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Chapter 1

Experience in Research

1.1 Curriculum Vitae

1.1.1 Research Positions

MAR 2021- MAR 2023

OCT 2016 - NOW

JAN 2014 - OCT 2016

NOV 2013 - JAN 2014

OCT 2010 - NOV 2013

Chaire Ecole Polytechnique, Sanofi, Paris France.

Secondary appointment of research and teaching. Chaire "NUMERICAL INNO-
VATION AND DATA SCIENCE FOR HEALTH", work in collaboration with the Inria
Team XPOP.

Reference: Marc lavielle

Chargé de Recherche CRCN Inria Bordeaux Sud-Ouest, France.

Researcher in the SISTM TEAM (Statistics In System biology and Translational
Medicine). Also affiliated with Inserm U1219 Bordeaux Population Health.
Reference: Rodolphe Thiébaut

Postdoctoral fellow Harvard school of Public Health, Boston USA.
BIOSTATISTICS DEPARTMENT, working on “Semi-parametric estimation of treat-
ment effect in clustered randomized trials in presence of missing data: appli-
cation to HIV prevention in South Africa”

Reference: Victor de Gruttola

Invited Researcher University of Oslo, Norway.

INSTITUTE OF BASIC MEDICAL SCIENCES, working on “Comparison of propen-
sity score based methods and dynamical methods for estimation of treatment
effect in observational studies”

Reference: Odd Aalen; Jon Michael Gran

Allocataire Moniteur Université de Bordeaux, France.
TEACHING ASSISTANT position during my PhD (64 hours/year)
Reference: Pierre Joly
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1.1.2 Diplomas

OCT 2010- NOV 2013 | PhD in Biostatistics, Université de Bordeaux, France.
“Monitoring of HIV infected patients based on dynamic models”.
* With high honor from the jury (avec les félicitations).

* Prix de thése Société Francaise de Statistiques (2015)

Reference: Daniel Commenges

SEPT 2009 - SEPT 2010 | Master of Science Statistics and Econometrics, Université de Rennes 1, France.
at the department of mathematics, with high honors (dual curriculum)

SEPT 2007 - SEPT 2010 | Engineer Diploma ENSAI, Rennes, France.
National School for Statistics and Information Analysis.

SEPT 2008 - SEPT 2009 | Bachelor of Science in economics, Université de Rennes 2, France.
at the department of economics (dual curriculum)

SEPT 2005 - SEPT 2007 | Classes Préparatoires aux Grandes Ecoles Lycée Montaigne, Bordeaux, France.
MPSI/MP Math Physics and engineer sciences

1.1.3 Prizes and Awards

P-2024-1 ToP DOWNLOAD (RI-22-1) Paper in the 10% most downloaded among work published in an
issue between 1 January 2022 — 31 December 2022 in CPT: Pharmacometrics & Systems phar-
macology.

P-2021-1 PEDR - Research "excellence" and doctoral supervision grant (2021 - 2025).
P-2017-1 PEDR - Research "excellence" and doctoral supervision grant (2017 - 2021).

P-2016-2 CONFERENCE TRAVEL AWARD (SFDS) — This 600€-grant allow young scientists whose applica-
tion get selected to attend a the French annual conference JdS (2016).

P-2016-1 HARVARD ROSE FELLOWSHIP AWARD — 4 prices a year to excellent scientific postdoctoral fellows
to offer a cross-cultural experience of research in developing country. My project concerned:
"Estimation of incidence and prevalence of HIV in Botswana: pooling data from different regis-
ters to evaluate the impact of personal characteristics such as citizenship".

P-2015-2 THESIS AWARD - MARIE-JEANNE ET LAURENT DUHAMEL PRICE FROM SFDS is given once ev-
ery other year and awards scientific quality of PhD works in Applied Statistics.

P-2015-1 PHILIPPE FOUNDATION (RENEWAL) (6000$ personal grant) My project concerned: "Evaluating
and targeting of HIV prevention strategies".

P-2014-1 PHILIPPE FOUNDATION Non-profit organization for Franco-American exchanges (5000$ personal
grant). My project concerned: "Methods for analyzing HIV clustered randomized data and
cohort data with informative missingness".

1.1.4 PhD Supervision and Mentoring (6)

* Auriane Gabaut, expected defense end 2026: Her PhD, tentatively titled “Methods for latent
variable models in mechanistic models”, is being conducted under the co-supervision of Cécile


mailto:daniel.commenges@u-bordeaux.fr
https://www.sfds.asso.fr/fr/group/prix_et_bourses/544-le_prix_marie_jeanne_laurent_duhamel/
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Proust-Lima at Inserm Bordeaux Population health Biostat team and myself Inria/Inserm
SISTM in Bordeaux. She is funded by an Inria CORDI-S grant and the PHDS network Impul-
sion (NG-22-1). The project endeavors to reconcile mechanistic modeling, traditionally reliant
on limited markers, with the analysis of high-dimensional data, typically comprising extensive
readouts from a few individuals. The initial phase involves enhancing the SAMBA algorithm to
accommodate a high number of covariates in the statistical model of the mechanistic model, in-
corporating dimension reduction techniques, particularly lasso methods. Subsequently, the PhD
work will focus on developing new statistical tools using latent variable models. This entails
formulating a complex observation model for the mechanistic model, necessitating the creation
of new likelihood estimators and further dimension reduction strategies. The ultimate goal is to
develop tools applicable to mechanistic models, regardless of whether they possess an analyti-
cal solution. The application is anticipated to utilize data from the PREVAC-UP (IG-19-2) and
Coverage-Immuno (IG-20-1) projects. Particularly in Coverage-Immuno, innovative methods
have enabled the study of gene expression through sequencing from blood droplets collected
via prick tests by patients themselves. This breakthrough facilitates daily sampling of gene
expression, offering insights into the abundance of cell populations and the dynamics of biolog-
ical metabolic pathways. These markers can be integrated into mechanistic models, enhancing
the understanding of biological processes. She received the Best Poster award at the "2023
Bordeaux Population Health - Journée des jeunes chercheurs".

* Adrien Mitard, expected defense end 2026: His PhD, tentatively titled "Accelerating Vaccine
Development Using Pre-Clinical Data", is being conducted under the co-supervision of Jeremie
Guedj at the Inserm IAME in Paris and myself Inria/Inserm SISTM in Bordeaux. Adrien
Mitard is located in Paris. He is funded by the PEPR Santé numérique SMATCH (NG-23-1). The
endeavor is strategically positioned at the intersection of current SARS-CoV-2 challenges, with a
dedicated focus on constructing predictive models. These models will be pivotal in assimilating
data on viral load kinetics and immune responses using mechanistic models, thereby enhanc-
ing the strategic framework for vaccine development and the optimization of antiviral dosing
regimens. The ultimate objective is to utilize these models to extrapolate from empirical data
gathered in pre-clinical trials to human populations. The project encapsulates three principal
initiatives: 1/ Joint Model Construction: The first initiative is to construct a comprehensive
model that synergistically represents the dynamics of viral load and the humoral immune re-
sponse following viral challenges in non-human primates. 2/ Innovative Pre-Clinical Study
Designs: The second initiative seeks to propel the methodological framework of pre-clinical
studies forward. This includes advocating for the implementation of lower innoculum levels
and the strategic timing of challenges, informed by the expected dynamics of the investigated
correlates of protection. 3/ Translational Research: The final initiative focuses on the trans-
lation of these pre-clinical findings to human contexts. This will involve leveraging allometric
scaling principles and predictive modeling techniques to bridge the interspecies divide, thus
enhancing the reliability of vaccine efficacy predictions for human populations.

* Iris Ganser, expected defense end 2024: Her PhD entitled "Effectiveness of non-pharmaceutical
interventions and vaccines during the COVID-19 pandemic" is supervised by David Buckeridge
from Mc Gills University and Rodolphe Thiébaut within the Inria/Inserm SISTM Team. It was
funded by IdEX Bordeaux and the Fonds de Recherche Santé Québec. I am a co-mentor. The
PhD projects are three-fold. 1/ Estimation of Non-pharmaceutical Interventions and Vaccines’
Effects against COVID-19. This project aims to develop and utilize dynamical models to model
the pandemics. I weekly supervised Iris on this topic and this was published in the Epidemics
Journal (RI-24-1). 2/ Comparison of Regression and Mechanistic Models. The objective is to
assess each model’s effectiveness in capturing and predicting COVID-19 dynamics accurately.
I developed the idea of this second project. 3/ Real-life Vaccine Effectiveness in Ontario,



Canada. I am only a consultant on this third project. The goal is to utilize data from blood
donors and to perform mechanistic modeling of antibodies response to help in better under-
standing waning immunity. She received the Best Presentation award at the "2023 Bordeaux
Population Health - Journée des jeunes chercheurs".

Marie Alexandre, defended May 2022: Her PhD entitled “Mechanistic modeling and optimiza-
tion of vaccine response in infectious diseases: Application to HIV, Ebola, SARS-CoV-2” was
co-supervized by myself and Rodolphe Thiébaut at Inria/Inserm SISTM team in Bordeaux.
She was funded by an Inria CORDI-S grant. Marie Alexandre focuses on the role of mathemat-
ical modeling in understanding the immune response induced by vaccination. It consisted un
two major modeling pieces. First, the modeling of viral response in NHP after challenge with
an infectious agent allows us to derive a method to define correlates of protection against infec-
tion. As far as methodology is concerned, we ground based our work into a causal framework
(RI-22-4). Second, we modeled humoral response to vaccination in order to better under-
stand and predict the long-term persistence of antibodies response after vaccination (RI-23-7).
Finally, we developed a more biostatistical approach to analyse the data of vaccine trial for
HIV using antiretroviral treatment interruption that are prone to informative right censoring
(RI-21-2). This PhD led to 4 publications that I directly supervised and conceptualized (includ-
ing RI-22-2). Marie Alexandre is now continuing as a Postdoctoral fellow in the Inria SISTM
team.

Laura Villain, defended Dec. 2018: Her PhD entitled "Analyse et modélisation de l'effet de
I'Interleukine 7 (IL-7) chez les patients infectés par le VIH" was supervised by Daniel Com-
menges and Rodolphe Thiébaut within the Inria/Inserm SISTM Team. It was funded by the
doctoral network of EHESP (Ecole des hautes études en Santé publique). I was a co-mentor.
Although not official at the doctoral school, I interacted weekly (and more) with Laura
Villain during the second half of her PhD. It builds on the seminal paper from Thiébaut et
al. "Quantifying and Predicting the Effect of exogenous IL.-7 on CD4+T cells in HIV-1 Infec-
tion." (RI-14-1) which launched a whole theme in the team on the modeling and optimization
of delivery of IL-7 in individuals living with HIV. Interleukin-7 (IL-7) is a cytokine, which is a
type of signaling molecule in the immune system. It plays a crucial role in the development and
maintenance of T cells, a key component of the adaptive immune response. In the context of
HIV infection, where there is a significant depletion of CD4+ T cells, IL-7 has been investigated
as a therapeutic agent to help restore these cells. Its ability to enhance T cell survival and pro-
liferation makes it a promising candidate for supplementing antiretroviral therapy in patients
who do not achieve full immune reconstitution with antiretroviral therapy alone. The PhD of
Laura Villain places in the context of the the INSPIRE trials series (phase 1/1Ia). It consisted
in modeling the data to mechanistically understand and quantify the effect of IL-7 on survival
and proliferation of T cells, as well as proposing optimal strategies to deliver cycles of IL-7 to
HIV infected patients. In particular, we co-designed a Bayesian strategy to optimize the tim-
ing of IL-7 cycles in adaptive protocols (RI-18-2). She is now a scientist consultant in industry
(NovaDiscovery then esqLABS GmbH).

Patrick Staples, defended Fev. 2018: His PhD entitled "On the Statistical Properties of Epidemic
Processes in Networks" was fully supervised by JP. Onnela at the Biostatistics department of
Harvard School of Public health. During my postdoctoral fellowship, I had the opportunity
to help supervise Patrick Staples for his second paper of his dissertation. This consists in
meeting twice a week (a one-to-one meeting and a meeting with the student’s mentor)
for few months in order to conceptualize, perform the data curation and data analysis
of "Leveraging Contact Network Information in Clustered Randomized Studies of Contagion
Processes" (RI-23-2). The basic idea was to understand which network features are the most
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important to collect (number of contacts, status of contacts, ... etc) when evaluating a treatment
effect against an epidemic that spreads on a network. He is now VP of Data Science at Alto
Neuroscience USA.

1.1.5 Postdoc and Research Scientist Supervision (5)

Quentin Clairon (Feb. 2019 to Oct. 2022): He was a postdoctoral fellow within the EBOVAC
3 Project (IG-18-1). His mission was to develop a new tool for estimation of parameters in
non-linear mixed-effects models based on optimal control (RI-23-6). He also worked on the
modeling of humoral response after vaccination (RI-23-5). Quentin Clairon is now a researcher
ISFP at Inria within the SISTM team.

Marie Alexandre (since May 2022): After her PhD, she is now a postdoctoral fellow. She
continues to work on mechanistic modeling and dedicates a large amount of her time to the
statistical analysis and design of pre-clinical (NHP and rodents) and clinical trials promoted by
the Vaccine Research institute.

Myrtille Richard (March 2022 to Dec. 2022): She was an engineer within the NIPAH Project
(IG-18-2). To propose a pipeline for in silico trials, Myrtille explored multiple platforms for
simulating mechanistic models. Specifically, we investigated the R packages deSolve and Rx-
Ode, the Python package diffeqpy, and Lixoft’s Simulx software. This simulation platform was
then used to generate data for designing adaptive trials and optimizing trial designs using the
multi-armed bandit model [109]. Myrtille is now continuing her curriculum of Public Health
Medical Doctor.

Maria Prieto (Sept. 2020 to Sept. 2021): She was an engineer in the SISTM team. She worked
on the modeling of the COVID19 epidemics in France and particularly helped in estimating the
effect of non-pharmaceutical interventions of the epidemics dynamics. She is now a "Head of
projects" at Octopia.

Dan Dutartre (Part time May 2020 to Nov 2020): During the COVID-19 pandemics, Dan Du-
tartre has been partly detached by Inria to work within SISTM team. This was within the
framework of the grant GESTEPID (NG-20-1). He designed a connector between R and Mono-
lix that was particularly useful to share our codes during the pandemics. Since then, Lixoft has
released the R "Lixoftconnectors" package that was basically providing similar functionalities.
Dan is now on a long-term contract as research engineer at Inria.

1.1.6 Teaching Assigments

1.1.6.1 Teaching

I teach in average up to 50 hours of classes a year in statistics and advanced statistics at all
levels from bachelor, masters to doctoral level. My main topics for teaching are: basic statistics,
dynamical/mechanistic models and missing data.

Master level
— ENSAI (2016 - now): Full coordination of module on "missing data" for 3rd year students,
option Biostatistics (16h).

— Master 2 Biostatistics University Bordeaux (2016 - now): Module on "Multiple imputa-
tion" (8h)



Master 2 Polytechnique MSV Modélisation Science du vivant (2021 - 2023): Full co-
ordination of module on "Mixed-effects models for population approaches" for Master 2
students (28h).

Master 2 Biostatistics University Bordeaux (2019 - 2022): Module on "Introduction to
dynamical models for epidemics" (6h).

ENSAI (2016 - 2018): Full coordination of module on "Epidemiology and article critical
reading" for 3rd year students, option Biostatistiques (14h).

ENSAI (2017 - 2020): Module on "Introduction to Research" for 3rd year students, option
Biostatistiques (5h).

Master 2 Pharmacology, University Bordeaux (2017 - 2019): Design experiment (18h)
Master 1 Stochastic Processes, University Bordeaux (2017 - 2019): Bayesian Stat (7h)

* University Diploma & Summer School

DU Méthodes statistiques de régression en épidémiologie (2017 - now): Module on
"Linear regression and analysis of variance". Correspondance continuous education (equiv.
12h).

ISPED Summer school (2017- now): Initiation to R. Continuous education. (between 4h
and 14h depending on years)

PhD module Modeling life science (2018): Methods for ODE/PDE/SDE, organization &
coordination of all lecturers 35h — lecture 7h

1.1.6.2 Internships (18)

I supervised a total of 18 intern students, among them one bachelor level, 6 master 1 level, 10
master 2 level and 1 PhD level.

* 2023 (4)

Marie COLIN (ENSAI 2 ieme année June — Aug. 2023) "Mechanistic modeling of antibodies
response using transcriptomics data" . This work lead to one international conference talk
CI-23-2.

Junior JUMBONG (ENSAI 2 ieme année June — Aug. 2023) "Analysis of determinants of
dynamical vaccination response using mechanistic models".

Fanny MOREAU (Licence 3 MIASCHG Bordeaux May — July 2023) "Analysis of determi-
nants of vaccination response at 12 months using regression models".

Auriane GABAUT (Master 2 Modélisation science du vivant Polytechnique Paris Apr. — Sept.
2023) "Model building in nonlinear models in presence of a high number of covariates".
This work lead to one national conference talk CN-23-1.

* 2022 (2)

Marie POUPELIN (Master 1 Biostatistiques Université bordeaux, Apr. — July 2022) : «
Humoral response to ebola vaccination in prevac-Up trial ». This work helped with the
data management of one submitted paper Sub-3.

Florian ROBERT (Master 2 Paris Sorbonne Data science June - Oct 2022) : « Model
building strategies in NLME »

* 2021 (3)
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— Marie-Laure CHARPIGNON (PhD Candidate MIT June — Oct 2021) : "Evaluation of the

impact of non-pharmaceutical interventions on SARS-CoV-2 transmission rate at the de-
partment level in France". This work led to the publication RI-23-3.

— Carole VIGNALS (Master 2 epidémiologie Université bordeaux, Interne Santé publique Apr.

— Oct 2021) : « Relachement des gestes barriére en France a I'ere de la vaccination contre
la COVID-19 ». This work led to the publication RI-21-4 and public outreach RN-23-1.

— Abdelghani NEHAUS (Master 2 Bioinformatique Labri Université bordeaux Apr. — Aug.

2021) : “Optimization of intervention strategies in epidemic models using deep reinforce-
ment learning techniques®

* 2019 (3)

- Guillaume SOTTON (Master 2 Bioinformatique Labri Université bordeaux Apr. — Aug.

2019) : “ Joint fragility model based on differential equations: analysis of marker kinetics
and survival time ”

- Clément LEMOIGNE ( Mathmeca 2nd year July - Sept. 2019) : "Comparaison de méthodes

de construction de modeles et de sélection de variables pour les modéles dynamiques en
santé. "

— Marie ALEXANDRE (Master 2 Centrale Marseille, Apr. — Aug. 2018) : “PKPD modeling in

pre-clinical development of T cell bispecific immunotherapy”. This was a co-supervision
with Industry (Nicolas Frances, Roche, Basel). Marie continued as a PhD Student co-
supervized by myself.

e Before 2018 (6)

— 2018 - Marie ALEXANDRE (Master 1 Centrale Marseille, Jun. — Aug. 2017) : “Modele

Vaccinal pour Ebola Dynamique des anticorps et de la réponse cellulaire”.

2017 - Paul TAUZIA (Master 2 MSS Université de Bordeaux, Apr. — Sept. 2017): “Utilisa-
tion de la déconvolution cellulaire pour détecter des différences d’expression génique”.

2017 - Augusta ALPHONSE (Master 2 in Vaccinology Creteil VRI, Apr. — Sept. 2017) :
“Proof of concept for an automated gating tool applied to flow cytometry data from a HIV
therapeutic vaccine trial”

2013 - Damien FOSSAT-CERCLER (Master 2 in Statistics and ENSAI 3rd year, Apr. — Sept.
2013) : “Dynamical modeling of pharmacoepidemiology in observational studies: opti-
mization of methods for numerical integration”

2012 - Ana JARNE (Master 2 in Biostatistics, Université de Pau, Apr. — Sept. 2012) :
“Modeling of T-lymphocytes dynamics after InterLeukine-7 injections in HIV infected pa-

tients: introduction of a feedback loop”. This work was continued as a PhD and led to the
publication RI-17-3.

2011 - Sybille MASSE (ENSAI 2nd year, Jun. — Sept. 2011) : “Understanding the Effect of
Interleukin-7 with mathematical models”

1.1.7 Expertizing activities

e Editorial Board: I am Associate Editor for the Journal "International Journal of Biostatis-

* International Expert:
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— MILLENNIUM SCIENCE INITIATIVE (Chile) Application reviewer for the Natural/Exact Sci-
ences application (9 projets) (2017; 2019; 2021; 2023).

— ANR-DFG GERMAN RESEARCH FOUNDATION (France-Germany) Application reviewer (2
projets) (2018).

— Swiss NATIONAL SCIENCE FOUNDATION (SNSF) (Suisse) Application reviewer (8 projets)
(2020; 2021; 2022; 2023).
* National Expert:
— AGENCE NATIONALE DE LA RECHERCHE (ANR) CES45 Member of evaluation commitee
(2023 - now)

— AGENCE NATIONALE DE LA RECHERCHE SUR LE SIDA ET HEPATITES VIRALES ET LES MAL-
ADIES EMERGENTES (ANRS MIE) CSS13 "Clinical research" Member of evaluation commi-
tee (2019 - now).

— SOCIETE FRANCAISE DE STATISTIQUES (SFdS) Member of the Jury Award Marie-Jeanne
Laurent-Duhamel (2022 - now).

— AGENCE NATIONALE DE LA RECHERCHE SUR LE SIDA ET HEPATITES VIRALES (ANRS) CSS3
"Clinical research on HIV and comorbidities” Member of evaluation commitee (2016 -
2019).

— ANR CoviD RA Covid-19 édition 2021 Vague 14 (2 projects) (2021).
¢ Member of International Scientific Committee:
— Member of Scientific Director board of the COVID IMMUNITY TASK FORCE IN CANADA
(2021 - 2023).
— 4th WORKSHOP ON VIRAL DYNAMICS Paris (Oct. 21-23 2019).

¢ Member of National Scientific Committee:

- JDS French statistical society annual conference Nancy (3-7 June 2019).
— Conference STATISTICS IN HEALTH — personalized medicine, CIMI, Toulouse (Jan. 11-12
2018).

¢ Reviewer:

— JOURNALS IN STATISTICS AND BIOSTATISTICS: Biometrics (since 2014); JRSS-B (since
2016); Statistical Methods in Medical research (since 2017); JRSSA Interaction (since
2019); Journal of royal society open science (since 2021)

— JOURNALS IN COMPUTATIONAL BIOLOGY: Plos One (since 2014); IEEE/ ACM Computational
biology and BioInformatics (since 2010); elife (since 2021); CPT PsP (since 2022); plos
Computational Biology (since 2023)

— JOURNALS IN APPLIED MATHEMATICS TO MEDICINE: Statistics in medicine (2013); Trials
(since 2016); Society of clinical trials (2016); Statistical Science (since 2019)

— See Web of science Peer review (since 2021 only)
* Hiring committees (6):

— MCF CNAM Section 26, Mai 2017, Paris
— CRCN INRIA Bordeaux 2019, 2020 and 2024; Paris-Saclay 2022; Nice 2023

* International PhD Defense as "Rapporteur" (1):


https://www.webofscience.com/wos/author/record/T-5128-2019
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STEVEN SANCHE, Reviewer, University of Montreal Faculty of Pharmacy. "Effet des an-
tirétroviraux sur la pathogénése du VIH : une étude par modélisation mathématique inté-
grant la cinétique du virus, de 'immunité, du médicament, et le comportement d’adhésion
avec leurs variabilités interindividuelles", Dec. 2018.

* National PhD Defense as "Jury Member" (5):

JOHANN FOUAZI, Examiner, Brain and spine institute, Inria. “Machine learning to predict
impulse control disorders in Parkinson’s disease.” Dec. 2019.

ANTONIO GONCALVES, Examiner, Paris Diderot, IAME inserm, « Modélisation de I'effet
de nouvelles molécules anti-VHB chez la souris et chez 'homme. » Feb. 2021.

ROMAIN NARCI, Examiner, Université Paris Saclay Inrae, « Inférence dans des modéles
a effets mixtes pour des dynamiques épidémiques partiellement observées récurrentes et
multisites » March 2022.

GUILLAUME LINGAS, Examiner, IAME Inserm, « Modélisation de la dynamique virale du
SARS-CoV-2 : Implication pour I’évaluation thérapeutique » Oct. 2022.

THOMAS BENETTEAU, Examiner, IRD Montpellier, « Modélisation mathématique des in-
fections HPV : quel réle du hasard dans la persistance et 'oncogénese ? » Dec. 2023.

* PhD follow-up committees (10) (once a year up to 3 years):

Chiara Nicolo (2017 - 2020; director Sébastien Benzekry - U. Bordeaux). Mathematical
modeling of neoadjuvant antiangiogenic therapy and prediction of post-surgical metastatic
relapse in breast cancer patients.

Jonas Beale (2018 -2019; director Aurélien Latouche and Emmanuel Barillot - University
Pierre et Marie Curie Paris). De la modélisation mécanistique des voies de signalisation
dans le cancer a I'interprétation des modeles et de leurs apports : applications cliniques et
évaluation statistique.

Marie-Astrid Metten (2018 - 2020; director Guillaume Chauvet and Jean-Francois Viel - U.
Rennes). Données manquantes dans les études de cohorte.

Imke Mayer (2018 - 2021; director Julie Josse and Jean-pierre Nadal - Ecole Polytech-
nique). Analyse de données hétérogenes avec données manquantes - Application a la prise
en charge des polytraumatisés graves.

Iris Granger (2020 - 2024; director David Buckeridge and Rodolphe Thiébaut - Mc Gills
Canada U. Bordeaux). Modeling the epidemics of COVID-19.

Baptiste Elie (2021 - 2024; director Samuel Alizon and Nacho Bravo - U. Montpelier).
Etude des infection génitales HPV.

Benjamin Glemain (2022 - 2025; director Fabrice Carrat and Nathanaél Lapidus; Inserm
iPLesp Paris). Corrélats de protection contre les différents variants du SARS-CoV-2.
Maxime Beaulieu (2023 - 2026; director Jérémie Guedj; Inserm Iame Paris). Modélisation
de T’efficacité des stratégies antivirales contre les variants du Sars-CoV-2 : de la population
générale aux patients hospitalisés.

Erwan Gaymard (2023 - 2024; director Maxime Sermesant and Irene Balelli - In-
ria Nice, Exactcure CIFRE). Développement de méthodologies mathématiques en méta-
modélisation PK a partir de sources hautement hétérogenes.

Eve Rahbe (2023 - 2024; director Lulla Opatowski and Philippe Glaser - Institut Pasteur).
Modélisation spatio-temporelle de 'antibiorésistance a 1’échelle mondiale.

Ilona Suhanda (2023 - 2026; director Raphaélle Metras - Sorbonne Université). Spatial risk
assessment of lyme borreliosis and thick-borne enceohalitis: a joint modeling approach.
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1.1.8 Administrative activities
¢ Research coordination at a National level

2021 - now - MEMBER OF THE BOARD "ACTION COORDONNEE MODELISATION" (ANRS-MIE).

2021 - now Co-leader with J. Guedj of the working group WITHIN-HOST MODELING Action
Coordonnée Modélisation (ANRS-MIE).

2018 - 2021 - President of COMMUNICATION GROUP AT FRENCH STATISTICAL SOCIETY
(SFDS).

2016 - 2018 - Member of COMMUNICATION GROUP AT FRENCH STATISTICAL SOCIETY
(SFDS).

2016 - 2020 - Elected member of the Board of YOUNG FRENCH STATISTICIANS at French
statistical Society (SFdS).

* Local duties

— COMMISSION INRIA DE DEVELOPPEMENT TECHNOLOGIQUE Evaluation and expertise of
grants applications to Inria for the transfer of technology, partnership with industries and
development of new technological tools (2016 - 2022).

— CoOMMISSION INRIA EMPLOI-RECHERCHE Participation in the scientific committee for attri-
bution of research grants for delegations, PhD and Postdoctoral fellowships (2017 - 2023).

* Organisation of International Event/Conference

— 7TH WORKSHOP ON VIRAL DYNAMICS about 100 attendees Head of organizing and scien-
tific committee 2025 in Bordeaux

— 4TH WORKSHOP ON VIRAL DYNAMICS about 100 attendees in collaboration with Jeremy
Guedj. Creation of the conference website, communication, monitoring of registration,
conception of a booklet, Member of scientific committee. Oct 2019.

* Organisation of National Event/Conference

— JOURNEE DE LA STATISTIQUE 2024 Member of the communication group for the organiza-
tion committee (about 500 participants) in Bordeaux May 2024

— 2ND WORKSHOP AC MODELISATION ANRS MIE about 80 attendees Head of organizing
committee 21-22 Nov. 2022 in Bordeaux

— WORKSHOP ON WITHIN-HOST DYNAMICS about 50 attendees (30% international). Guest
speaker Alan Perelson. 17 Sept. 2022 in Paris.

— SCIENTIFIC LUNCHES AT JDS I created this type of event and organized it the three first
years. It consists in organizing a lunch around a specific scientific topic as a satellite event
of the French statistical Society conference (pick the location, invite people, stimulate
discussion — around 20 attendees). This type of satellite event still exists at the conference.
I personally organized those in 2017, 2018 and 2019.

1.2 Grant and Funding

1.2.1 Opening Remarks

In this funding section, the grants are labelled depending on the type, the year and the number
of grants during the same year. The nomenclature writes "type-year-number". Types of grants are as
follow:
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IG : International Grants

NG : National Grants

1.2.2 International grants (5)

1G-20-1

IG-19-2

IG-19-1

Coverage-Immuno - EIT Health COVID-19 Rapid Response - COVERAGE-Immuno aimed at
performing a deep, repeated evaluation of immunological markers and transcriptomics data
in COVID-19 positive patients treated at home in the context of COVERAGE, a randomized
clinical trial evaluating several experimental treatments at home (legal trial sponsor: Bordeaux
University Hospital). The project will allow a better stratification of patients based on immuno
biomarkers profiles so as to adapt their management and care before hospitalization.

Head: Rodolphe Thiébaut (Inserm)

Role & Specific tasks : I am workpackage leader for "Data analysis". We use the data to
benchmark if it is possible to fit immune dynamics to SARS-CoV-2 response using transcriptomic
data.

Dates: 04/2020 - 12/2020

Main partners: Inserm, Inria

Total COVERAGE budget: 471k€ SISTM COVERAGE-immuno budget: 89k€ WP budget:
13k€

Direct Personal outputs to date: CI-23-2; CN*-23-1

Prevac-Up: European project RIA EDCTP - PREVAC-UP is built around the PREVAC consortium
and its main objective is to evaluate the long-term safety, as well as the durability of humoral
and cellular immune responses, of three different Ebola vaccine regimens previously tested by
the consortium for 5 years after vaccination. PREVAC-UP also assesses the impact of co-infection
on the immune response to vaccination, build on the extensive community mobilisation efforts
previously generated through PREVAC to provide a transnational platform for social and health
science research and training. It thus aims to expand and sustain capacity building and training
of scientists in the four participant African countries.

Head: Yazdan Yazdanpanah (Inserm)

Role & Specific tasks : I am workpackage leader for "System Vaccinology approach". SISTM
contributes to the integrative statistical analysis of the immune response which will be used
to explore the mechanism of action of the vaccines and to identify early correlates of durable
antibody induction.

Dates: 01/2019 - 06/2024

Main partners: Coordinated by Inserm (France). Other beneficiaries: CNFRSR (Guinea), CER-
FIG (Guinea), LSHTM (UK), COMAHS (Sierra-Leone), NIAID (USA), NPHIL (Liberia), USTTB
(Mali), Centre pour le Développement des Vaccins (Mali), Inserm Transfert SA (France)

Total PREVAC-UP budget: 16M<€ SISTM budget: 328k€

Direct Personal output to date: Sub-3

amfAR: American Fundation for AIDS research; Impact Grant 109856-65-RGRL - Mechanistic
and empirical modeling of viral rebound to identify predictors of post-treatment control.
Head: R. Wang (Harvard University)

Role & Specific tasks : I work as a contributor for mechanistic models aspects.

Dates: 01/2019 - 01/2020

Main partners: Harvard University, [nserm

Total amfAR budget: 110k€ SISTM budget: 7k€

Direct Personal output to date: RI-20-3


https://eit.europa.eu/our-activities/covid-19-response/solutions/coverage-immuno-understanding-and-predicting-progression
https://prevac-up.eu/
https://www.amfar.org/
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IG-18-2 Nipah Virus Study: Sino-French Agreement Aviesan - To raise the challenge caused by Nipah
virus we propose to develop a program that shall led to a better understanding of the epidemi-
ology of the virus as well as the associated physiopathology, to develop new tools in the field of
diagnosis, treatment and prevention of the infection.

Head: Hervé Raoul (Inserm)

Role & Specific tasks : I am co-workpackage leader for "Biostatistics and evolutionary analysis".
I am in charge of the modeling of vaccine response aspects in this project. SISTM contributes to
model and analyse data from vaccine trial against Nipah virus in non-human primates. Because
almost no data were generated because of COVID-19 pandemics, the work was retargeted to be
more theoretical on model building strategies development.

Dates: 01/2018 - 12/2023

Main partners: Inserm, Université de Marseille, VRI, Wuhan institute of virology, Chinese cen-
ter for disease control.

Total NIPAH budget: 1M<€ SISTM budget: 150k€

Direct Personal outputs to date: RI-22-1; HCI-22-3; HCI-21-2

IG-18-1 EBOVAC3 - European IMI2: The EBOVAC3 project aims to support an essential part of the re-
maining clinical and manufacturing activities required for the licensure of the two-dose vaccine
regimen in the European Union and the United States. Building on work carried out under
the EBOVAC1 and EBOVAC2 projects, EBOVAC3 is running clinical trials to gather safety and
immunogenicity data in infants in Sierra Leone and Guinea; as well as health care workers in
an area affected by Ebola in the Democratic Republic of Congo (DRC). It also follows up partic-
ipants who received the vaccine regimen in the EBOVAC-Salone trial in Sierra Leone to assess
the safety and immunogenicity of the regimen in the longer term. In addition to the clinical
trials, EBOVAC3 aims to characterize outbreak preparedness in Sierra Leone, Guinea and the
DRC through social science research and mapping of the existing preparedness activities in each
of the three countries.

Head: Deborah Watson-Jones (LSHTM)

Role & Specific tasks : I am co-workpackage leader for "Modeling" aspects in this project.
SISTM will contribute to modeling the long-term humoral response to the vaccine.

Dates: 06/2019 - 05/2023

Main partners: Coordinated by the London School of Hygiene and Tropical Medicine (United
Kingdom). Other beneficiaries: Janssen a Pharmaceutical Companies of Johnson and Johnson,
Inserm (France), The University of Antwerpen (Belgium), University of Sierra Leone (Sierra
Leone)

Total EBOVAC3 budget: 51M<€ (including 29M<€ from EU) SISTM budget: 351k€

Direct Personal outputs to date: RI-23-6; HCI*-19-1; CI-19-4; RI-23-7; HCI-21-4.

1.2.3 National grants (6)

NG-23-1 PEPR Santé Numérique SMATCH - Addressing new methodological challenges in public
health data science. The project aims to develop and apply statistical methods and Al-based
approaches to accelerate the development of medical interventions in clinical trials, focusing on
the early phases and integrating multi-source data.

Head: Sarah Zohar (Inria Heka) and Rodolphe Thiébaut (Inria/Inserm SISTM)

Role & Specific tasks : I am involved as a contributor and mentor of one PhD student.

Dates: 09/2023 - 08/2029

Main partners: Inria (Heka, Sistm, Premedical, Soda), Inserm, CNRS, CEA, CHU Bordeaux
Tours Poitiers Montpellier, Université Paris Cité, Bordeaux, poitiers, montpellier, Tours, Lille,
HAS


https://www.ipubli.inserm.fr/bitstream/handle/10608/10133/2017_36_44.pdf?sequence=1
https://www.imi.europa.eu/projects-results/project-factsheets/ebovac3
https://www.imi.europa.eu/projects-results/project-factsheets/ebovac1
https://www.imi.europa.eu/projects-results/project-factsheets/ebovac2
https://polytechnique.hal.science/PEPR_SANTENUM/page/projets-anr
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NG-22-1

NG-21-1

NG-20-1

NG-18-1

Total SMATCH budget: 1.4M<€ SISTM budget: 350k€ Own budget: 130k€
Direct Personal output to date: None to date.

PHDS Impulsion Réseaux Public Health Data Science network in Bordeaux University. The
PHDS network aims to utilize Bordeaux’s expertise in statistics, applied mathematics, and pub-
lic health to develop analytical methods that: precisely predict disease onset and progression
at an individual level, elucidate the mechanisms that underlie diseases, and create and assess
innovative therapeutic strategies..

Head: Cécile Proust-Lima (Inserm)

Role & Specific tasks : I am the workpackage leader of the tack "Incorporate complex mea-
surement models into theoretical mechanistic models".

Dates: 03/2022 - 03/2026

Main partners: Inserm BPH, Inria Bordeaux, LaBRI, IMB

Total Impulsion budget: 855k€

Direct Personal outputs to date: The WP produced [65] and CN-23-1 to date.

EMERGEN - Modvar: Consortium for Surveillance and Research on EMERgent Pathogens via
Microbial GENomics. EMERGEN, coordinated by Sante publique France and ANRS-Emerging
Infectious Diseases, aims to deploy a genomic surveillance system for SARS-CoV-2 infections
throughout France. Its main objective is to follow the genetic evolution of the SARS-CoV-2 virus
in order to detect the emergence and the spatio-temporal distribution of variants, i.e. viruses
with mutations likely to have functional consequences, such as infectivity, contagiousness, vir-
ulence or immune escape.

Head: Simon Cauchemez and Vittoria Collizza. Pasteur Institute

Role & Specific tasks : 1 am co-workpackage leader regarding the within-host aspects of the
project. SISTM will contribute to modeling the impact on epidemic dynamics of SARS-CoV-2
variants based on the estimation of their within-host characteristics.

Dates: 12/2021 - 06/2024

Main partners: Santé Publique France, Inserm/ANRS, APHP, HCL, Pasteur Institute, Anses,
IFB, CNRGH/CEA, Réseau Sentinelles

Total Emergen budget: 10M€ Modvar budget: 450k€ SISTM budget: 56k€

Direct Personal outputs to date: RI-23-8; RI-23-5

GESTEPID : Action Inria stop COVID19 - Modeling of the COVID-19 epidemics in France with
a focus on the region Nouvelle-Aquitaine.

Head: Mélanie Prague (Inria/ Inserm)

Role & Specific tasks : I am the principal investigator

Dates: 03/2020 - 12/2020

Main partners: Inserm, Inria, Santé Publique France

Total/SISTM budget: 6 months of engineer

Direct Personal outputs to date: RI-23-1; HCI*-21-1; HCI-21-3;HCI*-21-5; S-20-1; RI-24-1;
HCI-23-5; CN-22-1; RI-23-3. This work was cited by the "Conseil Scientifique COVID-19" on his
report June 2nd and gave birth to multiple press releases see Section 1.3.13.

DYNAMHIC (Dynamical modeling of HIV Cure Duration): Inria associate team. This collabo-
ration allows the analysis of unique pre-clinical data in non-human primates of HIV cure inter-
ventions.

Head: Mélanie Prague (Inria/ Inserm) Alison Hill (Harvard)

Role & Specific tasks: I am the principal investigator on the French side. This grant funded
essentially travel to Boston and to Bordeaux as well as to conferences. I was in charge of the
methodological aspects for inference using mechanistic models.


https://www.u-bordeaux.fr/recherche/ambition-scientifique/reseaux-de-recherche-impulsion/PHDS
https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/consortium-emergen
https://www.inria.fr/fr/gestepid-lapplication-de-la-science-des-donnees-la-prediction-de-levolution-de-la-crise-sanitaire
https://solidarites-sante.gouv.fr/IMG/pdf/avis_conseil_scientifique_2_juin_2020.pdf
https://team.inria.fr/dynamhic/
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Dates: 01/2018 - 01/2022

Main partners: Johns Hopkins University School of Medicine, Harvard University
Total/SISTM budget: 10k€/year for travel expenses

Direct Personal outputs to date: RI-20-3; Sub-2; HCI-20-1; HCI-18-1; CI-19-5.

NG-17-1 EVALUATES: Funded by National Institute for Cancer. Development of joint models involving
dynamical mechanistic model of tumor growth in colorectal cancer.
Head: Virginie Rondeau (Inserm Bordeaux Population Health)
Role & Specific tasks: I am work package leader on mechanistic modeling. This grant aims
at funding 6 months of intern students, travel and equipment expenses in order to investigate
the use of Monolix for fitting joint models and to compare it with an existing R package called
"frailtypack”.
Dates: 08/2017 - 06/2021
Main partners: Université de Bordeaux, Inserm, Inria, CHU besancon
Total Emergen budget: 192k€ SISTM budget: 6k€
Direct Personal output to date: Internship Guillaume SOTTON.

1.3 Scientific production

1.3.1 Spirit of my research

In next section, we offer a detailed overview of the scientific achievements accomplished over the
past year. We also provide bibliometrics information in term of scientific production. Each research
focus is concisely summarized, complemented by a table that encapsulates the completed work.
Following this, we provide an in-depth exploration of how these contributions (referred by RI-XX-X;
RN-XX-X; HCI-XX-X; CI-XX-X; CN-XX-X.. etc in Section 1.3) are placed in the existing literature and
interrelate.

In the SISTM team, where I currently serve as a researcher, we conceptualize applied research in
medical science and vaccine development as a cyclic process, akin to a wheel (refer to Figure 1.1).
This is made possible by an unique partnership with the Vaccine Research institute. This process
initiates with the design and execution of a trial, followed by the necessity of data management and
statistical analysis. These steps pave the way for data integration, mechanistic modeling, and in
silico predictions, which are crucial for planning subsequent trials. My research is primarily anchored
in mechanistic modeling (for which I lead the scientific axis in the team) and the course of our
research is largely contingent on the nature of the data obtained and the unique scientific challenges
they present. Our focus has been predominantly on infectious diseases, with a more recent shift
towards vaccine development. These topics are described in the section 2.1 for methodology and the
section 3.1 for data analysis and development of advanced computational biology tools. Finally, an
additional facet of my research, that has been inspired by my postdoctoral training at Harvard School
of Public Health, extends beyond clinical trials. It aims to understand the possibilities that offer
observational studies to better understand the effect of an intervention. This includes evaluating
intervention and vaccine strategies within populations. This last topic is described in the section 4.1.

Together, these three axes provide a holistic and multi-faceted approach to advancing the field
of vaccine development, offering both theoretical insights and practical applications that are vital
for addressing current and future challenges. Since commencing my research career in 2010, I have
contributed to the scientific community, as evidenced by my authorship or co-authorship of 40 articles.
This includes 8 articles where I served as the first author, 6 as the second author, and 11 in the
capacity of the last or before last author. Notably, all these publications are centered on the modeling
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Figure 1.1 — Conceptual Framework of Applied Research in Data science for Medical research in
the SISTM Team: Navigating from Trial Development to Analysis, Simulations in silico, Design of
subsequent trials and outreach to population in an iterative loop.

of infectious diseases: 21 were published in biostatistical or applied mathematics/statistics journals
and present methods development, while 19 appeared in journals focusing on computational biology
or medicine.

1.3.2 Opening remarks

In this "own" bibliography section, the scientific production is labelled depending on the type,
the year and the number of production during the same year. The nomenclature writes "type-year-
number". Types of production are as follow:

* RI: Peer-reviewed international journals

* RN : Peer-reviewed national journals

* Sub : Submitted papers with available preprints

* HCI*/HCI : Invited or competitive international conferences

* CI : Other international conferences

* CN*/CN : Invited or not National conferences.

* S : Seminars in institutions other than my own affiliation.

* Soft : Software production.

Links with DOI are available to access the published articles in internationnal journals (RI -
Section 1.3.3) and national journals (RN - Section 1.3.4), as well as all the preprints to justify their
submission status (Sub - Section 1.3.5). In biostatistics, journal articles are more important than
conferences. Order of authors depends on the contribution. Generally, the two first and the two last

authors are the main contributors. For senior authorships (two last authors), medical doctors are
usually placed last, after the biostatisticians. I tried to highlight my contribution for each journal
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article.

In biostatistics again, there is barely never proceedings for conferences (other than 1000-words
abstracts booklets). I separated the conferences in 5 categories: Invited in international conference
(HCI* - Section 1.3.6), competitive international conferences for which there is a single-track and
around 20% to 30% of acceptance (HCI - Section 1.3.7), regular international conferences (CI -
Section 1.3.8), invited national conference (CN* - Section 1.3.9) and regular national conferences
(CN - Section 1.3.10). In each case, I specified if I was the speaker or if it was one of my mentee or a
collaborator. In general, I try to valorize each journal article in one or two conferences (either applied
or more methodological) in order to network. Finally, I also listed seminars I gave in institutions
other than my own affiliation (S - Section 1.3.11). In general, I try to give at least one seminar a year
in my own lab meetings.

When applicable, I try to release software or open source code so that people can broadly use our
methods (Soft - Section 1.3.12). In each article, the code for dissemination and replication is always
available in supplementary material.

I would like to drive the attention of the fact that :

* Articles RI-23-2, RI-20-3, RI-19-2, RI-18-1, RI-17-5, RI-17-2, RI-17-1, RI-16-5, RI-16-2, Sub-2
are written with only international collaborators (Harvard and Duke university) without any
team member of the SISTM team.

* Articles RI-22-5, RI-22-1, RI-20-2 and RI-23-8 are written with only national collaborators (Inria
MONC team, M3DISIM team, XPOP team and Inserm IAME Team BIPID) without any team
member of the SISTM team other than my mentee.

* Other articles are created within SISTM team, having other members as co-authors.

1.3.3 Peer-reviewed International journals (40)

RI-24-1 Estimating the population effectiveness of interventions against COVID-19 in France: a modelling study
Ganser 1., Buckridge D., Hefferman J., Prague M. and Thiébaut R.
Epidemics (IF=5.3) - In press - Jan 2024 .
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Software Development; Writing; Proofreading; Mentoring.

RI-23-8 Impact of variants of concern on SARS-CoV-2 viral dynamics in non-human primates,
Marc A., Marlin R., Donati F., Prague M., Keroui M., ..., Le Grand R. and Guedj J. PLOS Com-
putational Biology (IF=4.8) - 19(8) - €1010721 - Aug 2023 (16 pages).
Contribution: Development of Methodology; Proofreading; Mentoring.

RI-23-7 Prediction of long-term humoral response induced by the two-dose heterologous Ad26.ZEBOV,
MVA-BN-Filo vaccine against Ebola
Alexandre M., Prague M., McLean C., Bockstal V., Douoguih M. and Thiébaut R. NPJ Vaccines
(IF=9.2) - 8 - 174 - Nov 2023 (32 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Writing; Proof-
reading; Mentoring.

RI-23-6 Parameter estimation in nonlinear mixed effect models based on ordinary differential equations:
an optimal control approach.


https://www.medrxiv.org/content/10.1101/2023.09.14.23295425v1
https://doi.org/10.1371/journal.pcbi.1010721
https://doi.org/10.1038/s41541-023-00767-y
https://doi.org/10.1038/s41541-023-00767-y
https://doi.org/10.1007/s00180-023-01420-x
https://doi.org/10.1007/s00180-023-01420-x
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Clairon Q., Pasin C. Balelli I., Thiébaut R. and Prague M. Computational Statistics (IF=1.3) -
in press - Oct 2023 (32 pages).

Contribution: Conceptualization of the Study; Development of Methodology; Writing;
Proofreading; Mentoring.

RI-23-5 Modeling the kinetics of the neutralizing antibody response against SARS-CoV-2 variants after
several administrations of Bnt162b2
Clairon Q., Prague M., Planas D., Bruel T., Hocqueloux L., Prazuck T., Schwartz O., Thiébaut
R. and Guedj J. PLOS Computational Biology (IF=4.8) - 19(8) - e1011282- August 2023 (20
pages).

Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading; Mentoring.

RI-23-4 Neutrophil Activation and Immune Thrombosis Profiles Persist in Convalescent COVID-19
Hocini H., Wiedemann A., Blengio F., ..., Prague M., ..., and Lévy Y. Journal of Clinical Im-
munology (IF=8.2) - 43(5) - 882-893 - March 2023 (11 pages).

Contribution: Additional Statistical Analysis; Proofreading.

RI-23-3 Impact of non-pharmaceutical interventions, weather, vaccination, and variants on COVID-19
transmission across departments in France
Paireau J., Charpignon ML., Larrieu S., Calba C., Hozé N., Boélle PY., Thiébaut R. Prague M.,
and Cauchemez S. BMC Infectious Diseases (IF= 3.1) - 23 - 190 - March 2023 (12 pages).
Contribution: Additional Statistical Analysis; Proofreading; Mentoring.

RI-23-2 Leveraging Contact Network Information in Clustered Randomized Studies of Contagion Processes
Wang M.*, Staples P.*, Prague M., Goyal R., DeGruttola V. and Onnela JP. Observational
studies (IF= 1.2) - 9(2) - 157-175 - March 2023 (18 pages).

Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Writing; Proofreading; Mentoring.

RI-23-1 Using a population-based Kalman estimator to model the COVID-19 epidemic in France: estimating
associations between disease transmission and non-pharmaceutical interventions
Collin A., Hejblum B., Vignals C., Lehot L., Thiébaut R., Moireau P. and Prague M. Interna-
tional Journal of Biostatistics (IF= 1.83) - Epub ahead of print - Jan 2023 (18 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Writing; Proofreading.

RI-22-5 Estimation for dynamical systems using a population-based Kalman filter — Applications
in computational biology
Collin A., Prague M. and Moireau P. MathematicS in Action (IF= 1.67) - 11(1) - 213-242 -
Sept 2022 (29 pages).

Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading

RI-22-4 Modelling the response to vaccine in non- human primates to define SARS-CoV-2 mechanistic
correlates of protection
Alexandre M., Marlin R.*, Prague M.*, Coléon S.,... and Thiébaut R. eLife (IF= 8.71) - 11 -
e7542 - July 2022 (33 pages).

Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading; Mentoring.

RI-22-3 Design, immunogenicity, and efficacy of a pan-sarbecovirus dendritic-cell targeting vaccine

Coléon S. Wiedemann A., Surénaud M., ..., Prague M., ..., and Lévy Y. eBioMedicine (IF=


https://doi.org/10.1371/journal.pcbi.1011282
https://doi.org/10.1371/journal.pcbi.1011282
https://doi.org/10.1007/s10875-023-01459-x
https://doi.org/10.1186/s12879-023-08106-1
https://doi.org/10.1186/s12879-023-08106-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270696/
https://doi.org/10.1515/ijb-2022-0087
https://doi.org/10.1515/ijb-2022-0087
https://msia.centre-mersenne.org/articles/10.5802/msia.25/
https://msia.centre-mersenne.org/articles/10.5802/msia.25/
https://doi.org/10.7554/eLife.75427
https://doi.org/10.7554/eLife.75427
https://doi.org/10.1016/j.ebiom.2022.104062
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RI-22-2

RI-22-1

RI-21-5

RI-21-4

RI-21-3

RI-21-2

RI-21-1

RI-20-3

11.1) - 80(1) - 104062 - June 2022 (20 pages).
Contribution: Additional Statistical Analysis; Proofreading.

Within-host models of SARS-CoV-2: What can it teach us on the biological factors driving

virus pathogenesis and transmission?

Prague M., Alexandre M., Thiébaut R. and Guedj J. Anaesthesia Critical Care & Pain
medicine (IF= 5.5) - 41(2) - 101055 - April 2022 (3 pages).

Contribution: Conceptualization of the Study; Writing; Proofreading; Mentoring.

SAMBA: A novel method for fast automatic model building in nonlinear mixed-effects models
Prague M. and M. Lavielle CPT: Pharmacometrics & Systems Pharmacology (IF= 4.93 -
11(2) - 161-172 - Feb 2022 (11 pages).

Contribution: Statistical Analysis; Software Development; Writing; Proofreading.

Robust and Efficient Optimization Using a Marquardt-Levenberg Algorithm with

R Package marqLevAlg

Philipps V, Hejblum BP., Prague M., Commenges D. and Proust-Lima C. R Journal (IF= 1.67)
- 13(2) - 365-379 - Dec 2021 (14 pages).

Contribution: Software Development; Proofreading.

Barrier Gesture Relaxation during Vaccination Campaign in France: Modelling Waning Immunity
Vignals, C., Dick, D. W., Thiébaut, R., Wittkop, L., Prague M., and Heffernan, J. M. MDPI
Covid (viruses special issue) (IF= 4.6) We got clearance from Inria to submit there but will
not resubmit ever in MDPI journals as it is as date of 2023) - 1(2) -472-488 - Oct 2021 (16
pages).

Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Writing; Proofreading; Mentoring.

Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to
infection in convalescent macaques

Marlin, R., Godot, V., Cardinaud, S., ..., Prague M., ..., Le Grand R. Nature Communication
(IF=16.6) - 12(1) - 5215 - Sept 2021 (9 pages).

Contribution: Additional Statistical Analysis; Proofreading.

Between-group comparison of area under the curve in clinical trials with censored follow-up:
Application to HIV therapeutic vaccines.

Alexandre M., Prague M., Thiébaut R. Statistical Methods in Medical Research (IF= 2.3) -
30(9) - 2130-2147 - July 2021 (17 pages).

Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading; Mentoring.

Epidemioptim: A toolbox for the optimization of control policies in epidemiological models.
Colas, C., Hejblum, B., Rouillon, S., Thiébaut, R., Oudeyer, P. Y., Moulin-Frier, C., and
Prague M. Journal of Artificial Intelligence Research (IF= 3.64) - 71(2) - 479-519 - July
2021 (40 pages).

Contribution: Conceptualization of the Study; Writing; Proofreading; Mentoring.

Comparison of empirical and dynamic models for HIV viral load rebound after treatment interruption.
Bing A., Hu Y., Prague M., Hill A, Li J., Bosch R., De gruttola V., and Wang R. Statistical
Communications in Infectious Diseases (IF= 1.1) - 12(1) - 259-274 - Oct 2020 (6 pages).
Contribution: Development of Methodology; Proofreading; Mentoring.


https://doi.org/10.1016/j.accpm.2022.101055
https://doi.org/10.1016/j.accpm.2022.101055
https://doi.org/10.1002/psp4.12742
https://doi.org/10.32614/RJ-2021-089
https://doi.org/10.32614/RJ-2021-089
https://www.mdpi.com/2673-8112/1/2/41
https://doi.org/10.1038/s41467-021-25382-0
https://doi.org/10.1038/s41467-021-25382-0
https://doi.org/10.1177/09622802211023963
https://doi.org/10.1177/09622802211023963
https://doi.org/10.1613/jair.1.12588
https://doi.org/10.1515/scid-2019-0021
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RI-20-2 Machine learning and mechanistic modeling for prediction of metastatic relapse in early-stage
breast cancer.
Nicolo, C., Périer, C., Prague M., Bellera, C., MacGrogan, G., Saut, O., and Benzekry, S. JCO
Clinical Cancer Informatics (IF= 1.2) - 4 - 259-274 - Sept 2020 (15 pages).
Contribution: Development of Methodology; Proofreading

RI-20-1 A model for establishment, maintenance and reactivation of the immune response
after vaccination against Ebola virus.
Balelli, I., Pasin, C., Prague M., Crauste, F., Van Effelterre, T., Bockstal, V., ... and Thiébaut, R.
Journal of Theoretical Biology (IF= 2.32) - 495 - 110254 - March 2020 (20 pages).
Contribution: Development of Methodology; Writing; Proofreading; Mentoring.

RI-19-2 Properties and pitfalls of weighting as an alternative to multilevel multiple imputation in cluster
randomized trials with missing binary outcomes under covariate-dependent missingness.
E. Turner, L. Yao, F. Li and Prague M.
Statistical Methods in Medical Research (IF= 2.38) - 29(5) - 1338-1353 - July 2019 (15
pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Writing; Proofreading; Mentoring.

RI-19-1 Dynamics of the Humoral Immune Response to a Prime-Boost Ebola Vaccine:
Quantification and Sources of Variation
C. Pasin, I. Balelli, T. Van Effelterre, V. Bockstal, L. Solforosi, Prague M., M. Douoguih and R.
Thiébaut
Journal of Virology (IF= 4.37) - 93(18) - e00579-19 - August. 2019 (10 pages).
Contribution: Proofreading; Mentoring.

RI-18-2 Adaptive protocols based on predictions from a mechanistic model of the effect of IL7 on CD4 counts
L. Vilain, D. Commenges, C. Pasin, Prague M. and R. Thiébaut
Statistics in Medicine (IF= 1.84) - 38(2) - 221-235 - Sept. 2018 (14 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Writing;
Proofreading; Mentoring.

RI-18-1 High HIV-1 RNA Among Newly Diagnosed People in Botswana
V. Novitsky, Prague M., Moyo S., Gaolathe T., MmalaneM., Kadima Yankinda E., Chakalisa U.,
Lebelonyane R., Khan N., Powis K., and others
AIDS research and human retroviruses (IF= 1.5) - 34(3) - 300-306 - Mars. 2018 (6 pages).
Contribution: Additional Statistical Analysis; Writing; Proofreading.

RI-17-5 CRTgeeDR: an R Package for Doubly Robust Generalized Estimating Equations
Estimations in Cluster Randomized Trials with Missing Data.
Prague M., Wang R. and De Gruttola V
R journal (IF= 2.68) - 9(2) - 105-115 - Dec. 2017 (10 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Software Development; Writing; Proofreading; Mentoring.

RI-17-4 Universal test and treat and the HIV epidemic in rural South Africa:
phase 4, open-label, community cluster randomised trial.
C. Iwuju, J. Orne-Gliemann, J. Larmarange, ..., the TASP study group
Lancet HIV (IF= 14.8) - 5(3) - 116-125 - Nov. 2017 (9 pages).
Contribution: Additional Statistical Analysis; Proofreading.



https://doi.org/10.1200/CCI.19.00133
https://doi.org/10.1200/CCI.19.00133
https://doi.org/10.1016/j.jtbi.2020.110254
https://doi.org/10.1016/j.jtbi.2020.110254
https://doi.org/10.1177/0962280219859915
https://doi.org/10.1177/0962280219859915
https://jvi.asm.org/content/93/18/e00579-19/article-info
https://jvi.asm.org/content/93/18/e00579-19/article-info
https://doi.org/10.1002/sim.7957
https://www.liebertpub.com/doi/10.1089/aid.2017.0214
https://journal.r-project.org/archive/2017/RJ-2017-041/RJ-2017-041.pdf
https://journal.r-project.org/archive/2017/RJ-2017-041/RJ-2017-041.pdf
https://www.thelancet.com/journals/lanhiv/article/PIIS2352-3018(17)30205-9/fulltext
https://www.thelancet.com/journals/lanhiv/article/PIIS2352-3018(17)30205-9/fulltext
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RI-17-3

RI-17-2

RI-17-1

RI-16-5

RI-16-4

RI-16-3

RI-16-2

RI-16-1

RI-14-1

Modeling CD4+ T cells dynamics in HIV-infected patients receiving repeated cycles
of exogenous Interleukin 7

A. Jarne, D. Commenges, L. Villain, M. Prague, Y. Lévy, and R. Thiébaut

Annals of applied statistics (IF= 1.79) - 11(3) - 1593-1616 - Oct. 2017 (23 pages).
Contribution: Mentoring of PhD student, methodology.

Review of Recent Methodological Developments in Group-Randomized Trials: Part 2—Analysis
L. Turner, F. Li, J. Gallis, M. Prague, and D. Murray

American Journal Of public Health (IF= 5.38) - 107(7) - 1078-1086 - June. 2017 (8 pages).
Contribution: Proofreading; Mentoring.

Review of Recent Methodological Developments in Group-Randomized Trials: Part 1—Design
L. Turner, F. Li, J. Gallis, M. Prague, and D. Murray

American Journal Of public Health (IF= 5.38) - 107(6) - 907-915 - May. 2017 (8 pages).
Contribution: Proofreading; Mentoring.

Point-of-care Cepheid Xpert HIV-1 Viral Load Test in Rural African Communities is Feasible and Reliable
S. Moyo, T. Mohammed, K. Wirth, M. Prague, K. Bennett, M. Holme, L. Mupfumi, P. Sebogodi,

N. Moraka, C. Boleo, ..., E. Tchetgen Tchetgen, M. Essex, S. Lockman and V. Novitsky

Journal of clinical Microbiology (IF= 2.92) - 54(12) - 3050-3055 - Nov. 2016 (5 pages).
Contribution: Additional Statistical Analysis; Proofreading.

Dynamic versus marginal structural models for estimating the effect of HAART on CD4 in observational
studies: application to the Aquitaine Cohort study and the Swiss HIV Cohort Study.

M. Prague, Commenges D., Gran JM., Ledergerber B., Young J., Furrer H. and Thiébaut R.

Biometrics (IF=1.91) - 73(1) - 294-304 - July 2016 (10 pages).

Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Software Development; Writing; Proofreading; Mentoring.

Use of dynamical models for treatment optimization in HIV infected patients: a sequential
Bayesian analysis approach

M. Prague

Journal de la statistique francaise - 157(2) - September 2016 (~ 38 pages).

Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading; Mentoring..

Accounting for interference variables using semi-parametric augmentation for improving efficiency
in clustered randomized trials with missing at random outcomes

M. Prague, Wang R., Stephens A., Tchetgen Tchetgen E and DeGruttola V.

Biometrics (IF=1.91) - 72(4) - 1066-1077 - April 2016 (11 pages)

Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Software Development; Writing; Proofreading; Mentoring.

Superior Efficacy of a Human Immunodeficiency Virus Vaccine Combined with Antiretroviral
Prevention in Simian-Human Immunodeficiency Virus-Challenged Nonhuman Primates

Le Grand R., Bosquet N., Dispinseri S., Hopewell N., Gosse L., Desjardins D., Shen X., Tomaras
G., Saidi H., M. Prague, Barnett S., Thiebaut R., Cope A., Scarlatti G., Shattock R.J.

Journal of Virology (IF=3.31) - 90(11) - 5315-5328 - March 2016 (14 pages).

Contribution: Additional Statistical Analysis; Proofreading.

Quantifying and Predicting the Effect of exogenous Interleukin-7 on CD4+T cells in HIV-1 Infection.
Thiébaut R., Drylewicz J., Prague M., Lacabaratz C., Beq S., Crough T., Sekaly R.P., Lederman
M.M.,, Sereti I., Commenges D. and Levy Y.


https://projecteuclid.org/euclid.aoas/1507168841
https://projecteuclid.org/euclid.aoas/1507168841
https://ajph.aphapublications.org/doi/10.2105/AJPH.2017.303707
https://ajph.aphapublications.org/doi/abs/10.2105/AJPH.2017.303706
https://jcm.asm.org/content/54/12/3050.short
https://pubmed.ncbi.nlm.nih.gov/27461460/
https://pubmed.ncbi.nlm.nih.gov/27461460/
http://journal-sfds.fr/article/view/555
http://journal-sfds.fr/article/view/555
https://doi.org/10.1111/biom.12519
https://doi.org/10.1111/biom.12519
https://doi.org/10.1128/JVI.00230-16
https://doi.org/10.1128/JVI.00230-16
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003630
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PLOS comp. Biol. (IF=4.87) - 10(5) - e1003630 - May 2014 (12 pages).
Contribution: Statistical Analysis; Writing; Proofreading.

RI-13-2 Dynamical models of biomarkers and clinical progression for personalized medicine: the HIV context.
Prague M., Commenges D. and Thiébaut R.
Advanced Drug Delivery Review (IF=11.5) - 65(7) - 954-965 - June 2013 (12 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Software Development; Writing; Proofreading; Mentoring.

RI-13-1 NIMROD: A Program for Inference via Normal Approximation of the Posterior in Models with Random
effects based on Ordinary Differential Equations.
Prague M., Commenges D., Guedj J., Drylewicz J. and Thiébaut R.
Computer methods and Programs in Biomedecine (IF=1.53) - 111(2) - 447-458 - June
2013 (12 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Software Development; Writing; Proofreading; Mentoring.

RI-12-2 Treatment monitoring of HIV infected patients based on mechanistic models.
Prague M., Commenges D., Drylewicz J. and Thiébaut R.
Biometrics (IF=1.83) - 68(3) - 902-911 - September 2012 (10 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Software Development; Writing; Proofreading; Mentoring.

RI-12-1 Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance
and sleepiness.
Philip P, Sagaspe P, Prague M., Tassi P, Capelli A, Bioulac B, Commenges D, Taillard J.
Sleep (IF=5.05) - 35(7) - 997-1002 - September 2012 (6 pages).
Contribution: Additional Statistical Analysis; Proofreading.

1.3.4 Peer-reviewed national journals (2)

RN-23-1 Modéliser la COVID-19 : de la population a l'individu.
Vignals C., Hejblum B. and Prague M. Interstice Online - June 2023.
Contribution: Conceptualization of the Study; Writing; Proofreading; Mentoring.

RN-14-1 Modéles mathématiques dynamiques pour la médecine personnalisée.
Thiébaut R., Prague M., Commenges D. Medecine/Science ITMO Santé publique 30(2) - 6-9
- Nov 2014 (3 pages).
Contribution: Proofreading.

1.3.5 Submitted papers with available preprints (6)

Sub-5 On the design of trials for the evaluation of HIV viral setpoint during analytical antiretroviral
treatment interruptions
Alexandre* M., M. Prague*, Leliévre JD., Lhomme E., Richert L., Wittkop L., Lévy Y. and
Thiébaut R.
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading; Mentoring.

Sub-4 Comparative assessment of methodologies to estimate NPI effectiveness in the COVID-19 con-
text: A simulation study


http://www.sciencedirect.com/science/article/pii/S0169409X13000641
http://www.ncbi.nlm.nih.gov/pubmed/23764196
http://www.ncbi.nlm.nih.gov/pubmed/23764196
http://www.ncbi.nlm.nih.gov/pubmed/22934714
http://www.ncbi.nlm.nih.gov/pubmed/22754046
http://www.ncbi.nlm.nih.gov/pubmed/22754046
https://interstices.info/modeliser-la-covid-19-de-la-population-a-lindividu/
https://www.medecinesciences.org/en/articles/medsci/full_html/2014/11/medsci2014302sp23/medsci2014302sp23.html
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Sub-3

Sub-2

Sub-1

Ganser 1., Paireau J., D. Buckeridge, S. Cauchemez, Thiébaut R. and M. Prague

Antibody response determinants to rVSV-ZEBOV-GP and Ad26.ZEBOV/MVA-BN-Filo Ebola vac-
cines: a modelling study from the PREVAC randomized trial
Valayer S., Alexandre M., M. Prague, Beayogui AH., ..., Richert L. and Lhomme E.

Viral rebound kinetics following single and combination immunotherapy for HIV/SIV
M. Prague, J. Gerold, I. Balelli, C. Pasin, J. Li,D. Barouch, J. Whitney, and A. Hill

Effects of interventions and optimal strategies in the stochastic system approach to causality
D. Commenges and M. Prague

1.3.6 Invited International conferences (11)

HCI*-23-3

HCI*-23-1

HCI*-22-1

HCI*-21-5

HCI*-21-2

HCI*-21-1

Pharmacometric modelling to inform vaccine development.

Prague M.

World congress on basics and clinical pharmacology. , Glasgow UK, 2-7th July 2023. (Invited
Speaker)

Joint modeling of viral and humoral response in Non-human primates to define mechanistic
correlates of protection for SARS-CoV-2.

Prague M., M. Alexandre, R. Marlin, Roger le Grand, Y. Levy and R. Thiébaut.

Society of mathematical Biology conference, Columbus USA, 16-21th July 2023. (Invited
speaker)

Elicitation of SARS-CoV-2 mechanistic correlates of protection using mechanistic models.
Prague M., Alexandre M., Marlin R, Le grand R, Levy Y and Thiébaut R.

The Canadian Applied and Industrial Mathematics Society, Online, 13-16th June 2022.
(Invited speaker)

Multi-level modeling of COVID-19 epidemic dynamics in French regions, estimating the com-
bined effects of multiple non-pharmaceutical interventions.

Prague M., Hejblum B., Moireau P., Thiébaut R. and Collin A.

Society of mathematical Biology conference, Online, 13-17th June 2021. (Invited speaker)

Viral dynamics as an outcome in HIV therapeutic vaccine trials: from AUC to dynamical mod-
elling

Alexandre M., Prague M. and Thiébaut R.

CMStat , online, 18-20th Dec 2021 (Invited oral presentation by mentored PhD Student).

Leveraging random effects to estimate the impact of non-pharmaceutical interventions on epi-
demic dynamics across French regions

Prague M., Collin A., Wittkop L., Dutartre D., Clairon Q., Moireau P., Thiébaut R. and Hejblum
B.

Channel Network Conference, online, 7-9th April 2021 (Invited speaker).


https://www.dropbox.com/s/d5j7jhyd524jjq0/Prague_BioRXiv_V2.pdf?dl=0
https://www.dropbox.com/s/jx37c5vm3dx3c69/Commenges_Interventions-draft_Proof_hi.pdf?dl=0
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HCI*-19-2

HCI*-19-1

HCI*-17-1

HCI*-16-1

HCI*-14-1

Evaluation of primary endpoint assessing HIV therapeutic vaccine efficacy during analytical
treatment interruption studies.

Alexandre M., Thiébaut R., Levy Y. and Prague M.

4th workshop on virus dynamics, Paris, 21-23 Oct. 2019 (Invited oral presentation by men-
tored PhD student).

Parameter estimation in nonlinear mixed effect models based on ordinary differential equations
- an optimal control approach.

Clairon Q., Pasin C., Balelli I., Thiébaut R., and Prague M.

12th International Conference on Computational and Methodological Statistics, London,
14-16 Dec. 2019 (Invited oral presentation by mentored Postdoctoral fellow).

Integrated approaches for analysis of cluster randomized trials. New development in analysis
Prague M.
Society for clinical trials, Liverpool, UK, 11-14 May 2017 (Invited speaker).

Inverse-probability-weighted semi-parametric estimation of treatment effect in cluster random-
ized trials with missing data.

Prague M. and De Gruttola V.

Society for clinical trials, Montreal, Canada - May 15th-18th 2016 (Invited speaker).

Comparison of GEE-based methods in cluster-randomized trial with missing data when outcome
depend on other patients covariates.

Prague M., R. Wang, E. Tchetgen Tchetgen and V. De Gruttola

Joint Statistical Meeting, Boston, USA - August 2nd-7th 2014 (Invited speaker).

1.3.7 Competitive International conferences (12)

HCI-23-5

HCI-23-4

HCI-23-2

HCI-22-3

HCI-22-2

Effects of public health interventions against COVID-19 in France.

Ganser 1., Prague M., D. Buckridge and R. Thiébaut

Conference on Retroviruses and Opportunistic Infections CROI, Seattle, March 19-22th Feb
2023 (Poster in competitive conference).

Which endpoint to choose during antiretroviral treatment interruption?

Alexandre M., Prague M., the VRI group and Thiébaut R.

Conference on Retroviruses and Opportunistic Infections CROI, Seattle, March 19-22th Feb
2023 (Poster in competitive conference).

Modeling neutralization capacities of Covid-19 vaccines.

Clairon Q., Prague M., Thiebaut R. and Gued;j J.

Population Approach Group in Europe Conference, A Curuna Spain, 28-30th June 2023.
(Oral presentation by mentored Postdoctoral fellow a competitive conference)

SAMBA: a new algorithm for automatic construction of nonlinear mixed-effects models.
Prague M. and Lavielle M.

Population Approach Group in Europe Conference Ljubjana Slovenia, 28th June -7 July
2022. (Competitive conference).

SARS-CoV-2 mechanistic correlates of protection in non-human primates: insight from mod-
elling response to vaccines.

Alexandre M., Marlin R., Prague M., Thiébaut R. and Lévy Y.

Population Approach Group in Europe Conference, Ljubjana Slovenia, 28th June -7 July
2022. (Oral presentation by mentored PhD Student in a competitive conference)
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HCI-21-4

HCI-21-3

HCI-20-1

HCI-18-3

HCI-18-2

HCI-18-1

HCI-13-1

Dynamics of the humoral immune response to a two-dose heterologous vaccine regimen against
Ebola virus.

Alexandre M., Prague M. and Thiébaut R.

Population Approach Group in Europe Conference, Online, 2-7 Sept 2021. (Oral presenta-
tion by mentored PhD Student in a competitive conference)

Using population approach to model COVID-19 epidemics in France: estimating the burden of
SARS-Cov-2 and the effects of non-pharmaceutical interventions.

Prague M., Hejblum B., Moireau P., Thiébaut R. and Collin A.,

Population Approach Group in Europe Conference, Online, 2-7 Sept 2021. (Speaker in a
competitive conference)

Viral rebound kinetics following single and combination immunotherapy for HIV/SIV

Prague M., J. Gerold, 1. Balelli, C. Pasin, J. Z. Li, D. Barouch, J. Whitney, A. L. Hill
Conference on Retroviruses and Opportunistic Infections CROI, Boston, 8-11th March 2020
(Poster in competitive conference).

Use of mathematical modeling for optimizing and adapting immunotherapy protocols in HIV-
infected patients

Pasin C., Villain L., Dufour L., Commenges D., Prague M. and Thiébaut R.

Population Approach Group in Europe Conference Montreux, Switzerland, 28-30 May 2018
(Oral presentation by collaborator in competitive conference).

In silico clinical trials for evaluation of HIV short-cycle strategies.

Prague M., Pasin C., Thiébaut R. and the ANRS CO3 Study group

Conference on Retroviruses and Opportunistic Infections CROI, Boston, March 4th-7th 2018
(Poster in competitive conference).

HIV rebound kinetics following TLR7-agonist and therapeutic vaccine administration

Gerold J., Balelli I, Pasin C., Lim S., Barouch D., Whitney J., Prague M. and Hill A. L.
Conference on Retroviruses and Opportunistic Infections CROI, Boston, March 4th-7th 2018
(Poster in competitive conference).

From in vivo to in vitro quantification of antiretroviral drugs effects based on dynamical models
of HIV.

Prague M., Commenges D. and Thiébaut R.

HIV Dynamics and evolution, Utrecht, Netherlands - May 8th-11th 2013 (Speaker in compet-
itive conference).

1.3.8 Other International conferences (25)

CI-23-2

CI-23-1

CI-21-3

Using transcriptomic information in mechanistic models of immune response.

Thiébaut R., Hejblum B., Ba K. and Prague M.

6th Virus dynamics workshop, Nagoya Japan, 4-6th July 2023. (Oral presentation by collab-
orator).

Use of priors in automated model building strategies for nonlinear mixed effects models.
Prague M. and Lavielle M.
International Society of biometry Conference, Milan Italy, 27-31th August 2023. (Speaker).

Barrier gesture relaxation during vaccination campaign in France: modeling impact of waning
immunity

Vignals C., Dick D., Thiébaut R, Wittkop L., Prague M. and Hefferman J.

Epidemics8, online, 1-3rd Dec. 2021. (Poster).
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CI-21-2

CI-21-1

CI-20-1

CI-19-5

CI-19-4

CI-19-3

CI-19-2

CI-19-1

CI-18-3

CI-18-2

A novel method for fast automatic model building in nonlinear mixed-effects models
Prague M. and Lavielle M.
5th Virus dynamics workshop, online, 4-6th Oct 2021. (Speaker).

Accounting for time-dependant confounding variables in mechanistic ODE model: simulations
and application to a vaccine trial

Alexandre M., Prague M. and Thiébaut R.

International Society of biometry Conference, online, 19-22th July 2021. (Oral presentation
by mentored PhD student).

Comparison of AUC in clinical trials with follow-up censoring: Application to HIV therapeutic
vaccines

Alexandre M., Thiébaut R., Levy Y., Prague M.

International Society of biometry Conference, online, 23-27th August 2020. (Oral presenta-
tion by mentored PhD student).

Viral rebound kinetics following single and combination immunotherapy for HIV/SIV
Prague M., Gerold J., Balelli 1., Pasin C., Whithney J., Barouch D., Hill A. L.
4th workshop on virus dynamics, Paris, 21-23 Oct. 2019 Oral presentation by collaborator).

A regularisation method for the problem of parameter estimation in ODE-mixed effect models:
application to analysis of Ebola vaccine humoral response.

Clairon Q., Thiébaut R., and Prague M.

4th workshop on virus dynamics, Paris, 21-23 Oct. 2019 (Oral presentation by mentored
Postdoctoral fellow).

Machine learning versus mechanistic modeling for prediction of metastatic relapse in breast
cancer.

Nicolo C., Périer C., Prague M., MacGrogan G., Saut O., Benzekry S.

Population Approach Group in Europe Conference, Stockholm, 11-14 June 2019. (Oral
presentation by collaborator).

Modeling viral rebound in HIV therapeutic vaccine studies.

Alexandre M., Thiébaut R., and Prague M.

Population Approach Group in Europe conference, Stockholm, 11-14 Jun. 2019 (Poster by
mentored PhD student).

Evaluation of weighting and imputation methods to deal with missing outcomes in cluster ran-
domized trials.

Turner L., Li F., and Prague M.

Society for clinical trials conference, New Orleans, 19-22 May 2019. (Oral presentation by
collaborator).

Performance of weighting as an alternative to multilevel multiple imputation in cluster ran-
domized trials with missing binary outcomes, Developments in cluster randomised and stepped
wedge designs.

Turner L., Li F. and Prague M.

Developments in cluster randomised and stepped wedge designs, London, 21-22 Nov. 2018.
(Oral presentation by collaborator).

Optimizing the administration of IL7

Villain L., Pasin C., Prague M. and Thiébaut R.

International Biometrics Society, Barcelona, Spain, 09-13 July 2018 (Oral presentation by
mentored PhD student)
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CI-18-1

CI-17-1

CI-16-2

CI-16-1

CI-15-2

CI-15-1

CI-14-3

CI-14-2

CI-14-1

CI-12-2

CI-12-1

Fitting pharmacokinetics data with a population-based Kalman filters.
Prague M. Collin A. and Moireau P.
International Biometrics Society, Barcelona, Spain, 09-13 July 2018 (Speaker).

Modeling the humoral immune response to Ebola vaccine.

Pasin C., Prague M., Eggo R., Van Effelterre T., Balelli I., ... and Thiébaut R

Systems Immunology and Vaccine Design, Heidelberg, Germany, 9-10 Oct. 2017. (Oral
presentation by collaborator).

Population Modelling by Examples II
Population Modeling Working Group including M. Prague
SummerSim conference, Canada - July 24-27th 2016 (including proceedings 8 pages)

Estimating the Marginal Effect of Interventions to Reduce Spread of Communicable Diseases:
What can be gained from Contact Network Information?

Prague M., Staples P., Onnela JP., Tchetgen Tchetgen E. and De Gruttola V.

ENAR, Austin Texas, USA - March 6th-9th 2016 (Speaker).

Leveraging classical analysis of cluster randomized trials with contact network information in-
fectious diseases.

Prague M., Staples P., Onnela JP. and De Gruttola V.

NIH Workshop Quantitative Methods and Models in the Era of Big Data, Washington DC,
USA - Nov 9th-10th 2015 (Poster).

Accounting for informative missingness, interaction and interference in cluster randomized tri-
als.

Prague M., Wang R., Stephens A., Tchetgen Tchetgen E. and DeGruttola V.

Society for Clinical Trials, Washington DC, Arlington, USA - May 17th-20th 2015 (Speaker).

From descriptive to mechanistic models to study causal effects: application to the effect of
HAART on CD4 count.

Prague M., Commenges D., Gran J.M., Aalen O. and Thiébaut R.

Joint Statistical Meeting, Boston, USA - August 2nd-7th 2014 (Speaker).

Using mechanistic models to analyze the effect of interleukins 7 treatment in HIV infected
patients

Jarne A., Thiébaut R., Prague M. and Commenges D.

International Biometric Society, Florence, Italy - July 6th-11th 2014. (Oral presentation by
collaborator).

Mechanistic versus marginal structural models for estimating the effect of HAART on CD4
counts

Commenges D., Prague M. and Thiébaut R.

Medical Research Council Conference on Biostatistics, Cambridge, UK - April 24th-26th
2014. (Oral presentation by collaborator).

Toward information synthesis with mechanistic models of HIV dynamics.

Prague M., Commenges D. and Thiébaut R.

International society for Clinical Biostatistics, Bergen, Norway - August 21st-25th 2012
(Speaker).

Bayesian MAP Estimation in Models with Random effects based on Ordinary Differential Equa-
tions applied to Treatment Monitoring in HIV.



1.3. Scientific production 29

CI-11-1

Prague M. and Commenges D.
Eurandom Workshop on Parameter Estimation for Dynamical Systems (PEDS II), Eind-
hoven, Neetherland - June 4th-6th 2012 (Speaker).

Treatment monitoring of HIV infected patients: optimal drug dose control.
Prague M., Commenges D., Drylewicz J. and Thiébaut R.
International Biometric Society, Bordeaux, France - April 11th-13th 2011 (Speaker).

1.3.9 Invited National Conferences (3)

CN*-23-1

CN*-21-3

CN*-15-1

Utilisation des données de transcriptomique pour informé les modeles mécanistes de réponse
immunitaire.

Thiébaut R., Hejblum B., Ba K. and Prague M.

AC modélisation ANRS MIE, Paris, France. 24-25th Oct. 2023. (Invited oral presentation by
collaborator)

Modeling B cells response.
Prague M.
AC modélisation ANRS MIE, Paris, France. 15 Oct 2021. (Invited Speaker).

Thesis Award MJLD: Use of dynamical models for treatment optimization in HIV infected pa-
tients.

Prague M.

JdS French Statistics Society conference, Lille, France, 1-5th June 2015. (Invited Speaker).

1.3.10 Other National conferences (14)

CN-23-1

CN-22-2

CN-22-1

CN-21-2

High-dimension Mechanistic Model Building using LASSO Approaches : Application to Ebola
Vaccination.

Gabaut A. Prague M.

GDR Statistiques et Santé, Toulouse, France. 16-17th Nov. 2023 (Oral presentation by men-
tored PhD Student).

Modeling the temporal evolution of the neutralizing activity against SARS-CoV-2 variants after
several administration of Bnt162b2.

Clairon C., Thiébaut R., Guedj J. and Prague M.

AC modélisation ANRS MIE, Bordeaux, France. 21-22th Nov. 2022. (Oral presentation by
mentored Postdoctoral fellow).

Estimation of the effect of non-pharmaceutical interventions and vaccination against COVID-19
in France using dynamical models.

Ganser 1., Buckridge D., Thiébaut R. and Prague M.

AC modélisation ANRS MIE, Bordeaux, France. 21-22th Nov. 2022. (Oral presentation by
mentored PhD Student).

Méthode de comparaison d’aires sous la courbe dans des essais cliniques avec arrét prématuré
du suivi: application aux vaccins thérapeutiques contre le VIH.

Alexandre M., Thiébaut R. and Prague M.

JdS French Statistics Society conference, online, France, 1-6th June 2021.(Oral presentation
by mentored PhD Student).
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CN-21-1

CN-19-1

CN-17-3

CN-17-2

CN-17-1

CN-16-1

CN-13-1

CN-12-2

CN-12-1

CN-11-1

Estimation paramétrique de modeéles mixtes définis par des equations différentielles : une ap-
proache basée sur le contréle optimal.

Clairon Q., Pasin C., Balelli I., Thiébaut R. and Prague M.

GDR Statistiques et Santé, online, France, 21-22th Oct. 2021.(Oral presentation by mentored
Postdoctoral fellow).

Modeling epidemics using networks.
Prague M., Staples P., De Gruttola V. and Onnela JP.
JdS French Statistics Society conference, Nancy, France, 3-7th June 2019. (Speaker).

Use of mechanistic models for in Silico trials: Evaluating new strategies design for HAART in
HIV infected patients.

Prague M., Commenges D. and Thiébaut R.

GDR Statistiques et Santé, Bordeaux, France, 9-10th Oct. 2017. (Speaker).

Non linear mixed effect models based on Ordinary Differential equations.
Prague M., Commenges D. and Thiébaut R.
GDR Mamovi, Lyon, France, 27-28th Sept. 2017. (Speaker).

Joint-state and parameters estimation using Kalman-based filters.
Prague M., Collin A. and Moireau P.
JdS French Statistics Society conference, Avignon, France, 1-4th June 2017. (Speaker).

Estimation doublement robuste de 'effet marginal d’intervention pour les essais randomisées
en cluster.

Prague M., Tchetgen Tchetgen E. and De Gruttola V.

JdS French Statistics Society conference, Montpellier, France, 1-4th June 2016. (Speaker).

Inférence par Approximation Normale de I'a posteriori dans les modéles dynamiques a Effets
mixtes

Prague M., Commenges D., Guedj J., Drylewicz J. and Thiébaut R.

JdS French Statistics Society conference, Toulouse, France, 21-31th May 2013. (Speaker).

Ilustration of information synthesis of clinical trials with mechanistic models of HIV dynamics
Prague M., Commenges D. and Thiébaut R.
GDR Statistiques et Santé, Rennes, France, 20 Sept. 2012. (Speaker).

R Package “marqLevAlg” : the Marcquardt-Levenberg algorithm an alternative to “optimx”
Prague M., Diakité A. and Commenges D.
UseR France, Bordeaux, France, 2-3 July 2012. (Speaker).

Estimation in Differential Equations and prediction of treatment response in HIV infected pa-
tients

Prague M. and Commenges D.

GDR Statistiques et Santé, Paris, France, 30 May 2011. (Speaker).

1.3.11 Invited Seminars - selection in external institutions (15)

S-23-1

S-22-1

Defining Mechanistic correlates of protection
MRC Cambridge, Biostatistics department, online, 24 May 2023.

SARS-CoV-2 mechanistic correlates of protection: insight from modeling response to vaccine
York university, in-host seminar series, online, 14 oct. 2022.
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S-21-1 Evaluating the longevity of humoral response: from Ebola to SARS-CoV-2
EpidemiOptim: a toolbox for the optimization of control policies in epidemiological models
Google DeepMind seminar, online, 7 Janv. 2021.

S-20-2 Evaluating the longevity of humoral response: from Ebola to SARS-CoV-2
Modcov19 Seminar series & Health data Hub, online, 1 April and 4 Nov. 2020.

S-20-1 Multi-level modeling of early COVID-19 epidemic dynamics in French regions and estimation
of the lockdown impact on infection rate
European Network for Business and Industrial Statistics, online, 6 July 2020.

S-19-1 Updates on estimation of parameters in dynamical models
Harvard Program for evolutionary dynamics, Boston, USA, 5 Feb. 2019.

S-18-1 Use of mechanistic models for in silico trials
Institut Gustave Roussy, Biostat/Oncostat, Paris, France, 12 Feb. 2018.

S-17-2 Use of mechanistic models for in Silico trials
Harvard School of Public Health, Biostatistics Department, Boston USA, 10 Apr. 2017.

S-17-1 Doubly Robust estimators in Cluster Randomized Trials
University of Pennsylvania, Biostatistics Department, Philadelphie, USA, 3 Apr. 2017.

S-15-2 Estimating intervention effect in cluster randomized trials: handling, missing data, interferences
IRD, MERIT Team, Paris, France, 15 Dec. 2015.

S-15-1 Double robust estimation of causal effect of intervention in cluster randomized trial with missing
data
Inserm U1219, Department of biostatistics, Bordeaux, France, 12 Mars 2015.

S-13-3 Estimation of HAART treatment effect in observational studies
University of Oslo, Department of statistics, University of Oslo, Norway, 10 Dec. 2013.

S-13-2 Utilisation de modeles dynamiques pour 'optimisation des traitements des patients infectés VIH
Inserm U1137, University of Paris Diderot, Paris, France, 27 Nov. 2013.

S-13-1 Dynamical models in the HIV context: Prediction of treatment responses and optimization
John Hopkins hospital, Pharmacological sciences Department., Baltimore, USA, 26 Oct. 2013.

S-12-1 Estimation and treatment optimization in HIV infected patients
University of Lieége, Department of methodological statistics, Liege, Belgium, 11-13 Dec. 2012.

1.3.12 Softwares (6)

Soft-23-1 R package "Rsmlx" is a library that allows to interface optimization algorithms with models of
epidemic propagation. Epidemiological models are wrapped in OpenAl Gym interfaces, making
them readily compatible with state-of-the-art optimization algorithms.

Soft-21-1 Python Toolboox "EpidemiOptim" is a library that allows to interface optimization algorithms
with models of epidemic propagation. Epidemiological models are wrapped in OpenAl Gym
interfaces, making them readily compatible with state-of-the-art optimization algorithms.


https://cran.r-project.org/web/packages/Rsmlx/index.html
https://github.com/flowersteam/EpidemiOptim

32

Soft-20-2 R package "SEIRcovid19FR" is an R package for multi-level inference of epidemic dynamics

Soft-20-1

Soft-16-1

Soft-13-1

applied to COVID-19 in France.

R package "marqgLevAlg" This algorithm provides a numerical solution to the problem of uncon-
strained local minimization (or maximization). It is particularly suited for complex problems
and more efficient than the Gauss-Newton-like algorithm when starting from points very far
from the final minimum (or maximum). Each iteration is parallelized and convergence relies
on a stringent stopping criterion based on the first and second derivatives.

R package "CRTgeeDR" implements a semi-parametric GEE (Generalized Estimating Equation)
estimator accounting for missing data with Inverse-probability weighting (IPW) and for im-
balance in covariates with augmentation appraoches (AUG). The estimator IPW-AUG-GEE is
Doubly robust (DR).

The "NIMROD" software is a Fortran program (Normal approximation Inference in Models with
Random effects based on Ordinary Differential equations) devoted to the estimation in Ordinary
Differential Equations (ODE) models with random effects. Although maximum likelihood based
approaches are valuable options, both numerical and identifiability issues favor a Bayesian
approach which can incorporate prior knowledge in a flexible way. NIMROD estimations relies
on a normal approximation of the posterior that can be obtained by computing the maximum
of the posterior distribution (MAP) by maximizing a penalized likelihood. NIMROD is now
deprecated.

1.3.13 Press Releases (18)

During the COVID-19 pandemic, a number of our works were highlighted by the media. Below is
a non-exhaustive list of press releases where our work was cited:

La Croix 05/05/2020 "Coronavirus I'intrigante géographie contagion.",

Parisien 08/06/2020 "Covid-19 les manifestations risquent-elles d’accroitre la propagation du
virus",

Sud-Ouest 17/11/2020 "Covid-19 comment travaillent les épidemiologistes",

France 2 journal TV 13h 29/12/2020,

Le Parisien 06/01/2021 "Covid-19 l'ouest de la France restera-t-il epargné?",

Le Parisien 29/04/2021 "Déconfinement a partir du 3 mai est-ce bien raisonnable d'un point de
vue sanitaire",

Le Parisien 06/09/2021 "Covid-19 y a-t-il vraiment une correlation entre le taux d’incidence et
la vaccination",

La tribune 19/07/2021 "Intelligence artificielle et épidemiologie deux clefs pour la santé
publique",

Le Monde 28/07/2021 "Covid-19 face a la quatrieme vague les effets trop tardifs de
laccéleration de la vaccination",

France 2 Journal Télévisé 20h 01/09/2021,


https://github.com/sistm/SEIRcovid19
https://cran.r-project.org/web/packages/marqLevAlg/index.html
https://cran.r-project.org/web/packages/CRTgeeDR/index.html
https://www.la-croix.com/Monde/Coronavirus-lintrigante-geographie-contagion-2020-05-05-1201092633
https://www.leparisien.fr/societe/covid-19-les-manifestations-risquent-elles-d-accroitre-la-propagation-du-virus-08-06-2020-8331834.php
https://www.sudouest.fr/gironde/bordeaux/covid-19-comment-travaillent-les-epidemiologistes-un-professeur-bordelais-repond-1665245.php
https://www.france.tv/france-2/journal-13h00/2154713-edition-du-mardi-29-decembre-2020.html
https://www.leparisien.fr/societe/covid-19-l-ouest-de-la-france-restera-t-il-epargne-06-01-2021-8417623.php
https://www.leparisien.fr/societe/sante/deconfinement-a-partir-du-3-mai-est-ce-bien-raisonnable-dun-point-de-vue-sanitaire-29-04-2021-BYQWSGUN7JD2DEOAKKCJYKOG2M.php
https://www.leparisien.fr/societe/covid-19-y-a-t-il-vraiment-une-correlation-entre-le-taux-dincidence-et-la-vaccination-06-09-2021-DUUKR2E3NVHXFIMNPM77QBMAO4.php
https://objectifaquitaine.latribune.fr/business/2021-07-19/intelligence-artificielle-et-epidemiologie-deux-clefs-pour-la-sante-publique-889192.html
https://www.lemonde.fr/planete/article/2021/07/28/covid-19-face-a-la-quatrieme-vague-les-effets-trop-tardifs-de-l-acceleration-de-la-vaccination-selon-l-institut-pasteur_6089749_3244.html
https://www.francetvinfo.fr/replay-jt/france-2/20-heures/jt-de-20h-du-mercredi-1-septembre-2021_4735223.html
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Le monde 25/09/2021 "Covid-19 malgré cinq semaines de baisse continue en métropole les
épidemiologistes restent prudents",

La voix du Nord 4/11/2021 "Covid-19 jusqu’a quand faudra-t-il porter un masque?",

Sud Ouest 04/01/2022 "Omicron avec une possible immunité collective le gouvernement
amorce une bonne stratégie de santé publique",

Sud Ouest 04/01/2022 "Levée des restrictions sanitaires il serait judicieux de porter le masque
encore un peu",

Sud-Ouest 06/02/2024 "Covid-19 une étude met en lumiére les milliers de vies sauvées par les
confinements et la vaccination",

L’express 07/02/2024 "Covid-19 le confinement et les vaccins ont-ils été efficaces ce que révele
une étude”,

Le monde 08/02/2024 "Covid-19 sans la vaccination le nombre de morts aurait été le double
en France",

La Dépéche 09/02/2024 "Covid-19, les données prédisent 159000 déces supplémentaires une
étude mesure I'impact du confinement et du vaccin en France.


https://www.lemonde.fr/planete/article/2021/09/25/covid-19-malgre-cinq-semaines-de-baisse-continue-en-metropole-les-epidemiologistes-restent-prudents_6095959_3244.html
https://www.lavoixdunord.fr/1094023/article/2021-11-04/covid-19-jusqu-quand-faudra-t-il-porter-un-masque.
https://www.sudouest.fr/sante/omicron-avec-une-possible-immunite-collective-le-gouvernement-amorce-une-bonne-strategie-de-sante-publique-7511779.php
https://www.sudouest.fr/sante/coronavirus/monde/levee-des-restrictions-sanitaires-il-serait-judicieux-de-porter-le-masque-encore-un-peu-10256949.php
https://www.sudouest.fr/sante/covid-19-une-etude-met-en-lumiere-les-milliers-de-vies-sauvees-par-les-confinements-et-la-vaccination-18460522.php
https://www.lexpress.fr/sciences-sante/sante/covid-le-confinement-et-les-vaccins-ont-ils-ete-efficaces-ce-que-revele-une-etude-PJGGE3RB7VFQHE6PM43CUQBOZY/
https://www.lemonde.fr/planete/article/2024/02/08/covid-19-sans-la-vaccination-le-nombre-de-morts-aurait-ete-le-double-en-france_6215444_3244.html
https://www.ladepeche.fr/2024/02/09/covid-19-les-donnees-predisent-159-000-deces-supplementaires-une-etude-mesure-limpact-du-confinement-et-du-vaccin-en-france-11752910.php




Chapter 2

Statistical Methodology for Estimations and
Building of Mechanistic Models

2.1 Bibliometry

The first research axis is predominantly theoretical, focusing on the complexities of solving inverse
problems in nonlinear mixed-effect models (NLME), of efficiently predicting individual outcomes
and, of optimizing input of the systems. This research mainly explores optimization techniques and
strategies to construct and use robust and adequate models. The outputs of this axis are summarized
in Table 2.1. This theme gave birth to 9 articles in peer-reviewed international journals, 14
international conferences, 10 national conferences, 3 seminars and 3 softwares. It is also
funded by 3 international grants and 2 national grants. The interrelation of all these works is

explained in the next subsections.

2.2 Mechanistic Model Definition

This research direction is the most theoretical aspect of my work. It is grounded in my biostatistics
background and driven by the challenges encountered in processing data from both international and
national projects, including collaborations with the Vaccine Research Institute. In most study in my
work, we handle longitudinal data collected for multiple individuals. The poor performance of
individual data fitting has been extensively studied since the 1970s. Lewis Sheiner highlighted the
inefficiency of individual data fitting for parameter estimation, as it doesn’t differentiate between
between-subjects and within-subject variability, necessitating frequent data collection in each patient
[180, 179]. It was also shown that biased conclusion on treatment effects can be derived from
patient-by-patient fitting [178]. Thus, we need to develop efficient tool to model jointly repeated

measurements taken for each patient.
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Before
Last
Peer-reviewed International Journals First Second or Last Other
CPT: Pharmacometrics & Syst. Pharma. RI-22-1
Biometrics RI-16-4
R Journal RI-21-5
MathematicS in Action RI-22-5
Computational meth. and prog. Biomed. RI-13-1
Computational Statistics RI-23-6
Journal Clinical Oncology RI-20-2
Statistical Comm. Infectious Diseases RI-20-3
French Statistical Society Journal RI-16-3
"Total () 4 1 1 3
International conferences Invited Speaker = Mentee Poster Other
PAGE HCI-22-3;
CI-19-3
CMStat HCI*-19-1
ISBC CI-23-1 CI-12-2
Workshop on Virus Dynamics CI-21-2 CI-19-4 CI-23-2
IBC CI-18-1;
CI-11-1
Joint Statistical Meeting CI-14-3
Other Cl-12-1 CI-16-2;
CI-14-1
“Total (14 T 6 2 o 5
National conferences Invited Speaker = Mentee Poster Other
GDR Stat & Santé ou Mamovi CN-17-2;  CN-23-1;
CN-13-1; CN-21-1
CN-12-2;
CN-11-1
ANRS MIE AC CN*-23-1
JdS SFdS CN*-15-1 CN-17-1
useR! CN-12-1
“Total (10) T 6 2 o 1
Seminars (3) S-19-1; S-13-3; S-12-1
International Grants (3) 1G-20-1; IG-19-1; I1G-18-2
National Grants (2) NG-22-1; NG-17-1
Sofwares (3) Soft-23-1; Soft-20-1; Soft-13-1

Table 2.1 — Bibliometry for axis "Statistical methodology for estimations and building of mechanistic
models"
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Nonlinear mixed-effects models (NLME) are particularly adapted for this purpose, which makes
them the primary tool employed in my research. NLME models are a statistical approach used to an-
alyze data that is non-linear in nature and includes both fixed and random effects. The fixed effects
represent the population-average effects and are consistent across all individuals, possibly depend-
ing on measured explanatory covariates. Random effects account for individual-specific variations.
These effects allow the model to account for variability in the data that is not explained by the fixed
effects alone, which is the extra heterogeneity not captured by individual covariates. The model
accounts for non-linear relationships between variables. In my research, this is typically achieved
through Ordinary differential equations (ODE) which may or may not admit an analytic solution.
Of note, few examples could be extended for stochastic differential equations or partial differential
equations.

NLME are also referred to as mechanistic models. Mechanistic models, in a general scientific
context, refer to models that are based on the underlying mechanisms. One of the key characteristic
of mechanistic models is that they are a process-based representation of a phenomenon based on
fundamental principles of kinetics. This is particularly useful in my research as we model biological
processes related to immunology and virology to derive the ODE. Mechanistic models can become
very complex, especially when they aim to describe intricate biological systems. This often requires
significant computational resources for simulation and analysis.

We make the choice to present mechanistic model by dividing the description into three intercon-
nected components: the mathematical model, the statistical model, and the observation model.
Each part plays a crucial role in the modeling process, from representing biological processes to fitting

the model to empirical data.

* Mathematical Model (or Process Model): The mathematical model is the core part that de-
scribes the underlying biological or physical processes, in our setting, using a system of ODE
(f(v, X,t)). It consists of equations that represent the change in state of various components
X (e.g., concentrations of different substances, populations of cells) over time ¢. The equations
are typically derived based on biological knowledge and fundamental principles but could also
be built by data-driven approaches (see Section 2.5). Parameters in the mathematical model
1, like rate constants or initial conditions, are often biologically interpretable but not directly

observable.

* Statistical Model (or Parameter Model): The statistical model deals with the uncertainty
and variability in the parameters of the mathematical model. It includes prior distributions
for the parameters, reflecting any previous knowledge or assumptions about their values. The

statistical model also handles the variability between subjects (inter-individual variability rep-
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resented by random effect 7;) or within the same subject over time (intra-individual variability
represented by fixed effects 1y and 3 for effect of covariates Z;). It is crucial for parameter
estimation, especially when fitting the model to data, and for quantifying the uncertainty in the
estimates. For individual ¢ = 1,... N, the individual parameters write, up to a transformation
function h, h(1;) = h(vo) + BZ; +n;. The random effects 7, are normally distributed with mean
0 and variance . The function h is often chosen, though not exclusively, to be log-normal

because it constrains the diffusion rates of the ODE to be positive.

Observation Model (or Data Model): The observation model connects the mathematical
model to the real-world data. It describes how the actual data measurements are generated
from the theoretical values predicted by the mathematical model. This often involves account-
ing for measurement errors or other forms of noise. The model may include factors like the
sensitivity and specificity of the measurement techniques, sampling times, and the nature of the
data (e.g., continuous, count data, binary outcomes). In particular, it is essential for translating
between the scale and units of the mathematical model and the observed data. Finally, obser-
vation model may only represent a fraction of the compartments within the mechanistic model,
resulting in incomplete information about all the components of the process. The observation
Y;; for individual ¢ at time ¢;;, with j = 1,...,n;, is related with ODE outputs up to a trans-
formation g such that Y;; = g(X (i, tij)) + ge(&, X (i, tij))ei;. Where ge (€, X (¢, t;5)) is the
error function of the marker and ¢;; is normally distributed of mean 0 and variance 1. Of note,
in a constant error model, often referred to as white noise, g.(&, X (¢;,¢;;)) is assumed to be a

diagonal matrix.

In this mechanistic model M, we are interested in estimation of the joint distribution of § =

(o, 8,9, ). Then for prediction, we are interested in the individual values of parameters 1), as well

as their related uncertainty.

2.3 Inference in Mechanistic Model

Possessing the capability to manipulate, compare, and construct estimation approaches for ad-

dressing the inverse problem is crucial; this involves being able to perform forward simulation using

mechanistic models. For forward simulation of ODE, we use standard numerical methods ranging

from Euler’s method and Runge-Kutta Methods to stiff ODE Solvers such as the Backward Differentia-

tion Formula method (BDF) [38]. One of the interesting feature that make our problem difficult is the

stiffness of many of our ODE. A stiff ODE system is one in which there is a significant disparity in the

time scales of the processes or phenomena described by the ODE. In simpler terms, stiffness occurs
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when some components of the system evolve much more rapidly than others, leading to numerical
challenges when simulating the ODE. In my research to date, I have assumed that forward simulation
methods exist and are reliable. Thus, I am mostly interested in inferring the parameters of a model

based on available data, i.e. solving the inverse problem.

Another aspect of mechanistic model that is important to check before trying inference on the
model is identifiability. This term refers to the ability to uniquely determine the model’s parameters
(or some of them) based on observed data. My research does not yet feature new development
in this aspect. However, this is something we carefully check before attempting any inference on a
given problem. First, structural identifiability relates to whether the model structure itself allows for
unique estimation of parameters. It considers whether the mathematical relationships between model
variables and parameters are such that no parameter can be changed without affecting the model’s
predictions. To assess this problem, we routinely use Differential Algebra for Identifiability in Systems,
historically DAISY [17] and more recently a method that also ensures that derivatives of parameters
are identifiable [51]. Second, practical identifiability considers whether, in practice, with a specific
dataset and measurement noise, the parameters can be estimated with sufficient precision [114].
To assess this problem, we routinely use sensitivity analysis, Monte Carlo simulations and profile
likelihood analysis. See Section 2.6 for details on future envisioned research on identifiability and

optimal design.

The challenge is the development of population-based estimation approaches (CI-16-2). Maxi-
mum Likelihood Estimation is a commonly used method for estimating parameters in mechanistic
models. It seeks to find the parameter values that maximize the likelihood of observing the observed
data (y) given the model, which is expressed as the product of the probability density (or likelihood)
of the observed data points [153]. The maximum likelihood estimator § = argmaz [I(6,y)], where

the likelihood can be written as:
6.0 =TT [ ottt 0
i=1,...N

However, because our methods often lack of identifiability, we initially use a Bayesian framework
in which it is possible to input biological information on parameters values. In Bayesian modeling,
you start with a prior distribution for the parameters and update it with the likelihood of the data to
obtain the posterior distribution. Markov Chain Monte Carlo (MCMC), Variational Inference and im-
portance sampling are common techniques used for Bayesian parameter estimation [125, 160, 162].
In this regard, my research initially focused on methods involving penalized likelihood maximiza-
tion for NLME models (CI-11-1; CI-12-1; CN-17-2; CN-13-1; CN-11-1; S-12-1). The relationship

between penalized likelihood estimation and Bayesian statistics lies in the incorporation of additional
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information or constraints on the parameters. The algorithm maximizes log(1(6,y)) — J(¢), where
J(0) increases as the parameter estimates deviate further from their prior values. Our algorithm uses
the Levenberg-Marquardt gradient descent algorithm (RI-21-5; CN-12-1, released in an R package
Soft-20-1), to approximate and maximize the penalized likelihood. The descent process is described
as follows:

Ors1 = Op — (H +vI) "1 (0,)U (61),

where U and H represent the score and the Hessian of the likelihood, respectively, while v is a
term added to ensure the Hessian remains positive definite and approaches zero over iterations. The

Hessian is approximated by a function of the scores:
0x) =S Ui (0,)U! YU@n)U’ o).
G(6r) Z U(0k)U; (0x) + —U (60x)U" (0%)

The score for each individual i = 1,..., N is expressed as:

d ()
dni g

Ui(Or) =p(yi|9)_1/p(yi|m,9)
which is evaluated using sensitivity equations of the ODE, adaptive Gaussian quadrature, and the
Livermore Solver for Ordinary Differential Equations. This algorithm was implemented in a Fortran
program Soft-13-1). Additionaly, an interesting feature of this research is the development of a

rigorous stopping criterion defined as the relative distance to maximum (RDM):

1

dnn(@k) U/(ek)G_l(ek)U(ek)7

which serves as a proxy for the ratio between the numerical error and the statistical error, with a
lower value indicating better performance (RI-13-1). The whole phD thesis on this topic as well as
applications developed in it has been awarded by the SFdS PhD thesis award for applied statistics
(CN*-15-1).

The calculation burden due to the complexity of ODE models, led us to progressively shift to-
ward algorithms which does not require as many evaluations of the likelihood as a gradient-descent
method. The Stochastic Approximation of the Expectation-Maximization (SAEM) algorithm is
an iterative optimization method used for estimating the parameters of mechanistic models. It com-
bines elements of both the Expectation-Maximization (EM) algorithm and stochastic approximation
[111] extended for left-censored data [172]. In the E-step, SAEM computes the expected value (or
conditional expectation) of the complete likelihood function given the current parameter estimates

and observed data. To do so, it uses a Monte Carlo approach to approximate the expected likelihood,
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often referred to as the population likelihood. Then, in the M-step, SAEM updates the parameter
estimates to maximize the expected complete likelihood obtained in the E-step. SAEM incorporates a
stochastic component by using small perturbations or noise in parameter updates. This helps escape
local maxima and improve the convergence of the algorithm. SAEM iteratively alternates between
the E-step and the M-step until convergence criteria are met. An evolution of this algorithm is the

Mixture SAEM, see [115] for all details, it writes and iterates as follows for iteration k:
» S-step: Sample the latent variable u;gk) according to the conditional distribution p(.|y, 0%)-

* E-step: Compute H(y, ¢§k>; 0r) = E(S(y, wgk), 2)|y, wgk), ), where S is a function of the mini-

mal sufficient statistics of the log-likelihood.

* AE-step: Update Q () such that Qr11(0) = Qx(6) + %(H(y,wgk),ek) — Qi(0)), where -, is
a decreasing sequence tuning the convergence rate of the algorithm. We usually take v, = 1

during an exploratory phase and v, = 1/k in the smoothing phase.
* M-step: 041 maximizes Qp+1(6).

Convergence is typically assessed based on changes and stabilization in parameter estimates and
the complete likelihood. It is implemented in the software Monolix that we routinely use [116] (as
disseminated in educational seminar S-19-1). We currently entertain relationship with the Simulation
Plus Lixoft company owning this software. However, given Monolix’s proprietary nature, which limits
rapid source code evolution, and its inability to meet all the specific requirements for our applications,
we continue the development of alternative estimation methods.

In this previous approach, the relationship that exists between parameters and time need to be
parametrically defined. Semi-parametric models do not assume a specific functional form and are
more flexible, allowing the data to dictate the structure of the model. Methods based on splines
smoothing have been developed to fit these models [204]. However, they may also prove to be
computationally demanding and the number of hyperparameters to fix (eg. splines basis, knots...)
makes them very sensitive to parametrization [206]. We thus decided to develop an alternative semi-
parametric approach for estimation in mechanistic model. Data assimilation methods are often used
in environmental sciences and confronted with the complexity burden associated with large-scale
systems [9]. Famous data assimilation approaches are based on Kalman filters. The Kalman filter is
an algorithm that provides efficient computational recursive means to estimate the state of a process
in a way that minimizes the mean of the squared error. The Unscented Kalman Filter particularly ad-
dresses some limitations of the traditional Kalman filter when dealing with nonlinear systems [102].
Together with collaborators (Annabelle Collin Inria Bordeaux Team Monc and Philippe Moireau Inria

Team M3disim Paris Saclay), we extended Kalman filters to population approach (RI-22-5; CI-18-1;
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CN-17-1). The potential curse of dimensionality caused by the population framework is then limited
by covariance reduction techniques such as those proposed in the Reduced-Order Unscented Kalman
Filter [138]. Note that this is not the first time that Kalman-based approaches have been used in
mixed-effects strategies [45, 108, 196]. However, in this literature, the extended Kalman filters are
used only to approximate the individual probability distribution function, whereas in our work we use
the Kalman approach also for estimation at the population level. We investigated the use of this new
fitting strategy on a large range of scenarios and we found that this method requires a large amount
of data with a very frequent sampling to provide reliable estimates. Thus, we applied it to estimation
of effects of non-pharmaceutical interventions in COVID-19 epidemics for which time series of cases
and hospitalization are observed daily on a long course (see Section 4.3.1). See Section 2.6 for details
on how we envision to use this method for sparse data.

The approaches based on the estimation of a given ODE model face the problem of not taking into
account the presence of model misspecification. First, most of the time, the true initial conditions are
unknown, which implies either assumptions on their values [117] or their estimation [89]. Second,
they can face accuracy degradation when the inverse problem of parameter estimation is ill-posed due
to practical identifiability issues [61]. Another method that we investigated is grounded in optimal
control theory. It consists in optimization that deals with finding a control law for a dynamical
system over a period of time such that an objective function is optimized. In a few words, the
idea is to fit the ODE model to data together with a control variable that can be manipulated to
influence the behavior of the system. It aims to regularize the estimation problem in the presence
of model misspecification and practical identifiability issues, while avoiding the need to know or
estimate initial conditions as nuisance parameters. Together with a postdoctoral fellow Quentin
Clairon, we extended existing approach [29] to population approach. See Section 6.1 for the full
version of the article presenting this work. Compared to the maximum likelihood method, we show
through simulation examples that our method improves the estimation accuracy in possibly partially
observed systems with unknown initial conditions or poorly identifiable parameters with or without
model error (RI-23-6; HCI*-19-1; CI-19-4; CN-21-1). See Section 2.6 for details on how we believe

this method would help us to assess model misspecification.

2.4 Validity of the Approach: Causality and Predictions

While it is feasible to manipulate mechanistic models, it is imperative to be convinced of their
superiority for modeling available data. This necessitates a comparative analysis with other avail-
able tools. Even if the answer may be problem-specific, we postulate that mechanistic models may

be superior in term of prediction abilities as they integrate biological knowledge. First, together with
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collaborators (Rui Wang and Alison Hill at Harvard university), we focus on comparing two different
modeling approaches for analyzing HIV-1 RNA viral load trajectories after antiretroviral treatment
interruption (RI-21-2; CI-19-2). The models of interest are splines [210] and mechanistic models
[149]. Both models aim to predict features of viral rebound, like viral set points and delay in rebound,
and identify factors influencing these features. The study finds that both models offer reasonable fits
to the data. The mechanistic models however lead to slightly more efficiency. This is even amplified in
presence of limit of detection for viral load makers and lost of follow-up of patients due to antiretro-
viral resumption (RI-20-3). Second, together with collaborator (Sebastien Benzeckry Inria-Inserm
Team Compo Marseille), we focus on evaluating predictive models for metastatic relapse in patients
with early-stage breast cancer. It compares the effectiveness of machine learning algorithms [213]
and mechanistic models [94] in predicting the risk of metastasis after surgical intervention. The
model’s predictive performances are comparable. However, we show that the mechanistic model pro-
vides estimates of the invisible metastatic burden at diagnosis and simulates metastatic growth. It can
serve as a personalized prediction tool for managing patients with breast cancer. See Section 2.6 for
details on how we believe statistical learning and deep learning methods can be adapted to address

predictions and inference problems in our mechanistic models.

The goal of mechanistic models is often to evaluate the effects of treatments or exposures
over time. This question may arise in a randomized but also in an observational setting. In the
latter, causal problems may arise [25]. A time-varying confounder is a variable that influences,
and is influenced by, the exposure (or treatment), while also being a risk factor for the outcome.
This is for example the case of CD4 count when evaluating the effect of antiretroviral treatment.
CD4 count is both the outcome and a covariate explaining treatment assignment. This dynamic
nature poses significant challenges in accurately assessing causal relationships. In this setting, it has
been demonstrated that a conventional regression analysis leads to biased estimates of the treatment
effect, typically underestimating it, and may (wrongly) indicate a negative effect. This is called
confounding by indication [203]. Marginal structural models (MSM) [168] have been proposed for
dealing with this issue; this is based on choosing a causal model in terms of potential responses,
which are often counterfactual, to the different treatment histories. The parameters of a MSM can be
estimated through a weighted approach but other methods exist such as targeted maximum likelihood
[152]. The weights are the inverse probability of treatment assignment and are obtained through a
“treatment model” which includes the covariates linked to the outcome. Because data are correlated,
we use an inverse probability weighted generalized estimating equation (GEE), see Section 4.2 for
use of this tool in the setting of missing data. This approach has been applied for estimating the
effect of antiretroviral on CD4 count [83, 31]. An alternative view to causality that does not use

the potential responses representation is to use dynamic models. Among others, Bayesian decision



44

analysis [43], graphical models [49], dynamical models based on stochastic processes [33] and linear
increment models [86] were pioneering as alternative approaches. Then assumptions needed for a
causal interpretation of dynamic models have been presented [8, 34]. In a nutshell, causality operates
over time and aligns with a mechanistic or system view since time is an intrinsic component through
ODE [1]. We investigated and compared in simulation and real data all these approaches in a study
interested in informative treatment assignment in observational studies (RI-16-4; CI-14-3; CI-14-1;
S-13-3). We focus on developing dynamic models to estimate the effects of antiretroviral on CD4
counts in HIV patients, using data from Swiss HIV cohort. We conclude that mechanistic models
provide a more accurate and more efficient estimation of antiretroviral’s effect on CD4 counts in HIV
patients than others. It is thus a valid tool for causal inference. We also demonstrate the superiority
of mechanistic models in capturing the complexity of biological systems and accessing unmeasured
information. See Section 6.2 for the full version of the article presenting this work. Because these
models are based on the mechanisms of the system, they can be used to make predictions about
the system’s behavior under new conditions or in response to interventions, i.e. counterfactual to the
actual study conditions. This is particularly useful in drug development and understanding individual

disease progression. This will be further expanded in Section 3.2.

2.5 Model Building Strategies

A variety of models exist to fit data, and even with parallel computing, the adjustment of mecha-
nistic models can be time-intensive. This is particularly true as the number of parameters or the size
of the dataset grows. Typically, the evaluation of the most suitable model for a specific dataset in-
volves optimizing an information criterion to determine the best fit. It could be Akaike Information
Criterion (AIC), Bayesian Information Criteria (BIC), or corrected BIC which is most suited for NLME
models (BICc) [46]. These criteria balance model fit with complexity but do not explicitly penalize
model complexity sufficiently in all scenarios, potentially leading to overfitting. Other metrics based
on external validation, bootstrapping/leave-one-out and predictive abilities could also be considered
and expanded [20, 35].

Having a large number of individuals from multiple studies or incorporating information from dif-
ferent sources of information improves practical identifiability of mechanistic models [80]. However,
it increases computation times and may make the estimation intractable; an alternative approach
is to use a Sequential Bayesian Analysis [207] (SBA). SBA is a statistical method in which data
is analyzed in stages, and the results from each stage inform the analysis of subsequent data. This
approach updates beliefs or estimates in light of new data, using Bayes’ theorem. It has been shown

that for most generalized linear and non-linear equations, the posteriors are consistent and admits a
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normal approximation [74]. In each step, the posterior distribution from the previous stage becomes
the prior for the current stage. We validated its use when manipulating mechanistic models for sce-
narios where the primary focus is on estimating an average trend rather than the extremes of the
distributions (RI-16-3; CI-12-2; CN-12-2). In this paper, we demonstrate improvements in accuracy
and efficiency of parameter estimations and predictions in the context of HIV treatment when using
SBA with results close to those obtained by analyzing the entire data at once. This type of method
is particularly useful in scenarios that require adaptive decision-making (see Section 3.2 in the appli-
cation for predicting the optimal treatment dose in PLHIV), or where data arrives incrementally over

time (see Section 4.3 in the application of predicting COVID-19 epidemics).

The choice of the components (mathematical, statistical and observation models see Section 2.2)
of a mechanistic model is a challenging process which requires confirmed expertise, advanced statis-
tical methods, and the use of sophisticated software tools. The procedure for constructing a model
is usually iterative: one adjusts a first model to the data, and diagnosis plots and statistical tests allow
to detect possible misspecifications in the proposed model. A new model must then be proposed to
correct these defects and improve the predictive abilities of the model. When building the statisti-
cal model, most of the common approaches consist in stepwise procedures consisting in testing the
addition of variables forward and their elimination backward alternatively and progressing through
the choice of models using an information criterion. A widely used approach is Stepwise Covariate
Modeling (SCM) [98] which consists in an exhaustive search in the covariate space. Each covariate
addition or deletion is tested in turn selecting models at each step leading to the best adjustment
according to the objective criterion. Approaches such as Wald Approximation Method (WAM) [110]
and COnditional Sampling use for Stepwise Approach based on Correlation tests (COSSAC) [13] are
less computationally intensive as they use, respectively, a likelihood ratio test and a correlation test
to move in the covariates space, which allows the evaluation of less models. All these methods are
nevertheless computationally intensive as they require to re-estimate the model parameters and the
likelihood many times. We proposed an automated model-building process by iteratively improving
model components through a stochastic approximation approach (RI-22-1; HCI-22-3; HCI*-21-2).
This algorithm called SAMBA (Stochastic Approximation for Model Building Algorithm) has been re-
leased in a R package Rsmlx on which I modestly contributed (Soft-23-1). See Section 6.3 for the full
version of the article presenting this work. This method bears similarity to the Generalized Additive
Model (GAM) [81, 128] but differs in its approach to parameter estimation. Instead of relying on
Empirical Bayes Estimates (EBE), which are prone to shrinkage [144], this method utilizes the condi-
tional posterior distribution of parameters. It uses a sample of the posterior parameters to build fast
linear models linking them with covariates and proposing the most likely relationship. And, extension

of these ideas opens the perspective for future research in model building strategies bridging the gap
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to high dimension (see Section 2.6).

2.6 Perspectives

Below is a collection of perspectives, both short-term and long-term, that we aim to address by
developing new methods for mechanistic models. Ideas marked with an asterisk (*) are considered
major in terms of challenges and potential impact.

Advances in identifiability and optimal design: With recent advances, identifying structural
identifiability of the mathematical model is no longer a major issue [121, 99, 871, and [6] for a re-
view. However, it remains an open research question to carefully extend these concepts to the whole
mechanistic model, including random effects [95]. In NLME models, ideal experimental conditions
also include having data from an infinite number of subjects. However, the best strategy could rely in
an optimal design in which a finite number of individuals are observed at a finite disjoint timepoints.
The Cramer-Rao bound establishes a formal mathematical inequality stating that the covariance of
any unbiased estimator is at least as large as the inverse of the Fisher Information Matrix (FIM). Thus
optimizing a design is maximizing the FIM. The D-optimality criterion is widely used. It consists in
maximizing the determinant of the FIM normalized by the number of parameters to be estimated.
In NLME, the FIM can be computed numerically or approximated by a close-form solution [134].
Multiple algorithms have been proposed, implemented and compared for this purpose [146, 57].
An important practical path of advancing the research that we have in our SISTM group is to be
able to use these methods more frequently in practice when designing new trials, based on the
hypothesis that mechanisms of virus and immune responses are available and trusted for design (see
Section 1.3.1 for the spirit). However, it may happen that some covariates are taken as explanatory
covariates in the model and may be time-varying. This is for example the case for correlates of
protection against an infection that are themselves likely to vary over time and impact the infectivity
of a virus (see Section 3.4). This is also the case in COVID-19 transmission while changing the public
health policies (see Section 4.3.1). Changing a parameter from constant to time-varying (because
impacted by covariates) naturally influences structural identifiability and observability. Having a
parameter that is time-varying can even improve the model identifiability [130]. Optimal sampling
for these covariates, which are not by themselves the process of interest, is an open question, yet
also to be extended in NLME settings. Finally, optimal design approach assumes that the true
model underlying the data generation is known, which is often not the case in practice [3]. Thus,
in term of methodology, one direction could be to extend the optimal design criteria to account
for this model uncertainty, similar to model averaging [63]. This methodological aspect should be

connected with the identification of suitable models for specific questions, as discussed in Section 3.5.
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NLME Model Building: I am optimistic that this line of research will not only continue through
the publication of independent academic studies but also through collaboration with the industry,

notably with Simulations+ company, which is commercializing the Monolix Suite software.

* Advances in structural model misspecification: First, we believe it is important to detect
when a model is not adequate for the data at hand. The optimal control approach has the ad-
vantage to provide an extra parameter - the control term or perturbation w. It is a function or set
of variables that are manipulated to steer an ODE towards data. In our previous research, we
did not fully exploit the optimal control perspective for misspecification quantification. Earlier
studies have investigated the estimation of a perturbation term at the derivative level in a single-
subject context using non-parametric methods to detect model errors [88, 60]. These methods,
compared to those based only on data fitting criteria, tend to provide more sensitive statistical
tests and can identify misspecification even in unobserved state variables. Our control-based
approach could expand these tests to a population framework. For instance, within a Bayesian
framework following [41], we could set a prior distribution for the controls and then assess it
against the posterior obtained after inference. This work is meant to be done in collaboration
with Quentin Clairon (Inria Sistm). Furthermore, when a large number of markers are avail-
able, it may be beneficial to identify which ones provide meaningful information to the model.
This selection could be based on comparisons of restricted log-likelihood, although the statisti-
cal properties of this approach will require thorough investigations. An alternative could rely
on using latent processes [188]. In this approach, the model would combine a multivariate lin-
ear mixed model and an ODE to model trajectories and temporal relationships between latent
processes. In any case, pursuing this line of research presents a significant challenge in carefully

and successfully utilizing the data available in a study.

* Building variability models Questions may arise regarding the strategy for building variability
models within mechanistic models, i.e. which parameters should have a between-individual
variability modeled by random effect. A traditional method involves adopting a SCM algorithm.
However, this requires the estimation of model parameters at every step. We propose a method
to reduce computation time by initiating only a few iterations of the SAEM algorithm from the
previous stopping points, while allowing one of the random effects to tend to zero. This method
facilitates rapid evaluation of a proxy for the complete likelihood, thereby swiftly guiding which
random effects are the most likely to be added or removed. This approach has been presented
at a French conference (CI-23-1) and is intended for collaboration with Marc Lavielle (Inria

Xpop, yet retiring).
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* Extension to high-dimensional explanatory covariates: When dealing with high-
dimensional covariates, classical regression tools may overfit the data. A penalized approach,
such as Lasso (Least Absolute Shrinkage and Selection Operator [195]), offers a solution by per-
forming variable selection through the shrinkage of coefficients to zero, a feature not available
in standard regression. Furthermore, Lasso aids in managing model complexity and preventing
overfitting. Other penalization techniques, such as SCAD or MCP, and methods like ridge re-
gression or elastic net, may also be relevant [147]. We have begun to extend covariate model
building to high dimensions using these techniques. This effort, also presented at a French
conference (CN-23-1), is conducted in collaboration with Auriane Gabaut, one of my Ph.D. stu-
dents. Other methods developed in the team such as random forest [71, 24] should be also

investigated.

* Others: Finally, questions regarding the order in which components (structural model, vari-
ability model, covariates model, correlations model, error model, observation model) should be
built remain open, with no definitive answers applicable to all scenarios. Nonetheless, estab-

lishing guidelines would be beneficial for practitioners.

Toward high-dimensional mechanistic models (*): Once designed, practical non-
identifiabilities may still exist in models and can be effectively detected using the profile likelihood
method. To resolve these non-identifiabilities and achieve model identifiability, it’s either necessary to
simplify the model’s complexity or to incorporate additional data. Techniques like profile likelihood-
based model reduction [127] are crucial in this context, providing effective strategies for model sim-
plification and data augmentation to improve model identifiability and reliability. Although tools for
identifiability analysis can be improved, if data are not sufficient there will be no solution for analysis.
Thus, we want to feed the model with all data generated in a multi-scale and multi-study approach.
This includes feeding the model with fixed parameters that will be learned on previous studies. In
particular, we think about pre-clinical studies (see Section 3.5 for details on future research on bridg-
ing between animal species). However, a particular idea in mind that I want to describe in this section
is the deconvolution of gene expression data in the whole blood. Measurement of blood biomarkers,
including transcriptomics, can be modeled using a set of ODE re-transcripting the temporal variations
of the biomarkers and their inter-related trajectories. It could be seen as coupling a gene regulatory
network [209] with more standard humoral dynamics models as developed in Section 3. The general
framework can be written as:

X(t)=F(t, X(t),0),

where t € [to, T](0 < to < T < o0) is time, X (t) = (B1(t),..., By (t),G1(t),...,Gps (t))T is a vector

.-y Dpp
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representing the pp blood biomarkers and the gene expression level of gene 1,...,pg at time ¢, and
X (t) is the first-order derivative of X (t). F serves as the link function that quantifies the regulatory
effects of regulator genes on the expression change of a target gene, which depends on a vector of
parameters 6. In general, F' can take any linear or nonlinear functional forms. It is important to
note that, in this theoretical model, the ODE are high-dimensional. Specifically, ps is on the order of
magnitude of 10 or less, whereas ps can be up to more than 10,000. With the current advancements
in the estimation of NLME models, solving inverse problems in high dimensions becomes impractical.
When dealing with high-dimensional systems, it may be practical to perform parameter estimation
sequentially. For example, estimate a subset of parameters or a subset of ODE at a time, and iterate
through the components of the system. In the specific application we have in mind, we want to use
high-dimensional transcriptomic data to infer dynamics of cell populations. We postulate that data
obtained from transcriptomics can be used with deconvolution methods to infer the composition or
population of cells in a mixed sample [27, 12, 7]. Then mechanistic models can be fitted to these
types of data. Deconvolution methods offer a solution to reduce the dimensionality of the vector
(G1(t),...,Gps (). This reduction serves as a preliminary step, yielding a new set of new markers
DG (t),...,DG,,.(1))T, where pp¢ is approximately an order of magnitude of 10 or less. Conse-
quently, the dimensionality of the new system, pp + ppe < 20, becomes manageable. We started
working on a two-step approach - reduction of dimension based on deconvolution followed by mech-
anistic estimation - and demonstrated that transcriptomic data could help in identifying parameters
for compartments of the ODE that are not observed by biological measurements (CI-23-2; CN*-23-1).
A two-step approach capture the population aspect of the data, initially estimating a structural model
for each patient, followed by an assessment of inter-patient variability factors. However, two-step
approaches, which involves breaking down the analysis into two distinct phases, face a major disad-
vantage. Errors or biases in the first step can propagate into the second step, potentially leading to
misleading results. In different yet comparable settings, our research demonstrates the superiority
of a one-step mechanistic modeling approach, especially in terms of uncertainty propagation Sub-4.
One-step approach for high-dimensional estimation, which simultaneously considers all aspects of
the data and the relationships between them, is yet to be extended. This will be pursued using latent
variable models in collaboration with Cécile Proust-Lima (Inserm Biostat). Latent variable models
are statistical models that incorporate latent (unobserved) variables along with observed variables
[159]. The challenge of constructing and inferring parameters in high-dimensional ODE is crucial for
the future of mechanistic modeling and the advancement of new applicative approaches, as presented

in Section 3.5.

Alternative estimation approaches: If there are advances in technologies or aforementioned

deconvolution methods, our longitudinal biomarkers will transform into time series measured daily.
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It opens the path to numerous new methodological developments applicable to our data.

* Other Types of Differential Equations: Firstly, there is potential for extension to more com-

plex models such as Partial Differential Equations [32]. Indeed, spatial spread of virus is an
important aspect in within-host modeling [78]. Secondly, Stochastic Differential Equations
[52, 50] could be investigated, as they are commonly used to model cell growth dynamics
[53]. Finally, to sustain the developments for multiscale between- and within-host modeling
proposed in Section 4.4, we will develop new methods and explore already implemented ap-
proximate Bayesian computation for multiscale models of multicellular processes [2]. However,
it has been shown that rich (as opposed to sparse) data is required to solve the inverse-problem

in these types of models.

Sequential Data Assimilation: As an example in the past, we did not manage yet to apply
directly the population Kalman filter assimilation approach to fitting mechanistic data for virus
or immune response dynamics due to sparse sampling of data. The original method for popu-
lation Kalman filters (RI-22-5) proposed the explicit Euler method for numerical resolution of
ODE. This method may fail when the ODE are stiff, which is the case in most of our applica-
tions. We initiated the implementation of alternative explicit methods such as the fourth-order
Runge-Kutta, but found that explicit methods like Crank-Nicolson or BDF of order 2 tend to
yield better results. It is important to note that, in contrast with explicit methods, implicit
methods require executing Newton’s algorithm one or more times per iteration. This generally
leads to an increase in computational time making the problem whatsoever intractable. We
intend to continue exploring modifications of the method with Annabelle Collin (Inria Monc) if

data become highly time-continuous.

Curve Registration: We would like to consider curve registration as a valid alternative to
account for different timing of dynamics between individual for the mechanistic model. Curve
registration, also known as temporal alignment, is a statistical technique used to align sets of
curves or time series data so that they are in sync with each other in terms of certain features
or landmarks. It assumes that the time has itself a individual-specific dynamic [163]. We have
already initiated a project with Quentin Clairon from our team and a collaborator from Arizona
State University, John Fricks. Results could become really valuable if data become more time-

continuous.

Machine Learning Approaches (ML): Finally, the advent of ML methods in the analysis of
longitudinal repeated data in the recent years marks a significant turn in biostatistics. These
methods excel in uncovering intricate patterns and relationships, even in large datasets. How-

ever, despite their sophistication, ML. methods often face problems when the data points are not
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evenly spread out over time or when some data is missing (see Section 4.4) or noisy, which is
present in all our datasets. We will investigate the use of Reservoir Computing [124] as imple-
mented in the Python library ReservoirPy [198] to perform forecasting task on viral dynamics
and compare it with mechanistic models. We will also explore other approaches recently de-
veloped for between-host models [161] using long-short term memory recurrent network [72].
Given the sparse noisy nature of the data, we plan to perform various preprocessing steps such
as multiple imputation and smoothing with a moving average to fill in the gaps. We will also
propose an hybrid forecasting model in which the mechanistic model serves to provide com-
plete de-noised smooth data, that are then assimilated by the ML algorithm. This work is meant
to be done in collaboration with Xavier Hinault (Inria Mnemosyne) and Cécile Proust-lima (In-
serm Bordeaux population health). This area of research might expand to include physically-
informed neural networks, incorporating the concept of hybrid ODE [142]. Hybrid ODE are
constructed by defining a loss function that includes terms for both the data discrepancy (how
well the network predictions match the observed data) and the physical discrepancy (how well
the network predictions comply with the governing mechanistic model). During training, the
network learns to minimize this composite loss function, effectively fitting the data while also

obeying the specified mechanistic model.

In conclusion, I am committed to continually updating the methods I use for solving inverse

problems in NLME models and intend to persist in this endeavor.






Chapter 3

Within-host Modeling in Infectious Diseases

3.1 Bibliometry

Moving into a more applied realm, the second research direction introduces computational ap-
proaches to biology and medicine, specifically focusing on modeling the efficacy and impact of an-
tivirals and vaccines. This section builds upon the theoretical methods developed in the first research
direction, extending their application to practical scenarios. It encompasses not just the direct use
of these methods, but also elaborates on a methodological framework designed for prediction and
optimization of drug delivery. The manifestation of a viral infection in individuals varies and is host-
dependent. Various techniques detect viral infection in biological samples. Quantitative methods are
used to measure viral load or the concentration of specific proteins. For instance, the ELISA method
detects certain antigens/antibodies, indicating the presence of a virus in a sample. Polymerase Chain
Reaction (PCR) methods can detect viral genetic materials (DNA or RNA, with an additional transcrip-
tion reverse step) even at very low concentrations. Functional assays of neutralization for antibodies
are designed to measure the ability of these antibodies to prevent viral infections. Flow cytometry
also allows to quantify the abundance of multiple types of cells such as B or T cells. This type of
data will be modeled using within-host mechanistic models in this section. Table 3.1 showcases the
scientific outputs in this field. This theme gave birth to 16 articles in peer-reviewed international
journals, 21 international conferences, 4 national conferences and 6 seminars. It is also funded
by 2 international grants and 2 national grants. Even though most models and methods could be
easily extended to other infectious diseases, we particularly worked on HIV, Ebola virus, Nipah virus,

and SARS-CoV-2. The interrelation of all these works is explained in the next subsections.
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Before
Last
Peer-reviewed International Journals First Second or Last Other
Nature Communication RI-21-3
Advanced Drug delivery Reviews RI-13-2
eLife RI-22-4
eBioMedicine RI-22-3
Nature Vaccine RI-23-7
Journal of Clinical Immunology RI-23-4
PLOS Computational Biology RI-23-5 RI-14-1;
RI-23-8
Journal of Virology RI-19-1;
RI-16-1
Journal of Theoritical Biology RI-20-1
Statistical Methods in Medical Research RI-21-2
Biometrics RI-12-2
Statistics in Medicine RI-18-2
Annals of Applied Statitistics RI-17-3
“Total(16) 2 3 2 9
International conferences Invited Speaker = Mentee Poster Other
CROI HCI-23-4;
HCI-20-1;
HCI-18-2;
HCI-18-1
World congress B&C Pharmacology HCI*-23-3
PAGE HCI-23-2; CI-19-2
HCI-22-2;
HCI-21-4;
HCI-18-3
Society Mathematical Biology HCI*-23-1
Canadian Applied Mathematics Society =~ HCI*-22-1
CMStat HCI*-21-2
Workshop on Virus Dynamics HCI*-19-2 CI-19-5
HIV Dynamics and evolution HCI-13-1
ISBC CI-21-1;
CI-20-1
IBC CI-18-2 CI-14-2
Other CI-17-1
"Total (22) 5 o 8§ 5 3
National conferences Invited Speaker = Mentee Poster Other
ANRS MIE AC CN*-21-3 CN-22-2
JdS SFdS CN-21-2
GDR Stat & Santé ou Mamovi CN-17-3
"Total ) 1 i 2 o 0o
Seminars (6) S-23-1; S-22-1; S-18-1; S-17-2; S-13-2; S-13-1
International Grants (2) 1G-19-2; 1G-18-1
National Grants (2) NG-23-1; NG-18-1

Sofwares (0)

Table 3.1 — Bibliometry for axis "Within-host modeling in infectious diseases"
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3.2 Virus Dynamics Models

3.2.1 Generalities on Modeling HIV Dynamics

The new field of viral dynamics, based on within-host modeling of viral infections, began with
models of human immunodeficiency virus (HIV), but now includes many viral infections. Early re-
search focused on viral dynamics after the initiation of treatment. This work began with the biological
observation that the virus V' is produced by infected cells at a rate denoted by /5 and dies at a con-
stant rate dy-. This concept was expressed through the differential equation dV/dt = 8 — éy V. This
basic analysis demonstrated a rapid turnover of HIV viruses [205]. The model was later extended to
account for CD4+ T cells (CD4 in short) [85]. In the model, uninfected target cells T" are produced
at a constant rate A, die at a rate o7 per cell, and get infected by the free virus at a rate described
by the mass action term SVT. This infection process leads to the creation of productively infected
cells 7, which die at a rate §;, higher than dr, reflecting the viral impact on reducing the lifespan of
infected cells. Finally, free viruses are produced by infected cells at a rate p per cell and are cleared

from circulation at a rate dy per virus. This is transcripted in Equation 3.1 and Figure 3.1.
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Figure 3.1 — Target Limited virus dynamics model

Several reviews discuss variations of this fundamental HIV dynamics model [151, 150]. These
models can be specifically tailored to the particular mechanism of interest or research question. Ex-
tensions of the model may include more complex CD4 maturation processes [55], the consideration
of multiple viral quasi-species (both infectious and non-infectious) [145], the inclusion of effector
cells [15], CD8 modelling [170] or the dynamics of HIV latency in reservoirs [169]. The choice and
complexity of the model are influenced by the available data to ensure identifiability without needing

to fix most of the model’s parameters.
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Because theoretical research from Section 2.2 demonstrates the feasibility of utilizing this mech-
anistic model platform for predicting counterfactual scenarios, we aim at using mechanistic model
to investigate the change of dose and the timing of dose administration in a personalized medicine
framework. It primarily depends on updating population parameters from a mechanistic model using
empirical data for a new subject. This is most of the time achieved through Empirical Bayes Estimates
(EBE [139]). This process enables the refinement of the subject’s random effects, facilitating pre-
dictions about its response to new interventions. These interventions effects may have been learned

from a different set of patients.

3.2.2 Generalities on Personalized Medicine

Recent systematic review of the literature indicates that prediction under hypothetical intervention
for treatment optimization is still an emerging topic with most work appeared later than 2015 [122].
Optimal treatment regimes or treatment drug monitoring involve sequential decisions [119]. In
these trials, a treatment regime is a sequence of decision rules, each rule corresponding to a decision
point. These rules map the accumulated patient information to a recommended intervention. The
approach essentially tailors the treatment plan based on the evolving health status of the patient,
allowing for a more personalized and effective treatment strategy. There are currently at least three
distinct types of optimal treatment regimes : regression-based mainly with Q- and A- learning (see
[30] and references therein), direct search which construct an estimator of the mean cumulative
utility (see [216] and references therein) and model-based. In our work we focus on the later for
which G-computation is an option [215] as well as Bayesian approach [171, 79, 211] (see later in
Section 3.1 for our developments) and learning methods (see [73] and references therein as well as
Section 4.3 for our developments). At the time of this research (2013), model-based strategies in
clinical decision-making were less mainstream than they are today. We authored a statement paper
on how mechanistic models can inform personalized medicine (RI-13-2; S-13-2). In a model-based
approach, the idea is to learn from the data collected from an individual to forecast the best choices
likely to produce the best clinical outcomes. It has been shown possible in many pharmacometrics
models using clinical trials simulations, for example in herpes viruses [175]. Control theory has
been suggested to find the optimal interventions that reduce a given cost function [107]. Quadratic
cost functions weighting system response (viral load or CD4 count) and side-effects of the drug have
been proposed [185]. Although conceptually interesting, this approach is not realistic because (i) the
model is not known, (ii) the choice of the cost function is debatable, (iii) the treatment cannot be
continuously adapted. More recent approaches tend to get free from cost functions [11] (as we do in
the following) and do not aim at adapting the dose continuously [200].

In my work, the effective reproductive number (R, before any intervention and R, after) plays
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an important role. It represents the average number of secondary infections produced by a single
infected individual in a completely susceptible host population. It is a key concept in epidemiology,
indicating the contagiousness of an infectious disease, see Section 4.1. In the within-host scenario,
it describes how efficiently a pathogen can replicate and spread within an individual host. A higher
R, value suggests a more aggressive infection, potentially leading to faster disease progression or
greater virulence. On the contrary, Ry, below one signifies that the infection is unlikely to sustain
itself. Thus, in our work on optimization of delivery of treatments this represents the outcome we

will try to control.

3.2.3 Bayesian Optimization of Delivery of ART

Antiretroviral therapies (ART) is a treatment regimen for HIV/AIDS that uses a combination of
several antiretroviral drugs. The aim of ART is to reduce the amount of HIV viral load to undetectable
levels. This approach helps in improving the immune functions and slowing the progression of HIV to
AIDS. ART has significantly improved the life expectancy for people living with HIV (PLHIV) to few
years lower compared to people non-infected with HIV [197].

Our initial work was rather conceptual. It proposes a personalized medicine approach for HIV
treatment based on controlling reproductive number (RI-12-2). The strategy aims to determine
the minimal ART dose that keeps viral load undetectable (i.e. R, below one), thereby reducing
side effects. The flowchart of the strategy is provided in Figure 3.2. For a new individual, the
algorithm involves estimating individual parameters using patient data observed after the initiation
of a standard dose. The estimation is done using a mechanistic model similar to Equation 3.1 with
an EBE approach for updating individual parameters. Then, we sample the posterior distribution of
Ry for this specific patient using MCMC sampling. The optimal dose d,,; is defined as the dose for
which the probability of having a Ry greater than one is small, typically lower than 5%. Finally, we
observe the dynamics of the patient under this new dose and readjust iteratively until convergence.
We then extend this work based on a stochastic model for treatment optimization Sub-1. Later, we
successfully predicted outcomes of ongoing trials on Short-cycles treatment interruptions, in which
patients take their treatment only few consecutive days in the week (HCI-18-2; HCI-13-1; CN-17-3;
S-13-1). We estimated the effect of various ART with mechanistic models on the HIV Aquitaine ANRS
CO3 Cohort [193] and predicted the results of the Breather trial which investigated 5/7 designs (5
days on, 2 days off ART) in adolescents. They showed a sustainable non-inferiority of virological
suppression compared to continuous ART [19]. We were able to predict this result. Finally, we
encapsulated all the steps of these methods to develop an in silico trial pipeline (S-18-1; S-17-2).
See Section 3.5 for details on elaborating a pipeline that will provide a digital twin for drug and

vaccine development in infectious diseases.
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Figure 3.2 — Flow chart for the control strategy procedure: individualized dose monitoring for ART
dose in PLHIV (Figure from RI-12-2).

3.2.4 Modeling T cells proliferation and optimization of timing delivery

We developed a comprehensive mathematical analysis of the effects of Interleukin-7 (IL-7) on
CD4 restoration in PLHIV. We model CD4 proliferation using mechanistic model with two compart-
ments of proliferating (P) and quiescent (@) cells. Of note, other modeling approach such as size-
structured model for cell division could have been proposed [54]. @ cells are created at rate A and
start proliferating at rate w. Each P cells results in the formation of 2 new () cells at a rate p. Cells
die at rates up and pq. This is transcripted in Equation 3.2 and Figure 3.3.
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Figure 3.3 — CD4 Proliferation Model

The objective was to understand and quantify whether the observed changes in CD4 counts could
be attributed solely to increased peripheral proliferation or if other mechanisms, such as improved cell
survival or thymic production, also play significant roles (RI-14-1; CI-14-2; CI-17-1). In particular,
we demonstrated that a decrease of the loss rate of the quiescent CD4 (uq) is the most probable
explanation. This platform served to explore the potential of repeated IL-7 cycles for sustained CD4
restoration in PLHIV (RI-17-3; HCI-18-3). These results unlocked the design of new clinical trials for
repeated IL-7 injections to sustain high level of CD4 in PLHIV (Inspire trials). Finally, we designed
adaptive protocols based on Bayesian predictions from a mechanistic model of the effect of IL-7
on CD4 counts (RI-18-2; CI-18-2). Figure 3.4 presents two adaptive treatment protocol we proposed.

One based on the fixed visit times and adaptive criterion of injection of IL-7 (AC) and one based on
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individualized visit times (AT). We show that AT slightly reduce the number of visits compared to AC,
while keeping other criteria such as CD4 levels unchanged. In comparison to classical approaches
rooted in optimal control [148], our method offers distinct advantages. Firstly, it operates under
the assumption that parameters are not pre-defined, allowing for adaptation of IL-7 injections as
estimations of individual parameters and predictions are refined with new data in time. This dynamic
approach aligns with the concept of dynamic drug monitoring as described in [141]. Secondly, our
statistical treatment optimization approach is less computationally intensive, as it does not involve
searching for an optimal strategy across the entire space of potential strategies. This project really
illustrated how new trials can be guided by simulations and extrapolations from mechanistic

models. See Section 3.5 for details on ways to explore new approach for treatment design.
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Figure 3.4 — Flowchart illustrating two protocols. Adaptive criterion of injection (AC) protocol: the
visits are every 3 months and the decision to administer a new cycle is based on the predicted risk R
to fall under 500 CD4 count before the next visit. Adaptive time of injection (AT) protocol: the times
of visit are predicted based on the time at which the patient is supposed to reach the 500 CD4 count
limit, and a new cycle is administered if this predicted time is too short (Figure from RI-18-2).

3.2.5 Methods to evaluate vaccine efficacy

There have been a long research on vaccine against HIV. Although we got involved in some work
regarding pre-clinical development of prophylactyc vaccines (RI-16-1, in which we ran a basic survival
analysis), we are particularly interested in the development of therapeutic vaccines for PLHIV, also
referred as HIV cures. Therapeutic vaccines for HIV are designed to enhance or induce immunity in

order to alter the disease’s course. Despite the success of ART in managing HIV, these therapies alone
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are unlikely to eliminate the HIV reservoir and cure the infection. Analytical treatment interruption
(ATT) in HIV management involves temporarily stopping ART. ATI is used in research to evaluate the
efficacy of HIV therapeutic vaccines. A consensus paper on the general rules to run ATT trials has been

published elsewhere [100].

Viral load is most of the time of primary interest in ATI trials. First, this marker is always left-
censored due to detection limit of biological measurements, i.e. the exact viral load is unknown and is
effectively "censored" at a lower limit. Second, several recommendations have been proposed to limit
potential risks, in terms of morbidity, mortality, disease progression, HIV transmission, emergence of
new drug-resistance, development of neurological or cardiovascular disorders [101]. In particular,
regulatory guidelines mandate ART resumption for patient safety when the viral load reaches a certain
threshold. This is similar to informative loss of follow-up which is a type of informative missing data.
Thus, end-of-the-study viral load (setpoint) value in itself cannot be primary outcome of these trials.
In our work, we statistically compared endpoints as primary outcome for trials (HCI-23-4; HCI*-19-2;
Sub-5). We investigated among others time-related criteria (slope of rebound, time to rebound, to
peak viral load, to setpoint, and to specific viral load thresholds) and viral load magnitude-related
criteria (peak viral load, setpoint and time-averaged area under the curve nAUC). All these criteria
are depicted in Figure 3.5. We showed that time-averaged Area Under the Curve (nAUC) is the
most robust indicator. Subsequently, with my PhD student Marie Alexandre, we proposes a statistical
testing of the nAUC strategy (RI-21-2; HCI*-21-2; CI-20-1; CN-21-2). See Section 6.4 for the full
version of the article presenting this work. The viral rebound trajectories which are partially observed
are approximated using spline-based mixed-model. Then, time-averaged AUC are derived from the
splines regression coefficients to perform mean-difference t-test between groups. See Section 3.5
for details on extension of this method using mechanistic models and manner to account for model

uncertainty using model averaging.

Mechanistic modeling HIV rebound after ATI using dynamic models presents several challenges.
A major challenge is the latent HIV reservoir, where the virus remains hidden and inactive within
cells, evading the immune response and ART. This reservoir can persist despite long-term therapy,
leading to viral rebound when treatment is interrupted. However, the time to rebound is individual-
specific and stochastic as a rare event process. Together with collaborators (Alison Hill - Harvard
University; John Hopkins Hospital), we developed a good model for rebound in HIV accounting for
the stochasticity of the phenomenon (HCI-18-1; CI-19-2). The model was specifically developed
to be flexible enough to capture rebound kinetics both in the regime where latent cells reactivate
frequently and rebound occurs rapidly, and in the regime where reactivation from latency is rare
and there are stochastic delays until the first fated-to-establish lineage exits the reservoir [84]. Briefly,

free viruses V enter target cells T' (with infection rate (3), producing infected cells I. Infected cells in
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Figure 3.5 — Description of virological endpoints. Black and white dots represent detectable and
undetectable viral load measurements collected during the ATI phase, respectively, while gray dots
represent measurements taken after ART re-initiation. The horizontal gray dotted line represents the
detection limit. Abbreviations: ART, antiretroviral treatment; TTR, time to rebound; TTsetpoint, time
to setpoint; TTPeak, time to VL peak; AUC, area under the curve; VL, viral load (Figure from Sub-5).

turn release free virus (rate k). Long-lived precursor immune cells P which encounter viral antigen
proliferate (p(V') = pV/(V 4+ Np)) and produce short-lived effector immune cells E. Effector immune
cells eliminate some infected cells before they contribute to ongoing infection by producing new
virus (B(E) = /(1 + E/Ng)). A fraction f of expanded precursor cells revert to the precursor
state after encountering antigen, forming immunological memory. Both uninfected target cells and
precursor immune cells are produced at a constant rate (A and m, respectively). While during acute
infection m likely represents activation of naive cells, during viral rebound, it may be dominated by
reactivation of memory cells. Latently infected cells reactivate with rate a (or equivalently, every ¢,
days on average) to become productively infected cells. Virus is cleared at a rate ¢ and each cell type

i dies with death rate d;.This is transcripted in Equation 3.3 and Figure 3.6.
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The study includes data from non-human primates (NHP) trials involving immunotherapies
like TLR7-agonist, therapeutic vaccines, and monoclonal antibodies (Sub-2; HCI-20-1; CI-19-5). We
showed a modest effect of these strategies in NHP. However, it has been demonstrated in [164] that
treatment strategies providing modest but continuous improvements in reservoir clearance rates lead

to quicker cures than abrupt, one-time reductions in reservoir size. Furthermore, the role of CD4 cell
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Figure 3.6 — Schematic of the viral dynamics model with latent infection and an antigen-dependent
immune response (Figure from Sub-2).

turnover in maintaining HIV persistence during antiretroviral therapy remains to be fully elucidated
[14]. Our preprint (Sub-2) also aims to predict the outcomes of these immunotherapies in human
clinical trials. This marks a significant initial step in my research in connecting findings from NHP
studies to human simulations through the use of mechanistic models. And, extension of these ideas

of cross-species mechanistic predictions opens the perspective for future research (see Section 3.5).

3.3 Immune Dynamics Models

3.3.1 Generalities on modeling Humoral Response

The immune system comprises a vast array of diverse cells that interact with each other and the
rest of the body to protect against external entities. It consists of two main parts: the innate immune
system, which includes generalist cells and components forming the first line of defense against ex-
ternal agents, and the acquired immune system, activated by T and B lymphocytes in response
to a pathogen, providing specific defense. Unlike the constant presence of innate immunity actors,
acquired immunity cells are less abundant before the first infection, and developing an acquired re-
sponse can take days, during which time the virus can proliferate. The activation of the acquired
immune system leads to the recruitment of specific memory lymphocytes, offering long-term pro-
tection against infections by the same pathogen. This immunity is also marked by the presence of
antibodies in the blood, specifically targeting viral proteins or nucleic acids.

Although mechanistic models can describe these processes, the literature is still very sparse. A re-
cent review of the literature identified only 8 ODE-based modeling approaches of humoral immunity

[70]. One of the most exhaustive model allowing to account for establishment and maintenant of
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Figure 3.7 — Schematic representation of humoral response Model.

the immune vaccinal responses has been developed with collaborators (RI-20-1; CN*-21-3). To un-
derstand the dynamics of antibodies, it is possible to developed a model incorporating a population
of antibody-secreting cells (ASC). However, to explain the long-term persistence of the antibody
response, it is needed to extend it to include two distinct ASC populations [68], which consists
in short-lived and long-lived populations. This concept was further refined using ODE [208, 5].
Building on these ideas, we introduced a memory B cell compartment into our model, akin to the ap-
proach [42], where memory B cells can differentiate into ASC. This integration of processes resulted

in Equation 3.4 and Figure 3.7, forming our mechanistic model.

= 644

aM - _

S = pA—(us+pL)AM — Sy M

% = ,usA]\/[ - 555 (34)
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b = 055+ 0LL — 54 Ab

The model considers three B cell populations: memory B cells (M), short-lived ASC (S), and
long-lived ASC (L), along with antigen concentration (A) introduced through immunizations, and
antibody concentration (Ab). The reaction in the model begins with the detection of an antigen A
(which can be presented by vaccination or natural infection), leading to the formation of M cells at
a rate denoted by p. These M cells differentiate into short-lived (S) and long-lived (L) ASC at rates
described by the mass action terms usAM and pupAM. These ASC then produce Ab at a rate 6.
All components X in the model decay at a rate represented by dx. While this model is an effective
theoretical tool for conceptualizing and understanding the humoral response, it has a large number
of parameters. This complexity makes the model structurally unidentifiable when only observing
antibody levels. One potential solution is to design studies where proxies for M, S, and L cells are

measured. However, currently, such measurements are not readily available. In the future, it might



64

be possible to achieve this using transcriptomics, as discussed in Section 2.6. Because this approach
is not mature to be used yet, to effectively use this model, it’s necessary to either fix many parameters
through sensitivity analysis or develop simpler, rescaled models. The subsequent sections propose

ways to address these challenges.

3.3.2 Maintenance of vaccinal response against Ebola

Having an effective vaccine against the Ebola virus hemorrhagic fever has become a public health
imperative since the 2014 epidemic in West Africa. The EBOVAC series grants - including EBOVAC 3
for which I was involved (IG-18-1) - has contributed to meeting this challenge by providing evidence
of the safety and immunogenicity of a vaccine developed by Janssen Pharmaceuticals. Data for these
trials have been published in a serie of papers [181, 156, 16, 93]. The first goal was to understand
the long-term immune response to the vaccine. Using a simplification of the mechanistic model from
Equation 3.4 with only (S, L, Ab), we modeled the antibodies decline from the peak 7 days after
last vaccination to last follow-up. The simpler model writes in Equation 3.5 and Figure 3.8, with
¢s = 055 and ¢, = 0 Lo, where Sy and Ly are the initial conditions at equilibrium of memory cells
7 days post last vaccination. Since both short-lived and long-lived ASC populations are unobservable,
the parameters (fs and #;) and initial conditions cannot be identified solely based on observations
of antibodies.

dAb

= pse Ot + pre 0t — 54, Ab (3.5)
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Figure 3.8 — Model for persistence of humoral response.

Multiple regimens that were tested in phase I (including different vectors order and timing -
studies EBL1001, EBL1003, EBL1004) on 44 participants were evaluated and our modeling helped
selecting Ad26.ZEBOV/MVA-BN-Filo with a booster dose at day 57 and predicting its effect (RI-19-1).
This first piece of work predicted the durability of the response to be sustained more than 7 years. Us-

ing follow-up data from phase II/III (EBL2001, EBL2002, EBL3001) on 443 participants, we showed
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Figure 3.9 — Schematic of antigen presentation in replicant vaccine viral vector.

that immunity is likely to be sustained for more than 15 years using this strategy (RI-23-7; HCI-21-4).
Using model building strategies defined in Section 2.5, we also investigated the effect of covariates
on the humoral response dynamics. The humoral response’s predictors include geographic region,
where Europeans demonstrated longer antibody persistence compared to Africans; sex, with women
showing longer antibody persistence; and age, where younger participants exhibited higher antibody

production. These conclusions are yet to be extended in larger studies.

In the Prevac/Prevac-Up trial (funded by IG-19-2 for which I am workpackage leader), more than
3000 individuals were followed-up after Ebola vaccination using two strategies Ad26.ZEBOV/MVA-
BN-Filo by Janssen Pharmaceuticals or r'VSV-ZEBOV-GP by Merck. Data have been described in [192].
The idea is to understand if it exists important predictors of vaccine response such as demographic
covariates. We built a linear mixed-effects model to start to answer this question (Sub-3), and mech-
anistic development are yet to be extended. One of the important mechanistic differences between
the two vaccine platforms tested is that while Ad26 and MVA viral vectors are non-replicating, rVSV
replicates within the host after participant immunization. This has been demonstrated by shedding
studies conducted in both blood and saliva [165]. Consequently, the antigen presentation described
in Equation 3.4 is likely to vary depending on the vaccination group. Explored features account-
ing for replication, akin to pharmacokinetic models, are presented in Equation 3.6 and Figure 3.9.
However, due to sampling constraints, there is limited information available regarding this aspect of
the dynamics. Nonetheless, we will aim to address the question of differing mechanisms of humoral
dynamics between vaccine groups. The mechanism will also differ by individual. This would open

the perspective of optimization of vaccine delivery using a vaccinal digital twin, see Section 3.5.

dt (3.6)

v A—8yV
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Figure 3.10 — Model for establishment of humoral response.

3.3.3 Establishment and maintenance of vaccinal response to SARS-CoV-2

The COVID-19 pandemic, unprecedented in modern times, caused a global shift in research fo-
cus. Quickly, it became a priority for the scientific community, redirecting efforts from various fields
towards COVID-19 research. We used our mechanistic tools to understand humoral response and
its neutralisation abilities in humans. We rescaled and reduced the models developed for human
response in Ebola from Equation 3.4 to be able to estimate it from antibodies data. Moreover, we
demonstrated that a single compartment of ASC was sufficient to accurately model the dynamics,
suggesting that there is no long-term response to the investigated vaccine. The new model is fun-
damentally based on the assumption that a steady state is rapidly achieved by M cells following
vaccination using step function. These M cells mature into S cells at a rate of fj,,, while the anti-
gen, degrading at a rate of §y after each injection at time ¢y (V = 1,2, 3), is present. S cells die at a
rate of 05. Antibodies Ab are then produced at a rate of #5 and degrade at a rate of 6 4,. Moreover, we
jointly model the binding (Ab) and neutralizing (as measured by E D5 for each variant of concern
(VoC) v, which refers to the effective concentration of antibody required to neutralize 50% of the
virus in an assay) by assuming that neutralizing antibodies are a proportional time-varying fraction
of binding antibodies depending on the VoC (f,,) and enhanced with new injections in a VoC-specific
manner (f{; with V' = 1,2,3). This is described in Equation 3.7 and Figure 3.10. In other words,
there is a decrease of neutralization against VoC compared to Wild-type strains (WT), an increased
neutralization with the subsequent doses of vaccine, and the incremental increase in neutralization

is more pronounced for the subsequent injections with Omicron VoC compared to WT.

% = vae_‘SV(t_tV) — 058
% = 055 —0apAb (3.7)
EDY)(t) = F(v,t)Ab(t)

F(Vat) = fuf\l;(t)

See Section 6.5 for the full version of the article presenting this work. It allowed us to derive the
expected longevity of vaccine protection in humans after Pfizer Bnt162b2 vaccination against

each VoC up to the omicron era (RI-23-5; HCI-23-2; HCI*-22-1; CN-22-2; S-23-1; S-22-1). The mean
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duration of detectable neutralizing capacity varied between VoC. For non-Omicron VoC, it ranged
from 348 to 587 days, and for Omicron VoC, it was between 173 and 256 days post-third vaccination.
The study highlighted the significant role of multiple vaccine doses in enhancing both the quantity and
quality of the humoral response, particularly against emerging VoC. However, it should be considered
that there is no definitive proof indicating what level of neutralization might be sufficient to protect
against infection or severe illness. This is partially adresse by the work on correlates of protection
(CoP) started in the next section 3.4. In our work, we did not address cross-immunity, although
it is relevant [176]. Moreover, the protection responses are possibly multifactorial, including other
markers such as T response [202]. On this note, in a side work using the French Covid cohort, we also
investigated with basic descriptive statistics the impact of T cell response on protection against severe
infection (RI-23-4). See Section 3.5 for details on exploration of animal platforms to investigate these

questions.

3.4 Joint Modeling of Virus and Immune Dynamics Models

During the pandemic, we have been involved in research testing for a new vaccine platform
against SARS-CoV-2 (RI-21-3; RI-22-3). This vaccine platform targets the receptor-binding domain
(RBD) of the SARS-CoV-2 spike protein to CD40-expressing antigen-presenting cells, leveraging their
immune-stimulant properties. The vaccine is tested on NHP, a platform beneficial for vaccine test-
ing due to their close physiological and genetic similarities to humans. These platforms are vital in
early vaccine development stages, particularly because it’s possible to expose NHP to the pathogen to
evaluate their dynamic response to infection. This method provides critical insights into the vaccine’s
potential effectiveness and safety before human trials. Using this unique data, we investigate the
effect of VoC of SARS-CoV-2 on the viral dynamics as described in Equation 3.1 (RI-23-8). With col-
laborators from Inserm Paris IAME, Jérémie Guedj and students, we demonstrated that despite lower
viral loads, Omicron maintained high levels of infectious particles over time, suggesting its increased
transmissibility stems from prolonged infectiousness rather than higher viral load. A subsequent step
would be to correlate these results with findings from extensive human screening data [59, 184],
see Section 3.5 for bridging between species. It has been shown that while viral load is a reliable
predictor for transmission [129], it remains inconclusive or not a strong marker for infection severity
and disease progression [39]. Therefore, it’s necessary to explore other markers of immune system
dynamics for a more comprehensive understanding of these processes. A CoP is a specific immune
response to a vaccine or infection that is statistically associated with protection against a disease. It
serves as a surrogate marker indicating the presence and level of immunity. Identifying these CoP is

crucial for evaluating vaccine effectiveness and guiding vaccine development [96]. Binding antibod-
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ies to SARS-CoV-2 and in vitro neutralization of virus infection are clearly associated with protection
[105, 214, 58, 64]. However, the respective contribution to virus control in vivo remains unclear, and
many other immunological mechanisms may also be involved, including other antibody-mediated
functions [135, 191], as well as T cell immunity [133]. Furthermore, CoP may vary between the
vaccine platforms [154, 40].

In term of methods, various approaches has been proposed to identify CoP. NHP studies offer a
unique opportunity to evaluate early markers of protective response [140, 62]. The concept of CoP
is deeply rooted in the field of causal inference. A CoP is considered as such if knowing the effect of
a vaccination on the CoP allows for the prediction of the vaccine’s impact on clinical outcomes [97].
This aligns with the statistical definition of a surrogate marker, where the CoP acts as an intermediary
predictor of the vaccine’s efficacy in terms of real-world health outcomes. While some studies focus
on patient-level data, examining correlations between markers and outcomes [36, 106], other use
meta-analysis in finding CoP. This later approach involves pooling data from multiple studies to iden-
tify common immune responses that protect against disease, using regression techniques like linear
and Cox models [75, 174]. Identifying CoP requires acknowledging that correlation does not imply
causation, recognizing multi-dimensional mechanisms, and avoiding off-target effects (unintended
consequences of an intervention) [67, 201]. Therefore, defining a CoP on the causal pathway is es-
sential, aligning with the principles of mechanistic modeling, this defining a mechanistic correlate
of protection (mCoP) [155]. We propose a method to define a mCoP using mechanistic models.
This method validates whether a covariate serves as a surrogate marker in accordance with Prentice’s
definition [158]. See Figure 3.11 for a representation of CoP with Directed Acyclic graphs and Pren-
tice’s definition. Essentially, it allows for the evaluation of a covariate’s role in mechanistically linking
vaccination to clinical outcomes (RI-22-4; HCI*-23-3; HCI-22-2). See Section 6.6 for the full version
of the article presenting this work. We demonstrated the crucial role of antibodies’ neutralization
function in the infection process, which is consistent with literature [105] and has been validated on

two external studies. In brief, the method is as follows:

1. Mechanistic modeling: Fit a virus dynamics model to the data obtained after a challenge with

the desired virus, without (M) and with adjusting for intervention effect (Mg).

2. Correlation of the prospective mCoP with the outcome (S — Y'): For each available marker
investigated as a mCoP, try to include it one by one as a covariate effect on the model parameters
in M. Collect all the BICc related to each model. Select the model (and related S) associated
with the lowest BICc (M.,).

3. Conditional independence of the prospective mCoP and the intervention (Y L A|S): in

M., check that when adjusting jointly for the intervention effect and the mCoP, the intervention
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Figure 3.11 — Directed Acyclic graphs representing the definition of S as a CoP. According to Prentice’s
definition, S is a CoP if 1/ S must be correlated with the true outcome Y 2/ S must be affected by
the intervention A 3/ The intervention A and outcome Y should be conditionally independent given
the CoP: Y L A|S

effects turn out to be not statistically significant and the mCoP absorbs all the effect.

4. Association between the intervention and the prospective mCoP (4 — S): in M., check
that the random effect associated with the parameter on which the mCoP is applied is decreased
when adjusting for the mCoP in M, rather than when adjusting for the intervention only in

M. This demonstrates that the mCoP captures more variability than the intervention does.

In our previous work, we modeled how the neutralization function of antibodies can prevent new
infections and reduce viral dynamics. However, we overlooked a crucial aspect of mechanistic models:
the role of viral load in stimulating new antibody production and enhancing the neutralizing response.
Our simulations revealed that this oversight could lead to biases in estimating the vaccination’s effect
(CI-21-1). As a natural extension of this research, it is feasible to attempt to establish a threshold
for the mCoP against infection. In pursuit of this goal, we leverage the reproductive number, as
introduced in Section 3.2.2. This criterion serves as an indicator of whether the infection can sustain
itself or not. Therefore, determining a threshold is possible by identifying the level of mCoP required
to reduce the reproductive number below one with a high probability. This concept has previously
been explored in collaboration with Marie Alexandre (HCI*-23-1). We are currently continuing to
develop joint models of virus and immune dynamics and trying to bridge with mechanistic models
across animal platforms, as detailed in the referenced future work Section 3.5. Finally, mCoP may be
evaluated for other outcomes such as hospitalization or death [143], but this will necessitate human
data instead of NHP data and likely an extension to joint models that include a survival-type outcome

[471.

3.5 Perspectives

Below is a collection of perspectives, both short-term and long-term, that we aim to address by
developing new within-host models. Ideas marked with an asterisk (*) are considered major in terms

of challenges and potential impact.
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Accounting for uncertainty and misspecification of models : As demonstrated in the previ-
ous chapter and referenced as RI-21-2, spline models are inferior to mechanistic models, particularly
when aiming to predict system behavior beyond the learning period. A prospective avenue for fur-
ther research on the analysis of ATI trials involves the adoption of mechanistic models instead of
spline-based mixed models. In a starting work with my postdoctoral fellow Marie Alexandre, vari-
ous mechanistic models of HIV rebound have been explored, including those presented in equations
3.1 and 3.3. However, none of these models perfectly reflect reality, and their selection may influ-
ence conclusions depending on the specific research question. Opting for model selection alone may
overlook uncertainty in model choice, potentially leading to erroneous predictions and conclusions
[22, 18]. Model averaging, which we privilege, entails integrating predictions from multiple models
to enhance accuracy and reliability. Although literature on model averaging dedicated to mechanis-
tic models in virus dynamics is scarce, except [76], Bayesian Model Averaging provides a Bayesian
framework where model weights are determined by posterior model probabilities. Several approxi-
mation methods based on information criteria such as AIC or BIC exist for calculating posterior model
probabilities [21]. However, consensus on the best criteria remains elusive, and other criteria, pos-
sibly based on the predictive abilities of the model, warrant exploration. Furthermore, exploring the
use of Model Averaging for comparing the nAUC calculated with mechanistic models in ATT trials,
as referenced in RI-21-2, holds promise. In summary, a key challenge will be to more systematically

incorporate model averaging into analyses using mechanistic models.

Digital Twin and in sillico trials (*): A digital twin in the context of my work refers to a virtual
representation or computational model that mirrors the immune system, viral infection processes, or
the spread of infectious diseases within an individual. This sophisticated simulation tool integrates
data from various sources to simulate and predict how the immune system interacts with pathogens
under possible interventions. The primary goal of a digital twin in this domain is to provide a de-
tailed, personalized model that can forecast and assess the efficacy of treatments or vaccines, and
predict outcomes under various scenarios. In this field, very few article, except [113] describing a
high-level roadmap, has been published. A first application that rely heavily on my existing work is
the application to optimization of ART in PLHIV. Now that the on-off trials / short-cycle therapies
have concluded and the results have been published ([44, 123], and [112] for a review), it is an
opportune moment to author a retrospective paper. This paper will explore what could have been
anticipated through modeling in term of effective strategies and what constitutes novel findings. The
initiation of this work is planned under the supervision of an M1 or M2 student. If successful, the in
silico trial pipeline that has been developed, capable of predicting a patient’s specific response to ART
therapy, can be regarded as a valuable digital twin for the quantitative guidance of ART optimiza-

tion. A second application would focus on the application to IL-7 immunotherapy optimization.
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To do so, an intriguing avenue to explore would involve employing reinforcement learning, compar-
ing it with previously published methods such as optimal control [148] and Bayesian optimization
(RI-18-2). My collaborators at Inria Flowers and I have already pursued a similar task in a different
context, aiming to optimize the allocation of lockdown strategies during the COVID-19 pandemic
(refer to Section 4.3.2). Given that the software, Epidemioptim, is already operational in Python, this
could serve as a prospective internship project for a student at either the M1 or M2 level. Finally, a
third example could be the application to optimization of vaccine delivery. We demonstrated that
sex, age, geographic origins are specific determinants of vaccine efficacy. Investigation of circadian
clock is undergoing [92]. Moreover, replication may be closely linked to adverse effects, particularly
in immunosuppressed populations such as PLHIV. Finally, in an epidemic context with ring vacci-
nation [82], the initial speed of establishment of the humoral response is a key factor for success.
This raises a genuine question regarding which vaccine should be administered in which situation
to a new individual with its own characteristics that we will try to address. If these three projects
related to digital twins are conducted, it will enable the validation of models for virus dynamics, T
cell proliferation, and B cell humoral response. Subsequently, an extension will be required on the
modeling side to integrate these three aspects into a unified model. This integrated model will serve
as the foundation for the pipeline designed for the creation of new studies or the in silico evaluation

of intervention candidates. Thus, it will accelerate their development using a vaccinal digital twin.

Bridging between animals platforms and humans (*): Overall, the COVID-19 pandemic has
highlighted the urgent need for tools to rapidly evaluate vaccine efficacy. Recently we started consid-
ering applying our methodologies to rodent platforms in collaboration with Veronique Godot at the
Vaccine Research Institute. Mice experimentation offers a rapid and cost-effective avenue for evalu-
ating the safety and efficacy of vaccine candidates prior to NHP and human trials. With their shorter
lifespan, high reproductive rate, and genetic similarity to humans in key immune system functions,
mice serve as invaluable models for studying vaccine-induced immune responses and predicting their
translation to human populations. We have obtained data from an initial experiment, and we are
currently investigating questions such as the optimal duration of follow-up needed to estimate pa-
rameters of humoral response in mice, such as the half-life of long-lived cells. Furthermore, the use
of larger cohorts and a higher number of sacrifices in mice studies likely enables the observation of
additional information regarding hidden compartments of mechanistic models. These trials may pave
the way for observing populations of cells that do not circulate in the blood compartment, such as
M cells in germinal centers. These investigations not only directly apply to our models but also open
up potential for a broader research avenue to inform the design of mice experiments and suggest
strategies for cross-species bridging from mice to NHP. Alongside a digital twin in mice and methods

that may rely on allometric reasoning or other relevant mechanisms, it will become possible to more
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effectively design NHP experiments. For instance, in order to ensure a productive and consistent
infection pattern, animals are systematically infected by extremely large doses of virus, typically 105
PFU, while less than 10 infectious particles are sufficient to generate a natural infection. This im-
plies for instance that NHP can be used to take “go/no go decisions” and discard drug candidates but
may not be suited to more detailed analysis, such as the comparison of two drugs or establishment
of mCoP threshold. Moreover, NHP cohorts exhibit high homogeneity in their levels of prospective
mCoP due to identical vaccination and challenge dates. In summary, there is a recognized need to
propose alternative designs that are statistically sound in NHP. Then, again, alongside a digital twin
in NHP and methods that may rely on allometric reasoning or other relevant mechanisms, it will
become possible to more effectively design human studies. In particular, a focus in the following
years could be on Controlled Human Infection Model Study (CHIMS) [104], where volunteers are
intentionally infected with pathogens under controlled conditions. Finally, unraveling the association
between within-host parameters (in animals or humans) and transmission is only possible in experi-
mental infection models [23]. In fact, basic questions, such as the role of viral load on transmission
remain unknown for most viral infections. Similarly, understanding levels in the population that need
to be reached for a mCoP to prevent infection or other outcome such as hospitalization or death is not
an easy study to design (multi-scale modeling will be addressed in next section 4.4). An important
challenge is to investigate if this type of study would be possible to design in rodents. In summary,
we posit that a meticulous analysis of data from rodents (possibly mice), followed by NHP, and then
humans, using dedicated mechanistic models built step by step on each platform, will accelerate the
development of interventions. This pipeline from animal studies to clinical trials is standard, see
[126] for the example of falvipiravir in Ebola. The ultimate aim is to achieve the capability to predict

human outcomes (or at least part of it) solely based on mice studies.



Chapter 4

Outreach to Implementation : Evaluation in

Population

4.1 Bibliometry

Finally, the third axis shifts the focus to the downstream aspects of development in population. It
addresses the critical stages of population testing and the evaluation of intervention or vaccination
strategies at a community or population level. This includes assessing the effectiveness of vaccina-
tion programs, understanding the dynamics of vaccine uptake, and evaluating the impact of various
vaccination or interventions strategies. This comprehensive approach is essential for informing pol-
icy decisions and guiding effective public health interventions in the realm of vaccine development.
Table 4.1 showcases the scientific outputs in this field. This theme gave birth to 15 articles in
peer-reviewed international journals, 12 international conferences, 3 national conferences, 6
seminars and 3 softwares or code releases. It is also funded by 2 national grants. The interrela-

tion of all these works is explained in the next subsections.

4.2 Cluster Randomized Trial for Evaluation of Interventions on
Epidemics

This final research chapter concentrates on examining strategies (both vaccination and non-
pharmaceutical interventions) employed in managing epidemics within populations. Assessing the
impact of these interventions is complex due to the intricate nature of infectious disease progression,
varying human behaviors and societal structures. A first method to evaluate the effect of an interven-

tion in the population is Cluster randomized trials (CRT), also known as a group-randomized trials.
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Before
Last
Peer-reviewed International Journals First Second or Last Other
Lancet HIV RI-17-4
Anaesthesia Critical Care & Pain medicine RI-22-2
American Journal of Public Health RI-17-1;
RI-17-2
MDPI Covid/Viruses RI-21-4
Epidemics RI-24-1
Journal of Machine Learning Research RI-21-1
BMC Infectious Diseases RI-23-3
Journal of Clinical Microbiology RI-16-5
R Journal RI-17-5
Statistical Methods in Medical Research RI-19-2
Biometrics RI-16-2
International Journal of Biostatistics RI-23-1
AIDS research RI-18-1
Observational Studies RI-23-2
“Total (15) 3 2 s 2
International conferences Invited Speaker  Mentee Poster Other
CROI HCI-23-5
Society Mathematical Biology HCI*-21-5
PAGE HCI-21-3
Channel Network Conference HCI*-21-1
Society of clinical Trials HCI*-17-1; CI-15-1; CI-19-1
HCI*-16-1
Joint Statistical Meeting HCI*-14-1
Epidemics CI-21-3
Other CI-16-1 CI-15-2 CI-18-3
"Total (12) 5 3 o 22
National conferences Invited Speaker = Mentee Poster Other
ANRS MIE AC CN-22-1
JdS SFdS CN-19-1;
CN-16-1
"Total (3 0 2 1 o 0o
Seminars (6) S-21-1; S-20-2; S-20-1; S-17-1; S-15-2; S-15-1
International Grants (0)
National Grants (2) NG-21-1; NG-20-1
Sofwares (3) Soft-21-1; Soft-20-2; Soft-16-1

Table 4.1 — Bibliometry for axis "Outreach to implementation : Evaluation in population"
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They are particularly interesting because of prevention of contaminations or interferences [90].
In individual randomized trials, there are risks that individuals in the control group might indirectly
benefit from the intervention given to the treatment group. For example, if a vaccine reduces the
circulation of a pathogen in a community (herd immunity), this effect might extend to unvaccinated

individuals, confounding the results. By randomizing at the cluster level, this issue can be mitigated.

Mixed-effects models [66] and Generalized Estimating Equations (GEE) [199] are statistical
techniques used for analyzing correlated data, which is the case in CRT. In my work, we focused on
the later because they require fewer distributional assumptions, such as distributions and indepen-
dence between observations. GEE define the expectation of the dependent variables as a function of
the independent variables and assume that the variance is a function of the mean. Additionally, they
specify a working correlation structure separately for observations made on members of the same
group. Finally, GEE provide a marginal intervention effect, whose population-averaged interpretation
is preferred for making public health and policy decisions rather than the conditional, cluster-specific
intervention effect estimated using mixed-effects models [157]. Of note, Marginal and conditional
intervention effects are equal for identity and log links [167]. Together with a Elisabeth Turner, a
colleague from Duke university, we wrote a review on good practices for CRT design (RI-17-1) and

analysis (RI-17-2; HCI*-17-1).

In CRT analyzed with GEE (which is not a likelihood-based approach), missing data can signifi-
cantly impact the validity of findings. In 2014, a review suggested that more than 90% of CRT do
not handle properly missing data [48]. When data are Missing at Random (MAR) adequate statis-
tical methods are mandatory to obtain unbiased results. Of note, MAR refers to a situation in data
where the missingness is related to the observed data but not the unobserved data. In other words,
the probability of a data point being missing is related to known variables, but not to the value of
the missing data itself. Weighting and multiple imputation are two common methods for handling
missing data. Weighting approach adjusts for missing data by giving more weight (using propensity
score) to observed data that is similar to the missing data. Multiple imputation involves creating
several complete datasets by replacing missing values with plausible estimates. These datasets are
then analyzed separately, and the results are combined using Rubin’s rule. Together with the same
collaborator Elisabeth Turner, we compared the two approaches for CRT analysis (RI-16-2; CI-18-3;
S-15-2). First, we demonstrated that clustering should not be accounted for when estimating the
weights in this setting, even when there is clustering in the missingness mechanism. This counter-
intuitive results is a mistake often made in practice and corroborated by [182]. Our simulations also
showed that the performance of weighted GEE is comparable to and often faster than the Multiple
imputation GEE approach. It is however to be nuanced since weighting approach are often very dif-

ficult to handle when missingness occurs jointly on multiple variables. See Section 4.4 for details
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on how statistical methods for missing data adjustment in health data will continue to be developed
within my research, in particular in the scope of predictions for ML.

Additional to missing data, CRT suffer from problems of imbalance of baseline covariates. It
refers to the unequal distribution of participant characteristics across different clusters. This can occur
due to the randomization at the cluster level rather than the individual level, leading to variations in
important baseline characteristics between groups. GEE can incorporate covariates into the model in
an outcome regression to control for imbalances. However, the results are subject to bias when the
outcome model does not correspond to the true data generation process. On the flip side, the main
limitation of weighting methods in GEE for CRT is the potential for bias if the propensity score for
missingness are not accurately modeled and/or estimated. Thus we proposed a doubly robust GEE
method for estimation in CRT (RI-17-5; CI-15-1; HCI*-16-1; HCI*-14-1; S-15-1). It was implemented
in an R package (RI-19-2; ; CN-16-1; Soft-16-1). See Section 6.7 for the full version of the article
presenting this work. In this article, we consider a study design in which a vector of P baseline

covariates X;; = (X, ..

.,Xf;) and outcome Y;; are recorded for each subject j = 1,...,n; in
community i = 1,..., M. Each outcome can be either observed R;; = 1 or missing R;; = 0. We want
to make inference about the effect of a binary intervention A for which the probability of treatment
attribution is denoted by p on the outcome Y by estimating the parameters 3 = (39, 84)7 indexing
the marginal model 11;;(8, Ai) = E(Yi;|Ai) = Bo + Badi, where ;(8, Ai) = [pi5(8, Ai)l;—, .- The

Doubly robust GEE writes as follow:

M
S IDIVI WY = B+ > p*(1=p) DI V(B — ) | =0, (4.1)
=1 a=0,1

in which D; = 0p;/087 is the design matrix, V; is the covariance matrix equal to Uil/ 2C(a)Ui1/ 2
with U; a diagonal matrix with elements var(y;;), and C(«a) is the working correlation struc-
ture. This method is doubly robust because it remains consistent if either the propensity model
(W; = diag(R;;/P(R;; = 1|X;, A;))) or the outcome model (B; = E(Y;;|A;, X;)) is correctly speci-
fied, but not necessarily both. By correctly specified, we refer to a model that accurately corresponds
to the true data generation process. The estimator provides a safeguard against model misspecifica-
tion, enhancing the reliability of results in complex data scenarios. This was specifically applied to
the TasP CRT which tested Antiretroviral Treatment as Prevention in Hlabisa sub-district, KwaZulu-
Natal, South Africa (RI-17-4). Finally, I also got involved in analysis of trials in low-incomes setting
in Africa: one comparing two measurement techniques for HIV infection in order to improve accep-
tance of testing (RI-16-5) and the other looking at using causal inference analysis to investigate the
importance of rapid testing after infection (RI-18-1).

The spread of epidemics is significantly influenced by network and connectivity patterns within
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a population. Networks, representing the social, physical, or geographical interactions among in-
dividuals, play a crucial role in determining how quickly and widely a disease can spread. High
connectivity or densely connected networks facilitate rapid transmission of infectious diseases. The
network features are quite never used as randomization covariates in CRT. Thus, network features
represent a source of imbalance in covariates, see Figure 4.1. Together with JP onnela and his
PhD student Patrick Staples from Havard School of Public health, with which I developed this project
during my postdoctoral fellowship, we investigated which network features should be collected in
priority to inform heterogeneity of the epidemics spread (RI-23-2; CI-16-1; CI-15-2; CN-19-1). We
found that information on infection status of connected individuals or in the same network compo-
nent are the one yielding to the best improvement in efficacy. Of note, no time varying network
features is taken into account in this work. This could be a valuable extension of this work, but
it is not straightforward. Although primarily a theoretical experiment, this project highlighted the
significance of the network underlying an epidemic. This aligns with the findings of [177] and [77]
regarding super-spreaders in the context of the COVID-19 pandemic. It also paves the way for inno-
vative ideas in the design of ring trials / reactive vaccination particularly used in Ebola vaccination

[82]. Refer to section 4.4 for further discussion on this topic.
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Figure 4.1 — Example of six clusters immediately after randomization in an idealized CRT. Three
clusters have been randomized to treatment (blue), and three have been randomized to control
(white). Each cluster has nine nodes, three of which are already infected at baseline and are shaded
red. Internal network structure varies between clusters, and differing individual- and cluster-level
covariates can be calculated for each cluster. For example, in the fifth (bottom-center) cluster, the
mean degree is 2, the largest connected component size is 7. Individual outcomes in separate clusters
are independent, as no edges exist between clusters (Figure from RI-23-2).
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4.3 Modeling Between-host Dynamics of an Epidemics

4.3.1 Predicting the Effects of Non-Pharmaceutical Interventions

During the pandemics, I focused on real-time observational data provided within the COVID-
19 epidemics. It refers to the data collected and analyzed continuously and promptly as the epi-
demic unfolds. The data used includes case reports, hospitalization data, testing data, vaccination
data, climatic data and others. Non-Pharmaceutical Interventions (NPI) were crucial in control-
ling COVID-19. They included measures like social distancing, mask-wearing, hand hygiene, travel
restrictions, and lockdowns. These interventions aimed to reduce virus transmission by limiting con-
tacts between individuals. Predicting their effects involves understanding various epidemiological,
social, and behavioral factors.

The core of predicting NPI effects lies in epidemiological models like the SIR (Susceptible,
Infected, Recovered) model and its derivatives. These models, also called between hosts, simulate
how the virus spreads through populations and how interventions might alter this spread. In our
work, we focus on the SEIRAH model, see Equation 4.2 and Figure 4.2. The population of size N
is divided into 5 compartments: susceptible S, latently exposed FE, symptomatically infectious I,
asymptomatic/pauci-symptomatically infectious A, hospitalized H, removed R ( i.e., both recovered
and deceased). Parameters Dy represent the average time in days spent in each compartment X.
rg and ry respectively represent the proportion of symptomatic and hospitalized individuals. Finally,
b is the most important parameter of transmission that is assumed reduced by « in asymptomatic

individual due to reduced viral shedding.

s _b<1_Z)S(I+O‘A)

dt N N
@:b(l—z SI+ad) E
dt = N N DE
dl rE _1—r1 o

i~ Dp Dq =55
an il A1 “2
dt DI DH

dA 1—7”E _i

dt DE DI

ag _ Lo, H

dt DQ DH

The particularity of our approach is not only considering one epidemics but multiple observation
of the same epidemics process in multiple geo-localisation (region or departments), in a population

framework. Noticing that these epidemics models are mechanistic models, we used the methods
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Figure 4.2 — SEIRAH model representation (Figure from RI-23-1)

mentioned in Section 2.2 and, in collaboration with Annabelle Collin from Inria team Monc, we fitted
population Kalman filter estimation approaches (RI-23-1; HCI*-21-5; HCI-21-3;HCI*-21-1; S-20-1).
See Section 6.8 for the full version of the article presenting this work. In this method of data assim-
ilation, the parameters of the mechanistic model are treated as having dynamic behavior over time,
which is modeled non-parametrically. Consequently, it becomes feasible to track the trajectory of
transmission rate b across time and subsequently correlate it with the NPI being implemented using
a regression method. Our findings indicate that all NPI considered in the study significantly con-
tributed to the reduction of transmission rates. For example, the first lockdown reduced transmission
by about 78% [74%; 82%] and school closure reduced it by about 7% [5%; 8%]. Additionally, the
study underscored the pronounced influence of weather conditions on disease transmission: rates
decreased during summer months and escalated in winter. Moreover, an augmentation in disease
transmissibility was observed with the emergence of VoC. A key goal of NPI is to reduce the effective
reproduction number (Rt) (and not only transmission), which represents the average number of peo-
ple to whom a single infected person will transmit the virus in a population where not everyone is
susceptible. This concept has been introduced for within-host modeling in Section 3.2.2. Collaborat-
ing with Simon Cauchemez from Pasteur Institute and Juliette Paireau from Santé Publique France,
we also proposed a two-step approach in which Rt is first estimated and NPI are regressed over the
Rt (RI-23-3). Rt are derived using EpiEstim, which calculates the expected number of secondary
infections [194]. Similar results were found as with the Kalman filters approach, however there was
a disclaimer that confidence intervals found may have been too narrow. Finally, the study highlighted

the importance of retrospective evaluation of interventions to inform future decision-making.

From a methodological perspective, the two studies depicted in the previous paragraph adopted
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a two-step approach (b or Rt is estimated then regressed over NPI). Thus, they suffer from the
weaknesses acknowledged in Section 2.2, i.e. the lack of propagation of uncertainty between the two
steps as well as possible bias. To address this, we employed a one-step strategy, applying the SAEM
estimation approach to the same dataset with a model of similar complexity (RI-24-1; HCI-23-5;
CN-22-1). Again, this adjustment yielded results that were consistent with those obtained through
the two-step process. Moreover, in this second study, we performed simulations that quantify benefits
in term of public health. Without vaccines, the model predicted 159, 000 additional deaths and 1.48
million more hospitalizations in France. If a vaccine had been available within 100 days—a goal of
the Coalition for Epidemic Preparedness Innovations (CEPI)—about one-third of deaths and three-
quarters of hospitalizations could have been avoided. Finally, implementing a lockdown one week
earlier could have prevented 20,000 deaths. In the search of always finding the most statistically
accurate method to answer a relevant public health or medical question, we propose to compare one-
step and two-step approaches as a first milestone for multi-scale modeling of epidemics (See Section
4.4).
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Figure 4.3 — Schematic of the age-structured SEIVS model for one age group. Parameters are not
described in this manuscript and additional details can be found in RI-21-4 (Figure from RI-21-4).

As a last exemple of application, during the pandemic, there was a big challenge in forecasting,
i.e. short- mid- and long-term predictions (weeks to several months) into the future, the effect

of possible public health intervention. Collaborating with Jane Heffernan from York University, we
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employed a more granular model briefly outlined in Figure 4.3 and expanded from [28]. This model
is distinctive from the one presented before for two reasons: firstly, it includes waning immunity
by following a SEIVS model structure (Susceptible-Exposed-Infectious-Vaccinated-Susceptible), and
secondly, it incorporates age stratification. Such detailed models come at the cost of increased com-
plexity and the need for fixing parameters or for more data to inform them. With this model, we
projected the consequences of easing barrier gestures under varied assumptions about the longevity
of immunity following infection and vaccination. The potential effects of a booster vaccine cam-
paign were also examined (RI-21-4; CI-21-3). Of note, this work was published in mdpi journal after
approval of publication policy by Inria. Nevertheless I will not reiterate this experience because I be-
lieve the reviewing standards were and still are very low quality. Regarding science, the findings from
September 2020 emphasized the necessity of maintaining barrier gestures and enhancing vaccination
efforts in particular in elderly. This result aligned with findings from other countries recommending
the maintenance of NPI while vaccines were being rolled out [132]. These insights were important to
informing the French situation, earning multiple citations from the French Scientific Council during
the pandemic (S-20-2; Soft-20-2) as well as numerous press releases, see Section 1.3.13. To enhance
the accuracy of estimating and predicting epidemic processes, it is crucial to deepen our understand-
ing of the connection between between-host dynamics and within-host dynamics. This research

perspective is further elaborated in Section 4.4.

4.3.2 Optimizing Lockdown Allocation
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Figure 4.4 — Epidemic control as an optimization problem. s; a; ¢; refer to environment states,
control actions, and the i*" cost, while traj. is their collection over an episode. Blue and red arrows
match the input and output of the reinforcement learning function (Figure from RI-21-1).

The COVID-19 pandemic has underscored the significant impact of infectious diseases on pub-
lic health and the economy, highlighting the need for multi-objective cost optimization. There
have been multiple contribution concerning the optimization of intervention strategies for epidemic
response. However, they mostly differ from their definitions of epidemiological models (SIR-type

[212]; Agent-based models (ABM) [26]), of optimization methods (deterministic rules [189]; evo-
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lutionary optimization [137]; bayesian optimization [26]) or of cost functions (for example [120]
used length of school closure as well). In collaboration with Clément Moulin-Frier and researchers
at Inria team Flowers, we decided to develop the EpidemiOptim toolbox which is a python platform
allowing a simple definition of each of the aforementioned fe