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Chapter 1

Experience in Research

1.1 Curriculum Vitae

1.1.1 Research Positions

MAR 2021- MAR 2023 Chaire Ecole Polytechnique, Sanofi, Paris France.
Secondary appointment of research and teaching. Chaire "NUMERICAL INNO-
VATION AND DATA SCIENCE FOR HEALTH", work in collaboration with the Inria
Team XPOP.
Reference: Marc lavielleMarc lavielle

OCT 2016 - NOW Chargé de Recherche CRCN Inria Bordeaux Sud-Ouest, France.
Researcher in the SISTM TEAM (Statistics In System biology and Translational
Medicine). Also affiliated with Inserm U1219 Bordeaux Population Health.
Reference: Rodolphe ThiébautRodolphe Thiébaut

JAN 2014 - OCT 2016 Postdoctoral fellow Harvard school of Public Health, Boston USA.
BIOSTATISTICS DEPARTMENT, working on “Semi-parametric estimation of treat-
ment effect in clustered randomized trials in presence of missing data: appli-
cation to HIV prevention in South Africa”
Reference: Victor de GruttolaVictor de Gruttola

NOV 2013 - JAN 2014 Invited Researcher University of Oslo, Norway.
INSTITUTE OF BASIC MEDICAL SCIENCES, working on “Comparison of propen-
sity score based methods and dynamical methods for estimation of treatment
effect in observational studies”
Reference: Odd AalenOdd Aalen; Jon Michael GranJon Michael Gran

OCT 2010 - NOV 2013 Allocataire Moniteur Université de Bordeaux, France.
TEACHING ASSISTANT position during my PhD (64 hours/year)
Reference: Pierre JolyPierre Joly

mailto:marc.lavielle@inria.fr
mailto: Rodolphe.thiebaut@u-bordeaux.fr
mailto:degrut@hsph.harvard.edu
mailto:o.o.aalen@medisin.uio.no
mailto:j.m.gran@medisin.uio.no
mailto:pierre.joly@u-bordeaux.fr


4

1.1.2 Diplomas

OCT 2010- NOV 2013 PhD in Biostatistics, Université de Bordeaux, France.
“Monitoring of HIV infected patients based on dynamic models”.
* With high honor from the jury (avec les félicitations).
* Prix de thèse Société Française de Statistiques (2015)
Reference: Daniel CommengesDaniel Commenges

SEPT 2009 - SEPT 2010 Master of Science Statistics and Econometrics, Université de Rennes 1, France.
at the department of mathematics, with high honors (dual curriculum)

SEPT 2007 - SEPT 2010 Engineer Diploma ENSAI, Rennes, France.
National School for Statistics and Information Analysis.

SEPT 2008 - SEPT 2009 Bachelor of Science in economics, Université de Rennes 2, France.
at the department of economics (dual curriculum)

SEPT 2005 - SEPT 2007 Classes Préparatoires aux Grandes Ecoles Lycée Montaigne, Bordeaux, France.
MPSI/MP Math Physics and engineer sciences

1.1.3 Prizes and Awards

P-2024-1 TOP DOWNLOAD (RI-22-1RI-22-1) Paper in the 10% most downloaded among work published in an
issue between 1 January 2022 – 31 December 2022 in CPT: Pharmacometrics & Systems phar-
macology.

P-2021-1 PEDR – Research "excellence" and doctoral supervision grant (2021 - 2025).

P-2017-1 PEDR – Research "excellence" and doctoral supervision grant (2017 - 2021).

P-2016-2 CONFERENCE TRAVEL AWARD (SFDS) – This 600C-grant allow young scientists whose applica-
tion get selected to attend a the French annual conference JdS (2016).

P-2016-1 HARVARD ROSE FELLOWSHIP AWARD – 4 prices a year to excellent scientific postdoctoral fellows
to offer a cross-cultural experience of research in developing country. My project concerned:
"Estimation of incidence and prevalence of HIV in Botswana: pooling data from different regis-
ters to evaluate the impact of personal characteristics such as citizenship".

P-2015-2 THESIS AWARD - MARIE-JEANNE ET LAURENT DUHAMEL PRICE FROM SFDSMARIE-JEANNE ET LAURENT DUHAMEL PRICE FROM SFDS is given once ev-
ery other year and awards scientific quality of PhD works in Applied Statistics.

P-2015-1 PHILIPPE FOUNDATION (RENEWAL) (6000$ personal grant) My project concerned: "Evaluating
and targeting of HIV prevention strategies".

P-2014-1 PHILIPPE FOUNDATION Non-profit organization for Franco-American exchanges (5000$ personal
grant). My project concerned: "Methods for analyzing HIV clustered randomized data and
cohort data with informative missingness".

1.1.4 PhD Supervision and Mentoring (6)

• Auriane Gabaut, expected defense end 2026: Her PhD, tentatively titled “Methods for latent
variable models in mechanistic models”, is being conducted under the co-supervision of Cécile

mailto:daniel.commenges@u-bordeaux.fr
https://www.sfds.asso.fr/fr/group/prix_et_bourses/544-le_prix_marie_jeanne_laurent_duhamel/
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Proust-Lima at Inserm Bordeaux Population health Biostat team and myself Inria/Inserm
SISTM in Bordeaux. She is funded by an Inria CORDI-S grant and the PHDS network Impul-
sion (NG-22-1NG-22-1). The project endeavors to reconcile mechanistic modeling, traditionally reliant
on limited markers, with the analysis of high-dimensional data, typically comprising extensive
readouts from a few individuals. The initial phase involves enhancing the SAMBA algorithm to
accommodate a high number of covariates in the statistical model of the mechanistic model, in-
corporating dimension reduction techniques, particularly lasso methods. Subsequently, the PhD
work will focus on developing new statistical tools using latent variable models. This entails
formulating a complex observation model for the mechanistic model, necessitating the creation
of new likelihood estimators and further dimension reduction strategies. The ultimate goal is to
develop tools applicable to mechanistic models, regardless of whether they possess an analyti-
cal solution. The application is anticipated to utilize data from the PREVAC-UP (IG-19-2IG-19-2) and
Coverage-Immuno (IG-20-1IG-20-1) projects. Particularly in Coverage-Immuno, innovative methods
have enabled the study of gene expression through sequencing from blood droplets collected
via prick tests by patients themselves. This breakthrough facilitates daily sampling of gene
expression, offering insights into the abundance of cell populations and the dynamics of biolog-
ical metabolic pathways. These markers can be integrated into mechanistic models, enhancing
the understanding of biological processes. She received the Best Poster award at the "2023
Bordeaux Population Health - Journée des jeunes chercheurs".

• Adrien Mitard, expected defense end 2026: His PhD, tentatively titled "Accelerating Vaccine
Development Using Pre-Clinical Data", is being conducted under the co-supervision of Jeremie
Guedj at the Inserm IAME in Paris and myself Inria/Inserm SISTM in Bordeaux. Adrien
Mitard is located in Paris. He is funded by the PEPR Santé numérique SMATCH (NG-23-1NG-23-1). The
endeavor is strategically positioned at the intersection of current SARS-CoV-2 challenges, with a
dedicated focus on constructing predictive models. These models will be pivotal in assimilating
data on viral load kinetics and immune responses using mechanistic models, thereby enhanc-
ing the strategic framework for vaccine development and the optimization of antiviral dosing
regimens. The ultimate objective is to utilize these models to extrapolate from empirical data
gathered in pre-clinical trials to human populations. The project encapsulates three principal
initiatives: 1/ Joint Model Construction: The first initiative is to construct a comprehensive
model that synergistically represents the dynamics of viral load and the humoral immune re-
sponse following viral challenges in non-human primates. 2/ Innovative Pre-Clinical Study
Designs: The second initiative seeks to propel the methodological framework of pre-clinical
studies forward. This includes advocating for the implementation of lower innoculum levels
and the strategic timing of challenges, informed by the expected dynamics of the investigated
correlates of protection. 3/ Translational Research: The final initiative focuses on the trans-
lation of these pre-clinical findings to human contexts. This will involve leveraging allometric
scaling principles and predictive modeling techniques to bridge the interspecies divide, thus
enhancing the reliability of vaccine efficacy predictions for human populations.

• Iris Ganser, expected defense end 2024: Her PhD entitled "Effectiveness of non-pharmaceutical
interventions and vaccines during the COVID-19 pandemic" is supervised by David Buckeridge
from Mc Gills University and Rodolphe Thiébaut within the Inria/Inserm SISTM Team. It was
funded by IdEX Bordeaux and the Fonds de Recherche Santé Québec. I am a co-mentor. The
PhD projects are three-fold. 1/ Estimation of Non-pharmaceutical Interventions and Vaccines’
Effects against COVID-19. This project aims to develop and utilize dynamical models to model
the pandemics. I weekly supervised Iris on this topic and this was published in the Epidemics
Journal (RI-24-1RI-24-1). 2/ Comparison of Regression and Mechanistic Models. The objective is to
assess each model’s effectiveness in capturing and predicting COVID-19 dynamics accurately.
I developed the idea of this second project. 3/ Real-life Vaccine Effectiveness in Ontario,
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Canada. I am only a consultant on this third project. The goal is to utilize data from blood
donors and to perform mechanistic modeling of antibodies response to help in better under-
standing waning immunity. She received the Best Presentation award at the "2023 Bordeaux
Population Health - Journée des jeunes chercheurs".

• Marie Alexandre, defended May 2022: Her PhD entitled “Mechanistic modeling and optimiza-
tion of vaccine response in infectious diseases: Application to HIV, Ebola, SARS-CoV-2” was
co-supervized by myself and Rodolphe Thiébaut at Inria/Inserm SISTM team in Bordeaux.
She was funded by an Inria CORDI-S grant. Marie Alexandre focuses on the role of mathemat-
ical modeling in understanding the immune response induced by vaccination. It consisted un
two major modeling pieces. First, the modeling of viral response in NHP after challenge with
an infectious agent allows us to derive a method to define correlates of protection against infec-
tion. As far as methodology is concerned, we ground based our work into a causal framework
(RI-22-4RI-22-4). Second, we modeled humoral response to vaccination in order to better under-
stand and predict the long-term persistence of antibodies response after vaccination (RI-23-7RI-23-7).
Finally, we developed a more biostatistical approach to analyse the data of vaccine trial for
HIV using antiretroviral treatment interruption that are prone to informative right censoring
(RI-21-2RI-21-2). This PhD led to 4 publications that I directly supervised and conceptualized (includ-
ing RI-22-2RI-22-2). Marie Alexandre is now continuing as a Postdoctoral fellow in the Inria SISTM
team.

• Laura Villain, defended Dec. 2018: Her PhD entitled "Analyse et modélisation de l’effet de
l’Interleukine 7 (IL-7) chez les patients infectés par le VIH" was supervised by Daniel Com-
menges and Rodolphe Thiébaut within the Inria/Inserm SISTM Team. It was funded by the
doctoral network of EHESP (Ecole des hautes études en Santé publique). I was a co-mentor.
Although not official at the doctoral school, I interacted weekly (and more) with Laura
Villain during the second half of her PhD. It builds on the seminal paper from Thiébaut et
al. "Quantifying and Predicting the Effect of exogenous IL-7 on CD4+T cells in HIV-1 Infec-
tion." (RI-14-1RI-14-1) which launched a whole theme in the team on the modeling and optimization
of delivery of IL-7 in individuals living with HIV. Interleukin-7 (IL-7) is a cytokine, which is a
type of signaling molecule in the immune system. It plays a crucial role in the development and
maintenance of T cells, a key component of the adaptive immune response. In the context of
HIV infection, where there is a significant depletion of CD4+ T cells, IL-7 has been investigated
as a therapeutic agent to help restore these cells. Its ability to enhance T cell survival and pro-
liferation makes it a promising candidate for supplementing antiretroviral therapy in patients
who do not achieve full immune reconstitution with antiretroviral therapy alone. The PhD of
Laura Villain places in the context of the the INSPIRE trials series (phase I/IIa). It consisted
in modeling the data to mechanistically understand and quantify the effect of IL-7 on survival
and proliferation of T cells, as well as proposing optimal strategies to deliver cycles of IL-7 to
HIV infected patients. In particular, we co-designed a Bayesian strategy to optimize the tim-
ing of IL-7 cycles in adaptive protocols (RI-18-2RI-18-2). She is now a scientist consultant in industry
(NovaDiscovery then esqLABS GmbH).

• Patrick Staples, defended Fev. 2018: His PhD entitled "On the Statistical Properties of Epidemic
Processes in Networks" was fully supervised by JP. Onnela at the Biostatistics department of
Harvard School of Public health. During my postdoctoral fellowship, I had the opportunity
to help supervise Patrick Staples for his second paper of his dissertation. This consists in
meeting twice a week (a one-to-one meeting and a meeting with the student’s mentor)
for few months in order to conceptualize, perform the data curation and data analysis
of "Leveraging Contact Network Information in Clustered Randomized Studies of Contagion
Processes" (RI-23-2RI-23-2). The basic idea was to understand which network features are the most
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important to collect (number of contacts, status of contacts, ... etc) when evaluating a treatment
effect against an epidemic that spreads on a network. He is now VP of Data Science at Alto
Neuroscience USA.

1.1.5 Postdoc and Research Scientist Supervision (5)

• Quentin Clairon (Feb. 2019 to Oct. 2022): He was a postdoctoral fellow within the EBOVAC
3 Project (IG-18-1IG-18-1). His mission was to develop a new tool for estimation of parameters in
non-linear mixed-effects models based on optimal control (RI-23-6RI-23-6). He also worked on the
modeling of humoral response after vaccination (RI-23-5RI-23-5). Quentin Clairon is now a researcher
ISFP at Inria within the SISTM team.

• Marie Alexandre (since May 2022): After her PhD, she is now a postdoctoral fellow. She
continues to work on mechanistic modeling and dedicates a large amount of her time to the
statistical analysis and design of pre-clinical (NHP and rodents) and clinical trials promoted by
the Vaccine Research institute.

• Myrtille Richard (March 2022 to Dec. 2022): She was an engineer within the NIPAH Project
(IG-18-2IG-18-2). To propose a pipeline for in silico trials, Myrtille explored multiple platforms for
simulating mechanistic models. Specifically, we investigated the R packages deSolve and Rx-
Ode, the Python package diffeqpy, and Lixoft’s Simulx software. This simulation platform was
then used to generate data for designing adaptive trials and optimizing trial designs using the
multi-armed bandit model [109109]. Myrtille is now continuing her curriculum of Public Health
Medical Doctor.

• Maria Prieto (Sept. 2020 to Sept. 2021): She was an engineer in the SISTM team. She worked
on the modeling of the COVID19 epidemics in France and particularly helped in estimating the
effect of non-pharmaceutical interventions of the epidemics dynamics. She is now a "Head of
projects" at Octopia.

• Dan Dutartre (Part time May 2020 to Nov 2020): During the COVID-19 pandemics, Dan Du-
tartre has been partly detached by Inria to work within SISTM team. This was within the
framework of the grant GESTEPID (NG-20-1NG-20-1). He designed a connector between R and Mono-
lix that was particularly useful to share our codes during the pandemics. Since then, Lixoft has
released the R "Lixoftconnectors" package that was basically providing similar functionalities.
Dan is now on a long-term contract as research engineer at Inria.

1.1.6 Teaching Assigments

1.1.6.1 Teaching

I teach in average up to 50 hours of classes a year in statistics and advanced statistics at all
levels from bachelor, masters to doctoral level. My main topics for teaching are: basic statistics,
dynamical/mechanistic models and missing data.

• Master level

– ENSAI (2016 - now): Full coordination of module on "missing data" for 3rd year students,
option Biostatistics (16h).

– Master 2 Biostatistics University Bordeaux (2016 - now): Module on "Multiple imputa-
tion" (8h)
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– Master 2 Polytechnique MSV Modélisation Science du vivant (2021 - 2023): Full co-
ordination of module on "Mixed-effects models for population approaches" for Master 2
students (28h).

– Master 2 Biostatistics University Bordeaux (2019 - 2022): Module on "Introduction to
dynamical models for epidemics" (6h).

– ENSAI (2016 - 2018): Full coordination of module on "Epidemiology and article critical
reading" for 3rd year students, option Biostatistiques (14h).

– ENSAI (2017 - 2020): Module on "Introduction to Research" for 3rd year students, option
Biostatistiques (5h).

– Master 2 Pharmacology, University Bordeaux (2017 - 2019): Design experiment (18h)

– Master 1 Stochastic Processes, University Bordeaux (2017 - 2019): Bayesian Stat (7h)

• University Diploma & Summer School

– DU Méthodes statistiques de régression en épidémiologie (2017 - now): Module on
"Linear regression and analysis of variance". Correspondance continuous education (equiv.
12h).

– ISPED Summer school (2017- now): Initiation to R. Continuous education. (between 4h
and 14h depending on years)

– PhD module Modeling life science (2018): Methods for ODE/PDE/SDE, organization &
coordination of all lecturers 35h – lecture 7h

1.1.6.2 Internships (18)

I supervised a total of 18 intern students, among them one bachelor level, 6 master 1 level, 10
master 2 level and 1 PhD level.

• 2023 (4)

– Marie COLIN (ENSAI 2 ieme année June – Aug. 2023) "Mechanistic modeling of antibodies
response using transcriptomics data" . This work lead to one international conference talk
CI-23-2CI-23-2.

– Junior JUMBONG (ENSAI 2 ieme année June – Aug. 2023) "Analysis of determinants of
dynamical vaccination response using mechanistic models".

– Fanny MOREAU (Licence 3 MIASCHG Bordeaux May – July 2023) "Analysis of determi-
nants of vaccination response at 12 months using regression models".

– Auriane GABAUT (Master 2 Modélisation science du vivant Polytechnique Paris Apr. – Sept.
2023) "Model building in nonlinear models in presence of a high number of covariates".
This work lead to one national conference talk CN-23-1CN-23-1.

• 2022 (2)

– Marie POUPELIN (Master 1 Biostatistiques Université bordeaux, Apr. – July 2022) : «
Humoral response to ebola vaccination in prevac-Up trial ». This work helped with the
data management of one submitted paper Sub-3Sub-3.

– Florian ROBERT (Master 2 Paris Sorbonne Data science June - Oct 2022) : « Model
building strategies in NLME »

• 2021 (3)
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– Marie-Laure CHARPIGNON (PhD Candidate MIT June – Oct 2021) : "Evaluation of the
impact of non-pharmaceutical interventions on SARS-CoV-2 transmission rate at the de-
partment level in France". This work led to the publication RI-23-3RI-23-3.

– Carole VIGNALS (Master 2 epidémiologie Université bordeaux, Interne Santé publique Apr.
– Oct 2021) : « Relâchement des gestes barrière en France à l’ère de la vaccination contre
la COVID-19 ». This work led to the publication RI-21-4RI-21-4 and public outreach RN-23-1RN-23-1.

– Abdelghani NEHAUS (Master 2 Bioinformatique Labri Université bordeaux Apr. – Aug.
2021) : “Optimization of intervention strategies in epidemic models using deep reinforce-
ment learning techniques“

• 2019 (3)

– Guillaume SOTTON (Master 2 Bioinformatique Labri Université bordeaux Apr. – Aug.
2019) : “ Joint fragility model based on differential equations: analysis of marker kinetics
and survival time ”

– Clément LEMOIGNE ( Mathmeca 2nd year July - Sept. 2019) : "Comparaison de méthodes
de construction de modèles et de sélection de variables pour les modèles dynamiques en
santé. "

– Marie ALEXANDRE (Master 2 Centrale Marseille, Apr. – Aug. 2018) : “PKPD modeling in
pre-clinical development of T cell bispecific immunotherapy”. This was a co-supervision
with Industry (Nicolas Frances, Roche, Basel). Marie continued as a PhD Student co-
supervized by myself.

• Before 2018 (6)

– 2018 - Marie ALEXANDRE (Master 1 Centrale Marseille, Jun. – Aug. 2017) : “Modèle
Vaccinal pour Ebola Dynamique des anticorps et de la réponse cellulaire”.

– 2017 - Paul TAUZIA (Master 2 MSS Université de Bordeaux, Apr. – Sept. 2017): “Utilisa-
tion de la déconvolution cellulaire pour détecter des différences d’expression génique”.

– 2017 - Augusta ALPHONSE (Master 2 in Vaccinology Creteil VRI, Apr. – Sept. 2017) :
“Proof of concept for an automated gating tool applied to flow cytometry data from a HIV
therapeutic vaccine trial”

– 2013 - Damien FOSSAT-CERCLER (Master 2 in Statistics and ENSAI 3rd year, Apr. – Sept.
2013) : “Dynamical modeling of pharmacoepidemiology in observational studies: opti-
mization of methods for numerical integration”

– 2012 - Ana JARNE (Master 2 in Biostatistics, Université de Pau, Apr. – Sept. 2012) :
“Modeling of T-lymphocytes dynamics after InterLeukine-7 injections in HIV infected pa-
tients: introduction of a feedback loop”. This work was continued as a PhD and led to the
publication RI-17-3RI-17-3.

– 2011 - Sybille MASSE (ENSAI 2nd year, Jun. – Sept. 2011) : “Understanding the Effect of
Interleukin-7 with mathematical models”

1.1.7 Expertizing activities

• Editorial Board: I am Associate Editor for the Journal "International Journal of Biostatis-
tics".

• International Expert:
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– MILLENNIUM SCIENCE INITIATIVE (Chile) Application reviewer for the Natural/Exact Sci-
ences application (9 projets) (2017; 2019; 2021; 2023).

– ANR-DFG GERMAN RESEARCH FOUNDATION (France-Germany) Application reviewer (2
projets) (2018).

– SWISS NATIONAL SCIENCE FOUNDATION (SNSF) (Suisse) Application reviewer (8 projets)
(2020; 2021; 2022; 2023).

• National Expert:

– AGENCE NATIONALE DE LA RECHERCHE (ANR) CES45 Member of evaluation commitee
(2023 - now)

– AGENCE NATIONALE DE LA RECHERCHE SUR LE SIDA ET HÉPATITES VIRALES ET LES MAL-
ADIES ÉMERGENTES (ANRS MIE) CSS13 "Clinical research" Member of evaluation commi-
tee (2019 - now).

– SOCIETÉ FRANCAISE DE STATISTIQUES (SFdS) Member of the Jury Award Marie-Jeanne
Laurent-Duhamel (2022 - now).

– AGENCE NATIONALE DE LA RECHERCHE SUR LE SIDA ET HÉPATITES VIRALES (ANRS) CSS3
"Clinical research on HIV and comorbidities” Member of evaluation commitee (2016 -
2019).

– ANR COVID RA Covid-19 édition 2021 Vague 14 (2 projects) (2021).

• Member of International Scientific Committee:

– Member of Scientific Director board of the COVID IMMUNITY TASK FORCE IN CANADA

(2021 - 2023).

– 4th WORKSHOP ON VIRAL DYNAMICS Paris (Oct. 21-23 2019).

• Member of National Scientific Committee:

– JDS French statistical society annual conference Nancy (3-7 June 2019).

– Conference STATISTICS IN HEALTH – personalized medicine, CIMI, Toulouse (Jan. 11-12
2018).

• Reviewer:

– JOURNALS IN STATISTICS AND BIOSTATISTICS: Biometrics (since 2014); JRSS-B (since
2016); Statistical Methods in Medical research (since 2017); JRSSA Interaction (since
2019); Journal of royal society open science (since 2021)

– JOURNALS IN COMPUTATIONAL BIOLOGY: Plos One (since 2014); IEEE/ ACM Computational
biology and BioInformatics (since 2010); elife (since 2021); CPT PsP (since 2022); plos
Computational Biology (since 2023)

– JOURNALS IN APPLIED MATHEMATICS TO MEDICINE: Statistics in medicine (2013); Trials
(since 2016); Society of clinical trials (2016); Statistical Science (since 2019)

– See Web of science Peer reviewWeb of science Peer review (since 2021 only)

• Hiring committees (6):

– MCF CNAM Section 26, Mai 2017, Paris

– CRCN INRIA Bordeaux 2019, 2020 and 2024; Paris-Saclay 2022; Nice 2023

• International PhD Defense as "Rapporteur" (1):

https://www.webofscience.com/wos/author/record/T-5128-2019
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– STEVEN SANCHE, Reviewer, University of Montreal Faculty of Pharmacy. "Effet des an-
tirétroviraux sur la pathogénése du VIH : une étude par modélisation mathématique inté-
grant la cinétique du virus, de l’immunité, du médicament, et le comportement d’adhésion
avec leurs variabilités interindividuelles", Dec. 2018.

• National PhD Defense as "Jury Member" (5):

– JOHANN FOUAZI, Examiner, Brain and spine institute, Inria. “Machine learning to predict
impulse control disorders in Parkinson’s disease.” Dec. 2019.

– ANTONIO GONCALVES, Examiner, Paris Diderot, IAME inserm, « Modélisation de l’effet
de nouvelles molécules anti-VHB chez la souris et chez l’homme. » Feb. 2021.

– ROMAIN NARCI, Examiner, Université Paris Saclay Inrae, « Inférence dans des modèles
à effets mixtes pour des dynamiques épidémiques partiellement observées récurrentes et
multisites » March 2022.

– GUILLAUME LINGAS, Examiner, IAME Inserm, « Modélisation de la dynamique virale du
SARS-CoV-2 : Implication pour l’évaluation thérapeutique » Oct. 2022.

– THOMAS BENETTEAU, Examiner, IRD Montpellier, « Modélisation mathématique des in-
fections HPV : quel rôle du hasard dans la persistance et l’oncogénèse ? » Dec. 2023.

• PhD follow-up committees (10) (once a year up to 3 years):

– Chiara Nicolo (2017 - 2020; director Sébastien Benzekry - U. Bordeaux). Mathematical
modeling of neoadjuvant antiangiogenic therapy and prediction of post-surgical metastatic
relapse in breast cancer patients.

– Jonas Beale (2018 -2019; director Aurélien Latouche and Emmanuel Barillot - University
Pierre et Marie Curie Paris). De la modélisation mécanistique des voies de signalisation
dans le cancer à l’interprétation des modèles et de leurs apports : applications cliniques et
évaluation statistique.

– Marie-Astrid Metten (2018 - 2020; director Guillaume Chauvet and Jean-Francois Viel - U.
Rennes). Données manquantes dans les études de cohorte.

– Imke Mayer (2018 - 2021; director Julie Josse and Jean-pierre Nadal - Ecole Polytech-
nique). Analyse de données hétérogènes avec données manquantes - Application à la prise
en charge des polytraumatisés graves.

– Iris Granger (2020 - 2024; director David Buckeridge and Rodolphe Thiébaut - Mc Gills
Canada U. Bordeaux). Modeling the epidemics of COVID-19.

– Baptiste Elie (2021 - 2024; director Samuel Alizon and Nacho Bravo - U. Montpelier).
Etude des infection génitales HPV.

– Benjamin Glemain (2022 - 2025; director Fabrice Carrat and Nathanaël Lapidus; Inserm
iPLesp Paris). Corrélats de protection contre les différents variants du SARS-CoV-2.

– Maxime Beaulieu (2023 - 2026; director Jérémie Guedj; Inserm Iame Paris). Modélisation
de l’efficacité des stratégies antivirales contre les variants du Sars-CoV-2 : de la population
générale aux patients hospitalisés.

– Erwan Gaymard (2023 - 2024; director Maxime Sermesant and Irene Balelli - In-
ria Nice, Exactcure CIFRE). Développement de méthodologies mathématiques en méta-
modélisation PK à partir de sources hautement hétérogènes.

– Eve Rahbe (2023 - 2024; director Lulla Opatowski and Philippe Glaser - Institut Pasteur).
Modélisation spatio-temporelle de l’antibiorésistance à l’échelle mondiale.

– Ilona Suhanda (2023 - 2026; director Raphaëlle Metras - Sorbonne Université). Spatial risk
assessment of lyme borreliosis and thick-borne enceohalitis: a joint modeling approach.
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1.1.8 Administrative activities

• Research coordination at a National level

– 2021 - now - MEMBER OF THE BOARD "ACTION COORDONNÉE MODÉLISATION" (ANRS-MIE).

– 2021 - now Co-leader with J. Guedj of the working group WITHIN-HOST MODELING Action
Coordonnée Modélisation (ANRS-MIE).

– 2018 - 2021 - President of COMMUNICATION GROUP AT FRENCH STATISTICAL SOCIETY

(SFDS).

– 2016 - 2018 - Member of COMMUNICATION GROUP AT FRENCH STATISTICAL SOCIETY

(SFDS).

– 2016 - 2020 - Elected member of the Board of YOUNG FRENCH STATISTICIANS at French
statistical Society (SFdS).

• Local duties

– COMMISSION INRIA DE DÉVELOPPEMENT TECHNOLOGIQUE Evaluation and expertise of
grants applications to Inria for the transfer of technology, partnership with industries and
development of new technological tools (2016 - 2022).

– COMMISSION INRIA EMPLOI-RECHERCHE Participation in the scientific committee for attri-
bution of research grants for delegations, PhD and Postdoctoral fellowships (2017 - 2023).

• Organisation of International Event/Conference

– 7TH WORKSHOP ON VIRAL DYNAMICS about 100 attendees Head of organizing and scien-
tific committee 2025 in Bordeaux

– 4TH WORKSHOP ON VIRAL DYNAMICS about 100 attendees in collaboration with Jeremy
Guedj. Creation of the conference website, communication, monitoring of registration,
conception of a booklet, Member of scientific committee. Oct 2019.

• Organisation of National Event/Conference

– JOURNÉE DE LA STATISTIQUE 2024 Member of the communication group for the organiza-
tion committee (about 500 participants) in Bordeaux May 2024

– 2ND WORKSHOP AC MODÉLISATION ANRS MIE about 80 attendees Head of organizing
committee 21-22 Nov. 2022 in Bordeaux

– WORKSHOP ON WITHIN-HOST DYNAMICS about 50 attendees (30% international). Guest
speaker Alan Perelson. 17 Sept. 2022 in Paris.

– SCIENTIFIC LUNCHES AT JDS I created this type of event and organized it the three first
years. It consists in organizing a lunch around a specific scientific topic as a satellite event
of the French statistical Society conference (pick the location, invite people, stimulate
discussion – around 20 attendees). This type of satellite event still exists at the conference.
I personally organized those in 2017, 2018 and 2019.

1.2 Grant and Funding

1.2.1 Opening Remarks

In this funding section, the grants are labelled depending on the type, the year and the number
of grants during the same year. The nomenclature writes "type-year-number". Types of grants are as
follow:
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• IG : International Grants

• NG : National Grants

1.2.2 International grants (5)

IG-20-1 Coverage-ImmunoCoverage-Immuno – EIT Health COVID-19 Rapid Response - COVERAGE-Immuno aimed at
performing a deep, repeated evaluation of immunological markers and transcriptomics data
in COVID-19 positive patients treated at home in the context of COVERAGE, a randomized
clinical trial evaluating several experimental treatments at home (legal trial sponsor: Bordeaux
University Hospital). The project will allow a better stratification of patients based on immuno
biomarkers profiles so as to adapt their management and care before hospitalization.
Head: Rodolphe Thiébaut (Inserm)
Role & Specific tasks : I am workpackage leader for "Data analysis". We use the data to
benchmark if it is possible to fit immune dynamics to SARS-CoV-2 response using transcriptomic
data.
Dates: 04/2020 - 12/2020
Main partners: Inserm, Inria
Total COVERAGE budget: 471kC SISTM COVERAGE-immuno budget: 89kC WP budget:
13kC
Direct Personal outputs to date: CI-23-2CI-23-2; CN*-23-1CN*-23-1

IG-19-2 Prevac-UpPrevac-Up: European project RIA EDCTP - PREVAC-UP is built around the PREVAC consortium
and its main objective is to evaluate the long-term safety, as well as the durability of humoral
and cellular immune responses, of three different Ebola vaccine regimens previously tested by
the consortium for 5 years after vaccination. PREVAC-UP also assesses the impact of co-infection
on the immune response to vaccination, build on the extensive community mobilisation efforts
previously generated through PREVAC to provide a transnational platform for social and health
science research and training. It thus aims to expand and sustain capacity building and training
of scientists in the four participant African countries.
Head: Yazdan Yazdanpanah (Inserm)
Role & Specific tasks : I am workpackage leader for "System Vaccinology approach". SISTM
contributes to the integrative statistical analysis of the immune response which will be used
to explore the mechanism of action of the vaccines and to identify early correlates of durable
antibody induction.
Dates: 01/2019 - 06/2024
Main partners: Coordinated by Inserm (France). Other beneficiaries: CNFRSR (Guinea), CER-
FIG (Guinea), LSHTM (UK), COMAHS (Sierra-Leone), NIAID (USA), NPHIL (Liberia), USTTB
(Mali), Centre pour le Développement des Vaccins (Mali), Inserm Transfert SA (France)
Total PREVAC-UP budget: 16MC SISTM budget: 328kC
Direct Personal output to date: Sub-3Sub-3

IG-19-1 amfARamfAR: American Fundation for AIDS research; Impact Grant 109856-65-RGRL - Mechanistic
and empirical modeling of viral rebound to identify predictors of post-treatment control.
Head: R. Wang (Harvard University)
Role & Specific tasks : I work as a contributor for mechanistic models aspects.
Dates: 01/2019 - 01/2020
Main partners: Harvard University, Inserm
Total amfAR budget: 110kC SISTM budget: 7kC
Direct Personal output to date: RI-20-3RI-20-3

https://eit.europa.eu/our-activities/covid-19-response/solutions/coverage-immuno-understanding-and-predicting-progression
https://prevac-up.eu/
https://www.amfar.org/
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IG-18-2 Nipah Virus StudyNipah Virus Study: Sino-French Agreement Aviesan - To raise the challenge caused by Nipah
virus we propose to develop a program that shall led to a better understanding of the epidemi-
ology of the virus as well as the associated physiopathology, to develop new tools in the field of
diagnosis, treatment and prevention of the infection.
Head: Hervé Raoul (Inserm)
Role & Specific tasks : I am co-workpackage leader for "Biostatistics and evolutionary analysis".
I am in charge of the modeling of vaccine response aspects in this project. SISTM contributes to
model and analyse data from vaccine trial against Nipah virus in non-human primates. Because
almost no data were generated because of COVID-19 pandemics, the work was retargeted to be
more theoretical on model building strategies development.
Dates: 01/2018 - 12/2023
Main partners: Inserm, Université de Marseille, VRI, Wuhan institute of virology, Chinese cen-
ter for disease control.
Total NIPAH budget: 1MC SISTM budget: 150kC
Direct Personal outputs to date: RI-22-1RI-22-1; HCI-22-3HCI-22-3; HCI-21-2HCI-21-2

IG-18-1 EBOVAC3EBOVAC3 – European IMI2: The EBOVAC3 project aims to support an essential part of the re-
maining clinical and manufacturing activities required for the licensure of the two-dose vaccine
regimen in the European Union and the United States. Building on work carried out under
the EBOVAC1EBOVAC1 and EBOVAC2EBOVAC2 projects, EBOVAC3 is running clinical trials to gather safety and
immunogenicity data in infants in Sierra Leone and Guinea; as well as health care workers in
an area affected by Ebola in the Democratic Republic of Congo (DRC). It also follows up partic-
ipants who received the vaccine regimen in the EBOVAC-Salone trial in Sierra Leone to assess
the safety and immunogenicity of the regimen in the longer term. In addition to the clinical
trials, EBOVAC3 aims to characterize outbreak preparedness in Sierra Leone, Guinea and the
DRC through social science research and mapping of the existing preparedness activities in each
of the three countries.
Head: Deborah Watson-Jones (LSHTM)
Role & Specific tasks : I am co-workpackage leader for "Modeling" aspects in this project.
SISTM will contribute to modeling the long-term humoral response to the vaccine.
Dates: 06/2019 - 05/2023
Main partners: Coordinated by the London School of Hygiene and Tropical Medicine (United
Kingdom). Other beneficiaries: Janssen a Pharmaceutical Companies of Johnson and Johnson,
Inserm (France), The University of Antwerpen (Belgium), University of Sierra Leone (Sierra
Leone)
Total EBOVAC3 budget: 51MC (including 29MC from EU) SISTM budget: 351kC
Direct Personal outputs to date: RI-23-6RI-23-6; HCI*-19-1HCI*-19-1; CI-19-4CI-19-4; RI-23-7RI-23-7; HCI-21-4HCI-21-4.

1.2.3 National grants (6)

NG-23-1 PEPR Santé Numérique SMATCHPEPR Santé Numérique SMATCH – Addressing new methodological challenges in public
health data science. The project aims to develop and apply statistical methods and AI-based
approaches to accelerate the development of medical interventions in clinical trials, focusing on
the early phases and integrating multi-source data.
Head: Sarah Zohar (Inria Heka) and Rodolphe Thiébaut (Inria/Inserm SISTM)
Role & Specific tasks : I am involved as a contributor and mentor of one PhD student.
Dates: 09/2023 - 08/2029
Main partners: Inria (Heka, Sistm, Premedical, Soda), Inserm, CNRS, CEA, CHU Bordeaux
Tours Poitiers Montpellier, Université Paris Cité, Bordeaux, poitiers, montpellier, Tours, Lille,
HAS

https://www.ipubli.inserm.fr/bitstream/handle/10608/10133/2017_36_44.pdf?sequence=1
https://www.imi.europa.eu/projects-results/project-factsheets/ebovac3
https://www.imi.europa.eu/projects-results/project-factsheets/ebovac1
https://www.imi.europa.eu/projects-results/project-factsheets/ebovac2
https://polytechnique.hal.science/PEPR_SANTENUM/page/projets-anr
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Total SMATCH budget: 1.4MC SISTM budget: 350kC Own budget: 130kC
Direct Personal output to date: None to date.

NG-22-1 PHDS ImpulsionPHDS Impulsion Réseaux Public Health Data Science network in Bordeaux University. The
PHDS network aims to utilize Bordeaux’s expertise in statistics, applied mathematics, and pub-
lic health to develop analytical methods that: precisely predict disease onset and progression
at an individual level, elucidate the mechanisms that underlie diseases, and create and assess
innovative therapeutic strategies..
Head: Cécile Proust-Lima (Inserm)
Role & Specific tasks : I am the workpackage leader of the tack "Incorporate complex mea-
surement models into theoretical mechanistic models".
Dates: 03/2022 - 03/2026
Main partners: Inserm BPH, Inria Bordeaux, LaBRI, IMB
Total Impulsion budget: 855kC
Direct Personal outputs to date: The WP produced [6565] and CN-23-1CN-23-1 to date.

NG-21-1 EMERGEN - Modvar:EMERGEN - Modvar: Consortium for Surveillance and Research on EMERgent Pathogens via
Microbial GENomics. EMERGEN, coordinated by Sante publique France and ANRS-Emerging
Infectious Diseases, aims to deploy a genomic surveillance system for SARS-CoV-2 infections
throughout France. Its main objective is to follow the genetic evolution of the SARS-CoV-2 virus
in order to detect the emergence and the spatio-temporal distribution of variants, i.e. viruses
with mutations likely to have functional consequences, such as infectivity, contagiousness, vir-
ulence or immune escape.
Head: Simon Cauchemez and Vittoria Collizza. Pasteur Institute
Role & Specific tasks : I am co-workpackage leader regarding the within-host aspects of the
project. SISTM will contribute to modeling the impact on epidemic dynamics of SARS-CoV-2
variants based on the estimation of their within-host characteristics.
Dates: 12/2021 - 06/2024
Main partners: Santé Publique France, Inserm/ANRS, APHP, HCL, Pasteur Institute, Anses,
IFB, CNRGH/CEA, Réseau Sentinelles
Total Emergen budget: 10MC Modvar budget: 450kC SISTM budget: 56kC
Direct Personal outputs to date: RI-23-8RI-23-8; RI-23-5RI-23-5

NG-20-1 GESTEPIDGESTEPID : Action Inria stop COVID19 - Modeling of the COVID-19 epidemics in France with
a focus on the region Nouvelle-Aquitaine.
Head: Mélanie Prague (Inria/ Inserm)
Role & Specific tasks : I am the principal investigator
Dates: 03/2020 - 12/2020
Main partners: Inserm, Inria, Santé Publique France
Total/SISTM budget: 6 months of engineer
Direct Personal outputs to date: RI-23-1RI-23-1; HCI*-21-1HCI*-21-1; HCI-21-3HCI-21-3;HCI*-21-5HCI*-21-5; S-20-1S-20-1; RI-24-1RI-24-1;
HCI-23-5HCI-23-5; CN-22-1CN-22-1; RI-23-3RI-23-3. This work was cited by the "Conseil Scientifique COVID-19" on his
report June 2ndreport June 2nd and gave birth to multiple press releases see Section 1.3.131.3.13.

NG-18-1 DYNAMHICDYNAMHIC (Dynamical modeling of HIV Cure Duration): Inria associate team. This collabo-
ration allows the analysis of unique pre-clinical data in non-human primates of HIV cure inter-
ventions.
Head: Mélanie Prague (Inria/ Inserm) Alison Hill (Harvard)
Role & Specific tasks: I am the principal investigator on the French side. This grant funded
essentially travel to Boston and to Bordeaux as well as to conferences. I was in charge of the
methodological aspects for inference using mechanistic models.

https://www.u-bordeaux.fr/recherche/ambition-scientifique/reseaux-de-recherche-impulsion/PHDS
https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/consortium-emergen
https://www.inria.fr/fr/gestepid-lapplication-de-la-science-des-donnees-la-prediction-de-levolution-de-la-crise-sanitaire
https://solidarites-sante.gouv.fr/IMG/pdf/avis_conseil_scientifique_2_juin_2020.pdf
https://team.inria.fr/dynamhic/
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Dates: 01/2018 - 01/2022
Main partners: Johns Hopkins University School of Medicine, Harvard University
Total/SISTM budget: 10kC/year for travel expenses
Direct Personal outputs to date: RI-20-3RI-20-3; Sub-2Sub-2; HCI-20-1HCI-20-1; HCI-18-1HCI-18-1; CI-19-5CI-19-5.

NG-17-1 EVALUATES: Funded by National Institute for Cancer. Development of joint models involving
dynamical mechanistic model of tumor growth in colorectal cancer.
Head: Virginie Rondeau (Inserm Bordeaux Population Health)
Role & Specific tasks: I am work package leader on mechanistic modeling. This grant aims
at funding 6 months of intern students, travel and equipment expenses in order to investigate
the use of Monolix for fitting joint models and to compare it with an existing R package called
"frailtypack".
Dates: 08/2017 - 06/2021
Main partners: Université de Bordeaux, Inserm, Inria, CHU besançon
Total Emergen budget: 192kC SISTM budget: 6kC
Direct Personal output to date: Internship Guillaume SOTTON.

1.3 Scientific production

1.3.1 Spirit of my research

In next section, we offer a detailed overview of the scientific achievements accomplished over the
past year. We also provide bibliometrics information in term of scientific production. Each research
focus is concisely summarized, complemented by a table that encapsulates the completed work.
Following this, we provide an in-depth exploration of how these contributions (referred by RI-XX-X;
RN-XX-X; HCI-XX-X; CI-XX-X; CN-XX-X.. etc in Section 1.31.3) are placed in the existing literature and
interrelate.

In the SISTM team, where I currently serve as a researcher, we conceptualize applied research in
medical science and vaccine development as a cyclic process, akin to a wheel (refer to Figure 1.11.1).
This is made possible by an unique partnership with the Vaccine Research institute. This process
initiates with the design and execution of a trial, followed by the necessity of data management and
statistical analysis. These steps pave the way for data integration, mechanistic modeling, and in
silico predictions, which are crucial for planning subsequent trials. My research is primarily anchored
in mechanistic modeling (for which I lead the scientific axis in the team) and the course of our
research is largely contingent on the nature of the data obtained and the unique scientific challenges
they present. Our focus has been predominantly on infectious diseases, with a more recent shift
towards vaccine development. These topics are described in the section 2.12.1 for methodology and the
section 3.13.1 for data analysis and development of advanced computational biology tools. Finally, an
additional facet of my research, that has been inspired by my postdoctoral training at Harvard School
of Public Health, extends beyond clinical trials. It aims to understand the possibilities that offer
observational studies to better understand the effect of an intervention. This includes evaluating
intervention and vaccine strategies within populations. This last topic is described in the section 4.14.1.

Together, these three axes provide a holistic and multi-faceted approach to advancing the field
of vaccine development, offering both theoretical insights and practical applications that are vital
for addressing current and future challenges. Since commencing my research career in 2010, I have
contributed to the scientific community, as evidenced by my authorship or co-authorship of 40 articles.
This includes 8 articles where I served as the first author, 6 as the second author, and 11 in the
capacity of the last or before last author. Notably, all these publications are centered on the modeling
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Figure 1.1 – Conceptual Framework of Applied Research in Data science for Medical research in
the SISTM Team: Navigating from Trial Development to Analysis, Simulations in silico, Design of
subsequent trials and outreach to population in an iterative loop.

of infectious diseases: 21 were published in biostatistical or applied mathematics/statistics journals
and present methods development, while 19 appeared in journals focusing on computational biology
or medicine.

1.3.2 Opening remarks

In this "own" bibliography section, the scientific production is labelled depending on the type,
the year and the number of production during the same year. The nomenclature writes "type-year-
number". Types of production are as follow:

• RI : Peer-reviewed international journals

• RN : Peer-reviewed national journals

• Sub : Submitted papers with available preprints

• HCI*/HCI : Invited or competitive international conferences

• CI : Other international conferences

• CN*/CN : Invited or not National conferences.

• S : Seminars in institutions other than my own affiliation.

• Soft : Software production.

Links with DOI are available to access the published articles in internationnal journals (RI -
Section 1.3.31.3.3) and national journals (RN - Section 1.3.41.3.4), as well as all the preprints to justify their
submission status (Sub - Section 1.3.51.3.5). In biostatistics, journal articles are more important than
conferences. Order of authors depends on the contribution. Generally, the two first and the two last
authors are the main contributors. For senior authorships (two last authors), medical doctors are
usually placed last, after the biostatisticians. I tried to highlight my contribution for each journal
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article.

In biostatistics again, there is barely never proceedings for conferences (other than 1000-words
abstracts booklets). I separated the conferences in 5 categories: Invited in international conference
(HCI* - Section 1.3.61.3.6), competitive international conferences for which there is a single-track and
around 20% to 30% of acceptance (HCI - Section 1.3.71.3.7), regular international conferences (CI -
Section 1.3.81.3.8), invited national conference (CN* - Section 1.3.91.3.9) and regular national conferences
(CN - Section 1.3.101.3.10). In each case, I specified if I was the speaker or if it was one of my mentee or a
collaborator. In general, I try to valorize each journal article in one or two conferences (either applied
or more methodological) in order to network. Finally, I also listed seminars I gave in institutions
other than my own affiliation (S - Section 1.3.111.3.11). In general, I try to give at least one seminar a year
in my own lab meetings.

When applicable, I try to release software or open source code so that people can broadly use our
methods (Soft - Section 1.3.121.3.12). In each article, the code for dissemination and replication is always
available in supplementary material.

I would like to drive the attention of the fact that :

• Articles RI-23-2RI-23-2, RI-20-3RI-20-3, RI-19-2RI-19-2, RI-18-1RI-18-1, RI-17-5RI-17-5, RI-17-2RI-17-2, RI-17-1RI-17-1, RI-16-5RI-16-5, RI-16-2RI-16-2, Sub-2Sub-2
are written with only international collaborators (Harvard and Duke university) without any
team member of the SISTM team.

• Articles RI-22-5RI-22-5, RI-22-1RI-22-1, RI-20-2RI-20-2 and RI-23-8RI-23-8 are written with only national collaborators (Inria
MONC team, M3DISIM team, XPOP team and Inserm IAME Team BIPID) without any team
member of the SISTM team other than my mentee.

• Other articles are created within SISTM team, having other members as co-authors.

1.3.3 Peer-reviewed International journals (40)

RI-24-1 Estimating the population effectiveness of interventions against COVID-19 in France: a modelling studyEstimating the population effectiveness of interventions against COVID-19 in France: a modelling study
Ganser I., Buckridge D., Hefferman J., Prague M. and Thiébaut R.
Epidemics (IF=5.3) - In press - Jan 2024 .
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Software Development; Writing; Proofreading; Mentoring.

RI-23-8 Impact of variants of concern on SARS-CoV-2 viral dynamics in non-human primates,Impact of variants of concern on SARS-CoV-2 viral dynamics in non-human primates,
Marc A., Marlin R., Donati F., Prague M., Keroui M., ..., Le Grand R. and Guedj J. PLOS Com-
putational Biology (IF=4.8) - 19(8) - e1010721 - Aug 2023 (16 pages).
Contribution: Development of Methodology; Proofreading; Mentoring.

RI-23-7 Prediction of long-term humoral response induced by the two-dose heterologous Ad26.ZEBOV,Prediction of long-term humoral response induced by the two-dose heterologous Ad26.ZEBOV,
MVA-BN-Filo vaccine against EbolaMVA-BN-Filo vaccine against Ebola
Alexandre M., Prague M., McLean C., Bockstal V., Douoguih M. and Thiébaut R. NPJ Vaccines
(IF=9.2) - 8 - 174 - Nov 2023 (32 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Writing; Proof-
reading; Mentoring.

RI-23-6 Parameter estimation in nonlinear mixed effect models based on ordinary differential equations:Parameter estimation in nonlinear mixed effect models based on ordinary differential equations:
an optimal control approach.an optimal control approach.

https://www.medrxiv.org/content/10.1101/2023.09.14.23295425v1
https://doi.org/10.1371/journal.pcbi.1010721
https://doi.org/10.1038/s41541-023-00767-y
https://doi.org/10.1038/s41541-023-00767-y
https://doi.org/10.1007/s00180-023-01420-x
https://doi.org/10.1007/s00180-023-01420-x
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Clairon Q., Pasin C. Balelli I., Thiébaut R. and Prague M. Computational Statistics (IF=1.3) -
in press - Oct 2023 (32 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Writing;
Proofreading; Mentoring.

RI-23-5 Modeling the kinetics of the neutralizing antibody response against SARS-CoV-2 variants afterModeling the kinetics of the neutralizing antibody response against SARS-CoV-2 variants after
several administrations of Bnt162b2several administrations of Bnt162b2
Clairon Q., Prague M., Planas D., Bruel T., Hocqueloux L., Prazuck T., Schwartz O., Thiébaut
R. and Guedj J. PLOS Computational Biology (IF=4.8) - 19(8) - e1011282- August 2023 (20
pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading; Mentoring.

RI-23-4 Neutrophil Activation and Immune Thrombosis Profiles Persist in Convalescent COVID-19Neutrophil Activation and Immune Thrombosis Profiles Persist in Convalescent COVID-19
Hocini H., Wiedemann A., Blengio F., ..., Prague M., ..., and Lévy Y. Journal of Clinical Im-
munology (IF=8.2) - 43(5) - 882-893 - March 2023 (11 pages).
Contribution: Additional Statistical Analysis; Proofreading.

RI-23-3 Impact of non-pharmaceutical interventions, weather, vaccination, and variants on COVID-19Impact of non-pharmaceutical interventions, weather, vaccination, and variants on COVID-19
transmission across departments in Francetransmission across departments in France
Paireau J., Charpignon ML., Larrieu S., Calba C., Hozé N., Boëlle PY., Thiébaut R. Prague M.,
and Cauchemez S. BMC Infectious Diseases (IF= 3.1) - 23 - 190 - March 2023 (12 pages).
Contribution: Additional Statistical Analysis; Proofreading; Mentoring.

RI-23-2 Leveraging Contact Network Information in Clustered Randomized Studies of Contagion ProcessesLeveraging Contact Network Information in Clustered Randomized Studies of Contagion Processes
Wang M.*, Staples P.*, Prague M., Goyal R., DeGruttola V. and Onnela JP. Observational
studies (IF= 1.2) - 9(2) - 157-175 - March 2023 (18 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Writing; Proofreading; Mentoring.

RI-23-1 Using a population-based Kalman estimator to model the COVID-19 epidemic in France: estimatingUsing a population-based Kalman estimator to model the COVID-19 epidemic in France: estimating
associations between disease transmission and non-pharmaceutical interventionsassociations between disease transmission and non-pharmaceutical interventions
Collin A., Hejblum B., Vignals C., Lehot L., Thiébaut R., Moireau P. and Prague M. Interna-
tional Journal of Biostatistics (IF= 1.83) - Epub ahead of print - Jan 2023 (18 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Writing; Proofreading.

RI-22-5 Estimation for dynamical systems using a population-based Kalman filter – ApplicationsEstimation for dynamical systems using a population-based Kalman filter – Applications
in computational biologyin computational biology
Collin A., Prague M. and Moireau P. MathematicS in Action (IF= 1.67) - 11(1) - 213-242 -
Sept 2022 (29 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading

RI-22-4 Modelling the response to vaccine in non- human primates to define SARS-CoV-2 mechanisticModelling the response to vaccine in non- human primates to define SARS-CoV-2 mechanistic
correlates of protectioncorrelates of protection
Alexandre M., Marlin R.*, Prague M.*, Coléon S.,... and Thiébaut R. eLife (IF= 8.71) - 11 -
e7542 - July 2022 (33 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading; Mentoring.

RI-22-3 Design, immunogenicity, and efficacy of a pan-sarbecovirus dendritic-cell targeting vaccineDesign, immunogenicity, and efficacy of a pan-sarbecovirus dendritic-cell targeting vaccine
Coléon S. Wiedemann A., Surénaud M., ..., Prague M., ..., and Lévy Y. eBioMedicine (IF=

https://doi.org/10.1371/journal.pcbi.1011282
https://doi.org/10.1371/journal.pcbi.1011282
https://doi.org/10.1007/s10875-023-01459-x
https://doi.org/10.1186/s12879-023-08106-1
https://doi.org/10.1186/s12879-023-08106-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270696/
https://doi.org/10.1515/ijb-2022-0087
https://doi.org/10.1515/ijb-2022-0087
https://msia.centre-mersenne.org/articles/10.5802/msia.25/
https://msia.centre-mersenne.org/articles/10.5802/msia.25/
https://doi.org/10.7554/eLife.75427
https://doi.org/10.7554/eLife.75427
https://doi.org/10.1016/j.ebiom.2022.104062
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11.1) - 80(1) - 104062 - June 2022 (20 pages).
Contribution: Additional Statistical Analysis; Proofreading.

RI-22-2 Within-host models of SARS-CoV-2: What can it teach us on the biological factors drivingWithin-host models of SARS-CoV-2: What can it teach us on the biological factors driving
virus pathogenesis and transmission?virus pathogenesis and transmission?
Prague M., Alexandre M., Thiébaut R. and Guedj J. Anaesthesia Critical Care & Pain
medicine (IF= 5.5) - 41(2) - 101055 - April 2022 (3 pages).
Contribution: Conceptualization of the Study; Writing; Proofreading; Mentoring.

RI-22-1 SAMBA: A novel method for fast automatic model building in nonlinear mixed-effects modelsSAMBA: A novel method for fast automatic model building in nonlinear mixed-effects models
Prague M. and M. Lavielle CPT: Pharmacometrics & Systems Pharmacology (IF= 4.93 -
11(2) - 161-172 - Feb 2022 (11 pages).
Contribution: Statistical Analysis; Software Development; Writing; Proofreading.

RI-21-5 Robust and Efficient Optimization Using a Marquardt-Levenberg Algorithm withRobust and Efficient Optimization Using a Marquardt-Levenberg Algorithm with
R Package marqLevAlgR Package marqLevAlg
Philipps V, Hejblum BP., Prague M., Commenges D. and Proust-Lima C. R Journal (IF= 1.67)
- 13(2) - 365-379 - Dec 2021 (14 pages).
Contribution: Software Development; Proofreading.

RI-21-4 Barrier Gesture Relaxation during Vaccination Campaign in France: Modelling Waning ImmunityBarrier Gesture Relaxation during Vaccination Campaign in France: Modelling Waning Immunity
Vignals, C., Dick, D. W., Thiébaut, R., Wittkop, L., Prague M., and Heffernan, J. M. MDPI
Covid (viruses special issue) (IF= 4.6) We got clearance from Inria to submit there but will
not resubmit ever in MDPI journals as it is as date of 2023) - 1(2) -472-488 - Oct 2021 (16
pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Writing; Proofreading; Mentoring.

RI-21-3 Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection toTargeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to
infection in convalescent macaquesinfection in convalescent macaques
Marlin, R., Godot, V., Cardinaud, S., ..., Prague M., ..., Le Grand R. Nature Communication
(IF=16.6) - 12(1) - 5215 - Sept 2021 (9 pages).
Contribution: Additional Statistical Analysis; Proofreading.

RI-21-2 Between-group comparison of area under the curve in clinical trials with censored follow-up:Between-group comparison of area under the curve in clinical trials with censored follow-up:
Application to HIV therapeutic vaccines.Application to HIV therapeutic vaccines.
Alexandre M., Prague M., Thiébaut R. Statistical Methods in Medical Research (IF= 2.3) -
30(9) - 2130-2147 - July 2021 (17 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading; Mentoring.

RI-21-1 Epidemioptim: A toolbox for the optimization of control policies in epidemiological models.Epidemioptim: A toolbox for the optimization of control policies in epidemiological models.
Colas, C., Hejblum, B., Rouillon, S., Thiébaut, R., Oudeyer, P. Y., Moulin-Frier, C., and
Prague M. Journal of Artificial Intelligence Research (IF= 3.64) - 71(2) - 479-519 - July
2021 (40 pages).
Contribution: Conceptualization of the Study; Writing; Proofreading; Mentoring.

RI-20-3 Comparison of empirical and dynamic models for HIV viral load rebound after treatment interruption.Comparison of empirical and dynamic models for HIV viral load rebound after treatment interruption.
Bing A., Hu Y., Prague M., Hill A., Li J., Bosch R., De gruttola V., and Wang R. Statistical
Communications in Infectious Diseases (IF= 1.1) - 12(1) - 259-274 - Oct 2020 (6 pages).
Contribution: Development of Methodology; Proofreading; Mentoring.

https://doi.org/10.1016/j.accpm.2022.101055
https://doi.org/10.1016/j.accpm.2022.101055
https://doi.org/10.1002/psp4.12742
https://doi.org/10.32614/RJ-2021-089
https://doi.org/10.32614/RJ-2021-089
https://www.mdpi.com/2673-8112/1/2/41
https://doi.org/10.1038/s41467-021-25382-0
https://doi.org/10.1038/s41467-021-25382-0
https://doi.org/10.1177/09622802211023963
https://doi.org/10.1177/09622802211023963
https://doi.org/10.1613/jair.1.12588
https://doi.org/10.1515/scid-2019-0021
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RI-20-2 Machine learning and mechanistic modeling for prediction of metastatic relapse in early-stageMachine learning and mechanistic modeling for prediction of metastatic relapse in early-stage
breast cancer.breast cancer.
Nicolò, C., Périer, C., Prague M., Bellera, C., MacGrogan, G., Saut, O., and Benzekry, S. JCO
Clinical Cancer Informatics (IF= 1.2) - 4 - 259-274 - Sept 2020 (15 pages).
Contribution: Development of Methodology; Proofreading

RI-20-1 A model for establishment, maintenance and reactivation of the immune responseA model for establishment, maintenance and reactivation of the immune response
after vaccination against Ebola virus.after vaccination against Ebola virus.
Balelli, I., Pasin, C., Prague M., Crauste, F., Van Effelterre, T., Bockstal, V., ... and Thiébaut, R.
Journal of Theoretical Biology (IF= 2.32) - 495 - 110254 - March 2020 (20 pages).
Contribution: Development of Methodology; Writing; Proofreading; Mentoring.

RI-19-2 Properties and pitfalls of weighting as an alternative to multilevel multiple imputation in clusterProperties and pitfalls of weighting as an alternative to multilevel multiple imputation in cluster
randomized trials with missing binary outcomes under covariate-dependent missingness.randomized trials with missing binary outcomes under covariate-dependent missingness.

E. Turner, L. Yao, F. Li and Prague M.
Statistical Methods in Medical Research (IF= 2.38) - 29(5) - 1338-1353 - July 2019 (15
pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Writing; Proofreading; Mentoring.

RI-19-1 Dynamics of the Humoral Immune Response to a Prime-Boost Ebola Vaccine:Dynamics of the Humoral Immune Response to a Prime-Boost Ebola Vaccine:
Quantification and Sources of VariationQuantification and Sources of Variation
C. Pasin, I. Balelli, T. Van Effelterre, V. Bockstal, L. Solforosi, Prague M., M. Douoguih and R.
Thiébaut
Journal of Virology (IF= 4.37) - 93(18) - e00579-19 - August. 2019 (10 pages).
Contribution: Proofreading; Mentoring.

RI-18-2 Adaptive protocols based on predictions from a mechanistic model of the effect of IL7 on CD4 countsAdaptive protocols based on predictions from a mechanistic model of the effect of IL7 on CD4 counts
L. Vilain, D. Commenges, C. Pasin, Prague M. and R. Thiébaut
Statistics in Medicine (IF= 1.84) - 38(2) - 221-235 - Sept. 2018 (14 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Writing;
Proofreading; Mentoring.

RI-18-1 High HIV-1 RNA Among Newly Diagnosed People in BotswanaHigh HIV-1 RNA Among Newly Diagnosed People in Botswana
V. Novitsky, Prague M., Moyo S., Gaolathe T., MmalaneM., Kadima Yankinda E., Chakalisa U.,
Lebelonyane R., Khan N., Powis K., and others
AIDS research and human retroviruses (IF= 1.5) - 34(3) - 300-306 - Mars. 2018 (6 pages).
Contribution: Additional Statistical Analysis; Writing; Proofreading.

RI-17-5 CRTgeeDR: an R Package for Doubly Robust Generalized Estimating EquationsCRTgeeDR: an R Package for Doubly Robust Generalized Estimating Equations
Estimations in Cluster Randomized Trials with Missing Data.Estimations in Cluster Randomized Trials with Missing Data.
Prague M., Wang R. and De Gruttola V
R journal (IF= 2.68) - 9(2) - 105-115 - Dec. 2017 (10 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Software Development; Writing; Proofreading; Mentoring.

RI-17-4 Universal test and treat and the HIV epidemic in rural South Africa:Universal test and treat and the HIV epidemic in rural South Africa:
phase 4, open-label, community cluster randomised trial.phase 4, open-label, community cluster randomised trial.
C. Iwuju, J. Orne-Gliemann, J. Larmarange, ..., the TASP study group
Lancet HIV (IF= 14.8) - 5(3) - 116-125 - Nov. 2017 (9 pages).
Contribution: Additional Statistical Analysis; Proofreading.

https://doi.org/10.1200/CCI.19.00133
https://doi.org/10.1200/CCI.19.00133
https://doi.org/10.1016/j.jtbi.2020.110254
https://doi.org/10.1016/j.jtbi.2020.110254
https://doi.org/10.1177/0962280219859915
https://doi.org/10.1177/0962280219859915
https://jvi.asm.org/content/93/18/e00579-19/article-info
https://jvi.asm.org/content/93/18/e00579-19/article-info
https://doi.org/10.1002/sim.7957
https://www.liebertpub.com/doi/10.1089/aid.2017.0214
https://journal.r-project.org/archive/2017/RJ-2017-041/RJ-2017-041.pdf
https://journal.r-project.org/archive/2017/RJ-2017-041/RJ-2017-041.pdf
https://www.thelancet.com/journals/lanhiv/article/PIIS2352-3018(17)30205-9/fulltext
https://www.thelancet.com/journals/lanhiv/article/PIIS2352-3018(17)30205-9/fulltext
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RI-17-3 Modeling CD4+ T cells dynamics in HIV-infected patients receiving repeated cyclesModeling CD4+ T cells dynamics in HIV-infected patients receiving repeated cycles
of exogenous Interleukin 7of exogenous Interleukin 7
A. Jarne, D. Commenges, L. Villain, M. Prague, Y. Lévy, and R. Thiébaut
Annals of applied statistics (IF= 1.79) - 11(3) - 1593-1616 - Oct. 2017 (23 pages).
Contribution: Mentoring of PhD student, methodology.

RI-17-2 Review of Recent Methodological Developments in Group-Randomized Trials: Part 2—AnalysisReview of Recent Methodological Developments in Group-Randomized Trials: Part 2—Analysis
L. Turner, F. Li, J. Gallis, M. Prague, and D. Murray
American Journal Of public Health (IF= 5.38) - 107(7) - 1078-1086 - June. 2017 (8 pages).
Contribution: Proofreading; Mentoring.

RI-17-1 Review of Recent Methodological Developments in Group-Randomized Trials: Part 1—DesignReview of Recent Methodological Developments in Group-Randomized Trials: Part 1—Design
L. Turner, F. Li, J. Gallis, M. Prague, and D. Murray
American Journal Of public Health (IF= 5.38) - 107(6) - 907-915 - May. 2017 (8 pages).
Contribution: Proofreading; Mentoring.

RI-16-5 Point-of-care Cepheid Xpert HIV-1 Viral Load Test in Rural African Communities is Feasible and ReliablePoint-of-care Cepheid Xpert HIV-1 Viral Load Test in Rural African Communities is Feasible and Reliable
S. Moyo, T. Mohammed, K. Wirth, M. Prague, K. Bennett, M. Holme, L. Mupfumi, P. Sebogodi,
N. Moraka, C. Boleo, ..., E. Tchetgen Tchetgen, M. Essex, S. Lockman and V. Novitsky
Journal of clinical Microbiology (IF= 2.92) - 54(12) - 3050-3055 - Nov. 2016 (5 pages).
Contribution: Additional Statistical Analysis; Proofreading.

RI-16-4 Dynamic versus marginal structural models for estimating the effect of HAART on CD4 in observationalDynamic versus marginal structural models for estimating the effect of HAART on CD4 in observational
studies: application to the Aquitaine Cohort study and the Swiss HIV Cohort Study.studies: application to the Aquitaine Cohort study and the Swiss HIV Cohort Study.
M. Prague, Commenges D., Gran JM., Ledergerber B., Young J., Furrer H. and Thiébaut R.
Biometrics (IF=1.91) - 73(1) - 294-304 - July 2016 (10 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Software Development; Writing; Proofreading; Mentoring.

RI-16-3 Use of dynamical models for treatment optimization in HIV infected patients: a sequentialUse of dynamical models for treatment optimization in HIV infected patients: a sequential
Bayesian analysis approachBayesian analysis approach
M. Prague
Journal de la statistique française - 157(2) - September 2016 (∼ 38 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading; Mentoring..

RI-16-2 Accounting for interference variables using semi-parametric augmentation for improving efficiencyAccounting for interference variables using semi-parametric augmentation for improving efficiency
in clustered randomized trials with missing at random outcomesin clustered randomized trials with missing at random outcomes
M. Prague, Wang R., Stephens A., Tchetgen Tchetgen E and DeGruttola V.
Biometrics (IF=1.91) - 72(4) - 1066-1077 - April 2016 (11 pages)
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Software Development; Writing; Proofreading; Mentoring.

RI-16-1 Superior Efficacy of a Human Immunodeficiency Virus Vaccine Combined with AntiretroviralSuperior Efficacy of a Human Immunodeficiency Virus Vaccine Combined with Antiretroviral
Prevention in Simian-Human Immunodeficiency Virus-Challenged Nonhuman PrimatesPrevention in Simian-Human Immunodeficiency Virus-Challenged Nonhuman Primates
Le Grand R., Bosquet N., Dispinseri S., Hopewell N., Gosse L., Desjardins D., Shen X., Tomaras
G., Saidi H., M. Prague, Barnett S., Thiebaut R., Cope A., Scarlatti G., Shattock R.J.
Journal of Virology (IF=3.31) - 90(11) - 5315-5328 - March 2016 (14 pages).
Contribution: Additional Statistical Analysis; Proofreading.

RI-14-1 Quantifying and Predicting the Effect of exogenous Interleukin-7 on CD4+T cells in HIV-1 Infection.Quantifying and Predicting the Effect of exogenous Interleukin-7 on CD4+T cells in HIV-1 Infection.
Thiébaut R., Drylewicz J., Prague M., Lacabaratz C., Beq S., Crough T., Sekaly R.P., Lederman
M.M., Sereti I., Commenges D. and Levy Y.

https://projecteuclid.org/euclid.aoas/1507168841
https://projecteuclid.org/euclid.aoas/1507168841
https://ajph.aphapublications.org/doi/10.2105/AJPH.2017.303707
https://ajph.aphapublications.org/doi/abs/10.2105/AJPH.2017.303706
https://jcm.asm.org/content/54/12/3050.short
https://pubmed.ncbi.nlm.nih.gov/27461460/
https://pubmed.ncbi.nlm.nih.gov/27461460/
http://journal-sfds.fr/article/view/555
http://journal-sfds.fr/article/view/555
https://doi.org/10.1111/biom.12519
https://doi.org/10.1111/biom.12519
https://doi.org/10.1128/JVI.00230-16
https://doi.org/10.1128/JVI.00230-16
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003630
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PLOS comp. Biol. (IF=4.87) - 10(5) - e1003630 - May 2014 (12 pages).
Contribution: Statistical Analysis; Writing; Proofreading.

RI-13-2 Dynamical models of biomarkers and clinical progression for personalized medicine: the HIV context.Dynamical models of biomarkers and clinical progression for personalized medicine: the HIV context.
Prague M., Commenges D. and Thiébaut R.
Advanced Drug Delivery Review (IF=11.5) - 65(7) - 954-965 - June 2013 (12 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Software Development; Writing; Proofreading; Mentoring.

RI-13-1 NIMROD: A Program for Inference via Normal Approximation of the Posterior in Models with RandomNIMROD: A Program for Inference via Normal Approximation of the Posterior in Models with Random
effects based on Ordinary Differential Equations.effects based on Ordinary Differential Equations.
Prague M., Commenges D., Guedj J., Drylewicz J. and Thiébaut R.
Computer methods and Programs in Biomedecine (IF=1.53) - 111(2) - 447-458 - June
2013 (12 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical
Analysis; Software Development; Writing; Proofreading; Mentoring.

RI-12-2 Treatment monitoring of HIV infected patients based on mechanistic models.Treatment monitoring of HIV infected patients based on mechanistic models.
Prague M., Commenges D., Drylewicz J. and Thiébaut R.
Biometrics (IF=1.83) - 68(3) - 902-911 - September 2012 (10 pages).
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Software Development; Writing; Proofreading; Mentoring.

RI-12-1 Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performanceAcute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance
and sleepiness.and sleepiness.
Philip P, Sagaspe P, Prague M., Tassi P, Capelli A, Bioulac B, Commenges D, Taillard J.
Sleep (IF=5.05) - 35(7) - 997-1002 - September 2012 (6 pages).
Contribution: Additional Statistical Analysis; Proofreading.

1.3.4 Peer-reviewed national journals (2)

RN-23-1 Modéliser la COVID-19 : de la population à l’individu.Modéliser la COVID-19 : de la population à l’individu.
Vignals C., Hejblum B. and Prague M. Interstice Online - June 2023.
Contribution: Conceptualization of the Study; Writing; Proofreading; Mentoring.

RN-14-1 Modéles mathématiques dynamiques pour la médecine personnalisée.Modéles mathématiques dynamiques pour la médecine personnalisée.
Thiébaut R., Prague M., Commenges D. Medecine/Science ITMO Santé publique 30(2) - 6-9
- Nov 2014 (3 pages).
Contribution: Proofreading.

1.3.5 Submitted papers with available preprints (6)

Sub-5 On the design of trials for the evaluation of HIV viral setpoint during analytical antiretroviral
treatment interruptions
Alexandre* M., M. Prague*, Lelièvre JD., Lhomme E., Richert L., Wittkop L., Lévy Y. and
Thiébaut R.
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Writing; Proofreading; Mentoring.

Sub-4 Comparative assessment of methodologies to estimate NPI effectiveness in the COVID-19 con-
text: A simulation study

http://www.sciencedirect.com/science/article/pii/S0169409X13000641
http://www.ncbi.nlm.nih.gov/pubmed/23764196
http://www.ncbi.nlm.nih.gov/pubmed/23764196
http://www.ncbi.nlm.nih.gov/pubmed/22934714
http://www.ncbi.nlm.nih.gov/pubmed/22754046
http://www.ncbi.nlm.nih.gov/pubmed/22754046
https://interstices.info/modeliser-la-covid-19-de-la-population-a-lindividu/
https://www.medecinesciences.org/en/articles/medsci/full_html/2014/11/medsci2014302sp23/medsci2014302sp23.html


24

Ganser I., Paireau J., D. Buckeridge, S. Cauchemez, Thiébaut R. and M. Prague
Contribution: Conceptualization of the Study; Development of Methodology; Writing; Proof-
reading; Mentoring.

Sub-3 Antibody response determinants to rVSV-ZEBOV-GP and Ad26.ZEBOV/MVA-BN-Filo Ebola vac-
cines: a modelling study from the PREVAC randomized trial
Valayer S., Alexandre M., M. Prague, Beayogui AH., ..., Richert L. and Lhomme E.
Contribution: Development of Methodology; Proofreading; Mentoring.

Sub-2 Viral rebound kinetics following single and combination immunotherapy for HIV/SIVViral rebound kinetics following single and combination immunotherapy for HIV/SIV
M. Prague, J. Gerold, I. Balelli, C. Pasin, J. Li,D. Barouch, J. Whitney, and A. Hill
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Software Development; Writing; Proofreading; Mentoring.

Sub-1 Effects of interventions and optimal strategies in the stochastic system approach to causalityEffects of interventions and optimal strategies in the stochastic system approach to causality
D. Commenges and M. Prague
Contribution: Conceptualization of the Study; Development of Methodology; Statistical Analy-
sis; Software Development; Writing; Proofreading; Mentoring.

1.3.6 Invited International conferences (11)

HCI*-23-3 Pharmacometric modelling to inform vaccine development.
Prague M.
World congress on basics and clinical pharmacology. , Glasgow UK, 2-7th July 2023. (Invited
Speaker)

HCI*-23-1 Joint modeling of viral and humoral response in Non-human primates to define mechanistic
correlates of protection for SARS-CoV-2.
Prague M., M. Alexandre, R. Marlin, Roger le Grand, Y. Levy and R. Thiébaut.
Society of mathematical Biology conference, Columbus USA, 16-21th July 2023. (Invited
speaker)

HCI*-22-1 Elicitation of SARS-CoV-2 mechanistic correlates of protection using mechanistic models.
Prague M., Alexandre M., Marlin R, Le grand R, Levy Y and Thiébaut R.
The Canadian Applied and Industrial Mathematics Society, Online, 13-16th June 2022.
(Invited speaker)

HCI*-21-5 Multi-level modeling of COVID-19 epidemic dynamics in French regions, estimating the com-
bined effects of multiple non-pharmaceutical interventions.
Prague M., Hejblum B., Moireau P., Thiébaut R. and Collin A.
Society of mathematical Biology conference, Online, 13-17th June 2021. (Invited speaker)

HCI*-21-2 Viral dynamics as an outcome in HIV therapeutic vaccine trials: from AUC to dynamical mod-
elling
Alexandre M., Prague M. and Thiébaut R.
CMStat , online, 18-20th Dec 2021 (Invited oral presentation by mentored PhD Student).

HCI*-21-1 Leveraging random effects to estimate the impact of non-pharmaceutical interventions on epi-
demic dynamics across French regions
Prague M., Collin A., Wittkop L., Dutartre D., Clairon Q., Moireau P., Thiébaut R. and Hejblum
B.
Channel Network Conference, online, 7-9th April 2021 (Invited speaker).

https://www.dropbox.com/s/d5j7jhyd524jjq0/Prague_BioRXiv_V2.pdf?dl=0
https://www.dropbox.com/s/jx37c5vm3dx3c69/Commenges_Interventions-draft_Proof_hi.pdf?dl=0
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HCI*-19-2 Evaluation of primary endpoint assessing HIV therapeutic vaccine efficacy during analytical
treatment interruption studies.
Alexandre M., Thiébaut R., Levy Y. and Prague M.
4th workshop on virus dynamics, Paris, 21-23 Oct. 2019 (Invited oral presentation by men-
tored PhD student).

HCI*-19-1 Parameter estimation in nonlinear mixed effect models based on ordinary differential equations
- an optimal control approach.
Clairon Q., Pasin C., Balelli I., Thiébaut R., and Prague M.
12th International Conference on Computational and Methodological Statistics, London,
14-16 Dec. 2019 (Invited oral presentation by mentored Postdoctoral fellow).

HCI*-17-1 Integrated approaches for analysis of cluster randomized trials. New development in analysis
Prague M.
Society for clinical trials, Liverpool, UK, 11-14 May 2017 (Invited speaker).

HCI*-16-1 Inverse-probability-weighted semi-parametric estimation of treatment effect in cluster random-
ized trials with missing data.
Prague M. and De Gruttola V.
Society for clinical trials, Montreal, Canada - May 15th-18th 2016 (Invited speaker).

HCI*-14-1 Comparison of GEE-based methods in cluster-randomized trial with missing data when outcome
depend on other patients covariates.
Prague M., R. Wang, E. Tchetgen Tchetgen and V. De Gruttola
Joint Statistical Meeting, Boston, USA - August 2nd-7th 2014 (Invited speaker).

1.3.7 Competitive International conferences (12)

HCI-23-5 Effects of public health interventions against COVID-19 in France.
Ganser I., Prague M., D. Buckridge and R. Thiébaut
Conference on Retroviruses and Opportunistic Infections CROI, Seattle, March 19-22th Feb
2023 (Poster in competitive conference).

HCI-23-4 Which endpoint to choose during antiretroviral treatment interruption?
Alexandre M., Prague M., the VRI group and Thiébaut R.
Conference on Retroviruses and Opportunistic Infections CROI, Seattle, March 19-22th Feb
2023 (Poster in competitive conference).

HCI-23-2 Modeling neutralization capacities of Covid-19 vaccines.
Clairon Q., Prague M., Thiebaut R. and Guedj J.
Population Approach Group in Europe Conference, A Curuna Spain, 28-30th June 2023.
(Oral presentation by mentored Postdoctoral fellow a competitive conference)

HCI-22-3 SAMBA: a new algorithm for automatic construction of nonlinear mixed-effects models.
Prague M. and Lavielle M.
Population Approach Group in Europe Conference Ljubjana Slovenia, 28th June -7 July
2022. (Competitive conference).

HCI-22-2 SARS-CoV-2 mechanistic correlates of protection in non-human primates: insight from mod-
elling response to vaccines.
Alexandre M., Marlin R., Prague M., Thiébaut R. and Lévy Y.
Population Approach Group in Europe Conference, Ljubjana Slovenia, 28th June -7 July
2022. (Oral presentation by mentored PhD Student in a competitive conference)
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HCI-21-4 Dynamics of the humoral immune response to a two-dose heterologous vaccine regimen against
Ebola virus.
Alexandre M., Prague M. and Thiébaut R.
Population Approach Group in Europe Conference, Online, 2-7 Sept 2021. (Oral presenta-
tion by mentored PhD Student in a competitive conference)

HCI-21-3 Using population approach to model COVID-19 epidemics in France: estimating the burden of
SARS-Cov-2 and the effects of non-pharmaceutical interventions.
Prague M., Hejblum B., Moireau P., Thiébaut R. and Collin A.,
Population Approach Group in Europe Conference, Online, 2-7 Sept 2021. (Speaker in a
competitive conference)

HCI-20-1 Viral rebound kinetics following single and combination immunotherapy for HIV/SIV
Prague M., J. Gerold, I. Balelli, C. Pasin, J. Z. Li, D. Barouch, J. Whitney, A. L. Hill
Conference on Retroviruses and Opportunistic Infections CROI, Boston, 8-11th March 2020
(Poster in competitive conference).

HCI-18-3 Use of mathematical modeling for optimizing and adapting immunotherapy protocols in HIV-
infected patients
Pasin C., Villain L., Dufour L., Commenges D., Prague M. and Thiébaut R.
Population Approach Group in Europe Conference Montreux, Switzerland, 28-30 May 2018
(Oral presentation by collaborator in competitive conference).

HCI-18-2 In silico clinical trials for evaluation of HIV short-cycle strategies.
Prague M., Pasin C., Thiébaut R. and the ANRS CO3 Study group
Conference on Retroviruses and Opportunistic Infections CROI, Boston, March 4th-7th 2018
(Poster in competitive conference).

HCI-18-1 HIV rebound kinetics following TLR7-agonist and therapeutic vaccine administration
Gerold J., Balelli I., Pasin C., Lim S., Barouch D., Whitney J., Prague M. and Hill A. L.
Conference on Retroviruses and Opportunistic Infections CROI, Boston, March 4th-7th 2018
(Poster in competitive conference).

HCI-13-1 From in vivo to in vitro quantification of antiretroviral drugs effects based on dynamical models
of HIV.
Prague M., Commenges D. and Thiébaut R.
HIV Dynamics and evolution, Utrecht, Netherlands - May 8th-11th 2013 (Speaker in compet-
itive conference).

1.3.8 Other International conferences (25)

CI-23-2 Using transcriptomic information in mechanistic models of immune response.
Thiébaut R., Hejblum B., Ba K. and Prague M.
6th Virus dynamics workshop, Nagoya Japan, 4-6th July 2023. (Oral presentation by collab-
orator).

CI-23-1 Use of priors in automated model building strategies for nonlinear mixed effects models.
Prague M. and Lavielle M.
International Society of biometry Conference, Milan Italy, 27-31th August 2023. (Speaker).

CI-21-3 Barrier gesture relaxation during vaccination campaign in France: modeling impact of waning
immunity
Vignals C., Dick D., Thiébaut R, Wittkop L., Prague M. and Hefferman J.
Epidemics8, online, 1-3rd Dec. 2021. (Poster).
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CI-21-2 A novel method for fast automatic model building in nonlinear mixed-effects models
Prague M. and Lavielle M.
5th Virus dynamics workshop, online, 4-6th Oct 2021. (Speaker).

CI-21-1 Accounting for time-dependant confounding variables in mechanistic ODE model: simulations
and application to a vaccine trial
Alexandre M., Prague M. and Thiébaut R.
International Society of biometry Conference, online, 19-22th July 2021. (Oral presentation
by mentored PhD student).

CI-20-1 Comparison of AUC in clinical trials with follow-up censoring: Application to HIV therapeutic
vaccines
Alexandre M., Thiébaut R., Levy Y., Prague M.
International Society of biometry Conference, online, 23-27th August 2020. (Oral presenta-
tion by mentored PhD student).

CI-19-5 Viral rebound kinetics following single and combination immunotherapy for HIV/SIV
Prague M., Gerold J., Balelli I., Pasin C., Whithney J., Barouch D., Hill A. L.
4th workshop on virus dynamics, Paris, 21-23 Oct. 2019 Oral presentation by collaborator).

CI-19-4 A regularisation method for the problem of parameter estimation in ODE-mixed effect models:
application to analysis of Ebola vaccine humoral response.
Clairon Q., Thiébaut R., and Prague M.
4th workshop on virus dynamics, Paris, 21-23 Oct. 2019 (Oral presentation by mentored
Postdoctoral fellow).

CI-19-3 Machine learning versus mechanistic modeling for prediction of metastatic relapse in breast
cancer.
Nicolò C., Périer C., Prague M., MacGrogan G., Saut O., Benzekry S.
Population Approach Group in Europe Conference, Stockholm, 11-14 June 2019. (Oral
presentation by collaborator).

CI-19-2 Modeling viral rebound in HIV therapeutic vaccine studies.
Alexandre M., Thiébaut R., and Prague M.
Population Approach Group in Europe conference, Stockholm, 11-14 Jun. 2019 (Poster by
mentored PhD student).

CI-19-1 Evaluation of weighting and imputation methods to deal with missing outcomes in cluster ran-
domized trials.
Turner L., Li F., and Prague M.
Society for clinical trials conference, New Orleans, 19-22 May 2019. (Oral presentation by
collaborator).

CI-18-3 Performance of weighting as an alternative to multilevel multiple imputation in cluster ran-
domized trials with missing binary outcomes, Developments in cluster randomised and stepped
wedge designs.
Turner L., Li F. and Prague M.
Developments in cluster randomised and stepped wedge designs, London, 21-22 Nov. 2018.
(Oral presentation by collaborator).

CI-18-2 Optimizing the administration of IL7
Villain L., Pasin C., Prague M. and Thiébaut R.
International Biometrics Society, Barcelona, Spain, 09-13 July 2018 (Oral presentation by
mentored PhD student)
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CI-18-1 Fitting pharmacokinetics data with a population-based Kalman filters.
Prague M. Collin A. and Moireau P.
International Biometrics Society, Barcelona, Spain, 09-13 July 2018 (Speaker).

CI-17-1 Modeling the humoral immune response to Ebola vaccine.
Pasin C., Prague M., Eggo R., Van Effelterre T., Balelli I., . . . and Thiébaut R
Systems Immunology and Vaccine Design, Heidelberg, Germany, 9-10 Oct. 2017. (Oral
presentation by collaborator).

CI-16-2 Population Modelling by Examples II
Population Modeling Working Group including M. Prague
SummerSim conference, Canada - July 24-27th 2016 (including proceedings 8 pages)

CI-16-1 Estimating the Marginal Effect of Interventions to Reduce Spread of Communicable Diseases:
What can be gained from Contact Network Information?
Prague M., Staples P., Onnela JP., Tchetgen Tchetgen E. and De Gruttola V.
ENAR, Austin Texas, USA - March 6th-9th 2016 (Speaker).

CI-15-2 Leveraging classical analysis of cluster randomized trials with contact network information in-
fectious diseases.
Prague M., Staples P., Onnela JP. and De Gruttola V.
NIH Workshop Quantitative Methods and Models in the Era of Big Data, Washington DC,
USA - Nov 9th-10th 2015(Poster).

CI-15-1 Accounting for informative missingness, interaction and interference in cluster randomized tri-
als.
Prague M., Wang R., Stephens A., Tchetgen Tchetgen E. and DeGruttola V.
Society for Clinical Trials, Washington DC, Arlington, USA - May 17th-20th 2015 (Speaker).

CI-14-3 From descriptive to mechanistic models to study causal effects: application to the effect of
HAART on CD4 count.
Prague M., Commenges D., Gran J.M., Aalen O. and Thiébaut R.
Joint Statistical Meeting, Boston, USA - August 2nd-7th 2014 (Speaker).

CI-14-2 Using mechanistic models to analyze the effect of interleukins 7 treatment in HIV infected
patients
Jarne A., Thiébaut R., Prague M. and Commenges D.
International Biometric Society, Florence, Italy - July 6th-11th 2014. (Oral presentation by
collaborator).

CI-14-1 Mechanistic versus marginal structural models for estimating the effect of HAART on CD4
counts
Commenges D., Prague M. and Thiébaut R.
Medical Research Council Conference on Biostatistics, Cambridge, UK - April 24th-26th
2014. (Oral presentation by collaborator).

CI-12-2 Toward information synthesis with mechanistic models of HIV dynamics.
Prague M., Commenges D. and Thiébaut R.
International society for Clinical Biostatistics, Bergen, Norway - August 21st-25th 2012
(Speaker).

CI-12-1 Bayesian MAP Estimation in Models with Random effects based on Ordinary Differential Equa-
tions applied to Treatment Monitoring in HIV.
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Prague M. and Commenges D.
Eurandom Workshop on Parameter Estimation for Dynamical Systems (PEDS II), Eind-
hoven, Neetherland - June 4th-6th 2012 (Speaker).

CI-11-1 Treatment monitoring of HIV infected patients: optimal drug dose control.
Prague M., Commenges D., Drylewicz J. and Thiébaut R.
International Biometric Society, Bordeaux, France - April 11th-13th 2011 (Speaker).

1.3.9 Invited National Conferences (3)

CN*-23-1 Utilisation des données de transcriptomique pour informé les modèles mécanistes de réponse
immunitaire.
Thiébaut R., Hejblum B., Ba K. and Prague M.
AC modélisation ANRS MIE, Paris, France. 24-25th Oct. 2023. (Invited oral presentation by
collaborator)

CN*-21-3 Modeling B cells response.
Prague M.
AC modélisation ANRS MIE, Paris, France. 15 Oct 2021. (Invited Speaker).

CN*-15-1 Thesis Award MJLD: Use of dynamical models for treatment optimization in HIV infected pa-
tients.
Prague M.
JdS French Statistics Society conference, Lille, France, 1-5th June 2015. (Invited Speaker).

1.3.10 Other National conferences (14)

CN-23-1 High-dimension Mechanistic Model Building using LASSO Approaches : Application to Ebola
Vaccination.
Gabaut A. Prague M.
GDR Statistiques et Santé, Toulouse, France. 16-17th Nov. 2023 (Oral presentation by men-
tored PhD Student).

CN-22-2 Modeling the temporal evolution of the neutralizing activity against SARS-CoV-2 variants after
several administration of Bnt162b2.
Clairon C., Thiébaut R., Guedj J. and Prague M.
AC modélisation ANRS MIE, Bordeaux, France. 21-22th Nov. 2022. (Oral presentation by
mentored Postdoctoral fellow).

CN-22-1 Estimation of the effect of non-pharmaceutical interventions and vaccination against COVID-19
in France using dynamical models.
Ganser I., Buckridge D., Thiébaut R. and Prague M.
AC modélisation ANRS MIE, Bordeaux, France. 21-22th Nov. 2022. (Oral presentation by
mentored PhD Student).

CN-21-2 Méthode de comparaison d’aires sous la courbe dans des essais cliniques avec arrêt prématuré
du suivi: application aux vaccins thérapeutiques contre le VIH.
Alexandre M., Thiébaut R. and Prague M.
JdS French Statistics Society conference, online, France, 1-6th June 2021.(Oral presentation
by mentored PhD Student).
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CN-21-1 Estimation paramétrique de modèles mixtes définis par des equations différentielles : une ap-
proache basée sur le contrôle optimal.
Clairon Q., Pasin C., Balelli I., Thiébaut R. and Prague M.
GDR Statistiques et Santé, online, France, 21-22th Oct. 2021.(Oral presentation by mentored
Postdoctoral fellow).

CN-19-1 Modeling epidemics using networks.
Prague M., Staples P., De Gruttola V. and Onnela JP.
JdS French Statistics Society conference, Nancy, France, 3-7th June 2019. (Speaker).

CN-17-3 Use of mechanistic models for in Silico trials: Evaluating new strategies design for HAART in
HIV infected patients.
Prague M., Commenges D. and Thiébaut R.
GDR Statistiques et Santé, Bordeaux, France, 9-10th Oct. 2017. (Speaker).

CN-17-2 Non linear mixed effect models based on Ordinary Differential equations.
Prague M., Commenges D. and Thiébaut R.
GDR Mamovi, Lyon, France, 27-28th Sept. 2017. (Speaker).

CN-17-1 Joint-state and parameters estimation using Kalman-based filters.
Prague M., Collin A. and Moireau P.
JdS French Statistics Society conference, Avignon, France, 1-4th June 2017. (Speaker).

CN-16-1 Estimation doublement robuste de l’effet marginal d’intervention pour les essais randomisées
en cluster.
Prague M., Tchetgen Tchetgen E. and De Gruttola V.
JdS French Statistics Society conference, Montpellier, France, 1-4th June 2016. (Speaker).

CN-13-1 Inférence par Approximation Normale de l’a posteriori dans les modèles dynamiques à Effets
mixtes
Prague M., Commenges D., Guedj J., Drylewicz J. and Thiébaut R.
JdS French Statistics Society conference, Toulouse, France, 21-31th May 2013. (Speaker).

CN-12-2 Illustration of information synthesis of clinical trials with mechanistic models of HIV dynamics
Prague M., Commenges D. and Thiébaut R.
GDR Statistiques et Santé, Rennes, France, 20 Sept. 2012. (Speaker).

CN-12-1 R Package “marqLevAlg” : the Marcquardt-Levenberg algorithm an alternative to “optimx”
Prague M., Diakité A. and Commenges D.
UseR France, Bordeaux, France, 2-3 July 2012. (Speaker).

CN-11-1 Estimation in Differential Equations and prediction of treatment response in HIV infected pa-
tients
Prague M. and Commenges D.
GDR Statistiques et Santé, Paris, France, 30 May 2011. (Speaker).

1.3.11 Invited Seminars - selection in external institutions (15)

S-23-1 Defining Mechanistic correlates of protection
MRC Cambridge, Biostatistics department, online, 24 May 2023.

S-22-1 SARS-CoV-2 mechanistic correlates of protection: insight from modeling response to vaccine
York university, in-host seminar series, online, 14 oct. 2022.
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S-21-1 Evaluating the longevity of humoral response: from Ebola to SARS-CoV-2
EpidemiOptim: a toolbox for the optimization of control policies in epidemiological models
Google DeepMind seminar, online, 7 Janv. 2021.

S-20-2 Evaluating the longevity of humoral response: from Ebola to SARS-CoV-2
Modcov19 Seminar series & Health data Hub, online, 1 April and 4 Nov. 2020.

S-20-1 Multi-level modeling of early COVID-19 epidemic dynamics in French regions and estimation
of the lockdown impact on infection rate
European Network for Business and Industrial Statistics, online, 6 July 2020.

S-19-1 Updates on estimation of parameters in dynamical models
Harvard Program for evolutionary dynamics, Boston, USA, 5 Feb. 2019.

S-18-1 Use of mechanistic models for in silico trials
Institut Gustave Roussy, Biostat/Oncostat, Paris, France, 12 Feb. 2018.

S-17-2 Use of mechanistic models for in Silico trials
Harvard School of Public Health, Biostatistics Department, Boston USA, 10 Apr. 2017.

S-17-1 Doubly Robust estimators in Cluster Randomized Trials
University of Pennsylvania, Biostatistics Department, Philadelphie, USA, 3 Apr. 2017.

S-15-2 Estimating intervention effect in cluster randomized trials: handling, missing data, interferences
IRD, MERIT Team, Paris, France, 15 Dec. 2015.

S-15-1 Double robust estimation of causal effect of intervention in cluster randomized trial with missing
data
Inserm U1219, Department of biostatistics, Bordeaux, France, 12 Mars 2015.

S-13-3 Estimation of HAART treatment effect in observational studies
University of Oslo, Department of statistics, University of Oslo, Norway, 10 Dec. 2013.

S-13-2 Utilisation de modèles dynamiques pour l’optimisation des traitements des patients infectés VIH
Inserm U1137, University of Paris Diderot, Paris, France, 27 Nov. 2013.

S-13-1 Dynamical models in the HIV context: Prediction of treatment responses and optimization
John Hopkins hospital, Pharmacological sciences Department., Baltimore, USA, 26 Oct. 2013.

S-12-1 Estimation and treatment optimization in HIV infected patients
University of Liège, Department of methodological statistics, Liège, Belgium, 11-13 Dec. 2012.

1.3.12 Softwares (6)

Soft-23-1 R package "Rsmlx"R package "Rsmlx" is a library that allows to interface optimization algorithms with models of
epidemic propagation. Epidemiological models are wrapped in OpenAI Gym interfaces, making
them readily compatible with state-of-the-art optimization algorithms.
Contribution: My contribution to this code is modest; nevertheless, I played an active role
in the development of ideas surrounding the construction of random effects models and the
integration of priors.

Soft-21-1 Python Toolboox "EpidemiOptim"Python Toolboox "EpidemiOptim" is a library that allows to interface optimization algorithms
with models of epidemic propagation. Epidemiological models are wrapped in OpenAI Gym
interfaces, making them readily compatible with state-of-the-art optimization algorithms.
Contribution: I am one of the principal contributor to the concept underlying this code. I have
been a tester for this code.

https://cran.r-project.org/web/packages/Rsmlx/index.html
https://github.com/flowersteam/EpidemiOptim
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Soft-20-2 R package "SEIRcovid19FR"R package "SEIRcovid19FR" is an R package for multi-level inference of epidemic dynamics
applied to COVID-19 in France.
Contribution: I am the principal contributor to the concept underlying this code. I contributed
to the development of this code

Soft-20-1 R package "marqLevAlg"R package "marqLevAlg" This algorithm provides a numerical solution to the problem of uncon-
strained local minimization (or maximization). It is particularly suited for complex problems
and more efficient than the Gauss-Newton-like algorithm when starting from points very far
from the final minimum (or maximum). Each iteration is parallelized and convergence relies
on a stringent stopping criterion based on the first and second derivatives.
Contribution: I was the main developer of the first version that was later re-factored for publi-
cation by V. Philipps.

Soft-16-1 R package "CRTgeeDR"R package "CRTgeeDR" implements a semi-parametric GEE (Generalized Estimating Equation)
estimator accounting for missing data with Inverse-probability weighting (IPW) and for im-
balance in covariates with augmentation appraoches (AUG). The estimator IPW-AUG-GEE is
Doubly robust (DR).
Contribution: I am the main developer and maintainer.

Soft-13-1 The "NIMROD" software is a Fortran program (Normal approximation Inference in Models with
Random effects based on Ordinary Differential equations) devoted to the estimation in Ordinary
Differential Equations (ODE) models with random effects. Although maximum likelihood based
approaches are valuable options, both numerical and identifiability issues favor a Bayesian
approach which can incorporate prior knowledge in a flexible way. NIMROD estimations relies
on a normal approximation of the posterior that can be obtained by computing the maximum
of the posterior distribution (MAP) by maximizing a penalized likelihood. NIMROD is now
deprecated.
Contribution: I was the main developer.

1.3.13 Press Releases (18)

During the COVID-19 pandemic, a number of our works were highlighted by the media. Below is
a non-exhaustive list of press releases where our work was cited:

• La Croix 05/05/2020La Croix 05/05/2020 "Coronavirus l’intrigante géographie contagion.",

• Parisien 08/06/2020Parisien 08/06/2020 "Covid-19 les manifestations risquent-elles d’accroitre la propagation du
virus",

• Sud-Ouest 17/11/2020Sud-Ouest 17/11/2020 "Covid-19 comment travaillent les épidemiologistes",

• France 2 journal TV 13h 29/12/2020France 2 journal TV 13h 29/12/2020,

• Le Parisien 06/01/2021Le Parisien 06/01/2021 "Covid-19 l’ouest de la France restera-t-il epargné?",

• Le Parisien 29/04/2021Le Parisien 29/04/2021 "Déconfinement à partir du 3 mai est-ce bien raisonnable d’un point de
vue sanitaire",

• Le Parisien 06/09/2021Le Parisien 06/09/2021 "Covid-19 y a-t-il vraiment une correlation entre le taux d’incidence et
la vaccination",

• La tribune 19/07/2021La tribune 19/07/2021 "Intelligence artificielle et épidemiologie deux clefs pour la santé
publique",

• Le Monde 28/07/2021Le Monde 28/07/2021 "Covid-19 face à la quatrième vague les effets trop tardifs de
l’accéleration de la vaccination",

• France 2 Journal Télévisé 20h 01/09/2021France 2 Journal Télévisé 20h 01/09/2021,

https://github.com/sistm/SEIRcovid19
https://cran.r-project.org/web/packages/marqLevAlg/index.html
https://cran.r-project.org/web/packages/CRTgeeDR/index.html
https://www.la-croix.com/Monde/Coronavirus-lintrigante-geographie-contagion-2020-05-05-1201092633
https://www.leparisien.fr/societe/covid-19-les-manifestations-risquent-elles-d-accroitre-la-propagation-du-virus-08-06-2020-8331834.php
https://www.sudouest.fr/gironde/bordeaux/covid-19-comment-travaillent-les-epidemiologistes-un-professeur-bordelais-repond-1665245.php
https://www.france.tv/france-2/journal-13h00/2154713-edition-du-mardi-29-decembre-2020.html
https://www.leparisien.fr/societe/covid-19-l-ouest-de-la-france-restera-t-il-epargne-06-01-2021-8417623.php
https://www.leparisien.fr/societe/sante/deconfinement-a-partir-du-3-mai-est-ce-bien-raisonnable-dun-point-de-vue-sanitaire-29-04-2021-BYQWSGUN7JD2DEOAKKCJYKOG2M.php
https://www.leparisien.fr/societe/covid-19-y-a-t-il-vraiment-une-correlation-entre-le-taux-dincidence-et-la-vaccination-06-09-2021-DUUKR2E3NVHXFIMNPM77QBMAO4.php
https://objectifaquitaine.latribune.fr/business/2021-07-19/intelligence-artificielle-et-epidemiologie-deux-clefs-pour-la-sante-publique-889192.html
https://www.lemonde.fr/planete/article/2021/07/28/covid-19-face-a-la-quatrieme-vague-les-effets-trop-tardifs-de-l-acceleration-de-la-vaccination-selon-l-institut-pasteur_6089749_3244.html
https://www.francetvinfo.fr/replay-jt/france-2/20-heures/jt-de-20h-du-mercredi-1-septembre-2021_4735223.html
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• Le monde 25/09/2021Le monde 25/09/2021 "Covid-19 malgré cinq semaines de baisse continue en métropole les
épidemiologistes restent prudents",

• La voix du Nord 4/11/2021La voix du Nord 4/11/2021 "Covid-19 jusqu’à quand faudra-t-il porter un masque?",

• Sud Ouest 04/01/2022Sud Ouest 04/01/2022 "Omicron avec une possible immunité collective le gouvernement
amorce une bonne stratégie de santé publique",

• Sud Ouest 04/01/2022Sud Ouest 04/01/2022 "Levée des restrictions sanitaires il serait judicieux de porter le masque
encore un peu",

• Sud-Ouest 06/02/2024Sud-Ouest 06/02/2024 "Covid-19 une étude met en lumière les milliers de vies sauvées par les
confinements et la vaccination",

• L’express 07/02/2024L’express 07/02/2024 "Covid-19 le confinement et les vaccins ont-ils été efficaces ce que révèle
une étude",

• Le monde 08/02/2024Le monde 08/02/2024 "Covid-19 sans la vaccination le nombre de morts aurait été le double
en France",

• La Dépêche 09/02/2024La Dépêche 09/02/2024 "Covid-19, les données prédisent 159000 décès supplémentaires une
étude mesure l’impact du confinement et du vaccin en France.

https://www.lemonde.fr/planete/article/2021/09/25/covid-19-malgre-cinq-semaines-de-baisse-continue-en-metropole-les-epidemiologistes-restent-prudents_6095959_3244.html
https://www.lavoixdunord.fr/1094023/article/2021-11-04/covid-19-jusqu-quand-faudra-t-il-porter-un-masque.
https://www.sudouest.fr/sante/omicron-avec-une-possible-immunite-collective-le-gouvernement-amorce-une-bonne-strategie-de-sante-publique-7511779.php
https://www.sudouest.fr/sante/coronavirus/monde/levee-des-restrictions-sanitaires-il-serait-judicieux-de-porter-le-masque-encore-un-peu-10256949.php
https://www.sudouest.fr/sante/covid-19-une-etude-met-en-lumiere-les-milliers-de-vies-sauvees-par-les-confinements-et-la-vaccination-18460522.php
https://www.lexpress.fr/sciences-sante/sante/covid-le-confinement-et-les-vaccins-ont-ils-ete-efficaces-ce-que-revele-une-etude-PJGGE3RB7VFQHE6PM43CUQBOZY/
https://www.lemonde.fr/planete/article/2024/02/08/covid-19-sans-la-vaccination-le-nombre-de-morts-aurait-ete-le-double-en-france_6215444_3244.html
https://www.ladepeche.fr/2024/02/09/covid-19-les-donnees-predisent-159-000-deces-supplementaires-une-etude-mesure-limpact-du-confinement-et-du-vaccin-en-france-11752910.php




Chapter 2

Statistical Methodology for Estimations and
Building of Mechanistic Models

2.1 Bibliometry

The first research axis is predominantly theoretical, focusing on the complexities of solving inverse

problems in nonlinear mixed-effect models (NLME), of efficiently predicting individual outcomes

and, of optimizing input of the systems. This research mainly explores optimization techniques and

strategies to construct and use robust and adequate models. The outputs of this axis are summarized

in Table 2.12.1. This theme gave birth to 9 articles in peer-reviewed international journals, 14

international conferences, 10 national conferences, 3 seminars and 3 softwares. It is also

funded by 3 international grants and 2 national grants. The interrelation of all these works is

explained in the next subsections.

2.2 Mechanistic Model Definition

This research direction is the most theoretical aspect of my work. It is grounded in my biostatistics

background and driven by the challenges encountered in processing data from both international and

national projects, including collaborations with the Vaccine Research Institute. In most study in my

work, we handle longitudinal data collected for multiple individuals. The poor performance of

individual data fitting has been extensively studied since the 1970s. Lewis Sheiner highlighted the

inefficiency of individual data fitting for parameter estimation, as it doesn’t differentiate between

between-subjects and within-subject variability, necessitating frequent data collection in each patient

[180180, 179179]. It was also shown that biased conclusion on treatment effects can be derived from

patient-by-patient fitting [178178]. Thus, we need to develop efficient tool to model jointly repeated

measurements taken for each patient.
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Before
Last

Peer-reviewed International Journals IF/cite First Second or Last Other
CPT: Pharmacometrics & Syst. Pharma. 4.9/15 RI-22-1RI-22-1
Biometrics 1.9/17 RI-16-4RI-16-4
R Journal 1.7/9 RI-21-5RI-21-5
MathematicS in Action 1.7/2 RI-22-5RI-22-5
Computational meth. and prog. Biomed. 1.5/39 RI-13-1RI-13-1
Computational Statistics 1.3/3 RI-23-6RI-23-6
Journal Clinical Oncology 1.2/59 RI-20-2RI-20-2
Statistical Comm. Infectious Diseases 1.2/6 RI-20-3RI-20-3
French Statistical Society Journal 1.0/5 RI-16-3RI-16-3
Total (9) 4 1 1 3
International conferences Invited Speaker Mentee Poster Other
PAGE HCI-22-3HCI-22-3;

CI-19-3CI-19-3
CMStat HCI*-19-1HCI*-19-1
ISBC CI-23-1CI-23-1 CI-12-2CI-12-2
Workshop on Virus Dynamics CI-21-2CI-21-2 CI-19-4CI-19-4 CI-23-2CI-23-2
IBC CI-18-1CI-18-1;

CI-11-1CI-11-1
Joint Statistical Meeting CI-14-3CI-14-3
Other CI-12-1CI-12-1 CI-16-2CI-16-2;

CI-14-1CI-14-1
Total (14) 1 6 2 0 5
National conferences Invited Speaker Mentee Poster Other
GDR Stat & Santé ou Mamovi CN-17-2CN-17-2;

CN-13-1CN-13-1;
CN-12-2CN-12-2;
CN-11-1CN-11-1

CN-23-1CN-23-1;
CN-21-1CN-21-1

ANRS MIE AC CN*-23-1CN*-23-1
JdS SFdS CN*-15-1CN*-15-1 CN-17-1CN-17-1
useR! CN-12-1CN-12-1
Total (10) 1 6 2 0 1
Seminars (3) S-19-1S-19-1; S-13-3S-13-3; S-12-1S-12-1
International Grants (3) IG-20-1IG-20-1; IG-19-1IG-19-1; IG-18-2IG-18-2
National Grants (2) NG-22-1NG-22-1; NG-17-1NG-17-1
Sofwares (3) Soft-23-1Soft-23-1; Soft-20-1Soft-20-1; Soft-13-1Soft-13-1

Table 2.1 – Bibliometry for axis "Statistical methodology for estimations and building of mechanistic
models"
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Nonlinear mixed-effects models (NLME) are particularly adapted for this purpose, which makes

them the primary tool employed in my research. NLME models are a statistical approach used to an-

alyze data that is non-linear in nature and includes both fixed and random effects. The fixed effects

represent the population-average effects and are consistent across all individuals, possibly depend-

ing on measured explanatory covariates. Random effects account for individual-specific variations.

These effects allow the model to account for variability in the data that is not explained by the fixed

effects alone, which is the extra heterogeneity not captured by individual covariates. The model

accounts for non-linear relationships between variables. In my research, this is typically achieved

through Ordinary differential equations (ODE) which may or may not admit an analytic solution.

Of note, few examples could be extended for stochastic differential equations or partial differential

equations.

NLME are also referred to as mechanistic models. Mechanistic models, in a general scientific

context, refer to models that are based on the underlying mechanisms. One of the key characteristic

of mechanistic models is that they are a process-based representation of a phenomenon based on

fundamental principles of kinetics. This is particularly useful in my research as we model biological

processes related to immunology and virology to derive the ODE. Mechanistic models can become

very complex, especially when they aim to describe intricate biological systems. This often requires

significant computational resources for simulation and analysis.

We make the choice to present mechanistic model by dividing the description into three intercon-

nected components: the mathematical model, the statistical model, and the observation model.

Each part plays a crucial role in the modeling process, from representing biological processes to fitting

the model to empirical data.

• Mathematical Model (or Process Model): The mathematical model is the core part that de-

scribes the underlying biological or physical processes, in our setting, using a system of ODE

(f(ψ,X, t)). It consists of equations that represent the change in state of various components

X (e.g., concentrations of different substances, populations of cells) over time t. The equations

are typically derived based on biological knowledge and fundamental principles but could also

be built by data-driven approaches (see Section 2.52.5). Parameters in the mathematical model

ψ, like rate constants or initial conditions, are often biologically interpretable but not directly

observable.

• Statistical Model (or Parameter Model): The statistical model deals with the uncertainty

and variability in the parameters of the mathematical model. It includes prior distributions

for the parameters, reflecting any previous knowledge or assumptions about their values. The

statistical model also handles the variability between subjects (inter-individual variability rep-
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resented by random effect ηi) or within the same subject over time (intra-individual variability

represented by fixed effects ψ0 and β for effect of covariates Zi). It is crucial for parameter

estimation, especially when fitting the model to data, and for quantifying the uncertainty in the

estimates. For individual i = 1, . . . N , the individual parameters write, up to a transformation

function h, h(ψi) = h(ψ0)+βZi+ηi. The random effects ηi are normally distributed with mean

0 and variance Ω. The function h is often chosen, though not exclusively, to be log-normal

because it constrains the diffusion rates of the ODE to be positive.

• Observation Model (or Data Model): The observation model connects the mathematical

model to the real-world data. It describes how the actual data measurements are generated

from the theoretical values predicted by the mathematical model. This often involves account-

ing for measurement errors or other forms of noise. The model may include factors like the

sensitivity and specificity of the measurement techniques, sampling times, and the nature of the

data (e.g., continuous, count data, binary outcomes). In particular, it is essential for translating

between the scale and units of the mathematical model and the observed data. Finally, obser-

vation model may only represent a fraction of the compartments within the mechanistic model,

resulting in incomplete information about all the components of the process. The observation

Yij for individual i at time tij , with j = 1, . . . , ni, is related with ODE outputs up to a trans-

formation g such that Yij = g(X(ψi, tij)) + ge(ξ,X(ψi, tij))εij . Where ge(ξ,X(ψi, tij)) is the

error function of the marker and εij is normally distributed of mean 0 and variance 1. Of note,

in a constant error model, often referred to as white noise, ge(ξ,X(ψi, tij)) is assumed to be a

diagonal matrix.

In this mechanistic model M, we are interested in estimation of the joint distribution of θ =

(ψ0, β,Ω, ξ). Then for prediction, we are interested in the individual values of parameters ψi as well

as their related uncertainty.

2.3 Inference in Mechanistic Model

Possessing the capability to manipulate, compare, and construct estimation approaches for ad-

dressing the inverse problem is crucial; this involves being able to perform forward simulation using

mechanistic models. For forward simulation of ODE, we use standard numerical methods ranging

from Euler’s method and Runge-Kutta Methods to stiff ODE Solvers such as the Backward Differentia-

tion Formula method (BDF) [3838]. One of the interesting feature that make our problem difficult is the

stiffness of many of our ODE. A stiff ODE system is one in which there is a significant disparity in the

time scales of the processes or phenomena described by the ODE. In simpler terms, stiffness occurs
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when some components of the system evolve much more rapidly than others, leading to numerical

challenges when simulating the ODE. In my research to date, I have assumed that forward simulation

methods exist and are reliable. Thus, I am mostly interested in inferring the parameters of a model

based on available data, i.e. solving the inverse problem.

Another aspect of mechanistic model that is important to check before trying inference on the

model is identifiability. This term refers to the ability to uniquely determine the model’s parameters

(or some of them) based on observed data. My research does not yet feature new development

in this aspect. However, this is something we carefully check before attempting any inference on a

given problem. First, structural identifiability relates to whether the model structure itself allows for

unique estimation of parameters. It considers whether the mathematical relationships between model

variables and parameters are such that no parameter can be changed without affecting the model’s

predictions. To assess this problem, we routinely use Differential Algebra for Identifiability in Systems,

historically DAISY [1717] and more recently a method that also ensures that derivatives of parameters

are identifiable [5151]. Second, practical identifiability considers whether, in practice, with a specific

dataset and measurement noise, the parameters can be estimated with sufficient precision [114114].

To assess this problem, we routinely use sensitivity analysis, Monte Carlo simulations and profile

likelihood analysis. See Section 2.62.6 for details on future envisioned research on identifiability and

optimal design.

The challenge is the development of population-based estimation approaches (CI-16-2CI-16-2). Maxi-

mum Likelihood Estimation is a commonly used method for estimating parameters in mechanistic

models. It seeks to find the parameter values that maximize the likelihood of observing the observed

data (y) given the model, which is expressed as the product of the probability density (or likelihood)

of the observed data points [153153]. The maximum likelihood estimator θ̂ = argmax [l(θ, y)], where

the likelihood can be written as:

l(θ, y) =
∏

i=1,...N

∫
p(yi|ηi, θ)p(ηi, θ)dηi

However, because our methods often lack of identifiability, we initially use a Bayesian framework

in which it is possible to input biological information on parameters values. In Bayesian modeling,

you start with a prior distribution for the parameters and update it with the likelihood of the data to

obtain the posterior distribution. Markov Chain Monte Carlo (MCMC), Variational Inference and im-

portance sampling are common techniques used for Bayesian parameter estimation [125125, 160160, 162162].

In this regard, my research initially focused on methods involving penalized likelihood maximiza-

tion for NLME models (CI-11-1CI-11-1; CI-12-1CI-12-1; CN-17-2CN-17-2; CN-13-1CN-13-1; CN-11-1CN-11-1; S-12-1S-12-1). The relationship

between penalized likelihood estimation and Bayesian statistics lies in the incorporation of additional
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information or constraints on the parameters. The algorithm maximizes log(l(θ, y)) − J(θ), where

J(θ) increases as the parameter estimates deviate further from their prior values. Our algorithm uses

the Levenberg-Marquardt gradient descent algorithm (RI-21-5RI-21-5; CN-12-1CN-12-1, released in an R package

Soft-20-1Soft-20-1), to approximate and maximize the penalized likelihood. The descent process is described

as follows:

θk+1 = θk − (H + νI)−1(θk)U(θk),

where U and H represent the score and the Hessian of the likelihood, respectively, while ν is a

term added to ensure the Hessian remains positive definite and approaches zero over iterations. The

Hessian is approximated by a function of the scores:

G(θk) =
∑

i

Ui(θk)U ′i(θk) +
ν

n
U(θk)U ′(θk).

The score for each individual i = 1, . . . , N is expressed as:

Ui(θk) = p(yi|θ)−1
∫
p(yi|ηi, θ)

dlog (p(yi|ηi, θ))
dηi

dηi,

which is evaluated using sensitivity equations of the ODE, adaptive Gaussian quadrature, and the

Livermore Solver for Ordinary Differential Equations. This algorithm was implemented in a Fortran

program Soft-13-1Soft-13-1). Additionaly, an interesting feature of this research is the development of a

rigorous stopping criterion defined as the relative distance to maximum (RDM):

1

dim(θk)
U ′(θk)G−1(θk)U(θk),

which serves as a proxy for the ratio between the numerical error and the statistical error, with a

lower value indicating better performance (RI-13-1RI-13-1). The whole phD thesis on this topic as well as

applications developed in it has been awarded by the SFdS PhD thesis award for applied statistics

(CN*-15-1CN*-15-1).

The calculation burden due to the complexity of ODE models, led us to progressively shift to-

ward algorithms which does not require as many evaluations of the likelihood as a gradient-descent

method. The Stochastic Approximation of the Expectation-Maximization (SAEM) algorithm is

an iterative optimization method used for estimating the parameters of mechanistic models. It com-

bines elements of both the Expectation-Maximization (EM) algorithm and stochastic approximation

[111111] extended for left-censored data [172172]. In the E-step, SAEM computes the expected value (or

conditional expectation) of the complete likelihood function given the current parameter estimates

and observed data. To do so, it uses a Monte Carlo approach to approximate the expected likelihood,
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often referred to as the population likelihood. Then, in the M-step, SAEM updates the parameter

estimates to maximize the expected complete likelihood obtained in the E-step. SAEM incorporates a

stochastic component by using small perturbations or noise in parameter updates. This helps escape

local maxima and improve the convergence of the algorithm. SAEM iteratively alternates between

the E-step and the M-step until convergence criteria are met. An evolution of this algorithm is the

Mixture SAEM, see [115115] for all details, it writes and iterates as follows for iteration k:

• S-step: Sample the latent variable ψ(k)
i according to the conditional distribution p(.|y, θk).

• E-step: Compute H(y, ψ
(k)
i ; θk) = E(S(y, ψ

(k)
i , z)|y, ψ(k)

i , θk), where S is a function of the mini-

mal sufficient statistics of the log-likelihood.

• AE-step: Update Qk(θ) such that Qk+1(θ) = Qk(θ) + γk(H(y, ψ
(k)
i , θk) − Qk(θ)), where γk is

a decreasing sequence tuning the convergence rate of the algorithm. We usually take γk = 1

during an exploratory phase and γk = 1/k in the smoothing phase.

• M-step: θk+1 maximizes Qk+1(θ).

Convergence is typically assessed based on changes and stabilization in parameter estimates and

the complete likelihood. It is implemented in the software Monolix that we routinely use [116116] (as

disseminated in educational seminar S-19-1S-19-1). We currently entertain relationship with the Simulation

Plus Lixoft company owning this software. However, given Monolix’s proprietary nature, which limits

rapid source code evolution, and its inability to meet all the specific requirements for our applications,

we continue the development of alternative estimation methods.

In this previous approach, the relationship that exists between parameters and time need to be

parametrically defined. Semi-parametric models do not assume a specific functional form and are

more flexible, allowing the data to dictate the structure of the model. Methods based on splines

smoothing have been developed to fit these models [204204]. However, they may also prove to be

computationally demanding and the number of hyperparameters to fix (eg. splines basis, knots...)

makes them very sensitive to parametrization [206206]. We thus decided to develop an alternative semi-

parametric approach for estimation in mechanistic model. Data assimilation methods are often used

in environmental sciences and confronted with the complexity burden associated with large-scale

systems [99]. Famous data assimilation approaches are based on Kalman filters. The Kalman filter is

an algorithm that provides efficient computational recursive means to estimate the state of a process

in a way that minimizes the mean of the squared error. The Unscented Kalman Filter particularly ad-

dresses some limitations of the traditional Kalman filter when dealing with nonlinear systems [102102].

Together with collaborators (Annabelle Collin Inria Bordeaux Team Monc and Philippe Moireau Inria

Team M3disim Paris Saclay), we extended Kalman filters to population approach (RI-22-5RI-22-5; CI-18-1CI-18-1;
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CN-17-1CN-17-1). The potential curse of dimensionality caused by the population framework is then limited

by covariance reduction techniques such as those proposed in the Reduced-Order Unscented Kalman

Filter [138138]. Note that this is not the first time that Kalman-based approaches have been used in

mixed-effects strategies [4545, 108108, 196196]. However, in this literature, the extended Kalman filters are

used only to approximate the individual probability distribution function, whereas in our work we use

the Kalman approach also for estimation at the population level. We investigated the use of this new

fitting strategy on a large range of scenarios and we found that this method requires a large amount

of data with a very frequent sampling to provide reliable estimates. Thus, we applied it to estimation

of effects of non-pharmaceutical interventions in COVID-19 epidemics for which time series of cases

and hospitalization are observed daily on a long course (see Section 4.3.14.3.1). See Section 2.62.6 for details

on how we envision to use this method for sparse data.

The approaches based on the estimation of a given ODE model face the problem of not taking into

account the presence of model misspecification. First, most of the time, the true initial conditions are

unknown, which implies either assumptions on their values [117117] or their estimation [8989]. Second,

they can face accuracy degradation when the inverse problem of parameter estimation is ill-posed due

to practical identifiability issues [6161]. Another method that we investigated is grounded in optimal

control theory. It consists in optimization that deals with finding a control law for a dynamical

system over a period of time such that an objective function is optimized. In a few words, the

idea is to fit the ODE model to data together with a control variable that can be manipulated to

influence the behavior of the system. It aims to regularize the estimation problem in the presence

of model misspecification and practical identifiability issues, while avoiding the need to know or

estimate initial conditions as nuisance parameters. Together with a postdoctoral fellow Quentin

Clairon, we extended existing approach [2929] to population approach. See Section 6.16.1 for the full

version of the article presenting this work. Compared to the maximum likelihood method, we show

through simulation examples that our method improves the estimation accuracy in possibly partially

observed systems with unknown initial conditions or poorly identifiable parameters with or without

model error (RI-23-6RI-23-6; HCI*-19-1HCI*-19-1; CI-19-4CI-19-4; CN-21-1CN-21-1). See Section 2.62.6 for details on how we believe

this method would help us to assess model misspecification.

2.4 Validity of the Approach: Causality and Predictions

While it is feasible to manipulate mechanistic models, it is imperative to be convinced of their

superiority for modeling available data. This necessitates a comparative analysis with other avail-

able tools. Even if the answer may be problem-specific, we postulate that mechanistic models may

be superior in term of prediction abilities as they integrate biological knowledge. First, together with
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collaborators (Rui Wang and Alison Hill at Harvard university), we focus on comparing two different

modeling approaches for analyzing HIV-1 RNA viral load trajectories after antiretroviral treatment

interruption (RI-21-2RI-21-2; CI-19-2CI-19-2). The models of interest are splines [210210] and mechanistic models

[149149]. Both models aim to predict features of viral rebound, like viral set points and delay in rebound,

and identify factors influencing these features. The study finds that both models offer reasonable fits

to the data. The mechanistic models however lead to slightly more efficiency. This is even amplified in

presence of limit of detection for viral load makers and lost of follow-up of patients due to antiretro-

viral resumption (RI-20-3RI-20-3). Second, together with collaborator (Sebastien Benzeckry Inria-Inserm

Team Compo Marseille), we focus on evaluating predictive models for metastatic relapse in patients

with early-stage breast cancer. It compares the effectiveness of machine learning algorithms [213213]

and mechanistic models [9494] in predicting the risk of metastasis after surgical intervention. The

model’s predictive performances are comparable. However, we show that the mechanistic model pro-

vides estimates of the invisible metastatic burden at diagnosis and simulates metastatic growth. It can

serve as a personalized prediction tool for managing patients with breast cancer. See Section 2.62.6 for

details on how we believe statistical learning and deep learning methods can be adapted to address

predictions and inference problems in our mechanistic models.

The goal of mechanistic models is often to evaluate the effects of treatments or exposures

over time. This question may arise in a randomized but also in an observational setting. In the

latter, causal problems may arise [2525]. A time-varying confounder is a variable that influences,

and is influenced by, the exposure (or treatment), while also being a risk factor for the outcome.

This is for example the case of CD4 count when evaluating the effect of antiretroviral treatment.

CD4 count is both the outcome and a covariate explaining treatment assignment. This dynamic

nature poses significant challenges in accurately assessing causal relationships. In this setting, it has

been demonstrated that a conventional regression analysis leads to biased estimates of the treatment

effect, typically underestimating it, and may (wrongly) indicate a negative effect. This is called

confounding by indication [203203]. Marginal structural models (MSM) [168168] have been proposed for

dealing with this issue; this is based on choosing a causal model in terms of potential responses,

which are often counterfactual, to the different treatment histories. The parameters of a MSM can be

estimated through a weighted approach but other methods exist such as targeted maximum likelihood

[152152]. The weights are the inverse probability of treatment assignment and are obtained through a

“treatment model” which includes the covariates linked to the outcome. Because data are correlated,

we use an inverse probability weighted generalized estimating equation (GEE), see Section 4.24.2 for

use of this tool in the setting of missing data. This approach has been applied for estimating the

effect of antiretroviral on CD4 count [8383, 3131]. An alternative view to causality that does not use

the potential responses representation is to use dynamic models. Among others, Bayesian decision
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analysis [4343], graphical models [4949], dynamical models based on stochastic processes [3333] and linear

increment models [8686] were pioneering as alternative approaches. Then assumptions needed for a

causal interpretation of dynamic models have been presented [88, 3434]. In a nutshell, causality operates

over time and aligns with a mechanistic or system view since time is an intrinsic component through

ODE [11]. We investigated and compared in simulation and real data all these approaches in a study

interested in informative treatment assignment in observational studies (RI-16-4RI-16-4; CI-14-3CI-14-3; CI-14-1CI-14-1;

S-13-3S-13-3). We focus on developing dynamic models to estimate the effects of antiretroviral on CD4

counts in HIV patients, using data from Swiss HIV cohort. We conclude that mechanistic models

provide a more accurate and more efficient estimation of antiretroviral’s effect on CD4 counts in HIV

patients than others. It is thus a valid tool for causal inference. We also demonstrate the superiority

of mechanistic models in capturing the complexity of biological systems and accessing unmeasured

information. See Section 6.26.2 for the full version of the article presenting this work. Because these

models are based on the mechanisms of the system, they can be used to make predictions about

the system’s behavior under new conditions or in response to interventions, i.e. counterfactual to the

actual study conditions. This is particularly useful in drug development and understanding individual

disease progression. This will be further expanded in Section 3.23.2.

2.5 Model Building Strategies

A variety of models exist to fit data, and even with parallel computing, the adjustment of mecha-

nistic models can be time-intensive. This is particularly true as the number of parameters or the size

of the dataset grows. Typically, the evaluation of the most suitable model for a specific dataset in-

volves optimizing an information criterion to determine the best fit. It could be Akaike Information

Criterion (AIC), Bayesian Information Criteria (BIC), or corrected BIC which is most suited for NLME

models (BICc) [4646]. These criteria balance model fit with complexity but do not explicitly penalize

model complexity sufficiently in all scenarios, potentially leading to overfitting. Other metrics based

on external validation, bootstrapping/leave-one-out and predictive abilities could also be considered

and expanded [2020, 3535].

Having a large number of individuals from multiple studies or incorporating information from dif-

ferent sources of information improves practical identifiability of mechanistic models [8080]. However,

it increases computation times and may make the estimation intractable; an alternative approach

is to use a Sequential Bayesian Analysis [207207] (SBA). SBA is a statistical method in which data

is analyzed in stages, and the results from each stage inform the analysis of subsequent data. This

approach updates beliefs or estimates in light of new data, using Bayes’ theorem. It has been shown

that for most generalized linear and non-linear equations, the posteriors are consistent and admits a
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normal approximation [7474]. In each step, the posterior distribution from the previous stage becomes

the prior for the current stage. We validated its use when manipulating mechanistic models for sce-

narios where the primary focus is on estimating an average trend rather than the extremes of the

distributions (RI-16-3RI-16-3; CI-12-2CI-12-2; CN-12-2CN-12-2). In this paper, we demonstrate improvements in accuracy

and efficiency of parameter estimations and predictions in the context of HIV treatment when using

SBA with results close to those obtained by analyzing the entire data at once. This type of method

is particularly useful in scenarios that require adaptive decision-making (see Section 3.23.2 in the appli-

cation for predicting the optimal treatment dose in PLHIV), or where data arrives incrementally over

time (see Section 4.34.3 in the application of predicting COVID-19 epidemics).

The choice of the components (mathematical, statistical and observation models see Section 2.22.2)

of a mechanistic model is a challenging process which requires confirmed expertise, advanced statis-

tical methods, and the use of sophisticated software tools. The procedure for constructing a model

is usually iterative: one adjusts a first model to the data, and diagnosis plots and statistical tests allow

to detect possible misspecifications in the proposed model. A new model must then be proposed to

correct these defects and improve the predictive abilities of the model. When building the statisti-

cal model, most of the common approaches consist in stepwise procedures consisting in testing the

addition of variables forward and their elimination backward alternatively and progressing through

the choice of models using an information criterion. A widely used approach is Stepwise Covariate

Modeling (SCM) [9898] which consists in an exhaustive search in the covariate space. Each covariate

addition or deletion is tested in turn selecting models at each step leading to the best adjustment

according to the objective criterion. Approaches such as Wald Approximation Method (WAM) [110110]

and COnditional Sampling use for Stepwise Approach based on Correlation tests (COSSAC) [1313] are

less computationally intensive as they use, respectively, a likelihood ratio test and a correlation test

to move in the covariates space, which allows the evaluation of less models. All these methods are

nevertheless computationally intensive as they require to re-estimate the model parameters and the

likelihood many times. We proposed an automated model-building process by iteratively improving

model components through a stochastic approximation approach (RI-22-1RI-22-1; HCI-22-3HCI-22-3; HCI*-21-2HCI*-21-2).

This algorithm called SAMBA (Stochastic Approximation for Model Building Algorithm) has been re-

leased in a R package Rsmlx on which I modestly contributed (Soft-23-1Soft-23-1). See Section 6.36.3 for the full

version of the article presenting this work. This method bears similarity to the Generalized Additive

Model (GAM) [8181, 128128] but differs in its approach to parameter estimation. Instead of relying on

Empirical Bayes Estimates (EBE), which are prone to shrinkage [144144], this method utilizes the condi-

tional posterior distribution of parameters. It uses a sample of the posterior parameters to build fast

linear models linking them with covariates and proposing the most likely relationship. And, extension

of these ideas opens the perspective for future research in model building strategies bridging the gap
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to high dimension (see Section 2.62.6).

2.6 Perspectives

Below is a collection of perspectives, both short-term and long-term, that we aim to address by

developing new methods for mechanistic models. Ideas marked with an asterisk (*) are considered

major in terms of challenges and potential impact.

Advances in identifiability and optimal design: With recent advances, identifying structural

identifiability of the mathematical model is no longer a major issue [121121, 9999, 8787], and [66] for a re-

view. However, it remains an open research question to carefully extend these concepts to the whole

mechanistic model, including random effects [9595]. In NLME models, ideal experimental conditions

also include having data from an infinite number of subjects. However, the best strategy could rely in

an optimal design in which a finite number of individuals are observed at a finite disjoint timepoints.

The Cramer-Rao bound establishes a formal mathematical inequality stating that the covariance of

any unbiased estimator is at least as large as the inverse of the Fisher Information Matrix (FIM). Thus

optimizing a design is maximizing the FIM. The D-optimality criterion is widely used. It consists in

maximizing the determinant of the FIM normalized by the number of parameters to be estimated.

In NLME, the FIM can be computed numerically or approximated by a close-form solution [134134].

Multiple algorithms have been proposed, implemented and compared for this purpose [146146, 5757].

An important practical path of advancing the research that we have in our SISTM group is to be

able to use these methods more frequently in practice when designing new trials, based on the

hypothesis that mechanisms of virus and immune responses are available and trusted for design (see

Section 1.3.11.3.1 for the spirit). However, it may happen that some covariates are taken as explanatory

covariates in the model and may be time-varying. This is for example the case for correlates of

protection against an infection that are themselves likely to vary over time and impact the infectivity

of a virus (see Section 3.43.4). This is also the case in COVID-19 transmission while changing the public

health policies (see Section 4.3.14.3.1). Changing a parameter from constant to time-varying (because

impacted by covariates) naturally influences structural identifiability and observability. Having a

parameter that is time-varying can even improve the model identifiability [130130]. Optimal sampling

for these covariates, which are not by themselves the process of interest, is an open question, yet

also to be extended in NLME settings. Finally, optimal design approach assumes that the true

model underlying the data generation is known, which is often not the case in practice [33]. Thus,

in term of methodology, one direction could be to extend the optimal design criteria to account

for this model uncertainty, similar to model averaging [6363]. This methodological aspect should be

connected with the identification of suitable models for specific questions, as discussed in Section 3.53.5.
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NLME Model Building: I am optimistic that this line of research will not only continue through

the publication of independent academic studies but also through collaboration with the industry,

notably with Simulations+ company, which is commercializing the Monolix Suite software.

• Advances in structural model misspecification: First, we believe it is important to detect

when a model is not adequate for the data at hand. The optimal control approach has the ad-

vantage to provide an extra parameter - the control term or perturbation u. It is a function or set

of variables that are manipulated to steer an ODE towards data. In our previous research, we

did not fully exploit the optimal control perspective for misspecification quantification. Earlier

studies have investigated the estimation of a perturbation term at the derivative level in a single-

subject context using non-parametric methods to detect model errors [8888, 6060]. These methods,

compared to those based only on data fitting criteria, tend to provide more sensitive statistical

tests and can identify misspecification even in unobserved state variables. Our control-based

approach could expand these tests to a population framework. For instance, within a Bayesian

framework following [4141], we could set a prior distribution for the controls and then assess it

against the posterior obtained after inference. This work is meant to be done in collaboration

with Quentin Clairon (Inria Sistm). Furthermore, when a large number of markers are avail-

able, it may be beneficial to identify which ones provide meaningful information to the model.

This selection could be based on comparisons of restricted log-likelihood, although the statisti-

cal properties of this approach will require thorough investigations. An alternative could rely

on using latent processes [188188]. In this approach, the model would combine a multivariate lin-

ear mixed model and an ODE to model trajectories and temporal relationships between latent

processes. In any case, pursuing this line of research presents a significant challenge in carefully

and successfully utilizing the data available in a study.

• Building variability models Questions may arise regarding the strategy for building variability

models within mechanistic models, i.e. which parameters should have a between-individual

variability modeled by random effect. A traditional method involves adopting a SCM algorithm.

However, this requires the estimation of model parameters at every step. We propose a method

to reduce computation time by initiating only a few iterations of the SAEM algorithm from the

previous stopping points, while allowing one of the random effects to tend to zero. This method

facilitates rapid evaluation of a proxy for the complete likelihood, thereby swiftly guiding which

random effects are the most likely to be added or removed. This approach has been presented

at a French conference (CI-23-1CI-23-1) and is intended for collaboration with Marc Lavielle (Inria

Xpop, yet retiring).
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• Extension to high-dimensional explanatory covariates: When dealing with high-

dimensional covariates, classical regression tools may overfit the data. A penalized approach,

such as Lasso (Least Absolute Shrinkage and Selection Operator [195195]), offers a solution by per-

forming variable selection through the shrinkage of coefficients to zero, a feature not available

in standard regression. Furthermore, Lasso aids in managing model complexity and preventing

overfitting. Other penalization techniques, such as SCAD or MCP, and methods like ridge re-

gression or elastic net, may also be relevant [147147]. We have begun to extend covariate model

building to high dimensions using these techniques. This effort, also presented at a French

conference (CN-23-1CN-23-1), is conducted in collaboration with Auriane Gabaut, one of my Ph.D. stu-

dents. Other methods developed in the team such as random forest [7171, 2424] should be also

investigated.

• Others: Finally, questions regarding the order in which components (structural model, vari-

ability model, covariates model, correlations model, error model, observation model) should be

built remain open, with no definitive answers applicable to all scenarios. Nonetheless, estab-

lishing guidelines would be beneficial for practitioners.

Toward high-dimensional mechanistic models (*): Once designed, practical non-

identifiabilities may still exist in models and can be effectively detected using the profile likelihood

method. To resolve these non-identifiabilities and achieve model identifiability, it’s either necessary to

simplify the model’s complexity or to incorporate additional data. Techniques like profile likelihood-

based model reduction [127127] are crucial in this context, providing effective strategies for model sim-

plification and data augmentation to improve model identifiability and reliability. Although tools for

identifiability analysis can be improved, if data are not sufficient there will be no solution for analysis.

Thus, we want to feed the model with all data generated in a multi-scale and multi-study approach.

This includes feeding the model with fixed parameters that will be learned on previous studies. In

particular, we think about pre-clinical studies (see Section 3.53.5 for details on future research on bridg-

ing between animal species). However, a particular idea in mind that I want to describe in this section

is the deconvolution of gene expression data in the whole blood. Measurement of blood biomarkers,

including transcriptomics, can be modeled using a set of ODE re-transcripting the temporal variations

of the biomarkers and their inter-related trajectories. It could be seen as coupling a gene regulatory

network [209209] with more standard humoral dynamics models as developed in Section 33. The general

framework can be written as:

Ẋ(t) = F (t,X(t), θ),

where t ∈ [t0, T ](0 ≤ t0 ≤ T <∞) is time, X(t) = (B1(t), . . . , BpB (t), G1(t), . . . , GpG(t))T is a vector
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representing the pB blood biomarkers and the gene expression level of gene 1, . . . , pG at time t, and

Ẋ(t) is the first-order derivative of X(t). F serves as the link function that quantifies the regulatory

effects of regulator genes on the expression change of a target gene, which depends on a vector of

parameters θ. In general, F can take any linear or nonlinear functional forms. It is important to

note that, in this theoretical model, the ODE are high-dimensional. Specifically, pB is on the order of

magnitude of 10 or less, whereas pG can be up to more than 10,000. With the current advancements

in the estimation of NLME models, solving inverse problems in high dimensions becomes impractical.

When dealing with high-dimensional systems, it may be practical to perform parameter estimation

sequentially. For example, estimate a subset of parameters or a subset of ODE at a time, and iterate

through the components of the system. In the specific application we have in mind, we want to use

high-dimensional transcriptomic data to infer dynamics of cell populations. We postulate that data

obtained from transcriptomics can be used with deconvolution methods to infer the composition or

population of cells in a mixed sample [2727, 1212, 77]. Then mechanistic models can be fitted to these

types of data. Deconvolution methods offer a solution to reduce the dimensionality of the vector

(G1(t), . . . , GpG(t))T . This reduction serves as a preliminary step, yielding a new set of new markers

DG1(t), . . . , DGpDG
(t))T , where pDG is approximately an order of magnitude of 10 or less. Conse-

quently, the dimensionality of the new system, pB + pDG < 20, becomes manageable. We started

working on a two-step approach - reduction of dimension based on deconvolution followed by mech-

anistic estimation - and demonstrated that transcriptomic data could help in identifying parameters

for compartments of the ODE that are not observed by biological measurements (CI-23-2CI-23-2; CN*-23-1CN*-23-1).

A two-step approach capture the population aspect of the data, initially estimating a structural model

for each patient, followed by an assessment of inter-patient variability factors. However, two-step

approaches, which involves breaking down the analysis into two distinct phases, face a major disad-

vantage. Errors or biases in the first step can propagate into the second step, potentially leading to

misleading results. In different yet comparable settings, our research demonstrates the superiority

of a one-step mechanistic modeling approach, especially in terms of uncertainty propagation Sub-4Sub-4.

One-step approach for high-dimensional estimation, which simultaneously considers all aspects of

the data and the relationships between them, is yet to be extended. This will be pursued using latent

variable models in collaboration with Cécile Proust-Lima (Inserm Biostat). Latent variable models

are statistical models that incorporate latent (unobserved) variables along with observed variables

[159159]. The challenge of constructing and inferring parameters in high-dimensional ODE is crucial for

the future of mechanistic modeling and the advancement of new applicative approaches, as presented

in Section 3.53.5.

Alternative estimation approaches: If there are advances in technologies or aforementioned

deconvolution methods, our longitudinal biomarkers will transform into time series measured daily.
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It opens the path to numerous new methodological developments applicable to our data.

• Other Types of Differential Equations: Firstly, there is potential for extension to more com-

plex models such as Partial Differential Equations [3232]. Indeed, spatial spread of virus is an

important aspect in within-host modeling [7878]. Secondly, Stochastic Differential Equations

[5252, 5050] could be investigated, as they are commonly used to model cell growth dynamics

[5353]. Finally, to sustain the developments for multiscale between- and within-host modeling

proposed in Section 4.44.4, we will develop new methods and explore already implemented ap-

proximate Bayesian computation for multiscale models of multicellular processes [22]. However,

it has been shown that rich (as opposed to sparse) data is required to solve the inverse-problem

in these types of models.

• Sequential Data Assimilation: As an example in the past, we did not manage yet to apply

directly the population Kalman filter assimilation approach to fitting mechanistic data for virus

or immune response dynamics due to sparse sampling of data. The original method for popu-

lation Kalman filters (RI-22-5RI-22-5) proposed the explicit Euler method for numerical resolution of

ODE. This method may fail when the ODE are stiff, which is the case in most of our applica-

tions. We initiated the implementation of alternative explicit methods such as the fourth-order

Runge-Kutta, but found that explicit methods like Crank-Nicolson or BDF of order 2 tend to

yield better results. It is important to note that, in contrast with explicit methods, implicit

methods require executing Newton’s algorithm one or more times per iteration. This generally

leads to an increase in computational time making the problem whatsoever intractable. We

intend to continue exploring modifications of the method with Annabelle Collin (Inria Monc) if

data become highly time-continuous.

• Curve Registration: We would like to consider curve registration as a valid alternative to

account for different timing of dynamics between individual for the mechanistic model. Curve

registration, also known as temporal alignment, is a statistical technique used to align sets of

curves or time series data so that they are in sync with each other in terms of certain features

or landmarks. It assumes that the time has itself a individual-specific dynamic [163163]. We have

already initiated a project with Quentin Clairon from our team and a collaborator from Arizona

State University, John Fricks. Results could become really valuable if data become more time-

continuous.

• Machine Learning Approaches (ML): Finally, the advent of ML methods in the analysis of

longitudinal repeated data in the recent years marks a significant turn in biostatistics. These

methods excel in uncovering intricate patterns and relationships, even in large datasets. How-

ever, despite their sophistication, ML methods often face problems when the data points are not
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evenly spread out over time or when some data is missing (see Section 4.44.4) or noisy, which is

present in all our datasets. We will investigate the use of Reservoir Computing [124124] as imple-

mented in the Python library ReservoirPy [198198] to perform forecasting task on viral dynamics

and compare it with mechanistic models. We will also explore other approaches recently de-

veloped for between-host models [161161] using long-short term memory recurrent network [7272].

Given the sparse noisy nature of the data, we plan to perform various preprocessing steps such

as multiple imputation and smoothing with a moving average to fill in the gaps. We will also

propose an hybrid forecasting model in which the mechanistic model serves to provide com-

plete de-noised smooth data, that are then assimilated by the ML algorithm. This work is meant

to be done in collaboration with Xavier Hinault (Inria Mnemosyne) and Cécile Proust-lima (In-

serm Bordeaux population health). This area of research might expand to include physically-

informed neural networks, incorporating the concept of hybrid ODE [142142]. Hybrid ODE are

constructed by defining a loss function that includes terms for both the data discrepancy (how

well the network predictions match the observed data) and the physical discrepancy (how well

the network predictions comply with the governing mechanistic model). During training, the

network learns to minimize this composite loss function, effectively fitting the data while also

obeying the specified mechanistic model.

In conclusion, I am committed to continually updating the methods I use for solving inverse

problems in NLME models and intend to persist in this endeavor.





Chapter 3

Within-host Modeling in Infectious Diseases

3.1 Bibliometry

Moving into a more applied realm, the second research direction introduces computational ap-

proaches to biology and medicine, specifically focusing on modeling the efficacy and impact of an-

tivirals and vaccines. This section builds upon the theoretical methods developed in the first research

direction, extending their application to practical scenarios. It encompasses not just the direct use

of these methods, but also elaborates on a methodological framework designed for prediction and

optimization of drug delivery. The manifestation of a viral infection in individuals varies and is host-

dependent. Various techniques detect viral infection in biological samples. Quantitative methods are

used to measure viral load or the concentration of specific proteins. For instance, the ELISA method

detects certain antigens/antibodies, indicating the presence of a virus in a sample. Polymerase Chain

Reaction (PCR) methods can detect viral genetic materials (DNA or RNA, with an additional transcrip-

tion reverse step) even at very low concentrations. Functional assays of neutralization for antibodies

are designed to measure the ability of these antibodies to prevent viral infections. Flow cytometry

also allows to quantify the abundance of multiple types of cells such as B or T cells. This type of

data will be modeled using within-host mechanistic models in this section. Table 3.13.1 showcases the

scientific outputs in this field. This theme gave birth to 16 articles in peer-reviewed international

journals, 21 international conferences, 4 national conferences and 6 seminars. It is also funded

by 2 international grants and 2 national grants. Even though most models and methods could be

easily extended to other infectious diseases, we particularly worked on HIV, Ebola virus, Nipah virus,

and SARS-CoV-2. The interrelation of all these works is explained in the next subsections.
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Before
Last

Peer-reviewed International Journals IF/Cite First Second or Last Other
Nature Communication 16.6/25 RI-21-3RI-21-3
Advanced Drug delivery Reviews 11.5/27 RI-13-2RI-13-2
eLife 11.1/7 RI-22-4RI-22-4
eBioMedicine 11.1/10 RI-22-3RI-22-3
Nature Vaccine 9.2/1 RI-23-7RI-23-7
Journal of Clinical Immunology 8.2/1 RI-23-4RI-23-4
PLOS Computational Biology 4.8/3-33-3 RI-23-5RI-23-5 RI-14-1RI-14-1;

RI-23-8RI-23-8
Journal of Virology 4.4/34-16 RI-19-1RI-19-1;

RI-16-1RI-16-1
Journal of Theoritical Biology 2.3/20 RI-20-1RI-20-1
Statistical Methods in Medical Research 2.3/2 RI-21-2RI-21-2
Biometrics 1.9/41 RI-12-2RI-12-2
Statistics in Medicine 1.8/8 RI-18-2RI-18-2
Annals of Applied Statitistics 1.8/17 RI-17-3RI-17-3
Total (16) 2 3 2 9
International conferences Invited Speaker Mentee Poster Other
CROI HCI-23-4HCI-23-4;

HCI-20-1HCI-20-1;
HCI-18-2HCI-18-2;
HCI-18-1HCI-18-1

World congress B&C Pharmacology HCI*-23-3HCI*-23-3
PAGE HCI-23-2HCI-23-2;

HCI-22-2HCI-22-2;
HCI-21-4HCI-21-4;
HCI-18-3HCI-18-3

CI-19-2CI-19-2

Society Mathematical Biology HCI*-23-1HCI*-23-1
Canadian Applied Mathematics Society HCI*-22-1HCI*-22-1
CMStat HCI*-21-2HCI*-21-2
Workshop on Virus Dynamics HCI*-19-2HCI*-19-2 CI-19-5CI-19-5
HIV Dynamics and evolution HCI-13-1HCI-13-1
ISBC CI-21-1CI-21-1;

CI-20-1CI-20-1
IBC CI-18-2CI-18-2 CI-14-2CI-14-2
Other CI-17-1CI-17-1
Total (22) 5 0 8 5 3
National conferences Invited Speaker Mentee Poster Other
ANRS MIE AC CN*-21-3CN*-21-3 CN-22-2CN-22-2
JdS SFdS CN-21-2CN-21-2
GDR Stat & Santé ou Mamovi CN-17-3CN-17-3
Total (4) 1 1 2 0 0
Seminars (6) S-23-1S-23-1; S-22-1S-22-1; S-18-1S-18-1; S-17-2S-17-2; S-13-2S-13-2; S-13-1S-13-1
International Grants (2) IG-19-2IG-19-2; IG-18-1IG-18-1
National Grants (2) NG-23-1NG-23-1; NG-18-1NG-18-1
Sofwares (0)

Table 3.1 – Bibliometry for axis "Within-host modeling in infectious diseases"
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3.2 Virus Dynamics Models

3.2.1 Generalities on Modeling HIV Dynamics

The new field of viral dynamics, based on within-host modeling of viral infections, began with

models of human immunodeficiency virus (HIV), but now includes many viral infections. Early re-

search focused on viral dynamics after the initiation of treatment. This work began with the biological

observation that the virus V is produced by infected cells at a rate denoted by β and dies at a con-

stant rate δV . This concept was expressed through the differential equation dV/dt = β − δV V . This

basic analysis demonstrated a rapid turnover of HIV viruses [205205]. The model was later extended to

account for CD4+ T cells (CD4 in short) [8585]. In the model, uninfected target cells T are produced

at a constant rate λ, die at a rate δT per cell, and get infected by the free virus at a rate described

by the mass action term βV T . This infection process leads to the creation of productively infected

cells I, which die at a rate δI , higher than δT , reflecting the viral impact on reducing the lifespan of

infected cells. Finally, free viruses are produced by infected cells at a rate p per cell and are cleared

from circulation at a rate δV per virus. This is transcripted in Equation 3.13.1 and Figure 3.13.1.





dT
dt = λ− δTT − βV T
dI
dt = βV T − δII
dV
dt = pI − δV V

(3.1)

Figure 3.1 – Target Limited virus dynamics model

Several reviews discuss variations of this fundamental HIV dynamics model [151151, 150150]. These

models can be specifically tailored to the particular mechanism of interest or research question. Ex-

tensions of the model may include more complex CD4 maturation processes [5555], the consideration

of multiple viral quasi-species (both infectious and non-infectious) [145145], the inclusion of effector

cells [1515], CD8 modelling [170170] or the dynamics of HIV latency in reservoirs [169169]. The choice and

complexity of the model are influenced by the available data to ensure identifiability without needing

to fix most of the model’s parameters.
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Because theoretical research from Section 2.22.2 demonstrates the feasibility of utilizing this mech-

anistic model platform for predicting counterfactual scenarios, we aim at using mechanistic model

to investigate the change of dose and the timing of dose administration in a personalized medicine

framework. It primarily depends on updating population parameters from a mechanistic model using

empirical data for a new subject. This is most of the time achieved through Empirical Bayes Estimates

(EBE [139139]). This process enables the refinement of the subject’s random effects, facilitating pre-

dictions about its response to new interventions. These interventions effects may have been learned

from a different set of patients.

3.2.2 Generalities on Personalized Medicine

Recent systematic review of the literature indicates that prediction under hypothetical intervention

for treatment optimization is still an emerging topic with most work appeared later than 2015 [122122].

Optimal treatment regimes or treatment drug monitoring involve sequential decisions [119119]. In

these trials, a treatment regime is a sequence of decision rules, each rule corresponding to a decision

point. These rules map the accumulated patient information to a recommended intervention. The

approach essentially tailors the treatment plan based on the evolving health status of the patient,

allowing for a more personalized and effective treatment strategy. There are currently at least three

distinct types of optimal treatment regimes : regression-based mainly with Q- and A- learning (see

[3030] and references therein), direct search which construct an estimator of the mean cumulative

utility (see [216216] and references therein) and model-based. In our work we focus on the later for

which G-computation is an option [215215] as well as Bayesian approach [171171, 7979, 211211] (see later in

Section 3.13.1 for our developments) and learning methods (see [7373] and references therein as well as

Section 4.34.3 for our developments). At the time of this research (2013), model-based strategies in

clinical decision-making were less mainstream than they are today. We authored a statement paper

on how mechanistic models can inform personalized medicine (RI-13-2RI-13-2; S-13-2S-13-2). In a model-based

approach, the idea is to learn from the data collected from an individual to forecast the best choices

likely to produce the best clinical outcomes. It has been shown possible in many pharmacometrics

models using clinical trials simulations, for example in herpes viruses [175175]. Control theory has

been suggested to find the optimal interventions that reduce a given cost function [107107]. Quadratic

cost functions weighting system response (viral load or CD4 count) and side-effects of the drug have

been proposed [185185]. Although conceptually interesting, this approach is not realistic because (i) the

model is not known, (ii) the choice of the cost function is debatable, (iii) the treatment cannot be

continuously adapted. More recent approaches tend to get free from cost functions [1111] (as we do in

the following) and do not aim at adapting the dose continuously [200200].

In my work, the effective reproductive number (R0 before any intervention and Rt after) plays
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an important role. It represents the average number of secondary infections produced by a single

infected individual in a completely susceptible host population. It is a key concept in epidemiology,

indicating the contagiousness of an infectious disease, see Section 4.14.1. In the within-host scenario,

it describes how efficiently a pathogen can replicate and spread within an individual host. A higher

R0 value suggests a more aggressive infection, potentially leading to faster disease progression or

greater virulence. On the contrary, R0 below one signifies that the infection is unlikely to sustain

itself. Thus, in our work on optimization of delivery of treatments this represents the outcome we

will try to control.

3.2.3 Bayesian Optimization of Delivery of ART

Antiretroviral therapies (ART) is a treatment regimen for HIV/AIDS that uses a combination of

several antiretroviral drugs. The aim of ART is to reduce the amount of HIV viral load to undetectable

levels. This approach helps in improving the immune functions and slowing the progression of HIV to

AIDS. ART has significantly improved the life expectancy for people living with HIV (PLHIV) to few

years lower compared to people non-infected with HIV [197197].

Our initial work was rather conceptual. It proposes a personalized medicine approach for HIV

treatment based on controlling reproductive number (RI-12-2RI-12-2). The strategy aims to determine

the minimal ART dose that keeps viral load undetectable (i.e. R0 below one), thereby reducing

side effects. The flowchart of the strategy is provided in Figure 3.23.2. For a new individual, the

algorithm involves estimating individual parameters using patient data observed after the initiation

of a standard dose. The estimation is done using a mechanistic model similar to Equation 3.13.1 with

an EBE approach for updating individual parameters. Then, we sample the posterior distribution of

R0 for this specific patient using MCMC sampling. The optimal dose dopt is defined as the dose for

which the probability of having a R0 greater than one is small, typically lower than 5%. Finally, we

observe the dynamics of the patient under this new dose and readjust iteratively until convergence.

We then extend this work based on a stochastic model for treatment optimization Sub-1Sub-1. Later, we

successfully predicted outcomes of ongoing trials on Short-cycles treatment interruptions, in which

patients take their treatment only few consecutive days in the week (HCI-18-2HCI-18-2; HCI-13-1HCI-13-1; CN-17-3CN-17-3;

S-13-1S-13-1). We estimated the effect of various ART with mechanistic models on the HIV Aquitaine ANRS

CO3 Cohort [193193] and predicted the results of the Breather trial which investigated 5/7 designs (5

days on, 2 days off ART) in adolescents. They showed a sustainable non-inferiority of virological

suppression compared to continuous ART [1919]. We were able to predict this result. Finally, we

encapsulated all the steps of these methods to develop an in silico trial pipeline (S-18-1S-18-1; S-17-2S-17-2).

See Section 3.53.5 for details on elaborating a pipeline that will provide a digital twin for drug and

vaccine development in infectious diseases.
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Figure 3.2 – Flow chart for the control strategy procedure: individualized dose monitoring for ART
dose in PLHIV (Figure from RI-12-2).

3.2.4 Modeling T cells proliferation and optimization of timing delivery

We developed a comprehensive mathematical analysis of the effects of Interleukin-7 (IL-7) on

CD4 restoration in PLHIV. We model CD4 proliferation using mechanistic model with two compart-

ments of proliferating (P ) and quiescent (Q) cells. Of note, other modeling approach such as size-

structured model for cell division could have been proposed [5454]. Q cells are created at rate λ and

start proliferating at rate π. Each P cells results in the formation of 2 new Q cells at a rate ρ. Cells

die at rates µP and µQ. This is transcripted in Equation 3.23.2 and Figure 3.33.3.





dQ
dt = λ+ 2ρP − πQ− µQQ
dP
dt = πQ− ρP − µPP

(3.2)

Figure 3.3 – CD4 Proliferation Model

The objective was to understand and quantify whether the observed changes in CD4 counts could

be attributed solely to increased peripheral proliferation or if other mechanisms, such as improved cell

survival or thymic production, also play significant roles (RI-14-1RI-14-1; CI-14-2CI-14-2; CI-17-1CI-17-1). In particular,

we demonstrated that a decrease of the loss rate of the quiescent CD4 (µQ) is the most probable

explanation. This platform served to explore the potential of repeated IL-7 cycles for sustained CD4

restoration in PLHIV (RI-17-3RI-17-3; HCI-18-3HCI-18-3). These results unlocked the design of new clinical trials for

repeated IL-7 injections to sustain high level of CD4 in PLHIV (Inspire trials). Finally, we designed

adaptive protocols based on Bayesian predictions from a mechanistic model of the effect of IL-7

on CD4 counts (RI-18-2RI-18-2; CI-18-2CI-18-2). Figure 3.43.4 presents two adaptive treatment protocol we proposed.

One based on the fixed visit times and adaptive criterion of injection of IL-7 (AC) and one based on
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individualized visit times (AT). We show that AT slightly reduce the number of visits compared to AC,

while keeping other criteria such as CD4 levels unchanged. In comparison to classical approaches

rooted in optimal control [148148], our method offers distinct advantages. Firstly, it operates under

the assumption that parameters are not pre-defined, allowing for adaptation of IL-7 injections as

estimations of individual parameters and predictions are refined with new data in time. This dynamic

approach aligns with the concept of dynamic drug monitoring as described in [141141]. Secondly, our

statistical treatment optimization approach is less computationally intensive, as it does not involve

searching for an optimal strategy across the entire space of potential strategies. This project really

illustrated how new trials can be guided by simulations and extrapolations from mechanistic

models. See Section 3.53.5 for details on ways to explore new approach for treatment design.

Figure 3.4 – Flowchart illustrating two protocols. Adaptive criterion of injection (AC) protocol: the
visits are every 3 months and the decision to administer a new cycle is based on the predicted risk R
to fall under 500 CD4 count before the next visit. Adaptive time of injection (AT) protocol: the times
of visit are predicted based on the time at which the patient is supposed to reach the 500 CD4 count
limit, and a new cycle is administered if this predicted time is too short (Figure from RI-18-2).

3.2.5 Methods to evaluate vaccine efficacy

There have been a long research on vaccine against HIV. Although we got involved in some work

regarding pre-clinical development of prophylactyc vaccines (RI-16-1RI-16-1, in which we ran a basic survival

analysis), we are particularly interested in the development of therapeutic vaccines for PLHIV, also

referred as HIV cures. Therapeutic vaccines for HIV are designed to enhance or induce immunity in

order to alter the disease’s course. Despite the success of ART in managing HIV, these therapies alone
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are unlikely to eliminate the HIV reservoir and cure the infection. Analytical treatment interruption

(ATI) in HIV management involves temporarily stopping ART. ATI is used in research to evaluate the

efficacy of HIV therapeutic vaccines. A consensus paper on the general rules to run ATI trials has been

published elsewhere [100100].

Viral load is most of the time of primary interest in ATI trials. First, this marker is always left-

censored due to detection limit of biological measurements, i.e. the exact viral load is unknown and is

effectively "censored" at a lower limit. Second, several recommendations have been proposed to limit

potential risks, in terms of morbidity, mortality, disease progression, HIV transmission, emergence of

new drug-resistance, development of neurological or cardiovascular disorders [101101]. In particular,

regulatory guidelines mandate ART resumption for patient safety when the viral load reaches a certain

threshold. This is similar to informative loss of follow-up which is a type of informative missing data.

Thus, end-of-the-study viral load (setpoint) value in itself cannot be primary outcome of these trials.

In our work, we statistically compared endpoints as primary outcome for trials (HCI-23-4HCI-23-4; HCI*-19-2HCI*-19-2;

Sub-5Sub-5). We investigated among others time-related criteria (slope of rebound, time to rebound, to

peak viral load, to setpoint, and to specific viral load thresholds) and viral load magnitude-related

criteria (peak viral load, setpoint and time-averaged area under the curve nAUC). All these criteria

are depicted in Figure 3.53.5. We showed that time-averaged Area Under the Curve (nAUC) is the

most robust indicator. Subsequently, with my PhD student Marie Alexandre, we proposes a statistical

testing of the nAUC strategy (RI-21-2RI-21-2; HCI*-21-2HCI*-21-2; CI-20-1CI-20-1; CN-21-2CN-21-2). See Section 6.46.4 for the full

version of the article presenting this work. The viral rebound trajectories which are partially observed

are approximated using spline-based mixed-model. Then, time-averaged AUC are derived from the

splines regression coefficients to perform mean-difference t-test between groups. See Section 3.53.5

for details on extension of this method using mechanistic models and manner to account for model

uncertainty using model averaging.

Mechanistic modeling HIV rebound after ATI using dynamic models presents several challenges.

A major challenge is the latent HIV reservoir, where the virus remains hidden and inactive within

cells, evading the immune response and ART. This reservoir can persist despite long-term therapy,

leading to viral rebound when treatment is interrupted. However, the time to rebound is individual-

specific and stochastic as a rare event process. Together with collaborators (Alison Hill - Harvard

University; John Hopkins Hospital), we developed a good model for rebound in HIV accounting for

the stochasticity of the phenomenon (HCI-18-1HCI-18-1; CI-19-2CI-19-2). The model was specifically developed

to be flexible enough to capture rebound kinetics both in the regime where latent cells reactivate

frequently and rebound occurs rapidly, and in the regime where reactivation from latency is rare

and there are stochastic delays until the first fated-to-establish lineage exits the reservoir [8484]. Briefly,

free viruses V enter target cells T (with infection rate β), producing infected cells I. Infected cells in
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Figure 3.5 – Description of virological endpoints. Black and white dots represent detectable and
undetectable viral load measurements collected during the ATI phase, respectively, while gray dots
represent measurements taken after ART re-initiation. The horizontal gray dotted line represents the
detection limit. Abbreviations: ART, antiretroviral treatment; TTR, time to rebound; TTsetpoint, time
to setpoint; TTPeak, time to VL peak; AUC, area under the curve; VL, viral load (Figure from Sub-5).

turn release free virus (rate k). Long-lived precursor immune cells P which encounter viral antigen

proliferate (p(V ) = pV/(V +NP )) and produce short-lived effector immune cells E. Effector immune

cells eliminate some infected cells before they contribute to ongoing infection by producing new

virus (β(E) = β/(1 + E/NE)). A fraction f of expanded precursor cells revert to the precursor

state after encountering antigen, forming immunological memory. Both uninfected target cells and

precursor immune cells are produced at a constant rate (λ and m, respectively). While during acute

infection m likely represents activation of naive cells, during viral rebound, it may be dominated by

reactivation of memory cells. Latently infected cells reactivate with rate a (or equivalently, every ta

days on average) to become productively infected cells. Virus is cleared at a rate c and each cell type

i dies with death rate di.This is transcripted in Equation 3.33.3 and Figure 3.63.6.





dT
dt = λ− βTV − dTT
dI
dt = a+ βTV

1+(E/NE) − dII
dV
dt = kI − cV
dP
dt = m+ p(1− f) V

V+NP
P − dPP

dE
dt = pf V

V+NP
P − dEE

(3.3)

The study includes data from non-human primates (NHP) trials involving immunotherapies

like TLR7-agonist, therapeutic vaccines, and monoclonal antibodies (Sub-2Sub-2; HCI-20-1HCI-20-1; CI-19-5CI-19-5). We

showed a modest effect of these strategies in NHP. However, it has been demonstrated in [164164] that

treatment strategies providing modest but continuous improvements in reservoir clearance rates lead

to quicker cures than abrupt, one-time reductions in reservoir size. Furthermore, the role of CD4 cell
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Figure 3.6 – Schematic of the viral dynamics model with latent infection and an antigen-dependent
immune response (Figure from Sub-2).

turnover in maintaining HIV persistence during antiretroviral therapy remains to be fully elucidated

[1414]. Our preprint (Sub-2Sub-2) also aims to predict the outcomes of these immunotherapies in human

clinical trials. This marks a significant initial step in my research in connecting findings from NHP

studies to human simulations through the use of mechanistic models. And, extension of these ideas

of cross-species mechanistic predictions opens the perspective for future research (see Section 3.53.5).

3.3 Immune Dynamics Models

3.3.1 Generalities on modeling Humoral Response

The immune system comprises a vast array of diverse cells that interact with each other and the

rest of the body to protect against external entities. It consists of two main parts: the innate immune

system, which includes generalist cells and components forming the first line of defense against ex-

ternal agents, and the acquired immune system, activated by T and B lymphocytes in response

to a pathogen, providing specific defense. Unlike the constant presence of innate immunity actors,

acquired immunity cells are less abundant before the first infection, and developing an acquired re-

sponse can take days, during which time the virus can proliferate. The activation of the acquired

immune system leads to the recruitment of specific memory lymphocytes, offering long-term pro-

tection against infections by the same pathogen. This immunity is also marked by the presence of

antibodies in the blood, specifically targeting viral proteins or nucleic acids.

Although mechanistic models can describe these processes, the literature is still very sparse. A re-

cent review of the literature identified only 8 ODE-based modeling approaches of humoral immunity

[7070]. One of the most exhaustive model allowing to account for establishment and maintenant of
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Figure 3.7 – Schematic representation of humoral response Model.

the immune vaccinal responses has been developed with collaborators (RI-20-1RI-20-1; CN*-21-3CN*-21-3). To un-

derstand the dynamics of antibodies, it is possible to developed a model incorporating a population

of antibody-secreting cells (ASC). However, to explain the long-term persistence of the antibody

response, it is needed to extend it to include two distinct ASC populations [6868], which consists

in short-lived and long-lived populations. This concept was further refined using ODE [208208, 55].

Building on these ideas, we introduced a memory B cell compartment into our model, akin to the ap-

proach [4242], where memory B cells can differentiate into ASC. This integration of processes resulted

in Equation 3.43.4 and Figure 3.73.7, forming our mechanistic model.





dA
dt = −δAA
dM
dt = ρA− (µS + µL)AM − δMM
dS
dt = µSAM − δSS
dL
dt = µLAM − δLL
dAb
dt = θSS + θLL− δAbAb

(3.4)

The model considers three B cell populations: memory B cells (M), short-lived ASC (S), and

long-lived ASC (L), along with antigen concentration (A) introduced through immunizations, and

antibody concentration (Ab). The reaction in the model begins with the detection of an antigen A

(which can be presented by vaccination or natural infection), leading to the formation of M cells at

a rate denoted by ρ. These M cells differentiate into short-lived (S) and long-lived (L) ASC at rates

described by the mass action terms µSAM and µLAM . These ASC then produce Ab at a rate θ.

All components X in the model decay at a rate represented by δX . While this model is an effective

theoretical tool for conceptualizing and understanding the humoral response, it has a large number

of parameters. This complexity makes the model structurally unidentifiable when only observing

antibody levels. One potential solution is to design studies where proxies for M, S, and L cells are

measured. However, currently, such measurements are not readily available. In the future, it might
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be possible to achieve this using transcriptomics, as discussed in Section 2.62.6. Because this approach

is not mature to be used yet, to effectively use this model, it’s necessary to either fix many parameters

through sensitivity analysis or develop simpler, rescaled models. The subsequent sections propose

ways to address these challenges.

3.3.2 Maintenance of vaccinal response against Ebola

Having an effective vaccine against the Ebola virus hemorrhagic fever has become a public health

imperative since the 2014 epidemic in West Africa. The EBOVAC series grants - including EBOVAC 3

for which I was involved (IG-18-1IG-18-1) - has contributed to meeting this challenge by providing evidence

of the safety and immunogenicity of a vaccine developed by Janssen Pharmaceuticals. Data for these

trials have been published in a serie of papers [181181, 156156, 1616, 9393]. The first goal was to understand

the long-term immune response to the vaccine. Using a simplification of the mechanistic model from

Equation 3.43.4 with only (S,L,Ab), we modeled the antibodies decline from the peak 7 days after

last vaccination to last follow-up. The simpler model writes in Equation 3.53.5 and Figure 3.83.8, with

φS = θSS0 and φL = θLL0, where S0 and L0 are the initial conditions at equilibrium of memory cells

7 days post last vaccination. Since both short-lived and long-lived ASC populations are unobservable,

the parameters (θS and θL) and initial conditions cannot be identified solely based on observations

of antibodies.
dAb

dt
= φSe

−δSt + φLe
−δLt − δAbAb (3.5)

Figure 3.8 – Model for persistence of humoral response.

Multiple regimens that were tested in phase I (including different vectors order and timing -

studies EBL1001, EBL1003, EBL1004) on 44 participants were evaluated and our modeling helped

selecting Ad26.ZEBOV/MVA-BN-Filo with a booster dose at day 57 and predicting its effect (RI-19-1RI-19-1).

This first piece of work predicted the durability of the response to be sustained more than 7 years. Us-

ing follow-up data from phase II/III (EBL2001, EBL2002, EBL3001) on 443 participants, we showed
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Figure 3.9 – Schematic of antigen presentation in replicant vaccine viral vector.

that immunity is likely to be sustained for more than 15 years using this strategy (RI-23-7RI-23-7; HCI-21-4HCI-21-4).

Using model building strategies defined in Section 2.52.5, we also investigated the effect of covariates

on the humoral response dynamics. The humoral response’s predictors include geographic region,

where Europeans demonstrated longer antibody persistence compared to Africans; sex, with women

showing longer antibody persistence; and age, where younger participants exhibited higher antibody

production. These conclusions are yet to be extended in larger studies.

In the Prevac/Prevac-Up trial (funded by IG-19-2IG-19-2 for which I am workpackage leader), more than

3000 individuals were followed-up after Ebola vaccination using two strategies Ad26.ZEBOV/MVA-

BN-Filo by Janssen Pharmaceuticals or rVSV-ZEBOV-GP by Merck. Data have been described in [192192].

The idea is to understand if it exists important predictors of vaccine response such as demographic

covariates. We built a linear mixed-effects model to start to answer this question (Sub-3Sub-3), and mech-

anistic development are yet to be extended. One of the important mechanistic differences between

the two vaccine platforms tested is that while Ad26 and MVA viral vectors are non-replicating, rVSV

replicates within the host after participant immunization. This has been demonstrated by shedding

studies conducted in both blood and saliva [165165]. Consequently, the antigen presentation described

in Equation 3.43.4 is likely to vary depending on the vaccination group. Explored features account-

ing for replication, akin to pharmacokinetic models, are presented in Equation 3.63.6 and Figure 3.93.9.

However, due to sampling constraints, there is limited information available regarding this aspect of

the dynamics. Nonetheless, we will aim to address the question of differing mechanisms of humoral

dynamics between vaccine groups. The mechanism will also differ by individual. This would open

the perspective of optimization of vaccine delivery using a vaccinal digital twin, see Section 3.53.5.





dA
dt = −δAA
dV
dt = A− δV V

(3.6)
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Figure 3.10 – Model for establishment of humoral response.

3.3.3 Establishment and maintenance of vaccinal response to SARS-CoV-2

The COVID-19 pandemic, unprecedented in modern times, caused a global shift in research fo-

cus. Quickly, it became a priority for the scientific community, redirecting efforts from various fields

towards COVID-19 research. We used our mechanistic tools to understand humoral response and

its neutralisation abilities in humans. We rescaled and reduced the models developed for human

response in Ebola from Equation 3.43.4 to be able to estimate it from antibodies data. Moreover, we

demonstrated that a single compartment of ASC was sufficient to accurately model the dynamics,

suggesting that there is no long-term response to the investigated vaccine. The new model is fun-

damentally based on the assumption that a steady state is rapidly achieved by M cells following

vaccination using step function. These M cells mature into S cells at a rate of fMV
, while the anti-

gen, degrading at a rate of δV after each injection at time tV (V = 1, 2, 3), is present. S cells die at a

rate of δS . Antibodies Ab are then produced at a rate of θS and degrade at a rate of δAb. Moreover, we

jointly model the binding (Ab) and neutralizing (as measured by ED50 for each variant of concern

(VoC) ν, which refers to the effective concentration of antibody required to neutralize 50% of the

virus in an assay) by assuming that neutralizing antibodies are a proportional time-varying fraction

of binding antibodies depending on the VoC (fν) and enhanced with new injections in a VoC-specific

manner (fνV with V = 1, 2, 3). This is described in Equation 3.73.7 and Figure 3.103.10. In other words,

there is a decrease of neutralization against VoC compared to Wild-type strains (WT), an increased

neutralization with the subsequent doses of vaccine, and the incremental increase in neutralization

is more pronounced for the subsequent injections with Omicron VoC compared to WT.





dS
dt = fMV

e−δV (t−tV ) − δSS
dAb
dt = θSS − δAbAb

EDν
50(t) = F (ν, t)Ab(t)

F (ν, t) = fνf
ν
V (t)

(3.7)

See Section 6.56.5 for the full version of the article presenting this work. It allowed us to derive the

expected longevity of vaccine protection in humans after Pfizer Bnt162b2 vaccination against

each VoC up to the omicron era (RI-23-5RI-23-5; HCI-23-2HCI-23-2; HCI*-22-1HCI*-22-1; CN-22-2CN-22-2; S-23-1S-23-1; S-22-1S-22-1). The mean
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duration of detectable neutralizing capacity varied between VoC. For non-Omicron VoC, it ranged

from 348 to 587 days, and for Omicron VoC, it was between 173 and 256 days post-third vaccination.

The study highlighted the significant role of multiple vaccine doses in enhancing both the quantity and

quality of the humoral response, particularly against emerging VoC. However, it should be considered

that there is no definitive proof indicating what level of neutralization might be sufficient to protect

against infection or severe illness. This is partially adresse by the work on correlates of protection

(CoP) started in the next section 3.43.4. In our work, we did not address cross-immunity, although

it is relevant [176176]. Moreover, the protection responses are possibly multifactorial, including other

markers such as T response [202202]. On this note, in a side work using the French Covid cohort, we also

investigated with basic descriptive statistics the impact of T cell response on protection against severe

infection (RI-23-4RI-23-4). See Section 3.53.5 for details on exploration of animal platforms to investigate these

questions.

3.4 Joint Modeling of Virus and Immune Dynamics Models

During the pandemic, we have been involved in research testing for a new vaccine platform

against SARS-CoV-2 (RI-21-3RI-21-3; RI-22-3RI-22-3). This vaccine platform targets the receptor-binding domain

(RBD) of the SARS-CoV-2 spike protein to CD40-expressing antigen-presenting cells, leveraging their

immune-stimulant properties. The vaccine is tested on NHP, a platform beneficial for vaccine test-

ing due to their close physiological and genetic similarities to humans. These platforms are vital in

early vaccine development stages, particularly because it’s possible to expose NHP to the pathogen to

evaluate their dynamic response to infection. This method provides critical insights into the vaccine’s

potential effectiveness and safety before human trials. Using this unique data, we investigate the

effect of VoC of SARS-CoV-2 on the viral dynamics as described in Equation 3.13.1 (RI-23-8RI-23-8). With col-

laborators from Inserm Paris IAME, Jérémie Guedj and students, we demonstrated that despite lower

viral loads, Omicron maintained high levels of infectious particles over time, suggesting its increased

transmissibility stems from prolonged infectiousness rather than higher viral load. A subsequent step

would be to correlate these results with findings from extensive human screening data [5959, 184184],

see Section 3.53.5 for bridging between species. It has been shown that while viral load is a reliable

predictor for transmission [129129], it remains inconclusive or not a strong marker for infection severity

and disease progression [3939]. Therefore, it’s necessary to explore other markers of immune system

dynamics for a more comprehensive understanding of these processes. A CoP is a specific immune

response to a vaccine or infection that is statistically associated with protection against a disease. It

serves as a surrogate marker indicating the presence and level of immunity. Identifying these CoP is

crucial for evaluating vaccine effectiveness and guiding vaccine development [9696]. Binding antibod-
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ies to SARS-CoV-2 and in vitro neutralization of virus infection are clearly associated with protection

[105105, 214214, 5858, 6464]. However, the respective contribution to virus control in vivo remains unclear, and

many other immunological mechanisms may also be involved, including other antibody-mediated

functions [135135, 191191], as well as T cell immunity [133133]. Furthermore, CoP may vary between the

vaccine platforms [154154, 4040].

In term of methods, various approaches has been proposed to identify CoP. NHP studies offer a

unique opportunity to evaluate early markers of protective response [140140, 6262]. The concept of CoP

is deeply rooted in the field of causal inference. A CoP is considered as such if knowing the effect of

a vaccination on the CoP allows for the prediction of the vaccine’s impact on clinical outcomes [9797].

This aligns with the statistical definition of a surrogate marker, where the CoP acts as an intermediary

predictor of the vaccine’s efficacy in terms of real-world health outcomes. While some studies focus

on patient-level data, examining correlations between markers and outcomes [3636, 106106], other use

meta-analysis in finding CoP. This later approach involves pooling data from multiple studies to iden-

tify common immune responses that protect against disease, using regression techniques like linear

and Cox models [7575, 174174]. Identifying CoP requires acknowledging that correlation does not imply

causation, recognizing multi-dimensional mechanisms, and avoiding off-target effects (unintended

consequences of an intervention) [6767, 201201]. Therefore, defining a CoP on the causal pathway is es-

sential, aligning with the principles of mechanistic modeling, this defining a mechanistic correlate

of protection (mCoP) [155155]. We propose a method to define a mCoP using mechanistic models.

This method validates whether a covariate serves as a surrogate marker in accordance with Prentice’s

definition [158158]. See Figure 3.113.11 for a representation of CoP with Directed Acyclic graphs and Pren-

tice’s definition. Essentially, it allows for the evaluation of a covariate’s role in mechanistically linking

vaccination to clinical outcomes (RI-22-4RI-22-4; HCI*-23-3HCI*-23-3; HCI-22-2HCI-22-2). See Section 6.66.6 for the full version

of the article presenting this work. We demonstrated the crucial role of antibodies’ neutralization

function in the infection process, which is consistent with literature [105105] and has been validated on

two external studies. In brief, the method is as follows:

1. Mechanistic modeling: Fit a virus dynamics model to the data obtained after a challenge with

the desired virus, without (M0) and with adjusting for intervention effect (MG).

2. Correlation of the prospective mCoP with the outcome (S → Y ): For each available marker

investigated as a mCoP, try to include it one by one as a covariate effect on the model parameters

inM0. Collect all the BICc related to each model. Select the model (and related S) associated

with the lowest BICc (M∗).

3. Conditional independence of the prospective mCoP and the intervention (Y ⊥ A|S): in

M∗, check that when adjusting jointly for the intervention effect and the mCoP, the intervention
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Figure 3.11 – Directed Acyclic graphs representing the definition of S as a CoP. According to Prentice’s
definition, S is a CoP if 1/ S must be correlated with the true outcome Y 2/ S must be affected by
the intervention A 3/ The intervention A and outcome Y should be conditionally independent given
the CoP: Y ⊥ A|S

effects turn out to be not statistically significant and the mCoP absorbs all the effect.

4. Association between the intervention and the prospective mCoP (A → S): in M∗, check

that the random effect associated with the parameter on which the mCoP is applied is decreased

when adjusting for the mCoP in M∗ rather than when adjusting for the intervention only in

MG. This demonstrates that the mCoP captures more variability than the intervention does.

In our previous work, we modeled how the neutralization function of antibodies can prevent new

infections and reduce viral dynamics. However, we overlooked a crucial aspect of mechanistic models:

the role of viral load in stimulating new antibody production and enhancing the neutralizing response.

Our simulations revealed that this oversight could lead to biases in estimating the vaccination’s effect

(CI-21-1CI-21-1). As a natural extension of this research, it is feasible to attempt to establish a threshold

for the mCoP against infection. In pursuit of this goal, we leverage the reproductive number, as

introduced in Section 3.2.23.2.2. This criterion serves as an indicator of whether the infection can sustain

itself or not. Therefore, determining a threshold is possible by identifying the level of mCoP required

to reduce the reproductive number below one with a high probability. This concept has previously

been explored in collaboration with Marie Alexandre (HCI*-23-1HCI*-23-1). We are currently continuing to

develop joint models of virus and immune dynamics and trying to bridge with mechanistic models

across animal platforms, as detailed in the referenced future work Section 3.53.5. Finally, mCoP may be

evaluated for other outcomes such as hospitalization or death [143143], but this will necessitate human

data instead of NHP data and likely an extension to joint models that include a survival-type outcome

[4747].

3.5 Perspectives

Below is a collection of perspectives, both short-term and long-term, that we aim to address by

developing new within-host models. Ideas marked with an asterisk (*) are considered major in terms

of challenges and potential impact.
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Accounting for uncertainty and misspecification of models : As demonstrated in the previ-

ous chapter and referenced as RI-21-2RI-21-2, spline models are inferior to mechanistic models, particularly

when aiming to predict system behavior beyond the learning period. A prospective avenue for fur-

ther research on the analysis of ATI trials involves the adoption of mechanistic models instead of

spline-based mixed models. In a starting work with my postdoctoral fellow Marie Alexandre, vari-

ous mechanistic models of HIV rebound have been explored, including those presented in equations

3.13.1 and 3.33.3. However, none of these models perfectly reflect reality, and their selection may influ-

ence conclusions depending on the specific research question. Opting for model selection alone may

overlook uncertainty in model choice, potentially leading to erroneous predictions and conclusions

[2222, 1818]. Model averaging, which we privilege, entails integrating predictions from multiple models

to enhance accuracy and reliability. Although literature on model averaging dedicated to mechanis-

tic models in virus dynamics is scarce, except [7676], Bayesian Model Averaging provides a Bayesian

framework where model weights are determined by posterior model probabilities. Several approxi-

mation methods based on information criteria such as AIC or BIC exist for calculating posterior model

probabilities [2121]. However, consensus on the best criteria remains elusive, and other criteria, pos-

sibly based on the predictive abilities of the model, warrant exploration. Furthermore, exploring the

use of Model Averaging for comparing the nAUC calculated with mechanistic models in ATI trials,

as referenced in RI-21-2RI-21-2, holds promise. In summary, a key challenge will be to more systematically

incorporate model averaging into analyses using mechanistic models.

Digital Twin and in sillico trials (*): A digital twin in the context of my work refers to a virtual

representation or computational model that mirrors the immune system, viral infection processes, or

the spread of infectious diseases within an individual. This sophisticated simulation tool integrates

data from various sources to simulate and predict how the immune system interacts with pathogens

under possible interventions. The primary goal of a digital twin in this domain is to provide a de-

tailed, personalized model that can forecast and assess the efficacy of treatments or vaccines, and

predict outcomes under various scenarios. In this field, very few article, except [113113] describing a

high-level roadmap, has been published. A first application that rely heavily on my existing work is

the application to optimization of ART in PLHIV. Now that the on-off trials / short-cycle therapies

have concluded and the results have been published ([4444, 123123], and [112112] for a review), it is an

opportune moment to author a retrospective paper. This paper will explore what could have been

anticipated through modeling in term of effective strategies and what constitutes novel findings. The

initiation of this work is planned under the supervision of an M1 or M2 student. If successful, the in

silico trial pipeline that has been developed, capable of predicting a patient’s specific response to ART

therapy, can be regarded as a valuable digital twin for the quantitative guidance of ART optimiza-

tion. A second application would focus on the application to IL-7 immunotherapy optimization.
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To do so, an intriguing avenue to explore would involve employing reinforcement learning, compar-

ing it with previously published methods such as optimal control [148148] and Bayesian optimization

(RI-18-2RI-18-2). My collaborators at Inria Flowers and I have already pursued a similar task in a different

context, aiming to optimize the allocation of lockdown strategies during the COVID-19 pandemic

(refer to Section 4.3.24.3.2). Given that the software, Epidemioptim, is already operational in Python, this

could serve as a prospective internship project for a student at either the M1 or M2 level. Finally, a

third example could be the application to optimization of vaccine delivery. We demonstrated that

sex, age, geographic origins are specific determinants of vaccine efficacy. Investigation of circadian

clock is undergoing [9292]. Moreover, replication may be closely linked to adverse effects, particularly

in immunosuppressed populations such as PLHIV. Finally, in an epidemic context with ring vacci-

nation [8282], the initial speed of establishment of the humoral response is a key factor for success.

This raises a genuine question regarding which vaccine should be administered in which situation

to a new individual with its own characteristics that we will try to address. If these three projects

related to digital twins are conducted, it will enable the validation of models for virus dynamics, T

cell proliferation, and B cell humoral response. Subsequently, an extension will be required on the

modeling side to integrate these three aspects into a unified model. This integrated model will serve

as the foundation for the pipeline designed for the creation of new studies or the in silico evaluation

of intervention candidates. Thus, it will accelerate their development using a vaccinal digital twin.

Bridging between animals platforms and humans (*): Overall, the COVID-19 pandemic has

highlighted the urgent need for tools to rapidly evaluate vaccine efficacy. Recently we started consid-

ering applying our methodologies to rodent platforms in collaboration with Veronique Godot at the

Vaccine Research Institute. Mice experimentation offers a rapid and cost-effective avenue for evalu-

ating the safety and efficacy of vaccine candidates prior to NHP and human trials. With their shorter

lifespan, high reproductive rate, and genetic similarity to humans in key immune system functions,

mice serve as invaluable models for studying vaccine-induced immune responses and predicting their

translation to human populations. We have obtained data from an initial experiment, and we are

currently investigating questions such as the optimal duration of follow-up needed to estimate pa-

rameters of humoral response in mice, such as the half-life of long-lived cells. Furthermore, the use

of larger cohorts and a higher number of sacrifices in mice studies likely enables the observation of

additional information regarding hidden compartments of mechanistic models. These trials may pave

the way for observing populations of cells that do not circulate in the blood compartment, such as

M cells in germinal centers. These investigations not only directly apply to our models but also open

up potential for a broader research avenue to inform the design of mice experiments and suggest

strategies for cross-species bridging from mice to NHP. Alongside a digital twin in mice and methods

that may rely on allometric reasoning or other relevant mechanisms, it will become possible to more
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effectively design NHP experiments. For instance, in order to ensure a productive and consistent

infection pattern, animals are systematically infected by extremely large doses of virus, typically 106

PFU, while less than 10 infectious particles are sufficient to generate a natural infection. This im-

plies for instance that NHP can be used to take “go/no go decisions” and discard drug candidates but

may not be suited to more detailed analysis, such as the comparison of two drugs or establishment

of mCoP threshold. Moreover, NHP cohorts exhibit high homogeneity in their levels of prospective

mCoP due to identical vaccination and challenge dates. In summary, there is a recognized need to

propose alternative designs that are statistically sound in NHP. Then, again, alongside a digital twin

in NHP and methods that may rely on allometric reasoning or other relevant mechanisms, it will

become possible to more effectively design human studies. In particular, a focus in the following

years could be on Controlled Human Infection Model Study (CHIMS) [104104], where volunteers are

intentionally infected with pathogens under controlled conditions. Finally, unraveling the association

between within-host parameters (in animals or humans) and transmission is only possible in experi-

mental infection models [2323]. In fact, basic questions, such as the role of viral load on transmission

remain unknown for most viral infections. Similarly, understanding levels in the population that need

to be reached for a mCoP to prevent infection or other outcome such as hospitalization or death is not

an easy study to design (multi-scale modeling will be addressed in next section 4.44.4). An important

challenge is to investigate if this type of study would be possible to design in rodents. In summary,

we posit that a meticulous analysis of data from rodents (possibly mice), followed by NHP, and then

humans, using dedicated mechanistic models built step by step on each platform, will accelerate the

development of interventions. This pipeline from animal studies to clinical trials is standard, see

[126126] for the example of falvipiravir in Ebola. The ultimate aim is to achieve the capability to predict

human outcomes (or at least part of it) solely based on mice studies.



Chapter 4

Outreach to Implementation : Evaluation in

Population

4.1 Bibliometry

Finally, the third axis shifts the focus to the downstream aspects of development in population. It

addresses the critical stages of population testing and the evaluation of intervention or vaccination

strategies at a community or population level. This includes assessing the effectiveness of vaccina-

tion programs, understanding the dynamics of vaccine uptake, and evaluating the impact of various

vaccination or interventions strategies. This comprehensive approach is essential for informing pol-

icy decisions and guiding effective public health interventions in the realm of vaccine development.

Table 4.14.1 showcases the scientific outputs in this field. This theme gave birth to 15 articles in

peer-reviewed international journals, 12 international conferences, 3 national conferences, 6

seminars and 3 softwares or code releases. It is also funded by 2 national grants. The interrela-

tion of all these works is explained in the next subsections.

4.2 Cluster Randomized Trial for Evaluation of Interventions on

Epidemics

This final research chapter concentrates on examining strategies (both vaccination and non-

pharmaceutical interventions) employed in managing epidemics within populations. Assessing the

impact of these interventions is complex due to the intricate nature of infectious disease progression,

varying human behaviors and societal structures. A first method to evaluate the effect of an interven-

tion in the population is Cluster randomized trials (CRT), also known as a group-randomized trials.
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Before
Last

Peer-reviewed International Journals IF First Second or Last Other
Lancet HIV 14.8/237 RI-17-4RI-17-4
Anaesthesia Critical Care & Pain medicine 5.5/10 RI-22-2RI-22-2
American Journal of Public Health 5.4/159-114 RI-17-1RI-17-1;

RI-17-2RI-17-2
MDPI Covid/Viruses 4.6/6 RI-21-4RI-21-4
Epidemics 4.3/1 RI-24-1RI-24-1
Journal of Machine Learning Research 3.6/20 RI-21-1RI-21-1
BMC Infectious Diseases 3.1/6 RI-23-3RI-23-3
Journal of Clinical Microbiology 2.9/82 RI-16-5RI-16-5
R Journal 2.7/10 RI-17-5RI-17-5
Statistical Methods in Medical Research 2.3/15 RI-19-2RI-19-2
Biometrics 1.9 RI-16-2RI-16-2
International Journal of Biostatistics 1.8/50 RI-23-1RI-23-1
AIDS research 1.5/3 RI-18-1RI-18-1
Observational Studies 1.2/1 RI-23-2RI-23-2
Total (15) 3 2 8 2
International conferences Invited Speaker Mentee Poster Other
CROI HCI-23-5HCI-23-5
Society Mathematical Biology HCI*-21-5HCI*-21-5
PAGE HCI-21-3HCI-21-3
Channel Network Conference HCI*-21-1HCI*-21-1
Society of clinical Trials HCI*-17-1HCI*-17-1;

HCI*-16-1HCI*-16-1
CI-15-1CI-15-1; CI-19-1CI-19-1

Joint Statistical Meeting HCI*-14-1HCI*-14-1
Epidemics CI-21-3CI-21-3
Other CI-16-1CI-16-1 CI-15-2CI-15-2 CI-18-3CI-18-3
Total (12) 5 3 0 2 2
National conferences Invited Speaker Mentee Poster Other
ANRS MIE AC CN-22-1CN-22-1
JdS SFdS CN-19-1CN-19-1;

CN-16-1CN-16-1
Total (3) 0 2 1 0 0
Seminars (6) S-21-1S-21-1; S-20-2S-20-2; S-20-1S-20-1; S-17-1S-17-1; S-15-2S-15-2; S-15-1S-15-1
International Grants (0)
National Grants (2) NG-21-1NG-21-1; NG-20-1NG-20-1
Sofwares (3) Soft-21-1Soft-21-1; Soft-20-2Soft-20-2; Soft-16-1Soft-16-1

Table 4.1 – Bibliometry for axis "Outreach to implementation : Evaluation in population"
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They are particularly interesting because of prevention of contaminations or interferences [9090].

In individual randomized trials, there are risks that individuals in the control group might indirectly

benefit from the intervention given to the treatment group. For example, if a vaccine reduces the

circulation of a pathogen in a community (herd immunity), this effect might extend to unvaccinated

individuals, confounding the results. By randomizing at the cluster level, this issue can be mitigated.

Mixed-effects models [6666] and Generalized Estimating Equations (GEE) [199199] are statistical

techniques used for analyzing correlated data, which is the case in CRT. In my work, we focused on

the later because they require fewer distributional assumptions, such as distributions and indepen-

dence between observations. GEE define the expectation of the dependent variables as a function of

the independent variables and assume that the variance is a function of the mean. Additionally, they

specify a working correlation structure separately for observations made on members of the same

group. Finally, GEE provide a marginal intervention effect, whose population-averaged interpretation

is preferred for making public health and policy decisions rather than the conditional, cluster-specific

intervention effect estimated using mixed-effects models [157157]. Of note, Marginal and conditional

intervention effects are equal for identity and log links [167167]. Together with a Elisabeth Turner, a

colleague from Duke university, we wrote a review on good practices for CRT design (RI-17-1RI-17-1) and

analysis (RI-17-2RI-17-2; HCI*-17-1HCI*-17-1).

In CRT analyzed with GEE (which is not a likelihood-based approach), missing data can signifi-

cantly impact the validity of findings. In 2014, a review suggested that more than 90% of CRT do

not handle properly missing data [4848]. When data are Missing at Random (MAR) adequate statis-

tical methods are mandatory to obtain unbiased results. Of note, MAR refers to a situation in data

where the missingness is related to the observed data but not the unobserved data. In other words,

the probability of a data point being missing is related to known variables, but not to the value of

the missing data itself. Weighting and multiple imputation are two common methods for handling

missing data. Weighting approach adjusts for missing data by giving more weight (using propensity

score) to observed data that is similar to the missing data. Multiple imputation involves creating

several complete datasets by replacing missing values with plausible estimates. These datasets are

then analyzed separately, and the results are combined using Rubin’s rule. Together with the same

collaborator Elisabeth Turner, we compared the two approaches for CRT analysis (RI-16-2RI-16-2; CI-18-3CI-18-3;

S-15-2S-15-2). First, we demonstrated that clustering should not be accounted for when estimating the

weights in this setting, even when there is clustering in the missingness mechanism. This counter-

intuitive results is a mistake often made in practice and corroborated by [182182]. Our simulations also

showed that the performance of weighted GEE is comparable to and often faster than the Multiple

imputation GEE approach. It is however to be nuanced since weighting approach are often very dif-

ficult to handle when missingness occurs jointly on multiple variables. See Section 4.44.4 for details
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on how statistical methods for missing data adjustment in health data will continue to be developed

within my research, in particular in the scope of predictions for ML.

Additional to missing data, CRT suffer from problems of imbalance of baseline covariates. It

refers to the unequal distribution of participant characteristics across different clusters. This can occur

due to the randomization at the cluster level rather than the individual level, leading to variations in

important baseline characteristics between groups. GEE can incorporate covariates into the model in

an outcome regression to control for imbalances. However, the results are subject to bias when the

outcome model does not correspond to the true data generation process. On the flip side, the main

limitation of weighting methods in GEE for CRT is the potential for bias if the propensity score for

missingness are not accurately modeled and/or estimated. Thus we proposed a doubly robust GEE

method for estimation in CRT (RI-17-5RI-17-5; CI-15-1CI-15-1; HCI*-16-1HCI*-16-1; HCI*-14-1HCI*-14-1; S-15-1S-15-1). It was implemented

in an R package (RI-19-2RI-19-2; ; CN-16-1CN-16-1; Soft-16-1Soft-16-1). See Section 6.76.7 for the full version of the article

presenting this work. In this article, we consider a study design in which a vector of P baseline

covariates Xij = (X1
ij , . . . , X

P
ij ) and outcome Yij are recorded for each subject j = 1, . . . , ni in

community i = 1, . . . ,M . Each outcome can be either observed Rij = 1 or missing Rij = 0. We want

to make inference about the effect of a binary intervention A for which the probability of treatment

attribution is denoted by p on the outcome Y by estimating the parameters β = (β0, βA)T indexing

the marginal model µij(β,Ai) = E(Yij |Ai) = β0 + βAAi, where µi(β,Ai) = [µij(β,Ai)]j=1,...,ni
. The

Doubly robust GEE writes as follow:

M∑

i=1

[
DT
i V
−1
i Wi(Yi −Bi) +

∑

a=0,1

pa(1− p)1−aDT
i V
−1
i (Bi − µi)

]
= 0, (4.1)

in which Di = ∂µi/∂β
T is the design matrix, Vi is the covariance matrix equal to U

1/2
i C(α)U

1/2
i

with Ui a diagonal matrix with elements var(yij), and C(α) is the working correlation struc-

ture. This method is doubly robust because it remains consistent if either the propensity model

(Wi = diag(Rij/P (Rij = 1|Xi, Ai))) or the outcome model (Bi = E(Yij |Ai, Xi)) is correctly speci-

fied, but not necessarily both. By correctly specified, we refer to a model that accurately corresponds

to the true data generation process. The estimator provides a safeguard against model misspecifica-

tion, enhancing the reliability of results in complex data scenarios. This was specifically applied to

the TasP CRT which tested Antiretroviral Treatment as Prevention in Hlabisa sub-district, KwaZulu-

Natal, South Africa (RI-17-4RI-17-4). Finally, I also got involved in analysis of trials in low-incomes setting

in Africa: one comparing two measurement techniques for HIV infection in order to improve accep-

tance of testing (RI-16-5RI-16-5) and the other looking at using causal inference analysis to investigate the

importance of rapid testing after infection (RI-18-1RI-18-1).

The spread of epidemics is significantly influenced by network and connectivity patterns within
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a population. Networks, representing the social, physical, or geographical interactions among in-

dividuals, play a crucial role in determining how quickly and widely a disease can spread. High

connectivity or densely connected networks facilitate rapid transmission of infectious diseases. The

network features are quite never used as randomization covariates in CRT. Thus, network features

represent a source of imbalance in covariates, see Figure 4.14.1. Together with JP onnela and his

PhD student Patrick Staples from Havard School of Public health, with which I developed this project

during my postdoctoral fellowship, we investigated which network features should be collected in

priority to inform heterogeneity of the epidemics spread (RI-23-2RI-23-2; CI-16-1CI-16-1; CI-15-2CI-15-2; CN-19-1CN-19-1). We

found that information on infection status of connected individuals or in the same network compo-

nent are the one yielding to the best improvement in efficacy. Of note, no time varying network

features is taken into account in this work. This could be a valuable extension of this work, but

it is not straightforward. Although primarily a theoretical experiment, this project highlighted the

significance of the network underlying an epidemic. This aligns with the findings of [177177] and [7777]

regarding super-spreaders in the context of the COVID-19 pandemic. It also paves the way for inno-

vative ideas in the design of ring trials / reactive vaccination particularly used in Ebola vaccination

[8282]. Refer to section 4.44.4 for further discussion on this topic.

Figure 4.1 – Example of six clusters immediately after randomization in an idealized CRT. Three
clusters have been randomized to treatment (blue), and three have been randomized to control
(white). Each cluster has nine nodes, three of which are already infected at baseline and are shaded
red. Internal network structure varies between clusters, and differing individual- and cluster-level
covariates can be calculated for each cluster. For example, in the fifth (bottom-center) cluster, the
mean degree is 2, the largest connected component size is 7. Individual outcomes in separate clusters
are independent, as no edges exist between clusters (Figure from RI-23-2).
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4.3 Modeling Between-host Dynamics of an Epidemics

4.3.1 Predicting the Effects of Non-Pharmaceutical Interventions

During the pandemics, I focused on real-time observational data provided within the COVID-

19 epidemics. It refers to the data collected and analyzed continuously and promptly as the epi-

demic unfolds. The data used includes case reports, hospitalization data, testing data, vaccination

data, climatic data and others. Non-Pharmaceutical Interventions (NPI) were crucial in control-

ling COVID-19. They included measures like social distancing, mask-wearing, hand hygiene, travel

restrictions, and lockdowns. These interventions aimed to reduce virus transmission by limiting con-

tacts between individuals. Predicting their effects involves understanding various epidemiological,

social, and behavioral factors.

The core of predicting NPI effects lies in epidemiological models like the SIR (Susceptible,

Infected, Recovered) model and its derivatives. These models, also called between hosts, simulate

how the virus spreads through populations and how interventions might alter this spread. In our

work, we focus on the SEIRAH model, see Equation 4.24.2 and Figure 4.24.2. The population of size N

is divided into 5 compartments: susceptible S, latently exposed E, symptomatically infectious I,

asymptomatic/pauci-symptomatically infectious A, hospitalized H, removed R ( i.e., both recovered

and deceased). Parameters DX represent the average time in days spent in each compartment X.

rE and rI respectively represent the proportion of symptomatic and hospitalized individuals. Finally,

b is the most important parameter of transmission that is assumed reduced by α in asymptomatic

individual due to reduced viral shedding.



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1− rI
DQ
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DH

(4.2)

The particularity of our approach is not only considering one epidemics but multiple observation

of the same epidemics process in multiple geo-localisation (region or departments), in a population

framework. Noticing that these epidemics models are mechanistic models, we used the methods
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Figure 4.2 – SEIRAH model representation (Figure from RI-23-1)

mentioned in Section 2.22.2 and, in collaboration with Annabelle Collin from Inria team Monc, we fitted

population Kalman filter estimation approaches (RI-23-1RI-23-1; HCI*-21-5HCI*-21-5; HCI-21-3HCI-21-3;HCI*-21-1HCI*-21-1; S-20-1S-20-1).

See Section 6.86.8 for the full version of the article presenting this work. In this method of data assim-

ilation, the parameters of the mechanistic model are treated as having dynamic behavior over time,

which is modeled non-parametrically. Consequently, it becomes feasible to track the trajectory of

transmission rate b across time and subsequently correlate it with the NPI being implemented using

a regression method. Our findings indicate that all NPI considered in the study significantly con-

tributed to the reduction of transmission rates. For example, the first lockdown reduced transmission

by about 78% [74%; 82%] and school closure reduced it by about 7% [5%; 8%]. Additionally, the

study underscored the pronounced influence of weather conditions on disease transmission: rates

decreased during summer months and escalated in winter. Moreover, an augmentation in disease

transmissibility was observed with the emergence of VoC. A key goal of NPI is to reduce the effective

reproduction number (Rt) (and not only transmission), which represents the average number of peo-

ple to whom a single infected person will transmit the virus in a population where not everyone is

susceptible. This concept has been introduced for within-host modeling in Section 3.2.23.2.2. Collaborat-

ing with Simon Cauchemez from Pasteur Institute and Juliette Paireau from Santé Publique France,

we also proposed a two-step approach in which Rt is first estimated and NPI are regressed over the

Rt (RI-23-3RI-23-3). Rt are derived using EpiEstim, which calculates the expected number of secondary

infections [194194]. Similar results were found as with the Kalman filters approach, however there was

a disclaimer that confidence intervals found may have been too narrow. Finally, the study highlighted

the importance of retrospective evaluation of interventions to inform future decision-making.

From a methodological perspective, the two studies depicted in the previous paragraph adopted
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a two-step approach (b or Rt is estimated then regressed over NPI). Thus, they suffer from the

weaknesses acknowledged in Section 2.22.2, i.e. the lack of propagation of uncertainty between the two

steps as well as possible bias. To address this, we employed a one-step strategy, applying the SAEM

estimation approach to the same dataset with a model of similar complexity (RI-24-1RI-24-1; HCI-23-5HCI-23-5;

CN-22-1CN-22-1). Again, this adjustment yielded results that were consistent with those obtained through

the two-step process. Moreover, in this second study, we performed simulations that quantify benefits

in term of public health. Without vaccines, the model predicted 159, 000 additional deaths and 1.48

million more hospitalizations in France. If a vaccine had been available within 100 days—a goal of

the Coalition for Epidemic Preparedness Innovations (CEPI)—about one-third of deaths and three-

quarters of hospitalizations could have been avoided. Finally, implementing a lockdown one week

earlier could have prevented 20,000 deaths. In the search of always finding the most statistically

accurate method to answer a relevant public health or medical question, we propose to compare one-

step and two-step approaches as a first milestone for multi-scale modeling of epidemics (See Section

4.44.4).

Figure 4.3 – Schematic of the age-structured SEIVS model for one age group. Parameters are not
described in this manuscript and additional details can be found in RI-21-4 (Figure from RI-21-4).

As a last exemple of application, during the pandemic, there was a big challenge in forecasting,

i.e. short- mid- and long-term predictions (weeks to several months) into the future, the effect

of possible public health intervention. Collaborating with Jane Heffernan from York University, we
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employed a more granular model briefly outlined in Figure 4.34.3 and expanded from [2828]. This model

is distinctive from the one presented before for two reasons: firstly, it includes waning immunity

by following a SEIVS model structure (Susceptible-Exposed-Infectious-Vaccinated-Susceptible), and

secondly, it incorporates age stratification. Such detailed models come at the cost of increased com-

plexity and the need for fixing parameters or for more data to inform them. With this model, we

projected the consequences of easing barrier gestures under varied assumptions about the longevity

of immunity following infection and vaccination. The potential effects of a booster vaccine cam-

paign were also examined (RI-21-4RI-21-4; CI-21-3CI-21-3). Of note, this work was published in mdpi journal after

approval of publication policy by Inria. Nevertheless I will not reiterate this experience because I be-

lieve the reviewing standards were and still are very low quality. Regarding science, the findings from

September 2020 emphasized the necessity of maintaining barrier gestures and enhancing vaccination

efforts in particular in elderly. This result aligned with findings from other countries recommending

the maintenance of NPI while vaccines were being rolled out [132132]. These insights were important to

informing the French situation, earning multiple citations from the French Scientific Council during

the pandemic (S-20-2S-20-2; Soft-20-2Soft-20-2) as well as numerous press releases, see Section 1.3.131.3.13. To enhance

the accuracy of estimating and predicting epidemic processes, it is crucial to deepen our understand-

ing of the connection between between-host dynamics and within-host dynamics. This research

perspective is further elaborated in Section 4.44.4.

4.3.2 Optimizing Lockdown Allocation

Figure 4.4 – Epidemic control as an optimization problem. s; a; ci refer to environment states,
control actions, and the ith cost, while traj. is their collection over an episode. Blue and red arrows
match the input and output of the reinforcement learning function (Figure from RI-21-1).

The COVID-19 pandemic has underscored the significant impact of infectious diseases on pub-

lic health and the economy, highlighting the need for multi-objective cost optimization. There

have been multiple contribution concerning the optimization of intervention strategies for epidemic

response. However, they mostly differ from their definitions of epidemiological models (SIR-type

[212212]; Agent-based models (ABM) [2626]), of optimization methods (deterministic rules [189189]; evo-
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lutionary optimization [137137]; bayesian optimization [2626]) or of cost functions (for example [120120]

used length of school closure as well). In collaboration with Clément Moulin-Frier and researchers

at Inria team Flowers, we decided to develop the EpidemiOptim toolbox which is a python platform

allowing a simple definition of each of the aforementioned features. It facilitates interdisciplinary

collaboration by integrating epidemiological models with machine learning techniques to optimize

policy decisions. As an illustration, we got interested in finding the optimal allocation of lockdown

measures during the COVID-19 pandemic trying to optimize both health costs and economic costs.

We took the approach of reinforcement learning (RL) [186186]: the control policy is seen as a learning

agent, that interacts with an epidemiological model (SEIRAH) that is seen as its learning environ-

ment, see Figure 4.44.4. Each run of the epidemic is a learning episode, where the agent alternatively

interacts with the epidemic through actions and observes the resulting states of the environment and

their associated costs. Because the optimization is multi-objective, a Pareto front is built for deci-

sion (RI-21-1RI-21-1; S-21-1S-21-1; Soft-21-1Soft-21-1). See Section 4.44.4 for details on optimization of NPI or vaccination

allocation that we envision.

4.4 Perspectives

Below is a collection of perspectives, both short-term and long-term, that we think are major

to advanced between-host modeling feeding it with within-host information. Ideas marked with an

asterisk (*) are considered major in terms of challenges and potential impact.

Missing data in neural networks for predictions in Health data: Although not applied to

CRT nor directly to mechanistic models, missing data presents a significant issue in all health data

analysis. Particularly, in the project described in Section 2.62.6, which focuses on the use of ML /

recurrent neural networks and specifically reservoir computing, addressing missing data is of high

importance. In health data, it is rare for data points to be captured at precisely the same times,

which complicates analysis. In collaboration with Xavier Hinault (Inria Mnemosyne), and Cécile

Proust-Lima (Inserm Biostat), we plan to explore the application of classical Multiple Imputation (MI)

methods for longitudinal data in our specific context, as reviewed by [9191]. Specifically, we intend

to concentrate on the Standard Fully Conditional Specification (FCS) [1010] and Joint Multivariate

Normal Imputation (JMNI)[173173]. The FCS approach employs each time-varying covariate’s repeated

measurements as predictors in univariate imputation models, like chained equations. Conversely,

JMNI employs data augmentation, a Markov chain Monte Carlo algorithm, assuming multivariate

normality. This method, despite being potentially misspecified for binary and categorical data, has

shown to perform adequately even for such variables, unless they exhibit severe skewness. Ultimately,

we aim to compare these traditional approaches with innovative methods, particularly those based on



4.4. Perspectives 83

neural networks themselves. For example, Self-Attention-based Imputation for Time Series (SAITS)

methods [5656] have shown promise in managing missing time series data, especially when integrated

with neural networks. Originating from natural language processing, SAITS employs self-attention

mechanisms to identify temporal dependencies and patterns, offering a novel approach to handling

missing data without dealing per-se with multiple imputation, which is yet to be investigated. Correct

handling of missing information is a key challenge for future research in new ML methods.

Multi-scale Modeling of epidemics (*): In collaboration with Iris Ganser, a doctoral candidate

at McGill University, we are evaluating one-step and two-step methods for estimating the effective-

ness of NPI. Our planned analysis involves simulations under a variety of scenarios, incorporating

ODE-based models and ABM for synthetic data creation. The objective is to demonstrate that the

one-step approach may yield biased results, especially under conditions of rapid dynamic change and

depletion of susceptibles in epidemics, and does not accurately convey uncertainty unless resampling

techniques are employed (Sub-5Sub-5). However, demonstrating that a one-step approach via mechanis-

tic models outperforms others raises a concern: mechanistic models must be sufficiently complex to

avoid misspecification, thereby necessitating a high number of parameters. Epidemiological studies

will facilitate the calibration of some parameters, including changes in behaviors [6969]. Introducing

the evolution of pathogen virulence could also be of interest [44]. However, from a research perspec-

tive, our primary interest lies in integrating within-host modeling with between-host modeling. This

multi-scale modeling provides a comprehensive picture of disease spread (RI-22-2RI-22-2), see Figure 4.54.5.

Such models can predict how changes within individuals can affect the disease dynamics in a popu-

lation, [183183] for a theoretical example in multiple infections. This integration is particularly relevant

for emerging infectious diseases and for understanding the impact of interventions such as drug de-

velopment and vaccination, which is one of the focus of our group. To construct effective multi-scale

models, our strategy encompasses two primary directions: Firstly, the development of new inference

methods, as outlined in Section 2.62.6. These methods allowing estimation instead of calibration are

likely to be based either on ODE models nested in ODE models [136136, 166166] or on ODE models nested

within ABM [3737, 190190]. Moreover, incorporating more realistic contact networks into epidemiological

models can improve our understanding of the emergence and spread of infectious diseases [103103].

Secondly, the incorporation of innovative data to ascertain parameters not yet identified by exist-

ing research including CHIMS studies or very early cases reports [118118]. This approach enables the

examination of disease progression, immune responses, pathogen shedding, and the assessment of

potential treatments or vaccines.

Reactive vaccination: This perspective concerns between-host optimization of vaccine delivery.

Of note, it is different from within-host optimization of vaccine delivery presented in previous Section

3.53.5 for which RL could also be used. Actually, the EpidemiOptim toolbox presented in Section 4.3.24.3.2 of
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Figure 4.5 – Models are used to understand the evolution of the viro-immunological response during
an infection. As such, they can be used to disentangle the factors associated with (1) enhanced infec-
tiousness during acute infection (2) progression towards a severe disease, and how to prevent it via
pharmacological interventions (3) protection against infection via previous infection or vaccination
(Figure from RI-22-2).

this chapter is now operational, presenting an exciting opportunity to extend its application to within-

host problems, such as optimizing the allocation of IL-7 injections for PLHIV, as discussed in Section

3.2.43.2.4. Here, the intriguing avenue for exploration is optimizing vaccination policies and allocation

through an age-structured epidemiological model, exemplified in Figure 4.34.3 or a network-structured

spread exemplified in ring vaccination trials [8282]. This type of optimization could be explored in

terms of each dose’s efficacy [131131], as well as the vaccine’s effectiveness regarding transmission,

infection, or symptom reduction [187187]. Furthermore, given the need to be reactive to adapt during

emerging epidemics, it is imperative from a methodological standpoint to explore the application of

Meta-RL. Meta-RL merges meta-learning with reinforcement learning principles, drawing inspiration

from the human capacity to efficiently apply acquired knowledge to novel challenges [217217]. This is

achieved by designing the training process to include a variety of tasks/models, thereby encouraging

the development of flexible learning strategies that can be quickly adapted or fine-tuned to new

situations. By applying the algorithm across multiple epidemiological models informed by diverse

epidemic parameters, Meta-RL can enable quicker adaptation to new emergent epidemics. In other
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words, the approach allows an online adaptation in which dynamics model prior are combined with

recent data and are rapidly adapted to the observed context.





Chapter 5

Conclusion

The preparation of this "Habilitation à Diriger des Recherches" has been a remarkable period

of reflection, enabling me to compile all my research work from the start of my career in 2010.

Although some might think it was completed "too late", as it occurred 8 years after I took my position

as "Chargé de Recherche" at Inria, I believe it was timely. This delay allowed me to gain a clear

understanding of my accomplishments, how they fit into the existing literature, and the research

directions I wish to explore in the future. It has also allowed me to recognize weaknesses and begin

to develop improvement strategies. Even though I am aware that research directions may vary

depending on opportunities, I firmly believe that the perspectives mentioned in this manuscript will

lead to thrilling scientific projects and collaborations.

In Chapters 22, 33 and 44, I have presented a complete overview of my research activities over

the last 14 years. I made a deliberate choice to separately discuss mathematical methods and

biological applications (within and between host), although in practice, this separation often does

not exist. This decision was made to clearly outline both aspects: statistical analysis on one side,

and modeling and interpretation of results in relation to the biological questions on the other. In

reality, these two facets are intertwined and complement each other as the research progresses.

My work fundamentally revolves around starting with a biological question that guides the selection

of mathematical formalisms, leading to parallel mathematical/statistical and computational studies.

These studies inform each other and contribute to answering the initial question, demonstrating

an interplay between theory and application. I intend to continue enhancing my methodological

development through the questions raised by the specific nature of the data collected and the question

asked.

The pandemic has been a vibrant period for research in infectious diseases. It fostered synergy

in methodology, driven by researchers’ willingness to work with COVID-19 related data. However,

it was a frustrating time, as the pace of research was very different from that of policy-making.



88

Nonetheless, this period led to multifaceted learning, which I believe has broadened my research to

include between-host modeling - essential for adopting a comprehensive view of infectious disease

modeling. The crisis also emphasizes the importance of collaboration among research groups in

France that focus on infectious disease modeling and highlight the need for effective communication

and teamwork. Our involvement has been formalized through active participation in the "Action

Coordonnée Modélisation" initiative by ANRS MIE. I intend to keep these collaborations ongoing and

strengthen them with additional research projects.

From an international perspective, we have also recently enhanced our visibility and partici-

pated in stimulating the community of modelers of within host in infectious diseases. For example,

we will organize the next international workshop of this community in Bordeaux. The pandemic has

also improved the team’s capacity to collaborate worldwide - the "Zoom era" opens up prospects for

easy remote collaboration. I intend to make the most of this in the coming years by continuing to

entertain my existing collaborations and build new ones. Moreover, I believe that in recent years,

the effort in our community to maintain public data repositories and share code via open access

platforms such as GitHub has increased. I commit to applying these same principles of open code

and open resources whenever possible in my research because I believe they are essential.

Biostatistics is pivotal in the domain of infectious diseases, acting as a fundamental element

for comprehending the spread of diseases, the efficacy of interventions (both within and between

host), and the shaping of public health policies. My personal fascination with these aspects explains

the broad range of applications and research I pursue. However, I hope it is now clear that my

specialization lies in the development of quantitative methods using mechanistic models, which serves

as the primary connection among all my work. Looking ahead, I aim to maintain this broad spectrum

and enhance the impact of my research further. In this regard, I believe it is crucial to advance

mechanistic models to the next level, enabling them to assimilate data from multiple sources

and in large dimensions. I hope this manuscript has provided clear research directions toward this

goal.

Finally, I am very thankful for the research environment provided by the Inria/Inserm team SISTM

and the Vaccine Research Institute, as well as the people within these groups. I hope we can con-

tinue to build strong connections, look in the same direction for applications, and advance vaccine

research for infectious diseases.



Chapter 6

Selected Works (with Leader Contribution)

In this chapter, readers will find selected manuscripts from publications referenced in previous
chapters. These articles have been chosen for their presentation of notable results or methodologies,
or because they provide a detailed presentation of a series of results within a single manuscript. For
each of these paper I was one of the major contributor either as first author or as senior mentor.

6.1 Clairon et al. 2023 (Computational Stat.) Optimal Control
Estimation

Parameter estimation in nonlinear mixed effect models based on ordinary differential equa-
tions: an optimal control approach. Clairon Q., Pasin C. Balelli I., Thiébaut R. and Prague M..
Computational Statistics. in press - Oct 2023.

This article integrates in the first axis of my research "Statistical methodology for estimations and
building of mechanistic models". It has been written in collaboration with a postdoctoral fellow I
mentored.

I chose this paper as it exemplifies a key aspect of my research, which involves exploring available
techniques for solving inverse problems and parameter estimation in patient-specific models, and
then extending these to a population approach. This mirrors similar work I conducted on Kalman
filters with A. Collin and P. Moireau. In this paper, our focus is on the optimal control approach.
We describe the methodology and test it through simulations in various scenarios : 1. presence of
model error (hypoelliptic stochastic model); 2. partially observed framework with unknown initial
conditions (glucose and insulin regulation model); and 3. presence of poorly identifiable parameters
(antibody concentration evolution). A significant challenge was deriving the estimators’ variance.
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Abstract
We present a method for parameter estimation for nonlinear mixed-effects models 
based on ordinary differential equations (NLME-ODEs). It aims to regularize 
the estimation problem in the presence of model misspecification and practical 
identifiability issues, while avoiding the need to know or estimate initial conditions 
as nuisance parameters. To this end, we define our estimator as a minimizer of a 
cost function that incorporates a possible gap between the assumed population-level 
model and the specific individual dynamics. The computation of the cost function 
leads to formulate and solve optimal control problems at the subject level. Compared 
to the maximum likelihood method, we show through simulation examples that our 
method improves the estimation accuracy in possibly partially observed systems 
with unknown initial conditions or poorly identifiable parameters with or without 
model error. We conclude this work with a real-world application in which we 
model the antibody concentration after Ebola virus vaccination.
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1  Introduction

Ordinary differential equation (ODE) models are standard in population dynamics, 
epidemiology, virology, pharmacokinetics, or genetic regulatory network analysis 
since they can describe the main mechanisms of interaction between different 
biological components of complex systems and their evolution over time and 
because they also provide reasonable approximations to stochastic dynamics 
(Perelson et al. 1996; Engl et al. 2009; Villain et al. 2019).

For experimental designs with a large number of subjects and a limited number 
of individual measurements, nonlinear mixed-effects models may be more relevant 
than single-subject models, since they allow to collect information from the entire 
population while accounting for variability among individuals. For instance, 
clinical trials and pharmacokinetics/pharmacodynamics studies often fall into this 
category (Lavielle and Mentre 2011; Guedj et al. 2007). Formally, we are interested 
in a population where the dynamic of each subject i = 1,… n is modeled by the 
d-dimensional ODE:

where f is a d−dimensional vector field, � is a p−dimensional parameter, 
bi ∼ N(0, Ψ) is a q−dimensional random effect where Ψ is a variance-covariance 
matrix, xi,0 is the initial condition for subject i. We denote X�,bi,xi,0 the solution of 
(1) for a given set 

(
�, bi, xi,0

)
 . In (1), we can also incorporate covariate functions zi 

which are omitted here for the purpose of clarity.
Our goal is to estimate the true population parameters (�∗, Ψ∗) as well as the true 

subject specific realizations 
{
b∗
i

}
i=1,…n

 from partial and noisy observations coming 
from n subjects and described by the following observational model:

For the i-th subject, we denote tij its j-th measurement time-point on the observation 
interval [0, T] and ni its total number of available measurements. Here C is a do × d 
sized observation matrix emphasizing the potentially partially observed nature of 
the process and �ij ∼ �∗ × N(0, Ido) is the measurement error. The vector 
�� =

{
yij
}
j=1,…ni

 corresponds to the set of observations available for the i-th subject 

and y =
{
��
}
i=1,…n

 is the set of all observations in the population. We also assume 
that only a subset xk∗

i,0
 of x∗

i,0
 is perfectly known, the other ones, denoted xu∗

i,0
 , being 

unknown and they are ordered as follows xi,0 =
((

xu
i,0

)T

,
(
xk
i,0

)T
)T

 for the sake of 

clarity. Nonetheless, pre-existing information can be available for xu∗
i,0

 under the form 

of a priori distribution with a possibly parameter dependent density ℙ
(
xu
i,0

∣ �,Ψ, bi
)
. 

The same holds for (�,Ψ) for which a priori distribution ℙ(�,Ψ) can be available.

(1)
{

ẋi(t) = f𝜃,bi(t, xi(t))

xi(0) = xi,0

yij = CX�∗,b∗
i
,x∗
i,0
(tij) + �ij.
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Our problem belongs to the class of parameter estimation problem in nonlinear 
mixed effect models based on ODEs (NLME-ODEs). In this context, frequentist 
methods based on likelihood maximization (via different numerical procedures: 
Laplace approximation (Pinheiro and Bates 1994), Gaussian quadrature (Guedj et al. 
2007) or SAEM (Comets et al. 2017; Lavielle and Mentré 2007)) and Bayesian ones 
aiming to reconstruct the a posteriori distribution or to derive the maximum a poste-
riori estimator (via MCMC algorithms (Lunn et al. 2000; Huang and Dagne 2011), 
importance sampling (Raftery and Bao 2010), approximation of the asymptotic pos-
terior distribution (Prague et al. 2013)) have been proposed. In particular, dedicated 
methods/softwares using the structure of ODE models have been implemented to 
increase numerical stability and speed up convergence rate (Tornoe et al. 2004), to 
reduce the computational time (Donnet and Samson 2006) or to avoid the repeated 
model integration and estimation of initial conditions (Wang et al. 2014). However, 
all the preceding methods face similar pitfalls due to specific features of population 
models based on ODEs (with the exception of (Wang et al. 2014)): 

1.	 They do not take into account the presence of model misspecification, a common 
feature of ODE models used in biology. Indeed, the ODE modeling process 
suffers from model inadequacy, understood as the discrepancy between the mean 
model response and the real process, as well as residual variability subject to 
specific stochastic perturbations or missing elements that disappear by averaging 
over the entire population (Kennedy and O’Hagan 2001). As examples of the 
causes of model inadequacies, one can think of the ODE models used in 
epidemiology and virology, which are derived by approximations in which, for 
example, interactions are modeled by pairwise products, while higher order terms 
and/or the influence of unknown/unmeasured external factors are neglected. As 
for residual variability, recall that biological processes are often stochastic and 
the justification for deterministic modeling lies in the approximation of stochastic 
processes (Kurtz 1978; Kampen 1992). Moreover, in the context of NLME-ODEs, 
new sources of model uncertainties emerge. Firstly, error measurement in covar-
iates zi can lead to use a proxy function ẑi instead of zi (Huang and Dagne 2011). 
Secondly, the sequential nature of most inference methods leads to estimate {
b∗
i

}
i=1,…n

 based on an approximation �̂  instead of �∗ . Thus, the structure of 
mixed-effect models spreads measurement uncertainty into the mechanistic model 
structure during the estimation. It turns classical statistical uncertainties into 
model error causes. Estimation of �∗ , Ψ∗ and 

{
b∗
i

}
i=1,…n

 must be performed in the 
presence of the model error, although it is known to dramatically affect the 
accuracy of methods that do not take it into account (Brynjarsdottir and O’Hagan 
2014).

2.	 They have to estimate or make assumptions on the true unknown initial conditions 
xu∗
i,0

 . In ODE models, the initial conditions are generally nuisance parameters in 
the sense that inferring their values does not bring answers to the scientific 
questions which motivate the model construction but is necessary for the 
estimation of the relevant parameters. For example, partially observed 
compartmental models used in pharmacokinetics/pharmacodynamics often 
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involve unknown initial conditions which needs to be inferred to estimate the 
transmission rates between compartments, which are the true parameters of inter-
est. Unknown initial conditions imply either assumptions on xu∗

i,0
 values (Lavielle 

and Mentre 2011), another potential cause of model misspecifications, or their 
estimation (Huang and Lu 2008). This latter case requires a priori knowledge to 
derive ℙ

(
xu
i,0

∣ �,Ψ, bi

)
 expression and simultaneous inference of (b∗

i
, xu∗

i,0
) as sub-

ject specific parameters. This increases the complexity of the related optimization 
problem and can degrade estimation accuracy.

3.	 They can face accuracy degradation when the inverse problem of parameter esti-
mation is ill-posed (Engl et al. 2009) due to practical identifiability issues. Ill-
posedness in ODE models is often due to the geometry induced by the mapping (
�, bi, xi,0

)
⟼ CX�,bi,xi,0

 , where there can be a small number of relevant directions 
of variation skewed from the original parameter axes (Gutenkunst et al. 2007). 
This problem, called sloppiness, often appears in ODE models used in biology 
(Gutenkunst et al. 2007; Leary et al. 2015) and leads to an ill-conditioned Fisher 
Information Matrix. For maximum likelihood estimators this is a cause of high 
variance due to the Cramér-Rao bound. For Bayesian inference, it leads to a nearly 
singular asymptotic posterior distribution because of Bernstein–von Mises theo-
rem (see Campbell (2007) for the computational induced problems). Although 
this problem is in part mitigated in NLME-ODEs which merge different subjects 
for estimating (�∗,Ψ∗) and use distribution of bi ∣ Ψ as prior at the subject level 
(Lavielle and Aarons 2015), estimation accuracy can benefit from the use of 
regularization techniques.

These specific features of ODE-based population models limit the amount of 
information classic approaches can extract for estimation purposes from observations 
no matter their qualities or abundances. This advocates for the development of new 
estimation procedures. Approximate methods (Varah 1982; Ramsay et  al. 2007) 
have already proven to be useful for ODE models to face such issues. They rely 
on an approximation of the solution of the original ODE (1) which is expected 
to have a smoother dependence with respect to the parameters and to relax the 
constraint imposed by the model during the estimation process. The interest of such 
approximations is twofold. Firstly, they produce estimators with a better conditioned 
variance matrix comparing to classic likelihood based approaches. Secondly, 
they reduce the effect of model error on estimator accuracy. Also, some of these 
approximations bypass the need to estimate initial conditions (Ramsay et al. 2007; 
Clairon 2020). Still, these methods are currently limited to cases where observations 
are coming from one subject.

In this work, we develop a new estimation method adapted to NLME-ODEs 
integrating such approximations to mitigate the effect of model misspecification and 
poorly identifiable parameters on estimation accuracy, while avoiding the need to 
estimate xu∗

i,0
 as additional subject specific parameters. At the contrary to the men-

tioned methods, we propose here a hierarchical profiling approach, taking the form 
of a nested estimation procedure, instead of relying on a classic joint likelihood 
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specification. One point being to avoid high-dimensional integrations often required 
by likelihood approaches in mixed-effect models (Pinheiro and Bates 1994). The 
unknown initial conditions 

{
xu∗
i,0

}
i=1,…n

 are seen as nuisance parameters for 
{
b∗
i

}
i=1,…n

 estimation, which are in turn considered as nuisance parameters for pop-
ulation parameter (�∗,Ψ∗, �∗) estimation. This leads to the construction of outer, 
middle and inner criteria for the estimation of (�∗,Ψ∗, �∗) , 

{
b∗
i

}
i=1,…n

 and {
xu∗
i,0

}
i=1,…n

 respectively. The inner criteria is designed to incorporate 

ℙ
(
xu
i,0

∣ �,Ψ, bi

)
 if an expression is proposed for it but can also be defined without if 

no prior information exists for 
{
xu∗
i,0

}
i=1,…n

 . Also, this criterion accounts for model 

error presence by assuming that the actual dynamic of each subject is better 
described by a perturbed version of the ODE (1). This added perturbation aims to 
capture various sources of errors at the subject level (Brynjarsdottir and O’Hagan 
2014; Tuo and Wu 2015). We control the magnitude of the acceptable perturbations 
by defining the inner criteria through a cost function balancing the two contrary 
objectives of fidelity to the observations and to the original model: to this end, we 
introduce a model discrepancy penalization term. The practical computation of the 
chosen perturbations requires to solve optimal control problems (Clarke 2013) 
known as tracking problems. This is done using a method inspired by Cimen and 
Banks (2004) which has the advantage to automatically provide an estimator for xu∗

i,0
 

with no additional computational costs. This is the key element to efficiently profile 
on unknown initial conditions during b∗

i
 estimation, and treat them as nuisance 

parameters instead of integrating them into bi definition, as it is usually done in the 
previously mentioned methods.

In Sect.  2, we present the inner, middle and outer criteria used to define our 
estimator. In Sect. 3, we compare our approach with classic maximum likelihood in 
simulations. Then, we proceed to the real data analysis coming from clinical studies 
and a model of the antibody concentration dynamics following immunization 
with an Ebola vaccine in East African participants (Pasin et  al. 2019). Section  5 
concludes and discuss future extensions of the method.

2 � Estimator construction: definition of the inner/middle/outer 
criteria

From now on, we use the Cholesky decomposition �2Ψ−1 = △T△ and the para-
metrization � ∶= (�,Δ, �) instead of (�,Ψ, �) to enforce positiveness and symmetry 
of Ψ and denote in a summarized way the set of all population parameters. The norm 
‖.‖2 denotes the classic Euclidean one defined by ‖b‖2 =

√
bTb. We estimate the 

population and individual parameters via a nested procedure:
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•	 Estimator �̂  obtained by minimization of an outer criterion F based on an 
approximation of minb minxu

0

(
− lnℙ

(
�, b, xu

0
∣ y)) , the log joint-distribution of (

�, b, xu
0

)
 sequentially profiled on b ∶=

{
bi
}
i=1,…n

 and xu
0
∶=

{
xu
i,0

}
i=1,…n

 , which 

are respectively the set of all random effects and unknown initial conditions 
among all subjects.

•	 Estimator b̂i ∶= b̂i(�) obtained for each subject i by minimization of a middle 
criterion Gi based on an approximation of minxu

i,0

(
− lnℙ(��, bi, xui,0 ∣ �)

)
 , the 

log joint-distribution of the data, the random effects and unknown initial con-
ditions profiled on the latter.

•	 Estimator x̂u
i,0

∶= x̂u
i,0
(�, bi) obtained for each subject i by minimization of an 

inner criterion Hi based on an approximation of − lnℙ(��, xui,0 ∣ �, bi) , the log 
joint-distribution of the data and unknown initial conditions.

Our estimation procedure can be expressed in a pseudo-algorithmic way. 

1.	 Outer criteria minimization: 

 for a given subject i and � value: 

2.	 Middle criteria minimization: 

 for a given bi value: 

3.	 Inner criteria minimization: 

In the following sections, we derive the expressions of F,Gi and Hi starting with 
Hi since each criterion construction rely on lower level ones. Finally, despite that 
the following formal presentation of criteria are made for any ℙ

(
xu
i,0

∣ �, bi

)
 

expressions, we have to restrict ourselves to uniform, normal and log-normal den-
sities in practice to use our numerical procedures.

�̂ = argmin� F(�)

∶= argmin� min
b
min

x
u

0
−2 ln ℙ̃(�, b, xu

0
∣ y)

= argmin� −2 ln ℙ̃(�, b̂, x̂u0 ∣ y),

b̂
i
(�) = argmin

b
i
G

i
(b

i
∣ �)

∶= argmin
b
i
min

x
u

i,0
−2 ln ℙ̃(��, bi, xui,0 ∣ �)

= argmin
b
i
−2 ln ℙ̃(��, bi, x̂ui,0 ∣ �),

x̂
u

i,0
(�, b

i
) = argmin

x
u

i,0
H

i
(x

i,0 ∣ �, bi)

∶= argmin
x
u

i,0
−2 ln ℙ̃(��, xui,0 ∣ �, bi).
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2.1 � Inner criterion

In this section, we construct the criteria Hi used to estimate xu∗
i,0

 for a given (�, bi) 

value. A classic procedure would lead to jointly estimate 
(
b∗
i
, xu∗

i,0

)
 by maximiza-

tion of the log joint-likelihood function of the data and (bi, xui,0). However for each 
subject, we want to: 

1.	 profile on xu∗
i,0

 during random effects estimation to limit b∗
i
 estimation degradation 

due to presence of nuisance parameters,
2.	 use prior knowledge given by ℙ

(
xu
i,0

∣ �, bi

)
 if available,

3.	 allow an acceptable deviation from the assumed model at the population level to 
take into account possible model misspecifications.

To solve the first and second point, we define our estimator: 

1.	 as the maximizer of the joint conditional likelihood ℙ(��, xui,0 ∣ �, bi) if 

ℙ
(
xu
i,0

∣ �, bi

)
 is available,

2.	 otherwise as the maximizer of ℙ(�� ∣ �, bi, xui,0).

From the expression ℙ(��, xui,0 ∣ �, bi) = ℙ(�� ∣ �, bi, xui,0)ℙ
(
xu
i,0

∣ �, bi

)
 , we derive 

argmaxxu
i,0
ℙ(�� ∣ �, bi, xui,0) = argmaxxu

i,0
ℙ(��, xui,0 ∣ �, bi) if ℙ

(
xu
i,0

∣ �, bi

)
 is constant. 

So, the estimation criteria in absence of prior information is equivalent to choosing a 
uniform prior over xu

i,0
 space and constitute only a particular case. We will thus focus on 

ℙ(��, xui,0 ∣ �, bi) from now one. We have:

from which we derive the joint likelihood estimator:

We also want to allow the presence of perturbations at the subject scale comparing 
to the original model defined at the population level. For this, we assume the 
regression function is no longer X�,bi,xi,0

 , but rather X�,bi,xi,0,ui
 , the solution of:

ℙ(��, xui,0 ∣ �, bi) =
∏

j ℙ(yij ∣ �, bi, xui,0)ℙ
�
xu
i,0

∣ �, bi

�

=
∏

j (2�)
−do∕2�−doe

−0.5
���CX�,bi ,xi,0

(tij)−yij
���
2

2
∕�2

ℙ
�
xu
i,0

∣ �, bi

�
,

x̂u
i,0
(�, bi) = argminxu

i,0
−2 lnℙ(��, xui,0 ∣ �, bi)

= argminxu
i,0

�
1

�2

∑
j

���CX�,bi,xi,0
(tij) − yij

���
2

2
− 2 lnℙ

�
xu
i,0

∣ �, bi

��
.

(2)
{

ẋi(t) = f𝜃,bi(t, xi(t)) + Bui(t)

xi(0) = xi,0.



	 Q. Clairon et al.

1 3

This perturbed ODE has been obtained by the addition of the forcing term t ↦ Bui(t) 
to ODE (1) with B a d × du matrix and ui a function in L2

(
[0, T],ℝdu

)
 representing 

the perturbation. However, to ensure the possible perturbations remain small, we 
replace the data fitting criterion 

∑
j

���CX�,bi,xi,0
(tij) − yij

���
2

2
 by minui Ci(x

u
i,0
, ui ∣ �, bi,U), 

where

and ‖‖ui‖‖2U,L2
= ∫ T

0
ui(t)

TUui(t)dt is the weighted Euclidean norm. Here, the magni-
tude of the allowed perturbations is controlled by a positive definite and symmetric 
weighting matrix U. Finally, we obtain:

where

Computing Hi(x
u
i,0

∣ �, bi) requires to solve the infinite dimensional optimization 
problem minui Ci(x

u
i,0
, ui ∣ �, bi,U) in L2

(
[0, T],ℝdu

)
 . This problem belongs to the 

field of optimal control theory for which dedicated approaches have been developed 
(Sontag 1998; Aliyu 2011; Clarke 2013). Here we use the same method as in Clai-
ron (2020) which is detailed in Appendix A. All it requires from the user is to spec-
ify a pseudo-linear representation of ODE (1), i.e., a possibly state-dependent matrix 
A�,bi

(
t, xi(t)

)
 and state-independent vector r�,bi(t) such that:

This formulation is crucial for solving the optimal control problem in a 
computationally efficient way. Linear models already fit in this formalism with 
A�,bi

(t) ∶= A�,bi

(
t, xi(t)

)
 . For nonlinear models, the pseudo-linear representation is 

not unique but always exists (in order to exploit this non-uniqueness as an additional 
degree of freedom, see Cimen (2008) section 6). This method presents the advan-
tage of formulating minui Ci(x

u
i,0
, ui ∣ �, bi,U) as a quadratic form (or a sequence of 

quadratic forms) with respect to xu
i,0

 . Thus, if we choose a uniform, normal or log-

normal law for ℙ
(
xu
i,0

∣ �, bi

)
 , argminxu

i,0
Hi(x

u
i,0

∣ �, bi) has a closed form expression 

(approximated for log-normal), and obtaining x̂u
i,0
(�, bi) does not add any computa-

tional complexity comparing to minui Ci(x
u
i,0
, ui ∣ �, bi,U).

For a given xu
i,0

 , the perturbation ui corresponding to the solution of 
minui Ci(x

u
i,0
, ui ∣ �, bi,U) is named optimal control and denoted ui,�,bi,xui,0 . In particular, 

Ci(x
u
i,0
, ui ∣ �, bi,U) =

∑
j

‖‖‖CX�,bi,xi,0,ui
(tij) − yij

‖‖‖
2

2
+ ‖‖ui‖‖2U,L2

,

(3)x̂u
i,0
(�, bi) ∶= argminxu

i,0
Hi(x

u
i,0

∣ �, bi)

Hi(x
u
i,0

∣ �, bi) = min
xu
i,0

{
1

�2
min
ui

Ci(x
u
i,0
, ui ∣ �, bi,U) − 2 lnℙ

(
xu
i,0

∣ �, bi

)}
.

(4)f�,bi(t, xi(t)) = A�,bi

(
t, xi(t)

)
xi(t) + r�,bi(t).
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we denote ui,�,bi ∶= ui,�,bi,x̂i,0 the optimal control corresponding to the initial condition 

estimator x̂i,0 =
(
x̂u
i,0
(�, bi)

T ,
(
xk
i,0

)T
)T

 . The solution of (2) corresponding to the opti-

mal control ui ∶= ui,�,bi is denoted X�,bi
 and named optimal trajectory: it will be consid-

ered as the regression function for the i-th subject. X�,bi
 is thus defined as solution of 

ODE (2) which needs the smallest perturbation in order to get close to the observations. 
In particular, X�,bi

 and ui,�,bi are respectively the subject specific state variable and per-
turbation such that:

Again, formal expressions can be derived for both ui,�,bi and x̂u
i,0
(�, bi) , but they pre-

sent no interest for the sake of explanation and are left in Appendix A.

Remark 1  At this stage, we acknowledge the existing similarities between our approach 
and the one presented in Wang et al. (2014), an extension of Ramsay et al. (2007) to a 
population framework. Both methods approximate the original ODE and avoid initial 
condition estimation. However, Wang et al. (2014) still consider classic likelihood for � 
estimation and the absence of a proper probabilistic framework for handling {
xu
i,0

}
i=1,…n

 makes it difficult to incorporate a priori information when available. More-

over, the spline basis decomposition used by Wang et al. (2014) is a source of inaccu-
racy for ODE solution reconstruction, a cause of estimation error as pointed out in Clai-
ron (2020) in which Ramsay et  al. (2007) and control based approaches have been 
compared in a one subject setting. Finally, the estimation quality of the method pro-
posed in Ramsay et  al. (2007) critically depends on hyperparameter choices (basis 
dimension, knots location etc.) which can be complicated even when data are coming 
from one subject and can thus become intractable for large populations.

2.2 � Middle criterion

To construct an estimator b̂i of the random effects, we rely on an approximation of 
lnℙ(��, bi, xui,0 ∣ �) profiled on the unknown initial conditions. Since

with ℙ(bi ∣ �) = 1
√

(2�)q|�2(△T△)−1|
e−

1
2 b

T
i

△T△
�2

bi  , we can define as estimator:

(5)
Hi(

�xu
i,0
(𝜙, bi)∣𝜙, bi) =

1

𝜎2

{∑
j

‖‖‖CX̄𝜃,bi
(tij) − yij

‖‖‖
2

2
+
‖‖‖ūi,𝜃,bi

‖‖‖
2

U,L2

}

− 2 lnℙ(�xu
i,0
(𝜙, bi)∣𝜙, bi).

ℙ(��, bi, xui,0 ∣ �) = ℙ(�� ∣ �, bi, xui,0)ℙ(bi, x
u
i,0

∣ �)

= ℙ(�� ∣ �, bi, xui,0)ℙ(x
u
i,0

∣ �, bi)ℙ(bi ∣ �),
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Still, we use the same relaxation & penalization scheme as in the previous section to 
account for model error presence for b∗

i
 estimation. We replace again the term 

∑
j

���CX�,bi,xi,0 (tij) − yij
���
2

2
 by minui Ci(x

u
i,0
, ui ∣ �, bi,U) in the previous criteria and we 

end up with the following estimator:

where:

2.3 � Outer criterion

2.3.1 � F general expression

We focus in this section on population parameter estimation. Classic maximum 
likelihood based approaches generally consider as estimator: 
�̂ ∶= argmax� ℙ(� ∣ y) = argmax�

∏
i ∫ ℙ(�, bi, xui,0 ∣ ��)d(bi, x

u
i,0
) . This generally 

requires the numerical approximation of integrals of possibly high dimensions, a source 
of approximation and computational issues (Pinheiro and Bates 1994). To avoid this, 
we consider the random effects as nuisance parameters and rely on a classic profiling 
approach for �∗ estimation (Murphy and der Vaart 2000). Instead of taking the mean, 
we rely on the profiled joint distribution sequentially with respect to b ∶=

{
bi
}
i=1,…n

 

and xu
0
=
{
xu
i,0

}
i=1,…n

 , or equivalently minb minxu
0

(
−2 lnℙ(�, b, xu

0
∣ y)) . Bayes for-

mula gives us ℙ(�, b, xu
0
∣ y) ∝ ℙ(y, b, xu

0
∣ �)ℙ(�) and we get 

ℙ(�, b, xu
0
∣ y) ∝

�∏
i ℙ(��, bi, xui,0 ∣ �)

�
ℙ(�) by conditional independence of subject 

by subject observations and subject specific parameters. It follows that

from which we derive the estimator

b̂i(�) = argminbi minxu
i,0
−2 lnℙ(��, bi, xui,0 ∣ �)

= argminbi

�
minxu

i,0

�
1

�2

∑
j

���CX�,bi,xi,0
(tij) − yij

���
2

2
− 2 lnℙ

�
xu
i,0

∣ �, bi

��

+
‖Δbi‖2

2

�2

�
.

(6)b̂i(�) ∶= argminbi Gi(bi ∣ �)

(7)Gi(bi ∣ �) = Hi(x̂
u
i,0

(
�, bi

)
∣ �, bi) +

‖‖Δbi‖‖22
�2

.

min
b

min
xu0

(

−2 lnℙ
(

�, b, xu0 ∣ y
))

∝
∑

i
min
bi

min
xui,0

{

−2 lnℙ(��, bi, xui,0 ∣ �)
}

− 2 lnℙ(�),
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by using the exact expression of lnℙ(��, bi, xui,0 ∣ �) (computational details are 
recalled in Appendix B). In order to account for the presence of model error and 
limit its effect on estimation, we replace in the last expression the classic profiled 
likelihood estimator for b∗

i
 and xu∗

i,0
 by b̂i(�) and x̂u

i,0
(�, bi) respectively and X�,bi,xi,0 by 

X�,bi . This leads us to the following population parameter estimator:

where:

2.3.2 � F profiling on � for uniform xu
i,0

 distribution

If ℙ(xu
i,0

∣ �, bi) is constant then x̂u
i,0
(�, bi) and b̂i(�) do not depend on � i.e. 

x̂u
i,0
(�, bi) = x̂u

i,0
(�, bi) and b̂i(�) = b̂i(�,Δ) and consequentially neither does 

X�,b̂i(�,Δ)
. So, for each (�,Δ) , the maximizer in �2 of F(�) = F(�,Δ, �) has a closed 

form expression:

By using �2(�,Δ) expression, we get min�2 F(�) = F[�,Δ] where:

Thus, we can profile F(�) on �2 and define our estimator as:

An estimator of �∗ is obtained from there by computing �2
(
�̂, Δ̂

)
 , given by equation 

(10). The details of F derivation are left in appendix B.

�̂ = argmin�
{

∑

i minbi

{

minxui,0

{

1
�2

∑

j
‖

‖

‖

CX�,bi ,xi,0 (tij) − yij
‖

‖

‖

2

2
− 2 lnℙ(xui,0 ∣ �, bi)

}

+ ‖Δbi‖
2
2

�2

}

+
(

do
∑

i ni + nq
)

ln �2 − n ln |△T △| − 2 lnℙ(�)
}

(8)�̂ ∶= argmin� F(�)

(9)
F(�) =

1

�2

∑
i

�∑
j

���CX�,b̂i(�)
(tij) − yij

���
2

2
+
���Δb̂i(�)

���
2

2

�

− 2 lnℙ(x̂u
i,0
(�, b̂i(�)) ∣ �, b̂i(�))

+
�
do

∑
i ni + nq

�
ln �2 − n ln �△T △� − 2 lnℙ(�).

(10)

�2(�,Δ) =
1�

do
∑

i ni + qn
� �

i

��
j

���CX�,b̂i(�,Δ)
(tij) − yij

���
2

2
+
���Δb̂i(�,Δ)

���
2

2

�
.

F[�,Δ] =

(
do

∑
i

ni + qn

)
ln
(
�2(�,Δ)

)
− n ln |△T △| − 2 lnℙ(�).

(11)
(
�̂, Δ̂

)
= argmin(�,Δ) F[�,Δ] .
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2.4 � Asymptotic Variance‑Covariance matrix estimator for 
(
�̂, 1̂

)

We derive an estimator of the asymptotic variance of 
(
�̂, Δ̂

)
 . Here we restrict to 

the case described in Sect. 2.3.2 when a uniform distribution is chosen for xu
i,0

 and 
the outer criterion is profiled on � . The general case can be considered similarly, 
but we withdraw it for the sake of clarity since it is not used in following simula-
tion works. We highlight that in practice the matrix Δ is parametrized by a vector 
� of dimension q′ , i.e △ ∶= △(�) and we give here a variance estimator of 

(
�̂, �̂

)
 . 

From this, the variance of Δ̂ can be obtained using classic delta-methods (see 
van der Vaart (1998) chapter 3).

Let us start by presenting sufficient conditions ensuring our estimator is asymp-
totically normal, by introducing h(bi, �,Δ, ��) = ��Δbi��22 +

∑
j

���CX�,bi

(tij) − yij
‖‖‖
2

2
 : 

1.	 the function F̃[�,Δ(�)] = −0.5
�
do�

�
n1
�
+ q

�
ln

�
limn

1

n

∑n

i
�

�
h(b̂(�,Δ(�)),�,Δ(�),yi)

�

do�[n1]+q

�
+ ln �Δ(�)� has a well 

separated minimum 
(
�, �

)
 belonging to the interior of a compact Θ × Ω,

2.	 the true densities of unknown initial conditions 
{
ℙ∗(. ∣ �∗, b∗

i
)
}
i=1,…,n

 have finite 
variance and either 

(a)	 are identicals: ℙ∗(. ∣ �∗, b∗
i
) ∶= ℙ∗(. ∣ �∗),

(b)	 or are such that for every 𝜀 > 0 , we got 

for � = 0, 1 where h(�)(��) =
d(�)h

d(�)(�,�)
(b̂i(�,Δ(�)), �,Δ(�), ��) and 

V (�) =
√∑

i Var(h
(�)(��))

2,
3.	 the subject specific number of observations 

{
ni
}
i=1,…n

 are i.i.d and uniformly 
bounded,

4.	 for all possibles values 
(
�, bi

)
 , the solution X�,bi,x∗i,0

 belongs to a compact � of ℝd , 
and for all (t, �, x) , the mapping bi ⟼ f�,bi(t, x) has a compact support Θb,

5.	
(
�, bi, t, x

)
⟼ f�,bi (t, x) belongs to C1(Θ × Θb × [0, T] × � ,ℝd),

6.	 t h e  m a t r i c e s  �2Ci
�2xi,0

(x̂u
i,0
(�,Δ(�)), u�,b̂i(�,Δ(�))

∣ �, b̂i

(
�,Δ(�)

)
,U)  a n d 

�2

�2bi
Gi(b̂i

(
�,Δ(�)

)
∣ �,Δ(�)) are of full rank almost surely for every sequence ��,

7.	 t h e r e  i s  a  n e i g h b o r h o o d  Θ�  o f  �  s u c h  t h a t (
�, bi, t, x

)
⟼ f�,bi (t, x) ∈ C5(Θ� × Θb × [0, T] × � ,ℝd).

Condition 2b is here to ensure asymptotic normality for non identically 
distributed random variables via Lindeberg-Feller theorem. Conditions 1–4 are 

lim
n⟶∞

1�
V (𝜈)

�2�
�

n�
i=1

�
h(𝜈)(��) − �

�
h(𝜈)(��)

��2
1�

h(��)−�[h(��)]>𝜀
√
V (𝜈)

�
�
= 0



1 3

Parameter estimation in nonlinear mixed effect models based…

used to derive the consistency of our estimator toward 
(
�, �

)
 by following classic 

steps for M-estimator by proving 1. the uniform convergence of our stochastic 
cost function to a deterministic one, 2. the existence of a well-separated minimum 
for this deterministic function (van der Vaart 1998). Conditions 5–7 ensures that 
our cost function is asymptotically smooth enough in the vicinity of 

(
�, �

)
 to pro-

ceed to a Taylor expansion and transfer the regularity of the cost function to the 
asymptotic behavior of 

√
n(�̂ − �, �̂ − �) . Less restrictive conditions can be estab-

lished under which our estimator is still asymptotically normal, in particular 
regarding f�,bi regularity with respect to t.

Theorem 1  Under conditions 1–7, there is a model dependent lower bound � such 
that if ‖U‖2 > 𝜆 then the estimator 

(
�̂, �̂

)
 converges almost surely to 

(
�, �

)
 such 

that:

where

and the vector valued function J(�, �, ��) =
(
J�(�, �, ��)
J�(�, �, ��)

)
 is given by:

The proof is left in appendix D. The practical interest of this theorem is to give 
an estimator of the Variance-Covariance matrix: 

V(�̂, �̂) ≃ Â(�̂, �̂)−1B̂(�̂, �̂)
(
Â(�̂, �̂)−1

)T

∕n with Â(�̂, �̂) = −
1

n

∑n

i=1

�Ĵ(�̂,�̂,��)
�(�,�)

 , 

B̂(�̂, �̂) = 1

n

∑n

i=1
Ĵ(�̂, �̂, ��)Ĵ(�̂, �̂, ��)

T and the vector valued function 

Ĵ(�, �, ��) =
(
Ĵ�(�, �, ��)
Ĵ�(�, �, ��)

)
 given by Ĵ�(�, �, ��) = J�(�, �, ��) and

√
n(�̂ − �, �̂ − �) ⇝ N

�
0,A(�, �)−1B(�, �)

�
A(�, �)−1

�T
�

A(�, �) = lim
n

1

n

n∑
i=1

[
�J(�, �, ��)
�(�, �)

]
,B(�, �) = lim

n

1

n

[∑
i

J(�, �, ��)J(�, �, ��)T
]

J𝜃(𝜃, 𝛿, ��) =
d

d𝜃
h(b̂(𝜃,Δ(𝛿)), 𝜃,Δ(𝛿), yi)

J𝛿(𝜃, 𝛿, ��) =
d

d𝛿
h(b̂i(𝜃,Δ(𝛿)), 𝜃,Δ(𝛿), yi)

−
2

do�
[
n1
]
+ q

Tr

(
▵ (𝛿)−1

𝜕 ▵ (𝛿)

𝜕𝛿k

)
h(b̂i(𝜃,Δ(𝛿)), 𝜃,Δ(𝛿), yi).

Ĵ�(�, �, ��) =
d

d�
h(b̂i(�,Δ(�)), �,Δ(�), ��)

−
2n

do
∑

i ni+qn
Tr
�
△(�)−1 �△(�)

��k

�
h(b̂i(�,Δ(�)), �,Δ(�), ��).
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Now that we have proven the existence of the variance-covariance matrix V(�, �) 
such that �̂ − � ⇝ N

(
0,V(�, �)

)
 , we can use the Delta method to derive the asymp-

totic normality of the original matrix Ψ
(
�̂
)
= �2

(
Δ(�̂)TΔ(�̂)

)−1

 as well as an esti-
mator of its asymptotic variance. In the case of a diagonal matrix Ψ , composed of 
the elements 

(
Ψ2

1
,…Ψ2

q

)
 and of the parametrization △(�) = Diag(

{
e�l

}
)l=1,…q� 

used in Sect. 3, we derive:

Remark 2  The previous theorem 1 states that we retrieve a parametric convergence 
rate. Thus, we avoid the pitfall described in Sartori (2003) for profiled methods in 
presence of a number of nuisance parameters increasing with the number of subjects 
(or strata to resume Sartori (2003) terminology) potentially leading to bias accu-
mulation for score functions among subjects. The i.i.d structure of random effects 
allows us to rely on central limit theorem to avoid this accumulation phenomenon.

3 � Results on simulated data

We compare the accuracy of our approach with maximum likelihood (ML) in 
different models and experimental designs reflecting the problems exposed in the 
introduction, that is estimation in 1. presence of model error, 2. partially observed 
framework with unknown initial conditions and 3. presence of poorly identifiable 
parameters. We proceed to Monte-Carlo simulations based on NMC = 100 runs. At 
each run, we generate ni observations coming from n subjects on an observation 
interval [0, T] with Gaussian measurement noise of standard deviation �∗ . From 
these data, we estimate �∗ , Ψ∗ and b∗

i
 with both estimation methods. We quantify the 

accuracy of each estimator �̂p of the population parameters estimate �̂ =
(
�̂, Ψ̂

)
 via 

Monte-Carlo computation of the bias Bias(�̂p) = �
[
�̂p

]
− �∗

p
 , the empirical vari-

ance Ve(�̂p) = �

[(
�
[
�̂p

]
− �∗

p

)2
]
 , the mean squared error 

MSE(�̂p) = Bias(�̂p)
2 + Ve(�̂p) , the estimated variance V̂

(
�̂p

)
 , as well as the cover-

age rate of the 95%-confidence interval derived from it. This coverage rate, denoted 
CR in the following results, corresponds to the frequency at which the interval [
�̂p ± z0.975

√
V̂
(
�̂p

)]
 contains �∗

p with z0.975 the 0.975−quantile of the centered 

Gaussian law. We compute the previous quantities for the normalized values 
�̂norm
p

∶=
�̂p

�∗
p

 to make relevant comparisons among parameters with different order of 

⎛
⎜⎜⎝

Ψ1(�̂)
⋮

Ψq(�̂)

⎞
⎟⎟⎠
−

⎛
⎜⎜⎝

Ψ1(�
∗)

⋮

Ψq(�
∗)

⎞
⎟⎟⎠
⇝ N

⎛
⎜⎜⎝
0, �2

⎛
⎜⎜⎝

e−�
∗
1 0 0

0 ⋱ 0

0 0 e
−�∗

q

⎞
⎟⎟⎠
V(�∗, �∗)

⎛
⎜⎜⎝

e−�
∗
1 0 0

0 ⋱ 0

0 0 e
−�∗

q

⎞
⎟⎟⎠

⎞
⎟⎟⎠
.
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magnitude. For b∗
i
 , we estimate the mean squared error MSE(b̂i) = �

[‖‖‖b∗i − b̂i
‖‖‖
2

2

]
 . 

For each subsequent examples, we give the results for n = 50 and present in Appen-
dix C the case n = 20 to analyze the evolution of each estimator accuracy with 
respect to data sparsity. For one example in section “Effect of population size on 
estimation accuracy” in Appendix C, we also consider the case n = 100 to analyze 
the evolution of estimation accuracy with respect to an increasing population size.

In the following, we use the superscript ML to denote the ML estimator. For the 
fairness of comparison with ML, we choose a non-informative prior i.e. 
lnℙ(�,Δ) = 0 for our method throughout this section (the impact of prior incorpora-
tion is analyzed in an example left in Appendix C, section “Effect of prior informa-
tion on estimation accuracy”, for a discussion on prior choice in NLME-ODEs see 
Prague et al. (2012)). Also, we do not use a distribution for xu

i,0
 for our approach. For 

ML which requires it, we will use the right parametric form for ℙ
(
xu
i,0

∣ �, bi

)
. If the 

ODE (1) has an analytical solution, the ML estimator is computed via SAEM algo-
rithm (SAEMIX package Comets et al. (2017)). Otherwise, it is done via a restricted 
likelihood method dedicated to ODE models implemented in the nlmeODE package 
(Tornoe et al. 2004). For our method, we need to select U balancing model and data 
fidelity in the inner and middle criteria (5)-(7). We use the method presented in 
G. Hooker and Earn (2011) to compute EPi(U) , the prediction error for the subject i 
corresponding to the estimators �̂U , 

{
b̂i,U

}
i=1,…n

 obtained for a given matrix U. 

From this, we compute EP(U) =
∑

i EPi(U) the global prediction error for the whole 
population. We test a trial of scalar matrices 

{
Ul

}
l=1,…L

=
{
�l × Id

}
l=1,…L

 and retain 

the hyperparameter value �l minimizing EP and we denote �̂, Ψ̂,
{
b̂i,

}
i=1,…n

 the cor-

responding estimator. For solving the optimization problems required for computing 
our criteria, we use the Nelder-Mead algorithm implemented in the optimr package 
(Nash 2016). All optimization algorithms used here require a starting guess value. 
We start from the true parameter value for each of them. By doing so, we aim to 
keep distinct two problems: 1. the numerical stability of the estimation procedures, 
2. the intrinsic accuracy of the different estimators. These two problems are corre-
lated, but we aim to address only the latter which corresponds to the issues raised in 
introduction. Still, we check on preliminary analysis that local minima presence was 
not an issue in the neighborhood of 

(
�∗,△∗

)
 by testing different starting points for 

all methods. No problem appears for our method and SAEMIX. A negligible num-
ber of non convergence cases appear for nlmeODE which have been discarded 
thanks to the convergence criteria embedded in the package (the occurence and 
importance of such convergence issues is analyzed in an example left in section 
“Effect of wrong first guess on estimation accuracy” in Appendix C in which we 
show that our method suffers less than ML from convergence issues when initial 
conditions are unknown).
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3.1 � Application 1—partially observed linear model

We consider the population model where each subject i follows the ODE:

Fig. 1   Left: Examples of solutions of (12) and corresponding observations. Right: Solution of (12) and a 
realization of (13) for the same parameter values

Table 1   Results of estimation for model (12). The different subscripts stand for the following estimation 
scenarios: 1. x0 when both initial conditions are set to 

(
x
∗
1,i,0

, x∗
2,i,0

)
 , 2. x0,2 when x1,i,0 is set to y

i,0 and x2,i,0 

to x∗2,i,0 , 3. absence of subscript when x1,i,0 is set to y
i,0 and x2,i,0 is estimated. Results from our method are 

in bold

Well-specified Misspecified

MSE Bias V
e

V̂ CR MSE b
i

MSE Bias V
e

V̂ CR MSE b
i

�1 �̂ML

x0

0.01 3e−3 0.01 0.01 0.95 0.02 3e−3 0.01 0.01 0.92

�̂ML

x2,0

0.01 3e−3 0.01 0.01 0.92 0.01 3e−3 0.01 0.01 0.93

�̂ML 0.02 4e−3 0.02 0.01 0.90 0.02 0.02 0.02 0.01 0.90

�̂ 0.01 6e−3 7e−3 0.01 0.98 0.01 0.01 0.01 0.01 0.96

�2 �̂ML

x0

2e−4 1e−3 1e−4 1e−4 0.95 1e−3 0.02 4e−4 6e−4 0.88

�̂ML

x2,0

2e−4 1e−3 1e−4 1e−4 0.93 1e−3 0.02 5e−4 6e−4 0.88

�̂ML 5e−4 4e−3 5e−4 3e−4 0.86 5e−3 0.02 4e−3 1e−3 0.77

�̂ 4e−4 3e−4 4e−4 5e−4 0.98 3e−3 0.01 3e−3 5e−3 0.94

Ψ �̂ML

x0

0.01 −0.02 0.01 0.01 0.93 6e−3 0.01 −0.02 0.01 0.01 0.93 0.01

�̂ML

x2,0

0.01 −0.02 0.01 0.01 0.92 7e−3 0.01 −0.02 0.01 0.01 0.94 0.02

�̂ML 0.01 −0.02 0.01 0.01 0.92 0.01 0.01 −0.02 0.01 0.01 0.93 0.04

�̂ 0.01 − 0.02 0.01 0.01 0.92 5e−3 0.01 − 0.03 0.01 0.02 0.92 0.02
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with the following parametrization: log(�1,i) = �1 + bi and log(�2,i) = �2 where 
bi ∼ N(0,Ψ) . The true population parameter values are 
�∗ = (�∗

1
, �∗

2
) = (log (0.5), log (2)) and Ψ∗ = 0.52 and we are in a partially observed 

framework where only X1,i is accessible. The true initial conditions are distributed 
with x∗

1,i,0
∼ N(2, 0.5) and x∗

2,i,0
∼ N(3, 1) . For the penalization term in our method, 

we choose the values �l = 104, 106, 108. An analytic solution exists for ODE (12). In 
particular the first component is given by 
X1,i(t) = e−�1,it(x1,i,0 +

x2,i,0�2,i

�1,i−�2,i

(e(�1,i−�2,i)t − 1)) and will be used for estimation with 
the SAEMIX package. We generate ni = 11 longitudinal observations per subject on 
[0, T] = [0, 10] with measurement noise of standard deviation � = 0.03 . An exam-
ple of sampled observations and corresponding solutions are plotted in Fig. 1.

We want to investigate the impact of initial condition, especially the unobserved 
one x∗

2,i,0
 , on the ML estimator accuracy. Indeed, our method does not need to 

estimate x∗
2,i,0

 and thus no additional difficulties appear in this partially observed 
framework. For the ML, however, it is a nuisance subject-specific parameter that 
should be estimated and for which no observations are available. For this, we com-
pute �̂ML

x0
 , �̂ML

x2,0
 and �̂ML the ML estimator respectively when: 1. both initial conditions 

are perfectly known, 2. x∗
1,i,0

 is replaced by the measured value, 3. in addition, x∗
2,i,0

 
has to be estimated.

3.1.1 � Well‑specified case

We used the exact model described in Sect. 3.1 for the estimation procedure. Thus, 
we are in a completely well-specified setting, with all mechanisms modeled. We pre-
sent the estimation results in Table 1—left side. For ML, the results are goods in 
terms of accuracy and consistent in terms of asymptotic confidence interval cover-
age rate when both initial conditions are known: 95% for �1 and �2 , which is consist-
ent with theoretical results. However, there is a significant drop in accuracy when 
x∗
2,i,0

 has to be estimated. In particular, the coverage rate drops to 90% and 86% for 
�1 and �2 respectively. Interestingly, ML inaccuracy is driven by bias and under-esti-
mated variance when initial conditions are not known (as shown by a greater Ve than 
V̂  ). In this case our method provides a relevant alternative: it gives accurate estima-
tions with a good coverage rate for all parameters while avoiding the estimation of 
x∗
2,i,0

 . Variances are properly estimated compared to empirical variances. Estimation 
of individual random effects is also more accurate with our method, with a MSE for 
bi 2 times smaller compared to ML with unknown initial conditions.

(12)

⎧
⎪⎨⎪⎩

Ẋ1,i = 𝜙2,iX2,i − 𝜙1,iX1,i

Ẋ2,i = −𝜙2,iX2,i�
X1,i(0),X2,i(0)

�
=
�
x1,i,0, x2,i,0

�
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3.1.2 � Misspecified case in presence of model error at the subject level

To mimic the presence of misspecification, we now generate the observations from 
the hypoelliptic stochastic model:

with Bt a Wiener process and � = 0.1 the diffusion coefficient. For the sake of 
comparison, a solution of (12) and a realization of its perturbed counterpart given 
by (13) are plotted in Fig.  1. This framework where stochasticity only affects the 
unmeasured compartment is known to be problematic for parameter estimation and 
inference procedures are yet to be developed for sparse sampling case. From Fig. 1 it 
is easy to see that the diffusion � will be hard to estimate when we only have obser-
vations for X1,i . Thus, we still estimate the parameters from the model (12) which 
is now seen as a deterministic approximation of the true stochastic process. Still, it 
is expected that our method will mitigate the effect of stochasticity on the estima-
tion accuracy by taking into account model misspecification. Results are presented 
in Table 1—right side. The differences between the two methods are similar to the 
previous well-specified case with an additional loss of accuracy coming from model 
error for both estimators. However, the misspecification effect for ML is more pro-
nounced comparing to our method which manages to limit the damages done. This 
illustrates the benefits of taking into account model uncertainty for estimation, in 
particular here when model error occurs in the unobserved compartment, a situation 
in which classic statistical criteria for model assessment based on a data fitting crite-
rion are difficult to use.

Finally, we acknowledge that the effect of other misspecification sources can be 
investigated. For example, the population which is here assumed homogeneous can 
be in fact a mixture of subjects with random effects distributed according to differ-
ent laws. To account for this, we evaluate in section “Effect of outlier presence on 
estimation accuracy” in Appendix C the situation in which an increasing fraction 
of subjects are chosen as outliers for the random effect assumed distribution. We 
then investigate its impact on estimation accuracy for ML and optimal control based 
methods.

3.2 � Application 2–Partially observed nonlinear model

We consider the model presented in De Gaetano and Arino (2000) for the analysis of 
glucose and insulin regulation:

(13)

⎧
⎪⎨⎪⎩

dX1,i = �2,iX2,idt − �1,iX1,idt

dX2,i = −�2,iX2,idt + �dBt�
X1,i(0),X2,i(0)

�
=
�
x1,i,0, x2,i,0

�
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The ODE system (14) rules the behavior of circulating glucose Gi and insulin Ii in 
blood as well as insulin Xi present in interstitial fluid. We are in a partially observed 
case where only Gi and Ii are measured. The values of parameters 

(
p2, � , h,GB, IB

)
 

are set to (−4.93,−6.85, 4.14, 100, 100) and we aim to estimate � =
(
�SG , �SI , �m

)
 , 

linked to the original model via the parametrization: log(SG) = �SG , log(SI) = �SI and 
log(mi) = �m + bi where bi ∼ N(0,Ψ) . The true population parameter values are 
�∗ = (−3.89, −7.09, −1.81) and Ψ∗ = 0.262 . The true subject-specific initial condi-
tions x∗

i,0
=
(
G∗

i,0
, I∗

i,0
,X∗

i,0

)
 are distributed according to ln(x∗

i,0
) ∼ N(lx∗

0
,Ψlx∗

0

) with 

lx∗
0
= (5.52, 4.88,−7) and Ψlx∗

0

=
(
0.172, 0.12, 10−4

)
. For the penalization term in our 

(14)

⎧⎪⎨⎪⎩

Ġi = SG(GB − Gi) − XiGi

İi = 𝛾t(Gi − h) − mi(Ii − IB)

Ẋi = −p2(Xi + SI(Ii − IB)).

Table 2   Results of estimation for model (14). The different subscripts stand for the following estima-
tion scenarios: 1. S

I
 when S

I
 is set to S∗

I
 , 2. absence of subscript when S

I
 is estimated. Results from our 

method are in bold

Well-specified Misspecified

MSE Bias V
e

V̂ CR MSE b
i

MSE Bias V
e

V̂ CR MSE b
i

�
S
G �̂ML

S
I

5e−5 2e−3 4e−5 9e−6 0.95 6e−5 3e−3 6e−5 2e−5 0.85

�̂ML 2e−3 0.03 1e−3 8e−5 0.85 2e−3 3e−3 1e−3 2e−4 0.54

�̂
S
I

1e−5 4e−4 1e−5 8e−6 0.95 2e−5 − 2e−5 2e−5 2e−5 0.93

�̂ 2e−4 − 6e−4 2e−4 2e−4 0.96 3e−4 − 1e−3 3e−4 4e−4 0.93

�
S
I �̂ML

S
I

known known

�̂ML 2e−3 0.03 1e−3 6e−5 0.90 0.01 0.04 0.01 1e−3 0.55

�̂
S
I

known known

�̂ 1e−4 − 7e−4 1e−4 1e−4 0.96 3e−4 − 1e−3 3e−4 3e−4 0.92

�
m �̂ML

S
I

7e−4 3e−3 6e−4 5e−4 0.94 8e−4 − 3e−3 8e−4 5e−4 0.89

�̂ML 9e−4 8e−3 8e−4 5e−4 0.86 5e−3 − 5e−3 5e−3 5e−4 0.88

�̂
S
I

5e−4 6e−3 5e−4 5e−4 0.95 4− 4 7e−4 4e−4 5e−4 0.95

�̂ 6e−4 6e−3 5e−4 5e−4 0.95 4e−4 6e−4 4e−4 5e−4 0.96

Ψ �̂ML

S
I

0.02 7e−4 0.02 0.02 0.95 0.02 0.03 − 3e−3 0.03 0.02 0.93 0.03

�̂ML 0.04 −0.09 0.03 0.02 0.88 0.02 0.03 − 8e−3 0.02 0.02 0.87 0.03

�̂
S
I

0.01 − 2e−3 0.01 0.01 0.95 0.01 0.01 − 4e−3 0.01 0.02 0.94 0.01

�̂ 0.01 3e−3 0.01 0.01 0.94 0.01 0.02 − 7e−3 0.02 0.02 0.94 0.02
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method, we choose the values �l = 106, 107, 108. We generate ni = 5 observations on 
[0, T] = [0, 180] with Gaussian measurement noise of standard deviation �∗ = 3 . As 
in the previous example, we investigate the impact of unknown initial conditions on 
the estimators accuracy. We are particularly interested in the joint estimation of �SI , 
which appears only in the equation ruling the unobserved state variable Xi, and x∗

i,0
 

required for each subject by ML. For this, we distinguish two cases, 1. when �SI is 
known, 2. when �SI has to be estimated and we denote respectively �̂SI and �̂  the cor-
responding estimators. Finally, since the model is nonlinear, we have to specify a 
pseudo-linear representation of the vector field as in (4):

3.2.1 � Well‑specified case

We present the estimation results in Table 2—left side. Our method has small bias 
and achieve good coverages in all cases. We obtain smaller MSE than ML and avoid 
the drop in coverage rate of the confidence interval in the case of �∗

SI
 estimation, 

which is often needed in practice. The difference between the two estimators 
behavior is explained by the fact that they are defined through the construction of 
two different optimization problems. At the population level, our approach leads to 
minimize a cost function depending on a 4-dimensional parameter whereas ML, due 
to its need to estimate x∗

i,0
 , considers a 10-dimensional one. Thus, the parameter 

spaces explored by each method to look for the minimum are very different.

A�,bi

�
t,Gi, Ii,Xi

�
=

⎛
⎜⎜⎝

−SG 0 − Gi

�t − mi 0

0 − p2SI − p2

⎞
⎟⎟⎠
, r�,bi (t) =

⎛
⎜⎜⎝

SGGB

−�th + miIB
p2SIIB

⎞
⎟⎟⎠
.

Table 3   Biological interpretation and parameter values

Param-
eters

Biological interpretation Values

�
L

Long-lived B-cells declining rate log(2)∕(364 × 6)

�∗ �∗
�
S

Mean log-value for �
S
 , the short-lived cells declining rate log(log(2)∕1.2) ≃ −0.54

�∗
�
S

Mean log-value for �
S
 , the antibodies influx from short-lived cells log(2755) ≃ 7.92

�∗
�
L

Mean log-value for �
L
 , the antibodies influx from long-lived cells log(16) ≃ 2.78

�∗
�
Ab

Mean log-value for �
Ab

 , the antibodies declining rate log(log(2)∕24) ≃ −3.54

Ψ∗ Ψ∗
�
S

Inter individual variance for log(�
S,i) 0.922

Ψ∗
�
L

Inter individual variance for log(�
L,i) 0.852

Ψ∗
�
Ab

Inter individual variance for log(�
Ab,i) 0.32
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3.2.2 � Misspecified case in presence of model error at the subject level

To mimic misspecification presence, we generate the observations from the 
stochastic model:

where the Bi,t are Wiener processes and 
(
�1, �2, �3

)
=
(
2, 2, 2 × 10−4

)
 their diffusion 

coefficients. We present the estimation results in Table 2—right side. For ML, the 
drop in coverage rate for �∗

SG
 and �∗

SI
 is even more striking when �∗

SI
 needs to be esti-

mated. This is explained by the effect of model misspecification which increases 
bias and the fact that ML does not take into account this new source of uncertainty 
which leads to under-estimation of variance and too narrow confidence intervals. 
Our method achieved small bias, nominal coverages and small MSE for random 
effects.

3.3 � Application 3—antibody concentration evolution model

We consider the model presented in Pasin et al. (2019) to analyze the antibody con-
centration, denoted Ai , generated by two populations of antibody secreting cells: the 
short lived, denoted Si , and the long-lived, denoted Li:

This model is used to quantify the humoral response on different populations after 
an Ebola vaccine injection with a 2 doses regimen seven days after the second 
injection when the antibody secreting cells enter in a decreasing phase. These cells 
being unobserved, the preceding equation can be simplified to focus on antibody 
concentration evolution:

with �S,i ∶= �S,iSi,0 and �L,i ∶= �L,iLi,0 . This equation has an analytic solution which 
will be used for ML. We consider the following parametrization: log(�S) = ��S , 
log(�S,i) = ��S

+ b�S ,i
 , log(�L,i) = ��L

+ b�L,i
 and log(�Ab,i) = ��Ab + b�Ab,i. The true 

parameter values are presented in Table 3. For the penalization term in our method, 
we choose the values �l = 103, 105, 107, 108.

According to Pasin et al. (2019), �L was non-identifiable based on the available 
data and only a lower bound has been derived for it via profiled likelihood. So, to 
make fair comparisons between our approach and maximum likelihood, we do not 

(15)

⎧
⎪⎨⎪⎩

dGi =
�
SG(GB − Gi) − XiGi

�
dt + �1dB1,t

dIi =
�
�t(Gi − h) − mi(Ii − IB

�
)dt + �2dB2,t

dXi =
�
−p2(Xi + SI(Ii − IB))

�
dt + �3dB3,t

,

(16)

⎧⎪⎨⎪⎩

Ṡi = −𝛿SSi
L̇i = −𝛿LLi
Ȧi = 𝜗S,iSi + 𝜗L,iLi − 𝛿Ab,iAi�
Si(0), Li(0),Ai(0)

�
=
�
Si,0, Li,0,Ai,0

�
.

(17)Ȧi = 𝜙S,ie
−𝛿St + 𝜙L,ie

−𝛿Lt − 𝛿Ab,iAi
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estimate it. Regarding population parameters, we are particularly interested in the 
behavior of estimation methods for ��S and ��S

. Indeed, a parameter sensitivity 
analysis shows the symmetric role of ��S and ��S

 on the ODE solution (see Balelli 
et  al. (2020)). Thus, they are likely to face practical identifiability problems. To 

Table 4   Results of estimation for model (17). The different subscripts stand for the following estima-
tion scenarios: 1. �

S
 when ��

S
 is set to �∗

�
S

 , 2. absence of subscript when ��
S
 is estimated. Results from our 

method are in bold

Well-specified Misspecified

MSE Bias V
e

V̂ CR MSE b
i

MSE Bias V
e

V̂ CR MSE b
i

��
S

�̂ML

�
S

known known

�̂
ML

2.13 0.78 1.51 70.64 0.92 3.88 1.48 1.68 4.10 0.80

�̂�
S

known known

�̂ 0.62 − 0.34 0.50 0.66 0.92 0.93 − 0.40 0.77 0.62 0.90

��
S

�̂ML

�
S

4e−4 0.01 3e−4 3e−4 0.94 1e−3 0.02 1e−3 5e−4 0.91

�̂
ML

0.01 −0.05 7e−3 0.40 0.92 0.02 −0.10 0.01 0.02 0.88

�̂�
S

2e−3 − 0.05 2e−4 1e−3 0.94 7e−4 − 0.02 3e−4 1e−3 0.92

�̂ 2e−3 1e−3 2e−3 2e−3 0.93 4e−3 − 6e−3 3e−3 0.01 0.90

��
L

�̂ML

�
S

3e−3 0.02 3e−3 2e−3 0.95 5e−3 0.03 4e−3 3e−3 0.93

�̂
ML

4e−3 0.03 4e−3 3e−3 0.90 9e−3 0.05 7e−3 4e−3 0.90

�̂�
S

7e−4 − 0.01 5e−4 3e−3 0.95 2e−3 − 0.02 3e−3 2e−3 0.97

�̂ 3e−3 − 3e−3 3e−3 2e−3 0.91 6e−3 − 8e−3 6e−3 7e−3 0.90

��
Ab

�̂ML

�
S

7e−4 − 0.02 5e−4 3e−4 0.93 2e−3 − 0.03 1e−3 1e−3 0.92

�̂
ML

2e−3 −0.02 1e−3 4e−4 0.88 4e−3 −0.04 3e−3 7e−4 0.88

�̂�
S

2e−4 0.01 1e−4 3e−4 0.95 3e−4 2e−3 3e−4 3e−4 0.96

�̂ 4e−4 0.01 3e−4 2e−4 0.90 3e−4 8e−3 3e−4 2e−3 0.89

Ψ�
S

�̂ML

�
S

0.04 − 1e−3 0.04 0.07 1 0.15 0.05 0.03 0.05 0.08 1 0.17

�̂
ML

0.11 0.01 0.11 0.05 1 0.17 0.13 0.01 0.13 0.25 1 0.21

�̂�
S

0.02 8e−3 0.02 0.01 0.94 0.06 0.02 2e−3 0.02 0.02 0.94 0.11

�̂ 0.02 − 0.03 0.02 0.02 0.94 0.07 0.02 − 0.05 0.02 0.03 0.92 0.08

Ψ�
L

�̂ML

�
S

0.03 0.04 0.02 0.04 1 0.30 0.05 0.03 0.05 0.06 1 0.73

�̂
ML

0.03 0.05 0.02 0.04 1 0.60 0.03 0.05 0.02 0.07 1 0.74

�̂�
S

0.02 − 0.1 5e−3 8e−3 0.93 0.07 0.02 − 0.10 0.01 0.02 0.91 0.10

�̂ 0.03 − 0.06 0.02 0.01 0.92 0.08 0.03 − 0.06 0.02 0.03 0.87 0.12

Ψ�
Ab

�̂ML

�
S

0.11 0.18 0.08 0.02 1 0.10 0.33 0.41 0.17 0.05 1 0.56

�̂
ML

0.20 0.29 0.11 0.02 1 0.50 0.30 0.34 0.19 0.05 1 0.69

�̂�
S

0.10 − 0.30 0.01 0.01 0.95 0.03 0.10 − 0.16 0.08 0.06 0.91 0.04

�̂ 0.11 − 0.27 0.04 0.04 0.95 0.04 0.15 − 0.29 0.06 0.10 0.88 0.06
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investigate this effect, we estimate the parameters when �∗
�S

 1. is known (the 
corresponding estimators will be denoted with the subscript �S ), or 2. has to be 
estimated as well.

3.3.1 � Well‑specified case

We generate ni = 11 longitudinal observations on the interval [0, T] = [0, 364] with 
measurement noise of standard deviation �∗ = 100 . For each subject i, the initial 
condition has been generated according to A∗

i,0
∼ N(A0, �

2

A0

) with A0 = 500 and 
�
A0

= 260 to reflect the dispersion observed in data presented in Pasin et al. (2019). 
We present the estimation results in Table 4—left side.

Our method gives an improved estimation with a dramatically reduced variance 
for �∗

�S
 comparing to ML, as well as an improved estimate for the 

{
b∗
i

}
i=1,…n

 in all 
cases. We assume that is due to the committed estimation error for �∗ which causes 
model error during 

{
b∗
i

}
i=1,…n

 estimation, not accounted for by ML. This in turn 
explains why variance Ψ∗ is better estimated with our approach. In this mixed-effect 
context, this cause of model error is systematically present and claims for the use of 
estimation methods taking it into account when subject specific parameters are criti-
cal for the practitioner.

3.3.2 � Misspecified case in presence of model error at the subject level

The data are generated with a stochastic perturbed version of ODE (17):

where Bt is a Wiener process and � = 10 its diffusion coefficient. The value for � has 
been chosen big enough to produce significantly perturbed trajectories but small 
enough to ensure that ODE (17) is still a relevant approximation for estimation 
purpose. The results are presented in Table 4—right side. Our method outperforms 
the ML for �∗

�S
 as well as for 

{
b∗
i

}
i∈[1, n]

 estimation and their variances. However, we 
acknowledge that this last simulation setting is challenging even for our approach 

(18)dAi =
(
�S,ie

−�St + �L,ie
−�Lt − �Ab,iAi

)
dt + �dBt

Table 5   Estimation presented in 
Pasin et al. (2019) and via our 
approach

Estimations from Pasin 
et al. (2019)

Optimal Control appraoch

Parameter Mean IC95% Mean IC95%

��
S

−0.57 [ −1.02, −0.02] −0.18 [ −0.58, 0.22]
��

S
7.92 [7.52, 8.30] 7.45 [6.85, 7.96]

��
L

2.78 [2.62, 3.01] 2.58 [2.15, 3.01]
��

Ab

−3.54 [ −3.62, −3.45] −3.48 [ −3.95, −3.01]
Ψ�

S
0.92 [0.83, 1.01] 0.64 [0.60, 0.70]

Ψ�
L

0.85 [0.78, 0.92] 0.70 [0.55, 0.90]
Ψ�

Ab
0.30 [0.24, 0.36] 0.25 [0.19, 0.31]
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with confidence coverage around 90% for most of parameters, below the theoretical 
rate of 95%.

4 � Real data analysis

We use the presented estimation approach to address the same problem as Pasin 
et al. (2019). This real data example is similar to the synthetic scenario performed 
in Sect. 3.3. In brief, we use data from a phase I trial in East Africa evaluating the 
effect of an heterologous anti-Ebola vaccine strategy in which Ad26.ZEBOV was 
injected first and then MVA-BN-Filo with a delay of 28 days between the two 
doses. We consider a population of n=28 individuals, with in average 5 
measurements per subject. In order to ensure a fair comparison, we adopt a 

Fig. 2   Mean trajectory for Pasin et al. (2019) estimation (Dashed line) and the optimal control approach 
estimation (Solid line). Shaded area are the 95% confidence intervals
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Fig. 3   Examples of fitted trajectories for both methods for four different random subjects. Dashed lines: 
fitted ODE solutions from Pasin et al. (2019). Solid line: optimal trajectories X�̂,b̂i

 obtained with optimal 
control approach. Shaded area are the 95% confidence intervals
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Bayesian framework for � =
(
��S , ��S

, ��L
, ��Ab

)
 and used the same prior distribu-

tion as in the original paper:

Fig. 4   (1) Up: Estimated residual controls for each subject, (2) bottom: mean optimal control and 95% 
confidence interval for the optimal controls a) left: u

i,�̂P ,b̂i
P
,yi,0

 obtained from parameter estimation in Pasin 

et al. (2019), b) right: u
i,�̂,bi(�̂)

 obtained from our estimation
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We set our mesh-size to get 200 discretization points for each subject and we use 
U = 10 i.e., a value lower than in the simulated data case because of the presence of 
model error. We also proceed to the log-transformation of the data to stabilize the 
measurement noise variance. Using the transformation Ãi(t) ∶= log10 Ai(t) in Equa-
tion (17), this drives us to use the following nonlinear model:

We choose A�,bi
(t, x) =

1

ln(10)

(
�S,ie

−�St + �L,ie
−�Lt

)
10−x

x
 and r�,bi(t) = −

�Ab,i

ln(10)
 for the 

pseudo-linear formulation of the model. In Table  5, we compare our estimations 
with those presented in Pasin et  al. (2019) obtained using the NIMROD software 
(Prague et al. 2013). Both methods produce estimations with overlapping confidence 
intervals for � supporting the previous published results in term of antibodies con-
centrations dynamics over time. Still, significant differences appear for (
Ψ�S

,Ψ�L
,Ψ�Ab

)
 estimation with lower dispersion of random effects in the optimal 

control approach. This is explained by the fact that a part of the variability is now 
carried out by subject-specific perturbations 

{
u
i,�̂,bi(�̂)

}
i=1,…n

. In Fig. 2, we plot the 

mean curve for both estimation methods, that is the solution of ODE (19) with � 
value given by Table 5 and random effects set to 0. The mean evolution are compa-
rable between the two approaches. This is confirmed at the individual level in Fig. 3.

Finally, our method can be used to assess the model adequacy via the temporal evo-
lution analysis of 

{
u
i,�̂,bi(�̂)

}
i=1,…n

 estimated as byproducts of our method. In Sect. 2.1, 

we have also indicated that perturbations ui,�,bi,xi,0 can be computed for an arbitrary set 

(�, bi, xi,0) . In particular, we estimate 
{
u
i,�̂P,b̂i

P
,yi,0

}
i=1,…n

 , the committed error corre-

sponding to (�̂P, b̂i
P
) , the population and subject specific estimators obtained in Pasin 

et al. (2019). In Fig. 4, we plot both perturbation sets. Our method leads to residual 
perturbations of smaller magnitudes and narrower confidence intervals. This means 
that our approach produces an estimation which minimizes the committed model error 
for each subject comparing to a method based only on a data fitting criterion as in Pasin 
et al. (2019). Moreover, by reducing the size of the confidence interval for estimated 
perturbations, we conclude to a mean perturbation among the population which is sta-
tistically different from zero at the beginning of observation interval. This may indicate 
presence of model misspecification.

�(�) ∼ N

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

−1

0

0

−4.1

⎞
⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎝

25 0 0 0

0 100 0 0

0 0 100 0

0 0 0 1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
.

(19)�̇Ai(t) =
1

ln(10)

(
𝜙S,ie

−𝛿St + 𝜙L,ie
−𝛿Lt

)
10−

�Ai(t) −
𝛿Ab,i

ln(10)
.
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5 � Conclusion

In this paper, we propose an estimation method that addresses problems encountered 
by classical approaches in NLME−ODE models. We identify the following 
shortcomings for exact methods such as likelihood-based inference: their difficulty 
in the presence of model misspecification, their need to estimate initial conditions 
as regular random effects, and their dramatic performance degradation in the 
presence of poorly identifiable parameters. We propose here a method based on an 
approximation of the profiled likelihood and control theory that accounts for the 
presence of potential model uncertainty at the subject level and that can be easily 
profiled on initial conditions. Simulations with and without model error illustrate 
the advantages of regularization techniques for estimating poorly identifiable 
parameters, subject-specific parameters, and their variances in NLME−ODEs. In 
addition, bypassing the estimation of initial conditions represents a clear advantage 
for partially observed systems comparing to likelihood based approaches, as 
emphasized in the simulations.

Still, this benefit in term of estimation accuracy comes with a computational 
price. On a server (see https://plafrim-users.gitlabpages.inria.fr/doc/ for more 
server details) with the parallelization package Snow in R language, and for a 
given choice of penalization matrix U, it takes approximately 10–15 min to obtain 
an estimation for the two-dimensional linear model, 30 min for the insulin model 
and 3-4  h for the antibody concentration evolution one, whereas it was a matter 
of minutes for the other approaches. Nevertheless, the use of compiled languages 
and proper parallelization could reduce the computation time. Moreover, we have 
willingly separated the formal definition of the optimal control problem required by 
our method and the numerical procedure used to solve it, in case it may exist better 
suited approaches for this specific control problem. Right now, our current strategy 
allows us to profile on initial conditions (despite requiring continuous observations 
and thus excluding applications to count or binary ones), therefore looking for 
another numerical procedure is beyond the scope of this paper.

Finally, the qualitative assessment of model misspecification exposed in Sect. 4 
can be made more rigorous. In a one subject setting, the estimation of a perturbation 
term at the derivative level via non-parametric procedures to test model error 
presence has been already explored (Hooker et  al. 2015; Engelhardt et  al. 2017). 
Comparing to statistical methods solely based on data fitting criteria, they generally 
produce more sensitive statistical tests and can explore misspecification presence 
even for unobserved state−variables. Our control based approach can extend such 
tests to a population framework, while avoiding issues due to hyperparameter 
selection required for non-parametric statistical methods which can appear for 
a growing number of subjects. For example, to stay in a Bayesian setting, we can 
specify a prior distribution for the controls and then compare it with the obtained 
posterior once the inference is made. This would lead to a semi-parametric inference 
problem for which an optimal control based approach has already been proven 
useful (see Clairon (2020)). This is a subject for further work.
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6.2 Prague et al. 2017 (Biometrics) Causal properties of Mecha-
nistic Models

Dynamic versus marginal structural models for estimating the effect of HAART on CD4 in
observational. Prague M. Commenges D., Gran JM., Ledergerber B., Young J., Furrer H. and
Thiébaut R. Biometrics. 73(1) - 294-304 - July 2016.

This article integrates in the first axis of my research "Statistical Methodology for Estimations and
Building of Mechanistic Models". It has been initiated during a short (2 months) research visit in
University of Oslo between my PhD graduation and the start of my postdoctoral fellowship.

I selected this paper because it highlights the real strength of mechanistic models in comparison to
more descriptive approaches. It offers a comprehensive catalog of methods for analyzing observa-
tional studies with informative treatment initiation, a challenging area due to the tendency to start
treatment in more severe cases. The paper effectively reconciles and contrasts Marginal Structural
Models with mechanistic models, underscoring that mechanistic models are a valid approach to causal
inference. A primary challenge in this work was accessing data and establishing a simulation pipeline
that didn’t favor one approach over the other.
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Summary. Highly active antiretroviral therapy (HAART) has proved efficient in increasing CD4 counts in many randomized
clinical trials. Because randomized trials have some limitations (e.g., short duration, highly selected subjects), it is interesting
to assess the effect of treatments using observational studies. This is challenging because treatment is started preferentially in
subjects with severe conditions. This general problem had been treated using Marginal Structural Models (MSM) relying on
the counterfactual formulation. Another approach to causality is based on dynamical models. We present three discrete-time
dynamic models based on linear increments models (LIM): the first one based on one difference equation for CD4 counts, the
second with an equilibrium point, and the third based on a system of two difference equations, which allows jointly modeling
CD4 counts and viral load. We also consider continuous-time models based on ordinary differential equations with non-linear
mixed effects (ODE-NLME). These mechanistic models allow incorporating biological knowledge when available, which leads
to increased statistical evidence for detecting treatment effect. Because inference in ODE-NLME is numerically challenging
and requires specific methods and softwares, LIM are a valuable intermediary option in terms of consistency, precision, and
complexity. We compare the different approaches in simulation and in illustration on the ANRS CO3 Aquitaine Cohort and
the Swiss HIV Cohort Study.

Key words: Dynamic mechanistic models; Linear increment models (LIM); Marginal structural models (MSM); Non-linear
mixed effect models (NLME); Observational study; Ordinary differential equation (ODE).

1. Introduction
Randomized clinical trials often have short durations and
include highly selected subjects, thus assessing the effect of
a treatment using observational studies is useful. However, it
is challenging because the treatment may change, and covari-
ate history of a subject up to time t may influence treatment
given after t, and may also influence the outcome of interest,
which induces a time-dependent confounding. For instance,
one may wish to assess the effect of antiretroviral therapy
in HIV infected subjects. As CD4+ T-lymphocytes (CD4, in
short) are the main target cells of the HIV virus, it is possible
to assess the effect of a treatment on the blood concentration
of these cells: CD4 counts are measurements of this concentra-
tion. In observational studies, however, the decision to start
an antiretroviral therapy may depend on CD4 counts as well
as on other covariates. In this setting, it has been demon-
strated that a conventional regression analysis leads to biased
estimates of the treatment effect, typically underestimating

it, and possibly (wrongly) indicating a negative effect. This is
called “confounding by indication” (Walker, 1996).

Marginal structural models (MSM) (Robins et al., 2000)
have been proposed for dealing with this issue; this is based
on choosing a causal model in terms of potential responses,
which are often counterfactual, to the different treatment his-
tories. The parameters of a MSM can be estimated through a
weighted approach but other methods exist (Petersen et al.,
2006). The weights are the inverse probability of treatment
assignment and are obtained through a “treatment model”
which includes the covariates linked to the outcome. Because
data are correlated, we use an inverse probability weighted
generalized estimating equation (GEE). This approach has
been applied by Hernán et al. (2002) and Cole et al. (2005)
for estimating the effect of zidovudine and of highly active
antiretroviral therapy (HAART) on CD4 count. Sterne et al.
(2005) and Cole et al. (2007) used it for estimating the effect
of HAART on viral load and on AIDS or death.

294 © 2016, The International Biometric Society
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An alternative view to causality that does not use the
potential responses representation is to use dynamic models.
This has been pioneered by Granger (1969), Dawid (2000),
and further developed by Didelez (2008), Commenges and
Gégout-Petit (2009), Gégout-Petit and Commenges (2010),
and Eichler and Didelez (2010). Assumptions needed for a
causal interpretation of dynamic models have been presented
in Arjas and Parner (2004) and Commenges and Gégout-Petit
(2015). Dynamical models in discrete time, and in particu-
lar linear increment models (LIM), have been proposed by
Diggle et al. (2007) and Hoff et al. (2014). Aalen et al. (2012)
have suggested that such models can be useful for studying
the HAART effect on CD4 counts or viral load. Discrete-
time models, however, may not be completely satisfactory
because the processes of interest most often exist in continu-
ous time. Systems of differential equations in continuous time
can also be used to model the interaction between HIV and
CD4 cells populations. Models based on differential equations,
called “mechanistic,” considerably helped in understanding
some important features of the infection: see Perelson (2002)
for a review. In our setting, it is possible to model the treat-
ment effect from a biological perspective. Introducing random
effects is an efficient way to model differences between sub-
jects with a minimum of additional parameters (Wu, 2005;
Guedj et al., 2007; Lavielle et al., 2011). Mechanistic models
have mostly been used to analyze data from clinical trials.
Using mechanistic models to estimate the effect of HAART
based on data of large observational cohorts is possible, but
to our knowledge, has never been attempted.

The aim of this article is to propose dynamic models in
discrete and continuous time for assessing the causal effect
of a treatment on a marker in observational studies. Specifi-
cally, we aim to estimate the HAART effect in HIV infected
patients. We present several possible dynamic models, as
well as MSMs, and compare them using simulations and real
data. Although we worked out analytics in simple cases (see
Appendix), the comparison is mainly empirical and aims to
describe the assumptions and variability of results provided
by the various methods. In Section 2, we present the statis-
tical models: the naive model, the MSMs, the discrete-time
dynamic models, and the mechanistic approach. In Section 3,
we compare the results of these models in simulation, where
the data are generated from a complex mechanistic model.
Section 4 is the application on the data of two cohorts of HIV
infected patients: the Swiss HIV Cohort Study (SHCS) and
the ANRS CO3 Aquitaine cohort. Section 5 concludes.

2. Modeling the Treatment Effect in
Observational Studies

2.1. Notations and the Naive Model

We denote the value of a physiological marker for subject i

at time t by Yi
t , say the CD4 count. The value of a treatment

given at time t to subject i is denoted by Ai
t , say HAART. For

sake of simplicity, we only model two treatment states: Ai
t = 0

when treatment is not given, and Ai
t = 1 when treatment is

given, and we assume that once initiated the treatment is
not interrupted; however, one could expand the model to
accommodate different levels of treatment. If treatment is
started at time t then Ai

t = 1 and Ai
t−1 = 0. We use over-

bars to represent the histories of these processes: for instance

Ai
t = (Ai

0, A
i
1, . . . , A

i
t). We denote by cum(Ai

t) = ∑t

k=1
Ai

k the
cumulative time under treatment until time t. In the absence
of confounding by indication, the simplest model would be to

regress Yi
t on cum(Ai

t−1). Cole et al. (2005) notes the advan-
tages of a piecewise linear regression model that allows a
change in the effect of treatment after 1 year. Thus, our Model
1 is a naive model with different treatment effects before and
after 1 year:

E(Yi
t |Ai

t−1) = β0 + β1cum(Ai
t−1) + β2cumlag(Ai

t−1). (1)

where cumlag(Ai
t−1) is the cumulative time under treat-

ment up to time t minus 1 year: cumlag(Ai
t−1) = max(0,

cum(Ai
t−1) − 1) (with the convention Ai

t = 0 for t < 0). The
β’s can be estimated by conventional GEE (Liang and Zeger,
1986) because we are interested in the population average.
We use the independence working correlation structure in
our analyses; otherwise results could be biased because of
the presence of time-varying covariates (Pepe and Anderson,
1994).

2.2. Marginal Structural Models (MSM)

Because treatment is given to subjects with low CD4 counts,
treated subjects tend to have low CD4 counts. Thus, the true
value of parameter β1 in Model 1 cannot be interpreted as
the causal effect. MSMs are designed to estimate the causal
effect of a treatment given time dependent confounding. It is
assumed that to each particular value of treatment history

ai
t of Ai

t , a potential outcome Yi
t (a

i
t) is associated (possibly

contrary to the treatment actually received). A model is pos-
tulated to describe how the potential outcomes vary as a
function of the different treatment trajectories. Hernán et al.
(2002) and Cole et al. (2005) proposed benchmark models
that also adjust for confounders such as time (t) and baseline
value of biomarkers (Y0) in the regression. To duplicate this,
our Model 2 is:

E(Yi
t (a

i
t)|ai

t−1, Y
i
0) = β0 + β1cum(ai

t−1) + β2cumlag(ai
t−1)

+ β3t + β4Y
i
0. (2)

Robins et al. (2000) showed that the causal parameters
of this model can be estimated with a suitably weighted
GEE. The weights represent the inverse probability of treat-
ment. The probability of treatment at time t depends on
the history up to time t of a vector of variables L denoted

Li
t = (Li

0, ..., L
i
t); Li

t typically includes include Yi
t . The proba-

bility of treatment is estimated at each point in time using a
treatment model (generally a logistic model) and the weights
are the product over time of these probabilities; one often use
stabilized weights as in equation (3). An extension allows for
censoring (Cole et al., 2005; Cole and Hernán, 2008), however,
the most important correction is generally for the probability
of treatment (Ko et al., 2003). Stabilized inverse probability
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of treatment weights are defined as:

SWi(t) =
t∏

k=1

Pr(Ai
k = 1|Ai

k−1, L
i
0)

Pr(Ai
k = 1|Ai

k−1, L
i
k)

. (3)

Results from Model 2 are consistent if the treatment model
corresponds to the true treatment assignment mechanism; i.e.,
if all the confounders (factors influencing both the outcome
of interest and treatment assignment) have been taken into
account. We defined L for treatment model in Model 2 as
baseline and time-varying CD4 count in categories (<200,
[200; 400], >400), viral load in categories (<401, 401 − 10,000,
and >10,000), and an indicator of undetectable viral load. In
Models 1 and 2 the effect of treatment on CD4 counts dur-
ing the first year is given by β1 and the effect after 1 year of
treatment is given by β1 + β2.

2.3. Modeling the Increment with a Dynamical MSM

It is more relevant to model the change in the marker of inter-
est, rather than its current value. This fits well with a causal
thinking which considers that the change of a process depends
on its present, and possibly past, states. Thus, we could model
Yi

t − Yi
t−1; in order to account for non-equally spaced mea-

surements, we might assume that the change in biomarker
values is proportional to the time elapsed between two mea-
surements; that is, �i

t = ci
t − ci

t−1, where ci
t is the tth calendar

time of observation since the baseline measure of subject i. We

define the biomarkers increments as Zi
t = Yi

t −Yi
t−1

�i
t

. We take this

approach when developing linear increment models in Section
2.4. However it is possible to express a MSM for the Zi

t ’s as:

E(Zi
t(a

i
t)|ai

t−1, Y
i
0) = β0 + β1a

i
t−1 + β2a

i
t−2. (4)

Our Model 3 is then the combination of this MSM for Zi
t

together with the treatment model (3). Note that with equally
spaced measurements, Models 2 and 3 will be structurally
identical if the same unit of time (e.g., year) is used for
�i

t and the cumulative exposures (see Appendix). Inference
approaches will be different, thus, Model 3 should be more
suitable than Model 2 because we use an independence work-
ing correlation matrix for the Zi

t ’s, which is much more
acceptable than assuming independence for the Yi

t ’s.

2.4. Full Discrete-Time Dynamical Models–Linear
Increment Models (LIM)

We can also fit a linear mixed-effects model for the Zi
t ’s. The

inter-subject variability is accounted for by a random effect
b assumed normally distributed with zero expectation. Thus,
LIM specify the distribution of Zi conditional on the bi. We
propose three LIM; the simplest is Model 4, where the ε’s are
i.i.d. normal variables with zero expectation:

Zi
t = β0 + β1A

i
t−1 + β2A

i
t−2 + bi + εi

t . (5)

In both Models 3 and 4, the effect of treatment on the
CD4 counts is β1�̄t during the first year of treatment, and
(β1 + β2)�̄t after 1 year, where �̄t is the mean of all the �i

t .
Many deterministic dynamical models have equilibrium

points; similarly, many stochastic dynamical models tend

toward a stationary process. This property fits very well
with the behavior of biological systems since concentrations
of many molecules or cells have a tendency to return to
the same value, a property called “homeostasis.” Difference
equations of the type Yi

t − Yi
t−1 = γ0 + γ1Y

i
t−1 + εi

t correspond
to an autoregressive model of order one, denoted AR(1):
Yi

t = γ0 + γ ′Yi
t−1 + εi

t with γ ′ = (γ1 + 1). It is well known that
if |γ ′| < 1 this process converges toward a stationary process
(in discrete time) with expectation E(Yi

t ) = − γ0
1−γ ′ = − γ0

γ1
; this

is always defined unless γ1 = 0, as is the case in Model 4 which
does not have a finite stationary expectation. When using a
model which has this convergence property, it may not be
necessary to have a two-slope model. For example, we define
Model 5, which tends to a stationary process with expectation
− β0+β1

β2
for treated patients if −2 < β2 < 0 and β0 + β1 > 0:

Zi
t = β0 + β1A

i
t−1 + β2Y

i
t−1 + bi + εi

t . (6)

A more realistic modeling of CD4 counts takes viral load
into account. Here, we make a step toward mechanistic models
because we know that the virus concentration and the CD4
concentration are inter-related processes. Thus, Model 6 is
based on a system of two difference equations:

{
Zi

t = β0 + β1A
i
t−1 + β2Y

i
t−1 + β3VLi

t−1 + bi + ε1
it ,

Wi
t = α0 + α1A

i
t−1 + α2Y

i
t−1 + α3VLi

t−1 + di + ε2
it .

(7)

where Wi
t = VLi

t−VLi
t−1

�i
t

, with VLi
t the viral load at time t for

patient i. The random effects di and bi, and the errors ε1
it and

ε2
it are all i.i.d. and normally distributed with zero expectation.

In Models 5 and 6, one year and subsequent years increase in
CD4, as well as the long-term change, are easily computed
by solving the difference equations numerically. Moreover, for
testing whether the treatment has an effect, it is convenient
to test the hypotheses β1 = 0 and α1 = 0, by Wald tests for
instance. As a reviewer notes, an interesting question is the
correspondence between LIM and MSM. The Appendix shows
that under some (rather strong) assumptions, Model 4 esti-
mates the same causal parameters as Models 2 and 3 without
using a treatment model.

2.5. Continuous Dynamical Models, Mechanistic Models
(ODE-NLME)

In reality, biomarkers processes exist in continuous time. A
natural extension of a dynamic model in discrete time, as
�i

t → 0, is a model based on differential equations. (Perelson,
2002) give a review of some models for HIV dynamics based
on ODE systems. In this article, we consider the “target cells
model”, called Model 7 and described bellow, which proved
to provide a good fit and prediction abilities (Prague et al.,
2013).

2.5.1. Biological system. We know that only infected cells
(T ∗) can produce viruses (V ). The target cells model distin-
guishes between uninfected quiescent cells (Q) and target cells
(T ). The instantaneous change of concentrations of these pop-
ulations at time t, for all real value of t > 0, is given by the
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Figure 1. Mechanistic models for HIV dynamics. Type of cells of interest are viruses (V ), effector cells E and CD4 cells
which may be quiescent (Q), target cells (T , T1, T2) or infected (T ∗, T ∗

1 , T ∗
2 ). Parameters are defined in Table 1.

ODE system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dQi
t

dt
= λi + ρiT i

t − αiQi
t − μi

QQi
t,

dT i
t

dt
= αiQi

t − γiT i
t V

i
t − ρiT i

t − μi
T T i

t ,

dT ∗i
t

dt
= γiT i

t V
i
t − μi

T ∗T
∗i
t ,

dV i
t

dt
= πiT ∗i

t − μi
V V i

t .

(8)

The system is graphically represented in Figure 1a. Here, the
parameters have biological meanings: λ is the production rate
of new CD4 cells, the μ’s are death rates of different popula-
tions of cells, α and ρ are transition rates between quiescent
and target cells, π is the rate of production of virions by
infected cells, and γ is the infectivity parameter. The model
assumes that the rate of infection of target cells is γVt .

2.5.2. Inter-individual variability. A model that allows
parameters to vary between individual is a mixed effects
model. We model the inter-individual variability on the
log-transformed parameters denoted with a tilde to ensure
positiveness during estimation. In this application, two ran-
dom effects ui

λ and ui
μT∗ are introduced (Prague et al., 2012):

λ̃i = λ̃0 + ui
λ and μ̃i

T ∗ = μ̃T ∗0 + ui
μT∗ . Biologically, the causal

effect of treatment can be modeled as an effect on the infec-
tivity parameter γ. The parameter γ depends on t through
Ai

t , where we expect β < 0, so that the treatment decreases
the infectivity of the virus:

γ̃ i(t) = γ̃0 + βAi
t. (9)

2.5.3. Observation model. One important consequence of
using continuous time models is that we must distinguish
between the biological system which exists in continuous time
and observations which are made at discrete times. To make
an additive model for measurement error acceptable, we use
4th-root transformation for CD4 and a log10 transformation

for the viral load. With errors ε1
ij and ε2

ij both i.i.d. and nor-
mally distributed, the observation model is:

(Yi
j)

1/4 = [Qi
tij

+ T i
tij

+ T ∗i
tij
]1/4 + ε1

ij ;

log10 VLij = log10 V i
tij

+ ε2
ij . (10)

2.5.4. Inference. Inference is much more complex and
computationally demanding than in discrete-time models. We
base inference on a penalized maximum likelihood approach
and to achieve identifiability, we include prior knowledge of
mechanistic parameters. Our priors (Table 1) are based on
estimates in the literature of these parameters (Prague et al.,
2012). This approach has been implemented in the NIMROD
program (Prague et al., 2013). Assessing the long-term treat-
ment effect in Model 7 is possible by analytically computing
the equilibrium point. One year and subsequent year increase
in CD4 after treatment initiation can be computed by solving
the ODE system for given values of the random effects. The
marginal effect can be computed as the mean of the individual
effects in the population. The β parameter in the infectivity
definition gives the effect of treatment, and a Wald test can
be used to test the no-effect hypothesis (β = 0).

3. Simulation Study

We simulated data with the Adams et al. (2005) model made
up of two populations of target cells and a population of
immune effectors such as cytotoxic T-lymphocytes (see Fig-
ure 1b and Table 1), which is much more complex than Model
7 (see Web-Supplementary Material A4). Individual vari-
ability was introduced by drawing parameters from normal
distributions (with mean values listed in Table 1 and variances
chosen to obtain a variation coefficient of 50%). By control-
ling the value of random effects, we ensured that the steady
state baseline distributions of CD4 counts and viral load
were consistent with the baseline values distributions found in
Aquitaine cohort and SHCS data set. See Web-supplementary
Material A1 for details. We generated observations every 3
months; the standard deviations of the measurement errors
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Table 1
Meaning of parameters in the dynamical models presented in Figure 1. The upper part gives prior means and standard

deviations for normal a priori distributions used for estimation of mechanistic parameters in Model 7 for the “Target cell
model”. The lower part gives parameter values used for data simulation from the Adams et al. (2005) model.

Normal priors used for analysisa

on the log value of the parameter

Name Description Mean SD.

λ Natural production rate
cells

μL.day
2.55 1.90

μT ∗ Natural death rate of T ∗ cells
1

day
−0.05 0.68

μQ Natural death rate of Q cells
1

day
−9.00 1.00

α Transition rates between Q and T cells
1

day
−4.00 2.00

ρ Transition rates between T and Q cells
1

day
−4.34 1.38

μT Virions natural death rate
1

day
−2.59 0.34

γ Infectivity parameter
μL

day
−5.76 4.02

π Rate of production of virions by infected cells
1

day
4.04 2.66

μV Natural death rate of viruses
1

day
2.83 0.68

Parameter Value used for simulations
for each population (X)b

Name Description Units Type 1 Type 2 Effectors Virus

λX Natural production rate
cells

mL.day
5000 31.98 1.0 –

(1-εX) Treatment efficacy no unit 50% 83% – –

dX Natural death rate
1

day
0.01 0.01 0.25 –

δX Infection-induced death rate
1

day
0.7 0.7 0.1 –

ρX Number of virions infecting a cell
virions

cells
1 1 – –

mX Immune-induced clearance rate
mL

cells.day
1 × 10−5 1 × 10−5 – –

kX Infection rate
mL

virions.day
8 × 10−7 1 × 10−4 – –

c Virions natural death rate
1

day
– – – 13

NT Virions production per infected cells
virions

cells
– – – 100

Kb Saturation constant cells birth
cells

mL
– – 100 –

Kd Saturation constant cells death
cells

mL
– – 500 –

bE Infection-induced birth rate for E cells
1

day
– – 0.3 –

aReference and explanation for these choices can be found in Prague et al. (2012). bFor each simulated patient, every parameter got a
random effect leading to 50% coefficient of variation
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Table 2
Estimated treatment effect on CD4 counts from simulated data: Model 1: Naive regression; Model 2: MSM on Yi

t ; Model 3:
MSM on Zi

t; Model 4: simple LIM; Model 5: autoregressive LIM; Model 6: LIM system; Model 7: mechanistic model.

Simulated Data set with Adams et al. (2005) model

n = 200 n = 1500

Model β treatmenta Effect Sd. Z-statb Effect Sd. Z-statb

Model 1 <1 yr 136 29 4.68 172 11 16.34
>1 yr −11 6 −1.99 −12 2 −5.07
∞ −∞ – – −∞ – –

Model 2 <1 yr 327 31 10.64 325 11 28.81
>1 yr −14 10 −1.45 −7 4 −1.56
∞ −∞ – – −∞ – –

Model 3 <1 yr 371 24 15.47 364 10 35.49
>1 yr 8 3 2.45 4 1 3.2
∞ +∞ – – +∞ – –

Model 4 <1 yr 362 17 21.60 378 6 61.35
>1 yr 8 12 0.7 7 4 1.61
∞ +∞ – – +∞ – –

Model 5 <1 yr 133 ∗ ∗ 136 ∗ ∗

>1 yr 84 ∗ ∗ 86 ∗ ∗

∞ 359 ∗ ∗ 370 ∗ ∗

β1 149 5 31.24 154 2 89.36
Model 6 <1 yr 325 ∗ ∗ 334 ∗ ∗

>1 yr 31 ∗ ∗ 034 ∗ ∗

∞ CD4 360 ∗ ∗ 371 ∗ ∗

∞ VL −1.9 ∗ ∗ −2 ∗ ∗

β1 600 21 28.42 630 8 82.22
α1 −6.6 0.16 −40.86 −6.9 0.06 −120.51

Model 7 <1 yr 312 ∗ ∗ 304 ∗ ∗

>1 yr 2 ∗ ∗ 4 ∗ ∗

∞ CD4 308 ∗ ∗ 306 ∗ ∗

∞ VL −5.6 ∗ ∗ −4.98 ∗ ∗

β −1.12 0.014 −79.3 −1.030 0.003 −295.6

aTo be compared with mean treatment effect in treated for (<1 year; >1 year; ∞): benchmarks values are (350;12;370) for these
simulations.
bEstimates for treatment effect (β) are significant at level 10% if the absolute value of Z-stat is greater than 1.64 and significant at level
5% if the absolute value of Z-stat is greater than 1.96.
∗Simulated delta-method can lead to estimation of these values, but is not implemented here. Indeed, for Models 5, 6, and 7 significance
of the treatment effect has to be evaluated through the mechanistic parameters β1, α1 and β.

were σVL = 0.6 and σCD4 = 0.1. Viral load was artificially made
undetectable at the level of 50 copies/mL. Treatment assign-
ment was done by simulating a CD4 count assessment at
every observation and by fixing a probability of treatment
assignment depending on the observed CD4 count. We took
empirical probabilities from the Aquitaine cohort and SHCS
data set: treatment was attributed in 2, 28, or 47% of patients
where their CD4 count was >400, [400, 200] or <200. No other
confounder was considered. Simulated patients are supposed
fully observed for 5 years. We simulated n = 200 and n = 1500
patients. Table 3 gives a general description of both simu-
lated and real data sets and there is no obvious difference
between simulated and real cohort data in their descriptive
statistics. We define the “average causal effect in treated
patients” as the mean difference between the observed CD4
according to the observed treatment initiation and the coun-
terfactual CD4 under no treatment initiation. The result of
this computation was a 350 cells increase in CD4 after 1 year,

a 362 cells increase after 2 years and an overall increase of
370 CD4 cells after an infinite (large) time. Technical details
and code for analysis are described in Web-Supplementary
Material C.

Table 2 presents the estimates for Models 1–7 on the sim-
ulated data sets. The naive Model 1 largely underestimated
the treatment effect. This was corrected by the MSM Mod-
els 2 and 3 (see details about weights in Web-Supplementary
Material A2). Model 4 also yielded good estimates of the
mean causal effect in treated patients. Moreover, it led to
an increased significance of results compared to Model 3
for increase in CD4 count during the first year. Regarding
increase in CD4 count in subsequent years, whereas the Model
3 underestimate its variability (for large samples, 12 /∈ [2; 6]),
Model 4 is more reliable (for large samples, 12 ∈ [−1; 15]).
This underestimation of the variance of Model 3 may be
driven by an overfitting of inverse probability of treatment
weights. This overfitting could have arisen because the data
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Table 3
Data description for illustrations : average viral load, CD4 counts, and percentage of treatment assignment in the population

are displayed for simulated data and real data from the Aquitaine cohort and the SHCS. Statistics displayed are mean
[Q1;Q3].

Simulated Aquitaine
data set cohort SHCS

n 200 1500 1591 1726

Missing data
Administrative – – 81.6% 74.7%
Death – – 12.7% 6.4%
Lost of follow-up – – 5.7% 18.9%

CD4 count
Baseline 428 [ 266 ; 545 ] 420 [ 253 ; 530 ] 471 [ 298 ; 612 ] 536 [ 357 ; 670 ]
Follow-up untreated 594 [ 485 ; 675 ] 588 [ 478 ; 656 ] 625 [ 440 ; 762 ] 543 [ 363 ; 675 ]
Follow-up treated 627 [ 417 ; 837 ] 606 [ 405 ; 801 ] 492 [ 315 ; 638 ] 507 [ 300 ; 660 ]

Viral Load
Baseline 3.9 [ 3.3 ; 4.6 ] 4 [ 3.4 ; 4.7 ] 4.2 [ 3.6 ; 4.8 ] 4.0 [ 3.4 ; 4.6 ]
Follow-up untreated 3.5 [ 2.9 ; 4.2 ] 3.7 [ 3.1 ; 4.4 ] 3.3 [ 2.3 ; 4.2 ] 3.8 [ 3.1 ; 4.5 ]
Follow-up treated 2.6 [ 1.7 ; 3.2 ] 2.6 [ 1.7 ; 3.2 ] 2.7 [ 1.7 ; 3.6 ] 3.2 [ 2.4 ; 4.1 ]
% undetectable viral load (3%;4%;40%) (2%;3%;38%) (7%;22%;48%) (10%;15%;57%)
(baseline,untreated, treated)

Treatment assignment
Time (day) 412 [ 1 ; 631 ] 377 [ 91 ; 451 ] 727 [ 1 ; 1281 ] 548 [ 183 ; 752 ]
% treated 69% 65% 64% 34%

generation was based on CD4 cell count evolution and not
on viral load, whereas the inverse probability of treatment
weights were calculated from treatment models with both
past CD4 cell count and viral load as predictors. We note
that long-term increase in CD4 is infinite in Models 1–4,
even though it happens at a really slow rate. On the con-
trary, Models 5–7 exhibit an equilibrium point which makes
it possible to consider the long-term causal effect of treat-
ment. All dynamic models gave an estimate of the long-term
effect of treatment for which the true value was included in
the 95% confidence interval. The initial increase in CD4 dur-
ing the first year was not correctly reproduced by Model 5.
Models 6 and 7 which both incorporate the dynamics of viral
load gave a better estimate of the increase in CD4 count
(see details about estimated values of biological parameters in
the Model 7 in Web-Supplementary Material A3). All mod-
els found a significant effect of treatment on CD4 counts in
the first year. Sandwich estimators were used for calculating
the standard errors for GEE methods and Fisher information
matrix was used for methods based on maximum likelihood.
Altogether, the dynamic models (Models 4–7) have greater
statistical evidence, with higher Z-statistics rejecting the no-
effect hypotheses, than the GEE-based models (Models 1–3).
Finally, while fitting Models 1–6 took less than a minute on a
typical laptop, fitting Model 7 took about 10 hours of paral-
lel computing with 100 cores. All results and conclusions are
similar in small and large samples.

4. Real Data

We used two large cohorts: the ANRS CO3 Aquitaine cohort
(Thiébaut et al., 2000) and the Swiss HIV Cohort Study

(SHCS) (Sterne et al., 2005; Gran et al., 2016). Like Cole
et al. (2005), we took a sub-sample of patients who were
alive, HIV positive, yet untreated and under follow-up in April
1996 when HAART became available. All patients taking only
one or two antiretroviral drugs (rather than HAART) were
excluded. Once a patient was on HAART, we assumed he or
she remained on it. For each patient, follow-up began with
the first visit after April 1996 and ended with 1) the last visit
at which he or she was seen alive, 2) the last visit before
patient discontinued the study, or 3) April 2003, whichever
comes first. Data were assumed missing completely at ran-
dom (MCAR); thus we deleted observations where either the
viral load or CD4 count was missing. Patients with only one
observation were excluded. After exclusions, there were 1591
patients from the Aquitaine cohort and 1726 patients from the
SHCS (see Web-Supplementary Material B1 for a description
of patient selection). Table 3 gives descriptive statistics. For
most patients, follow up ended with administrative censoring
and therefore we assumed censoring was not informative.

Table 4 displays the results we obtained for the effect
of treatment on CD4 counts. The naive Model 1, not cor-
rected for treatment assignment, indicated a small and
non-significant increase in CD4 for SHCS cohort, and a signifi-
cant negative effect for the Aquitaine Cohort; thus illustrating
the need for modeling treatment assignment. This is cor-
rected by the use of a treatment model in MSM Models 2.
Models 3 and 4 led to similar results in the SHCS and dif-
ferent results in the Aquitaine cohort. For Model 4, this may
be because covariates other than CD4 count are also con-
founders (such as viral load). For Model 3, some covariates
driving the choice of treatment initiation may have been omit-
ted in the treatment model. Estimates from both Models 3
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Table 4
Estimated treatment effect on CD4 counts from real data of the Aquitaine cohort and SHCS: Model 1: naive regression;
Model 2: MSM on Yi

t ; Model 3: MSM on Zi
t; Model 4: simple LIM; Model 5: autoregressive LIM; Model 6: LIM system;

Model 7: mechanistic model.

Real data set observational studies

SHCS Aquitaine cohort

Model β treatment Effect Sd. Z-stata Effect Sd. Z-stata

Model 1 <1 yr 6 16 0.34 −94 12 −7.55
>1 yr 30 6 5.42 30 3 9.75
∞ +∞ – – +∞ – –

Model 2 <1 yr 208 18 11.31 36 19 1.87
>1 yr 50 9 5.79 53 5 9.62
∞ +∞ – – +∞ – –

Model 3 <1 yr 174 10 17.29 27 14 1.99
>1 yr 61 5 12.37 34 5 6.3
∞ +∞ – – +∞ – –

Model 4 <1 yr 189 11 17.33 109 9 12.03
>1 yr 73 8 9.07 55 6 8.99
∞ +∞ – – +∞ – –

Model 5 <1 yr 26 ∗ ∗ 45 ∗ ∗

>1 yr 14 ∗ ∗ 19 ∗ ∗

∞ 55 ∗ ∗ 79 ∗ ∗

β1 60 4 16.04 14 3 4.12
Model 6 <1 yr 73 ∗ ∗ 92 ∗ ∗

>1 yr 26 ∗ ∗ 16 ∗ ∗

∞ CD4 104 ∗ ∗ 111 ∗ ∗

∞ VL −2.0 ∗ ∗ −2.3 ∗ ∗

β1 80 16 5 28 18 1.53
α1 −3.29 0.09 −38.4 −3.19 0.1 −30.55

Model 7 <1 yr 104 ∗ ∗ 71 ∗ ∗

>1 yr 18 ∗ ∗ 9 ∗ ∗

∞ CD4 127 ∗ ∗ 86 ∗ ∗

∞ VL −4.09 ∗ ∗ −3.14 ∗ ∗

β −1.73 0.05 −34.79 −0.89 0.01 −85.77

aEstimates for treatment effect (β) are significant at level 10% if the Z-stat is greater than 1.64 and significant at level 5% if the Z-stat
is greater than 1.96.
∗Simulated delta-method can lead to estimation of these values, but is not implemented here. Indeed, for Models 5, 6, and 7 significance
of the treatment effect has to be evaluated through the mechanistic parameters β1, α1 and β.

and 4 suggest that treatment causes a significant increase in
CD4 within the first year and in subsequent years. The 1-
year increase, however, was much smaller for the Aquitaine
cohort than for the SCHS when using MSM-based models.
See Web-Supplementary Material B2 for a discussion of this
result in relation with a possible practical violations of the
experimental treatment assumption Cole and Hernán (2008).
The results of the dynamical models, especially Models 6 and
7, were more consistent between cohorts.

Model 6 is interesting because it dissociates the effect of the
treatment on CD4 count from its effects on viral load. In this
model, the estimated treatment effect on CD4 count was small
in both cohorts and was non-significant for the Aquitaine
cohort. In contrast, the effect on viral load was highly sig-
nificant in both cohorts. This is consistent with the mode of
action of antiretroviral treatment: the increase in CD4 count
is essentially mediated by the decrease in viral load; the lat-
ter is the direct effect of treatment. Such biological knowledge
is incorporated in Model 7, where the treatment acts on the

infectivity parameter. In view of the Z-statistics obtained by
a Wald test of the hypothesis β = 0 in equation (9), the sta-
tistical evidence obtained in Model 7 is very high (this is
confirmed by a likelihood ratio test). Moreover, Model 7 gives
an insight into the value of the biological birth and death rates
of cells during the infection (see Web-Supplementary Mate-
rial B3). Regarding these biological parameters, the estimates
from the two data sets are rather consistent in the sense that
they have the same order of magnitude, although a formal
comparison would show that several parameters are differ-
ent, potentially due to different characteristics of the patients
in the two cohorts. Finally, a simple way to look at these
results and to compare them, is to consider the mean evo-
lution in CD4 over time. Figure 2 represents the predicted
CD4 counts with Models 1–7 for treated patients starting at
baseline with CD4 count of 365 and a viral load of 4.4 (which
are approximately the mean values at treatment initiation in
these cohorts). For Models 1–3, these curves are determinis-
tic, which is not the case for Models 4–7 because these models
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Figure 2. Mean evolution in CD4 predicted by Model 1 (plain line, simple regression), Model 2 (dashed line, MSM on Yi
t ),

Model 3 (dotted line, MSM on Zi
t), Model 4 (dotted line, simple LIM), Model 5 (dotted line, autoregressive LIM), Model

6 (dashed-dotted line, LIM system), and Model 7 (long-dashed line, mechanistic model) for treated patients starting with
365 CD4 cells/mL and a viral load of 4.4 log10 copies/mm3: (left) estimates from the SHCS data (right) estimates from the
Aquitaine cohort. This figure appears in color in the electronic version of this article.

have random effects. For these latter models, we computed the
mean predicted curves depending on the value of the random
effect, which have to be set to values compatible with the
baseline values of the biomarkers. In order to set them, in
both cases, we computed the equilibrium point of the system
without treatment and solved the system of equations. Figure
2 shows that the naive Model 1 is not in agreement with med-
ical knowledge. Models 1–3 are unstable, whereas Models 4–7
are more consistent between the two studies. Models 3, 4, and
5 lead to similar trajectories in the SHCS data set but very
different trajectories in the Aquitaine Cohort study. In the
latter, because trajectories for Model 3 look unrealistic and
too pessimistic, we believe LIM Models 4 or 5 is more real-
istic. This illustrates the instability of weighted approaches.
Finally, Model 5, 6, and 7 have an equilibrium point. Model
7 reaches a steady state in about 1 year which is in line with
observed data and is similar in both cohorts.

5. Conclusion

In this article, we estimated the effect of HAART on CD4
count using four dynamic models and compared estimates
with those from a naive regression model, a variant of a previ-
ously proposed MSM and a MSM based on linear increments.
This is an empirical comparison rather than a theoretical com-
parison. We discussed assumptions and validity of the various
approaches together with possible bias in estimates, statistical
evidence, and practicability of use. The naive regression model
(Model 1) strongly underestimated the effect of the treatment.
The MSMs (Models 2 and 3) corrected this misleading result
but sometimes failed to reach significance or were unstable
across cohorts. The discrete-time dynamic models (Models
4, 5, and 6) based on LIM gave rather good estimates and
show higher statistical evidence, although they may some-
times be too rigid. All the discrete-time models are easily
fit without specialist software. The continuous-time dynamic

model based on ODE-NLME (Model 7) gave good results.
Models 6 and 7, which jointly model CD4 and viral load gave
the most consistent results, with a richer interpretation since
they explicitly model the effect of HAART on CD4 via a direct
effect on viral load.

We have used a linear MSM with two slopes similar to
that proposed by Cole et al. (2005). This model adequately
represents the short-term (few years) effect of treatment but
not the long-term effect because the effect in subsequent
years implies a biologically implausible indefinite increase over
time. As pointed out by the Associate Editor, because MSM
can specify any reasonable outcome regression model, rang-
ing from a very simple model which posits that only the
most recent exposures affect the outcome to something very
complex—e.g., a spline-weighted sequence of exposures (Xiao
et al., 2014), it would be possible to define an MSM in which
the effect would be bounded. However, this would be at the
cost of additional non-linear parametrization. Also, it would
be possible to use more recent methods such as the history
adjusted MSM (Petersen et al., 2007); these are most suited
for dynamic treatment regimes, whereas we assessed the effect
of a static treatment regimes in this work. In contrast, most
dynamical models (although not Model 4) have an equilib-
rium point. We showed that a MSM could be fitted for the
increment Zi

t rather than for Yi
t . Thus, the MSM approach

could complement the dynamic approach in the sense that less
stringent assumptions would be needed for causal inference.
However, the dynamic models already do a good job and the
need to correct them (at the price of more complex procedure
and loss of statistical evidence) is not obvious. In this article,
we assumed MCAR observations for GEE, which is appro-
priate because most patients were administratively censored.
MAR observations can be treated by using inverse probability
of censorship weights (see Web-Supplementary Material Sec-
tion B4). One advantage of likelihood-based dynamic models
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is that they are still valid given MAR observations.
The mechanistic Model 7 directly incorporates biological

knowledge. This leads to a more significant test for the param-
eter of interest. The simulated data in the article are obtained
with a dynamic model, so one might think that this favors
dynamic models; however, the true generation process comes
itself from a complex dynamic system. Thus, the simulated
model is much more complex than Models 4–7 which are
highly misspecified. Of course, misspecification is not only a
binary feature but can be quantified, in principle, for instance
by the Kullback–Leibler risk between the generating distri-
bution and the best distribution in the model (Commenges,
2015). Both simulated and real data are more complex than
the models used to analyze that data: in both cases, we know
that the model is misspecified, but we hope that the struc-
ture of the model captures essential features of the dynamics
of the system. The comparison between dynamic and MSM
approach remains empirical: we compare estimates from plau-
sible MSM and dynamic models. Finally, mechanistic models,
once estimated, open the possibility of designing optimal con-
trol of the therapy, as has been proposed on simulations by
Adams et al. (2004), Ernst et al. (2006), and also Prague et al.
(2012). The issue of “optimal treatment regime” has also been
tackled outside of the context of mechanistic models (Petersen
et al., 2007; Orellana et al., 2010; Saarela et al., 2015). The
drawback of the continuous-time approach is that it is numer-
ically challenging and requires special software running on
cluster computers.

6. Web-Supplementary Materials

Web-Supplementary Material referenced in Sections 3, 4, and
5, the simulated data analyzed in Section 3 and a R program
implementing Models 1–6 are available with this article at
the Biometrics website on Wiley Online Library. Programs to
estimate the parameters with Model 7 are available on a ded-
icated website: http://www.isped.u-bordeaux.fr/NIMROD.
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APPENDIX: Correspondence between
parameters of Models 2, 3, and 4.

The question of how parameters from a MSM and a dynam-
ical model relate is difficult for two reasons: the models
are constructed differently; the philosophical approach to
causality is different. We will make this exercise for com-
paring the MSM Model 2 and the LIM Model 4. One
can reconcile the two philosophical approaches by saying
that the “causal” interpretation (in a interventional point
of view) is that for a given treatment trajectory ai

t , we

expect under the MSM: E(Yi
t (a

i
t)|Yi

0) = β0 + β1cum(ai
t−1) +

β2cumlag(ai
t−1) + β3t + β4Y

i
0. Model 4 is formulated in

terms of the increments: Zi
t = α0 + α1A

i
t−1 + α2A

i
t−2 + bi +

εi
t , which by summation gives Yi

t = Yi
0 + α1cum(Ai

t−1) +
α2cumlag(Ai

t−1) + α3t + Mt , where Mi
t = bi + ∑t

k=1
εi

t is a mar-
tingale. This is the Doob decomposition of the process Y .
With the assumption of a “perfect” system or a NUC
system (see Commenges and Gégout-Petit (2015) and Chap-
ter 9 of Commenges and Jacqmin-Gadda (2015)), if we
apply treatment trajectory ai

t , this define a new probabil-
ity Pa under which the Doob decomposition, which is: Yi

t =
Yi

0 + α1cum(ai
t−1) + α2cumlag(ai

t−1) + α3t + Mi
t , from which

we deduce: E(Yi
t |Yi

0) = Yi
0 + α1cum(ai

t−1) + α2cumlag(ai
t−1) +

α3t. Thus, Model 4 yields the same expectation under an

intervention imposing treatment trajectory ai
t−1 as Models 2 if

β4 = 1, and the parameters giving the effects of cum(ai
t−1) and

cumlag(ai
t−1) correspond. The same correspondence holds for

Model 3, which is equivalent to Model 2 if the observations are
equally spaced. Whereas Models 2 and 3 make the assump-
tion that all confounders between A and Z are included in the
computation of the inverse probability of treatment, Model 4
assumes that there is no confounder between A and Z. For
instance the viral load Vt−1 might be a confounder which is
taken into account in inverse probability of treatment in Mod-
els 2 and 3; in the dynamic approach one must use more
complex models describing the dynamics of the viral load
(such as Models 5 and 6). For Models 5, 6, and 7, marginal
effects can still be computed (analytically or by simulation),
but this may lead to complex forms, while generally MSM
assume simple mathematical structures.
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SAMBA: A novel method for fast automatic model building in nonlinear mixed-effects models.
Prague M. and Lavielle M. CPT: Pharmacometrics & Systems Pharmacology. 11(2) - 161-172 - Feb
2022.

This article integrates in the first axis of my research "Statistical Methodology for Estimations and
Building of Mechanistic Models". It has been written during my chaire at Ecole Polytechnique with
Marc Lavielle, a collaborator from Inria team xpop. In 2023 and 2024, it received a "Top-Download
Award," recognizing it as one of the top 10% most downloaded articles in its publication year.

I have selected this paper because it showcases a method that address a real problem in using mech-
anistic models for real-life modeling, i.e. building strategies. Indeed, because of computational
complexity, it is required to deploy strategies that do not test all possible models but instead to select
the one with the best information criteria. The main challenge was entering and modifying the code
of the R package Rsmlx as well as finding good real-life examples to compare with existing methods.
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Abstract
The success of correctly identifying all the components of a nonlinear mixed-
effects model is far from straightforward: it is a question of finding the best 
structural model, determining the type of relationship between covariates and 
individual parameters, detecting possible correlations between random effects, 
or also modeling residual errors. We present the Stochastic Approximation for 
Model Building Algorithm (SAMBA) procedure and show how this algorithm 
can be used to speed up this process of model building by identifying at each step 
how best to improve some of the model components. The principle of this algo-
rithm basically consists in “learning something” about the “best model,” even 
when a “poor model” is used to fit the data. A comparison study of the SAMBA 
procedure with Stepwise Covariate Modeling (SCM) and COnditional Sampling 
use for Stepwise Approach (COSSAC) show similar performances on several real 
data examples but with a much reduced computing time. This algorithm is now 
implemented in Monolix and in the R package Rsmlx.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Existing model-building methods for nonlinear mixed-effects models have high 
computational time, especially for selecting the covariate model.
WHAT QUESTION DID THIS STUDY ADDRESS?
The study describes the principle of the Stochastic Approximation for Model 
Building Algorithm (SAMBA) procedure, which allows to build a covariate, a 
correlation, and an error model automatically and compares it with Stepwise 
Covariate Modeling (SCM) and COnditional Sampling use for Stepwise Approach 
(COSSAC) procedures.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
SAMBA allows to select the best covariate model without having to fit the com-
plete nonlinear mixed-effects model to the data for each possible covariate model. 
This study confirms that it is possible to obtain relevant information on the model 
we are looking for, even when another model is fitted to the data. This allows to 
drastically reduce the computation time with respect to other existing procedures 
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INTRODUCTION

Construction of a complex (nonlinear) mixed-effects 
model1 is a challenging process which requires confirmed 
expertise, advanced statistical methods, and the use of 
sophisticated software tools, but, above all, time and pa-
tience. Indeed, the success of correctly identifying all the 
components of the model is far from straightforward: it is a 
question of finding the best structural model, determining 
the type of relationship between covariates and individual 
parameters, detecting possible correlations between ran-
dom effects, or also modeling residual errors. Our goal is 
to accelerate and optimize this process of model building 
by identifying at each step how best to improve some of 
the model components.

The procedure for constructing a model is usually iter-
ative: one adjusts a first model to the data, and diagnosis 
plots and statistical tests allow to detect possible mis-
specifications in the proposed model. A new model must 
then be proposed to correct these defects and improve the 
predictive abilities of the model. Most of the common 
approaches consist in stepwise procedures consisting in 
testing the addition of variable forward and their elimina-
tion backward alternatively and progressing through the 
choice of models using a criterion derived from the log-
likelihood. A widely used approach is Stepwise Covariate 
Modeling (SCM),2 which consists in an exhaustive search 
in the covariates space. Each covariate addition or dele-
tion is tested in turn selecting models at each step leading 
to the best adjustment according to the objective crite-
rion. Approaches such as Wald Approximation Method 
(WAM)3 and COnditional Sampling use for Stepwise 
Approach based on Correlation tests (COSSAC)4 are less 
computationally intensive as they use, respectively, a like-
lihood ratio test and a correlation test to move in the co-
variates space, which allows the testing of less models. All 
these methods are nevertheless computationally intensive 
as they require to re-estimate the model parameters and 
the likelihood many times. In particular, these methods 
are very sensitive to “the curse of dimensionality” when 
the number of covariates to test on parameters is large.

The Generalized Additive Model (GAM) method5,6 
is computationally appealing as it does not require as 

many models fitting. Indeed, it is based on a regression 
on the empirical Bayes estimates (EBEs). The EBEs are 
the modes of the conditional distributions of the individ-
ual parameters. In other words, they are the most likely 
value of the individual parameters, given the estimated 
population parameters and the data. These estimates are 
known to be misleading and prone to shrinkage when 
data are sparse.7 An efficient method which can correct 
the bias caused by the shrinkage of the EBEs have been 
recently proposed for covariate analysis.8,9 In this paper, 
we propose to develop similar method which relies on 
the use of random samples from the conditional distri-
bution of each individual parameters instead of EBEs. 
Indeed, the random sample of the posterior distribu-
tion has been shown to correctly control the type I error 
when performing tests to detect misspecifications in the 
model.10

As for most of the model-building procedures, the ob-
jective of Stochastic Approximation for Model Building 
Algorithm (SAMBA) is to find a model that minimizes 
some information criterion, such as Akaike information 
criterion (AIC), Bayesian Information Criteria (BIC), or 
corrected BIC (BICc).11 The main principle of SAMBA is 
to use the results obtained with a wrong model to learn 
the right model. Then, SAMBA is an iterative procedure 
where a new model is used at each iteration of the algo-
rithm. The values of the population parameters of the 
model are found by maximum likelihood estimation, and, 
then, the individual parameters are sampled from the con-
ditional distribution defined under this estimated model. 
These simulated individual parameters combined with 
the observed data can now be used to select a new sta-
tistical model. It is important to underline that, as most 
of the iterative procedures for non-convex optimization, 
SAMBA does not pretend to be capable of always finding 
the global minimum of the used criterion, but it always 
allows to quickly find a very good solution.

Two contributions mainly constitute the content of 
this paper. First, we describe the novel algorithm called 
SAMBA for fast automatic model building in nonlinear 
mixed-effects models (section 1). Second, we benchmark 
its performances compared with reference methods SCM 
and COSSAC in real-world examples (section 2).

while keeping the same performances. We also show that it is possible to perform 
correlation and error model selection in nonlinear mixed-effects models.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This method will allow the practitioner to very quickly find a set of very good 
models in terms of data fitting and parsimony, even when the number of param-
eters or the number of covariates available is large.
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METHODS

Model description

Let yi =
(

yij, 1 ≤ j ≤ ni
)
 be the vector of observations for 

subject i, where 1 ≤ i ≤ N. The model that describes the 
observations yi is assumed to be a parametric probabilistic 
model that depends on a vector of L (individual) param-
eters � i =

(
� i1,…,�Li

)
. In a population framework, the 

vector of parameters � i is assumed to be drawn from a 
population distribution p(� i). Then, defining a model ℳ 
consists in defining a joint probability distribution for the 
observations y = (y1,⋯, yN ) and for the individual param-
eters � = (�1,⋯,�N ). For the sake of notation simplic-
ity, we focus on models for continuous longitudinal data. 
However, extension to models for discrete data and time 
to event data is straightforward.

Let yij, the observation obtained from subject i at time 
tij be described as:

The structural model f is a fundamental component of 
the model because it defines the individual predictions of 
the observed kinetics for a given set of parameters. The re-
sidual errors (�ij) are assumed to be standardized Gaussian 
random variables (mean zero and variance 1). The resid-
ual error model is represented by function g in model (1) 
and may depends on some additional parameter �. Finally, 
one can use the function u to transform the observations, 
assuming for instance that they are log-normally distrib-
uted. In the following, we will assume u to be the identity.

We assume a linear model for the individual parame-
ters (up to some transformation h):

where �i ∼�(0,Ω) is a vector of random effects and 
where ci is a vector of individual covariates used to explain 
part of the variability of the � i's. The �pop and � are fixed 
effects. The joint model of y and � then depends on a set 
of parameters � = (�pop, �,Ω, �).

Selecting a model described by Equations 1 and 2 con-
sists for the modeler in selecting: (i) the structural model 
f , (ii) the transformation of the individual parameters h , 
(iii) the residual error model g, (iv) the list of covariates 
that have an impact on individual parameters, and (v) the 
structure of the variance-covariance matrix of the random 
effects in the linear model Ω. The selection of the two 
first items is problem-specific, and their selection is out 
of the scope of this paper. We will therefore assume, in 
this paper, that f  and h are given. The SAMBA procedure 

proposes solutions to address the selection of the three 
other components of the model.

The SAMBA procedure

Automatic model building is a difficult task because it is 
generally not possible to fit and compare all possible mod-
els. Moreover, it is necessary to define what is the “best 
model” among all the possible models. A classical ap-
proach consists in searching for the model ℳ∗, that mini-
mizes a criterion, such as the penalized likelihood12,13:

The objective of this approach is to find a model that 
best fits the data (by minimizing − 2LL) while being as 
simple as possible (it is the role of pen(ℳ) to favor models 
with few parameters). When the space of possible models 
is large, an exhaustive search is clearly impossible, and an 
efficient minimization strategy must be implemented. It is 
precisely for this purpose that SAMBA was developed: to 
obtain very quickly the “best” model ℳ∗, or a model with 
an objective criterion value very close to that of ℳ∗.

SAMBA is an iterative procedure alternating three 
steps. Assume that model ℳk was obtained at iteration 
k of the algorithm. We first compute �(k), the maximum 
likelihood estimate of � for model ℳk. We then generate 
a set of individual parameters � (k) from the conditional 
distribution of individual parameters pℳk

(�| y; �(k)). The 
selection step finally consists in building a new model 
ℳk+1 using the complete data(y;� (k)) and minimizing the 
complete penalized criterion:

As already mentioned, the statistical model to be 
built consists of a covariate model, a correlation model, 
and a residual error model. Then, the selection of model 
ℳk+1 is composed of three model selection procedures: 
the selection of the covariate model ℳCOV

k+1 , the selec-
tion of the correlation model ℳCORR

k+1 , and the selection 
of the error model ℳERR

k+1 . Note that not all these com-
ponents are necessarily selected: some may have been 
set arbitrarily because of existing knowledge. By notic-
ing that ℒℳ

(
�; y,� (k)) =ℒℳ(�|y, � (k))ℒℳ

(
y,� (k)), it 

appears that the problem of selecting the error model 
is independent from the problem of selecting the co-
variate and correlation models. Figure  1 provides a 
flowchart of the complete procedure. Let us now take 
a closer look at what each step of the model selection 
process consists of.

(1)
u
(

yij
)
= u

(
f
(

tij,� i
))

+ g
(

tij,� i, �
)
�ij, 1 ≤ i ≤ N , 1 ≤ j ≤ ni.

(2)h(� i)=h(�pop)+� ci+�i , 1≤ i≤N ,

(3)ℳ∗ = arg minℳ
{

min�( − 2log(ℒℳ(�; y))) + pen(ℳ)
}

.

(4)
ℳk+1 = arg minℳ

{
min�

(
− 2log

(
ℒℳ

(
�; y,� (k)

)))
+ pen (ℳ)

}
.
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The covariate model selection �COV
k+1

The sample � (k) has been generated conditionally to the 
data y and the model ℳk. For the �-th parameter, we build 
a linear model between � (k)

�  and covariates c, such as in 
Equation 2:

with h� the transformation associated to the �-th param-
eter and where �(k)

i�  is supposed normally distributed with 
mean zero and variance �2

�. We define �� =
(
�pop,� , �� ,�2

�

)
.  	

Best covariate model for parameter �, denoted 	
ℳCOV𝓁

k+1 , is selected as being the one minimizing a penal-
ized criterion:

We denote n� the number of non-null elements in �� 
for model ℳ. The penalization depends on the criterion 
selected for optimization: if AIC then penCOV (ℳ) = 2n�, 
if BIC or BICc then penCOV (ℳ) = log (N)n�. Equation 5 
tells us that the covariate selection problem has become 
here a classical problem of variable selection in a lin-
ear model.14 This problem is much more easily tractable 
than the original one. The overall best covariate model 
combines the best model for each parameter such that 
ℳCOV

k+1 =
{
ℳCOV1

k+1 ,…ℳCOVL
k+1

}
.

In the implemented version of package Rsmlx (R 
speaks Monolix), two different strategies are imple-
mented depending on the dimension of the selection 
problem. If the number d of available covariates is 
less than 11, an exhaustive search is performed over 
all the 2d possible covariate models for each parameter. 
Otherwise, the stepwise variable selection procedure 
implemented in the function stepAIC from package 
MASS is used. It consists of iteratively adding and re-
moving covariates in stepwise manner to lower the ob-
jective criterion.

The correlation model selection �CORR
k+1

Using the selected covariate model ℳCOV
k+1  and the 

sample of individual parameters � (k)
i , it is possi-

ble to extract the vector of individual random effects 
�(k)i =

(
�(k)i� ,� = 1, … , L

)
 from Equation 5. Assuming that  	

�(k)i ∼� (0,Ω) where Ω is a block diagonal matrix, the 
problem of correlation model selection consists in select-
ing the block structure of Ω. We then select the correla-
tion model denoted ℳCORR

k+1  by minimizing a penalized 
criterion:

We denote nΩ the number of non-zero elements in the 
upper triangular part of the matrix Ω. The penalization 

(5)
h�

(
� (k)

i�

)
= h�

(
�pop,�

)
+ ��ci + �(k)i� , 1 ≤ i ≤ N , 1 ≤ � ≤ L,

ℳCOV𝓁
k+1 = arg min

{
min�𝓁

(
− 2log

(
ℒℳ

(
�𝓁 ;� (k)

𝓁

)))
+ penCOV(ℳ)

}
.

ℳCORR
k+1 = arg minℳ

{
minΩ

(
− 2log

(
ℒℳ

(
Ω;�(k)i

)))
+ penCORR (ℳ)

}
.

F I G U R E  1   Scheme of the Stochastic Approximation for Model Building Algorithm (SAMBA)
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depends on the criterion selected for global optimiza-
tion: if AIC then penCORR (ℳ) = 2nΩ, if BIC or BICc then 
penCORR (ℳ) = log (N)nΩ.

In the implemented version of package Rsmlx, we limit 
the size of the block-structure that can be considered at 
each iteration. For ℳ1, no correlation can be added and 
a diagonal matrix is used for Ω; for ℳ2 only blocks of size 
two are considered. At iteration k for selection of model 
ℳCORR

k+1 , block size cannot be larger than k + 1, leading to 
no more than (k − 1)k∕2 non-zero covariance terms in Ω.

The error model selection �ERR
k+1

For a given set of simulated individual parameters 
(� (k)

i , 1 ≤ i ≤ N), the residual errors can easily be 
computed:

We then fit several error models with standard devia-
tion of the form g

(
tij,�

(k)
i , �

)
 for e(k)ij  and select the one 

minimizing a penalized criterion:

We denote n� the length of � (i.e., the number of pa-
rameters in model ℳ). The penalization depends on the 
criterion selected for global optimization: if AIC then 
penERR (ℳ) = 2n�, if BIC then penERR (ℳ) = log (N)n�, 
and if BICc then pen (ℳ) = log

(
ntot

)
n� where ntot is the 

total number of observations, including below the limit of 
quantification data.

In the implemented version of package Rsmlx, five 
error models (provided by function gin Equation  1) 
are tested by default: constant (gx

(
tij,�

(k)
i , �

)
= �),  	

proportional (gx

(
tij,�

(k)
i , �

)
= �f

(
tij,� i

)
), com-

bined1 (gx

(
tij,�

(k)
i , �

)
= �1 + �2f

(
tij,� i

)), combined2
 	

	
(gx

(
tij,�

(k)
i , �

)
=
√

�2
1 + �2

2f
(

tij,� i
)
), or exponential in 

which a constant error model is fitted to the log(y) using 
the transformation u = log in Equation 1. Note that it is 
currently not possible to perform the selection on a re-
stricted number of error models, but such a feature could 
be easily implemented.

Stopping rule procedure

At each iteration k of the algorithm, we combine ℳCOV
k+1 , 	

ℳCORR
k+1 , and ℳERR

k+1  to get the new selected model ℳk+1,  	

which is passed forward on to the next estimation-
simulation run. It is important to select the covariate 
model before the correlation model. On the other hand, 
the error model can be updated before or after the other 
two components of the model. The algorithm stops when 
ℳk is strictly identical to ℳk+1 for all components and the 
last model is the selected one.

Remark

In the above, � (k)
i  represents a single realization of the con-

ditional distribution pℳk
(� i|y, �(k)) for each i = 1,…N. 

Instead of considering only one realization of this distribu-
tion, we could use a sample of size R

(
� (k)

i�,r , 1 ≤ r ≤ R
)
. If so, 

the linear covariate model described in Equation 5 rewrites:

where:

Procedures for covariate model selection and correla-
tion model selection remains the same, but using now (
� (k)

i�

)
 and 

(
�(k)i�

)
 at iteration k. On the other hand, the  	

R series of residual errors 
(

e(k)ij,r

)
 are used for selecting the 

residual error model.

RESULTS

Step-by-step example of the SAMBA 
procedure

To illustrate how SAMBA works in practice, we will de-
scribe step-by-step the complete procedure on the example 
of remifentanil.15 We use here the SAMBA implementa-
tion in function buildmlx of the R package Rsmlx, using 
the default settings.

The remifentanil data

The dataset is composed of 65 healthy adults who have 
received remifentanil i.v. infusion at a constant infusion 
rate between 1 and 8 μg−1 kg−1 min−1 for 4 to 20 minutes. 
Time and rate of infusion are known for each individual. 
The pharmacokinetic (PK) data consists in the plasma 
concentration of remifentanil, which is measured during 
and after infusion for a total of 19 to 53 observations by 
patients, totaling 2057 observations. A total of six 

e(k)ij = yij − f
(

tij,�
(k)
i

)
, 1 ≤ i ≤ N , 1 ≤ j ≤ ni.

ℳERR
k+1 = argminℳ

{
min�

(
− 2log

(
ℒℳ

(
�;e(k)ij

))
) + penERR(ℳ

)}
.

h�

(
� (k)

�,i

)
= h�

(
��,pop

)
+ ��ci + �(k)�,i , 1 ≤ i ≤ N , 1 ≤ � ≤ L,

h�

(
� (k)

�,i

)
= 1

R

R∑
r=1

h�

(
� (k)

i�,r

)
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covariates are available: one qualitative covariate, the sex 
(SEX) and five continuous covariates: the age (AGE), the 
height (HT), the weight (WT), the lean body mass (LBM), 
and the body surface area (BSA). All the latter are normal-
ized and log-transformed for the analysis. In the follow-
ing, we adopt the notation logAGE = log

(
AGE∕AGEpop

)
, 

where AGEpop is a typical value to normalize on (e.g., the 
mean value of age in the population).

The model

The PK model for i.v. infusion has a central compart-
ment (volume V1), two peripheral compartments (vol-
umes V2 and V3, and intercompartmental clearances 
Q2 and Q3), and a linear elimination (Cl). Log-normal 
distributions are used for the six individual parameters. 
The 26 = 64 possible covariate models will be considered 
for each of the six individual parameters. Note that if we 
had to test all possible models, we would have had to test 
646 combinations, which would have made the problem 
intractable.

SAMBA iterations

We start the SAMBA procedure with a model ℳ0 with-
out any covariate on all parameters, with no correlation 
between random effects and the so-called combined1 
error model. Figure 2 illustrates the selection steps on 
this specific example. One can notice that the BICc, 
which has been chosen as target criterion, decreases 
from 7186 for ℳ0 to 6985 for ℳ1, 6957 for ℳ2, and 6903 
for ℳ3, which is finally selected as the best model for 
this example.

•	 Run 0 (BICc = 7185.8) + Iteration 1: Model ℳ0 is fit-
ted to data and individual parameters are sampled con-
ditionally on the data and this model. Each of the 64 
possible linear covariate models is fitted to each individ-
ual parameters and the one with lowest BICc is selected. 
Let us take the example of Cl: the three best models in-
clude (1) an effect of logAGE and logWT (BICc = −55.0), 
(2) an effect of logAGE and logLBM (BICc = −56.1), and 
(3) an effect of logAGE and logBSA (BICc = −57.5). The 
latter is chosen as the best model for parameter Cl as it 
provides the lowest BICc (ℳCOV,Cl

1 ). Altogether, for all 
parameters, the best covariate model (ℳCOV

1 ) includes 
logAGE on all parameters, logBSA on Cl, and logLBM 
on V1 and V2. No correlation is added to the model be-
cause no correlation is allowed at first iteration. Then, 
ℳCORR

1  is a diagonal variance-covariance matrix for 
the random effects. Among the tested error models, the 

three best ones are proportional (BICc = 5815.2), com-
bined1 (BICc = 5811.2), and combined2 (BICc = 5807.0), 
which is selected for ℳERR

1 . These covariate, correla-
tion, and error models are then passed on to run 1: 
ℳ1 = {{ℳCOV,Cl

1 ,ℳCOV,Q2
1 ,ℳCOV,Q3

1 ,ℳCOV,V 1
1 ,ℳCOV,V 2

1 ,ℳCOV,V 3
1 },ℳCORR

1 ,ℳERR
1 }}.

•	 Run 1 (BICc = 6984.9) + Iteration 2: Model ℳ1 is fit-
ted to the data and individual parameters are sampled. 
Again, the three best model for each covariate are pro-
vided. The best covariate model includes logAGE on all 
parameters except V1, logBSA on Cl, logLBM on V1, and 
SEX on V2 (ℳCOV

2 ). Block-structured correlation with 
blocks up to size 2 are compared (i.e., up to one correla-
tion term). The best three models are with a correlation 
between parameters Cl and V2 (BICc  =  1082.9), be-
tween parameters Cl and Q2 (BICc = 1093.8), and be-
tween parameters V2 and Q2 (BICc = 1072.0). The latter 
correlation model is selected for ℳCORR

2 . Residual error 
model combined2 remains the best one (ℳERR

2 ). These 
covariate, correlation, and error models are then passed 
on to run 2.

•	 Run 2 (BICc  =  6956.9) + Iteration 3: Model ℳ2 
is fitted to data and individual parameters are sam-
pled. The best covariate model includes logAGE on 
all parameters except V1, logBSA on Cl, and logLBM 
on V1 and V2 (ℳCOV

3 ). Block-structured correlation 
with blocks up to size 3 are compared (i.e., up to three 
correlation terms), a correlation block is selected be-
tween Cl, Q2, and V2 (ℳCORR

3 ). Residual error model 
combined2 remains the best one (ℳERR

3 ). These co-
variate, correlation, and error models are then passed 
on to run 3.

•	 Run 3 (BICc  =  6903.4) + Iteration 4: Model ℳ3 is 
fitted to data and individual parameters are sampled. 
Of note, regarding the correlation model selection, 
block-structured correlation with blocks up to size 4 are 
compared (i.e., up to six correlation terms). During this 
iteration, the same model as the one in the previous it-
eration is selected (ℳ4 =ℳ3) resulting in the stopping 
of the procedure. Model ℳ3 is therefore the final model 
selected with the SAMBA procedure.

Converging toward a global optimal model

Even if the selected criterion decreases at each iteration, 
there is no guarantee that SAMBA converges toward a 
global minimum of this criterion. The quality and the 
robustness of the convergence of SAMBA can then be 
assessed by running SAMBA several times from differ-
ent starting models. In particular, a good practice is to: 
(1) launch SAMBA from several initial models, (2) com-
pare the best models found (if there is not only one) in 
terms of objective criterion (e.g., BICc), and (3) make 
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a thorough analysis and interpretation of the nearby 
models in order to choose the most relevant one for a 
given application. Regarding the choice of the starting 
model, similarly to the Expectation Maximization and 
Stochastic Approximation Expectation Maximization al-
gorithms, there is no optimal choice.16,17 We recommend 
to test in priority the following three starting models: (1) 
an empty model, (2) (when possible) a complete model, 
and (3) a model (or models) that make sense for the bio-
logical application. Note that this robustness assessment 
is standard for all non-convex optimization algorithms 
and should also be performed for SCM and COSSAC in 
routine.

Performances on real examples,  
and comparison with the SCM and 
COSSAC procedures

To assess the performances of the SAMBA procedure 
compared to SCM and COSSAC procedures, we replicate 
the illustration provided in ref. 4. We applied the three 
routines to a collection of 10 representative datasets, in-
cluding PKs, pharmacodynamics, and disease models. Of 
note, the SCM method for variable selection used here is 
exactly the same as the one implemented in PsN (Pearl 
Speaks NONMEM), differences lie in the algorithms used 
to estimate the parameters of a model and to calculate the 
likelihood. We restricted the SAMBA procedure to the 
covariate model selection as correlation and error model 
selection are not implemented in COSSAC and SCM. The 
results can be found in Table 1.

Because the datasets are real data illustrations, there 
is no “true” model. It is only possible to compare them 
in terms of BIC. Of 10 examples, the same best model 
was proposed by the three procedures in four examples. 
In two examples, the best model selected by SAMBA 
was better in terms of BICc than with SCM and COSSAC 
(Theophylline Ext. Rel. and Warfarin PK/PD). In three 
other examples, the model with the lowest BICc was not 
selected by SAMBA. However, the difference in BICc was, 
respectively, smaller than six in comparison with the SCM 
procedure and 4.2 in comparison with the COSSAC proce-
dure. We insist on the fact that a difference in BICc does 
not necessarily have any biological meaning. This is an 
arbitrary criterion that allows to quantify the goodness of 
fit with respect to the sparsity of the model chosen. We 
thus argue that the three procedures lead to rather similar 
models, which all constitute very good starting points for 
the modeler to build a model based on biological hypoth-
esis. Finally, in only one example discussed below, the dif-
ference in BICc was larger than 10 points of BICc both 
compared with the SCM and COSSAC procedures.

Regarding the cholesterol dataset, we again ran the 
SAMBA procedure starting from a full model in which all 
covariates are supposed to have an effect on all parameters. 
The new model selected by SAMBA is the full model with 
an effect of logAGE on (Chol0, slope) and SEX on (Chol0, 
slope) is much closer in term of BICc than the one selected 
starting from an empty model (Δ BICc = −2). We can fi-
nally notice with this example that it is sometimes possible 
to improve the convergence of SAMBA by improving the 
convergence of SAEM. Indeed, using 10 Markov chains 
instead of only one, SAMBA also finds the model selected 
by SCM and COSSAC. Finding the optimal settings that 
minimizes computation time while maximizing the prob-
ability of finding the best model is an extremely difficult 
problem that remains open. We can claim that the default 
settings used in Rsmlx and Monolix give very good results 
in most cases, but not in all cases with absolute certainty.

In terms of computational effort, it is important to note 
that the SAMBA procedure completes the model-building 
process in much less runs, hence much less CPU time than 
SCM and COSSAC. In the considered problems, the num-
ber of runs and the CPU computation time are equivalent 
because the other computation times are negligible in the 
order of a few seconds. Actually, the computation times are 
six to 149 smaller than for SCM and two to 11 times smaller 
than for COSSAC. Note that the number of evaluations re-
quired by SAMBA is always lower or equal to the number 
of evaluations performed by COSSAC and SCM.

Simulation study

Data generation and analysis

We simulated data from a one-compartment PK model. 
The model has three population parameters kapop = 1, 
Vpop = 10 and Clpop = 2. All individual parameters are log-
normally distributed around the population parameters 
(�ka = 0.2, �V = 0.3 and �Cl = 0.3). We simulated five in-
dividual covariates 

(
C1, C2, C3, C4, C5

)
 from standard nor-

mal distributions. The covariate model is such that there 
only exists linear relationships between log (V ) and C1 
(�V ,1 = 0.2), log (Cl) and C1 (�Cl,1 = − 0.2), and log (Cl) and 
C2 (�Cl,2 = 0.3). The correlation model is such that there 
exists a linear correlation between �V  and �Cl (�V ,Cl = 0.6).  	
Finally, the error model is a combined2 model with a = 2 
and b = 0.1. A clinical trial could then be simulated by 
generating PK data from this model for 100 individu-
als and 11 timepoints (0.25, 0.5, 1, 2, 5, 8, 12, 16, 20, 24, 
and 30). In order to evaluate the properties of SAMBA by 
Monte-Carlo, we simulated 100 replicates of the same trial 
and built the model for each replicate using SAMBA as 
implemented in Rsmlx and Monolix for minimizing BICc. 
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The initial model did not include any covariate-parameter 
relationship and any correlation between random effect. 
The initial residual error model was a combined1 model. 
The R code used for this Monte-Carlo study is available as 
Supplementary Material.

Performances

Table  2 summarizes the results obtained for the covari-
ate model selection. On the one hand, we can see that, 
for this particular example, SAMBA finds the three ex-
isting covariate-parameter relationships in 100% of the 
cases. On the other hand, very few spurious relationships 
are detected (less than 2%). Importantly, in all cases for 
which the final covariate model included more covariates 
than the true model M∗, the BICc of the selected model 
was lower than that of M∗ (the differences ranging from 
3 to 14.7 with Rsmlx and from 2.4 to 14.6 for Monolix). In 
other words, SAMBA always finds a covariate model as 
good or better than M∗ in terms of BICc. Regarding the 
selection of the correlation model, the correct model was 
selected for all the replicates. Finally, the correct error 
model was selected in 86% of the times with Rsmlx and 
85% of the times with Monolix. Note that all the wrong 
selected error models were all combined1 model (instead 
of combined2) with a slightly larger BICc most of the time. 
Actually, these two models are quite similar and diffi-
cult to distinguish on the basis of a criterion like BICc. 
SAMBA then may get stuck in a local minimum in such 
a situation. Finally, and importantly, the final selected 
models obtained with Rsmlx and Monolix are different in 
only 6% of cases. These small differences are due to small D
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T A B L E  2   Performance of the SAMBA algorithm for the 
selection of the covariate model in a simulation study using a one-
compartment PK model

Covariates

Rsmlx Monolix

ka V Cl ka V Cl

C1 2 100 100 2 100 100
C2 0 1 100 0 1 100
C3 1 2 1 2 2 1
C4 0 3 4 0 3 4
C5 0 1 1 1 2 1

One hundred datasets of 100 individuals with 11 observations each have 
been generated. True model ℳ∗ includes an effect of C1 on V  and Cl and 
an effect of C2 on Cl. The percentages of times (over 100 replicates) each 
covariate-parameter relationship is selected in the final model are displayed. 
Implementation of SAMBA in Rsmlx and Monolix are compared.
Abbreviations: Cl, linear elimination; ka, absorption rate constant; PK, 
pharmacokinetic; SAMBA, Stochastic Approximation for Model Building 
Algorithm; V, volume.



      |  11SAMBA: MODEL BUILDING IN NONLINEAR MIXED EFFECTS MODELS

differences in the implementation of the algorithm (see 
the Discussion section for more details).

DISCUSSION

This paper presents a novel model-building procedure 
which offers covariate, correlation, and error model se-
lection. It is fast as it requires only a limited number of 
runs of population parameter estimation and simula-
tion compared to SCM and COSSAC. It allows to explore 
the space of models rapidly and provides to the modeler 
a very good model in term of the selection criterion. 
However, we insist on the fact that this procedure does 
not aim at replacing model-building based on biological 
knowledge, which is, in essence, the strength of mecha-
nistic modeling. Thus, it should not be blindly used and 
the best—potentially few best—models should be inter-
preted and compared.

SAMBA is an efficient algorithm for minimizing 
an objective function. In this paper, we do not aim at 
evaluating the quality of the criterion used for model 
selection.18 What is of interest here is the convergence 
of SAMBA. As it is also the case for SCM and COSSAC, 
SAMBA may not converge to the global minimum. This 
is particularly the case when the amount of data is too 
small compared to the complexity of the model to build. 
This phenomenon will be particularly critical when the 
number of covariates is high and/or when these are 
highly correlated. We then strongly encourage the user 
to build strategies to assess the robustness of the results. 
Extensions of the proposed algorithm are possible but 
are outside the scope of this paper and constitute a pos-
sible new research direction.

When there is a large number of available covariates, 
COSSAC and mainly SCM often fail in finding the best 
model in a reasonable time. In this case, SAMBA represents 
a particularly appealing approach because the covariate 
model selection is based on a stepwise variable selection 
procedure for linear models, which is known to handle 
high-dimension problems. Although stepwise AIC/BIC are 
designed to obtain a sparse estimator that works well on the 
training set, other methods, such as the lasso,19 where the 
penalty is chosen with cross validation, is designed to obtain 
the sparse linear model that minimize the prediction error. 
A lasso type approach20 can sometimes present better per-
formances than an approach based on an information cri-
terion, such as AIC or BIC, in particular when the number 
of covariates is very high. However, it should be noted that 
the choice of the penalty parameter by cross-validation can 
be complicated to implement and require a large number 
of runs. This type of method could be alternatively imple-
mented in the covariate selection procedure and compared 

in further works. Note finally that it would be interesting to 
study the behavior of SAMBA using the EBEs (corrected as 
proposed in ref. 8,9), rather than the individual simulated 
parameters, to build the covariate model.

The SAMBA procedure is implemented the R Package 
Rsmlx in the function buildmlx.21 Minimal required input 
is a Monolix project used as initial model. Additional argu-
ments can be used to enable specific features (all not listed): 
select the components of the model to optimize among the 
covariate, correlation, and error model, restrict the number 
of parameters or covariates to use, select a specific objec-
tive criterion, etc. Rsmlx is on CRAN and the R code can 
be modified to investigate any of the alternative implemen-
tations mentioned above for a specific problem. Note that 
the execution of Rsmlx requires the Monolix software, be-
cause it is only an algorithm combining tasks implemented 
in Monolix. The R codes allowing to replicate the analyses 
of this paper are available in the Supplementary Material. 
All the illustration datasets can be downloaded from the 
Supporting Information Appendix S2 of ref. 4.

Finally, the SAMBA procedure is also implemented 
in the Monolix-GUI software starting from version 2019. 
Implementation is similar to the one in Rsmlx with two 
noteworthy differences. First, for the selection of covari-
ates, a stepwise procedure is used even if the number of 
covariates d is small. Second, compiling differences exist 
between C++ and R. The full SAMBA procedure is avail-
able in the model-building perspective, under a task called 
automatic statistical model building method. A single it-
eration of the SAMBA procedure is also proposed in the 
section Proposal in the tab Results after running a single 
estimation and simulation step for a model in Monolix.22
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6.4 Alexandre et al. 2021 (SMMR) Analysis of HIV Antiretroviral
Interruption Trials

Between-group comparison of area under the curve in clinical trials with censored follow-up:
Application to HIV therapeutic vaccines. Alexandre M., Prague M., Thiébaut R. Statistical Methods
in Medical Research. 30(9) - 2130-2147 - July 2021.

This article integrates in the second axis of my research "Within-host Modeling in Infectious Diseases".
It has been written by a PhD student that I co-directed.

I chose this paper because it tackles a crucial challenge in HIV vaccine development: assessing treat-
ment efficacy. While not primarily focused on mechanistic models (though extensions are currently
being considered, including using model averaging), it employs spline models to manage informative
loss of follow-up, aligning with a MAR mechanism. A significant challenge was deriving the analytical
formulation for the mean and variance of the time-averaged area under the viral load curve.



Article

Between-group comparison of area
under the curve in clinical trials with
censored follow-up: Application to HIV
therapeutic vaccines

Marie Alexandre1,2 , M�elanie Prague1,2 and

Rodolphe Thi�ebaut1,2

Abstract

In clinical trials, longitudinal data are commonly analyzed and compared between groups using a single summary statistic

such as area under the outcome versus time curve (AUC). However, incomplete data, arising from censoring due to a

limit of detection or missing data, can bias these analyses. In this article, we present a statistical test based on splines-

based mixed-model accounting for both the censoring and missingness mechanisms in the AUC estimation. Inferential

properties of the proposed method were evaluated and compared to ad hoc approaches and to a non-parametric

method through a simulation study based on two-armed trial where trajectories and the proportion of missing data

were varied. Simulation results highlight that our approach has significant advantages over the other methods. A real

working example from two HIV therapeutic vaccine trials is presented to illustrate the applicability of our approach.

Keywords

Area under the curve, longitudinal data, statistical test, mixed-effects model, study drop out, left-censoring

1 Introduction

The area under the curve (AUC) is a summary measure commonly used in various applications when the outcome

of interest is based on a quantitative variable such as a biomarker concentration. In pharmacokinetics, the AUC

of the drug concentration versus time is typically analyzed to account for drug exposure and clearance from the

body1 or to evaluate the bioequivalence of vaccines,2 or the quality of life by summarizing individual scores.3–6 In

preclinical cancer drug screening tumor xenograft experiments, the ratio or the difference of AUC can be used to

replace the commonly used treatment-to-control ratio7,8 or summarize symptoms9 to evaluate therapy effective-

ness. In infectious diseases, the AUC can summarize the exposure to the HIV virus10 or influenza.11,12 When AUC

is an outcome to be compared between arms in a clinical trial, estimates can be biased because of incomplete data.

Two frequent sources for the lack of completeness can arise: censoring due to a limit of detection (LOD) of assay

and study drop out.
In this context, various methods for the calculation of AUC have been proposed. Allisson et al.13 and Venter

et al.14 compared different approaches based on incremental AUC. Incremental AUC consists in computing the

AUC only for observations that are above a threshold, which can be viewed as particularly compelling when there
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is left-censored observations. However, Potteiger et al.15 pointed out the potential bias in resulting conclusions
when using incremental AUC even in presence of complete data. Wilding et al.16 have developed an approach to
evaluate treatment effect by comparing longitudinal data from two groups of patients through AUC calculation
when data are subject to missing completely at random (MCAR) missingness process. Bell et al.17 extended this
method to missing at random (MAR) data and incorporated the within-subject variability through random effects
using linear mixed effects models (LMEMs). In both cases, the comparison of the mean AUC using maximum
likelihood (ML) between groups was more robust than the comparison of the average individuals’ AUC with
standard two-sample t-tests. Furthermore, the estimation of the mean AUC using LMEM can be adapted to
outcomes subject to left-censoring.18

In this paper, we propose a statistical parametric test for AUC based on splines-based MEMs which is
extending the previously described approaches by adding flexibility in the modeling, accounting for left-
censored data and dealing with MAR monotonic censored follow-up. Estimation of parameters in LMEMs
model is possible using ML-based approach leading to robust inference in presence of right-censored19 and
left-censored outcome.20,21 To do so, we use an expectation-maximization EM algorithm for computing the
maximum likelihood in nonlinear mixed effects models with censored response as describe in Vaida et al.22

Multiple other non-parametric approaches have been developed to solve this type of problem. Schisterman and
Rotnizky23 developed a semi-parametric estimator of a K-sample U-statistic when data are missing at random
combining information from both outcomes and auxiliary variables. Thereafter, Spritzler et al.24 extended these
results by proposing a valid semi-parametric two-sample test of equal AUC when observations are MAR mono-
tonic and/or missing completely at random (MCAR). Both works are based on weighting approaches and thus
require strong assumptions on the missing data process. Alternative non parametric tests have been developed by
Vardi et al.25 based on permutation tests. However, parametric approaches may help in the situation of incom-
plete data.

This work was motivated by the evaluation of HIV therapeutic vaccine in clinical trials where high rate of
censoring can occur. The goal of the vaccines in HIV-infected patients is to boost the immune system to control
the viral replication when antiretroviral treatments (ART) are interrupted. Hence, analytical treatment interrup-
tion (ATI) is the ultimate way to assess the ability of new vaccine strategies to control viral replication after ART
discontinuation.26 However, HIV-infected patients undergoing ATIs are subject to high risks of immune damage
with expansion of the existing reservoir, clinical symptoms, resistance emergence, increased risk of HIV trans-
mission as well as loss of therapeutic benefits from ART.27,28 Therefore, ATI periods are short and patients are
followed carefully. Specification of criteria determining ART resumption may vary from one study to another:
development of Grade-3 adverse events or AIDS-related events, the CD4 cell count fell below 350 cells/mm3, or a
HIV RNA load exceeding a given virologic threshold.29–34 Following these criteria, ART resumption may occur
before the end of the planned ATI period leading to missing data comparable to study drop out. Also, HIV RNA
viral load is subject to left censoring due to LOD usually around 50 copies/mL.20 Therefore, the comparison of
AUC in HIV therapeutic vaccine trials constitutes a particularly relevant context for the application of the
method described in the paper.

The article is structured as follows. In section 2, we briefly describe two HIV therapeutic vaccine studies which
motivated the development of our ML based-model proposed approach to estimate the difference of mean AUCs
between two groups of patients when observations are left-censored and subject to follow-up censoring presented
in section 3. In section 4, we investigate the inferential properties of this method and compare them with both
traditional methods and a non-parametric test through simulation studies. To illustrate the applicability of the
approach, we provide a real working example from the two motivating examples in section 5. To conclude, we
summarize the paper and propose future research in section 6.

2 Motivating examples

In this paper, we focus on two HIV therapeutic vaccine trials testing the efficacy of vaccines through ART
interruption in HIV-1-infected patients. The first one is the HIV therapeutic vaccine trial VRI02 ANRS 149
LIGHT.35 This study is a randomized double-blind, two-arm placebo-controlled Phase-II trial. Its primary objec-
tive was to evaluate the virological efficacy after ART interruption of a therapeutic immunization compared to a
placebo. The therapeutic immunization is based on a recombinant DNA vaccine (GTU-MultiHIV B) and a
lipopeptide vaccine (LIPO-5). This study enrolled 105 patients (35 in the placebo control group vs. 70 in the

2131Alexandre et al.



vaccinated group) whose 91 of them (32 placebo and 59 vaccinated) experienced ATI. HIV RNA load was

repeatedly measured at times 0, 2, 4, 6, 8 and 12weeks after ATI. The second study is the HIV therapeutic

vaccine trial ANRS 093 Vac-IL2 (Vac-IL2).36 This study is a randomized two-arm placebo-controlled Phase-II

trial enrolling 71 patients (37 in the control group and 34 in the vaccinated group). Its primary objective was to

evaluate the immunogenicity of a therapeutic immunization strategy combining two different vaccines, recombi-

nant ALVAC-HIV (vCP1433) and Lipo-6T (HIV-1 lipopeptides), followed by the administration of subcutaneous

interleukin-2 (IL-2). Therapeutic immunization was followed by 12weeks of ATI with repeated measures of HIV

RNA load at times 0, 1, 2, 3, 4, 6, 8, 10, 12weeks after ATI.

3 Method

3.1 Definition of the AUC by interpolation method

We consider N subjects divided into G vaccine arms, with N ¼
XG

g¼1
ng, with ng being the number of patient in

group g. Let Yij;g be the response measured for the subject i belonging to group g at its jth time point, tij;g, with

i 2 f1; � � � ;Ng; j 2 f1; � � � ;mig and g 2 f1; � � � ;Gg. Moreover, we define ftij;gg as the set of time points at which

data are observed for the patient i and mi ¼ jftij;ggj the cardinal of this set. At group level, we equivalently note

ftj;gg ¼ [i2gðftij;ggÞ the set of time points at which outcome of interest is measured for at least one patient in g,

whose mg is the cardinal. As defined, this framework allows the consideration of unbalanced group design and

group-specific time points. The area under the response of interest curve can be calculated by the trapezoid

interpolation method. The AUC summary measure for the ith subject belonging to the group g and summary

statistics for the entire group g can then be approximated by the following equations. Without loss of generality,

we define the lower limit of the integration interval as well as the first time point in each group as zero

AUCi ¼
Z Ti

0

Yi;gðtÞdt ’
Xmi

j¼2

ðtij;g � tij�1;gÞ
2

ðYij;g þ Yij�1;gÞ

AUCg ¼
Z Tg

0

YgðtÞdt ’
Xmg

j¼2

ðtj;g � tj�1;gÞ
2

ðYj;g þ Yj�1;gÞ

where Yj;g is defined as the mean value of the outcome Y in the gth group at its jth time point, Yj;g ¼
1
ng

X
i2gYij;g; Ti ¼ maxjð tij;g

� �Þ and Tg ¼ maxjðftj;ggÞ the individual and group time of follow-up. Whereas the

trapezoid method is known as the cumulative area over m – 1 time period in which the value of interest Y is

approximated by a straight line between two adjacent points ðtj�1; yj�1Þ and (tj, yj), two other interpolation

methods have been studied in this work to approximate AUC using either global or piecewise cubic polynomials

instead of linear function: (1) the Lagrange method and (2) the Spline method (see Online Appendices A and B for

more details, respectively). These methods are not described in the main body of the article as they provide similar

results to the described trapezoid interpolation method.
When calculating individual’s AUC, it is usual to divide the AUC by the delay of follow-up to take into

account the variability in follow-up due to early drop-out for example.37–40 Although we propose in this article a

method based on modeling that would allow to work directly on the raw AUC, we will use a normalized AUC

(nAUC), that is the AUC divided by the number of days/weeks of follow-up, for the sake of comparison with

individual level methods. The nAUC are given by equations (1) and (2)

nAUCi ¼ 1

Ti

Z Ti

0

Yi;gðtÞdt ’ 1

Ti

Xmi

j¼2

ðtij;g � tij�1;gÞ
2

ðYij;g þ Yij�1;gÞ (1)

nAUCg ¼ 1

Tg

Z Tg

0

YgðtÞdt ’ 1

Tg

Xmg

j¼2

ðtj;g � tj�1;gÞ
2

ðYj;g þ Yj�1;gÞ (2)
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3.2 Estimation of nAUC by mixed effects model

We assume the MEM given by equation (3) to describe the outcome Yij;g of the subject i in the group gi at the jth

time point

Yij;gi ¼ f0ðtij;giÞ þ
XG
g¼1

11½gi¼g� � Fgðtij;gÞ þ hiðtij;giÞ þ eij (3)

where the function f0 gathers all non-group-specific terms, e.g. an intercept, the functions Fg are non-linear

smooth functions of time describing the fixed effect specific to each group and hi are polynomial time-

dependent random effects modeling the inter-individual variability. In the following, the functions Fg are set to

linear combinations such as Fgðtij;gÞ ¼
XKg

k¼1
bgkf

k
gðtij;gÞ where Kg is the number of time-dependent components

describing the group-specific dynamics, e.g. spline basis, and bgk are the regression coefficients.

For generalization purpose, the LMEM given in equation (3) can be re-expressed with matrix formulation as

follow

Y ¼ X0cþ Xbþ Zbþ e

where Y is the vector of the outcome of interest, X0, X, and Z are respectively the design matrices for the non-group-

and group-specific fixed effects and random effects. Because vaccine or randomized controlled trials involve often

adjustment of treatment effects on covariates, such as baseline covariates, the use of MEM allows it through the

definition of the design matrices, whether at population, group or individual level. The vectors c; b and b are the

unknown non group- and group-specific fixed parameters and the random parameters respectively, while e is

the vector of error terms supposedly normally distributed such as EðeÞ ¼ 0 and VarðeÞ ¼ H. Moreover, we

assume that EðbÞ ¼ 0 and VarðbÞ ¼ X, with b??e. By construction, the matrix X is defined as a diagonal block

matrix such as X ¼ diag X1; � � � ;XGÞð , where each sub-matrix Xg is group-specific. Similarly, the vector b can be

written as bT ¼ b1
T

; � � � ; bGT
� �

, each vector bg being only specific to the group g. It can be demonstrated that the

estimate of the nAUC in group g (2) can be re-expressed as a linear combination of the responses at each time, as

nAUCg ¼ 1

Tg

Xmg

j¼1

wj;gYj;g ¼ 1

Tg
wg

TYg (4)

where wg ¼ ðw1;g; � � � ;wmg;gÞT; Yg ¼ ðY1;g; � � � ;Ymg;gÞT, with

wj;g ¼

tjþ1;g � tj;g
2

; j ¼ 1

tj;g � tj�1;g

2
; j ¼ mg

tjþ1;g � tj�1;g

2
; otherwise

8>>>>>><>>>>>>:
(5)

In our method, the approximation of the summary statistics nAUC is obtained post-estimation of the MEM

parameters. To this end, we denote blg ¼ EðbYgÞ being the expected value of the estimation of Y in the gth group,

where blg ¼ ðbl1;g; � � � ; blmg;gÞT with blj;g ¼ Eð bYj;gÞ and bYg ¼ ð bY1;g; � � � ; bYmg;gÞT. It follows that blj;g is expressed as a

linear combination of the fixed parameter estimates denoted bb and bc for the group- and non-group-specific.

Indeed, by noting X
½g�
0 the sub-matrix of X0 corresponding to the group g, we obtain blg ¼ X

½g�
0 bcþ Xg

bbg leading to

blj;g ¼
XdimðbcÞ
v¼1

X
½g�
0jv � bcv þXKg

v¼1

Xgjv � bbg

v

Replacing Yg by blg in equation (4), the approximation of nAUC in the group g, dnAUCg, can be written as

dnAUCg ¼ 1

Tg
wT
gblg (6)
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3.3 Statistical testing of difference between groups

We want to identify whether or not two groups of treatment can be differentiated by their mean value of the area
under the response curve. Consequently, we defined the hypotheses of interest for the two compared groups g and
~g as the equality and the difference of their nAUC for the null hypothesis, H0 and the alternative one, H1,
respectively.

While the mechanism of follow-up censoring and the resulting missing data have no direct impact on the
method of the MEM estimation, the statistical test must be written to take it into account. The presence of
informative censoring impacting directly the time of follow-up and thus the time interval of AUC calculation for
each group, ½0;Tg�, the statistical test is build to compare the mean value of AUC on the same time interval. To do
this, we define the upper integration limit for nAUC calculation as T ¼ minðTg;T~gÞ given the time restricted
nAUC for each group calculated as

dnAUC
rest

g ¼ 1

T

Z T

0

blgðtÞdt ’
1

T
x˚
T

g blrestg (7)

where x˚ g ¼ ðx1;g; � � � ;xm
˚
g;g
ÞT and blrestg ¼ ðbl1;g; � � � ; blm

˚
g;g
ÞT with m

˚

g ¼ jftj;gjtj;g � Tgj.
Based on equation (7) of the approximation of nAUC in the group g, the test hypotheses may be re-expressed

in terms of model fixed parameters such as

H0 : dnAUC
rest

g ¼ dnAUC
rest

~g () 1

T
x˚
T

g X˚
½g�
0 bcþ X˚ gbbg� �

¼ 1

T
x˚
T

~g X˚
½~g�
0 bcþ X˚ ~gbb~g

� �
(8)

H1 : dnAUC
rest

g 6¼ dnAUC
rest

~g () 1

T
x˚
T

g X˚
½g�
0 bcþ X˚ gbbg� �

6¼ 1

T
x˚ ~gT X˚

½~g�
0 bcþ X˚ ~gbb~g

� �

where ðg; ~gÞ 2 ð1; � � � ;GÞ2; g 6¼ ~g and X˚
½g�
0 and X˚ g, respectively, defined as X

½g�
0 and Xg but restricted to the time

interval ½0;T�. Because b and c are the parameters of a mixed model and assuming normality hypothesis, it follows
that their respective maximum likelihood estimates are approximately normally distributed following the laws

Nðbb;dVarðbbÞÞ and Nðbc;dVarðbcÞÞ and implies that both blrestg and dnAUC
rest

g are normally distributed. Let note bR the

variance-covariance matrix of the estimated fixed parameters given by the inverse of the Fisher information

matrix and bRg the sub-variance covariance matrix of ðbcT; bbgTÞT 2 M
dimðbcÞþKg;1

ðRÞ. By construction we obtain,

Eðblrestg Þ ¼ X˚
½g�
0 cþ X˚ gb

g; Varðblrestg Þ ¼ ðX˚ ½g�0 X˚ gÞbRgðX˚ ½g�0 X˚ gÞT and Eð dnAUC
rest

g Þ ¼ 1
Tx

˚ T

g Eðblrestg Þ;Varð dnAUC
rest

g Þ ¼
1
T2 x

˚ T

g ðX˚
½g�
0 X˚ gÞbRgðX˚ ½g�0 X˚ gÞT x˚ g. Consequently, the asymptotic normal distribution of the estimated difference of

the restricted nAUC between the two groups can be inferred with

D dnAUC
rest

g�~g �N E D dnAUC
rest

g�~g

� �
;Var D dnAUC

rest

g�~g

� �� �

with EðD dnAUC
rest

g�~gÞ ¼ 1
Tx

˚
~gTEðblrest~g Þ � 1

T x˚
T

g Eðblrestg Þ and VarðD dnAUC
rest

g�~gÞ ¼ x˚
TðX˚ 0 X˚ ÞbRðX˚ 0 X˚ Þ x˚ ; x˚ 2

M
m
˚
gþm̊ ~g;1

ðRÞ being defined as 1
T ð0T;x˚

T

~g ÞT � 1
T ðx˚

T

g ; 0
TÞT. For a test of the null hypothesis defined in equation

(8), we can build the standard normally distributed Z-statistic given by

Z ¼ D dnAUC
rest

g�~gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var D dnAUC

rest

g�~g

� �r

Under the null hypothesis, the Z-statistics follows a Nð0; 1Þ. By weighted averaging incomplete measures, the
impact of potential heteroscedasticity is reduced due to the AUC-based approach. If still variance heterogeneity
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between the group occur, the Z-statistics can be modified into a Student’s t-test like statistics with degree of

freedom s (equals to1 in case of Z-statistic). As matter of fact, in case of remaining heterogeneity, data specific to

each group should be fitted with specific and independent mixed effects model. The T-statistic resulting from this

procedure will differ from our Z-statistic by its standard deviation simply defined as the squared root of the sum

of the variances of the group-specific nAUC, and with a degree of freedom defined by the Satterthwaite

approximation41,42

s ¼
Var dnAUC

rest

g

� �
þ Var dnAUC

rest

~g

� �� �2
Var dnAUC

rest

g

� �
ng�1

þ Var dnAUC~g
rest

� �
ng�1

Similarly, in case of small sample size, our Z-test can be modified into Student’s t-test with degree of freedom

defined by the Kenward-Roger approximation.43 Similarly to Bailer,44 a 100(1�a)% confidence interval for

D dnAUC
rest

g�~g can be derived from the statistic, as

D dnAUC
rest

g�~g�zs;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var D dnAUC

rest

g�~g

� �r

where zs;a=2 is the (1�a/2)100th percentile of the distribution.
An extension to k-sample design is straightforward deriving a one-way ANOVA testing the equality of nor-

malized AUCs. Similarly to our Z-statistics, nAUCs are compared on the same interval of calculation ½0;T� with
T ¼ ming2f1;���;GgðTgÞ.

H0 : dnAUC
rest

1 ¼ dnAUC
rest

2 ¼ � � � ¼ dnAUC
rest

K ;

H1 : 9ði; jÞ j dnAUC
rest

i 6¼ dnAUC
rest

j

8<:
where K is the number of groups compared by the k-sample test, K � G. Similarly to classic one-way ANOVA,

we define the statistic F following Fisher law as

F ¼
SSbetween

K�1
SSwithin

NK�K

�FðK� 1;NK � KÞ

where NK ¼
XK

g¼1
ng and SSbetween and SSwithin define respectively the inter- and intra-group variability and are

calculated as

SSbetween ¼
XK
g¼1

ng dnAUC
rest

g � 1

K

XK
k¼1

dnAUC
rest

k

 !2

SSwithin ¼
XK
g¼1

n2gVarð dnAUC
rest

g Þ

4 Simulation study

In this section, we conduct a simulation study to analyze the statistical properties of our approach. The simulation

setting is driven by the motivating examples described in section 2.
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4.1 Generation of simulated data

We simulate longitudinal data mimicking a randomized HIV therapeutic vaccine trial involving two groups of
treatment in which the outcome of interest is the HIV RNA load measurement. We simulated data using a
LMEM as described by (9)

Yij;g ¼ c0 þ 11½g¼1�
XK1

k¼1

b1k/
1
kðtij;1Þ þ 11½g¼2�

XK2

k¼1

b2k/
2
kðtij;2Þ

þ b0i þ
XKi

k¼1

bkiW
i
kðtij;gÞ þ eij

(9)

where Yij;g is the outcome of the ith subject belonging to the gth group at the jth time point where i 2
f1; � � � ; ngg; j 2 f1; � � � ;mgg and g 2 f1; 2g. In this model, the non-group-specific function f0 is a global intercept
labeled c0, while random effects are described by individual smooth cubic B-splines curves defined as linear
combination of the cubic B-spline basis Wi ¼ ðWi

1; � � � ;Wi
Ki
ÞT with bi ¼ ðb1i; � � � ; bKiiÞT as regression coefficients,

8i 2 f1; � � � ;Ng; N ¼ n1 þ n2. Similarly, the group-specific fixed effects are modeled by cubic B-spline curves with
/g ¼ ð/g

1; � � � ;/g
Kg
ÞT and bg ¼ ðbg1; � � � ; bgKg

ÞT as spline basis and regression coefficients, respectively. Random
effects describing the inter-individual variability are assumed to be normally distributed b�Nð0;XÞ as well as
the error terms eij �Nð0; r2eÞ. Based on the HIV RNA load data from the Vac-IL2 trial (see section 2, Motivating
Examples), we evaluated the regression coefficient estimates c0; b

1; b2 and b as well as the parameters Kg and Ki

being respectively the number of spline basis involved in the group-specific and individual spline curves. The
model involving a global intercept c0, the splines basis have been built without including intercept terms making
Kg and Ki equal to the sum of the number of internal knots and the degree (fixed at 3 in our case) of the respective
spline curves.

For the purpose of examining the properties of the proposed approach developed to test the equality of
nAUCs, we generate numerous vaccine trials. As illustrated in Figure 1, we simulated two types of mean trajec-
tory profiles: one in which the timing of viral rebound is similar in control and treatment group but the magnitude
of the rebound may differ, and one in which the timing of viral rebound is expected to be longer in the treatment
group compared to the control group. Finally, outcomes are measured at a constant time interval such as t ¼
ð0; 1; 2; � � � ; 24ÞT weeks and the number of patients by group n ¼ n1 ¼ n2 varied amongst 20, 50 and 100. They
reproduce the trajectories found in the Vac-IL2 and LIGHT trials (see section 2, Motivating Examples). Based on
the Vac-IL2 data, we set the values of r2e ¼ 0:2, the fixed intercept c0 ¼ �0:44 and the fixed parameters of the first
group of treatment (g¼ 1) seen as the control group, b1 (see Table 1). The five fixed parameters of the treatment
group in both profiles b2 have been chosen such as given values of DnAUC1�2 are targeted to specific values. To
test the properties of the method, we simulated data with DnAUC1�2 taking values of 0, –0.1 and –0.25 log10 cp/
ml. We defined the number of fixed splines basis as K1 ¼ K2 ¼ 5 for both profiles with the two internal knots fixed
at ð0:25; 5:62Þ weeks for both groups in profile 1 and ð0:25; 5:62Þ and ð3:23; 7:63Þ weeks in profile 2 for control and
vaccine groups, respectively. Similarly, we fixed the number of random spline basis Ki¼ 5 with ð2:0; 4:5Þ weeks as
internal knots in profile 1 and ð2:0; 4:5Þ and ð5:0; 8:0Þ weeks in Profile 2 for control and vaccine groups, respec-
tively. Number and positions of internal knots have been optimally chosen on Vac-IL2 data by applying the R-
package freeknotspline45 using AIC as optimization criterion.

The covariance matrix of the random effects X is defined as diagonal such as X ¼ r2bIKiþ1 where the value of r2b
has been chosen according to the targeted values of VarðnAUCgÞ. The estimated variances of nAUC were 0.027
and 0.021, respectively, in the control and the treatment group in Vac-IL2 trial. Hence, in simulations, we tested
the impact of the intra-group variability when VarðnAUCgÞ was equal to 0.02 and 0.1, in both groups.

We generated MAR monotonic missing data as follows. For each subject i at each time point j, the outcome
Yij;g was labeled as missing if Yij;g 2 fYij;gj9 j0 � j; fYij0;g 	 ag \ fYij0�1;g 	 agg, with a being a fixed threshold. A
patient dropped out from the trial if his/her HIV RNA load exceeded the threshold a at two consecutive time
points. The subsequent measurements were considered as missing. We investigated the impact of the missing data
on the robustness of the method by considering three values for the threshold a: 100,000 (5log10), 50,000
(� 4:7log10) and 10,000 (4log10) cp/ml. As illustrated in Figure 2 for the profile 1, the percentage of drop-out
in each trial was inversely linked to the value of a. Due to the difference of nAUC between the two groups, each
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value of a generated both equal (DnAUC ¼ 0, blue curves) and unequal (DnAUC 6¼ 0, blue curve for control and
green/pink curves for treatment group) drop-out rates. While a ¼ 100,000 cp/ml leaded to approximately 30% of
drop-out in control group and respectively 30%, 15% and 5% in treatment group when DnAUC ¼ 0; 0:1 and
0.25, for VarðnAUCÞ ¼ 0:02, these percentages increased respectively until 75%, 75%, 60% and 35% for a ¼
50,000. Finally, the choice of a ¼ 10,000 allowed to test the method with extremely high percentages of drop-out
which were in the neighborhood of 100%. The consideration of the second profile of data simulation leaded to a
slight increase of these percentages of approximately 7% when the variance of nAUC was equal to 0.1 and 10%
for 0.02.

We also generated left-censored outcomes using the limit of detection for viral load at 50� 1:7log10 cp/ml,
which has been chosen in accordance with values typically encountered in our motivating examples. This choice of
LOD generated mean percentages of undetectable data in each group ranging from 7.30% to 7.70% for profile 1
and from 7.30% to 8.70% for profile 2, representing approximately two time points with undetectable
outcome over 25.

Table 1. Fixed parameter values used to simulate control and vaccine groups for both profiles, according to DnAUC values.

Treatment group Profile 1 Profile 2

Control group, b1 ð�0:55; 4:72; 4:96; 5:18; 4:64Þ ð�0:55; 4:72; 4:96; 5:18; 4:64Þ
DnAUC¼ 0; b2 ð�0:55; 4:72; 4:96; 5:18; 4:64Þ ð1:38; 5:57; 4:53; 5:20; 4:74Þ
DnAUC¼ 0:1; b2 ð�0:54; 4:61; 4:85; 5:07; 4:54Þ ð1:35; 5:44; 4:43; 5:09; 4:63Þ
DnAUC¼ 0:25; b2 ð�0:52; 4:46; 4:69; 4:90; 4:39Þ ð1:31; 5:26; 4:28; 4:92; 4:48Þ
Note: The value of the global intercept was fixed at c0 ¼ �0:44.

Figure 2. Percentages of censored follow-up when data simulated by both profiles are impacted by the threshold of lost of follow-up
a. Note: Lines display percentages obtained for the profile 1 with solid and dashed lines representing data simulated with
VarðnAUCÞ ¼ 0:02 and 0.1, respectively. Blue lines describe both Group 1 (Control) and Group 2 (treatment) when DnAUC with
Group 1 is equal to 0, green and pink lines represent Group 2 when DnAUC ¼ 0:1 and 0.25, respectively. Marks display percentages
obtained for the Profile 2 with empty and full marks representing data simulated with VarðnAUCÞ ¼ 0:02 and 0.1, respectively. The
squares, triangles and circles describe Group 2 when DnAUC ¼ 0, 0.1 and 0.25 with the control group in blue, respectively. Vertical
dotted lines highlight the positions of a ¼ 100,000, 50,000 and 10,000 cp/ml.

Figure 1. Simulated mean trajectories of HIV RNA load over time for both profiles 1 and 2. Note: Red solid line represents Group 1
(Control), dashed, dot dashed and dotted lines represent Group 2 (treatment) when DnAUC with Group 1 is equal to 0, –0.1 and
–0.25, respectively. Orange dashed line and area delimit the LOD¼ log10ð50Þ. LOD: limit of detection.
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4.2 Analysis of simulated data

We analyzed the simulated data using a well-specified model. Formulas for nAUC are derived from equation (9).
MEM estimations took into account left-censored outcomes using an hybrid EM-algorithm implemented in the

R-package lmec.46 Let note ðbc0;bb1;bb2ÞT the vector of the estimated fixed parameters where bbg ¼ ðbbg

1; � � � ; bbg

Kg
ÞT, for

g 2 f1; 2g. Using the model in equation (9), the expected value of Y in the gth group at any time tj;g isblj;g ¼ bc0 þXKg

k¼1
bbg

k/
g
kðtj;gÞ, which allows to approximate the nAUC in each group, its variance and the difference

in nAUC as follows

dnAUCg ¼ Kcgbc0 þXKg

k¼1

bbg

kCkg

D dnAUC1�2 ¼ bc0ðKc2 � Kc1Þ þ
XK2

k¼1

bb2

kCk2 �
XK1

k¼1

bb1

kCk1

Varð dnAUCgÞ ¼ ðKcgÞ2Varðbc0Þ þXKg

k¼1

ðCkgÞ2Varðbbg

kÞ þ 2
XKg�1

k¼1

XKg

~k¼kþ1

CkgC~kgCovðbbg

k;
bbg

~kÞ

þ2
XKg

k¼1

KcgCkgCovðbc0; bbg

kÞ

where Ckg and Kcg are defined by Ckg ¼ 1
Tg

Xmg

j¼2

ðtj;g � tj�1;gÞ
2

½/g
kðtj;gÞ þ /g

kðtj�1;gÞ� and Kcg ¼ 2
Tg

Xmg

j¼2

ðtj;g � tj�1;gÞ
2

.

For each combination of simulated datasets and missing data patterns, 1000 replications were performed with
the objective of evaluating the robustness of the method to test the equality of areas under the curves between the
two groups through its type-I error, its power and the bias in the estimation of the difference of nAUC. We
compared the results provided by our method with a standard two-sample t-test for the difference of nAUC

between the two groups, i.e. H0 : nAUC2 � nAUC1 ¼ 0 where nAUCg ¼ 1
ng

Xng

i¼1
nAUCi with nAUCi defined by

equation (1). We performed this test without accounting for missing data and using two common ad hoc
approaches: the last observation carried forward (LOCF) where missing data are imputed by the last observed
value before the follow-up censoring, and the mean imputation where missing observations are imputed by the
mean of the observations before this follow-up censoring.

In addition to the standard two-sample t-test, we compared our method with the t-test version of the non-
parametric two-sample test proposed by Vardi et al.25 This test was developed to compare a one-dimensional
variable such as AUC between two groups of treatment when individual follow-up is subject to informative
homogeneous or heterogeneous censoring. In order to be able to compare the results provided by this test and
our method, we applied this test to normalized AUC. The test is based on U-statistics defined as

Um1;m2
¼ 1

m1m2

Xm1

i1¼1

Xm2

i2¼1

Di1;i2

where m1 and m2 are respectively the number of subjects in the first and the second compared groups, g1 and g2,
while Di1;i2 is defined as the paired cross-treatment contrast for the cross-treatment pair ði1; i2Þ 2 g1 � g2

Di1;i2 ¼
1

Ti1 ^ Ti2

Z Ti1
^Ti2

0

Yi2;g2ðtÞ � Yi1;g1ðtÞ
� �

dt

¼ 1

Ti1 ^ Ti2

AUCi2 ½0;Ti1
^Ti2

� �AUCi1 ½0;Ti1
^Ti2

�
			 i			
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where Ti1 ^ Ti2 ¼ minðTi1 ;Ti2Þ. The variable Di1;i2 is then defined as the difference of nAUC between the subjects

i1 and i2, restricted to their common time of follow-up. Similarly to the simulation studies conducted in their

paper, we defined the variance of the U-statistic as equation (2.15) in Vardi’s paper25

br2
m1;m2

¼
Xm1

i1¼1

Di1: �D::

� �2
m1ðm1 � 1Þ þ

Xm2

i2¼1

D:i2 �D::

� �2
m2ðm2 � 1Þ

where Di1: ¼
X

i2
Di1;i2=m2; D:i2 ¼

X
i1
Di1;i2=m1 and D:: ¼ Um1;m2

and we considered the following null hypothesis

H0 : the distribution of D is symmetric about 0.
Five procedures are then compared for testing the equality of nAUC including three ad hoc methods respec-

tively called Indiv. nAUC Data, Indiv. nAUC LOCF and Indiv. nAUCMean Imp., the non-parametric test called

NP nAUC and our approach called MEM nAUC.

4.3 Simulation results

The results of our simulations evaluating the robustness of the test of equality of nAUC are displayed in Table 2.

Although only results for simulations involving ng¼ 50 patients by group are presented in the main body of the

article, extended results for ng¼ 20 and 100 can be found in Online Appendix C, Tables C.2a and C.3a. In these

simulations, as expected with a well-specified model, when there is no censored follow-up and no left censoring

using individual nAUC, non-parametric approach or our method based on MEM nAUC are identical in term of

type-I error, which are kept to their nominal level of 5% (between 0.044 and 0.06). However, the power seems to

be consistently higher for MEM nAUC in particular when the inter-individual variability is high. When intro-

ducing the LOD at 50 cp/ml, the results are similar for profile 1 but tend to show a superiority of MEM nAUC for

profile 2 in which there are a larger number of left-censored observations due to delay in viral rebound in one

group. This is explained by the fact that MEM nAUC, contrary to individual nAUC involved either in indiv.

nAUC or NP nAUC methods, accounts for left censoring instead of considering censored data fixed to their

censorship level value. When the threshold of HIV RNA defining drop-out, a, is equal to 100,000 and 50,000 cp/

ml, all individual methods (with or without adjustment for missing data) fail in term of type-I error in the second

profile with lagged increasing trajectories of viral load (see Figure 1). Even when the type-I error is controlled such

as for profile 1 (with the same shape of mean trajectories see Figure 1), the power for raw data and mean

imputation approaches is low for most settings. While the NP nAUC method shows controlled type-I error

between 0.048 and 0.057 for profiles 1 and 2 when a is equal to 100,000 cp/ml and for profile 1 when the threshold

is equal to 50,000 cp/ml, we observe an inflation of the type-I error up to 0.075 for the second profile. On the

contrary, the MEM nAUC method shows type-I error between 0.048 and 0.064 for profiles 1 and 2. When

variability is low, the power is also good and higher than 76% for the two methods. In all cases, the power

found in these settings is similar in magnitude to the power obtained when there is no censored follow-up and no

left censoring for viral load. When the threshold a is equal to 10,000 copies/ml, while all individual methods and

the non-parametric approach fail to control the type-I error for the profile 2, our approach MEM nAUC suc-

cessfully gets a type-I error around the nominal value for both profiles. This result is mainly driven by the

difference of the shapes of the mean trajectories for the two compared groups in Profile 2. In fact, as shown in

Figure 1, the difference of nAUC appears as quite homogeneously distributed over the time of follow-up in profile

1 leading to robust results for all methods despite an early drop out for a high percentage of subjects. However, in

profile 2, the value of DnAUC resulting from the compensation of the beginning and the end of the dynamics, only

the parametric method is able to capture the true difference of nAUC regardless of the premature censored follow-

up for more than 80% of individuals.
In addition, we graphically illustrated the estimated bias and standard error for DnAUC obtained for each

method in Figure 3. For all profiles, when there is no drop-out or when the threshold a is high enough (equal to

100,000 and 50,000 cp/ml), the bias is closer to 0 for MEM nAUC compared to other methods. Also, the standard

error of DnAUC calculated with MEM nAUC is similar to the non-parametric approach and closer to all the ad

hoc individual methods to the theoretical values of standard error of DnAUC, respectively 0.028 for

VarðnAUCÞ ¼ 0:02 and 0.063 for VarðnAUCÞ ¼ 0:1. This mostly explains the comparable robustness between

MEM nAUC and NP nAUC and their better performances in term of power compared to individual methods.

When a is equal to 10,000 cp/ml, the inflated type-I errors observed for individual and non-parametric methods
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are explained by biased estimates of DnAUC which are not compensated by an increased value of the standard

error, unlike the MEM nAUC method.

4.4 Relaxing the correct model specification assumption

The validity of the method relies on the correct specification of the MEM as described in equation (3) in the

section Method. To relax this assumption, we conducted additional simulations to evaluate the method when data

are fitted with another MEM. To evaluate the performances in a setting closer to real-data, the number and

position of the knots in the MEM defined in equation (9) were also estimated with the data. We used the R-

package freeknotspline to estimate and replace the two sets of fixed two internal knots (2.0, 4.5) and (5.0, 8.0)

involved in the build of group-specific spline curves by a set of knots optimizing the fit of data. Moreover, spline

basis was built with external knots chosen as (0, Tg) instead of (0, 24) considering the real observed time of follow-

up, which can be modified with censored follow-up. For each simulation, the number of internal knots for a given

group is optimized between 1 and 3 as well as their position using AIC as optimization criterion. Three other

selection criteria have been tested: BIC, adjAIC, adjGCV and compared to AIC. Similar results of power and

type-I error have been obtained for the four criteria (results not shown). Spline basis involved in random effects

were similarly built chosen (0, Ti) as boundary knots and the number of internal knots chosen between 1 and 2.

This adaptive feature of the model allows to build group-specific spline basis taken into account both left-

censored and missing data. The results obtained by this model are displayed in Table 3 for ng¼ 50 subjects by

group. Similar results are presented in Online Appendix C in Tables C.2b and C.3b for ng¼ 20 and 100,

respectively.
In all settings except for high level of censored follow-up with a ¼10,000, using adaptive MEM led to equiv-

alent type-I error (between 0.046 and 0.063 instead of 0.044 and 0.064) and power than with the well-specified

model, for both profiles. Using adaptive MEM slightly increased the type-I error when the threshold for drop-out

Figure 3. Comparison of the estimated bias and standard error of DnAUC obtained by the three individual methods Indiv. nAUC
Data, Indiv. nAUC LOCF, Indiv. nAUC Mean Imp., the non-parametric test Non Param. and our method MEM nAUC. Both criteria
were estimated for data subject to a LOD, with or without censored follow-up, with ng¼ 50 subjects by group, mean trajectories
following both profiles, for 1000 replications. Note: Pink dashed lines and triangles represent Ind. nAUC LOCF, green dot-dashed lines
and crosses represent Indiv. nAUC Mean Imp., green solid lines and circles represent MEM nAUC, blue solid lines and stars represent
NP nAUC and purple dotted lines with squares represent Indiv. nAUC Data. In standard Error plots, black dashed lines display the
theoretical values (0.028 when VarðnAUCÞ ¼ 0:02 and 0.063 for 0.1); LOCF: last observation carried forward.
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is 10,000 (between 0.061 and 0.078 instead of 0.051 and 0.073), while the estimated power remained unchanged.

Altogether, even when the MEM structure is not known, this simulation shows that it is possible to use adaptive

MEM for the modeling of the marker trajectories without invalidating the method, making it more relevant on

real data.

5 Application on real clinical data

As illustrative examples, we applied the presented approach to the log-transformed HIV RNA load data from the

Vac-IL2 and LIGHT trials (see section 2, Motivating Examples). Exploratory plots of the individual and mean

HIV RNA load dynamics for control and vaccine groups are shown in Figure 4(a) and (b), for VAC-IL2 and

LIGHT trials, respectively. As illustrated in table in Figure 4(c), longitudinal data in both trials are subject to left-

censoring. While two values of LOD are considered in Vac-IL2 trial, 20 and 50 cp/ml (� 1:3 and 1:7log10 cp/ml),

impacting a total of 28.2% and 33.5% of observations for control and vaccine groups, only a LOD at 40 cp/ml

(� 1:6log10 cp/ml) is involved in LIGHT trial, leading to 27.9% and 29.8% of observations in the respective

groups. In addition to left-censoring, those data are impacted by drop-outs. In LIGHT trial, ART resumption was

required in case of serious AIDS or non-AIDS adverse events, when two consecutive of CD4þ T cells counted

below 350 cells/mm3 within at least a two weeks’ time interval as well as for specific patient or physician willing-

ness. Approximately 20% of patients were concerned by these rules and resumed ART before the end of the

predefined 12weeks of ATI (see Figure 4(d)) being considered as drop-outs. In Vac-IL2 trial, 63% and 84% of

drop-outs occurred in vaccine and control group respectively, as the result of HIV RNA load exceeding 50,000 cp/

ml at four or sixweeks post-ATI or exceeding 10,000 cp/ml after eight weeks of ART interruption.
We applied the proposed approach discussed in the manuscript using the MEM described by equation (9)

where the number and the position of internal knots for both population and individual levels are optimized on

data using the R-package freeknotspline and AIC criteria. Also, the structure of the covariance matrix of random

effects being unknown, we estimated this matrix as unstructured instead of diagonal. Moreover, we verified the

applicability of our method on these real data by checking the normality of the distribution of the residuals

provided by the MEM as well as the homoscedasticity of its error model for both trials (see Online Appendix E).

We compared the results obtained by our approach, where the difference of nAUC between the two groups of

Figure 4. Exploratory plots and table for the control and vaccine groups from the Vac-IL2 and LIGHT HIV therapeutic vaccine trials.
Observations are subject to LODs of 40 cp/ml or 20 and 50 cp/ml for LIGHT and Vac-IL2 trial, respectively. LOD: limit of detection.
(a) Outcome trajectories for the control and vaccine groups of the Vac-IL2 HIV therapeutic vaccine trial, with two LOD ¼ log10ð50Þ
and log10ð20Þ cp/ml. (b) Outcome trajectories for the control and vaccine groups of the LIGHT HIV therapeutic vaccine trial, with
LOD ¼ log10ð40Þ cp/ml. (c) Mean number by patient and global percentage of observations below the LOD. (d) Percentage of missing
data over time. Note: In (a) and (b), thick lines describe mean dynamics and thin lines individual ones, solid lines represent control
group and dashed lines represent vaccine group. In (d), black lines with circles describe data from LIGHT trial, grey lines with crosses
describe data from Vac-IL2 trial, solid lines represent control groups and dashed lines represent vaccine groups.
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treatment is calculated with fixed parameter estimates, with the traditional ones where the nAUC is calculated
using the trapezoidal method for every individual and compared at group level with a two-sample t-test. Similarly
to the study of simulated data, estimates of individual nAUCs are computed using either log-transformed raw
data without any transformation, LOCF or mean imputation ad hoc approaches. In addition, we applied the non-
parametric approach NP nAUC briefly defined in section 4, Simulation study. The results are gathered in Table 4.
In vac-IL2, the proposed approach concluded a significant difference between the two groups of treatment with a
p-value of 0.031. Similar result is obtained with raw data with p-value slightly lower than 0.05. However, both
LOCF, mean imputation ad hoc methods and non-parametric method are unable to reject the null hypothesis. All
the tests lead to the same conclusion of no difference between groups in the LIGHT study. Considering the mean
trajectories of the control and vaccine groups displayed in Figure 4(a) and (b), all the results obtained with our
new approach are consistent with expected conclusions.

6 Discussion

In this paper, we proposed a splines-MEM based approach to estimate and compare the normalized area under
the longitudinal outcome curve when observations are subject to left-censoring, induced by an LOD, and MAR
monotonic missing data, due to drop-out. We demonstrated in a simulation study that incomplete data leads to
biased estimates of nAUC resulting in invalid inferences regarding the difference in nAUC between groups with
individual methods even when using simple ad hoc missing data correction, such as LOCF and mean imputation.
Compared to the latter, we illustrated the superiority of our approach in term of type-I error and power. In
addition, although the non-parametric approach developed by Vardi et al.25 provided as robust statistical prop-
erties as our proposed method while the percentages of left-censored data remained lower than 50%, correspond-
ing to a threshold of ART resumption higher than 100,000 copies/ml, the lack of information induced by higher
percentages of drop out resulted in weaker results under certain conditions of simulation and more biased
estimations of the difference of nAUC. We also highlighted that when the amount of data with drop-out is as
high as 80% such as in a situation when ART are resumed if HIV RNA viral load exceeds 10,000 copies/mL in
ATI trial, only the parametric approach appeared efficient to compare nAUC between groups. An application of
two ATI trials for HIV illustrates the superiority of our method on real data.

Limitations of the proposed method include some assumptions induced by the use of MEM such as the
normality and the homoscedasticity. However, we demonstrated that on clinical data these assumptions are
realistic. As briefly noticed in section 3 (Method), two other versions of the proposed method are presented in
Online Appendix replacing the estimation of DnAUC through the most commonly used trapezoid method by its
estimation with either Lagrange or Spline interpolation methods. No significant differences of robustness have
been observed in the application of those three methods on our well defined and tightened simulated trial designs.
However, Lagrange and Splines methods could present more robust results in case of sparse designs. Also, in our
simulations, we assumed a balanced longitudinal design with equal number of measurements and constant time
points for every subject. Although clinical trials are commonly designed with the same monitoring for all partic-
ipants, in reality the observed follow-up may deviate from the expected one. Moreover, some clinical trials could
be designed to compare different monitoring designs among group in addition to treatment efficacy. As defined,
the proposed method, being based on a discrete method of AUC calculation, should be biased by unbalanced
times of measurements among groups with varying number of time points as well as different and irregular time
steps between groups. As mentioned by Chandrasekhar et al.,18 the consideration of time as continuous variable

Table 4. Summary of results from both Vac-IL2 and LIGHT studies.

Methods

Estimate (SE) 95% CI p-value Estimate (SE) 95% CI p-value

Vac-IL2 trial LIGHT trial

Data �0.346 (0.170) [�0.680; �0.013] 0.046 �0.030 (0.175) [�0.312; 0.372] 0.864

LOCF �0.382 (0.198) [�0.770; 0.007] 0.060 �0.018 (0.186) [�0.382; 0.346] 0.924

Mean Imp. �0.345 (0.312) [�0.957; 0.266] 0.276 0.217 (0.245) [�0.263; 0.697] 0.959

NP nAUC �0.349 (0.205) [�0.751; 0.053] 0.089 0.042 (0.178) [�0.306; 0.390] 0.813

Adap. MEM �0.459 (0.213) [�0.877; �0.041] 0.031 0.095 (0.216) [�0.329; 0.519] 0.660

SE: standard error; CI: confidence interval; NP: non parametric; Individual ad hoc methods (Indiv. nAUC): 1. Data: raw data, 2. LOCF: last observation

carried forward, 3.Mean Imp.: mean imputation.
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in the AUC calculation could be a solution to handle this problem. To this end, we could either refine the time

grid to mimic continuous time in the AUC calculation step, or use more complex AUC approximation methods

such as Gaussian quadrature methods. The choice of Gaussian quadrature methods requires thus the use of a

resampling procedure, such as bootstrapping to estimate the standard error. In clinical trials, the sample size

calculation, resulting in the determination of the number of participants in each arm needed to detect a clinically

relevant treatment effect, is one of the major steps in designing the study. The proposed statistics being defined as

classical Z-statistics, typical formulas of sample size calculation can be derived from it. As defined by Hazra

et al.,47 the general formula for two-sided test can be given by n ¼ ðZ1�a=2 þ Z1�bÞ2 � r2=d2 where a represents the
accepted type-I error, b the type-II error, r the standard deviation of the outcome being studied and d the size

effect defined as the targeted DnAUC=2 in our case. Adjusted formulas can also be derived from this latter to

account for unequal sized groups or unequal variance of outcomes using pooled variances. Simulations can be

found in Online Appendix (see Figure F.1 in Online Appendix F) and showed good concordance between the-

oretical and practical power when there is no missing data. When missing data arise due to left censoring (LOD)

or informative drop out, one need to take it into account in the sample size calculation.
The simulation study has been led under model correct specification assumption, i.e. the model used to analyse

the data corresponds to the true data generation process. We further relaxed this assumption by using adaptive

splines model for which some parameters, such as the location and number of knots for splines are supposed

unknown.
Various extensions of this work could be guided to address the problem when there are a high proportion of

drop-outs. The incorporation of prior information could be done through several ways. The study of more

constrained splines through the addition of penalty on spline coefficients (P-splines)48 or monotony and boundary

conditions49 (natural splines) is an option. In the same perspective, future research aims to extend this method to

the use of mechanistic models.50 In addition to introducing biological interpretation of the parameters, these

models could incorporate more easily additional information such as asymptotic behaviors with steady states.
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6.5 Clairon et al. 2023 (Plos Comp. Biol.) Modeling Humoral
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Modeling the kinetics of the neutralizing antibody response against SARS-CoV-2 variants after
several administrations of Bnt162b2. Clairon Q., Prague M. Planas D., Bruel T., Hocqueloux L.,
Prazuck T., Schwartz O., Thiébaut R. and Guedj J. PLOS Computational Biology. 19(8) - e1011282 -
August 2023.

This article integrates in the second axis of my research "Within-host Modeling in Infectious Diseases".
It has been written by my postdoctoral fellow and myself in collaboration with Jérémie Guedj from
Inserm Paris IAME.

I selected this work because it exemplifies the mechanistic modeling of immune dynamics. Fur-
thermore, it demonstrates how mechanistic models can be utilized for their predictive capabilities,
specifically in this case to assess the waning immunity after COVID-19 vaccination. One of the main
challenges in this work was the identifiability of the model when only antibody data are observed in
a relatively sparse framework.
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Abstract

Because SARS-CoV-2 constantly mutates to escape from the immune response, there is a

reduction of neutralizing capacity of antibodies initially targeting the historical strain against

emerging Variants of Concern (VoC)s. That is why the measure of the protection conferred

by vaccination cannot solely rely on the antibody levels, but also requires to measure their

neutralization capacity. Here we used a mathematical model to follow the humoral response

in 26 individuals that received up to three vaccination doses of Bnt162b2 vaccine, and for

whom both anti-S IgG and neutralization capacity was measured longitudinally against all

main VoCs. Our model could identify two independent mechanisms that led to a marked

increase in measured humoral response over the successive vaccination doses. In addition

to the already known increase in IgG levels after each dose, we identified that the neutraliza-

tion capacity was significantly increased after the third vaccine administration against all

VoCs, despite large inter-individual variability. Consequently, the model projects that the

mean duration of detectable neutralizing capacity against non-Omicron VoC is between 348

days (Beta variant, 95% Prediction Intervals PI [307; 389]) and 587 days (Alpha variant,

95% PI [537; 636]). Despite the low neutralization levels after three doses, the mean dura-

tion of detectable neutralizing capacity against Omicron variants varies between 173 days

(BA.5 variant, 95% PI [142; 200]) and 256 days (BA.1 variant, 95% PI [227; 286]). Our

model shows the benefit of incorporating the neutralization capacity in the follow-up of

patients to better inform on their level of protection against the different SARS-CoV-2

variants.
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Trial registration: This clinical trial is registered with ClinicalTrials.gov, Trial IDs

NCT04750720 and NCT05315583.

Author summary

Developed vaccines against SARS-CoV-2 have been a turning point against the ongoing

Covid-19 pandemic. When the Wuhan virus was dominant, they help to dramatically

reduce the number of severe cases as well as infection and transmission rates. For mRNA

vaccines, it was in great part explained by the high level of induced antibodies a few

weeks/months after injection and linked to high neutralizing capacity, the ability to pre-

vent viruses to enter and infect target cells. However, decreasing antibody concentration

over time and apparition of variants escaping their neutralizing action dramatically

reduced the initial vaccine efficacy. As a countermeasure, additional injections were used

to re-establish significant antibody population and ensure a long-term neutralizing activ-

ity against emerging variants. To infer if this multi-dose strategy fulfills such task, we con-

struct a model of the evolution of the induced antibodies and their neutralizing capacity

against different variants. This model helps us to quantify the gain brought by each new

injection on both antibody population and their neutralizing ability against all tested vari-

ants as well as the dramatic differences between them. We also predict the long-term evo-

lution of neutralizing activity, years after last injection, and thus discuss the longevity of

the induced protection by vaccine.

Introduction

The discovery and the rapid availability of several vaccines against SARS-CoV-2 has been a

turning point in the combat against Covid-19 [1]. Although their efficacy may vary to some

extent, it is undisputable that large scale vaccination campaigns have dramatically reduced

both the risk of severe diseases [2–4] and, to a lesser extent, the rates of transmission and dis-

ease acquisition [5–7], resulting in millions of saved lives [1, 8, 9].

However vaccine efficacy has been jeopardized by the apparition of various Variants of

Concern (VoCs) that partially escape immune protection. A clear decrease in the neutraliza-

tion capacity has been observed [10, 11] which has translated to a substantial reduction of effi-

cacy against transmission and disease acquisition with Delta and Omicron variants, and, to a

lesser extent, to a decrease of efficacy against severe Covid-19 disease [12, 13]. The concern

caused by a potential loss of protection against VoCs has been further enhanced by the natural

waning immunity and the progressive reduction in antibody levels over time [14–16]. This has

supported boosting strategies with one or two additional vaccine doses to maintain a high level

of protection. However the optimal time to administer boosters, and how these times may vary

for different VoCs, remains unclear.

To characterize in detail the duration of protection against SARS-CoV-2, it is therefore

essential to measure not only total anti-S IgG antibodies over time, as typically done in large

observational studies, but also how this translates in terms of neutralization capacity. The lat-

ter requires intensive in vitro measurements, but it provides a much more accurate descrip-

tion of the level of protection present in the sera of Covid-19 vaccine recipients [17, 18].

Then, a detailed characterization of the immunological or virological factors modulating the
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duration of protection can be obtained by using mathematical models of immune marker

dynamics [19].

Here we propose to use for the first time a mathematical model to analyze the joint kinetics

of anti-S IgG antibodies and neutralization capacity after repeated vaccine injections against

the main VoCs. For that purpose we relied on data from a cohort of Bnt162b2 vaccine recipi-

ents, in which both antibody kinetics and neutralizing activity were measured longitudinally

[11, 20, 21]. We built on previous models of antibody kinetics [22, 23] to develop a novel

approach to quantify the kinetics of neutralizing activity, and we use this model to characterize

the effects of repeated vaccine administrations on it. We finally use the model to discuss the

duration of protection conferred by the measured humoral activity induced by Bnt162b2

against VoCs.

Materials and methods

Ethics statement

This study was approved by the Ethics Committee ILE DE FRANCE IV. The cohort was

approved by the national external committee (CPP Ile-de-France- IV IRB No. 00003835).

Study participants did not receive any compensation. At enrolment a written informed con-

sent was collected for all participants.

Data

Population study. Data originate from a cohort of N = 29 subjects who received up to

three injections of Bnt162b2 (ClinicalTrials.gov:NCT04750720 and ClinicalTrials.gov:

NCT05315583). In brief SARS-CoV-2 naive patients were recruited in Orléans, France

between August 27, 2020 and May 24, 2022. Individuals were followed for up to 483 days after

their first vaccine injections (see more details on the data in [11, 20, 21]). Two patients without

longitudinal follow-up and 1 immunocompromised individual were not included in our analy-

sis. In total, N = 26 individuals were analyzed (see Table 1). Briefly, all subjects received at least

2 doses, administered on average 27 days after the first injection. N = 22 subjects received a

third injection, administered on average 269 days after the first injection. During the follow-

up N = 12 had a positive PCR, and only data prior to infection were analyzed, leaving an aver-

age follow-up of 11 visits and a median follow-up time of 362 days.

Longitudinal markers of immune response. Two types of measurements were available

at each visit: 1) anti-spike binding IgGs, measured in BAU/mL) neutralization titers of sera

Table 1. Characteristics of the analyzed population.

Characteristics Median Median Time of vaccination

[Min; Max] or n (%) [Min; Max]

since first dose since second dose

Men 14 (54%)

Age 59 [33; 95]

Follow-up duration after first-dose (days) 368 [168; 483]

Number of follow-up visits 14 [2; 18]

Number of vaccination doses

1st 26 (100%) - -

2nd 26 (100%) 22 [17; 60] -

3nd 23 (88%) 243 [175; 385] 221 [154; 361]

https://doi.org/10.1371/journal.pcbi.1011282.t001
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provided in ED50, which is the effective dilution required to neutralize 50% of an arbitrary

viral load of reference (eg, the higher the ED50 the larger the protection level). Neutralization

capacity was assessed against historical strain (D614G), Alpha, Beta, Delta, and Omicron vari-

ants (strains BA.1, BA.2, and BA.5).

In brief IgGs markedly increased after each dose, but rapidly declined over time, with a rate

that did not substantially differ after the second or the third dose (Fig 1A). In contrast the

kinetics of neutralizing activity was much more heterogeneous, and was characterized by large

differences against the different VoCs. Further the neutralizing activity was markedly

increased after the third dose against all Omicron variants, albeit remaining at much lower lev-

els than against the other VoCs (Fig 1B, 1C and 1D).

Model for neutralizing antibody response

Mechanistic model for antibody kinetics. We rely on a simplified and rescaled version of

a previously published model in the context of vaccine against Ebola infection [23]. In brief,

after each dose, cells transfected with Bnt162b2 generate antigen, noted V, which triggers the

constitution of a memory compartment, noted M, at a rate ρ. This memory compartment is a

general one accounting for all cell populations able to differentiate into secreting cells upon

antigen presence. These can be activated or memory B-cells either circulating or present in

Fig 1. A: longitudinal evolution of the binding antibody concentration of anti-S IgG. B-C-D: longitudinal evolution of

the neutralizing activity against VoCs after the first (B, see S1 Fig for a zoomed version), second (C) and third (D)

vaccination dose. Squares represent median values, and plain horizontal lines represent the minimal and maximal

encountered values among subjects. The lower limit of detection (LOD) is equal to 6 BAU/mL for IgG and 30 for ED50.

Given the limited number of samples available, data were grouped, using a one week sliding window after the first

dose, 20 days in the first 100 days following the second or third infection, and 50 days for the other data points.

https://doi.org/10.1371/journal.pcbi.1011282.g001
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germinal centers. So, M can differentiate into secreting plasma cells, noted ~S, at a rate μV.

These cells then produce antibodies, noted Ab, at a rate θ. V, S, and Ab are degraded at rates

δV, δS, and δAb, respectively, leading to the following ODE system:

_V ¼ � dVV

_M ¼ rV � mVM

_~S ¼ mVM � dS~S

_Ab ¼ y~S � dAbAb:

ð1Þ

Assuming that individuals are naive of infection, and noting t1 the time of first injection, the

initial conditions are given by: Mðt1Þ ¼ ~Sðt1Þ ¼ Abðt1Þ ¼ 0.

To model the effect of repeated doses, we consider that V is a function presenting disconti-

nuity at time of first, second and third injection (t1, t2, t3). By denoting k = 1, . . ., 3 the dose

number, on each interval [tk, tk+1], solving previous ODE for V gives us VkðtÞ ¼ V0e� dV ðt� tkÞ

where V0 is the initial antigen concentration, assumed equal from all doses.

Because this model is not identifiable when only Ab are measured, we derived a structurally

identifiable approximated model described in Eq 2; see Appendix A.1 in S1 Appendix for a

description of this simplification. Briefly, it consists of rescaling the model for S ¼
ðmV0M1Þ

� 1~S and assuming that M can be replaced by its steady-state value Mk if equilibrium is

reached quickly after each injection:

_S ¼ fMk
e� dV ðt� tkÞ � dSS

_Ab ¼ WS � dAbAb
ð2Þ

where fMk
¼

Mk
M1

is the fold-change for steady-state memory compartment after kth injection

compared to the first one (by definition fM1
¼ 1). Of note, we also tested the full model which

does not assume a steady state value for M. This leads to identifiability issues mainly due to μS
estimation for which only a lower bound (μS> 20) can be found. For such values for μS, the

compartment M nearly instantaneously reaches its steady-state. Accordingly, both full and

simplified models provide virtually similar predictions for Ab (see Appendix A.2 in S1 Appen-

dix). Finally, we also tested a more complex model accounting for a delay between vaccine

injection and antibody production (also in Appendix A.2 in S1 Appendix). However the

model did not improve data description, which was probably due to the limited amount of

information available on antibody kinetics in the couple of days following vaccine injection.

Moreover, the model proposed by Balelli et al. [23] initially contains two populations of secret-

ing cells S and L, differing by their life expectancy. In our case, preliminary statistical analysis

conclude that there was no statistical differences between model adjustments when accounting

for S and L or S only (results not shown). This allows us to reduce the number of unknown

parameters. This is crucial for parameters related to cell kinetics known to be very different for

newly developed mRNA vaccines comparing to viral vector ones and for which no values have

been previously inferred. Thus, the retained model (2) is complex enough to account for the

effect of multiple injections on antibody concentration evolution while avoiding identifiability

issues. We define ZODE ¼ ðfM2
; fM3

; dV ; dS; W; dAbÞ the vector of model parameters defining the

dynamics of the system.

Functional model for neutralizing activity. After modeling antibody concentration evo-

lution in the previous section, we aim to model their neutralizing activity. This means in our

PLOS COMPUTATIONAL BIOLOGY Modeling of the vaccine induced neutralizing antibody response against SARS-CoV-2 variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011282 August 7, 2023 5 / 20



case proposing a model describing the evolution of EDn
50

with respect to Ab. We consider the

following linear model:

EDn

50
ðtÞ ¼ Fðn; tÞAbðtÞ:

The function F(ν, t) represents the relationship between the concentration of binding antibod-

ies in BAU/mL and its neutralization capacity against the VoC ν. It is variant-specific and

time-varying, let us first derive its expression for the strain D614G before moving to any arbi-

trary VoCs. After t1, we assume a proportional relationship between Ab and neutralizing activ-

ity against D614G i.e F(D614G, t) = γ (equivalently EDD614G
50
ðtÞ ¼ gAbðtÞ). After additional

injections, we assume there is a neutralization gain quantified by the fold-change f2 after t2 and

f3 after t3 i.e. F(D614G, t) = γf2 when t 2 [t2;t3] and F(D614G, t) = γf3 for t� t3. Now, we

account for VoCs specific neutralizing activity by modifying baseline value γ by the fold-

changes fν such that F(ν, t) = F(D614G, t)fν = γfν when t 2 [t1;t2] and F(ν, t) = F(D614G, t)fν =

γfνf2 for t 2 [t2;t3]. We assume that the relative gain brought by third injection can be also

VoC-specific. That is why we introduce the fold-changes gν to quantify this gain i.e. F(ν, t) = F
(D614G, t)fνgν = γfνf3gν for t� t3. This piece-wise constant function can be then expressed in a

general form:

Fðn; tÞ ¼ gfnð1t<t2
þ f21t2½t2 ;t3 �

þ f3gn1t�t3
Þ:

The choice of this model is the result of exploration based on the minimization of an adjust-

ment criteria. In particular, the current model only quantifies the effect of the repetition of

injections on affinity enhancement. Other factors can play a role as the elapsed time since anti-

gen presentation, for example to account for the progressive Memory B-cells repertoire expan-

sion [24, 25]. An alternative neutralization model only considering the time factor has been

developed. This supplementary analysis is described in Appendix B in S1 Appendix but lead to

a less accurate model (in terms of AIC). A general model accounting for both factors, the num-

ber of injections and the elapsed time, has been also tested leading to non-significant improve-

ments over the retained model and at the expense of identifiability problems (results not

shown). We also investigate the possibility of a variant-specific fold-change after second injec-

tion. This was discarded due to practical identifiability issues. More generally, our model

assumes a simple linear relationship between antibody concentration and neutralization, with

no saturation effect. The fact that a more physiological model assuming a nonlinear relation-

ship did not improve data description (see Appendix B in S1 Appendix) suggests that the level

of Antibody observed in this study remains within the linear range of neutralization. Finally,

we acknowledge the existence of other ways than our descriptive approach to link Ab and

EDn
50

, as in Padmanabhan et al. [26] in which a mechanistic relationship between these quanti-

ties is constructed. Still, their model definition involves measurements, such as infection events

or neutralizing antibodies, which are not at our disposal, especially for emerging VoCs, mak-

ing their model intractable for our prediction purpose.

We define η = (ηODE, γ, fν, f2, f3, gν) the vector of model parameters that have to be estimated

from the observed data. Description of the model parameters can be found in Table 2.

Observation model. The structural model used to describe the log-transformed concen-

tration of binding antibodies in BAU/mL for the ith individual (i = 1, . . ., N) at the jth time

point (j = 1, . . ., ni) is:

YBAU
ij ¼ log

10
ðAbðZi; tijÞÞ þ eBAUij ;

where eBAUij is the residual additive error which follows a normal distribution of mean zero and

constant standard deviation σBAU. The vector ηi is the specific value for individual i of vector η.
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We also consider a log-transformation of EDn
50

raw measurements for the variant in the list

{D614G, Alpha, Beta, Delta, BA.1, BA.2, BA.5}. For the ith individual at the jth time point, we

have:

Yn

ij ¼ log
10
ðEDn

50
ðZi; tijÞÞ þ enij;

where enij is the residual additive error for variant ν which follows a normal distribution of

mean zero and constant standard deviation σν.
Statistical model for parameters over time and injections. Fixed parameters. Here, not

all parameters can be jointly estimated via likelihood when only concentration of binding anti-

bodies and antibody neutralizing activity are measured. Further, the model predictions were

found largely insensitive to the choice of the degradation rate of V and S. Using a profiled like-

lihood approach [27], we fixed their half-life to 0.25 and 51 days, respectively.

Inter-individual variability. In the vector η, some parameters have to be individual-spe-

cific to account for inter-individual variability. It is the case for ci ¼ ðW; fM2
; gÞ. We suppose it

Table 2. Model parameters and estimation. Fcn:fold-change in neutralization.

Parameter Description Unit Fixed Effect [IC95%] Random Effect [IC95%]

fM2
Fold change for M equilibrium after second injection dimensionless 7.1 [4.2; 12.0] 0.9 [0.8; 1.0]

fM3
Fold change for M equilibrium after third injection dimensionless 18.5 [15.0; 26.0]

ϑ Initial acceleration for Ab production [A].days−2 24.5 [15.8; 38.0] 0.5 [0.3; 0.7]

δAb Antibody degradation rate days−1 0.08 [0.07; 0.09]

γ Proportion of neutralization provided by first vaccination [V].[A]−1 0.3 [0.2; 0.5] 0.7 [0.5; 0.9]

fAlpha Fcn for variant Alpha unitless 1.3 [1.0; 1.8]

fBseta Fcn for variant Beta unitless 0.2 [0.1; 0.3]

fDelta Fcn for variant Delta unitless 0.3 [0.2; 0.4]

fBA.1 Fcn for variant BA.1 unitless 0.005 [0.003; 0.009]

fBA.2 Fcn for variant BA.2 unitless 0.013 [0.005; 0.029]

fBA.5 Fcn for variant BA.5 unitless 0.016 [0.011; 0.022]

f2 Fcn for second vs. first injection unitless 8.2 [4.0; 16.9]

f3 Fcn for third vs. first injection in original strains D614G unitless 18.8 [10.0; 42.9]

gAlpha Fcn for third vs. first injection in variant Alpha unitless 5.8 [3.0; 11.8]

gBeta Fcn for third vs. first injection in variant Beta unitless 2.3 [1.3; 4.2]

gDelta Fcn for third vs. first injection in variant Delta unitless 1.1 [0.6; 1.5]

gBA.1 Fcn for third vs. first injection in variant BA.1 unitless 13.5 [7.5; 24.3]

gBA.2 Fcn for third vs. first injection in variant BA.2 unitless 5.4 [2.5; 11.9]

gBA.5 Fcn for third vs. first injection in variant BA.5 unitless 1.7 [1.2; 2.5]

σBAU Measurement error for YBAU = log10(Ab) + eBAU 0.24 [0.23; 0.25]

σD614G Measurement error for YD614G ¼ log
10
ðEDD614G

50
Þ þ eD614G 0.47 [0.44; 0.50]

σAlpha Measurement error for YAlpha ¼ log
10
ðEDAlpha

50 Þ þ eAlpha 0.59 [0.53; 0.64]

σBeta Measurement error for YBeta ¼ log
10
ðEDBeta

50
Þ þ eBeta 0.47 [0.41; 0.53]

σDelta Measurement error for YDelta ¼ log
10
ðEDDelta

50
Þ þ eDelta 0.42 [0.40; 0.44]

σBA.1 Measurement error for YBA:1 ¼ log
10
ðEDBA:1

50
Þ þ eBA:1 0.44 [0.36; 0.52]

σBA.2 Measurement error for YBA:2 ¼ log
10
ðEDBA:2

50
Þ þ eBA:2 0.48 [0.40; 0.56]

σBA.5 Measurement error for YBA:5 ¼ log
10
ðEDBA:5

50
Þ þ eBA:5 0.34 [0.30; 0.40]

δV Induced vaccine antigen declining rate days−1 2.7 (fixed)

δS Death rate of S cells days−1 0.01 (fixed)

https://doi.org/10.1371/journal.pcbi.1011282.t002
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follows a log-normal distribution such that:

ci ¼ c0expðuiÞ;

where ψ0 is the fixed effect and average mean value in the population. The vector ui is individ-

ual random effects, which follow a normal distribution of mean zero and standard deviation

O, and account for heterogeneity across individual. We assume that other parameters in vector

η except error measurements are also estimated in log-transformation and are common to all

individuals in the population. Altogether, the vector of parameters to estimate is given by θ =

(η, O, σBAU, σν).
Estimation procedure. Parameters were estimated (and named ŷ in the following) with the

SAEM algorithm implemented in MONOLIX software version 2022R1 [28] allowing to handle

left censored data [29]. Likelihood was estimated using the importance sampling method and

standard error were obtained by asymptotic approximation and inversion of the Fisher Infor-

mation Matrix. Graphical and statistical analyses were performed using R version 3.4.3.

Simulation of long-term humoral response. Next, we used the model to predict the

long-term evolution of Ab and EDn
50

over time. To account for uncertainty in our predictions,

we used a Monte-Carlo sampling method, where K = 1000 replicates of parameters values θ(k)

were sampled in the posterior distribution of the parameter estimates to derive 95% prediction

intervals (PI) of the predicted trajectories.

Finally we used these predictions to calculate the time to reach a given threshold value. To

take into account between-subjects variability, we added a second layer to our Monte-Carlo

sampling method and we sampled N = 100 replicates in the population parameter distribution.

We used these predictions to derive the probability of having a concentration of binding anti-

bodies greater than given thresholds, in particular higher than 264 BAU/mL, which corre-

sponds to the standard threshold of protection defined by Feng et al. [30] and adopted by

WHO. The level of neutralizing activity has been identified as a correlate of protection for vac-

cine efficacy against the historical strain [31, 32]. However, to date, no threshold for EDn
50

value ensuring protection has been isolated for D614G, let alone for the new VoCs. So, for a

range of threshold values, we calculated the probability that the neutralizing activity against

each VoC would be higher than these values over time, especially if this activity was still detect-

able at a given time. In this way, we can compare the longevity of neutralizing activity between

VoCs even in the absence of a clear threshold of protection for each of them.

Results

Mechanistic model for humoral response

We first aimed to investigate whether there is a proportional relationship between the evolu-

tion of concentration of binding antibodies and its neutralization capacity. Fig 2 displays the

observed relationship from data between antibody concentration and EDn
50

for each VoC after

each injection. First, we notice that these ratios are different for the variants. Then, we com-

pared the evolution of these ratios with respect to the previous vaccination. In most cases, the

ratios improved significantly, indicating an intrinsic gain in neutralization that cannot be

explained by the variation in antibody concentration alone, justifying the need to quantify this

phenomenon precisely. This is supported by the linear regressions of EDn
50

on Ab after each

injection presented in Table 3 (made with the R package Censreg [33] to account for censored

data). These regressions indicate an increased correlation between EDn
50

and Ab with respect to

the injection numbers for most of VoCs (already pointed out by Goel et al. [34] for D614G and

Beta).
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Fig 2. Evolution of the predicted ratio EDn
50
=BAU for each VoC after successive vaccine doses. Each circle represents a ratio EDn

50
=BAU computed when both

measurements for EDn
50

and BAU where available for a given patient at a given observation time. Most of patients contribute several times due to the repeated

measurements made over time after each dose. All predictions below the limit of detection for EDn
50

were removed to avoid overoptimistic EDn
50
=BAU ratio when

replacing EDn
50

values by detection threshold. This explains why very few values are available for Beta and Delta and none for Omicron strains for one dose case.

Comparison between vaccine dose was done using Wilcoxon test with Holm correction, p-values are given above the brackets.

https://doi.org/10.1371/journal.pcbi.1011282.g002
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Estimation of model parameters can be found in Table 2. This estimation indicates that

multiple injections both increase antibody concentration and intrinsic affinity per constant

antibody unit. Regarding antibody concentration, estimation of mechanistic parameters indi-

cates a significant increase in the size of the memory compartment. It increased by fM2
¼ 7:1

(95% Confidence interval CI [4.2; 12.0]) after the second injection and by fM3
¼ 18:5 (95% CI

[15.0; 26.0]) after the third injection compared to the first one. Of note, the estimated value for

δAb approximately corresponds to an half-life of 9 days, which is close to the typical range of 10

and 21 days [35].

Regarding neutralization per constant antibody concentration unit, we found that there are

two main influencing factors: the repetition of the injections and the VoC. Regarding repeated

injections effect for the original strain D614G, the second dose increases neutralization by a

factor f2 = 8.2 (95% CI [4.0; 16.9]) and the third one by f3 = 18.8 (95% CI [10.0; 42.9]) com-

pared to the first injection. Now regarding the neutralization capacities for emerging VoCs,

they are significantly decreased compared to the original strain, with the exception of Alpha,

where there is no significant change in neutralization compared to D614G. It ranges from a

reduction of 70% (95% CI [60%; 80%]) for Delta to a dramatic reduction of 99.5% (95% CI

[99.1%; 99.7%]) for BA.1. Still, we find that the sequential injection strategy confers a gain in

long-term neutralizing capacities for all VoCs. The second injection increases neutralization

against all VoCs by the same factor f2 = 8.2 (same as D614G). The third injection increases

neutralization in a VoC-specific manner, given by f3gν. It ranges from an increase in fold

change of 21 (95% CI [6.0; 64.4]) for Delta to 254 (95% CI [75; 1042]) for BA.1 times higher

for the third injection than for the first injection. For comparison with D614G, the neutraliza-

tion is
f3
f2
¼ 2:3 (95% CI [1.6; 3.2]) times higher for the third injection compared to second

injection. Transitively, the fold change is
f3
f2
gDelta ¼ 2:5 (95% CI [0.8; 4.8]) for Delta to

f3
f2
gBA:1 ¼

31:1 (95% CI [12.0; 77.8]) for BA.1 times higher for the third injection than for the second

injection.

Examples of fitted trajectories are given for four randomly selected patients in Fig 3. We

observe a very good adequation with most of the observations lying in the 95% prediction

intervals. To assess the capability of the model to fit our data, we also examined the visual pre-

dictive check (see Appendix C in S1 Appendix), which showed that the model well captures

the kinetics observed and its variability across individuals.

This is exemplified in Fig 4, that shows the mean markers trajectories for an average indi-

vidual (i.e random effects ui set to 0). As expected, the level of the response is higher after a

repeated number of injections for both binding antibody concentration and neutralization for

all variants. Interestingly, the neutralization curves for BA.1, BA.2, and BA.5 are significantly

Table 3. Linear regression results with censored data.

β estimation in model EDn
50
¼ aþ bAb on interval:

[t1;t2] [t2;t3] [t3;+1]

D614G 0.90 [0.01; 1.73] 2.42 [1.48; 3.47] 15.31 [8.93; 21.68]

Alpha 0.50 [-0.26; 1.24] 4.39 [2.02; 6.76] 38.65 [3.24; 74.06]

Beta 0.10 [-0.15; 0.30] 0.30 [0.15; 0.45] 1.83 [0.93; 2.70]

Delta 2.05 [-10.5; 12.30] 1.58 [1.11; 2.02] 5.86 [4.16; 7.55]

BA.1 - 0.11 [0.01; 0.22] 1.08 [0.74; 1.41]

BA.2 - 0.16 [0.02; 0.30] 0.21 [0.08; 0.36]

BA.5 - 0.15 [0.07; 0.23] 0.51 [0.31; 0.71]

https://doi.org/10.1371/journal.pcbi.1011282.t003

PLOS COMPUTATIONAL BIOLOGY Modeling of the vaccine induced neutralizing antibody response against SARS-CoV-2 variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011282 August 7, 2023 10 / 20



Fig 3. Individual fits for four representative individuals. The solid line is the subject-specific prediction and the shaded area is the 95% prediction interval. The plain

dots and crosses represent the observed and censored data, respectively.

https://doi.org/10.1371/journal.pcbi.1011282.g003
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lower than for the other variants, with no overlap in prediction intervals. The first and second

doses elicit a neutralization response for Omicron (BA.1, BA.2, and BA.5) that remains below

the detection limit in most individuals (which is consistent with the observed data) but is dra-

matically enhanced by the third injection. Regarding the EDn
50
=BAU ratio (See S2 Fig), we find

that for the same concentration of binding antibodies, neutralization is significantly increased

after each new injections for all variants and is significantly different for Alpha, D614G, {Delta,

Beta} and {BA.1, BA.2, BA.5} variants.

Long-term predictions

As already shown in Fig 4, we can use the estimated models to predict the long-term trajecto-

ries of markers corresponding to the mean parameter values as well as 95% prediction inter-

vals. It allows to derive an estimation of the time needed to reach a certain threshold after a

three injections vaccination scheme with first vaccination at time t1 = 0, second injection at

time t2 = 27 days and third injection at time t3 = 269 days, corresponding to the mean

observed time of injection in our cohort. Binding antibodies concentration is below 264 BAU/

mL 154 (95/% PI [137; 173]) days after third vaccination. Neutralization reaches undetectable

levels between 173 days (95/% PI [142; 200]) for BA.5 to 587 (95/% PI [537; 636]) for Alpha

after the third dose.

Fig 5A displays the probability of having antibody concentration higher than the protection

threshold established by Feng et al. [30] of 264 BAU/mL each days after the last injection in

the counterfactual scenario where subjects only received one, two or three doses. The same is

done for neutralizing activity again the VoCs (Fig 5B: one, Fig 5C: two or Fig 5D: three). It is

possible to see the drastic effect of repeated injections on the levels reached by both binding

Fig 4. A: Predicted evolution of binding antibody concentration. The horizontal line corresponds to the value of 264

BAU/ml considered as a threshold against symptomatic infection. B: Predicted kinetics of EDn
50

. The horizontal line

corresponds to the LOD. In all panels, the shaded area is the 95% prediction interval.

https://doi.org/10.1371/journal.pcbi.1011282.g004
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antibodies concentration and neutralization for all variants. Strikingly, the full response dura-

tion is similar in length for the binding antibodies concentration after two or three injections.

However, whereas response higher than 264 BAU/mL is reached in 100% (95% PI [99%;

100%]) of the population after three injections, it is only reached in 82% (95% PI [65%; 90%])

of the population after two doses, and never reached in the whole population after the first

injection (value: 0% (95% PI [0%; 3%])). Table 4 provides the time needed for a proportion of

a vaccinated population to return under a certain threshold. It explores multiple thresholds

(100 BAU/mL, 264 BAU/mL, and 1000 BAU/mL for antibodies concentrations; and undetect-

ability, 100 and 1000 for neutralization) that could be investigated when and if a clear level of

correlate of protection is found. For all markers, there is a systematically and significantly

higher duration of humoral activity after three compared to two injections. After three injec-

tions, duration of neutralization against Omicron variants (BA.1,BA.2 and BA.5) is signifi-

cantly lower than for other variants for all thresholds.

Discussion

We proposed here a modeling framework to characterize the kinetics of antibodies to succes-

sive doses of Bnt162b2 vaccine. The originality of our approach is that we relied on both the

kinetics of anti-S IgG binding antibodies and their neutralization against the major VoCs that

Fig 5. A: Predicted probability of having predicted antibody concentration (anti-S IgG) greater than 264 BAU/mL.

B-C-D: Probability of having detectable neutralizing activity against VoCs after after the first (B), second (C) or third

(D) vaccination dose. Simulations were performed assuming that the second and third vaccination doses occurred at

day 27 and 269, respectively.

https://doi.org/10.1371/journal.pcbi.1011282.g005
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have emerged since 2021. Our model quantifies the benefit of successive injections and can be

used to predict the duration of detectable neutralizing activity against each VoC. After the first

dose, the model shows the significant action of each additional injection, especially of the third

one, to increase the intrinsic antibody neutralizing quality against all VoCs [34]. However,

both the maximum level achieved and the rate of decline could vary greatly between VoCs.

Accordingly, the mean duration of detectable neutralizing activity after the third dose of vac-

cine was 20, 12, 8.5, 8 and 6 months for Alpha, Delta, and Omicron BA.1, BA.2 and BA.5

respectively. Our results also highlight the wide variability in patient response, with at least 5%

of patients with undetectable neutralizing activity against Omicron BA.5 only 2 months after

the third injection.

These results were obtained based on a number of hypotheses, which we summarize below.

First, the model of antibody concentration dynamics remains simplified, with the memory

compartment simply represented by a piecewise constant function over successive doses. In

addition, the model assumes only one type of secreting cell population and thus overlooks the

complexity of the B-cell response mechanism. Our model does not integrate the possible

mechanisms causing the gain in neutralization observed over dose injections, and how this

may modulated by the time between injections. For instance, it has been suggested that longer

delay between injections could increase the Memory B-cells selection stringency in germinal

Table 4. Predicted distribution for the duration of anti-S IgG and neutralization activity above different threshold levels [95% prediction interval].

Time to anti-S IgG

Population quantiles <100 BAU/mL <264 BAU/mL <1000 BAU/mL

IgG 95% 163 [146; 185] 94 [74; 114] 0 [0; 0]

50% 223 [207; 242] 152 [135; 173] 62 [32; 76]

5% 289 [265; 305] 214 [193; 235] 119 [97; 138]

Time to ED50

Variant Population quantiles Undetectable <100 <1000

D614G 95% 327 [294; 370] 252 [207; 282] 81 [39; 115]

50% 433 [404; 471] 350 [316; 382] 186 [148; 217]

5% 557 [506; 579] 460 [420; 491] 278 [252; 328]

Alpha 95% 476 [431; 528] 401 [341; 447] 230 [172; 283]

50% 583 [539; 634] 499 [445; 551] 335 [280; 383]

5% 706 [641; 745] 609 [550; 657] 427 [382; 491]

Beta 95% 237 [194; 290] 161 [108; 199] 0 [0; 0]

50% 343 [301; 388] 259 [217; 299] 96 [44; 140]

5% 467 [407; 499] 369 [323; 405] 188 [151; 247]

Delta 95% 245 [219; 289] 170 [132; 195] 0 [0; 0]

50% 351 [323; 387] 267 [238; 297] 104 [67; 128]

5% 475 [427; 497] 377 [342; 407] 196 [169; 241]

BA.1 95% 146 [117; 183] 70 [0; 97] 0 [0; 0]

50% 252 [222; 287] 168 [139; 199] 0 [0; 0]

5% 376 [324; 398] 278 [242; 309] 97 [69; 141]

BA.2 95% 132 [98; 181] 56 [0; 89] 0 [0; 0]

50% 238 [203; 285] 155 [119; 191] 0 [0; 0]

5% 362 [307; 392] 265 [223; 301] 83 [46; 131]

BA.5 95% 62 [0; 99] 0 [0; 0] 0 [0; 0]

50% 168 [143; 203] 84 [54; 114] 0 [0; 0]

5% 292 [246; 310] 194 [156; 225] 0 [0; 52]

https://doi.org/10.1371/journal.pcbi.1011282.t004
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centers [36]. This could in turn lead to strategies to maximize antibody concentration, as sug-

gested by theoretical models [37]. This is in line with measurements made on another cohorts,

for example the one described in [38, 39] with a significantly longer delay between injections

comparing to ours. In this case, measured antibody concentration after third injection was sig-

nificantly higher than our prediction. Still, due to our data limitation (few subjects with similar

vaccination schedule), we cannot isolate and thus estimate the effect of injection schedule on

neutralizing activity. The choice of linear relationship between neutralizing activity and bind-

ing antibodies obviously omits features acting on neutralization which could have been incor-

porated in a more complete model, closer to biological mechanisms. Still, S3 Fig shows that

this choice is in adequation with general trend in our data and testing more complex relation-

ships, such as a sigmoid model, did not lead to statistical improvement (see Appendix B in S1

Appendix). Of note, this linear relationship also provided a good fit to the data on external

cohorts [40–42]. Finally, the model assumed that the second dose would result in a similar

change in protection for all variants. In the future, application of such approaches to larger

populations of individuals, with a wider range of tested vaccination schedules, may allow some

of these hypotheses to be relaxed and injection timing to be integrated into the model specifi-

cation without compromising the identifiability of the parameters.

Due to the available data and constructed model, we restrict our analysis to the humoral part

of the immune response triggered by vaccination only. Still, vaccination also induces a cellular

immune response which may contribute to the clinical protection especially against the VoCs

[43] (for a mechanistic model accounting for T-cell response, see Korosec et al. [19]). Regarding

immune response induced by infection, to this date, 11 out of 26 followed subjects were infected

with Omicron. This proportion is likely to increase as it is the case in the global vaccinated pop-

ulation. Thus, it is of great interest to model the hybrid protection induced by vaccination fol-

lowed by natural infection. Still, due to model limitation, we discarded patient data after

breakthrough infection. It would requires to deeply modify our model to integrate two different

antibody populations, one coming from vaccination and targeting the historical strain and the

other one targeting the Omicron variant. That is why this analysis is left to future works.

One of the main advantages of the model is its flexibility to easily incorporate information

on new VoCs and to use the strength of information obtained on other viral variants to update

the model as data become available. In fact, we continuously updated the model to include suc-

cessive Omicron variants. Interestingly, despite the small number of samples available, a high

degree of precision was achieved for all variants. For example, although patients had on aver-

age only two data points with detectable neutralization against the BA.2 variant, this was suffi-

cient to achieve a good precision for the estimation of the model parameters (Table 2). Also,

despite its simplicity, the estimated mechanistic model for antibody kinetics produces consis-

tent predictions for patients with a different vaccination schedule than the one considered

here (see Appendix D in S1 Appendix). Additionally, by using all available data (eg, by analyz-

ing anti-S IgG and neutralizing activity of all patients simultaneously), the model reveals some

signals of kinetics that were not visible when analyzing the individual markers separately. For

example, we identified different slopes of antibody decline that directly affect the prediction of

protection duration. Using the same data set and a simpler single-slope model, the time to

undetectable neutralizing levels after the third dose of vaccine for D416G was estimated to be

11.5 months [21], which is shorter than our estimate of 13.5 months (derived from Fig 4). In

their approach, Planas et al. [21] chose to adjust the anti-S IgG and EDn
50

decline separately for

the different VoCs without considering causal relationships between them. On the contrary,

our model assumes an influence of antibody concentration on the development of EDn
50

. Simi-

lar results are shown for the Delta variant (11.5 vs. 10.5 months, respectively), demonstrating
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the importance of a model-based approach to predict neutralizing activity in the long term.

Predictions for the Omicron strains were similar for BA.1 and BA.2, respectively 8.5 and 8

months, and show a reduction for BA.5 strains with 6 months. Interestingly, our results also

suggest a longer duration of detectable neutralizing activity than what has been directly extrap-

olated from other observational studies [38, 44, 45], although this difference may also be due

in part to the different experimental procedure used to measure neutralization.

The large and VoC-dependent variability in neutralization values argues for the use of indi-

vidualized approaches to identify patients most at risk. Although it should be acknowledged

that such an approach is hampered by the lack of an established neutralizing activity threshold

as correlates of protection, its level was found to be associated with the risk of breakthrough

infection. In a cohort of elderly nursing home residents, none of those the individuals with

ED50 above 2136 had Omicron BA.1 breakthrough infection [46]. A model-based study found

that a threshold of 1000 dramatically reduced peak viral load, suggesting that such a threshold

may be a good indicator of protection against infection [40]. Interestingly, our results show

that neutralizing levels for all Omicron variants remain largely below this value (Fig 5), consis-

tent with the current understanding that BNT162b2 is poorly effective against disease acquisi-

tion in the Omicron era [39, 46]. Fortunately, the vaccine has shown high efficacy against

severe disease to date [47, 48].

To date, the use of a fourth dose of vaccine to increase efficacy in France has been limited to

high-risk patients who were not represented in this cohort. Nevertheless, we used the model to

predict the neutralization levels that could be achieved after a fourth vaccine dose. Under the

conservative assumption, yet consistent with available observational study [49], that this injec-

tion does not increase affinity or maturation parameters, our model predicts a similar duration

of detectable neutralization as after the third dose, ranging from 172 to 256 days for the Omi-

cron variants. Assuming that the fourth dose allows a similar increase in maturation and affin-

ity as after the third dose, the model predicts that the duration of detectable neutralization

could be much longer, ranging from 610 to 694 days for Omicron variants (see this supple-

mentary analysis in Appendix E in S1 Appendix).

Supporting information

S1 Fig. EDn
50

raw data after one injection. Zoomed version of EDn
50

raw data presentation

after one injection.
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This article integrates in the second axis of my research "Within-host Modeling in Infectious Diseases".
It has been written by a PhD student that I co-directed.

I selected this paper because it is a good example of mechanistic modeling of virus dynamics. More-
over, it demonstrates the use of mechanistic models to causally identify a correlate of protection
against an infection from various markers. A significant challenge was integrating Prentice’s criteria
for defining a surrogate marker within the mechanistic model framework. This integration led to the
conclusion that the neutralization capacities of antibodies are crucial (i.e. functional feature as op-
posed to quantification of antibody concentrations), corroborating findings from others on an original
data in NHP studies on a new vaccine platform, with validation is external studies.
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Abstract The definition of correlates of protection is critical for the development of next-
generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for iden-
tifying mechanistic correlates of protection based on mathematical modelling of viral dynamics 
and data mining of immunological markers. The application to three different studies in non-
human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component 
spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a 
decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of 
RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the 
three vaccine platforms although not capturing the whole biological vaccine effect. The model 
shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which 
required significant reduction in blocking potency to effectively compromise the control of viral 
replication.
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Introduction
There is an unprecedented effort for SARS-CoV-2 vaccine development with 294 candidates currently 
evaluated (World Health Organization, 2021). However, variants of concern have emerged before 
the vaccine coverage was large enough to control the pandemics (Cobey et al., 2021). Despite a 
high rate of vaccine protection, these variants might compromise the efficacy of current vaccines 
(Kuzmina et al., 2021; Planas et al., 2021; Lustig et al., 2021; Zhou et al., 2021). Control of the 
epidemic by mass vaccination may also be compromised by unknown factors such as long-term 
protection and the need of booster injections in fragile, immuno-compromised, elderly populations, 
or even for any individual if protective antibody levels wane. Furthermore, the repeated use of some 
of the currently approved vaccine could be compromised by potential adverse events or by immunity 
against vaccine viral vectors (Greinacher et al., 2021). Finally, the necessity to produce the billions 
of doses required to vaccinate the world’s population also explains the need to develop additional 
vaccine candidates.

The identification of correlates of protection (CoPs) is essential to accelerate the development of 
new vaccines and vaccination strategies (Koch et al., 2021; Jin et al., 2021). Binding antibodies to 
SARS-CoV-2 and in vitro neutralization of virus infection are clearly associated with protection (Khoury 
et al., 2021; Yu et al., 2020; Earle et al., 2021; Feng et al., 2021). However, the respective contri-
bution to virus control in vivo remains unclear (Zost et al., 2020), and many other immunological 
mechanisms may also be involved, including other antibody-mediated functions (antibody-dependent 
cellular cytotoxicity [ADCC], antibody-dependent complement deposition [ADCD], antibody-
dependent cellular phagocytosis [ADCP]; Yu et al., 2020; Mercado et al., 2020; Tauzin et al., 2021), 
as well as T cell immunity (McMahan et al., 2021). Furthermore, CoP may vary between the vaccine 
platforms (Plotkin, 2013; Plotkin, 2020; Bradfute and Bavari, 2011; Dagotto et al., 2020).

Non-human primate (NHP) studies offer a unique opportunity to evaluate early markers of protec-
tive response (Muñoz-Fontela, 2020; Eyal and Lipsitch, 2021). Challenge studies in NHP allow the 
evaluation of vaccine impact on the viral dynamics in different tissue compartments (upper and lower 
respiratory tract) from day 1 of virus exposure (Yu et al., 2020; Mercado et al., 2020; Corbett et al., 
2020). Such approaches in animal models may thus help to infer, for example, the relation between 
early viral events and disease or the capacity to control secondary transmissions.

Here, we propose to apply a model-based approach on NHP studies to evaluate (i) the immune 
mechanisms involved in the vaccine response and (ii) the markers capturing this/these effect(s) 
leading to identification of mechanisms of protection and definition of mechanistic CoP (Plotkin and 
Gilbert, 2012). First, we present a mechanistic approach based on ordinary differential equation 
(ODE) models reflecting the virus-host interaction inspired from models proposed for SARS-CoV-2 
infection (Gonçalves et al., 2020; Kim et al., 2021; Gonçalves et al., 2021; Wang et al., 2020; 
Marc et al., 2021; Ke et al., 2021) and other viruses (Myers et al., 2021; Baccam et al., 2006; 
Goyal et al., 2019; Goyal et al., 2017). The proposed model includes several new aspects refining 
the modelling of viral dynamics in vivo, in addition to the integration of vaccine effect. A specific 
inoculum compartment allows distinguishing the virus coming from the challenge inoculum and the 
virus produced de novo, which is a key point in the context of efficacy provided by antigen-specific 
pre-existing immune effectors induced by the vaccine. Then, an original data mining approach is 
implemented to identify the immunological biomarkers associated with specific mechanisms of 
vaccine-induced protection.

We apply our approach to a recently published study (Marlin et al., 2021) testing a protein-based 
vaccine targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to CD40 
(αCD40.RBD vaccine). Targeting vaccine antigens to dendritic cells via the surface receptor CD40 
represents an appealing strategy to improve subunit-vaccine efficacy (Flamar et al., 2012; Zurawski 
et al., 2017; Cheng et al., 2018; Godot et al., 2020) and for boosting natural immunity in SARS-
CoV-2 convalescent NHP.

We show that immunity induced by natural SARS-CoV-2 infection, as well as vaccine-elicited 
immune responses contribute to viral load control by (i) blocking new infection of target cells and (ii) 
by increasing the loss of infected cells. The modelling showed that antibodies inhibiting binding of 
RBD to ACE2 correlated with blockade of new infections and RBD-binding antibodies correlate with 
the loss of infected cells, reflecting importance of additional antibody functionalities. The role of RBD/
ACE2-binding inhibition has been confirmed in two other vaccine platforms.
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Results
A new mechanistic model fits the in vivo viral load dynamics in 
nasopharyngeal and tracheal compartments
The mechanistic model aims at capturing the viral dynamics following challenge with SARS-CoV-2 
virus in NHP. For that purpose, we used data obtained from 18 cynomolgus macaques involved in the 
vaccine study reported by Marlin et al., 2021, and exposed to a high dose (1 × 106 pfu) of SARS-
CoV-2 administered via the combined intra-nasal and intra-tracheal route. The viral dynamics during 
the primary infections were characterized by a peak of genomic RNA (gRNA) production 3 days post-
infection in both tracheal and nasopharyngeal compartments, followed by a decrease toward unde-
tectable levels beyond day 15 (Figure 1—figure supplement 1). At the convalescent phase (median 
24 weeks after the primary infection), 12 macaques were challenged with SARS-CoV-2 a second time, 
4 weeks after being randomly selected to receive either a placebo (n=6) or a single injection of the 
αCD40.RBD vaccine (n=6) (Figure 1A). A third group of six naïve animals were infected at the same 
time. Compared to this naïve group, viral dynamics were blunted following the second challenge of 
convalescent animals with the lowest viral load observed in vaccinated animals (Figure 1B, Figure 1—
figure supplement 2).

We developed a mathematical model to better characterize the impact of the immune response 
on the viral gRNA and subgenomic RNA (sgRNA) dynamics, adapted from previously published work 
(Gonçalves et al., 2020; Kim et al., 2021; Baccam et al., 2006), which includes uninfected target 
cells (T) that can be infected (I1) and produce virus after an eclipse phase (I2). The virus generated can 
be infectious (Vi) or non-infectious (Vni). Although a single compartment for de novo produced viruses 
(V) could be mathematically considered, two distinct ODE compartments were assumed for a better 
understanding of the model. We completed the model by a compartment for the inoculum to distin-
guish between the injected virus (Vs) and the virus produced de novo by the host (Vi and Vni). In both 
compartments of the upper respiratory tract (URT), the trachea and nasopharynx, viral dynamics were 
distinctively described by this model (Figure 2A). Viral exchange between the two compartments 
was tested (either from the nasopharynx to the trachea or vice versa). However, as described in the 
literature (Gonçalves et al., 2021; Ke et al., 2020; Pinky et al., 2021) and demonstrated by the 
additional modelling work in Appendix 1 ‘Model building’, viral transport within the respiratory tract 
plays a negligible role in viral kinetics compared with viral clearance. Consequently, no exchange was 
considered in the model. Using the gRNA and sgRNA viral loads, we jointly estimated (i.e., shared 
random effects and covariates) the viral infectivity (β), the viral production rate (P), and the loss rate 
of infected cells (δ) in the two compartments. We assumed that gRNA and sgRNA were proportional 
to the free virus and the infected cells, respectively. This modelling choice relied on both biological 
and mathematical reasons (see section Materials and methods for more details). Due to identifiability 
issues, the duration of the eclipse phase (1/k), the clearance of free viruses from the inoculum (ci) and 
produced de novo (c) were estimated separately by profile likelihood and assumed to be identical in 
the two compartments of the URT. In addition, infectious and non-infectious viruses were assumed to 
be cleared at the same rate. We estimated the viral infectivity at 0.95 × 10–6 (CI95% [0.18 × 10–6; 4.94 
× 10–6]) (copies/mL)–1 day–1 in naïve animals, which is in the range of previously reported modelling 
results whether in the case of SARS-CoV-2 virus (Kim et al., 2021; Wang et al., 2020) or influenza 
(Myers et al., 2021; Baccam et al., 2006). We found estimates of the loss rates of infected cells 
of 1.04 (CI95% [0.79; 1.37]) day–1, corresponding to a mean half-life of 0.67 day. This estimation was 
consistent with previously published results obtained on SARS-CoV-2 virus showing the mean value 
of this parameter ranging from 0.60 to 2 day–1 (i.e., half-life between 0.35 and 1.16 days) (Gonçalves 
et al., 2020; Kim et al., 2021; Gonçalves et al., 2021; Wang et al., 2020; Marc et al., 2021). The 
eclipse phase (3 day–1) was found similar to the values commonly used in the literature (Gonçalves 
et al., 2020; Marc et al., 2021; Myers et al., 2021; Baccam et al., 2006). Here, we distinguished 
the clearance of the inoculum which was much higher (20 virions day–1) as compared to the clearance 
of the virus produced de novo (3 virions day–1). While the half-life of the virus de novo produced 
usually approximates 1.7 hr (i.e., c=10 day–1) (Gonçalves et al., 2020; Gonçalves et al., 2021; Marc 
et al., 2021; Myers et al., 2021), because of this distinction, our model provided a higher estima-
tion of 5.5 hr which remained in accordance with the estimations obtained by Baccam et al., 2006, 
on influenza A. Furthermore, the viral production by each infected cells was estimated to be higher 
in the nasopharyngeal compartment (12.1 × 103 virions cell–1 day–1, CI95% [3.15 × 103; 46.5 × 103]) as 



 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation

Alexandre et al. eLife 2022;11:e75427. DOI: https://doi.org/10.7554/eLife.75427 � 4 of 33

Figure 1. Design of the study 1 and viral dynamics. (A) Study design. Cynomolgus macaques (Macaca fascicularis), 
aged 37–58 months (8 females and 13 males). 24–26 weeks post-infection with SARS-CoV-2, 12 of these animals 
were randomly assigned in two experimental groups. The convalescent-vaccinated group (n=6) received 200 µg 
of αCD40.RBD vaccine. The other six convalescent animals were used as controls. Additional six age matched 
(43.7 months±6.76) cynomolgus macaques from same origin were included in the study as controls naïve from any 
exposure to SARS-CoV-2. Four weeks after immunization, all animals were exposed to a total dose of 106 pfu of 
SARS-CoV-2 virus via the combination of intra-nasal and intra-tracheal routes. In this work, only data collected from 
the second exposure were considered. (B) Individual log10 transformed genomic RNA (gRNA) viral load dynamics 
in nasopharyngeal swabs (top) and tracheal swabs (bottom) after the initial exposure to SARS-CoV-2 in naïve 
macaques (black, right) and after the second exposure in convalescent (blue, middle) and αCD40.RBD-vaccinated 
convalescent (green, left) groups. Horizontal red dashed lines indicate the limit of quantification.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Genomic RNA (gRNA) viral load longitudinally measured in the trachea and nasopharynx after the 
second exposure in the study 1.

Source data 2. Genomic RNA (gRNA) viral load longitudinally measured in the trachea and nasopharynx after the 
first exposure for convalescent non-human primates (NHPs) in the study 1.

Source data 3. Anti-spike IgG longitudinally measured post-immunization and quantified by Luminex in the study 
1.

Source data 4. Quantification of the spike/ACE2-binding inhibition longitudinally measured post-immunization 
and quantified by Mesoscale Discovery (MSD) assay (in 1/ECL) in the study 1.

Source data 5. Anti-N and anti-RBD binding antibodies longitudinally measured post-immunization and 
quantified by Mesoscale Discovery (MSD) assay (in AU mL–1) in the study 1.

Source data 6. Subgenomic RNA (sgRNA) viral load longitudinally measured in the trachea and nasopharynx after 

Figure 1 continued on next page
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compared to the tracheal compartment (0.92 × 103 virions cell–1 day–1, CI95% [0.39 × 103; 2.13 × 103]). 
These estimations are in agreement with the observation of the intense production of viral particles 
by primary human bronchial epithelial cells in culture (Robinot et al., 2021). In particular, they are in 
the range of estimates obtained within the URT, either in NHP (Gonçalves et al., 2021) or in humans 
(Wang et al., 2020), with the product p × T0 equals to 15.1 × 108 (CI95% [3.98 × 108; 58.1 × 108]) and 
0.21 × 108 (CI95% [0.088 × 108; 0.48 × 108]) virions mL–1 day–1 in the nasopharynx and the trachea, 
respectively. By allowing parameters to differ between animals (through random effects), the variation 
of cell infectivity and of the loss rate of infected cells captured the observed variation of the dynamics 
of viral load. The variation of those parameters could be partly explained by the group to which the 
animals belong reducing the unexplained variability of the cell infectivity by 66% and of the loss rate of 
infected cells by 54% (Supplementary file 1). The model fitted well the observed dynamics of gRNA 
and sgRNA (Figure 2B).

Modelling of the dynamics of viral replication argues for the capacity of 
αCD40.RBD vaccine to block virus entry into host cells and to promote 
the destruction of infected cells
We distinguish the respective contribution of the vaccine effect and post-infection immunity on 
the reduction of the cell infection rate and the increase of the clearance of infected cells. Because 
blocking de novo infection and promoting the destruction of infected cells would lead to different 
viral dynamics profile (Figure 2—figure supplement 1), we were able to identify the contribution of 
each mechanism by estimating the influence of the vaccine compared to placebo or naïve animals on 
each model parameter. The αCD40.RBD vaccine reduced by 99.6% the infection of target cells in the 
trachea compared to the naïve group. The estimated clearance of infected cells was 1.04 day–1 (95% CI 
0.75; 1.45) in naïve macaques. It was increased by 80% (1.86 day–1) in the convalescent macaques 
vaccinated by αCD40.RBD or not.

The mechanistic model allows predicting the dynamics of unobserved compartments. Hence, a 
very early decrease of the target cells (all cells expressing ACE2) as well as of the viral inoculum which 
fully disappeared from day 2 onward were predicted (Figure 2C). In the three groups, the number 
of infected cells as well as infectious viral particles increased up to day 2 and then decreased. We 
show that this viral dynamic was blunted in the vaccinated animals leading to a predicted maximum 
number of infectious viral particles in the nasopharynx and the trachea below the detection threshold 
(Figure 2C). The number of target cells would be decreased by the infection in the naïve and the 
convalescent groups, whereas it would be preserved in vaccinated animals.

the second exposure in the study 1.

Source data 7. Antigen-specific T-cell response longitudinally measured post-exposure in % of CD4+ T cells 
measured by ICS in the study 1.

Source data 8. Antigen-specific T-cell response longitudinally measured post-exposure in % of CD8+ T cells 
measured by ICS in the study 1.

Source data 9. T-cell response expressing IFN-γ longitudinally measured post-exposure by ELISpot in the study 1.

Source data 10. Cytokine concentrations measured post-exposure in the study 1.

Source data 11. Quantification of the neutralization function of antibodies against three variants (B117, B1351, 
and D614G) longitudinally measured post-exposition (in ED50) in the study 1.

Figure supplement 1. Viral dynamics after the first exposure to SARS-CoV-2 and biomarker measurements from 
the first to the second exposure to SARS-CoV-2.

Figure supplement 2. Subgenomic viral dynamics after the second exposure to SARS-CoV-2.

Figure supplement 3. Antibody measurements after the second exposure to SARS-CoV-2.

Figure supplement 4. Antigen-specific T-cell responses in non-human primates (NHPs) after the second exposure 
to SARS-CoV-2.

Figure supplement 5. Cytokines and chemokines in the plasma in non-human primates (NHPs) after the second 
exposure to SARS-CoV-2.

Figure 1 continued
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Figure 2. Mechanistic modelling. (A) Description of the model in the two compartments: the nasopharynx and 
the trachea. (B) Model fit to the log10 transformed observed genomic RNA (gRNA) viral loads in tracheal (top) and 
nasopharyngeal (bottom) compartments after the initial exposure to SARS-CoV-2 in naïve macaques (black, right) 
and after the second exposure in convalescent (blue, middle) and vaccinated (green, left) animals. Thick solid and 

Figure 2 continued on next page
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The RBD-ACE2-binding inhibition is the main mechanistic CoP 
explaining the effect of the αCD40.RBD vaccine on new cell infection
In our study (Marlin et al., 2021), an extensive evaluation of the immunological response has been 
performed with quantification of spike-binding antibodies, antibodies inhibiting the attachment 
of RBD to ACE2, antibodies neutralizing infection, SARS-CoV-2-specific CD4+ and CD8+ T cells 
producing cytokines and serum cytokine levels (Figure  3, Figure  1—figure supplements 3–5). 
Therefore, based on our mechanistic model, we investigated if any of these markers could serve as a 
mechanistic CoP. Such a CoP should be able to capture the effect of the natural immunity following 

dashed lines indicate mean viral load dynamics predicted and observed, respectively. Shaded areas indicate the 
95% confidence intervals of the predictions. Dots represents observations. (C) Model predictions of unobserved 
quantities in the tracheal compartment for naïve (black, solid lines), convalescent (blue, dashed lines) and 
vaccinated (green, dotted lines) animals: target cells as percentage of the value at the challenge (top, left), infected 
cells (top, middle), productively infected cells (top, right), inoculum (bottom, right), infectious (bottom, left) and 
non-infectious virus (bottom, middle). Thick lines indicate mean values over time within each group. Shaded areas 
indicate the 95% confidence interval. Horizontal dashed red lines indicate the limit of quantification and horizontal 
solid red lines highlight the threshold of one infected cell.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Volumes of the trachea and nasopharynx, and weights measured at the time of exposure in four 
non-human primates (NHPs) in the study 1.

Source data 2. Weights of the 18 non-human primates (NHPs) in the study 1.

Source data 3. Genomic RNA (gRNA) viral load measured in the trachea and nasopharynx in the two additional 
non-human primates (NHPs) receiving inoculum via intra-gastric and intra-nasal routes.

Figure supplement 1. Modelling of the viral dynamics using mechanistic model.

Figure supplement 2. Modelling of the dynamics of viral replication.

Figure 2 continued

Figure 3. Harvest times and measurements. Nasopharyngeal and tracheal fluids were collected at 0, 1, 2, 3, 4, 6, 9, 14, and 20 days post-exposure 
(d.p.e) while blood was taken at 0, 2, 4, 6, 9, 14, and 20 d.p.e. Genomic and subgenomic viral loads were measured by RT-qPCR. Anti-spike IgG sera 
were titrated by multiplex bead assay, anti-RBD, and anti-nucleocapside (N) IgG were titrated using a commercially available multiplexed immunoassay 
developed by Mesoscale Discovery (MSD, Rockville, MD). The MSD pseudo-neutralization assay was used to measure antibodies neutralizing the 
binding of the spike protein and receptor-binding domain (RBD) to the ACE2 receptor. Neutralizing antibodies against B.1.1.7, B.1.351, and D614G 
strains were measured by S-Fuse neutralization assay and expressed as ED50 (effective dose 50%). T-cell responses were characterized as the frequency 
of PBMC expressing cytokines (IL-2, IL-17a, IFN-γ, TNF-α, IL-13, CD137, and CD154) after stimulation with S or N sequence overlapping peptide pools. 
IFN-γ ELISpot assay of PBMCs were performed on PBMC stimulated with RBD or N sequence overlapping peptide pools and expressed as spot-
forming cell (SFC) per 1.0 × 106 PBMC.
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infection, associated or not to the vaccine (group effect) estimated on both the rate of cell infec-
tion and the rate of the loss of infected cells. To this aim, we performed a systematic screening by 
adjusting the model for each marker and we compared these new models with the model without 
covariates and with the model adjusted for the groups. In particular, our approach allowed us to 
benefit from all the information provided by the overall dynamics of the immunological markers 
after the exposure by integrating them as time-varying covariates (see the Materials and methods 
section for a detailed description of the algorithm). We demonstrate that the RBD-ACE2-binding 
inhibition measure is sufficient to capture most of the effect of the groups on the infection of target 
cells (Figure 4A and B). The integration of this marker in the model explains the variability of the 
cell infection rate with greater certainty than the group of intervention, reducing the unexplained 
variability by 87% compared to 66% (Supplementary file 1). The marker actually takes into account 
the variation between animals within the same group. Hence, it suggests that the levels of anti-RBD 
antibodies induced by the vaccine that block attachment to ACE2 are highly efficient at reflecting 
the neutralization of new infections in vivo. Furthermore, when taking into account the information 
provided by the RBD-ACE2-binding inhibition assay, the effect of the group of intervention was 
no longer significant (Supplementary file 1). Finally, we looked at the estimated viral infectivity 
according to the binding inhibition assay in each animal. A positive dependence was found between 
the viral infectivity and the RBD-ACE2-binding inhibition measure, linking an increase of 103 AU of 
the marker, whether over time or between animals, with an increase of 1.8% (95CI% [1.2%; 2.3%]) 
of the viral infectivity (see Supplementary file 4). Accordingly, the values at the time of exposure 
were not overlapping at all, distinguishing clearly the vaccinated and unvaccinated animals (see 
Figure 4C).

In the next step, several markers (IgG-binding anti-RBD antibodies, CD8+ T cells producing IFN-γ) 
appeared to be associated to the rate of loss of infected cells (Figure 4—figure supplement 1A). 
Both specific antibodies and specific CD8+ T cells are mechanisms commonly considered important 
for killing infected cells. We retained the anti-RBD binding IgG Ab that were positively associated to 
the increase of the loss of infected cells. For unknown reason the IFN-γ response was high in unstim-
ulated conditions in the naïve group. Thus, although this marker was associated with a decrease of 
the loss rate of infected cells, it appears essentially here as an indicator of the animal group. Further 
studies would be needed to fully confirm the place of IFN-γ response as a mechanistic marker.

A large part of the variation of the infection rate (71%) and loss rate of infected cells (60%) were 
captured by the two markers of CoP: the RBD-ACE2-binding inhibition and the anti-RBD-binding Ab 
concentration. Using the estimated parameters, the effective reproduction number could be calcu-
lated (R) which is representing the number of cells secondarily infected by virus from one infected 
cell (Figure 4D). When looking at this effective reproduction number according to the groups, the 
vaccinated animal presented from the first day of challenge an effective R below 1 meaning that no 
propagation of the infection started within the host. These results were consistent when taking the 
value of RBD-ACE2-binding inhibition at the time of the challenge without considering the evolution 
of the inhibition capacity over time (Figure 4—figure supplement 1B). This means that the dynamics 
of the viral replication is impacted very early during the infection process in immunized (i.e., both 
convalescent and vaccinated) animals and that vaccinated animals were protected from the beginning 
by the humoral response. Then, we looked at the threshold of the markers of interest leading to the 
control of the within-host infection (as defined by R<1) which was around 30,000 AU for the RBD-
ACE2-binding inhibition assay. For the animals in the naïve and the convalescent groups, the observed 
values of binding inhibition measured by ECL RBD (the lower the better) and of IgG anti-RBD-binding 
antibodies (the higher the better) led to R>1, whereas in vaccinated animals, the value of ECL RBD 
led to R<1. Therefore, our modelling study shows that the inhibition of binding of RBD to ACE2 by 
antibodies is sufficient to control initial infection of the host (Figure 4E). According to the observed 
value of ECL RBD in vaccinated animals (e.g., 66 AU in Figure 4E), a decrease of more than 2 log10 of 
the inhibition capacity (to reach 81,000 AU), due to variant of concern (VoC) or waning of immunity, 
would have been necessary to impair the control of the within-host infection. Moreover, a decrease 
of the neutralizing activity (i.e., increased ECL) could be compensated by an increase of cell death 
as measured by an increase of binding IgG anti-RBD as a surrogate. As an example, increasing IgG 
anti-RBD from 2.5 to 10 in the animal MF7 of the convalescent group would lead to a control of the 
infection.
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Figure 4. Immune markers. (A) Dynamics of biomarker selected as mechanistic correlate of protection (mCoP). Quantification of antibodies inhibiting 
RBD-ACE2 binding, measured by the Mesoscale Discovery (MSD) pseudo-neutralization assay (electro-chemiluminescence [ECL], in arbitrary unit [AU]) 
(top) and anti-RBD IgG titrated by ELISA assay (in IgG titer) (bottom). Thin lines represent individual values. Thick lines indicate medians of observations 
within naïve (black, solid line), convalescent (blue, dashed line), and αCD40.RBD-vaccinated convalescent (green, dotted line) animals. Shaded areas 

Figure 4 continued on next page
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In conclusion, the αCD40.RBD vaccine-elicited humoral response leads to the blockade of new cell 
infection that is well captured by measure of the inhibition of attachment of the virus to ACE2 through 
the RBD of the spike protein. Hence, the inhibition of binding of RBD to ACE2 is a promising mech-
anistic CoP. Indeed, this CoP fulfills the three criteria of leading to the best fit (lower BIC), the best 
explanation of interindividual variability, and fully captured the effect of the group of intervention.

The model revealed the same CoP related to another protein-based 
vaccine but not with mRNA-1273 vaccine
We took the opportunity of another study testing a two-component spike nanoparticle protein-based 
vaccine performed in the same laboratory and using the same immune and virological assays (Brouwer 
et al., 2021), measured only at the time of exposure, for applying the proposed model and method-
ology. In this study, six animals were vaccinated and compared to four naïve animals (Figure 5A and 
B). The good fit of the data (Figure 5C and D) allows for estimating the effect of the vaccine that 
appeared here also to decrease the infectivity rate (by 99%) and increase the clearance of the infected 
cells by 79%. Looking at the best mechanistic CoP following the previously described strategy, we 
ended here again with the inhibition of RBD binding to ACE2 as measured by ECL RBD. In fact, this 
marker measured at baseline before challenge fulfilled the three criteria: (i) it led to the best model 
in front of a model adjusted for group effect, (ii) it rendered the group effect non-significant, and (iii) 
it explained around 71% of the infectivity rate variability, compared to 65% of variability explained by 
the groups. Interestingly, here again, the inhibition assay led to a clear separation of the estimated 
rate of infectivity between vaccinees and the placebo group (Figure 5E).

Finally, we applied our approach to a published NHP study performed to evaluate several doses of 
mRNA-1273 vaccine (Corbett et al., 2020). Using available data, we compared the viral dynamics in 
the 100 µg, 10 µg, and placebo groups, enrolling a total of 12 rhesus macaques in a 1:1:1 ratio. Similar 
to the previous study, only immune markers measured at the time of exposure were available in this 
study, in addition to viral dynamics. We started from the same model as defined previously. We esti-
mated a reduction of the infection rate by 97% but we did not find any additional effect. Looking at 
potential mechanistic CoP, we retained neutralization as measured on live cells with Luciferase marker. 
Although this marker led to the best fit and replaced the group effect (which was non-significant after 

indicate 5th–95th confidence intervals of observations. (B) Systematic screening of effect of the markers. For every single marker, a model has been 
fitted to explore whether it explains the variation of the parameter of interest better or as well than the group indicator. Parameters of interest were β, 
the infection rate of ACE2+ target cells, and δ, the loss rate of infected cells. Models were compared according to the Bayesian information criterion 
(BIC), the lower being the better. The green line represents the reference model that includes the group effect (naïve/convalescent/vaccinated) without 
any adjustment for immunological marker (see Figure 3 for more details about measurement of immunological markers). (C) Thresholds of inhibition 
of RBD-ACE2 binding. Estimated infection rate (in (copies/mL)–1 day–1) of target cells according to the quantification of antibodies inhibiting RBD-ACE2 
(in ECL) at exposure. Thin dotted lines and circles represent individual values of infection rates (right axis) and neutralizing antibodies (left axis). Shaded 
areas delimit the pseudo-neutralization/viral infectivity relationships within each group. (D) Reproduction number over time. Model predictions of the 
reproduction number over time in the trachea (right) and nasopharynx (left). The reproduction number is representing the number of infected cells from 
one infected cell if target cells are unlimited. Below one, the effective reproduction number indicates that the infection is going to be cured. Horizontal 
solid red lines highlight the threshold of one. Same legend than (A). (E) Conditions for controlling the infection. Basic reproduction number (R0) at the 
time of the challenge according to the levels of antibodies inhibiting RBD-ACE2 binding (the lower the better) and of anti-RBD IgG-binding antibodies 
(the higher the better) assuming they are mechanistic correlates of blocking new cell infection and promoting infected cell death, respectively. The red 
area with R>1 describes a situation where the infection is spreading. The green area with R<1 describes a situation where the infection is controlled. The 
dotted red line delimitates the two areas. Black long dashed lines represent the values of neutralizing and binding antibodies measured at exposure. 
Observed values for three different animals belonging to the naïve (bottom, right), convalescent (bottom, left), and vaccinated (top, left) groups are 
represented. For each animal, individual values of R0 were estimated considering their individual values of the model parameters (β and δ).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Anti-N and anti-receptor-binding domain (RBD)-binding antibodies longitudinally measured post-immunization and quantified by ELISA 
in the study 1.

Source data 2. Anti-receptor-binding domain (RBD) and anti-spike neutralizing antibodies longitudinally measured post-exposition and quantified by 
Mesoscale Discovery (MSD) assay (in electro-chemiluminescence [ECL]) in the study 1.

Figure supplement 1. Immune markers selection and Basic reproduction number.

Figure supplement 2. Flowchart of the algorithm for automatic selection of covariate.

Figure 4 continued
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Figure 5. Study design and modeling results for the second study testing two-component spike nanoparticle vaccine. 
 (A) Study design. Cynomolgus macaques were randomly assigned in two experimental groups. Twelve, eight, and two weeks post-infection with SARS-
CoV-2 virus, six of them were successively immunized with 50 µg of SARS-CoV-2 S-I53-50NP vaccine. The four other animals received no vaccination. 
Two weeks after the final immunization, all monkeys were exposed to a total dose of 106 pfu of SARS-CoV-2 virus via intra-nasal and intra-tracheal routes. 

Figure 5 continued on next page
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adjustment for the marker), it explained only 15% of the variability of estimated viral infectivity, while 
19% were explained by the groups.

In conclusion, we demonstrated, based upon challenge studies in NHP vaccinated with two 
different protein-based vaccine platforms, that both vaccines lead to the blockade of new cell infec-
tion. Neutralizing antibodies likely represent a consistent mechanistic correlate of protection (mCoP). 
This could change across vaccine platforms especially because mechanisms of action are different.

Discussion
We explored the mechanistic effects of three SARS-CoV-2 vaccines and assessed the quality of markers 
as mCoP. This model showed that neutralizing and binding antibodies elicited by a non-adjuvanted 
protein-based vaccine targeting the RBD of spike to the CD40 receptor of antigen presenting cells are 
reliable mCoP. Interestingly, we found the simpler and easier to standardize and implement binding 
inhibition assay may be more relevant to use as a CoP than cell-culture neutralization assays. This 
result has been replicated in another study testing a nanoparticle spike vaccine. The model was able 
to capture the effect of the vaccines on the reduction of the rate of infection of target cells and iden-
tified additional effects of vaccines beyond neutralizing antibodies. This latter consisted of increasing 
the loss rate of infected cells which was better reflected by the IgG-binding antibodies and CD8+ T-cell 
responses in the case of the CD40-targeting vaccine. One limitation of our study is that the prediction 
potential of our model relies on the range of the immune markers measured. However, our approach 
would allow a full exploitation of the data generated as in systems serology where non-neutralizing 
Ab functions, such as ADCC, ADCP, ADCD, and Ab-dependent respiratory burst (ADRB) are explored 
(Chung et al., 2015). The role of ADCC in natural infection has been previously shown (Dufloo et al., 
2021), ADCD in DNA vaccine recipients (Yu et al., 2020) and with Ad26 vaccine (Alter et al., 2021). 
Here, we extended significantly these data by modelling the viral dynamic, showing that two other 
protein-based vaccines exert an additional effect on infected cell death which relied on the level of 
IgG anti-RBD-binding antibodies especially for the CD40.RBD-targeting vaccine. Measurements of 
other non-neutralizing Ab functions would probably also capture this additional effect.

The next question after determining which marker is a valid mCoP is to define the concentration 
that leads to protection, looking for a threshold effect that will help to define an objective (Khoury 
et  al., 2021; Jin et  al., 2021). In the context of SARS-CoV-2 virus, several emerged variants are 
leading to a significant reduction of viral neutralization as measured by various approaches. However, 
a 20-fold reduction of viral neutralization might not translate in 20-fold reduction of vaccine efficacy 
(Emary et al., 2021). First, there are many steps between viral neutralization and the reduction of 
viral infectivity or the improvement of clinical symptoms. Second, the consequences of a reduction 
of viral neutralization could be alleviated by other immunological mechanisms not compromised by 

(B) Harvest times and measurements. Nasopharyngeal and tracheal fluids were collected at 0, 1, 2, 3, 4, 5, 6, 10, 14, and 21 days post-exposure (d.p.e.) 
while blood was taken at 0, 2, 4, 6, 10, 14, and 21 d.p.e. Genomic and subgenomic viral loads were measured by RT-qPCR. Anti-spike, anti-RBD, and 
anti-nucleocapside (N) IgG were titrated using a multiplexed immunoassay developed by Mesoscale Discovery (MSD, Rockville, MD) and expressed 
in AU mL–1. The MSD pseudo-neutralization assay was used to quantify antibodies neutralizing the binding of the spike protein and RBD to the ACE2 
receptor and results were expressed in electro-chemiluminescence (ECL). (C) Genomic viral load dynamics in nasopharyngeal and tracheal swabs 
after the exposure to SARS-Cov-2 in naïve (black, solid line) and vaccinated (green, dashed line) animals. Thin lines represent individual values. Thick 
lines indicate medians within each group. (D) Model fit to the log10-transformed observed genomic RNA (gRNA) viral load in nasopharynx and trachea 
after the exposure to SARS-CoV-2 in naïve and vaccinated macaques. Solid thin lines indicate individual dynamics predicted by the model adjusted 
for groups. Thick dashed lines indicate mean viral load over time. (E) Thresholds of inhibition of RBD-ACE2 binding. Estimated infection rate of target 
cells ((copies/mL)–1 day–1) according to the quantification of antibodies inhibiting RBD-ACE2 binding (ECL) at exposure for naïve (black) and vaccinated 
(green) animals. Thin dotted lines and circles represent individual infection rates (right axis) and neutralizing antibodies (left axis). Thick dashed lines and 
dashed areas delimit the pseudo-neutralization/viral infectivity relationships within each group. (C,D) Horizontal red dashed lines represent the limit of 
quantification and shaded areas the 95% confidence intervals.The second study testing two-component spike nanoparticle vaccine.

The online version of this article includes the following source data for figure 5:

Source data 1. Anti-spike, anti-receptor-binding domain (RBD), and anti-N-binding antibodies quantified by Mesoscale Discovery (MSD) assay (AU 
mL–1), and quantification of the spike/ACE2-binding inhibition by MSD assay (in 1/ECL), at the time of exposure in the study 2.

Source data 2. Genomic RNA (gRNA) and subgenomic RNA (sgRNA) viral loads longitudinally measured in the trachea and nasopharynx in the study 2.

Figure 5 continued
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the variant. In the context of natural immunity, when the level of neutralizing antibodies was below a 
protective threshold, the cellular immune response appeared to be critical (McMahan et al., 2021; 
Chandrashekar et  al., 2020). We showed with our model that an improvement of infected cell 
destruction could help to control the within-host infection and is quantitatively feasible.

The control of viral replication is the key for reducing infectivity (Leung et al., 2020; Marks et al., 
2021) as well as disease severity (Néant, 2021; Gutmann et al., 2021). According to our non-linear 
model linking the neutralization to the viral replication, a decrease of 4- to 20-fold in neutralization 
as described for the variants of concern (Planas et al., 2021; Zhou et al., 2021) is not enough, espe-
cially in the context of the response to CD40.RBD-targeting vaccine, to compromise the control of 
viral replication. The results showing a conserved effectiveness of mRNA vaccines in humans infected 
by the alpha or beta variants (Charmet et al., 2021), although a decrease of neutralization has been 
reported (Planas et al., 2021), are consistent with this hypothesis. However, this is highly dependent 
upon the mode of action of currently used vaccines and upon the VoC that may much more compro-
mise the neutralization but being also intrinsically less pathogenic such as Omicron (Nyberg et al., 
2022).

The analysis performed extended significantly the observation of associations between markers as 
previously reported for SARS-CoV-2 vaccine (Yu et al., 2020) and other vaccines (Kester et al., 2009) 
because it allows a more causal interpretation of the effect of immune markers. However, our model-
ling approach requires the in vivo identification of the biological parameters under specific experi-
mentations. On the other hand, the estimation of parameters included in our model also provided 
information on some aspect of the virus pathophysiology. Notably, we found an increased capacity 
of virion production in nasopharynx compared to the trachea which could be explained by the differ-
ence in target cells according to the compartment (Travaglini et al., 2020). This result needs to be 
confirmed as it may also be the consequence of a different local immune response (Pizzorno et al., 
2020). The choice of the structural model defining the host-pathogen interaction is a fundamental 
step in the presented approach. Here, it was well guided by the biological knowledge, the existing 
models for viral dynamics (Goyal et al., 2019; Gonçalves et al., 2021; Smith et al., 2018), and the 
statistical inference allowing the selection of the model that best fit the data. As the number of obser-
vations was relatively small in regard to the number of model parameters, we investigated overfitting 
issues. This was done using a bootstrap approach to evaluate the stability of confidence intervals of 
the estimated parameters. Results are provided in Appendix 2 ‘BICc as selection criteria and multiple 
testing adjustment’. Many modelling choices for the statistical model were made in this approach and 
more theoretical work evaluating the robustness of the results in their regards may be relevant for 
future works. In particular, we could relax the constraint of linear interpolation of marker dynamics by 
using simple regression models, allowing in the same time the integration of error model to account 
for measurement error for time-varying covariates (Dafni and Tsiatis, 1998; Carroll et al., 2006; Wu, 
2009). Moreover, by construction, we assumed similar interindividual variability and effects of covari-
ates within the two URT compartments as well as similar values for the viral infectivity and the loss 
rate of infected cells. Viral load dynamics measured in lungs being different from those in the URT 
(Lui et al., 2020; Goyal et al., 2020), the relaxation of this hypothesis of homogeneous physiological 
behavior in the URT may be pertinent to extend the model to the LRT. Finally, it should be underlined 
that the dynamics of the immune response has not been modelled as suggested for instance for B-cell 
response (Balelli et al., 2020). This clearly constitutes the next step after the selection of the markers 
of interest as done in the present work.

In conclusion, the modelling of the response to two new promising SARS-CoV-2 vaccines in NHP 
revealed a combination of effects with a blockade of new cell infections and the destruction of infected 
cells. For these two vaccines, the antibody inhibiting the attachment of RBD to ACE2 appeared to 
be a very good surrogate of the vaccine effect on the rate of infection of new cells and therefore 
could be used as a mechanistic CoP. This modelling framework contributes to the improvement of 
the understanding of the immunological concepts by adding a quantitative evaluation of the contri-
butions of different mechanisms of control of viral infection. In terms of acceleration of vaccine devel-
opment, our results may help to develop vaccines for ‘hard-to-target pathogens’, or to predict their 
efficacy in aging and particular populations (Pollard and Bijker, 2021). It should also help in choosing 
vaccine dose, for instance at early development (Rhodes et al., 2018) as well as deciding if and when 
boosting vaccination is needed in the face of waning protective antibody levels (Gaebler et al., 2021; 
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Vanshylla et al., 2021), at least in NHP studies although the framework could be extended to human 
studies using mixed approaches of within and between hosts modelling (Goyal et al., 2022) providing 
that enough information is collected.

Materials and methods
Experimental model and subjects details
Cynomolgus macaques (Macaca fascicularis), aged 37–66  months (18  females and 13  males) and 
originating from Mauritian AAALAC certified breeding centers were used in this study. All animals 
were housed in IDMIT facilities (CEA, Fontenay-aux-roses), under BSL2 and BSL-3 containment when 
necessary (Animal facility authorization #D92-032-02, Préfecture des Hauts de Seine, France) and in 
compliance with European Directive 2010/63/EU, the French regulations and the Standards for Human 
Care and Use of Laboratory Animals, of the Office for Laboratory Animal Welfare (OLAW, assurance 
number #A5826-01, US). The protocols were approved by the institutional ethical committee ‘Comité 
d’Ethique en Expérimentation Animale du Commissariat à l’Energie Atomique et aux Energies Alter-
natives’ (CEtEA #44) under statement number A20-011. The study was authorized by the ‘Research, 
Innovation and Education Ministry’ under registration number APAFIS#24434-2020030216532863v1.

Evaluation of anti-spike, anti-RBD, and neutralizing IgG antibodies
Anti-spike IgG were titrated by multiplex bead assay. Briefly, Luminex beads were coupled to the spike 
protein as previously described (Fenwick et al., 2021) and added to a Bio-Plex plate (Bio-Rad). Beads 
were washed with PBS 0.05% tween using a magnetic plate washer (MAG2x program) and incubated 
for 1 hr with serial diluted individual serum. Beads were then washed and anti-NHP IgG-PE secondary 
antibody (Southern Biotech, clone SB108a) was added at a 1:500 dilution for 45 min at room tempera-
ture (RT). After washing, beads were resuspended in a reading buffer 5 min under agitation (800 rpm) 
on the plate shaker then read directly on a Luminex Bioplex 200 plate reader (Bio-Rad). Average MFI 
from the baseline samples were used as reference value for the negative control. Amount of anti-spike 
IgG was reported as the MFI signal divided by the mean signal for the negative controls.

Anti-RBD and anti-nucleocapside (N) IgG were titrated using a commercially available multiplexed 
immunoassay developed by Mesoscale Discovery (MSD, Rockville, MD) as previously described 
(Johnson et al., 2020). Briefly, antigens were spotted at 200–400 μg mL–1 in a proprietary buffer, 
washed, dried, and packaged for further use (MSD Coronavirus Plate 2). Then, plates were blocked 
with MSD Blocker A following which reference standard, controls, and samples diluted 1:500 and 
1:5000 in diluent buffer were added. After incubation, detection antibody was added (MSD SULFO-
TAGTM Anti-Human IgG Antibody) and then MSD GOLDTM Read Buffer B was added and plates 
read using a MESO QuickPlex SQ 120 MM Reader. Results were expressed as arbitrary unit (AU) mL–1.

Anti-RBD and anti-N IgG were titrated by ELISA. The nucleocapsid and the spike RBD (Genbank 
# NC_045512.2) were cloned and produced in Escherichia coli and CHO cells, respectively, as previ-
ously described (Flamar et al., 2012). Antigens were purified on C-tag column (Thermo Fisher) and 
quality-controlled by SDS-PAGE and for their level of endotoxin. Antigens were coated in a 96-well 
plates Nunc-immuno Maxisorp (Thermo Fisher) at 1 μg mL–1 in carbonate buffer at 4°C overnight. 
Plates were washed in TBS Tween 0.05% (Thermo Fisher) and blocked with PBS 3% BSA for 2 hr at RT. 
Samples were then added, in duplicate, in serial dilution for 1 hr at RT. Non-infected NHP sera were 
used as negative controls. After washing, anti-NHP IgG coupled with HRP (Thermo Fisher) was added 
at 1:20,000 for 45 min at RT. After washing, TMB substrate (Thermo Fisher) was added for 15 min at 
RT and the reaction was stopped with 1 M sulfuric acid. Absorbance of each well was measured at 
450 nm (reference 570 nm) using a Tristar2 reader (Berthold Technologies). The EC50 value of each 
sample was determined using GraphPad Prism 8 and antibody titer was calculated as log (1/EC50).

The MSD pseudo-neutralization assay was used to measure antibodies neutralizing the binding of 
the spike protein to the ACE2 receptor. Plates were blocked and washed as above, assay calibrator 
(COVID- 19 neutralizing antibody; monoclonal antibody against S protein; 200 μg mL–1), control sera, 
and test sera samples diluted 1:10 and 1:100 in assay diluent were added to the plates. Following 
incubation of the plates, an 0.25  μg mL–1 solution of MSD SULFO-TAGTM-conjugated ACE2 was 
added after which plates were read as above. Electro-chemiluminescence (ECL) signal was recorded.
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Viral dynamics modelling
The mechanistic approach we developed to characterize the impact of the immune response on the 
viral gRNA and sgRNA dynamics relies on a mechanistic model divided in three layers: first, we used 
a mathematical model based on ODEs to describe the dynamics in the two compartments, the naso-
pharynx and the trachea. Then, we used a statistical model to take into account both the interindi-
vidual variability and the effects of covariates on parameters. Finally, we considered an observation 
model to describe the observed log10 viral loads in the two compartments.

For the mathematical model, we started from previously published models (Gonçalves et  al., 
2020; Kim et al., 2021; Baccam et al., 2006) where the nasopharynx and trachea were respectively 
described by a target cell limited model, with an eclipse phase, as model of acute viral infection 
assuming target-cell limitation (Baccam et al., 2006). We completed the model by adding a compart-
ment for the inoculum that distinguishes the injected virus (Vs) from the virus produced de novo (Vi 
and Vni). To our knowledge, this distinction has not been proposed in any previous work. Two main 
reasons led us to make this choice. First, it allowed us to study the dynamics of the inoculum, in partic-
ular during the early phase of viral RNA load dynamics. Second, as described in more detail below, 
it gave us the opportunity to use all the information provided by the preclinical studies, such as the 
known number of inoculated virions, to define the initial conditions of the ODE model rather than 
estimating or randomly fixing them for Vi and Vni, as is usually done. Consequently, for each of the two 
compartments, the model included uninfected target cells (T) that can be infected (I1) either by infec-
tious viruses (Vi) or inoculum (Vs) at an infection rate β. After an eclipse phase, infected cells become 
productively infected cells (I2) and can produce virions at rate P and be lost at a per capita rate δ. The 
virions generated can be infectious (Vi) with proportion µ while the (1−µ) remaining proportion of 
virions is non-infectious (Vni). Mathematically, a single compartment (V) for de novo produced virions 
could be considered in the model, with µV and (1−µ)V representing the respective contributions of 
infectious and non-infectious viruses to the biological mechanisms. However, to have a better visual 
understanding of the distinction between the two types of viruses, we wrote the model with distinct 
compartments, Vi and Vni.

Finally, virions produced de novo and those from the inoculum are cleared at a rate c and ci, respec-
tively. Distinct clearances were considered to account for the effects of experimental conditions on 
viral dynamics. In particular, it is hypothesized that, animals being locally infected with large numbers 
of virions, a large proportion of it is assumed to be rapidly eliminated by swallowing and natural 
downstream influx, in contrast to the de novo-produced virions. However, it is important to keep in 
mind that this distinction was possible because of the controlled experimental conditions performed 
in animals, (i.e., exact timing and amount of inoculated virus known, and frequent monitoring during 
the early phase of the viral dynamics). Because of identifiability issues, similar clearances for infectious 
and non-infectious viruses were used. Accordingly, the model can be written as the following set of 
differential equations, where the superscript X denotes the compartment of interest (N, nasopharynx 
or T, trachea):
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the volume of distribution of the compartment of interest (see the subsection ‘Consideration of the 
volume of distribution’). Each animal was exposed to 1 × 106 pfu of SARS-CoV-2 representing a total 
of 2.19 × 1010 virions. Over the total inoculum injected (5 mL), 10% (0.5 mL) and 90% (4.5 mL) of virions 
were respectively injected by the intra-nasal route and the intra-tracheal route leading to the following 
initial concentrations of the inoculum within each compartment: ‍V

N
S,0 = 0.10×Inoc0

WN ‍ and ‍V
T
S,0 = 0.90×Inoc0

WT ‍, 
with Inoc0 the number of virions injected via the inoculum.

Using the gRNA and sgRNA viral loads, we estimated the viral infectivity, the viral production rate, 
and the loss rate of infected cells within each of the two compartments of the URT (Supplementary 
file 2). To account for interindividual variability and covariates, each of those three parameters was 
described by a mixed-effect model and jointly estimated between the two compartments as follows:

	﻿‍





log10

(
βN

i

)
= β0 + ϕβ

conv × Igroup=conv + ϕβ
CD40 × Igroup=CD40 + uβi

βT
i = βN

i × exp
(

fTβ
)

log
(
δN

i

)
= log

(
δ0
)

+ ϕδ
conv × Igroup=conv + ϕδ

CD40 × Igroup=CD40 + uδi
δT

i = δN
i × exp

(
fTδ
)

log
(

PN
i

)
= log

(
P0

)
+ ϕP

conv × Igroup=conv + ϕP
CD40 × Igroup=CD40 + uP

i

PT
i = PN

i × exp
(

fTP
)

‍�

(2)

where ‍β0, log
(
δ0
)
‍, and ‍log

(
P0

)
‍ are the fixed effects, 

‍

{
ϕθ

conv | θ ∈
{
β, δ, P

}}
‍
 and 

‍

{
ϕθ

CD40 | θ ∈
{
β, δ, P

}}
‍
 are respectively the regression coefficients related to the effects of the group 

of convalescent and αCD40.RBD-vaccinated animals for the parameters β, δ, and P, and ‍u
θ
i ‍ is the indi-

vidual random effect for the parameter θ, which is assumed to be normally distributed with variance 

‍ω
2
θ‍ . A log-transformation was adopted for the parameters δ and P to ensure their positivity while a 

log10-transformation was chosen for viral infectivity to also improve the convergence of the estimation. 
Because of the scale difference between the parameter β and the other parameters (see Supplemen-
tary file 2), the mere use of the log-transformation for this parameter led to convergence issues. The 
use of a log10-transformation allowed to overcome this problem. Moreover, as shown in Equation 2, a 
joint estimation of the parameters β, δ, and P between the two compartments of the URT was consid-
ered. In this regard, a homogeneous interindividual variability within the URT was assumed as well 
as a similar contribution of the covariates to the value of the parameters. Parameters in the trachea 
were then either equal or proportional to those in the nasopharynx. This modelling choice, resulting 
in a smaller number of parameters to be estimated, was made mainly to address identifiability issues 
and to increase the power of the estimation. All other parameters included in the target-cell limited 
models were assumed to be fixed (see the subsection ‘Parameter estimation’ for more details).

In practice, after the selection of the optimal statistical model (see Appendix 1 ‘Model building’), 
random effects were added only to the parameters β and δ (i.e., ωβ ≠0, ωδ ≠0, and ωP=0), and the esti-
mation of multiple models identified the viral production rate P as the only parameter taking different 
values between the trachea and nasopharynx. (i.e., βN=βT with fβT=0, δN= δT with fδT=0, while PN≠PT). 
Finally, the adjustment of the model for the categorical covariates of groups of treatment, natural 
infection, and/or vaccination identified β and δ as the parameters with a statistically significant effect 
of these covariates (i.e., ‍ϕ

P
conv = 0‍ and ‍ϕ

P
CD40 = 0‍).

For the observation model, we jointly described genomic and subgenomic viral loads in the two 
compartments of the URT. We defined genomic viral load, which characterizes the total viral load 
observed in a compartment (nasopharynx or trachea), as the sum of inoculated virions (Vs), infectious 
(Vi), and non-infectious virions (Vni). The sgRNA was described as proportional to the infected cells 
(I1  + I2). This choice was driven by two main reasons. First, sgRNA is only transcribed in infected cells 
(Sawicki et al., 2007). Second, as described by Miao et al., 2011, to overcome identifiability issues 
between the parameters β and P typically observed in target-cell limited models. The comparison of 
the two observation models describing sgRNA as either proportional to virions produced de novo (Vi 
+Vni) or proportional to infected cells (I1  + I2) confirmed this conclusion. In addition to a better BICc 
value (–25 points) compared with the first model, the second one allowed the estimation of both β 
and P by counteracting identifiability problems faced with the first model (results not shown). Accord-
ingly, the log10-transformed gRNA and sgRNA of the ith animal at the jth time point in compartment X 
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(nasopharynx or trachea), denoted ‍gRNAX
ij ‍ and ‍sgRNAX

ij ‍, respectively, were described by the following 
equations:

	﻿‍





gRNAX
ij = log10

[(
VX

i + VX
ni + VX

s

)(
ΘX

i , tij
)]

+ εX
ij,g εX

ij,g ∼ N
(

0,σ2
gX

)

sgRNAX
ij = αsgRNA × log10

[(
IX
1 + IX

2

)(
ΘX

i , tij
)]

+ εX
ij,sg εX

ij,sg ∼ N
(

0,σ2
sgX

)
‍�

(3)

where ‍Θ
X
i ‍ is the set of parameters of the subject i for the compartment X and ε are the additive 

normally distributed measurement errors.

Consideration of the volume of distribution
To define the concentration of inoculum within each compartment after injection, nasopharyngeal and 
tracheal volumes of distribution, labelled WN and WT, respectively, were needed. Given the estimated 
volumes of the trachea and the nasal cavities in four monkeys similar to our 18 macaques (Figure 2—
figure supplement 2A–C) and the well-documented relationship between the volume of respiratory 
tract and animal weights (Asgharian et al., 2012), the volume of distribution of each compartment 
was defined as a step function of NHP weights:

	﻿‍

WN
i =





4 if weighti ≤ 4.5

5.5 otherwise

WN
i =





2 if weighti ≤ 4.5

3 otherwise ‍�

(4)

where weighti is the weight of the monkey i in kg. Using Equation 4 and weights of our 18 NHPs 
(mean = 4.08; [Q1; Q3] = [3.26; 4.77]), we estimated WT = 2 and WN = 4 mL for a third of them (n=12) 
(Figure 2—figure supplement 2D), leading to the initial concentration of target cells ‍T

X
0 ‍ (see ‘Viral 

dynamics modelling’ for equation) fixed at 3.13 × 104 cells mL–1 and 1.13 × 104 cells mL–1 in naso-
pharynx and trachea, respectively. Similarly, their initial concentrations of challenge inoculum ‍V

X
S,0‍ were 

fixed at 5.48 × 108 copies,mL–1 and 9.86 × 109 copies,mL–1 in nasopharynx and trachea respectively. 
For the last third of NHPs (n=6), WT = 3 and WN = 5.5 mL leading to ‍T

X
0 ‍ fixed at 2.27 × 104 cells mL–1 in 

nasopharynx and 7.50 × 103 cells mL–1 in trachea while ‍V
X
S,0‍ was fixed at 3.98 × 108 copies mL–1 in naso-

pharynx and 6.57 × 109 copies mL–1 in trachea. Through this modelling, we assumed a homogenous 
distribution of injected virions and target cells within nasopharyngeal and tracheal compartments. In 
addition, the natural downward flow of inoculum toward lungs, at the moment of injection, was indi-
rectly taken into account by the parameter of inoculum clearance, ci.

Parameter estimation
Among all parameters involved in the three layers of the mechanistic model, some of them have 
been fixed based on experimental settings and/or literature. That is the case of the proportion of 
infectious virus (µ) that has been fixed at 1/1000 according to previous work (Gonçalves et al., 2021) 
and additional work (results not shown) evaluating the stability of the model estimation according to 
the value of this parameter. The initial number of target cells, that are the epithelial cells expressing 
the ACE2 receptor, ‍T

X,nbc
0 ‍ was fixed at 1.25 × 105 cells in the nasopharynx and 2.25 × 104 cells in 

trachea (Gonçalves et al., 2021; Supplementary file 2). The duration of the eclipse phase (1/k), the 
clearance of the inoculum (‍ci‍) and the clearance of the virus produced de novo (c) were estimated by 
profile likelihood. The profile likelihood consists in defining a grid of values for the parameters to be 
evaluated and sequentially fixing these parameters to one of these combinations of values. The model 
and all the parameters that are not fixed are then estimated by maximizing the log-likelihood. In this 
process, all parameters that are assumed to be fixed in the model (i.e., μ and the initial conditions) are 
held fixed. Finally, the optimal set of parameters is chosen as the one optimizing the log-likelihood. 
Although the available data did not allow the direct estimation of these three parameters, the use 
profile likelihood enabled the exploration of various potential values for k, c, and ‍ci‍ . In a first step, 
we explored the 18 models resulting from the combination of three values of k∈{1, 3, 6} day–1 and 
six values for c∈{1, 5, 10, 15, 20, 30} day–1, assuming that the two parameters of virus clearance were 



 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation

Alexandre et al. eLife 2022;11:e75427. DOI: https://doi.org/10.7554/eLife.75427 � 18 of 33

equal, as first approximation. As shown in Supplementary file 3a, an eclipse phase of 8 hr (k=3) 
and virus clearance higher than 15 virions per day led to lowest values of –2log-likelihood (–2LL, the 
lower the better). In a second step, we fixed the parameter k at 3 day–1 and estimated the 70 models 
resulting from the combination of 10 values for c∈{1, 2, 3, 4, 5, 10, 15, 20, 25, 30} day–1 and 7 values 
for∈{1, 5, 10, 15, 20, 25, 30} day–1 (Supplementary file 3b). The distinction of the two parameters of 
free virus clearance enabled to find much lower half-life of inoculum (~50 min) than half-life of virus 
produced de novo (~5.55 hr), with c=3 day–1 compared to ci = 20 day–1.

Once all these parameters have been fixed, the estimation problem was restricted to the deter-
mination of the viral infectivity β, the viral production rate P, the loss rate of infected cells δ for each 
compartment, the parameter ‍αvlsg‍ in the observation model, regression coefficients for groups of 
intervention ‍

(
ϕconv,ϕCD40

)
‍, and standard deviations for both random effects (‍ω‍) and error model (σ). 

The estimation was performed by maximum likelihood estimation using a stochastic approximation 
EM algorithm implemented in the software Monolix (http://www.lixoft.com). The Fisher information 
matrix was calculated by stochastic approximation, providing for each estimated parameter its vari-
ance, from which we were able to derive its 95% confidence interval. Selection of the compartment 
effect on parameters (β, δ, P) as well as random effects and covariates on the statistical model (Equa-
tion 2) was performed by the estimation of several models that were successively compared according 
to the corrected Bayesian information criterion (BICc) (to be minimized). After the removal of random 
effect on the viral production (‍ωP = 0‍) allowing the reduction of the variance on the two other random 
effects, all combinations of compartment effects were evaluated, leading to the final selection of a 

single effect on P 
‍

(
fTβ = fTδ = 0

)
‍
. Then, the effect of group intervention was independently added on 

model parameters among β, δ, P, and c. Once the group effect on the viral infectivity identified as the 
best one, the addition of a second effect on the remaining parameters was tested, resulting in the 
selection of the loss rate of infected cells. Finally, the irrelevance of the addition of a third effect was 
verified.

The possibility of migration of free plasma virus between the nasopharynx and the trachea was 
tested. However, as widely described in the literature, the transport of viral particles within the respi-
ratory tract is negligible in the viral dynamics and is difficult to estimate. The reader can refer to 
Appendix 1 ‘Model building’ for an additional modelling work conducted to estimate this exchange 
and provided the same conclusion. Accordingly, the two compartments of the URT were assumed are 
distinct in our model.

Algorithm for automatic selection of biomarkers as CoP
After identifying the effect of the group of intervention on both the viral infectivity (β) and the loss rate 
of infected cells (δ), we aimed at determining whether some immunological markers quantified in the 
study could capture this effect. Nowadays, many methods for selecting constant covariates already 
exist (Chowdhury and Turin, 2020) and are implemented in software like Monolix. However, these 
latter do not allow time-varying covariates. In this section, we present the algorithm we implemented 
to select time-varying covariates. We proposed a classical stepwise data-driven automatic covariate 
modelling method (Figure 4—figure supplement 2). However, initially implemented to select covari-
ates from more than 50 biomarkers, computational time restricted us to consider only a forward 
selection procedure. Nevertheless, the method can be easily extended to classical stepwise selection 
in which both forward selection and backward elimination are performed sequentially. Although the 
method was developed for time-varying covariates, it can also be applied to constant covariates.

At the initialization step (k=0) (see Figure 4—figure supplement 2), the algorithm requests three 
inputs: (World Health Organization, 2021) a set of potential ‍M ‍ covariates, labelled Marker m for 

‍m ∈
{

1, · · · , M
}
‍ (e.g., immunological markers); (Cobey et al., 2021) a set of P parameters on which 

covariates could be added, labelled θp for ‍p ∈
{

1, · · · , P
}
‍(e.g., β and δ); and (Kuzmina et al., 2021) 

an initial model (e.g., the model without covariates), labelled M0, with ‍θ
0
p‍ being the definition of the 

parameter θp. At each step k>0, we note Mk−1 the current model resulting in the model built in the 
step k−1. Then, each combination of markers and parameters that have not already been added in 

Mk−1, labelled r 
‍

(
r ∈

{
Marker m

⊗
θp /∈ Mk−1 | m ∈

{
1, . . .M

}
, p ∈

{
1, . . .P

}})
‍
 , are considered and 

tested in an univariate manner (each relation r is independently added in Mk−1 and ran). To this end, 
the parameter θp involved in this relationship r is modified as ‍θ

k
p
(
t
)

= θk−1
p

(
t
)
× exp

(
ϕ

p
m × Markerm

(
t
))

‍, 
where ‍ϕ

p
m‍ is the regression coefficient related to the marker and ‍Markerm

(
t
)
‍ being the trajectory of 
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the marker over time, while other parameters remain unchanged 
‍

(
∀θq /∈ r, θk

q
(
t
)

= θk−1
q

(
t
))

‍
. Once 

all these models evaluated, the one with the optimal value of a given selection criterion defining the 
quality of the fits (e.g., the lowest BICc value) is selected and compared to the model Mk−1. If the value 
of the criterion is better than the one found for Mk−1, then this model is defined as the new current 
model, Mk, and the algorithm moves to the step k+1. Otherwise, the algorithm stops. The algorithm 
can also be stopped at the end of a fixed number of step k.

The objective of this algorithm being to identify mechanistic CoP, at each step, the selected model 
should respect, in addition to the best fits criterion, the two other criteria defining mCoP meaning the 
ability to capture the effect of the group of intervention and the ability to better explain the variability 
on individual parameters than the model adjusted for the group effect. To this end, we verify that 
in the selected model additionally adjusted for the group of intervention, the group effect appears 
as non-significantly different from 0 using a Wald test. Then, we check that the variances of random 
effects in the selected model are lower or equal to the ones obtained in the model adjusted only for 
the group effect.

Modelling hypothesis for time-dependent covariates in our application
Using a population-based approach to estimate our mechanistic model and similar to the adjust-
ment of the model for constant covariates (e.g., groups of intervention), time-varying covariates 
are incorporated into the statistical model as individual-specific explanatory variables in the mixed-
effects models. To implement the algorithm for selecting the time-varying covariates, many model-
ling choices were made. First, targeting covariates able to fully replace the group of intervention, 
we kept a similar mathematical relationship between parameters and immune markers than the one 
used with the constant covariate (see Equation 2). Accordingly, we adjusted the model parameters 
additively in logarithmic scale. In this regard, at each step k (k>0), the parameter θp was defined 

as 
‍
log

(
θk

p
(
t
))

= log
(
θk−1

p
(
t
))

+ ϕ
p
m × Markerm

(
t
)
‍
 . However, this choice may affect the results and 

other choices may be more relevant under different conditions. Second, because immune markers 
are observed only at discrete time points, whereas the estimation of the model is performed in a 
continuous way, we introduced immune markers as time-varying covariates using linear interpolation. 
Lets denote Markeri,j the value of the marker observed for the ith animal at the jth time point, with 

‍i ∈
{

1, . . . , n
}
‍ and ‍j ∈

{
1, . . . , J

}
‍. By linear interpolation, the time-continuous marker was defined 

as,  ‍∀t > 0‍,

	﻿‍
Markerint

i
(
t
)

=
J−1∑
j=1

I[tj;tj+1]
(
t
) [Markeri,j+1−Markeri,j

tj+1−tj t + Markeri,j tj+1−Markerj+1tj
tj+1−tj

]
+ It≥tJ

(
t
)
× Markeri,J

‍�

As previously described in the Results section, three different studies were considered in this work: 
a main study reported by Marlin et al., 2021, testing the αCD40.RBD vaccine, and two additional 
studies (Corbett et al., 2020; Brouwer et al., 2021) evaluating a two-component spike nanoparticle 
vaccine and the mRN-1273 vaccine, respectively. In the main study, the method was applied with 
both time-varying covariates and constant covariates for which only baseline value was considered, 
such that Markeri(t)=Markeri(t=0) (see Supplementary file 1). For the other two studies, only the 
baseline values were considered as covariates, the dynamics being not available. To assess the robust-
ness of the results, several selection criteria were tested: AIC, BIC, log-likelihood, the percentage 
of explained interindividual variability, and similar results were obtained for all (results not shown). 
Moreover, as presented in Appendix 2 ‘BICc as selection criteria and multiple testing adjustment’, we 
verified the robustness of the use of BIC as selection criteria despite the multiplicity of the tests. The 
identification of antibodies inhibiting the attachment of the RBD to the ACE2 receptor (ECLRBD) as 
the first time-varying CoP led to the definition of the time-varying viral infectivity for the ith animal as 
described in Equation 5, while the selection anti-RBD IgG-binding antibodies led to the elimination 
rate of infected cells given in Equation 6.

	﻿‍
βi

(
t
)

= 10β0+uβ
i × exp

(
ϕβ

ecl × ECLRBDint
i

(
t
))

‍� (5)

	﻿‍
δi

(
t
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= δ0 × exp
(
ϕδ

igg × IggRBDint
i

(
t
)

+ uδ
i

)
‍� (6)
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Quantification and statistical analysis
In each of the three studies used in this work, no statistical tests were performed on the raw data 
(i.e, observations), whether for viral load or for immune marker measurements, to identify statistical 
differences between treatment groups, as the statistical analyses were already been performed in the 
respective papers. Statistical significance of the effect of groups in model estimation is indicated in 
the tables by stars: *, p<0.05; **, p<0.01; ***, p<0.001 and were estimated by Wald tests (Monolix 
software version 2019R1).

Model parameters were estimated with the SAEM algorithm (Monolix software version 2019R1). 
Graphics were generated using R version 3.6.1 and Excel 2016 and details on the statistical analysis 
for the experiments can be found in the accompanying figure legends. Horizontal red dashed lines on 
graphs indicate assay limit of detection.
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models and R) as well as model definition files including the full list of parameters used are available 
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and free-of-cost on github (Inria SISTM Team) at the following link: https://github.com/sistm/SARSCoV-
2modelingNHP, (copy archived at swh:1:rev:a704c80daebc949434694d3f4441e48293c461cc).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Alexandre M, 
Marlin R, Prague M, 
Coleon S, Kahlaoui 
N, Cardinaud S, 
Naninck T, Delache B, 
Surenaud M, Galhaut 
M, Dereuddre-
Bosquet N, Cavarelli 
M, Maisonnasse 
P, Centlivre M, 
Lacabaratz C, 
Wiedemann A, 
Zurawski S, Zurawski 
G, Schwartz O, 
Sanders RW, Le 
Grand R, Levy Y, 
Thiébaut R

2022 Viral loads and antibody, 
cytokine and T-cell 
responses in NHPs 
following vaccination 
targeting SARS-CoV-2 RBD 
domain to cells expressing 
CD40

https://​doi.​org/​10.​
5061/​dryad.​1zcrjdfv7

Dryad Digital Repository, 
10.5061/dryad.1zcrjdfv7
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Appendix 1
Model building
In the model presented in the manuscript, we considered the two compartments of the URT, trachea, 
and nasopharynx, as two distinct compartments (i.e., without transfer of virus between them), as 
described by Equation AE1. In each of them, the viral dynamics are described by a target-cell 
limited model augmented with a compartment describing the dynamics of the inoculated virus (Vs). 
Moreover, in the statistical model describing the model parameters, the three parameters β, δ, and 
P were assumed as jointly estimated between the two compartments, with shared random effects 
and covariates and considering that parameters β and δ are equal in both trachea and nasopharynx 
(βT = βN, δT = δN).

	﻿‍
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Initially, random effects were added on the three parameters. However, taken into consideration 
identifiability issues that are usually encountered between the viral infectivity (β) and the viral 
production (P), we decided to remove the possibility of interindividual variability on the parameter 
P. This choice was also driven by multiple model estimations showing less robust estimations when 
variability was allowed in both parameters β and P. In particular, the estimate of the viral production 
was impacted by a ratio between the parameter and its standard error (RSE) higher than 100%.

Comparison of the parameters between the tracheal and the 
nasopharyngeal compartments
To decide which of these three parameters were assumed to be equal between the two compartments, 
all possibilities were tested and compared, using the BICc as selection criteria. As shown in 
Appendix 1—table 1, we started with the model in which all parameters were equal between the 
two compartments and we progressively relaxed this hypothesis. During this step, no exchange of 
virions between the two compartments of the URT was possible (g=0). Once all models estimated, 
we kept the one with the lowest value of BICc, meaning with the highest negative difference of 
BICc compared to the initial model. We identified the model with only the viral production varying 
between the two compartments as the best one to fit the data.

Appendix 1—table 1. Comparison of models evaluating the difference of viral infectivity (β), loss of 
infected cells (δ), and viral production (P) between the nasopharynx and the trachea.

Model tested Statistical model ΔBICc

Initial model

βT = βN

δN = δT

PN = PT

Variability on β and δ

Model with different β

βT ≠ βN

δN = δT

PN = PT

Variability on β and δ –17.31

Model with different δ

βT = βN

δN ≠ δT

PN = PT

Variability on β and δ –14.38

Appendix 1—table 1 Continued on next page
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Model tested Statistical model ΔBICc

Model with different P

βT = βN

δN = δT

PN ≠ PT

Variability on β and δ –25.24

Model with different β and δ

βT ≠ βN

δN ≠ δT

PN = PT

Variability on β and δ –13.00

Model with different β and P

βT ≠ βN

δN = δT

PN ≠ PT

Variability on β and δ –19.19

Model with different δ and P

βT = βN

δN ≠ δT

PN ≠ PT

Variability on β and δ –19.47

Model with different β, δ, and P

βT ≠ βN

δN ≠ δT

PN ≠ PT

Variability on β and δ –13.39

Identification of group effects
Once the structure of the statistical model defined, we tried to identify on which parameters an effect 
of the group of treatment could be identified and by extension on which biological mechanisms. In 
this step, we were interested in four parameters: β, δ, P, and c, the latter being the clearance of 
de novo- produced virions. In the study, three groups of treatments were considered as constant 
categorical covariates: naïve, convalescent, and convalescent vaccinated. We performed a forward 
selection approach using the BICc as selection criteria to find the best model, using the model 
without covariate as initial model. At each step the model decreasing the most the value of the BICc 
is selected and the procedure stops once the BICc does not decrease anymore. At each step of 
the procedure, the statistical significance of covariate added into the model was verified via a Wald 
test. As shown in Appendix 1—table 2, the selected model identified a group effect on the viral 
infectivity and the loss rate of infected cells.

Appendix 1—table 2. Comparison of models evaluating the adjustment of the viral infectivity (β), 
the loss rate of infected cells (δ), the viral production (P), and the viral clearance (c) for the groups of 
treatment.
The group of naïve animals is assumed as the group of reference.

Appendix 1—table 1 Continued
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Step Model tested Statistical model ‍∆BICc‍

1

Initial model:
Model without group effects

‍β = 10β0‍
‍δ = δ0‍
‍P = P0‍
‍c = c0‍

Model with group effect on ‍β‍

‍β = 10
(
β0 + ϕβ

conv+ ϕβ
CD40

)

‍
‍δ = δ0‍
‍P = P0‍
‍c = c0‍ –21.5

Model with group effect on  ‍δ‍

‍β = 10β0‍

‍
δ = δ0 exp

(
ϕδ

conv + ϕδ
CD40

)
‍

‍P = P0‍
‍c = c0‍ –16.62

Model with group effect on  ‍P‍

‍β = 10β0‍
‍δ = δ0‍

‍
P = P0 exp

(
ϕP

conv + ϕP
CD40

)
‍‍c = c0‍ +9.68

Model with group effect on c

‍β = 10β0‍
‍δ = δ0‍
‍P = P0‍
‍c = c0exp

(
ϕc

conv + ϕc
CD40

)
‍ +9.20

2

Initial model:
Model with group effect on  ‍β‍

‍β = 10
(
β0+ϕβ

conv+ ϕβ
CD40

)

‍
‍δ = δ0‍
‍P = P0‍
‍c = c0‍

Model with group effect on ‍β‍ and ‍δ‍

‍β = 10
(
β0+ϕβ

conv+ ϕβ
CD40

)

‍

‍
δ = δ0exp

(
ϕδ

conv + ϕδ
CD40

)
‍

‍P = P0‍
‍c = c0‍ –2.48

Model with group effect on ‍β‍ and  ‍P‍

‍β = 10
(
β0+ϕβ

conv+ ϕβ
CD40

)

‍
‍δ = δ0‍

‍
P = P0 exp

(
ϕP

conv + ϕP
CD40

)
‍

‍c = c0‍ +12.25

Model with group effect on ‍β‍ and  ‍c‍

‍β = 10
(
β0+ϕβ

conv+ ϕβ
CD40

)

‍
‍δ = δ0‍
‍P = P0‍
‍c = c0exp

(
ϕc

conv + ϕc
CD40

)
‍ +11.97

3

Initial model:
Model with group effect on ‍β‍ and  ‍δ‍

‍β = 10
(
β0+ϕβ

conv+ ϕβ
CD40

)

‍

‍
δ = δ0 exp

(
ϕδ

conv + ϕδ
CD40

)
‍

‍P = P0‍
‍c = c0‍

Model with group effect on ‍β‍, ‍δ‍, 
and  ‍P‍

‍β = 10
(
β0+ϕβ

conv+ ϕβ
CD40

)

‍

‍
δ = δ0 exp

(
ϕδ

conv + ϕδ
CD40

)
‍

‍
P = P0 exp

(
ϕP

conv + ϕP
CD40

)
‍

‍c = c0‍ +10.88

Model with group effect on ‍β, δ‍, 
and  ‍c‍

‍β = 10
(
β0+ϕβ

conv+ ϕβ
CD40

)

‍

‍
δ = δ0 exp

(
ϕδ

conv + ϕδ
CD40

)
‍

‍P = P0‍
‍c = c0exp

(
ϕc

conv + ϕc
CD40

)
‍ +11.61

Based on all these results, the optimal statistical model with adjustment for groups of treatment 
was defined as follows:
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Exchange of viruses between the nasopharyngeal and tracheal 
compartments
Afterward, we tested the possibility of an exchange of free plasma virus from between the two 
compartments of the URT. We made the hypothesis of a constant first-order exchange and we tested 
the addition a transfer of virions from nasopharyngeal to tracheal compartments and vice versa, with 
a migration rate gNT and gTN, respectively. To this end, equations of infectious (Vi) and non-infectious 
(Vni) viruses in Equation AE1 between the two compartments were linked as follows:

	﻿‍

dVT
i
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dt − gTNVT
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i
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ni
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ni
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i
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ni − gNTVN
ni‍�

(AE2)

with the arrow symbolizing the modification of the equations defined in Equation AE1 and gNT 
and gTN being two positive rates. As a first step, we tried to estimate either bidirectional or one 
of the two unidirectional transfers using the data from the 18 NHPs of the first study described in 
the main paper. However, data were too spare to bring enough information to get estimations. 
Consequently, as a second step, additional data were used: two naïve macaques were exposed to 
the same dose (1 × 106 pfu) of SARS-CoV-2 than the 18 NHPs of the main study. However, instead 
of being inoculated via intra-tracheal (4.5 mL) and intra-nasal (0.5 mL) routes, these latter received 
inoculum via intra-gastric (4.5 mL) and intra-nasal (0.5 mL) routes. Similar to the main study, the viral 
gRNA dynamics in both tracheal and nasopharyngeal compartments were repeatedly measured 
during the 20 days following the challenge (Figure 2—figure supplement 2E).

These two additional macaques having not received intra-tracheal inoculum, viral dynamics 
measured in this same compartment was expected to come from (at least partially) an exchange with 
the nasopharynx and thus bring information about it. However, having only two macaques without 
virions inoculated via intra-tracheal route, no enough information were available to totally estimate 
the model with exchanges. Consequently, these two additional NHPs having similar characteristics 
than the 18 NHPs involved in the main study, we made the assumption that the viral dynamics in 
nasopharynx after inoculation and the viral dynamics in the trachea, once the transfer initiated, should 
be described by the same model (without inoculum in trachea) and those by the same parameters. 
We expected that the difference of dynamics in trachea between these two set of macaques could 
allow an estimation of the parameters gTN and/or gNT. For that reason, we estimated the model in 
Equation AE1 using data from the 18 NHPs of the main study. Then using the data from the two 
additional NHPs, and assuming all parameters of the model resulting from Equation AE2 as fixed 
(see Appendix 1—table 2), except gTN and gNT, we tried to quantify the transfers of virions.

The estimation of multiple models on those two animals tended to conclude that only a 
unidirectional transfer of viruses from the nasopharyngeal to the tracheal compartment should be 
explored, with an estimation of gNT ranging from 0.9 to 2.5 day–1. Once these values quantified, we 
tried to update/re-estimate the model, initially estimated on the 18 NHPs, using only a unidirectional 
transfer from nasopharynx to trachea and fixing the value of the migration rate at the different values 
aforementioned. However, all tested values of gNT led irremediably to a degradation of the model 
with an increase of at least two points of BICc.

An estimation of the parameter gNT by profile likelihood (results not shown) led to a strictly 
increasing profile of the likelihood (the lower the better) and was thus no more conclusive. 
Consequently, no exchange of virions were assumed in the final model and the parameters gNT and 
gTN were fixed at 0 day–1.
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Appendix 2
BICc as selection criteria and multiple testing adjustment
In the case of classic covariate selection approaches using p-values as selection criteria, particular 
attention must be paid to take into account the dependence of the results on the number tests 
performed.

Over the years, multiple corrections have been proposed to adjust results for test multiplicity 
(e.g., Bonferroni correction, Benjamini and Hochberg correction among others).

Although we verified the significance of the covariate selected in our model, our covariate 
selection approach relies on the BICc. To ensure the robustness of the BICc as selection criterion 
despite the multiplicity of the tests, we performed an additional simulation work.

We simulated M=25 longitudinal variables for 18 individuals and with similar time points than 
those found on our data, meaning at days 0, 4, 9, and 20 post-infection. Variables were simulated 
as white-noise random variables such that for the ith subject at the jth time point, the mth variable 

was defined as 
‍
Xm

ij ∼ N
(

0, σ2
)
‍
 , with m=1, …, M. In our simulations, we tested five values for the 

variance σ2 ranging from 1% to 10% (five variables simulated for each value of σ).
Assuming these variables as our time-varying covariates, we applied the forward selection 

approach used in our method by testing each of them in a univariate manner of both β and δ.
As shown in Appendix 2—figure 1, the 50 models built to evaluate the adjustment of either 

β or δ for the simulated variables provide similar results in terms of BICc, and thus whatever the 
value of the standard deviation σ used. Consequently, these results appear as quite robust to the 
multiplicity of the test. Moreover, as expected, adjustments for white-noise random variables depict 
the degradation of the model in comparison to the model without covariates.

Appendix 2—figure 1. Results of the forward selection approach applied on the 25 simulated white-noise random 
variables. The discrete x-axis represents the different variables and the y-axis represents the values of the corrected 
Bayesian information criteria (BICc). Circles and triangles correspond to the results obtained with the parameters 
β or δ adjusted for the variables. The horizontal solid black line represents the value of the BICc obtained with the 
model without covariates while the horizontal dashed green line highlights the value of the criterion obtained with 
both β and δ adjusted for the groups of treatment.

Evaluation of the robustness of the estimation
To evaluate the robustness of the parameter estimates obtained on our models, despite the small 
number of independent observations, we performed a bootstrap procedure with replacement (Thai 
et al., 2014), for B=50 iterations. The bootstrap parameter estimate was calculated as the median of 
the parameter estimates from the B bootstrap samples while the standard error of each parameter 
was calculated according to the definition of Thai et al., 2014, which means with the SE of the lth 
component of the vector of parameters given by:
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b ‍ being its estimate obtained at the bth iteration of the bootstrap and ‍θ
(

l
)

B ‍ the bootstrap 
parameter estimate. For each bootstrap sample, we paid attention to keep the 1:1:1 ratio between 
the three groups of treatment, with six animals selected within each group. Results are reported in 
Appendix 2—table 1 and Appendix 2—table 2.

Appendix 2—table 1. Model parameters for viral dynamics in both the nasopharynx and the 
trachea estimated by the model adjusted for groups of intervention.
For the bootstrap procedure, 50 iterations were performed.

Parameter Meaning Value [95% CI] Unit

β
Viral infectivity in the naive group (×10–6) 0.91 [0.12; 7.03] (copies/mL)–1 day–1

Fold change in the convalescent group 0.15 [0.04; 0.58]  �

Fold change in the Conv-CD40 group 0.006 [0.001; 0.04]  �

δ
Loss rate of infected cells in the naive group 1.09 [0.74; 1.60] day–1

Fold change in the convalescent group 1.70 [1.08; 2.66]  �

Fold change in the Conv-CD40 group 2.00 [0.94; 4.27]  �

PN Viral production rate in the naso. (×103) 10.1 [1.16; 87.7] virions (cell day)–1

PT Viral production rate in the trachea (×103) 0.86 [0.08; 9.19] virions (cell day)–1

αvlsg Infected cells and sgRNA viral load ratio 1.42 [0.99; 2.02] virions cell–1

k Eclipse rate 3 day–1

c Clearance of de novo produced viruses 3 day–1

cI Clearance of inoculum 20 day–1

µ Percentage of infectious viruses 10–3  �

‍T
X,nbc
0 ‍ Initial number of target cells

1.25 × 105 (naso.)
2.25 × 104 (trachea) cells

Inoc0 Number of virions inoculated 2.19 × 1010 virions

ωβ SD of random effect on log10 β 0.319 [0.111; 0.527]  �

ωδ SD of random effect on δ 0.122 [-0.039; 0.283]  �

σVLn SD of error model gRNA in naso. 1.24 [0.96; 1.51]  �

σVLt SD of error model gRNA in trachea 1.09 [0.92; 1.26]  �

σsgVLn SD of error model sgRNA in naso 1.35 [1.08; 1.61]  �

σsgVLt SD of error model sgRNA in trachea 1.53 [1.15; 1.92]  �

Appendix 2—table 2. Model parameters for viral dynamics in both the nasopharynx and the 
trachea estimated by the model with the viral infectivity adjusted for ACE2-RBD-binding inhibition 
and the loss rate of infected cells adjusted for the group of treatment.
For the bootstrap procedure, 50 iterations were performed.

Parameters Meaning Value [95% CI] Unit

β
Infection rate with ECLRBD = 0 AU (×10–8) 0.82 [0.13; 5.13] (copies/mL)–1 day–1

Fold  ‍∆ECLRBD = 103 AU‍ 1.017 [1.012; 1.022]  �

Appendix 2—table 2 Continued on next page
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Parameters Meaning Value [95% CI] Unit

δ

Loss rate of infected cells 1.02 [0.80; 1.30] day–1

Fold change in the convalescent group 1.74 [1.24; 2.46]  �

Fold change in the Conv-CD40 group 2.17 [0.82; 5.74]  �

PN Viral production rate in the naso. (×103) 8.92 [0.42; 191] virions (cell day)–1

PT Viral production rate in the trachea (×103) 0.62 [0.02; 19.7] virions (cell day)–1

αvlsg Infected cells and sgRNA viral load ratio 1.32 [0.91; 1.90] virions cell–1

k Eclipse rate 3 day–1

c Clearance of de novo produced viruses 3 day–1

cI Clearance of inoculum 20 day–1

µ Percentage of infectious viruses 10–3  �

‍T
X,nbc
0 ‍ Initial number of target cells

1.25 × 105 (naso.)
2.25 × 104 (trachea) cells

Inoc0 Number of virions inoculated 2.19 × 1010 virions

ωβ SD of random effect on log10 β 0.205 [0.011; 0.399]  �

ωδ SD of random effect on δ 0.079 [-0.092; 0.250]  �

σVLn SD of error model gRNA in naso. 1.13 [0.90; 1.36]  �

σVLt SD of error model gRNA in trachea 1.27 [1.07; 1.48]  �

σsgVLn SD of error model sgRNA in naso 1.62 [1.30; 1.94]  �

σsgVLt SD of error model sgRNA in trachea 1.36 [1.15; 1.56]  �

Appendix 2—table 2 Continued
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6.7 Prague et al. 2016 (Biometrics) Doubly Robust Estimators in
Cluster Randomized Trials

Accounting for interference variables using semi-parametric augmentation for improving
efficiency in clustered randomized trials with missing at random outcomes. Prague M., Wang
R., Stephens A., Tchetgen Tchetgen E and DeGruttola V. Biometrics. 72(4) - 1066-1077 - April 2016.

This article integrates in the third axis of my research "Outreach to Implementation : Evaluation
in Population". It has been written during my Postdoctoral fellowship at Harvard School of Public
Health.

I chose this paper for its significant contribution to causal inference. It introduces a doubly robust GEE
estimator that effectively addresses missing data and imbalances in baseline covariates in CRT. The
estimator’s properties were rigorously tested through simulations and applied to an HIV prevention
study in South Africa. Additionally, an R package has been released for public use. The primary
challenge in this project was demonstrating the properties of this estimator (bias and variance), a
critical aspect for its reliability and application in practical research.
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Accounting for Interactions and Complex Inter-Subject Dependency in
Estimating Treatment Effect in Cluster-Randomized Trials with

Missing Outcomes
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Summary. Semi-parametric methods are often used for the estimation of intervention effects on correlated outcomes in
cluster-randomized trials (CRTs). When outcomes are missing at random (MAR), Inverse Probability Weighted (IPW) meth-
ods incorporating baseline covariates can be used to deal with informative missingness. Also, augmented generalized estimating
equations (AUG) correct for imbalance in baseline covariates but need to be extended for MAR outcomes. However, in the
presence of interactions between treatment and baseline covariates, neither method alone produces consistent estimates for
the marginal treatment effect if the model for interaction is not correctly specified. We propose an AUG–IPW estimator that
weights by the inverse of the probability of being a complete case and allows different outcome models in each intervention
arm. This estimator is doubly robust (DR); it gives correct estimates whether the missing data process or the outcome model
is correctly specified. We consider the problem of covariate interference which arises when the outcome of an individual may
depend on covariates of other individuals. When interfering covariates are not modeled, the DR property prevents bias as long
as covariate interference is not present simultaneously for the outcome and the missingness. An R package is developed imple-
menting the proposed method. An extensive simulation study and an application to a CRT of HIV risk reduction-intervention
in South Africa illustrate the method.

Key words: Augmentation; Cluster-randomized trials; Generalized estimating equation (GEE); Interactions; Interfer-
ence; Inverse probability weighting (IPW); Missing at random (MAR); Outcome Model; Propensity Score; R package;
Semi-parametric methods.

1. Introduction
In clustered randomized clinical trials (CRTs), the unit of
treatment assignment is a cluster of subjects, which we also
refer to as a community. In such settings, outcomes are likely
to be correlated among subjects within the same cluster.
Often used for estimation, generalized estimating equations
(GEE) based on semi-parametric methods (Zeger and Liang,
1986) target marginal effects of treatment. Within clusters,
dependence can be modeled using a working correlation struc-
ture. Compared to mixed effects models, this approach has the
advantage of focusing on population average effects rather
than cluster specific effects (which are equal for continu-
ous outcomes) and requires fewer parametric assumptions on
the outcome distribution (Hubbard et al., 2010). Moreover,
because both the outcome and the missing data mecha-
nism can be modeled, this approach allows doubly robust
estimation, which is impossible with mixed effect models.
Finally, this approach to estimation is robust to misspecifi-
cation of the correlation structure. However, challenges arise
in developing a consistent and efficient estimator of marginal

treatment effects; these include the need to adjust for miss-
ing data and accommodate covariate interference (wherein
a subject’s outcome may be affected by covariates of other
subjects) and interactions (wherein the effect of treatment
varies by covariate-defined subgroups). We propose a method
that addresses these issues and is practical to implement for
evaluating novel interventions in CRTs.

In CRTs, covariates may be fully observed even if the out-
come is missing. When data are assumed missing completely
at random (MCAR)–i.e., the observed process is independent
of observed and unobserved information (Rubin, 1976)—the
standard GEE approach provides consistent and asymptoti-
cally normal (CAN) estimators. If the pattern of missingness
depends on observed information but not on missing data, the
data are said to be Missing at Random (MAR). In this set-
ting, the standard GEE may yield biased estimates although
likelihood-based approaches, such as mixed effect models,
can provide unbiased estimators. Imputation (Paik, 1997) or
reweighing (Robins et al., 1995) methods can correct for this
bias. Although useful if the missingness mechanism is not

1066 © 2016, The International Biometric Society
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completely known, multiple imputation requires correct spec-
ification of the joint distribution of the outcomes, which is
especially difficult when they are correlated and the cluster
sizes are large (Beunckens et al., 2008). In this article, we
consider the Inverse Probability Weighting (IPW) approach
to analyze incomplete data. If the model for the missing-
ness mechanism represents the MAR data-generating process,
the IPW estimation provides CAN estimators of treatment
effects by reweighing complete cases according to the proba-
bility of being observed (Liang and Zeger, 1986; Robins et al.,
1994).

Recent methodological developments improve estimation
efficiency by leveraging baseline covariates; they may be based
on targeted maximum likelihood (Moore and van der Laan,
2009) and on augmentation (Robins et al., 1994; Robins, 2000;
Tsiatis et al., 2008; Zhang et al., 2008). Stephens et al. (2012)
developed the augmented GEE (AUG) methods in the set-
ting of dependent outcomes such as in CRTs. The AUG adds
a term to the standard GEE which relates the outcome to
covariates and treatment. Without missing data, randomiza-
tion assures that the AUG is CAN. However, in the case of
outcome data that are MAR but not MCAR, the AUG may
be biased. There exists theory for extending these methods to
MAR data for individual randomized Trials (RTs) with pos-
sibly correlated data (Van der Laan and Robins, 2003; Glynn
and Quinn, 2010); we focus on the details of implementing
the methods in CRTs.

The term interference can refer to different types of
relationships among exposures, outcomes, and covariates.
Interference in RTs arises when one subject’s treatment
may impact the outcomes of other subjects (Rosenbaum,
2007; Vansteelandt, 2007; Hudgens and Halloran, 2012;
Tchetgen Tchetgen and VanderWeele, 2012). A similar phe-
nomenon, confounding by clusters, has been discussed in the
context of observational studies (Seaman et al., 2014); we will
refer to such confounding as exposure interference. In CRTs,
all subjects within a cluster receive the same treatment; hence,
if the clusters are independent as typically assumed in prac-
tice, there is no exposure interference measured at the cluster
level. Therefore, any choice of working correlation structure
for the standard GEE will give a consistent estimator of the
marginal treatment effect (Pepe and Anderson, 1994). We will
investigate covariate interference among individuals nested
within clusters: the setting in which one subject’s covariate
may impact the outcomes of other subjects.

The IPW and the AUG can be combined in a doubly robust
method we refer to as the DR; we investigate its proper-
ties regarding robustness to misspecification of the missing
data and outcome-generating process. By considering a vari-
ety of data-generating mechanisms, we investigate settings in
which the DR has advantageous properties (consistency and
precision) compared to the IPW and the AUG, and discuss
the impact of covariate interference and treatment–covariate
interactions. This article is organized as follows. Section 2
introduces notation and assumptions for the IPW and the
AUG GEE approaches. Section 3 describes the DR approach,
investigates CAN properties, and discusses the issue of covari-
ate interference. Section 4 provides a motivating example with
data arising from a CRT of an HIV/Sexually Transmitted

Infection (STI) risk reduction intervention in South Africa
(Jemmott III et al., 2014). Simulation studies regarding bias,
relative efficiency, and coverage are described in Section 5,
and concluding remarks are made in Section 6.

2. Notation, Basic Models, and Assumptions

2.1. Notation for CRTs and Marginal Treatment Effect

We consider a study design in which a vector of P baseline
covariates Xij = (X1

ij, . . . , X
P
ij) and outcome Yij are recorded

for each subject j = 1, . . . , ni in community i = 1, . . . , M. The
sample size within each community is assumed fixed by design
and noninformative. Our setting compares two arms (treated
Ai = 1 and control Ai = 0); the probability of treatment
assignment is known and given by p = P(Ai = 1); extension to
a greater number of treatments is straightforward but compli-
cates the notation. In this article, the outcome Y i = [Yij]j=1,...,ni

is assumed to be continuous, but extension to other types
of outcomes is straightforward. The vector Ri = [Rij]j=1,...,ni

is the indicator of missingness; Yij is observed when Rij = 1.
The matrix of covariates Xi = [Xij]j=1,...,ni

is assumed to be
fully observed and consists only of pre-exposure covariates
measured at baseline.

Interest lies in estimating the marginal effect of the treat-
ment given by M∗

E = E(E(Yij|Ai = 1, Xi) − E(Yij|Ai = 0, Xi)).
For estimating M∗

E, we make inference about the parame-
ters β = (β0, βA)T indexing the marginal model g(μij(β, Ai)) =
g(E(Yij|Ai)) = β0 + βAAi, where μi(β, Ai) = [μij(β, Ai)]j=1,...,ni

and g is a one-to-one link function, which is an identity func-
tion in this article. Of particular interest, βA is equal to M∗

E.
Of note, extension to binary outcome Yij using a logistic func-
tion for g and considering odd-ratios is based on the same
reasoning.

When the outcome is believed to be MCAR, the miss-
ingness process is independent of Xi, Ai, and Y i. If one
assumes MAR and the missingness pattern is monotone, the
probability of missingness can be estimated by a multistep
approach by decomposing a monotone missing pattern into
multiple uniform missing data models (Robins et al., 1994; Li
et al., 2013). In CRTs, any component of Y i can be missing;
hence, the missingness pattern is nonmonotone. Therefore, we
make a stronger assumption than MAR that we refer to as
restricted MAR (rMAR): the probability that the outcome
for one individual is missing is independent of all outcomes
in the cluster, conditional on baseline exposure Ai, and clus-
ter characteristics Xi. The conditional probability that the
outcome is observed is denoted πij(Xi, Ai) = P(Rij = 1|Xi, Ai)
and is called the propensity score (PS). When data are rMAR,
ignoring missing data leads to biased inference if missingness
depends both on Xi and Ai. This is because the presence
of missing data no longer assures balance of confounding
factors between treatment arms. Therefore, analysis must
include adjustment for missing data; appropriate models for
this adjustment may require treatment–covariate interactions,
which may be difficult to specify and require many parame-
ters. Combining the IPW and the AUG, which this article
proposes, makes it possible to obtain consistent estimates of
the marginal effect of treatment without explicitly specifying
interaction terms while also improving efficiency.
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2.2. Inverse Probability Weighted Generalized
Estimating Equations (IPW)

In order to account for missing data, semi-parametric estima-
tors based on the IPW are found by solving the estimating
equation (1):

0 =
M∑

i=1

DT
i V−1

i W i(Xi, Ai, ηW ) [Y i − μi(β, Ai)]︸ ︷︷ ︸
ψi(Y i,Ri,Ai,β,ηW )

, (1)

where Di = ∂μi(β,Ai)

∂βT is the design matrix, V i is the covari-

ance matrix equal to U
1/2
i C(α)U

1/2
i with U i a diagonal matrix

with elements var(yij), and C(α) is the working correlation
structure with nondiagonal terms α. For example, for an
independence correlation structure α are zero; for exchange-
able all the elements of α are identical. Parameters α could
also depend on the treatment group C(α(Ai)) but we do
not consider this possibility in our implementation. In this
article, we estimate the α parameters using moment esti-
mators from the Pearson residuals as in McDaniel et al.
(2013). The ni × ni matrix of weights is W i(Xi, Ai, ηW ) =
diag [Rij/πij(Xi, Ai, ηW )]

j=1,...,ni
, where the PS is obtained by

fitting a binary response model that regresses the indicator
Rij on functions of Ai and Xij. The ηW are nuisance param-
eters estimated in the PS. A necessary assumption for this
method is that probabilities for the PS are bounded away from
zero. Several authors have noted the instability that may arise
from small probabilities of observation (i.e., large weights) and
proposed use of stabilized or truncated weights; see Seaman
and White (2013) for a review. To ensure that the IPW pro-
vides a CAN estimator, the PS must include all variables
that are associated simultaneously with both the missing-
ness and outcome processes (Brookhart et al., 2006) including
treatment–covariate interaction terms (Belitser et al., 2011).
In other words, the PS must be correctly specified, in the
sense that πij(Xi, Ai, ηW ) = P(Rij = 1|Xi, Ai) for some ηW .

2.3. Augmented Generalized Estimating Equations
(AUG)

For settings with complete data, Stephens et al. (2012)
proposed the AUG estimator which can improve efficiency
relative to the standard GEE by incorporating baseline covari-
ates. The AUG is constructed by subtracting from the set of
GEEs the orthogonal projection of the standard estimating
function onto the span of scores corresponding to all smooth
parametric models for the treatment assignment mechanism
given covariates. The AUG is given in equation (2):

0 =
M∑

i=1

[
DT

i V−1
i (Y i − μi(β, Ai))︸ ︷︷ ︸

ψ̃i(Y i,Ai,β)

+
∑

a=0,1

pa(1 − p)1−aDT
i V−1

i

(
Bi(Xi, Ai = a, ηB)

− μi(β, Ai = a)
)]

. (2)

The term ψ̃i(Y i, Ai, β) is similar to ψi(Y i, Ri, Ai, β, ηW ) in
equation (1) for the IPW except that W i is set to identity
because there is no adjustment for missing data. Defini-
tions for Di and V i remain the same. The vector Bi(Xi, Ai =
a, ηB) = [Bij(Xi, Ai = a, ηB)]j=1,...,ni

is an arbitrary function of
Xi given for each treatment arm. The ηB are nuisance param-
eters that must be estimated. The estimator in equation (2) is
most efficient if Bij(Xi, Ai = a, ηB) is equal to E(Yij|Xi, Ai = a)
(Robins et al., 1994; Zhang et al., 2008). For this reason, we
shall refer to Bi(Xi, Ai = a, ηB) as the outcome model (OM),
and describe the OM as correctly specified when Bij(Xi, Ai =
a, ηB) = E(Yij|Xi, Ai = a) for some ηB. In the absence of miss-
ing data, the AUG remains consistent even if the OM is not
correctly specified. Correct specification can lead to substan-
tial efficiency gains compared to the standard GEE. Moreover,
in presence of treatment–covariate interactions, it is useful to
fit a different regression model for the OM for each treat-
ment group, e.g., Bij(Xi, Ai = a, ηB) = γa

0 + ∑P

r=1
γa

r Xr
ij with

ηB = (γ0
1 , . . . , γ0

P , γ1
1 , . . . , γ1

P ), thereby obviating the need to fit
covariate–treatment interactions terms. In presence of rMAR,
the AUG does not ensure consistent estimation; instead, one
must combine the AUG with the IPW as we show below.

3. Methods to Accommodate Missing Data,
Treatment Covariate Interactions, and
Covariate Interference in CRTs

3.1. Doubly Robust Augmented IPW Generalized
Estimating Equations (DR)

We extend the AUG in equation (2) to account for
missing data using the IPW in equation (1) by subtract-
ing from the set of GEEs the orthogonal projection of
ψi(Y i, Ri, Ai, β, ηW ) onto the span of scores corresponding to
all smooth parametric models for the missing data process
and the treatment assignment mechanism given covariates
(Tsiatis, 2006). This gives the following estimating equation
(see Web-Supplementary Material B for details):

0 =
M∑

i=1

[
DT

i V−1
i W i(Xi, Ai, ηW ) (Y i − Bi(Xi, Ai, ηB))

+
∑

a=0,1

pa(1 − p)1−aDT
i V−1

i

(
Bi(Xi, Ai = a, ηB)

− μi(β, Ai = a)
)]

, (3)

=
M∑

i=1

�i(Y i, Ri, Ai, Xi, β, ηW, ηB).

The Di, V i and the PS are defined such as in equation (1),
the OM denoted Bi(Xi, Ai = a, ηB) is defined for each treat-
ment group such as in equation (2). The estimator denoted
β̂aug is found by solving the estimating equation given in
equation (3). Although analytic solutions sometimes exist,
coefficient estimates are generally obtained using an iterative
procedure such as the Newton–Raphson method. To get β̂aug,
we use the estimated PS (πij(Xi, Ai, η̂W )) and estimated OM
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Marginal Treatment Effect in CRTs with Missing Outcomes 1069

(Bi(Xi, Ai, η̂B)). As mentioned above, treatment–covariate
interactions can be accounted for by fitting OM regres-
sions separately by treatment group. One could also estimate
parameters of the PS model separately by treatment groups.
This approach, however, may provide less stable results due
to variability in the calculation of weights. In this article,
η̂W in πij(Xi, Ai, η̂W ) are obtained using a logistic regression
and η̂B in Bi(Xi, Ai, η̂B) are obtained using a linear regres-
sion. Thus, we treat Rij and Rij′ as conditionally independent
given Ai and Xi. In the presence of correlation of Rij and Rij′ ,
one might be able to improve efficiency of estimation of πij

and therefore of the marginal treatment effect by account-
ing for this correlation. Of note, estimation procedures other
than generalized linear models could also be used to com-
pute the OM and the PS values. The DR estimator is doubly
robust in the sense that it is CAN under correct specifica-
tion of either the OM (i.e., Bij(Xi, Ai = a, ηB) = E(Yij|Ai =
a, Xi) for some ηB) or the PS (i.e., πij(Xi, Ai, ηW ) = P(Rij =
1|Xi, Ai) for some ηW ) (see Web-Supplementary Material Sec-
tion C1). Implementation in R is available on the CRAN
in the package “CRTgeeDR.” Source code had been made
available as Web-Supplementary material. We note that in
contrast with several existing software packages (for exam-
ple, proc GENMOD in SAS, 2015), our implementation of
the weighted GEE, which uses V−1

i W i(Xi, Ai, ηW ) instead of

W
1/2
i (Xi, Ai, ηW )V−1

i W
1/2
i (Xi, Ai, ηW ), guarantees consistency

for all choices of working correlation structure (see details in
Web-Supplementary Material Section C2 and D).

3.2. Variance of the DR Estimator

The variance of β̂aug is estimated by the sandwich variance
estimator. There are two external sources of variability that
need to be accounted for: estimation of ηW for the PS and
of ηB for the OM. We denote � = (β, ηW, ηB) the estimated
parameters of interest and nuisance parameters. We can stack
estimating functions and score functions for �:

Ui(�) =

⎛
⎝

�i(Y i, Ri, Ai, Xi, β, ηW, ηB)

SW
i (Xi, Ai, ηW )

SB
i (Xi, Ai, ηB)

⎞
⎠ ,

where SW
i and SB

i represent the score equations for patients in
cluster i for the estimation of ηW and ηB in the PS and the OM.
A standard Taylor expansion paired with Slutzky’s theorem
and the central limit theorem provide the sandwich estima-
tor adjusted for nuisance parameters estimation in the OM
and PS. We refer to this as the nuisance-adjusted sandwich
estimator:

Var(�) = E

[
∂U i(�)

∂�

]−1T

E
[
U i(�)UT

i (�)
]

︸ ︷︷ ︸
�adj

E

[
∂U i(�)

∂�

]−1

︸ ︷︷ ︸
	−1
adj

.

(4)

The variance estimator v̂ar(β̂aug) is obtained by estimat-
ing unknown quantities upon substituting empirical means
for expectations and �̂ = (β̂, η̂W, η̂B) for �. Thus, the term

�̂adj is given by 1
M

∑M

i=1
Û i(�̂)Û i(�̂)T and 	̂adj is given by

1
M

∑M

i=1
∂Ûi (̂�)

∂�
.

In small sample settings, it is likely that this estimator
of the variance of β̂aug is biased. We implemented Fay’s
bias-correction approach, which is particularly suitable for M-

estimators (Fay et al., 2001). The term �̂adj in equation (4)

is replaced by �̂fay given by 1
M

∑M

i=1

[
Ĥ iÛ i(�̂)

(
Ĥ iÛ i(�̂)

)T
]
,

where Ĥ i is a diagonal matrix with diagonal terms Ĥ i[jj] =[
1 − min(q, ( ∂Ûi (̂�)

∂�
	̂i

adj)[jj]

]
, q = 0.75 is a frequently used

bound.

3.3. Definition of Covariate Interference and
Implication for Analysis

In previous sections, we discussed covariates measured on the
index subject (j), but other subjects’ (j′) covariates may also
impact the outcome for the index subject. An example of a
potentially interfering covariate is described by Kaiser et al.
(2011) who found a positive association between age of part-
ner and infection with HIV. Similarly, the characteristics of
subgroups to which the index case belongs (household, neigh-
borhoods, etc.), whether known or not, may be interfering
covariates (Brumback and He, 2011). In this article, we con-
sider the phenomenon of covariate interference where there
exists at least one individual j′ �= j such that E(Yij|Xij) �=
E(Yij|Xij, Xij′). That is, even after all covariates for the index
subject j have been included in the model, the covariates of
individuals other than the index subject still affect the out-
come of the index subject j; we refer to such covariates as
interfering covariates. See Pepe and Anderson (1994) for a
similar definition in longitudinal data and see Liu and Hud-
gens (2014), Seaman et al. (2014) for an analogous definition
in nonrandomized clustered data in the context of confound-
ing by cluster and interference. Refer to Web-Supplementary
Material Section A for a causal interpretation of covariate-
interference.

When interfering covariates affect either the outcome
(E(Yij|Xij) �= E(Yij|Xij, Xij′)) or the missingness process
(E(Rij|Xij) �= E(Rij|Xij, Xij′)), but not both, the DR estima-
tor is CAN even if the interfering covariates are not included
in the models, provided that either the PS or the OM is
correctly specified. Accounting for covariate interference in
the OM increases efficiency if and only if interfering covari-
ates predict the outcome. When such covariates impact both
the outcome and the missing data-generating processes, they
must be included in either the OM or the PS models. Thus,
the DR estimator is CAN if the model for either the OM or the
PS is correctly specified; i.e., either the PS or the OM includes
all the covariates Xi in a model that correctly represents the
data-generation processes. We acknowledge that this model
for interfering covariates is not likely to be known and can be
difficult to identify. Different cluster sizes and sub-clustering
structures (such as households) may make infeasible the use
of regression techniques in the OM or the PS because of
the potentially different dimensions of the individual and
interfering covariates. Cluster summary measures such as the
mean or maximum of individual covariates in the cluster (or
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sub-groups in each cluster) may nonetheless be useful in incor-
porating interference covariates in models (Brumback et al.,
2010).

4. Application

4.1. Description of the SAM Study

We analyze data from the “South African Men” (SAM)
study which randomized 22 pair-matched clusters to a
health-promotion intervention (control) and an HIV/STI risk-
reduction intervention in a CRT design; the study included
1181 South African men who have sex with women. A
complete description of the study design can be found in
(Jemmott III et al., 2014). We focus on a cross-sectional
analysis of these data after 1 year and ignore matching. The
primary outcome of our analysis is the overall percentage of
acts of protected intercourse among the total number of acts
of intercourse. When the total number of acts of intercourse
is zero, we set the percentage to 100%, as no exposure implies
no risk. Secondary outcomes are the percentages of protected
acts of intercourse by type of partnership and type of inter-
course (vaginal and anal sex with main and casual partners).
Descriptive statistics for these outcomes, including proportion
of missing observations by type of partner and intercourse are
provided in Table 1. Slightly more observations are missing in
the HIV/STI intervention group (20.8% versus 17.5%). The
overall protection percentage after 1 year is about 64% for
the HIV/STI intervention compared to 60% for the control
group.

As the proportion of missing baseline covariates was less
than 0.1%, we consider them to be MCAR and exclude
observation with missing covariates from the analysis. No
community sub-structure, such as household or neighborhood
structures, was described in the SAM study. Here, we consider
potential interfering covariates at a cluster level by taking the
mean (or mode for qualitative variables) of baseline measures

in the community: Xk
i. = 1

ni

∑
j=1,...,ni

Xk
ij. For example, Hawkes

et al. (2013) demonstrated that the mean religiosity score for
a community, defined as the mean of individual religiosity
score in the community, may have an impact on each individ-
ual outcome and missingness in particular regarding sexual
behaviors. Table 1 describes socio-demographical individual-
level variables and interfering covariates. We provide p-values
for Wald tests testing the association of covariates and
treatment–covariate interactions with the outcome and the
missingness indicator. In this study, there is evidence of inter-
actions of individual covariates with treatment for both the
outcome and the missing data-generation processes. However,
the interfering covariates defined here do not appear to be sig-
nificantly associated with both the outcome and the missing
data-generation process.

4.2. Results

We analyze these data with the GEE, the AUG, the IPW, and
the DR using both independence (-I) and exchangeable (-E)
working correlation structures. Variables for the PS, and the
OM were selected using a forward stepwise regression (sepa-
rately for each treatment group) from among all the individual
covariates Xij presented in Table 1. We did not include the

interfering covariates (Xi.) in the analysis as none impacted
both outcome and missingness processes (Table 1). We used
the step function in R based on the AIC criterion. Results
of these selections are given in Web-Supplementary Mate-
rial F. We describe here the results for the primary outcome.
The amount of missingness is larger in the treated arm and
increases with age; it decreases with religiosity, good health
score, and exercise. The OM patterns are substantially dif-
ferent for treated and control; the only common variable is
the CAGE score. In both arms, lower alcohol consumption
is associated with a greater percentage of protected acts of
intercourse. Results are presented in Table 2 for primary and
secondary outcomes. With the DR-E, we observe a significant
difference of 7.4% (sd = 2.9%, p = 0.01) in the overall per-
centage of protected intercourse in the HIV/STI intervention
group compared to the control group. Analyses of the sec-
ondary outcomes suggest that this result is mainly driven by
condom use during vaginal intercourse with a marital partner.
The HIV/STI intervention has no significant impact on other
outcomes. Using the DR rather than the standard GEE or
the AUG has an impact on the treatment effect estimates and
associated standard errors (SE). The difference between these
approaches is apparent in the magnitude and direction of the
marginal treatment effect estimate. For example, the analysis
for the GEE-I (3.8 [−1.0; 8.5]) does not demonstrate a signifi-
cant effect of the HIV/STI intervention on overall percentage
of protected intercourse, whereas this effect is stronger and
significant for the DR-I (7.3 [1.6; 13.0]). Both the GEE-I
and the AUG-I (5.4 [2.2; 8.7]) are probably biased due to
missing data. Using the DR instead of the IPW leads to an
increased magnitude of the treatment effect and an increased
level of statistical significance: for example, the DR-E (7.4
[1.73; 13.0]) compared to the IPW-E (3.4 [-1.4; 8.3]).

5. Simulation Studies

5.1. Properties of the DR Estimator

We consider a setting with continuous outcome Yij and assign-
ment of treatment Ai at a cluster level with probability
p = 1/2. We generate a normally distributed covariate X1

ij

(independent of Ai) with mean 1 and a standard deviation

of 5. For each individual, we define a covariate X1
i. which

is the mean of X1 for all the subjects in the same clus-

ter: X1
i. = 1

ni

∑ni

j=1
X1

ij. Similarly, we generate X2
ij ∼ N(2, 5) and

X3
ij ∼ N(3, 5); X2

i. and X3
i. are defined as was X1

i. and are pos-
sible interfering covariates. The model for simulation is given
in equation (5):

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Yij = βO
0 + βO

AAi + βO
1 X1

ij

+βO
I1X

1
i. + βO

A1AiX
1
ij + εO

i + εO
ij

logit(P(Rij = 0)) = βM
0 + βM

A Ai

+βM
1 X1

ij + βM
I1X

1
i. + βM

A1AiX
1
ij

. (5)

The parameters βO = (βO
0 , βO

A, βO
1 , βO

I1, β
O
A1) are the regres-

sors associated with intercept, treatment, covariate, interfer-
ing covariate, treatment–covariate interaction for the outcome

 15410420, 2016, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.12519 by Inserm
 D

isc Ist, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Marginal Treatment Effect in CRTs with Missing Outcomes 1071

Table 1
Descriptive statistics of outcomes, sociodemographic individual covariates, and interfering covariates by intervention group

in SAM study. Values in bold in the table are p-values < 0.1.

Descriptive statistics of the outcomes

HIV/STI Control group

Mean [IQR] % missing Mean [IQR] % missing

Primary outcome for percentage of protection (Y)

Overall 64% [26; 100] 20.8% 60% [22; 100] 17.5%

Secondary outcomes for percentage of protection (Y1, Y2, Y3, and Y4)

Main partner vaginal sex 61% [22; 100] 10.2% 56% [0; 100] 9.3%
Casual partners vaginal sex 68% [33; 100] 19.7% 68% [33; 100] 17.1%
Main partner anal sex 37% [0; 68] 11.2% 52% [0; 100] 8.6%
Casual partners anal sex 35% [0; 100] 15.1% 31% [0; 100] 12.8%

Descriptive statistics of the covariates

p-value for association with

HIV/STI Control group Ya P(Y observed)b

Mean [IQR] Mean [IQR] ηO
2 �= 0 ηO

3 �= 0 ηM
2 �= 0 ηM

3 �= 0

Individual covariates Xij

Age 26 [21; 30] 26.5 [21; 31] 0.41 0.13 0.03 0.18
Employment yes 23% 26% 0.04 0.17 0.01 <0.001
Married yes 23% 24% 0.05 0.76 0.68 0.50
Education yes 46% 42% 0.58 <0.001 0.76 0.05
Number of children 1.5 [0; 2] 1.7 [0; 2] 0.21 0.12 0.25 0.31
Wealth 5.3 [4; 7] 5.3 [4; 7] 0.77 0.96 0.25 0.54
Social desirability 3.4 [3.2; 3.4] 3.4 [3.2; 3.4] 0.87 0.33 0.04 0.34
Religiosity 0.01 [−0.7; 0.7] 0.00[-0.7; 0.6] 0.46 0.25 0.07 0.69
HIV/STI knowledge 14.3 [12; 17] 14.1 [12; 17] 0.13 0.93 0.37 0.03
Condom behaviors 3.7 [3.3; 4] 3.7 [3.3; 4.1] <0.001 0.36 0.16 0.33
Condom knowledge 3.1 [3; 4] 3.1 [3; 4] 0.41 0.57 0.21 0.06
Condom efficacy 3.9 [3.7; 4.2] 3.9 [3.7; 4.2] 0.01 0.31 0.97 0.42
Condom peer norm 3.7 [3.4; 4.1] 3.7 [3.4; 4] <0.001 0.71 0.49 0.32
Never had HIV test 20% 21% 0.61 0.80 0.74 0.34
Sexual activity Yes 84% 84% 0.71 0.06 0.53 0.77
Eating attitude 4.2 [4; 5] 4.2 [3.7; 5] 0.76 0.01 0.74 0.53
Exercise yes 43% 42% 0.99 0.04 0.12 0.46
CAGE >= 2 62% 58% 0.22 0.41 0.18 0.08
Health knowledge 10.8 [9; 12] 10.6 [9; 13] 0.51 0.38 0.59 0.83

Interfering covariates Xi. = 1
ni

∑
j=1,...,ni

Xij

Mean age 26 [25; 27] 27 [26; 28] 0.39 0.96 0.05 0.10
Mean education yes 27% 8% 0.58 0.61 0.72 1.00
Mean number of children 1.6 [1.2; 2.1] 1.7 [1.1; 2.1] 0.81 0.67 0.14 0.59
Mean wealth 5.4 [4.4; 6.2] 5.2 [4.4; 6.1] 0.45 0.38 0.23 0.92
Mean social desirability 3.4 [3.3; 3.4] 3.4 [3.3; 3.4] 0.16 0.44 0.60 0.85
Mean religiosity 0.00 [−0.1; 0.1] 0.00 [-0.1; 0.1] 0.84 0.70 0.18 0.94
Mean HIV/STD knowledge 14.2 [14; 15] 13.9 [13; 14] 0.37 0.23 0.01 0.45
Mean condom behaviors 3.7 [3.6; 3.8] 3.7 [3.7; 3.8] 0.37 0.40 0.02 0.95
Mean condom knowledge 3.1 [2.9; 3.3] 3.1 [2.9; 3.2] 0.52 0.21 0.15 0.32
Mean condom efficacy 3.9 [3.7; 4.0] 3.9 [3.8; 4.0] 0.23 0.38 0.21 0.58
Mean condom peer norm 3.7 [3.6; 3.8] 3.7 [3.6; 3.7] 0.23 0.52 <0.001 0.01
Mean eating attitude 4.2 [4.1;4.3] 4.2 [4.0; 4.3] 0.71 0.15 0.25 0.07
Mean exercise yes 76% 82% 0.43 0.53 0.10 0.82
Mean CAGE>=2 63% 37% 0.99 0.79 0.71 0.41
Mean health knowledge 10.7 [10.5; 11] 10.6 [10.3; 10.8] 0.10 0.10 0.15 0.73

a Wald test for ηO
2 and ηO

3 in the regression Y = ηO
0 + ηO

1 A + ηO
2 X + ηO

3 AX
b Wald test for ηM

2 and ηM
3 in the regression logit[P(R = 1)] = ηM

0 + ηM
1 A + ηM

2 X + ηM
3 AX
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1072 Biometrics, December 2016

Table 2
Analysis of effect of STI/HIV intervention on overall percentage of protected intercourses during the last 3 months 1 year

after intervention (primary outcome) and stratified by intercourse types (secondary outcomes) in SAM study with the GEE,
the IPW, the AUG and the DR

Independence (-I) Exchangeable (-E)

β̂A SE p-value β̂A SE p-value

Overall percentage of protected intercourse (Y)

GEE 3.751 2.419 0.121 3.738 2.361 0.113
IPW 3.445 2.558 0.178 3.429 2.488 0.168
AUG 5.414 1.665 0.001 5.478 1.633 0.001
DR 7.341 2.923 0.012 7.386 2.885 0.010

Percentage of protected vaginal intercourse with marital partner (Y1)

GEE 5.805 2.689 0.031 5.761 2.67 0.031
IPW 5.660 2.720 0.037 5.626 2.698 0.037
AUG 6.550 1.811 <0.001 6.518 1.794 <0.001
DR 7.254 2.542 0.004 7.273 2.50 0.004

Percentage of protected vaginal intercourse with casual partner (Y2)

GEE −0.621 4.180 0.882 −0.497 4.164 0.905
IPW −1.500 4.182 0.720 −1.356 4.17 0.745
AUG −1.191 2.638 0.652 −1.121 2.624 0.669
DR −2.103 4.077 0.606 −2.018 4.058 0.619

Percentage of protected anal intercourse with marital partner (Y3)

GEE −0.983 1.083 0.364 −0.972 1.081 0.369
IPW −0.934 1.087 0.390 −0.921 1.085 0.396
AUG −0.951 0.684 0.164 −0.954 0.684 0.163
DR −0.835 1.005 0.406 −0.819 1.003 0.414

Percentage of protected anal intercourse with casual partner (Y4)

GEE 0.013 1.201 0.991 −0.002 1.204 0.998
IPW −0.003 1.181 0.998 −0.019 1.184 0.987
AUG −0.467 0.834 0.576 −0.476 0.837 0.570
DR −0.963 1.207 0.425 −0.971 1.208 0.421

model. Parameters βM are the same for the missing data-
generating process. Scenarios with low correlation among
cluster (0.05) were simulated with εO

i ∼ N(0, 0.05) and εO
ij ∼

N(0, 1.0) for cluster and individual random errors; scenar-
ios with high correlation (0.2) were simulated with εO

i ∼
N(0, 0.25) and εO

ij ∼ N(0, 1.0). True correlation structure is
exchangeable. We investigate small sample (M = 10 and ni =
(10, 20, 30) with probability 1/3 each) and large sample (M =
100 and ni = (90, 100, 110) with probability 1/3 each) proper-
ties. In each scenario, we generate 1000 replicates of datasets.

We evaluate the double robustness of the DR estimator
in the setting of large and small sample with low correla-
tion, but similar results are observed for large correlation. We
investigate models of analysis with OM and PS correctly spec-
ified (TRUE), misspecified (MISS), and partially specified
omitting treatment–covariate interactions (NONE). Table 3
describes the data-generation process, provides the formula-
tions of the models of analysis, and shows the results from
analysis; on average, 26% of outcomes were missing and the

average ICC was 0.08. When there is no missing data, the tra-
ditional GEE is consistent because of randomization. When
outcome data are MAR but not MCAR, the GEE and the
AUG analysis are biased (−1.7 for the GEE-I and −1.8 for
the AUG-I). When either the OM or the PS models or both
are correctly specified, there is negligible estimated bias for
the DR—a finding that confirms consistency. In small sam-
ples, this bias is bigger when only the PS is correct because
the weights are estimated with lower accuracy. Using the
more common choice of implementation for the weighted GEE
W

1/2
i (Xi, Ai, ηW )V−1

i W
1/2
i (Xi, Ai, ηW ) leads to very high bias

if an exchangeable correlation structure is used (0.374 if the
OM is correct and 858 if it is not, for large sample). When the
OM is correct, the coverage remains around 95% (see Table 2
in Web-Supplementary Material E). Using V−1

i W i(Xi, Ai, ηW )
in the implementation of weights addresses this problem and
permits the use of correlation structures other than inde-
pendence. The IPW with correct PS also corrects the bias
(−0.01) but is less efficient than the DR approach; coverage
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Marginal Treatment Effect in CRTs with Missing Outcomes 1073

Table 3
Properties for the Doubly robust estimator (DR) compared to the GEE, the IPW, and the AUG using the data-generation
mechanism from equation (5) with covariate interference for the outcome and missing data-generation process. Misspecified
(.MISS), correctly specified (.TRUE), and partially specified without treatment–covariate interactions (.NONE) OM and PS

are investigated. Statistics for 1000 replicates are the bias compared to M∗
E = 2.0, the empirical standard errors over the

replicates, the mean asymptotic nuisance-adjusted standard error, and the coverage with independence (-I) and exchangeable
(-E) working correlation matrix.

Standard error (SE) Coverage

Bias Empirical Robust 95%

M∗
E -I -E -I -E -I -E -I -E

Small sample M = 10, ni = (10, 20, 30) with probability 1/3 each, Low correlation

GEE (no missing) 2.0 0.0186 0.0171 0.6553 0.6598 0.5629 0.5682 93.0 92.9

GEE 2.0 −1.7186 −1.7166 0.5717 0.5724 0.5074 0.4306 12.8 7.2
IPW.PS.TRUE 2.0 −0.1623 −0.1689 1.1447 1.1473 0.7987 0.8161 83.9 84.7
AUG.OM.TRUE 2.0 −1.8142 −1.8134 0.4530 0.4148 0.8751 0.8699 39.4 38.0

DR.OM.MISS.PS.TRUE 2.0 −0.0127 −0.0366 2.7327 2.6793 1.4029 1.3985 92.0 92.0
DR.OM.TRUE.PS.MISS 2.0 0.0011 0.0001 0.1544 0.1545 0.1287 0.1330 86.0 87.5
DR.OM.TRUE.PS.TRUE 2.0 −0.0017 −0.0022 0.1881 0.1838 0.1413 0.1447 86.9 87.4

DR.OM.TRUE.PS.NONE 2.0 0.0006 −0.0003 0.1612 0.1608 0.1330 0.1368 85.8 87.8

Large sample M = 100, ni = (90, 100, 110) with probability 1/3 each, Low correlation

GEE (no missing) 2.0 0.0042 0.0043 0.1156 0.1157 0.1155 0.1156 94.3 94.5

GEE 2.0 −1.7335 −1.7321 0.1015 0.1013 0.0994 0.0994 0.0 0.0
IPW.TRUE 2.0 −0.0113 −0.0108 0.2626 0.2621 0.2507 0.2510 93.5 93.9
AUG.TRUE 2.0 −1.8021 −1.8024 0.0694 0.0664 0.2556 0.2550 0.0 0.0

OM.MISS.PS.TRUE 2.0 −0.0089 −0.0079 0.3127 0.3105 0.3937 0.3940 99.3 99.1
OM.TRUE.PS.MISS 2.0 0.0013 0.0014 0.0259 0.0259 0.0256 0.0257 95.2 95.7
OM.TRUE.PS.TRUE 2.0 0.0013 0.0014 0.0284 0.0284 0.0285 0.0285 95.8 96.0

OM.TRUE.PS.NONE 2.0 0.0014 0.0014 0.0266 0.0266 0.0263 0.0263 95.2 95.1

Marginal model for the GEE:
μij(β, Ai) = β0 + βAAi

OM is fitted for each treatment group Ai = a:

OM.TRUE Bij(Xi, Ai = a) = γa
0 + γa

1X
1
ij + γa

2X
1

i.

OM.MISS Bij(Xi, Ai = a) = γa
0 + γa

1X
2
ij

PS is fitted for the whole dataset:

PS.TRUE πij(Xi, Ai) = expit
(
γM
0 + γM

A Ai + γM
1 X1

ij + γM
2 X1

i. + γM
3 AiX

1
ij

)

PS.MISS πij(Xi, Ai) = expit
(
γM
0 + γM

A Ai + γM
1 X2

ij

)

PS.NONE πij(Xi, Ai) = expit
(
γM
0 + γM

A Ai + γM
1 X1

ij + γM
2 X1

i.

)

is close to the nominal value of 95%. In small samples, the
empirical SE are underestimated. By contrast, in the large
sample setting, using the nuisance-adjusted sandwich estima-
tor for the DR leads to good estimates of the asymptotic SE
(0.0263) compared to the empirical SE (0.0266) over 1000
replicates. Moreover, we observe that the coverage using the
DR is comparable to that of the GEE with complete data.
Finally, we note that when the treatment–covariate interac-
tions are ignored in the PS and only accounted for in the OM
by fitting a different regression in each treatment group, the
DR approach is also consistent and achieves same precision

as when both the PS and the OM are correct (0.0014 and
SE = 0.027 for OM.TRUE.PS.NONE and 0.0013 SE = 0.029
for OM.TRUE.PS.TRUE).

Table 4 presents the results of analyses with the GEE,
the IPW, the AUG, and the DR that investigate the impact
of correlation of the outcome in the data with small and
large sample. The average percentage of missing outcomes
is 23%; the average ICC is 0.04 for low correlation and 0.21
for high correlation. We analyzed the data using a PS and
an OM model that was fit using a stepwise variable selection
from among all of the individual and interfering covariates
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1074 Biometrics, December 2016

Table 4
Sample size effect and correlation magnitude effects for data-generation mechanism given in equation (5) with

βO = (1, 1, 1, 1, 1) and βM = (−3, 1/2, 1/2, 1/2, 1/2). Statistics for 1000 replicates are the bias compared to M∗
E, the empirical

standard errors over the replicates, the mean asymptotic nuisance-adjusted standard errors and the coverage for the GEE,
the IPW, the AUG, and the DR with independence (-I) and exchangeable (-E) working correlation matrix.

Standard error (SE) Coverage

Bias Empirical Robust Fay’s Robust Fay’s

M∗
E -I -E -I -E -I -E -I -E -I -E -I -E

Small sample M = 10, ni = (10, 20, 30) with probability 1/3 each, Low correlation

GEE 2.0 −1.7473 −1.7479 0.4351 0.4360 0.3963 0.3256 0.4559 0.4603 0.8 2.3 3.9 4.9
IPW 2.0 −1.0130 −1.0130 0.6793 0.6842 0.5538 0.5591 0.6735 0.6766 49.0 49.2 59.8 59.9
AUG 2.0 −1.8099 −1.8111 0.3371 0.3269 0.8362 0.8353 0.8834 0.8817 29.7 29.1 40.1 39.2
DR 2.0 0.0008 0.0006 0.1552 0.1586 0.1127 0.1140 0.1190 0.1201 84.8 83.8 86.0 86.2

Large sample M = 100, ni = (90, 100, 110) with probability 1/3 each, Low correlation

GEE 2.0 −1.7335 −1.7321 0.1015 0.1013 0.0985 0.0727 0.0994 0.0994 0.0 0.0 0.0 0.0
IPW 2.0 −0.9955 −0.9952 0.1514 0.1517 0.1559 0.1563 0.1588 0.1592 0.2 0.2 0.2 0.2
AUG 2.0 −1.8019 −1.8022 0.0695 0.0664 0.2556 0.2550 0.2569 0.2563 0.0 0.0 0.0 0.0
DR 2.0 0.0016 0.0017 0.0265 0.0265 0.0262 0.0263 0.0264 0.0264 95.1 95.0 95.1 95.2

Small sample M = 10, ni = (10, 20, 30) with probability 1/3 each, High correlation

GEE 2.0 −0.0086 −0.0086 0.5265 0.5314 0.4701 0.4721 0.5651 0.5657 88.5 88.4 92.9 92.7
IPW 2.0 −1.0221 −1.0229 0.7026 0.7083 0.5776 0.5829 0.7015 0.7044 52.4 52.2 62.2 61.5
AUG 2.0 −1.7985 −1.7987 0.5058 0.5084 0.8748 0.8727 0.9243 0.9209 35.8 35.8 45.1 45.5
DR 2.0 0.0098 0.0062 0.4328 0.4407 0.2469 0.2480 0.2607 0.2614 77.4 77.7 79.7 79.6

Large sample M = 100, ni = (90, 100, 110) with probability 1/3 each, High correlation

GEE 2.0 −1.7325 −1.7312 0.1145 0.1141 0.1121 0.0753 0.1132 0.1132 0.0 0.0 0.0 0.0
IPW 2.0 −0.9945 −0.9940 0.1618 0.1620 0.1652 0.1656 0.1682 0.1686 0.2 0.2 0.2 0.2
AUG 2.0 −1.8014 −1.8017 0.0787 0.0761 0.2587 0.2581 0.2600 0.2594 0.0 0.0 0.0 0.0
DR 2.0 0.0029 0.0032 0.0609 0.0610 0.0590 0.0590 0.0593 0.0593 94.7 94.6 94.7 94.6

Marginal model for the GEE:
μij(β, Ai) = β0 + βAAi

OM in AUG and DR is fitted for each treatment group Ai = a using a stepwise regression:

Bij(Xi, Ai = a) = stepwise(X1
ij, X

2
ij, X

3
ij, X

1
i., X2

i., X3
i.)

PS in DR and IPW is fitted for the whole dataset using a stepwise regression:

logit(πij(Xi, Ai)) = stepwise(Ai, X
1
ij, X

2
ij, X

3
ij, X

1
i., X2

i., X3
i.)

described above. The GEE and the AUG estimates are sys-
tematically biased because there is no correction for missing
data. The IPW is also biased because the PS is incorrect in
that it omits treatment–covariate interactions. The DR esti-
mates are consistent in all analyses. In small sample settings,
the empirical SE is underestimated even when using nuisance-
adjusted SE, but estimation is improved by Fay’s correction.
Nonetheless, the coverage remained lower than 86%, but it
improves for large samples. Finally, when there is low corre-
lation in the outcome, the robust SE better approximates the
empirical SE.

5.2. Simulations Mimicking the SAM Study

To consider more complex settings, we mimic the SAM
study (see Section 4). We simulate the following individual-

level covariates: employment (EMP ∼ B(0.25)), marital status
(MARI ∼ B(0.23)), age (AGE ∼ N(27; 7)), religiosity (REL ∼
N(0, 0.8)), the CAGE score (from a multinomial of probabil-
ities CAGE ∼ M(0.3; 0.1; 0.1; 0.2; 0.3) for modalities 0,1,2,3
and 4), the HIV score (HIV ∼ N(14; 4)), and the condom
knowledge score (CDM ∼ N(3; 1)). Interfering covariates are
generated as means for quantitative variables or modes for
qualitative variables of the individual-level variables in each

of the community (as was done for X1, X2, and X3 in Section
5.1). We generate data from the model in equation (6). In sim-
ulating the outcome, we add cluster random errors to create
an exchangeable correlation structure with εO

i ∼ N(0, 5) and
an individual random effects εO

ij ∼ N(0, 4). This provides an
outcome correlation among clusters of 0.07. We analyzed the
data using a PS and an OM composed of all the covariates
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Marginal Treatment Effect in CRTs with Missing Outcomes 1075

Table 5
Simulation of the scenario described in equation (6) mimicking the SAM study data. Statistics for 1000 replicates are the
bias compared to M∗

E, the empirical standard errors over replicates, the mean asymptotic nuisance-adjusted standard error,
and the coverage for the GEE, the IPW, the AUG, and the DR with independence (-I) and exchangeable (-E) working

correlation matrix.

Standard error (SE) Coverage

Bias Empirical Robust Fay’s Robust Fay’s

M∗
E -I -E -I -E -I -E -I -E -I -E -I -E

Small sample M = 10, ni = (10, 20, 30) with probability 1/3 each

GEE 5.73 2.214 2.213 1.330 1.329 1.829 1.848 1.359 1.363 89.4 88.7 59.4 59.7
IPW 5.73 0.536 0.537 1.333 1.333 1.214 1.214 1.470 1.471 86.5 86.4 92.1 92.1
AUG 5.73 0.173 0.173 0.973 0.973 0.878 0.878 0.925 0.925 88.6 88.6 89.9 89.9
DR 5.73 −0.104 −0.104 1.102 1.101 0.932 0.931 0.982 0.982 90.3 90.3 92.0 92.0

SAM-like sample M = 50, ni = (20, 30, 30) with probability 1/3 each

GEE 5.73 2.347 2.343 0.308 0.308 0.532 0.466 0.308 0.309 0.0 0.0 0.0 0.0
IPW 5.73 0.622 0.623 0.303 0.303 0.317 0.317 0.323 0.323 50.7 50.7 52.1 52.1
AUG 5.73 0.215 0.215 0.222 0.222 0.230 0.230 0.232 0.232 85.1 85.1 85.2 85.2
DR 5.73 0.037 0.026 0.259 0.260 0.252 0.253 0.254 0.255 94.6 95.3 94.6 95.4

Marginal model for the GEE:
μij(β, Ai) = β0 + βAAi

OM in AUG and DR is fitted for each treatment group using a stepwise regression:

Bij(Xi, Ai = a) = stepwise(EMPij,MARIij,AGEij,RELij,CAGEij,HIVij,CDMij,X
1

ij,X
2

ij,X
3

ij)
PS in IPW and DR is fitted for the whole dataset using a stepwise regression:

logit(πij(Xi, Ai)) = stepwise(Ai,EMPij,MARIij,AGEij,RELij,CAGEij,HIVij,CDMij,X
1

ij,X
2

ij,X
3

ij)

described above with a stepwise variable selection. Table 5
shows the bias, SE, and coverage of the methods we consider
based on 1000 replicates for the estimation of the parameter
M∗

E = 5.73. The percentage of missing outcomes is 21% and
the average empirical ICC is 0.06.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yij = 60 + 40Ai − 9.0EMPij − 8.0MARIij + 1.0CDMij + 5.0RELij

+ Ai [−2.0AGEij + 8.5EMPij + 3.5MARIij + 1.5HIVij − 2.0CAGEij + 2.0RELij]︸ ︷︷ ︸
Interactions

−0.5AGEi. − 7.0CDMi. − 5RELi. + 1.0HIVi.︸ ︷︷ ︸
covariate interference

+εO
i + εO

ij

logit[P(Rij = 0)] = −3.0 + 2.0Ai + 0.01AGEij − 0.1HIVij + Ai [−0.1AGEij − 0.2HIVij]︸ ︷︷ ︸
Interactions

+ 0.02AGEi. + 0.2CDMi. + 0.2CAGEi.︸ ︷︷ ︸
covariate interference

(6)

Table 5 provides the estimates the marginal treatment
effect for small sample and for the same sample size as that
of the SAM data. The GEE, the AUG, and the IPW yield
biased results whereas the DR has small bias justifying its
use to analyze the data even ignoring covariate interference.
Fay’s correction with coverage around 92% in small sample
and 95% in large sample achieve good accuracy. Figure 2 in
Web-Supplementary Material C3 represents the histograms

of estimates over the 1000 replicates together with the true
value of marginal treatment effect. It displays the bias of the
GEE, the AUG, and the IPW estimators compared to the DR
and supports the approximate normal distribution of the DR
estimator.

6. Discussion

We propose a doubly robust method for the estimation of
the marginal effect of treatment in CRTs with continuous
data subject to rMAR—an assumption that arises because
missingness is nonmonotone in CRTs. Extension to binary
or other outcomes is straightforward, provided that there is
a one-to-one link function h such that: μij = h(Xi, Ai). We
extend the IPW approach proposed by Robins et al. (1995)
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and the AUG approach for CRTs proposed by Stephens et al.
(2012). To be CAN, the DR estimator requires that either the
OM or PS model be correctly specified regardless of the choice
of the working correlation matrix. Interfering covariates can
be ignored if either the OM or the PS is correctly specified. In
presence of treatment–covariate interactions, if the PS is not
correctly specified, covariates that interact with treatment on
the outcome must be included in the OM. We accommodate
these treatment–covariate interactions by modeling the OM
separately for each treatment group. Covariates for the OM
and the PS may be selected using automatic variable selection
procedures such as a stepwise procedure, and may be at the
cluster level or individual level.

We recommend using V−1
i W i(Xi, Ai, ηW ) to ensure consis-

tency of the IPW and the DR for CRTs, rather than the con-
ventional implementation, W

1/2
i (Xi, Ai, ηW )V−1

i W
1/2
i (Xi, Ai,

ηW ) available in several software packages of the weighted
GEE. See Tchetgen Tchetgen et al. (2012) for a similar result
for longitudinal data with observation-specific weights. If a
working independence correlation structure is used, then the
two implementations lead to the same result. When W

1/2
i (Xi,

Ai, ηW )V−1
i W

1/2
i (Xi, Ai, ηW ) and an arbitrary correlation

structure are used in the DR, estimation of marginal treat-
ment effect is consistent only if the OM is correctly specified.
We provide an R package called CRTgeeDR that imple-
ments the proposed DR estimator. The application of our
methods to data from the SAM study showed an effect of
HIV/STI intervention on the percentage of protected inter-
course (Jemmott III et al., 2014) that reached a 0.05 level
of significance. Moreover, results of the analysis that dis-
tinguishes among different types of partners and of sexual
behavior may be useful in targeting future interventions. Our
approach allows a situation that we denoted covariate inter-
ference in CRTs, and thus extends ideas of adjustment of
time-varying covariates in longitudinal responses (Pepe and
Anderson, 1994; Tchetgen Tchetgen et al., 2012). Since treat-
ment is randomized at a cluster level and we consider a
marginal mean model which only includes treatment, the
covariate interference has a different implication for analy-
sis than exposure interference in causal framework (Liu and
Hudgens, 2014) or confounding by cluster in observational
studies (Berlin et al., 1999; Huang and Leroux, 2011). How-
ever, when there are interactions between Xr

ij and Ai exposure
and covariate interference are related; in this case, individ-
ual ij may be seen as receiving pseudo-treatment AiX

r
ij. For

such a setting, our work may be seen as extending the notion
of exposure interference in RTs to CRTs and is related to
the work of Ogburn and VanderWeele (2014). In any case,
modeling covariate interference may lead to substantial gains
of efficiency if they predict the outcome. Therefore, it may
be profitable to develop methods that make use of contact
network information to inform the selection of interfering
covariates. Finally, the impact of violation of the rMAR
assumption required for the consistency of the DR estimates
that resulted from an MNAR missingness mechanism can
be investigated by performing sensitivity analysis (Rotnitzky
et al., 1998; Vansteelandt et al., 2007).

7. Supplementary Materials

Web Appendices, Tables, Figures, simulated data, and R
sources implementing the estimators referenced in Sec-

tions 3.1, 3.3, 4.2, 5.1 and 5.2 are available with this article
at the Biometrics website on Wiley Online Library.
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Using a population-based Kalman estimator to model the COVID-19 epidemic in France:
estimating associations between disease transmission and non-pharmaceutical interventions
Collin A., Hejblum B., Vignals C., Lehot L., Thiébaut R., Moireau P. and Prague M. International
Journal of Biostatistics. Epub ahead of print - Jan 2023.

This article integrates in the third axis of my research "Outreach to Implementation : Evaluation in
Population". It has been written by collaborators from Inria and myself.

I selected this paper as it exemplifies the synergism in research that emerged during the COVID-19
pandemic. The SISTM team and I initially aimed to estimate the impact of NPI on the spread of
COVID-19. However, our traditional tools, which required a deterministic temporal link between NPI
and virus transmission, proved too limiting. We developed a new methodological tool that employs
Population Kalman filters to estimate time-varying transmission rates. This approach allowed us to
generate important public health results. The main challenge we faced was in publishing our findings.
The fitted model required constant updates to keep pace with evolving data, highlighting a disconnect
between the timelines of research, publication and political decision-making.
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Abstract: In response to the COVID-19 pandemic caused by SARS-CoV-2, governments have adopted a wide
range of non-pharmaceutical interventions (NPI). These include stringentmeasures such as strict lockdowns,
closing schools, bars and restaurants, curfews, and barrier gestures such as mask-wearing and social dis-
tancing. Deciphering the effectiveness of each NPI is critical to responding to future waves and outbreaks. To
this end, we first develop a dynamic model of the French COVID-19 epidemics over a one-year period. We rely
on a global extended Susceptible-Infectious-Recovered (SIR) mechanistic model of infection that includes
a dynamic transmission rate over time. Multilevel data across French regions are integrated using random
effects on the parameters of the mechanistic model, boosting statistical power by multiplying integrated
observation series. We estimate the parameters using a new population-based statistical approach based on
a Kalman filter, used for the first time in analysing real-world data. We then fit the estimated time-varying
transmission rate using a regression model that depends on the NPIs while accounting for vaccination cov-
erage, the occurrence of variants of concern (VoC), and seasonal weather conditions. We show that all NPIs
considered have an independent significant association with transmission rates. In addition, we show a
strong association between weather conditions that reduces transmission in summer, and we also estimate
increased transmissibility of VoC.

Keywords: COVID-19; epidemic modeling; Kalman filters; non-pharmaceutical interventions; population
estimation.

1 Introduction
The World Health Organization declared a pandemic COVID-19 on March 11, 2020. This disease is caused by
infection with the SARS-CoV-2 virus. By April 30, 2021, more than 150 million cases have been confirmed
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worldwide, including 3.16 million deaths. While the majority of infected cases have a mild form (upper
respiratory tract infection symptoms) with no special care needs [1], about 3% of cases, especially the elderly,
require hospitalization for treatment, such as oxygen therapy [2–4]. About 17% of these cases are severe
forms (severe acute respiratory syndrome) that require treatment in the intensive care units (ICU) and possibly
mechanical ventilation [5].

The COVID-19 pandemic has stretched modern healthcare systems around the world to their limits.
Because SARS-CoV-2 is an emerging pathogen, the entire human population is vulnerable to infection. Wher-
ever there are outbreaks of SARS-CoV-2, there has been an increase in hospital admissions and especially
in the need for intensive care units. Because of an infectious phase that begins before any symptoms are
apparent and a significant proportion of a- or pauci-symptomatic infections [6], the spread of SARS-CoV-2
is particularly difficult to control [7]. In response, most governments have taken drastic public health mea-
sures, also known as non-pharmaceutical interventions (NPI), to reduce the transmission of SARS-CoV-2 in
their populations and thus reduce the pressure on their health systems. In particular, the French govern-
ment has adopted the concept of a “graduated response” to the pandemic and has deployed an arsenal of
different NPIs – some very stringent, others less stringent – in response to the COVID-19 national epidemic
situation. Hale et al. [8] have created a stringency index that helps to understand how strong the measures
have been over time. However, this indicator does not allow us to distinguish the effectiveness of each NPI,
which is critical for future preparedness response plans. Because all NPIs have economic, psychological,
and social costs, it is critical to assess their impact on SARS-CoV-2 transmission and on the dynamics of the
COVID-19 epidemic.

Manystudies reliedonmechanisticmodels of epidemics to eitherpredict progression [9], evaluate vaccine
prioritization strategies [10], or retrospectively measure the impact of NPIs. Early in the epidemic, the focus
was on the timing of NPI initiation [11, 12] rather than their impact. Disentangling the impact of individual
NPIs is a complex problem, in particular because their allocation is not random and depends on the state
of the epidemic. Many attempts aggregated data from multiple countries. Some worked with time-series
regression based on incidence data [13–16], with semi-mechanistic models and assessed the percentage
reduction in the effective reproductive number [17–22] or with advanced machine learning approaches [23].
Instead, we limit ourselves to France, to avoid potential confusion bias in the effect estimation due to
differences in behavior and adherence levels across various populations. Most of the work published at the
country level focused on a single aggregate NPI such as the Oxford COVID-19 Government Response Tracker
[8], a very early epidemic [24, 25], or a very limited number of interventions, see Brauner et al. for a review
[26]. Only a few works were interested in multiple waves of epidemics [27–29]. In this study, as in only a few
other works as for example Ge et al. [30], we aim to consider a rather long observation period (the first 12
months of the pandemic).

In France, although some studies have quantified the effect of several NPIs [3, 31], the authors base
their results on the earliest phase of the epidemic and examine only a limited number of NPIs. Our work
focuses instead on the impact of individual NPIs on the transmission rate. This is a better and more valid
indicator than direct epidemic curves or the reproductive number, because it is independent of the proportion
of the population infected. Finally, previous work does not take into account the prevalence of vaccination,
the spread of new variants, and the importance of weather in estimating the impact of NPIs. Quantifying
the associations between NPIs and transmission rate leads to a challenging estimation problem, including
concerns about the practical identifiability of each effect.

In this work, we propose a two-step approach. First, we estimate the transmission rate of SARS-CoV-2
and its variations in the 12 non-island French regions over a period of more than one year – from March
2, 2020 to March 28, 2021. Second, we use linear regression to estimate the associations between different
NPIs and transmission rates. We account for seasonal weather conditions during the pandemic, as well
as the occurrence of non-historical variants of concern (VoC) and an increasing proportion of vaccinated
individuals. Thismethodology is very innovative in itself, and has not been applied to other datasets before. It
involves the application of a new population-based Kalman filter estimate (proposed by the authors in Collin
et al. [32]), which extends classical Kalman filters to the parameters estimation across a whole population



A. Collin et al.: Using a population-based Kalman estimator to model the COVID-19 epidemic | 3

of subjects. It is to note that association of NPIs with epidemic dynamics has never been formally studied
using French data. Finally, it is also noteworthy that placing the estimation of epidemic dynamics into a
population approach is singular. More precisely regarding the inference procedure, the first step is to estimate
transmission rates in the 12mainland French regions. This is amajor challenge because the available data are
very sparse and noisy, and the parametric form of transmission rates is also unknown. By assimilating data
across multiple geographic regions and coupling public data with a dynamic mechanistic model, smooth
transmission rates can be estimated using a Kalman filter approach [33, 34] – as already used in epidemiology
for COVID-19 spread [35–37] or for other epidemicswith regional variability [38].More specifically, we develop
a sophisticatedmethod to address this difficult problembased on two importantmethodological innovations:
(1) in the model with the introduction of time-varying dynamics for the transmission rate, including aWiener
process that accounts for modeling errors, and (2) in the way the population is integrated, as we use a new
method from the Kalman filter that is compatible with population approaches. This method, in which the
log-likelihood function is – estimated by, for example, the unscented Kalman filter [39] – elegantly couples
data across multiple geographic regions, is presented in Collin et al. [32]. These two innovations are coupled
in a strategy that allows estimation of smooth transmission rates without imposing prior-knowledge on their
shape or evolution, and relate them to key NPIs, seasonal weather conditions, vaccination coverage, as well
as new VoC circulation.

SectionMaterialsandmethodspresents thesupportingdataand theunderlyingmechanisticmodel for the
epidemic, before introducing our two-step strategy to estimate first transmission rates and their associations
with NPIs using a multivariate regression approach. Section Results highlights the different effects estimated
for theNPIs implemented in France during the first year of the pandemic. Finally the strengths and limitations
of our approach are acknowledged in Section Discussion.

2 Materials and methods
Open data on the French COVID-19 epidemic, including data on hospitalizations, NPI implementations, VoC prevalence, and
the vaccination program are presented below. We then introduce our dynamic modeling for the COVID epidemic, relying on an
extended SIR type model. Finally, we describe our strategy for estimating transmission rates using a population-based Kalman
filter approach from Collin et al. [32] to study the associations between transmission rates and NPIs, seasonal weather conditions,
and VoC.

2.1 Available data

2.1.1 Hospitalization data: Hospitalization data come from the SI-VIC database (Système d’Information pour le suivi des
VICtimes), a government system established in 2016 to identify and track victims in exceptional circumstances (e.g., terrorist
attacks). Since beginning of March 2020, the SI-VIC database of the French public health national agency (Santé Publique France)
provides the daily number of hospitalized COVID-19 patients, at different geographical levels. In this work, we focus on the 12
non-insular regions of mainland France.

Each entry in the SI-VIC database indicates a patient hospitalized in connectionwith COVID-19. To qualify, at least one of two
criteriamustbemetby thispatient: (i) abiologically confirmeddiagnosis of COVID-19 (e.g., RT-PCRpositive test result) or (ii) a chest
examination CT scan suggestive of COVID-19. In this analysis, we rely on the daily incident number of hospitalizations (denoted
YHin ) and the total prevalence of persons hospitalized daily (denoted YH , corresponding to the number of occupied hospital beds).
We consider a period of 391 days (fromMarch 2, 2020 toMarch 28, 2021). To compare themagnitude of the epidemic in each region,
we standardized the data using the population size in each region to present hospitalizations per 100,000 inhabitants. The two
data series are displayed in Appendix A, Figure 8.

2.1.2 Non-pharmaceutical interventions (NPIs): The timing and modalities of the various NPIs implemented in France dur-
ing the epidemic are taken from the French government’s website summarizing the measures [40]. In France, public health
interventions were multifaceted. In our analysis, we considered the following summary NPI that took place during the first year
of the epidemic in France: (i) first lockdown (with two phases of easing/reopening, as described below), (ii) second lockdown
(with one phase of easing/reopening, as described below), (iii) curfew from 8 PM, (iv) curfew from 6 PM, (v) closure of schools,
(vi) closure of bars and restaurants, (vii) barrier gestures (including all mandatory hygiene protocols: physical distancing, hand
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washing, part-time distancing, remote work and wearing masks in public spaces). Of note, NPIs such as travel bans, enhanced
testing, contact-trace isolation were ignored to ensure identifiability because they were either of difficult-to-quantify magnitude,
or enforced in complete overlap with other NPIs. In addition, partial interventions at the sub-regional level were not taken into
account. This resulted in a fairly similar profile of interventions across regions, asmost of themwere applied simultaneously in the
12 regions of interest. Figure 1 provides an overview of all 10 NPIs considered over time in the Île-de-France region. The timing of
the introduction of the other NPIs is quite similar in the other regions, differing only by a few days, (1) due to the school vacations
(one week postponement) and (2) due to the earlier introduction of the 8 pm curfew in the areas most affected by COVID-19, see
Figure 9 in Appendix A for more details.

The first and second lockdowns were differentiated because they had distinct modalities resulting in different behaviors
and thus potentially impacting transmission differently. For example, during the first lockdown (from March 17, 2020, to May
11, 2020), the entire population was required to work from home - the only exceptions were critical workers from the medical
sector, food industry or security, while personal outings could not exceed 1 h within a 1 km radius from home. During the second
lockdown (from October 29, 2020, to December 15, 2020), on-site work was allowed if working from home was not possible, and
outings were limited to 3 h within a 20 km radius. In addition, the end of the initial lockdown was gradually divided by the
government into three official phases (Phase 1: May 11, 2020 to June 2, 2020, Phase 2: June 2, 2020 to June 22, 2020, and Phase 3:
after June 22, 2020)withmany evolvingmeasures such as authorized distance of travel, reopening of cultural sites (i.e., museums),
reopening of non-essential stores, etc. A government campaign to raise awareness of barrier gestures began at the end of the first
lockdown. Masks and hand washing were mandatory in many places such as public transportation, schools, and businesses. We
thus presume that the barrier gestures NPI began on May 11, 2020, assuming that most mandatory measures with potentially high
impact have been implemented by that time. Regarding the second lockdown, non-essential stores reopened 2 weeks before the
end of the lockdown before Christmas. To account for this, we divide the second lockdown into two phases: a full lockdown until
November 28, 2020, and a reduced lockdown thereafter.

School closureswere documented by the official holiday schedule, which could vary from region to region. In France, schools
were also closed during the first lockdown. In addition, from May 11, 2020 (the end of the first lockdown) to July 4, 2020 (the
end of the school year), schools gradually reopened and student enrollment slowly increased back to normal. Estimated student
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Figure 1: Implementation of major NPIs in region ‘‘Ile de France’’. The timing of NPIs implementation is fairly similar across all
regions and only differs for a few days in the implementation of school closing because of holidays and curfews 8 pm (which
was initiated few days earlier in regions with highest COVID-19 burden). All NPI are on/off except school closure right after the
first lockdown due to the implemented lock down lifting process as described in the text.
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enrollment averaged 30% of school capacity during this transition period according to general media coverage. Full closures of
all bars and restaurants occurred twice during the study period: first a few days before the implementation of the first lockdown
in March 2020 (as with school closures) and at the beginning of the second lockdown in October 2020. After the end of the first
lockdown in June 2020, this measure was gradually lifted in all regions. At the end of the second lockdown, the measure was not
lifted and was still in effect at the end of the study period.

Curfew was first enforced on October 17, 2020, in the 12 regions of interest in several large cities and in Île-de-France from 9
PM to 6 AM. It was extended to 54 departments (sub-regional administrative units) on October 22. During the second lockdown
from Oct. 30 to Dec. 15, 2020, a national curfew from 8 PM to 6 AM was en forced. From January 2 to 12, 2021, curfew start at the
department level was gradually advanced to 6 PM until January 16, when it became 6 PM for all the 12 regions of interest. Finally,
on March 20, 2021, curfew starting time was changed back to 7 PM nationally. For the sake of simplicity, we considered only two
different NPIs, grouping together curfews starting at 9 PM or 8 PM on the one hand, and those starting at 6 PM or 7 PM on the
other hand, and we considered a region under curfew only if it was enforced in the entire region. Assuming that curfews and
lockdowns induce different behaviors, curfews are not considered to be included in lockdowns, even though it is forbidden to go
out in the evening during lockdowns. Similarly, 6 PM curfew and 8 PM curfew were considered distinct interventions rather than
nested interventions because they are likely to produce different behaviors, and thus have different impact on transmission.

2.2 Other exogenous variables: weather, Variants of Concern (VoC), vaccination coverage

2.2.1 Weather conditions: The role of weather conditions in SARS-CoV-2 transmission remains controversial, and early publi-
cationshavebeencriticized for their inconsistent results [41].Nonetheless, basedoncomparisonswithother respiratory infections,
the potential effects of temperature and humidity on aerosolized and fomite transmission pathways are based on sound mech-
anistic arguments [42]. As the Northern Hemisphere underwent a second winter season during the pandemic, evidence linking
transmission to seasonal trends in temperature and humidity (also affecting human behavior and indoor/outdoor gathering)
appears more robust [42–45]. Daily weather data – namely temperature in Celsius (T), relative humidity in percent (RH), and
absolute humidity in g m−3 (AH) – measured from meteorological stations were extracted from the National Oceanic and Atmo-
spheric Administration database using the R package worldmet. All stations located in the region or within 10 km of the region
boundarywere used to compute daily regionalweighted averages (to account for differences in population densitywithin a region,
we applied a weighting based on the population within a 10-km radius around each station giving more weight to weather condi-
tions in densely populated areas). We use the Index PREDICT of Transmissibility of COVID-19 (IPTCC), as defined by Roumagnac
et al. [46]:

IPTCC = 100 e
− 1
2

[
(T−7.5)2

196 + (RH−75)2
625 + (AH−6)2

2.89

]

.

This IPTCC index ranges from 0% to 100%, the smaller the less favorable the conditions for COVID-19 transmission. In
France, we observe a seasonal variation of IPTCC low in summer and higher otherwise, with a northeast/southwest gradient.
For easier interpretation, we normalized this IPTCC (forcing its range to one), subtracting the national average, and inverting it
(see grey curves in Figure 2). Thus, the lower the value, the closer the temperature and humidity conditions were to the optimal
transmission conditions defined by Roumagnac et al. [46]. Finally, to focus on seasonal variations, a loess smoothing with a span
of 0.2 was applied, resulting in a smooth weather variable denotedW below displayed in Figure 2 for each region. Summer (with
higher values of this weather variable) is clearly standing out from winter (with lower values). Taking W = 0, we consider the
global average value over all French regions during the study period, andWi(t) denotes the weather in the ith region at date t.

2.2.2 SARS-CoV-2 variants of concern (VoC): Certain variants of the SARS-CoV-2 virus have been classified as VoC by national
and international health authorities because they affect transmissibility or virulence or reduce the effectiveness of interventions
[47]. Within our study period, French health authorities have conducted surveys to estimate the prevalence of three VoCs:
20I/501Y.V1 (alpha), 20H/501Y.V2 (beta), and 20J/501Y.V3 (gamma). The delta and omicron lineage VoC surveys took place after
this study.We therefore included the cumulative proportion of cases infected by any of these three first VoC as a possible covariate
associated with transmissiona and we denote this variable as VoCi(t) in the following.

We used data from two cross-sectional so-called “flash” surveys conducted on January 7 & 8, 2021, and on January 27, 2021
[48, 49], as well as the weekly estimate of VoC spread provided by the SI-DEP database at the regional level from February 12,
2021, to March 28, 2021 [50]. Between January 8, 2021, and February 12, 2021, the estimated proportion of the sum of the three VoC
increased from a national average of 3.3% to a national average of 46%. To fill in themissing data, we assume that the proportion is
equal 0% before January 8, 2021, and that the trend is linear between January 8 and January 27, 2021, and linear between January
27 and February 12, 2021. It should be noted that a logistic and an exponential growth were also investigated, without resulting
in any significant change in our conclusions (results not shown). Since no data were reported for the Bourgogne-Franche-Comté
region on January 27, 2021, only one slope was estimated from January 8 to February 12. VoC fraction in each region is displayed
over time in Appendix A.
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Figure 2: Weather variable modeling the seasonal weather conditions of the 12 regions of interest in grey and after smoothing in
blue (denotedW). The higher the value, the lower the favorable conditions (temperature and humidity) for transmission of
COVID-19.

2.2.3 Early vaccination: Vaccination began in France on December 27, 2020, at which time three COVID vaccines were licensed
and available: BNT162b2 mRNA (Pfizer), ChAdOx1 nCoV-19 (AztraZeneca), and mRNA-1273 (Moderna). To account for the starting
vaccination campaign, we used the database VAC-SI [51], which records the cumulative percentage of the population vaccinated
with at least one dose of vaccine over time. Vaccination was initially prioritized for the elderly aged 75 years and older. The
proportion of the total population vaccinated increased to approximately 12% by the end of the study period, and regional
population vaccination coverage rates over time are shown in Appendix A.

2.3 Modelling the epidemic

2.3.1 The mechanistic model: We model the evolution of the COVID-19 epidemic using an extended SEIR model [52, 53],
called the SEIRAH model, in which the population of size N is divided into 5 compartments: susceptible S, latently exposed E,
symptomatically infectious I, asymptomatic/pauci-symptomatically infectious A, hospitalized H, removed R (i.e., both recovered
and deceased), see Figure 3. The number of vaccinated individuals denoted by V, is assumed to be known, see Section 2.2.3. The
dynamics of such a model is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = −b
(
1− V

N

)S(I + 𝛼A)
N

Ė = b
(
1− V

N

)S(I + 𝛼A)
N

− E
DE

İ = rE
DE

E − 1− rI
DQ

I − rI
DI

I,

Ṙ = rI I + A
DI

+ H
DH

Ȧ = 1− rE
DE

E − A
DI

Ḣ = 1− rI
DQ

I − H
DH

(1)
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Figure 3: SEIRAH model representation.

where 𝛼, rE,DE, rI ,DI ,DQ,DH are time-independent parameters described in Table 1 while b is a function of time modeling the
disease transmission rate.

2.3.2 The observationmodel: The two quantities YH and YHin relate to the solutions of System (1) respectively as for all regions
i = 1, . . . , 12, for all observation time in days j = 1, . . . , 391: YH

i j = Hi( j)+ 𝜖Hi j and YHin
i j = (1−rI )

DQ
Ii( j)+ 𝜖Hini j , in which 𝜖Hi j and 𝜖Hini j

represent normally distributed constant measurement errors.

2.3.3 Effective reproductive number and attack rates: When individuals are homogeneous and mix uniformly, the effective
reproductive ratio Reff(t) is defined as the mean number of infections generated during the infection period of a single infectious
case at time t. In this model, the effective reproductive ratio can be written as a function of model parameters (see Appendix C for
details):

Reff(t) = b(t)
(
1− V

N

)S(t)
N

(
DI𝛼(1− rE)+

DIDQrE
(1− rI)DI + rIDQ

)
. (2)

When neglecting the deaths, the proportion of infected individuals assuming no waning immunity – also called attack rates
– among the population in each region at a given date is given by:

E + I + R+ A+ H
N

= 1− S
N
.

Table 1:Model parameters for the SEIRAH model and associated values.

Parameter Interpretation Value

b Transmission rate of infectious cases Region specific – estimated
rE Ascertainment rate 0.844 [54]
rI Non hospitalized rate 0.966 [4]
𝛼 Ratio of transmission between A and I 0.55 [55]
DE Latent (incubation) period (days) 5.1 [56]
DI Infectious period (days) 5 [57]
DQ Duration from I onset to H (days) 11− DE = 5.9 [58]
DH Hospitalization period (days) 18.3∗
N Population size Region specific

∗Computed using the correlation between the data YHin and YH when considering region data, see Appendix B.
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2.4 A population-based Kalman filter to estimate the transmission rate

2.4.1 Framing the problem: To support the modeling decisions underlying the disease transmission rate b, and more gen-
erally the inference procedure chosen, we applied Kalman-based estimation strategies [33, 34] to the epidemic model (1). We
define the global transmission rate t ↦ b(t), which accounts for the proportion of susceptibles removed from the system by
vaccination:

b(t)
def=b(t)

(
1− V(t)

N

)
.

We propose to estimate b and finally b using an estimate of vaccinated individuals V (see Subsection 2.2.3). In each region i,
we then introduce a dynamic equation for b of the form

dbi(t) = gi(t)dt + d𝜈i(t), (3)

where 𝜈i consists of a Wiener process such that for all t, s ≥ 0, 𝜈i(t)− 𝜈 i(s) ∼  (0, (t − s)𝜎𝜈) with 𝜎2
𝜈 known and constant across

all regions, and gi a function describing the evolution of global transmission rates bi in each region.
After discretization using Euler’s time scheme with a sufficiently small time step 𝛿t, we obtain a discrete-time dynamical

system applied to the variable x = (E, I,R,A,H)⊺ ∈ ℝ5, for each region i = 1, . . . , 12:

zin+1
def=

⎛⎜⎜⎝

xin+1
bin+1
𝜃in+1

⎞⎟⎟⎠
=

⎛⎜⎜⎝

xin + 𝛿t f (xin, b
i
n, 𝜃

i
n)

bin + 𝛿t gi
(
tn, 𝜃in

)
𝜃in

⎞⎟⎟⎠
+
⎛⎜⎜⎜⎝

05
1

0N p

⎞⎟⎟⎟⎠
𝜈 in, (4)

where f accounts for the dynamics of (E, I,R,A,H) in (1), while S is subsequently reconstructed as S = N − (E + I + R+ A+ H)
in each region. In the discrete-time system,

(
𝜈 in
)
n≥0 now represent independent random variables, normally distributed with 0

mean and variance equal to 𝜎2
𝜈𝛿t. Moreover, if constant parameters need to be estimated, the vector 𝜃 ∈ ℝN p summarises all these

parameters. For the estimation below, we transform the variable z to account for biological constraints. Since all state variables
are positive and bounded by N, the total population size of the region, we transform the state variable with x ↦ logit(x∕N). We
also apply a similar transformation to b ↦ logit(b∕maxb). Note that the state and transmission rate variables in the transform
space tend to have Gaussian distributions. After calibration, we set maxb = 1.5 and verified that other values did not significantly
change the results (result not shown).

2.4.2 Population approach: To perform the estimation, we rely on an extension of the classical Unscented Kalman Filter (UKF)
[33, 39, 59]. The peculiarity of this application is that multiple data series in multiple regions are observed together, since we
observemultiple realizations of the same epidemic (each region being a different realization). To account for parameter correlation
across the different regions in our Kalman estimation, we follow a recently proposed population-based Kalman formulation [32].
As in mixed effects models [60], each initial uncertainty variable zi0 is assumed to be randomly distributed around a common
population intercept zpop0 with a Gaussian distribution of unknown covariance Q0, namely:

zi0∼i.i.d. (
zpop0 ,Q0

)
.

By treating the population intercept as an empirical mean over the population members, we obtain a classical filtering
problem [33] on the aggregate variable z =

(
z1,… , zNr

)⊺ when constructing our objective function. The only difference is the
formulation of the initial covariance prior P̂0, which couples observations across regions and can be written as follows:

P̂−1
0 = 1

N2
r

⎛⎜⎜⎜⎝

1
...
1

⎞⎟⎟⎟⎠

(
1 … 1

)
⊗M +

⎡⎢⎢⎢⎣
𝟙Nr −

1
Nr

⎛⎜⎜⎜⎝

1
...
1

⎞⎟⎟⎟⎠

(
1 … 1

)⎤⎥⎥⎥⎦
⊗ Q̂−1

0 ,

where⊗denotes aKroneckerproduct, Q̂0 is aprior ofQ0, andM is a small penalizationmatrix guaranteeing theoverall invertibility
of P̂0. As a result, the matrix P̂0 is non-block diagonal with respect to the region i and thus all the dynamics of the regions are
coupled. The resulting discrete-time Kalman estimator ties all regions together to obtain a population-based estimate. Note that in
such a strategy, it is possible to force a variable in the population to be constant by simply choosing Q̂0 such that Tr

(
Q̂−1
0

)
is very

small with respect to Tr(M). Conversely, a small Tr(M) with respect to Tr
(
Q̂−1
0

)
in a large populationNr ≫ 1 will encourage regions

to remain independent from each other. Given prior knowledge, our Kalman implementation uses the available measurements(
YH
i j ,Y

Hin
i j

)
1≤i≤12,0≤ j≤391 to recursively compute the following estimates:
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ẑn ≃ 𝔼(zn|
(
YH
i j ,Y

Hin
i j

)
, 1 ≤ i ≤ 12, 1 ≤ j ≤ n), 0 ≤ n ≤ 391,

and
P̂n ≃ ℂov(zn − ẑn|

(
YH
i j ,Y

Hin
i j

)
, 1 ≤ i ≤ 12, 1 ≤ j ≤ n), 0 ≤ n ≤ 391.

Taking advantage of ẑn gathering the augmented state
(
xin+1, bin+1, 𝜃in+1

)
, 1 ≤ i ≤ 12 of the 12 regions, a simple post-processing

over the regions yields estimates of b and the state variables. The fact that the state variables S, E, I, R, A, and H are included in
the augmented state means that the errors in the initial conditions are corrected over time, allowing for different prevalences in
different regions. We refer the reader to Collin et al. [32] for more details on this Kalman-based population approach.

2.4.3 Estimation strategy: Since we want to inject as little information as possible about the shape of the transmission rate
b, we will first assume that the Wiener process 𝜈 defined in Eq. (3) is a time-dependent function, thus encompassing the entire
dynamics of b. This is consistent with setting g ≡ 0 (indicating no prior knowledge of the relationships between the evolution of
the transmission rates and the NPIs). However, to avoid overfitting, our goal is to distinguish the latent trajectory of b from noise
in the observations. We use a 3-step approach for smoothing the trajectories of b, described below:

1. Estimate an appropriate prior for the initial transmission rates b before the start of any NPI. We use data before the first
lockdown (10 days available) and assume that the transmission rate bi(t) = biinit is a constant for t = 1,… , 10 days. In
other words: We apply the population Kalman filter estimate described above, with 𝜃 from Eq. (4) reduced to binit.

2. Estimate the shape of b(t) with a prior for the initial value, but without a prior for the dynamics. We set the initial value
of bi for times t = 1,… , 10 days to biinit and take g(t) ≡ 0 such that Eq. (3) rewrites db(t) = d𝜈(t). We apply the population
Kalman filter estimation described above. Note that the parameter vector 𝜃 from Eq. (4) is now empty, and since there is
no information about b, themodel error is very large and could lead to overfitting.We then create a prior for the dynamics
of b by fitting a parametric form based on the sum of logistic functions (well suited to modeling observed variations
such as stiff lockdowns or smooth unlocks) to the weighted average trajectories of b over all regions using the least
squares method. The number of logistic functions summed is based on the observed number of principal changes in the
variations of the weighted average trajectories of b. This now gives us a prior g for the dynamics.

3. Estimate the shape of b with a prior for the initial value and an informative prior for the dynamics. Finally we set the
initial value of bi for times t = 1… 10 days to biinit and take db(t) = g(t)dt + d𝜈(t) as in Eq. (3). We apply the population
Kalman filter estimation described above. Since the dynamics of b still contains modeling noise, the shape of b differs
from the prior transmission rate defined in Step 2. This final estimate will be used to further describe the relationships
between transmission rates and NPIs.

2.5 Explanatory model for the transmission rate

2.5.1 Mixed effects model: Using the b estimate obtained from the population-based Kalman filter, in the third step described
above, we can determine the association between NPIs, seasonal weather conditions, VoC proportion and the transmission rate
b = b

(1−V∕N) . We followed Flaxman et al. [19] and considered interventions to have multiplicative effects. Therefore, we applied a
linear mixed effects model to the log transformation of transmission. The model equations are given in Appendix F. It consists
of an intercept (representing the average transmission of COVID-19 over all regions without NPIs, without VoC circulation, and
for average French weather conditions (W = 0)), the effects of the 10 NPI described in Section 2.1.2, the effect of weather, and the
effect of VoC fraction. Because the transmission of SARS-CoV-2 is different indoors and outdoors [61], we also added an interaction
effect between bar and restaurant closure and weather that accounts for the opening of outdoor seating areas. This is the only
interaction included (and studied) to avoid overfitting. Finally, we added random effects to account for heterogeneity between
regions. We added a random intercept and random slopes for the effect of the first and second lockdowns as well as the 6 PM
curfew because their effects can vary greatly between regions. We assume a full covariance matrix for the random effects, so that
the associations in each region may be correlated – in particular, they could be influenced by several factors not accounted for in
the epidemic model, such as population density, age distribution, or urbanization.

Note that we have delayed the lockdowns by 7 days. This can be interpreted as a necessary period of time to allow people
to organize and adapt (introduction of home-based work, child care, etc.). This decision was motivated by the observed 7-day
delay in immediate transmission rates decline obtained with Kalman filters, see 4. To facilitate interpretation of the estimated
associations, the parameters were transformed and expressed as percent decrease or increase in transmission by applying the
function x ↦ 100(ex − 1). Classical 95% confidence intervals were obtained as 100(ex±1.96 SE(x) − 1) assuming normality, where SE
is the standard error obtained from the regression.

2.5.2 Interpretation of the association between seasonal weather conditions and transmission rates: The variable for
seasonal weather conditions being unitless, so interpretation of its estimated effect is done in comparison to the average weather



10 | A. Collin et al.: Using a population-based Kalman estimator to model the COVID-19 epidemic

conditions in France. To further facilitate understanding, we computed the average relationships between NPIs and transmission
rates during both summer and winter periods respectively, using the summer (or winter) average ofW(t) from June 21st, 2020 to
October 21st, 2020 (or before June 21st, 2020 and after October 21st, 2020) across all regions.

2.5.3 Basic reproductive number: The intercept of the above regression represents themean transmission rate over all regions
when there is no NPI and no VoC and the weather conditions are assumed to be the average weather conditions over a year in
France. Thus, substituting it into Eq. (2), directly provides the basic reproductive number and 95% confidence intervals can be
calculated using the standard error of these parameters.

3 Results

3.1 Estimation of the transmission rate using a population-based Kalman filter
Step 1 of the estimation provided the initial values for the transmission rate with fairly similar values across
regions (average 0.78 sd 0.012, see details in Appendix D). Although higher values were found in regions
where the first wave was stronger, the low variability between regions suggests that the magnitude of the first
wave is not solely due to a higher transmission rate, but also to differences in epidemic baseline conditions
(i.e., the number of exposed and infectious cases, linked to differences in the timing of virus introduction
or the occurrence of super-spreading events [62]) and weather conditions. Transmission rates estimated in
Step 2 without knowledge of their shape are shown in Figure 4 (top, left) for all regions. Since there is no
prior information about b inputted, the model error is very important and leads to over-fitting of the data.
In particular, many regions exhibits weekly oscillations related to the under-reporting during weekends. We
approximated the weighted average trajectory of b by a sum of 7 logistic functions is, as shown in Figure 4
(bottom, left) which becomes our prior in Step 3. Finally, in Step 3, smooth regional transmission rates bi are
estimated, see Figure 4 (top, right). Since the dynamics still contain modeling noise, the shapes of regional bi
are naturally different from the prior defined in Step 2 (while still smooth).

3.2 Basic and Effective reproductive number
Figure 4 (bottom, right) presents the estimated effective reproductive ratio Reff, with starting values ranging
between 3.5 and 4 in all regions. This variability could be due in part to winter weather conditions in early
March 2020, and after adjusting for weather condition we estimate the national average basic reproductive
number at 3.10 [2.95; 3.26]. Variations of Reff over time shows that it quickly falls below the critical value of 1
after initiation of the first and second lockdowns.

3.3 Attack rates
The attack rate (defined in Section 2.3.3) provides additional knowledge about the number of possible
hidden/unmeasured cases. Figure 5 displays the attack rate at several key points in time: at the end of the
first lockdown (May 11, 2020), on October 5, 2020, and at the end of our study period (March 28, 2021), while
we estimate national attack rates at these time points to be 5.7%, 8.8%, and 25.3%, respectively.

3.4 Associations between NPIs and transmission rates
Table 2 summarizes estimated associations between the NPIs and the transmission rate (from the model
introduced in Section 2.5 – residuals and detailed model coefficients can be found in Appendix F). Figure 6
shows the corresponding regional fits. Of note, the values for both curfews are very close (near 30%), and not
statistically different (estimated difference is 3% [−2%; 8%]). We show that all NPIs in this analysis reduce
transmission and have an effect that is significantly different from zero.
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(black line) obtained in step 2, fitted with 7 logistic functions (dashed red line). Second column (step 3) Top: estimated regional
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Figure 5: Model estimation for the proportion of naturally immunized individuals in the population (deaths and vaccinated
people not taken into account) on May 11th, 2020 (left), on Oct. 5th, 2020 (middle) and on March 28th, 2021 (right).

3.5 Effect of weather
We estimate that, on average, transmission is significantly increased by 10% during the winter period and
significantly decreased by 22% during the summer period (compared to the transmission under average
weatherconditions).Figure7 (top)showstheestimated impactof seasonalweatherconditionsontransmission
during the study period in each region. The estimated interaction between bar and restaurant closures and



12 | A. Collin et al.: Using a population-based Kalman estimator to model the COVID-19 epidemic

Table 2: Estimation and 95% confidence intervals of the associations between the transmission rate and seasonal weather
conditions, VoC proportion, and NPIs. Model AIC= −1388.

Covariate Modification of the transmission rate

Scale Increase/decrease

NPIs

Lockdown 1 – delay of 7 days −78% [−82%;−74%] ↘

Post lockdown 1 – phase 1 −54% [−56%;−52%] ↘

Post lockdown 1 – phase 2 −48% [−50%;−47%] ↘

Lockdown 2 – delay of 7 days −54% [−57%;−49%] ↘

Lockdown 2 with opened shops −51% [−53%;−49%] ↘

Closing schools −7% [−8%;−5%] ↘

Barrier gestures −46% [−48%;−44%] ↘

Curfew at 6 PM −30% [−33%;−26%] ↘

Curfew at 8 PM −28% [−31%;−25%] ↘

Bar & restaurant closure (ref.W = 0) −10% [−13%;−8%] ↘

Bar & restaurant closure, summer (vs. ref.) −8% [−11%;−4%] ↘

Winter (vs. ref.) −11% [−14%;−8%] ↘

Other factors

100% of VoC circulating 22% [15%; 28%] ↗

Weather effect during summer (ref.W = 0) −22% [−24%;−21%] ↘

During winter (ref.W = 0) 10% [9%; 11%] ↗
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log(binit), bl1, bl2 and bcurf6PM.
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Figure 7: Top: estimated association between transmission rates and the seasonal weather conditions and their 95%
confidence interval for the 12 regions of interest during the study period using the global average during the period as a
reference for comparison. Middle: estimated association between transmission rates and bar and restaurant closures for the 12
regions of interest during the study period. In red, the main effect of−10%. In black and grey, the effect with the interaction with
weather conditions and its 95% confidence band. Bottom: Estimated association between transmission rates and VoC
occurrence and its 95% confidence interval from January 1, 2021.

seasonal weather conditions is statistically significant (p = 0.037), and complex to interpret. We show that
while bar and restaurant closure always has a significant effect and reduces transmission, it is somewhatmore
effective inwinter (11% [8%;14%] decrease) than in summer (8% [4%;11%] decrease). Figure 7 (middle) shows
the estimated effect of bar and restaurant closures for the 12 regions of interest during the study period and
their interactionwithweather conditions. Coherently, the impact ofweather conditions yields a stronger effect
of bar and restaurant closures on reducing transmission in northern regions compared with southern regions
(that can be interpreted as the closure being more effective in northern regions where weather conditions are
also more favorable to transmission). In addition, a stronger effect is observed in spring 2021 due to weather
more favorable to transmission compared to the previous year.
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3.6 Effect of VoC
Regarding the effect of the three VoC, our results show that increasing the proportion from 0 to 100% would
increase the transmission rate by an estimated 22% [15%; 28%]. Figure 7 (bottom) shows how the increased
transmissibility varies over time due to the VoC fraction increasing to nearly 100%.

4 Discussion
We propose an innovative method to infer transmission rate over time from hospital data and estimate the
association between transmission rates andmultipleNPI,weather, andVoC.We show that all consideredNPIs
have a statistically significant and independent effect on transmission rates. In addition, we demonstrate a
strong effect of weather conditions, decreasing transmission rate in summer and increasing it in winter, and
we also observe increased transmissibility associated with VoC proportion increase.

Interpretation of our results on transmission rates is conditional on the mechanistic model presented
in Figure 3 as well as in the parameter values set from the scientific literature and listed in Table 1. This
model does not take into account the age structure of the population. However, we believe that using a
population-based approach and relying on random effects takes into account several intrinsic characteristics
– such as population density, age structure, transport habits, etc. – that influence the spread of disease
through region-specific transmission rates. Another shortcoming of the SEIRAH model is that it does not
account deterministically for travel between regions. However, since the state variables S, E, I, R, A, H are
also corrected over time using the Kalman filters, our strategy can account for, for example, decreases or
increases in the number of exposed individuals E in a region. This means that even if we do not directly
model the interaction between regions, we are able to account for the most important changes that could be
due to travel between regions. It could be further improved without changing the Kalman methodology by
adding a modeling error operator applied specifically to this variable, provided we are able to quantify the
degree of fluctuation in the population of each region due to travel. To do more, we could modify the model
to include travel between regions, but this would require us to specify additional parameters that are difficult
to calibrate without more data on travel between regions. Because the study period was short, vaccination
was just starting over the end of the study period and immune escaping VoC were not circulating yet, waning
immunity is also not taken into account. Regarding the study data, it is well known that there may be some
misreporting in the SI-VIC database, especially when patients are transferred between hospitals or when
the number of admissions is under reported during the summer months. However, one might expect these
discrepancies to be less significant than for other data sources such as the daily number of new confirmed
cases, where testing procedures (and availability) have changed significantly during the epidemic, or for
primary care visits, where clinical diagnosis may be less accurate.

Interestingly, although the models were different and the data were not completely identical, our results
were comparable in terms of attack rates to existingmodeling work [63] and seroprevalence sampling studies
[64–66] (for a comparison, see Appendix E). Overall, our estimates tend to be slightly higher, within a 5%
margin. This is probably due to the strong assumption that there is nowaning immunity in ourmodel. Indeed,
we assume that all individuals, once infected, have a sufficiently high antibody titers to systematically test
positive in seroprevalence studies. Regarding the reproductive numbers, we estimate the average national
basic reproductive number to be 3.10 [2.95; 3.26]. This differs from the initial values of Reff in mid-March
in all regions, which are estimated between 3.5 and 4, and is mainly due to winter weather conditions
in mid-March in all regions. Our estimate is consistent with other estimates worldwide. In Liu et al. [67],
the authors compare 12 studies that estimate the basic reproductive number for COVID-19 from China and
overseas. Estimates ranged from 1.4 to 6.49, with a mean of 3.28. French studies also found similar estimates
3.18 [3.09; 3.24] in Di Domenico et al. [31] and 2.90 [2.81; 3.01] in Salje et al. [3]. These comparisons validate
our estimation strategy, which has the major advantage of estimating transmission rates without making any
assumptions about the shape of its dynamics over time. Moreover, the computation times are very reasonable
(a few minutes for the full estimation on a regular laptop without code optimization).
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Other variables could have been added, such as partial interventions (e.g., only in large cities in regions
heavily affected by COVID – 19) – but these would have been inconsistent with our model defined at the
regional level. Indeed, we need a match between hospital data-used to estimate transmission rates – and
NPIs – used to estimate their associations with transmission rates – to combine the two steps of our study. To
better illustrate, even if we have more information about bar closures in a city, we do not know exactly what
proportion of that city’s population is included in the hospital data for that city’s region. And each region
may have a different number of major cities, each of which has a different size in terms of population. So the
impact of “partial bar closure” could vary from region to region, which is not consistent with the assumption
of the regression.

Other potential variables were grouped under the NPI “barrier gestures” because they suffer from incon-
sistent definitions and are sometimes allocated simultaneously, leading to identifiability problems.Work from
home is a good example. First, compliance with this measure (which can vary due to employee fatigue, orga-
nizational difficulties, and lack of legal requirements) is difficult to assess. Second, in terms of quantitative
indicators, DARES has conducted surveys of companies with 10 or more employees and has shown that the
average percentage of working from home is 30% [19%, 40%] and peaks during the two lockdowns [68]. How-
ever, this indicator takes into account work from home and paid leave, which can be very different in terms of
risk behavior and overlap to some extent with school closure. Gathering restrictions is also a good example
of how policies were constantly changing between private and public measures with the size of authorized
gathering also varying. Finally, we believe that an individual’s overall compliance with an entire package of
“barrier gestures” is more likely to be stable over time than compliance with the individual components of
that package. Mask wearing is a good example of this, as people were encouraged to keep the mask even
though there was no longer an obligation, and probably did even more when at risk of infecting others. All
in all, removing work from home, gathering restrictions, social distancing, mask wearing, and others from
the regression model captures their association with transmission rates through the effect of lockdowns and
barrier gestures in a more identifiable manner leading to more robust results.

We also make certain modeling assumptions. For some interventions, such as lockdowns, we consid-
ered a 7-day delay in implementation. This choice is not determined by the delay between infection and
hospitalization, which is already accounted for by DE and DQ, but by the transmission rates obtained with
the Kalman filter. This choice is supported by other studies, such as Dehning et al. [25], in which the delay
can be as long as 15 days. However, we examined how this affects our regression fit. Not accounting for the
7-day lag significantly degrades the fits, see Model 4 of Appendix G in the Supporting Information for more
details. Modeling the impact of partially opening schools during the period from May 11 to July 4, 2020, as
70% of the impact of a full closuremight be considered an oversimplification. During this period after the first
lockdown, schools reopened very gradually in three distinct phases, and enrollment increased even more
progressively. By June 2nd, there were sharp differences between regions in opening and school attendance,
with an average of only 30% of students under 12 attending school. The other levels of secondary schools
(“collèges” and “lycées”) reopened in early June and gradually enrolled more students until the vacations,
which began in early July. To avoid risking identifiability problems, we choose not to differentiate by region
or phase of reopening, and a ratio of 0.7 was used for the proportion of closure for all regions. We found
modest but significant effect of school closure as of other studies [69]. Regarding the effect of curfews, we do
not detect a statistically significant difference between 6 PM and 8 PM. This could be due to an identification
problem, as the 8 PM curfew was in place for less than 3 weeks in many regions. An alternative explanation
could be that both curfews affect global social gathering in the same way. For example, both prevent most
private dinners and parties (or at least drastically reduce the number of guests).

We consider weather conditions relying on an aggregated indicator instead of exploring the impact of
temperature, absolute humidity, and relative humidity separately. In Appendix G, simpler models are exam-
ined: all of them exhibits degraded fits. However, we remain extremely cautious in interpreting the estimated
association of weather conditions with transmission rates and the mechanisms potentially involved. Finally,
we consider an interaction between seasonal weather conditions and the closure of bars and restaurants,
which is attributed to the use of patios and terraces (which have been expanded in many places since the
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beginning of the pandemic). Of course, other interactions and more complex models can be considered, but
this quickly leads to overfitting.

During our study period, the 20I/501Y.V1 (alpha) variant seems to have always been predominant (over
90% at any time) among VoC (the other two being beta and gamma) considered inmainland France [50]. Very
different estimates of the increase in transmissibility for the 20I/501Y.V1 (alpha) variant have been proposed
in the scientific literature, ranging from 29% to 90% [70–74], with the lower values being consistent with our
own results. The higher estimates could be explained in part by the fact that new VoC appeared early in the
winter in England and the United States. This could lead to confusion bias between weather conditions and
VoC, both of which increase transmission, as mentioned by Campbell et al. [71]. We tested this assumption by
removingweather conditions fromourmodel and found an increased transmissibility of 43%, see Appendix G
for VoC. Finally, we kept the weather conditions in our model because they greatly improved the regression
fit.

We emphasize that our strategy does not allow us to estimate the direct effects of NPIs, weather, and
new VoC on transmission rates, but is only suggestive of associations. Indeed, the only data available are
observational, and the introduction of NPI is certainly not random, but clearly depends on the state of
the epidemic. To estimate the direct effect, we would need to use either methods of causal inference with
time-varying confounders or dynamic causality theory [75]. In the latter case, it is possible to use mecha-
nistic models to estimate direct effects even in observational studies. However, transmission rates would
have to be estimated directly in a one-step procedure using a parametric function that depends on these
effects. This often relies on strong assumptions, notably the parametric shape of the transmission rate
over time. But determining the shape of this dynamic is precisely the interest of this work using Kalman
filters.

Overall, this work is one of the first attempts to retrospectively assess the associations between multiple
NPIs and transmission rates over a one-year period of the COVID-19 epidemic. In addition to applying a
novel methodology to a current and important application, this work could be extended to generate “what-if”
scenarios and help determine appropriate NPI implementations for future waves of infection.
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Appendix A: Supplementary figures for hospitalization, NPIs,
variants of concern and vaccination data
Figure 8 represents the elsewhere published (SI-VIC database) and publicly available data on prevalence
and incidence of hospitalization for COVID-19 in 12 non-insular French regions. Representation of NPIs in all
regions is available in Figure 9. Finally, representations of the VoC proportion and the vaccination coverage
ramping up (1st dose) in the population in each region over time are given in Figure 10.
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Figure 8: Top: total number of hospital bed occupied per 100,000 inhabitants (100, 000/N × YH). Bottom: daily number of new
hospitalizations per 100,000 inhabitants

(
100,000∕N × YHin

)
.
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Figure 9: Implementation of NPIs in all regions. Differences are only impacting school closure and curfew by few days.
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Figure 10: Top: Percentage of either UK, SA or BR VoC over time. Bottom: Percentage of people who have received a first dose of
vaccine.
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Appendix B: Estimation of the hospitalization period using the
correlation between the total number of individual hospitalized
daily and the daily incident number of hospitalization
The relation between the total number of individual hospitalized daily denoted by H and the daily incident
number of hospitalization Hin is governed by

d
dt
H = − H

DH
+ Hin, (5)

with DH the hospitalization period.
Using the data of daily incident number of hospitalization

(
YHin

)
and the total number of individuals

hospitalized daily (YH) over a period of about a year (391 days from March 2, 2020 to March 28, 2021), we
estimate DH in each region by using a mean squared estimation. The obtained values are given in Table 3. In
the SEIRAH model, we fix DH at the mean value.

Appendix C: Computation of the effective reproductive ratio
To compute the reproductive ratio Reff of our SEIRAH model

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = −b
(
1− V

N

)S(I + 𝛼A)
N

Ė = b
(
1− V

N

)S(I + 𝛼A)
N − E

DE

İ = rE
DE

E − 1− rI
DQ

I − rI
DI
I,

Ṙ = rII + A
DI

+ H
DH

Ȧ = 1− rE
DE

E − A
DI

Ḣ = 1− rI
DQ

I − H
DH

,

(6)

we apply the Next Generation Matrix approach [76]. The principle consists in focusing on three categories: (i)
latent E, (ii) ascertained infectious I and (iii) unascertained infectious A with the following dynamics

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dE
dt = b

(
1− V

N

)S(I + 𝛼A)
N − E

DE
dI
dt =

rE
DE

E − 1− rI
DQ

I − rI
DI
I,

dA
dt

= 1− rE
DE

E − A
DI

Table 3: Estimation of DH for the 12 regions: Île-de-France (IDF); Centre-Val de Loire (CVL); Bourgone-Franche-Comté (BFC);
Normandie (Nor); Hauts-de-France (HDF); Grand Est (GE); Pays de la Loire (PL); Bretagne (Bret); Nouvelle-Aquitaine (NA);
Occitanie (Occ); Auvergne-Rhône-Alpes (AURA); Provence-Alpes-Côte d’Azur (PACA).

IDF CVL BFC Norm. HDF GE PL Bret. NA Occ. AURA PACA Nat. avg.

DH (days) 18.3 19.5 18.0 20.6 18.6 17.7 16.7 19.6 18.1 17.4 17.0 18.1 18.3
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Then, we build twomatrices corresponding to: (1) V following the arrivals and departures from one other
category and (2) F following the arrivals from another compartment exterior to the three categories. We have

V =

⎛⎜⎜⎜⎜⎜⎝

1
DE

0 0

− rE
DE

1− rI
DQ

+ rI
DI

0

− 1− rE
DE

0 1
DI

⎞⎟⎟⎟⎟⎟⎠

and F =
⎛
⎜⎜⎜⎝

0 b
(
1− V

N

) S
N 𝛼b

(
1− V

N

) S
N

0 0 0
0 0 0

⎞
⎟⎟⎟⎠
.

It is then well known – see for instance Perasso et al. [77] for a proof – that

Reff = 𝜌(FV−1),

where 𝜌(FV−1) is the spectral radius of the Next Generation Matrix FV−1. Here, we have

FV−1 =

⎛⎜⎜⎜⎜⎝

b
(
1− V

N

) S
N

(
DI𝛼(1− rE)+

DIDQrE
(1− rI)DI + rIDQ

)
b
(
1− V

N

) S
N

DIDQ
(1− rI)DI + rIDQ

b
(
1− V

N

) S
N DI𝛼

0 0 0
0 0 0

⎞⎟⎟⎟⎟⎠
,

with

V−1 =

⎛
⎜⎜⎜⎜⎝

DE 0 0
DIDQrE

(1− rI)DI + DQrI
DIDQ

(1− rI)DI + DQrI
0

(1− rE)DI 0 DI

⎞
⎟⎟⎟⎟⎠
.

We therefore obtain

Reff(t) = b(t)
(
1− V(t)

N

)
S(t)
N

(
DI𝛼(1− rE)+

DIDQrE
(1− rI)DI + rIDQ

)
.

Appendix D: Initial transmission rate and attack rate estimated
using our population-based Kalman filter
Table 4 shows the estimation of the initial values for the transmission rate at the regional level.

Table 4: Estimation of binit for the 12 regions: Île-de-France (IDF); Centre-Val de Loire (CVL); Bourgone-Franche-Comté (BFC);
Normandie (Nor); Hauts-de-France (HDF); Grand Est (GE); Pays de la Loire (PL); Bretagne (Bret); Nouvelle-Aquitaine (NA);
Occitanie (Occ); Auvergne-Rhône-Alpes (AURA); Provence-Alpes-Côte d’Azur (PACA).

IDF CVL BFC Norm. HDF GE PL Bret. NA Occ. AURA PACA Nat. avg.

binit 0.789 0.767 0.784 0.773 0.781 0.809 0.761 0.765 0.768 0.789 0.786 0.778 0.779
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Appendix E: Comparison of obtained attack rates with other
studies
Our attack rates are compared to (i) those obtained byHoze et al. [63] (see Table 5), and to (ii) 3 seroprevalence
studies [64–66] (see Table 6).

Table 5: Comparison of the estimated attack rates obtained in Hoze et al. [63] (first line) with our estimated attack rates (second
line) at 3 dates for the metropolitan France.

May 11, 2020 October 31, 2020 January 15, 2021

Hoze et al. [63] 5.7% [5.1%; 6.4%] 11% [9.7%; 12.4%] 14.9% [13.2%; 16.9%]
Proposed estimates 5.69% [5.61%; 5.77%] 12.78% [11.98%; 13.66%] 18.92% [16.76%; 21.43%]

Table 6: Comparison of the estimated attack rates obtained in 3 seroprevalence studies.

May 2 – June 2, 2020 May 4 – June 23, 2020 Oct. 5 – Oct. 11, 2020

Auvergne-Rhône-Alpes∗ 4.8% – –
Auvergne-Rhône-Alpes∗∗ 4.48% 4.54% 7.15%
Bourgone-Franche-Comté∗ 1.5% – 9.3%
Bourgone-Franche-Comté∗∗ 6.04% 6.14% 9.33%
Bretagne∗ 3.1% – –
Bretagne∗∗ 1.75% 1.79% 3.51%
Centre-Val de Loire∗ 2.1% – –
Centre-Val de Loire∗∗ 5.13% 5.26% 8.15%
Grand Est∗ 6.7% 9% 11.6%
Grand Est∗∗ 10.85% 11.36% 12.72%
Hauts-de-France∗ 2.9% – –
Hauts-de-France∗∗ 5.42% 5.64% 8.64%
Île-de-France∗ 9.2% 10% 14.8%
Île-de-France∗∗ 12.57% 13.06% 17.97%
Nouvelle-Aquitaine∗ 2.% 3.1% –
Nouvelle-Aquitaine∗∗ 1.51% 1.52% 3.06%
Normandie∗ 1.9% – –
Normandie∗∗ 2.28% 2.31% 5.25%
Occitanie∗ 1.9% – –
Occitanie∗∗ 1.71% 1.74% 5.17%
Provence-Alpes-Côte d’Azur∗ 5.2% – –
Provence-Alpes-Côte d’Azur∗∗ 4.49% 4.63% 8.55%
Pays de la Loire∗ 3.4% – –
Pays de la Loire∗∗ 2.62% 2.69% 4.01%

∗[64–66] (first line). ∗∗With our estimated attack rates (second line) averaged during the 3 corresponding date intervals.
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Appendix F: Regression model
The model writes as follow for each region i ∈ 1,… , 12:

log(bi (t)) = 𝛼 + 𝛽Lock1Lock1(t)+ 𝛽Post−Lock1.1Post− Lock1.1i(t)+ 𝛽Post−Lock1.2Post− Lock1.2i(t)

+ 𝛽Lock2Lock2i(t)+ 𝛽Post−Lock2.1Post− Lock2.1i(t)+ 𝛽ClosedSchoolsClosedSchools
i(t)

+ 𝛽ClosedBarsRestauClosedBarsRestau
i(t)+ 𝛽BarrierGesturesBarrierGesturesi(t)

+ 𝛽Curf6PMCurf6PMi(t)+ 𝛽Curf8PMCurf8PMi(t)+ 𝛽VoCVoCi(t)+ 𝛽WWi(t)

+ 𝛽IntClosedBarsRestau
i(t) ×Wi(t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Interaction

+ 𝛽 iLock1Lock1
i(t)+ 𝛽 iLock2Lock2

i(t)+ 𝛽 iCurf6PMCurf6PM
i(t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
RandomSlopes (𝛽 iLock1,𝛽 iLock2,𝛽 iLock1)

T∼ (0,Σ)

+ ui⏟⏟⏟
Randon Intercept ui∼ (0,𝜎region)

(7)

Regression residuals, fixed and random effects are for the selected model given in Eq. (7) are given in
Table 7. Covariance matrix is given in Table 8.

Table 7: Scaled residuals, random and fixed effects of regression model (7).

Scaled residuals

Min 1Q Median 3Q Max
−3.9394 −0.4817 −0.0033 0.5609 10.5139

Random effects

Variance Std. dev. Corr
𝜎region 0.005159 0.07183
𝜎Lock1 0.106598 0.32649 −0.43
𝜎Lock2 0.018070 0.13443 0.35 −0.52
𝜎Curf-6PM 0.002827 0.05317 −0.29 0.12 −0.39

Fixed effects

Estimate Std. error Df t value Pr(>|t|)
A −0.40919 0.02595 25.34463 −15.766 1.30e−14
Lock1 −1.52327 0.09631 11.76340 −15.817 2.75e−09
Post-Lock1.1 −0.77153 0.02037 4620.46129 −37.869 <2e−16
Post-Lock1.2 −0.65810 0.01427 4634.29686 −46.120 <2e−16
Lock2 −0.76626 0.04312 13.69861 −17.771 7.47e−11
Lock2.1 −0.71299 0.02169 4644.40638 −32.876 <2e−16
Closed schools −0.07150 0.00866 4639.83981 −8.256 <2e−16
Closed bars & rest. −0.10746 0.01492 4623.96873 −7.201 6.93e−13
Barrier gestures −0.61300 0.01963 4652.90602 −31.229 <2e−16
Curf. 6 PM −0.35386 0.02629 59.55020 −13.461 <2e−16
Curf. 8 PM −0.32590 0.01951 4404.57885 −16.707 <2e−16
Variants 0.19505 0.02759 4605.07217 7.071 1.77e−12
Weather −1.03117 0.04013 4654.84448 −25.696 <2e−16
Bar & rest.: weather 0.11877 0.05706 4501.30235 2.082 0.0374
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Appendix G: Comparison with other regression models
In this part, we compare our regression model to other regression models. We start by considering a simple
model neglecting the weather (Model 1) and then we consider a model integrating the weather variable but
neglecting the interaction with the bars and restaurants (Model 2) and the selected model (Model 3). Model 4
corresponds to Model 3 but without considering the delay of 7 days after the lockdowns. Table 9 summarizes
the results. Figure 11 shows the fits.

Using the first model (AIC = −707), we obtain a negative association between the closure of bars and
restaurantsand the transmission rateswhich isnot realistic. This isdue to the fact that thebarsand restaurants
were open during summer when the transmission rate was very low with a effective reproductive number
inferior to 1 in all regions. That is why in a second model, we add the weather variable. The AIC of this
model is larger superior to the first ones (AIC = −1486). The third model assumes that there is an interaction
between the closures of bar and restaurants and the weather to take into account the use of terraces (which
have been expanded in many places since the beginning of the pandemic). The AIC is similar to the second
model (AIC = −1485). The AIC of Model 4 is very large (AIC = 2224) compared to other ones validating the
delay of 7 days.

We found that the three VoCs (alpha, beta, and gamma) are∼20% (Model 2 or 3) to∼45% (Model 1) more
transmissible than the historical lineage. The estimated value with Model 1 seems more realistic comparing
to the literature and the end of the curve is better fitted. This is an important limitation of our work.

Table 9: Estimation of the associations between the transmission rates and the weather, the VoCs and the NPIs. Negative (resp.
positive) values correspond to a decrease (resp. an increase) of the transmission rate.

NPI/variants/weather Model 1 Model 2 Model 3 Model 4

Lockdown 1 (delay of 7 days) −83% [−86%;−80%] −78% [−82%;−74%] −78% [−82%;−74%] −65% [−71%;−58%]
Post lockdown 1 – phase 1 −54% [−56%;−53%] −53% [−54%;−51%] −54% [−56%;−52%] −45% [−49%;−40%]
Post lockdown 1 – phase 2 −49% [−51%;−47%] −48% [−50%;−47%] −48% [−50%;−47%] −48% [−50%;−46%]
Lockdown 2 (delay of 7 days) −49% [−53%;−44%] −53% [−57%;−49%] −54% [−57%;−49%] −41% [−46%;−35%]
Lockdown 2 with open. −38% [−41%;−35%] −51% [−53%;−49%] −51% [−53%;−49%] −54% [−57%;−51%]
shops
Closing schools −15% [−16%;−13%] −7% [−9%;−6%] −7% [−8%;−5%] −3% [−6%;−1%]
Closing bars & restaurants 4% [1%; 7%] −10% [−13%;−8%] −10% [−13%;−8%] −24% [−29%;−19%]
Barrier gestures −63% [−64%;−61%] −46% [−48%;−44%] −46% [−48%;−44%] −36% [−40%;−31%]
Curfew at 6 PM −18% [−22%;−13%] −30% [−33%;−26%] −30% [−33%;−26%] −28% [−34%;−23%]
Curfew at 8 PM −5% [−8%;−2%] −28% [−31%;−25%] −28% [−31%;−25%] −33% [−37%;−28%]
Proportion of variants 44% [36%; 52%] 20% [14%; 27%] 22% [15%; 28%] 6% [−2%; 15%]
Seasonal weather conditions – −63% [−65%;−60%] −64% [−67%;−61%] −73% [−76%;−69%]
Weather cond./closing – – 13% [1%; 26%] −32% [−42%;−19%]
bars & rest.
AIC −707 −1486 −1485 2224
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Figure 11: Results of regression models of the transmission rate obtained with the population based Kalman filter using Model 3
given in Eq. (7). Top-Left: Mean fit with linear model without considering weather effect (Model 1). Top-Right: Mean fit with linear
model considering linear weather effect (Model 2). Bottom-Left: Mean fit with linear model with linear weather effect and with
closed bar and restaurants and weather interaction (Model 3). Bottom-Right: Mean fit with linear model with linear weather
effect and with closed bar and restaurants and weather interaction (Model 4) but without taking into account the delay of 7 days
after the lockdowns. Random effects are considered on the intercept, the lockdowns and the curfew at 6 PM.
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