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Abstract

This thesis is dedicated to the conception and application of quantum algorithms for railway
combinatorial optimization problems. Today, the optimization problems that SNCF faces are
complex, often prohibiting finding the optimal solution for industrial instances with classical
methods within a reasonable amount of time. Quantum computing is expected to improve the
quality of solutions and reduce the computation time for some of these problems. Quantum
algorithms for optimization are divided into two classes: exact algorithms and heuristics. The
former demonstrate theoretical advantages for several problems but cannot be implemented on
current quantum machines because they require too high-quality quantum resources. On the
contrary, the latter can be implemented, at least for small instances, but there are no performance
guarantees or proven quantum advantages yet. In this thesis, we analyze and propose algorithms
that belong to each of these two classes.

On the one hand, we study the Variational Quantum Algorithms, which belong to the class of
heuristics. These are hybrid quantum-classical algorithms that alternate between a parametrized
quantum circuit and a classical optimizer. They allow solving unconstrained problems with bi-
nary variables, and we propose a general method to reformulate constrained integer problems
into such problems. We highlight some properties of Variational Quantum Algorithms neces-
sary for potential theoretical guarantees. In particular, we study QAOA (Quantum Approximate
Optimization Algorithm) in light of the previous properties, and we provide a universal decompo-
sition of the quantum circuit for problems whose objective function is polynomial. We solve with
this algorithm a railway timetabling problem of SNCF. It consists of finding the transportation
plan maximizing the operating profit according to the customers’ demand taking into account
the availability and cost of both the network and the rolling stock. To solve it with QAOA, we
propose two simplifications with different adaptations of the original problem.

On the other hand, we design exact quantum-classical algorithms for two broad families of
combinatorial problems. The first family relates to scheduling problems. We propose an algorithm
that tackles a large class of NP-hard single-machine scheduling problems, which satisfy a specific
dynamic programming property (Dynamic Programming Across the Subsets). Our algorithm,
based on the seminal idea of Ambainis et al. (2019), combines classical dynamic programming
and quantum search of the minimum in a table (generalization of Grover Search). It reduces
the worst-case time complexity, sometimes at the cost of an additional pseudo-polynomial factor.
We extend this algorithm to the 3-machine flowshop problem, also leading to a reduction of the
complexity. The second family concerns robust optimization problems where the uncertainty set
is a polytope. We present an algorithm that, relying on the classical method that deals with
these problems, replaces some computations with quantum subroutines to achieve a speedup.
Specifically, we study the two following quantum subroutines: the search of the minimum in a
table and the resolution of a linear system.



Résumé

Cette thèse est dédiée à la conception et à l’application d’algorithmes quantiques pour la résolution
de problèmes d’optimisation combinatoire ferroviaires. Aujourd’hui, les problèmes d’optimisation
auxquels fait face la SNCF sont complexes, empêchant souvent une résolution à l’optimalité via
des méthodes classiques en un temps raisonnable. L’informatique quantique est pressentie pour
améliorer la qualité des solutions et diminuer le temps de calcul pour certains de ces problèmes.
Actuellement, les algorithmes quantiques pour l’optimisation se divisent en deux classes : les algo-
rithmes exacts et les heuristiques. Les premiers présentent un avantage théorique pour plusieurs
problèmes, mais ne sont pas implémentables sur les machines actuelles car trop gourmands en
ressources. Les seconds sont implémentables dès aujourd’hui, au moins sur de petites instances,
ouvrant la porte aux premières applications, bien qu’ils ne présentent pas encore de garanties
de performances ni d’avantage quantique. Dans cette thèse, nous analysons et proposons des
algorithmes qui appartiennent à chacune de ces deux classes.

D’une part, nous étudions une classe d’heuristiques appelée Algorithmes Variationnels Quan-
tiques. Il s’agit d’algorithmes hybrides quantique-classique, qui alternent entre l’exécution d’un
circuit quantique paramétré et l’optimisation classique des paramètres. Ils permettent de résoudre
des problèmes non contraints à variables binaires, et nous proposons une méthode générale pour
reformuler des problèmes contraints à variables entières sous cette forme. Nous présentons
certaines propriétés des Algorithmes Variationnels Quantiques, nécessaires pour envisager des
preuves théoriques de garanties de performances. En particulier, nous étudions QAOA (Quan-
tum Approximate Optimization Algorithm) en l’analysant à la lumière des précédentes propriétés
et en donnant une décomposition universelle de son circuit quantique pour des problèmes dont la
fonction objectif est polynomiale. Avec cet algorithme, nous résolvons un problème de conception
de plan de transport de la SNCF. Ce problème a pour but de trouver un plan de transport qui
correspond au meilleur compromis économique entre les bénéfices générés par la vente de billets
aux voyageurs et les coûts d’exploitation, tout en respectant la disponibilité du réseau ferroviaire.
Pour résoudre ce problème avec QAOA, nous proposons deux simplifications correspondant à
différentes adaptations du problème métier initial.

D’autre part, nous élaborons des algorithmes quantiques-classiques exacts pour deux
grandes familles de problèmes combinatoires. La première famille concerne les problèmes
d’ordonnancement. L’algorithme proposé s’applique à une large classe de problèmes
d’ordonnancement à une machine, NP-difficiles, qui satisfont une propriété de program-
mation dynamique particulière (Dynamic Programming Across the Subsets). L’algorithme,
reprenant l’idée de Ambainis et al. (2019), allie la programmation dynamique classique
et l’algorithme quantique de recherche du minimum dans une table (basé sur l’algorithme
de Grover). Il permet de réduire la complexité en temps pire-cas, parfois au détriment de
l’introduction d’un terme pseudo-polynomial. Nous étendons cet algorithme au problème du
flowshop à trois machines, pour lequel une accélération est aussi obtenue. La deuxième famille
relève des problèmes d’optimisation robuste où l’ensemble d’incertitude est un polytope. Nous
proposons un algorithme qui, partant de l’algorithme classique traitant de ces problèmes,
remplace certaines opérations par des routines quantiques afin d’obtenir une accélération.
Précisément, nous étudions l’utilisation des deux routines quantiques suivantes : la recherche du
minimum dans une table et la résolution d’un système linéaire.
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Enfin, je remercie mes proches de m’avoir soutenue pendant toute cette période. Guigui, pour
sa présence fantastique au quotidien; mon frère, pour son aide et ses bonnes bouteilles; mes
parents, pour m’avoir encouragée pendant ces trois années, et ce, avec autant d’intensité que
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1

Introduction

This thesis is dedicated to the use of quantum algorithms to tackle combinatorial optimization
problems, specifically addressing challenging railway problems whose resolutions remain difficult
using current classical methods. The difficulty in solving these problems stems both from the
inherent combinatorial complexity, often NP-hard, and from the industrial scale of the instances
involved. Facing these obstacles, quantum computing is expected to both improve solution quality
and reduce computation time in finding good solutions. Before the idea of considering quantum
computing to solve optimization problems, these two disciplines initially followed separate paths
before converging later on in the 1990s.

On the one hand, quantum computing traces its origins back to the early 1980s when the physi-
cist Richard Feynman proposed the idea of simulating quantum systems using computers based
on quantum mechanics. From this was born the notion of quantum algorithms: manipulating
information using quantum bits (qubits), leveraging the principles of quantum mechanics. The
first demonstration of its huge potential occurred in 1994 when Peter Shor developed a quantum
algorithm to factor large numbers exponentially faster than classical computers (Shor, 1994).

On the other hand, combinatorial optimization dates back to more ancient times but its study
intensified in the mid-20th century with the rise of operations research and computer science.
The field witnessed significant advancements in numerical applications in the last seven decades
with the development of metaheuristics, and efficient branch-and-cut algorithms to solve problems
under the form of mixed-integer linear programs.

These two domains met for the first time with Grover Search (Grover, 1996), enabling a
quadratic speedup for the search of an element in an unstructured database and opening the
doors to the conception of new algorithms. Grover Search became a fundamental quantum sub-
routine, among others such as the Quantum Phase Estimation or the Quantum Fourier Transform,
lying at the core of a large variety of quantum algorithms. In recent years, technical advances in
quantum computers’ construction have increasingly drawn the operational research community
towards this new computing paradigm, trying to obtain numerical results, which brings us to the
motivation of this thesis.

SNCF is the main French railway company. It transports in total more than 5 million passen-
gers on its 35 000 km of railway network every day. Specifically focusing on high-speed trains,
approximately 122 million passengers use them each year. Consequently, SNCF faces optimiza-
tion problems that are up to its significant role in French society: mapping and servicing the
territory on the one hand, and enabling a sustainable and necessary commitment to the ongoing
ecological crisis on the other hand. A significant challenge is thus to deliver optimal service to
customers while remaining competitive in the liberalized economy of train operators. The SNCF
optimization problems are divided into three main categories. The first one contains strategical
problems that structure all the other problems, often planned several years in advance. The sec-
ond one concerns pre-operational problems, meaning adaptations to operations, or assignation of
resources (agents, carriages) to the resulting planning of strategical problems’ resolutions. They
are done in a time frame ranging from months to days in advance. The third one concerns real-
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2 Introduction

time problems, meaning adaptations or changes to operations when a disruption or an unforeseen
event occurs.

The difficulty of solving these combinatorial problems today comes from two major reasons.
First, the limited time allowed for the resolution, mainly concerning real-time problems for which
a decision must be taken quickly. Second, the consideration of large models. Today, classical
resolutions of some problems have reached their limits, making it hard to find the optimal solution,
or even a satisfying one, in a reasonable amount of time. Large problems are sub-divided into
smaller problems, for example in the temporal or geographical perimeter, or creating intermediate
steps of resolution into the original problem. Integrated problems are today solved into multiple
successive problems, where the output solution of one corresponds to the input of the other. These
necessary simplifications and cuts impact the quality of the solution. This motivates the search
for new methods, among them quantum computing, to see if, when, and how could quantum
algorithms improve these resolutions.

Currently, it is widely accepted that quantum computing should not disrupt the hierarchy of
classical complexity classes. Specifically, quantum algorithms are not believed to solve NP-hard
problems in polynomial time. They are rather envisaged to solve typical instances of some prob-
lems better than classical methods. Positive results comforting this latter idea already exist. Next,
we provide an overview of these results, regarding both discrete and continuous optimization.

1.1 Optimization and quantum computing

There are two types of quantum algorithms for solving optimization problems. The first type
concerns exact algorithms (i.e. output the optimal solution with a high probability of success).
They provide theoretical speedups for several types of problems and algorithms, but are impossible
to implement today because of the huge size of quantum resources they require. The second type
encompasses heuristics, often designed today as hybrid quantum-classical algorithms, that can
be implemented on current noisy quantum computers because the quantum part can be made
rather small. The question of a quantum advantage using these methods is still open today.

1.1.1 Exact algorithms

As for classical algorithms, quantum algorithms are called exact when the sequence of steps
at hand is proven to provide the optimal solution (in opposition to heuristics). However, the
assertion that “the quantum algorithm finds the optimal solution” is always implicitly followed
by “with high probability” due to the probabilistic behavior of quantum unitary operations. This
means that the probability of success is strictly larger than 1

2 and can get close to 1 by repeating
the algorithm several times. Similarly, they are referred to as bounded-error algorithms, as for
classical probabilistic algorithms.

Most exact algorithms are based on a restricted bunch of quantum subroutines. The most
famous one is Grover Search (Grover, 1996), leading to various generalizations such as Amplitude
Amplification (Brassard et al., 2002) or Quantum Minimum Finding (Dürr and Høyer, 1996),
enabling quadratic speedup over several classical search algorithms. For instance, this latter
generalization is used for dynamic programming, accelerating the resolution of the Traveling
Salesman Problem and the Minimum Set Cover problem (Ambainis et al., 2019), the Steiner Tree
problem (Miyamoto et al., 2020) or the Graph Coloring problem (Shimizu and Mori, 2022).

Another subroutine is the quantum walk lying at the core of algorithms that provide exponen-
tial speedups for some specific black-box problems (Childs et al., 2003) or polynomial speedups for
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problems such as triangle problem (Magniez et al., 2007) or the element distinctness problem (Am-
bainis, 2007). Additionally, quantum walks are used for Backtracking algorithms (Montanaro,
2015), itself representing the subroutine for a quantum Branch-and-Bound achieving an almost
quadratic speedup (Montanaro, 2020).

Two other emblematic subroutines are the Quantum Phase Estimation (Kitaev, 1995) and the
Quantum Fourier Transform (Coppersmith, 2002). They are used, among others, for computing
gradients (Gilyén et al., 2019) or solving linear systems (Harrow et al., 2009) with exponential
speedups. The resolution of a linear system represents a quantum subroutine of numerous algo-
rithms that quantize classical methods and achieve a polynomial speedup over them, such as the
Simplex Method (Nannicini, 2021) or the Interior Point Method (Kerenidis and Prakash, 2020).
The latter provides quantum algorithms for Linear Programming, Semi-Definite Programming,
and Second-Order Cone Programming (Kerenidis et al., 2021).

1.1.2 Heuristics

The exact algorithms introduced above prove quantum advantages on numerous problems, but
their implementations require a lot of quantum resources with high quality. Specifically, they need
quantum computers with many qubits that can interact two by two, and quantum operations that
can be applied in a row without generating noise. However, the current ones do not respect these
criteria, encouraging the researchers to look into lighter algorithms, waiting for more powerful
quantum computers to be built. They consist of hybrid algorithms that require both quantum and
classical resources. Indeed, the classical part overcomes the limited and noisy quantum resources,
whereas the quantum part still takes partial advantage of quantum information theory.

Such algorithms are metaheuristics, the most famous one being the Quantum Approximate
Optimization Algorithm (QAOA) introduced by Farhi et al. (2014) to solve the MAX-CUT prob-
lem. QAOA takes place in a larger class of Variational Quantum Algorithms (Cerezo et al., 2021)
which consist of alternating between a quantum circuit and a classical optimizer.

Another heuristic commonly used for solving combinatorial problems is the Quantum Anneal-
ing (Kadowaki and Nishimori, 1998). It maps the optimization problem to an energy operator
and then uses the adiabatic theorem to approximate the operator’s ground state, which is the
optimal solution of the optimization problem.

QAOA and Quantum Annealing require the combinatorial optimization problem to be formu-
lated as an Unconstrained Binary Optimization one, where the function is at most quadratic
for Quantum Annealing but can be of higher polynomial degree for QAOA. Both are heuris-
tics and have no performance guarantees for generic problems. Recently, several problems have
been solved using these heuristics. Among them, theoretical problems such as MAX-CUT (Farhi
et al., 2014), Travelling Salesman Problem (Ruan et al., 2020), MAX-3-SAT (Nannicini, 2019),
Graph Coloring (Tabi et al., 2020) and Job Shop Scheduling (Kurowski et al., 2023). They are
reformulated as QUBO and solved with QAOA on small instances. More industrial problems
have also been tackled, such as knapsack problem for battery revenue (de la Grand’rive and
Hullo, 2019) or smart charging of electric vehicles (Dalyac et al., 2021) with QAOA, or rolling
stock planning (Bickert et al., 2021), aircraft loading (Pilon et al., 2021) or train seating ar-
rangement (Gioda, 2021) with Quantum Annealing. However, due to the small size of instances
processed today (imposed by the weak maturity of quantum computers) and to the nature of
heuristics whose performances are evaluated empirically, no quantum advantage is emerging yet.
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1.1.3 Quantum hardware

Since the idea proposed by Feynman in the 1980s of quantum computers, numerous quantum
algorithms have been developed without any hardware available. Since the 2010s, quantum
technologies have begun to emerge, making conceivable the construction of quantum computers
powerful enough to apply the aforementioned algorithms. Let us provide a brief overview of the
current state of quantum devices.

A quantum computer is defined by the physical implementation of the information unit manip-
ulated during operations: the qubit. The nature of quantum operations follows in consequence.
The main types of technologies for physical qubits currently being researched and developed are
the following: superconductors, trapped ions, cold atoms, and photons. Each type has its unique
advantages and challenges, and the question of which one will be the best in the future cannot
be answered yet as the field continues to evolve rapidly.

To assess the quality of a given quantum computer, several aspects come into play. The first
one concerns the qubits. Not only having a large number of qubits is important, but their quality
also matters: the longer the coherence time (the time during which a qubit can maintain its
quantum state without decoherence), the better the reliability of the quantum system. A second
aspect is about the unit operations applied to the qubits: the error rate of the operation must
be small, as well as the connectivity must be large (meaning that qubits can interact with many
neighboring qubits). A third and major aspect is the scalability of a quantum system, referring
to the ability to increase its size and complexity while maintaining its performance (quality of
qubits and operations). Scalability is essential for realizing practical quantum computers capable
of solving real-world problems.

Today, we are in an era called NISQ (Noisy Intermediate Scale Quantum) era (Preskill, 2018),
characterized by the existence of quantum devices with a limited number of qubits and high
error rates. These devices are not yet capable of achieving fault-tolerant quantum computation
(FTQC), but they can still perform some quantum algorithms, such as heuristics for combinato-
rial optimization. Hopefully, they represent the beginning of the journey towards the FTQC era,
where algorithms requiring significant resources, such as the exact algorithms mentioned above,
could begin to be implemented. For this purpose, error mitigation and error correction are tech-
niques being developed to improve the reliability and accuracy of quantum computations. The
existence of a Quantum Random Access Memory (QRAM), enabling access to classical data by
quantum queries, will be also necessary for many applications. However, practical implementa-
tions of QRAM remain a subject of ongoing research.

1.2 Outline of the thesis

This thesis is divided into three main parts, contributing to both heuristics and exact algorithms
domains, with an introductory chapter covering the necessary concepts of quantum computing.
The first part (Chapters 3 and 4) deals with variational quantum heuristics and their numerical
applications to a railway timetabling problem of SNCF. The second part (Chapters 5 and 6)
relates to the resolution of a broad class of scheduling problems with an exact quantum-classical
algorithm combining Grover Search and dynamic programming. The third part (Chapter 7) also
involves exact algorithms, but in order to address robust optimization problems with polyhedral
uncertainty, using a Quantum Linear System algorithm as a subroutine. Next, we detail the
content of each chapter.

Chapter 2 introduces the concepts of quantum computing and emphasizes the difference be-
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tween classical and quantum computations. Specifically, we present all these notions in the
gate-based model, also called the circuit model. Indeed, we will describe all the algorithms in
this computation model throughout this manuscript.

In Chapter 3, we provide a mathematical description of Variational Quantum Algorithms
(VQAs) and focus on one of them, the Quantum Approximate Optimization Algorithm (QAOA).
VQAs are quantum-classical heuristics that alternate between a quantum circuit and a classical
optimizer. They tackle unconstrained optimization problems of the form min

x∈{0,1}n
f(x) , where f is

any function defined on {0, 1}n. More precisely, we describe the general class of VQAs, starting
by defining the different parts that constitute and define a VQA, namely the quantum circuit,
the classical optimizer, and the guiding function driving the classical optimization. Then, we
characterize each part with properties that should be valid for potential theoretical guarantees.
For the special case of QAOA, we describe the necessary reformulation of the initial problem
into a Hermitian matrix and analyze it in light of the previous properties. We also provide a
universal decomposition of the QAOA quantum circuit for the general case where f is polynomial
while only the quadratic case has been treated in the literature so far. We give a condensed
overview of current empirical trends and theoretical limitations of QAOA. Finally, we present a
generic method to tackle constrained integer optimization problems with VQAs by integrating
the constraints as penalty terms in the objective function.

VQAs have the convenient property of an adjustable quantum circuits’ depth, making them
implementable on the current NISQ computers. Chapter 4, in which we address the railway
timetabling problem for high-speed trains and solve it with QAOA, follows naturally. This chal-
lenging NP-hard problem for SNCF consists of finding the transportation plan maximizing the
operating profit according to the customers’ demand on the one hand, and the availability and
cost of the network and the rolling stock on the other hand. First, we simplify it into two prob-
lems, a Set Cover Problem and an Extended Bin Packing problem, where the latter represents a
closer version of the real-world problem. We reformulate each of them as an unconstrained binary
problem, with either a polynomial or a quadratic objective function. We solve them with QAOA
on small instances (simulating the quantum part on a classical simulator to avoid noise) to exhibit
trends and limitations of numerical resolutions today. Furthermore, we compare numerically the
reformulation that imposes the objective function to be quadratic with the one that does not.

In Chapter 5, we provide an exact quantum-classical algorithm to address a large class of
scheduling problems that reduces their worst-case time complexity compared to the best-known
classical methods, sometimes at the cost of an additional pseudo-polynomial factor. Our algo-
rithm is adapting the seminal idea of Ambainis et al. (2019) that combines Quantum Minimum
Finding (Dürr and Høyer, 1996) with dynamic programming to address NP-hard vertex ordering
problems. We tackle NP-hard single-machine scheduling problems, for which we propose an ex-
tended version of Dynamic Programming Across the Subsets (DPAS) recurrences, widely used in
the moderate exponential-time algorithms’ literature. We consider two types of single-machine
problems: one for which the dynamic programming is based on the addition of optimal values
of the problem on sub-instances, and the other for which the dynamic programming allows the
composition of sub-instances’ values. We also address the 3-machine flowshop problem, for which
the dynamic programming recurrence applies to a decision problem, resulting in a slightly dif-
ferent hybrid algorithm. Additionally, we provide an approximation scheme for the 3-machine
flowshop problem, based on the hybrid algorithm, that disposes of the pseudo-polynomial factor
in the time complexity. Throughout this chapter, we describe our hybrid algorithm, and its slight
modifications, as it is usually done in the algorithmic quantum literature, namely with a high-
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level description where quantum boxes interact with the classical part. We provide a rigorous
and detailed description of the circuit-based implementation in Chapter 6.

Chapter 7 studies the use of quantum subroutines to solve robust MIN-MAX optimization
problems where the uncertainty set is a polytope. The classical algorithm solving these prob-
lems (Omer et al., 2024) amounts to: a) formulating a set of problems according to the solutions
to various linear systems and b) solving each of them at optimal and keeping the best solution.
We propose to integrate two quantum subroutines into this classical algorithm. The first one is
a straightforward application of Quantum Minimum Finding (Dürr and Høyer, 1996) for Step
b), leading to a polynomial speedup of the worst-case time complexity. The second one is a
quantum resolution of linear systems of Childs et al. (2017) for Step a). Due to the normalization
of quantum states, among others, the quantum resolution introduces an error in the problems’
formulations and consequently in the overall output of the classical algorithm. It seems that the
error may not be controllable if one aims to achieve a speedup. However, the proposed way to
use this quantum subroutine remains not the only one possible and thus is ongoing work.

This thesis concludes with a last chapter, Chapter 8, which summarizes the completed work
and provides perspectives for future research.
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Basics tools for quantum computing

This chapter aims to provide all the necessary mathematical concepts and basic definitions of
quantum computing to address combinatorial optimization problems. Specifically, we begin with
a major definition from linear algebra, the tensor product, and with the braket notations. Next,
we describe the various concepts of quantum computing in the gate-based model, underlying the
differences with classical computations. We conclude by defining the complexity used to measure
the performance of quantum algorithms.

2.1 Tensor product and braket notations

This section defines the tensor product, inner product and the braket notations. Notice that
throughout the manuscript, we use the notations [n] := {1, . . . , n} for n ∈ N, and Jn1, n2K :=
{n1, n1 + 1, . . . , n2} for n1, n2 ∈ N.

Definition 2.1.1 (Tensor product). Let n,m, p, q be integers, and let A =

a11 . . . a1m
...

. . .
...

an1 . . . anm

 ∈
Mn,m(C) and B =

b11 . . . b1q
...

. . .
...

bp1 . . . bpq

 ∈ Mp,q(C) be two complex matrices. Then, we define

their tensor product, a bilinear operation, as

A⊗B =

a11B . . . a1mB
...

. . .
...

an1B . . . anmB

 ∈Mnp,mq(C) ,

where aijB =

aijb11 . . . aijb1q
...

. . .
...

aijbp1 . . . aijbpq

 ∈Mp,q(C), for i ∈ [n], j ∈ [m].

Proposition 2.1.2 (Tensor product properties). We draw attention to some useful properties of
the tensor product:

• A⊗B ̸= B ⊗A

• (A⊗B)⊗ C = A⊗ (B ⊗ C) = A⊗B ⊗ C

• A⊗ (cB) = (cA)⊗B = c(A⊗B), for c ∈ C

Let us next introduce the braket notation used in quantum computing.

7
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Definition 2.1.3 (Braket notation). Let ψ =

 ψ1
...
ψ2n

 ∈ C2n be a column vector. We note |ψ⟩,

said “ket ψ”, the vector ψ itself. Thus, we define ⟨ψ|, said “bra ψ”, the conjugate transpose of
|ψ⟩. Specifically,

|ψ⟩ = ψ =

 ψ1
...
ψ2n

 ,

⟨ψ| = ψ̄T =
(
ψ̄1 . . . ψ̄2n

)
.

Thus, ket vectors are always column vectors whereas bra vectors are row vectors. With this
notation, the norm of the vector ψ is

⟨ψ|ψ⟩ =
2n∑
i=1

|ψi|2 .

Definition 2.1.4 (Inner product). The complex inner product is defined as

(ψ, ϕ) 7→ ⟨ψ| · |ϕ⟩ ,

which is the product of the two vectors. Henceforth, we use the short notation ⟨ψ|ϕ⟩ = ⟨ψ| · |ϕ⟩.

Notice that it is not commutative. Indeed, for ψ =

 ψ1
...
ψ2n

 ∈ C2n and ϕ =

 ϕ1
...
ϕ2n

 ∈ C2n, we

have:

⟨ϕ|ψ⟩ =
(
ϕ̄1 . . . ϕ̄2n

) ψ1
...
ψ2n


=

2n∑
i=1

ϕ̄iψi

̸=
2n∑
i=1

ϕiψ̄i = ⟨ψ|ϕ⟩ .

2.2 Gate-based quantum computing

This section aims at providing the basic notions of gate-based quantum computing necessary for
the understanding of the quantum resolution of combinatorial problems.

2.2.1 Quantum bits

Let |0⟩ and |1⟩ denote the basic states of our quantum computer (the counterpart of states 0 and
1 in classical computers). The first building block of quantum algorithms is the quantum bit,
also called qubit.
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Definition 2.2.1 (Qubit). We define a qubit as

|q⟩ = q0 |0⟩+ q1 |1⟩ , (2.1)

where (q0, q1) ∈ C2 is a pair of complex numbers that satisfies the normalizing condition

|q0|2 + |q1|2 = 1 .

We say that q0 and q1 are the coordinates of |q⟩ in the basis (|0⟩ , |1⟩).

It is often convenient to use the matrix representation of |0⟩ and |1⟩, namely

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
.

With this matrix representation, the qubit |q⟩ defined in (2.1) is equal to

|q⟩ =
(
q0
q1

)
.

Example 1. Important examples of one-qubit states are |0⟩+|1⟩√
2

and |0⟩−|1⟩√
2

. These are usually

denoted as |+⟩ and |−⟩, respectively.

The algorithms typically manipulate quantum states of larger dimension. Specifically, let n
denote the number of qubits that our quantum computing device is able to manipulate simultane-
ously. An n-qubit state is defined by 2n complex numbers that satisfy the normalizing condition
and represent the normal decomposition in the canonical basis.

Definition 2.2.2 (Canonical basis). The canonical basis of an n-qubit state is the set

CBn =

(
n⊗

k=1

∣∣∣i(k)〉 , (i(1), . . . , i(n)) ∈ {0, 1}n) ,

where i(k) represents the state of the k-th qubit and ⊗ is the tensor product defined earlier in
Section 2.1. The canonical basis is the set of all possible combinations of tensor products of n
one-qubit basis states, |0⟩ and |1⟩. Thus, in the matrix representation, each canonical basis state
is a column vector of 2n components with one component equal to 1 and the rest equal to 0. It
directly results that the size of the canonical basis of an n-qubit state is 2n. For more readability,
we omit to write the tensor product between qubits, i.e., we refer to the canonical basis as

CBn = (|i⟩ , i ∈ {0, 1}n) .

The matrix representation of canonical basis states results from the definition above. We
illustrate it for the canonical basis of two qubits:

|00⟩ =
(
1
0

)
⊗
(
1
0

)
=


1
0
0
0

 , |01⟩ =
(
1
0

)
⊗
(
0
1

)
=


0
1
0
0

 ,
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|10⟩ =
(
0
1

)
⊗
(
1
0

)
=


0
0
1
0

 , |11⟩ =
(
0
1

)
⊗
(
0
1

)
=


0
0
0
1

 .

Definition 2.2.3 (n-qubit state). An n-qubit state |ψ⟩ is a normalized linear combination of the
basis states in CBn,

|ψ⟩ =
∑

i∈{0,1}n
ψi |i⟩ ,

where (ψi)i∈{0,1}n ∈ C2n are its coordinates, which satisfy the normalizing condition

⟨ψ|ψ⟩ =
∑

i∈{0,1}n
|ψi|2 = 1 . (2.2)

Notice that for n = 1, we find the definition of a qubit (Definition 2.2.1), as expected.

Example 2. For instance, |00⟩+|11⟩√
2

, called |Φ+⟩, is a two-qubit state. Its matrix representation
is: ∣∣Φ+

〉
=
|00⟩+ |11⟩√

2

=
1√
2

((
1
0

)
⊗
(
1
0

)
+

(
0
1

)
⊗
(
0
1

))

=
1√
2



1
0
0
0

+


0
0
0
1




=
1√
2


1
0
0
1

 .

Remark 2.2.4. Throughout the manuscript, we use the notation (ψi)i∈{0,1}n ∈ C2n for the
coordinates of |ψ⟩ in basis CBn. Notice that it is not always the case in the quantum computing
literature where different bases may be used.

2.2.2 Quantum gates

In the model of gate-based quantum computation, qubits are manipulated with quantum gates.
Mathematically speaking, these quantum gates are modeled by unitary matrices. More precisely,
a quantum gate that manipulates n-qubit states is a matrix in M2n(C) that modifies the 2n

complex coefficients of a quantum state such that they still satisfy the normalizing condition
(2.2).

Definition 2.2.5 (Unitary matrix). A matrix U ∈ M2n(C) is unitary if its inverse is equal to
its conjugate transpose (denoted by the dagger symbol †). Specifically,

UU † = U †U = I .

Notice that the application of a quantum gate is logically reversible.
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We easily see that a unitary matrix U preserves the normalizing condition since, denoting
|ψ′⟩ = U |ψ⟩, we have 〈

ψ′∣∣ψ′〉 = ⟨ψ|U †U |ψ⟩ = ⟨ψ|ψ⟩ .

As an illustration, we describe below all the possible one-qubit gates, i.e., all the unitary matrices
inM2(C).

Example 3 (Generic one-qubit gate). A generic one-qubit gate U =

(
a b
c d

)
∈M2(C) satisfies

|a|2 + |b|2 = 1

ac̄+ bd̄ = 0

āc+ b̄d = 0

|c|2 + |d|2 = 1

Its application on a qubit |q⟩ = q0 |0⟩+ q1 |1⟩ is:

U |q⟩ =
(
a b
c d

)(
q0
q1

)
=

(
aq0 + bq1
cq0 + dq1

)
= (aq0 + bq1) |0⟩+ (cq0 + dq1) |1⟩ =

∣∣q′〉 (2.3)

We introduce next the circuit representation of a quantum gate, which is a useful formalism
to represent unitary matrices. Specifically, Figure 2.1 represents the application of the quantum
gate U to the one-qubit state |q⟩, as in (2.3), by:

|q⟩ U |q′⟩

Figure 2.1: Circuit of gate U applying to |q⟩.

This representation easily generalizes to n-qubit quantum gates, where each horizontal line is
associated with a qubit.

2.2.3 Quantum circuits

We can manipulate quantum gates to build other quantum gates in two different ways. The first
one is the composition, and the other one is the tensor product.

Definition 2.2.6 (Composition of quantum gates). The composition of gates only operates be-
tween gates acting on the same qubits. Let k be the number of involved qubits. The composition
of U1 ∈M2k(C) and U2 ∈M2k(C) consists of the application of U1 followed by the application of
U2. The matrix representation of this composition is the product U2U1. The circuit representation
of this composition is illustrated on Figure 2.2 for k = 3.

U1 U2

Figure 2.2: Composition of U1 and U2.

It can be seen as a series sequence of gates.
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Notice that we read from right to left in the matrix representation, and from left to right in the
circuit representation. Moreover, in the circuit representation, qubits are numbered in ascending
order from top to bottom which is important for the tensor product circuit representation that
follows.

Definition 2.2.7 (Tensor product of quantum gates). The tensor product of gates only operates
between gates acting on different qubits. Suppose U1 ∈ M2k(C) applies on the first k qubits and
U2 ∈M2k′ (C) applies on the k′ following ones. Their tensor product is the application of U1 and
U2 on respective qubits in parallel. The matrix representation of this tensor product is U1 ⊗ U2

(Definition 2.1.1). The circuit representation is depicted on Figure 2.3 for k = 3 and k′ = 2.

U1

U2

Figure 2.3: Tensor product of U1 and U2.

Notice that when we apply a quantum gate on k qubits of an n-qubit system, it supposes that

we apply identity gate I =

(
1 0
0 1

)
on the qubits not concerned. For instance, let us consider a

3-qubit system on which we apply U ∈M2(C) on qubit number 2. The matrix representation of
the resulting 3-qubit gate is I ⊗ U ⊗ I, and its circuit representation is illustrated on Figure 2.4,
where the application of I is usually replaced by a simple wire.

U

Figure 2.4: Application of U to qubit number 2.

One readily verifies that both composition and tensor product transform unitary matrices into
a resulting unitary matrix.

Throughout, we consider that a quantum algorithm is a quantum circuit acting on n qubits,
that is, a sequence of quantum gates’ compositions and/or tensor products. These quantum gates
can be k-qubit gates, for k ∈ [n]. However, quantum gates involving many qubits are typically
not implementable natively on quantum computers and need to be decomposed into smaller and
simpler gates. This set of small gates can be considered as the quantum counterpart of the
elementary logic gates used in classical circuit computing to assess the circuit complexity of a
classical algorithm. Thus, an n-qubit quantum algorithm is described by a unitary matrix in
M2n(C), and we decompose it as a sequence of universal gates (Definition 2.2.8) to obtain the
complexity of the quantum algorithm.

Definition 2.2.8 (Set of universal gates). A set of quantum gates PU is universal if we can
decompose any n-qubit quantum gate through a circuit composed solely of the gates in PU.
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Fortunately, there exist different universal sets of quantum gates. We introduce below such
a set formed of four types of gates. First, we consider the three following families of one-qubit
gates, each of which is parametrized by a real number θ ∈ R:

RX(θ) =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
, (2.4)

RY (θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
, (2.5)

RZ(θ) =

(
e−i θ

2 0

0 ei
θ
2

)
. (2.6)

Notice that these gates are often referred to as rotation gates because they correspond to rotations
in a certain representation of qubits, known as the Bloch sphere (Mosseri and Dandoloff, 2001).
Second, we consider the two-qubit gate CX, often called the “Control-NOT gate”:

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.7)

CX applies gate X =

(
0 1
1 0

)
, which is the equivalent of the NOT gate in quantum computing,

on the second qubit if and only if the first qubit is in state |1⟩. Hence the name “Control-NOT”.
Indeed, for instance, we have

CX |01⟩ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
1
0
0

 =


0
1
0
0

 = |01⟩ ,

and

CX |11⟩ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
0
0
1

 =


0
0
1
0

 = |10⟩ .

In other words, we can define CX on the canonical basis as

CX |a, b⟩ = |a, b⊕ a⟩ ,

for a, b ∈ {0, 1}, where ⊕ is the addition modulo 2.

Remark 2.2.9 (Notation on gates indexes). Henceforth, we use the notation RX,i for the appli-
cation of RX on qubit i (and the application of identity matrix on the remaining qubits). We do
the same with RY,i and RZ,i. We note CXi,j the application of CX gate to qubits i and j: X is
applied to qubit j if and only if qubit i is in state |1⟩.

Theorem 2.2.10 (Universal gates (Nielsen and Chuang, 2010)). The set of one-qubit gates and
the CX gate (2.7) is universal. Thus, because any one-qubit gate is the composition of rotation
gates (2.4)–(2.6), the set PU = {RX(α), RY (β), RZ(γ), CX : α, β, γ ∈ R} is universal.
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In comparison, the sets of classical logic gates {NAND}, {NOR}, {NOT, AND} and {NOT,
OR} are universal for classical computation. Indeed, we can compute any arbitrary classical
function with them. In view of the above, we typically consider that the quantum counterpart of
the classical number of elementary operations is the number of universal gates used to decompose
the circuit. Of course, this decomposition depends on the set of universal gates PU considered, but
the number of gates required is the same with any set, modulo a multiplicative constant (Nielsen
and Chuang, 2010). Thereafter, we only consider the set PU defined in Theorem 2.2.10. This
choice is particularly motivated by the algorithms we study in Chapter 3, as it will be convenient
to express them with this set.

Definition 2.2.11 (Complexity of quantum circuits). Let us consider a family of quantum cir-
cuits (Qn)n∈N. We say that the gate complexity of this family is O(C(n)) if Qn is a circuit that
applies on n qubits and contains f(n) universal quantum gates, where f(n) = O(C(n)).

In other words, if we consider the family of circuits (Qn)n∈N where Qn is a circuit on n qubits
and is decomposed on O(poly(n)) universal quantum gates, then this family is said to be efficient.

Observation 2.2.12. Let U1 and U2 be two quantum circuits, with complexity O(C1(n)) and
O(C2(n)), respectively. The complexity of the composition U1 · U2 is

O(C1(n) + C2(n)) = O(max(C1(n), C2(n))) .

The tensor product U1 ⊗ U2 has the same complexity.

2.2.4 Non-classical behaviors

The quantum algorithms rely on three characteristics of quantum states with no classical equiv-
alent: measurement, superposition, and entanglement. Let us present these notions through the
bare minimum mathematical background.

2.2.4.1 Measurement

We need to measure a quantum state |ψ⟩ to get information from it. Otherwise, no information
is accessible. The peculiar property of measurement is that it only extracts partial information
from the quantum state: the single measurement output of |ψ⟩ is a bitstring.

Definition 2.2.13 (Measurement). In the gate-based quantum model, the measurementM of an

n-qubit state |ψ⟩ =
∑

i∈{0,1}n
ψi |i⟩ outputs the n-bitstring i with probability |ψi|2. After having been

measured, state |ψ⟩ no longer exists: it has been replaced by the state |i⟩.

For example, measuring qubit |q⟩ = q0 |0⟩ + q1 |1⟩ outputs 0 with probability |q0|2 and 1 with
probability |q1|2, and changes the state |q⟩ to |0⟩ and |1⟩, respectively. A measurement appears as
a loss of information. Indeed, we describe an n-qubit state by 2n normalized complex coefficients,
but we only extract an n-bitstring after measuring it. The perfect knowledge of the probabilities
representing a given quantum state |ψ⟩, namely the square module of each of its coordinates
(|ψi|2)i∈{0,1}n ∈ [0, 1]2

n
, can be obtained only if we measure |ψ⟩ an infinite number of times.

Notice that it requires resetting state |ψ⟩ after each measurement.

Remark 2.2.14 (Sampling of quantum states). In reality we are limited to approximating a given
quantum state through sampling. In particular, if |ψ⟩ is the result of an algorithm, this means we
have to repeat the same algorithm for every measurement of |ψ⟩ we wish to perform.
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2.2.4.2 Superposition

Classically, the state of an n-bit computer is given by a bitstring in {0, 1}n. We have seen so
far that the state of an n-qubit quantum computer is given by its coordinates (ψi)i∈{0,1}n ∈ C2n ,

which satisfy
∑

i∈{0,1}n
|ψi|2 = 1. In general, more than one of the coordinates are different from 0,

meaning that measuring |ψ⟩ may result in different bitstring i ∈ {0, 1}n.

Definition 2.2.15 (Superposition). A quantum state |ψ⟩ is said in superposition if |ψ⟩ =∑
i∈{0,1}n

ψi |i⟩ where there are at least two terms with non-zero coefficients in the sum. A quantum

state that is not a basis state is in superposition.

The following Hadamard gate is the usual one-qubit gate that produces superposition starting
from a canonical basis state.

Example 4 (Hadamard gate). The Hadamard gate H = 1√
2

(
1 1
1 −1

)
is essential in quantum

computing because it creates superposition starting from a basis state. We obtain the state |+⟩,
respectively |−⟩, of Example 1 by applying H on |0⟩, respectively |1⟩:

H |0⟩ = |0⟩+ |1⟩√
2

= |+⟩ ,

H |1⟩ = |0⟩ − |1⟩√
2

= |−⟩ .

Example 5 (Uniform superposition). The two states |+⟩ and |−⟩ are in uniform superposition
because both have the same probability of being measured as 0 or 1. In general, an n-qubit state

uniformly superposed is equal to 1√
2n

∑
j∈{0,1}n

eiαj |j⟩, with αj ∈ [0, 2π[, ∀j ∈ {0, 1}n. In what

follows, we shall often use the uniformly superposed n-qubit state |+⟩⊗n = 1√
2n

∑
i∈{0,1}n

|i⟩.

Notice that applying an n-qubit quantum gate U to |ψ⟩ possibly modifies the 2n coordinates
of |ψ⟩ since

U |ψ⟩ =
∑

i∈{0,1}n
ψ′
i |i⟩ ,

where possibly each ψ′
i differs from ψi. This is the case, for instance, when applying the tensor

product of n Hadamard gates, each applied to a qubit initially in state |0⟩, specifically

H⊗n |0⟩⊗n =

n⊗
i=1

H |0⟩ =
n⊗

i=1

(
|0⟩+ |1⟩√

2

)
=

1√
2n

∑
i∈{0,1}n

|i⟩ = |+⟩⊗n . (2.8)

Equation (2.8) illustrates the potential benefit of quantum circuits: applying O(n) universal one-
qubit gates impacts the exponentially many coefficients of |ψ⟩. Indeed, one readily verifies that
H = RX(π)RY (

π
2 ) modulo a global phase1, so H⊗n amounts to applying 2n universal one-qubit

gates.

1Two quantum states |ψ⟩ and |ψ′⟩ = eiα |ψ⟩, with α ∈ [0, 2π[, that only differ by a global phase are indiscernible
by measurement. Thus, we do not consider global phase of quantum states nor quantum gates.
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2.2.4.3 Entanglement

Each quantum state is either a product state or an entangled state. Entanglement has the peculiar
and helpful property that we can apply a circuit only on a part of the n-qubit system, and as a
result, the whole system is affected.

Definition 2.2.16 (Product state). An n-qubit state is a product state if it is the tensor product
of n one-qubit states. In other words, an n-qubit state |ψ⟩ is a product state if it exists 2n complex

coefficients (q
(j)
0 , q

(j)
1 )j∈[n] such that

|ψ⟩ =
n⊗

j=1

(q
(j)
0 |0⟩+ q

(j)
1 |1⟩), with |q(j)0 |

2 + |q(j)1 |
2 = 1, ∀j ∈ [n] .

Thus, each state of a qubit that composes |ψ⟩ can be described independently of the states of the
other.

If an n-qubit state is not a product state, it is an entangled state.

Definition 2.2.17 (Entangled state). An n-qubit state |ψ⟩ =
∑

i∈{0,1}n
ψi |i⟩ is entangled if the

numerical values of its coordinates (ψi)i∈{0,1}n ∈ C2n admit no solution (q
(j)
0 , q

(j)
1 )j∈[n] ∈ C2n to

the system 
∑

i∈{0,1}n
ψi |i⟩ =

n⊗
j=1

(q
(j)
0 |0⟩+ q

(j)
1 |1⟩)

|q(j)0 |2 + |q
(j)
1 |2 = 1,∀j ∈ J1, nK

It means that operations performed on some coordinates of the entangled state can affect the other
coordinates without direct operations on them.

Notice that when an n-qubit system is entangled, it makes no sense to speak about qubit
number k ∈ [n] because isolated qubits are not defined. Notice also that there is a difference
between superposition and entanglement. A state is in superposition if at least two non-zero
coefficients are in its basis decomposition. A state is entangled if it cannot be written as a tensor
product of independent qubits, implying that it is in superposition.

To illustrate the notion of entanglement, we consider the following quantum circuit on Fig-
ure 2.5. Starting from a two-qubit product state |00⟩, it results an entangled state.

|0⟩ H •

|0⟩ X

Figure 2.5: Entangling circuit.

This circuit is the application of Hadamard gate on qubit 1, followed by CX1,2. The quantum
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state that results is |Φ+⟩ of Example 2:

CX1,2(H ⊗ I) |00⟩ = CX1,2

(
1√
2
(|00⟩+ |10⟩)

)
=

1√
2
(CX1,2 |00⟩+ CX1,2 |10⟩)

=
1√
2
(|00⟩+ |11⟩)

=
∣∣Φ+

〉
.

We prove now by contradiction that |Φ+⟩ is entangled. Suppose that |Φ+⟩ is a product state.

Thus, there exist (q
(0)
0 , q

(0)
1 ) ∈ C2 such as |q(0)0 |2 + |q(0)1 |2 = 1 and (q

(1)
0 , q

(1)
1 ) ∈ C2 such as

|q(1)0 |2 + |q
(1)
1 |2 = 1, satisfying:∣∣Φ+

〉
= (q

(0)
0 |0⟩+ q

(0)
1 |1⟩)⊗ (q

(1)
0 |0⟩+ q

(1)
1 |1⟩)

= q
(0)
0 q

(1)
0 |00⟩+ q

(0)
0 q

(1)
1 |01⟩+ q

(0)
1 q

(1)
0 |10⟩+ q

(0)
1 q

(1)
1 |11⟩ .

Because the decomposition of a quantum state’s coordinates is unique in the canonical basis, it
follows by identification: 

q
(0)
0 q

(1)
0 = 1√

2

q
(0)
0 q

(1)
1 = 0

q
(0)
1 q

(1)
0 = 0

q
(0)
1 q

(1)
1 = 1√

2

This equation system admits no solution. We deduce that |Φ+⟩ = |00⟩+|11⟩√
2

is not a product state,

hence it is entangled.

2.3 Quantum circuit complexity

In computer science, the complexity of an algorithm represents a measure of its performance. We
will require such measure to assess the performance of algorithms, specifically in Chapters 5, 6
and 7. As in classical computing, the complexity of a quantum algorithm (i.e. a quantum circuit
in the gate-based model) can be measured in different ways. For instance, there is the space
complexity referring to the number of qubits on which the quantum circuit applies. There is also
the query complexity, which is defined by the number of calls done to the oracle, where oracle
means access to the input data. For example, Grover Search (Grover, 1996) makesO(

√
2n) queries

to the reversible oracle representing the function f : {0, 1}n → {0, 1} to find with high probability
an element x such that f(x) = 1. Notice that in practice, the oracle can be a quantum circuit
generated independently by another process, or often represents access to quantum memory. In
this thesis, we assess the performance of quantum algorithms with the gate complexity which is
defined by the number of universal gates (see Definition 2.2.8).

Henceforth, we use the following usual asymptotic notations for the gate complexity. Let
f, g : N→ R+ be two functions. We say that

f(n) = O(g(n))
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if there exists M > 0 and n0 ∈ N such that, ∀n ≥ n0,

f(n) ≤Mg(n) .

In other words, for sufficiently large values of n, the function f grows no faster than a constant
(positive) multiple of g. We denote by O∗ the same as for O but ignoring polynomial factors.
For instance, for f : n 7→ 7n23n, we have f(n) = O∗(3n). Similarly, we refer to Õ as O but we
ignore the polylogarithmic factors. For example, for f : n 7→ log(n)4n5, we have f(n) = O∗(n5).

Eventually, we mention an observation regarding the complexity of a classical algorithm exe-
cuted as a quantum circuit.

Observation 2.3.1 (Classical algorithm into quantum circuit (Bennett, 1973)). Any classical
algorithm A can be executed as a quantum circuit UA by preserving the number of gates but
increasing the size memory. This additional cost comes from the fact that UA must be reversible.
Specifically, if A uses T gates and S bits of memory, UA uses O(T ) gates and O(T + S) bits of
memory.



3

Variational Quantum Algorithms

Today, the quantum algorithms used for solving optimization problems and conducting prelimi-
nary numerical tests are the Variational Quantum Algorithms (VQAs). VQAs are heuristics that
alternate between a quantum circuit and a classical optimizer. They tackle unconstrained opti-
mization problems with binary variables. Even if these algorithms have no performance guarantee
for general problems, they are of great interest today because they have the convenient property
of an adjustable quantum circuits’ depth, making them implementable on the current NISQ com-
puters. The variational approach of VQAs consists of probing the initial search space with a
relatively small set of parameters optimized classically. Specifically, these parameters describe
a probability distribution over the search space. Thus, VQAs take advantage of the quantum
computing principle that generates a probability distribution on an exponential space in a short
sequence of quantum gates.

In this chapter, we provide a mathematical description of Variational Quantum Algorithms
(VQAs) and focus on one of them, the Quantum Approximate Optimization Algorithm (QAOA)
of Farhi et al. (2014). Indeed, this is the first variational algorithm that tackles combinatorial
optimization problems, such as the MAX-CUT problem. We shall also devote particular atten-
tion to unconstrained problems for which the objective function is polynomial. More precisely,
we begin by defining the different parts that constitute and define a VQA, namely the quantum
circuit, the classical optimizer, and the guiding function driving the classical optimization. We
characterize each part with properties that could enable theoretical guarantees. Afterward, we
study QAOA, describing the necessary reformulation of the initial unconstrained problem into
a Hermitian matrix and analyzing this algorithm in light of the previous properties. We also
provide a universal decomposition of QAOA’s quantum circuit for the general case where the
objective function is polynomial, and we give a condensed overview of empirical trends and theo-
retical limitations of QAOA. Eventually, we propose a generic method to reformulate constrained
problems with integer variables, polynomial objective function, and polynomial constraints into
an eligible problem for a resolution with VQAs: an unconstrained problem with binary variables
and polynomial objective function.

3.1 Unconstrained optimization

In this section, we present the class of Variational Quantum Algorithms (VQAs) (Cerezo et al.,
2021) from the perspective of solving combinatorial optimization problems. VQAs are studied
today because they represent an alternative approach that reduces the quality and quantity of
the quantum resources needed (Peruzzo et al., 2014): they are hybrid algorithms, requiring both
quantum and classical computations. Specifically, they are designed to run on the NISQ era
(Preskill, 2018) where quantum computers are noisy with few qubits, enabling them to harness
low-depth quantum circuits.

19
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Throughout this section, we consider optimization problems of the form

min
x∈{0,1}n

f(x) , (3.1)

where f is any function defined on {0, 1}n. We note F the set of optimal solutions.

3.1.1 General description

Variational Quantum Algorithms (VQAs) are hybrid algorithms that, given an input |0⟩⊗n, al-
ternate between a quantum and a classical part. Henceforth, we note |0n⟩ the state |0⟩⊗n to ease
the reading. Let us first provide a high-level description of the key elements of VQAs that are
detailed in this section. Let d ∈ N, the three key elements of VQAs are:

• a parametrized quantum circuit, U : Rd →M2n(C) ,

• a guiding function, g : Rd → R ,

• and a classical optimizer, which is an algorithm A that optimizes g over space Rd .

These elements, the parametrized quantum circuit and the two others, are detailed and illustrated
in Subsections 3.1.2 and 3.1.3, respectively. Before that, we provide a general overview of VQAs
in Algorithm 1.

The main idea of a VQA is as follows. The main loop of the algorithm executes the following
steps until the classical optimizer stops according to a given stopping criterion. First, given
θ ∈ Rd, the quantum part executes the parametrized quantum circuit U(θ) for several times to
sample the quantum state (see Remark 2.2.14). It results in a distribution probability over {0, 1}n
that we note {pθ(x) : x ∈ {0, 1}n}. Second, the classical part computes the cost of this state
through the evaluation of the guiding function according to the sampling results, specifically,
g(θ) = G(pθ, f) for a given function G that is constructed from pθ and f . More precisely, for a
given θ, the computation of G requires only the values f(x) for x such that pθ(x) > 0. Eventually,
this cost value is given to the classical optimizer A, which outputs a new parameter in order to
minimize g. Notice that, between the two parts, the best-found solution is possibly updated by
a classical computer.

In the following subsections, we detail each part of VQAs and show how specific choices of g
and U ensure that VQAs optimize f . Let us begin with the quantum part.

3.1.2 Quantum part

The quantum part of VQAs applies a quantum circuit on the n-qubit system that constitutes
the quantum computer. Importantly, variational in VQAs stands for the parametrization of the
quantum circuit. Let d ∈ N be the number of parameters.

Definition 3.1.1. A parametrized quantum circuit is a continuous function U : Rd →M2n(C)
mapping any θ ∈ Rd to unitary matrix U(θ).

As defined in Subsection 2.2.3, a quantum circuit is a sequence of universal quantum gates’
compositions and/or tensor products. Thus, all coefficients of matrix U(θ) are continuous func-
tions on Rd.

Example 6. A simple example of a parametrized quantum circuit for n = 3 and d = 3 is depicted
in Figure 3.1.
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Algorithm 1: Variational Quantum Algorithm

Input: guiding function g, parametrized quantum circuit U , classical optimizer A,
initial parameter θ0

Output: approximate minimum f∗ and the corresponding minimizer x∗

1 θ ← θ0;
2 f∗ ← +∞;
3 x∗ ← 0n;
4 while stopping criterion of the classical optimizer is false do
5 begin quantum part
6 for size of the sampling do

7 measure the state U(θ) |0⟩⊗n, outputting x for some x ∈ {0, 1}n;
8 let pθ(x) be the frequency of x ∈ {0, 1}n in the above sampling;

9 begin solution update
10 for x such that pθ(x) > 0 do
11 compute f(x);
12 if f(x) < f∗ then
13 f∗ ← f(x);
14 x∗ ← x;

15 begin classical part
16 compute g(θ) = G(pθ, f);
17 given g(θ) (and possibly its derivatives), A outputs θ′;
18 θ ← θ′;

|0⟩ RY (θ1)

|0⟩ RY (θ2)

|0⟩ RY (θ3)

Figure 3.1: Quantum circuit parametrized by (θ1, θ2, θ3) ∈ R3.

The expression of U(θ) for this circuit is as follows: ∀θ = (θ1, θ2, θ3) ∈ R3,

U(θ) = RY (θ1)⊗RY (θ2)⊗RY (θ3)

=

(
cos θ1

2 − sin θ1
2

sin θ1
2 cos θ1

2

)
⊗
(
cos θ2

2 − sin θ2
2

sin θ2
2 cos θ2

2

)
⊗
(
cos θ3

2 − sin θ3
2

sin θ3
2 cos θ3

2

)
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=



c1c2c3 −c1c2s3 −c1s2c3 c1s2s3 −s1c2c3 s1c2s3 s1s2c3 −s1s2s3
c1c2s3 c1c2c3 −c1s2s3 −c1s2c3 −s1c2s3 −s1c2c3 s1s2s3 s1s2c3
c1s2c3 −c1s2s3 c1c2c3 −c1c2s3 −s1s2c3 s1s2s3 −s1c2c3 s1c2s3
c1s2s3 c1s2c3 c1c2s3 c1c2c3 −s1s2s3 −s1s2c3 −s1c2s3 −s1c2c3
s1c2c3 −s1c2s3 −s1s2c3 s1s2s3 c1c2c3 −c1c2s3 −c1s2c3 c1s2s3
s1c2s3 s1c2c3 −s1s2s3 −s1s2c3 c1c2s3 c1c2c3 −c1s2s3 −c1s2c3
s1s2c3 −s1s2s3 s1c2c3 −s1c2s3 c1s2c3 −c1s2s3 c1c2c3 −c1c2s3
s1s2s3 s1s2c3 s1c2s3 s1c2c3 c1s2s3 c1s2c3 c1c2s3 c1c2c3


,

where ci = cos θi
2 and si = sin θi

2 for i ∈ [3].

Remark 3.1.2. The use of the generalized circuit to n qubits
n⊗

i=1

RY,i(θi) amounts to a continuous

relaxation of the {0, 1}-problem (3.1), where each decision variable xi ∈ [0, 1] is represented by a
rotation angle θi ∈ [0, 2π] as follows:

xi =

(
cos

θi
2

)2

.

3.1.3 Classical part

The classical part of VQAs consists of a classical optimization over the parameters θ ∈ Rd. The
classical optimizer essentially aims at finding the optimal parameters θ∗ that lead to optimal
solutions of the initial problem (3.1) with high probability, specifically, such that∑

s∈F
| ⟨s|U(θ∗) |0n⟩ |2 ≥ 1− ϵ , (3.2)

for small ϵ > 0. Henceforth, we use notation |x⟩ instead of |i⟩ to efficiently recall that we deal
with solutions of optimization problems.

The classical part is characterized by two aspects: the function that guides the optimization
and the optimizer itself.

3.1.3.1 Guiding function

Let g : Rd → R be the guiding function, formally defined in Definition 3.1.3 below, that the clas-
sical optimizer minimizes. The function g acts as a link between the quantum and classical parts.
For a given θ ∈ Rd, we evaluate U(θ) |0n⟩ according to f as we will exemplify below. Notice that
f and g are distinct since g is defined on Rd and outputs a quality measure of an n-qubit quantum

state whereas f is defined on {0, 1}n. Let us denote Fquant =

{∑
s∈F

ψs |s⟩ :
∑
s∈F
|ψs|2 = 1

}
as the

set of quantum states that are superpositions of optimal solutions of problem (3.1). Naturally,
we would like to define g such that minimizing g tends to minimize f .

Definition 3.1.3 (Guiding function). Let g : Rd → R be a function and G be its set of minimizers.
We call g a guiding function for f with respect to U if g is continuous and

{U(θ) |0n⟩ : θ ∈ G} ⊆ Fquant . (3.3)

In other words, optima of a guiding function g must lead to optima of f or superpositions
of optima of f . Indeed, Equation (3.3) implies that measuring the quantum state U(θ∗) |0⟩⊗n
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for θ∗ ∈ G outputs with probability 1 an optimal solution s ∈ F of the initial problem. Thus,
minimizing g amounts to minimizing f , and finding F is done by finding G. The latter is found
with the classical optimizer. Without any information on F , we need to choose a quantum circuit
U such that any optimal solution s ∈ F is reachable, specifically,

{U(θ) |0n⟩ : θ ∈ Rd} ⊇ CBn . (3.4)

Notice that this condition is weak and easily satisfied. For instance, the circuit depicted in
Figure 3.1 satisfies this condition. If ever one is interested in finding all optimal solutions of
problem (3.1), the circuit and the guiding function should satisfy instead the stronger condition

{U(θ) |0n⟩ : θ ∈ G} = Fquant . (3.5)

In that case, U satisfying (3.4) is not enough. Without any information on F , we need to choose
U that can reach any n-qubit quantum states, specifically,

{U(θ) |0n⟩ : θ ∈ Rd} =

 ∑
x∈{0,1}n

ψx |x⟩ :
∑

x∈{0,1}n
|ψx|2 = 1

 .

A popular choice for the guiding function in the literature is the mean function

gmean(θ) =
∑

x∈{0,1}n
pθ(x)f(x) , (3.6)

where pθ(x) = | ⟨x|U(θ) |0n⟩ |2 is the probability of finding x when U(θ) |0n⟩ is measured. We
show next that gmean is indeed a guiding function according to Definition 3.1.3.

Proposition 3.1.4. Function gmean is a guiding function.

Proof. Let us prove that gmean is continuous. Let x ∈ {0, 1}n. The function θ 7→ pθ(x) =
| ⟨x|U(θ) |0n⟩ |2 is continuous, because each coefficient of U(θ) is continuous. Thus, because
multiplication and addition preserve continuity, gmean is continuous.

We prove by contradiction that (3.3) holds. Let θ ∈ G and let us consider the quantum
state |ψ(θ)⟩ = U(θ) |0n⟩. We write its decomposition in the canonical basis as follows: |ψ(θ)⟩ =∑

x∈{0,1}n ψx |x⟩.
Assume that |ψ(θ)⟩ /∈ Fquant. By definition, there exists x0 ∈ {0, 1}n such that x0 /∈ F and

|ψx0 | ≠ 0. Thus,

gmean(θ) =
∑

x∈{0,1}n
|ψx|2f(x)

=
∑
x∈F
|ψx|2f(x) +

∑
x/∈F

|ψx|2f(x)

=

(∑
x∈F
|ψx|2

)
f∗ +

∑
x/∈F

|ψx|2f(x) ,

where f∗ is the optimal value of f , reached on F . By definition, f(x) > f∗ ,∀x /∈ F , and
because we assume that |ψx0 | ≠ 0, thus the second term of the sum is bounded below as follows:
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∑
x/∈F |ψx|2f(x) >

(∑
x/∈F |ψx|2

)
f∗, where

∑
x/∈F |ψx|2 ≥ |ψx0 |2 > 0. Thus,

gmean(θ) >

(∑
x∈F
|ψx|2

)
f∗ +

(∑
x/∈F

|ψx|2
)
f∗ = f∗ .

This contradicts the previous statement that θ ∈ G, as one readily verifies that the minimum of
gmean is g∗mean = f∗.

Example 7. We illustrate the mean function on the 3-qubit quantum circuit U(θ) depicted in
Figure 3.1. The generalization of its computation for n qubits is trivial since it needs to replace
3 by n. The single application of rotation gate RY (2.5) of angle θi on a qubit initially on state
|0⟩ is

RY (θi) |0⟩ = cos
θi
2
|0⟩+ sin

θi
2
|1⟩

=
∑

j∈{0,1}

cos
θi − jπ

2
|j⟩ ,

since sin(ϕ) = cos
(
ϕ− π

2

)
for ϕ ∈ R. Eventually, the quantum state resulting from U(θ) is

U(θ) |03⟩ =
3⊗

i=1

RY,i(θi) |0⟩

=
∑

j1,j2,j3∈{0,1}

(
3∏

i=1

cos
θi − jiπ

2

)
|j1j2j3⟩ .

Thus, the probability to measure x = (x1, x2, x3) ∈ {0, 1}3 is

pθ(x) =

(
3∏

i=1

cos
θi − xiπ

2

)2

, (3.7)

and the expression of gmean of equation (3.6) directly results from it.

Other functions are compatible with Definition 3.1.3. One of these functions encountered in
the literature is the Gibbs function (Li et al., 2020) which stems from statistical mechanics. Let
η > 0 be a parameter to be set. The Gibbs function is defined as

gG,η(θ) = − ln

 ∑
x∈{0,1}n

pθ(x)e
−ηf(x)

 . (3.8)

The choice of this function is motivated by the exponential shape that highly rewards the increase
of probabilities of low-cost states. Notice that for small η, minimizing the Gibbs function is
essentially equivalent to minimizing the mean function in the sense that the Taylor series of gG,η

at first order in η = 0 gives gG,η = ηgmean. We show next that gG,η is indeed a guiding function
according to Definition 3.1.3.

Proposition 3.1.5. Let η > 0. Function gG,η is a guiding function.

Proof. Let us prove that gG,η is continuous. Let x ∈ {0, 1}n. The function θ 7→ pθ(x) =
| ⟨x|U(θ) |0n⟩ |2 is continuous, because each coefficient of U(θ) is continuous. Thus, because
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multiplication, addition, and composition preserve continuity, gG,η is continuous.
Let η > 0. Let us prove by contradiction that (3.3) holds. As before, let θ ∈ G and let us

consider the quantum state |ψ(θ)⟩ = U(θ) |0n⟩. We write |ψ(θ)⟩ =
∑

x∈{0,1}n ψx |x⟩ its decompo-
sition in the canonical basis. Assume that |ψ(θ)⟩ /∈ Fquant. Thus, there exists x0 ∈ {0, 1}n such
that x0 /∈ F and |ψx0 | ≠ 0. Thus,

gG,η(θ) = − ln

 ∑
x∈{0,1}n

|ψx|2e−ηf(x)


= − ln

(∑
x∈F
|ψx|2e−ηf(x) +

∑
x/∈F

|ψx|2e−ηf(x)

)

= − ln

((∑
x∈F
|ψx|2

)
e−ηf∗

+
∑
x/∈F

|ψx|2e−ηf(x)

)
,

where f∗ is the optimal value of f , reached on F . By definition, f(x) > f∗ ,∀x /∈ F , and because
η > 0, we have e−ηf(x) < e−ηf∗

. Moreover, we assume that |ψx0 | ̸= 0, thus the second term of
the sum in the logarithm is bounded above as follows:

∑
x/∈F |ψx|2e−ηf(x) <

(∑
x/∈F |ψx|2

)
e−ηf∗

,
where

∑
x/∈F |ψx|2 ≥ |ψx0 |2 > 0. Thus, because y 7→ − ln(y) is a decreasing function,

gG,η(θ) > − ln

((∑
x∈F
|ψx|2

)
e−ηf∗

+

(∑
x/∈F

|ψx|2
)
e−ηf∗

)
= ηf∗ .

This contradicts the previous statement that θ ∈ G. Indeed, we can easily verify that the minimum
of gG,η is g∗G,η = ηf∗.

One might suggest other guiding functions, such as the minimum function

gmin(θ) = min
x : pθ(x)>0

f(x) . (3.9)

However, gmin does not verify (3.3), and is not even continuous, hardening its optimization and
excluding its choice for the guiding function.

Example 8. Let us illustrate that gmin is not a guiding function. For that, we consider the circuit
of Figure 3.1 and the following function f : {0, 1}3 7→ R to minimize,{

f(0, 0, 0) = 1

f(x) = 0 , ∀x ̸= (0, 0, 0)

where f∗ = 0 is the optimal value. Function gmin reaches its optimal value g∗min = 0 on the set of
its optimizers

G = R3 \ {(2kπ, 2kπ, 2kπ) : k ∈ Z} .

However,

∀θ ∈ G \ {((2k + 1)π, (2k + 1)π, (2k + 1)π) : k ∈ Z} , U(θ) |0n⟩ /∈ Fquant ,

because there is a non-zero probability of sampling (0, 0, 0). Thus, gmin violates (3.3). Moreover,
gmin is not continuous. Indeed, gmin(0, 0, 0) = 1, whereas ∀ϵ > 0 , gmin(ϵ, 0, 0) = 0.
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The above observation motivated Barkoutsos et al. (2020) to suggest another function, the
CVaR (Conditional Value-at-Risk) function. The CVaR function is the average on the lower
α-tail of values of f encountered, where α ∈]0, 1] is a parameter to be set. Let (x1, . . . , x2n) be
the n-bitstrings sorted in non decreasing order, namely f(xi) ≤ f(xi+1) for any i ∈ [2n − 1]. Let
Nα be the index that delimits the α-tail elements of the distribution, specifically,

Nα = min

{
N ≥ 1 :

N∑
i=1

pθ(xi) ≥ α

}
.

Then, the CVaR function is

gC,α(θ) =
1∑Nα

i=1 pθ(xi)

Nα∑
i=1

pθ(xi)f(xi) . (3.10)

The special case α = 1 implies gα = gmean, whereas when α approaches zero, we find gmin.
The CVaR function is an alternative to the non-smooth minimum function. While CVaR does

not verify (3.3) either, it keeps continuity and still focuses on the best solutions that appear on
the probability distribution.

Example 9. Let us illustrate the violation of (3.3) by the CVaR function, for any α ∈]0, 1[.
For that, we consider function f of Example 8 with the same quantum circuit of Figure 3.1. Let
α ∈]0, 1[. Let us find θ ∈ G such that U(θ) |0n⟩ /∈ Fquant. In other words, we search θ ∈ R3 such
that

gC,α(θ) = 0 and pθ(0, 0, 0) > 0 .

Let us look at θ = (π − ϵ, 0, 0), where ϵ ∈]0, π[. According to (3.7), we have

pθ(0, 0, 0) = cos2
(
π − ϵ
2

)
> 0 .

It remains to choose ϵ to ensure gC,α(θ) = 0. Namely, we want ϵ such that∑
x ̸=(0,0,0)

pθ(x) ≥ α ,

meaning

1− cos2
(
π − ϵ
2

)
≥ α .

This holds for any ϵ ≤ π − 2 arccos (
√
1− α).

Even if CVaR does not verify (3.3), it can be seen as a pseudo-guiding function, defined just
below. Notice that in practice, using the CVaR function seems appropriate because it accepts a
probability of measuring optimal solutions after optimizing to be lower than one, such as expressed
in (3.2).

Definition 3.1.6 (Pseudo-guiding function). Let g : Rd → R be a function and G be its set
of minimizers. We call g a pseudo-guiding function for f with respect to U if g is continuous
and if there exists α ∈]0, 1[ such that optima of g can lead to non-optimal solutions of f with a
probability strictly lower than 1 − α. Specifically, let θ ∈ G. Thus, either U(θ) |0n⟩ ∈ Fquant or∑
x/∈F

| ⟨x|U(θ) |0n⟩ |2 < 1− α.
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We show next that gC,α is indeed a pseudo-guiding function according to Definition 3.1.6..

Proposition 3.1.7. Let α ∈]0, 1[. Function gC,α is a pseudo-guiding function.

Proof. For the same reason as for gmean, gC,α is continuous.
Let α ∈]0, 1[ , θ ∈ G and let us consider the quantum state |ψ(θ)⟩ = U(θ) |0n⟩. Its decomposition

in the canonical basis is |ψ(θ)⟩ =
∑

x∈{0,1}n ψx |x⟩.

Let us prove that either |ψ(θ)⟩ ∈ Fquant or that
∑
x/∈F

|ψx|2 =
2n∑

x=NF+1

|ψxi |2 < 1 − α, where NF

is the index that delimits F , specifically,

F = {xi, i ∈ [NF ]} .

There are two cases for Nα (we recall that Nα depends on θ):

• If Nα ≤ NF , thus

gC,α(θ) =
1∑

i∈[Nα]⊆[NF ]

|ψxi |2
∑

i∈[Nα]⊆[NF ]

|ψxi |2f(xi)

= f∗ ,

where f∗ is the optimal value of f , reached on F . This contradicts (3.3) but the probability
of sampling non-optimal solutions when measuring |ψ(θ)⟩ is strictly lower than 1−α. Indeed,
by definition of Nα,

NF∑
i=1

|ψxi |2 ≥
Nα∑
i=1

|ψxi |2 ≥ α .

• Otherwise, Nα > NF . Let us prove by contradiction that |ψ(θ)⟩ ∈ Fquant. Assume that
|ψ(θ)⟩ /∈ Fquant. Thus, there exists k > NF such that |ψk| ̸= 0. We can show that
gC,α(θ) > f∗ using essentially the same proof as that of Proposition 3.1.4 for x0 = min{k >
NF : |ψk| ≠ 0}. This contradicts the statement that θ ∈ G, because the minimum of gC,α is
g∗C,α = f∗.

3.1.3.2 Classical optimizer

The role of the classical optimizer is to minimize the guiding function. The function g is continuous
and is usually differentiable but not convex. Any unconstrained optimization algorithm can be
used to minimize g, such as local search, gradient descent method, or any black-box optimization
algorithm.

To speak in terms of stochastic optimization, the classical optimizer aims at solving the stochas-
tic programming model under endogenous uncertainty

min
θ
{g(θ) = E[G(θ, ξθ)]} , (3.11)

where the definition of G depends on the choice of a specific guiding function, and ξθ is an
endogenous vector that depends on θ. Specifically, ξθ is a discrete random variable, with the set
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of possible outcomes {0, 1}n and the following distribution probability:

P(ξθ = x) = pθ(x), ∀x ∈ {0, 1}n .

Thus, this problem falls into the class of stochastic dependent-decision probabilities prob-
lems (Hellemo et al., 2018). In practice, the classical optimizer approximates the function by a
Monte Carlo estimation as follows:

ĝN (θ) =
1

N

N∑
j=1

G(θ, ξjθ) ,

where {ξjθ}j∈[N ] is a sample of size N from the distribution of ξθ. Notice that for a given θ,
the quantity ĝN (θ) itself is a random variable since its value depends on the sample that has
been generated, which is random. In contrast, the value of g(θ) is deterministic. In practice, the
classical optimizer iterates the loop that consists of, given a sampling distribution of size N of
the quantum state U(θ) |0n⟩ (Remark 2.2.14), outputs a θ′. This θ′ is then transmitted to the
quantum part. Eventually, the aim is to output θ∗ such that U(θ) |0n⟩ ⊆ Fquant. In each iteration,
the value of ĝN (θ) is computed. Notice that according to the Law of Large Numbers (Shapiro,
2003), ĝN (θ) converges with probability one to g(θ) as N →∞.

For instance, for the case of g = gmean, we have

G(θ, ξθ) = f(ξθ) .

Hence, for each ξjθ ∈ {0, 1}
n sampled, either we compute classically f(ξjθ) and store it if not

already computed, or we get its value. Thus, we can compute ĝN (θ). Notice that for the CVaR
function, we compute the empirical mean only on the best ⌈αN⌉ values f(ξθ) found by sampling.

The solution returned by the VQA is the minimum value of f and the associated minimizer x
encountered while the algorithm runs.

3.2 Quantum Approximate Optimization Algorithm

We assume throughout this section that the function f to be minimized is polynomial. First, we
reformulate problem (3.1) to a more suitable form for quantum optimization. This reformulation
is motivated by the quantum adiabatic evolution (Farhi et al., 2000) that, for a given Hermitian
matrix1, approximates the eigenvector with the lowest eigenvalue under certain conditions. For
that, we interpret the objective function of problem (3.1) as an Hermitian matrix Hf such that
each eigenvector |ux⟩ is matching a classical solution x ∈ {0, 1}n with an eigenvalue equal to f(x),
specifically,

Hf |ux⟩ = f(x) |ux⟩ .

Thus, the solutions of problem (3.1) are the solutions corresponding to the lowest eigenvalues of
Hf . The Quantum Approximate Optimization Algorithm (QAOA) of Farhi et al. (2014) presented
in this section aims at finding the lowest eigenvalue of Hf .

3.2.1 Problem reformulation

The construction of Hf is as follows. First, we transform the {0, 1}-problem (3.1) into a {−1, 1}-
problem. For that, we apply the following linear transformation: for x = (x1, . . . , xn) ∈ {0, 1}n,

1A complex square matrix is Hermitian if it is equal to its conjugate transpose.
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we define z = (z1, . . . , zn) ∈ {−1, 1}n where

zi = 1− 2xi , ∀i ∈ [n] . (3.12)

This leads to the problem

min
z∈{−1,1}n

f±(z) ,

where, for z ∈ {−1, 1}n,

f±(z) =
∑

α=(α1,...αn)∈{0,1}n
hα

n∏
i=1

zαi
i ,

where hα ∈ R,∀α ∈ {0, 1}n. Notice that, without loss of generality, we set α ∈ {0, 1}n rather
than α ∈ Nn, because the each variable zi is in {−1, 1}. Thus, only the parity of αi matters in
the term zαi

i . Second, we define Hf as

Hf =
∑

α=(α1,...αn)∈{0,1}n
hα

n⊗
i=1

Zαi
i ,

where Z =

(
1 0
0 −1

)
, Z0 = I =

(
1 0
0 1

)
and Z1 = Z. We note Zi the application of Z to qubit

i. Notice that Z is equal to the universal gate RZ(π) modulo a global phase (see Equation (2.6)).
This construction of Hf leads to the following property.

Proposition 3.2.1. The eigenvectors of Hf are the canonical basis |x⟩ ∈ CBn with eigenvalues
that are the cost of the solutions f(x), specifically,

∀ |x⟩ ∈ CBn, Hf |x⟩ = f(x) |x⟩ . (3.13)

Proof. First, the eigenvectors of Hf are the canonical basis states. Indeed, each term of the
sum that constitutes Hf is a tensor product of n matrices I or Z, both diagonal. Thus, Hf is
a 2n diagonal matrix. Second, let us find the eigenvalues associated with the eigenvectors. Let
|x⟩ = |x1 . . . xn⟩ be in CBn. Let z = (z1, . . . , zn) be the result of transformation (3.12). Thus, we
can easily show that Z |xi⟩ = zi |xi⟩ ,∀i ∈ [n] and

Hf |x⟩ =
∑

α=(α1,...,αn)∈{0,1}n
hα

n⊗
i=1

Zαi
i |xi⟩

=
∑

α=(α1,...,αn)∈{0,1}n
hα

n⊗
i=1

zαi
i |xi⟩

=

 ∑
α=(α1,...,αn)∈{0,1}n

hα

n∏
i=1

zαi
i

 |x⟩
= f±(z) |x⟩
= f(x) |x⟩ .
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Example 10. We illustrate this transformation on a small example for n = 2. Let us consider
the problem

min
x∈{0,1}2

f(x) = x1 + 2x2 − 3x1x2 .

Using (3.12), the equivalent {−1, 1}-problem is

min
z∈{−1,1}2

f±(z) =
1

4
z1 −

1

4
z2 −

3

4
z1z2 +

3

4
.

Thus, the Hermitian matrix associated with the problem is

Hf =
1

4
Z ⊗ I − 1

4
I ⊗ Z − 3

4
Z ⊗ Z +

3

4
I ⊗ I .

To illustrate (3.13), we compute the eigenvalue of the canonical basis state |10⟩.

Hf |10⟩ =
1

4
(Z ⊗ I) |10⟩ − 1

4
(I ⊗ Z) |10⟩ − 3

4
(Z ⊗ Z) |10⟩+ 3

4
(I ⊗ I) |10⟩

= −1

4
|10⟩ − 1

4
|10⟩+ 3

4
|10⟩+ 3

4
|10⟩

= |10⟩
= f(1, 0) |10⟩ ,

because f(1, 0) = 1.

Notice that most of the problems solved with QAOA in the literature are QUBO (Quadratic
Unconstrained Binary Optimization) problems. Thus, Hf has the specific form

Hf =
∑
i

hiiZi +
∑
i<j

hijZi ⊗ Zj ,

where hij ∈ R, ∀i ≤ j. It is justified by the fact that solving QUBO problems to optimality is
already NP-hard, and the quantum gates of the circuit are easier to implement on hardware in
that case.

3.2.2 Quantum part

QAOA is a Variational Quantum Algorithm where the quantum part derives from the Hamil-
tonian Hf . This quantum part consists of a quantum circuit with 2p parameters (γ,β) =
(γ1, . . . , γp, β1, . . . , βp) ∈ R2p, where p is called depth. The quantum circuit U(γ,β) is the se-
quence of p layers of two blocks, initially applied to the uniform superposition |+⟩⊗n (see Ex-
ample 5). To describe these blocks, we introduce the definition of a unitary operator associated
with a Hamiltonian.

Definition 3.2.2 (Unitary operator associated with Hermitian matrix). Given a Hermitian ma-
trix A, we define its associated quantum gate Exp(A, t) parametrized by the parameter t ∈ R
as

Exp(A, t) = e−iAt

=

∞∑
k=0

1

k!
(−i)ktkAk .
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Because A is Hermitian, Exp(A, t) is a unitary matrix.

The first block is of the form Exp(Hf , γ), for γ ∈ R, which is the unitary operator associated
with the Hamiltonian Hf . The second block is of the form Exp(HB, β), for β ∈ R, which is the

unitary operator associated with the Hamiltonian HB =
n∑

i=1

RX,i(π) (see Equation 2.4 for the

definition of rotation gate RX,i). Thus, the quantum circuit is

U(γ,β) = Exp(HB, βp)Exp(Hf , γp) . . .Exp(HB, β1)Exp(Hf , γ1)H
⊗n , (3.14)

where the first gates applied in this circuit are H⊗n to then apply the p layers to state |+⟩⊗n.
The three propositions that follow express the quantum circuit of QAOA with the set of universal
gates (see Theorem 2.2.10). We give first the general decomposition of QAOA’s quantum circuit
defined in (3.14).

Proposition 3.2.3. The first block Exp(Hf , γ) parametrized by γ ∈ R is

Exp(Hf , γ) =
∏

α∈{0,1}n
Exp(

n⊗
i=1

Zαi
i , hαγ) .

The second block Exp(HB, β) parametrized by β ∈ R is

Exp(HB, β) =
n⊗

i=1

RX,i(2β) .

Proof. Let γ ∈ R and let us consider the first block Exp(Hf , γ). By Definition 3.2.2, and because
each pair of matrices of the family {

⊗n
i=1 Z

αi
i : α = (α1, . . . , αn) ∈ {0, 1}n} commutes two by

two,

Exp(Hf , γ) = e
−i(

∑
α=(α1,...,αn)∈{0,1}n hα

⊗n
i=1 Z

αi
i )γ

(3.15)

=
∏

α=(α1,...,αn)∈{0,1}n
e−ihα

⊗n
i=1 Z

αi
i γ (3.16)

=
∏

α=(α1,...,αn)∈{0,1}n
Exp(

n⊗
i=1

Zαi
i , hαγ) . (3.17)

Let β ∈ R and let us consider the second block Exp(HB, β). For more readability, we write

Xi = RX,i(π) the application of matrix X =

(
0 1
1 0

)
on qubit i. With the same development as

above, and because each pair of matrices of the family {Xi : i ∈ [n]} commutes two by two,

Exp(HB, β) =
n∏

i=1

Exp(Xi, β) .

Let i ∈ [n]. Thus,

Exp(Xi, β) =

∞∑
k=0

1

k!
(−i)kβkXk

i (3.18)
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=

∞∑
k=0

1

(2k)!
(−i)2kβ2kX2k

i +

∞∑
k=0

1

(2k + 1)!
(−i)(2k+1)β(2k+1)X

(2k+1)
i (3.19)

=

∞∑
k=0

1

(2k)!
(−i)2kβ2kI +

∞∑
k=0

1

(2k + 1)!
(−i)(2k+1)β(2k+1)Xi (3.20)

=

∞∑
k=0

1

(2k)!
(−1)kβ2kI − i

∞∑
k=0

1

(2k + 1)!
(−1)kβ(2k+1)Xi (3.21)

= cos(t)I − i sin(t)Xi (3.22)

= RX,i(2β) , (3.23)

where Line (3.20) exploits the fact that X2 = I, implying X2k = I and X2k+1 = X. Moreover,
Line (3.21) applies the definition of the complex number i, and one can recognize the power series
of cosinus and sinus functions.

The particular case of QUBO is mainly considered in the literature. Thus, we propose next a
decomposition of QAOA’s quantum circuit for this specific case.

Proposition 3.2.4. For the case of QUBO, the expression of Exp(Hf , γ) simplifies in

Exp(Hf , γ) =

(
n⊗

i=1

RZ,i(2hiiγ)

)∏
i<j

CXi,jRZ,j(2hi,jγ)CXi,j ,

and is rather easily implemented with universal quantum gates.

Proof. Let γ ∈ R. The application of (3.15)–(3.17) to the case of QUBO gives

Exp(Hf , γ) = e−i(
∑n

i=1 hiiZi+
∑

i<j hijZi⊗Zj)γ

=

n∏
i=1

e−iZihiiγ
∏
i<j

e−iZi⊗Zjhijγ

=
n∏

i=1

Exp(Zi, hiiγ)
∏
i<j

Exp(Zi ⊗ Zj , hijγ) .

Then, let us prove that, for i ∈ [n] and t ∈ R, Exp(Zi, t) = RZ,i(2t). The same development as
above, Lines (3.20)–(3.22), replacing X by Z that have the same property Z2 = I, gives

Exp(Zi, t) = cos(t)I − i sin(t)Zi (3.24)

= RZ,i(2t) . (3.25)

Eventually, Line (3.24) is the application of the gate

(
e−it 0
0 eit

)
= RZ(2t) on qubit i, and the

identity on the others.
It remains to prove that, for i < j ∈ [n] and t ∈ R, Exp(Zi ⊗ Zj , t) = CXi,jRZ,j(2t)CXi,j .

Following the same developments as above, we have

Exp(Zi ⊗ Zj , t) = cos(t)I − i sin(t)Zi ⊗ Zj . (3.26)

We consider the two-qubit system that corresponds to the qubit i as the first qubit and the qubit
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j as the second qubit (the others are unchanged by the transformation). Thus, it remains to
prove the equality of the two circuits depicted on Figure 3.2.

Exp(Z1 ⊗ Z2, t) =
• •

X RZ(2t) X

Figure 3.2: Decomposition of Exp(Z1 ⊗ Z2, t) into universal gates.

On the one hand, (3.26) is the application of the gate

(
RZ(2t) 0

0 RZ(−2t)

)
to this system.

Indeed,

cos(t)I − i sin(t)Z1 ⊗ Z2 = cos(t)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− i sin(t)

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



=


e−it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e−it


=

(
RZ(2t) 0

0 RZ(−2t)

)
.

On the other hand, the composition of gates CX1,2RZ,2(2t)CX1,2 on this system amounts to

CX1,2RZ,2(2t)CX1,2 =

(
I 0
0 X

)(
RZ(2t) 0

0 RZ(2t)

)(
I 0
0 X

)
=

(
RZ(2t) 0

0 XRZ(2t)X

)
=

(
RZ(2t) 0

0 RZ(−2t)

)
.

Thus, the proof results from replacing t by appropriate values hiiγ for i ∈ [n] and hijγ for
i < j.

The decomposition in universal quantum gates of the term Exp(Zi⊗Zj , t) for the specific case
of QUBO (see Proposition 3.2.4) is mainly used in the literature. We propose in Proposition 3.2.6
a generalization of such a decomposition for the term Exp(

⊗n
i=1 Z

αi , t), where the number of Z
gates in effect can be bigger than two, namely, |{αi, i ∈ [n] : αi = 1}| ≥ 2. This proposition
enables us to overtake the QUBO problems, namely, to deal with a polynomial function f with
a degree strictly larger than two. We introduce next a technical result that will be necessary to
derive the subsequent proposition.

Lemma 3.2.5. ∀n ∈ N∗,

(I⊗n−1 ⊗X)e−itZ⊗n
(I⊗n−1 ⊗X) = eitZ

⊗n
.
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Proof. Let Pn be the statement

(I⊗n−1 ⊗X)e−itZ⊗n
(I⊗n−1 ⊗X) = eitZ

⊗n
.

Let us prove by induction that Pn holds for all n ∈ N∗.
Base case: Let us prove P1. According to (3.25), e−itZ = RZ(2t), thus,

Xe−itZX =

(
0 1
1 0

)(
e−it 0
0 eit

)(
0 1
1 0

)
=

(
eit 0
0 e−it

)
= eitZ .

Induction step: Let n ≥ 1 be given and suppose Pn. Let us prove Pn+1. According to (3.27),

we have e−itZ⊗n+1
=

(
e−itZ⊗n

0

0 eitZ
⊗n

)
. Thus,

(I⊗n ⊗X)e−itZ⊗n+1
(I⊗n ⊗X)

= (I ⊗ I⊗n−1 ⊗X)e−itZ⊗n+1
(I ⊗ I⊗n−1 ⊗X)

=

(
I⊗n−1 ⊗X 0

0 I⊗n−1 ⊗X

)(
e−itZ⊗n

0

0 eitZ
⊗n

)(
I⊗n−1 ⊗X 0

0 I⊗n−1 ⊗X

)

=

(
(I⊗n−1 ⊗X)e−itZ⊗n

(I⊗n−1 ⊗X) 0

0 (I⊗n−1 ⊗X)eitZ
⊗n

(I⊗n−1 ⊗X)

)
.

By induction hypothesis Pn,

(I⊗n ⊗X)e−itZ⊗n+1
(I⊗n ⊗X) =

(
eitZ

⊗n
0

0 e−itZ⊗n

)
= eitZ

⊗n+1
.

The proposition that follows enables a decomposition in universal quantum gates of any quan-
tum circuit of QAOA.

Proposition 3.2.6. Let us consider the subsystem composed of the N qubits to which the Z gate
is applied. Specifically, N = |{αi i ∈ [n] : αi = 1}|, and we renumber the qubits in question in
[N ]. Thus, for N ≥ 2, the term Exp(

⊗n
i=1 Z

αi , t) on this subsystem simplifies in

Exp(Z⊗N , t) =

N−2∏
j=0

CX1,N−jRZ,N (2t)

N−2∏
j=0

CX1,N−j .

We represent this decomposition on Figure 3.3.
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• •
• •

. . . • • ...

X X . . . X RZ(2t) X . . . X X

Figure 3.3: Decomposition of Exp(Z⊗N , t) on the N -qubit subsystem.

Proof. Let Pn be the statement

Exp(Z⊗n, t) =
n−2∏
j=0

CX1,n−jRZ,n(2t)
n−2∏
j=0

CX1,n−j .

Let us prove by induction that Pn holds for all n ≥ 2.
Base case: Proposition 3.2.4 proves P2.
Induction step: Let n ≥ 2 be given and suppose Pn. Let us prove Pn+1.
On the one hand,

Exp(Z⊗n+1, t) = e−itZ⊗n+1
= e−itZ⊗Z⊗n

where Z ⊗ Z⊗n =

(
Z⊗n 0
0 −Z⊗n

)
. This latter matrix is diagonal, thus,

Exp(Z⊗n+1, t) =

(
e−itZ⊗n

0

0 eitZ
⊗n

)
. (3.27)

On the other hand, we compute the term

n−1∏
j=0

CX1,n+1−jRZ,n+1(2t)

n−1∏
j=0

CX1,n+1−j

= CX1,n+1

n−2∏
j=1

CX1,n+1−jRZ,n+1(2t)
n−2∏
j=1

CX1,n+1−j

CX1,n+1

that is represented on Figure 3.4, where e−itZ⊗n
applies on the qubits 2 to n by induction

hypothesis.

• •

e−itZ⊗n

X X

Figure 3.4: Circuit representation of

n−1∏
j=0

CX1,n+1−jRZ,n+1(2t)

n−1∏
j=0

CX1,n+1−j .
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Thus,

n−1∏
j=0

CX1,n+1−jRZ,n+1(2t)
n−1∏
j=0

CX1,n+1−j

= CX1,n+1(I ⊗ e−itZ⊗n
)CX1,n+1

=

(
I⊗n 0
0 I⊗n−1 ⊗X

)(
e−itZ⊗n

0

0 e−itZ⊗n

)(
I⊗n 0
0 I⊗n−1 ⊗X

)

=

(
e−itZ⊗n

0

0 (I⊗n−1 ⊗X)e−itZ⊗n
(I⊗n−1 ⊗X)

)

=

(
e−itZ⊗n

0

0 eitZ
⊗n

)
,

where the last line comes from the application of Lemma 3.2.5. Thus,

Exp(Z⊗n+1, t) =

n−1∏
j=0

CX1,n+1−jRZ,n+1(2t)

n−1∏
j=0

CX1,n+1−j ,

proving Pn+1.

Example 11. We illustrate the construction of the quantum circuit with the problem of Exam-
ple 10 where n = 2, for the case p = 1. Thus,

U(γ, β) = Exp(HB, β)Exp(Hf , γ) |+⟩⊗2 , ∀γ, β ∈ R .

The circuit is detailed in Figure 3.5.

H
Exp(Hf , γ) Exp(HB, β)

H
=

H RZ(−γ
2 ) • • RX(2β)

H RZ(
γ
2 ) X RZ(−3γ

2 ) X RX(2β)

Figure 3.5: QAOA circuit of Example 10 for p = 1.

Notice that we do not take into account the term 3
4I ⊗ I of Hf in this circuit. More generally,

the term h0...0I
⊗n of Hf never appears on the quantum circuit because it represents a constant

term and does not influence the optimization.

Notice that the choice of QAOA circuit does not ensure (3.4). For example, one can show that
the probability of measuring 00 at the end of the circuit depicted in Figure 3.5 never reaches 1.
Specifically,

p(γ,β)(00) = | ⟨00|Exp(HB, β)Exp(Hf , γ) |+⟩⊗2 |2 < 1

2
, ∀γ, β ∈ R .

However, QAOA satisfies another important property: it uses entangling gates. Each gate
Exp(Zi ⊗ Zj , t), for t ∈ R \ {kπ : k ∈ Z}, entangles the qubits i and j. Indeed, Exp(Zi ⊗ Zj , t) =
CXi,jRZ,j(2t)CXi,j , and unless RZ,j(2t) = I, namely t ∈ {kπ : k ∈ Z}, the CNOT gate oper-
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ates2 and creates entanglement as mentioned in Subsubsection 2.2.4.3. The other gates, which
are one-qubit gates, do not have this power. Entanglement is not necessary to (3.4). However,
Remark 3.1.2 can justify the use of entanglement gate. Indeed, without it, it seems unlikely to
achieve better results than pure classical optimization because the optimizer essentially solves a
classical continuous relaxation.

In fact, the popularity of QAOA originates essentially from the fact that it mimics the adiabatic
schedule (Wurtz and Love, 2022). The n-qubit system verifies the adiabatic condition when
p → ∞ and ensures that for a particular set of parameters, the quantum circuit gives the exact
solution. However, quantum computers’ quality today makes implementations on large instances
impossible. But because the number of gates of the quantum circuit is O(pn2), for small depth
d, QAOA, and more generally VQAs, can already be implemented on current NISQ computers.

3.3 Literature review for QAOA

Many papers have recently addressed the empirical evaluation of QAOA, some also comparing it
with specific implementations of VQAs. We present below a non-exhaustive list of these trends,
we mention several theoretical limitations for specific cases known up to now and we end with
the different leverages that are at stake to improve QAOA performances. This section does not
provide a complete, up-to-date overview of QAOA performances, but rather aims at illustrating
trends on combinatorial problems of interest to the operations research community.

3.3.1 Empirical and theoretical trends on QAOA

Let us begin with the numerical trends of QAOA performances. All the empirical experiments are
presented on small instances because quantum computers’ quality today makes implementations
on large instances impossible, leading to difficult conclusions. Thus, many experiments are done
on classical simulators of quantum computers. Most of the empirical results of QAOA apply to
the MAX-CUT problem because it was initially the first application of QAOA Farhi et al. (2014).

Definition 3.3.1 (MAX-CUT problem). Let G = (V,E) be a undirected graph. A cut in G is
a subset S ⊆ V . We define its cost as the number of edges with one node in S and one node
in V \ S. The MAX-CUT problem aims at finding a cut with maximum cost. A version with
weighted edges can also be defined.

Notice that for the MAX-CUT problem, with the notations of Section 3.2, the objective function
is

f(x) = −
∑

(i,j)∈E

(xi(1− xj) + xj(1− xi)) ,

where xi is 1 if node i is in the cut, 0 otherwise. The Hermitian matrix that corresponds to this
problem is

Hf = −1

2

∑
(i,j)∈E

(1− ZiZj) .

2For t ∈ {kπ : k ∈ Z}, RZ,j(2t) = I. Thus, CXi,jRZ,j(2t)CXi,j = CXi,jCXi,j = I because CNOT is its own
inverse.
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The approximation ratio r mainly quantifies the performance of QAOA as follows:

r =
fQAOA

f∗
,

where fQAOA is the value returned by QAOA, and f∗ is the optimal value. Papers often compare
this ratio with the best-known guaranteed ratio of Goemans-Williamson algorithm Goemans and
Williamson (1995), specifically, r = 0.87856. The seminal paper of QAOA Farhi et al. (2014)
provides a lower bound of r for the specific class of 3-regular graphs for p = 1 that is r = 0.6924.
More precise analytical expressions of the lower bound of the ratio for p = 1 and for some
other typical cases are given in Wang et al. (2018). In addition, the authors of Wurtz and Love
(2021) provide lower bounds of the ratio for larger depth for uniform 3-regular graphs (under
specific assumptions implying the absence of large cycles in the graph): r ≥ 0.7559 for p = 2 and
r ≥ 0.7924 for p = 3.

Several empirical results on MAX-CUT spotlight patterns of optimal parameters and enable
QAOA to exceed Goemans-Williamson bound for some specific instances. Some classes of MAX-
CUT instances studied reveal patterns of optimal parameters. Thus, it seems to offer efficient
heuristics for parameter selection and initialization. For example, the authors of Crooks (2018)
look at the class of Erdös-Rényi graphs (random graphs where an edge appears between two
nodes with probability 0.5) of size up to 17 nodes, where the classical optimizer is an automatic
differentiation with stochastic gradient descent. The authors of Lotshaw et al. (2021) examine
the exhaustive set of graphs with n ≤ 9 nodes, with the gradient-based search BFGS (Broy-
den–Fletcher–Goldfarb–Shanno algorithm Fortran et al. (1992)) for the classical optimizer. Both
exhibit instances that exceed the bound of Goemans-Williamson for small depth, p ≤ 8 and p ≤ 3,
respectively. The sets of unweighted and weighted 3-regular graphs also lead to patterns in Zhou
et al. (2020) for graphs of a maximum size of 22 nodes, also detected in the parameter space of
the Job Shop Scheduling problem Kurowski et al. (2023). But even if the performance of QAOA
sometimes exceeds the Goemans-Williamson bound for the low-depth circuits, it is believed that
p must grow with the instance size to have a chance to outperform the best classical algorithms.
Indeed, for random large-girth d-regular graphs, QAOA with depth p = 11 presents better per-
formances than any known classical algorithms, in the case where the optimal parameters are
found and where d goes to infinity Basso et al. (2021). Notice that the authors of the nominal
paper of QAOA Farhi et al. (2014) tackle also the Sherrington-Kirkpatrick model, well-known
in the spin glass theory. The Hamiltonian of this model represents the energy of n spins with
random coefficients, specifically,

Hf =
1√
n

∑
i<j

hijZiZj ,

where the coefficients hij are chosen independently from a distribution centered in 0 and with
a variance equal to 1. In Farhi et al. (2022), it is shown that, for p = 11, QAOA outperforms
asymptotically with n the standard semidefinite programming algorithm and the spectral relax-
ation.

Some theoretical limits of QAOA are displayed, where the shape of the quantum state produced
by the quantum circuit is at stake. The authors of Bravyi et al. (2020) point out that the symmetry
and locality of this resulting variational state fundamentally limit the performances of QAOA.
Indeed, they show that Goemans-Williamson outperforms QAOA for several instances of the
MAX-CUT problem for any fixed depth p. Consequently, this paper suggests a non-local version
of QAOA to overcome these limitations. The limits of the locality also appear when solving the
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problem of the Maximum Independent Set (MIS). In Farhi et al. (2020), MIS instances are random
graphs of n vertices, with a fixed average degree d̄. Thus, it proves that for depth p ≤ C log(n),
where C is a constant depending on d̄, QAOA cannot return an independent set better than 0.854
times the optimal for d̄ large. Due to this locality issue, the author of Hastings (2019) compares
QAOA with local classical algorithms which also have this locality notion: at each step, the value
of a variable is updated depending on the values of its neighbors, i.e., the variables that share the
same term within the objective function. Namely, after t steps, the value of a variable depends
on all information gathered in its t-neighborhood. Yet, these classical algorithms still outperform
QAOA. A single step of these algorithms outperforms, resp. achieves the same performance
as, a single step of QAOA (p = 1) for MAX-CUT instances, resp. MAX-3-LIN-2 instances.
Notice that given binary variables and a set of linear equations modulo 2 with exactly three
variables, the MAX-3-LIN-2 problem aims at finding a variable value assignment that maximizes
the number of satisfied equations. Several other canonical combinatorial optimization problems
have been tackled with QAOA in recent years. While these examples are limited to numerical
tests on toy instances and do not include comparisons of performance with classical resolutions,
we mention some of them to illustrate the growing interest in solving reference combinatorial
problems with Variational Quantum Algorithms. For instance, in Radzihovsky et al. (2019),
the authors reformulate the Traveling Salesman Problem (TSP) as an appropriate Hamiltonian
matrix and test it on small instances of three and four cities. The authors of Tabi et al. (2020)
reformulate and solve the Graph Coloring problem for a dozen of nodes. The authors of Kurowski
et al. (2023) study the Job Shop Scheduling problem, find a suitable formulation, and implement
it on an artificial instance with three machines and three jobs, each of them containing one or
two operations. We end by citing a benchmark provided in Khumalo et al. (2022), that compares
classical techniques, among them the Simulated Annealing, and quantum techniques including
VQAs on NISQ quantum computers. It applies to the TSP and the Quadratic Assignment
problem and shows that in terms of running time and quality solution, the classical methods
significantly outperform the quantum ones. Notice that besides the latter paper, the mention of
the computation time for VQAs in literature is rare. It could be explained by the fact that most of
the experiments are tested on trivial instances and solved with quantum algorithms simulated on
classical high-performance computers due to the noise on current quantum hardware De Palma
et al. (2023).

3.3.2 Improvements and adaptations of QAOA

Despite the theoretical limitations displayed above, QAOA has leverages (guiding function,
parametrized quantum circuit, classical optimizer, etc.) that are still of interest in the litera-
ture. We display some of these studies on different choices of leverages that empirically improve
QAOA performances.

First, the guiding function is mainly the mean function (3.6) as in the seminal paper of QAOA.
However, both the CVaR function (3.10) and the Gibbs function (3.8) give an alternative to the
mean function and show empirical improvements. For the former, several optimization problems,
such as MAX-CUT, Maximum Stable Set, MAX-3SAT, etc., are solved with QAOA in Bark-
outsos et al. (2020) and show better results with faster convergence. For the latter, the authors
of Li et al. (2020) display better results solving MAX-CUT with this guiding function. Notice
that comparing these improvements is hard because they use different classical optimizers. A
different method to guide the optimization, presented in Amaro et al. (2022) as a Filtering Vari-
ational Quantum Algorithm, substitutes the guiding function for filtering functions. A filtering
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function is a function associated with a filtering operator that, given a Hamiltonian matrix and
a quantum state, essentially modifies the latter by increasing the probability of eigenvectors with
low eigenvalues and decreasing the probability of eigenvectors with high eigenvalues. Empirical
results show improvements in the quality solution and the speed of convergence for the weighted
Max-Cut problem.

Second, the choice of the quantum circuit is challenged in the literature. The underlying ques-
tion is whether the quantum circuit of QAOA (see Subsection 3.2.2) is a good choice for finite
depth p. Several papers suggest better circuits based on empirical results for small depth and
small instances. For example, VQA with the circuit proposed in Barkoutsos et al. (2020) has
better performances than QAOA, or with the Bang-Bang circuit described in Yang et al. (2017).
The benefit of entanglement gates in the circuit is also discussed in Nannicini (2019) without
giving a clear advantage. One can refer to the survey Blekos et al. (2024) for other variants of
quantum circuits. Notice that the authors of Egger et al. (2021) suggest to warm-start QAOA
with either a continuous relaxation or a randomized rounding. This consists of initializing the
quantum circuit with a solution of a continuous relaxation (Quadratic Programming or Semi Def-
inite Programming), respectively with a randomly rounded solution of a continuous relaxation,
instead of the state |+⟩⊗n. In both cases, QAOA performances for small p are better with a
warm-start. Other initialization techniques are proposed in the literature. Among them, the
annealing-inspired method Sack and Serbyn (2021) shows that a random parameters initializa-
tion on random graphs for the MAX-CUT problem is outperformed by the use of a Trotterized
Quantum Annealing initialization. Another proposition is to initialize the parameters by using
Machine Learning models Alam et al. (2020). Specifically, looking for Machine Learning models
that enable the prediction of parameters close to the optimal is relevant because there is an ob-
served correlation between parameters of low-depth and high-depth circuits for some problems.
For instance, this type of initialization empirically reduces the number of iterations of the classical
optimizer of 44.9% on average for MAX-CUT problems.

The choice of the classical optimizer represents another leverage, where both gradient-based
and gradient-free optimizers can be used. The most encountered gradient-based methods used in
VQAs in the literature are the Gradient Descent Ruder (2016), the Broyden–Fletcher–Goldfarb-
Shanno algorithm Fortran et al. (1992), and the stochastic optimization algorithm ADAMKingma
and Ba (2014). As gradient-free methods, we can find the constrained optimization with lin-
ear approximation algorithm COBYLA Powell (1994), the simplex-based algorithm Nelder-
Mead Nelder and Mead (1965), and the simultaneous perturbation stochastic approximation
algorithm SPSA Spall (1992). The authors of Nannicini (2019) advise the choice of a global
optimizer rather than a local optimizer to avoid numerous local optima. In Soloviev et al. (2022),
the authors choose the gradient-free evolutionary algorithm called Estimation of Distribution Al-
gorithm as the classical optimizer. This algorithm generates new solutions from a probabilistic
model that depends on the best solutions of the previous iterations. They empirically show that
it improves the results compared to traditional optimizers as mentioned above. The expression
of the quantum circuit can also produce barren plateaus, hardening the optimization McClean
et al. (2018); Holmes et al. (2022). However, the authors of Mastropietro et al. (2023) indicate
that re-starting the optimization when reaching barren plateaus, where the new parameters are
chosen using a stochastic process, improves QAOA performances on MAX-CUT problems. Notice
that the classical optimization loop is not always required. Indeed, the authors of Brandao et al.
(2018) express that for some classes of QUBO problems, the (near) optimal parameters do not
depend on the instance, allowing to train parameters before executing the quantum circuit only
once. This is called the concentration of parameters and is numerically illustrated on random
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3-regular graphs of 20 nodes for low-depth circuits regarding the MAX-CUT objective function.
We do not list all the possible choices of VQA leverages. The surveys Cerezo et al. (2021); Blekos
et al. (2024) propose other possibilities.

In parallel, several algorithms derived from QAOA are appearing in the literature. An adap-
tation of QAOA is the Recursive-QAOA Bravyi et al. (2022), also called RQAOA. It applies first
several times QAOA to the problem in order to reduce its size, namely the number of variables,
according to the correlation that appears between some variables. Then, it solves with classical
brute force the resulting smaller problem. This algorithm seems to be competitive compared to
QAOA for problems such as MAX-k-CUT. The authors of Zhu et al. (2022) propose another
algorithm, the Adaptive-QAOA, that converges faster than QAOA on some instances of MAX-
CUT. It consists of applying recursively QAOA, increasing step by step the depth of the quantum
circuit.

Eventually, there is ongoing work on the formulation and implementation of the QAOA circuit
to ease and lighten QAOA implementation. For instance, the authors of Nüßlein et al. (2022)
present an algorithmic method to reduce the growth of the QUBO matrix size with the problem
size for the k-SAT problem and the Hamiltonian Cycles problem. Besides that, the authors
of Herrman et al. (2021) expose a global variable substitution method that, given an initial linear
formulation of a 3-SAT problem, exploits the advantage of product representation in QAOA and,
thus, minimizes the circuit depth3. The shallower depth, the more efficient the implementation
of the quantum circuit for NISQ computers. A different approach is proposed in Nagarajan et al.
(2021), that is, given a quantum circuit, minimizes the circuit depth by solving a Mixed-Integer
Program, with an optimality guarantee on the quantum circuit produced (it can find up to 57%
reduction of the number of gates). It applies to any gate-based quantum algorithm and thus, can
be applied to QAOA and, more generally, to VQAs.

Notice that solving combinatorial optimization problems using QAOA involves first formulating
them into unconstrained problems, and more precisely into QUBO for easier circuits. There are
essentially two types of formulation. The first and most common one is to integrate constraints as
suitable penalty terms into the objective function. For instance, in Lucas (2014) we find formula-
tions of Karp’s 21 NP-complete problems, and the authors of Oh et al. (2019) tackle the k-coloring
graph problem with the same method. The tutorial Glover et al. (2022) addresses more general
cases for this formulation problem methodology. The second type of formulation is to change
the expression of the mixing Hamiltonian (referred to as HB in Section 3.2). Initially presented
in Hadfield et al. (2019), the main idea is to make this Hamiltonian varying the quantum state
only in the feasible search space. Some problems have been specifically studied with this method,
such as the Traveling Salesman problem Ruan et al. (2020); Radzihovsky et al. (2019). Notice
that there exists a third way to deal with constrained problems, which relies on the quantum
Zeno dynamics. This consists of a generic method that essentially projects the quantum states
into the feasible space Herman et al. (2023). This requires auxiliary qubits which are measured
in the middle of VQA or QAOA circuit. This shows improvements of QAOA’s performances,
compared to the method with penalty terms, for the portfolio optimization problem numerically
assessed on instances with less than ten assets.

3Notice that here we talk about the general depth, not p, which is the longest path in the circuit, namely the
maximum number of gates executed on a qubit.
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3.4 Constrained integer optimization

In Section 3.1, we showed that VQAs tackle Polynomial Unconstrained Binary Optimization
(PUBO) problems. However, most real-world combinatorial problems are constrained. Some
constraints are directly related to the definition of the problem, for instance, that a city is
visited exactly once by the salesman in the TSP. Some others express real-world limits, such
as the limited number of seats on a train or the finite size of a knapsack, involving numerical
constants in the description of the problem. In both cases, we need to reformulate the problem
as an unconstrained optimization problem to solve it with VQAs. To remove the constraints,
we integrate them as penalty terms in the objective function. As mentioned in the previous
section, this approach is commonly used in the literature, as presented by Glover et al. (2022)
or by Lucas (2014) to reformulate several NP-hard problems into QUBO problems. Notice that
other techniques to remove constraints have been proposed, such as modifying the circuit of
VQAs to express the constraints (Hadfield et al., 2019). As far as we know, the interest of the
operational research community in these reformulations (by penalizing unfeasible solutions in
their costs) focuses only on QUBO problems because this model can be solved on the majority
of current quantum architectures (gate-based quantum computers and photonic computers with
variational algorithms, or the analog computer of Dwave with quantum annealing).

In this section, we aim to widen the range of problems we can address with VQAs. For that, we
provide a general method to transform any problem with integer variables, a polynomial objective
function, and polynomial constraints into a PUBO problem.

3.4.1 Integration of constraints

First, we present a generic way to remove constraints from a nominal constrained problem and
ensure that the reformulation into the resulting unconstrained problem is valid. Specifically, let
us consider the problem

min
x∈X

f(x) (Nominal)

subject to the set of constraints {k ∈ K}

For each constraint k ∈ K, we define a penalty function penk : X → R+ that satisfies, for x ∈ X ,

penk(x)

{
= 0 if x satisfies constraint k

≥ 1 if x violates constraint k

We reformulate the constrained problem (Nominal) as follows.

Definition 3.4.1. The unconstrained problem, for which we integrate the constraints of the nom-
inal problem as penalty terms in the objective function, is

min
x∈X

f(x) +
∑
k∈K

λkpenk(x) , (Unconstrained)

where the λk > 0 are penalty coefficients.

Thus, the reformulation of (Nominal) into (Unconstrained) not only requires finding the penalty
functions penk, as we will discuss in Subsection 3.4.2, but also needs to set the values of the penalty
coefficients λk. Next, we provide a general lower bound for them.
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Let us note fmin := min{f(x) : x ∈ X} the minimum value of f , fmax := max{f(x) : x ∈ X}
its maximum value, and f∗ := min

x∈X
{f(x) : x respects constraint k, ∀k ∈ K} the optimal value

of (Nominal).

Proposition 3.4.2. If we set, for all k ∈ K,

λk ≥ fmax − fmin ,

thus, we ensure that solving (Nominal) amounts to solving (Unconstrained).

Proof. The smallest value of an unfeasible solution of (Unconstrained) is always larger than the
minimum value of f plus the penalty cost of violating at least one constraint k′, namely, larger
than

fmin + λk′ .

Thus, for λk ≥ fmax − fmin for any constraint k, the smallest value of an unfeasible solution
of (Unconstrained) is larger than

fmin + λk′ ≥ fmin + fmax − fmin = fmax > f∗ .

Moreover, by definition of the penalty function, the values of the objective function of the two
problems coincide on feasible solutions. Consequently, the optimal value of (Nominal), and its
corresponding solution, is equal to the one of (Unconstrained).

Notice that in practice, an upper bound of fmax provides a lower bound for each λk. In this
case, and if fmin ≥ 0, any feasible solution of (Unconstrained) has a lower objective function
value than any unfeasible solution of (Unconstrained). This is worth noting because VQAs are
heuristics, so they do not always find the optimal solution but solutions close to the optimal (in
terms of the loss function). Thus, setting λk ≥ fmax ensures that these solutions are feasible.

In this subsection, we showed that reformulating a constrained problem into an unconstrained
problem amounts to finding the penalty functions for each constraint. Next, we present a broad
class of problems for which we provide the expression of the penalty functions.

3.4.2 Class of eligible problems

We present a class of problems (IP-poly) for which we provide next a method to reformulate them
as PUBO problems. This class contains problems with integer variables, a polynomial objective
function, and polynomial constraints.

Definition 3.4.3. Let n ∈ N be the number of variables and let m ∈ N be the number of
constraints. We call (IP-poly) the following class of problems.

min
x

f(x1, . . . , xn) (IP-poly)

subject to gk(x1, . . . , xn) ≤ 0 , ∀k ∈ [m]

xi ∈ N, ∀i ∈ [n]

where the functions f and gk for any k ∈ [m], are polynomial. Specifically,

min
x

∑
γ=(γ1,...,γn)∈Γ

αγx
γ1
1 . . . xγnn (IP-poly)
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subject to
∑

γ=(γ1,...,γn)∈Γk

βk,γx
γ1
1 . . . xγnn ≤ 0 , ∀k ∈ [m] (Ck)

xi ∈ N, ∀i ∈ [n]

where Γ ⊆ Nn is a finite set and αγ ∈ R for γ ∈ Γ; and for all k ∈ [m], Γk ⊆ Nn is a finite set
and βk,γ ∈ Z for γ ∈ Γk.

3.4.3 Transformation into PUBO

The two steps to transform any problem of (IP-poly) into a PUBO problem are the follow-
ing. First, we transform the integer variables into binary variables. Second, we integrate the
constraints into the objective function as penalty terms. Let us specify each of these steps.

Transformation of integer variables into binary variables We replace each integer vari-
able xi, for i ∈ [n], by its binary decomposition

xi =

⌊log2(x)⌋∑
j=0

x
(j)
i 2j .

Thus, this decomposition requires ⌊log2(x)⌋+ 1 binary variables x
(j)
i ∈ {0, 1}.

Integration of the constraints into the objective function as penalty terms Let us
consider the constraint (Ck) ∑

γ=(γ1,...γn)∈Γk

βk,γx
γ1
1 ...x

γn
n ≤ 0 . (Ck)

This step aims to find a penalty function for the above-mentioned constraint. Notice that after
the first step, all variables are binary, so the integer variables of the left-hand side of (Ck) would
be replaced by their binary description, adding more terms to the sum. To ease the reading, we
assume henceforth that all the xi are binary variables. It results the following upper bound∣∣∣∣∣∣

∑
γ∈Γk

βk,γx
γ1
1 ...x

γn
n

∣∣∣∣∣∣ ≤
∑
γ∈Γk

|βk,γ | =: UBk .

Thus, we define the penalty function associated with Constraint (Ck) as follows.

Proposition 3.4.4. For k ∈ [m], the function

penk(x1, . . . , xn) =

UBk∏
j=0

∑
γ∈Γk

βk,γx
γ1
1 ...x

γn
n + j


is a penalty function for Constraint (Ck).

Proof. On the one hand, if (x1, . . . , xn) satisfies the constraint, it means that
∑

γ∈Γk
βk,γx

γ1
1 ...x

γn
n

takes a value in J−UBk, 0K and then there exists j ∈ J0,UBkK that makes the product equal
to 0, i.e. penk(x1, . . . , xn) = 0. On the other hand, if (x1, . . . , xn) violates the constraint,
the term

∑
γ∈Γk

βk,γx
γ1
1 ...x

γn
n is strictly positive. Precisely, because each βk,γ is in Z, the term∑

γ∈Γk
βk,γx

γ1
1 ...x

γn
n cannot be small than 1, leading to penk(x1, . . . , xn) ≥ 1.
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3.5 Conclusion

In this chapter, we studied the class of Variational Quantum Algorithms, and the Quantum Ap-
proximate Optimization Algorithm (QAOA) in particular, which are hybrid heuristics and repre-
sent the first numerical applications of quantum computing for solving combinatorial problems.
Because these algorithms address unconstrained problems, we also proposed a generic method to
reformulate constrained problems into unconstrained ones. In the next chapter, we will tackle a
railway timetabling problem of SNCF with QAOA, illustrating both the reformulation and the
resolution stakes.
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4

Application to a railway timetabling
problem

SNCF has to handle numerous and hard decision-making and optimization challenges, which
directly impact the company’s performance in terms of production efficiency, operational per-
formance, and service quality. Currently, SNCF uses operations research techniques to solve
combinatorial optimization problems. While exact methods like linear programming ensure find-
ing the optimal solution, the complexity of the problems and the size of the instances often
require dividing the problems into sub-problems and/or using heuristics. However, these types of
resolutions partially degrade the solutions. The resolution of strategical problems is particularly
decisive, as they precede pre-operational and real-time problems. In this chapter, we focus on one
of them: the railway timetabling problem, for which the model considered by SNCF is NP-hard.
This choice has been guided not only by the current difficulty of solving it with classical methods
but also by its scalability. Indeed, the time scale and geographical perimeter of the planning can
be easily adjusted, making its study on small instances still relevant.

In this chapter, we describe the railway timetabling problem at hand and introduce two sim-
plified models (SCP and Extended-BP), each varying in precision, to make its resolution with
current gate-based quantum machines possible. For each model, we provide a reformulation in
Quadratic Unconstrained Binary Optimization (QUBO) and Polynomial Unconstrained Binary
Optimization (PUBO) problems. Eventually, we illustrate the performance of the Quantum
Approximate Optimization Algorithm (QAOA) for these different reformulations, analyzing the
influence of QAOA’s parameters, on both random and small real instances.

The work on the second simplified model, (Extended-BP), has been a joint work with Marion
Lavignac (intern at SNCF).

4.1 Railway timetabling problem

The railway timetabling problem is a crucial problem for railway companies. Indeed, a first
version of the timetable is planned several years in advance, and is related to other planning
problems, such as crew scheduling or rolling stock scheduling. The goal of timetabling is to en-
sure the satisfaction of customers, the minimization of delays thanks to robustness and resilience
properties, the minimization of costs, and the validation of both operational and security con-
straints. The railway timetabling problem we are considering is the following: according to the
customers’ demand (estimated from past data) and the availability of the network and the rolling
stock, the aim is to find the transportation plan maximizing the operating profit. The output
is a timetable of trains, the associated rolling stock schedule, and a forecast of the passengers
for each train and journey. The optimal solution is the best compromise between the revenues
generated by the customers’ journeys and the production costs (network, rolling stock, human
resources, etc.).

The combinatorial complexity of this problem, which is NP-hard, prevents its efficient resolution
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by current classical computers on large geographical perimeters. It is a key problem for SNCF
because reducing the computation time, improving the solution’s quality, and considering large
perimeters would improve significantly both the customers’ experience and the benefits for the
company. The perimeters at stake for this problem are in the range of the size of a region for the
following reasons. First, the timetabling is historically built by regional poles. Second, planning
at the national level should bring significant improvements to the resulting timetabling, but, as
mentioned earlier, this is not currently possible with classical methods.

Many kinds of timetabling problems are studied in the railway research community. Allocation
of customers to available trains, distribution of resources to trains on the railway network, and
so on lie at the core of the railway work. Such problems are often demonstrated as hard prob-
lems in complexity theory and have therefore raised the scientific community’s interest. Today,
timetabling problems are solved with different methods as listed by Chen et al. (2021): opera-
tional research-based techniques such as graph coloring solvers, meta-heuristics like tabu search
or simulated annealing, and many others. Moreover, quantum algorithms have been recently
investigated and applied to different railway or transportation problems such as seating arrange-
ment (Gioda, 2021), rolling stock planning (Bickert et al., 2021) or traffic navigation (Yarkoni
et al., 2020). The proposed resolutions are executed with the quantum annealing machine of
DWave to deal with instances for which the encoding requires more than a hundred qubits, which
is the average size of current gate-based quantum computers. As far as we know, these types of
resolutions do not show any quantum advantage at this time.

In this section, we propose a resolution of our timetabling with the class of Variational Quantum
Algorithms presented in Chapter 3 and more precisely with QAOA detailed in Section 3.2. This
choice is driven by two aspects. First, we want to explore the empirical part of these metaheuris-
tics we studied theoretically previously. Second, we believe that the gate-based model is worth
investigating for the optimization field because this is a model executing most of the theoretical
algorithms already designed, proving its interest for long-term considerations.

4.1.1 Nominal problem at SNCF

The railway timetabling problem for high-speed trains at SNCF is formulated as an Integer
Linear Programming (ILP). For the sake of confidentially, we provide a basic description of it
while explaining the important ideas to understand the various simplifications proposed below.

Let us first describe the main sets of an instance of our problem.

• S, the set of Train-paths. A train-path is a timed unitary portion of tracks. It defines the
availability to run a carriage over a portion of tracks over a given time period.

• T, the set of available Trains. A train is described as a union of train-paths. A train is
defined by its origin, destination, and the served stations, with departure and arrival times
for each station. A train uses the same carriage throughout the journey.

• G, the set of Groups of customers. A group gathers customers that have the same pref-
erences on journeys, namely, customers wanting to leave, respectively arrive, at the same
station and at the same time.

• R = {(t, g) ∈ T × G : group g accepts to take train t}, the set of possible Customers’
journeys. This set expresses the possibilities to satisfy the customer groups’ demands.

Other sets are required, such as the set expressing the different incompatibilities between train-
paths or the set of trains that can be coupled. Besides sets, many constants appear in the original
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formulation, both in the objective function and in the constraints, such as the maximum capacity
of a carriage, the toll cost of a train-path, or the average receipt for a journey.

Second, let us introduce the variables of this problem, which are binary or integers.

• x ∈ {0, 1}|T |, where xt = 1 iff t ∈ T is used in the timetable

• u ∈ {0, 1}|S|, where us = 1 iff the train-path s ∈ S is used

• z ∈ N|R|, where zr is the number of customers for journey r ∈ R

The objective function leads to finding the timetable providing the best compromise between
customers’ demand satisfaction and production cost. Specifically,

max
xt,us,zr

α(zr)− β(xt, us) ,

where α(zr) is a linear function representing the receipts generated by selling tickets and β(xt, us)
is a linear function representing the total cost associated with the use of train-paths and carriages.
An optimal solution to our problem is a feasible timetable that maximizes the above loss function.
The feasibility of a timetable is defined by many linear constraints such as forbidding customers to
take a train not used in the timetable, ensuring that the maximum capacity of a train is satisfied
on each train-path, or setting a minimum daily frequency for a given journey. In practice, this
railway timetabling problem requires about twenty sets and constants to define an instance of
the nominal problem, while it requires four types of binary or integer variables, a linear function,
and ten types of linear constraints, two of which are soft constraints. Today, SNCF solves it
with the CPLEX solver and, for many instances, rarely ends in finding the optimal solution. For
example, the optimal solution of the problem for the sector between Paris and Lyon is found
within a second whereas the solution for timetabling of the inter-regional trains has a gap of 67%
from the optimal solution after 10 minutes of running. No solution is found for larger instances
such as the perimeter of the entire metropolitan French territory.

To solve this railway timetabling problem with quantum-classical metaheuristics on current
quantum machines, or classical simulators of quantum machines, we need to simplify it by putting
aside some assumptions. Indeed, the size of the problem would be too large even considering
instances on small sectors and for a short period (several days). For example, if we consider the
instance on the sector Paris-Lyon for on day only, which covers 6 stations, it amounts to 176
customer groups for around 25 000 customers, 87 trains, 157 train-paths leading to a nominal
problem with 8 000 binary variables. Additionally, Variational Quantum Algorithms require
unconstrained problems (QUBO or PUBO problems), integrating constraints in the objective
function costs in terms of additional variables (for QUBO reformulation) and additional gates
(for QUBO and PUBO reformulation) as explained in Chapter 3. As an example, the QUBO
formulation of the above-mentioned instance requires roughly 12 000 additional qubits, ending
up to 20 000 qubits for the total description of the instance. This size prohibits a resolution on
current gate-based quantum hardware that does not exceed a hundred qubits, without mentioning
the high connectivity that would be necessary. While keeping the essence of the initial problem
of timetabling, our simplification allows formulating the problem as a Set Cover Problem, or as
an extended version of a Bin Packing problem, as we detail next.

4.1.2 Simplification to Set Cover and Extended Bin Packing problems

In this subsection, we present two simplifications of the nominal railway problem, first in (SCP)
which is simpler and second in (Extended-BP) which gets closer to the nominal problem, although
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still simplified.

Set Cover Problem simplification Let us present the simplified version of the nominal prob-
lem that results in a Set Cover Problem (SCP). This simplification highly reduces the feasibility
and the quality of the solution but maintains the core of the original problem. As mentioned
earlier, this simplification is essentially motivated by two things. The first one is to reduce the
number of qubits to describe an instance. The second one is to ease the transformation of the
constrained problem into an unconstrained one, avoiding adding too many qubits for the descrip-
tion of the new problem, and too many gates for the implementation of the quantum circuit of
VQAs. Moreover, the SCP is NP-hard as the nominal problem, which comforts the interest of
this choice.

The simplification is done as follows. First, we approximate the production cost of a timetable
by the number of trains it contains. Second, we impose that each customer groups’ demand must
be satisfied, namely that each group takes a train on its demand (i.e. a train that it accepts).
This leads to the resulting SCP below.

Let m ∈ N be the number of customer groups and n ∈ N the number of available trains. We
define

• G := {g1, . . . , gm}, a set of m ∈ N customer groups.

• T := {T1, . . . , Tn}, the set of n ∈ N available trains, where each train Ti ⊆ G is the set of
groups that accept to take this train.

We consider that a customer group gk, for k ∈ [m], is satisfied if at least one of the trains matching
its demand (the Ti such that gk ∈ Ti) is in the output timetable.

In this setting, a customer group is an element and a train is a subset of the SCP. The SCP aims
at finding the minimum number of subsets covering all the elements. Thus, an optimal solution
of SCP is a set of trains of minimum cardinality such that each customer group is satisfied.
Mathematically, it is formulated as follows.

Definition 4.1.1 (Set Cover Problem). We consider the Set Cover Problem

min
x

n∑
i=1

xi (SCP)

subject to
n∑

i=1

akixi ≥ 1, ∀k ∈ [m] (Satisf)

xi ∈ {0, 1}, ∀i ∈ [n]

where the binary variables indicate which available train is taken in the timetable, namely, ∀i ∈ [n],

xi =

{
1 if train Ti is used in the timetable

0 else

and the coefficients of the constraints express the customer demands, namely, ∀i ∈ [n], ∀k ∈ [m],

aki =

{
1 if gk ∈ Ti, i.e. gk accepts train Ti

0 else
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This simplification is convenient because the number of qubits, i.e. the number of binary
variables, is exactly the number of available trains. Thus, we do not take into account the
number of customers, which drastically reduces the number of qubits necessary to describe, and
then to solve, an instance. Moreover, we show in the next section that the SCP constraints are
easy to integrate as penalty terms in the objective function, and under some assumptions, do not
introduce extra qubits for the QUBO formulation.

Notice that we could easily introduce the cost production related to trains by weighting each
binary variable with the cost of using a train in the objective function. It would transform the
SCP into a weighted SCP. However, the SCP modelization is already simplified to the maximum
and thus represents a toy problem to understand what is at stake when solving optimization
problems with hybrid metaheuristics, so we omit these weights.

Let us present below a different version of the SCP to get a model a bit closer to the real
timetabling problem and to pinpoint the obstacles to scaling this problem to a resolution on cur-
rent quantum hardware. This model is more realistic because it takes into account the maximum
capacity of carriages and does not impose to satisfy all customer groups’ demands. Indeed, it
avoids using trains for only a small number of customers. Consequently, the introduction of the
maximum capacity constraints increases the number of variables because it requires variables to
assign groups to trains.

Extended Bin Packing simplification For this simplification, we still consider m groups of
customers, respectively n available trains, described as for the SCP by the set G = {g1, . . . , gm},
respectively T = {T1, . . . , Tn}. Additionally, we suppose that each group contains the same
number of customers. The latter assumption does not cause too much loss of generality because
one can always define the smallest group as a unit and duplicate groups that are bigger. For each
available train Ti, i ∈ [n], we specify

• pi, the benefit of selling tickets to one group for train Ti

• ci, the cost of using train Ti

We note CMax the maximum number of groups a carriage can accommodate, i.e. the maximum
capacity of a carriage divided by the (fixed) number of customers in a group. We define below
the problem considered, called Extended Bin Packing.

Definition 4.1.2 (Extended Bin Packing problem). The binary decision variables for the Ex-
tended Bin Packing problem are of two types. The first one indicates if the train is taken in the
timetable: ∀i ∈ [n],

xi =

{
1 if Ti is taken in the timetable

0 else

The second assigns groups to trains in the timetable: ∀i ∈ [n],∀j ∈ [m],

yij =

{
1 if group gj takes train Ti

0 else

Notice that we declare a variable yij if and only if gj ∈ Ti, namely that train Ti can satisfy
group gj. It avoids unnecessary variables and reduces the number of y variables from nm to
q :=

∑n
i=1 |Ti|. Eventually, the problem is stated as follows, which can be seen as a sort of Bin

Packing problem. In our case, each bin has a different capacity, and not every item has to be put
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in a bin because we are rather looking for the best compromise between the cost of using bins and
the reward of putting items into bins. Hence its name, the Extended Bin Packing problem.

min
x,y

n∑
i=1

cixi −
n∑

i=1

∑
j∈[m]:
gj∈Ti

piyij (Extended-BP)

subject to
∑
i∈[n]:
gj∈Ti

yij ≤ 1, ∀j ∈ [m] (Uni)

∑
j∈[m]:
gj∈Ti

yij ≤ CMax · xi, ∀i ∈ [n] (Capa)

xi ∈ {0, 1}, ∀i ∈ [n]

yij ∈ {0, 1}, ∀i ∈ [n], j ∈ [m] such that gj ∈ Ti

Constraint (Uni) ensures that no customer group takes two trains or more in the timetable, and
Constraint (Capa) both expresses the limited capacity of a carriage and forbids a group to take a
train unused in the timetable.

4.2 Reformulations of simplified problems

In this section, we propose several reformulations of the two simplified problems (SCP)
and (Extended-BP) into unconstrained problems to solve them with VQAs later. We remind
that the current maturity of gate-based quantum computers (small number of qubits, low con-
nectivity, high error rate of quantum operations, etc.) does not enable to implement algorithms
requiring deep depth of consecutive operations and numerous auxiliary qubits additional to the
description of the instance on such quantum devices. Hence the use of hybrid quantum-classical
heuristics to solve combinatorial problems today. For that, we need to reformulate each of the
two simplified problems as Polynomial Unconstrained Binary Optimization (PUBO) problems. In
what follows, we present such reformulations, amounting to integrate the constraints as penalty
terms in the objective function because the variables are already binary. We also reformulate
them as QUBO problems to compare the two reformulations later.

4.2.1 Set Cover Problem into PUBO and QUBO

In (SCP), there is only one type of constraint, Constraint (Satisf). For k ∈ [m], the constraint
is equal to a sum of Nk binary variables, where Nk :=

∑n
i=1 aki represents the number of trains

accepted by group gk. Specifically, the constraint is

xi1 + . . .+ xiNk
≥ 1 (Satisfk)

where {Ti1 , . . . , TiNk
} is the set of trains accepted by gk.

Proposition 4.2.1 (Penalty term of Constraint (Satisfk)). The penalty function of Con-
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straint (Satisfk) is the following polynomial function of degree Nk. For x ∈ {0, 1}n,

penk(x) =

iNk∏
i=i1

(1− xi) . (4.1)

Proof. One readily verifies that this function penalizes the solutions that violate the con-
straint (Satisfk). Indeed,

penk(x) =

{
0, if ∃i ∈ {i1, . . . , iNk

} such that xi = 1

1, if xi = 0 for all i ∈ {i1, . . . , iNk
}

=

{
0, if x satisfies (Satisfk)

1, otherwise

It results in the PUBO reformulation below.

Proposition 4.2.2 (SCP into PUBO). The reformulation of (SCP) into a PUBO problem is

min
x∈{0,1}n

n∑
i=1

xi +
∑
k∈[m]

λkpenk(x) (SCP-PUBO)

where λk ≥ 0 for any k ∈ [m], and where the penalty function is defined in Proposition 4.2.1

We recall that any feasible solution of (SCP) has the same loss function value as
for (SCP-PUBO), and by extension, the optimal solution(s) is (are) kept identical for λk large
enough.

Henceforth, we work on 2-SCP which we define below.

Definition 4.2.3 (2-SCP). We define 2-SCP as the problem (SCP) where each element is at
most in two subsets, namely

∑n
i=1 aki ≤ 2 for each k ∈ [m].

In other words, working on 2-SCP supposes that each customer group accepts to take at most
two different trains. This assumption is reasonable because the nominal railway timetabling
problem is dedicated to high-speed trains, so two consecutive available trains from the same
origin and the same destination leave at a relatively long time interval, minimizing the number of
customers that would accept to take three or more trains. We choose to work on 2-SCP because
the resulting penalty functions (4.1) are linear or quadratic (because we assume that Nk ∈ {1, 2}
in 2-SCP), meaning that (SCP-PUBO) is, in reality, a QUBO problem and thus is not too heavy
to handle on current computers. Moreover, as mentioned earlier, because a generic QUBO is
already NP-hard to solve, the interest of studying empirically such problems is still valid.

2-SCP features two types of constraints. Those stemming from customer groups accepting only
one train. We note I1 the indexes of these trains, namely I1 := {i ∈ [n] : ∃k ∈ [m] such that gk ∈
Ti and gk /∈ ∪j ̸=iTj}. For i ∈ I1, the constraint is

xi ≥ 1 .

The other type of constraint stems from customer groups accepting exactly two trains. We note
I2 the couples of indexes of these trains, namely I2 := {(i, j) ∈ [n]2 : ∃k ∈ [m] such that gk ∈
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Ti ∩ Tj and gk /∈ ∪l ̸=i,jTl}. For (i, j) ∈ I2, the constraint is

xi + xj ≥ 1 .

Thus, the QUBO formulation of 2-SCP is the following.

Proposition 4.2.4 (2-SCP into QUBO). The reformulation of 2-SCP as a QUBO problem is

min
x∈{0,1}n

n∑
i=1

xi + λ1
∑
i∈I1

(1− xi) + λ2
∑

(i,j)∈I2

(1− xi)(1− xj) (2-SCP-QUBO)

for λ1, λ2 ∈ R∗
+.

Notice that we set equal all penalty coefficients related to the same type of constraint. Indeed,
intuitively, there is no reason to weight one constraint more than another if they are of the same
type and the trains’ costs are assumed to be identical.

4.2.2 Extended Bin Packing problem into PUBO and QUBO

To transform (Extended-BP) into a PUBO problem, we need to integrate two different types of
constraints. The penalty functions we propose next have the particularity to be equal to 1 if the
constraint is violated and 0 otherwise. The choice of such binary functions is motivated by the
fact that knowing the cost of the violation (always equal to 1 here) is convenient for controlling
the overall violation cost as we will see in the last section of this chapter.

In what follows, we provide penalty functions (of binary values) of generic equality and inequal-
ity constraints, where the variable-dependant term is the sum of binary variables, that encompass
the case of the constraints (Unij) and (Capai). We express the corresponding penalty terms for
these two specific constraints after. Let us begin with the penalty term for equality constraints.

Property 4.2.5. Let us consider the constraint, for n ∈ N,
n∑

i=1

xi = c . (Eq)

For c ∈ N∗, the penalty function is, for x ∈ {0, 1}n,

πeqc (x) = 1 +
n∑

k=c

(−1)k−c+1

(
k

c

) ∑
i={i1,...,ik}∈Ink

xi1 . . . xik ,

where Ink denotes all the sets of k elements in [n]. For the specific case of c = 0, the penalty
function is

πeq0 (x) =

n∑
k=1

(−1)k+1
∑
i∈Ink

xi1 . . . xik .

Proof. Let x ∈ {0, 1}n. Let us begin with the case c = 0.

• If x satisfies (Eq), then
∑n

i=1 xi = 0 by definition, and it directly results that πeq0 (x) = 0.

• If x violates (Eq), then we note α :=
∑n

i=1 xi. By definition of the violation, α ∈ J1, nK.
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Thus, because for k > α, any product of k variables is equal to 0,

πeq0 (x) =

α∑
k=1

(−1)k+1
∑
i∈Iαk

xi1 . . . xik

=
α∑

k=1

(−1)k+1

(
α

k

)

= −

(
α∑

k=0

(−1)k
(
α

k

)
− 1

)

= 1−
α∑

k=0

(−1)k1α−k

(
α

k

)
= 1 . (Newton binomial formula)

Let us next consider the case c ∈ N∗.

• If x satisfies (Eq), then it exists c variables equal to 1. Let us refer to them as x̂1, . . . , x̂c.
Thus,

∑
i∈Inc xi1 . . . xic = x̂1 . . . x̂c = 1, and

∑
i∈Ink

xi1 . . . xik = 0 for k > c. It results that

πeqc (x) = 1 + (−1)c−c+1

(
c

c

)
· 1 = 1− 1 = 0 .

• If x violates (Eq), then by definition
∑n

i=1 = α ̸= c:

– If α < c, thus
∑

i∈Ink
xi1 . . . xik = 0 for any k ≥ c, leading to πeqc (x) = 1− 0 = 1.

– If α > c, thus
∑

i∈Ink
xi1 . . . xik =

(
α
k

)
for any c ≤ k ≤ α, and

∑
i∈Ink

xi1 . . . xik = 0 for

any k > α. It results that

πeqc (x) = 1−
α∑

k=c

(−1)k−c+1

(
k

c

)(
α

k

)
,

where we can show by manipulating factorials that(
k

c

)(
α

k

)
=

(
α

c

)(
α− c
k − c

)
.

Thus,

πeqc (x) = 1−
α∑

k=c

(−1)k−c+1

(
α

c

)(
α− c
k − c

)

= 1 +

(
α

c

) α−c∑
k=0

(−1)k
(
α− c
k

)
= 1 +

(
α

c

)
(1− 1)α−c = 1 .
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Property 4.2.6. We consider the constraint, for n ∈ N and c ∈ N,
n∑

i=1

xi ≤ c . (Inf)

The associated penalty function is, for x ∈ {0, 1}n,

πinfc (x) =
n∑

k=c+1

(−1)k−c+1

(
k − 1

c

)∑
i∈Ink

xi1 . . . xik .

Proof. Let x ∈ {0, 1}n.

• If x satisfies (Inf), then
∑

i∈Ink
xi1 . . . xi1 = 0 for any k > c. Thus, πinfc (x) = 0.

• If x violates (Inf), let us note
∑n

i=1 xi = α > c. Thus,

∑
i∈Ink

xi1 . . . xik =

{(
α
k

)
for k ∈ Jc+ 1, αK

0 for k > α

It results that

πinfc (x) =
α∑

c+1

(−1)k−c+1

(
k − 1

c

)(
α

k

)
.

Next, we prove by recurrence over c ∈ J0, α− 1K the proposition

P(c) : “πinfc (x) = 1, for all x ∈ {0, 1}n violating (Inf)”

Initialization: P(α − 1) is True. Indeed, for x violating (Inf), πinfα−1(x) =

(−1)α−(α−1)+1
(
α−1
α−1

)(
α
α

)
= 1.

Recurrence: Let c ∈ J1, α − 1K, and let us assume that P(c) is True. Let us show that
P(c− 1) is also True. For x violating (Inf),

πinfc−1(x) =
α∑

k=c

(−1)k−c

(
k − 1

c− 1

)(
α

k

)

= (−1)c−c

(
c− 1

c− 1

)(
α

c

)
+

α∑
k=c+1

(−1)k−c

(
k − 1

c− 1

)(
α

k

)

=

(
α

c

)
−

α∑
k=c+1

(−1)k−c+1

((
k

c

)
−
(
k − 1

c

))(
α

k

)
(Pascal’s triangle)

=

(
α

c

)
−

α∑
k=c+1

(−1)k−c+1

(
k

c

)(
α

k

)
+

α∑
k=c+1

(−1)k−c+1

(
k − 1

c

)(
α

k

)
︸ ︷︷ ︸

πinf
c (x)

=

(
α

c

)
−

α∑
k=c+1

(−1)k−c+1

(
k

c

)(
α

k

)
+ 1 . (Recurrence hypothesis)
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Identically to the proof of the penalty term of constraint (Eq) for the case c ∈ N∗, we can
show that

α∑
k=c+1

(−1)k−c+1

(
k

c

)(
α

k

)
=

(
α

c

)
.

Thus, it results that πinfc−1(x) =
(
α
c

)
−
(
α
c

)
+ 1 = 1.

Next, we define a penalty term for inequality constraints. Property 4.2.6 deals with the inferi-
ority case whereas Property 4.2.7 tackles the superiority case.

Property 4.2.7. We consider the constraint, for n ∈ N and c ∈ N∗,

n∑
i=1

xi ≥ c . (Sup)

The associated penalty function is, for x ∈ {0, 1}n,

πsupc (x) = 1 +

n∑
k=c

(−1)k−c+1

(
k − 1

c− 1

)∑
i∈Ink

xi1 . . . xik .

Proof. Let x ∈ {0, 1}n. It is sufficient to show that πsupc (x) = πeqc (x)−πinfc (x), for c ∈ N∗. Indeed,
if we note α :=

∑n
i=1 xi, we have the following results.

• If x satisfies (Sup) (meaning that α ≥ c):

– If α = c : πeqc (x) = πinfc (x) = 0, thus πsupc (x) = 0

– If α > c : πeqc (x) = πinfc (x) = 1, thus πsupc (x) = 0

• If x violates (Sup) (meaning that α < c), we have πeqc (x) = 1 and πinfc (x) = 0, leading to
πsupc (x) = 1

Thus, it remains to prove that πsupc (x) = πeqc (x)− πinfc (x).

πeqc (x)− πinfc (x) = 1 +

n∑
k=c

(−1)k−c+1

(
k

c

)∑
i∈Ink

xi1 . . . xik −
n∑

k=c+1

(−1)k−c+1

(
k − 1

c

)∑
i∈Ink

xi1 . . . xik

= 1 + (−1)c−c+1

(
c

c

)∑
i∈Inc

xi1 . . . xik +

n∑
k=c+1

(−1)k−c+1

((
k

c

)
−
(
k − 1

c

))∑
i∈Ink

xi1 . . . xik

= 1− (−1)c−c+1

(
c− 1

c− 1

)∑
i∈Inc

xi1 . . . xik +

n∑
k=c+1

(−1)k−c+1

(
k − 1

c− 1

)∑
i∈Ink

xi1 . . . xik

= 1 +

n∑
k=c

(−1)k−c+1

(
k − 1

c− 1

)∑
i∈Ink

xi1 . . . xik

= πsupc (x) .
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It results from the previous properties the following penalty terms for the Extended Bin Packing
problem. The first constraint of (Extended-BP), expressing that a group takes at most one train,
is the following: for all j ∈ [m], ∑

i∈[n]:
gj∈Ti

yij ≤ 1 . (Unij)

It follows the expression of the penalty term.

Proposition 4.2.8 (Penalty term for Constraint (Unij)). Let j ∈ [m] and let us note Gj the set
of indexes of trains accepted by group gj. The function, for x ∈ {0, 1}n, y ∈ {0, 1}q,

penUnij(x, y) =

|Gj |∑
k=2

(−1)k(k − 1)
∑

I=(i1,...,ik)⊆Gj :
|I|=k

yi1,j . . . yik,j

is a penalty term for Constraint (Unij).

Proof. Use Property 4.2.6 for the binary variables yij such that i ∈ Gj , and for the constant
c = 1.

The second type of constraint of (Extended-BP), the capacity constraint, is the following: for
all i ∈ [n], ∑

j∈[m]:
gj∈Ti

yij ≤ CMax · xi . (Capai)

Its penalty function is described below.

Proposition 4.2.9 (Penalty term for Constraint (Capai)). Let i ∈ [n]. The following function
is a penalty term for Constraint (Capai). For x ∈ {0, 1}n, y ∈ {0, 1}q,

penCapai(x, y) = (1− xi) · pen0(x, y) + xi · pen1(x, y) ,

where

pen0(x, y) =

|{j:i∈Gj}|∑
k=1

(−1)k+1
∑

J⊆{j:i∈Gj}:
|J |=k

yi,j1 . . . yi,jk

and

pen1(x, y) =

|{j:i∈Gj}|∑
k=CMax+1

(−1)k−CMax+1

(
k − 1

CMax

) ∑
J⊆{j:i∈Gj}:

|J |=k

yi,j1 . . . yi,jk .

Proof. We distinguish two cases.

• If xi = 0, then we use Property 4.2.5 for the binary variables yij such that j ∈ {j : i ∈ Gj},
and for the constant c = 0, which provides the term pen0(x, y).

• If xi = 1, then we use Property 4.2.6 for the binary variables yij such that j ∈ {j : i ∈ Gj},
and for the constant c = CMax, which provides the term pen1(x, y).
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Eventually, we can add the two term as follows, each one appearing when the condition on xi is
satisfied, to obtain the final penalty function: (1− xi) · pen0(x, y) + xi · pen1(x, y).

Notice that we do not use Property 4.2.7 for the constraints of our problem, but we presented
it to provide all the generic cases. It results from the two propositions above the reformulation
of our simplified problem (Extended-BP) into a PUBO problem.

Proposition 4.2.10 (Extenced-BP into PUBO). The reformulation of (Extended-BP) as a
PUBO problem is:

min
x∈{0,1}n
y∈{0,1}q

n∑
i=1

cixi −
n∑

i=1

∑
j∈[m]:
gj∈Ti

piyij (Extended-BP-PUBO)

+
m∑
j=1

λu,jpenUnij(x, y) +
n∑

i=1

λc,ipenCapai(x, y) ,

where λu,j , λc,i ∈ R∗
+ for all j ∈ [m], i ∈ [n] are the penalty coefficients, and where the penalty

functions are defined in Propositions 4.2.8 and 4.2.9.

Next, we present a reformulation into a QUBO problem and show that it requires auxiliary
qubits, and thus weakens the interest of such a formulation for VQAs.

Proposition 4.2.11 (Quadratic penalty terms of Constraints (Unij) and (Capai)). The penalty
term for the first Constraint (Unij) is, for j ∈ [m],

penUniQuboj(x, y, s) =

∑
i∈Gj

yij + sj − 1

2

,

where sj is an additional binary variable. The penalty term for the second constraint (Capai) is,
for i ∈ [n],

penCapaQuboi(x, y, r) =

 ∑
j:i∈Gj

yij − CMax · xi + ri

2

,

where ri ∈ J0,CMaxK is an additional integer variable.

In the binary model, we replace ri by its binary expression rbini :=
∑⌊log2(CMax)⌋

l=0 2k · rbini,k , for

rbini,k ∈ {0, 1}. In total, the penalty constraints require roughly (m + n · log2(CMax)) additional
binary variables to the initial Extended Bin Packing problem to express the following QUBO
formulation.

Proposition 4.2.12 (Extended-BP into QUBO). The reformulation of (Extended-BP) as a
QUBO problem is

min
x∈{0,1}n,
y∈{0,1}q
s∈{0,1}m,

rbin∈{0,1}n·log2(CMax)

n∑
i=1

cixi −
n∑

i=1

∑
j∈[m]:gj∈Ti

piyij (Extended-BP-QUBO)
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+
m∑
j=1

λu,jpenUniQuboj(x, y, s) +
n∑

i=1

λc,ipenCapaQuboi(x, y, r
bin) ,

where λu,j , λc,i ∈ R∗
+ for all j ∈ [m], i ∈ [n] are the penalty coefficients, and where the penalty

functions are defined in Proposition 4.2.11.

Not only does the QUBO formulation require additional qubits but it also has penalty terms
that take integer values (and not binary values such as in the PUBO formulation). These two
drawbacks are discussed in Subsection 4.3.2, together with numerical results of the resolutions
with QAOA of several instances of 2-SCP and Extended Bin Packing problem.

4.3 Resolution with QAOA

4.3.1 Influence of QAOA parameters

In this subsection, we study the impact of some parameters of QAOA on its performance. First,
we identify some limitations due to the choice of QAOA circuit. Second, we examine the influence
of depth on the latter circuit. Notice that we do not provide an exhaustive description of the
limits and advantages of QAOA but we rather aim to point out some trends to understand better
the performances of QAOA to solve problems with current quantum hardware, namely, on small
instances.

4.3.1.1 QAOA circuit covering

In what follows, we discuss the expression of the parametrized quantum circuit of QAOA and
its impact on the sharpness of covering the quantum space. We showed in Section 3.1 that the
choice of the quantum circuit to define a VQA is important. Indeed, it requires finding a trade-off
between the number of parameters to be optimized classically and the sharpness to produce any
quantum state and be able to set a large weight on the basis state(s) corresponding to the optimal
solution(s). Hereafter, we exhibit some results showing the limits of the design of QAOA’s circuit.

Let us begin with an example. We consider the following minimization problem

min
x1,x2∈{0,1}

−10x1 + 5x2 − 3x1x2

for which the optimal solution is (x1 = 1, x2 = 0) for a loss value equal to -10. We show in
Figure 4.1 the energy landscape to be optimized by the classical optimizer by running QAOA
with depth p = 1. For that, we compute the values of the guiding function g, which is the average
function, of each quantum state produced by QAOA circuit for depth p = 1 for each couple of
parameters (γ, β) ∈ [0, 2π]2 (with granularity 0.1).

We compare it with the landscape Figure 4.2 obtained when running VQA with the circuit

U(θ1, θ2) = RY (θ1)⊗RY (θ2) , for (θ1, θ2) ∈ [0, 2π]2 ,

as in Example 6. Notice that we evaluate the same guiding function g as for QAOA, which is the
expectation value of the costs’ solutions.

The energy landscape for QAOA is not stable, explained by the fact that the guiding function
g is essentially a sum of products of sinusoidal functions of γ and β, and then indicates a rather
difficult optimization over γ and β. Moreover, we notice that the optimal value -10 is never
reached because the circuit cannot produce the pure basis state |10⟩ representing the optimal
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Figure 4.1: Guiding function values of quantum states produced by QAOA circuit for depth
p = 1.

Figure 4.2: Guiding function values of quantum states produced by circuit U(θ1, θ2).

solution (1, 0). For the chosen granularity 0.1, the produced quantum state with the largest
probability on the optimal state is a state with a probability equal to 0.863 for |10⟩. On the
contrary, the landscape for VQA with circuit U(θ1, θ2) is smoother and reaches the optimal state
with probability 1. This small example focuses on the limits of QAOA circuit for depth p = 1
and the necessity to increase the depth to sharpen the covering of quantum states.

Next, we illustrate in Figure 4.3 this phenomenon on 2-SCP (Definition 4.2.3). For a given
number of available trains (which is exactly the size of the instance), we generate 20 random
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Figure 4.3: Average maximum probability of the optimal solution for quantum states produced
by QAOA circuit of depth p = 1 over 20 random 2-SCP instances.

2-SCP instances and approximate the average maximum probability on the optimal solution(s)
when sampling the energy landscape for QAOA with depth p = 1. For that, we proceed as
follows. For each instance, we vary the parameters (γ, β) in [0, 2π]2 (with granularity 0.1). For
each couple of parameters, we sample with 1024 shots (on the 32-qubit QASM simulator of IBM)
the quantum state resulting from the execution of the parametrized quantum circuit. We store
the maximum probability of success of the optimal solution(s) over all these couples. Eventually,
we compute the average maximum probability of success for all 2-SCP instances with the same
number of trains.

We notice that the trend of the evolution of the maximum probability of success is to decrease
drastically when the number of trains increases. When reaching instances of 20 trains, the average
maximum probability of the output quantum state is no more than 0.006. In other words, if we
suppose that the classical optimizer finds the optimal parameters (γ∗, β∗) (still with granularity
0.1), the optimal value of the 2-SCP will represent only 0.6% of the measurement outcomes of the
corresponding quantum state. Even if the computation of each maximum probability of success
is an estimation, due to the discretization of real parameters (γ, β) on the one hand, and the
limited number of shots for the sampling on the other hand, these experiments aims at pointing
out a trend.

A legitimate question arising after these first analyses is whether a larger depth would improve
the results of QAOA. On the one hand, the maximum probability of the optimal solution(s)
increases with the depth because any quantum state for the circuit of depth p can be produced
by the circuit of depth p + 1 by setting the two new parameters γp+1 and βp+1 to zero. On the
other hand, the energy landscape gets more complicated with a bigger number of parameters to
optimize classically. Thus, we investigate the influence of the depth next.
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4.3.1.2 Depth of QAOA circuit

The previous analysis led us to investigate the influence of the depth p of QAOA circuit. For all
the numerical results that follow, we implemented our own QAOA on Qiskit (IBM), where the
classical optimizer is chosen to be COBYLA which is provided by the Qiskit Library, and the
execution of the quantum circuit is done on the QASM simulator of 32 qubits. For this work, we
chose to run the quantum circuit on a simulator instead of on a real quantum device because we
focus on depth influence, and more generally on QAOA performances. Thus, we do not want the
noise to interfere with the analysis. Indeed, the current error rate of quantum gates is too high
to have interpretable results on QAOA performances. If we apply N gates in a row that have an
average error rate of τ , the error on one qubit of the output quantum state is 1−(1−τ)N . To this
day, the one-qubit gates on IBM quantum machines have a median error rate of τ ≈ 2.3× 10−4,
which means that applying 100 gates generates around 3% of error. For two-qubit gates, the
error rate goes up to τ ≈ 7.7× 10−3 leading to 54% of error for the same number of gates.

Let us present the results of depth influence on Figure 4.4. For each number of trains between 2
and 8, and for each depth between 1 and 5, we generate 15 random 2-SCP instances and solve each
of them 10 times with QAOA to get an average probability of the optimal solution in the output
quantum state of QAOA (cross line). In other words, the success probability of QAOA represents
the average proportion of the optimal state(s) in the output of QAOA. Notice that, henceforth,
we call output quantum state of QAOA the quantum state produced by the parametrized circuit
for the best parameters found by the classical optimizer. In parallel, for each 2-SCP instance,
we compute the proportion of the optimal solution(s) in the search space and take the average
proportion over all the instances for a given number of trains (dot line). Thus, this proportion
represents the average probability of success of picking randomly one state in the search space
(one random sampling).

Figure 4.4: Average probability of the optimal solution of QAOA’s output quantum state output
over 15 random 2-SCP instances and 10 runs of QAOA (cross line). Comparison with one random
sampling (dot line).

We observe two things. First, the depth does not seem to change the probability of success of
QAOA. We could expect that increasing the depth would improve the performances of QAOA
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because the covering of the quantum state space gets more precise, but the results show that
the classical optimization over the parameters gets harder. Second, QAOA outperforms one
random sampling. However, we note that the exponential decrease of the maximum probability
of the optimal solution, illustrated in Figure 4.3, makes the performances of QAOA closer to one
random sampling performance as the size of the problem increases. But, still, because the success
probability of QAOA is always larger than the proportion of optimal solutions, sampling the
output quantum state of QAOA and sampling randomly the search space with the same number
of samples gives the advantage to QAOA. Thus, it shows that QAOA deform the search space in
favor of the optimal solution(s). Despite this, the comparison reaches its limit here because the
resources of QAOA to achieve such a distortion are huge (classical optimization + execution of
quantum circuits + sampling of the output of the circuit) compared to a random algorithm.

4.3.2 Numerical results

4.3.2.1 2-SCP on SNCF real instances

We solve the Set Cover Problem on two real instances of SNCF, using the (2-SCP-QUBO) re-
formulation. The instances consist of solving the timetabling railway problem considering four
stations (Paris Gare de Lyon, Lyon Part-Dieu, Lyon Perrache, and Saint-Etienne) on the period
of a regular Monday. This perimeter is marked out in the reticular Figure 4.15 by the blue box.
The first instance, called I22, considers Monday between 8 a.m. and 12 a.m., whereas the second
instance, called I32, extends the period by considering Monday between 8 a.m. and 2 p.m. For
the simplified model (SCP), Instance I22, respectively Instance I32, represents an instance of
size 22 (22 trains available trains), respectively of size 32 (32 trains available trains), hence their
name. For the larger one, I32, this amounts to around 4000 customers gathering into 40 customer
groups. Note that they represent tiny instances compared to those that must solve SNCF, both
in terms of duration and perimeter. The original classical method is capable of solving instances
for a whole day on region-like perimeters, even if not at optimality, and the ideal goal would be
to solve the problem on the whole French territory over several months.

Let us begin with the smaller instance I22. In Figures 4.5 and 4.6, we display the results of
solving this instance with QAOA, where the quantum part is simulated on the 32-qubit simulator
of IBM (QASM simulator). Specifically, we consider the (2-SCP-QUBO) formulation for which
we set the penalty coefficients equal λ1 = λ2 = λ, and vary the values of the penalty coefficients.
For each value of λ, we run 10 times QAOA (with 3000 shots to sample quantum states). On the
one hand, we compute the average cost of the solution returned (Figure 4.5). On the other hand,
we count the number of runs (among the 10 runs) for which the solution returned was optimal
(Figure 4.6). For this instance, the optimal solution is composed of 11 trains. We plot the results
of the same experiments for Instance I32 in Figures 4.7 and 4.8, for which the optimal solution
is composed of 17 trains.

We observe that for both instances, the value of the penalty coefficients in the (2-SCP-QUBO)
reformulation does not seem to impact too much the quality of the solution returned by QAOA,
even if sometimes the optimal solution is not found in 10 runs. Regarding the depth, even if the
impact is low too, QAOA with a circuit of depth 1 seems to find more often the optimal solution
than with depth 3. Specifically, for Instance I22 and for λ ∈ {50, 65}, the optimal solution is
found every other time.

Next, for depth 1 and λ = 50, we illustrate the shape of the output quantum state of QAOA,
namely the distortion that QAOA produces over the uniform distribution in the search space. In
Figure 4.9, we display the Cumulative Distribution Functions (CFD) of the samples of output



4.3 Resolution with QAOA 65

Figure 4.5: Average cost solution of QAOA
over 10 runs for Instance I22, varying the depth
and the penalty coefficient values.

Figure 4.6: Number of runs, among 10 runs,
for which QAOA finds the optimal solution for
Instance I22, varying the depth and the penalty
coefficient values.

Figure 4.7: Average cost solution of QAOA
over 10 runs for Instance I32, varying the depth
and the penalty coefficient values.

Figure 4.8: Number of runs, among 10 runs,
for which QAOA finds the optimal solution for
Instance I32, varying the depth and the penalty
coefficient values.

quantum states resulting from 2 runs of QAOA (orange and purple lines) as functions of the
ratio between the solution found and the optimal solution. We compare them with the CFD
representing a uniform state over the search space {0, 1}22 (gray line). The latter represents the
CFD for a result with no optimization at all, showing the energy landscape associated with the
QUBO formulation of Instance I22.

We note that the distortion can be more efficient for some runs (purple line) than others (orange
line), even if each case confirms that QAOA outperforms one random sampling as previously
mentioned. Notice that the zoom of the previous figure displayed in Figure 4.10 shows that a
huge distortion does not always imply finding the optimal solution. Indeed, in this example, the
first run of QAOA (orange) finds the optimal solution whereas the second does not (purple).
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Figure 4.9: Cumulative Distribution Functions for 2 runs of QAOA (p = 1, λ = 50) and without
optimization.

Figure 4.10: Zoom on Figure 4.9 for ratio in [0.9, 1].

4.3.2.2 Different reformulations for Extended Bin Packing

In the previous subsection, we studied the (SCP) simplified formulation. Hereafter, we focus on
the other simplified formulation, the (Extended-BP) formulation. Let us illustrate the importance
of the choice of the penalty functions with the resolution of this problem. Specifically, we compare
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the results of the (Extended-BP-QUBO) and the (Extended-BP-PUBO) reformulations on small
instances.

First, we present in Figure 4.12 the results of solving Instance A (Figure 4.11) with QAOA with
the QUBO and PUBO formulations. For both formulations, we set λu = λc = 12, respectively

Figure 4.11: Instance A

Instance A: n = 3 trains (sets) and m = 4 groups (dots), for

• ci = 1 , ∀i ∈ [n]

• pi = 1 ,∀i ∈ [n]

• CMax = 2

λu,j = λc,i = 12 ,∀i ∈ [n], j ∈ [m]. Notice that the optimal solution has a cost value equal to −2.
Second, we present the results for Instance B (Figure 4.13) in Figure 4.14. In this case, we choose

Figure 4.12: Comparison between QUBO and PUBO formulations for Extended Bin Packing on
Instance A.

Figure 4.13: Instance B

Instance B: n = 3 trains (sets) and m = 5 groups (dots), for:

• ci = 1 , ∀i ∈ [n]

• pi = 1 ,∀i ∈ [n]

• CMax = 2

λu = λc = 10 for the QUBO formulation, respectively λu,j = λc,i = 10 ,∀i ∈ [n], j ∈ [m] for the
PUBO formulation. The optimal cost value is also equal to −2. For both experiments, we set
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Figure 4.14: Comparison between QUBO and PUBO formulations for Extended Bin Packing on
Instance B.

the depth of QAOA to 1, and make 10 shots to sample quantum states (to keep the proportion
of the size of the sampling and the size of the search space reasonable). Notice that we still use
COBYLA as a classical optimizer and that we implement the quantum circuit (on the 32-qubit
QASM simulator) with the decomposition of Proposition 3.2.6 for the PUBO formulation.

Let us begin with an observation on the QUBO formulation. In both results on Instances
A and B, we see that the optimal solution of the initial problem (in orange) can have a loss
function value different from -2 and even larger than other non-optimal solutions. This is due to
the introduction of additional variables (s, r) in (Extended-BP-QUBO) that can take values such
that the penalty terms are non-zero even if the decision variables (x, y) representing a solution
of the initial problem are optimal. Thus, measuring the optimal solution with loss function value
10 for Instance B is a lucky coincidence and has nothing to do with optimization. Thus, it points
out a limit of this QUBO formulation with additional variables that blur the loss function. Notice
that this phenomenon does not happen for the PUBO formulation (Extended-BP-PUBO) because
there are no additional variables.

We discuss several observations regarding the comparison between the QUBO and the PUBO
formulation from the two examples above. To solve (Extended-BP) on current quantum limited
resources with the metaheuristic QAOA, the results speak in favor of the PUBO formulation.
First, the number of qubits is smaller for the PUBO than for the QUBO formulation. This
comes from the additional variables required to transform the constraints into quadratic penalty
terms. We recall that roughly (m+ n · log2(CMax)) additional binary variables are used for the
QUBO formulation (and none for the PUBO formulation). Second, the PUBO seems to manage
more easily the constraints, leading to QAOA’s output quantum state with only feasible solutions
measured. We can explain it by the fact that we chose penalty functions for PUBO with binary
values, 0 if the constraint is satisfied and 1 otherwise, whereas in QUBO they can take a large
range of values (according to the value of CMax). This implies that the different loss function
values for QUBO are gathered in many packets spaced by the value of penalty coefficients λu and
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λc. The larger CMax, the more possible values for additional variables, and the more packets.
On the contrary, for PUBO formulation, the number of packets is restricted (because the penalty
function takes only two values), thus the optimization should be easier. The results on Instances
A and B attest to an easier optimization because there are no unfeasible solutions sampled by
QAOA with the PUBO formulation. In other words, we only sample the first packet representing
feasible solutions. To conclude, we observe that solving the Extended Bin Packing problem with
QAOA achieves better performances with the unconstrained formulation (Extended-BP-PUBO)
than with the (Extended-BP-QUBO) formulation.

4.4 Conclusion

In this chapter, we studied a railway timetabling problem of SNCF; we proposed two simplifica-
tions and several reformulations into unconstrained problems for each of them. We analyzed the
performances of QAOA on these reformulated problems, highlighting the impact of parameters
such as the depth or the shape of QAOA circuit. We also illustrated the importance of the choice
of penalty functions for the second simplified problem. However, the small size of current quan-
tum computers (around a hundred qubits), the small connectivity between qubits, and the high
error rate prevent running QAOA for larger depths on larger instances. Thus, because numerical
results are limited today, we will turn to more theoretical results in the next chapters to investi-
gate the advantages of exact quantum algorithms. We will work on optimization problems that
have many applications for SNCF. Precisely, we will address scheduling problems (Chapters 5
and 6), which, for instance, lie at the core of optimizing machine tasks in freight marshalling
yards. We will also study robust optimization problems (Chapter 7) that are decisive in many
applications. For example, robustness appears in the design of time grids that take into account
uncertainties and minimize the spread of a train delay throughout the network, or in real-time
operations where the disruptions’ duration is not precisely known in advance.
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Figure 4.15: Reticular on the sector of Paris and Lyon.



5

Hybrid algorithms for scheduling

The railway domain faces numerous scheduling problems. For instance, in freight marshalling
yards, trains arrive at different times, and their wagons need to be separated before being reformed
with wagons from other trains. Thus, operations such as uncoupling, sorting, and coupling the
wagons are performed by machines that have to be scheduled. Another example is tasks scheduling
for the maintenance of trains, tracks, and infrastructures, whose optimization is necessary to
minimize disruptions to the service while ensuring safety and reliability.

This chapter provides a quantum-classical exact algorithm to tackle a broad class of NP-hard
scheduling problems. For that, we extend well-known Dynamic Programming Across the Subsets
(DPAS) recurrences. We propose a hybrid algorithm that addresses scheduling problems, relying
on the new recurrences, and leads to a quantum speed-up. Our algorithm (called Q-DDPAS
hereafter) is an extension of the algorithm of Ambainis et al. (2019). In particular, Q-DDPAS
applies to problems with temporal constraints and non-linear objective functions. Specifically,
we cover three types of problems that satisfy three different kinds of dynamic programming
recurrences. Not only does Q-DDPAS apply to problems for which the dynamic programming
property is based on the addition of optimal values of the problem on sub-instances, but it also
relates to problems for which the dynamic programming naturally applies on the composition of
optimal values of the problem on sub-instances. For each of them, the best-known classical time
complexity is in O∗(2n) that is reduced in O∗(pseudopol ·1.728n) by Q-DDPAS, where pseudopol
is a pseudo-polynomial factor. Furthermore, we address the 3-machine flowshop problem that
differs from previous problems by the nature of the recurrence property and widens the range of
problems solved by the hybrid algorithm. Notice that, in this chapter, the hybrid algorithms are
described as it is usually done in the algorithmic quantum literature, namely with a high-level
description where quantum boxes interact with the classical part. We provide a rigorous and
detailed description of the circuit-based implementation in Chapter 6.

The content of this chapter results from a joint work with Vincent T’Kindt (LIFAT, France)
and Olivier Ploton (LIFAT, France).

5.1 Scheduling problems and DPAS

A scheduling problem lies in finding the optimal assignment of a set of jobs to machines over
time. Each job j is defined by at least a processing time pj and possibly additional data like a
due date dj , a deadline d̃j , or even a weight wj reflecting its priority. One or more machines can
process the set of jobs, however, at any time point, a machine can only process one job at a time.
The computation of a schedule is done to minimize a given objective function.

In Sections 5.2 and 5.3, we consider single-machine scheduling problems. Let [n] = {1, . . . , n}
be the set of jobs to schedule on the machine. While a solution to a single-machine scheduling
problem is described by a starting time for each job on the machine, it is standard to describe
instead such a solution by a permutation π ∈ S[n] of the n jobs. Indeed, the starting times can be
directly deduced from the order of jobs in the permutation and the potential constraints, thanks
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to the following assumptions. First, we assume that only one job can be processed at any time
on the machine. Second, we deal only with non-preemptive scheduling, meaning that a job must
be run to completion once it has started. Henceforth, we use the permutation representation for
the solutions. In Section 5.5, we consider the 3-machine flowshop of n jobs. The definition of this
problem, introduced in the above-mentioned section, makes also a solution entirely described by
a permutation of [n] even if there are 3 machines.

Throughout this chapter, we use the usual notation α|β|γ, introduced by Graham et al. (1979),
to describe the scheduling problem consisting of α machines, with the constraints β and the
criterion γ to be minimized. For instance, 1|d̃j |

∑
j wjCj is the problem of minimizing the to-

tal weighted completion time with deadline constraints on a single machine. More details on
scheduling can be found in any textbook on the topic, e.g. the one by Pinedo (2012).

The single-machine scheduling problems addressed in this chapter are those that satisfy the
Dynamic Programming Across the Subsets (DPAS) property. It means that these problems can
be solved by Dynamic Programming where the optimal solution for a set of jobs J ⊆ [n] is
computed as the best concatenation overall j ∈ J of the optimal solution for J \ {j} and the
cost of setting j as the last processed job. Specifically, if we note OPT[J ] the optimal value for
processing the set of jobs J , the recursion is

OPT[J ] = min
j∈J

OPT[J \ {j}] + ϕj

(∑
k∈J

pk

)
, (5.1)

where ϕj is a function depending on job j. This generic recursion captures many single-machine
scheduling problems as recalled in the survey of T’kindt et al. (2022), leading to the worst-case
time complexity of O∗(2n) to solve all these problems (where O∗ denotes the usual asymptotic
notation that ignores the polynomial factors in the complexity). Notice that DPAS is a common
technique for designing exact algorithms for NP-hard problems as described by Woeginger (2003).
This naturally raises the question of the existence of moderate exponential-time algorithms with a
complexity O∗(cn) where c < 2. The question has been answered positively for specific problems
such as minimizing the total weighted completion time with precedence constraints in O∗((2−ϵ)n)
for small ϵ > 0 by Cygan et al. (2014). But, as far as we know, no generic method provides
such an improvement for a broad class of scheduling problems. In this chapter, we present a
hybrid algorithm that solves the problems satisfying (5.1) in O∗(1.728n), sometimes with an
additional pseudo-polynomial factor in the complexity that comes from the extension of the
dynamic programming recurrence.

5.2 Additive DPAS

In this section, we present problems for which the dynamic programming recursion is based on
the addition of optimal values of problems for sub-instances. Next, we detail the hybrid algorithm
Q-DDPAS to solve these problems. But first, let us begin with an scheduling example.

5.2.1 A scheduling example

The NP-hard single-machine scheduling problem at hand is the minimization of the total weighted
completion time with deadline constraints, often referred to as 1|d̃j |

∑
j wjCj in the scheduling

literature. The input is given, for each job j ∈ [n], by a weight wj , a processing time pj and a
deadline d̃j before which the job must be completed. We define the completion time Cj(π) of job
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j as the end time of the job on the machine for the permutation π. So, if j starts as time t for
the permutation π, then Cj(π) = t + pj . The problem aims at finding the feasible permutation
for which the total weighted sum of completion times is minimal. A permutation π is feasible if
Cj(π) ≤ d̃j for all job j. Thus, the problem can be formulated as follows:

min
π∈Π

n∑
j=1

wjCj(π) ,

where the set of feasible permutations is Π = {π ∈ S[n] |Cj(π) ≤ d̃j , ∀j ∈ [n]} .
This problem satisfies two recurrences. For deriving them, we need to introduce the set T :=r
0,
∑n

j=1 pj

z
=
{
0, 1, . . . ,

∑n
j=1 pj

}
. For J ⊆ [n] and t ∈ T , we define OPT[J, t] as the optimal

value of the problem in which only jobs in J are scheduled from time t. Thus, solving our nominal
problem 1|d̃j |

∑
j wjCj amounts to compute OPT[[n], 0].

The first recurrence comes from the standard Dynamic Programming Across the Subsets
(DPAS) described in (5.1). However, compared to usual DPAS, we introduce an extra parameter
t necessary for the solution with our hybrid algorithm as explained later. The idea of this recur-
rence is to get the optimal value of our problem for jobs in J and starting at time t by finding,
over all jobs j ∈ J , the permutation that ends with j with the best cost value. It is possible to do
so because no matter what the optimal permutation of the first (|J |−1) jobs is, the cost of setting
job j at the end of the permutation is always known. Indeed, the time taken to process all jobs in
J \ {j} is always

∑
k∈J\{j} pk. Thus, the completion time of j is defined by Cj = t+

∑
k∈J pk. It

results that the cost of setting j at the end of the permutation is wj(t+
∑

k∈J pk). It also implies

that the deadline constraint for job j is satisfied if t+
∑

k∈J pk ≤ d̃j . Specifically, for all J ⊆ [n]
and for all t ∈ T , we have

OPT[J, t] = min
j∈J

OPT[J \ {j}, t] +


wj

(
t+

∑
k∈J

pk

)
if t+

∑
k∈J

pk ≤ d̃j

+∞ otherwise

(5.2)

initialized by OPT[∅] = 0.
The second recurrence generalizes the previous one. For this recurrence, the principle of com-

puting OPT[J, t] is similar to (5.2), but instead of setting one job at the end of the permutation,
we choose |J |/2 jobs and set them to be the half last jobs of the permutation. Specifically, for all
J ⊆ [n] of even cardinality and t ∈ T , we have

OPT[J, t] = min
X⊆J

|X|=|J|/2

{
OPT[X, t] + OPT[J \X, t+

∑
i∈X

pi]
}
, (5.3)

initialized by, ∀j ∈ [n] and t ∈ T , OPT[{j}, t] =

{
wj(pj + t) if d̃j ≥ pj + t

+∞ otherwise
.

For a given X ⊆ J of size |J |/2, recurrence (5.3) computes the best permutation of jobs in X
starting at time t, and the best permutation of jobs in J \X starting at time t+

∑
k∈X pk as we

know that, as before, no matter what is the optimal permutation for jobs in X, the time taken
to process them all is exactly

∑
k∈X pk.

The two above recurrences have been illustrated with problem 1|d̃j |
∑

j wjCj . In the next
section, we propose a general formulation of these recurrences that will be used to elaborate our
algorithm Q-DDPAS as general as possible to solve a broad class of scheduling problems.
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5.2.2 General formulation of recurrences

Let us consider the following general scheduling problem:

P : min
π∈Π

f(π) ,

where Π ⊆ S[n] is the set of feasible permutations of [n] according to given constraints and f
is the objective function. We introduce a related problem P useful for deriving the dynamic
programming recursion, for which we specify the instance: for J ⊆ [n] and t ∈ Z, we define

P (J, t) : min
π∈Π(J,t)

f(π, J, t) (5.4)

as the nominal scheduling problem P that schedules only jobs in J and starts the schedule at
time t. Let us note OPT[J, t] the optimal value of P (J, t). It results that solving P amounts to
solving P ([n], 0), and it can be performed by our algorithm Q-DDPAS if the related problem P
satisfies the two recurrences (Add-DPAS) and (Add-D-DPAS) below. Henceforth, we denote by
2[n] the set of all subsets of [n]. Let us introduce the first recurrence.

Property 5.2.1 (Additive DPAS). There exists a function g : 2[n]× [n]×T → R, computable in
polynomial time, such that, for all J ⊆ [n] and for all t0 ∈ T ,

OPT[J, t0] = min
j∈J

{
OPT[J \ {j}, t0] + g(J, j, t0)

}
(Add-DPAS)

initialized by OPT[∅, t0] = 0.

Lemma 5.2.2. Dynamic programming (Add-DPAS) solves P in O∗(2n).

Proof. We solve Equation (Add-DPAS) for all J such that |J | = k, and for t0 = 0, starting from
k = 1 to k = n. For a given J , the values {OPT[J \ {j}, 0] : j ∈ J} are known, so OPT[J, 0]
is computed in time poly(n) · k according to Equation (Add-DPAS) (the computation of g is
polynomial). Eventually, the total complexity of computing OPT[[n], 0] is

n∑
k=1

poly(n)k

(
n

k

)
= poly(n) · n · 2n−1 = O∗(2n) .

Hereafter, we commit a slight abuse of language by letting (Add-DPAS) both refer to the
property satisfied by a given optimization problem and to the resulting dynamic programming
algorithm. Notice the presence of the additional parameter t0 in the above definition, which is
typically absent in the scheduling literature. In particular, t0 is a constant throughout the whole
recursion (Add-DPAS) and does not impact the resulting computational complexity. The use of
that extra parameter in T shall be necessary later when applying our hybrid algorithm.

Property 5.2.1 expresses that finding the optimal value of P for jobs in J and starting at time
t is done by finding over all jobs j ∈ J the permutation that ends by j with the best cost value.
Function g represents the cost of j being the last job of the permutation. Notice that isolating
the last job of the permutation is a usual technique in scheduling as displayed in (5.1). In the
second recurrence below, we provide a similar scheme, where instead of one job, we isolate half of
the jobs in J , turning the computation of g to the solution of another problem on a sub-instance
with |J |/2 jobs.
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Property 5.2.3 (Additive Dichotomic DPAS). There exist two functions τshift : 2
[n]×2[n]×T → T

and h : 2[n] × 2[n] × T → R, computable in polynomial time, such that, for all J ⊆ [n] of even
cardinality, and for all t ∈ T ,

OPT[J, t] = min
X⊆J

|X|=|J|/2

{
OPT[X, t] + h(J,X, t) + OPT[J \X, τshift(J,X, t)]

}
(Add-D-DPAS)

initialized by the values OPT[{j}, t] for each j ∈ [n] and t ∈ T .

For a given X ⊆ J , the above recursion computes the best permutation of jobs in X starting
at time t, and the best permutation of jobs in J \X starting at time τshift, adding the function
h that represents the cost of the concatenation between these two permutations.

Remark 5.2.4. We observe that problem (5.4) satisfies recurrence (Add-DPAS) if and only if
it satisfies (Add-D-DPAS). This can be seen by developing recursively both recurrences, which
essentially leads to optimization problems over π ∈ S[n], whose objective functions respectively
involve g in the first case and h and τshift in the second case. Here, one readily verifies that g can
then be defined from h and τshift and reciprocally.

Despite the previous remark, the two recurrences differ on the size of the subsets considered
along the recursions, leading to different formulations and therefore require more or less sub-
problems to be solved at optimal in the dynamic programming process. This is formalized in the
following proposition.

Note that we use the notation f1(n) = ω(f2(n)) if f1 dominates asymptotically f2.

Lemma 5.2.5. Dynamic programming (Add-D-DPAS) solves P in ω(|T | · 2n).

Proof. First, we note that to solve P with (Add-D-DPAS), n must be a power of 2. If this is not
the case, we can always transform the instance such that we fall back into the previous case. Thus,
without loss of generality, we suppose that n = 2N for N ∈ N. We solve Equation (Add-D-DPAS)
for all J such that |J | = 2k, and for all t ∈ T , starting from k = 1 to k = N . For a given J ,
the values {OPT[X, t′] : X ⊆ J s.t. |X| = |J |/2 , t′ ∈ T} are known, so OPT[J, t] is computed

in time poly(n)
(

2k

2k−1

)
according to Equation (Add-D-DPAS) (the computation of τshift and h

is polynomial). Thus, computing all OPT[J, t] for any J of size 2k and t ∈ T is done in time

|T |poly(n)
(

2k

2k−1

)(
n
2k

)
. Eventually, the total complexity is equal to

C(n) = |T |poly(n)
N∑
k=1

(
2k

2k−1

)(
n

2k

)
.

Second, we compute the complexity of (Add-D-DPAS). For that, we consider the sequence
(C(2i))i∈N, knowing that for families of instances with a size different from a power of 2, we
transform them artificially into families of instances of size of the following power of 2. Let
n = 2i for i ∈ N. A lower bound on C(n) is the sum of the two last terms:

C(n) > |T |poly(n)
((

n

n/2

)
+

(
n

n/2

)(
n/2

n/4

))
≈ A|T |poly(n)2

1.5n

n
,

where A is a constant. The asymptotic equivalent is readily obtained with the Stirling equivalent
for factorials, n! ≈

√
2πn

(
n
e

)n
, for n ∈ N. Thus, C dominates asymptotically n 7→ |T | · 2n. In

other words, C(n) = ω(|T | · 2n).
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The previous lemma leads to the conclusion that solving P with (Add-DPAS) is faster
than with (Add-D-DPAS). However, in the next section, we describe a hybrid algorithm Q-
DDPAS that improves the complexity of solving P by combining recurrences (Add-DPAS)
and (Add-D-DPAS) with a quantum subroutine.

5.2.3 Hybrid algorithm for Additive DPAS

In this subsection, we describe our hybrid algorithm Q-DDPAS adapted from the work of Ambai-
nis et al. (2019). This latter combines Quantum Minimum Finding, proposed by Dürr and Høyer
(1996) to find the minimum of an unsorted table, and dynamic programming. The algorithm
of Ambainis et al. (2019) applies to NP-hard vertex ordering problems, such as the Traveling
Salesman Problem (TSP) or the Minimum Set Cover problem. The problems of interest must
satisfy a specific property which implies that they can be solved by classical dynamic program-
ming in O∗(cn), where c is usually not smaller than 2. The hybrid algorithm of Ambainis et al.
(2019) reduces the complexity to O∗(cnquant) for cquant < c. As an example, Held and Karp (1970)
dynamic programming solves the TSP in O∗(2n) whereas the hybrid algorithm achieves to solve it
in O∗(1.728n) by combining the dynamic programming recurrence of Held and Karp with Quan-
tum Minimum Finding. Following this work, other NP-hard problems have been tackled with the
idea of combining Grover Search (or Quantum Minimum Finding) and classical dynamic program-
ming. For instance, this has led to quantum speed-ups for the Steiner Tree problem (Miyamoto
et al., 2020) and the graph coloring problem (Shimizu and Mori, 2022).

Henceforth, we propose to widen the range of problems tackled by the algorithm of Ambainis
et al. (2019) to NP-hard scheduling problems, essentially by introducing a temporal dimension
to the dynamic programming recursion. Notice that the hybrid algorithm assumes to have a
quantum random access memory (QRAM) (Giovannetti et al., 2008), namely, to have a classical
data structure that stores classical information but can answer queries in quantum superposition.
We underline that this latter assumption is strong because QRAM is not yet available on current
universal quantum hardware. First, let us introduce the Quantum Minimum Finding algorithm
of Dürr and Høyer (1996), which constitutes a fundamental subroutine in our algorithm. This
algorithm essentially applies several times Grover Search (Grover, 1996) to provide a quadratic
speedup for the search of a minimum element in an unsorted table.

Definition 5.2.6 (Quantum Minimum Finding (Dürr and Høyer, 1996)). Let f : [n] → Z be a
function. Quantum Minimum Finding computes the minimum value of f and the corresponding
minimizer argmini∈[n]{f(i)}. The complexity of Quantum Minimum Finding is O (

√
n · Cf (n)),

where O(Cf (n)) is the complexity of computing a value of f .

Remark 5.2.7 (Success probability and bounded-error algorithm (Bernstein and Vazirani,
1993)). Dürr and Høyer (1996) prove that Quantum Minimum Finding computes the mini-
mum value with a probability of success strictly larger than 1

2 , independent of n. Thus, for ϵ > 0,
finding the minimum value with probability (1− ϵ) is achieved by repeating O(log 1

ϵ ) times Quan-
tum Minimum Finding. Henceforth, we refer to this statement when we write that Quantum
Minimum Finding finds the minimum value with high probability. Equivalently, we say that this
is a bounded-error algorithm. More generally, in the rest of the chapter, we call a bounded-error
algorithm an algorithm that provides the optimal solution with a probability as close to 1 as we
want by repeating it a number of times independent of the instance size.

Next, we describe the algorithm of Ambainis et al. (2019) adapted for our Additive DPAS
recurrences which implies extra parameters in T . We call it Q-DDPAS, which consists essentially
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of calling recursively twice Quantum Minimum Finding and computing classically the left terms.
Without loss of generality, we assume that 4 divides n. This can be achieved by adding at most
three fake jobs and, therefore, does not change the algorithm complexity. Q-DDPAS consists
of two steps. First, we compute classically by (Add-DPAS) the optimal values of P on sub-
instances of n/4 jobs and for all starting times t ∈ T . Second, we call recursively two times
Quantum Minimum Finding with (Add-D-DPAS) to find optimal values of P on sub-instances of
n/2 jobs starting at any time t ∈ T , and eventually of n jobs starting at t = 0 (corresponding to
the optimal value of the nominal problem P). Specifically, we describe Q-DDPAS in Algorithm 2.

Algorithm 2: Q-DDPAS for Additive DPAS

Input: Problem P satisfying (Add-DPAS) and (Add-D-DPAS)
Output: OPT[[n], 0] with high probability
begin classical part

for X ⊆ [n] such that |X| = n/4, and t ∈ T do
1 Compute OPT[X, t] with (Add-DPAS) and store the results in the QRAM;

begin quantum part
2 Apply Quantum Minimum Finding with (Add-D-DPAS) to find OPT[[n], 0];
3 To get values for the Quantum Minimum Finding above (the values OPT[J, t] for

J ⊆ [n] of size n/2 and t ∈ T ), apply Quantum Minimum Finding
with (Add-D-DPAS);

4 To get values for the Quantum Minimum Finding above (the values OPT[X, t′] for
X ⊆ [n] of size n/4 and t′ ∈ T ), get them on the QRAM

Theorem 5.2.8. The bounded-error algorithm Q-DDPAS (Algorithm 2) solves P in O∗(|T | ·
1.754n).

The detailed proof of the correctness of the algorithm, involving the description of the gate
implementation, is detailed in Chapter 6, with all the low-level details for implementing the
algorithm. Next, we provide a high-level proof, but before, we introduce some upper bounds
necessary to derive the complexities in the proof.

Observation 5.2.9. We define the binary entropy of ϵ ∈]0, 1[ by

H(ϵ) = −(ϵ log2(ϵ) + (1− ϵ) log2(1− ϵ)) .

We remind some useful upper bounds of binomial coefficients (Ambainis et al., 2019):(
n

k

)
≤ 2H(

k
n)·n, ∀k ∈ J1, nK and

k∑
i=1

(
n

i

)
≤ 2H(

k
n)·n, ∀k ∈

r
1,
n

2

z
.

Thus, this leads to the following upper bounds to compute the complexities of interest:

n/4∑
i=k

(
n

k

)
≤ 20.811n ,

0.945·n/4∑
k=1

(
n

k

)
≤ 20.789n ,

√(
n

n/2

)(
n/2

n/4

)
≤ 20.75n ,



78 Hybrid algorithms for scheduling

and √(
n

n/2

)(
n/2

n/4

)(
n/4

0.945 · n/4

)
≤ 20.789n .

Proof. Hereafter, we provide a high-level proof of Theorem 5.2.8. Let us compute the complexity
of each part of Q-DDPAS algorithm.

• Classical part: computing all OPT[X, t] for all X of size n/4 and for all t ∈ T (Step 1) is

done by (Add-D-DPAS) in time O∗
(
|T | ·

∑n/4
k=1 k

(
n
k

))
= O∗(|T | · 20.811n).

• Quantum part: according to Quantum Minimum Finding complexity (Defini-
tion 5.2.6), computing OPT[[n], 0] with Quantum Minimum Finding (Step 2) is done in

O
(√(

n
n/2

)
· C1(n)

)
, where C1(n) is the complexity of computing OPT[J, t] for a J of size

n/2 and t ∈ T . The essence of the quantum advantage here is that we do not need to
enumerate all sets J and all time t but we apply the Quantum Minimum Finding in parallel
to all at once. Notice that

(
n

n/2

)
is the number of balanced bi-partitions of [n], namely

the number of elements we search over to find the minimum of Equation (Add-D-DPAS)
when computing OPT[[n], 0]. Thus, C1(n) is exactly the complexity of Quantum Minimum

Finding applied on Step 3, namely C1(n) = O
(√(n/2

n/4

)
· C2(n)

)
where C2(n) is the com-

plexity of computing OPT[X, t′] for X of size n/4 and t′ ∈ T . Those values are already
computed and stored in the QRAM (Step 1), namely, C2(n) = O∗(1). Thus, the quantum

part complexity is O∗
(√(

n
n/2

)(n/2
n/4

))
= O∗(20.75n).

Eventually, Q-DDPAS complexity is the maximum of the classical and the quantum part com-
plexity. Specifically, the total complexity is O∗(|T | · 20.811n) = O∗(|T | · 1.754n).

We observe that the complexity of Q-DDPAS can be further reduced by performing a third
call to Equation (Add-D-DPAS) as suggested by Ambainis et al. (2019).

Observation 5.2.10. A slight modification of Q-DDPAS reduces the complexity to O∗(|T | ·
1.728n).

Proof. The slight modification of Q-DDPAS amounts to adding a level of recurrence in the quan-
tum part so that the complexity of the classical part reduces whereas the complexity of the
quantum part increases so that both are equal and thus minimize the total complexity. The third
call searches for the best concatenation among all the bi-partitions of size (0.945 · n4 , 0.055 ·

n
4 )

(that are integers asymptotically), i.e. solving

OPT[J, t] = min
X⊆J

|X|=0.945|J|

{
OPT[X, t] + h(J,X, t) + OPT[J \X, τshift(J,X, t)]

}
.

The classical part computes all OPT[X, t] for X of size 0.945 · n4 and 0.055 · n4 , in O
∗(1.728n) .

The quantum part applies three levels of recurrence of Quantum Minimum Finding, computing
the minimum over functions with a domain of size

(
n

n/2

)
,
(n/2
n/4

)
and

( n/4
0.945·n/4

)
respectively. Its

complexity is then O∗
(√(

n
n/2

)(n/2
n/4

)( n/4
0.945·n/4

))
= O∗(1.728n) (see Observation 5.2.9).

Notice that the classical part of Q-DDPAS can be replaced by any classical algorithm A, if
A computes in O∗(|T | · 1.728n) all OPT[X, t] for X ⊆ [n] of size n/4 and t ∈ T . Moreover, if
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A happens to reduce the classical part complexity O∗(|T | · cn) for c < 1.728, the complexity of
Q-DDPAS can also be reduced in the same spirit as the slight modification of Observation 5.2.10.

The application of Q-DDPAS for Additive DPAS to the specific problem 1|d̃j |
∑

j wjCj intro-
duced in Section 5.2.1 is given in Section 5.4.1, together with other scheduling examples. Before
introducing other types of problems tackled by Q-DDPAS in the next section, we provide some
insights to underline why the use of the quantum subroutine Quantum Minimum Finding in Q-
DDPAS must be carefully combined with classical computation to achieve a quantum speed-up.

Remark 5.2.11. Solving P with (Add-DPAS) and replacing each classical computation of the
minimum by the quantum subroutine Quantum Minimum Finding would not improve the best
classical complexity. Indeed, the complexity would be

n∑
k=1

poly(n)
√
k

(
n

k

)
= O∗(2n) .

Remark 5.2.12. Solving P exclusively by recursive calls to Quantum Minimum Finding (thus
avoiding the classical computations for sets of size n/4) would not improve the classical complexity.
Using recurrence (Add-D-DPAS), which is the quantum part of Algorithm 2 with roughly log2(n)
recursive calls, would give a complexity in

O

(√(
n

n/2

)(
n/2

n/4

)
. . .

(
2

1

))
that is worse than O∗(2n). Using recurrence (Add-DPAS) would be even worse because it would
require n recursive calls leading to the complexity

O(
√
n(n− 1) . . . 1) .

5.3 Composed DPAS

In this section, we study scheduling problems whose constraints enable only the composition of
problems on sub-instances. We describe the adaptation of Q-DDPAS for these problems.

5.3.1 A scheduling example

We begin with the specific problem of minimizing the total weighted number of late jobs with
release date constraints, often referred to as 1|rj |

∑
wjUj in the literature. The input is given

by, for each job j ∈ [n], a weight wj , a processing time pj , a release date rj that is the time from
which the job can be scheduled (and not before), and a due date dj that indicates the time after
which the job is late. Thus, a job j is late in permutation π if its completion time is larger than
dj , namely if Cj(π) > dj . We name Uj(π) = 1Cj(π)>dj its indicator function of lateness. This
problem aims at finding the feasible permutation, namely where each job starts after its release
date, for which the total weighted number of late jobs is minimal. Thus, the problem can be
formulated as follows:

min
π∈Π

n∑
j=1

wjUj(π) ,

where the set of feasible solutions is Π = {π ∈ S[n] |Cj(π) ≥ rj + pj} .



80 Hybrid algorithms for scheduling

This problem does not satisfy the recurrences (Add-DPAS) and (Add-D-DPAS) because the
release date constraints do not allow the addition of sub-instances. Let us take the example
of (Add-D-DPAS). The starting time of the second half of jobs J \X in (Add-D-DPAS) can be
known only if we know the optimal permutation of the first half of jobs, which is in opposition
with the dynamic programming principle. Indeed, the release dates enable empty slots in the
scheduling on the first half of jobs such that the time to process them all is not always equal to∑

k∈X pk and can be larger.
This observation leads to different recurrences, where the time to process the jobs would be

known by dynamic programming. For that, we define an auxiliary problem on which the re-

currences apply and we introduce a new set of parameters E :=
r
0,
∑n

j=1wj

z
. For J ⊆ [n],

t ∈ T :=
r
0,
∑n

j=1 pj

z
∪ {+∞} and ϵ ∈ E, we note OPT[J, t, ϵ] the minimum makespan, i.e. the

completion time of the last job, for jobs in J beginning at time t where the weighted number of
late jobs is exactly ϵ. Notice that by convention, OPT[J, t, ϵ] = +∞ if there is no feasible solution,

i.e. if
{
π ∈ SJ : Cj(π) ≥ max(t, rj) + pj ,∀j ∈ J and

∑
j∈J wjUj(π) = ϵ

}
= ∅. Thus, our initial

problem 1|rj |
∑
wjUj is

min
ϵ∈E
{ϵ : OPT[[n], 0, ϵ] < +∞} .

The following recurrence that satisfies the auxiliary problem is inspired by the work of Lawler
(1990) for the problem of minimizing the total weighted number of late jobs on a single machine
under preemption and release date constraints (1|rj , pmtn|

∑
wjUj). For J ⊆ [n], t ∈ T , ϵ ∈ E,

OPT[J, t, ϵ] = min
j∈J

{
OPT

[
{j},OPT[J \ {j}, t, ϵ], 0

]
︸ ︷︷ ︸

job j is not late

,OPT
[
{j},OPT[J \ {j}, t, ϵ− wj ], wj

]
︸ ︷︷ ︸

job j is late

}
.

In this recurrence, for each j ∈ J , we impose j as the last job of the permutation and distinguish
two cases, whether it is late or not. Notice that the starting time of j is known and equal to
OPT[J \{j}, t, .] which represents the value for the time parameter. For j ∈ [n], t ∈ T and ϵ ∈ E,
the recurrence is initialized by

OPT[{j}, t, ϵ] =



Cj := max(t, rj) + pj , if Cj ≤ dj and ϵ = 0

+∞, if Cj > dj and ϵ = 0 , or if Cj ≤ dj and ϵ = wj

Cj , if Cj > dj and ϵ = wj

+∞, if ϵ ∈ J1, wj − 1K ∪ Jwj + 1,

n∑
k=1

wkK

This recurrence generalizes into the following dichotomic version for which, instead of setting
the last job of the permutation, we set the half last jobs. For all J ⊆ [n] of even cardinality, t ∈ T
and ϵ ∈ E,

OPT[J, t, ϵ] = min
ϵ′∈E

X∈J:|X|=|J|/2

{
OPT

[
X,OPT[J \X, t, ϵ− ϵ′], ϵ′

]}
,

initialized by the same values of OPT[{j}, t, ϵ] for j ∈ [n], t ∈ T and ϵ ∈ E. Next, we provide
generic recurrences to consider problems for which the composition of sub-instances is possible.
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5.3.2 General formulation of recurrence

Let us consider a scheduling problem with n jobs

P : min
π∈Π

f(π) ,

where Π ⊆ S[n] is the set of feasible permutations of [n] according to given constraints and f is the
objective function. Following the example detailed previously, we consider an auxiliary problem
P ′ useful for deriving the dynamic programming recursion, for which we specify the instance: for
J ⊆ [n] the jobs to be scheduled, t ∈ Z the starting time of the schedule and ϵ ∈ Z, we define

P ′(J, t, ϵ) : min
π∈Π′(J,t,ϵ)

f ′(π, J, t, ϵ) , (5.5)

where f ′, respectively Π′, is the objective function, respectively the feasible set, and are different
from those of P. We assume that solving P amounts to finding the smallest ϵ ∈ Z such that the
auxiliary problem P ′ is bounded. Specifically,

P : min
ϵ∈Z

{
ϵ : OPT[[n], 0, ϵ] < +∞

}
. (5.6)

To solve the nominal problem P by classical dynamic programming, problem P ′ must satisfy
recurrence (Comp-DPAS) or recurrence (Comp-D-DPAS) below (as in Remark 5.2.4, we can state
that a problem satisfies one if and only if it satisfies the other one). As we explain later, solving
P with our hybrid algorithm requires problem P ′ to satisfy the two recurrences.

Property 5.3.1 (Composed DPAS). For all J ⊆ [n], t ∈ T and ϵ ∈ E,

OPT[J, t, ϵ] = min
ϵ′∈E
j∈J

{
OPT

[
{j},OPT[J \ {j}, t, ϵ− ϵ′], ϵ′

]}
, (Comp-DPAS)

initialized by the values of OPT[{j}, t, ϵ] for all j ∈ [n], ϵ ∈ E and t ∈ T . Notice that for J ⊆ [n],
t ∈ T and ϵ ∈ E, we adopt the convention OPT[J, t, ϵ] = +∞ for ϵ /∈ E.

Recurrence (Comp-DPAS) differs from recurrence (Add-DPAS) in two aspects. First, the
optimal values of the problem on sub-instances are composed, and not added, because of the
nature of the constraints. Second, the search for the minimum value is done not only over all
jobs in J , but also over all values in E. More precisely, for a given ϵ0 ∈ E, the optimal value of
P ′(J, t, ϵ0) is the minimum value of all possible composition of optimal values of the problem on
sub-instances with parameters ϵ1 and ϵ2 such that ϵ1 + ϵ2 = ϵ0. We have the following result.

Lemma 5.3.2. (Comp-DPAS) solves P in O∗(|E|3 · |T | · 2n).

Proof. Let ϵ0 ∈ E. Similarly to the proof of Lemma 5.2.2, we show that (Comp-DPAS) solves
P ′([n], 0, ϵ0) in O∗(|E|2 · |T | · 2n). Indeed, to compute OPT[[n], 0, ϵ0], we need to solve Equa-
tion (Comp-DPAS) for all J such that |J | = k starting from k = 1 to k = n, and for all t ∈ T and
ϵ ∈ E. For a given J , t ∈ T and ϵ ∈ E, the values {OPT[J \ {j}, t′, ϵ′] : j ∈ J, t′ ∈ T, ϵ′ ∈ E} and
{OPT[{j}, t′, ϵ′] : j ∈ J, t′ ∈ T, ϵ′ ∈ E} are known, so OPT[J, t, ϵ] is computed in time |E| · k ac-
cording to Equation (Comp-DPAS). Eventually, the total complexity of computing OPT[[n], 0, ϵ0]
is

n∑
k=1

|T | · |E|2 · k
(
n

k

)
= O∗(|T | · |E|2 · 2n) .
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Moreover, solving P amounts to solving P ′([n], 0, ϵ), for all ϵ ∈ E, according to (5.6). The
complexity results directly from the above complexity of computing OPT[[n], 0, ϵ0], for ϵ0 ∈ E.

The auxiliary problem P ′ must satisfy the following recurrence (Comp-D-DPAS) in addition
to recurrence (Comp-DPAS).

Property 5.3.3 (Composed Dichotomic DPAS). For all J ⊆ [n] of even cardinality, t ∈ T and
ϵ ∈ E,

OPT[J, t, ϵ] = min
ϵ′∈E

X∈J:|X|=|J|/2

{
OPT

[
X,OPT[J \X, t, ϵ− ϵ′], ϵ′

]}
, (Comp-D-DPAS)

initialized by the values of OPT[{j}, t, ϵ] for all j ∈ [n], t ∈ T and ϵ ∈ E.

Lemma 5.3.4. (Comp-D-DPAS) solves P in ω(|E|3 · |T | · 2n).

Proof. This proof is essentially the same as the one of Lemma 5.2.5 with the same modifications
that for the proof of Lemma 5.3.2.

As for the Additive DPAS, we notice that, with a classical dynamic programming algo-
rithm, the time complexity to solve P with recurrence (Comp-DPAS) is better than with recur-
rence (Comp-D-DPAS). Next, we show that the hybrid algorithm applied to problems satisfying
Additive DPAS recurrences can be easily adapted to tackle problems satisfying Composed DPAS
recurrences.

5.3.3 Hybrid algorithm for Composed DPAS

The hybrid algorithm for Composed DPAS derives naturally from Algorithm 2. It amounts to
replacing the recurrence (Add-DPAS), respectivelly (Add-D-DPAS), by (Comp-DPAS), respec-
tivelly (Comp-D-DPAS), resulting in Algorithm 3. Eventually, we use Algorithm 3 as a subroutine
to solve Equation (5.6), i.e. to solve the nominal problem P.

Algorithm 3: Q-DDPAS for Composed DPAS

Input: ϵ0 ∈ E, auxiliary problem P ′ satisfying (Comp-DPAS) and (Comp-D-DPAS)
Output: OPT[[n], 0, ϵ0] with high probability
begin classical part

for X ⊆ [n] such that |X| = n/4, and t ∈ T do
Compute OPT[X, t, ϵ0] with (Comp-DPAS) and store the results in the QRAM;

begin quantum part
Apply Quantum Minimum Finding with (Comp-D-DPAS) to find OPT[[n], 0, ϵ0];
To get values for the Quantum Minimum Finding above (the values OPT[J, t, ϵ] for
J ⊆ [n] of size n/2, t ∈ T and ϵ ∈ E), apply Quantum Minimum Finding
with (Comp-D-DPAS);

To get values for the Quantum Minimum Finding above (the values OPT[X, t′, ϵ′] for
X ⊆ [n] of size n/4, t′ ∈ T and ϵ′ ∈ E), get them on the QRAM

Lemma 5.3.5. Let ϵ0 ∈ E. The bounded-error algorithm Q-DDPAS (Algorithm 3) solves
P ′([n], 0, ϵ0) in O∗(|E|2 · |T | · 1.754n).
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Notice that the implementation of this algorithm is slightly different from the one of Algo-
rithm 2, mainly due to the operation of composition. The details are given in Chapter 6.

Algorithm 4: Meta-algorithm with subroutine Q-DDPAS for Composed DPAS

Input: Auxiliary problem P ′ satisfying (Comp-DPAS) and (Comp-D-DPAS)

Output: min
ϵ∈E

{
ϵ : OPT[[n], 0, ϵ] < +∞

}
with high probability

1 ϵ∗ ← +∞;
2 for ϵ ∈ E do
3 Solve P ([n], 0, ϵ) with Algorithm 3;
4 if OPT[[n], 0, ϵ] < +∞ and ϵ < ϵ∗ then
5 ϵ∗ ← ϵ;

6 Return ϵ∗

Theorem 5.3.6. The bounded-error Algorithm 4, with Q-DDPAS as a subroutine, solves P in
O∗(|E|3 · |T | · 1.754n).

As for the case of Q-DDPAS for Additive DPAS, we can reduce the exponential part of Q-
DDPAS complexity for Composed DPAS, by the modification indicated in Observation 5.2.10,
thus leading to the following observation.

Observation 5.3.7. A slight modification of the Q-DDPAS algorithm can reduce the complexity
of Algorithm 4 to O∗(|E|3 · |T | · 1.728n).

We illustrate in Section 5.4.2 the application of Q-DDPAS for Composed DPAS to the problem
1|rj |

∑
wjUj described in Section 5.3.1, together with another similar scheduling problem.

5.4 Application to the scheduling literature

In Section 5.2.2 and Section 5.3.2, we provided general formulations of problems satisfying Ad-
ditive and Composed DPAS recurrences. Next, we illustrate these recurrences with several NP-
hard single-machine scheduling problems enabling their resolution with our hybrid algorithm
Q-DDPAS. The list of problems is non-exhaustive but highlights the structures’ specificity of
scheduling problems that enable such recurrences. Eventually, for each problem, we compare the
worst-case time complexity of Q-DDPAS with the complexity of the best-known classical exact
algorithm, which is a moderate exponential-time algorithm. Q-DDPAS improves the exponential-
part complexity, sometimes at the cost of an additional pseudo-polynomial factor.

5.4.1 Scheduling with deadlines and precedence constraints

Single-machine scheduling problems with no constraints, deadline constraints or precedence con-
straints satisfy the addition of optimal values of the problem on sub-instances. We provide next
several examples of problems that satisfy Additive DPAS and thus can be solved by Q-DDPAS
(Algorithm 2).

In Subsection 5.2.1, we have presented the problem of minimizing the total weighted completion
time with deadline constraints (1|d̃j |

∑
j wjCj). The formulation needed the set T to be equal
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to J0,
∑n

j=1 pjK, hence its resolution with Q-DDPAS in O∗(
∑
pj · 1.728n) according to Observa-

tion 5.2.10. Next, we give two more examples, beginning with the strongly NP-hard scheduling
problem with minimization of the total weighted tardiness. Henceforth, to lighten the equations,
we note p(J) =

∑
j∈J pj the sum of processing times of the jobs in J ⊆ [n].

Example 12 (Minimizing the total weighted tardiness, 1||
∑

j wjTj). For each job j ∈ [n], we are
given a weight wj, a processing time pj, and a due date dj that indicates the time after which the
job is late. Thus, a job j is late in permutation π if its completion time is larger than dj, and we
define as Tj(π) = max(0, Cj(π)− dj) its tardiness. Our problem aims at finding the permutation
that minimizes the total weighted tardiness, referred to as 1||

∑
j wjTj in the scheduling literature.

Let T = J0,
∑n

j=1 pjK be the set of all possible starting times.
We define the related problem P of Equation (5.4) as follows: for J ⊆ [n] and t ∈ T ,

Π(J, t) = SJ ,

and for π ∈ Π(J, t):

f(π, J, t) =
∑
j∈J

wj max(0, Cj(π)− dj + t) ,

where max(0, Cj − dj + t) represents the tardiness of job j for the effective due date (dj − t).
Problem 1||

∑
j wjTj satisfies both Additive DPAS recurrences. Indeed, Equation (Add-DPAS) is

valid with: ∀J ⊆ [n],∀j ∈ J, ∀t ∈ T,

g(J, j, t) = wj max(0, p(J)− dj + t) ,

where the computation of g is polynomial (linear). Moreover, Equation (Add-D-DPAS) is valid
for the following functions: ∀X ⊆ J ⊆ [n] s.t. |X| = |J |/2, ∀t ∈ T,

τshift(J,X, t) = t+ p(X) and h(J,X, t) = 0 (5.7)

initialized by, for j ∈ [n] and t ∈ T , OPT[{j}, t] = wj max(0, pj − dj + t) .

We consider the scheduling problem with precedence constraints and minimization of the total
weighted completion time that is also NP-hard. Conversely to the two previous examples, the set
T is reduced to {0}, and function h translates the potential infeasibility of the concatenation of
problem P on two sub-instances.

Example 13 (Minimizing the total weighted completion time with precedence constraints,
1|prec|

∑
j wjCj). We are given, for each job j ∈ [n], a processing time pj, a weight wj, and

a set of precedence constraints K = {(i, j) : i ≺ j}. A pair of jobs (i, j) in K implies that i must
precede j in the permutation, namely that i must be processed before j. Our problem, denoted by
1|prec|

∑
j wjCj, aims at finding the feasible permutation, i.e. that respects the precedence con-

straints, that minimizes the total weighted completion time. Let be T = {0}. Here, an instance of
the problem P of Equation (5.4) under consideration is only indexed by the chosen subset of [n].

Thus, we consider the problem P as follows: for J ⊆ [n],

Π(J, 0) = {π ∈ SJ |π respects K} ,

and for π ∈ Π(J, 0),

f(π, J, 0) =
∑
j∈J

wjCj(π) .
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Our problem 1|prec|
∑

j wjCj satisfies both Additive DPAS recurrences. Indeed, Equa-
tion (Add-DPAS) is valid for:

∀J ⊆ [n],∀j ∈ J, g(J, j, 0) =

{
+∞ if ∃(j, k) ∈ E|k ∈ J
wjp(J) otherwise

,

where the computation of g is polynomial (quadratic). This problem P also satis-
fies (Add-D-DPAS). Indeed, Equation (Add-D-DPAS) is valid for the following functions:
∀X ⊆ J ⊆ [n] such that |X| = |J |/2,

τshift(J,X, 0) = 0 and h(J,X, 0) =


+∞ if ∃(j, k) ∈ E|j ∈ J \X and k ∈ X

p(X) ·
∑

j∈J\X

wj otherwise

where the computation of h is polynomial (quadratic). The initialization is, for j ∈ [n],
OPT[{j}, 0] = wjpj .

The three NP-hard scheduling problems examples described above can be solved with Q-
DDPAS for Additive DPAS (Algorithm 2). We illustrate in Table 5.1 the worst-case time complex-
ities of solving them with Q-DDPAS and compare them with the complexities of the best-known
exact classical algorithms. Q-DDPAS improves the complexity of the exponent but sometimes at
the cost of a pseudo-polynomial factor.

Problem Q-DDPAS for Additive DPAS Best classical algorithm

1|d̃j |
∑
wjCj O∗ (

∑
pj · 1.728n) O∗(2n) (T’kindt et al., 2022)

1||
∑
wjTj O∗ (

∑
pj · 1.728n) O∗(2n) (T’kindt et al., 2022)

1|prec|
∑
wjCj O∗ (1.728n) O∗((2− ϵ)n), for small ϵ (Cygan et al., 2014)

Table 5.1: Comparison of complexities between Q-DDPAS and the best-known classical algo-
rithms for several scheduling problems satisfying (Add-DPAS) and (Add-D-DPAS)

5.4.2 Scheduling with release date constraints

Single-machine scheduling problems with release date constraints do not satisfy the addition of
optimal values of the problem on sub-instances but enable the composition of them. We illustrate
this notion with two examples of problems that satisfy Composed DPAS and thus can be solved
by Q-DDPAS (Algorithm 3).

We have presented in Subsection 5.3.1 an example that is the problem of minimizing the
weighted number of late jobs with release date constraints (1|rj |

∑
wjUj). We have shown that

the two sets to define the auxiliary problem are E = J0,
∑n

j=1wjK and T = J0,
∑n

j=1 pjK∪{+∞}.
Thus, Q-DDPAS solves this problem in O∗ ((∑wj)

3 ·
∑
pj · 1.728n

)
according to Observa-

tion 5.3.7. Next, we present another example which is the strongly NP-hard problem of min-
imizing the total weighted completion time with release date constraints.

Example 14 (Minimizing the total weighted completion time with release date constraints,
1|rj |

∑
wjCj). Each job j ∈ [n] has a weight wj, a processing time pj, and a release date rj. This
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problem aims at finding the feasible permutation, namely where each job starts after its release
date, for which the total weighted completion time is minimal.

Let T = J0,
∑n

j=1 pjK∪ {+∞} and E = J0,
∑n

j=1wj ·
∑n

j=1 pjK. For a given ϵ ∈ E, we consider
the problem P ′ of Equation (5.5) as follows: ∀J ⊆ [n], t ∈ T,

P ′(J, t, ϵ) : min
π∈Π′(J,t,ϵ)

Cmax(π) ,

where Cmax is the is the maximum completion time, and

Π′(J, t, ϵ) = {π ∈ SJ : Cj(π) ≥ max(t, rj) + pj and
∑
j∈J

wjCj(π) = ϵ} ,

where Cj is the completion time of job j.
Problem P ′ satisfies the two Composed DPAS recurrences (Comp-DPAS)

and (Comp-D-DPAS). The initialization of the recurrences is, for j ∈ [n], t ∈ T and
ϵ ∈ E,

OPT[{j}, t, ϵ] =

{
Cj := max(t, rj) + pj , if ϵ = wjCj

+∞, otherwise

We synthesize in Table 5.2 the worst-case time complexities achieved by Q-DDPAS on the
examples of scheduling problems satisfying the Composed DPAS recurrences. We compare them
with the best-known classical complexities for exact algorithms. The latter comes from the
algorithm of Inclusion-Exclusion designed by Ploton and T’kindt (2022), which provides a generic
method to solve such problems. We observe that Q-DDPAS improves the exponential part of the
complexity, at a cost of a higher degree for the pseudo-polynomial factor.

Problem Q-DDPAS for Composed DPAS Best classical algorithm

1|rj |
∑
wjUj O∗ ((∑wj)

3 ·
∑
pj · 1.728n

)
O∗(

∑
wj ·

∑
pj · 2n) , (Ploton and T’kindt, 2022)

1|rj |
∑
wjCj O∗ ((∑wj)

3 · (
∑
pj)

4 · 1.728n
)
O∗(

∑
wj · (

∑
pj)

2 · 2n) , (Ploton and T’kindt, 2022)

Table 5.2: Comparison of complexities between Q-DDPAS and the best-known classical algo-
rithms for several scheduling problems satisfying (Comp-DPAS) and (Comp-D-DPAS)

5.5 Decision-based DPAS

We saw in the previous sections that the recurrence to solve P can be applied to a minimization
problem, possibly involving an auxiliary problem. Sometimes, the recurrence does not apply
directly to a minimization problem but to a decision problem. This is the case of the 3-machine
flowshop problem. In this section, we adapt the hybrid algorithm Q-DDPAS to solve this problem.
Notice that it easily generalizes to the m-flowshop problem, for m ≥ 4.

5.5.1 3-machine flowshop and dynamic programming

We consider the permutation flowshop problem on 3 machines for n jobs with minimizing the
makespan as the objective function. This strongly NP-hard problem is often referred to as
F3||Cmax in the literature, and is still being actively studied, e.g. by Shang et al. (2018). Each
job j ∈ [n] consists of 3 operations Oij for i ∈ [3], each operation being processed on the i-th
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machine. We note pij the processing time of operation Oij . Each machine performs at most
one operation at a time. For each job j, operations must be processed in the specific order O1j ,
O2j , O3j : the first operation gets processed on the first machine, then the second operation gets
processed on second machine (as soon as the first operation is finished and the second machine is
available), and eventually the third operation gets processed on the third machine (as soon as the
second operation is finished and the third machine is available). Thus, only the processing order
of the jobs has to be decided, implying that a solution is entirely described by the permutation
of jobs on the first machine. Thus, the problem can be formulated as

min
π∈S[n]

Cmax(π) , (5.8)

where Cmax is the maximum completion time, called makespan, which is the completion time of
the last job processed on the last machine (third machine). Because the two techniques presented
so far do not apply to (5.8), we present an alternative approach involving the decision counterpart
of the above optimization problem.

We introduce below a decision problem for deriving the recurrences. For that, we define the
bounded set

T =

u

v0,
∑

j∈[n],i∈[3]

pij

}

~ ⊆ Z .

Definition 5.5.1 (Decision problem). For J ⊆ [n], β⃗ = (β2, β3) ∈ T 2 and ϵ⃗ = (ϵ2, ϵ3) ∈ T 2, we
define the decision problem D(J, β⃗, ϵ⃗) on a sub-instance associated with jobs in J as the following
question: “Does there exist a permutation π ∈ SJ such that, for i ∈ {2, 3}, bi(π) ≥ βi , and
ei(π) ≤ ϵi ?”, where bi(π), respectively ei(π), denotes the time at which the first operation begins,
respectively the last operation ends, on the i-th machine.

In other words, problem D(J, β⃗, ϵ⃗) asks whether or not there exists a feasible permutation
with jobs in J such that it holds between the two temporal fronts β⃗ and ϵ⃗. Notice that it is
not necessary to impose any beginning and ending time for the first machine (i = 1). Indeed,
the problem is time-invariant, thus we can always consider that the scheduling problem starts at
time 0, and that the total completion time on the first machine is known and equal to the sum
of processing times of the scheduled jobs. Notice that the number of parameters is four for the
3-machine flowshop, but generalizes to 2(m− 1) parameters for the m-machine flowshop.

With these notations, P can be cast as follows:

P : min
c∈T

{
c : D[[n], (0, 0), (c, c)] = True

}
. (5.9)

The decision problem D satisfies both recurrences (Dec-DPAS) and (Dec-D-DPAS) below.

Property 5.5.2 (Decision DPAS). For all J ⊆ [n] of even cardinality, β⃗ ∈ T 2 and ϵ⃗ ∈ T 2,

D[J, β⃗, ϵ⃗] =
∨

X⊆J:|X|=|J|/2,
t⃗∈[β⃗,⃗ϵ]

(
D[{j}, β⃗, t⃗] ∧D[J \ {j}, t⃗⊖ p1j , ϵ⃗⊖ p1j ]

)
, (Dec-DPAS)

where t⃗ ∈ [β⃗, ϵ⃗] means that the i-th coordinate of t⃗ is between the i-th coordinates of β⃗ and ϵ⃗, and
where operation v⃗ ⊖ c, for a vector v⃗ and a constant c, subtracts c to each coordinate of v⃗.

This latter recurrence enables P to be solved by a classical dynamic programming algorithm.
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Lemma 5.5.3. (Dec-DPAS) solves P in O∗(|T |4 · 2n).

Proof. First, we can show that, for a given β⃗0, ϵ⃗0 ∈ T 2, (Dec-DPAS) solves D([n], β⃗0, ϵ⃗0) in
O∗(|T |4 · 2n). This is essentially the same lines of the proof as in Lemma 5.2.2. Second, to solve
P, we make a dichotomic search over T to find the minimum c ∈ T such that D([n], (0, 0), (c, c))
is True according to Equation (5.9). Thus, (Dec-DPAS) is called log2(|T |) times. Because |T | =∑
pij is a pseudo-polynomial term of the instance, the total complexity is

O∗(log2(|T |) · |T |4 · 2n) = O∗(|T |4 · 2n) .

Property 5.5.4 (Decision Dichotomic DPAS). For all J ⊆ [n] of even cardinality, β⃗ ∈ T 2 and
ϵ⃗ ∈ T 2,

D[J, β⃗, ϵ⃗] =
∨

X⊆J:|X|=|J|/2,
t⃗∈[β⃗,⃗ϵ]

D[X, β⃗, t⃗] ∧D[J \X, t⃗⊖
∑
j∈X

p1j , ϵ⃗⊖
∑
j∈X

p1j ]

 . (Dec-D-DPAS)

Lemma 5.5.5. (Dec-D-DPAS) solves P in ω(|T |4 · 2n).

Proof. This proof is similar to the proof of Lemma 5.2.5, with the argument that a dichotomic
search is polynomial in the size of the instance as in the proof of Lemma 5.5.3.

Once again, we observe that recurrence (Dec-DPAS) outperforms recurrence (Dec-D-DPAS)
to solve by classical dynamic programming our problem P. In the next section, we describe how
we adapt Q-DDPAS to take advantage of those two recurrences to solve the 3-machine flowshop
problem.

5.5.2 Hybrid algorithm for Decision-based DPAS

We call Q-Dec-DDPAS the adapted decision version of Q-DDPAS. The main difference is that in-
stead of searching for a minimum value in a set in recurrence (Add-D-DPAS) or (Comp-D-DPAS),
we search for a True value in a set in recurrence (Dec-D-DPAS). Thus, it essentially amounts to
replacing Quantum Minimum Finding with the algorithm of Boyer et al. (1998) specified below,
which extends Grover Search (Grover, 1996).

Definition 5.5.6 (Grover Search Extension (Boyer et al., 1998)). Let f : [n] → {0, 1} be a
function. Grover Search Extension computes with high probability the logical OR of all the f
values and the corresponding antecedent(s) x ∈ [n] such that f(x) = 1. The complexity of Grover
Search Extension is O (

√
n · Cf (n)), where O(Cf (n)) is the complexity of computing a value of f .

Notice that we use Grover Search Extension instead of Grover Search because we do not know
the number of x such that f(x) = 1. The generalization by Boyer et al. (1998) enables us to
deal with an unknown number of solutions while keeping the same complexity of Grover Search.

Moreover, if there are t ∈ N∗ solutions, the complexity is O
(√

n/t · Cf (n)
)

but, having no

bounds on t whenever we call Grover Search Extension, we omit it in the complexity.

Lemma 5.5.7. Let β⃗0, ϵ⃗0 ∈ T 2. The bounded-error algorithm Q-Dec-DDPAS (Algorithm 5)
solves D([n], β⃗0, ϵ⃗0) in O∗((

∑
pij)

4 · 1.754n).
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Algorithm 5: Q-Dec-DDPAS for 3-machine flowshop

Input: β⃗0, ϵ⃗0 ∈ T 2, decision problem D satisfying (Dec-DPAS) and (Dec-D-DPAS)
Output: D[[n], β⃗0, ϵ⃗0] with high probability
begin classical part

for X ⊆ [n] : |X| = n/4 and β⃗, ϵ⃗ ∈ T 2 do

Compute D[X, β⃗, ϵ⃗] with (Dec-DPAS) and store the results in the QRAM;

begin quantum part

Apply Grover Search Extension with (Dec-D-DPAS) to find D[[n], β⃗0, ϵ⃗0];

To get values for the Grover Search Extension above (the values D[J, β⃗, ϵ⃗] for J ⊆ [n]
of size n/2 and β⃗, ϵ⃗ ∈ T ), apply Grover Search Extension with (Dec-D-DPAS);

To get values for Grover Search Extension above (the values D[X, β⃗′, ϵ⃗′] for X ⊆ [n]
of size n/4 and β⃗′, ϵ⃗′ ∈ T ), get them on the QRAM;

Proof. As for the proof of Lemma 5.3.5, we follow the same reasoning of the proof of Theo-
rem 5.2.8. The classical part computes and stores in the QRAM the decision variables for all(n/2
n/4

)
bi-partitions of [n], for any couple of parameters in T 2. The quantum part applies recur-

sively twice Grover Search Extension. The first call puts the optimal values for sets of size n/2
in superposition. The second call finds the optimal value for all jobs in [n].

The computation of the complexity in time of Q-Dec-DDPAS is also similar.

• Classical part: according to Lemma 5.5.3, (Dec-DPAS) computes all D[X, β⃗, ϵ⃗] for X of size
n/4 and β⃗, ϵ⃗ ∈ T 2 in

O∗
(
|T |4 ·

(
n

≤ n/4

))
= O∗(|T |4 · 20.811n) .

• Quantum part: the first call to Grover Search Extension in parallel is done on a set of size
|T |2 ·

(n/2
n/4

)
. The second call to Grover Search Extension is done on a set of size |T |2 ·

(
n

n/2

)
.

Eventually, the complexity of the quantum part is:

O∗

(√
|T |2 ·

(
n/2

n/4

)√
|T |2 ·

(
n

n/2

))
= O∗

(
|T |2

√(
n/2

n/4

)(
n

n/2

))
= O∗(|T |2 · 20.75n) .

Eventually, the total complexity is

O∗(|T |4 · 20.811n + |T |2 · 20.75n) = O∗ (|T |4 · 1.754n) = O∗
(
(
∑

pij)
4 · 1.754n

)

All the details of correctness and low-level implementation are given in Chapter 6.

Theorem 5.5.8. The bounded-error Algorithm 6 solves the 3-machine flowshop in O∗((
∑
pij)

4 ·
1.754n) with high probability.

Once again, as mentioned in Observation 5.2.10, the complexity can be reduced thanks to a
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Algorithm 6: Meta-algorithm with subroutine Q-Dec-DDPAS for the 3-machine flow-
shop

Input: 3-machine flowshop
Output: Minimum makespan with high probability

1 c∗ ← +∞;
2 for c ∈ T do
3 Solve D([n], (0, 0), (c, c)) with Algorithm 5;
4 if D[[n], (0, 0), (c, c)] = True and c < c∗ then
5 c∗ ← c;

6 Return c∗

slight modification on the Q-Dec-DDPAS that constitutes the subroutine, thus leading to the
following observation.

Observation 5.5.9. A slight modification of Algorithm 6 reduces the complexity of solving the
3-machine flowshop in O∗((

∑
pij)

4 · 1.728n) with high probability.

This new method improves the best-known classical algorithm that is in O∗(3n) or in O∗(M ·2n)
if there exists a constant M such that pij ≤ M , for all i ∈ [3], j ∈ [n], presented by Shang et al.
(2018) and Ploton and T’kindt (2023). Hybrid bounded-error Algorithm 6 reduces the exponential
part of the time complexity at the cost of a pseudo-polynomial factor. For most cases, this factor
is negligible because the numerical values of 3-machine flowshop instances are small compared to
the exponential part value. However, we present in the next subsection a way to dispose of this
factor with an approximation scheme.

It is worth noting that the previous algorithm easily generalizes to the m-machine flowshop
problem. Indeed, the only difference is the description of the temporal front that necessitates
2(m− 1) parameters.

Observation 5.5.10. The bounded-error Algorithm 6 generalizes to solve the m-machine flow-
shop in O∗((

∑
pij)

2(m−1) · 1.728n) with high probability.

Notice that Ploton and T’kindt (2023) present a classical resolution for them-machine flowshop
by Inclusion-Exclusion in O∗((

∑
pij)

m · 2n).

5.5.3 Approximation scheme for the 3-machine flowshop

We present an approximation scheme for the 3-machine flowshop problem that trades the pseudo-
polynomial factor in the complexity of Q-Dec-DDPAS and the optimality of the algorithm for
a polynomial factor in 1

ϵ and an approximation factor of (1 + ϵ). In other words, we provide
Algorithm 7 that finds a solution in time O∗ ( 1

ϵ3
· 1.728n

)
for which the makespan is not greater

than (1+ϵ) times the optimal makespan. The latter point denotes that this is an ϵ-approximation
scheme. Our algorithm belongs to the class of moderate exponential-time approximation algo-
rithms. Notice that the 3-machine flowshop problem does not admit an FPTAS (fully polynomial-
time approximation scheme) because it is strongly NP-hard, meaning that no ϵ-approximation
algorithm exists to solve the 3-machine flowshop in time O

(
poly(n, 1ϵ )

)
unless P = NP (Vazirani,

2001). In comparison, Hall (1998) provides for the m-machine flowshop problem an FPT-AS
(fixed-parameter tractable approximation scheme), namely an ϵ-approximation algorithm that
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runs in time O(f(ϵ, κ) ·poly(n)) for κ a fixed parameter of the instance and f a computable func-
tion. Hall (1998) choose κ to be the number of machines of the flowshop, leading to an FPT-AS

that runs in time O
(
n3.5 · (mϵ )

m4

ϵ2

)
. In our case, we consider the case m = 3.

Algorithm 7: Hybrid approximation scheme for the 3-machine flowshop

Input: ϵ > 0, 3-machine flowshop on n jobs with processing times {pij : i ∈ [3], j ∈ [n]}
Output: solution at most 1 + ϵ times the optimal solution

1 P = max
i∈[3],j∈[n]

{pij};

2 K = ϵP
n+2 ;

3 for i ∈ [3], j ∈ [n] do
4 p′ij = ⌈

pij
K ⌉;

5 Solve the 3-machine flowshop on n jobs with new processing times {p′ij : i ∈ [3], j ∈ [n]}
with Algorithm 6 that outputs permutation π′;

6 Return π′

Lemma 5.5.11. Let π∗ be an optimal solution of the 3-machine flowshop problem, for the pro-
cessing times {pij : i ∈ [3], j ∈ [n]}. Let π′ be the output of Algorithm 7. We have

Cmax(π
′) ≤ (1 + ϵ) · Cmax(π

∗) .

Next, we introduce two observations necessary to prove Lemma 5.5.11. The proofs are omitted
because of their simplicity.

Observation 5.5.12. Let π be a permutation and let α be a non-negative real number. We note
Cmax(π) the makespan of π of the 3-machine flowshop for processing times {pij : i ∈ [3], j ∈ [n]}.
We note C ′

max(π) the makespan of π of the 3-machine flowshop for processing times {p′ij : i ∈
[3], j ∈ [n]} such that p′ij := αpij for all i, j. Then,

C ′
max(π) = αCmax(π) .

Notice that for p′ij ≤ αpij, we have C ′
max(π) ≤ αCmax(π) even if the critical path in π may differ

to obtain Cmax and C ′
max.

Observation 5.5.13. Let π be a permutation and let β be a real number such that β ≥
− min

i∈[3],j∈[n]
{pij}. We note Cmax(π) the makespan of π of the 3-machine flowshop for process-

ing times {pij : i ∈ [3], j ∈ [n]}. We note C ′′
max(π) the makespan of π of the 3-machine flowshop

for processing times {p′′ij : i ∈ [3], j ∈ [n]} such that p′′ij := pij + β for all i ∈ [3], j ∈ [n]. Then,

C ′′
max(π) ≤ Cmax(π) + β(n+ 2) .

Notice that for p′′ij ≤ pij + β, we still have C ′′
max(π) ≤ Cmax(π) + β(n+2) even if the critical path

in π may differ to obtain Cmax and C ′′
max.

Proof of Lemma 5.5.11. Let be ϵ > 0. The new processing times considered p′ij := ⌈pijK ⌉ imply

that
pij
K ≤ p′ij <

pij
K + 1. We note C ′

max the makespan of the new problem, i.e. the 3-machine
flowshop problem with processing times {p′ij : i ∈ [3], j ∈ [n]}.
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On the one hand, we have p′ij <
pij
K + 1, for all i ∈ [3], j ∈ [n]. Thus, according to Observa-

tions 5.5.12 and 5.5.13 considering the optimal permutation π∗,

C ′
max(π

∗) ≤ Cmax(π
∗)

K
+ n+ 2 ,

namely, because K > 0,

KC ′
max(π

∗) ≤ Cmax(π
∗) +K(n+ 2) . (5.10)

On the other hand, we have
pij
K ≤ p′ij . Thus, according to Observation 5.5.12 considering the

output permutation π′ of Algorithm 7,

Cmax(π
′)

K
≤ C ′

max(π
′) ,

namely, because K > 0,

Cmax(π
′) ≤ KC ′

max(π
′) ≤ KC ′

max(π
∗) (5.11)

≤ Cmax(π
∗) +K(n+ 2) = Cmax(π

∗) + ϵP (5.12)

≤ Cmax(π
∗) + ϵCmax(π

∗) = (1 + ϵ)Cmax(π
∗) , (5.13)

where (5.11) comes from the fact that π′ is the optimal solution for makespan C ′
max, (5.12)

results from Equation (5.10), and (5.13) is true because the makespan is always larger than
P = max

i∈[3],j∈[n]
{pij}.

Theorem 5.5.14. Algorithm 7 is an approximation scheme for the 3-machine flowshop prob-
lem and outputs a solution whose makespan is at most (1 + ϵ) times the optimal value in time
O∗ ( 1

ϵ3
· 1.728n

)
.

Proof. First, according to Lemma 5.5.11, Algorithm 7 outputs a solution whose makespan is
at most (1 + ϵ) times the optimal value. Second, Algorithm 6 solves the new problem in time
O∗((

∑
p′ij)

4 · 1.728n) = O∗( 1
ϵ4
· 1.728n). Indeed,∑

p′ij ≤
∑(pij

K
+ 1
)

=
1

K

∑
pij + 3n

≤ 1

K
· 3nP + 3n

=
3n(n+ 2)

ϵ
+ 3n .

Thus,
∑
p′ij ≤ poly(n, 1ϵ ).

5.6 Conclusion

In this chapter, we proposed a hybrid algorithm Q-DDPAS in addition to generalized dynamic
programming recurrences, to solve a broad class of NP-hard scheduling problems. Notice that
our algorithm is an adapted version of the algorithm of Ambainis et al. (2019). Q-DDPAS, or
its adaptation Q-Dec-DDPAS to decision problems, provides a quantum speed-up to their exact
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resolution. Specifically, our hybrid algorithm reduces the best-known classical time complexity,
often equal to O∗(2n) for single-machine problems and O∗(3n) for the 3-machine flowshop, to
O∗(1.728n), sometimes at the cost of an additional pseudo-polynomial factor as summarized in
Table 5.3. We further discuss in Chapter 6 the details of the algorithms presented above.

Problem Our hybrid algorithm Best classical algorithm

1|d̃j |
∑
wjCj O∗ (

∑
pj · 1.728n) O∗(2n) (T’kindt et al., 2022)

1||
∑
wjTj O∗ (

∑
pj · 1.728n) O∗(2n) (T’kindt et al., 2022)

1|prec|
∑
wjCj O∗ (1.728n) O∗((2− ϵ)n), for small ϵ (Cygan et al., 2014)

1|rj |
∑
wjUj O∗ ((∑wj)

3 ·
∑
pj · 1.728n

)
O∗(

∑
wj ·

∑
pj · 2n) (Ploton and T’kindt, 2022)

1|rj |
∑
wjCj O∗ ((∑wj)

3 · (
∑
pj)

4 · 1.728n
)

O∗(
∑
wj · (

∑
pj)

2 · 2n) (Ploton and T’kindt, 2022)

F3||Cmax O∗ ((∑ pij)
4 · 1.728n

)
O∗(3n) (Shang et al., 2018; Ploton and T’kindt, 2023)

Table 5.3: Comparison of worst-case time complexities between our hybrid algorithm and the
best-known classical algorithms.
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6

Low-level description of hybrid
scheduling algorithms

This chapter is the continuation of the previous one: we provide a low-level description of the algo-
rithms of Q-DDPAS and its decision-based version (Algorithm 2, Algorithm 3, and Algorithm 5).
We call low-level description the description of the quantum part of the above-mentioned al-
gorithms, with unitary circuits representing complete algorithms or single operations. This de-
scription aims to provide the necessary details to prove the correctness of these algorithms, and
consequently enlighten possible implementations.

6.1 Preliminaries

Let us introduce the building blocks required for the description of the algorithms in this chapter.

6.1.1 Building block quantum circuits

We specify the quantum circuit associated with two algorithms that we use in a black box way
and which constitute fundamental subroutines in Q-DDPAS or Q-Dec-DDPAS algorithms. The
first one is the Quantum Minimum Finding algorithm of Dürr and Høyer (1996) presented in
Definition 5.2.6, needed for Q-DDPAS. The second one is the Grover Search Extension of Boyer
et al. (1998) presented in Definition 5.5.6, needed for Q-Dec-DDPAS. The circuit associated with
the Quantum Minimum Finding is the following.

Definition 6.1.1 (Circuit UQMF). Let f : [n]→ Z be a function and let Uf be its corresponding
quantum circuit, specifically,

Uf |i⟩ |0⟩ = |i⟩ |f(i)⟩ , ∀i ∈ [n] .

We note UQMF[Uf ] the quantum circuit corresponding to the Quantum Minimum Finding algo-
rithm of Dürr and Høyer (1996) that computes with high probability the minimum value of f and
the corresponding minimizer:

UQMF[Uf ]
n∑

i=1

1√
n
|i⟩ |0⟩ |0⟩ =

n∑
i=1

1√
n
|i⟩

∣∣∣∣∣argmin
i∈[n]

{f(i)}

〉∣∣∣∣min
i∈[n]
{f(i)}

〉
.

Next, we present the circuit associated with the extension of Grover Search.

Definition 6.1.2 (Circuit UG). Let f : [n]→ {0, 1} be a function and let Uf be its corresponding
quantum circuit. We note UG[Uf ] the quantum circuit corresponding to the algorithm of Boyer
et al. (1998) that computes with high probability the logical OR of all the f values. If it happens

95
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to be True, UG[Uf ] also gives the corresponding set If = {i : f(i) = 1}. Specifically,

UG[Uf ]
N∑
i=1

1√
N
|i⟩ |0⟩ |0⟩ =

N∑
i=1

1√
N
|i⟩ |If ⟩

∣∣∣∣∣∣
∨

i∈[N ]

f(i)

〉
,

Henceforth, we only look at the gate complexity of our algorithm. Thus, we deliberately ignore
extra qubits required in Quantum Minimum Finding, Grover Search Extension, and classical
computation as quantum circuits (see Observation 2.3.1).

6.1.2 Quantum circuits indexing

Before going into the description of the algorithms, we introduce some notations about indexing
quantum circuits to be able to describe them rigorously. Let reg = |q1⟩ . . . |qn⟩ be a register of
n qubits and U be an operator acting on k qubits, with k < n. Let I be a k-tuple of distinct
indices in [n], I = (i1, . . . , ik). We denote by U I the operator acting on the full register reg, that
applies U on |qi1⟩ . . . |qik⟩, and applies Id on the remaining qubits. For instance, if I is the tuple
of contiguous indices (3, . . . , k + 3) with k < n− 3, then

U I = Id⊗2 ⊗ U ⊗ Id⊗n−k−3 .

For I = (i1, . . . , ik) and J = (j1, . . . , jl) two distinct tuples in [n] (k-tuple and l-tuple where i ̸=
j,∀(i, j) ∈ I×J) , we note I⊕J the concatenation of I and J , namely I⊕J = (i1, . . . , ik, j1, . . . , jl).
Regarding the Quantum Minimum Finding operator, let us denote the indexes related to the
quantum circuit Uf of a function f as

Uf |i⟩︸︷︷︸
I

|0⟩︸︷︷︸
J

= |i⟩︸︷︷︸
I

|f(i)⟩︸ ︷︷ ︸
J

.

To clarify the computations detailed next, we index the corresponding Quantum Minimum Find-
ing operator as UQMF[U

I
f ]. We omit the index J because this is an auxiliary register that does

not appear in the output of UQMF[Uf ]. Similarly, we index the corresponding Grover Search

Extension operator as UG[U
I
f ] omitting the index J .

6.2 Hybrid algorithm Q-DDPAS

In this section, we describe in the gate-based quantum computing model our algorithm Q-DDPAS
that applies to any problem satisfying (Add-DPAS) and (Add-D-DPAS) or (Comp-DPAS)
and (Comp-D-DPAS). We introduce in the two following subsections the sets and quan-
tum circuits that constitute the building blocks of Q-DDPAS, and we provide for each of
them their complexity. Depending on the tackled problem P solved by the hybrid algorithm,
these sets, respectively quantum circuits, slightly differ whether the related problem P satis-
fies (Add-DPAS) and (Add-D-DPAS), or the related auxiliary problem P ′ satisfies (Comp-DPAS)
and (Comp-D-DPAS).

6.2.1 Additive DPAS sets and quantum circuits

Let us begin with the sets and related quantum circuits useful to the description of Q-DDPAS for
solving problems whose related problem P satisfies recurrences (Add-DPAS) and (Add-D-DPAS).
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We define two sets Λadd and Ωadd indexed by (J, t) for J ⊆ [n] and t ∈ T . Essentially, the
set Λadd(J, t) contains all the possible balanced bi-partitions of J and the associated parameter
value of τshift. The second set Ωadd(J, t) contains the optimal solutions for each bi-partition in
Λadd(J, t).

Definition 6.2.1 (Sets Λadd and Ωadd). For J ⊆ [n] such that |J | is even and for t ∈ T , we
define the set

Λadd(J, t) =

{
(X, t, J \X, τshift(J,X, t)) : X ⊆ J, |X| =

|J |
2

}
,

and the set

Ωadd(J, t) =

{
(X,OPT[X, t], J \X,OPT[J \X, τshift(J,X, t)], t) : X ⊆ J, |X| =

|J |
2

}
.

The two following quantum circuits UΛadd
and UΩadd

amount, respectively, to put into uniform
superposition the elements of Λadd and Ωadd.

Definition 6.2.2 (Circuit UΛadd
). For J ⊆ [n] such that |J | is even, and for t ∈ T , we define

UΛadd
as follows:

UΛadd
|J⟩ |t⟩ |0⟩⊗6 = |J⟩ |t⟩

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd(J,t)

1√
|Λadd(J, t)|

|λs1⟩
∣∣λt1〉 |0⟩ |λs2⟩ ∣∣λt2〉 |0⟩ .

Observe that we index the objects that represent sets by s, and the objects that represent
scalars by t, because these are equal to the values in T .

Proposition 6.2.3 (Complexity of UΛadd
). The complexity of UΛadd

is polynomial in the size of
the input.

Proof. First, let us prove that, for a given J ⊆ [n] of size m for m even, the construction of the
quantum superposition of subsets of J of size m/2 (i.e. superposition of balanced bi-partitions)
is polynomial.

Let J ⊆ [n] be of size m, for m even. We note σenum : J 7→ J1,mK the bijection that enumerates
the elements of J . We note σbipart : J1,

(
m

m/2

)
K 7→

{
(A, J1,mK \A) : |A| = m

2

}
the bijection that

enumerates the balanced bi-partitions of J1,mK. Let Uσbipart
be the quantum circuit corresponding

to the function σbipart. Specifically, for i ∈ J1,
(

m
m/2

)
K,

Uσbipart
|i⟩ |0⟩ |0⟩ = |i⟩ |Ai⟩ |J1,mK \Ai⟩︸ ︷︷ ︸

σbipart(i)

.

Let U
σ−1
enum

be the quantum circuit corresponding to the inverse of the function σenum. Thus,

U
σ−1
enum
|i⟩ |Ai⟩ |J1,mK \Ai⟩ = |i⟩ |Xi⟩ |J \Xi⟩ ,

for Xi = σ−1
enum(Ai) ⊆ J . We denote by σ−1

enum(S), for S a set, the operation of applying σ−1
enum to

each element of S.
Consequently, we get a quantum superposition of all balanced bi-partitions of J by applying

first Uσbipart
then U

σ−1
enum

to a quantum register that represents the superposition of all elements

in J1,
(

m
m/2

)
K. For that, we require nq := ⌈log2(

(
m

m/2

)
)⌉ = O(m) qubits, each one initially in state
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|0⟩ on which we apply the Hadamard gate. Specifically,

U
σ−1
enum

Uσbipart
H⊗nq |0⟩⊗nq |0⟩ |0⟩ = U

σ−1
enum

Uσbipart

( m
m/2)∑
i=1

|i⟩ |0⟩ |0⟩

= U
σ−1
enum

( m
m/2)∑
i=1

|i⟩ |Ai⟩ |J1,mK \Ai⟩

=

( m
m/2)∑
i=1

|i⟩ |Xi⟩ |J \Xi⟩ .

Let us compute the complexity of U
σ−1
enum

Uσbipart
H⊗nq . For a given i, computing σbipart(i), respec-

tively σ−1
enum(i), is polynomial in m. According to Observation 2.3.1, the complexity of Uσbipart

,
respectively U

σ−1
enum

, is polynomial in m. Thus, the construction of the superposition of balanced

bi-partitions of J is polynomial.
Eventually, the computation of the function τshift is polynomial. Thus, the complexity of UΛadd

is polynomial.

Definition 6.2.4 (Circuit UΩadd
). For J ⊆ [n] such that |J | is even, and for t ∈ T , we define

UΩadd
as follows:

UΩadd
|J⟩ |t⟩ |0⟩ = |J⟩ |t⟩

∑
ω∈Ωadd(J,t)

1√
|Ωadd(J, t)|

|ω⟩ .

Proposition 6.2.5 (Complexity of UΩadd
). Let J be the input set. If we suppose to have stored

in the QRAM the values OPT[X, t] for all X ⊆ J such that |X| = |J |/2 and for all t ∈ T , the
complexity of UΩadd

is polynomial in the size of the input.

Proof. The proof follows essentially the same lines as the proof of Property 6.2.3. The quantum
superposition of subsets is done in polynomial time, and instead of computing τshift, we get values
in the QRAM in constant time.

We end this subsection with the definition of the quantum circuit of the addition required for
recurrence (Add-D-DPAS).

Definition 6.2.6 (Circuit Ua). We define the antecedent set Sa = 2[n] × (Z ∪ {+∞}) × 2[n] ×
(Z ∪ {+∞})× T . Let a : Sa → Z ∪ {+∞} be the function:

a(ωs
1, ω

v
1 , ω

s
2, ω

v
2 , ω

t) = ωv
1 + ωv

2 + h(ωs
1 ∪ ωs

2, ω
s
1, ω

t) .

We note Ua the quantum circuit corresponding to a, namely:

∀(ωs
1, ω

v
1 , ω

s
2, ω

v
2 , ω

t) ∈ Sa, Ua |ω⟩ |0⟩ = |ω⟩ |a(ω)⟩ ,

where |ω⟩ = |ωs
1⟩ |ωv

1⟩ |ωs
2⟩ |ωv

2⟩
∣∣ωt
〉
is encoded in five registers. Notice that we index the objects

that represent numerical values by v.

Notice that according to recurrence (Add-D-DPAS), the function a applies on objects of
Ωadd(J, t) for J ⊆ [n] and t ∈ T , explaining the choice of the antecedent set.
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Proposition 6.2.7 (Complexity of Ua). The complexity of Ua is polynomial in the size of the
input.

Proof. By assumption, the computation of h is polynomial. It implies that the computation of a
is polynomial, and thus Ua has a polynomial complexity (see Observation 2.3.1).

Remark 6.2.8. Notice that for J ⊆ [n] and t ∈ T ,

OPT[J, t] = min
ω∈Ωadd(J,t)

a(ω) .

6.2.2 Composed DPAS sets and quantum circuits

In this subsection, we define the sets and their associated quantum circuits used for the de-
scription of the hybrid algorithm that solves problems whose related auxiliary problem satisfies
recurrences (Comp-DPAS) and (Comp-D-DPAS). Similarly to the previous subsection, we define
two sets Λcomp and Ωcomp indexed by (J, t, ϵ) for J ⊆ [n], t ∈ T and ϵ ∈ E. In this case, the set
Λcomp(J, t, ϵ) contains all the possible balanced bi-partitions of J and the possible parameter val-
ues of T and E. The second set Ωcomp(J, t, ϵ) contains the optimal solutions for each bi-partition
and parameter values in Λcomp(J, t, ϵ).

Definition 6.2.9 (Sets Λcomp and Ωcomp). For J ⊆ [n] such that |J | is even, for t ∈ T and for
ϵ ∈ E, we define the set

Λcomp(J, t, ϵ) =

{
(X, ti, ϵi, J \X, t, ϵ− ϵi) : X ⊆ J, |X| =

|J |
2
, ϵi ∈ E, ti ∈ T

}
,

and the set

Ωcomp(J, t, ϵ) =

{
(X,OPT[X, ti, ϵi], ti, ϵi, J \X,OPT[J \X, t, ϵ− ϵi], t, ϵ− ϵi) :

X ⊆ J, |X| = |J |
2 , ϵi ∈ E, ti ∈ T

}
.

Definition 6.2.10 (Circuit UΛcomp
). For J ⊆ [n] such that |J | is even, for t ∈ T and for ϵ ∈ E,

we define UΛcomp
as follows:

UΛcomp
|J⟩ |t⟩ |0⟩⊗8 = |J⟩ |t⟩

∑
(λs1,λ

t
1,λ

e
1,

λs2,λ
t
2,λ

e
2)∈Λcomp(J,t,ϵ)

1√
|Λcomp(J, t)|

|λs1⟩
∣∣λt1〉 |λe1⟩ |0⟩ |λs2⟩ ∣∣λt2〉 |λe2⟩ |0⟩ .

Observe that we index the objects that represent sets by s, the objects that represent scalars
in T by t, and the objects that represent parameter values in E by e.

Proposition 6.2.11 (Complexity of UΛcomp
). The complexity of UΛcomp

is polynomial in the size
of the input.

Definition 6.2.12 (Circuit UΩcomp
). For J ⊆ [n] such that |J | is even, for t ∈ T and ϵ ∈ E, we

define UΩcomp
as follows:

UΩcomp
|J⟩ |t⟩ |ϵ⟩ |0⟩ = |J⟩ |t⟩ |ϵ⟩

∑
ω∈Ωcomp(J,t,ϵ)

1√
|Ωcomp(J, t, ϵ)|

|ω⟩ .
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Proposition 6.2.13 (Complexity of UΩcomp
). Let J be the input set. If we suppose to have stored

in the QRAM the values OPT[X, t, ϵ] for all X ⊆ J such that |X| = |J |/2, for all t ∈ T and for
all ϵ ∈ E, the complexity of UΩcomp

is polynomial in the size of the input.

The proof of Proposition 6.2.11 (respectively Proposition 6.2.13) is similar to the proof of
Proposition 6.2.3 (respectively Proposition 6.2.5).

The composition is the counterpart for (Comp-D-DPAS) of the addition for (Add-D-DPAS)
(function a).

Definition 6.2.14 (Circuit Uc). We note the antecedent set Sc = 2[n] × (Z ∪ {+∞})× T ×E ×
2[n] × (Z ∪ {+∞})× T × E. Let c : Sc → Z ∪ {+∞} be the function:

c(ωs
1, ω

v
1 , ω

t
1, ω

e
1, ω

s
2, ω

v
2 , ω

t
2, ω

e
2) =

{
ωv
1 if ωt

1 = ωv
2

+∞ else

We note Uc the quantum circuit corresponding to c, namely:

∀(ωs
1, ω

v
1 , ω

t
1, ω

e
1, ω

s
2, ω

v
2 , ω

t
2, ω

e
2) ∈ Sc, Uc |ω⟩ |0⟩ = |ω⟩ |c(ω)⟩ ,

where |ω⟩ = |ωs
1⟩ |ωv

1⟩
∣∣ωt

1

〉
|ωe

1⟩ |ωs
2⟩ |ωv

2⟩
∣∣ωt

2

〉
|ωe

2⟩ is encoded in eight registers.

Notice that the function c is meant to be applied on objects of Ωcomp(J, t, ϵ), for J ⊆ [n], t ∈ T
and ϵ ∈ E, according to recurrence (Comp-D-DPAS).

Proposition 6.2.15 (Complexity of Uc). The complexity of Uc is polynomial in the size of the
input.

The proof of the above proposition is the same as for Proposition 6.2.7.

Remark 6.2.16. Notice that, for J ⊆ [n], t ∈ T and ϵ ∈ E,

OPT[J, t, ϵ] = min
ω∈Ωcomp(J,t,ϵ)

c(ω) .

6.2.3 Algorithm for Additive DPAS

Let us describe the hybrid algorithm Q-DDPAS in the gate-based quantum computing model.
We begin with the description of Algorithm 2 which is Q-DDPAS for problems P whose related
problem P satisfies recurrences (Add-DPAS) and (Add-D-DPAS). Algorithm 3, which is Q-
DDPAS for problems whose related auxiliary problem P ′ satisfies recurrences (Comp-DPAS)
and (Comp-D-DPAS), derives directly as we explain later in Subsection 6.2.4.

We present the quantum circuits used in the quantum part, as well as the numbering of the
different registers.

• Let |ini⟩ be the initial state:

|ini⟩ := |[n]⟩ |0⟩︸ ︷︷ ︸
I1

|0⟩⊗3︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗3︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

,

where the tuples indexing the different registers are decomposed as follows:

I1 = I11 ⊕ I12
I2 = I21 ⊕ I22 ⊕ I23
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I3 = I31 ⊕ I32
I4 = I41 ⊕ I42 ⊕ I43
I5 = I51 ⊕ I52
I6 = I61 ⊕ I62 .

• Let

Uini := (U
I2

Ωadd
⊗ U I4

Ωadd
) · U I1⊕I2⊕I4

Λadd
(6.1)

be the quantum circuit that, given initial quantum state |ini⟩, superposes all the couples
(X,X ′) such that X,X ′ ⊆ [n], |X| = |X ′| = n/4 and X ∩ X ′ = ∅. For each couple, the
optimal values and parameters associated are also superposed.

• The quantum circuit U
I23⊕I3

QMF [U
I23
a ] ⊗ U I43⊕I5

QMF [U
I43
a ] applies two Quantum Minimum Finding

in parallel (resulting from the tensor product of two quantum circuits) on the function a.
Consequently, let

Urecur1 := U
I21⊕I32⊕I41⊕I52⊕I12
a

(
U

I23⊕I3

QMF [U
I23
a ]⊗ U I43⊕I5

QMF [U
I43
a ]
)

be the quantum circuit that adds, with the help of of function a, the resulting values of the
two registers.

• Eventually, let

Urecur := U
I21⊕I32⊕I41⊕I52⊕I12⊕I6

QMF [Urecur1] (6.2)

be the quantum circuit that applies Quantum Minimum Finding on the function represented
by the circuit Urecur1.

We describe next the bounded-error hybrid algorithm Q-DDPAS (Algorithm 2) from a low-level
point of view in Algorithm 8.

Algorithm 8: Q-DDPAS for Additive DPAS (low-level description)

Input: Problem P satisfying (Add-DPAS) and (Add-D-DPAS)
Output: OPT[[n], 0] with high probability
begin classical part

for X ⊆ [n] : |X| = n/4 and t ∈ T do
Compute the optimal value OPT[X, t] and the corresponding permutation π∗[X, t]
by classical (Add-DPAS);

Store the tuple (X, t,OPT[X, t], π∗[X, t]) in the QRAM;

begin quantum part
Prepare quantum state |ini⟩;
Apply the quantum circuit UrecurUini to |ini⟩;
Measure register of indexes I62 ;

Return the outcome of the measurement

We recall Theorem 5.2.8 which states Q-DDPAS worst-case time complexity. Because the com-
plexity proof has already been proven in Chapter 5, we only provide the proof of the correctness,
namely that the optimal value of P is stored in the register of indexes I62 with high probability.
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Theorem 5.2.8. The bounded-error algorithm Q-DDPAS (Algorithm 2) solves P in O∗(|T | ·
1.754n).

Proof. Before entering the details of the computations, we give some intuition on the effect of
the quantum circuit UrecurUini and start by explaining the effect of Uini defined in Equation (6.1).
First, the application of UΛadd

superposes all elements of Λadd([n], 0) in the registers of indexes

I2 (partition of J) and I4 (partition of [n] \ J). This essentially amounts to superposing all the(
n

n/2

)
bi-partitions of [n] where each sub-partition is of size n/2 (parameters t included). Next, we

apply UΩadd
on register of index I2, respectively I4. This superposes all elements of Ωadd(J, t) (for

a J of size n/2 and t ∈ T previously described in registers of indexes I2, respectively I4). This

essentially amounts to superposing all the
(n/2
n/4

)
bi-partitions of [n] where each sub-partition is of

size n/4, parameters t included, and the optimal value associated already stored in the QRAM.
Let us explain the effect of Urecur defined in Equation (6.2). The application of UQMF[Ua] on

a register encoding (J , t) and the superposition of elements of Ωadd(J, t) stores OPT[J, t] (with
high probability) in an output register, according to Equation (Add-D-DPAS). Thus, UQMF[Ua]

on register of index I2, respectively I4, superposes all OPT[J, t] in I3, respectively I5, according

to Remark 6.2.8. In other words, the circuit U
I23⊕I3

QMF [U
I23⊕I31
a ] ⊗ U I43⊕I5

QMF [U
I43⊕I51
a ] that appears in

Urecur1 superposes (with high probability) all optimal values of Equation (Add-D-DPAS) for J
of size n/2. Now that the optimal values are known for sets of size n/2 (before, we only knew
optimal values for sets of size n/4), we apply one more time UQMF[Ua] on these new registers: it

outputs OPT[[n], 0] with high probability on the register of index I62 .
Next, we detail the computation of UrecurUini |ini⟩ and show that OPT[[n], 0] is stored in register

of indexes I62 with high probability. We write the following computations as if the algorithm
Quantum Minimum Finding was returning the optimal solution with probability 1. First, we
compute Uini |ini⟩.

U
I1⊕I2⊕I4

Λadd
|ini⟩ =U I1⊕I2⊕I4

Λadd
|[n]⟩ |0⟩︸ ︷︷ ︸

I1

|0⟩⊗3︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗3︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs1⟩
∣∣λt1〉 |0⟩︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|λs2⟩
∣∣λt2〉 |0⟩︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

.

Thus,

Uini |ini⟩ = (U
I2

Ωadd
⊗ U I4

Ωadd
) · U I1⊕I2⊕I4

Λadd
|ini⟩

=(U
I2

Ωadd
⊗ U I4

Ωadd
) |[n]⟩ |0⟩︸ ︷︷ ︸

I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)

∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs1⟩
∣∣λt1〉 |0⟩︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|λs2⟩
∣∣λt2〉 |0⟩︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs1⟩︸︷︷︸
I2
1

∣∣λt1〉︸︷︷︸
I2
2

 ∑
ω∈Ωadd(λs

1,λ
t
1)

1√
|Ωadd(λs1, λ

t
1)|
|ω⟩︸︷︷︸
I2
3

|0⟩⊗2︸ ︷︷ ︸
I3



|λs2⟩︸︷︷︸
I4
1

∣∣λt2〉︸︷︷︸
I4
2

 ∑
ω∈Ωadd(λs

2,λ
t
2)

1√
|Ωadd(λs2, λ

t
2)|
|ω⟩︸︷︷︸
I4
3

|0⟩⊗2︸ ︷︷ ︸
I5

 |0⟩⊗2︸ ︷︷ ︸
I6

.
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Second, we apply the tensor product of the two first Quantum Minimum Finding to the previous
state. (

U
I23⊕I3

QMF [U
I23
a ]⊗ U I43⊕I5

QMF [U
I43
a ]
)
|[n]⟩ |0⟩︸ ︷︷ ︸

I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs1⟩︸︷︷︸
I21

∣∣λt1〉︸︷︷︸
I22

 ∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λ

s
1, λ

t
1)|
|ω⟩︸︷︷︸
I23

|0⟩⊗2︸ ︷︷ ︸
I3



|λs2⟩︸︷︷︸
I41

∣∣λt2〉︸︷︷︸
I42

 ∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λ

s
2, λ

t
2)|
|ω⟩︸︷︷︸
I43

|0⟩⊗2︸ ︷︷ ︸
I5

 |0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs1⟩︸︷︷︸
I21

∣∣λt1〉︸︷︷︸
I22

∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λ

s
1, λ

t
1)|
|ω⟩︸︷︷︸
I23

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω
r(ω)

〉
︸ ︷︷ ︸

I31⊗I32

|λs2⟩︸︷︷︸
I41

∣∣λt2〉︸︷︷︸
I42

∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λ

s
2, λ

t
2)|
|ω⟩︸︷︷︸
I43

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω
r(ω)

〉
︸ ︷︷ ︸

I51⊗I52

|0⟩⊗2︸ ︷︷ ︸
I6

.

Thus, we apply the second circuit of Quantum Minimum Finding.

UrecurUini |ini⟩ =U
I21⊕I32⊕I41⊕I52⊕I12⊕I6

QMF [Urecur1]Uini |ini⟩

=U
I21⊕I32⊕I41⊕I52⊕I12 I

6

QMF [U
I21⊕I32⊕I41⊕I52⊕I12
a ] |[n]⟩ |0⟩︸ ︷︷ ︸

I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs1⟩︸︷︷︸
I21

∣∣λt1〉︸︷︷︸
I22

∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λ

s
1, λ

t
1)|
|ω⟩︸︷︷︸
I23

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω
r(ω)

〉
︸ ︷︷ ︸

I31⊗I32

|λs2⟩︸︷︷︸
I41

∣∣λt2〉︸︷︷︸
I42

∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λ

s
2, λ

t
2)|
|ω⟩︸︷︷︸
I43

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω
r(ω)

〉
︸ ︷︷ ︸

I51⊗I52

|0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs1⟩︸︷︷︸
I21

∣∣λt1〉︸︷︷︸
I22

∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λ

s
1, λ

t
1)|
|ω⟩︸︷︷︸
I23

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω
r(ω)

〉
︸ ︷︷ ︸

I31⊗I32
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|λs2⟩︸︷︷︸
I41

∣∣λt2〉︸︷︷︸
I42

∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λ

s
2, λ

t
2)|
|ω⟩︸︷︷︸
I43

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω
r(ω)

〉
︸ ︷︷ ︸

I51⊗I52∣∣∣∣∣ argmin
λ∈Λadd([n],0)

r(λs1, min
ω∈Ωadd(λ

s
1,λ

t
1)
r(ω), λs2, min

ω∈Ωadd(λ
s
2,λ

t
2)
r(ω), 0)

〉
︸ ︷︷ ︸

I61∣∣∣∣∣ min
λ∈Λadd([n],0)

r(λs1, min
ω∈Ωadd(λ

s
1,λ

t
1)
r(ω), λs2, min

ω∈Ωadd(λ
s
2,λ

t
2)
r(ω), 0)

〉
︸ ︷︷ ︸

I62

.

According to definition of a and recurrence (Add-D-DPAS), the results stored in register of
indexes I62 is OPT[[n], 0].

Notice that optimal permutation π∗[[n], 0] can be rebuilt with registers of indexes I31 , I
5
1 and

I61 , and with the access to the results of the classical part in the QRAM.

6.2.4 Adaptation for Composed DPAS

In this subsection, we adapt Algorithm 2, and consequently Algorithm 8, for a problem P related
to auxiliary problem P ′ satisfying recurrences (Comp-DPAS) and (Comp-D-DPAS). It essentially
amounts to replacing Λadd by Λcomp, Ωadd by Ωcomp and function a by function c. Consequently,
the quantum circuit UΛcomp

, respectively UΩcomp
, apply on 8 registers, respectively 4 registers, that

differ from Q-DDPAS for Additive DPAS. The resulting Algorithm 3 is provided in a low-level
description in Algorithm 9.

Let us describe the slightly different quantum circuits adapting the number of registers and
the registers on which they apply. Let ϵ0 ∈ E. The initial state is

|ini⟩ = |[n]⟩ |0⟩ |ϵ0⟩︸ ︷︷ ︸
I1

|0⟩⊗4︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗4︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

,

where the tuples indexing the different registers are decomposed as follows:

I1 = I11 ⊕ I12 ⊕ I13
I2 = I21 ⊕ I22 ⊕ I23 ⊕ I24
I3 = I31 ⊕ I32
I4 = I41 ⊕ I42 ⊕ I43 ⊕ I44
I5 = I51 ⊕ I52
I6 = I61 ⊕ I62 .

The three quantum circuits that appear on the quantum part are:

Uini = (U
I2

Ωcomp
⊗ U I4

Ωcomp
) · U I1⊕I2⊕I4

Λcomp
,

Urecur1 = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43
c

(
U

I24⊕I3

QMF [U
I24
c ]⊗ U I44⊕I5

QMF [U
I44
c ]
)
,
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Urecur = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43⊕I6

QMF [Urecur1] .

Next, we describe with a low level of details Algorithm 3 which is the adaptation of Q-DDPAS
to solve P ′([n], 0, ϵ0) for a given ϵ0 ∈ E.

Algorithm 9: Q-DDPAS for Composed DPAS (low-level description)

Input: ϵ0 ∈ E, auxiliary problem P ′ satisfying (Comp-DPAS) and (Comp-D-DPAS)
Output: OPT[[n], 0, ϵ0] with high probability
begin classical part

for X ⊆ [n] : |X| = n/4 and t ∈ T do
Compute the optimal value OPT[X, t, ϵ0] and the corresponding permutation
π∗[X, t, ϵ0] by classical (Comp-DPAS);

Store the tuple (X, t,OPT[X, t, ϵ0], π
∗[X, t, ϵ0]) in the QRAM;

begin quantum part
Prepare quantum state |ini⟩;
Apply the quantum circuit UrecurUini to |ini⟩;
Measure register of indexes I62 ;

Return the outcome of the measurement

The proof of correctness of Lemma 5.3.5 is the same as for Theorem 5.2.8. To lighten the
reading, and because the approach is very similar, we do not detail the calculations here.

6.3 Decision-based hybrid algorithm Q-Dec-DPAS

In what follows, we define the sets and their associated quantum circuits to describe the Q-Dec-
DDPAS (Algorithm 5).

Definition 6.3.1 (Sets Λdec and Ωdec). For J ⊆ [n] such that |J | is even and for β⃗, ϵ⃗ ∈ T 2, we
define the set

Λdec(J, β⃗, ϵ⃗) =

{
(X, β⃗, t⃗, J \X, t⃗, ϵ⃗) : X ⊆ J, |X| = |J |

2
, t⃗ ∈ [β⃗, ϵ⃗]

}
,

and the set

Ωdec(J, β⃗, ϵ⃗) =

{
(X,D[X, β⃗, t⃗], β⃗, t⃗, J \X,D[J \X, t⃗, ϵ⃗], t⃗, ϵ⃗) : X ⊆ J, |X| = |J |

2
, t⃗ ∈ [β⃗, ϵ⃗]

}
.

The quantum circuits associated with these two sets are the following.

Definition 6.3.2 (Circuit UΛdec
). For J ⊆ [n] such that |J | is even, and for β⃗, ϵ⃗ ∈ T 2, we define

UΛdec
as follows:

UΛdec
|J⟩
∣∣∣β⃗〉 |⃗ϵ⟩ |0⟩⊗8 =

|J⟩
∣∣∣β⃗〉 |⃗ϵ⟩ ∑

(λs1,λ
tb
1 ,λte1 ,λs2,λ

tb
2 ,λte2 )

∈Λdec(J,β⃗,⃗ϵ)

1√
|Λdec(J, β⃗, ϵ⃗)|

|λs1⟩
∣∣∣λtb1 〉 ∣∣λte1 〉 |0⟩ |λs2⟩ ∣∣∣λtb2 〉 ∣∣λte2 〉 |0⟩ .
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Notice that we index the objects that represent sets by s, and the objects that represent scalars in
T 2 by tb if it represents a couple of beginning times, or by te if it represents a couple of ending
times.

Proposition 6.3.3 (Complexity of UΛdec
). The complexity of UΛdec

is polynomial in the size of
the input.

Definition 6.3.4 (Circuit UΩdec
). For J ⊆ [n] such that |J | is even, and for β⃗, ϵ⃗ ∈ T 2, we define

UΩdec
as follows:

UΩdec
|J⟩
∣∣∣β⃗〉 |⃗ϵ⟩ |0⟩ = |J⟩ ∣∣∣β⃗〉 |⃗ϵ⟩ ∑

ω∈Ωdec(J,β⃗,⃗ϵ)

1√
|Ωdec(J, β⃗, ϵ⃗)|

|ω⟩ .

Proposition 6.3.5 (Complexity of UΩdec
). Let J be the input set. If we suppose to have stored

in the QRAM the values D[X, β⃗, ϵ⃗] for all X ⊆ J such that |X| = |J |/2 and for all β⃗, ϵ⃗ ∈ T 2, the
complexity of UΩdec

is polynomial in the size of the input.

The proof of Proposition 6.3.3, respectively Proposition 6.3.5, is similar to the proof of Propo-
sition 6.2.3, respectively Proposition 6.2.5. Notice that t⃗ ∈ [β⃗, ϵ⃗] can be replaced by t⃗ ∈ T 2 in sets
UΛdec

and UΩdec
so that the circuits that superpose all elements of these sets are easier to design.

Indeed, (Dec-DPAS) and (Dec-D-DPAS) are less accurate but still valid with this replacement.
The operation in recurrence (Dec-D-DPAS) is not the addition (represented by the function

a for (Add-D-DPAS)) nor the composition (represented by the function c for (Comp-D-DPAS))
but the logical AND. We define below its corresponding quantum circuit.

Definition 6.3.6 (Circuit Uand). We note the antecedent set Sand = 2[n] × {0, 1} × T 2 × T 2 ×
2[n] × {0, 1} × T 2 × T 2. Let and : Sand → {0, 1} be the function:

and(ωs
1, ω

b
1, ω

tb
1 , ω

te
1 , ω

s
2, ω

b
2, ω

tb
2 , ω

te
2 ) =

{
1 if ωb

1 = ωb
2 = 1

0 else

We note Uand the quantum circuit associated to the function, specifically,

∀ω = (ωs
1, ω

b
1, ω

tb
1 , ω

te
1 , ω

s
2, ω

b
2, ω

tb
2 , ω

te
2 ) ∈ Sand, Uand |ω⟩ |0⟩ = |ω⟩ |and(ω)⟩ .

Notice that objects representing boolean values are indexed by b. Note that according to
recurrence (Dec-D-DPAS), the function and applies on objects of sets Ωdec(J, β⃗, ϵ⃗) for J ⊆ [n]
and β⃗, ϵ⃗ ∈ T 2.

Proposition 6.3.7 (Complexity of Uand). The complexity of Uand is polynomial in the size of
the input.

The proof of the above proposition is the same as the one of Proposition 6.2.7.

Remark 6.3.8. Notice that for J ⊆ [n] and β⃗, ϵ⃗ ∈ T 2,

D[J, β⃗, ϵ⃗] =
∨

ω∈Ωdec(J,β⃗,⃗ϵ)

and(ω) .
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Next, we describe the different quantum circuits for the quantum part of Q-Dec-DDPAS (Al-
gorithm 5). Let β⃗0, ϵ⃗0 ∈ T 2. The initial state is

|ini⟩ = |[n]⟩
∣∣∣β⃗0〉 |⃗ϵ0⟩︸ ︷︷ ︸
I1

|0⟩⊗4︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗4︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

,

where the tuples indexing the different registers are decomposed as follows:

I1 = I11 ⊕ I12 ⊕ I13
I2 = I21 ⊕ I22 ⊕ I23 ⊕ I24
I3 = I31 ⊕ I32
I4 = I41 ⊕ I42 ⊕ I43 ⊕ I44
I5 = I51 ⊕ I52
I6 = I61 ⊕ I62

The three quantum circuits that appear on the quantum part are:

Uini = (U
I2

Ωdec
⊗ U I4

Ωdec
) · U I1⊕I2⊕I4

Λdec
,

Urecur1 = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43
and

(
U

I24⊕I3

G [U
I24
and]⊗ U

I44⊕I5

G [U
I44
and]
)
,

Urecur = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43⊕I6
G [Urecur1] .

We provide in Algorithm 10 the description of Algorithm 5 with the details about the quantum
circuits.

Algorithm 10: Q-Dec-DDPAS for 3-machine flowshop (low-level description)

Input: β⃗0, ϵ⃗0 ∈ T 2, decision problem D satisfying (Dec-DPAS) and (Dec-D-DPAS)
Output: D[[n], β⃗0, ϵ⃗0] with high probability
begin classical part

for X ⊆ [n] : |X| = n/4 and β⃗, ϵ⃗ ∈ T 2 do

Compute the optimal value D[X, β⃗, ϵ⃗] and the corresponding permutation
π∗[X, β⃗, ϵ⃗] by classical (Dec-DPAS);

Store the tuple (X, β⃗, ϵ⃗, D[X, β⃗, ϵ⃗], π∗[X, β⃗, ϵ⃗]) in the QRAM;

begin quantum part
Prepare quantum state |ini⟩;
Apply the quantum circuit UrecurUini to |ini⟩;
Measure register of indexes I62 ;

Return the outcome of the measurement

Similarly to Q-DDPAS for the Additive or the Composed version, the correctness of
Lemma 5.5.7 can be verified by the same type of computations.
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6.4 Conclusion

In this chapter, we provided a low-level description of the hybrid algorithms tackling NP-hard
scheduling problems of Chapter 5. This way, we provided proof of the correctness of these
algorithms and proposed a way to implement them on gate-based quantum computers.
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Quantum robust optimization

Robust optimization is essential to address real-world optimization problems that involve inherent
uncertainty. These practical applications can be found in various domains like transportation and
logistics, healthcare, or telecommunications, where the problems deal with uncertain input data.
Uncertainty can arise from factors such as traffic congestion, weather conditions, fluctuations
in demand and resource availability, network equipment failures etc. For the railway domain
in particular, uncertainty occurs at two levels. The first level relates to the category of pre-
operational problems. For instance, timetabling planning must take into account the variations
in travel times or station stop times, and ensure to be robust under these variations. The main
reasons for the fluctuations are weather conditions or passengers’ exchange increasing the dwell
time. The second level concerns the category of real-time problems. These involve re-planning
due to incidents, such as a catenary rupture or a train breakdown. In this case, the duration
of the disruption can vary and is not known in advance. Mathematically, the uncertainty is
modeled by unknown parameters that can take values from a set called uncertainty set, which
is often discrete, polyhedral, or ellipsoidal, and contains all the possible/likely values for these
parameters. The robustness of the solution comes from the fact that the model considers the
worst-case scenario over the uncertainty set.

In this chapter, we study the use of quantum subroutines to tackle robust combinatorial opti-
mization problems. Specifically, we consider the (MIN-MAX) problem, defined below, for which
the uncertainty set is a polytope. Considering the classical algorithm of Omer et al. (2024) ded-
icated to solving this problem, we apply the two following quantum algorithms. The first one
is Quantum Minimum Finding (Dürr and Høyer, 1996) and achieves a quadratic speedup. The
second one is the Quantum Linear System Algorithm (Childs et al., 2017) and does not seem
to provide any speedup under reasonable assumptions because of the numerical error generated
by this subroutine. The first algorithm applies generally to various robust problems like the one
of Bertsimas and Sim (2003) where we consider budgeted uncertainty sets. The second is specific
to cases where the uncertainty set is a polytope because it involves solving linear systems. Such
an application is notably used by Nannicini (2024) to provide fast quantum subroutines for the
simplex method.

7.1 Robust optimization with polyhedral uncertainty

Let n ∈ N and let Y ⊆ {0, 1}n. Let us consider the nominal problem

min
y∈Y

∑
i∈[n]

ciyi , (7.1)

where c ∈ Rn is the cost vector, and Y describes the set of feasible solutions. For instance, one can
think of usual feasible sets such as the one containing spanning trees for the minimum spanning
tree problem, or paths for the shortest path problem as considered in the robust optimization
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of (Pugliese et al., 2019) for example. The robust counterpart of this problem,

min
y∈Y

max
c∈U

∑
i∈[n]

ciyi ,

for which only the cost vector is uncertain and described by a general polytope U , is strongly NP-
hard even if the nominal problem is tractable (Buchheim and Kurtz, 2018). However, for specific
polytopes, the tractability of the nominal problem can be preserved under some assumptions.
This is the case for the polytope we consider in this chapter.

Let us consider the robust counterpart of problem (7.1), where the cost vector c is uncertain
and for which the positive deviation is in a polytope described by s ∈ N inequalities. Specifically,
we consider the problem

min
y∈Y

max
ξ∈Ξ

∑
i∈[n]

(ci + ξi)yi , (MIN-MAX)

where the uncertainty set is the polytope

Ξ = {ξ ∈ Rn : Aξ ≤ r, 0 ≤ ξ ≤ e} ,

for A ∈ Rs×n, r ∈ Rs and e ∈ Rn
+. Notice that this general formulation covers the emblematic case

of robust optimization with budgeted uncertainty first introduced by Bertsimas and Sim (2003),
or its generalization to robust optimization with knapsack uncertainty (Poss, 2018). Next, we
state a result from Omer et al. (2024) that can be summarized as follows: solving (MIN-MAX)
amounts to solving O(ns) nominal problems whose objective function is expressed according to
the solutions of linear subsystems depending on A. Specifically, let Θ ⊆ Rs

+ be the set of all
non-negative solutions of subsystems formed by s linearly independent rows of AT

AT

Ids×s

 θ =

1n
0n
0s

 . (S)

For L ⊆ {1, . . . , 2n+ s} such that |L| = s, we note

G(L)θ = h(L) (SL)

the subsystem of (S) formed by the s rows indexed by L. Henceforth, we note [α]+ the positive
part of α ∈ R, namely [α]+ = max(0, α).

Theorem 7.1.1 (Omer et al. (2024)). Solving (MIN-MAX) amounts to solving, for all θ ∈ Θ,
the problem (Pθ) defined as follows:

min
y∈Y

gθ(y) =
∑
k∈[s]

rkθk + (c+ βθ)
T y , (Pθ)

where the i-th coordinate of βθ is

βθ,i =

1−∑
k∈[s]

akiθk

+

−

−∑
k∈[s]

akiθk

+

.

In other words, if we note u∗ the optimal solution of (MIN-MAX) and z∗θ the optimal solution
of (Pθ),

u∗ = min
θ∈Θ

z∗θ . (7.2)
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Let AΘ be the classical algorithm that computes the expression of gθ, i.e. that solves a sub-
system of s rows and s variables and outputs a vector (of n components) of summaries statistic
of the subsystem’s solution. We designate by summary statistic the term

∑
k∈[s] αkθk for α ∈ Rs

and θ the subsystem’s solution. We note g(s, n) the time complexity of AΘ. Notice that using the
Gaussian elimination to solve the linear system results in the complexity g(s, n) = O(s3+n). For
sparse matrix, Yuster and Zwick (2005) uses fast matrix multiplication leading to the complexity
g(s, n) = O(d0.7s1.9 + s2+o(1) + n), where d is the sparsity of the matrix of the linear system.

Let AP be a classical algorithm that solves problem (Pθ). We note f(n) its time complexity.

Corollary 7.1.2 (Omer et al. (2024)). The number of subsystems of (S) composed of s lin-
early independent rows is no more than O(ns). Thus, the complexity to solve (MIN-MAX) is
O(ns(g(s, n) + f(n))).

It results that, for s independent on n, the tractability of the nominal problem implies the
tractability of its robust counterpart.

In Section 7.2, we describe a quantum-classical algorithm that amounts to apply Quantum
Minimum Finding (see Definition 5.2.6) to solve the minimization problem (7.2) and thus reduce
the above classical complexity. In Section 7.3, we experiment the use of an additional quantum
subroutine to replace AΘ by taking advantage of quantum linear system algorithms (Harrow
et al., 2009; Childs et al., 2017). This latter approach is motivated by the work of Nannicini
(2024), among others, that achieves a speedup under some assumptions for the simplex method
by using such quantum subroutines.

7.2 Quantum-classical resolution

Let us show how we can provide a quadratic speedup over the classical complexity by using
the quantum algorithm of Dürr and Høyer (1996) straightforwardly. This algorithm has been
introduced in Definition 5.2.6 for a high-level description, and in Definition 6.1.1 concerning the
circuit description that we use below.

Let UΘ, respectively UP , the quantum circuit implementing AΘ, respectively AP (see Ob-
servation 2.3.1). More precisely, we refer to AΘ as the algorithm that, given the input
L ⊆ {1, . . . , 2n+ s} such that |L| = s, outputs the vector

vθ :=

∑
k∈[s]

akiθk


i∈[n]

,

and the value

v0 :=
∑
k∈[s]

rkθk ,

where θ is the unique solution of (SL) if the latter subsystem is of rank s and if its unique solution
is non-negative, and (+∞)s otherwise. Namely, for L such as (SL) admits a unique non-negative
solution,

UΘ |a, b, c, d, L⟩ |0⟩ = |a, b, c, d, L⟩
∣∣vθ, v0〉 ,

and

UP

∣∣a, b, c, d, L, vθ, v0〉 |0⟩ = ∣∣a, b, c, d, L, vθ, v0〉 |z∗θ⟩ ,
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up to a normalization factor. Thus, the application of QMF[UQUΘ] to the register that superposes
all the

(
2n+s

s

)
possible sets of indexes of rows outputs u∗. Specifically,

QMF[UPUΘ]
∑

L⊆{1,...,2n+s}
|L|=s

1√
s
|a, b, c, d, L⟩ |0⟩ |0⟩ |0⟩ =

∑
L⊆{1,...,2n+s}

|L|=s

1√
s
|a, b, c, d, L⟩ |vθ⟩

∣∣∣∣argmin
θ∈Θ

z∗θ

〉 ∣∣∣∣∣∣∣∣min
θ∈Θ

z∗θ︸ ︷︷ ︸
u∗

〉
.

Notice that we superpose all L of cardinality s to ease the superposition in practice. Consequently,
we define the action of UΘ on L such that (SL) does not admit a unique non-negative solution to
return the vector (+∞)s. It follows that (vθ, v

0) will be set to (+∞)n+1 and will not change the
solution of the minimization problem (7.2).

Theorem 7.2.1. The complexity to solve (MIN-MAX) with high probability, using the Quantum
Minimum Finding as a quantum routine, is O(n

s
2 (g(s, n) + f(n))).

Proof. According to Observation 2.3.1 and Observation 2.2.12, the complexity of UPUΘ is
O(g(s, n) + f(n)). Thus, applying Quantum Minimum Finding to this operator provides a
quadratic speedup over the search of the space whose size is O(ns) (see Definition 5.2.6 and
Definition 6.1.1). Consequently, the hybrid algorithm’s complexity is O(n

s
2 (g(s, n) + f(n))).

We showed in this section that Quantum Minimum Finding reduces the complexity associated
with finding the best solution among all problems (Pθ) which are solved classically. In some cases,
it might be advantageous to use an additional quantum subroutine in AΘ that could improve its
complexity g(s, n). We discuss in the next section the proposed additional quantum subroutine.
Before that, we state below two necessary conditions to make relevant the search for such a
quantum subroutine.

Remark 7.2.2. The reduction of the complexity g(s, n) is relevant if the number of inequalities
describing the polytope Ξ depends on n.

For instance, robust optimization with locally budgeted uncertainty (Goerigk and Lendl, 2021)
considers an uncertainty set polytope with s = O(n) inequalities. It amounts to partitioning the
uncertainty parameters into regions, and applying to each region a budgeted uncertainty set.

Remark 7.2.3. In addition to the remark above, the reduction of the complexity g(n) is relevant if
the complexity of solving the nominal problem (7.1), and thus problem (Pθ), is smaller than g(n).
In other words, f(n) must be dominated by the classical complexity g(n) so that g(n) dominates
the term (g(n) + f(n)) (see complexity in Theorem 7.2.1).

For example, this condition is satisfied for nominal problems such as the Spanning Tree problem
or the Shortest Path problem if we consider s = O(n), leading to g(n) = O(n3) with classical
Gaussian elimination.

7.3 Additional quantum subroutine for linear systems

Let us begin with some preliminaries that we use for the description of the additional quantum
subroutine.
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7.3.1 Preliminaries

We note ∥x∥2 the Euclidean norm of a vector x = (x1, . . . , xn) ∈ Rn, specifically,

∥x∥2 =

√√√√ n∑
i=1

x2i .

We note ∥M∥∗ the spectral norm of a matrix M ,

∥M∥∗ = max
i
σi ,

where σi is a singular value ofM , namely the square root of an eigenvalue ofMM †. Consequently,
for M symmetric, the singular values are the absolute values of its eigenvalues. Eventually, we
note ∥M∥F the Frobenius norm of matrix M = (mij) ∈ Rn×m defined as follows:

∥M∥F =

√√√√ n∑
i=1

m∑
j=1

m2
ij .

Definition 7.3.1 (Amplitude encoding). For a given vector x ∈ R2n, we refer to its amplitude
encoding as

|x⟩ =
∑

i∈{0,1}n

xi
∥x∥2

|i⟩ .

Henceforth, we designate by PM , respectively Px, the unitary operators representing the oracles
of matrixM , respectively vector x. In other words, PM refers to the procedure that computes the
locations and values of the nonzero entries of M , and Px refers to the procedure that produces
the state |x⟩.

Proposition 7.3.2 (Quantum Linear System Algorithm (Childs et al., 2017)). Let us consider
the linear system

Gx = h ,

where h ∈ CN , and G ∈ CN×N is an Hermitian invertible matrix such that ∥G∥∗ ≤ 1 and G has
a known condition number κ. Let ϵ > 0 be a precision parameter. The Quantum Linear System
Algorithm (QLSA) of Childs et al. (2017) produces a quantum state |x̃⟩ such that∥∥∣∣G−1h

〉
− |x̃⟩

∥∥
2
≤ ϵ .

Henceforth, we use Õ which is the usual asymptotic notation that ignores the polylogarithmic
factors in the complexity. This algorithm requires O(dκ · polylog(dκϵ )) = Õ(dκ) queries to PG and
Ph, where d is the sparsity of G. Observe that the dependence on ϵ is polylogarithmic.

Notice that the Hermitian condition, which is equivalent to considering symmetric matrices
because we work on real matrices, can be easily relaxed as explained by Harrow et al. (2009).
The spectral norm condition can also be relaxed by re-scaling the coefficients of G if we know
an upper bound αG of the largest absolute value of its eigenvalues. Indeed, the spectral theorem
ensures that G = PDP−1, where P is orthonormal and D = diag(λ1, . . . , λN ) is a diagonal
matrix of real coefficients. Thus, G′ := 1

αG
· G, where αG ≥ maxi∈[N ] |λi|, satisfies the spectral

norm condition ∥G′∥∗ ≤ 1. Notice that, hereafter, we consider symmetric matrices such that
∥G∥∗ = 1, namely, we assume that we can estimate their maximum singular value maxi∈[N ] |λi|.



114 Quantum robust optimization

This will be helpful to compute an upper bound of the error produced by our algorithm in the
next subsection.

Proposition 7.3.3 (SWAP test). Let |ψ⟩ and |ϕ⟩ be two quantum states. The SWAP test is a
quantum circuit that prepares a qubit for which the probability of measuring 1 is equal to

p =
1

2
− 1

2
|⟨ψ|ϕ⟩|2 .

In other words, the SWAP test prepares a qubit that represents a Bernoulli random variable B(p)
where the probability of success is p.

Let (X1, . . . , XN ) be N Bernoulli random variables B(p) for an unknown parameter p ∈ [0, 1].
Let Y = 1

N

∑N
i=1Xi be the resulting mean random variable. Thus, Y := p̂(N) is the estimation

of the unknown parameter p. The Chebytchev inequality gives, for ϵ > 0,

P(|Y − E(Y )| ≥ ϵ) ≤ V(Y )

ϵ2
.

We have E(Y ) = p and V(Y ) = p(1−p)
N ≤ 1

4N . The Chebytchev inequality results in

P(|p̂(N)− p| ≥ ϵ) ≤ 1

4Nϵ2
.

Thus, making N = O( 1
ϵ2
) samples ensures the additive error of the estimated parameter to be at

most ϵ. Specifically, it computes p̂(N) such that |p̂(N)− p| ≤ ϵ with high probability.

Proposition 7.3.4 (Variable Time Quantum Algorithm to estimate the norm (Chakraborty
et al., 2018)). Let us consider the linear system of Proposition 7.3.2 under the same assumptions.
The variable time quantum algorithm of Chakraborty et al. (2018) outputs the estimation of the
norm of the solution, with a relative error ϵ, with Õ(1ϵdκ) calls to PG and Ph. Specifically, the
algorithm outputs ñ such that ∣∣ñ− ∥∥G−1h

∥∥
2

∣∣ ≤ ϵ∥∥G−1h
∥∥
2
.

7.3.2 Quantum Linear System Algorithm subroutine

Under specific considerations on the polytope Ξ and assuming access to QRAM, one can hope
to reduce the complexity g(s, n) by solving linear systems with the Quantum Linear System
Algorithms (QLSA) of Harrow et al. (2009), or a latest version such as the one of Childs et al.
(2017). Indeed, these algorithms provide, under some assumptions, an exponential speedup to
the problem of finding a summary statistic of the solution of a linear system. In our case, it is
relevant to consider QLSA to speed up the resolution of linear systems because the dependency
of (Pθ) on θ ∈ Θ amounts to the scalars

∑
k∈[s] akiθk for i ∈ [n] and

∑
k∈[s] rkθk. In other words, to

express (Pθ), we only need to compute the n scalars composing the vector vθ = (
∑

k∈[s] akiθk)i∈[n]
plus the scalar v0 =

∑
k∈[s] rkθk, and do not need to know the value of each coordinate of θ.

In what follows, we propose a quantum counterpart Aq
Θ, using QLSA, to the previous classical

algorithm AΘ, and analyze the resulting complexity. Let us consider the subsystem

G(L)θ = h(L) (SL)

associated with L ⊆ {1, . . . , 2n+s} and |L| = s such that it admits a unique non-negative solution
θ (unknown so far). As mentioned above, to get the expression of the function gθ, we need to
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compute the n components of vector vθ,

vθ,i =
∑
k∈[s]

akiθk = ∥θ∥2 · ∥ai∥2 · ⟨ai|θ⟩ , ∀i ∈ [n] ,

and the value

v0 =
∑
k∈[s]

rkθk = ∥θ∥2 · ∥r∥2 · ⟨r|θ⟩ .

For Aq
Θ to be correct, we make the following assumptions. First, for any L of interest, we suppose

that the conditions of Proposition 7.3.2 are satisfied. Specifically, we suppose that ∥G(L)∥∗ = 1,
and that its condition number κ(L) is known (or at least an upper bound). We note d(L) the
sparsity of G(L). Second, we assume that A and r have non-negative coefficients. In that case,
the expression of the vector β in the objective function of (Pθ) simplifies in, ∀i ∈ [n],

βθ,i =

1−∑
k∈[s]

akiθk

+

.

The quantum routine constituting Aq
Θ is described in Algorithm 12, where the estimation of

the scalar product by Algorithm 11 represents the main subroutine. We begin by presenting the
latter, for a generic non-negative s-vector b.

Algorithm 11: Estimation of scalar ⟨b|θ⟩
Input: System (SL), b ∈ Rs

+, precision parameters ϵ1, ϵ2 > 0
Output: Estimation of ⟨b|θ⟩
repeat

Prepare
∣∣∣θ̃〉 with QLSA (Proposition 7.3.2) with precision ϵ1;

Apply the SWAP test (Proposition 7.3.3) to |b⟩ and
∣∣∣θ̃〉, and measure the resulting

qubit;

until O(ϵ−2
2 ) times;

Compute the estimated probability of success p̂;
Return

√
1− 2p̂;

Notice that Algorithm 11 applies to a vector b with non-negative coefficients so that ⟨b|θ⟩ ≥ 0
(because θ is non-negative), thus ensuring that ⟨b|θ⟩ =

√
1− 2p for p = 1

2 −
1
2 |⟨b|θ⟩|

2.
It results from Algorithm 11 the algorithm Aq

Θ, described in Algorithm 12, as follows.

Theorem 7.3.5. Under the assumption to have access to a QRAM, implying that a query to
oracles PG(L) and Ph(L) is at most polylogarithmic, the complexity of Algorithm 12 is

g(s, n) = Õ((ϵ−1
3 + ϵ−2

2 n+ ϵ−2
5 )max

L
(κ(L)d(L))) .

Proof. Let us detail the complexity of each step of Algorithm 12.

• According to Proposition 7.3.4, the complexity of Step 1 is Õ(ϵ−1
3 κ(L)d(L)) queries to PG(L)

and Ph(L).
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Algorithm 12: Estimation of vector vθ and scalar v0 (Algorithm Aq
Θ)

Input: System (SL), precision parameters ϵ1, ϵ2, ϵ3 > 0
Output: Estimation of vector vθ and scalar v0

1 Estimate ∥θ∥2 with the Variable Time Quantum Algorithm (Proposition 7.3.4) with
precision ϵ3. Note w̃ the output;
for i ∈ [n] do

2 Estimate ⟨ai|θ⟩ with Algorithm 11 with precision ϵ1, ϵ2. Note
√
ẽ the output;

3 Compute and return ∥ai∥2 w̃
√
ẽ (this is an estimation of vθ,i)

4 Estimate ⟨r|θ⟩ with Algorithm 11 with precision ϵ4, ϵ5. Note
√
ẽ0 the output;

5 Compute and return ∥r∥2 w̃
√
ẽ0 (this is an estimation of v0)

• According to Proposition 7.3.3, the complexity of Step 2 is O(ϵ−2
2 C), where C is the com-

plexity of preparing |ai⟩ and
∣∣∣θ̃〉 for a given i ∈ [n]. According to Proposition 7.3.2, the

latter complexity is Õ(κ(L)d(L)) queries to PG(L) and Ph(L). Thus, the overall complexity

is Õ(ϵ−2
2 κ(L)d(L)) queries to PG(L) and Ph(L), and O(ϵ−2

2 ) queries to Pai .

• Consequently, the complexity of the loop is Õ(ϵ−2
2 nκ(L)d(L)) queries to PG(L) and Ph(L),

and O(ϵ−2
2 ) queries to each oracle representing a column of A.

• With the same justification, the complexity of Step 4 is Õ(ϵ−2
5 κ(L)d(L)) queries to PG(L)

and Ph(L), and O(ϵ−2
5 ) queries to Pr.

Let us suppose that κ(L) and d(L) are polylogarithmic in n, which is a common assumption
for QLSA to provide a potential speedup. Thus, the algorithm Aq

Θ provides a speedup over AΘ

(with Gaussian elimination) if ϵ2 = O( 1
nα ) for α < 1. Next, we compute an upper bound of the

error induced by Algorithm 12 on the optimal solution of (MIN-MAX). We show that this upper
bound, either for the relative or absolute error, is unbounded for such ϵ2. This leads us to believe
that, unless the upper bound is too loose, the use of such a quantum subroutine does not provide
any speedup in our case.

Proposition 7.3.6. The error between the optimal value u∗ of (MIN-MAX) and the output ũ∗

of its resolution with the quantum subroutine Aq
Θ has the following upper bound:

|ũ∗ − u∗| ≤ smax
L

κ(L)

(
ϵ
∑
i

∥ai∥2 + ϵ0 ∥r∥2

)
,

where

ϵ = (1 + ϵ3)

(
√
ϵ2 + ϵ1 ·

∑
k

aki
∥ai∥2

)
+ ϵ3

and

ϵ0 = (1 + ϵ3)

(
√
ϵ5 + ϵ4 ·

∑
k

rk
∥r∥2

)
+ ϵ3 .
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Proof. We sketch the main steps of the proof, differing the details to the end of this chapter
(Section 7.5). To begin with, we list the errors coming from the different steps of Algorithm 12.
Regarding Step 1, the Variational Time Quantum Algorithm outputs w̃ := ṽ ∥h(L)∥2 such that∣∣∣∣∣ ṽ −

∥∥G(L)−1 |h(L)⟩
∥∥
2

∥G(L)−1 |h(L)⟩∥2

∣∣∣∣∣ ≤ ϵ3 ,
namely, such that

|w̃ − ∥θ∥2| ≤ ϵ3 · ∥θ∥2 .
Regarding Step 2, Algorithm 11 outputs

√
ẽ such that∣∣∣∣ẽ− 〈ai∣∣∣θ̃〉2∣∣∣∣ ≤ ϵ2 ,

where the quantum state
∣∣∣θ̃〉 prepared by QLSA satisfies∥∥∥ ˜|θ⟩ −

∣∣G(L)−1h(L)
〉∥∥∥

2
≤ ϵ1 .

Similarly, regarding Step 4, Algorithm 11 outputs
√
ẽ0 such that∣∣∣∣ẽ− 〈r∣∣∣θ̃〉2∣∣∣∣ ≤ ϵ5 ,

where the quantum state
∣∣∣θ̃〉 is prepared by QLSA such that∥∥∥ ˜|θ⟩ −

∣∣G(L)−1h(L)
〉∥∥∥

2
≤ ϵ4 .

Next, we compute for a given i ∈ [n] an upper bound of the error of the value resulting in
Step 3 that is meant to approximate vθ,i. Notice that according to the definition of the amplitude
encoding (see Definition 7.3.1) and the inner product for real vectors, vθ,i = ∥θ∥2 ∥ai∥2 ⟨ai|θ⟩ . We
define

∆i = ṽ · ∥h(L)∥2 · ∥ai∥2
√
ẽ︸ ︷︷ ︸

estimation of vθ,i

−∥θ∥2 ∥ai∥2 ⟨ai|θ⟩ ,

and can show that
|∆i| ≤ ϵ

√
sκ(L) ∥ai∥2 ∥h(L)∥2 ,

where

ϵ = (1 + ϵ3)

(
√
ϵ2 + ϵ1 ·

∑
k

aki
∥ai∥2

)
+ ϵ3 .

This leads to ∑
i∈[n]

|∆i| ≤ ϵ
√
sκ(L) ∥h(L)∥2

∑
i∈[n]

∥ai∥2 .

Similarly, we find the following upper bound of the error resulting in Step 5 of Algorithm 12 that
is meant to approximate

∑
k∈[s] rkθk.∣∣∣∣∣∣

∑
k∈[s]

rkθ̃k −
∑
k∈[s]

rkθk

∣∣∣∣∣∣ ≤ ϵ0√sκ(L) ∥r∥2 ∥h(L)∥2 ,
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where

ϵ0 = (1 + ϵ3)

√ϵ5 + ϵ4 ·
∑
k∈[s]

rk
∥r∥2

+ ϵ3 .

Thus, for any θ corresponding to the unique non-negative solution of a system (SL) and θ̃ the
approximate solution provided by Algorithm 12, and for any y ∈ Y, we have

∣∣gθ̃(y)− gθ(y)∣∣ ≤ ∑
i∈[sn]

∣∣∆i
∣∣+
∣∣∣∣∣∣
∑
k∈[s]

rk(θ̃k − θk)

∣∣∣∣∣∣ .
This results in the stated upper bound of |ũ∗ − u∗|.

Previously, we deduced from Theorem 7.3.5 that our hybrid algorithm with additional quantum
subroutine Aq

Θ could achieve a speedup for a precision parameter ϵ2 = O( 1
nα ) for α < 1. However,

Proposition 7.3.6 shows that the error induced by Aq
Θ cannot be controlled and reduced to zero

for such an ϵ2 (even if we try to consider a relative error). This limitation seems to come from
the fact that in Step 3 and Step 5, QLSA prepares a quantum state encoding the normalized
solution of a linear system for which the extraction of summary statistic (vθ, v

0) costs too much
and neutralizes the exponential speedup of QLSA. Thus, the use of QLSA to get numerical values
seems to be a bottleneck in our case.

7.4 Conclusion

In this chapter, we investigated the use of quantum subroutines to tackle robust combinatorial
optimization problems with polyhedral uncertainty sets. More precisely, we considered the Quan-
tum Minimum Finding, which achieves a quadratic speedup, and the use of a Quantum Linear
System Algorithm, which does not seem to provide any speedup for these problems due to the
numerical output we ask for. Further investigations on this subject are considered for future
work. One is to see if the upper bound of the overall error of Proposition 7.3.6 is tight or not. We
believe it may not be so and hope that a tighter bound could reduce the error and make possible
a quantum speedup. Another question is: what do the assumptions we have made about the
subsystems (SL) (symmetric and spectral norm conditions), plus the positivity of the coefficients
of A and r, imply on the structure of the polytope Ξ ?

7.5 Details on the error computation

In this subsection, we detail the proof of the following proposition that provides an upper bound
of the error induced by the quantum algorithm Aq

Θ (Algorithm 12).

Proposition 7.3.6. The error between the optimal value u∗ of (MIN-MAX) and the output ũ∗

of its resolution with the quantum subroutine Aq
Θ has the following upper bound:

|ũ∗ − u∗| ≤ smax
L

κ(L)

(
ϵ
∑
i

∥ai∥2 + ϵ0 ∥r∥2

)
,

where

ϵ = (1 + ϵ3)

(
√
ϵ2 + ϵ1 ·

∑
k

aki
∥ai∥2

)
+ ϵ3
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and

ϵ0 = (1 + ϵ3)

(
√
ϵ5 + ϵ4 ·

∑
k

rk
∥r∥2

)
+ ϵ3 .

Proof. Firstly, let us list the errors coming from the different steps of Algorithm 12. Regarding
Step 1, the Variational Time Quantum Algorithm outputs w̃ := ṽ ∥h(L)∥2 such that∣∣∣∣∣ ṽ −

∥∥G(L)−1 |h(L)⟩
∥∥
2

∥G(L)−1 |h(L)⟩∥2

∣∣∣∣∣ ≤ ϵ3 ,
namely, such that

|w̃ − ∥θ∥2| ≤ ϵ3 · ∥θ∥2 .

Regarding Step 2, Algorithm 11 outputs
√
ẽ such that∣∣∣∣ẽ− 〈ai∣∣∣θ̃〉2∣∣∣∣ ≤ ϵ2 ,

where the quantum state
∣∣∣θ̃〉 prepared by QLSA satisfies∥∥∥ ˜|θ⟩ −

∣∣G(L)−1h(L)
〉∥∥∥

2
≤ ϵ1 .

Similarly, regarding Step 4, Algorithm 11 outputs
√
ẽ0 such that∣∣∣∣ẽ− 〈r∣∣∣θ̃〉2∣∣∣∣ ≤ ϵ5 ,

where the quantum state
∣∣∣θ̃〉 is prepared by QLSA such that∥∥∥ ˜|θ⟩ −

∣∣G(L)−1h(L)
〉∥∥∥

2
≤ ϵ4 .

Next, we compute for a given i ∈ [n] an upper bound of the error of the value resulting in
Step 3 that is meant to approximate vθ,i. Notice that according to the definition of the amplitude
encoding (see Definition 7.3.1) and the dot product for real vectors, vθ,i = ∥θ∥2 ∥ai∥2 ⟨ai|θ⟩ . Let
us compute

∆i = ṽ · ∥h(L)∥2 · ∥ai∥2
√
ẽ︸ ︷︷ ︸

estimation of ∥θ∥2∥ai∥2⟨ai|θ⟩

−∥θ∥2 ∥ai∥2 ⟨ai|θ⟩ .

According to triangular inequality,

|∆i| ≤ |∆i
swap|+ |∆i

sol|+ |∆i
norm|

with

∆i
swap = ṽ · ∥h(L)∥2 · ∥ai∥2

√
ẽ− ṽ · ∥h(L)∥2 · ∥ai∥2

√〈
ai

∣∣∣θ̃〉2 ,
∆i

sol = ṽ · ∥h(L)∥2 · ∥ai∥2
〈
ai

∣∣∣θ̃〉− ṽ · ∥h(L)∥2 · ∥ai∥2 ⟨ai|θ⟩ ,
∆i

norm = ṽ · ∥h(L)∥2 · ∥ai∥2 ⟨ai|θ⟩ − ∥θ∥2 · ∥ai∥2 ⟨ai|θ⟩ .
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First, let us find an upper bound on
∣∣∆i

swap

∣∣.
∣∣∆i

swap

∣∣ ≤ |ṽ| · ∥h(L)∥2 · ∥ai∥2
∣∣∣∣∣√ẽ−

√〈
ai

∣∣∣θ̃〉2∣∣∣∣∣
≤ |ṽ| · ∥h(L)∥2 · ∥ai∥2

√∣∣∣∣ẽ− 〈ai∣∣∣θ̃〉2∣∣∣∣ (because square root function is Hölder 1/2)

≤ |ṽ| · ∥h(L)∥2 · ∥ai∥2
√
ϵ2 (according to Step 2) .

Second, we can find the following upper bound on |∆i
sol|.

|∆i
sol| ≤ |ṽ| · ∥h(L)∥2 · ∥ai∥2

∣∣∣〈ai∣∣∣θ̃〉− ⟨ai|θ⟩∣∣∣
≤ |ṽ| · ∥h(L)∥2 · ∥ai∥2

∣∣∣∣∣∣
∑
k

aki
∥ai∥2

 θ̃k∥∥∥θ̃∥∥∥
2

− θk
∥θ∥2

∣∣∣∣∣∣
≤ |ṽ| · ∥h(L)∥2 · ∥ai∥2

∑
k

aki
∥ai∥2

∣∣∣∣∣∣ θ̃k∥∥∥θ̃∥∥∥
2

− θk
∥θ∥2

∣∣∣∣∣∣
≤ |ṽ| · ∥h(L)∥2 · ∥ai∥2

∑
k

aki
∥ai∥2

ϵ1 (according to Step 2) .

Lastly, an upper bound on |∆i
norm| is found.

|∆i
norm| = ∥ai∥2 ⟨ai|θ⟩ |ṽ ∥h(L)∥2 − ∥θ∥2|

≤ ∥ai∥2 ⟨ai|θ⟩ ∥θ∥2 ϵ3 (according to Step 1)

≤ ∥ai∥2 ∥θ∥2 ϵ3 (because ⟨ai|θ⟩ ∈ [0, 1]) .

According to each upper bounds above-mentioned, it results an upper bound on |∆i|.

|∆i| ≤

(
√
ϵ2 +

∑
k

aki
∥ai∥2

ϵ1

)
· |ṽ| · ∥h(L)∥2 · ∥ai∥2 + ϵ3 · ∥ai∥2 ∥θ∥2

≤ (1 + ϵ3)

(
√
ϵ2 +

∑
k

aki
∥ai∥2

ϵ1

)
· ∥ai∥2 ∥θ∥2 + ϵ3 · ∥ai∥2 ∥θ∥2 (according to Step 1)

≤

[
(1 + ϵ3)

(
√
ϵ2 +

∑
k

aki
∥ai∥2

ϵ1

)
+ ϵ3

]
· ∥ai∥2 ∥θ∥2 .

Next, we remove the dependency on θ of the upper bound by replacing it with values regarding
the initial problem, namely G(L) and h(L).

∥θ∥2 =
∥∥G(L)−1h(L)

∥∥
2
≤
∥∥G(L)−1

∥∥
F
· ∥h(L)∥2 ,

and ∥∥G(L)−1
∥∥
F
≤
√
r
∥∥G(L)−1

∥∥
∗ ,

where r is the rank of G(L)−1, equal to s here. Moreover,∥∥G(L)−1
∥∥
∗ = σmax(G(L)

−1) =
1

σmin(G(L))
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where σmin(G(L)) =
1

κ(L) because we assumed that ∥G(L)∥∗ = 1. Thus,

∥θ∥2 ≤
√
sκ(L) ∥h(L)∥2 .

Eventually,
|∆i| ≤ ϵ

√
sκ(L) ∥ai∥2 ∥h(L)∥2 ,

where

ϵ = (1 + ϵ3)

(
√
ϵ2 + ϵ1 ·

∑
k

aki
∥ai∥2

)
+ ϵ3 ,

leading to the following upper bound on the sum of all the errors of the loop in Algorithm 12:∑
i

|∆i| ≤ ϵ
√
sκ(L) ∥h(L)∥2

∑
i

∥ai∥2 .

Similarly, we can show that the error resulting in Step 5 of Algorithm 12 is∣∣∣∣∣∣
∑
k∈[s]

rkθ̃k −
∑
k∈[s]

rkθk

∣∣∣∣∣∣ ≤ ϵ0√sκ(L) ∥r∥2 ∥h(L)∥2 ,
where

ϵ0 = (1 + ϵ3)

(
√
ϵ5 + ϵ4 ·

∑
k

rk
∥r∥2

)
+ ϵ3 .

Thus, for any θ corresponding to the unique non-negative solution of a system (SL) and θ̃ the
approximate solution provided by Algorithm 12, and for any y ∈ Y, we have

∣∣gθ̃(y)− gθ(y)∣∣ =
∣∣∣∣∣∑

i

(βθ̃,i − βθ,i)yi +
∑
k

rk(θ̃k − θk)

∣∣∣∣∣
≤
∑
i

∣∣∆i
∣∣+ ∣∣∣∣∣∑

k

rk(θ̃k − θk)

∣∣∣∣∣ (because yi ∈ {0, 1} and the definition of [.]+)

≤ ϵ
√
sκ(L) ∥h(L)∥2

∑
i

∥ai∥2 + ϵ0
√
sκ(L) ∥r∥2 ∥h(L)∥2

≤
√
sκ(L) ∥h(L)∥2

(
ϵ
∑
i

∥ai∥2 + ϵ0 ∥r∥2

)
.

Consequently, we find an upper bound on the error between the optimal value u∗ of the nominal
problem and the solution provided by the hybrid quantum-classical with the additional quantum
subroutine Aq

Θ.

|ũ∗ − u∗| =
∣∣∣∣min
θ∈Θ

z∗
θ̃
−min

θ∈Θ
z∗θ

∣∣∣∣
=

∣∣∣∣min
θ∈Θ

min
y∈Y

gθ̃(y)−min
θ∈Θ

min
y∈Y

gθ(y)

∣∣∣∣
≤ max

θ∈Θ
max
y∈Y

∣∣gθ̃(y)− gθ(y)∣∣
≤
√
smax

L
κ(L) ∥h(L)∥2

(
ϵ
∑
i

∥ai∥2 + ϵ0 ∥r∥2

)
.
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By definition of h(L), for any L, ∥h(L)∥2 ≤
√

min(s, n). For the locally budgeted uncertainty set,
s = n

K for a given K ∈ N∗, leading to ∥h(L)∥2 =
√
s. Notice that for the general case s = O(n),

the conclusion of how the precision parameters must scale with n does not change.
To conclude,

|ũ∗ − u∗| ≤ smax
L

κ(L)

(
ϵ
∑
i

∥ai∥2 + ϵ0 ∥r∥2

)
where

ϵ = (1 + ϵ3)

(
√
ϵ2 + ϵ1 ·

∑
k

aki
∥ai∥2

)
+ ϵ3 ,

and

ϵ0 = (1 + ϵ3)

(
√
ϵ5 + ϵ4 ·

∑
k

rk
∥r∥2

)
+ ϵ3 .
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Conclusion and perspectives

This chapter concludes this thesis by summarizing the main contributions and providing some
leads for future work on the continuation of what has been done so far. In our opinion, the
most promising research directions arise in the continuation of the work on hybrid algorithms
for scheduling problems as the study of Variational Quantum Algorithms seems restricted by the
small size of possible numerical tests, and the work on robust optimization problems faces the
limitation of the error computations.

8.1 Variational Quantum Algorithms and application to a rail-
way timetabling problem

The first branch of quantum algorithms for solving combinatorial optimization problems we inves-
tigated is the branch of heuristics. Specifically, we tackled a large class of heuristics for gate-based
quantum computers called Variational Quantum Algorithms (VQAs). Indeed, for several years,
there has been a growing interest in VQAs, and more particularly in the Quantum Approximate
Optimization Algorithm (QAOA), mostly because of their compatibility with NISQ computers.
In Chapter 3, we provided a mathematical description of VQAs with a focus on QAOA, for which
we dedicated special attention to the resolution of unconstrained binary problems with a poly-
nomial objective function. We have described how VQAs raise interesting questions regarding
the choice of guiding functions and quantum circuits, among others. A generic method to re-
formulate constrained problems with integer variables into unconstrained problems with binary
variables has also been proposed to handle real-world problems with VQAs. We studied one of
them in Chapter 4, which is a railway timetabling problem. For that, we simplified the SNCF
nominal problems into two models: a Set Cover Problem and an Extended Bin Packing Problem.
Solving such problems with QAOA depicted several trends in its performance, and highlighted
the importance of the constrained problem reformulation.

Since the inception of such methods, researchers have argued about the potential advantages
of QAOA over classical optimization algorithms (Farhi and Harrow, 2016; Lotshaw et al., 2021;
Marwaha and Hadfield, 2022). The overview of the literature on this subject seems to indicate
that there is currently no scientific evidence that QAOA will soon beat classical heuristics, as
corroborated by our work on the railway timetabling problem. The available results even suggest
the opposite, such as Hastings (2019) showing that local search algorithms can do better at
low depth. Moreover, the current numerical results are hard to assess because they are run on
small instances for which optimal or near-optimal solutions can be obtained easily with classical
algorithms. Hopefully, the quickly growing capabilities of quantum computers will soon lead to
a better understanding of the numerical efficiency of such algorithms for future research.
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8.2 Hybrid algorithms for scheduling problems

The second branch of quantum algorithms investigated is the branch of exact algorithms. Con-
trary to the VQAs, they prove theoretical advantages but cannot be implemented today because
of the huge amount of quantum resources they require. We presented in Chapters 5 and 6 a
hybrid algorithm, based on the seminal idea of Ambainis et al. (2019) that combines Quantum
Minimum Finding and dynamic programming, to address a broad class of NP-hard scheduling
problems. Specifically, it tackles single-machine scheduling problems that satisfy a certain dy-
namic programming relying on the addition or the composition of optimal values of sub-instances.
We also adapted this algorithm to tackle decision problems leading to the resolution of the 3-
machine flowshop problem. This new method provides a quantum speed-up on the worst-case
time complexity on the exponential part, sometimes at the cost of a pseudo-polynomial additional
factor. Future work will be dedicated to widening the range of scheduling problems for which
we can achieve a quantum speedup. This will necessitate finding NP-hard scheduling problems
for which the description of a solution is a permutation, and that satisfy a dynamic program-
ming property admitting a dichotomic version, relying either on an optimization or a decision
problem. Consequently, the proposed algorithm should be adapted to this dynamic programming
property. Besides adapting our algorithm to new problems, another path for future research is
to find quantum brick(s) that could speed up exact exponential algorithms, as the Quantum
Minimum Finding is used for dynamic programming. For instance, one could think of Grover
Search (Grover, 1996) or Quantum Walks (Aharonov et al., 2001) for the exponential algorithms
Sort-and-Search (Lenté et al., 2013) or Branch-and-Reduce (T’kindt et al., 2022) respectively.

More specifically, the first leads of research that we will explore in the future are the following.
Regarding the adaptation of our algorithm to new scheduling problems, we will consider the
3-machine jobshop problem. This problem aims at scheduling a set of jobs, each consisting of
multiple operations on 3 machines, aiming to minimize the total completion time. Contrary to
the 3-machine flowshop problem, the order of the jobs is not fixed, thus a solution is not solely
a permutation of the jobs. However, a promising description of a solution of the jobshop is
the Bierwith vector (Bierwirth, 1995). This vector encodes a solution as a permutation with
repetition of size 3n, where n is the number of jobs. Nevertheless, this is not trivial to see if its
structure can satisfy a dynamic programming property with a dichotomic version, hence further
investigation.

To explore the lead of combining a quantum subroutine with an exact exponential algorithm
to achieve a speedup, one specific algorithm seems of particular interest. This is the Inclusion-
Exclusion method, which addresses, among others, NP-hard scheduling problems (Ploton, 2023).
This method consists in relaxing the job permutations describing a solution of the scheduling
problem by admitting repetitions. Thus, the complexity of solving the problem with these relaxed
solutions becomes easy, and the exponential part of the complexity shifts to counting the number
of relaxed solutions in a specific set imposing some constraints. More precisely, only the knowledge
of whether this set is empty or not is needed. Mathematically, this amounts to determine whether
the quantity S =

∑
X⊆[n] f(X), for which the computation of f : 2[n] → R+ is polynomial, is equal

to 0 or not. For that, Inclusion-Exclusion computes S, which provides its complexity equal to
O∗(2n) (modulo pseudo-polynomial factors in some cases). This raises the following question: is it
possible to know if S ̸= 0 in a time smaller than O∗(2n) ? This question is driven by the fact that,
because only the knowledge of the strict positivity of S is required, exact quantum algorithms
could be of use, even with some error computations as depicted in the robust optimization case we
tackled. We will first investigate the possibility of setting S as the angle of a rotation quantum
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gate. Then, if a rotation is detected by measuring (a limited number of times) the quantum
state, it would mean that S ̸= 0. This idea stems from the Quantum Linear System Algorithm
of Harrow et al. (2009), where, after the eigendecomposition of the matrix of the linear system,
the eigenvalues are encoded as angles of some rotation quantum gates.

8.3 Hybrid algorithm for robust optimization problems

Continuing on the branch of exact quantum algorithms, we studied robust optimization problems
with polyhedral uncertainty sets. Starting from the classical algorithm of Omer et al. (2024) that
solves such problems, we integrated two quantum subroutines. The first one, Quantum Minimum
Finding (Dürr and Høyer, 1996), offers a polynomial speedup for the worst-case time complexity
compared to its classical counterpart. The second one, the Quantum Linear System Algorithm
of Childs et al. (2017), imposes specific assumptions under the linear systems to be solved, and
thus on the uncertainty set of the robust problem at hand. Because of the introduction of errors
through its use, this subroutine does not appear to achieve any speedup. However, this deserves
further investigation, particularly to determine whether there are no tighter bounds on the error
computations. Additionally, we will investigate the characterization of the uncertainty sets that
satisfy the assumptions required by QLSA subroutine.
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Tabi, Z., El-Safty, K. H., Kallus, Z., Hága, P., Kozsik, T., Glos, A., and Zimborás, Z. (2020).
Quantum optimization for the graph coloring problem with space-efficient embedding. In 2020
IEEE International Conference on Quantum Computing and Engineering (QCE), pages 56–62.
IEEE.

T’kindt, V., Della Croce, F., and Liedloff, M. (2022). Moderate exponential-time algorithms for
scheduling problems. 4OR, pages 1–34.

Vazirani, V. V. (2001). Approximation algorithms, volume 1. Springer.

Wang, Z., Hadfield, S., Jiang, Z., and Rieffel, E. G. (2018). Quantum approximate optimization
algorithm for MaxCut: A fermionic view. Physical Review A, 97(2):022304.

Woeginger, G. J. (2003). Exact algorithms for np-hard problems: A survey. In Combinato-
rial Optimization—Eureka, You Shrink! Papers Dedicated to Jack Edmonds 5th International
Workshop Aussois, France, March 5–9, 2001 Revised Papers, pages 185–207. Springer.

Wurtz, J. and Love, P. (2021). Maxcut quantum approximate optimization algorithm performance
guarantees for p¿ 1. Physical Review A, 103(4):042612.

Wurtz, J. and Love, P. J. (2022). Counterdiabaticity and the quantum approximate optimization
algorithm. Quantum, 6:635.

Yang, Z.-C., Rahmani, A., Shabani, A., Neven, H., and Chamon, C. (2017). Optimizing
variational quantum algorithms using Pontryagin’s minimum principle. Physical Review X,
7(2):021027.



134 Bibliography

Yarkoni, S., Neukart, F., Tagle, E. M. G., Magiera, N., Mehta, B., Hire, K., Narkhede, S.,
and Hofmann, M. (2020). Quantum shuttle: traffic navigation with quantum computing. In
Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms
for Engineering Quantum Software, pages 22–30.

Yuster, R. and Zwick, U. (2005). Fast sparse matrix multiplication. ACM Transactions On
Algorithms (TALG), 1(1):2–13.

Zhou, L., Wang, S.-T., Choi, S., Pichler, H., and Lukin, M. D. (2020). Quantum approximate
optimization algorithm: Performance, mechanism, and implementation on near-term devices.
Physical Review X, 10(2):021067.

Zhu, L., Tang, H. L., Barron, G. S., Calderon-Vargas, F., Mayhall, N. J., Barnes, E., and
Economou, S. E. (2022). Adaptive quantum approximate optimization algorithm for solving
combinatorial problems on a quantum computer. Physical Review Research, 4(3):033029.


	Introduction
	Optimization and quantum computing
	Exact algorithms
	Heuristics
	Quantum hardware

	Outline of the thesis

	Basics tools for quantum computing
	Tensor product and braket notations
	Gate-based quantum computing
	Quantum bits
	Quantum gates
	Quantum circuits
	Non-classical behaviors

	Quantum circuit complexity

	Variational Quantum Algorithms
	Unconstrained optimization
	General description
	Quantum part
	Classical part

	Quantum Approximate Optimization Algorithm
	Problem reformulation
	Quantum part

	Literature review for QAOA
	Empirical and theoretical trends on QAOA
	Improvements and adaptations of QAOA

	Constrained integer optimization
	Integration of constraints
	Class of eligible problems
	Transformation into PUBO

	Conclusion

	Application to a railway timetabling problem
	Railway timetabling problem
	Nominal problem at SNCF
	Simplification to Set Cover and Extended Bin Packing problems

	Reformulations of simplified problems
	Set Cover Problem into PUBO and QUBO
	Extended Bin Packing problem into PUBO and QUBO

	Resolution with QAOA
	Influence of QAOA parameters
	Numerical results

	Conclusion

	Hybrid algorithms for scheduling
	Scheduling problems and DPAS
	Additive DPAS
	A scheduling example
	General formulation of recurrences
	Hybrid algorithm for Additive DPAS

	Composed DPAS
	A scheduling example
	General formulation of recurrence
	Hybrid algorithm for Composed DPAS

	Application to the scheduling literature
	Scheduling with deadlines and precedence constraints
	Scheduling with release date constraints

	Decision-based DPAS
	3-machine flowshop and dynamic programming
	Hybrid algorithm for Decision-based DPAS
	Approximation scheme for the 3-machine flowshop

	Conclusion

	Low-level description of hybrid scheduling algorithms
	Preliminaries
	Building block quantum circuits
	Quantum circuits indexing

	Hybrid algorithm Q-DDPAS
	Additive DPAS sets and quantum circuits
	Composed DPAS sets and quantum circuits
	Algorithm for Additive DPAS
	Adaptation for Composed DPAS

	Decision-based hybrid algorithm Q-Dec-DPAS
	Conclusion

	Quantum robust optimization
	Robust optimization with polyhedral uncertainty
	Quantum-classical resolution
	Additional quantum subroutine for linear systems
	Preliminaries
	Quantum Linear System Algorithm subroutine

	Conclusion
	Details on the error computation

	Conclusion and perspectives
	Variational Quantum Algorithms and application to a railway timetabling problem
	Hybrid algorithms for scheduling problems
	Hybrid algorithm for robust optimization problems


