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Résumé

Depuis son introduction par Church, le λ-calcul a joué un rôle majeur dans un
siècle de développement de l’informatique théorique et de la logique mathéma-
tique, mais aussi dans la naissance de nombreux langages de programmation.
Une propriété cruciale de ce calcul est qu’il n’est pas normalisant en général, de
sorte qu’un intérêt croissant a porté sur la recherche d’approximations de sa dy-
namique. Les outils « classiques » d’approximation, nés dans les années 1970
dans le sillage des sémantiques de Scott, sont essentiellement sémantiques.
Les outils basés sur le développement de Taylor, introduits dans les années 2000
par Ehrhard et Regnier, proposent à l’inverse une approximation dynamique
de la β-réduction. Puisant ses inspirations dans le développement de la logique
linéaire, le développement de Taylor traduit le λ-calcul vers un calcul « à res-
sources » multilinéaire, muni d’une dynamique finitaire. Un théorème de com-
mutation (entre approximation et normalisation) fait notamment l’efficacité de
cette approche, et en justifie le succès. La notion d’arbre de Böhm est centrale
dans cette ligne de recherche. Née de l’idée que les termes normalisants ne sont
pas les seuls à avoir un sens calculatoire, elle généralise la notion de forme nor-
male en constituant une «forme normale à l’infini». La compréhension de la
nature coinductive de cet objet a mené dans les années 1990 à l’introduction de
λ-calculs infinitaires. Dans ces calculs, les termes et les réductions peuvent être
infinis et, dans le cas du calcul 001-infinitaire, l’arbre de Böhm est la notion de
forme normale à l’infini (sans guillemets).

L’idée qui guide cette thèse est que le λ-calcul 001-infinitaire se prête à une gé-
néralisation de l’approximation de Taylor où, en particulier, les arbres de Böhm
seraient des «citoyens ordinaires». L’approximation du λ-calcul fini, et notam-
ment de ses propriétés de normalisation, devient alors un cas particulier de
l’approximation du calcul infinitaire. Cela est permis par le principal résultat
de la thèse, qui établit que la dynamique du calcul à ressources est à même de
simuler la β-réduction infinitaire via le développement de Taylor.

Pour arriver à ce résultat, nous faisons d’abord un détour par une présentation
abstraite d’une syntaxe « mixte » (inductive et coinductive) d’ordre supérieur,
à l’aide d’un formalisme nominal généralisant des travaux récents introduisant
des types coalgébriques avec lieurs. Cela nous permet de définir formellement
des coalgèbres de classes d’α-équivalence de λ-termes infinitaires (chapitre 1).
Dans un second temps, nous définissons les λ-calculs infinitaires à l’aide d’une
présentation coinductive, puis nous rappelons leurs principales propriétés ainsi
que leur lien avec les théories classiques de l’approximation de la β-réduction



(chapitre 2). Ensuite, nous présentons le λ-calcul à ressources comme un cas
particulier d’une réécriture avec sommes, et distinguons ses versions qualita-
tive et quantitative (chapitre 3).
Dans une seconde partie consacrée à l’approximation de Taylor propre-
ment dite, nous commençons par introduire le développement de Taylor
des λ-termes infinitaires et prouvons le théorème de simulation annoncé,
dans sa forme qualitative puis quantitative. Nous démontrons l’efficacité de
ce théorème en le mettant à l’œuvre, proposant notamment une nouvelle
preuve de confluence pour le λ-calcul 001-infinitaire (chapitre 4). Nous nous
penchons également sur la conservativité de la propriété de simulation, et
démontrons l’existence surprenante d’un contre-exemple à cette propriété
réciproque (chapitre 5). Enfin, nous étendons notre travail au cadre paresseux,
c’est-à-dire celui du λ-calcul 101-infinitaire, et nous démontrons un théorème
de commutation pour les arbres de Lévy-Longo (chapitre 6).

Mots-clefs : lambda-calcul, réécriture infinitaire, développement de Taylor,
approximation de programmes, sémantique quantitative.



Abstract

Since its introduction by Church, the λ-calculus has played a major role in a cen-
tury of development in theoretical computer science and mathematical logic,
as well as in the birth of numerous programming languages. A crucial prop-
erty of this calculus is that it is not normalising in general, leading to growing
interest in finding approximations to its dynamics. The ‘classic’ approximation
tools, which emerged in the 1970s in the wake of Scott’s semantics, are essen-
tially semantic. The tools based on Taylor expansion, introduced in the 2000s
by Ehrhard and Regnier, conversely propose a dynamic approximation of the
β-reduction. Drawing its inspiration from the development of linear logic, Tay-
lor expansion translates the λ-calculus into a multilinear ‘resource’ calculus,
equipped with finitary dynamics. A commutation theorem (between approxi-
mation and normalisation) makes this approach particularly effective, and jus-
tifies its success.
The notion of Böhm tree is central to this line of research. Associated with the
idea that normalising terms are not the only computationally meaningful ones,
it generalises the notion of normal form by constituting an ‘infinite normal
form’. Understanding the coinductive nature of this object led in the 1990s to
the introduction of infinitary λ-calculi. In these calculi, terms and reductions
can be infinite and, in the case of the 001-infinitary calculus, the Böhm tree is
the notion of infinite normal form (without quotes).

The idea guiding this thesis is that the 001-infinitary λ-calculus lends itself to
a generalisation of the Taylor approximation where, in particular, Böhm trees
would be ‘ordinary citizens’. The approximation of the finite λ-calculus, and
in particular its normalisation properties, then becomes a special case of the
approximation of the infinitary calculus. This is enabled by the main result of
the thesis, which establishes that the dynamics of the resource calculus is able
to simulate the infinitary β-reduction via Taylor expansion.

To arrive at this result, we first make a diversion via an abstract presentation
of a ‘mixed’ (inductive and coinductive) higher-order syntax, using a nominal
formalism generalising recent work on coalgebraic types with binders. This
allows us to formally define coalgebras of α-equivalence classes of infinite λ-
terms (chapter 1). In a second step, we define infinitary λ-calculi using a coin-
ductive presentation, then recall their main properties as well as their connec-
tion with classical theories of approximation of the β-reduction (chapter 2).
Then, we present the resource λ-calculus as a special case of a rewriting with
sums, and distinguish its qualitative and quantitative flavours (chapter 3).



In a second part devoted to the Taylor approximation itself, we begin by in-
troducing the Taylor expansion of infinitary λ-terms and prove the announced
simulation theorem, in its qualitative and quantitative forms. We demonstrate
the effectiveness of this theorem by putting it at work, proposing in particu-
lar a new confluence proof for the 001-infinitary λ-calculus (chapter 4). We
also consider the conservativity of the simulation property, and demonstrate
the surprising existence of a counterexample to this converse property (chap-
ter 5). Finally, we extend our work to the lazy setting, i.e. the setting related to
the 101-infinitary λ-calculus, and we prove a commutation theorem for Lévy-
Longo trees (chapter 6).

Keywords: lambda-calculus, infinitary rewriting, Taylor expansion, program
approximation, quantitative semantics.
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Introduction

Im Anfang war die That. The proof of the
pudding is in the eating. From the moment
we turn to our own use these objects, ac-
cording to the qualities we perceive in
them, we put to an infallible test the correct-
ness or otherwise of our sense-perception.
If these perceptions have been wrong, then
our estimate of the use to which an object
can be turned must also be wrong, and
our attempt must fail. But, if we succeed in
accomplishing our aim, then that is proof
positive that our perceptions of it and of its
qualities, so far, agree with reality outside
ourselves.

Friedrich Engels

Curry, Howard, Lambek, et al.

The spectacular turn taken by mathematical logic in the early 1930s was deeply
linked to the weaving together of two notions that are opposed in a naïve con-
ception of mathematical work: reasoning and computation. David Hilbert is of-
ten referred to as the (unfortunate!) instigator of this rapprochement when he
formulated his tenth problem about the construction of an algorithm for solv-
ing Diophantine equations (Hilbert 1900) and then the Entscheidungsproblem:
is there an algorithm deciding whether a statement of first-order logic is uni-
versally valid (Hilbert and Ackermann 1928)? This problem, which marks the
culmination of several decades of efforts to formalise mathematical reasoning,
paves the way for a similar formalisation of the notion of (effective procedure
of) computation.

Two proposals for such ‘computation models’, λ-definable functions and Turing
machines, enabled Church (1936) and Turing (1937b) respectively to give neg-
ative answers to the Entscheidungsproblem. Strikingly, these negative results
echo Gödel’s recent incompleteness theorems (1931), whose proof is based on
very similar arguments. In a way, the same reasons explain the limits of compu-
tation and those of deduction, allowing Church and Turing to exhibit problems
without effective resolution and Gödel to construct formuæ without proofs for
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an effective logical system. This observation allows us to sketch the first out-
lines of a correspondence:

formula ↔ problem
proof ↔ computation procedure

or, to anticipate what follows,

formula ↔ program specification
proof ↔ program.

The remarkable fact that the different models of computation invented at the
same time in those years define the same notion of computability (Kleene 1936;
Turing 1937a), now known as the ‘Church-Turing thesis’ (Kleene 1952), also
means that one model or another can be chosen as the mathematical represen-
tation of a program depending on what is to be done with it. And so, while Tur-
ing machines became the theoretical prototype for the architecture of future
computers, the formal simplicity of the λ-calculus quickly made it the proof
theorist’s best friend.

The key to this success lies in the introduction of typed λ-calculi (Curry 1934;
Church 1940), i.e. λ-calculi endowed with rules associating a type with cer-
tain ‘valid’ λ-terms — an idea that was to flourish in the design of program-
ming languages. Within this framework, the idea gradually gained ground that
a correspondence exists between the typed λ-calculus and certain fragments
of intuitionistic logic, which not only associates λ-terms and their types with
proofs and formulæ, but also translates the dynamics of the λ-calculus (the β-
reduction, a relation describing a step in the execution of a program) to the
well-known operation of cut-elimination in a proof (Curry 1934; Curry and
Feys 1958; Howard 1980). This observation, known as the Curry-Howard cor-
respondence, is thus enriched by a third level:

formula ↔ type
proof ↔ program

cut-elimination ↔ program execution.

The great benefit of this unification of proof theory and program theory lies in
the pooling of ideas and tools developed on each side of the correspondence,
so that the rapid expansion of computer science has led to a considerable re-
newal of mathematical logic. In particular, the search for invariants of pro-
gram execution led to the birth of denotational semantics, which was inserted
into the Curry-Howard correspondence as a joint semantics of programs and
proofs (D. Scott and Strachey 1971). A natural language for interpreting the
compositional aspect of programs and proofs is that of category theory, which
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has led to the identification of a third side of the correspondence:

formula, type ↔ object
proof, program ↔ morphism

execution ↔ identity1

known in this form as the Curry-Howard-Lambek correspondence (Lambek
and P. Scott 1986). Within this framework, a translation can be established, for
example, between

• a program of type 𝐴 → 𝐵 in the simply typed λ-calculus,

• a proof of 𝐴 → 𝐵 in minimal intuitionistic logic,

• a morphism 𝐴 → 𝐵 in a cartesian closed category.

This correspondence is often described as a trinity, though in our view the tri-
angle is more isosceles than equilateral in the sense that it establishes a link
between operational and denotational properties of programs and proofs (see
fig. 1). Semantics thus becomes the privileged locus of a dialogue between the
two sides of the Curry-Howard correspondence, and it is in this dialogue that
the story told in this thesis is rooted. In the following overview of the notions
we are dealing with, we focus on three constructions carrying this dialogue:
Böhm trees, Taylor expansions and infinitary reductions are intermediate ob-
jects bearing both operational and denotational properties.

Scott semantics, operational approximants and Böhm
trees

To free oneself from the typed framework and find a denotational semantics
of the pure λ-calculus poses a technical difficulty: the set of λ-terms must be
interpreted by a single object 𝐷 which must in particular contain 𝐷 → 𝐷. Can-
tor’s theorem forbids such a construction in the category of sets. D. Scott (1993,
1972) solved this problem by constructing an object 𝒟∞ ≅ 𝒟∞ → 𝒟∞ in a
category of partial orders endowed with a topology, the morphisms being the
continuous functions. In this semantics, a program is interpreted by the limit
of the information it is capable of producing in finite time: a program that cal-
culates 𝜋 will produce 3, then 3.1, then 3.14, etc. and will be interpreted by
𝜋 = 3.14159…
This interpretation paved the way for many advances. For what we are inter-
ested in here, the transposition of the idea underlying Scott semantics to syntax

1 This is in fact a bit simplistic, as much research is devoted to interpreting the dynamics of
proofs in a higher categorical framework. There is no such modernity in this thesis, however,
so that it seems clearer to us to stick to semantics in this introduction, i.e. to an interpretation
invariant by reduction.
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operational
world

denotational
world

Logic
formulæ, proofs,
cut-elimination

Computation
types, programs,

execution

Semantics
objects, morphisms,

invariance under reduction

F IGURE 1 . The Curry-Howard-Lambek correspondence. In this the-
sis we want to highlight the link between operational and denotational
properties of the programs (or proofs), hence we draw it as an isosceles,
or heterogeneous triangle.

has enabled the construction of an approximation theory of the λ-calculus: the
λ-terms are extended with a constant ⊥ representing an absence of informa-
tion, which makes it possible to express syntactically the ‘partial results’ of a
computation. Take a program, consider all its possible ‘pieces’, execute them,
putting⊥where information is missing: you obtain ‘operational’ approximants
of the execution of the whole program (Wadsworth 1971, 1976). The advantage
of this approximation is that the interpretation of a λ-term in a Scott semantics
is equal to the upper bound of the interpretations of its approximants (Lévy
1975; Hyland 1976; Wadsworth 1978). This tool makes the link between the
operational and denotational properties of the λ-calculus, opening up a line of
research that has proved extremely fruitful — in particular through the trans-
position to syntax of the notion of continuity (Barendregt 1984).

This link is synthesised by Barendregt (1977) into a hybrid object: the Böhm
tree of a term, which is both a kind of ‘infinite normal form’ of the term and the
syntactic supremum of its approximants. If we take the example of the program
calculating 𝜋, its Böhm tree can be represented by

3
1

4
1

reproducing in the syntax what we have described in the semantics.
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Quantitative semantics, resource approximants and
Taylor expansion

Dissatisfied with the ‘extremely uneven topological spaces’ mobilised by the
Scott semantics, Girard (1987) proposes to replace them by categories and to in-
terpret the λ-terms by functors respecting certain conservation properties that
can be summarised by analycity: in short, the continuous functions à la Scott
are replaced with analytic functions. This quantitative semantics consists in
interpreting the programs by power series in which each monomial captures
a finite approximation of the execution of the interpreted term, the degree of
the monomial corresponding to the number of times that it uses its argument.
As a result, semantics no longer has the sole purpose of ‘analysing programs
qualitatively, with respect to “what they can do”, but also quantitatively, with
respect to “in how many steps”, or “in how many different ways”, or “with what
probability”’ (Ong 2017; see also Pagani 2014), depending on the choice of the
coefficients in the power series: Girard’s coefficients were sets, but scalar co-
efficients were later introduced with weighted models (Lamarche 1992; Laird
et al. 2013), and the ideas of quantitative semantics were further exploited in
a probabilistic or a quantum framework (Ehrhard, Tasson, and Pagani 2014;
Pagani, Selinger, and Valiron 2014)2.
Later, the sophisticated categorical framework used by Girard was simplified
by Ehrhard (2002, 2005); in particular, in the semantics of ‘finiteness spaces’
the types are ‘mere’ vector spaces and the terms are analytic maps between
these spaces. Consequently, the arsenal offered by linear algebra and differ-
ential calculus can be applied to semantics and, after a new journey through
the Curry-Howard-Lambek correspondence, to computation and logic. This
idea led Ehrhard and Regnier to define a differential λ-calculus (Ehrhard and
Regnier 2003) and then a differential linear logic (Ehrhard and Regnier 2006b;
Ehrhard 2017). As far as the λ-calculus is concerned, this transposition consists
in introducing into the syntax a formal derivation operator whose behaviour,
driven by the semantics, perfectly corresponds to the usual derivation. In par-
ticular, it makes complete sense to consider Taylor’s formula in this context.
Applied to a pure λ-term, the Taylor expansion takes the form of a weighted
sum of resource terms, which constitute the purely multilinear fragment of the
differential λ-calculus (Ehrhard and Regnier 2008).
The Taylor expansion is again an object with a hybrid status: its syntax is guided
by that of the λ-terms and it is equipped with a dynamics, the resource reduc-
tion; however this dynamics is minimal, very disciplined, and the normal form
of the Taylor expansion corresponds to the quantitative semantics of the terms.
This approach has led to the development of a new approximation theory for

2 This new paradigm had a spectacular impact: the elementary observation that a monomial
𝑥 ↦ 𝑎𝑛𝑥𝑛 can be decomposed into 𝑥 ↦ 𝑥𝑛 and 𝑋 ↦ 𝑎𝑛𝑋 , once again transported by the
Curry-Howard correspondence, led Girard (1988) to introduce linear logic, whose applica-
tions now pervade proof theory.



18 introduction

the λ-calculus, the approximants of which are the resource terms: as in differ-
ential calculus, the summands of the Taylor expansion of a term are its mul-
tilinear approximants, and as in the case of the approximation derived from
Scott semantics, the normal forms of the approximants can be assembled into
a denotational interpretation, this time a quantitative one. The major fact of
this line of research is that the ‘classical’ (continuous) approximation is sub-
sumed by the Taylor (linear) approximation, thanks to a commutation theorem
stating that the normal form of the Taylor expansion of a λ-term is equal to
the Taylor expansion of its Böhm tree (Ehrhard and Regnier 2008, 2006a). The
great benefit of this result is that many of the complex proofs linked to Böhm
trees and operational approximation can be replaced with simple inductions
over the summands of the Taylor expansion, as illustrated by Barbarossa and
Manzonetto (2020).
This work has had considerable momentum, and Taylor approximations
have been proposed for extensional (Blondeau-Patissier, Clairambault, and
Vaux Auclair 2024), nondeterministic (Bucciarelli, Ehrhard, and Manzonetto
2012; Vaux 2019), probabilistic (Dal Lago and Zorzi 2012; Dal Lago and
Leventis 2019), call-by-value (Kerinec, Manzonetto, and Pagani 2020), and
call-by-push-value (Ehrhard and Guerrieri 2016; Chouquet and Tasson 2020)
calculi, as well as for Parigot’s λμ-calculus (Barbarossa 2022). There is also
a strong ongoing effort to spread the Taylor formula along the edges of the
Curry-Howard-Lambek correspondance, e.g. in relation with differential
linear logic (Kerjean and Lemay 2023), intersection type systems and the
associated relational semantics (de Carvalho 2007; Olimpieri 2020a), game
semantics (Tsukada and Ong 2016; Blondeau-Patissier, Clairambault, and
Vaux Auclair 2023), or coherent differential semantics (Ehrhard and Walch
2023). The interplay of the operational and Taylor approximations also sug-
gests a broader notion of an approximation of a computation process (Mazza
2021; Dufour and Mazza 2024).

Infinitary λ-calculi

In all of the above, we have strangely left the dynamics of β-reduction in the
shadows to speak most often of normalisation alone:

• operational approximants are normal forms, and their supremum the
Böhm tree is an ‘infinite normal form’,

• the commutation property of the Taylor expansion characterises only its
normalisation (which consists of the finite but unbounded normalisation
of each summand).

This perspective, inspired by the semantic origin of the two approximation the-
ories, is linked to a major obstacle: in general, the objects in question (the Böhm
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tree, or equivalently the normal form of the Taylor expansion) are situated ‘in-
finitely far’ from the term out of which they are formed, the normalisation of
the λ-terms being a coinductive process; the finitary β-reduction, which is in-
ductive, does not connect the terms to their Böhm tree. The lack of a suitable
formalism to deal with these issues, while not preventing the construction of ap-
proximations of β-reduction and its normalisation, certainly complicated their
presentation by often making it difficult to grasp the arguments mobilised, cre-
ating — for the young PhD student at least — a certain impression of confu-
sion3.
The introduction of infinitary rewriting fills this gap by creating a framework
in which infinite sequences of reductions can be manipulated (Dershowitz, Ka-
plan, and Plaisted 1991; Kennaway 1992; Kennaway, Klop, et al. 1995). The λ-
calculus, probably the most studied rewriting system, was soon integrated into
this framework (Kennaway, Klop, et al. 1997; Berarducci 1996). The infinitary
λ-calculus4 features two novelties:

• infinite terms (i.e. finite or infinite), so that finite λ-terms but also Böhm
trees can be embedded in them,

• infinite sequences of reductions, so that a term 𝑀 is effectively reduced
to its Böhm tree: we write 𝑀 ⟶∞

𝛽 BT(𝑀).

Initially defined using topological tools, these notions have been reformulated
in a coinductive framework that gives them a simplicity (almost) comparable to
that of finitary rewritings (Joachimski 2004; Endrullis and Polonsky 2013; Cza-
jka 2020). Under certain assumptions, the infinitary β-reduction (or more pre-
cisely the infinitary β⊥-reduction) is confluent, which guarantees the unique-
ness of the normal forms (Kennaway, Klop, et al. 1997; Czajka 2014, 2020). In
the so-called 001-infinitary variant, these normal forms coincide with Böhm
trees, which can therefore be called ‘infinitary normal forms’ in all rigour.

D

This thesis

In this thesis, we extend the Taylor approximation to the infinitary λ-calculus.
Our aim is not to add an item to the already long list of λ-calculi provided with
a Taylor expansion, but rather to show that the infinitary framework allows an

3 It is significant that the original definition of Böhm trees in Barendregt (1984, def. 10.1.4) is
quite elaborate, although the coinductive definition was known (ibid., ‘informal’ def. 10.1.3):
unfortunately, coinduction was not yet sufficiently established for this definition to appear
rigorous enough.

4 Or rather these infinitary λ-calculi, since several variants are possible: 8 under the original
definition (Kennaway, Klop, et al. 1997), ℵ1 in the general framework of λ-calculi modulo
meaningless terms (Kennaway, van Oostrom, and de Vries 1999; Severi and de Vries 2005b).
These details are widely discussed in chapter 2, so we pass over them in this overview.
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elegant reformulation of the Taylor approximation of the usual pure λ-calculus,
and of the links this approximation has with the operational one.

The first part of this manuscript sets out the framework in which we work. It
brings together definitions and properties that are for the most part already
known, but which we felt should be introduced again in detail, either because
they are not yet ‘standard’ in the literature, or because we wished to give an
original presentation of them.

The purpose of chapter 1 is to rigorously define infinitary λ-terms. In particular
the treatment of α-equivalence is a bit tricky for these terms, as pointed out by
Kurz et al. (2012) who give a coinductive treatment of them. Their work is nev-
ertheless limited to the 111-infinitary case, like most of the literature which
treats these terms coinductively, whereas it is mainly the 001-infinitary case
that we are interested in in this thesis (since it is the one that is related to all
the notions we have discussed in the preceding pages). The difficulty with the
latter case is that it is not ‘fully’ coinductive, but corresponds to a nesting of in-
ductive and coinductive constructions. Eventually, it seemed useful to propose
an abstract account of the ‘mixed’ syntax resulting from a nesting of induction
and coinduction, in the presence of binders and α-equivalence. This categorical
construction is strongly inspired by Kurz et al. (2013), and has been synthesised
in Cerda (2024).

After the terms, their dynamics: in chapter 2, we recall the definition of the
β-reduction and its properties, then we give a coinductive presentation of the
different variants of the infinitary β-reduction. We recall that this work can be
extended to β⊥-reductions in the 001-, 101- and 111-infinitary cases, and that it
then gives rise to well-known infinitary normal forms: the Böhm, Lévy-Longo
and Berarducci trees respectively. For the first two cases, we show that the clas-
sical theory of operational approximation of the β-reduction can be extended
without difficulty to infinitary terms via an ideal completion highlighted by
Bahr (2018), giving rise to an elementary proof of the syntactic approximation
theorem.

Chapter 3 presents the resource λ-calculus as a special case of a rewriting with
sums: after presenting a general technique for lifting a reduction to sums of
terms due to Vaux (2017), we recall the definition of the resource reduction
and study its lifting to sums. In particular, we detail the differences between
the so-called qualitative and quantitative settings. Indeed, we thought it useful
not to limit ourselves to the former setting in what follows.

The second part of the thesis contains our study of the Taylor expansion of λ-
terms in an infinitary setting.

Chapter 4 contains the heart of our work. After defining the Taylor expansion
of 001-infinitary terms, which requires some precautions, we set out to show
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a simulation property generalising an idea from Vaux (ibid.): if there is a 001-
infinitary reduction between two terms, then there is a resource reduction be-
tween their Taylor expansions (theorem 4.14). The interest of this work is that
the resource calculus used is exactly the same as for the Taylor expansion of the
finite λ-calculus: in a way, the 001-infinitary λ-calculus is the largest setting in
which the Taylor approximation remains valid as is. In the remainder of the
chapter, we tackle two tasks. On the one hand we draw the consequences of the
simulation theorem, obtaining elementary proofs of various results. In particu-
lar, we provide characterisations of head normalising and normalising λ-terms
(theorems 4.20 and 4.30), we deduce the commutation theorem (theorem 4.26)
and the confluence of ⟶001

𝛽⊥ (corollary 4.28) as easy corollaries, and we prove
an infinitary genericity lemma (theorem 4.35), based on the work published
in Cerda and Vaux Auclair (2023a). On the other hand, we extend the simu-
lation theorem to the quantitative setting (theorem 4.56). To do so we need
to consider a crucial property of the Taylor expansion, viz its uniformity. Our
proof relies on the introduction of a uniform resource reduction of the Taylor
expansions.
In chapter 5, we address the question whether the simulation described in the
previous chapter is conservative, i.e. whether a β-reduction can always be in-
ferred from a resource reduction between Taylor expansions of λ-terms. We
show that this is only the case if we restrict ourselves to the finite λ-calculus.
In the 001-infinitary setting, we are able to design a term, theAccordion, whose
Taylor expansion enjoys a reduction that cannot be turned into an infinitary β-
reduction. This was the content of Cerda and Vaux Auclair (2023b), to which
we add an attempt to regain conservativity by limiting the resource reduction
to the uniform reduction.
Finally, chapter 6 is devoted to extending the Taylor approximation to the lazy
setting, i.e. to the 101-infinitary λ-calculus. We introduce a lazy Taylor expan-
sion and show that most of the content of chapter 4 remains applicable to this
variant. In particular, the 101-infinitary reduction is simulated by the lazy Tay-
lor expansion (theorem 6.10) and the normalisation of this Taylor expansion
commutes with the Lévy-Longo tree, which is the analogue of the Böhm tree
in this setting (corollary 6.13). We conclude by mentioning a result of Severi
and de Vries (2005a) which implies the impossibility of a similar extension to
other settings.

D
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Chapter 1

Mixed inductive-coinductive
higher-order terms

I’m lacing up my shoes
But I don’t want to run
I’ll get there when I do
Don’t need no starting gun

Leonard Cohen

This chapter is devoted to a careful definition of ‘mixed’ inductive-coinductive
terms with higher-order binding, a particular case of which being the 001-
infinitary λ-terms that will be at the heart of this thesis. Indeed, no general
description of such terms is standard to our knowledge, and some technical
difficulties arise from α-equivalence; we address these issues as presented in
Cerda (2024), taking significant inspiration from Kurz et al. (2013).

1.1 Takeaway for the impatient reader

It seemed to the author that this thesis would benefit from a rigorous, abstract
account of mixed inductive-coinductive higher-order terms, since the whole
thesis is about such terms (viz infinitary λ-terms). However, the reader may
not want to endure an entire chapter of nominal abstract nonsense, so let us
provide a quick summary of what we want to obtain in the end. This being
done, our impatient reader will be able to safely jump to chapter 2.

First, let us recall the syntax of finite λ-terms: their set Λ is defined by the
following set of inductive rules:

𝑥 ∈ 𝒱 (ax)
𝑥 ∈ Λ

𝑥 ∈ 𝒱 𝑃 ∈ Λ (λ)
𝜆𝑥.𝑃 ∈ Λ

𝑃 ∈ Λ 𝑄 ∈ Λ
(@)

(𝑃)𝑄 ∈ Λ

where 𝒱 is a fixed countable set of variables. Notice that we use Krivine’s nota-
tion for applications (Krivine 1990).
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𝜆𝑓

@

𝑓 @

𝑓 @

𝑓 @

𝑓

𝜆𝑥0

@

𝑥0𝜆𝑥1

@

𝑥1𝜆𝑥2

@

𝑥2

F IGURE 1 .1 . Two infinitary λ-terms. The first one is in Λ𝑎𝑏1 for any
𝑎, 𝑏 ∈ 𝟚, whereas the second one is in Λ𝑎𝑏𝑐 as soon as 𝑎 ∨ 𝑏 = 1.

A λ-term can be seen as its syntactic tree, for instance 𝜆𝑥.(𝑥)𝑦 is the following
tree:

𝜆𝑥

@

𝑥 𝑦

Infinitary λ-terms are obtained by allowing these syntactic trees to be infinite,
i.e. to have infinite branches. Formally, one treats the rules (ax), (λ) and (@)
coinductively; for instance we want to consider terms as in fig. 1.1.
However, just switching from induction to coinduction is not the construction
we consider in most of this thesis: we want to restrict ourselves to some subsets
of ‘partially’ infinitary λ-terms. More explicitely, we consider 𝑎𝑏𝑐-infinitary λ-
terms (for 𝑎, 𝑏, 𝑐 ∈ 𝟚, where 𝟚 = {0, 1} denotes the set of booleans), i.e. infini-
tary trees such that any infinite branch must cross

• infinitely many 𝜆 nodes, in case 𝑎 = 1, or

• infinitely many left sides of an @ node, in case 𝑏 = 1, or

• infinitely many right sides of an @ node, in case 𝑐 = 1.

For example, in fig. 1.1 the first term belongs to Λ001 but the second one does
not. Formally, the set Λ𝑎𝑏𝑐 of 𝑎𝑏𝑐-infinitary λ-terms is defined by the following
mixed formal system of rules:

𝑥 ∈ 𝒱 (ax)
𝑥 ∈ Λ𝑎𝑏𝑐

𝑥 ∈ 𝒱 ▹𝑎 𝑃 ∈ Λ𝑎𝑏𝑐
(λ)

𝜆𝑥.𝑃 ∈ Λ𝑎𝑏𝑐
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▹𝑏 𝑃 ∈ Λ𝑎𝑏𝑐 ▹𝑐 𝑄 ∈ Λ𝑎𝑏𝑐
(@)

(𝑃)𝑄 ∈ Λ𝑎𝑏𝑐

𝑀 ∈ Λ𝑎𝑏𝑐 (▹0)
▹0 𝑀 ∈ Λ𝑎𝑏𝑐

𝑀 ∈ Λ𝑎𝑏𝑐
(▹1)

▹1 𝑀 ∈ Λ𝑎𝑏𝑐

where the double horiontal bar in (▹1) indicates that the rule is treated coin-
ductively, while the single bars indicate inductive rules. A valid derivation in
such a system is such that any infinite branch of the derivation crosses infinitely
many coinductive rules.
Notice that there is an inclusion Λ𝑎′𝑏′𝑐′ ⊆ Λ𝑎𝑏𝑐 as soon as 𝑎′ ⩽ 𝑎, 𝑏′ ⩽ 𝑏 and
𝑐′ ⩽ 𝑐. In particular, Λ = Λ000 can be seen as a subset of any Λ𝑎𝑏𝑐.

As usual when dealing with λ-terms we want to consider terms up to α-
equivalence, i.e. modulo the equivalence relation generated by renaming
bound variables. For instance, we do not want to distinguish between these
two terms:

𝜆𝑥

@

𝑥 𝑦

𝜆𝑧

@

𝑧 𝑦

This quotient is innocuous when one only considers finite terms, but becomes
more complicated to handle as soon as we consider infinite terms. However
everything works perfectly under the following assumption: all the terms we
consider have finitely many free variables. Thus, from now on Λ𝑎𝑏𝑐 denotes the
set of α-equivalence classes of 𝑎𝑏𝑐-infinitary terms with finitely many free vari-
ables.
In this setting, we can safely define capture-avoiding substitution as follows, by
nested induction and coinduction:

𝑥[𝑁/𝑥] ≔ 𝑁
𝑦[𝑁/𝑥] ≔ 𝑦 for 𝑦 ≠ 𝑥

(𝜆𝑦.𝑃)[𝑁/𝑥] ≔ 𝜆𝑦.𝑃[𝑁/𝑥] for 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑁)
((𝑃)𝑄)[𝑁/𝑥] ≔ (𝑃[𝑁/𝑥]) 𝑄[𝑁/𝑥].

All this construction can be straightforwardly extended by adding a set 𝐶 of
constants to the syntax, giving rise to sets Λ𝐶 and Λ𝑎𝑏𝑐

𝐶 . In particular, we will
consider the case of λ⊥-terms, i.e. the case where 𝐶 = {⊥}.

Let us now see how this all works in detail. As said above, the reader can jump
to chapter 2 is they are satisfied with this informal exposition.
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1.2 Categorical preliminaries

The goal of this chapter is to give a presentation of the syntax of infinitary λ-
calculi in the language of category theory. We start by providing the categorical
material we need in the following. We assume that the reader is familiar with
the basics of category theory, which we will not recall; we refer for example to
Awodey (2010) and Riehl (2016).

1.2.1 Algebras and coalgebras

DEF IN IT ION 1 .1. Let 𝐹 ∶ 𝐂 → 𝐂 be a 𝐂-endofunctor. Then an 𝐹-algebra is an
arrow 𝛼 ∶ 𝐹𝐴 → 𝐴 in 𝐂, for some carrier object 𝐴.
Given two 𝐹-algebras 𝛼 ∶ 𝐹𝐴 → 𝐴 and 𝛽 ∶ 𝐹𝐵 → 𝐵, an algebra morphism
𝑓 ∶ 𝛼 → 𝛽 is an arrow 𝑓 ∶ 𝐴 → 𝐵 in 𝐂 such that

𝐹𝐴 𝐹𝐵

𝐴 𝐵

←→ 𝛼

←→𝐹𝑓

←→ 𝛽

←→𝑓

commutes. This defines a category𝐀𝐥𝐠(𝐹) of 𝐹-algebras.
Dually, the category𝐂𝐨𝐚𝐥𝐠(𝐹) of𝐹-coalgebras hasmorphisms𝐶 → 𝐹𝐶 as objects
and commutative squares

𝐹𝐶 𝐹𝐷

𝐶 𝐷

←→𝐹𝑓

← →𝛾

←→𝑓

← →𝛿

as arrows 𝛾 → 𝛿.

When this does not induce any ambiguity, we will often refer to an 𝐹-algebra
𝛼 ∶ 𝐹𝐴 → 𝐴 by its carrier object, and say ‘the algebra 𝐴’.

NOTAT ION 1 .2. When𝐀𝐥𝐠(𝐹) has an initial object, we call it the initial algebra
of 𝐹 and denote it by µ𝑋.𝐹𝑋 (where 𝑋 is a dummy variable, i.e. µ𝑌.𝐹𝑌 denotes
the same object).
Similarly, when𝐂𝐨𝐚𝐥𝐠(𝐹) has a terminal object, we call it the terminal coalgebra
of 𝐹 and denote it by ν𝑋.𝐹𝑋 .

Notice that initial algebras and terminal coalgebras are only defined up to iso-
morphism. This means that in the following sections, some equalities might in
fact be ‘only’ isomorphisms.

EXAMPLE 1 .3. Consider the 𝐒𝐞𝐭-endofunctor defined by 𝐹𝑋 ≔ 1+𝑋 . Its initial
algebra is zero + succ ∶ 1 + ℕ → ℕ, where zero(∗) ≔ 0 and succ(𝑛) ≔ 𝑛 + 1;
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indeed, given any other algebra 𝐴,

1 + ℕ 1 + 𝐴

ℕ 𝐴

←→zero+succ

← →1+𝑓

←→ 𝛼1+𝛼𝐴

← →𝑓

0 ↦ 𝛼1(∗)
𝑛+1 ↦ 𝛼𝐴(𝑓(𝑛))

commutes (and is unique with this property). In short, µ𝑋.1 + 𝑋 = ℕ.
Similarly ν𝑋.1 + 𝑋 = ℕ ≔ ℕ ∪ {∞}, which coalgebra structure is born by the
predecessor function pred. Indeed, given any other coalgebra 𝐶,

1 + 𝐶 1 + ℕ

𝐶 ℕ

← →1+𝑓

← →𝛾

← →𝑓

𝑐 ↦ { 0 if 𝛾(𝑐) = ∗
1+𝑓(𝛾(𝑐)) otherwise

← →pred

with 1 + 1 +⋯ = ∞ in ℕ.

The µ and ν notations originate in the theory of fix-points on a lattice, which
was further developped in the late 20th century as the ‘μ-calculus’ (Arnold and
Niwiński 2001). The following lemma, due to Lambek (1968), justifies this
analogy by describing initial algebras and terminal coalgebras as fix-points.

LEMMA 1 .4 Lambek’s lemma). An initial algebra is an isomorphism. Dually,
so is a terminal coalgebra.

In particular, an initial algebra 𝛼 induces a coalgebra 𝛼−1, and a terminal coal-
gebra 𝛾 induces an algebra 𝛾−1. This observation gives rise to a canonical mor-
phism 𝜄 ∶ µ𝑋.𝐹𝑋 → ν𝑋.𝐹𝑋 , by both initiality and terminality.
Recall that:

• a category is said to be cocomplete (resp. complete) if it has all small colim-
its (resp. limits), and 𝜔-cocomplete (resp. 𝜔-complete) if it has all colimits
of 𝜔-chains (resp. limits of 𝜔op-chains);

• a functor is said to be cocontinuous (resp. continuous) if it preserves all
colimits (resp. limits), and 𝜔-cocontinuous (resp. 𝜔-continuous) if it pre-
serves all colimits of 𝜔-chains (resp. limits of 𝜔op-chains).

The following key theorem, due to Pohlová (1973) for 𝐒𝐞𝐭-endofunctors and
to Adámek (1974) for arbitrary categories, is a categorification of Kleene’s fix-
point theorem and provides an explicit construction of the initial algebra and
terminal coalgebra as least and greatest fix-points.
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THEOREM 1 .5 Adámek’s fix-point theorem). If 𝐂 is an 𝜔-cocomplete category
and 𝐹 ∶ 𝐂 → 𝐂 is a an 𝜔-cocontinuous endofunctor, then the colimit of the
following diagram:

0 𝐹0 𝐹20 ⋯←→! ←→𝐹! ←→𝐹2!

carries an initial 𝐹-algebra.
Dually, if 𝐂 is an 𝜔-complete category and 𝐹 ∶ 𝐂 → 𝐂 is a an 𝜔-continuous
endofunctor, then the limit of the following diagram:

⋯ 𝐹21 𝐹1 1←→𝐹2! ←→𝐹! ←→!

carries a terminal 𝐹-coalgebra.

Informally, we write µ𝑋.𝐹𝑋 = colim𝑛∈ℕ 𝐹𝑛0 and ν𝑋.𝐹𝑋 = lim𝑛∈ℕ 𝐹𝑛1.
A proof of the theorem can be found in Adámek, Milius, and Moss (2018,
cor. 3.7)1.
Consider again the example of ℕ = µ𝑋.1 + 𝑋 in 𝐒𝐞𝐭: the theorem says that it is
the colimit of the diagram:

0 1 + 0 1 + 1 + 0 ⋯←→! ←→1+! ←→1+1+!

which can be written ℕ = colim𝑛∈ℕ 𝑛. This seams reasonable!

1.2.2 (Co)algebras of bifunctors

Fom now on, assume that 𝐂 is an 𝜔-bicomplete (i.e. 𝜔-complete and 𝜔-
cocomplete) category. Recall that a bifunctor 𝐂0 × 𝐂1 → 𝐃 is just a functor
sourced in the product category 𝐂0 × 𝐂1.
Given a bifunctor 𝐂×𝐂 → 𝐂, we want to compute its inital algebra. We could
do four different things:

• for any 𝑌 , compute the least fix-point on the first coordinate, µ𝑋.𝐹(𝑋,𝑌),
then take the least fix-point on the second coordinate, µ𝑌.µ𝑋.𝐹(𝑋,𝑌),

• do the converse and compute µ𝑋.µ𝑌.𝐹(𝑋,𝑌),

• work on the diagonal and compute µ𝑍.𝐹(𝑍,𝑍).

In this section, we show that all these options are well-defined (under an 𝜔-
cocontinuity hypothesis) and yield the same algebra.

1 The theorem is in fact more general: if we replace 𝜔 with any ordinal 𝜆, under similar as-
sumptions one obtains µ𝑋.𝐹𝑋 = colim𝜅<𝜆 𝐹𝜅0 and ν𝑋.𝐹𝑋 = lim𝜅<𝜆 𝐹𝜅1. In addition, if
𝐂 is well-powered and the canonical morphisms 𝐹𝜅0 → 𝐹𝜅1 are monomorphisms, then it
can be proved that the continuity assumption is sufficient (Adámek 2003, obs. 2.5).
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First, recall the two ‘currying’ natural isomorphisms:

curry0 ∶ 𝐂𝐚𝐭(𝐂 × 𝐂,𝐂) → 𝐂𝐚𝐭(𝐂,𝐂𝐚𝐭(𝐂,𝐂))
𝐹 ↦ ∗ ↦ 𝐹(∗,−)

curry1 ∶ 𝐂𝐚𝐭(𝐂 × 𝐂,𝐂) → 𝐂𝐚𝐭(𝐂,𝐂𝐚𝐭(𝐂,𝐂))
𝐹 ↦ ∗ ↦ 𝐹(−, ∗)

and observe that they can be resricted to𝐂𝐚𝐭𝜔(𝐂×𝐂,𝐂) → 𝐂𝐚𝐭𝜔(𝐂,𝐂𝐚𝐭𝜔(𝐂,𝐂)),
where 𝐂𝐚𝐭𝜔 is the category of all small 𝜔-cocomplete categories and 𝜔-
cocontinuous functors.

Second, consider the functor 𝛍 ∶ 𝐂𝐚𝐭𝜔(𝐂,𝐂) → 𝐂 defined by 𝛍𝐹 ≔ µ𝑋.𝐹𝑋
(whos existence is guaranteed by theorem 1.5) and, for any natural transforma-
tion 𝜂 ∶ 𝐹 ⇒ 𝐺, 𝛍𝜂 is the unique arrow 𝛍𝐹 → 𝛍𝐺 generated by the cocone

0 𝐹0 𝐹20 ⋯

0 𝐺0 𝐺20 ⋯

←→!𝐹0

⇐⇐

←→𝐹!𝐹0

←→ 𝜂0

←→𝐹2!𝐹0

←→ 𝐹𝜂0∘𝜂𝐺0=𝜂𝐹0∘𝐺𝜂0

←→!𝐺0 ←→𝐺!𝐺0 ←→𝐺2!𝐺0

under 𝛍𝐹 = colim𝑛∈ℕ 𝐹𝑛02. In particular, if we consider the natural transfor-
mation 𝐹(𝑓,−) generated by a morphism 𝑓 ∶ 𝑋 → 𝑋 ′ we obtain a morphism

𝛍𝐹(𝑓,−) ∶ µ𝑌.𝐹(𝑋,𝑌) → µ𝑌.𝐹(𝑋 ′,𝑌)

and we denote it by µ𝑌.𝐹(𝑓,𝑌). Similarly, we define µ𝑋.𝐹(𝑋, 𝑔) for any 𝑔 ∶
𝑌 → 𝑌 ′.

LEMMA 1 .6. Given an 𝜔-cocontinuous bifunctor 𝐹 ∶ 𝐂 × 𝐂 → 𝐂, the 𝐂 → 𝐂
functors

µ𝑋.𝐹(𝑋,−) ≔ 𝐂𝐚𝐭𝜔(id𝐂,𝛍) ∘ curry1𝐹
µ𝑌.𝐹(−,𝑌) ≔ 𝐂𝐚𝐭𝜔(id𝐂,𝛍) ∘ curry0𝐹

are 𝜔-cocontinuous.

2 𝛍𝜂 could also have been defined directly by initiality of 𝛍𝐹, i.e.

𝐹(𝛍𝐹) 𝐹(𝛍𝐺)

𝐺(𝛍𝐺)

𝛍𝐹 = µ𝑋.𝐹𝑋 𝛍𝐺 = µ𝑋.𝐺𝑋

← →

←

→

←→ 𝜂µ𝑋.𝐺𝑋

←→

←→𝛍𝜂

which does indeed define the same functor.
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PROOF. Consider an 𝜔-indexed diagram (𝑌𝑛)𝑛∈ℕ, then

colim
𝑛∈ℕ

µ𝑋.𝐹(𝑋,𝑌𝑛) = colim
𝑛∈ℕ

𝛍 (𝐹(−,𝑌𝑛))

= 𝛍 (colim
𝑛∈ℕ

𝐹(−,𝑌𝑛))

= 𝛍 (𝐹 (−, colim
𝑛∈ℕ

𝑌𝑛))

= µ𝑋.𝐹 (𝑋, colim
𝑛∈ℕ

𝑌𝑛)

using the fact that 𝛍 is 𝜔-cocontinuous, by Lehmann and Smyth (1981,
thm. 4.1). The proof is similar for the second functor. □

COROLLARY 1 .7. If 𝐹 ∶ 𝐂×𝐂 → 𝐂 is𝜔-cocontinuous, then the initial algebras
µ𝑌.µ𝑋.𝐹(𝑋,𝑌) and µ𝑋.µ𝑌.𝐹(𝑋,𝑌) exist.

PROOF. By theorem 1.5. □

Observe that by 𝜔-cocontinuity of the diagonal functor

Δ𝐂 ∶ 𝐂 → 𝐂 × 𝐂
∗ ↦ (∗, ∗)

the initial algebra µ𝑍.𝐹(𝑍,𝑍) = 𝛍(𝐹Δ𝐂) is also well-defined. Thus, we have
proved an existence condition of all the constructions presented in the begin-
nig of this section; let us now show that they are equivalent. We start by inves-
tigating an example.

Consider the 𝐒𝐞𝐭 × 𝐒𝐞𝐭 → 𝐒𝐞𝐭 bifunctor defined by (𝑋,𝑌) ↦ 1 + 𝑋 × 𝑌 .

• One one hand, µ𝑍.1 + 𝑍2 is the algebra BTree of all binary trees (with
leaves in the terminal set 1). Explicitely, we can write

BTree ∋ 𝑡,𝑢,… ≔ leaf | node(𝑡,𝑢).

• On the other hand, what is µ𝑌.µ𝑋.1 + 𝑋 × 𝑌? Have a look at the inner
fix-point: given a set 𝑌 , µ𝑋.1 + 𝑋 × 𝑌 is usually described as the set of
lists of elements of 𝑌 . However, using the constructors of binary trees
introduced above, one can view this algebra as the set BTree𝜔,1(1,𝑌) of
left combs with right leaves in 𝑌 :

BTree𝜔,1(1,𝑌) ∋ 𝑡,𝑢,… ≔ leaf | node(𝑡, 𝑦). (𝑦 ∈ 𝑌)

For instance, the list (𝑦1,… , 𝑦𝑛) corresponds to the comb
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•

•

•

∗

•

•

∗

∗

•

∗ ∗

∗

•

∗ ∗
F IGURE 1 .2 . A binary tree can be seen as a left comb of left combs of
left combs of...

•
𝑦1•

𝑦2•
𝑦𝑛∗

Thus µ𝑌.µ𝑋.1 + 𝑋 × 𝑌 is the smallest set of left combs with right leaves
in itself.

However, any binary tree in µ𝑍.1 + 𝑍2 (i.e. described by breadth-first search)
can be presented as a ‘comb of combs’ in µ𝑌.µ𝑋.1+𝑋×𝑌 by performing depth-
first search, as illustrated in fig. 1.2; Hence the following observation.

OBSERVAT ION 1 .8. There is an isomorphism µ𝑍.1 + 𝑍2 = µ𝑌.µ𝑋.1 + 𝑋 × 𝑌
in 𝐀𝐥𝐠(1 + −2).

Formally, this relies on the fact that the inclusion µ𝑌.BTree𝜔,1(1,𝑌) ⊆ BTree
generates an algebra morphism

1 + 𝐴2 1 + BTree2

1 + (µ𝑋.1 + 𝑋 × 𝐴) × 𝐴

µ𝑋.1 + 𝑋 × 𝐴

𝐴 = µ𝑌.µ𝑋.1 + 𝑋 × 𝑌 BTree = µ𝑍.1 + 𝑍2

←→ ∼1+μ−1𝑌 ×𝐴

← →1+⊆2

←

→
∼←→ ∼μ𝑋

←→ ∼μ𝑌

←→⊆

which must be an isomorphism by initiality.
This observation is generalised to any functor by the following crucial lemma,
categorifying a well-known result for fix-points on lattices sometimes described
as the ‘golden lemma of the μ-calculus’ (Arnold and Niwiński 2001). This cat-
egorical version is due to Lehmann and Smyth (1981, cor. 1 of thm. 4.2). It is
also equivalent to the ‘double-dagger property’ in the setting of iteration and
Conway theories (Bloom and Ésik 1993); we take the name ‘Diagonal identity’
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from Simpson and Plotkin (2000), where a categorical account of these theories
is given.

LEMMA 1 .9 (Diagonal identity). Given an 𝜔-cocontinuous bifunctor 𝐹 ∶ 𝐂 ×
𝐂 → 𝐂, there are isomorphisms

µ𝑌.µ𝑋.𝐹(𝑋,𝑌) = µ𝑋.µ𝑌.𝐹(𝑋,𝑌) = µ𝑍.𝐹(𝑍,𝑍)

of 𝐹Δ𝐂-algebras.

Before I discovered the existing proofs in the literature, I came up with an ex-
plicit construction of the isomorphism using theorem 1.5, which will be pre-
sented in section 1.2.4. However let me start with summarising the proof by
Lehmann and Smyth. The proof begins with a categorical version of a famous
lemma due to Bekić (1984) for fix-points in lattices.

LEMMA 1 .10 Bekić’s lemma). Given 𝐹,𝐺 two cocontinuous bifunctors𝐂×𝐂 →
𝐂, the initial algebra for the pair functor ⟨𝐹,𝐺⟩ ∶ 𝐂×𝐂 → 𝐂×𝐂 is ⟨ ̄𝑋, ̄𝑌 ⟩, where:

̄𝑋 ≔ µ𝑋.𝐹(𝑋,µ𝑌.𝐺(𝑋,𝑌)) ̄𝑌 ≔ µ𝑌.𝐺( ̄𝑋,𝑌).

PROOF OF LEMMA 1 .9. Applying lemma 1.10, the initial algebra of ⟨𝐹,𝜋0⟩
(where 𝜋0 denotes the first projection ⟨𝑋,𝑌⟩ ↦ 𝑋) is the map

⟨𝐹(𝐼, 𝐼) → 𝐼 , 𝐼 → 𝐼⟩

where 𝐼 ≔ µ𝑋.𝐹(𝑋,𝑋).
By permuting the roles of 𝑋 and 𝑌 in the proof of lemma 1.10, we can also
obtain the following result (with the notations of the lemma):

̄𝑋 = µ𝑋.𝐹(𝑋, ̄𝑌 ) ̄𝑌 = µ𝑌.𝐺(µ𝑋.𝐹(𝑋,𝑌),𝑌),

from which we deduce another expression for the initial algebra of ⟨𝐹,𝜋0⟩,
namely

⟨𝐹(µ𝑋.𝐹(𝑋, 𝐼), 𝐼) → µ𝑋.𝐹(𝑋, 𝐼) , 𝐼 → 𝐼⟩

where 𝐼 ≔ µ𝑌.µ𝑋.𝐹(𝑋,𝑌).
The result follows by uniqueness of initial algebras (up to isomorphism): con-
sidering the right projection one obtains that the two expressions of 𝐼 are iso-
morphic, then considering the left projection one concludes that this is an iso-
morphism of 𝐹Δ𝐂-algebras. □

By duality, similar results hold for terminal coalgebras of bifunctors: given an
𝜔-complete category 𝐂 and an 𝜔-continuous bifunctor 𝐂 × 𝐂 → 𝐂, the ter-
minal coalgebras ν𝑌.ν𝑋.𝐹(𝑋,𝑌), ν𝑋.ν𝑌.𝐹(𝑋,𝑌) and ν𝑍.𝐹(𝑍,𝑍) exist and are
isomorphic.
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𝐹

•
• •

••
• • (𝑋,𝑌) = 𝐹

•

𝑋 •

𝑌•

𝑋 𝑌 = 𝐹 (𝑋,𝐹 (𝐹 (𝑋,𝑌) ,𝑌))

( a ) A tree power of a bifunctor 𝐹.

𝐺3(𝑋) = 𝐺

•
•
•

𝑋 = 𝐺 (𝐺 (𝐺 (𝑋)))

( b ) Usual powers of a functor 𝐺 can be seen as tree powers where
the trees have unary nodes.

F IGURE 1 .3. Tree powers.

1.2.3 Tree powers of bifunctors

When we apply theorem 1.5 to a bifunctor, iterated applications of it appear, for
instance in the following chain:

0 𝐹(0,𝑌) 𝐹(𝐹(0,𝑌),𝑌) ⋯←→! ←→𝐹(!,𝑌) ← →𝐹(𝐹(!,𝑌),𝑌) (1.1)

In this section, we introduce a binary tree representation of such iterated appli-
cations, as illustrated in fig. 1.3a3. By analogy, the usual powers of a 1-variable
functor are integers but can be seen as unary trees, see fig. 1.3b.

In general, given a small category 𝐂, we can define the set of all binary trees
with leaves in 𝐂 by BTree(𝐂) ≔ µ𝑍.𝐂 + 𝑍2. Explicitely:

BTree(𝐂) ∋ 𝑡,𝑢,… ≔ leaf(𝑋) | node(𝑡,𝑢). (𝑋 ∈ 𝐂)

Then for a bifunctor 𝐹 ∶ 𝐂 × 𝐂 → 𝐂 and a tree 𝑡 ∈ BTree(𝐂), the power 𝐹𝑡 is
inductively defined by:

𝐹 leaf(𝑋) ≔ 𝑋 𝐹node(𝑡,𝑢) ≔ 𝐹 (𝐹𝑡,𝐹𝑢)

In practice, we will only be interested in powers where the left (resp. right)
arguments, or leaves, are all equal. This enables us to write the powers in a
more usual fashion, as in fig. 1.3a. Formally, these powers are what we call
sided binary trees.

3 This may be standard, but we could find no reference.
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DEF IN IT ION 1 .1 1. The set SBTree of sided binary trees (with leaves in the ter-
minal set 1) is inductively defined by

𝑡,𝑢,… ∋ SBTree ≔ lleaf | 𝑡′
𝑡′,𝑢′,… ∋ SBTree′ ≔ node(𝑡, rleaf) | node(𝑡, 𝑡′).

NOTAT ION 1 .12 (tree powers). Given a bifunctor 𝐹 ∶ 𝐂 × 𝐂 → 𝐂, a tree
𝑡 ∈ SBTree and objects 𝑋,𝑌 ∈ 𝐂, the notation 𝐹𝑡(𝑋,𝑌) is defined by

𝐹 lleaf(𝑋,𝑌) ≔ 𝑋
𝐹node(𝑡,rleaf)(𝑋,𝑌) ≔ 𝐹 (𝐹𝑡(𝑋,𝑌),𝑌)
𝐹node(𝑡,𝑢)(𝑋,𝑌) ≔ 𝐹 (𝐹𝑡(𝑋,𝑌),𝐹𝑢(𝑋,𝑌))

as well as the shorthand 𝐹𝑡𝑋 ≔ 𝐹𝑡(𝑋,𝑋). Similarly, we define

𝐹𝑡(𝑓, 𝑔) ∶ 𝐹𝑡(𝑋,𝑌) → 𝐹𝑡(𝑋 ′,𝑌 ′)

for arrows 𝑓 ∶ 𝑋 → 𝑋 ′ and 𝑔 ∶ 𝑌 → 𝑌 ′ in 𝐂.

We consider the canonical inclusion order ⊑ on binary trees. For trees in
BTree(𝐂), it is inductively generated by leaf(𝑋) ⊑ node(leaf(𝑌), leaf(𝑍)), for
all 𝑋,𝑌 ,𝑍 ∈ 𝐂. For trees in SBTree, this boils down to the two inclusions

lleaf ⊑ node(lleaf, rleaf) ⊑ node(lleaf, node(lleaf, rleaf)).

Consider a directed set 𝐼 ⊆ SBTree and a 𝐂-endofunctor 𝐹. Then given images
of the generators of ⊑, i.e. two generator arrows

𝑋 → 𝐹(𝑋,𝑌) → 𝐹(𝑋,𝐹(𝑋,𝑌)) (1.2)

in 𝐂, tree powers define an 𝐼-indexed directed diagram in 𝐂. Explicitely:

𝐼 → 𝐂
𝑡

𝑢

⊑ ↦
𝐹𝑡(𝑋,𝑌)

𝐹𝑢(𝑋,𝑌)

←→

When it exists (and assuming that the chosen generator arrows are clear from
the context), the corresponding colimit will be denoted by colim𝑡∈𝐼 𝐹𝑡(𝑋,𝑌).
We will essentially work in the following simple case: the ambient category is
𝐒𝐞𝐭 (or some other concrete category, like the category 𝐍𝐨𝐦 of nominal sets),
the generators are inclusions 𝑋 ↪ 𝐹(𝑋,𝑌) ↪ 𝐹(𝑋,𝐹(𝑋,𝑌)), and 𝐹 preserves
these inclusions: then all the arrows in the diagram are inclusions.

In particular, let us come back to our goal and try to express diag. (1.1) via
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the formalism we introduced. To do so, let us introduce the following useful
directed subsets of SBTree.

DEF IN IT ION 1 .13. For 𝑛 ∈ ℕ, the set SBTree𝜔,𝑛 of all sided binary trees with
right depth bounded by 𝑛 is defined by:

𝑡0,𝑢0,… ∋ SBTree𝜔,0 ≔ lleaf,
𝑡1,𝑢1,… ∋ SBTree𝜔,1 ≔ lleaf | node(𝑡1, rleaf),

𝑡𝑛+2,𝑢𝑛+2,… ∋ SBTree𝜔,𝑛+2 ≔ lleaf | node(𝑡𝑛+2, rleaf) |
node(𝑡𝑛+2,𝑢𝑛+1).

Observe that diag. (1.1) can be rewritten as the following chain:

𝐹 ∗ (0,𝑌) 𝐹
•
∗∗ (0,𝑌) 𝐹

•
∗•
∗∗ (0,𝑌) ⋯←→ ←→ ←→

This leads us to the following reformulation of Adámek’s fix-point theorem for
bifunctors.

COROLLARY 1 .14 (of theorem 1.5). Let 𝐹 be an 𝜔-cocontinuous bifunctor 𝐂 ×
𝐂 → 𝐂, then

µ𝑋.𝐹(𝑋,−) = colim
𝑡∈SBTree𝜔,1

𝐹𝑡(0,−).

1.2.4 Interlude: Another proof of the Diagonal identity

Once we are so far, there are only a few steps remaining in order to deduce the
Diagonal identity (lemma 1.9) directly from theorem 1.5 and its corollary 1.14.
The idea of this alternative proof is the following: we express µ𝑌.µ𝑋.𝐹(𝑋,𝑌)
and µ𝑍.𝐹(𝑍,𝑍) as colimits of diagrams indexed by some directed sets of binary
trees, and then we can only work on the index posets, i.e. on the particular case
of algebras of binary trees where, in particular, we can rely on observation 1.8.
Surprisingly, we could not find any reference for this proof, hence it seems to be
new (albeit not very surprising). Even though it does not have the same level
of genereality and abstraction as the proof presented on page 34, we believe
this approach is interesting because it relies on an explicit construction of the
fix-points via Adámek’s fix-point theorem (instead of the abstract application
of a universal property).

LEMMA 1 .15. SBTree = colim𝑛∈ℕ SBTree𝜔,𝑛.

PROOF. Let us introduce a slightly generalised version of definition 1.13:
given two sets 𝑋 and 𝑌 , SBTree𝜔,𝑛(𝑋,𝑌) is the set of sided binary trees with
right depth bounded by 𝑛, and left (resp. right) leaves in 𝑋 (resp. 𝑌 ). This
means that the constructors lleaf and rleaf take arguments (resp. in 𝑋 and in
𝑌 ); conversely, the sets SBTree𝜔,𝑛 from definition 1.13 are just SBTree𝜔,𝑛(1, 1).
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Observe that the algebra morphism

𝜙 ∶ SBTree → BTree
lleaf ↦ leaf

node(𝑡, rleaf) ↦ node(𝜙(𝑡), leaf)
node(𝑡, 𝑡′) ↦ node(𝜙(𝑡),𝜙(𝑡′))

is an isomorphism. Furthermore, it can be generalised to an isomorphism
BTree𝜔,1(1,𝑌) = SBTree𝜔,1(1,𝑌) for any set 𝑌 . Through this isomorphism,
observation 1.8 becomes

SBTree = µ𝑌.SBTree𝜔,1(1,𝑌)
= colim

𝑛∈ℕ
(SBTree𝜔,1(1,−))

𝑛 0 by theorem 1.5

= colim
𝑛∈ℕ

SBTree𝜔,𝑛(1, 0) by an easy induction

= colim
𝑛∈ℕ

SBTree𝜔,𝑛(1, 1) by shifting the index

= colim
𝑛∈ℕ

SBTree𝜔,𝑛. □

This leads us to the main proof.

PROOF OF LEMMA 1 .9. On one hand, applying theorem 1.5 to 𝐹Δ𝐂 we
obtain

µ𝑋.𝐹(𝑋,𝑋) = colim
𝑡∈CSBTree

𝐹𝑡0, (1.3)

where CSBTree ⊂ SBTree is the set of all complete sided binary trees, defined
by:

𝑡,𝑢,… ∋ CSBTree ≔ lleaf | node(lleaf, rleaf) | node(𝑡, 𝑡).

Writing colim𝑡∈CSBTree 𝐹𝑡0 implicitely involves the CSBTree-indexed diagram
generated by the unique arrows 0 → 𝐹(0, 0) → 𝐹(0,𝐹(0, 0)).

On the other hand, denote by 𝐺 the functor µ𝑋.𝐹(𝑋,−). By theorem 1.5,
µ𝑌.µ𝑋.𝐹(𝑋,𝑌) = µ𝑌.𝐺𝑌 = colim𝑛∈ℕ 𝐺𝑛0. Observe that for any 𝑛 ∈ ℕ,
𝐺𝑛0 = colim𝑡∈SBTree𝜔,𝑛 𝐹𝑡0. Indeed:

• 𝐺00 = 0 = 𝐹 lleaf0 = colim𝑡∈SBTree𝜔,0 𝐹𝑡0, and

• if 𝐺𝑛0 = colim𝑡∈SBTree𝜔,𝑛 𝐹𝑡0 then by corollary 1.14 and 𝜔-cocontinuity,

𝐺𝑛+10 = colim
𝑡∈SBTree𝜔,1

colim
𝑢∈SBTree𝜔,𝑛

𝐹𝑡(0,𝐹𝑢0) = colim
𝑡∈SBTree𝜔,𝑛+1

𝐹𝑡0.

Hence we obtain

µ𝑌.µ𝑋.𝐹(𝑋,𝑌) = colim
𝑛∈ℕ

colim
𝑡∈SBTree𝜔,𝑛+1

𝐹𝑡0 = colim
𝑡∈SBTree

𝐹𝑡0 (1.4)
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by lemma 1.15.

The injections corresponding to the colimits (1.3) and (1.4) are denoted by 𝑖𝑡 ∶
𝐹𝑡0 → colim𝑡∈CSBTree 𝐹𝑡0 and 𝑗𝑡 ∶ 𝐹𝑡0 → colim𝑡∈SBTree 𝐹𝑡0. Since CSBTree ⊂
SBTree, there is a unique 𝜙 such that for all 𝑡 ∈ CSBTree, the diagram:

µ𝑋.𝐹(𝑋,𝑋)

𝐹𝑡0

µ𝑌.µ𝑋.𝐹(𝑋,𝑌)

←
→ 𝜙

← →𝑖𝑡

←

→𝑗𝑡

(1.5)

commutes. However, observe that for all 𝑡 ∈ SBTree, there is a 𝑢 ∈ CSBTree
such that 𝑡 ⊑ 𝑢; hence, since the colimits are directed, 𝜙 is in fact an isomor-
phism.

To show that this isomorphism (in 𝐂) carries an isomorphism of 𝐹Δ𝐂-algebras,
we have to check that the diagram:

𝐹Δ(µ𝑋.𝐹(𝑋,𝑋)) 𝐹Δ(µ𝑌.µ𝑋.𝐹(𝑋,𝑌))

µ𝑋.𝐹(𝑋,𝑋) µ𝑌.µ𝑋.𝐹(𝑋,𝑌)

←→ 𝛼
←→𝐹Δ𝜙

←→ 𝛽

← →𝜙

(1.6)

commutes. Let us recall the construction of the arrows 𝛼 and 𝛽 carrying the
𝐹Δ𝐂-algebra structure of the algebras. We have:

𝐹Δ𝐂(µ𝑋.𝐹(𝑋,𝑋)) = 𝐹Δ𝐂 ( colim
𝑡∈CSBTree

𝐹𝑡0) = colim
𝑡∈CSBTree

𝐹Δ𝐂𝐹𝑡0 = colim
𝑡∈CSBTree

𝐹node(𝑡,𝑡)0

with the injections 𝐹Δ𝐂𝑖𝑡. Since { node(𝑡, 𝑡) | 𝑡 ∈ CSBTree } ⊂ CSBTree, there
is a cone

(𝐹node(𝑡,𝑡)0 µ𝑋.𝐹(𝑋,𝑋)← →
𝑖node(𝑡,𝑡) )

𝑡∈CSBTree
,

so there is a unique 𝛼 such that for all 𝑡 ∈ CSBTree,

𝑖node(𝑡,𝑡) = 𝛼 ∘ 𝐹Δ𝐂𝑖𝑡. (1.7)

Similarly there is a unique 𝛽 such that for all 𝑡 ∈ SBTree,

𝑗node(𝑡,𝑡) = 𝛽 ∘ 𝐹Δ𝐂𝑗𝑡. (1.8)

Now, on the diagonal of diag. (1.6), observe that { node(𝑡, 𝑡) | 𝑡 ∈ CSBTree } ⊂
SBTree so there is also a unique ℎ making the following diagram commute for
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all 𝑡 ∈ CSBTree:

𝐹Δ𝐂(µ𝑋.𝐹(𝑋,𝑋))

𝐹node(𝑡,𝑡)0

µ𝑌.µ𝑋.𝐹(𝑋,𝑌)

←

→ ℎ

← →𝐹Δ𝐂𝑖𝑡

←

→𝑗node(𝑡,𝑡)

However, we already have two such arrows:

𝜙 ∘ 𝛼 ∘ 𝐹Δ𝐂𝑖𝑡 = 𝜙 ∘ 𝑖node(𝑡,𝑡) by (1.7)
= 𝑗node(𝑡,𝑡) by (1.5)

𝛽 ∘ 𝐹Δ𝐂𝜙 ∘ 𝐹Δ𝐂𝑖𝑡 = 𝛽 ∘ 𝐹Δ𝑗𝑡 by (1.5)
= 𝑗node(𝑡,𝑡) by (1.8)

hence 𝜙 ∘ 𝛼 = 𝛽 ∘ 𝐹Δ𝐂𝜙, that is to say diag. (1.6) commutes and 𝜙 is an isomor-
phism of 𝐹Δ𝐂-algebras. □

1.2.5 Nested fix-points of polynomial 𝐒𝐞𝐭-endofunctors

What we are interested in are mixed inductive and coinductive structures: we
do not only want to consider least and greatest fix-points, but also ‘intermediate’
fix-points of the form ν𝑌.µ𝑋.𝐹(𝑋,𝑌). However, in general nothing ensures that
if 𝐹 is 𝜔-continuous then µ𝑋.𝐹(𝑋,−) still is: a priori, there is no reason why
ν𝑌.µ𝑋.𝐹(𝑋,𝑌) should exist. In this section, we study a very restricted setting
that will be enough to design mixed syntax. It relies on the following notion of
‘polynomial’ functor4.

LEMMA 1 .16. Let 𝐹 ∶ 𝐒𝐞𝐭 × 𝐒𝐞𝐭 → 𝐒𝐞𝐭 be a polynomial bifunctor in the
following sense: there exist

• a countable set 𝐼,

• a family { 𝑘𝑖 ∈ ℕ | 𝑖 ∈ 𝐼 },

• families {𝑚𝑖𝑗 ∈ ℕ || 𝑖 ∈ 𝐼, 1 ⩽ 𝑗 ⩽ 𝑘𝑖 } and { 𝑏𝑖𝑗 ∈ 𝟚 || 𝑖 ∈ 𝐼, 1 ⩽ 𝑗 ⩽ 𝑘𝑖 },

such that

𝐹 = 𝐾 +∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗

4 What we have in mind is the naive notion of polynomial, as considered for instance by
Adámek, Milius, and Moss (2018) or Métayer (2003). In particular, we do not refer to the
broader notion known under the name ‘polynomial functors’: it encompasses functors with
infinite powers, which prevents 𝜔-cocontinuity in general. See Kock (2009, § 1.7.3) for a
discussion.
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where𝜋0 and𝜋1 denote the projections,𝑀 ∶ 𝐒𝐞𝐭 → 𝐒𝐞𝐭 is a fixed𝜔-cocontinuous
functor, and 𝐾 is a fixed constant functor.
Then µ𝑋.𝐹(𝑋,−) can be obtained (up to isomorphism) from the following gram-
mar:

𝐺 ≔ id | 𝐾 | 𝑀𝐺 | ∐𝐺 | 𝐺 × 𝐺 (Γ1)

where∐ denotes at most countable coproducts.

PROOF. Thanks to corollary 1.14, µ𝑋.𝐹(𝑋,−) = colim𝑡∈SBTree𝜔,1 𝐹𝑡(0,−). Ob-
serve that for any 𝜔-chain (𝑋𝑛)𝑛∈ℕ there is an isomorphism colim𝑛∈ℕ 𝑋𝑛 =
∐𝑛∈ℕ (𝑋𝑛 −⋃𝑝<𝑛 𝑋𝑝). Since SBTree𝜔,1 is isomorphic to 𝜔, we can simplify
the expression:

µ𝑋.𝐹(𝑋,−) = ∐
𝑡∈SBTree𝜔,1

(𝐹node(𝑡,rleaf)(0,−) − 𝐹𝑡(0,−)) .

Let us show by induction on 𝑡 ∈ SBTree𝜔,1 that the terms of this coproduct can
be obtained from grammar (Γ1). For the base case,

𝐹node(lleaf,rleaf)(0,−) − 𝐹 lleaf(0,−) = (𝐾 +∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗 (0,−)) − 0

= 𝐾 +∐
𝑖∈𝐼

⎛
⎜
⎜
⎝

𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=0

0
⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑘𝑖
∏
𝑗=1
𝑏𝑖𝑗=1

𝑀𝑚𝑖𝑗 (−)
⎞
⎟
⎟
⎠

= 𝐾 + ∐
𝑖∈𝐼

∀𝑗, 𝑏𝑖𝑗=1

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗 (−).

For the inductive step, take 𝑡 = node(𝑢, rleaf), then

𝐹node(𝑡,rleaf)(0,−) − 𝐹𝑡(0,−)

= (𝐾 +∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗 (𝐹𝑡(0,−),−))

− (𝐾 +∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗 (𝐹𝑢(0,−),−))

=∐
𝑖∈𝐼

𝑘𝑖
∏
𝑗=1

𝑀𝑚𝑖𝑗𝜋𝑏𝑖𝑗 (𝐹node(𝑢,rleaf)(0,−) − 𝐹𝑢(0,−),−)

and we can conclude by induction. □

The following corollary is what we were seeking: it expresses the fact that for
a polynomial bifunctor 𝐹, the mixed fix-point ν𝑌.µ𝑋.𝐹(𝑋,𝑌) exists.
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COROLLARY 1 .17. Under the hypotheses of lemma 1.16, if𝑀 is 𝜔-continuous
then so is µ𝑋.𝐹(𝑋,−).

PROOF. By a straightforward induction, any functor obtained from gram-
mar (Γ1) is𝜔-continuous provided𝑀 is. Thus the result is a direct consequence
of lemma 1.16. □

Notice that functors arising from grammar (Γ1) enjoy crucial additional preser-
vation properties in the category of nominal sets (Kurz et al. 2013, prop. 5.6);
we will come back to this later on.

1.3 Mixed inductive-coinductive higher-order terms

It is time to start what is the goal of this chapter: use the category-theoretical
tools introduced until now in order to provide an abstract presentation of
‘mixed’ inductive-coinductive syntax — a notion that should become clear
within a few pages. We start by recalling the standard construction of higher-
order inductive and coinductive syntax. Then we describe the ‘mixed’ variant
of this setting that we use.

1.3.1 Finite and infinitary terms on a binding signature

The reader should be acquainted with first-order syntax: given a fixed set of
variables𝒱 and a set Σ of constructors together with an arity function ar ∶ Σ →
ℕ, first-order terms are inductively defined by

𝑡,𝑢,… ≔ 𝑥 ∈ 𝒱 | cons(𝑡1,… , 𝑡ar(cons)). (cons ∈ Σ)

For instance, the set BTree = µ𝑋.1+𝑋2 can be described as the set of first-order
terms on the signature {node} with ar(node) = 2 and 𝒱 = 1. In general, the set
of first-order terms on a signature Σ can be described as

µ𝑋.𝒱 + ∐
cons∈Σ

𝑋ar(cons).

Second-order syntax distinguishes two classes of variables (first- and second-
order ones), and the constructors may bind first-order variables in their sub-
terms. Similarly, in 𝑛th-order syntax the constructors bind variables of order
strictly lower than 𝑛. Finally, higher-order syntax is obtained by considering
constructors that bind any kind of variables. Formally, it can be presented as
follows. A binding signature (Plotkin 1990; Fiore, Plotkin, and Turi 1999) is a
set Σ of constructors together with an arity function ar ∶ Σ → ℕ∗ (the set of
finite sequences of integers). For any cons ∈ Σ,

• its arity (the number of its arguments) is given by the length of ar(cons),
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• the 𝑖th element of ar(cons) is the number of variables bound in the cor-
responding argument.

That is to say that higher-order terms of such a signature are inductively defined
by

𝑡,𝑢,… ≔ 𝑥 ∈ 𝒱 | cons( ̄𝑥1.𝑡1,… , ̄𝑥𝑘.𝑡𝑘) (cons ∈ Σ)

where ar(cons) = (𝑛1,… ,𝑛𝑘) and ̄𝑥𝑖 ∈ 𝒱𝑛𝑖 . The set of all higher-order terms
on a binding signature Σ can thus be described as

µ𝑋.𝒱 + ∐
cons∈Σ

ar(cons)=(𝑛1,…,𝑛𝑘)

𝑘
∏
𝑖=1

𝒱𝑛𝑖 × 𝑋.

Notice that the functor we consider is always𝜔-cocontinuous, since finite prod-
ucts commute with directed colimits in 𝐒𝐞𝐭; thus the existence of its initial al-
gebra is guaranteed by theorem 1.5.

DEF IN IT ION 1 .18. The set Λ of (finite) λ-terms is the set of higher-order terms
on the binding signatureΣ𝜆 ≔ {𝜆,@}with arities ar(𝜆) ≔ (1) and ar(@) ≔ (0, 0).
Explicitely, Λ ≔ µ𝑋.𝒱 + 𝒱 × 𝑋 + 𝑋2 and its elements are inductively defined by

Λ ∋ 𝑀,𝑁,… ≔ 𝒱 | 𝜆(𝑥.𝑀) | @(𝑀,𝑁).

Similarly, given a set 𝐶 of constants, the binding signature Σ𝜆𝐶 ≔ Σ𝜆 ∪ 𝐶, with
∀𝑐 ∈ 𝐶, ar(𝑐) ≔ (), defines the set Λ𝐶 ≔ µ𝑋.𝒱 + 𝐶 + 𝒱 × 𝑋 + 𝑋2 of λ𝐶-terms.
In particular, in the case where 𝐶 = {⊥} we obtain the set Λ⊥ of λ⊥-terms.

NOTAT ION 1 .19. We will denote 𝜆(𝑥.𝑀) by 𝜆𝑥.𝑀, and @(𝑀,𝑁) by (𝑀)𝑁 —
i.e. we use Krivine’s notation (Krivine 1990), instead of the more usual notation
(𝑀𝑁). This enables us to use the following practical shorthand:

(𝑀)𝑁1…𝑁𝑛 denotes (… ((𝑀)𝑁1)… )𝑁𝑛

and is, in general, an efficient way to represent λ-terms (for instance when one
wants to perform higher-order unification): the head𝑀 of the term is at top-level,
and is followed by a ‘flat’ sequence of arguments.

Regarding infinitary terms, there are two5 standard ways to construct them.

• The first way is by metric completion, e.g. for binary trees in BTree one
defines their truncation at depth 𝑑 ∈ ℕ to be the binary tree inductively

5 We leave aside the construction of infinitary terms via ideal completion, since it does not
exactly generate the infinitary terms we are considering (but adds a constant⊥ to the syntax).
However, we will mention it later on, see lemma 2.38.
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F IGURE 1 .4. The Arnold-Nivat distance between the two trees is 2−3.
Indeed, their greatest common truncature has depth 3, i.e. the smallest
depth at which they differ is 3.

defined by
⌊𝑡⌋0 ≔ leaf

⌊leaf⌋𝑑+1 ≔ leaf

⌊node(𝑡,𝑢)⌋𝑑+1 ≔ node(⌊𝑡⌋𝑑 , ⌊𝑢⌋𝑑),
(1.9)

which gives rise to the Arnold-Nivat metric defined by

𝕕(𝑡,𝑢) ≔ inf { 2−𝑑 || ⌊𝑡⌋𝑑 = ⌊𝑢⌋𝑑 } ,

i.e. 𝕕(𝑡,𝑢) = 2−(the smallest depth at which 𝑡 and 𝑢 differ) as illustrated in fig. 1.4.
The set of infinitary (finite or infinite) binary trees BTree∞ is the metric
completion of BTree with respect to𝕕, as originally proved by Arnold and
Nivat (1980).

• The second way is via coinduction: we could just take the definition

𝑡,𝑢,… ≔ 𝑥 ∈ 𝒱 | cons( ̄𝑥1.𝑡1,… , ̄𝑥𝑘.𝑡𝑘) (cons ∈ Σ)

coinductively, e.g. define BTree∞ to be the terminal coalgebra ν𝑋.1+𝑋2.

In fact these two methods define the same object, as implied by the following
fact.

THEOREM 1 .20 (Barr 1993, thm. 3.2. Let 𝐹 be an 𝜔-bicontinuous (i.e. both
𝜔-continuous and 𝜔-cocontinuous) endofunctor of 𝐒𝐞𝐭 such that 𝐹0 ≠ 0. Then
ν𝑋.𝐹𝑋 is the metric completion of µ𝑋.𝐹𝑋 for a natural metric, the completion
being carried by the canonical map 𝜄 ∶ µ𝑋.𝐹𝑋 → ν𝑋.𝐹𝑋 .

A closer look at the proof of the theorem shows that the metric we consider on
µ𝑋.𝐹𝑋 , namely

𝕕(𝑥, 𝑦) ≔ inf { 2−𝑑 || ⌊𝜄(𝑥)⌋𝑑 = ⌊𝜄(𝑦)⌋𝑑 } ,

where ⌊−⌋𝑑 is the projection ν𝑋.𝐹𝑋 = lim𝑛∈ℕ 𝐹𝑛1 → 𝐹𝑑1, coincides with the
Arnold-Nivat metric in the case of a functor arising from a signature.
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Therefore, in general we define the set of all infinitary terms on the binding
signature Σ to be

ν𝑋.𝒱 + ∐
cons∈Σ

ar(cons)=(𝑛1,…,𝑛𝑘)

𝑘
∏
𝑖=1

𝒱𝑛𝑖 × 𝑋.

(which exists since the functor we consider is 𝜔-continuous, because small co-
products commute with connected limits in 𝐒𝐞𝐭), and this set comes equipped
with a metric completion structure thanks to theorem 1.20.

1.3.2 Finite and infinitary terms on a mixed binding signature

What if, given a signature, we want only some arguments of each constructor
to be treated coinductively? This means that we would put a restriction on the
infinite branches that may appear in the syntactic trees of the terms we are
building.

Let us first come back to the example of the set of binary trees, BTree = µ𝑋.1+
𝑋2. Instead of completing it to the set of infinitary binary trees, let us restrict
the completion to its subset of right-infinitary binary trees, i.e. infinitary binary
trees in which every infinite branch contains infinitely many right edges. The
construction of Arnold-Nivat metric must be adapted to use a notion of ‘depth’
that only increases when we cross a right edge in the tree. We call it ‘right depth’,
and we obtain 𝕕(𝑡,𝑢) = 2−(the smallest right depth at which 𝑡 and 𝑢 differ), as illustrated in
fig. 1.5. Formally, eq. (1.9) defining the truncation should be replaced with:

⌊𝑡⌋0 ≔ leaf

⌊leaf⌋𝑑+1 ≔ leaf

⌊node(𝑡,𝑢)⌋𝑑+1 ≔ node(⌊𝑡⌋𝑑+1 , ⌊𝑢⌋𝑑).

The set of right-infinitary binary trees can thus be defined as the metric com-
pletion of BTree with respect to this variant of the Arnold-Nivat metric.

However, notice that BTree = µ𝑌.µ𝑋.1+𝑋×𝑌 by observation 1.8, and that the
right truncations are defined as arrows ⌊−⌋𝑑 ∶ BTree → (µ𝑋.1 + 𝑋 × −)𝑑1. By
theorem 1.20, this observation can be turned into a proof that the set of right-
infinitary binary trees is also the terminal coalgebra ν𝑌.µ𝑋.1 + 𝑋 × 𝑌 (whose
existence is guaranteed by corollary 1.17).

This motivating example illustrates the remainder of this section, where we de-
fine mixed inductive-coinductive higher-order terms as a nested fix-point. Our
framework relies on the following extension of the notion of binding signature.

DEF IN IT ION 1 .2 1. A mixed binding signature (mbs) is a couple (Σ, ar) where
Σ is a countable set of constructors, and ar ∶ Σ → (ℕ × 𝟚)∗ is an arity function.
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F IGURE 1 .5. The right Arnold-Nivat distance between the two trees
is 2−1. Indeed, their greatest common right truncature has right depth 1,
i.e. the smallest right depth at which they differ is 1.

A mbs is just a binding signature where each argument of each constructor
is marked with an additional boolean describing its (co)inductive behaviour.
This intuition is driving the following definitions, that allow to define terms on
a mbs.

DEF IN IT ION 1 .22. The term functor associated to (Σ, ar) is the bifunctor ℱΣ ∶
𝐒𝐞𝐭 × 𝐒𝐞𝐭 → 𝐒𝐞𝐭 defined by:

ℱΣ(𝑋,𝑌) ≔ 𝒱 + ∐
cons∈Σ

ar(cons)=((𝑛1,𝑏1),…,(𝑛𝑘,𝑏𝑘))

𝑘
∏
𝑖=1

𝒱𝑛𝑖 × 𝜋𝑏𝑖 (𝑋,𝑌).

Observe that ℱΣ is a polynomial bifunctor: with the notations of lemma 1.16,
𝐾 = 𝒱 and 𝑀 = 𝒱 ×−. The latter is 𝜔-continuous, hence by corollary 1.17 we
can safely write the following definition.

DEF IN IT ION 1 .23. The sets𝒯Σ of raw finite terms and𝒯∞
Σ of raw mixed terms

on (Σ, ar) are defined by:

𝒯Σ ≔ µ𝑍.ℱΣ(𝑍,𝑍) 𝒯∞
Σ ≔ ν𝑌.µ𝑋.ℱΣ(𝑋,𝑌).

These terms are called ‘raw’ to indicate that, at this point, they are not consid-
ered up-to α-equivalence.

NOTAT ION 1 .24. We can describe 𝒯∞
Σ by the following (mixed) formal system

of derivation rules:

𝑥 ∈ 𝒱 (ax)
𝑥 ∈ 𝒯∞

Σ

𝑡 ∈ 𝒯∞
Σ (▹0)▹0 𝑡 ∈ 𝒯∞
Σ

𝑡 ∈ 𝒯∞
Σ (▹1)▹1 𝑡 ∈ 𝒯∞
Σ
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̄𝑥1 ∈ 𝒱𝑛1 … ̄𝑥𝑘 ∈ 𝒱𝑛𝑘 ▹𝑏1 𝑡1 ∈ 𝒯∞
Σ … ▹𝑏𝑘 𝑡𝑘 ∈ 𝒯∞

Σ
(cons)

cons (⟨ ̄𝑥1⟩𝑡1,… , ⟨ ̄𝑥𝑘⟩𝑡𝑘) ∈ 𝒯∞
Σ

for each cons ∈ Σ, having ar(cons) = ((𝑛1, 𝑏1),… , (𝑛𝑘, 𝑏𝑘))

where the double bar in (▹1) expresses that the rule is treated coinductively (and
all the simple bars denote inductive rules).

We use the symbols ▹0 and ▹1 to distinguish between the inductive and coin-
ductive calls. ▹1 is usually called the later modality (Nakano 2000; Appel et al.
2007); a derivation of ▹1 𝑃 is a derivation of 𝑃 under an additional coinductive
guard. The modality ▹0 could be omitted, but we write it to keep the notations
symmetric.

In particular, just as defining finite λ-terms was the typical use of binding sig-
natures, we use the previous definitions to construct the different variants of
infinitary λ-terms.

DEF IN IT ION 1 .25. For 𝑎, 𝑏, 𝑐 ∈ 𝟚, the set Σ𝜆 (from definition 1.18) together
with the map ar𝑎𝑏𝑐) defined by:

ar𝑎𝑏𝑐(𝜆) ≔ ((1, 𝑎)) ar𝑎𝑏𝑐(@) ≔ ((0, 𝑏), (0, 𝑐))

define a mbs. The setΛ𝑎𝑏𝑐 of 𝑎𝑏𝑐-infinitary λ-terms is defined to be the coalgebra
𝒯∞
𝜆𝑎𝑏𝑐 of raw mixed terms on (Σ𝜆, ar𝑎𝑏𝑐).
As in definition 1.18, given a set 𝐶 of constants, we define the set Λ𝑎𝑏𝑐

𝐶 of 𝑎𝑏𝑐-
infinitary λ𝐶-terms. In the particular case where 𝐶 = {⊥}, this defines the set
Λ𝑎𝑏𝑐
⊥ of 𝑎𝑏𝑐-infinitary λ⊥-terms.

Conversely, the set 𝒯𝜆𝑎𝑏𝑐 of all finite terms on the mbs (Σ𝜆, ar𝑎𝑏𝑐) is just Λ, for
any 𝑎, 𝑏, 𝑐 ∈ 𝟚. Adapting notation 1.24, the terms in Λ𝑎𝑏𝑐 are defined by the
following system of derivation rules:

𝑥 ∈ 𝒱 (ax)
𝑥 ∈ Λ𝑎𝑏𝑐

𝑥 ∈ 𝒱 ▹𝑎 𝑃 ∈ Λ𝑎𝑏𝑐
(λ)

𝜆𝑥.𝑃 ∈ Λ𝑎𝑏𝑐

▹𝑏 𝑃 ∈ Λ𝑎𝑏𝑐 ▹𝑐 𝑄 ∈ Λ𝑎𝑏𝑐
(@)

(𝑃)𝑄 ∈ Λ𝑎𝑏𝑐

together with the rules (▹0) and (▹1). Notice thatΛ000 = ΛwhereasΛ111 is the
‘full’ coalgebra ν𝑍.𝒱 + 𝒱 × 𝑍 + 𝑍2.

Figure 1.1 presents examples of infinitary λ-terms living in different sets Λ𝑎𝑏𝑐.
Let us add the following example, which introduces a useful notation.
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EXAMPLE 1 .26. For any 𝑎, 𝑏 ∈ 𝟚, let𝑀 ∈ Λ𝑎𝑏1 be any 𝑎𝑏1-infinitary λ-term.
Then the term (𝑀)𝜔 = (𝑀)(𝑀)𝜔 = (𝑀)(𝑀)(𝑀)… is defined by the derivation6

𝑀 ∈ Λ𝑎𝑏1
(▹𝑏)

▹𝑏 𝑀 ∈ Λ𝑎𝑏1
(𝑀)𝜔 ∈ Λ𝑎𝑏1

(▹1)
▹1 (𝑀)𝜔 ∈ Λ𝑎𝑏1

(@)
(𝑀)𝜔 = (𝑀)(𝑀)𝜔 ∈ Λ𝑎𝑏1

where the loop is valid because it crosses a coinductive rule.

Let (Σ, ar) be a mbs. Observe that 𝒯Σ = µ𝑌.µ𝑋.ℱΣ(𝑋,𝑌) by lemma 1.9, hence
there is a canonical map 𝜄 ∶ 𝒯Σ → 𝒯∞

Σ . In fact, one can show that it is even an
inclusion. Theorem 1.20 states that it carries a metric completion: let us make
this explicit.

DEF IN IT ION 1 .27. Given an integer 𝑑 ∈ ℕ, the mixed truncation at depth 𝑑
is the map ⌊−⌋𝑑 ∶ 𝒯∞

Σ → (µ𝑋.ℱΣ(𝑋,−))𝑑1 carrying the limit structure of 𝒯∞
Σ .

Explicitely, it is defined by induction by:

⌊𝑡⌋0 ≔ ∗
⌊𝑥⌋𝑛+1 ≔ 𝑥

⌊cons (⟨ ̄𝑥1⟩𝑡1,… , ⟨ ̄𝑥𝑘⟩𝑡𝑘)⌋𝑛+1 ≔ cons (⟨ ̄𝑥1⟩ ⌊𝑡1⌋𝑛+1−𝑏1 ,… , ⟨ ̄𝑥𝑘⟩ ⌊𝑡𝑘⌋𝑛+1−𝑏𝑘)

where 𝑏𝑖 = 𝜋1 ar(cons)𝑖 is the boolean describing the (co)inductive behaviour
of the 𝑖th argument of cons. This definition also holds for 𝑡 ∈ 𝒯Σ, through the
inclusion 𝜄.

The definition is by double induction, on 𝑑 and on 𝑡 (even if the latter is taken
in 𝒯∞

Σ ): in the inductive arguments of cons we proceed by induction on 𝑡, in
its coinductive arguments we proceed by induction on 𝑑.

Notice that truncations, though being elements of (µ𝑋.ℱΣ(𝑋,−))𝑑1 for some
𝑑 ∈ ℕ, can be seen as terms with an additional constant through the isomor-
phism

⋃
𝑑∈ℕ

(µ𝑋.ℱΣ(𝑋,−))𝑑1 = 𝒯Σ∪1. (1.10)

Thus all the notations defined on finite terms will be implicitely extended to
truncations.

6 We write dashed double rules to indicate that the rule is either inductive or coinductive, de-
pending on the value of the corresponding boolean: here it is the inductive rule (▹0) if 𝑏 = 0,
and the coinductive rule (▹1) if 𝑏 = 1.
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DEF IN IT ION 1 .28. The Arnold-Nivat metric on 𝒯∞
Σ is the mapping 𝕕 ∶ 𝒯∞

Σ ×
𝒯∞
Σ → ℝ+ defined by

𝕕(𝑡,𝑢) ≔ inf { 2−𝑑 || ⌊𝑡⌋𝑑 = ⌊𝑢⌋𝑑 } .

This definition also holds for 𝑡,𝑢 ∈ 𝒯Σ with 𝕕(𝑡,𝑢) ≔ 𝕕(𝜄(𝑡), 𝜄(𝑢)).

COROLLARY 1 .29 (of theorem 1.20). 𝒯∞
Σ is the metric completion of 𝒯Σ with

respect to 𝕕.

In particular, the eight Arnold-Nivat metrics 𝕕𝑎𝑏𝑐 corresponding to the signa-
tures from definition 1.25 are exactly those considered in the original definition
of infinitary λ-calculi by Kennaway, Klop, et al. (1997). Hence our coinductive
definition of Λ𝑎𝑏𝑐 coincides with the historical, topological presentation.

Finally, given a mbs (Σ, ⋅), let us formally define two well-known notions.

DEF IN IT ION 1 .30. Given a term 𝑡 ∈ 𝒯Σ, the sets bv(𝑡) and fv(𝑡) of all bound
(resp. free) variables in 𝑡 are defined by induction by:

bv(𝑥) ≔ ∅ bv(cons( ̄𝑥1𝑡1,… , ̄𝑥𝑘𝑡𝑘)) ≔
𝑘

⋃
𝑖=1

bv(𝑡𝑖) ∪
𝑘

⋃
𝑖=1

̄𝑥𝑖

fv(𝑥) ≔ {𝑥} fv(cons( ̄𝑥1𝑡1,… , ̄𝑥𝑘𝑡𝑘)) ≔
𝑘

⋃
𝑖=1

fv(𝑡𝑖) −
𝑘

⋃
𝑖=1

̄𝑥𝑖.

This definition is extended to terms 𝑡 ∈ 𝒯∞
Σ by

bv(𝑀) ≔ ⋃
𝑑∈ℕ

bv(⌊𝑀⌋𝑑) fv(𝑀) ≔ ⋃
𝑑∈ℕ

fv(⌊𝑀⌋𝑑) (1.11)

with the convention that bv(∗) = fv(∗) = ∅.

Observe that, though it is not clear that definition 1.30 can be directly turned
into a coinductive definition for infinitary terms, its extension to 𝑡 ∈ 𝒯∞

Σ is an
immediate consequence of eq. (1.11).

1.4 α-equivalence for mixed terms

Our goal is to construct a calculus along a standard path, defining β-reduction
by:

(𝜆𝑥.𝑀)𝑁 ⟶𝛽 𝑀[𝑁/𝑥]

where𝑀[𝑁/𝑥] denotes the term obtained by substituting𝑁 to each occurrence
of 𝑥 in 𝑀. Let us first define this substitution naïvely: Given terms 𝑀,𝑁 and a



50 1. mixed inductive- coinductive higher- order terms

variable 𝑥, the (capturing) substitution 𝑀[𝑁/𝑥] is defined by:

𝑥[𝑁/𝑥] ≔ 𝑁
𝑦[𝑁/𝑥] ≔ 𝑦 for 𝑦 ≠ 𝑥

(𝜆𝑦.𝑃)[𝑁/𝑥] ≔ 𝜆𝑦.𝑃[𝑁/𝑥]
((𝑃)𝑄)[𝑁/𝑥] ≔ (𝑃[𝑁/𝑥])𝑄[𝑁/𝑥].

The definition is by nested induction and coinduction, depending on the ambi-
ent set of λ-terms. It is well-known that it raises issues. If we take 𝑀 ≔ 𝜆𝑥.𝑥
and 𝑁 ≔ 𝑦, we obtain

(𝜆𝑥.𝑥)[𝑦/𝑥] = 𝜆𝑥.𝑦

and the binding carried by the 𝜆 is lost: instead, we would want only the free
occurrence of 𝑥 in 𝑀 to be substituted. Similarly, if we take 𝑀 ≔ 𝜆𝑦.𝑥 and
𝑁 ≔ 𝑦, we obtain

(𝜆𝑦.𝑥)[𝑦/𝑥] = 𝜆𝑦.𝑦

and some binding is ‘added’ to the 𝜆: instead, we would want that the free 𝑦 in
𝑁 remains free once substituted in 𝑀. Usually, one adds a requirement in the
third line of the definition:

(𝜆𝑦.𝑃)[𝑁/𝑥] ≔ 𝜆𝑦.𝑃[𝑁/𝑥] for 𝑦 ∉ fv(𝑁) and 𝑦 ≠ 𝑥.

Unfortunately, this only defines a partial substitution function Λ×Λ×𝒱 → Λ
(and similarly for infinitary term coalgebras).
This (very common) problem is usually addressed by defining α-equivalence7,
i.e. the equivalence relation =𝛼 generated by renaming bound variables; then
one shows: that substitution can be lifted to α-equivalence classes, i.e. if 𝑀 =𝛼
𝑀′ then𝑀[𝑁/𝑥] =𝛼 𝑀′[𝑁/𝑥] (whenever they are defined); and that this lifting
is total. This allows to consider terms up to α-equivalence and to adopt Baren-
dregt’s variable convention (Barendregt 1984, § 2.1.13): all the representatives
of α-equivalence classes are taken such that their free and bound variables form
disjoint sets. Finally, one can write:

(𝜆𝑥.𝑥)[𝑦/𝑥] =𝛼 (𝜆𝑧.𝑧)[𝑦/𝑥] = 𝜆𝑧.𝑧
(𝜆𝑦.𝑥)[𝑦/𝑥] =𝛼 (𝜆𝑧.𝑥)[𝑦/𝑥] = 𝜆𝑧.𝑦.

What we present next is an abstract refinement of this method using the formal-
ism of nominal sets introduced by Gabbay and Pitts (2002). This section mostly
follows the structure of Kurz et al. (2013), who design a nominal framework for
infinitary higher-order syntax; our contribution — presented as a modest ‘fan-
7 Let us also mention the alternative of using de Bruijn indices, i.e. replacing bound variables

with integers describing their order (de Bruijn 1972). For instance 𝜆𝑦.𝜆𝑥.((𝑦)𝑧)𝑥 is denoted
by𝜆.𝜆.((1)𝑧)0. This is often chosen as an efficient solution when one wants to implement the
λ-calculus; for implementations of infinitary λ-calculi (in Coq), see Endrullis and Polonsky
(2013) and Czajka (2020).
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fiction’ in the published abstract of this work (Cerda 2024) — is an adaption of
their work to an inductive-coinductive setting.

1.4.1 Preliminaries on nominal sets

Let us first recall a few basic definitions and properties about nominal sets. We
take our notations from the excellent summary in Kurz et al. (2013, Sec. 4), and
we refer to Pitts (2013) and Petrişan (2011) for further details and examples.
Fix a set𝒱 of variables8, or names. We denote by𝔖fs(𝒱) the group of the permu-
tations of 𝒱 that are generated by transpositions (𝑎 𝑎′), i.e. of the permutations
𝜎 such that { 𝑥 ∈ 𝒱 | 𝜎(𝑥) ≠ 𝑥 } is finite.

DEF IN IT ION 1 .3 1. Given a set 𝐴 equipped with a 𝔖fs(𝒱)-action ⋅, an element
𝑎 ∈ 𝐴 is supported by a set 𝑆 ⊂ 𝒱 whenever

∀𝜎 ∈ 𝔖fs(𝒱), (∀𝑥 ∈ 𝑆, 𝜎(𝑥) = 𝑥) ⇒ 𝜎 ⋅ 𝑎 = 𝑎.

It is finitely supported if it is supported by a finite set, in which case there is a least
finite set supporting 𝑎 (Gabbay and Pitts 2002, prop. 3.4). We call it the support
of 𝑎, an we denote it by supp(𝑎).

Intuitively, variables in supp(𝑎) are ‘free in 𝑎’: a permutation of the variables
changes 𝑎 iff it changes at least a variable of its support.

DEF IN IT ION 1 .32. A nominal set (𝐴, ⋅) is a set 𝐴 equipped with a 𝔖fs(𝒱)-
action ⋅ such that each 𝑎 ∈ 𝐴 is finitely supported. Nominal sets together with
𝔖fs(𝒱)-equivariant maps, i.e. maps 𝑓 ∶ 𝐴 → 𝐵 such that

∀𝜎 ∈ 𝔖fs(𝒱), ∀𝑎 ∈ 𝐴, 𝑓(𝜎 ⋅ 𝑎) = 𝜎 ⋅ 𝑓(𝑎),

form a category𝐍𝐨𝐦.

When there is no ambiguity, we denote a nominal set (𝐴, ⋅) as its carrier set 𝐴.

NOTAT ION 1 .33. For any set𝐴 equipped with a𝔖fs(𝒱)-action ⋅,𝐴fs denotes the
nominal set of all finitely supported elements of 𝐴.

Notice that𝔖fs(𝒱) is indeed the set of finitely supported permutations in𝔖(𝒱),
for the conjugation action 𝜎 ⋅ 𝜏 ≔ 𝜎𝜏𝜎−1.

LEMMA 1 .34. The category𝐍𝐨𝐦 is both complete and cocomplete. In addition,
the forgetful functor𝑈 ∶ 𝐍𝐨𝐦 → 𝐒𝐞𝐭 creates all colimits and finite limits. As for
arbitrary limits in 𝐍𝐨𝐦, they are computed from limits in 𝐒𝐞𝐭 by the following
restriction:

lim
𝑖∈𝐉

(𝐴𝑖, ⋅𝑖) = ((lim
𝑖∈𝐉

𝐴𝑖)
fs
, ⋅)

8 So far, we do not precise the cardinality of 𝒱. In all what follows, 𝒱 may be countable or
uncountable, if not specified.
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where the𝔖fs(𝒱)-action ⋅ on the limit is built pointwise from the actions ⋅𝑖.

The main elements of a proof are given by Petrişan (2011, § 2.2). Together with
theorem 1.5, we obtain the following result.

COROLLARY 1 .35. Given an 𝜔-cocontinuous 𝐍𝐨𝐦-endofunctor 𝐹, its initial
algebra µ𝑋.𝐹𝑋 is carried by the set µ𝑋.𝑈𝐹𝑋 .
Given an𝜔-continuous𝐍𝐨𝐦-endofunctor 𝐹, its terminal coalgebra ν𝑋.𝐹𝑋 is car-
ried by the set (ν𝑋.𝑈𝐹𝑋)fs.

Using the notion of support in a nominal set, we can give a precise meaning to
the notion of ‘fresh variable’. We introduce two useful notations from Gabbay
and Pitts (2002, def. 4.4), to which we refer for a careful definition.

NOTAT ION 1 .36. In a nominal set (𝐴, ⋅), given 𝑥 ∈ 𝒱 an 𝑎 ∈ 𝐴 we say that 𝑥
is fresh in 𝑎 whenever 𝑥 ∉ supp(𝑎), and we write 𝑥 # 𝑎.
Given a formula 𝜙, the formula

∃𝑥 ∈ 𝒱, (
𝑛

⋀
𝑖=1

𝑥 # 𝑎𝑖) ∧ 𝜙(𝑥, 𝑎1,… , 𝑎𝑛)

is denoted by N𝑥, 𝜙(𝑥, 𝑎1,… , 𝑎𝑛). The quantifier N𝑥 can be read ‘there is a fresh
𝑥 such that’. In particular, 𝑥 # 𝑎 ⇔ N𝑦, (𝑥 𝑦) ⋅ 𝑎 = 𝑎.

The key object in all what follows is the ‘abstraction’ functor defined as follows.
Fix a nominal set (𝐴, ⋅). 𝒱 × 𝐴 is equipped with an equivalence relation ∼𝛼
defined by

(𝑥, 𝑎) ∼𝛼 (𝑥′, 𝑎′) whenever N𝑦, (𝑥 𝑦) ⋅ 𝑎 = (𝑥′ 𝑦) ⋅ 𝑎′.

The intuition behind ∼𝛼 is that it equates elements of 𝐴 modulo renaming of
free occurrences of a single given variable.

NOTAT ION 1 .37. We denote by ⟨𝑥⟩𝑎 the class of (𝑥, 𝑎)modulo ∼𝛼.

One can define a𝔖fs(𝒱)-action on such classes by 𝜎⋅⟨𝑥⟩𝑎 ≔ ⟨𝜎(𝑥)⟩(𝜎⋅𝑎), which
leads us to the following definition.

DEF IN IT ION 1 .38. The abstraction functor is defined by

[𝒱]− ∶ 𝐍𝐨𝐦 → 𝐍𝐨𝐦
𝐴 ↦ (𝒱 × 𝐴)/∼𝛼
𝑓 ↦ ⟨𝑥⟩𝑎 ↦ ⟨𝑥⟩𝑓(𝑎)

Pitts (2013, thm. 4.12 and 4.13) provides left and right adjoints to [𝒱]−, hence
the following result.

LEMMA 1 .39. The abstraction functor is both continuous and cocontinuous.
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Finally, let us describe the reverse construction.

DEF IN IT ION 1 .40. Given ⟨𝑥⟩𝑎 ∈ [𝒱]𝐴 and 𝑦 # ⟨𝑥⟩𝑎, the concretion of ⟨𝑥⟩𝑎 at
𝑦 is defined by ⟨𝑥⟩𝑎@𝑦 ≔ (𝑥 𝑦) ⋅ 𝑎.

In particular, for any ⟨𝑥⟩𝑎 ∈ [𝒱]𝐴 we can write N𝑦, ⟨𝑦⟩ (⟨𝑥⟩𝑎@𝑦) = ⟨𝑥⟩𝑎.

1.4.2 Nominal algebraic types: α-equivalence for finite terms

Let us recall the main results from Gabbay and Pitts (2002), where a nominal
account of α-equivalence on finite terms is given. From now on, we fix a mbs
(Σ, ar).
First, observe that the finite term algebra 𝒯Σ can be endowed with a 𝔖fs(𝒱)-
action ⋅ inductively defined by:

𝜎 ⋅ 𝑥 ≔ 𝜎(𝑥)
𝜎 ⋅ cons ( ̄𝑥1.𝑡1,…) ≔ cons (𝜎( ̄𝑥1).𝜎 ⋅ 𝑡1,…) , (1.12)

where permutations act pointwise on the sequences ̄𝑥𝑖.

LEMMA 1 .41. (𝒯Σ, ⋅) is a nominal set, with

∀𝑡 ∈ 𝒯Σ, supp(𝑡) = fv(𝑡) ∪ bv(𝑡).

PROOF. For any term 𝑡 ∈ 𝒯Σ, observe that 𝜎⋅𝑡 = 𝑡 iff ∀𝑥 ∈ fv(𝑡)∪bv(𝑡), 𝜎(𝑥) =
𝑥, hence the result. □

DEF IN IT ION 1 .42. The binary relation=𝛼 ofα-equivalence on𝒯Σ is inductively
defined by:

𝑥 =𝛼 𝑥
[ N̄𝑧, ( ̄𝑥𝑖 ̄𝑧) ⋅ 𝑡𝑖 =𝛼 ( ̄𝑦𝑖 ̄𝑧) ⋅ 𝑢𝑖]

𝑘
𝑖=1

cons ( ̄𝑥1.𝑡1,…) =𝛼 cons ( ̄𝑦1.𝑢1,…)

where ̄𝑧 implicitely has the length of ̄𝑥𝑖 and ( ̄𝑥𝑖 ̄𝑧) denotes the composition of the
transpositions (𝑥𝑖𝑗 𝑧𝑗).

For instance, α-equivalence on finite λ-terms is inductively defined as follows:

𝑥 =𝛼 𝑥
N𝑧, (𝑥 𝑧) ⋅ 𝑡 =𝛼 (𝑦 𝑧) ⋅ 𝑢
𝜆(𝑥.𝑡) =𝛼 𝜆(𝑦.𝑢)

𝑡1 =𝛼 𝑢1 𝑡2 =𝛼 𝑢2
@(𝑡1, 𝑡2) =𝛼 @(𝑢1,𝑢2)

This is indeed equivalent to the usual definition of α-equivalence, as underlined
by Gabbay and Pitts (ibid., prop. 2.2).
The α-equivalence relation is compatible with ⋅, thus there is an induced nom-
inal structure on the quotient set 𝒯Σ/=𝛼.
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LEMMA 1 .43. (𝒯Σ/=𝛼, ⋅) is a nominal set, with

∀[𝑡]𝛼 ∈ 𝒯Σ/=𝛼, supp([𝑡]𝛼) = fv(𝑡).

In definition 1.22, we defined the term functorℱΣ to be a bifunctor 𝐒𝐞𝐭×𝐒𝐞𝐭 →
𝐒𝐞𝐭. We use the same notation to denote the bifunctor 𝐍𝐨𝐦 × 𝐍𝐨𝐦 → 𝐍𝐨𝐦
defined by the same expression. We also define the following functor from
(Σ, ar).

DEF IN IT ION 1 .44. The quotient term functor associated to (Σ, ar) is the bi-
functor 𝒬Σ ∶ 𝐍𝐨𝐦 ×𝐍𝐨𝐦 → 𝐍𝐨𝐦 defined by:

𝒬Σ(𝑋,𝑌) ≔ 𝒱 + ∐
cons∈Σ

ar(cons)=((𝑛1,𝑏1),…,(𝑛𝑘,𝑏𝑘))

𝑘
∏
𝑖=1

[𝒱]𝑛𝑖𝜋𝑏𝑖 (𝑋,𝑌).

The only difference with ℱΣ is that 𝒱 × − is replaced with [𝒱]− in the defi-
nition of 𝒬Σ. The key theorem in Gabbay and Pitts (2002, thm. 6.2) uses this
functor to provide a description of the quotient 𝒯Σ/=𝛼 directly as an initial al-
gebra in 𝐍𝐨𝐦.

THEOREM 1 .45 (nominal algebraic types on a Mbs). Given a mbs (Σ, ar), the
following identities hold in𝐍𝐨𝐦:

𝒯Σ = µ𝑍.ℱΣ(𝑍,𝑍) 𝒯Σ/=𝛼 = µ𝑍.𝒬Σ(𝑍,𝑍).

PROOF. The first identity might seem tautologic because of the overloaded
notation ℱΣ; if we distinguish between ℱ𝐒𝐞𝐭

Σ and ℱ𝐍𝐨𝐦
Σ it becomes

(µ𝑍.ℱ𝐒𝐞𝐭
Σ (𝑍,𝑍)⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝒯Σ

, ⋅) = µ𝑍.ℱ𝐍𝐨𝐦
Σ (𝑍,𝑍),

which follows from corollary 1.35.

For the second identity, see Pitts (2013, thm. 8.15). □

In particular, Λ/=𝛼 can be directly defined as the initial algebra µ𝑍.𝒱 + [𝒱]𝑍 +
𝑍2, which guarantees that recursive definitions on Λ/=𝛼 are correct (under
equivariance and freshness conditions, see ibid., thm. 8.17).
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1.4.3 The trouble with infinitary terms

For now, we have built the following diagram (in 𝐒𝐞𝐭):

𝑈(µ𝑍.ℱΣ(𝑍,𝑍))
µ𝑍.ℱΣ(𝑍,𝑍)

𝒯Σ
ν𝑌.µ𝑋.ℱΣ(𝑋,𝑌)

𝒯∞
Σ

𝒯Σ/=𝛼
𝑈(µ𝑍.𝒬Σ(𝑍,𝑍))

↩ →

←↠ (1.13)

The sets are annotated with their descriptions as (co)algebras in 𝐒𝐞𝐭 and
in 𝐍𝐨𝐦 (through the forgetful functor 𝑈 ∶ 𝐍𝐨𝐦 → 𝐒𝐞𝐭). The horizontal
arrow is the metric completion given by corollary 1.29, and the vertical
surjection is the quotient by α-equivalence given by theorem 1.45.
Our goal is to close the square with an object containing α-equivalence classes
of mixed terms; we hope to obtain a nominal presentation of this object. To do
so, we keep adapting the definitions of Kurz et al. (2013) to our mixed setting.
Let us start from the top right corner of diag. (1.13). 𝒯∞

Σ can be equipped with a
𝔖fs(𝒱)-action in the same way as we did in eq. (1.12) for 𝒯Σ, by just making the
definition coinductive; however this does not define a nominal set any more
since some infinitary terms are not finitely supported (recall from lemma 1.41
that the support of a term is the set of the variables occurring in it). As a conse-
quence, we cannot directly use a nominal set structure to extend the definition
of α-equivalence to 𝒯∞

Σ . Instead, we lift the α-equivalence of 𝒯Σ by using the
truncations.

DEF IN IT ION 1 .46. The binary relation =𝛼 of α-equivalence on 𝒯∞
Σ is defined

by saying that two terms 𝑡,𝑢 ∈ 𝒯∞
Σ are α-equivalent whenever ∀𝑑 ∈ ℕ, ⌊𝑡⌋𝑑 =𝛼

⌊𝑢⌋𝑑.

Notice that α-equivalence is defined on truncations via the implicit isomor-
phism from eq. (1.10).
Now, have a look at the bottom left corner of diag. (1.13). We also adapt the
definition 1.28 of the Arnold-Nivat metric as follows.

LEMMA 1 .47. The map 𝕕𝛼 ∶ 𝒯Σ/=𝛼 × 𝒯Σ/=𝛼 → ℝ+ defined by

𝕕𝛼([𝑡]𝛼, [𝑢]𝛼) ≔ inf { 2−𝑑 || ⌊𝑡⌋𝑑 =𝛼 ⌊𝑢⌋𝑑 }

is a metric on 𝒯Σ/=𝛼.

PROOF. 𝕕𝛼 is well-defined because whenever 𝑡 =𝛼 𝑡′, ⌊𝑡⌋𝑑 =𝛼 ⌊𝑡′⌋𝑑, hence the
definition does not depend on the choice of the representatives 𝑡 and 𝑢 of the α-
equivalence classes. The rest of the proof is as in Arnold and Nivat (1980). □

Then (𝒯Σ/=𝛼)∞ denotes the metric completion of 𝒯Σ/=𝛼 with respect to 𝕕𝛼.
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These constructions extend diag. (1.13) as follows:

𝑈(µ𝑍.ℱΣ(𝑍,𝑍))
µ𝑍.ℱΣ(𝑍,𝑍)

𝒯Σ
ν𝑌.µ𝑋.ℱΣ(𝑋,𝑌)

𝒯∞
Σ

𝒯∞
Σ /=𝛼

𝒯Σ/=𝛼
𝑈(µ𝑍.𝒬Σ(𝑍,𝑍))

(𝒯Σ/=𝛼)∞

↩ →

←

↠

←↠
↩→ ?

↩ →

(1.14)

The existence of an injection
?
↪ is guaranteed by the following lemma.

LEMMA 1 .48. There is an injection 𝒯∞
Σ /=𝛼 ↪ (𝒯Σ/=𝛼)∞.

PROOF. Take [𝑡]𝛼 ∈ 𝒯∞
Σ /=𝛼. By construction, 𝑡 is the Cauchy sequence of its

truncations, (⌊𝑡⌋𝑑)𝑑∈ℕ. By the definition of α-equivalence on 𝒯∞
Σ ,

[(⌊𝑡⌋𝑑)𝑑∈ℕ]𝛼 ↦ ([⌊𝑡⌋𝑑]𝛼)𝑑∈ℕ

takes [𝑡]𝛼 to a Cauchy sequence (wrt. 𝕕𝛼) of α-equivalence classes. □

However we would like an isomorphism instead! Unfortunately, it is not the
case in general, unless the signature is trivial in the following sense.

DEF IN IT ION 1 .49. A mbs (Σ, ar) is non-trivial if there are constructors lam,
node, dig ∈ Σ such that:

1. lam has a binding argument, i.e. 𝜋0(ar(lam)𝑖) ⩾ 1 for some index 𝑖;

2. node has at least two arguments, i.e. ar(node) is of length greater than 2;

3. dig has a coinductive argument, i.e. 𝜋1(ar(dig)𝑖) = 1 for some index 𝑖.

For example, (Σ𝜆, ar𝑎𝑏𝑐) is non-trivial as soon as 𝑎 ∨ 𝑏 ∨ 𝑐 = 1: lam is 𝜆, node is
@, and dig is either 𝜆 (if 𝑎 = 1) or @ (otherwise).
If the signature is trivial, it does not make sense to consider all the machinery
defined here: if there is no binder then=𝛼 amounts to equality, if there are only
unary and constant constructors then there is at most one variable in each term,
and if there is no coinductive constructor then the metric is discrete. In all three
cases, (𝒯∞

Σ /=𝛼) ≅ (𝒯Σ/=𝛼)∞ for degenerate reasons.
Otherwise, the cardinality of 𝒱 is determining.

THEOREM 1 .50. Let (Σ, ar) be a non-trivial mbs. Then (𝒯∞
Σ /=𝛼) = (𝒯Σ/=𝛼)∞

iff 𝒱 is uncountable.
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PROOF. When𝒱 = { 𝑥𝑖 | 𝑖 ∈ ℕ } is countable, a counter-example for (Σ𝜆, ar111)
is the Cauchy sequence of α-equivalence classes

([𝜆𝑥𝑛.(𝑥0)… (𝑥𝑛−1)𝑥𝑛]𝛼)𝑛∈ℕ ,

which has no limit in𝒯∞
Σ /=𝛼 (Kurz et al. 2013, ex. 5.20). It can be generalised to

any non-trivial (Σ, ar): by non-triviality, there are constructors lam, node, dig ∈
Σ as in definition 1.49 (to ease the proof and wlog., the arguments required by
the definition are considered to be the first, i.e. 𝑖 = 1 in the conditions). We
translate each 𝜆𝑥𝑛.(𝑥0)… (𝑥𝑛−1)𝑥𝑛 into a term 𝑡𝑛 ∈ 𝒯∞

Σ as follows:

• 𝜆𝑥𝑛.𝑀 is replaced with lam( ̄𝑥𝑛.𝑀,…) where the length of ̄𝑥𝑛 ≔
(𝑥𝑛,… ,𝑥𝑛) is indicated by ar(lam), and the other arguments of lam are
filled arbitrarily,

• (𝑥𝑖)𝑀 is replaced with node ( ̄𝑥𝑛.𝑥𝑖, dig( ̄𝑥𝑛.𝑀,…),…)where the length of
the ̄𝑥𝑛 are indicated by ar(node) and ar(dig), and the omitted arguments
are filled arbitrarily.

Again, ([𝑡𝑛]𝛼)𝑛∈ℕ is a Cauchy sequence with no limit in 𝒯∞
Σ /=𝛼.

Conversely, assume that 𝒱 is uncountable and consider a Cauchy sequence
(𝔱𝑛)𝑛∈ℕ ∈ 𝒯∞

Σ /=𝛼. For 𝑝, 𝑞 ∈ ℕ big enough, 𝕕𝛼(𝔱𝑝, 𝔱𝑞) < 1 so the top-level
constructor (or variable) of all terms in 𝔱𝑛 is ultimately constant. By nested
induction and coinduction:

• If it is a variable 𝑥, then lim 𝔱𝑛 = [𝑥]𝛼.

• Otherwise it is some cons ∈ Σ with ar(cons) = ((𝑛𝑖, 𝑏𝑖))1⩽𝑖⩽𝑘. Notice
that if 𝑡 =𝛼 𝑢 then fv(𝑡) = fv(𝑢), so that the notation fv(𝔱𝑛) is unam-
biguous. From theorem 1.5 we can deduce that each fv(𝔱𝑛) is count-
able, hence so is ⋃𝑛∈ℕ fv(𝔱𝑛). Thus we can choose distinct variables
𝑥𝑖,𝑗 ∉ ⋃𝑛∈ℕ fv(𝔱𝑛), where 𝑖 ranges over [1, 𝑘] and 𝑗 over [1,𝑛𝑖], so that

𝔱𝑛 = [cons((𝑥1,1,… ,𝑥1,𝑛1).𝑢𝑛,1,… , (𝑥𝑘,1,… ,𝑥𝑘,𝑛𝑘).𝑢𝑛,𝑘)]𝛼

for some terms 𝑢𝑛,1,… ,𝑢𝑛,𝑘. Take 𝑖 ∈ [1, 𝑘]. By construction, for all
𝑝, 𝑞 ∈ ℕ we have 𝕕([𝑢𝑝,𝑖]𝛼, [𝑢𝑞,𝑖]𝛼) ⩽ 2𝕕(𝔱𝑝, 𝔱𝑞), hence ([𝑢𝑛,𝑖]𝛼)𝑛∈ℕ is a
Cauchy sequence. By induction (if 𝑏𝑖 = 0) or coinduction (if 𝑏𝑖 = 1), we
build a limit [𝑢𝑖]𝛼 ∈ 𝒯∞

Σ /=𝛼. Finally, we define

lim 𝔱𝑛 = [cons((𝑥1,1,… ,𝑥1,𝑛1).𝑢1,… , (𝑥𝑘,1,… ,𝑥𝑘,𝑛𝑘).𝑢𝑘)]𝛼. □

Our goal is not really fulfilled: we have a commutative square only if 𝒱 is un-
countable, which is not satisfactory in practice since implementation concerns
suggest to consider contably many variables. In addition, none of the sets in-
volved can be endowed with a reasonable nominal structure.
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1.4.4 Nominal mixed types: α-equivalence for (most) infinitary terms

Let us try to refine diag. (1.14). Recall from corollary 1.35 that Adámek’s fix-
point theorem gives rise to the following square in 𝐍𝐨𝐦:

µ𝑍.ℱΣ(𝑍,𝑍)
𝒯Σ

ν𝑌.µ𝑋.ℱΣ(𝑋,𝑌)
(𝒯∞
Σ )fs

𝒯Σ/=𝛼
µ𝑍.𝒬Σ(𝑍,𝑍)

(𝒯Σ/=𝛼)∞fs
ν𝑌.µ𝑋.𝒬Σ(𝑋,𝑌)

↩ →

←↠ ←→
↩ →

(1.15)

The horizontal inclusions are the canonical equivariant maps from the initial
algebra to the terminal coalgebra; they carry an operation of nominal metric
completion similar to what we described in theorem 1.20 (Kurz et al. 2013,
thm. 5.5).

However once again the right vertical map (𝒯∞
Σ )fs → (𝒯Σ/=𝛼)∞fs is not surjec-

tive, so there is no chance that it can carry a quotient by α-equivalence. In
addition, considering (𝒯∞

Σ )fs is way too strong a restriction: this means that we
would only consider terms containing finitely many (free or bound) variables,
e.g. it would be forbidden to consider the term O ≔ 𝜆𝑥1.𝜆𝑥2.𝜆𝑥3… . Let us
introduce a more sensible subset of 𝒯∞

Σ .

NOTAT ION 1 .5 1. (𝒯∞
Σ )ffv denotes the set of mixed terms having finitely many

free variables:
(𝒯∞
Σ )ffv ≔ { 𝑡 ∈ 𝒯∞

Σ || fv(𝑡) is finite } .

Observe that the canonical inclusion 𝒯Σ ↪ 𝒯∞
Σ can be decomposed as

𝒯Σ (𝒯∞
Σ )fs (𝒯∞

Σ )ffv 𝒯∞
Σ .↩→ ↩→ ↩→

The main theorem of this chapter tells us what the decomposition of the bottom
part of diag. (1.14) looks like.

THEOREM 1 .52 (nominal mixed types on a Mbs). Given a mbs (Σ, ar), the
𝔖fs(𝒱)-set ((𝒯∞

Σ )ffv/=𝛼, ⋅) is a nominal set. In addition,

(𝒯∞
Σ )ffv/=𝛼 = ν𝑌.µ𝑋.𝒬Σ(𝑋,𝑌).

PROOF. Thanks to lemma 1.16 applied to the polynomial bifunctor 𝒬Σ, the
functor µ𝑋.𝒬Σ(𝑋,−) can be obtained from grammar (Γ1), i.e. it satisfies the
requirements of Kurz et al. (ibid., prop. 5.6). Hence all their technical develop-
ments can be applied to this functor, and the result is just their theorem 5.34
and corollary 5.35. □
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Finally, we can complete diag. (1.14) as follows:

𝑈(µ𝑍.ℱΣ(𝑍,𝑍))
µ𝑍.ℱΣ(𝑍,𝑍)

𝒯Σ
𝑈(ν𝑌.µ𝑋.ℱΣ(𝑋,𝑌))

(𝒯∞
Σ )fs (𝒯∞

Σ )ffv
ν𝑌.µ𝑋.ℱΣ(𝑋,𝑌)

𝒯∞
Σ

𝒯Σ/=𝛼
𝑈(µ𝑍.𝒬Σ(𝑍,𝑍))

(𝒯Σ/=𝛼)∞fs
𝑈(ν𝑌.µ𝑋.𝒬Σ(𝑋,𝑌))

(𝒯∞
Σ )ffv/=𝛼 (𝒯Σ/=𝛼)∞

↩→

←↠

↩ →
↩ →

←→

↩ →

←↠ ←→
↩→
↩ →

⇐⇐ ↩→

⌟

The external square is diag. (1.14), the left square is diag. (1.15), the middle
square is given by theorem 1.52, and the right square being a pullback is a con-
sequence of Kurz et al. (ibid., prop. 5.33).
Finally, we can state the following working hypotheses, that we will apply all
along this thesis.

CONVENT ION 1 .53. Whenever we work with some set 𝒯Σ of finite terms, we
implicitely consider 𝒯Σ/=𝛼.
Whenever we work with some set 𝒯∞

Σ of mixed terms, we implicitely consider
(𝒯∞
Σ )ffv/=𝛼.

In particular, Λ𝑎𝑏𝑐 will implicitely denote the set Λ𝑎𝑏𝑐
ffv /=𝛼 of α-equivalence

classes of 𝑎𝑏𝑐-infinitary λ-terms with finitely many variables.

1.4.5 Capture-avoiding substitution, at last

We are back to the beginning of this section: we want to define capture-avoiding
substitution on mixed terms. Under convention 1.53, this could be done by
hand; however, the major benefit of theorem 1.52 is that is endowes (𝒯∞

Σ )ffv/=𝛼
with a terminal coalgebra structure, so that functions can be defined on it by
structural corecursion. Let us apply this kind of construction to our motivating
example, viz substitution.
Let (Σ, ar) be a mbs. We write 𝒯∞

𝛼 for (𝒯∞
Σ )ffv/=𝛼 = ν𝑌.µ𝑋.𝒬Σ(𝑋,𝑌), and we

call unfold ∶ 𝒯∞
𝛼 → µ𝑋.𝒬Σ(𝑋,𝒯∞

𝛼 ) the map carrying the terminal coalgebra.
Capture-avoiding substitution should be a morphism

subst ∶ 𝒯∞
𝛼 × 𝒱 × 𝒯∞

𝛼 → 𝒯∞
𝛼

in 𝐍𝐨𝐦, defined by corecursion on its first argument. As in Kurz et al. (ibid.,
def. 6.2), we will use the parametric corecursion principle from Moss (2001,
lem. 2.1). However this is not enough any more, because we also have to scan
the inductive structure separating two coinductive constructors and, since this
structure may contain variables (in fact all the variables appear in these ‘induc-
tive layers’), perform substitution recursively on it too.
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We start with the inductive layer, and define maps ℎ𝑥,𝑢 performing capture-
avoiding substitution of 𝑥 by 𝑢 until it reaches coinductive arguments.
(Some details may surprise the reader, who should already have a look at
definition 1.58 to understand how this construction will be used.)

NOTAT ION 1 .54. When we consider a coproduct 𝐴+ 𝐵, we write inl and inr for
the left and right injections. Similary, we denote by invar and incons the injections
in initial algebras of the form µ𝑋.𝒬Σ(𝑋,𝑌).

LEMMA 1 .55. Given a variable 𝑥 ∈ 𝒱 and a term 𝑢 ∈ 𝒯∞
𝛼 , an equivariant map

ℎ𝑥,𝑢 ∶ µ𝑋.𝒬Σ(𝑋,𝒯∞
𝛼 + 𝒯∞

𝛼 ) → µ𝑋.𝒬Σ(𝑋,𝒯∞
𝛼 + 𝒯∞

𝛼 )

is uniquely defined by recursion by

invar(𝑥) ↦ µ𝑋.𝒬Σ(𝑋, inl)(unfold(𝑢))
invar(𝑦) ↦ invar(𝑦) for 𝑦 ≠ 𝑥

incons

⎛
⎜
⎜
⎜
⎜
⎝

⋮
⟨𝑦𝑖,1⟩… ⟨𝑦𝑖,𝑛𝑖 ⟩𝑡𝑖,

⋮
⟨𝑦𝑗,1⟩… ⟨𝑦𝑗,𝑛𝑗 ⟩𝑇𝑗

⋮

⎞
⎟
⎟
⎟
⎟
⎠

↦ incons

⎛
⎜
⎜
⎜
⎜
⎝

⋮
⟨𝑦𝑖,1⟩… ⟨𝑦𝑖,𝑛𝑖 ⟩ℎ𝑥,𝑢(𝑡𝑖),

⋮
⟨𝑦𝑗,1⟩… ⟨𝑦𝑗,𝑛𝑗 ⟩𝑇𝑗

⋮

⎞
⎟
⎟
⎟
⎟
⎠

where 𝑖 (resp. 𝑗) represents any index such that 𝑏𝑖 = 0 (resp. 𝑏𝑗 = 1), i.e. any
inductive (resp. coinductive) position of cons), and where the representatives are
taken so that

∀𝑘 ∈ [0,𝑛𝑖], 𝑦𝑖,𝑘 # 𝑥 and 𝑦𝑖,𝑘 # 𝑢.

PROOF. The validity of the definition can be deduced from Pitts’ primitive
recursion theorem for nominal algebras (Pitts 2006, thm. 5.1; see also Pitts 2013,
thm. 8.17 for a lighter presentation). To apply the theorem, we need only to
check that the ‘freshness condition for binders’ is satisfied, viz for any variables
𝑦1,𝑗 and any 𝑇1 ∈ 𝒯∞

𝛼 + 𝒯∞
𝛼 ,

N𝑦0,1,… , N𝑦0,𝑛0 ,
∀𝑡0 ∈ µ𝑋.𝒬Σ(𝑋,𝒯∞

𝛼 + 𝒯∞
𝛼 ),

∀𝐻 ∈ µ𝑋.𝒬Σ(𝑋,𝒯∞
𝛼 + 𝒯∞

𝛼 ), 𝑦0,1,… , 𝑦0,𝑛0 # incons (⟨𝑦0,1⟩… ⟨𝑦0,𝑛0⟩𝐻,

⟨𝑦1,1⟩… ⟨𝑦1,𝑛1⟩𝑇1
)

This is immediate, since 𝑦 # ⟨𝑦⟩𝑎 for any variable 𝑦 and any element 𝑎 of a
nominal set. □

Now we treat the coinductive layer. Since no variable can occur on this layer,
all we have to do is pass the parameters (the variable 𝑥 and the substituted term
𝑢) to a corecursive call.
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Recall from Pitts (ibid., thm. 2.19) that 𝐍𝐨𝐦 is cartesian closed. In addi-
tion, one can show (ibid., prop. 4.14) that the abstraction functor [𝒱]− is
𝐍𝐨𝐦-enriched. It is well-know that this is equivalent to being strong for the
monoidal structure induced by the cartesian product, as expressed by the
following lemma.

LEMMA 1 .56. Given nominal sets 𝐴 and 𝐵, the equivariant map

𝜏𝐴,𝐵 ∶ [𝒱]𝐴 × 𝐵 → [𝒱](𝐴 × 𝐵)
(⟨𝑥⟩𝑎, 𝑏) ↦ ⟨𝑧⟩(⟨𝑥⟩𝑎@𝑧, 𝑏)

(where 𝑧 is chosen such that 𝑧 # ⟨𝑥⟩𝑎) is natural in 𝐴 and 𝐵, i.e. it defines a
strength for [𝒱]−.

COROLLARY 1 .57. µ𝑋.𝒬Σ(𝑋,𝒯∞
𝛼 + −) is strong.

PROOF. Using the previous lemma one can easy deduce that any 𝐍𝐨𝐦-endo-
functor obtained from grammar (Γ1), with𝑀 = [𝒱]−, is strong (Kurz et al. 2013,
prop. 5.6). By lemma 1.16, this is the case of µ𝑋.𝒬Σ(𝑋,𝒯∞

𝛼 + −). □

This finally leads us to the definition we were looking for since the beginning
of this section!

DEF IN IT ION 1 .58. Capture-avoiding substitution on mixed terms is the map
subst defined by:

𝒯∞
𝛼 × 𝒱 × 𝒯∞

𝛼 𝒯∞
𝛼

µ𝑋.𝒬Σ(𝑋,𝒯∞
𝛼 ) × 𝒱 × 𝒯∞

𝛼

µ𝑋.𝒬Σ(𝑋,𝒯∞
𝛼 + 𝒯∞

𝛼 ) × 𝒱 × 𝒯∞
𝛼

µ𝑋.𝒬Σ(𝑋,𝒯∞
𝛼 + 𝒯∞

𝛼 ) × 𝒱 × 𝒯∞
𝛼

µ𝑋.𝒬Σ(𝑋,𝒯∞
𝛼 + 𝒯∞

𝛼 × 𝒱 × 𝒯∞
𝛼 ) µ𝑋.𝒬Σ(𝑋,𝒯∞

𝛼 )

← →subst

←→unfold×𝒱×𝒯∞𝛼 ←

→

unfold

←→µ𝑋.𝒬Σ(𝑋,inr)×𝒱×𝒯∞𝛼

←→ℎ×𝒱×𝒯∞𝛼

←→ ̄𝜏

← →µ𝑋.𝒬Σ(𝑋,𝒯∞𝛼 +subst)

where ℎ ∶ (𝑡,𝑥,𝑢) ↦ ℎ𝑥,𝑢(𝑡), and the maps ℎ𝑥,𝑢 and ̄𝜏 are given by lemma 1.55
and corollary 1.57.

As already mentionned, the validity of such a parametric corecursive definition
is due to Moss (2001, lem. 2.1).
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Notice that it is possible to give a more readable presentation of the composition
ℎ′ of the last three vertical arrows:

(invar(𝑥),𝑥,𝑢) ↦ µ𝑋.𝒬Σ(𝑋, inl)(unfold(𝑢))
(invar(𝑦),𝑥,𝑢) ↦ invar(𝑦) for 𝑦 ≠ 𝑥

⎛
⎜
⎜
⎜
⎜
⎝

incons

⎛
⎜
⎜
⎜
⎜
⎝

⋮
⟨𝑦𝑖,1⟩… ⟨𝑦𝑖,𝑛𝑖 ⟩𝑡𝑖,

⋮
⟨𝑦𝑗,1⟩… ⟨𝑦𝑗,𝑛𝑗 ⟩𝑡𝑗

⋮

⎞
⎟
⎟
⎟
⎟
⎠

,𝑥,𝑢

⎞
⎟
⎟
⎟
⎟
⎠

↦

µ𝑋.𝒬Σ(𝑋, inr)

⎛
⎜
⎜
⎜
⎜
⎝

⋮
⟨𝑦𝑖,1⟩… ⟨𝑦𝑖,𝑛𝑖 ⟩ℎ′(𝑡𝑖,𝑥,𝑢),

⋮
𝜏𝑛𝑗 (⟨𝑦𝑗,1⟩… ⟨𝑦𝑗,𝑛𝑗 ⟩𝑡𝑗,𝑥,𝑢)

⋮

⎞
⎟
⎟
⎟
⎟
⎠

where, as in lemma 1.55, the representatives are taken so that

∀𝑘 ∈ [0,𝑛𝑖], 𝑦𝑖,𝑘 # 𝑥 and 𝑦𝑖,𝑘 # 𝑢,

and the map

𝜏𝑛 ∶ [𝒱]𝑛𝒯∞
𝛼 × 𝒱 × 𝒯∞

𝛼 → [𝒱]𝑛(𝒯∞
𝛼 × 𝒱 × 𝒯∞

𝛼 )

is the 𝑛th iteration of 𝜏𝒯∞𝛼 ,𝒱×𝒯∞𝛼 (with the notations of lemma 1.56). However,
writing this as a definition would require to show by hand that the corecursion
is well-defined.

As an example, let us describe what ℎ′ looks like when𝒯∞
𝛼 isΛ001 (i.e. Λ001

ffv /=𝛼,
via convention 1.53):

(𝑥,𝑥,𝑁) ↦ µ𝑋.𝒬𝜆001(𝑋, inl)(unfold(𝑁))
(𝑦,𝑥,𝑁) ↦ 𝑦 for 𝑦 ≠ 𝑥

(𝜆(𝑦.𝑀),𝑥,𝑁) ↦ µ𝑋.𝒬𝜆001(𝑋, inr)(𝜆(𝑦.ℎ(𝑀,𝑥,𝑁)))
for 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑁)

(@(𝑀0,𝑀1),𝑥,𝑁) ↦ µ𝑋.𝒬𝜆001(𝑋, inr) (@ (ℎ(𝑀0,𝑥,𝑁), (𝑀1,𝑥,𝑁))) ,

where we omitted the injections. Finally we obtain the expected recursive-
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corecursive definition of capture-avoiding substitution:

subst(𝑥,𝑥,𝑁) ≔ 𝑁
subst(𝑦,𝑥,𝑁) ≔ 𝑦 for 𝑦 ≠ 𝑥

subst(𝜆(𝑦.𝑀),𝑥,𝑁) ≔ 𝜆(𝑦.subst(𝑀,𝑥,𝑁)) for 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑁)
subst(@(𝑀0,𝑀1),𝑥,𝑁) ≔ @(subst(𝑀0,𝑥,𝑁), subst(𝑀1,𝑥,𝑁)).

NOTAT ION 1 .59. For any 𝑎, 𝑏, 𝑐 ∈ 𝟚, given𝑀,𝑁 ∈ Λ𝑎𝑏𝑐 and 𝑥 ∈ 𝒱, we denote
subst(𝑀,𝑥,𝑁) by𝑀[𝑁/𝑥]. This notation is straightforwardly applicable to terms
in Λ, or in Λ𝑎𝑏𝑐

𝐶 for some set 𝐶 of constants.

D





Chapter 2

Infinitary β-reductions and normal forms

That very night in Max’s room a forest grew

Maurice Sendak

This chapter is devoted to the introduction of the dynamics of β-reduction on
λ-terms. In our infinitary setting, we need to enrich the usual β-reduction in
two directions:

• we consider infinitary closures of the β-reduction, (or more precisely 𝑎𝑏𝑐-
infinitary closures, for any 𝑎, 𝑏, 𝑐 ∈ 𝟚),

• to be able to speak of infinitary normal forms, we consider ⊥-reductions
erasing so-called ‘meaningless’ terms.

The constructions we present are mostly known but are somehow scattered
throughout the literature, and often presented in the 111-infinitary setting only;
we try to give a unified summary, using a coinductive presentation.
On our way, we present two fundamental results: the stratification theo-
rem 2.25 allows to decompose an infinitary β-reduction into a finite prefix
followed by an infinitary β-reduction occuring below a given depth, which
will be a central tool in this thesis; the syntactic approximation theorem 2.41 is
a core result of the continuous approximation à la Scott and Wadsworth, and
can be proved in a fairly simple way using infinitary reductions.

2.1 Terminology and notations on abstract rewriting

Let us first recall a few basic notions about reductions systems.

NOTAT ION 2.1. Given two relations⟶1 ⊂ 𝐴 × 𝐵 and⟶2 ⊂ 𝐵 × 𝐶, their
composition is denoted by⟶1 ∘⟶2. The identity relation is denoted by Δ𝐴 ≔
{ (𝑎, 𝑎) | 𝑎 ∈ 𝐴 }.

In practice, we mostly consider reductions, i.e. relations ⟶ ⊂ 𝐴 × 𝐴 (for
some set 𝐴) encoding a ‘computing’ or ‘rewriting’ step. We say that (𝐴,⟶) is
a reduction system.
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NOTAT ION 2.2. Given a reduction⟶⊂ 𝐴×𝐴, its reflexive closure is denoted
by⟶? and its reflexive-transitive closure is denoted by⟶∗, i.e.

⟶? ≔⟶∪Δ𝐴 ⟶∗ ≔ µ𝑅.Δ𝐴 ∪ (⟶∘ 𝑅).

Equivalently, by theorem 1.5 we can write ⟶∗ ≔ ⋃𝑛∈ℕ⟶𝑛, where ⟶𝑛

denotes iterated composition.
We are usually interested in two main kinds of properties of a reduction system:
normalisation and confluence.

DEF IN IT ION 2.3. Let (𝐴,⟶) be a reduction system.

• A normal form is an element 𝑎 ∈ 𝐴 such that ∄𝑏 ∈ 𝐴, 𝑎⟶ 𝑏.

• An element 𝑎 ∈ 𝐴 is normalising if there is a normal form 𝑏 such that
𝑎⟶ 𝑏.

• (𝐴,⟶) is (weakly) normalising if all 𝑎 ∈ 𝐴 are normalising.

• It is strongly normalising if there doesn’t exist an infinite sequence of reduc-
tions.

DEF IN IT ION 2.4. A reduction system (𝐴,⟶) is said to be confluentwhenever

𝑎
∀𝑎, 𝑏1, 𝑏2 ∈ 𝐴 such that

𝑏1 𝑏2
∃𝑐 ∈ 𝐴 such that

𝑐

←→∗ ←

→
∗

←

→
∗ ←→∗

A reduction system (𝐴,⟶) is said to have the diamond property whenever

𝑎
∀𝑎, 𝑏1, 𝑏2 ∈ 𝐴 such that

𝑏1 𝑏2
∃𝑐 ∈ 𝐴 such that

𝑐

←→ ←

→

←

→ ←→

It is easy to see that the diamond property implies confluence. Notice also that
whenever (𝐴,⟶) is both normalising and confluent, each 𝑎 ∈ 𝐴 reduces to a
unique normal form and we can speak of ‘the’ normal form of 𝑎.

DEF IN IT ION 2.5. Let (𝐴,⟶𝐴) and (𝐵,⟶𝐵) be two reduction systems. The
latter is an extension of the former if:

1. there is an injection 𝑖 ∶ 𝐴 ↪ 𝐵,

2. ⟶𝐴 simulates⟶𝐵, i.e. ∀𝑎, 𝑎′ ∈ 𝐴, if 𝑎⟶𝐴 𝑎′ then 𝑖(𝑎)⟶𝐵 𝑖(𝑎′).
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The injection will often be an identity, in which case we leave it implicit. Notice
that our definition is not the same as the stronger one chosen by Terese (2003,
definition 1.1.6), who consider closed extensions, i.e. extensions such that for
all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, if 𝑎⟶𝐵 𝑏 then 𝑏 ∈ 𝐴.

2.2 Finite dynamics

We first introduce the finite reductions we will consider (on infinitary terms):
the β-reduction, which we define exactly as usual, then we recall some specific
subsystems of interest, and finally we extend it to β⊥-reductions.
In all what follows, Λ∞ denotes any of the Λ𝑎𝑏𝑐 (so it can be considered to be
Λ111, in which all the other ones are embedded).

2.2.1 β-reduction

DEF IN IT ION 2.6. The relation⟶𝛽 ⊂ Λ∞ × Λ∞ of β-reduction is defined by
induction by the following set of rules:

(ax𝛽)(𝜆𝑥.𝑀)𝑁 ⟶𝛽 𝑀[𝑁/𝑥]
𝑃 ⟶𝛽 𝑃′

(λ𝛽)𝜆𝑥.𝑃 ⟶𝛽 𝜆𝑥.𝑃′

𝑃 ⟶𝛽 𝑃′
(@l𝛽)(𝑃)𝑄⟶𝛽 (𝑃′)𝑄

𝑄⟶𝛽 𝑄′
(@r𝛽)(𝑃)𝑄⟶𝛽 (𝑃)𝑄′

In other words, it is the congruent closure of the reduction defined by the rule
(ax𝛽).

It is well-known that β-reduction is not normalising, even if one only considers
finite λ-terms. Classical examples are the terms defined by:

Ω ≔ (𝜆𝑥.(𝑥)𝑥)𝜆𝑥.(𝑥)𝑥 Y𝑓 ≔ (𝜆𝑥.(𝑓)(𝑥)𝑥)𝜆𝑥.(𝑓)(𝑥)𝑥

and enjoying the following reductions:

Ω ⟶𝛽 Ω Y𝑓 ⟶𝛽 (𝑓)Y𝑓.

The bad news when considering infinite terms is that confluence is lost,
whereas it was a fundamental, well-established result for the finitary λ-
calculus (Church and Rosser 1936).

COUNTEREXAMPLE 2 .7. Recall the notation (𝑀)𝜔 ≔ (𝑀)(𝑀)(𝑀)… from
example 1.26, as well as the identity λ-term I ≔ 𝜆𝑥.𝑥. Then the following reduc-
tions:

(𝜆𝑓.(𝑓)𝜔)(I)𝑥⟶𝛽 (𝜆𝑓.(𝑓)𝜔)𝑥⟶𝛽 (𝑥)𝜔 (𝜆𝑓.(𝑓)𝜔)(I)𝑥⟶𝛽 ((I)𝑥)𝜔

cannot be joined in a finite number of β-reduction steps.
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2.2.2 Head, weak head and top reductions

Recall that, thanks to Krivine’s notation, we can write 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛
for the term 𝜆𝑥1.… 𝜆𝑥𝑚.(… ((𝑦)𝑀1)… )𝑀𝑛. This is useful because of the follow-
ing key decomposition, initially due to Wadsworth (1971).

LEMMA 2.8. Any term 𝑀 ∈ Λ001 can be uniquely written under one of the
following head forms:

• 𝑀 = 𝜆𝑥1.… 𝜆𝑥𝑚.((𝜆𝑥.𝑃)𝑄)𝑀1…𝑀𝑛, in which case (𝜆𝑥.𝑃)𝑄 is called its
head redex,

• 𝑀 = 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛, in which case it is in head normal form
(hnf),

with𝑚,𝑛 ∈ ℕ, 𝑥𝑖, 𝑦 ∈ 𝒱 and𝑀𝑗 ∈ Λ001.

Notice that 𝑚 or 𝑛 may be null. For example, when 𝑀 is a variable, 𝑚 = 𝑛 = 0.

DEF IN IT ION 2.9. The head reduction is the relation ⟶ℎ ⊂ ⟶𝛽 on Λ001
where one is only allowed to β-reduce the head redex of the terms.
We also define the head reduction operator H ∶ Λ001 → Λ001 by:

H(𝜆𝑥1.… 𝜆𝑥𝑚.((𝜆𝑥.𝑃)𝑄)𝑀1…𝑀𝑛) ≔ 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑃[𝑄/𝑥])𝑀1…𝑀𝑛

H(𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛) ≔ 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛,

i.e. H performs one head reduction step when it can, and acts like the identity
otherwise.

Two similar notions exist in the literature (and will correspond to different 𝑎𝑏𝑐-
infinitary calculi). They refine head reduction by reducing fewer redexes, thus
yielding more normal forms. The first refinement relies on the observation
that lemma 2.8 can be precised as follows: any term 𝑀 ∈ Λ101 can be uniquely
written under one of the following weak head forms:

• 𝑀 = ((𝜆𝑥.𝑃)𝑄)𝑀1…𝑀𝑛, where (𝜆𝑥.𝑃)𝑄 is called the weak head redex
of 𝑀,

• 𝑀 = (𝑦)𝑀1…𝑀𝑛,

• 𝑀 = 𝜆𝑥.𝑀′,

the two latter forms being called weak head normal forms (whnf).

DEF IN IT ION 2.10. The weak head reduction is the relation⟶𝑤ℎ ⊂⟶𝛽 on
Λ101 where one is only allowed to β-reduce the weak head redex of the terms.

The second refinement relies on the observation that the applicative behaviour
of a term is determined by its order, as first suggested by Longo (1983).
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DEF IN IT ION 2.1 1. The order of a term𝑀 ∈ Λ∞ is the integer defined by

ord(𝑀) ≔ max {𝑚 ∈ ℕ ||𝑀 ⟶∗
𝛽 𝜆𝑥1.… 𝜆𝑥𝑚.𝑀′ } .

Then we can refine again our decomposition: any term 𝑀 ∈ Λ111 can be
uniquely written under one of the following forms:

• 𝑀 = (𝑀0)𝑀1, where ord(𝑀0) > 0,

• 𝑀 = (𝑀0)𝑀1, where ord(𝑀0) = 0,

• 𝑀 = 𝑦,

• 𝑀 = 𝜆𝑥.𝑀′,

the three latter forms being called top normal forms (tnf), following Berarducci
(1996). However, there is no immediate notion of ‘top redex’ since the corre-
sponding abstraction can be hidden, thus the following more convoluted defi-
nition.

DEF IN IT ION 2.12. The top reduction is the relation ⟶𝑡 ⊂ ⟶𝛽 on Λ111
defined by:

𝑀 ⟶∗
𝑤ℎ 𝜆𝑥.𝑃 (t)

(𝑀)𝑄⟶𝑡 𝑃[𝑄/𝑥]

The definition is justified by the fact that ord(𝑀) > 0 implies the existence of a
reduction 𝑀 ⟶∗

𝑤ℎ 𝜆𝑥.𝑃, which will be proved later.

DEF IN IT ION 2.13. A term 𝑀 ∈ Λ∞ is said to have a hnf (resp. a whnf, a
tnf) if there is an 𝑁 in hnf (resp. in whnf, in tnf) such that𝑀 ⟶∗

ℎ 𝑁 (resp.
𝑀 ⟶∗

𝑤ℎ 𝑁,𝑀 ⟶∗
𝑡 𝑁).

This definition seems restrictive: ⟶∗
ℎ (resp. ⟶∗

𝑤ℎ, ⟶∗
𝑡 ) should be replaced

with ⟶∗
𝛽. This is in fact well-known to be equivalent, but we leave the

proof for later: it will be a consequence of the Taylor approximation (see
theorem 4.20)!

2.2.3 β⊥-reductions

All what precedes can be straightforwardly extended to Λ∞
𝐶 , for any set 𝐶 of

constants. In particular, the definitions and facts that we have been writing so
far hold for Λ∞

⊥ .
The reason why we consider Λ∞

⊥ is that we want to equate to ⊥ all the λ-terms
that do not correspond to meaningful functional programs. Historically, terms
without a hnf have been considered as ‘undefined’ or ‘meaningless’. Indeed,
equating all such terms gives rise to a consistent λ-theory, which is not the
case if one equates non-normalising terms (Barendregt 1984, proposition 2.2.4
and theorem 16.1.3). Abramsky (1990) later advocated for considering only the
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terms without a whnf as meaningless, since the lazy evaluation mechanisms
of most functional programs of the time consisted in performing weak head
reductions.
Finally, an abstract notion of meaninglessness was designed following the in-
troduction of infinitary λ-calculi (Kennaway, van Oostrom, and de Vries 1999,
1996; Severi and de Vries 2011), and allows for a characterisation of ‘sets of
meaningless terms’. Given such a set 𝒰 ⊆ Λ∞, the ⊥𝒰-reduction ⟶⊥𝒰 ⊂
Λ∞
⊥ × Λ∞

⊥ can be defined as the congruent closure of:

𝑀[⊥ ≔ Ω] ∈ 𝒰
𝑀 ⟶⊥𝒰 ⊥

where Ω ≔ (𝜆𝑥.(𝑥)𝑥)𝜆𝑥.(𝑥)𝑥 always belongs to 𝒰.
The sets of λ-terms having no hnf, whnf or tnf are sets of meaningless terms
(the first and third ones being the greatest and least non-trivial such sets). Since
we will only consider these particular cases in this thesis, let us give explicit
characterisations of the respective ⊥-reductions.

DEF IN IT ION 2.14. Consider the following set of rules:

𝑀 ∈ 𝒰 (ax⊥𝒰)𝑀 ⟶⊥ ⊥
(@l⊥)(⊥)𝑀 ⟶⊥ ⊥

(λ⊥)𝜆𝑥.⊥⟶⊥ ⊥

then three ⊥-reductions are defined by:

• ⟶⊥001 ⊂ Λ∞
⊥ ×Λ∞

⊥ is the congruent closure of the reduction generated by
(ax⊥𝒰) for𝒰 ≔ {𝑀 ∈ Λ∞ |M has no hnf }, (@l⊥) and (λ⊥),

• ⟶⊥101 ⊂ Λ∞
⊥ ×Λ∞

⊥ is the congruent closure of the reduction generated by
(ax⊥𝒰) for𝒰 ≔ {𝑀 ∈ Λ∞ |M has no whnf } and (@l⊥),

• ⟶⊥111 ⊂ Λ∞
⊥ ×Λ∞

⊥ is the congruent closure of the reduction generated by
(ax⊥𝒰) for𝒰 ≔ {𝑀 ∈ Λ∞ |M has no tnf }.

Mixing these⊥-reductions with β-reductions gives rise to the following notions
of β⊥-reduction, sometimes called Böhm reductions (Kennaway, Klop, et al.
1997).

DEF IN IT ION 2.15. Given 𝑎𝑏𝑐 ∈ {001, 101, 111}, the corresponding β⊥-
reduction is defined by⟶𝛽⊥𝑎𝑏𝑐 ≔⟶𝛽 ∪⟶⊥𝑎𝑏𝑐.

For example, recall the λ-term K ≔ 𝜆𝑥.𝜆𝑦.𝑥, and consider the reduction

YK = (𝜆𝑥.(K)(𝑥)𝑥)𝜆𝑥.(K)(𝑥)𝑥⟶𝛽 (K)YK ⟶𝛽 𝜆𝑦.YK

from which one can show that YK has no hnf, hence YK ⟶𝛽⊥001 ⊥. On the
contrary, we do not have YK ⟶𝛽⊥101 ⊥ because 𝜆𝑦.YK is in whnf.
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2.3 Infinitary dynamics

2.3.1 Infinitary reductions

We first present a coinductive definition of infinitary β-reductions, that gen-
eralises the 111-infinitary presentation by Endrullis and Polonsky (2013). As
showed in their thm. 3, this definition is equivalent to the original, topological
definition featuring strongly Cauchy convergent β-reduction sequences of or-
dinal length (Kennaway, Klop, et al. 1997); their proof can be straighforwardly
adapted to the 𝑎𝑏𝑐-infinitary setting.

DEF IN IT ION 2.16. Take 𝑎𝑏𝑐 ∈ 𝟚3. The relation⟶𝑎𝑏𝑐
𝛽 ⊂ Λ∞ × Λ∞ of 𝑎𝑏𝑐-

infinitary β-reduction is defined by mixed induction and coinduction by the fol-
lowing set of rules:

𝑀 ⟶∗
𝛽 𝑥

(𝒱𝑎𝑏𝑐
𝛽 )

𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑥

𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃 ▹𝑎 𝑃 ⟶𝑎𝑏𝑐

𝛽 𝑃′
(λ𝑎𝑏𝑐𝛽 )

𝑀 ⟶𝑎𝑏𝑐
𝛽 𝜆𝑥.𝑃′

𝑀 ⟶∗
𝛽 (𝑃)𝑄 ▹𝑏 𝑃 ⟶𝑎𝑏𝑐

𝛽 𝑃′ ▹𝑐 𝑄⟶𝑎𝑏𝑐
𝛽 𝑄′

(@𝑎𝑏𝑐
𝜆 )

𝑀 ⟶𝑎𝑏𝑐
𝛽 (𝑃′)𝑄′

𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀′

(▹0)
▹0 𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑀′

𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀′

(▹1)
▹1 𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑀′

This construction is called the 𝑎𝑏𝑐-infinitary closure of the reduction⟶𝛽.

A first example of an infinitary β-reduction is the following paradigmatic one:
for any 𝑀 ∈ Λ𝑎𝑏1 (for 𝑎, 𝑏 ∈ 𝟚) there is a reduction Y𝑀 ⟶𝑎𝑏1

𝛽 (𝑀)𝜔 as follows.

Y𝑀 ⟶∗
𝛽 (𝑀)Y𝑀

(...)

𝑀 ⟶𝑎𝑏1
𝛽 𝑀

▹𝑏 𝑀 ⟶𝑎𝑏1
𝛽 𝑀

Y𝑀 ⟶𝑎𝑏1
𝛽 (𝑀)𝜔

▹1 Y𝑀 ⟶𝑎𝑏1
𝛽 (𝑀)𝜔

Y𝑀 ⟶𝑎𝑏1
𝛽 (𝑀)𝜔 = (𝑀)(𝑀)𝜔

where the subproof (...) will be showed in lemma 2.17. Another important
example is the term YK that we have already encountered. For any 𝑏, 𝑐 ∈ 𝟚,
there is a reduction YK ⟶1𝑎𝑏

𝛽 O, where O ≔ 𝜆𝑥0.𝜆𝑥1.𝜆𝑥2… is usually called the
ogre because it ‘eats’ as many arguments as it is given, without doing anything
else. The derivation is as follows.

YK ⟶∗
𝛽 𝜆𝑦.YK

YK ⟶1𝑏𝑐
𝛽 O

▹1 YK ⟶1𝑏𝑐
𝛽 O

YK ⟶1𝑏𝑐
𝛽 O = 𝜆𝑦.O
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Let us recall the properties of these ⟶𝑎𝑏𝑐
𝛽 reductions. The proofs we give are

adapted from the standard coindcutive proofs for ⟶111
𝛽 (Endrullis and Polon-

sky 2013; Czajka 2020).

LEMMA 2.17. (Λ𝑎𝑏𝑐,⟶𝑎𝑏𝑐
𝛽 ) is reflexive.

PROOF. Let us show this easy property in detail, to give a complete example
of what we will call ‘a proof by nested induction and coinduction’.

Take some 𝑀 ∈ Λ𝑎𝑏𝑐, i.e. a derivation in the system of rules (ax), (λ), (@), (▹0)
and (▹1) presented under definition 1.25. Let us build a derivation of𝑀 ⟶𝑎𝑏𝑐

𝛽
𝑀 in the system of rules from definition 1.25.

• If 𝑀 = 𝑥, i.e. the last rule in the derivation of 𝑀 ∈ Λ𝑎𝑏𝑐 is (ax), then we
conclude with

𝑥⟶∗
𝛽 𝑥

(𝒱𝑎𝑏𝑐
𝛽 )

𝑥⟶𝑎𝑏𝑐
𝛽 𝑥

• If 𝑀 = 𝜆𝑥.𝑃, i.e. the last rules in the derivation of 𝑀 ∈ Λ𝑎𝑏𝑐 is

𝑥 ∈ 𝒱
𝑃 ∈ Λ𝑎𝑏𝑐

(▹𝑎)
▹𝑎 𝑃 ∈ Λ𝑎𝑏𝑐

(λ)
𝜆𝑥.𝑃 ∈ Λ𝑎𝑏𝑐

then we build a derivation of 𝑃 ⟶𝑎𝑏𝑐
𝛽 𝑃 by induction (if 𝑎 = 0) or coin-

duction (if 𝑎 = 1, under the coinductive guard of the rule (▹1)), and we
conclude with

𝜆𝑥.𝑃 ⟶∗
𝛽 𝜆𝑥.𝑃

𝑃 ⟶𝑎𝑏𝑐
𝛽 𝑃

(▹𝑎)
▹𝑎 𝑃 ⟶𝑎𝑏𝑐

𝛽 𝑃
(λ𝑎𝑏𝑐𝛽 )

𝑀 ⟶𝑎𝑏𝑐
𝛽 𝜆𝑥.𝑃′

• The proof is similar if 𝑀 = (𝑃)𝑄, using the rule (@𝑎𝑏𝑐
𝛽 ). □

In particular, this fact trivially prevents normalisation.

LEMMA 2.18. (Λ𝑎𝑏𝑐,⟶𝑎𝑏𝑐
𝛽 ) simulates (Λ𝑎𝑏𝑐,⟶∗

𝛽).

PROOF. For any𝑀,𝑁 ∈ Λ𝑎𝑏𝑐 such that𝑀 ⟶∗
𝛽 𝑁, we show that𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑁
by nested induction and coinduction on 𝑁.

• If 𝑁 = 𝑥, then the result is immediate via the rule (𝒱𝑎𝑏𝑐
𝛽 ).



2.3. infinitary dynamics 73

• If 𝑁 = 𝜆𝑥.𝑃, then we write the derivation

𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃

𝑃 ⟶𝑎𝑏𝑐
𝛽 𝑃

(▹𝑎)
▹𝑎 𝑃 ⟶𝑎𝑏𝑐

𝛽 𝑃
(λ𝑎𝑏𝑐𝛽 )

𝑀 ⟶𝑎𝑏𝑐
𝛽 𝜆𝑥.𝑃

where the hypothesis 𝑃 ⟶𝑎𝑏𝑐
𝛽 𝑃 is obtained by lemma 2.17.

• If𝑁 = (𝑃)𝑄 we can write a similar derivation using the rule (@𝑎𝑏𝑐
𝛽 ). □

LEMMA 2.19. (Λ𝑎𝑏𝑐,⟶𝑎𝑏𝑐
𝛽 ) is transitive.

PROOF. We prove a series of sublemmas:

if 𝑀 ⟶∗
𝛽 𝑀′, then 𝑀[𝑁/𝑥]⟶∗

𝛽 𝑀′[𝑁/𝑥] (2.1)

if 𝑀 ⟶∗
𝛽 𝑀′ ⟶𝑎𝑏𝑐

𝛽 𝑀″, then 𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀″ (2.2)

if 𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀′ and 𝑁 ⟶𝑎𝑏𝑐

𝛽 𝑁′, then 𝑀[𝑁/𝑥]⟶𝑎𝑏𝑐
𝛽 𝑀′[𝑁′/𝑥] (2.3)

if 𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀′ ⟶𝛽 𝑀″, then 𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑀″ (2.4)

if 𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀′ ⟶∗

𝛽 𝑀″, then 𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀″ (2.5)

if 𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀′ ⟶𝑎𝑏𝑐

𝛽 𝑀″, then 𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀″ (2.6)

(2.1) and (2.2) are immediate, respectively by nested coinduction and induction
on 𝑀 and by case analysis on 𝑀′ ⟶𝑎𝑏𝑐

𝛽 𝑀″.
We prove (2.3) by nested coinduction and induction on 𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑀′.

• Case (𝒱𝑎𝑏𝑐
𝛽 ), 𝑀 ⟶∗

𝛽 𝑦 = 𝑀′. There are two possibilities.

Either 𝑦 = 𝑥, then 𝑀[𝑁/𝑥]⟶∗
𝛽 𝑥[𝑁/𝑥] = 𝑁 ⟶𝑎𝑏𝑐

𝛽 𝑁′ by (2.1), and we
conclude with (2.2).

Otherwise 𝑦 ≠ 𝑥, then 𝑀[𝑁/𝑥] ⟶∗
𝛽 𝑦[𝑁/𝑥] = 𝑦 = 𝑦[𝑁′/𝑥] by (2.1) ,

and we conclude with (2.2).

• Case (λ𝑎𝑏𝑐𝛽 ), 𝑀 ⟶∗
𝛽 𝜆𝑦.𝑃 with 𝑀′ = 𝜆𝑥.𝑃′ and ▹𝑎 𝑃 ⟶𝑎𝑏𝑐

𝛽 𝑃′. We want
to write a derivation

𝑀[𝑁/𝑥]⟶∗
𝛽 𝜆𝑦.𝑃[𝑁/𝑥]

𝑃[𝑁/𝑥]⟶𝑎𝑏𝑐
𝛽 𝑃′[𝑁′/𝑥]

(▹𝑎)
▹𝑎 𝑃[𝑁/𝑥]⟶𝑎𝑏𝑐

𝛽 𝑃′[𝑁′/𝑥]
(λ𝑎𝑏𝑐𝛽 )

𝑀[𝑁/𝑥]⟶𝑎𝑏𝑐
𝛽 𝑀′[𝑁′/𝑥] = 𝜆𝑦.𝑃′[𝑁′/𝑥]

The first hypothesis is a consequence of (2.1). The second hypothesis is
built by induction or coinduction, depending on the boolean 𝑎. This is
safe because whenever we use a coinduction hypothesis ▹1 𝑃 ⟶𝑎𝑏𝑐

𝛽 𝑃′,
i.e. whenever 𝑎 = 1, we use it above a coinductive rule (▹1).
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• The case of (@𝑎𝑏𝑐
𝛽 ) is similar.

We prove (2.4) by induction on 𝑀′ ⟶𝛽 𝑀″.

• Case (ax𝛽), 𝑀′ = (𝜆𝑥.𝑄′)𝑅′ and 𝑀″ = 𝑄′[𝑅′/𝑥]. Necessarily, the end of
the derivation 𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑀′ is as follows:

𝑀 ⟶∗
𝛽 (𝑃)𝑅

𝑃 ⟶∗
𝛽 𝜆𝑥.𝑄

⋮
𝑄⟶𝑎𝑏𝑐

𝛽 𝑄′

▹𝑎 𝑄⟶𝑎𝑏𝑐
𝛽 𝑄′

𝑃 ⟶𝑎𝑏𝑐
𝛽 𝜆𝑥.𝑄′

▹𝑏 𝑃 ⟶𝑎𝑏𝑐
𝛽 𝜆𝑥.𝑄′

⋮
𝑅⟶𝑎𝑏𝑐

𝛽 𝑅′

▹𝑐 𝑅⟶𝑎𝑏𝑐
𝛽 𝑅′

𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀′ = (𝜆𝑥.𝑄′)𝑅′

thus 𝑀 ⟶∗
𝛽 (𝑃)𝑅⟶∗

𝛽 (𝜆𝑥.𝑄)𝑅⟶𝛽 𝑄[𝑅/𝑥]⟶𝑎𝑏𝑐
𝛽 𝑄′[𝑅′/𝑥] = 𝑀″ by

(2.3), and we can conclude with (2.2).

• Case (λ𝛽), 𝑀′ = 𝜆𝑥.𝑃′ and 𝑀″ = 𝜆𝑥.𝑃″ with 𝑃′ ⟶𝛽 𝑃″. Necessarily,
then end of the derivation 𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑀′ is as follows:

𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃

⋮
𝑃 ⟶𝑎𝑏𝑐

𝛽 𝑃′

▹𝑎 𝑃 ⟶𝑎𝑏𝑐
𝛽 𝑃′

𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀′ = 𝜆𝑥.𝑃′

By the induction hypothesis on 𝑃′ ⟶𝛽 𝑃″, we get 𝑃 ⟶𝑎𝑏𝑐
𝛽 𝑃″. This

allows for replacing 𝑃′ with 𝑃″ in the derivation above, turning it into a
derivation of 𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑀″.

• The cases of (@l𝛽) and (@r𝛽) are similar.

(2.5) is obtained from (2.4) by an easy induction. Finally, we show (2.6) by
nested coinduction and induction on 𝑀′ ⟶𝑎𝑏𝑐

𝛽 𝑀″.

• Case (𝒱𝑎𝑏𝑐
𝛽 ), 𝑀′ ⟶∗

𝛽 𝑀″ = 𝑥. The result is immediate, by (2.5).

• Case (λ𝑎𝑏𝑐𝛽 ), 𝑀′ ⟶∗
𝛽 𝜆𝑥.𝑃′ with 𝑀″ = 𝜆𝑥.𝑃″ and 𝑃′ ⟶𝑎𝑏𝑐

𝛽 𝑃″. From
𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑀′ and𝑀′ ⟶∗
𝛽 𝜆𝑥.𝑃′, we obtain𝑀 ⟶𝑎𝑏𝑐

𝛽 𝜆𝑥.𝑃′ by (2.5). The
last rule in the derivation of this reduction must be (λ𝑎𝑏𝑐𝛽 ), hence there is
a 𝑃 such that 𝑀 ⟶∗

𝛽 𝜆𝑥.𝑃 and 𝑃 ⟶𝑎𝑏𝑐
𝛽 𝑃′. By induction (if 𝑎 = 0)

or coinduction (if 𝑎 = 1), 𝑃 ⟶𝑎𝑏𝑐
𝛽 𝑃′ and 𝑃′ ⟶𝑎𝑏𝑐

𝛽 𝑃″ give rise to a
derivation 𝑃 ⟶𝑎𝑏𝑐

𝛽 𝑃″. We conclude by applying rule (λ𝑎𝑏𝑐𝛽 ) again.

• The case of (@𝑎𝑏𝑐
𝛽 ) is similar. □
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Notice that it does not really make sense to consider the reduction ⟶𝑎𝑏𝑐
𝛽 in a

larger setting thanΛ𝑎𝑏𝑐, since this would induce degenerate behaviours. For in-
stance, lemma 2.17 would not hold any more just because the reduction would
not be able to scan all the infinite branches of the terms. Thus, we will only
consider the reduction systems (Λ𝑎𝑏𝑐,⟶𝑎𝑏𝑐

𝛽 ).
One could also wonder whether these reduction systems are confluent: it is not
the case. The following critical pair is a counter-example for the cases where
𝑐 = 1:

(Y)I ⟶𝑎𝑏1
𝛽 (𝜆𝑓.(𝑓)𝜔)I ⟶𝛽 (I)𝜔 (Y)I ⟶𝛽 YI ⟶∗

𝛽 Ω.

However, confluence can be restored by considering the β⊥-reductions. This
method works in general for any reduction associated to a set𝒰 of meaningless
terms; let us recall it in the cases we are interested in.

DEF IN IT ION 2.20. Given 𝑎𝑏𝑐 ∈ {001, 101, 111}, the relation⟶𝑎𝑏𝑐
𝛽⊥ ⊂ Λ∞

⊥ ×
Λ∞
⊥ is the 𝑎𝑏𝑐-infinitary closure of⟶𝛽⊥𝑎𝑏𝑐.

LEMMA 2.21. For 𝑎𝑏𝑐 ∈ {001, 101, 111}, the reduction system (Λ001
⊥ ,⟶𝑎𝑏𝑐

𝛽⊥ ) is
reflexive, transitive and simulates (Λ001

⊥ ,⟶∗
𝛽⊥𝑎𝑏𝑐).

PROOF. Similar to the proofs of lemmas 2.17 to 2.19. □

The following result is initially due to Kennaway, Klop, et al. (1995, 1997), and
coinductive proofs have been designed by Czajka (2020, 2014). Our Taylor ap-
proximation will provide a simple proof for the 001 and 101 cases, see corollar-
ies 4.28 and 6.15.

THEOREM 2.22. For all 𝑎𝑏𝑐 ∈ {001, 101, 111}, the reduction⟶𝑎𝑏𝑐
𝛽⊥ is conflu-

ent.

2.3.2 Stratification and standardisation

At this point, we should say a bit more about the original definition of ⟶𝑎𝑏𝑐
𝛽

by Kennaway, Klop, et al. (1997). What they consider are reduction sequences,
i.e. sequences of β-reductions

(𝑀𝜅 ⟶𝛽=𝑑𝜅 𝑀𝜅+1)𝜅<𝜆

indexed by the elements of some ordinal 𝜆 (thanks to a compression lemma, we
can take 𝜆 = 𝜔 as soon as 𝜆 is infinite). The reduction ⟶𝛽=𝑑𝜅 (to be defined
in a few lines) expresses the fact that a β-reduction step is performed at the 𝑎𝑏𝑐-
depth 𝑑𝜅. Then one says that 𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑁 whenever there is such a sequence
of length 𝜔, such that 𝑀0 = 𝑀 and 𝑀𝜔 = 𝑁, and that is strongly convergent: it
should be convergent, i.e. lim𝑛𝑀𝑛 = 𝑁 wrt. the Arnold-Nivat metric, but in
addition we require that lim𝑛 𝑑𝑛 = +∞.
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Though we want to avoid relying on such topological definitions (hence the
choice of a coinductive presentation of the infinitary reductions), we will
need to harness the depth of the β-reductions steps occurring in an infinitary
β-reduction. This is the point of the stratification theorem 2.25, which provides
a convenient characterisation of ⟶𝑎𝑏𝑐

𝛽 without using any topology.

DEF IN IT ION 2.23. Given 𝑎𝑏𝑐 ∈ 𝟚3 and a depth 𝑑 ∈ ℕ, consider the following
set of rules:

𝑀 ⟶𝛽 𝑀′
(ax𝛽⩾0)𝑀 ⟶𝛽⩾0 𝑀′ (ax𝛽=0)(𝜆𝑥.𝑀)𝑁 ⟶𝛽=0 𝑀[𝑁/𝑥]

𝑃 ⟶𝛽≧𝑑+1−𝑎 𝑃′
(λ𝛽≧𝑑+1)𝜆𝑥.𝑃 ⟶𝛽≧𝑑+1 𝜆𝑥.𝑃′

𝑃 ⟶𝛽≧𝑑+1−𝑏 𝑃′
(@l𝛽≧𝑑+1)(𝑃)𝑄⟶𝛽≧𝑑+1 (𝑃′)𝑄

𝑄⟶𝛽≧𝑑+1−𝑐 𝑄′
(@r𝛽≧𝑑+1)(𝑃)𝑄⟶𝛽≧𝑑+1 (𝑃)𝑄′

then:

• the relation⟶𝛽⩾𝑑 ⊂ Λ∞ × Λ∞ of β-reduction at minimum depth 𝑑 is
inductively defined by the rule (ax𝛽⩾0) and the last three rules (where ≧
stands for ⩾),

• the relation⟶𝛽=𝑑 ⊂ Λ∞ × Λ∞ of β-reduction at depth 𝑑 is inductively
defined by the rule (ax𝛽=0) and the last three rules (where ≧ stands for =).

DEF IN IT ION 2.24. Given 𝑎𝑏𝑐 ∈ 𝟚3 and a depth 𝑑 ∈ ℕ, the relation⟶𝑎𝑏𝑐
𝛽⩾𝑑 ⊂

Λ∞ × Λ∞ of 𝑎𝑏𝑐-infinitary β-reduction at minimum depth 𝑑 is inductively de-
fined by the following rules:

𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑀′

(ax𝑎𝑏𝑐𝛽⩾0)𝑀 ⟶𝑎𝑏𝑐
𝛽⩾0 𝑀′

(𝒱𝑎𝑏𝑐
𝛽⩾𝑑+1)𝑥⟶𝑎𝑏𝑐

𝛽⩾𝑑+1 𝑥

𝑃 ⟶𝑎𝑏𝑐
𝛽⩾𝑑+1−𝑎 𝑃′

(λ𝑎𝑏𝑐𝛽⩾𝑑+1)𝜆𝑥.𝑃 ⟶𝑎𝑏𝑐
𝛽⩾𝑑+1 𝜆𝑥.𝑃′

𝑃 ⟶𝑎𝑏𝑐
𝛽⩾𝑑+1−𝑏 𝑃′ 𝑄⟶𝑎𝑏𝑐

𝛽⩾𝑑+1−𝑐 𝑄′

(@l𝑎𝑏𝑐𝛽⩾𝑑+1)(𝑃)𝑄⟶𝑎𝑏𝑐
𝛽⩾𝑑+1 (𝑃′)𝑄

THEOREM 2.25 (stratification). Let𝑀,𝑁 ∈ Λ∞ be terms such that𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑁.

Then there exists a sequence of terms (𝑀𝑑) ∈ (Λ∞)ℕ such that for all 𝑑 ∈ ℕ,

𝑀 = 𝑀0 ⟶∗
𝛽⩾0 𝑀1 ⟶∗

𝛽⩾1 𝑀2 ⟶∗
𝛽⩾2 …⟶∗

𝛽⩾𝑑−1 𝑀𝑑 ⟶𝑎𝑏𝑐
𝛽⩾𝑑 𝑁. (2.7)

This result is slightly stronger than the following more immediate statement:
for all 𝑑 ∈ ℕ, there exists a sequence of terms (𝑀𝑑) ∈ (Λ∞)𝑑+1 such that
eq. (2.7) holds. The proof relies on the following lemmas.
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LEMMA 2.26. Let 𝑀,𝑁 ∈ Λ∞ be terms such that 𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑁. Then there

exists𝑀1 ∈ Λ∞ such that𝑀 ⟶∗
𝛽 𝑀1 ⟶𝑎𝑏𝑐

𝛽⩾1 𝑁.

PROOF. We proceed (only!) by structural induction on the reduction
𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑁.

• Case (𝒱𝑎𝑏𝑐
𝛽 ), 𝑀 ⟶∗

𝛽 𝑥 = 𝑁. Set 𝑀1 ≔ 𝑥 and conclude with (ax𝑎𝑏𝑐𝛽⩾0).

• Case (λ𝑎𝑏𝑐𝛽 ), 𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃 with 𝜆𝑥.𝑃′ = 𝑁 and ▹𝑎 𝑃 ⟶𝑎𝑏𝑐

𝛽 𝑃′. From
the latter hypothesis we deduce that 𝑃 ⟶𝑎𝑏𝑐

𝛽 𝑃′, but this is an induction
hypothesis only if 𝑎 = 0.

Thus if 𝑎 = 0, we obtain a reduction 𝑃 ⟶∗
𝛽 𝑃1 ⟶0𝑏𝑐

𝛽⩾1 𝑃′ by induction,
and we can set 𝑀1 ≔ 𝜆𝑥.𝑃1 with 𝑀 ⟶∗

𝛽 𝜆𝑥.𝑃 ⟶∗
𝛽 𝜆𝑥.𝑃1 and

𝑃1 ⟶0𝑏𝑐
𝛽⩾1 𝑃′

(λ0𝑏𝑐𝛽⩾1)𝜆𝑥.𝑃1 ⟶0𝑏𝑐
𝛽⩾1 𝜆𝑥.𝑃′ = 𝑁

If 𝑎 = 1, set 𝑀1 ≔ 𝜆𝑥.𝑃 with

𝑃 ⟶∞
𝛽 𝑃′

(ax1𝑏𝑐𝛽⩾0)𝑃 ⟶1𝑏𝑐
𝛽⩾0 𝑃′

(λ1𝑏𝑐𝛽⩾1)𝜆𝑥.𝑃 ⟶1𝑏𝑐
𝛽⩾1 𝜆𝑥.𝑃′

• Case (@𝑎𝑏𝑐
𝛽 ) is similar to the previous one, by case distinction on the

boolean values of 𝑏 and 𝑐. □

LEMMA 2.27. Let𝑀,𝑁 ∈ Λ∞ be terms such that for some 𝑑 ∈ ℕ,𝑀 ⟶𝑎𝑏𝑐
𝛽⩾𝑑 𝑁.

Then there exists𝑀𝑑+1 ∈ Λ∞ such that𝑀 ⟶∗
𝛽⩾𝑑 𝑀𝑑+1 ⟶𝑎𝑏𝑐

𝛽⩾𝑑+1 𝑁.

PROOF. This is again a proof by structural induction, on the reduction
𝑀 ⟶𝑎𝑏𝑐

𝛽⩾𝑑 𝑁.

• Case (ax𝑎𝑏𝑐𝛽⩾0), 𝑑 = 0 and 𝑀 ⟶𝑎𝑏𝑐
𝛽 𝑁 so we can apply the previous

lemma.

• Case (𝒱𝑎𝑏𝑐
𝛽⩾𝑑′+1) is immediate.

• Case (λ𝑎𝑏𝑐𝛽⩾𝑑′+1), 𝑑 = 𝑑′+1 and𝑀 = 𝜆𝑥.𝑃, 𝑁 = 𝜆𝑥.𝑃′ with 𝑃 ⟶𝑎𝑏𝑐
𝛽⩾𝑑−𝑎 𝑃′.

By induction, there is a 𝑃𝑑+1 such that 𝑃 ⟶∗
𝛽⩾𝑑−𝑎 𝑃𝑑+1 ⟶𝑎𝑏𝑐

𝛽⩾𝑑−𝑎+1 𝑃′.
Set 𝑀𝑑+1 ≔ 𝜆𝑥.𝑃𝑑+1 and conclude with (λ𝛽⩾𝑑′+1) and (λ𝑎𝑏𝑐𝛽⩾𝑑+1).

• Case (@𝑎𝑏𝑐
𝛽⩾𝑑′+1) is similar to the previous one. □
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PROOF OF THEOREM 2.25. Build (𝑀𝑑) by induction on 𝑑, starting from
𝑀0 ≔ 𝑀 ⟶𝑎𝑏𝑐

𝛽⩾0 𝑁 and using the previous lemma. □

This theorem is the only one we actually need in the next chapters, and corre-
sponds to the key lemma 4.11 in Cerda and Vaux Auclair (2023a). However, it
can be strengthened as follows.

THEOREM 2.28 (standardisation, Endrullis and Polonsky 2013). Let 𝑀,𝑁 ∈
Λ𝑎𝑏𝑐 be terms such that 𝑀 ⟶𝑎𝑏𝑐

𝛽 𝑁, then 𝑀 ⟶𝑎𝑏𝑐
𝑤ℎ 𝑁, where⟶𝑎𝑏𝑐

𝑤ℎ denotes
the 𝑎𝑏𝑐-infinitary closure of⟶𝑤ℎ.

2.3.3 Infinitary β⊥-normal forms

Because of the reflexivity of the infinitary closures (lemma 2.17), the notion of
infinitary normal form is not immediate. Let us first make it precise.

DEF IN IT ION 2.29. Let⟶⊂Λ∞
⊥ × Λ∞

⊥ be a reduction, and⟶𝑎𝑏𝑐 be its 𝑎𝑏𝑐-
infinitary closure for 𝑎𝑏𝑐 ∈ 𝟚3. Then 𝑁 ∈ Λ∞

⊥ is an 𝑎𝑏𝑐-infinitary normal form
of𝑀 ∈ Λ∞

⊥ (for⟶) if𝑀 ⟶𝑎𝑏𝑐 𝑁 and 𝑁 is a normal form for⟶.

In particular, this section is about ‘𝑎𝑏𝑐-infinitary β⊥-normal forms’, i.e. 𝑎𝑏𝑐-
infinitary normal forms for ⟶𝛽⊥𝑎𝑏𝑐.
Barendregt (1977) introduced the first notion of infinitary normal form for the
λ-calculus, under the name of ‘Böhm tree’. In Barendregt (1984, § 10.1.3), he
presents an ‘informal definition’ that happens to be a perfectly correct coinduc-
tive definition. It is as follows.

DEF IN IT ION 2.30. Given a term 𝑀 ∈ Λ∞
⊥ , its Böhm tree BT(𝑀) ∈ Λ001

⊥ is
defined by coinduction by:

BT(𝑀) ≔ 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)BT(𝑀1)…BT(𝑀𝑛)
if𝑀 ⟶∗

ℎ 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛,

BT(𝑀) ≔ ⊥ otherwise.

In particular, BT(⊥) = ⊥.

Building upon ideas by Lévy (1975), Longo (1983) then modified this definition
by replacing head reductions and hnf with weak head reductions and whnf.
The resulting trees were called ‘Lévy-Longo trees’ by Ong (1988).

DEF IN IT ION 2.31. Given a term𝑀 ∈ Λ∞
⊥ , its Lévy-Longo tree LLT(𝑀) ∈ Λ101

⊥
is defined by coinduction by:

LLT(𝑀) ≔ (𝑦)LLT(𝑀1)…LLT(𝑀𝑛) if𝑀 ⟶∗
𝑤ℎ (𝑦)𝑀1…𝑀𝑛,

LLT(𝑀) ≔ 𝜆𝑥.LLT(𝑀′) if𝑀 ⟶∗
𝑤ℎ 𝜆𝑥.𝑀′,

LLT(𝑀) ≔ ⊥ otherwise.
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Finally, a third notion of infinitary normal form related to top reductions and
tnf was introduced by Berarducci (1996).

DEF IN IT ION 2.32. Given a term𝑀 ∈ Λ∞
⊥ , itsBerarducci treeBerT(𝑀) ∈ Λ111

⊥
is defined by coinduction by:

BerT(𝑀) ≔ 𝑦 if𝑀 ⟶∗
𝑡 𝑦,

BerT(𝑀) ≔ 𝜆𝑥.BerT(𝑀′) if𝑀 ⟶∗
𝑡 𝜆𝑥.𝑀′,

BerT(𝑀) ≔ (BerT(𝑀0))BerT(𝑀1) if𝑀 ⟶∗
𝑡 (𝑀0)𝑀1 and ord(𝑀0) = 0,

BerT(𝑀) ≔ ⊥ otherwise.

Let us add an important precision: in all three definition, instead of using⟶∗
ℎ

(resp. ⟶∗
𝑤ℎ, ⟶∗

𝑡 ) we could have written ⟶∗
𝛽. We should then have proved

that this gives rise to unique definitions, which is indeed the case as we will
show later on for Böhm and Lévy-Longo trees (theorems 4.20 and 6.11).

LEMMA 2.33. Let𝑀 ∈ Λ∞
⊥ be a term. Then:

1. BT(𝑀) is a normal form for⟶𝛽⊥001,

2. LLT(𝑀) is a normal form for⟶𝛽⊥101,

3. BerT(𝑀) is a normal form for⟶𝛽⊥111.

PROOF. By coinduction, following the definitions of the trees. □

LEMMA 2.34 (weak normalisation). Let𝑀 ∈ Λ∞
⊥ be a term. Then:

1. 𝑀 ⟶001
𝛽⊥ BT(𝑀),

2. 𝑀 ⟶101
𝛽⊥ LLT(𝑀),

3. 𝑀 ⟶111
𝛽⊥ BerT(𝑀).

PROOF. Let us build the first reduction coinductively (the proof is similar for
the two other reductions). If 𝑀 does not have a hnf, then 𝑀 ⟶𝛽⊥001 ⊥ =
BT(𝑀). Otherwise,𝑀 ⟶∗

ℎ 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛, and we build a derivation
as follows. First we apply the rules (λ001𝛽⊥ ) and (▹0) 𝑚 times:

𝑀 ⟶∗
𝛽⊥ 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛

(𝑦)𝑀1…𝑀𝑛 ⟶001
𝛽⊥ (𝑦)BT(𝑀1)…BT(𝑀𝑛)

...
𝜆𝑥2.…⟶001

𝛽⊥ 𝜆𝑥2.…
(▹0)

▹0 𝜆𝑥2.…⟶001
𝛽⊥ 𝜆𝑥2.…

(λ001𝛽⊥ )𝑀 ⟶001
𝛽⊥ 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)BT(𝑀1)…BT(𝑀𝑛)
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then we apply the rule (@001
𝛽⊥ )

(𝑦)𝑀1…𝑀𝑛−1 ⟶001
𝛽⊥ (𝑦)BT(𝑀1)…BT(𝑀𝑛−1)

𝑀𝑛 ⟶001
𝛽⊥ BT(𝑀𝑛)

(▹1)
▹1 𝑀𝑛 ⟶001

𝛽⊥ BT(𝑀𝑛)
(@001

𝛽⊥ )(𝑦)𝑀1…𝑀𝑛 ⟶001
𝛽⊥ (𝑦)BT(𝑀1)…BT(𝑀𝑛)

(where we omitted the first premice). On the left-hand side we proceed in-
ductively, i.e. we apply the rule (@001

𝛽⊥ ) 𝑛 − 1 more times and we end up with
𝑦⟶001

𝛽⊥ 𝑦. On the right-hand sides we build the derivations𝑀𝑗 ⟶001
𝛽⊥ BT(𝑀𝑗)

coinductively, which we are allowed to do since we crossed ▹1. □

A closer look to the proof of lemma 2.34 allows for the following useful refine-
ment in case there is no occurrence of ⊥ in the source and the target of the
reduction.

OBSERVAT ION 2.35. If𝑀 ∈ Λ001 and BT(𝑀) ∈ Λ001, then𝑀 ⟶001
𝛽 BT(𝑀).

Similar restrictions hold for Lévy-Longo and Berarducci trees.

The following consequence was the conclusive result of the pioneering work
by Kennaway, Klop, et al. (1997). As for theorem 2.22, the Taylor approxima-
tion will allow for an elementary proof for Böhm and Lévy-Longo trees (see
corollaries 4.27 and 6.14).

COROLLARY 2.36 (of theorem 2.22). Let𝑀 ∈ Λ∞
⊥ be a term. Then:

1. BT(𝑀) is the unique 001-infinitary β⊥-normal form of𝑀,

2. LLT(𝑀) is the unique 101-infinitary β⊥-normal form of𝑀,

3. BerT(𝑀) is the unique 111-infinitary β⊥-normal form of𝑀.

2.4 Continuous approximation via infinitary reductions

In this last section, let us show how infinitary λ-calculi can give rise to an ar-
guably elegant presentation of the ‘classical’, continuous approximation of the
β-reduction. In particular, using the well-known isomorphism between infini-
tary λ⊥-terms and directed ideals of finite such terms, we give a proof of the
syntactic approximation theorem 2.41. This should come as no surprise, even
though we are not aware of a previous publication of an analogous proof.
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2.4.1 Infinitary terms as directed ideals

The fact that first-order infinitary terms (with an additional constant ⊥) can
be equivalently built by metric completion or by ideal completion is known
since the pioneering paper by Arnold and Nivat (1980). For mixed terms, the
construction has to be slightly adapted; we stick to the presentation by Bahr
(2018) in the limited setting of the λ-calculus.

DEF IN IT ION 2.37. Given 𝑎𝑏𝑐 ∈ 𝟚3, the approximation order ⊑𝑎𝑏𝑐 is defined
by induction on Λ⊥ by

⊥ ⊑𝑎𝑏𝑐 𝑀,

𝜆𝑥.𝑃 ⊑𝑎𝑏𝑐 𝜆𝑥.𝑃′ whenever 𝑃 ⊑𝑎𝑏𝑐 𝑃′ and (𝑃 ≠ ⊥ or 𝑎 = 1),
(𝑃)𝑄 ⊑𝑎𝑏𝑐 (𝑃′)𝑄 whenever 𝑃 ⊑𝑎𝑏𝑐 𝑃′ and (𝑃 ≠ ⊥ or 𝑏 = 1),
(𝑃)𝑄 ⊑𝑎𝑏𝑐 (𝑃)𝑄′ whenever 𝑄 ⊑𝑎𝑏𝑐 𝑄′ and (𝑃 ≠ ⊥ or 𝑐 = 1).

Recall the following notions from order theory.

• Given a poset (𝑃,⩽) and a subset 𝑋 ⊂ 𝑃, the lower set generated by 𝑋 is
defined by 𝑋↓ ≔ {𝑝 ∈ 𝑃 | ∃𝑥 ∈ 𝑋, 𝑝 ⩽ 𝑥 }.

• A subset 𝑋 ⊂ 𝑃 is directed if it has binary joins, i.e. ∀𝑖, 𝑗 ∈ 𝐼, ∃𝑖 ∨ 𝑗 ∈
𝐼, 𝑖, 𝑗 ⩽ 𝑖 ∨ 𝑗.

• A subset 𝐼 ⊂ 𝑃 is an ideal if it is downwards closed (i.e. 𝐼↓ = 𝐼) and
directed.

• The set of all ideals of 𝑃 is denoted by Idl𝑃. The poset (Idl𝑃,⊆) is called
the ideal completion of 𝑃. There is a canonical monotonous inclusion

𝜄 ∶ 𝑃 ↪ Idl𝑃
𝑝 ↦ {𝑝}↓

and Idl𝑃 is directed-complete, i.e. every directed subset of Idl𝑃 has a least
upper bound.

LEMMA 2.38. Let Idl𝑎𝑏𝑐Λ⊥ be the ideal completion of (Λ⊥,⊑𝑎𝑏𝑐). There is a
bijection Λ𝑎𝑏𝑐

⊥ ≃ Idl𝑎𝑏𝑐Λ⊥ such that

Λ𝑎𝑏𝑐
⊥ Idl𝑎𝑏𝑐Λ⊥

Λ⊥ Λ⊥

←→∼

⇐ ⇐

↩ → ↩ →𝜄

commutes.

NOTAT ION 2.39. We also denote by ⊑𝑎𝑏𝑐 the order induced on Λ𝑎𝑏𝑐
⊥ .
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With this notation, the bijection of lemma 2.38 can be written as follows: for
any 𝑀 ∈ Λ𝑎𝑏𝑐

⊥ ,
𝑀 =⨆{𝑃 ∈ Λ⊥ | 𝑃 ⊑𝑎𝑏𝑐 𝑀 } .

In technical terms, (Λ𝑎𝑏𝑐
⊥ ,⊑𝑎𝑏𝑐) is an algebraic directed-complete partial order

(dcpo).

We did not mention how we deal with α-equivalence: we will keep this implicit
here1.

2.4.2 Operational approximation of the β-reduction

The approximation order we defined should be given a meaning as follows:
since ⊥ is used to replace the subterms of a term that are ‘meaningless’ or ‘un-
defined’ (via β⊥-reduction), 𝑀 ⊑ 𝑁 should be thought of as ‘𝑀 is less defined
than 𝑁’, thus the name approximation order. This idea can be used to approx-
imate the operational behaviour of a term 𝑀 under the β-reduction, by saying
that an ‘operational approximant’ of 𝑀 is an approximant of a β-reduct of 𝑀.
This was the main intuition behind Scott semantics (D. Scott 1993, 1972). It
was brought back to syntax by Wadsworth (1971, 1976, 1978) and further de-
velopped throughout the 1970s.

Let us give a quick presentation of this approximation theory. We make use of
the coinductive machinery we introduced in the previous pages; a more tradi-
tional presentation can be found in Barendregt and Manzonetto (2022, § 2.3).

DEF IN IT ION 2.40. The set 𝒜 ⊂ Λ⊥ of head approximants is defined induc-
tively by:

𝒜 ∋ 𝑃,𝑄, ... ≔ ⊥ | 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑃1…𝑃𝑛.

Given a term𝑀 ∈ Λ∞
⊥ , the subset𝒜(𝑀) ⊂ 𝒜 is defined by:

𝒜(𝑀) ≔ { 𝑃 ∈ 𝒜 || ∃𝑀′ ∈ Λ∞
⊥ , 𝑀 ⟶∗

𝛽 𝑀′ and 𝑃 ⊑001 𝑀′ } .

We use ⊑001 in the definition, but one can show that the head approximants
are the λ⊥-terms in β⊥001-normal form, hence for any any other ⊑𝑎𝑏1 would
generate the same 𝒜(−).
The fundamental theorem of this approximation theory follows. Similar the-
orems were first proved wrt. semantic approximations by Wadsworth (1978,
theorem 3.5) and Hyland (1976, theorem 2.5). We present a syntactic reformu-
lation of the latter due to Barendregt (1984, § 19.1).

1 So does most (if not all) of the literature. A careful definition of α-equivalence on infinitary λ-
terms generated by ideal completion was part of the work carried out by Elora Djellas during
an internship under my supervision. Unsurprisingly, the same issues arise as with toplogical
or coinductive formalisms, and the solution is the same too (viz to consider terms with finitely
many free variables).
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THEOREM 2.41 (syntactic approximation theorem). For any𝑀 ∈ Λ∞
⊥ ,

BT(𝑀) = ⨆𝒜(𝑀).

Furthermore, BT(𝑀) = BT(𝑁) iff𝒜(𝑀) = 𝒜(𝑁).

The 001-infinitary λ-calculus provides a useful framework to prove this theo-
rem, as we will now demonstrate.

LEMMA 2.42. For any𝑀 ∈ Λ∞
⊥ in β⊥001-normal form,

𝒜(𝑀) = { 𝑃 ∈ Λ⊥ | 𝑃 ⊑001 𝑀 } .

PROOF. Take 𝑃 ∈ Λ⊥ and 𝑀 ∈ Λ∞
⊥ . Observe that if 𝑃 ⊑001 𝑀 and 𝑀 is in

β⊥001-normal form, then 𝑃 is in β⊥001-normal form too, i.e. 𝑃 ∈ 𝒜 by an easy
induction on 𝑃. □

It is easy to observe that 𝒜(−) is stable under β-reduction, and even under β⊥-
reduction. In fact, we can extend this fact to the 001-infinitary closure of these
reductions.

LEMMA 2.43. Given a head approximant 𝑃 ∈ 𝒜 and terms𝑀,𝑁 ∈ Λ∞
⊥ such

that𝑀 ⟶001
𝛽⊥ 𝑁, 𝑃 ⊑001 𝑀 implies 𝑃 ⊑001 𝑁.

PROOF. We proceed by induction on 𝑃. If 𝑃 = ⊥, the proof is im-
mediate. Otherwise, 𝑃 = 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑃1…𝑃𝑛 and 𝑀 has head form
𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛 with ∀𝑗, 𝑃𝑗 ⊑001 𝑀𝑗 . The reduction𝑀 ⟶001

𝛽⊥ 𝑁 must
result from 𝑚 alternations of rules (λ001𝛽⊥ ) and (▹0), followed by 𝑛 alternations
of rules (@001

𝛽⊥ ) (through their left premice) and (▹0). The right premices of
the rules (@001

𝛽⊥ ) contain hypothses ▹1 𝑀′
𝑗 ⟶𝛽⊥001 𝑁𝑗 such that

1. ∀𝑗, 𝑀𝑗 ⟶∗
𝛽 𝑀′

𝑗 ,

2. 𝑁 = 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑁1…𝑁𝑛.

From (1) we obtain 𝑀𝑗 ⟶𝛽⊥001 𝑁𝑗 by lemma 2.21, thus 𝑃𝑗 ⊑001 𝑁𝑗 by induc-
tion. Then from (2) we reconstruct 𝑃 ⊑001 𝑁. □

LEMMA 2.44. Given terms𝑀,𝑁 ∈ Λ∞
⊥ such that𝑀 ⟶001

𝛽⊥ 𝑁,𝒜(𝑀) = 𝒜(𝑁).

PROOF. We first show the reverse inclusion 𝒜(𝑁) ⊆ 𝒜(𝑀). To do so, let us
show by induction on 𝑃 that:

∀𝑃 ∈ 𝒜, ∀𝑀,𝑁 ∈ Λ∞
⊥ , (𝑃 ∈ 𝒜(𝑁) and 𝑀 ⟶001

𝛽⊥ 𝑁) ⇒ 𝑃 ∈ 𝒜(𝑀).

If 𝑃 = ⊥, the proof is immediate. Otherwise, 𝑃 = 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑃1…𝑃𝑛. Take
𝑀,𝑁 ∈ Λ∞

⊥ .



84 2. infinitary 𝛽-reductions and normal forms

• If𝑃 ∈ 𝒜(𝑁), then there is a reduction𝑁 ⟶∗
𝛽⊥ 𝑁′ ≔ 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑁′

1…𝑁′
𝑛

such that ∀𝑗, 𝑃𝑗 ⊑001 𝑁′
𝑗 .

• If in addition 𝑀 ⟶001
𝛽⊥ 𝑁, then 𝑀 ⟶001

𝛽⊥ 𝑁′. By standardisation and
confluence (theorems 2.22 and 2.28) there are terms 𝑀′

𝑗 and reductions

𝑀 ⟶∗
ℎ 𝜆𝑥1.… 𝜆𝑥𝑚.(𝑦)𝑀′

1…𝑀′
𝑛 and ∀𝑗, 𝑀′

𝑗 ⟶001
𝛽⊥ 𝑁′

𝑗 .

By induction, ∀𝑗, 𝑃𝑗 ∈ 𝒜(𝑀′
𝑗), i.e. there is a reduction 𝑀′

𝑗 ⟶∗
𝛽 𝑀″

𝑗 with
𝑃𝑗 ⊑001 𝑀″

𝑗 . Finally, 𝑀 ⟶∗
𝛽 𝑀″ ≔ 𝜆𝑥𝑚.(𝑦)𝑀″

1 …𝑀″
𝑛 and 𝑃 ⊑001 𝑀″, hence

𝑃 ∈ 𝒜(𝑀).

Conversely, take𝑀,𝑁 ∈ Λ∞
⊥ such that𝑀 ⟶001

𝛽⊥ 𝑁 and 𝑃 ∈ 𝒜(𝑀). Then there
exists 𝑀′ ∈ Λ∞

⊥ (by definition) and 𝑁′ ∈ Λ∞
⊥ (by theorem 2.22) such that

𝑀 𝑀′

𝑁 𝑁′

← →
𝛽
∗

←
→𝛽⊥ ∞

←

→𝛽⊥ ∞

← →
𝛽⊥
∞

and 𝑃 ⊑001 𝑀′. Using the previous lemma, 𝑃 ⊑001 𝑁′, thuq 𝑃 ∈ 𝒜(𝑁) by the
first part of the proof. □

PROOF OF THEOREM 2.41. Take 𝑀 ∈ Λ∞
⊥ .

BT(𝑀) = ⨆{𝑃 ∈ Λ⊥ | 𝑃 ⊑001 BT(𝑀) } by lemma 2.38

=⨆𝒜(BT(𝑀)) by lemma 2.42

=⨆𝒜(𝑀). by lemma 2.44

Furthermore, if𝑀,𝑁 ∈ Λ∞
⊥ are such thatBT(𝑀) = BT(𝑁), then by lemma 2.42

𝒜(𝑀) = 𝒜(𝑁). □

Having in mind the same semantic motivations than Wadsworth, Lévy (1975)
introduced a variant of this approximation theory based on whnf’s rather than
hnf’s. The approximants are as follows.

DEF IN IT ION 2.45. The set 𝒜𝑤 ⊂ Λ⊥ of weak head approximants is defined
inductively by:

𝑃,𝑄, ... ∋ 𝒜𝑤 ≔ ⊥ | 𝜆𝑥.𝑃 | (𝑦)𝑃1…𝑃𝑛.

Given a term𝑀 ∈ Λ∞
⊥ , the subset𝒜𝑤(𝑀) ⊂ 𝒜𝑤 is defined by:

𝒜𝑤(𝑀) ≔ { 𝑃 ∈ 𝒜𝑤 || ∃𝑀′ ∈ Λ∞
⊥ , 𝑀 ⟶∗

𝛽 𝑀′ and 𝑃 ⊑101 𝑀′ } .
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The corresponding approximation theorem is due to Longo (1983, theo-
rem A.6). His proof is adapted from Hyland’s; ours can be straightforwardly
adapted too.

THEOREM 2.46. For any𝑀 ∈ Λ∞
⊥ ,

LLT(𝑀) = ⨆𝒜𝑤(𝑀).

Furthermore, LLT(𝑀) = LLT(𝑁) iff𝒜𝑤(𝑀) = 𝒜𝑤(𝑁).

There is no straightforward counterpart of theorems 2.41 and 2.46 for Berar-
ducci trees, because tnf’s are not build by a static induction: the definition
relies on the order of the reducts of the terms, which forbids a definition of ‘top
approximants’ by structural induction.
More formally, as underlined by Kennaway, Severi, et al. (2005) the map

BerT ∶ Λ111
⊥ → Λ111

⊥

is not monotonous wrt. ⊑111. In fact, even though there are other meaningless
sets giving rise to a monotonous normal form map, only BT and LLT are Scott-
continuous wrt. the corresponding order structure. We will hear about this
fact again at the very end of this manuscript (see section 6.3).

D





Chapter 3

Resource λ-calculi

Who cares about how the cans feel?
What about how I feel? Loading, more
loading, unloading... How I wish cans
wouldn’t expire!

Wong Kar-Wai’s Chungking Express

We provide a synthesis of the construction of resource λ-calculi, as well as its
key properties. Our presentation is adapted from Vaux (2019).

3.1 Rewriting with sums

We first introduce a construction allowing to lift a reduction defined on some
terms to (possibily infinite) linear combinations of such terms. Introduced by
Vaux (2017) as way to reduce Taylor approximants of a λ-terms in a parallel way,
this setting (that we call the ‘double-lifting’ construction, because it involves a
first lifting to finite sums followed by a second one to infinite sums) can be
given a general presentation. We do so, as we think this construction is also of
interest beyond the setting of resource λ-calculi and Taylor expansion.

3.1.1 Semirings, semimodules

DEF IN IT ION 3.1. A monoid (𝕄, ⋅, 𝑒) is a set 𝕄 equipped with an associative
composition law ⋅ having a neutral element 𝑒.
A commutative semiring (𝕊,+,×, 0, 1) is a set𝕊 equippedwith twomonoid struc-
tures (𝕊,+, 0) and (𝕊,×, 1) such that + and × are commutative and (×, 1) dis-
tributes over (+, 0).

In general, a semiring need not be commutative (i.e. × need not be commuta-
tive), but we will only consider commutative semirings; we call them ‘semir-
ings’ in all what follows, leaving the commutativity assumption implicit.
ℕ,ℚ+ andℝ+ are usual examples of semirings. The set 𝟚 of booleans, equipped
with the disjunction + and the conjunction × (and their respective neutral ele-
ments 0 and 1) is also a semiring.
Let us define some useful properties of monoids and semirings.
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NOTAT ION 3.2. For any semiring 𝕊, notice that there is a canonical semiring
morphism ℕ → 𝕊 generated by 0 ↦ 0 and 1 ↦ 1. Hence we identify 𝑛 ∈ ℕ with
its image, which we will denote by 𝑛 ∈ 𝕊.

DEF IN IT ION 3.3. A semiring 𝕊 is said to have fractions if all 𝑛 ∈ 𝕊 − {0} has
a multiplicative inverse 1

𝑛
.

DEF IN IT ION 3.4. A monoid (𝕄,+, 0) is positive or zerosumfree if ∀𝑎, 𝑏 ∈
𝕄, 𝑎 + 𝑏 = 0 ⇒ 𝑎 = 𝑏 = 0. A semiring is positive if its additive monoid is
positive.

DEF IN IT ION 3.5. A monoid 𝕄 is a refinement monoid if, for all (𝑎𝑖) ∈ 𝕄𝑚

and (𝑏𝑗) ∈ 𝕄𝑛 such that ∑𝑚
𝑖=1 𝑎𝑖 = ∑𝑛

𝑗=1 𝑏𝑗 , there is a family (𝑐𝑖,𝑗) ∈ 𝕄𝑚×𝑛

such that

∀𝑖, 𝑎𝑖 =
𝑛
∑
𝑗=1

𝑐𝑖,𝑗 and ∀𝑗, 𝑏𝑖 =
𝑚
∑
𝑖=1

𝑐𝑖,𝑗 .

An additive refinement semiring is a semiring whose additive monoid has the
refinement property.

The refinement property is known in the Linear logics community as the ‘split-
ting’ property, following Carraro (2010, definition 8.2.1)1.

From now on, let us fix a semiring 𝕊 whose elements will be called scalars.

DEF IN IT ION 3.6. A 𝕊-semimodule (𝐸,+, 0, ⋅) is a set 𝐸 equipped with a com-
mutativemonoid structure (𝐸,+, 0) and an external composition law ⋅ ∶ 𝕊×𝐸 →
𝐸 satisfying the following axioms:

0 ⋅ 𝑥 = 0 (𝑎 + 𝑏) ⋅ 𝑥 = 𝑎 ⋅ 𝑥 + 𝑏 ⋅ 𝑥
1 ⋅ 𝑥 = 𝑥 (𝑎 × 𝑏) ⋅ 𝑥 = 𝑎 ⋅ (𝑏 ⋅ 𝑥)
𝑎 ⋅ 0 = 0 𝑎 ⋅ (𝑥 + 𝑦) = 𝑎 ⋅ 𝑥 + 𝑎 ⋅ 𝑦.

These axioms allow for the usual omission of ⋅ and ×. For instance, (𝑎 × 𝑏) ⋅ 𝑥
is written 𝑎𝑏𝑥.
In practice, we will mostly consider the two following semimodules.

DEF IN IT ION 3.7. Given a set Ξ, the semimodule 𝕊Ξ of vectors of basis Ξ is the
set of all Ξ-indexed families of scalars, equipped with a semimodule structure by
𝑏 ⋅ (𝑎𝑥)𝑥∈Ξ ≔ (𝑏𝑎𝑥)𝑥∈Ξ. Such a vector (𝑎𝑥)𝑥∈Ξ can be seen as a formal sum and
will be denoted by∑𝑥∈Ξ 𝑎𝑥𝑥.

1 The original property and its name are due to Tarski (1949, definition 1.1). They were kindly
brought to our attention by Marcelo Fiore. Yet another name is the ‘Riesz interpolation prop-
erty’ (Grillet 1970). The first definition of refinement monoids is due to Dobbertin (1982).
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Given a vector 𝐗 = ∑𝑥∈Ξ 𝑎𝑥𝑥, we define its support by |𝐗| ≔ { 𝑥 ∈ Ξ | 𝑎𝑥 ≠ 0 }.
The sub-semimodule of all finitely supported vectors in 𝕊Ξ is defined by

𝕊(Ξ) ≔ {𝐗 ∈ 𝕊Ξ || |𝐗| is finite } .

We will denote by boldface capital 𝐗,𝐘,… the elements of 𝕊Ξ, and by regular
capital 𝑋,𝑌 ,… the elements of 𝕊(Ξ).
Also, we will use the additive formalism in the usual way. In particular:

• we denote by 0 the vector whose coefficients are all equal to 0,

• we assimilate each 𝑥 ∈ Ξ to the corresponding ‘one-element sum’, i.e. the
vector ∑𝑦∈Ξ 𝟙{𝑥}(𝑦)𝑦, and we write Ξ ⊂ 𝕊(Ξ) accordingly,

• we allow for other index sets than just Ξ when dealing with vectors, and
we typically write ∑𝑥∈|𝐗| 𝐗𝑥𝑥 for 𝐗 = ∑𝑥∈Ξ 𝐗𝑥𝑥. This also allows for
redundancies, e.g. 3𝑥 = 𝑥 + 2𝑥 = ∑𝑖∈{1,2} 𝑖𝑥𝑖 with 𝑥1 = 𝑥2 = 𝑥.

However, one has to be careful while manipulating an additive formalism with
infinitely supported vectors: arbitrary sums of such vectors are only possible
provided the summands form a summable family.

DEF IN IT ION 3.8. A family (𝐗𝑖) ∈ (𝕊Ξ)𝐼 of vectors is summable if for each
𝑥 ∈ Ξ, there are only finitely many 𝑖 ∈ 𝐼 such that 𝑥 ∈ |𝐗𝑖|. In this case, we can
define

∑
𝑖∈𝐼

𝐗𝑖 ≔ ∑
𝑥∈Ξ

(∑
𝑖∈𝐼

𝐗𝑖,𝑥) 𝑥,

with 𝐗𝑖 = ∑𝑥∈Ξ 𝐗𝑖,𝑥𝑥.

Summable families are studied in Vaux (2019), as a particular case of the frame-
work of finiteness spaces investigated by Ehrhard (2005).

3.1.2 Lifting reductions to sums

The kind of construction we want to perform is as follows. We are given a
reduction relation

⟶⊂ Ξ× 𝕊Ξ,

and we want to be able to consider iterated reductions, so we need to define a
kind of transitive closure. To do so, we lift this relation to sums, constructing

˜̃⟶⊂ 𝕊Ξ × 𝕊Ξ.

We do this in a rather natural way: the elements of a sum can be reduced point-
wise, and we want to ensure that at least one element is reduced. This is ex-
pressed by the following definition general.
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DEF IN IT ION 3.9. The lifting to sums of the relation⟶⊂ Ξ×𝕊Ξ is the relation
˜̃⟶⊂ 𝕊Ξ × 𝕊Ξ defined by saying that 𝐗 ⟶̃ 𝐘 whenever:

1. there exists a summable family (𝑥𝑖)𝑖∈𝐼 of elements of Ξ such that
𝐗 = ∑𝑖∈𝐼 𝑎𝑖𝑥𝑖,

2. there exists a summable family (𝐘 𝑖)𝑖∈𝐼 of elements of 𝕊Ξ such that 𝐘 =
∑𝑖∈𝐼 𝑎𝑖𝐘 𝑖,

3. for some 𝑖0 ∈ 𝐼, 𝑎𝑖0 ≠ 0 and 𝑥𝑖0 ⟶𝐘 𝑖0 ,

4. for all other 𝑖 ∈ 𝐼, 𝑥𝑖 ⟶? 𝐘 𝑖.

The second summability condition is crucial. As a counterexample, take Ξ ≔
{ 𝑥𝑛 | 𝑛 ∈ ℕ } and ⟶ such that ∀𝑛 ∈ ℕ, 𝑥𝑛 ⟶ 𝑥0. Then 𝐗 ≔ ∑𝑛∈ℕ 𝑥𝑛 is
perfectly defined, but𝐗 ˜̃⟶∑𝑛∈ℕ 𝑥0 would make no sense as soon as (𝑥0)𝑛∈ℕ
is not summable.

Observe that 𝑥𝑖 ⟶? 𝐘 𝑖 is an abuse of notation: taking the reflexive closure of
⟶ only makes sense if we consider Ξ as a subset of 𝕊Ξ. In practice, we will
apply the lifting to a reflexive ⟶ (see section 3.1.5), in which case it is not
useful to distinguish an 𝑖0 and we can just merge the last two conditions into
∀𝑖 ∈ 𝐼, 𝑥𝑖 ⟶𝐘 𝑖.

In the particular case where ⟶ ⊂ Ξ × 𝕊(Ξ), we can restrict this definition
to finite sums. This allows to drop the summability assumptions, which will
appear to be a crucial advantage.

DEF IN IT ION 3.10. The lifting to finite sums of the relation⟶ ⊂ Ξ× 𝕊(Ξ) is
the relation⟶̃ ⊂ 𝕊(Ξ) × 𝕊(Ξ) defined by the rule:

𝑎1 ≠ 0 𝑥1 ⟶𝑌1 ∀𝑖 ⩾ 2, 𝑥𝑖 ⟶? 𝑌 𝑖 (Σ)
∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 ⟶̃ ∑𝑛
𝑖=1 𝑎𝑖𝑌 𝑖

In practice we will mostly use 𝕊 = ℕ, in which case we can even drop the
coefficients:

𝑥1 ⟶𝑌1 ∀𝑖 ⩾ 2, 𝑥𝑖 ⟶? 𝑌 𝑖 (Σ′)
∑𝑛

𝑖=1 𝑥𝑖 ⟶̃ ∑𝑛
𝑖=1 𝑌 𝑖

As usual, we are interested in the confluence and the normalisation properties
of these reductions.
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3.1.3 Non-)Confluence of the lifted reductions

Let us first study the confluence of the liftings of reductions to finite and infinite
sums. This gives a first illustration of a general ‘principle’: reductions on finite
sums are well-behaved, reductions on infinite sums are ill-behaved.

The following ‘strong confluence’ lemma will give rise to the key confluence
result of the resource λ-calculus (theorem 3.29) as a particular case.

LEMMA 3.1 1. Consider the lifting to finite sums⟶̃ ⊂ 𝕊(Ξ)×𝕊(Ξ) of a reduction
⟶ ⊂ Ξ × 𝕊(Ξ). Suppose 𝕊 is an additive refinement semiring. Then ⟶̃? has
the diamond property iff

𝑥
∀𝑥 ∈ Ξ, ∀𝑌1,𝑌2 ∈ 𝕊(Ξ) such that

𝑌1 𝑌2
∃𝑍 ∈ 𝕊(Ξ) such that

𝑍

←→
←

→

←

→
∼
? ←→∼?

PROOF. Suppose 𝕊 is an additive refinement semiring and ⟶ enjoys the
given property. Take 𝑋,𝑌 ,𝑌 ′ ∈ 𝕊(Ξ) such that 𝑋 ⟶̃? 𝑌 and 𝑋 ⟶̃? 𝑌 ′. If
𝑋 = 𝑌 or 𝑋 = 𝑌 ′, closing the diagram is immediate. Otherwise, we can write

𝑋 =
𝑚
∑
𝑖=1

𝑎𝑖𝑥𝑖 𝑌 =
𝑚
∑
𝑖=1

𝑎𝑖𝑌 𝑖 𝑥1 ⟶𝑌1 ∀𝑖 ⩾ 2, 𝑥𝑖 ⟶? 𝑌 𝑖,

𝑋 =
𝑛
∑
𝑗=1

𝑏𝑗𝑥′𝑗 𝑌 ′ =
𝑛
∑
𝑗=1

𝑏𝑏𝑌 ′
𝑗 𝑥′1 ⟶𝑌 ′

1 ∀𝑗 ⩾ 2, 𝑥′𝑗 ⟶? 𝑌 𝑗,

where we can assume that all the 𝑎𝑖 and 𝑏𝑗 are nonzero. Take 𝑥 ∈ |𝑋|, and
denote by 𝑋𝑥 the coefficient of 𝑥 in 𝑋 and define 𝐼𝑥 ≔ { 𝑖 ∈ {1,… ,𝑚} | 𝑥𝑖 = 𝑥 }
and 𝐽𝑥 ≔ { 𝑗 ∈ {1,… ,𝑛} || 𝑥′𝑗 = 𝑥 }. We have

𝑋𝑥 = ∑
𝑖∈𝐼𝑥

𝑎𝑖 = ∑
𝑗∈𝐽𝑥

𝑏𝑗

and we can use the refinement property to get coefficients (𝑐𝑥𝑖,𝑗) such that

𝑋𝑥 = ∑
𝑖∈𝐼𝑥
𝑗∈𝐽𝑥

𝑐𝑥𝑖,𝑗 ∀𝑖 ∈ 𝐼𝑥, 𝑎𝑖 = ∑
𝑗∈𝐽𝑥

𝑐𝑥𝑖,𝑗 ∀𝑗 ∈ 𝐽𝑥, 𝑏𝑗 = ∑
𝑖∈𝐼𝑥

𝑐𝑥𝑖,𝑗 .

By assumption, for all 𝑖 ∈ 𝐼𝑥 and 𝑗 ∈ 𝐽𝑥, there is an 𝑍𝑖,𝑗 ∈ 𝕊(Ξ) such that
𝑌 𝑖 ⟶̃

? 𝑍𝑖,𝑗 and 𝑌 ′
𝑗 ⟶̃

? 𝑍𝑖,𝑗 , hence

𝑌 = ∑
𝑥∈|𝑋|

∑
𝑖∈𝐼𝑥
𝑗∈𝐽𝑥

𝑐𝑥𝑖,𝑗𝑌 𝑖 ⟶̃
? 𝑍 ≔ ∑

𝑥∈|𝑋|
∑
𝑖∈𝐼𝑥
𝑗∈𝐽𝑥

𝑐𝑥𝑖,𝑗𝑍𝑖,𝑗,
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and similarly 𝑌 ′ ⟶̃? 𝑍. The converse implication is immediate. □

Alas, the summability assumption breaks this confluence result in the case of
a lifting to infinite sums.

COUNTEREXAMPLE 3.12. Take 𝕊 = ℕ. Consider some Ξ containing ele-
ments 𝑥𝑛, 𝑦𝑛 and 𝑦′𝑛 for each 𝑛 ∈ ℕ, as well as some 𝑧, all of these elements being
pairwise distinct. Let Ξ be endowed with a reduction⟶ satisfying the assump-
tion of lemma 3.11, such that in particular the elements listed above can only be
reduced as follows:

𝑥𝑛

𝑦𝑛 𝑦′𝑛

𝑧

←→ ←

→

←

→ ←→

Then∑𝑛∈ℕ 𝑥𝑛 ˜̃⟶∑𝑛∈ℕ 𝑦𝑛 and∑𝑛∈ℕ 𝑥𝑛 ˜̃⟶∑𝑛∈ℕ 𝑦′𝑛, but the diagram can-
not be closed because (𝑧)𝑛∈ℕ is not summable.

Such impediments might be circumvented by considering a complete semiring
𝕊, i.e. a sumiring with an additional structure allowing for infinite sums (Con-
way 1971; Eilenberg 1974). Nevertheless, we will not need to play with such
black magic in this thesis.

3.1.4 Non-)Normalisation of the lifted reductions

As regards normalisation, even the liftings to finite sums lack normalisation
properties in general. We will nonetheless be able to rely on the following result
in the particular case where 𝕊 is ℕ.

LEMMA 3.13. Consider the lifting to finite sums⟶̃ ⊂ ℕ(Ξ)×ℕ(Ξ) of a reduction
⟶⊂ Ξ×ℕ(Ξ). If there is a well-founded order ⪯ such that

∀𝑥 ∈ Ξ, ∀𝑌 ∈ ℕ(Ξ) such that 𝑥⟶ 𝑌 , ∀𝑦 ∈ |𝑌| , 𝑦 ≺ 𝑥,

then⟶̃ is strongly normalising.

NOTAT ION 3.14. Given a set Ξ, we denote by !Ξ the set of multisets of elements
of Ξ. A single multiset is denoted by ̄𝑥 = [𝑥1,… ,𝑥𝑛] where the elements 𝑥𝑖 are
presented in an arbitrary order, and 𝑛 = # ̄𝑥 is the cardinal of ̄𝑥 (with multiplici-
ties).
Multisets are denoted with a multiplicative formalism, i.e. the union of ̄𝑡 and �̄� is
denoted by ̄𝑡 ⋅ �̄�. By extension, the multiset obtained by adding an occurrence of
𝑥 to ̄𝑡 is denoted by 𝑥 ⋅ ̄𝑡, and the empty multiset is denoted by 1.

DEF IN IT ION 3.15. Given an ordered set (Ξ,⪯), the multiset ordering ⪯! ⊂
!Ξ × !Ξ is defined by saying that ̄𝑡 ≺! �̄� whenever there exists ̄𝑥, ̄𝑦 ∈ !Ξ such that:
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1. ̄𝑥 ≠ 1,

2. ̄𝑡 ⋅ ̄𝑥 = �̄� ⋅ ̄𝑦,

3. ∀𝑦 ∈ ̄𝑦, ∃𝑥 ∈ ̄𝑥, 𝑦 ≺ 𝑥.

Informally, ̄𝑡 ≺! ̄𝑢 if ̄𝑢 can be obtained from ̄𝑡 by deleting at least an element
(the elements of ̄𝑥), and adding as many elements as you want (the elements
of ̄𝑦) provided each one is smaller than one of the deleted elements.

LEMMA 3.16 (Dershowitz and Manna 1979). If ⪯ is a well-founded ordering,
then so is ⪯!.

PROOF OF LEMMA 3.13. Observe that there is a bijection

ℕ(Ξ) ≃ !Ξ
𝑚
∑
𝑖=1

𝑎𝑖𝑥𝑖 ↦ [𝑥1,… ,𝑥1⏟⎵⏟⎵⏟
𝑎1 times

,… ,𝑥𝑚,… ,𝑥𝑚⏟⎵⎵⏟⎵⎵⏟
𝑎𝑚 times

].

The hypothesis on ⪯ implies that whenever 𝑋 ⟶̃ 𝑌 , 𝑌 ≺! 𝑋 through the
bijection. Strong normalisation follows by the well-foundedness of ⪯!. □

The proof strongly relies on the existence of the given bijection. On the contrary,
strong normalisation cannot be deduced from similar hypotheses when𝕊 is, for
instance, ℚ or 𝟚. As soon as there is a reduction 𝑋 ⟶̃ 𝑌 , we have:

𝑋 = 1
2
𝑋 + 1

2
𝑋 ⟶̃ 1

2
𝑋 + 1

2
𝑌 in ℚ(Ξ)

𝑋 = 𝑋 + 𝑋 ⟶̃ 𝑋 + 𝑌 in 𝟚(Ξ)

which can be turned into infinite sequences of reductions.
The sums being infinite also prevents any strong normalisation result similar to
lemma 3.13. Indeed, as soon as Ξ contains infinitely many reducible elements,
one can form their sum and reduce the elements one by one.

3.1.5 The double-lifting construction

Our goal is to give a general presentation of ‘rewriting with sums’, i.e. rewriting
featuring reductions that may act on sums and produce sums. In particular, we
are interested in the following setting. We start with a reduction acting finitarily
on terms,

⟶⊂ Ξ×ℕ(Ξ),

and we want to make it act on infinite sums. How should we describe iterated
reductions?
A first idea is to consider the lifting to infinite sums ˜̃⟶ and to take its reflexive-
transitive closure ˜̃⟶

∗
, just as we would do for any other reduction. This is

described in fig. 3.1a.
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( a ) The naive iteration: ˜̃⟶
∗
.

( b ) The double-lifting iteration.

F IGURE 3.1 . Two ways of iterating ⟶ on infinite sums.

However it does not give a satisfactory account of the dynamics induced on 𝕊Ξ
by iterations of ⟶. As an example, consider elements 𝑥𝑖,𝑗 ∈ Ξ for 𝑖, 𝑗 ∈ ℕ,
together with reductions 𝑥𝑖,𝑗+1 ⟶𝑥𝑖,𝑗 for all 𝑖, 𝑗. Then for all 𝑖 ∈ ℕ, 𝑥𝑖,𝑖 ˜̃⟶

𝑖

𝑥𝑖,0. If we assume that there is no shorter reduction from 𝑥𝑖,𝑖 to 𝑥𝑖,0, we have

∀𝑖 ∈ ℕ, 𝑥𝑖,𝑖 ˜̃⟶
∗
𝑥𝑖,0 but not ∑

𝑖∈ℕ
𝑥𝑖,𝑖 ˜̃⟶

∗
∑
𝑖∈ℕ

𝑥𝑖,0,

which suggests that ˜̃⟶
∗

is ill-behaved: it is not necessarily able to reach the
‘pointwise normal form’ of a sum, even if the reduction of single elements of Ξ
does only generate a finite number of finite sums (which will be the case of the
reduction of resource λ-terms).

What we want to do instead is to perform an arbitrary number of reduction
steps from any element of a sum, as described in fig. 3.1b. Formally, we de-
fine the following construction due to Vaux (2017). We call it the double-lifting
construction.

1. We start from some reduction ⟶⊂ Ξ×ℕ(Ξ).

2. We build its lifting to finite sums⟶̃ ⊂ ℕ(Ξ)×ℕ(Ξ). This reduction enjoys
the desirable properties provided by lemmas 3.11 and 3.13.

3. We iterate this reduction by taking its reflexive-transitive closure (as in
fig. 3.1a, but only on finite sums) and obtain ⟶̃∗.
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4. We restrict the latter to ⟶̃∗ ⊂ Ξ × ℕ(Ξ) by assimilating elements of Ξ
to one-element sums. This reduction takes a single element of Ξ, and
performs an arbitrary number of parallel reductions2.

5. This induces a reduction ⟶̃∗ ⊂ Ξ × 𝕊(Ξ), by the canonical morphism
ℕ → 𝕊.

6. Finally, we lift this reduction to infinite sums. Using the above notations,
we construct

−↠ ≔ ˜̃⟶∗ ⊂ 𝕊Ξ × 𝕊Ξ.

As already underlined, there is no hope for general results of confluence or
normalisation for such a reduction. Even the following legitimate question is
unclear to us.

OPEN QUEST ION 3.17. Under which hypotheses is −↠ transitive?

FALLAC IOUS TRANS IT IV ITY PROOF. Suppose there are reductions 𝐗 −↠
𝐘 −↠ 𝐙, i.e. we can write

𝐗 = ∑
𝑖∈𝐼

𝑎𝑖𝑥𝑖 𝐘 = ∑
𝑖∈𝐼

𝑎𝑖𝑌 𝑖 ∀𝑖 ∈ 𝐼, 𝑥𝑖 ⟶̃
∗ 𝑌 𝑖

𝐘 = ∑
𝑗∈𝐽

𝑏𝑗𝑦𝑗 𝐙 = ∑
𝑗∈𝐽

𝑏𝑗𝑍𝑗 ∀𝑗 ∈ 𝐽, 𝑦𝑗 ⟶̃
∗ 𝑍𝑗 .

For all 𝑖 ∈ 𝐼, |𝑌 𝑖| ⊂ { 𝑦𝑗 || 𝑗 ∈ 𝐽 } so we can introduce the notation 𝑌 𝑖 =
∑𝑗∈𝐽 𝑐𝑖𝑗𝑦𝑗 . We get:

𝐘 = ∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑎𝑖𝑐𝑖𝑗𝑦𝑗 = ∑
𝑗∈𝐽

𝑏𝑗𝑦𝑗, (3.1)

hence for all 𝑗 ∈ 𝐽, ∑𝑖∈𝐼 𝑎𝑖𝑐𝑖𝑗 = 𝑏𝑗 . As a consequence,

𝐙 = ∑
𝑗∈𝐽

(∑
𝑖∈𝐼

𝑎𝑖𝑐𝑖𝑗)𝑍𝑗 = ∑
𝑖∈𝐼

𝑎𝑖 (∑
𝑗∈𝐽

𝑐𝑖𝑗𝑍𝑗) .

Observe also that for all 𝑖 ∈ 𝐼,

𝑥𝑖 ⟶̃
∗ 𝑌 𝑖 = ∑

𝑗∈𝐽
𝑐𝑖𝑗𝑦𝑗 ⟶̃

∗ ∑
𝑗∈𝐽

𝑐𝑖𝑗𝑍𝑗,

wich shows that 𝐗 −↠ 𝐙. □

However, there is a mistake here: the consequence we draw from eq. (3.1) is
false because all the 𝑦𝑗 are not pairwise distinct. Hence, the only valid conse-

2 To be completely rigorous, it performs a bounded number of parallel reductions, since the
definition of ⟶̃ involves both ⟶ and ⟶?.
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quence we can deduce from eq. (3.1) is the following:

∀𝑦 ∈ |𝑌| , ∑
𝑖∈𝐼

∑
𝑗∈𝐽
𝑦𝑗=𝑦

𝑎𝑖𝑐𝑖𝑗 = ∑
𝑗∈𝐽
𝑦𝑗=𝑦

𝑏𝑗,

which is unfortunately way less interesting. Despite several attemps together
with Lionel Vaux, we were not able to patch the proof satisfactorily (even in a
very well-behaved setting, e.g. if 𝕊 is an additive refinement semiring and has
fractions).
However this problem is not critical: the transitivity holds for degenerate rea-
sons when 𝕊 is 𝟚 (see corollary 3.52), which was what we needed for the use we
make of −↠ in the qualitative resource λ-calculus. For the quantitative setting,
we had to design another lifting technique that will be presented in section 4.4.2
and gives rise to a restricted transitivity result (corollary 4.47).

3.2 Resource terms and reductions

The resource λ-calculus is the target language of the Taylor expansion of λ-
terms, i.e. it is the ‘language of approximants’ of the Taylor approximation.
It was introduced by Ehrhard and Regnier (2008) as the fully linear fragment
of their differential λ-calculus (Ehrhard and Regnier 2003). Similar λ-terms
had already been considered by Boudol (1993) who defined a ‘λ-calculus with
multiplicities’, but the dynamics was completely different.

3.2.1 Resource expressions and their sums

As in chapter 1, we fix a countable set 𝒱 of variables as well as a semiring 𝕊.

DEF IN IT ION 3.18 (informal). The set Λr of resource λ-terms is inductively de-
fined as follows:

Λr ∋ 𝑠, 𝑡,… ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) ̄𝑡 (𝑥 ∈ 𝒱, ̄𝑡 ∈ !Λr)

where !Λr is the set of multisets of elements ofΛr, called resource bags or resource
monomials.

To denote Λr or !Λr indistinctly, we will sometimes write (!)Λr and call its ele-
ments resource expressions.
We called the definition ‘informal’ because what we really want to consider are,
as usual, α-equivalence classes of resource terms. Fortunately, the definition
fits into the nominal formalism, even if the presence of multisets forbids definig
Λr as a term algebra over some binding signature. We have to give an explicit
definition, using the well-known multiset functor ! ∶ 𝐒𝐞𝐭 → 𝐒𝐞𝐭 defined by

!𝑓 ∶ [𝑥1,… ,𝑥𝑛] ↦ [𝑓(𝑥1),… ,𝑓(𝑥𝑛)].
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Notice that it can easily be turned into a functor ! ∶ 𝐍𝐨𝐦 → 𝐍𝐨𝐦. Indeed,
given a nominal set (Ξ, ⋅), the 𝔖fs(𝒱)-action defined on !Ξ by

𝜎 ⋅ [𝑥1,… ,𝑥𝑛] ≔ [𝜎 ⋅ 𝑥1,… ,𝜎 ⋅ 𝑥𝑛]

is finitely supported, with supp([𝑥1,… ,𝑥𝑛]) = ⋃𝑛
𝑖=1 supp𝑥𝑖; and for any equiv-

ariant 𝑓, it is easy to deduce that !𝑓 is also equivariant.

LEMMA 3.19. The multiset functor ! ∶ 𝐍𝐨𝐦 → 𝐍𝐨𝐦 is 𝜔-continuous.

PROOF. Since the forgetful functor 𝑈 ∶ 𝐍𝐨𝐦 → 𝐒𝐞𝐭 creates all colimits, it
is enough to show that ! ∶ 𝐒𝐞𝐭 → 𝐒𝐞𝐭 is 𝜔-continuous. More generally, let us
show that it preserves directed colimits. To do so, notice that we can represent
a multiset in !Ξ as a map from a finite set to Ξ:

!Ξ ≔ ∐
𝑛∈ℕ

𝐒𝐞𝐭(𝑛,Ξ).

Then given any directed diagram 𝑋 ∶ 𝐉 → 𝐒𝐞𝐭,

∐
𝑛∈ℕ

𝐒𝐞𝐭 (𝑛, colim
𝑗∈𝐉

𝑋𝑗) = ∐
𝑛∈ℕ

colim
𝑗∈𝐉

𝐒𝐞𝐭(𝑛,𝑋𝑗)

by finite presentability of finite sets,

= colim
𝑗∈𝐉

∐
𝑛∈ℕ

𝐒𝐞𝐭(𝑛,𝑋𝑗)

by commutation of colimits. This means that ! colim𝑗 𝑋𝑗 = colim𝑗 !𝑋𝑗 . □

This lemma guarantees the validity of the following definition, thanks to theo-
rem 1.5.

DEF IN IT ION 3.20. The nominal algebra Λr of resource λ-terms is defined by:

Λr ≔ µ𝑋.𝒱 + 𝒱 × 𝑋 + 𝑋 × !𝑋.

α-equivalence is defined on Λr as usual for finite λ-terms, by considering the
following lifting to !Λr:

𝑡1 =𝛼 𝑡′1 … 𝑡𝑛 =𝛼 𝑡′𝑛
[𝑡1,… , 𝑡𝑛] =𝛼 [𝑡′1,… , 𝑡′𝑛]

LEMMA 3.21. The nominal set Λr/=𝛼 of α-equivalence classes of resource λ-
terms is the initial algebra µ𝑋.𝒱 + [𝒱]𝑋 + 𝑋 × !𝑋 .

PROOF. Adapt theorem 1.45, i.e. thm. 8.15 from Pitts (2013). □
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From now on, we forget about α-equivalence and we will just write Λr instead
of Λr/=𝛼. We also keep the inductive definitions informal.

NOTAT ION 3.22. We extend the syntactic constructors of resource expressions
to resource sums (or resource vectors), i.e. elements of 𝕊(!)Λr . For sums 𝐒 =
∑𝑖∈𝐼 𝑎𝑖𝑠𝑖 ∈ 𝕊Λr and �̄� = ∑𝑗∈𝐽 𝑏𝑗 ̄𝑡𝑗 ∈ 𝕊!Λr , we write

𝜆𝑥.𝐒 ≔ ∑
𝑖∈𝐼

𝑎𝑖 ⋅ 𝜆𝑥.𝑠𝑖 (𝐒) �̄� ≔ ∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑎𝑖𝑏𝑗 ⋅ (𝑠𝑖) ̄𝑡𝑗

and for 𝐒𝑘 = ∑𝑖∈𝐼𝑘
𝑐𝑘,𝑖𝑠𝑘,𝑖 ∈ 𝕊Λr , with 1 ⩽ 𝑘 ⩽ 𝑛,

[𝐒1,… , 𝐒𝑛] ≔ ∑
𝑖1∈𝐼1

… ∑
𝑖𝑛∈𝐼𝑛

(
𝑛
∏
𝑘=1

𝑐𝑘,𝑖𝑘) ⋅ [𝑠1,𝑖1 ,… , 𝑠𝑛,𝑖𝑛] .

This is innocuous when dealing with finite sums, but in general one has to
prove that the families we consider are summable! Fortunately, the proof is
straightforward (Vaux 2019, lem. 4.1), hence this notation is well-defined.

In particular, notice that the following identites hold when one of the sums we
consider is the zero sum:

𝜆𝑥.0 = 0 (0) �̄� = 0 (𝐒) 0 = 0 [𝐒1,… , 0,… , 𝐒𝑘] = 0.

This will play a crucial role in the dynamics of the resource λ-calculus, since it
will allow for the erasure of meaningless reduction paths all at once.

3.2.2 Multilinear substitution

As said above, the resource λ-calculus can be seen as a fragment of the differ-
ential λ-calculus. In particular, the multilinear substitution (that will play the
role of substitution in the resource β-reduction) is formally defined using iter-
ated partial derivatives:

𝑠⟨ ̄𝑡/𝑥⟩ ≔ ( 𝜕
𝑛𝑠
𝜕𝑥𝑛 ⋅ ̄𝑡) [0/𝑥].

We will not recall the details of this definition, since it is of no use for the fol-
lowing. We refer to the original construction by Ehrhard and Regnier (2008,
§ 1.2.4 sqq.) and to its synthesis by Vaux (2019, § 3.2 sq.) for the details.

DEF IN IT ION 3.23. For all variables 𝑥 ∈ 𝒱 and resource expressions 𝑢 ∈ (!)Λr,
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the degree in 𝑥 of 𝑢 is inductively defined by:

deg𝑥(𝑥) ≔ 1
deg𝑥(𝑦) ≔ 0 for 𝑦 ≠ 𝑥

deg𝑥(𝜆𝑦.𝑠) ≔ deg𝑥(𝑢) choosing 𝑦 ≠ 𝑥
deg𝑥((𝑠) ̄̄𝑡) ≔ deg𝑥(𝑠) + deg𝑥( ̄𝑡)

deg𝑥([𝑠1,… , 𝑠𝑛]) ≔ ∑𝑛
𝑖=1 deg𝑥(𝑠𝑖).

Intuitively, deg𝑥𝑢 is nothing but the number of free occurrences of 𝑥 in 𝑢. We
use this notion to give the usual (yet not fully rigorous) presentation of the
multilinear substitution.

DEF IN IT ION 3.24 (informal). Given a resource expression 𝑢 ∈ (!)Λr, a resource
monomial ̄𝑡 = [𝑡1,… , 𝑡𝑛] ∈ !Λr and a variable 𝑥 ∈ 𝒱, the multilinear substitu-
tion of 𝑥 by ̄𝑡 in 𝑠 is defined by:

𝑢⟨ ̄𝑡/𝑥⟩ ≔ {
∑

𝜎∈𝔖(𝑛)
𝑢[𝑡𝜎(1)/𝑥1,… , 𝑡𝜎(𝑛)/𝑥𝑛] if deg𝑥𝑢 = # ̄𝑡 = 𝑛

0 otherwise

where 𝑥1,… ,𝑥𝑛 is an arbitrary enumeration of the occurrences of 𝑥 in 𝑢, and
𝑢[𝑡𝜎(1)/𝑥1,… , 𝑡𝜎(𝑛)/𝑥𝑛] is the resource expression obtained by substituting (in a
capture-avoiding way) each 𝑡𝜎(𝑖) to the occurrence 𝑥𝑖.

Even though very handy for the end-user, this definition is not as rigorous as
one could expect since 𝑢[𝑡𝜎(1)/𝑥1,… , 𝑡𝜎(𝑛)/𝑥𝑛] is not formally defined. Even
without unveiling the whole differential construction, the definition can be
made more satisfactory in the following way (ibid., lem. 3.8). Fix a variable
𝑥 ∈ 𝒱 and a resource monomial ̄𝑡 = [𝑡1,… , 𝑡𝑛] ∈ !Λr, then by induction on
𝑢 ∈ (!)Λr:

𝑦⟨ ̄𝑡/𝑥⟩ ≔ 𝑡 for 𝑦 = 𝑥 and ̄𝑡 = [𝑡]
𝑦⟨ ̄𝑡/𝑥⟩ ≔ 𝑦 for 𝑦 ≠ 𝑥 and ̄𝑡 = 1
𝑦⟨ ̄𝑡/𝑥⟩ ≔ 0 otherwise

(𝜆𝑦.𝑠)⟨ ̄𝑡/𝑥⟩ ≔ 𝜆𝑦.𝑠⟨ ̄𝑡/𝑥⟩ choosing 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑢)
((𝑠) ̄𝑠)⟨ ̄𝑡/𝑥⟩ ≔ ∑

{1,…,𝑛}=𝐼+𝐽
(𝑠⟨ ̄𝑡𝐼/𝑥⟩) ̄𝑠⟨ ̄𝑡𝐽/𝑥⟩

[𝑠1,… , 𝑠𝑚]⟨ ̄𝑡/𝑥⟩ ≔ ∑
{1,…,𝑛}=𝐼1+⋯+𝐼𝑚

[𝑠1⟨ ̄𝑡𝐼1/𝑥⟩,… , 𝑠𝑚⟨ ̄𝑡𝐼𝑚/𝑥⟩]

where + denotes the disjoint union of sets, and ̄𝑡𝐼 denotes the sub-multiset of
all elements of ̄𝑡 indexed by elements of 𝐼. Notice that in the last two cases, the
only non-zero terms of the sums are indexed by a partition maching the degree
in 𝑥 of the corresponding subterms, e.g. in the case of (𝑠) ̄𝑠 the non-zero terms
are indexed by partitions (𝐼, 𝐽) such that #𝐼 = deg𝑥𝑠 and #𝐽 = deg𝑥 ̄𝑠.
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NOTAT ION 3.25. Just like we did with the constructors of the calculus, the
multilinear substitution is extended to resource sums by linearity:

(∑
𝑖∈𝐼

𝑎𝑖𝑢𝑖)⟨∑
𝑗∈𝐽

𝑏𝑗 ̄𝑡𝑗/
𝑥⟩ ≔∑

𝑖∈𝐼
∑
𝑗∈𝐽

𝑎𝑖𝑏𝑗 ⋅ 𝑠𝑖⟨ ̄𝑡𝑗/𝑥⟩.

As in notation 3.22, this is possible because it can be showed that the family we
consider is summable (Vaux 2019, lem. 4.2).

3.2.3 Resource β-reduction

Now we have defined a notion of substitution, the construction of the resource
β-reduction comes as no surprise.

DEF IN IT ION 3.26. The relation −⇀r ⊂ (!)Λr × ℕ((!)Λr) of simple resource
β-reduction is the congruent closure of the reduction defined by the rule

(axr)(𝜆𝑥.𝑠) ̄𝑡 −⇀r 𝑠⟨ ̄𝑡/𝑥⟩

i.e. it is defined by induction by (axr) and the following set of rules:
𝑠 −⇀r 𝑆′ (λr)𝜆𝑥.𝑠 −⇀r 𝜆𝑥.𝑆′

𝑠 −⇀r 𝑆′ (@lr)(𝑠) ̄𝑡 −⇀r (𝑆′) ̄𝑡
̄𝑡 −⇀r ̄𝑇 ′

(@rr)(𝑠) ̄𝑡 −⇀r (𝑠) ̄𝑇 ′
𝑠 −⇀r 𝑆′ (!r)𝑠 ⋅ ̄𝑡 −⇀r 𝑆′ ⋅ ̄𝑡

It is time to use the lifting techniques introduced in the previous section. We
proceed as follows.

DEF IN IT ION 3.27. The relation ⟶r ⊂ ℕ((!)Λr) × ℕ((!)Λr) of resource β-
reduction is the lifting to finite sums of −⇀r, i.e. ⟶r ≔ −̃⇀r.

Explicitely, recall from page 90 that ⟶r is given by the rule3

𝑢1 −⇀r 𝑈 ′
1 ∀𝑖 ⩾ 2, 𝑢𝑖 −⇀?

r 𝑈 ′
𝑖 (Σ′r)

∑𝑛
𝑖=1 𝑢𝑖 ⟶r ∑

𝑛
𝑖=1𝑈 ′

𝑖

LEMMA 3.28. ⟶r is its own congruent closure, i.e. the following rules (extend-
ing those from definition 3.26) are admissible:

𝑆 ⟶r 𝑆′

𝜆𝑥.𝑆 ⟶r 𝜆𝑥.𝑆′
𝑆 ⟶r 𝑆′

(𝑆) ̄𝑡 ⟶r (𝑆′) ̄𝑡
̄𝑇 ⟶r ̄𝑇 ′

(𝑠) ̄𝑇 ⟶r (𝑠) ̄𝑇 ′
𝑆 ⟶r 𝑆′

𝑆 ⋅ ̄𝑡 ⟶r 𝑆′ ⋅ ̄𝑡

PROOF. Immediate, by combining the rules of definition 3.26 with (Σ′). □

3 Some authors make another choice in the qualitative setting, see section 3.3.2 below.
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3.2.4 Strong confluence of the resource β-reduction

The resource β-reduction enjoys confluence, which can be easily seen by
adapting a standard proof for the usual λ-calculus (Ehrhard and Regnier 2008,
thm. 9). This property can in fact be strengthened, as observed by Vaux (2019,
lem. 3.13) who notices that this strong confluence of the resource λ-calculus
can be seen as a reformulation of a similar result for differential proof-nets
(Ehrhard and Regnier 2005).

THEOREM 3.29 (strong confluence). ⟶?
r has the diamond property.

The proof of the theorem relies on a series of technical lemmas demonstrat-
ing how well-behaved the resource λ-calculus is. The first one is a multilinear
reformulation of the classical composition of substitutions, and allows for a
multilinear ‘substitution lemma’.

LEMMA 3.30. Given a resource expression 𝑢 ∈ (!)Λr together with resource
monomials ̄𝑡, ̄𝑣 ∈ !Λr and variables 𝑥, 𝑦 ∈ 𝒱 such that 𝑥 ≠ 𝑦 and 𝑦 ∉ fv( ̄𝑡),

𝑢⟨ ̄𝑣/𝑦⟩⟨ ̄𝑡/𝑥⟩ = ∑
{1,…,# ̄𝑡}=𝐼+𝐽

𝑢⟨ ̄𝑡𝐼/𝑥⟩ ⟨ ̄𝑣⟨ ̄𝑡𝐽/𝑥⟩/𝑦⟩ .

PROOF. The proof is a tedious yet harmless induction on # ̄𝑡 and # ̄𝑣. At
this point, the interested reader should probably use the differential formal-
ism exposed by Vaux (2019, lem. 3.9). Let us stick to our decision to leave it
implicit. □

LEMMA 3.31 (substitution lemma). Take 𝑠 ∈ Λr, 𝑆′ ∈ ℕ(Λr), ̄𝑡 ∈ !Λr and
̄𝑇 ′ ∈ ℕ(!Λr). Then:

1. If 𝑠 −⇀r 𝑆′ then 𝑠⟨ ̄𝑡/𝑥⟩⟶?
r 𝑆′⟨ ̄𝑡/𝑥⟩.

2. If ̄𝑡 −⇀r ̄𝑇 ′ then 𝑠⟨ ̄𝑡/𝑥⟩⟶?
r 𝑠⟨ ̄𝑇/𝑥⟩′.

PROOF. For item 1, we show by induction on 𝑠 −⇀r 𝑆′ that for all ̄𝑡, the result
holds (choosing this order of the quantifiers is needed in the last two cases of
the proof).

• Case (axr), 𝑠 = (𝜆𝑦.𝑢) ̄𝑣 and 𝑆′ = 𝑢⟨ ̄𝑣/𝑦⟩. Have

((𝜆𝑦.𝑢) ̄𝑣) ⟨ ̄𝑡/𝑥⟩ = ∑
{1,…,# ̄𝑡}=𝐼+𝐽

(𝜆𝑦.𝑢⟨ ̄𝑡𝐼/𝑥⟩) ̄𝑣⟨ ̄𝑡𝐽/𝑥⟩

⟶?
r ∑
{1,…,# ̄𝑡}=𝐼+𝐽

𝑢⟨ ̄𝑡𝐼/𝑥⟩ ⟨ ̄𝑣⟨ ̄𝑡𝐽/𝑥⟩/𝑦⟩

where the reflexive closure is needed only to take into account the case
where the first sum is 0, i.e. where # ̄𝑡 ≠ deg𝑥(𝑢)+deg𝑥( ̄𝑣). We conclude
with lemma 3.30.
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• Case (λr), 𝑠 = 𝜆𝑦.𝑢 and 𝑆 = 𝜆𝑦.𝑈 ′ with 𝑢 −⇀r 𝑈 ′. By induction
𝑢⟨ ̄𝑡/𝑥⟩⟶?

r 𝑈 ′⟨ ̄𝑡/𝑥⟩, and we conclude with lemma 3.28.

• Case (@lr), 𝑠 = (𝑢) ̄𝑣 and 𝑆′ = (𝑈 ′) ̄𝑣with 𝑢 −⇀r 𝑈 ′. Write𝑈 ′ = ∑𝑚
𝑖=1 𝑢′𝑖.

By induction, for all ̄𝑡 there is a reduction 𝑢⟨ ̄𝑡/𝑥⟩⟶?
r 𝑈 ′⟨ ̄𝑡/𝑥⟩, hence

((𝑢) ̄𝑣) ⟨ ̄𝑡/𝑥⟩ = ∑
{1,…,# ̄𝑡}=𝐼+𝐽

(𝑢⟨ ̄𝑡𝐼/𝑥⟩) ̄𝑣⟨ ̄𝑡𝐽/𝑥⟩

⟶?
r ∑
{1,…,# ̄𝑡}=𝐼+𝐽

(𝑈 ′⟨ ̄𝑡𝐼/𝑥⟩) ̄𝑣⟨ ̄𝑡𝐽/𝑥⟩

= ∑
{1,…,# ̄𝑡}=𝐼+𝐽

𝑚
∑
𝑖=1

(𝑢′𝑖⟨ ̄𝑡𝐼/𝑥⟩) ̄𝑣⟨ ̄𝑡𝐽/𝑥⟩

=
𝑚
∑
𝑖=1

((𝑢′𝑖) ̄𝑣) ⟨ ̄𝑡/𝑥⟩ = ((𝑈 ′) ̄𝑣) ⟨ ̄𝑡/𝑥⟩

• Case (@rr), 𝑠 = (𝑢) ̄𝑣 and 𝑆′ = (𝑢) ̄𝑉 ′ with ̄𝑣 −⇀r ̄𝑉 ′, i.e. there is an
element 𝑣 in ̄𝑣 such that ̄𝑣 = 𝑣 ⋅ �̄�, ̄𝑉 ′ = 𝑉 ′ ⋅ �̄� and 𝑣 −⇀r 𝑉 ′. Then by
the same kind of computation than in the previous case, we start with

((𝑢) ̄𝑣) ⟨ ̄𝑡/𝑥⟩ = ∑
{1,…,# ̄𝑡}=𝐼+𝐽+𝐾

(𝑢⟨ ̄𝑡𝐼/𝑥⟩) 𝑣⟨ ̄𝑡𝐽/𝑥⟩ ⋅ �̄�⟨ ̄𝑡𝐾/𝑥⟩

and obtain ((𝑢) ̄𝑣) ⟨ ̄𝑡/𝑥⟩⟶?
r ((𝑢) 𝑉 ′ ⋅ �̄�) ⟨ ̄𝑡/𝑥⟩.

For item 2, we proceed similarly by induction over 𝑠, using the inductive variant
of the definition of multilinear substitution. □

The following result, even though quite elementary, reveals the power of the
resource λ-calculus: thanks to multilinearity, no erasure or duplication is per-
formed during a resource β-reduction step (provided it is a ‘correct’ step, i.e. the
result is not the 0 sum).

LEMMA 3.32. The resource β-reduction preserves free occurrences of variables.
Explicitely, for all 𝑥 ∈ 𝒱, 𝑢 ∈ (!)Λr and 𝑈 ′ = ∑𝑚

𝑖=1 𝑢′𝑖 ∈ ℕ((!)Λr), if 𝑢 −⇀r 𝑈 ′

then ∀𝑖 ∈ {1,… ,𝑚}, deg𝑥(𝑢′𝑖) = deg𝑥(𝑢).

PROOF. By a straightforward induction over 𝑢 −⇀r 𝑈 ′. □

PROOF OF THEOREM 3.29. Let us show that the requirements of lemma 3.11
are fulfilled. First,ℕ is an additive refinement semiring. Second, take 𝑠 ∈ (!)Λr
and 𝑆1, 𝑆2 ∈ ℕ((!)Λr) such that 𝑠 −⇀r 𝑆1 and 𝑠 −⇀r 𝑆2. By induction on
these two reductions, we want to show that there exists 𝑇 ∈ ℕ((!)Λr) such that
𝑆1 ⟶?

r 𝑇 and 𝑆2 ⟶?
r 𝑇.

• If the last rule in 𝑠 −⇀r 𝑆1 is (axr), then 𝑠 = (𝜆𝑥.𝑢) ̄𝑣 and 𝑆1 = 𝑢⟨ ̄𝑣/𝑥⟩. If
the last rule in 𝑠 −⇀r 𝑆2 is (axr) too, the result is immediate. Otherwise it
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must be (@lr) or (@rr), wlog. suppose it is the former and 𝑆2 = (𝜆𝑥.𝑈 ′) ̄𝑣
with 𝑢 −⇀r 𝑈 ′.

If deg𝑥(𝑢) ≠ # ̄𝑣, then 𝑆1 = 𝑢⟨ ̄𝑣/𝑥⟩ = 0. Then either 𝑈 ′ = 0 and 𝑆2 =
0 = 𝑆1; or ∀𝑢′ ∈ 𝑈 ′, deg𝑥(𝑢′) = deg𝑥(𝑢) ≠ # ̄𝑣 by lemma 3.32, hence
𝑆2 = (𝜆𝑥.𝑈 ′) ̄𝑣⟶r 0 = 𝑆1. In both cases we are done.

Otherwise, 𝑆1 = 𝑢⟨ ̄𝑣/𝑥⟩ ⟶?
r 𝑈 ′⟨ ̄𝑣/𝑥⟩ by lemma 3.31, and 𝑆2 =

(𝜆𝑥.𝑈 ′) ̄𝑣 ⟶?
r 𝑈 ′⟨ ̄𝑣/𝑥⟩ as well. (If the last rule had been (@rr), we

would have used the other part of lemma 3.31 and obtained the same
result.)

• In all other cases, i.e. if the last rules applied in 𝑠 −⇀r 𝑆1 and 𝑠 −⇀r 𝑆2
are (λr) and (λr), (@lr) and (@lr), (@rr) and (@rr), or (@lr) and (@rr),
the induction step is straightforward. □

3.2.5 Towards normalisation

As for normalisation, let us start with a disappointing announcement: we will
not state any normalisation theorem in this section, and will delay our actual
treatment of normalisation since it will significantly depend on the choice of
the (quantitative or qualitative) setting, see section 3.3 below.
However, we can already start to pave the way towards normalisation results.
Indeed, some definitions and results can be stated in general and are interest-
ing per se. In particular, most proofs will rely on the decrease of the following
measure.

DEF IN IT ION 3.33. The size of a resource expression is defined inductively by:

size(𝑥) ≔ 1 size((𝑠) ̄𝑡) ≔ size(𝑠) + size( ̄𝑡)
size(𝜆𝑥.𝑠) ≔ 1 + size(𝑠) size([𝑡1,… , 𝑡𝑛]) ≔ 1 +∑𝑛

𝑖=1 size(𝑡𝑖).

It is extended to finite resource sums inℕ((!)Λr) by size(𝑆) ≔ max𝑠∈|𝑆| size(𝑠), with
the convention size(0) ≔ 0.

LEMMA 3.34. Given 𝑢 ∈ (!)Λr and 𝑈 ′ ∈ ℕ((!)Λr), if 𝑢 −⇀r 𝑈 ′ then size(𝑈 ′) <
size(𝑢).

PROOF. We proceed by induction on 𝑢 −⇀r 𝑈 ′. For the case of (axr), we have
to prove that size (𝑠⟨ ̄𝑡/𝑥⟩) < size ((𝜆𝑥.𝑠) ̄𝑡) for all 𝑠 ∈ Λr and ̄𝑡 ∈ !Λr.

• If deg𝑥(𝑠) ≠ # ̄𝑡, then size (𝑠⟨ ̄𝑡/𝑥⟩) = size(0) = 0 and size ((𝜆𝑥.𝑠) ̄𝑡) ⩾ 3.

• Otherwise we can write ̄𝑡 = [𝑡1,… , 𝑡𝑛]with 𝑛 = deg𝑥(𝑠), and we compute
size (𝑠⟨ ̄𝑡/𝑥⟩) = size(𝑠) − 𝑛+∑𝑛

𝑖=1 size(𝑡𝑖), and size (𝑠⟨ ̄𝑡/𝑥⟩) = size(𝑠) + 2+
∑𝑛

𝑖=1 size(𝑡𝑖).
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In both situations we obtain the expected inequality. The inductive cases are
straightforward. □

Observe that, as a corollary, we obtain size(𝑆′) ⩽ size(𝑆) whenever 𝑆 ⟶r 𝑆′
in ℕ((!)Λr), but this inequality is not strict in general. Indeed, as soon as there
is some 𝑇 ∈ ℕ((!)Λr) such that size(𝑇) ⩾ size(𝑆)we can write 𝑆+𝑇 ⟶r 𝑆′+𝑇
but size(𝑆′ + 𝑇) = size(𝑆 + 𝑇) = size(𝑇).

3.2.6 Reducing infinite sums of resource λ-terms

In the end, we want to be able to reduce arbitrary vectors of resource λ-terms
(since this will be the nature of the Taylor expansions of ordinary λ-terms). This
is where the double-lifting construction comes in.

DEF IN IT ION 3.35. Let 𝕊 be a semiring. The relation −↠r ⊂ 𝕊(!)Λr × 𝕊(!)Λr is
the double-lifting of −⇀r.

Explicitely, for 𝐔,𝐕 ∈ 𝕊(!)Λr there is a reduction 𝐔 −↠r 𝐕 whenever there are
summable families (𝑢𝑖)𝑖∈𝐼 ∈ ((!)Λr)𝐼 and (𝑉 𝑖)𝑖∈𝐼 ∈ (ℕ((!)Λr))𝐼 such that

𝐔 =∑
𝑖∈𝐼

𝑎𝑖𝑢𝑖, 𝐕 = ∑
𝑖∈𝐼

𝑎𝑖𝑉 𝑖 and ∀𝑖 ∈ 𝐼, 𝑢𝑖 ⟶∗
r 𝑉 𝑖.

As already mentioned, lifting a reduction to arbitrary sums does not produce a
confluent reduction, nor a strongly normalising one in general. In the partic-
ular case of −↠r, counter-examples to these properties can be found, e.g. the
following instance of counter-example 3.12.

COUNTEREXAMPLE 3.36 (Vaux 2019, ex. 5.3. For any 𝑠 ∈ Λr and 𝑛 ∈ ℕ,
consider the terms 𝑢𝑛(𝑠), 𝑣𝑛(𝑠) ∈ Λr defined by

𝑢0(𝑠) ≔ 𝑠 𝑣0(𝑠) ≔ 𝑠
𝑢𝑛+1(𝑠) ≔ (𝜆𝑥.𝑥) [𝑢𝑛(𝑠)] 𝑣𝑛+1(𝑠) ≔ (𝜆𝑥.𝑣𝑛(𝑠)) 1.

Then:

• For 𝐒 ≔ ∑𝑛∈ℕ 𝑢𝑛(𝑣𝑛(𝑦)), we have both

𝐒 −↠r ∑
𝑛∈ℕ

𝑢𝑛(𝑦) and 𝐒 −↠r ∑
𝑛∈ℕ

𝑣𝑛(𝑦).

These reductions cannot be joined because the only common reduct candi-
date is∑𝑛∈ℕ 𝑦, which is not a well-defined vector.

• For𝐔 ≔ ∑𝑛∈ℕ 𝑢𝑛(𝑦), we have𝐔 −↠r 𝑦 + 𝐔 −↠r 2𝑦 + 𝐔 −↠r …
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Until now, we have distinguished between the coefficients of the finite resource
sums (taken in ℕ) and the coefficients of the arbitrary sums (taken in a semir-
ing 𝕊 that depends on the use we will make of the Taylor expansion, but that
typically has fractions and hence cannot be ℕ). However it would be practical
to see finite sums inℕ((!)Λr) as particular cases of arbitrary sums in 𝕊(!)Λr . This
is made possible by the canonical morphism ℕ → 𝕊, which allows to identify
ℕ((!)Λr) to its image in 𝕊(!)Λr . Under this identification, the dynamics of −↠r
extends the dynamics of ⟶∗

r in the following sense.

LEMMA 3.37. For all 𝑈,𝑈 ′ ∈ ℕ((!)Λr), if 𝑈 ⟶∗
r 𝑈 ′ then 𝑈 −↠r 𝑈 ′.

This is an immediate consequence of the following characterisation.

LEMMA 3.38. For all 𝑈,𝑈 ′ ∈ ℕ((!)Λr) with 𝑈 = ∑𝑝
𝑖=1 𝑢𝑖,

𝑈 ⟶∗
r 𝑈 ′ iff ∃𝑈 ′

1,… ,𝑈 ′
𝑝 ∈ ℕ((!)Λr), 𝑈 ′ = ∑𝑝

𝑖=1𝑈 ′
𝑖 and

∀𝑖 ∈ {1,… ,𝑝}, 𝑢𝑖 ⟶∗
r 𝑈 ′

𝑖 .

PROOF. For the first implication, we proceed by induction on the length of
the reduction 𝑈 ⟶∗

r 𝑈 ′.

• If 𝑈 ⟶0
r 𝑈 ′, the result is immediate with 𝑈 ′

𝑖 ≔ 𝑢𝑖.

• Otherwise, 𝑈 ⟶𝑛
r 𝑉 ⟶r 𝑈 ′ for some 𝑛 ∈ ℕ and 𝑉 ∈ ℕ((!)Λr).

By induction, the first part gives a decomposition𝑉 = ∑𝑝
𝑖=1 𝑉 𝑖 with𝑉 𝑖 ∈

ℕ((!)Λr) and ∀𝑖 ∈ {1,… ,𝑝}, 𝑢𝑖 ⟶∗
r 𝑉 𝑖.

The second part means that if we write 𝑉 𝑖 = ∑𝑞𝑖
𝑗=1 𝑣𝑖𝑗 for resource ex-

pressions 𝑣𝑖𝑗 ∈ (!)Λr, there is a decomposition 𝑈 ′ = ∑𝑝
𝑖=1∑

𝑞𝑖
𝑗=1 𝑉 ′

𝑖𝑗 such
that ∀𝑖 ∈ {1,… ,𝑝}, ∀𝑗 ∈ {1,… , 𝑞𝑖}, 𝑣𝑖𝑗 −⇀?

r 𝑉 ′
𝑖𝑗 .

We can conclude by observing that ∀𝑖 ∈ {1,… ,𝑝}, 𝑢𝑖 ⟶∗
r 𝑉 𝑖 =

∑𝑞𝑖
𝑗=1 𝑣𝑖𝑗 ⟶?

r ∑
𝑞𝑖
𝑗=1 𝑉 ′

𝑖𝑗 , so we can set 𝑈 ′
𝑖 ≔ ∑𝑞𝑖

𝑗=1 𝑉 ′
𝑖𝑗 .

Conversely, we proceed by induction on 𝑀 ≔ ∑𝑛
𝑖=1 max { 𝑛 ∈ ℕ || 𝑢𝑖 ⟶𝑛

r 𝑈 ′
𝑖 }.

• If 𝑀 = 0, then 𝑈 = 𝑈 ′ and the conclusion is immediate.

• Otherwise, let 𝑖0 ∈ {1,… ,𝑝} be an index maximising the length 𝑛 of the
reduction 𝑢𝑖 ⟶𝑛

r 𝑈 ′
𝑖 . Since 𝑛 ⩾ 1 there is some 𝑉 ∈ ℕ((!)Λr) such that

𝑢𝑖0 ⟶𝑛−1
r 𝑉 ⟶r 𝑈 ′

𝑖0 . Hence, by induction and by the rule (Σ′),

𝑈 ⟶∗
r 𝑉 +

𝑛
∑
𝑖=1
𝑖≠𝑖0

𝑈 ′
𝑖 ⟶r 𝑈 ′

𝑖0 +
𝑛
∑
𝑖=1
𝑖≠𝑖0

𝑈 ′
𝑖 = 𝑈 ′. □
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It is a bit disappointing that lemma 3.37 is not an equivalence, but lemma 3.38
leaves few hope that it could be the case in general, since it states that ⟶∗

r
is equivalent to a ‘coefficientless’ version of −↠r. Nonetheless, the converse
implication can be weakened as follows4.

LEMMA 3.39 (weak converse of lemma 3.37). For all 𝑈,𝑈 ′ ∈ ℕ((!)Λr),

𝑈 −↠r 𝑈 ′ iff ∃𝑝 ∈ ℕ, ∃𝑢1,… ,𝑢𝑝 ∈ (!)Λr,

∃𝑈 ′
1,… ,𝑈 ′

𝑝 ∈ ℕ((!)Λr),

∃𝑎1,… , 𝑎𝑝 ∈ 𝕊,
𝑈 = ∑𝑝

𝑘=1 𝑎𝑘𝑢𝑘 and 𝑈 ′ = ∑𝑝
𝑘=1 𝑎𝑘𝑈 ′

𝑘 and
∀𝑘 ∈ {1,… ,𝑝}, 𝑢𝑘 ⟶∗

r 𝑈 ′
𝑘.

There is an immediate direction (right to left) since the right hypothesis is the
particular case of 𝑈 −↠r 𝑈 ′ where the index set is of finite cardinal 𝑝 ∈ ℕ.
We will prove the difficult direction in a few pages, since the lemma it relies
on has different proofs in the quantitative and in the qualitative settings (see
corollary 3.42 and theorem 3.49).

3.3 Quantitative vs. qualitative resource λ-calculi

As suggested a few lines ago, we will soon choose some 𝕊 and use all the previ-
ous machinery to define the Taylor expansion of a λ-terms as a certain vector in
𝕊Λr , each element of the vector being a finite approximant of the initial λ-term.
Since the resource λ-calculus is intrisically (multi)linear, we will be able to
count the approximants, and the coefficient of an approximant in the Taylor
expansion will bear some multiplicity. In the light of this key feature of the
Taylor approximation, two antipodal choices can be made as for the semiring
𝕊. Either it can be an extension ofℕ (e.g. ℚ+,ℝ+, etc.), in which case we will be
able to actually count multiplicities in the sums of resource λ-terms; or it can
be a restriction of 𝕊 (viz 𝟚), which will allow to forget about any coefficients and
recover an approximation based on sets of approximants. These options form
the two settings we will now formally define.

3.3.1 The quantitative setting

The quantitative setting is basically what we have been implicitely considering
until now: we have mostly been working with finite sums in ℕ((!)Λr) and we
expect to find the same sums with the same behaviour as a subset of 𝕊(!)Λr .
The condition we need to do so is not surprising.

CONVENT ION 3.40. In the quantitative setting, we assume that𝕊 is such that
the canonical morphism ℕ → 𝕊 is injective.
4 In fact the unrestricted converse implication holds in the qualitative resource λ-calculus, see

lemma 3.50.
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In particular, ℕ((!)Λr) can be ‘directly’ seen (without adding any equalities) as
a subset of 𝕊(!)Λr , and ⟶r can be seen as a reduction defined on 𝕊(!)Λr , but
having an effect only on the terms of the subset ℕ((!)Λr).

THEOREM 3.41 (strong normalisation). In the quantitative setting, ⟶r is
strongly normalising.

PROOF. Lemma 3.34 allows to apply lemma 3.13 directly. Since ℕ → 𝕊 is in-
jective, normal finite vectors in ℕ((!)Λr) remain normal when seen as elements
of 𝕊((!)Λr), i.e. they are not identified with a non-normal vector. □

Of course, we could have stated the theorem way before: it is true as soon as we
work in ℕ((!)Λr). However, it remains true when ℕ((!)Λr) is assimilated to the
corresponding subset of 𝕊(!)Λr only if convention 3.40 holds, in which case in
can be stated without any ambiguity.

COROLLARY 3.42. For any𝑈 ∈ ℕ((!)Λr), there are finitely many𝑈 ′ ∈ ℕ((!)Λr)

such that 𝑈 ⟶∗
r 𝑈 ′.

PROOF. The reductions starting from 𝑈 form a finitely branching tree (since
there are only finitely many redexes in a resource λ-term) with no infinite
branch (by theorem 3.41), so by the contraposite of König’s lemma it has
finitely many nodes. □

This finitarity result is what we need to write the proof of lemma 3.39. Notice
that corollary 3.42 also holds in the qualitative setting for other reasons (see
theorem 3.49), so what follows is valid in general.

PROOF OF LEMMA 3.39. Take 𝑈,𝑈 ′ ∈ ℕ((!)Λr) such that 𝑈 −↠r 𝑈 ′, i.e.
we can find expressions 𝑣𝑖 ∈ (!)Λr, finite sums 𝑉 𝑖 ∈ ℕ((!)Λr) and coefficients
𝑏𝑖 ∈ 𝕊 indexed by 𝑖 ∈ 𝐼 such that

𝑈 = ∑
𝑖∈𝐼

𝑏𝑖𝑣𝑖, 𝑈 ′ = ∑
𝑖∈𝐼

𝑏𝑖𝑉 ′
𝑖 and ∀𝑖 ∈ 𝐼, 𝑣𝑖 ⟶∗

r 𝑉 ′
𝑖 .

We want to show that it is possible to find such data with a finite set 𝐼 of indices.
Since 𝑈 is a finite sum, it is possible to find a partition 𝐼 = 𝐼1 + ⋯ + 𝐼𝑞 and
expressions 𝑤1,… ,𝑤𝑞 ∈ (!)Λr such that ∀𝑘 ∈ {1,… , 𝑞}, ∀𝑖 ∈ 𝐼𝑘, 𝑣𝑖 = 𝑤𝑘.
This partition can be refined as follows:

𝐼 =
𝑞

⋃
𝑘=1

𝐼𝑘 =
𝑞

⋃
𝑘=1

⋃
𝑊′∈ℕ((!)Λr)
𝑤𝑘⟶∗r𝑊′

{ 𝑖 ∈ 𝐼𝑘 || 𝑉 ′
𝑖 = 𝑊 ′ } .
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Define 𝐽 ≔ { (𝑘,𝑊 ′) | 𝑘 ∈ {1,… , 𝑞} and 𝑤𝑘 ⟶∗
r 𝑊 ′ }, that is a finite set thanks

to corollary 3.42. Then

𝑈 = ∑
(𝑘,𝑊′)∈𝐽

𝑎𝑘,𝑊′𝑤𝑘 and 𝑈 ′ = ∑
(𝑘,𝑊′)∈𝐽

𝑎𝑘,𝑊′𝑊 ′, with 𝑎𝑘,𝑊′ ≔∑
𝑖∈𝐼𝑘

𝑉 ′
𝑖=𝑊′

𝑏𝑖

and by definition 𝑤𝑘 ⟶∗
r 𝑊 ′ whenever (𝑘,𝑊 ′) ∈ 𝐽. □

NOTAT ION 3.43. The unique normal form of any 𝑈 ∈ ℕ((!)Λr) through⟶r
is denoted by nfr(𝑈).

As a consequence of counter-example 3.36, it makes no sense to define ‘the nor-
mal form’ of an arbitrary sum of resource λ-terms through −↠r. Nonetheless,
we extend notation 3.43 as follows, by considering a pointwise normal form —
again under a summability assumption.

DEF IN IT ION 3.44. For any 𝐔 ∈ 𝕊(!)Λr , if there is a summable family (𝑢𝑖)𝑖∈𝐼
such that 𝐔 = ∑𝑖∈𝐼 𝑎𝑖𝑢𝑖 and (nfr(𝑢𝑖))𝑖∈𝐼 is summable, then we define its point-
wise normal form by ñfr(𝐔) ≔ ∑𝑖∈𝐼 𝑎𝑖 nfr(𝑢𝑖).
We say that𝐔 is in pointwise normal form when𝐔 = ñfr(𝐔)5.

One can easily check that the notion is well-defined: if ∑𝑖∈𝐼 𝑎𝑖𝑢𝑖 = ∑𝑗∈𝐽 𝑏𝑗𝑣𝑗 ,
then ∑𝑖∈𝐼 𝑎𝑖 nfr(𝑢𝑖) and ∑𝑗∈𝐽 𝑏𝑗 nfr(𝑣𝑗) are defined and equal. Observe that
whenever ñfr(𝐔) exists, 𝐔 −↠r ñfr(𝐔).

3.3.2 The qualitative setting

What if we do not want to count the number of occurrences of a term in a sum,
i.e. we are only interested in the support of the vectors?
Observe that a subset of some set Ξ can be seen as a vector 𝟚Ξ, so that the
support function |−| ∶ 𝕊Ξ → 𝒫(Ξ) coincides with the semimodule morphism
𝕊Ξ → 𝟚Ξ generated by the canonical semiring morphism

𝕊 → 𝟚
0 ↦ 0
𝑎 ↦ 1 for 𝑎 ≠ 0,

which exists as soon as 𝕊 is positive. For this reason, it is natural to take 𝕊 to
be 𝟚 if we want to collapse all occurrences of each summand in a sum (thanks
to the equation 1 = 1 + 1 in 𝟚).
However, this raises potential issues since there is no injection ℕ → 𝟚. In
particular, it makes no sense to useℕ((!)Λr) as a description of its image in 𝟚(!)Λr ,
we should use 𝟚((!)Λr) instead.
5 Even though 𝐔 is never in normal form for −↠r, the latter being reflexive.
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CONVENT ION 3.45. In the qualitative setting, we assume that 𝕊 = 𝟚. All the
constructions of the resource λ-calculus are performed with coefficients taken in
𝟚 instead of ℕ.

NOTAT ION 3.46. Since 𝟚(!)Λr can be seen as 𝒫((!)Λr), we will sometimes use
a set-theoretic formalism and write 𝐔 ⊆ 𝐕 for |𝐔| ⊆ |𝐕|, as well as 𝑢 ∈ 𝐔 for
𝑢 ∈ |𝐔|.

All the definitions and results of section 3.2 can be harmlessly translated into
this setting — most of the translations just consists in removing the coefficients
from the sums. In particular, strong confluence (theorem 3.29) still holds be-
cause 𝟚 is an additive refinement semiring.
Let us stress the differences with the quantitative setting, the most significant
one being that strong normalisation (theorem 3.41) is broken.

COUNTEREXAMPLE 3.47 (to strong normalisation). Take any 𝑠 ∈ Λr and
𝑆′ ∈ 𝟚(Λr) such that 𝑠 −⇀r 𝑆′, then 𝑠 = 𝑠+𝑠⟶r 𝑠+𝑆′, which obviously prevents
strong normalisation.

However, the following consolation will be enough for what we intend to do.

COROLLARY 3.48 (of theorem 3.41). ⟶r is weakly normalising.

PROOF. For any 𝑈 ∈ 𝟚((!)Λr), consider its image in ℕ((!)Λr) by the canonical
inclusion 𝟚 → ℕ. By theorem 3.41 there is a reduction sequence from this sum
to a normal form, which can be translated back to 𝟚((!)Λr) through the support
morphism. □

As a consequence, the notations nfr (notation 3.43) and ñfr (definition 3.44)
remain meaningful.

Some authors, like Barbarossa and Manzonetto (2020), restore strong normali-
sation in a qualitative resource λ-calculus by replacing (Σ′) with the following
alternative:

𝑠 −⇀r 𝑆′ 𝑠 ∉ |𝑇|
(Σ″)

𝑠 + 𝑇 ⟶r 𝑆′ + 𝑇

Both versions define the same normal forms but they do not induce the same
dynamics, and the strong normalisation of the second version comes at a price:
the strong confluence is lost, the reduction defined by (Σ″) being ‘only’ conflu-
ent.
The reason for this is that (Σ″) forbids to reduce contextually in a sum, i.e. with
this rule 𝑆 ⟶∗

r 𝑆′ and 𝑇 ⟶∗
r 𝑇 ′ do not straightforwardly imply that 𝑆 +

𝑇 ⟶∗
r 𝑆′ + 𝑇 ′. (We could find no counterexample to this implication, but no

proof either. Our best effort allowed us to prove that 𝑆 ⟶∗
r 𝑆′ and 𝑆 ∩ 𝑇 = ∅

imply 𝑆 + 𝑇 ⟶∗
r 𝑆′ + 𝑇.)
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Let us also adapt corollary 3.42: as announced, the result holds in the qualita-
tive setting but the proof cannot rely on the strong normalisation of ⟶r any
more.

THEOREM 3.49 (corollary 3.42, qualitative ed.). For any𝑈 ∈ 𝟚((!)Λr), there are
finitely many 𝑈 ′ ∈ 𝟚((!)Λr) such that 𝑈 ⟶∗

r 𝑈 ′.

PROOF. Thanks to lemmas 3.32 and 3.34, any reduct 𝑈 ′ of 𝑈 satisfies

𝑈 ′ ⊆ 𝟚{ 𝑢′∈(!)Λr || size(𝑢′)⩽size(𝑈) and fv(𝑢′)⊆fv(𝑈) },

that is a finite set by observing that for any integer 𝑛 ∈ ℕ and finite set 𝑋 ⊂ 𝒱,
there are finitely many resource λ-terms 𝑠 such that size(𝑠) ⩽ 𝑛 and fv(𝑠) ⊆
𝑋 . □

Before ending this chapter, let us have a look to the properties of −↠r in the
qualitative setting.
A first important observation is that 𝟚 is a complete semiring, i.e. all families
are summable in the qualitative resource λ-calculus. This makes the definition
of −↠r a bit easier: for 𝐔,𝐕 ∈ 𝟚(!)Λr there is a reduction 𝐔 −↠r 𝐕 whenever
there are families (𝑢𝑖)𝑖∈𝐼 ∈ ((!)Λr)𝐼 and (𝑉 𝑖)𝑖∈𝐼 ∈ (𝟚((!)Λr))𝐼 such that

𝐔 =∑
𝑖∈𝐼

𝑎𝑖𝑢𝑖, 𝐕 = ∑
𝑖∈𝐼

𝑎𝑖𝑉 𝑖 and ∀𝑖 ∈ 𝐼, 𝑢𝑖 ⟶∗
r 𝑉 𝑖.

This gain of regularity allows for the two nice following characterisations.

LEMMA 3.50 (converse of lemma 3.37, now for true). In the qualitative setting,
for all 𝑈,𝑈 ′ ∈ 𝟚((!)Λr), 𝑈 ⟶∗

r 𝑈 ′ iff 𝑈 −↠r 𝑈 ′.

PROOF. Only the reverse implication remains to prove; to do so, it suffices
to observe that the characterisations of ⟶∗

r in lemma 3.38 and of −↠r in
lemma 3.39 become identical in the qualitative setting. □

Concretely, this expresses the contextuality of the reduction ⟶∗
r : if 𝑠 ⟶∗

r 𝑆′
and 𝑡⟶∗

r 𝑇 ′, then 𝑠 + 𝑡 −↠r 𝑆′ + 𝑇 ′ and finally 𝑠 + 𝑡⟶∗
r 𝑆′ + 𝑇 ′.

LEMMA 3.51. In the qualitative setting, for 𝐔,𝐕 ∈ 𝟚(!)Λr there is a reduction
𝐔 −↠r 𝐕 iff there is a family (𝑉𝑢)𝑢∈𝐔 ∈ (𝟚((!)Λr))𝐔 such that

𝐕 = ∑
𝑢∈𝐔

𝑉𝑢 and ∀𝑢 ∈ 𝑈, 𝑢⟶∗
r 𝑉𝑢.

PROOF. Let us decompose

𝐕 = ∑
𝑖∈𝐼

𝑉 𝑖 = ∑
𝑢∈𝐔

∑
𝑉∈𝟚((!)Λr)
𝑢⟶∗r𝑉

∑
𝑖∈𝐼
𝑢𝑖=𝑢
𝑉𝑖=𝑉

𝑉

⏟⎵⏟⎵⏟
=𝑉 or 0

= ∑
𝑢∈𝐔

∑
𝑉∈𝐽𝑢

𝑉
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with 𝐽𝑢 ≔ {𝑉 ∈ 𝟚((!)Λr) || ∃𝑖 ∈ 𝐼, 𝑢𝑖 = 𝑢 and 𝑉 𝑖 = 𝑉 }. Observe that for all 𝑢 ∈
𝐔, this set 𝐽𝑢 is non-empty (by construction) and finite (by theorem 3.49). For
any 𝑢 ∈ 𝐔 and 𝑉 ∈ 𝐽𝑢 there is a reduction 𝑢⟶∗

r 𝑉 , hence by lemma 3.50

𝑢 = ∑
𝑉∈𝐽𝑢

𝑢 ⟶∗
r ∑

𝑉∈𝐽𝑢
𝑉

which concludes the proof with 𝑉𝑢 ≔ ∑𝑉∈𝐽𝑢 𝑉 . □

As a surprising consequence, we obtain the transitivity of −↠r. This gives a
first, very partial answer to open question 3.17.

COROLLARY 3.52. In the qualitative setting, −↠r is transitive.

PROOF. Consider 𝐔 −↠r 𝐕 −↠r 𝐖, i.e.

𝐕 = ∑
𝑢∈𝐔

𝑉𝑢 with ∀𝑢 ∈ 𝐔, 𝑢⟶∗
r 𝑉𝑢

and 𝐖 = ∑
𝑣∈𝐕

𝑊𝑣 with ∀𝑣 ∈ 𝐕, 𝑣⟶∗
r 𝑊𝑣,

thus 𝐖 = ∑
𝑢∈𝐔

∑
𝑣∈𝑉𝑢

𝑊𝑣 with ∀𝑢 ∈ 𝐔, 𝑢⟶∗
r 𝑉𝑢 ⟶∗

r ∑
𝑣∈𝑉𝑢

𝑊𝑣

by contextuality (lemma 3.50). □

3.4 Depth of resource expressions and reductions

The proofs of the main theorems in the second part of this thesis rely on a care-
ful analysis at the depth at which β-reduction steps occur in the λ-calculus, in
order to give them an appropriate approximation in the resource λ-calculus.
To do so, we define a notion of depth for resource expressions and resource re-
ductions. This notion is intrinsically ‘001’: the depth does not increase at any
constructor of the resource calculus, but only when one enters the argument
side of an application, i.e. it can be seen as counting the number of nested
multisets.

DEF IN IT ION 3.53. The depth of resource expressions is the map (!)Λr → ℕ
defined by induction by

depth(𝑥) ≔ 0 depth((𝑠) ̄𝑡) ≔ max (depth(𝑠), depth( ̄𝑡))
depth(𝜆𝑥.𝑠) ≔ depth(𝑠) depth([𝑡1,… , 𝑡𝑛]) ≔ 1 + max

1⩽𝑖⩽𝑛
depth(𝑡𝑖)

The definition is extended to finite sums 𝑆 ∈ ℕ((!)Λr) by saying that

depth(𝑆) ≔ max
𝑠∈|𝑆|

depth(𝑠).

By convention, depth(0) = 0.
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LEMMA 3.54. For all 𝑆 ∈ ℕ((!)Λr), depth(𝑆) ⩽ size(𝑆).

PROOF. We first show the result for 𝑠 ∈ Λr, by an immediate induction. Then
we can conclude by taking the maximum over 𝑠 ∈ |𝑆|. □

DEF IN IT ION 3.55. For 𝑑 ∈ ℕ, the relation −⇀r⩾𝑑 ⊂ (!)Λr × ℕ((!)Λr) of sim-
ple resource reduction at minimum depth 𝑑 is defined by induction on 𝑑 by the
following set of inductive rules:

𝑠 −⇀r 𝑆′ (axr⩾0)𝑠 −⇀r⩾0 𝑆′

𝑠 −⇀r⩾𝑑+1 𝑆′
(λr⩾𝑑+1)𝜆𝑥.𝑠 −⇀r⩾𝑑+1 𝜆𝑥.𝑆′

𝑠 −⇀r⩾𝑑+1 𝑆′
(@lr⩾𝑑+1)(𝑠) ̄𝑡 −⇀r⩾𝑑+1 (𝑆′) ̄𝑡

̄𝑡 −⇀r⩾𝑑 ̄𝑇 ′
(@rr⩾𝑑+1)(𝑠) ̄𝑡 −⇀r⩾𝑑+1 (𝑠) ̄𝑇 ′

𝑠 −⇀r⩾𝑑+1 𝑆′
(!r⩾𝑑+1)𝑠 ⋅ ̄𝑡 −⇀r⩾𝑑+1 𝑆′ ⋅ ̄𝑡

The relation ⟶r⩾𝑑 ⊂ ℕ((!)Λr) × ℕ((!)Λr) of resource reduction at minimum
depth 𝑑 is then defined as the lifting to finite sums of −⇀r, i.e. it is generated by

𝑢1 −⇀r⩾𝑑 𝑈 ′
1 ∀𝑖 ⩾ 2, 𝑢𝑖 −⇀?

r⩾𝑑 𝑈 ′
𝑖
(Σ′r⩾𝑑)

∑𝑛
𝑖=1 𝑢𝑖 ⟶r⩾𝑑 ∑

𝑛
𝑖=1𝑈 ′

𝑖

Finally, −↠r⩾𝑑 is defined to be the double-lifting of⟶r⩾𝑑

All the properties we showed following definitions 3.27 and 3.35 can be straight-
forwardly adapted to⟶r⩾𝑑 and−↠r⩾𝑑. Let us end with the following lemma,
that should come as no surprise.

LEMMA 3.56. Let 𝑆 ∈ ℕ((!)Λr) be a finite sumof resource expressions and 𝑑 ∈ ℕ
such that 𝑑 > depth(𝑆). Then 𝑆 has no reduct through⟶r⩾𝑑.

PROOF. The result follows from the fact that given 𝑑 ∈ ℕ, 𝑢 ∈ (!)Λr and
𝑈 ′ ∈ ℕ((!)Λr), if 𝑢 −⇀r⩾𝑑 𝑈 ′ then 𝑑 ⩽ depth(𝑠), which can be proved by an
easy induction on the derivation 𝑢 −⇀r⩾𝑑 𝑈 ′. □

D
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Chapter 4

Taylor approximation for the
001-infinitary λ-calculus

J’ai appris à sortir le fruit d’une figue de
barbarie
Sans laisser les épines envahir ma chair

Habiba Djahnine

In the last two chapters, we introduced an infinitary generalisation of the λ-
calculus (chapter 2) and a multilinear calculus of resource approximants (chap-
ter 3). Ehrhard and Regnier’s Taylor expansion is the construction serving as
an interface between these two worlds, giving rise to an approximation of the
wild, ill-behaved dynamics of Λ001

⊥ by the very disciplined dynamics of Λr.
Most of the material (spanning over sections 4.1 to 4.3) is taken from Cerda
and Vaux Auclair (2023a), where the simulation of ⟶001

𝛽 through the Taylor
expansion was proved in a qualitative setting, together with a series of applica-
tions. All the quantitative results that we present are unpublished to this day.

In all this chapter, Λ∞ (resp. Λ∞
⊥ ) denotes Λ001 (resp. Λ001

⊥ ), and ⟶∞
𝛽 (resp.

⟶∞
𝛽⊥) denotes ⟶001

𝛽 (resp. ⟶001
𝛽⊥ ).

4.1 The Taylor expansion

We fix a semiring 𝕊 that is positive and has fractions, e.g. ℚ+, ℝ+ or simply 𝟚1.
The second hypothesis is needed because of the following notion, that will play
a central role in the definition of Taylor expansion.

NOTAT ION 4.1. Given a sum 𝐒 = ∑𝑖∈𝐼 𝑎𝑖𝑠𝑖 ∈ 𝕊Λr , for all 𝑛 ∈ ℕ we write

𝐒𝑛 ≔ [𝐒,… , 𝐒⏟⎵⏟⎵⏟
𝑛 times

] = ∑
𝑖1,…,𝑖𝑛∈𝐼

(
𝑛
∏
𝑖=1

𝑎𝑖) [𝑠𝑖1 ,… , 𝑠𝑖𝑛],

1 If the reader is not yet acquainted with the Taylor expansion of λ-terms, they should probably
read this first section ‘qualitatively’, i.e. consider that 𝕊 = 𝟚 and do as if there were no
coefficients, nowhere. This will make the next few pages way easier to read!
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consistently with the multiplicative notation we use for multisets. In particular,
for 𝑠 ∈ Λr we have 𝑠𝑛 = [𝑠,… , 𝑠]. Then the promotion of any 𝐒 ∈ 𝕊Λr is

𝐒! ≔ ∑
𝑛∈ℕ

1
𝑛!𝐒

𝑛,

which is well-defined since (𝐒𝑛)𝑛∈ℕ is summable.

We are reaching the moment we were eagerly waiting for: let us define the
Taylor expansion, i.e. the construction that will relate infinitary λ-calculi to
the resource λ-calculus, approximating the former using the latter. Recall, e.g.
from Ehrhard and Regnier (2008) or Vaux (2019), that the Taylor expansion is
defined on finite λ-terms to be the map

𝒯 ∶ Λ → 𝕊Λr

𝑥 ↦ 𝑥
𝜆𝑥.𝑃 ↦ 𝜆𝑥.𝒯(𝑃)
(𝑃)𝑄 ↦ (𝒯(𝑃))𝒯(𝑄)!.

(4.1)

(Recall from notation 3.22 that the constructors of the resource λ-terms act lin-
early on sums.) The Taylor expansion that we want to define for 001-infinitary
λ⊥-terms is the exact same thing. However we cannot write the definition as
in eq. (4.1) any more, because this definition is by induction on the source Λ.
If we say instead that we just take eq. (4.1) coinductively, we will generate an
object𝒯(𝑀) containing infinite ‘resource terms’ as soon as𝑀 is infinite, which
would be a disaster: all the power of the Taylor approximation is rooted in our
ability to reason by induction on the approximants.

The solution is to notice that a map Λ∞
⊥ → 𝕊Λr can be equivalently described

as a map Λ∞
⊥ × Λr → 𝕊, and thus defined by induction on Λr.

DEF IN IT ION 4.2. The Taylor expansion of a 001-infinitary λ⊥-term𝑀 ∈ Λ∞
⊥

is the resource vector
𝒯(𝑀) ≔ ∑

𝑠∈Λr

𝒯(𝑀, 𝑠) ⋅ 𝑠,

where the coefficient 𝒯(𝑀, 𝑠) is defined by induction on 𝑠 ∈ Λr by

𝒯(𝑥,𝑥) ≔ 1
𝒯(𝜆𝑥.𝑃, 𝜆𝑥.𝑠) ≔ 𝒯(𝑃, 𝑠)

𝒯((𝑃)𝑄, (𝑠) ̄𝑡) ≔ 𝒯(𝑃, 𝑠) × 𝒯!(𝑄, ̄𝑡)
(#𝑡)!

𝒯(𝑀, 𝑠) ≔ 0 otherwise,

where for pairwise distinct resource terms 𝑡1,… , 𝑡𝑛 ∈ Λr and for multiplicities
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𝑘1,… , 𝑘𝑚 ∈ ℕ,

𝒯!(𝑄, 𝑡𝑘11 ⋅ … ⋅ 𝑡𝑘𝑚𝑚 ) ≔
(∑𝑚

𝑖=1 𝑘𝑖)!
∏𝑚

𝑖=1 𝑘𝑖!
×

𝑚
∏
𝑖=1

𝒯(𝑄, 𝑡𝑖)𝑘𝑖 ,

using the multiplicative notation for multiset union.

For example, 𝒯(𝜆𝑥.(𝑥)𝑥) = ∑𝑛∈ℕ
1
𝑛!
𝜆𝑥. (𝑥) 𝑥𝑛. Observe that 𝒯(⊥) = 0.

The rather convoluted definition of the coefficient 𝒯!(𝑄, ̄𝑡) call for some expla-
nations. The big quotient in front of this coefficient amounts to the number of
different ways to list the elements of ̄𝑡, i.e.

# { 𝑡′1,… , 𝑡′𝑛 ∈ Λr | ̄𝑡 = [𝑡′1,… , 𝑡′𝑛] } .

Indeed, consider the action of the group 𝔖(𝑛) on lists of length 𝑛 defined by
𝜎 ⋅ (𝑥1,… ,𝑥𝑛) ≔ (𝑥𝜎(1),… ,𝑥𝜎(𝑛)). Then what we want to compute is the orbit
of (𝑡1,… , 𝑡𝑛), which is equal to

#𝔖(𝑛)
#Stab(𝑡1,… , 𝑡𝑛)

thanks to the orbit-stabiliser theorem. If we write 𝑚 the number of pairwise
distinct elements in (𝑡1,… , 𝑡𝑛) and 𝑘1,… , 𝑘𝑚 their multiplicities, this quotient
is exactly

(∑𝑚
𝑖=1 𝑘𝑖)!

∏𝑚
𝑖=1 𝑘𝑖!

.

appearing in the definition of 𝒯!(𝑄, ̄𝑡).

Notice that we can slightly simplify the definition of𝒯((𝑃)𝑄, (𝑠) ̄𝑡) if we denote
by 𝑡1,… , 𝑡𝑛 ∈ Λr the pairwise distinct elements of ̄𝑡 and by 𝑘1,… , 𝑘𝑚 ∈ ℕ their
multiplicities:

𝒯((𝑃)𝑄, (𝑠) ̄𝑡) ≔ 𝒯(𝑃, 𝑠) × 𝒯!(𝑄, ̄𝑡)
(#𝑡)!

= 𝒯(𝑃, 𝑠) ×
(∑𝑚

𝑖=1 𝑘𝑖)!
(#𝑡)! ×∏𝑚

𝑖=1 𝑘𝑖!
×

𝑚
∏
𝑖=1

𝒯(𝑄, 𝑡𝑖)𝑘𝑖

= 𝒯(𝑃, 𝑠) ×
𝑚
∏
𝑖=1

𝒯(𝑄, 𝑡𝑖)𝑘𝑖
𝑘𝑖!

. (4.2)

We will now provide two characterisations of the Taylor expansion of a term.
The first one is an easy reformulation, using the following observation.

OBSERVAT ION 4.3. If 𝑠 ∈ |𝒯(𝑀)| then the coefficient 𝒯(𝑀, 𝑠) only depends
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on 𝑠. Explicitely, it is then given by 𝒯(𝑀, 𝑠) = ̄𝒯(𝑠), with

̄𝒯(𝑥) ≔ 1
̄𝒯(𝜆𝑥.𝑠) ≔ ̄𝒯(𝑠)

̄𝒯((𝑠) ̄𝑡) ≔ ̄𝒯(𝑠) ×
̄𝒯!( ̄𝑡)

(#𝑡)!

̄𝒯!(𝑡𝑘11 ⋅ … ⋅ 𝑡𝑘𝑚𝑚 ) ≔
(∑𝑚

𝑖=1 𝑘𝑖)!
∏𝑚

𝑖=1 𝑘𝑖!
×

𝑚
∏
𝑖=1

̄𝒯(𝑡𝑖)𝑘𝑖

for pairwise distinct 𝑡1,… , 𝑡𝑚 ∈ Λr.

Notice that 1
�̄�(𝑠)

is what Ehrhard and Regnier (2008) call the ‘multiplicity’ of 𝑠
and denote by m(𝑠).
As in eq. (4.2), we can write

̄𝒯((𝑠) 𝑡𝑘11 ⋅ … ⋅ 𝑡𝑘𝑚𝑚 ) = ̄𝒯(𝑠) ×
𝑚
∏
𝑖=1

̄𝒯(𝑡𝑖)𝑘𝑖
𝑘𝑖!

. (4.3)

As a consequence, the Taylor expansion 𝒯(𝑀) of a term 𝑀 is characterised by
its support |𝒯(𝑀)|. The latter can be characterised in turn by the following
relation.

DEF IN IT ION 4.4. The relation ⊑𝒯 ⊂ Λr × Λ∞
⊥ of Taylor approximation is

defined by induction by the following rules:

𝑥 ⊑𝒯 𝑥
𝑠 ⊑𝒯 𝑃

𝜆𝑥.𝑠 ⊑𝒯 𝜆𝑥.𝑃
𝑠 ⊑𝒯 𝑃 ̄𝑡 ⊑!

𝒯 𝑄
(𝑠) ̄𝑡 ⊑𝒯 (𝑃)𝑄

𝑡1 ⊑𝒯 𝑄 … 𝑡𝑛 ⊑𝒯 𝑄
[𝑡1,… , 𝑡𝑛] ⊑!

𝒯 𝑄

LEMMA 4.5. For all 𝑠 ∈ Λr, ̄𝑡 ∈ !Λr and𝑀 ∈ Λ∞
⊥ ,

• 𝑠 ⊑𝒯 𝑀 iff 𝑠 ∈ |𝒯(𝑀)|,

• ̄𝑡 ⊑!
𝒯 𝑀 iff 𝑠 ∈ ||𝒯(𝑀)!||.

PROOF. By an immediate induction on the rules defining ⊑𝒯 and ⊑!
𝒯 . □

We obtain the following presentation. This is how we first presented the Taylor
expansion of infinitary terms in Cerda and Vaux Auclair (2023a), in a qualita-
tive setting (i.e. with ̄𝒯(𝑠) = 1 for all 𝑠).

COROLLARY 4.6. For any𝑀 ∈ Λ∞
⊥ ,

𝒯(𝑀) = ∑
𝑠⊑𝒯𝑀

̄𝒯(𝑠) ⋅ 𝑠 𝒯(𝑀)! = ∑
̄𝑡⊑!𝒯𝑀

̄𝒯!( ̄𝑡)
(# ̄𝑡)! ⋅

̄𝑡.
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PROOF. The first identity is immediate by lemma 4.5. For the second one, we
compute

𝒯(𝑀)! = ∑
𝑛∈ℕ

1
𝑛! ( ∑

𝑠⊑𝒯𝑀
̄𝒯(𝑠) ⋅ 𝑠)

𝑛

= ∑
𝑛∈ℕ

∑
𝑠1,…,𝑠𝑛⊑𝒯𝑀

1
𝑛!

𝑛
∏
𝑖=1

̄𝒯(𝑠𝑖) ⋅ [𝑠1,… , 𝑠𝑛]

= ∑
𝑛∈ℕ

∑
𝑢1,…,𝑢𝑚⊑𝒯𝑀
pairwise distinct
𝑘1,…,𝑘𝑚∈ℕ
𝑘1+⋯+𝑘𝑚=𝑛

𝑁
𝑛!

𝑚
∏
𝑗=1

̄𝒯(𝑢𝑗)𝑘𝑗 ⋅ 𝑠𝑘11 ⋯𝑠𝑘𝑛𝑛

where 𝑁 = # { 𝑡1,… , 𝑡𝑛 || 𝑢
𝑘1
1 ⋯𝑢𝑘𝑚𝑚 = [𝑡1,… , 𝑡𝑛] },

= ∑
𝑛∈ℕ

∑
𝑢1,…,𝑢𝑚⊑𝒯𝑀
pairwise distinct
𝑘1,…,𝑘𝑚∈ℕ
𝑘1+⋯+𝑘𝑚=𝑛

1
𝑛! × (𝑛! ×

𝑚
∏
𝑗=1

̄𝒯(𝑢𝑗)𝑘𝑗
𝑘𝑗!

) ⋅ 𝑠𝑘11 ⋯𝑠𝑘𝑛𝑛

using the computation done under definition 4.2,

= ∑
̄𝑡⊑!𝒯𝑀

̄𝒯!( ̄𝑡)
(# ̄𝑡)! ⋅

̄𝑡. □

The following corollary also ensures that the intuitive definition of 𝒯, that we
could not turn into a correct inductive (or coinductive) definition, holds as a
property.

COROLLARY 4.7. For all variables 𝑥 ∈ 𝒱 and terms𝑀,𝑁 ∈ Λ∞
⊥ ,

𝒯(𝑥) = 𝑥 𝒯((𝑀)𝑁) = (𝒯(𝑀))𝒯(𝑁)!

𝒯(𝜆𝑥.𝑀) = 𝜆𝑥.𝒯(𝑀) 𝒯(⊥) = 0.

PROOF. Each case can be treated separately. The equality of supports is im-
mediate by lemma 4.5. The equality of coefficients is immediate, except for the
case of the application where it is a consequence of corollary 4.6. □

Let us show a second alternative presentation of the Taylor expansion. We de-
note by 𝒬 the quotient term bifunctor 𝒬𝜆⊥001 generating the 001-infinitary λ⊥-
terms,

𝒬(𝑋,𝑌) ≔ 𝒱 + [𝒱]𝑋 + 𝑋 × 𝑌 + ⊥,

by 𝒬r the bifunctor defined by

𝒬r(𝑋,𝑌) ≔ 𝒱 + [𝒱]𝑋 + 𝑋 × !𝑌 ,
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and we define the 𝐍𝐨𝐦-endofunctors

�̄� ≔ µ𝑋.𝒬(𝑋,−) �̄�r ≔ µ𝑋.𝒬r(𝑋,−).

Recall that by definitions 1.25 and 3.20 and theorem 1.5,

Λ∞
⊥ = ν𝑌.�̄�𝑌 = lim

𝑑∈ℕ
�̄�𝑑1 Λr = µ𝑌.�̄�r𝑌 = colim

𝑑∈ℕ
�̄�𝑑
r 0.

DEF IN IT ION 4.8. For all 𝑑 ∈ ℕ, the Taylor expansion until depth 𝑑 is the map
defined by induction on 𝑑 by

𝒯<0 ∶ 1 → 𝕊0
∗ ↦ 0

𝒯<𝑑+1 ∶ �̄�𝑑+11 → 𝕊�̄�
𝑑+1
r 0

𝑥 ↦ 𝑥
𝜆𝑥.𝑃 ↦ 𝜆𝑥.𝒯<𝑑+1(𝑃)
(𝑃)𝑄 ↦ (𝒯<𝑑+1(𝑃)) 𝒯<𝑑(𝑃)!
⊥ ↦ 0.

By abuse of notation, for𝑀 ∈ Λ∞
⊥ we write 𝒯<𝑑(𝑀) instead of 𝒯<𝑑(⌊𝑀⌋𝑑).

In fact, as one woud expect 𝒯<𝑑(𝑀) is just the ‘sub-sum’ of 𝒯(𝑀) containing
only the terms of depth lower than 𝑑. Let us make this statement precise.

LEMMA 4.9. For any𝑀 ∈ Λ∞
⊥ , |𝒯<𝑑(𝑀)| = { 𝑠 ∈ 𝒯(𝑀) | depth(𝑠) < 𝑑 } and

𝒯<𝑑(𝑀) = ∑
depth(𝑠)<𝑑

𝒯(𝑀, 𝑠) ⋅ 𝑠.

PROOF. By an immediate induction on 𝑑. □

Recall that a sum in 𝕊Ξ can be seen as a map Ξ → 𝕊, i.e. an object in the
internal hom [Ξ,𝕊] since 𝐍𝐨𝐦 is cartesian closed. By the same property, the
contravariant functor [−,𝕊] takes colimits to limits, hence

[Λr,𝕊] = [colim
𝑑∈ℕ

�̄�𝑑
r 0,𝕊] = lim

𝑑∈ℕ
[�̄�𝑑

r 0,𝕊].

This gives rise to the following abstract presentation of 𝒯.

COROLLARY 4.10. 𝒯 is the unique equivariant mapΛ∞
⊥ → [Λr,𝕊] induced by
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the cone (𝒯<𝑑 ∘ ⌊−⌋𝑑)𝑑∈ℕ, as in the following diagram:

1 �̄�1 �̄�21 Λ∞
⊥

[0,𝕊] [�̄�r0,𝕊] [�̄�2
r0,𝕊] [Λr,𝕊]

⇐

⇐

𝒯<0

←→⌊−⌋0

←

→

𝒯<1

←→⌊−⌋1

←

→

𝒯<2

←→⌊−⌋2

←

→

𝒯

←→

[⊆,𝕊]
←→

[⊆,𝕊]
←→

[⊆,𝕊]

PROOF. Expressed in an additive formalism, the maps [⊆,𝕊] act on sums as
follows:

[⊆,𝕊] ∶ 𝕊�̄�
𝑑+1
r 0 → 𝕊�̄�

𝑑
r 0

∑
𝑠∈Λr

depth(𝑠)<𝑑+1

𝑎𝑠 ⋅ 𝑠 ↦ ∑
𝑠∈Λr

depth(𝑠)<𝑑

𝑎𝑠 ⋅ 𝑠.

Denote by ⊆∗ the inclusion �̄�𝑑
r 0 → Λr. Then lemma 4.9 expresses exactly the

fact that for all 𝑑 ∈ ℕ,
𝒯<𝑑 ∘ ⌊−⌋𝑑 = [⊆∗,𝕊] ∘ 𝒯

which uniquely characterises 𝒯 by the universal property of [Λr,𝕊]. The fact
that all the maps involved are equivariant is immediate, hence the construction
holds in 𝐍𝐨𝐦 (where we recall that Λ∞

⊥ and Λr are notations for the nominal
sets (Λ∞

⊥ )ffv/=𝛼 and Λr/=𝛼). □

4.2 Qualitative approximation

Our main task in this chapter is to prove a series of simulation results: given
reduction systems (Λ∞

⊥ ,⟶) we show that (𝕊Λr ,⟶r) extends them through
the inclusion 𝒯2. The reduction ⟶ will typically be ⟶∗

𝛽 (lemma 4.12) or
⟶∞

𝛽 (theorem 4.14).
In this section we work in the qualitative setting. In particular we enforce no-
tation 3.46 and we identify sums 𝐒 ∈ 𝟚Λr with their support |𝐒|. Therefore, for
any 𝐒 ∈ 𝟚Λr its promotion 𝐒! can also be seen as the set !𝐒 of all multisets of
elements of 𝐒.

4.2.1 Simulation of the β-reduction

The first simulation property concerns the substitution, following the way
paved by Vaux (2017, 2019). Nonetheless we need to adapt or replace some
proof techniques, due to the coinductive nature of the source of the Taylor
expansion.

2 In fact 𝒯 is not exactly injective on Λ∞
⊥ , but only on Λ∞. We will make this precise in

lemma 4.25.
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LEMMA 4.1 1 (qualitative simulation of the substitution). For all𝑀,𝑁 ∈ Λ∞
⊥ ,

𝒯 (𝑀[𝑁/𝑥]) = 𝒯(𝑀)⟨𝒯(𝑁)!/𝑥⟩.

PROOF. The proof from Vaux (2019, lem. 4.10) relies on an easy induction on
𝑀 that cannot be adapted to our setting. Instead, the induction should focus
on what remains inductive in our Taylor expansion, i.e. the approximants and
the Taylor approximation relation.
Concretely, we proceed by double inclusion. To prove that 𝒯 (𝑀[𝑁/𝑥]) ⊆
𝒯(𝑀)⟨𝒯(𝑁)!/𝑥⟩, we show that for all derivation 𝑢 ⊑𝒯 𝑀[𝑁/𝑥], there exist
derivations 𝑠 ⊑𝒯 𝑀 and 𝑡1 ⊑𝒯 𝑁,… , 𝑡𝑛 ⊑𝒯 𝑁 for some 𝑛 ∈ ℕ, such that
𝑢 ∈ 𝑠⟨[𝑡1,… , 𝑡𝑛]/𝑥⟩. We do so by induction on 𝑢 ⊑𝒯 𝑀[𝑁/𝑥], considering the
possible cases for 𝑀:

• If 𝑀 = 𝑥 then 𝑀[𝑁/𝑥] = 𝑁, hence 𝑢 ⊑𝒯 𝑁. Then we can set 𝑠 ≔ 𝑥 and
𝑛 ≔ 1, 𝑡1 ≔ 𝑢.

• If 𝑀 = 𝑦 ≠ 𝑥 then 𝑀[𝑁/𝑥] = 𝑦, hence 𝑢 = 𝑦. Then we can set 𝑠 ≔ 𝑦 and
𝑛 ≔ 0.

• If 𝑀 = 𝜆𝑦.𝑃 then 𝑀[𝑁/𝑥] = 𝜆𝑦.𝑃[𝑁/𝑥], hence we must have 𝑢 = 𝜆𝑦.𝑢′
with 𝑢′ ⊑𝒯 𝑃[𝑁/𝑥]. By induction, we obtain derivations 𝑠′ ⊑𝒯 𝑃 and
𝑡1 ⊑𝒯 𝑁,… , 𝑡𝑛 ⊑𝒯 𝑁 for some 𝑛 ∈ ℕ, such that 𝑢′ ∈ 𝑠′⟨[𝑡1,… , 𝑡𝑛]/𝑥⟩.
Then we can set 𝑠 ≔ 𝜆𝑦.𝑠′.

• If 𝑀 = (𝑃)𝑄 then 𝑀[𝑁/𝑥] = (𝑃[𝑁/𝑥])𝑄[𝑁/𝑥], hence we must have 𝑢 =
(𝑢′) [𝑢″1 ,… ,𝑢″𝑚] for some 𝑚 ∈ ℕ, with 𝑢′ ⊑𝒯 𝑃[𝑁/𝑥] and ∀𝑖, 𝑢″𝑖 ⊑𝒯
𝑄[𝑁/𝑥]. By induction, we obtain derivations 𝑠′ ⊑𝒯 𝑃 and 𝑡0,1 ⊑𝒯 𝑁 ,… ,

𝑡0,𝑛0 ⊑𝒯 𝑁 such that

𝑢′ ∈ 𝑠′⟨[𝑡0,1,… , 𝑡0,𝑛0]/𝑥⟩,

and for all 𝑖 derivations 𝑠″𝑖 ⊑𝒯 𝑄 and 𝑡𝑖,1 ⊑𝒯 𝑁,… , 𝑡𝑖,𝑛𝑖 ⊑𝒯 𝑁 such that

𝑢″𝑖 ∈ 𝑠″𝑖 ⟨[𝑡𝑖,1,… , 𝑡𝑖,𝑛𝑖 ]/𝑥⟩.

Then we can set 𝑠 ≔ (𝑠′) [𝑠″1 ,… , 𝑠″𝑛], 𝑛 ≔ ∑𝑚
𝑖=0 𝑛𝑖 and

[𝑡1,… , 𝑡𝑛] ≔ [𝑡0,1,… , 𝑡0,𝑛0] ⋅ … ⋅ [𝑡𝑚,1,… , 𝑡𝑚,𝑛𝑚].

Conversely, in order to prove that𝒯(𝑀)⟨𝒯(𝑁)!/𝑥⟩ ⊆ 𝒯 (𝑀[𝑁/𝑥]), we show that
for all derivations 𝑠 ⊑𝒯 𝑀 and 𝑡1 ⊑𝒯 𝑁,… , 𝑡𝑛 ⊑𝒯 𝑁 for some 𝑛 ∈ ℕ,

∀𝑢 ∈ 𝑠⟨[𝑡1,… , 𝑡𝑛]/𝑥⟩, 𝑢 ⊑𝒯 𝑀[𝑁/𝑥].

We proceed by induction on the derivation 𝑠 ⊑𝒯 𝑀.
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• If 𝑠 = 𝑥 ⊑𝒯 𝑥 = 𝑀 and 𝑛 = 1, then 𝑠⟨[𝑡1]/𝑥⟩ = 𝑡1 ⊑𝒯 𝑁 = 𝑀[𝑁/𝑥].

• If 𝑠 = 𝑦 ⊑𝒯 𝑦 = 𝑀 and 𝑛 = 0, then 𝑠⟨1/𝑥⟩ = 𝑦 ⊑𝒯 𝑦 = 𝑀[𝑁/𝑥].

• If 𝑠 is a variable but none of the previous two cases apply, then we have
𝑠⟨[𝑡1,… , 𝑡𝑛]/𝑥⟩ = 0 so the result is immediate.

• If 𝑠 = 𝜆𝑦.𝑠′ ⊑𝒯 𝜆𝑦.𝑃 = 𝑀 with 𝑠′ ⊑𝒯 𝑃, then take any 𝑡1 ⊑𝒯 𝑁,… , 𝑡𝑛 ⊑𝒯
𝑁 for some 𝑛 ∈ ℕ. All 𝑢 ∈ 𝑠⟨[𝑡1,… , 𝑡𝑛]/𝑥⟩ must be of the form 𝜆𝑥.𝑢′
with 𝑢′ ∈ 𝑠′⟨[𝑡1,… , 𝑡𝑛]/𝑥⟩, hence by induction 𝑢′ ⊑𝒯 𝑃[𝑁/𝑥]. Finally,
𝑢 ⊑𝒯 𝑀[𝑁/𝑥].

• If 𝑠 = (𝑠′) [𝑠″1 ,… , 𝑠″𝑚] ⊑𝒯 (𝑃)𝑄 = 𝑀, then take any 𝑡1 ⊑𝒯 𝑁,… , 𝑡𝑛 ⊑𝒯 𝑁
for some 𝑛 ∈ ℕ. For all 𝑢 ∈ 𝑠⟨[𝑡1,… , 𝑡𝑛]/𝑥⟩, there is a partition

[𝑡1,… , 𝑡𝑛] ≔ [𝑡0,1,… , 𝑡0,𝑛0] ⋅ … ⋅ [𝑡𝑚,1,… , 𝑡𝑚,𝑛𝑚]

such that 𝑢 is of the form (𝑢′) [𝑢″1 ,… ,𝑢″𝑚] with

𝑢′ ∈ 𝑠′⟨[𝑡0,1,… , 𝑡0,𝑛0]/𝑥⟩,
𝑢″𝑖 ∈ 𝑠″𝑖 ⟨[𝑡𝑖,1,… , 𝑡𝑖,𝑛𝑖 ]/𝑥⟩ for all 1 ⩽ 𝑖 ⩽ 𝑚.

By induction, 𝑢′ ⊑𝒯 𝑃[𝑁/𝑥] and for all 𝑖, 𝑢″ ⊑𝒯 𝑄[𝑁/𝑥], thus 𝑢 ⊑𝒯
𝑀[𝑁/𝑥]. □

This immediately implies that in the quantitative setting,

|𝒯 (𝑀[𝑁/𝑥])| = ||𝒯(𝑀)⟨𝒯(𝑁)!/𝑥⟩|| .

The full quantitative simulation will be proved in theorem 4.56, using an uni-
formity property.

LEMMA 4.12 (qualitative simulation of the β-reduction). For all𝑀,𝑁 ∈ Λ∞
⊥ , if

𝑀 ⟶∗
𝛽 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

PROOF. We first show the result for 𝑀 ⟶𝛽 𝑁, by induction on the core-
sponding derivation.

• Case (ax𝛽), 𝑀 = (𝜆𝑥.𝑃)𝑄 and 𝑁 = 𝑃[𝑄/𝑥], then

𝒯(𝑀) = ∑
𝑠∈𝒯(𝑃)

∑
̄𝑡∈𝒯(𝑄)

(𝜆𝑥.𝑠) ̄𝑡

−↠r ∑
𝑠∈𝒯(𝑃)

∑
̄𝑡∈𝒯(𝑄)

𝑠⟨ ̄𝑡/𝑥⟩

= 𝒯(𝑃)⟨𝒯(𝑄)!/𝑥⟩
= 𝒯(𝑁) by lemma 4.11.
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• Case (𝜆𝛽), 𝑀 = 𝜆𝑥.𝑃 and 𝑁 = 𝜆𝑥.𝑃′, with 𝑃 ⟶𝛽 𝑃′. By induction,
𝒯(𝑃) −↠r 𝒯(𝑃′). By lemma 3.51, this means that 𝒯(𝑃′) = ∑𝑠∈𝒯(𝑃) 𝑆′𝑠
with ∀𝑠 ∈ 𝒯(𝑃), 𝑠⟶∗

r 𝑆′𝑠. Then

𝒯(𝑀) = ∑
𝑠∈𝒯(𝑃)

𝜆𝑥.𝑠 and 𝒯(𝑁) = ∑
𝑠′∈𝒯(𝑃′)

𝜆𝑥.𝑠′ = ∑
𝑠∈𝒯(𝑃)

𝜆𝑥.𝑆′𝑠,

with 𝜆𝑥.𝑠⟶∗
r 𝜆𝑥.𝑆′𝑠 for all 𝑠. Thus 𝒯(𝑀) −↠r 𝒯(𝑁).

• Case (@𝑙𝛽) is similar to the previous one.

• Case (@𝑟𝛽), 𝑀 = (𝑃)𝑄 and 𝑁 = (𝑃)𝑄′, with 𝑄 ⟶𝛽 𝑄′. By induction,
𝒯(𝑄) −↠r 𝒯(𝑄′). By lemma 3.51, this means that 𝒯(𝑄′) = ∑𝑡∈𝒯(𝑄) 𝑇′𝑡
with ∀𝑡 ∈ 𝒯(𝑄), 𝑡⟶∗

r 𝑇′𝑡 . Then

𝒯(𝑀) = ∑
𝑠∈𝒯(𝑃)

∑
𝑘∈ℕ

∑
𝑡1,…,𝑡𝑘∈𝒯(𝑄)

(𝑠) [𝑡1,… , 𝑡𝑘]

−↠r ∑
𝑠∈𝒯(𝑃)

∑
𝑘∈ℕ

∑
𝑡1,…,𝑡𝑘∈𝒯(𝑄)

(𝑠) [𝑇′𝑡1 ,… ,𝑇′𝑡𝑘]

= ∑
𝑠∈𝒯(𝑃)

∑
𝑘∈ℕ

∑
𝑡′1,…,𝑡′𝑘∈𝒯(𝑄′)

(𝑠) [𝑡′1,… , 𝑡′𝑘]

= 𝒯(𝑁).

In the general case of a sequence 𝑀 ⟶∗
𝛽 𝑁, we proceed by an easy induction

on the length of the sequence, using the transitivity of −↠r in the qualitative
setting (corollary 3.52). □

In fact this lemma can be slightly improved by taking depths into account. This
gives rise to the following corollary, that will show very useful.

COROLLARY 4.13. For all 𝑑 ∈ ℕ and 𝑀,𝑁 ∈ Λ∞
⊥ , if 𝑀 ⟶∗

𝛽⩾𝑑 𝑁 then
𝒯(𝑀) −↠r⩾𝑑 𝒯(𝑁).

PROOF. Again we first treat the case of a single-step reduction, by induction
on a derivation 𝑀 ⟶𝛽⩾𝑑 𝑁. The base case (ax𝛽⩾0) is lemma 4.12, the induc-
tion cases are similar to the corresponding cases in the proof of lemma 4.12.
Then we conclude to the general case of 𝑀 ⟶∗

𝛽⩾𝑑 𝑁 by corollary 3.52. □

4.2.2 Simulation of the infinitary β-reduction

The main theorem of this manuscript — the proof of which starts right now!
— states that the reduction system (𝟚Λr ,−↠r) extends (Λ∞,⟶∞

𝛽 ) through the
Taylor expansion, i.e. that 𝑀 ⟶∞

𝛽 𝑁 implies 𝒯(𝑀) −↠r 𝒯(𝑁). Before diving
into the proof, let us outline our strategy.
The key property of ⟶∞

𝛽 is that is is strongly convergent, i.e. the reduction
steps in 𝑀 ⟶∞

𝛽 𝑁 occur at depths going to infinity. This means that for
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any finite approximant 𝑠 ⊑𝒯 𝑀, there is only a finite prefix of 𝑀 ⟶∞
𝛽 𝑁

involving the part of 𝑀 approximated by 𝑠. Thanks to the simulation of ⟶∗
𝛽

(lemma 4.12), this finite prefix can be simulated by a resource reduction started
from 𝑠. We then show that the result of this resource reduction is a sum of ap-
proximants of 𝑁, and that all approximants of 𝑁 can be obtained by this way.

THEOREM 4.14 (qualitative simulation of the infinitary β-reduction). For all
𝑀,𝑁 ∈ Λ∞

⊥ , if𝑀 ⟶∞
𝛽 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

We first show a series of technical lemmas, before glueing the pieces together.

LEMMA 4.15. Let 𝐒,𝐓 ∈ 𝟚Λr be such that 𝐒 −↠r⩾𝑑 𝐓 for some 𝑑 ∈ ℕ. If we
can write 𝐒 = ∑𝑖∈𝐼 𝑆 𝑖 for finite sums 𝑆 𝑖 ∈ 𝟚(Λr), then then we can also write
𝐓 = ∑𝑖∈𝐼 𝑇𝑖 for some finite sums 𝑇𝑖 ∈ 𝟚(Λr) such that ∀𝑖 ∈ 𝐼, 𝑆 𝑖 ⟶∗

r⩾𝑑 𝑇𝑖.

PROOF. For each 𝑖 ∈ 𝐼, write 𝑆 𝑖 = ∑𝑗∈𝐽𝑖
𝑠𝑖,𝑗 with 𝑠𝑖,𝑗 ∈ Λr, so that

𝐒 = ∑
𝑖∈𝐼

∑
𝑗∈𝐽𝑖

𝑠𝑖,𝑗 .

Since 𝐒 −↠r⩾𝑑 𝒯, by lemma 3.51 there are finite sums 𝑇𝑠 for 𝑠 ∈ 𝐒 such that

𝐓 = ∑
𝑠∈𝐒

𝑇𝑠 and ∀𝑠 ∈ 𝐒, 𝑠⟶∗
r⩾𝑑 𝑇𝑠.

Define, for each 𝑖 ∈ 𝐼, 𝑇𝑖 ≔ ∑𝑗∈𝐽𝑖
𝑇𝑠𝑖,𝑗 . It is straightforward to prove that for all

𝑖 ∈ 𝐼, 𝑆 𝑖 ⟶∗
r⩾𝑑 𝑇𝑖 (by induction on the sum of the lengths of the reductions

𝑠𝑖,𝑗 ⟶∗
r⩾𝑑 𝑇𝑠𝑖,𝑗 for 𝑗 ∈ 𝐽𝑖). □

As for proving the transitivity of −↠r in the qualitative setting (corollary 3.52),
we crucially relied on lemma 3.51 in the proof of this lemma. In fact if we try
to extend this result to a quantitative setting, even under the assumption that
𝕊 is an additive refinement semiring, we face the same kind of difficulties as in
open question 3.17. The absence of a qualitative counterpart to lemma 4.15 is
the main technical obstacle on the way towards a quantitative approximation
of ⟶∞

𝛽 ; we will only be able to overcome this by designing a new notion of
reduction on sums of approximants (see section 4.4).

LEMMA 4.16. For all𝑀,𝑁 ∈ Λ∞
⊥ and 𝑑 ∈ ℕ, if𝑀 ⟶∞

𝛽⩾𝑑 𝑁 then 𝒯<𝑑(𝑀) =
𝒯<𝑑(𝑁).

PROOF. We prove the result by induction on 𝑀 ⟶∞
𝛽⩾𝑑 𝑁.

• Case (ax∞𝛽⩾0) with 𝑑 = 0. Then 𝒯<0(𝑀) = 0 = 𝒯<0(𝑁).

• Case (𝒱∞
𝛽⩾𝑑+1) with 𝑁 = 𝑥 = 𝑀. Then 𝒯<𝑑+1(𝑀) = 𝑥 = 𝒯<𝑑+1(𝑁).
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• Case (λ∞𝛽⩾𝑑+1) with 𝑀 = 𝜆𝑥.𝑃 ⟶∞
𝛽⩾𝑑+1 𝜆𝑥.𝑃′ = 𝑁 and 𝑃 ⟶∞

𝛽⩾𝑑+1 𝑃′.
By induction, 𝒯<𝑑+1(𝑃) = 𝒯<𝑑+1(𝑃′) hence 𝒯<𝑑+1(𝑀) = 𝒯<𝑑+1(𝑁) by the
definition of 𝒯<𝑑+1.

• Case (@∞
𝛽⩾𝑑+1) with 𝑀 = (𝑃)𝑄 ⟶∞

𝛽⩾𝑑+1 (𝑃′)𝑄′ = 𝑁, 𝑃 ⟶∞
𝛽⩾𝑑+1 𝑃 and

𝑄 ⟶∞
𝛽⩾𝑑 𝑄′. By induction, 𝒯<𝑑+1(𝑃) = 𝒯<𝑑+1(𝑃′) and 𝒯<𝑑(𝑄) = 𝒯<𝑑(𝑄′).

Therefore 𝒯<𝑑+1(𝑀) = 𝒯<𝑑+1(𝑁) by the definition of 𝒯<𝑑+1. □

We are now able to prove the main simulation theorem. Infinitary reductions
𝑀 ⟶∞

𝛽 𝑁 are divided into finite prefixes 𝑀 ⟶∗
𝛽 𝑀𝑑 (thanks to the stratifica-

tion property, theorem 2.25) and infinitary suffixes 𝑀𝑑 ⟶∞
𝛽⩾𝑑 𝑁. The former

are treated via the simulation of ⟶∗
𝛽, the latter via the previous lemma.

PROOF OF THEOREM 4.14. Suppose 𝑀 ⟶∞
𝛽 𝑁. By theorem 2.25, we

obtain terms 𝑀0,𝑀1,𝑀2,… ∈ Λ∞
⊥ such that, for all 𝑑 ∈ ℕ:

𝑀 = 𝑀0 ⟶∗
𝛽⩾0 𝑀1 ⟶∗

𝛽⩾1 𝑀2 ⟶∗
𝛽⩾2 …⟶∗

𝛽⩾𝑑−1 𝑀𝑑 ⟶∞
𝛽⩾𝑑 𝑁.

Write 𝒯(𝑀) = ∑𝑠⊑𝒯𝑀
𝑠. For all 𝑑 ∈ ℕ, let us write a decomposition 𝒯(𝑀𝑑) =

∑𝑠⊑𝒯𝑀
𝑇𝑠,𝑑 as follows.

• For all 𝑠 ⊑𝒯 𝑀, define 𝑇𝑠,0 ≔ 𝑠.

• Suppose (𝑇𝑠,𝑑)𝑠⊑𝒯𝑀 is built. Since 𝑀𝑑 ⟶∗
𝛽⩾𝑑 𝑀𝑑+1 we obtain

𝒯(𝑀𝑑) −↠r⩾𝑑 𝒯(𝑀𝑑+1) by corollary 4.13. By lemma 4.15, there
exist (finite) sums 𝑇𝑠,𝑑+1 ∈ 𝟚(Λr) with the additional property that
∀𝑠 ⊑𝒯 𝑀, 𝑇𝑠,𝑑 ⟶∗

r⩾𝑑 𝑇𝑠,𝑑+1.

For each approximant 𝑠 ⊑𝒯 𝑀, we obtain a sequence

𝑠 = 𝑇𝑠,0 ⟶∗
r⩾0 𝑇𝑠,1 ⟶∗

r⩾1 𝑇𝑠,2 ⟶∗
r⩾2 …

which is an ‘approximate simulation’ of 𝑀 ⟶∞
𝛽 𝑁. The intuition behind the

end of the proof is that these sequences are eventually constant, and that the
union of their ‘limit values’ forms 𝒯(𝑁)3.
For 𝑠 ⊑𝒯 𝑀, define 𝑑𝑠 ≔ size(𝑠) + 1 and 𝑇𝑠 ≔ 𝑇𝑠,𝑑𝑠 . Let us show that

∑
𝑠⊑𝒯𝑀

𝑇𝑠 = 𝒯(𝑁).

First, observe that using lemmas 3.34 and 3.54, for all 𝑑 ∈ ℕ, depth(𝑇𝑠,𝑑) ⩽
size(𝑇𝑠,𝑑) ⩽ size(𝑠). Thus, depth(𝑇𝑠) < 𝑑𝑠. Then we proceed by double inclu-
sion.

• By lemma 4.9 with depth(𝑇𝑠) < 𝑑𝑠, we have 𝑇𝑠 ⊂ 𝒯<𝑑𝑠(𝑀𝑑𝑠).
By lemma 4.16 with 𝑀𝑑𝑠 ⟶∞

𝛽⩾𝑑𝑠 𝑁, we have 𝒯<𝑑𝑠(𝑀𝑑𝑠) = 𝒯<𝑑𝑠(𝑁).
Therefore 𝑇𝑠 ⊂ 𝒯(𝑁), and finally ∑𝑠⊑𝒯𝑀

𝑇𝑠 ⊆ 𝒯(𝑁).

3 Maybe this is a good time to have a look again at fig. 3.1b, page 94.



4.3. the taylor approximation at work 127

• Conversely, take 𝑡 ∈ 𝒯(𝑁). By lemma 4.9, 𝑡 ∈ 𝒯<𝛿𝑡(𝑁) where 𝛿𝑡 ≔
depth(𝑡) + 1.

By lemma 4.16, 𝒯<𝛿𝑡(𝑁) = 𝒯<𝛿𝑡(𝑀𝛿𝑡), so 𝑡 ∈ 𝒯(𝑀𝛿𝑡) and ∃𝑠 ⊑𝒯 𝑀, 𝑡 ∈
𝑇𝑠,𝛿𝑡 . For all 𝑑 ⩾ 𝛿𝑡, 𝑇𝑠,𝛿𝑡 ⟶∗

𝛽⩾𝛿𝑡 𝑇𝑠,𝑑. Since these reductions occur at
depths greater than the depth of 𝑡, we also have 𝑡 ∈ 𝑇𝑑𝑠 (which is formally
a consequence of lemma 3.56).

For all 𝑑 ⩾ 𝑑𝑠, observe that 𝑇𝑠 ⟶∗
𝛽⩾𝑑𝑠 𝑇𝑠,𝑑. Also by lemma 3.56, we

obtain 𝑇𝑠,𝑑 = 𝑇𝑠. Thus, if we take 𝑑 ⩾ max(𝛿𝑡, 𝑑𝑠), we obtain 𝑡 ∈ 𝑇𝑑 = 𝑇𝑠,
hence 𝑡 ∈ ∑𝑠⊑𝒯𝑀

𝑇𝑠.

Finally, 𝒯(𝑀) = ∑𝑠⊑𝒯𝑀
𝑠, 𝒯(𝑁) = ∑𝑠⊑𝒯𝑀

𝑇𝑠, and ∀𝑠 ⊑𝒯 𝑀, 𝑠 ⟶∗
𝛽 𝑇𝑠, thus

𝒯(𝑀) −↠r 𝒯(𝑁). □

4.3 The Taylor approximation at work

To demontrate the efficiency of the Taylor approximation, let us use it to charac-
terise various properties of 001-infinitary λ-terms. Most of the results we obtain
generalise well-known facts about the finite λ-calculus, e.g. characterisation of
unsolvable terms by head normalisation or the genericty lemma; in that sense
they are not really surprising, but the Taylor approximation provides particu-
larly simple proofs.

4.3.1 Head normalisation and solvability inΛ001
⊥

Recall from section 2.2.2 the definition of the head form of a 001-infinitary λ-
term, and of the corresponding head reduction⟶ℎ. By the same argument as
in lemma 2.8, a resource term 𝑠 ∈ Λr can always be written as

𝑠 = 𝜆𝑥1…𝜆𝑥𝑚. (𝑢) ̄𝑡1… ̄𝑡𝑛

where 𝑢 is either a (head) redex or a variable. In the latter case, we say that 𝑠
in in hnf (and we say that 𝐒 ∈ 𝟚Λr is in hnf when it only contains terms in
hnf).
Therefore we can also extend the definition of the head reduction.

DEF IN IT ION 4.17. The simple resource head reduction is the relation−⇀rℎ ⊂
−⇀r such that 𝑠 −⇀rℎ 𝑆′ if 𝑆′ is obtained by reducing the head redex of 𝑠.
The resource head reduction is the relation⟶rℎ ⊂ ⟶r defined as the lifting
to finite sums of −⇀rℎ.
We also define the resource head reduction operator Hr ∶ Λr → ℕ(Λr) by:

Hr(𝜆𝑥1…𝜆𝑥𝑚. ((𝜆𝑥.𝑢) ̄𝑣) ̄𝑡1… ̄𝑡𝑛) ≔ 𝜆𝑥1…𝜆𝑥𝑚. (𝑢⟨ ̄𝑣/𝑥⟩) ̄𝑡1… ̄𝑡𝑛
Hr(𝜆𝑥1…𝜆𝑥𝑚. (𝑦) ̄𝑡1… ̄𝑡𝑛) ≔ 𝜆𝑥1…𝜆𝑥𝑚. (𝑦) ̄𝑡1… ̄𝑡𝑛,
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i.e. Hr performs one resource head reduction step when it can, and acts like the
identity otherwise. It is extended to an operator 𝕊Λr → 𝕊Λr by

Hr (∑
𝑖∈𝐼

𝑎𝑖𝑠𝑖) ≔ ∑
𝑖∈𝐼

𝑎𝑖Hr(𝑠𝑖).

LEMMA 4.18 (simulation of the head reduction). Let 𝑀 ∈ Λ∞ be a term, then
Hr(𝒯(𝑀)) = 𝒯(H(𝑀)).

PROOF. Direct consequence of lemma 4.11. □

LEMMA 4.19 (termination of the resource head reduction). For all 𝑆 ∈ 𝟚(Λr),
there exists 𝑘 ∈ ℕ such thatH𝑘

r (𝑆) is in hnf.

PROOF. Given 𝑆 ∈ 𝟚(Λr), write 𝑆 = 𝑆′ + 𝑆hnf, where 𝑆hnf contains the terms
of 𝑆 in hnf. If 𝑆′ = 0 the proof is finished. Otherwise, by definition of Hr we
have Hr(𝑆) = Hr(𝑆′) + 𝑆hnf, and by lemma 3.34,

size(Hr(𝑆′)) < size(𝑆′).

Observe (as already done in theorem 3.41) that the decrease of the size defines
a well-founded order on Λr. Then as in the proof lemma 3.13 the multiset or-
dering induces a well-founded order ⪯ on 𝟚(Λr), for which we have

Hr(𝑆) ≺ 𝑆

because size(Hr(𝑆′)) < size(𝑆′) and 𝑆′ and 𝑆hnf are disjoint. □

Now we provide a characterisation of head-normalising infinitary terms based
on their Taylor expansion. In a finitary setting, this has been folklore for some
time (Olimpieri 2018, 2020b). In particular, it extends the well-known fact that
a term 𝑀 has a hnf iff the head reduction from 𝑀 terminates, that originates
back to Wadsworth (1971, thm. 3.1.3).

THEOREM 4.20 (characterisation of the head-normalising terms). For all terms
𝑀 ∈ Λ∞, the following propositions are equivalent:

1. there exists 𝑁 ∈ Λ∞ in hnf such that𝑀 ⟶∗
ℎ 𝑁,

2. there exists 𝑁 ∈ Λ∞ in hnf such that𝑀 ⟶∗
𝛽 𝑁,

3. there exists 𝑁 ∈ Λ∞ in hnf such that𝑀 ⟶∞
𝛽 𝑁,

4. there exists 𝑠 ∈ 𝒯(𝑀) such that nfr 𝑠 ≠ 0.
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PROOF. (1) ⇒ (2) ⇒ (3) is immediate. Suppose (3), i.e.

𝑀 ⟶∞
𝛽 𝑁 = 𝜆𝑥1…𝜆𝑥𝑚.(𝑦)𝑁1…𝑁𝑛.

In particular, 𝒯(𝑁) contains 𝑡0 = 𝜆𝑥1…𝜆𝑥𝑚. (𝑦) 1…1, which is in normal
form. Using theorem 4.14, there exists 𝑠 ∈ 𝒯(𝑀) and 𝑇 ⊂ 𝒯(𝑁) such that
𝑠⟶∗

r 𝑡0 + 𝑇, thus (4).
Suppose (4), i.e. 𝑠 ⟶∗

r 𝑡0 + 𝑇 with 𝑡0 in normal form. By lemma 4.19, there
is a 𝑘 ∈ ℕ such that H𝑘

r (𝑠) is in hnf. By confluence, there exists a 𝑈 ∈ 𝟚(Λr)

such that 𝑡0 +𝑇 ⟶∗
r 𝑈 and H𝑘

r (𝑠)⟶∗
r 𝑈 . Since 𝑡0 is in normal form, 𝑡0 ∈ 𝑈 ,

hence H𝑘
r (𝑠) ≠ 0. H𝑘

r (𝑠) is in hnf and non-empty, so there exists a term

𝜆𝑥1…𝜆𝑥𝑚. (𝑦) ̄𝑡1… ̄𝑡𝑛 ∈ H𝑘
r (𝑠) ⊂ H𝑘

r (𝒯(𝑀)) = 𝒯(𝐻𝑘(𝑀)),

by lemma 4.18. As a consequence, by the construction of 𝒯, 𝐻𝑘(𝑀) must have
shape 𝜆𝑥1…𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛, which shows (1). □

A first notable consequence of the previous result is the equivalence of head-
normalisation and solvability. In the finite λ-calculus, this is a well-known the-
orem by Wadsworth (1976, cor. 4.2). The following elementary proof is based
on the Taylor approximation and inspired by Olimpieri (2020b, thm. 3.14).

DEF IN IT ION 4.21. A term𝑀 ∈ Λ∞ is said to be solvable in Λ (resp. in Λ∞) if
there exist 𝑥1,… ,𝑥𝑚 ∈ 𝒱 and 𝑁1,… ,𝑁𝑛 ∈ Λ (resp. Λ∞) such that

(𝜆𝑥1…𝜆𝑥𝑚.𝑀)𝑁1…𝑁𝑛 ⟶∗
𝛽 I (resp.⟶∞

𝛽 ).

Otherwise,𝑀 is unsolvable.

COROLLARY 4.22 (characterisation of the solvable terms). For any term𝑀 ∈
Λ∞, the following propositions are equivalent:

1. 𝑀 is solvable in Λ∞,

2. 𝑀 is solvable in Λ,

3. 𝑀 has a hnf.

PROOF. Suppose (1), i.e. there exists 𝑥1,… ,𝑥𝑚 ∈ 𝒱 and 𝑁1,… ,𝑁𝑛 ∈ Λ∞
such that

(𝜆𝑥1…𝜆𝑥𝑚.𝑀)𝑁1…𝑁𝑛 ⟶∞
𝛽 I.

I is in hnf, so by theorem 4.20 there is an

𝑠 ∈ 𝒯((𝜆𝑥1…𝜆𝑥𝑚.𝑀)𝑁1…𝑁𝑛)

such that nfr(𝑠) ≠ 0. This resource term has shape

𝑠 = (𝜆𝑥1…𝜆𝑥𝑚.𝑢) ̄𝑡1… ̄𝑡𝑛



130 4. taylor approximation for Λ001

with 𝑢 ⊑𝒯 𝑀 and ̄𝑡𝑖 ⊑!
𝒯 𝑁 𝑖. nfr(𝑠) ≠ 0 is only possible if nfr(𝑢) ≠ 0, thus 𝑀

has a hnf by theorem 4.20. This proves (3).
We obtain a reduction 𝑀 ⟶∗

ℎ 𝜆𝑥1…𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛. If 𝑦 is one of the 𝑥𝑖,
then (𝑀)(K𝑛I)(𝑚) ⟶∗

𝛽 I; otherwise, ((𝜆𝑦.𝑀)K𝑛I) I(𝑚) ⟶∗
𝛽 I. This proves

(2). (2) ⇒ (1) is immediate. □

Thanks to theorem 4.20, we can also extend theorem 4.14 to the β⊥-reduction.

COROLLARY 4.23 (simulation of the infinitary β⊥-reduction). For all𝑀,𝑁 ∈
Λ∞
⊥ , if𝑀 ⟶∞

𝛽⊥ 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

PROOF. We need to show that whenever𝑀 ⟶⊥ 𝑁, 𝒯(𝑀) −↠r 𝒯(𝑁). There
are two possible base cases, where 𝑀 ⟶⊥ ⊥.

• If 𝑀 = 𝜆𝑥.⊥ or 𝑀 = (⊥)𝑀′, then 𝒯(𝑀) = 𝒯(⊥) = 0 so the result is
immediate.

• If 𝑀 has no hnf, then by theorem 4.20

𝒯(𝑀) −↠r ñfr(𝒯(𝑀)) = ∑
𝑠∈𝒯(𝑀)

nfr(𝑠) = 0.

We conclude for the general case of the congruent closure⟶⊥ as we did in the
proof of lemma 4.12. Then we extend the result to the case where 𝑀 ⟶∗

𝛽⊥ 𝑁,
and finally 𝑀 ⟶∞

𝛽⊥ 𝑁, just as we did in section 4.2. □

4.3.2 Normalisation, confluence and the Commutation theorem

We reach the acme of our exposition of the Taylor approximation for 001-
infinitary λ-terms: in this section, we finally use the finitary normalisation
of the resource λ-calculus to express infinitary normalisation properties on
λ-terms. We start by stating Ehrhard and Regnier’s famous Commutation
theorem (2006a, cor. 1) as an immediate consequence of our previous work,
in a version extended to infinitary λ-terms. Then we give new, easy proofs
of confluence and uniqueness of normal forms for (Λ001

⊥ ,⟶001
𝛽⊥ ) — which

were the major results of the seminal paper by Kennaway, Klop, et al. (1997),
already stated as theorem 2.22 and corollary 2.36. Finally, we propose a
characterisation of ⟶001

𝛽 -normalisable terms.

The following two technical lemmas are already well-known in a finitary set-
ting (Vaux 2019, facts 4.17 and 4.15). Let us state their infinitary version.

LEMMA 4.24. Let 𝑀 ∈ Λ∞
⊥ be a term in β⊥-normal form, then 𝒯(𝑀) is in

pointwise normal form.
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PROOF. By contraposition, using the fact that if some 𝑠 ∈ 𝒯(𝑀) contains a
β-redex then so does 𝑀. □

LEMMA 4.25 (injectivity on ⊥-nfs). Let𝑀,𝑁 ∈ Λ∞
⊥ be such that

1. 𝒯(𝑀) = 𝒯(𝑁),

2. 𝑀 and 𝑁 are in ⊥-normal form, i.e. neither𝑀 nor 𝑁 contain a subterm of
the form 𝜆𝑥.⊥ or (⊥)𝑀′.

Then𝑀 = 𝑁.

PROOF. First, observe that for any 𝑀 ∈ Λ∞
⊥ , 𝒯(𝑀) = 0 iff the first ‘inductive

layer’ in the structure of 𝑀 contains an occurrence of ⊥, i.e. iff 𝑀 = ⊥ or 𝑁
contains a subterm 𝜆𝑥.⊥ or (⊥)𝑀′; this can be easily seen by induction on this
first layer. In this lemma the latter case is excluded, hence𝒯(𝑀) = 0 iff𝑀 = ⊥.
This being said, we prove the result by nested coinduction and induction on
the structure of 𝑀.

• If𝑀 = ⊥, then𝒯(𝑀) = 0. By the obsevation we made, 𝒯(𝑁) = 0 implies
that 𝑁 = ⊥ = 𝑀.

In any other case, 𝒯(𝑀) ≠ 0.

• If 𝑀 = 𝜆𝑥.𝑃, then 𝒯(𝑀) = 𝜆𝑥.𝒯(𝑃). Since this is a non-empty sum, 𝑁
has an approximant of the shape 𝜆𝑥.𝑠, hence there is an 𝑃′ ∈ Λ∞

⊥ such
that 𝑁 = 𝜆𝑥.𝑃′. Furthermore, 𝒯(𝑃′) = 𝒯(𝑃). By induction, 𝑃′ = 𝑃, thus
𝑁 = 𝑀.

• IF 𝑀 = (𝑃)𝑄, then 𝒯(𝑀) = (𝒯(𝑀))𝒯(𝑁)!. Since this is a non-empty
sum, 𝑁 has an approximant of the shape (𝑠) ̄𝑡, hence there are 𝑃′,𝑄′ ∈
Λ∞
⊥ such that 𝑁 = (𝑃′)𝑄′. Furthermore 𝒯(𝑃′) = 𝒯(𝑃), hence 𝑃′ = 𝑃 by

induction. Similarly 𝒯(𝑄′)! = 𝒯(𝑄)!:
– either they only contain the empty multiset 1, in which case
𝒯(𝑄′) = 𝒯(𝑄) = 0 hence 𝑄′ = 𝑄 = ⊥;

– otherwise, they contain the same one-element multisets, i.e.
𝒯(𝑄′) = 𝒯(𝑄) and we obtain 𝑄′ = 𝑄 again.

Finally, 𝑁 = 𝑃. □

In particular, observe that this previous lemma does establish the injectivity of
𝒯(−) when restricted to Λ∞.
This leads us to the famous commutation theorem. Its version for finite λ-terms
originates to the seminal work by Ehrhard and Regnier (2008, 2006a), whose
proof has been significantly improved by Olimpieri and Vaux Auclair (2022,
thm. 6.10). Barbarossa and Manzonetto (2020, thm. 4.9) also propose a simple
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proof (limited to the qualitative setting) by relating the Taylor approximation
to the classical operational approximation. Our proof is already almost done:
the commutation property appears to be a straightforward consequence of the
simulation theorem.

THEOREM 4.26 (commutation). For all𝑀 ∈ Λ∞
⊥ , ñfr(𝒯(𝑀)) = 𝒯(BT(𝑀)).

PROOF. From lemma 2.34, we know that 𝑀 ⟶∞
𝛽⊥ BT(𝑀). By corollary 4.23,

this reduction can be simulated by a reduction 𝒯(𝑀) −↠r 𝒯(BT(𝑀)). The
reduct𝒯(BT(𝑀)) is in normal form becauseBT(𝑀) is so, thanks to lemmas 2.33
and 4.24. Thus it must be equal to ñfr(𝒯(𝑀)), as a consequence of the conflu-
ence of ⟶r. □

Two strikingly immediate corollaries of the commutation theorem are the fol-
lowing properties, already stated as corollary 2.36 and theorem 2.22. The origi-
nal proof by Kennaway, Klop, et al. (1997) relies on a delicate study of residuals
through ⟶∞

𝛽⊥. The renewed coinductive approach has led to several mecha-
nised proofs heavily using coinduction (Czajka 2014, 2020). We believe our
approach relying on a general approximation framework gives rise to a simple
alternative — which is of course also a matter of taste.

COROLLARY 4.27 (uniqueness of β⊥-normal forms). For any term𝑀 ∈ Λ∞
⊥ ,

BT(𝑀) is the unique normal form of𝑀 through⟶∞
𝛽⊥.

Furthermore, if𝑀 ∈ Λ∞ and BT(𝑀) ∈ Λ∞, then the latter is the unique normal
form of𝑀 through⟶∞

𝛽 .

PROOF. Suppose there is an 𝑁 ∈ Λ∞
⊥ in β⊥-normal form such that 𝑀 ⟶∞

𝛽⊥
𝑁, then

𝒯(𝑁) = 𝒯(BT(𝑁)) because 𝑁 is normal
= ñfr(𝒯(𝑁)) by theorem 4.26
= ñfr(𝒯(𝑀)) because 𝒯(𝑀) −↠r 𝒯(𝑁)
= 𝒯(BT(𝑀)) by theorem 4.26 again.

𝑁 andBT(𝑀) are in⊥-normal form, so they cannot contain subterm of the form
𝜆𝑥.⊥ or (⊥)𝑃, hence 𝑁 = BT(𝑀) by lemma 4.25.
If 𝑀 ∈ Λ∞ and BT(𝑀) ∈ Λ∞, the additional conclusion follows by observa-
tion 2.35. □

COROLLARY 4.28 (infinitary confluence). ⟶∞
𝛽⊥ is confluent.

PROOF. If 𝑀 ⟶∞
𝛽⊥ 𝑁 and 𝑀 ⟶∞

𝛽⊥ 𝑁′, then 𝑀 ⟶∞
𝛽⊥ BT(𝑁) and 𝑀 ⟶∞

𝛽⊥
BT(𝑁′) which are both equal to BT(𝑀) by corollary 4.27. □
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Let us also mention an important semantic consequence of the simulation prop-
erty: any model ℳ of Λr is also a model of Λ∞, as soon as it makes sense to
consider infinite sums of resource terms4. Indeed, in this case it suffices to
interpret any term 𝑀 ∈ Λ∞ by

⟦𝑀⟧ℳ ≔ ∑
𝑠⊑𝒯𝑀

⟦𝑠⟧ℳ = ∑
𝑠⊑𝒯BT(𝑀)

⟦𝑠⟧ℳ .

Notice that thanks to theorem 4.26 and lemma 4.25 these models are sensible,
i.e. they equate all unsolvable terms. This is in particular the case of the well-
known construction of a reflexive object 𝒟 in the category 𝐑𝐞𝐥! (Bucciarelli,
Ehrhard, and Manzonetto 2007).

As we characterised head-normalising terms by their Taylor expansion in the-
orem 4.20, let us give an explicit characterisation of β-normalising terms. This
is again an infinitary counterpart to some folklore finitary result. Whereas
the finitary case relies on positive resource terms (terms with no occurrence of
the empty multiset 1), we have to refine this concept by considering 𝑑-positive
terms, i.e. terms with no occurrence of 1 at depth smaller than 𝑑.

DEF IN IT ION 4.29 (𝑑-positive resource terms). Given an integer 𝑑 ∈ ℕ, the set
Λ+𝑑r ⊂ Λr of all 𝑑-positive resource terms is defined inductively by

Λ+0r ≔ Λr Λ+(𝑑+1)r ∋ 𝑠,… ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) ̄𝑡 ( ̄𝑡 ∈ !+Λ+𝑑r )

where !+𝑋 ≔ !𝑋 − {1}.

THEOREM 4.30 (characterisation of β-normalising terms). For all𝑀 ∈ Λ∞ the
following propositions are equivalent.

1. there exists 𝑁 ∈ Λ∞ in β-normal form such that𝑀 ⟶∞
𝛽 𝑁,

2. for any 𝑑 ∈ ℕ, there exists 𝑠 ∈ 𝒯(𝑀) such that nfr 𝑠 contains a 𝑑-positive
term.

PROOF. Suppose the first proposition, that is to say BT(𝑀) ∈ Λ∞ by corol-
lary 4.27. In particular, 𝑀 has a hnf. We build the desired approximants by
induction on 𝑑 ∈ ℕ.

• If 𝑑 = 0, then by theorem 4.20 there is an 𝑠 ∈ 𝒯(𝑀) such that nfr(𝑠) ≠ 0,
i.e. nfr(𝑠) contains a (0-positive) term.

4 Nevertheless, making this statement explicit and precise is outside the scope of this
manuscript. To our knowedge there is few literature about any semantics of infinitary λ-
calculi, even though most usual semantics of the finite λ-calculus could easily be adapted. For
instance, any model à la Scott should also be a model of Λ∞, in accordance with lemma 2.38
and theorem 2.41.
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• Otherwise denote the head normalisation of 𝑀 by

𝑀 ⟶∗
ℎ 𝜆𝑥1…𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛, (4.4)

so that
BT(𝑀) = 𝜆𝑥1…𝜆𝑥𝑚.(𝑦)BT(𝑀1)…BT(𝑀𝑛),

with BT(𝑀𝑖) ∈ Λ∞ and 𝑀𝑖 ⟶∞
𝛽 BT(𝑀𝑖) for all 𝑖. By induction, for all 𝑖

there is an 𝑠𝑖 ∈ 𝒯(𝑀𝑖) such that nfr(𝑠𝑖) contains a (𝑑 − 1)-positive 𝑡𝑖.

If we simulate eq. (4.4), in particular there is an 𝑠 ∈ 𝒯(𝑀) and 𝑆,𝑇 ∈
𝟚(Λr) such that

𝑠⟶∗
r 𝜆𝑥1…𝜆𝑥𝑚. (𝑦) [𝑠1]… [𝑠𝑛] + 𝑆

⟶∗
r 𝜆𝑥1…𝜆𝑥𝑚. (𝑦) [𝑡1]… [𝑡𝑛] + 𝑇

where the latter reduct is in normal form and 𝑑-positive.

Conversely, we suppose that these approximants are built and we deduce that
BT(𝑀) ∈ Λ∞, by coinduction on BT(𝑀).
Observe that the hypothesis ensures that ñfr(𝒯(𝑀)) ≠ 0, hence by theorem 4.20
there is a reduction

𝑀 ⟶∗
ℎ 𝜆𝑥1…𝜆𝑥𝑚.(𝑦)𝑀1…𝑀𝑛.

Fix 𝑑 ∈ ℕ. There are an 𝑠 ∈ 𝒯(𝑀) and a 𝑡 ∈ nfr(𝑠) such that 𝑡 is (𝑑+1)-positive.
By simulation, 𝑡 ∈ 𝒯(BT(𝑀)) so it has the shape

𝑡 = 𝜆𝑥1…𝜆𝑥𝑚. (𝑦) ̄𝑡1… ̄𝑡𝑛

where ̄𝑡𝑖 ∈ !+Λ+𝑑r for all 𝑖, i.e. each ̄𝑡𝑖 contains a normal and 𝑑-positive 𝑡𝑖,1. By
simulation again, there are 𝑠𝑖 ∈ 𝒯(𝑀𝑖) such that 𝑡𝑖,1 ∈ nfr(𝑠𝑖).
For all 𝑖, we established that for all 𝑑 ∈ ℕ there is an 𝑠𝑖 ∈ 𝑀𝑖 such that nfr(𝑠𝑖)
contains a 𝑑-positive term. We proceed coinductively to prove that BT(𝑀𝑖) ∈
Λ∞, thus

BT(𝑀) = 𝜆𝑥1…𝜆𝑥𝑚.(𝑦)BT(𝑀1)…BT(𝑀𝑛) ∈ Λ∞. □

If the finitary case, normalisation is also equivalent to the termination of the
left-parallel reduction strategy, which plays the same role as the head strategy in
theorem 4.20 (Olimpieri 2020b, thm. 4.10). In our setting, there is of course no
finite reduction strategy reaching the normal form of a term. A characterisation
of the 001-normalising terms, called hereditarily head-normalising (hhn) in
the literature, has been shown by Vial (2017, 2021) by means of infinitary non-
idempotent intersection types, thus answering to the so-called ‘Klop’s problem’.
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However, there is no hope for an effective characterisation, since hhn terms are
not recursively enumerable (Tatsuta 2008).

4.3.3 Infinitary contexts and the genericity lemma

To conclude this paper, we use the previous results to extend to Λ∞ a classical
result in λ-calculus, the genericity lemma (Barendregt 1984, prop. 14.3.24). The
intuition behind this lemma is that an unsolvable subterm of a normalising
term cannot contribute to its normal form (it is generic). This justifies that
unsolvables are taken as a class of meaningless terms — in fact, the unsolvables
are the largest non-trivial set of (formally defined) meaningless terms (Severi
and de Vries 2011; Barendregt and Manzonetto 2022).
We first define the standard notion of context, and extend it to the resource
λ-calculus.

DEF IN IT ION 4.31. The set Λ∞⦅◍⦆ of 001-infinitary contexts is defined by

Λ∞⦅◍⦆ = ν𝑌.µ𝑋.𝒱 + 𝒱 × 𝑋 + 𝑋 × 𝑌 +◍,

where◍ is a constant called the hole. Observe that contexts are not quotiented
by α-equivalence.
Given a context 𝐶 ∈ Λ∞⦅◍⦆ and a term𝑀 ∈ Λ∞, we use the notation

𝐶⦅𝑀⦆ ≔ [𝐶[◍ ≔ 𝑀]]𝛼

i.e. 𝐶⦅𝑀⦆ is obtained by substituting 𝑀 for each occurrence of ◍ in 𝐶 (like
𝐶[𝑀/◍], but possibly capturing the free variables of 𝑀), and quotienting by
α-equivalence.

DEF IN IT ION 4.32. The set Λr⦅◍⦆ of resource contexts is defined by

Λr⦅◍⦆ = µ𝑋.𝒱 + 𝒱 × 𝑋 + 𝑋 × !𝑋 +◍,

Given a resource context 𝑐 ∈ Λr⦅◍⦆ and a resourcemonomial ̄𝑡 ∈ !Λr, we denote
by 𝑐⦅ ̄𝑡⦆ the sum of all possible (α-equivalence classes of) resource terms obtained
by substituting each occurrence of ◍ in 𝑐 with exactly one element of ̄𝑡, or 0 if
the cardinality of ̄𝑡 does not match the number of occurrences of◍—again, like
𝑐⟨ ̄𝑡/◍⟩, but possibly capturing the free variables of ̄𝑡.

The Taylor expansion is extended to the map 𝒯 ∶ Λ∞⦅◍⦆ → 𝟚Λr⦅◍⦆ by extend-
ing ⊑𝒯 with the rule

◍ ⊑𝒯 ◍

i.e. setting 𝒯(◍) ≔ ◍.
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LEMMA 4.33. For all 𝐶 ∈ Λ∞⦅◍⦆ and𝑀 ∈ Λ∞,

𝒯 (𝐶⦅𝑀⦆) = { 𝑐⦅ ̄𝑡⦆ || 𝑐 ∈ 𝒯(𝐶), ̄𝑡 ∈ 𝒯(𝑀)! } .

PROOF. Direct consequence of lemma 4.11. □

LEMMA 4.34 (characterisation of 𝒯 by the 𝑑-positive elements). For all terms
𝑀,𝑁 ∈ Λ∞, if for any 𝑑 ∈ ℕ there exists a 𝑑-positive 𝑠𝑑 ∈ 𝒯(𝑀) ∩ 𝒯(𝑁), then
𝑀 = 𝑁.

PROOF. By nested induction and coinduction on the structure of 𝑀.

• If𝑀 = 𝑥, then 𝑑 = 0, there exists an 𝑠0 ∈ 𝒯(𝑀)∩𝒯(𝑁). Since 𝑠0 ∈ 𝒯(𝑀),
𝑠0 = 𝑥 so 𝑁 = 𝑥 too.

• If 𝑀 = 𝜆𝑥.𝑀′, suppose ∀𝑑 ∈ ℕ, ∃𝑠𝑑 ∈ 𝒯(𝑀) ∩ 𝒯(𝑁). Since 𝑠𝑑 ∈ 𝒯(𝑀),
𝑠𝑑 = 𝜆𝑥.𝑠′𝑑 for some 𝑑-positive 𝑠′𝑑. 𝑠𝑑 ∈ 𝒯(𝑁), whence 𝑁 = 𝜆𝑥.𝑁′ for
some 𝑁′ such that 𝑠′𝑑 ∈ 𝒯(𝑁′). By induction, 𝑀′ = 𝑁′, thus 𝑀 = 𝑁.

• If𝑀 = (𝑀′)𝑀″, suppose ∀𝑑 ∈ ℕ, ∃𝑠𝑑 ∈ 𝒯(𝑀)∩𝒯(𝑁). Since 𝑠𝑑 ∈ 𝒯(𝑀),
𝑠𝑑 = (𝑡𝑑) �̄�𝑑 for some 𝑡𝑑 ∈ Λ+𝑑r and ̄𝑢𝑑 ∈ !+Λ+(𝑑−1)r . Furthermore 𝑠𝑑 ∈
𝒯(𝑁), therefore 𝑁 = (𝑁′)𝑁″ for some 𝑁′ and 𝑁″ such that 𝑡𝑑 ∈ 𝒯(𝑁′)
and ̄𝑢𝑑 ∈ 𝒯(𝑁″)!.
Since ∀𝑑 ∈ ℕ, 𝑡𝑑 ∈ 𝒯(𝑀′) ∩ 𝒯(𝑁′) we obtain 𝑀′ = 𝑁′ by induction.

Moreover, for any 𝑑 ∈ ℕ, by (𝑑 + 1)-positivity of 𝑠𝑑+1, ̄𝑢𝑑+1 must con-
tain at least one element 𝑢𝑑+1,1. This element is 𝑑-positive and such that
𝑢𝑑+1,1 ∈ 𝒯(𝑀″) ∩ 𝒯(𝑁″). Thus we can proceed to establish 𝑀″ = 𝑁″

coinductively.

We conclude that 𝑀 = 𝑁. □

We can now state and prove the infinitary genericity lemma, without any fur-
ther hypotheses than in the finitary setting. Similar extensions had been proved
using completely different techniques by Kennaway, van Oostrom, and de Vries
(1996, § 5.3) and Salibra (2000, thm. 20); our proof is a refinement of the fini-
tary proof by Barbarossa and Manzonetto (2020, thm. 5.3). As stressed by the
authors, the key feature of the Taylor expansion here is that a resource term
cannot erase any of its subterms (without being itself reduced to zero). How-
ever, in the infinitary setting, a term is in general not characterised by a single
element of its Taylor expansion, which motivates the above characterisation by
𝑑-positive elements.

THEOREM 4.35 (genericity lemma). Let 𝑀 ∈ Λ∞ be an unsolvable term and
𝐶⦅◍⦆ be a context. If 𝐶⦅𝑀⦆ has a β-normal form 𝐶∗, then for any 𝑁 ∈ Λ∞,
𝐶⦅𝑁⦆⟶∞

𝛽 𝐶∗.
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PROOF. Suppose 𝐶⦅𝑀⦆⟶∞
𝛽 𝐶∗, a term in β-normal form. Fix a 𝑑 ∈ ℕ.

By theorem 4.30,

∃𝑠 ∈ 𝒯(𝐶⦅𝑀⦆), ∃𝑡𝑑 ∈Λ+𝑑r , 𝑡𝑑 ∈ nfr(𝑠)
hence by lemma 4.33

∃𝑐 ∈ 𝒯(𝐶), ∃�̄� ∈ 𝒯(𝑀)!, ∃𝑡𝑑 ∈Λ+𝑑r , 𝑡𝑑 ∈ nfr(𝑐⦅�̄�⦆).

Write �̄� = [𝑚1,… ,𝑚𝑛]with 𝑛 ≔ deg◍(𝑐). 𝑀 is unsolvable, so by theorem 4.20,
𝑚𝑖 ⟶∗

r 0 for each 1 ⩽ 𝑖 ⩽ 𝑛. We obtain a reduction

𝑐⦅�̄�⦆ ⟶∗
r 𝑐⦅0𝑛⦆ = 𝑐⦅[0,… , 0⏟⎵⏟⎵⏟

𝑛 times

]⦆.

By confluence, 𝑐⦅0𝑛⦆ ⟶∗
r nfr(𝑐⦅�̄�⦆), which is non-empty since 𝑡𝑑 ∈

nfr(𝑐⦅�̄�⦆). This is possible only if 𝑛 = 0, otherwise 𝑐⦅0𝑛⦆ = 0 cannot be further
reduced. This means that there is no occurence of ◍ in 𝑐⦅◍⦆.
Now, take any 𝑁 ∈ Λ∞. By lemma 4.33, 𝑐⦅1̄⦆ ⊑𝒯 𝐶⦅𝑁⦆. Since 𝑐⦅1⦆ ⟶∗

r
nfr(𝑐⦅�̄�⦆) we know that

𝑡𝑑 ∈ ñfr(𝒯(𝐶⦅𝑁⦆)) = 𝒯(BT(𝐶⦅𝑁⦆))

by commutation. By construction we also know that

𝑡𝑑 ∈ ñfr(𝒯(𝐶⦅𝑀⦆)) = 𝒯(BT(𝐶⦅𝑀⦆)) = 𝒯(𝐶∗)

by corollary 4.27.
For all 𝑑 ∈ ℕ, we have found a 𝑡𝑑 ∈ 𝒯(BT(𝐶⦅𝑁⦆)) ∩ 𝒯(𝐶∗). Therefore
BT(𝐶⦅𝑁⦆) = 𝐶∗ by lemma 4.34, and 𝐶⦅𝑁⦆⟶∞

𝛽 𝐶∗. □

4.4 Quantitative approximation

In this concluding section, we extend the Taylor approximation to the quanti-
tative setting, i.e. all the sums are now weighted and take their coefficients in a
semiring 𝕊. The main results are the same as previously showed for the quali-
tative setting, viz simulation (theorem 4.56) and commutation (corollary 4.57).
However, the proof technique features a key additional ingredient, uniformity:
to show that the resource reduction simulates the infinitary β-reduction
through the Taylor expansion, we need to show that each β-reduction step is
uniformly simulated, i.e. the reductions in the approximants of the reduced
term 𝑀 occur ‘at the same address’ than the simulated β-reduction step. This
necessity is not a surprise: uniformity was at the core of the original work by
Ehrhard and Regnier (2008), and non-uniform Taylor approximation results
occur in the literature only at the cost of a restriction to the qualitative setting
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(Barbarossa and Manzonetto 2020) or of subtle technical refinements (Vaux
2019).

4.4.1 Uniformity, Taylor expansion and multilinear substitution

Let us recall from Ehrhard and Regnier (2008, § 3) the definitions of the coher-
ence relation and of uniformity.

DEF IN IT ION 4.36. Coherence is the relation⌢⌣ ⊂ (!)Λr × (!)Λr defined by the
following rules:

𝑥 ⌢⌣ 𝑥
𝑠 ⌢⌣ 𝑠′

𝜆𝑥.𝑠 ⌢⌣ 𝜆𝑥.𝑠′
𝑠 ⌢⌣ 𝑠′ ̄𝑡 ⌢⌣ ̄𝑡′
(𝑠) ̄𝑡 ⌢⌣ (𝑠) ̄𝑡′

∀𝑖 ∈ {1,… ,𝑚}, ∀𝑗 ∈ {1,… ,𝑛}, 𝑡𝑖 ⌢⌣ 𝑡′𝑗
[𝑡1,… , 𝑡𝑚] ⌢⌣ [𝑡′1,… , 𝑡′𝑛]

(𝑚,𝑛 ∈ ℕ)

Given 𝐒,𝐓 ∈ 𝕊(!)Λr , we write 𝐒 ⌢⌣ 𝐓 whenever ∀𝑠 ∈ |𝐒| , ∀𝑡 ∈ |𝐓| , 𝑠 ⌢⌣ 𝑡.

DEF IN IT ION 4.37. A resource expression 𝑢 ∈ (!)Λr is said to be uniform when
𝑢 ⌢⌣ 𝑢. Similarly,𝐔 ∈ 𝕊(!)Λr is uniform if𝐔 ⌢⌣ 𝐔, i.e. if ∀𝑢,𝑢′ ∈ |𝐔| , 𝑢 ⌢⌣ 𝑢′.

When 𝐔 is uniform, one sometimes says that |𝐔| is a ‘clique’ (for the relation
⌢⌣), a terminology coming from the coherence space semantics of linear logic
(Girard 1987). The observation that |𝒯(𝑀)| is always such a clique follows im-
mediately by the way we built the Taylor expansion.

OBSERVAT ION 4.38. For all𝑀 ∈ Λ∞
⊥ , 𝒯(𝑀) is uniform.

In fact, Ehrhard and Regnier (2008, lem. 19) make a more precise statement:
|𝒯(𝑀)| is a ‘maximal clique’, i.e. one could not add any resource term to 𝒯(𝑀)
without breaking its uniformity. They also notice that:

However, not all maximal cliques of Λr are of the shape |𝒯(𝑀)| for
some λ-term 𝑀. For instance, a maximal extension of the clique
{(𝑥) 1, (𝑥) (𝑥) 1,…} cannot be of that shape. Such maximal cliques
could probably be seen as some kind of possibly infinite generalised
lambda-terms.

As usual, they were right... and the reader certainly guessed who the ‘kind of
generalised terms’ actually is.

OBSERVAT ION 4.39. Themaximal cliques for (Λr,⌢⌣) are the sets |𝒯(𝑀)|, for
𝑀 ∈ Λ∞.

PROOF. To ease the notations, we write sets as sums in 𝟚Λr . Take any maximal
clique 𝐶 ⊂ 𝟚Λr , we build a term 𝑀 such that 𝐶 = |𝒯(𝑀)|, by nested induction
and coinduction. Take any 𝑠 ∈ 𝐶.
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• If 𝑠 = 𝑥, then by uniformity 𝐶 = {𝑥} and we set 𝑀 ≔ 𝑥.

• If 𝑠 = 𝜆𝑥.𝑠′, then necessarily 𝐶 = 𝜆𝑥.𝐶′ where 𝐶′ is a maximal clique
containing 𝑠′ (otherwise either 𝐶 is not a clique, or it is not maximal). By
induction, there is an 𝑀′ such that 𝐶′ = |𝒯(𝑀′)| and we set 𝑀 ≔ 𝜆𝑥.𝑀′.

• If 𝑠 = (𝑠′) 1 then by totality 𝐶 also contains some term (𝑠′) ̄𝑠″ with ̄𝑠″ ≠ 1.
We start the proof again, taking this other term for 𝑠. This step is non well-
founded, but occurs in applicative position: it constitutes the coinductive
step.

• If 𝑠 = (𝑠′) [𝑡1,…] then necessarily 𝐶 = (𝐶′) !𝐶″ where 𝐶′ and 𝐶″ are
maximal cliques (otherwise, it is again immediate to show that 𝐶 is not
a maximal clique). By induction we build 𝑀′ and 𝑀″ such that 𝐶′ =
|𝒯(𝑀′)| and 𝐶″ = |𝒯(𝑀″)|, and we set 𝑀 ≔ (𝑀′)𝑀″. □

We will now reap the first fruits of uniformity. Recall from definition 3.24 the
following notation: given an 𝑢 ∈ (!)Λr and some 𝑡1,… , 𝑡𝑛 ∈ Λr such that
𝑛 = deg𝑥(𝑢), and given an arbitrary enumeration 𝑥1,… ,𝑥𝑛 of the occurrences
of 𝑥 in 𝑢, we denote by

𝑢[𝑡1/𝑥1,… , 𝑡𝑛/𝑠𝑛]

the resource expression obtained by substituting the occurrence 𝑥𝑖 with the
term 𝑡𝑖. This will allow for quite lightweight presentations of the following
lemmas and of their proofs.

LEMMA 4.40. Let 𝐒,𝐓 ∈ 𝟚Λr be uniform qualitative sums (i.e. sets) of resource
terms. For all 𝑢 ∈ 𝐒⟨!𝐓/𝑥⟩, there exist unique 𝑠 ∈ 𝐒 and ̄𝑡 ∈ !𝐓 such that 𝑢 ∈
|𝑠⟨ ̄𝑡/𝑥⟩|.

PROOF. Existence is immediate. For uniqueness, take 𝑠, 𝑠′ ∈ 𝐒 and 𝑡1,… , 𝑡𝑛,
𝑡′1,… , 𝑡′𝑛′ ∈ 𝐓 such that 𝑢 ∈ |𝑠⟨ ̄𝑡/𝑥⟩| ∩ |𝑠′⟨ ̄𝑡′/𝑥⟩|. Necessarily 𝑛 = deg𝑥(𝑠) and
𝑛′ = deg𝑥(𝑠′), and there is an enumeration 𝑥1,… ,𝑥𝑛 (resp. 𝑥1,… ,𝑥𝑛′) of the
occurrences of 𝑥 in 𝑠 (resp. in 𝑠′) such that

𝑢 = 𝑠[𝑡1/𝑥1,… , 𝑡𝑛/𝑥𝑛] = 𝑠′[𝑡′1/𝑥1,… , 𝑡′𝑛′/𝑥𝑛′]. (4.5)

In addition, observe that by construction 𝑠 ⌢⌣ 𝑠′. Let us show that for all re-
source terms 𝑠, 𝑠′, ̄𝑡, ̄𝑡′ such that eq. (4.5) and 𝑠 ⌢⌣ 𝑠′ hold, 𝑠 = 𝑠′, 𝑛 = 𝑛′ and
̄𝑡 = ̄𝑡′. We proceed by induction on 𝑠.

• If 𝑠 = 𝑥, by coherence 𝑠′ = 𝑥 too, so 𝑛 = 𝑛′ = 1. Then the hypothesis
𝑠[𝑡1/𝑥1] = 𝑠′[𝑡′1/𝑥1] exactly means that 𝑡1 = 𝑡′1.

• If 𝑠 = 𝑦 ≠ 𝑥, by coherence 𝑠′ = 𝑦 too, so 𝑛 = 𝑛′ = 0 and there are no
terms 𝑡𝑖 and 𝑡′𝑖 .
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• If 𝑠 = 𝜆𝑥.𝑠0 then by coherence there is a 𝑠′0 such that 𝑠′ = 𝜆𝑥.𝑠′0. By
eq. (4.5), 𝑠0[𝑡1/𝑥1,… , 𝑡𝑛/𝑥𝑛] = 𝑠′0[𝑡′1/𝑥1,… , 𝑡′𝑛′/𝑥𝑛′] and we conclude by
induction.

• If 𝑠 = (𝑠0) [𝑠1,… , 𝑠𝑚] then by coherence there are terms 𝑠′0, 𝑠′1,… , 𝑠′𝑚′

such that 𝑠′ = (𝑠′0) [𝑠′1,… , 𝑠′𝑚′]. For each 𝑘, we fix an enumer-
ation 𝑥1,… ,𝑥𝑝𝑘 of the occurrences of 𝑥 in 𝑠𝑘 and we denote by
𝜙𝑘 ∶ {1,… ,𝑝𝑘} → {1,… ,𝑛} the injection taking (the indices of) these
occurrences to the corresponding occurrences in 𝑠. We do similarly with
𝑠′. By eq. (4.5), we obtain

(𝑠0[𝑡𝜙0(1)/𝑥1,… , 𝑡𝜙0(𝑝0)/𝑥𝑝0]) [𝑠1[𝑡𝜙1(1)/𝑥1,… , 𝑡𝜙1(𝑝1)/𝑥𝑝1],…]
= (𝑠′0[𝑡′𝜙′0(1)/𝑥1,… , 𝑡′𝜙′0(𝑝′0)/𝑥𝑝′0]) [𝑠

′
1[𝑡′𝜙′1(1)/𝑥1,… , 𝑡′𝜙′1(𝑝′1)/𝑥𝑝′1],…]

hence 𝑛 = 𝑛′ and for each 𝑖 ∈ {1,… ,𝑛},

𝑠𝑖[𝑡𝜙𝑖(1)/𝑥1,… , 𝑡𝜙𝑖(𝑝𝑖)/𝑥𝑝𝑖 ] = 𝑠′𝑖[𝑡′𝜙′𝑖(1)/𝑥1,… , 𝑡′𝜙′𝑖(𝑝′𝑖)/𝑥𝑝′𝑖 ].

By induction, for each 𝑖, [𝑡𝜙𝑖(1),… , 𝑡𝜙𝑖(𝑝𝑖)] = [𝑡′𝜙′𝑖(1),… , 𝑡′𝜙′𝑖(𝑝′𝑖)]. We con-
clude by observing that

[𝑡1,… , 𝑡𝑛] = [𝑡𝜙0(1),… , 𝑡𝜙0(𝑝0)] ⋅ … ⋅ [𝑡𝜙𝑚(1),… , 𝑡𝜙𝑚(𝑝𝑚)]
and [𝑡′1,… , 𝑡′𝑛] = [𝑡′𝜙′0(1),… , 𝑡′𝜙′0(𝑝′0)] ⋅ … ⋅ [𝑡′𝜙′𝑚(1),… , 𝑡′𝜙′𝑚(𝑝′𝑚)]. □

The following lemma is the result of one of the main technical developments
of Ehrhard and Regnier’s paper, consisting in a subtle investigation of the com-
binatorics of multilinear substitution. We just translate it to our notations.

LEMMA 4.41 (Ehrhard and Regnier 2008, lem. 30. Let 𝑠, 𝑡1,… , 𝑡𝑛 ∈ Λr be
resource terms such that 𝑛 = deg𝑥(𝑠). Fix an arbitrary enumeration 𝑥1,… ,𝑥𝑛 of
the occurrences of 𝑥 in 𝑠. Then

̄𝒯(𝑠[𝑡1/𝑥1,… , 𝑡𝑛/𝑥𝑛])
𝑁 = ̄𝒯(𝑠) ×

̄𝒯!( ̄𝑡)
𝑛! ,

where 𝑁 is the number of permutations 𝜎 ∈ 𝔖(𝑛) such that 𝑠[𝑡1/𝑥1,… , 𝑡𝑛/𝑥𝑛] =
𝑠[𝑡𝜎(1)/𝑥1,… , 𝑡𝜎(𝑛)/𝑥𝑛].

LEMMA 4.42 (quantitative simulation of the substitution). For all𝑀,𝑁 ∈ Λ∞
⊥ ,

𝒯 (𝑀[𝑁/𝑥]) = 𝒯(𝑀)⟨𝒯(𝑁)!/𝑥⟩.
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PROOF. We start from the second sum:

𝒯(𝑀)⟨𝒯(𝑁)!/𝑥⟩

= ( ∑
𝑠⊑𝒯𝑀

̄𝒯(𝑠) ⋅ 𝑠) ⟨∑
𝑛∈ℕ

1
𝑛! ∑

𝑡1,…,𝑡𝑛⊑𝒯𝑁

𝑛
∏
𝑖=1

̄𝒯(𝑡𝑖) ⋅ [𝑡1,… , 𝑡𝑛]/
𝑥⟩

= ∑
𝑠⊑𝒯𝑀

∑
𝑡1,…,𝑡𝑛⊑𝒯𝑁
𝑛=deg𝑥(𝑠)

1
𝑛! ×

̄𝒯(𝑠) ×
𝑛
∏
𝑖=1

̄𝒯(𝑡𝑖) ⋅ 𝑠⟨[𝑡1,… , 𝑡𝑛]/𝑥⟩

because the multilinear substitution is the empty sum as soon as 𝑛 ≠ deg𝑥(𝑠),

= ∑
𝑠⊑𝒯𝑀

∑
𝑢1,…,𝑢𝑚⊑𝒯𝑁
pairwise distinct
𝑘1,…,𝑘𝑚∈ℕ

𝑘1+⋯+𝑘𝑚=deg𝑥(𝑠)

(deg𝑥𝑠)!
∏𝑚

𝑗=1 𝑘𝑗!
×

̄𝒯(𝑠) ×∏𝑚
𝑗=1

̄𝒯(𝑢𝑗)𝑘𝑗
(deg𝑥𝑠)!

⋅ 𝑠⟨𝑢𝑘11 ⋯𝑢𝑘𝑚𝑚 /𝑥⟩

where the first fraction is the number of different ways to write the multiset
𝑢𝑘11 ⋯𝑢𝑘𝑚𝑚 as some [𝑡1,… , 𝑡𝑛], as already explained under definition 4.2,

= ∑
𝑠⊑𝒯𝑀

∑
̄𝑡⊑!𝒯𝑁

# ̄𝑡=deg𝑥(𝑠)

̄𝒯(𝑠) × ̄𝒯!( ̄𝑡)
(deg𝑥𝑠)!

⋅ 𝑠⟨ ̄𝑡/𝑥⟩

= ∑
𝑠⊑𝒯𝑀

∑
̄𝑡⊑!𝒯𝑁

̄𝑡=[𝑡1,…,𝑡𝑛]
𝑛=deg𝑥(𝑠)

∑
𝜎∈𝔖(𝑛)

̄𝒯(𝑠[𝑡1/𝑥1,… , 𝑡𝑛/𝑥𝑛])
𝑁 ⋅ 𝑠[𝑡𝜎(1)/𝑥1,… , 𝑡𝜎(𝑛)/𝑥𝑛]

by definition 3.24 and lemma 4.41, where 𝑥1,… ,𝑥𝑛 denotes an arbitrary enu-
meration of the occurrences of 𝑥 in 𝑠, and 𝑁 is the number of permutations
𝜎 ∈ 𝔖(𝑛) such that 𝑠[𝑡1/𝑥1,… , 𝑡𝑛/𝑥𝑛] = 𝑠[𝑡𝜎(1)/𝑥1,… , 𝑡𝜎(𝑛)/𝑥𝑛],

= ∑
𝑠⊑𝒯𝑀

∑
̄𝑡⊑!𝒯𝑁

# ̄𝑡=deg𝑥(𝑠)

∑
𝑢∈𝑠⟨ ̄𝑡/𝑥⟩

̄𝒯(𝑢) ⋅ 𝑢

= ∑
𝑢∈||𝒯(𝑀)⟨!𝒯(𝑁)/𝑥⟩||

̄𝒯(𝑢) ⋅ 𝑢

by lemma 4.40,

= 𝒯(𝑀[𝑁/𝑥])

by lemma 4.11 (i.e. qualitative simulation of the substitution). □
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4.4.2 A uniform lifting of the resource reduction

Our goal is to simulate a β-reduction step 𝑀 ⟶𝛽 𝑁 by a uniform reduction
step 𝒯(𝑀) ⟶⌢ r 𝒯(𝑁), i.e. all the redexes fired in 𝒯(𝑀) occur at the same
position (indicated by the position of the redex fired in 𝑀). Such a reduction
on sums of resource terms cannot be defined term by term, since the uniformity
condition must be maintained globally; instead, we define it via a reduction on
families of terms.

DEF IN IT ION 4.43. Given an index set 𝐼, we define a relation−⇀⌢ r ⊂ ((!)Λr)𝐼 ×
(ℕ((!)Λr))𝐼 by the following rules:

∀𝑖, 𝑗, 𝑠𝑖 ⌢⌣ 𝑠𝑗 ∀𝑖, 𝑗, ̄𝑡𝑖 ⌢⌣ ̄𝑡𝑗
((𝜆𝑥.𝑠𝑖) ̄𝑡𝑖)𝑖∈𝐼 −⇀⌢ r (𝑠𝑖⟨ ̄𝑡𝑖/𝑥⟩)𝑖∈𝐼

(𝑠𝑖)𝑖∈𝐼 −⇀⌢ r (𝑆′𝑖)𝑖∈𝐼
(𝜆𝑥.𝑠𝑖)𝑖∈𝐼 −⇀⌢ r (𝜆𝑥.𝑆′𝑖)𝑖∈𝐼

(𝑠𝑖)𝑖∈𝐼 −⇀⌢ r (𝑆′𝑖)𝑖∈𝐼 ∀𝑖, 𝑗, ̄𝑡𝑖 ⌢⌣ ̄𝑡𝑗
((𝑠𝑖) ̄𝑡𝑖)𝑖∈𝐼 −⇀⌢ r ((𝑆′𝑖) ̄𝑡𝑖)𝑖∈𝐼

∀𝑖, 𝑗, 𝑠𝑖 ⌢⌣ 𝑠𝑗 ( ̄𝑡𝑖)𝑖∈𝐼 −⇀⌢ r ( ̄𝑇′𝑖 )𝑖∈𝐼
((𝑠𝑖) ̄𝑡𝑖)𝑖∈𝐼 −⇀⌢ r ((𝑠𝑖) ̄𝑇′𝑖 )𝑖∈𝐼

(𝑡𝑖,𝑗)𝑖∈𝐼
𝑗∈{1,…,# ̄𝑡𝑖}

−⇀⌢ r (𝑇′𝑖,𝑗)𝑖∈𝐼
𝑗∈{1,…,# ̄𝑡𝑖}

( ̄𝑡𝑖)𝑖∈𝐼 −⇀⌢ r ( ̄𝑇′𝑖 )𝑖∈𝐼

Then the relation⟶⌢ r ⊂ 𝕊(!)Λr×𝕊(!)Λr of uniform resource reduction is defined
by

(𝑢𝑖)𝑖∈𝐼 −⇀⌢ r (𝑈 ′
𝑖 )𝑖∈𝐼

∑𝑖∈𝐼 𝑎𝑖𝑢𝑖 ⟶⌢ r ∑𝑖∈𝐼 𝑎𝑖𝑈 ′
𝑖

This lifting is quite similar to the ‘Γ-reduction’ considered by Midez in his thesis
(2014, § 3.2). His variant relies on addresses: a Γ-reduction step reduces all the
terms in a sum at a given address.
Let us state some facts that can be deduced by immediate inductions on the
rules of definition 4.43.

LEMMA 4.44. Given families (𝑢𝑖)𝑖∈𝐼 ∈ ((!)Λr)𝐼 and (𝑉 𝑖)𝑖∈𝐼 ∈ (ℕ((!)Λr))𝐼 ,

if (𝑢𝑖)𝑖∈𝐼 −⇀⌢ r (𝑉 𝑖)𝑖∈𝐼 then ∀𝑖 ∈ 𝐼, 𝑢𝑖 ⟶∗
r 𝑉 𝑖.

In other words, if𝐔⟶⌢ r 𝐕 then𝐔 −↠r 𝐕.

PROOF. By induction on (𝑢𝑖)𝑖∈𝐼 −⇀⌢ r (𝑉 𝑖)𝑖∈𝐼 . The reason why we need the
reflexive-transitive closure ⟶∗

r is because −⇀⌢ r reduces redexes in parallel in
multisets. □

LEMMA 4.45. For all𝐔,𝐕 ∈ 𝕊(!)Λr , if𝐔⟶⌢ r 𝐕 then𝐔 and 𝐕 are uniform.

PROOF. Write 𝐔 = ∑𝑖∈𝐼 𝑎𝑖𝑢𝑖 and 𝐕 = ∑𝑖∈𝐼 𝑎𝑖𝑉 𝑖 with (𝑢𝑖)𝑖∈𝐼 −⇀⌢ r (𝑉 𝑖)𝑖∈𝐼 .
The results follows by induction on the latter reduction. □
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LEMMA 4.46. Consider families (𝑢𝑖)𝑖∈𝐼 ∈ ((!)Λr)𝐼 and (𝑉 𝑖)𝑖∈𝐼 ∈ (ℕ((!)Λr))𝐼
such that (𝑢𝑖)𝑖∈𝐼 −⇀⌢ r (𝑉 𝑖)𝑖∈𝐼 . For all 𝑖, 𝑗 ∈ 𝐼, if 𝑢𝑖 = 𝑢𝑗 then 𝑉 𝑖 = 𝑉 𝑗 .

PROOF. By induction on (𝑢𝑖)𝑖∈𝐼 −⇀⌢ r (𝑉 𝑖)𝑖∈𝐼 . □

As a consequence, whenever 𝐔 ⟶⌢ r 𝐕 we can choose the index set 𝐼 of the
corresponding reduction (𝑢𝑖)𝑖∈𝐼 −⇀⌢ r (𝑉 𝑖)𝑖∈𝐼 arbitrarily. In particular we can
take 𝐼 ≔ |𝐔|, and write

(𝑢)𝑢∈|𝐔| −⇀⌢ r (𝑉𝑢)𝑢∈|𝐔|.

Another illustration of the benefits of uniformity is the following welcome con-
sequence of lemma 4.46. Given a reduction 𝐒⟶⌢ ∗

r 𝐓, we know by lemma 4.44
that 𝐒 −↠∗

r 𝐓. Even though −↠r is a priori not transitive in general (this was
open question 3.17), transitivity holds in this particular uniform case!

COROLLARY 4.47 (restricted transitivity of−↠r). For all 𝐒,𝐓 ∈ 𝕊Λr , if 𝐒⟶⌢ ∗
r

𝐓 then 𝐒 −↠r 𝐓.

PROOF. By induction on the reflexive-transitive closure. In the base case (viz
the diagonal relation) the result is immediate, by reflexivity of−↠r. Otherwise,
suppose that

𝐒 −↠r 𝐒′ ⟶⌢ r 𝐓.

This means that we can write 𝐒 = ∑𝑖∈𝐼 𝑎𝑖𝑠𝑖 and 𝐒′ = ∑𝑖∈𝐼 𝑎𝑖𝑆′𝑖 with ∀𝑖 ∈ 𝐼,
𝑠𝑖 ⟶∗

r 𝑆′𝑖. For 𝑖 ∈ 𝐼, write𝑆′𝑖 = ∑𝑗∈𝐽𝑖
𝑠′𝑖,𝑗 , and define𝐾 ≔ { (𝑖, 𝑗) | 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 }.

Since 𝐒′ = ∑(𝑖,𝑗)∈𝐾 𝑎𝑖𝑠′𝑖,𝑗 , by lemma 4.46 we can write 𝐓 = ∑(𝑖,𝑗)∈𝐾 𝑎𝑖𝑇𝑖,𝑗 with

(𝑠′𝑖,𝑗)(𝑖,𝑗)∈𝐾 −⇀⌢ r (𝑇𝑖,𝑗)(𝑖,𝑗)∈𝐾 .

By lemma 4.44, ∀(𝑖, 𝑗) ∈ 𝐾, 𝑠′𝑖,𝑗 ⟶∗
r 𝑇𝑖,𝑗 hence by finiteness of the sums ∀𝑖 ∈ 𝐼,

𝑠𝑖 ⟶∗
r 𝑆′𝑖 ⟶∗

r ∑
𝑗∈𝐽𝑖

𝑇𝑖,𝑗 .

Finally, 𝐒 = ∑𝑖∈𝐼 𝑎𝑖𝑠𝑖 −↠r ∑𝑖∈𝐼 𝑎𝑖∑𝑗∈𝐽𝑖
𝑇𝑖,𝑗 = 𝐓. □

Lemma 4.46 is not only an implication but an equivalence, as we will now see;
in fact we are able to write a much stronger statement than its converse. The
resulting lemma is the key feature of the uniform reduction: it ensures that
summands in the target of a uniform reduction step have a unique antecedent
in the source of the reduction step. The following presentation generalises both
thm. 20 in Ehrhard and Regnier (2008) and thm. 3.2.19 in Midez (2014).

LEMMA 4.48. Consider families (𝑠𝑖)𝑖∈𝐼 ∈ Λr
𝐼 and (𝑇𝑖)𝑖∈𝐼 ∈ (ℕ((!)Λr))𝐼 such

that (𝑠𝑖)𝑖∈𝐼 −⇀⌢ r (𝑇𝑖)𝑖∈𝐼 . For all 𝑖, 𝑗 ∈ 𝐼, if |𝑇𝑖| ∩ ||𝑇𝑗 || ≠ ∅ then 𝑠𝑖 = 𝑠𝑗 .

PROOF. By induction on (𝑠𝑖)𝑖∈𝐼 −⇀⌢ r (𝑇𝑖)𝑖∈𝐼 :
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• In the base case, viz ((𝜆𝑥.𝑠𝑖) ̄𝑡𝑖)𝑖∈𝐼 −⇀⌢ r (𝑠𝑖⟨ ̄𝑡𝑖/𝑥⟩)𝑖∈𝐼 , write 𝐒 ≔ { 𝑠𝑖 | 𝑖 ∈ 𝐼 }
and𝐓 ≔ { 𝑡 | 𝑡 ∈ ̄𝑡𝑖 for some 𝑖 ∈ 𝐼 }. By assumption these sets are uniform,
hence the result is given by lemma 4.40.

• Case (𝜆𝑥.𝑠𝑖)𝑖∈𝐼 −⇀⌢ r (𝜆𝑥.𝑆′𝑖)𝑖∈𝐼 with (𝑠𝑖)𝑖∈𝐼 −⇀⌢ r (𝑆′𝑖)𝑖∈𝐼 . If there is a 𝑢 ∈
||𝜆𝑥.𝑆′𝑖||∩||𝜆𝑥.𝑆′𝑗 || then there must be some 𝑣 ∈ ||𝑆′𝑖||∩||𝑆′𝑗 || such that 𝑢 = 𝜆𝑥.𝑣.
By induction, 𝑠𝑖 = 𝑠𝑗 hence 𝜆𝑥.𝑠𝑖 = 𝜆𝑥.𝑠𝑗 .

• The case of ((𝑠𝑖) ̄𝑡𝑖)𝑖∈𝐼 ⟶⌢ r ((𝑆′𝑖) ̄𝑡𝑖)𝑖∈𝐼 is similar.

• Case ((𝑠𝑖) ̄𝑡𝑖)𝑖∈𝐼 −⇀⌢ r ((𝑠𝑖) ̄𝑇′𝑖 )𝑖∈𝐼 with ( ̄𝑡𝑖)𝑖∈𝐼 −⇀⌢ r ( ̄𝑇′𝑖 )𝑖∈𝐼 , i.e.

(𝑡𝑖,𝑘)𝑖∈𝐼
𝑘∈{1,…,# ̄𝑡𝑖}

−⇀⌢ r (𝑇′𝑖,𝑘)𝑖∈𝐼
𝑘∈{1,…,# ̄𝑡𝑖}

.

If there is a 𝑢 ∈ ||(𝑠𝑖) ̄𝑇′𝑖 || ∩ ||(𝑠𝑗) ̄𝑇′𝑗 ||, then 𝑠𝑖 = 𝑠𝑗 is immediate. In addition,
there must be some ̄𝑣 ∈ || ̄𝑇𝑖|| ∩ || ̄𝑇𝑗 || such that 𝑢 = (𝑠𝑖) ̄𝑣. Observe that
all summands in ̄𝑇′𝑖 (resp. ̄𝑇′𝑗 ) must be multisets of the same size than ̄𝑡𝑖
(resp. ̄𝑡𝑗), hence we can denote 𝑛 ≔ # ̄𝑣 = # ̄𝑡𝑖 = # ̄𝑡𝑗 . Let us enumerate
the elements of these multisets:

̄𝑣 = [𝑣1,… , 𝑣𝑛] ̄𝑡𝑖 = [𝑡𝑖,1,… , 𝑡𝑖,𝑛] ̄𝑡𝑗 = [𝑡𝑗,1,… , 𝑡𝑗,𝑛]

such that ∀𝑘 ∈ {1,… ,𝑛}, 𝑣𝑘 ∈ ||𝑇′𝑖,𝑘|| ∩ ||𝑇′𝑗,𝑘||. By induction, 𝑡𝑖,𝑘 = 𝑡𝑗,𝑘,
which concludes the proof. □

4.4.3 Quantitative simulation properties

Finally, we show the quantitative version of the simulation and commutation
theorems. Recall the steps of the qualitative proof:

1. Finite β-reduction steps are simulated by the resource reduction via Tay-
lor expansion.

2. The stratification of a reduction 𝑀 ⟶∞
𝛽 𝑁 gives rise to a ‘stratified sim-

ulation’
𝒯(𝑀) −↠r⩾0 𝒯(𝑀1) −↠r⩾1 𝒯(𝑀2) −↠r⩾2 …

3. For each 𝑠 ⊑𝒯 𝑀, the sequence of sets 𝑇𝑠,𝑑 of its reducts in 𝒯(𝑀𝑑) is
eventually constant.

4. 𝒯(𝑁) is the union of the limit sets, when 𝑠 ranges over 𝒯(𝑀).

Our quantitative proof has the same structure. What changes is that we add
uniformity at each step: in steps (1) and (2) the β-reduction steps are simulated
by the uniform resource reduction; by uniformity, the limit sums in step (3) are
pairwise disjoint; in step (4) the support |𝒯(𝑁)| is described as a disjoint union,
which enables us to write the desired equality on coefficients.
We start with the uniform version of step (1), which constitutes lemma 4.50.
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LEMMA 4.49. For all 𝐒,𝐓 ∈ 𝕊Λr , if 𝐒⟶⌢ r 𝐓 then 𝐒! ⟶⌢ r 𝐓!.

PROOF. Write 𝐒 = ∑𝑠∈|𝐒| 𝑎𝑠𝑠. By lemma 4.46, we can write 𝐓 = ∑𝑠∈|𝐒| 𝑎𝑠𝑇𝑠
with (𝑠)𝑠∈|𝐒| −⇀⌢ r (𝑇𝑠)𝑠∈|𝐒|. Define

𝐾 ≔ { (𝑛, 𝑠1,… , 𝑠𝑛) | 𝑛 ∈ ℕ, 𝑠1,… , 𝑠𝑛 ∈ |𝐒| }
𝐿 ≔ { (𝑛, 𝑠1,… , 𝑠𝑛, 𝑖) | (𝑛, 𝑠1,… , 𝑠𝑛) ∈ 𝐾, 1 ⩽ 𝑖 ⩽ 𝑛 } ,

then we can deduce
(𝑠𝑖)(𝑛,𝑠1,…,𝑠𝑛,𝑖)∈𝐿 −⇀

⌢
r (𝑇𝑠𝑖 )(𝑛,𝑠1,…,𝑠𝑛,𝑖)∈𝐿

([𝑠1,… , 𝑠𝑛])(𝑛,𝑠1,…,𝑠𝑛)∈𝐾 −⇀⌢ r ([𝑇𝑠1 ,… ,𝑇𝑠𝑛])(𝑛,𝑠1,…,𝑠𝑛)∈𝐾

∑
(𝑛,𝑠1,…,𝑠𝑛)∈𝐾

∏𝑛
𝑖=1 𝑎𝑠𝑖
𝑛!

[𝑠1,… , 𝑠𝑛]⟶⌢ r ∑
(𝑛,𝑠1,…,𝑠𝑛)∈𝐾

∏𝑛
𝑖=1 𝑎𝑠𝑖
𝑛!

[𝑇𝑠1 ,… ,𝑇𝑠𝑛]

i.e. 𝐒! ⟶⌢ r 𝐓!. □

LEMMA 4.50 (uniform simulation of the β-reduction). For all 𝑀,𝑁 ∈ Λ∞
⊥ , if

𝑀 ⟶𝛽 𝑁 then 𝒯(𝑀)⟶⌢ r 𝒯(𝑁).

PROOF. By induction on 𝑀 ⟶𝛽 𝑁.

• Case (𝜆𝑥.𝑃)𝑄⟶𝛽 𝑃[𝑄/𝑥], we can derive
∀𝑠, 𝑠′ ⊑𝒯 𝑃, 𝑠 ⌢⌣ 𝑠′ ∀ ̄𝑡, ̄𝑡′ ⊑!

𝒯 𝑄, ̄𝑡 ⌢⌣ ̄𝑡′

((𝜆𝑥.𝑠) ̄𝑡)𝑠⊑𝒯𝑃
̄𝑡⊑!𝒯𝑄

−⇀⌢ r (𝑠⟨ ̄𝑡/𝑥⟩)𝑠⊑𝒯𝑃
̄𝑡⊑!𝒯𝑄

by observation 4.38 and definition 4.43, thus

𝒯((𝜆𝑥.𝑃)𝑄) = (𝜆𝑥.𝒯(𝑃)) 𝒯(𝑄)!

= ∑
𝑠⊑𝒯𝑃

∑
̄𝑡⊑!𝒯𝑄

̄𝒯(𝑠)
̄𝒯!( ̄𝑡)

(# ̄𝑡)! ⋅ (𝜆𝑥.𝑠)
̄𝑡 by corollary 4.6,

⟶⌢ r ∑
𝑠⊑𝒯𝑃

∑
̄𝑡⊑!𝒯𝑄

̄𝒯(𝑠)
̄𝒯!( ̄𝑡)

(# ̄𝑡)! ⋅ 𝑠⟨
̄𝑡/𝑥⟩

= 𝒯(𝑃)⟨𝒯(𝑄)!/𝑥⟩ by corollary 4.6 again,
= 𝒯(𝑃[𝑄/𝑥]) by lemma 4.42.

• Case 𝜆𝑥.𝑃 ⟶𝛽 𝜆𝑥.𝑃′ with 𝑃 ⟶𝛽 𝑃′, we have 𝒯(𝑃) ⟶⌢ r 𝒯(𝑃′) by
induction, hence we can write 𝒯(𝑃′) = ∑𝑠⊑𝒯𝑃

𝑆′𝑠 and derive

(𝑠)𝑠⊑𝒯𝑃 −⇀
⌢

r (𝑆′𝑠)𝑠⊑𝒯𝑃
(𝜆𝑥.𝑠)𝑠⊑𝒯𝑃 −⇀

⌢
r (𝜆𝑥.𝑆′𝑠)𝑠⊑𝒯𝑃

∑𝑠⊑𝒯𝑃
̄𝒯(𝑠) ⋅ 𝜆𝑥.𝑠⟶⌢ r ∑𝑠⊑𝒯𝑃

̄𝒯(𝑠) ⋅ 𝜆𝑥.𝑆′𝑠
i.e. 𝒯(𝜆𝑥.𝑃)⟶⌢ r 𝒯(𝜆𝑥.𝑃′).
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• Case (𝑃)𝑄 ⟶𝛽 (𝑃′)𝑄 with 𝑃 ⟶𝛽 𝑃′, we have 𝒯(𝑃) ⟶⌢ r 𝒯(𝑃′) by
induction, hence we can write 𝒯(𝑃′) = ∑𝑠⊑𝒯𝑃

𝑆′𝑠 and derive

(𝑠)𝑠⊑𝒯𝑃, ̄𝑡⊑!𝒯𝑄
−⇀⌢ r (𝑆′𝑠)𝑠⊑𝒯𝑃, ̄𝑡⊑!𝒯𝑄

∀ ̄𝑡, ̄𝑡′ ⊑!
𝒯 𝑄, ̄𝑡 ⌢⌣ ̄𝑡′

((𝑠) ̄𝑡)𝑠⊑𝒯𝑃, ̄𝑡⊑!𝒯𝑄
−⇀⌢ r ((𝑆′𝑠) ̄𝑡)𝑠⊑𝒯𝑃, ̄𝑡⊑!𝒯𝑄

∑
𝑠⊑𝒯𝑃
̄𝑡⊑!𝒯𝑄

�̄�(𝑠)�̄� !( ̄𝑡)
(# ̄𝑡)!

⋅ (𝑠) ̄𝑡 ⟶⌢ r ∑
𝑠⊑𝒯𝑃
̄𝑡⊑!𝒯𝑄

�̄�(𝑠)�̄� !( ̄𝑡)
(# ̄𝑡)!

⋅ (𝑆′𝑠) ̄𝑡

i.e. 𝒯((𝑃)𝑄)⟶⌢ r 𝒯((𝑃′)𝑄), using the coefficients from corollary 4.6.

• The case (𝑃)𝑄 ⟶𝛽 (𝑃)𝑄′ with 𝑄 ⟶𝛽 𝑄′ is similar: by induction we
have𝒯(𝑄)⟶⌢ r 𝒯(𝑄′), by lemma 4.49 we obtain𝒯(𝑄)! ⟶⌢ r 𝒯(𝑄′)!, and
then we conclude as in the previous case. □

This was not enough: we are able to simulate the β-reduction, but not the ⊥-
reduction... and there is no hope that ⟶⌢ r can simulate it. For instance, the
reduction step Ω ⟶⊥ ⊥ cannot be simulated by a uniform reduction step of
𝒯(Ω), nor by a finite sequence of uniform reduction steps. Indeed, the only
redex in each summand of𝒯(𝑀) corresponds to the reduction𝒯(Ω)⟶⌢ r 𝒯(Ω),
thus there is no way to write𝒯(Ω)⟶⌢ ∗

r 0 (even though each summand of 𝒯(Ω)
eventually vanishes through the resource reduction).
In other words, given a term 𝑀 with no hnf, we know that each 𝑠 ∈ 𝒯(𝑀)
eventually reduces to 0 but there is no bound on the length of this reduction,
while 𝑀 ⟶⊥ ⊥ is performed in one step. For this reason, we extend ⟶⌢ r as
follows, by allowing to ‘compress’ in one step an infinite sequence of uniform
reductions when its limit is the empty sum5.

DEF IN IT ION 4.51. Given an index set 𝐼, a relation⟶⌢ r⊥ ⊂ ((!)Λr)𝐼×(ℕ((!)Λr))𝐼
is defined by adding to definition 4.43 the rule

∀𝑖, 𝑗, 𝑢𝑖 ⌢⌣ 𝑢𝑗 ∀𝑖, 𝑢𝑖 ⟶∗
r 0

(𝑢𝑖)𝑖∈𝐼 −⇀⌢ r⊥ (0)𝑖∈𝐼

All the lemmas we proved in this section about ⟶⌢ r remain true for ⟶⌢ r⊥, as
one can straightforwardly check.

LEMMA 4.52 (uniform simulation of the ⊥-reduction). For all 𝑀,𝑁 ∈ Λ∞
⊥ , if

𝑀 ⟶⊥ 𝑁 then 𝒯(𝑀)⟶⌢ r⊥ 𝒯(𝑁).

PROOF. By induction on 𝑀 ⟶⊥ 𝑁. There are three base cases.

• Case𝑀 ⟶⊥ ⊥ and𝑀 has no hnf. By theorem 4.20 all 𝑠 ⊑𝒯 𝑀 are such
that 𝑠⟶∗

r 0, hence 𝒯(𝑀)⟶⌢ r⊥ 0 = 𝒯(⊥),

5 This is just a way of saying, however it could be turned into a rigorous development, see
section 5.3.
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• Cases 𝜆𝑥.⊥ ⟶⊥ ⊥ and (⊥)𝑀 ⟶⊥ ⊥, we just need to prove 0 ⟶⌢ r⊥ 0
which is trivial.

The inductive cases are the same as in the proof of lemma 4.50. □

Now we can finally state the simulation results we were hoping for.

COROLLARY 4.53 (quantitative simulation of the β⊥-reduction). For all
𝑀,𝑁 ∈ Λ∞

⊥ , if𝑀 ⟶∗
𝛽⊥ 𝑁 then 𝒯(𝑀)⟶⌢ ∗

r⊥ 𝒯(𝑁).

PROOF. By lemmas 4.50 and 4.52. □

NOTAT ION 4.54. For 𝑑 ∈ ℕ, we will also consider the uniform resource reduc-
tion at minimum depth 𝑑, denoted by⟶⌢ r⩾𝑑 (as well as its version on families,
−⇀⌢ r⩾𝑑, and as the variants⟶⌢ r⊥⩾𝑑 and−⇀⌢ r⊥⩾𝑑). We do not detail all the rules
defining it: they are the same as in definitions 4.43 and 4.51, with the following
variant in the multiset case:

(𝑡𝑖,𝑗)𝑖∈𝐼
𝑗∈{1,…,# ̄𝑡𝑖}

−⇀⌢ r⩾𝑑 (𝑇′𝑖,𝑗)𝑖∈𝐼
𝑗∈{1,…,# ̄𝑡𝑖}

( ̄𝑡𝑖)𝑖∈𝐼 −⇀⌢ r⩾𝑑+1 ( ̄𝑇′𝑖 )𝑖∈𝐼

All the results of section 4.4.2 and of the current section can be easily adapted
for −⇀⌢ r⩾𝑑 and ⟶⌢ r⩾𝑑. The proofs are either easy inductions on 𝑑, or conse-
quences of the observation that −⇀⌢ r⩾𝑑 is included in −⇀⌢ r. In particular we
will use the following variant of corollary 4.53.

COROLLARY 4.55. For all𝑀,𝑁 ∈ Λ∞
⊥ , if𝑀 ⟶∗

𝛽⊥⩾𝑑 𝑁 then 𝒯(𝑀)⟶⌢ ∗
r⊥⩾𝑑

𝒯(𝑁).

This leads us to the quantitative version of our main theorem.

THEOREM 4.56 (quantitative simulation of the infinitary β⊥-reduction). For all
𝑀,𝑁 ∈ Λ∞

⊥ , if𝑀 ⟶∞
𝛽⊥ 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

PROOF. The first part of the proof goes exactly as for proving theorem 4.14,
with some additional details regarding uniformity. Suppose 𝑀 ⟶∞

𝛽⊥ 𝑁. By
theorem 2.25, we obtain terms 𝑀0,𝑀1,𝑀2,… ∈ Λ∞

⊥ such that, for all 𝑑 ∈ ℕ:

𝑀 = 𝑀0 ⟶∗
𝛽⊥⩾0 𝑀1 ⟶∗

𝛽⊥⩾1 𝑀2 ⟶∗
𝛽⊥⩾2 …⟶∗

𝛽⊥⩾𝑑−1 𝑀𝑑 ⟶∞
𝛽⊥⩾𝑑 𝑁.

For all 𝑑 ∈ ℕ, let us write a decomposition 𝒯(𝑀𝑑) = ∑𝑠⊑𝒯𝑀
̄𝒯(𝑠) ⋅ 𝑇𝑠,𝑑 as

follows, by induction on 𝑑.

• For all 𝑠 ⊑𝒯 𝑀, define 𝑇𝑠,0 ≔ 𝑠.
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• Suppose (𝑇𝑠,𝑑)𝑠⊑𝒯𝑀 is built. Since𝑀𝑑 ⟶∗
𝛽⩾𝑑 𝑀𝑑+1, by corollary 4.53 we

obtain 𝒯(𝑀𝑑)⟶⌢ r⊥⩾𝑑 𝒯(𝑀𝑑+1). If we write

𝑇𝑠,𝑑 =
𝑁𝑠,𝑑

∑
𝑖=1

𝑡𝑠,𝑑,𝑖 so that 𝒯(𝑀𝑑) = ∑
𝑠⊑𝒯𝑀

𝑁𝑠,𝑑

∑
𝑖=1

̄𝒯(𝑠) ⋅ 𝑡𝑠,𝑑,𝑖,

then by lemma 4.46 there are sums 𝑇′𝑠,𝑑,𝑖 ∈ ℕ(Λr) such that

(𝑡𝑠,𝑑,𝑖) 𝑠⊑𝒯𝑀
1⩽𝑖⩽𝑁𝑠,𝑑

−⇀⌢ r⊥⩾𝑑 (𝑇′𝑠,𝑑,𝑖) 𝑠⊑𝒯𝑀
1⩽𝑖⩽𝑁𝑠,𝑑

.

Let us define 𝑇𝑠,𝑑+1 ≔ ∑𝑁𝑠,𝑑
𝑖=1 𝑇′𝑠,𝑑,𝑖.

This decomposition enjoys two important properties. The first one is as in the
qualitative proof: for each approximant 𝑠 ⊑𝒯 𝑀, we obtain a sequence

𝑠 = 𝑇𝑠,0 ⟶∗
r⩾0 𝑇𝑠,1 ⟶∗

r⩾1 𝑇𝑠,2 ⟶∗
r⩾2 … (4.6)

Indeed, by lemma 4.44 for all 𝑠, 𝑑 and 𝑖 we can write 𝑡𝑠,𝑑,𝑖 ⟶∗
r⩾𝑑 𝑇′𝑠,𝑑,𝑖 hence

𝑇𝑠,𝑑 ⟶∗
r⩾𝑑 𝑇𝑠,𝑑+1 by finiteness of the sums. The second property is due to

uniformity:

∀𝑠, 𝑠′ ⊑𝒯 𝑀, ∀𝑑 ∈ ℕ, ||𝑇𝑠,𝑑|| ∩ ||𝑇𝑠′,𝑑|| ≠ ∅ ⇒ 𝑠 = 𝑠′. (4.7)

We can prove this by induction on 𝑑. For 𝑑 = 0 the result is true by construction
of the sums 𝑇𝑠,0. Otherwise,

||𝑇𝑠,𝑑+1|| ∩ ||𝑇𝑠′,𝑑+1|| ≠ ∅
⇒ ∃𝑖 ∈ {1,… ,𝑁𝑠,𝑑}, ∃𝑡′ ∈ Λr, 𝑡′ ∈ ||𝑇′𝑠,𝑑,𝑖|| ∩ ||𝑇′𝑠′,𝑑,𝑖||
⇒ ∃𝑖 ∈ {1,… ,𝑁𝑠,𝑑}, 𝑡𝑠,𝑑,𝑖 = 𝑡𝑠′,𝑑,𝑖 by lemma 4.48,
⇒ ||𝑇𝑠,𝑑|| ∩ ||𝑇𝑠′,𝑑|| ≠ ∅
⇒ 𝑠 = 𝑠′ by induction.

As in the qualitative proof, for all 𝑠 ⊑𝒯 𝑀 we define 𝑑𝑠 ≔ size(𝑠) + 1 and
𝑇𝑠 ≔ 𝑇𝑠,𝑑𝑠 . By property (4.6),

𝒯(𝑀) −↠r ∑
𝑠⊑𝒯𝑀

̄𝒯(𝑠) ⋅ 𝑇𝑠,

let us show that the latter sum is equal to 𝒯(𝑁). The equality of the supports is
proved as in the qualitative proof. The equality of the coefficients relies on the
following observation:

∀𝑠, 𝑠′ ⊑𝒯 𝑀, |𝑇𝑠| ∩ |𝑇𝑠′ | ≠ ∅ ⇒ 𝑠 = 𝑠′ (4.8)

that is a consequence of property (4.7). Indeed, take 𝑠, 𝑠′ ⊑𝒯 𝑀 and suppose
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wlog. that 𝑑𝑠 ⩽ 𝑑𝑠′ . Then depth(𝑇𝑠) < 𝑑𝑠 and 𝑇𝑠 = 𝑇𝑠,𝑑𝑠 ⟶∗
r⩾𝑑𝑠 𝑇𝑠,𝑑𝑠′ , hence

𝑇𝑠 = 𝑇𝑠,𝑑𝑠′ . Finally,
|𝑇𝑠| ∩ |𝑇𝑠′ | = ||𝑇𝑠,𝑑𝑠′ || ∩ ||𝑇𝑠′,𝑑𝑠′ ||

which is nonempty only if 𝑠 = 𝑠′.
Finally, take any 𝑢 ∈ |𝒯(𝑁)| = ||∑𝑠⊑𝒯𝑀

̄𝒯(𝑠) ⋅ 𝑇𝑠||. By property (4.8), there is a
unique 𝑠𝑢 ⊑𝒯 𝑀 such that 𝑢 ∈ ||𝑇𝑠𝑢 ||, hence

the coefficient of 𝑢 in ∑
𝑠⊑𝒯𝑀

̄𝒯(𝑠) ⋅ 𝑇𝑠

= ̄𝒯(𝑠) × the coefficient of 𝑢 in 𝑇𝑠𝑢
= the coefficient of 𝑢 in 𝒯(𝑀𝑑𝑠𝑢 ) by property (4.7),

= ̄𝒯(𝑢)
= the coefficient of 𝑢 in 𝒯(𝑁). □

In particular, we obtained a generalised version of Ehrhard and Regnier’s com-
mutation theorem.

COROLLARY 4.57 (quantitative commutation). For all𝑀 ∈ Λ∞
⊥ ,

ñfr(𝒯(𝑀)) = 𝒯(BT(𝑀)).

PROOF. By theorems 4.26 and 4.56. □

D





Chapter 5

Conservativity of the Taylor
approximation

Gustatzen zaidan gazta gastatu egin zait,
eta gustatzen ez zaidan gazta ez zait
gastatu.

Basque saying

Using the terminology introduced in chapter 2, the simulation results of chap-
ter 4 can be reformulated as follows.

• Corollary 4.23 states that the reduction system (𝟚Λr ,−↠r) extends the
reduction system (Λ001

⊥ ,⟶001
𝛽⊥ ) through the injection |𝒯(−)|. It also ex-

tends all the sub-systems of the latter, e.g. (Λ,⟶∗
𝛽), (Λ001,⟶001

𝛽 𝑖𝑖001),
etc.

• Theorem 4.56 states that the reduction system (𝕊Λr ,−↠r) extends the
reduction system (Λ001

⊥ ,⟶001
𝛽⊥ ) through the injection 𝒯(−), as well as

its sub-systems.

In this chapter, we are concerned with the converse of simulation, conservativ-
ity.

DEF IN IT ION 5.1. Let (𝐴,⟶𝐴) and (𝐵,⟶𝐵) be two reduction systems such
that the latter is an extension of the former through an injection 𝑖 ∶ 𝐴 ↪ 𝐵. This
extension is said to be conservative if

∀𝑎, 𝑎′ ∈ 𝐴, if 𝑖(𝑎)⟶𝐵 𝑖(𝑎′) then 𝑎⟶𝐴 𝑎′.

As already stressed under definition 2.5, notice that our definitions vary from
those chosen by Terese (2003, § 1.3.21), where the conservativity of ⟶𝐵 wrt.
⟶𝐴 is defined as a property of the conversions =𝐴 and =𝐵 they generate. We
prefer to distinguish between a conservative extension of a reduction (‘in the
small world, the big reduction reduces the same people to the same people’)
and a conservative extension of the corresponding conversion.

Our first conjecture was that all the extensions mentionned above are conser-
vative, at least in the qualitative setting; this was suggested in the conclusion
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of Cerda and Vaux Auclair (2023a). In the subsequent oral presentations, the
conjecture was successively that the same conservativity statement was true,
false, and ‘not so easy’... In the end Lionel Vaux Auclair and I found out:

• a proof that (𝟚Λr ,−↠r) extends (Λ,⟶∗
𝛽) conservatively, which consti-

tutes theorem 5.2,

• a counterexample in the general case of (Λ001,⟶001
𝛽⊥ ), to be presented in

section 5.2.2.

This work was first released in Cerda and Vaux Auclair (2023b). We add a last
section showing how one can retrieve conservativity by restricting −↠r to an
infinitary uniform reduction ⟶⌢ ∞

r (section 5.3).

5.1 The finite case: Conservativity holds

In this first section, we prove the following conservativity theorem for the Tay-
lor approximation restricted to finite λ-terms. The proof presented in Cerda
and Vaux Auclair (ibid., thm. 2.8) was done in the qualitative setting, but it can
be made general. Thus, let 𝕊 be an additive refinement semiring with fractions.

THEOREM 5.2 (conservativity). For all 𝑀,𝑁 ∈ Λ, if 𝒯(𝑀) −↠r 𝒯(𝑁) then
𝑀 ⟶∗

𝛽 𝑁.

We adapt a proof technique by Kerinec and Vaux Auclair (2023), who used it
to prove that the algebraic λ-calculus is a conservative extension of the usual
λ-calculus . Their proof relies on a relation ⊢, called mashup of β-reductions,
relating λ-terms (from the ‘small world’) to their algebraic reducts (in the ‘big
world’).
In our setting,𝑀 ⊢ 𝑠when 𝑠 is an approximant of a reduct of𝑀. Notice that this
is reminiscent of the way one defines the head approximants of 𝑀 (𝑃 ∈ 𝒜(𝑀)
when 𝑃 is an approximant of a reduct of 𝑀), but where the condition that the
approximants are normal is relaxed.

DEF IN IT ION 5.3. The mashup relation ⊢ ⊂ Λ × Λr is defined inductively by
the following rules:

𝑀 ⟶∗
𝛽 𝑥

𝑀 ⊢ 𝑥
𝑀 ⟶∗

𝛽 𝜆𝑥.𝑃 𝑃 ⊢ 𝑠
𝑀 ⊢ 𝜆𝑥.𝑠

𝑀 ⟶∗
𝛽 (𝑃)𝑄 𝑃 ⊢ 𝑠 𝑄 ⊢ ̄𝑡

𝑀 ⊢ (𝑠) ̄𝑡
𝑀 ⊢ 𝑡1 … 𝑀 ⊢ 𝑡𝑛

𝑀 ⊢ [𝑡1,… , 𝑡𝑛]

It is extended to ⊢ ∈ Λ × 𝕊Λr by the following rule:

∀𝑖 ∈ 𝐼, 𝑀 ⊢ 𝑠𝑖
𝑀 ⊢ ∑𝑖∈𝐼 𝑎𝑖 ⋅ 𝑠𝑖
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for any index set 𝐼 and coefficients 𝑎𝑖 ∈ 𝕊 such that the sum exists.

LEMMA 5.4. For all𝑀 ∈ Λ,𝑀 ⊢ 𝒯(𝑀).

PROOF. Take any 𝑠 ⊑𝒯 𝑀. By an immediate induction on 𝑠, 𝑀 ⊢ 𝑠 follows
from the rules of definition 5.3 (where all the assumptions ⟶∗

𝛽 are just taken
to be equalities). □

LEMMA 5.5. For all 𝑀,𝑁 ∈ Λ and 𝐒 ∈ 𝕊Λr , if 𝑀 ⟶∗
𝛽 𝑁 and 𝑁 ⊢ 𝐒 then

𝑀 ⊢ 𝐒.

PROOF. Take any 𝑠 ∈ |𝐒|, then𝑁 ⊢ 𝑠. By an immediate induction on 𝑠, 𝑀 ⊢ 𝑠
follows from the rules of definition 5.3 (where the assumptions 𝑀 ⟶∗

𝛽 …
follow from the corresponding 𝑀 ⟶∗

𝛽 𝑁 ⟶∗
𝛽 … ). □

LEMMA 5.6. For all𝑀,𝑁 ∈ Λ, 𝑥 ∈ 𝒱, 𝑠 ∈ Λr and ̄𝑡 ∈ !Λr, if𝑀 ⊢ 𝑠 and 𝑁 ⊢ ̄𝑡
then ∀𝑠′ ∈ |𝑠⟨ ̄𝑡/𝑥⟩| , 𝑀[𝑁/𝑥] ⊢ 𝑠′.

PROOF. Assume𝑀 and𝑁 are given and show the following equivalent result
by induction on 𝑠: if𝑀 ⊢ 𝑠 then for all ̄𝑡 such that𝑁 ⊢ ̄𝑡 and for all 𝑠′ ∈ |𝑠⟨ ̄𝑡/𝑥⟩|,
𝑀[𝑁/𝑥] ⊢ 𝑠′.

• If 𝑠 = 𝑥, then ̄𝑡 = [𝑡1] and 𝑠′ = 𝑡1. Since 𝑀 ⊢ 𝑥 and 𝑁 ⊢ [𝑡1], we have
𝑀 ⟶∗

𝛽 𝑥 and we obtain 𝑀[𝑁/𝑥]⟶∗
𝛽 𝑁 ⊢ 𝑡1 = 𝑠′.

• If 𝑠 = 𝑦 ≠ 𝑥, then ̄𝑡 = 1 and 𝑠′ = 𝑦. Since 𝑀 ⊢ 𝑦, we have 𝑀 ⟶∗
𝛽 𝑦 and

we obtain 𝑀[𝑁/𝑥]⟶∗
𝛽 𝑦 hence 𝑀[𝑁/𝑥] ⊢ 𝑦.

• If 𝑠 = 𝜆𝑥.𝑢, then 𝑠′ ∈ |𝜆𝑥.𝑢⟨ ̄𝑡/𝑥⟩|, that is 𝑠′ = 𝜆𝑥.𝑢′ for some 𝑢′ ∈ |𝑢⟨ ̄𝑡/𝑥⟩|.
Since 𝑀 ⊢ 𝜆𝑥.𝑢, there is some 𝑀 ⟶∗

𝛽 𝜆𝑥.𝑃 with 𝑃 ⊢ 𝑢. By induction
hypothesis, 𝑃[𝑁/𝑥] ⊢ 𝑢′. Hence 𝑀[𝑁/𝑥]⟶∗

𝛽 𝜆𝑥.𝑃[𝑁/𝑥] and 𝑃[𝑁/𝑥] ⊢
𝑢′, so 𝑀[𝑁/𝑥] ⊢ 𝜆𝑥.𝑢′.

• If 𝑠 = (𝑢) ̄𝑣 with ̄𝑣 = [𝑣1,… , 𝑣𝑛], then 𝑠′ = (𝑢′) ̄𝑣′ with 𝑢′ ∈ |𝑢⟨ ̄𝑡0/𝑥⟩|,
̄𝑣′ = [𝑣′1,… , 𝑣′𝑛] and 𝑣′𝑖 ∈ |𝑣𝑖⟨ ̄𝑡𝑖/𝑥⟩| for 𝑖 ∈ {1,… ,𝑛}, so that ̄𝑡 = ̄𝑡0⋅ ̄𝑡1⋅…⋅ ̄𝑡𝑛.

Since 𝑀 ⊢ (𝑢) ̄𝑣, there is some 𝑀 ⟶∗
𝛽 (𝑃)𝑄 with 𝑃 ⊢ 𝑢 and 𝑄 ⊢ ̄𝑣.

Since 𝑁 ⊢ ̄𝑡, we also have 𝑁 ⊢ ̄𝑡𝑖 for each 𝑖 ∈ {0,… ,𝑛}. By induction
hypothesis, we obtain 𝑃[𝑁/𝑥] ⊢ 𝑢′ and 𝑄[𝑁/𝑥] ⊢ 𝑣′𝑖 for each 𝑖 ∈ [1,𝑛].
Hence 𝑀[𝑁/𝑥] ⟶∗

𝛽 (𝑃[𝑁/𝑥]) 𝑄[𝑁/𝑥] with 𝑃[𝑁/𝑥] ⊢ 𝑢′ and 𝑄[𝑁/𝑥] ⊢
̄𝑣′, so finally 𝑀[𝑁/𝑥] ⊢ (𝑢′) ̄𝑣′. □

LEMMA 5.7. For all 𝑀 ∈ Λ and 𝐒,𝐓 ∈ 𝕊Λr , if 𝑀 ⊢ 𝐒 and 𝐒 −↠r 𝐓 then
𝑀 ⊢ 𝐓.
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PROOF. Let us first show that for all 𝑀 ∈ Λ and 𝑠 ∈ Λr and 𝑇 ∈ ℕ(Λr), if
𝑀 ⊢ 𝑠 −⇀r 𝑇 then ∀𝑡 ∈ |𝑇|, 𝑀 ⊢ 𝑡.
We do so by induction on 𝑠 −⇀r 𝑇. When 𝑠 = (𝜆𝑥.𝑢) ̄𝑣 is a redex, there exists a
derivation:

𝑀 ⟶∗
𝛽 (𝑃)𝑄

𝑃 ⟶∗
𝛽 𝜆𝑥.𝑃′ 𝑃′ ⊢ 𝑢
𝑃 ⊢ 𝜆𝑥.𝑢 𝑄 ⊢ ̄𝑣

𝑀 ⊢ (𝜆𝑥.𝑢) ̄𝑣

By lemma 5.6 with 𝑃′ ⊢ 𝑢, 𝑄 ⊢ ̄𝑣, for all 𝑡 ∈ |𝑢⟨ ̄𝑣/𝑥⟩|, we obtain 𝑃′[𝑄/𝑥] ⊢ 𝑡.
Finally, since 𝑀 ⟶∗

𝛽 (𝜆𝑥.𝑃′)𝑄 ⟶𝛽 𝑃′[𝑄/𝑥], we concude by lemma 5.5. The
other cases of the induction follow immediately by lifting to the context.
As a consequence, we can easily deduce the following steps:

• if 𝑀 ⊢ 𝑠 −⇀r 𝑇 then 𝑀 ⊢ 𝑇, for all 𝑀 ∈ Λ, 𝑠 ∈ Λr and 𝑇 ∈ ℕ(Λr),

• if 𝑀 ⊢ 𝑆 ⟶r 𝑇 then 𝑀 ⊢ 𝑇, for all 𝑀 ∈ Λ and 𝑆,𝑇 ∈ ℕ(Λr),

• if 𝑀 ⊢ 𝑆 ⟶∗
r 𝑇 then 𝑀 ⊢ 𝑇, for all 𝑀 ∈ Λ and 𝑆,𝑇 ∈ ℕ(Λr),

which leads to the result. □

Before we state the last lemma of the proof, recall that there is a canonical
injection ❲−❳r ∶ Λ → Λr defined by:

❲𝑥❳r ≔ 𝑥 ❲𝜆𝑥.𝑃❳r ≔ 𝜆𝑥.❲𝑃❳r ❲(𝑃)𝑄❳r ≔ (❲𝑃❳r) [❲𝑄❳r]

and such that for all 𝑁 ∈ Λ, ❲𝑁❳r ∈ 𝒯(𝑁).

LEMMA 5.8. For all𝑀,𝑁 ∈ Λ, if𝑀 ⊢ 𝒯(𝑁) then𝑀 ⟶∗
𝛽 𝑁.

PROOF. If 𝑀 ⊢ 𝒯(𝑁), then in particular 𝑀 ⊢ ❲𝑁❳r. We proceed by induction
on 𝑁:

• If 𝑁 = 𝑥, then 𝑀 ⊢ 𝑥 so 𝑀 ⟶∗
𝛽 𝑥 by definition.

• If 𝑁 = 𝜆𝑥.𝑃′, then 𝑀 ⊢ 𝜆𝑥.❲𝑃′❳r, i.e. there is a 𝑃 ∈ Λ such that 𝑀 ⟶∗
𝛽

𝜆𝑥.𝑃 and 𝑃 ⊢ ❲𝑃′❳r. By induction, 𝑃 ⟶∗
𝛽 𝑃′, thus 𝑀 ⟶∗

𝛽 𝜆𝑥.𝑃′ = 𝑁.

• If 𝑁 = (𝑃′)𝑄′, then 𝑀 ⊢ (❲𝑃′❳r) [❲𝑄′❳r] i.e. there are 𝑃,𝑄 ∈ Λ such that
𝑀 ⟶∗

𝛽 (𝑃)𝑄, 𝑃 ⊢ ❲𝑃′❳r and 𝑄 ⊢ [❲𝑄′❳r]. By induction, 𝑃 ⟶∗
𝛽 𝑃′ and

𝑄⟶∗
𝛽 𝑄′, thus 𝑀 ⟶∗

𝛽 (𝑃′)𝑄′ = 𝑁. □

Finally, the conclusion is straightforward from the lemmas.

PROOF OF THEOREM 5.2. Suppose that 𝒯(𝑀) −↠r 𝒯(𝑁). By lemma 5.4
we obtain 𝑀 ⊢ 𝒯(𝑀), hence by lemma 5.7 𝑀 ⊢ 𝒯(𝑁). We can conlude with
lemma 5.8. □
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5.2 The infinitary case: Conservativity fails

The previous theorem was arguably expected, since the Taylor approximation
of the λ-calculus has excellent properties: in particular, a single (well-chosen)
term ❲𝑀❳r ∈ 𝒯(𝑀) is enough to characterise 𝑀, and a single (again, well-
chosen) sequence of resource reducts of some 𝑠 ∈ 𝒯(𝑀) suffices to characterise
any sequence 𝑀 ⟶∗

𝛽 𝑁. These properties are not true any more when con-
sidering more complicated settings, like an infinitary λ-calculus. For instance,
𝑀 ∈ Λ001 is not characterised by a single approximant, but by a sequence of
𝑑-positive approximants (as we showed in lemma 4.34).

This is enough not only to make the ‘mashup’ proof technique fail, but even to
make the extension of theorem 5.2 to Λ001 false, as we will show by exhibiting
a counterexample, the Accordion λ-term.

5.2.1 Failure of the ‘mashup’ technique

In our infinitary λ-calculus, the previous proof fails. Let us describe where we
hit an obstacle, which will make clearer the way we build a counterexample in
the next section.

First, it is not obvious what the mashup relation should be: we could just use
the relation ⊢ defined on Λ001 ×Λr by the same set of rules as in definition 5.3,
or define an infinitary mashup ⊢001 by the rules

𝑀 ⟶001
𝛽 𝑥

𝑀 ⊢001 𝑥
𝑀 ⟶001

𝛽 𝜆𝑥.𝑃 𝑃 ⊢001 𝑠
𝑀 ⊢001 𝜆𝑥.𝑠

𝑀 ⟶001
𝛽 (𝑃)𝑄 𝑃 ⊢001 𝑠 𝑄 ⊢001 ̄𝑡

𝑀 ⊢001 (𝑠) ̄𝑡
𝑀 ⊢001 𝑡1 … 𝑀 ⊢001 𝑡𝑛

𝑀 ⊢001 [𝑡1,… , 𝑡𝑛]

and extend it to 𝕊Λr accordingly. In fact, this happens to define the same rela-
tion.

LEMMA 5.9. For all𝑀 ∈ Λ001 and 𝑠 ∈ Λr,𝑀 ⊢001 𝑠 iff𝑀 ⊢ 𝑠.

PROOF. By lemma 2.18, the inclusion ⊢ ⊆ ⊢001 is immediate. Let us show
the converse.

First, observe that the proof of lemma 5.5 can be easily extended in order to
show that for all 𝑀,𝑁 ∈ Λ001 and 𝑠 ∈ Λr, if 𝑀 ⟶001

𝛽 𝑁 ⊢001 𝑠 then 𝑀 ⊢001 𝑠.
Then we proceed by induction on 𝑠.

• If 𝑀 ⊢001 𝑥, then 𝑀 ⟶001
𝛽 𝑥, i.e. 𝑀 ⟶∗

𝛽 𝑥, and finally 𝑀 ⊢ 𝑥.



156 5. conservativity of the taylor approximation

• If 𝑀 ⊢001 𝜆𝑥.𝑢, then there is a derivation:

𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃

𝑃 ⟶001
𝛽 𝑃′

▹0 𝑃 ⟶001
𝛽 𝑃′

𝑀 ⟶001
𝛽 𝜆𝑥.𝑃′ 𝑃′ ⊢001 𝑢

𝑀 ⊢001 𝜆𝑥.𝑢

Since 𝑃 ⟶001
𝛽 𝑃′ ⊢001 𝑢, we have 𝑃 ⊢001 𝑢, and by induction on 𝑢 we

obtain 𝑃 ⊢ 𝑢. With 𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃, this yields 𝑀 ⊢ 𝜆𝑥.𝑢.

• If 𝑀 ⊢001 (𝑢) ̄𝑣, then similarly there are 𝑃,𝑃′,𝑄,𝑄′ ∈ Λ001 such that
𝑀 ⟶∗

𝛽 (𝑃)𝑄, 𝑃 ⟶001
𝛽 𝑃′ ⊢001 𝑢 and 𝑄 ⟶001

𝛽 𝑄′ ⊢001 ̄𝑣. We deduce
𝑃 ⊢001 𝑠 and 𝑄 ⊢001 ̄𝑣, and by induction on 𝑢 and on the 𝑣𝑖 we obtain
𝑃 ⊢ 𝑢 and 𝑄 ⊢ ̄𝑣, which leads to 𝑀 ⊢ (𝑢) ̄𝑣. □

As a consequence, lemmas 5.4 to 5.7 can be easily extended to ⟶001
𝛽 and ⊢001.

We have already explained how the proof of this can be done for lemma 5.5; for
the other ones, one just needs to observe that the proofs are all by induction on
resource terms or on some inductively defined relation, hence replacing ⟶∗

𝛽
with ⟶001

𝛽 does not change anything (and neither does replacing ⊢ with ⊢001,
thanks to lemma 5.9).
The failure of the infinitary ‘mashup’ proof occurs in the extension of
lemma 5.8. Indeed, this proof crucially relies on the existence of an injection

❲−❳r ∶ Λ → Λr,

whereas for Λ001 there is only the counterpart

❲−❳r,− ∶ Λ001 × ℕ → Λr

defined by ❲𝑀❳r,𝑑 ≔ ❲⌊𝑀⌋𝑑❳r, i.e. formally

❲𝑥❳r,𝑑 ≔ 𝑥 ❲(𝑃)𝑄❳r,0 ≔ (❲𝑃❳r,0) 1
❲𝜆𝑥.𝑃❳r,𝑑 ≔ 𝜆𝑥.❲𝑃❳r,𝑑 ❲(𝑃)𝑄❳r,𝑑+1 ≔ (❲𝑃❳r,𝑑+1) [❲𝑄❳r,𝑑] .

Now, if we suppose that 𝑀 ⊢ 𝒯(𝑁) and we want to show that 𝑀 ⟶001
𝛽 𝑁,

we cannot rely any more on the fact that 𝑀 ⊢ ❲𝑁❳r, but only on the fact that
∀𝑑 ∈ ℕ, 𝑀 ⊢ ❲𝑁❳r. This makes the induction fail. For instance, for the case
where𝑁 is an abstraction 𝜆𝑥.𝑃′, we obtain a 𝑑-indexed sequence of derivations

𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃𝑑 𝑃𝑑 ⊢ ❲𝑃′❳r

𝑀 ⊢ ❲𝑁❳r = ❲𝜆𝑥.𝑃′❳r

but nothing tells us that the terms 𝑃𝑑 and reductions 𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃𝑑 are coher-

ent! This failure is what enables us to design a counterexample.
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5.2.2 The Accordion λ-term

In this last part, we define A and Ā and show that they form counterexample not
only to the 001-infinitary counterpart of lemma 5.8, but also to the generalised
theorem 5.2: 𝒯(A) −↠r 𝒯(Ā), but there is no infinitary reduction A ⟶001

𝛽 Ā.

NOTAT ION 5.10. We denote as follows the usual representation of booleans,
an ‘applicator’ ⟨−⟩, and the Church encodings of integers and of the successor
function:

T ≔ 𝜆𝑥.𝜆𝑦.𝑥 F ≔ 𝜆𝑥.𝜆𝑦.𝑦 ⟨𝑀⟩ ≔ 𝜆𝑏.(𝑏)𝑀
n ≔ 𝜆𝑓.𝜆𝑥.(𝑓)𝑛𝑥 Succ ≔ 𝜆𝑛.𝜆𝑓.𝜆𝑥.(𝑛) 𝑓 (𝑓)𝑥

DEF IN IT ION 5.1 1. The Accordion λ-term is defined as A ≔ (P)0, where:

P ≔ (Y) 𝜆𝜙.𝜆𝑛. (⟨T⟩) ((𝑛)⟨F⟩) Q𝜙,𝑛
Q𝜙,𝑛 ≔ (Y) 𝜆𝜓.𝜆𝑏. ((𝑏)(𝜙)(Succ)𝑛) 𝜓.

We also define Ā ≔ (⟨T⟩)(⟨F⟩)𝜔.

Let us show how this term behaves (and why we named it the Accordion).
There exist terms P″ and Q𝑛 (for all 𝑛 ∈ ℕ) such that the following reductions
hold:

A ⟶∗
𝛽 @

P″ 0

⟶∗
𝛽 @

⟨T⟩ Q0

⟶∗
𝛽 @

P″ 1

⟶∗
𝛽 @

⟨T⟩ @

⟨F⟩ Q1

⟶∗
𝛽 @

P″ n

⟶∗
𝛽 @

⟨T⟩ @

⟨F⟩ @

⟨F⟩

@

⟨F⟩ Q𝑛
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This means that:

1. for any 𝑑 ∈ ℕ, A reduces to terms A𝑑 that are similar to Ā up to depth 𝑑
(and, as a consequence, any finite approximant of Ā if a reduct of approx-
imants of A);

2. but this is not a valid infinitary reduction because we need to reduce a
redex at depth 0 to obtain A𝑑 ⟶∗

𝛽 A𝑑+1 (so the depth of the reduced
redexes does not tend to the infinity).

This dynamics (the term A is ‘stretched’ and ‘compressed’ over and over) justi-
fies the name ‘Accordion’. Let us now turn the two items above into a theorem.

THEOREM 5.12. 𝒯(A) −↠r 𝒯(Ā) in the qualitative setting, but there is no re-
duction A ⟶001

𝛽 Ā.

COROLLARY 5.13. (𝟚Λr ,−↠r) is not a conservative extension of (Λ001,⟶001
𝛽 ).

Let us outline the proof of the counter-example. We will skip most of the te-
dious technical work needed for the proof and delay it to section 5.2.3, in order
to leave the reader free to jump to the next section before we dive into graceless
technicalities.
Before we start, recall the following well-known factorization property due to
Mitschke (1979, cor. 5).

LEMMA 5.14 (head-internal decomposition). For all 𝑀,𝑁 ∈ Λ such that
𝑀 ⟶∗

𝛽 𝑁, there exists an𝑀′ ∈ Λ such that

𝑀 ⟶∗
ℎ 𝑀′ ⟶∗

𝑖 𝑁,

where⟶𝑖 denotes the internal β-reduction, i.e. the subset of⟶𝛽 obtained by
forbidding to reduce head redexes.

PROOF OF THEOREM 5.12. We first prove that 𝒯(A) −↠r 𝒯(Ā), in the
qualitative setting. One can show that for all 𝑑 ∈ ℕ,

A ⟶∗
ℎ (⟨T⟩) (((Succ)𝑑0) ⟨F⟩) Q𝑑 ⟶∗

𝛽 (⟨T⟩)(⟨F⟩)𝑑Q𝑑.

(where the first reduction is deailed in section 5.2.3). Denote by Ā𝑑 the latter
reduct. By the simulation corollary 4.53,

𝒯(A)⟶⌢ r 𝒯(Ā𝑑)

hence there are sums 𝐴𝑑,𝑠 ∈ 𝟚(Λr) such that 𝒯(Ā𝑑) = ∑𝑠⊑𝒯A 𝐴𝑑,𝑠 and ∀𝑠 ⊑𝒯 A,
𝑠⟶∗

r 𝐴𝑑,𝑠. Then we can write
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𝒯(Ā) = ∑
𝑑∈ℕ

𝒯<𝑑(Ā)

= ∑
𝑑∈ℕ

𝒯<𝑑(Ā𝑑) because ⌊Ā𝑑⌋𝑑 = ⌊Ā⌋𝑑,

= ∑
𝑑∈ℕ

∑
𝑠⊑𝒯A

{ 𝑡 ∈ 𝐴𝑑,𝑠 || depth(𝑡) < 𝑑 }

= ∑
𝑠⊑𝒯A

depth(𝑠)
∑
𝑑=1

{ 𝑡 ∈ 𝐴𝑑,𝑠 || size(𝑡) < 𝑑 } by lemmas 3.34 and 3.54.

Observe that by corollary 3.42, the sums ∑depth(𝑠)
𝑑=1 { 𝑡 ∈ 𝐴𝑑,𝑠 || depth(𝑡) < 𝑑 } are

finite. Then for all 𝑠 ⊑𝒯 A,

𝑠 =
depth(𝑠)
∑
𝑑=1

𝑠

⟶∗
r

depth(𝑠)
∑
𝑑=1

𝐴𝑑,𝑠

=
depth(𝑠)
∑
𝑑=1

{ 𝑡 ∈ 𝐴𝑑,𝑠 || size(𝑡) < 𝑑 } + { 𝑡 ∈ 𝐴𝑑,𝑠 || size(𝑡) ⩾ 𝑑 }

⟶∗
r

depth(𝑠)
∑
𝑑=1

{ 𝑡 ∈ 𝐴𝑑,𝑠 || size(𝑡) < 𝑑 }

because A has no hnf (as detailed in section 5.2.3), hence by theorem 4.20 and
by confluence, { 𝑡 ∈ 𝐴𝑑,𝑠 || size(𝑡) ⩾ 𝑑 }⟶∗

r 0. This finishes the first part of the
proof.

For the second part, we suppose that there is a reduction A ⟶001
𝛽 Ā and we

show that this leads to a contradiction. By stratification and by lemma 5.14,
there exists respectively a sequence of terms A𝑑 ∈ Λ and a term A′0 ∈ Λ such
that there are reductions

A ⟶∗
ℎ A′0 ⟶∗

𝑖 A1 ⟶∗
𝛽⩾1 A𝑑 ⟶001

𝛽⩾𝑑 Ā.

A′0 and Ā must have the same head form, i.e. there must be 𝑀,𝑁 ∈ Λ such that
A′0 = (𝜆𝑏.𝑀)𝑁. An exhaustive description of the head reducts of A (detailed in
section 5.2.3) allows to observe that this only happens in four cases:

1. (𝜆𝑛. (⟨T⟩) ((𝑛)⟨F⟩) QP″,𝑛) (Succ)𝑛0, see the reduction step (5.2) below,

2. (⟨T⟩) (((Succ)𝑛0) ⟨F⟩) Q𝑛, see the reduction step (5.3) below,

3. (𝜆𝑏. ((𝑏)(P″)(Succ)𝑛+10) Q″𝑛) T, see the reduction step (5.21) below,

4. (𝜆𝑦.(P″) (Succ)𝑛+10) Q″𝑛, see the reduction step (5.23) below,
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for some 𝑛 ∈ ℕ (in the following, 𝑛 denotes this specific integer appear in A′0).
In particular, for one of these possible values of A′0 there must be a reduction

A′0 ⟶∗
𝑖 A𝑛+4 ⟶001

𝛽⩾𝑛+4 Ā.

Since ⌊A𝑛+4⌋𝑛+3 = ⌊Ā⌋𝑛+3, we can write A𝑛+4 = (⟨T⟩)(⟨F⟩)𝑛+1𝑀 for some𝑀 ∈ Λ
such that 𝑀 ⟶001

𝛽 (⟨F⟩)𝜔 (we need to go up to depth 𝑛 + 3 since ⟨T⟩ and ⟨F⟩
are themselves of applicative depth 2). Finally, there must be a reduction

A′0 ⟶∗
𝑖 (⟨T⟩)(⟨F⟩)𝑛+1𝑀.

For each of the possible cases for A′0, we show in section 5.2.3 that this is impos-
sible. □

In the construction of a reduction𝒯(A) −↠r 𝒯(Ā), observe our heavily use and
abuse of the qualitative nature of the sums. We believe that a more careful re-
duction of the quantitative Taylor expansion of A can lead to a similar property
in the quantitative setting.

CONJECTURE 5.15. 𝒯(A) −↠r 𝒯(Ā) in the quantitative setting, thus
(𝕊Λr ,−↠r) is not a conservative extension of (Λ001,⟶001

𝛽 ).

Nonetheless, this appears to be difficult for several technical reasons and, at any
rate, does not seem within reach at the time we are finishing this manuscript.

5.2.3 Analysis of the possible reductions of A

This section is devoted to the technical work needed for the proof of theo-
rem 5.12. It can be safely skipped if the reader is not interested in the Byzantine
intricacies of the head reduction of A.

Let us first introduce some abbreviations1:

P′ ≔ 𝜆𝜙.𝜆𝑛. (⟨T⟩) ((𝑛)⟨F⟩) Q𝜙,𝑛
P″ ≔ (𝜆𝑥. (P′)(𝑥)𝑥) 𝜆𝑥.(P′)(𝑥)𝑥
Q𝑛 ≔ QP″,(Succ)𝑛0

Q′𝑛 ≔ 𝜆𝜓.𝜆𝑏. ((𝑏)(P″)(Succ)𝑛+10) 𝜓
Q″𝑛 ≔ (𝜆𝑥.(Q′𝑛)(𝑥)𝑥) 𝜆𝑥.(Q′𝑛)(𝑥)𝑥.

Using these notations, let us describe exhaustively the head reduction steps
starting from A. The first step is2:

A = ((Y)P′)0 ⟶ℎ (P″)0
1 Notice that the Q𝑛 we define here are slightly different from those in the example reduction

described on page 157, but they play the same role.
2 We write the fired head redexes in colour.
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Then, for each 𝑛 ∈ ℕ, we do the following head reduction steps:

(P″)(Succ)𝑛0 ⟶ℎ ((P′)P″) (Succ)𝑛0 (5.1)
⟶ℎ (𝜆𝑛. (⟨T⟩) ((𝑛)⟨F⟩) QP″,𝑛) (Succ)𝑛0 (5.2)
⟶ℎ (⟨T⟩) (((Succ)𝑛0) ⟨F⟩) Q𝑛 (5.3)
⟶ℎ (Succ)𝑛0 ⟨F⟩ Q𝑛 T (5.4)
⟶ℎ (𝜆𝑓.𝜆𝑥.(((Succ)𝑛−10)𝑓)(𝑓)𝑥) ⟨F⟩ Q𝑛 T (5.5)
⟶ℎ (𝜆𝑥.(((Succ)𝑛−10)⟨F⟩)(⟨F⟩)𝑥) Q𝑛 T (5.6)
⟶ℎ ((Succ)𝑛−10 ⟨F⟩ (⟨F⟩)Q𝑛) T (5.7)

and by repeating steps (5.5) to (5.7):

⟶∗
ℎ ((0)⟨F⟩ (⟨F⟩)𝑛Q𝑛) T (5.8)

⟶ℎ ((𝜆𝑥.𝑥) (⟨F⟩)𝑛Q𝑛) T (5.9)
⟶ℎ ((𝜆𝑏.(𝑏)F) (⟨F⟩)𝑛−1Q𝑛) T (5.10)
⟶ℎ ((⟨F⟩)𝑛−1Q𝑛) F T (5.11)

and by repeating step (5.11):

⟶∗
ℎ ((Y)Q′𝑛) F… F⏟

𝑛 times
T (5.12)

⟶ℎ (Q″𝑛) F… F T (5.13)
⟶ℎ ((Q′𝑛)Q″𝑛) F… F T (5.14)
⟶ℎ (𝜆𝑏. ((𝑏)(P″)(Succ)𝑛+10) Q″𝑛) F… F T (5.15)
⟶ℎ (((𝜆𝑥.𝜆𝑦.𝑦)(P″)(Succ)𝑛+10) Q″𝑛) F… F⏟

𝑛−1
times

T (5.16)

⟶ℎ ((𝜆𝑦.𝑦)Q″𝑛) F… F T (5.17)
⟶ℎ (Q″𝑛) F… F T (5.18)

and by repeating steps (5.14) to (5.18):

⟶∗
ℎ (Q″𝑛) T (5.19)

⟶ℎ ((Q′𝑛)Q″𝑛) T (5.20)
⟶ℎ (𝜆𝑏. ((𝑏)(P″)(Succ)𝑛+10) Q″𝑛) T (5.21)
⟶ℎ ((𝜆𝑥.𝜆𝑦.𝑥)(P″)(Succ)𝑛+10) Q″𝑛 (5.22)
⟶ℎ (𝜆𝑦.(P″) (Succ)𝑛+10) Q″𝑛 (5.23)
⟶ℎ (P″) (Succ)𝑛+10 (5.24)

which brings us back to step (5.1).
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What remains to be done is to show that for any of the four cases identified in
the proof of theorem 5.2 on page 159, there can be no reduction

A′0 ⟶∗
𝑖 (⟨T⟩)(⟨F⟩)𝑛+1𝑀

for some 𝑀 ∈ Λ such that 𝑀 ⟶001
𝛽 (⟨F⟩)𝜔. These cases correspond to the

reducts appearing in the steps (5.2), (5.3), (5.21) and (5.23) hereabove. There
are three easy cases.

LEMMA 5.16 (case 1, step (5.2)). For all 𝑛 ∈ ℕ, there is no𝑀 ∈ Λ such that

(𝜆𝑛. (⟨T⟩) ((𝑛)⟨F⟩) QP″,𝑛) (Succ)𝑛0 ⟶∗
𝑖 (⟨T⟩)(⟨F⟩)𝑛+1𝑀.

PROOF. Such a reduction would imply that (Succ)𝑛0 ⟶∗
𝛽 (⟨F⟩)𝑛+1𝑀. How-

ever (Succ)𝑛0 ⟶∗
𝛽 n, which is in β-normal form, while (⟨F⟩)𝑛+1𝑀 has no

normal form. We conclude by confluence of the finite λ-calculus. □

LEMMA 5.17 (case 3, step (5.21)). For all 𝑛 ∈ ℕ, there is no𝑀 ∈ Λ such that

(𝜆𝑏. ((𝑏)(P″)(Succ)𝑛+10) Q″𝑛) T ⟶∗
𝑖 (⟨T⟩)(⟨F⟩)𝑛+1𝑀.

PROOF. Immediate because T is in normal form. □

LEMMA 5.18 (case 4, step (5.23)). For all 𝑛 ∈ ℕ, there is no𝑀 ∈ Λ such that

(𝜆𝑦.(P″) (Succ)𝑛+10) Q″𝑛 ⟶∗
𝑖 (⟨T⟩)(⟨F⟩)𝑛+1𝑀.

PROOF. Such a reduction would imply that

𝜆𝑦.(P″)(Succ)𝑛+10 ⟶∗
𝛽 ⟨T⟩ = 𝜆𝑦.(𝑦)T,

and therefore that (P″)(Succ)𝑛+10 has a hnf (𝑦)T. This is impossible, as de-
tailed in the exhaustive head reduction of A above. □

The remaining case concerns the reduct (⟨T⟩) (((Succ)𝑛0) ⟨F⟩) Q𝑛. It is the only
‘non-degenerate’ one, in the sense that it is where the accordion-like behaviour
of A is illustrated: the sub-term ⟨T⟩ here is really ‘the same’ as the one appearing
at the root of Ā but we need to reduce this sub-term at some point (i.e. to ‘com-
press’ the Accordion). Thus there can be no 001-infinitary reduction towards Ā.
We first need to prove two intermediate results.

LEMMA 5.19. For all 𝑘 ∈ ℕ, 𝑛 ∈ ℕ and𝑀 ∈ Λ, there is no reduction

(⟨F⟩)𝑘 Q𝑛 ⟶∗
𝛽 (⟨F⟩)𝑘+1𝑀.
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PROOF. We proceed by induction on 𝑘. First, take 𝑘 = 0 and suppose there is
a reduction Q𝑛 ⟶∗

𝛽 (⟨F⟩)𝑀. By lemma 5.14, there are 𝑅,𝑅′ ∈ Λ such that

Q𝑛 ⟶∗
ℎ (𝜆𝑏.𝑅)𝑅′ ⟶∗

𝑖 (⟨F⟩)𝑀 = (𝜆𝑏.(𝑏)F)𝑀.

An exhaustive head reduction of Q𝑛 gives the possible values of 𝑅 and 𝑅′:

Q𝑛 = (Y)Q′𝑛
⟶ℎ (𝜆𝑥.(Q′𝑛)(𝑥)𝑥) 𝜆𝑥.(Q′𝑛)(𝑥)𝑥
⟶ℎ (𝜆𝜓.𝜆𝑏. ((𝑏)(P″)(Succ)𝑛+10) 𝜓) Q″𝑛
⟶ℎ 𝜆𝑏. ((𝑏)(P″)(Succ)𝑛+10) Q″𝑛,

the last reduct being in hnf, which leaves only the first three possibilities. In
any of those three cases, 𝑅⟶∗

𝛽 (𝑏)F (modulo renaming of 𝑏 by α-conversion)
is impossible by immediate arguments, so that (𝜆𝑏.𝑅)𝑅′ ⟶∗

𝑖 (⟨F⟩)𝑀 cannot
hold.

If 𝑘 ⩾ 1, let us again suppose that there is a reduction (⟨F⟩)𝑘 Q𝑛 ⟶∗
𝛽 (⟨F⟩)𝑘+1𝑀.

lemma 5.14 states that there are 𝑅,𝑅′ ∈ Λ such that

(⟨F⟩)𝑘 Q𝑛 ⟶∗
ℎ (𝜆𝑏.𝑅)𝑅′ ⟶∗

𝑖 (𝜆𝑏.(𝑏)F)(⟨F⟩)𝑘𝑀.

An exhaustive head reduction of (⟨F⟩)𝑘 Q𝑛 gives the possible values of 𝑅 and 𝑅′
(we write only the reduction steps corresponding to the well-formed reducts —
see the details in the detailed head reduction of A, steps (5.11) and following):

(⟨F⟩)𝑘 Q𝑛 = (𝜆𝑏.(𝑏)F) (⟨F⟩)𝑘−1 Q𝑛
⟶∗

ℎ (𝜆𝑏. ((𝑏)(P″)(Succ)𝑛+10) Q″𝑛) F
⟶∗

ℎ (𝜆𝑦.𝑦)Q″𝑛
⟶ℎ Q″𝑛

In the first case, a reduction (𝜆𝑏.(𝑏)F) (⟨F⟩)𝑘−1 Q𝑛 ⟶∗
𝑖 (𝜆𝑏.(𝑏)F)(⟨F⟩)𝑘𝑀 is im-

possible because it would imply that (⟨F⟩)𝑘−1 Q𝑛 ⟶∗
𝛽 (⟨F⟩)𝑘𝑀, which is impos-

sible by induction. The second and third cases are impossible by immediate
arguments; the fourth case has already been explored (Q″𝑛 is exactly the term
from the second line of the reduction of Q𝑛 above). □

LEMMA 5.20. For all 𝑛 ∈ ℕ, 𝑘 ∈ [0,𝑛] and𝑀 ∈ Λ, there is no reduction:

(Succ)𝑛−𝑘 0 ⟨F⟩ (⟨F⟩)𝑘Q𝑛 ⟶∗
𝛽 (⟨F⟩)𝑛+1𝑀.

PROOF. We proceed by induction on 𝑛−𝑘. The base case is 𝑘 = 𝑛: if there is a
reduction (0) ⟨F⟩ (⟨F⟩)𝑛Q𝑛 ⟶∗

𝛽 (⟨F⟩)𝑛+1𝑀, then by lemma 5.14 there are terms



164 5. conservativity of the taylor approximation

𝑅,𝑅′ ∈ Λ such that

(0) ⟨F⟩ (⟨F⟩)𝑛Q𝑛 ⟶∗
ℎ (𝜆𝑏.𝑅)𝑅′ ⟶∗

𝑖 (𝜆𝑏.(𝑏)F)(⟨F⟩)𝑛𝑀.

Observe that

(0) ⟨F⟩ (⟨F⟩)𝑛Q𝑛 ⟶ℎ (𝜆𝑥.𝑥) (⟨F⟩)𝑛Q𝑛 ⟶ℎ (⟨F⟩)𝑛Q𝑛

hence, because 𝜆𝑥.𝑥 is in β-normal form and by lemma 5.19, we reach a con-
tradiction.

If 𝑘 < 𝑛 and there is a reduction (Succ)𝑛−𝑘 0 ⟨F⟩ (⟨F⟩)𝑘Q𝑛 ⟶∗
𝛽 (⟨F⟩)𝑛+1𝑀, then

again by lemma 5.14 there are terms 𝑅,𝑅′ ∈ Λ such that

(Succ)𝑛−𝑘 0 ⟨F⟩ (⟨F⟩)𝑘Q𝑛 ⟶∗
ℎ (𝜆𝑏.𝑅)𝑅′ ⟶∗

𝑖 (𝜆𝑏.(𝑏)F)(⟨F⟩)𝑛𝑀.

Observe that

(Succ)𝑛−𝑘 0 ⟨F⟩ (⟨F⟩)𝑘Q𝑛 ⟶ℎ (𝜆𝑓.𝜆𝑥.(Succ)𝑛−𝑘−1 0𝑓 (𝑓)𝑥) ⟨F⟩ (⟨F⟩)𝑘Q𝑛
⟶ℎ (𝜆𝑥.(Succ)𝑛−𝑘−1 0 ⟨F⟩ (⟨F⟩)𝑥) (⟨F⟩)𝑘Q𝑛
⟶ℎ (Succ)𝑛−𝑘−1 0 ⟨F⟩ (⟨F⟩)𝑘+1Q𝑛

The first reduct does not have the expected head form. In the second case,
(𝜆𝑏.𝑅)𝑅′ ⟶∗

𝑖 (𝜆𝑏.(𝑏)F)(⟨F⟩)𝑛𝑀 would imply that (⟨F⟩)𝑘Q𝑛 ⟶∗
𝛽 (⟨F⟩)𝑛𝑀,

which is impossible by lemma 5.19 because 𝑘 < 𝑛. In the third case, apply the
induction hypothesis. □

This leads us to the proof of the last case.

LEMMA 5.21 (case 2, step (5.3)). For all 𝑛 ∈ ℕ, there is no𝑀 ∈ Λ such that

(⟨T⟩) (((Succ)𝑛0) ⟨F⟩) Q𝑛 ⟶∗
𝑖 (⟨T⟩)(⟨F⟩)𝑛+1𝑀.

PROOF. (Succ)𝑛0⟨F⟩Q𝑛 ⟶∗
𝛽 (⟨F⟩)𝑛+1𝑀 is forbidden by lemma 5.20. □

5.3 Restoring conservativity thanks to uniformity

The fact that the simulation of ⟶001
𝛽 by −↠r via the Taylor expansion is not

conservative confirms that this lifting −↠r, even if needed in order to express
the pointwise normal form of a sum through the resource reduction, weakens
the dynamics of the β-reduction by allowing to reduce resource approximants
along reductions paths that do not correspond to an actual reduction of the ap-
proximated term. This was already what led us to consider the uniform lifting
⟶⌢ r when we proved the quantitative simulation in section 4.4. Using this
more rigid lifting of the resource reduction, each reduction step of the Taylor
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expansion is a ‘bundle’ of resource reduction steps approximating a same step
of the β-reduction of the approximated term.
Let us briefly show how this property can be used to build a conservative sim-
ulation of ⟶001

𝛽 . The simulating reduction needs to be:

• a restriction of −↠r, because we want to eliminate the non-coherent re-
ductions that cannot be turned into actual β-reductions,

• an extension of ⟶⌢ ∗
r , because we want to be able to simulate not only

finite, but also infinitary reductions.

The way we proceed is guided by the proof of theorem 4.14, i.e. by the stratifi-
cation property.

NOTAT ION 5.22. For all sums∑𝑖∈𝐼 𝑎𝑖𝑠𝑖 ∈ 𝕊Λr and integers 𝑑 ∈ ℕ, we write

(∑
𝑖∈𝐼

𝑎𝑖𝑠𝑖)
<𝑑

≔ ∑
𝑖∈𝐼

depth(𝑠𝑖)<𝑑

𝑎𝑖𝑠𝑖.

Observe that for all 𝑀 ∈ Λ001
⊥ and 𝑑 ∈ ℕ, (𝒯(𝑀))<𝑑 = 𝒯<𝑑(𝑀).

DEF IN IT ION 5.23. A reduction⟶⌢ ∞
r ⊂ 𝕊(!)Λr × 𝕊(!)Λr of infinitary uniform

resource reduction is defined by saying that 𝐔 ⟶⌢ ∞
r 𝐕 whenever there is a se-

quence (𝐔𝑑)𝑑∈ℕ such that

𝐔0 = 𝐔 ∀𝑑 ∈ ℕ, 𝐔𝑑 ⟶⌢ ∗
r⩾𝑑 𝐔𝑑+1 ∀𝑑 ∈ ℕ, (𝐔𝑑)<𝑑 = (𝐕)<𝑑 .

By design,⟶⌢ ∞
r simulates the stratification of an infinitary β-reduction, hence

the following property.

LEMMA 5.24 (simulation). For all 𝑀,𝑁 ∈ Λ001
⊥ , if 𝑀 ⟶001

𝛽 𝑁 then
𝒯(𝑀)⟶⌢ ∞

r 𝒯(𝑁).

PROOF. We need to define a sequence (𝐔𝑑)𝑑∈ℕ as in definition 5.23. By the
stratification theorem 2.25, we obtain a sequence (𝑀𝑑)𝑑∈ℕ and we can define
𝐔𝑑 ≔ 𝒯(𝑀𝑑). The conclusion follows by lemmas 4.16 and 4.50. □

As announced, this simulation enjoys a converse conservativity property. We
first state it for finite reductions, then for infinitary ones.

THEOREM 5.25 (conservativity). For all 𝑀,𝑁 ∈ Λ001
⊥ , if 𝒯(𝑀) ⟶⌢ ∞

r 𝒯(𝑁)
then𝑀 ⟶∞

𝛽⩾𝑑 𝑁.

The proof relies on the following lemmas.

LEMMA 5.26. For all 𝑀,𝑁 ∈ Λ001
⊥ and 𝑑 ∈ ℕ, if 𝒯(𝑀) ⟶⌢ r⩾𝑑 𝒯(𝑁) then

𝑀 ⟶𝛽 𝑁.
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PROOF. By an immediate induction on the reduction (𝑠)𝑠⊑𝒯𝑀 −⇀⌢ r⩾𝑑
(𝑇𝑠)𝑠⊑𝒯𝑀 induced by 𝒯(𝑀)⟶⌢ r⩾𝑑 𝒯(𝑁). □

LEMMA 5.27. For all𝑀 ∈ Λ001
⊥ and 𝐒 ∈ 𝕊Λr , if 𝒯(𝑀)⟶⌢ r 𝐒 then there exists

an𝑀′ ∈ Λ001
⊥ such that 𝐒 = 𝒯(𝑀′).

PROOF. By an immediate induction on the reduction (𝑠)𝑠⊑𝒯𝑀 −⇀⌢ r⩾𝑑
(𝑇𝑠)𝑠⊑𝒯𝑀 induced by 𝒯(𝑀)⟶⌢ r⩾𝑑 𝐒, using lemma 4.42. □

LEMMA 5.28. For all 𝐒,𝐓 ∈ 𝕊Λr , if 𝐒! ⟶⌢ r 𝐓! then 𝐒⟶⌢ r 𝐓.

PROOF. Suppose that 𝐒! ⟶⌢ r 𝐓!. Thanks to lemma 4.46, there is a derivation

(𝑠𝑖) 𝑛∈ℕ
𝑠1,…,𝑠𝑛∈|𝐒|

1⩽𝑖⩽𝑛

−⇀⌢ r (𝑇𝑠𝑖 ) 𝑛∈ℕ
𝑠1,…,𝑠𝑛∈|𝐒|

1⩽𝑖⩽𝑛

([𝑠1,… , 𝑠𝑛]) 𝑛∈ℕ
𝑠1,…,𝑠𝑛∈|𝐒|

−⇀⌢ r ([𝑇𝑠1 ,… ,𝑇𝑠𝑛]) 𝑛∈ℕ
𝑠1,…,𝑠𝑛∈|𝐒|

∑
𝑛∈ℕ

∑
𝑠1,…,𝑠𝑛∈|𝐒|

∏𝑛
𝑖=1 𝑎𝑠𝑖
𝑛!

⋅ [𝑠1,… , 𝑠𝑛]
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝐒!

⟶⌢ r ∑
𝑛∈ℕ

∑
𝑠1,…,𝑠𝑛∈|𝐒|

∏𝑛
𝑖=1 𝑎𝑠𝑖
𝑛!

⋅ [𝑇𝑠1 ,… ,𝑇𝑠𝑛]
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝐓!

with 𝐒 = ∑𝑠∈|𝐒| 𝑎𝑠 ⋅ 𝑠. By lemma 4.46 again, the hypothesis of the derivation is
equivalent to (𝑠)𝑠∈|𝐒| −⇀⌢ r (𝑇𝑠)𝑠∈|𝐒|, hence we can derive:

(𝑠)𝑠∈|𝐒| −⇀⌢ r (𝑇𝑠)𝑠∈|𝐒|
𝐒⟶⌢ r ∑𝑠∈|𝐒| 𝑎𝑠 ⋅ 𝑇𝑠.

To see that 𝐓 = ∑𝑠∈|𝐒| 𝑎𝑠 ⋅ 𝑇𝑠, observe that

the coefficient of 𝑡 in 𝐓
= the coefficient of [𝑡] in 𝐓!

= the coefficient of [𝑡] in ∑
𝑛∈ℕ

∑
𝑠1,…,𝑠𝑛∈|𝐒|

∏𝑛
𝑖=1 𝑎𝑠𝑖
𝑛!

⋅ [𝑇𝑠1 ,… ,𝑇𝑠𝑛]

= ∑
𝑠∈|𝐒|

𝑎𝑠 × the coefficient of 𝑡 in 𝑇𝑠

= the coefficient of 𝑡 in ∑
𝑠∈|𝐒|

𝑎𝑠 ⋅ 𝑇𝑠,

which concludes the proof. □

PROOF OF THEOREM 5.25. Suppose that there is a sequence (𝐒𝑑)𝑑∈ℕ such
that

𝐒0 = 𝒯(𝑀) ∀𝑑 ∈ ℕ, 𝐒𝑑 ⟶⌢ ∗
r⩾𝑑 𝐒𝑑+1 ∀𝑑 ∈ ℕ, (𝐒𝑑)<𝑑 = (𝒯(𝑁))<𝑑 .
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By lemma 5.27 there is a sequence of terms (𝑀𝑑)𝑑∈ℕ such that ∀𝑑 ∈ ℕ, 𝐒𝑑 =
𝒯(𝑀𝑑). We can take 𝑀0 = 𝑀, and our hypotheses yield

∀𝑑 ∈ ℕ, 𝒯(𝑀𝑑)⟶⌢ ∗
r⩾𝑑 𝒯(𝑀𝑑+1) (5.25)

∀𝑑 ∈ ℕ, 𝒯<𝑑(𝑀𝑑) = 𝒯<𝑑(𝑁). (5.26)

For any sequence (𝑀𝑑)𝑑∈ℕ such that properties (5.25) and (5.26) hold, we build
a reduction 𝑀0 ⟶001

𝛽 𝑁 by nested induction and coinduction on 𝑁.

• Case 𝑁 = 𝑥. 𝒯<1(𝑀1) = 𝒯<1(𝑁) = 𝑥 hence also 𝒯(𝑀1) = 𝑥. As a conse-
quence, 𝒯(𝑀0) ⟶⌢ r 𝑥 so by lemma 5.26 𝑀0 ⟶∗

𝛽 𝑥, which leads to the
conclusion.

• Case 𝑁 = 𝜆𝑥.𝑃′. For all 𝑑 ⩾ 1,

𝒯<𝑑(𝑀𝑑) = 𝒯<𝑑(𝑁) = 𝜆𝑥.𝒯<𝑑(𝑃′)

hence there is a term 𝑃𝑑 ∈ Λ001
⊥ such that 𝑀𝑑 = 𝜆𝑥.𝑃𝑑. We also define

𝑃0 ≔ 𝑃1, so that 𝑀0 ⟶∗
𝛽 𝜆𝑥.𝑃0 by property (5.25) and lemma 5.26.

The sequence (𝑃𝑑)𝑑∈ℕ satisfies properties (5.25) and (5.26) wrt. 𝑃′, hence
by induction we can build a reduction 𝑃0 ⟶001

𝛽 𝑃′.

We conclude with the rules (𝜆001𝛽 ) and (▹0) from definition 2.16.

• Case 𝑁 = (𝑃′)𝑄′. For all 𝑑 ⩾ 1,

𝒯<𝑑(𝑀𝑑) = 𝒯<𝑑(𝑁) = (𝒯<𝑑(𝑃′)) 𝒯<𝑑−1(𝑄′)!

hence there are terms 𝑃𝑑,𝑄𝑑 ∈ Λ001
⊥ such that 𝑀𝑑 = (𝑃𝑑)𝑄𝑑. We also

define 𝑃0 ≔ 𝑃1, so that𝑀0 ⟶∗
𝛽 (𝑃0)𝑄1 by property (5.25) and lemma 5.26.

By property (5.25), for all 𝑑 ⩾ 1 there are reductions

𝒯(𝑃𝑑)⟶⌢ ∗
r⩾𝑑 𝒯(𝑃𝑑+1) and 𝒯(𝑄𝑑)! ⟶⌢ ∗

r⩾𝑑−1 𝒯(𝑄𝑑+1)!.

From the first reduction we deduce that the sequence (𝑃𝑑)𝑑∈ℕ satisfies
properties (5.25) and (5.26) wrt. 𝑃′, hence by induction we can build a
reduction 𝑃0 ⟶001

𝛽 𝑃′. From the second reduction, by lemma 5.28 we
deduce that the sequence (𝑄𝑑+1)𝑑∈ℕ satisfies properties (5.25) and (5.26)
wrt. 𝑄′, hence by coinduction we can build a reduction 𝑄1 ⟶001

𝛽 𝑄′.

FInally, we can conclude with the rules (@001
𝛽 ), (▹0) and (▹1) from defi-

nition 2.16. □

We did not take⊥-reductions into account. This is not innocuous, since it is not
true that𝒯(𝑀)⟶⌢ ∞

r 𝒯(𝑁)whenever𝑀 ⟶⊥ 𝑁. Indeed, even though each⊥-
reduction step can be simulated by an infinite sequence of (uniform) reduction
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steps on the Taylor expansion thanks to theorem 4.20, nothing ensures that this
sequence is progressing, i.e. that the reductions occur at increasing depths.
However, this issue can be solved using the reduction ⟶⌢ r⊥ from defini-
tion 4.51. All the proofs of this section can be done using this reduction
(together with an infinitary counterpart ⟶⌢ ∞

r⊥), without any difficulty. As a
consequence, we obtain the following results:

• (𝕊Λr ,⟶⌢ ∞
r ) is a conservative extension of (Λ001,⟶001

𝛽 ),

• (𝕊Λr ,⟶⌢ ∞
r⊥) is a conservative extension of (Λ001

⊥ ,⟶001
𝛽⊥ ).

Notice that we could also have used⟶⌢ ∞
r and⟶⌢ ∞

r⊥ to present the proof of the
simulation theorem 4.56. Given lemma 5.24, what remains to be proved is that
𝐒⟶⌢ ∞

r⊥ 𝐓 implies 𝐒 −↠r 𝐓. The proof of this second part is similar to what we
did in chapter 4.

D



Chapter 6

A Taylor approximation for the
101-infinitary λ-calculus... and more?

Nou leis an pré lei bras à l’engranagi,
Lei charreiras Liounes é Parisien,
Quan si soun di : qu pito fa gavagi ;
Foou enventa dé centenaou d’engien.

Victor Gelu

This chapter is about extending the Taylor approximation to other infinitary
λ-calculi. Indeed, remember from section 2.2.3 that one can consider various1
sets of meaningless terms 𝒰, giving rise to according ⊥𝒰-reductions and nor-
mal forms. Therefore one can legitimately wonder whether all the work done
in chapters 4 and 5 may be transposed to any other of these settings.
We start with the easiest extension of our work, which consists in replacing
hnf’s with whnf’s, Λ001

⊥ with Λ101
⊥ and Böhm trees with Lévy-Longo trees.

Since the the latter trees and the associated operational approximation theory
are constructed in the very same way as the former ones2, it is quite expected
that an according Taylor expansion can be defined. This is done in the first two
sections of this chapter, that can be seen as ‘101-forks’ of chapters 3 and 4.
Finally, for all the other meaningless sets 𝒰 an infinitary β⊥𝒰-reductions, we
come up with an observation that prevents the existence of an appropriate and
well-behaved Taylor approximation. This disappointing development is the
purpose of section 6.3.

6.1 The lazy resource λ-calculus

An important observation is that the head approximants of the ‘classical’ ap-
proximation theory of the λ-calculus can be retrieved as particular resource
approximants, viz affine and normal resource λ-terms. A resource term is said

1 There are even uncountably many different such meaningless sets, as proved by Severi and
de Vries (2005b).

2 As a matter of fact some standard proofs of properties of the head approximation, e.g. in
Barendregt (1984, §. 14.3), had first been published by Lévy (1975) in the setting of the weak
head approximation.
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to be affine whenever it contains only resource bags of size 0 or 1, i.e. the set
Λaff
r of affine resource λ-terms is inductively defined by

Λaff
r ∋ 𝑠, 𝑡,… ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) [𝑡] | (𝑠) 1.

Then there is a bijection

𝜙 ∶ {𝑀 ∈ Λ⊥ |𝑀 ≠ ⊥ and 𝑀 is in ⊥001-n.f. } → Λaff
r

𝑥 ↦ 𝑥
𝜆𝑥.𝑃 ↦ 𝜆𝑥.𝜙(𝑃)
(𝑃)𝑄 ↦ (𝜙(𝑃)) [𝜙(𝑄)]
(𝑃)⊥ ↦ (𝜙(𝑃)) 1

which restricts to a bijection between 𝒜 − {⊥} and the set of affine resource
λ-terms in normal form3. This embedding has been fruitfully explored by Bar-
barossa and Manzonetto (2020), who demonstrate how the ‘new’ multilinear
approximation theory subsumes the ‘old’ continuous one.
This indicates how we should modify the resource λ-calculus in order to build
a lazy Taylor approximation, i.e. a Taylor approximation related to weak head
reduction and Lévy-Longo trees4. If we try to extend 𝜙 to the set of all 𝑀 ∈ Λ⊥
such that 𝑀 ≠ ⊥ and 𝑀 is in ⊥101-normal form, there is one more case to
consider, viz the ⊥001-redex 𝜆𝑥.⊥ that is in ⊥101-normal form. This is why we
introduce a new constant 𝟘 meant as a counterpart of 𝜆𝑥.⊥ in the resource
world5.

DEF IN IT ION 6.1. The nominal set Λℓr of lazy resource λ-terms is defined by

Λℓr ≔ µ𝑋.𝒱 + ?[𝒱]𝑋 + 𝑋 × !𝑋,

where ?𝑋 ≔ 𝑋 + 1. Explicitely, it is inductively defined as follows:

Λℓr ∋ 𝑠, 𝑡,… ≔ 𝑥 | 𝟘 | 𝜆𝑥.𝑠 | (𝑠) ̄𝑡 (𝑥 ∈ 𝒱, ̄𝑡 ∈ !Λℓr)

There is no need to modify the definition of multilinear substitution. We just
say that for all 𝑥 ∈ 𝒱, deg𝑥(𝟘) = 0 so that 𝟘⟨1/𝑥⟩ = 𝟘 and 𝟘⟨ ̄𝑡/𝑥⟩ = 0 for all

3 Notice that ⊥ does not correspond to any resource approximant. This is crucial, because
the whole Taylor approximation relies on the fact that 𝒯(⊥) = 0. In particular it allows
for the characterisation of head-normalising terms by the empty normal form of their Taylor
expansion (theorem 4.20), and thus for the simulation of ⟶001

𝛽⊥ (corollary 4.23) and for the
commutation theorem 4.26.

4 We call it ‘lazy Taylor expansion’ since normalisation in Λ101
⊥ corresponds to the lazy eval-

uation of programs, as highlighted by Abramsky (1990) and Ong (1988). As often in our
rapidly-developped research field, similar concepts bear different namings for historical rea-
sons. We believe that unifying the prefixes ‘lazy’, ‘weak’ and ‘Lévy-Longo’ (by decreasing
order of meaningfulness) would result in a clarification, so we named new related objects
as ‘lazy thingamabob’ as soon as we could — but we decided to keep the already standard
namings untouched, as unsatisfactory as it is in our views.

5 For the reason explained in footnote 3, we do not want to introduce a counterpart of ⊥ itself.
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non-empty ̄𝑡 ∈ !Λℓr.
What we need to do is extend the resource reduction to handle the case where
an undefined abstraction 𝟘 is given an argument. Such an application should
not yield any result, hence the following extension of definition 3.26, where
the new rule (axℓ) can be seen as a transcription of the rule (@l⊥) from defini-
tion 2.14 into the resource λ-calculus.

DEF IN IT ION 6.2. The relation −⇀ℓr ⊂ (!)Λℓr × ℕ((!)Λℓr) is defined as the
congruent closure of the reduction defined by the rules

(axr)(𝜆𝑥.𝑠) ̄𝑡 −⇀ℓr 𝑠⟨ ̄𝑡/𝑥⟩
(axℓ)(𝟘) ̄𝑡 −⇀ℓr 0

The relation⟶ℓr ⊂ ℕ((!)Λℓr)×ℕ((!)Λℓr) of lazy resource β-reduction is the lifting
to finite sums of −⇀ℓr.

Let us check that we did not lose any of the good properties of⟶r by extending
it.

LEMMA 6.3 (strong confluence). ⟶?
ℓr has the diamond property.

PROOF. We show that the requirements of lemma 3.11 are fulfilled. Take
𝑠 ∈ Λℓr and 𝑆1, 𝑆2 ∈ ℕ(Λℓr) such that 𝑠 −⇀ℓr 𝑆1 and 𝑠 −⇀ℓr 𝑆2. We proceed
by induction on these reductions. There are two new cases:

• If 𝑠 = (𝟘) ̄𝑡 and 𝑆1 and 𝑆2 result from the rule (axℓ), then 𝑆1 = 𝑆2 = 0
and the result is immediate.

• If 𝑠 = (𝟘) ̄𝑡 and only 𝑆1 results from the rule (axℓ), then 𝑆1 = 0 and
𝑆2 = (𝟘) ̄𝑇 ′ with ̄𝑡 −⇀ℓr ̄𝑇 ′. Then the result is immediate again, since
𝑆2 −⇀ℓr 0.

The remaining cases are as in the proof of theorem 3.29. □

We treat 𝟘 as a constant, hence we set size(𝟘) ≔ 1.

LEMMA 6.4. For all 𝑢 ∈ (!)Λℓr and 𝑈 ′ ∈ ℕ((!)Λℓr) such that 𝑢 −⇀ℓr 𝑈 ′,
size(𝑈 ′) < size(𝑢).

PROOF. As in lemma 3.34, with an additional immediate case. □

As a consequence, all the results of section 3.3 hold for ⟶ℓr. In particular we
obtain the following counterparts of theorem 3.41 and corollary 3.48.

COROLLARY 6.5. ⟶ℓr is weakly normalising.

COROLLARY 6.6. ⟶ℓr is strongly normalising in the quantitative setting.

Finally, we can lift the lazy resource reduction to infinite sums.
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NOTAT ION 6.7. We denote by −↠ℓr ⊂ 𝕊(!)Λℓr × 𝕊(!)Λℓr the double-lifting of
−⇀ℓr.

All the developments of sections 3.2 and 3.3 regarding −↠r remain valid for
−↠ℓr. The proofs are straightforward. Thanks to lemma 6.3 and corollary 6.5
we can also introduce the following notations.

NOTAT ION 6.8. For all𝑈 ∈ ℕ((!)Λℓr), its unique normal form through⟶ℓr is
denoted by nfℓr(𝑈). For all𝐔 ∈ 𝕊(!)Λℓr , its pointwise normal form is denoted by
ñfℓr(𝐔).

6.2 A lazy Taylor approximation

In this section, we introduce a lazy Taylor expansion taking any 𝑀 ∈ Λ101
⊥

to a sum ℓ𝒯(𝑀) of lazy resource terms, and we show how the work done in
chapter 4 can be extended to this setting.

6.2.1 The lazy Taylor expansion

We do not reproduce the whole development of section 4.1 and the various
alternative definitions provided there. Instead, we take an extended version
of corollary 4.6 as our definition of ℓ𝒯. The other definitions can be easily
retrieved.

DEF IN IT ION 6.9. The relation⊑ℓ𝒯 ⊂ Λℓr×Λ101
⊥ of lazy Taylor approximation

is defined by induction by the rules of definition 4.4 together with the rule

𝟘 ⊑ℓ𝒯 𝜆𝑥.𝑃.

The lazy Taylor expansion of a 101-infinitary λ⊥-term𝑀 ∈ Λ101
⊥ is the sum

ℓ𝒯(𝑀) ≔ ∑
𝑠⊑ℓ𝒯𝑀

ℓ ̄𝒯(𝑠) ⋅ 𝑠,

where the coefficients ℓ ̄𝒯(𝑠) are defined by induction by

ℓ ̄𝒯(𝑥) ≔ 1
ℓ ̄𝒯(𝟘) ≔ 1

ℓ ̄𝒯(𝜆𝑥.𝑠) ≔ ℓ ̄𝒯(𝑠)

ℓ ̄𝒯((𝑠) ̄𝑡) ≔ ℓ ̄𝒯(𝑠) × ℓ ̄𝒯!( ̄𝑡)
(#𝑡)!

ℓ ̄𝒯!(𝑡𝑘11 ⋅ … ⋅ 𝑡𝑘𝑚𝑚 ) ≔
(∑𝑚

𝑖=1 𝑘𝑖)!
∏𝑚

𝑖=1 𝑘𝑖!
×

𝑚
∏
𝑖=1

ℓ ̄𝒯(𝑡𝑖)𝑘𝑖

for pairwise distinct 𝑡1,… , 𝑡𝑚 ∈ Λℓr.
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The typical example of a term in Λ101 that is not in Λ001 is the ogre λ-term,
O = 𝜆𝑦1.𝜆𝑦2.𝜆𝑦3.… . Its lazy Taylor expansion is

ℓ𝒯(O) = ∑
𝑛∈ℕ

𝜆𝑦1.… 𝜆𝑦𝑛.𝟘.

Recall that there is a reduction YK ⟶101
𝛽 O. To illustrate the simulation prop-

erty that we want to prove, let us show which terms in ℓ𝒯(YK) reduce to the first
three terms in ℓ𝒯(O).
To lighten the notations, we also denote by K the approximant 𝜆𝑥.𝜆𝑦.𝑥 ∈ Λℓr.
Another approximant of K, viz 𝜆𝑥.𝟘, plays a crucial role since it is where the
final 𝟘 appears. The reductions are as follows:

(𝜆𝑥. (𝜆𝑥.𝟘) 1) 1
⟶ℓr 𝜆𝑥. (𝜆𝑥.𝟘) 1
⟶ℓr 𝟘,

(𝜆𝑥. (K) [(𝑥) 1]) [𝜆𝑥. (𝜆𝑥.𝟘) 1]
⟶ℓr (K) [(𝜆𝑥. (𝜆𝑥.𝟘) 1) 1]
⟶ℓr 𝜆𝑦. (𝜆𝑥. (𝜆𝑥.𝟘) 1) 1
⟶2

ℓr 𝜆𝑦.𝟘,

(𝜆𝑥. (K) [(𝑥) [𝑥]]) [𝜆𝑥. (K) [(𝑥) 1], 𝜆𝑥. (𝜆𝑥.𝟘) 1]
⟶ℓr (K) [(𝜆𝑥. (K) [(𝑥) 1]) [𝜆𝑥. (𝜆𝑥.𝟘) 1]]

+ (K) [(𝜆𝑥. (𝜆𝑥.𝟘) 1) [𝜆𝑥. (K) [(𝑥) 1]]]
⟶ℓr 𝜆𝑦1. (𝜆𝑥. (K) [(𝑥) 1]) [𝜆𝑥. (𝜆𝑥.𝟘) 1]

+ 𝜆𝑦1. (𝜆𝑥. (𝜆𝑥.𝟘) 1) [𝜆𝑥. (K) [(𝑥) 1]]
⟶4

ℓr 𝜆𝑦1.𝜆𝑦2.𝟘 + 0,

where each reduction is finished using the previous ones.

6.2.2 Qualitative simulation and commutation

In this section we work in the qualitative setting, i.e. with 𝕊 = 𝟚 and ℓ ̄𝒯(𝑢) = 1
for all 𝑢 ∈ (!)Λℓr, as described thoroughly in section 3.3.2.
The main result is again a simulation theorem, extending theorem 4.14. It
expresses the fact that the reduction system (𝟚Λℓr ,−↠ℓr) is an extension of
(Λ101

⊥ ,⟶101
𝛽 ) via the map ℓ𝒯.

THEOREM 6.10 (simulation of the 101-infinitary β-reduction).
For all𝑀,𝑁 ∈ Λ∞

⊥ 101, if𝑀 ⟶101
𝛽 𝑁 then ℓ𝒯(𝑀) −↠ℓr ℓ𝒯(𝑁).
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PROOF. We follow the steps of the proof of theorem 4.14, and we only un-
derline the parts where there is something new to prove. The first step is the
simulation of the substitution, i.e. the fact that for all 𝑀,𝑁 ∈ Λ101

⊥ ,

ℓ𝒯(𝑀[𝑁/𝑥]) = ℓ𝒯(𝑀)⟨ℓ𝒯(𝑁)!/𝑥⟩.

The proof goes exactly as for lemma 4.11, by treating 𝟘 as a (fresh) variable.
The second step is the simulation of a single β-reduction, i.e. the fact that for
all 𝑀,𝑁 ∈ Λ101

⊥ ,

if 𝑀 ⟶𝛽 𝑁 then ℓ𝒯(𝑀) −↠ℓr ℓ𝒯(𝑁).

The proof is by induction on the reduction 𝑀 ⟶𝛽 𝑁. Two cases change from
lemma 4.12.

• Case (ax𝛽), 𝑀 = (𝜆𝑥.𝑃)𝑄 and 𝑁 = 𝑃[𝑄/𝑥], then

ℓ𝒯(𝑀) = ∑
̄𝑡⊑ℓ𝒯𝑄

(𝟘) ̄𝑡 + ∑
𝑠⊑ℓ𝒯𝑃

∑
̄𝑡⊑ℓ𝒯𝑄

(𝑠) ̄𝑡

−↠ℓr 0 + ∑
𝑠⊑ℓ𝒯𝑃

∑
̄𝑡⊑ℓ𝒯𝑄

𝑠⟨ ̄𝑡/𝑥⟩

= ℓ𝒯(𝑀[𝑁/𝑥])

by the simulation of the substitution.

• Case (λ𝛽), 𝑀 = 𝜆𝑥.𝑃 and 𝑁 = 𝜆𝑥.𝑃′ with 𝑃 ⟶𝛽 𝑃′. By induction,
ℓ𝒯(𝑃′) = ∑𝑠⊑ℓ𝒯𝑃

𝑆′𝑠 such that 𝑠⟶∗
ℓr 𝑆′𝑠 for all 𝑠 ⊑𝒯 𝑃. Then

ℓ𝒯(𝑀) = 𝟘 + ∑
𝑠⊑ℓ𝒯𝑃

𝜆𝑥.𝑠 and ℓ𝒯(𝑁) = 𝟘 + ∑
𝑠⊑ℓ𝒯𝑃

𝜆𝑥.𝑆′𝑠,

with 𝟘⟶∗
ℓr 𝟘 and 𝜆𝑥.𝑠⟶∗

ℓr 𝜆𝑥.𝑆′𝑠. The result follows.

The two remaining cases are unchanged.

The remainder of the proof relies on the following modified notion of depth for
lazy resource terms:

depthℓ(𝑥) ≔ 0
depthℓ(𝟘) ≔ 1

depthℓ(𝜆𝑥.𝑠) ≔ 1 + depthℓ(𝑠)
depthℓ((𝑠) ̄𝑡) ≔ max (depthℓ(𝑠), depthℓ( ̄𝑡))

depthℓ([𝑡1,… , 𝑡𝑛]) ≔ 1 + max
1⩽𝑖⩽𝑛

depthℓ(𝑡𝑖).

The difference with definition 3.53 is that this lazy depth increases when one
crosses an abstraction. As in lemma 3.54 we can show that depthℓ(𝑆) ⩽ size(𝑆)
for all 𝑆 ∈ 𝟚(Λℓr), by an immediate induction.
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The reduction simulating 𝑀 ⟶101
𝛽 𝑁 is built exactly as in the proof of theo-

rem 4.14: we apply the stratification theorem (which is also valid for ⟶101
𝛽 ),

simulate its finite prefixes by reductions−↠ℓr⩾𝑑 defined in an appropriate way,
and conclude by reasoning on the lazy depth of the approximants thanks to the
property stated above. □

As we did in section 4.3, we can prove a whole bestiary of consequences of this
simulation theorem. We only state the most important ones, omiting most of
the proofs since they are exactly the same as in the 001 case.

THEOREM 6.1 1 (characterisation of the weak head normalising terms). For all
terms𝑀 ∈ Λ101, the following propositions are equivalent:

1. there exists 𝑁 ∈ Λ101 in whnf such that𝑀 ⟶∗
𝑤ℎ 𝑁,

2. there exists 𝑁 ∈ Λ101 in whnf such that𝑀 ⟶∗
𝛽 𝑁,

3. there exists 𝑁 ∈ Λ101 in whnf such that𝑀 ⟶101
𝛽 𝑁,

4. there exists 𝑠 ∈ ℓ𝒯(𝑀) such that nfℓr(𝑠) ≠ 0.

PROOF. (1) ⇒ (2) ⇒ (3) is immediate, and (3) ⇒ (4) is an easy consequence
of theorem 6.10; the key case is (4) ⇒ (1). We only sketch the proof, that is
identical to the one of theorem 4.20.
Suppose that there exists 𝑠 ∈ ℓ𝒯(𝑀) such that nfℓr(𝑠) ≠ 0. As we did for
head reduction, we first need to prove that weak head reduction commutes
with Taylor expansion (a ‘lazy’ lemma 4.18) and terminates in the lazy resource
calculus (a ‘lazy’ lemma 4.19). Let 𝑘 be length of the full weak head reduction of
ℓ𝒯(𝑀). By the confluence lemma 6.3, there is an 𝑁 ∈ Λ101

⊥ such that 𝑀 ⟶∗
𝑤ℎ

𝑁 and nfℓr(𝑠) ⊂ ℓ𝒯(𝑁).
As a consequence, ℓ𝒯(𝑁) contains a normal lazy resource term. This is where
the only difference with theorem 4.20 occurs: if a lazy resource term is in nor-
mal form, then by induction we can show that either it is in hnf (which was
the only possible case inΛr) or it has the shape 𝜆𝑥1.… 𝜆𝑥𝑛.𝟘. In both cases, the
approximated λ-term 𝑁 is in whnf. □

A first corollary of theorems 6.10 and 6.11 is that the simulation property can
be extended to the β⊥-reduction.

COROLLARY 6.12 (simulation of the 101-infinitary β⊥-reduction).
For all𝑀,𝑁 ∈ Λ101

⊥ , if𝑀 ⟶101
𝛽⊥ 𝑁 then ℓ𝒯(𝑀) −↠ℓr ℓ𝒯(𝑁).

As a consequence, Ehrhard and Regnier’s simulation theorem can be given a
counterpart for Lévy-Longo trees.

COROLLARY 6.13 (commutation). For all𝑀 ∈ Λ101
⊥ ,

nfℓr(ℓ𝒯(𝑀)) = ℓ𝒯(LLT(𝑀)).
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Finally, we obtain proofs of theorem 2.22 and corollary 2.36 in their version for
Λ101
⊥ . Recall that these important theorems were the main results in Kennaway,

Klop, et al. (1997).

COROLLARY 6.14 (uniqueness of normal forms). For any term 𝑀 ∈ Λ101
⊥ ,

LLT(𝑀) is the unique normal form of𝑀 through⟶101
𝛽⊥ .

Furthermore, if 𝑀 ∈ Λ101 and LLT(𝑀) ∈ Λ101, then the latter is the unique
normal form of𝑀 through⟶101

𝛽 .

COROLLARY 6.15 (confluence). ⟶101
𝛽⊥ is confluent.

6.2.3 Outline of a quantitative treatment

Let us also sketch how section 4.4 can be adapted to design a quantitative lazy
Taylor approximation of the 101-infinitary λ-calculus.
First, the coherence relation must be defined using three new rules, in addition
to those presented in definition 4.36:

𝟘 ⌢⌣ 𝟘 𝟘 ⌢⌣ 𝜆𝑥.𝑠 𝜆𝑥.𝑠 ⌢⌣ 𝟘

This is needed to ensure the uniformity of the Taylor expansions, that can be
described as the maximal cliques for (Λℓr,⌢⌣).
For all what regards the multilinear substitution and its simulation by the lazy
Taylor expansion, the proofs are exactly the same as in section 4.4. Indeed, as
suggested above 𝟘 behaves like a constant (i.e. like any fresh variable) wrt. the
substitution.
Then we need to modify the set of rules defining the uniform lifting of the re-
source reduction (definition 4.43). The two rules involving abstractions need
to take the new abstraction 𝟘 into account:

∀𝑖, 𝑗 ∈ 𝐼, 𝑠𝑖 ⌢⌣ 𝑠𝑗 ∀𝑖, 𝑗 ∈ 𝐼 ∪ 𝐼′, ̄𝑡𝑖 ⌢⌣ ̄𝑡𝑗
((𝜆𝑥.𝑠𝑖) ̄𝑡𝑖)𝑖∈𝐼 ⊔ ((𝟘) ̄𝑡𝑖)𝑖∈𝐼′ −⇀⌢ ℓr (𝑠𝑖⟨ ̄𝑡𝑖/𝑥⟩)𝑖∈𝐼 ⊔ (0)𝑖∈𝐼′

(𝑠𝑖)𝑖∈𝐼 −⇀⌢ ℓr (𝑆′𝑖)𝑖∈𝐼
(𝜆𝑥.𝑠𝑖)𝑖∈𝐼 ⊔ (𝟘)𝑖∈𝐼′ −⇀⌢ ℓr (𝜆𝑥.𝑆′𝑖)𝑖∈𝐼 ⊔ (𝟘)𝑖∈𝐼′

where ⊔ denotes the disjoint union of families.
The remainder of the proof follows exactly the same path as in section 4.4. In
particular, the crucial lemma 4.48 still holds:

if (𝑠𝑖)𝑖∈𝐼 −⇀⌢ ℓr (𝑇𝑖)𝑖∈𝐼 and |𝑇𝑖| ∩ ||𝑇𝑗 || ≠ ∅, then 𝑠𝑖 = 𝑠𝑗 .

Indeed, consider the two new rules above: the first one makes the lazy ab-
straction 𝟘 vanish, the second cannot cause any collision by uniformity (only
(𝜆𝑥.𝟘) 1 and 𝟘 can produce 𝟘, but a uniform family cannot contain both terms).
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6.3 The continuity of normalisation, or why this thesis
ends here

In this section, we use the Taylor approximations for Λ001
⊥ and Λ101

⊥ to deduce
order-theoretic properties of the corresponding calculi. This leads to a negative
result for other infinitary λ-calculi.
Before we start, let us recall some material from section 2.4 and introduce a
couple of notations.

• Take 𝑎, 𝑏, 𝑐 ∈ 𝟚, then in definition 2.37 we defined a partial order ⊑𝑎𝑏𝑐
on Λ⊥ by induction.

• Lemma 2.38 then states that there is a bijection betwen Λ𝑎𝑏𝑐
⊥ and the set

Idl𝑎𝑏𝑐Λ∞
⊥ of all ideals of (Λ⊥,⊑𝑎𝑏𝑐). We will denote by 𝑀↡ the ideal of

Λ⊥ corresponding to any 𝑀 ∈ Λ𝑎𝑏𝑐
⊥ .

• The inclusion order on Idl𝑎𝑏𝑐Λ∞
⊥ induces an order on Λ𝑎𝑏𝑐

⊥ , which we
also denote by ⊑𝑎𝑏𝑐 since it does coincide with ⊑𝑎𝑏𝑐 on finite terms. Ex-
plicitely, for all 𝑀,𝑁 ∈ Λ𝑎𝑏𝑐

⊥ ,

𝑀 ⊑𝑎𝑏𝑐 𝑁 means that 𝑀↡ ⊆ 𝑁↡.

In particular, for 𝑃 ∈ Λ⊥ and 𝑁 ∈ Λ𝑎𝑏𝑐
⊥ we can see that 𝑃↡ = 𝑃↓, hence

𝑃 ⊑𝑎𝑏𝑐 𝑁 just means that 𝑃 ∈ 𝑁↡. (Notice that we will denote by 𝑀,𝑁
the infinitary terms, and keep the letters 𝑃,𝑄 for finite λ⊥-terms.)

Using this, we introduce the following notation and state a crucial observation.

NOTAT ION 6.16. Given a set 𝑋 ⊆ Λ𝑎𝑏𝑐
⊥ , we write

𝑋↡ ≔ { 𝑃 ∈ Λ⊥ | ∃𝑁 ∈ 𝑋, 𝑃 ⊑𝑎𝑏𝑐 𝑁 }
= { 𝑃 ∈ Λ⊥ | ∃𝑁 ∈ 𝑋, 𝑃 ∈ 𝑁↡ } .

In particular𝑀↡ = {𝑀}↡ for any𝑀 ∈ Λ𝑎𝑏𝑐
⊥ .

OBSERVAT ION 6.17. For all directed set 𝐷 ⊂ Λ𝑎𝑏𝑐
⊥ , 𝐷↡ = (⨆𝐷)↡.

Now, let us link this order-theoretic material to the Taylor approximations. The
following lemma is the key ingredient of the following theorem.

LEMMA 6.18. For any𝑀 ∈ Λ001
⊥ ,

𝒯(𝑀) = ⋃
𝑃∈𝑀↡

𝒯(𝑃).

As a consequence, for any set 𝑋 ⊆ Λ001
⊥ ,

⋃
𝑀∈𝑋

𝒯(𝑀) = ⋃
𝑃∈𝑋↡

𝒯(𝑃).
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The same properties hold for (Λ101
⊥ ,⊑101) and ℓ𝒯.

PROOF. By double inclusion, each direction being an easy induction on the
elements 𝑠 of the Taylor expansions. The consequence is immediate. □

Recall (e.g. from Barendregt 1984, § 1.2) that a map 𝑓 between two dcpo’s
is continuous wrt. the Scott topologies (or Scott-continuous) whenever, for all
directed set 𝐷, 𝑓(⨆𝐷) = ⨆𝑓(𝐷). We obtain the following continuity theorem.

THEOREM 6.19 (continuity of the Taylor expansions). For all directed subset 𝐷
of (Λ001

⊥ ,⊑001),

𝒯 ( ⨆
𝑀∈𝐷

𝑀) = ⋃
𝑀∈𝐷

𝒯(𝑀).

The same property holds for (Λ101
⊥ ,⊑101) and ℓ𝒯.

PROOF. We do the proof for 𝒯 and Λ001
⊥ .

𝒯 (⨆𝐷) = ⋃
𝑃∈(⨆𝐷)↡

𝒯(𝑃) by lemma 6.18,

= ⋃
𝑃∈𝐷↡

𝒯(𝑃) by observation 6.17,

= ⋃
𝑀∈𝐷

𝒯(𝑀) by lemma 6.18 again. □

We will now turn this theorem into a continuity theorem for the maps taking
a term to its Böhm and Lévy-Longo trees. To do so, let us start by stating the
following crucial lemma, which can be seen as a refinement of lemma 4.25.

LEMMA 6.20. For all ⊥001-normal terms𝑀,𝑁 ∈ Λ001
⊥ ,

𝒯(𝑀) ⊆ 𝒯(𝑁) iff 𝑀 ⊑001 𝑁.

The same property holds for (Λ101
⊥ ,⊑101) and ℓ𝒯.

PROOF. What we need to show can be rephrased using lemma 6.18 and the
definition of ⊑001:

⋃
𝑃∈𝑀↡

𝒯(𝑃) ⊆ ⋃
𝑃∈𝑁↡

𝒯(𝑃) iff 𝑀↡ ⊆ 𝑁↡.

The converse implication is immediate. For the direct implication, take 𝑃 ∈
𝑀↡, 𝑃 ≠ ⊥. Recall from page 154 that we can build a resource term ❲𝑃❳r from
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𝑃6 such that ❲𝑃❳r ∈ 𝒯(𝑃). By hypothesis,

∃𝑄 ∈ 𝑁↡, ❲𝑃❳r ∈ 𝒯(𝑄).

By induction on 𝑃, we deduce that 𝑃 ⊑001 𝑄, which leads to 𝑃 ∈ 𝑁↡ since the
latter is downwards closed. □

Theorem 6.19 and lemma 6.20 are the main reasons why the new, Taylor-based
approximation theory subsumes the classical, (weak) head-approximants
based one; in particular they is the implicit keystones of the work of Bar-
barossa and Manzonetto (2020), and of an ongoing effort to systematically
rephrase standard λ-calculus results using the Taylor approximation. Thanks
to these facts, we are able to prove a last theorem.

LEMMA 6.21 (monotonicity of BT and LLT). BT ∶ Λ001
⊥ → Λ001

⊥ and LLT ∶
Λ101
⊥ → Λ101

⊥ are monotonous.

PROOF. Take 𝑃,𝑄 ∈ Λ001
⊥ such that 𝑃 ⊑001 𝑄, then 𝒯(𝑃) ⊆ 𝒯(𝑄) by

theorem 6.19, because a Scott-continuous map is always monotonous. Hence
ñf(𝒯(𝑃)) ⊆ ñf(𝒯(𝑄)) and 𝒯(BT(𝑃)) ⊆ 𝒯(BT(𝑄)) by theorem 4.26. By
lemma 6.20, we obtain BT(𝑃) ⊑001 BT(𝑄). The proof for LLT is similar. □

THEOREM 6.22 (continuity of BT and LLT). BT ∶ Λ001
⊥ → Λ001

⊥ and LLT ∶
Λ101
⊥ → Λ101

⊥ are Scott-continuous.

PROOF. Let 𝐷 be a directed subset of (Λ001
⊥ ,⊑001), then

𝒯 (BT( ⨆
𝑀∈𝐷

𝑀)) = ñf (𝒯 ( ⨆
𝑀∈𝐷

𝑀)) by theorem 4.26,

= ñf ( ⋃
𝑀∈𝐷

𝒯(𝑀)) by theorem 6.19,

= ⋃
𝑀∈𝐷

ñf(𝒯(𝑀))

= ⋃
𝑀∈𝐷

𝒯(BT(𝑀)) by theorem 4.26 again,

= ⋃
𝑁∈BT(𝐷)

𝒯(𝑁)

6 In fact, ❲𝑃❳r was only defined for 𝑃 ∈ Λ. It can be generalised to almost all terms of Λ⊥ by
defining ❲(𝑃)⊥❳r = ❲(𝑃)𝜆𝑥.⊥❳r = ❲(𝑃)(⊥)𝑄❳r = (❲𝑃❳r) 1. The only undefined arguments
of this extended map are ⊥, 𝜆𝑥.⊥ and (⊥)𝑄; in this proof, 𝑃 cannot be one of these (because
𝑃 ≠ ⊥ and thanks to the way we built ⊑001).
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= 𝒯 ( ⨆
𝑁∈BT(𝐷)

𝑁) by theorem 6.19 again,

= 𝒯 ( ⨆
𝑀∈𝐷

BT(𝑀)) ,

where BT(𝐷) ≔ {BT(𝑀) |𝑀 ∈ 𝐷 } is directed by lemma 6.21. We conclude
by lemma 4.25, since Böhm trees are ⊥001-normal. The proof is similar for
LLT. □

Observe that this continuity result only relies on commutation (theorem 4.26
and corollary 6.13) and on the injectivity of the Taylor expansions on⊥-normal
terms (which is a consequence of their uniformity). This means that any Taylor-
like approximation (of some λ⊥𝒰-calculus, for a set 𝒰 of meaningless terms)
enjoying these two highly desirable properties, commutation and uniformity,
could be used to prove that the map NF𝒰 taking a term to its infinitary β⊥𝒰-
normal form7 is Scott-continuous. Alas, the following theorem dampens our
hopes to find such new Taylor approximations.

THEOREM 6.23 (Severi and deVries 2005a). The only𝒰 such thatNF𝒰 is Scott-
continuous are {𝑀 ∈ Λ111

⊥ ||𝑀 has no hnf } and {𝑀 ∈ Λ111
⊥ ||𝑀 has no whnf }.

Informally, this implies that only the λ⊥001- and λ⊥101-calculi enjoy ‘well-
behaved’ Taylor approximations, for which the developments presented in this
thesis are possible.
For example, in the case of the λ⊥111-calculus the normal form map is not even
monotonous: (⊥)𝑦 ⊑111 (𝜆𝑥.⊥)𝑦 but

BerT((⊥)𝑦) = (⊥)𝑦 ⋢111 ⊥ = BerT((𝜆𝑥.⊥)𝑦).

A Taylor approximation for this calculus would then verify that 𝒯((⊥)𝑦) ⊆
𝒯((𝜆𝑥.⊥)𝑦), but only the latter would have 0 for normal form...

In addition, notice that Severi and de Vries (ibid.) also prove that the models
induced by Böhm and Lévy-Longo trees are the only ones such that

1. the model (i.e. the set of normal forms) is a dcpo,

2. all contexts are interpreted by Scott-continuous maps,

3. the semantic counterpart to the approximation theorem holds.

All three properties can be given syntactic proofs using the Taylor approxima-
tion; in particular the second one (i.e. the difficult one) is related to the syntac-
tic continuity result in Barbarossa and Manzonetto (2020, lem. 5.8). This adds

7 This normal form is well-defined, since ⟶∞
𝛽⊥𝒰 is confluent and weakly normalising (Kenn-

away, Severi, et al. 2005; Czajka 2020).
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to the reasons why a uniform and commutative Taylor approximation is not to
be found outside the λ⊥001- and λ⊥101-calculi. Thus, we can put an end to this
manuscript without regrets.

D





Conclusion

No fable here no lesson
No singing meadowlark
Just a filthy beggar guessing
What happens to the heart

Leonard Cohen

What can we learn from all this? As announced in the introduction of this
manuscript, it seems to us that the benefit (and the goal) of our work is not to
have equipped with a Taylor expansion a calculus that did not yet have one, and
for good reason: the dynamics of the infinitary λ-calculi that we study is iden-
tical, from the point of view of approximation, to that of the finite λ-calculus...
and this is precisely where its great interest lies, since it provides a very conve-
nient framework in which to study the usual β-reduction. Therefore, this work
seems to us more like a slightly more general reformulation of the Taylor ap-
proximation and its links with the ‘classical’ operational approximation, using
infinitary rewriting as a mediation. In our opinion, this approach improves on
the existing theory in two ways.

• A maximal, homogeneous setting. As already suggested by Ehrhard
and Regnier, the Taylor expansion induces a bijection between 001-
infinitary λ-terms and maximal cliques in 𝕊Λr . As a consequence, the
001-infinitary λ-calculus can be seen as the most general framework
where to define the Taylor approximation without any adaption, which
comes with an advantage: this framework is ‘homogeneous’ for the
dynamics approximated by the Taylor expansion, in the sense that the
Böhm tree of a 001-infinitary λ⊥-term still is a 001-infinitary λ⊥-term;
in other words, all the information generated by a ‘program’ can be
represented in the syntax of programs.

• Switching from normalisation to reduction. The main focus of both
classical and Taylor approximation theories of the λ-calculus has been
on normalisation (in a generalised meaning, i.e. normalisation towards
Böhm trees), for this is where the link between operational and deno-
tational properties of λ-terms lies. To consider infinitary reductions al-
lows to think of normalisation as of a special case of reduction, suggest-
ing that the focus can be shifted to reduction. This approach has led
us to strengthen Ehrhard and Regnier’s commutation theorem into a
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simulation theorem for infinitary β⊥-reduction (theorem 4.14 and corol-
lary 4.23).

To leverage both Taylor approximation and infinitary rewriting allows a sim-
plification and a unification of many results. Let us underline this idea by pro-
viding two examples showing how both frameworks somehow simplify each
other.

• The key case of Böhm tree contextuality. The fact that BT(𝑁) =
BT(𝑁′) implies BT((𝑀)𝑁) = BT((𝑀)𝑁′) was originally proved using a
sinuous argument (Barendregt 1984, lem. 14.3.20(iii)). The easiest proof
of Barbarossa and Manzonetto (2020), who rely on the Taylor approxi-
mation, can in turn be simplified by decomposing it into confluence of
⟶001

𝛽⊥ (proved to be a corollary of the simulation theorem, see corol-
lary 4.28), followed by the easy observation that we can write

𝑀𝑁 BT(𝑀𝑁)

(BT(𝑀))BT(𝑁)
=

(BT(𝑀))BT(𝑁′)

BT((BT(𝑀))BT(𝑁))
=

BT((BT(𝑀))BT(𝑁′))

𝑀𝑁′ BT(𝑀𝑁′).

← →𝛽∞←

→𝛽∞

← →𝛽∞

⇐ ⇐
⇐⇐

← →𝛽∞

←
→

𝛽∞

• The syntactic approximation theorem. The original proof of theo-
rem 2.41 has the same convoluted flavour, involving a fine analysis of
head approximants. We showed in section 2.4 that an arguably simpler
proof can be built in the setting of the 001-infinitary λ-calculus. In fact
this proof can be simplified again via the Taylor expansion, using strati-
fication and simulation together with the observation that for ⊥-normal
terms, 𝒯(𝑀) ⊆ 𝒯(𝑁) iff 𝑀 ⊑001 𝑁.

In fact, we believe that the latter observation (see lemma 6.20) is the crux of the
translation between continuous and linear approximation theories, and that
this should lead to a convenient revisiting of whole swathes of the classical
study of the pure λ-calculus, as already demonstrated by Barbarossa and Man-
zonetto (ibid.). We hope to have advocated for the role infinitary λ-calculi have
to play in this programme.

On our path, we have also been making contributions along three other axes.

• We have tried to provide clean and abstract definitions of infinitary terms
with binding. When we started this thesis, two points were not com-
pletely clear to us: the correspondence of the topological and coinductive
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definitions of mixed infinitary λ-terms, and the status of α-equivalence
at least in the topological setting. We hope our work of collecting and
sewing partial answers from several sources provides a clear synthesis.

• The introduction of a uniform resource reduction allowed us to highlight
the dramatic effects of uniformity (which remain somehow hidden in a
qualitative setting). We crucially used these to prove a quantitative sim-
ulation theorem (section 4.4) and to restrict the Taylor approximation to
a conservative one (section 5.3).

• The similarity of the classical constructions of Böhm and Lévy-Longo
trees suggests lazy variants of the resource λ-calculus and the Taylor ex-
pansion. We showed how the developments of this thesis can be adapted,
yielding a lazy Taylor approximation theory. Interestingly, the 001- and
101-infinitary λ-calculi are the only ones enjoying such an approxima-
tion.

D

In the end, what do we earn? To cut a long story short: a refined presentation
of the approximation of β-reduction and elementary proofs of many classical
results. This may not seem like much (and we leave it to the reader to judge...),
but it should be emphasised that the interest of these results also lies in the
method, which we hope can be reproduced. Let us sketch some further re-
search directions in which a similar method could be applied.

Once the author was told: ‘If your student finishes their thesis too early, have
them do the same work again with η-reductions’. Although this thesis was not
exactly finished early, extending our work to an extensional setting would be
of great interest. In such a setting, i.e. in the presence of βη-reductions or βη!-
reductions and of their infinitary normal forms — extensional Böhm trees (Hy-
land 1975) and Nakajima trees (Nakajima 1975) respectively — the picture is
indeed blurrier. Though a topological presentation of infinitary reductions to-
wards these normals forms has been defined and enjoys confluence and nor-
malisation (Severi and de Vries 2002, 2015), translating it into a coinductive
presentation is still an open problem because these reductions involve reduc-
tion sequences of (uncompressible!) ordinal length greater than 𝜔 (Barendregt
and Manzonetto 2022). Regarding approximation, an extensional Taylor ex-
pansion approximating βη!-reductions was recently introduced by Blondeau-
Patissier, Clairambault, and Vaux Auclair (2024). We wonder whether these
pieces can be connected to form a picture similar to the one built in this the-
sis, which would in particular allow to give simple proofs of confluence and
normalisation for infinitary βη!-reductions (Barendregt and Manzonetto 2022,
open problem 10).
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The approach we have adopted can also be used to study the approximation of
richer languages. We have already drawn up a list of calculi that lend them-
selves to Taylor approximation; we would point out that this is particularly the
case for probabilistic or nondeterministic calculi (Dal Lago and Leventis 2019;
Vaux 2019), two programming paradigms towards which a major research ef-
fort is currently being directed. Conversely, our work shows that Taylor ap-
proximation can be an efficient tool to study the behaviour of intrinsically in-
finitary languages; in this respect, an interesting example is the linear infinitary
λ-calculus introduced by Dal Lago (2016), which can be seen as a prototype of
a coinductive programming language computing over streams.
Finally, let’s take one more walk along the Curry-Howard correspondence: can
a notion of linear approximation play a role in the study of infinitary proofs?
Nonwellfounded proofs and circular proofs, as well as the infinitary dynam-
ics of their cut elimination, are currently the subject of active investigations
motivated in particular by the development of proof assistants. A typical case
of study is that of infinitary variants of linear logic (Baelde and Miller 2007;
Baelde, Doumane, and Saurin 2016; Saurin 2023). In this context, it is inter-
esting to observe that proof nets, which are a canonical alternative to sequent
calculus (Girard 1987), are provided with a Taylor approximation (Ehrhard and
Regnier 2006b) and have recently been endowed with infinitary counterparts
(De, Pellissier, and Saurin 2021). Here also, it is hoped that linear approxi-
mation tools will make it possible to characterise certain desirable behaviours,
particularly for the purpose of obtaining effective validity criteria for infinitary
proofs.
But let’s leave that for later...
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