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SUMMARY. This PhD dissertation aims to develop a new modelling and computa-
tional approach for the simulation of slender bodies immersed in three dimensional
flows (3D). Thanks to the special geometric configuration of the slender structures,

we can model this problem by mixed-dimensional coupled equations in which the solid
balance equations are formulated in a one-dimensional (1D) domain. Addressing these
types of problems presents several challenges. From a mathematical perspective, the main
two difficulties involve defining well-posed trace operators of co-dimension two (from the
3D to the 1D domain) and ensuring the accuracy of solutions obtained with the mixed-
dimensional formulation when compared to the fully 3D one. From a computational point
of view, the non-standard mathematical formulation of the coupled problem makes it dif-
ficult to guarantee the convergence of the discrete solutions with standard numerical ap-
proaches. The main advantages of the approach we present in this manuscript lies in its
strong mathematical basis. Indeed, while many standard mixed-dimensional formulations
yield solutions with poor regularity due to ill-posed trace operators, our reduced order
method generates solutions within standard Hilbert spaces. This facilitates the application
of Galerkin projection-based approximation methods such as the finite element method
(FEM).

In the second chapter, we establish the continuous formulation of the 3D fluid-structure
interaction coupled problem using incompressible Navier-Stokes equations for the descrip-
tion of the fluid dynamics and a linear Timoshenko beam model for modeling the response
of the slender structure. These two models are coupled with a mixed-dimensional version
of fluid-structure interface conditions, combining the fictitious domain (FD) approach with
the projection of kinematic coupling conditions onto a finite-dimensional Fourier space via
Lagrange multipliers. We then develop a discrete formulation based on the finite element
method and a semi-implicit treatment of the Dirichlet-Neumann coupling conditions, em-
ploying a partitioned procedure for the resolution of the fluid-structure interaction prob-
lem. We establish the energy stability of the scheme and provide extensive numerical
evidence of the accuracy and robustness of the discrete formulation, notably with respect
to a full order model with standard coupling conditions.

In the third and fourth chapter we conduct a mathematical analysis on the approxima-
tion error of our reduced order coupled method, examining both the modeling and nu-
merical approximation errors resulting from the mixed-dimensional formulation and the
fictitious domain finite element method, respectively. We explore these aspects in two
simplified frameworks. We first consider a two-dimensional Poisson problem (2D) with a
fixed immersed boundary and non-homogeneous Dirichlet boundary conditions. We then
extend this analysis to the 2D stationary Stokes problem with rigid-body Dirichlet bound-
ary conditions on the immersed interface. In both cases, after proving the existence of
solutions for the reduced order problem, we prove its convergence, when the size of the
obstacle is small, to the full order problem with standard Dirichlet boundary conditions. In
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particular, our estimates highlight the need to consider enough Fourier modes to achieve
convergence on the Lagrange multipliers, which is an essential aspect in addressing the
fluid-structure interaction coupled problem. Subsequently, the numerical discretization of
the reduced order problem is analyzed. As standard for this family of methods, the con-
vergence obtained with the fictitious domain finite element method is sub-optimal, due to
the discontinuity of the solution at the interface. Furthermore, the stability and accuracy
of the scheme depend on the ratio between the mesh size and the obstacle size, which
can be restrictive for very small obstacles. To address the limitations of the fictitious
domain approach, we propose and analyze two modified finite element method, one stabi-
lized and one augmented. Finally, we develop a 2D fluid-structure interaction formulation
where small particles are immersed in a Stokesian flow, applying reduced order interface
coupling conditions. The properties of the reduced order model and the corresponding
numerical methods are illustrated by some numerical experiments.

Using a semi-implicit scheme for the resolution of the 3D fluid-structure interaction
problem requires to iterate over the fluid and solid solvers multiple times, which can be
computationally expensive. The most efficient approach for the time discretization of the
fluid-structure interaction problem would be to adopt an explicit coupling scheme, solv-
ing this way the fluid and structure sub-problems only once per time step. However, for
standard (Dirichlet-Neumann) explicit coupling schemes, a large fluid/solid density ratio
combined with a slender and lengthy geometry gives rise to unconditional numerical in-
stability. Subsequently, in the last chapter, we introduce a Robin-based loosely coupled
scheme specifically designed for 3D mixed-dimensional formulation and prove its un-
conditional stability. We also provide numerical evidence of the accuracy of the explicit
scheme through several test cases.
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RÉSUMÉ Ce projet de doctorat a pour objectif de développer une nouvelle approche
computationnelle pour la simulation de corps élancés immergés dans un écoule-
ment tridimensionnel (3D). Grâce à la configuration géométrique particulière des

structures élancées, nous pouvons modéliser ce problème par des équations couplées en
dimensions mixtes pour lesquelles les équations d’équilibre du solide sont formulées dans
un domaine unidimensionnel (1D). Ce type de problèmes pose plusieurs difficultés à sur-
monter. D’un point de vue mathématique, ils impliquent de définir des opérateurs de trace
bien posés de codimension deux (du domaine 3D au domaine 1D) mais aussi de garan-
tir que les solutions obtenues avec la formulation mixte sont proches de celles obtenues
avec une formulation complètement 3D. D’un point de vue computationnel, la formula-
tion mathématique non classique du problème couplé rend également difficile de garantir
la convergence des solutions discrètes avec des approches numériques classiques. Les
principaux avantages de l’approche que nous présentons dans ce manuscrit résident dans
sa solide base mathématique. En effet, tandis que de nombreuses formulations mixtes
donnent des solutions avec une faible régularité en raison d’opérateurs de trace mal posés,
notre méthode réduite génère des solutions dans des espaces de Hilbert classiques. Cela
facilite l’application de méthodes d’approximation basées sur la projection de Galerkin
telles que la méthode des éléments finis (MEF).

Dans le deuxième chapitre, nous établissons la formulation continue du problème cou-
plé 3D d’interaction fluide-structure en considérant les équations de Navier-Stokes incom-
pressibles pour la description de la dynamique du fluide et un modèle de poutre linéaire de
Timoshenko pour la modélisation de la réponse de la structure élancée. Ces modèles sont
couplés avec une version en dimensions mixtes des conditions d’interface fluide-structure,
associant l’approche de domaine fictif (DF) avec la projection des conditions de couplage
cinématique sur un espace de Fourier de dimension finie via des multiplicateurs de La-
grange. Nous développons ensuite une formulation discrète basée sur la méthode des élé-
ments finis et un traitement semi-implicite des conditions de couplage Dirichlet-Neumann,
en utilisant une procédure partitionnée pour la résolution du problème d’interaction fluide-
structure. Nous établissons la stabilité énergétique du schéma et fournissons des preuves
numériques détaillées sur la précision et la robustesse de la formulation discrète, notam-
ment par rapport à un modèle complet avec des conditions de couplage fluide-structure
classiques.

Dans les troisième et quatrième chapitres, nous effectuons une analyse mathématique
sur l’erreur d’approximation de notre méthode réduite couplée, en examinant les erreurs
de modélisation et d’approximation numériques résultant respectivement de la formulation
en dimensions mixtes et de la méthode des éléments finis avec domaine fictif. Nous ex-
plorons ces aspects dans deux cadres simplifiés. Nous considérons d’abord un problème de
Poisson 2D avec une frontière immergée statique et des conditions aux bords de Dirichlet
non homogènes. Nous étendons ensuite cette analyse au problème de Stokes bidimen-
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sionnel stationnaire avec des conditions aux bords de type solides rigides sur l’interface
immergée. Dans les deux cas, après avoir prouvé l’existence de solutions pour le problème
réduit, nous prouvons sa convergence, lorsque la taille de l’obstacle tend vers zéro, vers le
problème complet avec des conditions aux bords de Dirichlet classiques. En particulier,
nos estimations mettent en évidence la nécessité de considérer suffisamment de modes de
Fourier pour obtenir une convergence sur les multiplicateurs de Lagrange, ce qui est un
aspect essentiel pour l’analyse du problème couplé d’interaction fluide-structure. Ensuite,
nous analysons la discrétisation numérique du problème réduit. De façon assez classique
pour cette famille de méthodes, la convergence obtenue avec la méthode des éléments fi-
nis avec domaine fictif est sous-optimale, en raison de la discontinuité de la solution à
l’interface. De plus, la stabilité et la convergence du schéma dépend du rapport entre la
taille du maillage et la taille de l’obstacle, ce qui peut être contraignant pour des obstacles
de très petite taille. Pour pallier les limites de l’approche domaine fictif, nous proposons et
analysons deux méthodes éléments finis alternatives, une méthode stabilisée et une méth-
ode enrichie. Enfin, nous développons une formulation d’interaction fluide-structure 2D
où de petites particules sont immergées dans un écoulement de Stokes, en appliquant des
conditions de couplage d’interface réduites. Les propriétés du modèle réduit et des méth-
odes numériques correspondantes sont illustrées par des exemples numériques.

L’utilisation d’un schéma semi-implicite pour la résolution du problème d’interaction
fluide-structure 3D exige d’itérer de nombreuses fois sur les solveurs fluide et solide, ce
qui peut être coûteux en termes de temps de calcul. L’approche la plus efficace pour la
discrétisation temporelle du problème d’interaction fluide-structure consisterait à adopter
un schéma de couplage explicite, permettant ainsi de résoudre les sous-problèmes fluide et
solide une seule fois par pas de temps. Cependant, pour les schémas de couplage explicite
classiques (Dirichlet-Neumann), un rapport élevé entre la densité du fluide et la densité
du solide associé à une géométrie mince amène souvent à de l’instabilité numérique. Par
conséquent, dans le dernier chapitre, nous introduisons un schéma faiblement couplé qui
repose sur des conditions d’interface de Robin spécifiquement conçu pour une formula-
tion 3D en dimensions mixtes et prouvons sa stabilité inconditionnelle. Nous fournissons
également des preuves numériques de la précision du schéma explicite par plusieurs cas
test.
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SOMMARIO Questa tesi di dottorato ha come obiettivo lo sviluppo di un nuovo approc-
cio computazionale per la simulazione di corpi slanciati immersi in un flusso tridi-
mensionale (3D). Sfruttando la particolare configurazione geometrica delle strutture

slanciate, è possibile modellizzare il problema tramite equazioni accoppiate con dimen-
sioni miste, in cui le equazioni di bilancio del solido sono formulate in un dominio unidi-
mensionale (1D). Questo tipo di problemi presenta diverse difficoltà. Da un punto di vista
matematico, si tratta di definire degli operatori di traccia ben definiti di codimensione due
(dal dominio 3D al dominio 1D) oltre al garantire che le soluzioni ottenute con la formu-
lazione in dimensioni miste siano vicine a quelle ottenute con una formulazione comple-
tamente 3D. Dal punto di vista computazionale, la formulazione matematica non conven-
zionale del problema accoppiato rende difficile garantire la convergenza delle soluzioni
discrete con approcci numerici classici. In effeti, molte formulazioni miste producono
soluzioni con scarsa regolarità a causa di operatori di tracia mal definiti, il nostro metodo
ridotto genera soluzioni in spazi di Hilbert classici. Questo facilita l’applicazione di
metodi di approssimazione basati sulla proiezione di Galerkin come il metodo degli el-
ementi finiti (MEF)

Nel secondo capitolo, presentiamo la formulazione continua del problema accoppiato
3D di interazione fluido-struttura, considerando le equazioni di Navier-Stokes incomprimi-
bili per la descrizione della dinamica del fluido e un modello di trave lineare di Timoshenko
per la modellizazione della risposta dinamica della struttura sottile. Questi modelli sono
accoppiati con una versione delle condizioni di interfaccia fluido-struttura in dimensioni
miste, che associa l’approccio del dominio fittizio (FD) con la proiezione delle condizioni
di accoppiamento cinematico su uno spazio di Fourier a dimensioni finite tramite molti-
plicatori di Lagrange. Successivamente, sviluppiamo una formulazione discreta basata sul
metodo degli elementi finiti e un trattamento semi-implicito delle condizioni di accoppi-
amento Dirichlet-Neumann, utilizzando una procedura partizionata per la risoluzione del
problema di interazione fluido-struttura. Stabilizziamo il regime di energia dello schema
e forniamo numerose prove numeriche dell’accuratezza e della robustezza della formu-
lazione discreta, in particolare rispetto a un modello classico (ALE) con condizioni di
accoppiamento fluido-struttura convenzionali.

Nei capitoli terzo e quarto, presentiamo l’analisi matematica dell’errore di approssi-
mazione del metodo accoppiato e ridotto, esaminando sia gli errori di modellizazione che
di approssimazione numerica derivanti rispettivamente dalla formulazione a dimensioni
miste e dal metodo degli elementi finiti con dominio fittizio (FEM). Esploriamo questi as-
petti in due contesti semplificati. Iniziamo col considerare un problema di Poisson 2D con
una frontiera immersa fissa e condizioni al bordo di Dirichlet non omogenee. Estendiamo
poi questa analisi al problema di Stokes 2D stazionario con condizioni al bordo di tipo
solido rigido sull’interfaccia immersa. In entrambi i casi, dopo aver dimostrato l’esistenza
della soluzione per il problema ridotto, ne proviamo la convergenza, quando le dimen-
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sioni dell’ostacolo tendono a zero, al problema completamente risolto con condizioni al
bordo di Dirichlet standard. In particolare, le stime ricavate evidenziano la necessità di
considerare abbastanza modi di Fourier per ottenere una convergenza sui moltiplicatori
di Lagrange, che è un aspetto fondamentale per l’analisi del problema accoppiato di in-
terazione fluido-struttura. Successivamente, analizziamo la discretizzazione numerica del
problema ridotto. Come è consuetudine per questa famiglia di metodi, la convergenza ot-
tenuta con il metodo degli elementi finiti di dominio fittizio è subottimale, a causa della dis-
continuità della soluzione all’interfaccia. Inoltre, la stabilità e l’accuratezza dello schema
dipendono dal rapporto tra la dimensione caratteristica della griglia del fluido e la dimen-
sione dell’ostacolo, il che può essere limitante per ostacoli molto piccoli. Per superare
le limitazioni dell’approccio del dominio fittizio, proponiamo e analizziamo due metodi
degli elementi finiti alternativi, un metodo stabilizzato e un metodo arricchito. Infine,
sviluppiamo una formulazione dell’interazione fluido-struttura 2D in cui piccole parti-
celle sono immerse in un flusso di Stokes, applicando condizioni di accoppiamento ridotte
all’interfaccia. Le proprietà del modello ridotto e dei metodi numerici corrispondenti sono
illustrate da alcuni esempi numerici.

L’uso di uno schema semi-implicito per la risoluzione del problema di interazione
fluido-struttura 3D richiede di iterare più volte sui solvers fluido e solido, il che può essere
costoso in termini di tempo di calcolo. L’approccio più efficiente per la discretizzazione
temporale del problema di interazione fluido-struttura è lo schema di accoppiamento es-
plicito, che consente di risolvere i sotto-problemi fluido e solido solo una volta per time
step. Tuttavia, per gli schemi di accoppiamento esplicito standard (Dirichlet-Neumann),
l’alto rapporto fra la densità del fluido e del solido insieme alla geometria slanciata causa
spesso instabilità numerica. Nell’ultimo capitolo, introduciamo uno schema debolmente
accoppiato basato su condizioni di interfaccia di Robin specificamente progettato per una
formulazione 3D a dimensioni miste e ne dimostriamo la stabilità incondizionata. For-
niamo inoltre prove numeriche della precisione dello schema esplicito attraverso diversi
esempi.
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CHAPTER1
Introduction

1.1 Motivations

The study of slender structures immersed in three-dimensional (3D) flows is of great im-
portance in a variety of engineering disciplines. For instance, it offers valuable insights on
phenomena such as vortex vibrations induced by ocean currents or waves impacting sub-
merged industrial structures [Wu et al., 2012], see Figure 1.1a. Specifically, in the context
of long-submerged ocean risers, these vibrations can result in considerable deflection and,
in severe cases, fatigue-induced failure within the riser system. Understanding the under-
lying mechanisms and behaviors of these vibrations is essential to design effective control
strategies that may limit the impact of these vibrations [Hong and Shah, 2018]. In an other
context, such studies contribute to understanding how aquatic vegetation interacts with the
surrounding flow. Indeed, aquatic vegetation plays a crucial role in controlling the mean
and turbulent flow [Dijkstra and Uittenbogaard, 2010], affecting therefore the transport of
sediments and pollutants [Nepf and Vivoni, 2000, Luhar et al., 2008]. In particular, recent
studies have highlighted the beneficial effects of aquatic vegetation, including its role in
reducing riverbed erosion [Wang et al., 2015], see Figure 1.1b. Interest in investigating the
interaction between slender structures and ambient flow also extends to biomedical appli-
cations, such as the design of vascular stents [Zunino et al., 2016]. For instance, modeling
stents aids in comprehending how variations in blood pressure affect the risk of fatigue
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(a) Schematic of a subsea production system -
Source: [Hong and Shah, 2018]

(b) Effect of vegetation on the turbulent flow structure
and sediment transport - Source: [Västilä and

Järvelä, 2018]

(c) Contour maps of TAWSS (time averaged WSSS)
along the fluid-structure interface -

Source: [Chiastra et al., 2014]

(d) Muco-ciliary clearance - Source: [Vanaki et al.,
2020]

fracture, thereby enhancing their longevity [Li et al., 2010, Marrey et al., 2006]. It also
impacts fundamental quantities, such as wall shear stress, WSS, which may be source to
various diseases [Chiastra et al., 2014], see Figure 1.1c. Finally, it also has application
in understanding microorganisms, examples include the simulation of ciliated cells that
cover the lung and play a crucial role in the muco-ciliary clearance [Liron and Mochon,
1976, Smith et al., 2007], see Figure 1.1d, or the prediction of the motion of microswim-
mers [Lauga and Powers, 2009, Alouges et al., 2013].

1.2 Modelling assumptions

As we have seen in the previous section, the physical characteristics of the problem un-
der study can take on various forms. In the next section, we comment on the modelling
assumptions made in this manuscript on the physical properties of the two subsystems in-
volved, namely the slender structures and the surrounding fluid, as well as the coupling
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conditions enforced between these two sub-systems.

1.2.1 Fluid modeling assumptions

In this document, we assume that the fluid can be described as a Newtonian fluid. However,
it is worth noting that certain biological fluids, such as mucus, exhibit non-Newtonian
characteristics with properties spanning between those of viscous fluids and elastic solids
[Lai et al., 2009]. Similarly, blood, due to its complex composition and the presence
of suspended particles (such as red blood cells) and macromolecules (such as proteins)
exhibits non-Newtonian effects [Chen et al., 2006]. Under the Newtonian assumption,
the constitutive equation between the stress tensor and the strain rate tensor is linear, and
the momentum conservation equation yield the Navier-Stokes equations. In our study, we
further assume a constant fluid density, implying incompressibility. This assumption holds
true for liquids where compressibility effects are negligible and serves as a reasonable
approximation for gases with low Mach numbers. In addition, we presume isothermal
flow conditions, ensuring that viscosity remains constant throughout the system.

An important parameter for characterizing the behavior of fluids is the Reynolds num-
ber. It serves as a dimensionless quantity representing the ratio of inertial forces to viscous
forces within the flow. When the Reynolds number is low, indicating either high viscosity
or small characteristic dimensions, the inertial terms in the Navier-Stokes equations be-
come negligible. This leads to the emergence of stationary Stokes equations, particularly
useful in scenarios involving biological applications characterized by small length scales
and highly viscous fluids.

1.2.2 Solid modeling assumptions

In simulating fluid-structure interaction, the second key consideration is to accurately
model slender structures. A classical approach for this purpose is beam theory, offer-
ing a simplified approach to understand and predict the behavior of such structures under
varying loads. The aim is to simplify the analysis of beam behavior by only examining the
distribution of forces and deformations along the beam centerline, neglecting variations
in other dimensions such as width or depth. Several beam theories have emerged on the
basis of different assumptions, each offering varying levels of accuracy. These theories are
typically categorized into three groups [Eugster, 2015, Meier et al., 2019]:

• Induced beam theories: The one dimensional model is directly derived from the
three dimensional theory, either by considering an asymptotic expansion with respect
to the beam thickness, or imposing additional constraints on specific functions space,
which aligns to the expected behavior of slender bodies (e.g., imposing rigid and
planar cross-sections). We can find for example the planar linearized Euler-Bernouilli
and Timoshenko beam theory [Timoshenko, 1921, Timoshenko, 1922].
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• Intrinsic beam theories: The beam is considered a generalized one-dimensional
continuum. Consequently, the one-dimensional representation of beam dynamics is
decoupled from the three-dimensional theory. This enables one-dimensional quanti-
ties to satisfy some fundamental mechanical principles such as the balance of forces
and moments, conservation of energy, or the existence of work-conjugated stress-
strain pairs. However, as intrinsic theories do not prescribe specific constitutive laws,
many choices are allowed, often justified through empirical validation and experi-
mentation. Examples include the work of Kircchoff [Kirchhoff, 1850] or Cosserat
and Cosserat [Cosserat and Cosserat, 1909].

• Semi-induced beam theories: This approach represents a compromise between
induced and intrinsic theories, as it postulates only the constitutive law while deriving
the remaining kinetic and kinematic from the three-dimensional continuum theory.
We can find for example the non linear beam formulations such as the Kirchhof-Love
beam theory with reference to Kirchhof [Kirchhoff, 1859] and Love [Love, 2013],
or the Simo-Reisness beam theory with reference to Reissner [Reissner, 1972] and
Simo [Simo, 1985].

One of the simplest and most practical theories first described by Euler and Bernouilli
around 1750 is commonly called Euler-Bernoulli beam theory. The foundational assump-
tion of this theory is that the beam’s cross-sections are rigid and during deformation, the
cross-section stay normal to the beam centerline. A possible enrichment of the Euler-
Bernoulli model is the Timoshenko model [Timoshenko, 1921,Timoshenko, 1922], which
still assumes undeformable sections but can eventually not be perpendicular to the beam
centerline. In particular, unlike the case of the Bernoulli beam, the shear influence on the
deformation is considered; in particular, it assumes an equivalent constant shear stress in
the entire cross section. The various beam theories can be introduced through different per-
spectives, one of which revolves around their ability to accurately represent the geometric
nonlinearity of beams, encompassing large deformations and rotations.

In particular, when deriving and computing the 1D beam formulations, we need neces-
sarily to consider a reference frame for the formulation. We can consider three alternatives
reference frames:

• Fixed global frame of reference: This approach is particular adapted to linear
analysis involving small displacements and strains. It keeps the initial global refer-
ence frame as fixed, simplifying integration and differentiation operations performed
within this frame. We find for example the planar Euler-Bernouilli and Timoshenko
beam theory [Timoshenko, 1921,Timoshenko, 1922] or the linearization of the Simo-
Reissner [Simo, 1985, Reissner, 1972] for small displacement derived for example
in [Arunakirinathar and Reddy, 1993], corresponding to the extension of the planar
Timoshenko beam theory to three dimensions.
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• Corotational frame of reference: Corotational transformations are ideal for large
displacement-small strain problems, see for example [Krenk, 2009]. This formula-
tion separates the motion of each beam element into two parts- a rigid motion as-
sociated with the element-based frame of reference (rotation and translation) and a
deformation of the element within this frame of reference. The main advantage of
this formulation is that the displacements and the rotations within the local frame
of reference are small. Therefore, the deformation of the beam can be modeled by
approximate linear beam theory.

• Geometrically exact frame of reference : This formulation is suitable for address-
ing large displacement and large strain problems. Specifically, it aims to accurately
handle rotations, which can often be challenging due to their nonlinear nature. Ge-
ometrically exact 3D beam theory has been used as a basis for development of a
variety of finite element formulations, and many formulations with many different
approaches can be found in the literature. See for example the seminal work of
Simo [Simo, 1985] and the subsequent work by Simo and Vu-Quoc [Simo and Vu-
Quoc, 1986].

1.2.3 Coupling methods

Coupled systems in which 2D flows interact with 1D beams can be efficiently simulated
by identifying the beam centerline with the fluid-structure interface and by neglecting the
interface thickness in the beam coupling (see, e.g., [Baaijens, 2001, Boilevin-Kayl et al.,
2019]). However, for problems in which 3D flows meet 1D beams, the situation is much
more delicate. The difference in dimensionality complicates the formulation of load and
motion transfer conditions and also calls for innovative numerical techniques to bridge the
gap between local fluid dynamics near the beam and the global behavior of the system. In
fact, three distinct modeling approaches can be found in the literature:

• Coupling on the reconstructed 2D beam interface: In this approach, coupling
conditions for kinematics and dynamics are enforced on the 2D interface of the
beam, defined as the union of the cross-sections of the one-dimensional beam model.
Widely adopted in industrial context, this approach simplifies the problem to a fluid-
structure interaction with a co-dimension one at the interface. This category of prob-
lems have been extensively studied, particularly in the context of the interaction be-
tween a fluid and a shell. The kinematic coupling conditions are typically based on
the assumption that the fluid particles do not penetrate the fluid-structure interface
and do not adhere to the structure surface, thereby enforcing velocity equality be-
tween the fluid and the structure. As for the dynamic coupling conditions, following
Newton’s third law, under the assumption of rigid and planar cross-sections, the re-
sultant forces and moments acting on each cross-section are typically taken equal to
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the integral of the fluid stress and the moment of the fluid stress (see e.g., [Maniyeri
and Kang, 2012, Huang et al., 2021, Ausas et al., 2022a, Wang et al., 2022]).

This approach corresponds to the standard treatment of the coupling conditions where
the dimensional reduction has only been applied on the solid model. Given that in
this manuscript, the case of a 3D beam model has not been treated, this model will be
often referred to as the full order model. Note that another categorization proposed
in [Steinbrecher et al., 2020] in the context of solid-solid interaction is is to refer to
them as surface-to-volume coupling schemes.

• Coupling on the centerline of the beam: One of the main limitations of writing
the coupled equations on the 2D beam interface is that it involves some restrictive
conditions on the size of the fluid mesh in the vicinity of the slender bodies, which
can be computationally expensive, especially when dealing with complex networks.
Since the radius of the slender structures is small with respect to their longitudinal
length, another solution is to ignore this 2D interface. On a computational stand-
point, this strategy is really efficient and enables the simulation of a large number of
beams [Griffith and Lim, 2012,Wiens and Stockie, 2015,Wang et al., 2019,Hagmeyer
et al., 2022, Hagmeyer et al., 2023] allowing this way the computation of real-world
scenarios. However, on a continuous level, two questions naturally emerge. The
first one is if the continuous problem associated with this solution is well-posed. In-
deed, imposing kinematic and dynamic coupling conditions on the beam centerline
requires the introduction of a trace operator of codimension two, thereby demanding
regularity for the solution within the fluid domain. However, these conditions simul-
taneously introduce a one-dimensional Dirac operator on the right-hand side of the
fluid equations, often preventing the solution from reaching the desired regularity.
The second question is the accuracy of the model, whether imposing coupling condi-
tions on the centerline is a good approximation or not of the full order problem when
the thickness of the slender body tends to 0.

• Mixed-dimensional coupling with projection operator: This method can be seen
as an intermediate between the first two methods introduced above. It consists in
projecting the kinematic constraint defined on the 2D fluid-structure interface onto a
finite-dimensional space lying on the beam centerline [Heltai and Zunino, 2023]. An
example includes replacing the original kinematic constraints on each cross section
of the beam by a constraint which acts only on the average of the velocity. To some
extent, this approach could be seen as a bridge, rectifying certain disparities among
the mentioned sets of fluid-beam interaction methodologies, whether employing a 2D
or 1D representation of the interface, and aims to be a compromise between accuracy,
computational cost, and robustness. Such method has recently been used in other
contexts such as structure-structure interaction [Khristenko et al., 2021] , coupling
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of two elliptic equations [Kuchta et al., 2021a] or coupled problems in multiscale
elasticity [Belponer et al., 2023]. The basic idea of my PhD project was to adapt and
analyse such methods in the case of fluid-structure interaction.

1.3 Numerical methods for fluid-structure interaction

In this section, we provide a non-exhaustive review of the techniques employed to couple
the fluid model and the solid model.

1.3.1 Eulerian and Lagrangian formulations

We usually distinguish two frameworks for the formulation of the solid and fluid equations,
the Lagrangian and Eulerian approaches. The Lagrangian method involves tracking the
motion of individual particles over time and space within a global reference frame. This
approach is particularly favored in solid mechanics due to the historical dependency of
stress, usually necessitating the specification of an undeformed configuration. It focuses on
analyzing the system’s energy, known as the Lagrangian, and derives equations of motion
through the principle of least action. Conversevely, the Eulerian approach is mostly used
in fluid dynamics, where, as opposed to tracking individual particles, the focus is made on
observing the flow or deformation at fixed points in space as time progresses. The fluid
is considered as a continuum, and conservation equations are developed based on control
volumes, analyzing how quantities such as velocity, pressure, and stress change over time
and space within a specified domain. The ALE framework, a hybrid approach, aims to
take advantage of the best of the two approaches. It is widely used in FSI (Fluid-Structure
Interaction) simulations where it provides a formulation suited for fluid equations written
in a moving domain.

1.3.2 Space discretization

For systems characterized by low-to-moderate interface deflection, employing fitted mesh
techniques is widespread. These techniques often rely on the arbitrary Lagrangian-
Eulerian (ALE) description of the fluid, as pioneered by Hirt and co-authors [Hirt et al.,
1974] and further developed by Donea and Huerta [Donea et al., 1982]. A key advan-
tage of this approach lies in its ability to facilitate the time discretization of quantities
associated with moving domains, achieved through an ALE map that parametrized the
evolving fluid domain (see, e.g, [Liu et al., 2012, Wang and Xiao, 2016], for the use of
ALE techniques in the context of 3D-1D fluid-structure interaction problems). However,
for large interface displacements, the ALE formalism can become cumbersome. In this
case, a preferred approach consists of combining an Eulerian description of the fluid and a
Lagrangian description of the structure with unfitted meshes such that the fluid mesh does
not match to the fluid-structure interface. Among this type of approaches, we can mention
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the Immersed Boundary Method (IB) introduced by Peskin [Peskin, 1972], where inter-
action between the two meshes is accomplished using source terms (or forcing functions)
in the governing equations in order to reproduce the effect of a boundary (see, e.g, [Grif-
fith and Lim, 2012, Wiens and Stockie, 2015, Tschisgale and Fröhlich, 2020, Wang et al.,
2019,Maxian and Peskin, 2020] for the application of IB method on 3D-1D fluid structure
interaction problems). Another approach, also relying on unfitted meshes, is the fictitious
domain method where Lagrange multipliers are used in place of delta functions, [Glowin-
ski et al., 1994, Glowinski et al., 1999a, Boffi and Gastaldi, 2015]. However, in non-fitted
approaches, the discrete approximation spaces for the pressure and velocity do not al-
low for weak and strong discontinuities across the interface. Consequently, the IB and
the FD are often sub-optimal and suffer from mass conservation issues. A widely used
strategy to circumvent these issues is based on the Cut-FEM approaches which attain op-
timal accuracy by integrating equations only in the physical region [Groß and Reusken,
2007, Haslinger and Renard, 2009, Burman and Hansbo, 2014]. However, these meth-
ods require mesh-cutting techniques, which can be challenging to implement, especially
for complex geometries and moving interfaces. Moreover, when elements are badly cut,
cut-FEM approaches face instability issues resulting in ill-conditioning of the associated
algebraic system. Consequently, stabilization terms often need to be added to discrete
formulation [Burman, 2010, Burman and Hansbo, 2014]. Finally, let us mention another
solution frequently adopted in the context of bioengineering applications involving viscous
Stokasian flow: the slender-body theory (see, e.g. [Bouzarth and Minion, 2011, Bringley
and Peskin, 2008, Tornberg and Shelley, 2004, Tornberg and Gustavsson, 2006, Cortez
et al., 2005, Mori et al., 2018, Decoene et al., 2023]). This theory adopts a one-way ap-
proach, approximating the slender body through a one-dimensional force density defined
along its centerline. By doing so, the slender-body theory offers an integral form approx-
imation for the Stokes problem in an unbounded domain based on this one-dimensional
force.

1.3.3 Time discretization

To couple the fluid solver and the solid solver, it is generally necessary to impose three
coupling conditions:

• The kinematic condition corresponding to the equality of the fluid and structure ve-
locities at the fluid-structure interface,

• The dynamic conditions ensuring the continuity of the stress at the fluid-structure
interface,

• The geometric condition, which guarantees compatibility between the fluid domain
and the solid domain. In an Eulerian model, it guarantees the application of kine-
matic and dynamic coupling conditions at the fluid-structure interface. In an ALE
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framework, it further ensures that the deformation of the fluid domain corresponds to
the deformation of the solid domain at the interface

We can basically distinguish two families of algorithms to solve fluid-structure interac-
tion problems. The first family is made of monolithic procedures for which the fluid and
solid solver are gathered in a unique system of equations, see e.g [Badia et al., 2008b,Gee
et al., 2011, Muddle et al., 2012, Richter, 2015]. Monololitic approaches are known to
be accurate and stable, however, they are often poorly flexible and involve high computa-
tional cost, notably, they do not enable the use of separate fluid and structure solvers. The
second family is the partitioned procedures which separate the solid and fluid solver as
two distinct softwares, see e.g. [Fernández and Moubachir, 2005a,Badia et al., 2008a,De-
groote et al., 2008, Van Brummelen, 2011, Baek and Karniadakis, 2012]. In a partitioned
scheme, information is exchanged between the two solvers. For instance, in a classical
Dirichlet-Neumann FSI coupled model, the velocity of the structure at each time step is
transmitted to the fluid solver, which solves the boundary conditions of a Dirichlet prob-
lem at the fluid-structure interface. Subsequently, the fluid solver returns the fluid stress to
the solid solver, which then solves a Neumann problem.

For the partitioned approach, the time coupling mechanism dictates the sequence in
which these information exchanges occur between the two solvers. The scheme is defined
as strongly coupled if the interface conditions are still satisfied after time discretisation;
conversely, it is defined as weakly coupled (or loosely coupled) if some spurious numer-
ical power may appear at the fluid-structure interface. The implicit coupling is known
to be accurate and unconditionally stable, but it can also increase computational cost as
it requires to solve a non-linear coupled scheme at each time step. Conversely, loosely
coupled schemes are much more efficient from a computational standpoint; however, for a
small ratio between solid and fluid density or for slender structures, they are known to suf-
fer from instability, emerging from the so-called added mass effect [Nobile, 2001]. Many
strategies have been explored to counteract these instability issues, involving alternative
coupling algorithms than the classical Dirichlet-Neumann method. Among them we find
the Robin-Neumann methods [Fernández et al., 2013, Fernández et al., 2015b, Tuković
et al., 2019] or Robin-Robin method [Burman et al., 2022b,Burman et al., 2022a,Burman
et al., 2023].

This PhD project focuses on the development and analysis of mixed-dimensional cou-
pling conditions built on averaged operators for fluid-structure interaction problems. Ad-
ditionally, we aim to develop effective and accurate numerical methods to resolve the
resulting coupled problem.
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1.4 Overview on thesis content

In the context of the modeling and mathematical background discussed in the previous
sections, we provide here a detailed description of the main original contributions of each
chapter of this thesis, with the objective of describing the role of each chapter within the
thesis and describing a clear vision of the unity of the entire work.

1.4.1 Chapter 2: A mixed-dimensional formulation for the simulation of slender
structures immersed in an incompressible flow

In the first chapter, we propose a new mathematical and computational framework for
fluid-structure interaction systems in which a 3D fluid mechanically interacts with an im-
mersed slender structure defined in a 1D domain. We establish the continuous formulation
using the Navier-Stokes equations for the fluid and the linear Timoshenko beam model
for the structure, we complement these models with a reduced order version of the fluid-
structure interface coupling conditions. The basic idea consists of combining a fictitious
domain approach with a projection of the kinematic coupling conditions onto a finite-
dimensional space FN defined within the 1D structure domain. Specifically, in each cross
section, the original kinematic coupling conditions are replaced by their projection on the
first N modes of the Fourier expansion at the reconstructed 2D fluid-structure interface.
To this purpose„ we consider Ω a bounded domain in R3 and pωε a free-stress reference
configuration for the beam. We assume that pωε is an elliptic cylinder of length L, with
a centerline aligned with the z-axis and elliptic cross sections of size proportional to ε.
We denote by pωεpsq the cross-section centered in sez and by ps, νq the elliptic cylindri-
cal surface coordinate defined in Bpωε. The current beam configuration, given by ωεptq, is
defined in terms of a deformation map ϕ : pωε ˆ R` Ñ R3 such that ωεptq “ ϕppωε, tq.
Subsequently, we denote by Σεptq “ BωεptqzBΩ and Ωptq “ ΩzΣεptq the current po-
sition of the fluid-structure interface and the domain occupied by the fluid, respectively.
The reduced order formulation we consider is introduced in Section 2.2 as follows: find
u : Ω Ñ R`, p : Ω Ñ R` the velocity and pressure of the fluid, and r : p0, LqˆR` Ñ R3,

XXII



1.4. Overview on thesis content

θ : p0, Lq ˆ R` Ñ R3 the displacement and rotation of the beam such that

Fluid sub-problem:
$

’

&

’

%

ρfBtu` ρfu ¨ ∇u´ div σpu, pq “ 0 in Ωptq,

div u “ 0 in Ωptq,

u “ 0 on Γ.

(1.4.1)

Structure sub-problem:
#

ρbAB
2
t r ´GBs

`

Bsr ´ θ ^ ez
˘

“ f in p0, Lq ˆ R`,

ρbIB
2
t θ ´EB

2
sθ ´ ez ^G

`

Bsr ´ θ ^ ez
˘

“ m in p0, Lq ˆ R`.
(1.4.2)

Reduced order coupling conditions:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ϕppx, tq “ sez ` rps, tq ` Λps, tqppx´ sezq, s “ px ¨ ez, ppx, tq P pωε
ˆ R`,

ΠNpuq “ ΠNpBtϕ ˝ ϕ´1
t q on Σε

ptq,

fpsq “ ´

ż

ΣεptqXBωεps,tq

λN @s P p0, Lq,

mpsq “ ´

ż

ΣεptqXBωεps,tq

pI3 ´ rps, tq ´ pϕ´1
t ¨ ezqezq ^ λN @s P p0, Lq,

λN “
`

σpu, pq
`n`

´ σpu, pq
´n´

˘

P FN .

(1.4.3)

where Λ : p0, Lq ˆ R` Ñ SOp3q is the orthogonal rotation matrix associated to the
rotation vector θ and ΠN is the L2 projector on the space

FNptq
def
“

"

pv ˝ ϕ´1
t P L2

pΣε
ptqq

ˇ

ˇ

ˇ

ˇ

pvps, νq “ a0psq

`

N
ÿ

k“1

pakpsq cospkνq ` bkpsq sinpkνqq,ak, bk P L2
p0, Lq

*

(1.4.4)

Considering a Dirichlet-Neumann partitioned approach, the reduced order coupled model
(1.4.1)-(1.4.3) consists for the fluid sub-problem to solve Navier-Stokes equations in the
whole domain Ωptq (hence the denomination fictitious domain) where the kinematic condi-
tions are projected on the finite dimensional FNptq via Lagrange multipliers. Typically for
N “ 0, on each cross section of the beam, we impose the equality of the average velocity
of the fluid and structure. For the structure sub-problem, it consists in solving a Neumann
problem where the external forces and torques on the right-hand side are computed from
the fluid Lagrange multiplier.
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In Section 2.3, we present the discretization of the coupled problem (1.4.1)-(1.4.3)
using a P1{P1 stabilized finite element method on Ω for the discretization of the fluid
velocity-pressure pair u{p, and P1{P1 finite elements method on p0, Lq for the discretiza-
tion of the pair r{θ. We denote by Vh and Qh the discrete spaces for the approxima-
tion of the fluid velocity u and pressure p respectively, Yh the discrete space for the
approximation of the beam displacement r and rotation θ, and F n

N,H a discretization of
FNptq where the coefficients ak, bk are taken in YH . For the time discretization, we
consider an explicit treatement of the geometric coupling condition given by the defor-
mation map ϕn

H and an implicit treatement of the kinematic and dynamics coupling con-
ditions. The fully discrete formulation of the strongly coupled problem (1.4.1)-(1.4.3)
writes: find pun

h, p
n
h,λ

n
N,H , r

n
H ,θ

n
Hq P Vh ˆ Qh ˆ F n

N,H ˆ YH ˆ YH with 9r
n´ 1

2
H “ Bτr

n
H

and 9θ
n´ 1

2
H “ Bτθ

n
H such that

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ϕn
H “ pI3 ¨ ezqez `

Ęrn´1
H `

ĘΛn´1
h

`

I3 ´ pI3 ¨ ezqez
˘

in pωε,

Σε,n
“ ϕn

HppΣε
q,

ρfpBτu
n
h,vhqΩ ` afΩ,h

`

un´1
h ; pun

h, p
n
hq, pvh, qhq

˘

` ρb
`

ABτ 9rnH , δrH
˘

p0,Lq
` ρb

`

IBτ
9θnH , δθH

˘

p0,Lq

` abH
`

pr
n´ 1

2
H ,θ

n´ 1
2

H q, pδrH , δθHq
˘

´
`

λn
N,H ,

ĚδrH ` ĚδθH ^ pI3 ´
Ęrn´1
H ˝ pϕn

Hq
´1

´ ppϕn
Hq

´1
¨ ezqezq

˘

ε,n

`
`

µN,H ,u
n
h ´ Bτϕ

n`1
H ˝ pϕn

Hq
´1
˘

ε,n
“ 0

(1.4.5)

for all pvh, qh,µN,H , δrH ,θHq P Vh ˆ Qh ˆ F n
N,H ˆ YH ˆ YH , where afΩ,h and abH are

the bilinear forms associated to the fluid and solid sub-problems, respectively. In the same
section, we also prove the unconditional stability of the reduced order coupled problem
(1.4.5) under the assumption of small rotations. Finally, to illustrate the accuracy of the
proposed strategy, in Section 2.4 we compare it with two other approaches, a full order
model based on the ALE approach and another reduced mixed-dimensional model with
coupling conditions on the beam centerline. More specifically, we investigate the influ-
ence of the Reynolds number, of the fluid mesh refinement, and of the number of Fourier
modes taken for the Lagrange multiplier space. In particular, when full order approaches
usually require the background fluid mesh to correctly resolve the reconstructed 2D beam
interface, we show that our method gives good result, as least qualitatively, for a beam
thickness close to the mesh size. On the other side, we give numerical evidence that its
mathematical derivation from a full order formulation also ensures the convergence of the
discrete formulation for small mesh size. Finally, to show the robustness of our reduced
order formulation, we extend it to the case of multiple beams with a nonlinear beam model
and contact model, see Figure 1.2.
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(a) Stokesian flow (b) Navier-Stokasian flow

Figure 1.2: Snapshots of the fluid velocity magnitude for multiple beams immersed in a Stokesian (left) and
Navier-Stokes (right) using discrete formulation (1.4.5)

1.4.2 Chapter 3: Mathematical and numerical analysis of reduced order interface
conditions and augmented finite element method for mixed-dimensional prob-
lems

In this chapter, we perform a rigorous analysis of the 2D Problem (1.4.1)-(1.4.3) that arises
by studying a transversal section of the problem introduced in Chapter 2. Instead of dealing
with a two-way interaction, we focus on the obstacle problem such that the kinematic
coupling conditions are substituted with a non-homogeneous Dirichlet condition on a fixed
circular internal boundary Bωε. We also make a drastic simplification of the fluid model,
stepping back to the scalar Poisson equation. More specifically, introducing FN defined
by

FN
def
“ tv P L2

pBωε
q :

vpεqpθq “ a0 `

N
ÿ

k“1

pak cospkθq ` bk sinpkθqq, ak, bk P Ru, (1.4.6)

the problem we consider in Chapter 3 is formulated as follows: find puεN , λ
ε
Nq P H1

0 pΩq ˆ

FN such that
"

p∇uεN ,∇vqΩ ´ pλεN , vqε “ pf, vqΩ @v P H1
0 pΩq,

pµN , u
ε
Nqε “ pµN , ubqε @µN P FN ,

(1.4.7)

with pub, fq P H
1
2 pBωεq ˆ L2pΩq, suppf X ωε “ H and p¨, ¨qε is the L2 rescaled scalar

product on Bωε. Note that many works exist on the mathematical analysis and numeri-
cal approximation of the Poisson problem with small inclusions (see the introduction of
Chapter 3 for a non exhaustive review). Our objective is not, in this case, to compete with
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Chapter 1. Introduction

these methods, but to understand the strenghts and weaknesses of the reduced order model
introduced in Chapter 2, and possibly propose improvements. In Section 3.3, in a first part,
we prove the well-posedness of Problem 1.4.7 and provide uniform a-priori estimates on
the solution puεN , λ

ε
Nq with respect to ε. This leads to the following theorem.

Restated Theorem 3.3.1. Problem (1.4.7) admits a unique solution puεN , λ
ε
Nq in H1

0 pΩq ˆ

FN . Moreover, this solution satisfies the following energy bound:

}uεN}1,Ω ` }λεN}´ 1
2
,ε À }ub} 1

2
,ε ` }f}Ω. (1.4.8)

This theorem implies that the solution of the reduced order problem continuously de-
pends on the data and the continuity constant does not dependent on ε and N . In a second
part, we consider the convergence of Problem 1.4.7, as ε Ñ 0, towards the following full
order Poisson problem: find puε, λεq P H1

0 pΩq ˆ H´ 1
2 pBωεq such that

#

p∇uε,∇vqΩ ´ xλε, vy´ 1
2
,Bωε “ pf, vqΩε @v P H1

0 pΩq,

xµ, uεy´ 1
2
,Bωε “ xµ, uby´ 1

2
,Bωε @µ P H´ 1

2 pBωε
q.

(1.4.9)

As mentioned in the previous section, since the reduced order model is derived from the
original full order one, we expect, at least in the simplified framework we consider here,
to be able to derive some convergence estimates when ε is small. The main result on the
ε-convergence is given in Theorem 3.3.4.

Restated Theorem 3.3.4. Let puε, λεq P H1pΩq ˆH´ 1
2 pBωεq be a solution of (1.4.9) and

puεN , λ
ε
Nq P H1

0 pΩq ˆ FN solution of (1.4.7), with ub P FN , we have for all ε P p0, ρq,

}uεN ´ uε}1,Ωε ` ε}λεN ´ λε}´ 1
2
,ε À

ˆ

ε

ρ

˙N`1

p}ub} 1
2
,ε ` }f}Ωq (1.4.10)

Note that Theorem 3.3.4 implies that, for a given ε, by increasing the number of Fourier
modes, we can increase the accuracy with respect to the solution of Problem (1.4.9). It also
highlights the necessity of considering a minimum number of modes N ě 1 to achieve
convergence of the Lagrange multipliers for the rescaled norm } ¨ }´ 1

2
,ε. This is an im-

portant aspect of the method since for the 3D problem introduced in Chapter 2, the La-
grange multiplier is related to the forces that are exchanged at the interface, see (1.4.3).
In Section 3.4, we introduce the discretization of Problem (1.4.7). To be consistent with
Chapter 2, we investigate a fictitious domain method with a mesh that does not match to
the internal boundary Bωε. Setting Xk

hpΩq the space of Pk continuous finite element in Ω

and V k
h

def
“ Xk

hpΩq X H1
0 pΩq the space for the discrete approximation of uεN , the standard

finite element approximation of Problem (1.4.7) writes: find puεN,h, λ
ε
N,hq P V k

h ˆFN such
that

p∇uεN,h,∇vhqΩ ´ pλεN,h, vhqε ` pµN , u
ε
N,h ´ ubqε “ pf, vhqΩ (1.4.11)
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for all pvh, µNq P V k
h ˆ FN . Under the assumption N ď k, we establish the following

general a-priori estimates for the discrete error of Problem (1.4.11) :

}uεN ´ uεN,h}1,Ω À |logpεq|
1
2 p1 `

h

ε
q
N inf

vhPV k
h

}uεN ´ vh}1,Ω,

}λεN ´ λεN,h}´ 1
2
,ε À |logpεq|

1
2 p1 `

h

ε
q
2N inf

vhPV k
h

}uεN ´ vh}1,Ω,

As expected, the approximation with standard finite element suffers from a locking effect
when N ě 1, where the inf-sup condition, and consequently, the constant associated with
the approximation error explodes, when the ratio ε{h is small. This phenomenon increases
with higher values ofN . To eliminate the constraintN ď k and mitigate the locking effect
when N ě 1, we propose a stabilized version of Problem (1.4.11) by adding the following
term to the variational formulation:

shpµN , λNq “ γλ

ˆ

h

ε

˙

ε´1
pµN , λNqε @pµN , λNq P FN ,

with γ ą 0 a user-defined parameter. We then obtained the following a priori estimate in
terms of the approximation error:

}puεN ´ uεN,h, λ
ε
N ´ λεN,hq}ε À |logpεq|

1
2 inf
vhPV k

h

}uεN ´ vh}1,Ω ` ε´ 1
2

ˆ

h

ε

˙
1
2

}λεN}ε.

where

}pvh, µq}ε
def
“

ˆ

}vh}
2
1,Ω ` }µ}

2
´ 1

2
,ε

`

ˆ

h

ε

˙

ε´1
}µ}

2
ε

˙
1
2

@ pvh, µq P V k
h ˆ FN .

Although the stabilized method helps to limit the phenomenon of numerical locking, in
both the standard and the stabilized discrete formulations, the convergence rate of the finite
element methods is limited by the low regularity of the solution uεN . Indeed, due to the
gradient jump of uεN across Bωε, uεN is not more regular than H

3
2

´ηpΩq, and consequently
for any interpolation operator Πk

h on Xk
hpΩq, we have at best

}uεN ´ Πk
hu

ε
N}Ω ` h}∇puεN ´ Πk

hu
ε
Nq}Ω À h

3
2

´η
}uεN} 3

2
´η,Ω @k P N‹.

Furthermore, for s ě 1 and some specific boundary conditions,

}uεN}s,Ω „
1

εs´1
when ε Ñ 0, (1.4.12)

such that the discrete approximation error explodes as ε{h is small. To address the sub-
optimality of the standard finite element method, we propose to enrich the finite element
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space by adding well-chosen functions solutions of the Poisson problem. These additional
functions aim at improving the approximation of the jump at the interface and the singular
behavior of uεN described in (1.4.12). The resulting variational formulation is given by:
find pũεN,h, λ̃

ε
N,hq P V k

N,h ˆ FN such that
#

p∇ũεN,h,∇vhqΩ ` pλ̃εN,h, vhqε “ pf, vhqΩ @vh P V k
N,h,

pµN , ũ
ε
N,hqε “ pµ, ubqε @µN P FN .

(1.4.13)

where V k
N,h is the augmented finite element space. Subsequently, we prove that this

augmented finite element approach restores optimal convergence, as asserted in Theo-
rem 3.4.6.

Restated Theorem 3.4.6. Let k P N˚. We assume that f belongs to Hk´1pΩq. Let
puεN , λ

ε
Nq be the solution of problem (1.4.7) and pũεN,h, λ̃

ε
N,hq be the solution of problem

(1.4.13). Then, we have

}uεN ´ ũεN,h}1,Ω ` }λεN ´ λ̃εN,h}´ 1
2
,ε À |logpεq|

1
2hk

´

}f}k´1,Ω ` }ub} 1
2
,ε

¯

. (1.4.14)

Theorem 3.4.6 proves that the augmented finite element method enables to derive a
numerical error estimate of any order in h and to reduce considerably the interdependence
between the mesh size and the obstacle size. Finally, the previous results are supported
by several numerical experiments in Section 3.5, see for example Figure 1.3 for some
numerical evidence of the convergence rate of the augmented finite element method given
by Theorem 3.4.6.

1.4.3 Chapter 4: A new computational approach for the simulation of small parti-
cles in a two-dimensional Stokesian flow: formulation and error analysis

This chapter keeps the overall structure of Chapter 3 while extending the analysis to the
stationary Stokes problem. It pays special attention to small inclusions and the conver-
gence of the Lagrange multipliers, which constitute a critical aspect when addressing cou-
pled problems. While, in a first part, for the mathematical analysis, we still consider the
obstacle problem, we also introduce in a second part the 2D fluid-structure interaction
model for rigid particles immersed in a Stokesian fluid. While the Poisson problem es-
sentially serves as a theoretical basis for the 3D one, its extension to the Stokes equations
coupled with small particles via reduced order coupling conditions has an intrinsic value.
Nonetheless, many other numerical methods are available for addressing such problem. In
the introduction of Chapter 4, we provide a non exhaustive review of existing solutions in
this domain. This chapter aims at bridging the gap, at least partially, between Chapter 2
and Chapter 4, the main objective being to lay the mathematical foundation for extending
our analysis to a 3D framework in a future work. Specifically, on a continuous level, in
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Figure 1.3: Numerical error for the augmented finite element method

Section 4, we consider the following stationary Stokes problem with reduced order Dirich-
let boundary conditions: find puε

N , p
ε
N ,λ

ε
N , q P V ˆ Q ˆ FN such that

$

’

&

’

%

2pεpuε
Nq, εpvqqΩ ´ ppεN , div vqΩ ´ pλε

N , div vqΩ “ 0 @v P V ,

pq, div uε
NqΩ “ 0 @q P Q,

pµN ,u
ε
Nqε “ pµN ,vb ` εwbeθqε @µN P FN ,

(1.4.15)

with vb P R3, , wb P R and where FN is the vector counterpart of the space FN given in
(1.4.6) such that

FN
def
“

␣

v P L2
pBωε

q :

vpεqpθq “ a0 `

n
ÿ

k“1

pak cospkθq ` bk sinpkθqq, ak, bk P R2
(

.
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The corresponding full order Stokes problem with standard Dirichlet boundary conditions
reads: find puε, pε,λεq P V ˆ Q ˆH

´ 1
2

‹ pBωεq such that
#

2pεpuε
q, εpvqqΩ ´ ppε, div vqΩ ` pq, div uε

qΩ ´ xλε,vy´ 1
2
,Bωε

` xµε,uε
´ vb ´ wbeθy´ 1

2
,Bωε “ 0

(1.4.16)

for all pv, q,µq P V ˆQˆH
´ 1

2
‹ pBωεq. The well-posedness of Problem (1.4.15) and its ε-

convergence towards the Problem (1.4.16) are stated in Theorem 4.2.1 and Theorem 4.2.5,
respectively.

Restated Theorem 4.2.1. Problem (1.4.16) admits a unique solution puε
N , p

ε
N ,λ

ε
Nq in

V ˆ Q ˆ FN . Moreover, the following a priori estimate holds:

}uε
N}1,Ω ` |logpεq|

´ 1
2 }pεN}Ω ` }λε

N}´ 1
2
,ε À |vb| ` ε|wb|. (1.4.17)

Restated Theorem 4.2.5. Let puε, pε,λεq P V ˆ Q ˆ H´ 1
2 pBωεq and puε

N , p
ε
N ,λ

ε
Nq P

V ˆ Q ˆ FN be solution of (1.4.15) and (1.4.16), respectively. There exists 0 ă ρ̃ ă ρ
such that for all ε P p0, ρ̃q, we have

}uε
N ´ uε

}1,Ω ` ε}λε
N ´ λε

}´ 1
2
,ε ` |logpεq|

´ 1
2 }pεN ´ pε}Ω

À p1 ` Nq

ˆ

ε

ρ

˙N`1

p|vb| ` ε|wb|q. (1.4.18)

Similarly to the Poisson case, we observe that the convergence order in ε of the reduced
order Stokes problem is equal to the number of Fourier modes N ` 1. Furthermore, at
least N ě 1 Fourier modes are necessary to ensure the convergence of the Lagrange
multipliers with the rescaled norm } ¨ }´ 1

2
,ε. At the discrete level, similarly to Chapter 3,

we introduce in Section 4.3 two numerical methods based on finite element discretization
and unfitted mesh. The first method employs a low-order stabilized finite element approach
using a P1{P1 discretization for the pair puε

N , p
ε
Nq. Denoting by Vh and Qh the discrete

spaces for the approximation ofuε
N and pεN , respectively, it reads: find puε

N,h, p
ε
N,h,λ

ε
N,hq P

Vh ˆ Qh ˆ FN such that
$

’

’

’

&

’

’

’

%

2pεpuε
N,hq, εpvhqqΩ ´ ppεN,h, div vhqΩ ´ pλε

N,h,vhq “ 0 @vh P Vh,

pqh, div u
ε
N,hqΩ ` γp|logpεq|h2p∇qh,∇pεN,hqΩ “ 0 @qh P Qh,

pµN ,u
ε
N,hq ` γλ

ˆ

h

ε

˙

ε´1
pµN ,λ

ε
N,hqε “ pµN ,vb ` εwbeθqε @µN P FN ,

(1.4.19)

where γλ, γp ą 0 are user-defined parameters uniformly independent of N , h and ε. We
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then derive the following a priori error bounds:

}puε
N ´ uε

N,h, p
ε
N ´ pεN,h,λ

ε
N ´ λε

N,hq}ε

À | logpεq|
1
2h

1
2

´η
}uε

N} 3
2

´η,Ω ` |logpεq|
1
2h

1
2

´η
}pεN} 1

2
´η,Ω ` ε´ 1

2

ˆ

h

ε

˙
1
2

}λεN}ε,

where

}pvh, qh,µNq}ε
def
“

`

}vh}
2
1,Ω ` |logpεq|

´ 1
2 }ph}

2
Ω ` }µN}

2
´ 1

2
,ε

` h2|logpεq|}∇ph}
2
Ω `

ˆ

h

ε

˙

ε´1
}µN}

2
ε

˘
1
2

for all pvh, qh,µNq P Vh ˆ Qh ˆ FN . This estimate emphasize that, similar to the Pois-
son problem introduced in Chapter 3, the stabilized finite element method introduced in
(1.4.19) is sub-optimal and the maximum h-convergence rate for both the velocity and
pressure unknowns is of order 1

2
´ η. Moreover, we can show that the H

3
2

´η norm of uε
N

and the H
1
2

´η norm of pεN are expected to behave as ε´ 1
2

`η as ε goes to 0. Consequently,
the error bounds may explode as h{ε Ñ 0. Subsequently, we propose a high-order finite
element method designed to address both of the aforementioned issues. Again, similarly
to Chapter 3, it consists in enriching the finite element spaces Vh and Qh with an explicit
solution of the Stokes problem for correctly approximating the singular part of uε

N and
pεN . The specificity of the Stokes equations is that we need to enrich both the velocity
and the pressure space. Moreover, we consider an inf-sup sable pair of conforming el-
ements pV k

h , Q̃
k´1
h q for the approximation of the velocity and pressure space such that

div pV k
h q Ă Q̃k´1

h . The discrete formulation of the augmented finite element method
reads: find pũε

N,h, p̃
ε
N,h, λ̃

ε
N,hq P V k

N,h ˆ Q̃k´1
N,h P FN such that

2pεpũε
N,hq, εpṽN,hqqΩ ´ pp̃εN,h, div; ṽN,hqΩ ´ pλ̃ε

N,h, ṽN,hqε

` pq̃N,h, div ũ
ε
N,hq ` pµN , ũ

ε
N,hqε “ pµN ,vb ` wbeθqε (1.4.20)

for all pṽN,h, q̃N,h,µNq P V k
N,h ˆ Q̃k´1

N,h ˆ FN . The approximation properties of the aug-
mented finite element method (1.4.20) are given in Theorem 4.3.8.

Restated Theorem 4.3.8. Let k ě 1. Let puε
N , p

ε
N ,λ

ε
Nq be the solution of problem (1.4.15)

and pũε
N,h, p̃

ε
N,h, λ̃N,hq be the solution of Problem (1.4.19). Then we have the following,

}uε
N ´ ũε

N,h}1,Ω ` |logpεq|
´ 1

2 }pεN ´ p̃εN,h}Ω ` }λε
N ´ λ̃ε

N,h}´ 1
2
,ε

À |logpεq|
1
2hkp|vb| ` ε|wb|q
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The convergence rate obtained for the Stokes case is similar to the Poisson case. In
particular, it enables to restore the optimal convergence in h and to considerably reduce
the dependence of the convergence constant with the ratio h{ε. In Section 4.4, we intro-
duce a fully discrete formulation for the reduced order coupled model of small particles
immersed in a two-dimensional Stokesian flow. For the time discretization, we consider an
explicit treatment of the deformation map ϕn

H and an implicit treatment of the kinematic
and dynamic coupling conditions. The fully discrete strongly coupled model writes: Find
puε,n

N,h, p
ε,n
N,h,λ

ε,n
N,h, r

n, θnq P Vh ˆ Qn
h ˆ F n

N,h ˆ R2 ˆ R with 9rn “ Bτr
n and 9θn “ Bτθ

n

such that
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ϕn
hppxq “ rn´1

` Λn´1
px @px P pωε, ωε,n

“ ϕn
hppωε

q,

afΩ
`

puε,n
N,h, p

ε,n
N,hq, pvh, qhq

˘

´ 1{µfs
p
hpqh, p

ε,n
N,hq ´ 1{µfs

λ
hpµN ,λ

ε,n
N,hq

` IBτ
9θnδθ ` MBτ 9rn ¨ δr

´
`

λn
N,h,vh ´ δr ´ δθpI2 ´ rn´1

q
K
˘

ε,n

`
`

µN,h,u
ε,n
N ´ 9rn´1

´ 9θn´1
pI2 ´ rn´1

q
K
˘

ε,n
“ 0

(1.4.21)

for all pvh, qh,µN , δr, δθq P V n
h ˆ Qn

h ˆ F n
N,h ˆ R2 ˆ R, where the bilinear form afΩ :

pVh ˆ Qn
hq ˆ pVh ˆ Qn

hq Ñ R is defined by

afΩppuh, phq, pvh, qhqq
def
“ 2µfpεpuhq, εpvhqqΩ ´ pph, div vhqΩ ` pqh, div uhqΩ

In Section 4.5, we illustrate with numerical experiments the results presented above. We
also analyse similarly to the numerical experiments implemented in Chapter 2 the role of
the Lagrange multiplier space on the fluid and solid dynamics. In Figure 1.4, we provide
some snapshots of the velocity magnitude for a falling elliptical particle in a Stokesian
flow obtained with the discrete formulation (1.4.21) using N “ 1 modes. We can observe
that both the translation and rotation dynamics are captured by the reduced order scheme.

1.4.4 Chapter 5: Loosely coupled Robin-Robin scheme for the simulation of slender
bodies immersed in an incompressible flow

In this last chapter, we return to the analysis of the 3D addressed in Chapter 2. The main
objective of defining the reduced order coupling conditions (1.4.3) is to propose an ap-
proach that enables the simulation of complex systems, possibly including a large number
of slender structures, by reducing the cost associated to the computation of the coupling
conditions. In Chapter 2, the time discretization of the coupling conditions is based on a
semi-implicit scheme, with an explicit treatment of the geometric coupling conditions and
an implicit treatment of the kinematics and dynamics coupling conditions. As mentioned
in Section 1.3.3, one of the main advantages of this approach is that it delivers uncondi-
tional stability. However, it also requires a large number of iterations at each time step to
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1.4. Overview on thesis content

Figure 1.4: Snaphots of the fluid velocity magnitude at time t P t0, 500, 1000, 2000, 4000u for a falling
elliptical particle in a Stokesian flow obtained with formulation (1.4.21) and N “ 1

solve the non-linear coupled system, which can be computationally expensive. Ideally, ex-
plicitly solving the fluid and structure sub-problems, meaning addressing them only once
per time step, would significantly reduce the computational cost of the resolution of the
overall system. Unfortunately, in scenarios with highly slender structures or a low ratio
between the structures and fluid density, standard explicit methods often suffer from insta-
bility. Subsequently, in this final chapter, we introduce a stable loosely coupled scheme,
based on Robin-type coupling conditions for the fluid and solid sub-problems, specifically
developed for the simulation of structures defined on domain of co-dimension two with
respect to the fluid domain. To this purpose, we introduce pF0,H and pFN‹,H such that

pF0,H
def
“
␣

pvH P L2
pBpωε

q : pvHps, νq “ a0,Hpsq, a0,H P YH

(

.

pFN‹,H
def
“
␣

pvH P L2
pBpωε

q :

pvHps, νq
def
“

N
ÿ

k“0

ak,H cospkνq ` bk,H sinpkνq, ak,H , bk,H P YH

(

,

and pΠ0,H , pΠN‹,H the L2 orthogonal projector on pF0,H and pFN‹,H respectively. If we
neglect the rotation contributions in the kinematic and dynamic coupling conditions, the
coupling conditions for the Robin-Robin loosely coupled scheme write for the fluid and
structure sub-problems, respectively:

´ pλn
0,H ,

ĚδrHq
pε ` αp 9r

n´ 1
2

H ,ĚδrHq
pε

“ αpun´1
h ˝ ϕn´1

H ,ĚδrHq
pε ´ pλn´1

0,H ,
ĚδrHq

pε @δrH P Yh (1.4.22)
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and
$

’

’

&

’

’

%

´ pµ0,H ,λ
n
0,Hq

pε ` αpµ0,H ,u
n
h ˝ ϕn

Hq
pε

“ αpµ0,H , 9r
n´ 1

2
H q

pε ´ pµ0,H ,λ
n´1
0,H q

pε @µ0,H P pF0,H

pµN‹,H ,uh ˝ ϕn
Hq

pε “ 0 @µN‹,H P pFN‹,H ,

(1.4.23)

The fully discrete formulation of the coupled problem (2.2.4),(2.2.21) with Lagrange mul-
tiplier space (1.4.4) and Robin-Robin coupling conditions (1.4.22)-(1.4.23) is given in
Section 5.2 by the following algorithm: @n ě 0

Solid sub-problem:

Find prnH ,θ
n
Hq P YH ˆ YH such that p 9r

n´ 1
2

H , 9θ
n´ 1

2
H q “ pBτr

n
H , Bτθ

n
Hq and

$

’

’

’

&

’

’

’

%

ρb
`

ABτ 9rnH , δrH
˘

p0,Lq
` ρb

`

IBτ
9θnH , δθH

˘

p0,Lq

` abH
`

pr
n´ 1

2
H ,θ

n´ 1
2

H q, pδrH , δθHq
˘

` αp 9r
n´ 1

2
H ´ un´1

h ˝ ϕn´1
H ,ĚδrHq

pε “ ´
`

λn´1
0,H , δrHq

pε

(1.4.24)

Deformation map:
ϕn

H “ pI3 ¨ ezqez ` ĎrnH ` ĚΛn
H

`

I3 ´ pI3 ¨ ezqez
˘

in pωε. (1.4.25)
Fluid sub-problem:

Find pun
h, p

n
h,λ

n
N,Hq P Vh ˆ Qh ˆ pFN,H ˆ YH ˆ YH such that

$

’

’

’

’

’

&

’

’

’

’

’

%

ρfpBτu
n
h,vhqΩ ` afΩ,h

`

un´1
h ; pun

h, p
n
hq, pvh, qhq

˘

´ pλn
N,H ,vh ˝ ϕn

Hq
pε

` αpµ0,H ,u
n
h ˝ ϕn

H ´ 9r
n´ 1

2
H q

pε ` pµ0,H ,λ
n
0,H ´ λn´1

0,H q
pε

` pµN‹,H ,u
n
h ˝ ϕn

Hq
pε “ 0,

λn´1
0,H “ pΠ0,Hpλn´1

N,Hq, λn
0,H “ pΠ0,Hpλn

N,Hq.

(1.4.26)

for all pvh, qh,µN,H , δrH ,θHq P Vh ˆ Qh ˆ pFN,H ˆ YH ˆ YH with pµ0,H ,µN‹,Hq “

ppΠ0,HpµN,Hq, pΠN‹,HpµN,Hqq. The stability of Algorithm (1.4.24)-(1.4.26) is proved in
Section 5.2.2 as stated in Theorem 5.2.1.

Restated Theorem 5.2.1. Let tpun
h, p

n
h,λ

n
N,H , r

n
H ,θ

n
Hqu be given by Algorithm (1.4.24)-

(1.4.26). There holds

En
`

n
ÿ

m“1

Dm
ď E0

@n ě 0, (1.4.27)
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where the discrete mechanical energy En of the system is defined by

En def
“ρf}un

h}
2
Ω ` ρb} 9rnH}

2
A,p0,Lq ` ρb} 9θnH}

2
I,p0,Lq ` }prnH ,θ

n
Hq}

2
b,H

` τα}pΠ0,Hpun
h ˝ ϕn

Hq}
2
pε `

τ

α
}λn

0,H}
2
pε

Dn def
“2µfτ}εpun

hq}
2
Ω ` ρf}un

h ´ un´1
h }

2
Ω ` 2ατ} 9r

n´ 1
2

H ´ pΠ0,Hpun´1
h ˝ ϕn´1

H q}
2
pε.

with
} ¨ }A,p0,Lq

def
“

b

pA ¨, ¨qp0,Lq, } ¨ }I,p0,Lq
def
“

b

pI ¨, ¨qp0,Lq,

}¨, ¨}b,H
def
“

b

abH
`

p¨, ¨q, p¨, ¨q
˘

.

Finally, in Section 5.3, we consider some numerical tests used in Section 2.4 of Chap-
ter 2 and compare the solutions obtained with the semi-implicit coupled scheme (1.4.5)
and the Robin-Robin loosely coupled scheme (1.4.24)-(1.4.26) validating in this way the
accuracy of the proposed algorithm. In particular, we consider the multiple beams test
case presented in Figure 1.2 with Navier-Stokes equations for fluid model. Snapshots of
the velocity magnitude at time t “ 0.06 for the semi-implicit and Robin-Robin loosely
coupled scheme are provided in Figure 1.5.
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Chapter 1. Introduction

Formulation (1.4.24)-(1.4.26), N “ 2

Formulation (1.4.5), N “ 2

Figure 1.5: Snapshots of the fluid velocity magnitude for multiple beams immersed in a Navier-Stokes flow
with formulation (1.4.24)-(1.4.26) (up) and formulation (1.4.5) (down), N “ 2 at time t “ 0.06.
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CHAPTER2
A mixed-dimensional formulation for the simulation

of slender structures immersed in an an
compressible flow

Corresponding to the preprint [Lespagnol et al., 2023].

2.1 Introduction

In this chapter, we introduce a new modelling and computational framework for the simu-
lation of slender structures immersed in a three-dimensional (3D) flow. Slender structures
are characterized by a low ratio between the transversal size and the longitudinal length.
Owing to the geometrical properties of slender structures, many models have exploited the
mixed-dimensional nature of these coupled systems with the purpose of developing more
efficient computational approaches, in which the solid balance equations are written in a
one-dimensional domain (1D). A specific case we explore in this context is the use of beam
theory for the solid balance equations, resulting in a particular case of fluid-structure inter-
action problems also known as fluid-beam interaction, (see Section 1.2.2 for an overview
on beam theory). A widely used modeling simplification when coupling general media
featuring a dimensional gap of one, viz., 2D-1D or 3D-2D coupling consists in identifying
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Chapter 2. A mixed-dimensional formulation for the simulation of slender structures
immersed in an an compressible flow

the beam centerline with the fluid-structure interface by neglecting the beam thickness (see
e.g [Baaijens, 2001, Boilevin-Kayl et al., 2019]). These models were proved to be a good
approximation of the original fully 3D or 2D problem when the thickness of the slender
body tends to 0 (see, e.g., [Chapelle and Ferent, 2003, Landajuela et al., 2017]). How-
ever, in cases where 3D flows interact with 1D beams, the situation is much more delicate.
Such dimensional gap lead to ill-posed trace operators, complicating the formulation of
the load and motion transfer conditions. It also calls for innovative numerical techniques
to bridge the gap between local fluid dynamics near the beam and global behavior of the
system. Two distinct modeling approaches can be found in the literature. A first family of
methods is based on the formulation of the interface coupling conditions on the physical
(2D) reconstructed surface of the beam (see, e.g., [Maniyeri and Kang, 2012,Huang et al.,
2019, Ausas et al., 2022b]), while the second one reduces the complexity of the problem
by considering the interface as the (1D) centerline of the beam (see, e.g., [Griffith and
Lim, 2012, Wiens and Stockie, 2015, Wang et al., 2019, Hagmeyer et al., 2022, Hagmeyer
et al., 2023]). The strengths and weaknesses of each formulation as well as a review of
some existing numerical methods for the discretization of 3D-1D fluid-structure interac-
tion coupled problems are given in Sections 1.2.3 and 1.3.2, respectively.

In this chapter, we consider another modeling approach which the basic idea consists
in combining a fictitious domain methodology with a projection of the kinematic con-
straint onto a finite-dimensional space lying on the beam centerline. More precisely, on
each cross section of the beam, the original kinematic constraint is replaced by a con-
straint which acts only on the first N modes of the Fourier expansion of the velocity at
the interface (see [Khristenko et al., 2021] for a similar idea in the context of reinforced
materials). This method has been used in [Kuchta et al., 2021b] for N “ 0 for stationary
elliptic problems (use of averaged porjection operators). Notably, the work demonstrated
the well-posedness of both the continuous and discrete models within the framework of the
finite element method. To some extent, this approach could be seen as a bridge, rectifying
certain disparities among the aforementioned sets of fluid-beam interaction methodolo-
gies, whether employing a 2D or a 1D representation of the interface and aims to be a
compromise between accuracy, computational cost and robustness.

In order to illustrate the accuracy of the proposed strategy, we compare it with two
others approaches, a full order model based on the ALE approach with couplings con-
ditions on the reconstructed 2D interface and another reduced mixed-dimensional model
with coupling conditions on the beam centerline. In particular, we will investigate the in-
fluence of the Reynolds number, of the fluid mesh refinement, or of the number of Fourier
modes taken for the Lagrange multiplier space.

The rest of the chapter is organized as follows. In Section 2.2, we describe the fluid
and solid models, as well as the coupling conditions for the full order ALE coupled model
and two reduced mixed-dimensional coupled models. The discrete formulation of the
proposed model is provided in Section 2.3. A few computer implementation details of
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2.2. Continuous setting and mathematical formulation

the considered solution procedure are also given. Section 2.4 is devoted to the numerical
experiments, where we investigate how different model parameters impact the accuracy
and robustness of the proposed approach. Finally, a summary of the results of this chapter
together with some research perspectives are drawn in Section 2.5.

2.2 Continuous setting and mathematical formulation

In this section, we briefly present the beam and fluid models considered in this chapter.
We choose a linear Timoshenko beam formulation for the solid and the fluid is assumed to
satisfied the incompressible Navier-Stokes equations. Our approach will be presented in
Section 2.2.2.5 for the fluid and in Section 2.2.3.4 for the coupling conditions.

2.2.1 Timoshenko beam model

Let pex, ey, ezq be a given right-handed Cartesian frame. We consider a reference straight
beam of length L and elliptical cross-sections orthogonal to its centerline, denoted by
pωε def

“ εEpa, 1q ˆ p0, Lq. Here Epa, bq stands for an elliptical region in the pxOyq plane
with major axis of length a and a minor axis of length b, and ε is a parameter related to
the thickness of the beam. For s P p0, Lq, we denote by pωεpsq

def
“ εEpa, 1q ˆ tsu the

cross-section centered in sez, such that pωε “
Ť

sPp0,Lq

pωεpsq (see Figure 2.1). For the sake

of simplicity, we assume that pωε corresponds to the position of a beam at the initial time.
The motion of the beam is given in terms of the map ϕ : pωε ˆ R` Ñ R3, so that the
current configuration of the beam ωεptq is given by ωεptq “ ϕppωε, tq (see Figure 2.2).
In what follows, we consider a Timoshenko beam model, such that the cross-sections are
supposed to remain undeformable but may not necessarily remain perpendicular to the
beam centerline. The motion of the beam can hence be parametrized in the following way:

ϕppx, tq “ sez ` rps, tq ` Λps, tqppx´ sezq, s “ px ¨ ez, ppx, tq P pωε
ˆ R`, (2.2.1)

where r : p0, Lq ˆ R` Ñ R3 stands for the displacement of the centerline and Λ :
p0, Lq ˆR` Ñ SOp3q describes the rotation of the cross-sections. Here, SOp3q stands for
the Special Orthogonal group given by

SOp3q
def
“ tΛ P R3ˆ3 : ΛTΛ “ I3, det Λ “ 1u, (2.2.2)

where I3 denotes the identity matrix in R3ˆ3. Note, in particular, that the centerline Bptq
and the cross-sections pωεps, tqqsPp0,Lq of the current configuration of the beam are given
respectively by

Bptq
def
“ ϕ

`

pB, t
˘

, pB def
“ t0u ˆ t0u ˆ p0, Lq, ωε

ps, tq
def
“ ϕppωε

psq, tq.
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0

L

sezpωεpsq

Bpωε

ey
ez

ex

pωε “
Ť

sPp0,Lq

pωεpsq

(a) Reference configuration of the beam.

εa

ε

pωεpsq

Bpωεpsq

sez

pωεpsq “ εEpa, 1q ˆ tsu

(b) Elliptical cross-section of the beam in the reference
configuration.

E
a

1

(c) Reference ellipse.

Figure 2.1: Geometrical configuration of the beam and notations.

ϕt

Bpωε

pωεpsq

pωε

sez

pB

px

Bωεptq

ωεps, tq

ωεptq

rps, tq

Bptq

x “ ϕppx, tq

Figure 2.2: The deformation map.

Due to the orthogonality of the rotation matrix Λ, it can be given only in terms of three
independent parameters. One option is to consider the rotational vector, defined by

θ
def
“ θnK,
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2.2. Continuous setting and mathematical formulation

where nK is a unit vector defining the axis of rotation and θ “
?
θ ¨ θ is the angle of

rotation. We set Θ the skew symetric matrix associated to the vector θ such that for all
v P R3,

Θv “ θ ^ v,

where the symbol ^ denotes the cross product in three dimensions. Using Rodrigues’
rotation formula (see, e.g., [Dai, 2015]), the relation between the rotation matrix and the
rotational vector is then given by

Λ “ I3 `
sin θ

θ
Θ `

1 ´ cos θ

θ2
Θ2. (2.2.3)

Consequently, the dynamics of the beam will be given in terms of r and θ, which will
here be described by a variant of the linear elastic model introduced in [Arunakirinathar
and Reddy, 1993] for the static case. The model accounts for bending, shear, torsion, and
membrane effects within a small displacements and rotations framework. More precisely,
the dynamics of the beam are described by the following balance equations:

#

ρbAB
2
t r ´GBs

`

Bsr ´ θ ^ ez
˘

“ f in p0, Lq ˆ R`,

ρbIB
2
t θ ´EB

2
sθ ´ ez ^G

`

Bsr ´ θ ^ ez
˘

“ m in p0, Lq ˆ R`,
(2.2.4)

where the matricesA, I , E andG are given by

A
def
“

»

—

–

A 0 0

0 A 0

0 0 A

fi

ffi

fl

, I
def
“

»

—

–

Ix 0 0

0 Iy 0

0 0 J

fi

ffi

fl

,

G
def
“

»

—

–

GAκ 0 0

0 GAκ 0

0 0 EA

fi

ffi

fl

, E
def
“

»

—

–

EIx 0 0

0 EIy 0

0 0 GJ

fi

ffi

fl

,

and the symbols ρb, E, G, Ix, Iy, J , A and κ, respectively, denote the linear density,
Young’s modulus, the shear modulus, the principal moments of inertia in x and y, the
second moment of inertia, the cross-sectional area and the shear correction factor.

2.2.2 Navier-Stokes fluid model

In this paper, the fluid is modeled by the incompressible Navier-Stokes equations, written
with full or reduced formulations that will lead to different numerical schemes. For the
sake of simplicity we present the different models and strategies in the case where homo-
geneous Dirichlet boundary conditions are prescribed on the fluid boundary that is not the
fluid-structure interface. We assume here that r and Λ are regular enough and that for all
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t, ϕt
def
“ ϕp¨, tq : pωε Ñ ωεptq is one to one. The beam is supposed to move within a fixed

and smooth bounded domain Ω Ă R3 and we assume that it is surrounded by a fluid which
occupies pΩε

f
def
“ Ωzpωε in the reference configuration and at each time t the time-dependent

domain
Ωε

f ptq
def
“ Ωzωεptq Ă R3

in the current configuration. In what follows, Σεptq
def
“ BΩε

f ptqXBωεptq denotes the current
configuration of the fluid-solid interface. The fluid domain boundary is partitioned as
BΩε

f ptq “ Σεptq Y Γ, with Γ Ă BΩ. Furthermore, we can introduce the trajectory of the
fluid domain as the non-cylindrical space-time domain:

O def
“

ď

tPR`

Ωε
f ptq ˆ ttu. (2.2.5)

2.2.2.1 Eulerian formalism

The fluid equations in the Eulerian formalism read: find the fluid velocity u : O Ñ R3

and fluid pressure p : O Ñ R such that
$

’

’

’

&

’

’

’

%

ρfBtu` ρfu ¨ ∇u´ ∇ ¨ σpu, pq “ 0 in Ωε
f ptq,

∇ ¨ u “ 0 in Ωε
f ptq,

u “ 0 on Γ,

u “ ub on Σε
ptq

(2.2.6)

Here, ρf stands for the fluid density, µf for the dynamic viscosity of the fluid, and σpu, pq

denotes the Cauchy stress tensor given by

σpu, pq
def
“ 2µfεpuq ´ pI3, εpuq

def
“

1

2

`

∇u` p∇uq
T
˘

. (2.2.7)

Lastly, ub denotes the Eulerian velocity of the beam, which will be linked to the beam
unknowns in Section 2.2.3 below.

2.2.2.2 ALE formalism

In the ALE formalism, the fluid domain Ωε
f ptq is parametrized by a one-to-one mapping

A : pΩε
f ˆ R` Ñ R3 such that Ωε

f ptq “ AppΩε
f , tq, for t P R`. We also set Atp¨q “ Ap¨, tq.

We can hence defined the ALE time derivative

Bt|Aupx, tq “
d

dt

`

upAppx, tq, tq
˘

, px “ A´1
t pxq.

By a simple use of the chain rule, we obtain the following relation

Btu “ Bt|Au´ p pwf ˝ A´1
t q ¨ ∇u, (2.2.8)
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where pwf
def
“ BtA is the fluid domain velocity. In what follows, when dealing with equa-

tions expressed in the ALE formalism, for any function pv defined in pωε
f , we will denote by

v “ pv ˝ pAtq
´1 its Eulerian counterpart. The fluid equations (2.2.6) admit the following

equivalent formulation: find the fluid velocity u : O Ñ R3 and fluid pressure p : O Ñ R
such that

$

’

’

’

&

’

’

’

%

ρfBt|Au` ρfpu´wfq ¨ ∇u´ ∇ ¨ σpu, pq “ 0 in Ωε
f ptq,

∇ ¨ u “ 0 in Ωε
f ptq,

u “ 0 on Γ,

u “ ub on Σε
ptq.

(2.2.9)

The main advantage of (2.2.9) with respect of (2.2.8) is that it facilitates the discretization
in time.

2.2.2.3 Fictitious domain approach

In what follows, for any Lipschitz domain D in Rd, d P t2, 3u, we will make use of the
standard Sobolev spaces HspDq and LmpDq ps P R, m P N X r1,`8rq. We also denote
by H1

SpDq the closed subspace of the functions in H1pDq with zero trace on S , and by
L2
0pDq the subspace of the functions in L2pDq with zero mean in D. When S “ BD, we

will use the notation H1
0 pDq for the space H1

SpDq. The scalar product in L2pDq is denoted
by p¨, ¨qD and the associated norm by } ¨ }D. The bold notation will be used for vector
Sobolev spaces. In the fictitious domain approach, the fluid equations (2.2.6) are solved
in the whole domain Ω while enforcing the kinematic constraint (2.2.6)4 on Σεptq through
Lagrange multipliers:

xµ,uptqyΣεptq “ xµ,ubptqyΣεptq @µ P H´ 1
2 pΣε

ptqq @t P R`, (2.2.10)

where x¨, ¨yS denotes the duality pairing betweenH´ 1
2 pSq andH

1
2 pSq. One of the advan-

tages of the fictitious domain methods is that it allows the use of arbitrary fluid meshes
constant in time; for further details on this approach, refer to [Girault and Glowin-
ski, 1995, Girault et al., 2002]. Let V def

“ H1
0 pΩq and Q

def
“ L2

0pΩq be the func-
tional spaces for the fluid velocity and pressure, respectively, the considered fictitious
domain formulation of the fluid problem (2.2.6) reads: we look for pu, p,λq such that
puptq, pptq,λptqq P V ˆ Q ˆH´ 1

2 pΣεptqq a.e. t P R` and

ρfpBtu,vqΩ ` afΩ
`

u; pu, p, pv, qq
˘

´ xλ,vyΣεptq ` xµ,u´ ubyΣεptq “ 0 (2.2.11)
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for all pv, q,µq P V ˆ Q ˆH´ 1
2 pΣεptqq, and where

afΩ
`

z; pu, pq, pv, qq
˘ def

“ cΩ
`

z; pu,vq
˘

` aΩ
`

pu, pq, pv, qq
˘

, (2.2.12)

cΩ
`

z; pu,vq
˘ def

“ ρfpz ¨ ∇u,vqΩ, (2.2.13)

aΩ
`

pu, pq, pv, qq
˘ def

“ 2µfpεpuq, εpvqqΩ ´ pp,∇ ¨ vqΩ ` pq,∇ ¨ uqΩ. (2.2.14)

2.2.2.4 Fictitious domain approach with kinematic constraint on the beam centerline

We present here a first reduced model based on a fictitious domain approach. This for-
mulation is inspired by the reduced models reported in [Hagmeyer et al., 2022, Hagmeyer
et al., 2023] (see also [Griffith and Lim, 2012,Wiens and Stockie, 2015,Wang et al., 2019])
and assumes that, owing to the small thickness of the beam ε, the kinematic constraint can
be simply enforced on the beam centerline. The Dirichlet boundary conditions ub are then
enforced with Lagrange multipliers defined on the beam centerline as follows:

pµ,uptqqBptq “ pµ,ubptqqBptq @µ P L2
pBptqq @t P R`. (2.2.15)

This approach reduces the size of the problem by passing for the boundary conditions from
a two-dimensional constraint on the beam interface to a one-dimensional constraint on the
beam centerline. The weak form of the fluid equations then writes: we look for pu, p,λq

such that puptq, pptq,λptqq P V ˆ Q ˆL2pBptqq a.e. t P R` and

ρfpBtu,vqΩ ` afΩ
`

u; pu, pq, pv, qq
˘

´ pλ,vqBptq ` pµ,u´ ubqBptq “ 0 (2.2.16)

for all pv, q,µq P V ˆ Q ˆ L2pBptqq. It should be noted that the relation (2.2.15) is
only well-defined for u P H1`ηpΩq, with η ą 0. Nevertheless, in the context of prob-
lem (2.2.16), this minimum regularity for u might not be attained (due to the singular-
ity induced by the term pλptq,vqBptq). This prevents us from establishing both the well-
posedness of the continuous problem (2.2.16) and the accuracy of the associated numerical
methods, which is a major drawback.

2.2.2.5 Fictitious domain approach with reduced order kinematic condition

In this section, we introduce our method, which is also based on a fictitious domain ap-
proach with Lagrange multipliers, following a similar approach to (2.2.11) and (2.2.16).
Our objective, similar to (2.2.16), is to take advantage of the slenderness of the beam
to reduce the size of the problem. To do so, we replace the Lagrange multiplier space
H´ 1

2 pΣεptqq by a reduced-order space denoted as FNptq. In order to define the space
FNptq, we first introduce a local coordinate ν on each cross-section of the reference con-
figuration of the fluid-solid interface so that any point px on pΣε can be parametrized as

px “ sez ` εpcospνqex ` a sinpνqeyq. (2.2.17)

10



2.2. Continuous setting and mathematical formulation

In particular, any function pv defined on pΣε can be expressed as follows:

pvps, νq
def
“ vpsez ` εpcospνqex ` a sinpνqeyqq @ps, νq P p0, Lq ˆ p0, 2πq.

Let FN be a finite dimensional subspace of L2p0, 2πq, where the dimension varies with
N , we set for all t P R`, the space FNptq Ă L2pΣεptqq defined by

FNptq
def
“

#

pv ˝ ϕ´1
t : pvps, νq “

N
ÿ

k“0

αkpsqgkpνq, αk P L2
p0, Lq, gk P FN

+

. (2.2.18)

The idea of (2.2.18) is to take advantage of the tensorization of pΣε by p0, Lq ˆ p0, 2πq

to discretize the space L2p0, 2πq using the finite dimensional space FN . The expression
reduced order comes from the fact that any function v P FNptq is now uniquely deter-
mined by the set of functions tαku0ďkďN Ă L2p0, Lq, thus passing from a functional space
H´ 1

2 pΣεptqq originally defined in a two-dimensional domain to a set of N ` 1 functions
defined on a 1D domain. In particular, the reduced-order interface conditions on Σεptq
read as follows:

pµN ,uptqqε,t “ pµN ,ubptqqε,t @µN P FNptq @t P R`, (2.2.19)

where p¨, ¨qε,t denotes the re-scaled L2 inner-product on Σεptq:

pu,vqε,t
def
“

ż

Σεptq

pu ¨ vqph ˝ ϕ´1
t , phps, νq

def
“

ˆ

ε
b

a2 cos2pνq ` sin2pνq

˙´1

(2.2.20)

Note that (2.2.19) reduces (2.2.10) by enforcing 2N`1 scalar constraints on each cross-
section of the interface when (2.2.15) reduces (2.2.10) by neglecting the thickness of the
beam and enforcing a single vector constraint on the beam centerline. The associated
reduced weak formulation reads: we look for pu, p,λNq such that puptq, pptq,λNptqq P

V ˆ Q ˆ FNptq a.e. t P R` and

ρfpBtu,vqΩ ` afΩ
`

u; pu, p, pv, qq
˘

´ pλN ,vqε,t ` pµN ,u´ ubqε,t “ 0 (2.2.21)

for all pv, q,µNq P V ˆ Q ˆ FNptq.

2.2.3 Coupled problems: interface coupling conditions

In this section, we provide the interface coupling conditions between the beam model
(2.2.4) and the different fluid modeling options given by (2.2.9), (2.2.16) or (2.2.21). The
numerical approximation of the resulting coupled problems is addressed in Section 2.3.
In what follows, we shall make extensive use of an extension operator from the beam
centerline, t0u ˆ t0u ˆ p0, Lq, to the bean reference domain pωε, defined as follows: for any
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vector field v : p0, Lq ˆ R` Ñ R3 we define the vector field sv : pωε ˆ R` Ñ R3 by the
relation

svppx, tq “ vps, tq, s “ px ¨ ez @ppx, tq P pωε
ˆ R`.

In other words, functions defined on the centerline of the beam are lifted to the whole
beam reference domain by using a projection operator which links each point of the beam
to the cross-section to which it belongs. Notice that, using (2.2.1), we can express the
deformation map ϕ as:

ϕ “ pI3 ¨ ezqez ` sr ` sΛ
`

I3 ´ pI3 ¨ ezqez
˘

. (2.2.22)

2.2.3.1 ALE formalism for the fluid

In this section, we introduce the coupling conditions associated to the ALE formulation in-
troduced in Section 2.2.2.2. In what follows, the symbol L denotes a given lifting operator
from pΣε to pΩε

f which vanishes on BΩ. Note that the extension provided by L is arbitrary
inside pΩε

f . The interface coupling conditions between the solid sub-problem (2.2.4) and
the fluid sub-problem (2.2.9) are given by
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ϕ “ pI3 ¨ ezqez ` sr ` sΛ
`

I3 ´ pI3 ¨ ezqez
˘

in pωε,

A “ Lpϕq, pwf “ BtA, Ωε
f ptq “ AppΩε

f , tq,

ub “ Btϕ ˝ ϕ´1
t on Σε

ptq,

pf , δrqp0,Lq “ ´
`

σpu, pqn`,Ďδr ˝ A´1
t

˘

Σεptq
,

pm, δθqp0,Lq “ ´
`

σpu, pqn`,Ďδθ ˝ A´1
t ^ pI3 ´ sr ˝ A´1

t ´ pA´1
t ¨ ezqezq

˘

Σεptq
,

(2.2.23)

for all δr, δθ P Y , with Y the space of admissible displacements and rotations of the
beam (typically H1p0, Lq or a subspace of it), and n` stands for the exterior unit normal
to BΩε

f ptq. The coupling conditions of (2.2.23) respectively express the geometric com-
patibility, kinematic coupling and dynamic balance between the fluid and the beam at the
interface. Let F def

“ ∇A and J def
“ det F denote, respectively, the gradient and Jacobian

of A. Using the Piola transform, the last two equalities of (2.2.23) reduce to

fpsq “ ´

ż

pΣεXBpωεpsq

Jσpu, pq ˝ AF´T
pn`,

mpsq “ ´

ż

pΣεXBpωεpsq

JpA ´ rpsq ´ sezq ^ σpu, pq ˝ AF´T
pn`,

for any s P p0, Lq and where pn` denotes the exterior unit normal to BpΩε
f . In other words,

for a given s P p0, Lq, the forcing terms fpsq and mpsq, acting on the beam system
(2.2.4), are given as the cross-section resultant of the fluid force and torque in the reference
configuration.
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2.2. Continuous setting and mathematical formulation

2.2.3.2 Fictitious domain approach

In this approach, the coupling conditions are transferred through the Lagrange multipliers.
The interface coupling conditions between the solid sub-problem (2.2.4) and the fluid sub-
problem (2.2.11) are given by:

$

’

’

’

&

’

’

’

%

ϕ “ pI3 ¨ ezqez ` sr ` sΛ
`

I3 ´ pI3 ¨ ezqez
˘

in pωε,

ub “ Btϕ ˝ ϕ´1
t on Σε

ptq,

pf , δrqp0,Lq “ ´xλN ,Ďδr ˝ ϕ´1
t yΣεptq @δr P Y ,

pm, δθqp0,Lq “ ´xλN ,Ďδθ ˝ ϕ´1
t ^ pI3 ´ sr ˝ ϕ´1

t ´ pϕ´1
t ¨ ezqezqyΣεptq @δθ P Y .

(2.2.24)

2.2.3.3 Fictitious domain approach with coupling conditions on the beam centerline

In this approach, the fluid-structure interface is identified with the beam centerline and
thickness effects are neglected in the interface coupling (see, e.g., [Hagmeyer et al.,
2022, Hagmeyer et al., 2023]). In particular, no rotational velocity is defined on the beam
centerline, so that the fluid torque acting on the beam is null. As a result, the interface cou-
pling conditions between the solid sub-problem (2.2.4) and the fluid sub-problem (2.2.16)
are given by:

$

’

’

’

&

’

’

’

%

ϕ “ pI3 ¨ ezqez ` sr in pB,
ub “ Btϕ ˝ ϕ´1

t in Bptq,

pf , δrqp0,Lq “ ´pλ, δrqBptq @δr ˝ ϕ´1
t P Y ,

m “ 0.

(2.2.25)

Note that the last relation completely neglects the rotational dynamics. In the next sec-
tion, we propose an alternative reduced coupled model which overcomes this issue, as
illustrated in the numerical experiments of Section 2.3.

2.2.3.4 Fictitious domain approach with reduced order interface coupling conditions

In this section, we introduce the coupling conditions associated to our method, which
corresponds to the fictitious domain formulation introduced in Section 2.2.2.5. As finite
dimensional space FN Ă L2p0, 2πq in (2.2.18), we consider

FN “ span
␣

sinpkνqej, cospkνqej
(

0ďkďN,jPtx,y,zu
.
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We hence get the following reduced Lagrange multiplier space: for t P R`,

FNptq “

"

pv ˝ ϕ´1
t P L2

pΣε
ptqq :

pvps, νq “ a0psq `

N
ÿ

k“1

pakpsq cospkνq ` bkpsq sinpkνqq,ak, bk P L2
p0, Lq

*

(2.2.26)

The interface coupling conditions between the solid sub-problem (2.2.4) and the fluid sub-
problem (2.2.21) read as

$

’

’

’

’

&

’

’

’

’

%

ϕ “ pI3 ¨ ezqez ` sr ` sΛ
`

I3 ´ pI3 ¨ ezqez
˘

in pωε,

ub “ Btϕ ˝ ϕ´1
t on Σε

ptq,

pf , δrqp0,Lq “ ´pλN ,Ďδr ˝ ϕ´1
t qε,t @δr P Y ,

pm, δθqp0,Lq “ ´
`

λN ,Ďδθ ˝ ϕ´1
t ^ pI3 ´ sr ˝ ϕ´1

t ´ pϕ´1
t ¨ ezqezq

˘

ε,t
@δθ P Y .

(2.2.27)

Remark 1. It should be noted that, given that the fluid computational domain is the whole
domain Ω, the relation λN “ σpu, pqn does not hold. Instead, λN corresponds to the
jump of the fluid stress across Σεptq, viz.,

λN “
`

σpu, pq
`n`

´ σpu, pq
´n´

˘

on Σε
ptq.

Here, the indices ` and ´ denote trace values on Σεptq taken from Ωε
f ptq and ωεptq, re-

spectively. Nevertheless, numerical evidence provided in Section 2.4, suggests that the
contribution of the internal fluid stress is negligible when the size ε of the cross-section is
small.

2.2.1 Energy estimate (small rotational velocity) The purpose of the last part of this section is
to provide an energy estimate for the coupled reduced model (2.2.4), (2.2.21), (2.2.27). To
do so, we first give an explicit expression of the Lagrangian velocity of the beam pub

def
“ Btϕ

according to the beam unknowns. From (2.2.1) we get

pub “ ĎBtr ` ĚBtΛpI3 ´ pI3 ¨ ezqezq (2.2.28)

On the other hand, from (2.2.1) and the orthogonality of Λ, we have

I3 ´ pI3 ¨ ezqez “ sΛT
pϕ´ sr ´ pI3 ¨ ezqezq,

By inserting this expression into (2.2.28) we obtain

pub “ ĎBtr ` ĞBtΛΛ
T`
ϕ´ sr ´ pI3 ¨ ezqez

˘

. (2.2.29)
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From the orthogonality of Λ, we infer that the matrix BtΛΛT is skew symmetric, so that
there exists a vector field w in p0, Lq ˆ R`, termed angular velocity vector, such that

BtΛΛTv “ w ^ v @v P R3.

Hence the relation (2.2.29) can be equivalently re-written as

pub “ ĎBtr ` sw ^
`

ϕ´ sr ´ pI3 ¨ ezqez
˘

(2.2.30)

and we deduce that

ub “ ĎBtr ˝ ϕ´1
t ` sw ˝ ϕ´1

t ^
`

I3 ´ sr ˝ ϕ´1
t ´ pϕ´1

t ¨ ezqez
˘

.

Note that the velocity of the beam corresponds to a rigid-body velocity per cross-section.
To retrieve the desired energy estimate, we need to assume that the beam undergoes small
rotations. This assumption is needed to cope with the mismatch between the treatment of
the geometrical non-linearities in the solid (linear) and in the fluid (non-linear). We hence
consider a variant of the kinematic coupling condition (2.2.27)2 in which the Eulerian
velocity of the beam, ub given by (2.2.1), is taken with a linearized angular velocity,
namely,

w “ Btθ, (2.2.31)

which yields

ub “ Btr ˝ ϕ´1
t ` ĎBtθ ˝ ϕ´1

t ^ pI3 ´ sr ˝ ϕ´1
t ´ pϕ´1

t ¨ ezqezq. (2.2.32)

Note in particular that in this case the relation ub “ Btϕ ˝ ϕ´1
t does not hold anymore.

The relations (2.2.31) and (2.2.32) are only valid in a small rotational velocity framework.
The resulting problem in weak form read as follows: we look for pu, p,λN , r,θq such that
puptq, pptq,λNptq, rptq,θptqq P V ˆ Q ˆ FNptq ˆ Y ˆ Y a.e. t P R` and

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ϕ “ pI3 ¨ ezqez ` sr ` sΛ
`

I3 ´ pI3 ¨ ezqez
˘

in pωε,

ρfpBtu,vqΩ ` afΩ
`

u; pu, pq, pv, qq
˘

` ρbpAB
2
t r, δrqp0,Lq ` ρbpIB

2
t θ, δθqp0,Lq ` ab

`

pr,θq, pδr, δθq
˘

´
`

λN ,v ´ Ďδr ˝ ϕ´1
t ´ Ďδθ ˝ ϕ´1

t ^
`

I3 ´ sr ˝ ϕ´1
t ´ pϕ´1

t ¨ ezqez
˘˘

ε,t

`
`

µN ,u´ ĎBtr ˝ ϕ´1
t ´ ĎBtθ ˝ ϕ´1

t ^ pI3 ´ sr ˝ ϕ´1
t ´ pϕ´1

t ¨ ezqezq
˘

ε,t
“ 0

(2.2.33)

for all pv, q,µN , δr, δθq P V ˆQˆFNptqˆY ˆY . Here, the bilinear form ab represents
the weak form of the beam elastic operator given by

ab
`

pr,θq, pδr, δθq
˘ def

“ pEBsθ, Bsδθqp0,Lq `
`

GpBsr ´ θ ^ ezq, pBsδr ´ δθ ^ ezq
˘

p0,Lq
.

The energy stability of (2.2.33) is stated in the next result.
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Theorem 2.2.1. Let pu, p,λN , r,θq be a regular enough solution of the reduced order
coupled problem (2.2.33). There holds

Eptq ď Ep0q @t P R`, (2.2.34)

where the mechanical energy of the system Eptq is defined by

Eptq
def
“
ρf
2

}uptq}
2
Ω `

ρb
2

}Btrptq}
2
A,p0,Lq `

ρb
2

}Btθptq}
2
I,p0,Lq `

1

2

›

›prptq,θptqq
›

›

2

b
,

with

} ¨ }A,p0,Lq
def
“

b

pA ¨, ¨qp0,Lq, } ¨ }I,p0,Lq
def
“

b

pI ¨, ¨qp0,Lq,

}¨, ¨}b
def
“

b

ab
`

p¨, ¨q, p¨, ¨q
˘

.

Proof. By testing (2.2.33) with

pv, q, δr, δθ,µNq “ pu, p, Btr, Btθ,λNq,

we get

ρfpBtu,uqΩ ` ρbpAB
2
t r, Btrqp0,Lq ` ρbpIB

2
t θ, Btθqp0,Lq

` afΩ
`

u; pu, pq, pu, pq
˘

` ab
`

pr,θq, pBtr, Btθq
˘

“ 0. (2.2.35)

Using integration by parts and the boundary conditions on u, we have

afΩ
`

u; pu, pq, pu, pq
˘

“ 2µ}εpuq}
2
Ω.

Since the remaining terms of (2.2.35) are inner-products, we finally get

d

dt

ˆ

ρf
2

}u}
2
Ω `

ρb
2

}Btr}
2
A,p0,Lq `

ρb
2

}Btθ}
2
I,p0,Lq `

1

2
}pr,θq}

2
b

˙

ď 0.

The estimate (2.2.34) then follows by integrating this bound over p0, tq, which completes
the proof.

Remark 2. For the coupled problem (2.2.4), (2.2.9), (2.2.23) with an ALE formalism in the
fluid, the above mentioned mismatch between ub and Btϕ˝ϕ´1 prevents from establishing
the energy estimate (2.2.34). In order to guarantee energy stability for this model, one
simple option is to update the fluid domain from a linearized version of (2.2.1) with Λ «

I3 ` Θ. Another option would be to directly consider a non-linear model for the balance
equations of the beam model.
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2.3. Numerical method

2.3 Numerical method

In this section, we introduce a numerical scheme for the approximation of the coupled
problem (2.2.4), (2.2.21), (2.2.27). In what follows, we denote by τ ą 0 the time-step
length and, for n P N, we set tn def

“ nτ . For any time-dependent function v, vn stands for
an approximation of vptnq. We also introduce the standard notations

Bτv
n def

“
1

τ
pvn ´ vn´1

q, vn´ 1
2

def
“

1

2
pvn´1

` vnq,

for the first-order backward difference and the mid-point value, respectively. Let D be an
open polygonal convex domain of R3 and ThpDq a triangulation of D with characteristic
size h. We consider the following standard continuous Lagrange finite element spaces of
degree k:

Xk
hpDq

def
“

␣

v P H1
pDq : v|K P rPkpKqs

3, @K P ThpDq
(

,

Qk
hpDq

def
“

␣

v P H1
pDq : v|K P PkpKq, @K P ThpDq

(

.
(2.3.1)

We then introduce the finite element spaces Vh
def
“ X1

hpΩq X V and Qh
def
“ Q1

hpΩq X Q
for the approximation of the fluid velocity u and pressure p, respectively, while for the
solid displacement r and rotation θ their approximations will be looked for into YH

def
“

X1
Hp0, Lq XY . Here, h and H respectively denote the characteristic sizes of the fluid and

solid (centerline) meshes.

2.3.1 Discrete formulation of the coupled model with reduced order interface con-
ditions

For the time discretization of (2.2.27), we consider a semi-implicit scheme in which the
geometrical coupling is treated in a explicit manner, as follows:

ϕn
H “ pI3 ¨ ezqez `

Ęrn´1
H `

ĘΛn´1
H

`

I3 ´ pI3 ¨ ezqez
˘

in pωε, Σε,n
“ ϕn

HppΣε
q.

We also introduce the discrete Lagrange multiplier space F n
N,H , discrete counterpart of

FNptq, as

F n
N,H

def
“

"

pvH ˝ pϕn
Hq

´1
P L2

pΣε,n
q : pvHps, νq “ a0,Hpsq

`

N
ÿ

k“1

`

ak,Hpsq cospkνq ` bk,Hpsq sinpkνq
˘

, ak,H , bk,H P YH

*

(2.3.2)

which simply amounts to replace L2p0, Lq by YH in (2.2.26). Note that here a unique
approximation space YH is involved in the approximation of the beam unknowns and of
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the Lagrange multiplier, but this is not mandatory. We consider a backward-Euler semi-
implicit time-discretization for the fluid sub-problem (2.2.21) and a mid-point scheme
for the solid sub-problem (2.2.4). The remaining kinematic and dynamic conditions in
(2.2.27) are discretized with an implicit scheme. The resulting solution procedure is of
strongly coupled nature (see, e.g., [Fernández and Gerbeau, 2009]). By gathering all the
above mentioned ingredients, the proposed numerical approximation of (2.2.4), (2.2.21),
(2.2.27) is detailed in Algorithm 1. In the step (2.3.4) of Algorithm 1, the discrete fluid

Algorithm 1 Discrete formulation of the reduced coupled model (2.2.4), (2.2.21), (2.2.27).

For n ě 1,
Step 1: Update interface position:

ϕn
H “ pI3 ¨ ezqez `

Ęrn´1
H `

ĞΛn´1
H

`

I3 ´ pI3 ¨ ezqez
˘

in pωε, Σε,n “ ϕn
HppΣεq, (2.3.3)

where Λn´1
H is obtained from θn´1

H using nonlinear formula (2.2.3).

Step 2: Find pun
h, p

n
h,λ

n
N,H , rnH ,θnHq P Vh ˆQh ˆFN,H ˆYH ˆYH with 9r

n´ 1
2

H “ Bτr
n
H and 9θ

n´ 1
2

H “

Bτθ
n
H such that

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ρfpBτu
n
h,vhqΩ ` afΩ,h

`

un´1
h ; pun

h, p
n
hq, pvh, qhq

˘

` ρbpABτ 9rnH , δrHqp0,Lq ` ρb
`

IBτ 9θnH , δθH
˘

p0,Lq

` abH
`

pr
n´ 1

2

H ,θ
n´ 1

2

H q, pδrH , δθHq
˘

´
`

λn
H ,vh ´ ĚδrH ˝ pϕn

Hq´1 ´ ĚδθH ˝ pϕn
Hq´1 ^ pI3 ´

Ęrn´1
H ˝ pϕn

Hq´1 ´ ppϕn
Hq´1 ¨ ezqezq

˘

ε,n

`
`

µN ,un
h ´ Bτϕ

n`1
H ˝ pϕn

Hq´1
˘

ε,n
“ 0

(2.3.4)

for all pvh, qh,µN,H , δrH ,θHq P Vh ˆ Qh ˆ FN,H ˆ YH ˆ YH .

tri-linear form is given by

afΩ,h

`

zh; puh, phq, pvh, qhq
˘ def

“cnh
`

zh; puh,vhq
˘

` aΩ
`

puh, phq, pvh, qhq
˘

` sΩ,h

`

zh; puh, phq, pvh, qhq
˘

,
(2.3.5)

cnhpz;uh,vhq
def
“ cΩpzh;uh,vhq `

ρf
2

`

p∇ ¨ zhquh,vh
˘

Ω
,

sΩ,h

`

zh; puh, phq, pvh, qhq
˘ def

“

ÿ

KPThpΩq

ż

K

δh
`

ρfpzh ¨ ∇quh ` ∇ph
˘

¨
`

ρfpzh ¨ ∇qvh ` ∇qh
˘

,

δh
def
“ γS

ˆ

ρf

d

4

τ 2
`

16µ2

h4pρfq2
`

4|zh|2

h2

˙´1

,
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where sΩ,h corresponds to the SUPG/PSPG stabilization (see, e.g., [Tezduyar, 1991]) and
γS ą 0 is a user-defined parameter. For the discrete beam bi-linear form, we consider the
locking-free formulation introduced in [Chapelle, 1997], viz.,

abH
`

prH ,θHq, prH , δrHq
˘ def

“
`

BBBsθH , BsδθH
˘

p0,Lq
`

`

GpΠ0
HpBsr

n
H ´ θnH ^ ezq, Bsδrh ´ δθ ^ ez

˘

p0,Lq
, (2.3.6)

where pΠ0
H denotes the L2 projection ontoX0

Hp0, Lq.

2.3.1 Energy estimate (small rotational velocity) In the spirit of Section 2.2.3.4, we pro-
vide an energy estimate for Algorithm 1 under a small rotational velocity framework of
(2.2.33). In this context, Algorithm 1 reduces to the following discrete coupled prob-
lem: find pun

h, p
n
h,λ

n
N,H , r

n
H ,θ

n
Hq P Vh ˆ Qh ˆ F n

N,H ˆ YH ˆ YH with 9r
n´ 1

2
H “ Bτr

n
H and

9θ
n´ 1

2
H “ Bτθ

n
H such that

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ϕn
H “ pI3 ¨ ezqez `

Ęrn´1
H `

ĘΛn´1
h

`

I3 ´ pI3 ¨ ezqez
˘

in pωε

ρfpBτu
n
h,vhqΩ ` afΩ,h

`

un´1
h ; pun

h, p
n
hq, pvh, qhq

˘

` ρb
`

ABτ 9rnH , δrH
˘

p0,Lq
` ρb

`

IBτ
9θnH , δθH

˘

p0,Lq

` abH
`

pr
n´ 1

2
H ,θ

n´ 1
2

H q, pδrH , δθHq
˘

´
`

λn
N,H ,vh

˘

ε,n
`
`

µN,H ,u
n
h

˘

ε,n

´
`

λn
N,H ,

ĚδrH ˝ pϕn
Hq

´1
˘

ε,n
´
`

µN,H , 9r
n´ 1

2
H ˝ pϕn

Hq
´1
˘

ε,n

´
`

λn
N,H ,

ĚδθH ˝ pϕn
Hq

´1
^ pI3 ´

Ęrn´1
H ˝ pϕn

Hq
´1

´ ppϕn
Hq

´1
¨ ezqezq

˘

ε,n

´
`

µN,H , 9θ
n´ 1

2
H ˝ pϕn

Hq
´1

^ pI3 ´
Ęrn´1
H ˝ pϕn

Hq
´1

´ ppϕn
Hq

´1
¨ ezqezq

˘

ε,n
“ 0.

(2.3.7)

for all pvh, qh,µN,H , δrH ,θHq P Vh ˆQh ˆF n
N,H ˆYH ˆYH . The energy stability of this

method is stated in the following result.

Theorem 2.3.1. Let
␣

pun
h, p

n
h,λ

n
N,H , r

n
H ,θ

n
Hq
(

ně1
Ă Vh ˆQh ˆF n

N,H ˆYH ˆYH be given
by problem (2.3.7). There holds

En
ď E0, @n ě 0 (2.3.8)

where the discrete mechanical energy En of the system is defined by

En def
“
ρf
2

}un
h}

2
0,Ω `

ρb
2

} 9rnH}
2
A,p0,Lq `

ρb
2

} 9θnH}
2
I,p0,Lq `

1

2

›

›prnH ,θ
n
Hq
›

›

2

b,H
,

with
}p¨, ¨q}b,H “

b

abH
`

p¨, ¨q, p¨, ¨q
˘

.
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Proof. By testing (2.3.7) with

pvh, qh,µN,H , δrH , δθHq “ pun
h, ph,λ

n
N,H , 9r

n´ 1
2

H , 9θ
n´ 1

2
H q

we get

ρfpBτu
n
h,u

n
hqΩ ` ρbpABτ 9rnH , 9r

n´ 1
2

H qp0,Lq ` ρbpIBτ
9θnH ,

9θ
n´ 1

2
H qp0,Lq (2.3.9)

` afΩ,h

`

un´1
h ; pun

h, p
n
hq, pun

h, p
n
hq
˘

` abH
`

pr
n´ 1

2
H ,θ

n´ 1
2

H q, p 9r
n´ 1

2
H , 9θ

n´ 1
2

H q
˘

“ 0.

Using integration by parts and the boundary conditions of un´1
h , un

h, we have

afΩ,hpun´1
h ; pun

h, phq, pun
h, phqq ě 2µf}εpu

n
hq}

2
Ω.

Moreover for any quantities vn,vn´1 and inner product p¨, ¨q, it holds
$

’

&

’

%

pvn ´ vn´1,vnq “
1

2
p}vn}

2
´ }vn´1

}
2

` }vn ´ vn´1
}
2
q ě

1

2
Bτ}vn}

2,

pvn ´ vn´1,
vn ` vn´1

2
q “

1

2
Bτ}vn}

2

where } ¨ }
def
“

a

p¨, ¨q. We deduce that

Bτ

ˆ

ρf
2

}un
h}

2
Ω `

ρb
2

} 9rnH}
2
A,p0,Lq `

ρb
2

} 9θnH}
2
I,p0,Lq `

1

2
}rnH ,θ

n
H}

2
b,H

˙

ď 0.

The estimate (2.3.8) then follows by summing over t0 . . . nu, which completes the proof.

Remark 3. Once again, to obtain the energy estimate and because we consider a linear
Timoshenko beam formulation, we have to assume small rotational velocity which induces
a mismatch between the structure velocity at the boundary and the velocity associated to
the domain motion. It is nevertheless not an issue to derive the stability of the scheme due
to the fictitious domain approach. It is not the case for the discrete counterpart of the ALE
formulation where the velocities should match at the interface and where one should either
consider a linear reconstruction of the geometry or a non linear beam equation.

2.3.2 Inf-sup stability A crucial point when dealing with Lagrange multipliers is to en-
sure that the inf-sup condition associated to the bilinear form pλn

N,H ,vhqε is satisfied on
F n

N,H ˆ Vh. In [Kuchta et al., 2020], the authors establish the inf-sup condition for the
case N “ 0 under some conditions on the triangulations of Ω, p0, Lq and pΣε. To deal with
general meshes, they propose a discretization of p0, Lq depending on the intersection of
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the fluid elements and the beam centerline. With the the addition of a stabilization term,
they established the inf-sup condition on F n

0,H ˆVh where the coefficients ak,H , bk,H intro-
duced in (2.3.2) and defining the space F n

0,H belong to X0
hp0, Lq instead of X1

hp0, Lq. For
N ą 0, we consider in Chapter 3 a two-dimensional problem and prove a stability result
on F n

N,H ˆ pXk
hpΩq X V q, provided N ď k. In the same framework, we also introduce

a general stabilization term, which in 3D would take the form (see also [Barrenechea and
González, 2018])

sλhpµN,H ,λ
n
N,Hq “ γε´1

ˆ

h

ε

˙

pµN,H ,λ
n
N,Hqε,n,

and proved unconditional stability for any pair pλn
N,H ,vhq P F n

N,H ˆ pXk
hpΩq X V q (i. e.

with any restriction on N ). However, no stability proof has been provided in the specific
case addressed here. Nevertheless, as we encountered no issues during the numerical
simulations, we chose not to include any stabilization term in our numerical study.

2.3.3 Evaluation of the coupling terms In this section, we provide details on the compu-
tation of the coupling terms involved in step (2.3.4) of Algorithm 1. For the sake of
conciseness, we only give the expressions of the algebraic counterparts of the bilinear
form pλn

N,H ,vhqε,n. The evaluation of the remaining coupling terms follow similarly. Let
tψf

iu1ďiďNh
and tψb

j u1ďjďNH
be the basis functions of Vh and YH , respectively, and let

txiu1ďiďNh
and tsju1ďjďNH

be the corresponding nodes. We have

pλn
N,H ,vhqε “

Nh
ÿ

i“1

vhpxiqpλn
N,H ,ψ

f
iqε,n.

Using the definition of F n
N,H given in (2.3.2) with tensorized notations, we have

pλn
N,H ,vhqε,n “

Nh
ÿ

i“1

vhpxiq

ˆˆ

Ěa0,H `

N
ÿ

k“0

pak,H b ck ` bk,H b skq

˙

˝ pϕn
Hq

´1,ψf
i

˙

ε,n

,

with ckpνq
def
“ cospkνq and skpνq

def
“ sinpkνq for k P t0, . . . , Nu. Now, by expressing

ak,H , bk,H in terms of their basis functions ψb
j , we get

pλn
N,H ,vhqε,n “

Nh
ÿ

i“1

vhpxiq

N
ÿ

k“0

NH
ÿ

j“1

“

a0,HpsjqpĎψb
j ˝ pϕn

Hq
´1,ψf

iqε,n

` ak,Hpsjqppψb
j b ckq ˝ pϕn

Hq
´1,ψf

iqε,n ` bk,Hpsjqppψb
j b skq ˝ pϕn

Hq
´1,ψf

iqε,n
‰

.
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Let pbNqT P RNHp2N`1qˆNh denote the algebraic counterpart of the bilinar term pλn
N,H ˝

pϕn
Hq´1,vhqε,n, we obtain

pbNqil “

$

’

&

’

%

pĎψb
j ˝ pϕn

Hq
´1,ψf

iqε,n, l “ j ¨ p2N ` 1q,

ppψb
j b ckq ˝ pϕn

Hq
´1,ψf

iqε,n, l “ j ¨ p2N ` 1q ` 2k ` 1,

ppψb
j b skq ˝ pϕn

Hq
´1,ψf

iqε,n, l “ j ¨ p2N ` 1q ` 2k ` 2.

(2.3.10)

for all k P t0 . . . Nu. In order to evaluate the coefficients (2.3.10), we need to evaluate
the tensorized basis functions pψb

j b ckq ˝ pϕn
hq´1, pψb

j b skq ˝ pϕn
hq´1 on Σε,n. To do so,

we first mesh pΣε and evaluate them at the mesh points. We then transport the values to
the current configuration via the deformation map ϕn

h. Integration is achieved through P1-
interpolation in the deformed mesh by localizing the quadrature points in the fluid mesh.
Note that we choose a mesh of pΣε fine enough so that the error due to the P1-interpolation
is negligible compared to the numerical approximation error of the PDE.

2.3.4 Matrix formulation We consider a partitioned solution procedure for the numerical
resolution of problem (2.3.4) based on [Fernández and Moubachir, 2005b]. To this pur-
pose, we introduceUn, P n,Ln,Rn and T n as the arrays of degrees of freedom associated
with un

h, pnh, λn
N,H , rnH and θnH respectively. Taking pδrH , δθHq “ p0,0q in (2.3.4), we re-

cover the Navier-Stokes equations with Dirichlet boundary condition on pΣε. This problem
can be expressed in matrix form as follows:

»

—

–

Af CT ´pbNqT

´C S 0

bN 0 0

fi

ffi

fl

»

—

–

Un

P n

Ln

fi

ffi

fl

“

»

—

–

bn´1

0

bNUbpRn,T nq

fi

ffi

fl

, (2.3.11)

with
Af

def
“
ρf
τ
M f

`K f , bn´1 def
“
ρf
τ
M fUn´1,

UbpR,T q
def
“

1

τ

`

ΦpR,T q ´ ΦpRn´1,T n´1
q
˘

.

Here, the matricesM f ,

«

K f CT

´C S

ff

and bN stand for the algebraic counterpart of

pun
h,vhqΩ, afΩ,h

`

un´1
h ; pun

h, p
n
hq, pvh, qhq

˘

, pλn
N,H ,vqε,n.

With a slight abuse of notation, the operator Φ allows us to compute the beam deformation
given the displacementRn of the centerline of the beam and its rotation vector T n. To the
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matrix system (2.3.11), we can associate the fluid solver operator Fn : RNb
Ñ RN f given

by

Fn

ˆ„

Rn

T n

ȷ˙

“ Ln.

In a similar manner, testing (2.3.4) with pvh, qh,µN,Hq “ p0, 0,0q yields the linear Tim-
oshenko sub-problem with fluid source terms. The equivalent matrix system writes as
follows:

Ab

«

Rn´ 1
2

T n´ 1
2

ff

“ Jn´1
`

„

F n

Mn

ȷ

(2.3.12)

withRn “ 2Rn´ 1
2 ´Rn´1, T n “ 2T n´ 1

2 ´ T n´1 and where

Ab
def
“

4ρb
τ 2
Mb `Kb, J

n´1 def
“
ρb
τ 2
Mb

˜

4

«

Rn´1

T n´1

ff

` 2τ

«

9Rn´1

9T n´1

ff¸

,

F n
“ pEf

Nq
TLn, Mn

“ pEm
N q

TLn,

9Rn´ 1
2 “

1

τ
pRn

´Rn´1
q, 9T n´ 1

2 “
1

τ
pT n

´ T n´1
q.

Here, the matrices Mb, Kb, Ef
N , Em

N stand for the algebraic counterpart of the bilinear
forms

pArnH , δrHqp0,Lq ` pIθnH , δθHqp0,Lq, abH
`

prnH ,θ
n
Hq, pδrH , δθHq

˘

, pλn
N,H ,

Ďδr ˝ pϕn
Hq

´1
qε,n,

pλn
N,H ,

Ďδθ ˝ pϕn
Hq

´1
^
`

I3 ´
Ęrn´1
H ˝ pϕn

Hq
´1

´ ppϕn
Hq

´1
¨ ezqez

˘

qε,n.

The corresponding solid solution operator Sn : RN f
Ñ RNb is defined as

Sn

¨

˚

˝

»

—

–

Un

P n

Ln

fi

ffi

fl

˛

‹

‚

“

„

Rn

T n

ȷ

.

By composition, solving the coupled problem (2.3.4) is equivalent to compute the roots of
the following system

Rn

ˆ„

Rn

T n

ȷ˙

def
“

„

Rn

T n

ȷ

´ Sn
˝ Fn

ˆ„

Rn

T n

ȷ˙

“ 0, (2.3.13)

which can be iteratively approximated using Newton’s method below, where J n denotes
the Jacobian of the residual operator Rn. As in [Fernández and Moubachir, 2005b], the
tangent system (2.3.14) can be solved in a matrix-free fashion via GMRES iterations,
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which only invoke the action of the operator J n along given directions. Note that the re-
sulting solution procedure is fully partitioned, in the sense that only the fluid and solid op-
erators, and their tangent counterparts, are involved in the numerical resolution of (2.3.4).

Newton algorithm applied to (2.3.13)

Choose

«

Rn

T n

ff

P RNb

while

›

›

›

›

›

Rn

˜«

Rn

T n

ff¸›

›

›

›

›

ě tol do

Evaluate the fluid operator

«

Un

P n

ff

“ Fn

˜«

Rn

T n

ff¸

Evaluate the solid operator

«

R̂n

T̂ n

ff

“ Sn

˜«

Un

P n

ff¸

Evaluate the residual Rn

˜«

Rn

T n

ff¸

“

«

Rn

T n

ff

´

«

R̂n

T̂ n

ff

Solve tangent problem

J n

˜«

Rn

T n

ff¸«

δR

δT

ff

“ ´Rn

˜«

Rn

T n

ff¸

(2.3.14)

Update

«

Rn

T n

ff

“

«

Rn

T n

ff

`

«

δR

δT

ff

end while

2.3.2 Comparison with other discrete formulations

For the sake of completeness, in this section we provide the discrete formulations of the
coupled problems (2.2.4), (2.2.9), (2.2.23) and (2.2.4), (2.2.16), (2.2.25) introduced above.
These numerical methods will be used in the numerical experiments of Section 2.3 for
comparison purposes.

2.3.1 Coupled problem with ALE formalism in the fluid Since for the the coupled problem
(2.2.4), (2.2.9), (2.2.23) the kinematic coupling is enforced in a strong fashion, we consider
a triangulation of the reference fluid domain pΩε

f which is fitted to the triangulation of the
interface pΣε. We set X1

hppΣεq as the trace space of X1
hppΩε

f q and Π1
b,h the corresponding

Lagrange interpolation operator ontoX1
hppΣεq. The geometric coupling condition (2.2.23)1

is treated explicitly. For a given displacement rn´1
H P YH and rotation vector θn´1

H P YH
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at time step n ´ 1, we define the ALE map An
h as

ϕn
H “ pI3 ¨ ezqez `

Ęrn´1
H `

ĘΛn´1
h

`

I3 ´ pI3 ¨ ezqez
˘

in pωε, An
h “ Lh

`

Π1
b,hϕ

n
H

˘

,

with Λn´1
h given from θn´1

H , using (2.2.3), and where Lh denotes a given discrete lifting
operator (e.g., an harmonic extension operator). The one-to-one mapping An

h allows us to
consider as fluid unknowns

pun
h

def
“ un

h ˝ An
h , ppnh

def
“ pnh ˝ An

h

instead of un
h “ pun

h ˝ pϕn
Hq´1 and pnh “ ppnh ˝ pϕn

Hq´1. We then introduce the following
finite element space V f

h
def
“ X1

hppΩε
f q X H1

BΩppΩε
f q and Qf

h
def
“ Q1

hppΩε
f q X L2ppΩε

f q for the
approximation of the fluid unknowns. We write the fluid and structure equations in weak
form and apply a finite element discretization with an implicit treatment of the coupling
conditions. The resulting discrete formulation is given in Algorithm 2. One limitation of

Algorithm 2 Discrete formulation of the coupled problem (2.2.4), (2.2.9), (2.2.23).

For n ě 1,
Step 1: Update of the beam deformation and of the fluid domain

#

ϕn
H “ pI3 ¨ ezqez `

Ęrn´1
H `

ĞΛn´1
h

`

I3 ´ pI3 ¨ ezqez
˘

in pωε,

An
h “ Lh

`

Π1
b,hϕ

n
H

˘

, Ωε,n
f “ An

hppΩε
f q, pwn

f,H “ BτAn
h,

with Λn´1
h given from θn´1

H using (2.2.3).

Step 2: Find ppun
h, pp

n
h, r

n
H ,θnHq P V f

h ˆ Qf
h ˆ YH ˆ YH with 9r

n´ 1
2

H “ Bτr
n
H , 9θ

n´ 1
2

H “ Bτθ
n
H and such

that
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pun
h “ Π1

b,hBτϕ
n
H on pΣε,

ρf
τ

”

pun
h,vhqΩε,n

f
´ pun´1

h ,vhqΩε,n´1
f

ı

´ ρfpp∇ ¨wn
f,Hqun

h,vhqΩε,n
f

` afΩε,n
f ,h

`

un´1
h ´wn

f,h; pun
h, p

n
hq, pvh, qhq

˘

` ρbpABτ 9rnH , δrHqp0,Lq

` ρb
`

IBτ 9θnH , δθH
˘

p0,Lq
` abH

`

pr
n´ 1

2

H ,θ
n´ 1

2

H q, pδrH , δθHq
˘

“ 0

(2.3.15)

for all ppvh, pqh, δrH , δθHq P V f
h ˆ Qf

h ˆ YH ˆ YH with

pvh “ Π1
b,h

`

ĚδrH ` ĚδθH ^ pϕn
H ´

Ęrn´1
H ´ pI3 ¨ ezqezq

˘

on pΣε.

Algorithm 2 lies in the capability of the discrete lifting operator Lh to guarantee mesh
quality when dealing with large interface deflections. This problem is even more pro-
nounced in the context of multiple slender structures immersed in a fluid and that can get
into contact. Algorithm 1 overcomes this issue by working with a fixed mesh, but it re-
quires the localization of the interfacial mesh within the fluid mesh and the evaluation of
the corresponding coupling terms.
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2.3.2 Coupled problem with coupling conditions on the centerline We present in this section the
discrete formulation for the coupled problem (2.2.4), (2.2.16),(2.2.25). As in the previous
discrete formulations, the geometrical coupling is treated in an explicit fashion as follows:

ϕn
H “ rn´1

H on t0u ˆ t0u ˆ p0, Lq, mcBn
“ ϕn

H

`

t0u ˆ t0u ˆ p0, Lq
˘

.

Then the discrete problem is similar to the one given in Algorithm 1 but with the Lagrange
multipliers belonging to Y n

H
def
“ X1

HpBn
q instead of F n

N,H and the integrals over Σε,n

replaced with integrals over Bn. The details of this formulation can be found in Algorithm
3. Compared to Algorithm 1, Algorithm 3 involves the localization of the beam centerline

Algorithm 3 Discrete formulation of the coupled problem (2.2.4), (2.2.16),(2.2.25)
.

For n ě 1,
Step 1: Update of the beam centerline location:

ϕn
H “ I3 ` rn´1

H in t0u ˆ t0u ˆ p0, Lq, Bn “ ϕn
Hpt0u ˆ t0u ˆ p0, Lqq.

Step 2: Find pun
h, p

n
h,λ

n
H , rnH ,θnHq P VhˆQhˆY n

H ˆYH ˆYH , with 9r
n´ 1

2

H “ Bτr
n
H and 9θ

n´ 1
2

H “ Bτθ
n
H ,

such that
ρfpBτu

n
h,vhqΩ ` afΩ,h

`

un´1
h ; pun

h, p
n
hq, pvh, qhq

˘

` ρbpABτ 9rnH , δrHqp0,Lq ` ρbpIBτ 9θnH , δθHqp0,Lq

` abH
`

pr
n´ 1

2

H ,θ
n´ 1

2

H q, pδrH , δθHq
˘

´ pλn
H ,vh ´ δrH ˝ pϕn

Hq´1qBn ` pµH ,un
h ´ Bτr

n
H ˝ pϕn

Hq´1qBn

(2.3.16)

for all pvh, qh,µH , δrH , δθHq P Vh ˆ Qh ˆ Y n
H ˆ YH ˆ YH .

mesh wihtin the fluid mesh, instead of the interfacial mesh, making the assembly of the
matrix bN , introduced in (2.3.10), faster. Furthermore, the matrix sparsity is slightly better
for the Algorithm 3 as the number of fluid elements intersected by the 1D beam centerline
is inherently smaller than when dealing with the 2D interface. For N “ 0, passing from
one reduced-order model to the other basically consists in computing the average value
of the fluid velocity on each cross section instead of taking it at their center, then the
number of degrees of freedom for the Lagrange multipliers space remains unchanged, and
consequently, the size of the system matrix is the same.

2.4 Numerical experiments

In this section, we illustrate the accuracy of Algorithm 1 by comparing its numerical so-
lution with those provided by Algorithms 2 and 3. The results provided by Algorithm 2
are taken as the reference solution (full order model). We first consider the case of a sin-
gle beam and investigate the influence of several parameters, such as the mesh size h, the
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beam thickness ε, the number of Fourier modes N and the Reynolds number Re. In our
context, the Reynolds number is given by Re

def
“ 2urefρfε{µf where uref is a reference

velocity whose value will be specified for each test case. To illustrate the robustness of
the proposed modeling approach, we also consider the case of large displacements using
a non-linear beam model, with multiple beams that can be in contact. All the numerical
simulations have been performed with the FELiScE finite element library [mathematics
for bio-medical applications, 2023].

2.4.1 Single beam immersed in a Stokesian flow

In the first numerical example, we consider the mechanical interaction between an incom-
pressible viscous fluid and a single beam in a rectangular domain of dimensions 3 ˆ 1 ˆ 1
centered at p0.5, 0.5, 0q. We assume that the fluid is described by Stokes equations, so that
the inertia terms in (2.2.6) are neglected. Homogeneous Neumann boundary conditions
are enforced at the outlet Γout, homogeneous Dirichlet condition on the lower face (z “ 0)
of the domain, and the perfect slip conditions on the other three lateral faces, as illustrated
in Figure 2.3.

lx

ly

lz

Γin

u “ uin

Γout

σpu, pqn “ 0

u “ 0

u ¨ ey “ 0
u ¨ ey “ 0

u ¨ ez “ 0

L

Figure 2.3: Geometrical setting for the single beam immersed in a rectangular fluid domain.

The following parabolic velocity profile is enforced at the inlet boundary Γin:

uinpx, tq
def
“ uref

˜

1 ` cos

ˆ

2πt

T

˙

¸

`

1 ´ pz ´ 1qpz ` 1q
˘

ex, (2.4.1)

with final time T “ 0.06. The following beam parameters are considered: Young’s modu-
lus E “ 107, radius ε “ 0.06 and density ρb “ 1. For the fluid, we take a density ρf “ 1.
We run simulations for different values of h{ε, representing the resolution of the beam
interface by the fluid mesh. Specifically, we consider two types of fluid meshes, see Fig-
ure 2.4. The first one is refined in a region near the beam interface, with h{ε “ 1{4, and
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(a) Refined fluid mesh - Algorithms 1 and 3

(b) Uniform fluid mesh - Algorithms 1 and 3

(c) Refined fluid mesh - Algorithm 2

Figure 2.4: Cut plane of the fluid mesh for different resolutions of the beam interface and ε “ 0.06.

we have h “ 0.05 on the faces of the rectangular domain. The second type correspond to a
uniform mesh in the whole fluid domain, with h “ 0.05. Note that for Algorithm 2, which
serves as reference in the comparisons, we only consider the refined fluid mesh fitted to
the interface. For the beam and the Lagrange multiplier space, we discretize the interval
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p0, Lq with a uniform mesh such that H “ 0.05. The behavior of the coupled system is
studied over the time interval r0, 0.06s with a time-step length of τ “ 5 ¨ 10´3.

2.4.1.1 Impact of fluid mesh refinement

2.4.1 Case h{ε ! 1 We consider here the refined fluid mesh. In Figure 2.5, we report
the time history of the displacement of the last cross-section of the beam obtained with
Algorithms 1, 2 and 3 for different values of viscosity µf and of the reference velocity uref ,
deliberately calibrated to keep comparable displacement amplitudes across the different
test cases. In Table 2.1, we also provide the relative error in the L8 norm with respect to
the solution provided by Algorithm 2. Lastly in Figure 2.6, we present snapshots of the
fluid velocity magnitude and pressure fields at the final time t “ 0.06.
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(a) µf “ 1, uref “ 10.
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(b) µf “ 0.1, uref “ 50.
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(c) µf “ 0.05, uref “ 100.

Figure 2.5: Time history of the displacement of the last cross-section of the beam along the x-axis for
several fluid viscosities µf and reference inlet velocities uref , with h{ε ! 1.

µf “ 1, uref “ 10. µf “ 0.1, uref “ 50. µf “ 0.05, uref “ 100.
Algorithm 1, N “ 0 2.84 ¨ 10´2 2.88 ¨ 10´2 3.01 ¨ 10´2

Algorithm 3 4.94 ¨ 10´1 5.46 ¨ 10´1 5.78 ¨ 10´1

Table 2.1: Relative error }
`

rpL, ¨q ´ rrefpL, ¨q
˘

¨ ex}8{}rrefpL, ¨q ¨ ex}8 where rrefpL, ¨q is the
displacement of the last cross-section of the beam computed with Algorithm 2, with h{ε ! 1.

We can observe that the displacement, velocity and pressure fields obtained with Al-
gorithm 1 provide a very good approximation of the reference given by Algorithm 2. In
this context, taking N “ 0 seems to be sufficient for accurately capturing both the beam
and fluid dynamics. This can be attributed to the fact that the numerical solution of Al-
gorithm 2 presents a symmetric flow pattern around the beam, which results in a small
torque acting onto beam and a subsequent low angular velocity. Additionally, the force
transmitted to the beam and the subsequent beam displacement velocity for Algorithm 2
belongs to the functional space F0. In contrast, Algorithm 3 does not provide a satisfactory
numerical solution. The area of influence of the beam on the fluid appears considerably
smaller compared to Algorithm 2. The lower magnitude of the velocity and pressure is no-
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(a) Algorithm 2 - Reference Solution.

(b) Algorithm 1, N “ 0.

(c) Algorithm 3.

Figure 2.6: Snapshots of the fluid velocity magnitude (left) and pressure (right) at time t “ 0.06 obtained
with Algorithms 1–3, with h{ε ! 1.

ticeable in Figure 2.6, which is also consistent with differences in displacement observed
in Figure 2.5 and Table 2.1. As discussed in [Hagmeyer et al., 2022], the extent of the
influence of the beam on the surrounding fluid for Algorithm 3 is determined by the size
of the fluid elements. When h{ε ! 1, this difference becomes important and then leads to
a considerable deviation from the reference solution.

2.4.2 Case h{ε « 1 We now consider the uniform fluid mesh. In this configuration, the
thickness of the beam (ε “ 0.06) is roughly equal to the size of the fluid elements. As
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indicated above, we keep a refined mesh for Algorithm 2, which serves as reference solu-
tion.
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(a) µf “ 1, uref “ 10.
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(b) µf “ 0.1, uref “ 50.
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(c) µf “ 0.05, uref “ 100.

Figure 2.7: Time history of the displacement of the last cross-section of the beam along the x-axis for
various fluid viscosity µf and reference inlet velocity uref , with h{ε « 1.

µf “ 1, uref “ 10. µf “ 0.1, uref “ 50. µf “ 0.05, uref “ 100.
Algorithm 1, N “ 0 6.88 ¨ 10´2 8.14 ¨ 10´2 9.39 ¨ 10´2

Algorithm 3 2.63 ¨ 10´1 2.71 ¨ 10´1 2.85 ¨ 10´1

Table 2.2: Relative error }
`

rpL, ¨q ´ rrefpL, ¨q
˘

¨ ex}8{}rrefpL, ¨q ¨ ex}8 where rrefpL, ¨q is the
displacement of the last cross-section of the beam computed with Algorithm 2, with h{ε « 1.

The results for the displacement of the last beam cross-section are given in Figure 2.7,
relative error in L8 norm with respect to the reference solution are presented in Table 2.2
and snapshots of the velocity magnitude and pressure at time t “ 0.06 are provided in
Figure 2.8. We can observe that Algorithm 1 is able to capture the dynamics of the beam
displacement and the main fluid velocity/pressure patterns. However, the comparison with
Algorithm 2 degrades a bit with respect to the previous case (h{ε ! 1). This is visible in
the slight deviations observed in the displacement history and in the pressure pattern. As
regards Algorithm 3, provides a better approximation of the beam displacement than in the
scenario h{ε ! 1. However, the solution is still less accurate than the one obtained with
Algorithm 1. Furthermore, although an improvement can be seen in the solution for beam
displacement, Figure 2.7 shows that the solution for fluid velocity suffers from the same
limitations as in the case h{ε ! 1. In general, with a coarser mesh, we observe, however,
that the pressure jump for both Algorithm 1 and 3 is smaller than the one obtained with
Algorithm 2. This can be attributed to the singularity in the pressure, whose approximation
using continuous piece-wise affine functions requires a fine mesh to be captured accurately.

2.4.3 Case h{ε " 1 Here, we still consider the uniform mesh. However, we decrease the
value of ε, in particular, we consider ε P t0.06, 0.04, 0.02u. In Algorithm 2, as before, the
mesh is refined around the beam to ensure that h{ε “ 1{4, which resolves the interface
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(a) Algorithm 2 - Reference solution.

(b) Algorithm 1 with N “ 0.

(c) Algorithm 3.

Figure 2.8: Snapshots of the fluid velocity magnitude (left) and pressure (right) at time t “ 0.06 obtained
with Algorithms 1–3, with h{ε « 1.

regardless of the beam thickness ε.

ε “ 0.06, E “ 107. ε “ 0.04, E “ 4 ¨ 107. ε “ 0.02, E “ 4 ¨ 108.
Algorithm 1, N “ 0 9.39 ¨ 10´2 1.13 ¨ 10´1 2.20 ¨ 10´1

Algorithm 3 2.85 ¨ 10´1 1.45 ¨ 10´1 2.03 ¨ 10´1

Table 2.3: Relative error }
`

rpL, ¨q ´ rrefpL, ¨q
˘

¨ ex}8{}rrefpL, ¨q ¨ ex}8 where rrefpL, ¨q is the
displacement of the last cross-section of the beam computed with Algorithm 2, with h{ε " 1.

To keep comparable amplitudes for the beam displacement independently of the beam
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(a) ε “ 0.06, E “ 107.
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(b) ε “ 0.04, E “ 4 ¨ 107.
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(c) ε “ 0.02, E “ 4 ¨ 108.

Figure 2.9: Time history of the displacement of the last cross-section of the beam along the x-axis for
various thickness ε and Young’s modulus E - h{ε " 1.

thickness, the Young’s modulus of the beam is modified accordingly with values E P

t107, 4 ¨ 107, 4 ¨ 108u. We fix µf “ 0.05 and uref “ 100. The results obtained are reported
in Figure 2.9 for the beam displacement, in Table 2.3 for the relative error in L8 norm
and in Figure 2.10 for the velocity and pressure fields. We can clearly observe that by
reducing ε, the numerical approximations of the beam displacement, the fluid velocity
and the fluid pressure provided by Algorithms 1 and 3 get closer. The price to pay is a
significant degradation of the accuracy of Algorithm 1 with respect to the previous cases.

In conclusion, as the ratio h{ε increases, the resolution of the mesh becomes insufficient
to accurately capture the fluid-solid interface. In this context, the numerical comparisons
indicate that imposing the coupling conditions on the centerline delivers similar accuracy
to enforcing them on the interface. However, given the relatively large mesh size compared
to the beam thickness, delivering an accurate solution for the fluid pressure and velocity
on the interface becomes challenging. The primary advantage of the Algorithm 1 lies in its
ability to capture the dynamics of the problem effectively with a reasonably refined fluid
mesh near the interface, while maintaining reduced order interface conditions in the spirit
of Algorithm 2.

2.4.1.2 Influence of the number of Fourier modes

In this section, we consider a variant of the previous numerical example in which the beam
is immersed in a shear flow, with the purpose of inducing torsional effects on the beam and
illustrate the importance, in this new context, of considering enough modes (N ě 1) in
Algorithm 1. We consider homogeneous Neumann boundary conditions on Γin and Γout,
homogeneous Dirichlet boundary conditions on the lower face of the domain, and

u “ urefpy ´ 0.5qp1 ´ px ´ 1qpx ` 1qqex

on the three other lateral faces, with uref “ 40. In order to further induce torsional effects
in the beam, we consider elliptical cross-sections with an aspect ratio a “ 2 and a small
axis ε “ 0.04. The physical parameters are µf “ 1, E “ 4 ¨ 105 and ρb “ 1.
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(a) Algorithm 2, reference solution.

(b) Algorithm 1 with N “ 0.

(c) Algorithm 3.

Figure 2.10: Snapshots of the fluid velocity magnitude (left) and pressure (right) at time t “ 0.06 obtained
with Algorithms 1–3, with h{ε " 1.

In Algorithms 1 and 2, we consider the same type of fluid meshes, refined around the
beam (h{ε “ 1{4) and uniform on the faces of the rectangular domain (h “ 0.05). We
compare the approximations provided by Algorithm 1 and Algorithm 2 with N “ 0, 1. In
Figure 2.11, we report the time history of the rotation of the last cross-section around the
z axis over the time interval r0, 0.06s. In Figure 2.12, we provide some snapshots of the
beam deformed configuration at time t P t0, 0.02, 0.04, 0.06u. We can clearly observe that
Algorithm 1 with N “ 0 cannot capture the torsion induced by the shear fluid flow on the
beam. Indeed, since the Lagrange multiplier is constant on each cross-section, no torque
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Figure 2.11: Rotation of the last cross-section along the z-axis of the beam immersed in a shear flow.

is transmitted to the beam. As a result, since the beam is initially at rest, it remains steady
throughout the simulation. In contrast, Algorithm 1 with N “ 1 is able to reproduce the
rotational motion around the z-axis obtained with Algorithm 2. Similarly, the velocity
of the beam interface, mainly determined by its torsion velocity around the z-axis, is well
captured, as shown in Figure 2.12. In terms of displacement, this favorable outcome comes
from the fact that the moment transmitted to the structure, as well as the rotation velocity
of the beam interface, given in equations (2.2.23), belong to the space F1.

2.4.2 Single beam immersed in a Navier-Stokes flow

In this section, we keep the geometric configuration considered in Section 2.4.1, but now
with a beam immersed in a Navier-Stokes flow, so that the Reynolds number is not zero
anymore. The fluid velocity is initialized with the solution of the Stokes equations, in
which the velocity on the beam is set to zero. We consider a fluid density ρf “ 1 and a
beam density ρb “ 1. The thickness of the beam cross-section is set to ε “ 0.06 and the
Reynolds number Re P t2.4, 120, 480u, with µf P t1, 0.1, 0.05u and uref P t10, 50, 100u,
respectively. To keep similar displacement amplitudes when varying the Reynolds number,
the Young modulus of the beam is chosen as E P t107, 1.6 ¨ 108, 3 ¨ 108u. We use a mesh
that accurately resolves the beam interface such that h{ε “ 1{4 in a region near the beam
and h “ 0.05 on the faces of the rectangular domain.

2.4.1 Impact of the Reynolds number We first investigate the influence of the Reynolds
number on the accuracy of Algorithm 1. In Figure 2.13, we report the time history of
the displacement of the lass cross-section of the beam with Re P t2.4, 120, 480u and
E P t4 ¨ 107, 4 ¨ 107, 4 ¨ 108u, and in Table 2.4 the L8 relative error with respect to Al-
gorithm 2. Note that in Figure 2.13, we introduced an additional algorithm, referred to
as Algorithm 2-Ω in in which the fluid is solved in the whole domain Ω. The motivation
of this algorithm will be discussed in the next paragraph. We observe that the higher the
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Algorithm 2, t “ 0. Algorithm 1, N “ 0, t “ 0. Algorithm 1, N “ 1, t “ 0.

Algorithm 2, t “ 0.02. Algorithm 1, N “ 0, t “ 0.02. Algorithm 1, N “ 1, t “ 0.02.

Algorithm 2, t “ 0.04. Algorithm 1, N “ 0, t “ 0.04. Algorithm 1, N “ 1, t “ 0.04.

Algorithm 2, t “ 0.06. Algorithm 1, N “ 0, t “ 0.06. Algorithm 1, N “ 1, t “ 0.06.

Figure 2.12: Snapshots of the beam deformation and the velocity magnitude induced by a shear flow, at
time t P t0, 0.02, 0.04, 0.06u (from top to bottom).

Reynolds number the less accurately the displacement of the beam is captured by Algo-
rithm 1. On the contrary, the accuracy of the results is improved by increasing the number
of Fourier modes N . In particular, the numerical solution appears to converge when N
increases. Indeed, the accuracy gap between N “ 0 and N “ 1 is quite significant, but
decreases significantly between N “ 1 and N “ 2. However, the numerical results indi-
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(a) Re “ 2.4, E “ 4 ¨ 107.
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(b) Re “ 120, E “ 1.6 ¨ 108.
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(c) Re “ 480, E “ 3 ¨ 108.

Figure 2.13: Time history of the displacement of the last cross-section of the beam along the x-axis for
various Reynolds number Re and Young’s modulus E.

Re “ 2.4, E “ 4 ¨ 107. Re “ 120, E “ 1.6 ¨ 108. Re “ 480, E “ 3 ¨ 108.
Algorithm 2 Algorithm 2-Ω Algorithm 2 Algorithm 2-Ω Algorithm 2 Algorithm 2-Ω

Algorithm 1, N “ 0 7.05 ¨ 10´2 6.49 ¨ 10´2 5.17 ¨ 10´1 3.41 ¨ 10´1 4.31 ¨ 10´1 2.90 ¨ 10´1

Algorithm 1, N “ 1 6.95 ¨ 10´2 6.38 ¨ 10´2 2.67 ¨ 10´1 1.27 ¨ 10´1 2.06 ¨ 10´1 8.75 ¨ 10´2

Algorithm 1, N “ 2 7.89 ¨ 10´2 7.30 ¨ 10´2 2.02 ¨ 10´1 7.66 ¨ 10´2 2.00 ¨ 10´1 8.43 ¨ 10´2

Table 2.4: Relative error }
`

rpL, ¨q ´ rrefpL, ¨q
˘

¨ ex}8{}rrefpL, ¨q ¨ ex}8 where rrefpL, ¨q is the
displacement of the last cross-section of the beam computed with Algorithm 2 or Algorithm 2-Ω.

cate that the limit differs from the numerical solution provided by Algorithm 2, notably as
the Reynolds number increases. One possible explanation of this mismatchis that, in the
fictitious domain approach, the fluid equations are solved in the entire domain Ω, which
introduces a non-physical flow in the part occupied by the beam with the subsequent addi-
tional artificial stress on the interface. It is worth noting that, in the case of a Stokes flow,
the numerical results of Section 2.4.1 indicate that the impact of such spurious stress on
the accuracy of Algorithm 1 is rather limited.
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(a) Re “ 800, ε “ 0.1,
E “ 108.
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(b) Re “ 480, ε “ 0.06,
E “ 3 ¨ 108.
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(c) Re “ 160, ε “ 0.02,
E “ 1.2 ¨ 1010.

Figure 2.14: Time history of the displacement of the last cross-section of the beam along the x-axis for
various beam thickness ε.
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Re “ 800, ε “ 0.1, E “ 108. Re “ 480, ε “ 0.06, E “ 1.2 ¨ 109. Re “ 160, ε “ 0.02, E “ 1.2 ¨ 1010.
Algorithm 1, N “ 0 6.22 ¨ 10´1 4.31 ¨ 10´1 3.23 ¨ 10´1

Algorithm 1, N “ 1 2.61 ¨ 10´1 2.06 ¨ 10´1 1.96 ¨ 10´1

Algorithm 1, N “ 2 2.54 ¨ 10´1 2.00 ¨ 10´1 1.63 ¨ 10´1

Table 2.5: Relative error }
`

rpL, ¨q ´ rrefpL, ¨q
˘

¨ ex}8{}rrefpL, ¨q ¨ ex}8 where rrefpL, ¨q is the
displacement of the last cross-section of the beam computed with Algorithm 2.

2.4.2 Impact of the fictitious domain method In order to investigate the impact of the spuri-
ous internal fluid on the accuracy of Algorithm 1, we consider a variant of Algorithm 2 in
which the fluid is solved in the whole domain Ω, so that the portion of the domain occu-
pied by the beam is also filled with the fluid. This variant will be termed Algorithm 2-Ω.
Figure 2.13 and Table 2.4 indicate that the displacement of the last cross-section of the
beam obtained with Algorithm 1, with N P t1, 2u, is close to the one provided by Algo-
rithm 2-Ω. Since the volume of the region occupied by the beam is proportional to ε2, one
would expect that the perturbation induced by the artificial fluid decreases as ε tends to
zero. We propose to exhibit this phenomenon by gradually decreasing the thickness of the
beam, by taking ε P t0.1, 0.04, 0.02u while keeping the same fluid parameters as in the
case with Re “ 480 and ε “ 0.06. To keep similar amplitudes of the beam deflection,
we take the Young’s modulus E P t108, 1.2 ¨ 109, 1.2 ¨ 1010u. In Figure 2.14 we report the
time history of the displacement of the last cross-section of the beam and in Table 2.5 the
L8 relative error with respect to Algorithm 2. We observe that the displacement of the last
beam cross-section approaches the reference solution as the thickness decreases. Another
difficulty of standard fictitious domain methods is the approximation of the pressure jump
across the beam interface via continuous functions. In Figure 2.15, we provide snapshots
of the magnitude of the velocity and the pressure fields obtained withRe “ 480 and a con-
stant velocity inlet uin “ 2urefex. We can clearly observe that the pressure jump provided
by Algorithm 2-Ω is smaller than the one obtained with Algorithm 2. We can also notice
that the continuous pressure approximation does not ensure mass conservation across the
interface, as a spurious flow is generated inside the region occupied by the beam. As a
result, the vortices that form behind the beam are also much weaker. Although increasing
the number of modes in Algorithm 1 significantly reduces the amount of spurious fluid,
notably for N “ 2, the obtained numerical solutions is much closer to the one provided
by Algorithm 2-Ω than by Algorithm 2.

Some solutions exist to circumvent these issues. In order to correctly evaluate the fluid
stress at the interface, one can force the fluid velocity inside the fictitious region to be
equal to the solid velocity using, for instance, distributed Lagrange multipliers [Girault
and Glowinski, 1995, Boffi and Gastaldi, 2015]. However, this approach often requires
the introduction of 3D corrections, which jeopardize the reduced nature of the present
methodology. Thus, we have chosen to not include them into the present study.

In order to mitigate the impact of the spurious stress across the interface, we consider
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the approach which consists in introducing a scalar Lagrange multiplier to guarantee mass
conservation within the domain Ωε

f ptq (see [Corti et al., 2023, Ohmori and Saito, 2007]),
viz.,

ż

BΩε
f ptq

u ¨ n`
“ 0.

We denote by Algorithm 1 - MC the solution procedure obtained by combining Algo-
rithm 1 with this approach. Figure 2.15 reports the snapshots of the fluid velocity magni-
tude and pressure obtained with Algorithms 1 and 2, Algorithm 2-Ω and Algorithm 1-MC
at time t “ 0.06. We can observe that the introduction of the scalar mass conservation
constraint noticeably reduces the fluid flow both inside and across the beam. Furthermore,
the pressure and field around the beam are rendered with greater fidelity, particularly near
the beam interface, where we observe an increased upward velocity along the interface,
together with vortices forming much closer to the beam.

2.4.3 Multiple-beams immersed in incompressible viscous flow

In order to further assess the robustness of the proposed approach, we consider a more
complex scenario involving a swarm of beams made of 75 circular beams, arranged with 5
along the y-axis and 15 along the x-axis. The beams have a radius ε “ 0.05 and are spaced
0.05 apart from each other. The boundary conditions are similar to the one described in
the previous section with a time dependent inlet velocity (2.4.1). The beam is modeled
by a non-linear co-rotational formulation that allows for large deformations (see [Krenk,
2009, Chapter 5]). In this formulation, the total motion of the beam is divided between
the motion of the element-based local co-rotating frame of reference and the deforma-
tion of the element within this local frame. For the element’s deformation within this
local frame, the generalized Timoshenko linear beam theory is used as described in Sec-
tion 2.2.1. Given the proximity of the beams, they are likely to come in contact. To address
this issue, we have incorporated a penalty contact algorithm using a raytracing projection
on the 2D beam interface described in Section 2.A.1 of the Appendix. All the beams have
the same Young’s modulus and density, E “ 108 and ρb “ 1, respectively.

We first consider a Stokes flow with viscosity µf “ 1 and reference inlet velocity
uref “ 10. The size of the mesh is uniform throughout the fluid domain, with h “ 0.05.
In Figure 2.16, we provide snapshots of the fluid velocity magnitude computed with Al-
gorithm 1 at times t P t0.05, 0.1, 0.2, 0.3, 0.45, 0.6u. We observe a collective behavior of
the beams oscillating from left to right. In particular, they do not get into contact. We
then consider a Navier-Stokes flow, with Reynolds number Re “ 480, computed with
µf “ 0.05, uref “ 100 and ρf “ 1. The fluid mesh is kept uniform with a smaller mesh
size h “ 0.035. Snapshots of the fluid velocity magnitude calculated with Algorithm 1
with N “ 2 are provided in Figure 2.17. We observe a significant reduction in fluid ve-
locity due to the presence of beams. Additionally, a distinct wave flow pattern appears in
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the upper region. We also observe orthogonal waves to the inlet flow pushing the beams
outward, thereby increasing the fluid velocity within these regions of the domain.

2.5 Conclusion

In this chapter, we have proposed a new approach for the modeling and simulation of
slender structures immersed in a 3D flow. A salient feature of the proposed methodology
is that the 3D fluid model and the reduced 1D solid model are coupled via well-posed trace
operators of co-dimension two, based on a suitable Fourier projection of the kinematic
constraint on the 2D interface. The method has been extensively compared with a full order
(ALE based) approach and an alternative reduced based method. Numerical evidence
indicates that, at low Reynolds numbers, the method is accurate regardless of the ratio
between the background mesh size and the radius of the beam. For moderate Reynolds
numbers, accurately capturing the fluid flow around the two-dimensional beam interface
requires both mesh refinement and a higher number of Fourier modes.

The numerical comparisons also indicated that, for high Reynolds numbers, most of the
numerical errors arise from the fictitious domain method. As a result, we have proposed
strategies to address these issues without resorting to 3D techniques, to guarantee consis-
tency with the underlying reduced nature of the method. Furthermore, numerical evidence
has been provided on the fact that the choice of the approximated Fourier space can have
a significant influence on the dynamic of the beams, including whether it is possible to
capture the rotation of the cross-sections.

Finally, to assert the robustness of the method and its potential integration with more
general computational frameworks for fluids and solids, we have tested it considering a
significant number of beams that can get into contact.

In Chapter 5, we propose a stable and accurate loosely coupled schemes allowing to
strike a balance between computational efficiency and accuracy.

2.A Appendix

2.A.1 Contact algorithm

To address contact interactions, we integrate a contact term into Algorithm 1. This contact
term is based on a ray-tracing strategy with penalization on the reconstructed interface
of the beams following the method presented for example in [Chouly et al., 2023, Chap-
ter 11]. Since the balance equations are defined on the beam centerline, the penalization
term is then integrated on each cross section to obtain a one-dimensional force.

To define the contact term, we consider two distinct beams pωε
1 and pωε

2 such that pΣε
1

def
“

Bpωε
1zBΩ is the master surface and pΣε

2
def
“ Bpωε

2zBΩ is the slave surface. For all x P Σε,n
2

def
“
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ϕnppΣε
2q, denoting by nx the outer normal of the surface Σε,n

2
def
“ ϕnppΣε

2q at point x, we
denote by ΠRpxq the closest intersection of the master surface Σε,n

1 with the line passing
through x and having direction nx. This strategy can be referred to as ray-tracing (see
Figure 2.18). We then introduce a gap function denoted by g which satisfies

gpxq “ pΠRpxq ´ xq ¨ nx “ pΠRpϕn
H ppxqq ´ ϕn

H ppxqq ¨ nx

where px
def
“ pϕn

Hq´1pxq. The non-penetration conditions writes g ě 0 and is enforced
through penalization. The contact term for the beam pωε

1 is then given by

γ

2h2

ż

pΣε
2

rpΠRpϕn
H ppxqq ´ ϕn

H ppxqq ¨ nxs`pĚδrHppxq ´ ĚδrHppyqq ¨ nx, @ δrH P YH ,

where γ ą 0 is user- defined parameter and the function r¨s` is the positive part operator
given by

rxs` “

#

x if x ě 0,

0 if x ă 0.
@x P R.
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(a) Algorithm 2.

(b) Algorithm 2-Ω.

(c) Algorithm 1, N “ 0.

(d) Algorithm 1, N “ 1.

Figure 2.15: Snapshots of the fluid velocity magnitude (left) and pressure (right) at time t “ 0.06 with
Algorithm 2, Algorithm 2-Ω, Algorithm 1 and Algorithm 1-MC, with Re “ 480.
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(e) Algorithm 1, N “ 2.

(f) Algorithm 1-MC, N “ 2.

Figure 2.15: Snapshots of the fluid velocity magnitude (left) and pressure (right) at time t “ 0.06 with
Algorithm 2, Algorithm 2-Ω, Algorithm 1 and Algorithm 1-MC, with Re “ 480. (cont.)
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t “ 0.005 t “ 0.01 t “ 0.02

t “ 0.03 t “ 0.045 t “ 0.06

Figure 2.16: Snapshots of the fluid velocity magnitude for multiple beams immersed in a Stokes flow with
Algorithm 1 and N “ 0 at time t P t0.005, 0.01, 0.02, 0.03, 0.045, 0.06u (note that at time t “ 0.03, the

inlet velocity is null).

t “ 0.005 t “ 0.01 t “ 0.02

t “ 0.03 t “ 0.045 t “ 0.06

Figure 2.17: Snapshots of the fluid magnitude fluid for multiple beams immersed in a Navier-Stokes flow
with Algorithm 1 and N “ 2 at time t P t0.005, 0.01, 0.02, 0.03, 0.045, 0.06u (note that at time

t “ 0.03, the inlet velocity is null).
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ωε,n
1

Σε,n
1

ωε,n
2

Σε,n
2

y

x
nx

Figure 2.18: Ray-tracing strategy
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CHAPTER3
Mathematical and numerical analysis of reduced
order interface conditions and augmented finite

element method for mixed-dimensional problems

Corresponding to the preprint [Boulakia et al., 2023].

3.1 Introduction

In this chapter, we provide a rigorous analysis of the two-dimensional problem that arises
by studying a transversal section of (2.2.21). Instead of dealing with a two-way interac-
tion, we focus on the obstacle fluid sub-problem where the interface kinematic coupling
conditions are substituted with non-homogeneous Dirichlet condition on a fixed circular
internal boundary. We also make a drastic simplification of the fluid model, stepping back
to the scalar Poisson equation. However, as we will see, this study already contains the
main difficulties of the more general mathematical model introduced in Chapter 2. The
extension to the Stokes problem is presented in Chapter 4.

Consistent notations are used with respect to Chapter 2. Specifically, the symbol Ω
denotes a fixed smooth bounded domain of R2 including its origin 0 (note that in this
chapter, the obstacle is assumed to be of circular shape and not elliptical). The obstacle
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is represented by an inclusion ωε of size ε defined by ωε def
“ εω, where ω def

“ Bp0, 1q is
the open ball of center 0 and radius 1. In all the chapter, we assume that ε belongs to
an admissible set p0, εmaxq where εmax

def
“ suptε ą 0 : Ďωε Ă Ωu and we denote by

Ωε the complementary of Ďωε in Ω. The transition from the three-dimensional (3D) to the
two-dimensional (2D) geometrical setting is illustrated in Figure 3.1. In this new setting,

Bωε

ωεpsq

ωε

sez

pB

x

Ω Ă R3

ωε

ε

BωεΩ Ă R2

Figure 3.1: Transition from 3D to 2D geometrical setting.

we conserve a mixed-dimentional formulation by projecting the Dirichlet boundary con-
ditions on a finite-dimensional space FN . To give a rigorous definition of FN , as done in
Section 2.2.2.5, we introduce a local coordinate θ on the obstacle such that any point x on
Bωε can be parametrized as

x “ εpcospθqex ` sinpθqeyq.

We also introduce the function vpεq : p0, 2πq Ñ R defined for any function v : Bωε Ñ R
by the relation

vpεqpθq
def
“ vpεpcospθqex ` sinpθqeyqq @θ P p0, 2πq @ε ą 0. (3.1.1)

The space FN is then given by

FN
def
“ tv P L2

pBωε
q : vpεqpθq “ a0 `

N
ÿ

k“1

pak cospkθq ` bk sinpkθqq, ak, bk P Ru.

(3.1.2)
Note that FN can also be interpreted as the restriction to one cross-section of the space
introduced in (2.2.26) for circular shapes=. The reduced order problem considered in this
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chapter is formulated as follows: find uεN P H1
0 pΩq and λεN P FN such that

"

p∇uεN ,∇vqΩ ´ pλεN , vqε “ pf, vqΩ @v P H1
0 pΩq,

pµN , u
ε
Nqε “ pµN , ubqε @µN P FN ,

(3.1.3)

where ub P H
1
2 pBωεq and f P L2pΩq are given and the re-scaled inner product p¨, ¨qε is

defined by
pu, vqε “ pupεq, vpεqqp0,2πq.

The choice of a re-scaled inner product is motivated by the analysis of (3.1.3) provided in
Section 3.3 where it enables to obtain uniform estimates on the solution (Theorem 3.3.1).

We finally assume that f is such that 0 R supppfq. This hypothesis is used as well
in Section 3.3 for the asymptotic analysis of (3.1.3) as ε Ñ 0. Indeed, a salient result
of this chapter is the convergence when ε Ñ 0 of the solution of Problem (3.1.3) to the
one of the corresponding full order Poisson problem (Theorem 3.3.4 ): find puε, λεq P

H1
0 pΩqq ˆ H´ 1

2 pBωεq such that
#

p∇uε,∇vqΩ ´ xλε, vy´ 1
2
,Bωε “ pf, vqΩ @v P H1

0 pΩq,

xµ, uεy´ 1
2
,Bωε “ xµ, uby´ 1

2
,Bωε @µ P H

1
2 pBωεq.

(3.1.4)

Note that, in this context, Problem (3.1.4) can be considered as the counterpart of Prob-
lem (2.2.9) in the simplified setting we consider in this chapter. For standard Dirichlet
boundary conditions, the asymptotic analysis of Problem (3.1.4) can be found in many
works, we refer the reader to [Maz’ya et al., 1984, Maz’ya and Nazarov, 1987, Maz’Ya
et al., 2000,Nazarov, 1999,Nazarov and Sokołowski, 2003,Bonnaillie-Noël and Dambrine,
2013, Bonnaillie-Noël et al., 2007] for a non-exhaustive review. The available results will
be adapted below to the case of the dimensional mismatch at the internal boundary. Our
approximation results highlight that the reduced order model proposed in (3.1.3) is a con-
sistent and reliable approximation (3.1.4). To be more specific, we will state that the
accuracy of the approximation is of order εN`1 (Theorem 3.3.4). This implies that, for a
given ε, by increasing the number of Fourier modes, we can increase the accuracy with
respect to the full order model.

Then at the discrete level, to be consistent with the 3D case, we will analyse the ficti-
tious domain methods [Glowinski et al., 1994], where a Lagrange multiplier is applied to
impose the Dirichlet boundary conditions on the hole, while using a regular unfitted grid
for the finite element discretization of the problem. In particular, the mesh will not be fitted
to the internal boundary. In this framework, we saw in the numerical results presented in
Section 2.4 that the standard finite element method presents decreasing performances when
ε Ñ 0, unless restrictions on the computational mesh step-size are enforced. Note that to
avoid this phenomena on general unfitted computational meshes, alternative methods such
as the boundary element method [Antoine et al., 2012] can be employed. Analyzing the
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2D problem at hand enables the obtain estimate on the dependence of the numerical error
to the parameter ε and to propose strategies to reduce its negative impact on the numerical
approximation error. We will focus on a strategy consisting in taking advantage of the
asymptotic development of the solution combined with an augmented Galerkin approach
to obtain a convergence of arbitrary order with respect to the mesh size (see [Claeys and
Collino, 2010, Bonnaillie-Noël and Dambrine, 2013, Chesnel and Claeys, 2016]). More
precisely, our approximation result (Theorem 3.4.6) states that the discretization error is
of order hk where h is the mesh size and k is the polynomial order of the finite element
space. The case when the number of Fourier modes is given by N “ 0 (which consists
in only enforcing the mean value on the interface) with homogeneous Dirichlet bound-
ary conditions on the hole (namely ub “ 0 in (3.1.4)) has been treated in [Claeys and
Collino, 2010] for the Helmholtz equations and obstacles of arbitrary shape. Besides the
error estimates of the solution, we provide error estimates of the Lagrange multiplier that
depend explicitly on the parameters N and h. This study is particularly important in view
of better understanding the limitations of the 3D problem introduced in Chapter 2, since
the Lagrange multiplier is related to the forces that are exchanged at the interface.

Overall, this chapter covers two main original topics, the asymptotic analysis of the 2D
reduced order model toward the full order one and the numerical approximation of it with
a thorough analysis of the stability and convergence properties of different variants of the
method. The chapter is organized as follows. In Section 3.2, we address the asymptotic
properties of Problem (3.1.3) when the hole becomes arbitrarily small and we use it to
motivate the derivation of our reduced order model. In Section 3.3, we perform the well-
posedness and asymptotic analysis of the reduced model. The analysis of the fully discrete
version of the reduced order model is addressed in Section 3.4, the results of which are
supported by the numerical experiments of Section 3.5.

Note that most of the results proved in this chapter for Problem (3.1.3) can be derived
from classical properties inherent to elliptic problems. Our attention will then focus on
the dependence of the various results on the parameters h, ε and N . In particular, in what
follows, the notation a À b is equivalent to a ď Cb where C will denote the constant
of a generic upper bound assumed to be uniformly independent of the variables of the
inequality and of the mesh size h, the size of the hole ε and the dimension of the projection
space FN defined in (3.1.2).

Remark 4. In a fluid-solid interaction context, the internal Dirichlet boundary condition
would be equal to the velocity of the inclusion, typically we would have ub “ vb `

εwbeθ where eθ “ p´ sinpθq, cospθqq with vb P R3, wb P R. This case will be treated in
Chapter 4.

Remark 5. We consider in this paper a circular obstacle centered in 0 but all the results
can be generalized to an obstacle centered in r with r P Ω. This construction is also easily
generalized to multiple obstacles, provided that they do not intersect each other and do not
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intersect with the support of f .

Remark 6. In our study, we consider Dirichlet homogeneous boundary conditions on the
external boundary BΩ. However, our work can be extended without difficulty to non-
homogeneous Dirichlet boundary conditions.

3.2 Preliminary results

3.2.1 Limit of the Poisson problem with small holes

In this section, we provide some results on the asymptotic behavior of (3.1.4) as a mo-
tivation for the derivation of (3.1.3). The Lax-Milgram theorem allows to prove that the
problem: find u0 P H1

0 pΩq such that

p∇u0,∇vqΩε “ pf, vqΩε @v P H1
0 pΩq (3.2.1)

is well-posed and that the solution u0 satisfies the following standard energy bound:

}u0}1,Ω À }f}Ω.

Moreovever, if ub “ 0, then problem (3.2.1) represents the limit case of problem (3.1.4)
when ε Ñ 0. More specifically, uε satisfies

}uε ´ u0}1,Ωε À |logpεq|
´ 1

2 }f}Ω. (3.2.2)

This estimate is a classical result which can be seen as a consequence of the fact that the
H1-capacity of ωε tends to 0 as |logpεq|´1, see for instance [Henrot and Pierre, 2006] for
a discussion about capacity. Thus, in the particular case of homogeneous boundary con-
ditions on Bωε, the solution of the problem (3.1.4) tends to the solution of the problem
(3.2.1) when ε Ñ 0 and, to approximate the problem (3.1.4), one may consider the limit
problem without obstacle. In other words, one could just ignore the presence of the obsta-
cle. However, inequality (3.2.2) also shows that the convergence is very slow with respect
to the size of the inclusion. To give an idea, |logpεq|´ 1

2 « 0.201 for ε “ 10´10. For this
reason, we it seems necessary to introduce reduced order problems whose solutions can
approximate uε better than u0.

3.2.2 Notations and some results on Fourier analysis

In this section, we introduce some notations and classical properties on Fourier analysis,
useful in the subsequent analysis of Problem 3.1.3. We refer for example to [Zygmund,
2002] for more in-depth exploration of this topic. First we denote by Πε

N : L2pBωεq Ñ FN

the L2 projection on FN associated to the inner product p¨, ¨qε. Setting ckpθq
def
“ cospkθq
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and skpθq “ sinpkθq, the operator Πε
N satisfies

pΠε
Nvqpεqpθq “ F c

0vpεq `

N
ÿ

k“1

`

F c
kvpεq cospkθq ` F s

kvpεq sinpkθq
˘

@v P L2
pBωε

q,

where the operators F c
k : L2p0, 2πq Ñ R and F s

k : L2p0, 2πq Ñ R are given by

F c
0v “

1

2π
pv, 1qp0,2πq, F c

kv “
1

π
pv, ckqp0,2πq, F s

kv “
1

π
pv, skqp0,2πq (3.2.3)

for all k ě 1 and v P L2p0, 2πq. This expression is called the Fourier series decomposition
of v at order N and the kth Fourier modes of v are defined as the pair pF c

kv ck,F
s
kv skq.

Noting that for v P L2pBωεq, }v}ε “ }vpεq}p0,2πq, classical results on Fourier series in
L2p0, 2πq imply for v P L2pBωεq,

}Πε
Nv ´ v}ε Ñ 0, N Ñ 8,

and as a result, by defining ak
def
“ F c

kvpεq and bk
def
“ F s

kvpεq, we have

}Πε
Nv}

2
ε “ 2π

˜

a20 `

N
ÿ

k“1

ˆ

a2k
2

`
b2k
2

˙

¸

ď 2π

˜

a20 `

8
ÿ

k“1

ˆ

a2k
2

`
b2k
2

˙

¸

“ }v}
2
ε,

In particular, Πε
N is continuous on pL2pBωεq, } ¨ }εq with an operator norm uniformly inde-

pendent of ε. In the problem at hand, FN stands for an approximation of H
1
2 pBωεq. Since

H
1
2 pBωεq Ă L2pBωεq, the elements of H

1
2 pBωεq also admit a Fourier series decomposi-

tion and we can introduce an auxiliary norm } ¨ }F
1
2

on H
1
2 pBωεq depending on the Fourier

coefficients and defined for v P H
1
2 pBωεq by

}v}
F
1
2
,ε

def
“

˜

pF c
0vpεqq

2
`

8
ÿ

k“1

p1 ` kq
`

pF c
kvpεqq

2
` pF s

kvpεqq
2
˘

¸
1
2

.

The norm } ¨ }F
1
2
,ε

is well defined on H
1
2 pBωεq and is equivalent to the norm } ¨ } 1

2
,ε defined

by
}v} 1

2
,ε

def
“ }vpεq} 1

2
,p0,2πq @v P H

1
2 pBωε

q,

(see, e.g., [Hsiao and Wendland, 2008, Lemma 2.4.5]) . Moreover, since the norms } ¨ } 1
2
,ε

and } ¨ }F
1
2
,ε

are re-scaled with respect to ε, the constants appearing in the norm equivalence
are uniformly independent of ε. We then deduce

}Πε
Nv}

F
1
2
,ε

ď }v}
F
1
2
,ε
, }Πε

Nv} 1
2
,ε À }v} 1

2
,ε @v P H

1
2 pBωε

q.
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In particular, Πε
N is continuous on pH

1
2 pBωεq, } ¨ } 1

2
,εq with an operator norm uniformly

independent of ε. To conclude this part, we notice thatH´ 1
2 pBωεq can be equipped with the

duality product x¨, ¨y´ 1
2
,ε and the norm }¨}´ 1

2
,ε defined for λ P H

1
2 pBωεq and µ P H´ 1

2 pBωεq

by

xλ, µy´ 1
2
,ε

def
“ ε´1

xλ, µy´ 1
2
,Bωε , }λ}´ 1

2
,ε

def
“ sup

µPH
1
2 pBωεq

xλ, µy´ 1
2
,ε

}µ} 1
2
,ε

. (3.2.4)

Note that the duality product x¨, ¨y´ 1
2
,ε satisfies in particular

xλ, µy´ 1
2
,ε “ ε´1

pλ, µqBωε “ pλ, µqε @λ P L2
pBωε

q @µ P H
1
2 pBωε

q. (3.2.5)

3.3 Analysis of the two-dimensional reduced order model

3.3.1 Well-posedness

In this section, we study the well-posedness of Problem (3.1.3) and establish the following
theorem.

Theorem 3.3.1. Problem (3.1.3) admits a unique solution puεN , λ
ε
Nq inH1

0 pΩqˆFN . More-
over, this solution satisfies the following energy bound:

}uεN}1,Ω ` }λεN}´ 1
2
,ε À }ub} 1

2
,ε ` }f}Ω. (3.3.1)

This result states that the solution of the reduced order problem continuously depends
on the data and the continuity constant does not dependent on ε and N . For the proof
of Theorem 3.3.1, we need the introduction of two preliminaries lemmas, their proof are
reported in the Sections 3.A.2 and 3.A.3 of the Appendix, respectively. The first lemma
gives an estimate of the trace operator on Bωε of a H1 function defined in Ω.

Lemma 3.3.2. For all v P H1pΩq,

}v} 1
2
,ε À |logpεq|

1
2 }v}1,Ω.

The second lemma introduces a continuous lifting in the whole domain Ω of functions
given in H

1
2 pBωεq.

Lemma 3.3.3. Let η P H
1
2 pBωεq be given, there exists vεη P H1

0 pΩq solution of
#

´∆vεη “ 0 in Ωε
Y ωε,

vεη “ η on Bωε.
(3.3.2)
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Moreover, vεη satisfies the following energy bound:

}vεη}1,Ω À }η} 1
2
,ε. (3.3.3)

Proof of Theorem 3.3.1. Let us introduce some notations. We notice that Problem (3.1.3)
can be written under the form: find puεN , λ

ε
Nq P H1

0 pΩq ˆ FN such that
#

apuεN , vq ´ bpλεN , vq “ pf, vqΩ @v P H1
0 pΩq,

bpµ, uεNq “ cpµq @µ P FN ,
(3.3.4)

where the bilinear forms a : H1
0 pΩq ˆ H1

0 pΩq Ñ R, b : FN ˆ H1
0 pΩq Ñ R and the linear

form c : FN Ñ R are given by

apu, vq “ p∇u,∇vqΩ , bpµ, uq “ pµ, uqε , cpµq “ pµ, φqε . (3.3.5)

To prove our result, we will apply to Problem (3.3.4) the BNB theorem for saddle point
problems (we refer to [Brezzi, 1974] or to [Ern and Guermond, 2004, Theorem 2.34]).
First, using Poincaré inequality and Cauchy-Schwarz inequality, we have that the bilinear
form a is continuous and coercive, with a norm }a} and a positive coercivity constant
α bounded independently of N and ε. As well, using Cauchy-Schwarz inequality and
Lemma 3.3.2, we can derive the following inequality for b:

|bpµN , vq| ď }µN}´ 1
2
,ε}v} 1

2
,ε À |logpεq|

1
2 }µN}´ 1

2
,ε}v}1,Ω @pµN , vq P FN ˆ H1

0 pΩq.

Consequently, the bilinear form b is continuous and we have

}b} À |logpεq|
1
2 . (3.3.6)

Lastly, we have
|cpµNq| À }µN}´ 1

2
,ε}ub} 1

2
,ε @µN P FN , (3.3.7)

proving the continuity of the linear form c. We can also deduce from (3.3.7) that the norm
of c, denoted by }c}, is bounded, up to a multiplicative constant uniformly independent of
N and ε, by }ub} 1

2
,ε. Now, we prove the inf-sup condition by establishing the existence of

β ą 0, uniformly independent of N and ε, satisfying

sup
vPH1

0 pΩq

pµN , vqε

}v}1,Ω
ě β}µN}´ 1

2
,ε @µN P FN . (3.3.8)

Let η P H
1
2 pBωεq, according to Lemma 3.3.3, there exists vεη P H1

0 pΩq such that vεη “ η on
Bωε and

}vεη}1,Ω ď β}η} 1
2
,ε,
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with β ą 0 uniformly independent of N and ε. We deduce that

}µN}´ 1
2
,ε “ sup

ηPH
1
2 pBωεq

pµN , ηqε

}η} 1
2
,ε

ď β´1 sup
vPH1

0 pΩq

pµN , vqε

}v}1,Ω
@µN P FN ,

Thus we get (3.3.8). By applying BNB theorem, we deduce that (3.3.4) admits a unique
solution puεN , λ

N
ε q P HpΩq ˆ FN . Moreover, according to [Ern and Guermond, 2004,

Theorem 2.34], this solution satisfies

}uεN}1,Ω ď
1

β
p1 `

}a}

α
q}ub} 1

2
,ε `

1

}a}
}f}Ω À }ub} 1

2
,ε ` }f}Ω,

}λεN}´ 1
2
,ε ď

}a}

β2
p1 `

}a}

α
q}ub} 1

2
,ε `

1

β
p1 `

}a}

α
q}f}Ω À }ub} 1

2
,ε ` }f}Ω.

which can be written equivalently as (3.3.1).

3.3.2 Convergence to the full order model

In the previous results, the domain of validity for the ε parameter only depended on the Ω
domain. From now on, some results will also depend on an additional parameter ρ defined
as the maximum value such that f “ 0 in ωρ and ωρ Ă Ω, which is equivalent to

ρ
def
“ min

`

dpt0u, supp pfqq, dpt0u, BΩq
˘

, (3.3.9)

where dp¨, ¨q is the Euclidean distance of two sets. Note that we have in particular ρ ď

εmax. In this subsection, we will study the convergence when ε tends to 0 of the solution
of the reduced order problem (3.1.3) to the solution of the full order problem (3.1.4) and
prove the following theorem.

Theorem 3.3.4. Let puε, λεq P H1
0 pΩq ˆH´ 1

2 pBωεq be solution of (3.1.4) and puεN , λ
ε
Nq P

H1
0 pΩq ˆ FN solution of (3.1.3), with ub P FN , we have

}uεN ´ uε}1,Ωε ` ε}ε´1λεN ´ λε}´ 1
2
,ε À

ˆ

ε

ρ

˙N`1

p}ub} 1
2
,ε ` }f}Ωq (3.3.10)

Thanks to this result, we see that the convergence in ε of uεN ´ uε behaves like εN`1

where N is the degree of the trigonometric polynomials of the approximation space FN .
In particular, this result can be used to adjust N to reach a certain accuracy, ε being fixed.
For N “ 0, the error estimate (3.3.10) does not give the convergence of ε´1λεN ´ λε in the
H´ 1

2 re-scaled norm } ¨ }´ 1
2
,ε. Instead, if we use the definition (3.2.4) of the H´ 1

2 re-scaled
norm, we can prove that

}µ}´ 1
2
,Bωε À ε

1
2 }µ}´ 1

2
,ε,
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so, if we consider the standard norm } ¨ }´ 1
2
,Bωε , we obtain

}ε´1λεN ´ λε}
´ 1

2
,Bωε À

ˆ

ε

ρ

˙N` 1
2 ´

}ub} 1
2
,ε ` }f}Ω

¯

.

For the proof of Theorem 3.3.4, we introduce two preliminaries lemmas. The first lemma
is a classical result of fictitious domain method, giving an expression of λNε in relation to
the gradient jump of uεN accross Bωε.

Lemma 3.3.5. Let puεN , λ
ε
Nq P H1

0 pΩq ˆ FN be the solution of Problem (3.1.3). Then, we
have

λεN “ ε
`

p∇uεNq
`

¨ n`
´ p∇uεNq

´
¨ n`

˘

in H´ 1
2 pBωε

q. (3.3.11)

where n` is the exterior normal to BΩε, p∇uεNq` is the restriction of ∇uεN to Ωε and
p∇uεNq´ is the restriction of ∇uεN to ωε.

The proof of this lemma is given in Section 3.A.4 of the Appendix. The second lemma
describes the behavior of the Fourier modes of uεNpεq.

Lemma 3.3.6. Consider ub P FN be given. There exist paεkqkěN`1 and pbεkqkěN`1 such
that for ε P p0, ρq,

upεqpθq ´ ubpθq “

8
ÿ

k“N`1

ˆ

ε

ρ

˙k

paεk cospkθq ` bεk sinpkθqq @θ P p0, 2πq.

Moreover,
˜

8
ÿ

k“N`1

p1 ` kq
`

|aεk|
2

` |bεk|
2
˘

¸
1
2

À }ub} 1
2
,ε ` }f}Ω.

Proof of Lemma 3.3.6. First of all, we introduce polar coordinates such for any real func-
tion v defined in Ω, we write

vpr, θq
def
“ vprpcospθqex ` sinpθqeyqq @pr, θq P r0, εmaxs ˆ p0, 2πq.

We now consider a fixed 0 ă ε ă ρ. Using seperation of variable, a general formulation
for harmonic solutions is given by

ϕ0prq `

8
ÿ

k“1

rkpϕc
kprq cospkθq ` ϕs

kprq sinpkθqq @pr, θq P R`
ˆ p0, 2πq, (3.3.12)

with
ϕ0 P spant1, logprqu, ϕc

k, ϕ
s
k P spantr´k, rku.
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We refer to [Kounchev, 2001] for the derivation of (3.3.12). Since the solution uεN is
harmonic in both the sub-domains ωε and ωρzωε, and belongs to H1pΩq, we can infer the
following expression for uεN in ωρ:

uεNpr, θq “ ca
1,0 `

8
ÿ

k“1

rk
`

ca
1,k cospkθq ` sa

1,k sinpkθq
˘

(3.3.13)

for all pr, θq P r0, εs ˆ p0, 2πq, and

uεNpr, θq “ c‘
1,0 ` c‘

2,0logprq

`

8
ÿ

k“1

pc‘
1,kr

k
` c‘

2,kr
´k

q cospkθq ` ps‘
1,kr

k
` s‘

2,kr
´k

q sinpkθq, (3.3.14)

for all pr, θq P rε, ρs ˆ p0, 2πq. We begin by examining the boundary conditions on Bωε

and Bωρ. On one hand, the condition

pµN , u
ε
Nqε “ pµN , ubqε @µN P FN ,

applied to (3.3.13), implies

ca
1,0 “ F c

0ubpεq, ca
1,kε

k
“ F c

kubpεq, sa
1,kε

k
“ F s

kubpεq @k ě 1. (3.3.15)

On the other hand, evaluating (3.3.14) for r “ ρ and projecting the resulting expression
on the various Fourier modes, we obtain

c‘
1,0 ` c‘

1,0logpρq “ F c
0u

ε
Npρq,

c‘
1,kρ

k
` c‘

2,kρ
´k

“ F c
ku

ε
Npρq, s‘

1,kρ
k

` s‘
2,kρ

´k
“ F s

ku
ε
Npρq @k ě 1.

(3.3.16)

We now consider the kth Fourier modes of uεN on Bωε. Specifically, by taking r “ ε both
in (3.3.13) and (3.3.14), we derive

ca
1,kε

k
“ c‘

1,kε
k

` c‘
2,kε

´k, sa
1,kε

k
“ s‘

1,kε
k

` s‘
2,kε

´k
@k ě N ` 1. (3.3.17)

Eventually, we use result of Lemma 3.3.5. From expressions (3.3.13) and (3.3.14), we
deduce the following expressions in H´ 1

2 pBωεq:

`

p∇uεNq
`

¨ n`
˘

pεqpθq “ ´

ˆ

BuεN
Br

˙`

pεqpθq “ ´

8
ÿ

k“1

kεk´1
pca

1,k cospkθq ` sa
1,k sinpkθqq
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for all θ P p0, 2πq, and

`

p∇uεNq
´

¨ n`
˘

pεqpθq “ ´

ˆ

BuεN
Br

˙´

pεqpθq “

´
c‘
2,0

r
´

8
ÿ

k“1

`

kpc‘
1,kε

k´1
´ c‘

2,kε
´k´1

q cospkθq

` kps‘
1,kε

k´1
´ s‘

2,kε
´k´1

q sinpkθq
˘

for all θ P p0, 2πq. Then, by projecting equation (3.3.11) on the Fourier modes greater
than N ` 1, we obtain

ca
1,kε

k
“ c‘

1,kε
k

´ c‘
2,kε

´k, sa
1,kε

k
“ s‘

1,kε
k

´ s‘
2,kε

´k
@k ě N ` 1. (3.3.18)

Gathering equations (3.3.15), (3.3.16) and (3.3.18), we get

ca
1,k “ ρ´kF c

kubpρq, sa
1,k “ ρ´kF s

kubpρq @k ě N ` 1. (3.3.19)

Now setting aεk “ F c
kubpρq and bεk “ F s

kubpρq, we deduce from (3.3.15) and (3.3.19),

uεNpεqpθq “ ubpεqpθq `

8
ÿ

k“N`1

ˆ

ε

ρ

˙k

paεk cospkθq ` bεk sinpkθqq @θ P p0, 2πq.

We can conclude the proof using successively the equivalence of the norm } ¨ }F
1
2
,ρ

and
} ¨ } 1

2
,ρ, Theorem 3.3.2 with ε “ ρ and Theorem 3.3.1,

˜

8
ÿ

k“N`1

p1 ` kq
`

|aεk|
2

` |bεk|
2
˘

¸
1
2

“}uεN}
F
1
2
,ρ

À }uεN} 1
2
,ρ À }uεN}1,Ω

À}ub} 1
2
,ε ` }f}Ω.

Let us notice that, following the computations made in this proof, we can obtain an
expression of uεN in ωρ with respect to the Fourier coefficients F c

ku
ε
Npρq and F c

ku
ε
Npρq for

k ě N ` 1, and the first N+1 Fourier coefficients of ubpεq. This expression will be useful
in the next section for the analysis of the numerical approximation but we state it at this
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stage. We have

uεNpr, θq “

˜

F c
0u

ε
Npρq

logpr{εq

logpρ{εq
` F c

0ubpεq
logpr{ρq

logpε{ρq

`

N
ÿ

k“1

pF c
ku

ε
Npρq

pr{εqk ´ pε{rqk

pρ{εqk ´ pε{ρqk
cospkθq ` F s

ku
ε
Npρq

pr{εqk ´ pε{rqk

pρ{εqk ´ pε{ρqk
sinpkθq

`

N
ÿ

k“1

F c
kubpεq

pr{ρqk ´ pρ{rqk

pε{ρqk ´ pρ{εqk
cospkθq ` F s

kubpεq
pr{ρqk ´ pρ{rqk

pε{ρqk ´ pρ{εqk
sinpkθq

¸

1rěε

`

˜

F c
0ubpεq `

N
ÿ

k“1

´r

ε

¯k
`

F c
kubpεq cospkθq ` F s

kubpεq sinpkθq
˘

¸

1răε

`

8
ÿ

k“N`1

ˆ

r

ρ

˙k
`

F c
ku

ε
Npρq cospkθq ` F s

ku
ε
Npρq sinpkθq

˘

(3.3.20)

for all pr, θq P r0, ρs ˆ p0, 2πq. Let us note that expression (3.3.20) is valid for any ub P

H
1
2 pBωεq. We are now ready to prove Theorem 3.3.4.

Proof of Theorem 3.3.4. We consider a fixed 0 ă ε ă ρ. Let us first note that uεN ´ uε

satisfies (3.3.2) in Ωε with η “ uεN ´ ub and so, using Lemma 3.3.3 and the ε-equivalence
of the norm } ¨ } 1

2
,ε and } ¨ }F

1
2
,ε

, we get

}uεN ´ uε}1,Ωε À }uεN ´ ub} 1
2
,ε À }uεN ´ ub}

F
1
2
,ε
. (3.3.21)

Then, according to Lemma 3.3.6,

uεNpεqpθq ´ ubpεqpθq “

`8
ÿ

k“N`1

ˆ

ε

ρ

˙k

paεk cospkθq ` bεk sinpkθqq @θ P p0, 2πq,

with
˜

`8
ÿ

k“N`1

p1 ` kqp|aεk|
2

` |bεk|
2
q

¸
1
2

À }ub} 1
2
,ε ` }f}Ω.
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So by definition of the norm } ¨ }F
1
2
,ε

}uεN ´ ub}
F
1
2
,ε

“

ˆ

ε

ρ

˙N`1
˜

`8
ÿ

n“N`1

p1 ` kq

ˆ

ε

ρ

˙2pn´N´1q

p|aεk|
2

` |bεk|
2
q

¸
1
2

ď

ˆ

ε

ρ

˙N`1
˜

`8
ÿ

n“N`1

p1 ` kqp|aεk|
2

` |bεk|
2
q

¸
1
2

À

ˆ

ε

ρ

˙N`1

p}ub} 1
2
,ε ` }f}Ωq.

Using this inequality in (3.3.21) gives (3.3.10) for puεN ´ uεq. Now, for proving on the
Lagrange multipliers, we notice that puεN ´ uε, ε´1λεN ´ λεq satisfies

p∇puεN ´ uεq,∇vqΩ ´ εxε´1λεN ´ λε, vy´ 1
2
,ε “ 0 @v P H1

0 pΩq.

By definition of the norm } ¨ }´ 1
2
,ε

}ε´1λεN ´ λε}´ 1
2
,ε “ sup

ηPH
1
2 pBωεq

xε´1λεN ´ λε, ηy´ 1
2
,ε

}η} 1
2
,ε

.

Moreover for η P H
1
2 pBωεq, if we take v “ vεη P H1

0 pΩq with vεη solution of (3.3.2),
according Lemma 3.3.3, we have

}ε´1λεN ´ λε}´ 1
2
,ε À sup

vPH1
0 pΩq

xε´1λεN ´ λε, vy´ 1
2
,ε

}v}1,Ω
.

We deduce that

}ε´1λεN ´ λε}´ 1
2
,ε À

1

ε
sup

vPH1
BΩpΩεq

p∇puεN ´ uεq,∇vq

}v}1,Ωε

À
1

ε
}uεN ´ uε}1,Ωε ,

and conclude that (3.3.10) holds.

Remark 7. To simplify the presentation, in this subsection, we assumed that ub belongs
to FN . This assumption is satisfied for example for N ě 1 if ub is the velocity of a rigid
solid in 2D as described in Remark 4. In the general case one has to take into account the
error }ub ´ Πε

Nub} 1
2
,ε between ub and its projection and the convergence properties given

by Theorem 3.3.4 remain valid if, for instance,

}ub ´ Πε
Nub} 1

2
,ε À εN`1.
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Remark 8. As introduced in Chapter 2, for the numerical implementation of iterative
methods, the quantity of interest which corresponds to the force exerted by the fluid is
p∇uεNq` ¨ n` which does not coincide with the Lagrange multiplier λεN . Nevertheless we
can notice that this quantity can be computed from λεN using Lemma 3.3.5 and the explicit
expression of p∇uεNq´ ¨ n` provided by formula (3.3.20). More precisely, we have in
H´ 1

2 pBωεq

p∇uεNq
`

¨ n`
“ ´

1

ε
λεN ´

1

ε

N
ÿ

k“1

kpF c
kubpεq cospkθq ` F s

kubpεq sinpkθqq ´RN (3.3.22)

where

RN
def
“

1

ε

8
ÿ

k“N`1

kεk´1
paεk cospkθq ` bεk sinpkθqq

and the coefficients aεk
def
“ F c

ku
ε
Npρq and bεk

def
“ F s

ku
ε
Npρq satisfy

8
ÿ

k“N`1

p1 ` kq
`

|aεk|
2

` |bεk|
2
˘

À }ub}
2
1
2
,ε

` }f}
2
Ω.

This inequality implies that

}RN}´ 1
2
,ε À εNp}ub} 1

2
,ε ` }f}Ωq.

Thus, to compute p∇uεNq` ¨ n` with an accuracy of εN it is enough to compute the first
two terms of (3.3.22).
Remark 9. The parameter ρ plays an important role in the extension of the method to
several obstacles. In that case, ρ also depends on the distances between inclusions, and
so we see that, when the inclusions get closer from each others, the estimate of uεN ´ uε

deteriorates. The advantage of our approach is that, in that case, the loss of precision can
be compensated for by increasing N the number of modes.

3.3.3 Regularity of the solution

By rewriting the Problem (3.1.3) in strong form and considering λεN as a given data of the
problem, we get that uεN P H1

0 pΩq satisfies

´∆uεN “ f ` λεNδε in Ω, (3.3.23)

where the distribution vδε is such that for all ψ P C8
0 pΩq, xvδε, ψyΩ “ xv, ψy´ 1

2
,ε. Due to

the presence of the Dirac source λεNδε in Problem (3.3.23), it is well known that the global
H2 regularity for uεN cannot be reached. However, we can prove that the solution uεN is
more regular than H1.
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Theorem 3.3.7. Let 0 ă η ă 1
2

be given. Then, if ub P H1pBωεq, the solution of Prob-
lem (3.1.3) satisfies the additional regularity uεN P H

3
2

´ηpΩq and the following estimate
holds:

}uεN} 3
2

´η,Ω À p}f}Ω ` ε´1
}ub}1,εq∥T 1

2
`η,0pΩ, Bωε

q∥, (3.3.24)

where
}v}1,ε

def
“ }vpεq}1,p0,2πq @v P H1

pBωε
q,

and T 1
2

`η,0pΩ, Bω
εq is the trace operator from pH

1
2

`ηpΩq, } ¨ } 1
2

`η,Ωq to pL2pBωεq, } ¨ }εq.

To prove Theorem 3.3.7, we will need an auxiliary lemma presented in [Gong et al.,
2014].

Lemma 3.3.8. Let D be a bounded, convex domain in R2. Let γ Ă D be a C2-surface such
that the distance between γ and BD is positive. We consider the following problem

"

´ ∆y “ ζδγ in D,
y “ 0 on BD,

(3.3.25)

where ζ P L2pγq. Then problem (3.3.25) admits a unique solution y which belongs to
H

3
2

´ηpDq for any η ą 0. Furthermore there exists a constant C such that

}y} 3
2

´η,D ď C}ζδγ}´ 1
2

´η,D

where C is uniformly independent ofζ and γ.

Proof of Theorem 3.3.7. Since λεNδε P L2pBωεq, the application of Lemma 3.3.8 imme-
diately yields uεN P H

3
2

´ηpΩq. To show the bound (3.3.24), we start observing that
Lemma 3.3.8 also gives us

}uεN} 3
2

´η,Ω À }λεNδε}´ 1
2

´η,Ω. (3.3.26)

The H´ 1
2

´η norm is defined as

}λεNδε}´ 1
2

´η,Ω “ sup

vPH
1
2 `η

0 pΩq

pλεN , vqε

}v} 1
2

`η,Ω

. (3.3.27)

By applying Cauchy-Schwarz inequality to (3.3.27), we get

pλεN , vqε ď }λεN}ε}v}ε @v P H
3
2

`η
pΩq. (3.3.28)

Next, employing the trace theorem in (3.3.28), we derive

pλεN , vqε À }λεN}ε∥T 1
2

`η,0pΩ, Bω
ε
q∥}v} 1

2
`η,Ω @v P H

3
2

`η
pΩq,
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Now substituting this last expression into (3.3.27), we obtain

}λεNδε}´ 1
2

´η,Ω À }λεN}ε∥T 1
2

`η,0pΩ, Bω
ε
q∥. (3.3.29)

Thanks to equality (3.3.11) as well as expression (3.3.20), we can have an explicit expres-
sion of λεN on Bωε according to the first N ` 1 Fourier modes of uεNpρq and ubpεq. In
particular, after some manipulations, we can prove that

}λεN}ε À }uεN}1,ρ ` ε´1
}ub}1,ε. (3.3.30)

Using successively trace inequality and the regularizing property of elliptic problems for
uεN on the domain Ωzωρ, we also have

}uεN}1,ρ À }uεN}2,Ωzωρ À }uεN}Ωzωρ ` }f}Ω À }ub} 1
2
,ε ` }f}Ω (3.3.31)

Gathering (3.3.30) and (3.3.31), we deduce that

}λεN}ε À }ub} 1
2
,ε ` ε´1

}ub}1,ε ` }f}Ω À }f}Ω ` ε´1
}ub}1,ε

Coming back to (3.3.26) and (3.3.29), we obtain inequality (3.3.24).

Please note that we have used a general expression for the trace norm as we were unable
to derive its dependence with respect to the parameter ε.

3.4 Discrete approximation

For the discrete approximation of (3.1.3), we consider the same framework as in Chapter 2.
In particular, we set for k ě 1,

Xk
hpΩq

def
“ tvh P H1

pΩq : vh|K P Pk, @K P ThpΩqu,

where Pk is the vector space of polynomials of degree less than or equal to k, and ThpDq

a triangulation of D with characteristic size h. We introduce the finite element space
V k
h

def
“ Xk

hpΩq X H1
0 pΩq for the approximation of the solution uεN . Interestingly, we just

need to discretize the space H1
0 pΩq as the space FN is already of finite dimension.

3.4.1 Unstabilized finite element method

The standard discrete version of (3.1.3) writes: find puεN,h, λ
ε
N,hq P V k

h ˆ FN such that

p∇uεN,h,∇vhqΩ ´ pλεN,h, vhqε ` pµN , u
ε
N,h ´ ubqε “ pf, vhqΩ (3.4.1)

for all pvh, µNq P V k
h ˆFN . Problem (3.4.1) is a saddle point problem that will be analyzed

in the framework of the available general theory, see for example [Boffi et al., 2013],[ [Ern
and Guermond, 2004], Lemma 2.44]. In particular, the central property is the inf-sup
stability of the form pλ, vhqε that will be discussed in Section 3.4.1.2.
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3.4.1.1 Approximability

Problem (3.4.1) is a saddle point problem that will be analyzed in the framework of the
available general theory, see for example [Boffi et al., 2013, Ern and Guermond, 2004].
In particular, a key property is the inf-sup stability of the bilinear form pλN , vhqε that will
be discussed in the next section. For the approximation of Problem (3.4.1), we start by
introduce the Scott-Zhang operator ΠZ,k

h : H1
0 pΩq Ñ V k

h , defined in [Scott and Zhang,
1990]. It satisfies the following approximation properties.

Proposition 3.4.1. The Scott-Zhang operator is continuous and consistant, that is

}ΠZ,k
h v}1,Ω À }v}1,Ω, ΠZ,k

h v “ v @v P H1
0 pΩq.

Let k, s ě 1, for K P ThpΩq and v P HspSKq, then

h´ 1
2 }ΠZ,k

h v ´ v}K ` h
1
2 }∇ΠZ,k

h v ´ v}K À hl`
1
2 |v|s,SK

l “ mintk, s ´ 1u, (3.4.2)

where SK is a domain made of the elements neighboring K. Moreover, we have

}v ´ ΠZ,k
h v}1,Ω À hl|v|s,Ω l “ mintk, s ´ 1u @v P Hs

0pΩq. (3.4.3)

3.4.1.2 Inf-Sup Stability

The aim of this section is to discuss the discrete counterpart of the inf-sup condition for
problem (3.4.1). We prove below that it is satisfied under the assumption that k ě N
which corresponds to the case where the polynomial degree in the discrete space V k

h is
larger than or equal to the degree of the trigonometric polynomials in the reduced space
FN . We start by constructing an adequate Fortin operator that will be used to establish the
inf-sup condition.

Lemma 3.4.1. We assume k ě N and µ P H
1
2 pBωεq be given. Then, there exists vεµ,h P V k

h

such that

pλN , v
ε
µ,hqε “ pλN , µqε @λN P FN , (3.4.4)

}vεµ,h} À p1 `
h

ε
q
N

}µ} 1
2
,Bωε . (3.4.5)

Proof of Proposition 3.4.1. Let µ P H
1
2 pBωεq be a given function and k ě N . We set

aεj
def
“ F c

j µpεq, bεj
def
“ F s

jµpεq @j ě 0,
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3.4. Discrete approximation

and vεµ P H1
0 pΩq such that inside ωε`h, vεµ is given by

vεµpr, θq
def
“ aε0 `

N
ÿ

j“1

aεj

´r

ε

¯j

cospjθq ` bεj

´r

ε

¯j

sinpjθq

@pr, θq P r0, ε ` hs ˆ p0, 2πq, (3.4.6)

and outside ωε`h, vεµ is the harmonic lifting of vεµ|Bωε`h into H1
BΩpΩε`hq. By observing that

vεµ is solution of (3.3.2) where ε “ ε ` h and η “ Πε
Nµ, as established in Lemma 3.3.3,

we deduce that
}vεµ}1,Ω À }vεµ} 1

2
,ε`h.

Furthermore, by setting r “ ε ` h in (3.4.6), we obtain the following expression for
vεµpε ` hq:

vεµpε` hqpθq “ aε0 `

N
ÿ

j“1

aεj

ˆ

1 `
h

ε

˙j

cospjθq ` bεj

ˆ

1 `
h

ε

˙j

sinpjθq @θ P p0, 2πq.

By ε ` h-equivalence of the norm } ¨ } 1
2
,ε`h and } ¨ }F

1
2
,ε`h

, we have

}vεµ} 1
2
,ε`h À }vεµ}

F
1
2
,ε`h

“

˜

|aε0|
2

`

N
ÿ

j“1

p1 ` jq

ˆ

1 `
h

ε

˙2j
`

|aεj |
2

` |bεj |
2
˘

¸
1
2

ď

ˆ

1 `
h

ε

˙N
˜

|aε0|
2

`

8
ÿ

j“1

p1 ` jqp|aεj |
2

` |bεj |
2
q

¸
1
2

À

ˆ

1 `
h

ε

˙N

}µ} 1
2
,ε.

Note that, using Chebyshev polynomials, we can express the trigonometric polynomials
`

r
ε

˘j
cospjθq and

`

r
ε

˘j
sinpjθq as polynomials in x

def
“ r cospθq and y

def
“ r sinpθq with

degrees less than or equal to j:

´r

ε

¯j

cospjθq “
1

εj

ÿ

0ď2iďj

ˆ

j

2i

˙

p´1q
iy2ixj´2i,

´r

ε

¯j

sinpjθq “
1

εj

ÿ

0ď2i`1ďj

ˆ

j

2i ` 1

˙

p´1q
iy2i`1xj´2i´1

with px, yq “ pr cospθq, r sinpθqq. Since, by assumption, N ď k, we deduce that vεµ|ωε`h P

Pk. We now set vεµ,h “ ΠZ,k
h vεµ. By definition of h, the domain ωε`h contains all the

elements K P ThpΩq that intersect Bωε. Consequently, thanks to the properties of stability
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and strong consistency satisfied by ΠZ,k
h , we have

$

&

%

}vεµ,h}1,Ω À }vεµ}1,Ω ď β´1
p1 `

h

ε
q
N

}µ} 1
2
,ε,

vεµ,h “ vεµ “ Πε
Nµ on Bωε,

where β is a constant uniformly independent of h, N and ε.

We then deduce the following inf-sup condition for the bilinear form pλN , vhqε.

Lemma 3.4.2. We assume that k ě N . There exists a constant β ą 0 uniformly indepen-
dent of h, N and ε such that for all λN P FN ,

sup
vhPV k

h

pλN , vhqε

}vh}1,Ω
ě βp1 `

h

ε
q

´N
}λN}´ 1

2
,ε.

Proof of Lemma 3.4.2. Let λN P FN be given. According to Lemma 3.4.1, for all µ P

H
1
2 pBωεq there exists vεµ,h P V k

h such that

pλN , v
ε
µ,hqε “ pλN , v

ε
µ,hqε, }vεµ,h} À p1 `

h

ε
q
N

}µ} 1
2
,Bωε .

From these two properties on vεµ,h, it comes

pλN , v
ε
µ,hqε

}vεµ,h}1,Ω
ě β

ˆ

1 `
h

ε

˙´N
pλN , µqε

}µ} 1
2
,ε

“ β

ˆ

1 `
h

ε

˙´N
pλN , µqε

}µ} 1
2
,ε

@µ P H
1
2 pBωε

q.

Taking successively the supremum over vh P V k
h and µ P H

1
2 pBωεq , we finally obtain

sup
vhPV k

h

pλN , vhqε

}vh}1,Ω
ě β

ˆ

1 `
h

ε

˙´N

sup
µPH

1
2 pBωεq

pλN , µqε

}µ} 1
2
,ε

“ β

ˆ

1 `
h

ε

˙´N

}λN}´ 1
2
,ε.

This concludes the proof.

By applying the estimate on discrete saddle point problems given by in [Ern and Guer-
mond, 2004, Lemma 2.44] and by taking into account that the discretization space for the
Lagrange multipliers coincides with the continuous one, we have

}uεN ´ uεN,h}1,Ω ď
`

1 `
}a}

α

˘`

1 `
}b}

βh

˘

inf
vhPV k

h

}uεN ´ vh}1,Ω,

}λεN ´ λεN,h}´ 1
2
,ε ď

}a}

βh

`

1 `
}a}

α

˘`

1 `
}b}

βh

˘

inf
vhPV k

h

}uεN ´ vh}1,Ω

(3.4.7)
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where βh is given by βh “ β
`

1 ` h
ε

˘´N according to Lemma 3.4.2. Moreover, the norm
}a} and the coercivity constant α of a are bounded independently of h, N and ε and the
norm of b is bounded by (3.3.6). So we deduce the following general a-priori estimates for
the discrete error:

}uεN ´ uεN,h}1,Ω À p1 `
h

ε
q
N

|logpεq|
1
2 inf
vhPV k

h

}uεN ´ vh}1,Ω,

}λεN ´ λεN,h}´ 1
2
,ε À p1 `

h

ε
q
2N

|logpεq|
1
2 inf
vhPV k

h

}uεN ´ vh}1,Ω.

(3.4.8)

Estimates (3.4.8) are not fully satisfactory due to the presence of the factor
`

1 ` h
ε

˘N that
comes from the inf-sup condition of Lemma 3.4.2. It shows that the scheme (3.4.1) is
affected by a loss of stability when ε Ñ 0 for a fixed computational mesh. This is an
example of the well known locking phenomenon (see for example [Boffi et al., 2013, Ern
and Guermond, 2004]) that appears because the inclusion becomes too small with respect
to the mesh size and by consequence the solution uεN,h becomes over-constrained. To
overcome the limitations of the scheme (3.4.1) with respect to stability, we propose in the
next section a stabilized variant of it.

3.4.2 Stabilized finite element method

We introduce in this section a stabilized formulation based on a penalty method. We look
for uεN,h P V k

h and λεN,h P FN such that
#

`

∇uεN,h,∇vh
˘

Ω
´
`

λεN,h, vh
˘

ε
“ pf, vhqΩ , @vh P Vh,

`

µN , u
ε
N,h

˘

ε
` sλhpµN , λ

ε
N,hq “ pµN , ubqε @µN P FN ,

(3.4.9)

where sλhpµN , λNq : FN ˆ FN Ñ R is a stabilization term defined for all pµN , λNq P

FN ˆ FN by (see also [Barrenechea and González, 2018])

sλhpµN , λNq “ γλ

ˆ

h

ε

˙

ε´1
pµN , λNqε, (3.4.10)

where γλ ą 0 is a user-defined parameter uniformly independent of N , h and ε. We also
introduce the following (augmented) bilinear form Bh : pV k

h ˆ FNq ˆ pV k
h ˆ FNq defined

for all puh, λNq, pvh, µNq P V k
h ˆ FN by

Bhppuh, λNq, pvh, µNqq “ apuh, vhq ´ bpλN , vhq ` bpµN , uhq ` sλhpµN , λNq.

Problem (3.4.9) is equivalent to find puεN,h, λ
ε
N,hq P V k

h ˆ FN such that

BhppuεN,h, λ
ε
N,hq, pvh, µNqq “ pf, vhqΩ ` pµN , ubqε @ pvh, µNq P V k

h ˆ FN . (3.4.11)
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3.4.2.1 Preliminary results

For the analysis of problem (3.4.9) we introduce the following discrete trace lemma (see
[Hansbo and Hansbo, 2002]).

Proposition 3.4.2. Let Γ be an internal smooth boundary dividing Ω into two open sets
and K P ThpΩq. We set ΓK

def
“ Γ X K. There exists a constant C ą 0 depending only on

the maximum curvature of Γ such that for

}v}
2
ΓK

ď Cph´1
}v}

2
K ` h}v}

2
1,Kq @v P H1

0 pΩq. (3.4.12)

For the analysis of the augmented bilinear form, we introduce the following norm:

}pvh, µq}ε “

ˆ

}vh}
2
1,Ω ` }µ}

2
´ 1

2
,ε

`

ˆ

h

ε

˙

ε´1
}µ}

2
ε

˙
1
2

@ pvh, µq P V k
h ˆ FN .

3.4.2.2 Stability

We start by constructing an adequate Fortin operator that will be used to establish the
inf-sup condition.

Lemma 3.4.3. Let λN P FN be given, there exists vελN ,h P V k
h such that

3

4
}λN}

2
´ 1

2
,ε

ď ´pλN , v
ε
λN ,hqε ` C

´ ε

h

¯

ε´1
}λN}

2
ε, }vελN ,h}1,Ω À }λN}´ 1

2
,ε,

with C uniformly independent of h, N and ε.

Proof of Lemma 3.4.3. Let λN P FN be given. Using definition (3.2.4) of the norm }¨}´ 1
2
,ε,

since FN is a closed subspace of L2pBωεq, there exists µN P FN such that }µN} 1
2
,ε “ 1

and
}λN}´ 1

2
,ε “ pλN , µNqε .

Taking µ
N

“ ´µN}λN}´ 1
2
,ε, we have }µ

N
} 1

2
,ε “ }λN}´ 1

2
,ε and

´

´

λN , µN

¯

ε
“ }λN}

2
´ 1

2
,ε
.

According to Lemma 3.3.3, there exists vεµ
N

P H1
0 pΩq such that vεµ

N
“ µ

N
on Bωε and

}vεµ
N

}1,Ω À }µ
N

} 1
2
,ε “ }λN}´ 1

2
,ε. (3.4.13)
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Applying Proprosition 3.4.1 to the re-scaled function vεµ
N

pεq, we have, for all K P

ThpΩq such that K X Bωε ‰ H,

}ΠZ,k
h vεµ

N
pεq ´ vεµ

N
pεq}

2
K
ε

XBω
À

ˆ

h

ε

˙´1

}ΠZk
h v

ε
µ
N

pεq ´ vεµ
N

pεq}
2
0,K

ε

`

ˆ

h

ε

˙

}∇
`

ΠZ,k
h vεµ

N
pεq ´ vεµ

N
pεq

˘

}
2
0,K

ε
.

Using the approximation property of ΠZ,k
h given in (3.4.2), we obtain that

}ΠZ,k
h vεµ

N
pεq ´ vεµ

N
pεq}

2
K
ε

XBω
À

ˆ

h

ε

˙

}∇vµ
N

pεq}
2
SK
ε

.

A scaling argument then leads to

}ΠZ,k
h vεµ

N
´ vεµ

N
}
2
KXBωε À

ˆ

h

ε

˙

}∇vεµ
N

}
2
SK
.

Summing over all tiles K intersecting Bωε, we get, according to (3.4.13),

}ΠZ,k
h vεµ

N
´ vεµ

N
}
2
Bωε À

ˆ

h

ε

˙

}vεµ
N

}
2
1,Ω À

ˆ

h

ε

˙

}λN}
2
´ 1

2
,ε
.

Then using Cauchy-Schwarz inequality and the scaling between the norms } ¨}ε and } ¨}Bωε

deduced from (3.2.5), we get

|

´

λN ,Π
Z,k
h vεµ

N
´ vεµ

N

¯

ε
| À C

ˆ

h

ε

˙
1
2

ε´ 1
2 }λN}ε}λN}´ 1

2
,ε,

ď
1

4
}λN}

2
´ 1

2
,ε

` C

ˆ

h

ε

˙

ε´1
}λN}

2
ε,

with C uniformly independent of N , h and ε. Setting vελN ,h “ ΠZ,k
h vεµ

N
, we obtain

}λN}
2
´ 1

2
,ε

` pλN , µN
qε “ ´pλN , vµ

N
´ ΠZ,k

h vµ
N

qε,

ď
1

4
}λN}

2
ε ` C

ˆ

h

ε

˙

ε´1
}λN}

2
ε.

Furthermore, using the continuity of the Scott-Zhang interpolator and inequality (3.4.13),
we have

}vελN ,h}1,Ω À }vεµ
N

}1,Ω À }λN}´ 1
2
,ε.

This concludes the proof.
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The stability of the stabilized problem (3.4.9) is addressed in the following lemma.

Lemma 3.4.4. There exists a constant β ą 0 uniformly independent of h, N and ε such
that

inf
puh,λN qPV k

h ˆFN

sup
pvh,µN qPV k

h ˆFN

Bhppuh, λNq, pvh, µNqq

}puh, λNq}ε}pvh, µNq}ε
ě β.

Proof. Let puh, λNq be given in V k
h ˆ FN . First, taking pvh, µNq “ puh, λNq in the defini-

tion of Bh, we observe that

Bh ppuh, λNq, puh, λNqq “ }∇uh}
2
Ω ` γλ

ˆ

h

ε

˙

ε´1
}λN}

2
ε. (3.4.14)

Furthermore, according to Lemma 3.4.3, there exists vελN ,h P V k
h and C1 ą 0 uniformly

independent of h, N and ε such that

3

4
}λN}

2
´ 1

2
,ε

ď ´pλN , v
ε
λN ,hqε ` C1

´ ε

h

¯

ε´1
}λN}

2
ε, (3.4.15)

}vελN ,h}1,Ω À }λN}´ 1
2
,ε. (3.4.16)

We will prove that, for α ą 0 small enough, there exists Cm ą 0 such that

Bh

`

puh, λNq, puh ` αλv
ε
λN ,h, λNq

˘

ě Cm}puh, λNq}
2
ε. (3.4.17)

From (3.4.16), there exists C2 ą 0 uniformly independent of N , h and ε such that

|
`

∇uh,∇vελN ,h

˘

Ω
| À }∇uh}Ω}λN}´ 1

2
,ε ď C2}uh}

2
1,Ω `

1

4
}λN}

2
´ 1

2
,ε
. (3.4.18)

Combining (3.4.15) and (3.4.18), and by taking pvh, µNq “ pvελN ,h, 0q in the definition of
Bh, we have

Bhppuh, λNq, pvελN ,h, 0qq “ p∇uh,∇vελN ,hq ´ pλN , v
ε
λN ,hqε,

ě ´C2}uh}
2
1,Ω `

1

2
}λN}

2
´ 1

2
,ε

´ C1

ˆ

h

ε

˙

ε´1
}λN}

2
ε.

Gathering finally this inequality and (3.4.14), we get

Bh

`

puh, λNq, puh ` αλv
ε
λN ,h, λq

˘

ě

α}uh}
2
1,Ω ` γλε

´1

ˆ

h

ε

˙

}λN}
2
ε `

αλ

2
}λN}

2
´ 1

2
,ε

` αλp´C2}uh}
2
1,Ω ´C1

ˆ

h

ε

˙

ε´1
}λN}

2
εq,
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with α the positive coercivity constant of a. This leads to (3.4.17) if we take αλ ą 0 small
enough with

Cm “ min

ˆ

α ´ αλC2,
1

2
αλ, γλ ´ αλC1

˙

.

To end the proof, we notice that, from the triangle inequality, the continuity of ΠZ,k
h and

the inequality (3.4.16), we have

}puh ` αλv
ε
λN ,h, λNq}ε ď }puh, λNq}ε ` αλC}λN}´ 1

2
,ε ď CM}puh, λNq}ε, (3.4.19)

where
CM “ 1 ` αλC.

Thus, dividing (3.4.17) by (3.4.19), we get, with vh “ uh ` αλv
ε
λN ,h and µN “ λN ,

Bhppuh, λq, pvh, µqq

}pvh, µNq}ε
ě
Cm

CM

}puh, λNq}ε,

which implies that

sup
pvh,µN qPV k

h ˆFN

Bhppuh, λNq, pvh, µNqq

}pvh, µNq}ε
ě
Cm

CM

}puh, λNq}ε @puh, λNq P V k
h ˆ FN ,

leading to the desired result.

To conclude the analysis of the stabilized formulation, we address the consistency of
the method. Since λεN,h ´ λεN P FN , we can apply Lemma 3.4.4 to have an estimate of
puεN,h ´ ΠZ,k

h uεN , λ
ε
N,h ´ λεNq. Precisely, we have,

}puεN,h ´ ΠZ,k
h uεN , λ

ε
N,h ´ λεNq}ε À

sup
pvh,µN qPV k

h ˆFN

BhppuεN,h ´ ΠZ,k
h uεN , λ

ε
N,h ´ λεNq, pvh, µNqq

}pvh, µNq}ε
.

By combining the equations of the continuous problem (3.3.4) and the discrete problem
(3.4.11), the following holds for all pvh, µNq P V k

h ˆ FN :

BhppuεN,h ´ ΠZ,k
h uεN , λ

ε
N,h ´ λεNq, pvh, µNqq “ apuεN ´ ΠZ,k

h uεN , vhq

` bpµN , u
ε
N ´ ΠZ,k

h uεNq ` shpµN , λ
ε
Nq

Using the continuity of the bilinear forms a, b (with the norm estimated by (3.3.6)) and sh,
we can establish that:

|apuεN ´ ΠZ,k
h uεN , vhq ` bpµ, uεN ´ ΠZ,k

h uεNq ` shpµN , λ
ε
Nq| À

`

|logpεq|
1
2 }uεN ´ ΠZ,k

h uεN}1,Ω `
h

1
2

ε
}λεN}ε

˘

}pvh, µNq}ε.
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Gathering these estimates and using the triangle inequality, we derive the following a-
priori estimate in terms of the approximation error of the Scott-Zhang interpolation oper-
ator:

}puεN ´ uεN,h, λ
ε
N ´ λεN,hq}ε À }puεN ´ ΠZ,k

h uεN , 0q}ε ` }pΠZ,k
h uεN ´ uεN,h, λ

ε
N ´ λεN,hq}ε,

À |logpεq|
1
2 }uεN ´ ΠZ,k

h uεN}1,Ω ` ε´ 1
2

ˆ

h

ε

˙
1
2

}λεN}ε. (3.4.20)

If we compare this estimate with the corresponding estimates (3.4.8) obtained for the
non stabilized scheme, we remark that the estimation of the approximation error (3.4.20)
is not affected by any restriction on N . However, it shows that the stabilized scheme
converges at a sub-optimal rate h

1
2 independently of the FE polynomial order k ą 0.

Then, if low-order convergence is acceptable, one should look at the stabilized scheme
with low order finite element approximation (k “ 1). Otherwise, if a sufficiently refined
resolution of the inclusions is affordable, namely h » ε and if the constraint k ě N can be
satisfied, the estimate results (3.4.8) seem more attractive, provided that the finite element
space suitably approximates the solution of the problem. This is another difficulty of this
problem (see, for example, Remark 10) that will be discussed and resolved in the next two
sections.

3.4.2.3 Approximation properties and convergence

Because of the limited regularity of the solution, the approximation properties of the finite
element method are not optimal. In particular, due to the approximation properties (3.4.3)
satisfied by the Scott-Zhang interpolation operator, since uεN P Hs

0pΩq with s “ 3
2

´ η, we
have the following interpolation error estimate

}uεN ´ ΠZ,k
h uεN}Ω ` h}∇puεN ´ ΠZ,k

h uεNq}Ω À h
1
2

´η
}uεN} 3

2
´η,Ω @k ą 0. (3.4.21)

Thus, for the discrete problem without stabilization studied in Section 3.4.1.2, if we
combine (3.4.21) with the a-priori error estimate (3.4.8) we obtain that, under the assump-
tion that k ě N ,

}uεN ´ uεN,h}1,Ω À p1 `
h

ε
q
Nh

1
2

´η
}uεN} 3

2
´η,Ω, (3.4.22)

}λεN ´ λεN,h}´ 1
2
,ε À p1 `

h

ε
q
2Nh

1
2

´η
}uεN} 3

2
´η,Ω. (3.4.23)

On the other hand, for the stabilized method studied in Section 3.4.2, adopting a similar
approach, we have for any k ą 0 the following result

}puεN ´ uεN,h, λ
ε
N ´ λεN,hq}ε ď |logpεq|

1
2h

1
2

´η
}uεN} 3

2
´η,Ω ` ε´1h

1
2 }λεN}ε. (3.4.24)
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The previous inequalities show that with respect to the approximation properties, the nu-
merical schemes with or without stabilization are equivalent and both are sub-optimal. We
also observe that there is no advantage in using high-order finite elements. As a conse-
quence, since we are limited to the case k “ 1, the restriction k ě N for the scheme
without stabilization entails that we can not exploit the additional accuracy provided by
high-order Fourier modes. In this respect, the stabilized scheme guarantees more flexibil-
ity.
Remark 10. In the limit when ε Ñ 0, the regularity of the continuous problem further
decreases. In particular, the Hs-norm of uεN for s ě 1, which pop out in (3.4.22)-(3.4.23)
and (3.4.24) may tend to infinity when ε Ñ 0. This can be illustrated by the very simple
exterior problem

$

’

&

’

%

´ ∆vεpεq “ 0 in ωρ
zωε,

pvε “ 0 on Bωρ,

pvε “ L on Bωε,

that features the following analytical solution

vεpεqp|x|q “ L
logp|x|{ρq

logpε{ρq
.

Thus, we obtain, for s ě 1,

}vεpεq}s,Ω „
1

εs´1
when ε Ñ 0.

These considerations show that for small inclusions it is particularly difficult to achieve a
desired accuracy with a standard approximation method.
Remark 11. Under some additional assumptions on the mesh, we can prove convergence
results better than those stated in (3.4.22)-(3.4.23) and (3.4.24). Let ThpΩq be a δ-resolving
mesh with respect to the interface, that is the edges of ThpΩq have a maximum distance
of δ to Bωε. This condition is in particular fulfilled with δ “ Oph2q when the nodes of
the mesh ThpΩq fall on the interface Bωε. With a little abuse of notation, we call this case
the conforming mesh configuration. In this case, following the approach of Theorem 5.2
in [Köppl et al., 2018], under the restriction that k “ 1 ě N , we obtain the following
quasi-optimal convergence results for the numerical scheme without stabilization,

}uεN ´ uεN,h}1,Ω À p1 `
h

ε
q
Nh p}uεN}2,Ωε ` }uεN}2,ωεq ,

}λεN ´ λεN,h}´ 1
2
,ε À p1 `

h

ε
q
2Nh p}uεN}2,Ωε ` }uεN}2,ωεq .

We note that for δ-meshes, the stabilized scheme remains sub-optimal because the consis-
tency error, of order h

1
2 , dominates over the approximation error.

73



Chapter 3. Mathematical and numerical analysis of reduced order interface conditions
and augmented finite element method for mixed-dimensional problems

Overall, the approximation properties of the proposed (original and stabilized) schemes
are not satisfactory, in particular because quadratic convergence rates or higher are pre-
vented. To overcome this limitation, we propose an improvement of the approximation
method in the next section.

3.4.3 Augmented finite element method

As pointed out in the previous section, the standard finite element method may suffer from
numerical locking when ε{h Ñ 0. The other limitation of the standard finite element
method is the sub-optimality of the convergence in h for continuous finite elements when
the mesh does not conform to the Bωε interface. This is a classical limitation of fictitious
domain problems and can be attributed to the poor estimation of the gradient jump by
C1 functions across the interface. In this section, we will introduce an augmented finite
element method which allows us to obtain an numerical approximation error uniformly
independent of ε and of arbitrary order in h.

3.4.3.1 Definition of the augmented finite element space

In order to overcome the limitations described above, we propose to enrich the finite ele-
ment space by adding well-chosen functions that allow to better approximate the singular
behaviour of uεN when ε tends to 0 and the jump at the interface Bωε. The design of these
functions directly comes from the expression of the solution uεN in ωρ with respect to its
Fourier modes on Bωρ and Bωε given by equation (3.3.20). In what follows, we assume
that ε ą 0 is small enough to have 2ε ă ρ where the parameter ρ is given in (3.3.9). We
first define χ a radial cut-off C8 function satisfying

χprq “

$

’

&

’

%

1 @r ď
1

2
ρ,

0 @r ą
3

4
ρ.

We then set for j P t1, . . . , Nu,
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ϕε,c
0 pr, θq

def
“ χprq

logpr{ρq

logpε{ρq
1rěε ` 1răε,

ϕε,c
j pr, θq

def
“ χprq

ˆ

pρ{rqj ´ pr{ρqj

pρ{εqj ´ pε{ρqj

˙

cospjθq1rěε `

´r

ε

¯j

cospjθq1răε,

ϕε,s
j pr, θq

def
“ χprq

ˆ

pρ{rqj ´ pr{ρqj

pρ{εqj ´ pε{ρqj

˙

sinpjθq1rěε `

´r

ε

¯j

sinpjθq1răε

for all pr, θq P R` ˆ p0, 2πq. We consider the augmented finite element space V k
N,h given

by
V k
N,h

def
“ Xk

hpΩq
ď

span
␣

ϕε,c
0 , ϕε,l

j , 1 ď j ď N, l P tc, suu.
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In particular, we notice that the number of additional functions is equal to 2N ` 1, that
is the dimension of FN . Indeed, as we will see in the proof of Theorem 3.4.6, adding a
Lagrange multiplier allows to better solve the condition at the interface but also adds a
term in the singular part when ε Ñ 0 and in the gradient jump at the Bωε interface. We
can now introduce the discrete formulation: find pũεN,h, λ̃

ε
N,hq P V k

N,h ˆ FN such that
#

p∇ũεN,h,∇vhqΩ ´ pλ̃εN,h, vhqε “ pf, vhqΩ @vh P V k
N,h,

pµN , ũ
ε
N,hqε “ pµN , ubqε @µN P FN .

(3.4.25)

3.4.3.2 Inf-sup stability

In the augmented finite element space, we are able to derive an inf-sup condition uniformly
independent of h, N and ε.

Lemma 3.4.5. There exists R Q β ą 0 uniformly independent of h, N and ε such that for
all λN P FN ,

sup
vhPV k

N,h

pλN , vhqε

}vh}1,Ω
ě β}λN}´ 1

2
,ε.

Proof. We introduce the functions ϕ̃ε,l
j solutions of Problem (3.3.2) with

ηpεqpθq “ cospjθq l “ c, ηpεqpθq “ sinpjθq l “ s.

These functions satisfy in particular ϕε,l
j “ χprqϕ̃ε,l

j . Using definition (3.2.4) of the norm
} ¨ }´ 1

2
,ε, we have

}λN}´ 1
2
,ε “ sup

µPH
1
2 pBωεq

pλN , µqε

}µ} 1
2
,ε

@λN P FN .

For a given µ P H
1
2 pBωεq, we define ṽεN,µ P H1

0 pΩq and vεN,µ P V k
N,h by

ṽεN,µ
def
“ F c

0µpεqϕ̃ε,c
0 `

N
ÿ

j“1

F c
j µpεqϕ̃ε,c

j ` F s
jµpεqϕ̃ε,s

j , vεN,µ
def
“ χprqṽεN,µ.

By linearity, ṽεN,µ is solution of Problem (3.3.2) with η “ Πε
Nµ, so according to Lemma

3.3.3 and by continuity of Πε
N on pH

1
2 pBωεq, } ¨ } 1

2
,εq, we have

}ṽεN,µ}1,Ω À }Πε
Nµ} 1

2
,ε À }µ} 1

2
,ε.

Consequently, we also have vεN,µ “ ṽεN,µ “ Πε
Npµq on Bωε and

}vεN,µ}1,Ω À }ṽεN,µ}1,Ω ď β}µ} 1
2
,ε.
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with β ą 0 uniformly independent of N , ε and h. Finally, we obtain

pλ, µqε

}µ} 1
2
,ε

“
pλ,ΠN

ε µqε

}µ} 1
2
,ε

ď β´1
pλ, vεN,µqε

}vεN,µ}1,Ω
ď β´1 sup

vhPV k
N,h

pλ, vhqε

}vh}1,Ω
@µ P H

1
2 pBωε

q.

Taking the supremum over µ P H
1
2 pBωεq gives the result.

3.4.3.3 Approximation properties and convergence

To conclude this section, we give an estimate of the approximation error for the augmented
finite element method.

Theorem 3.4.6. Let k P N˚. We assume that f belongs to Hk´1pΩq. Let puεN , λ
ε
Nq be the

solution of problem (3.1.3) and pũεN,h, λ̃
ε
N,hq be the solution of problem (3.4.25). Then, we

have

}uεN ´ ũεN,h}1,Ω ` }λεN ´ λ̃εN,h}´ 1
2
,ε À |logpεq|

1
2hk

´

}f}k´1,Ω ` }ub} 1
2
,ε

¯

. (3.4.26)

If we compare the result given by our theorem to the approximation properties of the
original and stabilized schemes presented in Section 3.4.2.3, we see that the augmented
finite element method overcomes the previous limitations of sub-optimal convergence. In
addition, if we gather the estimate (3.3.10) of the error uε ´ uεN coming from the model
reduction and the estimate (3.4.26) of the error uεN ´ ũεN,h coming from the numerical
approximation, we get this estimate for the global error:

}uε ´ ũεN,h}1,Ω ` ε}λε ´ ε´1λεN,h}´ 1
2
,ε À

`

εN`1
` |logpεq|

1
2hk

˘`

}f}k´1,Ω ` }ub} 1
2
,ε

˘

.

This estimate shows that, h and ε being fixed, it is possible to reach a given convergence
order by adjusting the parameters of the method k and N .

Proof of Theorem 3.4.6. Since, for all j ě 0 and l P tc, su, ϕε,l
j belongs to H1

0 pΩq, the
enrichment of the space V k

h preserves the coercivity condition. Moreover, according to
Lemma 3.4.5, the inf-sup condition is satisfied for the spaces V k

N,h and FN . So, applying
the general theory on discrete saddle point problem presented in (3.4.7) we have

}uεN ´ ũεN,h}1,Ω ` }λεN ´ λ̃εN,h}´ 1
2
,ε À |logpεq|

1
2 inf
whPV k

N,h

}uεN ´ wh}1,Ω. (3.4.27)

As mentioned previously, the enrichment of the standard finite element space V k
h by V k

N,h

will allow to get a better approximation of uεN by providing a better estimate of the singular
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part of uεN . To highlight this feature, we use (3.3.20) and write uεN as the sum of a regular
part uεN,R and a singular part uεN,S defined respectively by:

uεN,Rpr, θq
def
“ F c

0u
ε
Npρq `

8
ÿ

j“1

ˆ

r

ρ

˙j
`

F c
j u

ε
Npρq cospjθq ` F s

j u
ε
Npρq sinpjθq

˘

for all pr, θq P r0, ρs ˆ p0, 2πq and

uεN,Spr, θq
def
“

ˆ

´ F c
0u

ε
Npρq

logpr{ρq

logpε{ρq
` F c

0ubpεq
logpr{ρq

logpε{ρq

´

N
ÿ

j“1

ˆ

ε

ρ

˙j
pr{ρqj ´ pρ{rqj

pε{ρqj ´ pρ{εqj
`

F c
j u

ε
Npρq cospjθq ` F s

j u
ε
Npρq sinpjθq

˘

`

N
ÿ

j“1

pr{ρqj ´ pρ{rqj

pε{ρqj ´ pρ{εqj
`

F c
j ubpεq cospjθq ` F s

j ubpεq sinpjθq
˘

˙

1rěε

`

ˆ

´ F c
0u

ε
Npρq ´

N
ÿ

j“1

ˆ

r

ρ

˙j
`

F c
j u

ε
Npρq cospjθq ` F s

j u
ε
Npρq sinpjθq

˘

` F c
0ubpεq `

N
ÿ

j“1

´r

ε

¯j
`

F c
j ubpεq cospjθq ` F s

j ubpεq sinpjθq
˘

˙

1răε

for all pr, θq P r0, ρs ˆ p0, 2πq. The functions uεN,R and uεN,S belong to H1pΩq and, accord-
ing to (3.3.20), we have uεN “ uεN,R ` uεN,S in ωρ, which leads in particular to

χuεN “ χuεN,R ` χuεN,S in Ω.

Let us now prove that the truncated singular part belongs to the approximation space, that
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is that χuεN,S belongs to V k
N,h. First, we notice that, by definition of the ϕε,l

j , we have

χprq
`

´ F c
0u

ε
Npρq ` F c

0ubpεq
˘

ˆ

logpr{ρq

logpε{ρq
1rěε ` 1răε

˙

“

`

´ F c
0u

ε
Npρq ` F c

0ubpεq
˘

ϕε,c
0 pr, θq,

χprq

ˆ

´ F c
0u

ε
Npρq

ˆ

ε

ρ

˙j

` F c
j ubpεq

˙

ˆ

pr{ρqj ´ pρ{rqj

pε{ρqj ´ pρ{εqj
1rěε `

´r

ε

¯j

1răε

˙

cospjθq

“

˜

´F c
0u

ε
Npρq

ˆ

ε

ρ

˙j

` F c
j ubpεq

¸

ϕε,c
j ,

χprq

ˆ

´ F s
0u

ε
Npρq

ˆ

ε

ρ

˙j

` F s
j ubpεq

˙

ˆ

pr{ρqj ´ pρ{rqj

pε{ρqj ´ pρ{εqj
1rěε `

´r

ε

¯j

1răε

˙

sinpjθq

“

˜

´F s
0u

ε
Npρq

ˆ

ε

ρ

˙j

` F s
j ubpεq

¸

ϕε,s
j .

We deduce that

χprquεN,Spr, θq “ p´F c
0u

ε
Npρq ` F c

0ubpεqqϕε,c
0 pr, θq

`

N
ÿ

j“1

`

´ F c
j u

ε
Npρq

ˆ

ε

ρ

˙j

` F c
j ubpεq

˘

ϕε,c
j pr, θq

`

N
ÿ

j“1

`

´ F s
j u

ε
Npρq

ˆ

ε

ρ

˙j

` F s
j ubpεq

˘

ϕε,s
j pr, θq

for all pr, θq P R` ˆ p0, 2πq, and thus we get that χuεN,S P Xk
N,hpΩq. Therefore, for the

right hand side of (3.4.27), we have in particular

inf
whPV k

N,h

}uεN ´ wh}1,Ω ď inf
vhPV k

h

}uεN ´ χuεN,S ´ vh}1,Ω.

Moreover, writing uεN “ χuεN ` p1 ´ χquεN , it comes

uεN ´ χuεN,S “ χuεN,R ` p1 ´ χquεN ,
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so that estimate (3.4.27) becomes

}uεN ´ũεN,h}1,Ω`}λεN ´λ̃εN,h}´ 1
2
,ε À |logpεq|

1
2 inf
vhPV k

h

}χuεN,R`p1´χquεN ´vh}1,Ω. (3.4.28)

It is now sufficient to prove that the function χuεN,R ` p1 ´ χquεN is well estimated by the
elements of V k

h . To do this, we will prove that this function belongs to Hk`1pΩq. First,
since uεN,R is an harmonic function, thanks to the interior regularizing property of elliptic
operators (we refer to [Evans, 1998]), we have

}uεN,R}
2
k`1,ω3ρ{4 À }uεN,R}

2
ωρ À |F c

0u
ε
Npρq|

2
`

8
ÿ

j“1

|F c
j u

ε
Npρq|

2
` |F s

j u
ε
Npρq|

2

À }uεN}
2
ωρ À }ub}

2
1
2
,ε

` }f}
2
Ω

thanks to Theorem 3.3.1. Thus, by definition of χ, we get that χuεN,R belongs to Hk`1pΩq

and we have
}χuεN,R}k`1,Ω À }ub} 1

2
,ε ` }f}Ω.

Moreover, since uεN satisfies ´∆uεN “ f in Ωε and uεN “ 0 on BΩ and since Ωzωρ{2 is
relatively compact in Ωε YBΩ, the regularizing property of elliptic problems (we also refer
to [Evans, 1998] for this result) implies that uεN belongs to Hk`1pΩzωρ{2q and we have

}uεN}k`1,Ωzωρ{2
À }uεN}Ωzωρ{2

` }f}k´1,Ω À }ub} 1
2
,ε ` }f}k´1,Ω

This implies that p1 ´ χquεN belongs to Hk`1pΩq and we have

}p1 ´ χquεN}k`1,Ω À }ub} 1
2
,ε ` }f}k´1,Ω.

Gathering these results, we deduce that χuεN,R ` p1 ´ χquεN belongs to Hk`1pΩq and

}χuεN,R ` p1 ´ χquεN}k`1,Ω À }ub} 1
2
,ε ` }f}k´1,Ω.

By this way, using interpolation estimates for the finite element space V k
h in Hk`1pΩq,

(3.4.28) becomes

}uεN ´ ũεN,h}1,Ω ` }λεN ´ λ̃εN,h}´ 1
2
,ε À |logpεq|

1
2hk}χuεN,R ` p1 ´ χquεN}k`1,Ω

and thus we get (3.4.26).

Remark 12. Let us notice that the use of an enriched finite element space enables to sig-
nificantly mitigates the adverse effects stemming from small values of ε and to reach any
order of convergence in h. This is first made possible by getting an inf-sup condition uni-
formly independent of ε and h, but also by the fact that the singular part of the solution
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uεN is only in the first Fourier modes, and is therefore well captured by the enrichment
functions. Eventually, we see that the estimate of Theorem 3.3.1 requires only a regular-
ity in H

1
2 pBωεq for ub. This assumption, which may seem rather weak, is due to the fact

that thanks to the enrichment of the finite element space the convergence analysis of the
scheme only relies on the regularity of the solution away from the inclusion.

3.5 Numerical experiments

Following the main results of this work, we divide this section in two parts. First, we
analyze the behavior of the error due to the reduced order boundary conditions, referring
to this part as the convergence in ε. We perform numerical tests to illustrate that the prop-
erties stated in Theorem 3.3.4 are actually observed in practice. Second, we analyze the
approximation properties of the reduced order problem discretized by the finite element
method, using both the standard formulation and the augmented formulation. The numer-
ical tests shown in the second section address the error analysis with respect to the space
discretization parameter h and complement the analysis shown in Section 3.4.

3.5.1 Convergence in ε

In this section we first analyze the case of a single inclusion, for which a rigorous anal-
ysis has been presented here. However, as mentioned in the introduction, the proposed
approach can be easily extended to several obstacles of different sizes. The behavior of
our method in this case is addressed in the second paragraph of this section. Finally, in the
third part of this section, for the case of multiple inclusions, we analyze the effect of the
distance between inclusions, an essential consideration across various applications.

3.5.1.1 Single inclusion

We consider a square domain Ω “ p´0.5, 0.5q ˆ p´0.5, 0.5q with an inclusion located
at p0.2, 0.1q and we make ε vary in the set t0.05, 0.04, 0.03, 0.02, 0.01u. On the external
boundary BΩ, we impose non homogeneous Dirichlet boundary conditions presented in
Figure 3.2. Although our mathematical study focus on homogeneous Dirichlet boundary
conditions, the results of the previous sections remain valid in this more general case. As
for the inclusion, we set ub “ 0. To illustrate Theorem 3.3.4, we compute the convergence
rate with respect to ε of the reduced order problem towards the full order problem for in-
creasing values of N in the definition of FN . In the general case, the continuous solutions
are not known a priori. Therefore, we compute the linear finite element approximation of
the reduced and full order problems for a conforming mesh (defined as δ-resolving mesh
in Remark 11) with h small enough (h « 10´3) in order to have a negligible discretization
error in comparison with the model reduction error. The convergence curves are given in
Figure 3.3. They represent the H1´norms of the difference eεN,h

def
“ uεN,h ´ uεh between

80



3.5. Numerical experiments

the discrete solutions of the full order problem and the reduced order problem for N “ 0,
1 and 2 modes. If we compare the slopes of the error curves with the expected slopes (rep-
resented by the black lines), we notice that the match between theory and observations is
very satisfactory. The numerical solution of the reduced order problem and the magnitude
of the errors eε0,h, eε1,h and eε2,h for ε “ 0.05 are reported in Figure 3.4.

Ω

u “ 0.1x

L

u “ ´0.1x

l

u “

´0.1y
u “

0.1y

Figure 3.2: Boundary conditions for the square domain.

3.5.1.2 Multiple inclusions

We consider a square domain Ω “ p´0.5, 0.5q ˆ p´0.5, 0.5q with four inclusions posi-
tioned respectively in p0.2, 0.1q, p´0.3, 0.1q, p´0.2, 0.2q, p0.1,´0.2q and of sizes 0.05,
0.04, 0.06 and 0.03. As in the previous tests, the boundary conditions on BΩ are described
by Figure 3.2 and ub “ 0 on the inclusions. The results obtained for N “ 0, 1 and 2 are
reported in Figure 3.5. There, the parameter ε corresponds to the size of the first inclu-
sion and all the other inclusions are scaled proportionally. Again, we can notice that the
convergence rates coincide with the expected ones. The numerical solution of the reduced
order problem and the errors eε0,h, eε1,h and eε2,h are reported in Figure 3.6.
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Figure 3.3: Modelling error with respect to the radius ε for different values of modes N in the case of a
single inclusion.

3.5.1.3 Behavior of the model error for close obstacles

We consider here a test case to illustrate the behavior of the method when obstacles are
close to each other. The domain is the same as in the previous sections and we consider
uniform Dirichlet boundary conditions equal to 1 and two inclusions of radius 0.05 ini-
tially centered in p´0.1, 0q and p0.1, 0q. The boundary values imposed on each inclusion
are respectively 0.5 and 1.5 and are enforced with N P t0, 1, 2u modes. The numerical
solution of such problem is given in Figure 3.7 panel (a). Then, the distance between the
two inclusions is gradually reduced. The numerical solution with inclusions separated by
a distance of 0.01 is shown in panel (b). The comparison of the two top panels shows
that the solution in the circle deviates from the constant as the two inclusions get closer.
More quantitative results are given in Figure 3.7 panel (c). We see that the model error
increases as the distance between the two obstacles decreases, as expected with the inverse
dependence on ρ in the estimate presented in Theorem 3.3.4. We also notice that this effect
becomes more pronounced as the number of modes increases.

82



3.5. Numerical experiments

(a) uε (b) eε0,h

(c) eε1,h (d) eε2,h

Figure 3.4: Contour plots of the solution uε and the magnitude of the discrete model errors eε0,h, eε1,h and
eε2,h on a log-scale axis for an inclusion of radius ε “ 0.05.
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Figure 3.5: The modelling error with respect to the radius of four inclusions for different values of N .
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(a) uε (b) eε0,h

(c) eε1,h (d) eε2,h

Figure 3.6: Contour plots of the solution uε and of the discrete model errors eε0,h, eε1,h and eε2,h on a
log-scale axis for multiple obstacles of radius ε “ 0.05.

85



Chapter 3. Mathematical and numerical analysis of reduced order interface conditions
and augmented finite element method for mixed-dimensional problems

(a) Distance between the obstacles equal to 0.2. (b) Distance between the obstacles equal to 0.12.
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(c) Evolution of the error with respect to the distance between the obstacles.

Figure 3.7: Effect of the inter-inclusions distance on the model error. By comparing panels (a) and (b) we
see that the approximation of the solution at the interior boundary worsens when the centers of the

inclusions approach. In panel (c) we see the variation of the model error when the distance between the
inclusions progressively changes.
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Figure 3.8: Comparison of the numerical error for the finite element method without and with enrichment.
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3.5.2 Convergence in h

In this section, we illustrate the convergence results presented in (3.4.22) and (3.4.23)
for the standard finite element method without stabilization and by Theorem 3.4.6 for the
augmented finite element method. We consider a domain Ω “ p´1.5, 1.5q ˆ p1.5, 1.5q and
a single inclusion localized at p0, 0q, of radius ε P t0.1, 0.01, 0.001u. Non homogeneous
boundary conditions are applied on Bωε. Specifically, referring to the continuous solution
as ueε, we consider

pµN , u
e
εqε “ pµN , ubqε @µN P FN , ub “ 1 ` cospθq ` sinpθq.

By setting the appropriate Dirichlet boundary conditions, the continuous solution writes
for N “ 0,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ueε “

$

’

’

&

’

’

%

1 `

ˆ

r

ρ

˙

cospθq `

ˆ

r

ρ

˙

sinpθq r ď ε,

logpr{ρq

logpε{ρq
`

ˆ

r

ρ

˙

cospθq `

ˆ

r

ρ

˙

sinpθq r ą ε,

λeε “
1

εlogpε{ρq
,

and for N “ 1,

uεe “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1 `

´r

ε

¯

cospθq `

´r

ε

¯

sinpθq ` p
r

ρ
q
2 cosp2θq ` p

r

ρ
q
2 sinp2θq r ď ε,

logpr{ρq

logpε{ρq
`

pr{ρq ´ pρ{rq

pε{ρq ´ pρ{εq
cospθq `

pr{ρq ´ pρ{rq

pε{ρq ´ pρ{εq
sinpθq

`

ˆ

r

ρ

˙2

cosp2θq `

ˆ

r

ρ

˙2

sinp2θq r ą ε,

λeε “
1

εlogpε{ρq
`

ˆ

p1{ρq ´ pρ{ε2q

pε{ρq ´ pρ{εq
´

1

ε

˙

cospθq `

ˆ

p1{ρq ´ pρ{ε2q

pε{ρq ´ pρ{εq
´

1

ε

˙

sinpθq,

with ρ “ 0.4. In what follows we analyze the relative error for the solution uεN,h in the H1

and L2 norms and for the Lagrange multiplier λεN,h in the L2 norm, namely

}uεN ´ uεN,h}H1pΩq

}uεN}H1pΩq

,
}uεN ´ uεN,h}L2pΩq

}uεN}L2pΩq

,
}λεN ´ λεN,h}L2pBωεq

}λεN}L2pBωεq

.

The numerical results for the h-convergence of the reduced order method computed with
the standard or augmented finite element method are compared in Figure 3.8. We focus
our attention on two items: the convergence rate with respect to h and the influence of ε
on the numerical error. For the first item, we test the two methods for linear (FEM-P1) and
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quadratic (FEM-P2) finite elements, which correspond to different markers in each plot.
For the second item, we use the parametrization of the exact solutions in ε to compute
several numerical errors for ε P t10´1, 10´2, 10´3u. Again, each test is identified by a
different marker in the plots. Also, in both cases we perform the error analysis for N “ 0
(on the left column) and N “ 1 (on the right column).

For the standard finite element formulation, we observe that independently of the choice
of finite elements order, linear or quadratic, the convergence rate in theH1-norm is limited
to 0.5, due to the low regularity of the solution on the whole domain. We also observe that
the scatter of the error curves with respect to ε is stronger in the case N “ 1, as expected
from estimate (3.4.22). Still in agreement with this estimate, we also observe that the
numerical error increases when decreasing ε for a fixed value of h.

For the augmented finite element method, the situation changes completely, as pre-
dicted by (3.4.26), the optimal order of convergence is observed in all the numerical tests.
For the H1-norm of the solution, the theoretical order of convergence is almost exactly
verified in the experiments. For the Lagrange multipliers, super-convergence is clearly
observed for linear finite elements, but the theoretical rate is respected by the quadratic
ones. . Finally, we observe that for the augmented finite element method the convergence
error of the solution and of the Lagrange multipliers is not negatively affected by the size
of the inclusion, namely ε. Quite the contrary, unlike what suggests estimate (3.4.26), we
observe that the numerical error decreases with ε.

Conclusions

In this chapter, we considered a Poisson problem defined on a domain with small cir-
cular holes, subject to reduced order non homogeneous Dirichlet boundary conditions.
This problem can be seen as a prototype problem for better understanding the applica-
tion of mixed-dimensional coupling conditions in fluid-structure interaction applications
(but also other applications involving domain with high dimensional gap such as fiber-
reinforced materials [Khristenko et al., 2021]) where the small inclusions represent either
particles (as in Chapter 4) or slender structures immersed into a fluid (as in Chapter 2). To
address these challenging applications using computational models, a thorough mathemat-
ical understanding of the fundamental mathematical aspects of the problem is extremely
useful. As highlighted in [Babuška et al., 2017], a mathematically-informed approach is a
prerequisite for safe and reliable computations.

For these reasons, we focused on the fundamental aspects of the approximation of the
problem. On one hand, we analysed the continuous problem built on the approximation
of the Dirichlet boundary conditions on the inclusion by means of averaged operators
(projection operators onto a Fourier-based finite-dimensional space). On the other hand,
we studied the properties of the finite element method used for the approximation of the
reduced order model.
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By means of suitable a-priori estimates of the model error and of the finite element
approximation error, we provided guidelines to optimally balance the approximation pa-
rameters of the proposed simplified modeling approach. In particular a crucial issue was to
provide a good approximation strategy of the Lagrange multiplier so that these theoretical
results could be useful for fluid-structure interaction problems.
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3.A Appendix

3.A.1 Preliminary lemmas

In this section, we state several results that will be used in the next sections of the appendix
for the proof of some lemmas used in this chapter. We recall that ε P p0, εmaxq where εmax

is the fixed parameter defined by εmax “ suptε ą 0 | Ďωε Ă Ωu. The first two Lemmas and
their proof are drawn from [Caubet et al., 2016, Lemma C.1, Lemma C.3] for the Stokes
equations, themselves based on the results presented in [Sid Idris, 2001, Chapter 3].

Lemma 3.A.1. For φ P H
1
2 pBΩq, the following problem

$

’

&

’

%

´∆vε “ 0 in Ωε,

vε “ φ on BΩ,

vε “ 0 on Bωε,

(3.A.1)

admits a unique weak solution in H1pΩεq. Moreover,

}vε}1,Ωε À }φ} 1
2
,BΩ.

Proof of Lemma 3.A.1. We consider vεmax the solution of (3.A.1) for ε “ εmax. It satisfies

|vεmax |1,Ωεmax “

ˆ
ż

Ωεmax

|∇vεmax |
2

˙
1
2

À }φ} 1
2
,BΩ. (3.A.2)

Now consider ṽεmax P H1pΩq the extension by 0 of vεmax to all Ω. Notice that since
ε ă εmax, ωε Ă ωεmax and Ωεmax Ă Ωε, so, by minimization of energy, we have

|vε|1,Ωε ď |ṽεmax |1,Ωε “ |vεmax |1,Ωεmax ,

and thanks to equation (3.A.2),

|vε|1,Ωε À }φ} 1
2
,BΩ. (3.A.3)

Let u0 be the solution of the problem (3.2.1). Denoting by ṽε the extension of vε to all Ω,
since ṽε ´ u0 P H1

0 pΩq, we can apply the Poincaré inequality to get

}vε}Ωε “ }ṽε}Ω ď }ṽε ´ u0}Ω ` }u0}Ω À p|vε|1,Ωε ` |u0|1,Ωq ` }u0}Ω.

The well-posedness of the problem (3.2.1) also gives

}u0}1,Ω À }φ} 1
2
,BΩ. (3.A.4)
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Combining equations (3.A.3) and (3.A.4) finally gives us

}vε}Ωε À }φ} 1
2
,BΩ.

This concludes the proof of the lemma.

Lemma 3.A.2. For any L P R, the problem
$

’

&

’

%

´∆vε “ 0 in Ωε,

vε “ 0 on BΩ,

vε “ L on Bωε,

admits a unique weak solution in H1pΩεq. Morevover,

}vε}1,Ωε À |logpεq|
´ 1

2 |L|.

Proof of the Lemma 3.A.2. Let us define wε the unique solution of the system
$

’

&

’

%

´∆wε
“ 0 in ωεmax{ε

zsω,

wε
“ 0 on Bωεmax{ε,

wε
“ L on Bω.

We also consider the function vεpεq defined on
Ω

ε
zsω by vεpεqpxq “ vεpεxq for all x P

Ω
ε

zsω. The function vεpεq satisfies
$

’

’

&

’

’

%

´∆vεpεq “ 0 in Ω
ε

zsω,

vεpεq “ 0 on 1
ε
BΩ,

vεpεq “ L on Bω.

(3.A.5)

Notice that we have sω Ă ωεmax{ε Ă Ω
ε

. Now we consider w̃ε the extension of wε to Ω
ε

zsω by
zero in the outer part of the extended domain. Therefore, by the principle of minimization
of energy, we have

|vε|1,Ωε “ |vεpεq|1,Ω
ε

zsω ď |w̃ε|1,Ω
ε

zsω “ |wε
|1,ωεmax{εzsω. (3.A.6)

A computation provides for all x P ωεmax{εzsω,

wε
pxq “ L

logpεmax{εq ´ logp|x|q

logpεmax{εq
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and
|wε

|1,ωεmax{εzsω À |logpεq|
´ 1

2 |L|.

So we get
|vε|1,Ωε À |logpεq|

´ 1
2 |L|. (3.A.7)

Finally, we consider ṽε the extension of vε to Ω by L. Since this extension is in H1
0 pΩq,

we can use the Poincaré inequality to obtain

}vε}Ωε ď }ṽε}Ω À |ṽε|1,Ω À |vε|1,Ωε .

Using inequality (3.A.7), we get the result.

Once again, the following Lemma and its proof are drawn from [Caubet et al., 2016,
Lemma B.2, Lemma 4.2] for the Stokes equations, themselves based on the results pre-
sented in [Sid Idris, 2001, Chapter 3].

Lemma 3.A.3. For any ub P H
1
2 pBωεq, the problem
$

’

’

&

’

’

%

´∆vε “ 0 in Ωε,

vε “ 0 on BΩ,

vε “ ub on Bωε,

admits a unique weak solution in H1pΩεq. Moreover,

}vε}1,Ωε À }ubpεq} 1
2
,Bω.

Proof. Lax-Milgram theorem allows to prove that the problem
#

´∆V “ 0 in R2zsω,

V “ ubpεq in Bω,
(3.A.8)

is well posed and has a unique solution in

W 1,2
0 pR2

zsωq “ tu P D1

pR2
zsωq | logpρq

´1u P L2
´1pR2

zsωq,∇u P L2
pR2

zsωqu

where
ρpxq “ p1 ` |x|

2
q
1
2

and
L2

´1pR2
zsωq “ tu P D1

pR2
zsωq | ρ´1u P L2

pR2
zsωqu,
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(see [Giroire, 1987] for example). We will try to give an explicit representation of V . By
setting ´∆V “ 0 in ω, the problem (3.A.8) has a unique solution in R2 and we have that

´∆V “ ∇V ¨ n` δBω

in D1

pR2q where n` is the exterior normal on BΩε. Now let us define

W “ E ˚
`

∇V ¨ n` δBω

˘

where E is the fundamental solution of the Laplace equation given for x P R2zt0u by

Epxq “ ´
logp|x|q

2π
,

and * is the convolution product. We have

´∆W “ ∇V ¨ n` δBω

in D1

pR2q. Then V ´W is a harmonic tempered distribution. A classical result of Fourier
analysis states that harmonic tempered distribution are polynomials (see [Dautray and Li-
ons, 1985] for example). Then V “ L ` W with L a polynomial and for y P R2zω,

W pyq “

ż

Bω

tpxqEpy ´ xqdspxq,

with tpxq “ ∇V ¨ n`. Using a Taylor development for E, we get

Epy ´ xq “ Epyq ´ ∇Epy ´ αxq ¨ x

for some α P p0, 1q. We then have

W pyq “ Epyq

ż

Bω

tpxqdspxq ´

ż

Bω

tpxq∇Epy ´ αxq ¨ xdspxq.

Let us denote
Upyq “

ż

Bω

tpxq∇Epy ´ αxq ¨ xdspxq.

By computation, we get that Upyq “ op1{|y|q when |y| Ñ 8 so plogpρqq´1U P

L2
´1pR2zsωq. As plogpρqq´1V P L2

´1pR2zsωq and plogpρqq´1 R L2
´1pR2zsωq, we necessar-

ily have that
ż

Bω

tpxqdspxq “ 0

and that L is a constant. By computation, we have that for |y| sufficiently large,

|W pyq| À }ubpεq} 1
2
,Bω

1

|y|
and |∇W pyq| À }ubpεq} 1

2
,Bω

1

|y|2
.

94



3.A. Appendix

Let A ą 0 such that the previous inequality is satisfied for |y| ą A. We have for }y} ą A,

|L| À |V pyq| ` }ubpεq} 1
2
,Bω

1

|y|
.

Integrating for |y| ą A, we get

|L|

ˆ
ż

|y|ąA

1

logp|y|q2|y|2

˙
1
2

À

ˆ
ż

|y|ąA

|V pyq|2

logp|y|q2|y|2

˙
1
2

` }ubpεq} 1
2
,Bω

ˆ
ż

|y|ąA

1

logp|y|q2|y|4

˙
1
2

.

The fact that A is uniformly independent ofub and the well-posedness of the problem
(3.A.8) give

|L| À }ubpεq} 1
2
,Bω.

Using similar computations as in [ [Guillaume and Idris, 2002], Lemma 7.1], we also have

}W p
x

ε
q}1,Ωε À ε}ubpεq} 1

2
,Bω.

We then define zε :“ vε ´ W px
ε

q, zε satisfies
$

’

’

&

’

’

%

´∆zε “ 0 in Ωε,

zε “ ´W px
ε

q on BΩ,

zε “ L on Bωε.

Using Lemma 3.A.1 and Lemma 3.A.2 we get that

}zε}1,Ωε À }W
´x

ε

¯

} 1
2
,BΩ ` |logpεq|

´ 1
2 |L|,

À ε}ubpεq} 1
2
,Bω ` |logpεq|

´ 1
2 }ubpεq} 1

2
,Bω.

So finally, we get

}vε}1,Ωε À }zε}1,Ωε ` }W p
x

ε
q}1,Ωε ,

À ε}ubpεq} 1
2
,Bω ` |logpεq|

´ 1
2 }ubpεq} 1

2
,Bω ` }ubpεq} 1

2
,Bω,

}vε}1,Ωε À }ubpεq} 1
2
,Bω.
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3.A.2 Proof of Lemma 3.3.2

Restated Lemma 3.3.2. For all v P H1pΩq,

}v} 1
2
,ε À |logpεq|

1
2 }v}1,Ω.

Proof of Lemma 3.3.2. According to [Maz’ya and Poborchi, 1998, Section 4.1.3], the
norm

xuy 1
2
,Bωε “ inf

vPH1pΩεq, v|Bωε“u
}v}1,Ωε @u P H

1
2 pBωε

q, (3.A.9)

is equivalent, uniformly in ε, to the norm

|logpεq|
´ 1

2 } ¨ }ε ` | ¨ | 1
2
,ε.

By definition of the norm x¨y 1
2
,Bωε , we have

xvy 1
2
,Bωε ď }v}1,Ωε @v P H1

pΩε
q,

and consequently

|logpεq|
´ 1

2 }v}ε ` |v| 1
2
,ε À }v}1,Ωε @v P H1

pΩε
q.

Eventually, by definition of the norm } ¨ } 1
2
,ε we can conclude

}v} 1
2
,ε “ }v}ε ` |v| 1

2
,ε À|logpεq|

1
2 p|logpεq|

´ 1
2 }v}ε ` |v| 1

2
,εq

À|logpεq|
1
2 }v}1,Ωε À |logpεq|

1
2 }v}1,Ω @v P H1

pΩq.

3.A.3 Proof of Lemma 3.3.3

Restated Lemma 3.3.3. Let η P H
1
2 pBωεq be given, there exists vεη P H1

0 pΩq solution of
#

´∆vεη “ 0 in Ωε
Y ωε,

vεη “ η on Bωε.
(3.A.10)

Moreover, vεη satisfies the following energy bound:

}vεη}1,Ω À }η} 1
2
,ε. (3.A.11)

Proof of Lemma 3.3.3. Consider η P H
1
2 pBωεq. Classical results on elliptic regularity en-

sures the existence of vεη P H1
0 pΩq satisfying (3.3.2). Now, we would like to prove the

bound (3.3.3). On one hand, according to Lemma 3.A.3,

}vεη}1,Ωε À }η} 1
2
,ε. (3.A.12)
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On the other hand, setting vεηpεq defined on ω such that vεηpεqpxq “ vεηpεxq for all x P ω,
we have that vεηpεq satisfies

#

´∆vεηpεq “ 0 in ω,

vεηpεq “ ηpεq on Bω.

We deduce that
}vεηpεq}1,ω À }ηpεq} 1

2
,Bω.

By re-scaling, we have that

ε´2
}vεη}

2
ωε ` }∇vεη}

2
ωε À }η}

2
1
2
,ε

and
}vεη}1,ωε À }η} 1

2
,ε. (3.A.13)

Gathering (3.A.12) and (3.A.13), we obtain inequality (3.3.3).

3.A.4 Proof of Lemma 3.3.5

Restated Lemma 3.3.5. Let puεN , λ
ε
Nq P H1

0 pΩq ˆ FN be the solution of Problem (3.1.3).
Then, we have

λεN “ ε
`

p∇uεNq
`

¨ n`
q ´ p∇uεNq

´
¨ n`

˘

in H´ 1
2 pBωε

q. (3.A.14)

where n` is the exterior normal to BΩε, p∇uεNq` is the restriction of ∇uεN to Ωε and
p∇uεNq´ is the restriction of ∇uεN to ωε.

Proof of Lemma 3.3.5. On one hand, we have, for all ϕ P H1
0 pΩq

ż

Ω

∇uεN∇ϕ “

ż

Ωε

∇uεN∇ϕ `

ż

ωε

∇uεN∇ϕ

“ ´

ż

Ωε

∆uεNϕ ´

ż

ωε

∆uεNϕ ` xp∇uεNq
`n`

´ p∇uεNq
´n`, ϕy´ 1

2
,Bωε ,

and since ´∆uεN “ f in Ωε and ´∆uεN “ 0 in ωε, we obtain the equality
ż

Ω

∇uεN∇ϕ “ xp∇uεNq
`n`

´ p∇uεNq
´n`, ϕy´ 1

2
,Bωε `

ż

Ω

fϕ.

On the other hand, we have
ż

Ω

∇uεN∇ϕ “ pλεN , ϕqε `

ż

Ω

fϕ.
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Identifying these two relations, we get

pλεN , ϕqε “ ε´1
pλεN , ϕqBωε “ xp∇uNε q

`n`
´ p∇uNε q

´n`, ϕy´ 1
2
,Bωε

for all ϕ P H1
0 pΩq. Thus, since the trace operator from H1

0 pΩq on H
1
2 pBωεq is surjective,

we get (3.3.11).
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CHAPTER4
A new computational approach for the simulation of
small particles in a two-dimensional Stokesian flow:

formulation and error analysis

4.1 Introduction

This chapter is made up of two parts. In a first part, we extend the analysis presented in
Chapter 3 to the case of the Stokes problem with obstacle. As in the previous chapter, the
fundamental idea consists in projecting the Dirichlet boundary conditions onto a Fourier-
based finite-dimensional space FN of dimension N . In Section 4.2.1, we first establish the
well-posedness of the reduced order problem and provide uniform a priori estimates on
the solutions with respect to the obstacle size (Theorem 4.2.1). We also present a conver-
gence result towards the solution of the full order Stokes problem where standard Dirichlet
boundary conditions on the obstacle are considered (Theorem 4.2.5). Finally, as in Chap-
ter 3, we propose two discretization methods based on the fictitious domain approach.
The first method introduced in Section 4.3.1 is a low-order finite element method with
stabilization, while the second method, presented in Section 4.3.2, is an augmented finite
element method, which enables the use of high-order finite elements and partly addresses
the limitations of the fictitious domain method due to the low regularity of the solutions of
the continuous problem.
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In the second part, we extend this method to a fluid-structure interaction framework for
rigid particles immersed in a Stokes fluid. Simulating small particles suspended in a Stokes
fluid (or Navier-Stokes) finds numerous applications: we can mention the case of aerosols
the respiratory system [Kleinstreuer and Zhang, 2003, Kleinstreuer and Zhang, 2010, Tu
et al., 2012], the modeling of red blood cells in blood flow [Polwaththe Gallage et al.,
2012, Ye et al., 2016] and the modeling of concretes [Roussel et al., 2007] or reinforced
plastics [Yashiro et al., 2011], among others. Several numerical approaches have been
reported in the literature, using either fitted or unfitted mesh. In the fitted mesh framework,
typically based on an ALE formalism of the fluid, we can cite [Takashi and Hughes, 1992,
Sarrate et al., 2001] for Stokes equations with inertial term or automatic mesh moving
method [Hu et al., 1992, Feng et al., 1994a, Feng et al., 1994b, Johnson and Tezduyar,
1997]. However, as already discussed, these methods can be cumbersome in the presence
of large displacements and rotations of the rigid structures. To overcome this difficulty,
many immersed type of methods have been developed. We can cite the immersed boundary
method [Feng and Michaelides, 2004, Uhlmann, 2005, Kallemov et al., 2016, Abdol Azis
et al., 2019], the immersed finite element method [Zhang et al., 2004,Liu et al., 2007], the
fictitious domain method [Glowinski et al., 1999b,Glowinski et al., 2001,Veeramani et al.,
2007], the extended finite method [Wagner et al., 2001,Wagner et al., 2003], penalization-
based methods [Angot et al., 1999, Janela et al., 2005], lattice-Boltzmann methods [Ladd,
1994a,Ladd, 1994b,Ladd and Verberg, 2001]. In the case of small particles and a Stokesian
fluid, similarly to the slender body theory developed in 3D, methods based on Stokeslets
can also hold significance. These methods rely on a truncated multipole expansion solution
of the Stokes equations [Weinbaum et al., 1990, Yeo and Maxey, 2010]. In the spirit
of the previous chapters, we present in Section 4.4 a discrete reduced order approach
for simulation of rigid elliptical particles immersed in a two-dimensional Stokesian flow
using the low-order stabilized fictitious domain method introduced in Section 4.3.1 and a
semi-implicit coupling scheme for time-discretization. In the numerical Section 4.5, we
illustrate the theoretical results obtained in the first part and give numerical evidence of the
accuracy of the reduced order model with respect to a fully two-dimensional one computed
either with an ALE/automatic mesh moving method or a fictitious domain method with
Lagrange multlipliers.

4.2 Analysis of the Stokes problem with reduced order boundary condi-
tions

In this section, we adapt the analysis provided in Chapter 3 for the Poisson problem to
the case of Stokes equations. We consider the same geometric setting and notation: the
symbol Ω denotes a fixed bounded smooth domain of R2, ωε is a circular obstacle of size
ε such that Ďωε Ă Ω and Ωε are complementary to ωε in Ω. Using the same notation as in
(3.1.1) adapted to the polar coordinates, we denote, for all functions v : Bωε Ñ R2, by
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vpεq the re-scaled function vpεq : p0, 2πq Ñ R2 defined by

vpεqpθq
def
“ vpεpcospθqex ` sinpθqeyq @θ P p0, 2πq.

We then set p¨, ¨qε, x¨, ¨y´ 1
2
,ε, } ¨}ε, } ¨}´ 1

2
,ε and } ¨} 1

2
,ε as the vector counterparts of the func-

tions introduced in Section 3.2.2. Following the reduced order modeling approach intro-
duced in Chapters 2 and 3, we denote by FN a finite-dimensional space that approximates
the Lagrange multiplier spaceH´ 1

2 pBωεq. In this section, we consider a constrained space
of the N first Fourier modes satisfying no net flow across the interface (see Remark 13
below). In particular, we set

FN
def
“

#

v P L2
0,npBωε

q : vpεqpθq “ a0 `

N
ÿ

k“1

pak cospkθq ` bk sinpkθqq, ak, bk P R2

+

where

L2
0,npBωε

q
def
“

"

v P L2
pBωε

q :

ż

Bωε

v ¨ n´
“ 0

*

.

and n´ is the exterior normal to Bωε. Note that FN is equal to

FN “
␣

v P L2
0,npBωε

q : vpεqpθq “ a0 `

3
ÿ

i“1

aigipθq

`

N
ÿ

k“2

pak cospkθq ` bk sinpkθqq, ai P R, ak, bk P R2
(

(4.2.1)

where

g1pθq
def
“ sinpθqex`cospθqey, g2pθq “ cospθqex´sinpθqey, g3pθq “ sinpθqex´cospθqey

for all θ P p0, 2πq. Similarly to Section 3.2.2, we introduce a Fourier norm } ¨ }F
1
2
,ε

on

H
1
2 pBωεq such that for v P H

1
2 pBωεq,

}v}
F
1
2
,ε

def
“

˜

`

|ξε,c0,r|
2

` |ξε,c0,θ|
2
˘

`

8
ÿ

k“1

p1 ` kq
`

|ξε,ck,r|
2

` |ξε,ck,θ| ` |ξε,sk,r| ` |ξε,sk,θ|
2
˘

¸
1
2

. (4.2.2)

where
#

ξε,jk,r
def
“ F j

k pvpεq ¨ erq, ξε,jk,θ
def
“ F j

k pvpεq ¨ eθq @pk, jq P t0, . . . , Nu ˆ tc, su,

er
def
“ cospθqex ` sinpθqey, eθ

def
“ ´ sinpθqex ` cospθqey,

(4.2.3)
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with the operators F j
k : L2pBωεq Ñ R introduced in (3.2.3). Following the same steps

as in Section 3.2.2, we can prove that the norms } ¨ }F
1
2
,ε

and } ¨ } 1
2
,ε are equivalent with

constants uniformly independent of ε. Furthermore, denoting by Πε
N : L2pBωεq ÞÑ FN

the L2 projector on FN for the inner-product p¨, ¨qε, we have

}Πε
Nv}

F
1
2
,ε

ď }v}
F
1
2
,ε
, }Πε

Nv} 1
2
,ε À }v} 1

2
,ε @v P H

1
2 pBωε

q. (4.2.4)

With respect to the reduced order Poisson problem introduced in (2.2.33), we also make
two additional assumptions. Firstly, for the sake of simplicity, we consider an homoge-
neous right hand side f “ 0. Note, nonetheless, that all the results presented in this
chapter can be easily extended to the case f P L2pΩq and supp f X ωε “ H. Secondly,
as a premise to the fluid-particles coupled problem introduced in Section 4.4, we assume
that the Dirichlet boundary conditions on Bωε write

ub “ vb ` εwbeθ on Bωε, vb P R2, wb P R. (4.2.5)

Let
V

def
“ H1

0 pΩq, Q
def
“ tq P L2

pΩq | q|ωε P L2
0pωε

q, q|Ωε P L2
0pΩε

qu,

be the functional space for the velocity and pressure, respectively, the considered reduced
order Stokes problem is formulated as follows: find puε

N , p
ε
N ,λ

ε
Nq P V ˆ Q ˆ FN such

that
$

’

&

’

%

2pεpuε
Nq, εpvqqΩ ´ ppεN , div vqΩ ´ pλε

N ,vqε “ 0 @v P V ,

pq, div uε
NqΩ “ 0 @q P Q,

pµN ,vqε “ pµN ,vb ` εwbeθqε @µN P FN .

(4.2.6)

Here εpuq
def
“ 1

2

`

∇u ` p∇uqT
˘

is the strain tensor introduced in (2.2.7). In what fol-
lows, we also make use of the Cauchy stress tensor, also introduced in (2.2.7), defined by
σpu, pq

def
“ 2µfεpuq ´ pI3.

Remark 13. The choices above forFN andQ as admissible spaces for the Lagrangian mul-
tipliers and the pressure are justified as follows. The strong formulation of the associated
full order problem is given by

$

’

’

’

&

’

’

’

%

´∆uε
N ` ∇pεN “ 0 in Ωε

Y ωε,

div uε
N “ 0 in Ω,

uε
N “ vb ` εwbeθ on Bωε,

λε
N “

`

σpuε
N , p

ε
Nq

`n`
´ σpuε

N , p
ε
Nq

´n`
˘

on Bωε.

(4.2.7)

where the last equation is proved in Lemma 4.2.22. The pressure can be decomposed as
pεN “ p̂εN ` p̄ε, with p̂εN P Q and p̄εN constant (not necessarily the same value) in Ωε and
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ωε. By inserting this relation into (4.2.7) we get the following expression for uε
N and p̂εN

$

’

&

’

%

´∆uε
N ` ∇p̂εN “ 0 in Ωε

Y ωε,

div uε
N “ 0 in Ω,

uε
N “ vb ` εwbeθ on Bωε

On the other hand, for the Lagrange multiplier we get

λε
N “

`

σpuε
N , p̂

ε
Nq

`n`
´ σpuε

N , p̂
ε
Nq

´n`
˘

´ cn` on Bωε,

with c “ pp̄εq` ´ pp̄εq´. The undetermination of λε with respect to the constant c is then
removed by taking it in L2

0,npBωεq.

4.2.1 Well-posedness

In this section, we study the well-posedness of Problem (4.2.6) and establish the following
theorem.

Theorem 4.2.1. Problem (4.2.6) admits a unique solution puε
N , p

ε
N ,λ

ε
Nq in V ˆQˆFN .

Moreover, the following a priori estimate holds:

}uε
N}1,Ω ` |logpεq|

´ 1
2 }pεN}Ω ` }λε

N}´ 1
2
,ε À |vb| ` ε|wb|. (4.2.8)

Similarly to the results obtained for the reduced order Poisson problem presented in
Theorem 3.3.1, this result states that the velocity and the Lagrange multiplier depend con-
tinuously on the data with a constant uniformly independent of N and ε. On the other
hand, we observe on the pressure norm a dependence in |logpεq|

1
2 as ε Ñ 0. This behavior

is a consequence of Lemma 4.2.3 which itself derives from the asymptotic properties of
the trace operator given by Lemma 3.3.2.

For the proof of Theorem 4.2.1, we need the introduction of two preliminary lemmas
whose proofs are given in the appendix of this chapter (Sections 4.A.2 and 4.A.3, re-
spectively). The first lemma introduces a divergence free continuous lifting in the whole
domain Ω of functions defined in H

1
2 pBωεq X L2

0,npBωεq. It can be seen as the Stokesian
counterpart of Lemma 3.3.3.

Lemma 4.2.2. Let η P H
1
2 pBωεq X L2

0,npBωεq be given, there exists pvεη, q
ε
ηq P V ˆ Q

such that
$

’

&

’

%

´∆vεη ` ∇qεη “ 0 in Ωε
Y ωε,

div vεη “ 0 in Ω,

vεη “ η on Bωε.
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Moreover, the following a priori estimate holds:

}vεη}1,Ω À }η} 1
2
,ε. (4.2.9)

The second lemma is a variant of the surjectivity theorem for the divergence operator.

Lemma 4.2.3. Let q P Q be given, there exists wε
q P V such that

#

div wε
q “ q in Ω,

wε
q “ 0 on Bωε,

and
}wε

q}1,Ω À |logpεq|
1
2 }q}Ω.

To prove Theorem 4.2.1, we use a variation of the BNB (see [Brezzi, 1974] or [Ern and
Guermond, 2004, Theorem 2.34]) specifically designed for twofold saddle point problems.

Theorem 4.2.4. Let Q1 and Q2 be two reflexive Banach spaces, a : X ˆ X Ñ R, b1 :
Q1 ˆ X Ñ R, b2 : Q2 ˆ X Ñ R three continuous bilinear forms, c1 : Q1 Ñ R,
c2 : Q2 Ñ R, d : X Ñ R three continuous linear forms, we consider the twofold saddle
point problem: find pu, λ1, λ2q P X ˆ Q1 ˆ Q2 such that

$

’

’

&

’

’

%

apu, vq ´ b1pλ1, vq ´ b2pλ2, vq “ dpvq, @v P X,

b1pµ1, uq “ c1pµ1q, @µ1 P Q1,

b2pµ2, uq “ c2pµ2q, @µ2 P Q2.

(4.2.10)

Let
Zbi

def
“ tv P X|bipµi, vq “ 0 @µi P Qiu Ă X i “ 1, 2. (4.2.11)

We suppose that there exists β1, β2 ą 0 such that

sup
vPZb2

b1pλ1, vq

}v}X
ě β1}λ1}Q1 @λ1 P Q1,

sup
vPZb1

b2pλ2, vq

}v}X
ě β2}λ2}Q2 @λ2 P Q2,

and that there exists α ą 0

apv, vq ě α}v}X @v P X. (4.2.12)
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Then the Problem (4.2.10) is well posed and we have the following estimates on u, λ1 and
λ2:

}u}X ď α´1
}d} ` β´1

1 p1 ` α´1
}a}q}c1} ` β´1

2 p1 ` α´1
}a}q}c2}, (4.2.13)

and
}λ1}Q1 ď β´1

1 p}d} ` }a}}u}Xq, }λ2}Q2 ď β´1
2 p}d} ` }a}}u}Xq.

The proof of this theorem is given in Section 4.A.4 of the Appendix.

Proof. To prove this result, we will apply Theorem 4.2.4 to Problem (4.2.6). Let us intro-
duce some notations. We notice that Problem (4.2.6) can be written in the following form:
find puε

N , p
ε
N ,λ

ε
Nq P V ˆ Q ˆ FN such that

apuε
N ,vq ´ b1pp

ε
N ,vq ´ b2pλ

ε
N ,vq “ 0 @v P V ,

b1pq,uε
Nq “ 0 @q P Q,

b2pµN ,u
ε
Nq “ cpµNq @µN P FN ,

(4.2.14)

where the bilinear forms a : V ˆ V Ñ R, b1 : Q ˆ V Ñ R, b2 : FN ˆ V Ñ R and the
linear form c : FN Ñ R are given by

apu,vq “ 2pεpuq, εpvqqΩ, b1pq,vq “ pq, div vqΩ, b2pµN ,vq “ pµN ,vqε

cpµNq “ pµN ,vb ` εwbeθqε.
(4.2.15)

First, using Korn inequality and Cauchy-Schwarz inequality, we have that the bilinear
form a is continuous and coercive, with norm }a} and coercivity constant α bounded
independently of N and ε. Similarly, using Cauchy-Schwarz inequality and Lemma 3.3.2,
we can derive the following inequalities for b1 and b2:

#

|b1pp,vq| ď }p}Ω}div v}Ω ď }p}Ω}v}1,Ω,

|b2pµN ,vq| ď }µN}´ 1
2
,ε}v} 1

2
,ε À |logpεq|

1
2 }µN}´ 1

2
,ε}v}1,Ω

(4.2.16)

for all pp,µN ,vq P Q ˆ FN ˆ V . This implies that the bilinear forms b1 and b2 are
continuous and

}b1} À 1, }b2} À |logpεq|
1
2 . (4.2.17)

Furthermore, we have

|c2pµNq| À }µN}´ 1
2
,ε}ub} 1

2
,ε

À }µN}´ 1
2
,εp|vb| ` ε|wb|q @µN P FN ,

(4.2.18)
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which gives the continuity of the linear form c2. We also deduce from (4.2.18) that the
norm }c2} of c2 is bounded by |vb| ` ε|wb| up to multiplicative constant uniformly inde-
pendent of N and ε. Let us now prove the inf-sup conditions by establishing the existence
of β1, β2 ą 0 uniformly independent of N and ε satisfying

$

’

’

’

&

’

’

’

%

sup
vPV ,ΠN

ε pvq“0

b1pq,vq

}v}1,Ω
ě β1|logpεq|

´ 1
2 }q}Ω @q P Q,

sup
vPH1

0 pΩq, div v“0

b2pµN ,vq

}v}1,Ω
ě β2}µN}´ 1

2
,ε @µN P FN .

(4.2.19)

Let q P Q be given. According to Lemma 4.2.3, there exists wε
q P H1

0 pΩq such that

div wε
q “ q in Ω, wε

q “ 0 on Bωε, }wε
q}1,Ω ď β1|logpεq|

1
2 }q}Ω,

with β1 uniformly independent of N and ε. We deduce that

}q}Ω “
pq, div wε

qqΩ

}q}Ω
ď β´1

1 |logpεq|
1
2

pq, div wε
qqΩ

}wε
q}1,Ω

ď β´1
1 |logpεq|

1
2 sup
vPH1

0 pΩq,Πε
N pvq“0

b1pq,vq

}v}1,Ω
,

Let µN P FN be given. For all η P H
1
2 pBωεq, ΠNpηq P H

1
2 pBωεq X L2

0,npBωεq, so
according to Lemma 4.2.2, there exists vεη P H1

0 pΩq such that

vεη “ ΠNpηq on Bωε, div vεη “ 0 in Ω, }vεη}1,Ω À }Πε
Npηq} 1

2
,ε ď β2}η} 1

2
,ε,

with β2 uniformly independent of N and ε. We deduce that

pµN ,ηq´ 1
2
,ε

}η} 1
2
,ε

“
pµN ,v

ε
ηqε

}µN} 1
2
,ε

ď β´1
2

pµN ,v
ε
ηqε

}vεη}1,Ω
ď β´1

2 sup
vPH1

0 pΩq, div v“0

pµN ,vqε

}v}1,Ω
.

We conclude by taking the supremum over η P H
1
2 pBωεq. By Theorem 4.2.4, we deduce

that Problem (4.2.6) is well-posed and that the solution satisfies

}uε
N}1,Ω À β´1

2 p1 ` α´1
}a}qp|vb| ` ε|wb|q À |vb| ` ε|wb|

}pεN}Ω À β´1
1 |logpεq|

1
2 p}a}}uε

N}1,Ωq À |logpεq|
1
2 p|vb| ` ε|wb|q,

}λε
N}´ 1

2
,ε À β´1

2 }a}}uε
N}1,Ω À |vb| ` ε|wb|,

which can be written equivalently as (4.2.1).
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4.2.2 Convergence to the full order model

The objective of this section is to study the behavior of the solution of Problem (4.2.14)
as ε Ñ 0. Specifically, similarly to the convergence result given in Theorem 3.3.4 relative
to the reduced order Poisson problem, we aim to analyze its asymptotic behavior with
respect to the solution of the following full order Stokes problem: find puε, pε,λεq P

V ˆ Q ˆH
´ 1

2
‹ pBωεq such that

$

’

’

&

’

’

%

2pεpuε
q, εpvqqΩ ´ ppε, div vqΩ ´ xλε,vy´ 1

2
,Bωε “ 0 @v P V ,

pq, div uε
qΩ “ 0 @q P Q,

xµ,uε
y´ 1

2
,Bωε “ xµ,vb ` wbeθy´ 1

2
,Bωε @µ P H

´ 1
2

‹ pBωε
q,

(4.2.20)

whereH
´ 1

2
‹ pBωεq is the dual space ofH

1
2 pBωεq XL2

0,npBωεq equipped with the following
norm:

}λ}
‹

´ 1
2
,ε

“ sup
µPH

1
2 pBωεqXL2

0,npBωεq

xλ,µy´ 1
2
,ε

}µ} 1
2
,ε

@λ P H
´ 1

2
‹ pBωε

q.

The convergence result regarding Problem (4.2.14) is given in Theorem 4.2.5. Since in
this chapter, we take f “ 0, the parameter ρ is defined by ρ def

“ dpt0u, BΩq where as in
Chapter 3, dp¨, ¨q is the Euclidean distance of two sets.

Theorem 4.2.5. Let puε, pε,λεq P V ˆQˆH
´ 1

2
‹ pBωεq and let puε

N , p
ε
N ,λ

ε
Nq P V ˆQˆFN

be the solution of (4.2.14) and (4.2.20), respectively. There exists 0 ă ρ̃ ă ρ such that for
all ε P p0, ρ̃q, we have

}uε
N ´ uε

}1,Ω ` ε}ε´1λε
N ´ λε

}
‹

´ 1
2
,ε

` |logpεq|
´ 1

2 }pεN ´ pε}Ω

À p1 ` Nq

ˆ

ε

ρ

˙N`1

p|vb| ` ε|wb|q. (4.2.21)

In the same way as for the proof of the convergence of the Poisson problem we need
two preliminary lemmas. The first lemma is a standard result which gives an expression
of λε

N in terms of the stress jump across Bωε. It is the counterpart of Lemma 3.3.5 adapted
to the Stokes equations.

Lemma 4.2.6. Let puε
N , p

ε
N ,λ

ε
Nq P V ˆ Q ˆ FN be the solution of Problem (4.2.14). We

have inH´ 1
2 pBωεq

λε
N “ ε

`

σpuε
N , p

ε
Nq

`n`
´ σpuε

N , p
ε
Nq

´n`
˘

, (4.2.22)

where n` is the exterior normal vector to BΩε, and σpuε
N , p

ε
Nq` and σpuε

N , p
ε
Nq´ are the

restrictions of σpuε
N , p

ε
Nq to Ωε and ωε, respectively.
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The proof of this lemma is given in Section 4.A.5 of the Appendix. The second lemma
describes the behaviour of the Fourier modes of uε

N on Bωε. As for the previous Lemma,
it can be seen as the adaption of Lemma 3.3.6 to the Stokes equations.

Lemma 4.2.7. Let uε
N P V be the solution of Problem (4.2.14) and let ub be given by

(4.2.5). There exists aεk,r, a
ε
k,θ, b

ε
k,r, b

ε
k,θ P R such that for ε P p0, ρq,

puε
Npεqpθq ´ ubpεqpθqq ¨ er “

ˆ

ε

ρ

˙N`1 8
ÿ

k“N

`

aεk,r cospkθq ` bεk,r sinpkθq
˘

,

puε
Npεqpθq ´ ubpεqpθqq ¨ eθ “

ˆ

ε

ρ

˙N`1 8
ÿ

k“N

`

aεk,θ cospkθq ` bεk,θ sinpkθq
˘

,

(4.2.23)

Moreover, there exists 0 ă ρ̃ ă ρ such that for ε P p0, ρ̃q, the following estimate holds:
˜

8
ÿ

k“N

p1 ` kq
`

|aεk,r|
2

` |aεk,θ|
2

` |bεk,r|
2

` |bεk,θ|
2
˘

¸
1
2

À p1 ` Nq p|vb| ` ε|wb|q.

For clarity, its proof is given in the Section 4.A.6 of the Appendix.

Proof of Theorem 4.2.5. We consider a fixed ε P p0, ρ̃q. Let us note that uε
N ´ uε satisfies

(4.2.2) in Ω with η “ uε
N ´ ub. Therefore, using Lemma 4.2.2 and the ε-equivalence of

the norms } ¨ } 1
2
,ε and } ¨ }F

1
2
,ε

, we get

}uε
N ´ uε

}1,Ω À }uε
N ´ ub} 1

2
,ε À }uε

N ´ ub}
F
1
2
,ε
.

Thus, using Lemma 4.2.7 and the definition of the norm } ¨ }F
1
2
,ε

, we have that there exists
ρ̃ ą 0 such that for ε P p0, ρ̃q,

}uε
N ´ uε

}1,Ω À p1 ` Nq

ˆ

ε

ρ

˙N`1

p|vb| ` ε|wb|q. (4.2.24)

To obtain an estimate for }ε´1λN ´ λε}‹

´ 1
2
,ε

, we notice from the formulation (4.2.14) and

(4.2.20) that puε
N ´ uε, pεN ´ pε, ε´1λε

N ´ λεq satisfies

2pεpuε
N ´ uε

q, εpvqqΩ ´ ppεN ´ pε, div vqΩ ´ xε´1λε
N ´ λε,vy´ 1

2
,ε “ 0 @v P H1

0 pΩq.

By definition of the } ¨ }‹

´ 1
2
,ε

norm,

}ε´1λε
N ´ λε

}
‹

´ 1
2
,ε

“ sup
ηPH

1
2 pBωεqXL2

0,npBωεq

xε´1λε
N ´ λε,ηy´ 1

2
,ε

}η} 1
2
,ε
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For all η P H
1
2 pBωεq X L2

0,npBωεq, taking vεη P H1
0 pΩq as defined in Lemma 4.2.2, we

have
xε´1λε

N ´ λε,ηy´ 1
2
,ε

}η} 1
2
,ε

À
xε´1λε

N ´ λε,vεηy´ 1
2
,ε

}vεη}1,Ω

À sup
vPV , div v“0

xε´1λε
N ´ λε,vy´ 1

2
,ε

}v}1,Ω

À ε´1 sup
vPV , div v“0

2pεpuε
N ´ uεq, εpvqqΩ

}v}1,Ω

Taking the supremum over η P H
1
2 pBωεq XL2

0,npBωεq, we deduce that

}ε´1λε
N ´ λε

}
˚

´ 1
2
,ε

À ε´1
}uε

N ´ uε
}1,Ω,

Similarly, by taking vεpε´pεN
as defined in Lemma 4.3.9, we also have

}pεN ´ pε}Ω À |logpεq|
1
2 }uε

N ´ uε
}1,Ω.

We conclude thanks to (4.2.24) that (4.2.21) holds.

Remark 14. Note that, in the fictitious domain method, as expressed in Lemma 4.2.6 for
the solution of problem (4.2.14), the force and moment transmitted to the structure include
a spurious internal fluid stress. This applies in particular to the solution of (4.2.20). How-
ever, since puε, pεq is solution of the Stokes equation in ωε with rigid body motion on Bωε,
we have

σpuε, pεq´n`
“ p´n` on Bωε.

with p´ constant. We then deduce that
ż

Bωε

σpuε, pεq´n`
“ 0,

ż

Bωε

eθ ¨ σpuε, pεq´n`
“ 0.

such that there is no furious force contributions. In particular for all δr P R2,

|pε´1λε
N ´ σpuε, pεq`n`, δrqBωε | “ |εpε´1λε

N ´ λε, δrqε|

À ε}ε´1λε
N ´ λε

}
˚

´ 1
2
,ε

}δr} 1
2
,ε À p1 ` Nq

ˆ

ε

ρ

˙N`1

p|vb| ` ε|wb|q|δr|,

and for all δθ P R,

|pε´1λε
N ´ σpuε, pεq`n`, εδθeθqBωε | “ |εpε´1λε

N ´ λε, εδθeθqε|

À ε}ε´1λε
N ´ λε

}
˚

´ 1
2
,ε

}δθeθ} 1
2
,ε À

ˆ

ε

ρ

˙N`1

p|vb| ` ε|wb|q|δθ|,

such that the resultant force and moment applied on Bωε are well approximated by ε´1λε
N

as ε Ñ 0.
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4.3 Numerical approximation

This section is devoted to the discretization of Problem (4.2.6). Similarly to the reduced
order Poisson problem introduced in Chapter 3, the reduced order Dirichlet boundary con-
ditions on Bωε do not prevent potential discontinuities of the pressure or the velocity gra-
dient. More precisely, we cannot reach the traditional H1pΩq and H2pΩq regularity for
the pressure and velocity. In particular, proceeding similarly to Section 3.3.3, we could
prove that the maximum regularity for uεN and pεN is H

3
2

´η and H
1
2

´η, respectively, for
η ą 0. Consequently, in Section 4.3.1, we introduce a low-order fictitious domain stabi-
lized finite element method based on continuous piecewise affine approximations, which
is the adaptation of the discrete Problem (3.4.1) to the Stokes equations. Following that,
to address the issue posed by the low regularity of the reduced order Stokes solution, in a
similar manner to what done in Section 3.4.3 for the reduced order Poisson problem, we
present in Section 4.3.2 an augmented high-order divergence-free conforming finite ele-
ment method. This method is based on the inclusion of additional velocity and pressure
singular functions in the finite element space designed to capture the singularities of the
continuous solution.

4.3.1 Low-order stabilized finite element method scheme

In this section, we propose and analyze the stability of a low-order stabilized finite element
method for discretizing Problem (4.2.6). We recall here the definition of the standard
spaces of continuous piecewise affine functions given in the previous chapters:

X1
hpΩq

def
“

␣

v P H1
pΩq | v|K P rP1pKqs

3, @K P ThpΩq
(

,

X1
hpΩq

def
“

␣

v P H1
pΩq | v|K P P1pKq, @K P ThpΩq

(

.

We then introduce the discrete spacesVh andQh for the approximation of the fluid velocity
uε

N and the fluid pressure pεN as follows:

Vh
def
“ X1

hpΩq X V , Qh
def
“ X1

hpΩq X Q.

The Lagrange multiplier space remains unchanged and is still equal to FN . In order to
overcome the instability of the saddle point problem due to the choice of the Lagrange
multiplier space FN , we introduce the following stabilization term (see also [Barrenechea
and González, 2018]):

sλhpµN ,λNq
def
“ γλ

ˆ

h

ε

˙

ε´1
pµN ,λNqε, @pµN ,λNq P FN ˆ FN ,

where γλ ą 0 is a user-defined dimensionless parameter uniformly independent of h, N
and ε. Furthermore, the following Brezzi-Pitkaranta stabilization [Brezzi and Pitkäranta,
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1984] is considered to overcome the lack of inf-sup compatibility between the velocity
and pressure spaces Vh and Qh:

sphpqh, phq
def
“ γp|logpεq|h2p∇qh,∇phqΩ, @pqh, phq P Qh,

where γp ą 0 is a user-defined dimensionless parameter uniformly independent of h, N
and ε. The proposed stabilized finite element approximation of Problem (4.4.3) reads as
follows: find puε

N,h, p
ε
N,h,λ

ε
N,hq P Vh ˆ Qh ˆ FN such that

apuε
N,h,vhq ´ b1ppεN,h,vhq ´ b2pλ

ε
N,h,vhq “ 0 @vh P Vh,

b2pqh, phq ` sphpqh, p
ε
N,hq “ 0 @qh P Qh

b1pµN ,u
ε
N,hq ` sλhpµN ,λ

ε
N,hq “ pµN ,vb ` wbeθqε @µN P FN

(4.3.1)

where the bilinear forms a, b1 and b2 are given in (4.2.15).

4.3.1.1 Interpolation operators

The minimum regularity required for the Scott-Zhang operator introduced in Propos-
tion 3.4.1 is H

1
2 pΩq. However, due to the potential discontinuity at the interface Bωε,

the maximum regularity of the pressure is H
1
2

´ηpΩq. Consequently, we consider quasi-
interpolation operators designed for the approximation of non smooth functions, (see
e.g. [Ern and Guermond, 2021, Chapitre 22]). Let Π̃h : H

1
2

´ηpΩq Ñ X1
hpΩq be a given

quasi-interpolation operator, it satisfies

}q ´ Π̃hq}Ω À h
1
2

´η
}q} 1

2
´η,Ω, h}∇pΠ̃hqq}Ω À h

1
2

´η
}q} 1

2
´η,Ω. (4.3.2)

The first estimate is a consequence of the approximation properties of quasi-interpolators
(see, e.g., [Ern and Guermond, 2021, Theorem 22.6]) while the second is a consequence of
an inverse inequality (see, e.g, [Corti et al., 2023, Lemma 4.3]). However, the extension of
Π̃h to a quasi-interpolator Πh with value in Qh is a bit technical due to the use of unfitted
meshes. Hence, we make the assumption without proof that there exists Πh : Q Ñ Qh

satisfying (4.3.2).

4.3.1.2 Preliminary results

We start by introducing a well-designed interpolation operator that will be used to establish
the inf-sup condition, see [Corti et al., 2023, Proposition 4.5].

Proposition 4.3.1. There exists a linear operator Π0
h : V Ñ Vh such that for every

v P V , we have

Π0
hpvq “ 0 on Bωε, (4.3.3)

Π0
hpvq “ 0 if v “ 0 on BΩ. (4.3.4)
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Moreover, for each v P V such that v “ 0 on Bωε, it holds

}v ´ Π0
hv}1,Ω À h}v}1,Ω, (4.3.5)

}Π0
hv}1,Ω À }v}1,Ω. (4.3.6)

We now introduce two preliminary lemmas corresponding to the discrete counterpart
of Lemma 4.2.2 and Lemma 4.2.3 respectively.

Lemma 4.3.1. Consider λN P FN be given. There exists vελN ,h P Vh such that

3

4
}λN}

2
´ 1

2
,ε

ď ´pλN ,v
ε
λN ,hqε ` C

ˆ

h

ε

˙

ε´1
}λN}

2
ε, }vελN ,h}1,Ω À }λN}´ 1

2
,ε,

with C uniformly independent of h, N and ε. Moreover, the following estimate holds:

|pqh, div v
ε
λN ,hqΩ| À h|logpεq|

1
2 }∇qh}Ω}λN}´ 1

2
,ε @qh P Qh.

Proof of Lemma 4.3.1. Let λN P FN be given. According to Lemma 3.4.3, there exists
‹

vελN ,h such that

3

4
}λN}

2
´ 1

2
,ε

ď ´pλN ,
‹

vελN ,hqε ` C

ˆ

h

ε

˙

ε´1
}λN}

2
ε, (4.3.7)

}
‹

vελN ,h}1,Ω À }λN}´ 1
2
,ε. (4.3.8)

with C uniformly independent of h, N and ε. Furthermore, according to Lemma 4.A.2,
there exists ‹

wε
λN

P H1
0 pΩq such that

div
‹

wε
λN

“ div
‹

vλN ,h in Ω, (4.3.9)
‹

wε
λN

“ 0 on Bωε, (4.3.10)

}
‹

wε
λN

}1,Ω À |logpεq|
1
2 }div

‹

vελN ,h}Ω. (4.3.11)

By combining (4.3.8) and (4.3.11), we derive

}
‹

wε
λN

}1,Ω À |logpεq|
1
2 }div

‹

vελN ,h}Ω À |logpεq|
1
2 }

‹

vελN ,h}1,Ω,

À |logpεq|
1
2 }λN}´ 1

2
,ε.

(4.3.12)

Subsequently, we set vελN ,h
def
“

‹

vελN ,h ´Π0
h

‹

wε
λN

. Considering (4.3.3) and (4.3.10), it holds

vελN ,h “
‹

vελN ,h on Bωε.
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Moreover, based on (4.3.6), (4.3.8) and (4.3.12), we have

}vελN ,h}1,Ω À }
‹

vελN ,h}1,Ω ` }Π0
h

‹

wε
λN ,h} À }λN}´ 1

2
,ε ` |logpεq|

1
2 }λN}´ 1

2
,ε,

À |logpεq|
1
2 }λN}´ 1

2
,ε.

Finally, by using successively (4.3.9), the properties of Π0
h (Lemma 4.3.1) and estimate

(4.3.12), for qh P Qh,

pqh, div v
ε
λN ,hqΩ “ pqh, div p

‹

vελN ,h ´ Π0
h

‹

wε
λN ,hqqΩ,

“ pqh, div p
‹

wε
λN ,h ´ Π0

h
‹

wε
λN ,hqqΩ “ ´p∇qh,

‹

wε
λN ,h ´ Π0

h
‹

wε
λN ,hqΩ,

À h}∇qh}Ω}wε
λN ,h}Ω À h|logpεq|

1
2 }∇qh}Ω}λN}´ 1

2
,ε.

This concludes the proof.

Lemma 4.3.2. Let qh P Qh be given. There exists wε
qh,h

such that

3

4
}qh}

2
Ω ď ´pqh, div w

ε
qh,h

qΩ ` Ch2|logpεq|}∇qh}
2
Ω, pµN ,w

ε
qh,h

qε “ 0 @µN P FN ,

with C uniformly independent of h, N and ε. Moreover, the following estimate holds:

}wε
qh,h

}1,Ω À |logpεq|
1
2 }qh}Ω.

Proof of Lemma 4.3.2. Let qh P Qh be given, since qh P Q, according to Lemma 4.2.3
there exists wε

qh
‰ 0 P H1

0 pΩq such that

div wε
qh

“ ´qh in Ω, wε
qh

“ 0 on Bωε,

}wε
qh

}1,Ω À |logpεq|
1
2 }qh}Ω.

By using the properties of Π0
h (see Lemma 4.3.1) and the previous estimates,

}qh}
2
Ω ` pqh, div pΠ0

hw
ε
qh

qqΩ “ ´pqh, divpwε
qh

´ Π0
hw

ε
qh

qqΩ “ p∇qh,wε
qh

´ Π0
hw

ε
qh

qΩ

À h}∇qh}Ω}wε
qh

}1,Ω À h|logpεq|
1
2 }∇qh}Ω}qh}Ω ď

1

4
}qh}

2
Ω ` Ch2|logpεq|}∇qh}

2
Ω.

with C uniformly independent of h, N and ε. Setting wε
qh,h

“ Π0
hw

ε
qh

concludes the
proof.
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4.3.1.3 Stability

To analyse the stability of Problem (4.3.1), we introduce the following (augmented) bilin-
ear formBh : pVhˆQhˆFNqˆpVhˆQhˆFNq defined for all puh, ph,λNq, pvh, qh,µNq P

Vh ˆ Qh ˆ FN by

Bhppuh, ph,λNq, pvh, qh,µNqq “ apuh,vhq ´ b1pλN ,vhq ´ b2pph,vhq

` b1pµN ,uhq ` b2pqh,uhq ` sλhpµN ,λNq ` sphpph, qhq. (4.3.13)

Problem (4.3.1) is equivalent to find puε
N,h, p

ε
N,h,λ

ε
N,hq P Vh ˆ Qh ˆ FN such that

Bhppuε
N,h, p

ε
h,N ,λ

ε
N,hq, pvh, qh,µNqq “ pµN ,vb ` εwbeθqε

for all pvh, qh,µNq P Vh ˆQh ˆFN . For the analysis of the augmented bilinear form, we
introduce the following norm:

}pvh, qh,µNq}ε
def
“

`

}vh}
2
1,Ω ` |logpεq|

´1
}ph}

2
Ω ` }µN}

2
´ 1

2
,ε

` h2|logpεq|}∇ph}
2
Ω `

ˆ

h

ε

˙

ε´1
}µN}

2
ε

˘
1
2

for all pvh, qh,µNq P Vh ˆ Qh ˆ FN . The stability of the stabilized problem is addressed
in the following lemma.

Lemma 4.3.3. There exists a constant β ą 0 uniformly independent of h, N and ε such
that

sup
pvh,qh,µN qPVhˆQhˆFN

Bhppuh, ph,λNq, pvh, qh,µNqq

}puh, ph,λNq}ε}pvh, qh,µNq}ε
ě β

for all puh, ph,λNq P Vh ˆ Qh ˆ FN .

Proof of Lemma 4.3.3. Consider puh, ph,λNq P Vh ˆ Qh ˆ FN be given. First, taking
pvh, qh,µNq “ puh, qh,λNq in the definition of Bh, we observe that

Bh ppuh, ph,λNq, puh, ph,λNqq “

2}εpuhq}
2
Ω ` γp|logpεq|h2}∇ph}

2
Ω ` γλ

ˆ

h

ε

˙

ε´1
}λN}

2
ε. (4.3.14)

According to Lemma 4.3.1, there exists vελN ,h, and C1, D1 ą 0 uniformly independent of
h, N and ε such that

3

4
}λN}

2
´ 1

2
,ε

ď ´pλN ,v
ε
λN ,hqε ` C1

ˆ

h

ε

˙

ε´1
}λN}

2
ε, (4.3.15)

|pph, div v
ε
λN ,hqΩ| ď D1h

2
|logpεq|}∇ph}

2
Ω `

1

4
}λN}

2, (4.3.16)

}vελN ,h}1,Ω À }λN}´ 1
2
,ε. (4.3.17)
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From (4.3.17), we deduce that there exists B1 ą 0 uniformly independent of h, N and ε
such that

2
`

εpuhq, εpvελN ,hq
˘

Ω
ď B1}uh}

2
1,Ω `

1

4
}λ}

2
´ 1

2
,ε
. (4.3.18)

Combining (4.3.15), (4.3.16) and (4.3.18), and taking pvh, qh,µNq “ pvελN ,h, 0,0q in the
definition of Bh, we get

Bhppuh, ph,λNq, pvελN ,h, 0,0qq ě

1

4
}λN}

2
´ 1

2
,ε

´ B1}uh}
2
1,Ω ´ C1p

h

ε
qε´1

}λN}
2
´ 1

2
,ε

´ D1h
2
|logpεq|}∇ph}

2
Ω. (4.3.19)

Similarly, according to Lemma 4.3.2, there exists wε
ph,h

and D2 ą 0 uniformly indepen-
dent of h, N and ε such that

3

4
}ph}

2
Ω ď ´pph, div w

ε
ph,h

qΩ ` D2h
2
|logpεq|}∇ph}

2
Ω, (4.3.20)

pµN ,w
ε
ph,h

qε “ 0 @µN P FN , (4.3.21)

}wε
ph,h

}1,Ω À |logpεq|
1
2 }ph}Ω. (4.3.22)

From (4.3.22), we deduce that there exists B2 ą 0 uniformly independent of h, N and ε
such that

2
`

εpuhq, εpwε
ph,h

q
˘

Ω
ď B2|logpεq|}uh}

2
1,Ω `

1

4
}ph}

2
Ω. (4.3.23)

Combining (4.3.20), (4.3.21) and (4.3.23), and taking pvh, qh,µNq “ pwε
ph,h

, 0,0q in the
definition of Bh, we get

Bppuh, ph,λNq, pwε
ph,h

, 0,0qq ě

1

2
}ph}

2
Ω ´ B2|logpεq|}uh}

2
1,Ω ´ D2h

2
| logpεq|}∇p}

2
Ω. (4.3.24)

Taking finally pvh, qh,µNq “ puh ` αλv
ε
λN ,h ` |logpεq|´1αpw

ε
ph,h

, ph,λNq as tests func-
tions in Bh, by gathering (4.3.14), (4.3.19) and (4.3.24), we obtain

Bppuh, ph,λNq, puh`αλv
ε
λN ,h`|logpεq|

´1αpw
ε
ph,h

, ph,λNq ě pα´αλB1´αpB2q}uh}
2
1,Ω

` |logpεq|
´1αp

2
}ph}

2
Ω `

αλ

4
}λN}

2
´ 1

2
,ε

` pγλ ´ αλC1q

ˆ

h

ε

˙

ε´1
}λN}

2
ε

` pγp ´ αλD1 ´ |logpεq|
´1αpD2q|logpεq|h2}∇ph}

2
Ω. (4.3.25)

where α is the positive coercivity constant of the bilinear form a. Choosing αp and αλ

appropriately such that the following inequalities hold true

α ´ αλB1 ´ αpB2 ą 0, γλ ´ αλC1 ą 0, γp ´ αλD1 ´ |logpεmaxq|
´1αpD2 ą 0,
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we get the desired result. Finally, using the triangle inequality and the a priori estimates
for vελN ,h and wε

ph,h
given in (4.3.17) and (4.3.22), respectively, we obtain

}puh ` αλv
ε
λN ,h ` |logpεq|

´1αpw
ε
ph,h

, ph,λNq}ε

ď }puh, ph,λNq}ε ` αλC3}λN}´ 1
2
,ε ` |logpεq|

´ 1
2αpD3}ph}Ω

ď CM}puh, ph,λNq}ε

(4.3.26)

where C3, D3 ą 0 are constant uniformly independent of h, N and ε and

CM
def
“ 1 ` αλC3 ` αpD3.

Thus dividing (4.3.26) by (4.3.25), we get, with vh “ uh `αλw
ε
λN ,h ` |logpεq|´1αpw

ε
qh,h

,
qh “ ph and µN “ λN ,

Bhppuh, ph,λNq, pvh, qh,µNqq

}pvh, qh,µNq}ε
ě
Cm

CM

}puh, ph,λNq}ε,

which implies that

sup
pvh,qh,µqPVhˆQhˆFN

Bhppuh, ph,λNq, pvh, qh,µNqq

}pvh, qh,µNq}ε
ě
Cm

CM

}puh, ph,λNq}ε

for all puh, ph,λNq P Vh ˆ Qh ˆ FN , leading to the desired result.

4.3.1.4 Consistency and convergence

To conclude the analysis of the stabilized formulation, we address the consistency of the
method. Since λε

N,h ´ λε
N P FN , we can apply Lemma 4.3.3 to have an estimate of

puε
N,h ´ ΠZ,1

h puε
Nq, pεN,h ´ ΠhppεNq,λε

N,h ´ λε
Nq. Precisely, we have

}puε
N,h ´ ΠZ,1

h puε
Nq, pεN,h ´ ΠhppεNq,λε

N,h ´ λε
Nq}ε À

sup
pvh,qh,µN qPVhˆQhˆFN

Bhppuε
N,h ´ ΠZ,1

h puε
Nq, pεN,h ´ ΠhppεN,hq,λε

N,h ´ λε
Nq, pvh, qh,µNqq

}pvh, qh,µNq}ε
.

Let us introduce the approximation errors ep
def
“ pεN ´ Πhp

ε
N and eu “ uε

N ´ ΠZ,1
h u

ε
N .

By combining the equations of the continuous problem (4.2.14) and the discrete problem
(4.3.1), the following relation holds:

Bhppuε
N,h ´ ΠZ,1

h puε
Nq, pεN,h ´ ΠhppεNq,λε

N,h ´ λε
Nq, pvh, qh,µNqq “ apeu,vhq

´ b1pep,vhq ` b1pqh, euq ´ sphpqh,ΠhppεNqq ` b2pµN , euq ´ sλhpµN ,λ
ε
N,hq
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for all pvh, qh,µNq P Vh ˆ Qh ˆ FN . By using the continuity of the bilinear forms a, b1,
b2 (with the norm established in (4.2.17)), sλh and sph, we can further establish:

|apeu,vhq ´ b1pep,vhq ` b1pqh, euq ` b2pµN , euq ´ sphpqh,ΠhppεNqq ´ sλhpµN ,λ
ε
N,hq|

}pvh, qh,µNq}ε

À | logpεq|
1
2 }eu}1,Ω ` }ep}Ω ` |logpεq|

1
2h}∇ΠhppεNq}Ω ` ε´ 1

2

ˆ

h

ε

˙
1
2

}λε
N}ε,

for all pvh, qh,µNq P Vh ˆ Qh ˆ FN . Using the classical error decomposition, we finally
derive

}puε
N ´ uε

N,h, p
ε
N ´ pεN,h,λ

ε
N ´ λε

N,hq}ε

À }eu, ep, 0}ε ` }puε
N,h ´ ΠZ,1

h puε
Nq, pεN,h ´ ΠhppεNq,λε

N,h ´ λε
Nq}ε

À | logpεq|
1
2 }eεu}1,Ω ` }eεp}1,Ω ` |logpεq|

1
2h}∇ΠhppεNq}Ω ` ε´ 1

2

ˆ

h

ε

˙
1
2

}λε
N}ε.

(4.3.27)

In conclusion, according to Proposition 3.4.1 and the assumption (4.3.2) made on the
quasi-interpolation operator Πh, the following a priori convergence estimates hold:

}puε
N ´ uε

N,h, p
ε
N ´ pεN,h,λ

ε
N ´ λε

N,hq}ε

À | logpεq|
1
2h

1
2

´η
}uε

N} 3
2

´η,Ω ` |logpεq|
1
2h

1
2

´η
}pεN} 1

2
´η,Ω ` ε´ 1

2

ˆ

h

ε

˙
1
2

}λε
N}ε. (4.3.28)

Let us observe that similarly to the stabilized fictitious domain finite element method intro-
duced for the Poisson case in Section 3.4.2, the stability of Problem 4.3.1 is independent of
the ratio h{ε and this way does not suffer from any restriction when ε is small with respect
to h. On the other hand, proceeding in a similar way as in Remark 10, we can show that,
at least for some specific boundary conditions on Bωε and exterior domain Ωε, we have

}uε
N} 3

2
´η,Ω „

1

εη´ 1
2

, }pεN} 1
2

´η,Ω „
1

εη´ 1
2

.

Consequently, the convergence error (4.3.28) behaves as h{ε which can be can an issue
for small obstacles. To overcome the limitations of the low-order stabilized finite element
method, we propose an improvement of the approximation method in the next section.

4.3.2 Augmented finite element method

The previous section highlights that the numerical error of classical stabilized low-order
finite elements behaves as h{ε and subsequently this error can be large for a small ratio
between the size of the obstacle and the size of the mesh. Additionally, as expected, the
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a priori estimate (4.3.28) is sub-optimal due to the discontinuity of the velocity gradient
and pressure fields across the immersed interface. In this section, we will follow a similar
approach as in Section 3.4.3 for the Poisson case. We propose and analyze an augmented
finite element method that aims at reducing the negative impact of small obstacle size
on numerical error. The key ingredient of our method is the incorporation of singular
functions into the finite element basis for the velocity and pressure approximation.

4.3.2.1 Definition of the augmented finite element space

One important aspect of the augmented finite element method we propose in this section
is to properly manage the interaction between the basis functions of the polynomial space
and the singular enrichment functions. In particular, for standard spaces of continuous
piecewise polynomial functions, the divergence-free condition is generally fulfilled only
in a weak sense, formally, the discrete velocity uh satisfy

pqh, div uhq “ 0

for all qh in the discrete approximation space, which does not guarantee that this condition
would still hold for qh a non-polynomial function. Subsequently, to avoid perturbing the
inf-sup conditions on the polynomial approximation spaces, instead of considering the
Lagrange finite element method for the approximation of the velocity and pressure space,
We consider an inf sup stable conforming element pair that satisfies V k

h Ă V , Qk´1
h Ă Q

and div V k
h Ă Qk´1

h . In particular if pqh, div uhq “ 0 @qh P Qk´1
h then div uh “ 0. We

also assume that for pu, pq P HkpΩq X V ˆ Hk´1pΩq X Q the following estimates hold:

inf
qhPQk´1

h

}q ´ qh}Ω À hk´1
}q}k,Ω, inf

uhPV k
h

}u´ uh}1,Ω À hk}u}k`1,Ω. (4.3.29)

See for example [Guzmán and Neilan, 2014] for the construction of a finite element pair
V k

h ˆ Qk´1
h satisfying such assumptions with k “ 2, V “ H1

0 pΩq and Q “ L2
0pΩq. Note

that due to time constraints, this method has not been tested in the numerical section, but
we hope to provide numerical results shortly.

In contrast to the Poisson case described in Section 3.4.3, the low regularity of the
solution is also due to the discontinuity of the pressure across Bωε. Consequently, we
need to enrich both discrete spaces V k

h and Qk´1
h to reach the optimal convergence of

the finite element method. Moreover, due to the pressures added in the approximation
space Qk´1

h , it also comes necessary to enrich the velocity space with functions called
supremizers, as they make possible the satisfaction of the inf-sup condition. From the
results of Section 4.2.2, we can write an explicit solution of uε

N as follows:

uε
N “ uε

N,S ` uε,1
N,R ` uε,2

N,R (4.3.30)
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with

uε
N,S “

N
ÿ

j“0

2
ÿ

l“1

aul,jϕ
ε,c
l,j ` bul,jϕ

ε,s
l,j , uε

N,R “ uε,1
N,R ` uε,2

N,R, (4.3.31)

where the expressions of the coefficients aul,j , b
u
l,j , the singular functions ϕε,c

l,j , ϕε,s
l,j and the

regular function uε,1
N,R are given in Section 4.A.7.1. Similarly,

pεN “ pεN,S ` pε,1N,R ` pε,2N,R (4.3.32)

with

pεN,S “

N
ÿ

j“0

apjφ
ε,c
j ` bpjφ

ε,s
j , pεN,R “ pε,1N,R ` pε,2N,R,

where the expressions of the coefficients apj , bpj , the singular functions φε,c
j , φε,s

j and the
regular functions pε,1N,R are given in Section 4.A.7.2. As for the pair pu2,ε

N,R, p
2,ε
N,Rq, it is the

unique solution of the Stokes equation in ωρ with boundary condition

u2,ε
N,R “ uε

N ´ Πρ
N`1pu

ε
N ¨ eθqeθ ´ Πρ

N`1pu
ε
N ¨ erqer on Bωρ,

where for N ě 0, Πρ
N is the counterpart of Πε

N for ε “ ρ. We now introduce χ a radial
cut-off C8 function satisfying

χprq
def
“

$

’

&

’

%

1 @r ď
1

2
ρ,

0 @r ą
3

4
ρ.

A natural choice for enrichment functions would be to take χϕε,m
l,j . However, as for

the polynomial approximation space, to prove the inf-sup condition of the discrete for-
mulation, it is convenient to have divergence-free enrichment functions. To this pur-
pose, we introduce the stream functions associated with ϕε,m

l,j denoted by ψε,m
l,j such that

ψε,m
l,j P H2pΩq X L2

0pΩq, see Section 4.A.8. We then take as enrichment functions for
the velocity approximation space ϕ̃ε,m

l,j “ curl pχψε,m
l,j q. For pressure, we consider the

functions φ̃ε,m
l,j “ χφε,m

l,j . Furthermore, to derive a uniformly independent inf-sup con-
dition in h, N and ε, we also introduce some supremizers for the added pressures. To
this purpose, we consider the following problem for a given pressure φ̃ε,m

j P L2pΩq: find
pς̃ε,mj , γ̃ε,mj q P V ˆ Q such that

$

’

’

’

&

’

’

’

%

´∆ς̃ε,mj ` ∇γ̃ε,mj “ 0 in Ωε,

´∆ς̃ε,mj ` ∇γ̃ε,mj “ 0 in ωε,

div ς̃ε,mj “ φ̃ε,m
j in Ωε,

ς̃ε,mj “ 0 on Bωε.

(4.3.33)
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We then consider the augmented finite element space V k
N,h and Qk

N,h defined by
#

V k
N,h “V k

h Y span tϕ̃ε,m
l,j , ς̃

ε,m
j u,

Qk´1
N,h “Qk´1

h Y span tφ̃ε,m
j u.

The discrete formulation of the augmented finite element method writes: find
pũε

N,h, p̃
ε
N,h, λ̃

ε
N,hq P FN P V k

N,h ˆ Qk´1
N,h

apũε
N,h, ṽhq ´ b1pp̃

ε
N,h, ṽhq ´ b2pλ̃

ε
N,h, ṽhq “ 0 @ṽh P V k

N,h

b1pq̃h, ũ
ε
N,hq “ 0 @q̃h P Qk´1

N,h

b2pµN , ũ
ε
N,hq “ cpµNq @µN P FN

(4.3.34)

where the definition of the bilinear and linear forms a, b1, b2 and c are given in (4.2.15).

4.3.2.2 Inf-Sup stability

In this subsection, we deal with the inf-sup condition for the augmented finite element
space. As in the case of the continuous case, we consider a variant of the BNB theorem
specifically designed for twofold saddle point problems.

Theorem 4.3.4. Let Xh be a subspace of X , Qh,1 a subspace of Q1 and Qh,2 a subspace
of Q2. Assume that Qh,1 and Qh,2 are finite dimensional and consider the approximate
problem: find puh, λh,1, λh,2q P Xh ˆ Qh,1 ˆ Qh,2 such that

apuh, vhq ´ b1pλh,1, vhq ´ b2pλh,2, vhq “ dpvq @vh P Xh,

b1pµh,1, uhq “ c1pµh,1q @µh,1 P Qh,1,

b2pµh,2, uhq “ c2pµh,2q @µh,2 P Qh,2.

(4.3.35)

Let
Zh,bi

def
“ tv P Xh | bipµh,i, vhq “ 0 @µh,iu Ă Xh i “ 1, 2.

We suppose that there exists βh,1 ą 0 such that for all λh,1 P Qh,1,

sup
vhPZh,b2

b1pλh,1, vhq

}vh}X
ě βh,1}λh,1}Q1

and that there exists βh,2 ą 0 such that for all λh,2 P Qh,2,

sup
vhPZh,b1

b2pλh,2, vhq

}vh}X
ě βh,2}λh,2}Q2 .
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Then the Problem (4.3.35) is well posed and satisfies the estimates

}u ´ uh}X ďa1h inf
vhPXh

}u ´ vh}X

` a2h inf
µh,1PQh,1

}λ1 ´ µh,1}Q1 ` a3h inf
µh,2PQh,2

}λ2 ´ µh,2}Q2 .

}λ1 ´ λh,1}Q1 ďb1h inf
vhPXh

}u ´ vh}X

` b2h inf
µh,1PQh,1

}λ1 ´ µh,1}Q1 ` b3h inf
µh,2PQh,2

}λ2 ´ µh,2}Q2 .

}λ2 ´ λh,2}Q1 ďc1h inf
vhPXh

}u ´ vh}X`

c2h inf
µh,1PQh,1

}λ1 ´ µh,1}Q1 ` c3h inf
µh,2PQh,2

}λ2 ´ µh,2}Q2 .

with a1h “

ˆ

1 `
}a}

α

˙ˆ

1 `
}b1}

β1,h
`

}b2}

β2,h

˙

, a2h “
}b1}

α
ifZh,b1 Ć Zb1 , a2h “ 0 otherwise,

a3h “
}b2}

α
if Zh,b2 Ć Zb2 , a3h “ 0 otherwise, b1h “ a1h

}a}

βh,1
, b2h “ 1 `

}b1}

βh,1
` a2h

}a}

βh,1
,

b3h “ a3h
}a}

βh,1
, c1h “ a1h

}a}

βh,2
, c2h “ a2h

}a}

βh,2
, c3h “ 1 `

}b2}

βh,2
` a3h

}a}

βh,2
.

The proof of this theorem is given in Section 4.A.9. We now introduce two preliminary
lemmas corresponding to the discrete counterpart of Lemma 4.2.2 and Lemma 4.2.3 for the
augmented finite element method. Their proofs are given in Sections 4.A.10 and 4.A.11
of the appendix, respectively.

Lemma 4.3.5. Let η P H
1
2 pBωεq be given, there exists ṽεη P V k

N,h and 0 ă ρ̃ ă ρ such
that for ε P p0, ρ̃q,

pµN , ṽ
ε
ηqε “ pµN ,ηqε @µN P FN , }ṽεη}1,Ω À }η} 1

2
,ε.

Moreover, for any q̃h P Qk´1
N,h ,

pq̃h, div ṽ
ε
ηqΩ “ 0.

Lemma 4.3.6. Let q̃h P Qk´1
N,h be given, there exists wε

q̃h
P V k

N,h such that

pq̃h, div w̃
ε
q̃h

qΩ “ }q̃h}
2
Ω, }w̃ε

q̃h
}1,Ω À |logpεq|

1
2 }q̃h}Ω.

Moreover, for any µN P FN ,
pµN , w̃

ε
q̃h

q “ 0.
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The inf-sup condition for Problem (4.3.34) is given in the following lemma.

Lemma 4.3.7. There exists β1, β2 ą 0 uniformly independent of h,N and ε and 0 ă ρ ă ρ̃
such that for all ε P p0, ρ̃q,

sup
ṽhPV k

N,h, b2pµN ,ṽhq“0

b1pp̃h, ṽhq

}ṽh}1,Ω
ě β1|logpεq|

´ 1
2 }p̃h}Ω @p̃h P Qk

N,h,

sup
ṽhPV k

N,h, b1pq̃h,ṽhq“0

b2pλN , ṽhq

}ṽh}1,Ω
ě β2}λN}´ 1

2
,ε @λN P FN .

Proof of Lemma 4.3.7. We consider q̃h P Qk´1
N,h be given. According to Lemma 4.3.6, there

exists w̃ε
q̃h

P V k
N,h and β1 ą 0 uniformly independent of h, N and ε such that

pq̃h, div w̃
ε
q̃h

q “ }q̃h}
2
Ω, }w̃ε

q̃h
}1,Ω ď β1|logpεq|

1
2 }q̃h}Ω,

and
pµN , w̃q̃hq “ 0 @µN P FN .

We deduce that

}q̃h}Ω “
pq̃h, div w̃q̃hqΩ

}q̃h}Ω
ď β´1

1 |logpεq|
1
2

pq̃h, div w̃q̃hq

}w̃q̃h}Ω

ď β´1
1 |logpεq|

1
2 sup
ṽhPV k

N,h, b2pµN ,ṽhqε“0

b1pq̃h, div ṽhq

}ṽh}1,Ω

We consider λN P FN be given. According to Lemma 4.3.5, for any η P H
1
2 pBωεq, there

exists ṽεη P V k
N,h and β2 ą 0 uniformly independent of h, N and ε such that

pλN , ṽ
ε
ηqε “ pλN ,ηqε, }ṽεη}1,Ω ď β2}η} 1

2
,ε,

and
pq̃h, div ṽ

ε
ηqΩ “ 0 @q̃h P Qk´1

N,h .

We deduce that for any η P H
1
2 pBωεq,

pλN ,ηqε

}η} 1
2
,ε

“
pλN , ṽ

ε
ηqε

}η} 1
2
,ε

À β2
pλN , ṽ

ε
ηqε

}ṽεη} 1
2
,ε

À β´1
2 sup

ṽhPV k
N,h, b1pq̃h,ṽhq“0

b2pλN , ṽhq

}ṽh}1,Ω

We conclude taking the supremum over η P H
1
2 pBωεq. This concludes the proof.
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4.3.2.3 Approximation properties and convergence

To conclude this section, we give an estimate for the approximation error for the aug-
mented finite element method.

Theorem 4.3.8. Let k ě 1. Let puε
N , p

ε
N ,λ

ε
Nq be solution of Problem (4.4.3) and

pũε
N,h, p̃

ε
N,h, λ̃

ε
N,hq be solution of Problem (4.3.1). There exists 0 ă ρ̃ ă ρ such that

for ε P p0, ρ̃q,

}uε
N ´ ũε

N,h}1,Ω ` |logpεq|
´ 1

2 }pεN ´ p̃εN,h}Ω ` }λ̃ε
N,h ´ λε

N}´ 1
2
,ε

À |logpεq|
1
2hkp|vb| ` ε|wb|q

We introduce a preliminary lemma providing an a priori estimate of the trace of uε
N,S

on Bωρ in terms of vb and wb. The proof of this Lemma is given in the Section 4.A.12 of
the Appendix.

Lemma 4.3.9. Let uε
N,S defined by (4.3.31), there exists 0 ă ρ̃ ă ρ such that for all

ε P p0, ρ̃q,
}uε

N,S} 1
2
,Bωρ À |vb| ` ε|wb|.

Proof of Theorem 4.3.8. Since for all j ě 0, l P t1, 2u and m P tc, su, ϕ̃ε,m
j,l P H1

0 pΩq,
the enrichment of the space V k

N,h preserves the coercivity condition. Moreover, accord-
ing to Lemma 4.3.7, the inf-sup conditions of Theorem 4.3.4 is satisfied for the spaces
V k

N,h{Qk´1
N,h and V k

N,h{FN with β1,h “ |logpεq|´ 1
2β1 and β2,h “ β2. Moreover, the norm

}a} and the coercivity constant α of a are bounded independently of h, N and ε, and the
norm of b1 and b2 are bounded by (4.2.17). So, appyling Theorem 4.3.4, we deduce that
there exists ρ̃1 ą 0 such that for ε P p0, ρ̃1q,

}uε
N ´ ũε

N,h}1,Ω ` |logpεq|
´ 1

2 }pεN ´ p̃εN,h}Ω ` }λε
N ´ λ̃ε

N,h}´ 1
2
,ε

À |logpεq|
1
2

˜

inf
ṽhPV k

N,h

}uε
N ´ ṽh}1,Ω ` inf

q̃hPQk´1
N,h

}pεN ´ q̃h}Ω

¸

As previously mentioned, enriching the product space V k
h ˆQk´1

h with V k
N,h ˆQk´1

N,h aims
to improve the approximation of uε

N and pεN by providing a more accurate representation
of their singular parts. To achieve this, let us examine the decomposition introduced in
(4.3.30)-(4.3.32) of uε

N and pεN between a singular and a regular part. We have

χuε
N “ χuε

N,S ` χuε
N,R, χpεN “ χpεN,S ` χpεN,R.
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By definition of the enrichment functions and using the product rule for differentiation, we
have

ϕ̃ε,m
l,j “ curl pχψε,m

l,j q “ ψε,m
l,j curl χ ` χϕε,m

l,j .

In particular, setting
‹

ψε
N,S

def
“

N
ÿ

j“0

2
ÿ

l“1

aul,jψ
ε,c
l,j ` bul,jψ

ε,s
l,j ,

the following equality holds

‹

ψε
N,Scurl χ ` χuε

N,S “

N
ÿ

j“0

2
ÿ

l“1

aul,jϕ̃
ε,c
l,j ` bul,jϕ̃

ε,s
l,j P V k

N,h. (4.3.36)

Similarly, we can prove that χpεN,S P Qk´1
N,h . Therefore, we have for ε P p0, ρ̃1q,

}uε
N ´ ũε

N,h}1,Ω ` |logpεq|
´ 1

2 }pεN ´ p̃εN,h}Ω ` }λε
N ´ λ̃ε

N,h}´ 1
2
,ε

À |logpεq|
1
2

`

inf
vhPV k

h

}uε
N ´ χuε

N,S ´
‹

ψε
N,Scurl χ ´ vh}1,Ω

` inf
qhPQk´1

h

}pεN ´ χpεN,S ´ qh}Ω
˘

(4.3.37)

Furthermore, by writing uε
N “ χuε

N ` p1 ´ χquε
N and pεN “ χpεN ` p1 ´ χqpεN , it comes

uε
N ´ χuε

N,S “ χpu1,ε
N,R ` u2,ε

N,Rq ` p1 ´ χquε
N ,

pεN ´ χpεN,S “ χpp1,εN,R ` p2,εN,Rq ` p1 ´ χqpεN ,

so that estimate (4.3.37) becomes
$

’

’

’

’

&

’

’

’

’

%

}uε
N ´ ũε

N,h}1,Ω ` |logpεq|
´ 1

2 }pεN ´ p̃εN,h}Ω ` }λε
N ´ λ̃ε

N,h}´ 1
2
,ε

À |logpεq|
1
2

`

inf
vhPV k

h

}χpu1,ε
N,R ` u2,ε

N,Rq ` p1 ´ χquε
N ´

‹

ψε
N,Scurl χ ´ vh}1,Ω

` inf
qhPQk´1

h

}χpp1,εN,R ` p2,εN,Rq ` p1 ´ χqpεN ´ qh}Ω
˘

It is now sufficient to prove that the functions

χpu1,ε
N,R ` u2,ε

N,Rq ` p1 ´ χquε
N,S ´

‹

ψε
N,Scurl χ, χpp1,εN,R ` p2,εN,Rq ` p1 ´ χqpεN,S,

are well estimated by the elements of V k
h and Qk´1

h , respectively. To to so, we will prove
that they belong toHk`1pΩq andHkpΩq, respectively. In what follows, we provide succes-
sively a priori estimates for pu1,ε

N,R, p
1,ε
N,Rq, pu2,ε

N,R, p
2,ε
N,Rq,

‹

ψε
N,S and pp1´χquε

N , p1´χqpεNq.
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• First note that pu1,ε
N,R, p

1,ε
N,Rq is solution of the Stokes equation in ωρ, so thanks to the

interior regularizing property of the Stokes operator we have

}u1,ε
N,R}k`1,ω3ρ{4 ` |logpεq|

´ 1
2 }p1,εN,R}k,ω3ρ{4 À }u1,ε

N,R}1,ωρ ` |logpεq|
´ 1

2 }p1,εN,R}ωρ

À }u1,ε
N,R} 1

2
,Bωρ .

Furthermore,

u1,ε
N,R ` uε

N,S “ Πρ
N`1pu

ε
N ¨ eθqeθ ` Πρ

N`1pu
ε
N ¨ erqer on Bωρ,

so by continuity of the L2 projector Πρ
N on pH

1
2 pBωρq, } ¨ } 1

2
,Bρq, we have

}u1,ε
N,R} 1

2
,Bωρ À }uε

N} 1
2
,Bωρ ` }uε

N,S} 1
2
,Bωρ

Gathering this equation, Lemma 4.3.9, the standard trace theorem from H
1
2 pBωρq to

H1pΩq and Theorem 4.2.1, we deduce that there exists 0 ă ρ̃2 ă ρ such that for
ε P p0, ρ̃2q,

}u1,ε
N,R} 1

2
,Bωρ À }uε

N} 1
2
,Bωρ ` |vb| ` ε|wb| À }uε

N}1,Ω ` |vb| ` ε|wb|,

À |vb| ` ε|wb|.

• Similarly, puε,2
N,R, p

ε,2
N,Rq is solution of the Stokes equation in ωρ with boundary condi-

tions
uε,2

N,R “ uε
N ´ Πρ

N`1pu
ε
N ¨ eθqeθ ´ Πρ

N`1pu
ε
N ¨ erqer on Bωρ.

Using again the interior regularizing property of the Stokes operator, the continuity of the
L2 projector Πρ

N on pH
1
2 pBωρq, } ¨ } 1

2
,Bρq and Theorem 4.2.1, we get

}uε,2
N,R}k`1,ω3ρ{4 ` |logpεq|

´ 1
2 }p2,εN,R}k,ω3ρ{4

À }u2,ε
N,R}1,ωρ ` |logpεq|

´ 1
2 }p2,εN,R}ωρ

À }u2,ε
N,R} 1

2
,Bωρ À }uε

N} 1
2
,Bωρ À |vb| ` ε|wb|.

• Now since
‹

ψε
N,S is a stream function associated to uε

N,S,
‹

ψε
N,S satisfy a biharmonic

equation. We deduce from the regularizing effect of the biharmonic equation, the Poincaré-
Wirtinger inequality in H2pωρq X L2

0pω
ρq and Lemma 4.3.9, that for ε P p0, ρ̃2q,

}
‹

ψε
N,S}k`1,ω3ρ{4 À }

‹

ψε
N,S}1,ωρ

À }uε
N,S}ωρ À }uε

N,S} 1
2
,Bωρ À }uε

N}1,Ω À |vb| ` ε|wb|.
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• Finally, since puε
N , p

ε
Nq satisfy the Stokes equations and uε

N “ 0 on BΩ and since
Ωzωρ{2 is relatively compact in ΩεYBΩ, the regularizing properties of the Stokes equations
imply that puε

N , p
ε
Nq P Hk`1pΩzωρ{2q ˆ HkpΩzωρ{2q and we have

}uε
N}k`1,Ωzωρ{2 ` |logpεq|

´ 1
2 }pεN}k,Ωzωρ{2 À }uε

N}1,Ωzωρ{2 ` |logpεq|
´ 1

2 }pεN}Ωzωρ{2

À |vb| ` ε|wb|.

This implies that pp1 ´ χquε
N , p1 ´ χqpεNq P Hk`1pΩq ˆ HkpΩq and

}p1 ´ χquε
N}k`1,Ω ` |logpεq|

´ 1
2 }p1 ´ χqpεN}k,Ω À |vb| ` ε|wb|.

Gathering these results, we deduce that

χpu1,ε
N,R ` u2,ε

N,Rq ` p1 ´ χquε
N ´

‹

ψε
N,Scurl χ P Hk`1

pΩq,

χpp1,εN,R ` p2,εN,Rq ` p1 ´ χqpεN P Hk
pΩq,

and for ε P p0, ρ̃2q,

}χpu1,ε
N,R ` u2,ε

N,Rq ` p1 ´ χquε
N ´

‹

ψε
N,Scurl χ}k`1,Ω

` }χpp1,εN,R ` p2,εN,Rq ` p1 ´ χqpεN}k,Ω À p|vb| ` ε|wb|q.

Setting ρ̃ “ minpρ̃1, ρ̃2q and applying (4.3.29) concludes the proof of the Theorem.

As a conclusion of this section, gathering Theorem 4.2.5 on the model approximation
error and Theorem 4.3.8 on the numerical approximation error, we get for the global error:

}uε
´ ũε

N,h}1,Ω ` |logpεq|
´ 1

2 }pε ´ p̃εN,h}Ω ` ε}λε
´ ε´1λ̃ε

N,h}´ 1
2
,ε

À pεN`1
` |logpεq|

1
2hkqp|vb| ` ε|wb|q

As for the Poisson case, this shows that, h and ε being fixed, it is possible to reach a given
convergence order by adjusting the parameters of the method k and N .

4.4 A Reduced order coupled model for small particles immersed in a
Stokesian flow

In this section we extend Problem (4.2.6) to the case of small particles and a Stokesian
flow.
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4.4.1 Particle model

Using notations consistent with Chapter 2, the particle is assumed to be shaped as an
ellipse, centered at the origin 0, and denoted as pωε def

“ εEpa, 1q, where Epa, 1q stands for
an elliptical region in the pxOyq plane with the major axis a and the minor axis 1. The
current position ωεptq of the particle is then given by the image of the deformation map
ϕ : pωε ˆ R` Ñ R2 defined by

ϕppx, tq “ rptq ` Λptqpx @ppx, tq P pωε
ˆ R`, (4.4.1)

where r : R` Ñ R2 stands for the displacement of the center of the ellipse and Λ :
R` Ñ SOp2q describes the rotation of the ellipse. Here, SOp2q is the two-dimensional
counterpart of SOp3q introduced in (2.2.2). In 2D, the rotation matrix Λ is expressed in
terms of a scalar function θ : R` Ñ R by the relation

Λ
def
“

„

cospθq ´ sinpθq

sinpθq cospθq

ȷ

. (4.4.2)

In this formulation, θ represents the rotation angle with respect to ex (see Figure 4.1).
We assume that the dynamics of the particle are governed by the following equations of
conservation of linear and angular momentum:

#

ρbA:r “ f ,

ρbI :θ “ m,

where ρb is the density of the particles, A is the area of the particles, I is the moment of
inertia, and f and m are, respectively, the resultant force and torque. Following the same

BΩ

ωεptq
Ω

ε
aε ex

θ

rptq
•

Figure 4.1: Current configuration of the elliptical particle

assumptions of Chapter 2, we assume that the particle moves within a smooth bounded
domain Ω Ă R2.
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4.4.2 Reduced order coupled problem

In what follows, for the sake of simplicity, we reuse the same notations as the previous
sections adapted the case of moving elliptical particles. We assume that the fluid satisfies
the Stokes equation in the whole domain Ω and reduced order coupling conditions are
applied on the particle interface Bωεptq. As the shape of the particle is elliptical, we slightly
modify the definition of the finite dimensional space FN given in (4.2.1). We also extend
its definition to moving particles. To this purpose, similarly to Chapter 2, we introduce a
local coordinate ν on the boundary of the ellipse in reference configuration such that any
point of Bpωε can be parametrized by

px “ εpcospνqex ` a sinpνqeyq @ν P p0, 2πq.

We then introduce the re-scaled function pvpεqpνq : L2pBpωεq Ñ L2p0, 2πq defined by

pvpεqpνq
def
“ pvpεpcospνqex ` a sinpνqeyq @ν P p0, 2πq.

Finally, the reduced order space FNptq is given by

FNptq
def
“ tpv ˝ ϕ´1

t P L2
0,npBωε

ptqq :

pvpεqpνq “ a0 `

N
ÿ

k“1

ak cospkνq ` bk sinpkνq, ak, bk P R2
u.

We also introduce the explicit expression of the particle velocity ub
def
“ Btϕ ˝ϕ´1

t in terms
of the solid unknowns r and θ:

ubpx, tq “ 9r ` 9θpx´ rq
K

@px, tq P ωε
ptq ˆ R`,

where for x “ px1, x2q, we have denoted by xK the vector p´x2, x1q. Let V def
“ H1

0 pΩq

and
Qptq

def
“

␣

q P L2
pΩq : q|ωεptq P L2

0pω
ε
ptqq q|Ωεptq P L2

0pΩε
ptqq

(

be the function space for the velocity and pressure, the reduced order coupled problem
reads: we look for puε

N , p
ε
N ,λ

ε
N , r, θq such that puε

Nptq, pεNptq,λε
Nptq, rptq, θptqq P V ˆ

Qptq ˆ FNptq ˆ R2 ˆ R a.e. t P R` and
$

’

’

’

’

&

’

’

’

’

%

ϕtppxq “ r ` Λpx @px P pωε,

afΩ
`

puε
N , p

ε
Nq, pv, qq

˘

` ρbA:r ¨ δr ` ρbI :θδθ

´
`

λε
N ,v ´ δr ´ δθpx´ rq

K
˘

ε,t

`
`

µN ,u
ε
N ´ 9r ´ 9θpx´ rq

K
˘

ε,t
“ 0

(4.4.3)
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for all pv, q,µN , δr, δθq P V ˆ Qptq ˆ FNptq ˆ R2 ˆ R, where Λ is given in terms of θ
by (4.4.2), and the inner product p¨, ¨qε,t is defined by

pu,vqε,t
def
“

ż

Bωεptq

pu ¨ vqph ˝ ϕ´1
t , phpεqpνq

def
“

ˆ

ε
b

a2 cos2pνq ` sin2pνq

˙´1

.

Here the bilinear form afΩ : pV ˆ Qptqq ˆ pV ˆ Qptqq Ñ R is defined by

afΩppu, pq, pv, qqq
def
“ µfapu,vq ´ b1pp,vq ` b1pq,uq

where the definition of the bilinear forms a and b1 are given in (4.2.15).

4.4.3 Numerical approximation

This section is devoted to the discretization of Problem (4.4.3). For sake of complete-
ness, we also provide the discrete formulation of the two following problems introduced
in Chapter 2, adapted to the simulation of an immersed particle in a two dimensional
Stokesian flow: the ALE coupled problem (2.2.4),(2.2.9),(2.2.23) and the fictitious do-
main coupled model (2.2.4), (2.2.10) ,(2.2.24). In Section 4.5, we use the former two
models with standard interface coupling conditions to assess the accuracy of the reduced
order coupled model.

4.4.4 Discrete formulation of the reduced order coupled problem

We introduce in this section the time and space discretization of Problem 4.4.3. For the
time discretization, we use the same notations as the previous chapters. We denote by
τ ą 0 the time step length and for n P N, we set tn def

“ nτ . For a given function v
depending on t, we set

vn, Bτv
n def

“
1

τ
pvn ´ vn´1

q, vn´ 1
2

def
“

1

2
pvn´1

` vnq

for an approximation of vptnq, the backward Euler difference and the mid point evaluation,
respectively. We then consider a semi-implicit scheme in which the geometrical coupling
is treated in an explicit fashion, as follows: for a given displacement r P R2 and a given
rotation θ P R, it reads

ϕn
ppxq “ rn´1

` Λn´1
px @px P pωε.

where Λn´1 is obtained in terms of θn´1 by (4.4.2). For the space discretization, similarly
to Section 4.3.1, we consider a low-order stabilized formulation based on piecewise affine
approximations. In particular, we set Vh

def
“ X1

hpΩq X V and Qn
h

def
“ X1

hpΩq X Qn for the
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discretization of the velocity uε
N and pressure pεN . We also introduce the discrete Lagrange

multiplier space F n
N,h, discrete counterpart of FNptq, as

F n
N,h

def
“

"

pvh ˝ pϕn
q

´1
P L2

0,npBωε,n
q :

pvhpεqpνq “ a0 `

N
ÿ

k“1

ak cospkνq ` bk sinpkνq, ak, bk P R2

*

.

We then consider a backward Euler scheme for the fluid and solid inertial terms. The
remaining kinematic and dynamic conditions of Problem (4.4.3) are discretized with an
implicit scheme. The resulting strongly coupled scheme is given in Algorithm 4.

Algorithm 4 Discrete formulation of the reduced order coupled model (4.4.3).

For n ě 1,
Step 1: Update interface position:

ϕnppxq “ rn´1 ` Λn´1
px @px P pωε, ωε,n “ ϕnppωεq,

where Λn´1 is obtained in terms of θn´1 by (4.4.2).
Step 2: Find puε,n

N,h, p
ε,n
N,h,λ

ε,n
N,h, r

n, θnq P Vh ˆ Qn
h ˆ F n

N,h ˆ R2 ˆ R with 9rn “ Bτr
n and 9θn “ Bτθ

n

such that
$

’

’

’

’

’

&

’

’

’

’

’

%

afΩ
`

puε,n
N,h, p

ε,n
N,hq, pvh, qhq

˘

´ p1{µfqs
p
hpqh, p

ε,n
N,hq ´ p1{µfqs

λ
hpµN ,λε,n

N,hq

` IBτ 9θnδθ ` MBτ 9rn ¨ δr

´
`

λn
N,h,vh ´ δr ´ δθpI2 ´ rn´1qK

˘

ε,n

`
`

µN,h,u
ε,n
N,h ´ 9rn´1 ´ 9θn´1pI2 ´ rn´1qK

˘

ε,n
“ 0

(4.4.4)

for all pvh, qh,µN , δr, δθq P V n
h ˆ Qn

h ˆ F n
N,h ˆ R2 ˆ R.

4.4.5 Comparison with other discrete formulations

For the sake of completeness, in this section, we provide the space-time fully discrete
formulation of an ALE and fictitious domain method with standard coupling conditions
on the fluid-structure interface. These numerical methods will be used in the numerical
experiments of Section 4.5 for comparison purposes.

4.4.5.1 Coupled problem with ALE formalism

In this section, we present the discrete formulation of the two dimensional counterpart
of the coupled problem (2.2.4),(2.2.9),(2.2.23) for small particles immersed in a two di-
mensional Stokesian flow. Similarly to what has been done for the fluid-structure ALE
coupled problem described in Section 2.3.1, we consider a triangulation of the reference
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fluid domain which is fitted to the particle boundary Bωε,n. We set V Bpω
h

def
“ X1

hpBpωq as the
trace space of X1

hppΩεq and Π1
b,h the corresponding interpolator onto V Bpω

h . The geomet-
rical coupling is then treated explicitly. For a given displacement rn´1 P R2 and a given
rotation θn´1, we define the ALE map as

ϕn
ppxq “ rn´1

` Λn´1
px @px P pωε, An

h “ LhpΠ1
b,hϕ

n
q,

where Λn´1 given in terms of θn´1 by (4.4.2) and Lh denotes a given lifting operator (e.g.,
an harmonic extension operator). The one-to-one mapping An

h allows use to consider as
fluid unknowns

puε,n
h “ uε,n

h ˝ An
h, ppε,nh “ pε,nh ˝ An

h.

We then introduce the following finite element space V f
h

def
“ X1

hppΩεq XH1
0 ppΩεq and Qf

h “

X1
hppΩεq X L2ppΩεq for the approximation of the fluid unknowns. We apply a finite element

approximation with an implicit treatment of the coupling conditions. The fully discrete
strongly coupled scheme is given in Algorithm 5. One limitation of Algorithm 5 lies in

Algorithm 5 Discrete formulation of the coupled problem with ALE formalism in the fluid

For n ě 1,
Step 1: Update of the particle position and of the fluid domain

#

ϕnppxq “ rn´1 ` Λn´1
px @px P pωε,

An
h “ Lh

`

Π1
b,hϕ

n
˘

, Ωε,n
f “ An

hppΩε
f q,

with Λn´1 in terms of θn´1 by (4.4.2).
Step 2: Find ppuε,n

h , ppε,nh , rn, θnq P V f
h ˆ Qf

h ˆ R2 ˆ R with 9rn “ Bτr
n, 9θn “ Bτθ

n and such that

afΩε,n
f

`

puε,n
h , pε,nh q, pvh, qhq

˘

´ p1{µfqs
p
hpqh, p

ε,n
h q ` ρbABτ 9rn ¨ δr ` ρbIBτ 9θnδθ “ 0 (4.4.5)

for all ppvh, pqh, δr, δθq P V f
h ˆ Qf

h ˆ R2 ˆ R with

pvh “ Π1
b,h

`

δr ` δθpϕn ´ rn´1
˘K˘

on Bpωε.

the capability of the discrete lifting operator Lh to guarantee mesh quality when dealing
with large interface deflections. This problem is even more pronounced in the context of
multiple particles immersed in a fluid and that can get into contact. In the next section, we
introduce an algorithm, with full order interface condition, that overcomes this issue by
working with a fixed mesh.
Remark 15. For the sake of consistency with Chapter 2, we used the denomination ALE
for a stationary Stokes fluid, although, due to the absence of inertial terms in the fluid do-
main, in pratice, the formulation (4.4.5) corresponds to the Stokes equations with moving
domain.
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4.4.5.2 Coupled problem with fictitious domain method

In this section, we present the discrete formulation of the two dimensional counterpart
of the coupled problem (2.2.4), (2.2.10) ,(2.2.24) for small particles immersed in a two
dimensional Stokesian flow. We consider Vh

def
“ X1

hpΩq X V , Qn
h

def
“ X1

hpΩq X Qn and
Ln

H “ X1
HpBωε,nq for the approximation of the velocity, pressure and Lagrange mul-

tiplier. Similarly to the stabilized discrete formulation of problem (4.4.3) presented in
Section (4.3.1), to overcome the instability of the saddle-point problem due to the choice
of the Lagrange multiplier finite element space Ln

H , and to avoid any restriction on the
ration h{H , we introduce the following stabilization term :

sBH
h

def
“ γλh pµH ,λ

ε,n
H q

Bωε,n ,

with γλ ą 0 a user-defined dimensionless parameter. We apply a finite element approx-
imation on the whole domain Ω with implicit treatment of the coupling conditions. The
resulting strongly coupled formulation is given in Algorithm 6.

Algorithm 6 Discrete formulation of the fictitious domain coupled model

For n ě 1,
Step 1: Update interface position:

ϕnppxq “ rn´1 ` Λn´1
px @px P pωε, ωε,n “ ϕnpωεq.

where Λn´1 is obtained from θn´1 using nonlinear formula (4.4.2).
Step 2: Find puε,n

h , pε,nh ,λε,n
H , rn, θnq P Vh ˆQh ˆLn

H ˆR2 ˆR with 9rn “ Bτr
n and 9θn “ Bτθ

n such
that

$

’

’

&

’

’

%

afΩ,h

`

puε,n
h , pε,nh q, pvh, qhq

˘

` ρbABτ 9rn ¨ δr ` ρbIBτ 9θnδθ

´
`

λn
H ,vh ´ δr ´ δθpx´ rn´1qK

˘

Bωε,n ´ p1{µfqs
p
hpqh, p

ε,n
h q ´ p1{µfqs

BH
h pµH ,λε,n

H q

`
`

µH ,un
h ´ 9rn´1 ´ 9θn´1px´ rn´1qK

˘

Bωε,n “ 0

for all pvh, qh,µH , δr, δθq P Vh ˆ Qh ˆLn
H ˆ R2 ˆ R.

4.5 Numerical experiments

Following the structure of this chapter, we divide this section into two parts. First, we
analyze the modeling error of Problem 4.2.6 with respect to the solution obtained with
Problem 4.2.20, referring to this part as the convergence in ε. We conduct the numerical
experiments for both a circular inclusion, for which Theorem 4.2.5 applies, and an ellip-
tical inclusion, for which no formal proof has been presented in this chapter. In a second
part, we illustrate the accuracy of Algorithm 4 by comparing its solution with those pro-
vided by Algorithm 5 and Algorithm 6. In this section, we consider the case of a single
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particle and investigate the influence of its size ε and the number of Fourier modes N on
the solution of the reduced order coupled model. Note that due to time constraints, we
will not present numerical results for the augmented finite element method (4.3.34) at this
time. However, we aim to provide them shortly.

4.5.1 Convergence in ε

In this section, in order to illustrate the result of Theorem 4.2.5, we will look at the conver-
gence of the solution of Problem (4.4.3) with respect to the solution of Problem (4.2.20).
To this purpose, we consider successively two inclusions, one circular (with an aspect ratio
of a “ 1), and the other elliptical with an aspect ratio of a “ 2 centered at p0.1, 0.2q, and
varying in size with ε P t0.1, 0.08, 0.06, 0.04, 0.02u. The fluid domain is taken as the unit
square with the following boundary conditions

$

’

&

’

%

uε
N “ 0 y P t´0.5, 0.5u,

pεN “ 0 x “ ´0.5,

pεN “ 10 x “ 0.5.

The number of modes is chosen such that N P t0, 1u. To solve this problem, we use a
conforming mesh with respect to the inclusion with the mesh size h sufficiently small such
that the numerical error due to the discrete approximation of both the reduced order and
full order solutions can be neglected with respect to the error of the model. The H1-error
is reported in Figure 4.2. As proven in Section 4.2.2, the convergence velocity of the two
solutions behaves as εN`1 for the circle. Although no theoretical proof has been given, we
observe a similar behavior for the elliptical inclusion.
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(a) Circular inclusion (a =1)
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(b) Elliptical inclusion (a = 2)

Figure 4.2: Relative H1-error for decreasing values of ε for a single inclusion.
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4.5.2 Oscillations of an elastically supported particle immersed in a Stokesian flow

As the first example of fluid-structure interaction, we consider the mechanical interac-
tion between a viscous fluid and an elastically supported circular particle in a rectangular
domain Ω “ p´1.5, 1.5q ˆ p´0.5, 0.5q. The fluid satisfies the Stokes equations and the
boundary conditions for the fluid are similar to the previous test case (see Figure 4.3):

$

’

&

’

%

uε
N “ 0 y P t´0.5, 0.5u,

pεN “ 0 x “ ´1.5,

pεN “ 10 x “ 1.5.

We assume that the solid is elastically supported and its displacement is constrained along
the ex direction. The following parameters for the particle model are considered: size

ωεptq Ωε
f ptq

BΩ

TxpεN “ 0 pεN “ 10

uε
N “ 0

uε
N “ 0

ex

ey

Figure 4.3: Elastically supported particle immersed in a Stokesian flow

ε P t0.06, 0.04, 0.02u, density ρb “ 1 and string’s tension Tx “ 10. The particle is
supposed to be initially at rest. For the fluid, we take a viscosity µf “ 1. We run the
simulations over the time interval r0, 0.1s with a time step τ “ 5 ¨ 10´4 and a uniform
mesh satisfying h{ε “ 1{4. In Figure 4.4, we plot the displacement of the particle along
the x-axis obtained with Algorithm 4 and Algorithm 5. For Algorithm 4, the number of
Fourier modes is taken N “ 0. We observe that taking N “ 0 appears to be sufficient to
accurately approximate the displacement of the particle, even for relatively large radius.
In Figure 4.5, snapshots of the fluid velocity and pressure are provided at times t “ 0.03
for ε “ 0.06. We observe as well that the pressure and velocity of the fluid are well
reproduced, at least qualitatively, by the reduced order model with N “ 0.
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Figure 4.4: Time history of the displacement along the x-axis of an elastically supported particle immersed
in a Stokesian flow.

4.5.3 Jeffery orbits

We now consider an ellipse of aspect ratio a “ 2 centered at the origin 0 in a rectangular
domain Ω “ p´1.5, 1.5q ˆ p´0.5, 0.5q. The Stokesian flow is assumed to be driven by the
following linear shear flow with shear rate G “ 1 (see Figure 4.6):

$

’

&

’

%

uε
N “ pG, 0q y “ 0.5,

uε
N “ p´G, 0q y “ ´0.5,

uε
N ¨ ey “ 0, pσpuε

N , p
ε
Nq ¨ exq ¨ ex “ 0 x P t´1.5, 1.5u.

The physical parameters of the fluid and the solid are given by µf “ 1 and ρb “ 1. The
mesh size is such that h{ε “ 1{4. The behaviour of the coupled system is studied over the
time interval r0, 30s with time-step τ “ 10´2. We consider the approximation provided by
Algorithm 4 with N P t0, 1u and decreasing size ε P t0.1, 0.05, 0.02u. We compare this
approximation with the exact solution reported in [Gay, 1968] for L “ 8:

$

’

’

&

’

’

%

θptq “ tan´1

ˆ

a tan

ˆ

aGt

a2 ` 1

˙˙

,

9θptq “
G

a2 ` 1
pa2 cos2pθptqq ` sin2

pθptqqq

(4.5.1)

for all t P R`. In Figure 4.7, we plot the time history of the rotation of the ellipse. We can
clearly observe that when N “ 0, Algorithm 4 fails to accurately capture the rotational
effects induced by the shear flow on the ellipse. On the contrary by adding the first Fourier
mode (N “ 1), Algorithm 4 is able to capture the rotation, particularly when the size ε of
the ellipse is small.
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(a) Algorithm 5, velocity snapshots (b) Algorithm 4 with N “ 0, velocity snapshots

(c) Algorithm 5, pressure snaphots (d) Algorithm 4 with N “ 0, pressure snaphots

Figure 4.5: Snapshots of the fluid velocity magnitude (up) and pressure (down) at times t “ 0.03 for an
elastically supported particle obtained with Algorithm 4–5 for ε “ 0.06.

4.5.4 Free fall of an elliptical particle immersed in a Stokesian flow

At last example, we study the free fall motion of an elliptical particle immersed in a Stoke-
sian flow, with size ε “ 0.1 and aspect ratio a “ 2, subjected to a constant gravitational
force g “ ´ey. The elliptical particle is initially at rest. The fluid domain is rectangular
with Ω “ p´0.5, 0.5q ˆ p´1.5, 1.5q. We assume the following boundary conditions for the
fluid equations (see Figure 4.8):

$

’

&

’

%

uε
N “ 0 x P t´0.5, 0.5u,

uε
N “ 0 y “ 1.5,

σpuε
N , p

ε
Nqey “ 0 y “ ´1.5.
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G
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BΩ

ex

ey

Figure 4.6: Geometrical setting for the Jeffery orbits test case.
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(c) ε “ 0.02

Figure 4.7: Time history of the rotation of an elliptical particle immersed in a shear flow for different sizes
ε and number of Fourier modes N P t0, 1u.

The physical parameters of the fluid and solid are given by µf “ 1 and ρb “ 2 ¨ 10´2.
The coupled system is simulated over the time interval r0, 4000s with time-step τ “ 1, and
an uniform mesh of size h “ 0.025. To investigate the impact of the number of Fourier
modes on Algoritm 4, we consider three different truncation levels N P t0, 1, 2u. We
compare these approximations with the solution given by Algorithm 6 for a similar time-
step τ “ 1, a uniform fluid mesh of size h “ 0.01 and a discretization step for the Lagrange
multiplier space of size H “ 0.01. In Figure 4.9, we plot the displacement of the elliptical
particle along the x- and y-axis, and its rotation. For the case N “ 0, the ellipse exits
the domain at t “ 1674, which explains why no displacement and rotation are given for
the following time steps. Regardless of the number of Fourier modes chosen, we observe
that the displacement of the ellipse along the y-axis is accurately captured by Algorithm 4.
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Figure 4.8: Free fall of an elliptical particle in a Stokesian flow.

This observation aligns with the conclusion drawn in Section 4.5.2, suggesting that a single
mode (N “ 0) is sufficient to capture the translational motion of the particle. Moreover, as
discussed in Section 4.5.3, our analysis indicates that at least one additional mode (N “

1) is necessary for an accurate representation of the rotational dynamics. Introducing a
third mode (N “ 2) further improves the approximation of the rotation and, in a more
indirect manner, also improves the representation of the translational motion along the
x-axis. In Figure 4.10, we provide snapshots of the fluid velocity magnitude at times
t0, 500, 1000, 2000, 4000u. In addition to the previous observations, we can cleary see the
improved capturing of the fluid dynamics when passing from the modeN “ 1 to the mode
N “ 2, particularly noticeable at times t “ 2000 and t “ 4000.
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(c) Rotation of the ellipse

Figure 4.9: Time history of the rotation and displacement of a falling ellipse in a Stokesian flow.

t “ 0 t “ 500 t “ 1000 t “ 2000 t “ 4000

(a) Algorithm 4 with N “ 0

(b) Algorithm 4 with N “ 1

Figure 4.10: Snaphots of the fluid velocity magnitude at time t P t0, 500, 1000, 2000, 4000u for a falling
elliptical particle in a Stokesian flow with Algorithm 4, N “ 1 and Algorithm 6

Conclusion

In the first part of this chapter, we extended the analysis provided in Chapter 3 to Stokes
equations with non-homogeneous Dirichlet boundary conditions, where the space of La-

139



Chapter 4. A new computational approach for the simulation of small particles in a
two-dimensional Stokesian flow: formulation and error analysis

t “ 0 t “ 500 t “ 1000 t “ 2000 t “ 4000

(c) Algorithm 4 with N “ 1

(d) Algorithm 6

Figure 4.10: Snaphots of the fluid velocity magnitude at time t P t0, 500, 1000, 2000, 4000u for a falling
elliptical particle in a Stokesian flow with Algorithm 4, N “ 1 and Algorithm 6 (cont.)

grange multipliers considered is an extension to the vector case of the space of the first
N Fourier modes. We proved that similar properties to the Poisson case were satisfied:
the problem is well-posed and converges when ε Ñ 0 towards the problem with stan-
dard Dirichlet boundary conditions. We also establish, similarly to the Poisson case, that
the low-order stabilized finite element discretization provides sub-optimal order of con-
vergence, due on one hand to the discontinuity of pressure and velocity gradient across
the immersed interface and on the other hand to the singular behavior of the continuous
solutions for ε Ñ 0. Therefore, we proposed an augmented finite element method with
stable velocity-pressure conforming finite element pairs and additional singular functions
designed to better capture the discontinuities and asymptotic singularities of the solution.
We proved that we could restore the optimal order of convergence and significantly reduce
the dependence in ε of the convergence constant in the numerical approximation error.
In the second part, we adapted the finite element method to the fluid-structure interaction
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problem of small particles immersed in a Stokes fluid. Through several numerical exper-
iments, we illustrated the theoretical results obtained for the obstacle problem and gave
numerical evidence of the accuracy of the reduced order fluid-structure coupled model.

4.A Appendix

4.A.1 Preliminary lemmas

In this section of the appendix, we state several results that will be used in the next sections
of the appendix for the proof of some lemmas used in this chapter. We recall that ε P

p0, εmaxq where εmax is the fixed parameter defined by εmax
def
“ suptε ą 0 | Ďωε Ă Ωu.

The first three Lemmas and their proof are drawn from in [Caubet et al., 2016, Lemma
C.1, Lemma C.2, Lemma C.3], themselves based on results presented in [Sid Idris, 2001,
Chapter 3]

Lemma 4.A.1. For φ P H
1
2 pBΩq XL2

0,npBΩq, the following problem
$

’

’

’

&

’

’

’

%

´∆vε ` ∇qε “ 0 in Ωε,

div vε “ 0 in Ωε,

vε “ φ on BΩ,

vε “ 0 on Bωε,

(4.A.1)

admits a unique weak solution inH1pΩεq ˆ L2
0pΩ

εq. Moreover,

}vε}1,Ωε À }φ} 1
2
,BΩ.

Proof of Lemma 4.A.1. We consider vεmax the solution of (4.A.1) for ε “ εmax. It satisfies

|vεmax |1,Ωεmax “

ˆ
ż

Ωεmax

|∇vεmax |
2

˙
1
2

À }φ} 1
2
,BΩ. (4.A.2)

Now consider ṽεmax P H1
0 pΩq the extension by 0 of vεmax to all Ω. Notice that since

ε ă εmax, ωε Ă ωεmax and Ωεmax Ă Ωε, so, by minimization of energy, we have

|vε|1,Ωε ď |ṽεmax |1,Ωε “ |vεmax |1,Ωεmax ,

and thanks to equation (4.A.2),

|vε|1,Ωε À }φ} 1
2
,BΩ. (4.A.3)
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Now consider pv0, l0q P H1pΩq ˆ L2
0pΩq the solution of the system

$

’

&

’

%

´∆v0 ` ∇l0 “ 0 in Ω,

div v0 “ 0 in Ω,

v0 “ φ on BΩ.

The well-posedness of this problem gives

}v0}1,Ω À }φ} 1
2
,BΩ. (4.A.4)

Denoting by ṽε the extension by zero of vε to all Ω, since ṽε ´ v0 P H1
0 pΩq, we can apply

the Poincaré inequality to get

}vε}Ωε “ }ṽε}Ω ď }ṽε ´ v0}Ω ` }v0}Ω À p|vε|1,Ωε ` |v0|1,Ωq ` }v0}Ω.

Combining this inequality with (4.A.3) and (4.A.4), we deduce that

}vε}Ωε À }φ} 1
2
,BΩ

which concludes the proof of the lemma.

From the previous Lemma, we get the following one:

Lemma 4.A.2. Let φ P H1pΩq be such that div φ “ 0 in Ω. We denote by pvε, qεq P

H1pωεq ˆ L2
0pΩεq the solution of the Stokes problem

$

’

’

’

&

’

’

’

%

´∆vε ` ∇qε “ 0 in Ωε,

div vε “ 0 in Ωε,

vε “ 0 on BΩ,

vε “ φ on Bωε.

If there exists q P L2
0pΩq such that ´∆φ` ∇q “ 0 in Ω, then

}vε}1,Ωε À }φ} 1
2
,Ω.

Proof of Lemma 4.A.2. We consider the pair pwε def
“ vε ´φ, lε

def
“ qε ´ qq. It satisfies

$

’

’

’

&

’

’

’

%

´∆wε
` ∇lε “ 0 in Ωε,

div wε
“ 0 in Ωε,

wε
“ ´φ on BΩ,

wε
“ 0 on Bωε,
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By the previous lemma
}wε

}1,Ωε À }φ} 1
2
,BΩ.

Noticing that φ is defined in the whole domain and is solution of the Stokes equations, we
have:

}φ}1,Ωε ď }φ}1,Ω À }φ} 1
2
,BΩ.

Therefore, we finally get

}vε}1,ωε ď }wε
}1,Ωε ` }φ}1,Ωε À }φ} 1

2
,BΩ.

Lemma 4.A.3. For any L P R2, the problem
$

’

’

’

&

’

’

’

%

´∆vε ` ∇qε “ 0 in Ωε,

div vε “ 0 in Ωε,

vε “ 0 on BΩ,

vε “ L on Bωε,

admits a unique weak solution inH1pΩεq ˆ L2
0pΩ

εq. Morevover,

}vε}1,Ωε À |logpεq|
´ 1

2 |L|.

Proof of Lemma 4.A.3. Let us define by pwεpεq, lεpεqq the unique solution of the system
$

’

’

’

’

&

’

’

’

’

%

´∆wε
pεq ` ∇lεpεq “ 0 in ωεmax{ε

zω,

div wε
pεq “ 0 in ωεmax{ε

zω,

wε
pεq “ 0 on Bωεmax{ε,

wε
pεq “ L on Bω.

We also consider the pair pvεpεq, qεpεqq which satisfies
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

´∆vεpεq ` ∇qεpεq “ 0 in
Ω

ε
zω,

div vεpεq “ 0 in
Ω

ε
,

vεpεq “ 0 on
1

ε
BΩ,

vεpεq “ L on Bω.
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Notice that we have ω Ă ωεmax{ε Ă Ω
ε

. Now we consider w̃εpεq the extension of wεpεq

to Ω
ε

zsω by zero in the outer part of the extended domain and L in the inner part of the
extended domain. Therefore, by the principle of minimization of energy, we have

|vε|1,Ωε “ |vεpεq|1,Ω
ε

zω ď |w̃ε
pεq|1,Ω

ε
zω “ |wε

pεq|1,ωεmax{εzω. (4.A.5)

Let ψpεq
def
“ L ` 4πE

L

logpεmax{εq
and qpεq def

“ 4πµP ¨
L

logpεm{εq
where pE,P q is the

fundamental solution of Stokes equations in R2 given by

Epxq
def
“

1

4πµ
p´logp|x|qI2 ` ere

T
r q, P pxq

def
“

x

2π|x|2
. (4.A.6)

We have
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

´µ∆ψpεq ` ∇qpεq “ 0 in ωεmax{ε
zω,

div ψpεq “ 0 in ωεmax{ε
zω,

ψpεq “
ere

T
r L

logpεmax{εq
on Bωεmax{ε,

ψpεq “ L`
ere

T
r L

logpεmax{εq
on Bω,

and a computation provides:

|ψpεq|1,ωεmax{εzω À |L||logpεq|
´ 1

2 .

Now, notice that the pair pwεpεq ´ψpεq, lεpεq ´ qεpεqq is solution of the Stokes equations

with boundary conditions ´
ere

T
r L

logpεmax{εq
in both borders of the domain. Therefore, using

the previous lemmas, we get that:

|wε
pεq ´ψpεq|1,ωεmax{εzω À |logpεq|

´ 1
2 }ere

T
r L} 1

2
,Bωεmax À |logpεq|

´ 1
2 |L|.

So, we get:

|vε|1,Ωε ď |wε
pεq|1,ωεmaxzωε ď |wε

pεq ´ψpεq|1,ωεmax{εzω ` |ψpεq|1,ωεmax{εzω,

À |logpεq|
´ 1

2 |L|.

Finally, we consider ṽε the extension of vε to Ω by L. Since this extension is in H1
0 pΩq,

we can use the Poincaré inequality to obtain

}vε}Ωε ď }ṽε}Ω À |ṽε|1,Ω À |vε|1,Ωε .

Using equation (3.A.7), we get the result.
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Once again, the following Lemma and its proof are drawn from [Caubet et al., 2016,
Lemma B.2, Lemma 4.2], themselves based on results presented in [Sid Idris, 2001, Chap-
ter 3].

Lemma 4.A.4. For any ub P H
1
2 pBωεq XL2

0,n, the problem
$

’

’

’

&

’

’

’

%

´∆vε ` ∇qε “ 0 in Ωε,

div vε “ 0 in Ωε,

vε “ 0 on BΩ,

vε “ ub on Bωε,

admits a unique weak solution inH1pΩεq. Moreover,

}vε}1,Ωε À }ubpεq} 1
2
,ω “ }ub} 1

2
,ε.

Proof. Let us first consider the following system:
$

’

&

’

%

´∆u` ∇p “ 0 in R2
zω,

div u “ 0 in R2
zω,

u “ ubpεq on Bω.

(4.A.7)

According to Lax-Milgram theorem, this problem is well posed and has a unique solution
in

W 1,2
0 pR2

zωq “ tu P D1

pR2
zωq | logpρq

´1u P L2
´1pR2

zωq, ∇u P L2
pR2

zωq, div u “ 0u

where
ρpxq “ p1 ` |x|

2
q
1
2

and
L2

´1pR2
zωq “ tu P D1

pR2
zωq | ρ´1u P L2

pR2
zωqu,

(see [Giroire, 1987] for example). By setting ´∆u ` ∇p “ 0 in ω, the problem (4.A.7)
has a unique solution in R2 and we have that

´∆u` ∇p “ rσpu, pqn`
sδBω

def
“ T in D1

pR2
q,

where n` is the exterior normal of BΩε. Now let us define

v
def
“ E ˚ T , q

def
“ P ˚ T

where pE,P q is the fundamental solution of the Stokes equation given by (4.A.6) and ‹ is
the convolution product. Then,

´∆v ` ∇q “ T in D1

pR2
q.

145



Chapter 4. A new computational approach for the simulation of small particles in a
two-dimensional Stokesian flow: formulation and error analysis

Therefore pu ´ v, p ´ qq solves Stokes equations in R2 and this solution is given by
polynomials (see [Dautray and Lions, 1985] for example). Thus, we can write that

upyq “ E ˚ T pyq ` u1pyq “

ż

Bω

Epy ´ xqtpxqdspxq ` u1pyq,

ppyq “ P ˚ T pyq ` P1pyq “

ż

Bω

P py ´ xq ¨ tpxqdspxq ` P1pyq,

whereu1 and P1 are polynomials and t “ σpu, pqn`. Using a first order Taylor expansion
of E:

Epy ´ xq “ Epyq

ż

Bω

tpxqdspxq ` V pyq.

with V pyq “ op1{|y|q when |y| Ñ 8 and uniformly independent of x. In
particularplogpρqq´1V P L2

´1pR2zsωq. As plogpρqq´1u P L2
´1pR2zsωq and plogpρqq´1 R

L2
´1pR2zsωq, we necessarily have that

ż

Bω

tpxqdspxq “ 0.

We deduce that u1 P L2
´1pR2zsωq, so that we must have u1 “ L, where L is constant.

Consequently, u “ W ` L. By computation, we have that there exists A uniformly
independent of ub, such that for all y satisfying |y| ą A,

|W pyq| À }ubpεq} 1
2
,Bω

1

|y|
, |∇W pyq| À }ubpεq} 1

2
,Bω

1

|y|2
.

By this way, we have for all }y} ą A,

|L| À |upyq| ` }ubpεq} 1
2
,Bω

1

|y|
.

We get that, for all |y| ą A

|L|

ˆ
ż

|y|ąA

1

logp|y|q2|y|2

˙
1
2

À

ˆ
ż

|y|ąA

|upyq|2

logp|y|q2|y|2

˙
1
2

` }ubpεq} 1
2
,Bω

ˆ
ż

|y|ąA

1

logp|y|q2|y|4

˙
1
2

.

The fact that A is uniformly independent of ub and the well-posedness of the problem
(4.A.7) give

|L| À }ubpεq} 1
2
,Bω.
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Using similar computations as in [Caubet et al., 2016, Lemma B.3], we also have

}W p
x

ε
q}1,Ωε À ε}ubpεq} 1

2
,Bω.

We then define zε def
“ vε ´ W px

ε
q and pzε

def
“ qε ´ ε´1PW px

ε
q. Notice that the couple

pzε, pzεq satisfies
$

’

’

’

’

&

’

’

’

’

%

´∆zε ` ∇pzε “ 0 in Ωε,

div zε “ 0 in Ωε,

zε “ ´W p
x

ε
q on BΩ,

zε “ L on Bωε.

Using Lemma 4.A.1 and Lemma 4.A.3, we get that

}zε}1,Ωε À }W p
x

ε
q} 1

2
,BΩ ` |logpεq|

´ 1
2 |L|,

À ε}ubpεq} 1
2
,Bω ` |logpεq|

´ 1
2 }ubpεq} 1

2
,Bω.

So finally, we get

}vε}1,Ωε À }zε}1,Ωε ` }W p
x

ε
q}1,Ωε ,

À ε}ubpεq} 1
2
,Bω ` |logpεq|

´ 1
2 }ubpεq} 1

2
,Bω ` }ubpεq} 1

2
,Bω À }ubpεq} 1

2
,Bω.

4.A.2 Proof of Lemma 4.2.2

Restated Lemma 4.2.2. Let η P H
1
2 pBωεq X L2

0,npBωεq be given, there exists pvεη, l
ε
ηq P

V ˆ Q such that
$

’

&

’

%

´∆vεη ` ∇lεη “ 0 in Ωε
Y ωε,

div vεη “ 0 in Ω,

vεη “ η on Bωε,

(4.A.8)

and
∥vεη∥1,Ω À ∥η∥ 1

2
,ε. (4.A.9)

Proof of Lemma 4.2.2. Classical results on Stokes equations ensure the existence of
pvεη, l

ε
ηq in V ˆ Q satisfying (4.A.8). Now, we would like to prove the a priori estimate

(4.A.9). On one hand, according to Lemma 4.A.4,

}vεη}1,Ωε À }η} 1
2
,ε. (4.A.10)
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On the other hand, by setting pvεηpεq, lεηpεqq defined on ω such that pvεηpεqpxq, lεηpεqpxqq “

pvεηpεxq, lεηpεxqq for all x P ω, the pair pvεηpεq, lεηpεqq satisfies
$

’

&

’

%

´∆vεηpεq ` ∇lηpεq “ 0 in ω,

div vεηpεq “ 0 in ω,

vεηpεq “ ηpεq on Bω.

We deduce that
}vεηpεq}1,ω À }ηpεq} 1

2
,Bω.

By re-scaling we have

ε´2
}vεη}

2
ωε ` }∇vεη}

2
ωε À }ηpεq}

2
1
2
,Bω
.

and
}vεη}1,ωε À }η} 1

2
,ε. (4.A.11)

Gathering (4.A.10) and (4.A.11), we obtain inequality (4.A.9).

4.A.3 Proof of Lemma 4.2.3

Restated Lemma 4.2.3. Let q P Q be given, there exists wε
q P H1

0 pΩq such that
#

div wε
q “ q in Ω,

wε
q “ 0 on Bωε,

and
}wε

q}1,Ω À |logpεq|
1
2 }q}Ω.

Proof of Lemma 4.2.3. Consider q P Q be given. We first define pvεq , l
ε
qq P H1

0 pΩqˆL2
0pΩq

the unique solution of the system
#

´∆vεq ` ∇lεq “ 0 in Ω,

div vεq “ q in Ω.

It satisfies
}vεq}1,Ω À }q}Ω. (4.A.12)

Next, we consider pṽεq , l̃
ε
qq P H1pΩq ˆ L2

0pΩq solution of
$

’

’

’

’

&

’

’

’

’

%

´∆ṽq ` ∇l̃εq “ 0 in Ω,

div ṽεq “ 0 in Ω,

ṽεq “ ´vεq on BΩ,

ṽεq “ ´vεq on Bωε.
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Since q P Q,
ş

Bωε v
ε
q ¨ n´ “

ş

BΩ
vεq ¨ n` “ 0, so according to Lemma 4.A.1 and

Lemma 4.A.4, by linearity, we have

}ṽεq}1,Ω À }vεq} 1
2
,BΩ ` }vεq} 1

2
,ε.

Consequently, using succesively (4.A.12), the standard trace inequality from H
1
2 pBΩq to

H1pΩq, and Lemma 3.3.2 for the estimate of the trace theorem on the boundary Bωε, we
obtain

}ṽεq}1,Ω À |logpεq|
1
2 }q}Ω.

Eventually, if we setwε
q

def
“ vεq `ṽεq P H1

0 pΩq, we see that it satisfies the desired properties.

4.A.4 Proof of Theorem 4.2.4

Restated Theorem 4.2.4. LetQ1 andQ2 be two reflexive Banach spaces, a : XˆX Ñ R,
b1 : Q1 ˆ X Ñ R, b2 : Q2 ˆ X Ñ R three continuous bilinear forms, c1 : Q1 Ñ R,
c2 : Q2 Ñ R, d : X Ñ R three continuous linear forms, we consider the twofold saddle
point problem: find pu, λ1, λ2q P X ˆ Q1 ˆ Q2 such that

$

’

’

&

’

’

%

apu, vq ´ b1pλ1, vq ´ b2pλ2, vq “ dpvq, @v P X,

b1pµ1, uq “ c1pµ1q, @µ1 P Q1,

b2pµ2, uq “ c2pµ2q, @µ2 P Q2.

(4.A.13)

Let
Zbi

def
“ tv P X|bipµi, vq “ 0 @µi P Qiu Ă X i “ 1, 2. (4.A.14)

We suppose that there exists β1 ą 0, β2 ą 0 such that

sup
vPZb2

b1pλ1, vq

}v}X
ě β1}λ1}Q1 @λ1 P Q1, (4.A.15)

sup
vPZb1

b2pλ2, vq

}v}X
ě β2}λ2}Q2 @λ2 P Q2. (4.A.16)

and that there exists α ą 0

apv, vq ě α}v}
2
X @v P X. (4.A.17)

Then the Problem (4.A.13) is well posed and we have the following estimates on u, λ1 and
λ2:

}u}X ď α´1
}d} ` β´1

1 p1 ` α´1
}a}q}c1} ` β´1

2 p1 ` α´1
}a}q}c2}, (4.A.18)

and
}λ1}Q1 ď β´1

1 p}d} ` }a}}u}Xq, }λ2}Q2 ď β´1
2 p}d} ` }a}}u}Xq.
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Proof of Theorem 4.2.4. We begin by noticing that conditions (4.A.15) and (4.A.16) imply
that there exists w1 P Zb2 and w2 P Zb1 such that

b1pµ1, w1q “ c1pµ1q @µ1 P Q1, }w1}X ď β´1
1 }c1},

b2pµ2, w2q “ c2pµ2q @µ2 P Q2, }w2}X ď β´1
2 }c2}.

Setting now
κ “ u ´ w (4.A.19)

with w “ w1 ` w2, we have for all µ1 P Q1, µ2 P Q2,

b1pµ1, κq “ b1pµ1, w1q ` b1pµ1, w2q ´ b1pµ1, uq “ c1pµ1q ´ c1pµ1q “ 0,

b2pµ2, κq “ b2pµ2, w1q ` b2pµ2, w2q ´ b2pµ2, uq “ c2pµ2q ´ c2pµ2q “ 0.

We deduce then that κ P Zb1 X Zb2 . Besides we have for all v P Zb1 X Zb2 ,

apκ, vq “ apu, vq ´ apw, vq “ dpvq ´ apw, vq.

The continuity assumption on a and d, as well as the coercivity assumption (4.A.17) on a,
imply

α}κ}X ď
apκ, κq

}κ}X
“
dpκq ´ apw, κq

}κ}X
ď }d} ` }a}}w}X .

So, we get
}κ}X ď α´1

p}d} ` }a}}w}Xq.

Applying triangular inequality to equation (4.A.19), we obtain

}u}X ď }κ}X ` }w}X ď α´1
}d} ` β´1

1 pα´1
}a} ` 1q}c1} ` β´1

2 pα´1
}a} ` 1q}c2}.

which corresponds to (4.A.18). Taking v P Zb1 in the first equation of system (4.A.13), we
have

b2pλ2, vq “ dpvq ´ apu, vq.

By continuity of a and d and the inf-sup condition (4.A.16) on b2, we get

β2}λ2}Q2 ď sup
vPZb1

,v‰0

b2pλ2, vq

}v}X
“ sup

vPZb1
,v‰0

dpvq ´ apu, vq

}v}X
ď }d} ` }a}}u}X .

We thus obtain
}λ2}Q2 ď β´1

2 p}d} ` }a}}u}Xq.

Finally, we have in a similar way

}λ1}Q1 ď β´1
1 p}d} ` }a}}u}Xq.
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4.A.5 Proof of Lemma 4.2.6

Lemma 4.A.5. Let puε
N , p

ε
N ,λ

ε
Nq P V ˆQˆFN be the solution of Problem (4.2.14). We

have inH´ 1
2 pBωεq

λε
N “ ε

`

σpuε
N , p

ε
Nq

`n`
´ σpuε

N , p
ε
Nq

´n`
˘

, (4.A.20)

where n` is the exterior normal vector to BΩε, and σpuε
N , p

ε
Nq` and σpuε

N , p
ε
Nq´ are the

restrictions of σpuε
N , p

ε
Nq to Ωε and ωε, respectively.

Proof of Lemma 4.2.6. On one hand, we have, for ϕ P H1
0 pΩq,

2

ż

Ω

εpuε
Nq : εpϕq ´

ż

Ω

pεNdiv ϕ

“ 2

ż

Ωε

εpuε
Nq : εpϕq ` 2

ż

ωε

εpuε
Nq : εpϕq ´

ż

Ωε

pεNdiv ϕ´

ż

ωε

pεNdiv ϕ,

“ ´

ż

Ωε

∆uε
N ¨ ϕ´

ż

ωε

∆uε
N ¨ ϕ`

ż

Ωε

∇pε ¨ ϕ `

ż

ωε

∇pε ¨ ϕ

` xpσpuε
N , p

ε
Nq

`n`
´ σpuε

N , p
ε
Nq

´n`,ϕy´ 1
2
,Bωε ,

and since ´∆uε
N ` ∇pε “ 0 in Ωε and ´∆uε

N ` ∇pε “ 0 in ωε,

2

ż

Ω

εpuε
Nq : εpϕq ´

ż

Ω

pεNdiv ϕ “ xσpuε
N , p

ε
Nq

`n`
´ σpuε

N , p
ε
Nq

´n`,ϕy´ 1
2
,Bωε

On the other hand, we have

2

ż

Ω

εpuε
Nq : εpϕq ´

ż

Ω

pεNdiv ϕ “ pλε
N ,ϕqε @ϕ P H1

0 pΩq.

Identifying these two relations, we obtain

pλε
N ,ϕqε “ ε´1

pλε
N ,ϕqBωε

“ xσpuε
N , p

ε
Nq

`n`
´ σpuε

N , p
ε
Nq

´n`,ϕy´ 1
2
,Bωε

for all ϕ P H1
0 pΩq. Thus, since the trace operator from H1

0 pΩq on H
1
2 pBωεq is surjective,

we get (4.A.20).
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4.A.6 Proof of Lemma 4.2.7

Restated Lemma 4.2.7. Let uε
N P V be the solution of Problem (4.2.14) and let ub be

given by (4.2.5). There exists aεk,r, a
ε
k,θ, b

ε
k,r, b

ε
k,θ P R such that for ε P p0, ρq,

puε
Npεqpθq ´ ubpεqpθqq ¨ er “

ˆ

ε

ρ

˙N`1 8
ÿ

k“N

`

aεk,r cospkθq ` bεk,r sinpkθq
˘

,

puε
Npεqpθq ´ ubpεqpθqq ¨ eθ “

ˆ

ε

ρ

˙N`1 8
ÿ

k“N

`

aεk,θ cospkθq ` bεk,θ sinpkθq
˘

,

(4.A.21)

Moreover, there exists 0 ă ρ̃ ă ρ such that for ε P p0, ρ̃q, the following estimate holds:

˜

8
ÿ

k“N

p1 ` kq
`

|aεk,r|
2

` |aεk,θ|
2

` |bεk,r|
2

` |bεk,θ|
2
˘

¸
1
2

À p1 ` Nq p|vb| ` ε|wb|q.

Proof of Lemma 4.2.7. Since div uε
N “ 0 in Ω, there exists a scalar function ψε

N called
stream function satisfying

uε
N ¨ er “

1

r
Bθψ

ε
N , uε

N ¨ eθ “ ´Brψ
ε
N . (4.A.22)

Moreover, since uε
N satisfies the homogeneous Stokes equations in each subdomain ωρzωε

and ωε, ψε
N satisfies the following biharmonic equation

´∆2ψε
N “ 0 in ωρ

zĎωε, ´∆2ψε
N “ 0 in ωε.

Using separation of variables method and the polar coordinates pr, θq P R2 ˆ p0, 2πq such
that

vpr, θq
def
“ vprpcospθqex ` sinpθqeyqq,

we can derive a general form for ψε
N given by

ψε
Npr, θq “ Φ0prq `

8
ÿ

k“1

Φc
kprq cospkθq ` Φs

kprq sinpkθq (4.A.23)

for all pr, θq P r0, εmaxs ˆ p0, 2πq, where the radial functions Φc
k and Φs

k depend on the
subdomains ωε and ωρzωε and satisfy

#

Φ0 P span tr2, logprq, 1, r2logprqu, Φc
1,Φ

s
1 P span tr3, r, rlogprq, r´1

u,

Φc
k,Φ

s
k P span trk`2, rk, r´k`2, r´k

u @k ě 2.
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We refer to [Kounchev, 2001] for the derivation of (4.A.23). From (4.A.22) and (4.A.23),
we can infer the following expression for uε

N in ωε and ωρzĎωε:

uε
Npr, θq ¨ er “ ´pca

1,1r
2

` ca
2,1q sinpθq ` psa

1,1r
2

` sa
2,1q cospθq

`

8
ÿ

k“2

´kpca
1,kr

k`1
` ca

2,kr
k´1

q sinpkθq `

8
ÿ

k“2

kpsa
1,kr

k`1
` sa

2,kr
k´1

q cospkθq
(4.A.24)

uε
Npr, θq ¨ eθ “ ´ 2ca

1,0r ´ p3ca
1,1r

2
` ca

2,1q cospθq ´ p3sa
1,1r

2
` sa

2,1q sinpθq

´

8
ÿ

k“2

`

pk ` 2qca
1,kr

k`1
` kca

2,kr
k´1

˘

cospkθq

´

8
ÿ

k“2

`

pk ` 2qsa
1,kr

k`1
` ksa

2,kr
k´1

˘

sinpkθq

(4.A.25)

for all pr, θq P r0, εs ˆ p0, 2πq and

uε
Npr, θq ¨ er “ ´pc‘

1,1r
2

` c‘
2,1 ` c‘

3,1logprq ` c‘
4,1r

´2
q sinpθq

` ps‘
1,1r

2
` s‘

2,1 ` s‘
3,1logprq ` s‘

4,1r
´2

q cospθq

´

8
ÿ

k“2

kpc‘
1,kr

k`1
` c‘

2,kr
k´1

` c‘
3,kr

´k`1
` c‘

4,kr
´k´1

q sinpkθq

`

8
ÿ

k“2

kps‘
1,kr

k`1
` s‘

2,kr
k´1

` s‘
3,kr

´k`1
` s‘

4,kr
´k´1

q cospkθq,

(4.A.26)

uε
Npr, θq ¨ eθ “ ´ p2c‘

1,0r ` c‘
2,0r

´1
q

´ p3c‘
1,1r

2
` c‘

2,1 ` c‘
3,1plogprq ` 1q ´ c‘

4,1r
´2

q cospθq

´ p3s‘
1,1r

2
` s‘

2,1 ` s‘
3,1plogprq ` 1q ´ s‘

4,1r
´2

q sinpθq

´

8
ÿ

k“2

ppk ` 2qc‘
1,kr

k`1
` kc‘

2,kr
k´1

q cospkθq

´

8
ÿ

k“2

pp´k ` 2qc‘
3,kr

´k`1
´ kc‘

4,kr
´k´1

q cospkθq

´

8
ÿ

k“2

ppk ` 2qs‘
1,kr

k`1
` ks‘

2,kr
k´1

q sinpkθq

´

8
ÿ

k“2

pp´k ` 2qs‘
3,kr

´k`1
´ ks‘

4,kr
´k´1

q sinpkθq

(4.A.27)
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for all pr, θq P rε, ρs ˆ p0, 2πq. The rest of the proof is structured as follows. First, we
will derive a series of equations for the coefficients ca

j,k, c
‘
j,k and sa

j,k, s
‘
j,k from which will

deduce their expressions in terms of the boundary conditions on Bωε and the value of uε
N

on Bωρ. More precisely, the coefficients will be expressed in terms of vb, wb and the
following quantities:

ξε,jk,r
def
“ F j

k puε
Npρq ¨ erq, ξε,jk,θ

def
“ F j

k puε
Npρq ¨ eθq (4.A.28)

for all pk, jq P t0, . . . , Nu ˆ tc, su, where the operated F j
k : p0, Lq Ñ R are defined in

(3.2.3). In a second step, we will use the a priori estimate on uε
N given by Theorem 4.2.1 to

establish the desired a priori bounds only in terms of the data vb and wb. We only consider
the coefficients ca

j,k, c
‘
j,k, as the coefficients sa

j,k, s
‘
j,k play a symmetric role. Let us start by

writing the reduced order boundary conditions on ωε. These conditions read

pµN ,u
ε
Nqε “

`

µN ,vb ` εwbeθ
˘

ε
@µN P FN , (4.A.29)

By writing this condition again each basis element of the finite-dimension space FN intro-
duced in (4.2.1), we get the following set of equations:

$

’

’

’

’

’

&

’

’

’

’

’

%

pex,u
ε
Nqε “ vb ¨ ex,

pey,u
ε
Nqε “ vb ¨ ey,

psinpθqex ` cospθqey,u
ε
Nqε “ 0,

psinpθqex ´ cospθqey,u
ε
Nqε “ ´wb

pcospθqex ´ sinpθqey,u
ε
Nqε “ 0,

$

’

’

’

&

’

’

’

%

pcospkθqex,u
ε
Nqε “ 0,

pcospkθqey,u
ε
Nqε “ 0,

psinpkθqex,u
ε
Nqε “ 0,

psinpkθqey,u
ε
Nqε “ 0,

(4.A.30)

for all k P t2, . . . , Nu. Since the expressions (4.A.24)-(4.A.25) and (4.A.26)-(4.A.27) of
uε

N are given in a polar frame, we would like to reformulate the system (4.A.30) in polar
coordinates. To do so, we notice that for k P t2, . . . , Nu, the system (4.A.30) is equivalent
to

$

’

’

’

&

’

’

’

%

pcospkθqex ` sinpkθqey,u
ε
Nqε “ 0,

psinpkθqex ` cospkθqey,u
ε
Nqε “ 0,

psinpkθqex ´ cospkθqey,u
ε
Nqε “ 0,

pcospkθqex ´ sinpkθqey,u
ε
Nqε “ 0,

(4.A.31)

such that the kinematic coupling condition (4.A.29) writes equivalently in polar coordi-
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nates
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

pcospθqer ´ sinpθqeθ,u
ε
Nqε “ vb ¨ ex,

psinpθqer ` cospθqeθ,u
ε
Nqε “ vb ¨ ey,

psinp2θqer ` cosp2θqeθ,u
ε
Nqε “ 0,

p´eθ,u
ε
Nqε “ ´wb,

pcosp2θqer ´ sinp2θqeθ,u
ε
Nqε “ 0,

pcosppk ´ 1qθqer ` sinppk ´ 1qθqeθ,u
ε
Nqε “ 0,

psinppk ` 1qθqer ` cosppk ` 1qθqeθ,u
ε
Nqε “ 0,

psinppk ´ 1qθqer ´ cosppk ´ 1qθqeθ,u
ε
Nqε “ 0,

pcosppk ` 1qθqer ´ sinppk ` 1qθqeθ,u
ε
Nqε “ 0

(4.A.32)

for all k P t2, . . . , Nu. Applying (4.A.32) to (4.A.24)-(4.A.25) yields the following con-
ditions on the ca

j,k:

• N “ 0 : 2ε2ca
1,1 ´ ca

2,1 “ vb ¨ ey, (4.A.33)

• N “ 1 : ´2ca
1,0 “ wb, 2ε2ca

1,1 ´ ca
2,1 “ vb ¨ ey, (4.A.34)

• N ě 2 :

$

’

&

’

%

´2ca
1,0 “ wb, ca

1,1 “ 0, ´ca
2,1 “ vb ¨ ey,

k P t2, . . . , N ´ 1u : ca
1,k “ ca

2,k “ 0,

k P tN, N ` 1u : ´ pk ` 1qε2ca
1,k ´ kca

2,k “ 0.

(4.A.35)

We proceed by expressing the boundary conditions on Bωρ. By evaluating equations
(4.A.26)-(4.A.27) for r “ ρ and subsequently projecting the resulting expressions onto
the different Fourier modes, we obtain

‹ k “ 0 : ´ p2c‘
1,0ρ ` c‘

2,0ρ
´1

q “ ξε,c0,θ, (4.A.36)

‹ k “ 1 :

#

´pc‘
1,1ρ

2
` c‘

2,1 ` c‘
3,1logpρq ` c‘

4,1ρ
´2

q “ξε,s1,r,

´p3c‘
1,1ρ

2
` c‘

2,1 ` c‘
3,1plogpρq ` 1q ´ c‘

4,1ρ
´2

q “ξε,c1,θ,
(4.A.37)

‹ k ě 2 :

$

’

’

’

’

&

’

’

’

’

%

´ kpρk`1c‘
1,k ` ρk´1c‘

2,kq

´ kpρ´k`1c‘
3,k ` ρ´k´1c‘

4,kq “ ξε,sk,r,

´
`

pk ` 2qρk`1c‘
1,k ` kρk´1c‘

2,k

˘

´
`

p´k ` 2qρ´k`1c‘
3,k ´ kρ´k´1c‘

4,k

˘

“ ξε,ck,θ.

(4.A.38)

We now look at the kth Fourier modes of uε
N on Bωε. Namely, taking r “ ε both in
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(4.A.24)-(4.A.25) and (4.A.26)-(4.A.27) we get

‹ k “ 0 : ´ p2εc‘
1,0 ` ε´1c‘

2,0q “ ´2εca
1,0, (4.A.39)

‹ k “ 1 :

$

’

’

’

’

&

’

’

’

’

%

´ pε2c‘
1,1 ` c‘

2,1 ` logpεqc‘
3,1 ` ε´2c‘

4,1q “

´ pε2ca
1,1 ` ca

2,1q,

´ p3ε2c‘
1,1 ` c‘

2,1 ` plogpεq ` 1qc‘
3,1 ´ ε´2c‘

4,1q “

´ p3ε2ca
1,1 ` ca

2,1q,

(4.A.40)

‹ k ě 2 :

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

´ kpεk`1c‘
1,k ` εk´1c‘

2,kq

´ kpε´k`1c‘
3,k ` ε´k´1c‘

4,kq “

´ kpεk`1ca
1,k ` εk´1ca

2,kq,

´ ppk ` 2qεk`1c‘
1,k ` kεk´1c‘

2,kq

´ pp´k ` 2qε´kc‘
3,k ´ kε´k´1c‘

4,kq “

´ ppk ` 2qεk`1ca
1,k ` kεk´1ca

2,kq.

(4.A.41)

Finally, we apply the result of Lemma 4.2.6 to close the system of equations. To do so, we
need an expression of pεN in terms of the coefficients ca

k,j, c
‘
k,j and sa

k,j, s
‘
k,j . We have that

pεN is harmonic in ωε and ωρzωε, so from the method of separation of variables, we can
derive a general form of pεN in ωε,

pεNpr, θq “

8
ÿ

k“1

γa
1,kr

k cospkθq ` σa
1,kr

k sinpkθq @pr, θq P r0, εq ˆ p0, 2πq, (4.A.42)

and in ωρzωε,

pεNpr, θq “

8
ÿ

k“1

pγ‘
1,kr

k
` γ‘

2,kr
´k

q cospkθq ` pσ‘
1,kr

k
` σ‘

2,kr
´k

q sinpkθq, (4.A.43)

for all pr, θq P pε, ρs ˆ p0, 2πq. Since puε
N , p

ε
Nq solves the Stokes equations in pωρzωε and

in ωε, we have

∆uε
N “ ∇pN in ωρ

zωε, ∆uε
N “ ∇pN in ωε. (4.A.44)

From (4.A.44), we deduce an expression of the coefficients σa
j,k (resp. σ‘

j,k) in terms of the
coefficients ca

j,k (resp. c‘
j,k) as follows:

σa
1,1 “ ´8ca

1,1, σ‘
1,1 “ ´8c‘

1,1, σ‘
2,1 “ 2c‘

3,1,

σa
1,k “ ´4pk ` 1qca

1,k, σ‘
1,k “ ´4pk ` 1qc‘

1,k, σ‘
2,k “ ´4pk ´ 1qc‘

3,k

(4.A.45)
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for all k ě 2. By substituting (4.A.45) into (4.A.42) and (4.A.43), we derive an expression
for the pressure jump across the interface, Bωε, in terms of the coefficients ca

j,k and c‘
j,k.

Similarly, differentiating (4.A.24) and (4.A.26) yields an expression for the gradient jump
across the interface, again in terms of the coefficients ca

j,k and c‘
j,k. Consequently, we can

deduce an expression for the stress jump accross Bωε. Using the result from Lemma 4.2.6,
we obtain

• tN P t0, 1u, k “ 1u:

10ε2ca
1,1 “ 10ε2c‘

1,1 ´ 3c‘
3,1 ` 6ε´2c‘

4,1, (4.A.46)

• tN “ 1, k “ 0u:
ca
1,0 “ c‘

1,0, (4.A.47)

• tN ě 1, k ě 2 X k P tN, N ` 1uu:

pk ` 1qpk ` 4qεk`1c‘
1,kε

k`1
` kpk ´ 1qεk´1c‘

2,k

` p3k2 ` k ´ 4qε´k`1c‘
3,k ` 3kpk ` 1qε´k´1c‘

4,k

“ pk ` 1qpk ` 4qεk`1ca
1,k ` kpk ´ 1qεk´1ca

2,k.

(4.A.48)

• tN ě 0, k ě N ` 2u:
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

pk ` 1qpk ´ 4qεk`1c‘
1,k ` kpk ´ 1qεk´1c‘

2,k

´ pk ` 4qpk ´ 1qc‘
3,kε

´k`1
´ kpk ` 1qc‘

4,kε
´k´1

“ pk ` 1qpk ´ 4qεk`1ca
1,k ` kpk ´ 1qεk´1ca

2,k

kpk ` 1qεk`1c‘
1,k ` kpk ´ 1qεk´1c‘

2,k

` kpk ´ 1qc‘
3,kε

´k`1
` kpk ` 1qc‘

4,kε
´k´1

“ kpk ` 1qεk`1ca
1,k ` kpk ´ 1qεk´1ca

2,k

(4.A.49)

Thanks to the system of equations obtained above, we can express the coefficients ca
k,j, c

‘
k,j

in terms of ξε,jk,r, ξ
ε,j
k,θ defined in (4.A.28). In details, setting ε̃ “ ε{ρ we have

• tN “ 0, k “ 0u, from (4.A.36), (4.A.39) and (4.A.47),

c‘
1,0 “ ´

ξε,s0,θ

2ρ
, c‘

2,0 “ 0, ca
1,0 “ c‘

1,0. (4.A.50)

• tN ě 1, k “ 0u, from (4.A.34), (4.A.35)1, (4.A.36) and (4.A.39),

c‘
1,0 “ ´

ε2wb ´ ρξε,c0,θ

2pε2 ´ ρ2q
, ca

1,0 “ ´
dtθ

2
, c‘

2,0 “ ´ε2wb ´ 2c‘
1,0ε

2.
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• tN P t0, 1u, k “ 1u, from (4.A.33), (4.A.37), (4.A.40) and (4.A.46),

c‘
1,1 “

Aε
1ξ

ε,s
1,r ` Bε

1ξ
ε,c
1,θ ` Cε

1vb ¨ ey

Dε
1

, c‘
2,1 “

Eε
1ξ

ε,s
1,r ` F ε

1 ξ
ε,c
1,θ ` Gε

1vb ¨ ey

Dε
1

ca
1,1 “ c‘

1,1, ca
2,1 “ ´2ε2c‘

1,1 ´ vb ¨ ey,

c‘
3,1 “ ´2

2ε2c‘
1,1 ` c‘

2,1 ` vb ¨ ey

2logpεq ` 1
, c‘

4,1 “ ´ε2
2ε2c‘

1,1 ` c‘
2,1 ` vb ¨ ey

2logpεq ` 1
.

with

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Aε
1 “ ρ2p2logpε̃q ` pε̃ ´ 1qpε̃ ` 1qq,

Bε
1 “ ρ2p´2logpε̃q ` pε̃ ´ 1qpε̃ ` 1qq,

Cε
1 “ 2ρp1 ´ ε̃qp1 ` ε̃q,

Eε
1 “ ´ρ4p6logpε̃q ` p6logpρq ` 3q ` 4ε̃2plogpρq ` 1q ´ 2ε̃4q,

F ε
1 “ ρ4p2logpε̃q ` p2logpρq ` 1q ´ 4ε̃2logpρq ´ 2ε̃4q,

Gε
1 “ 2ρ4pp2logpρq ´ 1q ` 2ε̃2q,

Dε
1 “ 4ρ4pplogpε̃q ` 1q ´ 2ε̃2 ` ε̃4q.

(4.A.51)

• tN ě 2, k “ 1u, from (4.A.35)1, (4.A.37) and (4.A.40),

c‘
1,1 “

Aε
1ξ

ε,s
1,r ` Bε

1ξ
ε,c
1,θ

Dε
1

, c‘
2,1 “

Eε
1ξ

ε,s
1,r ` F ε

1 ξ
ε,c
1,θ

Dε
1

,

ca
1,1 “ 0, ca

2,1 “ ´dtr ¨ ey, c‘
3,1 “ ´2

2c‘
1,1ε

2 ` c‘
2,1 ` vb ¨ ey

2logpεq ` 1
,

c‘
4,1 “ ε2

ε2c‘
1,1p2 logpεq ´ 1q ´ c‘

2,1 ´ dtr ¨ ey

2logpεq ` 1
,

with
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Aε
1 “ ρ2p2logpε̃q ´ 1 ` ε̃2q,

Bε
1 “ ρ2p´2logpε̃q ´ 1 ` ε̃2q,

Eε
1 “ ρ4p´6logpε̃q ` 3p2logpρq ´ 1q ` 4ε̃2plogpρq ` 1q ´ ε̃4q,

F ε
1 “ ρ4plogpε̃q ` logpρq ` 1 ´ 4ε̃2logpρq ´ ε̃4q,

Dε
1 “ ρ2p4plogpε̃q ` 1q ` ε̃2plogpε̃q ´ 1qq.
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• tN ě 2, k P t2, . . . , N ´ 1uu, from (4.A.35)2, (4.A.38) and (4.A.41),

c‘
1,k “

Aε
kξ

ε,s
k,r ` Bε

kξ
ε,c
k,θ

Dε
k

, c‘
2,k “

Eε
kξ

ε,s
k,r ` F ε

k ξ
ε,c
k,θ

kDε
k

ca
1,k “ 0, ca

2,k “ 0, c‘
3,k “ ´ε2pk´1q

`

pk ` 1qε2c‘
1,k ` kc‘

2,k

˘

,

c‘
4,k “ ε2k

`

kε2c‘
1,k ` pk ´ 1qc‘

2,k

˘

.

with
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Aε
k “ ρ3k´1

p1 ` pk ´ 2qε̃2pk´1q
´ pk ´ 1qε̃2kq,

Bε
k “ ´ρ3k´1

p1 ´ kε̃2pk´1q
` pk ´ 1qε̃2kq,

Eε
k “ ρ3k`1

ppk ` 2q ` pk ` 1qpk ´ 2qε̃2k ´ k2ε̃2pk`1q
q,

F ε
k “ ´kρ3k`1

p1 ´ pk ` 1qε̃2k ` kε̃2pk`1q
q,

Dε
k “ 2ρ4kp1 ´ k2ε̃2pk´1q

` 2pk2 ´ 1qε̃2k ´ k2ε̃2pk`1q
` ε̃4kq.

(4.A.52)

• tk ě 2, k P tN,N ` 1uu, from (4.A.35)3, (4.A.38), (4.A.41) and (4.A.48)

c‘
1,k “

Aε
kξ

ε,s
k,r ` Bε

kξ
ε,c
k,θ

Dε
k

, c‘
2,k “

Eε
kξ

ε,s
k,r ` F ε

k ξ
ε,c
k,θ

kDε
k

,

ca
1,k “ c‘

1,k, ca
2,k “ ´

k ` 1

k
ε2c‘

1,k,

c‘
3,k “ ´ε2pk´1q

ppk ` 1qε2c‘
1,k ` kc‘

2,kq,

c‘
4,k “ ε2k

k ´ 1

k
ppk ` 1qε2c‘

1,k ` kc‘
2,kq.

with
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Aε
k “ ´ρk`1

p1 ` pk ´ 2qε̃2pk´1q
´ pk ´ 1qε̃2kq,

Bε
k “ ρk`1

p1 ´ kε̃2pk´1q
` pk ´ 1qε̃2kq,

Eε
k “ ρk`3

ppk ` 2q ` pk ´ 2qpk ` 1qε̃2k ´ pk2 ´ 1qε̃2pk`1q
q,

F ε
k “ ´ρk`3

pk ´ kpk ` 1qε̃2k ´ pk2 ´ 1qε̃2pk`1q
q,

Dε
k “ ´2ρ2pk`1q

p1 ´ k2ε̃2pk´1q
` 2pk2 ´ 1qε̃2k ´ pk2 ´ 1qε̃2pk`1q

q.

(4.A.53)

• tN “ 0, k ě 2u
Ť

tk ě N ` 2u, from (4.A.38), (4.A.41) and (4.A.49)

c‘
1,k “

ξε,sk,r ´ ξε,ck,θ

2ρk`1
, c‘

2,k “ ´
pk ` 2qξε,sk,r ´ ξε,ck,θ

2kρk´1
,

ca
1,k “ c‘

1,k, ca
2,k “ c‘

2,k, c‘
3,k “ c‘

4,k “ 0.
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We deduce that uε
N ´ ub satisfies (4.2.23) with

• N “ 0

‹ k “ 0 : aεθ,0 “ ξε,c0,θ

‹ k “ 1 : bεr,1 “ ε̃ρ2c‘
1,1, aεθ,1 “ ´ε̃ρ2c‘

1,1,
‹ k ě 2:

$

’

’

&

’

’

%

bεr,k “ ´k
ξε,sk,r ´ ξε,ck,θ

2
ε̃k´N

`
pk ` 2qξε,sk,r ´ kξε,ck,θ

2
ε̃k´N´2,

aεθ,k “ ´pk ` 2q
ξε,sk,r ´ ξε,ck,θ

2
ε̃k´N

`
pk ` 2qξε,sk,r ´ kξε,ck,θ

2
ε̃k´N´2.

• N ě 1,

‹ k P tN,N ` 1u:

bεr,k “ ε̃k´Nρk`1c‘
1,k, aεθ,k “ ´ε̃k´Nρk`1c‘

1,k

‹ k ě N ` 2:
$

’

’

&

’

’

%

bεr,k “ ´k
ξε,sk,r ´ ξε,ck,θ

2
ε̃k´N

`
pk ` 2qξε,sk,r ´ kξε,ck,θ

2
ε̃k´N´2,

aεθ,k “ ´pk ` 2q
ξε,sk,r ´ ξε,ck,θ

2
ε̃k´N

`
pk ` 2qξε,sk,r ´ kξε,ck,θ

2
ε̃k´N´2.

In conclusion, we provide estimates on c‘
1,k for k P tN,N `1u. In particular, we derive

estimates up to a multiplicative constant uniformly independent of k. To denote this, we
introduce a subscript k to À, indicated as Àk. In what follows, we will extensively make
use of the following estimation:

|P pkq| Àk p1 ` kq
degpP q, @k P N, (4.A.54)

where P is a polynomial function of degree degpP q P R.

• k “ 1

c‘
1,1 “

Aε
1ξ

ε,s
1,r ` Bε

1ξ
ε,c
1,θ ` Cε

1vb ¨ ey

Dε
1

with Aε
1, B

ε
1, Cε

1 and Dε
1 given in (4.A.54). We deduce that

ρ2c‘
1,1 ÝÝÑ

ε̃Ñ0

1

2
ξε,s1,r ´

1

2
ξε,c1,θ.

Hence, there exists ρ1 ą 0 such that for ε P p0, ρ1q,

ρ2|c‘
1,1| À |ξε,s1,r| ` |ξε,c1,θ|.
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• k ě 2 X k P tN,N ` 1u,

c‘
1,k “

Aε
kξ

ε,s
k,r ` Bε

kξ
ε,c
k,θ

Dε
k

,

with Ak, Bk given in (4.A.53). We begin by providing upper bounds for |Aε
k| and

|Bε
k|. Taking ε̃ P p0, 1{4q, we have

|Aε
k| Àk ρ

k`1
`

1 ` p1 ` kqp1{4q
2pk´1q

` p1 ` kqp1{4q
2pk`1q

˘

,

|Bε
k| Àk ρ

k`1
`

1 ` p1 ` kq p1{4q
2pk´1q

` p1 ` kqp1{4q
2pk`1q

˘

Since the sequences p1 ` kqp1{4q2pk´1q and p1 ` kqp1{4q2pk`1q are bounded indepen-
dently of k, we deduce that for ε P p0, ρ{4q,

|Aε
k| Àk ρ

k`1, |Bε
k| Àk ρ

k`1.

Similarly for Dε
k, considering ε̃ P p0, 1{4q, we have

Dε
k Àk ´ρ2pk`1q

p1 ´ k2p1{4q
2pk´1q

´ pk ´ 1qpk ` 1qp1{4q
2pk`1q

q

Since the sequences k2
`

1
4

˘2pk´1q and pk ´ 1qpk ` 1q
`

1
4

˘2pk`1q are decreasing for
k ě 2, we deduce that

Dε
k Àk ´ρ2pk`1q

p1 ´ 4p1{4q
2

´ 3p1{4q
4
q Àk ´ρ2pk`1q

Therefore, for k ě 2 X k P tN,N ` 1u and ε P p0, ρ{4q,

ρk`1
|c‘

1,k| Àk |ξε,sk,r| ` |ξε,ck,θ|.

• k ě N ` 2
|bεr,k|

2
` |aεθ,k|

2
Àk p1 ` kq

2ε̃2pN´k´2q

Finally, by taking ρ̃ “ minpρ1, ρ{4q and setting

ξk
def
“ p|ξε,sk,r|

2
` |ξε,ck,θ|

2
` |ξε,sk,θ|

2
` |ξε,ck,r|

2
q
1
2 (4.A.55)

we deduce that, for all ε P p0, ρ̃q,

‹ k P tN,N ` 1u :|bεr,k|
2

` |aθ,k|
2

Àk

ˆ

ε

ρ

˙2pN´kq

ξ2k,

‹ k ě N ` 2 :|bεr,k|
2

` |aεθ,k|
2

Àk p1 ` kq
2

ˆ

ε

ρ

˙2pN´k´2q

ξ2k.
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We can proceed in a similar way to obtain a priori estimates for bεθ,k and aεr,k. We then get
that, for all ε P p0, ρ̃q,

8
ÿ

k“N

p1 ` kq
`

|aεr,k|
2

` |aεθ,k|
2

` |bεr,k|
2

` |bεθ,k|
2
˘

“

N`1
ÿ

k“N

p1 ` kq
`

|aεr,k|
2

` |aεθ,k|
2

` |bεr,k|
2

` |bεθ,k|
2
˘

`

8
ÿ

k“N`2

p1 ` kq
`

|aεr,k|
2

` |aεθ,k|
2

` |bεr,k|
2

` |bεθ,k|
2
˘

,

À

N`1
ÿ

k“N

p1 ` kqξ2k ` p1 ` Nq
2

8
ÿ

k“0

ˆ

ρ̃

ρ

˙2k

p1 ` kq
2
p1 ` k ` N ` 2qξ2k`N`2

where the last inequality comes from p1 ` k ` N ` 2q2 Àk p1 ` kq2p1 ` Nq2. Since

the sequence
ˆ

ρ̃

ρ

˙2k

p1 ` kq2 is bounded, using successively the equivalence between

the norm } ¨ }F
1
2
,ρ

and } ¨ } 1
2
,ρ, the standard trace theorem from H

1
2 pBωρq to H1pΩq and

Theorem 4.2.1, we finally have

8
ÿ

k“N

p1 ` kq
`

|aεr,k|
2

` |aεθ,k|
2

` |bεr,k|
2

` |bεθ,k|
2
˘

À p1 ` Nq
2

8
ÿ

k“0

p1 ` kqξ2k

À p1 ` Nq
2
}uε

N}
F
1
2
,ρ

À p1 ` Nq
2
}uε

N}1,Ω À p1 ` Nq
2
`

|vb| ` ε|wb|
˘

.

(4.A.56)

This concludes the proof.

4.A.7 Decomposition of the solution of (4.4.3) into a regular and singular part

4.A.7.1 Coefficients and singular functions for the velocity decomposition

In this section, we provide the expression of the coefficients aul,j{b
u
l,j and singular functions

ϕε,c
l,j {ϕε,s

l,j for the decomposition of uε
N into a regular and singular part, as presented in

equation (4.3.30). From one value of N to the following, if nothing is precised for the
value of a function or a coefficient previously defined, it means that it remains unchanged
from its last definition. For instance, between cases N “ 0 and N “ 1, the values of au1,1,
bu1,1, ϕ

ε,c
1,1 and ϕε,s

1,1 remains unchanged. The singular enrichment functions for the velocity
space in the augmented finite element method of Section 4.3.2 are given by:

• N P t0, 1u:
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‹ j “ 1:

au1,1
def
“ 2ε2c‘

1,1 ` c‘
2,1 ` vb ¨ ey, bu1,1

def
“ 2ε2s‘

1,1 ` s‘
2,1 ` vb ¨ ex,

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

ϕε,c
1,1pr, θq ¨ er

def
“

ˆ

1rďε `
2logprq ` pε{rq2

2logpεq ` 1
1rąε

˙

sinpθq,

ϕε,c
1,1pr, θq ¨ eθ

def
“

ˆ

1rďε `
2plogprq ` 1q ´ pε{rq2

2logpεq ` 1
1rąε

˙

cospθq,

ϕε,s
1,1pr, θq ¨ er

def
“ ´

ˆ

1rďε `
2logprq ` pr{εq2

2logpεq ` 1
1rąε

˙

cospθq,

ϕε,s
1,1pr, θq ¨ eθ

def
“

ˆ

1rďε `
2plogprq ` 1q ´ pr{εq2

2logpεq ` 1
1rąε

˙

sinpθq,

‹ j “ 0:

au1,0
def
“ εpwb ` 2c‘

1,0q, bu1,0 “ 0,

$

&

%

ϕε,c
1,0 ¨ er

def
“ 0,

ϕε,c
1,0 ¨ eθ

def
“

´r

ε

¯

1rďε `

´ε

r

¯

1rąε,

‹ j “ 2:

au1,2
def
“ εp3c‘

1,2 ` 2c‘
2,2q, bu1,2

def
“ εp3s‘

1,2 ` 2s‘
2,2q,

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ϕε,c
1,2 ¨ er

def
“

ˆ

´r

ε

¯

1rďε `

ˆ

2
´ε

r

¯

´

´ε

r

¯3
˙

1rąε

˙

sinp2θq,

ϕε,c
1,2 ¨ eθ

def
“

ˆ

´r

ε

¯

1rďε `

´ε

r

¯3

1rąε

˙

cosp2θq,

ϕε,s
1,2 ¨ er

def
“ ´

ˆ

´r

ε

¯

1rďε `

ˆ

2
´ε

r

¯

´

´ε

r

¯3
˙

1rąε

˙

cosp2θq,

ϕε,s
1,2 ¨ eθ

def
“

ˆ

´r

ε

¯

1rďε `

´ε

r

¯3

1rąε

˙

sinp2θq,

• tN ě 2, j “ 1u:

‹ l “ 1:
au1,1

def
“ c‘

1,1ε
2, b1,1

def
“ s‘

1,1ε
2,
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$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ϕε,c
1,1 ¨ er

def
“

´r

ε

¯2

sinpθq1rďε

`

ˆ

4logprq

2logpεq ` 1
´

2logpεq ´ 1

2logpεq ` 1

´ε

r

¯2
˙

sinpθq1rąε,

ϕε,c
1,1 ¨ eθ

def
“ 3

´r

ε

¯2

cospθq1rďε

`

ˆ

4plogprq ` 1q

2logpεq ` 1
`

2logpεq ´ 1

2logpεq ` 1

´ε

r

¯2
˙

cospθq1rąε,

ϕε,s
1,1 ¨ er

def
“ ´

´r

ε

¯2

cospθq1rďε

`

ˆ

4logprq

2logpεq ` 1
´

2logpεq ´ 1

2logpεq ` 1

´ε

r

¯2
˙

cospθq1rąε,

ϕε,s
1,1 ¨ eθ

def
“ 3

´r

ε

¯2

sinpθq1rďε

`

ˆ

4plogprq ` 1q

2logpεq ` 1
`

2logpεq ´ 1

2logpεq ` 1

´ε

r

¯2
˙

sinpθq1rąε,

‹ l “ 2:

au2,1
def
“ pvb ¨ ey ` c‘

2,1q, bu2,1
def
“ pvb ¨ ex ` s‘

2,1q

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ϕε,c
2,1 ¨ er

def
“ sinpθq1rďε `

ˆ

2logprq

2logpεq ` 1
`

1

2logpεq ` 1

´ε

r

¯2
˙

sinpθq1rąε,

ϕε,c
2,1 ¨ eθ

def
“ cospθq1rďε `

ˆ

2plogprq ` 1q

2logpεq ` 1
´

1

2logpεq ` 1

´ε

r

¯2
˙

cospθq1rąε,

ϕε,s
2,1 ¨ er

def
“ ´ cospθq1rďε `

ˆ

2logprq

2logpεq ` 1
`

1

2logpεq ` 1

´ε

r

¯2
˙

cospθq1rąε,

ϕε,s
2,1 ¨ eθ

def
“ sinpθq1rďε `

ˆ

2plogprq ` 1q

2logpεq ` 1
´

1

2logpεq ` 1

´ε

r

¯2
˙

sinpθq1rąε,

• tN ě 2, j P t2, . . . , N ´ 1uu:

‹ l “ 1:

au1,j
def
“ εj`1c‘

1,j, bu1,j
def
“ εj`1s‘

1,j
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$
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’
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’

’

’

’

’
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’

’

’

’

’

’

’

’

%

ϕε,c
1,j ¨ er

def
“j

´r

ε

¯j`1

sinpjθq11ďε

` j

ˆ

p1 ` jq
´ε

r

¯j´1

´ j
´ε

r

¯j`1
˙

sinpjθq1rąε,

ϕε,c
1,j ¨ eθ

def
“pj ` 2q

´r

ε

¯j`1

cospjθq11ďε

`

ˆ

p1 ` jqp´j ` 2q

´ε

r

¯j´1

` j2
´ε

r

¯j`1
˙

cospjθq1rąε,

ϕε,s
1,j ¨ er

def
“ ´ j

´r

ε

¯j`1

cospjθq11ďε

´ j

ˆ

p1 ` jq
´ε

r

¯j´1

´ j
´ε

r

¯j`1
˙

cospjθq1rąε,

ϕε,s
1,j ¨ eθ

def
“pj ` 2q

´r

ε

¯j`1

sinpjθq11ďε

`

ˆ

p1 ` jqp´j ` 2q

´ε

r

¯j´1

` j2
´ε

r

¯j`1
˙

sinpjθq1rąε,

‹ l “ 2:

au2,j
def
“ εj´1c‘

2,j, bu2,j
def
“ εj´1s‘

2,j.

$
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’

’

’

’

’

’

’

’

%

ϕε,c
2,j ¨ er

def
“j

´r

ε

¯j´1

sinpjθq11ďε

`j

ˆ

j
´ε

r

¯j´1

´ pj ´ 1q

´ε

r

¯j`1
˙

sinpjθq1rąε,

ϕε,c
2,j ¨ eθ

def
“j

´r

ε

¯j´1

cospjθq11ďε

`j

ˆ

p´j ` 2q

´ε

r

¯j´1

` pj ´ 1q

´ε

r

¯j`1
˙

cospjθq1rąε,

ϕε,s
2,j ¨ er

def
“ ´ j

´r

ε

¯j´1

cospjθq11ďε

´j

ˆ

j
´ε

r

¯j´1

´ pj ´ 1q

´ε

r

¯j`1
˙

cospjθq1rąε,

ϕε,s
2,j ¨ eθ

def
“j

´r

ε

¯j´1

sinpjθq11ďε

`j

ˆ

p´j ` 2q

´ε

r

¯j´1

` pj ´ 1q

´ε

r

¯j`1
˙

sinpjθq1rąε.
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• tj ě 2, j P tN,N ` 1u:

au1,j “ 0, bu1,j “ 0,

au2,j
def
“ εj´1

pp1 ` jqε2c‘
1,j ` jc‘

2,jq, bu2,j
def
“ εj´1

pp1 ` jqε2s‘
1,j ` js‘

2,jq

$

’

’

’

’

’

’
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’
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’

’

’

’

’

’

%

ϕε,c
2,j ¨ er

def
“

´r

ε

¯j´1

sinpjθq1rďε

`

ˆ

j
´r

ε

¯j´1

´ pj ´ 1q

´r

ε

¯j`1
˙

sinpjθq1rąε,

ϕε,c
2,j ¨ eθ

def
“

´r

ε

¯j´1

cospjθq1rďε

`

ˆ

p´j ` 2q

´r

ε

¯j´1

` pj ´ 1q

´r

ε

¯j`1
˙

cospjθq1rąε,

ϕε,s
2,j ¨ er

def
“ ´

´r

ε

¯j´1

cospjθq1rďε

`

ˆ

j
´r

ε

¯j´1

´ pj ´ 1q

´r

ε

¯j`1
˙

cospjθq1rąε,

ϕε,s
2,j ¨ eθ

def
“

´r

ε

¯j´1

sinpjθq1rďε

`

ˆ

p´j ` 2q

´r

ε

¯j´1

` pj ´ 1q

´r

ε

¯j`1
˙

sinpjθq1rąε.

4.A.7.2 Coefficients and singular functions for the pressure decomposition

In this section, we provide the expression of the coefficients apj , b
p
j and singular functions

φε,c
j , φε,s

j for the decomposition of pεN into a regular and singular part, as given in equation
(4.3.31). Note that, as done for the velocity decomposition given in the previous section,
from one case to another, if nothing is precised for the value of a function or a coefficient
previously defined, it indicates that it remains unchanged from its previus definition. The
enrichment functions for the pressure space in the augmented finite element method of
Section 4.3.2 are given by:

• N “ 0:

ap1 “ 4
2ε2c‘

1,1 ` c‘
2,1 ` vb ¨ ey

2logpεq ` 1
, bp1 “ ´4

2ε2s‘
1,1 ` s‘

2,1 ` vb ¨ ex

2logpεq ` 1

φε,c
1

def
“

ˆ

1

r

˙

sinpθq1rąε, φε,s
1

def
“

ˆ

1

r

˙

cospθq1rąε.
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• N “ 1:
ap2

def
“ 4εp3ε2c‘

1,2 ` 2c‘
2,2q, bp2

def
“ ´4εp3ε2s‘

1,2 ` 2s‘
2,2q

φε,c
2 “

ˆ

1

r

˙2

sinp2θq1rąε, φε,s
2 “

ˆ

1

r

˙2

cosp2θq1rąε

• tN ě 2 X j ě 3u:

apj
def
“ 4εj´1

pj ´ 1qpp1 ` jqε2c‘
1,j ` jc‘

2,jq,

bpj
def
“ ´4εj´1

pj ´ 1qpp1 ` jqε2s‘
1,j ` js‘

2,jq.

φε,c
j “

ˆ

1

r

˙j

sinpjθq1rąε, φε,s
j “

ˆ

1

r

˙j

cospjθq1rąε

4.A.8 Stream functions associated to the enrichment velocities of the augmented
finite element method

The additive divergence free functions corresponding to the enrichement velocities defined
in Section 4.3.2 are given by:

• N P t0, 1u:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ψε,c
1,1

def
“ ´ ε

´r

ε

¯

cospθq1rďε

´ ε

ˆ

2logprq

2logpεq ` 1

´r

ε

¯

`
1

2logpεq ` 1

´ε

r

¯

˙

cospθq1rąε,

ψε,s
1,1

def
“ε

´r

ε

¯

sinpθq1rďε

`ε

ˆ

2

2logpεq ` 1

´r

ε

¯

logprq `
1

2logpεq ` 1

´ε

r

¯

˙

sinpθq1rąε,

• N “ 1:
$

’
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’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ψ̃ε,c
0

def
“ ´

ε

2

ˆ

´r

ε

¯2

´ p2log

ˆ

ε

ρ

˙

` 1q

˙

1rďε ` εlogp
r

ρ
q1rąε,

ψε,c
0

def
“ ψ̃ε,c

0 ´

ż

ωρ

ψ̃ε,c
0 ,

ψε,c
1,2

def
“ ´ ε

´r

ε

¯2

cosp2θq1rąε ` ε

ˆ

´2 `

´ε

r

¯2
˙

cosp2θq1rąε

ψε,s
1,2

def
“ε

´r

ε

¯2

sinp2θq1rďε ` εp2 ´

´r

ε

¯2

sinp2θqq1rąε
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• tN ě 2, j “ 0u:
$
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%

ψε,c
1,1

def
“ ´ ε

´r

ε

¯3

cospθq1rďε

´ε

ˆ

4logprq

2logpεq ` 1

´r

ε

¯

´
2logpεq ´ 1

2logpεq ` 1

´ε

r

¯

˙

cospθq1rąε,

ψε,s
1,1

def
“ε

´r

ε

¯3

sinpθq1rďε

`ε

ˆ

4logprq

2logpεq ` 1

´r

ε

¯

´
2logpεq ´ 1

2logpεq ` 1

´ε

r

¯

˙

sinpθq1rąε,

ψε,c
2,1

def
“ ´ ε

´r

ε

¯

cospθq1rďε

´ε

ˆ

2logprq

2logpεq ` 1

´r

ε

¯

`
1

2logpεq ` 1

´ε

r

¯

˙

cospθq1rąε,

ψε,s
2,1

def
“ε

´r

ε

¯

sinpθq1rďε

`ε

ˆ

2logprq

2logpεq ` 1

´r

ε

¯

`
1

2logpεq ` 1

´ε

r

¯

˙

sinpθq1rąε,

• tN ě 2, j ě 2u:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ψε,c
1,j

def
“ ´ ε

´r

ε

¯j`2

cospjθq11ďε

´ ε

ˆ

p1 ` jq
´ε

r

¯j´2

´ j
´ε

r

¯j
˙

cospjθq1rąε,

ψε,s
1,j

def
“ε

´r

ε

¯j`2

sinpjθq11ďε

`ε

ˆ

p1 ` jq
´ε

r

¯j´2

´ j
´ε

r

¯j
˙

sinpjθq1rąε,

ψε,c
2,j

def
“ ´ ε

´r

ε

¯j

cospjθq11ďε

´ ε

ˆ

j
´ε

r

¯j´2

´ pj ´ 1q

´ε

r

¯j
˙

cospjθq1rąε,

ψε,s
2,j

def
“ε

´r

ε

¯j

sinpjθq11ďε

`ε

ˆ

j
´ε

r

¯j´2

´ pj ´ 1q

´ε

r

¯j
˙

sinpjθq1rąε,

• j P tN, N ` 1u :
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$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ψε,c
2,j

def
“ ´ ε

´r

ε

¯j

cospjθq11ďε

´ ε

ˆ

j
´ε

r

¯j´2

´ pj ´ 1q

´ε

r

¯j
˙

cospjθq1rąε,

ψε,s
2,j

def
“ε

´r

ε

¯j

sinpjθq11ďε

`ε

ˆ

j
´ε

r

¯j´2

´ pj ´ 1q

´ε

r

¯j
˙

sinpjθq1rąε,

4.A.9 Proof of Theorem 4.3.4

Restated Theorem 4.3.4. Let Xh be a subspace of X , Qh,1 a subspace of Q1 and Qh,2

a subspace of Q2. Assume that Qh,1 and Qh,2 are finite dimensional and consider the
approximate problem: find puh, λh,1, λh,2q P Xh ˆ Qh,1 ˆ Qh,2 such that

apuh, vhq ´ b1pλh,1, vhq ´ b2pλh,2, vhq “ dpvhq @vh P Xh,

b1pµh,1, uhq “ c1pµh,1q @µh,1 P Qh,1,

b2pµh,2, uhq “ c2pµh,2q @µh,2 P Qh,2.

(4.A.57)

Let

Zh,bi
def
“ tvh P Xh | bipµh,i, vhq “ 0 @µh,iu Ă Xh i “ 1, 2.

We suppose that there exists βh,1 ą 0, βh,2 ą 0 such that

sup
vhPZh,b2

b1pλh,1, vhq

}vh}X
ě βh,1}λh,1}Q1 @λh,1 P Qh,1, (4.A.58)

sup
vhPZh,b1

b2pλh,2, vhq

}vh}X
ě βh,2}λh,2}Q2 @λh,2 P Qh,2.. (4.A.59)

and that there exists α such that

apvh, vhq ě α}vh}
2
X . (4.A.60)
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Then Problem (4.A.57) is well posed and satisfies the estimates

}u ´ uh}X ď a1h inf
vhPXh

}u ´ vh}X

` a2h inf
µh,1PQh,1

}λ1 ´ µh,1}Q1 ` a3h inf
µh,2PQh,2

}λ2 ´ µh,2}Q2 .

}λ1 ´ λh,1}Q1 ď b1h inf
vhPXh

}u ´ vh}X

` b2h inf
µh,1PQh,1

}λ1 ´ µh,1}Q1 ` b3h inf
µh,2PQh,2

}λ2 ´ µh,2}Q2 .

}λ2 ´ λh,2}Q1 ď c1h inf
vhPXh

}u ´ vh}X`

` c2h inf
µh,1PQh,1

}λ1 ´ µh,1}Q1 ` c3h inf
µh,2PQh,2

}λ2 ´ µh,2}Q2 .

with

a1h “

ˆ

1 `
}a}

α

˙ˆ

1 `
}b1}

β1,h
`

}b2}

β2,h

˙

,

a2h “

$

&

%

}b1}

α
if Zh,b1 Ć Zb1 ,

0 otherwise

a3h “

$

&

%

}b2}

α
if Zh,b2 Ć Zb2 ,

0 otherwise

b1h “ a1h
}a}

βh,1
, b2h “ 1 `

}b1}

βh,1
` a2h

}a}

βh,1
, b3h “ a3h

}a}

βh,1
,

c1h “ a1h
}a}

βh,2
, c2h “ a2h

}a}

βh,2
, c3h “ 1 `

}b2}

βh,2
` a3h

}a}

βh,2
.

Proof of Theorem 4.3.4. First, let us notice that the conditions (4.A.58) and (4.A.59) imply
that there exists wh,1 P Zh,b2 and wh,2 P Zh,b1 such that

b1pµh,1, wh,1q “ b1pµh,1, u ´ vhq @µh,1 P Qh,1, βh,1}wh,1}X ď }b1}}u ´ vh}X ,

b2pµh,2, wh,2q “ b2pµh,2, u ´ vhq @µh,2 P Qh,2, βh,2}wh,2}X ď }b2}}u ´ vh}X .

Setting now κh “ wh,1 ` wh,2 ` vh, it is clear that

b1pµh,1, κhq “ b1pµh,1, uq “ d1pµh,1q “ b1pµh,1, uhq @µh,1 P Qh,1,

b2pµh,2, κhq “ b2pµh,2, uq “ d2pµh,1q “ b2pµ2,h, uhq @µh,2 P Qh,2.

We deduce then that yh
def
“ uh ´ kh P Zb1,h X Zb2,h. Besides, the coercivity assumption
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(4.A.60) on a implies

α}uh ´ κh}X ď
apuh ´ κh, yhq

}uh ´ κh}X
ď
apuh ´ u, yhq ` apu ´ κh, yhq

}yh}X

ď
b1pλ1 ´ λh,1, yhq ` b2pλ2 ´ λh,2, yhq ` apu ´ κh, yhq

}yh}X

If Zh,b1 Ă Zb1 and Zh,b2 Ă Zb2 then

α}uh ´ kh}X ď }a}}u ´ wh}X

Using the triangle inequality yields

}u ´ uh}X ď

ˆ

1 `
}a}

α

˙

}u ´ κh}X .

It Zh,b1 Ă Zb1 and Zh,b2 Ć Zb2 then

b1pλ1 ´ λh,1, yhq “ 0

and
b2pλh,2, yhq “ 0 “ b2pµh,2, yhq @µh,2 P Qh,2.

Since yh P Zh,b2 , it implies

α}uh ´ κh}X ď }a}}u ´ κh}X ` }b2}}λ2 ´ µh,2}Q2

Using the triangle inequalities yields

}u ´ uh}X ď

ˆ

1 `
}a}

α

˙

}u ´ κh}X `
}b2}

α
}λ2 ´ µh,2}Q2

The estimate on }u ´ uh}X then results on from the inequality

}u ´ κh}X ď }u ´ vh}X ` }κh}X ď

ˆ

1 `
}b1}

βh,1
`

}b2}

βh,2

˙

}u ´ vh}X .

Symetrically, if Zh,b2 Ă Zb2 and Zh,b1 Ć Zb1

}u ´ uh}X ď

ˆ

1 `
}a}

α

˙ˆ

1 `
}b1}

βh,1
`

}b2}

βh,2

˙

}u ´ vh}X `
}b1}

α
}λ1 ´ µh,1}Q1

Eventually, doing the same steps as before, if if Zh,b2 Ć Zb2 and Zh,b1 Ć Zb1 , we have

}u ´ uh}X ď

ˆ

1 `
}a}

α

˙ˆ

1 `
}b1}

βh,1
`

}b2}

βh,2

˙

}u ´ vh}X

`
}b1}

α
}λ1 ´ µh,1}Q1 `

}b2}

α
}λ2 ´ µh,2}Q2
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Now, to estimate }λ1 ´λh,1}Q1 , we notice that, since for all vh P Zh,b2 , b1pλ1 ´λh,1, vhq “

apuh ´ u, vhq, we have

b1pvh, µh,1 ´ λh,1q “ apuh ´ u, vhq ` bpvh, µ1,h ´ λq @pvh, µ1,hq P Xh ˆ Qh,1.

Condition (4.A.58) then implies

β1,h}λh,1 ´ µh,1}Q1 ď }a}}u ´ uh} ` }b1}}λ1 ´ µh,1} @µh,1 P Qh,1.

The final result follows by triangle inequalities. The same arguments apply to estimate
}λ2 ´ λh,2}.

4.A.10 Proof of Lemma 4.3.5

Restated Lemma 4.3.5. Let η P H
1
2 pBωεq be given, there exists ṽεη P V k

N,h and ρ̃ ą 0
such that that for ε P p0, ρ̃q,

pµN , ṽ
ε
ηqε “ pµN ,ηqε @µN P FN , }ṽεη}1,Ω À }η} 1

2
,ε.

Moreover, for any q̃h P Qk´1
N,h ,

pq̃h, div ṽ
ε
ηqΩ “ 0.

Proof of Lemma 4.3.5. By definition of the enrichment functions ϕ̃ε,m
l,j we have

ϕ̃ε,m
l,j “ curl pχψε,m

l,j q “ ψε,m
l,j curl χ ` χcurl ψε,m

l,j “ ψε,m
l,j curl χ ` χϕε,m

l,j .

Furthermore, since supp pcurl χq Ă ω
3
4
ρzω

1
2
ρ, we deduce in particular that

ϕ̃ε,m
l,j “ ϕε,m

j,k on Bωε.

By using the explicit expressions of the ϕε,m
l,j given in Section 4.A.7.1, we get

• N “ 0:
#

ϕε,c
1,1 “ sinpθqer ` cospθqeθ,

ϕε,s
1,1 “ ´ cospθqer ` sinpθqeθ,

• tN ě 1, j “ 0u:

ϕε,c
1,0 “ eθ,
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• tN ě 1, j P t1, . . . , N ´ 1uu:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

1

j
ϕε,c

2,j “ sinpjθqer ` cospjθqeθ,

1

j

`

p1 ` jqϕε,c
2,j ´ ϕε,c

1,j

˘

“ sinpjθqer ´ cospjθqeθ,

1

j
ϕε,s

2,j “ ´ cospjθqer ` sinpjθqeθ,

1

j
pϕε,s

1,j ´ p1 ` jqϕε,s
2,jq “ cospjθqer ` sinpjθqeθ.

• tN ě 1, j P tN,N ` 2uu:
#

ϕε,c
1,j “ sinpjθqer ` cospjθqeθ

ϕε,s
1,j “ ´ cospjθqer ` sinpjθqeθ

We deduce that

‹ j “ 0:
#

ξε,cx,0
def
“ ´ϕε,s

1,1 “ ex on Bωε,

ξε,cy,0
def
“ ϕε,c

1,1 “ ey on Bωε,

‹ j “ 1

ξε,‹1
def
“ ´ϕε,s

2,2 “ cospθqex ´ sinpθqey,

ξε,sx,1
def
“

1

2

ˆ

1

2
ϕε,c

2,2 ´ ϕε,c
1,0

˙

“ sinpθqex on Bωε,

ξε,cy,1
def
“

1

2

ˆ

1

2
ϕε,c

2,2 ` ϕε,c
1,0

˙

“ cospθqey on Bωε

‹ j ě 2
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ξε,cx,j
def
“

1

2

ˆ

1

j ´ 1
pϕε,s

1,j´1 ´ jϕε,s
2,j´1q ´

1

j ` 1
ϕε,s

2,j`1

˙

“ cospjθqex,

ξε,sy,j
def
“

1

2

ˆ

1

j ´ 1
pϕε,s

1,j´1 ´ jϕε,s
2,j´1q `

1

j ` 1
ϕε,s

2,j`1

˙

“ sinpjθqey,

ξε,sx,j
def
“

1

2

ˆ

1

j ` 1
ϕε,c

2,j`1 `
1

j ´ 1

`

jϕε,s
2,j´1 ´ ϕε,s

1,j´1

˘

˙

“ sinpjθqex,

ξε,cy,j
def
“

1

2

ˆ

1

j ` 1
ϕε,c

2,j`1 ´
1

j ´ 1

`

jϕε,s
2,j´1 ´ ϕε,s

1,j´1

˘

˙

“ cospjθqey.
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Let ζε,mx,j P H2pωρqXL2
0pω

ρq, resp. ζε,my,j P H2pωρqXL2
0pω

ρq, be stream functions associated

to the functions ξε,mx,j , resp. ξε,my,j , for any η P H
1
2 pBωεq, we set

‹

ψε
η P H2pωρq XL2

0pωρq and
‹

vεη such that

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

‹

vεη
def
“F c

0 pµpεq ¨ e˚qξ˚
1

` F c
0 pµpεq ¨ exqξε,cx,0 `

n
ÿ

j“1

F c
j pµpεq ¨ exqξε,cx,j ` F s

j pµpεq ¨ exqξε,sx,j

` F c
0 pµpεq ¨ eyqξε,cy,0 `

n
ÿ

j“1

F c
j pµpεq ¨ eyqξε,cy,j ` F s

j pµpεq ¨ eyqξε,sy,j

‹

ψε
η

def
“F c

0 pµpεq ¨ e˚qζ˚
1

` F c
0 pµpεq ¨ exqζε,cx,0 `

n
ÿ

j“1

F c
j pµpεq ¨ exqζε,cx,j ` F s

j pµpεq ¨ exqζε,sx,j

` F c
0 pµpεq ¨ eyqζε,cy,0 `

n
ÿ

j“1

F c
j pµpεq ¨ eyqζε,cy,j ` F s

j pµpεq ¨ eyqζε,sy,j

We then define ṽεη
def
“ curl pχ

‹

ψε
ηq. By construction we have Πε

Npṽεηq “ Πε
Npηq. More-

over, since ṽεη “ curl pχ
‹

ψε
ηq “ χ

‹

vεη `
‹

ψε
ηcurl χ, we deduced

}ṽεη}1,Ω À }
‹

vεη}ωρ ` }
‹

ψε
η}ωρ .

On on hand, by construction, ‹

vεη is solution of: find p
‹

vεη,
‹
pεηq P V ˆ Q such that

$

’

’

’

&

’

’

’

%

´∆
‹

vεη ` ∇ ‹
pεη “ 0 in ωρ

zωε,

´∆
‹

vεη ` ∇ ‹
pεη “ 0 in ωε,

‹

vεη “ Πε
Npηq on Bωε,

‹

vεη “
‹

vεη on Bωρ.

We deduce from Lemma 4.2.2 and Lemma 4.A.1, and the continuity of Πε
N on

pH
1
2 pBωεq, } ¨ } 1

2
,εq given in (4.2.4),

}
‹

vεη}1,ωρ À }η} 1
2
,ε ` }

‹

vεη} 1
2
,Bωρ .
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By triangle inequality

}
‹

vεη}
2
1
2
,Bωρ À|F c

0 pµpεq ¨ exq|
2
}ξε,cx,0}

2
1
2
,Bωρ ` |F c

0 pµpεq ¨ eyq|
2
}ξε,cy,0}

2
1
2
,Bωρ

`

n
ÿ

j“1

|F c
j pµpεq ¨ exq|

2
}ξε,cx,j}

2
1
2
,Bωρ ` |F s

j pµpεq ¨ exq|
2
}ξε,sx,j}

2
1
2
,Bωρ

`

n
ÿ

j“1

|F c
j pµpεq ¨ eyq|

2
}ξε,cy,j}

2
1
2
,Bωρ ` |F s

j pµpεq ¨ eyq|
2
}ξε,sy,j}

2
1
2
,Bωρ .

` |F c
0 pµpεq ¨ e˚q|

2
}ξε,‹1 }

2
1
2
,Bωρ

By definition of the functions ξε,ml,j , we have

}ξε,ml,j } 1
2
,Bωρ À }ϕε,m

2,j`1} 1
2
,Bωρ ` }ϕε,m

2,j´1} 1
2
,Bωρ ` }ϕε,m

1,j´1} 1
2
,Bωρ .

Since the norms } ¨ } 1
2
,Bωρ and } ¨ }F

1
2
,ρ

are equivalent we deduce that

‹ j “ 0 : }ϕε,c
1,0} 1

2
,Bωρ À

ˆ

ε

ρ

˙

,

‹ j “ 1 : }ϕε,m
l,1 } 1

2
,Bωρ À

|logpρq| ` pε{ρq2

|logpεq|
,

‹ j ě 2 : }ϕε,m
l,j } 1

2
,Bωρ Àj p1 ` jq

1
2 p1 ` jq

˜

ˆ

ε

ρ

˙j´1

`

ˆ

ε

ρ

˙j`1
¸

Now, taking ε P p0, ρ{4q and keeping only the lower order term in p1{4qj , the following
inequalities hold

j P t0, 1u : }ξε,ml,j } 1
2
,Bωρ Àj p1 ` jq

1
2 ,

j ě 2 : }ξε,ml,j } 1
2
,Bωρ Àj p1 ` jq

1
2 p1 ` jqp1{4q

j´2

We conclude that

}
‹

vεη}
2
1
2
,Bωρ À

ÿ

jPt0,1u

p1 ` jqp|F c
j pµpεq ¨ exq|

2
` |F s

j pµpεq ¨ exq|
2
q

`

8
ÿ

j“2

p1 ` jqp1 ` jq2p1{4q
2pj´2q

p|F c
j pµpεq ¨ exq|

2
` |F s

j pµpεq ¨ exq|
2
q

`
ÿ

jPt0,1u

p1 ` jqp|F c
j pµpεq ¨ eyq|

2
` |F s

j pµpεq ¨ eyq|
2
q

`

8
ÿ

j“2

p1 ` jqp1 ` jq2p1{4q
2pj´2q

p|F c
j pµpεq ¨ eyq|

2
` |F s

j pµpεq ¨ eyq|
2
q.
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Since the sequence p1 ` jq2p1{4q2pj´2q is bounded, by ε-uniform equivalence between the
norms } ¨ } 1

2
,ε and } ¨ }F

1
2
,ε

, we have for ε P p0, ρ{4q,

}
‹

vεη} 1
2
,Bωρ À }η}

F
1
2
,ε

À }η} 1
2
,ε. (4.A.61)

It only remains to bound }
‹

ψε
η}Ω. By construction curl p

‹

ψε
ηq “

‹

vεη so

}∇
‹

ψε
η}ωρ À }

‹

vεη}ωρ .

Now, since
‹

ψε
η P XH2pωρq X L2

0pω
ρq, we can apply Poincaré-Wirtinger inequality and

(4.A.61) to obtain
}

‹

ψε
η}1,ωρ À }

‹

vεη}ωρ À }η} 1
2
,ε.

This concludes the proof of the Lemma.

4.A.11 Proof of Lemma 4.3.6

Restated Lemma 4.3.6. Let q̃h P Qk´1
N,h , there exists w̃ε

q̃h
P V k

N,h such that

pq̃h, div w̃
ε
q̃h

qΩ “ }q̃h}
2
Ω, }w̃ε

q̃h
}1,Ω À |logpεq|

1
2 }q̃h}Ω.

Moreover, for any µN P FN ,
pµN , w̃

ε
q̃h

q “ 0.

Proof of Lemma 4.3.6. Let q̃h P Qk´1
N,h be given. By definition of Qk´1

N,h , there exists
pqh, q̃q P Qk

h ˆ span tφ̃ε,m
j u such that q̃h “ qh ` q̃. Since the pair V k

h {Qk´1
h is an inf-

sup stable conforming pair for the divergence operator, there exists ‹

wqh P V k
h such that

div
‹

wqh “ qh, }
‹

wqh}1,Ω À }qh}Ω.

Furthermore, according to Lemma 4.3.5 and Lemma 3.3.2, there exists ṽεqh P Ṽ k
h,N

pµN , ṽ
ε
qh

qε “ pµN ,
‹

wqhqε @µN P FN , }ṽεqh}1,Ω À }
‹

wqh} 1
2
,ε À |logpεq|

1
2 }qh}Ω,

and
div ṽεqh “ 0 in Ω.

Similarly, by construction, there exists w̃ε
q̃ P span tς̃ε,mj u Ă V k

N,h such that

div w̃ε
q̃ “ q̃, }w̃ε

q̃}1,Ω À |logpεq|
1
2 }q̃}Ω,

and
pµN , w̃

ε
q̃qε “ 0 @µN P FN .
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Let us set w̃ε
q̃h

“
‹

wε
qh

´ ṽεqh ` w̃ε
q̃ , we have

div w̃ε
q̃h

“ q̃h, }w̃ε
q̃h

}1,Ω À |logpεq|
1
2 }q̃h}Ω,

and
pµN , w̃

ε
q̃h

qε “ 0 @µN P FN .

This concludes the proof of the Lemma.

4.A.12 Proof of Lemma 4.3.9

Restated Lemma 4.3.9. Let uε
N,S defined by (4.3.31), there exists 0 ă ρ̃ ă ρ such that for

all ε P p0, ρ̃q,
}uε

N,S} 1
2
,Bωρ À |vb| ` ε|wb|.

Proof of Lemma 4.3.9. By definition of uε
N,S introduced in (4.3.31), we have

}uε
N,S} 1

2
,Bωρ ď

N
ÿ

j“0

2
ÿ

l“1

|aul,j|}ϕ
ε,c
l,j } 1

2
,Bωρ ` |bul,j|}ϕ

ε,s
l,j } 1

2
,Bωρ

Using the exact expression of the coefficients aul,j provided in Section 4.A.7.1, we get:

• tN ě 2, j P t2, N ´ 1u:

au1,j “ εj`1c‘
1,j, au2,j “ εj´1c‘

2,j

with

c‘
1,j “

Aε
jξ

ε,s
j,r ` Bε

j ξ
ε,c
j,θ

Dε
j

, c‘
2,j “

Eε
j ξ

ε,s
j,r ` F ε

j ξ
ε,c
j,θ

jDε
j

,

and the coefficients Aε
j , B

ε
j , Eε

j , F ε
j and Dε

j are given in (4.A.52). Taking ε̃ P p0, 1{4q

and using estimate (4.A.54), we derive the following a priori estimates for Aε
j , B

ε
j ,

Eε
j , and F ε

j :
$

’

’

’

’

&

’

’

’

’

%

|Aε
j | Àj ρ

3j´1
p1 ` p1 ` jqp1{4q

2pj´1q
` p1 ` jqp1{4q

2j
q,

|Bε
j | Àj ρ

3j´1
p1 ` p1 ` jqp1{4q

2pj´1q
` p1 ` jqp1{4q

2j
q,

|Eε
j | Àj p1 ` jqρ3j`1

p1 ` p1 ` jqp1{4q
2j

` p1 ` jqp1{4q
2pj`1q

q,

|F ε
j | Àj p1 ` jqρ3j`1

p1 ` p1 ` jqp1{4q
2j

` p1 ` jqp1{4q
2pj`1q

q.

Since the sequences p1`jqp1{4q2pj´1q, p1`jqp1{4q2j , p1`jqp1{4q2pj`1q are bounded,
we deduce that

|Aε
j | Àj ρ

3j´1, |Bε
j | Àj ρ

3j´1, |Eε
j | Àj p1 ` jqρ3j`1, |F ε

j | Àj p1 ` jqρ3j`1.
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We now establish a lower bound for Dε
j as follows:

Dε
j Áj 2ρ

4j
`

1 ´ j2p1{4q
2pj´1q

´ j2p1{4q
2pj`1q

˘

.

Since the sequences j2 p1{4q
2pj´1q and j2p1{4q2pj`1q are decreasing, we deduce that

Dε
j Áj ρ

4j

ą0
`

1 ´ 4p1{4q
2

´ 4p1{4q
6
˘

Áj ρ
4j.

We conclude that

|au1,j| Àj

ˆ

ε

ρ

˙j`1
`

|ξε,sj,r | ` |ξε,cj,θ |
˘

, |au2,j| Àj

ˆ

ε

ρ

˙j´1
`

|ξε,sj,r | ` |ξε,cj,θ |
˘

.

• tN ě 2, j P t0, 1uu:

au1,0
def
“ εpwb ` 2c‘

1,0q, au1,1
def
“ c‘

1,1ε
2, au2,1

def
“ vb ¨ ey ` c‘

2,1

with

ρc‘
1,0 ÝÝÑ

εÑ0
´
ξε,c0,θ

2

ρ2c‘
1,1 ÝÝÑ

εÑ0
ξε,s1,r ´ ξε,c1,θ, c‘

2,1 ÝÝÑ
εÑ0

´
3

2
ξε,s1,r `

1

4
ξε,c1,θ.

We deduce that there exists ρ0, ρ1 ą 0 such that

|au1,0| À

ˆ

ε

ρ

˙

p|ξε,c0,θ| ` |wb|q @ε P p0, ρ0q

|au1,1| À

ˆ

ε

ρ

˙2

p|ξε,s1,r| ` |ξε,c1,θ|q, |au2,1| À |ξε,s1,r| ` |ξε,c1,θ| ` |vb ¨ ey| @ε P p0, ρ1q.

• tj ě 2, j P tN,N ` 1uu:

au2,j “ εj´1
pp1 ` jqc‘

1,j ` jc‘
2,jq,

with

c‘
1,j “

Aε
jξ

ε,s
j,r ` Bε

j ξ
ε,c
j,θ

Dε
j

, c‘
2,j “

Eε
j ξ

ε,s
j,r ` F ε

j ξ
ε,c
j,θ

jDε
j

,

and the coefficients Aε
j , B

ε
j , Eε

j , F ε
j , F ε

j are given in (4.A.53). Taking ε̃ P p0, 1{4q

and using estimate (4.A.54), we derive the following a priori estimates for Aε
j , B

ε
j ,

Eε
j , and F ε

j :
$

’

’

’

’

&

’

’

’

’

%

|Aε
j | Àj ρ

j`1
p1 ` p1 ` jqp1{4q

2pj´1q
` p1 ` jqp1{4q

2j
q,

|Bε
j | Àj ρ

j`1
p1 ` p1 ` jqp1{4q

2pj´1q
` p1 ` jqp1{4q

2j
q

|Eε
j | Àj p1 ` jqρj`3

p1 ` p1 ` jqp1{4q
2j

` p1 ` jqp1{4q
2pj`1q

q,

|F ε
j | Àj p1 ` jqρj`3

p1 ` p1 ` jqp1{4q
2j

` p1 ` jqp1{4q
2pj`1q

q.
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Since the sequences p1`jqp1{4q2pj´1q, p1`jqp1{4q2j , p1`jqp1{4q2pj`1q are bounded,
we deduce that

|Aε
j | Àj ρ

j`1, |Bε
j | Àj ρ

j`1, |Eε
j | Àj p1 ` jqρj`3, |F ε

j | Àj p1 ` jqρj`3.

We establish an upper bound for Dε
j as follows:

Dε
j Àj ´2ρ2pj`1q

p1 ´ j2p1{4q
2pj´1q

´ pj ´ 1qp1 ` jqp1{4q
2pj`1q

q

Since the sequences j2p1{4q2pj´1q and pj ´ 1qp1 ` jqp1{4q2pj`1q are deacreasing for
j ě 2, it holds

Dε
j Àj ´2ρ2pj`1q

ą0

p1 ´ 4p1{4q
2

´ 3p1{4q
6
q Àj ´ρ2pj`1q.

We conclude

|au2,j| Àj

˜

p1 ` jq

ˆ

ε

ρ

˙j´1

` p1 ` jq

ˆ

ε

ρ

˙j`1
¸

p|ξε,sj,r | ` |ξε,cj,θ |q.

• tN P t0, 1u, j P t0, 1uu:

au1,0
def
“ εpwb ` 2c‘

1,0q, au1,1
def
“ 2ε2c‘

1,1 ` c‘
2,1 ` vb ¨ ey

with

ρc‘
1,0 ÝÝÑ

εÑ0
´
ξε,c0,θ

2

ρ2c‘
1,1 ÝÝÑ

εÑ0

1

2
ξε,s1,r ´

1

2
ξε,c1,θ, c‘

2,1 ÝÝÑ
εÑ0

´
3

2
ξε,s1,r `

1

2
ξε,c1,θ

We deduce that there exists ρ̃0, ρ̃1 ą 0 such that

|au1,0| À |ξε,c0,θ| ` |wb| @ε P p0, ρ̃0q

|au1,1| À p|ξε,s1,r| ` |ξε,c1,θ|q

˜

ˆ

ε

ρ

˙2

` 1

¸

` |vb ¨ ey| @ε P p0, ρ̃1q.

Using the estimates on the coefficients auj,l{b
u
j,l and setting ρ̃ “ minpρ0, ρ1, ρ{4q if N P

t0, 1u or ρ̃ “ minpρ̃0, ρ̃1, ρ{4q ifN ě 2, since the sequence p1`jq2pρ̃{ρq2pj´1q is bounded,
we obtain for ε P p0, ρ̃q,

}uε
N,S} 1

2
,Bωρ À

˜

N´1
ÿ

j“0

p1 ` jq|ξj|
2

`

N`1
ÿ

j“N

p1 ` jqp1 ` jq2
ˆ

ρ̃

ρ

˙2pj´1q

|ξj|
2

¸
1
2

` |vb| ` ε|wb|

À }uε
N}

F
1
2
,ρ

` |vb| ` ε|wb|,
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where the definition of |ξj| is given in (4.A.55). Using successively the equivalence be-
tween the norm } ¨ }F

1
2
,ρ

and } ¨ } 1
2
,Bωρ , the standard trace theorem fromH

1
2 pBωρq toH1pΩq

and the a priori estimates on uε
N given by Theorem 4.2.1, we get, for ε P p0, ρ̃q,

}uε
N,S} 1

2
,Bωρ À |vb| ` ε|wb|.

This concludes the proof.
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CHAPTER5
Loosely coupled Robin-Robin scheme for slender

bodies immersed in an incompressible flow

5.1 Introduction

One key aspect of the modelling approach proposed in Chapter 2 is to introduce a compu-
tational framework which reduces the coupling conditions between a 1D structure and a
3D fluid while maintaining a good balance between accuracy and computational efficiency.
In Chapter 2, the time-discretization of the coupling condition is based on a semi-implicit
coupling scheme. One of the main advantages of this approach is that it delivers uncon-
ditionally energy stability (see Theorem 2.3.1) However, as discussed in Section 2.3.4, to
solve the coupled system at each time step following a partitioned procedure, the fluid and
structure sub-problems need to be solved iteratively, which can be computationally expen-
sive. On the other hand, the stability of less expensive standard explicit coupling schemes,
which enable to compute the solution of the coupled problem in a partitioned fashion
by invoking the fluid solver only a few times by time-step, is dictated by the amount of
added-mass effect in the system [Causin et al., 2005] [Förster et al., 2007], regardless of
the discretization parameters. Particularly, in scenarios with low ratio between the fluid
and structure densities, or for slender structures, explicit Dirichlet-Neumann schemes are
known to suffer from instability.
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The first fully explicit stable scheme was introduced for a problem with an incom-
pressibility constraint in the fluid in [Burman and Fernández, 2009], using the Nitsche
method [Hansbo, 2005]. In [Burman and Fernández, 2014], it was observed that the
Nitsche coupling method could be transformed into a Robin-based coupling scheme with-
out sacrificing stability. Since then, numerous studies have been conducted on Robin-like
loosely coupled schemes for fluid-structure interaction (FSI) problems involving thick-
walled solids [Banks et al., 2014, Bukač et al., 2014, Fernández et al., 2015b, Gigante and
Vergara, 2021, Burman et al., 2022a, Burman et al., 2023]. In the specific case of the
coupling with thin walled structure where the solid is represented by a manifold of co-
dimension one with respect to the fluid model, many schemes have been developed and
analyzed based on the original work [Guidoboni et al., 2009], for instance [Canic et al.,
2012, Bukač et al., 2015, Fernández et al., 2015a, Oyekole et al., 2018]. The key principle
for stability lies in implicit integration of the solid’s inertial contribution within the fluid,
enforced through a Robin-type interface condition (which circumvents the aforementioned
added mass issues), and extrapolating the remaining solid contributions for accuracy (see,
e.g., [Fernández, 2013]).

In this chapter, we investigate a class of Robin-Robin based loosely coupled schemes
for the numerical approximation (2.2.4), (2.2.21), (2.2.27), extending the work of [Burman
et al., 2022b, Burman et al., 2022a, Burman et al., 2023] to the case of slender structures
with co-dimension 2 with respect to the fluid domain. As a first approach, we adopt a sim-
plified framework wherein the rotation effects in the solid are neglected in the interface
coupling conditions. We provide an energy stability analysis which guarantees the uncon-
ditional stability of the scheme. We also consider some test cases presented in Chapter 2
for which we compare the solutions obtained with the semi-implicit coupled scheme and
the Robin-Robin based loosely coupled scheme.

The extension of the Robin-Robin loosely coupled scheme paradigm introduced in
[Burman et al., 2022a] to the mixed dimensional model (2.2.4), (2.2.21), (2.2.27) is not
straightforward. Let α P R` be a user-defined parameter, un, un

b the discrete velocities of
the fluid and structure, and λn the Lagrange multiplier associated with the kinematic con-
straint at the fluid-structure interface Σn

pε at time tn, the semi-discrete Robin-type coupling
condition formally reads

λn
` αun

“ αun´1
b ` λn´1 on Σn

ε . (5.1.1)

In [Burman et al., 2022a], the authors proved that for this relation to hold at the dis-
crete level, a variational consistent discretization of stresses, compatible with the loosely
coupled scheme, needed to be used. As further discussed in [Burman et al., 2023], this
discretization is mainly dependent on the conformity between the structure mesh and the
fluid mesh. For the reduced order approach introduced in Chapter 2, due to the projection
of the Lagrange multipliers on a finite-dimensional space, the relation (5.1.1) is not ex-
pected to hold. Instead, under some assumptions on the beam velocity interface, we will
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put in evidence that, by choosing properly the Lagrange multiplier space, it yields

λn
´ λn´1

“ αpΠpun
q ´ un

bq, (5.1.2)

where Π is a L2 projector defined on the velocity admissible space for the solution of
the structure sub-problem. In Section 5.2, we will derive the Robin-Robin conditions
in a simplified framework, without the contribution of the solid rotation in the coupling
conditions, and establish an equality of the form (5.1.2). In Section 5.2.2, building on
this relation between velocity and stress, we establish the unconditional stability of the
loosely coupled Robin-Robin scheme. Finally, in Section 5.3, we will propose several
numerical examples providing numerical evidence of the stability and accuracy of the
loosely coupled scheme. We will also apply this scheme to the test case of Section 2.4.3
with multiple beams immersed in a Navier-Stokes fluid of moderate Reynolds numbers.

5.2 Numerical method: Robin-Robin loosely coupled scheme

In this chapter, we consider the same framework as in Chapter 2. The objective is
to propose a stable Robin-based loosely coupled scheme for the time discretization of
the mixed-dimensional coupled problem (2.2.4), (2.2.21), (2.2.27) as an alternative to
the semi-implicit time discretization described in Algorithm 1. We consider the same
space discretization as the one presented in Section 2.3.1. More specifically, we set
Vh

def
“ X1

hpΩq X V and Qh
def
“ X1

hpΩq X Q for the approximation of the fluid velocity
u and pressure p, respectively, while for the solid displacement r and rotation θ, their
approximations will be taken into YH

def
“ X1

Hp0, Lq X Y . The spaces V “ H1
0 pΩq

and Q “ L2
0pΩq are the space of admissible fluid velocity and pressure respectively, and

Y Ă H1p0, Lq is the space of admissible displacements and rotations of the beam. The
definitions of X1

hpΩq, Q1
hpΩq and X1

HpΩq are given in (2.3.1). In order to ease the anal-
ysis of the method, we consider the Lagrange multiplier space introduced in (2.3.2) in
reference configuration:

pFN,H
def
“

␣

pvH | pvHps, νq
def
“ a0,Hpsq

`

N
ÿ

k“1

ak,Hpsq cospkνq ` bk,H sinpkνq, ak,H , bk,H P YH

(

. (5.2.1)

Furthermore, as mentioned in the introduction, we consider a simplified framework where
the contribution of rotations are neglected in the fluid-structure coupling conditions (see
Remark 16 below). Consequently, the kinematic and dynamic coupling conditions (2.2.25)
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in a space semi-discrete framework becomes

$

’

&

’

%

ϕH “ pI3 ¨ ezqez ` ĎrH ` ĚΛH

`

I3 ´ pI3 ¨ ezqez
˘

in pωε,

pµN,H ,uh ˝ ϕHq
pε “ pµN,H , BtrHq

pε @µN,H P pFN,H ,

pf , δrHqp0,Lq “ ´pλN,H ,ĚδrHq
pε @δrH P YH ,

(5.2.2)

where p¨, ¨q
pε, similarly to the inner-product p¨, ¨qε introduced in (2.2.20), is the following

re-scaled L2 inner-product on pΣε:

ppu, pvq
pε
def
“

ż L

0

ż 2π

0

pups, νq ¨ pvps, νq.

Let pFN‹,H be the space defined as

pFN‹,H
def
“

␣

pvH P L2
ppΣε

q :

pvHps, νq
def
“

N
ÿ

k“1

ak,Hpsq cospkνq ` bk,Hpsq sinpkνq, ak,H , bk,H P YH

(

.

Since δrH P pF0,H and pFN‹,H is orthogonal to pF0,H for the inner-product p¨, ¨q
pε, we have

that

pµN‹,H ,ĚδrHq
pε “ 0 @pµN‹,H , δrHq P pFN‹,H ˆ YH .

Consequently, if pΠ0,H and pΠN‹,H denotes the L2 orthogonal projection on pF0,H and
pFN‹,H for the inner-product p¨, ¨qε, respectively, writing λN,H “ λ0,H ` λN‹,H with
pλ0,H ,λN‹,Hq “ ppΠ0pλN,Hq, pΠN‹,HpλN,Hqq, the kinematics and dynamics coupling con-
ditions (5.2.2) can be written equivalently

$

’

&

’

%

pµ0,H ,uh ˝ ϕHq
pε “ pµ0,H , BtrHq

pε @µ0,H P pF0,H ,

pµN‹,H ,uh ˝ ϕHq
pε “ 0 @µN‹,H P pFN‹,H ,

pf , δrHqp0,Lq “ ´pλ0,H ,ĚδrHq
pε @δrH P YH ,

(5.2.3)

The space semi-discrete formulation of the coupled problem (2.2.4), (2.2.21), (2.2.27)
with Lagrange multiplier space (5.2.1) and simplified coupling conditions (5.2.3) is given
by: we look for puh, ph,λN,H , rH ,θHq such that puhptq, phptq,λN,Hptq, rHptq,θHptqq P
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Vh ˆ Qh ˆ pFN,H ˆ YH ˆ YH a.e t P R` and is solution of

ϕH “ pI3 ¨ ezqez ` ĎrH ` ĚΛH

`

I3 ´ pI3 ¨ ezqez
˘

in pωε, (5.2.4)
#

ρfpBtuh,vhqΩ ` afΩ,h

`

uh; puh, phq, pvh, qhq
˘

´ pλN,H ,vh ˝ ϕn
Hq

pε

` pµ0,H ,uh ˝ ϕH ´ Ď9rHq
pε ` pµN‹,H ,uh ˝ ϕHq

pε “ 0
(5.2.5)

$

’

’

&

’

’

%

ρb
`

ABt 9rH , δrH
˘

p0,Lq
` `abH

`

prH ,θHq, pδrH , δθHq
˘

` αpĎ9rH ´ uh ˝ ϕH ,ĚδrHq
pε “ ´

`

λ0,H , δrHq
pε,

λ0,H “ pΠH,0pλN,Hq.

(5.2.6)

for all pvh, qh,µN,H , δrH , δθHq P Vh ˆ Qh ˆ Yh ˆ YH with pµ0,H ,µN‹,Hq “

ppΠ0,HpµN,Hq, pΠN‹,HpµN,Hqq. The definition of the discrete forms afΩ,h and abH are given
in (2.3.5) and (2.3.6), respectively.

Remark 16. The choice of neglecting the rotation contribution in the coupling conditions
is justified by the difficulties of treating the geometrical dependence of the rotation in
the Robin-Robin coupled scheme. However, if one wanted to include the rotations and
guarantee energy stability, a simple option would be to update the fluid domain from a
linearized version of the deformation map ϕH with ΛH « I3 `ΘH . In this case, the proof
for energy stability is similar to the one presented in Lemma 5.2.2.

5.2.1 Derivation of the Robin-Robin coupling conditions

As in the previous chapters, the scalar τ ą 0 denotes the time step and ttn
def
“ nτunPN

represents the temporal grid. We also set

vn, Bτv
n def

“
1

τ
pvn ´ vn´1

q, vn´ 1
2

def
“

1

2
pvn´1

` vnq,

for an approximation of vptnq, the backward Euler difference and the mid point evaluation,
respectively. In the coupled problem (5.2.4) - (5.2.6), we notice that only λ0,H contributes
to the coupling conditions (5.2.3) while λN‹,H only intervenes in the fluid sub-problems.
Consequently, we only consider λ0,H for the derivation of the Robin-Robin loosely re-
duced order coupling conditions. They read for the structure sub-problem and the fluid
sub-problem respectively:

´ pλn
0,H ,

ĚδrHq
pε ` αp 9r

n´ 1
2

H ,ĚδrHq
pε

“ αpun´1
h ˝ ϕn´1

H ,ĚδrHq
pε ´ pλn´1

0,H ,
ĚδrHq

pε, @δrH P Yh (5.2.7)
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and

´ pµ0,H ,λ
n
0,Hq

pε ` αpµ0,H ,u
n
h ˝ ϕn

Hq
pε

“ αpµ0,H , 9r
n´ 1

2
H q

pε ´ pµ0,H ,λ
n´1
0,H q

pε, @µ0,H P pF0,H (5.2.8)

Applying a backward-Euler semi-implicit time discretization for the fluid-sub problem and
a mid-point scheme for the solid sub-problem, we obtain the fully discrete formulation of
the Robin-Robin scheme given in Algorithm 7.

Algorithm 7 Fully discrete, Robin-Robin, loosely coupled scheme.

For n ě 1:
Step 1: Solid sub-problem (Robin): Find prnH ,θnHq P YH ˆ YH such that p 9r

n´ 1
2

H , 9θ
n´ 1

2

H q “

pBτr
n
H , Bτθ

n
Hq and

$

&

%

ρb
`

ABτ 9rnH , δrH
˘

p0,Lq
` ρb

`

IBτ 9θnH , δθH
˘

p0,Lq
` abH

`

pr
n´ 1

2

H ,θ
n´ 1

2

H q, pδrH , δθHq
˘

` αp 9r
n´ 1

2

H ´ un´1
h ˝ ϕn´1

H , ĚδrHq
pε “ ´

`

λn´1
0,H , δrHq

pε

(5.2.9)

for all pδrH , δθHq P YH ˆ YH .
Step 2: Update the deformation map:

ϕn
H “ pI3 ¨ ezqez ` ĎrnH ` ĚΛn

H

`

I3 ´ pI3 ¨ ezqez
˘

in pωε. (5.2.10)

Step 3: Fluid sub-problem (Robin): Find pun
h, p

n
h,λ

n
N,Hq P Vh ˆ Qh ˆ pFN,H such that λn

N,H “

λn
0,H ` λn

N‹,H with pλn
0,H ,λn

N‹,Hq P pF0,H ˆ pFN‹,H and

$

’

’

&

’

’

%

ρfpBτu
n
h,vhqΩ ` afΩ,h

`

un´1
h ; pun

h, p
n
hq, pvh, qhq

˘

´ pλn
N,H ,vh ˝ ϕn

Hq
pε

` αpµ0,H ,un
h ˝ ϕn

H ´ 9r
n´ 1

2

H q
pε ` pµ0,H ,λn

0,H ´ λn´1
0,H q

pε

` pµN‹,H ,un
h ˝ ϕn

Hq
pε “ 0

(5.2.11)

for all pvh, qh,µN,Hq P Vh ˆ Qh ˆ pFN,H with pµ0,H ,µN‹,Hq “ p pΠ0,HpµN,Hq, pΠN‹,HpµN,Hqq.

Note that in [Burman et al., 2022a], thanks to the conformity between the structure and
fluid meshes, the authors proposed an equivalent formulation of the Robin-Robin loosely
coupled scheme where the Lagrange multipliers are not unknowns of the fluid sub-problem
but simple additional variables explicitly updated at each time step. A similar procedure
can actually be applied for our problem to the Lagrange multiplier λn´1

0,H . First, let us
rewrite (5.2.8) as

´λn
0,H “ ´λn´1

0,H ` α
`

pΠ0,Hpun
h ˝ ϕn

hq ´ 9r
n´ 1

2
H q in pF0,H . (5.2.12)
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Thanks to equation (5.2.12), Step 3 of Algorithm 7 can be reformulated as: find
pun

h, p
n
h,λ

n
N‹,Hq P Vh ˆ Qh ˆ pFN‹,H such that

$

’

’

&

’

’

%

ρfpBτu
n
h,vhqΩ ` afΩ,h

`

un´1
h ; pun

h, p
n
hq, pvh, qhq

˘

´ pλn
N‹,H ,vh ˝ ϕn

Hq
pε

` α
`

un
H ˝ ϕn

H ´ 9r
n´ 1

2
h , pΠ0,Hpvh ˝ ϕn

Hq
˘

p0,Lq
´
`

λn´1
0,H ,vh ˝ ϕn

H

˘

pε

` pµN‹,H ,u
n
h ˝ ϕn

Hq
pε “ 0

(5.2.13)

for all pvh, qh,µN‹,Hq P Vh ˆ Qh ˆ pFN‹,H . We can then update λn
0,H through relation

(5.2.12). While formulation (5.2.13) may seem more appealing than formulation (5.2.11)
because it allows for the removal of the quantityλn

0,H as unknown of the fluid sub-problem,
it nevertheless requires computing the L2 projection of the entire set of test functions
vh ˝ϕn

H onto the space pF0,H , which can be quite tedious. Therefore, from a practical point
of view, we opted for the formulation (5.2.11) in the implementation.

5.2.2 Analysis of the energy stability

The energy stability of Algorithm 7 is stated in the following theorem

Theorem 5.2.1. Let tpun
h, p

n
h, r

n
H ,θ

n
Hqu be given by Algorithm 7. There holds

En
`

n
ÿ

m“1

Dm
ď E0

@n ě 1. (5.2.14)

where the discrete mechanical energy En of the system and Dn are defined by

En def
“ρf}u

n
h}

2
Ω ` ρb} 9rnH}

2
A,p0,Lq ` ρb} 9θnH}

2
I,p0,Lq ` }prnH ,θ

n
Hq}

2
b,H

` τα}pΠ0,Hpun
h ˝ ϕn

Hq}
2
pε `

τ

α
}λn

0,H}
2
pε

Dn def
“2µτ}εpun

hq}
2
Ω ` ρf}u

n
h ´ un´1

h }
2
Ω ` 2ατ} 9r

n´ 1
2

H ´ pΠ0,Hpun´1
h ˝ ϕn´1

H q}
2
pε.

with
} ¨ }A,p0,Lq

def
“

b

pA ¨, ¨qp0,Lq, } ¨ }I,p0,Lq
def
“

b

pI ¨, ¨qp0,Lq,

}¨, ¨}b,H
def
“

b

abH
`

p¨, ¨q, p¨, ¨q
˘

.

Proof. By testing equation (5.2.9) with pδrH , δθHq “ τp 9r
n´ 1

2
H , 9θ

n´ 1
2

H q, we get
1

2
ρb} 9rnH}

2
A,p0,Lq `

1

2
ρb} 9θnH}

2
I,p0,Lq `

1

2
}prnH ,θ

n
Hq}

2
b,H “

1

2
ρb} 9rn´1

H }
2
A,p0,Lq `

1

2
ρb} 9θn´1

H }
2
I,p0,Lq `

1

2
}prn´1

h ,θn´1
H q}

2
b,H

` ατ
`

un´1
h ˝ ϕn´1

H ´ 9r
n´ 1

2
H ,

Ę

9r
n´ 1

2
H

˘

pε
´ τ

`

λn´1
0,H ,

Ę

9r
n´ 1

2
H

˘

pε
.
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On the other hand, using integration by parts and the boundary conditions of un´1
h , un

h, we
have

afΩ,hpun´1
h ; pun

h, phq, pun
h, phqq ě 2µf}εpu

n
hq}

2
Ω.

We deduce that by taking pvh, qh,µN‹,Hq “ pun
h, p

n
h,λ

n
N‹,Hq in (5.2.11), we obtain

ρf
2

}un
h}

2
Ω `

ρf
2

}un
h ´ un´1

h }
2
Ω ` 2µfτ}εpun

hq}
2
Ω ď

ρf
2

}un´1
h }

2
Ω ` τpλn

0,H ,u
n
h ˝ ϕn

Hq
pε

By adding these two previous relations, we get

ρb
2

} 9rnH}
2
A,p0,Lq `

ρb
2

} 9θnH}
2
I,p0,Lq `

1

2
}prnH ,θ

n
Hq}

2
b,H

`
ρf
2

}un
h}

2
Ω `

ρf
2

}un
h ´ un´1

h }
2
Ω ` 2µfτ}εpun

hq}
2
Ω

ď
ρb
2

} 9rn´1
H }

2
A,p0,Lq `

ρb
2

} 9θn´1
H }

2
I,p0,Lq `

1

2
}prn´1

h ,θn´1
H q}

2
b,H `

ρf
2

}un´1
h }

2
Ω ` τJ

with

J
def
“ α

`

un´1
h ˝ ϕn´1

H ´ 9r
n´ 1

2
H ,

Ę

9r
n´ 1

2
H

˘

pε
´
`

λn´1
0,H ,

Ę

9r
n´ 1

2
H

˘

pε
` pλn

0,H ,u
n
h ˝ ϕn

Hq
pε.

By using the operator pΠ0,H , we can also write

J
def
“ α

`

pΠ0,Hpun´1
h ˝ ϕn´1

H q ´ 9r
n´ 1

2
H , 9r

n´ 1
2

H

˘

pε
´
`

λn´1
0,H , 9r

n´ 1
2

H

˘

pε
` pλn

0,H ,u
n
h ˝ ϕn

Hq
pε.

After some manipulations, we derive

J “
`

pΠ0,Hpun´1
h ˝ ϕn´1

H q ´ pΠ0,Hpun
h ˝ ϕn

Hq ` pΠ0,Hpun
h ˝ ϕn

Hq ´ 9r
n´ 1

2
H , 9r

n´ 1
2

H

˘

pε

´
`

λn´1
0,H , 9r

n´ 1
2

H

˘

pε
` pλn

0,H ,u
n
h ˝ ϕn

Hq
pε

“
`

pΠ0,Hpun´1
h ˝ ϕn´1

H q ´ pΠ0,Hpun
h ˝ ϕn

Hq, 9r
n´ 1

2
H

˘

pε
` pλn

0,H ,u
n
h ˝ ϕn

Hq
pε

`
`

pΠ0,Hpun
h ˝ ϕn

Hq ´ 9r
n´ 1

2
H , 9r

n´ 1
2

H

˘

pε
´
`

λn´1
0,H , 9r

n´ 1
2

H

˘

pε
.

Finally using (5.2.12) with δrH “ 9r
n´ 1

2
H in the last line of the above equation, we obtain

the following result,

J “α
`

pΠ0,Hpun´1
h ˝ ϕn´1

H q ´ pΠ0,Hpun
h ˝ ϕn

Hq, 9r
n´ 1

2
H

˘

pε
`
`

λn
0,H ,

pΠ0,Hpuh ˝ ϕHq ´ 9r
n´ 1

2
H

˘

pε
,

“α
`

pΠ0,Hpun´1
h ˝ ϕn´1

H q ´ pΠ0,Hpun
h ˝ ϕn

Hq, 9r
n´ 1

2
H

˘

pε
`

1

α

`

λn
0,H ,λ

n´1
0,H ´ λn

0,H

˘

pε
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and with the following identity

pv ´w,ψq “
1

2

`

}v}
2

´ }w}
2

` }ψ ´w}
2

´ }ψ ´ v}
2
˘

,

we have

`

pΠ0,Hpun´1
h ˝ ϕn

Hq ´ pΠ0,Hpun
h ˝ ϕn

Hq, 9r
n´ 1

2
H

˘

pε
“

}pΠ0,Hpun´1
h ˝ ϕn´1

H q}
2
pε ´ }pΠ0,Hpun

h ˝ ϕn
Hq}

2
pε

´ } 9r
n´ 1

2
H ´ pΠ0,Hpun´1

h ˝ ϕn´1
H q}

2
pε ` } 9r

n´ 1
2

H ´ pΠ0,Hpun
h ˝ ϕn

Hq}
2
pε

`

λn
0,H ,λ

n´1
0,H ´ λn

0,H

˘

pε
“ }λn´1

0,H }
2
pε ´ }λn

0,H}
2
pε ´ }λn

0,H ´ λN,n´1
0,H }

2
pε.

Using again (5.2.12), we note that

}λn
0,H ´ λn´1

0,H }
2
pε “ α2

} 9r
n´ 1

2
H ´ pΠ0,Hpun

h ˝ ϕn
Hq}

2
pε.

Thus we conclude

J “
α

2

`

}pΠ0,Hpun´1
h ˝ ϕn´1

H q}
2
pε ´ }pΠ0,Hpun

h ˝ ϕn
Hq}

2
pε

˘

`
1

2α

`

}λn´1
0,H }

2
pε ´ }λn

0,H}
2
pε

˘

´
α

2
} 9r

n´ 1
2

H ´ pΠ0,Hpun´1
h ˝ ϕn´1

H q}
2
pε.

By replacing the time index by m and by summing over t0, . . . , nu, we obtain the estimate
(5.2.14).

5.2.3 Iterative partitioned solution of the implicit coupling

Algorithm 7 can be interpreted as a single iteration of a Robin-Robin method for the parti-
tioned solution of Algorithm 1 (where the coupling conditions are written in the reference
configuration). The corresponding Robin-Robin iterations are detailed in Algorithm 8.

This kind of iterative solution procedures has already been applied for the partitioned
solution of strong coupling in [Badia et al., 2008a, Nobile and Vergara, 2008, Gerardo-
Giorda et al., 2010], improving the standard Dirichlet-Neumann procedure.

5.3 Numerical results

In this section, we will compare the results obtained with Algorithm 1 and Algorithm 7 for
some test cases introduced in Section 2.4 of Chapter 2. In particular, we will investigate
the impact of the parameter α and of correction iterations on the simulations obtained with
the Robin-Robin loosely coupled scheme.
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Algorithm 8 Partitioned Robin-Robin iterations

Step 1: Initialize r0 and λ0

Step 2: For k “ 1, . . . until convergence

• Fluid step: Find puk, pk,λkq P Vh ˆ Qh ˆ pFN,H such that λk “ λ0,k ` λN‹,k with
pλ0,k,λN‹,kq P pF0,H ˆ pFN‹,H and

$

’

’

&

’

’

%

ρf
τ

puk ´ un´1
h ,vhqΩ ` afΩ,h

`

un´1
h ; puk, pkq, pvh, qhq

˘

´ pλk,vh ˝ ϕn
Hq

pε

` αpµ0,H ,uk ˝ ϕn
H ´ 9rk´1q

pε ` pµ0,H ,λ0,k ´ λ0,k´1q
pε

` pµN‹,H ,uk ˝ ϕn
Hq

pε “ 0

(5.2.15)

for all pvh, qh,µN,Hq P Vh ˆQh ˆ pFN,H with pµ0,H ,µN‹,Hq “ p pΠ0,HpµN,Hq, pΠN‹,HpµN,Hqq.

• Solide step: Find prk,θkq P YH ˆ YH such that p 9rk, 9θkq “ 1
τ prk ´ rn´1

H ,θk ´ θn´1
H q and

$

’

’

&

’

’

%

ρb
τ

`

Ap 9rk ´ 9rn´1
H q, δrH

˘

p0,Lq
`

ρb
τ

`

Ip 9θk ´ 9θn´1
H q, δθH

˘

p0,Lq

` abH
`

pprk ` rn´1
H q{2, pθk ` θn´1

H q{2q, pδrH , δθHq
˘

` αp 9rk ´ uk ˝ ϕn
H , ĚδrHq

pε “ ´
`

λ0,k, δrHq
pε

(5.2.16)

for all pδrH , δθHq P YH ˆ YH .

5.3.1 Single beam in a Stokesian flow

We consider the same geometric configuration and boundary conditions as in the test case
of Section 2.4.1 (see Figure 2.3). More specifically, the following parabolic profile is
enforced at the inlet boundary Γin:

uinpx, tq
def
“ uref

˜

1 ` cos

ˆ

2πt

T

˙

¸

`

1 ´ pz ´ 1qpz ` 1q
˘

ex. (5.3.1)

The fluid satisfies the Stokes equations and the solid the linear Timoshenko beam equa-
tions. The fluid and solid parameters are given by µf “ 0.05, ε “ 0.06, ρb “ 1, E “ 107,
respectively. The fluid mesh satisfies h{ε “ 1{4 in the vicinity of the beam and h “ 0.05
elsewhere. For the beam and Lagrange multiplier space, we discretize the interval p0, Lq

with a uniform mesh H “ 0.05. The behavior of the coupled system is studied over the
time interval r0, 0.06s with a time-step length of τ “ 5 ¨ 10´3.

We consider several values for the Robin coefficient α P t0.1, 0.5, 1u and different
correction iterations. In Figure 5.1, we plot the displacement of the beam last cross-section
for both Algorithm 1 and Algorithm 7, with N “ 0, and with or without the addition of
a correction iteration. Without the correction iteration, we observe some fluctuations in
the solution with respect to the Robin coefficient, the best approximation being given by
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α “ 0.1 for which the solution computed is close to the one of Algorithm 1. Introducing
a correction iteration reduces the variability of the method and all the values of α gives a
good approximation of the reference solution.

(a) Without correction iteration
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Figure 5.1: Displacement of the last cross-section of the beam computed with Algorithm 1 and Algorithm 7
with or without correction iteration over the interval r0, 0.06s - fluid sub-problem solved with Stokes

equations.

5.3.2 Single beam immersed in a Navier-Stokes flow

We consider the test case Section 2.4.2 for Re “ 480 and the inlet velocity given in
(5.3.1). The fluid and beam parameters are given by ρb “ 1, ρf “ 1, µf “ 0.05, E “ 3e8.
Similarly to the previous test case, we consider various values for the Robin coefficient α P

t0.1, 0.5, 1u. We use the same fluid and solid meshes, and time discretization parameters
as in the previous section. In Figure 5.2, we plot the displacement of the last cross section
of the beam over the time interval r0, 0.06s for Algorithm 1 and Algorithm 7, with N “ 0,
with or without correction. For this test case, the solutions obtained for α P t0.5, 1u

without correction are close to the reference solution obtained with Algorithm 1. Adding
a correction enables the solution obtained with Algorithm 7 and α “ 0.1 to approach the
reference solution, although it seems that a second correction iteration would be necessary
to achieve a more satisfactory solution. Note in that in general, there is not a priori optimal
values for the coefficient α , however some works on the error analysis of the loosely
coupled Robin-Robin schemes for thick structures suggests that it should behave as

?
ρbE,

which may explain which we need to take a higher value for α in this test case with respect
to the previous one where the Young’s modulus was smaller.

5.3.3 Multiple beams immersed in an incompressible flow

As last example, we consider the numerical test case of Section 2.4.3 involving 75 circular
beams of radius ε “ 0.05, arranged with 5 along the y-axis and 15 along the x-axis. The
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(a) Without correction iteration
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(b) With one correction iteration
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Figure 5.2: Displacement of the last beam cross-section computed with Algorithm 1 and Algorithm 7 with
or without correction iteration over the interval r0, 0.06s - fluid sub-problem solved with Navier-Stokes

equations.

beam is modeled by a non-linear co-rotational formulation that allows for large deforma-
tions (see [Krenk, 2009, Chapter 5]) and potential contact are dealt using a ray-tracing al-
gorithm described in Section 2.A.1 of the Appendix. All the beams have the same Young’s
modulus and density, E “ 108 and ρb “ 1, respectively. The fluid satisfies the Navier-
Stokes equations with Reynolds Re “ 480, density ρf “ 1 and viscosity µf “ 0.05. The
size of the fluid mesh is uniform with h “ 0.035. Based on the previous results, we take
α “ 1 as Robin coefficient and one correction iteration. In Figure 5.3, we provide snap-
shots of the fluid velocity magnitude comparing the solution computed with Algorithm 7,
N “ 2 and Algorithm 1, N “ 2 at times t P t0.05, 0.1, 0.45, 0.6u. Using the Robin-based
loosely coupled scheme, the duration of the simulation was divided by four and we ob-
serve, at least qualitatively, close results for both Algorithm 7 and Algorithm 1, confirming
the interest of the explicit method for large-scale simulations.

Conclusion

In this chapter we presented a Robin-based loosely coupled scheme for the simulation of
slender structures immersed in a three dimensional flow. Assuming that the contribution
of the solid rotations could be neglected in the coupling conditions, we derived from the
reduced order coupled model introduced in Chapter 2 a time explicit scheme with interface
Robin conditions in both the fluid and the solid sub-problems. The main advantage of this
coupling procedure is to reduce the computational cost of the resolution of the coupled
problem by calling the fluid solver and solid solver only once per time-step. A major issue
of the loosely coupled schemes for slender structures being the added-mass instability,
we also proved that our Robin-based loosely coupled scheme was unconditionally stable.
However, although stable, the loosely coupled schemes are not necessarily accurate. By
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Algorithm 7, N “ 2

t=0.005 t=0.01 t=0.045 t=0.06

Algorithm 1, N “ 2

Figure 5.3: Snapshots of the fluid velocity magnitude for multiple beams immersed in a Navier-Stokes flow
with Algorithm 7, N “ 2 (up) and Algorithm 1, N “ 2 (down) at time t P t0.005, 0.01, 0.045, 0.06u.

comparing the results obtained on several test cases with respect to the solution of the semi-
implicit coupled scheme, we observed that the results strongly depended on the choice of
the Robin parameter α. To reduce the variability of the method, by writing the explicit
scheme as one step of an Algorithm for the resolution of the semi-implicit scheme, we
proposed a correction iteration consisting of reiterating the Robin scheme a second time
without updating the time step. We then observed a much smaller variation of the results
and solutions close to those obtained with the semi-implicit scheme.

The study presented in this chapter needs to be taken further, in particular by complet-
ing it with numerical tests. A first potential improvement of this work would be to include
the rotation contributions in the Robin-based coupling conditions, which however may be
quite technical due to their dependence on the geometric configuration of the beam inter-
face. Secondly, we also would like to identify if an optimal range for the Robin parameter
α may allow to avoid the need of correction iterations.
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Conclusion and perspectives

Conclusion

In this PhD dissertation, we introduced a new formulation for the coupling of one or mul-
tiple slender structures, described as 1D manifolds, with a surrounding 3D incompressible
fluid. In order to overcome the mathematical issues related to the ill-posed trace operators
with such dimensional gap, the proposed formulation builds on the introduction of aver-
aged interface conditions (via projection operators onto a Fourier-based finite-dimensional
space). Indeed, standard modeling approaches of 3D-1D coupled problems rely on con-
centrated sources (delta Dirac), whose solution exhibits low regularity, which compro-
mises model well-posedness and the development of accurate and efficient approximation
methods.

In two different simplified settings considered in Chapters 4 and 3, we showed that the
modeling error can be mitigated in terms of the number of Fourier modes in the projection
space, which enables the balance between efficiency and accuracy. Furthermore, the solu-
tions provided by the present approach are regular enough to be approximated by standard
numerical methods. A priori error estimates for a fictitious domain finite element method
with respect to the thickness and mesh parameters were thus derived. An augmented finite
element method was also proposed which partially enables to decouple the modelling er-
ror emerging from the mixed-dimensional formulation and the numerical error of the finite
element method.

Finally, in Chapters 2 and 5, the proposed reduced modeling approach is extened to
the case of 3D-1D fluid-structure interaction problems. Several numerical experiments
involving either Stokes or Navier-Stokes flow (with moderate Reynolds) and a single linear
Timoshenko beam, indicate that this formulation yields accurate results with respect to the
3D full coupled problem, both in terms of the fluid and solid dynamics. In particular, we
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Chapter 5. Loosely coupled Robin-Robin scheme for slender bodies immersed in an
incompressible flow

illustrate that by properly choosing the Fourier projection space, both the displacement and
rotation dynamics of the beam can be captured. This approach has also been investigated
in the the case of multiple nonlinear beams, possibly getting into contact. In order to
mitigate the computational complexity of the coupled problems, a Robin-based loosely
coupled scheme has been proposed.

Perspectives

Extensions of this work can explore a number of research directions. The results of Chap-
ters 3 and 4 were limited to two spatial dimensions. An interesting problem would be
to extend the well-posedness and the model approximation error results to the 3D case,
notably for the Stokes problem. For the model approximation error, in the spirit of the
analysis of the slender-body theory [Mori and Ohm, 2021], a first step would be to carry
out a spectral analysis on the reduced-order Stokes problem, by considering a straight
periodic beam in order to obtain closed-form solutions of the eigenvalue problem. The
asymptotic behavior with respect to the thickness of the slender body of these explicit so-
lutions could be used to estimate the modeling error with respect to the full 3D model.
These explicit solutions could also be leveraged to develop an augmented finite element
method, similar to the one proposed in Chapters 2 and 4, which the purpose of mitigating
one the main drawbacks of the proposed method, that is, the dependence of the numerical
error of the standard finite element method to the ratio h{ε.

Another interesting extension of the present work is to explore the well-posedness of
the 3D fluid-beam reduced order model. Though some studies have been devoted to the
existence of solutions for elastic slender structures interacting with a 2D Navier-Stokes
flow [Grandmont and Hillairet, 2016, Grandmont et al., 2019, Lequeurre, 2011], or shell
or plate in 3D [Lengeler, 2014, Muha and Canić, 2013, Grandmont, 2008], the case of the
3D-1D coupling has not been treated so far, to the best of my knowledge. For such coupled
problems, full 3D models often suffer from lack of regularity of the solutions in the solid
model. Instead, the case of 3D-1D mixed-dimensional coupling equations may improve
the situation.

Finally, in this PhD dissertation, we have shown that the proposed method is able
to simulate a large number of beams in a efficient way, notably using loosely coupled
schemes. We hence plan to apply this methodology to more realistic situations. One ex-
ample is the simulation of the lung cilia involved in mucociliary clearance [Smith et al.,
2007, Alouges et al., 2013]. The cilia have the ability to change their shapes by generat-
ing internal stress. This mechanism is based on the strong reciprocal interaction with the
surrounding fluid. We are particularly interesting in investigating whether the presented
mixed-dimensional model, with an active 1D model of the cilia (see, e.g., [Decoene et al.,
2020]), is able to reproduce the so-called metachronal wave [Mitran, 2007]. It is worth
noting that, from an algorithmic perspective, when the mesh size is of the same order as
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5.3. Numerical results

the thickness of the structure (a framework preferred for limiting the computational cost
of the simulations), in addition to numerical errors, another limitation is that the matrix
system may become ill-conditioned, requiring the construction of efficient iterative al-
gorithms. Subsequently, it would also be interesting to investigate the impact of some
recently developed preconditioners for our specific problem [Dimola et al., 2023].
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[Tuković et al., 2019] Tuković, Ž., Bukač, M., Cardiff, P., Jasak, H., and Ivanković, A.
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