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P R O L O G U E A N D S T R U C T U R E

In January 2015, I visited a conference on “quantum cybernetics and control” in
Nottingham. I had convinced my PhD advisor to send me there to present our
recent results on statistical benchmarks for Boson Sampling—we will discuss that
more extensively in Section 2.1. The conference was a motley mix of optical control
theory, quantum metrology, complex systems, and quantum computing. As a relatively
inexperienced PhD student, several of the talks passed over my head. However, near
the end of the workshop two talks captured my attention. One of them was by IBM,
the other by Google. The speakers presented results on a four- and nine-qubit device,
respectively. During the conference dinner, I ended up at the table with Rami Barends
from Google, who told me about their plans for scaling up to larger devices. At that
time, my mind was blown.

Every now and then a conference or a workshop leaves a deep and lasting impression.
They can inspire new research directions or connect us to new collaborators. For me,
the above anecdote marks such an event which caused a genuine shift in my personal
point of view on quantum technologies. I had started working on Boson Sampling
because it allowed me to combine random matrix theory with the operator algebra
generated by the canonical commutation relation, mathematical tools that have always
been dear to me. Frankly, I did not care about the implications for computational
complexity theory, since I did not really believe a quantum computer would ever be
built. This conference in 2015 challenged my view and marked an important turning
point in my research career: it is the moment I genuinely started believing in quantum
computing as a viable future technology.

Once I was convinced of the quantum future, a much harder personal question
remained to be answered: what would be my role in this story? I decided to cultivate
my love for the mathematical aspects bosonic systems and shift my research focus to
continuous-variable quantum optics. When I started my postdoc in 2016, this niche
field combined an enormous potential for scalability with major challenges and many
unexplored avenues. Most of these challenges are related to the need of non-Gaussian
features, which would become the cornerstone of my future research.

I never imagined that by 2023 several platforms would claim to have reached a
quantum computational advantage, nor did I expect that continuous-variable systems
would become a big topic of research, mainly because the surge in interest for bosonic
error-correction codes. Throughout this manuscript, I present an overview of my own
contributions to this field. I also describe my growing interest in quantum metrology
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as both a tool and an application for my research.

More specifically, this Habilitation thesis is organised as follows. In the introductory
Chapter 1, we will establish basic notions of continuous variable quantum optics.
Section 1.1 is devoted to presenting a clear distinction between modes and states in
quantum optics, whereas Section 1.2 contrasts the discrete- and continuous-variable
approach for treating the states in these systems.

Chapter 2 reviews results about the quest for a quantum computational advantage in
bosonic systems. In this context, we will discuss some of my older work on benchmarks
for Boson Sampling in Section 2.1. This work highlights that, to fully understand
bosonic sampling problems, we need a good understanding of the physical resources
that fuel bosonic quantum computers. In Section 2.2 we review the search for such
resources, which culminates in a very recent paper.

Once we have a clear idea of the required resources for bosonic quantum computing,
Chapter 3 takes a more detailed dive into the field of quantum state engineering. In Sec-
tion 3.1 we first explore photon subtraction as a typical tool for creating non-Gaussian
quantum states of light. Subsequently, in Section 3.2, we explore the conditional
generation of Wigner negativity from a more fundamental point of view.

In Chapter 4 we take a detour into the adjacent field of quantum(-inspired) metrology.
In Section 4.1 we review some key results and important tools from this field. They
will be applied to estimate the distance between two point sources in Section 4.2.

The pathways set out in all of the previous chapters coincide at the crossroad that
is Chapter 5, where we study quantum states for which the quantum correlations
themselves have non-Gaussian properties. This recent research topic is still in its
infancy and thus very much a work in progress. We divide it in two parts. Section 5.1
contains preliminary results of our theoretical framework to describe non-Gaussian
entanglement. Section 5.2 presents new protocols, based on quantum metrology, that we
develop in order to detect non-Gaussian entanglement in continuous-variable quantum
optics experiments.
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I N T R O D U C T I O N

The field of quantum optics studies the quantum properties of light and ways to detect
them. In this first chapter, we introduce the basic concepts that will be used throughout
this habilitation thesis and fix notation.

In the first section, we use two dual Hilbert spaces to describe the properties of light.
The first Hilbert space is given by Maxwell’s equations and describes the optical modes.
These are the physical canisters in which energy can be stored. The statistical properties
of these modes are determined by a quantum state which “lives” in the second Hilbert
space. This chapter takes inspiration from (Fabre and Treps, 2020) and summarises key
points from the included tutorial (Walschaers, 2021). Furthermore, this introduction is
intended to offer some complementary elements that have not received much attention
in these previous works.

1.1 optical modes and states

1.1.1 Modes

Quantum optics is in the first place the study of light. The behaviour of light is
determined by the wave-like solutions of Maxwell’s equations for the electromagnetic
field. In this text, we focus primarily on quantum optics in free space, which means
that we ignore the presence of any charges or currents in Maxwell’s equations. They
thus take the form

∇ · E(r, t) = 0, (1.1a)

∇× E(r, t) = −1
c

∂

∂t
B(r, t), (1.1b)

∇ · B(r, t) = 0, (1.1c)

∇× B(r, t) =
1
c

∂

∂t
E(r, t). (1.1d)
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10 introduction

In this particular case, knowledge of the electric field immediately implies full knowl-
edge of the magnetic field and vice-versa. It is therefore common to restrict to the
complex representation of the electric field and study the wave equation

∇ · E(+)(r, t) = 0, (1.2a)(
∆ − 1

c2
∂2

∂t2

)
E(+)(r, t) = 0. (1.2b)

The complex field E(+)(r, t) is related to the real physical electric field via the identity
E(r, t) = E(+)(r, t) + [E(+)(r, t)]∗. Henceforth, we will refer to E(+)(r, t) simply as the
electric field.

The system of equations (1.2a) and (1.2b) now can be seen as an eigenvalue problem
which generates a Hilbert space of solutions. It is convenient to define a basis {uk(r, t)}
of this Hilbert space and use it to describe the electric field as

E(+)(r, t) = ∑
k
Ekαkuk(r, t). (1.3)

where we introduce the dimensionless complex coefficient αk and the real coefficient
Ek that carries the dimension of the electric field. The elements of the basis {uk(r, t)}
are known as optical modes and Ek can be interpreted as the electric field of the
specific mode uk(r, t). Typically, this mode basis is constructed such that the modes are
orthonormal, meaning they satisfy the relation

1
V

∫
V
[uk(r, t)]∗ul(r, t)d3r = δk,l , (1.4)

where V is a volume that is sufficiently large tho contain the full experimental setup.
Note, moreover, that we do not integrate over time. The mode is thus expected to be
spatially normalised for every instant in time.

As for any vector space, the choice of mode basis is not unique. In optics experiments,
it is mainly the desired application that determine in which mode basis we decide to
work (we will highlight this in Section 4.2). Changing from one mode basis uk(r, t) to
another mode basis vk(r, t) can be done via a unitary transformation. Simply expressing
the modes on the “v mode basis” in terms of the modes in the “u mode basis” leads to
the identity

vk(r, t) = ∑
l

Ukluk(r, t). (1.5)

Via the inner product structure that is implicitly introduced in (1.4), we find that

Ukl =
1
V

∫
V
[ul(r, t)]∗vk(r, t)d3r. (1.6)

Furthermore, this expression, together with the normalisation condition in (1.4) and
the completeness relation ∑k uk(r, t)u∗

k (r
′, t) = δ(3)(r − r′), allows us to directly verify
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that U†U = UU† = 1 and thus that U is indeed a unitary transformation.

Note that all of the above is the foundation of multimode classical optics. Hitherto we
have not invoked a single quantum phenomenon. Yet we use a Hilbert space framework
to describe the solutions to Maxwell’s equations. This structure of the electromagnetic
field is often a source of confusion in literature where properties that derive from the
modal structure of light tend to be presented as quantum mechanical effects. In what
follows, we will emphasise that the actual quantum properties of light are hidden away
in the coefficients αk that were introduced in (1.3). This becomes apparent when we
quantize the field.

1.1.2 Quantisation

Quantisation of the electromagnetic field is a topic that is covered at length in most
quantum optics textbooks such as (Grynberg et al., 2010) and introductory classes. We
will not go through the whole derivation in full detail, but rather emphasise key points
in relation to the modal structure of the field.

The energy contained within the electromagnetic field is given by the Hamiltonian

H =
ϵ0

2V

∫
V

[
∥E(r, t)∥2 + c2∥B(r, t)∥2] d3r. (1.7)

Using Maxwell’s equations (1.1a - 1.1d) and Fourier analysis, we can ultimately relate
the Hamiltonian H to the modal decomposition (1.3):

H = 2ϵ0 ∑
k
E2

k |αk|2 . (1.8)

We thus see that the coefficients |αk|2 relate directly to the amount of energy that is
contained in the specific mode uk(r, t).

Because the coefficient αk are complex, it is useful to rewrite them as

αk =
1
2
(qk + ipk), (1.9)

where we introduce the factor 2 for future convenience. The Hamiltonian now takes
the form

H =
ϵ0

2 ∑
k
E2

k (q
2
k + p2

k), (1.10)

where notation was chosen rather suggestively to make it apparent that every optical
mode effectively behaves as a harmonic oscillator. The real and imaginary part of αk are
known as the field quadratures. The real part qk is commonly referred to as the amplitude
quadrature, whereas the imaginary part pk goes by the name phase quadrature.

More detailed derivations in standard textbooks show that, indeed, the quadratures
qk and pk are the canonical coordinates that appear in Hamilton’s equations of motion
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(Grynberg et al., 2010). This means that these variables form a phase space and satisfy
the relations {qk, pl} = δk,l , {qk, ql} = 0, and {pk, pl} = 0, where {., .} denotes the
Poisson bracket. We can thus quantise the electromagnetic field through canonical
(Dirac, 1925) or deformation quantisation (Moyal, 1949). This leads us to introduce the
quadrature operators via

{qk, pl} = δk,l 7→ [q̂k, p̂l ] = 2iδk,l , (1.11a)

{qk, ql} = 0 7→ [q̂k, q̂l ] = 0, (1.11b)

{pk, pl} = 0 7→ [ p̂k, p̂l ] = 0. (1.11c)

Notice that we use a quantisation rule that suggests setting h̄ = 2. In practice, this choice
is motivated by experiments where quadrature measurements are usually expressed in
units of vacuum noise. We thus find that the quantum mechanical Hamiltonian of the
field reads

Ĥ =
ϵ0

2 ∑
k
E2

k (q̂
2
k + p̂2

k). (1.12)

Because the canonical position (amplitude quadrature) and canonical momentum
(phase quadrature) are physical observables, they must be hermitian, i.e. q̂k = q̂†

k and
p̂k = p̂†

k .1 The quantised version of the electric field becomes

Ê(+)(r, t) =
1
2 ∑

k
Ek(q̂k + i p̂k)uk(r, t), (1.13)

where we note that the modes {uk(r, t)} have not been touched by the quantisation
procedure and all the quantum properties of the light are governed by the field
quadratures. We can also introduce the quantised version of the coefficients αk by
identifying with the annihilation operators

αk 7→ âk =
1
2
(q̂k + i p̂k). (1.14)

the canonical commutation relations (1.11a - 1.11c) directly implies that the creation
and annihilation operators satisfy

[âk, â†
l ] = δk,l (1.15a)

[âk, âl ] = [â†
k , â†

l ] = 0. (1.15b)

1 Because these operators are unbounded, the claim that these operators are hermitian is not very rigorous.
More exact would be to claim that the operators are self-adjoint on their domain (Reed and B. Simon,
1980). Alternatively, one could use the formalism of C∗-algebras and focus on a specific representation of
the algebra of canonical commutation relations (Petz, 1990). In practice, our choice of working in a finite
volume V effectively tames most of the wild mathematical behaviour of these operators. Unless they have
an important physical impact, we will consider these mathematical subtleties beyond the scope of this
work.
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We can thus alternatively write the field as

Ê(+)(r, t) = ∑
k
Ek âkuk(r, t). (1.16)

At this point some readers may start to feel uncomfortable because equations (1.13)
and (1.16) rely on a specific mode basis. In other words, the quadrature operators,
and creations and annihilation operators, are basis dependent. This problem can be
resolved via the mode basis change introduced in (1.5). Given that we have a set of
annihilation operators {âk} in mode basis {uk(r, t)}, we can find a transformation rule
for the annihilation operators by demanding that the electric field operator Ê(+)(r, t)
remains the same regardless of the mode basis. If we now denote {b̂k} as the annihi-
lation operators in mode basis {v(r, t)}, this constraint implies that the creation and
annihilation operators must transform as

b̂†
k = ∑

l
Ukl â†

l , (1.17a)

âk = ∑
l

Ulk b̂l . (1.17b)

Combining these transformation rules also leads to a transformation rule for the
quadrature operators. For convenience, we introduce the vector of quadratures in the
modes basis {u(r, t)} as

⃗̂x = (q̂1, p̂1, . . . , q̂m, p̂m)
⊤, (1.18)

where m denotes the number of modes in the system. The vector of quadratures ⃗̂x′ in
the mode basis {u(r, t)} is now given by

⃗̂x′ = O⃗̂x, (1.19)

where O is an orthonormal matrix with components that are related to the unitary
matrix of mode basis changed U via

O2i−1,2j−1 =
1
2
(Uij + U∗

ij), (1.20a)

O2i−1,2j = − 1
2i
(Uij − U∗

ij), (1.20b)

O2i,2j−1 =
1
2i
(Uij − U∗

ij), (1.20c)

O2i,2j =
1
2
(Uij + U∗

ij). (1.20d)

The unitarity of U imprints an additional symplectic structure on O. This structure
makes sure that amplitude and phase quadratures that belonged to the same mode
transform “together” when we apply the mode basis change. Formally this symplectic
structure is fixed by a matrix

Ω =
m⊕

j=1

ω, with ω =

(
0 −1
1 0

)
, (1.21)
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for which we find that OTΩO = Ω. This symplectic structure lies at the basis on the
optical phase space which is commonly used to describe states and observables in
quantum optics through quasi-probability distributions. We will come back to this
point in Section 1.2.2.

1.1.3 States and observables

The expression (1.13) and (1.16) for the quantised electric field only tell part of the
story. In typical quantum experiments, we measure specific observables that are
somehow related to the field, and upon measurements we accumulate a distribution of
measurement outcomes, rather than fixed values. To describe all of this, we provide a
more formal introduction of observables and states in such a bosonic quantum system.

From an algebraic point of view, the quadrature operators (or equivalently the
creation and annihilation operators) are the generators of the algebra of observables A
in our system. This means that any observable can be approximated by a polynomial of
such operators. A more convenient representation (Neumann, 1931; Weyl, 1927) relies
on a family of operators operators of the form

χ̂(⃗α) =
1

(2π)m exp(i⃗α⊤⃗̂x), (1.22)

where ⃗̂x is given by (1.18) and α⃗ can be any vector in R2m. The bounded operators χ̂(⃗α)

can now be used as a basis (Hall, 2013) in which we can expand any other operator
Â ∈ A as given by

Â =
∫

R2m
Tr[Âχ̂(−⃗α)] χ̂(⃗α) d⃗α, (1.23)

where Tr[Âχ̂(−⃗α)] is the Hilbert-Schmidt inner product.

To connect these observables to actual measurement statistics we require an additional
element: the quantum state. In the algebraic formulation (Petz, 1990) one treats the
quantum state as a linear functional ⟨.⟩ : A → C that maps any observable Â to its
expectation value ⟨Â⟩. The linearity of this functional can be combined with (1.23) to
show that

⟨Â⟩ =
∫

R2m
Tr[Âχ̂(−⃗α)] ⟨χ̂(⃗α)⟩ d⃗α. (1.24)

This highlights that a full knowledge of the function ⟨χ̂(⃗α)⟩ for all α⃗ ∈ R2m suffices
to fully characterise the quantum state. One may thus simply use these functions to
define states as we will do in Section 1.2.2.

In a more typical formulation of quantum mechanics one treats the algebra of
observables directly as the bounded operators on a Hilbert space. The linear functionals
on the space of bounded operators on Hilbert space can be shown to be isomorphic
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to the space of trace-class operators on the same Hilbert space. More colloquially, this
means that any state can be associated with a density matrix ρ̂ such that

⟨Â⟩ = Tr[ρ̂Â] for all Â ∈ A. (1.25)

This also implies that we find that (1.24) takes the form

⟨Â⟩ =
∫

R2m
Tr[Âχ̂(−⃗α)]Tr[ρ̂χ̂(⃗α)] d⃗α. (1.26)

The description of states in terms of density matrices is not always convenient when
dealing with infinite-dimensional systems. Yet, density matrices are ubiquitous when
dealing with a finite number of photons (Flamini, Spagnolo, et al., 2018). Furthermore,
they are experimentally relevant in the context of quantum state tomography (Lvovsky
and Raymer, 2009). Even though this is not the main focus of this Habilitation thesis,
we will briefly discuss this point of view in Section 1.2.1.

1.1.4 Measurements

Before we move on to study specific approaches for studying quantum states of
light, there is one final key element that requires an introduction: measurements. In
principle, the algebra of observables and the states that go with it are sufficient tools
to mathematically describe the quantum system. In practice, any physical experiment
requires measurements and generates measurement outcomes. The days in which
only expectation values of observables were available are long behind us, and thus we
must introduce a framework to describe how a quantum measurement device samples
outcomes. This section is very loosely based on (Holevo, 2001).

The most common introduction of quantum measurements is based on the spectral
theorem. When we consider an observable Â, we can write

Â =
∫

σ(Â)
aP̂a da, (1.27)

where σ(Â) denotes the spectrum of Â, a ∈ σ(Â) are the possible measurement
outcomes and the elements of the spectrum, and P̂ada denotes a projection-valued
measure on the spectrum. Informally, a are the eigenvalues of Â and P̂a are the
projectors on the associated eigenvectors (or eigenspaces). This also implies that
P̂aP̂a′ = δ(a − a′)P̂a. When we act on the observables with a state, we find that

⟨Â⟩ =
∫

σ(Â)
a⟨P̂a⟩ da, (1.28)

and because P̂ada is a projection-valued measure, ⟨P̂a⟩ is a probability density. In many
quantum applications, for example sampling problems, we are above all interested in
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the properties of these probability densities. Thus, it is common to study the objects
⟨P̂a⟩ directly. Interestingly, these objects also must satisfy additional constraints:∫

σ(Â)
⟨P̂a⟩ da = 1 (normalisation), (1.29a)

⟨P̂a⟩ ≥ 0 ∀a ∈ σ(Â) (positivity). (1.29b)

The tools of Section 1.1.3 can be used to further characterise these objects.
Realistic experimental measurement devices are usually not accurately described by a

projection-value measure formalism due to noise and imperfections. We therefore tend
to consider the more general framework of positive operator-valued measures (POVMs).
This means that we simply drop the demand that the P̂a operators are projectors. We
simply impose that they are operators which satisfy (1.29a) and (1.29b) for all states.
Note that we can still take all measurement outcomes a and associated POVM elements
P̂a and use (1.27) to define a type of generalised observable (Holevo, 2001).

1.2 discrete and continuous variables

The field of quantum optics is highly diverse and contains many different points of
view to study the same fundamental object, light. Here we do not consider any type of
light-matter interaction, but just focus purely on the description of light itself. Here, we
typically make a distinction between discrete variables quantum optics, which focuses
on the energy content of light, and continuous variable quantum optics, which is based
on the field quadratures.

In Section 1.1.2, we saw that both the quadrature operators and the creation and
annihilation operators generate the same algebra of observables and ultimately contain
the same physical information. Yet, both are the corner stones of rather different
theoretical and experimental routes to studying light. In Section 1.2.1 we introduce
the Fock basis to study the behaviour of photons in a multimode system. These
photons are experimentally measured with various types of photon counters. In Section
1.2.2 we will contrast this with the continuous-variable approach, where quantum
states are described using the optical phase space. The measurements in this kind
of experiments aim to extract field quadratures and are typically performed using
homodyne or heterodyne detection. However, in Section 3 we will see that many
state-of-the art quantum optics setups are actually mix elements from both approaches
to create resourceful quantum states.

1.2.1 Discrete variables and Fock space

As mentioned before, the discrete-variable approach to quantum optics relies on the
energetic properties (and measurements thereof) of the electromagnetic field. This
energy is captured by the quantum Hamiltonian presented in (1.12). By using the
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definition of the annihilation operator as given in (1.14), together with the commutation
relation (1.15a), we can rewrite the Hamiltonian as

Ĥ = 2ϵ0 ∑
k
E2

k

(
â†

k âk +
1
2

)
, (1.30)

where the factor 1/2 denotes the vacuum energy contribution. The expected amount
of energy in any given state is given by ⟨Ĥ⟩ and is thus in practice determined by the
expectation values ⟨â†

1 â1⟩, . . . , ⟨â†
m âm⟩. The quantum state for which ⟨â†

1 â1⟩ = · · · =
⟨â†

m âm⟩ = 0 is known as the vacuum state with density matrix ρ̂ = |0⟩⟨0|, where |0⟩ is
a vector that satisfies âk|0⟩ = 0 for all k.

As laid out in Section 1.1.4, to measure the energy we musk know the eigenvalues
and eigenvectors of the Hamiltonian Ĥ. To obtain these, we note that the Hamiltonian
is a sum of commuting terms (â†

k âk and â†
l âl commute whenever k ̸= l) which means

that we can find a common eigenbasis. This basis is given by vectors of the type

|n1, . . . , nm⟩ =
(
â†

1

)n1 . . .
(
â†

m
)nm

√
n1! . . . nm!

|0⟩, (1.31)

these states are known as the Fock states. The integers nk indicate the exact number of
photons in the kth mode. The associated energy for the state |n1, . . . , nm⟩ is given by
ϵ0 ∑k E2

k (2nk + 1). We also clearly see that the creation operator â†
k creates exactly one

photon in the mode k.
The states of the type (1.31) form a basis of the Hilbert space, i.e. Fock space, that

describes the full multimode optical system. The discrete-variable approach to quantum
optics concentrates on studying states of the type |n1, . . . , nm⟩ and their superpositions.
In addition, it is common to truncate the Hilbert space at some finite photon number
N per mode, such that one effectively deals with a finite-dimensional system. This
approach underlies many numerical package that simulate photonic systems, see for
example (Killoran et al., 2019). In practice, this means that we often represent the state
by a density matrix in the Fock basis:

ρ̂ =
N

∑
n1,...,nm
n′

1,...,n′
m

ρn1,...,nm;n′
1,...,n′

m
|n1, . . . , nm⟩⟨n′

1, . . . , n′
m|. (1.32)

To obtain such a density matrix experimentally, one can techniques based on maximum-
likelihood tomography (Lvovsky, Hansen, et al., 2001; Lvovsky and Raymer, 2009;
Tiunov et al., 2020) or convex optimisation (Strandberg, 2022). Ironically, these tech-
niques often involve homodyne measurements, which measure field quadratures rather
than photon numbers.

Fock states are among the few states upon which we can actually perform some
form of projective measurements. Perhaps the most advanced of such device are
transition-edge sensors, which are based on superconductors that are cooled just below
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their critical temperature. Absorption of photons then creates enormous changes in
the resistance of these materials, making it possible to directly detect up to roughly 10

photons (Fukuda et al., 2011; Gerrits et al., 2012). These devices can be pushed to more
extreme regimes where they can count up to 100 photons by using more sophisticated
data analysis (Eaton, Hossameldin, et al., 2022).

Many experiments rely upon different detector technologies, such as avalanche
photo-diodes (APD). These have the advantage of not requiring advanced cryogenics,
while being reasonably fast and cheap (at least compared to more advanced systems).
However, the major downside of these devices is their lack of photon number resolution.
Rather than projecting on photon-number states of the type (1.31), they implement a
POVM that only contains two elements: {|0⟩⟨0|,1− |0⟩⟨0|}. If we can send a single
optical mode to such a detectors, while knowing that there is at most one photon
present, this is still a very useful device. Even beyond this regime, a clever use of
APDs can unveil many quantum properties of the light (Lachman et al., 2019; Straka,
Lachman, et al., 2018; Straka, Predojević, et al., 2014). However, for more advanced
multi-photon operations, we usually require different techniques.

A range of other advanced detector exist, notably those based on superconducting
nano-wires provide a more efficient alternative to APDs, yet also with limited photon
number resolution. Furthermore, there are more exotic types of materials that are being
investigated, such as the mesoscopic detectors in (Vojetta et al., 2012). In our group we
have started exploring the use of such detectors in quantum optics (Davis et al., 2021),
and we intend to pursue this research in the future in collaboration with CEA Leti.

1.2.2 Continuous variables and phase space

In this Habilitation thesis, we focus on the continuous-variable approach rather than the
discrete-variable point of view of Section 1.2.1. In the continuous-variable framework,
we describe the system based on the field quadratures, which can be measured using
homodyne or heterodyne detection. This means that we are effectively probing the
electric field Ê(+)(r, t) itself, as given by (1.13), rather than the energy content that is
given by the Hamiltonian.

In Section 1.2.1 we introduced the photon number operators for the different modes
as the mathematical building blocks of the discrete-variable approach. Here, this role
will be taken over by the quadrature operators q̂k and p̂k, which we more conveniently
represent by the vector ⃗̂x that was introduced in (1.18). The canonical commutation
relations (1.11a - 1.11c) directly show that the quadrature operators cannot be trace-class
(Weyl, 1927), and with a bit more effort one can also use relation (1.11a) to show that the
operators cannot be bounded. As a consequence, they must have a continuous spectrum,
such that, when we measure q̂k, we can find a continuum of possible measurement
outcomes qk ∈ R (and analogous for p̂k). The possible measurement outcomes for all
the quadratures in ⃗̂x can be represented by a vector x⃗ ∈ R2m. The space of all possible
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outcomes is known as the optical phase space. The transformation rule (1.19) for the
quadrature operators imposes a similar symplectic structure on the optical phase space,
with the symplectic form given by Ω.

We can use these finding to define a quadrature operator for every point in phase
space R2m. The quadrature operator associated with phase space coordinate f⃗ is given
by f⃗⊤⃗̂x = ⃗̂x⊤ f⃗ . To find the complementary quadrature, it suffices to use the symplectic
structure to find that is is given by ⃗̂x⊤Ω f⃗ = − f⃗⊤Ω⃗̂x. Note that in (Walschaers, 2021)
we introduced quadratures in a basis independent notation

q̂( f⃗ ) = f⃗⊤⃗̂x, (1.33)

but here we will stick to the vector notation which is more common in the literature.
We can take the role of optical phase space one step further and describe observables

and states directly as functions on this space. A first step in this direction was presented
in (1.23), where we clearly show that all information of the observable Â is contained
in the phase-space function

χÂ (⃗α) = Tr[Âχ̂(α)]. (1.34)

These functions are commonly known as quantum characteristic functions of the
observables. Using the features of the Hilbert-Schmidt inner product, we find that they
have the property that

χÂ† (⃗α) = χ∗
Â(−⃗α), (1.35)

and thus when Â = Â†, we find that χÂ(−⃗α) = χ∗
Â
(⃗α). The same functions can be

defined for the state, by using the density matrix ρ̂ to define χρ̂ (⃗α). The equation (1.26)
is rewritten as

⟨Â⟩ =
∫

R2m
χÂ(−⃗α)χρ̂ (⃗α) d⃗α. (1.36)

Because quantum states must be normalized, we find that χρ̂(0) = 1, but the positivity
of the state is less straightforward to guarantee and relies on a quantum version
of Bochner’s theorem (Dangniam and Ferrie, 2015). The condition is obtained by
demanding that, for any series of phase space vectors { f⃗1, . . . , f⃗n}, the operator X̂†X̂,
with X̂ = ∑n

k=1 ckχ̂( f⃗k), is positive semi-definite. In other words, any characteristic
function of a state must satisfy

1
(2π)m ∑

k,l
ckc∗l χρ̂( f⃗k − f⃗l)ei f⃗kΩ f⃗l = ⟨X̂†X̂⟩ ≥ 0, (1.37)

where we used the identity χ̂†( f⃗l)χ̂( f⃗k) = χρ̂( f⃗k − f⃗l)ei fkΩ f⃗l /(2π)m. The condition (1.37)
is usually very hard to verify.

Beyond calculating expectation values one often needs to do algebra with observables.
This too can be done entirely on phase space. It is very straightforward to use (1.34) to
show that

χÂ+B̂ (⃗α) = χÂ (⃗α) + χB̂ (⃗α). (1.38)
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However, it can be seen from the properties of the trace that in general χÂB̂ (⃗α) ̸=
χÂ (⃗α)χB̂ (⃗α). To find the correct expression, we go back to (1.23). Let us start by writing
that

ÂB̂ =
∫

R2m
χÂB̂(−β⃗) χ̂(β⃗) dβ⃗ (1.39a)

=
∫

R2m
χÂ(−⃗α)χB̂(−⃗α′) χ̂(⃗α)χ̂(⃗α′) d⃗αd⃗α′ (1.39b)

=
1

(2π)m

∫
R2m

χÂ(−⃗α)χB̂(−⃗α′) χ̂(⃗α + α⃗′)ei⃗αΩ⃗α′ d⃗αd⃗α′ (1.39c)

=
1

(2π)m

∫
R2m

χÂ(−⃗α)χB̂ (⃗α − β⃗) χ̂(β)ei⃗α⊤Ωβ⃗ d⃗αdβ⃗, (1.39d)

which leads us to the identity

χÂB̂(β⃗) =
1

(2π)m

∫
R2m

χÂ (⃗α)χB̂(β⃗ − α⃗)eiβ⃗⊤Ω⃗α d⃗α (1.40a)

= χÂ ⊛ χB̂(β⃗). (1.40b)

In the last line, we introduce the notation of the mathematical operation known as the
twisted convolution (Soloviev, 2012). We have thus shown that the multiplication of oper-
ators on Hilbert space is transformed into a twisted convolution of their characteristic
functions in the phase space framework.

We have introduced a phase space framework for describing observables, algebra,
and expectation values, but one key ingredient is still missing: measurements. Since
we are primarily interested in measurements of the quadrature operators when dealing
with continuous variables, Section 1.1.4 tells us that we should find the eigenvalues
and eigenvectors of operators of the type q̂k and p̂k.2 Each of these operators has
eigenvectors given by q̂k|qk⟩ = qk|qk⟩ and p̂k|pk⟩ = pk|pk⟩. The vectors have some
interesting properties:

⟨qk|q′l⟩ = δk,lδ(qk − q′l) (1.41a)

⟨pk|p′l⟩ = δk,lδ(pk − p′l) (1.41b)

⟨qk|pl⟩ = δk,leiqk pl (1.41c)

We note that the operator q̂k (p̂k) acts only on the kth mode, which means that the
notation actually is a shorthand for 1⊗ · · · ⊗ 1⊗ q̂k ⊗ 1⊗ · · · ⊗ 1 (where every 1 acts
on a single mode). This means that when we perform a projective measurement of the
quadrature q̂k, the element of the projection-valued measure are given by 1⊗ · · · ⊗

2 Because these operators are unbounded, the eigenvectors are not contained in the Hilbert space since they
are not normalisable. We will do as physicists tend to do and just work with unnormalised states and the
delta-functions that come with them.
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1⊗ |qk⟩⟨qk| ⊗ 1⊗ · · · ⊗ 1. This also means that we can jointly measure all the different
amplitude (or phase) quadratures, which leads to projectors of the form |q1⟩⟨q1| ⊗ · · · ⊗
|qm⟩⟨qm|. At the end of this section, we will discuss homodyne detection and show
that this protocol is inherently mode-selective. This means that the projectors of the
type 1⊗ · · · ⊗ 1⊗ |qk⟩⟨qk| ⊗ 1⊗ · · · ⊗ 1 are ubiquitous in experiments. Henceforth,
whenever we write |qk⟩⟨qk| it is implicit that this is a single-mode operator embedded
in a multimode space.

The probability density for obtaining a certain measurement outcome qk upon the
quadrature measurement of a system prepared in a state ρ̂ is given by

P(qk) = Tr[ρ̂|qk⟩⟨qk|] =
∫

R2m
χ∗
|qk⟩⟨qk | (⃗α)χρ̂ (⃗α) d⃗α (1.42)

A quick calculation shows that

χ|qk⟩⟨qk | (⃗α) =
1√
2π

eiqkα2k−1 , (1.43)

where α2k−1 is the component in α⃗ associated with the amplitude quadrature of the kth
mode. Such that we find

P(qk) =
1√
2π

∫
R2m

χρ̂ (⃗α)e−iqkα2k−1 d⃗α, (1.44)

where we use that d⃗α = dα1 . . . dα2m. Equation (1.44) shows that we integrate out
all coordinates except for α2k−1 and perform a Fourier transform of the remaining
coordinate. This highlights that the quantum characteristic functions are narrowly
related to the probability distributions of quadrature measurement outcomes.

It is tempting to go one step further and perform a Fourier transform on all the
coordinates if the characteristic function in order to obtain a probability distributions of
all the quadrature measurements. However, because amplitude and phase quadratures
do not commute (1.11a), we cannot perform joint measurements of both quadratures.
This means that the function

Wρ̂(x⃗) =
1

(2π)m

∫
R2m

χρ̂ (⃗α)e−i⃗α⊤ x⃗ d⃗α, (1.45)

is not a well-defined probability distribution for all quantum states ρ̂. The function
Wigner function Wρ̂(x⃗) was introduced initially to attempt to represent quantum states
on phase space in a similar fashion as in statistical mechanics (Wigner, 1932). Wigner
already points out that his function can achieve negative values, which is a feature
narrowly associated with non-classical behaviour (Kenfack and Życzkowski, 2004).
Only very recently was it formalised that the negativity of the Wigner function is
directly related to continuous variable quantum contextuality (Booth et al., 2022).
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The previously introduced quantum characteristic functions can be transformed into
Wigner functions through Fourier transforms. We notice first of all that by using (1.35)
and (1.45), we find the identity

WÂ†(x⃗) = W∗
Â(x⃗). (1.46)

This can in turn be used, together with the Parseval-Placherel theorem, to transform
(1.36) into

⟨Â⟩ = (4π)m
∫

R2m
WÂ(x⃗)Wρ̂(x⃗) dx⃗. (1.47)

Again, if we want to do more algebra with Wigner functions, we require additional
identities. The linearity of the Fourier transform immediately leads us to

WÂ+B̂(x⃗) = WÂ(x⃗) + WB̂(x⃗). (1.48)

Finding the phase space representation of ÂB̂ is more intricate. To do so, let us start by
Fourier transforming (1.40a). To calculate this, let us start from

1
(2π)m

∫
χB̂(β⃗ − α⃗)eiβ⃗⊤Ω⃗αe−iβ⃗⊤ x⃗dβ⃗ = WB̂(x⃗ + Ω⃗α)e−i⃗α⊤ x⃗, (1.49)

which allows us to write

WÂB̂(x⃗) =
1

(2π)m

∫
R2m

WÂ (⃗y)WB̂(x⃗ + Ω⃗α)e−i⃗α⊤(x⃗−y⃗)d⃗αdy⃗ (1.50a)

=
1

(2π)m

∫
R2m

WÂ (⃗y)WB̂ (⃗z)e
i(x⃗−z⃗)⊤Ω(x⃗−y⃗)dy⃗d⃗z, (1.50b)

= WÂ ⋆ WB̂(x⃗) (1.50c)

where the second line is obtained trough a change in variables. In equation (1.50c)
we introduce the Moyal star product, the central object of deformation quantization
(Moyal, 1949). The Moyal product is more commonly presented in its differential form
(Curtright et al., 1998; Hirshfeld and Henselder, 2002), but in our current presentation
the integral form (Baker, 1958) appears more naturally. We can also use (1.50c) to define
the Moyal bracket, as a phase space representation of the commutator:

{WÂ, WB̂}⋆(x⃗) = [WÂ ⋆ WB̂(x⃗)− WB̂ ⋆ WÂ(x⃗)] (1.51a)

=
2i

(2π)m

∫
R2m

WÂ (⃗y)WB̂ (⃗z) sin[(x⃗ − z⃗)⊤Ω(x⃗ − y⃗)]dy⃗d⃗z. (1.51b)

These brackets are useful in a range of problems, for example when considering dy-
namics. However, it should be noted tat integrals of the type (1.51b) can be particularly
tedious to calculate.

Wigner functions are particularly suitable when it comes to representing quadratures.
We find, for example, that

W f⃗⊤⃗̂x(x⃗) =
1

(4π)m f⃗⊤ x⃗ (1.52)
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After some calculations based on (1.51b), it can be shown that

{W f⃗⊤⃗̂x, Wg⃗⊤⃗̂x}⋆(x⃗) = −2i f⃗⊤Ωg⃗, (1.53)

which for a specific choice of f⃗ and g⃗ reduces to {Wq̂k , Wp̂l}⋆ = 2iδk,l such that we
retrieve the canonical commutation relations. When performing quadrature measure-
ments on the kth mode, we already found that the quantum characteristic function for
the projectors on eigenvectors of q̂k is given by (1.43). Through a Fourier transform, we
find that

W|qk⟩⟨qk |(x⃗) =
1

(4π)m δ(x2k−1 − qk), (1.54)

where x2k−1 is a component of x⃗, associated with the amplitude quadrature of the kth
mode.

We can also choose a basis independent formulation, by considering some normalised
vector in phase space f⃗ and introduce the Hilbert space elements |q; f⃗ ⟩ with property

f⃗⊤⃗̂x|q; f⃗ ⟩ = q|q; f⃗ ⟩, (1.55)

We now find that for these states

W|q; f⃗ ⟩⟨q; f⃗ |(x⃗) =
1

(4π)m δ(x⃗⊤ f⃗ − q), (1.56)

when we measure the associated phase quadrature, we project on states of the type
|p; Ω f⃗ ⟩.3 As such, we find that

Prob( f⃗⊤⃗̂x = q) = (4π)m
∫

R2m
W|q; f⃗ ⟩⟨q; f⃗ |(x⃗)Wρ̂(x⃗) dx⃗ (1.57a)

=
∫

R2m
δ(x⃗⊤ f⃗ − q)Wρ̂(x⃗) dx⃗. (1.57b)

Which effectively shows that the marginals of the Wigner function are the probabilities
distributions for quadrature measurements. In practice, these general projector on
quadrature eigenvectors are very valuable objects to consider because they describe
mode-selective homodyne detection (as we will see in more detail near the end of this
section).

Another class of important Wigner functions are those that describe Gaussian states
ρ̂G. These are generally of the form

Wρ̂G(x⃗) =
exp

(
− 1

2 (x⃗ − ξ⃗)⊤V−1(x⃗ − ξ⃗)
)

(2π)m
√

det V
, (1.58)

3 Calculations with these objects quickly become a little intricate, for example. It is rather tedious to
determine ⟨q; f⃗ |q′; g⃗⟩ for arbitrary phase space axes f⃗ and g⃗.
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where V is the covariance matrix and ξ is the mean field. A Gaussian state is said to be
squeezed whenever there is a normalised vector f⃗ in phase space such that f⃗⊤V f⃗ < 1.
For a general introduction into some properties of Gaussian states, we refer to Section
II.D of (Walschaers, 2021), which is also included here in Section 1.3.

A particular class of interest within the Gaussian states are the coherent states |⃗ξ⟩⟨ξ⃗|
which are fully characterised by their mean field. They are given by

W|⃗ξ⟩⟨ξ⃗|(x⃗) =
exp

(
− 1

2∥x⃗ − ξ⃗∥2
)

(2π)m
√

det V
, (1.59)

The vacuum state ρ̂ = |0⟩⟨0|, that was introduced in Section 1.2.1, is a special case of of
the coherent states, as is it obtained for ξ⃗ = 0. We can now introduce the displacement
operator

D̂(ξ⃗) = exp
(

i
2

ξ⃗⊤Ω⃗̂x
)

, (1.60)

where we note that D̂(ξ⃗) = (2π)mχ̂(−Ωξ⃗/2). The displacement operators are in a
sense the generators of the coherent states:

D̂(ξ⃗)|0⟩ = |⃗ξ⟩. (1.61)

The coherent states have been very important for the history of quantum optics (Glauber,
1963; Sudarshan, 1963). In particular, it can be shown that the states |⃗ξ⟩ form an over-
complete basis and that

1 =
1

(4π)m

∫
R2m

|⃗ξ⟩⟨ξ⃗|dξ⃗, (1.62)

Furthermore, these states have the property of being eigenvectors of the annihilation
operators â f⃗ , which we define as

â f⃗ =
1
2
( f⃗⊤⃗̂x − i f⃗⊤Ω⃗̂x). (1.63)

After a quick calculation, we can show that the following eigenvalue relation holds.

â f⃗ |⃗ξ⟩ =
1
2
( f⃗⊤ ξ⃗ − i f⃗⊤Ωξ⃗)|⃗ξ⟩. (1.64)

Invoking the spectral theorem, we find that

â f⃗ =
1

(4π)m

∫
R2m

1
2

f⃗⊤(1− iΩ)ξ⃗ |⃗ξ⟩⟨ξ⃗| dξ⃗, (1.65a)

â†
f⃗
=

1
(4π)m

∫
R2m

1
2

f⃗⊤(1+ iΩ)ξ⃗ |⃗ξ⟩⟨ξ⃗| dξ⃗. (1.65b)

These expression hold for any phase space vector f⃗ . Note that the operators â f⃗ and

â†
f⃗

are generators of the algebra of observables, which means that any observable Â
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can be approximated arbitrarily well by a polynomial built with element of the set
{â f⃗ , â†

f⃗
| f⃗ ∈ R2m}. The spectral theorem then tells us that there is a distribution PÂ(ξ⃗),

such that

Â =
1

(4π)m

∫
R2m

PÂ(ξ⃗) |⃗ξ⟩⟨ξ⃗| dξ⃗. (1.66)

This distribution PÂ(ξ⃗) is known as the Glauber-Sudarshan P-representation. As always,
we can now calculate the expectation value

⟨Â⟩ = 1
(4π)m

∫
R2m

PÂ(ξ⃗) ⟨ξ⃗|ρ̂|⃗ξ⟩ dξ⃗ (1.67a)

=
∫

R2m
PÂ(ξ⃗)Qρ̂(ξ⃗) dξ⃗, (1.67b)

where we have defined the Husimi Q-function (Husimi, 1940)

Qρ̂(ξ⃗) =
1

(4π)m ⟨ξ⃗|ρ̂|⃗ξ⟩. (1.68)

The Q- and P-representation are said to be each other’s dual, to fully characterise
expectation values, one ultimately needs both. Nevertheless, a surprisingly large
number of properties of quantum states can be extracted using exclusively there
functions (Chabaud, Markham, et al., 2020). Generally, we mainly use the Wigner
function throughout this work, but in Section 2.2, based on (Chabaud and Walschaers,
2023), we also heavily rely on the Q-function.

It is worth pointing out that (1.66) also immediately implies that

WÂ(x⃗) =
1

(4π)m

∫
R2m

PÂ(ξ⃗)W|⃗ξ⟩⟨ξ⃗|(x⃗) dξ⃗ (1.69a)

=
1

(4π)m

∫
R2m

PÂ(ξ⃗)W|0⟩⟨0|(x⃗ − ξ⃗) dξ⃗ (1.69b)

It is much less known that this result can be significantly generalised when describing
quantum states (Fannes and Verbeure, 1975): we can actually consider any state σ̂ and
always find a distribution Fρ̂(ξ⃗) such that

Wρ̂(x⃗) =
1

(4π)m

∫
R2m

Fρ̂(ξ⃗)Wσ(x⃗ − ξ⃗) dξ⃗, (1.70)

This means that, once more, we can write that

⟨Â⟩ =
∫

R2m
Fρ̂(ξ⃗)Wσ(x⃗ − ξ⃗)WÂ(x⃗)dξ⃗dx⃗, (1.71a)

=
∫

R2m
Fρ̂(ξ⃗) GÂ(ξ⃗)dξ⃗, (1.71b)
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where we defined the function

GÂ(ξ⃗) =
∫

R2m
WÂ(x⃗)Wσ(x⃗ − ξ⃗) dx⃗ (1.72a)

=
1

(4π)m Tr[D̂(ξ)σ̂D̂(−ξ)Â]. (1.72b)

Even though this poorly known set of phase space representations is quite interesting
from a fundamental point of view, it is not immediately clear whether there is any
practical use to it.

Measurements of quadrature operators occur through homodyne detection by mixing
-potentially multimode- signal, prepared in quantum state ρ̂ on a balanced beamsplitter
with a reference beam, prepared in a specific coherent state. After the beamsplitter,
the two output beams are measured by a photodiode and we measure the difference
between the photo currents. In practice, we have four sets of modes to describe the
problem. The initial modes are given by annihilation operators {âin

k } for the signal
and {b̂in

k } for the reference beam. After the beamsplitter they are transformed into the
measured modes {âout

k } (the first output beam) and {b̂out
k } (the second output beam).

Note that all of these beams have the same internal mode structure, given by a mode
basis {uk(r, t)}. The photodiodes typically do not resolve anything of the internal mode
structure and we effectively measure a difference in current

∆Î ∝ ∑
k
(âout

k )† âout
k − (b̂out

k )†b̂out
k = ∑

k
(âin

k )
†b̂in

k + (b̂in
k )† âin

k , (1.73)

where in the second step we used the beamsplitter relation. Because we specially
prepare the reference beam in a coherent state |⃗ξ⟩, we typically consider this as part of
the measurement, such that we actually measure

∆Îsignal = ∑
k
(âin

k )
†⟨ξ⃗|b̂in

k |⃗ξ⟩+ ⟨ξ⃗|(b̂in
k )|⃗ξ⟩∗ âin

k , (1.74)

Note that ⟨ξ⃗|b̂in
k |⃗ξ⟩ = (ξ2k−1 + iξ2k)/2, and furthermore (âin

k )
† = (q̂k − i p̂k)/2 and

(âin
k )

† = (q̂k + i p̂k)/2. This means that the reference beam effectively selects out the
phase space axis (mode and phase) that are determined by the coherent state:

∆Îsignal =
1
2 ∑

k
ξ2k−1q̂k + ξ2k p̂k =

1
2

ξ⃗⊤⃗̂x. (1.75)

Thus, homodyne detection naturally measures operators of the type ξ⃗⊤⃗̂x. For co-
propagating modes, one must prepare the coherent state in the appropriate spatial
or spectral mode. For spatial modes this is typically achieved with a spatial light
modulator, an optical cavity, or another mode-shaping technique (Boyer et al., 2008;
Delaubert et al., 2006; Wagner et al., 2008), while for spectral modes one can use pulse
shapers (Ra et al., 2020; Roslund et al., 2014).
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Homodyne measurements can be used for maximum likelihood tomography (Lvovsky
and Raymer, 2009), which estimates the state’s density matrix in the Fock basis. For
multimode systems, it is common to use multiplexed homodyne detection setups. For
spatially separated modes, it is reasonably straightforward to set up a multiplexed
detection scheme (X. Su et al., 2012). For co-propagating modes, more effort is required
to perform multimode detection, but it has been done for spectral modes (Cai et al.,
2017), and for spatial modes one can use mode-sorters of the type (Labroille et al., 2014).
This allows us to measure marginals of the Wigner function.

Heterodyne detection (also known as double homodyne) is an alternative detection
scheme which can be shown to project on coherent states, an elegant derivation can be
found in the appendix of (Chabaud, Douce, et al., 2017). As such, this measurement
device directly samples vectors that are distributed according to the Q-function (1.68).
The Wigner function, on the other hand, cannot be measured directly with either one
of these detectors. The reason is simply that no POVM has elements with a Wigner
function that is a Dirac-delta function in phase space. However, there is a class of
physical operators which have such Wigner functions: displaced parity operators
(Royer, 1977). We define these operators as

Π̂(ξ⃗) = D̂†(ξ⃗)(−1)N̂ D̂(ξ⃗), (1.76)

where the number operator is given by N̂ = ∑k â†
k âk. It has been shown that the Wigner

function of this operator take the form

WΠ̂(ξ⃗)(x⃗) =
1

(4π)m δ(x⃗ − ξ⃗). (1.77)

Thus, the Wigner function of any state ρ̂ in a certain point of phase space is the
expectation value of a displaced parity operator

Wρ̂(x⃗) = ⟨Π̂(x⃗)⟩. (1.78)

This identity has been very useful in a variety of setups to reconstruct Wigner functions
of continuous-variable systems (Bertet et al., 2002; Leibfried et al., 1996; Lutterbach and
Davidovich, 1997; Vlastakis et al., 2013). In optics, obtaining photon-number resolution
has been notoriously challenging for a long time, and it is only recently that these
techniques have been adopted (Nehra et al., 2019) using the transition edge sensors
that were discussed previously in Section 1.2.1.

1.3 article: non-gaussian quantum states and where to find them

In the above sections, we presented a complementary introduction to multimode
quantum optics in the general sense, without focusing too much on specific classes of
states. In the joined Tutorial (Walschaers, 2021), we present a detailed introduction to



28 introduction

non-Gaussian quantum states, their properties, experimental realisations, and potential
applications. The Tutorial also contains an introduction to quantum correlations, with
a specific focus on continuous-variable systems.
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Gaussian states have played an important role in the physics of continuous-variable quantum systems.
They are appealing for the experimental ease with which they can be produced, and for their compact
and elegant mathematical description. Nevertheless, many proposed quantum technologies require us to
go beyond the realm of Gaussian states and introduce non-Gaussian elements. In this Tutorial, we provide
a roadmap for the physics of non-Gaussian quantum states. We introduce the phase-space representations
as a framework to describe the different properties of quantum states in continuous-variable systems. We
then use this framework in various ways to explore the structure of the state space. We explain how non-
Gaussian states can be characterized not only through the negative values of their Wigner function, but also
via other properties such as quantum non-Gaussianity and the related stellar rank. For multimode systems,
we are naturally confronted with the question of how non-Gaussian properties behave with respect to
quantum correlations. To answer this question, we first show how non-Gaussian states can be created
by performing measurements on a subset of modes in a Gaussian state. Then, we highlight that these
measured modes must be correlated via specific quantum correlations to the remainder of the system to
create quantum non-Gaussian or Wigner-negative states. On the other hand, non-Gaussian operations are
also shown to enhance or even create quantum correlations. Finally, we demonstrate that Wigner negativity
is a requirement to violate Bell inequalities and to achieve a quantum computational advantage. At the end
of the Tutorial, we also provide an overview of several experimental realizations of non-Gaussian quantum
states in quantum optics and beyond.
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I. INTRODUCTION

Gaussian states have a long history in quantum physics,
which dates back to Schrödinger’s introduction of the
coherent state as a means to study the harmonic oscilla-
tor [1]. In later times, Gaussian states rose to prominence
due to their importance in the description of Bose gases
[2–4] and in the theory of optical coherence [5,6]. With the
advent of quantum-information theory, the elegant mathe-
matical structure of Gaussian states made them important
objects in the study of continuous-variable (CV) quantum-
information theory [7–9]. In this Tutorial, we focus on
bosonic systems, which means that the continuous vari-
ables of interest are field quadratures. Gaussian quantum
states are then defined as the states for which measurement
statistics of these field quadratures is Gaussian.

Gaussian states can be fully described by their mean
field and covariance matrix, and, due to Williamson’s
decomposition [10], the latter can be studied using a range
of tools from symplectic vector spaces. As such, one can
directly relate quadrature squeezing to Gaussian entangle-
ment via the Bloch-Messiah decomposition [11]. In the
full state space of CV systems, Gaussian states are fur-
thermore known to play a specific role: of all possible
states with the same covariance matrix, the Gaussian state
will always have the weakest entanglement [12] and the
highest entropy [13]. From a theoretical point of view,
Gaussian quantum states provide, thus, an elegant and
highly relevant framework for quantum-information the-
ory. On an experimental level, CV quantum information
has long been motivated by advances in quantum optics,
due to the capability of on-demand generation of ever
larger entangled states using either spatial modes [14–16]
or time-frequency modes [17–22]. Furthermore, Gaussian
states also play a key role in the recent demonstration of
a quantum advantage with Gaussian Boson sampling [23].
These developments have made the CV quantum optics an
important platform for quantum computation [24].

Regardless of all the experimental and theoretical suc-
cesses of Gaussian states, they have a major shortcom-
ing in the context of quantum technologies: all Gaussian
measurements of such states can be efficiently simulated
[25]. In pioneering work on CV quantum computation,

it is already argued that a non-Gaussian operation is
necessary to implement a universal quantum computer
in CV [26]. Later works that laid the groundwork for
CV measurement-based quantum computing have left the
question of this non-Gaussian operation somewhat in the
open [27–29]. Common schemes, based on the cubic phase
gate, turn out to be particularly hard to implement in realis-
tic setups [30]. Furthermore, these protocols require highly
non-Gaussian states, such as Gottesman-Kitaev-Preskill
(GKP) states [31], to encode information. Even though
such states could also serve as a non-Gaussian resource for
implementing non-Gaussian gates [32], these states remain
notoriously challenging to produce. In spite of the prac-
tical problems involved with non-Gaussian states, one is
obliged to venture into non-Gaussian territory to reach a
quantum computational advantage in the CV regime [33].
This emphasizes the importance of a general understanding
of non-Gaussian states and their properties. In this Tuto-
rial, we attempt to provide a roadmap to navigate within
this quickly developing field.

In Sec. II, we take an unusual start to introduce CV
systems. We first present some elements of many-boson
physics, by treating Fock space. This mathematical envi-
ronment is probably familiar to most readers to describe
photons. We then explain how such a Fock space can
also be described in phase space, which is the more nat-
ural framework from CV quantum optics. We introduce
phase-space representations of states and observables in
CV systems such as the Wigner function, and to famil-
iarize the reader with the language of multimode systems.
By first reviewing the basics of Fock space, we can make
interesting connections between what is known as the
discrete-variable (DV) approach and the CV approach to
quantum optics. We see that there is often a shady region
between these two frameworks, where techniques that are
typically associated with one framework can be applied in
the other. We finally argue that the main distinction lies in
whether one measures photons (DV) or field quadratures
(CV).

In Sec. III, we provide the reader with an introduction to
some of the different structures that can be identified in the
space of CV quantum states. When pure states are consid-
ered, all non-Gaussian states are known to have a nonposi-
tive Wigner function [34,35], but this no longer holds when
mixed states enter the game [36]. In the entirety of the state
space, non-Gaussian states occupy such a vast territory that
it is impossible to describe all of them within one single
formalism. Nevertheless, there has recently been consider-
able progress in the classification of non-Gaussian states
[37,38]. We introduce some key ideas behind quantum
non-Gaussianity, the stellar rank, and Wigner negativity as
tools to characterize non-Gaussian states.

Section IV introduces two main families of techniques
to create non-Gaussian states starting from Gaussian
inputs. The first approach concentrates on deterministic
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methods, which rely on the implementation of non-
Gaussian unitary transformations. We show how such
transformations can be built by using a specific non-
Gaussian gate. We then introduce the second class of
techniques, which are probabilisitic and rely on performing
non-Gaussian measurements on a Gaussian state and con-
ditioning on a certain measurement result. We introduce
our recently developed approach to describe these systems
[39] and present mode-selective photon subtraction as a
case study.

Then all the pieces are set to discuss the interplay
between non-Gaussian effects and quantum correlations in
Sec. V. First, we consider the resources that are required
to conditionally prepare certain non-Gaussian states. The
conditional scheme relies on performing a non-Gaussian
measurement on one part of a bipartite Gaussian state, and
will show that the nature of the quantum correlations in this
bipartite state is essential. We show that we can only gen-
erate quantum non-Gaussian states if the initial bipartite
state is entangled. Furthermore, to conditionally generate
Wigner negativity we even require quantum steering. In
the second part of Sec. V, we show how non-Gaussian
operations can in return enhance or create quantum corre-
lations. Finally, we show that Wigner negativity (in either
the state or the measurement) is necessary to violate Bell
inequalities in CV systems.

In a similar fashion, we spend most of Sec. VI explain-
ing the result of Ref. [33], which shows that Wigner neg-
ativity is also necessary to reach a quantum advantage. To
show this, we explicitly construct a protocol to efficiently
simulate the measurement outcomes of a setup with states,
operations, and detectors that are described by positive
Wigner functions. In the remainder of the section, we pro-
vide comments on the quantum computational advantage
reached with Gaussian Boson sampling.

Finally, in Sec. VII, we provide a quick overview of non-
Gaussian states in CV experiments. Due to the author’s
background, the first half of this overview focuses on
quantum optics. In the second part, we also discuss some
key developments in other branches of experimental quan-
tum physics. Readers should be warned that this is by no
means an extensive review of all the relevant experimental
progress. A more general conclusion and outlook on what
the future may have in store is presented in Sec. VIII.

II. CONTINUOUS-VARIABLE QUANTUM STATES

Before we can start our endeavor to classify non-
Gaussian states of CV systems and study their properties,
we must develop some basic formalism for dealing with
multimode bosonic systems. At the root of bosonic systems
lies the canonical commutation relation, [x̂, p̂] ∼ i1, which
can be traced back to the early foundations of quantum
mechanics. The study of the algebra of such noncom-
muting observables has given birth to rich branches of

mathematics and mathematical physics that ponder on the
subtleties of these observables and their associated states.
In this Tutorial, we keep a safe distance from the repre-
sentation theory of the associated C∗ algebras that describe
bosonic field theories in their most general sense. We do
refer interested readers to a rich but technical literature
[4,40–42].

In this Tutorial, we do exclusively work within the Fock
representation, which implies that we consider systems
with a finite expectation value for the number of parti-
cles. In quantum optics, this assumption translates to the
logical requirement that energies remain finite. There are
many approaches to mathematically construct such sys-
tems (luckily for us they are all equivalent [43–46]). Here,
we briefly present two such approaches that nicely cap-
ture one of the key dualities on quantum physics. First we
take the particle approach by introducing the Fock space
that describes identical bosonic particles in Sec. A. Sub-
sequently, in Sec. B, we take the approach that starts out
from a wave picture, by concentrating on the phase-space
representation of the electromagnetic field. Here we also
introduce the phase-space representations of CV quantum
states that proves to be crucial tools in the remainder of
this Tutorial. We show how these approaches are quite nat-
urally two sides of the same coin. In Sec. C, we briefly
discuss the concept of modes and the role they play in
CV quantum systems. This subsection is both intended to
provide some clarification about common jargon and to
eliminate common misconceptions. We finish this section
by presenting a brief case study of Gaussian states in Sec.
D, reviewing some key results. After all, it is difficult to
appreciate the subtleties of non-Gaussian states without
having a flavor from their Gaussian counterparts.

A. Fock space

In typical quantum mechanics textbooks, the story of
identical particles usually starts by considering a set of
n particles, which are each described by a quantum state
vector in a single-particle Hilbert space H, thus for the
ith particle we ascribe a state vector |ψi〉 ∈ H. The joint
state of these n particles is then given by the tensor prod-
uct of the state vectors |ψ1〉 , . . . , |ψn〉. However, if the
particles are identical in all their internal degrees of free-
dom, we should be free to permute them without changing
the observed physics. Formally, such permutation is imple-
mented by a unitary operator Uσ , for the permutation σ ∈
Sn, which acts as

Uσ |ψ1〉 ⊗ · · · ⊗ |ψn〉 = ∣∣ψσ(1)
〉 ⊗ · · · ⊗ ∣∣ψσ(n)

〉
. (1)

Invariance of physical observables under such permuta-
tions can be achieved by either imposing the n-particle
state vector to be fully symmetric (bosons) or fully anti-
symmetric (fermions) under these permutations of parti-
cles. In this Tutorial, we focus exclusively on bosons, and
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thus the condition that must be imposed to obtain a bosonic
n-particle state is

Uσ

∣∣�(n)〉 = ∣∣�(n)〉 . (2)

Because these are the only states that are permitted to
describe the bosonic system, we commonly use the Hilbert
space H(n)

s , which is a subspace of H⊗n that contains only
those states that fulfil Eq. (2). It is usually convenient to
generate these spaces with a set of elementary tensors,
known as Fock states, which we define as

|ψ1〉 ∨ · · · ∨ |ψn〉 :=
∑

σ∈Sn

∣∣ψσ(1)
〉 ⊗ . . .

∣∣ψσ(n)
〉
, (3)

such that

H(n)
s = span

{ |ψ1〉 ∨ · · · ∨ |ψn〉 | |ψi〉 ∈ H}
, (4)

where we refer to the Appendix for some further details on
the span. This fully describes a system of n bosonic parti-
cles in what is often referred to as first quantization. It is
interesting to note that these identical particles appear to
be entangled with respect to the tensor product structure of
H⊗n. There is still debate on whether this is a mathemati-
cal artefact of our description or rather a genuine physical
feature of identical particles. Even though there is still
debate about how to exactly define entanglement between
indistinguishable particles [47,48], several authors have
shown how these symmetrizations can [49–52] induce use-
ful entanglement. Furthermore, it is undeniable that this
structure leads to physical interference phenomena that do
not exist for distinguishable particles [53].

The name “first quantization” suggests the existence of a
second quantization, which turns out to be more appropri-
ate for this Tutorial. Second quantization finds its origins in
models where particle numbers are not fixed or conserved.
This formalism is largely based on creation and annihila-
tion operators, denoted â† and â, respectively, that add or
remove particles. To accommodate these operators in our
mathematical framework, we must equip our Hilbert space
to describe a varying number of particles. Therefore, we
introduce the Fock space

�(H) := H(0)
s ⊕ H(1)

s ⊕ H(2)
s ⊕ . . . , (5)

where the single-particle Hilbert space is given by H(1)
s =

H. Furthermore, we retrieve a peculiar component H(0)
s ,

which describes the fraction of the system that contains no
particles at all. On its own, H(0)

s is thus populated by a
single state |0〉 that we refer to as the vacuum. This implies
that technically H(0)

s
∼= C the zero-particle Hilbert space is

just described by a complex number that corresponds to the
overlap of the state with the vacuum. A general pure state

in Fock space |�〉 ∈ �(H) can then be described using the
structure, Eq. (5), as

|�〉 = �(0) ⊕�(1) ⊕�(2) ⊕ . . . , (6)

where �(i) ∈ H(i)
s are non-normalized vectors (and there-

fore we omit the |.〉) in the i-particle Hilbert space. Because
|�〉 is a state, we must impose the normalization condition
‖�‖2 = ∑∞

i=0‖�(i)‖2 = 1
We can now define a creation operator â†(ϕ) for every

ϕ ∈ H [54], which acts as

â†(ϕ) |�〉 = 0 ⊕ (
�(0) |ϕ〉) ⊕ (|ϕ〉 ∨�(1))

⊕ (|ϕ〉 ∨�(2)) ⊕ . . . (7)

In the same spirit, it is possible to provide an explicit con-
struction of the annihilation operators â(ϕ), but here we
content ourselves by just introducing the annihilation oper-
ator as the hermitian conjugate of the creation operator.
Just as the creation operator that literally adds a particle
to the system, the annihilation operator literally removes
one. One additional property of the annihilation operators
is that they destroy the vacuum state:

â(ϕ) |0〉 = 0. (8)

We can now use creation and annihilation operators to
build an arbitrary Fock state by creating particles on the
vacuum state

|ψ1〉 ∨ · · · ∨ |ψn〉 = â†(ψ1)â†(ψ2) . . . â†(ψn) |0〉 (9)

and by considering superpositions of such Fock states, we
can ultimately generate the entire Fock space. By consid-
ering any basis of the single-particle Hilbert space H and
constructing all possible Fock states of all possible lengths
that can be formed by generating particles in these basis
vectors we construct a basis of the Fock space �(H). We
refer to this basis as the Fock basis.

The beauty of second quantization lies in the natural
appearance of states, which have no fixed particle number.
The most important example is the coherent state

|α〉 := e− ‖α‖2
8

∞∑

j =0

[â†(α)]j

2j j !
|0〉 , (10)

where α ∈ H is a non-normalized vector in the single par-
ticle Hilbert space. One can, indeed, simply generalise (7)
to non-normalized vectors in H which we use explicitly
in Eq. (10). Second, we note that an unusual factor 2 is
included to make the definition consistent with Eq. (62).

In quantum optics, these coherent states are crucial
objects as they describe perfectly coherent light [5]. It is
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important to remark that a coherent state is always gener-
ated by a single vector in the single-particle Hilbert space.
Coherent states often provide a good approximation for
the state that is produced by a single-mode laser far above
threshold [55]. More generally, the study of laser light is
a whole field in its own right and often the light deviates
from the fully coherent approximation.

The creation and annihilation operators are not only
important objects because they populate the Fock space;
they are also of key importance for describing observables
in a many-boson system. These operators are the genera-
tors of the algebra of observables that represents the canon-
ical commutation relations on Fock space. This implies
that any observable can ultimately be approximated by a
polynomial of creation and annihilation operators. At the
heart of this mathematical formalism lies the canonical
commutation relation (CCR):

[â(ϕ), â†(ψ)] = 〈ϕ | ψ〉, (11)

which describes the algebra of observables. Note that this
relation holds for any vectors |ϕ〉 and |ψ〉 in the single-
particle Hilbert space H. These vectors should not form
a basis, nor should they be orthogonal. When |ϕ〉 = |ψ〉,
we find that [â(ψ), â†(ψ)] = 1. On the other hand, when
the single-particle states |ϕ〉 and |ψ〉 are fully orthogonal,
we find that [â(ϕ), â†(ψ)] = 0. In these cases we recover
the typical creation and annihilation operators for har-
monic oscillators. However, by introducing the creations
and annihilation operators through Eq. (7), we can also
deal with more general cases. Furthermore, all definitions
and the form of the CCR are still valid when ϕ and ψ are
unnormalized vectors in H. A more detailed discussion can
be found in Ref. [56].

When we leave the realm of pure states, the description
of quantum states becomes tedious. Commonly, one uses
a density operator ρ̂ with tr ρ̂ = 1 to formally describe a
state. However, we can generally think of these density
operators as infinite-dimensional matrices with an infi-
nite number of components in the Fock basis. In other
words, this is not necessarily a convenient description. In
an operational sense, any state is considered to be charac-
terized when we know all the moments of all the possible
observables. Because the creation and annihilation opera-
tors generate the algebra, one knows all the moments of
all the observables if one knows all the correlation func-
tions tr[ρ̂ â†(ψ1) . . . â†(ψn)â(ϕ1) . . . â(ϕm)], for all possi-
ble lengths n and m. Even though this might seem like
an equally challenging endeavor, much of quantum statis-
tical mechanics boils down to finding expressions of the
correlation functions for relevant classes of states.

B. Phase space

In the previous subsection, we started our analysis by
extending a system of one quantum particle to a system of

many quantum particles. Here we follow a different route,
where we start by considering the classical electric field.
With some effort, we can apply such an analysis to any
bosonic field, but in this Tutorial we focus on quantum
optics as our main field of application. For a more exten-
sive introduction from a quantum optics perspective we
recommend Refs. [55,57,58], whereas a general introduc-
tion to quantum physics in phase space can be found in
Ref. [59].

A traveling electromagnetic wave is described by a solu-
tion of Maxwell’s equations. As is commonly the case in
optics, we focus on the complex representation of the elec-
tric field, which is generally given by E(+)(r, t). It is related
to the real-valued electric field E(r, t) that is encoun-
tered in standard electrodynamics textbooks by E(r, t) =
E(+)(r, t)+ [

E(+)(r, t)
]∗. To express the electric field, it is

useful to introduce an orthonormal mode basis {ui(r, t)}.
These modes are solutions to Maxwell’s equations

∇ · ui(r, t) = 0, (12)
(
	− 1

c2

∂2

∂t2

)
ui(r, t) = 0. (13)

The orthogonalization property is implemented by the
following condition:

1
V

∫

V
d3r [ui(r, t)]∗ uj (r, t) = δi,j , (14)

where V is some large volume that contains the entire phys-
ical system. This assumption serves the practical purpose
of allowing us to consider a discrete mode basis and on top
it makes physical sense. Note that we do not integrate over
t, which implies that at every instant of time t we consider
a mode basis that is normalized with respect to the spatial
degrees of freedom. It is practical to assume that all rele-
vant physics can be described by a (possibly large) finite
number of modes m. These modes now form a basis in
which we can expand any solution to Maxwell’s equations
and thus we may write

E(+)(r, t) =
m∑

j =1

Ej uj (r, t), (15)

where Ei are a set of complex numbers, which can be
written in terms of the real and imaginary parts

Ej = E(x)j + iE(p)j . (16)

These real and imaginary parts of the field are known as
the amplitude and phase quadrature, respectively. We can
interpret these quantities E := (E(x)1 , E(p)1 , . . . , E(x)m , E(p)m ) ∈
R2m as the coordinate in optical phase space that describes
the light field.
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The space of solutions of Maxwell’s equations forms
a Hilbert space, which we call the mode space M and
the mode basis chosen to describe this space is far from
unique. As with all Hilbert spaces, we can define unitary
transformations and use them to change from one basis to
another. As such, let us introduce the unitary operator U to
change between bases

ui(r, t) =
m∑

j =1

Ujivj (r, t), (17)

vi(r, t) =
m∑

j =1

U†
jiuj (r, t), (18)

where we can in principle obtain U as an infinite-
dimensional matrix with

Uji = 1
V

∫

V
d3r

[
vj (r, t)

]∗ ui(r, t), (19)

which remarkably does not depend on time due to the
normalization properties of the mode bases. We can analo-
gously expand the electric field in the new mode basis

E(+)(r, t) =
∑

i

E ′
i vi(r, t), (20)

where E ′
i = ∑

j Uij Ej . This observation is of great impor-
tance when we quantize the electric field. The change of
mode basis also imposes a change of coordinates in the
optical phase space. Like in Eq. (16) the new components
can also be divided in real and imaginary parts, which leads
to a new coordinate E′. Because the coordinate vectors in
optical phase space are real 2m-dimensional vectors, we
obtain

E′ = OE, (21)

where O is an orthonormal transformation. However, the
orthogonal transformation O on the phase space must cor-
respond to the unitary transformation U on the modes,
which imposes the constraint

O2i−1,2j −1 = 1
2
(Uij + U∗

ij ), (22)

O2i−1,2j = − 1
2i
(Uij − U∗

ij ), (23)

O2i,2j −1 = 1
2i
(Uij − U∗

ij ), (24)

O2i,2j = 1
2
(Uij + U∗

ij ). (25)

This imposes a symplectic structure to the transformation
O such that the optical phase space, just like the phase

space of analytical mechanics, can be treated as a symplec-
tic space. The conserved symplectic structure associated
with this space is given by

� =
m⊕

j =1

ω, with ω =
(

0 −1
1 0

)
, (26)

such that OT�O = �. Note that � can be interpreted as a
matrix representation of the imaginary i, in the sense that
it has the properties �T = −� and �2 = −1 [60].

In quantum optics, the electric field of light is treated as
a quantum observable Ê

(+)
(r, t). In this quantization, the

modes, i.e., the normalized solutions to Maxwell’s equa-
tions, remain classical objects and all the quantum features
are absorbed in the coefficients. We can thus write

Ê
(+)
(r, t) =

∑

i

E (1)i
x̂i + ip̂i

2
ui(r, t), (27)

where E (1)i is a constant that carries the dimensions of the
field, which can be interpreted as the electric field of a
single photon. Glossing over many subtleties of the quan-
tization of the electromagnetic field, we remind the reader
that any system that is described on phase space can be
quantized through canonical quantization. The quadrature
operators x̂j and p̂k therefore follow the canonical com-
mutation relations [x̂j , p̂k] = 2iδj ,k, such that they satisfy
the Heisenberg relation	x̂	p̂ � 1. As they are introduced
above, the quadrature operators are specifically related to
the specific mode basis. Indeed, x̂j and p̂j are the quadra-
ture operators that describe the field in mode uj (r, t). Thus,
when we change the basis of modes, we should change
the quadrature operators accordingly in line with Eq. (21).
To overcome these difficulties, it is often convenient to
introduce a basis-independent expression for the quadra-
ture operators, which can be done by mapping any point
in the optical phase space f ∈ R2m to an observable q̂(f ),
given by

q̂(f ) :=
m∑

j =1

f2j −1x̂j + f2j p̂j . (28)

These quadrature operators follow a generalized version of
the CCR, given by

[q̂(f1), q̂(f2)] = −2if T
1 �

f2, for all f1, f2 ∈ R2m. (29)

We highlight the particular case where [q̂(f ), q̂(�f )] =
2i‖f ‖2, such that we recover the typical form of the
CCR for ‖f ‖ = 1. This highlights that � maps an ampli-
tude quadrature to its associated phase quadrature. From
a mathematical point of view, everything is perfectly well
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defined for arbitrary f ∈ R2m and no normalization con-
ditions have to be imposed. From Eq. (28) we can see
that the norm of f can be factored out, such that it serves
as a general rescaling factor of the quadrature operator.
In a physical context, when a quadrature is measured, it
is common to renormalize measurements to units of vac-
uum noise, which practically means that we set ‖f ‖ = 1.
Unless explicitly stated otherwise, we assume that ‖f ‖ =
1 throughout this Tutorial. We can use these general
quadrature operators to express electric field operator as

Ê
(+)
(r, t) =

m∑

j =1

E (1)j
q̂(ej )+ iq̂(�ej )

2
uj (r, t), (30)

and we can use the basis transformation (21) to equiva-
lently express the electric field operator in a different mode
basis as

Ê
(+)
(r, t) =

m∑

j =1

E (1)j
q̂(Oej )+ iq̂(�Oej )

2
vj (r, t). (31)

This procedure shows us that optical elements, that change
the mode basis, change the associated quadrature operators
accordingly.

Equation (30) shows us explicitly that quadrature oper-
ators q̂(f ) and q̂(�f ) correspond to the same mode,
regardless of the mode basis. This reflects the fact that
f generates one axis in the optical phase space and �f
generates the second axis that corresponds to the same
mode. As such, any arbitrary mode comes with an associ-
ated two-dimensional phase space that mathematically can
be denoted as span(f ,�f ). Because this phase space is
uniquely associated with a specific mode, we introduce the
notation

f = span(f ,�f ), (32)

and we refer to this as “mode f.” This allows us to concen-
trate on the multimode quantum states within this Tutorial,
while the specifications of the modes can be left ambigu-
ous. The modes can be seen as the physical implementa-
tions of the quantum system and are of major importance
in the experimental setting as multimode quantum optics
experiments rely on the manipulation of these modes.

Multimode quantum states define expectation values of
the field, and when we consider CV quantum optics, we
primarily focus on the expectation values of the quadra-
ture operators q̂(f ). These operators are unbounded and
have a continuous spectrum. The measurement of a field
quadrature thus leads to a continuum of possible outcomes
and the continuous-variable approach to quantum optics
implies that this characterizes quantum properties of light
through the measurement of such quadrature operators.

Formally, we can again describe a quantum state on
such a system by a density operator ρ̂ but this descrip-
tion is rather inconvenient. It turns out that the quadrature
operators q̂(f ) generate the algebra of observables for the
quantum system that is comprised within our multimode
light. In other words, any observable can be approximated
by a polynomial of quadrature operators. This generally
implies that we can fully characterize the quantum state
ρ̂ by correlation functions of the type tr[ρ̂q̂(f1) . . . q̂(fn)].
When we know these correlation functions for all lengths
n and normalized vectors in phase space, we have fully
characterized the state.

To go beyond the information that is contained in cor-
relation functions, it is often convenient to consider proba-
bility distributions as a whole. For a single quadrature q̂(f )
we can introduce the characteristic function for any λ ∈ R
as

χ(λ) = tr[ρ̂eiλq̂(f )] =
∞∑

n=0

(iλ)n

n!
tr[ρ̂q̂(f )n], (33)

which is clearly related to the moments tr[ρ̂q̂(f )n]. The
characteristic function is the Fourier transform of the prob-
ability distribution of the outcomes of observable q̂(f ). We
can thus obtain the probability distribution as

p(x) = 1
2π

∫

R
dλ χ(λ)e−ixλ. (34)

This approach can be readily generalized to the joint prob-
ability distribution for a set of commuting quadrature oper-
ators. We thus consider f1, . . . fn with [q̂(fj ), q̂(fk)] = 0 for
all j , k, and we define for all λ = λ1 f1 + λ2 f2 + · · · + λn fn
(note that λ is not normalized). We can then use the
properties of the quadrature operators to construct q̂(λ) =∑n

k=1 λkq̂(fk) and define the function

χ(λ) = tr[ρ̂eiq̂(λ)]. (35)

This function generates all the correlations between
observables q̂(f1), . . . , q̂(fn) and it can be used to obtain the
multivariate probability distribution

p(x) = 1
(2π)n

∫

Rn
dλ χ(λ)e−iλTx, (36)

where dλ = dλ1 . . . dλn. The function p(x) describes the
probability density to jointly obtain x1, . . . , xn as measure-
ment outcomes for the measurements of q̂(f1), . . . , q̂(fn),
respectively. This approach relies on the fact that com-
muting observables can be jointly measured and what we
presented to derive Eqs. (34) and (36) is ultimately just
classical probability theory. However, not all quadrature
operators commute such that joint measurements are not
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always possible. This implies that a quantum state cannot
be straightforwardly defined by a probability distribution
of the optical phase space.

Intriguingly, we can carry out the same procedure for a
full multimode system over a set of m modes. To this goal,
let us define the quantum characteristic function

χ : R2m → C : λ �→ χ(λ) := tr[ρ̂eiq̂(λ)]. (37)

This function, defined on the full optical phase space, can
be used to generate all correlation functions between all
quadrature operators. As such, it does characterize the full
quantum state, but it is common practice to rather study its
inverse Fourier transform, which is known as the Wigner
function [61–63]

W(x) := 1
(2π)2m

∫

R2m
dλ χ(λ)e−iλTx. (38)

This function has many appealing properties even though
it is not a probability distribution but rather a quasiproba-
bility distribution. First of all, the Wigner function is nor-
malized, i.e.,

∫
R2m dx W(x) = 1. Furthermore, its marginals

consistently describe all the joint probability distributions
for sets of commuting quadratures in the system. Formally,
this implies that p(x) of Eq. (36) can be obtained by inte-
grating over all the phase-space axes that are not contained
within span(f1, . . . fn). To do so, let us introduce the n-
dimensional vector xM that is associated with the measured
quadratures, and the 2m − n dimensional vectors xc, which
describe all other axes in phase space. An arbitrary point in
phase space can thus be written as x = xM ⊕ xc. Then we
find that

P(xM ) =
∫

R2m−n
dxc W(xM ⊕ xc). (39)

Finally, the Wigner function also produces the correct
expectation values

∫

R2m
dx f T

1 x . . . f T
n xW(x) = Re{tr[ρ̂q̂(f1) . . . q̂(fn)]}. (40)

Note that considering the real part of tr[ρ̂q̂(f1) . . . q̂(fn)] is
essentially equivalent to considering symmetric ordering
of the operators. Regardless of these nice properties the
Wigner function is by itself not a well-defined probabil-
ity distribution. Due to complementarity, the function can
reach negative values for some states. This Wigner nega-
tivity is consistent with the impossibility to jointly describe
the measurement statistics of all quadratures while also
complying with the laws of quantum physics (notably the
Heisenberg relation). The profound relation between neg-
ativity of the Wigner functions and joint measurability is
perhaps most strikingly illustrated by its connection to con-
textuality [64]. The formalism of Wigner functions can be

used to construct phase-space representations of arbitrary
observables by introducing

χA(λ) = tr[Âeiq̂(λ)], (41)

such that the Wigner representation is given by

WA(x) = 1
(2π)2m

∫

R2m
dλ χA(λ)e−iλTx. (42)

These Wigner representations have the appealing property
that

tr[Âρ̂] = (4π)m
∫

R2m
dx W∗

A(x)W(x). (43)

When Â is an observable and thus has Â = Â†, its Wigner
function will be real such that W∗

A
(x) = WA(x). However, it

may sometimes be useful to extend the formalism to more
general operators. As such the entire theory of continuous-
variable quantum systems can be developed using Wigner
functions.

Several aspects of the phase-space representations in
this section are reminiscent of earlier results in Sec. A,
which was fully developed in a language of particles (also
known as a discrete-variable approach). Indeed, the alge-
bra of operators that is generated by the creation and
annihilation operators is actually the same as the alge-
bra generated by the quadrature operators. To formalize
this, we must first stress that the optical phase space is
isomorphic to an m-dimensional complex Hilbert space,
which can equally be interpreted as the single-particle
Hilbert space of a photon. Formally, this equivalence is
constructed through the bijection (see also the Appendix)

f ∈ R2m �→
∑

j

(f2j −1 + if2j )
∣∣ϕj

〉 ∈ H, (44)

where {∣∣ϕj
〉} is an arbitrary basis of H. We can introduce

the operators

â(f ) = 1
2

[q̂(f )+ iq̂(�f )],

â†(f ) = 1
2

[q̂(f )− iq̂(�f )].
(45)

By using Eq. (44), we can naturally associate these oper-
ators to creation and annihilation operators on the single-
particle Hilbert space. We retrieve the canonical commuta-
tion relation

[â(f1), â†(f2)] = f T
1

f2 − if T
1 �

f2, (46)

which can be connected to the inner product on the Hilbert
space H via Eq. (44).
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The definition of creation and annihilation operators
allows us to make sense of the vacuum state in our phase-
space picture. The vacuum state is completely character-
ized by the property

â(f ) |0〉 = 0, for all f ∈ R2m. (47)

This simple fact can be used to evaluate the quantum
characteristic function

χ0(λ) = tr(|0〉 〈0| ei[â†(λ)+â(λ)]) (48)

=
∞∑

n=0

in

n!
〈0| [â†(λ)+ â(λ)]n |0〉 (49)

=
∞∑

n=0

−‖λ‖2n

2nn!
(50)

= exp

[

−‖λ‖2

2

]

. (51)

To obtain Eq. (50) we need a considerable amount of com-
binatorics to evaluate 〈0| [â†(λ)+ â(λ)]n |0〉. In general, it
can be shown that 〈0| â†(λ1) . . . â†(λk)â(λk+1) . . . â(λk+l)

|0〉 = 0. Thus it suffices to cast [â†(λ)+ â(λ)]n in nor-
mal ordering and extract the term proportional to iden-
tity. Even though straightforward, this calculation is quite
cumbersome and thus we do not present the details.

From Eq. (51) the Wigner function can be obtained via
an inverse Fourier transformation that leads to

W0(x) = e− 1
2 ‖x‖2

2π
. (52)

This Wigner function describes a Gaussian distribution on
the phase space with unit variance along every axis. We
can thus use Eq. (40) to see that the vacuum state saturates
Heisenberg’s inequality, i.e., 	q̂(f )	q̂(�f ) = 1.

The quadrature operators thus generate the same algebra
of observables as the creation and annihilation operators.
However, both sets of observables tend to cause mathe-
matical problems because they are unbounded operators
[42,65–67]. The unboundedness means that, when |�〉 is
contained in the Fock space, there is no guarantee that
q̂(f ) |�〉 will also be contained in the Fock space. One
way of solving this problem explicitly is by only con-
sidering states for which 〈�| q̂(f )2 |�〉 < ∞, such that
q̂(f ) |�〉 is a well-defined state. Physically this assump-
tion makes sense, as it ultimately implies that we consider
only states with finite energies. However, the unbound-
edness of quadrature operators also disqualifies them as
well-defined generators of the C∗ algebra of observables
(since elements of such algebras must be bounded). C∗
algebras are essential tools as they allow reconstruction

of the whole framework of Hilbert spaces based on repre-
sentation theory of abstract algebras (which is essentially
the idea of canonical quantization). A highly formal and
detailed treatment that considers all these subtleties for
bosonic systems is found in Ref. [41]. The key idea is to
rather consider a set of bounded operators that describes
the same algebra of observables [65,66] and are known as
the displacement operators:

D̂(α) = e−iq̂(�α)/2, (53)

where α ∈ R2m need not be normalized. Again, we can use
the isomorphism (44) to identify the displacement operator
on the quantized phase space to a displacement operator on
the Fock space. These operators can be seen as generators
of the quadrature operators and they act in a very natural
way on them:

D̂†(α)q̂(f )D̂(α) = q̂(f )+ αT f , (54)

which means that the value αT f is added to the measure-
ment outcomes of q̂(f ). The displacement operator can be
combined according to the rule

D̂(α1)D̂(α2) = D̂(α1 + α2)e
i
4 αT

1�α2 . (55)

This rule is yet another representation of the canonical
commutation relation and it generates the same algebra
of observables. This implies that any observable Â can
be written as a linear combination of displacement opera-
tors. We use the Hilbert-Schmidt inner product 〈Â, B̂〉HS =
tr[Â†B̂] to make this explicit

Â =
∫

R2m
dλ 〈D̂(2�λ), Â〉HSD̂(2�λ),

=
∫

R2m
dλ tr[ÂD̂(−2�λ)]D̂(2�λ), (56)

and we can readily identify that

tr[ÂD̂(−2�λ)] = χ∗
A(

λ). (57)

It can then directly be seen that

tr[Âρ̂] =
∫

R2m
dλχ∗

A(
λ)tr[D̂(2�λ)ρ̂], (58)

=
∫

R2m
dλχ∗

A(
λ)χ(λ). (59)

And we immediately obtain Eq. (43) via Plancherel’s
theorem [67,68].

The displacement operators also implement a unitary
operation on a quantum state. This unitary operation has a
remarkably simple effect when it is expressed on the level

030204-9



MATTIA WALSCHAERS PRX QUANTUM 2, 030204 (2021)

of the Wigner function. Via the property, Eq. (55), we can
calculate that

ρ̂ �→ D̂(α)ρ̂D̂†(α) =⇒ χ(λ) �→ χ(λ)e−iαTλ. (60)

Performing the inverse Fourier transform of these quantum
characteristic functions leads to

W(x) D(α)�→ W(x − α). (61)

The displacement operator thus literally implements a dis-
placement of the Wigner function by a vector α ∈ R2m in
phase space.

Displacement operators are also well known as the gen-
erators of the coherent states that were introduced in Eq.
(10). We can combine the bijection between phase space
and Hilbert space, Eq. (44), the expression of creation and
annihilation operators in terms of quadratures, Eq. (45),
and the definition of the displacement operator, Eq. (53),
to derive that

|α〉 = D̂(α) |0〉 . (62)

By combining Eqs. (52) and (61), we immediately see that
the Wigner function for such a coherent state is given by

Wα(x) = W0(x − α) = e− 1
2 ‖x−α‖2

2π
. (63)

We emphasize that there is a slight difference between
the coherent states as defined here, and coherent states as
sometimes introduced in the literature. The difference is a
factor of 2, which appears because we normalized the shot
noise to 1 rather than to 1/2. As such, our coherent states
have an energy in mode f, which is given by

〈α| â†(f )a(f ) |α〉 = 1
4

[(αT f )2 + (αT�f )2]. (64)

The coherent states lead us to two other representations
of quantum states and observables: the Q function and P
function. The definition of the P function is related to the
idea that coherent states form an overcomplete basis of
Fock space. This implies, notably, that for a m-dimensional
single-particle Hilbert space

1
(4π)m

∫

R2m
dα |α〉 〈α| = 1, (65)

with 1 the identity operator. We can then show that any
observable can be written as [5,6]

Â = 1
(4π)m

∫

R2m
dαPA(α) |α〉 〈α| , (66)

where we refer to PA(α) as the P function of the observ-
able Â. Similarly, we can represent a density of operator ρ̂

by its P function P(α). The reader should be warned that P
functions often have rather unpleasant mathematical prop-
erties. In particular, they often are not actual functions and
can be highly singular.

The P function naturally comes with a dual representa-
tion that is known as the Q function. As often in quantum
physics, what actually counts is the expectation value of an
observable in a specific state. We can use the P function to
write

tr[Âρ̂] = 1
(4π)m

∫

R2m
dαPA(α) 〈α| ρ̂ |α〉 (67)

= 1
(4π)m

∫

R2m
dαP(α) 〈α| Â |α〉 . (68)

This naturally introduces the Q function, given by

QA(α) = 1
(4π)m

〈α| Â |α〉 , (69)

and, in particular, for the quantum state ρ̂ we find that

Q(α) = 1
(4π)m

〈α| ρ̂ |α〉 . (70)

The latter is of particular interest because it represents the
quantum state ρ̂ as an actual probability distribution. This
leads us to the general identity that

tr[ÂB̂] =
∫

R2m
dαPA(α)QB(α) =

∫

R2m
dαQA(α)PB(α).

(71)

Thus finishing our introduction to the various descriptions
of the quantum states and observables of bosonic many-
particle systems.

The Q function has a clear physical interpretation. It
is directly proportional to the fidelity of the state ρ̂ with
respect to a target coherent state |α〉. Furthermore, it is
always positive, which implies that it is a well-defined
probability distribution. Because we can write 〈α| ρ̂ |α〉 =
tr[ρ̂ |α〉 〈α|], we can use Eqs. (43) and (52) to express the
Q function in terms of the Wigner function as

Q(α) =
∫

R2m
dx W(x)W0(x − α). (72)

To satisfy both Eqs. (43) and (71), we find that

W(x) = 1
(4π)m

∫

R2m
dα P(α)W0(x − α), (73)

= 1
(4π)m

∫

R2m
dα P(α)e

− 1
2 ‖x−α‖2

(2π)m
. (74)
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In turn, this implies that

Q(α) = 1
(8π)m

∫

R2m
d β P( β)e

− 1
4 ‖ β−α‖2

(2π)m
. (75)

These results thus show that all these phase-space repre-
sentations are ultimately related to one another through
convolution or deconvolution with a Gaussian [recall that
the Wigner function of the vacuum Eq. (52) is a Gaus-
sian distribution on phase space]. One can now follow
Ref. [69] to define a continuous family of phase-space
representations Wσ for σ ∈ [−1, 1]

Wσ (α) =
(

1
4π [1 − σ ]

)m ∫

R2m
d β P( β)e

− 1
2[1−σ ] ‖ β−α‖2

(2π)m
,

(76)

where we convolute the P function with an ever-increasing
Gaussian, smoothening its features. We can then see that

tr[Âρ̂] = (4π)m
∫

R2m
dαWA,−σ (α)Wσ (α). (77)

We find, notably, that W(x) = Wσ=0(x), Q(α) = Wσ=−1
(α), and P(α) = (4π)mWσ=1(α). This shows that the
phase-space representation becomes more regular when
decreasing σ . Other generalized probability distributions
have been considered in the literature [70,71], often to cir-
cumvent the unappealing properties of the P function. In
this Tutorial, we mainly use the Wigner function and (to
a lesser extent) the Q function, as they are suitable tools
to classify non-Gaussian quantum states. The P function
is often used in the literature to characterize the nonclas-
sicality of a state, where the intuition is that classical light
is a mixture of coherent states (and thus its P function is a
probability distribution) [5,6].

Before we close this introductory section on the phase-
space description of CV quantum systems, we introduce
one final tool that often comes in handy. The Wigner func-
tion can itself be obtained as the expectation value of an
operator [72]. Formally, we write

W(x) = 1
(2π)m

tr[ρ̂	̂(x)]. (78)

Using linearity and Eq. (38), we obtain the special case

	̂(0) = 1
(2π)m

∫

R2m
dλ eiq̂(λ). (79)

By using techniques based on Eqs. (54) and (55), we can
show that

	̂(0)q̂(f )	̂(0) = −q̂(f ). (80)

This means that 	̂(0) is the parity operator. Its eigenstates
are the Fock states, since

	̂(0)a†(f1) . . . a†(fn) |0〉 = (−1)na†(f1) . . . a†(fn) |0〉 .
(81)

Thus we can formally identify

	̂(0) = (−1)N̂ , (82)

where N̂ is the number operator. We define this opera-
tor by introducing a mode basis {e1,�e1, . . . , em,�em} of
the optical phase space, such that N̂ := ∑m

j =1 a†(ej )a(ej ).
This definition can be combined with the properties of the
displacement operator to obtain that

	̂(x) = D̂(−x)(−1)N̂ D̂(x). (83)

Note that what we just obtained is the operator equivalent
of a δ function, which becomes even more explicit when
we explicitly write down its Wigner representation

W	(x′)(x) = 1
(4π)m

δ(x − x′), (84)

which follows directly from Eqs. (43) and (78).
This result may seem somewhat artificial, but it turns out

to be extremely useful. The observable 	̂(x) can be mea-
sured experimentally by counting photons, which means
that the combination of photon counting and displacements
directly allows us to reconstruct the Wigner function of the
quantum state [73]. Until recently, the lack of good photon-
number-resolving detectors in the optical frequency range
has long made this method unfeasible for most states. Even
though there was an early demonstration of the method for
coherent states [74], it is only due to recent developments
in detector technologies that the method can be applied to
more general states [75,76]. The idea was also applied in
other settings [77], and was used in pioneering CV exper-
iments with trapped ions, such as Ref. [78], and in cavity
QED [79,80].

C. Discrete and continuous variables

In Sec. A, we have introduced a many-boson system,
regardless of the physical realization of these bosons. Such
a many-boson system and its Fock space are built upon the
structure that is determined by the single-particle Hilbert
space H. The Fock space that is constructed accordingly
has a rich structure that is further explored in the Tutorial
[56]. In optics, the bosons that we consider are photons,
and quantum optics can thus be seen as the theory of a
many-boson system in the context of Sec. A. This approach
to quantum optics is referred to as the DV approach.
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In Sec. B, we contrast this with the CV approach to
quantum optics. This approach relies on the measurement
of the field quadratures, and can thus be seen as a bosonic
quantum field theory. Therefore we started this approach
by introducing the classical electric field and its modes,
which we subsequently quantized through canonical quan-
tization. We introduced the notion of optical phase space
as a general way of describing CV quantum systems. The
phase space is directly related to the modes of the field
and manipulations of the modes also cause changes in the
optical phase space. Nevertheless, any system with a phase
space can be described by these techniques.

Both of these approaches are ultimately equivalent.
Bosonic creation and annihilation operators describe the
same algebra of observables as bosonic quadrature oper-
ators, which means that on the level of mathematical
structure, both approaches can be interchanged and even
mixed. This is strikingly clear when the Wigner function,
i.e., the phase-space representation of quantum states and
observables that is most naturally associated with field
quadratures, turns out to be directly measurable by count-
ing photons. Notably, this implies that when it comes to
mathematical structures, bosonic particles such as atoms
can also be described on phase space.

The real difference between CV and DV approaches is
of an experimental nature. What is important is not the
observables that are technically present in the quantum sys-
tem, but the observables that are practically measured in
the lab. For the CV approach we typically use homodyne
detection to measure quadratures [7,81], whereas in DV
approaches we count photons [82].

A common source of misunderstanding between the DV
and CV community stems from the role they attribute to
the single-particle Hilbert space and optical phase space,
respectively. As we argued, both spaces are (at least for
a finite-dimensional number of modes) isomorphic, see
the Appendix for some additional mathematical intuition.
However, the Hilbert space of a photon, which is inher-
ently a quantum particle, is often interpreted as a quantum
object. At the same time, the optical phase space repre-
sents the field quadratures of optical modes and is thus
rather considered to be a classical object. The origin of
this confusion lies in the fact that the optical modes, i.e.,
normalized solutions of Maxwell’s equations, also form
a Hilbert space that has its origins entirely in classical
physics.

The optical modes are the vessels that contain pho-
tons much in the same way as a set of electrons contains
spins. The crucial difference is that optical modes are
not uniquely defined, we can manipulate them, transform
them from one mode basis to another with an interfer-
ometer and thus consider new superpositions of modes.
In typical experimental settings, one would not consider
a superposition of two electrons a new well-defined elec-
tron.

Because creation and displacement operators always act
in one specific mode (i.e., they are generated by a single
vector on the single-photon Hilbert space), single-photon
states and coherent states are always single-mode states.
We may expand this single mode in a different mode basis,
which can even be done physically by sending the state
through a beam splitter, to create some form of entangle-
ment in the quantum states. However, this entanglement is
just a manifestation of the fact that we are not consider-
ing the optimal mode basis. In the CV approach, this has
led to the notion of “intrinsic” properties [58], which are
those properties of quantum states that are independent of
the chosen mode basis. The purity and entropy of a state
are notable examples, but one can also introduce a notion
of “intrinsic entanglement” to refer to a state that is entan-
gled in any possible mode basis. In the next subsection,
we introduce Gaussian states, which will later be shown to
never be intrinsically entangled.

D. Gaussian states

Now that we have introduced phase-space representa-
tions for states and observables of CV quantum systems,
we still need one building block before we can tackle
multimode non-Gaussian states: a good understanding of
Gaussian states. It is not the goal of this subsection to delve
deep into decades worth of research on Gaussian states. We
rather highlight a few key results that set apart Gaussian
quantum states from the rest of the vast states’ space. For
more extended reviews, we refer the reader to Refs. [8,9].
These states are also extensively studied in the mathemat-
ical physics literature under the name “quasifree states of
the CCR algebra.”

Gaussian states are by definition states that have a
Wigner function, which is a Gaussian:

WG(x) = e− 1
2 (x−ξ)TV−1(x−ξ)

(2π)m
√

det V
, (85)

where ξ is referred to as the mean field (or displacement)
and V is known as the covariance matrix. With Eq. (40),
we can verify that the mean field indeed corresponds to the
expectation value of the field quadrature

tr[ρ̂q̂(f )] = ξT f , (86)

similarly, we find for the covariance matrix

tr[ρ̂q̂(f1)q̂(f2)] − tr[ρ̂q̂(f1)]tr[ρ̂q̂(f2)]
= f T

1 Vf2 − if T
1 �

f2. (87)

These quantities can thus be obtained for arbitrary quan-
tum states, but for Gaussian states the covariance matrix
and the mean field also determine all higher-order expec-
tation values. The most elegant way to see this is via the

030204-12



NON-GAUSSIAN QUANTUM STATES... PRX QUANTUM 2, 030204 (2021)

multivariate cumulants (also known as truncated correla-
tion functions), which vanish beyond order two [4]. This
fact implies that all properties of Gaussian states can ulti-
mately be deduced from their mean field and—often more
importantly—from their covariance matrix.

Hitherto, we have encountered the vacuum state |0〉 and
the coherent states |α〉 as examples of Gaussian states.
Both of the examples have a covariance matrix V = 1.
However, there is a much larger range of possible covari-
ance matrices available and they have to satisfy certain
constraints [83]. At first instance, we note that a covari-
ance matrix must be positive. An additional constraint is
obtained by imposing that the variance 	2q̂(f ) � 0 for
all f in phase space. Equation (87) then directly yields
that f T(V − i�)f � 0, which implies that V � 0 and sug-
gests that (V − i�) � 0. However, the latter is not obvious,
since f are real vectors, whereas (V − i�) is a complex
matrix. We thus need an additional ingredient: the Heisen-
berg inequality. Formally, this inequality can be obtained
through Robertson’s more general inequality [84], such
that we find

	2q̂(f1)	2q̂(f2) � 1
4

∣∣∣tr{ρ̂[q̂(f1), q̂(f2)]}
∣∣∣
2

. (88)

We can now apply the CCR (29) to obtain the general form

	2q̂(f1)	2q̂(f2) �
∣∣∣f T

1 �
f2

∣∣∣
2

. (89)

On the other hand, the definition (87) of the covariance
matrix can be used to translate this result to

f T
1 Vf1 f T

2 Vf2 �
∣∣∣f T

1 �
f2

∣∣∣
2

. (90)

This identity can then be used to prove (f T
1 − if T

2 )(V −
i�)(f1 + if2) � 0 for all f1, f2 ∈ R2m. As a consequence, we
find that

V − i� � 0, (91)

an important constraint on the covariance matrix V, which
can be understood as combining the positivity conditions
and the Heisenberg inequality.

To further understand the structure of covariance matri-
ces and the Gaussian states that they describe, we highlight
some important results on symplectic matrices. The first of
these results is Williamson’s decomposition [10], which
states that any positive-definite real matrix V can be diag-
onalized by a symplectic matrix S (i.e., a matrix with
ST�S = �):

V = STNS, with N = diag[ν1, ν1, ν2, ν2, . . . , νm, νm].
(92)

The values ν1, . . . νm are also known as the symplec-
tic spectrum of V. From Heisenberg’s relation, we then

find the additional constraint that ν1, . . . , νm � 1, in other
words, the values in the symplectic spectrum are larger
than shot noise. It now becomes straightforward to see the
Heisenberg’s relation also implies that

det V � 1. (93)

It thus becomes apparent that the Heisenberg inequality is
saturated when det V = 1. The states for which this is the
case must have a covariance matrix V = STS.

The Gaussian states for which the Heisenberg inequal-
ity is saturated turn out to be the pure Gaussian states.
Recall that the purity of a quantum state is given by μ =
tr[ρ̂2]. This quantity can be directly calculated from the
Wigner function via Eq. (43). We then find for an arbitrary
Gaussian state

μG = (4π)m
∫

R2m
dx WG(x)2 = 1√

det V
. (94)

Alternatively, we may use the symplectic spectrum to
express μG = ∏m

k=1 ν
−1
k . This shows us that a Gaussian

state is pure if and only if its covariance matrix is a positive
symplectic matrix, i.e., it can be written as V = STS.

The class of states with a covariance matrix given by
V = STS is much larger than just the vacuum and coher-
ent states with V = 1. The additional states turn out to
have asymmetric noise in their quadratures, and because
the Heisenberg inequality is saturated this implies that
some quadratures have less noise than the vacuum state.
The states with such covariance matrices are therefore
known as squeezed states. To formalize this intuition,
we consider the Bloch-Messiah decomposition (which is
known in mathematics and classical mechanics as Euler’s
decomposition) [11,85]. Any symplectic matrix S can be
decomposed as follows:

S = O1KO2, with K = diag[s1/2
1 , s−1/2

1 , . . . , s1/2
m , s−1/2

m ],
(95)

where O1 and O2 are orthogonal symplectic matrices, i.e.,
OT

j Oj = 1 and OT
j �Oj = �. We can then see that for any

pure Gaussian state, we find

V = STS = OTK2O. (96)

We have already encountered orthogonal symplectic trans-
formations in Eq. (21), where we associated them with
transformations of mode bases. Thus, if we find a set of
optical modes that are prepared in a pure Gaussian state,
we can always find a different mode basis in which the state
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is given by

V′ = O VOT =

⎛

⎜⎜⎜⎜
⎝

s1
1/s1

. . .
sm

1/sm

⎞

⎟⎟⎟⎟
⎠

. (97)

This means that we can always find a set of symplec-
tic eigenvectors {e1,�e1, . . . , em,�em} of a pure Gaus-
sian state’s covariance matrix, which have the properties
that 	2q̂(ej ) = sj and 	2q̂(�ej ) = 1/sj , such that the
Heisenberg relation is saturated: 	2q̂(ej )	

2q̂(�ej ) = 1.
At the same time, we find that clearly either 	2q̂(ej )

of 	2q̂(�ej ) is smaller than one (and thus below shot
noise).

Gaussian states naturally come with the notion of Gaus-
sian channels [86], they are the completely positive trace-
preserving transformations that map Gaussian states into
other Gaussian states. We have already seen that the dis-
placement operators are unitary transformations that ful-
fil this condition. Because any Gaussian transformation
� preserves the general shape of the Wigner function
(85), we can simply describe the Gaussian channel � in
terms of its actions on the mean field and the covariance
matrix:

V
��→ XVX T + Vc, (98)

ξ ��→ X ξ + α. (99)

The vector α simply serves to displace the entire Gaus-
sian to a different location in phase space. On the level
of the covariance matrix, X transforms and reshapes
the initial covariance matrix, whereas Vc describes the
addition of Gaussian classical noise. Both can a priori
be any real matrices, as long as they satisfy the con-
straint

Vc − i�+ iX�X T � 0. (100)

This constraint derives from the demand that XVX T +
Vc is a well-defined covariance matrix, and there-
fore XVX T + Vc − i� � 0. Because V is a well-defined
covariance matrix, X (V − i�)X T � 0 and thus it can
be seen that XVX T + Vc is also a well-defined covari-
ance matrix whenever Eq. (100) holds. This sim-
ple argument proves Eq. (100) is a sufficient con-
dition for � to transform the covariance matrix of
the initial state into a new bona fide covariance
matrix.

An important case is obtained when we impose that �
conserves the purity of the state and is thus a unitary trans-
formation. It then immediately follows that Vc = 0, since
there cannot be any classical noise. The displacement α is

simply implemented by a displacement operator, and the
constraint (100), combined with the demand that purity is
conserved implies that X is a symplectic matrix. In other
words, a Gaussian unitary transformation ÛG satisfies V �→
STVS. Another relevant example is the case of uniform
Gaussian losses, where we set X = √

1 − η1, Vc = η1

and α = 0, with the positive value η � 1 denoting the
amount of loss.

More generally, the action of a Gaussian channel on
an arbitrary state can be understood from its action on
exp[iq̂(λ)], which can be proven to take the form

exp[iq̂(λ)] ��→ exp
[

iq̂(X Tλ)+ iαTλ− 1
2
λTVcλ

]
. (101)

We can then calculate the quantum characteristic function
and use some properties of Fourier transforms to find that
the Wigner function transforms as

W(x) ��→
∫

R2m
dy W(X −1x − y)e

− 1
2 (y−α)TV−1

c (y−α)

(2π)m
√

det Vc
. (102)

For Gaussian unitary transformations we find the appeal-
ing result that W(x) �→ W[S−1(x − α)]. This means that
a Gaussian unitary transformation is simply a coordinate
transformation on phase space.

Proving that any completely positive Gaussian channel
� is of the form Eq. (102) with condition (100), is a chal-
lenging task. The result was first obtained in Refs. [87,88],
using the language of C∗ algebras. The proof is rather
technical and we do not go into details here.

The paradigm of Gaussian channels is also useful to
structure general Gaussian states. One may, for example,
wonder which Gaussian channel would transform the vac-
uum state into the Gaussian state with covariance matrix V.
In general, there is no unique solution to this question, but
there is a straightforward route to find an answer. First, take
any symplectic matrix S that satisfies V − STS � 0 (the
Williamson decomposition guarantees that this is always
possible). This implies that there is a positive-definite
matrix Vc such that V = STS + Vc. As such, an arbitrary
Gaussian state can always be decomposed as

WG(x) =
∫

R2m
dy W0(S−1x − y)e− 1

2 (y−α)TV−1
c (y−α). (103)

The symplectic operation that is applied to the vacuum
is known as multimode squeezing in optics. These trans-
formations are fully equivalent to Bogoliubov transforma-
tions that are regularly used in condensed-matter physics
[4,8]. Combined with a displacement, this operation pro-
vides the most general operation that maps quadrature
operators into well-defined quadrature operators.

Now that we have introduced the basic concepts of
Gaussian states, we are equipped to start exploring their
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non-Gaussian counterparts. Several other important prop-
erties of Gaussian states will be introduced along the
way to stress just how peculiar these Gaussian states are
compared to the rest of state space.

III. NON-GAUSSIAN QUANTUM STATES

Contrary to Gaussian states with their elegant Wigner
function and properties that can be nicely deduced from
the covariance matrix, the set of non-Gaussian states is vast
and wild. Literally all states with Wigner functions that are
not Gaussian are contained within this class. To give an
idea of the enormous variety, one can consider that highly
exotic states such as Gottesman-Kitaev-Preskill states [31]
and Schrödinger cat states inhabit the set of non-Gaussian
states together with the states that describe single pho-
tons and even certain convex mixtures of Gaussian states.
Throughout the years, there have been considerable efforts
to structure the set of non-Gaussian states. We introduce
the notion of quantum non-Gaussian states [89] and then
extend it to a hierarchy based on stellar rank [38]. A differ-
ent approach is provided by considering that the negativity
of the Wigner function can be used as a genuine signa-
ture of nonclassicality [90]. However, before we attack
these different measures to structure non-Gaussian quan-
tum states, we contrast some properties of Gaussian and
non-Gaussian states.

Figure 1 provides an overview that can be used as a
brief guide to understand the structure of non-Gaussian
states. We attempt to highlight how the different quanti-
ties used to structure the non-Gaussian part of state space
are interconnected.

A. Gaussian versus Non-Gaussian

Gaussian states have many extraordinary properties that
set them apart from non-Gaussian states. First of all, pure
Gaussian states turn out to be the only quantum states that
saturate the uncertainty relation. The easiest way to see
this is by describing arbitrary pure states in terms of their
wave functions. The wave functions associated with ampli-
tude quadratures q̂(f ) and those associated with phase
quadratures q̂(�f ) are related by a Fourier transform. This
fact can then be used to show that only Gaussian wave
functions saturate the Heisenberg inequality. The exten-
sion to arbitrary mixed states can be achieved via Jensen’s
inequality, which emphasizes that no mixed states can sat-
urate the uncertainty relation. Let us consider a mixed
state ρ̂ = ∑

k pk |�k〉 〈�k| with variances	2q̂(f ). We also
introduce the variances 	2

k q̂(f ) for the pure states |�k〉.
From Jensen’s inequality [91], it follows that

	2q̂(f ) �
∑

k

pk	
2
k q̂(f ). (104)

Gaussian states
(stellar rank 0)

Non-Gaussian mixtures 
of gaussian states
(stellar rank 0)

Coherent states
Squeezed vacuum
Thermal states

Stellar rank 1
0.52|0 0| + 0.48|1 1| Stellar rank n  2

â† n
ρ̂G (â)

n

tr[(â)
n
(â†)n ρ̂G]

Stellar rank ∞ 

GKP states

Wigner-negative states
Fock states
Photon-added states
Photon-subtracted squeezed vacuum

GKP states

1

2
| | + |− |

…

Quantum non-Gaussian states 

FIG. 1. Overview of the different types of non-Gaussian states that can be found in state space. The different aspects will all be
considered throughout Sec. III. Here we attempt to show the stellar hierarchy and how it differentiates itself from the convex hull
(mixtures) of Gaussian states. Furthermore, we emphasize that the stellar rank and Wigner negativity are different quantifiers of non-
Gaussianity. It should be noted that all non-Gaussian pure states are Wigner-negative states, but we can find states that are not mixtures
of Gaussian states without Wigner negativity. For all the classes, we provide examples of states that belong to this group, the Wigner
functions for several of these examples are shown in Fig. 2.
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For Heisenberg’s inequality, we calculate

	2q̂(f )	2q̂(�f ) �
∑

k

p2
k	

2
k q̂(f )	2

k q̂(�f )

+
∑

k �=l

pkpl	
2
k q̂(f )	2

l q̂(�f )

� 1. (105)

The presence of cross terms highlights that even when all
the pure states in the mixture saturate the inequality, the
mixture does not. The only possible exception is the case
where the state is pure.

That only pure Gaussian states saturate the Heisenberg
inequality may seem like an innocent observation, but it
has an important implication for non-Gaussian states. The
Heisenberg inequality can be formulated entirely in terms
of the covariance matrix. We showed in Eq. (92) that the
inequality is saturated if and only if the covariance matrix
is symplectic, i.e., V = STS. Furthermore, we showed in
Eq. (94) that a Gaussian state is pure if and only if its
covariance matrix is symplectic V = STS. The fact that
no non-Gaussian states can saturate the inequality thus
implies that non-Gaussian states can never have a sym-
plectic covariance matrix V = STS. This is a first hint of
the special role played by Gaussian states.

A more general result along these lines states that for all
states ρ̂ with the same covariance matrix V, the Gaussian
state always has the highest von Neumann entropy [13].
First of all, note that entropy −tr[ρ̂ log ρ̂] is conserved
under unitary transformations. Due to the Williamson
decomposition (92), we can write any Gaussian state as

ρ̂G = ÛG

m⊗

j =1

ρ̂nj Û†
G, (106)

where ρ̂nj is a thermal state of the Hamiltonian â†
j âj with

average particle number nj = (νj − 1)/2. From statistical
mechanics, we know that thermal states are the quantum
states that maximize the von Neumann entropy for a given
temperature (here fixed by the occupations nj ).

It turns out that Gaussian states are limiting cases for
many quantities [12]. This result shows that for a range
of functionals f on the state space, we find that f (ρ̂) �
f (ρ̂G), where ρ̂G is the Gaussian state with the same
covariance matrix as ρ̂. Apart from some more technical
aspects such as continuity, f must have two important fea-
tures: it must be conserved under (a certain class of) unitary
operations f (Ûρ̂Û†) = f (ρ̂) and it must be strongly super-
additive f (ρ̂) � f (ρ̂1)+ f (ρ̂2) (note that ρ̂1 and ρ̂2 are
marginals of ρ̂). The equality must be saturated for product
states, i.e., f (ρ̂1 ⊗ ρ̂2) = f (ρ̂1)+ f (ρ̂2). For strongly sub-
additive functions with f (ρ̂) � f (ρ̂1)+ f (ρ̂2) the same
result implies f (ρ̂) � f (ρ̂G), (after all, in that case −f

is a strongly superadditive function). It is clear that the
von Neumann entropy fulfils the latter conditions and is
maximized for Gaussian states. For superadditive entan-
glement measures, this result can be used to show that
for all states with the same covariance matrix, Gaussian
states are the least entangled ones (entanglement is much
more extensively discussed in Sec. V). However, several
common entanglement measures, e.g., the logarithmic neg-
ativity [92] and the entanglement of formation [93], are not
superadditive.

At the heart of these extremal properties lies the cen-
tral limit theorem [4,94–96]. There are many versions of
the central limit theorem in quantum physics, but we stick
to what is probably the simplest one. As always, we con-
sider our optical phase space R2m, but this time, we take
N copies of it, which implies that we are dealing with
a phase space R2Nm = R2m ⊕ · · · ⊕ R2m for the full sys-
tem. We can then embed a vector λ ∈ R2m in the j th of
these N copies via λj := 0 ⊕ · · · ⊕ 0 ⊕ λ⊕ 0 · · · ⊕ 0 and
introduce the new averaged operator

qN (
λ) := 1√

N

N∑

j =1

q̂(λj ). (107)

It is rather straightforward to see that these observables
follow the canonical commutation relation. We can now
restrict ourselves to studying the algebra that is generated
entirely by such averaged quadrature operators. When we
then assume that the different copies of the system are
“independently and identically distributed” we must set
the overall state to be ρ̂(N ) = ρ̂⊗N . We then find the char-
acteristic function of the algebra of averaged observables
by

χN (λ) = tr[ρ̂⊗N eiqN (λ)]. (108)

The following pointwise convergence can be shown:

χN (λ) N→∞→ χG(λ), (109)

where χG(λ) is the characteristic function of the Gaussian
state ρ̂G that has the same covariance matrix as ρ̂. This
means that the non-Gaussian features in any state ρ̂ can be
coarse grained away by averaging sufficiently many copies
of the state. Note that this result considers N copies of an
arbitrary m-mode state. The single-mode version of this
result was proven in Ref. [94], whereas a much more gen-
eral versions are derived in Refs. [95,96]. In Ref. [12] the
central limit theorem is combined with invariance under
local unitary transformations to prove the final extremality
result, we do not review these points in detail.

The extremality of Gaussian states and the associated
central limit theorem highlight why Gaussian states are
important in quantum-information theory and quantum
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statistical mechanics. It also shows that Gaussian states
have some particular properties compared to non-Gaussian
states. It thus should not come as a surprise that some
of these properties can be used to measure the degree of
non-Gaussianity of the state [97–99]. As we mentioned
before, for a fixed covariance matrix V the von Neumann
entropy is maximized by the Gaussian state. This suggest
that we can use the difference in von Neumann entropy as
a measure for non-Gaussianity. To formalize things, let us
consider an arbitrary state ρ̂ with covariance matrix V and
mean field ξ (this quantities can be derived, respectively,
for the second and first moments of the quadrature opera-
tors). We then construct a Gaussian state σ̂V, which has the
same covariance matrix and the mean field. In the spirit of
extremality, we then define

δ(ρ̂) = S(σ̂V)− S(ρ̂), (110)

where S(ρ̂) := −tr[ρ̂ log ρ̂]. Because von Neumann
entropy is constant under unitary transformations, for a
Gaussian state it depends only on the symplectic spectrum
ν1, . . . , νm. In other words, we can calculate S(σ̂V) directly
by using the Williamson decomposition (92) on V. We find
from Ref. [13] that

S(σ̂V) =
m∑

j =1

[
νj + 1

2
log

νj + 1
2

− νj − 1
2

log
νj − 1

2

]
.

(111)

However, it should be noted that the entropy of the non-
Gaussian states S(ρ̂) is generally harder to calculate unless
we can accurately approximate the state by a finite density
matrix in the Fock basis. Furthermore, if the state ρ̂ is pure,
we simply find that δ(ρ̂) = S(σ̂V).

Due to extremality of Gaussian states it directly follows
that δ(ρ̂) � 0, but this does not necessarily mean that δ(ρ̂)
is a good measure for non-Gaussianity. References [13,98]
establish that

δ(ρ̂) = S(ρ̂ | |σ̂V), (112)

where S(ρ̂ || σV) := tr[ρ̂(log ρ̂ − log σ̂V)] is the quantum
relative entropy between ρ̂ and reference state σ̂V. The
quantum relative entropy allows us to connect δ(ρ̂) to a
range of interesting properties, as shown in Ref. [98]. For
example, it directly follow that δ(ρ̂) = 0 if and only if
ρ̂ = σ̂V. Furthermore, the measure δ(ρ̂) inherits convex-
ity and monotonicity properties from the relative entropy.
These are exactly the properties that made this measure
a useful ingredient in the resource theory for quantum
non-Gaussianity presented in Ref. [100].

Thus, the connection between Eq. (110) and relative
entropy shows that δ(ρ̂) can indeed be used as a measure
for non-Gaussianity in the sense that it measures “entropic

distance” between ρ̂ and σ̂V. Yet, there is one important
question that remains to be answered: is σV indeed the
closest Gaussian state to ρ̂? An affirmative answer to this
question was provided in Ref. [101], where it was shown
that

δ(ρ̂) = min
ρ̂G

S(ρ̂ | |ρ̂G), (113)

where we minimise over all possible Gaussian states ρ̂G.
The main idea of the proof is to show that S(ρ̂ || ρ̂G)−
S(ρ̂ || σ̂V) = S(σ̂V || ρ̂G) � 0 such that the smallest rela-
tive entropy in indeed achieved for σ̂V. For the technical
details, we refer the interested reader to Ref. [101]. Fur-
thermore, we note that a similar non-Gaussianity measure
was introduced by using the Wehrl entropy (based on the
Q function) rather than the von Neumann entropy [102].

We have thus shown that Gaussian states are special
in the sense that they minimize entanglement and maxi-
mize entropy as compared to other states with the same
covariance matrix. Another profound distinction can be
found when comparing pure Gaussian states to pure non-
Gaussian states. In this case, there is a seminal result by
Hudson [34] that was extended by Soto and Claverie to
multimode systems [35], which states that a pure state can
have a non-negative Wigner function if and only if the state
is Gaussian. In other words, all non-Gaussian pure states
exhibit Wigner negativity.

Here, we follow the approach of Ref. [103] to prove this
result. First of all, we introduce the function

F�
�(α) := 〈α | �〉e 1

8 ‖α‖2
, (114)

such that the Q function (70) of the state |�〉 is given by

Q(α) = 1
(4π)m

∣∣F�
�(α)

∣∣2 e− 1
4 ‖α‖2

. (115)

From Eq. (114), we directly find that

∣∣F�
�(α)

∣∣2 � e
1
4 ‖α‖2

. (116)

Next, we observe that a Q function that reaches zero
implies a negative Wigner function, which can be seen
from Eq. (72). Thus, demanding that the state has a pos-
itive Wigner function implies demanding that Q(α) > 0,
and thus that F�

�(α) has no zeros. Using the equiva-
lence between 2m-dimensional phase space and a complex
m-dimensional Hilbert space, we can use the multidimen-
sional but restricted version of the Hadamard theorem
[35], which states that any entire function f : Cm �→ C
without any zeros and with order of growth [104] r is
an exponential f (z) = exp g(z), where g(z) is a polyno-
mial of degree s � r. We then note that F�

� is an entire
function of maximal growth r = 2 as given by Eq. (116).
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Hadamard’s theorem then tells us that F�
�(α) is Gaussian.

In other words, if a pure quantum state |�〉 has a positive
Wigner function F�

�(α) must be Gaussian. The only states
for which this is the case are Gaussian states.

In summary, we have seen that Gaussian states inherit
a particular extremal behavior from the central limit
theorem. This should not come as a surprise given that they
are the Gibbs states of a free bosonic field at finite tem-
perature. Thus, a non-Gaussian state can be expected to
have more “exotic” features than the Gaussian state with
the same covariance matrix. This also formalizes the intu-
ition that Gaussian states are more classical states. This
idea is further established by the fact that all pure Gaussian
states are the only possible pure states that have a positive
Wigner function.

The fact that non-Gaussian states automatically have
nonpositive Wigner functions no longer holds when mixed
states are considered. A simple example is that state
ρ̂ = [

∣∣∣0〉〈0| + a†(f )|0〉〈0|a(f )
]
/2, which is clearly non-

Gaussian but also has a positive Wigner function. There
have been considerable efforts to extend Hudson’s theorem
in some form to mixed states [36]. However, in what fol-
lows, we see that there are many ways for a state to be
non-Gaussian. This makes it particularly hard to connect
a measure such as Eq. (110) to more operational inter-
pretations. In the next section, we start by showing some
examples of different non-Gaussian states to make the
reader appreciate their variety.

B. Examples of non-Gaussian states

An overview of the different examples discussed in this
section is shown in Fig. 2.

A first important class of non-Gaussian states are Fock
states, generated by acting with creation operators a†(f )
on the vacuum state

∣∣nf
〉

:= 1√
n!

[â†(f )]n |0〉 , (117)

which is a state of n photons in mode f . These states are
inherently single mode, even though they can be embedded
in a much larger multimode state space. The Wigner func-
tion for such states is commonly found in quantum optics
textbooks, but deriving it using Eq. (38) is a good exercise.
Here we simply state the result:

Wnf (x) =
n∑

k=0

(
n
k

)
(−1)n+k‖xf‖2k

k!
e− 1

2 ‖x‖2

2π
. (118)

In the most general sense, we write xf = (f Tx)f +
(f T�x)�f as the projector of x on the phase space of
mode f , but it is most practical to use the coordinate repre-
sentation xf = (xf , pf )

T where xf = f Tx and pf = f T�x
to describe the two-dimensional phase space associated
with mode f .

Multimode Fock states can be obtained by acting on
the vacuum with different creation operators in different
modes. Even though these different modes do not neces-
sarily have to be orthogonal [56], we here focus on the
case where they are. For example, in the m-mode system,
we can chose a basis {e1,�e1, . . . , em,�em} of the phase

Fock states

Mixed non-gaussian states Cat state GKP state

1

2
(| | + |− |) |cat− |GKP0

FIG. 2. Several examples of Wigner functions for single-mode non-Gaussian states. The Wigner functions for the Fock states are
obtained from Eq. (118) and the mixture of a Fock state and a vacuum is given by Eq. (124). The mixture of coherent states is expressed
in Eq. (122) where we set ‖α‖ = 4. The Wigner function for the cat state is given by Eq. (126) where we choose ‖α‖ = 6. Finally,
for the GKP state, Eq. (130), we numerically integrated a wave-function expression of the state with s = 2 and δ = 0.3 to obtain the
Wigner function.
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space R2m and define multimode Fock states as
∣∣ne1

〉 ⊗ · · · ⊗ ∣∣nem

〉

:= 1√
n1! . . . nm!

[â†(e1)]n1 . . . [â†(em)]nm |0〉 , (119)

where the kth mode in the basis contains nk photons. Note
that for nk = 0 we have a vacuum mode. For the Wigner
function, this implies

Wne1 ,...,nem (x) = Wne1
(xe1) . . .Wnem (xef). (120)

Here we use that the phase-space point x can be expressed
as x = xe1 ⊕ · · · ⊕ xem , where xek is the phase-space coor-
dinate within the subspace spanned by ek and �ek. We can
note xek = (xk, pk)

T, such that we find the coordinate rep-
resentation x = (x1, p1, . . . , xm, pm)

T in the chosen basis of
phase space.

Non-Gaussian states do not necessarily have to be pure,
they can also come in the form of statistical mixtures. The
most basic example of such as state is a non-Gaussian mix-
ture of Gaussian states. As a simple example, let is consider
a mixture of two coherent states

ρ̂ = 1
2
(|α〉 〈α| + |−α〉 〈−α|) . (121)

Even though this is a highly classical state, it is still non-
Gaussian as clearly seen from its Wigner function

W(x) = 1
4π

(
e− 1

2 ‖x−α‖2 + e− 1
2 ‖x+α‖2

)
. (122)

Another important example of a non-Gaussian mixed state
is

ρ̂λ = λ |0〉 〈0| + (1 − λ)
∣∣1f

〉 〈
1f

∣∣ . (123)

In the mode f , the Wigner function of the state behaves as

Wλ(x) = [(1 − λ)‖xf‖2 + 2λ− 1]
e− 1

2 ‖x‖2

2π
. (124)

This Wigner function reaches negative values as long as
λ < 1/2 and subsequently becomes positive. Nevertheless,
it will remain non-Gaussian until λ = 1. As we see in
Sec. C, even when the Wigner function is positive, it is
not always possible to describe this state as a mixture of
Gaussian states.

Generally speaking, non-Gaussian states can come in a
wide variety of shapes, which can be much more exotic
than the examples discussed above. A popular class of
Gaussian states is obtained by taking coherent superposi-
tions of Gaussian states. As we see in Sec. VII, there has
been a strong experimental focus on two specific types of

such states: Schrödinger’s cat states [105] and GKP states
[31]. The former are obtained by coherently superposing
two coherent states, and often are split in even |cat+〉 and
odd |cat−〉 cat states:

|cat±〉 := 1
N (|α〉 ± |−α〉) , (125)

where N =
√

2(1 ± exp[−‖α‖2]) is the normalization
coefficient, which depends on the displacement α. The lat-
ter is often referred to as “the size of the cat.” The Wigner
function of these states resembles that of Eq. (122) but has
an additional interference term

Wcat±(x) = e− 1
2 ‖x−α‖2 + e− 1

2 ‖x+α‖2 ± cos(
√

2 αTx)e− 1
2 ‖x‖2

4π(1 ± e−‖α‖2
)

.

(126)

The appearance of these interference terms creates sev-
eral regions in phase space where the Wigner function
attains negative values. The term “Schrödinger’s cat state”
has historically grown from the idea that coherent states
describe classical electromagnetic fields and can thus be
considered “macroscopic,” in particular, for large values of
‖α‖. However, one should honestly admit that they fail to
capture an important point of Schrödinger’s thought exper-
iment [106]: the entanglement with a microscopic quantum
system (i.e., the decay event that triggers the smashing of
the vial of poison). Nevertheless, the term “cat state” has
established itself firmly in the CV jargon, and now also lies
at the basis of derived concepts such “cat codes” for error
correction [107,108].

Finally, there are the GKP states. In their idealized
form, they rely on eigenvectors of the quadrature operators
(sometimes also known as infinitely squeezed states). To
keep notation simple, we restrict to the single mode with
quadrature operators x̂ and p̂ . The eigenvectors of these
operators are then formally written as

x̂ |x〉 = x |x〉 , and p̂ |p〉 = p |p〉 . (127)

Furthermore, we have the relations 〈x′ | x〉 = δ(x′ −
x), 〈p ′ | p〉 = δ(p ′ − p), and 〈p | x〉 = e−ipx/

√
2π . GKP

states are constructed by considering a grid of such states
to create a qubit, by identifying the two following GKP
vectors:

∣∣GKP0̃

〉
:=

∑

k∈Z

∣∣x = 2k
√
π

〉
, (128)

∣∣GKP1̃

〉
:=

∑

k∈Z

∣∣x = (2k + 1)
√
π

〉
. (129)

Clearly, these states are not normalizable and not phys-
ical as they would require infinite energy to be created.
Thus, it is common to construct approximate GKP states,
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by replacing the states |x〉 with displaced squeezed states,
and by truncating the summation by adding a Gaussian
envelope:

|GKP0〉 := N0

∑

k∈Z
e−2π [kδ]2

D̂[2k
√
π ] |s〉 , (130)

|GKP1〉 := N1

∑

k∈Z
e−2π [(k+1/2)δ]2

D̂[(2k + 1)
√
π ] |s〉 .

(131)

Here N0,1 are normalization constants and |s〉 is a single-
mode squeezed vacuum, which implies that its Wigner
function is given by Eq. (85) with ξ = (0, 0)T and V =
diag[1/s, s] for s > 1. To get a good GKP state for quan-
tum error correction, we generally need that s � √

π . The
Wigner function of an ideal GKP state is a grid of delta
functions, which again highlights that it is a nonphysi-
cal state. The more realistic states |GKP0〉 and |GKP1〉
have well-defined Wigner functions, even though they are
not very insightful to write down explicitly. In Fig. 2, we
plot an example that was calculated numerically by taking
into account only the first few terms around k = 0 in the
sum.

GKP states may seem a little artificial at first glance,
but they have been developed with a very clear pur-
pose: to encode a qubit in a harmonic oscillator [31].
This encoding implies a notion of fault tolerance as
these states are designed to be very efficient at cor-
recting displacement errors. The more realistic incar-
nations of these states, Eq. (130), are therefore often
proposed as candidates for encoding the information in
CV quantum computation protocols [29]. Furthermore,
it was shown that these states can also be used as the
sole non-Gaussian resource to implement a CV quantum
computer [32]

Once we progress into the realm of multimode states,
the class of non-Gaussian states becomes even more vast.
In Sec. 2, we present a dedicated introduction to mul-
timode photon-subtracted states, which is a useful state
to illustrate several of the concepts treated in this Tuto-
rial. Furthermore, these states have a particular importance
in CV quantum optics experiments. As a final example,
we introduce another class of multimode non-Gaussian
states, which have been highly relevant for quantum
metrology: N00N states [109–111]. Even though these
states are very promising for quantum sensing with opti-
cal setups, the general idea that underlies these states
was first introduced for fermions [112] in an attempt to
mimic the advantage that is provided by squeezing in
optics.

N00N states are two-mode entangled states defined in
a pair of orthogonal modes g1 and g2. The state contains
exactly N photons, and is a superposition of a state with
all photons being mode g1 and a state with all photons in

mode g2:

|N00N 〉 := 1√
2

(∣∣Ng1

〉 + ∣∣Ng2

〉)
. (132)

Here we recall that the state
∣∣Ng1

〉
can be trivially embed-

ded to the full multimode space by adding vacuum in
all other modes. We study these states in more detail for
N = 2 in our discussion of the Hong-Ou-Mandel effect
surrounding Eq. (165). However, here we highlight already
that the Wigner function of |N00N 〉 is not simply the sum
of Wigner functions of the form Eq. (118). The entangle-
ment will create additional interference terms, just like we
saw in Eq. (126). In the present case, these interferences
are genuinely multimode, and thus related to quantum
correlations.

Experimentally, these states have been created and ana-
lyzed using a DV approach [113]. As we highlighted in
Sec. C, the distinction between DV and CV is somewhat
subtle and mainly depends on what is measured. Because
N00N states are built from Fock states and have a well-
defined total photon number, they are most natural to
analyze using photon-number-resolving detectors.

C. Quantum non-Gaussianity

Non-Gaussian states come in a wide variety, which
means also that some of them are more exotic than oth-
ers. Non-Gaussian states that are of limited interest, are
those which are convex combinations of Gaussian states.
Gaussian states do not form a convex set, after all, we can
immediately see that, e.g., [W0(x − α1)+ W0(x − α2)]/2
is not a Gaussian function even though it is a convex
combination of Gaussian states.

The fact that the set of non-Gaussian states contains
mixtures of Gaussian states may lead one to suspect that
any mixed state with a positive Wigner function can be
written as a well-chosen mixture of Gaussian states. After
all, Gaussian states are the only pure states with posi-
tive Wigner functions. This intuition turns out to be false
[89], which means that the set of states with a nonpositive
Wigner function is not the same as the set of states that
lie outside of the convex hull of Gaussian states G. More
formally, let us define

G :=
{
ρ̂ | ρ̂ =

∫
dγ p(γ )ρ̂G(γ )

}
, (133)

where γ is some arbitrary way of labelling Gaussian states
ρ̂G(γ ) and p(γ ) is a probability distribution on these
labels. Note that Eq. (103) tells us that we can generate
all Gaussian states by taking convex combinations of dis-
placed squeezed states, and thus we can limit ourselves to
ρ̂G(γ ) = |�G(γ )〉 〈�G(γ )| in the definition of G.

Any quantum state ρ̂ that is not contained in the con-
vex hull of Gaussian states, i.e., ρ̂ /∈ G, is referred to
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as a “quantum non-Gaussian” state. The intuition behind
this terminology is that Gaussian pure states are less
quantum than non-Gaussian pure states that boast a non-
positive Wigner function. A mixed state that is quantum
non-Gaussian may have a positive Wigner function, but
it cannot be created without adding states with nonposi-
tive Wigner functions into the pure-state decomposition.
Hence, these states are more quantum than the states that
are in the convex hull of Gaussian states G.

Next, one may wonder how to differentiate between
states that are quantum non-Gaussian and states which are
in the convex hull G. Throughout the last decade, many
methods have been developed to answer this question. We
start by introducing the main idea of Ref. [114] because
it is based on the Wigner function. The key idea is that
Gaussian distributions have tails, which means that we can
take an arbitrary pure Gaussian state W0[S−1(x − α)], and
evaluate the Wigner function at to origin of phase space:

W0(S−1 α) = e− 1
2 ‖S−1 α‖2

(2π)2
. (134)

Clearly, when ‖S−1 α‖2 → ∞, we do find that W0(S1 α) →
0. This limit essentially corresponds to a system with infi-
nite energy. It is thus natural to try to bound the value of the
Wigner function in the origin by a function that depends on
the energy N of the state. For an arbitrary pure Gaussian
state, we find that

N =
m∑

j =1

tr[ρ̂â†(ej )â(ej )] = 1
4

(
tr[STS − 1] + ‖α‖2)

.

(135)

Using the properties of the operator norm, we write
‖S−1 α‖2 = ‖S−1Oα‖2, where O is a symplectic orthog-
onal transformation. Furthermore, we note that ‖α‖2 =
‖Oα‖2. It is then useful to explicitly write the coordi-
nate representation of the vector Oα = (α

(x)
1 ,α(p)1 , . . . ,α(x)m ,

α
(p)
m )T, such that

N =
m∑

j =1

1
4

(
sj + 1

sj
+ (α

(x)
j )2 + (α

(p)
j )2 − 2

)
(136)

=
m∑

j =1

nj . (137)

At the same time, we expand

‖S−1 α‖2 =
m∑

j =1

sj (α
(x)
j )2 + (α

(p)
j )2

sj
, (138)

and with a little algebra we can show that

1
2
‖S−1 α‖2 �

m∑

j =1

4nj (2nj + 1) � 4N (2N + 1), (139)

such that

W0(S−1 α) � 1
(2π)m

e−4N (2N+1). (140)

This means that the value of the Wigner function of a pure
Gaussian state in the origin of phase space is bounded from
below by a function of the average number of particles N .
However, it is not obvious that we can extend this bound
to arbitrary mixtures of Gaussian states. Let us assume that
ρ̂ ∈ G, then the Wigner function in the origin is given by

W(0) =
∫

dγ p(γ )W0(S−1
γ αγ ), (141)

where we saw that W0(S−1
γ αγ ) is the value of a pure

Gaussian state’s Wigner function in the origin and γ is
some arbitrary label for the Gaussian states in the mix-
ture. Therefore we can bound the states in the convex
combination

W(0) � 1
(2π)m

∫ ∞

0
dN γ p̃(N γ )e−4Nγ (2Nγ+1), (142)

where we introduce a probability distribution p̃ on the
average particle numbers of the pure Gaussian states in
the mixture. The overall average number of particles in the
state ρ̂ is then given by N = ∫ ∞

0 dN γ p̃(N γ )N γ . The final
element that we require is the fact that exp[−4N γ (2N γ +
1)] is a convex function, such that we can apply Jensen’s
inequality to find that

ρ̂ ∈ G =⇒ W(0) � 1
(2π)m

e−4N (2N+1). (143)

This means that we can simply use the total energy
of the state to construct a witness for quantum non-
Gaussianity. This clearly shows that there are quantum
non-Gaussian states with positive Wigner functions. An
explicit example can be constructed by tuning the γ

in the state [(1 − γ ) |0〉 〈0| + γ |1f 〉〈1f |] to 1/2 > γ >

1/2 − e−4γ (2γ+1) (where we use that γ is also the average
particle number in this particular state).

Nevertheless, there are many quantum non-Gaussian
states that do not violate inequality (143). After all, why
would the origin of phase space be the most interesting
point? A first solution is provided in Ref. [114], where it is
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argued that

ρ̂ ∈ G =⇒ W�(0) � 1
(2π)m

e−4N�(2N�+1), (144)

for all Gaussian channels � that act on the Wigner func-
tion of ρ̂ as W(x) ��→ W�(x). Recall that the action of a
Gaussian channel was defined in Eq. (102). The quantity
N� then denotes the average number of particles in the
state �(ρ̂). Further generalizations of this scheme have
been worked out in Ref. [115]. Moreover, Ref. [116]
has considered combinations of the value of the Wigner
function in several points to reach better witnesses for
quantum non-Gaussianity. Further progress has been made
by identifying observables that are more easily measurable
with typical CV techniques [117]. Others have considered
other phase-space representations of the state to identify
witnesses of quantum non-Gaussianity [118,119].

Quantum non-Gaussianity has been investigated with
a wide range of tools. In this Tutorial we have limited
ourselves to phase-space methods in the spirit of the CV
approach. However, there is also a significant body of
work on quantum non-Gaussianity using techniques that
are more typical in DV quantum optics. The earliest works
on the subject used photon statistics to distinguish quantum
non-Gaussian states from convex mixtures of Gaussian
states [89]. This research line has been continued in recent
years to uncover new aspects of quantum non-Gaussian
states, such as the “non-Gaussian depth” [120] and tech-
niques to differentiate different types of multiphoton states
[121]. Ultimately, these photon-counting techniques were
extended to develop a whole hierarchy of quantum non-
Gaussian states [37]. These ideas have been further for-
malized and generalized through the notion of the “stellar
rank” of a quantum state.

D. Stellar rank

An interesting starting point to introduce the stellar
representation is the method [103] to prove Hudson’s
theorem. We recall the definition

F�
�(α) := 〈α | �〉e 1

8 ‖α‖2
,

of what we henceforth refer to as the stellar function. To
avoid technical complications, let us now restrict ourselves
to single-mode systems such that the optical phase space is
R2. Note that, in a single-mode system, there is only one
creation operator â† with associated annihilation operators
â. We can then follow Ref. [38] to introduce the stellar rep-
resentation of single-mode quantum states. Note that some
similar ideas are also present in other works [122].

First, we develop the stellar representation for pure
states, which will then be used to generalize the framework
to mixed states in Eq. (148). We use the definition of the

displacement operator to show that

|�〉 = F�
�(â

†) |0〉 , (145)

which immediately implies that the stellar representation is
unique. In other words, if F�

� = F�
� it follows that |�〉 =

|�〉 up to a phase. In our proof of Hudson’s theorem,
we have already highlighted that F�

� satisfies the property
(116), which means that it is an entire function with growth
order r = 2. Because in this single-mode setting F�

� can
be interpreted as a function of a single complex variable,
the Hadamard-Weierstrass theorem implies that F�

� can be
fully represented by its zeros (one can consider this as a
generalization of the fundamental theorem of calculus).
This thus implies that a single-mode state is completely
determined by the zeros of the F�

� , and thus by the zeros of
the Q function in Eq. (115).

It is thus natural to use these zeros in order to classify
pure single-mode quantum states and thus the stellar rank
is introduced. Ultimately, the stellar rank is simply given
by the number of zeros of F�

� or alternatively the number
of zeros of the Q function. Because in practice zeros may
coincide, one should also consider the multiplicity of the
zeros. We thus define the stellar rank r�(�) of |�〉 as the
number of zeros of F�

� : C �→ C counted with multiplicity.
Alternatively one may count the zeros of the Q function
with multiplicity and divide by two.

The fact that a state is fully characterized by its stellar
representation F�

� can be made more explicit by consider-
ing the roots {α1, . . . , αr�(�)} of the Q function, which rep-
resents |�〉 [note that we use (44) to interchange between
phase-space representation and complex Hilbert-space rep-
resentation]. The single-mode state |�〉 can then be used to
express

|�〉 = 1
N

r�(�)∏

j =1

D̂†(αj )â†D̂(αj ) |�G〉 , (146)

where |�G〉 is a pure Gaussian state and N a normalization
constant. We can then use the stellar rank to induce some
further structure in the set of states by defining

RN := {|�〉 | r�(�) = N }. (147)

that groups all states of stellar rank N . Note that the
Hadamard-Weierstrass theorem also considers functions
with an infinite amount of zeros and the case N = ∞ is
thus mathematically well defined. It turns out that this case
is not just a pathological limit. An evaluation of the Q
function shows that Gottesman-Kitaev-Preskill states and
Schrödinger cat states inhabit the set R∞.

Clearly, all that was introduced so far only works for
pure states. We can naturally extend this result via a convex
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roof construction, by defining

r�(ρ̂) := inf
{p(γ ),|�(γ )〉}

sup
γ

{r�[�(γ )]}, (148)

where the infimum is considered of all probability dis-
tributions on the set of pure states that lead to ρ̂ =∫

dγ p(γ ) |�(γ )〉 〈�(γ )|. In words, there are many ways
to decompose the state ρ̂ in pure states and we consider all
of them. For each decomposition, we define the stellar rank
as the highest rank of the states in the decomposition. Then
we minimize these values over all possible decompositions
to arrive at the stellar rank of ρ̂.

Convex roof constructions are commonly used to treat
mixed states as they are easy and natural to formally define.
However, they are often much harder to calculate in prac-
tice. This is where the stellar representation unveils its
most remarkable property: stellar robustness. To formalize
this idea, Ref. [38] introduced the robustness as the trace
distance between the state and the nearest possible state of
lower stellar rank.

R�(�) := inf
r�(ρ̂)<r�(�)

1
2

tr
√
(|�〉 〈�| − ρ̂)2. (149)

And it can be shown that

R�(�) =
√

1 − sup
r�(ρ̂)<r�(�)

〈�| ρ̂ |�〉, (150)

where 〈�| ρ̂ |�〉 is the fidelity of ρ̂ with target state
|�〉. Remarkably, it can be shown that R�(�) > 0 when
r�(�) < ∞ [38]. This means that any state that is suffi-
ciently close to a pure state of r�(�) is also of rank r�(�)
or higher.

The idea of stellar robustness can be generalized [123]
by introducing k robustness. For any k < r�(�), we define

R�k(�) := inf
r�(�)�k

√
1 − |〈� | �〉|2, (151)

and show subsequently that

R�k(�) =
√

1 − sup
r�(ρ̂)�k

〈�| ρ̂ |�〉. (152)

The k robustness can thus be interpreted as the nearest dis-
tance from a state |�〉 at which we can find any state of
stellar rank k, provided k < r�(�). Beyond showing that
R�k(�) is nonzero when |�〉 is of finite stellar rank, Ref.
[123] also provides an explicit method to calculate R�k(�).
Thus, for whichever state ρ̂ is available in an experiment
one can attempt to find a pure target state |�〉 for which
〈�| ρ̂ |�〉 > 1 − R�k(�)

2 to prove that ρ̂ is at least of stellar
rank k.

We note that for pure states r�(�) = 0 implies that the
state is Gaussian (this is essentially what is proven in Hud-
son’s theorem). From the definition (148) we can then
deduce that

r�(ρ̂) = 0 ⇐⇒ ρ̂ ∈ G, (153)

where G denotes, again, the convex hull of Gaussian states.
On the other hand, states for which r�(ρ̂) > 0 cannot
be written as a mixture of Gaussian states and are thus
quantum non-Gaussian.

This idea can be extended by using the stellar k robust-
ness, Eq. (152), as a witness of quantum non-Gaussianity.
When we want to check whether ρ̂ is quantum non-
Gaussian, it suffices to find a pure target state |�〉 such
that ρ̂ is closer to |�〉 than the 1 robustness R�k(�). More
formally written, whenever a pure state |�〉 exists with the
following property:

〈�| ρ̂ |�〉 > 1 − R�1(�)
2 =⇒ ρ̂ /∈ G, (154)

and ρ̂ is quantum non-Gaussian. This may seem like a
complicated challenge, but for a single-photon state |�〉 =
|1〉 we find that 1 − R�1(�)

2 ≈ 0.478 [123]. This means
that any state that has a fidelity of more than 0.478 with
respect to a Fock state is quantum non-Gaussian. This idea
can be extended to higher stellar ranks: whenever we find
a target state |�〉 such that 〈�| ρ̂ |�〉 > 1 − R�k(�)

2, the
state ρ̂ is at least of stellar rank k. Note that the fidelity of
an experimentally generated state ρ̂ with any pure target
state |�〉 can be calculated from double homodyne mea-
surements on ρ̂ [123]. There is no need to experimentally
create the pure state |�〉, the latter is just theoretical input
needed to analyze the data.

Obviously, the stellar rank imposes a lot of additional
structure on the state space. It rigorously orders all states
that can be achieved by combining a finite number of cre-
ation operators and Gaussian transformations. The creation
operator serves as a tool to increase the stellar rank by one
and the stellar rank actually corresponds to the minimal
number of times the creation operator must be applied to
obtain the state, together with Gaussian operations. The
stellar rank remains unchanged under Gaussian unitary
transformations, which makes sense for a measure of the
non-Gaussian character of the state, and thus it falls within
the set of intrinsic properties of a state as discussed in
Sec. C. Furthermore, the class of states with infinite stellar
rank can be understood as the set that contains the most
exotic states. However, it is lonely at the top as it can
be shown that R�∞(�) = 0 for states of infinite rank. This
means that we can find states of finite stellar rank arbitrar-
ily close to a state of infinite stellar rank. As stressed in Ref.
[38], this implies that finite-rank states are dense in the full
Fock space and any state of infinite rank can be arbitrarily
well approximated by finite-rank states. Whereas a finite
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stellar rank k of any experimental state can be certified by
achieving a sufficiently high fidelity to a target state |�〉
to fall within the range given by its k robustness R�k(�),
a similar procedure is impossible for infinite stellar ranks.
This means, in practice, that genuinely infinite-rank states
are impossible to certify in experiments because one never
achieves perfect fidelity. Nevertheless, different states of
infinite rank may differ significantly in the values R�k(�)
for k < ∞.

Many of the results on stellar rank rely on the
Hadamard-Weierstrass theorem that allows one to uniquely
factorize F�

�(α) as a Gaussian and a polynomial, where
the roots of the polynomial are the roots of F�

� and thus
also the roots of the Q function. Sadly, this theorem cannot
be straightforwardly generalized to a multimode setting,
which is known in mathematics as Cousin’s second prob-
lem [124]. Notable progress was made in Ref. [125] where
one studies multimode stellar functions, which are poly-
nomials and it was shown that there is no straightforward
generalization of Eq. (146).

E. Wigner negativity

Hudson’s theorem shows us that all pure non-Gaussian
states have nonpositive Wigner functions, which sets them
apart from normal probability distributions of phase space.
For mixed states, this no longer holds and thus we spent
the previous two sections developing methods to charac-
terize the non-Gaussian features of these states. Whether
it is through quantum non-Gaussianity or the more refined
stellar rank, these methods focus on characterizing the non-
Gaussian resources that are required to generate a certain
state. In this subsection, we change the perspective and
focus rather on negative values of the Wigner function
(“Wigner negativity” in short) as a resource of interest.

Wigner negativity has the advantage of being a clear
quantum feature, it reflects that different quadratures in
the same mode cannot be jointly measured and thus goes
hand in hand with the principle of complementarity. More
formally, it has even been connected to the principle of
quantum contextuality [64]. Indeed, in Sec. VI we elab-
orate on the fact that Wigner negativity is a necessary
resource for reaching a quantum advantage, i.e., perform-
ing a task that cannot be efficiently simulated by a classical
computer. However, the idea of using Wigner negativity as
a signature of nonclassicality was already around before
it was connected to a quantum computational advantage.
An important step to formalize this idea was the introduc-
tion of a measure for Wigner negativity [90], which lies at
the basis of recent resource theories of Wigner negativity
[100,126].

A priori, there are several natural measures than can
be used for Wigner negativity. It is therefore useful to
consider some desirable properties that are required for
a measure of Wigner negativity. First of all, we want the

measure to be zero if and only if the Wigner function
is positive. It seems natural to demand that, furthermore,
Wigner negativity remains unchanged under Gaussian uni-
tary transformations. It is then tempting to simply consider
the absolute value of the lowest possible value of the
Wigner function, but this would have some unnatural out-
comes. It would mean that a single-photon state would
have more Wigner negativity than a two-photon state. We
thus need to look for a different measure.

The starting point of Ref. [90] is that the normalization
of the Wigner function implies that

∫

R2m
dx |W(x)| � 1, (155)

and that the inequality is strict whenever there is Wigner
negativity. Furthermore, Liouville’s theorem implies that
integrals over phase space are unchanged by Gaussian
transformations. A first possible way of measuring Wigner
negativity is through the negativity volume

N (ρ̂) :=
∫

R2m
dx |W(x)| − 1. (156)

This measure has the major advantage of being convex
due to the triangle inequality, which means that for ρ̂ =∫

dγ p(γ )ρ̂(γ ) we find that

N (ρ̂) �
∫

dγ p(γ )N [ρ̂(γ )]. (157)

However, this measure is not additive, i.e., N (ρ̂1 ⊗ ρ̂2) �=
N (ρ̂1)+ N (ρ̂2). To circumvent this shortcoming, another
measure for Wigner negativity has been introduced [100,
126,127]:

N(ρ̂) := log
∫

R2m
dx |W(x)| . (158)

Clearly, N(ρ̂1 ⊗ ρ̂2) = N(ρ̂1)+ N(ρ̂2) making this mea-
sure additive. However, the introduction of the logarithm
destroys the convexity of the measure. Note that the two
measures are closely related by N(ρ̂) = log[N (ρ̂)+ 1].
Thus when N (ρ̂1) > N (ρ̂2), we also find that N(ρ̂1) >

N(ρ̂2).
The single-mode examples that are considered in Ref.

[90] lead to some interesting observations. First of all,
they show that for Fock states Wigner negativity increases
with the photon number. Furthermore, they show that for
Schrödinger cat states the integral is bounded from above
by a value smaller than the Wigner negativity of a two-
photon state. Even though Fock states of increasing stellar
rank have increasing Wigner negativity, there is no clear
relation between stellar rank and Wigner negativity for
more general classes of states. For example, Schrödinger
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cat states are of infinite stellar rank, suggesting that they
are in this regard the most exotic states, but they manifest
only a limited amount of Wigner negativity.

As a case study, let us briefly concentrate on the Wigner
negativity of Fock states, Eq. (117). One can now evaluate
the Wigner negativity of such states to find that

N (|1〉) ≈ 0.426 12 and N(|1〉) ≈ 0.354 959, (159)

N (|2〉) ≈ 0.728 99 and N(|2〉) ≈ 0.547 537, (160)

N (|3〉) ≈ 0.976 67 and N(|3〉) ≈ 0.681 415, (161)

which shows that the negativity does not simply increase
linearly with the number of photons even for the addi-
tive measure N. However, let us now look at a multimode
n-photon state where each photon occupies a different
mode, i.e., a Fock state generated by creation operators in
f1, . . . , fn with span{fj ,�fj } �= span{fk,�fk} for all j �= k,

â†(f1) . . . â†(fn) |0〉 = ∣∣1f1

〉 ⊗ · · · ⊗ ∣∣1fn
〉
. (162)

The Wigner function for this state can be shown to be
[showing this based on (38) is again a good exercise]

W1f1 ,...,1fn
(xf1 ⊕ · · · ⊕ xfn) =

n∏

k=1

W1fk
(xfk). (163)

Either by explicitly using the expression of the Wigner
function, or by using the additivity property, we find that

N
(∣∣1f1

〉 ⊗ · · · ⊗ ∣∣1fn
〉) = nN(|1〉). (164)

Numerically, we can show that nN(|1〉) > N(|n〉) and thus
we can generally conclude that n photons in different
modes hold more Wigner negativity than n photons in the
same mode.

Let us now concentrate on the case where n = 2. We
showed that two photons in different modes are more
Wigner negative than two photons in the same mode, and
now we combine this finding with the idea that Wigner
negativity remains unchanged under Gaussian transforma-
tions. A particularly simple Gaussian transformation is a
balanced beam splitter, which ultimately just implements a
change in mode basis that we describe by an orthonormal
transformation OBS. When we mix two photons, prepared
in orthogonal modes f1 and f2 by such a balanced beam
splitter, we see the Hong-Ou-Mandel effect in action (more
details can be found in Ref. [56] where a similar notation
is used):

∣∣1f1

〉 ⊗ ∣∣1f2

〉 OBS�→ 1√
2

(∣∣2g1

〉 − ∣∣2g2

〉)
:= |HOM〉 , (165)

where f1, f2 and g1, g2 are the input and output modes of
the beam splitter, respectively. The Hong-Ou-Mandel out-
put state |HOM〉 is thus a superposition of two photons in

mode g1 and two photons in mode g2. We can now use
the simple fact that Wigner negativity is unchanged under
Gaussian unitary transformations to show that

N (|HOM〉) = N
(∣∣1f1

〉 ⊗ ∣∣1f2

〉) = 2N(|1〉) > N(|2〉),
(166)

this then also implies that N (|HOM〉) > N (|2〉). At first
sight, this is somewhat of a peculiar finding: by tak-
ing a superposition of two states with the same Wigner
negativity one finds a state with a higher Wigner negativity.

An explicit look at the Wigner function of the Hong-Ou-
Mandel state |HOM〉 provides some insight. We find that
this Wigner function can be written as (yet again a good
exercise to show this explicitly)

WHOM(xg1 ⊕ xg2) =1
2

[W2g1
(xg1)+ W2g2

(xg2)]

+ Wint(xg1 ⊕ xg2), (167)

where Wint is the contribution to the Wigner function that
contains all the interference terms that are induced by the
superposition. We can calculate that

N
(

1
2

[W2g1
(xg1)+ W2g2

(xg2)]
)

� N (|2〉), (168)

and thus, by additionally applying the triangle inequal-
ity, we can understand that the additional negativity in the
Hong-Ou-Mandel state is due to the term Wint.

In the Hong-Ou-Mandel effect, it is common to talk
about interference between particles, but in a more gen-
eral CV language this interference will be equivalent to
some form of entanglement, which is exactly described
by the Wigner-function contribution Wint. In other words,
the superposition between

∣∣2g1

〉
and

∣∣2g2

〉
has more Wigner

negativity than each of its two constituents because it cre-
ates entanglement between the modes g1 and g2. This is
a first indication that there is a connection between quan-
tum correlations and non-Gaussian features of the Wigner
function. We explore this connection in further detail in
Sec. V.

Even though Wigner negativity is an important non-
Gaussian feature, it is often hard to witness [128]. The most
common experimental technique is homodyne tomogra-
phy [129] to fully reconstruct the quantum state. These
methods come with the inconvenience that it is hard to
set good error bars. Techniques to circumvent the need
for a full tomography have been developed based on
homodyne [130] and double-homodyne (or heterodyne)
measurements [123,128]. These methods come with the
advantage of permitting to put a degree of confidence on
the proclaimed Wigner negativity.
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IV. CREATING NON-GAUSSIAN STATES

In Sec. III we have discussed the many ways of charac-
terizing non-Gaussian quantum states and their properties.
In this section, we explore the different theoretical frame-
works for creating these states. An overview of some
important experimental advances to put these theoretical
techniques into practice is left for Sec. VII.

Gaussian quantum states can in some sense be under-
stood as naturally occurring states. The foundational work
of Planck that lies at the basis of all of quantum mechan-
ics provides a first description of the thermal states of light
that describe black-body radiation. In a more modern lan-
guage, we refer to this as the thermal states of an ensemble
of quantum harmonic oscillators or a free bosonic field.
It has long been understood that these states are Gaussian
[2–4]. Creating this kind of Gaussian states of light is thus
literally as simple as switching on a light bulb.

When we turn towards more sophisticated light sources
such as lasers, we can encounter coherent light that is
described by coherent states [5,6]. Generating squeezed
light becomes much harder and typically requires nonlin-
ear optics [131]. Nevertheless, pumping a nonlinear crystal
with a coherent pump generally suffices to deterministi-
cally create a squeezed state [132]. Recall from the end
of Sec. D that from a theoretical point of view all these
pure Gaussian states can be created by applying Gaussian
unitary transformation to the vacuum state.

From an experimental point of view, the creation of non-
Gaussian states is much harder than the creation of their
Gaussian counterparts. Nevertheless, we start by introduc-
ing an ideal theoretical approach that is not too different
from Gaussian states. In essence, it suffices to apply a
non-Gaussian unitary operation to the state to create a
non-Gaussian state. In Sec. A we dig deeper into the
desired structure of such non-Gaussian unitary transforma-
tions that would in principle allow for the deterministic
generation of non-Gaussian quantum states. In experi-
ments (in particular, those in optics) such non-Gaussian
unitary transformations are hard to come by, which is
why one very often uses different preparation schemes.
In Sec. B, we provide a general introduction into the
conditional preparation of non-Gaussian quantum states,
where one measures part of the system and conditions on
a certain measurement outcome. This process projects the
remainder of the system into a new non-Gaussian state.

A. Deterministic methods

To introduce some further structure in the sets of Gaus-
sian and non-Gaussian unitary transformations, it is useful
to take a quantum computation approach that is inspired
by Ref. [26,133]. The central idea of this work is that
Gaussian unitary transformations are always generated by
“Hamiltonians” that are at most quadratic in the quadrature
operators (or equivalently in the creation and annihilation

operators). Let us denote that as

ÛG = exp{iP2(q̂)} (169)

where the polynomials P2(q̂) are generated by combining
terms of the types 1, q̂(f ), and q̂(f1)q̂(f2). A remarkable
property of these three types of observables is that they
are closed under the action of a commutator. Indeed, using
the canonical commutation relation (29) and the general
properties of commutators, we can show that

[q̂(f1), q̂(f2)] ∼ 1, (170)

[q̂(f1), q̂(f2)q̂(f3)] ∼ q̂(f ′), (171)

[q̂(f1)q̂(f2), q̂(f3)q̂(f4)] ∼
∑

q̂(f ′
1 )q̂(f ′

2 ). (172)

Thus, we can use the Baker-Campbell-Hausdorff formula
to show that the combination of two Gaussian unitaries
ÛGÛ′

G is again a Gaussian unitary.
This notion lies at the basis of universal gate sets in the

CV approach. Using typical techniques from Lie groups,
we can look for a minimal set of Gaussian unitaries than
can be combined to generate all possible Gaussian unitary
transformations. Generally, such a set is clearly not unique,
but there are some natural choices. For example, we pre-
viously saw that a Gaussian unitary transformation is a
combination of displacement operations and symplectic
transformations. Furthermore, the Bloch-Messiah decom-
position (95) shows us that any symplectic transformation
can be decomposed into a combination of multimode
interferometers and single-mode squeezing. In turn, inter-
ferometers can be decomposed as a combination of beam
splitters and phase shifters [134]. Indeed, we can choose
the set of Gaussian gates to be

ÛD(λ) := D̂(λ), (173)

ÛS(λ) := exp i[q̂(λ)q̂(�λ)+ q̂(�λ)q̂(λ)], (174)

ÛP(λ) := exp i[q̂(λ)2 + q̂(�λ)2], (175)

ÛBS(λ1, λ2) := exp i[q̂(λ1)q̂(λ2)+ q̂(�λ1)q̂(�λ2)],
(176)

where we note that λ, λ1, λ2 ∈ R2m are not normalized and
λ1 ⊥ λ2. These unitary operators describe a displacement,
a squeezer, a phase shifter, and a beam splitter, respec-
tively. We note that all these operations act on a single
mode, except for the beam splitter, which connects a pair
of modes. These transformations are referred to as a Gaus-
sian gate set; when we can implement all these gates in all
the modes of some mode basis, we can generate any mul-
timode Gaussian transformation, and thus any Gaussian
state.

To generate non-Gaussian unitary transformations and
thus non-Gaussian states, we need to add more unitary
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gates to the Gaussian gate set. The relevant question is thus
how many gates one should add and which gates are the
best choices. The answer to the first question is surprising:
one needs to add just one single gate [27]. The argument is
simple, when we consider the operators q̂(λ)3, we find that

[q̂(λ1)
3, q̂(λ2)

n] =q̂(λ1)
2[q̂(λ1), q̂(λ2)

n]

+ [q̂(λ1), q̂(λ2)
n]q̂(λ1)

2

+ q̂(λ1)[q̂(λ1), q̂(λ2)
n]q̂(λ1). (177)

With the canonical commutation relations we can show
that [q̂(λ1), q̂(λ2)

n] ∼ q̂(λ2)
n−1, which can be inserted into

Eq. (177) to obtain

[q̂(λ1)
3, q̂(λ2)

n] ∼q̂(λ1)
2q̂(λ2)

n−1 + q̂(λ2)
n−1q̂(λ1)

2

+ q̂(λ1)q̂(λ2)
n−1q̂(λ1). (178)

This calculation thus shows that commutation with the
operators q̂(λ)3 increases the order of the quadrature oper-
ators. Thus, with the quadratic Hamiltonians to generate
all operations that conserve the order of polynomials of
quadrature operators and q̂(λ)3 to increase the order of
the polynomial by one, we can ultimately generate the full
algebra of observables. On the level of unitary gates, this
implies that a full universal gate set is given by

U ={ÛD(λ), ÛS(λ), ÛP(λ), ÛBS(λ1, λ2), ÛC(λ)}, (179)

with ÛC := exp iq̂(λ)3. (180)

In other words, combining sufficiently many of these gates
allows us to built any arbitrary unitary transformation
generated by a Hamiltonian, which is polynomial in the
quadrature operators.

The non-Gaussian gate ÛC is known as the cubic phase
gate. The argument above shows that any experiment that
can implement Gaussian transformations and a cubic phase
gate can in principle generate any arbitrary non-Gaussian
state. Even though many protocols have been proposed to
experimentally realize a cubic phase gate [28,135–138],
any convincing implementations have yet to be demon-
strated. One of the key problems is that experimental
imperfections and finite squeezing are detrimental for the
most commonly proposed methods [30].

In principle, there is no particular reason to limit our
attention to cubic phase gates. Already in the very first
work on the subject it is argued that essentially any Hamil-
tonian of a higher than quadratic order can be used as a
generator [26]. Thus, optical processes that perform pho-
ton triplet generation can also be used as a non-Gaussian
gate, which can even be converted into the cubic phase
gate [139]. This requires well-controlled high χ(3) nonlin-
earities, which are generally only achieved by using exotic

nonlinear crystals or well-controlled individual atoms.
Handling such setups with a sufficient degree of con-
trol to actually implement a quantum gate is extremely
challenging.

Other CV systems are more appropriate for the imple-
mentation of non-Gaussian unitary transformations. In
particular, the systems used in circuit QED have such non-
Gaussian contributions in their Hamiltonians [140,141],
which suggests that they may be more capable of determin-
istically generating non-Gaussian states than their optical
counterparts. Still, the characterization, detection, and con-
trol of such states is expected to be challenging. Recently,
some important progress was made by demonstrating
triplet generation in these systems [142].

B. Conditional methods

The experimental difficulties that are encountered when
trying to implement non-Gaussian unitary transformations
can be circumvented by abandoning the demand of unitar-
ity. This implies that we no longer consider operations that
can be implemented deterministically, but rather resort to
what can be broadly referred to as conditional operations.
This idea was formalized by Kraus when characterizing the
most general ways of manipulating quantum states [143].

In the most general sense, we can implement a condi-
tional operation by taking a set of linear operators on Fock
space X̂1, X̂2, . . . and acting on the state in the following
way:

ρ̂ �→
∑

j X̂j ρ̂X̂ †
j

tr[ρ̂
∑

j X̂ †
j X̂j ]

. (181)

This formalism is typically implemented by performing
some form of generalized measurement on the state ρ̂
[144]. When ρ̂ is a deterministically generated Gaus-
sian state, the action of a well-chosen set of operators
X̂1, X̂2, . . . can turn it into a non-Gaussian state. In optics,
two of the most well-known examples of this technique are
single-photon addition and subtraction. In both cases, there
is only a single operator X̂1. For photon addition, we imple-
ment X̂1 = â†(f ), whereas photon subtraction requires the
realization of a case where X̂1 = â(f ).

In many physical setups, and, in particular, in optics,
the problem is that measurements are destructive and a
measurement effectively removes the measured mode from
the system. Therefore, it is common to prepare large mul-
timode Gaussian states of which a subset of modes is
measured in order to conditionally prepare a non-Gaussian
state in the remaining modes. We now introduce a general
framework to describe the non-Gaussian Wigner functions
that are created accordingly [39].
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Source
g

WÂ(xg)

W (x)
Wf |Â(xf )

f

FIG. 3. Sketch representation of the conditional preparation
scheme for creating the non-Gaussian states described by Eq.
(190). Note that both f and g can be highly multimode. The
Wigner function shown on the right is obtained by a conditional
protocol shown in Ref. [39].

1. General framework

First of all, let us consider a general multimode phase
space and separate it into two subsystems, i.e., R2m =
R2l ⊕ R2l′ , where we perform some generalized measure-
ment on the l′ modes and leave the remaining l modes
untouched. This introduces a general structure in the points
of phase space x ∈ R2m, which can now be written as
x = xf ⊕ xg with xf ∈ R2l and xg ∈ R2l′ . The general pro-
cedure is schematically outlined in Fig. 3 and we present
the details step by step.

Any state ρ̂ on this system then comes with a Wigner
function W(x) = W(xf ⊕ xg) that is defined on the global
phase space. This state can be reduced to one of the two
subsystems by tracing out the other subsystem, which can
be described on the level of the Wigner function by the
following integrals:

Wf(xf) :=
∫

R2l′
dxgW(xf ⊕ xg), (182)

Wg(xg) :=
∫

R2l
dxfW(xf ⊕ xg). (183)

When the state is Gaussian and the Wigner function is
given by Eq. (85), the structure of the phase space is
reflected in the mean field vector ξ and in the covariance
matrix V:

ξ = ξf ⊕ ξg, (184)

V =
(

Vf Vfg
Vgf Vg

)
, (185)

with Vfg = VT
gf. The matrices Vf and Vg describe all the

variances and correlations of the modes within R2l and
R2l′ , respectively. In addition, the submatrix Vgf contains
all the correlations between the modes in the different
subspaces, which will be important for conditional state
preparation. One can show that for such Gaussian states,
the reduced states are also Gaussian, for the modes in R2l

given by

Wf(xf) = e− 1
2 (xf−ξf)TV−1

f (xf−ξf)

(2π)m
√

det Vf
, (186)

and analogously for the modes in R2l′ . As Gaussian states
are the states that are least challenging to produce, they
form the starting point of the conditional state preparation
scheme.

As a next step, we must implement some form of oper-
ation on the modes that correspond to the phase space
R2l′ . To do so, we consider the action of a general posi-
tive operator-valued measure (POVM) element Â � 0 that
corresponds to a specific measurement outcome. We can
then obtain a conditional state via

ρ̂f|A := trg[Âρ̂]

tr[Âρ̂]
. (187)

The partial trace trg[Âρ̂] runs only over the modes in R2l′

because the other modes are left untouched. The denom-
inator tr[Âρ̂] renormalizes the state and gives the prob-
ability of actually obtaining the measurement result that
corresponds to Â. In an actual experiment, this operation
is implemented by many repeated measurements of the
modes in R2l′ and Â corresponds to a specific detector out-
put of these measurements. The nonmeasured part of the
state is only used when the detector indicates this specific
output, otherwise it is simply discarded. This conditional
selection of the state significantly changes the properties
of the state in a way that is strongly influenced by Â.

As we described in Eq. (42), the operator Â comes with
an associated phase-space representation WA(xg), which
can be used to formally describe the phase-space represen-
tation of ρ̂f|A:

Wf|A(xf) =
∫

R2l′ dxgWA(xg)W(xf ⊕ xg)∫
R2l′ dxgWA(xg)Wg(xg)

. (188)

There is a more practical way of expressing this Wigner
function by exploiting the fact that the initial multi-
mode Wigner function W(xf ⊕ xg) is positive and there-
fore describes a well-defined probability distribution on
phase space. This implies that the conditional probability
distribution

W(xg | xf) := W(xf ⊕ xg)

Wf(xf)
, (189)

is also a well-defined probability distribution, which is
obtained when we fix one point in phase space xf ∈ R2l

and look at the probability distribution for the remaining
modes in R2l′ . We can then use this conditional probability
distribution to write W(xf ⊕ xg) = W(xg | xf)Wf(xf), which
can be inserted in Eq. (188) to find

Wf|A(xf) = 〈Â〉g|xf

〈Â〉
Wf(xf), (190)
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where we define

〈Â〉 := (4π)l
′
∫

R2l′
dxgWA(xg)Wg(xg), (191)

〈Â〉g|xf := (4π)l
′
∫

R2l′
dxgWA(xg)W(xg | xf). (192)

The quantity 〈Â〉 is simply the expectation value of the
observable Â in the state ρ̂. 〈Â〉g|xf , on the other hand,
is the expectation value of the function WA(xg) where
xg is distributed according to the distribution W(xg | xf),
which makes 〈Â〉g|xf a function of the selected phase-space
point xf. However, even though W(xg | xf) is a well-defined
probability distribution on phase space, it does not neces-
sarily correspond to a quantum state. Indeed, W(xg | xf)

may violate the Heisenberg inequality, which will be of
vital importance in Sec. V as it is narrowly connected to
quantum steering.

In the specific case where W(xf ⊕ xg) is Gaussian, we
find that W(xg | xf) is also a Gaussian probability distribu-
tion, given by

W(xg | xf) =
exp

[
− 1

2 (xg − ξg|xf)
TV−1

g|xf
(xg − ξg|xf)

]

(2π)l′
√

det Vg|xf

.

(193)

Using the notation of Eq. (185), we express its covariance
matrix

Vg|xf = Vg − VgfV−1
f VT

gf, (194)

and mean field vector

ξg|xf = ξg + VgfV−1
f (xf − ξf). (195)

The covariance matrix Vg|xf is known in the mathematics
literature [145] as the Schur complement of V. The Schur
complement has interesting properties, for example, V is a
positive matrix if and only if the same holds for the Schur
complement Vg|xf . This immediately implies that the Gaus-
sian probability distribution in Eq. (193) is well defined.
Furthermore, the Schur complement also plays an impor-
tant role in the theory of Gaussian quantum correlations
[146]. It should be noted that Vg|xf does not actually depend
on the chosen value for xf. Thus, the conditional expecta-
tion value 〈Â〉g|xf depends only on the phase-space point xf

through the displacement ξg|xf . This is a particular feature
of Gaussian states.

Finally, remark that the derivation of Eq. (190) holds
true for all initial states with a positive Wigner function.
Whenever the initial multimode Wigner function W(xf ⊕
xg) is positive, it follows that Wf(xf) is also positive.
Furthermore, given that 〈Â〉 is the quantum expectation

value of a positive semidefinite operator it clearly also is
a positive quantity. Hence, Wigner negativity is entirely
contained with 〈Â〉g|xf . The fact that 〈Â〉g|xf can take neg-
ative values is exactly due to W(xg | xf) not being the
Wigner function of a quantum state. Furthermore, Eq.
(192) teaches us that the conditionally generated Wigner
function Wf|A(xf) can only achieve negative value when
WA(xg) is nonpositive.

Thus, in order to conditionally prepare a state with
Wigner negativity, one faces strict requirements, on both
the POVM element Â that is conditioned upon and on
the conditional probability distribution W(xg | xf) that is
obtained from the initial multimode state. We discuss this
point in greater detail in Sec. B. For a more experimentally
inclined perspective on the production of non-Gaussian
states, we refer to Ref. [81].

Before we move on to consider photon subtraction as
an example of conditional creation of non-Gaussian states,
let us take for a moment the opposite process: Gaussifi-
cation. The authors of Ref. [147] consider several copies
of an initial non-Gaussian state, which are mixed through
linear optics and subsequently some output modes are
measured with on-off detectors. The conditioning is done
of the events where no photons are detected, and such that
we can interpret Â as a projector in vacuum. By repeating
several iterations of this scheme (assuming many success-
ful conditioning events), the initial non-Gaussian state is
converted into a Gaussian state. The Gaussification pro-
cess thus relies on starting from a non-Gaussian state and
conditioning by projecting on a Gaussian state: the vac-
uum. This point of view nicely complements our approach
to create non-Gaussian states.

2. An example: photon subtraction

Single-photon subtracted states are theoretically obtained
by acting with an annihilation operator on the state. Their
density matrices are given by

ρ̂− = â(b)ρ̂â†(b)
tr[â†(b)â(b)ρ̂]

, (196)

if the photon is subtracted in one specific mode b. In prac-
tice [129,148,149], we can implement this operation on
the state ρ̂ through a mode-selective beam splitter Û =
exp{θ [â†(g)â(b)− â†(b)â(g)]}, that couples the mode b to
an auxiliary mode g, which is prepared in a vacuum state.
We thus describe the action of the beam splitter on the sys-
tem of interest and the auxiliary mode as Û(ρ̂ ⊗ |0〉 〈0|)Û†.
As a next step, we mount a photon detector on one of the
output modes of the beam splitter. This detector is cru-
cial to make sure that no information is lost, without it we
would effectively trace out the mode and the beam split-
ter would simply induce losses. In contrast, we condition
on the specific events where the detector counts a single
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photon, we generate the state

ρ̂−
θ = trg[Û(ρ̂ ⊗ |0〉 〈0|)Û†(1⊗ |1〉 〈1|)]

tr[Û(ρ̂ ⊗ |0〉 〈0|)Û†(1⊗ |1〉 〈1|)] . (197)

The reader can now recognize Eq. (187). As a next step, we
assume that the beam splitter is transmitting nearly all the
incoming light, such that θ → 0. We can then approximate
Û ≈ 1+ θ [â†(g)â(b)− â†(b)â(g)]. Then, when we insert
this approximation in the expression for ρ̂−

θ , we find that
only the terms proportional to θ2 survive such that

ρ̂− = lim
θ→0

ρ̂−
θ = â(b)ρ̂â†(b)

tr[â†(b)â(b)ρ̂]
. (198)

A much more detailed analysis of multimode photon sub-
traction with imperfect mode selectivity can be found in
Ref. [150]. We note that through this approach, photon sub-
traction can be understood as a weak measurement of the
number of photons [151].

We can now derive the Wigner function of a single-
photon-subtracted state through Eq. (193) by following the
idea of Eq. (197). We initially start from a Gaussian state
with covariance matrix Vf and one auxiliary mode that is
prepared in the vacuum

Vini =
(

Vf 0
0 1

)
. (199)

We then implement a mode-selective beam splitter that
mixes one specific mode b with the auxiliary vacuum
mode, following the scheme outlined in Fig. 4. An effec-
tive way to describe such a transformation is by designing
a new mode basis B, which has b as one of the modes in
the mode basis. We complete the basis with complemen-
tary modes bc

1, . . . bc
m−1, such that the modes basis of phase

space is given by B = {bc
1,�bc

1, . . . , bc
m−1,�bc

m−1, b,�b}.
Thus, we can perform such a basis change as

(
Vf 0
0 1

)
�→

(
OT

B 0
0 1

) (
Vf 0
0 1

) (
OB 0
0 1

)
, (200)

where the matrix of basis change is given by

OB =
⎛

⎝
| | | | | |
bc

1 �bc
1 . . . bc

m−1 �bc
m−1

b �b
| | | | | |

⎞

⎠ .

(201)

It is now instructive to explicitly write the rows and
columns corresponding to mode b:

OT
BVfOB =

(
Vc

f Vcb
f

Vbc
f Vb

f

)
. (202)

Note that Vb
f is the 2 × 2 matrix that describes the ini-

tial state covariances of mode b, while Vc
f is the (m −

1)× (m − 1) that describes all the covariances in the com-
plementary modes. The rectangular matrices Vcb

f and Vbc
f

contain all the correlations between the mode b and the
complementary modes in the basis. Now, we mix the mode
b and the auxiliary vacuum mode on a beam splitter. This
beam splitter is implemented by the transformation

V(B)BS = O(B)
BS

⎛

⎝
Vc

f Vcb
f 0

Vbc
f Vb

f 0
0 0 1

⎞

⎠ O(B)
BS

T
, (203)

where O(B)
BS is given by

O(B)
BS =

⎛

⎝
1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1

⎞

⎠ . (204)

As a final step, we change the basis back to the original
basis, such that the final state’s covariance matrix becomes

V =
(

OB 0
0 1

)
V(B)BS

(
OT

B 0
0 1

)
. (205)

We can now rewrite this entire transformation such that the
matrix V in Eq. (185) is given by

V = OBSViniOT
BS, (206)

with

OBS =
(

OB 0
0 1

)
O(B)

BS

(
OT

B 0
0 1

)

=
(
(cos θ − 1)BBT + 1 sin θ B

− sin θ BT cos θ1

)
. (207)

We introduce the 2m × 2 matrix B, which implements the
mode selectivity of the beam splitter in mode b and is
defined as

B =
⎛

⎝
| |
b �b
| |

⎞

⎠ . (208)

Hence, we can simply use OBS as a mode-selective beam
splitter that mixes one specific mode of a multimode state
with the auxiliary mode. We should highlight that OBS ulti-
mately turns out to be independent of the complementary
modes bc

1, . . . bc
m−1. This means that the finer details of the

interferometer OB are not important for the final OBS, the
key point is that OB changes towards a mode basis in which
b and �b are basis vectors of the phase space.

For the particular case of photon subtraction, we con-
sider a very weak beam splitter, such that we consider the
limit θ → 0. In this case, we can express the conditional
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OT
B OB

O
(B)
BS

f

b

f

OBS

g

WA(xg)

FIG. 4. Schematic representation of an implementation of
mode-selective photon subtraction. See main text for details. For
illustration, the initial state on the left is a product of single-
mode squeezed vacuum states, but the protocol can in principle
be applied to any Gaussian state.

mean field, Eq. (195), and covariance matrix, Eq. (194), of
the auxiliary mode g by

ξg|xf ≈ θ(Vbf − BT)V−1
f (xf − ξf)+ θ ξb

= θBT(1− V−1
f )(xf − ξf)+ θ ξb (209)

Vg|xf ≈ 1+ θ2 [
Vb − 1− (Vbf − BT)V−1

f (Vfb − B)
]

,

= 1+ θ2 (
1− BTV−1

f B
)

, (210)

where we introduce the matrices Vb = BTVfB, Vb f = BTVf,
and Vfb = VfB as well as the vector ξb = BTξf. We can then
use these quantities to evaluate that

W(xg | xf) ≈ e− 1
2 ‖xg‖

(2π)m

(
1 + θ xT

g · BT(1− V−1
f )(xf − ξf)

+ θxT
g · ξb + θ2

2
[
(xT

g · BT(1− V−1
f )(xf − ξf)

+ xT
g · ξb)

2 − ‖BT(1− V−1
f )(xf − ξf)+ ξb‖2

+ xT
g

(
1− BTV−1

f B
) xg

] + O(θ3)
)

. (211)

As a next step, we must choose a POVM element Â to mea-
sure. In the case of photon subtraction, we mount a photon
counter on the auxiliary mode and for single-photon sub-
traction we condition on the event where this detector
detects exactly one photon. Because we use a very weakly
reflective beam splitter, the probability of obtaining such
an event is small but when it occurs, we have created a
photon subtracted state on the remaining modes.

On a theoretical level, mounting a photon counter and
conditioning on a single photon is translated to choosing

Â = ∣∣1g
〉 〈

1g
∣∣. We already encountered the corresponding

Wigner function in Eq. (118), and thus we can combine
this with Eq. (211) to obtain

〈Â〉g|xf = 4π
∫

R2
dxgW1g (xg)W(xg | xf)

≈ θ2

2

(
‖BT(1− V−1

f )(xf − ξf)+ ξb‖2

+ tr
[
1− BTV−1

f B
] )

+ O(θ3), (212)

and in a similar fashion we find that

0〈Â〉 = 4π
∫

R2
dxgW1g (xg)Wg(xg)

≈ θ2

2

(
tr [Vb − 1] + ‖ξb‖2

)
+ O(θ3). (213)

The actual evaluation of these integrals is not completely
straightforward. As a key idea, we use that the integral
takes the form of a polynomial multiplied by a Gaussian.
We can thus evaluate the expectation value of the polyno-
mial with respect to this Gaussian distribution. In essence,
this boils down to calculating a set of moments of a Gaus-
sian probability distribution. We see rather quickly that the
lowest orders in θ vanish, such that the leading order is θ2.
Putting everything together, we find that

lim
θ→0

Wf|A(xf) = lim
θ→0

〈Â〉g|xf

〈Â〉
Wf(xf)

= ‖BT(1− V−1
f )(xf − ξf)+ ξb‖2 + tr

[
1− BTV−1

f B
]

tr (Vb − 1)+ ‖ξb‖2

Wf(xf). (214)

As such, we obtain the Wigner function for a multi-
mode photon-subtracted state. This Wigner function can
be obtained using several different methods, ranging from
algebraic [152,153] to analytical [154]. The difference
between those approaches and our method here is that we
do not directly use the properties of the annihilation oper-
ator, but rather model the exact experimental setup, while
relying entirely on phase-space representations.

The methods presented here for treating photon-
subtracted states can straightforwardly be extended to the
subtraction of multiple photons in different modes and
we can easily replace photon-number-resolving detection
with an on-off detector by setting Â = 1− |0〉 〈0|. The
techniques used in the calculations remain essentially the
same and it yields the same result in the θ → 0 limit
(doing this calculation may prove to be a good exercise
for the motivated reader). However, any real implementa-
tion of a photon-subtraction experiment will use a beam
splitter with finite reflectivity, such that there will be a
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difference between on-off detectors and photon-number-
resolving detectors due to the small contributions of higher
order terms in θ . In practice, one chooses the reflectivity of
the beam splitter with respect to the energy content of the
initial state to effectively suppress all higher-order terms
in Eq. (211). In the single-mode case, an early thorough
analysis of the implementation of photon subtraction can
be found in Ref. [155]. There are also proposals in the
literature to use a photon-subtraction setup with larger val-
ues of θ to gain an additional advantage in quantum state
preparation [156–158].

As a final note, we point out that a similar treatment can
be used to describe photon-added states, which are also
relevant in experiments [159,160]. It is perhaps surprising
that such a state can be obtained by performing a measure-
ment on a part of a Gaussian state, but it suffices to replace
the beam splitter in Eq. (197) with a two-mode squeezer. In
other words, we set Û = exp{θ [â†(g)â†(b)− â(b)â(g)]},
and consider again the limit where the parameter θ is small,
i.e., weak squeezing. Even though this is a simple step in
theory, it is much harder in an actual experimental setting.
Photon subtraction can be implemented with a passive lin-
ear optics element, while photon addition always requires
squeezing and thus a nonlinear optics implementation.

V. NON-GAUSSIAN STATES AND QUANTUM
CORRELATIONS

In this section, we explore the interplay between non-
Gaussian effects and quantum correlations. First, in Sec.
A, we provide a crash course to introduce the unfamiliar
reader to the most important types of quantum correla-
tions: entanglement, steering, and Bell nonlocality. In Sec.
B we subsequently highlight how certain types of quan-
tum correlations can be used to create certain types of
non-Gaussian states via the methods of Sec. B. In Sec. C,
we then explore how non-Gaussian operations can create
or enhance quantum correlations by focusing on photon-
subtracted states. Finally, we explore the role that is played
by non-Gaussian states in Bell inequalities in Sec. D.

A. Quantum correlations: a crash course

We start by giving a quick introduction to the differ-
ent kinds of common quantum correlations. Readers who
want to get a more thorough overview on these subjects are
referred to Refs. [161–163] as natural starting points.

In this Tutorial, we solely consider bipartite quantum
correlations. This implies that we structure the system in
a similar way as in Sec. B and divide the m-mode sys-
tem in two parts, each with their own phase space, i.e.,
R2m = R2l ⊕ R2l′ . It is noteworthy that the corresponding
Fock space takes the structure �(Hm) = �(Hl)⊗ �(Hl′),
where we again use the mapping, Eq. (44), between the
phase space R2k and the k-dimension Hilbert space Hk.

These structures are crucial to understand quantum corre-
lations.

1. Correlations

To better understand quantum correlations, it is useful to
start by generally defining what a correlations is. In a statis-
tical sense, two stochastic variables X and Y are correlated
when the expectation values have the following property:

E(XY) �= E(X )E(Y). (215)

This can be translated to the level of probability distri-
butions by stating that the joint probability distribution
for outcomes X = x and Y = y is not the product of the
marginals

P(x, y) �= P(x)P(y), (216)

where

P(x) =
∫

Y
dy P(x, y), and P(y) =

∫

X
dx P(x, y). (217)

Here, X and Y denote the possible outcomes of the
stochastic variables X and Y, respectively [164].

When we talk about quantum systems, there are gener-
ally many observables that can be considered. When we
consider a global multimode system with phase space R2m

and two subsystems with phase spaces R2l and R2l′ , there
is a whole algebra of observables involved. The role of
the stochastic observables X and Y will be taken up by
local observables X̂ and Ŷ that are contained in the observ-
able algebra generated by, respectively, q̂(f ) and q̂(g),
with f ∈ R2l and g ∈ R2l′ . These local observables are
correlated when

tr(X̂ ⊗ Ŷρ̂) �= tr(X̂ ρ̂f)tr(Ŷρ̂g), (218)

where ρ̂f and ρ̂g are the marginals (or reduced states) of ρ̂
for the subsystems R2l and R2l′ .

When we talk about correlated systems rather than cor-
related observables, we consider that there exists a pair
of local observables such that Eq. (218) holds. Thus, if
two systems are not correlated, it follows that for all pos-
sible observables tr(X̂ ⊗ Ŷρ̂) = tr(X̂ ρ̂f)tr(Ŷρ̂g). This lack
of correlations can be expressed on the level of the quan-
tum state by the identity ρ̂ = ρ̂f ⊗ ρ̂g. On the level of
Wigner functions, we can therefore say that a state contains
correlations if the Wigner function satisfies

W(xf ⊕ xg) �= Wf(xf)Wg(xg), (219)

where the marginal Wigner functions are defined as in Eqs.
(182), (183).
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It is clear that correlations between systems can occur,
both, in the context of classical probability theory and
in quantum theory. However, we already established that
quantum physics imposes additional constraints on the
statistics of observables, which ultimately make it impossi-
ble to describe CV quantum systems in terms of probability
distributions on phase space. Similarly, quantum physics
leads to new features for the correlations of subsystems.
Thus, in our study of quantum correlations we explore cor-
related systems, in the sense of Eq. (219), and we seek
to differentiate between correlations that are of classical
origin and those that can be attributed to a quantum origin.

2. Quantum entanglement

Quantum entanglement is probably the most well-
known type of quantum correlation. The notion of entan-
glement derives directly from the structure of the quantum
state space and is related to the contrast between pure states
in classical and quantum physics.

To understand this contrast, we loosely follow the idea
of Ref. [165]. Let us be a bit more precise as to what
is meant with pure states in classical physics in the con-
text of CV systems. Classically, in a context of statistical
mechanics, any CV system can be described by a prob-
ability distribution on phase space. From a mathematical
point of view, this means that the space containing all the
possible classical states is a convex set because any con-
vex combination of two probability distributions is again
a probability distribution. Pure states are formally defined
as the extreme points of the convex set, i.e., the states
that cannot be decomposed as being a convex combina-
tion of two other states. In a classical theory, where states
can unambiguously be represented by probability distribu-
tions on phase space, the pure states are delta functions
centered on the different points of phase space. From a
physical point of view, this corresponds to the intuition
that pure states are “the least noisy” states, which simply
corresponds to a single point in phase space.

For our phase space R2m = R2l ⊕ R2l′ these delta func-
tions factorize with respect to the subsystems, i.e., δ(x −
x′) = δ(xf − x′

f)δ(xg − x′
g), with x, x′ ∈ R2m, xf, x′

f ∈ R2l,
and xg, x′

g ∈ R2l′ . In the light of Eq. (216) we thus conclude
that pure states of classical systems are always uncorre-
lated [166]. Any correlations that are present in classical
states are thus obtained by taking a convex combination of
uncorrelated pure states.

In quantum systems, pure states are represented by state
vectors in a Hilbert space (in our case Fock space). They
also can be seen as the extreme points of a convex set of
states that contains all density matrices ρ̂. As we saw in the
example where we discussed the Hong-Ou-Mandel state
|HOM〉 in Eq. (165), pure quantum states can actually be
correlated in the sense of Eq. (219). This crucial difference

between classical and quantum pure states lies at the basis
of quantum entanglement.

The notion of entanglement derives directly from the
structure of the quantum state and is defined as the opposite
of a separable state. For pure states, separable states |�〉 ∈
�(Hm) are the pure states that are uncorrelated and can
thus be written as |�〉 = |�l〉 ⊗ |�l′ 〉 with |�l〉 ∈ �(Hl)

and |�l′ 〉 ∈ �(Hl′). All other pure states are said to be
entangled. They possess correlations that are not due to
some type of convex combination of uncorrelated states,
something which is impossible for classical pure states.

The situation is more subtle when considering mixed
states, i.e., convex combinations of pure states. Convex
mixtures of classical pure states can also show correlations,
and it is therefore crucial to make a distinction between this
type of classical correlations and quantum correlations.
Due to the structure of classical pure states, we find that
any classical joint probability distribution on phase space
can be written as a convex combination of local probability
distributions

P(xf ⊕ xg) =
∫

dγ p(γ )P(γ )(xf)P(γ )(xg), (220)

where γ is some arbitrary way of labeling states, dis-
tributed according to distribution p(γ ). This notion of
classical correlations can directly be generalized to quan-
tum states [167], and thus a mixed state is said to be
separable when all of its correlations are classical, i.e.,
when it is a convex mixture of product states

ρ̂ =
∫

dγ p(γ )ρ̂(γ )f ⊗ ρ̂(γ )g . (221)

In the language of Wigner functions, the separability con-
dition translates to

W(xf ⊕ xg) =
∫

dγ p(γ )W(γ )

f (xf)W(γ )
g (xg), (222)

where we again use the definitions of Eqs. (182), (183).
Quantum states that cannot be described by a Wigner func-
tion of the form Eq. (222) are not separable and are said to
be entangled.

Hence, quantum entanglement describes the origin of
the quantum correlations rather than their properties. Nev-
ertheless, the set of separable states is a convex set and thus
the Hahn-Banach separation theorem [168,169] teaches us
that it is in principle possible to use observables to dis-
tinguish between separable and entangled states. In this
sense the difference between entangled and separable states
is measurable. For the sake of uniformity, we highlight
that separable states lead to the following measurement
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statistics of local observables X̂ and Ŷ:

P(x, y) =
∫

dγ p(γ )P(γ )
ρ̂
(x)P(γ )

ρ̂
(y). (223)

It is crucial to emphasize that the distributions of measure-
ment outcomes P(γ )

ρ̂
(x) and P(γ )

ρ̂
(y) are governed by the

laws of quantum physics. Formally, we can use the spectral
theorem to write

X̂ =
∫

X
dx xÊx, and Ŷ =

∫

Y
dy yÊy , (224)

such that Êx and Êy are the POVM elements that cor-
respond to the measurement outcomes x and y for the
measurement of the (generalized) observables X̂ and Ŷ,
respectively. The probability distribution P(γ )

ρ̂
(x) is then

given by

P(γ )
ρ̂
(x) = tr[Êxρ̂

(γ )

f ] = (4π)l
∫

R2l
dxf WEx(xf)Wf(xf),

(225)

and analogously for P(γ )
ρ̂
(y).

For separable states, Eq. (223) with local probability dis-
tribution given by Eq. (225) holds for any arbitrary pair
of local observables. The model that is described by these
equations is known as a local hidden variable model for
quantum entanglement, where γ is the hidden variable. We
may not necessarily know the origins and behavior of γ ,
but the model generally captures two important elements.
First, all correlations are induced by the common vari-
able γ that governs the convex mixture. Second, the local
probability distributions P(γ )

ρ̂
(x) and P(γ )

ρ̂
(y) have a quan-

tum origin. For CV systems the latter point, for example,
implies that these local probability distributions must sat-
isfy the Heisenberg inequality. These quantum constraints
on the local probability distributions P(γ )

ρ̂
(x) and P(γ )

ρ̂
(y)

are typically useful for the falsification of the local hidden
variable model, Eq. (223), and thus prove the presence of
quantum entanglement [170,171].

3. Quantum steering

In a formal sense, quantum steering is a rather recent
addition to the family of quantum correlations. Neverthe-
less, it is exactly this phenomenon that lies at the basis
of the Einstein-Podolsky-Rosen (EPR) paradox [172].
Schrödinger’s response to the EPR paper [173,174] lies at
the basis of what we now call quantum steering, but the
broader implications of these results were only sporadi-
cally discovered and formalized [175,176].

Just like for quantum entanglement, a system is said
to be steerable if the measurement statistics cannot be
explained in terms of a local hidden variable model. A

peculiarity of quantum steering is that it involves a cer-
tain directionality, where one of the subsystems is said
to “steer” the other subsystem. This asymmetry is repre-
sented in the local hidden variable model, which takes the
following form:

P(x, y) =
∫

dγ p(γ )P(γ )(x)P(γ )
ρ̂
(y), (226)

where we emphasize the striking resemblance to Eq. (223).
Note that, contrary to the case of quantum entanglement,
we now allow the probability distribution P(γ )(x) for the
first subsystem to be arbitrary and thus do not impose any
constraints of quantum theory on it. If there exist observ-
ables X̂ and Ŷ for which the probability distribution is not
consistent with the model, Eq. (226), the subsystems with
phase space R2l is able to steer the subsystem with phase
space R2l′ .

Quantum steering is perhaps most logically explained
in terms of conditional states and probability distributions.
For nonsteerable states, the local hidden variable model,
Eq. (226), must hold for all observables, which in turn
imposes conditions on the level of states. Here these con-
ditions manifest on the level of conditional states of the
type Eq. (187). To see this, we consider the conditional
probability distribution associated with Eq. (226):

P(y | x) =
∫

dγ p(γ )P(γ )(x)P(γ )
ρ̂
(y)

P(x)
, (227)

where the probability to obtain a certain outcome X̂ = x is
given by

P(x) =
∫

dγ p(γ )P(γ )(x). (228)

Note that for any x the function

P̃(γ | x) := p(γ )P(γ )(x)
P(x)

(229)

is a well-defined probability distribution. Furthermore, if
we demand that Eq. (227) holds for all observables Ŷ, we
find the following condition for the conditional state:

ρ̂g|X̂ =x =
∫

dγ P̃(γ | x)ρ̂(γ )g . (230)

Because quantum steering is a property of the state, we
again require Eq. (230) to hold for all observables X̂ for a
state to not be steerable.

The local hidden variable model, Eq. (226), and the con-
sequence for the conditional state, Eq. (230), may seem
stringent, but it is often intricate to formally prove that
such a model cannot explain observed data. It turns out
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that computational methods based on semidefinite pro-
gramming [177] are well suited to prove that the set of all
possible conditional states is inconsistent with Eq. (230).
A more physical point of view is based on developing
steering inequalities [178]. As a notable example, one
can derive a type of conditional Heisenberg inequality
for states of the form Eq. (230). The local hidden vari-
able model, Eq. (226), assumes that the laws of quantum
physics constrain the measurement statistics in the second
subsystem. We can then define the conditional variance of
an arbitrary observable Ŷ

	2(Ŷ | X̂ = x) := tr[Ŷ2ρ̂g|X̂ =x] − tr[Ŷρ̂g|X̂ =x]2, (231)

which leads to the “average inference variance”

	2
inf(Ŷ) :=

∫

X
dxP(x)	2(Ŷ | X̂ = x), (232)

that characterizes the precision with which we can infer the
measurement outcome of Ŷ, given a measurement outcome
of X̂ . Under the assumption that Eq. (230) holds, we can
than prove the inference Heisenberg inequality [178]

	2
inf(Ŷ1)	

2
inf(Ŷ2) � 1

2

∫

X3

dxP(x)
∣∣∣tr

(
[Ŷ1, Ŷ2]ρ̂g|X̂3=x

)∣∣∣
2

,

(233)

where 	2
inf(Ŷ1) and 	2

inf(Ŷ2) can be conditioned on any
observables X̂1 and X̂2, respectively.

Thus, whenever one performs a series of condi-
tional measurements that violate the inference Heisenberg
inequality (233), the assumption (230) cannot hold and
thus the measurements in the subsystem with phase space
R2l have steered those in the subsystem with phase space
R2l′ . In more colloquial terms, the inequality (233) sets
a limit on the precision with which classical correlations
between observables can be used to infer measurement out-
comes of one quantum subsystem, based on measurement
outcome of the other subsystem (regardless of whether it
is quantum or not). Quantum correlations allow us to out-
perform these bounds and provide better inference than
classically possible, and this phenomenon is the essence
of quantum steering.

Now let us now express Eq. (233) for quadrature opera-
tors:

	2
inf[q̂(g1)]	2

inf[q̂(g2)] �
∣∣gT

1�g2
∣∣2 , (234)

where g1, g2 ∈ R2l′ . As a next step, we must understand the
properties of the average inference variance 	2

inf[q̂(g1)],
which we obtain by conditioning on a quadrature observ-
able in the other subsystem’s phase space R2l. More specif-
ically let us assume that we condition on measurements of

q̂(f1), such that we must evaluate the conditional variance
	2[q̂(g1) | q̂(f1) = x]. The conditional variance	2[q̂(g1) |
q̂(f1) = x] is then given by the matrix element of the
covariance matrix that describes W(xg | xf1) as defined in
Eq. (193):

	2[q̂(g1) | q̂(f1) = x] = gT
1

[

Vg − Vg f f1 f T
1 Vfg

f T
1 Vf f1

]

g1,

(235)

because the quantity does not depend on the actual out-
come that is postselected upon, we find that

	2
inf[q̂(g1)] = gT

1

[

Vg − Vg f f1 f T
1 Vfg

f T
1 Vf f1

]

g1, (236)

	2
inf[q̂(g2)] = gT

2

[

Vg − Vg f f2 f T
2 Vfg

f T
2 Vf f2

]

g2. (237)

From Eqs. (236) and (237) we can deduce that
	2

inf[q̂(g)] � gTVg|xf g for all g ∈ R2l′ regardless of the
q̂(f ) that is conditioned upon. Thus, if Vg|xf satisfies the
Heisenberg inequality the inference Heisenberg inequality
(234) is also satisfied.

The setting with homodyne measurements, or more gen-
eral Gaussian measurements, is close to the system that is
discussed in Ref. [172]. For this reason, we refer to quan-
tum steering with Gaussian measurements as EPR steering
in contrast to more general quantum steering. This type of
steering has been studied extensively in the literature, e.g.,
[176,179–181] and will be a key element in Sec. 2.

Note that both subsystems clearly play a very different
role in this setting. The first subsystem simply produces
measurement results of different observables. The infor-
mation of these measurements in the first subsystem is
then used to infer measurement results in the second sub-
system, which is assumed to be a quantum system. In a
quantum communication context, this asymmetry corre-
sponds to a level of trust: we position ourselves in the
steered system and trust that our system is a well-behaved
quantum system, but we do not trust the party that controls
the other subsystem (up to a point where we do not even
want to assume that the data that are communicated to us
come from an actual quantum system). The violation of a
steering inequality practically allows verification in such a
setting that there is indeed a quantum correlation between
the two subsystems [182].

The inference Heisenberg inequality (233) shows that
quantum steering describes certain properties of the quan-
tum correlations. States that can perform quantum steering
thus possess correlations that can be used to infer mea-
surement outcomes better than any classical correlations
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could. These correlations cannot be described by a hid-
den variable model of the form Eq. (226), which is more
general than the model, Eq. (223). Thus, all states that pro-
duce statistics consistent with Eq. (223) are also consistent
with Eq. (226) such that states that can perform steering
must be entangled. However, there are states that produce
statistics that is consistent with Eq. (226), but inconsistent
with Eq. (223). In other words, not all entangled states can
be used to perform quantum steering. In this sense, quan-
tum steering can be said to be “stronger” than quantum
entanglement.

4. Bell nonlocality

To date, the seminal work of John S. Bell on the
Einstein-Podolsky-Rosen paradox [183] is probably one of
the most remarkable findings on the foundations of quan-
tum physics. What most had long taken for granted, the
existence of local hidden variables to explain the proba-
bilistic nature of quantum physics, turned out to be incon-
sistent with the theoretical quantum formalism. It is here
that we find the real historical origin of the concept of
quantum correlations as something fundamentally different
from classical ones.

As for quantum entanglement and steering, the story
of Bell nonlocality starts from a local hidden variable
model that bears a strong resemblance to Eqs. (223) and
(226). In this case, the model attempts to describe the joint
measurement statistics of X̂ and Ŷ as

P(x, y) =
∫

dγ p(γ )P(γ )(x)P(γ )(y). (238)

The key observation is that now all the quantum constraints
on the probability distributions have been dropped and
both the P(γ )(x) and P(γ )(y) can be any mathematically
well-defined probability distributions. Even though the dif-
ference between Eqs. (223) and (226) on the one hand,
and Eq. (238) on the other hand, may appear small, the
impact of dropping the constraints on the local distribu-
tions is enormous. Think, for example, of the Hahn-Banach
separation theorem that is invoked to define entanglement
witnesses, this crucially relies on the Hilbert-space struc-
ture of the state space. Think for example of (233) which
crucially depends on the fact that quantum probabilities are
constrained by the Heisenberg inequality. Abandoning all
connections that tie probabilities to operator algebras on
Hilbert spaces deprives quantum mechanics of their tool-
box. Nevertheless, it turns out that some quantum states
induce statistics that is inconsistent with Eq. (238).

Again, we note that states that can be described by the
models, Eqs. (223) or (226), can also be described by the
model, Eq. (238). Bell’s local hidden variable model, Eq.
(238), is thus the most general one and the class of states
that lead to measurement statistics that cannot be described
by it is the smallest. Therefore, we say that the correlations

that lead to a violation of the mode, Eq. (238), also known
as Bell nonlocality, are the strongest types of quantum
correlations.

The key insight of Bell’s work [183,184] is that Eq.
(238) puts constraints on the correlations of different com-
binations of observables in the subsystems. These con-
straints, cast in the form of Bell inequalities can be violated
by certain quantum states. The inconsistency of quantum
physics with the model, Eq. (238), can in itself be seen
as a special case of contextuality [185]. Over the decades,
many different kinds of Bell inequalities have been derived
(see, for example, Ref. [186]). Here we restrict to pre-
senting one of the most commonly used incarnations: the
Clauser-Horne-Shimony-Holt (CHSH) inequality [187].
This inequality relies on the measurement of four observ-
ables: X̂ and X̂ ′ on the first subsystem and Ŷ and Ŷ′
on the second subsystem. Furthermore, we consider that
the observables can take two possible values: −1 or 1.
Assuming the model in Eq. (238) it is then possible to
derive

∣∣∣〈X̂ Ŷ〉−〈X̂ Ŷ′〉+〈X̂ ′Ŷ〉+〈X̂ ′Ŷ′〉
∣∣∣ � 2, (239)

where 〈.〉 denotes the expectation value. In this Tutorial
we skip the derivation of this result, but the interested
reader is referred to Ref. [188] for a detailed discussion.
Remarkably, certain highly entangled states can violate
this inequality.

The experimental violation of Bell’s inequalities for-
mally shows that quantum correlations are profoundly
different than classical correlations [189–192]. However,
one needs clever combinations of several observables in
both subsystems to actually observe the difference. With
most experimental loopholes now closed [193–197], Bell
inequalities can now in principle be used to impose a
device-independent level of security on various quantum
protocols [198].

As a concluding remark, it is interesting to highlight the
existence of a semidevice-independent framework for test-
ing quantum correlations [199,200]. The key idea is that
nothing is assumed about the measurement devices nor
about the states, much like in the scenario of Bell inequali-
ties. Yet, in the framework of Refs. [199,200] one does add
an additional level of trust in the sense that one assumes
that the inputs of the measurement device can be controlled
and trusted. In a way, this additional intermediate level of
trust is somewhat reminiscent of quantum steering. This
framework was very recently extended to the CV setting
[201].

B. Non-Gaussianity through quantum correlations

In Sec. B, we explained how conditional operations
can be used to create non-Gaussian quantum states. The
presence of correlations plays an essential role in this
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framework. Indeed, in the absence of correlations the com-
bination of Eqs. (222) and (189) implies that W(xg | xf) =
Wg(xg). As a consequence, we see from Eq. (192) for the
conditional expectation value 〈Â〉g|xf = 〈Â〉, and thus from
Eq. (190) that Wf|Â(xf) = Wf(xf). In other words, the con-
ditional operation has no effect whatsoever and gives the
same result as tracing out the modes in R2l′ .

A closer look at the explicit expressions

Wf|A(xf) = 〈Â〉g|xf

〈Â〉
Wf(xf),

and

〈Â〉g|xf := (4π)l
′
∫

R2l′
dxgWA(xg)W(xg | xf),

shows that whenever there are correlations, and thus
〈Â〉g|xf �= 〈Â〉, the conditional Wigner function is a priori
non-Gaussian. When we use explicitly that the initial state
is Gaussian and thus that W(xg | xf) is given by Eq. (193),
this condition can be translated to the existence of nonzero
components in Vgf in Eq. (185). The precise properties of
the resulting non-Gaussian quantum state depend on the
conditional expectation value 〈Â〉g|xf .

In the literature, some attention has been devoted
to proposing different types of measurements for such
heralding procedures. One may think of using on-off
detectors [202], photon-number-resolving detectors [156],
parity detectors [203], and more exotic multimode setups

[204,205]. However, these works usually assume that the
initial quantum state is a pure Gaussian state obtained by
an idealized source of multimode squeezed vacuum states.
As we saw in Sec. 2, for pure-state correlations automat-
ically imply entanglement, and it even turns out that all
correlated pure states violate a Bell inequality [206]. In
other words, for pure states all correlations are quantum
correlations and all these quantum correlations are of the
strongest type. When we no longer make such assumptions
on the initial multimode Gaussian state, we see that 〈Â〉g|xf

will not only depend on the chosen POVM Â, but also on
the properties of W(xg | xf). In Secs. 1 and 2, we explain
that certain types of non-Gaussian features can only be
achieved through certain types of quantum correlations in
the initial Gaussian state. An overview of the results of this
section is provided in Fig. 5.

1. Quantum non-Gaussianity and entanglement

To understand the role of quantum entanglement in a
conditional preparation scheme, we contrast it to a system
with only classical correlations. In that regard, let us sup-
pose that the initial quantum state is separable such that
its Wigner function can be cast in the form Eq. (222). By
inserting this form in Eq. (188), we find that

Wf|A(xf) =
∫

dγ p(γ )

∫
R2l′ dxgWA(xg)W

(γ )
g (xg)∫

R2l′ dxgWA(xg)Wg(xg)
W(γ )

f (xf).

(240)

Uncorrelated states

(Correlated)
separable states

Nonsteerable
entangled states

Steerable states

Bell nonlocal states

Gaussian states

Non-Gaussian 
mixtures of 
gaussian states

Quantum non-
gaussian states

Wigner-negative 
states

INITIAL STATECONDITIONAL STATE 

FIG. 5. Different types of quantum correlations are required to be present in the initial Gaussian state W(x) to create conditional states
Wf|A(xf), as described in Eq. (190), that belong to a certain class. We thus show how the typical hierarchy of quantum correlations
(right) can be connected to the structure of the CV state space that was introduced previously in Fig. 1. Throughout Sec. B, we prove
that these different types of quantum correlations are necessary resources to achieve different types of states.
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As a next step, we define

p̃A(γ ) := p(γ )

∫
R2l′ dxgWA(xg)W

(γ )
g (xg)∫

R2l′ dxgWA(xg)Wg(xg)
, (241)

and show that p̃A(γ ) is a well-defined probability distribu-
tion. First, we use the definition of the reduced state

Wg(xg) =
∫

R2l
dxfW(xf ⊕ xg) (242)

=
∫

dγ p(γ )W(γ )
g (xg), (243)

and thus we immediately find that
∫

dγ p̃A(γ ) = 1. Fur-
thermore, we note that W(γ )

g (xg) is the Wigner function of
a well-defined quantum state ρ̂(γ )g and thus

∫

R2l′
dxgWA(xg)W(γ )

g (xg) = tr[ρ̂(γ )g Â] � 0. (244)

The final inequality follows from the fact that Â is a posi-
tive semidefinite operator. As a consequence, we find that
p̃A(γ ) � 0 for every possible γ . Thus, we find that for a
separable initial state

Wf|A(xf) =
∫

dγ p̃A(γ )W
(γ )

f (xf). (245)

Up to this point, we assumed only that the initial state
is separable. As we saw in Sec. C, a mixed quantum
state with a positive Wigner function cannot necessarily
be decomposed in states with positive Wigner functions.
Therefore, we can generally not infer much about the
properties of the Wigner function W(γ )

f (xf) in Eq. (245).
As a next step, we use the fact that the initial state is

also a Gaussian state. Recall from Eq. (103) that any mixed
Gaussian state can be decomposed as a mixture of pure
Gaussian states. A priori, however, it is not trivial that this
decomposition is consistent with decomposition in sepa-
rable states, Eq. (222). Thus, it remains to show that for
Gaussian separable states the Wigner functions W(γ )

f (xf)

and W(γ )
g (xg) in Eq. (222) are also Gaussian.

We start from a crucial observation on covariance matri-
ces that was made in Ref. [207]: whenever an m-mode state
with covariance matrix V is separable, there are covariance
matrices V′

f and V′
g such that

V �
(

V′
f 0

0 V′
g

)
= V′

f ⊕ V′
g. (246)

Note that V′
f and V′

g are covariance matrices on the phase
spaces R2l and R2l′ , respectively. Nevertheless, V′

f and
V′

g are generally not the same as the covariance matrices

Vf and Vg of Eq. (185) that describe the marginal distri-
butions. We should emphasize that the Williamson, Eq.
(92), and Bloch-Messiah, Eq. (95), decompositions offer
the necessary tools to explicitly construct V′

f and V′
g (we

come back to this point in Sec. C). This allows us to use
similar techniques as in Eq. (103). Let us first define

W′
f(xf) := e− 1

2 xT
f V′

f
−1xf

(2π)m
√

det V′
f

, (247)

W′
g(xg) := e− 1

2 xT
g V′

g
−1xg

(2π)m
√

det V′
g

. (248)

We can then use Eq. (246) to define a positive definite
matrix Vc := V − V′

f ⊕ V′
g, such that a decomposition of

the type Eq. (103) gives us

W(xf ⊕ xg) =
∫

R2m
dy W′

f(xf − yf)W′
g(xg − yg)

× e− 1
2 (y−ξ)TV−1

c (y−ξ)

(2π)m
√

det Vc
, (249)

where we again impose the structure of the bipartition
on y = yf ⊕ yg, with yf ∈ R2l and yg ∈ R2l′ . Furthermore,
recall that ξ is the mean field of the initial Gaussian state
W(xf ⊕ xg). The structure we obtain in Eq. (249) exactly
corresponds to Eq. (222), where y now labels the states
and thus plays the role of the abstract variable γ .

We can then use the structure Eq. (249) in the derivation
Eq. (245) and then we find that

Wf|A(xf) =
∫

R2l
dyfW′

f(xf − yf)p̃A(yf). (250)

In any concrete choice of Â, one can use Eq. (241) to derive
an explicit expression for p̃A(yf), which will generally be a
non-Gaussian probability distribution, such that Wf|A(xf)

describes a non-Gaussian state. However, the resulting
conditional state, Eq. (250), is clearly a statistical mix-
ture of Gaussian states and thus lies in the convex hull
of Gaussian states. In the language of Sec. C this means
that the conditional state is non-Gaussian but not quantum
non-Gaussian and has a stellar rank 0.

In summary, we have assumed that our initial state with
Wigner function W(xf ⊕ xg) is a separable Gaussian state.
Without making any assumptions on the POVM element
Â of the conditional operation, we retrieve that the condi-
tional state always is a convex combination of Gaussian
states, given by Eq. (250). Thus, when the initial state is
Gaussian, entanglement is a necessary resource to produce
quantum non-Gaussian states via conditional operations.
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2. Wigner negativity and Einstein-Podolsky-Rosen
steering

In Sec. E, we explained that Wigner negativity is
a “stronger” non-Gaussian feature than quantum non-
Gaussianity. Here, we show that also stronger types of
quantum correlations are required to conditionally create
Wigner negativity. To understand how Wigner negativity
can be achieved through a conditional preparation scheme,
it suffices to understand when the conditional expectation
value 〈Â〉g|xf in Eq. (192) reaches negative values.

Regardless of the chosen POVM, WA(xg) is the Wigner
function of a positive semidefinite operator Â as defined
by Eq. (42). Thus, whenever there is a quantum state
ρ̂ ′ that has W(xg | xf) as associated Wigner function, Eq.
(43) implies that 〈Â〉g|xf = tr[ρ̂ ′Â] � 0. Hence, to con-
ditionally create a nonpositive Wigner function (190)
the conditional probability distribution W(xg | xf) can-
not be a well-defined Wigner function. This observation
holds whenever the initial state has a positive Wigner
function.

When in addition we assume that the initial state is
Gaussian, we find that W(xg | xf) is a Gaussian distribu-
tion (193). Whether the conditional probability distribution
Eq. W(xg | xf) describes a Gaussian quantum state depends
entirely in the properties of its covariance matrix, i.e.,
the Schur complement Vg|xf . Indeed, W(xg | xf) describes
a quantum state if and only if Vg|xf satisfies the Heisenberg
inequality. Because Vg|xf does not depend on the choice
xf ∈ R2l, it follows that W(xg | xf) corresponds to a quan-
tum state either for all xf ∈ R2l [if the Schur complement
Eq. (194) satisfies the Heisenberg inequality] or for none
of the xf ∈ R2l [if the Schur complement Eq. (194) violates
the Heisenberg inequality].

If Vg|xf satisfies the Heisenberg inequality, the condi-
tional state’s Wigner function Wf|A(xf) must thus be pos-
itive. To better understand the physical resources required
to conditionally create Wigner negativity, one must com-
prehend what it means for Vg|xf to violate Heisenberg’s
inequality in terms of quantum correlations. It turns
out that this condition is closely related to the origi-
nal argument of the EPR paper [172]. The violation of
Heisenberg’s inequality by the Schur complement Vg|xf
corresponds to Gaussian quantum steering in the state
W(xg ⊕ xf).

To understand the connection between the conditional
covariance matrix Vg|xf and quantum steering, we first
express the Wigner function obtained by conditioning on
a Gaussian measurement, such that the associated POVM
element has a Wigner function WG(xf):

Wg|G(xg) =
∫

R2l dxfWG(xf)W(xf | xg)∫
R2l dxfWG(xf)Wf(xf)

Wg(xg). (251)

In a very similar way, we can also show that

Wg|G(xg) =
∫

R2l
dxf

WG(xf)Wf(xf)∫
R2l dxfWG(xf)Wf(xf)

W(xg | xf).

(252)

Hence, when W(xg | xf) is a bona fide Wigner function
for every xf this expression is an explicit manifestation
of the local hidden variable model Eq. (230). In other
words, whenever W(xg | xf) describes a quantum state, the
modes in g cannot be steered by Gaussian measurements
on the modes f. Note that we can generalize Gaussian
measurements to any measurement with a positive Wigner
function.

The remarkable feature of EPR steering is that the
inverse statement also holds: when W(xg | xf) is not a bona
fide Wigner function Gaussian measurements can steer the
state. Let us assume that Eq. (230) holds for Gaussian
measurements. It then follows that a well-defined covari-
ance matrix U exists such that the covariance matrix Vg|G
of the conditional state Wg|G(xg) satisfies Vg|G � U for
all Gaussian measurements. Furthermore, U is physical
and satisfies the Heisenberg inequality. Reference [176]
shows that the existence of such a U implies that the full
covariance matrix of the system satisfies V + 0f ⊕ i�g �
0, which in turn implies that Vg|xf , the Schur complement
of V, satisfies the Heisenberg inequality.

This shows that we can only generate Wigner negativ-
ity through Eq. (190) if the initial state can be steered by
Gaussian measurements on the subsystem associated with
phase space R2l. Note that the creation of Wigner nega-
tivity occurs in the opposite direction to the steering: We
can produce Wigner negativity in the modes f by per-
forming a measurement on the modes g if the modes g
can be steered by performing Gaussian measurements on
the modes f. Somewhat counterintuitively, it turns out that
the created Wigner negativity volume, Eq. (156), is not
directly proportional to the strength of EPR steering [208].

As a final remark, we note that, in a multimode con-
text, EPR steering is constrained by monogamy relations
[209–211]. Notably, this implies that when a single mode
g can be steered by a single other mode f , it is impossi-
ble for any other mode to also steer g. This naturally has
profound consequences for the conditional generation of
Wigner negativity that we discussed in this section. The
monogamy relations for quantum steering can be used to
derive similar monogamy relations [208] for the created
Wigner negativity volume (156).

C. Quantum correlations through non-Gaussianity

In Sec. B, we extensively considered the use of quantum
correlations as a resource to create non-Gaussian effects.
In this subsection, we focus on the opposite idea where
non-Gaussian operations increase or even create quantum
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correlations. The subject of entanglement in non-Gaussian
states is generally difficult to study, for some states it
may be sufficient to evaluate lower-order moments [212]
and when the density matrix in the Fock representation
is available one can apply DV approaches to character-
ize entanglement [213]. However, these methods cannot
always be applied and there are no universally applica-
ble entanglement criteria that are practical to evaluate for
arbitrary CV quantum states.

1. Entanglement measures on phase space

In Sec. 2, we argued that any pure state that manifests
correlations between subsystems contains entanglement.
Measuring entanglement in this case becomes equivalent
to measuring the amount of correlation within the pure
state. In particular, for pure states, one finds a wide range
of entanglement measures in the literature [161]. In the
case of CV systems, some measures are more appropriate
than others, and here we focus on one particularly intuitive
measure that is based on purity.

When we consider an arbitrary bipartite pure quantum
state with Wigner function W(xf ⊕ xg) (with xf ∈ R2l and
xg ∈ R2l′), we find that its purity is μ = 1 by definition.
However, this is not necessarily true for the subsystems f
and g. We can use Eq. (94) to evaluate the purity of any
state based on its Wigner function, and we define

μf =
∫

R2l
dxf[Wf(xf)]2, and μg =

∫

R2l′
dxg[Wg(xg)]2,

(253)

where we again use the definitions (182), (183). Because
the global state with Wigner function W(xf ⊕ xg) is pure,
we always find that μf = μg (this is a general conse-
quence of the existence of a Schmidt decomposition for
pure states). Furthermore, if the pure state is separable,
we find W(xf ⊕ xg) = Wf(xf)Wg(xg) and as a consequence
we obtain that μf = μg = 1. However, when μf = μg < 1
there must be correlations between the subsystems f and g
and the smaller the purity of the subsystems, the stronger
these correlations are. Without delving into the details, we
stress that the opposite notion also holds: when there is
a correlation between the subsystems, the purity of the
subsystems is smaller than one.

To convert this quantity into an entanglement mea-
sure [214], it is useful to define the Rényi-2 entropy for
subsystem f

SR := − logμf. (254)

We then find that SR � 0 and SR = 0 if and only if the state
is separable. Furthermore, it should be clear that SR cannot
be increased by local unitary operations on the subsys-
tems f and g. We can thus define an entanglement measure

for the pure state |�〉 with Wigner function W(xf ⊕ xg) by
setting

ER(|�〉) := SR. (255)

This constitutes a well-defined entanglement measure for
any chosen bipartition and any pure state on the phase
space.

To extend this measure to mixed states, we follow
Ref. [214] and construct a convex roof. Any mixed
state ρ̂ can be decomposed in pure states as ρ̂ =∫

dγ p(γ )
∣∣�(γ )

〉 〈
�(γ )

∣∣, we abbreviate this decomposition
as the ensemble {p(γ ), ∣∣�(γ )

〉}. For each pure state in this
ensemble, we can evaluate the entanglement ER(

∣∣�(γ )
〉
)

and subsequently average all of these values according
to p(γ ). However, the decomposition of ρ̂ in pure states
is far from unique and different ensembles {p(γ ), ∣∣�(γ )

〉}
generally lead to a different value of entanglement even
though they are all constrained to produce the same state
ρ̂. Therefore, it is common to define

ER(ρ̂) := inf
{p(γ ),|�(γ )〉}

∫
dγ p(γ )ER

(∣∣�(γ )
〉)

(256)

as the general “Rényi-2 entanglement” of the state ρ̂.
Formally, this is an elegant definition that can in prin-

ciple be calculated directly from the Wigner function.
However, in practice it is nearly impossible to actually
identify all possible decompositions {p(γ ), ∣∣�(γ )

〉}, which
makes this measure notoriously hard to evaluate for mixed
states. This has sparked some alternative definitions of
entanglement measures for Gaussian states, where any
Gaussian state can be decomposed in an ensemble of Gaus-
sian states, Eq. (103). Thus, one can define “Gaussian
Rényi-2 entanglement” by restricting Eq. (256) to only
Gaussian decompositions [215]. In this sense, Gaussian
Rényi-2 entanglement is by construction an upper bound
to the general Rényi-2 entanglement.

As an alternative to entanglement measures, it is com-
mon to use entanglement witnesses. These have been
particularly successful for Gaussian states [146,216–220],
where one commonly applies methods based on the covari-
ance matrix of the state. Due to the extremality of Gaussian
states [12] these results also provide witnesses for entan-
glement if the state is non-Gaussian. However, there are
several examples of non-Gaussian entangled states for
which no entanglement can be detected from the covari-
ance matrix. Notable progress was made by developing
entanglement witnesses for non-Gaussian states with spe-
cific structure in their Wigner function [221].

It is noteworthy to emphasize that the positive-partial
transpose (PPT) criterion of Ref. [216] can in principle be
implemented on the level of Wigner functions. To make
this apparent, let us first define the transposition opera-
tor T that implements ρ̂ �→ ρ̂T. When W(x) with x ∈ R2m
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denotes the Wigner function of the state ρ̂, we can write
the Wigner function of ρ̂T as W(Tx). The matrix T can be
written as

T =
m⊕ (

1 0
0 −1

)
, (257)

which can be derived from the definition of the Wigner
function [222]. The concept of partial transposition in
entanglement theory relies on the simple idea that one
can apply a transpose only on one of the two subsys-
tems in the bipartition. In our context, this means that the
Wigner function changes as W(xf ⊕ xg) �→ W(xf ⊕ Txg)

(where T is now taken only on the l′ modes of subsystem
g). The PPT criterion is based on the idea that, in absence
of entanglement, the function W(xf ⊕ Txg) still gives a
well-defined Wigner function of a quantum state. How-
ever, there are entangled states for which this is no longer
true and W(xf ⊕ Txg) becomes unphysical. This lack of
physicality is expressed by the fact there exist positive
semidefinite operators Â for which

(4π)m
∫

R2m
dx WA(x)W(xf ⊕ Txg) < 0. (258)

Finding such observables Â � 0 for a non-Gaussian state
W(xf ⊕ xg) is generally a very hard task. For Gaussian
states, on the other hand, the physicality of W(xf ⊕ Txg) is
simply checked through Heisenberg’s inequality. For more
general non-Gaussian states, this is insufficient and one
should check a full hierarchy of inequalities instead [212].
Nevertheless, one may yet uncover more direct methods to
check the properties of W(xf ⊕ Txg).

2. Entanglement increase

One of the most well-known protocols for increasing
entanglement is entanglement distillation. In this proto-
col, one acts with local operations on a large number
of mixed entangled states that are shared by two parties
and concentrates the entanglement in a smaller number of
maximally entangled pairs [223]. When the initial states
are pure and the local operation serves only to increase
the entanglement and not the purity, we speak of entan-
glement concentration [224]. Conditional operations play
an important role in these protocols, and we can alterna-
tively think of entanglement distillation as the idea that
a conditional operation can increase the entanglement of
a state. For Gaussian quantum states, there is a notori-
ous no-go theorem that states that Gaussian measurements
(or Gaussian operations in general) cannot increase bipar-
tite entanglement [225–227]. It was quickly realized that
these no-go results can be circumvented by even the most
basics non-Gaussian states: those created through a non-
Gaussian noise process [228,229]. On the other hand, if

one wants to distill entanglement in a CV system start-
ing from initial Gaussian states one really requires non-
Gaussian operations. One such example is given in Refs.
[230,231], where the authors propose to use a Kerr non-
linearity to distill entanglement for mixed Gaussian states.
In contrast, conditional schemes have also been proposed
[147,232,233], avoiding the need for optical nonlinearities.
In those protocols, one first uses conditional operations to
create non-Gaussian states and subsequently uses Gaus-
sification to obtain states with higher entanglement. A
narrowly related protocol [234] relies on the implemen-
tation of noiseless linear amplification [235], where the
non-Gaussian element is injected in the form of auxiliary
Fock states.

The realization that photon subtraction and addition
can be used to increase the entanglement of a Gaussian
input state was developed reasonably early [236–238] and
was further formalized in works such as Refs. [239–241].
Remarkably, all of these works explicitly assume that the
initial state under consideration is a two-mode squeezed
state and the approach strongly relies on the structure of
this type of state in the Fock basis. Beyond the two mode
setting, the class of CV graph states has also been studied
in the context of entanglement increase [242,243]. Here
we provide an alternative approach, based on phase-space
representations to understand entanglement increase due to
the subtraction of a single photon.

Our approach relies on the fact that we can easily apply
the entanglement measure (256) when the global state is
pure. This means that we are focusing on a context of
entanglement concentration. Furthermore, when we per-
form photon subtraction on a pure Gaussian state, the
resulting photon-subtracted state is also pure, as we saw
in Sec. 2. The starting point is the Wigner function of the
photon-subtracted state, Eq. (214), which we rewrite as

W−(x) = W(x)
tr (Vb − 1)+ ‖ξb‖2

(
‖BT(1− V−1)(x − ξ)

+ ξb‖2 + tr
[
1− BTV−1B

] )
. (259)

The state W−(x) is thus obtained by subtracting a pho-
ton from the Gaussian state W(x). As we consider a pure
two-mode state we assume that the state has a 4 × 4 covari-
ance matrix of the form V = STS, where S is a symplectic
matrix. We assume that the photon is locally subtracted in
one of the modes of the mode basis, such that

B =

⎛

⎜
⎝

0 0
0 0
1 0
0 1

⎞

⎟
⎠ . (260)

However, to assess the entanglement in the system, we
must obtain the Wigner function for the reduced state asso-
ciated to either of the two modes. When we focus on mode
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b where the photon is subtracted, we can simply obtain the
reduced photon subtracted state W−

b (xb) by subtracting a
photon from the reduced Gaussian state Wb(xb). As such,
we obtain

W−
b (xb) = ‖(1− V−1

b )xb + V−1
b

ξb‖2 + tr
[
1− V−1

b

]

tr (Vb − 1)+ ‖ξb‖2

Wb(xb). (261)

This is now a single-mode photon subtracted state, but it is
no longer pure. This lack of purity is notably reflected by
Vb, which is no longer symplectic. Nevertheless, we can
use the Williamson decomposition, Eq. (92), and write

Vb = ν

(
r 0
0 r−1

)
, (262)

where we set the phase such that the squeezing coincides
with one of the axes of phase space. What remains is for us
to calculate the purity

μ−
b = 4π

∫

R2
dxb[W−

b (xb)]2. (263)

The final expression for the purity is not very insightful.
When on top we use that the purity μb of the Gaussian
state Wb(xb) is given by μb = 1/ν, an explicit calculation
of μ−

b makes it possible to prove (the motivated reader can
use a combination of patience and software for symbolic
algebra to do so) that

μ−
b

μb
� 1

2
. (264)

In other words, photon subtraction reduces the purity at
most by a factor of 2.

When we use Eq. (256) to define the entanglement of
the two-mode photon-subtracted state, Eq. (259), we find
that it is given by

ER(
∣∣�−〉

) = − logμ−
b , (265)

because the two-mode state is pure. The entanglement of
the initial Gaussian state is given by ER(|�G〉) = − logμb,
such that we can use Eq. (264) to find that

	ER := ER(
∣∣�−〉

)− ER(|�G〉) � log 2. (266)

In other words, photon subtraction can increase the Rényi-
2 entanglement of an arbitrary Gaussian state, but at most
by an amount log 2. It turns out that this result can be gen-
eralized to all bipartitions of Gaussian pure states of an
arbitrary number of modes [244]. Furthermore, the same
work shows that when the entanglement measure ER(|�G〉)
is replaced with the Gaussian Rényi-2 entropy of Ref.

[215], the result holds for all bipartitions of all Gaussian
states (including mixed ones).

For the particular case of a two-mode pure Gaussian
state, we can directly evaluate 	ER for some important
examples. Say, for example, that we consider the EPR state
that is obtained by mixing two oppositely squeezed vac-
uum states on a balanced beam splitter. In this case ξ = 0
and V is given by

V = 1
2

⎛

⎜
⎝

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎞

⎟
⎠

T ⎛

⎜⎜
⎝

s
s−1

s−1

s

⎞

⎟⎟
⎠

×

⎛

⎜
⎝

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎞

⎟
⎠

= 1
2s

⎛

⎜⎜
⎝

s2 + 1 0 s2 − 1 0
0 s2 + 1 0 1 − s2

s2 − 1 0 s2 + 1 0
0 1 − s2 0 s2 + 1

⎞

⎟⎟
⎠ . (267)

We then extract directly that

Vb = s2 + 1
2s

1, (268)

such that we find that the parameters in Eq. (262) are set to
r = 1 and ν = (s2 + 1)/(2s). And thus we directly obtain

	ER = log(2)− log

(
s4 + 6s2 + 1

(
s2 + 1

)2

)

. (269)

We clearly see that the entanglement increase vanishes in
absence of squeezing, whereas we achieve the log(2) limit
for s → ∞. Adding a mean field with ξb �= 0 immediately
complicates the problem. As can be seen in Fig. 6, where
we plot the case ξb = (0, 1)T, the presence of a mean field
in the mode of photon subtraction lowers the entanglement
increase 	ER. Nevertheless, in the limit s → ∞ we reach
the limit log(2) regardless of the displacement.

This example clearly shows that photon subtraction can
be used as a tool to increase entanglement. The setting cor-
responds to the case that is typically studied in most works
on CV entanglement distillation such as Refs. [239–241].
It turns out that one can further increase entanglement in
such systems by subtracting more photons. Furthermore,
photon addition and the combination of addition and sub-
traction on both modes have also been considered. The
methods we use in this Tutorial are not easily generalized
to the subtraction and addition of many photons, but in
return they can be applied to a much wider class of initial
Gaussian states.
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FIG. 6. Entanglement increase, Eq. (266), through photon sub-
traction in one mode of a pair of entangled modes. The ini-
tial Gaussian states are obtained by mixing either two equally
squeezed modes (yellow curves) or one squeezed mode and one
vacuum mode (red curves) on a beam splitter (see also sketches
on the right). We show how a variation of squeezing (in dB com-
pared to shot noise level) in these initial squeezed vacuum states
influences the entanglement increase due to photon subtraction.
We consider cases without mean field (solid curves) and with a
mean field ξ = (0, 0, 0, 1)T (dashed curves).

As a second example, we consider a single-mode
squeezed state that is split in two on a balanced beam
splitter. This means that the Gaussian state is given by

V = 1
2

⎛

⎜
⎝

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎞

⎟
⎠

T ⎛

⎜
⎝

s
s−1

1
1

⎞

⎟
⎠

×

⎛

⎜
⎝

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎞

⎟
⎠

= 1
2

⎛

⎜⎜
⎝

s + 1 0 s − 1 0
0 s+1

s 0 1
s − 1

s − 1 0 s + 1 0
0 1

s − 1 0 s+1
s

⎞

⎟⎟
⎠ , (270)

such that we get

Vb = 1
2

(
s + 1 0

0 s+1
s

)
, (271)

such that we find that we identify the parameters
of Eq. (262) as ν = √

2 + s + s−1/2 and r = (1 +
s)/

√
2 + s + s−1. In absence of any mean field, i.e., with

ξ = 0, we then find an entanglement gain given by

	ER = log(2)− log
(

3 + 2s + 3s2

2(s + 1)2

)
. (272)

Interestingly, in this case we reach the maximal entangle-
ment gain for vanishing squeezing s → 1, where we reach

	ER → log(2). This case may seem somewhat counter-
intuitive, but it should be emphasized that the success
probability of photon subtraction also vanishes in this case.
Yet, our conditional approach assumes that we are in the
scenario where a photon was subtracted and the negligi-
ble fraction of the state that is not in vacuum is enhanced.
In the limit of vanishing squeezing, the photon subtracted
state converges to the Bell state (|1, 0〉 + |0, 1〉)/√2. On
the other hand, in the limit where squeezing is high we still
find a finite entanglement increase as 	ER → log(4/3).

When we add a mean field given by ξb �= 0, there is an
importance of the phase because our state locally has some
remaining asymmetry (which can be seen from r �= 1). In
Fig. 6 we particularly show the case where ξb = (0, 1)T

such that the direction of the displacement coincides with
the quadrature where the noise is minimal. In this case we
observe that for some values of initial squeezing, the entan-
glement decreases due to photon subtraction. Note that this
quite remarkably implies that in some cases photon sub-
traction can actually be used to increase the purity of a
state.

We thus showed that photon subtraction is a useful non-
Gaussian operation to increase entanglement. However, in
the presence of a mean field in the subtraction mode, it
is also possible to decrease entanglement. Even though
this subject has been studied for nearly two decades, for
arbitrary Gaussian input states, there are still many open
questions. Notably, there has not been much work on the
effect of photon subtraction on multipartite entanglement,
nor on stronger types of quantum correlations. Our discus-
sion in Sec. 2 suggests an important interplay between EPR
steering and Wigner negativity, and thus it is intriguing
to wonder whether well-chosen non-Gaussian operations
can increase quantum steering. Since all steerable states
are also entangled, it is a reasonable conjecture that some
of the protocols that can increase quantum entanglement
should also increase quantum steering.

We have followed the terminology found in the liter-
ature and referred to this process as entanglement dis-
tillation, because our conditional operation has only a
finite success probability. This implies that we can use a
large number of Gaussian entangled states and use pho-
ton subtraction to obtain a much smaller number of more
entangled states. Yet, it must be stressed that there is a more
subtle process happening: the entanglement is increased
by adding non-Gaussian entanglement on top of the exist-
ing Gaussian entanglement. To get a better grasp of this
non-Gaussian entanglement, it is useful to go to a setting
where no other type of entanglement is present as we do
in Sec. 3.

3. Purely non-Gaussian quantum entanglement

In this subsection, we explore an idea that is in many
ways complementary to the previous subsection: rather
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than using a local non-Gaussian operation to increase
already existing entanglement, we now use a nonlocal
non-Gaussian operation to create entanglement between
unentangled modes.

Let us again assume that our state is initially Gaussian
as described by Eq. (85), and we induce the non-Gaussian
features through the conditional methods of Sec. B. The
mean field of the initial state is given by ξ = ξf ⊕ ξg, and

V =
(

Vf Vfg
Vgf Vg

)
, with Vf = Vf1 ⊕ Vf2 . (273)

Here, we have introduced the modes of interest, labeled by
f and a set of auxiliary modes g upon which a measurement
will be performed to induce non-Gaussian features in the
modes f. In the initial state, we consider a bipartition in
the modes f without any direct correlations, hence Vf =
Vf1 ⊕ Vf2 . In other words, the modes in f1 are completely
uncorrelated to the modes in f2.

To induce non-Gaussian effects, we resort to the condi-
tional framework by acting with a POVM element Â upon
the auxiliary modes g, and we rewrite Eq. (190) as

Wf|A(xf1 ⊕ xf2) =
〈Â〉g|xf1⊕xf2

〈Â〉
Wf1(xf1)Wf2(xf2), (274)

and the conditional expectation value 〈Â〉g|xf1⊕xf2
is again

given by Eq. (192). The entanglement in the resulting
state thus crucially depends on the exact properties of
〈Â〉g|xf1⊕xf2

.
First of all, note that Wf1(xf1) and Wf2(xf2) are generally

not pure states and as a consequence Wf|A(xf1 ⊕ xf2) is not
a pure state either. Even though the specific structure of
the Wigner function makes it a suitable case to apply the
methods of Ref. [221], we follow a different route in this
Tutorial by focusing on a particular example for which we
can assume that Wf1(xf1) and Wf2(xf2) are pure.

Just as in Sec. 2, we concentrate on photon subtraction.
To get a conceptual idea of such a setup in this specific
scenario, we present two equivalent schemes in (a) and (b)
of Fig. 7. Note that the equivalence stems from the fact
that the beam splitters that subtract the light from the sig-
nal beams to send it to the photodetector are of extremely
low reflectivity. In this limit, we can be sure that there is
at most one photon in the path and when it is detected,
we herald a single-photon-subtracted state. In Fig. 7(a),
the combination of this heralding process and the presence
of at most one photon avoids that the unmeasured output
causes any losses or impurities. Nevertheless, the unmea-
sured output will practically change the success probability
of the heralding process, such that for practical implemen-
tations Fig. 7(b) may be the preferential setup. Recall that
the Wigner function for a state with a photon subtracted in

a particular mode b was given by Eq. (259), which here
becomes

W−(xf1 ⊕ xf2) = Wf1(xf1)Wf2(xf2)

tr (Vb − 1)+ ‖ξb‖2

×
(
‖BT(1− V−1

f1
⊕ V−1

f2
)(xf1 ⊕ xf2

− ξ1 ⊕ ξ2)+ ξb‖2

+ tr
[
1− BT(V−1

f1
⊕ V−1

f2
)B

] )
. (275)

Because we consider a limit where the state is completely
transmitted by the beam splitter and only a negligible
amount is sent to the photon counter to subtract the photon,
we can indeed assume that the state is pure. For simplicity,
we also assume that f1 and f2 are single modes. As we did
before, we now calculate the reduced state

W−
1 (xf1) =

∫

R2
dxf2W−(xf1 ⊕ xf2). (276)

The integral is rather tedious to evaluate, therefore we
immediately jump to the result (see Ref. [153] for an alter-
native method that circumvents the explicit calculation of
integrals):

W−
1 (xf1) = Wf1(xf1)

tr (Vb − 1)+ ‖ξb‖2

(
‖BTF1(1− V−1

f1
)(xf1 − ξ1)

+ ξb‖2 + tr
[
BTF1(1− V−1

f1
)FT

1 B
]

+ tr
[
BTF2(Vf2 − 1)FT

2 B
] )

, (277)

where we introduce the matrices Fk, given by

Fk =
⎛

⎝
| |
fk �fk
| |

⎞

⎠ , (278)

such that we can use the properties of the symplectic form
� to obtain

BTFk =
( bT fk bT�fk

−bT�fk bT fk

)
. (279)

If mode b is orthogonal to mode f1, we find that BTF1 =
0 such that W−

1 (xf1) = Wf1(xf1). On the other hand, when
mode b is exactly the same as f1 we find that BTF1 = 1

such that the photon is only subtracted there. In this case
W−

1 (xf1) is a pure state and no entanglement is created. In
this case, one can check that W−

2 (xf2) = W2(xf2).
To create entanglement, we are thus interested in the

case where b is a superposition of the two modes f1 and f2.
To keep things simple, let us assume that b = cos θ f1 +
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(a)
(c) (d)

(b)

FIG. 7. Entanglement creation through photon subtraction in a
superposition of uncorrelated modes f1 and f2. (a),(b) Sketches
of two equivalent setups to implement a photon subtraction in
the mode b, with b = cos θ f1 + sin θ f2. In (c),(d), we show the
created entanglement, as measure through the Rényi entropy, Eq.
(256), for varying values of θ . The initial Gaussian states are
pure, with covariance matrices Vf1 = diag[s1, 1/s1] and Vf2 =
diag[s2, 1/s2] for modes f1 and f2, respectively. The global mean
field, i.e., displacement, is varied ξ = 0 (solid curves), ξ =
(1, 0, 0, 0)T (dotted curves), and ξ = (0, 0, 1, 0)T (dotted curves).
(c) The particular case where the squeezing is balanced, i.e., s1 =
s2 = 2. (d) An unbalanced example where s1 = 4 and s2 = 2.
All squeezing values s1 and s2 are measured in units of vacuum
noise.

sin θ f2. Because the modes f1 and f2 are orthogonal, we
can use that f T

1
f2 = 0 and thus we find that BTF1 = cos θ 1

and BTF2 = sin θ 1. Nevertheless, the general expression
for W−

1 (xf1) does not simplify much.
To acquire additional insight, let us now assume that

both modes f1 and f2 have exactly the same squeezing in
the same quadrature:

Vf1 = Vf2 =
(

s 0
0 1

s

)
. (280)

Furthermore, let us assume that there is no mean field, such
that ξ = 0. In this particular case, we find the expression

W−
1 (xf1 , pf1) = W1(xf1 , pf1)

×
[

p2
f1

s + x2
f1

s
+ cos(2θ)

(

p2
f1

s + x2
f1

s
− 2

)]

.

(281)

In particular, it turns out that the purity takes a simple form,
such that we can quantify the entanglement for this state as

ER = log(2)− log
(

cos(4θ)+ 3
2

)
. (282)

This shows that the maximal entanglement is reached for
θ = π/4 and—as expected—the entanglement vanishes
when θ = 0 and θ = π/2, i.e., when we subtract entirely
in either mode f1 and f2.

More general settings are shown in Fig. 7, where we
show the entanglement creation for unbalanced squeezing,
by setting

Vf1 =
(

s1 0
0 1

s1

)
, and Vf2 =

(
s2 0
0 1

s2

)
. (283)

We compare the case with s1 = s2 to the case with s1 �= s2
and find that in absence of a mean field one can reach
the same maximal amount of entanglement. However, the
maximum is attained at a different value of θ when the
squeezing is unbalanced. From Eq. (282) we know that
in absence of a mean field, the curve for s1 = s2 does not
depend on the actual value of squeezing.

Figure 7 also shows the effect of an existing mean field,
by probing a mean field in mode f1 with ξ = (1, 0, 0, 0)T

and in mode f2 with ξ = (0, 0, 1, 0)T. Generally speak-
ing, we observe that the mean field reduces the created
entanglement. Nevertheless, the unbalance of squeezing
(s1 �= s2) also unbalances the effect of the mean field. The
higher squeezing in mode f1 makes the entanglement cre-
ation more resilient to displacements, but a mean field in
mode f2 will reduce the maximal attainable amount of
entanglement to the same level as in the balanced case
[because in both (c) and (d) mode f2 is squeezed with
s2 = 2]. In the presence of a mean field, we also find
that unbalanced squeezing shifts the value θ for which
most entanglement is created. In other words, to achieve
maximal entanglement upon photon subtraction in two
modes with unequal squeezing, one must subtract in an
unbalanced superposition of these modes.

Through this example, we showed that entanglement
between previously uncorrelated Gaussian states can be
created by a non-Gaussian operation. This entanglement
has some additional peculiarities. For example, a quick
glance at how this procedure affects Eq. (190) shows that
we can split the state in a Gaussian, i.e., Wf(xf), and a non-
Gaussian part, i.e., 〈Â〉g|xf/〈Â〉. In this case of Eq. (259) the
Gaussian part of the state clearly remains fully separable.
This means that, in this representation, all entanglement is
originating from the non-Gaussian part of the state. Nev-
ertheless, the decomposition, Eq. (190), of the state into
a Gaussian and a non-Gaussian part most probably is not
unique for mixed states, making it challenging to study
such non-Gaussian entanglement in its most general sense.

Yet, common tools that rely on the covariance matrix,
such as Refs. [216,217], to characterize entanglement in
the photon subtracted states, Eq. (259), are doomed to
fail. In Ref. [152] it is explicitly shown that the covari-
ance matrix of a photon-subtracted state is given by the
covariance matrix of the initial Gaussian state with a posi-
tive matrix added to it. This means that photon subtraction
just adds correlated noise to the covariance matrix and if
we consider a Gaussian state that has exactly this covari-
ance matrix we can decompose it using Eq. (103). In other
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words, when there is no entanglement visible in the covari-
ance matrix of the initial Gaussian state, we do not witness
any entanglement based on the covariance matrix of the
photon-subtracted state. In this case, the non-Gaussian
entanglement is thus genuinely non-Gaussian in the sense
that it cannot be detected through Gaussian witnesses.
Hence, rather than decomposing the states in a Gaussian
and non-Gaussian part, as was done in Eq. (190), it may be
more fruitful to define non-Gaussian entanglement as any
entanglement that cannot be witnessed based solely on the
covariance matrix of the state. This approach also offers a
natural connection to the framework of Gaussian passivity
on quantum thermodynamics [245].

Another peculiarity that was presented in Refs. [152,
153] is the intrinsic nature of this non-Gaussian entan-
glement. When we transform the system into a different
mode basis, there will still be entanglement in the system.
The entanglement is said to be intrinsic because the state
is entangled in every possible mode basis. As we saw in
Eq. (249) Gaussian entanglement is never intrinsic as there
always exists a basis in which a Gaussian state is separable.

Figure 7(b) gives a rather interesting approach to under-
standing the intrinsic nature of non-Gaussian entangle-
ment. In this sketch, the second beam splitter is intended
to undo the superposition θ and return to the initial mode
basis with modes f1 and f2. Changing this beam split-
ter thus implies a basis change. If we remove this beam
splitter entirely, we find ourselves in the entanglement
distillation scenario of Sec. 2. In this case, the photon
subtraction is fully local, but it happens on a state with
Gaussian entanglement. The photon subtraction can then
increase the Rényi entanglement by a maximal amount of
log 2. When we change to a mode basis where there is
no Gaussian entanglement and the entanglement is cre-
ated through a nonlocal photon subtraction, we create a
maximal amount of Rényi entanglement given by log 2.
Changing the mode basis in a different way will combine
the physics of these two extreme cases such that there will
always be entanglement, regardless of the basis.

Extending these ideas to more general non-Gaussian
operations on more general Gaussian mixed states is a hard
and currently open problem. This reflects the general status
of entanglement theory in CV systems: we lack a struc-
tured theoretical understanding of this phenomenon and as
a consequence we also lack good tools to detect it.

D. Non-Gaussianity and Bell inequalities

In this final subsection of our study of quantum corre-
lations in non-Gaussian states, we study Bell inequalities.
First of all, we argue that it is impossible to violate Bell
inequalities when both of the states and all the mea-
surements involved can be described by positive Wigner
functions. Then, we show that the Wigner function of the

state can itself be used to formulate a Bell inequality when
we allow for nonpositive Wigner functions.

The general setup for studying nonlocality in CV
revolves around a multimode state with Wigner function
W(xf ⊕ xg) defined on a phase space R2m = R2l ⊕ R2l′ .
Bell nonlocality entails that some measurements on this
state cannot be described by a local hidden variable model
of the type, Eq. (238). In a quantum framework, the local
measurements with POVM elements {Âj } (on the modes
in f) and {B̂j } (on the modes in g) can also be described
by Wigner functions WAj (xf) and WBj (xg). Because we are
dealing with a POVM, we find that

(4π)l
∑

j

WAj (xf) = (4π)l
′ ∑

j

WBj (xg) = 1. (284)

Note that this equality holds for all possible coordinates xf
and xg. Here we assume that the measurement outcomes Aj
and Bj are discrete, but by correctly defining resolutions of
the identity we can also deal with more general probability
distributions, e.g., homodyne measurements.

The probability to get the joint measurement result
(Aj , Bk) is given by

P(Aj , Bk) = (4π)m
∫

R2l

∫

R2l′
dxfdxgW(xf ⊕ xg)WAj (xf)

WBk (xg). (285)

Now let us assume that all these Wigner functions are posi-
tive. Because they are normalized, this implies that W(xf ⊕
xg) is a probability distribution on the entire phase space
R2m, and WAj (xf) and WBj (xg) are probability distributions
on the reduced phase spaces R2l and R2l′ , respectively.
However, the model, Eq. (238), does not require probabil-
ity distributions on phase space, but rather on the possible
measurement outcomes.

This is where Eq. (284) comes into play. Because
WAj (xf) and WBj (xg) are positive, more than just treat
them as probability distributions in phase space we
can also consider Pxf(Aj ) = (4π)lWAj (xf) and Pxg(Bj ) =
(4π)l

′
WBj (xg) as the probability of getting the measure-

ment outcomes Aj and Bk, respectively. Because of Eq.
(284) we find that these probabilities are correctly normal-
ized

∑

j

Pxf(Aj ) =
∑

j

Pxg(Bj ) = 1, (286)

and because the Wigner functions are positive, we also
find that Pxf(Aj ), Pxg(Bj ) � 0. Note that the phase-space
coordinates xf and xg are no longer treated as the vari-
able, but rather as a label. The set {Pxf(Aj ) | xf ∈ R2l}
denotes a family of different probability distributions on
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the space of measurement outcomes {A1, A2, . . . }. The set
{Pxg(Bj ) | xg ∈ R2l′ } can be interpreted analogously.

We can thus recast Eq. (285) in the following form:

P(Aj , Bk) =
∫

dxfdxgW(xf ⊕ xg)Pxf(Aj )Pxg(Bk). (287)

Because W(xf ⊕ xg) is a positive and normalized Wigner
function, it is a joint probability distribution on the coordi-
nates xf and xg. These coordinates label families of proba-
bility distributions {Pxf(Aj ) | xf ∈ R2l} and {Pxg(Bj ) | xg ∈
R2l′ } for the measurement outcomes. The expression (287)
is thus fully consistent with Bell’s local hidden variable
model, Eq. (238). As a consequence, we cannot violate any
Bell inequalities when the system is prepared in a state with
a positive Wigner function and when we only have access
to POVM that have Wigner representations with positive
Wigner functions.

Let us emphasize that there is generally no reason to
assume that the probabilities Pxf(Aj ) and Pxg(Bj ) are also
consistent with quantum mechanics. In other words, there
is not necessarily any state ρ̂ such that Pxf(Aj ) = tr[ρ̂Âj ].
However, because we are dealing with Bell nonlocality, we
do not need this to be the case, since Eq. (238) allows for
arbitrary local probability distributions.

To make a long story short, we have shown that Wigner
negativity is necessary for witnessing Bell nonlocality. The
interested reader can consult works such as Ref. [64] that
relate Wigner negativity to the more general concept of
quantum contextuality. However, the topic of contextuality
in CV systems is still a matter of scientific debate [246].

There has been a significant body of work about the vio-
lation of Bell inequalities in CV setups [247–249]. It is
evident that this is an arduous task once one approaches
a realistic experimental setting [250]. Here, we focus on
one particular suggestion to test Bell nonlocality based on
a state’s Wigner function [251,252].

The starting point of this approach is the CHSH inequal-
ity

∣∣∣〈X̂ Ŷ〉−〈X̂ Ŷ′〉+〈X̂ ′Ŷ〉+〈X̂ ′Ŷ′〉
∣∣∣ � 2.

As we discussed in Sec. 4, this inequality relies on some
assumptions for the observables X , X ′, Y, and Y′. In par-
ticular, we must assume that the measurement outcomes
are either −1 or 1. In a CV setting, where we generally
deal with a continuum of possible measurement outcomes,
this seems like a serious constraint. Nevertheless, we
have already encountered some natural examples during
this Tutorial. For example, photon counters yield a dis-
crete number of possible measurement outcomes. Here, we
choose a related observable that takes us all the way back
to Sec. B, where we encountered the observable

	̂(x) = D̂(−x)(−1)N̂ D̂(x).

This displaced parity operator has a rich structure, but
when it comes to actual measurement outcomes is will
return either −1 or 1. This means that we can choose
X , X ′, Y, and Y′ to be parity operators. First of all, let us
note that

	̂(xf ⊕ xg) = 	̂(xf)⊗ 	̂(xg). (288)

To see this, one can first show that (−1)N̂m =
(−1)N̂l+N̂l′ = (−1)N̂l ⊗ (−1)N̂l′ and subsequently use
D̂(xf ⊕ xg) = D̂(xf)⊗ D̂(xg) (displacements in different
modes are independent from each other).

Now we can identify the observables as follows:

X = 	̂(xf), X ′ = 	̂(x′
f),

Y = 	̂(xg), Y′ = 	̂(x′
g),

(289)

and therefore the CHSH inequality is transformed into
∣∣∣〈	̂(xf ⊕ xg)〉−〈	̂(xf ⊕ x′

g)〉+〈	̂(x′
f ⊕ xg)〉+〈	̂(x′

f ⊕ x′
g)〉

∣∣∣

� 2. (290)

As a next step, we use Eq. (78) to write

〈	̂(xf ⊕ xg)〉=(2π)mW(xf ⊕ xg), (291)

such that the inequality (290) can be recast as
∣∣∣W(xf ⊕ xg)− W(xf ⊕ x′

g)+ W(x′
f ⊕ xg)+ W(x′

f ⊕ x′
g)

∣∣∣

� 2
(2π)m

. (292)

Any state with a Wigner function that violates this inequal-
ity for some choice of coordinates xf, x′

f, xg, and x′
g pos-

sesses some form of Bell nonlocality. In Refs. [251,252]
it is argued that the inequality (292) can be violated by
sending a single photon through a beam splitter, but also
by an EPR state. The fact that a Gaussian Wigner func-
tion suffices to violate Eq. (292) sometimes comes as a
surprise, because we previously argued that one needs
Wigner negativity to violate Bell inequalities. The reason
why one can detect Bell nonlocality with this inequality
even when the Wigner function is positive stems from our
choice of observable 	̂(xf ⊕ xg). The POVM elements that
correspond to the measurement outcomes 1 and −1 have
Wigner functions that are strongly Wigner negative. As a
consequence the necessary Wigner negativity is baked into
Eq. (292) by construction.

In practice, the inequality (292) is highly sensitive to
impurities and can often be hard to violate with experimen-
tally reconstructed Wigner functions. The hunt for good
new techniques to show Bell nonlocality in CV systems
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is therefore still open. However, this subsection clearly
showed us that Wigner negativity is necessary to observe
one of the most exotic features in quantum physics. This
negativity might be baked into the state, but it could just as
well be induced by measurements. The conditional meth-
ods of Sec. B also highlight this duality, where Wigner
negativity in the measurement is used to induce Wigner
negativity in the state. It should come as no surprise that
Wigner negativity is also a necessary ingredient for the
most exotic quantum protocols. However, it should also be
highlighted that even with a little extra trust, it is possible
to design protocols that do not require Wigner negativity to
witness quantum correlations [201]. In the next section, we
discuss its importance for reaching a quantum advantage
with CV systems.

VI. NON-GAUSSIAN QUANTUM ADVANTAGES

It has been long known that systems that are entirely
built with Gaussian building blocks are easy to simulate
[25]. It should perhaps not come as a surprise that efficient
numerical tools exist to sample numbers from a multivari-
ate Gaussian distribution. The discrete variable analog of
this result comes across as less intuitive and goes by the
name “Gottesman-Knill theorem” [253]. Yet, it turns out
that something stronger than mere non-Gaussian elements
is required to render a system hard to simulate.

In Sec. D, we encountered the power of Wigner neg-
ativity by realizing that it is a necessary requirement for
Bell nonlocality. This connection between Wigner nega-
tivity and the most exotic types of quantum correlations
shows us that Wigner negativity is key to giving CV sys-
tems their most prominent quantum features. It is then
perhaps not a surprise that such Wigner negativity is also
a necessary requirement for implementing any type of
protocol that cannot be efficiently simulated by a classi-
cal computer [33,254,255]. We thus start our discussion
of quantum advantages by explaining the result of Ref.
[33]. To show the necessity of Wigner negativity, we
show an explicit simulation algorithm for general quantum
protocols without Wigner negativity.

Any quantum protocol ultimately relies on the mea-
surement of a certain set of measurement operators {Êj }
(typically a POVM) of a system prepared on a state ρ̂. In a
Wigner function formalism, we then find

pj = (4π)m
∫

R2m
dx WEj (x)W(x). (293)

Furthermore, the fact that the set {Êj } forms a POVM
implies that

(4π)m
∑

j

WEj (x) = 1. (294)

As we already discussed in Sec. D, surrounding Eq. (284),
it is crucial that the normalization condition (294) holds for
any phase-space coordinate x. In the present context, we
want to show that there is an efficient method for a classical
device to sample values from the probability distribution
{pj } when all involved Wigner functions are positive.

Let us start by assuming that the Wigner functions that
describe the POVM elements are all positive. When com-
bined with the POVM condition (294), this implies that we
can identify a set of probabilities Px(ej ) = (4π)mWEj (x)
as the probability to obtain the measurement outcome
ej , associated with the POVM element Êj . These Px(ej )

depend on a parameter x, we can thus form a family of
probability distributions {Px(ej ) | x ∈ R2m} that describe
the probability of obtaining the different results ej , depend-
ing on a chosen phase-space point. The normalization
condition (294) now states that

∑
j Px(ej ) = 1 for all x. Let

us emphasize that this family of probabilities would not be
well defined if WEj (x) were not positive Wigner functions,
as some of the probabilities would be negative.

Going back to the initial Eq. (293), we now find that

pj =
∫

R2m
dx Px(ej )W(x). (295)

To find the actual probability of getting the j th outcome
is thus given by “averaging” the probabilities Px(ej ) over
the different phase-space coordinates. Generally speaking,
this is not a real average, unless the Wigner function W(x)
of the state is an actual probability distribution on phase
space. The latter is exactly the case when W(x) is posi-
tive. Then, we can simply think of the probability pj for
obtaining event ej as pj = EW[Px(ej )], where EW is the
expectation value over the probability distribution W(x).

Hence, when all Wigner functions are positive, the
algorithm to simulate our relevant quantum process can
simply be expressed by the following steps:

1. Sample a phase-space coordinate x from the proba-
bility distribution W(x).

2. Construct the probability distribution Px(ej ) for the
sampled value x.

3. Sample an outcome ej from the probability distribu-
tion Px(ej ).

Even though this is the general idea behind our sampling
protocol, there are some major hidden assumptions. First,
we assume here that the Wigner function for the state and
the measurement are known. Furthermore, we also assume
that we can simply sample points from any distribution
on phase space and from any distribution of measurement
outcomes Px(ej ). In particular, for the sampling aspects it
is not at all clear that these are reasonable assumptions to
make. Standard sampling protocols for multivariate prob-
ability distributions tend to get highly inefficient once the
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probability distributions become too exotic such that it is
dangerous to assume that we can “just sample.”

To address this point Ref. [33] makes more assump-
tions on the exact setup we are trying to simulate. First,
we assume that the detection is done by a series of single-
mode detectors, such that our label j now become a tuple
j = (j1, j2, . . . , jm)where jk denotes the outcome e(k)jk for the
detector on the kth mode. We can thus write the POVM
element as Êj = Ê(1)j1 ⊗ · · · ⊗ Ê(m)jm , such that

WEj(x) = WE(1)j1
(x1, p1)WE(2)j2

(x2, p2) . . .WE(m)jm
(xm, pm).

(296)

We assume that each detector has been accurately cal-
ibrated, such that all the individual Wigner functions
are known. This implies that for a given point in phase
space x = (x1, p1, . . . , xm, pm)

T, we can simply evaluate
the probabilities for each detector to produce a certain
outcome. Thus, we calculate the probability distributions
P(xk ,pk)(e

(k)
j ) = 4πWE(k)j

(xk, pk) for all the possible mea-

surement outcomes for that specific mode. We assume that
sampling outcomes e(k)j from these probability distribu-
tions P(xk ,pk)(e

(k)
j ) is a feasible task. For typical detectors

in quantum optics experiments this is a very reasonable
assumption.

The Wigner function W(x) that describes the state is
more subtle as it also includes all correlations between
modes. If the state is Gaussian, a measurement of the
covariance matrix would be sufficient to know the full
Wigner function. Because of its Gaussian features, there
are efficient tools to directly sample phase-space points.
Yet, for more general non-Gaussian positive Wigner func-
tions this sampling may be much harder. Therefore, Ref.
[33] makes an essential assumption: it assumes that we
know a protocol that combines local operations to design
the state W(x) from a known initial state with no correla-
tions between the modes. The notion of “locality” should
here be understood in the sense of acting on a small
set of modes while leaving the others fully untouched.
These local operations are also supposed to be represented
by positive Wigner functions, which depend only on the
phase-space coordinates of the subset of modes on which
they act.

Generally speaking, such Wigner positive operations
� : Hin → Hout map a state ρ̂ to a new state �[ρ̂]. In Ref.
[33], the Choi representation [256,257] is used to repre-
sent� as a state on a larger Hilbert space Hin ⊗ Hout. This
becomes particularly appealing when we go to a Wigner
representation, where the Choi representation of� is given
by a Wigner function W�(x in ⊕ x out). The action of � on

a state with Wigner function W(x in) is then given by

Wout(x out) = (4π)m
∫

R2m
dx in W�(x in ⊕ Tx out)W(x in),

(297)

where m is the number of modes of the input state. For
technical reasons, we must include the transposition oper-
ator T, Eq. (257), in the action of the channel. Because
this operation must be trace preserving, we on top get the
property that

(4π)m
∫

R2m
dx out W�(x in ⊕ Tx out) = 1. (298)

When we now assume that the operation � has a Wigner-
Choi representation W�(x in ⊕ x out), which is a positive
function, it immediately follows that the operation �

turns a Wigner positive initial state W(x in) into a Wigner
positive output state Wout(x out).

It is useful to note that such operations, Eq. (297), can be
trivially embedded in a larger space. Let us assume that we
consider a state W(xf ⊕ xg), we can simply let the operation
act on the modes g by taking

Wout(xf ⊕ x out
g ) = (4π)l

′
∫

R2l′
dxin

g W�(x in
g ⊕ Tx out

g )

× W(xf ⊕ x in
g ). (299)

Notationally, this may seem a little complicated, but, in
essence, we just carry out the integration over a subset of
the full phase space. We call these operations local Wigner
positive operations.

In our simulation protocol, we thus assume that W(x) is
created by a series of such local Wigner positive operations
of �1, . . . ,�t on a noncorrelated input state Win(xin) =
W(1)

in (x1, p1)W
(2)
in (x2, p2) . . .W

(m)
in (xm, pm).

W(x) = (4π)mt
∫

R2m
dxt . . .

∫

R2l
dxtW�t(xt ⊕ Tx) . . .

× W�2(x1 ⊕ Tx2)W�1(xin ⊕ Tx1)

× Win(xin). (300)

We assume on top that each operation is local over a small
number of modes l � m. To model this with Eq. (299),
it suffices to split xtk−1 = xl

tk−1
⊕ xl′

tk−1
and xtk = xl

tk ⊕ xl′
tk ,

such that

(4π)mW�tk
(xtk−1 ⊕ Txtk )

= (4π)lW�tk
(x l

tk−1
⊕ Tx l

tk )δ(xl′
tk−1

− xl′
tk ). (301)

Even though the notation is complicated, it simply
describes that we act on an l-mode subspace with the
operation �tk and leave the other l′ modes untouched.
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The normalization condition (298) now has an impor-
tant consequence, since it allows us to identify a
probability distribution on phase space Pxtk−1

(xtk ) =
(4π)mW�tk

(xtk−1 ⊕ Txtk ). It gives us the probability of
choosing a phase space value xtk , given that we know xtk−1 .
Because the operations are local, Eq. (301) allows us to
keep most of the phase-space coordinates constant from
step to step. Furthermore, the first step is simple. Every
pair (xk, pk) of the initial coordinate xin can be sampled
independently because Win(xin) factorizes. This now gives
us the following new algorithm:

1. Take the initial Wigner function Win(x in) =
W(1)

in (x1, p1)W
(2)
in (x2, p2) . . .W

(m)
in (xm, pm) and sample

a pair (xk, pk) from every single-mode probability
distribution W(k)

in (xk, pk). Put all these pairs together
to obtain x in = (x1, p1, . . . , xm, pm).

2. Update the coordinate by sampling new coor-
dinates based on Pxtk−1

(xtk ) = (4π)mW�tk
(xtk−1 ⊕

Txtk ). Because �tk are local operations, it suffices
to only locally update coordinates. Let us make
this clear through an example. Say we have xtk−1

= (x(k−1)
1 , p (k−1)

1 , . . . , x(k−1)
m , p (k−1)

m )T and operation
�tk acts locally on modes with labels 2, 5, and
7. Take x l

tk−1
= (x(k−1)

2 , p (k−1)
2 , x(k−1)

5 , p (k−1)
5 , x(k−1)

7 ,

p (k−1)
7 ) and use it to evaluate Pxtk−1

(x l
tk )= (4π)lW�tk

(x l
tk−1

⊕ Tx l
tk ). Now sample a new vector x l

tk =
(x(k)2 , p (k)2 , x(k)5 , p (k)5 , x(k)7 , p (k)7 ) from this probability
distribution. Then construct the new vector xtk by
taking xtk−1 and updating the coordinates associ-
ated to modes 2, 5, and 7 to the newly sampled
coordinates

3. After the operations �1, . . . ,�t have been imple-
mented by updating the phase-space coordi-
nate, take the final phase-space coordinate x =
(x1, p1, . . . , xm, pm)

T and the Wigner function describ-
ing the detectors WEj(x) = WE(1)j1

(x1, p1)WE(2)j2
(x2, p2)

. . .WE(m)jm
(xm, pm). For each detector k, use the phase-

space coordinate x to generate the probability distri-
bution P(xk ,pk)(e

(k)
j ) = WE(k)j

(xk, pk).

4. Sample an outcome e(k)j from the distribution
P(xk ,pk)(e

(k)
j ) for every detector.

Sampling the final phase-space coordinate x by using a
Monte-Carlo-style update rule is time consuming, but if
the operations are local it can be done efficiently. This pro-
cedure implicitly assumes that we do not just know the
state we are sampling from, but that we know the cir-
cuit of local operations that is used to create the state
from local resources. Ultimately, when one considers the
circuit representation of quantum algorithms, this is also
how a quantum algorithm works. For example, Sec. A

exactly shows that any unitary CV circuit can be built with
single- and two-mode gates. The algorithm outlined in this
section shows that we can efficiently simulate any protocol
where the local input state, the circuit’s operations, and the
measurements are described by positive Wigner functions.

One may wonder whether any positive Wigner function
W(x) can be constructed through such a circuit and, if so,
whether there is an efficient way to design such a circuit
when we know the Wigner function. If we assume that not
only the state W(x) but also all its marginals are known,
it is possible to construct a stepwise sampling procedure
through the chain rule of probability theory:

W(x) = W(xm, pm | xm−1, pm−1, . . . x1, p1)× . . .

W(x3, p3 | x2, p2, x1, p1)W(x2, p2 | x1, p1)W(x1, p1).
(302)

This process effectively executes a type of random walk
with memory. In each step of this walk, we then sample
the phase-space coordinates for one mode. Nevertheless,
this process only works when we have access to all these
conditional probabilities, which practically implies having
access to all the marginals of the distribution. In practi-
cal setups, this will often not be the case. Nevertheless,
it is quickly seen that this setup can be efficiently used
to sample from Gaussian Wigner functions where these
conditional distributions have a particularly simple form.

Thus, we have shown that it is impossible to obtain
a quantum computational advantage by using only local
states, measurements, and operations with positive Wigner
functions. This means that Wigner negativity is necessary
to reach a quantum advantage in such setups. However,
Wigner negativity is certainly not sufficient since there
are many setups of quantum systems that involve negative
Wigner functions that can be efficiently simulated [258].
It is thus interesting to take the opposite approach and
explore a setup that is known to lead to a quantum advan-
tage. In the spirit of CV setups, the most logical choice for
such a discussion is Gaussian boson sampling [259]. In the
literature, this setup has been studied mainly from the point
of view of complexity theory [260,261], but here we rather
focus on its physical building blocks.

Boson sampling [262] is a problem in which one injects
a set of N bosons (generally photons) into an m-mode
interferometer. On the output ports of this interferome-
ter, photodetectors are mounted to count the particles at
the output. Simulating this type of quantum Galton board
is a computationally hard task, implying that a quantum
advantage could be reached by implementing the setup in
a quantum optics experiment. On the other hand, it turns
out that the required number of photons to implement such
an experiment is also hard to come by. This was the moti-
vation for developing a new approach, where the input
photons are replaced by squeezed states that are injected
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in each of the interferometer inputs. Because an interfer-
ometer, built out of phase shifters and beam splitters, is a
Gaussian transformation the output state will remain Gaus-
sian. We can thus effectively say that we are sampling
photons from a state with Wigner function WG(x). In addi-
tion, there is no mean field in the setup such that the entire
state is characterized by its covariance matrix V.

When we assume that the detectors resolve photon num-
bers, the probability to detect a string of counts n =
(n1, . . . , nm) can we written as

P(n) = (4π)m
∫

R2m
dx Wn(x)WG(x). (303)

We can then use Eq. (118) to write

Wn(x) = Wn1(x1, p1) . . .Wnm(xm, pm). (304)

Even though the integral (303) is hard to compute, it is
insightful in the light of Eq. (295) and our discussion
regarding the necessity of Wigner negativity. Indeed, we
see immediately that the detectors form a crucial ele-
ment in rendering the setup hard to simulate. The same
holds when we replace the number-resolving detectors
with their on-off counterparts [263] such that nk = {0, 1}
and the Wigner functions are given by Wnk (xk, pk) = {1 −
2 exp[−(x2

k + p2
k )/2]}/(4π).

When we stick with number-resolving detectors that
project on Fock states, it is practical to reformulate the
problem in terms of P functions and Q functions, such that

P(n) =
∫

R2m
dx Pn(x)QG(x). (305)

For the detailed calculation, we refer to Ref. [259]. It turns
out that the probabilities P(n) can be expressed in terms
of the Hafnian of a matrix [264], which establishes a con-
nection to the problem of finding perfect matchings in
graph theory. This connection has led to several suggested
applications for Gaussian Boson sampling [265–267].

In the light of this Tutorial, the most interesting appli-
cation of Gaussian Boson sampling is its potential role in
quantum state engineering [205]. When only a subset of
modes are measured, we can see Gaussian Boson sampling
as a generalization of photon subtraction (and even as a
generalization of “generalized photon subtraction” [157]).
The idea is reasonably simply explained in the light of Sec.
B: when we split the system in two parts R2m = R2l ⊕ R2l′ ,
such that the Gaussian state that comes out of the interfer-
ometer now takes the form WG(xf ⊕ xg), we can postselect
on a measurement outcome n = (n1, . . . nl′) for the second
subsystem. We thus project on a state Wn(xg), which is a
product of l′ Fock states, and from Eq. (190), we obtain
that the conditional state on the remaining modes is given

by

Wf|n(xf) = 〈[|n1〉 〈n1| ⊗ · · · ⊗ |nl′ 〉 〈nl′ |]〉g|xf

〈[|n1〉 〈n1| ⊗ · · · ⊗ |nl′ 〉 〈nl′ |]〉 Wf(xf),

(306)

with Wf(xf) defined by Eq. (182). From Eq. (192) we recall
the expression

〈[|n1〉 〈n1| ⊗ · · · ⊗ |nl′ 〉 〈nl′ |]〉g|xf

= (4π)l
′
∫

R2l′
dxg Wn(xg)WG(xg | xf), (307)

and because the initial state WG(xf ⊕ xg) is Gaus-
sian, we find that the conditional probability distribu-
tion WG(xg | xf) is given by Eq. (193). Ironically, to
evaluate 〈[|n1〉 〈n1| ⊗ · · · ⊗ |nl′ 〉 〈nl′ |]〉g|xf and 〈[|n1〉 〈n1| ⊗
· · · ⊗ |nl′ 〉 〈nl′ |]〉 we must essentially solve the same hard
problem as for the implementation of Gaussian Boson
sampling itself. Therefore, the exact description of the
resulting states is generally complicated.

Nevertheless, in idealized scenarios, even small Gaus-
sian Boson sampling circuits can be used to prepare inter-
esting non-Gaussian states [205]. In particular, the capacity
of Gaussian Boson sampling to produce GKP states has
taken up a prominent place in a recent blueprint for pho-
tonic quantum computation [24]. Furthermore, the results
in Sec. C suggest that states created by performing Gaus-
sian Boson sampling on a subset of modes can have
additional non-Gaussian entanglement. Yet, to be able to
use this procedure to produce highly resourceful Wigner
negative states, Sec. 2 highlights that the initial Gaussian
state needs to be such that the modes in f can steer the
modes in g. This condition can be seen as a basic quality
requirement for the Gaussian Boson samplers that are used
in Ref. [24].

Finally, the experimental imperfections are also detri-
mental for the quantum advantage that is produced in
Gaussian Boson sampling. Clearly, when the Gaussian
state WG(x) can be written as a Gaussian mixture of coher-
ent states (meaning that no mode basis exists in which the
quadrature noise is below vacuum noise), the sampling
can be simulated efficiently. Because multimode coher-
ent states are always just a tensor product of single-mode
coherent states, it suffices to sample a coherent state from
the mixture, calculate all the individual probabilities for the
output detectors, and sample independent detector outputs
according to these probabilities. The presence of entan-
glement in the Gaussian state from which we sample is
thus crucial. In addition, detector efficiencies must be suf-
ficiently high such that their Wigner functions remain
nonpositive, otherwise the protocol of Ref. [33] renders
the setup easy to simulate (as explained in the first part
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of this section). A more thorough analysis of how dif-
ferent experimental imperfections render Gaussian Boson
sampling easier to simulate can be found in Ref. [268].

There are clearly still many aspects of the relation
between non-Gaussian features of quantum states on the
one hand, and the ability to achieve a quantum computa-
tional advantage on the other hand, that are not yet fully
understood. The Gaussian Boson sampling setup clearly
emphasizes the importance of entanglement in combina-
tion with Wigner negativity. Furthermore, there is the
implicit fact that a simulation scheme such as Ref. [33]
requires knowledge of the actual circuit of local operations
that was used to create the state. It does make sense to
assume that we actually have some ideas of the quantum
protocol that we are attempting to simulate, but yet one
may wonder whether there could be a reasonable setting
(in the sense that we are actually implementing a well-
controlled protocol) in which the assumptions of Ref. [33]
do not hold. This clearly shows that many fundamental the-
oretical aspects of CV quantum computation remain to be
uncovered.

VII. EXPERIMENTAL REALIZATIONS

Now that we have provided an overview of some theo-
retical aspects of non-Gaussian quantum states, we inter-
pret the “where to find them” part of the title in a very lit-
eral sense. Non-Gaussian states are generally rather fragile,
as one should expect from quantum central limit theorem
and the fact that thermal states in free bosonic theories are
Gaussian. Producing and analyzing non-Gaussian states in
a laboratory setting is indeed challenging, but nevertheless
it has been done numerous times. Our main focus in Sec.
A is quantum optics, which is the historical testbed for CV
quantum physics. However, in recent years there has been
increased attention for CV approaches in other setting such
as optomechanics, superconducting circuits, and trapped
ions.

A. Quantum optics experiments

This section provides an overview of some of the most
important milestones in the generation of non-Gaussian
states in optics. For more details, we refer the reader to
a specialized review [81].

Historically, one might argue that the first experimental
realizations of non-Gaussian states in optical setups relied
on sufficiently sensitive photon detectors. Initial demon-
strations primarily used photoemission of atoms [269,270],
which are prepared in excited states (e.g., by electron bom-
bardment) or via resonance fluorescence in ions [271]. The
development of spontaneous parametric down-conversion
(SPDC) made it possible to create a single-photon state
using only bulk optical elements [202]. However, all
these early non-Gaussian states were characterized through

counting statistics, which means that we generally classify
them as DV experiments.

It is perhaps intriguing to note that SPDC is also the
process that lies at the basis of the creation of squeezed
states of light [272], which are Gaussian. These states play
a key role in the generation of single-photon states, simply
because a weakly squeezed vacuum is mainly a super-
position of vacuum and a photon pair. By detecting one
photon of the pair, the presence of the second photon is
heralded. Hence, the approach of Ref. [202] is a basic
implementation of a conditional scheme for the generation
of non-Gaussian states as presented in Sec. B.

A genuine CV treatment of such non-Gaussian states
would only be achieved much later in a work that presents
the first tomographic reconstruction of a state with Wigner
negativity in optics [273]. Due to the developments of an
easily implementable maximum-likelihood algorithm for
state reconstruction, homodyne tomography became one
of the main tools to study non-Gaussian states in CV quan-
tum optics [274]. It did not take long before this also led to
the reconstruction of a displaced single-photon Fock state
[275] and a two-photon Fock state [276]. The combination
of increased squeezing with type-II SPDC and an array of
photon detectors to increase the number of heralded pho-
tons more recently made it possible to resolve the Wigner
function of a three-photon Fock state [277]. Similar ideas
of multiplexed photon detection have also been used to
generate superpositions of Fock states [278].

For non-Gaussian states beyond Fock states, photon
subtraction, as described in Sec. 2, is a common experi-
mental tool. Its first experimental implementation success-
fully showed the capability of generating non-Gaussian
statistics in the homodyne measurements, but it failed to
demonstrate Wigner negativity [148]. Later experiments
improved the quality of the generated states, demonstrat-
ing Wigner negativity and creating so-called “Schrödinger
kittens” [129,279,280]. The terminology is chosen because
these states resemble cat states proportional to |α〉 − |−α〉
for small values of the mean field α. Even though such
Schrödinger kittens are ultimately not very different from
squeezed single-photon states, the nomenclature makes
more sense in the context of experiments that “breed” cat
states [281]. Here, one mixes two Schrödinger kittens on
a beam splitter and performs homodyne detection on one
output port. By conditioning on instances where this homo-
dyne detector registers values close to zero, one effectively
heralds a larger cat state (the value of α has increased). A
variation of photon subtraction has also been used to create
a type of CV qubit [282].

As an alternative to photon subtraction, one can also
add a photon [159]. Even though this operation theoreti-
cally equates to applying a creation operator on the state,
it is experimentally much harder to implement than pho-
ton subtraction as it requires nonlinear optics. However,
photon subtraction can only produce Wigner negativity
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when the initial state is squeezed. Photon addition, on
the other hand, provides the advantage of always creat-
ing a Wigner negative state. A simple way to see this
is by applying a creation operator to the state and eval-
uating the Q function (70). When a photon is added to
the mode g, the Q function after photon addition has the
property Q+(α) ∼ (αTg)2QG(α), where QG(α) is the Q
function of the initial Gaussian state. This relation implies
automatically that the Q function will be exactly zero
for α = 0, and a zero of the Q function implies Wigner
negativity. This means that one can apply photon addi-
tion to highly classical states, such as a coherent state or
a thermal state, and still end up creating Wigner nega-
tivity. Such photon-added coherent states were also used
to experimentally measure [283] non-Gaussianity δ(ρ̂)

as defined in Eq. (110). Remarkably, combining photon
addition and photon subtraction operations in both pos-
sible orders provides a way to experimentally verify the
canonical commutation relations [â, â†] = 1, as was shown
in Ref. [160].

The above methods are all based on Gaussian states as
initial resources to generate non-Gaussian states. The non-
Gaussian states that are created as such can in turn serve
as useful resources to create more intricate non-Gaussian
states. Fock states are a commonly used type of input
state, for example, in the first demonstration of a large
Schrödinger’s cat state [284]. Intriguingly, by using non-
Gaussian initial states, it suffices to use homodyne detec-
tion as the conditional operation. This setup can then be
extended to a cat breeding scheme [285]. Another method
to create large cat states in optics relies on making the light
field interact with an atom [286]. The presence of entan-
glement between the “macroscopic” coherent state and the
“microscopic” atomic degrees of freedom make for an
experiment that resembles Schrödinger’s original though
experiment [106]. Once the atom and the coherent light
are entangled, a spin rotation of the atom is followed by a
measurement to project the state of the light field in either
an even or an odd cat state. This reflects the general idea
that atoms still induce much larger nonlinearities than non-
linear crystals. These nonlinearities are the direct source of
non-Gaussian effect, but they are also much harder to con-
trol. At present, experiments that rely on such higher-order
nonlinearities to create non-Gaussian states remain rare in
the optical regime.

The above methods all focus on the creation of single-
mode non-Gaussian states. For multimode systems, much
of the experimental progress has concentrated on two-
mode systems. As we extensively discussed throughout
this tutorial, an important feature in such multimode sys-
tems are quantum correlations. Some of the first exper-
imental demonstrations of non-Gaussian quantum corre-
lations were based on the Bell inequality (292). Homo-
dyne tomography and a single photon, delocalized over

two modes by a beam splitter, suffices to violate the
inequality [287,288]. However, these works also teach us
that extreme high purities are required to do so.

Motivated by photon-subtraction experiments and chal-
lenged by the no-go theorem of [225–227], entanglement
distillation soon became a new focus for non-Gaussian
quantum optics experiments. Some of these experiments
have focused on adding some form of non-Gaussian noise
on the initial state to circumvent the no-go theorem [228,
229]. Entanglement distillation through local photon sub-
traction from the entangled modes of a Gaussian input state
would later be demonstrated in Ref. [289]. Earlier, it had
already been shown that Gaussian entanglement can be
increased by photon subtraction in a superposition of the
entangled mode [290]. Interestingly, in the latter case, the
photon is effectively subtracted in a nonentangled mode
such that the setup is essentially equivalent to mixing a
squeezed vacuum and a photon-subtracted squeezed vac-
uum on a beam splitter. A similar photon subtraction in a
coherent superposition of modes was later carried out to
entangle two Schrödinger kittens [291]. This can proba-
bly be seen as the first realizations of purely non-Gaussian
entanglement in CV.

Photon addition has also been considered as a tool for
creating entanglement between pairs of previously uncor-
related modes [292]. The resulting state can be seen as a
hybrid entangled state proportional to |0〉 |α〉 + |1〉 |−α〉,
such states have also been produced using techniques sim-
ilar to photon subtraction [293]. For two modes, photon
addition can be implemented in a mode-selective way
[294]. This setup is particularly useful to create entan-
glement between coherent states by adding a photon in a
superposition of displaced modes.

Going beyond two modes has always remained a chal-
lenging task. For mode-selective photon subtraction from
a multimode field, one must abandon the typical imple-
mentation based on a beam splitter. For two modes, such
an alternative photon subtraction scheme was, for exam-
ple, realized in the time-frequency domain, by subtracting
a photon from a sideband [295]. Yet, going to a gen-
uine multimode scenario required the design of a whole
new photon subtractor based on sum-frequency generation
[296,297]. This finally permitted the first demonstration of
multimode non-Gaussian state in a CV setting, demonstrat-
ing non-Gaussian features in up to four entangled modes
[298].

Such highly multimode states of more than two modes
are confronted with a considerable problem: the exponen-
tial scaling of the required number of measurements for
a full state tomography. This makes it highly challeng-
ing to demonstrate non-Gaussian features such as Wigner
negativity in multimode non-Gaussian states. For single-
photon-subtracted states, it has been pointed out that good
analytical models can be used to train machine-learning

030204-53



MATTIA WALSCHAERS PRX QUANTUM 2, 030204 (2021)

algorithms to recognize Wigner negativity based on single-
mode measurements [299]. Furthermore, the techniques of
Ref. [128] combined with Ref. [300] should also make it
possible to use multiplexed double homodyne detection to
witness Wigner negativity in certain classes of multimode
states.

In multimode systems, we are confronted with the lim-
itations of homodyne tomography. Recently, it has been
shown that machine-learning techniques can be used to
implement an improved form of CV tomography based
on homodyne measurements [301]. Even though this setup
is computationally heavy in single-mode setups, it uses
a smaller set of states as a basis for state reconstruction,
which might make multimode versions of the protocol
more scalable. Alternatively, one can also bypass homo-
dyne measurements all together. Photon-number-resolving
detectors such as transition edge sensors [302] make it
possible to use the identity, Eq. (78), to directly measure
the Wigner function [76]. Intriguingly, this implies that
a photon-number-resolving detector and a setup to gen-
erate displacements of the state in arbitrary modes makes
it possible to directly measure the full multimode Wigner
function. Nevertheless, such a multimode protocol has so
far not been realized in any experiment.

B. Other experimental setups

Given all the experimental work in CV quantum optics,
it is perhaps surprising that the first experimental demon-
strations of quantum states with Wigner negativity hap-
pened in different fields. The very first realization of such
a state was achieved with trapped ions. Even though one
often uses the atomic transitions in these systems to iso-
late qubits for potential quantum computers, trapped ions
also have interesting motional degrees of freedom. By
exploiting a Jaynes-Cummings type interaction between
the atom and the trapping field, it is possible to use the
ions’ internal atomic degrees of freedom to create well-
controlled non-Gaussian states such as a Fock state [78]
and a Schrödinger’s cat state [303] in the motional degrees
of freedom.

Mathematically, this setup is equivalent to cavity QED,
where it was shown that photons in a cavity can be manip-
ulated through interactions with atoms [304] and the Rabi
oscillations of the injected Rydberg atoms can in turn be
used to probe the field within the cavity [305]. These meth-
ods would then be combined to experimentally generate a
single-photon Fock state of the microwave field in a cav-
ity [306], confirm its Wigner negativity [79], and probe its
full Wigner function [80]. A few years later, similar tech-
niques were used to finally generate Schrödinger cat states
and higher-order Fock states [307].

A third setup with very similar physics is found in
circuit QED. In this field, the macroscopic microwave
cavities are replaced by superconducting circuits, and

nonlinearities are induced by Josephson junctions rather
than atoms [140]. Even though these setups are often used
in a DV approach, the microwave fields involved can
equally be treated in a CV approach. The large nonlineari-
ties rather naturally create non-Gaussian states, but getting
a good sense of control over them can be challenging. Nev-
ertheless, a wide range of non-Gaussian states such as Fock
state [308] and large Schrödinger cat states [309] have
been experimentally realized. The latter have furthermore
been stabiized by engineering the decoherence processes
in the system [310]. Very recently these systems have also
been used to demonstrate the deterministic generation of
photon triplets [142].

In recent years, both, trapped ions [311] and super-
conducting circuits [312] were used to achieve another
important milestone in CV quantum computing: the exper-
imental generation of a GKP state. These highly non-
Gaussian states are useful for encoding a fault-tolerant
qubit in a CV degree of freedom. By exploiting the redun-
dancy that is offered by the infinite dimension Hilbert space
of a CV system, one can create a qubit with a certain degree
of robustness. This effectively makes it possible to imple-
ment error-correction routines, as shown in Ref. [312]. In
other words, these systems have managed to generate CV
states that are so non-Gaussian that they can be effectively
used as fault-tolerant DV states.

A final field that has shown much potential over the
last decades is cavity optomechanics. Here, an optical field
is injected into a cavity with one moving mirror (more
generally also other types of “dynamic cavities” can be
used). The goal is to cool this mirror to its ground state to
observe its quantum features. This way, one hopes to create
nonclassical states of motion in reasonably large objects.
A wide variety of such optomechanical devices exist
[313]. Several theoretical schemes have been proposed to
generate non-Gaussian states in such an optomechanical
setup [314,315]. Even though quantum features such as
photon-phonon entanglement have been demonstrated in
such systems [316,317], it remains highly challenging to
obtain good experimental control over the motional quan-
tum state. Nevertheless, some CV non-Gaussian states
states in the form of superpositions between vacuum and
a single-phonon Fock state have been experimentally real-
ized [318].

A common problem in these setups is the creation of
entanglement between the CV degrees of freedom in dif-
ferent modes. Some degree of such CV entanglement has
been experimentally achieved in trapped ion [319] and
circuit QED setups [320]. However, the number of entan-
gled modes is much lower than what has been achieved
in optics [18–21,220], where even non-Gaussian entangled
states of more than two modes have been created [298].
This shows clearly how different experimental setups have
different strengths and weaknesses. Optics comes with
the advantage of spatial, temporal, and spectral mode
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manipulations, which allows the creation of large entan-
gled states. However, the resilience of optical setups to
decoherence is due to limited interaction with the envi-
ronment. The latter implies that it is also difficult to
find controlled ways to make these systems strongly non-
Gaussian. On the other hand, the other setups, which we
discussed, require much more significant shielding from
environmental degrees of freedom. When this coupling to
other degrees of freedom can be controlled, it provides
the means to create non-Gaussian quantum states. In this
context, it is appealing to combine the advantages of differ-
ent regimes. Optomechanics offers a potential pathway to
achieve this by converting between microwave and optical
degrees of freedom [321,322].

As a last remark, it is interesting to mention that phase-
space descriptions and non-Gaussian states also appear
in atomic ensembles. This framework relies on the fact
that an ensemble of a large number of atoms can be
described by collective observables that behave very simi-
lar to bosonic systems. The associated phase space behaves
differently from the optical phase space, in the sense that it
is compact. More specifically, the phase space will cover
a sphere and the radius of this sphere will depend on
the number of atoms. Effectively, we would recover a
bosonic system in the limit of an infinite number of atoms.
However, the compactness of phase space for a finite
ensemble comes with interesting side effects: a sufficiently
high amount of spin squeezing can create non-Gaussian
states. We do not go into details for these systems, but it
should nevertheless be highlighted that non-Gaussian spin
states have received considerable attention in the literature
[323] and have been produced in a range of experiments
[324–327].

VIII. CONCLUSIONS AND OUTLOOK

In this Tutorial, we have presented a framework
based on phase-space representations to study continuous-
variable quantum systems. We then focused on the various
aspects of non-Gaussian states, where we first represented
different ways to structure the space of continuous-variable
states in a single mode in Fig. 1. Whenever possible, we
generalized results from the literature to a multimode set-
ting. However, for certain properties such as the stellar
rank, these generalizations become insufficient to classify
all possible quantum states.

We introduced two paradigms to create non-Gaussian
states, where one is a deterministic approach based on uni-
tary transformations, reminiscent of the circuit approach
for quantum-information processing. The second approach
is conditional, in the sense that it relies on condition-
ing one part of a state on measurement outcomes for
another part of a state, which is more narrowly related
to a measurement-based approach to quantum protocols.
Throughout the remainder of the Tutorial, we have largely

focused on conditional operations, since it is the most com-
monly used approach in experiments. It also provides a
natural avenue to start studying the relation between quan-
tum correlations and non-Gaussian features. We show how
the conditional approach requires certain correlations in
the initial Gaussian state to be able to induce certain type
of non-Gaussianity in the conditional state, as summarized
in Fig. 5.

On the other hand, non-Gaussian operations can also
create a type of non-Gaussian entanglement as introduced
in Sec. C. This kind of entanglement is particular as it
can not be identified with typical techniques that rely
on the state’s covariance matrix. Nevertheless, we use
Rényi-2 entanglement as a measure to illustrate the exis-
tence of such purely non-Gaussian quantum correlations
in photon-subtracted states. Even though its existence is
known from pure-state examples, it has only received lim-
ited attention in both theoretical and experimental work.
One possible reason is the difficulty of studying this type of
entanglement for mixed states, since convex roof construc-
tions tend to become highly intractable for non-Gaussian
states.

As a final theoretical aspect of the Tutorial, we high-
light the need of Wigner negativity to achieve some of the
most striking features in quantum technologies. On the one
hand, we show that Wigner negativity in either the state or
the measurement is necessary to violate a Bell inequality.
This observation can be understood in the broader con-
text of nonlocality and contextuality: Wigner negativity is
often seen as a manifestation of the contextual behavior of
quantum systems, and nonlocality can be understood as a
type of contextuality of measurements on different subsys-
tems. On the other hand, we also present results that show
how Wigner negativity is a requirement to achieve a quan-
tum computational advantage. Intuitively, it is perhaps not
surprising that states, operations, and measurements that
can all be described by probability distributions on phase
space can be efficiently simulated on a classical computer.
However, as we showed in Sec. VI, the actual simula-
tions protocol contains many subtle points. Here, too, we
conclude that there are still many open questions surround-
ing the physics of quantum computational advantages in
continuous-variable setups.

As a last step of this Tutorial, we provided an
overview of the experimental realizations of non-Gaussian
states with continuous variables. Quantum states of light
are indeed the usual suspects for continuous-variable
quantum-information processing, but it turns out to be
remarkably challenging to engineer highly non-Gaussian
states in such setups. We highlighted how trapped ions,
cavity QED, and circuit QED have proven to be bet-
ter equipped for this task, but in return they are con-
fronted with other problems. Optomechanics presents itself
as an ideal translator between these two regimes, which
may soon make it possible to combine the scalability of
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optical setups with the high nonlinearities of the
microwave domain.

In a more general sense, there are definitely many open
question to be resolved in the domain of continuous-
variable quantum physics. In this Tutorial, we have
focused extensively on questions related to non-Gaussian
features, notably in multimode systems. In the greater
scheme of things, this is only one of the many challenges
in the field. The recent demonstration of a quantum com-
putational advantage with Gaussian Boson sampling has
set an important milestone for continuous-variable quan-
tum technologies [23], but we are still far away from
useful computational protocols as set out in the roadmap
of Ref. [24]. Even though the quest for a Gottesman-
Kitaev-Preskill state [31] is one of the main experimental
priorities, there are still many open challenges in designing
the Gaussian operations that form the basis of such a setup
[328,329].

Beyond universal fault-tolerant quantum computers,
there are many other potential applications for continuous-
variable systems. They are widely used in quantum com-
munications for quantum key distribution [330] and and
secret sharing [331]. These protocols are largely based
on Gaussian states and measurements, such that also
the best possible attacks to these systems are Gaussian
[332]. Nevertheless, non-Gaussian protocols for quantum
key distribution, based on photon subtraction, have been
proposed [333]. Such non-Gaussian quantum computa-
tion protocols and their security still involve many open
questions.

Continuous-variable systems also provide a natural link
to other bosonic systems, which is why they have been sug-
gested as a platform to simulate molecular vibronic spectra
[334]. The continuous-variable approach also plays an
important role in quantum algorithms for other chemistry-
related problems such as drug discovery through molecular
docking [335] and the simulation of electron transport
[336].

Furthermore, the continuous-variable setting is also suit-
able to implement certain elements for quantum machine
learning such as quantum neural networks [337]. Even
though this is a promising platform for tackling a wide
range of problems, the proposal is highly ambitious on sev-
eral points. In the context of this Tutorial, we emphasize
the need of non-Gaussian unitary transformations. In prin-
ciple, neural networks require linear couplings between
different “neurons,” which each implement some form of
nonlinear operation. Non-Gaussian operations play the role
of this nonlinear element, making them a crucial step in
the scheme. To implement such continuous-variable neural
networks we thus require either new developments on the
implementation of non-Gaussian operations, or theoretical
modifications in the protocol to make it fit for imple-
mentable conditional non-Gaussian operations. It should
be highlighted that other machine-learning approaches

exist, such as reservoir computing, which can be entirely
based on Gaussian states [338].

A final quantum technology that may benefit from the
use of non-Gaussian states is quantum metrology, as was
recently demonstrated with motional Fock states of trapped
ions [339]. Even though early work has shown that there is
no clear benefit in using non-Gaussian operations such as
photon subtraction for parameter estimation [154], there
may still be other settings where such states are beneficial.
Non-Gaussian entanglement could, for example, have a
formal metrological advantage that is reflected in the quan-
tum Fisher information [340]. On the other hand, ideas
from quantum metrology also provide a possible approach
for measuring non-Gaussian quantum steering [341]. The
effects of non-Gaussian features on the sensitivity of the
state can in principle be captured by higher moments of
the quadrature operators [342]. It was recently shown that
postselected measurements could, indeed, offer a quantum
advantage for metrology [343]. This result is narrowly con-
nected to the field of weak measurements and makes a
connection to yet another phase-space representation: the
Kirkwood-Dirac distribution [70,344]. Hence, we circle
back to the fundamental physics of continuous-variable
systems and conclude that there are still many connections
to be made.

Beyond the technological applications that continuous-
variable systems may have to offer, there is an important
down-to-earth perspective that must be emphasized. With
the improvement of detectors throughout the years, we
have reached a point where theory and experiment can
be considered mature to tackle single-mode problems. In
multimode systems, the same cannot be said. With the
exponential scaling of standard homodyne tomography,
experimental tools for studying large multimode states
beyond the Gaussian regime are limited. We may have
to accept that the full quantum state is out of reach
for experimental measurements. Even theoretically, highly
multimode Wigner functions quickly become cumbersome
to handle. Treating them with numerical integration tech-
niques becomes a near-impossible task, once the number of
modes is drastically increased. This makes even numerical
simulations challenging. How then can we understand and
even detect the non-Gaussian features of these systems?

One clear and important future research goal in this
field is to provide an answer to this question. For quan-
tum technologies, this may provide us with new ways to
benchmark our systems, but more fundamentally it might
teach us something new about the physics of these systems.
One place where one might look for inspiration is the field
of statistical mechanics, where statistical methods show
that even highly complex systems can produce clear emer-
gent signatures. We recently took a first step in exploring
such ideas by looking at emergent network structures for
continuous-variable non-Gaussian states [345]. The most
exciting lesson from such preliminary work is that there
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is still much to be learned about non-Gaussian quantum
states.
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APPENDIX: MATHEMATICAL REMARKS

Here we present some important well-known mathemat-
ical concepts that are regularly used in the Tutorial to make
the text more self-contained. The comments and defini-
tions given here are not very rigorous and mainly aim at
giving the reader an intuitive understanding, for a more
formal introduction one should consult a standard textbook
[41,346,347].

1. Topological vector spaces

Throughout this Tutorial, we often deal implicitly with
topological vector spaces. Vector spaces are well known
from linear algebra and can be thought of as sets of mathe-
matical objects called vectors, which can be added together
in a commutative way and multiplied by scalars. When we
consider a vector space V on a field F , this means that
for any v1, v2 ∈ V and any α1,α2 ∈ F the object α1v1 +
α2v2 ∈ V . This means that the vector space is closed under

addition and scalar multiplication. In this Tutorial, the field
F is either identified as R (for phase space) or C (for
Hilbert spaces).

The spaces that are considered in the Tutorial have much
more structure than what is given by the vector space.
First of all, we generally deal with normed spaces, which
means that our vector spaces are topological vector spaces
in the sense that there is a notion of distance defined upon
them. Generally speaking, topological vector spaces can
be equipped with exotic topologies, but here we simply
deal with norms. On top, we again add an additional struc-
ture when we assume that these norms are generated by
inner products (depending on exact properties, these inner
products go by different names such as “positive-definite
sesquilinear form”, which is what we typically consider in
quantum mechanics).

As we deal with infinite-dimensional spaces to describe
bosonic quantum states and Fock space, it is important
to set some terminology straight. When we talk about a
Hilbert space, there is the assumption that the space is com-
plete. In an infinite-dimensional inner-product space, we
can define sequences of elements in V . If we consider a
sequence (vj )j ∈N such that for any ε we can find a value
N > 0 such that ‖vj − vk‖ < ε for all j , k > N , we call
the sequence a Cauchy sequence. In other words, the dis-
tance between elements in the Cauchy sequence shrinks
as we proceed further into the sequence. The fact that a
Hilbert space is closed means that all Cauchy sequences
converge in the sense that limj →∞ vj = v ∈ V . Finite-
dimensional inner-product spaces automatically have this
property, but for infinite-dimensional spaces it must be
imposed explicitly.

Another class of structured vector space, that is often
encountered in the Tutorial, is a real symplectic space.
These spaces appear when we consider phase space, and
they are given by a real vector space with an additional
symplectic form σ instead of the usual inner product. In
the mathematical literature, one often encounters the nota-
tion (V , σ) for a symplectic space, where the symplectic
form has the following properties: we consider v1.v2 ∈ V
and find that σ(v1, v2) ∈ R, σ is bilinear, and σ(v1, v2) =
−σ(v2, v1). In all cases in this Tutorial, we also consider
that σ is nondegenerate, which means that σ(v1, v2) = 0
for all v1 ∈ V if and only if v2 = 0. When the symplectic
space is finite dimensional, it is often practical to represent
the symplectic form in terms of a matrix. In the Tutorial
this is done by associating σ(v1, v2) = vT

1�v2.
In principle, a real symplectic space is all that is needed

to develop the mathematical framework of the CCR alge-
bra. However, it is often natural when dealing with bosonic
systems to include an additional structure in the form of an
inner product. In the Tutorial, this is done implicitly by also
using the standard inner product vT

1 v2 on phase space. This
allows us to ultimately get the isomorphism (44). In the
quantum statistical mechanics literature, it is common to
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see references to a “pre-Hilbert space”, rather than a phase
space or a symplectic space. When we refer to a pre-Hilbert
space, we consider an inner-product space, which is not
necessarily complete and one must consider the closure to
be guaranteed to obtain a full Hilbert space. The reason is
that phase space, as a real vector space V with an inner
product, given by a bilinear form s(., .), and a symplectic
form σ(., .) is equivalent to a complex pre-Hilbert space
H. For finite-dimensional spaces, the equivalence between
the vector spaces is obtained via isomorphism (44):

f ∈ V �→ ∣∣ψf
〉 =

∑

j

(f2j −1 + if2j )
∣∣ϕj

〉 ∈ H, (A1)

where
∣∣ϕj

〉
for a basis of H. As we are talking about an iso-

morphism between structured vectors spaces, we also need
an identity between additional structures, which is given
by

〈ψf1 | ψf2〉=s(f1, f2)− iσ(f1, f2). (A2)

This isomorphism holds very generally and can be
extended to infinite-dimensional spaces. It provides a
very formal connection between the single-particle Hilbert
space for a many-boson system and its phase space asso-
ciated with the modes of the bosonic field. Technically,
we note that the phase space is equivalent to a pre-Hilbert
space, and the closure of this space is the single-particle
Hilbert space. Whenever the phase space (and thus the
single-particle Hilbert space) is finite dimensional, the pre-
Hilbert space is closed such that phase space and single-
particle Hilbert space really are equivalent. For a very
rigorous treatment on all these points, we refer to Ref. [42].

2. Span

Throughout the Tutorial, we often refer to the “span” of
a certain set of vectors. These vectors can be members of a
vector space, symplectic space, topological vectors space,
pre-Hilbert space, or Hilbert space, the definition of the
span is always the same. Let us here assume that V denotes
any type of vector space over a field F and consider a set
v1, . . . vn ∈ V . We can now define the span of this set of
vectors as the set of all linear combinations that can be
made with these vectors

span{v1, . . . vn} := {α1v1 + · · · + αnvn | α1, . . . ,αn ∈ F}.
(A3)

We emphasize that there is no need for the set v1, . . . vn to
form a basis, nor for the vectors to be linearly independent,
nor for the vectors to be normalized, nor for the vectors to
be orthogonal to one another.

Throughout the Tutorial, the vector spaces we encounter
are either real (in the case of phase space) such that F = R

or complex (in the case of Hilbert spaces for quantum sys-
tems) such that F = C. In the case where the vector spaces
have some topological structure (which we can colloqui-
ally understand as a mathematical sense of distance that
allows limits to be defined), it can make sense to consider
the closure of a span, denoted by

span{v1, . . . vn}, (A4)

such that any convergent sequence built with elements of
the span has its limit also included in the closure.
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2.1 benchmarking boson sampling

Quantum computing is often seen as a sort of holy grail among quantum technologies
because it promises to solve some problems much faster than what could be achieved
on classical hardware. Initially, the study of quantum speedups focused on specific
algorithms, such as (Shor, 1994), where one compares a quantum algorithm to the
best known classical algorithm for solving the same problem. The problem with
this approach is that one does not necessarily know whether the best known classical
algorithm is also the best possible classical algorithm. Roughly a decade ago, several
seminal results (Aaronson and Arkhipov, 2011; Bremner et al., 2010) changed this
perspective by developing protocols which are (to some extent) provably hard to run
on a classical device.

Among these protocols, Boson Sampling had a major impact on the quantum optics
community because all one needs for an experimental implementation are Fock states
and passive linear optics. It did not take long before we saw the first proof-of-principle
Boson Samplers (Broome et al., 2013; Crespi, Osellame, Ramponi, Brod, et al., 2013;
Spring et al., 2013; Tillmann et al., 2013). However, scaling up to a significant number
of photons and modes to achieve a genuine quantum computational advantage was an
enormous challenge for a variety of reasons. Throughout the years, it became clear that
experimental imperfections can profoundly impact the many-particle interference that
underlies the Boson Sampling protocol (V. S. Shchesnovich, 2015; Tichy, 2015). This
effect was shown to be highly detrimental for the computational complexity of the
protocol (García-Patrón et al., 2019; Moylett et al., 2019; Renema et al., 2018).

In parallel, there were debates in the context of complexity theory on whether or not
Boson Sampling could be distinguished from much simpler probability distributions
(Aaronson and Arkhipov, 2014; Gogolin et al., 2013). This debate imposed a crucial
question: how does one certify a Boson Sampler? In absolute terms, this task has been
proven to be impossible (Hangleiter et al., 2019). However, when one is willing to make
some assumptions, there are still ample possibilities to benchmark such experiments.
Crucially, the perspective changes when one abandons the rigid setting with malicious
adversaries that is common in computer science and accepts a paradigm in which a
well-intending experimental physicist wants to test whether an experimental setups
works as it is supposed to. This approach was pioneered in works such as (Carolan
et al., 2014; Spagnolo et al., 2014).

In my own research, I worked on several techniques for benchmarking Boson Sam-
pling, a detailed overview of which can be found in Walschaers, 2020. In general, we
can identify two main approaches to which I contributed: suppression laws and statisti-
cal benchmarking. The former builds upon a generalisation of the Hong-Ou-Mandel
effect (Hong et al., 1987) to a multimode context for specific interferometers (Tichy,
Tiersch, et al., 2010), which was later transformed into a validation protocol for Boson
Sampling (Tichy, Mayer, et al., 2014). This protocol was successfully implemented
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(Crespi, Osellame, Ramponi, Bentivegna, et al., 2016), showing that it is indeed possible
to test whether the input photons are of sufficient quality to achieve multi-photon
interference. I later contributed to a generalisation of such suppression laws (Dittel
et al., 2018a,b). We used permutation symmetries to derive a general recipe to design
interferometers that lead to total destructive interference for some output events, i.e.,
a suppression law. Very recently, it was shown that even more general families of
suppression laws can be derived (Bezerra and V. Shchesnovich, 2023).

Suppression laws have the advantage of being extremely sensitive probes for many-
particle interference, and thus the indistinguishability of the photons. However, the
disadvantage of such a setup is that it relies on specifically designed interferometers.
This means that we are only testing a part of the full Boson Sampling setup. Other
techniques, such as (Chabaud, Grosshans, et al., 2021), which rely on interchanging
photon counters with another type of detector suffer from a similar problem. Thus, our
goal when designing the statistical benchmark (Walschaers, Kuipers, Urbina, et al., 2016)
was to find a way of testing the functioning of our boson sampler by directly using its
output data. The core idea of the approach is to study correlations

Ckl = ⟨â†
k âk â†

l âl⟩ − ⟨â†
k âk⟩⟨â†

l âl⟩ (2.1)

between output modes k and l. Not that, as discussed in Section 1.2.1, these correlators
can directly be extracted from measurements using photon-number resolving detectors.
Because Boson Sampling is supposed to be implemented with photonic circuits that are
described by a unitary matrix that is chosen according to the Haar measure, we used
random matrix theory to analyse the typical properties of Ckl . In later work, we also
showed that these correlations are extremely sensitive to partial distinguishability of
the input photons (Walschaers, Kuipers, and Buchleitner, 2016). Finally, we combined
the ideas of the statistical benchmark with machine learning to reach a highly versatile
experimental technique for testing Boson Samplers (Flamini, Walschaers, et al., 2020;
Giordani et al., 2018).

The statistical benchmark has seen various extensions (Brunner et al., 2022; Heurtel
et al., 2022; Meer et al., 2021; Mezher and Mansfield, 2022; Rigovacca et al., 2018; Seron
et al., 2022) and the role of low-order correlation functions in understanding different
degrees of many-particle interference is still being explored. My own contribution to
extending the statistical benchmark was limited to translating it to the framework of
Gaussian Boson Sampling (Phillips et al., 2019). Gaussian Boson Sampling was initially
proposed in (Hamilton et al., 2016), as an attempt to bypass the problem of generating
sufficiently many photons for the input of the Boson Sampler. The simulation protocol
of (P. Clifford and R. Clifford, 2018) drastically increased the number of photons that
were required to build a Boson Sampler that could not be simulated with a classical
computer, whereas (Renema et al., 2018) sets very stringent demands on the quality of
these photons. Hence, the alternative route of Gaussian Boson Sampling, i.e., replacing
the input states with squeezed vacuum, was very appealing and ultimately led to large-
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scale devices that claimed to achieve a quantum computational advantage (Madsen
et al., 2022; Zhong, Deng, et al., 2021; Zhong, Wang, et al., 2020). The statistical
benchmark, developed in (Phillips et al., 2019; Walschaers, Kuipers, Urbina, et al., 2016),
was one of the tools used to validate these setups.

2.2 resources for bosonic sampling problems

The benchmarking schemes presented in Section 2.1 do not attempt to verify whether
the obtained measurement outcomes were sampled from the exact probability distribu-
tion associated with the Boson Sampler. Instead, they strive to test whether the samples
originate from a probability distribution with the right properties. Boson Sampling is
in principle generalisation of Hong-Ou-Mandel interference to many particles, which
we refer to as many-particle interference (Tichy, 2014; Walschaers, 2020). This interference
effect and its description in terms of permanents lie at the heart of the hardness of
Boson Sampling (Aaronson and Arkhipov, 2011). Most of the benchmarking schemes
discussed in Section 2.1 are designed to identify a signature of many-particle interfer-
ence in the sampling data. Benchmarking Boson Sampling thus boils down to gathering
evidence for many-particle interference. Even though the Boson Sampler may not work
exactly as it ideally should, we still have evidence that the data are hard to simulate.

On a more abstract level, we consider many-particle interference as a resource for
reaching a quantum computational advantage with Boson Sampling. In a more general
sense, when we benchmark quantum devices, we actually test whether these devices
contain the necessary quantum resources (Eisert et al., 2020). There is one important
caveat in this approach: one must know that physical resources to look for.

Understanding the required physical resources for reaching a quantum computational
advantage is a challenging task. The most direct approach for gaining insights is by
understanding with quantum setups can be efficiently simulated on classical hardware.
When we focus only on bosonic systems, a considerable body of work has already
been done. Looking back at equation (1.47), it should not come as a surprise that we
require a non-Gaussian element at some point in the setup. If all the Wigner functions
involved in the sampling protocol are Gaussian, it is reasonably straightforward to
develop a sampling protocol based on Gaussian probability distributions to simulate
the device. This result is effectively proven in (Bartlett et al., 2002) through very
different techniques. Later, it was shown that one actually needs not just non-Gaussian
elements, but Wigner-negative ones (Mari and Eisert, 2012; Veitch et al., 2013). For pure
states non-Gaussianity and Wigner negativity are equivalent (Hudson, 1974; Soto and
Claverie, 1983), but for mixed states this is certainly not the case. The proof of (Mari
and Eisert, 2012) relies on Wigner functions and effectively constructs a simulation
algorithm based on a type of Markov chain (the protocol is also described in Section VI
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of the included Article 1.3). The creation of Wigner-negative states is therefore one of
the main goals of many quantum-state engineering protocols discussed in Chapter 3.

Finding necessary resources, such as Wigner negativity, by constructing explicit sim-
ulation algorithms leaves much to be desired. We are lacking a quantitative connection
between Wigner negativity and computational complexity. While there is a full fledged
resource theory for Wigner negativity (Albarelli et al., 2018; Takagi and Zhuang, 2018), it
is not clear whether and how the amount of Wigner negativity related to computational
hardness. As a matter of fact, there are quantum circuits with large Wigner negativity
that can be simulated efficiently on classical hardware (García-Álvarez et al., 2020).
This also emphasises that Wigner negativity is not a sufficient resource for reaching a
quantum computational advantage, it must be combined with something more.

Our recent work (Chabaud and Walschaers, 2023), which is included here as Article
2.4, provides some additional pieces to solve this puzzle. Rather than focusing on
Wigner negativity, this work uses the stellar representation of (Chabaud, Markham,
et al., 2020), which is presented in Section III.D of Article 1.3, as a starting point. By
using quantum optics techniques based of photon addition and subtraction (see Section
3.1), we manage to develop an algorithm that can simulate any bosonic sampling setup,
i.e., any set of single mode measurements on a multimode bosonic system. Crucially,
the complexity of this simulation algorithm scales exponentially in the stellar rank of
the global system (state + measurements). The generality of our approach comes at a
prize. Our simulation method is far from optimal for any known system. For example,
in the cases of Boson Sampling and Gaussian Boson Sampling one can find much more
efficient simulation algorithms. We can therefore say that our approach is a worst-case
scenario, and it again establishes a high stellar rank as a necessary requirement. Note,
however, that our result is quantitative and given any sampling setup and a given
amount of classical computational power, we can provide a minimal required stellar
rank starting from which the setup cannot be simulated within any reasonable time.

At the core of our work lies the identity (5) of (Chabaud and Walschaers, 2023),
which effectively connects a bosonic sampling setup to a family of Q-functions [see
equation (1.68)] on larger mode spaces (see Figure 1 in the article). In general, every
outcome of the bosonic sampler is mapped onto a different Q-function. The framework
of Q-functions allows us to exploit some additional quantum optics insight. When Û
is a unitary transformation on the quantum states that corresponds to a mode basis
change (1.5), we can use the properties of coherent states to show that Û |⃗ξ⟩ = |Oξ⃗⟩,
with O given by (1.19). We can then directly show that

QÛρ̂Û†(ξ⃗) = Qρ̂(O⊤ ξ⃗), (2.2)

which means that if we can calculate the Q-function, we can easily translate it to
any mode basis. Or in other words, we can implement of undo any passive linear
optics transformation with negligible overhead. This means that any entanglement in
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the state ρ̂ that can be undone with passive linear optics is cannot contribute to the
computational complexity of a sampling problem based on the Q-function.

In (Walschaers, Fabre, et al., 2017a,b) we introduced the notion of passive separability
to describe a state that can be disentangled through a mode-basis change. We also
showed that any Gaussian state is passively separable. This means that states that
are not passively separable are entangled in a profoundly non-Gaussian way. The
work (Chabaud and Walschaers, 2023), included as Article 2.4, establishes that this
kind of entanglement must be present in the state ρ̂total for the sampling problem
to be hard to simulate. Effectively, the lack of passive separability means that many
different non-classical resources must be combined in a particular way to lead to a high
computational complexity. Details of non-Gaussian entanglement are left for Chapter 5.

2.3 outlook

Our recent result (Chabaud and Walschaers, 2023) appears to offer an entirely new
toolbox, based on the stellar representation and Q-functions, for studying sampling
problems and their computational complexity. It has already put forth the stellar rank
and the notion of non-Gaussian entanglement (in the sense of not being passively
separable) as crucial resources for reaching a quantum computational advantage.
However, this hardly seems like the end of the story.

A stellar rank of one or more implies that a state is quantum non-Gaussian (Filip and
Mišta, 2011; Genoni et al., 2013), but not all quantum non-Gaussian states are Wigner-
negative. This means that the connection to the stellar rank is not equivalent to results
of (Mari and Eisert, 2012; Veitch et al., 2013) on Wigner-negativity. It thus remains an
open question how Wigner negativity fits in our approach (Chabaud and Walschaers,
2023). Perhaps there is a fundamental connection between Wigner negativity and a lack
of passive separability or perhaps there are other resources that remain to be unveiled.
To answer that question, it may be fruitful to develop a type of Markov chain algorithm
like in (Mari and Eisert, 2012) for Q-functions.

Finally, our results highlight the need for new resource theories of stellar rank, and
of various types of non-Gaussian entanglement. Since many of these resources need to
work together in a specific way to effectively reach a quantum computational advantage,
a multi-resource theory may be required.

2.4 article: resources for bosonic quantum computational advantage
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Quantum computers promise to dramatically outperform their classical counterparts. However, the
nonclassical resources enabling such computational advantages are challenging to pinpoint, as it is not a
single resource but the subtle interplay of many that can be held responsible for these potential advantages.
In this Letter, we show that every bosonic quantum computation can be recast into a continuous-variable
sampling computation where all computational resources are contained in the input state. Using this
reduction, we derive a general classical algorithm for the strong simulation of bosonic computations, whose
complexity scales with the non-Gaussian stellar rank of both the input state and the measurement setup. We
further study the conditions for an efficient classical simulation of the associated continuous-variable
sampling computations and identify an operational notion of non-Gaussian entanglement based on the lack
of passive separability, thus clarifying the interplay of bosonic quantum computational resources such as
squeezing, non-Gaussianity, and entanglement.
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Introduction.—Ever since the earliest quantum algo-
rithms [1–3], it has been clear that quantum computing
holds the potential of reaching exponential speedups as
compared to classical computers—be it for very specific
problems. The computational advantage [4] of quantum
computers was more rigorously established by connecting
the classical simulation of certain quantum sampling
problems to the collapse of the polynomial hierarchy of
complexity classes [5,6]. Boson sampling, in particular, has
drawn the attention of a part of the physics community,
because the protocol is naturally implemented with indis-
tinguishable photons and linear optics. These sampling
problems also lie at the basis of the random circuit sampling
protocol [7], which would lead to the first experimental
claim of a quantum computational advantage [8]. However,
in a game of constantly shifting goal posts, this claim has
already been challenged [9].
At the same time, the development of building blocks for

potential quantum computing hardware has drastically accel-
erated during the last decade. Even though platforms such
as superconducting circuits and trapped ions have booked
great successes, the present work mainly focuses on optical
implementations. The Knill-Laflamme-Milburn scheme [10]
provided the first proposal for a universal photonic quantum
computer, which to this day remains extremely challenging to
implement. Even though boson sampling [6] renewed the
interest in photonic quantum computing, generating, con-
trolling, and detecting sufficiently many indistinguishable
photons is still very challenging.

To circumvent the difficulties of dealing with single
photons and conserve the advantages that optics can
provide for quantum information processing, such as
intrinsic resilience against decoherence, several research
groups have explored continuous-variable (CV) quantum
optics as an alternative. Rather than detecting photons, this
approach encodes information in the quadratures of the
electromagnetic field, which can be detected through
either homodyne or double homodyne (sometimes called
heterodyne) measurements [11]. Equipped with its own
framework for quantum computing in infinite-dimensional
Hilbert spaces [12], the CV approach has the advantage of
deterministic generation of large entangled states, over
millions of subsystems [13–17]. By now, CV quantum
optics is considered a promising platform for quantum
computing [18]. Several sampling problems have also
been translated to an infinite-dimensional context [19–23].
Among these proposals, Gaussian boson sampling in
particular attracted much attention, which led ultimately
to experimental realizations beyond the reach of classical
computers [24–26].
From a complexity-theoretic point of view, it is well

understood why some of these specific sampling problems
cannot be efficiently simulated by a classical computer
[27]. From a physical point of view, several groups have
explored the required resources for reaching a quantum
computational advantage. Such endeavors typically aim to
identify a physical property without which a setup can
be efficiently simulated classically. Phase-space descrip-
tions of quantum computations, such as the Wigner

PHYSICAL REVIEW LETTERS 130, 090602 (2023)

0031-9007=23=130(9)=090602(7) 090602-1 © 2023 American Physical Society



function [28,29], are particularly useful in that respect. For
example, it has been shown that negativity of the Wigner
function is one of such necessary resources [30,31], albeit
not sufficient [32]. More recently, it became clear that
squeezing and entanglement also play an important role in
the hardness of some sampling problems, but only when
combined in the right way [33,34]. In Gaussian boson
sampling, for example, the state at hand is an entangled
Gaussian state, which can be described using a positive
Wigner function, while negativity of the Wigner function is
provided by the non-Gaussian photon detectors. This
potential resourcefulness of the measurements is one reason
why sampling problems are complicated to analyze.
In this Letter, we address this problem by introducing a

new paradigm for studying resources for bosonic compu-
tations. Our contribution is threefold: First, we show that
every bosonic sampling computation has a dual CV
sampling setup, where the measurement is performed using
double homodyne detection, which can be understood as
quasiclassical and thus nonresourceful. This means that, in
this dual sampling setup, all computational resources are
ingrained in the measured state. Second, using this con-
struction, we obtain a classical algorithm for strongly
simulating bosonic computations, whose complexity scales
with the stellar rank, a discrete non-Gaussian measure [35],
of both the input state and the measurement setup of the
original computation. Our algorithm is a generalization of
that of [36]—which applies only to a restricted set of
bosonic computations—to essentially any bosonic compu-
tation. Our result thus establishes the stellar rank as a
necessary non-Gaussian resource for reaching a quantum
computational advantage with bosonic information
processing. Third, we further show that the associated
CV sampling setup can also be efficiently simulated
classically whenever its corresponding input state is pas-
sively separable. We explain that states that are not
passively separable possess non-Gaussian entanglement,
thus showing that this type of entanglement is necessary for
reaching a quantum computational advantage. Our results
allow us to clarify the role played by different nonclassical
resources in enabling quantum computational advantage,
which we illustrate with the example of boson sampling.
Sampling tasks.—Our starting point is that of a general

sampling setup, where a quantum state ρ̂ over m
subsystems, or modes, is measured by a series of m
local detectors. We assume that the kth detector measures
an observable Ŷk with a spectral decomposition Ŷk ¼R
Yk

yP̂k;ykdy, where Yk is the spectrum of Ŷk. Here, we
limit ourselves to projective measurements, but our results
can be extended to more general positive operator-valued
measures through Naimark’s dilation theorem.
In a sampling setup, our goal is to sample detector

outcomes with respect to the probability distribution given
by the Born rule: Pðy1;…; ymjρ̂Þ ≔ Tr½ρ̂ ⊗m

k¼1 P̂k;yk �. For
simplicity, we can assume that the projectors are rank 1,

such that P̂k;yk ¼ jykihykj. The measurement can thus be
resourceful if jyki has a negative Wigner function or if it
contains squeezing. A priori, the state ρ̂ can be any
multimode mixed state, but in a typical sampling setup
it would be generated by applying a series of few-mode
gates to a set of single-mode input states.
Stellar hierarchy.—Hereafter, we describe bosonic

states using the stellar hierarchy [35] (see the Supple-
mental Material [37] for a concise review). This formalism
associates to eachm-mode pure state jψi ¼ P

n≥0 ψnjni its
stellar (or Bargmann) function F⋆

ψðzÞ ¼
P

n≥0ðψn=
ffiffiffiffiffi
n!

p Þzn,
for all z ∈ Cm, and classifies bosonic states according
to their stellar rank: pure states of finite stellar rank r⋆
are those states whose stellar function is of the form
F⋆ðzÞ ¼ PðzÞGðzÞ, where P is a multivariate polynomial
of degree r⋆ and G is a multivariate Gaussian. Such states
can be decomposed as ĜjCi, where Ĝ is a Gaussian unitary
and jCi is a core state, i.e., a finite superposition of
Fock states. The number of nonzero coefficients of jCi
is called the core state support size. For mixed states, the
stellar rank is defined by a convex roof construction:
r⋆ðρ̂Þ ¼ infpi;ψ i

sup r⋆ðψ iÞ, where the infimum is over
the decompositions ρ̂ ¼ P

i pijψ iihψ ij. The stellar rank
is a faithful and operational non-Gaussian measure [34], as
it is invariant under Gaussian unitaries, nonincreasing
under Gaussian maps, and it lower bounds the minimal
number of non-Gaussian operations (such as photon
additions or photon subtractions) necessary to prepare a
bosonic state from the vacuum, together with Gaussian
unitary operations. Moreover, any state can be approxi-
mated arbitrarily well in trace distance by states of finite
stellar rank, and an optimal approximating state of a given
stellar rank can be found efficiently [47].
To establish the duality between sampling an outcome

from the distribution Pðy1;…; ymÞ and double homodyne
sampling, we must analyze the pure states jyki. It is
convenient to use the stellar hierarchy to describe them:
we can represent any single-mode state jyki of finite stellar
rank as [35]

jyki ¼
1ffiffiffiffiffiffiffi
N k

p
� Yr⋆ðykÞ

j¼1

D̂ðβk;jÞâ†kD̂†ðβk;jÞ
�
jGki; ð1Þ

where r⋆ðykÞ ∈ N denotes the stellar rank of the state jyki,
jGki is a Gaussian state, D̂ðβk;jÞ is a displacement operator

that acts on mode k with βk;j ∈ C, â†k is the creation
operator in mode k, andN k is a normalization factor. In this
case, we can interpret jyki as an r⋆ðykÞ-photon-added
Gaussian state [when r⋆ðykÞ ¼ 0, the empty product is
the identity operator by convention]. Furthermore, since we
can approximate any state jyki by a finite-rank state to
arbitrary precision in trace distance, we assume that all jyki
have a—possibly high—finite stellar rank.
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The single-mode Gaussian states jGki can always be
obtained from the vacuum with squeezing and displace-
ment operations. This allows us to write jGki ¼ Ŝkjαki,
where Ŝk is a suitably chosen squeezing operation and
jαki ¼ D̂ðαkÞj0ivac is a coherent state. Combining this with
Eq. (1), we can now recast

Pðy1;…; ymjρ̂Þ ¼
1

N
Tr

�
Ŝ†ρ̂−Ŝ ⊗

m

k¼1
jαkihαkj

�
; ð2Þ

where Ŝ ≔⊗k Ŝk and ρ̂− is a non-normalized photon-
subtracted state, given by ρ̂− ≔ Â ρ̂ Â†, with a photon-

subtraction operator Â ≔⊗m
k¼1

Qr⋆ðykÞ
n¼1 D̂ðβk;nÞâkD̂†ðβk;nÞ.

The normalization factor N in Eq. (2) is directly related to
the detectors we use, thus we assume it to be known
a priori.
Coherent state samplers.—Double homodyne measure-

ment corresponds to a (subnormalized) projection onto
coherent states [11]. Hence, the expression in Eq. (2) shows
that sampling measurement outcomes y1;…; ym can always
be connected to performing double homodyne measure-
ments on a state that is obtained by squeezing and
subtracting photons from the initial state ρ̂. The imple-
mentation of photon subtraction generally requires
measurements on auxiliary modes. The most common
implementation involves a photon-counting measure-
ment [48], but this is not compatible with our aim of not
having any resources at the level of the measurement, since
these measurements are represented by negative Wigner
functions. Thus, we introduce a more unusual construction
inspired by sum-frequency generation [49].
To subtract a photon in a mode k from a state ρ̂, we attach

an auxiliary mode to our system, containing exactly one
photon. This state is injected in a very weak two-mode
squeezer, given by a unitary ÛðξÞ ¼ exp½iξðâ†kâ†aux þ
âkâauxÞ� (acting as identity on all except the kth and the
auxiliary modes). After having applied ÛðξÞ, we project
the auxiliary mode on the vacuum state to find
TrauxfÛðξÞ½ρ̂ ⊗ j1ih1j�Û†ðξÞ½1̂ ⊗ j0ih0j�g ≈ ξ2âkρ̂â

†
k,

where the approximation becomes exact when the approxi-
mation parameter ξ goes to zero (see Supplemental
Material [37]). Replacing each photon subtraction in
Eq. (2) by the above construction, we show in the
Supplemental Material that, for any ϵ > 0, one can pick
approximation parameters ξk;j ¼ poly½ϵ; ð1=mÞ� for all k ∈
f1;…; mg and all j ∈ f1;…; r⋆ðykÞg, such that

Pðy1;…; ymjρ̂Þ ¼
1

N
Q

m
k¼1

Qr⋆ðykÞ
j¼1 ξ2k;j

× Tr

�
ρ̂total

�
⊗
m

k¼1
jαkihαkj ⊗ j0ih0j⊗n

��

þOðϵÞ; ð3Þ

where we have set n ≔
P

m
k¼1 r

⋆ðykÞ, and where the state
ρ̂total is defined on the full Hilbert space, including all the
auxiliary modes, and is given by

ρ̂total ≔ ðŜ† ⊗ 1̂auxÞÛ†ðρ̂ ⊗ j1ih1j⊗nÞÛðŜ ⊗ 1̂auxÞ; ð4Þ

with Û given by Û≔⊗m
k¼1

Qr⋆ðykÞ
j¼1 D̂ðβk;jÞÛ†ðξk;jÞD̂†ðβk;jÞ.

We note that Ûðξk;jÞ is the two-mode squeezer that
connects the kth detection mode to the auxiliary mode
that implements the jth photon-subtraction operation asso-
ciated with it, and thus ðŜ† ⊗ 1̂auxÞÛ† is a Gaussian
unitary. In particular, r⋆ðρ̂totalÞ ¼ r⋆ðρ̂ ⊗ j1ih1j⊗nÞ ¼
r⋆ðρ̂Þ þP

m
k¼1 r

⋆ðykÞ since the stellar rank is fully additive
with respect to tensor products with pure states [34].
The projection on the vacuum is consistent with double

homodyne detection since j0ivac is also a coherent state.
The expression in Eq. (3) thus shows that any setup where
one samples a given outcome from a bosonic state can be
mapped theoretically to a larger coherent state sampling
setup, whose output probability density matches to arbi-
trary precision the output probability of that outcome, up to
a normalizing factor (see Fig. 1). Furthermore, the
stellar ranks of the projection operators translate to the
inclusion of additional single-photon Fock states in aux-
iliary modes. A similar derivation, detailed in the
Supplemental Material [37], shows that the corresponding
marginal probabilities are also reproduced by the marginal
probability densities of coherent state samplers.
Strong simulation of bosonic computations.—These

results highlight that coherent state samplers can be very
generally used to simulate other sampling setups using
similar techniques as in [36]. Strong simulation, in par-
ticular, refers to the evaluation of any output probability of
a computation or any of its marginal probabilities.
Hereafter, we rely on the following notion of approximate
strong simulation: let P be a probability distribution
(density); for ϵ > 0, approximate strong simulation of P

FIG. 1. To any bosonic computation (left, in blue) is
associated a coherent state sampling setup (right, in orange),
which takes as input the same state ρ̂, together with auxiliary
single-photon Fock states, and whose output probability density
approximates to arbitrary precision the output probability of a
given outcome up to normalization, i.e., Pðα1;…; αm; 0;…; 0Þ≈
ð1=N 0ÞPðy1;…; ymÞ. The number of auxiliary Fock states n is
the sum of the stellar ranks of the projectors associated with the
outcomes y1;…; ym.
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up to total variation distance ϵ refers to the computational
task of strongly simulating a probability distribution Q,
which is ϵ close to P in total variation distance (see
Supplemental Material for a formal definition [37]).
The classical algorithm for strong simulation of

Gaussian circuits with non-Gaussian input states from
Theorem 2 in [36] can be readily applied to coherent state
samplers. Combining this result with our construction, we
obtain a general classical algorithm for approximate strong
simulation of bosonic quantum computations, whose com-
plexity scales with the stellar rank of both the input state
and the measurement setup. We state the result in the case
of pure state input and projective measurements and refer to
Theorem 2 in the Supplemental Material [37] for the
general theorem and its proof:
Theorem 1.—Let jψi be an m-mode pure state of stellar

rank r⋆ðψÞ and core state support size s. For all
k ∈ f1;…; mg, let Ŷk be an observable with eigen-
basis fjykigyk∈Yk

, and let r⋆k ¼ supyk∈Yk
r⋆ðykÞ. Let r ≔

r⋆ψ þP
k r

⋆
k be the total stellar rank of the setup. Then, the

measurement of Ŷ1;…; Ŷm on jψi over an exponentially
large outcome space can be approximately strongly simu-
lated up to total variation distance expð−polymÞ in
time Oðs2r32r þ polymÞ.
The total variation distance in the theorem results from

the approximation used in Eq. (3). This strong simulation
algorithm competes with state-of-the art classical algo-
rithms for certain bosonic architectures [36], but applies to
a much wider class of quantum computations—essentially
any bosonic computation. The time complexity in Theorem
1 is a worst-case complexity, based on the fastest known
classical algorithm for computing the hafnian [50], and
may be reduced for particular instances. On the other hand,
due to its broad applicability, our simulation technique
may be outperformed by classical simulation algorithms
targeting specific classes of bosonic circuits [51–55].
Nonetheless, Theorem 1 may be used primarily as a tool
for identifying necessary resources for bosonic quantum
computational advantage: it establishes the stellar rank as a
necessary non-Gaussian property.
Non-Gaussian entanglement.—Now that we have shown

that any bosonic computation can be connected to a
coherent state sampler, we aim to identify physical resour-
ces that are required to reach a quantum advantage with
coherent state sampling beyond the stellar rank. We resort
to a basic model of coherent state sampler, where we
consider sampling from a given N-mode state σ̂. The
probability density corresponding to a certain set of
complex measurement outcomes α1;…; αN in the N output
detectors is given by the Husimi Q function of the state σ̂:
Qðα⃗jσ̂Þ ¼ ð1=πNÞhα⃗jσ̂jα⃗i, where α⃗ ¼ ðα1;…; αNÞ⊤. By
having put all the quantum resources of the sampling
protocol at the level of the state, the hardness of the
sampling problem can now be directly related to properties
of the resourceful state’s Q function.

Under basic assumptions, we can efficiently sample
classically from the Q function of any separable mixed
state (see Supplemental Material for a discussion [37]).
Hence, quantum entanglement of the input state is a
necessary requirement in the design of a coherent state
sampler that is hard to simulate. However, it turns out that
not all forms of entanglement are equally suitable. In
previous works [34,56], we have discussed the concept
of passive separability: a quantum state is said to be
passively separable if at least one mode basis exists in
which the state is separable. In other words, for a passively
separable state, any entanglement can be undone by an
interferometer built with beam splitters and phase shifters.
The concept of passive separability becomes essential

when we combine it with the properties of coherent states.
Let Û describe a passive N-mode linear optics interfer-
ometer in the sense that Û†âkÛ ¼ P

j Ujkâj, whereU is an

N × N unitary matrix. The action of Û on an N-mode
coherent state is given by Ûjα⃗i ¼ jUα⃗i. This simple
identity implies that, for all passive linear optics trans-
formations, Qðα⃗jτ̂Þ ¼ QðUα⃗jÛ τ̂ Û†Þ. By definition, for
any state τ̂ that is passively separable, there is at least
one transformation Û such that Û τ̂ Û† is separable. This, in
turn, means that we can efficiently sample from the
distribution Qðα⃗jÛ τ̂ Û†Þ. Hence, we can sample a vector
α⃗ from Qðα⃗jτ̂Þ by first sampling β⃗ distributed according to
Qðβ⃗jÛ τ̂ Û†Þ and subsequently identifying α⃗ ¼ U†β⃗. Thus,
we find that we can efficiently simulate the coherent state
sampling from any passively separable state.
To reach a quantum computational advantage with a

coherent state sampler, we thus have to use input states that
are not passively separable. This requirement immediately
excludes all Gaussian states, since these are always
passively separable [57]. The lack of passive separability
can therefore be seen as non-Gaussian entanglement in the
sense that it is a form of entanglement that persists in any
mode basis and cannot be extracted based solely on the
state’s covariance matrix. It thus highlights the presence of
non-Gaussian features in the state’s correlations.
We emphasize that there are other intuitive notions of

non-Gaussian entanglement. When we call states that are
separable through general Gaussian operations (i.e., a
combination of interferometers and squeezing operations)
Gaussian separable, one could say that only states that are
not Gaussian separable have non-Gaussian entanglement.
To understand what notion of non-Gaussian entanglement
is necessary for reaching a quantum computational advan-
tage with coherent state sampling, we consider the seminal
example of boson sampling. Through Eq. (3), we find that
ideal boson sampling with n input photons and an m-mode
interferometer ÛBS corresponds to coherent state sampling
from a state given by jΨi ∝ ÛðÛBS ⊗ 1auxÞjΨtotali, where
Û is a tensor product of two-mode squeezers and where the
state jΨtotali is a 2n-photon Fock state that combines the
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input state of the boson sampler with n auxiliary photons,
given by

jΨtotali ¼ ½j1i ⊗ … ⊗ j1i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n

⊗ j0i ⊗ … ⊗ j0i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m−n

�

⊗ ½j1i ⊗ … ⊗ j1i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n

�aux: ð5Þ

Boson sampling is known to be a hard problem, so exact
coherent state sampling from the state jΨi is also classically
hard [58]. The structure of this state nicely highlights the
three fundamental types of nonclassicality that are required:
non-Gaussian resources in jΨtotali, large-scale entangle-
ment through ÛBS, and squeezing through Û. Furthermore,
the order of the elements is essential: the state jΨi is not
passively separable because the squeezing operations in Û
and the non-Gaussian features in jΨtotali are local in a
different mode basis. However, ÛðÛBS ⊗ 1auxÞ is a
Gaussian operation and jΨtotali is separable. This means
that the state jΨi is thus Gaussian separable but not passive
separable. Hence, there are Gaussian-separable states
leading to coherent state sampling that cannot be efficiently
simulated. We thus propose to define non-Gaussian entan-
glement as the type of entanglement that is present in states
that are not passively separable. This amounts to defining it
operationally as a type of entanglement that is necessary to
achieve computationally hard coherent state sampling.
Conclusion.—In this Letter, we argue that any bosonic

sampling computation can be mapped to a corresponding
coherent state sampling computation. Our construction
allows us to derive a general classical algorithm for strong
simulation of bosonic computations, whose time complex-
ity scales with the stellar rank of the input state and the
measurement setup of the computation.
We see our Letter in the first instance as providing a

useful method to analyze the resources in sampling setups,
because all resources in coherent state sampling are situated
at the level of the state. As such, we also find that coherent
state sampling with passively separable states can be
simulated efficiently. We therefore find that the lack of
passive separability rather than the lack of Gaussian
separability is the operationally useful type of non-
Gaussian entanglement.
Our key reduction in Eq. (3) shows that any non-

Gaussian resource in the measurement is introduced in
the coherent state sampler through auxiliary photons. The
total number of auxiliary photons in the coherent state
sampler ultimately corresponds to the total stellar rank of
the measurement setup. These photons must be entangled
in a fundamentally non-Gaussian way to achieve the
necessary sampling complexity. For pure states, this non-
Gaussian entanglement also implies one of the previous
requirements for reaching a quantum computational ad-
vantage: Wigner negativity [30]. Yet, for mixed states, it

remains an open question how the necessity of Wigner
negativity translates to the coherent state sampler.
Typical sampling setups such as (Gaussian) boson

sampling correspond to reasonably simple coherent state
samplers that mix local non-Gaussian resources through a
multimode Gaussian transformation. However, in the multi-
mode bosonic state space, much more exotic states can be
conceived. Preparing such states would require multimode
non-Gaussian unitary transformations, and it would be
interesting to understand whether they have any additional
computational resourcefulness.
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112 engineering non-gaussian states

3.1 photon subtraction

In Section 2.2 we identified several resources required for reaching a quantum com-
putational advantage: Wigner negativity, a high stellar rank, and non-Gaussian entan-
glement1. My work on quantum state engineering has mainly centered on studying
techniques to generate these resources in quantum optics experiments. Tools that are
particularly popular in quantum optics are photon subtraction and –to a lesser extent–
photon addition (Lvovsky, Grangier, et al., 2020; Ourjoumtsev, Tualle-Brouri, et al.,
2006; Parigi et al., 2007; Ra et al., 2020; Wenger et al., 2004; Zavatta et al., 2007).

The core idea behind photon subtraction is rather old (Dakna et al., 1997) and in a
single-mode setting it has long been well understood. In a multimode context, photon
subtraction was also known to modify entanglement properties of the state (Navarrete-
Benlloch et al., 2012; Ourjoumtsev, Dantan, et al., 2007; Zhang et al., 2022), which
we will discuss in more detail in Section 5. However, in a multimode setting, it can
be significantly more challenging to add or subtract photons in a mode-selective way
(Averchenko, Jacquard, et al., 2016; Averchenko, Thiel, et al., 2014; Roeland et al., 2022).
When I first got interested in continuous-variable quantum optics, I tried to understand
the properties of such multimode photon-subtracted states. Our first big achievement
was the (admittedly rather complicated) derivation of a “plug and play” expression
for the Wigner function of such states (Walschaers, Fabre, et al., 2017a,b; Walschaers,
Ra, et al., 2019). Providing a closed expression for a Wigner function of and arbitrary
single-photon-subtracted state in function of the covariance matrix and mean field of
the initial Gaussian state, and the mode in which the photon is subtracted turned out
to be very useful for applications that range from efficiently modelling experiments
(Ra et al., 2020) to generating huge amounts of training data for machine learning
algorithms (Cimini et al., 2020). On top, our framework also provides a simple recipe
for calculating marginals, without the need for slow integration procedures.

The simple access to reduced states allows us to study the spread of non-Gaussian
features through multimode systems after photon subtraction (Walschaers, Sarkar, et al.,
2018). It came as a surprise that non-Gaussian features spread through continuous-
variable cluster states over a finite graph distance of exactly two nodes removed from
the node in which the photon is subtracted. This feature was later also confirmed
experimentally (Ra et al., 2020) in a work where we demonstrated the first fully mode-
selective photon subtraction. These results on the spread of non-Gaussian features
motivated a follow-up question: when does Wigner-negativity, a highly non-Gaussian
feature, spread to different modes in a multimode system? This question was the main
motivation for all the work in Section 3.2.

The techniques used in (Walschaers, Fabre, et al., 2017a,b) are based on calculating
high-order correlations between quadratures and are hard to generalise to a scenario
where multiple photons are subtracted. This difficulty is nicely shown in (Cardin

1 In the sense of a lack of passive separability
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and Quesada, 2022; Gagatsos and Guha, 2019), where one effectively shows that the
computation of such correlation functions is of a similar complexity as Gaussian Boson
Sampling. Alternatively, the connection between n-photon subtraction and collecting
n-clicks in a Gaussian Boson Sampler can also be obtained via our general framework
of (Chabaud and Walschaers, 2023). For this reason, it is fruitful to resort to the
techniques of (Phillips et al., 2019; Walschaers, Kuipers, Urbina, et al., 2016) to try and
understand features of multi-photon subtracted states. In (Walschaers, Treps, et al.,
2020) we combined correlations of the type (2.1) with techniques from network science
to understand how non-Gaussian features appear in the correlations between modes as
a consequence of photon subtraction. Our numerical framework can accommodate an
unlimited number of photon subtractions, provided they are all in the same mode. This
work shows, as expected, that photon subtraction generally increases the correlations
between the modes in a graph state. We also find that the finer details of structure
of correlations (and their reaction to photon subtraction) depends strongly on the
features of the network of CZ gates, that builds the initial Gaussian graph state. This
work highlights that the network perspective is highly useful to build heuristics for
understanding photon subtraction on a large scale. It is also a useful guide for proving
more rigorous results [see Appendix B of (Walschaers, Treps, et al., 2020)]. At the
same time, this approach has its limitations in studying quantum phenomena, since
it is not directly clear how the features of these correlation networks translate to an
understanding of quantum correlations. We will come back to this topic in Chapter 5.

3.2 generating wigner negativity

As mentioned in the previous section, our work on photon subtraction led us to a
simple question that started out as a simple curiosity: what does it take to propagate Wigner
negativity through a multimode system? Initially, we mainly attacked this question from
the point of view of photon subtraction and framed it more specifically on a bipartite
setting, where one party goes by the name Alice and the other is known as Bob. When
Alice and Bob each hold some modes of a multimode Gaussian state, we wondered
when a photon subtraction in one of Alice’s modes would create a Wigner negative
states on Bob’s side. The answer was surprisingly profound: the initial Gaussian state
must be such that Bob is able to perform Gaussian steering (Kogias, Lee, et al., 2015) on
the mode in which Alice subtracts the photon. If on top, we allow Alice to first perform
a Gaussian operation on her subsystem, we can even show that this Gaussian steering
is necessary and sufficient (Walschaers and Treps, 2020). This means that Gaussian
steering from Alice to Bob is the one and only resource that allows Alice to remotely
create Wigner negativity in Bob’s subsystems through photon subtraction. This result
was experimentally confirmed in the work of Liu et al., 2022

Even though this initial work suggests the existence of a fundamental connection
between quantum steering and Wigner negativity, the connection between these two
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important quantum phenomena was only shown for the very specific context of photon
subtraction. This connection was significantly deepened through a follow-up work
(Walschaers, Parigi, et al., 2020), which is also included here in Section 3.4. In this
work, we derive the core equation (23) that can be understood as Bayes’ theorem for
Wigner functions. This version of Bayes theorem differs from the classical version
in that the conditional probabilities are replaced by quasi-probabilities and can thus
be negative. Even if Alice and Bob initially share a Gaussian state, a measurement
(or other conditional operation) on Alice’s subsystem can induce negative conditional
quasi-probabilities. Crucially, we show that ⟨Â⟩g|⃗xf

can only be negative if Bob can
steer Alice’s subsystem with Gaussian measurements. This thus means that Gaussian
steering from Bob to Alice is necessary for Alice to remotely create Wigner negativity in
Bob’s subsystem, regardless of the measurement Alice performs. However, we also showed
that with some operations it is just impossible for Alice to create Wigner negativity in
Bob’s subsystem. In particular, when Alice performs an operation that is described by a
positive Wigner function, there is no hope for Alice to create Wigner negativity in Bob’s
subsystem. In (Walschaers, Parigi, et al., 2020) we show that photon addition is such an
operation. In Section IV.B of (Walschaers, 2021), it was also shown that the framework
of (Walschaers, Parigi, et al., 2020) can also be used as an alternative technique to derive
our results on Wigner functions for photon subtracted states.

Gaussian quantum steering is a rather restrictive phenomenon once we go to a
multipartite scenario (Reid, 2013; Xiang, Kogias, et al., 2017). In particular, Gaussian
steering comes with a series of strict monogamy relations. For example, in a Gaussian
setting, whenever Alice can steer Bob, it is impossible for Charlie to also steer Bob.
Such monogamy relations naturally carry over to remotely generated Wigner negativity,
and we show that is constrains how negativity can be distributed (Xiang, Liu, et al.,
2022). In the previously mentioned example, an operation on Bob’s subsystem can
create Wigner negativity in Alice’s subsystem, but not in Charlie’s. More generally
phrased, because of monogamy relations, an operation on a single mode can also only
create Wigner negativity in at most one mode.

Yet, all of these results rely on the core assumption that Alice, Bob, and any other
parties initially share a Gaussian state. It is thus natural to wonder whether the
connection between the remote generation of Wigner negativity and quantum steering
survives scrutiny when the assumption of Gaussianity is dropped. This is the subject
of my most recent work on the topic (Walschaers, 2023). In this general scenario Alice
and Bob can share any Wigner function, but we assume that Bob’s reduced state has
no Wigner negativity. Apart from that, we impose no constraints on the global state.
We show that the framework for describing conditional quantum state preparation of
(Walschaers, Parigi, et al., 2020) still applies under these conditions. The manuscript
explores under which conditions Alice can remotely induce Wigner-negativity in Bob’s
subsystem by performing some quantum operation (typically a measurement). First of
all, we show that if Bob can steer Alice’s system with Wigner-positive measurements,
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there is always a conditional operation that Alice can perform to induce Wigner-
negativity on Bob’s subsystem. However, through a series of reasonably simple counter
examples, we show that quantum steering is not necessary for this task, nor is any other
type of quantum correlation.

Through these works, the connection between quantum steering and the conditional
generation o Wigner negativity have been extensively investigated. We reached the
conclusion that in general quantum steering with Wigner-positive measurements is
sufficient for the remote preparation of Wigner negativity. However, quantum steering
is not a necessary recourse. The exception is the case where Alice and Bob share a
Gaussian state, where Gaussian steering is also a necessary requirement.

3.3 outlook

Our key motivation in this chapter was to understand conditional techniques to experi-
mentally generate Wigner negativity, one o the key resources for reaching a quantum
computational advantage, as previously discussed in Section 2.2. While the funda-
mental questions surrounding the generation of Wigner negativity and its relation to
quantum steering have largely been answered by the works mentioned in ’Section 3.2,
there remain many challenges in quantum state engineering. These are related, on the
one hand, to practical implementations, and, on the other hand, to the generation of
resources other than Wigner negativity.

From the practical point of view, there are direct generalisations of mode-selective
photon subtraction (Ra et al., 2020) that can be thought of. Notably, the techniques
of (Walschaers, Parigi, et al., 2020) were used in (Walschaers, 2021) to describe mode-
selective photon subtracted states, and they can in principle be extended to the subtrac-
tion of multiple photons. In particular, for two- and three-photon subtraction we may
hope to obtain closed analytical expressions. This is currently a work in progress. Such
work fits in a more general context, where generalised photon subtraction has been pro-
posed as a way of creating important non-Gaussiann states such as GKP (Gottesman et
al., 2001) and Schrödinger cat states (Bourassa et al., 2021; Eaton, González-Arciniegas,
et al., 2022; Fukui et al., 2022; D. Su et al., 2019; Takase et al., 2021).

In contrast to most works on quantum state engineering, our approach is primarily
focused on generating resources rather than specific quantum states. In the context
of our discussion in Section 2.2 it is natural to wonder whether a study, similar to
Section 3.2, can be executed for other resources. The first resource that comes to mind
is non-Gaussian entanglement. In Chapter 5 we will explore this question in further
detail and show that photon subtraction can create non-Gaussian quantum correlations.
However, one can also consider other resources such as non-linear squeezing (Kala
et al., 2022), which we are currently doing together with the group of R. Filip.
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3.4 article: practical framework for conditional non-gaussian quan-
tum state preparation
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We develop a general formalism, based on the Wigner function representation of continuous-variable
quantum states, to describe the action of an arbitrary conditional operation on a multimode Gaussian state.
We apply this formalism to several examples, thus showing its potential as an elegant analytical tool
for simulating quantum optics experiments. Furthermore, we also use it to prove that Einstein-Podolsky-
Rosen steering is a necessary requirement to remotely prepare a Wigner-negative state.
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I. INTRODUCTION

In continuous-variable (CV) quantum physics, Gaussian
states have long been a fruitful topic of research [1–10].
They appear naturally as the ground states of systems of
many noninteracting particles in the form of thermal states
[11], or as the coherent states that describe the light emitted
by a laser [3]. Through nonlinear processes, it is possible
to reduce the noise beyond the shot noise limit (at the price
of increased noise in a complementary observable), and
create squeezed states [12–17]. For the purpose of metrol-
ogy, such squeezed states are often enough to obtain a
significant boost in performance [18–21].

On theoretical grounds, Gaussian states are relatively
easy to handle [8,9]. The quantum statistics of the
continuous-variable observables (e.g., the quadratures in
quantum optics) are described by Gaussian Wigner func-
tions. All interesting quantum features can be deduced
from the covariance matrix that characterises this Gaussian
distribution on phase space. Hence, whenever the num-
ber of modes remains finite, the techniques of symplectic
matrix analysis are sufficient to study Gaussian quantum
states. This has generated an extensive understanding of
the entanglement properties of Gaussian states [22–27],
and recently it has also led to the development of a mea-
sure for quantum steering (see [28]) of Gaussian states
with Gaussian measurements [29–32], which we refer to
as Einstein-Podolsky-Rosen (EPR) steering.

Even though they have many advantages, Gaussian
states are of limited use to quantum technologies beyond
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sensing. They have been shown to be easily simulated on
classical devices [33], and in particular Wigner negativ-
ity is known to be a necessary resource for reaching a
quantum computation advantage [34]. However, it should
be stressed that recent work has found large classes of
Wigner negative states that can also be simulated easily
[35]. In other words, Wigner negativity is necessary but
not sufficient to reach a quantum computation advantage
[36].

In the particular case of CV quantum computation,
Gaussian states play an essential role in the measurement-
based approach [37]. In this paradigm, one establishes
large Gaussian entangled states, known as cluster states,
which form the backbone of the desired quantum routine
[38]. Several recent breakthroughs have led to the experi-
mental realisation of such states [39–43]. Nevertheless, to
execute quantum algorithms that cannot be simulated effi-
ciently, one must induce Wigner negativity. In the spirit
of measurement-based quantum computation, this feature
is induced by measuring non-Gaussian observables, e.g.,
the number of photons, on a subset of modes [44–47].
Such a measurement then projects the remainder of the
system into a non-Gaussian state. The exact properties of
the resulting state depend strongly on the result of the
measurement.

The conditional preparation of non-Gaussian quantum
states is common procedure in quantum optics experiments
[48]. Basic examples include the heralding of single-
photon Fock states after parametric down-conversion [49–
51], photon addition and subtraction [52–57], and known
schemes to prepare more exotic states such as Schrödinger-
cat [58,59] or Gottesman-Kitaev-Preskill states [60]. It
should be noted that conditioning on the measurement
of Gaussian observables can also be relevant in certain
protocols [61]. Remarkably, though, a practical frame-
work to describe the effect of arbitrary conditional oper-
ations on arbitrary Gaussian states is still lacking. Notable
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exceptions where one does study arbitrary initial states
usually rely on specific choices for the conditional mea-
surement.

Here, in Sec. III, we introduce a practical framework
to describe the resulting Wigner function for a quantum
state that is conditionally prepared by measuring a subset
of modes of a Gaussian multimode state. The techniques
used in this work are largely based on classical multivariate
probability theory and provide a conceptually new under-
standing of these conditioned states. In Sec. IV, we unveil
the most striking consequence of this new framework: we
can formally prove that EPR steering in the initial Gaus-
sian state is a necessary requirement for the conditional
preparation of Wigner-negative states, regardless of the
measurement upon which we condition. This solidifies a
previously conjectured general connection between EPR
steering and Wigner negativity. As shown in Sec. V, our
framework reproduces a range of known state-preparation
schemes and can be used to treat more advanced scenarios,
which could thus far not be addressed by other analyti-
cal methods. First, however, we review the phase-space
description of multimode CV systems in Sec. II.

II. PHASE-SPACE DESCRIPTION OF
MULTIMODE CONTINUOUS-VARIABLE

SYSTEMS

The CV approach studies quantum systems with an
infinite-dimensional Hilbert space H based on observ-
ables, x̂ and p̂ , that have a continuous spectrum and obey
the canonical commutation relation [x̂, p̂] = 2i (the factor
2 is chosen to normalise the vacuum noise to 1). Common
examples include the position and momentum operators in
mechanical systems, or the amplitude and phase quadra-
tures in quantum optics. In this work, we use quantum
optics terminology, but the results equally apply to any
other system that is described by the algebra of canonical
commutation relations (i.e., any bosonic system).

In a single-mode system, the quadrature observables x̂
and p̂ determine the optical phase space. The latter is a
two-dimensional real space, where the axes denote the
possible measurement outcomes for x̂ and p̂ . It is com-
mon practice to represent a given state ρ̂ by means of
its measurement statistics for x̂ and p̂ on this optical
phase space, as in statistical physics. However, because
x̂ and p̂ are complementary observables, they cannot be
measured simultaneously, and thus, a priori, we cannot
construct a joint probability distribution of phase space that
reproduces the correct marginals to describe the measure-
ment statistics of the quadratures. Therefore, the phase-
space representation of quantum states are quasiproba-
bility distributions. The quasiprobability distribution that
reproduces the measurement statistics of the quadrature
observables as its marginals is known as the Wigner

function [62–64]

W(x, p) = 1
(2π)2

∫
R2

tr[ρ̂ei(α1 x̂+α2p̂)]e−i(α1x+α2p) dα1 dα2.

(1)

For some quantum states, this function has the peculiar
property of reaching negative values. This Wigner nega-
tivity is a genuine hallmark of quantum physics, and it is
understood to be crucial in reaching a quantum computa-
tional advantage.

Here, we consider a multimode system compris-
ing m modes. Every mode comes with its own
infinite-dimensional Hilbert space, associated to a two-
dimensional phase space, and observables x̂j and p̂j .
The total optical phase space is, thus, a real space R2m

with a symplectic structure � = ⊕
m ω, where the two-

dimensional matrix ω is given by

ω =
(

0 −1
1 0

)
. (2)

Therefore, � has the properties �2 = −1 and �T = −�.
Any normalised vector �f ∈ R2m defines a single optical
mode with an associated phase space span{�f , ��f } (i.e.,
when �f generates the phase-space axis associated with
the amplitude quadrature of this mode, ��f generates the
axis for the associated phase quadrature). Henceforth, we
refer to the subsystem associated with the phase-space
span{�f , ��f } as “the mode f ”. Every point �α ∈ R2m can
also be associated with a generalised quadrature observ-
able

q̂(�α) =
m∑

k=1

(α2k−1x̂k + α2kp̂k). (3)

These observables satisfy the general canonical commu-
tation relation [q̂(�α), q̂( �β)] = −i�αT� �β. Physically, such
observable q̂(�α) can be measured with a homodyne detec-
tor by selecting the mode that is determined by the direc-
tion of �α, and multiplying the detector outcome by ‖�α‖. In
our theoretical treatment, such generalised quadratures are
useful to define the quantum characteristic function of any
multimode state ρ̂,

χρ̂(�α) = tr[ρ̂ exp{iq̂(�α)}] (4)

for an arbitrary point �α in phase space. The multimode
Wigner function of the state is then obtained as the Fourier
transform of the characteristic function

W(�x) = 1
(2π)2m

∫
R2m

χρ̂(�α)e−i�αT�x d�α, (5)

where �x ∈ R2m can, again, be any point in the multimode
phase space, and the coordinates of �x represent possible
measurement outcomes for x̂j and p̂j .
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The Wigner function can be used to represent and char-
acterise an arbitrary quantum state of the multimode sys-
tem. In the same spirit, we can also define the phase-space
representation of an arbitrary observable Â as

WÂ(�x) = 1
(2π)2m

∫
R2m

tr[Â exp{iq̂(�α)}]e−i�αT�x d�α, (6)

such that we can fully describe the measurement statis-
tics of an arbitrary quantum observable on phase space, by
invoking the identity

tr[ρ̂Â] = (4π)m
∫

R2m
WÂ(�x)W(�x) d�x (7)

to evaluate expectation values. In practice, it is often chal-
lenging to obtain Wigner functions for arbitrary states or
observables, but in some cases they can take convenient
forms.

A particular class of convenient states are Gaussian
states, where the Wigner function W(�x) is a Gaussian. As
a consequence, the Wigner function is positive, and can
thus be interpreted as a probability distribution. This Gaus-
sian distribution is completely determined by a covariance
matrix V, and mean field �ξ , such that the Wigner function
takes the form

W(�x) = e−(1/2)(�x−�ξ)TV−1(�x−�ξ)

(2π)m
√

det V
. (8)

This forms the basis of our preparation procedure for non-
Gaussian states as we assume that our initial multimode
system is prepared in such a Gaussian state.

To perform the conditional state preparation, we divide
the m-mode system into two subsets of orthogonal modes,
f = {f1, . . . , fl} and g = {g1, . . . , gl′ } with l + l′ = m, and
perform a measurement on the modes in g. We can then
describe the subsystems of modes f and g by phase spaces
R2l and R2l′ , respectively. As such, the joint phase space
can be mathematically decomposed as R2m = R2l ⊕ R2l′ .
A general point �x in the multimode phase space R2m

can thus be decomposed as �x = �xf ⊕ �xg, where �xf and �xg
describe the phase-space coordinates associated with the
sets of modes f and g, respectively. In particular, �xf can
be expanded in a particular modes basis f1, . . . , fl as �xf =
(xf1 , pf1 , . . . , xfl , pfl), where the coordinates xfj and pfj are
obtained as

xfj = �xT �fj , (9)

pfj = �xT��fj . (10)

A completely analogous treatment is possible for the coor-
dinates associated with the set of modes g.

III. CONDITIONAL OPERATIONS IN PHASE
SPACE

In quantum optics, we associate a Hilbert space (more
precisely, a Fock space) to each of these modes. The
Hilbert space H of the entire system can then be structured
as H = Hf ⊗ Hg, where Hf (Hg) describes the quantum
states of the set of orthogonal modes f (g). Formally, the
state of our full m-mode system is then described by a
density matrix ρ̂ that acts on H.

Within this manuscript, we perform a conditional oper-
ation in the set of modes g, which we describe through a
(not necessarily normalised) set of Kraus operators [65] X̂j
that act on Hg [66]:

ρ̂ 	→
∑

j X̂j ρ̂X̂ †
j

tr[
∑

j X̂ †
j X̂j ρ̂]

. (11)

Such a conditional operation naturally arises as a post-
measurement state, when X̂j is a projector, or when Â =∑

j X̂ †
j X̂j is a more general positive operator-valued mea-

sure (POVM) element, as represented in the sketch in
Fig. 1. The positive semidefinite operator Â is useful to
express the reduced state of the set of modes f:

ρ̂f|Â = trg[Âρ̂]

tr[Âρ̂]
. (12)

Here trg denotes the partial trace of the Hilbert space Hg
associated with the set of mode g. Our general goal is to
understand the properties of the state ρ̂f|Â.

As we are interested in the Wigner function for the state
of the subset of modes f, we translate Eq. (12) to its phase-
space representation. We initialize the total system in a
Gaussian state with Wigner function W(�x). Subsequently,
we also define the Wigner function WÂ(�xg) of the positive
operator Â, which is a function that is defined according
to Eq. (6) on the phase space that describes the subset of
modes g. As such, we find that

Wf|Â(�xf) =
∫

R2l′ WÂ(�xg)W(�x) d�xg∫
R2m WÂ(�xg)W(�x) d�x . (13)

Because Â is a positive semidefinite operator, the denomi-
nator is a positive constant.

As presented in Eq. (13), the Wigner function Wf|Â(�xf)

is impractical to use and its properties are not appar-
ent. Hence, we now introduce some mathematical tools to
obtain a more insightful expression for Wf|Â(�xf). First, we
use the fact that, for Gaussian states, W(�x) is a probabil-
ity distribution on phase space, such that we can define the
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conditional probability distribution through

W(�xg | �xf) = W(�x)
Wf(�xf)

, (14)

where Wf(�xf) is the reduced Gaussian state for the set of
modes f,

Wf(�xf) =
∫

R2l′
W(�x) d�xg. (15)

Because W(�x) is a Gaussian probability distribution, the
conditional probability distribution W(�xg | �xf) is also a
Gaussian distribution [67] given by

W(�xg | �xf) =
exp[−(1/2)(�xg − �ξg|�xf)

TV−1
g|�xf

(�xg − �ξg|�xf)]

(2π)l′√det Vg|�xf

(16)

with covariance matrix

Vg|�xf = Vg − VgfV−1
f VT

gf, (17)

where Vg and Vf are the covariance matrices describ-
ing the subsets of modes g and f in the initial state,
whereas Vgf describes all the initial Gaussian correlations
between those subsets. Note that this covariance matrix
is the same for all points �xf ∈ R2l, which is a particular
property of Gaussian conditional probability distributions.
Furthermore, the distribution W(�xg | �xf) also contains a
displacement

�ξg|�xf = �ξg + VgfV−1
f (�xf − �ξf), (18)

where �ξg and �ξf describe the displacements of the initial
state in the sets of modes g and f, respectively.

Generally, the phase-space probability distribution
W(�xg | �xf) is not a valid Wigner function of a well-defined
quantum state, in the sense that it would violate the Heisen-
berg inequality. However, it does remain a well-defined
probability distribution, i.e., it is normalised and positive.
Thus, it still has interesting properties that we can exploit
to formulate a general expression for Wf|Â(�xf). Let us first
use Eq. (14) to recast Eq. (13) in the following form:

Wf|Â(�xf) =
∫

R2l′ WÂ(�xg)W(�xg | �xf)Wf(�xf) d�xg∫
R2m WÂ(�xg)W(�x) d�x (19)

= [
∫

R2l′ WÂ(�xg)W(�xg | �xf) d�xg]Wf(�xf)∫
R2m WÂ(�xg)W(�x) d�x . (20)

Subsequently, we can define

〈Â〉g|�xf = (4π)l′
∫

R2l′
WÂ(�xg)W(�xg | �xf) d�xg, (21)

which is the expectation value of the phase-space repre-
sentation of Â with respect to the probability distribution

W(�xg | �xf). Similarly, we can use Eq. (7) to introduce the
notation

〈Â〉 = tr[Âρ̂] = (4π)l′
∫

R2m
WÂ(�xg)W(�x) d�x (22)

for the expectation value of Â in the state ρ. Finally, we
can use Eqs. (21) and (22) to recast Eq. (20) in the form

Wf|Â(�xf) = 〈Â〉g|�xf

〈Â〉
Wf(�xf). (23)

The major advantage of this formulation is that 〈Â〉g|�xf rep-
resents the average with respect to a Gaussian probability
distribution, such that one can use several computational
techniques that are well known for Gaussian integrals. A
notable property is the factorisation of higher moments
in multivariate Gaussian distributions, such that 〈Â〉g|�xf
can generally be expressed algebraically in terms of the
components of Vg|�xf and �ξg|�xf (for more details, see the
Appendix).

Finally, we remark that 〈Â〉g|�xf = 〈Â〉 in the absence of
correlations between the set of modes g that are condi-
tioned upon and the set of modes f for which we construct
the reduced state. This result is directly responsible for
the previously obtained results related to the spread of
non-Gaussian features in cluster states [68].

IV. EINSTEIN-PODOLSKY-ROSEN STEERING
AND WIGNER NEGATIVITY

When two systems are connected through a quantum
correlation, one can, in some cases, perform quantum
steering [28]. Colloquially, we say that a subsystem X
can steer a subsystem Y when measurements of certain
observables in X can influence the conditional measure-
ment statistics of observables in Y beyond what is possible
with classical correlations. Ultimately, in quantum steer-
ing one studies properties of conditional quantum states as
compared to a local hidden variable model for any observ-
ables X and Y, acting on X and Y , respectively. Contrary
to the case of Bell nonlocality, quantum steering considers
an asymmetric local hidden variable model:

P(X = x, Y = y) =
∑

λ

P(λ)P(X = x | λ)PQ(Y = y | λ).

(24)

Here one assumes that the probability distributions PQ(Y =
y | λ) of steered party Y follow the laws of quantum
mechanics. For the party X , which performs the steering,
no such assumption is made and any probability distribu-
tion is allowed. Such a local hidden variable model can
typically be falsified, either by brute force computational
methods [69] or via witnesses [70]. These methods have
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been applied in a variety of contexts to experimentally
observe quantum steering [31,32,71–77].

A paradigmatic example is found when performing
homodyne measurements on the EPR state [78]: when the
entanglement in the system is sufficiently strong, one can
condition the x̂ and p̂ quadrature measurements in Y on
the outcome of the same quadrature measurement in X .
The obtained conditional probability distributions for the
quadrature measurements in Y can violate the Heisenberg
inequality, even when averaged over all measurement out-
comes in X . The violations of such a conditional inequal-
ity are impossible with classical correlations, but are a
hallmark of quantum steering.

Quantum steering can occur in all types of quantum
states, with all kinds of measurements. In CV quantum
physics, one often refers to the particular case of Gaussian
states that can be steered through Gaussian measurements
as EPR steering. Recently, other forms of steering for
Gaussian states have been developed under the name of
nonclassical steering [79]. In this approach, one checks
whether Gaussian measurements in X can induce a non-
classical conditional state in Y . Throughout this work, the
focus lies on EPR steering, where the systems X and Y are
the sets of modes f and g, respectively.

In previous work, we showed that EPR steering is a nec-
essary prerequisite to remotely generate Wigner negativity
through photon subtraction [80]. More precisely, when a
photon is subtracted in a mode g, the reduced state Wigner
function of a correlated mode f can only be nonpositive
if mode f is able to steer mode g. When one allows for
an additional Gaussian transformation on mode g prior to
photon subtraction, we found that EPR steering from f to
g is also a sufficient condition to reach Wigner negativity
in mode f .

The formalism that is developed in the previous section
allows us to generalize this previous result to arbitrary
conditional operations on an arbitrary number of modes.

Theorem 1. For any initial Gaussian state ρ̂ and any con-
ditional operation Â in Eq. (12), EPR steering between the
set of modes f and the set of modes g is necessary to induce
Wigner negativity in Wf|Â(�xf).

Proof. Gaussian EPR steering is generally quantified
through the properties of Vg|�xf . In particular, one can show
that the set of modes in f can jointly steer the set of modes

g if and only if Vg|�xf violates the Heisenberg inequal-
ity [29,30]. The crucial consequence is that W(�xg | �xf), as
given by Eq. (16), is itself a well-defined Gaussian quan-
tum state when the modes in f cannot steer the modes g.
For all possible �xf, we can thus associate this Gaussian
quantum state with a density matrix ρ̂g|�xf .

The crucial observation is that 〈Â〉g|�xf , as defined in
Eq. (21), is the expectation value of Â in a well-defined
quantum state ρg|�xf for any �xf. Because Â is a positive
semidefinite operator, we directly find that

〈Â〉g|�xf = tr[ρg|�xf Â] � 0 for all �xf ∈ R2l. (25)

Therefore, the overall conditional Wigner function Wf|Â(�xf)

in Eq. (23) is non-negative. We can only achieve 〈Â〉g|�xf <

0 for certain points �xf ∈ R2l when Vg|�xf violates the Heisen-
berg inequality. This concludes that in absence of EPR
steering Wf|Â(�xf) � 0. �

Note that the steps in this proof rely heavily on the fact
that the initial state is Gaussian. For other types of quantum
states, we cannot directly relate quantum steering to the
properties of W(�xg | �xf).

V. EXAMPLES

A. Heralding

In the first example, we consider a scenario where a
photon-number-resolving measurement is performed on
one of the output modes, which can be considered a special
case of the situation considered in Ref. [47]. Herald-
ing is ubiquitous in quantum optics, as it is one of the
most common tools to generate single-photon Fock states
[49–51].

To study heralding, we use Eq. (23) where a measure-
ment of the number of photons n in a single mode g is
performed. We assume that this measurement is optimal,
and, thus, that we project on a Fock state |n〉. In this case,
we set Â = |n〉〈n|, and therefore we obtain

WÂ(�xg) =
n∑

k=0

(
n
k

)
(−1)n+k‖�xg‖2k

k!
e−(1/2)‖�xg‖2

2π
, (26)

where we used the closed form of the Laguerre polyno-
mial. Hence, we can now use this expression to calculate
〈|n〉〈n|〉g|�xf . In this calculation, we must evaluate

WÂ(�xg)W(�xg | �xf) =
n∑

k=0

(
n
k

)
(−1)n+k‖�xg‖2k

k!

exp[−(1/2)(�xg − �ξg|�xf)
TV−1

g|�xf
(�xg − �ξg|�xf) − ‖�xg‖2]/2

4π2
√

det Vg|�xf

, (27)
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and we can recast

exp
[ − 1

2 (�xg − �ξg|�xf])
TV−1

g|�xf
(�xg − �ξg|�xf) − 1

2‖�xg‖2] = e−(1/2)[(1+Vg|�xf
)�xg−�ξg|�xf

]T[Vg|�xf
(1+Vg|�xf

)]−1[(1+Vg|�xf
)�xg−�ξg|�xf

]

× e
−(1/2)�ξT

g|�xf
[1+Vg|�xf

]−1�ξg|�xf . (28)

After a substitution in the integral, we then find that

〈|n〉〈n|〉g|�xf = 2 det(1+ Vg|�xf)
−1/2e

−(1/2)�ξT
g|�xf

[1+Vg|�xf
]−1�ξg|�xf

n∑
k=0

(
n
k

)
(−1)n+k

k!

×
∫

R2

‖(1+ Vg|�xf)
−1�xg‖2ke−(1/2)(�xg−�ξg|�xf

)Tσ−1(�xg−�ξg|�xf
)

2π
√

det σ
d�xg , (29)

where we defined σ = Vg|�xf(1+ Vg|�xf), which is now
the covariance matrix of a new Gaussian probability dis-
tribution. The final expression is then determined by the
moments of the Gaussian distribution with covariance
matrix σ and displacement �ξg|�xf . Even though this expres-
sion is relatively elegant, it can be remarkably tedious to
compute for larger values of n.

First, let us focus on the experimentally relevant case
where n = 1 as an illustration. The evaluation of Eq. (29)
is than conducted by calculating the second moments of a
Gaussian distribution, such that we ultimately find that

Wf| |1〉〈1|(�xf)

= {‖(1+ Vg|�xf)
−1�ξg|�xf‖2 + tr[(1+ Vg|�xf)

−1Vg|�xf ] − 1
}

× det(1+ Vg)
1/2

det(1+ Vg|�xf)
1/2

e−(1/2)�ξT
g|�xf

[1+Vg|�xf ]−1�ξg|�xf

tr[(1+ Vg)−1Vg] − 1
Wf(�xf),

(30)

where we set �ξg = 0, thus assuming that there is no mean
field in mode g. We note that this function reaches nega-
tive values if and only if tr[(1+ Vg|�xf)

−1Vg|�xf] < 1. Using
Williamson’s decomposition, as we did in Ref. [80], it can
be shown that this condition can only be fulfilled when the
set of modes f can perform EPR steering in mode g, or, in
other words, when Vg|�xf violates the Heisenberg inequality.
This is exactly what we can expect from our general result
in Sec. IV.

In general, we know that the Wigner function (23) can
only be negative when Vg|�xf is not a covariance matrix of
a well-defined quantum state. However, determining the
existence of zeroes of this Wigner function is a cumber-
some task. For heralding with n > 1, we therefore restrict
to numerical simulations using a specific initial state.

This specific initial state is generated by mixing two
squeezed thermal states on a balance beam splitter, where
one of the output modes will serve as f , and the other

as g. In the limiting case where the initial thermal noise
vanishes, we recover the well-known EPR state that mani-
fests perfect photon-number correlations between modes f
and g. In this case, it is clear that a detection of n photons
in mode g will herald the state |n〉 in mode f . However, by
introducing thermal noise, the photon-number correlations
fade and the properties of the heralded state in mode f
are less clear. Thermal noise will also gradually reduce the
EPR steering in the system, such that the Wigner negativ-
ity in mode f will vanish when the thermal noise becomes
too strong. Hence, with this example we can study the
interplay between Wigner negativity and EPR steering in a
controlled setting.

The squeezed thermal state is characterised by a covari-
ance matrix V = diag[δ/s, δs], where δ denotes the amount
of initial thermal noise, and s is the squeezing parame-
ter. We initially start with two copies of such a state, and

EPR steering

Conditioning

g

f ˆ

ˆ

ˆ

rf |A

r

A

ˆ

FIG. 1. Sketch of the conditional state-preparation scenario: a
multimode quantum state with density matrix ρ̂ is separated over
two subsets of modes, f and g. A measurement is performed on
the modes in g, yielding a result associated with a POVM element
Â. Conditioning on this measurement outcome “projects” the
subset of mode f into a state ρ̂f|Â. The directional EPR steering,
discussed in Sec. IV, is highlighted.
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(a)

(b) (c)

FIG. 2. Photon heralding with a particular Gaussian input state, generated by mixing two equal squeezed thermal states (b) on a
balanced beam splitter (a). On one of the outputs of the beam splitter, a projective measurement is performed on the Fock state |n〉,
which heralds a non-Gaussian state in the other mode. The Wigner functions of this non-Gaussian state are shown for the case where
n = 5, with varying degrees of EPR steering μ, controlled by varying the thermal noise δ for a fixed squeezing s = 5 dB. The Wigner
negativity, measured by N given in Eq. (32), is shown in (c) for varying degrees of EPR steering and a varying number of measured
photons n.

rotate the phase of one of them by π/2 (see Fig. 2). When
both modes are mixed on a beam splitter, the resulting state
manifests EPR steering depending on parameters δ and s,
which can be quantified through [30]

μ = max
{
0, − 1

2 log det Vg|�xf

}
, (31)

where we explicitly use the fact that Vg|�xf is a two-
dimensional matrix. When we then postselect on the num-
ber of photons, n, measured in one output mode, we herald
a conditional non-Gaussian state in the other mode. In Fig.
2, we show the resulting Wigner functions for the case
where the detected number of photons is n = 5. When the
amount of EPR steering is varied (note that μ = 0.55 cor-
responds to the pure state), we see that the resulting Wigner
function rapidly loses Wigner negativity. In full agreement
with our general result of the previous section, we also find
that the Wigner negativity vanishes when there is no EPR
steering.

A more quantitative study of the Wigner negativity can
be found in panel (c) of Fig. 2, where we vary both the
amount of steering μ and the number of detected pho-
tons n. The Wigner negativity is measured by the quantity

[81–83]

N =
∫

R2
|Wf |Â(�xf )| d�xf − 1. (32)

When the state is pure (here for μ = 0.55), a detection
of n photons in one mode herald a Fock state |n〉 in the
other mode and the Wigner negativity thus increases with
n. However, once the state is no longer pure and the steer-
ing decreases, we observe the existence of an optimal value
n for which the maximal amount of Wigner negativity is
obtained. For very weak EPR steering (e.g., μ = 0.08 in
this calculation), this optimal value is obtained for n = 1.

This numerical study shows the fruitfulness of our
presented framework to study a very concrete herald-
ing scheme. Furthermore, the example confirms the rela-
tionship between Gaussian EPR steering and Wigner
negativity.

B. Photon-added and -subtracted states

Ideal photon addition and subtraction are defined by act-
ing with a creation operator â† or annihilation operator â,
respectively, on the quantum state. In practice, these oper-
ations are often realised by using some form of heralding
[52], which we treated in the previous example. However,
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it tends to be more convenient to use the idealised model,
based on creation and annihilation operators, and it has
been shown experimentally that this model is highly accu-
rate. This model also fits the conditional state framework
of Eq. (11), where we set X̂j to be a creation or annihilation
operator.

In multimode systems, photon addition and subtraction
have been considered for their entanglement properties,
which sprouted a range of theoretical [84–91] and exper-
imental [92–94] results. Many of the obtained theoretical
results rely on the purity of the initial Gaussian state, and
are hard to generalise to arbitrary Gaussian states. In recent
years, there has been some progress in developing analyt-
ical tools to describe general photon subtracted states [91,
95], but it remains challenging to use these techniques to
evaluate entanglement measures. Therefore, related ques-
tions have been investigated, such as, for example, the
spread of non-Gaussian features in multimode systems
[68,80,96,97].

The framework presented in this manuscript is partic-
ularly fruitful to investigate the spread of non-Gaussian
features through photon addition or subtraction. We first
show how the results of Ref. [80] can be recovered via
Eq. (23). Then, we use the present framework to provide
analytical results for the states that can be obtained by
subtracting multiple photons in a multimode system.

1. Adding or subtracting a single photon

We start by studying the addition and subtraction of a
single photon. The scenario for photon-subtracted states
was studied in detail in Ref. [80] and our goal in this exam-
ple is to show how these previous results can be obtained
in the context of our present framework. Furthermore, we
also study photon addition, which has not yet been con-
sidered in the context of the remote generation of Wigner
negativity.

Creation and annihilation operators are by construction
operators that act on a single mode g. In the single-photon
scenario, we find the photon-subtracted state

ρ̂− = âg ρ̂â†
g

tr[n̂g ρ̂]
(33)

and the photon-added state

ρ̂+ = â†
gρ̂âg

tr[(n̂g + 1)ρ̂]
. (34)

These states clearly fit the framework of Eq. (11). In the
context of Eq. (12), the reduced state of the set of modes f
is obtained by choosing Â = n̂g and Â = n̂g + 1 for photon
subtraction and addition, respectively. We can then use Eq.
(23) to obtain the Wigner function in the subset of modes f,

for which we must evaluate 〈n̂g〉g|�xf . To this end, we eval-
uate the Wigner function of the number operator, which is
given by

Wn̂g (�xg) = 1
16π

(‖�xg‖2 − 2), (35)

such that we directly find that

〈n̂g〉g|�xf = 1
4 (trVg|�xf + ‖�ξg|�xf‖2 − 2), (36)

where the dependence on �xf comes from �ξg|�xf . Thus, we
find that, for the photon-subtracted state,

W−
f|n̂g

(�xf) = trVg|�xf + ‖�ξg|�xf‖2 − 2

trVg + ‖�ξg‖2 − 2
Wf(�xf). (37)

From this result, we immediately observe that the poten-
tial Wigner negativity of these states depends on whether
or not trVg|�xf < 2. In Ref. [80] it was shown through
the Williamson decomposition that trVg|�xf � 2

√
det Vg|�xf .

This directly implies that EPR steering (31) is a necessary
condition to reach Wigner negativity. It is instructive to
emphasise that

‖�ξg|�xf‖2 = ‖�ξg + VgfV−1
f (�xf − �ξf)‖2, (38)

from which one ultimately retrieves the expression

W−
f|n̂g

(�xf)= {‖�ξg + VgfV−1
f (�xf − �ξf)‖2 + trVg|�xf − 2}

trVg + ‖�ξg‖2 − 2
Wf(�xf),

which is the result that was derived in Ref. [80].
For the photon-added state, we can perform a com-

pletely analogous computation with

Wn̂g+1(�xg) = 1
16π

(‖�xg‖2 + 2), (39)

from which we find that

W+
f|n̂g

(�xf) = trVg|�xf + ‖�ξg|�xf‖2 + 2

trVg + ‖�ξg‖2 + 2
Wf(�xf). (40)

This result immediately shows that this Wigner function
is always positive, which implies that it is impossible to
remotely create Wigner negativity through photon addi-
tion.

In previous work, we highlighted that photon addition
always creates Wigner negativity in the mode where the
photon is added [91]. What we observe in Eq. (40) can
be understood as the complementary picture for the other
modes. This result also highlights an operational difference
between photon subtraction and addition: photon addition
is a more powerful tool to locally create Wigner negativ-
ity, whereas photon subtraction has the potential to create
Wigner negativity nonlocally (i.e., in modes that can steer
the mode in which the photon is subtracted).
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2. Subtracting multiple photons

When multiple photons are added or subtracted, or
when we chain combinations of addition and subtrac-
tion operations, the evaluation of 〈Â〉g|�xf(�xf) will rapidly
become more complicated. A general strategy to approach
this problem avoids the explicit evaluation of WÂ(�xg),
but rather uses standard techniques for the evaluation of
moments of multivariate Gaussian distributions. This ulti-
mately boils down to applying Wick’s theorem [98] and
summing over all matchings (see the Appendix for details).
Even though this task can be implemented numerically,
the corresponding analytical expressions quickly become
intractable.

To illustrate this method, we consider the multimode
scenario where two photons are subtracted in different
orthogonal modes, g1 and g2, which implies that the
conditioning implements the map

ρ 	→ âg1 âg2 ρ̂â†
g2 â†

g1

tr[n̂g1 n̂g2 ρ̂]
. (41)

This implies that we must apply our formalism with Â =
n̂g1 n̂g2 . To treat this problem with the technique of match-
ings, we use the Gaussian identity (note that we do not
explicitly write the dependence on �xf to simplify notation)

〈n̂g1 n̂g2〉g|�xf

= ∣∣〈âg1〉g|�xf

∣∣2 ∣∣〈âg2〉g|�xf

∣∣2 + 〈n̂g1〉′g|�xf

∣∣〈âg2〉g|�xf

∣∣2

+ 〈n̂g2〉′g|�xf

∣∣〈âg1〉g|�xf

∣∣2 + 〈â†
g1

âg2〉′g|�xf
〈â†

g2
〉g|�xf〈âg1〉g|�xf

+ 〈â†
g1

âg2〉′g|�xf
〈â†

g2
âg1〉′g|�xf

+ 〈â†
g1

â†
g2

〉′g|�xf
〈âg1 âg2〉′g|�xf

+ 〈n̂g1〉′g|�xf
〈n̂g2〉′g|�xf

+ 〈â†
g2

âg1〉′g|�xf
〈a†

g1
〉g|�xf〈âg2〉g|�xf

+ 〈â†
g1

â†
g2

〉′g|�xf
〈âg1〉g|�xf〈âg2〉g|�xf

+ 〈âg1 âg2〉′g|�xf
〈â†

g1
〉g|�xf〈â†

g2
〉g|�xf , (42)

where 〈·〉′g|�xf
denotes the nondisplaced version of the distri-

bution. We can immediately identify

〈âg1〉g|�xf = 1
2 (�ξT

g|�xf
�g1 + i�ξT

g|�xf
��g1); (43)

subsequently, from Eq. (36), we obtain

〈n̂g1〉′g|�xf
= 1

4 (trVg1|�xf − 2), (44)

and finally we find new types of terms that are given by

〈â†
g1

â†
g2

〉′g|�xf
= 1

4 [�gT
1 Vg|�xf �g2 − �gT

1 �TVg|�xf��g2

− i(�gT
1 Vg|�xf��g2 + �gT

1 �TVg|�xf �g2)] (45)

and

〈â†
g1

âg2〉′g|�xf
= 1

4 [�gT
1 Vg|�xf �g2 + �gT

1 �TVg|�xf��g2

+ i(�gT
1 Vg|�xf��g2 − �gT

1 �TVg|�xf �g2)]. (46)

The computation required to obtain the final result is
tedious but straightforward. We find that

〈n̂g1 n̂g2〉g|�xf

= 1
16 [(trVg1|�xf + ‖�ξg1|�xf‖2 − 2)(trVg2|�xf

+ ‖�ξg2|�xf‖2 − 2) + 2tr(CTC) + 4�ξT
g1|�xf

C�ξg2|�xf], (47)

where we have defined the submartix C as the off-diagonal
block of Vg|�xf via

Vg|�xf =
(

Vg1|�xf C
CT Vg2|�xf

)
. (48)

Nonzero entries in the block C can occur due to various
causes. First, they can be due to a correlation between the
modes g1 and g2 in the initial Gaussian state [as seen from
the term Vg in Eq. (17)]. However, nontrivial entries in C
also arise when modes g1 and g2 are both correlated to the
same modes in f, which is induced by the term VgfV−1

f VT
gf

in Eq. (17).
Result (47) directly shows the appearance of a triv-

ial term, (trVg1|�xf + ‖�ξg1|�xf‖2 − 2)(trVg1|�xf + ‖�ξg1|�xf‖2 − 2),
which multiplies the effect of photon subtraction in g1
with that of photon subtraction in g2. However, when both
modes are sufficiently “close” to each other, we find the
additional terms 2tr(CTC) + 4�ξT

g1|�xf
C�ξg2|�xf , which can be

interpreted as some form of interference between the two
photon subtractions.

In Fig. 3 we provide an illustration, where we inject
three pure squeezed vacuum states into a series of beam
splitters to generate an entangled three-mode state from
which we subtract two photons. The first two squeezed
vacuum states have 5 dB squeezing in opposite quadratures
and are mixed on the beam splitter with 75% transmittance.
One of the output ports will serve as mode g1, whereas
the other is injected into a section beam splitter of 25%
transmittance. In the other input port of this beam splitter,
we inject the third squeezed vacuum state, which is also
squeezed by 5 dB. One of the output ports of the 25% trans-
mittance beam splitter serves as mode g2, and in the other
output port we find mode f , which is the mode for which
we reconstruct the output Wigner function using Eq. (47).
Photon subtraction is represented by a highly transmitting
beam splitter that sends a small amount of light to a photon
detector. Two-photon subtraction then happens when both
detectors click at the same time, and we can condition the
state in mode f upon this detection outcome. This posts-
election scheme effectively implements the operators âg1
and âg2 on modes g1 and g2, respectively.
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FIG. 3. Conditional state Wigner function Wf |Â(�xf ), obtained
by subtracting a photon in two of the three modes in a three-
mode entangled state. This entangled state is generated by mixing
three squeezed vacuum states in a sequence of beam splitters
with transmittances of 75% (left) and 25% (right). Two of the
squeezed vacuum states are squeezed by 5 dB in the x quadrature
(left, right) and one is squeezed by 5 dB along the p quadra-
ture (middle). The photon subtraction is represented by highly
transmitting beam splitters that send a small fraction of light to a
photon detector, which effectively implements the operators âg1
and âg2 on the modes g1 and g2, respectively.

We observe that the conditional state Wf |Â(�xf ) with Â =
n̂g1 n̂g2 reaches negative values in two distinct regions of
phase space. Indeed, with the Williamson decomposition
of Vg|�xf we can quantify [30] the strength of EPR steering
from mode f to the set of modes g to be μ = 0.548. Fur-
thermore, the fact that there are two negativity regions is a
hallmark of the subtraction of two photons. This example
shows that our framework is a highly versatile tool for CV
quantum state engineering.

Finally, we consider the complementary scenario where
two photons are subtracted from one mode. In this case,
we can still use the perfect matching technique (42), when
creation and annihilation operators are in normal ordering.
In this case, we obtain Â = â†

gâ†
gâgâg , and analogously to

Eq. (42), we find that

〈â†
gâ†

gâgâg〉g|�xf = 1
16 [(trVg|�xf + ‖�ξg|�xf‖2)2 + 2tr(V2

g|�xf
)

+ 4�ξT
g|�xf

(Vg|�xf − 21)�ξg|�xf − 8trVg|�xf + 8].
(49)

This result can then be directly inserted into Eq. (23) to
obtain the final conditional state for the set of modes f
when two photons are subtracted in mode g. As expected,
the subtraction of two photons can induce Wigner negativ-
ity only when there is EPR steering from the modes f to
mode g.

As such, we have shown that our framework allows us
to analytically describe conditional non-Gaussian states in
a regime that is highly challenging for many other meth-
ods. For example, it is highly challenging to approach

the problem with the correlation function methods of Ref.
[91], even though this method is highly successful for
single-photon subtraction in multimode states.

These methods can in principle be extended to deal
with higher numbers of added and/or subtracted photons
in various modes. However, it must be emphasised that
one will quickly encounter practical boundaries as finding
all possible matchings is a computationally hard problem
[99]. Finding an exact description of the Wigner function
that is obtained by subtracting a large number of pho-
tons from a subset of an entangled Gaussian state seems
to be a computationally hard problem that has its roots in
graph theory. The problem of finding all matchings also
lies at the basis of Gaussian boson sampling [100,101],
and it is not expected to be easy to overcome. The prob-
lem of Gaussian boson sampling can in turn also be related
to CV sampling from photon-added or -subtracted states
[102].

VI. CONCLUSIONS

We present a general framework that describes the
Wigner function that is obtained by applying an arbitrary
operation on a subset of modes of a multimode Gaussian
state, and conditioning the remaining modes on this oper-
ation. The most natural way of interpreting this scenario
is by considering this operation to be a measurement, such
that the state of the remaining modes is obtained by post-
selecting on a specific measurement outcome, as is the
case for heralding. However, this framework can also be
used to study the nonlocal effects of photon addition and
subtraction.

Our framework relies heavily on classical probability
theory, and in particular on properties of conditional prob-
ability distributions (14). We use the fact that Gaussian
states have positive Wigner functions, such that associ-
ated conditional probability distributions on phase space
are well defined as probability distributions (but not nec-
essarily as quantum states, because they can violate the
Heisenberg inequality). In this regard, our general results
(21)–(22) are valid for all initial states with a positive
Wigner function.

Gaussian states are not only the most relevant initial
states from an experimental point of view, they also have
the theoretical advantage of leading to a Gaussian condi-
tional probability distribution. The latter is an enormous
advantage for evaluating the crucial quantity 〈Â〉g|�xf , as
defined in Eq. (21). On a more fundamental level, we note
that the covariance matrix (17) of this Gaussian condi-
tional probability distribution is essential in the theory of
EPR steering. This observation allows us to directly prove
that EPR steering is a necessary prerequisite for the con-
ditional preparation of Wigner negativity, regardless of the
conditional operation that is performed.
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In previous work, we already showed that Gaussian EPR
steering is also a sufficient ingredient for the remote prepa-
ration of Wigner negativity, in the sense that there always
exists a combination of a Gaussian operation and photon
subtraction in the modes g that induces Wigner negativity
in the modes f. We thus establish a fundamental relation
between Gaussian EPR steering and the ability to pre-
pare a Wigner-negative state in correlated modes. This
result is particularly important in the light of measurement-
based quantum computation, where large Gaussian cluster
states form the backbone for implementing a quantum
algorithm. The actual computation is then executed by per-
forming measurements (or more general operations) on
some modes of the cluster, in order to project the remain-
der of the system in a desired quantum state. To claim
that such a computation is universal, one must be able to
induce Wigner negativity. Our results therefore show that
EPR steering is an essential figure of merit in these cluster
states in order to claim that a cluster state is suitable for
universal quantum computation.

From a practical point of view, the examples in Sec. V
show that our framework is highly versatile. However, the
boundaries of analytical treatments are also highlighted.
Even though the obtained Eq. (21) for 〈Â〉g|�xf is easy to
interpret conceptually, the actual evaluation can still be
challenging. Regardless, we must emphasise that the ele-
gance and simplicity of our framework does allow us to
obtain results with far greater ease than previously pos-
sible. Many of the methods known in the literature are
either hard to generalise to arbitrary Gaussian initial states
[44,59], focused on one particular measurement or oper-
ation [47,91,95], or are just generally hard to interpret or
use analytically. Our framework can be applied to any ini-
tial Gaussian state, and any conditional operation, provided
the Wigner function of Â is known.

As such, our results provide a starting point for inves-
tigating a wide range of new questions related to multi-
mode conditional preparation of non-Gaussian states. By
establishing a fundamental relation between EPR steer-
ing and Wigner negativity, we specifically highlight that
this framework is also suited to obtain general analytical
results, which is often challenging in the study of states
that are both highly non-Gaussian and highly multimode.

APPENDIX: MATCHINGS

In Sec. 2, we refer to the method of perfect matchings
to evaluate 〈Â〉g|�xf , which we present here with more rigour
and detail.

The technique of perfect matchings is a common prac-
tice to evaluate correlation functions in Gaussian states,
which can be traced back to works such as Refs. [5,98].
In formal terms, we consider a Gaussian (also known as
“quasifree” in the mathematical physics literature) func-
tional 〈·〉g|�xf on the algebra of observables for the canonical

commutation relations [11]. A defining property of such
functionals is that truncated correlation functions [5] for
any product of more than two creation and annihilation
operators vanish. This property is the direct analog of the
cumulants of a multivariate Gaussian distribution and it
implies that the functional 〈·〉g|�xf is fully determined by
the quantities 〈â†

g1 â†
g2〉′g|�xf

= 〈âg1 âg2〉′∗g|�xf
, 〈â†

g1 âg2〉′g|�xf
, and

〈â†
g1〉g|�xf = 〈âg1〉∗g|�xf

. Here the 〈·〉′g|�xf
is the nondisplaced

version of the functional, which is formally defined as

〈â#
g1

â#
g2

〉′g|�xf
= 〈â#

g1
â#

g2
〉g|�xf − 〈â#

g1
〉g|�xf〈â#

g2
〉g|�xf , (A1)

where â#
g1

can be either a creation or an annihilation oper-
ator. We can then write the following general property of
the Gaussian functional:

〈â†
g1

· · · â†
gn

âgn+1 · · · âgn+m〉g|�xf

=
∑

M∈M

∏
{j1,j2}∈M

〈â#
j1 â#

j2〉′g|�xf

∏
{k}∈M

〈â#
k〉g|�xf . (A2)

Here M is the set of all “matchings” for the set
{g1, . . . , gn+m}. We use the term matching to refer to a par-
tition of the set {g1, . . . , gn+m} in subsets with either one or
two elements. An example of such a possible matching is
given by M = {{g1, g2}, . . . , {gn−1, gn}, {gn}, . . . , {gn+m}}.
For each partition M ∈ M, we then evaluate the product
of associated two-point and one-point functions, where any
pair {j1, j2} ∈ M is associated with 〈â#

j1 â#
j2〉′g|�xf

and {k} ∈ M
is associated with 〈â#

k〉g|�xf . Note that, for i = g1, . . . , gn,
the operator â#

i is a creation operator, whereas, for i =
gn+1, . . . , gn+m, it is an annihilation operator.

The problem of finding all matchings is a well-known
problem in graph theory. To make the connection, we
can represent each element of the set {g1, . . . , gn+m} as
a vertex in a full connected graph, and then consider
the resulting partitions as the matchings of this graph
[99]. The number of terms in Eq. (A2) quickly explodes
as the number of creation and annihilation operators
increases, which ultimately makes the problem of evalu-
ating 〈â†

g1 · · · â†
gn âgn+1 · · · âgn+m〉g|�xf computationally hard.

A subtle point in our treatment of 〈Â〉g|�xf is that 〈·〉g|�xf
is not an expectation value of a Gaussian quantum state.
Hence, it is legitimate to wonder up to what extent the tech-
niques of Gaussian quantum states can be used to evaluate
〈Â〉g|�xf . From its definition in Eq. (21), it can be deduced
that 〈·〉g|�xf is a functional on the algebra of observables. It
directly inherits the Gaussian properties from W(�xg | �xf),
such that it is a Gaussian functional. In particular, prop-
erty (A2) can be directly traced back to the structure of
the moments of the multivariate Gaussian probability dis-
tribution W(�xg | �xf). The Gaussian functional 〈·〉g|�xf is not
associated to a state because it is not a positive functional,
i.e., we can find positive operators Â for which 〈Â〉g|�xf < 0.
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For a Gaussian functional on the algebra of canonical com-
mutation relations to be equivalent to a quantum state,
one must impose additional constraints on the functional
to guarantee positivity [5,11]. These constraints ultimately
boil down to imposing the Heisenberg inequality.
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parameters (Gessner, Fabre, et al., 2020; Karuseichyk et al., 2022; Sorelli et al., 2021a,b).
We will come back to these specific problems in Section 4.2, but first we introduce some
basic concepts and techniques of quantum metrology which are complementary to
what we have introduced in Chapter 1.

In our work, we specifically focus on the context of parameter estimation where the
quantum state ρ̂θ depends on a parameter θ. Our aim is to use quantum measurements
(see Section 1.1.4) to estimate the value of θ as accurately as possible. If we choose to
measure a POVM {P̂a}, this means we are going to use the probability density

P(a|θ) = Tr(P̂aρ̂θ) (4.1)

to estimate the exact value of θ. There are a range of methods to do so, ranging from
error propagation and the method of moments to maximum likelihood estimation (Kay,
1993; Van Trees, 2001). Generally speaking, we simply define the likelihood L(θ|A)

as the probability to observe outcomes A = {a1, . . . , aN} given a parameter θ. When
we perform maximum likelihood estimation, we are just choosing the estimator θest

such that the function L(θ|A) is maximized in θ = θest. In our specific setting, we
usually consider that we perform many independent runs of an experiment, such that
the likelihood function is given by

L(θ|A) = P(a1|θ) . . . P(aN |θ). (4.2)

However, when the samplers are not independent, the definition generalises to L(θ|A) =

P(A|θ), which is now the joint probability distribution for the measurement outcomes.
A very fundamental result in estimation theory is the Cramér-Rao bound. This result

puts a lower bound on the precision ∆θest that can be achieved for the estimator θest of
the parameter θ. In experimental terms, it tells us what is the smallest error bar that
can be reached when experimentally determining θ. The fundamental result states that

∆θest ≥
1√

Fθ [L]
, (4.3)

where Fθ [L] is the Fisher information given that the actual value of the parameter is θ

and given the likelihood function L(θ|A). Mathematically, the Fisher information is
defined as

Fθ [L] =
∫
A

(
∂

∂θ
logL(θ|A)

)2

P(A|θ)dA. (4.4)

In our specific experimental case, we can use (4.2) to write that

Fθ [L] = N
∫
A

(
∂

∂θ
log P(a|θ)

)2

P(a|θ)da = NFθ [P], (4.5)

where we slightly abuse notation to highlight that Fθ [P] is the Fisher information
obtained from the distribution (4.1). Thus, if we have N independent repetitions of the



4.1 aspects of quantum metrology 133

same experimental measurement, we find that the precision of the parameter estimation
is limited by

∆θest ≥
1√

NFθ [P]
. (4.6)

Of course, this limit depends on the distributions P(a|θ) and thus also on the POVM
{P̂a} we choose to measure.

In quantum metrology, one often studies the quantum Fisher information rather than
the Fisher information for any specific POVM. The quantum Fisher information is
quite simply defined as the maximum achievable Fisher information over all possible
measurements

FQ[ρ̂θ ] = max
P̂a

Fθ [P], (4.7)

in other words, the quantum Fisher information is related to the highest achievable
sensitivity of a state for sensing the parameter θ. Using different states, we can still
change the precision with which we can estimate a parameter, but the quantum Fisher
information gives us the best precision we can possibly get for a given state.

A priori, equation (4.7) may not seem very useful. After all, maximising over all
possible measurement is hard to do. However, this is where one of the most important
results of quantum metrology kicks in: one can explicitly calculate the quantum Fisher
information. To understand this, we first of all introduce the Hellinger distance between
two probability distributions P(a) and Q(a)

d2
H [P, Q] =

1
2

∫
A

(√
P(a)−

√
Q(a)

)2

da. (4.8)

We are now going to evaluate this distance for the probabilities in (4.1) and specifically
compare P(a|θ) and P(a|θ + δθ), it can be shown through Taylor expansion that

d2
H [P(.|θ), P(.|θ + δθ)] =

Fθ [P]
8

δθ2 +O(δθ3) (4.9)

Which clearly highlights why the Fisher information is also referred to as the statistical
speed with which the probability distribution changes when we change the parameter θ.
It literally measures how sensitive the distribution is to small changes in the parameter.

In quantum information theory, the Hellinger distance can be related to the Bures
distance between two quantum states ρ̂ and σ̂

d2
B[ρ̂, σ̂] = 1 − Tr

(√√
ρ̂σ̂

√
ρ̂

)
(4.10)

it can be shown, for example in Chapter 9 of Nielsen and Chuang, 2012, that

d2
B[ρ̂, σ̂] = max

P̂a

d2
H [P, Q], (4.11)
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where we assume that P(a) = Tr(ρ̂P̂a) and Q(a) = Tr(σ̂P̂a). The Bures distance between
two states is thus the maximal statistical distance between the measurements that can
be performed on these states. We can now combine the definition (4.7), the identity
(4.9), and the result (4.11), to obtain that

d2
B[ρ̂θ , ρ̂θ+δθ ] =

FQ[ρ̂θ ]

8
δθ2 +O(δθ3), (4.12)

In other words, the quantum Fisher information FQ[ρ̂θ ] can be obtained from the Bures
distance between the state for a given parameter, and a state for a small variation of that
parameter. The real question is now: in practice, does this result help us to calculated
FQ[ρ̂θ ]?

It is, in general, rather hard to calculate d2
B[ρ̂θ , ρ̂θ+δθ ]. Yet, we can use the result

to derive much more useful results. What follows is a derivation that is inspired by
(Braunstein and Caves, 1994; Hübner, 1992). Let us start by defining

Â(δθ) =
√√

ρ̂θ ρ̂θ+δθ

√
ρ̂θ . (4.13)

Because
∂2

∂δθ2 d2
B[ρ̂θ+δθ , ρ̂θ ]

∣∣∣
δθ=0

=
FQ[ρ̂θ ]

4
, (4.14)

we find that
FQ[ρ̂θ ] = −4Tr ¨̂A(0). (4.15)

Here we introduce the short-hand notation ˙̂A(θ) = ∂Â(θ)/∂θ. First of all, let us simplify
notation by setting

∂

∂δθ
ρ̂θ+δθ

∣∣∣
δθ=0

= ∂θ ρ̂θ , (4.16)

∂2

∂δθ2 ρ̂θ+δθ

∣∣∣
δθ=0

= ∂2
θ ρ̂θ . (4.17)

We can now start from Â2(δθ) and use these expressions to obtain the identities

Â(0) ˙̂A(0) + ˙̂A(0)Â(0) =
√

ρ̂θ∂θ ρ̂θ

√
ρ̂θ . (4.18)

2 ˙̂A(0)2 + ¨̂A(0)Â(0) + Â(0) ¨̂A(0) =
√

ρ̂θ∂2
θ ρ̂θ

√
ρ̂θ . (4.19)

Since Â(0) is not necessarily invertible, we immediately take the ansatz that some
observable L̂θ exists such that

∂θ ρ̂θ =
1
2
(L̂θ ρ̂θ + ρ̂θ L̂θ), (4.20)

and insert it in (4.18), such that we find

ρ̂θ
˙̂A(0) + ˙̂A(0)ρ̂θ =

1
2

(√
ρ̂θ L̂θ

√
ρ̂θ ρ̂θ + ρ̂

√
ρ̂θ L̂θ

√
ρ̂θ

)
. (4.21)
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Notice that we used Â(0) = ρ̂θ . Thus, we recover that

˙̂A(0) =
1
2

√
ρ̂θ L̂θ

√
ρ̂θ . (4.22)

Now let us insert this into (4.19), such that we can write

¨̂A(0)ρ̂θ + ρ̂θ
¨̂A(0) = −1

2

√
ρ̂θ L̂θ ρ̂θ L̂θ

√
ρ̂θ +

√
ρ̂θ∂2

θ ρ̂θ

√
ρ̂θ . (4.23)

Even though we may not be able to invert ρ̂θ , it is always diagonalisable. This means
that we can identify a basis of eigenvectors |k⟩, with ρ̂θ |k⟩ = pk|k⟩. It is convenient to
multiply both sides of the equality with ⟨k| from the right, and with |k⟩ from the left.
We then find that

2pk⟨k| ¨̂A(0)|k⟩ = −1
2
√

pk
√

pk⟨k|L̂θ ρ̂θ L̂θ |k⟩+
√

pk
√

pk⟨k|∂2
θ ρ̂θ |k⟩. (4.24)

As a next step, we can write

Tr ¨̂A(0) = ∑
k
⟨k| ¨̂A(0)|k⟩ (4.25a)

= −1
4 ∑

k
⟨k|L̂θ ρ̂θ L̂θ |k⟩+

1
2 ∑

k
⟨k|∂2

θ ρ̂θ |k⟩ (4.25b)

= −1
4

Tr[L̂2
θ ρ̂θ ]. (4.25c)

Note that here we used that ∑k⟨k|∂2
θ ρ̂θ |k⟩ = Tr[∂2

θ ρ̂θ ] = ∂2
θTr[ρ̂θ ] = 0. Inserting this into

(4.15) then ultimately leads again to the result

FQ[ρ̂θ ] = Var[L̂θ ]. (4.26)

Note that we used that Tr[L̂θ ρ̂θ ] = 0, which can be directly obtained by taking the trace
on both sides of the equality in (4.20).

The above reasoning shows that the quantum Fisher information can be obtained
from the symmetric logarithmic derivative L̂θ as shown in (4.26). The caveat is that
the symmetric logarithmic derivative is implicitly defined through (4.20), and solving
this equation is generally extremely challenging. Yet, there are a series of cases where
more explicit results are known. For example, when the the parameter is implemented
by a unitary transformation. In that case we can find ρ̂θ by solving the von Neumann
equation

∂θ ρ̂θ = −i[Ĝθ , ρ̂θ ], (4.27)

and in particular, we find that

−i[Ĝθ , ρ̂θ ] =
1
2
(L̂θ ρ̂θ + ρ̂θ L̂θ). (4.28)
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Multiplying from the left with ⟨j| and from the right with |k⟩ leads to

1
2
(pk + pj)⟨j|L̂θ |k⟩ = −i(pk − pj)⟨j|Ĝθ |k⟩, (4.29)

where we use that ρ̂θ |n⟩ = pn|n⟩. We then immediately find that

⟨j|L̂θ |k⟩ = −2i
(pk − pj)

(pk + pj)
⟨j|Ĝθ |k⟩ (4.30)

We can then write

FQ[ρ̂θ ] = Var[L̂θ ] = ∑
j

pj⟨j|L̂2
θ |j⟩ = ∑

j,k
pj
∣∣⟨j|L̂θ |k⟩

∣∣2 (4.31a)

= 4 ∑
j,k

pj
(pk − pj)

2

(pk + pj)2

∣∣⟨j|Ĝθ |k⟩
∣∣2 . (4.31b)

After a considerable amount of algebra, we find the convenient expression

FQ[ρ̂θ ] = Var[L̂θ ] = 4Tr[ρ̂θĜ2
θ ]− 8 ∑

j,k

pk pj

(pk + pj)

∣∣⟨j|Ĝθ |k⟩
∣∣2 . (4.32)

This immediately has as a consequence that FQ[ρ̂θ ] = Var[L̂θ ]. ≤ 4Tr[ρ̂Ĝ2
θ ]. It also

shows that, whenever the parameter is implemented in a unitary way, we can find
the quantum Fisher information when we know the generator, the eigenvalues and
eigenvectors of the density matrix ρ̂θ . This is in particular useful when the generator
itself does not depend on the parameter. In an actual experiment, the expression (4.32)
for the quantum Fisher information is only useful if we can perform a full quantum
state tomography and a full process tomography to get the generator. Usually such
tasks are extremely costly, but there might be some connection to recent result in
quantum machine learning (Huang, Kueng, and Preskill, 2020; Huang, Kueng, Torlai,
et al., 2022; Wilde et al., 2022).

The quantum Fisher information for Gaussian states can be calculated explicitly, as
demonstrated in references (Monras, 2013; Šafránek et al., 2015; Serafini, 2017). Our
group primarily focuses on parameter estimation using these states, making these
results highly relevant. However, it is important to note that the theoretical framework
discussed above only considers the quantum state, not the optical modes. In the context
of imaging and other types of optical sensing, changes in the parameter not only alter
the state, but also the optical modes themselves (Treps et al., 2003). This point is crucial
to understanding the difficulty of the distance estimation problem (Tsang et al., 2016)
and will be discussed further in Section 4.2.

Before we move on to the next section, it is important to address one final question:
what is it all good for? Of course, one can now evaluate the quantum Fisher information,
and from this conclude that

∆θest ≥
1√

NFQ[ρ̂θ ]
, (4.33)
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no matter what type of measurement we are performing. However, in practice, we
always have an experimental setup with specific experimental measurements. This
means that we can always get a tighter lower bound by calculating the actual Fisher
information for our setup. So what is the actual application of the quantum Fisher
information?

The beauty of the quantum Fisher information is that it provides the ultimate
precision limit, determined only by the quantum fluctuations coming form the state.
Braunstein and Caves, 1994 showed that a projective measurement on the eigenvectors
of L̂θ saturates the quantum Fisher information, and thus the symmetric logarithmic
derivative immediately gives us an optimal measurement. However, this optimal
measurement is far from unique. As a matter of fact, any measurement that leads to a
saturation of equation (4.33) is optimal. For example, in Karuseichyk et al., 2022 we use
the method of moments (Gessner, Smerzi, et al., 2019, 2020) to get an easy to calculate
crude estimation of the parameter. For many states, this crude estimation turns out to
saturate the quantum Fisher information, and thus it is impossible to do better by using
any more refined data analysis or measurements. This is a example that illustrates how,
in parameter estimation problems, it is often crucial to get a grasp on the quantum
Fisher information to understand fundamental limits, and on the experimental data
analysis to understand practical limits. In the following chapter we discuss this issue
for the paradigmatic problem of distance estimation.

4.2 encoding parameters in modes and states

Section 1.1 has shown us that quantum optics is an interplay of modes and states. The
quantum metrology framework of Section 4.1 described in great detail how quantum
states change as a function of a parameter, and how we can use these changes to
estimate the value of that parameter. However, what happens when the parameter
actually changes the modes? To gain some understanding in this question, let us
consider a simple example and consider a classical optics context.

We start by studying a simple single-mode light beam, with an electric field given by

E(+)(r, t) = Eαu(x, y)ei(kz−tω), (4.34)

such that we have light propagating in the z-direction, with some transverse field
profile given by mode u(x, y). We are now going to displace the beam by a distance d
in the x-direction, such that we get a parameter dependent field

E(+)
d (r, t) = Eαu(x − d, y)ei(kz−tω). (4.35)
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Even though the light will always remain single-mode, changing the value of d actually
changes the mode u(x− d, y), and thus the parameter estimation problem is actually not
a single-mode problem. To understand this, it is useful to resort to a Taylor expansion:

u(x − d, y) = u(x, y)− d
∂

∂x
u(x, y) +

d2

2
∂2

∂x2 u(x, y) + . . . (4.36)

Assuming that u(x, y) has some nice mathematical properties (as would for example
be the case for a Gaussian beam), the functions ∂nu(x, y)/∂xn can be re-normalized to
form a mode basis. These derivative modes thus give us a way of representing our
action of the parameter in a fixed mode-basis that is independent of the value of the
parameter. In return for using these parameter-independent modes the problem has
now become manifestly multimode. However, at the same time, the expansion (4.36)
suggest that all relevant information of the parameter is already contained in the value
of the field in mode ∂u(x, y)/∂x. This information can in principle be readily extracted
with homodyne detection, as was done in Ansquer et al., 2021 for time-frequency
modes.

More generally speaking, we can always consider a parameter-dependent light field
and expand it in a parameter-independent mode basis

E(+)
d (r, t) = ∑

k
Ekαk(d)uk(r, t), (4.37)

which can readily be quantised as

Ê(+)
d (r, t) = ∑

k
Ek âk(d)uk(r, t). (4.38)

because here the creation and annihilation operators change with the parameter d, we
can see this as a description of the action of the parameter in the Heisenberg picture.
Generally speaking, we can write this action in terms of a quantum channel

âk(d) = Λd(âk). (4.39)

Because the parameter d acts on all creation operators individually, we write that

Λd[ f (â†
1, . . . , â†

m, â1, . . . , âm)] = f (â†
1(d), . . . , â†

m(d), â1(d), . . . , âm(d)), (4.40)

for any analytical function f , regardless of the operator ordering. This mathematically
means that any parameter that “changes the shape of the modes” can equivalently
be implemented by a quantum channel that is a ∗-automorphism in the Heisenberg
picture that, according to (4.39) does not mix creation and annihilation operators. This
gives us a very limited set of quantum channels. We can directly calculate that

∂

∂d
Λd[â#

1 . . . â#
m] = ∑

k
â#

1(d) . . . â#
k−1(d)

(
∂

∂d
â#

k(d)
)

â#
k+1(d) . . . â#

m(d), (4.41)
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where â#
l can be a creation or an annihilation operator (this just reflects that regardless

of operator ordering we always get the same result). This shows that the dynamics
is entirely determined by ∂â#

k(d)/∂d. Combining all these constraints we find that the
channel Λd must be unitary and have a generator of the form

Ĝ = ∑
k,l

Gk,l â†
k âl . (4.42)

This actually give us the description of a generator of an interferometer or, in other
words, a change in mode basis. Since we typically describe the quantum Fisher
information as a property of the state, we can equally define the action of the parameter
in the Schrödinger picture as

ρ̂d = Λ∗
d(ρ̂) = e−idĜρ̂eidĜ, (4.43)

where we formally note Λ∗
d as the dual map of Λd. We can then use equation (4.32) to

explicitly calculate the quantum Fisher information. Note that this result on parameter
estimation with parameters that change the form of optical modes was obtained by
Gessner, Treps, et al., 2022 using different techniques. They also provide an explicit
expression for Gk,l in (4.42).

Elegant as the above derivation may be, it only covers a very idealised aspect of
parameter estimation with parameter-dependent modes. In a more general scenario, we
expect to have not only changes in mode shape, but also other processes. As such, the
parameter can affect both the state and the modes. This appears naturally in imaging
problems, where a finite aperture can both impact the mode shape and cause optical
losses. This is the typical scenario in the problem of distance estimation between two
point sources (Lupo and Pirandola, 2016; Sorelli et al., 2021a,b).

The problem of distance estimation in imaging is old and was already studied by
lord Rayleigh and Abbe in the late nineteenth century. For a long time, this problem
was assumed to be constrained by the diffraction limit, but a range of superresolution
protocols have since profoundly changed our understanding. However, it is only
recently that the framework of spatial-mode demultiplexing has shown that superres-
olution can be achieved using only passive linear optics (Tsang et al., 2016). The key
difficulty of this setup is sketched in Figure 1: while the sources initially emit light
in two distinct orthogonal modes with annihilation operators ŝ1 and ŝ2, the imaging
system smears out the modes and makes them overlap if the sources are too close. This
highlights that the action of the imaging system is not merely a change of mode basis,
but a non-unitary operation that does not preserve the orthogonality of the modes and
typically a considerable amount of energy emitted by the sources is lost.

There are a range of methods to deal with this imaging problem. A priori, one could
model everything on the level of modes and describe the process as a transformation
from an orthogonal to a non-orthogonal mode basis. In some sense, this approach is
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Figure 1: Schematic representation of the separation estimation setup.

followed by Fiderer et al., 2021, even though the theoretical framework is not that of
modes and states. Alternatively, one can also rely on orthogonalisation procedures and
rely on an additional loss model (Karuseichyk et al., 2022; Lupo and Pirandola, 2016;
Sorelli et al., 2021a,b).

Regardless of the approach that is used to describe a setting with parameter-
dependent modes and states, it is in general not possible to rely on a elegant formula
such as equation (4.32) to obtain the quantum Fisher information for this problem. As
we mentioned before, as long as the states are Gaussian we can rely on the general
results (Monras, 2013; Šafránek et al., 2015; Serafini, 2017). In principle, we can apply
the technique (4.38) to transform the full problem into a problem where the parameter
acts on the state and use the Gaussian results. However, in practice equation (4.38)
leaves us with an infinite number of modes, which makes the problem intractable. The
big innovation in our recent work (Sorelli et al., 2022a) is to develop a practical way of
defining a finite parameter-independent mode basis that contains all the information
about the parameter and allows us to calculate the quantum Fisher information for
arbitrary Gaussian states even when the parameter changes the mode basis. This frame-
work notably allowed us to derive the quantum Fisher information for the separation
estimation problem for any case where the initial sources are prepared in a Gaussian
state (Sorelli et al., 2022b). Combining our results with a bound derived by Lupo and
Pirandola, 2016, we can show that coherent states are practically optimal for separation
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estimation. Furthermore, we have shown that the method of moments can practically
saturate the quantum Fisher information in this optimal case (Karuseichyk et al., 2022),
which means that separation estimation that approaches the ultimate quantum limit
could be practically possible. Even though one should expect experimental imperfection
to impose some limitations (Sorelli et al., 2021a,b), we have recently shown that it is
experimentally possible to reach sensitivities that are orders of magnitude below the
Rayleigh limit (Rouvière et al., 2023). Furthermore, we show that distance estimation
close to the quantum limit is within reach.

4.3 outlook

Mode-demultiplexing offers a whole new way of looking at the information encoded in
light, and therefore opens many new doors for sensing and imaging. From the practical
point of view, our results in (Sorelli et al., 2022a) highlight the potential applications
of these techniques in the spectral domain by multiplexing in interesting bases of
time-frequency modes. This could allow us to look at problems such as synchronisation
of pulses, which may in turn have application for the calibration of Boson Sampling
setups (Walschaers, Kuipers, and Buchleitner, 2016). Also in imaging applications there
are a range of interesting problems that remain to be addressed. On the one hand, one
could wonder whether these techniques have applications in recognising shapes of
objects (Grace and Guha, 2022; Pushkina et al., 2021). On the other hand, one could also
consider a context with dynamical sources and attempt to estimate their trajectories.
Both of these extensions are challenging from a theoretical point of view because we
either cannot describe the problem as an estimation of a finite number of parameters,
or we have to deal with a very limited number of data-points. We foresee that this
will require entirely different theoretical techniques, for example based on Bayesian
statistics.

For a more fundamental theoretical point of view, we can again consider a notion
of quantum advantage and wonder how about the requirements to achieve sensitiv-
ities beyond what is possible with classical light. In this case, it is already known
that squeezing is a useful resource (Treps et al., 2003), but one can wonder about the
operational role of non-Gaussian features such as stellar rank and Wigner negativity.
There has been some work that suggests (Arvidsson-Shukur et al., 2020) that nega-
tivity in the Kirkwood–Dirac quasiprobability distribution plays an important role in
improving metrological sensitivity. However, it is not clear how the negativity in this
quasiprobability distirbution can be related to Wigner negativity.

Most practical results about the quantum Fisher information rely on the diagonali-
sation of the state’s density matrix. However, continuous-variable systems are often
more conveniently dealt with in a phase space representation and knowing the Wigner
function does not guarantee a practical way of finding the density matrix, let alone
diagonalise it. To this end, it may be useful to use phase space calculus such as in
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(1.50c) may be useful to translate the equation (4.20) directly to phase space. However,
this still requires us to solve an integral equation to obtain the Wigner function of the
symmetric logarithmic derivative L̂. A potential avenue for the future is to find classes
of states and parameters for which the phase space representation of equation (4.20)
can be solved explicitly.

4.4 article: gaussian quantum metrology for mode-encoded parame-
ters : general theory and imaging applications
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Quantum optical metrology aims to identify ul-
timate sensitivity bounds for the estimation of
parameters encoded into quantum states of the
electromagnetic field. In many practical appli-
cations, including imaging, microscopy, and re-
mote sensing, the parameter of interest is not
only encoded in the quantum state of the field,
but also in its spatio-temporal distribution, i.e.
in its mode structure. In this mode-encoded
parameter estimation setting, we derive an an-
alytical expression for the quantum Fisher in-
formation valid for arbitrary multimode Gaus-
sian fields. To illustrate the power of our ap-
proach, we apply our results to the estimation
of the transverse displacement of a beam and to
the temporal separation between two pulses. For
these examples, we show how the estimation sen-
sitivity can be enhanced by adding squeezing into
specific modes.

1 Introduction
A fundamental task in quantum metrology is to iden-
tify the ultimate sensitivity limit in the estimation of
a parameter encoded into a quantum state. Even un-
der ideal conditions, when all technical noise sources
are removed, quantum noise poses unavoidable limi-
tations to such estimation. In spite of that, quantum
parameter estimation theory provides the tools to re-
duce noise by optimizing the output measurements.
This optimization leads to the quantum Cramér Rao
lower bound, which states that the minimal uncer-
tainty ∆ϑ of the estimator of a parameter ϑ is in-
versely proportional to the quantum Fisher informa-
tion of the quantum state ρ̂ϑ where the parameter is
encoded (Helstrom, 1976; Holevo, 2011; Paris, 2009;
Pezzè and Smerzi, 2014; Giovannetti et al., 2011;
Tóth and Apellaniz, 2014). This bound can be fur-
ther optimized by finding quantum states that, for a

given parameter, maximize the value of the quantum
Fisher information.

Electromagnetic fields play a privileged role as
metrological probes in a variety of branches of sci-
ence and technology, ranging from imaging and mi-
croscopy (Taylor and Bowen, 2016; Tsang, 2019),
to remote sensing with lidars and radars (Giovan-
netti et al., 2001; Zhuang et al., 2017; Huang et al.,
2021), to gravitational wave detection (Acernese et
al., 2019; Tse et al., 2019). In several of these appli-
cations, the parameter of interest does not only mod-
ify the quantum state of the probe light, but also its
spatio-temporal distribution. Such a spatio-temporal
distribution is conveniently described in terms of
modes. i.e. normalized solutions of Maxwell’s equa-
tions in vacuum (Fabre and Treps, 2020). For ex-
ample, spatial modes of light describe the different
components of an image, while the properties of an
optical pulse are encoded into frequency-time modes.

Previous works in this context of mode-encoded
parameter estimation focused on specific problems.
For example, the case where the total light’s intensity
is not affected by the parameter, but its distribution
among different modes is, was considered for the es-
timation of a small lateral beam displacement (Treps
et al., 2002, 2003), or in the estimation of spectral
parameters of a frequency comb (Cai et al., 2021).
A general theory for this fixed-intensity scenario was
recently presented by Gessner et al. (2022). Two
different (mathematically equivalent) problems, that
lately attracted a lot of attention, are the estimation
of the separation between two point sources analysed
through a diffraction-limited imaging system (Tsang
et al., 2016; Paúr et al., 2016; Boucher et al., 2020) or
the temporal separation between two pulses (Ansari
et al., 2021; De et al., 2021; Mazelanik et al., 2022).
For these problems, the parameter of interest is en-
coded in the shape of two (spatial or temporal) modes
in the detection plane with separation-dependent pop-
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ulations (Lupo and Pirandola, 2016). Pushed by the
need to go beyond these case studies, in this work, we
study mode-encoded parameter estimation with arbi-
trary multimode Gaussian states, i.e. photonics quan-
tum states fully defined by the first two moments of
their quadratures (Holevo, 1975; Weedbrook et al.,
2012; Adesso et al., 2014).

Gaussian states play a central role in quantum op-
tics: they describe important classical states such as
coherent states, representing lasers operating above
threshold, and thermal states, describing fully inco-
herent light. Furthermore, non-classical Gaussian
states can be produced deterministically in non-linear
optical processes. Among the latter states, there are
squeezed states, whose reduced quantum noise has
been proposed as a useful resource since the early
days of quantum parameter estimation (Caves, 1981),
and is now a key ingredient of several quantum-
enhanced metrological schemes (Treps et al., 2003;
Pezzé and Smerzi, 2008; Acernese et al., 2019;
Tse et al., 2019). While previous studies of the
quantum Fisher information for Gaussian states ex-
ist (Pinel et al., 2012; Monras, 2013; Šafránek et al.,
2015; Jiang, 2014), they focused on the estimation
of parameters defining the first two moments of the
quadratures, e.g. mean field, phase, and squeezing.

The aim of this work is to overcome these limita-
tions, to study the estimation of parameters encoded
in the spatio-temporal profile of the electromagnetic
field, and therefore to broaden the applicability of
Gaussian quantum metrology to new fields of tech-
nology such as imaging, microscopy, and temporal
(or spectral) beam profiling. As examples of such ap-
plications, we reconsider the estimation of the trans-
verse displacement of a beam and the temporal sepa-
rations between two pulses: For the former case, we
extend the results for coherent beams of (Pinel et al.,
2012) to thermal beams, we show that squeezing in
the right mode provides a quantum enhancement also
in this case, and we discuss how to include the ef-
fect of thermal noise and losses. For the latter, we
confirm known results for thermal (Nair and Tsang,
2016; Lupo and Pirandola, 2016) and coherent pulses
(Sorelli et al., 2022), and we investigate the possibil-
ity of a quantum enhancement populating additional
modes with squeezed light.

Our paper is organized as follows: First, in Sec. 2,
we recall some basic facts about Gaussian states and
quantum parameter estimation. We then derive the
analytical expression of the quantum Fisher infor-
mation for mode-encoded parameter estimation with

Gaussian states, in Sec. 3. Section 4 contains the ap-
plication of our results to the estimation of the trans-
verse displacement of a beam and the temporal sepa-
ration of two pulses. Section 5 concludes our work.

2 Preliminaries
2.1 Gaussian states
An N−mode continuous variable (CV) (Braunstein
and van Loock, 2005; Serafini, 2017) quantum sys-
tem can be described by choosing a mode basis, i.e.
a set {uk(r, t)}Nk=1 of solutions of Maxwell’s equa-
tions, orthonormal with respect to the inner product

(uk|ul) =
∫
d3ru∗k(r, t)ul(r, t) = δkl, (1)

and associating with each mode uk(r, t) a pair of
quadrature operators q̂k = (âk+ â†k) and p̂k = i(â†k−
âk), where â†k and âk are standard creation and anni-
hilation operators. If we group all quadratures in the
2N−dimensional vector x̂ = (q̂1, p̂1, . . . , q̂n, p̂n)>,
from the canonical commutation relations [âk, â†l ] =
δkl for annihilation operators, we obtain

[x̂j , x̂k] = 2iΩjk, (2)

with the symplectic form Ω = ⊕N
k=1 ωk, and ωk =

iσy, where we have introduced the notation σi=x,y,z
for the standard 2 × 2 Pauli matrices. Our pre-
ferred phase space representation of an N−mode
CV quantum state with density matrix ρ̂, and char-
acteristic function χ(y) = tr

[
exp

(
−iy>Ωx̂

)
ρ̂
]
, is

the Wigner function

W (x) =
∫

dy2N

(2π)2N e
−iy>Ωxχ(y). (3)

In this work, we restrict ourselves to the study of
Gaussian states. N−mode Gaussian states are CV
states with Gaussian Wigner function (Holevo, 1975;
Weedbrook et al., 2012; Adesso et al., 2014)

W (x) =
exp

[
−(x− x̄)>σ−1(x− x̄)/2

]

(2π)N
√

detσ
, (4)

which are completely determined by the displace-
ment vector x̄ = 〈x̂〉, and the covariance matrix

σjk = 1
2 〈{(x̂j − x̄j), (x̂k − x̄k)}〉 , (5)

where {·, ·} denotes the anticommutator, and 〈·〉 the
expectation value 〈·〉 = tr [·ρ̂]. For every physical
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state, the covariance matrix satisfies the uncertainty
inequality (Simon et al., 1994)

σ + iΩ ≥ 0. (6)

A useful property of the covariance matrix is that, ac-
cording to Williamson theorem (Williamson, 1936),
it can be decomposed as

σ = SνS>, with ν =
N⊕

k=1
νk12, (7)

where S is a symplectic matrix, i.e. SΩS> = Ω,
we introduced the notation 1n for the n−dimensional
identity matrix, and ν is a diagonal matrix whose el-
ement are known as symplectic eigenvalues. The
uncertainty inequality (6) implies that the symplectic
eigenvalues must be larger than unity, i.e. νk ≥ 1.

2.2 Mode and state transformations
Let us recall that the space of solutions of Maxwell’s
equation is a Hilbert space (Fabre and Treps, 2020;
Walschaers, 2021). Accordingly, different mode
bases are connected via unitary transformations

uk(r, t) =
N∑

l=1
Uklvl(r, t), (8a)

vk(r, t) =
N∑

l=1
U∗lkul(r, t), (8b)

with Ukl = (vl|uk). Under mode basis changes, cre-
ation operators follow the same transformation rules
as the modes (Fabre and Treps, 2020), which implies
that the quadrature vector transforms according to

x̂′ = Ox̂, (9)

with O an orthogonal symplectic matrix, i.e OO> =
O>O = 12N and O>ΩO = Ω, with elements
O2k−1,2l−1 = Re [Ukl], O2k,2l−1 = − Im [Ukl],
O2k−1,2l = Im [Ukl] and O2k,2l = Re [Ukl].

A mode basis change is a particular case of a Gaus-
sian channel: a completely positive, trace preserv-
ing map transforming Gaussian states into Gaussian
states. Such channels are completely determined by
their transformation rules for the displacement vector
and the covariance matrix (Holevo and Werner, 2001)

x̄′ = T x̄ + z̄, (10a)
σ′ = T σT > +N , (10b)

where z̄ is a real 2N−dimensional vector, while T
andN are 2N×2N real matrices withN = N> and
satisfying the positivity conditionN+iT ΩT > ≥ iΩ.
From Eq. (9) is easy to see that a mode basis change
is a Gaussian channel (see Eqs. (10)) with N = 0
and T = O.

2.3 Quantum estimation theory
Let us now assume that we want to estimate a param-
eter ϑ encoded in a quantum state ρ̂ϑ from M inde-
pendent measurements of a given positive operator-
valued measure (POVM) defined by the operators
K̂µ. Using classical post-processing techniques,
from the measurements’ results, we can extract an
unbiased estimator ϑ̃ of the parameter as well as its
standard deviation ∆ϑ̃. The latter is bounded accord-
ing to the Cramér-Rao inequality (Helstrom, 1976;
Holevo, 2011; Paris, 2009; Pezzè and Smerzi, 2014;
Giovannetti et al., 2011)

∆ϑ̃ ≥ 1√
MFϑ,K̂µ

(11)

with the Fisher information Fϑ,K̂µ defined by

Fϑ,K̂µ =
∑

µ

p(µ|ϑ) [∂ϑ log (p(µ|ϑ))]2 (12)

where p(µ|ϑ) = Tr
[
K̂µρ̂ϑ

]
is the conditional proba-

bility of obtaining the result µ for a given value of ϑ,
and we introduced the compact notation ∂ϑ· = ∂·/∂ϑ
for the derivative. The Fisher information optimized
over all possible POVMs

Fϑ = max
K̂µ

Fϑ,K̂µ , (13)

is the quantum Fisher information (QFI), and estab-
lishes the ultimate metrological sensitivity (Braun-
stein and Caves, 1994). In general, the QFI can be
computed as

Fϑ = Tr
[
L̂2
ϑρ̂ϑ

]
, (14)

where L̂ϑ is the symmetric logarithmic derivative
(SLD), implicitly defined by the equation (Helstrom,
1976; Holevo, 2011; Paris, 2009; Pezzè and Smerzi,
2014; Giovannetti et al., 2011)

2∂ϑρ̂ϑ = L̂ϑρ̂ϑ + ρ̂ϑL̂ϑ. (15)

When ρϑ is anN−mode Gaussian state defined by
the displacement vector x̄ and the covariance matrix

3



σ, the SLD is quadratic in the quadratures (Monras,
2013; Šafránek et al., 2015)

L̂ϑ = L
(0)
ϑ + L(1)>

ϑ x̂ + 1
2 x̂>L(2)

ϑ x̂ (16)

with

L
(0)
ϑ = −1

2 Tr
[
σL

(2)
ϑ

]
− L(1)>

ϑ x̄− 1
2 x̄>L(2)

ϑ x̄

(17a)

L(1)
ϑ = σ−1 (∂ϑx̄)− L(2)

ϑ x̄ (17b)

L
(2)
ϑ = 1

2

3∑

l=0

N∑

jk=1

a
(l)
jk

νjνk − (−1)l
(
S>
)−1

A
(l)
jkS

−1

(17c)

where S and ν are the symplectic matrix
and the symplectic eigenvalues obtained from the
Williamson decomposition of σ as introduced in
Eq. (7), while a

(l)
jk = Tr

[
A

(l)
jkS

−1(∂ϑσ)(S>)−1
]
,

with A(l)
jk a set 2n × 2n matrices that are zero every-

where except in the jk block where they are given by
ω/
√

2, σz/
√

2, 12/
√

2 and σx/
√

2 for l = 0, 1, 2
and 3, respectively. Substituting Eqs. (16) and (17)
into Eq. (14) and using the properties of the char-
acteristic function (Serafini, 2017), we can write the
QFI for a Gaussian state as

Fϑ = Fσ + Fx̄, (18)

with

Fσ = Tr
[
L

(2)
ϑ (∂ϑσ)

]
(19a)

= 1
2

3∑

l=0

N∑

jk=1

(
a

(l)
jk

)2

νjνk − (−1)l ,

Fx̄ = (∂ϑx̄)>σ−1(∂ϑx̄). (19b)

where Fσ and Fx̄ are the contribution to the QFI com-
ing from variations of the covariance matrix σ and the
displacement vector x̄, respectively.

3 Mode-encoded parameter estima-
tion
Let us consider the estimation of a parameter ϑ en-
coded into a Gaussian state ρ̂ϑ expressed into an
n−dimensional mode basis uk[ϑ](r, t), with n the
smallest number of modes necessary to describe the
system. We will refer to the Hilbert space spanned
by these modes asHn = span ({uk[ϑ](r, t)}). Since

every basis of the mode Hilbert spaceHn would pro-
vide a description of the quantum state ρ̂ϑ in terms
of the smallest number n of modes, the choice of
the mode basis uk[ϑ](r, t) is not unique. Despite
this freedom of choice, in the most general parame-
ter estimation scenarios, every mode basis uk[ϑ](r, t)
will be parameter-dependent. The latter fact implies
that the Gaussian state ρ̂ϑ depends on ϑ not only ex-
plicitly through the displacement vector x̄ϑ and the
covariance σϑ, but also implicitly through the mode
functions uk[ϑ](r, t). Our goal is this section is to
calculate the QFI (18) taking into account both these
dependences.

3.1 Separation of mode and state parameter
dependence
Our first step is to make the parameter dependence
coming from the modes uk[ϑ](r, t) explicit in the co-
variance matrix and displacement vector of the quan-
tum state ρ̂ϑ. To this goal, we express them into a
parameter-independent basis vk(r, t): Using Eq. (9),
we get

σI = OσϑO
T , (20a)

x̄I = Ox̄ϑ, (20b)

where we introduced the subscripts I and ϑ to
identify quantities in the parameter-independent and
parameter-dependent bases, respectively. Natu-
rally, the choice of the parameter-independent ba-
sis vk(r, t) is not unique. However, since this basis
does not contain any information on the parameter,
its choice does not affect the final expression for the
QFI, as will become clear at the end of our calcula-
tion.

Given that n is the smallest number of modes nec-
essary to represent the state ρ̂ϑ, the parameter in-
dependent basis vk(r, t) must have dimension N ≥
n. To take into account this change in dimension,
we complement the state in the parameter-dependent
mode basis with N − n vacuum modes, so that we
can write the covariance matrix σϑ in block diagonal
form as

σϑ =
(
Vn 0
0 12(N−n)

)
, (21)

and the displacement vector as x̄ϑ =
(x̄>n , 0, · · · , 0)>. To isolate the action of O on
the n initially populated modes, it is convenient to
rewrite it as a 1× 2 block matrix

O =
(
On ON−n

)
, (22)
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with On and ON−n a 2N × 2n and a 2N × 2(N −
n) matrices, respectively. Some useful properties
of these matrices and their derivatives are reported
in App. A. Substituting Eqs. (22) and (21) into
Eq. (20a), and using the properties of the matricesOn
and ON−n (See Eq. (83b) in App. A), we can rewrite
the covariance matrix in the mode-independent basis
as

σI = On(Vn − 12n)O>n + 12N . (23)
Analogously, using Eq. (22) into Eq. (20b), we can
rewrite the displacement vector as

x̄I = Onx̄n. (24)

Equations (23) and (24) provide a description of
the Gaussian state ρ̂ϑ where the parameter depen-
dence is fully expressed in the covariance matrix σI
and the displacement vector xI . In particular, the
transformation properties of the n initially populated
modes appear now explicitly through the matrix On.
In the following, we are going to use these expres-
sions to compute the two terms in Eq. (18).

3.2 Covariance matrix contribution to the
quantum Fisher information
We start with the calculation of Fσ (see Eq. (19a)),
which describes the contribution to the sensitivity due
to variations of the covariance matrix. Let us start by
taking the derivative of the covariance matrix σI in
the parameter independent basis with respect to the
parameter

∂ϑσI = (∂ϑOn) (Vn − 12n)O>n (25)

+On(Vn − 12n)
(
∂ϑO

>
n

)
+On (∂ϑVn)O>n .

To compute the quadratic term of the SLD L
(2)
ϑ (see

Eq. (17c)), we need the Williamson decomposition
σI = SIνIS

T
I of the covariance matrix σI . Us-

ing Eqs. (21) and (22), we can connect it to the
Williamson decomposition Vn = SnνS

T
n of the co-

variance of the n initially populated modes in the pa-
rameter dependent basis un[ϑ](r, t), and obtain

SI =
(
OnSn ON−n

)
, (26a)

νI = ν ⊕ 12(N−n). (26b)

Accordingly, using the properties of the matrixO (see
App. A for details), we can write

S−1
I (∂ϑσI)

(
S>I
)−1

=



Bn B>∂ 0
B∂ 0 0
0 0 0


 , (27)

with

Bn = S−1
n D>n (Vn − 12n)

(
S>n
)−1

+ S−1
n (Vn − 12n)Dn

(
S>n
)−1

(28a)

+ S−1
n (∂ϑVn)

(
S>n
)−1

,

B∂ =D>∂ (Vn − 12n)
(
S>n
)−1

. (28b)

Here, Dn is a 2n× 2n matrix and D∂ is a 2n× 2m
matrix, constructed using, respectively, the coeffi-
cients ckl[ϑ] and c′kl[ϑ] of the expansion

∂ϑuk[ϑ](r, t) =
n∑

l=1
ckl[ϑ]ul[ϑ](r, t) (29)

+
m∑

l=1
c′kl[ϑ]u′l[ϑ](r, t),

where the modes u′l[ϑ](r, t) form an m(≤
n)−dimensional basis of the mode Hilbert space
H∂ = span ({∂ϑuk[ϑ](r, t)}) \ Hn (See App. A).
Accordingly, the diagonal block Bn contains a mode
contribution (first two terms in Eq. (28a)) due to
the portion of the derivatives ∂ϑuk[ϑ](r, t) within
the space of the initially populated modes Hn, and
a contribution given by the explicit dependence of
the covariance matrix Vn on the parameter. On the
other hand, the off-diagonal blocks B∂ and B>∂ only
contain the mode contribution due to the leakage of
the derivatives ∂ϑuk[ϑ](r, t) fromHn toH∂ .

Using Eq. (27), we can calculate the coefficients
a

(l)
jk in Eq. (17c), which result in

a
(l)
jk =





Tr
[
A

(l)
jkBn

]
1 ≤ j, k ≤ n

Tr
[
Ã

(l)>
jk B∂

]
1 ≤ j ≤ n, n < k ≤ (n+m)

Tr
[
Ã

(l)
jkB

>
∂

]
n < k ≤ (n+m), 1 ≤ j ≤ n

0 j, k > (n+m)
(30)

where Ã(l)
jk are m × n blocks of the matrices A(l)

ij .
Finally, using Eq. (19a) and Eq. (26b), we can write
the covariance matrix contribution to the QFI as

Fσ = 1
2

3∑

l=0

n∑

jk=1

(
a

(l)
jk

)2

νjνk − (−1)l (31)

+ 1
2

3∑

l=0

n∑

j=1

m∑

k=1

(
a

(l)
j,k+n

)2
+
(
a

(l)
k+n,j

)2

νj − (−1)l .

The sum in the first term in Eq. (31) only runs over
the n initially populated modes. Accordingly, it de-
scribes the contribution to the QFI given by variations
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of the state within the n initially populated modes
un[ϑ](r, t). On the other hand, the second term in
Eq. (31) contains a sum over the n initially populated
modes un[ϑ](r, t) and another over their m orthonor-
malized derivatives u′n[ϑ](r, t). Therefore, it takes
into account the contribution to the QFI due to the
coupling between the initially populated modes and
their derivatives induced by parameter variations. Fi-
nally, let us note that Eq. (31) is completely deter-
mined by the covariance matrix Vn of the state ρ̂ϑ in
the n initially populated modes uk[ϑ](r, t), and by
the shape of the modes themselves, but, as antici-
pated, it does not depend on the choice of the aux-
iliary parameter-independent basis vk(r, t).

3.3 Displacement vector contribution to the
quantum Fisher information

We now move on to compute Fx̄, as given by
Eq. (19b), which takes into account the contribution
to the QFI coming from variations of the displace-
ment vector x̄I . To compute this term, we need the
derivative of Eq. (24)

∂ϑx̄I = (∂ϑOn)x̄n +On(∂ϑx̄n), (32)

and the inverse of the covariance matrix σI that,
thanks to Eq. (22), we can write as

σ−1
I = OnV

−1
n O>n +ON−nO>N−n. (33)

Finally, combining Eqs. (32) and (33), and using
the properties of the matrices On and ON−n (see
App. A), we obtain

Fx̄ = (∂ϑx̄n)>V −1
n (∂ϑx̄n) (34)

+ (∂ϑx̄n)>V −1
n D>n x̄n + x̄>nDnV

−1
n (∂ϑx̄n)

+ x̄>n
(
DnV

−1
n D>n +D∂D

>
∂

)
x̄n.

Similarly to what we observed for Fσ, Fx̄ only de-
pends on the displacement vector x̄n in the n initially
populated modes uk[ϑ](r, t) and their shapes. More-
over, we note that the first term in in Eq. (34) only
depends on variations of the displacement vector x̄n,
while the last term only depends on changes of the
shapes of the n initially populated modes uk[ϑ](r, t).
On the other hand, in the two middle terms appear
both (∂ϑx̄n[ϑ]) and Dn. Accordingly, they combine
mode variations with changes in the displacement
vector.

4 Application to spatial and temporal
resolution
4.1 Spatial beam positioning
4.1.1 A single populated mode

As a first example, we consider the estimation of
the transverse displacement d of a light beam whose
spatial profile is defined by the mode u0[d](r) =
u(r − r0) with r0 = (d, 0), where, without loss
of generality, we assumed the beam to be displaced
along the x axis. Furthermore, we consider the mode
u[d](r) to have a well-defined parity, s.t. it is orthog-
onal to its derivative: (∂du0|u0) = 0. Under these
assumptions, we have Dn = 0 and D∂ = η12, with
η = ||∂du(r − r0)||. In this context, η quantifies the
spatial extent of the beam we want to localize, e.g. for
a Gaussian mode u(r) = exp

(−|r|2/2w2)/
√
πw2,

we have η2 = 1/2w2.
This estimation problem is fully defined by the

mode u0[d](r). As a consequence, the mean field
contribution to the QFI (34) simplifies to

Fx̄ = (∂dx0)>V −1
0 (∂dx0) + η2||x0||2, (35)

and we can write the covariance contribution to the
QFI (31) as

Fv = 1
2

3∑

l=0

(
a2
l

ν2
0 − (−1)l + b2l

ν0 − (−1)l

)
, (36)

where we defined the coefficients

a2
l = tr

[
AlS

−1
0 (∂dV0)(S>0 )−1

]2
, (37a)

b2l = η2 tr
[
Al (V0 − 12)

(
S>0
)−1

]2
(37b)

+ η2 tr
[
AlS

−1
0 (V0 − 12)

]2
,

with

A0 = iσy/
√

2; A1 = σz/
√

2; (38)
A2 = 12/

√
2; A3 = σx/

√
2,

where we recall σx,y,z are Pauli matrices.
We can now evaluate Eqs. (35) and (36) for dif-

ferent states of the mode u0[d](r). Let us start by
considering a coherent state |α〉, defined by the com-
plex amplitude α that can be parameter dependent.
Accordingly, we have x̄0 = 2(Re[α], Im[α]) and
V0 = 12. In this case, is not hard to verify that the co-
variance matrix contribution (36) vanishes, Fv = 0,
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and the QFI is fully determined by the displacement
term (35), which reduces to

Fd,coh = |∂dα|2 + 4η2N0, (39)

where we introduced the mean photon number N0 =
|α|2. The second term in Eq. (39) presents a shot-
noise scaling and is inversely proportional to the
beam size: small displacements of a larger beam are
harder to estimate. On the other hand, the first term
in Eq. (39) takes into account how α depends on the
transverse displacement of the beam. Such a depen-
dence could be induced by position-dependent losses.

Let us now consider the localization of a ther-
mal beam, for which we have x̄0 = 0 and V0 =
(2N0 + 1)12. As opposed to the coherent case dis-
cussed above, in this case the displacement contribu-
tion (35) vanishes, and the QFI is fully determined
by the covariance matrix term (36). Since V0 is pro-
portional to the identity, the only nonzero coefficients
in Eqs. (37) are a2

2 = 8(∂dN0)2 and b22 = 16N2
0 η

2,
resulting in

Fd,th = (∂dN0)2

N0(N0 + 1) + 4η2N0. (40)

The 4η2N0 term is identical to the one in Eq. (39).
Accordingly, when the mean photon numberN0 does
not depend explicitly on the transverse displacement,
we have the same QFI for thermal and coherent
beams. On the other hand, the explicit dependence
of the mean photon number N0 on the parameter in-
duces a quite different dependence. To make this dif-
ference more explicit, we use N0 = |α|2 to rewrite
this term in function of the mean photon number
N0 also in the coherent case. Accordingly, we get
|∂dα|2 = (∂dN0)2/N0, which is a factorN0+1 larger
than the corresponding term in the thermal case. As
a consequence, if the d−dependence of mean pho-
ton number dominates the QFI, such as in the case
of strong displacement-dependent losses, coherent
states provide a significant advantage over thermal
states. This is due to the fact that for coherent states,
a variation of the mean photon number consists in a
change of mean field, while for thermal states it is
a change of the covariance matrix, and the former is
more efficient than the latter in making two Gaussian
distributions distinguishable.

4.1.2 Populating the derivative mode

It was demonstrated by Pinel et al. (2012); Gessner
et al. (2022), that the QFI (39) can be enhanced by

adding squeezing to the derivative mode ∂du0[d](r).
In the following, we will see how our formalism re-
covers this result, to extend it to different states of the
mode u0[d](r) and to take into account losses in the
squeezed derivative mode.

When populating the derivative mode, the mode
Hilbert spaceHn, as introduced in Sec. 3, is spanned
by u0[d](r) = u(r − r0) and its normalized deriva-
tive u1[d](r) = ∂du0(r − r0)/η. On the other
hand, the mode Hilbert space H∂ (see Sec. 3) only
contains the second derivative mode u2[d](r) =
(∂du1[d](r)− ξu0[d](r)) /ζ, with ξ = (∂du1|u0)
and ζ = ||∂du1[d](r)− ξu0[d](r)||. Accordingly, we
have

Dn =
(

0 η12
ξ12 0

)
, D∂ =

(
0
ζ12

)
. (41)

Furthermore, we assume that the derivative mode
u1[d](r) has no mean field so that the mean field vec-
tor can be written as x̄> = (q0, p0, 0, 0). Therefore,
the mean field term of the QFI (34) results in

Fx̄ = yTV −1y = (∂dx̄>0 , ηx̄>0 )V −1
(
∂dx̄0
ηx̄0

)
.

(42)
As noted by Pinel et al. (2012), the QFI (42) can be
rewritten as a function of a unique element of the in-
verse covariance matrix V −1

v

Fx̄ = ||y||2(V −1
v )0,0, (43)

where (Vv)0,0 is the variance of the q−quadrature of
mode

v0[d](r, t) = (∂dq0 + i∂dp0)
||y|| u0[d](r, t) (44)

+ η(q0 + ip0)
||y|| u1[d](r, t)

Accordingly, for states with a nonzero mean field and
a parameter-independent covariance matrix (e.g. co-
herent states), it is necessary and sufficient to squeeze
the q quadrature of mode v0[d](r) to quantum en-
hance our beam positioning capability. It is inter-
esting to observe that, if the mean field vector does
not depend explicitly on the beam displacement d,
i.e. ∂dq0 = ∂dp0 = 0, the mode v0[d](r) equals
(up to a global phase) the derivative mode u1[d](r),
which is orthogonal to the mode u0[d](r) that defines
the beam shape. In this case, this effect has been ex-
ploited experimentally to enhance position estimation
with a so called quantum laser pointer (Treps et al.,
2003). In a more general scenario, e.g. in presence
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of position-dependent losses, Eq. (44) prescribes to
squeeze a mode v0[d](r) which is partially overlap-
ping with u0[d](r).

Let us now discuss how the covariance matrix term
of the QFI is modified by population in the derivative
mode u1[d](r). For simplicity, we will focus on the
case where the population of mode u1[d](r) is fully
uncorrelated with that of mode u0[d](r), therefore,
the covariance matrix takes the block diagonal form

V =
(
V0 0
0 V1

)
. (45)

Under these assumptions, the covariance matrix con-
tribution to the QFI (31) takes the form

Fv = 1
2

3∑

l=0

(
a2
l

ν2
0 − (−1)l (46)

+ b̃2l
ν0ν1 − (−1)l + d2

l

ν1 − (−1)l

)
,

where we have defined the coefficients

a2
l = tr

[
AlS

−1
0 (∂ϑV0)(S>0 )−1

]2
, (47a)

b̃2l =
(
η tr

[
AlS

−1
1 (V0 − 12)

(
S>0
)−1

]
(47b)

+ ξ tr
[
AlS

−1
1 (V1 − 12)

(
S>0
)−1

])2

+
(
η tr

[
AlS

−1
0 (V0 − 12) (S−1

1 )>
]2

+ ξ tr
[
AlS

−1
0 (V1 − 12) (S−1

1 )>
])2

,

d2
l = ζ2 tr

[
AlS

−1
1 (V1 − 12)

]2
(47c)

+ ζ2 tr
[
Al (V1 − 12) (S−1

1 )>
]2
.

To further illustrate how to use Eq. (46) in prac-
tice, let us now consider the localisation of a thermal
beam u0[d](r) aided by a squeezed vacuum state in
the derivative mode u1[d](r). Accordingly, we have

V0 = (2N0 + 1)12, V1 =
(
e−2r 0

0 e2r

)
, (48)

which corresponds to

S0 = 12, with S1 =
(
e−r 0
0 er

)
, (49)

with ν0 = 2N0 + 1 and ν1 = 1. Under these as-
sumptions, the only nonzero coefficients are a2

2 =
2(2N ′0 + 1)2, b̃21 = 16(N0η − ξ)2 sinh2 r, b̃22 =

16N2
0 η

2 cosh2 r, and d2
1 = 2ζ2 sinh2 r. Substitut-

ing into Eq. (46), we obtain the following expression
the QFI (for a zero mean state, the contribution in
Eq. (43) vanishes)

Fd,th−sq = (∂dN0)2

N0(N0 + 1) + 4(N0η − ξ)2N1
N0 + 1 (50)

+ 4N0η
2(N1 + 1) + 4ζ2N1,

where we have introduced the number of photons
N1 = sinh2 r in the squeezed derivative mode. Given
that a thermal state has no preferred direction in phase
space, we find that the result in Eq. (50) remains
valid if we modify the squeezing direction. Further-
more, we can see that the QFI (50) is always larger
than the one in Eq. (40) for a thermal state alone.
This becomes particularly evident if we assume that
N0 does not explicitly depend on the parameter, and
we consider the N0 � N1 � 1 limit, where we
have Fd,th−sq ∼ 4N0(2N1 + 1)η2 ∼ 2N0η2e2r ∼
e2rFd,th/2.

It is interesting to compare this result, with the
quantum enhancement achievable with a coherent
state in mode u0[d](r). For simplicity, let us con-
sider the case where the mean field x̄0 does not de-
pend explicitly on the transverse beam displacement
d. In such a case, combining Eq. (43) with Eq. (50)
(setting the number of thermal photons to zero), we
obtain

Fd,coh−sq = 4N0η
2e2r + 4(ξ2 + ζ2)N1. (51)

The second term is negligible for N0 � N1, and
we obtain Fd,coh−sq ∼ e2rFd,coh. Accordingly, for
the positioning a bright thermal beam aided with
a squeezed state in the derivative mode, we have
a quantum enhancement which is just a factor two
smaller than that we obtain adding squeezing in the
derivative mode u1[d](r) when the mode u0[d](r) is
in a coherent state. We can understand this result by
considering a thermal state as an ensemble average
over coherent states with Gaussian distributed am-
plitudes and uniformly distributed phases. Accord-
ingly, when adding squeezing in the derivative mode,
the relative orientation between the coherent states in
the ensemble and the squeezing will result sometimes
in an enhancement and sometimes in a reduction of
the sensitivity (see Eq. (43)). To make this state-
ment more quantitative, we compute from Eqs. (43)
and (50) the average QFI of a coherent state in mode
u0[d](r) combined with a squeezed vacuum state in
the normalized derivative mode u1[d](r) with ran-
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dom, uniformly distributed squeezing directions

Fd,avg = 4N0η2

2π

∫
(e2r cos2 φ+ e−2r sin2 φ)dφ

+ 4(ξ2 + ζ2)N1 (52)
= 4N0η

2 cosh 2r + 4(ξ2 + ζ2)N1.

While in general, the convexity of the QFI ensures
Fd,avg ≥ Fd,th−sq, for N0 � N1 � 1 we have
Fd,avg ∼ 2N0η2e2r ∼ Fd,th−sq, which supports our
interpretation that the the quantum advantage enabled
by squeezing for thermal states can be seen as an av-
erage over the sensitivity enhancements/diminutions
obtained for coherent states.

We demonstrated above how squeezing in the nor-
malized derivative mode u1[d](r) can lead to a sensi-
tivity enhancement in the estimation of the displace-
ment of a Gaussian beam. However, in practical
situations it is hard to get a squeezed state which
is not corrupted by noise. To illustrate what hap-
pens in these more practical scenarios, let us consider
a thermal state in mode u0[d](r) and the derivative
mode u1[d](r) populated with an arbitrary zero-mean
Gaussian state, i.e. a squeezed thermal state. Accord-
ingly, we have

V1 = (2NT + 1)
(
e−2r 0

0 e2r

)
, (53)

where r quantifies the squeezing strength, while NT

quantifies the amout of thermal noise. Accordingly,
the matrix S1 in Eq. (49) remains the same, while the
symplectic eigenvalue become ν1 = 2NT + 1. The
total photon number in the derivative mode for such a
state is given by N1 = NT +NS + 2NTNS , with the
squeezing contribution given by NS = sinh2 r. Fol-
lowing the same steps as above, we now obtain the
following expression for the covariance matrix con-
tribution to the QFI (46)

Fd,th−g = (N ′0)2

N0(N0 + 1) + 4NS (ξ(NT + 1)− ηN0)2

2N0NT +N0 +NT + 1

+ 4(NS + 1)
(
η2N2

0 +N0NT

(
2ηξ + ζ2(2NT + 1)

))

2N0NT +N0 +NT

+ 4N2
T (NS + 1)

(
ζ2 + ξ2)

2N0NT +N0 +NT
+ 4NSζ

2(NT + 1),

(54)

which reduces to Eq. (50) when NT = 0. On the
other hand, when NS = 0 and the population of the

derivative mode becomes purely thermal, we obtain

Fd,th−th = (N ′0)2

N0(N0 + 1) + 4 (ηN0 + ξN1)2

2N0N1 +N0 +N1

+ 4ζ2N1, (55)

and it is not hard to show that Fd,th−th (55) is al-
ways smaller than the Fd,th−sq (50): unsurprisingly,
populating the derivative mode with squeezing is al-
ways better than populating that with thermal noise.
In fact, for small values of N1, the QFI Fd,th−th (55)
is even smaller than that for an unpopulated derivative
mode Fd,th (40). To better illustrate this interplay be-
tween squeezing and thermal noise, we introduce the
following parametrisation

NS = χN1 and NT = (1− χ)N1
1 + 2χN1

, (56)

which allows to vary the amount of squeezing and
thermal noise while keeping constant the total num-
ber of photons N1 in the derivative mode. In particu-
lar, for χ = 1 the derivative mode is purely squeezed,
while for χ = 0 it is purely thermal, so that we can
refer to χ as the squeezing fraction. If we further as-
sume that the beam we are trying to localize is Gaus-
sian, i.e. u(r) = exp

(−|r|2/2w2)/
√
πw2, we show

that for χ ≥ 1/2 and N1 > 0, the QFI (54) is always
larger than that for unpopulated derivative mode, i.e.
forN1 = 0. On the other hand, as presented in Fig. 1,
for χ < 1/2 and small N1 we obtain a worse sensi-
tivity compared to that when the derivative mode is
in vacuum.

Optical metrology protocols are generally very
sensitive to photon losses, it is therefore important to
illustrate how such losses can be taken account. Ac-
cordingly, it is useful to note that for a thermal state
of mode u0[d](r), and an arbitrary zero-mean Gaus-
sian state of the derivative mode u1[d](r), the QFI
maintains the form (54) even after losses. In fact, it
is sufficient to perform the following substitutions

N0 = N in
0 κ0 (57)

NT = 1
2

([(
2κ1(2N in

S N
in
T +N in

T +N in
S ) + 1

)2

(58)

−4N in
S (2N in

T + 1)2(N in
S + 1)

]1/2
− 1

)

sinh(2r) = κ1
2N in

T + 1
2NT + 1 sinh

(
2rin

)
, (59)

where κ0 and κ1 are the attenuation coefficients of
the two modes u0[d](r), and u1[d](r), respectively;
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Figure 1: QFI (normalized by its maximum value when
u1[d](r) is in vacuum) for the estimation of the trans-
verse shift d of a thermal Gaussian beam with mean
photon number N0 = 10 (top) and N0 = 1 (bottom),
assisted by a thermal squeezed state with mean photon
number N1, as function of the squeezing fraction χ.

while N in
0 , N in

T and N in
S = sinh2 rin are the pop-

ulations of the mode u0[d](r), and the thermal and
squeezing components of the population of the mode
u1[d](r), respectively. Finally, in some applications,
the attenuation coefficients κ0 and κ1 can be parame-
ter dependent. In those cases, not onlyN0 depends on
the transverse displacement d (as taken into account
by the first term in Eq. (54)), but also NT and r. This
leads to an additional term in the QFI which takes the
form

1
2

3∑

l=0

tr
[
AlS

−1
1 ∂dV1

(
S−1

1

)>]2

ν2
1 − (−1)l (60)

= ((2NT + 1)(∂dr) cosh r − 2(∂dNT ) sinh r)2

4NT (NT + 1) + 2

+ ((2NT + 1)(∂dr) sinh r − 2(∂dNT ) cosh r)2

4NT (NT + 1) .

4.2 Temporal separation between pulses
As a second example, we consider the estimation
of the time delay τ between two light pulses with
the same temporal profile defined by the mode u(t),

which for simplicity, we will assume to be real and
even, i.e. u(t) = u(−t). From a parameter estima-
tion point of view, this problem is most interesting
when the separation τ between the pulses is smaller
than (or comparable to) the pulse width. In this
context, there is a finite overlap between the modes
u(t− τ/2) and u(t+ τ/2) (see Fig. 2)

δ =
∫
u(t− τ/2)u(t+ τ/2)dt. (61)

Accordingly, as discussed by Lupo and Pirandola
(2016); Sorelli et al. (2021a,b) for the spatial domain,
it is convenient to describe the problem in terms of
the two orthonormal modes

u0[τ ](t) = u(t− τ/2) + u(t+ τ/2)√
2(1 + δ)

, (62a)

v0[τ ](t) = u(t− τ/2)− u(t+ τ/2)√
2(1− δ) . (62b)

We are interested in computing the QFI for the es-
timation of τ , when the two modes (62), and even-
tually their derivatives, are populated. Accordingly,
we complement the modes (62) with their orthonor-
malized first and second derivatives (see App. B for
detailed calculations):

u1[τ ](t) = ∂τu0[τ ](t)/ηu (63a)
v1[τ ](t) = ∂τv0[τ ](t)/ηv (63b)
u2[τ ](t) = (∂τu1[τ ](t)− ξuu0[τ ](t))/ζu (63c)
v2[τ ](t) = (∂τv1[τ ](t)− ξvv0[τ ](t))/ζv, (63d)

where ηu = ||∂τu0[τ ](t)||, ηv = ||∂τv0[τ ](t)||, ξu =
(∂τu1|u0), ξv = (∂τv1|v0), ζu = ||∂τu1[τ ](t) −
ξuu0[τ ](t)|| and ζu = ||∂τv1[τ ](t) − ξvv0[τ ](t)||.
The shapes of the modes ui[τ ](t) and vi[τ ](t)
for the specific case of Gaussian pulses u(t) =
e−t

2/2w2
/(πw2)1/4 are presented in Fig. 2. Using the

modes (62) and (63), we can express the matricesDn

and D∂ (see Sec. 3.2) as

Dn =
(

0 Dη

Dξ 0

)
, D∂ = (0, 0, Dζ)> , with

Dη =
(
ηu12 0

0 ηv12

)
, Dξ =

(
ξu12 0

0 ξv12

)
,

Dζ =
(
ζu12 ζv12

)
. (64)

We have now specified all the mode-related quan-
tities needed to compute the QFI for the estimation
of the temporal separation τ between pulses. To pro-
ceed, we now make some further assumptions on the
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Figure 2: (top) Two Gaussian pulses temporally sepa-
rated by τ = w, with their overlap δ represented as a
shaded area. (bottom) Set of orthonormal modes con-
structed from the two Gaussian pulses and their first and
second derivatives with respect to τ . All modes have
definite parity, in particular the modes ui[τ ](t) (left -
red) are even functions, while the modes vi[τ ](t) (right
- blue) are odd functions.

quantum state of the pulses. In particular, we con-
sider the modes u0[τ ](t) and v0[τ ](t) to be in a gen-
eral Gaussian state, and we allow for auxiliary pop-
ulation of the orthogonalized first derivative modes
u1[τ ](t) and v1[τ ](t) with no mean field1. Accord-
ingly, we can write the mean field vector as x̄> =
(x̄>0 , 0), with x̄0 = (qu0 , pu0 , qv0 , pv0). The mean
field term of the QFI (34) can then be expressed as

Fx̄ = (∂τ x̄0, Dnx̄0)>V −1(∂τ x̄0, Dnx̄0) (65)

Similarly to what we discussed in Sec. 4.1, for
every state with a nonzero mean field, i.e. with
||x̄0|| , 0, there always exists a mode basis

1Note that we allow for correlations (classical or quan-
tum) between the modes u0[τ ](t) and v0[τ ](t). To focus
on the role of squeezing in the derivative modes, in the
examples contained this paper, we do not consider such
correlations. However, we studied their role in diffraction-
limited imaging in Sorelli et al. (2022).

where (∂τ x̄0, Dnx̄0) has only one nonzero compo-
nent. In other words, there always exists an or-
thogonal transformation O s.t. O(∂τ x̄0, Dnx̄0) =
(
√
||∂τ x̄0||2 + ||Dηx̄0||2, 0, 0, 0). Accordingly the

QFI only depends on the inverse covariance matrix
element

(
OTV −1O

)
0,0

. Therefore, the use of quan-

tum resources, such as squeezing, to increase such
matrix element can lead to an enhanced sensitivity
(Pinel et al., 2012).

Let us now have a look at the covariance matrix
contribution to the QFI (31). To this goal, we will
make the simplifying assumption that the population
of the derivative modes u1[τ ](t) and v1[τ ](t) is un-
correlated with that of the symmetric and antisym-
metric superpositions u0[τ ](t) and v0[τ ](t) of the
pulses we want to separate, so that we can write the
covariance matrix in block diagonal form

V =
(
V0 0
0 V1

)
. (66)

Under these assumptions, the covariance matrix con-
tribution to the QFI takes the form

FV =1
2

3∑

l=0

∑

jk=0,1




(
ajkl

)2

νj0ν
k
0 − (−1)l

+

(
bjkl

)2

νj0ν
k
1 − (−1)l

(67)

+

(
cjkl

)2

νj1ν
k
1 − (−1)l

+

(
djkl

)2

νj1 − (−1)l


 ,

where we introduced the coefficients
(
ajkl

)2
=
(
tr
[
A

(jk)
l ∂τV0

])2
, (68a)

(
bjkl

)2
=
(
tr
{
A

(jk)
l S−1

0

[
DT
ξ (V1 − 14) (68b)

+ (V0 − 14)Dη]
(
S−1

1

)>})2

+
(
tr
{
A

(jk)
l S−1

1

[
DT
ξ (V1 − 14)

+ (V0 − 14)Dη]
(
S−1

0

)>})2
,

(
cjkl

)2
=
(
tr
[
A

(jk)
l ∂τV1

])2
, (68c)

(
djkl

)2
=
(

tr
{
A

(jk)
l Dζ(V1 − 14)

(
S−1

1

)>})2
,

(68d)

with the matrices A(jk)
l as defined in Sec. 2.3 and

νj0 (νj1) the symplectic eigenvalues of the covariance
matrix V0 (V1). Accordingly, we have four groups
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of addends in the QFI (67): The first one, depend-
ing on the coefficients ajkl , describes the contribution
of the population of the symmetric u0[τ ](t) and anti-
symmetric v0[τ ](t) superpositions of the two pulses.
These terms are nonzero if and only if the covariance
matrix V0 explicitly depends on the temporal sepa-
ration, i.e. ∂τV0 , 0. Similarly, the third group
of addends, depending on the coefficients cjkl , takes
into account the population of the derivative modes
u1[τ ](t) and v1[τ ](t), and is nonzero if and only if
∂τV1 , 0. The second group of addends, containing
the coefficients bjkl , takes into account how variations
of the temporal separation τ leads to coupling be-
tween the modes u0[τ ](t), v0[τ ](t) and their deriva-
tive u1[τ ](t), v1[τ ](t). Finally, the addends contain-
ing the coefficients djkl take into account how due to
variations of τ the derivative modes u1[τ ](t), v1[τ ](t)
couple to the second derivative modes u2[τ ](t) and
v2[τ ](t).

Let us now evaluate the QFI (67) for a specific
quantum state of the two pulses. In particular, we
are interested in two equally-bright fully-incoherent
pulses whose intensity distribution is given by

I(t) = 〈Ê†(t)Ê(t)〉
= N0(|u(t− τ/2)|2 + |u(t+ τ/2)|2), (69)

where we introduced the mean number of photons
per pulse N0, and the electric field operator Ê(t) =
∑
j

(
âjuj [τ ](t) + b̂jvj [τ ](t)

)
, with âj and b̂j the an-

nihilation operators associated with the even and odd
modes uj [τ ](t) and vj [τ ](t), respectively (see Fig. 2).
It is not hard to see that the intensity distribution
I(t) (69) is achieved by a thermal state of the modes
u0[τ ](t) and v0[τ ](t), with mean photon numbers
Nu = N0(1 + δ) and Nv = N0(1− δ), respectively.
Such a state has no mean field x̄0 = 0, so that its QFI
is fully determined by Eq. (67), and has a covariance
matrix

V0 =
(

(2N0(1 + δ) + 1)12 0
0 (2N0(1− δ) + 1)12

)
.

(70)
In Sec. 4.1, we have seen that adding squeezing to the
derivative mode improve the sensitivity, even for the
spatial localization of an incoherent thermal beam.
To verify, whether this is the case also for the tem-
poral separation between two thermal pulses, we as-
sume the derivative modes u1[τ ](t) and v1[τ ](t) to
be populated by two independent, equally-squeezed

vacuum states, described by the covariance matrix

V1 =




e−2r 0 0 0
0 e2r 0 0
0 0 e−2r 0
0 0 0 e2r


 . (71)

For such a quantum state, the QFI (67) takes the form
(see App. C for the explicit calculation of the coeffi-
cients (68))

Fτ,th−sq = 2N0
[
1 +N0(1 + δ2)

]
(∂τδ)2

(1− δ2) [(1 +N0)2 − (N0δ)2] (72)

+ 2(ζ2
u + ζ2

v ) sinh2 r

+ 4N0
[
η2
u(1 + δ) + η2

v(1− δ)
]

cosh2 r

+ 4(N0(1 + δ)ηu − ξu)2

1 +N0(1 + δ) sinh2 r

+ 4(N0(1− δ)ηv − ξv)2

1 +N0(1− δ) sinh2 r.

The behavior of the QFI (72), for Gaussian pulses, is
plotted as red lines in Fig. 3.

For comparison, we will now also evaluate the QFI
for the temporal separation of two equally bright fully
coherent pulses. As opposed to Eq. (69), in this case
the intensity distribution also contains an interference
term depending on the relative phase φ between the
coherent pulses

I(t) = 〈Ê†(t)Ê(t)〉
= N0(|u(t− τ/2)|2 + |u(t+ τ/2)|2) (73)

+ 2N0u(t− τ/2)u(t+ τ/2) cosφ.

Such an intensity distribution can be obtained by
populating the modes u0[τ ](t) and v0[τ ](t) with co-
herent states, whose covariance matrix is the iden-
tity V0 = 14, and whose mean field is given by
x̄0 = (x̄u, x̄v)>, with

x̄u =
√

2N0(1 + δ)(1 + cosφ, sinφ) (74a)

x̄v =
√

2N0(1− δ)(1− cosφ,− sinφ). (74b)

In particular, from Eqs. (74), we can see that for in-
phase (φ = 0) coherent pulses, the mean field is fully
determined by the q quadrature of mode u0[τ ](t).
Similarly, when the two coherent pulses are out of
phase (φ = π) the mean field is fully determined
by the q quadrature of mode v0[τ ](t). As we did for
thermal sources, we are going to consider the deriva-
tive modes u1[τ ](t) and v1[τ ](t) by two independent
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Figure 3: QFI (Normalized to its maximum value for
thermal states in modes u0[τ ](t) and v0[τ ](t)) for the
estimation of the temporal separation τ between two
thermal (red) or coherent pulses, either in phase (blue)
or out of phase (green), as a function of the temporal
separation τ in units of the pulse width w. For each
panel, we considered a mean photon number of N0 = 1
per pulse, and different levels of squeezing in the deriva-
tive modes, as quantified by the parameter r = 0 (top),
r = 0.5 (middle), and r = 1 (bottom). The pulse shape
is assumed Gaussian u(t) = e−t2/2w2

/(πw2)1/4 for all
panels.

squeezed vacuum states (see Eqs. (66) and (71)). Un-
der these assumptions, the covariance matrix contri-
bution to the QFI can be obtained simply by setting
N0 = 0 into Eq. (72). Accordingly, we have

Fτ,coh−sq = Fx̄,coh−sq + Fτ,th−sq|N0=0 , (75)

where the displacement term Fx̄,coh−sq can be com-

puted from Eq. (65), and reads

Fx̄,coh−sq = (∂τ x̄0)>V −1
0 (∂τ x̄0) + x̄>0 DηV

−1
1 Dηx̄0

= 2N0(1− δ cosφ)(∂τδ)2

1− δ2 (76)

+ 2N0e
2rη2

u(1 + δ)(1 + cosφ)2

+ 2N0e
2rη2

v(1− δ)(1− cosφ)2

+ 2N0e
−2r sin2 φ[ηu(1 + δ) + ηv(1− δ)].

We can see that, when the two coherent pulses are ei-
ther in phase (φ = 0) or out of phase (φ = π), the
last line in Eq. (76) vanishes and only the squeezing-
enhanced term proportional to e2r survives. This is
consistent with the fact that the covariance matrix
V1 (71) presents squeezing along the q quadrature of
modes u1[τ ](t) and v1[τ ](t), and for φ = 0, π the
mean field (74) has a vanishing p quadrature. The
QFI for the separation τ between in phase and out of
phase coherent pulses are presented as blue and green
lines in Fig. 3.

Let us now compare the expressions for the QFI for
thermal and coherent pulses aided by squeezing in the
derivative modes reported in Eqs. (72) and (75), re-
spectively. We start by comparing the behaviours for
vanishingly small separations τ → 0. In this regime
(see App. B), we have (∂τδ)2/(1 − δ2) ∼ (∆k)2,
with

(∆k)2 =
∫

[∂tu(t)]2dt, (77)

and ηu ∼ ηv ∼ ξu ∼ ξv ∼ ζu ∼ ζv ∼ 0, which
implies

Fτ,th−sq
τ→0−−−→ 2N0(∆k)2, (78a)

Fτ,coh−sq
τ→0−−−→ 2N0(∆k)2(1 + cosφ). (78b)

Accordingly, independently of the squeezing value r,
the QFI for in phase coherent pulses vanishes for τ →
0, while that for out of phase coherent pulses is twice
the one for incoherent pulses (see Fig. 3 where for
Gaussian pulses we have (∆k)2 = 1/2w2).

To better understand this behavior, let us recall
that the quantum state of the finite overlap δ be-
tween the two pulses induces a τ−dependent pop-
ulation of the symmetric and antisymmetric modes
u0[τ ](t) and v0[τ ](t). It is this dependence on tem-
poral separation, which enters the QFI through ∂τ x̄0
(in the coherent case) and ∂τV0 (in the incoherent
case), that dominates the QFI behavior for τ → 0.
This implies that the population of the derivative
modes u1[τ ](t) and v1[τ ](t), and in the particular the
squeezing thereof, has no impact on the τ → 0 be-
havior of the QFI.
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On the contrary, for separations much larger than
the pulses’ width, i.e. τ∆k � 1, the overlap δ tends
to zero, and the populations of the modes u0[τ ](t) and
v0[τ ](t) become parameter independent. The QFI
is then dominated by the noise in derivative modes
u1[τ ](t) and v1[τ ](t). In particular, we have

Fτ,th−sq
τ→∞−−−→ 2(∆k)2

(
2 sinh2 r +N0 cosh 2r

)
,

(79a)

Fτ,coh−sq|φ=0,π
τ→∞−−−→ 2(∆k)2

(
2 sinh2 r +N0e

2r
)
.

(79b)

Accordingly, for large temporal separations τ we
have a squeezing enhancement. Such an enhance-
ment is always larger for coherent pulses than for
thermal pulses. However, similarly to what we ob-
served for the spatial localization of a beam, the QFI
enhancement for large τ in the coherent case is at
most a factor two larger than that in the thermal one.

5 Conclusion
In this paper, we determined the ultimate sensitivity
limit for the estimation of a parameter encoded into
the quantum state as well as the mode structure of
a multimode Gaussian state of the electromagnetic
field. In particular, we presented an analytical expres-
sion for the QFI, bounding the estimation sensitivity
through the Cramér-Rao lower bound, which can be
calculated from the first two moments of the states
and the dependence on the parameter of the mode
functions. Such an expression expands the field of
use of Gaussian quantum metrology to the estimation
of parameters encoded into the spatio-temporal dis-
tribution of an electromagnetic signal. We illustrated
how to apply our general formalism by studying two
paradigmatic problems: the estimation of the trans-
verse displacement of a beam, and of the temporal
separation between two pulses.

In the study of the transverse displacement we
showed that if the mean photon number of the beam
is independent of its transverse position, the displace-
ment of a coherent and thermal beam can be esti-
mated with the same sensitivity. On the other hand, if
the mean number of photons N0 in the beam depends
on its transverse displacement, e.g. because of posi-
tion dependent losses, this dependence adds an addi-
tional term to the QFI which is ∼ N0 times larger for
coherent beams than for thermal ones. Furthermore,
we showed that the sensitivity in the estimation of a
transverse displacement can be enhanced by adding

squeezing to a mode shaped like the derivative of the
beam. Such a squeezing-enabled quantum enhance-
ment is at most a factor two larger for coherent beams
than for thermal ones.

We then moved to the time domain and consid-
ered the estimation of the temporal separation be-
tween two coherent or thermal pulses. Such pulses
are described by two temporal modes (the symmet-
ric and anti-symmetric superpositions of the pulses)
whose shape and populations depend on the sepa-
ration parameter τ . We showed that the interplay
between these two dependences plays a fundamen-
tal role in the choice of which modes one needs to
squeeze to achieve a quantum enhancement. For
large temporal separations, when the pulses have a
negligible overlap, they are are most sensitive to the
changes in the mode shapes. Accordingly, in this
regime a quantum enhancement is possible by adding
squeezing to the derivatives of the symmetric and
anti-symmetric superpositions of the pulses. As for
the transverse displacement estimation, the quantum
enhancement achieved for coherent pulses is at most
a factor two larger than the one obtained for thermal
ones. On the other hand, for small temporal sepa-
rations, when the pulses have a significant overlap,
the QFI is dominated by how photons redistributes
among the symmetric and anti-symmetric superposi-
tions of the pulses. As a consequence, populating the
derivative modes has no effect on the sensitivity in
this regime.

Our approach could be readily applied to other
mode-encoded parameter estimation scenarios in var-
ious field of science and technology ranging from as-
tronomy to microscopy (Gessner et al., 2022). More-
over, parameters encoded into time-frequency modes
appears in the characterization of frequency combs
(Cai et al., 2021), or in radars that estimate the dis-
tance of a reflecting target from the temporal pro-
file of chirped pulses (Van Trees, 2002, 2001) (recent
studies have addressed this problem in the quantum
regime (Zhuang and Shapiro, 2022; Gessner et al.,
2022)). Finally, the applicability of our approach
could be further broadened by considering the simul-
taneous estimation of multiple parameters (Nichols
et al., 2018).
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A Properties of the basis-change ma-
trices
Here we derive some useful properties of the matrix
O, and its blocks On and ON from the properties
of the n initially populated modes {uk[ϑ](r, t)} and
their derivatives {∂ϑuk[ϑ](r, t)}. Let us start by re-
calling the following Hilbert space definitions:

Hn = span ({uk[ϑ](r, t)}) , (80)
H∂ = span ({∂ϑuk[ϑ](r, t)}) \ Hn. (81)

We now assume that m is the number of deriva-
tives ∂ϑuk[ϑ](r, t) that are linearly independent from
the n initially populated modes, i.e. dim(H∂) =
m. Accordingly, up to a reordering of the basis
{∂ϑuk[ϑ](r, t)}, we can always construct a basis
of H∂ using the orthonormalized version u′k[ϑ](r, t)
of the derivatives of the first m initially populated
modes ∂ϑuk[ϑ](r, t).

We can now choose the modes u′k[ϑ](r, t) as the
firstm among theN−n auxiliary vacuum modes that
we use to describe the quantum state of the system in
the parameter dependent basis. In light of this, it is
convenient to further decompose the matrix ON−n as

ON−n =
(
O∂ ON−n−m

)
, (82)

where O∂ and ON−n−m are matrices of dimensions
2N×2m and 2N×2(N−n−m), respectively. From

the orthogonality of O, we can obtain the following
relations:

O>k Ol = δkl1dim(Ok), (83a)
∑

k

OkO
>
k = 12N , (83b)

where the sum in Eq. (83b) runs over the total num-
ber of column blocks we decomposed the matrix O
into.

Let us now compute the derivative of the matrix
On. In Sec. 2.2, we have seen that that O is com-
posed by 2× 2 blocks containing the mode overlaps.
Accordingly, it is sufficient to specify the derivative
of the kl block of On, which reads

∂ϑ (On)kl =
(

Re [(vl|∂ϑuk[ϑ])] − Im [(vl|∂ϑuk[ϑ])]
Im [(vl|∂ϑuk[ϑ])] Re [(vl|∂ϑuk[ϑ])]

)

(84)
Combining Eqs. (84) and (29), we obtain

∂ϑOn = OnD
>
n +O∂D

>
∂ , (85)

where Dn and D∂ are a 2n × 2n and a 2n × 2m
matrices, respectively. Their kl blocks are given by

(Dn)kl =
(

Re (ckl[ϑ]) − Im (ckl[ϑ])
Im (ckl[ϑ]) Re (ckl[ϑ])

)
, (86)

(D∂)kl =
(

Re (c′kl[ϑ]) − Im (c′kl[ϑ])
Im (c′kl[ϑ]) Re (c′kl[ϑ])

)
. (87)

Using Eqs. (85) and (83), we then obtain

O>n (∂ϑOn) = D>n , (88a)
O>(N−n)(∂ϑOn) = (D∂ , 0)>. (88b)

Let us conclude this appendix with few words
on the coefficients ckl[ϑ] and c′kl[ϑ]. The first
are simply given by the overlaps of the initially
populated modes with their derivatives ckl[ϑ] =
(ul[ϑ]|∂ϑuk[ϑ]). On the other hand, there exist sev-
eral orthonormalization methods that can be used
to construct the modes u′k[ϑ](r, t), leading to dif-
ferent expressions for the coefficients c′kl[ϑ]. For
example, using the Gram-Schmidt procedure, the
modes u′k[ϑ](r, t) can be constructed iteratively as
u′k[ϑ](r, t) = ũ′k[ϑ](r, t)/

√
(ũ′k[ϑ]|ũ′k[ϑ]) with

ũ′k[ϑ](r, t) = ∂ϑuk[ϑ](r, t) (89)

−
n∑

j=1
(uj [ϑ]|∂ϑuk[ϑ])uj [ϑ](r, t)

−
k−1∑

j=1
(u′j [ϑ]|∂ϑuk[ϑ])u′j [ϑ](r, t).
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Accordingly, the coefficients c′kl[ϑ] are given by

c′kl[ϑ] =





√
(ũ′k[ϑ]|ũ′k[ϑ]) for k = l

(u′j [ϑ]|∂ϑuk[ϑ]) for k < l

0 k > l

, (90)

resulting in a lower-triangular block matrix D∂ .

B Derivative modes for temporal sep-
aration estimation
B.1 General expressions
In this appendix, we construct the orthogonalized first
and second derivatives of the modes u0[d](t) and
u0[d](t). Let us start by computing the derivatives
of Eqs. (62) with respect to the parameter τ :

∂du0[τ ](t) = −∂tu(t− τ/2) + ∂xu(x+ τ/2)
2
√

2(1 + δ)

− δ′ u0[τ ](t)
2(1 + δ) , (91a)

∂dv0[τ ](t) = −∂tu(t− τ/2)− ∂tu(t+ τ/2)
2
√

2(1− δ)

+ δ′
v0[τ ](t)
2(1− δ) , (91b)

where we introduced δ′ = ∂τδ. We assumed that our
pulses are symmetric, i.e. u(t) = u(−t). We thus
have (∂tu|u) = 0, which, combined with

δ′ = −
∫
∂tu(t− τ/2)u(t+ τ/2)dt (92)

+
∫
u(t− τ/2)∂tu(t+ τ/2)dt,

implies that (∂τv0|u0) = (∂τu0|v0) = 0. Conse-
quently, the orthogonalised first derivative modes are
simply given by

u1[τ ](t) = ∂τu0[τ ](t)/ηu, (93a)
v1[τ ](t) = ∂τv0[τ ](t)/ηv, (93b)

with

η2
u = ||∂τu0[τ ](t)||2 = (∆k)2 − β

4(1 + δ) −
(δ′)2

4(1 + δ)2 ,

(94a)

η2
v = ||∂τv0[τ ](t)||2 = (∆k)2 + β

4(1− δ) −
(δ′)2

4(1− δ)2 ,

(94b)

where we introduced

(∆k)2 =
∫

[∂tu(t)]2dt, and (95)

β =
∫
∂tu(t− τ/2)∂tu(t+ τ/2)dt. (96)

We now move to the construction of the orthonor-
malized second derivatives. The fact that the modes
u1[τ ](t) and v1[τ ](t) have, by construction, oppo-
site parity implies that (∂τu1|u1) = (∂τv1|v1) = 0,
and (∂τu1|v1) = −(∂τv1|u1). Let us then evaluate
(∂du1|v1) explicitly

(∂τu1|v1) = (∂τu1|∂τv0)
ηv

(97)

= (∂2
τu0|∂τv0)
ηuηv

− η′u
ηvη2

u

(∂τu0|∂τv0)

= (∂2
τu0|∂τv0)
ηuηv

,

where in the last step we used that u0[τ ](t) and
v0[τ ](t) are even and odd functions of t, respectively.
The second derivative of u0(x) and v0(x) can be
rewritten as

∂2
t u0[τ ](t) = fu[τ ](t)

4
√

2(1 + δ)
− δ′

1 + δ
∂du0[τ ](t)

+ Cuu0[τ ](t), (98a)

∂2
t v0[τ ](t) = fv[τ ](t)

4
√

2(1− δ) + δ′

1− δ ∂dv0[τ ](t)

+ Cvv0[τ ](t), (98b)

with

fu[τ ](t) = ∂2
t u(t− τ/2) + ∂2

t u(t+ τ/2), (99)
fv[τ ](t) = ∂2

t u(t− τ/2)− ∂2
t u(t+ τ/2), (100)

and

Cu = (δ′)2 − 2(1 + δ)δ′′
4(1 + δ)2 , (101)

Cv = (δ′)2 + 2(1− δ)δ′′
4(1− δ)2 , (102)

where we have introduced the second derivative
of the overlap parameter δ′′ = ∂2

τ δ. Using
(∂τu0|∂τv0) = (u0|∂τv0) = 0, from Eq. (98a) we
have

(∂du1|v1) ∝ (103)
∫
∂2
t u(t+ τ)∂tu(t)dt+

∫
∂2
t u(−t− τ)∂tu(−t)dt

=
∫
∂2
t u(t+ τ)∂tu(t)dt−

∫
∂2
t u(t+ τ)∂tu(t)dt

= 0,

16



where we used that the pulse shape u(t) is an even
function of t. Therefore, the orthogonalized second
derivative modes are given by

u2[τ ](t) = (∂du1[τ ](t)− ξuu0([τ ](t))/ζu, (104)
v2[τ ](t) = (∂dv1[τ ](t)− ξvv0[τ ](t))/ζv, (105)

with ξu = (∂τu1|u0), ξv = (∂τv1|v0), ζu =
||∂τu1[τ(t) − ξuu0[τ ](t)|| and ζv = ||∂ϑv1[ϑ](t) −
ξvv0[ϑ](t)||.

Let us explicitly calculate ξu and ξv. This can be
achieved by using Eqs. (98a), (98b) and by noting
that

∫
∂2
t [u(t− τ/2)± u(t+ τ/2)] (106)

× [u(t− τ/2)± u(t− τ/2)] dt

= −
∫

[∂tu(t− τ/2)± ∂tu(t+ τ/2)]2 dt

= −2(∆k)2 ∓ 2β,

where we used partial integration and made the rea-
sonable assumption that the pulse shape u(t) goes to
zero at infinity. We then get

ξu = 1
ηu

(
(δ′)2 − 2(1 + δ)δ′′

4(1 + δ)2 − (∆k)2 + β

4(1 + δ)

)

(107a)

= (δ′)2 − 2(1 + δ)δ′′ − (1 + δ)
(
(∆k)2 + β

)

(1 + δ)
√

(1 + δ) ((∆k)2 − β)− (δ′)2 ,

ξv = 1
ηv

(
(δ′)2 + 2(1− δ)δ′′

4(1− δ)2 − (∆k)2 − β
4(1− δ)

)

(107b)

= (δ′)2 + 2(1− δ)δ′′ − (1 + δ)
(
(∆k)2 − β)

(1− δ)
√

(1− δ) ((∆k)2 + β)− (δ′)2 .

Let us now compute explicitly the normalization
constants of the modes u2[τ ](t) and v2[τ ](t)

ζ2
u = ||∂τu1[τ ](t)− ξuu0[τ ](t)||2 (108a)

= ||∂τu1[τ ](t)||2 + ξ2
u − 2ξu(∂τu1|u0)

= ||∂τu1[τ ](t)||2 − ξ2
u,

ζ2
v = ||∂τv1[τ ](t)− ξvv0[τ ](t)||2 (108b)

= ||∂τv1[τ ](t)||2 + ξ2
v − 2ξv(∂τv1|v0)

= ||∂τv1[τ ](t)||2 − ξ2
v .

We can then expand

||∂τu1[τ ](t)||2 =
∣∣∣∣∣

∣∣∣∣∣
∂2
τu0[τ ](t)
ηu

− (∂τηu)2

η2
u

∂τu0[τ ](t)
∣∣∣∣∣

∣∣∣∣∣

2

(109a)

= ||∂
2
τu0||2 + (∂τηu)2

η2
u

− 2∂τηu
η3
u

(∂2
τu0|∂τu0),

||∂τv1[τ ](t)||2 =
∣∣∣∣∣

∣∣∣∣∣
∂2
τv0[τ ](t)
ηv

− (∂τηv)2

η2
v

∂τv0[τ ](t)
∣∣∣∣∣

∣∣∣∣∣

2

(109b)

= ||∂
2
τv0[τ ](t)||2 + (∂τηv)2

η2
v

− 2∂τηv
η3
v

(∂2
τv0|∂τv0).

From Eqs. (98a) and (98b), we then have

||∂2
τu0[τ ](t)||2 = ||fu[τ ](t)||2

32(1 + δ) + (δ′)2η2
u

(1 + δ2) + C2
u

(110a)

− δ′(fu|∂τu0)
4
√

2(1 + δ)3/2 − Cu
2(∆k)2 + 2β√

2(1 + δ)

||∂2
τv0[τ ](t)||2 = ||fv[τ ](t)||2

32(1− δ) + (δ′)2η2
v

(1− δ2) + C2
v

(110b)

+ δ′(fv|∂τv0)
4
√

2(1− δ)3/2 − Cv
2(∆k)2 − 2β√

2(1− δ) ,

with

||fu[τ ](t)||2 = 2(σ + ε) (111a)
||fv[τ ](t)||2 = 2(σ − ε), (111b)

and

(fu|∂du0) = (∆k)2 + β

1 + δ
δ′ + β′√

2(1 + δ)
, (112a)

(fv|∂dv0) = (∆k)2 − β
1− δ δ′ + β′√

2(1− δ) , (112b)

where we defined

σ =
∫ ∣∣∣∂2

t u(t)
∣∣∣
2
dt, (113a)

ε =
∫
∂2
t u(t− τ/2)∂2

t u(t− τ/2)dx. (113b)

Since the expressions of the mode quantities (es-
pecially ζu and ζv) computed above for a generic
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pulse shape u(t) are fairly complicated, we present
their explicit expressions for a Gaussian pulse u(t) =
e−t

2/2w2
/(πw2)1/4 in the following:

ηu =

√
τ2 + 4w2 sinh

(
τ2

4w2

)
sech

(
τ2

8w2

)

8w2 , (114)

ηv =

√
4w2 sinh

(
τ2

4w2

)
− τ2csch

(
τ2

8w2

)

8w2 , (115)

ξu = −

√
τ2 + 4w2 sinh

(
τ2

4w2

)
sech

(
τ2

8w2

)

8w2 ,

(116)

ξv = −

√
4w2 sinh

(
τ2

4w2

)
− τ2csch

(
τ2

8w2

)

8w2 ,

(117)

ζ2
u =

2w2 sinh
(
τ2

2w2

)
− τ2

(
1 + cosh

(
τ2

4w2

))

(
τ2 + 4w2 sinh

(
τ2

4w2

))2

(118)

+
(
τ4 + 16w4) sinh

(
τ2

4w2

)

4w2
(
τ2 + 4w2 sinh

(
τ2

4w2

))2

ζ2
v =

2w2 sinh
(
τ2

2w2

)
− τ2

(
1− cosh

(
τ2

4w2

))

(
τ2 − 4w2 sinh

(
τ2

4w2

))2

(119)

−
(
τ4 + 16w4) sinh

(
τ2

4w2

)

4w2
(
τ2 − 4w2 sinh

(
τ2

4w2

))2 .

Note that the fact that η2
u,v = ξ2

u,v is a peculiarity of
Gaussian pulses and it is not true in general.

B.2 Small τ behaviour
Arguably, the most interesting regime for temporal
separation estimation is that of small τ . Therefore, in
the following, we discuss the behaviour of the quan-
tities computed above for τ → 0. Let us start by
considering the following series expansions

δ = 1− (∆k)2 τ
2

2 + σ
τ4

24 +O(τ6), (120a)

β = (∆k)2 − στ
2

2 +O(τ4), (120b)

ε = σ +O(τ2). (120c)

Using Eqs. (120), it is possible to show that for τ ∼
0 we have ηu ∼ ηv ∼ ξu ∼ ξv ∼ ζu ∼ ζv ∼ τ . For

example, for Gaussian pulses we have

ηu = τ

4
√

2w2 +O
(
τ2
)
, (121a)

ηv = τ

4
√

6w2 +O
(
τ2
)
, (121b)

ξu = − τ

4
√

2w2 +O
(
τ2
)
, (121c)

ξv = − τ

4
√

6w2 +O
(
τ2
)
, (121d)

ζu = τ

4
√

3w2 +O
(
τ2
)
, (121e)

ζv = τ

4
√

5w2 +O
(
τ2
)
. (121f)

This behaviour implies that the contribution to the
QFI coming from the coefficients bjkl and djkl van-
ishes for τ → 0 (see Eqs.(68) and App. C).

C Calculation of the QFI (72)
In this Appendix, we explicitly compute the coeffi-
cients (68) that lead to the QFI (72) for the estimation
of the temporal separation τ between two incoherent
thermal pulses aided by two squeezed vacuum states
in the derivative modes u1[τ ](t) and v1[τ ](t) defined
by the covariance matrices V0 (70) and V1 (71).

First, we note that V0 (70) is already in Williamson
form. Therefore, the symplectic matrix S0 entering
in Eqs. (68) is the identity S0 = 14, while for the
symplectic eigenvalues we have ν0

0 = 2N0(1+δ)+1
and ν1

0 = 2N0(1 − δ) + 1. On the other hand, the
Williamson decomposition V1 (71) is achieved by the
squeezing matrix

S1 =




e−r 0 0 0
0 er 0 0
0 0 e−r 0
0 0 0 er


 , (122)

with symplectic eigenvalues ν0,1
1 = 1.

To compute the coefficients ajkl , we need the
derivative of the matrix V0 (70). The latter depends
on the temporal separation τ only through the overlap
parameter δ. Accordingly, we have

∂τV0 =
(

2N0(∂τδ)12 0
0 −2N0(∂τδ)12

)
. (123)

Since ∂τV0 is diagonal, the only nonzero ajkl coeffi-
cients are

(
a00

2
)2

=
(
a11

2
)2

= 8N0(∂τδ). (124)
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Using S0 = 14, and the fact that all matrices

Dξ, Dη, and V0 are diagonal, we have
(
bjkl

)2
=

2
(
tr
{
A

(jk)
l Mb

})2
, where we introduced the matrix

Mb =




Xu + Yu 0 0 0
0 Xu − Yu 0 0
0 0 Xv + Yv 0
0 0 0 Xv − Yv


 ,

(125)
with

Xu = N0(1 + δ)ηu cosh r, (126a)
Xv = N0(1− δ)ηv cosh r, (126b)
Yu = [N0(1 + δ)ηu − ξu] sinh r, (126c)
Yv = [N0(1− δ)ηv − ξv] sinh r. (126d)

Consequently, the only nonzero bjkl coefficients are

(
b00
1
)2

= 8 [N0(1 + δ)ηu − ξu]2 sinh2 r, (127a)
(
b00
2
)2

= 8N2
0 (1 + δ)2η2

u cosh2 r, (127b)
(
b11
1
)2

= 8 [N0(1− δ)ηv − ξv]2 sinh2 r, (127c)
(
b11
2
)2

= 8N2
0 (1− δ)2η2

v cosh2 r. (127d)

We assumed the covariance matrix V1 of the
derivative modes u1[τ ](t) and v1[τ ](t) to be param-
eter independent, i.e. ∂τV1 = 0, which leads to
c

(jk)
l = 0 for all l, j and k.

Finally, we can write the djkl coefficients as

(
djkl

)2
= 2

(
tr
{
A

(jk)
l Md

})2
(128)

with

Md = Dζ(V1 − 14)S−1
1 = 2 sinh r

(
ζuσz 0

0 ζvσz

)
.

(129)
As consequence, the only nonzero djkl coefficients are

(
d00

1
)2

= 8ζ2
u sinh2 r, (130a)

(
d11

1
)2

= 8ζ2
v sinh2 r. (130b)

Substituting the coefficients in Eqs. (124), (127) and
(130) into Eq. (67), we then obtain the QFI (72).
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J. Řeháček, Z. c. v. Hradil, L. L. Sánchez-Soto, and
C. Silberhorn, PRX Quantum 2, 010301 (2021).

19



S. De, J. Gil-Lopez, B. Brecht, C. Silberhorn, L. L.
Sánchez-Soto, Z. c. v. Hradil, and J. Řeháček,
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5.1 framework for non-gaussian entanglement

Ever since Bell’s groundbreaking work (Bell, 1964), quantum correlations are at the
forefront of fundamental developments in quantum physics. They are one of the
core features that distinguish quantum and classical physics. It is thus no surprise
that quantum entanglement lies at the heart of many proposed quantum technologies.
Quantum correlations also have a long history in continuous-variable systems, after all,
the seminal paper by Einstein et al., 1935 was written in a continuous-variable language.
Schrödinger, 1935, 1936 formulated a crucial reply to the EPR paper, defining what
would later become known as quantum steering. Therefore, the concept of quantum
steering was historically first considered in the context of continuous-variable quantum
optics (Reid, 1989; Reid and Drummond, 1988). At a later stage, tools for studying more
general quantum entanglement in continuous-variable systems were introduced (Duan
et al., 2000; Loock and Furusawa, 2003; R. Simon, 2000). Because these continuous-
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variable methods are based on the covariance matrix, they are practical to use in
experiments (Bowen et al., 2003).

On the other hand, entanglement witnesses and measures based on the covariance
matrix have their limitations. In Chabaud and Walschaers, 2023 (see Section 2.4) we
argued that we need a type of entanglement that cannot be undone through changes
in mode basis to achieve a quantum computational advantage. However, using the
Williamson (Williamson, 1936) and Bloch-Messiah (Braunstein, 2005) decompositions,
we can show (Walschaers, Fabre, et al., 2017b) that there is always a mode basis in
which the covariance matrix does not show any entanglement. This means that the
“non-Gaussian entanglement” that is relevant for reaching a quantum computational
advantage cannot be studied via the covariance matrix of the state.

Initially, we studied non-Gaussian entanglement in the context of photon subtraction.
This operation is known to typically increase entanglement (Navarrete-Benlloch et al.,
2012). By using an entanglement measure known as Rényi-2 entanglement (based
on the Rényi-2 entropy), we showed that the subtraction of a single photon can at
most increase the entanglement by an amount log 2 (Zhang et al., 2022). This amount
corresponds exactly to the maximal amount of entanglement that can be created by
sending a photon through a beam splitter. Using the techniques of Walschaers, Fabre,
et al., 2017a one can furthermore show that this entanglement increase cannot be seen in
the covariance matrix of the state. Furthermore, we can also use Rényi-2 entanglement
to show that photon subtraction in a superposition of modes can create entanglement
between these modes, even is previously there was none (Walschaers, 2021). However,
in the presence of a mean field there are rare cases where photon subtraction can
deteriorate entanglement.

Photon-subtracted states are a useful and relevant case study, but they are insufficient
to fully understand the phenomenon of non-Gaussian entanglement. The development
of a more general framework to study non-Gaussian entanglement is a major topic in
my current research, and in the remainder of this section I give a short overview of the
main lines of work we are pursuing.

First of all, one should note that there is no general definition of non-Gaussian
entanglement that is agreed upon in literature. For example, one might argue that
any non-Gaussian state with entanglement is non-Gaussian entangled. However, we
introduced a more restrictive notion of non-Gaussian entanglement as the counterpart
of passive separability (Walschaers, Fabre, et al., 2017a,b), a concept that was already
introduced in Section 2.2. Formally, a state ρ̂ is said to be passively separable when
there is a passive linear optics transformation Û such that Ûρ̂Û† is separable. This
means that if we study the state in the right mode basis, it will behave as a separable
state. We can see this as a type of non-Gaussian entanglement because all Gaussian
states are passively separable (Walschaers, Fabre, et al., 2017b).
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Passive separability is perhaps more elegant to understand on the level of the Wigner
function, where we can write that

WÛρ̂Û†(x⃗) = Wρ̂(O⊤ x⃗), (5.1)

where O is the symplectic orthonormal matrix given by (1.19) that corresponds to Û.
A state ρ̂ is therefore said to be passively separable (Walschaers, Fabre, et al., 2017b)
whenever there is an orthonormal symplectic matrix O⊤ such that

Wρ̂(Ox⃗) =
∫

Γ
p(γ)Wρ̂A(x⃗A)Wρ̂B(x⃗B)dγ. (5.2)

Here we introduced a bit of additional notation. First, we assume that we are separating
the state in a bipartition of two subsystems A and B, where A contains mA modes and
B contains mB modes, such that mA + mB = m. The coordinates x⃗A (⃗xB) describe the
phase space of subsystem A (B) and x⃗ = x⃗A ⊕ x⃗B. Finally, when dealing with mixed
states we must include a label γ for the states in the mixture, and a distribution p(γ).
For multimode light, it is easy to see how one could extend the concept of passive
separability to a multipartite setting and ask, for example, when there is a mode basis
in which the state is fully separable. Any state which is not passively separable, and
thus for which no O exists such that (5.2) holds, can now be considered non-Gaussian
entangled. This is the notion of entanglement that is shown to be necessary for reaching
a quantum computational advantage in Chabaud and Walschaers, 2023.

We can also think of these notions in a slightly different way. Passively separable
states are those states in which the entanglement could have been created with passive
linear optics. One could in this spirit define Gaussian separable states as states in which
the entanglement could have been created by any Gaussian unitary transformation.
In this regard, it suffices to generalise (5.2) by replacing the orthogonal symplectic
transformation by any Gaussian transformation. In other words, a state is Gaussian
separable if there is a symplectic matrix S such that

Wρ̂(Sx⃗) =
∫

Γ
p(γ)Wρ̂A(x⃗A)Wρ̂B(x⃗B)dγ. (5.3)

One can of course argue that the most natural definition of non-Gaussian entanglement
is as the counterpart of Gaussian separability. In other words, a state would only be
considered non-Gaussian entangled if no Gaussian transformation could create the
entanglement. In this regard, it is useful to highlight that every passively separable state
is also Gaussian separable. Which means that one notion of non-Gaussian entanglement
is stricter than the other. It is useful to highlight that there are Gaussian separable
states that can lead to a quantum computational advantage (Chabaud and Walschaers,
2023), making passive separability the more important concept from an operation point
of view.

To get a more formal understanding of passive- and Gaussian separability, it is useful
to first study pure states. To do so, we will base ourselves on results by Chabaud,
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Ferrini, et al., 2021; Chabaud and Mehraban, 2022. Here the authors study a dense class
of multimode states |ψ⟩ that is given by

|ψ⟩ = Ĝ|C⟩. (5.4)

Here, Ĝ is a Gaussian unitary transformation, and |C⟩ is known as a core state. Core
states of stellar rank N are superpositions of Fock states and can thus be written by

|C⟩ = ∑
n1,...,nm=0

n1+···+nm≤N

cn1,...,nm |n1, . . . , nm⟩ (5.5)

States of the type (5.4) have the advantage of “separating” the Gaussian and non-
Gaussian part in a clean way. To see this, one might look at the Wigner function of the
state and realise that

W|ψ⟩(x⃗) = W|C⟩(Sx⃗), (5.6)

where S is the symplectic transformation that corresponds to Ĝ. This clearly shows
that all non-Gaussian features in |ψ⟩ are directly inherited from its core state |C⟩. Yet,
the symplectic transformation S can generate entanglement and therefore we cannot
simply discard it.

Because of equation (5.6), it seems appealing to characterise passive- and Gaussian
separability in terms of properties of the core state’s Wigner function that are invariant
under Gaussian transformations (for Gaussian separability) or basis changes (for passive
separability). However, this is surprisingly difficult, and it is leaving a lot of additional
structure of the states unexploited. Notably, we can gain a lot by using that the
core states are pure and of form (5.5). These ideas have been briefly explored by
Chabaud and Mehraban, 2022, and here we present a slightly modified version of their
arguments.

When we ask the question whether |ψ⟩ is passively separable, we wonder whether a
mode basis change can render W|ψ⟩(x⃗) separable in the sense of (5.2). Using the Bloch-
Messiah decomposition, we can rewrite S = O1KO2, where K is a diagonal symplectic
matrix that implement local squeezing operations. When we then use the structure
of the core state (5.5), we find that it’s Wigner function is a polynomial multiplied by
a Gaussian. Because the state is pure, the state can only be separable if the Wigner
function factorises. This can only happen when we avoid cross-terms in the exponential
part of the Wigner function. The only mode basis where these cross-terms are absent, is
the one where the squeezing effects in S are local. Finally, note that local squeezing has
no influence on entanglement in the specific mode basis. This leads us to the important
relation

|ψ⟩ is passively separable ⇐⇒ W|C⟩(O2 x⃗) is factorized. (5.7)

In other words, |ψ⟩ is passively separable if and only if |C⟩ is separable in the mode-
basis where the squeezing in |ψ⟩ is local.
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The question of Gaussian separability is more subtle because Gaussian transfor-
mations give us much more freedom. In particular, the question is now whether a
transformation S′ exists for which W|ψ⟩(S′ x⃗) is factorized. As for passive separabil-
ity, these Wigner functions can only be factorized when there are not cross terms
in the Gaussian part of the Wigner functions. However, this leaves the freedom to
choose S′ such that S′S = O, a symplectic orthonormal matrix. As such, we find that
W|ψ⟩(S′ x⃗) = W|C⟩(Ox⃗). Because |C⟩ is a core state, any mode-basis change O leaves the
Gaussian part unchanged such that no Gaussian cross terms appear. This leads us to
the conclusion that (Chabaud and Mehraban, 2022)

|ψ⟩ is Gaussian separable ⇐⇒ |C⟩ is passively separable. (5.8)

Which clearly establishes that non-Gaussian entanglement of pure states of the type
(5.4) can be understood by studying the properties of the core states |C⟩.

Even though the problem is now significantly simplified by restricting to a specific
class of states (5.5), any systematic study to understand (passive) separability of core
states is still to be carried out. This is currently a major topic of research in our group.
A combination of our work (Chabaud and Walschaers, 2023) and (Mari and Eisert, 2012)
makes it tempting to study these concepts in terms of Wigner negativity. However, this
turns out to be remarkably difficult and we find it to be more appropriate to apply the
stellar formalism of Chabaud, Markham, et al., 2020 (a detailed introduction can be
found in Section III.D of the article in Section 1.3).

The stellar formalism is based on the stellar function F⋆
|ψ⟩(ξ⃗). This function can be

interpreted as a representation of the state |ψ⟩ in the over-complete basis of coherent
states |⃗ξ⟩, which were defined in (1.61). Mathematically, it is given by

F⋆
|ψ⟩(ξ⃗) = ⟨ξ⃗|ψ⟩e 1

8 ∥ξ⃗∥2
. (5.9)

For a core state |C⟩, the stellar function F⋆
|C⟩(ξ⃗) is a multivariate polynomial and

its properties can be understood by studying the manifolds that are determined by
F⋆
|C⟩(ξ⃗) = 0. In particular, for the problem of Gaussian separability of |ψ⟩, we wonder

whether there is a symplectic orthogonal transformation such that the manifolds
generated by the associated core state F⋆

|C⟩(Oξ⃗) = 0 can be included entirely in the
subsection of phases space associated with A or B.

Preliminary results using these ideas show that single-photon subtracted states are
always Gaussian separable, because the manifold determined by F⋆

|C⟩(Oξ⃗) = 0 is a
single-mode hyperplane that can be “turned” by O to coincide with either A or B. For
a state of the form |C⟩ ∝ |2, 0⟩+ |0, 2⟩, we can show Gaussian separability because the
manifold of zeros is given by two perpendicular single-mode hyperplanes (such that a
well-chosen O aligns one hyperplane in A while jointly aligning the second one in B).
Various other core states, such as |C⟩ ∝ |N, 0⟩+ |0, N⟩ with N > 2, |C⟩ ∝ |2, 0⟩+ |0, 1⟩,
and |C⟩ =

√
λ|2, 0⟩+

√
1 − λ|0, 2⟩ with λ ∈ (0, 1) can all be shown to be not passively
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separable. As a consequence, no state |ψ⟩ = Ĝ|C⟩ that is generated by acting with
a Gaussian on one of these core states, is Gaussian separable. Note that for passive
separability of |ψ⟩ = Ĝ|C⟩, we do not have the freedom to alter the orientation of
the manifolds and we simply have to consider F⋆

|C⟩(O2ξ⃗) = 0, where O2 is fixed by

Ĝ. We thus see that, for most Ĝ the state |ψ⟩ = Ĝ|C⟩ with |C⟩ ∝ |2, 0⟩+ |0, 2⟩ will
not be passively separable. Using the same argument, we can show that multimode
single-photon subtracted states are typically not passively separable.

This generally shows that we can relate the problem of passive and Gaussian sepa-
rability of pure states of finite stellar rank to a problem of algebraic geometry. Even
though this might not be practical to actually generate or witness entanglement in
experimental setups, it does help us get a fundamental understanding of the structure
of non-Gaussian entangled states.

The problem becomes considerably more involved when we consider mixed states.
The most natural definitions for passive and Gaussian separability are probably the
ones given by equations (5.2) and (5.3), respectively. When we consider these definitions
for a mixed state ρ̂, they imply the existence of a pure-state decomposition such that
all these pure states are passively or Gaussian separable by the same passive linear
optics or Gaussian unitary transformation. A priori, we see no reason why a mixture of
passively (Gaussian) separable pure states |ψ1⟩, . . . , |ψn⟩, that are separated by different
passive linear optics (Gaussian unitary) transformations, would be passively (Gaussian)
separable in the sense of equation (5.2) (equation (5.3)).

It is useful to go back to the operational point of view and consider the protocol
of Chabaud and Walschaers, 2023. Clearly a mixture of passively separable pure
states would not be resourceful for coherent state sampling. Assuming the pure state
decomposition is known, one might simply choose a pure state from the mixture and
easily simulate the sampling for the chosen state. This thus calls for a notion of genuine
non-Gaussian entanglement, where we consider a state to be non-Gaussian entangled only
when it cannot be written as a mixture of pure passively (or Gaussian) separable states.
This would be particularly natural since it excludes non-Gaussian mixtures of Gaussian
states. The disadvantage, however, is that genuine non-Gaussian entanglement may be
even harder to witness experimentally.

5.2 metrological detection protocols

The detection of non-Gaussian quantum correlations forms an important bottleneck
in its study. As pointed out at the beginning of the previous section, non-Gaussian
entanglement cannot be understood merely from measuring the covariance matrix
of the state. As a consequence, typical Gaussian witnesses (Duan et al., 2000; Loock
and Furusawa, 2003; R. Simon, 2000) will not work. For this reason, a series of more
advanced counterparts have been proposed (Gessner, Pezzè, et al., 2016; Gneiting and
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Hornberger, 2011; Levi et al., 2015; Walborn et al., 2009). In the context of quantum
steering similar efforts have been made to go beyond the strictly Gaussian scenario
(Kogias, Skrzypczyk, et al., 2015; Schneeloch et al., 2013; Yadin et al., 2021). In the light
of Chapter 4, we are particularly interested in the work of Gessner, Pezzè, et al., 2016

and Yadin et al., 2021 where a metrological advantage is used to witness entanglement.
Gessner, Pezzè, et al., 2016 studies a scenario in which one tries to witness entan-

glement between two parties, Alice and Bob, that share a state ρ̂AB. Both parties are
going to implement the same parameter θ in a unitary way with a local generator ĜA
for Alice and ĜB for Bob. Using properties of the quantum Fisher information and of
the variance, the authors showed that

FQ[ρ̂AB] ≥ Var[ĜA] + Var[ĜB] =⇒ ρAB is entangled. (5.10)

Here we used that the generators ĜA and ĜB are independent of the parameter, such
that the quantum Fisher information itself also becomes independent of the value of
the parameter. The witness thus shows that a state is entangled whenever we can
outperform the best possible sensitivity that can be achieved with separable states
(given by Var[ĜA] + Var[ĜB]).

While this witness can be shown to always outperform variance-based techniques, it
does also come with the difficulty of actually having to calculate the quantum Fisher
information. In particular for continuous-variable systems where the density matrix of
the state often is not known, this is a serious difficulty because it means that explicit
expressions for the quantum Fisher information such as (4.32) cannot be used. As a
solution, we proposed to use the definition (4.7) of the quantum Fisher information,
which states that it simply is the maximal Fisher information over all measurements. It
is thus only a matter of finding the appropriate measurement such that

F [P] ≥ Var[ĜA] + Var[ĜB]. (5.11)

Generally speaking this is a hard task, but in the spirit of continuous-variable quantum
information processing it is natural to aim for homodyne measurements. In Barral
et al., 2023 we use these metrological techniques to study entanglement for photon
subtracted states of Section 3.1. We show specifically how entanglement that is invisible
in the covariance matrix could potentially be measured by using multimode homodyne
measurements with only two different phase settings. In this case, the parameter θ

is implemented by a displacement operator, such that the generators are quadrature
operators, and the parameter can be equally estimated using quadrature operators.
Furthermore, we show how these techniques are feasible with a finite number of
measurement outcomes. Currently, we are trying to improve these detection schemes
by using techniques from machine learning in the same spirit as we previously did for
Wigner negativity (Cimini et al., 2020).

Similar metrological techniques have been developed to test quantum steering based
on the average quantum fisher information of conditional states Yadin et al., 2021.
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The practical approach to witnessing steering in the continuous-variable setup is also
based on using the Fisher information for homodyne detection instead of the quantum
Fisher information. The details of this work (Lopetegui et al., 2022) can be found in
(5.3), where we strongly rely on the knowledge of the Wigner function for photon
subtracted states to show under which conditions quantum steering can be witnessed
in non-Gaussian states.

The above techniques for detecting entanglement have been proven to work in a
regime where the typical Gaussian toolbox, based on the covariance matrix, fails.
Nevertheless, the method still only allows us to witness entanglement in a fixed basis,
whereas we would ultimately desire a mode-basis-independent entanglement witness.
When we think of the Hahn-Banach separation theorem, an entanglement witness could
take the form of an observable Ŵ with the property that Tr[Ŵρ̂] > 0 for all separable
states ρ̂ (Terhal, 2000). In our specific case, we are on top looking for a Ŵ that is
invariant under mode basis changes or more general Gaussian unitary transformations.
However, finding such observables is highly challenging. We hope that techniques like
the ones we previously used for certifying the stellar rank of a state (Chabaud, Roeland,
et al., 2021) may be of use.

5.3 article: homodyne detection of non-gaussian quantum steering
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Quantum correlations are at the core of current developments in quantum technologies. Certification
protocols of entanglement and steering, suitable for continuous-variable non-Gaussian states are scarce
and generally highly demanding from an experimental point of view. We propose a protocol based on
Fisher information for witnessing steering in general continuous-variable bipartite states, through homo-
dyne detection. It proves to be relevant for the detection of non-Gaussian steering in scenarios where
witnesses based on Gaussian features like the covariance matrix are shown to fail.
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I. INTRODUCTION

In 1935 Einstein, Podolsky, and Rosen introduced what
came to be known as the EPR paradox [1], challeng-
ing, through the argument of local realism, the complete-
ness of quantum mechanics. In his early response [2,3],
Schrödinger addressed the issue of spooky action, trou-
bled by the paradox arising from the capability of one part
of a bipartite system to instantaneously steer the state of
the other through appropriate local measurements. These
works received notorious attention after the seminal paper
by Bell [4], who proposed a strong test for locality itself. In
2007, Wisemann et al. [5] provided an operational bench-
mark for steering, from which they proved that the set of
states that manifest steering are a strict subset of the set
of entangled states and a strict superset of those that vio-
late Bell inequalities. This definition can be understood in
terms of a scenario where two parties, Alice and Bob, share
a state. Alice has to convince Bob that the state they share
is entangled, while Bob does not actually trust Alice, i.e.,
he does not assume her measurements to be in accordance
with the constraints imposed by quantum physics. Alice
will communicate the results of her measurements and then

*mattia.walschaers@lkb.upmc.fr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

Bob can measure the state on his part of the system. When-
ever Bob can verify the presence of a quantum correlation
based only on the information provided by Alice and his
own measurement results, we say that there is quantum
steering from Alice to Bob.

The relevance of the characterization of steering goes
beyond the interest in fundamental questions as it is a rele-
vant resource in quantum information protocols [6,7], like
one-sided device-independent quantum key distribution
[8–10], certification of random number generators [11,12],
quantum metrology [13], and quantum channel discrimina-
tion [14]. These one-sided device-independent approaches
to quantum information protocols are settled in between
the fully device-independent protocols that require the
violation of Bell inequalities for certification, and the
entanglement-based protocols, which are less restrictive,
but also slightly less secure [15–17].

The problem of steering characterization for Gaussian
states has been widely studied [18,19], and a well-defined
measure has been established [20–22], based on the sym-
plectic spectrum of the conditioned covariance matrix.
However, for many applications in quantum technologies,
one requires non-Gaussian states. For example, non-
Gaussian features are necessary to reach a quantum
computational advantage [23], and for quantum error
correction [24]. Any application that relies on entan-
glement distillation must be non-Gaussian [25] and
common entanglement distillation protocols effectively
create non-Gaussian quantum correlations [26,27]. Such
non-Gaussian quantum correlations become particularly

2691-3399/22/3(3)/030347(20) 030347-1 Published by the American Physical Society
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relevant in quantum metrology, where they often lead to
an improvement in sensitivity [28–31].

A general characterization of steering in non-Gaussian
scenarios has been elusive so far. One possible approach
relies on conditional quantum state tomography and
semidefinite programming [32]. Alternatively, many pro-
tocols are based on second-order correlations [18], and for
non-Gaussian states, these protocols require non-Gaussian
measurements [33]. The latter is twofold undesired. First,
it is appealing to rely strictly on Gaussian continuous-
variable (CV) measurements, such as homodyne detec-
tion. Second, we want to probe the non-Gaussian features
of the state, and thus must avoid introducing any addi-
tional non-Gaussian features through the measurement. In
this spirit, we aim for a general protocol purely based
on homodyne detection. Even though methods based on
hierarchies have been proposed [34], these can require sig-
nificant experimental and computational overhead when
high-order moments are involved. Thus, rather than only
focusing on moments of the measurement outcomes, our
protocol will exploit the full measurement statistics.

We tackle the problem of witnessing quantum steering
with a toolbox based on quantum metrology [30,31,35].
The steering capacity in a bipartite system was formally
linked to an enhancement in the capability to estimate cer-
tain parameters [13]. We adapt this approach to the exper-
imental context and limitations of CV quantum optics and
show its relevance for non-Gaussian states. For that, we
consider single-photon-subtracted states as a probe system.
In the context of non-Gaussian states, photon subtraction,
offers an experimentally feasible way to attain Wigner neg-
ativity in a controlled way [36,37]. This approach offers
a very flexible way to generate different kinds of states
[38] and in particular purely non-Gaussian features can
be studied by appropriately choosing the mode in which
the photon is subtracted [36]. These states are a rele-
vant probe since pure photon-subtracted squeezed vacuum
states have been shown to manifest quantum steering that
cannot be detected by variance-based criteria [39]. We also
show that our metrological approach detects more non-
Gaussian steerable states than the entropic criterion of Ref.
[40], even though the latter also exploits full homodyne
statistics.

II. PROTOCOL

A. Protocol for general quantum states

We now formulate the steering detection scheme as a
metrological protocol, following Ref. [13]. We consider
the scenario in which Bob attempts to estimate a phase
ξ generated by a Hamiltonian Ĥ that acts on his side
of the system. Without any further information than that
which he can extract from direct measurements in the dis-
placed state ρ̂B

ξ = exp(−iξ Ĥ)ρ̂B exp(iξ Ĥ ), the maximal
precision that he can achieve using an arbitrary unbiased

estimator ξest is limited by the quantum Fisher information
(QFI) FQ(ρ̂B, Ĥ), the central quantity in quantum metrol-
ogy [30,31,35]. In the present scenario, where the param-
eter to be estimated is implemented by a unitary transfor-
mation, generated by a Hamiltonian, there is a practical
expression for the QFI for a state ρ̂B = ∑

k rk|rk〉〈rk|:

FQ(ρ̂B, Ĥ) = 4Tr[ρ̂BĤ 2] − 8
∑

j ,k

rkrj

rk + rj
|〈rj |Ĥ |rk〉|2.

(1)

Note that this expression requires us to know the eigen-
values rk and associated eigenvectors |rk〉. However, in
many physical systems, and notably CV systems where the
density matrix is infinite dimensional, these quantities are
often not known.

The QFI represents the sensitivity of state ρ̂B under
small perturbations generated by Ĥ . This idea is formal-
ized in the quantum Cramér-Rao bound on the variance of
the estimator

Var(ξest) ≥ 1

nFQ(ρ̂B, Ĥ)
, (2)

where n is the number of repetitions of the measurement
protocol. The inequality can be saturated by choosing the
optimal measurement observable and estimator.

Nevertheless, Bob’s state might be correlated with
another system. Let us assume that Alice possesses this
second party, and will assist Bob in his estimation pro-
tocol by sending him information about her measure-
ment setup and outcome. Alice’s assistance may improve
Bob’s estimation precision even when correlations are
purely classical. Local complementarity sets a limit to this
improvement that can only be overcome when there is
quantum steering [13]. The average sensitivity attainable
by Bob following assistance by Alice, is upper bounded
by the conditional QFI

FB|A
Q (A, Ĥ):= max

X̂

∫

p(a|X̂ )FB
Q(ρ̂B

a|X̂ , Ĥ)da, (3)

and we introduce the assemblage as a function A that maps
the observable X̂ and one of its measurement outcomes a
to

A(a, X̂ ):=p(a|X̂ )ρ̂B
a|X̂ , (4)

where p(a|X̂ ) is the probability distribution for Alice’s
outcomes a after measurement of the observable X̂ , and
ρ̂B

a|X̂ is the conditioned state on Bob’s side that is obtained
after such a measurement.

In this context the confirmation of quantum steer-
ing consists in showing that assemblage (4) cannot be
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described with a hidden state model given by

A(a, X̂ ) =
∫

dλp(λ)p(a|X̂ , λ)σ̂ B
λ . (5)

Note, moreover, that the implementation of a local phase
ξ preserves the structure of the local hidden state model.
If the state Bob and Alice share is consistent with the
structure of Eq. (5), the following inequality holds [13]:

FB|A
Q (A, Ĥ) ≤ 4VarB|A

Q (A, Ĥ). (6)

Here VarB|A
Q (A, Ĥ) represents the quantum conditional

variance

VarB|A
Q (A, Ĥ):= min

X̂

∫

p(a|X̂ )Var(ρ̂B
a|X̂ , Ĥ)da (7)

that is obtained after minimization over all possible mea-
surement setups by Alice. Here we encounter the variance
of Ĥ in the state ρB

a|X̂ , given by

Var(ρ̂B
a|X̂ , Ĥ):=Tr[ρ̂B

a|X̂ Ĥ 2] − Tr[ρ̂B
a|X̂ Ĥ ]2. (8)

Together with the Cramér-Rao bound, inequality (6)
implies the uncertainty relation [13]

Var(ξest)VarB|A
Q (A, Ĥ) ≥ 1

4n
(9)

between the phase displacement estimator ξest and its
generator Ĥ , whose violation constitutes an EPR paradox.

Inequality (6) can be thought of as a way to witness
steering through its relevance for metrological tasks. The
extent to which a given assemblage violates the inequality
is captured by the steering witness

Smax(A) = max
{Ĥ ,Tr(Ĥ2)=1}

[
FB|A

Q (A, Ĥ) − 4VarB|A
Q (A, Ĥ)

]+,

(10)

where [x]+ = max{0, x}. Moreover, Reid’s criterion [41]
can be derived as a weaker version of this witness. It can
be shown [13] that

FB|A
Q (A, Ĥ) ≥ |〈[Ĥ , M̂ ]〉ρ̂B |2

VarB|A
Q (A, M̂ )

(11)

holds for arbitrary assemblages A and observables Ĥ and
M̂ . Combined with inequality (6), we introduce the fol-
lowing measure for the violation of Reid’s variance-based

steering witness:

SR(A) = max
{Ĥ ,Tr(Ĥ2)=1}

[ |〈[Ĥ , M̂ ]〉ρ̂B |2
VarB|A

Q (A, M̂ )
− 4VarB|A

Q (A, Ĥ)

]+
.

(12)

This witness is very commonly used to witness steering
in Gaussian states with quadrature operators [41]. Further-
more, Eq. (11) directly implies that Smax(A) � SR(A).

B. Homodyne protocol for continuous-variable systems

In this section, we translate the general protocol of
the previous section to the specific context of multimode
quantum optics [36,42]. We rely on quadrature displace-
ments as the phase estimation probe, which can be easily
implemented by shifting the Wigner function [43] in phase
space. Experimentally, such a displacement results in a
simple shift of the measured quadrature histograms, which
implies that the effect of the parameter can be easily “sim-
ulated” in postprocessing. This will allow us to develop a
framework to witness steering based entirely on homodyne
detection.

Our starting point is the M -mode electric field operator

Ê+(r, t) =
M∑

j =1

εj âj uj (r, t), (13)

where the ui(r, t) are a set of orthonormal solutions of
Maxwell equations (classical modes), εj is a constant
that carries the dimensions of the field, and the âj are
the annihilation operators corresponding to modes uj of
the bosonic field. In CV quantum optics the fundamental
observables are the real and complex components of these
operators, defined as

âj = q̂j + ip̂j

2
, (14)

where q̂j and p̂j are the amplitude and phase quadratures of
the electric field, respectively, which satisfy the canonical
commutation relation

[
q̂j , p̂k

] = 2iδj ,k. The measurement
outcomes for these observables are represented in optical
phase space, which has a symplectic structure associated
with the form

� =
M⊕

j =1

(
0 −1
1 0

)

. (15)

We can now define vectors of quadrature operators

�̂x = (q̂1, p̂1, . . . , q̂M , p̂M )�, (16)

and translate the commutation relation to [x̂j , x̂k] = 2i�jk.
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To represent quantum states in optical phase space, we
resort to a quasiprobability distribution, the Wigner func-
tion. Even though this representation can reach negative
values and is thus not a joint probability distribution for
quadratures, its marginals describe the probabilities of
measurement outcomes for individual quadrature observ-
ables [36]. We focus on states of a bipartite system that are
completely described by its Wigner function W(�xA ⊕ �xB)

in a phase space of dimension R2m ⊕ R2m′
, where �xA (�xB)

stands for the phase space coordinates of subsystem A (B)

that consists of m (m′) modes.
A direct application of the protocol in Sec. II A would

require us to obtain the QFI FB
Q. This is in general a noto-

riously difficult task as it involves the reconstruction of
the density matrix, which is often unfeasible in a CV set-
ting. However, the QFI is lower bounded by its classical
counterpart

FB
Q(ρ̂B, Ĥ) ≥ FB

ξ [P]. (17)

The classical Fisher information (FI) characterizes the best
precision that can be obtained for estimating ξ by using the
results of a specific measurement. It is defined as

FB
ξ [P]:=

∫

R
P(q|ξ)

(
∂L(q|ξ)

∂ξ

)2

dq, (18)

where L(q|ξ) = log[P(q|ξ)] represents the logarithmic
likelihood associated with the probability density of mea-
surement outcomes q, after implementation of the param-
eter ξ . More formally phrased, P(q|ξ) = Tr[ρ̂B

ξ 
̂q], where

̂q forms a positive operator-valued measure such that
∫


̂qdq = 1. For CV systems, it is natural to choose Ĥ
to be a quadrature operator, and 
̂q = |q〉〈q| to correspond
to homodyne measurements.

Relation (17) is particularly appealing as it shows that
any violation of inequality (6) based on the classical FI is
a lower bound for the exact violation based on the QFI.
The downside of relying on the classical FI is that one may
fail to witness steering that could otherwise be detected by
using a better measurement scheme. However, the classi-
cal FI already provides a strict improvement over Reid’s
criterion (12). We show that this improvement is sufficient
to witness non-Gaussian steering.

In what follows we summarize the protocol to witness
steering for a bipartite CV system; see Fig. 1. We have
two sets of modes that are, in principle, mutually entan-
gled: one in possession of Alice and one in possession of
Bob. In her modes, Alice performs a homodyne detection
that is characterized by a normalized vector �f in Alice’s
phase space, which means that she measures the quadra-
ture x̂

�f
A = �f ��̂x. When she obtains the measurement result

x0, Bob’s state will be transformed into a state described

LO

LO

FIG. 1. Metrological protocol on which we base the witness-
ing of steering for bipartite CV states. Alice performs homodyne
detection on the mode she owns and communicates to Bob the
quadrature she chose to measure and its outcome. Based on this
information, Bob tunes the local oscillator (LO) to choose what
quadrature to measure in order to better estimate the displace-
ment ξ generated by D̂(ξ) = exp[−iξ�e���̂x/2], such that the
Hamiltonian is given by Ĥ = �e���̂x/2.

by the conditional Wigner function

WB|A(�xB|x �f
A = x0)

=
∫

R2m W(�xA ⊕ �xB)δ(�f ��xA − x0)d�xA
∫

R2m⊕R2m′ W(�xA ⊕ �xB)δ(�f ��xA − x0)d�xAd�xB
. (19)

Bob estimates a local quadrature displacement WB|A(�xB) 
→
WB|A(�xB − ξ�e) on his subsystem. The parameter of inter-
est ξ here corresponds to the extent of this displacement,
which is generated by the Hamiltonian Ĥ = �e���̂x/2 with
�e a normalized vector in Bob’s phase space. In the spirit of
Eq. (10), to witness steering, we optimize over all possible
choices of displacement axis, and thus maximize over �e.

To study Bob’s sensitivity for such an estimation, we
evaluate the quantities involved in inequality (10), but we
replace the QFI with the classical FI (18). To compute the
classical FI, we fix the observable M̂ . A logical choice is
to measure the displaced quadrature, given by M̂ = �e��̂x.
This means that P(q | ξ) in Eq. (18) is the marginal of the
Wigner function (19) along the phase space axis �e. The
probability of obtaining an outcome q when measuring the
quadrature along �e is given by

PB
x0|�f (q) =

∫

R2m′ δ(�e��xB − q)WB|A(�xB|x �f
A = x0)d�xB. (20)

The displaced profile is obtained by the map q 
→ q − ξ on
the marginal distribution, such that we can write

PB
x0|�f (q|ξ) = PB

x0|�f (q − ξ). (21)

The resulting conditional classical FI for a fixed choice of
Bob’s displacement and measurement (determined by �e),
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optimized over all homodyne observables (�f ) on Alice’s
side, is defined as

FB|A
hom

(

A,
�e���̂x

2

)

= max
�f ∈R2m

∫

R
PA(x

�f
A = x0)FB

ξ [PB
x0|�f ]dx0.

(22)

Here, PA(x
�f
A = x0) is the marginal of the Wigner function

along the quadrature measured by Alice. To check whether
there is some mode in Alice’s subsystem that can steer
Bob’s, the optimization runs over all possible choices of
�f . One could refine the question and restrict �f to the phase
space of one specific mode to test whether this particular
mode can steer Bob’s subsystem.

To compute the conditional variance of the genera-
tor �e���̂x/2, we also use a marginal of the conditional
Wigner function (19). From definition (7), we find that the
conditional variance is given by

VarB|A
hom

(

A,
�e���̂x

2

)

= min
�f ∈R2m

1
4

∫

R
PA(x

�f
A = x0)

× Var
(
ρ̂B

x0|�f , �e���̂x)dx0, (23)

where Var(ρ̂B
x0|�f , �e���̂x) is the variance of the quadrature

corresponding to the generator �e���̂x. To compute this
quantity, we introduce the probability of obtaining an out-
come p when we measure the quadrature along the axis
��e:

P̃B
x0|�f (p) =

∫

R2m′ δ(�e���xB − p)WB|A(�xB|x �f
A = x0)d�xB.

(24)

This distribution allows us to compute

Var
(
ρ̂B

x0|�f , �e���̂x) =
∫

R
p2P̃B

x0|�f (p)dp

−
( ∫

R
pP̃B

x0|�f (p)dp
)2

. (25)

In other words, Alice first chooses a mode and quadrature
to measure. Bob then also chooses a mode and a quadrature
to measure depending on Alice’s choice. Alice commu-
nicates her measurement outcomes to Bob, and Bob will
group his measurement outcomes depending on Alice’s
result.

Finally, in analogy to the general definition (10), which
optimizes over all Hamiltonians, we optimize our homo-
dyne steering witness over all possible displacement vec-
tors. This leads to the final witness

Shom
max (A) = max

�e∈R2m′

[

FB|A
hom

(

A,
�e���̂x

2

)

− VarB|A
hom

(A, �e���̂x)
]+

(26)

for quantum steering with the specialized homodyne-
based protocol. Note that we have used the fact that
4VarB|A

hom(A, �e���̂x/2) = VarB|A
hom(A, �e���̂x).

Even though our protocol is formulated in a fully multi-
mode context, it will effectively detect quantum steering
between two optical modes, one given by �f on Alice’s
side and one given by �e on Bob’s system. Optimizing over
the possible choices of �f and �e gives us a sufficient crite-
rion for steering from Alice to Bob, but one can make the
protocol more general by measuring multiple quadratures
simultaneously on both Alice’s and Bob’s side of the sys-
tem. Because this extension is technically rather involved,
but physically straightforward, we present it separately in
the Appendix.

Witness (26) for our homodyne-based protocol is a
lower bound for the steering witness proposed in Ref. [13]
that relies on the QFI. At the same time, we can define
a version of Reid’s criterion (12) restricted to homodyne
measurements by setting Ĥ = �e���̂x and M̂ = �e��̂x, which
leads to

Shom
R (A) = max

�e∈R2m′

[
1

VarB|A
hom(A, �e��̂x)

− VarB|A
hom(A, �e���̂x)

]+
.

(27)

Here, we find the quantity VarB|A
hom(A, �e��̂x)−1 that quan-

tifies the sensitivity of estimating ξ based only on the
average measurement outcome of �e��̂x. Because of the
relation between the method of moments and the Fisher
information [31], this is always smaller than the sensitiv-
ity set by the FI. We thus find the hierarchy Shom

R (A) ≤
Shom

max (A) ≤ Smax(A). Interestingly, there are states for
which Shom

max (A) < SR(A) as the general version of Reid’s
criterion allows for highly non-Gaussian operators Ĥ
and M̂ .

Finally, it is interesting to explicitly compare Shom
R (A)

and Shom
max (A) for Gaussian states. When Alice conditions

on a homodyne measurement, she performs a Gaussian
operation on the state. When the global state is Gaussian,
Alice’s measurement will create a Gaussian conditional
state ρB

x0|�f on Bob’s subsystem [44]. Because the state is
Gaussian, it is characterized by a Gaussian Wigner func-
tion and its marginals are also Gaussian. Therefore, the
probability distribution PB

x0|�f (q|ξ) in Eq. (21) is Gaus-
sian and only its mean value depends on the parameter ξ .
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In this case, a simple calculation shows that FB
ξ [PB

x0|�f ] =
1/Var(ρ̂B

x0|�f , �e��̂x). This leads us to the following identity
for Gaussian states:

FB|A
hom

(

A,
�e���̂x

2

)

= max
�f ∈R2m

∫

R
PA(x

�f
A = x0)

× 1

Var(ρ̂B
x0|�f , �e��̂x)

dx0. (28)

A second important element for Gaussian states is that
Var(ρ̂B

x0|�f , �e���̂x) is independent of actual measurement
result x0 on Alice’s side [44]. In other words, we find that

FB|A
hom

(

A,
�e���̂x

2

)

= max
�f ∈R2m

1

Var(ρ̂B
x0|�f , �e��̂x)

. (29)

From the same argument, it follows that

1

VarB|A
hom(A, �e��̂x)

= max
�f ∈R2m

1

Var(ρ̂B
x0|�f , �e��̂x)

, (30)

which ultimately shows that

Shom
R (A) = Shom

max (A) for Gaussian states. (31)

This shows that our metrological formalism based on
quadrature measurements can only outperform Reid’s cri-
terion based on quadrature variances when we are dealing
with non-Gaussian states.

Reid’s criterion as captured by Shom
R (A) is also a lower

bound for a different steering witness that can be derived
from Ref. [40]. In this work, an entropy-based witness is
introduced, constructed based on the Shannon entropies of
the distributions PB

x0|�f (q) and P̃B
x0|�f (p):

h(P|x �f
A = x0) = −

∫

R
PB

x0|�f (q) log PB
x0|�f (q)dq, (32)

h(P̃|x �f
A = x0) = −

∫

R
P̃B

x0|�f (p) log P̃B
x0|�f (p)dp . (33)

We can then define

hB|A(A, �e��̂x) = min
�f ∈R2m

∫

R
PA(x

�f
A = x0)h(P|x �f

A = x0)dx0,

(34)

hB|A(A, �e���̂x) = min
�f ∈R2m

∫

R
PA(x

�f
A = x0)h(P̃|x �f

A = x0)dx0.

(35)

The original steering criterion that was proposed can be
translated to our context as

hB|A(A, �e��̂x) + hB|A(A, �e���̂x) < log(2πe). (36)

It is particularly useful to note that

VarB|A
hom

(

A,
�e���̂x

2

)

VarB|A
hom

(

A,
�e��̂x

2

)

� e2hB|A(A,�e��̂x)e2hB|A(A,�e���̂x)

(2πe)2 . (37)

When we combine this with the entropic inequality (36),
we can propose the steering witness

SH (A) = max
�e∈R2m′

[

2πe1−2hB|A(A,�e��̂x) − e2hB|A(A,�e���̂x)−1

2π

]+
.

(38)

In the limit for Gaussian states, we find that SH (A) =
Shom

R (A). For more general states, we find that SH (A) �
Shom

R (A). To compare the metrological witness to the
entropic one, we combine a relation between the Fisher
information and Shannon entropy [45] with Jensen’s
inequality to prove that

FB|A
hom

(

A,
�e���̂x

2

)

≥ 2πe1−2hB|A(A,�e��̂x). (39)

However, the variance and entropy power are also related
to each, which was, for example, used to obtain inequality
(37). This leads to the inequality

VarB|A
hom

(

A,
�e���̂x

2

)

≥ e2hB|A(A,�e���̂x)−1

2π
. (40)

When we combine inequalities (39) and (40), we can-
not establish a clear relation between the entropic wit-
ness SH (A) and the metrological witness Shom

max (A). We
explore which one of these two witnesses, based on the
same homodyne measurement statistics, performs better
for non-Gaussian states.

In Sec. IV, we explore the potential of the metrological
protocol for an important class of two-mode non-Gaussian
states, presented in Sec. III, under ideal detection condi-
tions. Details about the experimental estimation of these
quantities for realistic detection schemes are provided in
Sec. V.

III. MODE-SELECTIVE PHOTON SUBTRACTION

The protocol described in the previous section is valid
for any CV system, regardless of the nature of the state that
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FIG. 2. Parameterized probe states: the non-Gaussian state
obtained by subtracting one photon from one mode of a two-
mode squeezed state is passed through a beam splitter with a
tunable transmissivity τ = sin2(θ).

we consider, as long as we have access to the marginals
of the Wigner function along the desired axes in the
phase space of each of the subsystems. In this section
we introduce the probe states that we consider through-
out this paper, namely, photon-subtracted states. Different
approaches can be followed to describe the generation of
these states and obtain their Wigner function [36,46–48].

We focus on two-mode photon-subtracted states, where
one mode is sent to Alice and the other to Bob. These states
are generated through the setup sketched in Fig. 2: two
single-mode squeezed-vacuum states, squeezed in oppo-
site quadratures, are mixed on a balanced beam splitter to
generate an EPR state. A single photon is subtracted in one
of the two output modes, and the resulting state is mixed
on a second beam splitter with a variable reflectivity cos θ .

To accommodate losses and other experimental imper-
fections, we consider an arbitrary Gaussian two-mode state
without mean field. We start by considering the state in the
basis of EPR modes, which we denote A′ and B′, such that
we have

WG(�x) = e−�x�V−1�x/2

(2π)2
√

det V
, (41)

where V is the 4 × 4 covariance matrix of the state and �x =
�xA′ ⊕ �xB′ = (xA′ , pA′ , xB′ , pB′)� contains the coordinates in
phase space. Subsequently, we subtract a photon in the first
mode A′, such that the relevant Wigner function is given by
[36]

W−(�x) = ‖PA′(1− V−1)�x‖2 − Tr(PA′V−1) + 2
Tr(VA′ − 1)

WG(�x),
(42)

where PA′ is a projector on the first mode, given by

PA′ =

⎛

⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎠ , (43)

and VA′ is the covariance matrix for the reduced state of the
first mode, given by VA′ = PA′VPA′ .

In the ideal setting of Fig. 2, we can describe the
covariance matrix as

V = 1
2

⎛

⎜
⎜
⎝

r1 + 1/r2 0 1/r2 − r1 0
0 r2 + 1/r1 0 r2 − 1/r1

1/r2 − r1 0 r1 + 1/r2 0
0 r2 − 1

r1
0 r2 + 1/r1

⎞

⎟
⎟
⎠ ,

(44)

where ri = 10si/10 with si representing the squeezing
parameter of the squeezed mode i = 1, 2, given in decibels
(dB), and the squeezing is applied in opposite quadratures.

Photon losses can be described in an open quantum
system approach, as an interaction of the system with
the environment [49]. When the losses are the same in
both modes, the effect can be entirely absorbed within the
covariance matrix, regardless of whether they act before
or after the photon subtraction. The effect of losses can
then be modeled by modifying the covariance matrix in
the following way:

V 
→ (1 − η)V + η1 (45)

with η ∈ [0, 1] representing the amount of loses.
We apply a tuneable beam splitter after the local pho-

ton subtraction. The parameter θ , which parameterizes
the non-Gaussian states, determines the transmissivity
of the beam splitter [T = sin2(θ) ∈ [0, 1]], whose effect
on the quadratures of the phase space is described by the
matrix

M (θ) =

⎛

⎜
⎝

cos(θ) 0 sin(θ) 0
0 cos(θ) 0 sin(θ)

− sin(θ) 0 cos(θ) 0
0 − sin(θ) 0 cos(θ)

⎞

⎟
⎠ .

(46)

The Wigner function of the resulting state that is sent to
Alice and Bob is then written as

W−
θ ( �xA ⊕ �xB) = W−(M (θ)T�x). (47)

The set of non-Gaussian probe states include θ = 0 and
θ = π/2, i.e., zero transmissivity and zero reflectivity,
which leave the state untouched (up to a swap of the
modes). In the former case, the photon is subtracted in
Alice’s mode, whereas in the latter case it is subtracted in
Bob’s mode. Here, we expect an enhancement of Gaus-
sian quantum correlations of the EPR state through the
generation of non-Gaussian features. On the other hand,
θ = π/4 would undo the correlations in the absence of
photon subtraction. However, if a photon is subtracted, the
second beam splitter delocalizes the non-Gaussian features
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of the state over Alice’s and Bob’s modes. In this case, we
witness a purely non-Gaussian quantum correlation, exclu-
sively generated after photon subtraction, as no correlation
is encoded in the covariance matrix of the corresponding
state. This implies that Gaussian protocols like those based
on Reid’s criteria are expected to fail to witness steering.

IV. IDEAL DETECTION OF NON-GAUSSIAN
QUANTUM STEERING

In this section we consider the protocol established in
Sec. II for detection of steering using as probe states the
photon subtracted states introduced in Sec. III. We first
consider ideal results, neglecting the effect of any losses
in the system. After that, we study the effect of losses in
each possible scenario in an analytical way.

A. Gaussian witnesses for quantum steering

Before considering the non-Gaussian scenario, with the
double purpose of validating the protocol and setting up
comparison for the forthcoming results, we analyze steer-
ing in Gaussian two-mode squeezed states (i.e., before
photon subtraction in Fig. 2).

Because Alice and Bob only control a single mode, we
can simplify our notation compared to Sec. II B, by naming
the measured quadratures on Bob’s side

q̂:=�e��̂x, (48)

p̂:=�e���̂x. (49)

Alice’s choice of a phase space axis is equivalent to
choosing an angle ϕ such that she measures

x̂A(ϕ):= cos ϕq̂A + sin ϕp̂A, (50)

which means that x̂A(ϕ) is any quadrature in Alice’s mode.
In Fig. 3, we present the results obtained when we con-

sider an EPR state by setting equal squeezing values, i.e.,
s ≡ s1 = s2, in Eq. (44). We analyze the violation of the
metrological inequality after homodyne detection by Alice,
considering the largest possible violation obtained over
all possible choices of the quadrature on Bob’s side over
which the displacement takes place, as prescribed by the
maximization in Eq. (26). As there is no global phase
dependence in the EPR state, Alice is completely free to
choose one measurement setting ϕ. Bob will thus have to
choose �e such that q̂ is maximally correlated with x̂A(ϕ).
This choice immediately fixes the second quadrature p̂ that
Bob will measure through Eq. (49). The largest value of the
steering witness (26) will then be obtained if Alice chooses
a second measurement setting that measures the quadrature
that is most strongly correlated with p̂ . A key property of
the state is that the correlation between Alice’s and Bob’s
measurements is the strongest when they measure the same

FIG. 3. Witnessing steering in two-mode squeezed states with
equal squeezing in both modes as a function of the squeezing
level s. We show the results using the steering witness (26),
which is in this case identical to Reid’s criterion Shom

R (A) (recall
that any value larger than zero implies quantum steering). We
choose Alice’s measurement settings (50) as ϕ = 0 and ϕ = π/2
to achieve a maximal value of the steering witness (see the main
text). An optimization is performed over all possible choices of
the generator of displacements on Bob’s side.

quadrature (i.e., when their homodyne measurements are in
phase), which means that Alice’s second setting should be
set to ϕ + π/2.

In Fig. 4, we show the effect of photon losses (45) for the
same type of states as in Fig. 3, for 3-dB squeezing. The
latter is relevant to further understand the relation between
Gaussian and non-Gaussian steering and the fundamental
differences that can arise between one and the other.

B. Quantum steering after local photon subtraction

Moving now to the non-Gaussian realm, the natu-
ral first scenario to consider is the subtraction of one

0.0 0.2 0.4 0.6 0.8
0.0

0.4

0.8

1.2

FIG. 4. Effect of losses in the steering witness (26) for a two-
mode squeezed state, as considered in Fig. 3 for a level of
squeezing of s = 3 dB.
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photon in one of the two correlated modes A′ or B′, in
the previously considered Gaussian scenario. This corre-
sponds to θ = 0 or θ = π/2 in the tuneable beam splitter
in Fig. 2. A recent result shows that Gaussian steer-
ing before photon subtraction is a sufficient condition for
remotely generating Wigner negativity [50]. In the follow-
ing we explore a complementary property and investigate
how local photon subtraction affects the steering of the
state.

States obtained by local photon subtraction are nonsym-
metric. Wigner negativity, for example, is only present in
the reduced state of the mode complementary to that where
the photon is subtracted. However, the Wigner negativity
of the two-mode Wigner function is larger than the single-
mode Wigner negativity [51], which indicates the presence
of nonlocal effects. In the same way, one would expect
that steering, which is intrinsically a one-sided property,
should not behave in the same way in both directions, i.e.,
steering from the mode where the photon is subtracted to
the complementary mode is expected to be different from
the steering in the opposite direction. To check this, in
Fig. 5 we show the steering witness, as measured in the
two directions. For the green curves, we use Reid’s cri-
terion (27), which leads to strongly asymmetric results,
as no EPR steering from the mode where the photon is
subtracted is observed. Yet, remarkably, the metrological
witness (26) not only witnesses steering from the photon
subtracted mode, but actually leads to a larger value for
the steering witness. This observation contrasts with what
one would expect from Reid’s criterion, thus clearly show-
ing new non-Gaussian behavior. In a more operational
sense, this result shows that non-Gaussian steering from
the photon-subtracted mode to the complementary mode
can considerably enhance the inference of displacements
in the complementary mode. The entropic witness (38) is
also shown to detect steering from the photon-subtracted
mode, but only when there is sufficient squeezing in the ini-
tial squeezed modes. This means that there is non-Gaussian
steering that can be detected by the metrological witness,
but not by the entropic one. Furthermore, we observe that
the metrological witness systematically produces larger
values than the entropic one (both coincide for Gaussian
steering).

In Fig. 6, we consider the effect of losses, as we did
previously for Gaussian states. The goal is to understand
how resilient the witnesses are and how they are connected
to the Gaussian scenario. As discussed in Sec. III, uni-
form losses in photon-subtracted states can be modeled by
modifying the initial Gaussian covariance matrix as if the
losses occurred at this initial stage. In other words, we ana-
lyze how photon subtraction affects Fig. 4, with the remark
that steering is not symmetric, as we already discussed in
Fig. 5.

There are some remarkable features observed in Fig. 6.
In the first place, as we previously observed in Fig. 5 in

s (dB)

FIG. 5. Steering in photon-subtracted states corresponding to
the choices of θ = 0 and θ = π/2 in the tuneable beam split-
ter in Fig. 2. Solid curves correspond to A steering B, whereas
dashed lines correspond to the scenario where B is steering A.
In green we show the observations arising from the application
of Reid’s criterion Shom

R (A) in Eq. (27). In this case, no steering
from the mode where the photon is subtracted can be observed.
In blue, we plot the steering witness Shom

max (A) in Eq. (26) for the
same set of states and we can see that a violation of the inequal-
ity is attained in the direction where no Gaussian EPR steering is
observed through Reid’s criteria, and remarkably, this violation is
larger than in the opposite direction. This represents a remarkable
signature of non-Gaussian steering. In orange we finally show
that the entropic witness can pick up on steering from B to A
only when there is a sufficient amount of steering. On the one
hand, this clearly highlights the capabilities of the entropic wit-
ness to detect non-Gaussian steering. On the other hand, it also
shows that the metrological witness can detect steering in param-
eter regimes where the entropic witness cannot. We also observe
that in both directions Shom

R (A) ≤ SH (A) ≤ Shom
max (A).

the absence of losses, steering from the photon-subtracted
mode seems to be stronger than the steering from the
complementary mode, in the sense that a larger violation
of inequality (6) is attained. Nevertheless, when we con-
sider the effect of losses, we observe a much faster decay
in the former that renders it harder to witness in a real
experiment. For the entropic witness (38), we see a some-
what slower decay. However, given that the initial value
of the witness in the absence of losses is much smaller
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Smax
hom

Smax
hom

SH
SH
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FIG. 6. Steering in photon-subtracted states corresponding to
the choices of θ = 0 and θ = π/2 in Fig. 2, after uniform loss η

[Eq. (45)]. In particular, we consider the photon subtraction in a
5-dB squeezed state. In accordance with Fig. 5, we can observe
that in the absence of losses the violation of inequality (6) is
larger when we consider the steering from the photon-subtracted
mode than in the other direction. Yet, with increasing losses, the
former decreases much faster (vanishing at 18% losses) than the
steering from the complementary mode (vanishing at 50% losses,
as in Fig. 4). When comparing the metrological witness Shom

max (A)

to the entropic witness SH (A), we observe that, for the steering
from A to B (where the steering resembles Gaussian steering)
and the larger values of η, both witnesses coincide. However,
the metrological witness clearly outperforms the entropic one.
We even find parameter ranges where the metrological witness
detects steering that goes undetected by the entropic witness.

than for the metrological witness, we still find that the
entropic witness is less tolerant to losses. On the other
hand, regardless of the witness we use, steering from the
complementary mode goes away for the same amount of
losses as the Gaussian steering does. These observations,
together with the impossibility of witnessing the steering
from the photon-subtracted mode using Reid’s criterion,
lead us to interpret the steering from the complementary
mode as an enhanced type of Gaussian steering, while the
steering from the photon-subtracted mode appears to be
purely non-Gaussian, stronger, but less resilient to losses.
This behavior is equivalent for other values of squeezing,
and the amount of losses required to destroy the steering
from the photon-subtracted state increases with it.

C. Purely non-Gaussian quantum steering

The most striking shortcomings of considering Gaus-
sian measurements of steering do naturally arise when we
consider purely non-Gaussian correlations. In the present
section we analyze the steering in the state obtained after
setting θ = π/4 in the second beam splitter in Fig. 2. The
final state is equivalent to the state that would be obtained
by subtracting a single photon from a superposition of the

Smax
hom

SH

SR
hom

0 1 2 3 4 5
0

1

2

s (dB)

FIG. 7. Witnessing non-Gaussian steering for the state gener-
ated by having θ = π/4 in the second beam splitter in Fig. 2.
In green we show the absence of violation of Reid’s criterion,
expressed in the form of witness (27). In blue and orange we
observe how an increasing violation of the metrological and
entropic inequalities, respectively, are obtained as the squeezing
level increases, starting from a finite value of witnesses (26) and
(38) for arbitrarily low squeezing.

two initially uncorrelated squeezed modes, which is a non-
local non-Gaussian operation. The non-Gaussian nature of
these correlations can be seen in the Wigner function (42),
whose Gaussian part factorizes for θ = π/4. In Fig. 7,
we show the analysis of the steering as a function of the
squeezing level for this scenario. We consider, as before,
two equally squeezed modes, squeezed in opposite quadra-
tures, i.e., setting r1 = r2 in Eq. (44). We show how Reid’s
criterion fails to witness any quantum steering in this case,
while we witness steering through witnesses (26) and (38).
Even for arbitrarily low amounts of squeezing we find that
these witnesses do not tend to zero, which is fundamen-
tally different to the scenario obtained after local photon
subtraction. Thus, we observe that, by means of a nonlo-
cal non-Gaussian operation, a finite amount of steering is
created for arbitrarily low squeezing. This observation is
in agreement with that obtained when measuring entan-
glement in this kind of non-Gaussian state [36], and can
intuitively be understood in the following way: for an arbi-
trarily low amount of squeezing, both modes are to good
approximation a superposition of vacuum and two-photon
Fock states. After photon subtraction in a balanced super-
position of the two, we obtain an entangled two-mode
state, given by (|01〉 + |10〉)/√2, which is a Bell state.

In this case of purely non-Gaussian steering, both the
metrological and entropic witnesses have been shown to
be effective. However, in Fig. 8 we explore how both wit-
nesses behave in the presence of losses. As for Fig. 6,
we once again find that the metrological witness is more
resilient to losses. Similar plots can be produced for all
squeezing levels, showing the same behavior.
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FIG. 8. Effect of photon losses on purely non-Gaussian steer-
ing, quantified by both the metrological witness (blue solid
curve) and the entropic witness (dashed orange curve) for the
state generated with θ = π/4 in the second beam splitter in
Fig. 2.

Summing up all our comparisons between the entropic
and metrological witnesses, we conclude that there are
cases where the metrological witness can detect steering
that goes undetected by the entropic witness. We find
no opposite case, leading us to suggest that, for single-
photon-subtracted states, the metrological witness tends to
outperform the entropic one. Therefore, we focus our atten-
tion on the metrological witness in the remainder of this
article.

In Fig. 9, we show how witness (26) behaves for these
states under the effect of uniform photon losses. The
behavior is very different to what we observe in the Gaus-
sian scenario. First, we observe a very weak resilience to
noise compared to the former one. Yet, the most strik-
ing feature is that this resilience decreases as the level
of squeezing (and thus steering) increases, contrary to
what happens in the correlated basis (θ = 0), even for the
steering from the mode in which the photon is subtracted.

Finally, in Fig. 10, we show a comparison of how the
witness (26) behaves in the different scenarios that we have
considered, namely, the Gaussian case and the photon-
subtracted states obtained by the procedure described in
Fig. 2 for θ = 0, considering both steering from Alice
to Bob and from Bob to Alice, and for the purely non-
Gaussian case θ = π/4.

V. REALISTIC DETECTION OF NON-GAUSSIAN
QUANTUM STEERING

The approach followed so far considers the ideal sce-
nario in which we can condition the state in Bob’s steered
mode on a definite outcome of Alice’s measure. Yet,
clearly, the latter is equivalent, from an experimental point
of view, to having access to an infinite amount of data,
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FIG. 9. Effect of photon losses on purely non-Gaussian steer-
ing for the state generated with θ = π/4 in the second beam
splitter in Fig. 2. We observe a reduction in the resilience to noise
as the level of squeezing in the initial states increase. The latter
might be linked to the fact that the effect of losses is more severe
in single-mode squeezed states the larger the squeezing is [52].

namely, to sample the whole continuum of possible out-
comes. In this section we approach the problem in a more
realistic fashion, by discretizing the set of Alice’s measure-
ment outcomes, in a way that we no longer condition Bob’s
state on a single outcome but rather on a mixture of the
conditioned states belonging to a given bin on Alice’s side.

First, we analyze this scenario in an analytic way, to
understand the limitations of this procedure. Later, keeping
in mind the results from the former analysis, we con-
sider the more realistic scenario, in which we study the
protocol by simulating homodyne detection with rejection
sampling.

s (dB)

FIG. 10. Comparison of the behavior of the steering witness
in the different scenarios considered so far. Here AG denotes
the assemblage corresponding to the Gaussian state; Aθ={0,π/4}
denote the assemblages corresponding to the states generated
through the choices θ = {0, π/4} in the tuneable beam splitter
in Fig. 2; AA→B(B→A)

θ=0 denote the two nonequivalent directions in
which steering can occur in the case θ = 0—the convention is
the same as in Fig. 5.
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A. Conditioning on finite data

Following the previous idea, the measurement outcomes
that Alice communicates are rather determined by a his-
togram than by a probability density of continuous quadra-
ture measurement outcomes. Therefore, we partition the
real line corresponding to the outcomes of the quadrature
measured by Alice in a series of n bins

I = {I1, . . . , In}, (51)

such that R = ⋃
k Ik and we note that Ik = [lk−1, lk) with

l0 = −∞ and ln = ∞. The probability of measurement
outcomes now is described by

PA[xA(ϕ) ∈ Ik] =
∫ lk

lk−1

PA[xA(ϕ) = x0]dx0, (52)

where xA(ϕ) stands for the quadrature measured by Alice,
for which we keep the notation introduced in Sec. IV for
two-mode states. An assemblage then gives a discrete sum
of the form

A(Ik, x̂A(ϕ)) = PA[xA(ϕ) ∈ Ik]ρ̂B
Ik |ϕ , (53)

where

ρ̂B
Ik |ϕ =

∫ lk

lk−1

PA[xA(ϕ) = x0]ρ̂B
x0|ϕdx0 (54)

is the conditional state on Bob’s side after the measurement
by Alice of quadrature xA(ϕ) falls in bin Ik. This state is a
mixture of all the conditional states conditioned on definite
quadrature outcomes, with a weight given by the marginal
probability density P[xA(ϕ)].

The conditional FI now has to be calculated considering
the discrete assemblage

FB|A
disc(A, Ĥ) = max

ϕ∈[0,2π)

∑

k

PA[xA(ϕ) ∈ Ik]FB
ξ [PB

Ik |ϕ],

(55)

where FB
ξ [PB

Ik |ϕ] is computed according to Eq. (18), with
PB

Ik |ϕ(x|ξ) being the marginal along the displaced quadra-
ture, characterized by �e, conditioned on the displacement
ξ . This probability density can be obtained as PB

Ik ,ϕ(x|ξ) =
∫ lk

lk−1
PA[xA(ϕ) = x0]PB

x0|ϕ(x|ξ)dx0. Because of the convex-
ity of the FI, we find that

FB|A
disc(A, Ĥ) ≤ FB|A

hom(A, Ĥ), (56)

where FB|A
hom(A, Ĥ) is the conditional FI when no coarse

graining is considered.

If we consider the estimation of displacements ξ along
the position quadrature q̂ in Eq. (48), generated by the
Hamiltonian Ĥ = p̂/2, using Eq. (49),

FB|A
disc

(

A,
p̂
2

)

= max
ϕ∈[0,2π)

∑

k

PA[xA(ϕ) ∈ Ik]
∫

R
PB

Ik |ϕ(q − ξ)

×
{

∂ log[PB
Ik |ϕ(q − ξ)]

∂ξ

}2

dq, (57)

where we have made use of the identity PB
Ik |ϕ(q|ξ) =

PB
Ik |ϕ(q − ξ).
The conditional variance of the generator p̂/2 is calcu-

lated in a similar way,

VarB|A
disc

(

A,
p̂
2

)

= min
ϕ∈[0,2π)

∑

k

PA[xA(ϕ) ∈ Ik]

× Var
(

ρ̂B
Ik |ϕ ,

p̂
2

)

, (58)

where the variance Var(ρ̂B
Ik |ϕ , p̂/2) in the conditional state

ρ̂B
Ik |ϕ in Eq. (54) is calculated in full analogy to Eq. (25).
For the examples in Fig. 11, the (typically unequal)

sizes of the different bins are optimized to maximize the
witness. Because the photon-subtracted states have no
mean field, we choose bins that are symmetric around the
origin to reflect the structure of the exact quadrature statis-
tics. We show the behavior of the steering witness (10)
against the level of squeezing of the initial two-mode state
for the case of purely non-Gaussian steering corresponding
to the choice θ = π/4 in the second beam splitter in Fig. 2.
Being able to witness steering in this challenging regime
while considering realistic discretization of the measure-
ment results is particularly encouraging for the prospect of
experimental implementations of this method.

In Fig. 12 we analyze how binning the spectrum of out-
comes of Alice’s measurements affects the capability to
witness the steering under the influence of photon losses.
As expected, measurements with fewer bins, which lead
to weaker violations of witness (6), also show a smaller
tolerance to losses.

B. Detecting quantum steering on homodyne data

In this section we present a realistic analysis of the pro-
tocol that we have presented. So far, we have considered
in an exact way the marginals of the Wigner functions.
In an experimental implementation we would have to
infer these probability densities from the outcomes of the
homodyne measurements, or compute directly some of the
quantities involved. To study such a scenario, we simu-
late experimental data through rejection sampling from the
theoretical probability densities.
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FIG. 11. Effect of discretization of the quadrature outcomes on
Alice’s side on the witness of steering for the two-mode photon-
subtracted state with θ = π/4 in the tuneable beam splitter in
Fig. 2. Below five bins it is not possible to witness steering as we
fail to capture important features of the probability density. Nev-
ertheless, a good violation of inequality (6) is possible starting
from five bins.

As we have observed so far, in the states that we have
considered the largest violations are obtained when consid-
ering displacements along the q or p quadratures, condi-
tioned on measurements in the same quadrature on Alice’s
side. This is particularly suited for an experimental imple-
mentation as simultaneous locking of the local oscillators
in the phase and amplitude quadrature is already possible
in homodyne detection schemes. Therefore, the data that
we simulate for each measurement are sampled from the
joint probability distribution of the same quadratures of
both Bob’s and Alice’s modes, which can be theoretically
obtained by integrating the Wigner function (47) over the
remaining quadratures. To better represent realistic experi-
mental settings, the states that we consider will be slightly
different from those that we analyzed before. In particu-
lar, the squeezing of the two modes will not be exactly

Continuous
13 bins
11 bins
5 bins

0.00 0.02 0.04 0.06
0.0

0.5

1.0

1.5

Smax
hom( )

FIG. 12. Effect of losses in the witness of steering in the same
kind of states as in Fig. 11 for a level of squeezing of 4 dB. As
expected, the steering witness is reduced with increasing losses,
but again, for a reasonably low number of bins, such as 13, the
resilience is almost the same as in the pure loss-free scenario.

FIG. 13. Schematic representation of the analysis of the sim-
ulated data. The histogram in the top represents the outcome
statistics of measurements of Alice’s position quadrature. The
panels below each represent the conditional statistics of the posi-
tion quadrature of Bob’s mode, corresponding to each of the bins
of Alice’s histogram. Wide tails, compared to the rest of the bins,
are considered in order to guarantee sufficient statistics for the
reconstruction of the states conditioned on less likely outcomes.

the same. Thus, the choice of quadratures previously men-
tioned is not the optimal one, but it will always provide a
lower bound for the actual value of the witness.

In what follows, we discuss the protocol for the analysis
of the data. Let us consider the simultaneous measurement
of the momentum quadrature. The ideal reconstruction of
the assemblage implies the inference of the probability
density on Alice’s side, and for each possible outcome, the
reconstruction of the conditioned state. As mentioned in
the previous subsection, this is an unfeasible experimental
task, even more so if we consider the fact that one actually
undersamples the tails of the distributions on Alice’s side,
in a way that reconstructing the statistics of its correspond-
ing conditioned state is impossible. To overcome this issue,
we have to build a histogram on Alice’s side, and analyze
Bob’s statistics conditioned on each bin of the histogram
(Fig. 13). It is important to remark that the histogram has to
be inhomogeneous: the bins in the tails must encompass a
larger region in order to avoid spurious contributions from
undersampled data.

Computing the conditional variance is a rather straight-
forward task. On the other side, the computation of the
FI from the discrete outcomes is more subtle. The most
common procedure to experimentally estimate the FI relies
on the computation of the Hellinger distance (statistical
distance) between the reference probability density and the
displaced ones [53–55].
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With a parameter-dependent probability density P(q|ξ)

and a reference P(q|0), the Hellinger distance is defined as

d2
H (ξ) = 1

2

∫

q

(√
P(q|ξ) −

√
P(q|0)

)2dq. (59)

Expanding P(q|ξ) to first order in ξ , it is possible to show
that

d2
H (ξ) = F

8
ξ 2 + O(ξ 3), (60)

where F is shorthand for the Fisher information Fξ=0[P].
Hence, it is enough to perform a quadratic fitting of the
Hellinger distance to estimate the FI F . The latter is
particularly well suited for our analysis as the displaced
probability distributions can be obtained by just shifting
the reference one. Such a postprocessing displacement of
the measurement outcomes does not require experimen-
tally implementing the displacements, which is much more
demanding. In an experimental implementation we have
access to relative frequencies {F(q|ξ)} rather than the
exact probabilities P(q|ξ) required above. In this context
Eq. (60) is valid only as an approximation, given the fact
that F(q|ξ) = P(q|ξ) + δF(q|ξ), with δF(q|ξ) a statisti-
cal fluctuation that arises due to finite sample size. Because
of normalization,

∑
q δF(q|ξ) = 0, where the sum runs

over all possible values of q, which for CV systems will
be given by all possible bins in which the outcome of
the measurement might fall. If we define the histograms
f (0) = {F(q|0)}q and f (ξ) = {F(q|ξ)}q for a sample of n
experimental measurements, we have [53]

〈d2
H (f (0), f (ξ))〉 = c0 +

(
F
8

+ c2

)

ξ 2

+ O(ξ 3, δF(q|ξ)3) (61)

with

c0 = N − 1
4n

,

c2 ≈ F(1 + N )

32n
,

(62)

where 〈d2
H (f (0), f (ξ))〉 is the sample average of the

Hellinger distance between the two relative frequencies,
n is the number of measurements, and m is the number of
values of q for which F(q|ξ) �= 0. Observe that the previ-
ous formula converges asymptotically to (60). This implies
that the estimation of F is asymptotically unbiased, with
the bias decreasing as 1/n.

In Figs. 14 and 15 we study the influence of losses
on the estimation of the steering witness (10) based on a
finite set of n = 105 data points. In most experiments, it
is unrealistic to have exactly the same squeezing in each
mode. Therefore, the specific values of the squeezing in
Alice’s and Bob’s initial states (at the left of Fig. 2) are
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FIG. 14. Numerical simulations of the effect of losses in the
witness of steering estimation (10). The state that we consider
is defined by the choice of θ = 0 in the preparation scheme,
i.e., the state resulting after local photon subtraction in one of
two correlated squeezed modes, with inhomogeneous squeezing
s1 = 3.2 dB and s2 = 2.6 dB. The plot in the top corresponds
to the steering from the mode complementary to that where the
photon is subtracted. The bottom plot corresponds to the steer-
ing from the mode where the photon is subtracted. Dashed lines
correspond to the exact analytical results obtained considering
binning on the steering side. Error bars correspond to statisti-
cal errors and uncertainties on the fit. We can observe that the
steering from the photon-subtracted state, which is not observed
using Gaussian criteria, vanishes somewhere between 3% and
4% losses, while the steering in the complementary direction
persists for larger losses.

chosen arbitrarily. We choose s1 = 3.2 dB and s2 = 2.6
dB since these lie in an experimentally relevant range. The
obtained violation is below the exact result Shom

max (dashed
line) obtained when considering the exact Wigner function
of the system for the same set of parameters.

In Fig. 14, we investigate this system in the corre-
lated basis, i.e., the cases θ = 0, where Bob subtracts a
photon. Subsequently, we analyze the steering from Alice
to Bob and from Bob to Alice. As before, the case where
Alice steers Bob can be studied using Reid’s criterion, as
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FIG. 15. Numerical simulations of the effect of losses in the
witness of steering estimation (10). The top panel represents
the state preparation with θ = π/4, i.e., delocalized photon sub-
traction from a two-mode squeezed state with inhomogeneous
squeezing s1 = 3.2 dB and s2 = 2.6 dB. Dashed lines correspond
to the exact analytical results obtained considering binning on the
steering side with a perfect measurement of the Fisher informa-
tion (as in Sec. V A), while points are obtained by inferring the
Fisher information from the finite data using the Hellinger dis-
tance method (see the text). Error bars correspond to statistical
errors and uncertainties on the fit. Contrary to the results showed
for homogeneous squeezing, here we can observe a remarkable
difference in the steering in the two complementary directions.

shown in Fig. 5(a), indicating that it is essentially a case
of Gaussian steering. Also in these simulations, based on a
finite number of data points, this Gaussian character trans-
lates to a much greater resilience against losses. However,
for steering from Bob to Alice—which cannot be wit-
nessed through Reid’s criterion—we observe a much more
detrimental effect of losses. Because non-Gaussian features
are typically very sensitive to losses, a possible origin of
this sensitivity is that the steering is dominated by non-
Gaussian features of the state. This conjecture is supported
by Fig. 6, which shows that the protocol is much more
loss resistant when the correlations have some Gaussian
features.

To fully explore the feasibility of our method for wit-
nessing non-Gaussian steering, we show the case for θ =
π/4 in Fig. 15. In this scenario, all the correlations in

the state (be it quantum or classical) originate from the
non-Gaussian part of the Wigner function (47) and no
quantum correlation can be witnessed based on its covari-
ance matrix. In other words, this is a state where all
quantum steering is purely non-Gaussian in nature. Again,
we observe a much more detrimental effect of losses com-
pared to the top panel of Fig. 14. However, due to the
asymmetry in the steering of the two modes, we observe
a much larger value for the steering witness when con-
sidering steering from the lesser squeezed mode to the
more squeezed modes. This higher value also comes with
a higher robustness to losses. From an experimental point
of view, the tolerable loss values remain very small in both
cases. Nevertheless, these simulations show that in suffi-
ciently pure systems it is possible to witness non-Gaussian
quantum steering using exclusively homodyne detection
with an experimentally feasible protocol.

VI. CONCLUSIONS AND OUTLOOK

We proposed a protocol for witnessing steering in CV
systems. The protocol is based on the metrological steer-
ing criterion first proposed in Ref. [13], and relies solely
on homodyne detection. The latter makes it suitable for
current experimental capabilities. The protocol is shown
to succeed in detecting quantum steering in non-Gaussian
states, even in scenarios where protocols based on Gaus-
sian features, like Reid’s criterion, are shown to fail,
when restricted to quadrature measurements. A compar-
ison between our metrological protocol and the entropic
witness presented in Ref. [40] shows that our protocol
consistently outperforms the entropic one. This adds to a
similar conclusion that was reached in Ref. [56] for a com-
parison between metrological and entropic entanglement
witnesses. It remains an interesting open question whether
there is a formal way of proving that the metrological wit-
ness is always larger than the entropic one. Such a proof
could potentially lead to new insights into the relation
between the Fisher information and entropy.

A realistic simulation of data from a continuous-variable
experiment includes the effects of loss, data discretization,
and the scalable extraction of the Fisher information. Our
results show that non-Gaussian quantum steering can be
detected with a feasible number of measurements. Even
for reasonably small numbers of samples (n = 105), the
violation of inequality (6) can be observed with several
standard deviations, considering around 3 dB of squeez-
ing, albeit requiring rather low losses. Rather than a feature
of our specific protocol, the high sensitivity to losses for
these states might be an indication of the fragile nature of
non-Gaussian quantum steering. We should emphasize
that our metrological witness is based on the same
experimental implementation as Reid’s criterion for
quadrature operators. However, the postprocessing of the
measurement data is significantly more involved in our
approach.
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The relevance of our protocol is not merely experimen-
tal. Non-Gaussian quantum correlations are notoriously
difficult to study in CV systems. For the most com-
plete descriptions of CV states, one generally resorts to
quasiprobability distributions. However, it is highly chal-
lenging to use such objects to study quantum correlations
(Bell inequalities are a notable exception [57,58]). The
techniques in Sec. II B provide a useful way to analytically
study the presence of metrologically useful non-Gaussian
quantum steering based purely on the marginal of the
Wigner function.
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APPENDIX: GENUINELY MULTIMODE
PROTOCOL

The protocol that was proposed in Sec. II B effectively
describes a witness for steering between two modes in a

larger multimode system. In this section, we provide an
extension of the protocol in a more general multimode
setting. The resulting steering witness is strictly better
for testing the steering between Alice and Bob, but it
comes with considerably more experimental overhead and
parameters to optimize.

First of all, let us consider Alice’s subsystem that con-
tains m modes. Rather than just choosing one axis �f
in Alice’s phase space along which to measure, we can
choose any set of axes that are not connected to the
same mode. Formulated differently, for any mode basis
in Alice’s subsystem, we can measure one quadrature in
each mode and condition on the joint outcome for all these
measurements.

To formalize this idea, let us first consider an orthonor-
mal symplectic basis F of Alice’s phase space, given
by

F = {�f1, �f1, . . . , �fm, ��fm}, (A1)

where �fk are all vectors in R2M with M the number
of modes in the global system that contains both Alice
and Bob. One can think of F as one of the infinitely
many ways of identifying axes in Alice’s phase in a
way such that �fk and �fk always belong to the same
mode (we could say that the axis generated by �fk rep-
resents the measurements of the q quadrature in this
mode and �fk generates the axis that represents its p
quadrature).

The vectors �f1, . . . , �fm by construction now correspond to
m axes in phase space that can be jointly measured. When
we perform such a measurement and postselect on a series
of measurement outcomes x1, . . . , xm for each one of these
axes, we find that Bob’s Wigner function is transformed
into

WB|A(�xB|x �f1
A = x1, . . . , x

�fm
A = xm) =

∫
R2m W(�xA ⊕ �xB)

∏m
k=1 δ(�f �

k �xA − xk)d�xA

PA(x
�f1
A = x1, . . . , x

�fm
A = xm)

, (A2)

where we define

PA(x
�f1
A = x1, . . . , x

�fm
A = xm) =

∫

R2m⊕R2m′ W(�xA ⊕ �xB)

m∏

k=1

δ(�f �
k �xA − xk)d�xAd�xB. (A3)

Equation (A2) thus directly generalizes Eq. (19).
On Bob’s side of the system, we are now going

to use this Wigner function to study the effect of a
change in the mean field. One particular feature of such

displacement operations is that they are generated by a
quadrature operator, which means that they are always act-
ing along a well-defined axis �e in Bob’s phase space. The
parameter of interest thus affects Bob’s conditional state as
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WB|A(�xB|x �f1
A = x1, . . . , x

�fm
A = xm) 
→ WB|A(�xB − ξ�e|x �f1

A = x1, . . . , x
�fm
A = xm). (A4)

Because on Bob’s side we implement a parameter with a single-mode generator, the calculation of the conditional variance
generalizes in a straightforward fashion as

VarB|A
hom

(

A,
�e���̂x

2

)

= min
F

1
4

∫

Rm
PA(x

�f1
A = x1, . . . , x

�fm
A = xm)

× Var
(
ρ̂B

x1,...,xm|�f1,...,�fm , �e���̂x)dx1 · · · dxm, (A5)

where Var(ρ̂B
x1,...,xm|�f1,...,�fm , �e���̂x) is the variance of the quadrature corresponding to the generator �e���̂x. To compute this

quantity, we use exactly the same subspace of phase space as before, generated by all vectors orthogonal to ��e:

P⊥ = {�xB ∈ R2m′ | �e���xB = 0}. (A6)

We then calculate the measurement statistics for the quadrature �e���̂x as

P̃B
x1,...,xm|�f1,...,�fm(p) =

∫

P⊥
WB|A(�xB|x �f1

A = x1, . . . , x
�fm
A = xm)d�xB, (A7)

where p denotes the values along the single remaining phase space axis generated by �e���̂x. This distribution allows us to
compute

Var
(
ρ̂B

x1,...,xm|�f1,...,�fm , �e���̂x)

=
∫

R
p2P̃B

x1,...,xm|�f1,...,�fm(p) dp −
( ∫

R
pP̃B

x1,...,xm|�f1,...,�fm(p) dp
)2

. (A8)

In practice, this is still the variance of only one quadrature operator in Bob’s conditional state. From an experimental point
of view, this can be considered a significant advantage due to limited overhead.

The biggest difference appears on the level of the Fisher information. In Eq. (22), we only use the specific displaced
quadrature along the phase space axis �e. However, more generally speaking, we can use any set of quadratures in Bob’s
subsystem to estimate the displacement strength ξ . To formalize this idea, we are going to consider the case where we
use m′ (the number of modes in Bob’s subsystem) jointly measurable quadratures to estimate ξ . To do so, we use the
Wigner function (A2) and integrate out all the complementary quadratures. To maximize the efficiency of the parameter
estimation, we always consider cases where the full displacement is contained within the set of quadratures that is used to
estimate it.

For this purpose, let us introduce a symplectic orthonormal basis G of Bob’s phase space R2m′
:

G = {�g1, ��g1, . . . , �gm′ , ��gm′ }. (A9)

A crucial additional constraint that is imposed on this basis is that some αk ∈ R with
∑

k α2
k = 1 exist such that

�e = α1�g1 + · · · + αm′ �gm′ . (A10)

This demand is important, because we are going to measure quadratures along the phase space axes generated by
�g1, . . . , �gm′ . When doing so, we generalize Eq. (20) to

PB
x1,...,xm|�f1,...,�fm(q1, . . . , qm′) =

∫

R2m′

m′
∏

k=1

δ(�g�
k �xB − qk)WB|A(�xB|x �f1

A = x1, . . . , x
�fm
A = xm)d�xB. (A11)
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The action of the displacement now becomes a bit more subtle, in the sense that

PB
x1,...,xm|�f1,...,�fm(q1, . . . , qm′ | ξ) = PB

x1,...,xm|�f1,...,�fm(q1 − α1ξ , . . . , qm′ − αm′ξ | ξ). (A12)

The Fisher information for estimating ξ using this multivariate distribution can be calculated by a straightforward
extension of Eq. (18), such that we find that

FB
ξ [PB

x1,...,xm|�f1,...,�fm] =
∫

Rm′ PB
x1,...,xm|�f1,...,�fm(q1, . . . , qm′ | ξ)

(
∂L(q1, . . . , qm′ | ξ)

∂ξ

)2

dq1 · · · dqm′ . (A13)

The conditional Fisher information then becomes

FB|A
hom

(

A,
�e���̂x

2

)

= max
F

∫

Rm
PA(x

�f1
A = x1, . . . , x

�fm
A = xm)FB

ξ [PB
x1,...,xm|�f1,...,�fm]dx1 · · · dxm. (A14)

Note that we maximize over all possible bases for Alice’s phase space F , as given by Eq. (A1).
Combining all the above elements now leads us to formulate a fully multimode version of the metrological witness

(26):

Shom
max (A) = max

�e∈R2m′ ;G

[

FB|A
hom

(

A,
�e���̂x

2

)

− VarB|A
hom(A, �e���̂x)

]+
(A15)

with the terms now defined through Eqs. (A5) and (A14).
Furthermore, we note that we must maximize this value
over all possible choices of displacement directions and
subsequently all the possible ways of constructing a basis
G of Bob’s phase space according to Eq. (A9). Of course,
in practice, any displacement direction and measurement
basis that allows us to obtain a value of Shom

max (A) that is
significantly larger than zero (significant as compared to
an experimental error bar) is sufficient to certify quantum
steering from Alice to Bob.

The steering witness in Eq. (A15) is guaranteed to
outperform the version in Eq. (26) in which Bob only
measures the displaced quadrature. However, it is clear
that having to optimize several homodyne detectors to
function simultaneously clearly requires much more exper-
imental overhead than using a single detector. This thus
imposes the question of whether there is a strict advantage
in using the multimode witness (A15), where Alice and
Bob measure all their quadratures simultaneously.

For Alice’s measurements, we explore the case where
no individual mode (regardless of the mode basis) can steer
Bob, but where we require the use of several modes at the
same time. On Bob’s side, the matter is more related to
metrology. Because the displacement is anyway generated
by a generator that acts on one specific mode, it is logical to
wonder whether only measuring the displaced quadrature
operator is sufficient to extract all information on ξ . There
is an argument to suggest that this is typically not the case.
When in the state given by Eq. (A2), the mode in which

the displacement acts is entangled to other modes; a mea-
surement of only the displaced quadrature will trace out the
other modes, which effectively leads to decoherence. This
suggests that in these cases Eq. (A15) could detect steering
that remains hidden when the simpler form (26) is used.
This can be verified by comparing the obtained FI to the
QFI if the latter can be calculated.

A detailed study of all these extra effects would require
us to perform additional case studies for different kinds of
multimode states. However, such a study requires a more
dedicated effort and is considered to be beyond the scope
of this work.
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6
C O N C L U S I O N S

Throughout the past decade, continuous-variable quantum systems have seen a surge in
popularity, motivated by the developments in bosonic error correction codes, realisations
of Gaussian boson sampling, and real-world applications such as the use of squeezing
in gravitational wave detection. These developments have lured researcher from a
variety of fields, e.g., superconducting circuits, into exploring the continuous-variable
degrees of freedom of their systems. This has recently led to a series of impressive
continuous-variable experiments (Campagne-Ibarcq et al., 2020; Lescanne et al., 2020;
Neeve et al., 2022).

Where the continuous-variable approach was long seen as a niche, it is gradually
becoming more mainstream. While this creates a very dynamic and increasingly well-
funded research environment, it also boosts competition. Among these competitors, we
now also count large industry players such as Xanadu (optics) and Amazon (supercon-
ducting circuits). This regularly forces us to take a few steps back and reflect about our
place in this dynamical landscape.

In this Habilitation thesis, I tried to show that we consciously choose to stay away
from well-defined road maps with clearly outlined technical challenges to overcome, but
rather pursue a free exploration of the interesting physics that surrounds continuous-
variable quantum technologies. In my research, this is reflected by a growing focus on
quantum resources, i.e., useful features of quantum states. Works such as Mari and
Eisert, 2012 and Albarelli et al., 2018; Takagi and Zhuang, 2018 have strongly motivated
my interest in understanding the prerequisites for generating Wigner negativity. How-
ever, our recent results in Chabaud and Walschaers, 2023 provide a strong motivation
to explore other resources, such as non-Gaussian entanglement and stellar rank.

This thesis highlights how the theory research in our group is evolving towards a
structure in which we explore three core elements of these quantum resources: creation
(see Chapter 3), characterisation (see Chapter 5), and their applications (see Chapters
2 and 4). The research lines in these three directions are strongly intertwined, and
ultimately we hope that the exploration of applications in quantum computing and
quantum metrology will ultimately help us identify new relevant quantum resources.
This has now put us on the track of non-Gaussian entanglement, which will be the

191
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central resource that we will study in the near future.

In the long-run, we hope that many of the different pieces of the puzzle on quantum
advantages will ultimately click together. On the one hand, the negativity of phase-
space representations of the state seems like a key ingredient. Negativity of some
quasiprobability distributions have been identified as a crucial resource for reaching a
quantum computational advantage (Mari and Eisert, 2012; Rahimi-Keshari et al., 2016)
and negativity of other quasiprobability distributions are known to lead to some form
of quantum metrological advantage (Arvidsson-Shukur et al., 2020). Negativity of the
Wigner function has also been connected to a continuous-variable type of contextuality
(Booth et al., 2022; Spekkens, 2008), and in turn contextuality is a known to provide the
“magic” in measurement-based quantum computing (Howard et al., 2014). On the other
hand, it is still unclear how resources such as a high stellar rank and non-Gaussian
entanglement (Chabaud and Walschaers, 2023) fit into this picture.

Considering quantum metrological advantages, it remains a serious open question
whether non-Gaussian resources can provide a sufficiently large improvement to make
it worth the effort of generating those resources in the first place. Our metrological
detection techniques for non-Gaussian entanglement (Barral et al., 2023; Lopetegui
et al., 2022) suggest that non-Gaussian entanglement could have useful metrological
properties. However, these metrological witnesses compare metrological sensitivity to
other properties of the state. Were we only to focus on the metrological sensitivity, it is
not guaranteed that there are not separable Gaussian states than can lead to the same
performance. The cases we have consider so far suggest that this typically is the case.
This suggests that in the future it will be crucial to delineate operational settings to
reach a meaningful comparison between the metrological properties of different types
of quantum states.
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