is artificially increased to make the nodes with low h-values
more appealing, which makes search more “depth-first”. Of course, the weighted heuristic w · h is
not necessarily admissible or consistent: therefore, AWA* may expand states with suboptimal
g-values, which (i) allows it to provide approximate solutions, but (ii) leads to node re-expansions.
Therefore, search continues until the open set becomes empty instead of – like A* – stopping
once a solution is found. Bounding is performed using the admissible heuristic, i.e., using the
unweighted evaluation function f .

Algorithm 4.2: AWA* for the TD-TSPTWm

input :Transitions A of GP
ST, vertex set V = {0, . . . , n},

the departure time e0 from the origin vertex 0, the deadline ln of the destination vertex n,
an admissible heuristic h and a heuristic weight w

1 let g, f and fw be empty maps associating a value to each subproblem (i,S);
2 let open and closed be empty sets of subproblems;
3 ub← ln + 1;
4 set g(0, {0}) to e0;
5 set f(0, {0}) to e0 + h(0, {0}, e0);
6 set fw(0, {0}) to e0 + w · h(0, {0}, e0);
7 add (0, {0}) to open;
8 while open 6= ∅ do
9 remove a subproblem (i,S) from open such that fw(i,S) is minimal;

10 add (i,S) to closed;
11 foreach state s′ = (i′,S ′, t′) such that (s, s′) ∈ A, with s = (i,S, g(i,S)) do
12 if [(i′,S ′) ∈ open ∪ closed and t′ ≥ g(i′,S ′)] or t′ + h(s′) ≥ ub then continue;
13 set g(i′,S ′) to t′;
14 if final(s′) then
15 ub← t′; // New solution found
16 remove from open each subproblem (i′′,S ′′) such that f(i′′,S ′′) ≥ ub;
17 ensure that (i′,S ′) belongs to closed;
18 else
19 if (i′,S ′) 6∈ open then add (i′,S ′) to open;
20 if (i′,S ′) ∈ closed then remove (i′,S ′) from closed;
21 set f(i′,S ′) to t′ + h(s′) and fw(i′,S ′) to t′ + w · h(s′);

Instantiation to the TD-TSPTWm. In our application, the weighted guide function fw is defined
as fw(i,S) = g(i,S) + w · h(i,S, g(i,S)).

We instantiate AWA* to the TD-TSPTWm in Algorithm 4.2: we highlight in blue the differences
with A*. At Lines 4-7, maps g, f and fw are initialized with the values associated to the initial
state, which is added to open1. As long as the open set is not empty, each iteration of the main loop
L8-21 considers a most promising open subproblem, i.e., a subproblem with minimal fw-value.

1For simplicity and without loss of generality, we assume in this section that the heuristic function h does not
prove that no final state is reachable from the initial state (0, {0}, e0), i.e., we assume that e0 + h(0, {0}, e0) ≤ ln.

714.2. Instantiation of EAS algorithms

The state s associated to this subproblem is expanded at L10-21: at L12, a successor s′ of state
s is discarded (i) if an equivalent or better solution to subproblem (i′,S ′) is already known, or
(ii) if s′ is proven to lead to a solution of makespan greater than or equal to the upper bound ub.
If s′ is a final state, then a new best-known solution has been found: ub is updated to the new
best-known makespan t′, bounded subproblems (i.e., subproblems (i,S) for which f(i,S) ≥ ub)
are removed from open, and s′ is added to closed (L15-17). Otherwise, s′ is added to open for
later expansion: it is removed from closed if necessary (because the weighted heuristic is not
necessarily consistent, a state dominated by s′ may have already been expanded i.e., a state
(i′,S ′, t′′) such that t′′ > t′), and its values in maps f and fw are updated (L19-21).

Note that, contrarily to A* which checks whether or not a state is final when expanding it, AWA*
tests this as soon as a state is generated, given it may allow one to improve the best-known
solution faster [HZ07].

4.2.2 Iterative Beam Search

Iterative Beam Search (IBS) was originally proposed in [Lib+20] and allowed authors to close
new instances of the Sequential Ordering Problem (SOP, see Section 1.1). More recently, it was
applied to the Permutation Flowshop Problem in [Lib+22]. It was also used in the anytime
and problem-independent DP-based solver of [KB23c]: experimental results have shown IBS to
be more efficient for proving optimality than five other EAS algorithms when considering nine
different problems, including the TSPTWΣt.

IBS consists in performing a series of Beam Searches (i.e., breadth-limited breadth-first searches):
only the B most promising nodes are considered at each layer of the graph, and the remaining
nodes are inadmissibly pruned. Initially, the breadth-limit B is equal to one, and it is doubled at
the end of each search iteration. Optimality is proven when a search iteration terminates without
having inadmissibly pruned any node.

The main motivation behind the geometrical growth of B is to ensure that each Beam Search
considers a significant number of new states compared to all of the previous iterations combined
[Lib+20]. Authors note that B should not grow too fast in order not to waste time in the last
iteration, which is incomplete when the algorithm is stopped before termination (this last iteration
cannot provide a solution when considering either the SOP or the TD-TSPTWm because final
states necessarily belong to the last layer of the state transition graph).

IBS can be seen as a special case of a general strategy called Complete Anytime Beam Search
(CABS) [Zha98]: CABS consists in performing a series of searches (either breadth-first or depth-
first) using inadmissible pruning rules which are weakened after each iteration. Note that IBS also
resembles Restricted DP (see Subsection 2.3.1): IBS differs from RDP because IBS (i) prioritizes
states by f -value, and (ii) performs multiple searches with increasing breadth-limits.

72 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

Algorithm 4.3: IBS for the TD-TSPTWm

input :Transitions A of GP
ST, vertex set V = {0, . . . , n},

the departure time e0 from the origin vertex 0, the deadline ln of the destination vertex n,
an admissible heuristic h

1 let g and f be empty maps associating a value to each subproblem (i,S);
2 let known, current and next be empty sets of subproblems;
3 ub← ln + 1;
4 set g(0, {0}) to e0;
5 add (0, {0}) to known;
6 B ← 1;
7 do
8 inadmissible← false;
9 current← {(0, {0})};

10 while current 6= ∅ do
11 next← ∅;
12 foreach subproblem (i,S) ∈ current do
13 foreach state s′ = (i′,S ′, t′) such that (s, s′) ∈ A, with s = (i,S, g(i,S)) do
14 if [(i′,S ′) ∈ known and t′ > g(i′,S ′)] or t′ + h(s′) ≥ ub then continue;
15 set g(i′,S ′) to t′;
16 ensure that subproblem (i′,S ′) belongs to known;
17 if final(s′) then
18 ub← t′; // New solution found
19 else
20 ensure that subproblem (i′,S ′) belongs to next;
21 set f(i′,S ′) to t′ + h(s′);

22 if |next| ≤ B then
23 current← next;

24 else
25 current← the B least f -valued states from next;
26 inadmissible← true;

27 B ← B · 2;
28 while inadmissible;

Instantiation to the TD-TSPTWm. We formalize our instantiation of IBS in Algorithm 4.3 and
highlight in blue the differences with AWA* (see Subsection 4.2.1). Because IBS may inadmissibly
prune nodes, it has to restart search and consequently to re-expand nodes. Therefore, we do not
describe it using open and closed sets, but instead use a set of known subproblems, which contains
all subproblems encountered during search. We memorize the best-known value associated to each
known subproblem in map g in order to avoid considering dominated states. Initially, known
only contains the initial subproblem (0, {0}), its g-value is set to e0, and the breadth-limit B is
set to 1 (Lines 4-6).

Loop Lines 7-28 repeats Beam Searches with increasing breadth-limit B as long as states have
been inadmissibly pruned. These searches use two additional sets of subproblems, current and
next. Set current contains up to B subproblems of the current layer, and next their successors.
Initially, at L9, current only contains the initial subproblem (0, {0}). Loop L10-26 expands
current subproblems and stores their successors in next: at L22-26, up to B of the most promising
subproblems from next become the current set of the following iteration. If there are more than
B subproblems in next, the |next|−B least promising subproblems are discarded and the current

734.2. Instantiation of EAS algorithms

search iteration is marked as inadmissible. A Beam Search terminates once set next becomes
empty.

More precisely, each iteration of loop L12-21 expands the state associated to a subproblem (i,S)

from the current set. In IBS, states are expanded in a similar way as in AWA*, i.e., a successor
s′ = (i′,S ′, t′) is discarded if it is dominated or bounded; otherwise, (i′,S ′) is added to known if
necessary and its g-value is memorized. A new solution has been found if (i′,S ′) is a final state;
otherwise, (i′,S ′) is added to next.

However, IBS differs from AWA* in an important way: while AWA* can discard a successor state
(i′,S ′, t′) if t′ is greater than or equal to g(i′,S ′), IBS – at L14 – can only discard it if t′ is strictly
greater than g(i′,S ′). This is due to the fact that AWA* guarantees that all successors of (i′,S ′)
have been or will be considered (i.e., (i′,S ′) either belongs to open or to closed). On the other
hand, IBS cannot provide such a guarantee due to inadmissible pruning (i.e., (i′,S ′) may have
been inadmissibly pruned in previous iterations).

4.2.3 Anytime Column Search

Anytime Column Search (ACS) [Vad+12], like A*, maintains open and closed sets of states: ACS
iteratively expands the B most promising open states at each layer of the state transition graph,
and proves optimality when the open set becomes empty. Recall from Subsection 3.3.3 that ACS
is a generalization of Cyclic Best First Search [KSJ09] in which the breadth-limit B is equal to 1.

Instantiation to the TD-TSPTWm. We formalize our instantiation of ACS in Algorithm 4.4 and
highlight in blue the differences with AWA* (see Subsection 4.2.1). These two algorithms are very
similar, as they only differ in the way they determine the next state to expand.

Instead of maintaining a single open set, ACS maintains an open set for each layer k ∈ [1, |V| − 1]

of GP
ST. We note open[k] the set containing open subproblems of size k, i.e., subproblems (i,S)

such that |S| = k. These sets are initialized at L4-5: open[1] only contains the initial subproblem
(0, {0}), and the remaining open sets are empty.

Loop L8-25 is repeated as long as there remain open subproblems. Loop L9-25 considers each
layer k ∈ [1, |V| − 1] such that open[k] is not empty: at L10, up to B of the most promising
subproblems in open[k] are placed in a candidates set for expansion. Loop L11-25 then expands
each subproblem from candidates in non-decreasing order of f -values; if necessary, their successors
are (i) added to open[k + 1] and (ii) removed from closed.

74 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

Algorithm 4.4: ACS for the TD-TSPTWm

input :Transitions A of GP
ST, vertex set V = {0, . . . , n},

the departure time e0 from the origin vertex 0, the deadline ln of the destination vertex n,
an admissible heuristic h and a breadth-limit B

1 ub← ln + 1;
2 let g and f be empty maps associating a value to each subproblem (i,S);
3 let closed be an empty set of subproblems;
4 foreach layer k ∈ [1, |V| − 1] do let open[k] be an empty set of subproblems;
5 add (0, {0}) to open[1];
6 set g(0, {0}) to e0;
7 set f(0, {0}) to e0 + h(0, {0}, e0);
8 while

⋃
k∈[1,|V|−1] open[k] 6= ∅ do

9 foreach layer k ∈ [1, |V| − 1] such that open[k] 6= ∅ do
10 candidates← the min (B, |open[k]|) least f -valued subproblems (i,S) from open[k];
11 foreach subproblem (i,S) ∈ candidates, sorted in non-decreasing order of f -values do
12 remove (i,S) from open[k] and add it to closed;
13 foreach state s′ = (i′,S ′, t′) such that (s, s′) ∈ A, with s = (i,S, g(i,S)) do
14 if [(i′,S ′) ∈ open[k + 1] ∪ closed and t′ ≥ g(i′,S ′)] or t′ + h(s′) ≥ ub then
15 continue;
16 g(i′,S ′)← t′;
17 if final(s′) then // ⇐⇒ k = |V| − 1
18 ub← t′; // New solution found
19 foreach layer k ∈ [1, |V| − 1] do
20 remove from open[k] each subproblem (i′′,S ′′) such that f(i′′,S ′′) ≥ ub;
21 ensure that (i′,S ′) belongs to closed;
22 else
23 if (i′,S ′) 6∈ open[k + 1] then add (i′,S ′) to open[k + 1];
24 if (i′,S ′) ∈ closed then remove (i′,S ′) from closed;
25 set f(i′,S ′) to t′ + h(s′);

Relationship with IBS. ACS resembles IBS in the sense that it iteratively expands up to B states at
each layer of the graph. However, IBS inadmissibly prunes the least promising states and restarts
search with an increased breadth-limit for completeness. On the other hand, ACS memorizes
these states in open sets for later consideration, and the breadth-limit remains constant.

Our formalization of ACS is general enough to also describe an improved version of IBS, which
we note IBS+. IBS+, like ACS and contrarily to IBS, memorizes discarded states instead of
restarting search, which decreases the costs associated to re-expansions (i.e., the computation of
the successor states and their heuristic value). It has the same space complexity as IBS (during
the last iteration of IBS, the map which stores g-values contains all subproblems). Algorithm 4.4
formalizes IBS+ when the breadth-limit B is (i) initially set to one, and (ii) doubled at the end
of each iteration of loop L8-25. Additionally, because IBS does not require expanding the B most
promising states of a given layer in non-decreasing order of f -values, IBS+ expands subproblems
from candidates in an arbitrary order.

Our improvement from IBS to IBS+ is analogous to an improvement which leads to Fringe Search
[Bjö+05] when applied to IDA* (see Subsection 3.3.2): instead of discarding the nodes with an
f -value greater than the threshold, these nodes are memorized and used as the starting point for

754.2. Instantiation of EAS algorithms

the next iteration: this improves on IDA*’s efficiency by avoiding to start each search iteration
from scratch.

In Section 4.3, we (i) describe an implementation suited for relatively low values of B (i.e., for
ACS) and (ii) propose an alternative implementation suited for large values of B (i.e., for IBS+).

4.2.4 Anytime Window A*

Anytime Window A* (AWinA*) [ACK07] restricts node expansions based on node depths.
Authors defined it by introducing an incomplete search procedure called Window A* (WinA*).
This procedure takes as parameter a depth tolerance tol, and iteratively expands a most promising
open state while keeping track of the layer k containing the deepest state expanded yet. However,
it only considers open states located deeper than layer k, with a tolerance of tol layers. In other
words, WinA* expands, at each iteration, a most promising open state such that its depth is
strictly greater than k − tol. When tol = 0, WinA* is purely depth-first, and when tol is equal to
the depth of the deepest state, it behaves like A*. AWinA* repeatedly calls the WinA* procedure
with an increasing tolerance tol and proves optimality when the open set becomes empty.

Instantiation to the TD-TSPTWm. We instantiate AWinA* to the TD-TSPTWm in Algorithm 4.5:
grey parts of the algorithm are identical to ACS (see Subsection 4.2.3).

Loop L8-30 runs the WA* procedure with increasing tolerance tol, ranging from 0 to |V| − 1 (i.e.,
the depth of the deepest state which needs to be expanded). At L9, k is initialized to −∞ as no
state has yet been expanded in the current iteration. We note k the shallowest layer from which a
state may get expanded and initialize it to the layer containing the initial subproblem at L10.

Loop L11-30 iteratively expands a most promising open subproblem (i,S) from layers [k, |V| − 1]

(ties are broken in favor of smaller depths |S|). When expanding a state located at a depth k
greater than k, we set k to k and update k accordingly (L15-16): this prevents the current WinA*
search from later expanding subproblems belonging to layer range

[
1, k − tol

]
.

4.2.5 Discussion

In this section, we have instantiated four EAS algorithms (namely, AWA*, IBS, ACS and AWinA*)
to the TD-TSPTWm. We have also proposed an improved version of IBS inspired from ACS,
which we named IBS+. In Table 4.1, we provide a high-level view of these algorithms by recalling
(i) their expansion strategy (see Subsection 3.3.3), (ii) whether or not they restart search, (iii) their
parameters and (iv) their main behavior(s).

AWA* has a biased best-first behavior since it is guided by a weighted heuristic, i.e., its behavior
depends on the heuristic h used and on the heuristic weight w. ACS, IBS and IBS+ are all based
on breadth-constraints: the behavior of ACS depends on the value of its parameter, i.e., the

76 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

Algorithm 4.5: AWinA* for the TD-TSPTWm

input :Transitions A of GP
ST, vertex set V = {0, . . . , n},

the departure time e0 from the origin vertex 0, the deadline ln of the destination vertex n,
an admissible heuristic h

1 ub← ln + 1;
2 let g and f be empty maps associating a value to each subproblem (i,S);
3 let closed be an empty set of subproblems;
4 foreach layer k ∈ [1, |V| − 1] do let open[k] be an empty set of subproblems;
5 add (0, {0}) to open[1];
6 set g(0, {0}) to e0;
7 set f(0, {0}) to e0 + h(0, {0}, e0);
8 foreach tol ∈ [0, |V| − 1] do
9 k ← −∞;

10 k ← 1;
11 while

⋃
k∈[k,|V|−1] open[k] 6= ∅ do

12 let (i,S) be a least f -valued subproblem from
⋃

k∈[k,|V|−1] open[k];
13 k ← |S|;
14 if k > k then
15 k ← k;
16 k ← max

(
k − tol + 1, 1

)
;

17 remove (i,S) from open[k] and add it to closed;
18 foreach state s′ = (i′,S ′, t′) such that (s, s′) ∈ A, with s = (i,S, g(i,S)) do
19 if [(i′,S ′) ∈ open[k + 1] ∪ closed and t′ ≥ g(i′,S ′)] or t′ + h(s′) ≥ ub then
20 continue;
21 g(i′,S ′)← t′;
22 if final(s′) then // ⇐⇒ k = |V| − 1
23 ub← t′; // New solution found
24 foreach layer k ∈ [1, |V| − 1] do
25 remove from open[k] each subproblem (i′′,S ′′) such that f(i′′,S ′′) ≥ ub;
26 ensure that (i′,S ′) belongs to closed;
27 else
28 if (i′,S ′) 6∈ open[k + 1] then add (i′,S ′) to open[k + 1];
29 if (i′,S ′) ∈ closed then remove (i′,S ′) from closed;
30 set f(i′,S ′) to t′ + h(s′);

Name Ref. Expansion
strategy Restarts Parameter Behavior

AWA* [ZH02] Weighted heuristic – w “Biased” Best-First

ACS [Vad+12] Breadth-constrained – B

{
B is close to 1: Depth-First
B tends to ∞: Breadth-First

IBS [Lib+20] Breadth-constrained 3 – Depth-First → Breadth-First*

IBS+ [This thesis] Breadth-constrained – – Depth-First → Breadth-First*

AWinA* [ACK07] Depth-constrained – – Depth-First → Best-First*

Table 4.1: Overview of the EAS algorithms instantiated to the TD-TSPTWm. *The first iteration of
these algorithms is purely depth-first, then search becomes increasingly breadth-first (resp. best-first) in
IBS and IBS+ (resp. AWinA*).

774.2. Instantiation of EAS algorithms

breadth-limit B. On the other hand, in both IBS and IBS+, this breadth-limit is not a parameter.
Instead, the breadth-limit B is initially equal to one (leading to a depth-first behavior) and B is
doubled at the end of each search iteration (i.e., search progressively becomes more breadth-first).
The key difference between IBS and IBS+ is that IBS+ avoids restarting search between each
increase of B by memorizing states instead of inadmissibly pruning them: this leads to a decrease
in the number of re-expansions. Finally, AWinA* is based on depth constraints: the first iteration
of this algorithm is purely depth-first and search becomes increasingly best-first (recall that
AWinA*, during its last iteration, behaves like A*).

Breadth-constrained and depth-constrained algorithms exploit the layered structure of the graph
to obtain a depth-first behavior. Additionally, breadth-constrained algorithms (i.e., ACS, IBS and
IBS+) only compare subproblems by f -value within a given layer: this leads to fairer comparisons,
as authors of [Pea84] note that systematic heuristic error can be expected to be homogeneous
within a layer. AWinA* also benefits from this during early search iterations (later during search,
its behavior becomes more best-first). AWA*, on the other hand, uses a single open set and
prioritizes subproblems using the weighted evaluation function only, i.e., regardless of the layer
they belong to.

In absence of TW constraints, ACS with B = 1, IBS, IBS+ and AWinA* can provide a first
solution after having expanded |V| − 1 states. In AWA*, on the other hand, it depends on the
heuristic function h and on the heuristic weight w. Also note that the behavior of ACS remains
the same throughout search: each iteration expands O(B · |V|) states, i.e., each iteration performs
a constant amount of work. This provides ACS with the ability to frequently report new solutions,
depending on (i) the breadth-limit B and (ii) the instance size |V|. On the other hand, in both
variants of IBS and in AWinA*, the initial search behavior (i.e., depth-first) favors convergence
speed, and these algorithms later adopt a behavior favoring optimality proofs (either by becoming
more breadth-first or more best-first).

4.3 Implementation of EAS algorithms

In this section, we discuss of key implementation decisions regarding the algorithms we instantiated
to the TD-TSPTWm in Section 4.2. These decisions mainly involve data structures and algorithms:
their scope of application is not limited to the TD-TSPTWm, i.e., they can be used when searching
for optimal paths in any layered directed acyclic graph.

Note that such concerns are often disregarded: indeed, none of the publications introducing
the algorithms considered in this chapter (see Table 4.1) discuss data structure choices. In this
section, we show that (i) these choices have an impact on time complexity and (ii) data structures
commonly used to implement A* (i.e., min-heaps) are not necessarily the best suited to implement
all of the EAS algorithms we consider. We experimentally study the influence of some of these
decisions in Section 6.4.

78 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

We first discuss implementation choices of AWA*, ACS and AWinA*: these three algorithms –
and their implementation – are very close to A* because (i) they maintain open and closed sets
of states and (ii) they expand a fixed number of states at each iteration. We then propose an
efficient implementation of IBS+ and describe two possible implementations of the original IBS
algorithm. Finally, we introduce an efficient way to determine the layer which contains the next
state to expand in AWinA* according to depth constraints.

4.3.1 A*-like algorithms

A*-like algorithms require to efficiently (i) keep track of open and closed states, including their
associated g-value, and (ii) keep track of the open states and their associated f -value.

In AWA*, ACS and AWinA*, we maintain the g-values of open and closed subproblems using
hash maps. More precisely, we proceed in the same way as in the exact algorithm presented
in Section 4.1, i.e., we use a hash map m[k] for each layer k ∈ [1, |V|] of the graph. Map m[k]

associates its g-value to each to each subproblem (i,S) ∈ open ∪ closed such that |S| = k. This
allows one to efficiently perform accesses, insertions and updates (we discuss these operations and
their time complexities more in depth when describing the implementation of Algorithm 4.1 in
Section 4.1). We use one map for each layer of the graph instead of a single map because the size
|S| of a given problem (i,S) is a trivial and inexpensive way to discriminate between subproblems:
this tends to result in fewer collisions and leads to maintaining smaller maps.

We now discuss the second key requirement of A*-like algorithms, i.e., maintaining the open set.
We first describe how it may be done in the context of A* using a min-heap (including “lazy”
updates of this heap) and then detail the minor adaptations necessary to implement AWA*, ACS
and AWinA*.

Representing of the open set in A*. A* expands a single open subproblem of minimal f -value at
each iteration. A min-heap is therefore an obvious and common choice to represent the open set.
More precisely, this min-heap contains tuples (f, i,S) compared by f -value. The main operations
performed on open are then achieved in O(log |open|) time, i.e., extracting the most promising
subproblem, inserting a new subproblem (i,S) and its associated f -value, or decreasing the f -value
of an existing subproblem.

Note that decreasing the f -value of an arbitrary element of the heap requires knowing its position,
i.e., using an indexed min-heap. This data structure combines a hash map and min-heap: the hash
map associates to each open subproblem (i,S) a reference rheap to its associated heap entry. The
heap contains a couple (f, rmap) for each open subproblem (i,S), where rmap is a reference to
the hash map entry associated to (i,S). Then, one can update the f -value of an arbitrary open
subproblem in O(log |open|) time. However, it requires maintaining references rheap in the hash
map every time a heap operation is performed. Finally, note that references rheap can either be
stored (i) in the map associating to each known subproblem is g-value, or (ii) in a separate map.

794.3. Implementation of EAS algorithms

Lazy updates of f -values in the heap. We avoid maintaining these references each time heap
elements are rearranged by adopting a lazy approach based on a min-heap containing tuples
(f, i,S, t). Instead of updating the heap entry associated to (i,S) when decreasing its g-value and
therefore its f -value, we insert a new entry in the heap: in this entry, t is the best-known value
associated to subproblem (i,S) at the time of insertion. When extracting a tuple (f, i,S, t) from
the heap, we discard obsolete entries and only expand state s = (i,S, t) if t = g(i,S).

Proceeding this way leads to a simpler implementation as it eliminates the need of performing
random accesses in the heap, and thus the need of memorizing and maintaining the position of
the heap entry associated each open subproblem. This strategy is not specific to A*: it has been
used to maintain the open set of Dijkstra’s algorithm and is sometimes called lazy deletion (see,
e.g., [HHE18, Section 4.4.3] and [SW11, Section 4.4]). With this lazy implementation, the space
requirements of the open set are in O(log |A|) instead of O(log |N |). The time complexity for heap
operations does not change even when considering dense graphs, given O

(
log |N |2

)
= O(2 log |N |).

We conducted experiments to compare both the lazy and the classic implementations on the
TD-TSPTWm. Results did not show significant differences both in terms of space and time: while
the lazy algorithm may maintain a larger open set, it has better memory locality and requires
less time for bookkeeping than the classic implementation (these conclusions may differ when
considering problems in which storing state variables require more space). Note that we compared
these two implementations by considering Anytime Column Search (see Subsection 4.2.3), in
which the bookkeeping overhead of the classic implementation is expected to be lower than in A*,
given the open set is partitioned into multiple smaller min-heaps.

Lazy removal of bounded subproblems. Recall that in the algorithms described in Section 4.2,
we ensured that the open set never contains bounded subproblems, i.e., subproblems (i,S) for
which f(i,S) ≥ ub. When the open set is implemented as a heap, removing these subproblems
requires filtering the heap and restoring the heap property (i.e., O(|open|) time) each time the
upper bound ub is decreased. We proceed in the same way as authors of [HZ07], who avoid this
operation by adopting a lazy approach: this approach consists in allowing bounded subproblems
to belong to the heap, and discarding them only upon extraction from open.

Representation of open sets in AWA*, ACS and AWinA*. We implemented AWA*, ACS and AWinA*
using min-heaps with lazy updates of f -values and lazy removal of bounded subproblems. We
now describe how the implementation of these algorithms differs from the one of A*.

In AWA*, elements of the heap representing the open set contain an additional value fw, which
corresponds to the value of the weighted guide function. More precisely, heap elements are tuples
(fw, f, i,S, t) compared according to the value of fw. Note that it is also necessary to store the
value of the unweighted guide function f in these tuples in order to perform lazy deletion.

Recall that ACS and AWinA* do not use a single open set: instead, these algorithms maintain
an open set for each layer k ∈ [1, |V| − 1] of the graph. Consequently, we implement them using

80 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

|V| − 1 min-heaps which contain tuples (f, i,S, t).

Note that a last building block is missing to obtain an efficient of implementation of AWinA*: it
consists in determining which open set contains the next state to expand according to the current
depth constraints. We propose an efficient solution to this problem in Subsection 4.3.3.

4.3.2 Iterative Beam Search

In this section, we first propose an efficient way of implementing IBS+, the non-restarting variant
of IBS we proposed in Subsection 4.2.3. Then, we describe the original implementation of IBS

and propose a more efficient alternative. We compare experimentally the resulting algorithms in
Section 6.4, which shall also allow us to evaluate the performance impact of avoiding re-expansions.

Non-restarting variant IBS+. Recall from Subsection 4.2.3 that the key difference between ACS
and IBS+ is that B is constant in ACS whereas it doubles after each iteration in IBS+. We
have seen in Subsection 4.3.1 that min-heaps are an obvious choice when few subproblems are
expanded at each iteration. This is not the case when considering IBS+: we propose to implement
it efficiently by using a selection algorithm instead of min-heaps.

Quickselect [Hoa61] is a selection algorithm which allows one to compute the kth smallest element
of an array of size n in O(n) average time [AHU74, Section 3.7]: this algorithm has a quadratic
worst-case time complexity, which may be improved to O(n) using an introspective selection
algorithm [Mus97].

More concretely, we propose to implement IBS+ using two hash maps for each level k ∈ [1, |V| − 1[.
The first hash map associates to each subproblem (i,S) ∈ closed its g-value. The second map
associates to each subproblem (i,S) ∈ open a couple (g, f), i.e., both its g-value and its f -value.
We then use a selection algorithm to obtain in O(|open[k]|) average time the B most promising
open subproblems from layer k. Note that this operation rearranges the elements of the input
array: consequently, we run it on a copy of open[k], which requires O(|open[k]|) extra space.

Using such hash maps also allows us, in average constant time, to (i) insert subproblems in open,
(ii) move subproblems from open to closed (and the reverse) and (iii) update the g-value and
f -value of a subproblem.

Recall that ACS represents open sets as min-heaps: in this case, all of these operations take
O(|open[k]|) time. Also, note that expanding O(B) states from a given layer k require performing
O(B · |V|) operations on open[k + 1], given a state has O(|V|) successors.

We note impl-heap the heap-based implementation used in ACS, and impl-select the imple-
mentation based on a selection algorithm. We summarize in Table 4.2 the time complexities of
these two implementations. While both these implementations could be used for IBS+, it is clear
that (i) impl-select is more efficient than impl-heap for inserting subproblems in open[k + 1]

and (ii) impl-heap should be preferred when B is small, given the size of open sets is in O(|N |).

814.3. Implementation of EAS algorithms

Note also that impl-select can be expected to be more efficient than impl-heap for extracting
B subproblems from open[k] when B > |open[k]|

log|open[k]|

Because B grows geometrically in IBS+, we implement IBS+ using impl-select. In Section 6.4,
we experimentally compare the performance of IBS+ under both implementations and show that
using a selection algorithm instead of min-heaps leads to improved performance.

Operation impl-heap impl-select

Extract O(B) subproblems from open[k] O(B log |open[k]|) O(|open[k]|)a
Add O(B · |V|) subproblems to open[k + 1] O(B · |V| log |open[k + 1]|) O(B · |V|)b

Table 4.2: Time complexities of key operations of implementations impl-heap and impl-select. Caveats:
aaverage; bamortized.

Original IBS. We now describe two possible implementations of the original IBS algorithm (see
Subsection 4.2.2). These implementations only vary in the way set next is represented. We name
them IBSselect and IBSheap because – similarly to what we have seen for IBS+– they either use
a selection algorithm or a min-heap: IBSselect is an implementation we propose, and IBSheap is
similar to the original implementation of [Lib+20]. We only briefly describe these implementations
because (i) they are less efficient than IBS+ due to restarts and (ii) they share many similarities
with it. Also, in Section 6.4, we experimentally compare IBS+ to IBSselect and IBSheap to quantify
the variations in performance between these three variants.

For both IBSselect and IBSheap, we use a hash map mknown associating to each known subproblem
its g-value (this is akin to the implementation of A*-like algorithms and IBS+, except that these
algorithms operate on open and closed sets instead of a known set).

In IBSselect, we use a hash map mnext associating its f -value to each subproblem of set next. We
insert elements (resp. update elements) of mnext in amortized constant (resp. average constant)
time. As in IBS+, we obtain the B most promising subproblems from next in O(|next|) average
time using a selection algorithm.

IBSheap corresponds to the original implementation of [Lib+20]. Authors do not provide imple-
mentation details but their solver is open source: set next is implemented as a priority queue
of bounded size B, so each insertion requires O(logB) time (including the removal of the worst
element when the queue is full). Such a choice reduces the space requirements of next to O(B),
but does not change the overall space complexity of the algorithm, since map mknown associating
to each known subproblem its g-value requires O(|N |) space (note that set next also requires
exponential space because of the exponential growth of B).

Note that in the implementation of [Lib+20], the priority queue may contain duplicate elements.
To better understand the motivation behind this choice, it is necessary to study more in depth
the solving approach. Authors propose to solve the SOP through tree search: the nodes of this
tree are partial solutions, i.e., permutations of subsets of vertices. This tree search is augmented
with the concept of dominance from DP, i.e., by pruning the worst of any two partial solutions

82 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

which visit the same set of vertices and end on the same vertex. Experimental results of [Lib+20]
highlight the benefits of enhancing tree search with such dominance pruning: in this thesis, we go
one step further by considering the DP state space, which is a DAG instead of a tree.

Discussion In this section, we have proposed an efficient implementation of IBS+ which is not
based on min-heaps but on a selection algorithm. We have also described two implementations
of IBS (which, unlike IBS+, has to restart search to ensure completeness): IBSheap models set
next using a min-heap which may contain duplicate subproblems. In IBSselect on the other hand,
elements of next are unique and a selection algorithm is used to efficiently obtain B of its most
promising elements.

We experimentally compare these algorithms and their implementations in Section 6.4: these
results shall also allow us to study the importance of avoiding re-expansions.

4.3.3 Anytime Window A*

AWinA* requires determining which open subproblem is most promising amongst layers k ∈
[k, |V| − 1] at L12 of Algorithm 4.5. We propose to do it efficiently by maintaining an additional
min-heap q associating to each layer k the minimum f -value of subproblems in open[k]. More
precisely, q contains couples (fmin, k) compared lexicographically for each layer k ∈ [1, |V| − 1].
When open[k] is empty or when k < k, the fmin value associated to k is set to infinity. Otherwise,
fmin is the minimum f -value of suproblems in open[k], i.e., fmin = min(i,S)∈open[k] f(i,S).

The smallest element of q is obtained in constant time. When this smallest element has fmin =∞,
then open[k] is empty for all layers k ≥ k. Otherwise, value k of this smallest element corresponds
to the layer containing the next open subproblem to expand. We efficiently maintain the min-heap
q by:

� initializing it in O(|V|) time at the beginning of the loop L8,

� increasing in O(log |V|) time the value fmin associated to layer k when an element is removed
from open[k] at L12,

� decreasing in O(log |V|) time the value fmin associated to layer k + 1 when an element is
inserted into open[k + 1] at L28,

� setting fmin to infinity for each layer k such that k ≤ k in O(|V| log |V|) time whenever k is
increased at L16.

Note that performing random accesses in q (i.e., increasing or decreasing the fmin-value associated
to an arbitrary layer k) requires using an array of size |V| which maps layers k to their position
in q, and maintaining these references each time the elements of q are rearranged.

834.3. Implementation of EAS algorithms

Discussion. Our description of AWinA* differs from the original formulation of [ACK07], but it
has the same semantics in the context of a layered DAG. Our formulation is arguably simpler
and it is also very similar to our instantiation of ACS. More importantly, the original article does
not provide implementation details regarding data structures: authors use a single open set and a
suspended set. This open set may contain states from layers k such that k < k: these states are
lazily removed from open, i.e., when a state from layer k < k is extracted from open, it is added
to the suspended set instead of being expanded. At the end of a WinA* search, suspended states
are moved to the open set to be considered in the next search iteration.

Each lazy removal from open takes O(log |open|) time and building a min-heap from the suspended
set takes O(|suspended|) time: the method we propose avoids these overheads by maintaining k
open sets and using a min-heap to efficiently determine which open set contains the next state to
expand, according to k.

4.4 Computation of lower bounds h

Recall from Section 3.3 that h∗(s) denotes the cost of the shortest path from a given state s
to a final state in a state transition graph. In the context of the TD-TSPTWm, given a state
s = (i,S, t), h∗(s) represents the time required to reach the destination vertex n when departing
from vertex i at time t and visiting every vertex in V \ S within its TW. Of course, it is possible
that no final state is reachable from state s, i.e., that it is not possible to complete the partial
tour represented by s while satisfying TW constraints: in this case, h∗(s) =∞.

An admissible heuristic h(s) is a lower bound on h∗(s). Lower bounds are used in the algorithms
instantiated in Section 4.2 in order to (i) determine the most promising state to expand, and
(ii) admissibly prune states which are proven to lead to an infeasible solution, or to a solution
worse than or equivalent to the current best-known.

In this section, we describe three lower bounds for the TD-TSPTWm which provide different
trade-offs between computational cost and tightness. These bounds are computed in polynomial
time by solving relaxations of the shortest Hamiltonian path problem in a graph which loosely
represents TD travel times and TWs. We first define constant edge costs and the graph associated
to a given state (i,S, t). We then introduce the lower bounds hFEA, hOIA, and hMSA: hFEA is a
new bound whereas hOIA and hMSA combine hFEA with classic TSP bounds.

84 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

4.4.1 Definition of constant costs

The travel time on a given edge (j, k) depends on the departure time from j, which is not known
exactly when computing h(s). To ensure that h(s) is a lower bound, we compute a lower bound
cj,k on the cost of every usable edge (j, k) ∈ E . Lower bound cj,k may be defined straightforwardly
by considering the minimum travel time from j to k when departing from j during its TW, i.e.,
cj,k = mint∈[ej ,lj] cj,k(t).

Notice however that traveling from j to k while arriving on k no later than lk might not be
possible during the entire time interval [ej , lj]: indeed, there may exist a time t′ ∈ [ej , lj], such
that departing from j later than t′ leads to arriving on k later than its deadline lk. We call time t′

the Latest Departure Time (LDT) of edge (j, k) and note it LDT (j, k). Given an edge (j, k) ∈ E ,
LDT (j, k) denotes the latest time at which one can depart from j and arrive on k while satisfying
TW constraints at both vertices, i.e.,

LDT (j, k) = min
(
lj , a

−1
j,k(lk)

)
(4.6)

Therefore, a tighter lower bound on the cost of edge (j, k) may be defined as the minimum travel
time from j to k for each departure time t ∈ [ej , LDT (j, k)] ⊆ [ej , lj]. Additionally, because we
consider the makespan objective, we include in cj,k the waiting time on k when arriving earlier
than ek, i.e.,

cj,k = min
t∈[ej ,LDT (j,k)]

(
cj,k(t) + max (0, ek − aj,k(t))

)
(4.7)

These constant costs are precomputed and updated every time TWs are tightened using the rules
described in Section 1.3 (we shall describe when we use these rules in Subsection 5.2.1).

4.4.2 Definition of the graph Gs used to compute h(s)

We now define the digraph Gs = (Vs, Es) associated to a state s = (i,S, t) which we use to compute
h(s). The vertex set Vs of Gs contains the current vertex i and the vertices left to be visited, i.e.,
Vs = (V\S)∪{i}. Edge set Es may be straightforwardly defined as Es = E∩((Vs\{n})×(Vs\{i})),
given E contains edges which may be used in a feasible solution and the path must start from i

and end on n.

When considering constant travel costs c, the cost of the shortest Hamiltonian path from vertex i
to vertex n in Gs is a lower bound on h∗(s), given (i) travel costs are never overestimated, and
(ii) TWs are loosely represented through removal of arcs proven to lead to TW violations.

In order to compute tighter bounds, we refine set Es to represent TWs more accurately by
exploiting state information, e.g., the fact that vertices in S have already been visited and that
travel must happen at time t or later, starting from vertex i. We now introduce three new rules
which remove from Es edges that cannot be used when the current state is s.

854.4. Computation of lower bounds h

The first two rules are applied on edges which start from vertex i:

� Because the path starts from i, we remove any edge (i, k) such that vertex k has yet unvisited
predecessors in R (i.e., pred(k) 6⊆ S, where pred(k) = {j ∈ V : (j, k) ∈ R}):

Rule 1 = Es ← Es \ {(i, k) ∈ Es : pred(k) 6⊆ S} (4.8)

Note that this rule removes edge (i, n) from Es whenever |Vs| > 2, given precedence
constraints ensure that the destination vertex n is the last one to be visited.

� Because vertices must be visited before their deadline, we remove any edge (i, k) such that
vertex k cannot be reached on time when departing from vertex i at time t, i.e.,

Rule 2 = Es ← Es \ {(i, k) ∈ Es : t > LDT (i, k)} (4.9)

A third rule is applied on edges which start from a vertex j distinct from i, i.e., j ∈ Vs \ {i}.
Before traveling on these edges, it is necessary to travel from i to j: consequently, the departure
time from vertex j is lower bounded by ai,j(t), provided triangle inequality holds. However, as this
filtering is expensive to perform, we do it once for all possible vertices j ∈ Vs \ {i}. We therefore
consider a lower bound t′ which is valid for all of these vertices, i.e., t′ = min(i,j)∈Es ai,j(t). We
then use time t′ to remove all edges (j, k) such that k cannot be reached on time when departing
from j at time t′:

Rule 3 = Es ← Es \ {(j, k) ∈ Es : j 6= i ∧ t′ > LDT (j, k)} (4.10)

Similarly to the TW constraint propagation rules presented in Section 1.3, these rules aim to
prove that some arcs cannot be used because of TW constraints. However, as we shall see in
Section 5.2, TW constraint propagation rules are used at the scale of the entire instance (i) in
preprocessing and (ii) each time the upper bound ub is decreased. On the other hand, the rules
introduced in this section exploit the information available in a given state s = (i,S, t) and only
consider a subset of vertices Vs which are constrained to be visited at time t or later. Efficiently
implementing these rules is critical as they are used every time h(s) is computed.

Implementation. Building graph Gs requires O
(
|Vs|2

)
comparisons when removing arcs from Es

based on their LDT. To speed up this step, we precompute a set Et = {(i, j) ∈ E : t ≤ LDT (i, j)}
for each time t ∈ RT where RT = {LDT (i, j) : (i, j) ∈ E} is the set of all relevant times. Each
set Et is encoded with bitsets for compact storage and fast computation of set intersections. We
update these sets when propagating TW constraints, given TWs become tighter and edges may
get removed from E . In Rules 2 and 3, when seeking to remove from Es arcs for which the LDT
is smaller than some time t, we search for the smallest time t′ ∈ RT such that t′ ≥ t and only
retain arcs present both in Es and in Et′ (note that if t > max (RT), then no arcs can be used).

Proceeding this way allows us to compute graph Gs in O(|Vs|) time, provided V contains no

86 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

more than 64 elements. This strategy is analogous to the one used in Section 4.1 when efficiently
implementing the feasible action function F (note that sets Et can also be exploited to efficiently
rule out infeasible actions when computing F).

4.4.3 Feasibility bound hFEA

This bound performs a simple feasibility check in Gs: if any vertex in Vs \ {n} (resp. Vs \ {i})
has no outgoing (resp. incoming) arc in Es, then there exists no Hamiltonian path from i to n in
Gs and it is thus proven that s cannot lead to a feasible solution. In this case, hFEA(i,S, t) =∞.
Otherwise, hFEA(i,S, t) = 0.

Provided V contains no more than 64 elements, these feasibility checks are achieved in O(|Vs|) time
by leveraging the fact that the adjacency matrix representing Es is encoded as bitsets (verifying
that a vertex does not have outgoing or incoming edges simply requires testing bitset emptiness).

We experimented with other feasibility checks, such as (i) checking that each vertex in Vs \ {i}
is reachable from i (with a linear-time graph traversal), or (ii) checking that the set of strongly
connected components of Gs has a single topological ordering (given the existence of multiple
topological orderings implicates the inexistence of a Hamiltonian path). Both these feasibility
checks were implemented but discarded as they did not bring enough benefits relatively to their
computational cost.

4.4.4 Outgoing/Incoming Arcs bound hOIA

This bound is an adaptation to the TD-TSPTW of the I/O bound used by [Lib+20] for the
Sequential Ordering Problem. It is weaker than the assignment relaxation (i.e., the minimum
assignment in the bipartite graph between Vs \ {n} and Vs \ {i}). Indeed, it relaxes the constraint
that each vertex in Vs \ {n} must be connected to a different vertex in Vs \ {i}. It is also an order
cheaper to compute, i.e., it is computed in linear time with respect to the number of edges in Es.
Because Gs is not necessarily symmetric, we combine two different bounds: hOA, which considers
Outgoing Arcs, and hIA, which considers Incoming Arcs. More precisely, hOA computes the sum
of the minimum-weight outgoing arc for each vertex j ∈ Vs \ {n}, i.e.,

hOA(i,S, t) =
∑

j∈Vs\{n}
min

(j,k)∈Es
cj,k (4.11)

whereas hIA considers incoming arcs, i.e.,

hIA(i,S, t) =
∑

k∈Vs\{i}
min

(j,k)∈Es
cj,k (4.12)

Finally, given a state s = (i,S, t), we define hOIA(s) = max {hFEA(s), hOA(s), hIA(s)} and note
that this value can be computed using a single traversal of edge set Es.

874.4. Computation of lower bounds h

d

A

B

C

D

E

d′

1 2
4

6

6

5

3

2

1

(a) Sample graph Gs

d

A

B

C

D

E

d′

1 2
4

6

6

5

3

2

1

(b) hOA(s) = 12

d

A

B

C

D

E

d′

1 2
4

6

6

5

3

2

1

(c) hIA(s) = 11

d

A

B

C

D

E

d′

1 2
4

6

6

5

3

2

1

(d) hMSA(s) = 13

Figure 4.3: Comparison of the shortest Hamiltonian path problem relaxations computed by hOA,
hIA and hMSA. We consider the subgraph Gs associated to state s = (B, {d,A,B}, 3), with vertices
Vs = {B,C,D,E, d′}. We assume all edges are usable except (B,E) and (C, d′). Thick edges belong to
the solution of a given relaxation. The optimal Hamiltonian path from B to d′ in Gs is 〈B,C,D,E, d′〉
and has cost 14.

We illustrate a sample graph Gs associated to state s = (B, {d,A,B}, 3) in Figure 4.3. We
highlight in Figure 4.3b (resp. Figure 4.3c) the edges selected by hOA (resp. hIA). The optimal
Hamiltonian path from B to d′ in Gs has cost 14 but it is not necessarily feasible, either due
to (i) underestimated TD travel times or (ii) loosely represented TWs ; hOIA(s) = 12 is a lower
bound on the cost of this Hamiltonian path. We can therefore conclude that a feasible path
visiting each vertex of {d,A,B} and ending on B at time 3 will require at least 12 time units to
visit the remaining vertices while satisfying constraints: it will consequently end on vertex d′ at
time 15 or later.

4.4.5 Minimum Spanning Arborescence bound hMSA

The Minimum Spanning Arborescence (MSA) is a classic relaxation of the Asymmetric TSP
[RT12]. It relaxes the constraint that each vertex must have exactly one successor. More precisely,
given a digraph G = (V, E) and a root vertex u ∈ V, a spanning arborescence of G rooted at u
is a subgraph G′ = (V, E ′) such that, for any vertex v ∈ V \ {u}, there is exactly one directed
path from u to v in G′. An MSA is a spanning arborescence for which the sum of all edges costs
is minimum. Obviously, any Hamiltonian path starting from u is also a spanning arborescence
rooted at u: therefore, the cost of an MSA rooted at u is a lower bound on the cost of the shortest
Hamiltonian path starting from u.

We extend the MSA relaxation to the TD-TSPTW using the cost lower bound c and the graph
Gs. More precisely, given a state s = (i,S, t), hMSA(s) computes the cost of the MSA rooted at i
in Gs (see Figure 4.3d). We set hMSA(s) =∞ when (i) no such arborescence exists (i.e., there
exists at least one vertex in Vs \ {i} that cannot be reached from i) or (ii) a vertex in Vs \ {n} has
no outgoing arc. The MSA is computed in O(|Es| log |Vs|) time with the algorithm of [Gab+86].

88 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

4.4.6 Discussion

In this section, we have introduced constant lower bounds on travel costs c and a digraph Gs

associated to a given state s = (i,S, t). The three lower bounds we propose either consist (i) in
computing relaxations of the shortest Hamiltonian path problem in Gs using weights c, or (ii) in
trying to prove that no such path exists. These bounds are computed in polynomial time and
offer different trade-offs between computational cost and tightness.

We shall see in Subsection 5.2.1 that we decrease the deadline ln of the destination vertex n
and propagate TW constraints each time a new best-known solution is found. This allows us
to tighten TWs (and therefore LDTs) and to refine sets E and R, which in turns allows us to
compute tighter lower bounds, given (i) graph Gs represents TW constraints more accurately
and (ii) lower bounds c on TD travel times become tighter.

Relationships with existing works. Note that the rules we use to tighten the graph Gs associated
to a state s by removing edges from Es resemble Post Feasibility Tests 1 and 3 proposed by
[Dum+95]. However, they were originally used to discard the transition between two states s and
s′ whenever s′ is guaranteed not to lead to a feasible solution. Here, we exploit these rules in a
broader context, i.e., we generalize them to build graph Gs: while hFEA only uses this graph to
try to prove that s cannot lead to a feasible solution, hOIA and hMSA also exploit it to compute a
lower bound on h∗(s).

Also, hOIA resembles the I/O lower bound used by [Lib+20] to solve the SOP: the state transition
graph of the SOP (see Section 1.1) is similar to the one of the TD-TSPTWm, except that states
are couples (i,S). It consists in defining hI/O(i, S) = max

(∑
j∈(V\S)∪{i} c

out
j ,

∑
j∈(V\S)∪{n} c

in
j

)
,

where coutj and cinj are constants respectively representing the minimum cost of arcs leaving (resp.
entering) a vertex j ∈ V \ {n} (resp. j ∈ V \ {0}). This bound recognizes that when a vertex j
precedes another vertex k, arc (k, j) cannot be used in a feasible solution and is therefore not
included in the computation of coutk and cinj . This bound is an order cheaper to compute than
hOIA, but it is not as tight given constants coutj and cinj do not depend on the vertices already
visited in a given state (i,S). More recently, authors of [KB23c] adapted the I/O bound to tackle
the TSPTWΣt with their problem-agnostic solver based on DP: note that in this adaptation,
coutj and cinj are constants which (i) do not depend on the current state (i,S, t) and (ii) fail to
recognize that some edges can never be used in a feasible solution. In other words, authors defined
these constants as coutj = mink∈V\{j} cj,k and cinj = mink∈V\{j} ck,j .

894.4. Computation of lower bounds h

Future works. Note that hMSA is more informed than hIA, but it is not more informed than hOA

(and, consequently, than hOIA): in order for hMSA to be more informed than hOIA, it could be
defined as the maximum of the cost of (i) the MSA rooted at i in Gs, and (ii) the MSA rooted at n
in the transpose of Gs (i.e., the graph in which all arcs of Es are reversed). A cheaper alternative
in terms of computation time could be to define it as the maximum value of hOA and hMSA.

Another way to compute tighter lower bounds could be to use tighter relaxations c of TD travel
costs: in Subsection 4.4.2, when removing arcs from the edge set Es associated to a given state
s = (i,S, t), we have seen that arcs leaving vertex i can only be used at time t, while the remaining
arcs can only be used at a time t′ > t or later. Consequently, for each arc (j, k) ∈ E , travel costs
estimations cj,k could be defined as a function of the earliest possible departure time from j.
More precisely, cj,k would be a non-decreasing function defined on interval [ej , LDT (j, k)], i.e.,
cj,k(t) = mint′∈[t,LDT (j,k)] cj,k(t′).

4.5 Discussion

In this chapter, we have instantiated four EAS algorithms related to A* to solve the TD-TSPTWm

and studied their similarities and differences: this led us to propose IBS+, an improved version of
IBS inspired by ACS. Also, we discussed of major implementation decisions and proposed efficient
ways to implement AWinA*, IBS+ and IBS. Finally, we proposed three heuristic functions for
the TD-TSPTWm which (i) are used to guide search and to prune the search space and (ii) offer
different trade-offs between computational cost and tightness.

In Chapter 6, we experimentally (i) tune the parameters of ACS and AWA*, (ii) evaluate different
implementation choices for IBS and IBS+, and (iii) compare these four EAS algorithms on the
TD-TSPTWm. Before that, we present in the next chapter how we combine EAS algorithms with
(i) TW constraint propagation, in order to reduce the size of the search space and to compute
tighter bounds, and (ii) a local search procedure which tries to improve each solution found.

90 CHAPTER 4. EXACT AND ANYTIME SEARCH FOR THE TD-TSPTWm

5 Combining EAS with TW
constraint propagation and
local search

Chapter

Contents
5.1 Overview of the proposed approach 92

5.2 Time Window constraint propagation 93

5.2.1 Propagation of constraints during resolution 93

5.2.2 Adaptations of rules in absence of triangle inequality 94

5.3 Local Search . 95

5.4 Greedy computation of an initial solution 96

5.5 Discussion . 96

In Chapter 4, we have instantiated four EAS algorithms to solve the TD-TSPTWm and described
three lower bounding functions. In this chapter, we propose to combine these EAS algorithms
with both problem-specific and problem-independent techniques for the purpose of improving
convergence and resolution speeds.

Throughout this chapter, we describe each of these components and how they interact with each
other. In Section 5.1 we briefly present these components and how they are organized around an
EAS algorithm. Then, in Section 5.2, we discuss how we use TW constraint propagation rules
to (i) reduce the size of the state space and (ii) compute tighter bounds. Finally, we describe
(i) a Local Search procedure used to improve the solutions found in Section 5.3 and (ii) a greedy
search procedure used to try to quickly find a first feasible solution in Section 5.4.

91

5.1 Overview of the proposed approach

We present a high-level view of our solving approach in Figure 5.1: resolution starts by propagating
TW constraints. We then use a greedy procedure to try to quickly find a first feasible solution.
After that, an EAS algorithm is used to find a new best-known solution, or to prove the optimality
of the current best-known solution. Whenever a new best-known solution is found (either by the
EAS algorithm or by the greedy search procedure), a local search procedure is used to try to
improve it, and TW constraints are propagated again before resuming search.

This process stops once the best-known solution is proven to be optimal. This proof may either be
obtained by the EAS algorithm or by TW constraint propagation rules. If no feasible solution has
been found when optimality is proven, then the problem instance has no feasible solution. Because
we output each new best-known solution found, resolution may be stopped before termination,
e.g., once a solution of sufficient quality has been found, or when space and time resources are
exhausted.

Start

Propagation of
TW contraints

Optimality
proof?

First
iteration?

Greedy search
procedure

EAS algorithm
(uses a lower bound h)

New solution?

Solution
found?

Local Search procedure

Output the
best-known solution

End

Yes

No

Yes

No

YesNo

No Yes

Figure 5.1: Overview of the proposed TD-TSPTWm solving approach.

92 CHAPTER 5. COMBINING EAS WITH CONSTRAINT PROPAGATION AND LOCAL SEARCH

5.2 Time Window constraint propagation

Similarly to most (TD-)TSPTW solving approaches, we use the classic TW constraint propagation
rules presented in Section 1.3 before starting resolution (e.g., before Line 3 of Algorithm 4.2).
Recall that these rules allow one to obtain a tighter but equivalent formulation of the problem by
(i) increasing release times ei and decreasing deadlines li of vertices i ∈ V , (ii) removing arcs from
the set of usable arcs E and (iii) adding arcs to the set of precedence constraints R.

In this section, we first describe how and why we also use these rules during resolution. We then
discuss how one may adapt these rules to handle problem instances for which triangle inequality
does not hold.

5.2.1 Propagation of constraints during resolution

To the best of our knowledge, existing solving approaches (such as those of [Vu+20], [LMS22]
and [Pra23]) propagate TW constraints only at the beginning of resolution. We propose to also
propagate them each time a new solution is found. More precisely, each time a new solution
s is found, we update the TW of the destination vertex n by decreasing its deadline ln to the
makespan of s. We then propagate this TW tightening: this operation may refine TWs of other
vertices, remove arcs from E , and add new arcs to R.

This strategy is specific to the makespan objective because it produces a tightened problem
formulation which admits only a subset of feasible solutions with respect to the original instance
(i.e., solutions with a makespan strictly greater than the best-known are considered as infeasible).

Propagating TW constraints during resolution has multiple advantages:

� It may prove the optimality of the current best-known solution by tightening the TW of
the destination vertex n to a single value en = ln.

� It reduces the size of the state space: recall from Section 4.1 that the feasibility of action j
in a given state s depends, amongst others, on lj , E and R.

� It allows one to compute tighter lower bounds h: as we have seen in Section 4.4, the tightness
of the lower bounds we use depends (i) on sets E and R, and (ii) on lower bounds on the
travel time of arcs (i, j) ∈ E , which are more accurate when TWs are tightened.

Note that the h-value – and consequently the f -value – of open states may be increased after this
process. Because it would be computationally expensive to (i) compute the new h-value of each
open state and (ii) to reorder the open set accordingly, we do not update the h-value of existing
states, but use the tighter formulation for each newly generated state.

935.2. Time Window constraint propagation

5.2.2 Adaptations of rules in absence of triangle inequality

When triangle inequality does not hold, two of the rules presented in Section 1.3 can be adapted in
order to avoid wrongly ruling out any solution that is feasible in the original problem formulation:

� Rule PFR1: given distinct vertices i, j ∈ V, condition ai,j(ei) > lj is necessary but not
sufficient to infer that j precedes i. Indeed, it may be possible to reach j on time by visiting
an intermediate vertex k within its TW, i.e., there may exist a vertex k ∈ V \ {i, j} such
that 〈i, k, j〉 is feasible. Therefore, we conclude that (j, i) ∈ R if j can only be reached later
than lj when departing from i at time ei while visiting an arbitrary number of intermediate
vertices within their TW (this is a constrained fastest path problem that can be solved in
polynomial time using an adaptation of Dijkstra’s algorithm). If such a path exists, we say
that 〈i, ∗, j〉 is feasible.

� A similar argument applies to rule PFR2: given distinct vertices i, j, k ∈ V, infeasibility
of subpaths 〈i, j, k〉 and 〈k, i, j〉 is necessary but not sufficient to remove arc (i, j) from E .
Subpath 〈i, j, k〉 considers traveling to k immediately after using arc (i, j) whereas a fastest
path from vertex j to k should be considered, i.e., both 〈i, j, ∗, k〉 and 〈k, ∗, i, j〉 should be
infeasible to remove arc (i, j) from E . Additionally, if 〈i, ∗, k, ∗, j〉 is also infeasible, then
vertex j must precede vertex i in any feasible solution.

Note that early works on the TSPTW (e.g., [Dum+95]) broadly defined TW constraint propagation
rules in terms of constrained fastest paths, only mentioning a simpler definition for the special
case in which triangle inequality is satisfied.

When triangle inequality is not satisfied, these adapted rules may be used to guarantee that
the transformed instance admits the exact same set of feasible solutions as the original one.
They however come at the expense of an increased time complexity due to the computation of
constrained TD fastest paths, although these rules are typically used only in instance preprocessing.
One may also argue that TD travel time functions are inherently imperfect, and disregard this
technical issue (a choice made by, e.g., [Pra23]). We chose to use these adapted rules (i) because
we also use them each time a new solution is found, and (ii) in order to ease the analysis of
experimental results: indeed, for some instances considered for experimental evaluation in the next
chapters, using the rules which assume that triangle inequality holds prevents one from finding
a solution with optimal makespan (i.e., optimal solutions are wrongly considered as infeasible).
Using these adapted rules therefore allows us to obtain the same optimal makespan across the
compared approaches, including the ones which do not propagate TW constraints.

94 CHAPTER 5. COMBINING EAS WITH CONSTRAINT PROPAGATION AND LOCAL SEARCH

5.3 Local Search

In order to converge faster towards good solutions, we use a greedy Local Search (LS) procedure
to try to improve each solution provided by the EAS algorithm. If this procedure manages to
improve the input solution, then ln is set to the new best-known makespan and TW constraints
are propagated (see Subsection 5.2.1). The LS procedure we use is similar to the one proposed by
[DU10] for the TSPTWΣt: consequently, we only outline it for self-containedness.

This LS procedure is based on the 1-shift and 2-opt neighborhoods, which both have a size in
O(|V|2). The 1-shift neighborhood consists in moving a single vertex backward or forward in the
path and the 2-opt neighborhood consists in reversing a subsequence of vertices of the path.

Sets E and R are used to reduce the size of the neighborhoods by discarding moves proven to
lead to infeasible solutions. When evaluating a move, we update in O(|V|) time the visit time at
each vertex impacted by it, and discard the move if it leads to constraint violations. Note that
discarding moves using sets E and R also allows us to discard moves which are proven to lead
to a solution worse than the best-known, given these sets are tightened when we propagate TW
constraints during search according to the best-known makespan (see Subsection 5.2.1).

The actual LS procedure uses the First Improvement strategy, i.e., each move leading to an
improved solution is accepted. This procedure is based on a variant of Variable Neighborhood
Search (VNS, [MH97]) called Variable Neighborhood Descent (VND, [HMM08]): neighborhoods
1-shift and 2-opt are considered alternatively until the current best-known solution is locally
optimal with respect to both neighborhoods (i.e., when this solution cannot be improved using a
single move).

Note that in the original approach of [DU10], moves are evaluated more efficiently because this
approach has been designed to handle a special case of the TSPTWΣt. More precisely, authors
efficiently evaluate any given move by first computing the cost of the resulting solution in constant
time. Then, the linear-time feasibility check is only performed if this cost is lower than the one of
the current solution. Two conditions are necessary to be able to compute this cost in constant
time: travel times must be symmetric and constant, and waiting times must not be included in
the objective function. None of these conditions hold when considering the TD-TSPTWm, i.e.,
linear time is required both to (i) compute the makespan of a neighboring solution and (ii) check
its feasibility.

We chose this local search procedure for its simplicity and for its relatively low time requirements:
indeed, the execution time dedicated to this procedure may help to improve the quality of the
solutions provided but it does not participate to the exploration of the state transition graph
and thus does not directly contribute to prove the optimality of the current best-known solution.
However, because this procedure helps to tighten the upper bound, it may allow the EAS algorithm
to prune more states and thus make resolution faster. Additionally, this procedure helps to reduce
the overall number of improvements of the upper bound ub, and thus the number of times TW
constraint propagation rules are used during resolution.

955.3. Local Search

5.4 Greedy computation of an initial solution

Before running the EAS algorithm, we use a greedy search procedure which tries to find an
initial solution in O

(
|V|2

)
time. This procedure consists in looking for a path from the initial

state (0, {0}, e0) to a final state in the state transition graph GP
ST. We iteratively build this

path starting from the initial state. In a given state s = (i,S, t), we greedily move to one of its
successors s′ = (i′,S ′, t′) such that (s, s′) ∈ A: we choose the state s′ which minimizes (li′ , ei′ , t

′),
in lexicographical order. In other words, we select the non-visited vertex i′ with the earliest
deadline li′ , break ties in favor of lower earliest visit time ei′ and break further ties in favor of
earlier arrival times on i′. Recall from Section 4.1 that the set of arcs A of the state transition
graph recognizes that (i) some arcs cannot be used in a feasible solution and (ii) precedence
relations may exist between vertices.

Note that computing such an upper bound before starting search is not a new idea: for example,
this strategy is used in Enhanced A* [II99] (see Subsection 3.3.2) to add pruning capabilities to A*.
In theory – provided this procedure finds a feasible solution – states can be pruned earlier because
(i) the upper bound ln is lower, and (ii) propagating TW constraints with this tighter upper
bound leads to computing tighter lower bounds h. While this strategy is beneficial to A* (given
A* is not anytime), results did not show significant performance improvements when considering
EAS algorithms designed to find solutions quickly, e.g., ACS with a small breadth-limit B. Indeed,
when it is trivial to find a feasible solution, such algorithms are likely to find a solution of better
quality as they are guided using additional heuristic information. When it is not trivial to find a
feasible solution, this greedy procedure is unlikely to find one.

Finally, we shall see in Section 6.3 that using this procedure has the advantage of easing the
analysis of experimental results when considering EAS algorithms which converge slowly.

5.5 Discussion

In this chapter, we have described how we combine EAS algorithms with various extra components
in order to improve performance. More precisely, we proposed to combine EAS algorithms with
(i) TW constraint propagation, both before and during resolution – in order to reduce the size of
the search space and to compute tighter lower bounds – and (ii) an LS procedure which tries
to improve the solutions found. Also, we have described a way to orchestrate these components
discussed how they benefit each other.

In the next chapter, we experimentally (i) evaluate the performance impact of the main components
of our approach, (ii) compare the four EAS algorithms we have considered in Chapter 4 and
(iii) study the influence of several implementation choices. We then compare our solving approach
to state-of-the-art TD-TSPTWm solvers in Chapter 7 and provide experimental results on constant
benchmarks in Chapter 8.

96 CHAPTER 5. COMBINING EAS WITH CONSTRAINT PROPAGATION AND LOCAL SEARCH

III
Experimental results

Part

97

6 Experimental comparison
of different EAS algorithms

Chapter

Contents
6.1 Experimental setting . 99

6.2 Preliminary experiments . 101

6.3 Parameter tuning . 104

6.4 Validation of implementation choices 107

6.5 Overall comparison . 110

6.6 Discussion . 111

In this chapter, we evaluate experimentally the four EAS algorithms we instantiated for the
TD-TSPTWm in Section 4.2. We start by describing the experimental setting in Section 6.1,
which includes our performance criteria and the associated performance measures, the problem
instances we consider and the hardware we used. In Section 6.2, we report results of preliminary
experiments in order to validate the relevance of key components of our solving approach. We
then evaluate the impact of (i) parameters of EAS algorithms in Section 6.3 and (ii) major
implementation decisions in Section 6.4. Finally, in Section 6.5, we compare the best variants of
each of the four EAS algorithms we consider.

6.1 Experimental setting

In this chapter, we consider the lower bound hOIA because it provides a middle-ground between
hFEA and hMSA in terms of computational cost. Also, as we shall see in Chapters 7 and 8,
hOIA tends to provide the best results amongst these three lower bounds. Moreover, preliminary
experiments have shown us that results follow similar trends when considering either hFEA or
hMSA instead of hOIA.

99

Performance criteria. In this thesis, we experimentally compare solving approaches according to
(i) their ability to quickly provide close-to-optimal solutions (i.e., convergence speed), (ii) their
ability to quickly prove that the current best-known solution is optimal (i.e., solving speed), and
(iii) the amount of memory they use.

Note that these criteria may be incompatible: we made the choice of preferring convergence
speed over solving speed because TD travel times are inherently imperfect (see Section 1.2), i.e.,
optimality proofs are mainly useful to determine when to stop searching. Also, we seek to obtain
a scalable solving approach: when considering hard enough instances, optimality proofs are out of
reach and it is preferable to provide the best possible approximate solution instead.

Performance measures. We say that an instance is solved by an approach whenever it finds an
optimal solution and proves its optimality within one hour. We note #s the number of solved
instances and ts the average time required to solve them. Similarly, we note #r the number of
instances for which an approach has found a reference solution, and tr the average time needed to
find them. A reference solution is either an optimal solution or a solution of best-known makespan.
The reference solutions of all instances considered in this chapter are known to be optimal.

When displaying performance measures of different approaches, we underline the maximal value
of #s or #r and we highlight in blue (resp. green) the smallest value of ts (resp. tr) amongst all
approaches which maximize #s (resp. #r).

Also, to evaluate the ability of an approach to quickly converge towards close-to-optimal solutions,
we plot the evolution of the gap to the reference solution (in percentage) with respect to time:
given the makespan m of a solution and a reference makespan mr, we define the gap of m with
respect to mr as gap(m,mr) = m−mr

mr
. When considering results over multiple instances, we

display the evolution of the average gap with respect to time.

Finally, we compare the space requirements of each approach by reporting the average peak
memory use (in GiB) during resolution.

Problem instances. Throughout this chapter, we consider a subset of instances from benchmark
BAri19 (see Section 1.5): although imperfect in terms of TD travel times, this benchmark contains
challenging instances and is widely used to evaluate the performance of TD-TSPTWm solvers.

Recall that in this benchmark, TW tightness is determined by parameter β ∈ {0, 0.25, 0.50, 1}:
TWs are widest when β is close to 0 and tightest when β is close to 1. Because we are interested
in evaluating both the convergence speed and the ability to prove the optimality of the solutions
found, we consider instances of intermediate difficulty, i.e., instances with n = 31 and β ≤ 0.50

(we exclude instances with β = 1 because it is trivial for our approach to solve them). Despite
their relatively small size n, instances from this subset are relatively challenging to solve due to
the wideness of their TWs (see the sample TW distributions in Figure 1.5, page 26).

Given an instance size n, this benchmark contains 300 instances for each value of β. Two additional

100 CHAPTER 6. EXPERIMENTAL COMPARISON OF DIFFERENT EAS ALGORITHMS

parameters, ∆ ∈ {.70, .80, .90, .95, .98} and P ∈ {B1, B2} determine the variations in TD travel
time functions. We shall see in Section 7.2 that our approach is relatively insensitive to these
parameters, i.e., its performance mainly depends on the instance size n and on the TW tightness
β. Consequently, we only consider a smaller yet representative set of instances for each value of
β. We obtain this representative subset by randomly sampling six out of the thirty instances
provided for each of the ten combinations of values for parameters ∆ and P . This leads us to
considering 60 instances per value of β (i.e., 20% of them): because we consider instances with
n = 31 and β ≤ 0.50, our subset of BAri19 is composed of 180 instances overall.

Hardware. Unless otherwise specified, experiments presented in this thesis were executed on
2.1 gigahertz Intel Xeon E5-2620 v4 processors with 64 GiB of RAM. To favor reproducibility,
experiments were carried out using the Grid’5000 testbed, which is supported by a scientific
interest group hosted by Inria and including CNRS, RENATER and several Universities as well
as other organizations (see https://www.grid5000.fr). Additionally, as suggested by [Fic+21],
Turbo Boost was disabled and each machine solved one instance at a time, using a single processor.

6.2 Preliminary experiments

Before comparing the performance of various EAS algorithms, we first study the performance
impact of the main components on our approach. Our approach is composed of three key
components, i.e., the propagation of TW constraints (see Section 5.2), Local Search (LS, see
Section 5.3), and rules that exploit LDTs to filter the set of usable edges Es when computing
lower bounds h (see Subsection 4.4.2).

We evaluate the relevance of these components by reporting results of Anytime Column Search
(ACS, see Subsection 4.2.3) with breadth-limit B = 1 (we study the impact of this parameter in
Section 6.3). We first report results by adopting an additive method: starting from an approach
in which all components are disabled, we enable each component one by one until obtaining the
complete solving approach in which all components are enabled. We then adopt a complementary
subtractive method by separately disabling each component to study their individual impact.

Additive analysis. We first evaluate the relevance of these components by reporting results obtained
with the following variants of ACS:

� ACS0 is the variant in which the three components are disabled;

� ACS1 is obtained from ACS0 by enabling TW constraint propagation before starting search
(i.e., in preprocessing);

� ACS2 is obtained from ACS1 by also enabling TW constraint propagation during search
(i.e., each time the upper bound ub is decreased);

� ACS3 is obtained from ACS2 by enabling LS;

1016.2. Preliminary experiments

https://www.grid5000.fr

� ACS is obtained from ACS3 by enabling the filtering of the usable edge set Es based on
LDTs.

In Table 6.1, we display performance measures of these variants on the representative subset
of BAri19 described in Section 6.1 (similar results have been obtained on other benchmarks).
When looking at the number of solved instances on the left-hand side of Table 6.1, we see that
all components except LS improve performance: ACS1, which propagates TW constraints before
starting search, solves 64 more instances than ACS0; ACS2, which also propagates TW constraints
during search, solves four more instances. Finally, ACS also filters set Es and solves 67 additional
instances.

When looking at the number of reference solutions found on the right-hand side of Table 6.1,
we see that propagating TW constraints during search slightly degrades performance (ACS2

finds two less reference solution than ACS1). We also see that LS allows ACS3 to find reference
solutions faster. To compare the ability of our different variants to quickly converge towards
quality solutions, we display in Figure 6.1 the evolution of the gap to the reference solution with
respect to time. It demonstrates that LS allows ACS3 to find better solutions than ACS2 at the
beginning of search, especially when TWs are wide.

Solved instances Reference solutions

ACS0 ACS1 ACS2 ACS3 ACS ACS0 ACS1 ACS2 ACS3 ACS

β #s ts #s ts #s ts #s ts #s ts #r tr #r tr #r tr #r tr #r tr

0 0 - 0 - 0 - 0 - 60 825 35 900 57 522 55 486 55 456 60 23
0.25 0 - 49 1614 53 1567 53 1567 60 249 60 83 60 11 60 13 60 12 60 3
0.50 45 1309 60 30 60 22 60 22 60 7 60 2 60 1 60 1 60 1 60 1

Total 45 109 113 113 180 155 177 175 175 180

Table 6.1: Performance of ACS0, ACS1, ACS2, ACS3, and ACS on a representative subset of BAri19
with n = 31 (60 instances per value of β). Left: Number of solved instances (#s) and solving time (ts).
Right: Number of reference solutions found (#r) and time to find the reference solution (tr).

10−1 100 101 102 103

Wide TWs (β=0)

0

2

4

6

8

10

10−1 100 101 102 103

Medium TWs (β=0.25)

ACS0

ACS1

ACS2

ACS3

ACS

A
v
er

a
g
e

g
a
p

(%
)

Time in seconds (log scale)

Figure 6.1: Evolution of the average gap to the optimal solution for ACS0, ACS1, ACS2, ACS3, and
ACS on a representative subset of BAri19 with n = 31 and β ∈ {0, 0.25} (60 instances per value of β).

102 CHAPTER 6. EXPERIMENTAL COMPARISON OF DIFFERENT EAS ALGORITHMS

Finally, let us mention that all components except LS significantly reduce memory use. For
example, when β = .25, ACS0 (resp. ACS1, ACS2, ACS3, and ACS) used on average 63.8 (resp.
23.1, 19.9, 19.9, and 2.1) GiB of memory.

Subtractive analysis. We now consider the relevance of each component by studying three variants
of ACS in which we disable a single component at a time. Contrarily to the previous analysis,
results are independent of the order in which components are enabled. We note ACS−FILT the
variant of ACS in which the filtering of edge set Es is disabled when computing lower bounds
h. Similarly, we note ACS−CPD (resp. ACS−LS) the variant of ACS in which TW constraint
propagation during search (resp. local search) is disabled.

Note that we do not present results for the variant in which TW constraint propagation is
completely disabled (i.e., both before and during search), given it is a prerequisite to the other
components (note that this variant corresponds to ACS0). Also notice that ACS−FILT is equivalent
to ACS3: consequently, we do not discuss the results of this variant but display them anyway to
allow comparison.

The left-hand side of Table 6.2 shows us that LS has no impact on solving performance. Propagating
TW constraints during search is however beneficial as ACS solves two more instances than
ACS−CPD.

On the right-hand side of Table 6.2 we see that reference solutions are found faster when enabling
LS for instances with β ≤ 0.25 and, to a lesser extent, when propagating TW constraints during
search for instances with β = 0. In Figure 6.2 (notice the shorter y-axis scale), we see that LS
improves convergence speed early during search and that TW constraint propagation during
search slightly degrades it, e.g., for time limits shorter than one second when β = 0.

Each component except LS leads to a decrease in the average peak memory use, e.g., when
β = 0.25, ACS−FILT (resp. ACS−CPD, ACS−FILT and ACS) used 19.9 (resp. 2.6, 2.1 and 2.1) GiB
of memory.

Solved instances Reference solutions

ACS−FILT ACS−CPD ACS−LS ACS ACS−FILT ACS−CPD ACS−LS ACS

β #s ts #s ts #s ts #s ts #r tr #r tr #r tr #r tr

0 0 - 58 826 60 825 60 825 55 456 60 25 60 27 60 23
0.25 53 1567 60 289 60 249 60 249 60 12 60 3 60 4 60 3
0.50 60 22 60 10 60 7 60 7 60 1 60 0 60 1 60 1

Total 113 178 180 180 175 180 180 180

Table 6.2: Performance of ACS−FILT, ACS−CPD, ACS−FILT and ACS on a representative subset of
BAri19 with n = 31 (60 instances per value of β). Left: Number of solved instances (#s) and solving time
(ts). Right: Number of reference solutions found (#r) and time to find the reference solution (tr).

1036.2. Preliminary experiments

10−1 100 101 102 103

Wide TWs (β=0)

0

1

2

3

4

5

10−1 100 101 102 103

Medium TWs (β=0.25)

ACS−FILT

ACS−CPD

ACS−LS

ACS

A
v
er

a
g
e

g
a
p

(%
)

Time in seconds (log scale)

Figure 6.2: Evolution of the average gap to the optimal solution for ACS−FILT, ACS−CPD, ACS−FILT
and ACS on a representative subset of BAri19 with n = 31 and β ∈ {0, 0.25} (60 instances per value of β).

Discussion. In this section, we have studied the impact of each key component of our approach.
Results show that filtering set Es based on LDTs when computing lower bounds is useful both for
solving and convergence speed and also leads to a lower memory use. Also, LS has been shown to
be beneficial for convergence speed at the beginning of resolution when TWs are wide, without
having a significant impact on solving speed or memory use.

TW constraint propagation during search also turns out to be slightly beneficial on our three
performance measures. While results of Table 6.1 show that it decreases convergence speed, we
see in Table 6.2 that it leads to faster convergence on hard instances. These different conclusions
may be explained by the fact that (i) when combined with LS, this procedure is called less often,
and its time overhead is reduced, and (ii) when combined with the filtering of set Es, our lower
bounds are tighter and benefit more from tightening TWs during search.

6.3 Parameter tuning

In this section, we seek to determine which parametrization of ACS and AWA* perform best.
Note that the parameter of both algorithms has an influence on convergence speed. Also, recall
from Section 5.4 that we try to greedily compute an initial solution and try to improve it through
local search before running the EAS algorithm. These procedures are deterministic, so – on a
given problem instance – all configurations of ACS and AWA* start with the same initial solution.
Because these procedures run quickly, we are able to plot the evolution of the average gap with
respect to time as early as possible (this average gap is undefined until at least one feasible
solution has been found for each instance): this is useful when considering parametrizations of
these algorithms which lead to slow convergence speed.

104 CHAPTER 6. EXPERIMENTAL COMPARISON OF DIFFERENT EAS ALGORITHMS

ACS’s breadth-limit B. We now study the influence of ACS’s parameter B, which determines the
maximum number of states expanded in each layer of the state transition graph per iteration. We
consider five values for parameterB based on a geometric progression, i.e.,B ∈ {1, 10, 100, 1k, 10k}
(for readability, we use the suffix “k” to denote multiplication by 1000). We note ACSB the
configuration of ACS with a given breadth-limit B.

The left-hand side of Table 6.3 shows us that greater values of B tend to lead to better solving
performance, e.g., when β = 0 or when β = 0.25, ACS1 is – on average – 6% slower than ACS10k.
Also, the impact of increasing B by a factor of 10 is larger when B is small (e.g., when β = 0,
ACS0 is 2.5% slower than ACS10 but ACS100 is only 1% slower than ACS1k). The right-hand
side of Table 6.3 shows no significant difference in terms of convergence speed.

However, when looking at the evolution of the average gap to the optimal solution in Figure 6.3,
we remark that large values of B tend to harm convergence speed when considering short time
limits. Also, when TWs are wide, ACS1 converges slightly faster than the other variants for time
limits lower than 400s.

Finally, note that parameter B has no significant influence on memory use.

We may explain these trends by the fact that larger values of B steers ACS to a more breadth-first

Solved instances Reference solutions

ACS1 ACS10 ACS100 ACS1k ACS10k ACS1 ACS10 ACS100 ACS1k ACS10k

β #s ts #s ts #s ts #s ts #s ts #r tr #r tr #r tr #r tr #r tr

0 60 825 60 804 60 785 60 777 60 776 60 23 60 23 60 23 60 23 60 23
0.25 60 249 60 244 60 239 60 236 60 234 60 3 60 3 60 3 60 3 60 4
0.50 60 7 60 6 60 6 60 6 60 6 60 1 60 0 60 0 60 1 60 1

Total 180 180 180 180 180 180 180 180 180 180

Table 6.3: Performance of ACS with different breadth-limits B on a representative subset of BAri19 with
n = 31 (60 instances per value of β). Left: Number of solved instances (#s) and solving time (ts). Right:
Number of reference solutions found (#r) and time to find the reference solution (tr).

10−1 100 101 102 103

Wide TWs (β=0)

0

1

2

3

4

5

10−1 100 101 102 103

Medium TWs (β=0.25)

ACS1

ACS10

ACS100

ACS1k

ACS10k

A
v
er

a
g
e

g
a
p

(%
)

Time in seconds (log scale)

Figure 6.3: Evolution of the average gap to the optimal solution for ACS with different breadth-limits B
on a representative subset of BAri19 instances with n = 31 and β ∈ {0, 0.25} (60 instances per value of β).

1056.3. Parameter tuning

behavior, while values close to 1 lead to a depth-first behavior. When B tends to infinity, ACS
degenerates into the Breadth-First algorithm presented in Section 4.1: because this algorithm
only expands nodes with optimal g-values, it is not anytime but it minimizes node re-expansions.
On the other hand, lower values of B allow to report solutions more frequently, given (i) solutions
may only be found at the end of an iteration, and (ii) each iteration expands O(B · |V|) nodes.

While larger values of B tend to lead to fewer node re-expansions, the solving speed does not
steadily decrease because it delays decreases of the upper bound ub and thus opportunities of
pruning using the heuristic function. Additionally, ACS relies on min-heaps to maintain the open
sets, which are optimized for efficiently obtaining a single most promising state. In Section 6.4,
we consider an alternative implementation more suited to larger (and increasing) values of B.

Because we are interested in scalability and convergence speed, we consider the variant of ACS
with B = 1 (recall from Subsection 3.3.3 that ACS is a generalization of CBFS in which B = 1).
Indeed, large values of B that perform well on this set of instances may lead to prohibitively long
iteration times and thus poor convergence speed when (i) considering larger graphs or (ii) using
lower bounds which are more expensive to compute than hOIA.

AWA*’s heuristic weight w. We now consider Anytime Weighted A* (AWA*, see Subsection 4.2.1)
and analyze the influence of the heuristic weight w on its performance. Recall that AWA*
degenerates into A* when w = 1, and that it is guided by the heuristic function only when w tends
to infinity. We study the performance of AWA* with five heuristic weights w ∈ {1.5, 2, 2.5, 3.5, 5}
and note AWA*w the configuration of AWA* with weight w.

The left-hand side of Table 6.4 shows us that using a low heuristic weight is preferable for solving
performance. Regarding convergence speed, the right-hand side of Table 6.4 shows us that extreme
values of w (e.g., 1.5 and 5) lead to poor performance, whereas the intermediate value of 2.5

allows AWA* to find all reference solutions in minimal average time.

Figure 6.4 presents the evolution of the average gap to the optimal solution for each TW width β:
notice that AWA*3.5 outperforms both AWA*2 and AWA*2.5 when TWs are wide (i.e., β = 0),
but the opposite is true when considering tighter TWs (i.e., β = 0.50)

Also, memory use increases when the heuristic weight w increases, e.g., when β = 0.25, AWA*
with weight w = 1.5 (resp. 2, 2.5, 3.5, 5) used 7.4 (resp. 7.8, 8.5, 14.4 and 18.7) GiB of memory.

These results show us that optimizing the convergence speed of AWA* requires adapting the weight
w according to the TW width or, more generally, to the size of the graph. Indeed, excessively
large heuristic weights lead to mainly expanding states located close to the goal (i.e., states with
low h-value) without trying to find better paths leading to these states (i.e., failing to find short
paths leading to states located close to the initial state). On the other hand, low heuristic weights
fail to provide close-to-optimal solutions on hard instances because most of the time is spent
expanding states located close to the initial state (i.e., states with low f -value, like A*).

When comparing various EAS algorithms in Section 6.5, we report results for AWA*2.5 because it

106 CHAPTER 6. EXPERIMENTAL COMPARISON OF DIFFERENT EAS ALGORITHMS

Solved instances Reference solutions

AWA*1.5 AWA*2 AWA*2.5 AWA*3.5 AWA*5 AWA*1.5 AWA*2 AWA*2.5 AWA*3.5 AWA*5

β #s ts #s ts #s ts #s ts #s ts #r tr #r tr #r tr #r tr #r tr

0 57 769 57 767 56 810 51 816 46 1154 58 573 60 271 60 94 60 150 58 597
0.25 60 263 60 282 60 340 60 615 58 761 60 116 60 17 60 14 60 251 59 473
0.50 60 7 60 8 60 9 60 15 60 22 60 3 60 1 60 1 60 6 60 14

Total 177 177 176 171 164 178 180 180 180 177

Table 6.4: Performance of AWA* with different heuristic weights w on a representative subset of BAri19
with n = 31 (60 instances per value of β). Left: Number of solved instances (#s) and solving time (ts).
Right: Number of reference solutions found (#r) and time to find the reference solution (tr).

10−1 100 101 102 103

Wide TWs (β=0)

0

1

2

3

4

5

10−1 100 101 102 103

Medium TWs (β=0.25)

10−1 100 101 102 103

Tight TWs (β=0.50)

AWA*1.5

AWA*2

AWA*2.5

AWA*3.5

AWA*5

A
v
er

a
g
e

g
a
p

(%
)

Time in seconds (log scale)

Figure 6.4: Evolution of the average gap to the optimal solution for AWA* with different heuristic weights
w on a representative subset of BAri19 with n = 31 and β ∈ {0, 0.25, 0.50} (60 instances per value of β).

performs best for quickly finding reference solutions.

6.4 Validation of implementation choices

In this section, we compare variants of Iterative Beam Search (IBS, see Subsection 4.2.2) which
differ in (i) the amount of nodes they re-expand and (ii) the data structures they use. This
comparison shall also allow us to highlight the importance of avoiding node re-expansions, i.e., of
avoiding to perform redundant work. One of these variants was originally applied to the SOP
in [Lib+20]: we show two ways to improve on this approach. These improvements are likely
to improve on this original’s approach performance in the context of the SOP, given the state
transition graph of this problem has the same topology as the one of the TD-TSPTWm.

Recall that IBS consists in performing a series of breadth-limited breadth-first searches: only the
B most promising nodes are considered at each layer of the graph, and the remaining nodes are
inadmissibly pruned. The breadth-limit B is increased geometrically after each search iteration
and IBS proves optimality when a search iteration terminates without having inadmissibly
pruned any node. We consider two implementations of IBS (we describe them more in depth in

1076.4. Validation of implementation choices

Subsection 4.3.2):

� IBSheap is the algorithm used to tackle the SOP in [Lib+20]. With this implementation, set
next has a bounded size (i.e., it contains at most B states) but it may contain duplicate
elements: therefore, this implementation may needlessly re-expand states.

� IBSselect improves on the implementation of IBSheap, i.e., elements of set next are unique
and a selection algorithm is used to determine which states are most promising.

Additionally, recall that in Subsection 4.2.3, we have proposed an improved variant of IBS called
IBS+: IBS+ improves on IBS by avoiding to restart search after each iteration. This is achieved
by memorizing states into open sets instead of inadmissibly pruning them, which tends to reduce
the number of re-expansions. In Subsection 4.3.2, we proposed to implement IBS+ using a
selection algorithm, as it is theoretically more efficient than implementing it using min-heaps: we
experimentally validate this choice by comparing these two variants, which we respectively note
IBS+

select and IBS+
heap (note that IBS+

heap is very similar to ACS, the only difference between these
algorithms being the geometrical growth of B).

The left-hand side of Table 6.5 shows us that IBSselect solves 11 more instances than IBSheap, and
that IBS+

select in turns solves 10 more instances than IBSselect. When β = 0.50, all instances are
solved by these three variants of IBS: on average, IBSselect solves these instances six times as fast
as IBSheap, and IBS+

select solves them 18 times as fast as IBSheap. Also notice that IBS+
select and

IBS+
heap solve the same number of instances overall: when β = 0, IBS+

select is – on average – 14%
as fast as IBS+

heap.

On the left-hand side of Table 6.5, we see that the four algorithms we consider find all reference
solutions. When β = 0, IBSselect and IBS+

select are respectively 1.5 and 2.8 times as fast, on average,
as IBSheap. We also see that IBS+

select and IBS+
heap have comparable performance and we draw

similar conclusions when looking at the evolution of the average gap to the optimal solution in
Figure 6.5.

When β = 0.25, IBSheap (resp. IBSselect, IBS+
select and IBS+

heap) used 2.3 (resp. 2.5, 2.2 and 2.8)
GiB of memory. We may explain these trends by the fact that all of these implementations
memorize the value associated to each known state in a map: IBS+

select tends to use less memory
because, contrarily to IBSheap and IBSselect, it does not maintain an additional set of states next.
Similarly, IBS+

heap memorizes open states both in a hash map and in min-heaps (also recall from
Subsection 4.3.1 that these heaps may contain obsolete states due to lazy heap operations).

108 CHAPTER 6. EXPERIMENTAL COMPARISON OF DIFFERENT EAS ALGORITHMS

Discussion. Results show that our improved version of IBS, IBS+, outperforms IBSheap, the
algorithm applied to the SOP in [Lib+20]. The difference in performance is particularly im-
portant when considering solving performance. Indeed, IBS+ is more efficient at avoiding node
re-expansions than IBSheap and IBSselect: contrarily to these approaches, IBS+

select does not restart
search to ensure completeness but maintains open sets instead. Such a strategy avoids overheads
associated to re-expansions, which include redundant computations of the heuristic function h.

We have also compared two implementations of IBS+ (i.e., IBS+
select and IBS+

heap), which differ only
in the data structures used to implement the open set: as expected, results show that when the
breadth-limit grows exponentially, using a selection algorithm is more efficient to solve instances
than using min-heaps.

Solved instances Reference solutions

IBSheap IBSselect IBS+
select IBS+

heap IBSheap IBSselect IBS+
select IBS+

heap

β #s ts #s ts #s ts #s ts #r tr #r tr #r tr #r tr

0 43 1495 50 1039 60 660 60 751 60 74 60 49 60 26 60 27
0.25 56 852 60 512 60 201 60 229 60 11 60 7 60 4 60 4
0.50 60 89 60 14 60 5 60 6 60 2 60 1 60 1 60 1

Total 159 170 180 180 180 180 180 180

Table 6.5: Performance of different implementations of IBS on a representative subset of BAri19 with
n = 31 (60 instances per value of β). Left: Number of solved instances (#s) and solving time (ts). Right:
Number of reference solutions found (#r) and time to find the reference solution (tr).

10−1 100 101 102 103

Wide TWs (β=0)

0

1

2

3

4

5

10−1 100 101 102 103

Medium TWs (β=0.25)

IBSheap

IBSselect

IBS+
select

IBS+
heap

A
v
er

a
g
e

g
a
p

(%
)

Time in seconds (log scale)

Figure 6.5: Evolution of the average gap to the optimal solution for different implementations of IBS on
a representative subset of BAri19 with n = 31 and β ∈ {0, 0.25} (60 instances per value of β).

1096.4. Validation of implementation choices

6.5 Overall comparison

In this section, we compare the performance of ACS, IBS, AWA* and AWinA* in order to determine
which of these EAS algorithms has the best abilities for fast convergence and scalability. We
consider the best performing parametrizations of ACS and AWA* (i.e., ACS1 and AWA*2.5, see
Section 6.3), the best performing implementation of IBS+ (i.e., IBS+

select, see Section 6.4), and
Anytime Window A* (AWinA*, see Subsection 4.2.4).

The left-hand side of Table 6.6 shows us that ACS, IBS+ and AWinA* manage to solve all
instances: IBS+ is the fastest, followed by AWinA* and ACS. AWA*, on the other hand, failed to
solve four instances.

Regarding convergence speed, we see on the right-hand side of Table 6.6 that all algorithms have
similar performance on instances with tight TWs (i.e., when β = 0.50). When TWs are wider
(i.e., β ∈ {0, 0.25}), ACS outperforms the other algorithms. More specifically, when β = 0, ACS
finds – on average – the reference solution 13% as fast as IBS+, two times as fast as AWinA*,
and four times as fast as AWA*. We observe similar trends when looking at the evolution of the
average gap to the optimal solution in Figure 6.6.

Solved instances Reference solutions

ACS1 IBS+ AWinA* AWA*2.5 ACS1 IBS+ AWinA* AWA*2.5

β #s ts #s ts #s ts #s ts #r tr #r tr #r tr #r tr

0 60 825 60 660 60 756 56 810 60 23 60 26 60 45 60 94
0.25 60 249 60 201 60 239 60 340 60 3 60 4 60 8 60 14
0.50 60 7 60 5 60 6 60 9 60 1 60 1 60 0 60 1

Total 180 180 180 176 180 180 180 180

Table 6.6: Performance of ACS, IBS+, AWA* and AWinA* with hOIA on a representative subset of BAri19
with n = 31 (60 instances per value of β). Left: Number of solved instances (#s) and solving time (ts).
Right: Number of reference solutions found (#r) and time to find the reference solution (tr).

10−1 100 101 102 103

Wide TWs (β=0)

0

1

2

3

4

5

10−1 100 101 102 103

Medium TWs (β=0.25)

ACS1

IBS+

AWinA*

AWA*2.5

A
v
er

a
g
e

g
a
p

(%
)

Time in seconds (log scale)

Figure 6.6: Evolution of the average gap to the optimal solution for ACS, IBS+, AWA* and AWinA* with
hOIA on a representative subset of BAri19 with n = 31 and β ∈ {0, 0.25} (60 instances per value of β).

110 CHAPTER 6. EXPERIMENTAL COMPARISON OF DIFFERENT EAS ALGORITHMS

Finally, both ACS and IBS+ tend to require less memory than AWinA* and AWA*, e.g., when
β = 0.25, ACS (resp. IBS, AWinA* and AWA*) used 2.1 (resp. 2.2, 2.4, 8.5) GiB of memory.

Discussion. Results show that breadth-constrained algorithms (i.e., ACS and IBS+) generally
perform better on the TD-TSPTWm than AWinA* and AWA*, which are respectively based on
depth-constraints and weighted heuristics (see the taxonomy established in Subsection 3.3.3). We
believe this to stem from the fact that ACS and IBS+ exploit the layered structure of the graph in
order to balance depth-first and breadth-first behaviors. Additionally, authors of [Pea84] pointed
out that systematic heuristic error is often homogeneous within a layer: these two algorithms
benefit from this as they only compare states by f -value within a given layer, which leads to
fairer comparisons.

The key difference between ACS and IBS+ is that the breadth-limit remains constant in ACS,
while in IBS+, it grows exponentially at the end of each iteration. Consequently, the behavior of
ACS remains mainly depth-first throughout search, whereas it progressively shifts from being
purely depth-first to being mainly breadth-first in IBS+: switching to this breadth-first behavior
tends to favor optimality proofs at the expense of convergence speed.

AWinA* performs better than ACS and worse than IBS+ for solving instances, but it performs
worse than both of them in terms of convergence speed. This may be explained by the fact
that, while the first iterations of this algorithm are greedy, it quickly degenerates into A*. When
considering the TD-TSPTWm, it performs O(|V|) iterations, and therefore only provides O(|V|)
solutions. We believe the trade-off between convergence speed and solving speed in AWinA* could
be tuned by increasing the depth tolerance every k iterations (instead of increasing it after each
iteration), where k ≥ 1 is a parameter.

AWA* is outperformed by the three other EAS algorithms we consider, both in terms of convergence
speed, solving speed, and memory use. Contrarily to ACS, IBS+, and AWinA*, this algorithm
does not exploit the layered structure of the graph but instead relies on weighted heuristics. We
have seen in Section 6.3 that tuning the heuristic weight w is not trivial as it heavily depends
on the size of the state transition graph, which is a function of both the instance size and TW
tightness.

6.6 Discussion

In this chapter, we have validated experimentally the relevance of the key components of our
solving approach for the TD-TSPTWm. Then, we have considered four EAS algorithms and
studied the influence of (i) their parameters and (ii) different implementation decisions. Finally,
we have compared the performance of the best configuration of each algorithm: because ACS with
breadth-limit B = 1 appears to be the most promising for convergence speed, we compare it in
Chapter 7 (resp. Chapter 8) to state-of-the-art or recent solving approaches for the TD-TSPTWm

(resp. TSPTWm).

1116.6. Discussion

In the future, it would be interesting to apply other EAS algorithms based on weighted heuristics
(see Subsection 3.3.3) to the TD-TSPTWm, although they are likely to be more suited to problems
for which the state transition graph does not have a layered structure. These algorithms usually
adapt the heuristic weight dynamically, which requires performing relatively expensive operations,
i.e., either (i) reordering the open set, or (ii) maintaining multiple orderings of the open set.

Another possibility would be to consider memory-bounded EAS algorithms which are able to
perform – to some extent – duplicate detection, given experiments of Section 6.4 have shown us
how important it is both for convergence and solving speeds when considering the TD-TSPTWm.

A last way to improve on the experiments of this chapter would be to consider (i) instances
of larger size (given the instance size determines the space requirements to store a state), and
(ii) instances for which it is not trivial to find feasible solutions (we consider such instances in
Chapter 8).

112 CHAPTER 6. EXPERIMENTAL COMPARISON OF DIFFERENT EAS ALGORITHMS

7 Experimental comparison with
state-of-the-art approaches on
Time-Dependent benchmarks

Chapter

Contents
7.1 Experimental setting . 113

7.2 Benchmark BAri19 . 115

7.3 Benchmark BVu20 . 119

7.4 Benchmark BRif20 . 121

7.5 Discussion . 125

In this chapter, we experimentally compare our solving approach to recent or state-of-the-art
solving approaches on the TD-TSPTWm. We first describe the experimental setting in Section 7.1.
Then, in Section 7.2 and Section 7.3, we provide experimental results on benchmarks commonly
used to evaluate TD-TSPTWm solving approaches. After that, in Section 7.4, we perform this
comparison on a benchmark with more realistic TD travel times and study how it impacts
performance.

7.1 Experimental setting

Considered approaches. We consider three variants of our approach1, which are based on Anytime
Column Search (ACS, see Subsection 4.2.3) with breadth-limit B = 1 (we have studied the
influence of parameter B in Section 6.3, and found ACS to be the fastest converging of four EAS
algorithms in Section 6.5). These three variants only differ in the computation of the lower bound
h: we note FEA (resp. OIA and MSA) the variant of ACS in which h = hFEA (resp. h = hOIA

and h = hMSA).

We compare our solving approach to the ILP approaches of [Ari+19] and [Vu+20], respectively
denoted Ari19 and Vu20, to the DP approach of [LMS22] denoted Ler22, and to the LNS
approach of Pra23 [Pra23]. Ler22 is the state-of-the-art for solving instances and Pra23 is the

1Source code available at https://github.com/romainfontaine/tdtsptw-ejor23

113

https://github.com/romainfontaine/tdtsptw-ejor23

state-of-the-art for quickly finding optimal or close-to-optimal solutions. We provide more details
about these solving approaches in Section 1.4.

Pra23 is mainly heuristic, i.e., its main goal is to find good approximate solutions quickly. Note
however that it can solve highly constrained instances (i.e., prove the optimality of the best-known
solution) because it starts by computing a lower bound on the optimal makespan: optimality is
proven when it finds a solution whose makespan is equal to this lower bound. Because Pra23 is not
deterministic, we executed this approach five times with different random seeds and report results
for the median run: runs are compared in lexicographical order according to (i) the makespan
of the best solution found and (ii) the time required to find it. Consequently, we consider that
Pra23 has found the optimal solution of a given instance when at least three out of the five runs
managed to find it. Note that Pra23 has a parameter Wmax which determines the size of the
DP neighborhoods considered, and thus allows one to balance exploration and exploitation: as
recommended by the author, we report results for Pra23 with Wmax = 4 throughout this thesis.

Also note that in Ler22, resolution starts by looking for a feasible solution using depth-first
search (DFS): therefore, although this approach is not anytime, it can provide up to two solutions
(i.e., a single approximate solution, and the optimal one). This first solution is usually far from
being optimal, unless TWs are very tight: in this case, Ler22 almost instantly finds the optimal
solution and proves its optimality.

Our approach is both exact and anytime, i.e., it provides a middle-ground between Pra23 and
Ler22 as (i) it provides a sequence of solutions of increasing quality and (ii) it is able to solve
any instance, provided enough time and memory.

Considered hardware and performance measures. Whenever possible, we use the same experimental
setting as described in Section 6.1, i.e., Pra23, Ler22, FEA, OIA, and MSA are run on 2.1GHz
Intel Xeon E5-2620 v4 processors with 64GiB RAM. Run times of Ari19 and Vu20 are those
reported by [Ari+19] and [Vu+20], as source codes are not available: Ari19 is run on a 2.33GHz
Intel Core 2 Duo processor with 4GiB RAM and Vu20 on a 3.4GHz Intel Core i7-2600 processor
(unknown RAM).

All solving approaches were executed with a time limit of one hour per instance. We consider the
same performance measures as in Section 6.1, i.e., we note #s (resp. #r) the number of solved
instances (resp. reference solutions found) and ts (resp. tr) the average time required to solve
(resp. find) them. When displaying performance measures of different approaches, we underline
the maximal value of #s or #r and we highlight in blue (resp. green) the smallest value of ts (resp.
tr) amongst all approaches which maximize #s (resp. #r). We say that an instance is solved by
an approach whenever it finds an optimal solution and proves its optimality within the time limit.
A reference solution is either an optimal solution or a solution of best-known makespan.

114 CHAPTER 7. EXPERIMENTAL COMPARISON ON TIME-DEPENDENT BENCHMARKS

Acknowledgements. We thank G. Lera-Romero and C. Pralet for helping us to reproduce their
results. We also thank D. M. Vu for sharing their benchmark and results.

7.2 Benchmark BAri19

In this section, we compare our approach to Ari19, Ler22 and Pra23 on benchmark BAri19.
We do not report results of Vu20 because (i) this benchmark was not considered in the original
publication [Vu+20] and (ii) the solver is not publicly available.

Benchmark. Recall from Section 1.5 that in BAri19 [Ari+19], TW width is determined by pa-
rameter β ∈ {0, 0.25, 0.50, 1} (TWs are widest when β is close to 0 and tightest when β is close
to 1, see Figure 1.5, page 26). BAri19 contains 300 instances for each combination of β and
n ∈ {16, 21, 31, 41}, i.e., 4800 instances overall. Also recall that TD travel time functions are
composed of 73 time-steps and modeled using the IGP model (see Section 1.2).

The reference solution is either the optimal solution, when Ler22 or at least one of our approaches
has solved the instance, or the best solution found by (i) Pra23 within one hour or (ii) OIA

and MSA within an extended time limit of three hours. The reference solution is known to be
optimal for all instances with n ≤ 31 or β ≥ 0.50. When n = 41 and β = 0 (resp. β = 0.25), the
percentage of instances for which the reference solution is known to be optimal is equal to 42%
(resp. 96%)2.

Results. We provide results about solving speed in Table 7.1a by reporting the number of solved
instances and average solving times. We study convergence speed by (i) providing in Table 7.1b the
number of reference solutions found and the average time required to find them and (ii) displaying
in Figure 7.1 the evolution of the average gap to reference solution with respect to time for the
hardest instance classes (i.e., n = 41 and β ≤ 0.50).

Comparison of FEA, OIA and MSA. Regarding solving speed, we see in Table 7.1a that MSA

is always outperformed by both OIA and FEA in terms of solving speed, showing that using
a more expensive bound does not pay off on this benchmark. FEA and OIA have very close
performance when n ≤ 21. When n = 31, FEA solves all instances and outperforms OIA but
when n = 41, OIA performs better than FEA, which shows us that it is beneficial to use a tighter
bound when considering larger instances.

Similar conclusions are drawn when considering convergence speed: Table 7.1b shows us that
OIA outperforms both FEA and MSA for quickly finding reference solutions, and Figure 7.1
shows us that this conclusion also holds for time limits shorter than one hour.

2For this benchmark, optimal makespans slightly differ depending on whether or not travel times are rounded.
We round travel times to the nearest integer in Pra23 and our approach, whereas Ler22 requires modeling
them as floating-points numbers. This problem does not occur when considering more realistic TD travel times in
Section 7.4.

1157.2. Benchmark BAri19

Comparison to Ler22 and Pra23. We see in Table 7.1a that Ler22 manages to solve more
instances than our approach when n = 41 and β ≤ 0.50. However, when n = 31 and β ≤ 0.50,
FEA is faster than Ler22. Both Ler22 and our approach outperform Pra23 for solving instances
when β ≤ 0.50 (i.e., when TWs are wide) because fast convergence speed is the main goal of
Pra23 (recall that Pra23 can only prove optimality when TWs are tight).

However, unlike Ler22, our approach is anytime: when our approach has not solved an instance,
it has found approximate solutions which are often optimal. When looking at the evolution of
the gap to reference solutions with respect to time for the hardest instance classes (i.e., n = 41

and β ≤ 0.50) in Figure 7.1, we see that that OIA converges faster than FEA and MSA and
that it reaches an average gap to the reference solution of 1% in 236s (resp. 5s and 0.6s) when
β = 0 (resp. β = 0.25 and β = 0.50). We also see that Pra23 in turns converges much faster
than OIA, i.e., it respectively requires only 7s, 2s, and 0.4s to reach these goals. On the other
hand, Ler22 either obtains the optimal solution when it manages to solve an instance, or only
provides a relatively low-quality initial solution obtained through DFS. As a comparison, Ler22

requires 2511s to reach a 1% average gap when n = 41 and β = 0.50 and fails to reach this goal
within one hour when n = 41 and β ∈ {0, 0.25}.

While Pra23 generally excels at quickly finding close-to-optimal solutions, notice that it fails to
find two reference solutions when n = 41 and β = 0.50 (some runs of Pra23 managed to find
these solutions, but not the majority) whereas OIA and MSA found the reference solutions for
all of these instances.

Memory use. When n = 41, Ler22, FEA, OIA and MSA respectively used – on average – 6,
35, 25 and 7 GiB of memory. This demonstrates that using more expensive lower bounds tends to
reduce memory needs. On the other hand, Pra23 used less than 10−2 GiB of memory, on average:
this is due to the fact that this approach is mainly heuristic, i.e., it can only prove optimality of
highly constrained instances.

10−1 100 101 102 103

Wide TWs (β=0)

0

1

2

3

4

5

10−1 100 101 102 103

Medium TWs (β=0.25)

Ler22

Pra23

FEA

OIA

MSA

10−1 100 101 102 103

Tight TWs (β=0.50)

A
v
er

a
g
e

g
a
p

(%
)

Time in seconds (log scale)

Figure 7.1: Evolution of the average gap to the reference solution for Ler22, Pra23, FEA, OIA and
MSA on BAri19 when n = 41 and β ∈ {0, 0.25, 0.50} (300 instances per value of β).

116 CHAPTER 7. EXPERIMENTAL COMPARISON ON TIME-DEPENDENT BENCHMARKS

Ari19 Ler22 Pra23 FEA OIA MSA

n β #s ts #s ts #s ts #s ts #s ts #s ts

16 0 287 299 300 5 0 - 300 0 300 0 300 0
0.25 299 143 300 3 0 - 300 0 300 0 300 0
0.50 299 26 300 2 146 0 300 0 300 0 300 0
1 300 2 300 0 300 0 300 0 300 0 300 0

21 0 248 660 300 198 0 - 300 1 300 1 300 3
0.25 286 383 300 87 0 - 300 0 300 0 300 1
0.50 296 289 300 19 0 - 300 0 300 0 300 0
1 300 29 300 0 300 0 300 0 300 0 300 0

31 0 155 1631 300 1788 0 - 300 496 294 808 235 1334
0.25 199 1274 300 1084 0 - 300 145 300 219 299 637
0.50 157 1433 300 389 0 - 300 5 300 6 300 16
1 233 608 300 0 300 0 300 0 300 0 300 0

41 0 110 2263 126 2778 0 - 0 - 0 - 0 -
0.25 131 1950 244 2593 0 - 35 2444 16 2986 0 -
0.50 55 2276 300 1837 0 - 252 566 280 645 235 1069
1 106 528 300 0 300 0 300 0 300 0 300 0

Total 3461 4570 1346 4187 4190 4069

(a) Number of solved instances (#s) and solving time (ts).

Ler22 Pra23 FEA OIA MSA

n β #r tr #r tr #r tr #r tr #r tr

16 0 300 5 300 0 300 0 300 0 300 0
0.25 300 3 300 0 300 0 300 0 300 0
0.50 300 2 300 0 300 0 300 0 300 0
1 300 0 300 0 300 0 300 0 300 0

21 0 300 198 300 0 300 0 300 0 300 1
0.25 300 87 300 0 300 0 300 0 300 0
0.50 300 19 300 0 300 0 300 0 300 0
1 300 0 300 0 300 0 300 0 300 0

31 0 300 1788 300 6 300 64 300 20 300 67
0.25 300 1084 300 4 300 19 300 5 300 12
0.50 300 389 300 1 300 1 300 0 300 1
1 300 0 300 0 300 0 300 0 300 0

41 0 126 2778 285 241 171 456 235 471 213 648
0.25 244 2593 300 137 210 318 283 208 268 282
0.50 300 1837 298 21 299 75 300 6 300 19
1 300 0 300 0 300 0 300 0 300 0

Total 4570 4783 4580 4718 4681

(b) Number of reference solutions found (#r) and time to find the reference solution (tr).

Table 7.1: Instances solved and reference solutions found by Ari19, Ler22, Pra23, FEA, OIA and
MSA on BAri19 (300 instances per row).

1177.2. Benchmark BAri19

Comparison to Ari19. Table 7.1a also presents results about the solving performance of Ari19

(recall from Section 7.1 that Ari19 was run on different hardware). We can see that Ler22

outperforms it, and that our approach is more successful on many instance classes: OIA solves
729 more instances than Ari19 overall and, on a large number of classes the difference in solving
times cannot only come from the fact that they have been run on different computers. However,
when n = 41 and β ∈ {0, 0.25}, only 35 (resp. 16) instances are solved by FEA (resp. OIA)
whereas Ari19 is able to solve 241 instances.

Recall from Section 1.5 that TD travel time functions of BAri19 depend on two parameters ∆

and P : the success of Ari19 is strongly related to ∆ as it relies on bounds which are tighter
when ∆ is closer to 1, as explained in Section 1.4. To illustrate this, we detail in Table 7.2 the
number of solved instances for each value of β, each value of ∆ and each traffic pattern P when
n = 41. It shows us that Ari19 is very sensitive to ∆ and P , whereas our approach is mainly
sensitive to the TW width β.

Note that the model used to generate TD travel time functionf of BAri19 allows one to control ∆.
In Section 7.4, we report results on BRif20, a benchmark generated from real-world data: in it,
the value of ∆ is not controlled and it is much lower than 0.70 (see Section 1.5). Before that, we
report results on BVu20 in which TD travel time functions were generated using a model similar
to the one of BAri19.

Ari19 FEA

P = B1 P = B2 P = B1 P = B2

β\∆ .70 .80 .90 .95 .98 .70 .80 .90 .95 .98 Total .70 .80 .90 .95 .98 .70 .80 .90 .95 .98 Total

0 6 8 10 19 28 1 0 3 12 23 110 0 0 0 0 0 0 0 0 0 0 0
0.25 6 8 13 23 29 1 0 5 16 30 131 2 2 3 4 4 4 4 4 4 4 35
0.50 1 2 4 9 18 1 0 2 5 13 55 24 25 25 25 25 28 25 25 25 25 252
1 14 11 14 12 29 8 4 3 4 7 106 30 30 30 30 30 30 30 30 30 30 300

Total 27 29 41 63 104 11 4 13 37 73 56 57 58 59 59 62 59 59 59 59

Table 7.2: Number of instances solved by Ari19 and FEA with respect to P , ∆ and β on BAri19 when
n = 41 (30 instances per class).

118 CHAPTER 7. EXPERIMENTAL COMPARISON ON TIME-DEPENDENT BENCHMARKS

7.3 Benchmark BVu20

We now compare our approach to Vu203, Ler22 and Pra23 on benchmark BVu20. We do not
present results of Ari19 as this solver is not publicly available.

Context. BVu20 [Vu+20] is an extension of BAri19 with similar TD travel time functions but an
increased number of vertices n ∈ {60, 80, 100}. Also, TWs are obtained in a different way and
have a fixed width of w time units, where w ∈ {40, 60, 80, 100, 120, 150}: TWs of this benchmark
are much tighter than those of BAri19 (see Figure 1.5, page 26). There are 40 instances for each
combination of instance size n and TW width w, i.e., 720 instances overall.

Reference solutions are known to be optimal for all instances of this benchmark.

Solving speed. In Table 7.3a, we report the number of solved instances and solving times. MSA

is always outperformed by OIA which is always outperformed by FEA. This comes from the fact
that TWs are very tight: in this case, the propagation of TW constraints and the filtering of arcs
based on LDTs remove many edges of E and the simple and inexpensive feasibility check of hFEA

is often enough to detect inconsistencies.

If FEA is able to solve all instances, Vu20, Ler22 and Pra23 respectively fail at solving 19,
two and 150 instances. FEA is almost always more than ten times as fast as Ler22 and Vu20

and, for some classes it is more than 100 times as fast. This difference is large enough to allow us
to conclude that FEA is more efficient than Ler22 and Vu20 (even though the latter was run
on a different computer).

Convergence speed. Table 7.3b shows us that FEA always finds the reference solution very quickly,
in a few tenths of a second for all classes except when n = 100 and w = 150, where 3.6 seconds
are needed to find it, on average. Pra23 outperforms our approach for convergence speed, i.e., it
almost instantly finds all reference solutions. We do not display the evolution of the gap with
respect to time on BVu20 because TW tightness makes it trivial to find close-to-optimal solutions
(TW constraint propagation rules are very efficient in such a context).

Memory use. For instances with n = 100, Ler22 used on average 0.8 GiB of memory, whereas
FEA, OIA and MSA used 0.2 GiB each. This can be explained by the fact that our bounds
prune the search space efficiently because of TW tightness. As we have seen in Section 7.2, Pra23

uses a negligible amount of memory compared to the other approaches.

3Results of Vu20 have been sent to us by authors in a personal communication.

1197.3. Benchmark BVu20

Vu20 Ler22 Pra23 FEA OIA MSA

n w #s ts #s ts #s ts #s ts #s ts #s ts

60 ≤ 80 120 3.3 120 1.0 119 0.0 120 0.1 120 0.1 120 0.1
100 40 15.5 40 8.0 36 0.0 40 0.1 40 0.1 40 0.1
120 40 84.8 40 25.9 30 0.0 40 0.1 40 0.1 40 0.2
150 39 219.6 40 154.7 20 0.0 40 0.2 40 0.4 40 1.3

80 ≤ 80 120 65.4 120 8.4 105 0.0 120 0.2 120 0.2 120 0.2
100 39 198.3 40 52.7 22 0.0 40 0.2 40 0.3 40 0.7
120 37 433.3 40 96.6 24 0.0 40 0.4 40 0.8 40 2.3
150 39 629.4 40 193.2 20 0.0 40 1.5 40 4.3 40 14.3

100 ≤ 80 120 59.4 120 58.2 101 0.1 120 0.4 120 0.5 120 1.2
100 39 292.5 40 219.0 31 0.1 40 1.3 40 3.4 40 11.7
120 39 435.8 40 365.9 31 0.1 40 5.0 40 16.2 40 55.9
150 29 1291.1 38 722.5 31 0.1 40 79.4 39 165.1 39 564.6

Total 701 718 570 720 719 719

(a) Number of solved instances (#s) and solving time (ts).

Ler22 Pra23 FEA OIA MSA

n w #r tr #r tr #r tr #r tr #r tr

60 ≤ 80 120 1.0 120 0.0 120 0.0 120 0.0 120 0.0
100 40 8.0 40 0.0 40 0.0 40 0.1 40 0.0
120 40 25.9 40 0.0 40 0.1 40 0.1 40 0.1
150 40 154.7 40 0.0 40 0.1 40 0.1 40 0.1

80 ≤ 80 120 8.4 120 0.0 120 0.1 120 0.1 120 0.1
100 40 52.7 40 0.0 40 0.1 40 0.1 40 0.1
120 40 96.6 40 0.0 40 0.2 40 0.2 40 0.2
150 40 193.2 40 0.0 40 0.2 40 0.2 40 0.3

100 ≤ 80 120 58.2 120 0.1 120 0.2 120 0.2 120 0.2
100 40 219.0 40 0.1 40 0.3 40 0.3 40 0.4
120 40 365.9 40 0.1 40 0.3 40 0.4 40 0.5
150 38 722.5 40 0.1 40 3.6 40 9.5 40 33.9

Total 718 720 720 720 720

(b) Number of reference solutions found (#r) and time to find the reference solution (tr).

Table 7.3: Instances solved and reference solutions found by Vu20, Ler22, Pra23, FEA, OIA and
MSA on BVu20 (40 instances per row when w ∈ {100, 120, 150}, 120 instances per row when w ≤ 80).

120 CHAPTER 7. EXPERIMENTAL COMPARISON ON TIME-DEPENDENT BENCHMARKS

7.4 Benchmark BRif20

We now consider more realistic TD travel time functions by comparing our approach to Ler22

and Pra23 on BRif20.

Context. As we have seen in Section 1.5, TD travel time functions of BRif20 [RCS20] are composed
of 120 time-steps and were generated using a realistic traffic simulation built from real-world
data. To ease the comparison of results with the ones obtained on BAri19, we consider instances
with n ∈ {21, 31, 41} and TWs similar to those of BAri19, i.e., TW tightness is controlled by
β ∈ {0, 0.25, 0.50, 1}.

We cannot report results of Ari19 or Vu20 on BRif20 as source codes of these approaches are
not available. However, relatively poor performance can be expected from both these approaches.
Indeed, we have seen that Ari19 is outperformed by Ler22 and that Ari19’s performance drops
when ∆ < 0.90 (see Table 7.2): recall from Section 1.5 that in BRif20, ∆ is always smaller than
0.23. Regarding Vu20, we have seen in Section 7.3 that this approach performs best when TWs
are very tight: nonetheless, it is outperformed by both Ler22 and by our approach (e.g., FEA

solves more instances than Vu20 and is always ten to 100 times as fast as Vu20, on average).

In BRif20, reference solutions are known to be optimal for all instance classes except when n = 41

and β = 0: in this case, 9% of the reference solutions are known to be optimal.

Performance of Ler22, Pra23, FEA, OIA and MSA. In Table 7.4, we report performance
measures of Ler22, Pra23 and our approach on this benchmark. We also report the evolution
of the average gap to the reference solution when n = 41 and β ∈ {0, 0.25, 0.50} in Figure 7.2.
Trends in the results of our approach are relatively similar to those obtained on BAri19 (see
Section 7.2), i.e., OIA is still the best performing of our three bounds, both for solving and
convergence speeds. More generally, when considering solving speed, Pra23 is outperformed by
FEA, OIA and MSA, which are in turn outperformed by Ler22 on hard instances classes, i.e.,
when n = 41 and β ∈ {0, 0.25}. The opposite is true when considering convergence speed, i.e.,
Pra23 outperforms FEA, OIA and MSA, which in turn outperform Ler22.

Ler22, FEA, OIA and MSA respectively used 7, 31, 15 and 3 GiB of memory.

Performance impact of travel time functions. Note however that Ler22 tends to perform worse on
BRif20 than on BAri19, e.g., it failed to solve two instances with n = 21 and β = 0, and solved
only 7% of instance class n = 41 and β = 0 whereas it solved 42% of them on BAri19. On the
other hand, Pra23 and our approach tend to perform better on BRif20 than on BAri19. To better
understand these trends, we report in Table 7.5 the results of Ler22, Pra23 and our approach
on BAri19 and BRif20 when n = 41. We also consider a constant variant of BRif20 which we note
Bc

Rif20 (we provide detailed results on this benchmark in Section 8.3, including a comparison
with recent TSPTWm solving approaches).

1217.4. Benchmark BRif20

Ler22 Pra23 FEA OIA MSA

n β #s ts #s ts #s ts #s ts #s ts

21 0 148 363 0 - 150 0 150 1 150 2
0.25 150 89 0 - 150 0 150 0 150 0
0.50 150 15 0 - 150 0 150 0 150 0
1 150 0 150 0 150 0 150 0 150 0

31 0 149 2176 0 - 149 397 148 488 136 1151
0.25 150 1503 0 - 150 84 150 68 149 152
0.50 150 431 0 - 150 1 150 1 150 3
1 150 0 150 0 150 0 150 0 150 0

41 0 11 2902 0 - 0 - 0 - 0 -
0.25 132 2744 0 - 12 2236 27 1950 15 1800
0.50 149 1450 0 - 150 40 150 35 150 120
1 150 0 150 0 150 0 150 0 150 0

Total 1639 450 1511 1525 1500

(a) Number of solved instances (#s) and solving time (ts).

Ler22 Pra23 FEA OIA MSA

n β #r tr #r tr #r tr #r tr #r tr

21 0 148 363 150 0 150 0 150 0 150 0
0.25 150 89 150 0 150 0 150 0 150 0
0.50 150 15 150 0 150 0 150 0 150 0
1 150 0 150 0 150 0 150 0 150 0

31 0 149 2176 150 3 150 67 150 19 150 67
0.25 150 1503 150 0 150 11 150 1 150 3
0.50 150 431 150 0 150 0 150 0 150 0
1 150 0 150 0 150 0 150 0 150 0

41 0 11 2902 150 61 68 397 135 410 116 626
0.25 132 2744 150 17 120 413 149 51 147 199
0.50 149 1450 150 1 150 1 150 1 150 3
1 150 0 150 0 150 0 150 0 150 0

Total 1639 1800 1688 1784 1763

(b) Number of reference solutions found (#r) and time to find the reference solution (tr).

Table 7.4: Instances solved and reference solutions found by Ler22, Pra23, FEA, OIA and MSA on
BRif20 (150 instances per row).

122 CHAPTER 7. EXPERIMENTAL COMPARISON ON TIME-DEPENDENT BENCHMARKS

10−1 100 101 102 103

Wide TWs (β=0)

0

1

2

3

4

5

10−1 100 101 102 103

Medium TWs (β=0.25)

Ler22

Pra23

FEA

OIA

MSA

10−1 100 101 102 103

Tight TWs (β=0.50)

A
v
er

a
g
e

g
a
p

(%
)

Time in seconds (log scale)

Figure 7.2: Evolution of the average gap to the reference solution for Ler22, Pra23, FEA, OIA and
MSA on BRif20 when n = 41 and β ∈ {0, 0.25, 0.50} (150 instances per value of β).

This shall allow us to evaluate the difference in performance when (i) considering the realistic TD
travel times of BRif20 instead of the artificial ones of BAri19, and (ii) optimizing with TD travel
time functions instead of constant travel times. In particular, TD travel time functions of BRif20

are composed of 120 time-steps whereas the ones of BAri19 only contain 73 time-steps: they also
have a lower value of ∆, i.e., TD travel times vary less homogeneously in BRif20 than in BAri19.

More specifically, we report in Table 7.5a (resp. Table 7.5b) the percentage of solved instances
(resp. of reference solutions found) and time required to solve (resp. find) them. Additionally,
we report (i) the time needed by each approach to reach an average gap of 1% for the hardest
instance class (i.e., β = 0) in Table 7.5c, and (ii) the average peak memory use in Table 7.5d.
Note that BAri19 (resp. BRif20 and Bc

Rif20) contain 1200 (resp. 600, 240) instances with n = 41.

As expected, all approaches perform better when travel times are constant (i.e., in Bc
Rif20) than

when they are time-dependent (i.e., in BRif20 and BAri19). When looking at the performance
difference between BAri19 and BRif20, we see that:

� Ler22 proportionally solves more instances from BAri19 than from BRif20, and also uses
more memory on BRif20 instances.

� Pra23 converges faster on BRif20 than on BAri19, i.e., it finds more reference solutions
and requires less time to reach a 1% average gap.

� The three variants of our approach have better solving performance and use less memory on
BRif20 than on BAri19. Also, OIA converges faster on BRif20 than on BAri19. On the other
hand, FEA’s convergence speed is lower (e.g., it does not manage to reach a 1% average
gap on BRif20), and MSA finds more reference solutions, but requires a similar amount of
time to reach a 1% average gap.

1237.4. Benchmark BRif20

Ler22 FEA OIA MSA

%s ts %s ts %s ts %s ts

BAri19 80.8 1581 48.9 389 49.7 383 44.6 469
BRif20 73.7 1381 52.0 105 54.5 177 52.5 143
Bc

Rif20 88.3 1341 55.4 213 68.3 419 71.7 414

(a) Percentage of solved instances (%s) and mean solving time (ts).

Pra23 FEA OIA MSA

%r tr %r tr %r tr %r tr

BAri19 98.6 98 81.7 170 93.2 153 90.1 203
BRif20 100.0 20 81.3 157 97.3 108 93.8 182
Bc

Rif20 100.0 19 84.6 174 99.6 80 97.1 154

(b) Percentage of reference solutions found (%r) and mean time to find reference solutions (tr).

Pra23 FEA OIA MSA

BAri19 7 741 236 496
BRif20 4 - 119 498
Bc

Rif20 1 656 79 492

(c) Time to reach an average gap of 1% when β = 0.

Ler22 FEA OIA MSA

BAri19 6 35 25 7
BRif20 7 31 15 3
Bc

Rif20 4 29 5 1

(d) Average peak memory use in GiB.

Table 7.5: Performance measures of Ler22, Pra23, FEA, OIA and MSA on BAri19, BRif20 and Bc
Rif20

when n = 41.

Discussion. Pra23 and our solving approach appear to be more robust than Ler22 when
considering more realistic travel time functions: we believe these functions leadLer22 to computing
looser lower bounds. Also, note that Ler22 uses bidirectional search: searching backwards in
the DP state space requires associating pieces of linear functions to subproblems (i,S): in this
case, TD travel time functions with more time-steps tend to require modeling a greater set of
alternatives, which leads to a greater memory use. On the other hand, both Pra23 and our
approach only use forward search in the DP state space: a single value is associated to each
subproblem (i,S), independently of the number of time-steps which compose TD travel time
functions.

Performance improvements of Pra23 and our approach may partly be explained by the simple
fact that TD travel times are modeled differently in BAri19 and in BRif20: BAri19 uses the IGP
model whereas BRif20 uses piecewise-constant functions (see Section 1.2). Consequently, linear
time with respect to the number of time-steps is required to compute travel times ci,j(t) in BAri19,
whereas this is achieved in constant time in BRif20. Ler22 does not benefit from this because it
operates on piecewise linear functions which, in both cases, are pre-computed at the beginning of
resolution.

Additionally, for our approach, trends in memory and solving performance are improved when
considering more realistic TD travel times. However, only OIA converges significantly faster on

124 CHAPTER 7. EXPERIMENTAL COMPARISON ON TIME-DEPENDENT BENCHMARKS

BRif20 than on BAri19. We believe FEA performs better on BAri19 because search requires less
guidance due to the relatively homogeneous variations in TD travel times. On the other hand, we
believe the more expensive hMSA performs worse on BRif20 because our lower bounds c on travel
costs are not as tight when TD travel time functions are more variable.

When travel times are constant (i.e., in Bc
Rif20), Ler22 and our approach perform better than

on TD benchmarks because the lower bounds used to guide search are tightest. Note that Pra23

does not rely on lower bounding functions: we may explain the increase in performance of Pra23

and our approach by the fact that computing the travel time function ci,j(t) has better memory
locality and requires even less operations than on BRif20.

7.5 Discussion

In this chapter, we have compared recent and state-of-the-art solving approaches for the TD-
TSPTWm, both in terms of solving and convergence speeds. Results have shown Ler22 to be
the best performing approach for solving instances with wide TWs. This approach, however, is
not anytime: the heuristic approach Pra23 clearly outperforms the other approaches on most
challenging instance classes, and – due to its heuristic nature – has a very low memory footprint.
We have also seen that our approach, which is both exact and anytime, offers a decent compromise
between solving and convergence speed, and performs particularly well when TWs are tight.
Additionally, our three lower bounds provide different compromises between computational cost
and tightness, and therefore different trade-offs between performance and memory use.

We have seen in Section 1.2 that estimations of TD travel times for planning tours in a urban
context are inherently imperfect: in such a case, quickly finding close-to-optimal solutions is more
desirable than finding the optimal solution and proving its optimality. Approaches which are both
exact and anytime are useful in this context, as optimality proofs can be used to determine when
to stop searching (or to avoid searching in vain for a feasible solution when none exists).

LP-based approaches Ari19 and Vu20 are outperformed on the benchmarks they respectively
introduced: Ari19 appears to be most suited to TD travel time functions which vary rather
homogeneously, and Vu20 to instances with very tight TWs (one could argue that travel times
are barely time-dependent when considering such TWs).

As we have seen in Chapter 1, TD travel time functions of benchmarks commonly used to evaluate
TD-TSPTWm solving approaches are not very realistic: consequently, we also reported results
on BRif20, whose TD travel times were obtained using a realistic traffic simulator. Results have
shown Pra23 and our approach to be more robust than Ler22 when TD travel times vary more
often and more heterogeneously. We also compared the performance of these approaches on a
variant of BRif20 with constant travel times: results have shown that performance is improved in
this context, but also that the difficulty of these instances – for exact approaches – stems mostly
from the wideness of TWs and only partly from considering TD travel times.

1257.5. Discussion

Note that the TW generation schemes used in the benchmarks of this chapter are not very
realistic (e.g., in BAri19, customers only have a deadline when TWs are widest). Therefore, in
the next chapter, we consider constant benchmarks commonly used to evaluate TSPTW solving
approaches: these benchmarks contain diverse instance sizes and TW layouts. We shall compare
Ler22, Pra23, and our approach to recent TSPTWm solving approaches on (i) these classic
benchmarks and (ii) the variant of BRif20 in which travel times are constant.

126 CHAPTER 7. EXPERIMENTAL COMPARISON ON TIME-DEPENDENT BENCHMARKS

8 Experimental comparison with
other approaches on constant
benchmarks

Chapter

Contents
8.1 Experimental setting . 127

8.2 Classic benchmarks . 130

8.3 Benchmark Bc
Rif20 . 133

8.4 Discussion . 136

In this chapter, we consider the TSPTWm, i.e., a special case of the TD-TSPTWm in which travel
times are constant. Our aims are to provide an overview of the performance of recent TSPTWm

solving approaches in a common experimental context and to study how TD solving approaches
perform compared to them.

To these ends, we present in Section 8.1 the experimental setting and the approaches considered.
Then, we provide results on classic benchmarks with heterogeneous sizes and TW layouts in
Section 8.2 before considering a variant of a TD benchmark with constant travel times in
Section 8.3.

8.1 Experimental setting

Considered approaches. As in the previous chapter, we consider three variants of our approach
which are based on Anytime Column Search (ACS, see Subsection 4.2.3) with breadth-limit
B = 1: these three variants only differ in the computation of the lower bound h: we note FEA

(resp. OIA and MSA) the variant of ACS in which h = hFEA (resp. h = hOIA and h = hMSA).
Our approach is adapted to handle constant travel times in a straightforward way by setting
ci,j = max(li + ci,j , ej)− li, and a−1

i,j (t) = t− ci,j .

We summarize in Table 8.1 the approaches we consider for experimental evaluation on the
TSPTWm in this chapter.

127

Reference Name Exact Anytime Problem-specific Type

[DU10] DaS10 – 3 3a Variable Neighborhood Search

[Lóp+13] Lop13 – 3 3
Ant Colony Optimization,

Beam Search

[Gil+21] Gil21 3 3 – Multivalued Decision Diagrams,
Branch-and-Bound

[LMS22] Ler22 3 –b 3c DP, State-Space Relaxations
[Pra23] Pra23 –d 3 3 Large Neighborhood Search, DP

[RCR23] Rud23 3 3 – Multivalued Decision Diagrams,
Peel-and-Bound

Table 8.1: Solving approaches considered for experimental evaluation on the TSPTWm. Caveats: aDaS10
was originally designed for the travel time objective; bLer22 can provide up to two solutions: a single
approximate solution (if it manages to find a feasible solution) and an optimal solution (if it also manages
to prove optimality); cLer22 handles both the makespan and travel time objectives; dPra23 is mainly
heuristic but manages to solve highly constrained instances.

We compare our approach to Ler22 and Pra23, i.e., solving approaches for the TD-TSPTWm

we evaluated on TD benchmarks in Chapter 7. Recall that Pra23 is mainly heuristic although it
can prove optimality on highly constrained instances, and that Ler22 is exact but not anytime,
although it reports an initial solution computed using depth-first search.

Additionally, we consider the heuristic solving approaches of [DU10] and [Lóp+13]: we respectively
refer to these approaches as DaS10 and Lop13. DaS10 is based on Variable Neighborhood
Search, and Lop13 on Beam-ACO, a hybridization of Beam Search and Ant Colony Optimization.

We also consider two problem-independent solving approaches based on Multivalued Decision
Diagrams (MDDs, see Section 2.4): more precisely, these approaches build upon the framework
of [Ber+16] which uses a branch-and-bound approach and computes bounds using Restricted
Dynamic Programming and State Space Relaxations (see Section 2.3). Gil21 [Gil+21] improves
on this approach by computing new bounds (some of them being problem-specific). Rud23

[RCR23] uses a strategy called peel-and-bound, which reuses results of previous search iteration for
efficiency and therefore allows one to consider wider decisions diagrams. We consider these two
approaches because (i) they are recent and anytime, (ii) they were originally evaluated – amongst
others – on the TSPTWm, and (iii) they share similarities with our approach, given MDDs are
related to DP.

We sought to include to our study the results of the branch-cut-and-price approach of [Pes+20],
which is generic enough to handle a wide class of vehicle routing problems. Unfortunately,
R. Sadykov informed us in a personal communication that non-trivial adaptations are required to
handle the makespan objective (originally, it optimizes the travel time). He also noted that such
adaptations are expected to have negative effects on the solver’s performance. Consequently, we
do not consider approaches based on Integer Linear Programming in this chapter and leave this
task as future works.

128 CHAPTER 8. EXPERIMENTAL COMPARISON ON CONSTANT BENCHMARKS

Specifics of DaS10. Recall from Section 5.3 that DaS10 was originally designed to handle the
travel time objective, in the special case where travel times are symmetric and constant. Note
that it also requires triangle inequality to be satisfied. We include results of this approach to our
analysis anyway to show that it is outperformed by other approaches which do not have such
requirements (i.e., these approaches tackle a more general problem) and do not rely on these
properties for efficiency.

Consequently, we only provide results of DaS10 on symmetric benchmarks and, when necessary,
run it on transformed instances in which we enforced triangle inequality by computing shortest
paths. However, it is not possible to adapt DaS10 to the makespan objective as its efficiency also
relies on waiting times being excluded from the objective function. Therefore, we consider that a
run of DaS10 has succeeded whenever it has found a solution whose travel time is lower than or
equal to the best-known makespan for these transformed instances. Because the optimal travel
time is always lower than or equal to the optimal makespan (see Section 1.1), proceeding this
way does not disadvantage DaS10 (also note that the best travel time found by DaS10 is never
lower than the best-known makespan).

Acknowledgements. We thank X. Gillard, G. Lera-Romero, M. López-Ibáñez, C. Pralet and
I. Rudich for helping us to reproduce their results on our hardware. We also thank R. Sadykov
for answering our questions and authors of [DU10] for publishing their solver’s source code.

Considered hardware and performance measures. We use the same experimental setting as described
in Section 6.1, i.e., all of the solving approaches considered in this chapter are run on 2.1GHz
Intel Xeon E5-2620 v4 processors with 64GiB RAM.

All solving approaches were executed with a time limit of one hour per instance. We consider the
same performance measures as in Section 6.1, i.e., we note #s (resp. #r) the number of solved
instances (resp. reference solutions found) and ts (resp. tr) the average time required to solve
(resp. find) them. When displaying performance measures of different approaches, we underline
the maximal value of #s or #r and we highlight in blue (resp. green) the smallest value of ts (resp.
tr) amongst all approaches which maximize #s (resp. #r). We say that an instance is solved by
an approach whenever it finds an optimal solution and proves its optimality within the time limit.
A reference solution is either an optimal solution or a solution of best-known makespan.

We handle non-deterministic approaches (i.e., DaS10, Lop13 and Pra23) in the same way as in
Chapter 7, i.e., we execute these approaches five times per instance with different random seeds,
and report results for the median run: runs are compared in lexicographical order according to
(i) the makespan of the best solution found and (ii) the time required to find it. Consequently, we
consider that non-deterministic approaches have found the reference solution of a given instance
when at least three out of the five runs managed to find it.

1298.1. Experimental setting

8.2 Classic benchmarks

Considered benchmarks. We use the same set of benchmarks as in [Gil+21], [RCR23] and [Pra23],
plus the benchmark introduced in [DU10], which leads us to a total of 592 instances. The main
features of these benchmarks are described in Table 8.2.

Reference Name #inst n OTW (%)
S

min max min max

[Asc96] Asc 50 11 232 5.3 100.0
[DU10] DaS 125 201 401 0.2 4.5 X

[Dum+95] Dum 135 21 201 3.9 58.9 X
[Gen+98] Gen 130 21 101 21.3 88.9 X
[Lan+93] Lan 70 20 60 2.0 12.9 X
[OT07] Ohl 25 151 201 24.2 37.2 X
[Pes+98] Pes 27 20 45 24.1 100.0
[PB96] Pot 30 4 46 23.3 100.0

Table 8.2: Description of classic TSPTW benchmarks. Each line displays: a reference that describes the
benchmark, the name used to refer to this benchmark, the number of instances in the benchmark, the
smallest and largest instance sizes n, and the minimum and maximum value of OTW (i.e., the percentage
of overlapping TWs, see Section 1.5). Column S contains X whenever cost functions are symmetrical.

For these benchmarks, reference solutions are known to be optimal for 590 out of 592 instances,
and their makespans are identical to the listing provided in [LB15]. Note that twelve instances
remained open in October 2023: we managed to close ten of these instances (the two instances
which remain open are n200w140.003.txt and n200w120.002.txt from benchmark Ohl).

Solving speed. In Table 8.3a, we provide results about solving speed for all approaches except
DaS10 and Lop13, which are purely heuristic.

We see that the three variants of our approach are the ones which solve the most instances overall.
More precisely, FEA solves 96% of the instances (i.e., all but 23): OIA and MSA solve a few
instances less, but they are complementary to FEA. We also see that Rud23 manages to solve
more instances than Ler22, which in turns solves more instances than Gil21 and Pra23.

These trends are confirmed when looking at the left-hand side of Figure 8.1, which presents the
evolution of the percentage of solved instances with respect to time (we omit results of OIA and
MSA for clarity, as they are very similar to FEA’s). Note however that (i) Pra23 outperforms
FEA for very short time-limits, i.e., time-limits shorter than 0.3s, and (ii) Rud23 is respectively
outperformed by Gil21 and Ler22 for time-limits shorter than 130s and 300s.

130 CHAPTER 8. EXPERIMENTAL COMPARISON ON CONSTANT BENCHMARKS

Gil21 Ler22 Rud23 Pra23 FEA OIA MSA

#inst #s ts #s ts #s ts #s ts #s ts #s ts #s ts

Asc 50 22 384 48 21 48 184 26 0 50 18 49 1 49 2
DaS 125 110 6 125 485 112 615 101 0 125 13 125 13 125 13
Dum 135 109 188 135 39 126 112 63 0 135 0 135 0 135 1
Gen 130 27 525 91 524 117 233 21 0 117 111 112 53 110 88
Lan 70 70 0 70 0 70 1 70 0 70 0 70 0 70 0
Ohl 25 0 - 0 - 15 2052 2 0 20 50 20 70 20 9
Pes 27 8 118 22 203 25 91 6 0 25 152 26 13 27 66
Pot 30 15 247 25 160 27 136 10 0 27 14 28 42 29 83

Total 592 361 516 540 299 569 565 565

(a) Number of solved instances (#s) and solving time (ts).

DaS10 Lop13 Gil21 Ler22 Rud23 Pra23 FEA OIA MSA

#inst #r tr #r tr #r tr #r tr #r tr #r tr #r tr #r tr #r tr

Asc 50 - - 50 1 47 56 48 21 49 100 50 0 50 0 50 0 50 0
DaS 125 124 17 120 477 125 7 125 484 119 462 125 0 125 11 125 11 125 11
Dum 135 135 0 135 0 135 4 135 39 127 75 135 0 135 0 135 0 135 0
Gen 130 98 154 130 0 129 19 91 524 120 119 130 0 130 0 130 1 130 0
Lan 70 70 0 70 0 70 0 70 0 70 1 70 0 70 0 70 0 70 0
Ohl 25 18 520 25 1 25 304 0 - 19 1797 25 0 25 40 25 133 25 44
Pes 27 - - 27 1 23 143 22 203 26 105 27 0 27 6 27 4 27 1
Pot 30 - - 30 1 25 52 25 160 28 120 30 0 30 4 30 1 30 9

Total 592 (445/485) 587 579 516 558 592 592 592 592

(b) Number of reference solutions found (#r) and time to find the reference solution (tr).

DaS10 Lop13 Gil21 Ler22 Rud23 Pra23 FEA OIA MSA

#inst #f tf #f tf #f tf #f tf #f tf #f tf #f tf #f tf #f tf

Asc 50 - - 50 0 50 23 50 0 50 63 50 0 50 0 50 0 50 0
DaS 125 125 0 123 491 125 7 125 4 122 328 125 0 125 11 125 11 125 11
Dum 135 135 0 135 0 135 4 135 0 128 47 135 0 135 0 135 0 135 0
Gen 130 130 0 130 0 129 13 130 3 128 52 130 0 130 0 130 1 130 0
Lan 70 70 0 70 0 70 0 70 0 70 1 70 0 70 0 70 0 70 0
Ohl 25 25 0 25 0 25 304 25 2 25 553 25 0 25 39 25 132 25 42
Pes 27 - - 27 0 27 23 24 1 27 78 27 0 27 0 27 3 27 0
Pot 30 - - 30 0 30 31 25 3 30 14 30 0 30 1 30 1 30 0

Total 592 (485/485) 590 591 584 580 592 592 592 592

(c) Number of feasible solutions found (#f) and time to find the feasible solution (tf).

Table 8.3: Instances solved, reference solutions found and feasible solutions found by DaS10, Lop13,
Gil21, Ler22, Rud23, Pra23, FEA, OIA and MSA on eight classic TSPTW benchmarks.

1318.2. Classic benchmarks

10−3 10−2 10−1 100 101 102 103
0

20

40

60

80

100

C
u
m

u
la

ti
v
e

ra
ti

o
(%

)

Solved instances

10−3 10−2 10−1 100 101 102 103

Reference solutions found

Lop13

Gil21

Ler22

Rud23

Pra23

FEA

Time in seconds (log scale)

Figure 8.1: Evolution of the cumulative ratio of solved instances (left) and reference solutions found
(right) with respect to time for Lop13, Gil21, Ler22, Rud23, Pra23 and FEA on eight classic TSPTW
benchmarks (592 instances).

Convergence speed. In Table 8.3b, we provide results about convergence speed for all approaches.
Results show that Pra23, FEA, OIA and MSA found all reference solutions: Pra23 is the
approach which finds them fastest (note that our approach takes more time on benchmark DaS

because TW constraint propagation rule PFR2 defined in Section 1.3 requires O
(
n3
)
time and

is therefore not suited to such large instance sizes; also, each of our bounds struggle to find a
single reference solution from benchmark Ohl.) Lop13 also shows good convergence abilities,
although it requires more time and fails to find five reference solutions on the large instances from
benchmark DaS. Despite the fact that DaS10 exploits special instance properties for efficiency
(see Section 8.1), this approach is clearly outperformed by Pra23, by our approach, and also
by Lop13 (except on benchmark DaS). Finally, Gil21 finds 21 more reference solutions than
Rud23, which in turns finds 42 more reference solutions than Ler22.

We observe similar trends when looking at the right-hand side of Figure 8.1, which presents the
evolution of the percentage of reference solutions found with respect to time. It shows us that
FEA is outperformed by Lop13 for time-limits shorter than 2s and that Rud23 is outperformed
by Ler22 for time-limits shorter than 110s.

Finding feasible solutions. Unlike in the TD benchmarks we considered in the previous chapter, it
is not trivial for all approaches to find feasible solutions in these classic constant benchmarks.
Consequently, in Table 8.3c, we report – for each approach and for each benchmark – the number
#f of instances for which at least one feasible solution has been found and the average time tf
required to find a first feasible solution. We underline the maximal value of #f and we highlight
in red the smallest value of tf amongst all approaches which maximize #f .

For Lop13, Pra23, FEA, OIA and MSA, trends are very similar to those about reference
solutions in Table 8.3b: Pra23 and our approach find feasible solutions to all instances; Pra23

is the fastest, and Lop13 performs very well on all benchmarks except DaS. Gil21 (resp Ler22

and Rud23) finds feasible solutions to all but one (resp. 8 and 12) instances. Recall that Ler22

132 CHAPTER 8. EXPERIMENTAL COMPARISON ON CONSTANT BENCHMARKS

uses a depth-first search at the beginning of resolution in order to find a first feasible solution:
while it succeeds relatively quickly on most instances, this search did not terminate within the
time-limit for three instances of Pes and five instances of Pot.

Memory use. Due to their heuristic nature, DaS10, Lop13 and Pra23 use a negligible amount
of memory compared to exact approaches. FEA, OIA and MSA respectively used 2.4, 0.5 and
0.2 GiB of memory, on average: this shows us that using tighter and more expensive lower bounds
is beneficial on this dimension. Ler22, Gil21 and Rud23 used significantly more memory than
OIA and MSA: they respectively required – on average – 2.6, 6.7 and 16.1 GiB of memory.

Discussion. Pra23 clearly outperforms all of the approaches we consider when trying to quickly
find feasible or reference solutions. Lop13 comes close to it (except on large instances); our
approach is competitive with but slower than Pra23. While DaS10 finds feasible solutions quickly,
it is outperformed by Pra23 when considering convergence speed, even though the efficiency of
DaS10 relies on special instances properties (i.e., it tackles a special case of the TSPTW).

Even though Pra23 is not purely exact, it manages to solve more than half of the instances.
The three variants of our approach are the ones which solve the most instances overall. The
problem-agnostic approaches Gil21 and Rud23 – based on Multivalued Decision Diagrams –
both tend to take more time to find feasible solutions than problem-specific approaches. When
considering convergence and solving speeds, these approaches appear to be complementary: Gil21

tends to perform better for finding reference solutions, while Rud23 tends to perform better for
solving instances. It is interesting to note that Rud23 solves overall more instances than the TD-
TSPTWm solving approach Ler22 (recall from the previous chapter that Ler22 outperformed
other TD solving approaches when considering relatively small instances with wide TWs). Also,
because Ler22 it not anytime, it is outperformed on most benchmarks by both Gil21 and Rud23

in terms of convergence speed. These results also shed light on a weakness of Ler22, which
relies on depth-first search to find a feasible solution: this strategy fails on eight instances from
benchmarks Pes and Pot (in these benchmarks, instances never contain more than 46 vertices).

In the next section, we study how these conclusions differ when considering a benchmark composed
of relatively small instances with fairly wide TWs.

8.3 Benchmark Bc
Rif20

Benchmark. We now consider benchmark Bc
Rif20, which we generated from the TD benchmark

of [RCS20]: recall from Section 1.5 that authors provided TD travel times functions with different
temporal granularities, including instances with constant travel times. We generated TWs for this
benchmark using a model similar to the one used to generate TWs of BAri19 and BRif20 (see
Section 1.5). TW tightness is therefore controlled by parameter β ∈ {0, 0.25, 0.50, 1}: TWs are
widest when β = 0 and tightest when β = 1. As for BRif20, we consider instance sizes similar to
those of BAri19, i.e., n ∈ {21, 31, 41}. We generated 60 instances for each pair of instance size n

1338.3. Benchmark Bc
Rif20

and TW tightness β, so this Bc
Rif20 contains 720 instances overall.

In BRif20, reference solutions are known to be optimal for all instance classes except when n = 41

and β = 0: in this case, 92% of them are known to be optimal (i.e., all but five).

Solving speed. We provide results about the number of instances solved and time to solve them
in Table 8.4a. As we have seen in the previous chapter, Ler22 outperforms our approach only on
the largest instances with wide TWs (i.e., n = 41 and β ∈ {0, 0.25}); our approach outperforms
Ler22 when n < 41 and β < 1. Rud23 solves more instances than Gil21, but both these
approaches struggle to solve intermediate or large instances sizes when TWs are wide.

Notice that MSA outperforms OIA on the hardest instance classes (i.e., n = 41 and β ∈ {0, 0.25}).
Recall that opposite conclusions were drawn when considering TD benchmarks in Chapter 7: this
shows us that using this more expensive lower bounding function only pays off when the lower
bounds on travel times (see Section 4.4) are tight (these bounds are tightest when considering
constant instances given that, in this case, they are equal to the real travel time).

Convergence speed. In Table 8.4b, we display results regarding the reference solutions found. OIA

is the variant of our approach which performs best: it outperforms Lop13, but it is outperformed
by Pra23 on the hardest instance classes (i.e., n = 41 and β ∈ {0, 0.25}). Overall, Ler22 finds
less reference solutions than Lop13, Pra23, OIA and MSA and requires more time to find them
as it is not anytime. Similarly to what we have seen for solving speed, the problem-independent
approaches Gil21 and Rud23 struggle to find reference solutions when n > 21 and β < 1.

10−3 10−2 10−1 100 101 102 103

Wide TWs (β=0)

0

1

2

3

4

5

10−3 10−2 10−1 100 101 102 103

Medium TWs (β=0.25)

Lop13

Gil21

Ler22

Rud23

Pra23

FEA

OIA

MSAA
v
er

a
g
e

g
a
p

(%
)

Time in seconds (log scale)

Figure 8.2: Evolution of the average gap to the reference solution for Lop13, Gil21, Ler22, Rud23,
Pra23, FEA, OIA and MSA on Bc

Rif20 when n = 41 and β ∈ {0, .25} (60 instances per class).

When looking at the evolution of the gap to the reference solution on the hardest instance classes
in Figure 8.2, we see that Gil21, Ler22 and Rud23 are clearly outperformed by the other
approaches. Pra23 is the fastest: for instance, when β = 0, Pra23, Lop13, OIA, MSA and
FEA respectively required 1.4s, 22s, 79s, 492s and 656s to reach an average gap of 1%. Notice
that, when β = 0, OIA outperforms Lop13 for time-limits longer than 583s. Also, the difference
in performance between Pra23, Lop13, OIA and MSA is not as extreme when β = 0.25: in this

134 CHAPTER 8. EXPERIMENTAL COMPARISON ON CONSTANT BENCHMARKS

Gil21 Ler22 Rud23 Pra23 FEA OIA MSA

n β #s ts #s ts #s ts #s ts #s ts #s ts #s ts

21 0 60 55 60 59 60 25 0 - 60 0 60 0 60 0
0.25 60 33 60 16 60 17 0 - 60 0 60 0 60 0
0.50 60 12 60 5 60 9 1 0 60 0 60 0 60 0
1 60 0 60 0 60 0 60 0 60 0 60 0 60 0

31 0 0 - 60 1376 10 434 0 - 60 232 60 129 60 177
0.25 2 2587 60 643 27 361 0 - 60 71 60 29 60 36
0.50 5 2062 60 129 58 105 0 - 60 1 60 0 60 1
1 60 0 60 0 60 1 60 0 60 0 60 0 60 0

41 0 0 - 34 2837 0 - 0 - 1 3372 4 2766 5 2011
0.25 0 - 58 2318 0 - 0 - 12 1858 40 1403 47 1221
0.50 0 - 60 888 14 350 0 - 60 43 60 26 60 61
1 60 0 60 0 60 1 60 0 60 0 60 0 60 0

Total 367 692 469 181 613 644 652

(a) Number of solved instances (#s) and solving time (ts).

Lop13 Gil21 Ler22 Rud23 Pra23 FEA OIA MSA

n β #r tr #r tr #r tr #r tr #r tr #r tr #r tr #r tr

21 0 60 3 60 20 60 59 60 18 60 0 60 0 60 0 60 0
0.25 60 0 60 12 60 16 60 11 60 0 60 0 60 0 60 0
0.50 60 0 60 4 60 5 60 5 60 0 60 0 60 0 60 0
1 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0

31 0 59 105 20 896 60 1376 16 306 60 0 60 18 60 4 60 11
0.25 60 11 17 839 60 643 31 307 60 0 60 9 60 1 60 2
0.50 60 2 35 503 60 129 58 92 60 0 60 0 60 0 60 0
1 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0

41 0 50 239 0 - 34 2837 1 366 60 68 35 528 59 269 53 588
0.25 59 105 2 584 58 2318 1 280 60 9 48 347 60 54 60 78
0.50 60 23 14 346 60 888 17 264 60 0 60 2 60 0 60 3
1 60 0 60 0 60 0 60 1 60 0 60 0 60 0 60 0

Total 708 448 692 484 720 683 719 713

(b) Number of reference solutions found (#r) and time to find the reference solution (tr).

Table 8.4: Instances solved and reference solutions found by Lop13, Gil21, Ler22, Rud23, Pra23,
FEA, OIA and MSA on Bc

Rif20 (60 instances per row).

1358.3. Benchmark Bc
Rif20

case, Lop13 and OIA show similar performance.

Memory use. When n = 41, Gil21, Ler22, Rud23, FEA, OIA and MSA respectively required
1.5, 4, 46.4, 29.1, 5.4 and 1 GiB of memory, on average (heuristic approaches Lop13 and Pra23

require only a negligible amount of memory).

Discussion. For TD solving approaches (i.e., Pra23, Ler22 and our approach), trends on this
constant benchmark are coherent with those observed on TD benchmarks in the previous chapter:
Pra23 is best for convergence speed, Ler22 is best for solving speed on large and loosely
constrained instances, and our approach provides a middle-ground between both approaches.

Note also that OIA is competitive with the heuristic approach of Lop13 in terms of convergence
speed. On this benchmark, Rud23 outperforms Gil21 for both solving and convergence speed,
but also requires much more memory.

8.4 Discussion

In this chapter, we have compared constant and TD solving approaches on classic TSPTWm

benchmarks and on a benchmark which resembles BAri19 by its TW layouts. We have seen that
the best-performing approaches were originally designed to handle TD travel times, both when
considering convergence or solving speeds.

In terms of convergence speed, Pra23 is undoubtedly the best of the approaches considered in
this study: the heuristic approach Lop13 and our approach are slower than but competitive with
Pra23.

Regarding the ability to quickly solve instances, the answer unsurprisingly depends on the
instance sizes and TW layouts considered: we have seen that Ler22 outperforms other approaches
on relatively small instances with wide TWs (i.e., on benchmarks similar to BAri19). When
considering classic TSPTWm benchmarks with heterogeneous instance sizes and TW layouts, our
approach is the one which performs best, and Ler22 is outperformed both by our approach and
by the problem-agnostic approach Rud23.

Our solving approach is amongst the best-performing when considering both convergence speed
and solving speed, and thus appears to provide a good trade-off between both these criteria.

A possibility for future works would be to experiment with benchmarks based on different
TW generation schemes, including schemes which do not guarantee instance feasibility. Such
benchmarks are likely to contain instances for which it is neither trivial to find a solution nor
to prove the inexistence of a feasible solution: we believe exact and anytime solving approaches
(like the one we propose) would shine in such cases, whereas purely heuristic algorithms might
struggle and search for feasible solutions in vain.

136 CHAPTER 8. EXPERIMENTAL COMPARISON ON CONSTANT BENCHMARKS

Conclusion

Summary of contributions. In this thesis, we have proposed an exact and anytime solving approach
for the TD-TSPTWm in Chapters 4 and 5, and provided extensive experimental results on both
TD and constant benchmarks in Chapters 6 to 8.

More precisely, we proposed in Chapter 4 to exploit EAS algorithms to solve the TD-TSPTW in
a scalable way: we first defined a state transition graph associated to its DP formulation and then
instantiated four EAS algorithms to solve it. We compared these algorithms and discussed their
similarities and differences, which led us to proposing an improved version of an existing EAS
algorithm. We also discussed major decisions regarding choices of data structures: we have shown
that obvious implementations of A* are not necessarily the best-suited for all EAS algorithms, and
also proposed an efficient implementation of an existing EAS algorithm. Finally, we introduced
three heuristic functions and discussed their relationship with those of related works. In Chapter 5,
we proposed to combine EAS algorithms with local search and TW constraint propagation in
order to improve convergence and solving speeds.

In Chapter 6, we experimentally validated the relevance of the main components of our approach
and compared four EAS algorithms after having (i) tuned their parameters and (ii) compared
different choices of data structures. Finally, in Chapters 7 and 8, we experimentally compared our
approach to a variety of state-of-the-art or recent solving approaches on both TD and constant
benchmarks. Results have shown (i) our three heuristic functions to be complementary and (ii) our
approach to provide a good compromise between convergence and solving speeds. Our approach
is generally competitive with or outperforms most of the existing approaches we considered
for experimental evaluation. Additionally, because we identified flaws in the TD travel time
functions of existing benchmarks, we considered a more realistic benchmark: results have shown
our approach to be relatively robust to increases in the granularity of TD travel times functions.
Last but not least, we have made our solving approach open-source1 to favor reproducibility.

1Source code and problem instances available at https://github.com/romainfontaine/tdtsptw-ejor23

137

https://github.com/romainfontaine/tdtsptw-ejor23

Future works. Throughout this thesis, we have evoked potential tracks for future works. We
now summarize them and delve deeper by categorizing them into four main avenues, namely to
(i) improve our TD-TSPTWm solving approach, (ii) broaden our experimental study, (iii) generalize
our approach to other problems, and (iv) build upon our contributions regarding EAS algorithms.

Our solving approach could be improved by computing tighter heuristic functions (see Section 4.4):
this could be achieved by computing (i) tighter lower bounds on TD travel times, (ii) a tighter graph
Gs, and (iii) tighter relaxations of the shortest Hamiltonian path problem. Another possibility
could be to compute them using State Space Relaxations (see Section 2.3), similarly to [LMS22].
An obvious way to improve the convergence speed of our approach would be to improve the
solutions reported by EAS algorithms using the DP-based Large Neighborhood Search approach
of [Pra23], which has been shown to excel on both TD and constant benchmarks. Alternatively, we
could use Algorithm Selection (see, e.g., [Kot16]) to determine which of our three complementary
heuristic functions (see, e.g., Section 8.2) – or, more generally, which TD-TSPTWm solving
approach – is expected to perform best based on instance characteristics (e.g., the variability of
travel times and instance constrainedness).

We could also broaden our experimental results by evaluating LP-based approaches (e.g., [Pes+20])
and the declarative and EAS-based approach of [KB23c] on constant benchmarks. It would be
also useful to propose new metrics for measuring both (i) the variability and heterogeneity of
TD travel times (while taking TWs into account, ideally), and (ii) instance constrainedness, e.g.,
based on the percentage of usable arcs in set E (the OTW metric used in this thesis does not
take travel times into account). Considering other benchmarks with realistic TD travel times
(e.g., those of [Agu16] and [Pra23]) also appears to be an essential subject, given some widely
used benchmarks are based on unrealistic assumptions (see Section 1.5). Varied TW layouts and
instance sizes should also be considered (we have seen in Chapter 8 that it may radically change
the performance of some solvers): this includes instances which are not guaranteed to contain
feasible solutions, and thus potentially instances for which it is neither trivial to find a solution nor
to prove its inexistence. We believe that such critical instances may show the limits of heuristic
approaches and expect exact and anytime approaches like ours to be more robust in this case.

Another possibility would be to generalize our approach to other problems, e.g., by handling the
TSPTW under the travel time objective: as we have seen in Section 2.2, doing so would require
associating a set of Pareto-optimal values to subproblems instead of a single value, and thus
increase the size of the search space (the makespan objective is particularly well-suited to DP
modelling [Dum+95]). Considering this objective when travel times are TD brings additional
difficulties, as it becomes necessary to optimize the departure time from the origin location (see
Section 1.1): [LMS22] handles this by associating pieces of linear functions to DP subproblems.
In absence of feasible solutions, it might be desirable to consider Flexible TWs [FA20] (i.e.,
to allow constraint violations, to some extend), Orienteering Problems [Kho+22; TPF23] (i.e.,
to allow visiting only a subset of customers), or Vehicle Routing Problems ([Hoo16] discusses
DP models for many variants of this problem). Adapting our approach to solve these problems
would require adapting the heuristic functions, handling the fact that a single subproblem may

138 Conclusion

have multiple Pareto-optimal solutions, and adapting the state transition graph (e.g., in the
Orienteering Problem, final states are not necessarily located in the last layer of this graph).
Finally, our approach could be adapted straightforwardly to solve the Sequential Ordering Problem,
due to its proximity with the TSPTWm. Preliminary experiments have shown our approach to
outperform the related approach of [Lib20]: this is likely to be due to (i) our improvements in the
EAS algorithm it uses (i.e., IBS, see Sections 4.2 and 6.4) and (ii) the fact that this approach is
based on looser heuristic functions (see Section 4.4).

The last avenue we propose regarding future works concerns EAS algorithms. A key contribution
of thesis in this respect is the proposal of an improved variant of IBS, associated to efficient (and
atypical) choices of data structures: our contribution could be integrated as a drop-in replacement
for the widely used original version of IBS, e.g., in [Lib+20] to tackle the SOP, in [Lib+22] to
tackle the Permutation Flowshop Problem, and within the declarative optimization framework of
[KB23c], amongst others. More generally, we believe that it would be useful to build an open-source
framework for EAS algorithms in order to ease their comparison on other problems. Another
possibility would be to integrate these contributions to an existing optimization framework, e.g.,
to the declarative DP-based framework of [KB23c], or potentially to the framework based on
Multivalued Decision Diagrams of [GSC20] (this would allow one to use EAS algorithms as
alternatives to branch-and-bound).

139

140 Conclusion

List of Figures

1.1 Illustration of the FIFO property, travel time functions ci,j , arrival time functions
ai,j and inverse arrival time functions a−1

i,j . 12
1.2 Spatial distribution of traffic sensors on the road network of Villeurbanne and two

districts (the third and the sixth) of Lyon (figure courtesy of [RCS20]). 17
1.3 Illustration of FIFO transformations on a piecewise constant TD travel time

function τi,j with three time-steps. 18
1.4 Illustration of the four TW tigthening rules. 22
1.5 Distribution of customers’ TWs on sample instances. 26
1.6 Travel time functions of BAri19 instances when P = B1 and ∆ = 0.70. 27
1.7 Mean ∆ values on TD instances of BRif20. 28

2.1 Sample TSP instance with three customer vertices. 35
2.2 DP state transition graph for the asymmetric TSP instance of Figure 2.1. 35

3.1 Sample states of the blocks world problem. 44
3.2 Illustration of two variants of DFS on a sample graph. 49
3.3 Illustration of BFS on a sample graph. 50
3.4 Example of an admissible but inconsistent heuristic. 54
3.5 Schematic comparison of the behavior of Dijkstra’s algorithm and A*. 55

4.1 Sample TSPTW instance with three customer vertices. 66
4.2 State transition graph associated to the TSPTWm instance of Figure 4.1. 66
4.3 Comparison of the shortest Hamiltonian path problem relaxations computed by

hOA, hIA and hMSA. 88

5.1 Overview of the proposed TD-TSPTWm solving approach. 92

6.1 Evolution of the average gap to the optimal solution for ACS0, ACS1, ACS2, ACS3,
and ACS on a representative subset of BAri19. 102

6.2 Evolution of the average gap to the optimal solution for ACS−FILT, ACS−CPD,
ACS−FILT and ACS on a representative subset of BAri19. 104

6.3 Evolution of the average gap to the optimal solution for ACS with different breadth-
limits B on a representative subset of BAri19. 105

6.4 Evolution of the average gap to the optimal solution for AWA* with different
heuristic weights w on a representative subset of BAri19. 107

141

6.5 Evolution of the average gap to the optimal solution for different implementations
of IBS on a representative subset of BAri19. 109

6.6 Evolution of the average gap to the optimal solution for ACS, IBS+, AWA* and
AWinA* with hOIA on a representative subset of BAri19. 110

7.1 Evolution of the average gap to the reference solution for Ler22, Pra23, FEA,
OIA and MSA on BAri19 when n = 41 and β ∈ {0, 0.25, 0.50}. 116

7.2 Evolution of the average gap to the reference solution for Ler22, Pra23, FEA,
OIA and MSA on BRif20 when n = 41 and β ∈ {0, 0.25, 0.50}. 123

8.1 Evolution of the cumulative ratio of solved instances and reference solutions found
with respect to time for Lop13, Gil21, Ler22, Rud23, Pra23 and FEA on eight
classic TSPTW benchmarks. 132

8.2 Evolution of the average gap to the reference solution for Lop13, Gil21, Ler22,
Rud23, Pra23, FEA, OIA and MSA on Bc

Rif20 when n = 41 and β ∈ {0, .25}. . 134

142 LIST OF FIGURES

List of Tables

1.1 Summary of TD-TSPTW variants and special cases. 14
1.2 TD-TSPTWm solvers considered for experimental evaluation. 25
1.3 Overview of the TD-TSPTW benchmarks considered for experimental evaluation. 29

3.1 High-level comparison of EAS algorithms related to A*. 58

4.1 Overview of the EAS algorithms instantiated to the TD-TSPTWm. 77
4.2 Time complexities of key operations of implementations impl-heap and impl-

select. 82

6.1 Performance of ACS0, ACS1, ACS2, ACS3, and ACS on a representative subset of
BAri19. 102

6.2 Performance of ACS−FILT, ACS−CPD, ACS−FILT and ACS on a representative
subset of BAri19. 103

6.3 Performance of ACS with different breadth-limits B on a representative subset of
BAri19. 105

6.4 Performance of AWA* with different heuristic weights w on a representative subset
of BAri19. 107

6.5 Performance of different implementations of IBS on a representative subset of BAri19.109
6.6 Performance of ACS, IBS+, AWA* and AWinA* with hOIA on a representative

subset of BAri19. 110

7.1 Instances solved and reference solutions found by Ari19, Ler22, Pra23, FEA,
OIA and MSA on BAri19. 117

7.2 Number of instances solved by Ari19 (left) and FEA (right) with respect to P ,
∆ and β on BAri19 when n = 41. 118

7.3 Instances solved and reference solutions found by Vu20, Ler22, Pra23, FEA,
OIA and MSA on BVu20. 120

7.4 Instances solved and reference solutions found by Ler22, Pra23, FEA, OIA and
MSA on BRif20. 122

7.5 Performance measures of Ler22, Pra23, FEA, OIA and MSA on BAri19, BRif20

and Bc
Rif20 when n = 41. 124

8.1 Solving approaches considered for experimental evaluation on the TSPTWm. . . 128
8.2 Description of classic TSPTW benchmarks. 130

143

8.3 Instances solved, reference solutions found and feasible solutions found by DaS10,
Lop13, Gil21, Ler22, Rud23, Pra23, FEA, OIA and MSA on eight classic
TSPTW benchmarks. 131

8.4 Instances solved and reference solutions found by Lop13, Gil21, Ler22, Rud23,
Pra23, FEA, OIA and MSA on Bc

Rif20. 135

144 LIST OF TABLES

List of Algorithms

2.1 Recursive computation of p(i,S) . 33
2.2 Recursive computation of an optimal path after resolution 35

3.1 Generic graph search algorithm . 48
3.2 Arc relaxation procedure in Dijkstra’s algorithm 51
3.3 Arc relaxation procedure in A* . 54

4.1 Layer-wise computation of the optimal value associated to each subproblem (i,S) 68
4.2 AWA* for the TD-TSPTWm . 71
4.3 IBS for the TD-TSPTWm . 73
4.4 ACS for the TD-TSPTWm . 75
4.5 AWinA* for the TD-TSPTWm . 77

145

146 Bibliography

Bibliography

[ACK07] Sandip Aine, P. P. Chakrabarti, and Rajeev Kumar. “AWA* - A window constrained
anytime heuristic search algorithm”. In: IJCAI International Joint Conference on
Artificial Intelligence (2007), pp. 2250–2255. issn: 10450823 (cit. on pp. 58, 60, 76,
77, 84).

[AFG01] Norbert Ascheuer, Matteo Fischetti, and Martin Grötschel. “Solving the Asym-
metric Travelling Salesman Problem with time windows by branch-and-cut”. In:
Mathematical Programming 90.3 (May 2001), pp. 475–506. issn: 0025-5610. doi:
10.1007/PL00011432 (cit. on p. 20).

[Agu16] Penelope Aguiar-Melgarejo. “A Constraint Programming Approach for the Time
Dependent Traveling Salesman Problem”. PhD thesis. INSA Lyon, Dec. 2016 (cit. on
pp. 17, 19, 28, 138).

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. 1st. USA: Addison-Wesley Longman Publishing Co., Inc.,
1974. isbn: 0201000296 (cit. on p. 81).

[ALS15] Penelope Aguiar-Melgarejo, Philippe Laborie, and Christine Solnon. “A time-
dependent no-overlap constraint: Application to urban delivery problems”. In:
Lecture Notes in Computer Science 9075 (2015), pp. 1–17. issn: 16113349 (cit. on
pp. 16–18, 23).

[Ari+18] Anna Arigliano, Tobia Calogiuri, Gianpaolo Ghiani, and Emanuela Guerriero. “A
branch-and-bound algorithm for the time-dependent travelling salesman problem”. In:
Networks 72.3 (Oct. 2018), pp. 382–392. issn: 0028-3045. doi: 10.1002/net.21830
(cit. on p. 24).

[Ari+19] Anna Arigliano, Gianpaolo Ghiani, Antonio Grieco, Emanuela Guerriero, and Isaac
Plana. “Time-dependent asymmetric traveling salesman problem with time windows:
Properties and an exact algorithm”. In: Discrete Applied Mathematics 261 (May
2019), pp. 28–39. issn: 0166218X. doi: 10.1016/j.dam.2018.09.017 (cit. on pp. 2,
24–26, 29, 113–115).

[Asc+93] Norbert Ascheuer, Laureano F. Escudero, Martin Grötschel, and Mechthild Stoer.
“A Cutting Plane Approach to the Sequential Ordering Problem (with Applications
to Job Scheduling in Manufacturing)”. In: SIAM Journal on Optimization 3.1 (Feb.
1993), pp. 25–42. issn: 1052-6234. doi: 10.1137/0803002 (cit. on pp. 14, 38).

147

https://doi.org/10.1007/PL00011432
https://doi.org/10.1002/net.21830
https://doi.org/10.1016/j.dam.2018.09.017
https://doi.org/10.1137/0803002

[Asc96] Norbert Ascheuer. “Hamiltonian path problems in the on-line optimization of flexible
manufacturing systems”. PhD thesis. Zuse Institute Berlin, 1996 (cit. on p. 130).

[Bel57] Richard Bellman. Dynamic Programming. Rand Corporation research study. Prince-
ton University Press, 1957. isbn: 9780691079516 (cit. on p. 38).

[Bel62] Richard Bellman. “Dynamic Programming Treatment of the Travelling Salesman
Problem”. In: Journal of the ACM (JACM) 9.1 (1962), pp. 61–63. issn: 1557735X
(cit. on pp. 24, 32).

[Ben+21] Hamza Ben Ticha, Nabil Absi, Dominique Feillet, Alain Quilliot, and Tom Van
Woensel. “The Time-Dependent Vehicle Routing Problem with Time Windows and
Road-Network Information”. In: Operations Research Forum 2.1 (2021) (cit. on p. 20).

[Ber+16] David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John Hooker. Deci-
sion Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and
Algorithms. Springer International Publishing, 2016. isbn: 978-3-319-42847-5. doi:
10.1007/978-3-319-42849-9 (cit. on pp. 40, 128).

[Bjö+05] Yngvi Björnsson, Markus Enzenberger, Robert C. Holte, and Jonathan Schaeffer.
“Fringe Search: Beating A* at Pathfinding on Game Maps”. In: Proceedings of the
2005 IEEE Symposium on Computational Intelligence and Games (CIG05), Essex
University, Colchester, Essex, UK, 4-6 April, 2005. IEEE, 2005 (cit. on p. 75).

[BMR12] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. “New State-Space Re-
laxations for Solving the Traveling Salesman Problem with Time Windows”. en. In:
INFORMS Journal on Computing 24.3 (Aug. 2012), pp. 356–371. issn: 1091-9856.
doi: 10.1287/ijoc.1110.0456 (cit. on pp. 24, 37).

[BS19] Natashia L. Boland and Martin W. P. Savelsbergh. “Perspectives on integer pro-
gramming for time-dependent models”. In: TOP 27.2 (July 2019), pp. 147–173. issn:
1134-5764. doi: 10.1007/s11750-019-00514-4 (cit. on p. 23).

[BSZ21] Abhinav Bhatia, Justin Svegliato, and Shlomo Zilberstein. “On the Benefits of
Randomly Adjusting Anytime Weighted A*”. In: 14th International Symposium
on Combinatorial Search, SoCS 2021 (2021), pp. 116–120. issn: 2832-9171. doi:
10.1609/socs.v12i1.18558 (cit. on pp. 58, 59).

[CGG14] Jean-François Cordeau, Gianpaolo Ghiani, and Emanuela Guerriero. “Analysis and
Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem”.
In: Transportation Science 48.1 (Feb. 2014), pp. 46–58. issn: 0041-1655. doi: 10.
1287/trsc.1120.0449 (cit. on p. 23).

[CH66] Kenneth L. Cooke and Eric Halsey. “The shortest route through a network with
time-dependent internodal transit times”. In: Journal of Mathematical Analysis and
Applications 14.3 (June 1966), pp. 493–498. issn: 0022247X. doi: 10.1016/0022-
247X(66)90009-6 (cit. on p. 18).

148 Bibliography

https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1287/ijoc.1110.0456
https://doi.org/10.1007/s11750-019-00514-4
https://doi.org/10.1609/socs.v12i1.18558
https://doi.org/10.1287/trsc.1120.0449
https://doi.org/10.1287/trsc.1120.0449
https://doi.org/10.1016/0022-247X(66)90009-6
https://doi.org/10.1016/0022-247X(66)90009-6

[CMT81] Nicos Christofides, Aristide Mingozzi, and Paolo Toth. “State-space relaxation proce-
dures for the computation of bounds to routing problems”. In: Networks 11.2 (June
1981), pp. 145–164. issn: 0028-3045. doi: 10.1002/net.3230110207 (cit. on pp. 11,
24, 37, 39, 40).

[Coo+11] William J. Cook, David L. Applegate, Robert E. Bixby, and Vasek Chvátal. The
Traveling Salesman Problem: A Computational Study. Princeton University Press,
2011. isbn: 9781400841103. doi: 10.1515/9781400841103 (cit. on p. 23).

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 3rd Edition. MIT Press, 2009. isbn: 978-0-262-03384-8
(cit. on p. 52).

[DDS92] Martin Desrochers, Jacques Desrosiers, and Marius Solomon. “A New Optimization
Algorithm for the Vehicle Routing Problem with Time Windows”. In: Operations
Research 40.2 (Apr. 1992), pp. 342–354. issn: 0030-364X. doi: 10.1287/opre.40.2.
342 (cit. on p. 20).

[Des+95] Jacques Desrosiers, Yvan Dumas, Marius M. Solomon, and François Soumis. “Chapter
2 Time constrained routing and scheduling”. In: Network Routing. Vol. 8. Handbooks
in Operations Research and Management Science. Elsevier, 1995, pp. 35–139. doi:
10.1016/S0927-0507(05)80106-9 (cit. on p. 20).

[Dij59] Edsger W. Dijkstra. “A note on two problems in connexion with graphs”. In: Nu-
merische Mathematik 1.1 (Dec. 1959), pp. 269–271. issn: 0029-599X. doi: 10.1007/
BF01386390 (cit. on p. 51).

[Don+08] Alberto V. Donati, Roberto Montemanni, Norman Casagrande, Andrea E. Rizzoli,
and Luca M. Gambardella. “Time dependent vehicle routing problem with a multi
ant colony system”. In: European Journal of Operational Research 185.3 (Mar. 2008),
pp. 1174–1191. issn: 03772217. doi: 10.1016/j.ejor.2006.06.047 (cit. on p. 23).

[DP85] Rina Dechter and Judea Pearl. “Generalized best-first search strategies and the
optimality of A*”. In: Journal of the ACM 32.3 (July 1985), pp. 505–536. issn:
0004-5411. doi: 10.1145/3828.3830 (cit. on p. 54).

[DU10] Rodrigo Ferreira Da Silva and Sebastián Urrutia. “A General VNS heuristic for the
traveling salesman problem with time windows”. In: Discrete Optimization 7.4 (Nov.
2010), pp. 203–211. issn: 15725286. doi: 10.1016/j.disopt.2010.04.002 (cit. on
pp. 95, 128–130).

[Dum+95] Yvan Dumas, Jacques Desrosiers, Eric Gelinas, and Marius M. Solomon. “An Optimal
Algorithm for the Traveling Salesman Problem with Time Windows”. In: Operations
Research 43.2 (Apr. 1995), pp. 367–371. issn: 0030-364X. doi: 10.1287/opre.43.2.
367 (cit. on pp. 69, 89, 94, 130, 138).

149

https://doi.org/10.1002/net.3230110207
https://doi.org/10.1515/9781400841103
https://doi.org/10.1287/opre.40.2.342
https://doi.org/10.1287/opre.40.2.342
https://doi.org/10.1016/S0927-0507(05)80106-9
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/j.ejor.2006.06.047
https://doi.org/10.1145/3828.3830
https://doi.org/10.1016/j.disopt.2010.04.002
https://doi.org/10.1287/opre.43.2.367
https://doi.org/10.1287/opre.43.2.367

[FA20] Ramon Faganello Fachini and Vinícius Amaral Armentano. “Exact and heuristic
dynamic programming algorithms for the traveling salesman problem with flexible
time windows”. In: Optimization Letters 14.3 (Apr. 2020), pp. 579–609. issn: 1862-
4472. doi: 10.1007/s11590-018-1342-y (cit. on pp. 15, 138).

[FDS23a] Romain Fontaine, Jilles Dibangoye, and Christine Solnon. “Exact and Anytime Ap-
proach for Solving the Time Dependent Traveling Salesman Problem with Time
Windows”. In: 24ème congrès annuel de la Société Française de Recherche Opéra-
tionnelle et d’Aide à la Décision. 2023 (cit. on p. 3).

[FDS23b] Romain Fontaine, Jilles Dibangoye, and Christine Solnon. “Exact and anytime ap-
proach for solving the time dependent traveling salesman problem with time windows”.
In: European Journal of Operational Research 311.3 (2023), pp. 833–844. issn: 0377-
2217. doi: https://doi.org/10.1016/j.ejor.2023.06.001 (cit. on p. 3).

[FGG04] Bernhard Fleischmann, Martin Gietz, and Stefan Gnutzmann. “Time-Varying Travel
Times in Vehicle Routing”. In: Transportation Science 38.2 (May 2004), pp. 160–173.
issn: 0041-1655. doi: 10.1287/trsc.1030.0062 (cit. on pp. 18, 19).

[Fic+21] Johannes Klaus Fichte, Markus Hecher, Ciaran McCreesh, and Anas Shahab. “Com-
plications for Computational Experiments from Modern Processors”. In: 27th Inter-
national Conference on Principles and Practice of Constraint Programming, CP 2021.
Ed. by Laurent D Michel. Vol. 210. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, 25:1–25:21. doi: 10.4230/LIPICS.CP.2021.25 (cit. on p. 101).

[FT87] Michael L. Fredman and Robert Endre Tarjan. “Fibonacci heaps and their uses in
improved network optimization algorithms”. In: Journal of the ACM 34.3 (July 1987),
pp. 596–615. issn: 0004-5411. doi: 10.1145/28869.28874 (cit. on p. 52).

[Gab+86] Harold N. Gabow, Zvi Galil, Thomas Spencer, and Robert E. Tarjan. “Efficient
algorithms for finding minimum spanning trees in undirected and directed graphs”.
In: Combinatorica 6.2 (June 1986), pp. 109–122. issn: 0209-9683. doi: 10.1007/
BF02579168 (cit. on p. 88).

[Gen+98] Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. “A Generalized
Insertion Heuristic for the Traveling Salesman Problem with Time Windows”. In:
Operations Research 46.3 (June 1998), pp. 330–335. issn: 0030-364X. doi: 10.1287/
opre.46.3.330 (cit. on p. 130).

[GGG15] Michel Gendreau, Gianpaolo Ghiani, and Emanuela Guerriero. “Time-dependent
routing problems: A review”. In: Computers and Operations Research 64 (Dec. 2015),
pp. 189–197. issn: 03050548. doi: 10.1016/j.cor.2015.06.001 (cit. on p. 23).

[Gil+21] Xavier Gillard, Vianney Coppé, Pierre Schaus, and André Augusto Cire. “Improving
the Filtering of Branch-and-Bound MDD Solver”. In: Integration of Constraint
Programming, Artificial Intelligence, and Operations Research. Vol. 12735 LNCS.
2021, pp. 231–247. isbn: 9783030782290. doi: 10.1007/978-3-030-78230-6_15
(cit. on pp. 41, 128, 130).

150 Bibliography

https://doi.org/10.1007/s11590-018-1342-y
https://doi.org/https://doi.org/10.1016/j.ejor.2023.06.001
https://doi.org/10.1287/trsc.1030.0062
https://doi.org/10.4230/LIPICS.CP.2021.25
https://doi.org/10.1145/28869.28874
https://doi.org/10.1007/BF02579168
https://doi.org/10.1007/BF02579168
https://doi.org/10.1287/opre.46.3.330
https://doi.org/10.1287/opre.46.3.330
https://doi.org/10.1016/j.cor.2015.06.001
https://doi.org/10.1007/978-3-030-78230-6_15

[Gmi+21] Maha Gmira, Michel Gendreau, Andrea Lodi, and Jean-Yves Potvin. “Tabu search for
the time-dependent vehicle routing problem with time windows on a road network”.
In: European Journal of Operational Research 288.1 (Jan. 2021), pp. 129–140. issn:
03772217. doi: 10.1016/j.ejor.2020.05.041 (cit. on p. 23).

[Gra+79] Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and A.H.G.
Rinnooy Kan. “Optimization and Approximation in Deterministic Sequencing and
Scheduling: a Survey”. In: Annals of Discrete Mathematics. Vol. 5. C. 1979, pp. 287–
326. doi: 10.1016/S0167-5060(08)70356-X (cit. on p. 14).

[GS22] Xavier Gillard and Pierre Schaus. “Large Neighborhood Search with Decision Dia-
grams”. In: IJCAI International Joint Conference on Artificial Intelligence (2022),
pp. 4754–4760. issn: 10450823. doi: 10.24963/ijcai.2022/659 (cit. on p. 41).

[GSC20] Xavier Gillard, Pierre Schaus, and Vianney Coppé. “Ddo, a Generic and Efficient
Framework for MDD-Based Optimization”. In: Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020. Ed. by Christian
Bessiere. ijcai.org, 2020, pp. 5243–5245. doi: 10.24963/IJCAI.2020/757 (cit. on
p. 139).

[HHE18] Steven Halim, Felix Halim, and Suhendry Effendy. Competitive Programming 4: The
Lower Bound of Programming Contests in the 2020s. 4th ed. Vol. 1. 2018. isbn:
9781716745522 (cit. on p. 80).

[HK62] Michael Held and Richard M. Karp. “A Dynamic Programming Approach to Sequenc-
ing Problems”. In: Journal of the Society for Industrial and Applied Mathematics
10.1 (1962), pp. 196–210. issn: 03684245 (cit. on p. 32).

[HM23] Claire Hanen and Alix Munier Kordon. “Fixed-parameter tractability of scheduling
dependent typed tasks subject to release times and deadlines”. In: Journal of Schedul-
ing (July 2023). issn: 1094-6136. doi: 10.1007/s10951-023-00788-4 (cit. on
p. 15).

[HMM08] Pierre Hansen, Nenad Mladenović, and José A. Moreno Pérez. “Variable neighbour-
hood search: methods and applications”. In: 4OR 6.4 (Dec. 2008), pp. 319–360. issn:
1619-4500. doi: 10.1007/s10288-008-0089-1 (cit. on p. 95).

[HNR68] Peter Hart, Nils Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science
and Cybernetics 4.2 (1968), pp. 100–107. issn: 0536-1567. doi: 10.1109/TSSC.1968.
300136 (cit. on p. 53).

[Hoa61] Charles A. R. Hoare. “Algorithm 65: Find”. In: Communications of the ACM 4.7
(1961), pp. 321–322. issn: 15577317. doi: 10.1145/366622.366647 (cit. on p. 81).

[Hoo13] John N. Hooker. “Decision Diagrams and Dynamic Programming”. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). Vol. 7874 LNCS. 2013, pp. 94–110. isbn:
9783642381706. doi: 10.1007/978-3-642-38171-3_7 (cit. on p. 40).

151

https://doi.org/10.1016/j.ejor.2020.05.041
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.24963/ijcai.2022/659
https://doi.org/10.24963/IJCAI.2020/757
https://doi.org/10.1007/s10951-023-00788-4
https://doi.org/10.1007/s10288-008-0089-1
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1145/366622.366647
https://doi.org/10.1007/978-3-642-38171-3_7

[Hoo16] Jelke J. van Hoorn. “Dynamic Programming for Routing and Scheduling: Optimizing
Sequences of Decisions”. PhD thesis. Vrije Universiteit, 2016. isbn: 978-94-6332-008-5
(cit. on pp. 24, 38, 138).

[HZ07] Eric A. Hansen and Rong Zhou. “Anytime heuristic search”. In: Journal of Artificial
Intelligence Research 28 (2007), pp. 267–297. issn: 10769757. doi: 10.1613/jair.
2096 (cit. on pp. 56, 58, 59, 71, 72, 80).

[IGP03] Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin. “Vehicle dispatching with
time-dependent travel times”. In: European Journal of Operational Research 144.2
(Jan. 2003), pp. 379–396. issn: 03772217. doi: 10.1016/S0377-2217(02)00147-9
(cit. on pp. 12, 19, 23).

[II99] Takahiro Ikeda and Hiroshi Imai. “Enhanced A* algorithms for multiple alignments:
optimal alignments for several sequences and k-opt approximate alignments for
large cases”. In: Theoretical Computer Science 210.2 (Jan. 1999), pp. 341–374. issn:
03043975. doi: 10.1016/S0304-3975(98)00093-0 (cit. on pp. 55, 96).

[Kar72] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity
of Computer Computations. Boston, MA: Springer US, 1972, pp. 85–103. doi: 10.
1007/978-1-4684-2001-2_9 (cit. on p. 15).

[KB23a] Ryo Kuroiwa and J. Christopher Beck. “Domain-Independent Dynamic Programming:
Generic State Space Search for Combinatorial Optimization”. In: Proceedings of the
International Conference on Automated Planning and Scheduling 33.1 (July 2023),
pp. 236–244. issn: 2334-0843. doi: 10.1609/icaps.v33i1.27200 (cit. on p. 41).

[KB23b] Ryo Kuroiwa and J. Christopher Beck. “Large Neighborhood Beam Search for
Domain-Independent Dynamic Programming”. In: 29th International Conference on
Principles and Practice of Constraint Programming (CP 2023). Ed. by Roland H C
Yap. Vol. 280. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Sept. 2023, 23:1–23:22.
isbn: 978-3-95977-300-3. doi: 10.4230/LIPIcs.CP.2023.23 (cit. on p. 41).

[KB23c] Ryo Kuroiwa and J. Christopher Beck. “Solving Domain-Independent Dynamic
Programming Problems with Anytime Heuristic Search”. In: Proceedings of the
International Conference on Automated Planning and Scheduling 33.1 (July 2023),
pp. 245–253. issn: 2334-0843. doi: 10.1609/icaps.v33i1.27201 (cit. on pp. 41, 56,
72, 89, 138, 139).

[Kho+22] Masoud Khodadadian, Ali Divsalar, Cedric Verbeeck, Aldy Gunawan, and Pieter
Vansteenwegen. “Time dependent orienteering problem with time windows and service
time dependent profits”. In: Computers and Operations Research 143.March (2022),
p. 105794. issn: 03050548. doi: 10.1016/j.cor.2022.105794 (cit. on pp. 15, 138).

[KK97] Hermann Kaindl and Gerhard Kainz. “Bidirectional Heuristic Search Reconsidered”.
In: Journal of Artificial Intelligence Research 7 (1997), pp. 283–317. doi: 10.1613/
jair.460 (cit. on p. 55).

152 Bibliography

https://doi.org/10.1613/jair.2096
https://doi.org/10.1613/jair.2096
https://doi.org/10.1016/S0377-2217(02)00147-9
https://doi.org/10.1016/S0304-3975(98)00093-0
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1609/icaps.v33i1.27200
https://doi.org/10.4230/LIPIcs.CP.2023.23
https://doi.org/10.1609/icaps.v33i1.27201
https://doi.org/10.1016/j.cor.2022.105794
https://doi.org/10.1613/jair.460
https://doi.org/10.1613/jair.460

[Kor85] Richard E. Korf. “Depth-first iterative-deepening: An optimal admissible tree search”.
In: Artificial Intelligence 27.1 (1985), pp. 97–109. issn: 0004-3702. doi: https:
//doi.org/10.1016/0004-3702(85)90084-0 (cit. on p. 55).

[Kor90] Richard E. Korf. “Real-time heuristic search”. In: Artificial Intelligence 42.2-3 (Mar.
1990), pp. 189–211. issn: 00043702. doi: 10.1016/0004-3702(90)90054-4 (cit. on
p. 56).

[Kor93] Richard E. Korf. “Linear-space best-first search”. In: Artificial Intelligence 62.1 (July
1993), pp. 41–78. issn: 00043702. doi: 10.1016/0004-3702(93)90045-D (cit. on
p. 55).

[Kot16] Lars Kotthoff. “Algorithm selection for combinatorial search problems: A survey”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 10101 LNCS (2016), pp. 149–190.
issn: 16113349. doi: 10.1007/978-3-319-50137-6_7. arXiv: 1210.7959 (cit. on
p. 138).

[KS93] David E. Kaufman and Robert L. Smith. “Fastest paths in time-dependent net-
works for intelligent vehicle-highway systems application”. In: Journal of Intelligent
Transportation Systems 1.1 (1993), pp. 1–11 (cit. on p. 17).

[KSJ09] Gio K. Kao, Edward C. Sewell, and Sheldon H. Jacobson. “A branch, bound, and
remember algorithm for the 1 |ri|Σti scheduling problem”. In: Journal of Scheduling
12.2 (Apr. 2009), pp. 163–175. issn: 1094-6136. doi: 10.1007/s10951-008-0087-3
(cit. on pp. 58, 59, 74).

[Lan+93] André Langevin, Martin Desrochers, Jacques Desrosiers, Sylvie Gélinas, and François
Soumis. “A two-commodity flow formulation for the traveling salesman and the
makespan problems with time windows”. In: Networks 23.7 (Oct. 1993), pp. 631–640.
issn: 0028-3045. doi: 10.1002/net.3230230706 (cit. on pp. 20, 130).

[LB15] Manuel López-Ibáñez and Christian Blum. Benchmark Instances for the Travelling
Salesman Problem with Time Windows. 2015. url: https://lopez-ibanez.eu/
tsptw-instances (visited on 04/10/2024) (cit. on p. 130).

[LF21] Luc Libralesso and Florian Fontan. “An anytime tree search algorithm for the
2018 ROADEF/EURO challenge glass cutting problem”. In: European Journal of
Operational Research 291.3 (2021), pp. 883–893. issn: 03772217. doi: 10.1016/j.
ejor.2020.10.050. arXiv: 2004.00963 (cit. on p. 56).

[LGT03] Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. “ARA*: Anytime
A* with Provable Bounds on Sub-Optimality”. In: Advances in Neural Information
Processing Systems 16 [NIPS 2003]. Ed. by Sebastian Thrun, Lawrence K Saul, and
Bernhard Schölkopf. MIT Press, 2003, pp. 767–774 (cit. on pp. 56, 58, 59).

153

https://doi.org/https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/0004-3702(90)90054-4
https://doi.org/10.1016/0004-3702(93)90045-D
https://doi.org/10.1007/978-3-319-50137-6_7
http://arxiv.org/abs/1210.7959
https://doi.org/10.1007/s10951-008-0087-3
https://doi.org/10.1002/net.3230230706
https://lopez-ibanez.eu/tsptw-instances
https://lopez-ibanez.eu/tsptw-instances
https://doi.org/10.1016/j.ejor.2020.10.050
https://doi.org/10.1016/j.ejor.2020.10.050
http://arxiv.org/abs/2004.00963

[Lib+20] Luc Libralesso, Abdel-Malik Bouhassoun, Hadrien Cambazard, and Vincent Jost.
“Tree Search for the Sequential Ordering Problem”. In: ECAI 2020 - 24th European
Conference on Artificial Intelligence. Vol. 325. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2020, pp. 459–465. doi: 10.3233/FAIA200126 (cit. on
pp. 58, 60, 72, 77, 82, 83, 87, 89, 107–109, 139).

[Lib+22] Luc Libralesso, Pablo Andres Focke, Aurélien Secardin, and Vincent Jost. “Iterative
beam search algorithms for the permutation flowshop”. In: European Journal of
Operational Research 301.1 (Aug. 2022), pp. 217–234. issn: 03772217. doi: 10.1016/
j.ejor.2021.10.015. arXiv: 2009.05800 (cit. on pp. 72, 139).

[Lib20] Luc Libralesso. “Anytime tree search algorithms for combinatorial optimization”.
PhD thesis. Université Grenoble Alpes, 2020 (cit. on pp. 56, 139).

[Lik+08] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian
Thrun. “Anytime search in dynamic graphs”. In: Artificial Intelligence 172.14 (Sept.
2008), pp. 1613–1643. issn: 00043702. doi: 10.1016/j.artint.2007.11.009 (cit. on
p. 59).

[LMS22] Gonzalo Lera-Romero, Juan José Miranda Bront, and Francisco J. Soulignac. “Dy-
namic Programming for the Time-Dependent Traveling Salesman Problem with Time
Windows”. In: INFORMS Journal on Computing 34.6 (Nov. 2022), pp. 3292–3308.
issn: 1091-9856. doi: 10.1287/ijoc.2022.1236 (cit. on pp. 2, 24, 25, 39, 93, 113,
128, 138).

[Lóp+13] Manuel López-Ibáñez, Christian Blum, Jeffrey W. Ohlmann, and Barrett W. Thomas.
“The travelling salesman problem with time windows: Adapting algorithms from
travel-time to makespan optimization”. In: Applied Soft Computing Journal 13.9
(2013), pp. 3806–3815. issn: 15684946. doi: 10.1016/j.asoc.2013.05.009 (cit. on
p. 128).

[Low76] Bruce T. Lowerre. “The HARPY speech recognition system”. PhD thesis. Carnegie-
Mellon University, Apr. 1976 (cit. on p. 59).

[Mal89] Chryssi Malandraki. Time-dependent vehicle routing problems: Formulations, solution
algorithms and computational experiments. 1989 (cit. on p. 18).

[MD92] Chryssi Malandraki and Mark S. Daskin. “Time dependent vehicle routing problems:
Formulations, properties and heuristic algorithms”. In: Transportation Science 26.3
(Aug. 1992), pp. 185–200. issn: 00411655. doi: 10.1287/trsc.26.3.185 (cit. on
pp. 1, 11, 15, 18, 23).

[MD96] Chryssi Malandraki and Robert B. Dial. “A restricted dynamic programming heuristic
algorithm for the time dependent traveling salesman problem”. In: European Journal
of Operational Research 90.1 (Apr. 1996), pp. 45–55. issn: 03772217. doi: 10.1016/
0377-2217(94)00299-1 (cit. on pp. 24, 36, 37, 39).

154 Bibliography

https://doi.org/10.3233/FAIA200126
https://doi.org/10.1016/j.ejor.2021.10.015
https://doi.org/10.1016/j.ejor.2021.10.015
http://arxiv.org/abs/2009.05800
https://doi.org/10.1016/j.artint.2007.11.009
https://doi.org/10.1287/ijoc.2022.1236
https://doi.org/10.1016/j.asoc.2013.05.009
https://doi.org/10.1287/trsc.26.3.185
https://doi.org/10.1016/0377-2217(94)00299-1
https://doi.org/10.1016/0377-2217(94)00299-1

[MH97] Nenad Mladenović and Pierre Hansen. “Variable neighborhood search”. In: Computers
and Operations Research 24.11 (1997), pp. 1097–1100. doi: 10.1016/S0305-0548(97)
00031-2 (cit. on p. 95).

[MMM17] Agustín Montero, Isabel Méndez-Díaz, and Juan José Miranda-Bront. “An integer
programming approach for the time-dependent traveling salesman problem with time
windows”. In: Computers and Operations Research 88 (Dec. 2017), pp. 280–289. issn:
03050548. doi: 10.1016/j.cor.2017.06.026 (cit. on pp. 20, 23).

[Mus97] David R. Musser. “Introspective sorting and selection algorithms”. In: Software -
Practice and Experience 27.8 (1997), pp. 983–993. issn: 00380644 (cit. on p. 81).

[OT07] Jeffrey W. Ohlmann and Barrett W. Thomas. “A Compressed-Annealing Heuristic
for the Traveling Salesman Problem with Time Windows”. In: INFORMS Journal on
Computing 19.1 (Feb. 2007), pp. 80–90. issn: 1091-9856. doi: 10.1287/ijoc.1050.
0145 (cit. on p. 130).

[PB96] Jean-Yves Potvin and Samy Bengio. “The Vehicle Routing Problem with Time
Windows Part II: Genetic Search”. In: INFORMS Journal on Computing 8.2 (May
1996), pp. 165–172. issn: 1091-9856. doi: 10.1287/ijoc.8.2.165 (cit. on p. 130).

[Pea84] Judea Pearl. Heuristics - intelligent search strategies for computer problem solving.
Addison-Wesley series in artificial intelligence. Addison-Wesley, 1984. isbn: 978-0-
201-05594-8 (cit. on pp. 78, 111).

[Pes+20] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. “A generic
exact solver for vehicle routing and related problems”. In: Mathematical Programming
183.1-2 (2020), pp. 483–523. issn: 14364646. doi: 10.1007/s10107-020-01523-z
(cit. on pp. 128, 138).

[Pes+98] Gilles Pesant, Michel Gendreau, Jean-Yves Potvin, and Jean-Marc Rousseau. “An
Exact Constraint Logic Programming Algorithm for the Traveling Salesman Problem
with Time Windows”. In: Transportation Science 32.1 (Feb. 1998), pp. 12–29. issn:
0041-1655. doi: 10.1287/trsc.32.1.12 (cit. on p. 130).

[Poh69] Ira Pohl. “Bi-directional and heuristic search in path problems”. PhD thesis. Stanford
University, USA, 1969 (cit. on p. 55).

[Poh70] Ira Pohl. “Heuristic Search Viewed as Path Finding in a Graph”. In: Artificial
Intelligence 1.3 (1970), pp. 193–204 (cit. on p. 59).

[Poh71] Ira Pohl. “Bi-directional search”. In: Machine Intelligence. Vol. 6. Edinburgh Univer-
sity Press, 1971, pp. 127–140 (cit. on p. 55).

[Pra23] Cédric Pralet. “Iterated Maximum Large Neighborhood Search for the Traveling
Salesman Problem with Time Windows and its Time-dependent Version”. In: Com-
puters and Operations Research 150 (Feb. 2023), p. 106078. issn: 03050548. doi:
10.1016/j.cor.2022.106078 (cit. on pp. 2, 15, 24, 25, 28, 93, 94, 113, 128, 130,
138).

155

https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/j.cor.2017.06.026
https://doi.org/10.1287/ijoc.1050.0145
https://doi.org/10.1287/ijoc.1050.0145
https://doi.org/10.1287/ijoc.8.2.165
https://doi.org/10.1007/s10107-020-01523-z
https://doi.org/10.1287/trsc.32.1.12
https://doi.org/10.1016/j.cor.2022.106078

[RCR23] Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau. “Improved Peel-and-
Bound: Methods for Generating Dual Bounds with Multivalued Decision Diagrams”.
In: Journal of Artificial Intelligence Research 77 (Aug. 2023), pp. 1489–1538. issn:
1076-9757. doi: 10.1613/jair.1.14607 (cit. on pp. 41, 128, 130).

[RCS20] Omar Rifki, Nicolas Chiabaut, and Christine Solnon. “On the impact of spatio-
temporal granularity of traffic conditions on the quality of pickup and delivery optimal
tours”. In: Transportation Research Part E: Logistics and Transportation Review 142
(Oct. 2020), p. 102085. issn: 13665545. doi: 10.1016/j.tre.2020.102085 (cit. on
pp. 1, 16–18, 24, 25, 27–29, 38, 121, 133).

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach, Third
International Edition. Pearson Education, 2010. isbn: 978-0-13-207148-2 (cit. on
p. 56).

[RT12] Roberto Roberti and Paolo Toth. “Models and algorithms for the Asymmetric
Traveling Salesman Problem: an experimental comparison”. In: EURO Journal on
Transportation and Logistics 1.1-2 (June 2012), pp. 113–133. issn: 21924376. doi:
10.1007/s13676-012-0010-0 (cit. on p. 88).

[RTR10] Silvia Richter, Jordan T. Thayer, and Wheeler Ruml. “The joy of forgetting: Faster
anytime search via restarting”. In: ICAPS 2010 - Proceedings of the 20th International
Conference on Automated Planning and Scheduling Icaps (2010), pp. 137–144. issn:
2334-0835. doi: 10.1609/icaps.v20i1.13412 (cit. on pp. 58, 59).

[Sal19] Julien Salotti. “Méthodes de sélection de voisinage et de prévision à court-terme
pour l’analyse du trafic urbain”. Theses. INSA Lyon ; Université de Lyon, Sept. 2019
(cit. on p. 1).

[Sav85] Martin W. P. Savelsbergh. “Local search in routing problems with time windows”. In:
Annals of Operations Research 4.1 (Dec. 1985), pp. 285–305. issn: 0254-5330. doi:
10.1007/BF02022044 (cit. on p. 15).

[Sun+20] Peng Sun, Lucas P. Veelenturf, Mike Hewitt, and Tom Van Woensel. “Adaptive large
neighborhood search for the time-dependent profitable pickup and delivery problem
with time windows”. In: Transportation Research Part E 138 (2020), p. 101942. issn:
13665545 (cit. on p. 23).

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition. Addison-Wesley, 2011.
isbn: 978-0-321-57351-3 (cit. on p. 80).

[TI17] Christian Tilk and Stefan Irnich. “Dynamic Programming for the Minimum Tour
Duration Problem”. In: Transportation Science 51.2 (May 2017), pp. 549–565. issn:
0041-1655. doi: 10.1287/trsc.2015.0626 (cit. on p. 24).

[TPF23] Trong-Hieu Tran, Cédric Pralet, and Hélène Fargier. “Combining Incomplete Search
and Clause Generation: An Application to the Orienteering Problems with Time
Windows”. In: Integration of Constraint Programming, Artificial Intelligence, and

156 Bibliography

https://doi.org/10.1613/jair.1.14607
https://doi.org/10.1016/j.tre.2020.102085
https://doi.org/10.1007/s13676-012-0010-0
https://doi.org/10.1609/icaps.v20i1.13412
https://doi.org/10.1007/BF02022044
https://doi.org/10.1287/trsc.2015.0626

Operations Research. Ed. by Andre A Cire. Cham: Springer Nature Switzerland, 2023,
pp. 493–509. isbn: 978-3-031-33271-5 (cit. on pp. 15, 138).

[TR10] Jordan Thayer and Wheeler Ruml. “Anytime heuristic search: Frameworks and
algorithms”. In: Proceedings of the 3rd Annual Symposium on Combinatorial Search,
SoCS 2010 (2010), pp. 121–128. issn: 2832-9171. doi: 10.1609/socs.v1i1.18181
(cit. on p. 56).

[VAC11] Satya Gautam Vadlamudi, Sandip Aine, and Partha Pratim Chakrabarti. “MAWA* -
A Memory-Bounded Anytime Heuristic-Search Algorithm”. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 41.3 (June 2011), pp. 725–735.
issn: 1083-4419. doi: 10.1109/TSMCB.2010.2089619 (cit. on pp. 58, 60).

[VAC16] Satya Gautam Vadlamudi, Sandip Aine, and Partha Pratim Chakrabarti. “Anytime
pack search”. In: Natural Computing 15.3 (2016), pp. 395–414. issn: 15729796. doi:
10.1007/s11047-015-9490-9 (cit. on pp. 58, 60).

[Vad+12] Satya Gautam Vadlamudi, Piyush Gaurav, Sandip Aine, and Partha Pratim
Chakrabarti. “Anytime Column Search”. In: AI 2012: Advances in Artificial
Intelligence - 25th Australasian Joint Conference. Vol. 7691. LNCS. Springer, 2012,
pp. 254–265. doi: 10.1007/978-3-642-35101-3_22 (cit. on pp. 58, 59, 74, 77).

[Van+11] Jur Van den Berg, Rajat Shah, Arthur Huang, and Ken Goldberg. “Anytime Non-
parametric A*”. In: Proceedings of the AAAI Conference on Artificial Intelligence
25.1 (Aug. 2011), pp. 105–111. issn: 2374-3468. doi: 10.1609/aaai.v25i1.7819
(cit. on pp. 58, 59).

[VHV22] Duc Minh Vu, Mike Hewitt, and Duc D. Vu. “Solving the time dependent minimum
tour duration and delivery man problems with dynamic discretization discovery”.
In: European Journal of Operational Research 302.3 (Nov. 2022), pp. 831–846. issn:
03772217. doi: 10.1016/j.ejor.2022.01.029 (cit. on p. 23).

[Vu+20] Duc Minh Vu, Mike Hewitt, Natashia Boland, and Martin Savelsbergh. “Dynamic
Discretization Discovery for Solving the Time-Dependent Traveling Salesman Problem
with Time Windows”. In: Transportation Science 54.3 (May 2020), pp. 703–720. issn:
0041-1655. doi: 10.1287/trsc.2019.0911 (cit. on pp. 2, 23–25, 27, 29, 93, 113–115,
119).

[Wil64] John W. J. Williams. “Algorithm 232: Heapsort”. In: Communications of the ACM
7.6 (1964), pp. 347–348 (cit. on p. 52).

[YMI00] Takayuki Yoshizumi, Teruhisa Miura, and Toru Ishida. “A* with Partial Expansion
for Large Branching Factor Problems”. In: Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on on Innovative Ap-
plications of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas, USA.
Ed. by Henry A Kautz and Bruce W Porter. AAAI Press / The MIT Press, 2000,
pp. 923–929 (cit. on p. 55).

157

https://doi.org/10.1609/socs.v1i1.18181
https://doi.org/10.1109/TSMCB.2010.2089619
https://doi.org/10.1007/s11047-015-9490-9
https://doi.org/10.1007/978-3-642-35101-3_22
https://doi.org/10.1609/aaai.v25i1.7819
https://doi.org/10.1016/j.ejor.2022.01.029
https://doi.org/10.1287/trsc.2019.0911

[ZH02] Rong Zhou and Eric A. Hansen. “Multiple sequence alignment using anytime A*”. In:
Proceedings of the National Conference on Artificial Intelligence (2002), pp. 975–976
(cit. on pp. 58, 59, 71, 77).

[ZH05] Rong Zhou and Eric A. Hansen. “Beam-stack search: integrating backtracking with
beam search”. In: Proceedings of the Fifteenth International Conference on Inter-
national Conference on Automated Planning and Scheduling. 2005, pp. 90–98. doi:
10.1.1.71.4147 (cit. on pp. 58, 60).

[Zha98] Weixiong Zhang. “Complete Anytime Beam Search”. In: Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of
Artificial Intelligence. AAAI ’98/IAAI ’98. USA: American Association for Artificial
Intelligence, 1998, pp. 425–430. isbn: 0262510987 (cit. on p. 72).

158 Bibliography

https://doi.org/10.1.1.71.4147

FOLIO ADMINISTRATIF

..THÈSE.. . . .DEL’INSA..LYON,.MEMBREDE..L’UNIVERSITÉ.. . . .DELYON

Nom : FONTAINE Date de soutenance : 09/07/2024

Prénoms : Romain

Titre : Exact and anytime heuristic search for the Time Dependent Traveling Salesman Problem with
Time Windows

Nature : Doctorat Numéro d’ordre : 2024ISAL0067

École Doctorale : Informatique et Mathématiques

Spécialité : Informatique

Résumé :
Le problème du voyageur de commerce (TSP, pour Traveling Salesman Problem) dépendant du temps (TD, pour

Time Dependent) est une généralisation du TSP qui permet de prendre en compte les conditions de trafic lors de
la planification de tournées en milieu urbain : les temps de trajet varient en fonction des horaires de départ au
lieu d’être constants. Le TD-TSPTW généralise ce problème en associant à chaque point de passage une fenêtre
temporelle (TW, pour Time Window) qui restreint les horaires de visite. Les approches de résolution exactes telles
que la programmation linéaire en nombres entiers ou la programmation dynamique passent mal à l’échelle, tandis
que les approches heuristiques ne garantissent pas la qualité des solutions obtenues.

Dans cette thèse, nous proposons une nouvelle approche exacte et anytime pour le TD-TSPTW visant à obtenir
rapidement des solutions approchées puis à les améliorer progressivement jusqu’à prouver leur optimalité. Nous
montrons d’abord comment rapporter le TD-TSPTW à une recherche de meilleur chemin dans un graphe états-
transitions. Nous décrivons ensuite des algorithmes permettant de résoudre ce problème en nous concentrant sur les
extensions exactes et anytime d’A*, et en proposons une nouvelle par hybridation. Nous montrons comment combiner
ces algorithmes avec de la recherche locale – afin de trouver plus rapidement de meilleures solutions – ainsi qu’avec
des bornes et de la propagation de contraintes de TW – afin de réduire la taille de l’espace de recherche. Enfin, nous
fournissons des résultats expérimentaux visant à (i) valider nos principaux choix de conception, (ii) comparer notre
approche à l’état de l’art en considérant des benchmarks ayant différents degrés de réalisme et différentes granularités
temporelles et (iii) comparer ces approches TD à de récents solveurs pour le TSPTW dans le cas constant. Ces
résultats montrent que notre approche apporte un bon compromis entre le temps nécessaire pour (i) trouver de
bonnes solutions et (ii) trouver des solutions optimales et prouver leur optimalité, aussi bien dans le cas TD que dans
le cas constant.

Mots-clés : Optimisation Combinatoire, Problème du Voyageur de Commerce, Contraintes de fenêtres temporelles,
Temps de trajets Time-Dependent, Programmation Dynamique, Algorithmes de recherche Exacts et Anytime, Algo-
rithme A*, Passage à l’échelle

Laboratoire(s) de recherche : CITI (INRIA – INSA Lyon)

Directeur de thèse : Christine SOLNON, Jilles S. DIBANGOYE

Président du Jury : Romain BILLOT

Composition du Jury :
Cédric PRALET, Pierre SCHAUS, Romain BILLOT, Christine SOLNON, Jilles S. DIBANGOYE

	Title page
	Abstract
	Résumé
	Contents
	Introduction
	Glossary
	Notations
	I Background
	Time Dependent TSP with Time Windows
	Definitions and notations
	On Time Dependent travel time functions
	Devising time-dependent travel time functions from realistic data
	Modeling time-dependent travel time functions

	Propagation of TW constraints
	State-of-the-art solving approaches
	Classic benchmarks
	Discussion

	Dynamic Programming
	Dynamic Programming (DP) for the TSP
	DP formulations for generalizations of the TSP
	Time-Dependent travel times
	Time Window constraints
	Precedence constraints
	Discussion

	Improving DP's scalability
	Restricted Dynamic Programming
	Computing lower bounds through relaxed state spaces

	Frameworks related to DP
	Multivalued Decision Diagrams
	Domain-Independent Dynamic Programming

	Discussion

	Planning Problems
	Definition of Planning Problems
	Uninformed search algorithms
	Depth-First Search
	Breadth-First Search
	Dijkstra's shortest path algorithm

	Informed search
	Heuristic functions
	A* algorithm
	Exact and Anytime Search (EAS) algorithms related to A*

	Discussion

	II Proposed solving approach
	Exact and Anytime Search (EAS) for the TD-TSPTWm
	Dynamic Programming model and state transition graph
	Instantiation of EAS algorithms
	Anytime Weighted A*
	Iterative Beam Search
	Anytime Column Search
	Anytime Window A*
	Discussion

	Implementation of EAS algorithms
	A*-like algorithms
	Iterative Beam Search
	Anytime Window A*

	Computation of lower bounds h
	Definition of constant costs
	Definition of the graph Gs used to compute h(s)
	Feasibility bound
	Outgoing/Incoming Arcs bound
	Minimum Spanning Arborescence bound
	Discussion

	Discussion

	Combining EAS with TW constraint propagation and local search
	Overview of the proposed approach
	Time Window constraint propagation
	Propagation of constraints during resolution
	Adaptations of rules in absence of triangle inequality

	Local Search
	Greedy computation of an initial solution
	Discussion

	III Experimental results
	Experimental comparison of different EAS algorithms
	Experimental setting
	Preliminary experiments
	Parameter tuning
	Validation of implementation choices
	Overall comparison
	Discussion

	Experimental comparison with state-of-the-art approaches on TD benchmarks
	Experimental setting
	Benchmark Ari19
	Benchmark Vu20
	Benchmark Rif20
	Discussion

	Experimental comparison with other approaches on constant benchmarks
	Experimental setting
	Classic benchmarks
	Benchmark Rif20
	Discussion

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Folio administratif

