N

N
N

HAL

open science

Cooperative Perception Integrity for Intelligent Vehicles

Antoine Lima

» To cite this version:

Antoine Lima. Cooperative Perception Integrity for Intelligent Vehicles. Robotics [cs.RO]. UTC - Uni-
versité de Technologie de Compiegne rue du Dr Schweitzer. Université de Technologie de Compiégne
(UTC), Compiegne, FRA., 2023. English. NNT: . tel-04671509v1

HAL Id: tel-04671509
https://hal.science/tel-04671509v1
Submitted on 1 Jul 2024 (v1), last revised 15 Aug 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Copyright

https://hal.science/tel-04671509v1
https://hal.archives-ouvertes.fr

Cooperative Perception Integrity
for Intelligent Vehicles

Antoine Lima

PhD Thesis Prepared at the Heudiasyc Laboratory, UMR
UTC/CNRS 7253

Defended on the Third of May, 2023

Specialty: Automatics & Robotics

Committee:
Reviewers Romuald Aufrere Univ. Clermont Auvergne
Rémi Boutteau Univ. de Rouen Normandie
Examiners Franck Davoine Univ. de Technologie de Compiegne
Joelle Hage Univ. de Technologie de Compiegne
Fawzi Nashashibi Inria Paris Rocquencourt
Clément Zinoune Renault

Supervisors Philippe Bonnifait Univ. de Technologie de Compiegne

Véronique Cherfaoui Univ. de Technologie de Compiegne

S | &= utc %f-' | @
SoreoNe Recherche heudiasyc

Contents

Acknowledgments

Abstract

1 General Introduction
Intelligent Vehicles

2

1.1

1.2

1.1.1

Levels of Automation

1.1.2 Autonomous Navigation Stack
1.1.3 Environment Perception

1.1.4 Cooperative Perception
Integrity
1.2.1 General Definition
1.2.2 Localization Integrity
1.2.3 Perception Integrity

1.3 Objectives
1.4 Manuscript Organization

Methods and Tools for Decentralized Data Fusion
Introduction
2.2 Symbolic Information and Belief Functions

2.1

2.3

221
2.2.2

2.2.3
224

Representation L.
Combination of Mass Functions
2.2.2.1 Conjunctive Combination
2.2.2.2 Disjunctive Combination
2.2.2.3 Cautious Combination
2.2.2.4 Partially Overlapping Fusion
Discounting
Conclusiono

Metric Representation and State Filtering

2.3.1
2.3.2

2.3.3
2.3.4

Random State Vectors
State Filtering oL
2.3.2.1 Kalman Filtering
2.3.2.2 Extensions to the Kalman Filter
2.3.2.3 Informational Filtering
Covariance Intersection Filtering
Split Covariance Intersection Filtering

2.4 Analysis of Covariance Intersection Filters

1

11
11
11
12
12
13
15
15
16
17
18
19

CONTENTS

2.4.1 (I Filtering Comparison with Kalman Filtering 41
2.4.2 Convergence Issues with Similarly Shaped Observation Co-

VATiancCes e e e e 43

2.4.3 Slow Convergence with Partial Measurement 43

2.4.4 SCI Comparison with a Kalman-CI Combination 46

2.4.5 Tuning SCIF Evolution and Observation Models 47

25 Conclusiono 48

Sensor Processing and Tracking 51

3.1 Introduction 51

3.2 Objects and Free Space Detection 51

3.2.1 Sensor Pre-Processing 52

3.2.2 Model Based Object Detection 55

3.2.3 Deep Learning Based Object Detection 56

324 FreeSpace 58

3.3 Multi-Object Tracking 60

3.3.1 Data Association for Object Traking 60

3.3.2 Track Management 62

3.4 Perception Evaluation 64

3.4.1 Perception Ground Truth 64

3.4.2 Evaluation Metrics 65

3.5 Description of the Perception System Used in this Work 69

3.5.1 Experimental Setup L. 69

3.5.1.1 Hardware 69

3.5.1.2 Software 73

3.5.2 Cars and Traffic Signs Detection using LiDAR 74

3.5.2.1 Sensor Tracking 76

3.5.2.2 Track Management 7

3.6 Evaluation 78

3.6.1 Evaluation of Sign Detection 78

3.6.2 Evaluation of Car Detection 80

3.7 Conclusion 82

Cooperative Perception in a Trustworthy Network 83

4.1 Introduction 83

4.2 Review of Cooperative Perception 84

4.2.1 Communication for Intelligent Transportation Systems . . 84

4.2.1.1 Medium 84

4.2.1.2 Messages oo 84

4.2.1.3 Contents of Cooperative Perception Messages . . 86

4.2.1.4 Security in Vehicular Networks 87

4.2.2 Cooperative Track-To-Track Fusion 87

4.2.2.1 Cooperative Fusion Architectures 87

4.2.2.2 Cooperative State Filtering 88

4.2.2.3 Spatial Alignment 89

4.2.2.4 Temporal Alignment 92

4.2.2.5 Out-Of-Sequence Observations 92

CONTENTS 3

4.2.3 Evaluation Methods for Cooperative Perception 94

4.3 Fusion of Multiple Points of View 95

4.3.1 Generic Fusion Architecture 96

4.3.2 Managing the Detectability of Multiple Sources 96

4.3.2.1 Definition of Detectability 97

4.3.2.2 Computation of Detectability 98

4.3.2.3 Fusion of Detectability Grids 99

4.3.2.4 Object Detectability 103

4.3.3 Similarity between Objects 103

4.3.4 Estimating the Existence of Tracked Objects 106

4.4 Evaluation of Cooperative Perception 108

4.4.1 Evaluation Methodology 108

4.4.1.1 Global and Local Evaluations 108

4.4.1.2 Datasets with Ground-Truth 108

4.4.1.3 Evaluation Metrics 109

4.4.2 Study of the Added-Value of Cooperative Perception . . . 114
4.4.3 Study of the Contribution of Detectability for Cooperative

Perceptiono 118

4.5 Conclusion 119

5 Estimation of Trust in Cooperative Peers 121

5.1 Introduction 121

5.2 Review of Trust in Intelligent Vehicles 121

5.2.1 Misbehavior Detection 122

5.2.2 Aggregation 123

5.3 Trust Estimation and Use for Data Fusion 124

5.3.1 Fusion Architecture with Trust Management 124

5.3.2 Evidential Estimation of Trust 124

5.3.3 Coherency 125

5.3.3.1 Object Detectability 126

5.3.3.2 Attribute Coherency 126

5.3.3.3 Spatial Coherency 127

5.3.4 Consistency 128

5.3.5 Confirmation 129

5.3.5.1 Object Similarity 130

5.3.5.2 Object Dissimilarity 130

5.3.5.3 Object-Free-Space Inconsistency 131

5.3.5.4 Free-Space Similarity 131

5.3.6 Summary of Trust Parameters 133

5.3.7 Trust-Aware Tracking 134

5.4 Experimental Evaluation 135

5.4.1 Added Value of Trust in Nominal Cases 136
5.4.2 Trust Estimation and Perception Performance in Case of

Faults 138

5.4.3 Impact of Trust Parameters 141

5.5 Conclusion 145

4 CONTENTS
6 General Conclusion 147
6.1 Conclusion 147
6.2 Contributions 148
6.3 Perspectives 149
List of Figures 151
List of Tables 158
A Developments 163
A1 Datasets 163
A2 Perception 163
A3 Tracking 164
A4 Display 165
A.5 Special Processing 165
B Cooperative Datasets 167
B.1 Roundabout 167
B.2 Intersection 168
B.3 Overtaking 168
C Cooperative Ground-Truth 169
D Study of the Combination Rule Used in Trust Estimation 171
E Study of Consensus Building in Trust Estimation 173
Bibliography 175

Acknowledgments

As an opening to this manuscript, I would like to thank all those who made it
possible.

First and foremost, I would like to thank Philippe Bonnifait and Véronique Cher-
faoui for supervising this thesis. Their guidance and the long and late but fruitful
discussion we had helped me grow and complete this massive undertaking.

Secondly, I would like to thank Romuald Aufrere and Rémi Boutteau for review-
ing this manuscript. The time they put into making sure this work was worth
reading and their remarks greatly improved it. Many thanks also goes to Franck
Davoine, Joelle Hage, Fawzi Nashashibi and Clément Zinoune for examining this
work and for the discussion we had. I am especially thankful to Joelle and Fawzi
that followed this thesis through the years. They helped me gain confidence in
my work and focus my ideas.

Thirdly, I would like to thanks my Heudiasyc colleagues and friends: Baptiste,
Rémy, Stéphane, Maxime&Maxime, Lyes, Anthony, Corentin, Jean-Benoist, Luca
and Romain. Talking about science, work and other stuff helped me keep my head
above the water. Also thanks to my ex-roommates Tobias and Adrien for their
energy and making sure I was not only working.

Finally, my deepest thanks goes to Roxane, my parents and my brothers for
emotionally supporting me for all these years, especially those last four.

Abstract

In order to navigate safely and comfortably, intelligent vehicles require highly
reliable perception of their environment. Since on-board sensors are necessarily
limited in range, and because their field of view can be obscured, an emerging
solution is cooperative perception: vehicles share their perception with other
vehicles via wireless communication.

Intelligent vehicles can thus communicate complex information over long dis-
tances. They see further and more completely than their sensors could ever
allow. However, information from external sources must be treated with cau-
tion, as misleading information can lead to a dangerous situation. The sources
of degradation of this information’s ”integrity” in the cooperative system must
therefore be kept to a minimum. In this thesis, we study these sources and pro-
pose suitable methods for managing them and avoiding their propagation. Our
work focuses in particular on the fusion of tracked objects, the representation of
areas covered by perception systems and the management of trust attributable
to other communicating agents.

In order to avoid underestimating the uncertainty linked to the state of perceived
objects, we are studying data fusion filters capable of handling the information
loops induced by exchanges. Our results on simulated data show that a split
covariance intersection filter is a suitable method for this problem. Coupled
with the parameter-tuning methodology we propose, this method also appears to
outperform more conventional methods.

Next, we introduce a formalism for representing the areas covered by each sensor
and the areas seen as free, in order to better merge the detected objects. This
is the concept of evidential detectability grids, based on the theory of belief
functions. These detectability grids make it possible to merge several points
of view to obtain a global representation of the environment, while explicitly
managing uncertainties.

Finally, we propose a method for each vehicle to elaborate a trust index on the
other cooperative agents. It is based on an evidential tree combining several
pieces of evidence, such as the consistency and concordance of the information
received. The confidence index is then used to ensure that each vehicle reliably
combines locally perceived information with that transmitted by other vehicles.

The performance of the global cooperative perception method is evaluated on real
data obtained using three experimental vehicles equipped with omnidirectional

7

8 CONTENTS

LiDAR sensors. The corresponding data sets are made available to the scientific
community.

Résumé

Afin de naviguer de maniere sure et confortable, les véhicules intelligents nécessitent
une perception tres fiable de leur environnement d’évolution. Les capteurs em-
barqués étant nécessairement limités en portée et leur champ de vue pouvant faire
I'objet d’occultations, une solution émergente est la perception coopérative : les
véhicules partagent leur perception avec les autres véhicules par des moyens de
communication sans-fil.

Les véhicules intelligents peuvent ainsi communiquer des informations complexes
a travers de longues distances. Ils voient plus loin et de maniere plus complete
que ce que leurs capteurs leur permettent. Cependant, les informations provenant
d’une source extérieure doivent étre considérées avec prudence car une perception
trompeuse peut entrainer une situation dangereuse. Il convient donc de limiter
au maximum les sources de dégradation de l'intégrité de I'information dans le
systeme coopératif. Dans cette these, nous étudions ces sources et nous proposons
des méthodes adaptées pour les gérer et éviter leur propagation. Nos travaux se
concentrent en particulier sur la fusion d’objets pistés, la représentation des zones
couvertes par les systemes de perception et la gestion de la confiance imputable
aux autres agents communicants.

Afin d’éviter de sous-estimer l'incertitude liée a 1’état des objets percus, nous
étudions des filtres de fusion de données capables de gérer les boucles d’information,
induites par les échanges. Nos résultats sur données simulées montrent qu’un filtre
a intersection de covariance partitionnée est une méthode adaptée a ce probleme.
Couplée a la méthodologie de réglage des parametres que nous proposons, cette
méthode peut également étre plus performante que d’autres plus classiques.

Ensuite, nous présentons un formalisme permettant de représenter les zones cou-
vertes par chaque capteur et les zones vues comme libres afin de mieux fusionner
les objets détectés. C’est le concept de grilles de détectabilité évidentielles, basé
sur la théorie des fonctions de croyance. Ces grilles de détectabilité permettent
de fusionner plusieurs points de vue pour obtenir une représentation globale de
I’environnement tout en gérant explicitement les incertitudes.

Finalement, nous proposons une méthode pour que chaque véhicule élabore un
indice de confiance sur les autres agents coopératifs. Elle se base sur un arbre
évidentiel combinant plusieurs éléments de preuve comme la cohérence et la con-
cordance des informations recues. L’indice de confiance est ensuite utilisé pour
que chaque véhicule combine de facon fiable les information pergues localement
avec celles transmises par les autres véhicules.

10 CONTENTS

Les performances de la méthode globale de perception coopérative sont évaluées
sur des données réelles obtenues a 1’aide de trois véhicules expérimentaux équipés
de capteurs LiDAR omnidirectionnels. Les jeux de données correspondants sont
rendus publics a la communauté scientifique.

Chapter 1

General Introduction

Contents
1.1 Intelligent Vehicles 11
1.2 Imtegrity 15
1.3 Objectives 18
1.4 Manuscript Organization 19

1.1 Intelligent Vehicles

Transportation and mobility have become majors concern in modern societies.
Humans are becoming increasingly more reliant on being able to move rapidly on
a daily basis. At the same time, transportation is the cause of many accidents and
casualties every year. As road vehicles occupy a large portion of both mobility
and casualty aspects, intelligent road vehicles are seen as a good way to reduce the
number of accidents. In addition, delegating navigation tasks to computers might
simplify the use of private and public transportation, in particular to individuals
with limited mobility. These elements motivated the development of on-board
intelligence technologies, now allowing vehicles to be automated and potentially
be autonomous in the future.

1.1.1 Levels of Automation

The autonomy of intelligent vehicles depends on their level of automation, which
is classically defined by the Society of American Engineer (SAE) J3016 stan-
dard (SAE-J3016 2021) summarized in Table 1.1. The first group, Advanced
Driver-Assistance Systems (ADASs), aggregates lower levels of automation that
help human drivers in mundane driving tasks such as lane-keeping or Adaptive
Cruise Control (ACC). ADAS are already available to consumers with for exam-
ple Tesla’s Autopilot that is authorized in the United States of America (USA).
The second group is autonomous vehicles for levels in which road monitoring and
navigation are progressively deferred to autonomous systems and drivers are less
and less required. Several applications are being developed as of writing this

11

12 CHAPTER 1. GENERAL INTRODUCTION

manuscript, such as Zoox or Navia autonomous shuttles that can drive on prede-
termined paths. In Europe, the Mercedes Model S is currently L3-certified (level
3) and offers autonomous driving on German highways during traffic jams up to
60 km/h.

Table 1.1: 6 Levels of Automation as defined by the SAE.

o
7 a 0a

0 1 2 3 4
No Driver ADAS | Conditional High Full
Automation | Assistance Automation | Automation | Automation

1.1.2 Autonomous Navigation Stack

The software architecture of autonomous vehicles is composed of several mod-
ules that are responsible for various navigation tasks, like localization or obstacle
avoidance. Figures 1.1 and 1.2 give two examples of architectures used at Ulm
University and Renault respectively. They provide an overview of the required
modules and their interactions with each other. Starting on the left with raw
sensors, modules progressively transform data to high level information and fi-
nally to low level control. In between is the brain of the vehicle that analyzes
and understands its environment before deciding what to do and how.

Perception & Scene Understanding

Decision
Making

Maneuver
Permission

Sensors

--—em e om om om hk m = = === -

Pre-
Processing

Figure 1.1: Architecture used at Ulm University, adapted from (Tag et al. 2016).
Modules are regrouped in three main categories: input (sensors), processing (percep-
tion, scene understanding) and output (navigation, control). In the perception modules,
note that objects and space are both estimated.

1.1.3 Environment Perception

The first part of the brain is the focus of this manuscript. Perception is a term
encompassing everything that turns exteroceptive sensor data into information

1.1. INTELLIGENT VEHICLES 13

...

’

Perception and Sltuation Understanding

’ Map and Localization ‘

h ' N Sensors \:) Connected \'.
' ' v Infrasctructure i
: ' GNSS ['
' 0 vy ‘
E Cloud V! ’ LiDARs ‘ ’ Cameras ‘ . Traffic Lights '
' | Communication R, N .. !
' Gateway b e e e e e e e —————
!

' ’

|

!

!

\

'

~

"""""""] World Model
." High-Level N L e edciceeo- .
Decision Making

’

'
!

‘ N Low-Level Decision Making and Control M
! . [1
' Supervisor . ’ Navigation and Decision Making ‘ '
' and ' '
‘ System . — '
' Health L Lateral Control ‘ ’ Longitudinal Control !
! Monitoring Lo :
'\ U I\ U

’ Vehicle Interface ‘

..

Figure 1.2: Architecture used at Renault during the Tornado project, adapted from
(Milanés et al. 2022). The same main categories are present, but note the presence of
communication with connected infrastructure and cloud connection.

that can be interpreted by situation understanding and motion planning modules.
These modules decide where and how to move for the next few seconds in order
to get closer to the goal while remaining safe. As such, the best information a
perception system could give to them is the state of every point in space around
the vehicle for the next few seconds. However, current technology and algorithms
cannot provide such levels of information in both space and time. The next best
solution is thus to split the problem in two and provide a dual information, as
illustrated in Figure 1.3. Perception information is split in sparse but predictable
objects and dense but instantaneous mappings. This separation stems from the
realization that the reciprocal of object presence is not necessarily their absence
but also that they have not been seen. That is why areas explicitly measured as
free are mapped and constitute the second aspect of perception. How these two
sides of the same coin are represented and processed will be discussed later.

1.1.4 Cooperative Perception

By using wireless communication, vehicles can exchange information and cooper-
ate with each others. This way, vehicles can cooperatively perceive their environ-
ment, by exchanging objects and free space. This is called Cooperative Perception
(CP), sometimes also called collective perception in the literature. Thanks to the
diversity of points of view, their estimation of the driving environment can be
improved and hidden zones can be reduced. Hidden areas or areas beyond the
range of the sensors are indeed important because as the vehicle cannot obtain
information at these locations its autonomous navigation capabilities, especially
at high speed, are reduced. As communication can have large ranges and can
pass through small obstructions, the perception of every vehicles can virtually be
extended further and behind obstacles.

Cooperation can be of several kinds, summarized in Figure 1.4. Centralized ap-

14 CHAPTER 1. GENERAL INTRODUCTION

(N
-

(S

Figure 1.3: Scene composed of two vehicles and a pedestrian. Perceived objects and
space considered free by the blue vehicle at the bottom are depicted in red and green
respectively. This example also illustrates that there are always hidden areas in a field
of perception.

®0° % P ®e
o ®
o D
PY ® 0 @
® o ® o ®
e © C I
(a) Centralized (b) Decentralized (c) Distributed

Figure 1.4: Common structures for communication and computation between mul-
tiple peers. Small blue nodes are sources of information. Orange nodes are where
computations are realized. Small orange nodes are both information sources and com-
puters.

proaches have a server at their center of operation. The central server gathers all
available information, processes it then dispatches the result. This solution is the
simplest to implement and can give optimal results but does not scale well. As
the number of participants increases, exponentially more and more computations
are required at a single point, which can become unfeasible and be less reliable
as there is a single point of failure. In addition, centralized approaches require a
constant connection to the internet, which is not yet possible everywhere nor nec-
essarily desirable for privacy and environmental concerns. Distributed approaches
propose to solve most of these issues by distributing the computation between
peers. However, this comes at the expense of more complex protocols, which can
be a significant issue for vehicular networks, that are already sufficiently complex
due to their high dynamics.

To prevent these issues, decentralized approaches can be used instead. In this
case, each participant is the center of its own partial world. Computation results
can be shared with each other but no guarantee can be made about its redun-
dancy between peers. Indeed, because each peer has a different point of view,

1.2. INTEGRITY 15

its knowledge of the environment might differ from peer to peer. This is not
a problem though, as vehicles are supposed to be independently responsible for
their own navigation tasks, and thus environment perception. A decentralized
approach is thus more adapted to CP as it allows for situations where vehicles
are not communicating or not cooperating.

Another common distinction depends on the type of task being realized. When
all peers work together towards a common goal, the task is said collective. When
all peers work independently but still share a common goal, the task is said
collaborative. Finally, if peers work independently on their own goal but help each
other, the task is said cooperative. Once again, because vehicles are supposed to
be independently responsible for their own navigation, cooperation is better fitted
to the problem at hand: vehicles can help each other but should be able to be
independent.

CP can be seen as a way to improve the quality of perception or each peer. How-
ever, defining what quality means requires the introduction of another concept:
ntegrity.

1.2 Integrity

1.2.1 General Definition

Integrity has an intuitive meaning in everyday life that is based on moral and
ethical values such as honesty, incorruptibility or wholeness. According to (N.
Zhu et al. 2018), the term integrity originates from the aeronautics field where
it is used to manage the trust that can be placed in a navigation solution. The
notion of integrity has since evolved towards more general concepts. For example,
(Boritz 2005) defines information integrity as a subset of information quality,
where the information is relevant, usable and reliable.

The idea has been progressively extended to the following set of characteristics
summarized by (Balakrishnan 2020) in the context of intelligent vehicle localiza-
tion:

e Correctness: Correspondence of the information with the physical reality
up to a known degree of accuracy. For example, the information should
be accurate, consistent in time and unaltered (whether intentionally or
not);

o Availability: Information is available when its extent and its quality are
sufficient to systems using it;

e Completeness: The available information faithfully represents the whole
situation without missing a part of it;

o Validity: The available information faithfully represents the conditions,
rules or relationships of the real world. For this, the information acqui-
sition process thus has to be understandable and verifiable.

16 CHAPTER 1. GENERAL INTRODUCTION

A good information in this sense is thus not the most accurate, but rather the
most faithful to real world or in other words, that which will mislead other systems
the least. Information is thus of high integrity as long as it is not misleading and
sufficiently qualitative for the task to perform.

Additionally, integrity is transitive: if every sub-system is provided with non-
misleading information and maintains that property throughout, then the whole
system is assumed to be safe. For example, (Reid et al. 2019) details the inter-
actions between modules in intelligent vehicles.

In the field of robotics and autonomous systems, integrity is particularly impor-
tant as significant injuries and casualties can be caused by misunderstanding.
The most critical modules in these are the localization and environment percep-
tion modules as a situation misunderstanding can result in hazardous behaviors.
As such, let us present how integrity is defined for these modules.

1.2.2 Localization Integrity

The concept of integrity has historically been introduced to intelligent vehicles
through the localization aspect (N. Zhu et al. 2018). Because localization refers
to vehicles that always exist, it is by definition valid and complete, leaving only
correctness to be monitored and availability to be evaluated. The worst situation
possible for a localization system is to provide an erroneous but very confident
pose to downstream systems. As such, its integrity mainly refers to correctness.

Localization integrity can be performed in real-time by computing protection lev-
els and comparing them to Alert Limits (ALs) to declare the localization system
available or not. In practice, the validation of a system that computes protection
levels is done in post-processing with a reference ground truth by checking if its
error is correctly bounded at all times.

— O " — Error i
H i ™
Wi/ Y ‘/ ‘WU [N AN A / M"%/ ‘I:I 30 Confidence Interval

L A— e~ —— —

— — == — = e o ——— L

— — — — = = —

VT W™ M Mo (!
AN AN N Mg WA N, MNP
e NN

Figure 1.5: Lateral position error and bounds of a localization system through time.
Taken from (Lima, Welte, et al. 2020).

Figure 1.5 illustrates such a problem, where a localization error and its bounds
are plotted on the same graph. If the error is above the associated bound for
more than a given percentage of the time, called Target Integrity Risk (TIR), the
system does not respect the integrity requirement. The specification of the TIR
is still a research topic, although some studies indicate that it should be between
10~* and 1077 per hour of critical operation (Reid et al. 2019).

Stanford diagrams are tools often used in aeronautics to evaluate integrity. They
plot the real error against an estimated upper bound (i.e. protection levels),
and define several zones to differentiate when the system is unavailable or not.

1.2. INTEGRITY 17

50
System Unavailable 07t System Unavailable 45
c Alarm Epochs: 0 mr
- AL hs:
= 06 Epochs: 0 B 49 -
g s &
) © ? 350
> . = —05¢ Nominal Operation I3
K Nominal = 5 Epochs: 835 -30 o
o | Operation Hazardously T 804 (99.7611%) L5 8
o X N >] . am . w
= Misleading < o - HMI 5
3} . S o3 == . 20 2
g Information g = o Epochs: 0 &
"5 . g ()] < - £
° Misleading 13 Soatf : %3
& Information & s Ul 10
T 04l Epochs: 2
o : : : : : : 0
AL 0 01 02 03 04 05 06 07
Real Position Error (m) Horizontal Position Error in m
(a) (b)

Figure 1.6: Simplified Stanford diagram and example of usage for evaluating a
localization system taken from (Gottschalg et al. 2020). Dotted lines represent the
Alert Limit.

As illustrated in Figure 1.6, when the system is available, three areas are differ-
entiated: nominal, misleading or hazardously misleading. The protection level
is linked to the TIR, which can in that case be interpreted as a bound for the
risk of hazardously misleading information. The AL depends on the navigation
context and mission. For example, on a wide motorway, localization does not
have to be as accurate as in narrow city streets. Guaranteed scenarios and navi-
gation conditions (i.e: traffic, meteorological) can be described in what is called
an Operational Design Domain (ODD). The integrity analysis thus amounts to
evaluating the system under all situations it is designed for and making sure that
localization errors remains bounded.

1.2.3 Perception Integrity

As introduced in Section 1.1.3, the perception system is located before situation
understanding and decision making. As such, perception has to characterize space
that is free and detect road users in areas important for the ongoing navigation.
Following a top-down approach to characterize perception integrity, problematic
cases for perception systems are defined as:

1. Missing objects and considering space is free when it is not. This can lead
the navigation system to unknowingly go towards other road users and
colliding with them:;

2. Estimating the position and velocities of objects with too much error. This
can lead the decision system to incorrectly predict the trajectory of other
road users which can lead to collisions and accidents;

3. Detecting objects that do not exist or considering space occupied when it
is not. While less risky than the two previous points, it can lead the vehicle
to either stop unnecessarily or issue false alarms to the driver.

18 CHAPTER 1. GENERAL INTRODUCTION

Example 1.1:
A o A
¥ *®
: 1
g p g
(a) Missed pedestrian (b) Bad pedestrian (c) Ghost object in the

estimation middle of the road

Figure 1.7: Misleading perception cases in the same situation as Figure 1.3. The
road, real objects and their motion are displayed in the background. Localization
error and estimated motion in red. The space perceived as free is in green.

Consider an intersection with two vehicles and a pedestrian as in Figure 1.7.
From the point of view of the bottom blue vehicle, the green vehicle is hidden
and the red pedestrian is about to cross. In Figure 1.7a, the green vehicle
is not detected though space beneath it is supposedly free. In Figure 1.7b,
the pose and motion of red pedestrian is badly estimated. In Figure 1.7c, a
red object is detected though nothing is here. The danger of these situations
resides in the fact that they will mislead later modules to think that respec-
tively nothing is on the right, a pedestrian is not trying to cross and that an
emergency braking is required.

Example 1.1 illustrates that a non-misleading perception system must be able
to correctly assess where it can see whether space is free or not, while correctly
estimating the position and velocity of perceived objects. Similarly to localiza-
tion, a good perception system depends on the driving situation and task to
be performed. For example, if the blue vehicle were to turn right, missing the
green vehicle would be less dangerous than turning left, or at least would be less
comfortable to the user.

Finally, although it is secondary to correctness, availability of the perception
system also has to be considered. Hidden areas, such as the building shadow in
Figure 1.7, are part of the nominal operation of perception but they reduce the
availability of autonomous navigation. This can lead the navigation system to be
overly cautious or even stop the vehicle. This is where perception sharing can be
most useful.

1.3 Objectives

In this work, we will study the problem of cooperatively perceiving the environ-
ment in the context of intelligent vehicles evolving on open roads. We place our-
selves in the scope of decentralized cooperative systems for previously mentioned
reasons with the goal of managing the integrity of the information provided by

1.4. MANUSCRIPT ORGANIZATION 19

the perception modules. For this, we must ensure that all processing carried out
in the perception module (i.e. detection and data fusion) maintains the integrity
of perceptual information.

As such, the problem of fusing on-board and cooperative information will be
central to this manuscript. It will lead us to study the detection of on-board
exteroceptive information and the fusion of multiple points of view to extend the
range of perception. In other words, the objective is to propose a cooperative
perception system capable of fusing data coming from on-board sensors and from
neighboring vehicles. In order to guarantee the data fusion quality, our approach
will focus on estimating the uncertainties associated with perceived and received
data as well as their coherency. Doing so, we will question the reliability of peers
and derive evaluation methodologies adapted to cooperative systems.

Another objective of this work is to experimentally evaluate our proposals and
implementations under realistic operating conditions on roads.

1.4 Manuscript Organization

This manuscript is split in four main chapters that respectively study four aspects
of cooperative perception.

In Chapter 2, we review how symbolic and metric information can be represented
and fused in cooperative systems. The concepts of belief functions and state
filtering are introduced and a study is conducted on the resiliency of several filters
to communication exchange loops when doing cooperation. We also propose
an interpretation to the parameters Split Covariance Intersection Filter (SCIF)
alongside a methodology to tune them.

In Chapter 3, we address how sensor data can be processed to detect objects and
free space. Our experimental platform is described and a study is conducted on
the detection capabilities of our experimental system based on evaluation metrics
that will be used throughout this work.

In Chapter 4, we review cooperative perception methods and propose an architec-
ture to fuse perception sources (either on-board sensor or other peers) when they
only partially share fields of view. To this end, we introduce the novel concept
of evidential detectability, a dense representation of the environment that com-
bines free space and field of view. Several studies based on real datasets recorded
for the occasion are conducted to illustrate the effectiveness of our method at
improving object and free space detection.

In Chapter 5, we review the problem of malicious or faithfully erroneous peers
and how they can be ignored. We then propose to manage the trust, a quantity
estimated over time to represent how much information from a given external
source can be trusted. Several experimental studies are conducted to evaluate
trust estimation and its impact on cooperative object detection.

Finally, in Chapter 6, a general conclusion to this manuscript is drawn and future
works are proposed.

Chapter 2

Methods and Tools for
Decentralized Data Fusion

Contents
2.1 Introduction 21
2.2 Symbolic Information and Belief Functions 22
2.3 Metric Representation and State Filtering 29
2.4 Analysis of Covariance Intersection Filters 40
2.5 Conclusion 48

2.1 Introduction

This manuscript studies the exchange of perception information between vehicles.
We chose to model this as a decentralized system, which raises several concerns.
For example, information loops, illustrated in Figure 2.1, may lead a vehicle to
count a same piece of information twice. To prevent this, robust methods must
be employed, which is the focus of this chapter.

We will consider two types of information: metric (continuous quantities such as
position or orientation) and symbolic (discrete characteristics such as the state of
a traffic light or whether an object exists or not). Because information is never
perfect in the real world, we will introduce how uncertain information can be
represented and fused in a decentralized system.

The framework of belief functions is first introduced to represent and manage
uncertain symbolic information. It will be used throughout this manuscript to
represent the existence of objects, the similarity between objects and the de-
tectability of objects in Chapter 4, then trustworthiness in cooperative peers in
Chapter 5.

Then, the concept of random state vector filtering is introduced to represent
uncertain metric information. A comparison of the performance of several filters
is then conducted to determine the most suitable filter for decentralized data

21

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
22 FUSION

/—\

Figure 2.1: Information loop introduced between three vehicles. Follow the blue arrow
from the top that represents the initial piece of information sent by the blue vehicle.
It is augmented by the information of the red and green vehicle then comes back to
the blue vehicle. This means that the blue vehicle will receive its own information,
potentially thinking that the information is new.

fusion. These concepts will be used throughout this manuscript to estimate the
position and velocity of objects.

Finally, note that information will be assumed to be temporally and spatially
aligned in this chapter. Following chapters address this point.

2.2 Symbolic Information and Belief Functions

The traditional way of modeling uncertain symbolic information is with proba-
bilities. However with probabilities, having less information about hypothesis H*
than about hypothesis H? means that H? is more likely. When this is not the
case (i.e. because H' and H? are not linked in that way), then belief functions
can instead be used. This section introduces the basic concepts of this theory.

2.2.1 Representation

In their simplest form, belief functions are an extension of Bayesian probabilities
to set theory. That is, a classic Bayesian probability between 0 and 1 can be
distributed among several facets of a problem at once. It is particularly useful
to represent the information expressed heterogeneous sources. Let us take an
example to illustrate this property.

Example 2.1:

Consider an algorithm that is able to find cats, ducks or platypuses in im-
ages based on several characteristics. By detecting a beak, it might be 90%
sure that either a duck or platypus is in the image, but cannot differentiate
between the two. By detecting fur, it might be 90% sure that there is either

2.2. SYMBOLIC INFORMATION AND BELIEF FUNCTIONS 23

a cat or platypus. With classical probabilities, one would tend to model the
ambiguity by splitting probabilities in two, resulting in:

p(cat) = p"(cat) - p™(cat) =0-0.45 =0
p(duck) = pPe*(duck) - p"(duck) = 0.45-0 =0
p(plat) = pPek(plat) - p™*(plat) = 0.45 - 0.45 = 0.2025

which yields sub-optimal results caused by the algorithm ambiguities. In
addition, information that there still might be a cat or duck in the image is
lost, ignoring the uncertainties of the algorithm. This is due to the inability
of Bayesian probabilities to model that 1 — p(x) is not always p(#).

This sort of limitations are lifted by belief functions. Introduced by (Dempster
1967) and refined in (Shafer 1976) then (Philippe Smets and Kennes 1994), they
form a theory that bears many names, including Dempster-Shafer Theory (DST),
theory of evidence, evidential framework or Transferable Belief Model (TBM).

Q

/
w1

N

A
(a) (b)

Figure 2.2: Sets composing Q2 = {w, w2, w3} and subset A = {wo, w3}

The building blocks of this framework are mass functions, mappings m : 29 —
[0, 1] where = {wy, ws, ...} is the finite set of answers to the question asked to
m, called frame of discernment. There exists multiple interpretation as to what
Q) should contain and what the values of m mean. However, in this manuscript
we only consider the evidential interpretation where €2 is composed of mutually
exclusive basic hypotheses and m describes the evidence held about any permu-
tation of these hypotheses (subsets of 2). Following the closed-world assumption,
hypotheses are considered exhaustive.

These permutations are defined as the powerset 2% = {0, {w; }, {wa}, {w1,ws}, ..., QL.
Accessing an element of a mass function is noted m (A) where A is an element of
2. m(A) is the proportion of evidence attributed to A specifically and no other
subset, meaning the information contributing to tell that the real answer w € A
and w € A. To keep their probabilistic nature, mass functions should always
observe the constraint that 1 =3 , o m(A).

Example 2.2:

Getting back to the Example 2.1, the different hypotheses our detection

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
24 FUSION

algorithm can answer are cat (C), duck (D) or platypus (P), thus Q =
{C, D, P}. Beak detection can be expressed using a mass function:

m ({D, P}) =0.9
m({C,D,P}) =0.1

where only non-zeros subsets are given. For the sake of clarity, another
notation will be used in this work with all subsets given:

abeak _ 0 {c}y {D} {C,D}y {P} {C,P} {D,P} {C,D,P}
1o 0 0 0 0 0 0.9 0.1

This means that 90% of the available evidence tends to indicate that ei-
ther a duck or platypus is in the image. This is different than saying
m ({D}) = m ({P}) = 0.9 as it would violate the 1-summed constraint or
that m ({D}) = m ({P}) = 0.45 which would not solve the problem of the

previous example.
Similarly, fur detection can be expressed with

_ | (¢} (D} {C,D} {P} {C.,P} {D.P} {C.,D,P}
0 0 0 0 0 0.9 0 0.1

fur

There are specific interpretations and properties attached to mass functions. To
name a few

e m(f) is the degree of ignorance, also called the unknown set;

m(() is the degree of conflict’;

Subsets that have a positive mass are called focal sets;

A mass function without mass on 2 is called dogmatic;

A mass function whose only focal set is €2 is called vacuous;

A mass function whose focal sets are all singletons is called Bayesian;

A mass function with mass only on 2 and one other focal set is called
simple.

Mass is generally just the raw way of representing belief. It can be used in
Basic Belief Assignment (BBA) to turn other forms of information into belief,
for example to introduce belief in a sensor model. Once in the domain of belief,
other higher-level descriptions can be used, as represented in Figure 2.3:

!Conflict can arise when fusing two mass functions that disagree with each other. This can
mean that one source is mistaken, overly confident or that the closed-world assumption is not
respected, in which case the actual answer might be outside of what €2 covers.

2.2. SYMBOLIC INFORMATION AND BELIEF FUNCTIONS 25

@ @)) 1
(\] 2
w3 w3 w3
w1
Q? 1

(b) (c)

Figure 2.3: Subsets used when computing Bel({w2,ws}) in (a), Pl({w2}) in (b) and
BetP({w2}) in (c).

N | =
w

e Belief, or credibility. It is the sum of all evidence supporting A, often
interpreted as the lower bound of the actual probability of A:

Bel(A) = Y m(B) (2.1)

BCA

e Plausibility. It is the sum of all evidence not contradicting A, often inter-
preted as the upper bound of the actual probability of A:

Pi(A)= > m(B) (2.2)

BNA#D

When applied on a singleton w, it is called the contour function:

pl(w) = Pl(w), |w|=1 (2.3)

e Commonality. It is the quantity of knowledge on A:

a(4) =Y m(B) (2.4)

o Weight:
w(A) =Y (=1)# ¥ nqg(B) (2.5)

BDA

e Pignistic. It transforms evidence into probabilistic distributions, losing am-
biguity and incompleteness information, but useful to make decisions:

|AN B| m(B)
BetP(A BEC; (@) (2.6)

As mentioned earlier, belief functions are particularly useful to combine various
pieces of evidence. In the next section, we review several methods to combine
belief functions.

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
26 FUSION

2.2.2 Combination of Mass Functions

The idea of combination is simply to take two mass functions m; and ms and
generate a third one that summarizes the information of the two others. How-
ever, depending on how the inputs are modeled and whether they are reliable
and independent, several combination rules can be used. The appropriate rule
depends on the situation at hand. Thus in this section, the most common rules
are reviewed based on the work of (Reineking 2014). Note that unless explicitly
denoted, combination rules require m; and ms to be defined on the same frame
of discernment.

2.2.2.1 Conjunctive Combination

The first combination rule, called conjunctive and introduced by (Dempster 1967)
combines intersecting sets in the Bayesian sense:

(my @ ms) (A) = Y mi(B)-ma(C) (2.7)

BNC=A

It is commutative, associative and accepts the vacuous mass function as a neutral
element. However, this combination rule can lead to the generation of conflict if
there is non-intersecting masses. In many applications, conflict is best avoided,
which is why a normalized version of Equation (2.7) have been proposed, called
Dempster’s rule:

(m1 ® ma) (A) =

i (my @ m2) (A) A# 0.0 =3 pcgmi(B) - ma(C)
0 A=10

(2.8)

It is particularly useful when combining two reliable and independent sources, i.e:
both sources faithfully estimate their amount of evidence and are not statically
correlated with one another. This condition is important, as counter-intuitive
results can arise from combining two contradictory mass functions.

Example 2.3:

Take two mass functions defined on 2 = {A, B, C'}. One believes strongly in
A and slightly in B while the second strongly believe in C' and slightly in B.
The following tables summarizes their contents and Dempster’s combination
result:

0 {A}y {B} {A B} {C} {AC} {B,C} {ABC}
mi |0 09 01 0 0 0 0 0
my |0 0 01 0 09 0 0 0
m @®my |0 0 1 0 0 0 0 0

that is, combining two masses weakly confident in B yields a categorical
mass on B and nothing else. This is due to the inability of m; and ms to

2.2. SYMBOLIC INFORMATION AND BELIEF FUNCTIONS 27

correctly assess their evidence. They both overestimated their evidence in
contradictory information without expressing their uncertainties.

However, by modeling m; and ms to express evidence and not belief, this
should not happen as evidence may be uncertain but never contradictory.
Another way is to think of evidence is as belief constraints.

To get back to Example 2.2, beak and fur detection are modeled to express
evidence in a reliable and independent manner. As such they can be com-
bined using Dempster’s rule:

0 {c¢} {p} {¢.D} {P} {C.P} {D.P} {CD P}
mbeak 1 0 0 0 0 0 0 0.9 0.1
m 100 0 0 0 0.9 0 0.1
mbeak @ mfr [0 0 0 0 0.81 0.09 0.09 0.01

which properly models that detecting a beak and fur is strong evidence that
a platypus is in the image, while maintaining that it might be something else
due to detection errors.

There are also other methods to normalize conflict. While Dempster’s rule pro-
poses to distribute it across focal sets, Yager’s rule (Yager 1987) proposes to
transfer it on m(Q):

(m1 @ m2)(A) A
(m1 @ m2)(A) = ¢ (m1 @ m2)(Q) + (m1 @ m2)(0) A
0 A

e 2"\ 0,Q

2Q
Q (2.9)
0

and Dubois & Prade’s rule (Dubois et al. 2008) proposes to assign it to the union
of corresponding focal sets:

(m1 @ m2)(A)+ > my(B) -my(C) Ae2%\
(m1 0 me)(A) = BOE=4 (2.10)
0 A=10

2.2.2.2 Disjunctive Combination

However, the last two rules are not associative and their use in data fusion is
limited. In these situations, and in particular when at least one source is reliable,
the disjunctive rule (Philippe Smets 1993) can be used:

(m1 @ ma) (A) = > mi(B)-my(C) (2.11)

BUC=A

that is, multiply masses everywhere they are defined. This rule is interesting to
acknowledge but it will not be used in this manuscript as it is too cautious.

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
28 FUSION

2.2.2.3 Cautious Combination

One of the major constraint with previous rules is that they assume sources to be
independent. In (Denceux 2008), a cautious conjunctive rule is proposed, that is
resilient to information redundancy and is even idempotent (comb(m,m) = m).
Its principle is to take the source with the least amount of information in the case
that this minimal information is shared between sources. For this, both mass
functions are transformed in the weight space using Equation (2.5) to combine
intermediary simple mass functions:

wip2 = min (wi(A), wa(A))
(44 Q] (2.12)

1 —wipng wing

m1®m2: @

ACQ

2.2.2.4 Partially Overlapping Fusion

In the next chapters, detectability information will be modeled as subjective to
a given point of view, represented by a dependency on the point of view in the
frame of discernment. For this reason, we introduce here the method of (P. Smets
2000) to combine partially overlapping functions. As long as |23 N Qs > 0,
this method can be used to combine m; and ms on € U 5. It is based on
conjunctive combination, normalization weights and conditioning. As a reminder,
conditioning is defined as Dempster combination with the neutral element of
another frame of discernment.

Example 2.4:
Let m! defined on Q!. Conditioning m' on Q% = {w? w3, ...} is realized as
2 2 2,2 2 2
ml Q% = m! @ 2 {“61} {9‘(})2} {W16W2} {Wuwlz, -} (2.13)

Partially overlapping combination is defined for all A in 21Y%2 as

ml(Al) mg(Ag)
mi [Q0](Ao) ma[Qo](Ao)

WitthzﬁlﬂQQ, A[):AUQ(), A1:AUQ1,A2:AUQQ.

(m1 ® ma)(A) = (ma[Q0] @ ma[Q0]) (A1 N Ag) (2.14)

2.2.3 Discounting

When a source is unreliable, its BBAs can be discounted. By moving a a propor-
tion of its focal sets to the unknown, the informativeness of a mass function m is
reduced. This operation is defined as

m_{u—a).m(A) A€22\Q

(1—a) - mA)+a A=Q (2.15)

2.3. METRIC REPRESENTATION AND STATE FILTERING 29

with (1—«) representing the reliability of that source. Other forms of discounting
have been proposed such as the contextual discounting introduced in (Mercier et
al. 2005) where reliability is specified for each element as a vector @ = {4} acq

) (2.16)

or temporal discounting (Kurdej et al. 2013), that applies a discounting whose
a depends on some elapsed time. The underlying idea is to imitate particle
physics where particle decay exponentially, which is modeled with a half-life time
parameter ti/5. The shorter the half-life, the quicker a belief function is thus
discounted:

0 A ..Q

1—04A (¥ 0 0

om=mQ (@

AeQ

In2

A(AE tyg) == B2 (2.17)

which has the advantage of being additive and associative

A(Atl)(/\(mrz)m) = A(At2)(A(At1)m) = AAt+AL)T (2.18)

Discounting will be used in the rest of this manuscript to reduce the impact of
certain sources when cooperatively estimating quantities. In particular temporal
discounting will be used to filter belief, removing information as time passes.

2.2.4 Conclusion

As we saw in this section, belief functions are a mathematical tool that extends
Bayesian probabilities to combination of events. In doing so, it allows for explicit
representation of uncertainties, which is particularly useful in decentralized data
fusion where information can be partial between peers. In addition, it provides
fusion tools that are resilient to potentially correlated sources.

2.3 Metric Representation and State Filtering

We now focus on metric information, its representation with random state vectors
and its filtering.

2.3.1 Random State Vectors

Continuous quantities are usually represented using random state vectors, where
the state of an object is represented with a multidimensional Gaussian distribu-
tion?. This takes the form of a mean vector x and covariance matrix P whose
meaning is illustrated in the following example:

20ther probability distributions are possible, but they will not be covered in this
manuscript.

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
30 FUSION

Example 2.5:

Consider a one-dimensional object represented by its position s. That posi-
tion is uncertain, which is encapsulated within the standard deviation of s,
os. Its state and covariance are thus respectively

X = M P— [02]

This conveys that the most likely position is s but that the real position can
be somewhere else with a probability decreasing with distance to s. This is il-
lustrated in Figure 2.4 with a Gaussian probability distribution and as uncer-
tainty bounding with a 30 domain.

0.75

0.50 | |

0.25 | |

0.00

1.0 15 2.0 2.5 3.0 35 4.0 4.5 5.0 1.0 15 2.0 25 3.0 35 4.0 4.5 5.0
s H

Figure 2.4: Gaussian probability distribution and 30 domain of a one-
dimensional object with a mean s = 3 and standard deviation o5 = 0.5.

Such a concept can be extended to vectors of higher dimensions. This will be
used to represent perceived objects in this manuscript.

Example 2.6:

Consider a 2-dimensional object. It is represented by its z and y position
and associated uncertainties as

P =
NOyOr OyOy

Oy0y naxay]

Here 7 is the correlation factor between o, and o,. Such a state is illustrated
in Figure 2.5 with a 2D Gaussian probability distribution and a 30 bounding
ellipsoid.

2.3. METRIC REPRESENTATION AND STATE FILTERING 31

15.0
15.01

125
12.51

10.0 10.0

7.5 7.5

> 5.0

25 2.5

0.0
0.0

—2.54
-2.5

-5.01

.0 T T T T T T T T
-10.0 -75 -5.0 -25 0.0 . X 7.5 10.0 -75 =50 -25 00 25 50 75 10.0
X X

Figure 2.5: 2D Gaussian probability distribution and 3¢ bound of a two dimen-
sional object with x =1, y =5, 0, =2, 05 = 3 and = 0.4.

Other continuous characteristics can also be represented using this formalism,
such as the speed or the heading of a vehicle. In these cases, the illustration is
different (an arrow for the speed and a cone for the heading) but the underlying
principle is the same: the most likely value is the mean, but other values are
possible with decreasing probability.

The state of multiple objects can be represented jointly or independently, mean-
ing that cross-covariances between objects can represented or ignored. In the
former, the state of the system is represented as a whole, whereas the latter only
represents the states of individual objects separately.

Example 2.7:

Consider a system with two objects 0; and 0,. Their states and covariances
can be represented jointly as Equation (2.19) or independently as Equa-
tion (2.20).

€ 01021 Ne1y10210y1 Ne12x2021022 Nz1y20210y2
hn Nz1y10y1041 Oy10y1 Ne2y10y1022 Nyl1y20410y2 (2 19)
R .
Z2 Nx122022021 Nx2y10220y1 042012 Nx2y20 22042
Y2 Ne1y20y2021 Ny1y20420y1 Nx2y20 42022 0y20y2
ll‘l L2
Y1 Y2
, (2.20)
Oz10z1 Nae1y10210y1 022022 N22920 2202
Nx1y10y10 21 Oy10y1 N2920y20 12 04202

The main difference between both representations is that the former models the
statistical interdependence between object estimates, while the latter considers

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
32 FUSION

that they are uncorrelated. However, as illustrated in the previous example, this
also means that in the joint case, the number of elements in the covariance matrix
grows exponentially with the number it represents, as compared the uncorrelated
case where growth is linear.

2.3.2 State Filtering

While random state vectors are useful to represent instantaneous information,
their main advantage is the capacity to be filtered, that is estimated through
time by periodically observing the system.

Filtering is based on the idea that a state x(¢) can be used to represent a system
at a given moment. This state evolves in a predictable manner with an evolution
model described by a function f. Information about the system is acquired peri-
odically in the form of an observation vector y thanks to an observation model
described by a function h. However, due to modeling or sensor errors, knowledge
about the system is never perfect, which is modeled by «(t) for evolution model-
induced errors and 3(t) for sensor-induced errors. They are both assumed to be
centered. The following state equations summarizes these ideas:

x(t+1) =f (x(t)) + a(t)
y(t) =h(x(t)) + 5(t)

Note that this is a discretized model in the sense that it is sampled in time and
not a continuous differential equation. x(t+1) corresponds to the future sampling
time for a given period.

(2.21)

2.3.2.1 Kalman Filtering

The Kalman Filter (KF), introduced in (Kalman 1960) is the most common filter
in robotics and navigation. It recursively estimate states with two steps:

1. It predicts the state and its covariance using a linear evolution model F
and a covariance Q of the model noise «:

x(t + 1|t) = Fx(t|t)

- (2.22)
P(t+ 1t) = FP(t|t)F" + Q

F describes how x and its covariance P evolve between two time steps. Q
models that the evolution model is imperfect (e.g: air and ground friction
not taken into account, acceleration not modeled, discretization of time,
...). It increases the state covariance to convey that the state becomes
more imprecise with time because of modeling incompleteness or external
disturbances. For the sake of clarity, notations used in the rest of this
manuscript will be shortened. The current state (x(t|t), P(¢|t)) will be
noted (x,P) and the predicted state (x(t+ 1|t), P(¢ + 1|t)) will be noted
(xT,PT), such that Equation (2.22) becomes:

xt = Fx

2.23
P* =FPF' +Q (223)

2.3. METRIC REPRESENTATION AND STATE FILTERING 33

2. It updates the state and its covariance using an observation. It is a M-
dimensional vector y associated with an observation noise covariance R that
describes the variance of 5. Observations are linked to the state with an
observation model H, a matrix of size M x N, that describes how observed
quantities are linked to the state.

K = P*H” (HP*H” +R) ™
e=y— Hx"
x =x" + Ke
P =(I- KH)P* (I- KH)" + KRK”

(2.24)

The uncertainties of P and R are combined to compute a Kalman gain K
that represents the influence of y and R on the resulting state. A possible
interpretation is that K is a weighing factor along all dimensions of the
filtered state and observation that takes the observation model and cross-
covariances between dimensions into account. An innovation € is computed
to correct the state using through K. Note that Equation (2.24) is given in
the more numerically stable Joseph’s form.

Example 2.8:

Consider a dynamic object that has a z and y position moving with constant
velocities vz and vy.

F(x)

x T

v

+
Figure 2.6: 2D Object with its current and predicted state. Covariance is not

represented.

Its state is thus x = [:p, Y, VT, vy] and its evolution can be described with:

£x) =4 Y v

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

34 FUSION
=+ Atz 1 0 At 0
T=y4+At-v 01 0 At
fx)=47 ~Y Y F=
vt =z 00 1 0
vyt = vy 00 0 1

where f is the continuous evolution model, f; is f discretized with time step
At and F is f; in matricial form. Uncertainties about velocity are propagated
to position as

o = AR, 4 g

+2 _ 2 2 2 2
o, =o0,+At" -0, +q,

with ¢, g, the variance of the model noise covariance Q for z and y.

Thanks to a GNSS receiver and to an odometer, the system can observe the
whole state:

Ve =21 1.0 00
0100

h(x)=1{ " H-—
Yy = VT 0 010
Yoy = VY 0 001

Vv
Vv

.+ X

Figure 2.7: Update of a 2D object. Blue is the predicted state, green the ob-
servation and red the updated state. Covariance is not represented. Observation
error exaggerated for clarity.

It is also possible to only measure a subset of the state and yet estimate it
fully. This works as long as all quantities are even indirectly observable, with a
mechanism that is best explained with an example.

Example 2.9:

Consider the previous example, but now only a GNSS receiver is available:

= 10 00
h(x)=4°" " H=
Yy =Y 0100

2.3. METRIC REPRESENTATION AND STATE FILTERING 35

When the state is predicted, non-diagonal terms of F propagate some uncer-
tainty from the velocity to the position, and in particular on non-diagonal
terms of P as a result of the correlation between the two quantities. When the
state is updated, the Kalman gain K of Equation (2.24) uses these correlated
terms to infer how to correct the velocity from a position error.

The KF is said optimal under certain conditions:

e States and observations are affected by noises and errors that follow Gaus-
sian distributions whose variance is known. Moreover, these distributions
must be zero-centred and white (i.e: uncorrelated in time);

e States evolve and are observed through linear equations.

2.3.2.2 Extensions to the Kalman Filter

Linear modelling is rarely met in practice. Evolution and observation models are
often non-linear (e.g: heading angle having a sinusoidal impact on the position).
For this, there are extensions of the KF that:

e Linearize locally the evolution and observation model using Jacobian ma-
trices, the Extended Kalman Filter (EKF) (Kalman 1960). In this case,
Equation (2.23) becomes

xt =f(x)
of
F=— 2.25
o (2.25)
PT =FPFT + QT
and Equation (2.24) gets modified with
oh
H=_—
ox (2.26)
e=y—h(x")

e Apply the non-linear function to some representative points of the covari-
ance ellipsoid to propagate the uncertainty: this is the Unscented Kalman
Filter (UKF) (S. J. Julier et al. 1997b).

When noises affecting the system are biased or correlated, the KF might over-
converge on a given solution and might provide inconsistent estimates. For raw
sensor data, this assumption holds as long as a thorough work on their com-
putation ensures that observations are unbiased and uncorrelated, as explored
in Section 3.5. However, in decentralized data fusion, observation are already
filtered states, meaning that this assumption does not hold. This inspired a
plethora of other types of filter that are detailed in the following sections.

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
36 FUSION

2.3.2.3 Informational Filtering

Information matrices are the dual of covariance matrices in the Gaussian case
(Al Hage et al. 2019; Durrant-Whyte et al. 2001). That is, an information matrix
noted I (not to be confused with I the identity matrix) is defined as the inverse
of the covariance I = P~!. This means that if the covariance matrix conveys
the uncertainty of a state, the information matrix conveys the certainties, or
information contained in the state.

The KF can be formulated using information matrices using the Woodburry
identity (Higham 2002). It is a common identity defined for arbitrary A, U, C,V
matrices as:

(A+UCV) ' =A' - AU (VAU +) va! (2.27)

As such, the covariance matrix update of Equation (2.24) can be written as:
P! =Pt ' +HR 'H’ (2.28)

which can be interpreted as the gain of information that the observation brings
to the state.

Depending on the dimensions of P and R, this form can be faster than the
covariance form. As a general rule, if P is of higher dimension than R, then the
traditional form (that inverses R) is more suited than the informational form
(that inverses P) and inversely.

The informational form of filtering is a good way to introduce more efficient
filtering methods for cooperative systems as we will see in the following.

2.3.3 Covariance Intersection Filtering

Covariance Intersection (CI), introduced in (S.J. Julier et al. 1997a) is a data
fusion algorithm robust to arbitrary amounts of correlation between its inputs.
It is very similar to the informational form of the KF (Equation (2.28)) but
includes a scalar w that makes the operation a convex combination:

P l=wPt '+ (1-wHR'H

2.29
x=P <CL)P+71X+ +(1— w)HTR*1y> (2.29)

The algorithm guarantees that as long as P and R are consistent, any value
of w will yield consistent results, as illustrated in Figure 2.8 (S.J. Julier et al.
1997a). This structural property of the covariance intersection is fundamental
for fusing data exchanged between cooperative agents and potentially combined
several times.

This includes completely ignoring one input or the other (w = 0 or w = 1) or
taking half of both (w = 0.5). However, in practice optimizing w for a particular
goal is preferred.

2.3. METRIC REPRESENTATION AND STATE FILTERING 37

1.0
4

0.8
2

0.6
0

0.4
-2

0.2
—4 _J

0.0
-5.0 =25 0.0 2.5 5.0 -5.0 =25 0.0 2.5 5.0 -5.0 =25 0.0 25 5.0

Figure 2.8: Covariance ellipsoid resulting from a CI fusion for multiple values of w.

Volume Minimization w is classically determined by minimizing the size of
the resulting covariance matrix, which can be done by minimizing the determinant
or trace of the resulting covariance matrix:

-1
w = argmin det (@PF1 (1 @)HTR%H)
& (2.30)
— argmin det ™! (@PF1 (1 w)HTR*H)

w

Compared to the Kalman update, which intuitively finds the ellipsoid included
within the intersection, the CI finds the ellipsoid covering the intersection, as
illustrated in Figure 2.9.

4 X, P
vy, R
2 = KF
~ ’—\ - ,—\ CI /”——\)
I 7
0 L) N\ W /7 L 4
wt? f
—2 l\N-—/ o J \~_—’,
-4
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
(a) (b) (c)

Figure 2.9: Comparison of Kalman update with CI over three situations: a baseline
in which inputs are orthogonal and centred in (a), an edge case in which inputs are
orthogonal but non centred in (b) and an edge case in which inputs are aligned and
non centred in (c).

Several closed-form approximations of Equation (2.30) have been proposed and
many variants have been developed to make the calculations faster.

For simplification, let us suppose in the following that the observation model
matrix H is the identity and that P and R are the same size.

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
38 FUSION
Fast CI (Niehsen 2002) introduced the Fast Covariance Intersection (FCI):
trace(P™)
w =
trace(P+) + trace(R)

which is simple but does not approximate Equation (2.30) particularly well in
some cases, meaning that covariance of minimum volume is not always found.

(2.31)

Improved Fast CI To improve on the FCI, the Improved Fast CI (IFCI) have
then been proposed in (Franken et al. 2005):

det (P+‘1 + R—l) —detR~ !+ det P!
2-det (P+'+R1)

which yields very similar results at the expense of more computation.

w= (2.32)

Information Theoretic CI Another method is the Information-Theoretic Co-
variance Intersection (ITCI) of (Yimin Wang et al. 2012) that aims at providing
consistent outputs over a larger number of situations:

D(x", Pt y,R
W= 6Py, R) (2.33)
D(X+7 P+7 Y7 R) _l— D(Y7 R7 X+7 P+)
where D is the Kullback-Leibler divergence, which is defined for Gaussian distri-
butions as

1
D(x,P,y,R) == |In det R

5 o T (x—¥)'Rx—y) + (PR — x| (2.34)

Inverse CI Other goals can also be targeted, such as the Inverse CI (ICI)
introduced (Noack et al. 2017) which aims at providing less pessimistic but still
consistent estimation. It uses the informational form (Equation (2.28)) to remove
the common information (v,I') between (x, P) and (y,R).

The common information is found by minimizing w :

w = argmin trace <P+_1 +R = (0Pt +(1— d})R)_1>_

y=wx'+(1-w)y
I =oP* +(1-@)R (2.35)
P'=P" +R-T!

x=P (P*flir +R'y — Fflfy>

Kalman Form of the CI Finally, according to (Héry et al. 2021) the CIF can
be written in a Kalman form with an observation matrix H as:

K_P+HT HP+HT R -t
= (ry +m)
— +
e=y—Hx (2.36)
x =x" 4 Ke
P=(I1-KH)2 (I-KH)" + K2 K’

2.3. METRIC REPRESENTATION AND STATE FILTERING 39

with w # 0 # 1 optimized with

w = argmin det ((I — KH) P;—+> (2.37)

w

Cases where w = 0 or w = 1 are handled separately to avoid divisions by zero.

4 x, P
Yy, R
2 e cl o e
/ A)\ N ”~ \/
0 h' .)) - = ICl /’ /
\\ 174 N\ .\ ITcl / . 27
_2 \\\- _:/// R f '\ - //"//
- (T
\ -
-4 -
4 2 0 2 4 4 2 0 2 P 4 2 0 2 a
(a) (b) (c)

Figure 2.10: Comparison of CI, IFCI, ICI and ITCI over the three previous situations.

As it can be seen in Figure 2.10, all variants yield similar results in the nominal
situations but differ in behavior for edge cases. The ICI on the other hand is the
most different and can be seen as an intermediary between the Kalman update
lower bound and CI upper bound.

2.3.4 Split Covariance Intersection Filtering

The Split CI (SCI) algorithm have first been mentioned in early work on CI by
(Simon Julier et al. 2001) and have since been brought to the field of intelligent
vehicles by (Hao Li et al. 2013). It aims at combining the optimality of the
Kalman update and the consistency of the CI by splitting the error affecting the
state estimate (x, P) in two parts:

e A dependent (temporally or spatially correlated) error e; whose covariance
is characterized by matrix matrix Pgy;

e An independent (perfectly uncorrelated) error ¢; whose covariance is char-
acterized by matrix P;;

such that the covariance matrix of the total estimation error € = €4 + ¢; is:

P=P,+P, (2.38)

Intuitively, the SCIF applies the CI to the dependent part and the Kalman update
to the independent part (Pierre et al. 2018). Using a Kalman form, the prediction
step is:

x" =Fx

P, =FP,F" +Qq (2.39)
Pl =FP,F” + Q;

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
40 FUSION

and the update step is:

P+:P73+Pi+

R=2L4 4+ R,
K =P'H” (HP*H” +R) "
x=x"+K (y — Hx+) (2.40)

P=(I- KH)P* (I-KH)” + KRK”
P, = (I- KH)P/ (I1- KH)" + KRK”
P,=P-P,

with w optimized on:

w = argmin det (I - KH)P¥) (2.41)

w

Where Qg and Q; are matrices characterizing the covariance of the evolution
model errors, and Ry and R,; characterize the covariance of the observation errors.
One of the main difficulty with the SCIF is to estimate which parts of Q and R
are dependent and which are not. This issue is discussed in Section 2.4.4.

2.4 Analysis of Covariance Intersection Filters
In this section, published in (Lima, Bonnifait, et al. 2021), we conduct a com-
parisons between the Kalman, CI and SCI filters in cooperative or standalone

situations. This will illustrate several limitations of the KF and CI filters. These
filters are compared in simulation using a simple multi-vehicle perception system.

Eumrs Towrs Eumrs

Figure 2.11: Situation composed of three vehicles in one-dimension.

In this system, illustrated in Figure 2.11, three vehicles follow each other on a
one-dimensional line with constant velocity. The system is thus modeled with

0 = {X1 = [51 v1|,Xo = [52 UQ] , X3 = [83 U3i| } Each vehicle estimates the
system state independently but they help each other by exchanging their percep-
tual information.

To do the data fusion, each vehicle loops over the following operations:

1. Standalone update of the ego state: The ego state is updated using
on-board sensors providing a position measurement (for instance a GNSS

2.4. ANALYSIS OF COVARIANCE INTERSECTION FILTERS 41

receiver). Letting XN be the variance of its measurement noise. This
observation is modeled as:

FICNSS _ [1 O}

(2.42)
RGNSS _ y2GNSS

2. Standalone update of other states: The state of the other two vehicles
is updated using on-board sensors providing relative position measurements
(for instance a LiDAR). These are first transformed in a common frame of
reference using the observer ego state, with the state uncertainty being
propagated onto the observation. As such, letting ¥X1;par be the variance
of the measurement noise, this observation is modeled as:

FIVPAR _ [1 0}

2.43
RUPAR _ HLiDARPkHLiDART + $ILIDAR ()

3. Communication: Estimates and covariances are exchanged with each
other using wireless communication.

4. Cooperative update: The state of the other two vehicles is updated using
the received measurements.

In the following simulations, the observation noises Xgnss and Xp;par have been
set to 0.1% and 0.22 respectively with the evolution noise set to 0.122. The spe-
cific simulation code have been published in (Lima, Bonnifait, et al. 2021) and
available online?.

2.4.1 CI Filtering Comparison with Kalman Filtering

In this first comparison, the estimation error of one vehicle about itself is plotted
in Figure 2.12 for three filtering combinations:

e In blue, a KF is used in both standalone and cooperative steps;
e In red, a CIF is used in both standalone and cooperative steps;

e In green, a KF is used in the standalone step and a CIF is used in the coop-
erative step. This combination is denoted Kalman-Covariance Intersection
Filter (K-CIF).

From these, it is clear that the KF and CIF yield similar results in terms of
accuracy when using standalone information (Figures 2.12a and 2.12¢), but vary
significantly in confidence, with the CIF uncertainty bounds being far more cau-
tious. However, when using cooperative information, the KF over-converges on a
wrong velocity in Figure 2.12d, resulting in a rapidly increasing position error in

3https://gitlab.utc.fr/miltiception/multiception/-/snippets/59

https://gitlab.utc.fr/multiception/multiception/-/snippets/59

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
42 FUSION

1 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

(a) Position of the ego-vehicle estimated (b) Position of the ego-vehicle estimated
using standalone information using cooperative information

4 4

1 1 n
0 2 4 6 8 10 12 14 n 2 4 6 R 10 12 14

(c) Velocity of the ego-vehicle estimated (d) Velocity of the ego-vehicle estimated
using standalone information using cooperative information

Figure 2.12: Estimation errors and +3¢ uncertainty bounds. Estimate of the KF in
blue, CIF in red and K-CIF in green. In (a) and (c), estimates of the KF and K-CIF
are the same.

Figure 2.12b. At the same time, the CIF and K-CIF maintain an accurate and
confident estimation. This can be explained by the fact that the cooperative step
uses measurements with correlated errors, due to information loops introduces
by the state exchanges. In the case of the K-CIF, the standalone results are as
optimal as the KF by definition, and it can be seen that the CIF replicates the
best estimate in the cooperative step.

This illustrates the resiliency of the CIF to information affected by correlated
errors, but also highlights two of its limitations, further analyzed in Sections 2.4.2
and 2.4.3:

e The lack of convergence visible by the uncertainty bounds that are not
reducing over time in Figures 2.12a and 2.12b. This is due here to obser-
vations whose covariances are aligned ;

e The slow convergence of unobserved quantities as visible by the red curve
of Figure 2.12¢c between 0 and 2 seconds being very noisy.

2.4. ANALYSIS OF COVARIANCE INTERSECTION FILTERS 43

2.4.2 Convergence Issues with Similarly Shaped
Observation Covariances

A common complaint about the CIF is that it can result in pessimistic estimates
and even loss of information in extreme cases (Seeliger et al. 2014). One of the
reasons behind this is the lack of convergence of the filter. To illustrate this,
consider a common filtering situation:

1. A single sensor provides similarly shaped observation covariances regularly.
Here, shape refers to the shape of the covariance matrix. For example in
Figure 2.10, covariances of (a) and (b) have different shapes while in (c)
they are similarly shaped, or quasi aligned;

2. The first measurement initializes the state;

3. At the next time step, the state is predicted, which increases its covariance
matrix;

4. A new measurement with similar looking covariance is incorporated using
Equation (2.29). A predicted observation h(z") is drawn from the predicted
state. As w is found to minimize the resulting covariance volume, it will
naturally tend to ignore the predicted observation and focus on the mea-
surement. This is because the predicted observation covariance is broadly-
speaking an increased version of the past measurement covariance. Taking
any part of the filtered covariance cannot reduce the resulting covariance
by definition, and in most cases would even increase the resulting volume.
As such, the computed w gives almost all the weight to the measurement.

In such cases, the CIF has a tendency to produce an output that closely resembles
the observation. As opposed to the intuitive result illustrated in Figure 2.13,
the CIF does not perform the intersection of two intervals as it uses only the
covariance and not the state estimate (Héry et al. 2017). As such, when fusing
covariances aligned with one another, no uncertainty reduction occurs. This
means that the CIF is best suited with orthogonal, or complementary sources, or
at least when inputs are already filtered.

2.4.3 Slow Convergence with Partial Measurement

In most literature about the CIF, the measurement model is rarely mentioned
and when it is, it is assumed complete (i.e. the state is completely observed)
(Hao Li et al. 2013; Pierre et al. 2018). However, while partial measurements
(i.e. H is not full rank) are well handled by the KF, the CIF and its convex
combination tends towards predicted states. This is because in order to integrate
a partial measurement, the optimization of Equation (2.30) or Equation (2.37)
has to balance between gaining information on the measured part and losing
information on the unmeasured part.

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
44 FUSION

Predicted State { |

X

New Observation

Fusion With CI

Intuition

b

Figure 2.13: Ilustration of CI in a simple one dimension case using state interval
representation of Figure 2.4. A blue predicted state is fused with an orange observation,
resulting in the green fusion. It is different from the intuition one might might have
about the ”intersection” of intervals represented in purple.

Example 2.10:

Consider a static two-dimensional object x = [x y] Due to sensor limita-

tion, only its x coordinate is measured:
2 0.1
P- R=[1] H=[1 0
0.1 2

The curves in Figure 2.14 correspond to the volume of resulting covariances,
which is what w is optimized on. It can be seen that both information and
Kalman form give the same results, in particular that the volume tends to
infinity as w gets close to 0.

2.4. ANALYSIS OF COVARIANCE INTERSECTION FILTERS 45

2000 -
— et (wP+*1 +(1- w)HTR‘1H>
1500 - 87 — e det ((I - KH) %)
5 1000 - 67
500 47
0 a L I
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.14: Curve of the fused covariance matrix determinant for w between
from 0 to 1 in the case of a partial measurement. The region between 0.25 and 1
is zoomed in.

More visually, on Figure 2.15, one can see that in order to improve the x
estimate, the y estimate must be worsened. A compromise is found close to
ignoring y because the measurement covariance is significantly smaller than
that of the estimate.

0.00 0.10 0.20 0.30

4.834 1
1174 1
me=_Predicted State

——

s Fusion

s Measurement t
X

0.40 0.50 0.60 0.70

0.80

0.90
4834 -
1174 1
=5 =5 0 5

0 5 10

Auto (0.99)

1.00
-5 0 5 -5 0 5

Figure 2.15: Fusion of a state (blue) and partial measurement (orange) for dif-
ferent values of w. The optimal w in the sense of Equation (2.30) is denoted auto
and equals 0.99.

10 10 10

In practice, this effect might be counteracted by the issue of similarly shaped ob-
servation covariances, such that the system is able to converge, although slowly.
As these issues do not appear when measurements are complete and complemen-
tary, we can conclude that the CIF is adapted to fuse complete states but not to
filter incompletely observed states. Combining a KF with a CIF as in Figure 2.12
thus seems to be a good solution. However, this requires an explicit separation

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
46 FUSION

between standalone and cooperative data as well as having to manage update
functions manually to respect that separation. In the next section, we study how
the SCIF can be used to remove this requirement.

2.4.4 SCI Comparison with a Kalman-CI Combination

In order to assess the performance of the Split Covariance Intersection Filter
(SCIF), the same simulation as in Section 2.4.1 is used. Figure 2.16 summarizes
the results on a given vehicle and compares it to a combination of Kalman updates
for standalone data and CI for cooperative data.

2 / 2

sl ! 3

(a) Position of the ego-vehicle estimated (b) Position of the ego-vehicle estimated
using standalone information. using cooperative information

6 \ 6

4 \ 4

1 " 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

(c) Position of another vehicle estimated (d) Position of another vehicle estimated
using standalone information using cooperative information

Figure 2.16: Estimation errors and +30 confidence domains. KF4CIF in green
and SCIF in red. Continuous lines are the total confidence domains and dashed the
independent part. In (a), curves are superimposed.

When a vehicle updates its state using only standalone information, the Fig-
ure 2.16a the SCIF yields quasi-identical results to the KF. This is expected, as
the SCIF resolves to a KF in the absence of dependent uncertainty. However, one
can see the apparition of a small amount of dependent uncertainty. This is due to
the evolution model that generates dependent uncertainty as Qg is not null. This
is particularly noticeable in Figure 2.16b, where the cooperative CIF copies the
standalone estimate that had a mean quadratic error of 0.30 m, while the split
CIF slightly improves it bringing the mean quadratic error to 0.25 m. This is due
to the remaining independent noise that is processed by the Kalman component
of the SCIF while consistency is maintained thanks to the dependent noise that is

2.4. ANALYSIS OF COVARIANCE INTERSECTION FILTERS 47

processed by the CI component. As mentioned in Section 2.4, pre-filtering inputs
resolves most CI shortcomings, which is in essence what the SCIF does. When
estimating the states of other vehicles, these conclusions still hold but another
effect is also visible. As the current ego-position is used to estimate the position
of another vehicle, the ego-position covariance is added as a source of dependent
observation noise. This introduces dependent noise in the filtered state that thus
produces more cautious estimates, as visible by the confidence bound being larger
than the KF. These curves do however bring an issue to our attention: the SCIF
can produce inconsistent estimates. This is because it resolves to a KF when
there is no dependent noise. If no dependent noise is introduced, either by the
evolution model or by the observations, the same issue of over-convergence as in
Figure 2.12 can appear.

These conclusions lead us to consider in the next section the tuning of the error
covariance matrices used by the SCI filter.

2.4.5 Tuning SCIF Evolution and Observation Models

As dependent noise is central to the consistency of the SCIF, its introduction
either through the evolution or observation model has to be well understood.
Existing work (Hao Li et al. 2013) and (Pierre et al. 2018) tend to interpret
dependent evolution noise as a way to model the temporal correlation of an
object, which is a good start but insufficient to tune a whole filtering scheme.

Let us define

{Qd =rQ . velo1] (2.44)

Q=(1-vQ

that is, tuning Equation (2.38) is reduced from two matrices to one matrix and
a scalar v that works as a dependency factor. A situation where a subset of the
covariance matrix is dependent and another is independent is not common, in
particular in the field of perception.

In a SCIF, the independent evolution covariance Q; still characterizes the model-
introduced error as classically done in Kalman filtering. The dependent evolution
noise is used to represent the temporal correlation of a filtered state, but also to
model the part of the estimation error that has an unknown degree of correlation
with peers in a cooperative situation.

To tune them, we propose the following methodology:

1. Tune Q with » = 1 until results are satisfying using classic metrics like
accuracy and consistency,

2. Progressively reduce v towards 0 until consistency stop meeting the required
consistency performance.

CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA
48 FUSION

For the covariance matrix of the observation noise, let us define the following
tuning strategy with another real value ~ to fix:

, 7 €10,1] (2.45)

R, =7R+R.
Ri:(l_'Y)R

R, represents the part of the observation noise that is not dependent on the value
of v. When tuning, it is supposed known or given by an external computation.
It can model uncertain a priori information or pose uncertainty propagation.

When tuning the covariance matrix of a sensor, R can be obtained with classical
methods (e.g: error plotting or consistency evaluation as in Section 3.6).

The ~ factor is useful the manage cross-correlation between errors but it can also
be used to manage temporal correlation due to the processing applied on sensor
data.

For example:

e The Mobileye smart camera contains a tracker that does not provide a
white observation noise. Because the part of dependent covariance cannot
be assessed since it is a black box, a cautious choice is to choose a model it
with a value of v close to 1;

e A LiDAR point cloud processing stage can be modeled with a value of v
close to 0 because two consecutive scans can be reasonably assumed to have
decorrelated measurement errors;

e A processing that uses multiple sensor outputs such as LiDAR buffering
(Lima, Welte, et al. 2020) or SLAM can be modeled with a value of v
tuned to characterize multiple factors such as the number of outputs used
or how they are combined.

Fusing estimates provided by a cooperative peer does not require particular mea-
sures. Indeed, temporal and spatial statistical dependencies should be encapsu-
lated in P4 by each peer.

For example, let (x°ther Pother Poiher) be the communicated estimate. It can be
fused with the local estimate by applying:

other

y—X
th

R, « Pgher
th

R, « Poter

2.5 Conclusion

In this chapter, we have introduced several methods to decentralized data fusion
that will serve as a basis for the rest of this manuscript.

2.5. CONCLUSION 49

For symbolic information, we have reviewed belief functions, which provide a
general framework to the representation and data fusion of uncertain informa-
tion at the symbolic level. Several fusion operators have been presented which
will be useful to manage the existence of tracked objects and the trust in other
agents with which a vehicle cooperates to improve its perception. Among these
operators, the cautious rule seems promising thanks to its robustness to depen-
dency between the information sources. However, it is known to have a lack of
convergence in practice. We will therefore prefer to use the conjunctive rule in
the rest of this work. It is interesting to note this issue is, to some extent, sim-
ilar to that of the CIF which has to be combined with a KF in order to bring
more information on the estimated state. It could be interesting to derive a fu-
sion rule resembling the SCIF by splitting dependent and independent symbolic
information and combining a cautious and conjunctive rule.

For metric information, we have introduced Bayesian state estimation and filter-
ing. We have shown that the CIF or SCIF are especially adapted to decentralized
data fusion as they are resilient to arbitrary levels of correlation. In particular,
the SCIF can provide more accurate estimates while maintaining consistency in
the case of information redundancy. This is a powerful and generic data fusion
method, provided that one knows how to tune its parameters. We have proposed
a strategy to do so. SCIF will be the metric fusion method that will be used in
the rest of this work.

In the next chapter, these tools are used to represent several aspects of objects
detected using our experimental platform, such as the object states and existence
estimation.

Chapter 3

Sensor Processing and Tracking

Contents
3.1 Imtroduction 51
3.2 Objects and Free Space Detection 51
3.3 Multi-Object Tracking 60
3.4 Perception Evaluation 64
3.5 Description of the Perception System Used in this Work . . . 69
3.6 Evaluation00 78
3.7 Conclusion 82

3.1 Introduction

Perception is a key component of any autonomous robotic system. It makes
robots able to adapt to dynamic and opened environments. This is even more
important with autonomous vehicles, whose environment might contain Vulnera-
ble Road Users (VRU). The focus of this manuscript is decentralized multi-sensor
data fusion. However, due to restrictions on the communication medium dis-
cussed later, raw sensor data cannot communicated. Relevant perception must
thus first be extracted from raw data by each vehicle. This process is described
in this chapter, using LiDAR sensors as an illustration. First, we review algo-
rithms used in the literature to extract meaningful perceptual information (i.e:
objects, free space), track and evaluate it in Sections 3.2 to 3.4. We then present
our experimental setup and software implementation and experimental results in
Sections 3.5 and 3.6.

3.2 Objects and Free Space Detection

Sensors used for perception (e.g. cameras, LIDARs) provide complex data. Inter-
preting their content is called detection and starts with cleaning up that data for
downstream algorithms. This task is also called pre-processing and is described

o1

52 CHAPTER 3. SENSOR PROCESSING AND TRACKING

in Section 3.2.1. Then several approaches for detecting objects and free-space
are introduced in Sections 3.2.2 to 3.2.4 and are illustrated using our sensors and
implementations. For additional literature on the subject, the reader may refer
to (Mao et al. 2022; Qian et al. 2022).

3.2.1 Sensor Pre-Processing

Raw sensor data often require several steps before they can really be processed.
For example, cameras use lenses to gather light, which distorts the resulting
image. For LIDAR sensors, pre-processing starts with coordinate change. Indeed,
as will be introduced later in Section 3.5.1.1, current automotive 3D LiDARs work
by rotating laser beams. The lightest and thus preferred way to retrieve point-
cloud information is a list of ranges. As it is easier to work in Cartesian space,
ranges are first transformed using the following:

=7; - sin(6;) - cos();)
— 1 - sin(6) - sin(y) 8-1)

=1, - cos(6;)

ISEIENS.

with r; the i-th range measure associated with the i-th angle of the LiDAR head
¢; and 1; the orientation of the j-th laser beam on the rotating head.

Figure 3.1: Several successive poses of a LiDAR head as it rotates while the vehicle
moves.

If the LiDAR is attached on a moving vehicle, the resulting point-cloud will be
distorted. This is due to the significant acquisition time of LIDAR measurements
that is in the order of 100 ms. During this time, the vehicle moves, as illustrated
in Figure 3.1, which results in points being projected in the wrong place up to
dozens of centimeters if vehicle motion is not compensated. A solution to this is
to keep track of the vehicle’s kinematics (&, 9, 6) using an IMU and wheel speed
sensors, which is sampled at a much higher frequency. When a LiDAR rotation is
over, the time ¢; associated to each point 7 is retrieved. Assuming 2D motion, each
point p; can be undistorded by first estimating the LIDAR’s pose with respect to
the final one at time ¢;, (dx;, dy;, df;) by back-integrating the motion between ¢;
and the point-cloud global time ;. By denoting At the sampling period between
two beams, we can write:

dr; = Z;:l Aty /3 + 97 - cos(0;)

3.2. OBJECTS AND FREE SPACE DETECTION 53

Points can then be transformed as

undist distor
ZT; COS(d@Z’) - Sll’l(d@z) 0 dl’z €T;
s _ sin(df;) cos(df;) O dy;| |vi (3.3)
1 0 0 0 1 1

which yields a list of undistorded Cartesian points P = {p;},. For example, on
our vehicles, this effect results in blurry shapes and shifts that are best illustrated
when point-clouds are accumulated as the vehicle moves, as shown in Figure 3.2.

Figure 3.2: point-clouds accumulated over 5 seconds of moving in a roundabout. The
red point-cloud shows the distortion caused by the vehicle motion, and the blue point-
cloud are their undistorted counterpart. Note the car and sign duplication caused by
the varying point of view and the fuzziness of the left and right fences.

The next step is generally to filter the point-cloud to reduce its size (and thus its
complexity). Filtering can be applied as a function of range, height or intensity.
These filters are defined as keeping only points whose characteristics are within
a pre-defined range;

P\r = {pi}iEP,Tmin<”pi”<7"max
P\Z = {pi}iEP,Zmin<Zi<Zmax (34)
PV = {pi}ieP,imin<ii<imax

This can be used to reduce the area of interest as in Figure 3.3 or even highlight
features of the environment as in Figure 3.4.

More advanced approaches filter points belonging to the ground and others, such
as (Zermas et al. 2017) or (Jiménez et al. 2021). The first iteratively estimates
the ground plane and separates points based on their distance to that plane. The
second places a ground point below the sensor then recursively propagates the

o4 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Figure 3.3: Reference point-cloud in red. P\'# filtered point-cloud in blue. Points
are cut above the sensor, below the ground and further than 150 m to limit the area
of focus. Both are accumulated over a second for the sake of clarity.

T

Figure 3.4: Original point-cloud in red and intensity filtered point-cloud in blue.
Notice how signs on the right are highlighted while those on the left are not. This is
because only one side of road signs is reflective.

3.2. OBJECTS AND FREE SPACE DETECTION %)

ground class to neighbors depending on their absolute height and relative slope.
The method of (Jiménez et al. 2021) provides better results for the same level of
complexity as (Zermas et al. 2017) and as such is the preferred method in this
work.

Figure 3.5: Reference point-cloud in red, ground point-cloud filtered with the method
of (Jiménez et al. 2021) in blue.

3.2.2 Model Based Object Detection

Clustering points is useful to exploit the spatial dependency of points. The
principle is that points close together must be a part of the same object. There
are varying degrees of complexity behind clustering algorithms. The simplest
one is Euclidean clustering where the distance between every point is computed,
and classes are propagated when distances are below a given threshold. More
complex algorithms can be used, in particular by replacing the distance with a
cost that accounts for many aspects. As an example, take Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) (Ester et al. 1996) that also
computes the number of neighbors before propagating a class, thus preventing
noise propagation through low density regions. Finally, it can be seen that these
algorithms are heavy (complexity of O(N?) for Euclidean clustering and O(N?)
for DBSCAN). This is because points are not considered to be organized and
thus all permutations must be computed. To limit the required computations,
there are methods to organize point-clouds, such as octrees (Meagher 1982) that
recursively split space in two, allowing for rapid binary tree searches. Clustering
algorithms can also be adapted to certain point-cloud organization, such as the
Scan Line Run (SLR) (Zermas et al. 2017) that clusters along rings then merges
classes between rings.

Clusters correspond to a given shape that can be represented in many ways, but
the more generic one is the bounding box. In 3D, it is composed of a position
x,y, z, orientation , 1, and size [, w, h. As we focus on 2D terrestrial navigation,

56 CHAPTER 3. SENSOR PROCESSING AND TRACKING

o

5 l‘
g %

b

\

1

N
\V N

)
¥
et

4
}
e

Figure 3.6: Reference point-cloud in red and clustered point on top, where different
colors mean different clusters.

Algorithm 1 Bounding Box Fitting

Input: Cluster P
Output: Position z,y, z, heading # and dimensions [, w, h

z,7, 2 < PCA(P) > Sorted principal component vector of P

0 < atan2(y, 1) > atan taking quadrant into account

Py < rotate (0, P) > Rotates points of P by 6
max min max | min max 4 min

[m y z] - |:m to ym Zmerts]

[l w h} + rotate (—6, [a:g‘ax — pin ymax _ gmin - pnax zgﬁn])

¢ and 1 can be ignored. The procedure to fit a bounding box over a cluster P’
given in Algorithm 1, is to find its main orientation through Principal Component
Analysis (PCA), aligning with that orientation, computing the size as the distance
between the maximum and minimum points in the x, ¥y, z axes then transforming
the size back in the original orientation.

However this method gives unaligned boxes as depicted in Figure 3.7. This is due
to the PCA yielding an erroneous orientation depending on the observed shape.
This problem is better understood when illustrated, as in Figure 3.8.

3.2.3 Deep Learning Based Object Detection

When something is too complex to properly be modeled, machine learning meth-
ods that learn what to detect can be used. Neural networks have been used more
and more in recent years as they can process highly complex data in exchange
for massive amounts of training data. It is hard to keep track of every advances
in the field, in particular for cameras whose state-of-the-art results are rapidly
improving. Because of this, only generic approaches will be reviewed here.

3.2. OBJECTS AND FREE SPACE DETECTION 57

Figure 3.7: Accumulated reference point-cloud in red. Snapshot bounding boxes are
fitted over each cluster using Algorithm 1 . Only objects close to the road are shown
here. One can notice the bad alignment of the green bounding box here because the
vehicle is partially seen from the side.

ALY AN

(a) Points (b) Ideal (c) PCA (d) Partial PCA

Figure 3.8: Bird eye view of a particular cluster point-cloud, heading and bounding
boxes. The ideal heading and bounding boxes differs from what the PCA yields due
to the principal component being across the car width and length. This issue is worse
when a car is only one side is seen.

In the camera world, the best generic and fast deep-learning algorithm is YOLO,
that exists in many versions, the latest at the moment of writing being the sixth
(C. Li et al. 2022). The basic principle behind them is to divide the image in cells
in which a Convolutional Neural Network (CNN) is ran to detect and classify
shapes. The network output is a list of bounding boxes in image coordinates
associated with class probabilities.

For LiDARs, early approaches used cylindrical projection (Milioto et al. 2019;
Yuan Wang et al. 2018) or Bird Eye View (BEV) (Ku et al. 2018) to transform
the point-cloud into an image with w, y, z, depth and intensity channels in order
to reuse existing 2D CNN architectures. The output of such networks are 3D
bounding boxes associated with class probabilities. The main issue with those
methods is that they do not adapt well to new sensors and require re-training.
This limitation is starting to be lifted with networks such as Cylinder3D (X.
Zhu et al. 2021) that applies a CNN on a cylindrical voxel before propagating

58 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Figure 3.9: Image with bounding boxes classified by YOLOv5. Results obtained
within the Tornado project taking place in the city of Rambouillet.

voxel classes to points within, (Deng et al. 2021) that applies a recursive CNN to
Cartesian voxels or (Lang et al. 2019) that uses vertical columns to organize the
point-cloud. Here, the output is a class probability associated with each point.
The results of such a network on our LiDAR data is illustrated in Figure 3.10.
Finally, it is possible to tightly couple images and point-clouds before detection,
as in (X. Wu et al. 2022; Zhang et al. 2021) where the authors project a point-
cloud into a camera image and apply a deep learning detection algorithm in the
image to fuse the form and distance information. In most instances, networks
are trained on the Kitty dataset (Behley et al. 2019; Geiger et al. 2012) and as
such are particularly good at detecting and classifying cars.

3.2.4 Free Space

In most approaches reviewed previously, objects are detected as bounding boxes,
which can only express where objects have been seen. However for planning and
maneuvering, it is where objects are not present that is important. Naively con-
sidering that everywhere an object is not explicitly seen must be free is erroneous
as objects can simply be missed, and thus a complementary representation of
what is measured as free is mandatory.

Most approaches rely on deep neural networks to detect road from camera or
point-clouds (Z. Chen et al. 2019) though LiDAR-based methods can take advan-
tage of the strong geometric information. For example, the approach of (Capellier
et al. 2018) is to classify point-clouds as ground and non-ground (see Section 3.2.1)
and considers that areas where the incident laser beam was low enough are driv-
able. When free/non-free segmentation is done in the image plane, the result can
be transformed in 3D space by back-projecting the image plane using an homog-
raphy. This process, called Inverse Perspective Mapping (IPM) approximates a
Bird Eye View as long as the road is planar.

3.2. OBJECTS AND FREE SPACE DETECTION 59

Figure 3.10: Accumulated points classified by Cylinder3D. In pink are point classified
as cars, road in cyan, signs in red, vegetation in orange and infrastructure in green.
Results obtained in the city of Compiegne.

Free areas can be represented either sparsely or densely. Sparse representations
(sometimes also called parametric representations) use polygons and describe the
2D boundaries of free areas as viewed from the top. A good example of this
is (Luthardt et al. 2017) where vertices encode where and free space stops and
whether the transition is caused by an obstacle or simply getting out of field of
view. In addition, they provide a method to fuse such polygons from different
points of view. Dense representations include grids, where the ground plane is
discretized with cells of fixed size that encode the state of space at a particular
point.

Figure 3.11: Point-cloud and measured free space polygon. As the polygon is com-
puted from the vehicle position, the vehicle is depicted in grey.

60 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Originally, Bayesian grids have been proposed by (Elfes 1989) with cells contain-
ing the probability of an object occupying it. This has since been extended to
evidential occupancy grids in which each cell contain a mass function defined on
{Free, Occupied} (Capellier et al. 2018; Moras et al. 2011; Nuss et al. 2018; Yu
et al. 2014), which provides the advantage of explicitly representing unobserved
areas. In a more planning-oriented manner, grids have been used in (Laconte
et al. 2021) to represent a spatial hazard in each cell. The collision risk of a path
is computed through a function that accounts for objects mass and speed.

3.3 Multi-Object Tracking

Once raw data has been processed from sensors, it can be combined with other
sensors. To do so requires a common world in the form of a Local Dynamic Map
(LDM). A LDM is usually realized through tracking, where the states of multi-
ple objects are filtered using the methods described in Section 2.3.2. However,
there are more tasks to handle in a tracker than only estimating states and their
covariances. First, there are multiple objects to track, meaning that the right
observations must be matched with the right tracks. This will be presented in
Section 3.3.1. In addition, because objects are not always in view or relevant
and because sensors are not necessarily reliable, the lifespan of tracks must be
managed, as studied in Section 3.3.2.

3.3.1 Data Association for Object Traking

The problem of association deals with the matching of N objects with M observa-
tions. Indeed, as the observed objects might differ from the LDM either because
of their dynamics or because of sensor noise, the correspondence between the two
views must be realized. We suppose here that the two are synchronized and in
the same frame of reference. As reviewed in (Vo et al. 2015), there are multiple
ways to match tracks with observations that can be categorized in two families:
hard and soft decision. The first decides a 1-to-1 matching between objects of the
two views such that filtering can do a single update, while soft decisions delays
the 1-to-1 matching or even does N-to-M matching on all objects of both views.

Hard Decisions The basic methodology in hard decision is to compute an as-
sociation cost between all tracks and all observations then finding the association
that yields the smallest overall cost. More formally, let d be the cost function
that can be more or less complex depending on the dynamics of the scene being
tracked. The simplest form simply measures the geometric distance between the
track (x,P) and the observation (y,R):

d(x,y) =[x =y (3.5)

A finer form uses the Mahalanobis distance, a distance normalized by the co-
variance, which provides better results when the covariance matrices P and R is
significant. Assuming that both vectors share dimensions, it is defined as:

a(x,y) = \/(x—y)" (P + R)~ (x — y) (3.6)

3.3. MULTI-OBJECT TRACKING 61

Other non-metric quantities can be compared in the cost computation. (Du-
raisamy et al. 2015) proposed to use Negative Log Likelihood Ratio (NLLR) to
incorporate attributes such as the classification or dimensions in the cost com-
putation. Another way to take the class associated with two objects x. and y.
into account is using a confusion matrix C that describes the cost of associating
a class with another. For example, associating a car with a small truck is less
surprising and thus less costly than associating it with a pedestrian, which is
represented by a higher cost at C(car, small_truck) than C(car, pedestrian). The
association cost can thus be written as:

dM(x,y) = d™"(x,y) + C(x., ye) (3.7)

Finally, (N. Zoghby et al. 2013) proposed a generic framework to compare two ob-
jects and derive their associativeness. It uses belief functions defined on {4;;, 4;;}
being ”objects ¢ and j correspond or do not”. The idea is to calculate mass func-
tions for the different properties and combine them using the conjunctive rule
as

m=m, © m, @ m. (3.8)

Here, the mass functions refer to:

e Position, with a, the degree of confidence, A, an arbitrary positive coeffi-
cient and d,;; the Mahalanobis distance of the position

my({Ai}) = - e~ dp,ij
my,({A4i;}) =y (1 — e‘APdpﬁij) (3.9)
my({Aij, Aij}) =1—ap

e Velocity, with «, the degree of confidence, A\, an arbitrary positive coeffi-
cient and d, ;; the Mahalanobis distance of the velocity:

mv({/ﬁ]}) = Qy (1 _ e—Avdv,i]-)
{mv({Aij,/(ij}) =1 — - (1 —e o) (3.10)

e Class with ¢ the belief function for classification on §2 = {Car, Bicycle, ... }.
Two objects with the same class are not necessarily the same, but two
objects with different classes are likely not the same:

{mc({/rij}) = ZAﬂB;&Q) lm(A) jm(B) (3.11)
me({Aij, Aij}) =12 a0 e M(A)'m(B)

In any case, a first step called gating can be realized to save on computations,
where obvious non-associations are excluded using simple distance metrics such
as the Euclidean or Mahalanobis distance.

The previous methods are used to fill a cost matrix C' which is used to find the best
assignment using various algorithms. The most basic one is the Global Nearest

62 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Neighbors (GNN) that applies optimization algorithms such as the Hungarian
algorithm to the following problem

i

where X is a boolean matrix such that X;; = 1 if and only if row ¢ is assigned
to column j. By doing so, the GNN finds the lowest overall cost.

Soft Decision Hard decision algorithms are vulnerable to cross trajectories be-
tween objects, as the cost computation can always be incomplete and minimizing
it can lead to mis-associations in close situations. (Houenou et al. 2012) pro-
posed to consider track history to decrease this effect but that approach can be
computationally expensive. Another possibility is to avoid making ambiguous as-
sociations. In the Joint Probabilistic Data Association (JPDA) and Joint-JPDA
family of approaches (Yaakov Bar-Shalom et al. 2009), all observations impact all
tracks with a weighting factor that denotes the similarity between the two. The
resulting state is thus conceptually a weighted sum of all its inputs. In the Mul-
tiple Hypothesis Tracking (MHT) family of approaches, the choice of association
is delayed. Likely associations duplicate the LDM similar to parallel universes.
When ambiguities are lifted and some universes are more likely than others, the
less likely are pruned to maintain computation requirements low.

3.3.2 Track Management

Autonomous navigation takes place in highly dynamic environments where ob-
jects constantly get in and out of view and change relevance in the navigation
task. To maintain the quality of objects in the LDM while keeping relatively
low computation times, the lifespan of tracks must be managed, that is create,
maintain and delete them. In general, this is done through a track attribute that
gets updated and used to determine what to do with the track.

Standalone Existence Estimation In (Aeberhard 2017; Aeberhard et al.
2011), the existence of objects is done at two levels, sensor and fusion. At the
sensor level, existence is represented by a Bayesian probability p(3x). It is up-
dated by first predicting the previous probability

{p(ax)+ = PP (x) - p(3X) T 4 PR (x) - plAx)

p(Ax)t = (1 _ ppessist (x) -p(EIx)_) + (1 — phirth(x) . p(x)_) (3.13)

where p(-)~ are the prior probabilities and p(-)™ are the predicted probabilities.
It uses a birth probability p”™" that models how likely a new object is to appear
and a persistence probability pP®*'s* that models how much an object detected at
time ¢ should still be detected at time ¢ 4+ 1. The latter is defined as:

PP (x(t) = P (x(t)) - (x(1)]O(1)) (3.14)

where

3.3. MULTI-OBJECT TRACKING 63

e ™ models how likely an object is to be detected given the sensors specifi-

cations (e.g: range, opening);

e p°°° models how likely an object is to be hidden by another.

The existence probability is then updated as:

{pGx) = ™ (x) - p(3x)* (3.15)
p(Ex) = np™ e (x) - p(Fx)*
using normalizing factor n and a probability of detection modeled as:
PR () = P (= 1) P (- 1) pT I () (316)
where
e p™ models how likely a track is to correspond to a real object. It can for

example use the classification quality or prior information;

o pa@liY models the track quality, for example using the successive innova-
tions.

The probabilities of birth p*** and clutter p°"***" are determined by analyzing
the sensor.

At the fusion level, existence is represented with belief functions. The frame of
discernment used is Q = {3, 4} and combinations are realized with the conjunc-
tive rule. Belief functions are predicted using discounting

m(t +1)t) = ym(t[t) (3.17)

and can be corrected two ways. Either a track is associated, in which case a trust
and visibility probabilities are used:

Im(Ex) = P T (x) - p(3x)
Im(@x) = () T (x) - (1 Tp(3x) (3.18)
Jm(Elx,Zx) =1— ptrust (]) . Jppersist (X)

or it is not associated, in which case

{m(ax) =0 |
Jm(X) — ptrust(j))]pperjsist<x> (319)
jm(HX,ZX) =1—= ptrust(j) . Jppersist(x)

trust

The trust probability p is used as a weighting factor meant to fill in the
discrepancies between sensors, and in their case was derived from a ROC curve.

Finally, tracks are deleted, confirmed or un-confirmed using thresholds 7,4, 7. and
Tue a8 illustrated in Figure 3.12.

64 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Td Tuc Te p(gkak)
o

Figure 3.12: Object existence stages in track management (from (Aeberhard 2017)).
Four zones are defined: scheduled for deletion in red, unconfirmed in orange and con-
firmed in green. The yellow zone is an hysteresis to let object that fell below confirmed
to still be maintained.

Cooperative Existence Estimation On the other hand, in (N. E. Zoghby
et al. 2014) objects are managed directly using belief functions on the frame
2 = {Object, NonObject}. They are first created using the object age a, a sensor
reliability factor $ and an arbitrary positive coefficient k

Im(Object) =3 (1—e*)
Im(NonObject) =p- (e (3.20)
Im(Object, NonObject) =1—7

The fusion of multiple sensors is realized by discounting objects from other peers
with a constant, predicting them using timely discount

m(tlt —1) = _am(t — 1t — 1) (3.21)
and correcting based on whether tracks were associated or not

m=7m @® ‘m if associated
m = {m if track ‘o is not associated (3.22)

m="7m if observation 7o is not associated

Here, the cautious rule of combination is used when the system is cooperative
and the conjunctive otherwise.

3.4 Perception Evaluation

Once a perception system has been built, it needs to be evaluated. A good percep-
tion system have low missed-detection and false-detection rates while providing
accurate objects localization. To evaluate perception performance, a ground truth
must first be acquired, a process reviewed in Section 3.4.1. On-line perception
is then compared to that ground truth in order to compute some metrics that
measure the perception quality, as reviewed in Section 3.4.2.

3.4.1 Perception Ground Truth

Ground truth are manually (or sometimes semi-manually) labeled sensor data.
There exist as many types of ground truth as there are perception tasks. For
low-level sensor detection, we can for example cite the COCO dataset (Lin et al.

3.4. PERCEPTION EVALUATION 65

(a) Classification (b) Localization (c) Segmentation (d) Instances

Figure 3.13: Types of information usually found in perception ground truth images.
Taken from (Lin et al. 2014).

2014) that provides pixel-level segmentation and classification over 80 classes and
330k images.

In the field of automotive perception, the nuScenes (Caesar et al. 2020) is one
of the biggest dataset with fifteen hours of labeled 3D bounding boxes. Before
that, the Kitti vision benchmark (Geiger et al. 2012) was one of the most widely
used dataset. It provides multiple forms of ground truths over various driving
situations, including 2D and 3D bounding boxes, pixel-wise segmentation and
recently started including track ground truths. On a related matter, Waymo
provides a data set on motion prediction which is based on perception in (Ettinger
et al. 2021) where they provide tracked 3D bounding boxes.

3.4.2 FEvaluation Metrics

The generic tool to evaluate a binary classifier is to consider a world composed
of two classes: positive and negative (e.g. sick or not sick, object or not object).
A classifier is tasked with separating data points in this world in the right class,
as illustrated in Figure 3.14.

Predicted
Negative

Real Real Predicted
Positive Negative Positive

Figure 3.14: Illustration of terms associated to the evaluation of binary classifiers.

Table 3.1: Terms associated to the evaluation of binary classifiers.

Real positive Real negative
Predicted positive | True Positive (T'P) | False Positive (F'P)
Predicted negative | False Negative (FN) | True Negative (T'N)

The classification is compared to a ground truth, yielding the four quantities
summarized in Table 3.1 depending on whether the classification is correct or

66 CHAPTER 3. SENSOR PROCESSING AND TRACKING

not. The number of correct predictions is compared to the number of incorrect
predictions using several ratios summarized in Table 3.2.

Table 3.2: Ratios used in binary evaluation and their meanings.

TP Rate TN Rate FP Rate FN Rate | Precision
Recall

TP TN P EN TP
TP+ FN TN+ FP FP+TN FN+TP TP+ FP

However, there is generally a trade-off between the number of False Positives
(FPs) and False Negatives (FNs) with binary classifiers. They can be more or
less cautious in their classification by setting the entry bar higher or lower. This
is generally controlled by a threshold on some classification probability. To repre-
sent this ambiguity, tools such as the Receiver Operating Characteristics (ROC)
curve have been developed. This curve, exemplified in Figure 3.15, is constructed
by computing the FPR and TPR for different thresholds. To summarize the
model in a single value, the ROC area under the curve can be used. Follow-
ing the same idea, another useful tool is the Precision-Recall (PR) curve, where
the precision and recall are computed for various thresholds, as illustrated in
Figure 3.15. These curves can be summarized with scalars such as the f1-score

_ Procisi
Pl 2 - Recall - Precision

3.23
Recall 4 Precision ()

There are other types of metrics specific to perception tasks. We can for example
cite the Intersection over Union (IoU), mainly used in the field of machine vision
to compare detected bounding boxes. It is defined for two polygons A and B as

AN B

10U, B) = 30 (3.24)

Other metrics can be used to measure the difference between two images, most
of which are summarized in (Ashraf et al. 2017).

In general, the metric error of matched objects is computed in the working frame
(i.e. 2D or 3D position) or even in the complete state vectors (e.g: pose, ve-
locities). In these cases, the classical method is to compute the Normalized

3.4. PERCEPTION EVALUATION 67

1.0 1.0
,/
2 / e . T~ \
S /4 7 \
I A 5 \
= 05 . 2 05
8 / ’ o
() // o
2 7
(= L’
, S P R
4
0.0 & 0.0
0.0 0.5 1.0 0.0 0.5 1.0
False positive rate Recall

Figure 3.15: Comparison of four models using ROC and PR curves, with the best
model being dark blue and worst being red.

oy

Figure 3.16: Example of IoU.

Estimation Error Squared (NEES) (another name for the Mahalanobis distance
of Equation (3.6)) or the Root Mean Square Error (RMSE) for all times:

1

RMSE(t) = | ——= (1) — O;(t)]|? 3.25

g \/|TP|”Z 16.) - 0500 (3.5
(i,5)€p(t)

with G the set of ground truth objects, O the set of perceived objects and 1 the

set of index couples matching G and O. This is for example done in (Ambrosin,

Alvarez, et al. 2019) by computing an average over all the matched objects.

There are also metrics quantifying the quality of tracks, such as trajectory-based
metrics introduced in (B. Wu et al. 2006) or the Multi-Object Tracking Accuracy
(MOTA) and Multi-Object Tracking Precision (MOTP) introduced in (Bernardin
et al. 2008). MOTA quantifies the tracking quality in terms of misdetections and
track switching I D while MOTP quantifies the average distance between matched
pairs of ground truth and tracks:

S, (FP(t) + FN(t) + ID(t))
2.4 (TP(t) + FN(1))

Zt Z(i,j)ew (ng(t) - Oj(t)”)

2., TP(1)

However as noted in (Milan et al. 2013), this kind of metric assumes equal weight
between all types of errors (F'P, F'N, I D, distance). Reflecting that some errors

MOTA=1-

(3.26)

MOTP =

(3.27)

68 CHAPTER 3. SENSOR PROCESSING AND TRACKING

are worse than others requires manual tuning of weights, which is a complicated
task.

To simplify this, the Optimal Sub-Pattern Assignment (OSPA) metric has been
introduced in (Schuhmacher et al. 2008) to combine precision and accuracy fo-
cused metrics with just two parameters. Here, |O| is the number of perceived
objects, ¢ is the cut-off distance in the association procedure and p is a weighting
factor between the precision and accuracy parts:

Association Error Metris\Error %
1 [——— ~
0sPA= |G [T IO 160+ 3 min (™ 0.6))" || G29)

(i.j)ed

Several tracking approaches make use of this metric such as (Vasic et al. 2016;
Yoon et al. 2022).

OSPA has been refined in (Barrios et al. 2017) with COLA to account for false
alarms and missed detection more equally and preventing saturation to ¢ when
most objects are too far from one another:

(3.29)

C

cora—|(gl-10)+ ¥ (mm@admhawu%)))

(i.g) ey

As summarized in (Hoss et al. 2022; Yan Song et al. 2022), there is a plethora of
tracking evaluation metrics that put more or less emphasis on either association
or precision. As a result, the Higher Order Tracking Accuracy (HOTA) have
been proposed in (Luiten et al. 2021) to provide a neutral but global metric. It is
defined as a measure of trajectory matching penalized by unmatched detections:

HOTA = (1,5)€Y(a) d
/0 \/|TPa\ F|FENL + [FR,
o TPA(, j
A(i,) = - CF) -
TPA(i,j)+ FNA(i,j) + FPA(, j)

(3.30)

with

e TPA(i,7) the number of times the path of O; matched with the path of G,

e F'PA(i,7) the number of times the path of O; did not match with the path
of gj

e FNA(i,j) the number of times the path of G; did not match with the path
of Oj
as illustrated in Figure 3.17.

Finally, some approaches focus on the impact of perception on the navigation and
thus develop navigation-centric metrics, such as (Kim et al. 2015) which adapts

3.5. DESCRIPTION OF THE PERCEPTION SYSTEM USED IN THIS
WORK 69

Ground —»>i —»] FPA(c)

Predicti 4 .
00 " @@ mo [1mue

Figure 3.17: Principle of HOTA A(c) calculation, taken from (Luiten et al. 2021).
Here two tracks (grey and black) are associated for each time step with their ground
truth (respectively light and dark blue). Starting from the point indicated by red and
orange arrows, the number of correct or incorrect associations is accumulated.

the TTC, (Miucic et al. 2018) which compares timing of several V2X applications.
In (Philion et al. 2020), perception quality is measured as a divergence from a
reference trajectory and in (Schiegg et al. 2021) awareness about the environment
is measured.

Despite its capacity to capture various aspects of perception, HOTA will not be
used in the rest of this manuscript as it is too oriented towards tracking and
not perception integrity. Instead, simpler metrics will be used to evaluate several
aspects separately, such as the PR-curve for free space detection, PR-curve for
object detection or RMSE for object accuracy.

3.5 Description of the Perception System Used
in this Work

In this section, we describe how the experimental data used in the following
chapters is retrieved. We first introduce the laboratory experimental platform.
Then we present how we implemented car and traffic sign detection and tracking
using LiDAR sensors and methods introduced in the literature review. In parallel,
a free space detector that provides free space polygons have been implemented
following the method of (Yu et al. 2014), illustrated in Section 3.2.4.

3.5.1 Experimental Setup
3.5.1.1 Hardware

The Heudiasyc laboratory owns three Renault Zoe embedded with sensors. They
are depicted in Figure 3.18 and are named after their color: zoeblue, zoegrey
and zoewhite. Two of them, zoegrey and zoewhite are robotized and can be
controlled by software, while zoeblue is mainly used to record datasets. The

70 CHAPTER 3. SENSOR PROCESSING AND TRACKING

three cars are equipped with various sensors, that can be classified in two main
families: proprioceptive (measuring the vehicle’s own state) and exteroceptive
(measuring outside elements).

Figure 3.18: The three Renault Zoe used at the Heudiasyc laboratory.

GNSS receiver Global Navigation Satellite System (GNSS) is a technology
providing global positions and times to terrestrial vehicles thanks to satellite sig-
nals. A receiver is necessary to access GNSS signals or even compute a pose.
The one embedded in our vehicles is a Septentrio AsteRx SB Pro Connect (Fig-
ure 3.19b). It can receive signals coming from several constellations: GPS con-
trolled by the United States of America (USA), GLONASS by Russia, Galileo by
Europe and BeiDou by China. However, GNSS suffers from disturbances such as
urban canyons or multi-paths (Zabalegui et al. 2020; N. Zhu et al. 2018) in ur-
ban configurations and currently only achieve meter-level positioning. Upcoming
GNSS technologies such as Real Time Kinematics (RTK) or Precise Point Posi-
tioning (PPP) are expected to bring more accurate positions (Du et al. 2021).

(a) GNSS antenna (b) Septentrio AsteRx SB (c) NovAtel SPAN-CPT

Figure 3.19: GNSS-based sensors used at the Heudiasyc laboratory.

Inertial Measurement Units Inertial Measurement Units (IMUs) measure
the accelerations and kinematics of the vehicle, that is to say the vz, vy and vz

3.5. DESCRIPTION OF THE PERCEPTION SYSTEM USED IN THIS
WORK 71

velocities, and the roll ¢, pitch w and yaw 0 angular velocities. It is generally
composed of six sub-sensors, three accelerometers and three gyrometers, each for
the three axes x, y and z. Other sources can also be used to retrieve these, such
as wheel tops used to measure a linear velocity by counting the number of wheel
turns in a given period of time. Our vehicles are equipped with a NovAtel SPAN-
CPT (Figure 3.19¢) that combines IMUs with GNSS receivers. This combination
allows a centimeter-level position when post-processed with PPK, which is why
they are used as ground-truth for vehicle localization.

LiDAR To measure their surroundings, the vehicles are equipped with Light
Detection And Ranging sensors. This type of sensor works by firing infrared
laser beams and measuring the time they takes to bounce back to compute dis-
tances. This makes LiDARs excellent at measuring distances, generally providing
centimeter-level measurements. In addition LiDARs work in most lighting con-
ditions as they produce their own light. Finally, as the returned signal depends
on what it bounced back on, the reflectivity of surrounding surfaces can also be
measured.

1

Control Laser Photo Lenses Obstacle
Board Emitter Diode

Figure 3.20: Simplified view of a LiDAR firing a laser beam.

Stacking multiple layers of LIDAR and pointing at varying angles makes a multi-
layer LiDAR that can measure distances along a vertical slice. Rotating a stack
of LiDAR layers around an axis makes a rotating LiDAR that can scan along
horizontal slices, called rings. Calculating Cartesian coordinates from distances
returned during a full rotation makes a point-cloud. LiDAR sensors currently
used in the automotive field generally produce 360 degree FoVs up to 150 or
200 m with an horizontal resolution a thousand points across 32 to 64 rings.

The experimental vehicles are equipped with two LiDARS: a 32-ring Velodyne
VLP-32C (Figure 3.21a) and a Hesai Pandora (Figure 3.21c) composed of five
cameras and a 40-ring Pandar 40P. In addition, a Velodyne 128-ring VLS-128
(Figure 3.21b) lent by Renault has been used as a static road side unit during
some experiments. Their respective point-clouds are illustrated in Figure 3.22.

Despite their accuracy, LIDAR sensors suffer several issues that prevent them
from wider use. They are vulnerable to fog, snow or rain as laser beams can
be reflected or refracted by snowflakes and raindrops. They are sparse, as rings
placed a few degrees of one another can end up meters apart when far away from
the sensor. They are costly, heavy and hard to integrate on vehicles. Finally,

72 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Velodyne

(d) Mobileye

(a) VLP-32C (b) VLS-128 (c) Pandora

Figure 3.21: LiDAR sensors and cameras used in this research.

they lack reliability, as they are made of precise optics and electronics built upon
a rapidly moving part. There are upcoming variations to help with some of
these issues, such as the solid-state LIDARs that replace rotation with a series of
electromagnetic interference (Y. Li et al. 2022), which removes any moving parts
and is more compact.

(a) VLP-32C (b) Pandora (c) VLS-128

Figure 3.22: Example of point-clouds produced by previously mentioned LiDARs.
Colors represent the material reflectivity from purple absorbing to red highly reflective.
Notice how the point-cloud is composed of rings stretching outwards from the origin,
how dense the Pandora is compared to the VLP32C and the VLS128 to the Pandora.

Camera Cameras are sensors that mimic Human eyes by capturing ambient
light reflected back at it. As such, they provide dense images of the environ-
ment with color information. Their fields of view are narrower and shorter than
LiDARs due to physical limitations of their photoelectric sensors. In addition,
they can only provide 2D information as light-rays are projected on the surface
of the photoelectric sensor. Finally, they depend on lighting conditions, cannot
work at night and can be blinded by sunlight. However, because they are easy
to manufacture, cost-effective and easy to integrate in a vehicle, cameras have
become the preferred sensor in the automotive field.

The vehicles are equipped with two kinds of cameras. The Hesai Pandora (Fig-
ure 3.21¢) provide four grey-scale cameras on each side and a front-facing color
camera, as in Figure 3.23. The second is a Mobileye Smart Camera (Figure 3.21d)
that does not provide images but the result of perception algorithms (e.g: pedes-
trian, car, sign, free space detection).

3.5. DESCRIPTION OF THE PERCEPTION SYSTEM USED IN THIS
WORK 73

Figure 3.23: Images returned by the Hesai Pandora cameras.

New types of cameras are being researched to overcome the mentioned issues.
For example, stereo-cameras aim at measuring distances by comparing image
returned by two parallel cameras. Infrared cameras (Y. Li et al. 2022) sense
infrared radiated by living beings and can thus see them without visible light.
Event cameras (Brebion et al. 2022) are another kind of upcoming sensor whose
pixels report brightness changes independently and instantaneously, instead of
reporting all at once periodically. This makes event cameras capable of wider
dynamic ranges and shorter reaction times.

3.5.1.2 Software

In addition to cars and sensors, a series of software libraries have been developed
at the Heudiasyc laboratory. They are all based on the Robotic Operating System
(ROS) and as such are organized as packages and independent nodes. The main
ones that were developed and contributed to in the context of this PhD are:

Table 3.3: ROS packages developed and contributed to in the context of this PhD.
Some are private for intellectual property reasons.

lidar_utils | Algorithms for detection in LiDAR point-clouds

perception utils | Higher-level detection algorithms

grid map | Occupancy grids

map_server | Management of an HD map

datasets | Recording and management of datasets

multiception | Data fusion and cooperative algorithms

As noted by the variety of modules, a significant effort has been made to make
the implementations of this PhD reusable to other lab members. In particular,
the detection modules have been used in the Tornado project and several past
thesis.

Finally, an HD map is used to provide context and apply environment specific
algorithms (i.e: filtering objects on the road). It is composed of precisely located
features (i.e: road center and border, road signs, traffic lights, crosswalks) and of
their semantic interactions.

https://gitlab.utc.fr/hds_vehint/lidar_utils
https://gitlab.utc.fr/limaanto/perception_utils
https://gitlab.utc.fr/limaanto/grid_map
https://gitlab.utc.fr/hds_vehint/map_server
https://gitlab.utc.fr/hds_vehint/datasets
https://gitlab.utc.fr/multiception

74 CHAPTER 3. SENSOR PROCESSING AND TRACKING

3.5.2 Cars and Traffic Signs Detection using LiDAR

In order to study the fusion of perception, one must first be able to perceive.
As a proof of concept, simple LiDAR model-based car, road sign and free space
detectors have been developed. This covers most common situations found near
roads while being sufficiently easy to implement and interpret.

The overall architecture is presented in Figure 3.24. The motion compensation
and cylindrical filtering are common processing steps implemented as defined in
Section 3.2.1.

Motion Compensation

v

Height & Range Filtering

v v v

Intensity Filtering Ground Removal
Polar ¢
Organization v Clustering
Clustering a0 v
Delimitation Hull Bounding Box
A 4 ¢ ¢
Bounding Box Road Filtering <

Free Space Signs Cars

v v

Associate class & uncertainties

Y ¢

Transform in working frame

v

Tracker

Polygon l Tracks
A\ 4

Figure 3.24: LiDAR processing pipeline.

Road signs are covered with a highly retro-reflective material and as illustrated in
Figure 3.4 are easily detected using a LiDAR’s reflectivity measurement. Points
that remain after filtering on intensity are mainly sign-points, though there can
remain some false positives (rain, leaves, license plates). These are removed
by clustering high-intensity points with DBSCAN and ensuring clusters have a

3.5. DESCRIPTION OF THE PERCEPTION SYSTEM USED IN THIS
WORK 75

minimal number of points in them. A bounding box can then be fitted on clusters
with Algorithm 1.

For car detection, the idea is that a cluster of points above the road is most
certainly a car. To achieve this, the approach of (Jiménez et al. 2021) is used to
remove ground points from the point-cloud to clearly separate clusters from one
another in the following step. Bounding boxes are then fitted on car clusters,
keeping only those above the road. To do this, the convex hulls of clusters are
computed and compared to the road polygon extracted from the High Definition
(HD) map.

Cars and signs are represented using bounding boxes that describe the center x
and y, heading 6 and length, width, height [, w, h of an object. In the case of
signs, € is the normal to the sign surface.

A bounding box is defined by:
b= (z,y,0,l,w,h) (3.31)

A given sensor j provides two sensor referenced bounding box lists at time ¢ as
B (t) = {j’jb, o } , 1IBYE(t) = {j’jb, o } (3.32)

where the 7. notation means - from the point of view of j and whose frame of
reference is also attached to j.

Bounding boxes are then turned into proper objects, which are the basis for
tracking and communication afterwards, defined as:

0= {(x,P;,Py,Z,c,Z,m?) (3.33)

where x = [m, y,0,v, 9} is the object state (position, heading, linear and angular

velocities), P; and Py its associated independent and dependent covariance ma-
trix, Z = (l,w, h) is the object size (length, width and height),c € {car,sign, ...}
is the object class, Z is an arbitrary set of characteristics (e.g: color, license
plate number) and m? represents an estimation of object existence (as described
in Section 4.3.4). Unknown values are initialized with a large covariance. For
example for cars, this process is

(]7]x0:j’ij

Gy =33 .

A ie, = car 10000

o Biy =) H=01000 (3.34)
U = 0o 0.6

i — 0 WP = ojo; 00100

J

Because a sensor uncertainty makes more sense being expressed in polar coordi-
nate rather than euclidean coordinates!, covariance matrices are aligned with the

li.e: a camera is "imprecise in depth but good at estimating angles”, not ”precise in front
and less on its sides”

76 CHAPTER 3. SENSOR PROCESSING AND TRACKING

line of sight between the sensor and object. For this, the range and angle preci-
sion ¢ and 0™ form an intermediary polar covariance matrix that is rotated by
the angle between sensor j and object o, rad! = atan2(y,, x,):

=R ' rad ~rad (335)
o

BIPYT HIPYY 0 o™g

o, o§ad, af, v; and m? are parameters that have to be adapted for a given sensor

and its associated detection algorithm j. As a reminder from Section 2.4.5, v is
the dependency factor that distributes observation noise between dependent and
independent for later SCI-tracking. Considering the aforementioned processing,
detected objects can be considered independent from each other both in time and
space and a v; close to 0 can be fixed. On the other hand, when detection algo-
rithms introduce correlated errors (e.g: buffering, filtering or prior information),
this can be represented with v; close to 1.

Car and sign objects are then grouped, transformed in the working frame (ac-
counting for transformation uncertainty, see Section 4.2.2.3) and sent to a tracker.

10 =T, (#{o,... }eu U"o,...} (3.36)

sign)

3.5.2.1 Sensor Tracking

Because some sensors only provide already tracked information, such as the Mo-
bileye, other sensor are also tracked in order to have standardized outputs to
other modules. Thus, the final step of our LiDAR processing is to track per-
ceived objects. Such sensor-level trackers only interact with a single sensor, and
as such do not require alignment or complex existence estimation. For example,
given a particular LiDAR j, the prediction, association and update are performed
once a new detection list 7O () is received. Objects are filtered using a SCIF and
independently from one another because the evolution model depends on the ob-
ject class. Three models are considered, based on (Khan 2019; Sandblom et al.
2014). For cars and other wheeled objects, a constant turn model is used:

" _cT2

(& =v-cosb o€ o 0 0 0
y=wv-sinf 0 USTQ 0 0 0
fOT(x)={0=20 , QY= 0 0 o™ 0o 0 | (337
b =0 0o 0 0 o7 o
j CT2
(=0 | 0 0 0 0 o077
For road signs and other static objects, as static evolution model is used:
i =0 S0 0
. 2
FTx)=qy=0 , Q'=| 0 o7 0 (3.38)

=0 0 0 o5

3.5. DESCRIPTION OF THE PERCEPTION SYSTEM USED IN THIS
WORK 7

Finally, for non-wheeled or static objects (e.g: pedestrians), a constant velocity
model is applied:

i = vr oSV 0 0 0
) = 0 o%V* 0 0
fVx) =Y Qev = v 3.39
=10 ¢ 0 0 o%Va® 0 (3.39)
vy =0 0 0 0 afvgf

Every o in Equations (3.37) to (3.39) is left as a tuning parameter. Predicted
tracks are then noted 7O (|t — 1).

Association is done using a GNN assignment and the cost function of Equa-
tion (3.7), based on Mahalanobis distances and class discrepancies. This as-
signment function noted A yields a mapping 1 between predicted tracks and
observations:

¢ =A(o(t|t —1),70(1)) (3.40)

Associated tracks get independently updated using Equation (2.40) by replacing
(x, P;, Pg) with updated tracks 7O (t|t —1) and (y, R;, Ry4) by observations ‘O (),
yielding a list of updated tracks 7O (t|t). Non-associated observations create new
tracks as detailed in next section.

3.5.2.2 Track Management

Table 3.4: Summary of state and existence tracking parameters

Notation | Domain | Description

oCT Rt* Dependent evolution noise for constant turn tracks
obV Rt Dependent evolution noise for constant velocity tracks
oSt Rt* Dependent evolution noise for static tracks

EPirth [0,1] | Birth evidence of existence

Eforset [0,1] | Delete tracks whose information is below this
5 /2 R** Time to losing half a track existence information
Eupdt [0,1] | Increase in existence when associated

In parallel to state filtering, tracks have to be created and deleted. There are
two levels of management complexity in this manuscript. The first one, sensor-
level is detailed in the following, while more advanced fusion-level is detailed in
Section 4.3.4. Existence is managed with belief functions m? associated with each

track o. It is defined on Q2 = {E, K} to express evidence supporting that the
object is relevant and really exists E or is certainly clutter X

Similar to (Aeberhard et al. 2011) and as shown on Figure 3.12, tracks are created
from un-associated observations with a birth existence mg,

5 b {8 A4 34

Mpirth = 0 Ebirth 0 1 — Ebirth

(3.41)

78 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Ebirth

where is a scalar parameter controlling how likely new objects are.

They are then deleted when not enough evidence of their existence is left:
m2(Q7) > plorset (3.42)

where E&t is a scalar parameter controlling how soon to delete unlikely tracks.

When tracks are predicted, their existence is decayed according to Equation (2.17)
to account for the timeliness of evidence about existence.

Mt —1) = pacen et = 1= 1) (3.43)
where 7 /2 IS @ scalar duration parameter controlling how quickly existence de-
creases.

Finally, existence is increased when tracks are associated. For this, the predicted
existence is combined with a constant existence increase

b8y A 534
0 Eupdt 0 1_Eupdt

m2(t]t) = ml(t|t — 1) @ (3.44)

where EUP4t ig a scalar parameter controlling the existence increase.

Afterwards, tracks from all embedded sensors are fused at the ego-level, as will
be explained in Chapter 4. However, we first focus on the evaluation of tracks at
the sensor-level.

3.6 Evaluation

In this section, we apply the approaches detailed in Section 3.4 to evaluate both
a Mobileye smart camera and our LiDAR detector on cars and road-signs detec-
tions.

3.6.1 Evaluation of Sign Detection

For road sign detection, a car equipped with both sensors has been driven around
the city of Compiegne for 2 km. The path taken while recording, ground truth
road signs and accumulated detections are depicted in Figure 3.25.

The ground truth for signs has been extracted from an HD map. They are associ-
ated with sign detections using a GNN and a class dependent cost Equation (3.7).
A gate of 4 m has been chosen for the LiDAR and 20 m for the Mobileye. Their
matching error is plotted in Figure 3.26 aligned with the vehicle.

In Figure 3.26a, one can see that the detector is not significantly biased in both
directions with a mean error of 0.01 and —0.02 m and has a good accuracy with
a RMSE of 0.36 m for a variance of 0.09 m. On the other hand, in Figure 3.26b
one can see that the Mobileye suffers from a significant bias towards the vehicle
of —1.13 and 0.39 m. In addition, while the accuracy is correct in the lateral

3.6. EVALUATION 79

400 A
300 1
200 4

100 A

.
~100

[]
>
e

—200 T T T T T
0 500 1000 1500 2000

Figure 3.25: Trajectory and data used in sign detection. In blue are the road borders
described in an HD map, in red are the ground-truth road-signs and in green the car
trajectory.

4 20 ®
3 15
21 10
E B
N 4 T 51
1 S
° > 5
E 0 @ E 04
© e o
2 2
%1 5 5
o o
) -
—2 -10
*
-3 —15 -
¥
92,
—4 T T T d —20 T T T 1
4 2 0 -2 —4 20 10 0 —10 —20
Lateral error (m) Lateral error (m)
(a) LiDAR. (b) Mobileye.

Figure 3.26: Ego-aligned association error between LiDAR/Mobileye road-sign de-
tection and ground-truth.

direction (2.37 m of lateral RMSE) it is particularly inaccurate in the longitudinal
direction (5.99 m of longitudinal RMSE). This provides a global accuracy of
3.60 m for a variance of 13.13 m (see Table 3.5), certainly due to projection
errors, which makes the Mobileye too inaccurate to be considered for some tasks.

However, there are discrepancies between road-signs stored in the HD map and
reality, because some have been moved, added or removed since mapping. This
is not an issue for evaluating the accuracy, as a manual verification for obvious
false positives has been realized. However this means that detection rates cannot
be properly evaluated. Additionally, our Mobileye and LiDAR detectors do not
provide a confidence score that could be used to construct a precision-recall curve.

Table 3.5: Evaluation of sign detection for a total of 560 signs on the trajectory

Mean z error (m) | Mean y error (m) | RMSE (m) | RMSE variance (m?) | TPR (%)
Mobileye —-1.13 —0.39 3.60 13.13 24
LiDAR 0.01 —0.02 0.36 0.09 33

80 CHAPTER 3. SENSOR PROCESSING AND TRACKING

3.6.2 Evaluation of Car Detection

For car detection, a car equipped with both sensors has been driven around a
roundabout for several turns. Two other cars equipped with a NovAtel SPAN-
CPT were used as ground-truth.

40 7

30 A

(b)

Figure 3.27: Scene and trajectories used in car detection. In grey are the road borders
described in the HD map. The three vehicle trajectories are plotted in blue, green and
red.

Detected and ground-truth signs are associated using a GNN and a class depen-
dent cost Equation (3.7). Their matching error is plotted in Figure 3.28 aligned
with the vehicle.

10.0 4
1.00 4

0.75 1
0.50 4

0.25 1
0.0 1

gﬁ&g&

0.00 4

Longitudinal error (m)
Longitudinal error (m)

—2.54

~0.25 14
—5.04

—0.50 4
—7.54

~0.75 1 o9
~10.0 {

T T T T T T T T T T T T T T T T
=0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -10.0 =75 =50 =25 0.0 2.5 5.0 7.5
Lateral error (m) Lateral error (m)

(a) LiDAR. (b) Mobileye.

Figure 3.28: Ego-aligned association error between LiDAR/Mobileye car detection
and ground-truth.

3.6. EVALUATION 81

In Figure 3.28a and Table 3.6, one can see that the LiDAR detector is not signifi-
cantly biased with a mean error of 0.15 and 0.06 m and has a good accuracy with
a RMSE of 0.40 m for a variance of 0.10 m. On the other hand in Figure 3.28b,
one can see that the Mobileye suffers from a significant bias away from the vehicle
of 1.61 and 2.36 m. In addition, it has a global accuracy of 4.95 m for a variance of
6.12 m, certainly due to projection errors, which makes the Mobileye too inaccu-
rate to be seriously considered for this task. Once again, a complete ground-truth
is not available as other vehicles were present in the scene. Thus false positives
cannot be evaluated and precision-recall curves cannot be constructed. Results
are provided in Table 3.6.

Table 3.6: Evaluation of car detection

‘ Mean z error (m) ‘ Mean y error (m) ‘ RMSE (m) ‘ RMSE variance (m?) ‘ TPR (%)
Mobileye | 1.68 | 2.43 | 480 | 5.56 | 0.42
LiDAR | 0.24 | 0.13 | 048 | 0.14 072

Finally, the estimated size of the detected cars has an impact on their position
and it is clearly a weak point of our LiDAR car detector. In Figure 3.29, the size
error of detected objects are compared on both sensors. One can see that the
Mobileye has predefined values that tends to be underestimated, with a RMSE
of 0.88 m for a variance of 0.09 m. The same underestimation appears on the
LiDAR detections, with a RMSE of 0.75 m for a variance of 0.11 m. In particular
a strong bias in both length and width of 0.5 m can be observed. This can
mainly be explained by an effect introduced in Figure 3.7. When vehicles are only
partially seen, detected bounding boxes only cover part of the object, resulting
in underestimated sized. The analyzed sequence being a roundabout, vehicles
always only see one corner of their neighbors well, resulting in this bias.

2.0 4 L]
144
154
1.29
1.0 4 ° 1.0
E E
s 054 § 08
P ° £
5 z | [] e []
2 0 2064 @ :
[
[} []
0.4 4 e [
o ° e ° °
e e e [
[]
0.2 [
[]
—1.01 e e e e
004 ®
-1.0 —0.5 0.0 0.5 1.0 15 2.0 —0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Length error (m) Length error (m)
(a) LiDAR. (b) Mobileye.

Figure 3.29: Size error between LiDAR/Mobileye car detection and ground-truth.

82 CHAPTER 3. SENSOR PROCESSING AND TRACKING

3.7 Conclusion

In this chapter, we have introduced methods to extract objects and free-space
from sensor data. We have presented our methods and algorithms to extract cars,
road-signs and free-space from LiDAR point clouds. Then, we have described how
object detections are tracked using a classical strategy for the track management
in order to provide predictable tracks to the downstream fusion module in charge
of the cooperative perception.

An experimental evaluation has illustrated that LiDAR tracks are metrically ac-
curate and consistent, while Mobileye tracks are not. As such, the Mobileye
will be ignored in the rest of this manuscript. LiDAR object detection is func-
tional but can be improved. In particular, incorrect car size estimation can cause
miss-associations with detections coming from other points of view which can be
an issue for cooperative perception. Using size priors, corner-based tracking or
machine-learning-based detection could improve this aspect. Secondly, sensor-
level tracking might profit from more advanced algorithms such as Multiple Hy-
pothesis Tracking (MHT) to reduce association errors or Interacting Multiple
Model (IMM) to adapt the evolution model based object classes. Track manage-
ment could also be adapted to object classes (e.g. static object can remain longer
than dynamic). Finally, the evaluation detection rates for objects and free-space
has not be done in this chapter. It will be addressed in the next chapter using
particular methodologies that will be introduced.

Chapter 4

Cooperative Perception in a
Trustworthy Network

Contents
4.1 Introduction Lo 83
4.2 Review of Cooperative Perception 84
4.3 Fusion of Multiple Points of View 95
4.4 Evaluation of Cooperative Perception 108
4.5 Conclusion 119

4.1 Introduction

A single sensor is generally insufficient to cover a whole scene and leveraging
the complementarities of multiple sensors is often the solution. In the previous
chapter, sensor-centric perception has been presented. In the present chapter,
the perception of multiple sensors are fused. By modeling cooperative peers as
deported sensors, we propose an architecture capable of fusing standalone or
cooperative perception in a generic way.

In this chapter, the cooperative perception problem is first presented with a lit-
erature review in Section 4.2. We then propose a generic architecture to fuse the
perception of multiple points of view in Section 4.3. It is based on an object simi-
larity metric, an improved object existence estimator and ewvidential detectability.
Detectability is used to represent where sensors or peers are capable of detecting
objects. Using an evidential formulation, free space can jointly be represented,
providing a convenient tool to track objects accross fields of view. Finally, ex-
perimental results obtained with three vehicles are presented and analyzed in
Section 4.4.

83

CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY
84 NETWORK

4.2 Review of Cooperative Perception

Thanks to advances in communication technologies, machines can exchange wire-
lessly further and faster than ever before. This idea is being investigated in several
fields of robotics such as localization, control or the topic at hand: perception.
By exchanging perception vehicles can see further and behind obstacles, greatly
improving their knowledge of the environment. This last aspect is particularly
useful at the decision level.

The following is a review of how perception sharing is realized in the literature.

4.2.1 Communication for Intelligent Transportation
Systems

In order to communicate, computers require a common language in the form of
standards. There are numerous standards, each with advantages and limitations.
They are reviewed in this first section.

4.2.1.1 Medium

For the communication medium, which consists in radio waves and low-level
networking, there are two standards. The oldest one, called Dedicated Short
Range Communication (DSRC), is based on a type of WiFi adapted to outdoor
communications (IEEE 802.11p) and is mostly supported by north-American and
European regulation agencies. Its newer competitor, called Cellular V2X (C-
V2X), is based on the upcoming 5G cellular network, and is mostly supported in
the Asian market. Both promise millisecond-level latency and up to a kilometer
of range (Keysight 2018), though C-V2X and its multi-frequency is less likely
to drop packets in dense areas (Nguyen et al. 2017; Ko-PER Project 2014). C-
V2X also has the advantage of using existing equipment for both peer-to-peer
communication and internet access, whereas DSRC requires dedicated On-Board
Units (OBUs) and Road Side Units (RSUs).

C-V2X thus seems more promising than DSRC but was not available at the time
of carrying out experiments. As it does not change what data is exchanged and
how it is used, the rest of this manuscript will assume use of DSRC.

4.2.1.2 Messages

What is exchanged over the medium heavily depends on the use case. We will
focus on Intelligent Transportation Systems (ITS) oriented messages. There are
two main families of message definition. The north American side, backed by
the Society of American Engineer (SAE), developed the SAE J2735 (SAE-J2735

2022) specification, that defines the following messages:

e Basic Safety Message (BSM): information about the sending vehicle such
as pose, speed, size or light states ;

4.2. REVIEW OF COOPERATIVE PERCEPTION 85

e MAP/ (SPaT) messages: local mapping and timings for traffic lights, stop
or right-of-way signs.

The European side, backed by the European Telecommunications Standards In-
stitute (ETSI) developed the 102 894-2, 302 637-2 and 302 637-3 specifications
(see ETSI 2019), that defines various messages, summarized in Figure 4.1:

e The Cooperative Awareness Message (CAM), which is similar to the BSM
as it provides information about the ego vehicle pose and intentions ;

e The Decentralized Environment Notification Message (DENM), which pro-
vides information about local events (accident, roadworks, etc), their cause
and who is concerned ;

e The Collective Perception Message (CPM), which provides information
about on-board sensors and perceived objects (pose, size, class) ;

e The MAP/SPaT, which is an adaptation of the SAE MAP /SPaT messages.

DENM A

b : DENM
A

Figure 4.1: Summary of ETSI messages between two communicating cars.

In the rest of this manuscript, the CPM will be considered as the standard sup-
porting our research. It is widely studied (Caillot et al. 2022) and fulfills most
needs of CP. As such, the content of CPMs is here detailed to introduce what
is available to CP algorithms. As summarized in Figure 4.2, the CPM specifies
several characteristics about the sender such as its identifier, pose, size, type
(vehicle, pedestrian, infrastructure) and velocities. Then, on-board sensors are
listed through their type (e.g: mono/stereo camera, LIDAR, RADAR) and Field
of View (FoV) (range, opening, polygon). Two aspects of perception are then
exposed: measured free space as a polygon and a list of perceived objects. As

CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

86 NETWORK
Cooperative Perception Message
Header Emitter Data Perception Data Security
o o RSU Sensors Objects [1-128] FS [1-128]
o | & & § Q Stat
o= | E o & g s ate o
o 8 = 7 §= 2 B 2 = | a2
o S ISR B O < =8 E S o= — | s 5 < | B
(oIl 51 -~ O o a - gl | 0.2 7 o | & o <ER=)
2 %8 B2 8 8 2 82 sg28=%8 § g2g &5
3022 g g = 2 & 2% 2 5 @35 & s 89 2 ©» O
S 28 £%92 58 8 8§82 E 828
8¢ E 5~ £3 § SlE|al g8 A R R
= x A | K| A <

Figure 4.2: Summary of fields in the Collective Perception Message. Adapted from
(Ansari et al. 2021).

summarized in Figure 4.2, objects are defined by an identifier, time of measure-
ment, confidence, classification, state and size.

To limit the size of exchanged messages, fields are limited in precision and most
are optional. According to (Allig and Wanielik 2019a; Thandavarayan et al. 2019;
Zhou et al. 2022), the size CPMs vary from 100 to 1000 bytes depending on the
complexity of exchanged information.

4.2.1.3 Contents of Cooperative Perception Messages

How to fill the aforementioned fields is still relatively open. (Giinther et al.
2016) argues that non-tracked, raw sensor data is preferable but the rest of the
community seems to use tracked data (Allig and Wanielik 2019a; Caillot et al.
2022). There are also more and more interest in active cooperative perception,
where not all objects are sent all the time. For example, in (Thandavarayan et al.
2019) rules based on object type, position change Ax, velocity change Av and last
time sent At are defined to reduce the number of objects sent (see Figure 4.3).
This system demonstrated reduced communications without significant loss in
awareness. In (Zhou et al. 2022), redundant objects are not sent by computing

> > > > > Vulnerable >
No No No No Road User No
ves

Figure 4.3: Generation rules defined by (Thandavarayan et al. 2019) for sending an
object or not.

the awareness increase brought by each object and by deciding whether to send
an object based on this. More works are reviewed in (Delooz et al. 2022).

Finally, CPMs are meant to be broadcasted to surrounding peers without addi-
tional hops or geo-casting, contrary to other messages such as the DENM.

4.2. REVIEW OF COOPERATIVE PERCEPTION 87

4.2.1.4 Security in Vehicular Networks

As communications take place in an open network, computers and the vehicle they
control are open to attacks. As such, security measures are mandatory in order
to limit the attack surface. Contrary to most cases, encryption is not the solution
here, as messages are meant to be readable by anyone. However, they should not
be written by anyone, and for this a Public Key Infrastructure (PKI) can be used.
The principle of a PKI, summarized in Figure 4.4 is to supply private/public key
pairs such that any receiving peer can cryptographically verify the identity of a
sender (Chowdhury et al. 2017; Madl 2021). However, this architecture makes
tracking a peer at a global scale very easy, which is why sub-keys (or pseudonyms)
can be used to locally change identity.

Certification Authority Verification Authority
,rg— = ?—>
Public Key

Registration
Authority

Eq? Private Key

\ 4 Signed Data

—

—>

Sender Receiver

Figure 4.4: Example of Public Key Infrastructure (PKI). Adapted from (Danquah
et al. 2020).

In this chapter, we will consider these measures sufficient to ensure that we are in
a trusted network, though as explored in the next chapter, other methods should
be used to verify this hypothesis. Indeed, it is still possible for determined attack-
ers to find ways around this authentication or simply for peers to be faithfully
mistaken.

4.2.2 Cooperative Track-To-Track Fusion
4.2.2.1 Cooperative Fusion Architectures

Now that vehicles can communicate with each other, let us review how exchanged
information is typically fused. As summarized in works as early as (Herpel et al.
2008), fusion can happen at several points in the sensor processing stack:

Exchanging and fusing early information amounts to exchanging raw sensor data
and realizing normal sensor detection methods in the extended data. For ex-
ample, in (H. Li et al. 2011) and (Kim et al. 2015) images from cameras are
exchanged between following vehicles and used to approximate see-through with

CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY
88 NETWORK

Early Middle Late

Sensor / / /
Data

Figure 4.5: Illustration of early to late fusion in sensor processing.

leading vehicles. In (Sridhar et al. 2019), images are exchanged to infer the
depth of objects thanks to the difference of point of view and common features.
Similarly, (Q. Chen et al. 2019) exchange point clouds and detect objects in
the concatenated point cloud. However, while images can be sent as a video
stream thanks to efficient compression algorithms, LiDAR point clouds are more
difficult to compress and thus new methods have been derived. For example, in
(T.-H. Wang et al. 2020), a neural network is used to find features in point clouds
and compress them. Then it is sent and fused by accumulation on the receiver
side. However, despite these efforts, raw data is still too heavy to be tractable
in dense situations. A lighter alternative is thus to apply detection algorithms
and exchange their results. Object detections are lighter while still representing
most of the important information contained in raw data. These objects are
communicated as instantaneous measurements (i.e: not tracked) bounding boxes
according to the CPM standard (Giinther et al. 2016). However, because they
are raw information, these objects have to be exchanged as often as possible for
a receiver to properly track them, which is against generation rules described in
Section 4.2.1.3. To reduce communication and tracking-related loads, already-
tracked objects can instead be exchanged. This requires less frequent exchanges
while maintaining predictability and seems to be the current consensus (Allig and
Wanielik 2019a; Gabb et al. 2019; Rauch et al. 2012). According to (Allig and
Wanielik 2019b), exchanging variance and acceleration information drastically
improves the tracking accuracy on the receiver side, but exchanging covariance
(non-diagonal variance) have negligible impact.

Another common distinction depends on whether approaches are centralized or
decentralized. In (Gabb et al. 2019) for example, infrastructure sensors are fused
on a centralized server before being sent to vehicles. Most tracking approaches
separate what they locally and cooperatively perceived as illustrated in Figure 4.6
for (Allig and Wanielik 2019a; Giinther et al. 2016; Rauch et al. 2012).

4.2.2.2 Cooperative State Filtering

In terms of data fusion, while certain approaches are geometry based, such as
(Z. Song et al. 2022), cooperative objects are generally fused by filtering their
state vectors. Several filters introduced in Section 2.3.2 have been compared in
the literature over the same contexts. For example in (Ambrosin, Alvarez, et
al. 2019), a Covariance Intersection Filter (CIF) is used. (Seeliger et al. 2014)
compared several variants of the CIF and found that the improved-fast-CI was the
best compromise between performance and accuracy. Later, (Gabb et al. 2019)
found that the IMF performed too closely to the CIF to justify the requirement for

4.2. REVIEW OF COOPERATIVE PERCEPTION 89

(" Host Vehicle
Global Fusion Local
Sensors
Alignment il
Trustworthiness :
Association 2 :
. | S
Fusion 2
Q
3
[¢°]
2 - O V2X
. . N V2X Add-On /’T;:ahal
Communication “_ ObjectFusion ./ o "
s A AN -
Remote . CPM Remote T et
o . ADAS Applicati < EPM
Vehicle Y Vehicle ppiestons
1 Communication 2
(b)
(a)
|MAI§ SPaTm DENm
(Host Vehicle
Global Fusion
Local I Ego I Car2X-Based
Perception Perception
) | -1 |
vCPM CAM CAM |vCPM |iCPM
Q Q f ocal ﬁ
k k Pe;()ecg)zitlion gg; L Pe:-cegtlion J

(c)

Figure 4.6: Fusion architectures used in a) Rauch et al. 2012, b) (Allig and Wanielik
2019a) and c) (Giinther et al. 2016).

additional knowledge about inter-dependence. Finally, there is a significant part
of the research community that focuses on the use of the Probability Hypothesis
Density (PHD) for this type of application (Nuss et al. 2018; Vasic et al. 2016).

Up to this point, tracks and observations were considered aligned in space and
time. However in practice, sensors have different points of view, and work at
different rates. The next sections address these differences.

4.2.2.3 Spatial Alignment

An observation, track or any other type of information is always referenced
against a certain origin in space, called frame of reference. In the case of au-
tonomous navigation, we often use four standard frames (Allig and Wanielik
2019a):

1. Earth frame F: Reference system used for example by a Global Naviga-
tion Satellite System (GNSS) generally expressed in the form of geographic
coordinates (longitude L, latitude [, altitude a) relative to the center of
Earth as specified by WGS84!. It can also be given in Earth-Centered

https://wiki.gis.com/wiki/index.php/WGS84

https://wiki.gis.com/wiki/index.php/WGS84

CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY
90 NETWORK

Earth-Fixed (ECEF), a Cartesian reference system centered on the Earth.
While global, these systems are not adapted to terrestrial navigation;

2. Working frame W: Cartesian frame defined from a plane tangential to
the Earth’s curvature at a given reference point. The x, y and z axes
are respectively defined as East-North-Up (ENU). Reliable only around the
reference point but more adapted to terrestrial navigation as it allows 2D
projections. This is generally the common frame between multiple vehicles;

3. Mobile frame M;: Cartesian frame attached to vehicle v; as it moves;

4. Sensor frame §;: Cartesian frame attached to sensor s; of a vehicle.

Figure 4.7 summaries these four frames and how they are connected to each other.
The frame F in which a state x is referenced is noted ¥'x. F'is generally omitted
for the sake of readability when x is referenced to the working frame.

Figure 4.7: Four main frames of reference used in terrestrial navigation. Arrows rep-
resent the transformation from one frame to the next. A detected point x is referenced
here in the sensor frame.

The transformation from Fg to Fy can be done as follows. Let us define a refer-
ence point p, with known Cartesian coordinates in ECEF P¢FFp_ and geographic
WGS84 coordinates WS84y, = [L,., I,, a,]. It can then be used to transform an
arbitrary point p between ECEF P¢FFp and ENU #NVjp with

—sin (L) cos (L,) 0
ENUp = | —sin(l,) cos (L,) —sin(l,)sin(L,) cos(l,)| x (P¢%Fp—FCFFp,)
cos (I,)cos (L,) cos(l,.)sin(L,) sin(l.)
(4.1)
Later transformations (i.e: from Fy to Fj; and Fy; to Fg) are affine (composi-

tion of a f-rotation around the z axis RY and translation ¢) and as such can be
represented using matrix multiplications on homogeneous coordinates.

Example 4.1:

Let A and B two reference frames. In two-dimensions, the homogeneous

4.2. REVIEW OF COOPERATIVE PERCEPTION 91

transformation 4T expressing the frame B in A and is defined as:

Rt COoS (AGB) —sin (AQB) Arg
ATp = 01 = |sin (AQB) cos (AQB) Ap
0 0 1

The transformation of one (or many) points is done by a single matrix mul-
tiplication:

A B
1 T2 ... 1 T
Y1 Yz ... :ATB X Y1 Yo
11 ... 1 1

Applying the inverse transformation can be done by inverting the forward
transformation:

BTA — ATgl

which can be done efficiently by taking advantage of the matrix construction
as:
R —R%

Am—1
T —
B 0 1

Finally, thanks to the nature of homogeneous matrices, multiple transforma-
tions can be applied at once by multiplying their matrices in advance:

ATZ:ATBXBTcx"'XYTZ

Angles can also be transformed. In 2D, an addition is sufficient.

By =495 + Bo

It is also clear that for velocities, movement should be compensated from one
frame to another. To do so the same formalism as with positions can be used.

Let v = [vx vy] = [v -cos(0) w- sin(@)] a velocity vector. The transformation
of such vectors from frame B to A is defined as

. VT cos (M5) —sin(Yg) “vzg 7 VT
vy| = |sin (“05) cos (05) vy | x |vy (4.2)
1 0 0 1 1

Finally, as points and transformations can be uncertain, (Smith et al. 1986)
proposed a compound operator that transform covariances while accounting for
the transformation uncertainty. Let P be a covariance matrix defined as

Ogax Ozxy Oz

P=o,. o4y 0up

Ogx Ob0y 06,0

CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY
92 NETWORK

Considering that the transformation errors are independent from each other, the
transformation of a covariance matrix PP expressed in frame B to a frame A is
done, knowing the uncertainty matrix 4P between the two frames, as:

1 0 “Ayz— By cos (45) —sin (%) 0
Ji=10 1 Bz -4y, Jy = |sin (405) cos(40z) O
00 1 0 0] (4.3)

AP = J,PLIT + 3,°PJ7

This can for example be used to transform a relative position measurement (y, R)
from a sensor frame into the working frame using the vehicle pose estimation of
(x,P).

4.2.2.4 Temporal Alignment

In real tracking scenarios, sensors have different refresh rates (e.g: 30 Hz for
cameras, 10 Hz for LiDARs), which can lead to inconsistencies if not properly
managed. If observations arrive in the right order, the tracker naturally provides
a mechanism to incorporate them appropriately, by iteratively predicting tracks
to observation times and correcting them.

Example 4.2:

Let s; and sy be two sensors. On a given period of time, s; produces five
observations and sy produces four. Upon reception of the first observation,
here from sq, a track is initialized. Upon reception of a second observation,
this time from s, the track is predicted to the observation time before being
updated.

Sensor 1 . L L L L.

Sensor 2

Tracker ‘\:\?\:\?\ﬁ?\?\:

Figure 4.8: Simple asynchronous tracking with two sensors.

t

-

4.2.2.5 Out-Of-Sequence Observations

In certain tracking scenarios with several sensors, observations can be received
Out-Of-Sequence (OOS) due to important processing time or communication
delays.

4.2. REVIEW OF COOPERATIVE PERCEPTION 93

Example 4.3:

Let s; and sy two sensors. Both of them have delay but that of s, is longer
than tracking steps, as illustrated in Figure 4.9.

Sensor1 M u u u .

Sensor 2 ® ® ®

Tracker | W He EH o H o H

-3

Figure 4.9: Example of out-of-sequence observations with two sensors

This time, it is not handled naturally by trackers and, according to (Muntzinger
et al. 2010), several methods exist to handle OOS observations:

1. Ignore: When delays are short enough, the At between track and observa-
tion time can be ignored without significant impact.

2. Delayed: If the application is not real-time and OOS are known, in-sequence
observations can be buffered until the OOS is received. However, this causes
lags and increased covariance.

3. Observation forward prediction: When observations are tracks (such as with
T2TF), they contain information necessary to be extrapolated by definition.
A solution, illustrated in Figure 4.10, can thus be to predict the OOS track
up to current time before incorporating it (Allig and Wanielik 2019a). The
issue is that prediction is a lossy operation due to evolution models that
are imprecise and extend covariance. Using this solution is thus lightweight
but sub-optimal.

o
ne ’

>

Figure 4.10: OOS integration using o