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Introduction

Les récents événements météorologiques extrêmes qui se sont produits dans le monde entier
suscitent de grandes inquiétudes concernant le changement climatique et renforcent la nécessité de
développer des technologies écologiques permettant d’enrayer la tendance croissante à la destruction
de l’écosystème. Selon une étude publiée en 2021 dans la revue Atmospheric Environment [89],
l’industrie aéronautique est responsable d’environs 3.5% des facteurs de changement climatique
liés aux activités humaines entre 2000 et 2018, dont les émissions de dioxyde de carbone (CO2) et
d’oxydes d’azote (NOx). L’augmentation drastique du trafic de fret et de passagers nécessite donc
l’augmentation des performances aérodynamiques et énergétiques des aéronefs.

Un objectif d’optimisation important dans la conception d’un avion est la réduction de la traînée
de surface (de frottement). La traînée apparaît comme une force de réaction lorsqu’un objet se
déplace dans l’air. Comme l’objet ralentit l’écoulement de l’air, la troisième loi de Newton stip-
ule que l’écoulement de l’air ralentit également l’objet. Lorsque la traînée augmente, le moteur
doit augmenter la poussée, c’est-à-dire la force de poussée agissant dans la direction opposée à
la traînée, pour maintenir la vitesse de l’avion. La situation est encore plus grave si une couche
limite d’écoulement est séparée de la surface de l’avion, par exemple comme le montre fig. 1a, où la
vitesse de l’écoulement diminue rapidement jusqu’à devenir nulle ou même s’inverser. La force de
traînée étant proportionnelle au taux de diminution de la vitesse de l’écoulement, la séparation de
l’écoulement nécessite beaucoup plus de poussée, et donc de carburant, pour l’équilibrer.

(a) Séparation de l’écoulement (b) Rattachement de l’écoulement

Figure 1: Écoulement naturel (à gauche) et effet des actionneurs électriques sur l’écoulement (à droite)
autour d’un profil aérodynamique, extrait de [55]

Les études menées au cours des deux dernières décennies ont montré que les dispositifs électriques
appelés actionneurs de plasma ou actionneurs électriques qui génèrent des décharges électriques
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continues, alternatives ou pulsées sont capables de modifier les propriétés d’un écoulement et
permettent ainsi de contrôler l’écoulement autour d’une surface, comme le montre par exemple
fig. 1b où l’écoulement est rattaché à la surface d’un profil aérodynamique. L’énergie électrique fournie
par un tel dispositif est utilisée pour transformer localement l’air en un gaz ionisé vaguement appelé
plasma, qui à son tour cède son moment par des collisions élastiques et crée ainsi un déplacement des
molécules d’air. Cet effet est connu sous le nom de vent ionique. L’étude des effets aérodynamiques
des décharges électriques a été lancée par Roth et al. [128] en 2000 et bien d’autres équipes. Une
revue des travaux sur le sujet se trouve dans un excellent article de E. Moreau [109] en 2007.

Depuis lors, l’intérêt pour les actionneurs à plasma s’est accru dans l’industrie aéronautique, non
seulement pour le contrôle de l’écoulement, mais aussi pour d’autres applications récentes telles
que le vol des drônes [161] ou l’antigivrage [167], en raison de leur simplicité de conception, de leur
petite taille, de leur faible coût et de leur facilité d’installation à la surface de l’avion. Toutefois, les
effets de ces dispositifs sur le contrôle des flux n’ont été testés avec succès que pour une vitesse de
l’écoulement allant jusqu’à 50 m s−1 dans des conditions de laboratoire.

Il est évident que la recherche fondamentale sur la formation, le développement, la morphologie
et l’interaction du gaz ionisé avec l’air environnant, ainsi que sur ses conséquences aérodynamiques,
doit encore être renforcée afin d’améliorer et d’optimiser les performances des actionneurs à plasma.
La modélisation numérique, en particulier, est l’une des approches les plus puissantes dont disposent
les scientifiques et les ingénieurs et qui pourrait ouvrir la voie à des applications plus larges, voire à la
commercialisation de cette technologie au bénéfice de tous. L’intérêt pour les modèles numériques de
décharge de gaz n’est ni nouveau ni superflu. Les industriels de l’aéronautique utilisent la simulation
numérique pour réduire le cycle de conception des aéronefs. En effet, elle reste peu coûteuse par
rapport à la réalisation du prototype.

La modélisation numérique de la décharge électrique dans l’air s’avère être une tâche difficile pour
trois raisons principales. La première raison est liée à la qualité de précision des solutions fournies
par les solveurs numériques. Ce problème a été signalé pour la première fois pour la simulation de
décharge par Bœuf et al. [19] où les auteurs ont utilisé des méthodes numériques du premier ordre
(faible précision) et ont observé que les solutions calculées sur des maillages grossiers s’écartaient de
manière significative de celles évaluées avec une taille de maillage plus petite. Des maillages plus
fins impliquent davantage de ressources de calcul et d’efforts à consacrer à l’obtention de solutions
de haute qualité, et donc prédictives, ce qui est l’objectif de la modélisation numérique dès le départ.

La deuxième raison découle déjà de la première, à savoir la question du temps de calcul. En
effet, une décharge électrique est le siège de nombreux phénomènes physiques complexes qui se
produisent à des échelles spatiales et temporelles extrêmement disparates et qui doivent toutes être
résolues. Le temps caractéristique le plus minime, généralement celui du transport des électrons,
peut être 109 fois plus petit que l’échelle de temps du vent ionique (voir table 1 par exemple) qui est
aussi le temps de simulation typique pour une décharge de plasma afin d’étudier son interaction avec
le flux d’air extérieur. La zone de transition entre le plasma et l’air, connue sous le nom de gaines,
dont la taille est micrométrique, doit également être attentivement prise en compte car elle est le
siège d’une partie de la force électrohydrodynamique (EHD) qui nous intéresse de calculer dans
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les problèmes d’actuation. La décharge de plasma est donc un problème multi-échelle car le pas
de temps numérique doit se soumettre à la plus petite échelle d’espace et de temps tout en résolvant
d’autres échelles plus grandes. Cette exigence représente un énorme défi car le calcul prend un
temps excessif, en particulier dans les simulations bidimensionnelles ou tridimensionnelles. À titre de
référence, une simulation typique d’une décharge électrique alimentée par une tension sinusoïdale,
utilisant le solveur de plasma construit en interne par l’ONERA - le code COPAIER1 [46] - prend
entre 1 et 2 mois pour compléter 4 périodes d’une tension de fréquence 100 kHz, ou un temps de
simulation de 0.4 ms [82]. Ce calcul a même été parallélisé et effectué sur 100 cœurs de CPU, et la
fréquence de simulation était supérieure à une fréquence typique utilisée dans les expériences (1-25
kHz).

Phénomène Temps caractéristique
Transport des électrons 1 ps à 1 ns
Relaxation du champ électrique 10 ps à 1 µs
Réactions cinétiques 0.1 à 1 µs
Transport de particules lourdes 0.1 à 1 ns
Dynamique des plasmas 10 à 100 ns
Vent ionique 1 ms

Table 1: Échelles de temps caractéristiques des phénomènes dans une décharge de plasma, tableau
reproduit de [46]

La troisième raison se trouve dans le couplage entre la décharge de plasma et le flux d’extérieur.
Dans les écoulements subsoniques, on suppose généralement que ce couplage est unidirectionnel, en
ce sens que la décharge peut modifier l’écoulement extérieur, mais que ce dernier n’est pas assez
puissant pour influencer les caractéristiques de la décharge. Cette hypothèse est prise en compte
dans le chapitre 7 de cette thèse, où la force EHD résultant de la simulation de la décharge est injectée
dans le terme source de l’équation de quantité de mouvement de l’écoulement extérieur. D’autre
part, dans les écoulements supersoniques, le couplage est fortement bidirectionnel car la vitesse des
espèces chargées due au transport de l’écoulement n’est plus négligeable par rapport à la composante
de vitesse due à la force électrique. Cependant, le régime supersonique ne sera pas considéré dans
cette thèse.

L’objectif de cette thèse est d’aborder les deux premiers problèmes dans la modélisation numérique
de la décharge électrique dans l’air, dans le cadre de la description hydrodynamique (macroscopique)
du plasma. Le modèle mathématique utilisé consiste d’un système d’équations de dérive-diffusion-
réaction (équations de continuité) décrivant le mouvement, la création et la destruction des différentes
espèces de particules dans le plasma (électrons, ions, etc.) sous l’influence du champ électrique. Ce
système est couplé à l’équation de Poisson du champ électrique, elle-même modifiée par la présence
de densités de charges locales. Pour la première question, nous avons développé de nouveaux schémas
de flux de haute précision basés sur la méthode classique de Scharfetter-Gummel du premier ordre
(faible précision) pour la résolution des équations de dérive-diffusion-réaction. Le deuxième problème

1COde PlasmA Instationnaire pour l’aERodynamique
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se décompose en fait en deux sous-problèmes qui correspondent à deux régimes de décharge qui
pourraient être classés sur l’observation du courant électrique généré par la décharge.

1. Le premier est le régime couronne qui se caractérise par un faible courant de l’ordre de
10-100 mA m−1 et une faible densité d’électrons de l’ordre de 1015-1016 m−3. Les variations
de la charge d’espace sont relativement faibles, et les échelles de temps caractéristiques de
la relaxation du champ électrique et du transport des ions peuvent être considérées comme
longues par rapport à celles des réactions cinétiques et du transport des électrons.

2. Le second est le régime des microdécharges qui se caractérise par un courant élevé de l’ordre
de 1-10 A m−1 et une forte densité d’électrons de l’ordre de 1018-1021 m−3. Le champ de
charge spatiale modifie de manière significative le champ électrique externe sur des temps
caractéristiques très courts. Par conséquent, les temps caractéristiques de la variation du champ
électrique et du transport d’électrons sont à peu près du même ordre.

Pour le régime de décharge couronne, nous avons développé uneméthode d’intégration temporelle
implicite pour résoudre le système d’équations de dérive-diffusion-réaction alors que le champ
électrique est considéré comme constant sur la période de temps pendant laquelle les densités
d’espèces évoluent. De cette manière, la résolution des équations de continuité et de l’équation de
Poisson sont deux problèmes distincts et cette stratégie numérique est donc beaucoup plus simple
que la résolution de l’ensemble du système de décharge en une seule fois. La méthode implicite
permet de réduire considérablement le temps de calcul par rapport aux méthodes explicites, car elle
permet de relâcher la contrainte sur le pas de temps numérique qui est strictement requise dans
l’intégration temporelle explicite.

Pour le régime des microdécharges, l’approche précédente n’est plus valable car la variation du
champ électrique est trop rapide pour être considérée comme constante au cours de l’évolution des
densités. Le système de décharge doit être linéarisé d’une certaine manière afin que les équations de
continuité et l’équation de Poisson puissent être mises à jour séparément. Pour ce type de décharge,
nous utilisons l’approche semi-implicite préexistante [155, 66] pour la linéarisation de l’équation de
Poisson qui a été implémentée dans COPAIER avant le début de la thèse.

Les solveurs numériques développés dans cette thèse ont été construits à l’image du code COPAIER.
Ce dernier est un solveur plasma multi-espèces et multi-réactions qui permet d’incorporer autant
d’espèces et de réactions cinétiques que nécessaire, fonctionne sur des maillages bidimensionnels
structurés et non-structurés et a contribué à la recherche sur la décharge électrique dans l’air par de
nombreuses simulations très complexes [81, 82, 99], mais les méthodes numériques dans ce solveur
étaient néanmoins explicites en temps.

La structure de ce document est organisée en deux parties principales. La partie I composée des
trois premiers chapitres présente quelques notions de physique des décharges de gaz ainsi que les
travaux de recherche notables sur les actionneurs de plasma au cours des deux dernières décennies
(chapitre 1), la description des modèles mathématiques utilisés dans les simulations de cette thèse
(chapitre 2), et un aperçu rapide des méthodes numériques qui sont mises en œuvre dans COPAIER
(chapitre 3).
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La partie II couvrant les chapitres 4, 5, 6 et 7 présente la contribution de nos travaux à la
modélisation numérique de la décharge atmosphérique. Plus précisément, le chapitre 4 introduit
la dérivation de schémas de flux de Scharfetter-Gummer d’ordre élevé pour la discrétisation des
équations de dérive-diffusion unidimensionnelles, mais discute également de leur extension aux
problèmes bidimensionnels et fournit une vérification numérique de l’ordre de convergence pour les
cas tests unidimensionnels et bidimensionnels. Dans le chapitre 5, nous appliquons les nouveaux
schémas à la simulation d’une décharge couronne et de la propagation d’un streamer positif, qui est
un type de microdécharges. Un solveur de plasma en Fortran pour la simulation des décharges sur
des maillages bidimensionnels cartésiens a été développé à partir de scratch pour ce chapitre.

Le chapitre 6 aborde la question de la réduction du temps de calcul pour le régime de décharge de
la couronne qui a été brièvement mentionné précédemment. Une particularité du modèle de décharge
présenté dans ce chapitre est l’inclusion d’une contrainte qui exige que la densité d’électrons soit
toujours supérieure à une valeur prescrite. L’approche proposée nécessite un modèle mathématique
propre ainsi que des algorithmes spécifiques pour résoudre le système d’équations de continuité.
Enfin, le chapitre 7 présente les solutions numériques pour différents cas de test de décharge, obtenues
avec la méthode implicite qui a été développée dans le chapitre précédent et mise en œuvre dans
le code COPAIER. Cette méthode implicite a été récemment mise en œuvre dans COPAIER, ce qui
permet d’augmenter la capacité de simulation du solveur de plasma par un facteur significatif.
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Recent extreme weather events that have been occurring more frequently around the globe have
raised further concerns about climate change and fuels the need of developing environment-friendly
technologies that could halt the increasing trend of ecosystem destruction. According to a study in
the Atmospheric Environment journal in 2021 [89], the aviation industry is responsible for roughly
3.5% of all drivers of climate change from human activities from 2000 to 2018, including emissions
of harmful gases such as carbon dioxide (CO2) and nitrogen oxides (NOx). The drastic increase in
freight and passenger traffic therefore require significant aircraft performance.

An important optimizing goal in aircraft designing is the reduction of drag on the its surface.
Drag appears as a reaction force when any object travels in air. As the object forces the flow to slow
down, by the third law of Newton the flow also forces the object to slow down. As drag increases,
the engine must add more thrust that is the pushing force acting on the opposite direction of drag to
maintain the aircraft speed. The situation is more dire if a flow boundary layer is separated from
the aircraft surface, for example as shown in fig. 2a, where the flow velocity reduces rapidly to zero
or even reversed. Since the drag force is proportional to the decreasing rate of the flow speed, flow
separation requires a lot more thrust, and therefore fuels, to balance out.

(a) Flow separation (b) Flow reattachment

Figure 2: Natural flow (left) and effect of electric actuators on the flow (right) around an airfoil, taken
from [55]

Studies carried out over the last two decades have shown that electrical devices called plasma
actuators or electric actuators that generates continuous, alternative or pulsed electric discharges
are capable of modifying the properties of a flow and thus enable to control the flow around a
surface, for example as shown in fig. 2b where the flow is reattached to the surface of an airfoil. The
electrical energy supplied by such a device is used to locally transform air into an ionized gas loosely

7



Introduction

called a plasma, which in turn gives up its momentum through elastic collisions and thus create
a displacement of air molecules. This effect is known as ionic wind. The study on aerodynamic
effects of electric discharge was initiated by Roth et al. [128] back in 2000 and many other teams. A
scientific review on this subject can be found in the excellent article of E. Moreau [109] in 2007.

Since then, the interest in plasma actuators have been growing in the aeronautical industry, not
just for flow control but for other recent applications such as UAV flight sustaining [161] or anti-icing
[167], because of its simplicity in design, smallness in size, low cost, facility in installing on aircraft
surface and eco-friendliness. However, the effects of these devices in flow control have been only
successfully tested for air speed up to 50 m s−1 in laboratory conditions. Therefore, it could be
foreseen that the use of plasma actuators for commercial purposes will not happen in short time.

It is quite clear that fundamental research on the formation, development, morphology and
interaction of the ionized gas with the surrounding air as well as its aerodynamic consequences
still needs to be supported in order to enhance and optimize the performance of plasma actuators.
Numerical modeling, in particular, is one of the most powerful approaches in the hands of scientists
and engineers that could pave the way to wider applications or even commercialization of this
technology to the benefit of all. The dedication in numerical models for gas discharge is not something
new or superfluous. Even well-rooted industrial fields such as aircraft or car manufacturing still
heavily involve numerical simulations as highly predictive and complementary tools to experimental
works. Most importantly, they are very uncostly. Indeed, destroying an F1 car in simulation would be
much more less heartbreaking than crashing my 30 € bike in a tree (unless you are on the Mercedes
team).

Numerical modeling of electric discharge in air proves to be not an easy task, though, for three
reasons. The first reason ties with the precision quality of the solutions provided by the numerical
solvers. This issue was first reported for gas discharge simulation by Bœuf et al. [19] where the
authors used first-order (low precision) numerical methods and observed that the computed solutions
on coarse grids deviated significantly from those evaluated with smaller grid size. Finer grids mean
more computation resources and efforts must be dedicated in order to obtain high quality, and
therefore predictive, solutions which are the purpose of numerical modeling from the beginning.

The second reason already looms out from the first one that is the issue of computation time.
Indeed, an electric discharge is the siege of many complex physical phenomena that happen on
extremely disparate space and time scales that all need to be resolved. The tiniest characteristic time,
usually that of the transport of electrons, could be as low as 109 times smaller than the ionic wind
timescale (see table 2 for instance) that is also the typical simulation time for a plasma discharge
in order to study its interaction with the outer air flow. The transition zone between plasma and
air, known as sheaths, which are micrometric in size, also needs to be carefully taken into account
as they are the siege of part of the electrohydrodynamic (EHD) force that we are interested in
computing in actuation problems. The plasma discharge is therefore a multiscale problem as
the numerical time stepping must comply with the smallest space and time scale while solving
other greater ones. This requirement presents a huge challenge since the computation takes an
excessive amount of time to finish, especially in two-dimensional or three-dimensional simulations.
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For reference, a typical simulation of an electric discharge supplied with a sinusoidal voltage, using
the ONERA-in-house-built plasma solver - the COPAIER2 code [46] - takes between 1 and 2 months
to complete 4 periods of a 100 kHz-frequency voltage, or a simulation time of 0.4 ms [82]. This
computation was even parallelized and performed on 100 CPU cores, and the simulation frequency
was higher than a typical frequency used in experiments (1-25 kHz).

Phenomenon Characteristic time
Transport of electrons 1 ps to 1 ns

Electric field relaxation 10 ps to 1 µs

Kinetic reactions 0.1 to 1 µs

Transport of heavy particles 0.1 to 1 ns

Plasma dynamics 10 to 100 ns

Ionic wind 1 ms

Table 2: Characteristic timescales of phenomena in a plasma discharge, reproduced from [46]

The third reason lies in the coupling between the plasma discharge and the outer airflow. In
subsonic flows, it is widely assumed that this coupling is one-way, in the sense that the discharge
can modify the outer flow but the outer is not strong enough to influence the characteristics of the
discharge. This assumption is considered in chapter 7 of this thesis, where the EHD force ensued from
the discharge simulation is injected into the source term of the momentum equation of the outer flow.
On the other hand, in supersonic flows the coupling is strongly two-way as the velocity of charged
species due to the flow transport is no longer negligible comparing to the velocity component due to
the electric force. However, the supersonic regime will not be considered in this thesis.

The objective of this thesis is to tackle the first two issues in numerical modeling of electric
discharge in air, in the framework of hydrodynamic (macroscopic) description of plasma. The
underlying mathematical model consists of a system of conservation laws, under the form of drift-
diffusion-reaction (continuity) equations, describing the movement, creation and destruction of the
various particle species in the plasma (electrons, ions, etc.) under the influence of the electric field. This
system is coupled to the Poisson equation of the electric field, which is itself modified by the presence
of local charge densities. For the first issue, we have developed novel high-accuracy flux schemes
based on the classical first-order (low-accuracy) Scharfetter-Gummel method for the resolution
of drift-diffusion-reaction equations. The second issue actually breaks into two subproblems that
correspond to two discharge regimes that could be classified based on observation of the electric
current generated by the discharge.

1. The first one is the corona regime that is characterized by a low current on the order of 10-100
mA m−1 and a low electron density on the order of 1015-1016 m−3. Space charge variation are
relatively weak, and the characteristic electric field relaxation and ion transport timescales can
be considered long compared to those of kinetic reactions and transport of electrons.

2COde PlasmA Instationnaire pour l’aERodynamique
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2. The second one is themicrodischarge regime that is characterized by a high current on the
order of 1-10 A m−1 and a high electron density on the order of 1018-1021 m−3. The space
charge density modifies significantly the external electric field over a very short timescale.
Therefore, the characteristic timescales of electric field relaxation and electron transport are
on the same order.

For the corona discharge regime, we have developed an implicit time integration method to solve
the system of drift-diffusion-reaction equations while the electric field is considered constant on the
time window that the specie densities evolve. In this way, the resolution of the continuity equations
and the Poisson equation is two separate issues and therefore this numerical strategy is much simpler
than solving the whole discharge system all at once. The implicit method allows to significantly
reduce the computation time comparing to explicit methods, as it allows to relax the constraint on
the numerical timesteps that is strictly required in explicit methods.

For the microdischarge regime, the previous approach is hardly valid since the electric field
variation is too rapid that it could not be no longer considered constant as the densities evolve. The
discharge system needs to be linearized in a certain way so that the continuity equations and the
Poisson equation could be updated separately. For this type of discharge, we use the preexisting
semi-implicit approach [155, 66] for linearization of the Poisson equation that was implemented in
COPAIER before this thesis.

The numerical solvers developed in this thesis were built in the image of the COPAIER code. The
latter is a multi-specie, multi-reaction plasma solver that allows to incorporate as many species as
well as kinetic reactions as needed, functions on both two-dimensional structured and unstructured
grids and has been contributing to the research on electric discharge in air through many highly
complex simulations [81, 82, 99], but the numerical methods in this solver were however explicit in
time.

The structure of this document is arranged into two main parts. Part I consisting of the first
three chapters will introduce some notions in gas discharge physics as well as notable researches on
plasma actuators over the last two decades (chapter 1), the description of mathematical models used
in the simulations in this thesis (chapter 2), and a quick glance of the numerical methods that are
implemented in COPAIER (chapter 3).

Part II covering chapters 4 to 7 presents the contribution of our works in numerical modeling of
atmospheric pressure discharge. More precisely, chapter 4 introduces the derivation of high-order
Scharfetter-Gummer flux schemes for the discretization of one-dimensional drift-diffusion equations,
but also discusses their extension to two-dimensional problems and provides numerical verification of
convergence order for both one-dimensional and two-dimensional test cases. In chapter 5, we apply
the novel schemes to simulation of a corona discharge and of the propagation of a positive streamer,
which is a type of microdischarges. A Fortran plasma solver for simulation of two-dimensional
streamer discharge on cartesian grids has been developed from scratch for this chapter.

Chapter 6 addresses the issue of reducing the computation time for the corona discharge regime
that was briefly mentioned before. A particularity of the discharge model in this chapter is the
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inclusion of a constraint that requires the electron density to be always larger than a prescribed
value. The proposed approach necessitates an appropriate mathematical model as well as some
specific algorithms to solve the system of conservation laws. Finally, chapter 7 presents the numerical
solutions for different discharge test cases, obtained with the implicit method that was developed in
the previous chapter. This implicit method has been recently implemented in COPAIER that allows
to increase the simulation capacity of the plasma solver by a significant factor.
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Chapter 1

1.1 What is a plasma?
Plasma is one of the fundamental states of matter which accounts for roughly 99% the mass of

ordinary matter in the observable universe. Fundamental as it is, plasma is a fairly new concept
which was only coined in 1929 by Langmuir [88] to describe a form of ionized gas that contains
“balanced charges of ions and electrons", and was (maybe still is) unpopular comparing to other states
of matter such as solid, liquid and gas. On Earth, natural plasmas are only seldom encountered in few
examples of exotic phenomena: lightning bolts, auroras, sprites or St. Elmo’s fires. It would seem
that the lack of occurrences and of technological advances had contributed to the late understanding
and applications of plasma physics.

Today, it is established that plasmas constitute a large number of celestial objects including the
Sun, stars, white dwarfs, and nebulae. Ionized hydrogen that fills the interstellar media, solar wind
that fills the interplanetary space, Van Allen radiation belts and the ionosphere surrounding the
Earth are also examples of plasmas in nature. Back to our planet, they have found use in plasma
etching, sterilization of medical devices, fluorescence tubes, neon signs, space propulsion, and
historically PDP and PALC television screens. Other artificial plasmas being tested in laboratories
have enormous potential to become more relevant to human life in a wide range of areas such
as water treatment, air purification, water harvesting, thermal management in electronic devices,
plasma-assisted combustion, food drying and controlled thermonuclear fusion. Particularly in the
field of aeronautics, potential applications of plasma discharge include flow control [109, 20], cold
plasma propulsion [161] and anti-icing [167].

So what exactly is plasma and what differentiates it from a normal ionized gas which is, generally
speaking, a medium that contains a certain amount of “atoms dissociated into positive ions and
negative electrons” [34]. Several authors such as Chen [34] and Moisan & Pelletier [108] extended
the definition of Langmuir to characterize a plasma as

“amacroscopically neutral gaseous medium with collective behavior.”

In order to clarify the meaning of this concept, it is necessary to first recall certain notions of
kinetic theory as well as some useful parameters in plasma physics.

1.1.1 Elements of kinetic theory of gases

For a particle specie s (e.g. positive ions or electrons1), the distribution function fs(t,x,v) at
time t, position x ∈ R3 and velocity v ∈ R3, is defined as follows. Within an infinitesimal element
dv of the velocity space, centered on the velocity v, the probability of finding particles of the specie
s having a velocity v′ contained in that infinitesimal element dv, at time t and position x, equals to
fs(t,x,v)dv. Since fs is a probability distribution on the velocity phase, it should be normalized,
i.e.
∫
R3

fs(t,x,v)dv = 1. If we denote as ns(t,x) the particle density of the specie s, then nsfsdv

would be the number of particles per unit volume having a velocity v′ contained in dv. Without
ambiguity, we shall drop the dependence of fs on t and x.

1denoted resp. by the symbols p and e
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The mean particle speed and the mean kinetic energy are defined as resp.

vs =

∫
R3

vfs(v)dv and εs =

∫
R3

1

2
msv

2fs(v)dv,

with v ≡ |v| andms the mass of a particle of specie s.

When the gas reaches thermodynamic equilibrium, the velocity distribution of the species follow
what is known as the Maxwell-Boltzmann distribution, which is given by

fs(v) =

(
ms

2πkBT0

) 3
2

exp

(
− msv

2

2kBT0

)
,

where kB is the Boltzmann constant and T0 is the absolute temperature of the gas (same for all
species). In this case,

vs =

(
8kBT0
πms

) 1
2

and εs =
3

2
kBT0.

The mean particle velocity vs =

∫
R3

vfs(v)dv is zero, though, since fs is isotropic with respect
to v. This shows the randomness of particles’ movement in a thermal-equilibrium gas, and therefore
the close relation between the macroscopic concept of gas temperature and the random movement
of particles as well as the mean kinetic energy in the kinetic theory of gases. For this reason, T0 is
often expressed in energy units such as J or eV.

Not all ionized gases are in thermal equilibrium, though, such as the type of gas often used in flow
control. In these non-equilibrium gases2, the electron temperature Te is between 1-10 eV, i.e. 11600-
116000 K, whereas the ion temperature Tp is roughly the same as ambient temperature, i.e. Tp ≈ 300

K. In such circumstances the electron velocity distribution is not exactly Maxwellian3 because of
the temperature disparity, but assumes another function such as the Druyvesteyn distribution [108].
However, the discussion of electron distribution in non-equilibrium gases is out of scope of this
thesis. More than often the electron distribution is assumed to be Maxwellian and the derivation of
the Debye length introduced later is based on this assumption [34, 108].

1.1.2 Electric screening and plasma oscillations

Of particular importance is the Debye length λD which is a length measure of the electric
screening effect of a charge carrier in the gas. Imagine a positive ion of charge q floating in the
medium, then it would attract a cloud of electrons due to the Coulomb force (see fig. 1.1). In a plasma,
as the number of electrons is high enough, the electric potential ϕ generated by the ion will be
exponentially attenuated as

ϕ(r) =
q

4πεrε0r
exp

(
− r

λD

)
with λD =

(
εrε0kBTe
neq2

) 1
2

, (1.1)

2otherwise known as low-temperature or two-temperature gases
3i.e. fe is the Maxwell-Boltzmann distribution
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λD

Figure 1.1: Debye shielding of a positive charge (maroon) by negative ones (blue)

Figure 1.2: Particle displacements from “equilibrium” (left) to charge separation (right) that lead to
plasma oscillations

with r the distance from the charge carrier, εr the relative permittivity of the medium and ε0 the
vacuum permittivity. The concentration of electrons around the positive charge has a better screening
effect in which it supplants the Coulomb potential ϕC(r) = q

4πεrε0r
generated by the charge carrier

(the ion); in other words, binary particle-particle electric interactions are no longer important on a
spatial scale on the order of λD.

The number of electrons contained in the Debye sphere, which is the volume of radius λD centered
at the charge point, is proportional to neλ3D. The latter known as the plasma parameter can be
alternatively written as

neλ
3
D =

1

6π

εe
qϕC(λD)

.

It is interpreted as the ratio between the electron mean kinetic energy and the Coulomb potential
energy generated by the charge carrier. When the electron population inside the Debye sphere is
large enough, i.e. neλ3D ≫ 1, the electrons’ movement in the outer region of the Debye sphere is
mostly due to their thermal agitation and is shielded from the electric effect of the charge carrier.

The time scale associated to the Debye length is the plasma frequency4 ωe given by

ωe =

(
neq

2

εrε0me

) 1
2

=

√
2π

4

ve
λD

.

This parameter characterizes the plasma oscillations which occur when small disturbances in the
electric field cause the electrons to move away from the ions (see fig. 1.2). The charge separation

4usually is the electron oscillation frequency since electrons are much lighter, thus move faster, than ions
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generates a polarizing field on the order of neq
2

εrε0
that “pulls” the electrons back to where they were,

resulting in a collective motion of electrons in order to restore the shielding effect of the Debye
spheres in response to small charge displacements.

1.1.3 Ideal plasmas

Now the picture painted in fig. 1.1 is a bit misleading since it gives an impression that the
electrons are much more numerous than the ions. In fact, shielding could occur for whatever charge
carrier so that an electron potential could also be neutralized by an ion cloud (in this situation
the Debye length depends on parameters of ions). Each particle hosts its own Debye sphere while
takes part in the same time in others’ sphere, so the microscopic picture of an ionized gas is really
an agglomeration of overlapping Debye spheres. The mutual electric screening of charge carriers
results in a quasi-neutral medium on a length scale much larger than λD and the electron and ion
densities are roughly the same and equal a characteristic density n known as plasma density, i.e.
ne ≈ np ≈ n. Furthermore, the picture is not static: there is always “runaway” electrons from a
sphere to another one if their thermal motion is fast enough to escape the potential well of the center
charge, causing oscillations in the electric field.

This picture of ionized gases shows collective interactions between Debye spheres, rather than
binary interactions between particles via Coulomb force since the charge carriers are effectively
screened. This behavior was deduced from a condition that we have seen in the previous section:
neλ

3
D ≫ 1; it is the first condition that differs a plasma from a generally-speaking ionized gas. The

full list of criteria defining an (ideal) plasma according to [34, 108] consists of the following points.

1. nλ3D ≫ 1, which is a necessary condition for collective behavior.

2. λD ≪ L, where L is a length characterizing the scale of the charge density gradient. This
condition is derived from the approximation δn/n ∼ (λD/L)

2 (see [126]) where δn is a small
space charge density caused by charge separation. If δn ≪ n, then the medium remains
macroscopically quasi-neutral.

3. ωeτcol ≫ 1, where τcol is the smallest time scale of particle collisions. This condition allows the
particles to rearrange themselves into Debye spheres and retain collective behavior between
successive collisions.

1.1.4 Classifications of plasmas

A wide range of plasmas exist in nature or are artificially created and can be classified based on
electron temperature Te and plasma density n. An incomplete overview of different types of plasma
is sketched in fig. 1.3. For low-temperature (non-equilibrium) plasmas in aeronautical applications,
Te ranges typically between 1-10 eV while n is typically found between 1015-1021 m−3.

Within non-equilibrium plasmas, the electric field frequency serves to distinguish between (i)
low-frequency (0-104 Hz) and pulsed discharges (except very short pulses); (ii) radio-frequency
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Figure 1.3: Classification of plasmas based on electron temperature and plasma density, taken from
[80]

discharges (105-108 Hz); (iii) microwave discharges (109-1011 Hz); and (iv) optical discharges (1012-
1015 Hz) [126]. The first category consists of non-magnetized gases while in the latter ones, the effect
of the magnetic field is more pronouncing and therefore is not neglected. Further classification is
based on gas pressure which affects ionization mechanisms and will be addressed with more details
in the next sections. In the scope of this thesis, we focus on low frequency, low-temperature
discharges at atmospheric pressure, i.e. p ≈ 1 atm or p ≈ 760 Torr where p is the gas pressure.

1.1.5 Are ionized gases in flow control always ideal plasmas?

The answer is no. A counter-example is the corona discharge (see sections 1.3, 5.2 and 7.2) where
there is no region of charge balance so the quasi-neutrality condition is violated. An example of
ideal plasma, though, is the body of a streamer (see sections 1.3 and 5.3) which is a quasi-neutral
thin conductive channel, millimeters long and 0.1-1 mm wide [28]. The particle density and electron
temperature are typically n = 1019 m−3 and Te = 11600 K. So with εr = 1 and τcol = 10−10 s [123],
from eq. (1.1) and section 1.1.2 we have nλ3D ≈ 130, λD ≈ 2.35 µm and ωeτcol ≈ 18. Therefore, the
ionized gas inside the streamer body is by definition an ideal plasma.

In the literature, the term plasma is frequently used in the loose sense, that means a “plasma”
could refer to an ionized gas not strictly being an ideal plasma according to the criteria of section 1.1.3.
This practice could be sometimes confusing for readers. For example, a plasma actuator5 does not
actually always generate plasmas as in low-voltage, low-current active mode, it could only produce
corona discharges.

5a small electric device capable of generating ionized gas (see section 1.3)
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1.2 Low-temperature discharges in air

1.2.1 Production and decay of particles in low-temperature discharges

A feature in the dynamics of ionized gases that distinguishes them from fluid mechanics is the
role of chemical reactions that constantly change the composition of the gas. These plasma reactions,
as they are designated, are the consequences of inelastic collisions between particles in which the
total kinetic energy of the reactants is not conserved. Some of the kinetic energy could be absorbed
in one of the reactants, potentially causing the particle to have an internal energy higher than the
ground state and become excited. The amount of supplied kinetic energy could eventually exceed
the ionization potential of the target particle and cause one or more electrons to cease to be bound to
the particle, and the particle becomes ionized. Conversely, some of the reactions are associative in
the sense that the reactants combine to form new species.

A plasma reaction is characterized by the reactants, the products and the rate coefficient. More
precisely, if S,Q are the number of reactants and products, k is the rate coefficient and the chemical
equation reads as

a1R1 + · · ·+ aSRS → b1P1 + · · ·+ bQPQ, (1.2)

with as (s = 1, . . . , S) the stoichiometric coefficient of the reactant Rs and bq (q = 1, . . . , Q) the
stoichiometric coefficient of the product Pq, then the rate of production of Pq is

dnPq
dt

= bqkn
a1
R1
. . . naSRS , (1.3)

and the rate of decay of Rs is

dnRs
dt

= −askna1R1
. . . naSRS . (1.4)

Here nP denotes the particle density of the specie P .

In non-equilibrium discharges in air, the number of reactants as well as products is very high given
the obvious complex chemical composition of air. For low-temperature gases with 200 K ≤ T0 ≤ 500

K, the kinetic model6, which is the set of chemical equations of the form (1.2) as well as their
associated rate coefficient, could contain as many as 450 reactions [79]. In this section, we only
introduce some of the most important plasma reactions in air.

Electron impact ionization

Ionization of particles by electron impact is the most important charge generation mechanism in
the bulk of a gas discharge [126]. The generic form of the chemical equation of this reaction reads as

e+M → 2e+M+,

where e denotes an electron,M denotes an electrically neutral particle in air andM+ denotes an ion
that carries one positive charge. The associated rate coefficient is usually denoted as α (m3 s−1).

6or kinetic scheme
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Figure 1.4: Townsend ionization coefficients according to the empirical formula (1.5)

The ionization reaction is also characterized by the ionization frequency νi = αN (s−1) in
whichN denotes the particle density of air. This frequency gives the number of ionization events per
second produced by an electron. If νi is constant and the decay of electron population is neglected,
then the electron density proliferates exponentially as ne(t) = n0

e exp(νit) from a seed (initial) density
n0
e . Such rapid multiplications of charge is called an electron avalanche.

Another widely used coefficient is the Townsend ionization coefficient, which is defined as
αT =

νi
µeE

(m−1) where µe (m2 V−1 s−1) is the mobility coefficient of electrons (see section 2.1.1)
and E is the electric field strength. The Townsend coefficient gives the number of ionization events
produced by an electron on a 1 m path along the field, and conversely, α−1

T characterizes the mean
free path covered by an electron before an ionization event.

The Townsend coefficient can be estimated for instance by a well-known empirical formula [126,
Chapter 4] suggested by J. S. Townsend,

αT
p

≈ A exp

(
−Bp
E

)
, (1.5)

with p the gas pressure and E the electric field strength. The parameters A and B are determined by
fitting the experiment data on a applicability region of E/p. In air, A = 1500 m−1 Torr−1, B = 36.5

kV m−1 Torr−1 and the applicability region is 10 to 80 kV m−1 Torr−1. The curve (1.5) is shown in
fig. 1.4 for the sake of illustration.

Electron attachment

Electron attachment is an important electron removal mechanism in gases that contain elec-
tronegative atoms such as oxygen. Since negative ions are too massive to gain sufficient kinetic
energy produce ionization, attachment is a process that impedes the multiplication of charges as
well as the sustaining of the ionized state of the gas.

The most common attachment processes encountered in electronegative gases are

• direct attachment in which an electron attaches directly to a neutral particle to form a negative
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ion, symbolically represented by

e+N → N−;

• dissociative attachment in which a molecule split into their constituent atoms and one of these
captures an electron to form a negative ion, symbolically represented by

e+ AB → A+B−.

Similar to the electron ionization, the attachment process is characterized by the attachment
coefficient η, the attachment frequency νa ≡ ηN as well as the Townsend attachment coef-
ficient αT =

νa
µeE

. The variation in time of the electron population is ne(t) = n0
e exp ((νi − νa)t).

Therefore, charge multiplication is attenuated whenever νi < νa.

Photoionization

This ionization mechanism originates from the radiations that are emitted from the electron
impact ionization, excitation as well as deexcitation processes in the gas. Some of these photons
could have an energy ℏω7 that exceeds the ionization potential of an atom and ionize it. Although
the photoionization process cannot compete with the electron impact ionization under discharge
conditions [126, Chapter 4], it could play an important role in certain situations, as they do in
supplying seed electrons for electron avalanches in streamer propagation (see [126, Chapter 12] for
theoretical study and [139, 7] for numerical evidences).

For low-temperature discharges in air, a photoionization model was proposed by Zheleznyak et
al. [166] for photons with wavelength between 98 and 102.5 nm. In this interval, the main source of
ionizing photons comes from the deexcitation of nitrogen molecules after inelastic collisions with
electrons, and the main source of photoelectrons8 are oxygen molecules after absorbing the ionizing
radiations.

The number of photoionization events per cubic meter per second, Sph(x), can be computed with
an integral model in the following way,

Sph(x) =

∫
Ω

g(|x′ − x|)h(x′)

4π|x′ − x|2
dx′, (1.6)

where

h(x) =
pq

p+ pq
ξ
νp
νi
νine, (1.7)

g(R)

pO2

= −exp(−χmaxpO2R)− exp(−χminpO2R)

pO2R (ln(χmax)− ln(χmin))
, (1.8)

forR > 0. Here,Ω is the discharge volume, x ∈ Ω, pq is the pressure arising from quenching by heavy
particles9, ξ is the average photoionization efficiency, νp is the number of ionizing photons created

7ℏ is the reduced Plank constant, ω is the photon frequency
8electrons ensued from photoionization
9pq = 30 Torr in air [166]
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E

p
× 103 ξ

νp
νi

× 10−2

3 5
5 12
10 8
20 6

Table 1.1: ξ νp
νi

in function of E
p
(V m−1 Torr−1) [166]

q Aq (m−2 Torr−2) λq (m−1 Torr−1)
1 1.986 5.53
2 51 14.6
3 4886 89

Table 1.2: Fitting parameters for the three-exponential Helmholtz model [21]

by an electron per second in the absence of quenching and pO2 is the partial pressure of oxygen in
the gas; χmax = 200 and χmin = 3.5 m−1 Torr−1 are the maximum and minimum absorption cross
sections of oxygen corresponding to the spectrum 98-102.5 nm. The quantity ξνp/νi depends on the
reduced field strength E/p and is given in table 1.1.

The photoionization rate Sph(x) can also be evaluated with an approximation model of (1.6)-(1.8)
proposed by Bourdon et al. [21]. The idea is to consider the fitting,

g(R)

p2O2
R

≈
Q∑
q=1

Aq exp(−λqpO2R),

for 10−2 < pO2R < 0.6 Torr m, withAq and λq the fitting parameters. As a results, the approximating
photoionization rate reads as,

SQph(x) =

Q∑
q=1

Sph,q(x), Sph,q(x) =

∫
Ω

Aqp
2
O2

exp (−λqpO2|x′ − x|)h(x′)

4π|x′ − x|
dx′,

where the terms Sph,q satisfy the Helmholtz equations,

∆Sph,q(x)− (λqpO2)
2 Sph,q(x) = −Aqp2O2

h(x). (1.9)

In [21], the fitting with Q = 3 was shown to agree well with the data of [166]. The fitting
parameters of this three-exponential Helmholtz model is shown in table 1.2.

The Helmholtz model is interesting in the computation resource point of view. Indeed, in two
dimensions, the Helmholtz equations could be solved using a direct linear solver, for example the LU
factorization [125] and then forward-backward substitutions. But the LU factorization could be done
once for all at the initiation of the simulation if the grid does not change, since the fitting parameters
are already known. In this case, the complexity of computing SQph is just O(N 1.5) where N is the
number of unknowns, comparing to O(N 2) to compute Sph by the Zheleznyak model (1.6)-(1.8).
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For more details on the photoionization process as well as the boundary conditions for the
equations, we refer to [131, 112, 21, 29, 118] and the references therein.

Secondary emission

This mechanism is caused by the impact of heavy particles on a cold cathode10 or a dielectric
material that is capable of knocking out some electrons from the surface. Secondary emission is the
source of seed electrons for producing and sustaining direct-current discharges between conductors
separated by a small gap [126, Chapter 4].

Among the incident particles, the secondary emission generated by positive ions is the most
important and is characterized by a secondary emission coefficient γ. This coefficient depends
strongly on various factors, namely the material of the conductor, the type of incident particles
and the impurities on the impact surface. For the numerical simulations in this thesis, though, γ is
typically fixed at 10−4.

1.2.2 Discharges in moderate-pressure gases

The first studies of the initiation of a discharge, or electric breakdown, were carried out by J. S.
Townsend in the 1930s [132]. The discharge device (see fig. 1.5), the “Townsend tube", is composed
of two metal plates A (anode) and C (cathode), wired to a direct-current generator and an ohmic
resistance R to limit the electric current and impede the formation of an electric arc. The plates are
put in a tube containing a gas and the gas pressure p can be modulated.

When the voltage V between the electrodes is sufficiently high, a moderately high current I ,
typically between 10−10 to 10−5 A, appears in the circuit due to the absorption of charges to the
electrodes. The breakdown voltage - the necessary potential difference to create this current - as well
as the nature of the discharge are primarily determined by the inter-electrode distance d and the gas
pressure p. The experiments of Townsend were mostly performed under moderately low pressure
p < 100 Torr and moderately large product pd, pd < 2 Torr m. Under these conditions, the electric
breakdown occupies the entire gap volume with a relatively homogeneous electric field E = V/d.
The discharge is triggered by the so-called Townsend mechanism.

Breakdown of gases in a constant homogeneous field and Paschen curves

The Townsend breakdown mechanism is based on the principle of multiple electron avalanches
that can be described as follows. Assume that there are three species of charged particles in the gas:
electrons (e), positive ions (p) and negative ions (n), and the evolution in time of the particle densities
is dictated by the electron impact ionization and attachment processes,

dne
dt

= (νi − νa)ne,
dnp
dt

= νine,
dnn
dt

= νane.

Then the electron and positive ions densities are given by

ne(t) = n0
e exp ((νi − νa)t) , np(t) =

νi
νi − νa

n0
e (exp ((νi − νa)t)− 1) .

10thermal effects are not taken into account
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Figure 1.5: Sketch of a Townsend tube

An electron emitted from the cathode surfacewould create in total αT
αT − ηT

(exp ((αT − ηT )d)− 1)

positive ions on its way to the anode. This ion population arrive at the cathode and set off secondary
emission which generates new Cr = γ

αT
αT − ηT

(exp ((αT − ηT )d)− 1) electrons. Cr is also known
as the electron reproduction coefficient. It must be noted that the whole process can only take
place if in the beginning there is a population n0

e of primary electrons in the discharge gap, for
example the electrons emitted from the cathode surface due to high-energy incident cosmic radiations.
Therefore, at the stationary state t→ ∞, the total electron density at the cathode ne,C would be

ne,C = n0
e + ne,CCr.

On the other hand, the electron population ne,A that arrive at the anode (always in the stationary
state) would be ne,C amplified by a factor exp ((αT − ηT )d). Therefore, the total current I appears
in the electric circuit would be

I = I0
exp ((αT − ηT )d)

1− Cr
(1.10)

where I0 is the current generated by the primary electrons. It is noted that the negative ions also
contribute to the current at the anode, but since their drift velocity is much smaller than the electrons,
their contribution can be neglected.

A formula of the type (1.10) was first derived by Townsend to formally explain the breakdown
process in a discharge. When the voltage V between the electrodes is below a certain breakdown
voltage Vb where Vb is such that Cr = 1, then 1 − Cr > 0 since αT − ηT only increases with
V by experimental observations, and the circuit is closed only if there is a preexisting current I0.
On the contrary, if V = Vb and consequently Cr = 1, then eq. (1.10) stops making sense. In fact,
each primary electron would create Cr/γ positive ions and thus induce exactly one electron from
secondary emission. As the process is repeated until stationary state is reached, there is no longer
need to take into account the seed electrons. As a result, there is no longer need of the current I0 to
sustain the discharge current I .

As a convention, the discharge is called non-self-sustaining if the circuit current I depends
on the preexisting current I0 in the manner of eq. (1.10) and if this is not the case, the discharge is
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Figure 1.6: The Paschen curve for a Townsend discharge in air

self-sustaining. The transition point V = Vb can be interpreted as the onset condition of breakdown
[126, Chapter 7] in a homogeneous field where the Townsend mechanism is predominant.

The breakdown voltage Vb can be determined from the condition Cr = 1 with
Cr = γ

αT
αT − ηT

(exp ((αT − ηT )d)− 1). In the simplest case, with ηT = 0 (although this is not true
since air is an electronegative gas), E = V/d and αT given by the empirical law (1.5), we obtain

Vb =
B(pd)

ln(Apd)− ln
(
ln
(

1
γ
+ 1
)) , (1.11)

where A,B are the constants from eq. (1.5). The curves Vb(pd) are known as Paschen curves and
are usually obtained experimentally or numerically. In [126, Chapter 7], we can find numerous
Paschen curves for different types of gas. In fig. 1.6, the Paschen curve corresponding to eq. (1.11)
with γ = 10−4 is shown for the sake of illustration.

Regimes of self-sustaining discharge and V -I characteristics

The process of finding the breakdown voltage Vb was performed by increasing gradually the gap
voltage V across the electrodes, or more precisely the electromotive force VG of the power generator
(see fig. 1.5), determined by VG = V + IR. As VG increases, the circuit current I also increases but
V does not necessarily and behaves differently for each value range of I . The dependence of gap
voltage on the current is known as the V -I characteristics of the discharge and each part of this
V (I) curve corresponds to a discharge regime with specific features and operating conditions. A
typical V -I characteristics in a Townsend tube is illustrated in fig. 1.7.

We distinguish some four discharge regimes from observation of the V -I curve.

1. Non-self-sustaining discharge. This regime corresponding to the segment AB precedes the
electric breakdown in the discharge gap. The current is very small I < 10−10 A and V < Vb.
The reproduction of electrons by avalanches is not enough to replace primary electrons.

2. Townsend dark discharge. As the electromotive force VG increases, the gap voltage at some
point exceeds the breakdown voltage, the electrons multiplies rapidly to the point that supplant
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Figure 1.7: A typical V -I curve in a Townsend tube

primary electrons and allow a self-sustaining discharge. As RI is raised, the gap voltage
gradually decreases and when V drops to Vb, the current ceases to grow and the discharge
reaches a stationary state. The current falls between 10−10-10−5 A and the regime corresponds
to the segment BC on fig. 1.7.

3. Glow discharge. This regime (see section 1.2.2), corresponding to the curve between the
points C and F , is characterized by a distorted electric field due to strong charge separation,
contrarily to the first two regimes where the field is relatively homogeneous. The field strength
concentrates near the cathode in a small region called the cathode fall while it is weaker
elsewhere on the gap, which favors the growth of the current since only a small voltage across
the cathode fall is required to sustain the avalanches. This explains the plateau DE being
lower than the breakdown voltage Vb.

The region CD corresponds to the transition from a Townsend dark discharge to a glow
discharge where the field gradually self-organizes into the configuration described above. This
regime is subcategorized as the subnormal glow discharge. The normal glow discharge (the
segmentDE), is characterized by luminous spots on the cathode surface which gives the name
to the discharge regime. These glow spots concentrates around the impurities on the conductor
surface that locally enhance the field, hence intensify the excitation-deexcitation reactions,
releasing radiations in the visible range in the process. A specific property of the normal glow
regime is that the gap voltage as well as the current density, that is the current per unit surface,
in these spots is virtually independent on the total current I . As a result, the glows expand
geographically as I increases until they cover all the cathode surface. Once this happens, the
voltage increases with the current and the discharge enters the segment EF , the abnormal
glow regime. Overall, the current of a glow discharge varies between 10−4-10−1 A.

4. Arc discharge. As the current reach about 1 A, the voltage cascades down the curve FH and
an electric arc develops (see fig. 1.8b). Highly-conductive plasma channels begin to form and
short-circuits the two electrodes. This regime marks the transition from a low-temperature to
a high-temperature discharge.
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(a) Glow discharge, taken from [95] (b) Arc discharge

Figure 1.8: Photographs of some discharge regimes (not necessarily in a Townsend tube)

Figure 1.9: Photographs of a spark, taken from [107]

1.2.3 Discharges in atmospheric pressure

The Townsend mechanism is well suited to describe electric breakdown in a tube with p < 100

Torr and pd < 2 Torr m. In these circumstances, breakdown occurs in a homogeneous field and the
cathode plays a crucial role as the principal source of electron reproduction for multiple avalanche
events.

The situation is usually very different at atmospheric pressure p = 760 Torr and for gaps d > 0.06

m or roughly pd > 40 Torr m. Firstly, the structure of the field is highly distorted, intertwined with
spatial inhomogeneities in the distribution of charges: the discharge develops into very thin channels,
calledmicrodischarges, each of them could spread into numerous branches. These microdischarges
have very short lifetime and could eventually pierce through the whole gap and bridge the electrodes;
in this case the microdischarge is known as a spark (see fig. 1.9). Secondly, the role of the cathode is
irrelevant to the breakdown in such situations. Indeed, the microdischarges advance much faster
along the gap than is predicted by the theory of Townsend. The electric current exhibits “strange”
intermittent pulses of duration 100 times shorter than the characteristic drift time of ions from the
anode to the cathode and thus confirms the invalidity of this theory [132].

It is not clear when the Townsend theory fails and the microdischarges prevail. In [126], it is
asserted that the Townsend mechanism could still be realized in air for pd < 40 Torr m, but sparks
could also appear for pd > 10 Torr m. It is clear though that discharges in aeronautical applications
do not follow the Townsend mechanism. Indeed, the plasma actuators have typically more complex
shape than the two parallel metal plates in a Townsend tube. Therefore, we have to deal with
extremely inhomogeneous field right at the beginning.
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Figure 1.10: Photographs of a positive streamer (left) and a negative streamer (right), taken from [28]

The theory of streamers

Streamer is a specific type of microdischarges that was first theorized by Meek, Loeb and Raether
[126, Chapter 12] in the late 1930s to explain the irregular observations in atmospheric discharge in
long gaps. The appearance of a streamer is preceded by electron avalanches known as the primary
avalanches. The difference in mobility between electrons and ions creates a space charge imbalance
that increases as the avalanche develops. When certain conditions is met, the ambipolar field11 due
to the charge imbalance begins to surpass the preexisting field generated by the gap voltage, and an
“ionization wave” is initiated from the existing charges and plunges into the gap, leaving along a thin,
micrometers-wide channel that could possibly branch. Typically, the length, width and propagation
velocity of a streamer are on the order of 10 mm, 0.1-1 mm and 105-106 m s−1.

Streamers can be classified into two types: cathode-directed/positive streamers and anode-
directed/negative streamers (see fig. 1.10). The condition for which a streamer is positive or negative
depends on the polarity of the excessive charge left behind after the avalanches, and each type of
streamer advances along the gap by a different mechanism.

The propagation of a positive streamer is shown schematically in fig. 1.11a. The formation of the
streamer starts with a large-gradient layer of positive ions that generates a local ambipolar field that
points in the direction of the cathode. If this local field strength surpasses the preexisting field E0,
the resulting total field will be heavily distorted around this large-gradient layer, or streamer head,
and accelerates electrons in the gap towards it, initiating secondary avalanches and creating more
electrons as well as positive ions in front of the streamer head. The newborn electrons then move into
it, neutralizing electrically the excessive charges in the layer while leaving behind a population of
positive charges. The streamer head is thus “displaced” towards the cathode and a thin, quasi-neutral,
highly-conductive “trace” is left behind which lengthens gradually and is known as the streamer
body. The charge density inside the streamer body is typically on the order of 1019-1021 m−3.

The propagation of a positive streamer requires a seemingly external source of electrons to
initiate the secondary avalanches, since the electrons are pulled into the streamer. In fact, these
seed electrons are generated by highly-energized radiations emitted from previous avalanches via
ionization and deexcitation processes. Hence, photoionization plays a essential role in this case.

A negative streamer, on the other hand, develops and advances along the gap in a somewhat
11electric field generated by negative and positive charges moving in opposite directions
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Figure 1.11: Streamer propagation mechanisms in gap between the anode (A) and the cathode (C).
The positive charges are illustrated in maroon, negative charges in blue, photons in green and
quasi-neutral ionized gas in purple.

reverse manner. The charge polarity in the streamer head is negative and is formed by electrons
and negative ions. If the resulting total field is strong enough, the electrons accelerate outwards
from the streamer head and initiate secondary avalanches, then join the newborn positive ions
to form a quasi-neutral gas. Contrarily to a positive streamer, a propagation mechanism without
photoionization is presumable possible in the case of a negative streamer, since the electrons are
created and pushed away from the streamer head, not absorbed into it.

Streamers have been the research subject of gas discharge physics as well as computational
physics for many years. We refer to some references and the references therein, such as [98, 126, 121,
28, 114] for much more detailed theoretical studies and [84, 85, 86, 97, 117, 100, 48, 102] for numerical
studies.

Breakdown or ignition?

The two terminologies are sometimes used interchangeably, but technically they describe different
stages of a discharge. While ignition refers to the transition of a non-self-sustaining to a self-sustaining
discharge, the term breakdown is used when an insulating medium becomes (totally) conductive. In
the case of Townsend mechanism, the two phenomena rather coincides since ignition happens when
avalanches are strong enough to efficiently reproduce electrons, and these avalanches occur on the
whole gap which means that the gas is fully ionized. But in the microdischarge mechanism, this is
not always the case.

Streamer is self-sustaining, so its formation marks an ignition of discharge, but it might only
pierce through a partial portion of the electrode gap. The growth of a streamer depends strongly
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on the applied field strength E0. Indeed, experiments had shown that the stronger the external
field is, the longer the streamer is and the faster it propagates [126, Chapter 12] as the preexisting
field is the source of energy of the streamer to balance against the resistance of air. Breakdown can
only happen when a streamer reaches the opposing electrode and consequently acts as a conductive
channel between the two conductors. In this case, the streamer transforms into a spark discharge -
a precursor of an electric arc.

1.3 Corona and dielectric barrier discharges
Not all ignition processes in atmospheric pressure and in large gaps manifest as microdischarges.

In strongly non-uniform fields between a small wire and a plate, or a point and a plate, etc., a low-
current, weakly luminous discharge called corona discharge could develop for moderate voltages
with a charge density on the order of 1015-1017 m−3. If the voltage is higher, the microdischarges could
occur and potentially transform into a spark, but the situation could be also reversed: microdischarges
could be ignited in the first place and then dial down to a corona discharge.

Sparks are often avoided in aeronautical applications since they could potentially heat the
conductors to the point of damaging them. To prevent the formation of a spark discharge, a practice
frequently employed is to put a dielectric material between the electrodes. In this situation we
have a dielectric barrier discharge (DBD), which is one of the most extensively studied discharge
configurations in aeronautical applications.

1.3.1 Corona discharges

A corona discharge is characterized by a luminous glow (see fig. 1.12) around a metallic wire,
point, needle or any conductor with a small radius curvature which is called a stressed electrode.
Because of the distorted geometry, the electric field is strongly enhanced in the vicinity of the stressed
electrode, hence charged particles are mainly produced there by ionization processes and then drift
towards the opposite-sign electrode along the weaker field in the inter-electrode gap. Figure 1.13
shows the schematics of some corona discharge actuators.

Corona discharge belongs to the group of self-sustaining discharges, which means that the
reproduction of electrons in the region of enhanced field around the stressed electrode is efficient
enough to replace preexisting sources of electrons. The mechanism of electron multiplication depends

Figure 1.12: Photograph of a wire-to-wire corona discharge: luminous glow is observed in the vicinity
of both wires, but brighter near the smaller one (the stressed electrode). Photo taken from [109].
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(a) Wire-to-wire (b) Point-to-plate (c) Needle-to-ring

Figure 1.13: Schematics of some corona discharge actuators

Figure 1.14: Positive and negative corona discharge regimes, taken from [124]. Note that spark was
also counted.

essentially, on the other hand, on the polarity of the stressed electrode.

Positive corona discharges

The stressed electrode is the anode, and three discharge regimes appear depending on the applied
voltage (see fig. 1.14). The flashing corona/burst pulse regime observed at low voltages (5-9.3
kV for a point-to-plane actuator [126, Chapter 12]) is associated to successive scintillating bursts
characterized by weak current pulses on the order of 1 µA with frequency up to 10 kHz. Electron
avalanches is triggered near the anode and develops towards the cathode. The electrons, due to
their light mass, rapidly surround the stressed electrode and shield the gap from the anode potential,
leaving behind a residual positive charge. Since the voltage is low from the start, the avalanches do
not create enough positive ions to initiate the formation of a streamer. Eventually, the electric field
becomes too weak to sustain the charge multiplication, the positive ions drift towards the cathode
while the electrons as well as the negative ions are absorbed to the anode, causing the anode shielding
to fade away so that new avalanches are produced. The sources of electrons are photoionization, as
well as secondary emission from the cathode if the gap is not too large.

For moderate voltages (9.3-16 kV for a point-to-plane actuator), the ignition mechanism is the
same as before. However, after the first avalanches and anode shielding, the field is strong enough
to continuously sustain the ionization process around the stressed electrode. At the same time, the
positive ions keep on with drifting to the cathode. After a while, the densities of charged particles
reach a steady state, the current is stabilized and could go up to 10 µA. This regime is known as
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Figure 1.15: Waveform of Trichel pulses at p = 225 Torr in (a) pure Ar, (b) Ar-1%O2, (c) pure N2, (d)
N2-1%O2 and (e) air, taken from [164]

Hermstein’s glow [124].

For high voltages (16-29 kV for a point-to-plane actuator), the discharge becomes pulsed again
but this time for a different reason. In fact, the applied field is so strong in this case that it generates
successive streamers along the gap. This is the positive streamer regime which is the precursor of
a spark discharge.

Negative corona discharges

Similar to positive corona discharges, negative corona discharges develop from electron avalanches
near the stressed electrode which acts as the cathode in this case. Due to the high field, the newborn
positive ions drift rapidly towards the cathode and extract electrons from the surface by secondary
emission. Two discharge regimes can be observed depending on the gap voltage.

For low voltages, we observe intermittent pulses with a repetition frequency much higher than
in the flashing corona regime of a positive corona discharge. These are known as Trichel pulses; in
air, their frequency is on the order of 1 MHz. The Trichel pulses have been long thought to appear
only in electronegative gases such as air, based on the theory of negative corona proposed by R.
Morrow [110] back in 1985. However, recent experiment data from Ouyang et al. [164] showed that
this discharge regime can also exist in electropositive gases such as (pure) argon and nitrogen. The
peak value of pulses in the latter type of gas, nevertheless, are much smaller and the pulse shape
are much broader than in electronegative gases (see fig. 1.15); hence, they are more difficult to be
observed and measured.

According to the new theory laid out in [164], the positive ions play the dominant role in the
mechanism of Trichel pulses, contrarily to the theory in [110] where the negative ions were more
of the central figure. The rising time of a Trichel pulse corresponds to the build up of a positive
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Figure 1.16: Photograph of a SDBD, taken from [109]

charge layer around the cathode, or cathode sheath, as electrons are multiplied and rapidly expelled
outwards. The decay time of the pulse corresponds to the absorption of positive ions by the cathode
and at the same time, the cathode is also shielded, resulting in the disruption of electron avalanches.
Because of secondary emission from the cathode surface, the reappearance of a Trichel pulse is
imminent. In an electronegative gas, the presence of negative ions has a double effect. On one hand,
the local field generated by the accumulation of negative charges is opposite to the preexisting one,
so it reduces the cathode shielding by positive ions, leading to higher amplitude of Trichel pulses.
On the other hand, the presence of negative charges helps accelerate the neutralization process of
positive charges and consequently reduces the pulse duration.

It should be noted that the amplitude of the first pulse is frequently much larger than other
Trichel pulses, which was first raised in [41] and could be attested many times in the literature, for
example in fig. 1.26.

Finally, as the applied voltage increases, ionization is amplified and the discharge transitions to a
pulseless glow regime where the current is stabilized and the discharge transforms into a steady
glow.

1.3.2 Surface dielectric barrier discharges

As mentioned before, dielectric layers are frequently utilized in aeronautical applications to
prevent spark formation that could lead to the erosion of electrodes. Dielectric barrier discharges
(DBD) are subcategorized into (i) volume DBD in which charged particles move in bulk while the
electrodes are covered with dielectric materials; and (ii) surface DBD (SDBD) where the particles
move along the dielectric surface. A photograph of a SDBD is shown in fig. 1.16. Simple illustration
of some DBD actuators is shown in figs. 1.17a and 1.17b.

If DC generators are used in the presence of dielectric material, the discharge would likely
attenuate after while due to the accumulation of charges on the dielectric surface facing the electrode
carrying the same-sign voltage, therefore the electrodes are electrically shielded from each other.
This is not perfectly true, however, if the voltage is too high, giving rise to a spark slipping aside or
even piercing through the dielectric materials in a volume DBD, or creeping from an electrode along
the dielectric surface to join the other one in a SDBD [126, 45]. Such situations are of course not
preferable. Therefore, AC generators are commonly used in DBD to sustain a spark-free discharge
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Figure 1.17: Illustration of some DBD actuators. Electrodes are colored in black, dielectric barriers in
blue.

Figure 1.18: Schematics of a plate-to-plate SDBD actuator, taken from [80]

[51].

Although volume DBD actuators were invented at first as early as 1933 [158], recently SDBD
actuators have been extensively studied since they could be easily installed on target surfaces such
as airfoil for aeronautical applications. Figure 1.18 shows the schematics of a plate-to-plate SDBD
actuator, first developed by Roth et al. [128], which consists of two metal plates flush-mounted on a
dielectric barrier. One of them is insulated in a dielectric material to prevent unwanted ionization
reactions, the other one is exposed in air.

The electrical and mechanical effects of a SDBD actuator depend strongly on different parameters
such as electrode gap, dielectric thickness, dielectric material, AC waveform as well as the shape of
electrodes [109]. Figure 1.19 shows the velocity profile of the ionic wind measured from experiments
[42], of a plate-to-plate and a wire-to-plate actuators (resp. the upper and lower schematics in
fig. 1.17b). The AC voltage has a sinusoidal waveform with 1 kHz frequency and 40 kV amplitude.
The difference between the velocity profiles is clear: while the flow speed of the plate-to-plate
discharge decreases during the positive-going cycle12 and increases during the negative-going cycle13,
for the wire-to-plate discharge it increases during both cycles and only decreases roughly at the

12i.e. for dVG/dt > 0
13i.e. for dVG/dt < 0
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Figure 1.19: Velocity profile during a voltage cycle for a wire-to-plate discharge and a plate-to-plate
discharge, taken from [42]

transition points between the two cycles.

Another factor that influences the mechanism of a SDBD is the AC waveform. For long-rising
voltages, i.e. the slope dVG/dt is small (in absolute value), with moderate peak value such as an 1-10
kHz-frequency, 5-30 kV-amplitude sinusoidal voltage, the thrusts produced by the actuator is likely
generated by momentum transfer from heavy ions to neutral particles. In other words, the effect of
ionic wind is predominant in this type of discharge whereas the effect of air heating due to energy
transfer from the electric field and particle collisions can be neglected, as pointed out by Enloe et al.
[51].

The situation is opposite for short-rising voltages (large dVG/dt) as the ionic wind is measured
quasi-zero and the discharge effect on a flow relies heavily on gas heating mechanisms [146]. Indeed,
numerical simulations with pulse voltages, with rise and decay time on the order of 10 ns, amplitude
of 14-42 kV and repetition frequency of a few kHz [146, 18], confirmed that the aerodynamic effect
of the actuator came from the formation and propagation of shock waves near the bare electrode
tip, which are generated by a local pressure of a few kPa due to a sharp increase of gas temperature
caused by fast energy deposition from the discharge. The shock waves propagate at the speed 450 m
s−1 during the first 100 ns then quickly slow down to roughly the sound speed (about 350 m s−1).

In this section, we give a quick review of SDBDs that are produced with long-rising AC voltages
and with plate-to-plate actuators as shown in fig. 1.18.

Electrical properties

Figure 1.20, extracted from [109], shows the current measurement during a sinusoidal cycle with
20 kV-amplitude and 300 Hz-frequency. It is revealed that the discharge nature differs significantly
when voltage slope changes its sign. The current during the positive-going cycle exhibits lots of
high-value peaks which indicates that the discharge is mainly composed of microdischarges, while it
seems to be more homogeneous during the negative-going cycle. High-speed photography using a
photomultiplier tube from [49] (see fig. 1.21) validates the observations from the current measurement.
Indeed, the discharge structure in the negative-going cycle is visibly more diffusive and uniform than
the filamentary structures that appear in the positive-going cycle. This phenomenon was explained
in [39] by an argument on the electron sources in the following way: during the negative-going cycle,
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Figure 1.20: Typical electric current during a sinusoidal cycle of a SDBD, taken from [109]

Figure 1.21: High speed photography of a sinusoidal SDBD in the middle of the negative-going cycle
(above) and the positive-going cycle (below), taken from [49]

the electrons originate from the bare electron which is an infinite and instantaneous source that
facilitates the ignition process. On the other hand, the source of electrons during the positive-going
cycle are the secondary emissions from the dielectric surface which are apparently not continuous;
the electrons in this cycle then come in the form of fewer, larger microdischarges. The different
nature of discharge in each half-cycle was also observed earlier in [51].

While it seems that each half-cycle of a sinusoidal SDBD could be treated simply as a corona
discharge, the situation is much more complicated due to the interaction of the discharge with the
dielectric barrier. Opaits et al. [116] measured the dielectric surface charging after 15 s of discharge
with a 5 kV-amplitude, 3 kHz-frequency sinusoidal voltage and discovered that the time-averaged
surface charge is always positive. An explanation was provided which stated that the electron
mobility is much larger than the positive ions’, so that the electron current that flows into the bare
electrode during the positive-going cycle is much larger and consequently the residual charge after
each sinusoidal cycle is positive. They also discovered that while the ionization region only extended
some few millimeters downstream of the bare electrode, the dielectric charge extended centimeters
far more downstream. This could be explained considering the facts that the ionized gas outside the
electrode sheath is mostly an ion-ion mixture due to the dominance of electron attachment while
the ion-ion recombination characteristic time is on the order of milliseconds, combining with a jet
velocity of several m s−1, translate into several centimeters of downstream surface charge.
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Figure 1.22: Total surface charge in a SDBD in function of time, taken from [73]. Note that the left
axis measures the surface charge (nC) while the right axis measures the voltage (V).

Figure 1.23: Surface charges after cutting off the generator of a 15 kV, 5 kHz sinusoidal voltage,
taken from [40]

Hong et al. [73] considered the discharge as a variable current source in series with a resistance to
measure the total charge deposited on the dielectric surface as a function of time. Their results, with
a 3 kV, 1 kHz-voltage, showed that the surface charge varies periodically with the same frequency as
the voltage but with a phase delay about 0.1 ms (see fig. 1.22). The surface charge is positive after the
positive-going phase and negative otherwise, but the peak positive charge is much more significant
than the peak negative one which is consistent with the measures of [116].

Critofolini et al. [40] measured the punctual surface charge after cutting off the generator at
each mid-cycle when the voltage is zero. They found out, with a 15 kV, 5 kHz-voltage, that the
surface charge of the “positive plasma” (i.e. after cutting off at the positive-going mid-cycle) is
only half of that of the “negative plasma” (see fig. 1.23), and they are both positive which is also
consistent with [116]. They gave an explanation that “high energetic electrons emitted from the
cathode cause secondary emission thus generate positive holes on the dielectric surface”. But it
seems more convincing to look at fig. 1.22, and reason on the fact that at the cut-off moment at
the positive-going mid-cycle (at zero voltage), the surface charge is still negative, so the residual
discharge could only veneer the surface with few positive ions. On the other hand, at the cut-off
moment at the negative-going mid-cycle, the surface charge is still at peak, so the surface charge
measured afterwards is still high.

The maximum positive potential on the dielectric surface measured in [116, 40] was around 30%
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the voltage amplitude, that is large enough to distorted the applied field and strongly influences
the SDBD mechanism. We shall see in the next section the mechanical effects of each discharge
half-cycle.

Mechanical effects

The mechanical effects induced by a SDBD actuator could be expressed by three parameters:
ionic wind velocity, electric power and thrusts [109].

Porter et al. [123] conducted a measurement of thrusts in a wind tunnel using a momentum
balance that was placed some centimeters downstream of the bare electrode. They showed that
the time-averaged thrusts as well as the electric power for a constant-amplitude voltage (5-10 kV)
are proportional to the frequency in the range 5-20 kHz. This suggests that the efficiency of the
actuator, defined as the ratio of thrusts to electric power, is independent of the voltage frequency for
a constant-amplitude voltage. Enloe et al. [51, 50], on the other hand, deduced from measurements by
a mass balance, that thrusts as well as electric power are proportional to V 3.5

G,max for a fixed frequency
between 1-10 kHz, where VG,max is the voltage amplitude in the range 5-10 kV. This suggests that
the actuator efficiency is also independent of the voltage amplitude. Further experiments from
these works pointed out that thrusts and subsequently the actuator efficiency begin to roll off for
higher voltages and/or higher frequencies where the discharge displays more filamentary structures.
Therefore, a uniform, filament-free discharge in the voltage range 5-10 kV and frequency range 1-10
kHz seems to be the most efficient mean of transferring momentum from the discharge to the air.

Enloe et al. [51] indicated at the same time that the negative-going cycle produces greater thrusts
than the positive-going one (in air). This phenomenon could be explained by looking at the dielectric
surface charge at the onset of each half-cycle, for example fig. 1.22. Indeed, the dielectric surface
is heavily positively charged at the time the negative-going cycle begins, thus it could sustain the
discharge during a long time since the voltage difference is huge. On the other hand, the surface is
negatively charged at the start of the positive-going cycle but its charge amplitude is much smaller,
hence the condition during this cycle is less favored to sustain a discharge. It must be noted that the
thrusts produced during the negative-going cycle is due to the presence of negative ions. Indeed,
removing oxygen (an electronegative agent) from the air surrounding the actuator, although only
changes slightly the discharge current, but could result in a dramatic reduction of thrusts [38].

A frequently discussed topic ensued from thrusts disparity between the two cycles is whether
the direction of the thrusts is the same for both. This led to the theories of push-push and push-pull
thrusts, where the net momentum transfer during both cycles points away from the bare electrode
in the first scenario, whereas it is in the opposite direction during the positive-going cycle in the
second scenario. Some experiments have been conducted without always being consistent with each
other. For instance, the results of [123] favored the push-pull scenario, while [49] supported the
push-push one. In the end, the push-push scenario seems to prevail according to [39] as evidences in
its favor are more numerous. But it is worth noting that the small push or pull produced during the
positive-going cycle accounts for less than 10% of that produced by the negative-going one [123, 49],
so it does not really have a remarkable aerodynamic effect.
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Figure 1.24: Applied voltage and computed electric current in function of time with the voltage slope
ηV = 100 V µs−1, taken from [19]

Numerical simulations

There have been a large array of numerical works since the late 90s in order to shed light on
the mechanism of SDBD. Boeuf et al. [19] considered SDBD in pure N2 at atmospheric pressure
with linearly increasing positive voltages (positive ramp voltages) and found out that the discharge
consists of large-amplitude current pulses during which streamers are formed and spread along
the dielectric surface, both away from (cathode-directed) and towards (anode-directed) the bare
electrode. The cathode-directed streamer propagates several millimeters with a velocity on the
order of 105 m s−1. Between two pulses, the discharge recedes to a low-amplitude current regime
during which the positive ions are drifted away from the bare electrode similarly to a positive corona
discharge. Figure 1.24 shows the evolution of the computed current per unit electrode length14 I/L
in time during the voltage rise with a voltage slope ηV = dVG/dt = 100 V µs−1. We can clearly
observe three current peaks between 300-400 A m−1 corresponding to the streamer regime and
low-amplitude current regions (around 0.1 A m−1) corresponding to the corona regime. After each
streamer decay, the dielectric surface receives a huge amount of positive charges which impede the
immediate formation of another streamer, but as the voltage increases still, streamer ignition happens
again.

In [19], the EHD force density15, the total EHD force in time and the total EHD force over time is
resp. evaluated in the following way,

fEHD(t,x) ≡ ρ(t,x)E(t,x), F EHD(t) ≡
∫
Ω

fEHD(t,x)dx, SEHD(t) ≡
∫ t

0

F EHD(s)ds

with ρ the total charge density, E the electric field and Ω the computation domain. During the
streamer phase, F EHD is much larger comparing to during the corona phase (see fig. 1.25a), but
overall the contribution to the total force over time of the corona phase is much larger than the
streamer phase (see fig. 1.25b), since the latter occurs on a time scale very short (on the order of 10
ns) comparing to the former (on the order of 10 µs).

Lagmich et al. [87] subsequently extended the work of [19] in ambient air. The characteristics
14without ambiguity, we simply address this quantity as “current” for short
15needs to be distinguished from thrusts, as the latter is the resulting force after taking into account the shear force on

the dielectric surface, acting on the opposite direction of the EHD force [123]
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(a) FEHD/L (b) SEHD/L

Figure 1.25: Parallel and perpendicular components (to the dielectric surface) ofF EHD/L andSEHD/L

in function of time, taken from [19].

Figure 1.26: Applied voltage and computed electric current (in absolute values) in function of time
with the voltage slope ηV = −300 V µs−1, taken from [87]

of the discharge for a positive ramp voltage is the same as in pure nitrogen. The expansion of the
positive ion cloud during the corona phase, with a characteristic speed of 100 m s−1, is conditioned
by the extension of the discharge during the streamer phase as the dielectric surface portion under
the streamer is positively charged after the streamer decay. This point has been more clarified in [81].
On the other hand, for a linearly decreasing negative voltage (negative ramp voltage), the current
exhibits high-frequency pulses (about 1 MHz) where the current amplitude is on the order of 10 A
m−1 during the first pulse and 1 A m−1 during the subsequent pulses (see fig. 1.26). This behavior is
similar to the Trichel pulses during a negative corona discharge. The expansion of the negative ion
cloud is a “creeping” process along the dielectric surface.

Boeuf et al. [15] later extended the work of [87] for sinusoidal SDBD in ambient air. For a 15
kV, 10 kHz-voltage, the current characteristics during the positive-going and negative-going phases
are resp. similar to the positive and negative ramp voltages observed in [19, 87]. The EHD force
density fEHD during the negative-going phase seems to be smoothly distributed in space and time
and extends up to 5 mm downstream of the bare electrode. On the other hand, fEHD during the
positive-going phase is higher but is confined in small intermittent time windows and only extends
up to 1-3 mm along the dielectric surface, reflecting the filamentary nature of the discharge in this
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Figure 1.27: Applied voltage and computed electric current in function of time during the third
voltage period (10 kV, 100 kHz), taken from [81]

phase.

Kourtzanidis et al. [81] further shed light on the mechanism of sinusoidal SDBD. Figure 1.27
shows the computed current during the third period of a 10 kV, 100 kHz sinusoidal voltage, when
the discharge as well as the mutual influence between two phases are well established. The current
consists of a large peak in the positive-going phase due to the propagation of a streamer and 5 smaller
peaks in the negative-going phase similar to the Trichel pulses. The dielectric surface charging before
and after each pulse was emphasized in this paper.

Figures 1.28a and 1.28b show the number of charges per surface unit before and after the positive
pulse and the first negative pulse. During the positive-going phase, a streamer is formed and
propagates along, but 10-20 µm above, the dielectric surface during tens of nanoseconds and expands
up to 3.5 mm downstream of the bare electrode (corresponds to the length of the negative-charged
portion of the surface). The positive ion and electron densities inside the streamer body is as high as
1021 m−3. After the streamer stops growing and starts decaying, the electrons quickly drift towards
the anode and the positive ions attach themselves to the dielectric surface, which explains the sudden
change of sign of the surface charge after the positive pulse. The positive charge region ends in
particular at a position around 3.5 mm on the dielectric surface (see fig. 1.28a) which corresponds to
the maximum expansion of the decayed streamer. This configuration conditions the morphology
of the ionic wind during the corona phase, as mentioned in [87], since the positive-charged surface
portion would “nudge” the positive ions towards the lightly-charged portion up to 5 mm. The
positive-charged portion, in addition, does not provide a favorable condition for the ignition of
another streamer.

On the contrary, during a negative pulse, a negative streamer is formed but quickly collapses into
the bare electrode (cathode). Provided the short lifetime of the microdischarge, the electron density
unleashed onto the dielectric surface is not particularly high so the surface charge after the first pulse
only slightly changes and is still positive beyond 1 mm from the bare electrode (see fig. 1.28b). As a
result, the ignition condition is still in favor for another microdischarge. Furthermore, the positive
surface charge around 3.5 mm from the bare electrode acts like a virtual anode (see [81, Figure 15])
that attracts negative ions: the negative ion cloud expands in a “creeping” way along the surface. In
absence of powerful streamer(s), the charge density (consequently the EHD force density) during
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(a) Positive pulse (b) Negative pulse

Figure 1.28: Charge per surface unit before (in blue) and after (red) the positive pulse and the first
negative pulse, taken from [81].

Figure 1.29: Magnitude of the time-averaged EHD force density over one sinusoidal period, taken from
[81]. The force in the red sheath around the bare electrode directs towards it due to the absorption
of positive ions into the cathode during the negative discharge. This point is coherent with earlier
experimental observations that the air entrained by the actuator comes from above the bare electrode
[123].

the negative-going phase is more smoothly distributed than the positive-going phase as previously
mentioned.

The mutual relation between the positive-going and negative-going cycles is thus remarkable, as
it seems that the geographical expansion of the positive streamer determines, to a certain degree,
the positive charge distribution on the dielectric surface after the positive-going cycle, which later
affects the morphology of the discharge during the negative-going cycle. The negative surface charge
in its turn conditions the extension of the positive streamer. The mutual influences between the
SDBD cycles balance themselves into a causal loop (as it seems since the analysis was done on the
third voltage period) that makes a SDBD much more complex than two separate ramp discharges.
Although the contribution to the EHD force of the positive streamer is negligible comparing to the
negative discharge, it sure does have an effect on the morphology of the EHD force. Figure 1.29
shows that the time-averaged EHD force density has a elongated shape over the dielectric surface
and its maximum length is about 4 mm, approximately the streamer length.
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2.1 Macroscopic description of gas discharge dynamics and
drift-diffusion-Poisson equations

The dynamics of gas particles can be described on different spatial scales. On the microscopic
scale, the Klimontovich equation [74] keeps track of the motion of each particle of the same specie (in
the framework of classical mechanics). The complete description requires the knowledge of position
and momentum of all constituent particles, which is apparently not an attainable work. On the
mesoscopic scale, this point-wise information (on the position and momentum) is “smoothed out” by
a complex averaging process that evolves some manipulations with statistical mechanics and in the
end we only need to keep track of the probability distribution fs(t,x,v) of a particle specie s that
was briefly mentioned in section 1.1. The evolution of fs(t,x,v) is described by so-called kinetic
equations and we refer to [74, Chapter 2] for the passage from the Klimontovich equations to the
kinetic equations.

The computation of kinetic equations is also not attractive from the numerical resource point
of view since the phase space (x,v) is obviously much larger than the space of x. For this reason,
numerical simulations of gas discharge (at least for low-temperature plasmas in air) are almost
exclusively conducted on the macroscopic scale for industry-oriented applications. The unknowns
are now the particle density ns(t,x) of specie s, the mean velocity us(t,x), the mean thermal
energy εs(t,x), etc. which are the average of the moments of fs(t,x,v) on the velocity space (see
section 1.1).

Among a huge variety of macroscopic models that could be derived from the Navier-Stokes-
Maxwell equations, the drift-diffusion-Poisson equations are in particular interesting since they
have a simple structure (the unknowns are only the ns(t,x) and εs(t,x)) but still “rich” enough to
produce simulation results that are coherent, or at least not contradictory, to experiment measure-
ments. In fact, all the numerical works mentioned in section 1.3 on the SDBD were performed with
drift-diffusion-Poisson equations. We refer to [43, 35] for the derivation of drift-diffusion equations
from kinetic equations1 and to [44] for the derivation of drift-diffusion-Poisson equations from
Navier-Stokes-Maxwell equations.

In this thesis, two drift-diffusion-Poisson models are considered. In the first one known as (i)
local field approximation model, the unknowns are only ns(t,x) and εs(t,x) are assumed to be
constant. The second one, (ii) local energy approximation model, takes into account an extra
equation of the mean electron energy εe(t,x).

In the following sections, we assume that the particle species s are contained inside a bounded
domain Ω ⊂ Rd (d = 1, 2) with boundary Γ ≡ Ω \ Ω and evolves on a time interval (0, T ) where
T > 0. The computation domain of the potential field, Ωϕ, is in general larger than Ω since it needs to
contain the dielectric barrier, so we have Ω ⊂ Ωϕ. Figures 2.1a and 2.1b schematize the computation
domains of the densities and of the potential field for simulation of an SDBD.

1it must be noted that the derivation is based on the assumption that the temperature of heavy particles is equal to
that of electrons, i.e. T0 = Te
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Figure 2.1: Computation domains of a SDBD. The electrodes are colored in black, the dielectric barrier
in blue and the gas medium in brown. The domain Ω of ns (left figure) are delimited by thick brown
lines, the domain Ωϕ of ϕ (right) are delimited by thick black lines.

2.1.1 Local field approximation (LFA) model

Conservation laws

The LFA model is composed of a set of mass conservation laws coupled with the Gauss law that
describes the relation between the electric charge density to the potential field. The conservation
laws are expressed in the form of drift-diffusion equations and describe the evolution of the particle
density of species. Let us denote asS the set of all species. The conservation law of the specie s ∈ S

is written in the following way,∂tns(t,x) +∇ · f s
(
E(t,x), Ê(t,x), ns(t,x)

)
= Ss

(
Ê(t,x), (ns(t,x))s∈S

)
,

f s(E, Ê, ns) = sign(zs)µs(Ê)Ens −Ds(Ê)∇ns,
(2.1)

for (t,x) ∈ (0, T ) × Ω, where ns(t,x) is the particle density, f s(E, Ê, ns) is the particle flux
density and Ss(Ê, (ns)s∈S) is the production and decay source term of the specie s. In the second
equation, which is also known as the flux equation, zs is the charge number of the specie s,E(t,x)

is the electric field, µs(Ê) > 0 and Ds(Ê) > 0 are resp. the mobility and diffusion coefficients of s
which are function of the reduced field strength Ê ≡ |E|/N , where N is the neutral particle density.

Ss is the sum of source terms like the right-hand sides of eqs. (1.3) and (1.4) and the number of
terms depends on the kinetic model that is used to describe the chemical reactions in the discharge.
For example, we consider two kinetic schemes from [15] and [54] that will be used in the simulations
in chapter 7.

Example 2.1 (Kinetic scheme from [15]). The set of species consists of electrons (denoted as e and

ze = −1), generic positive ions (p, zp = +1) and generic negative ions (n, zn = −1), i.e. S = { e, p, n }.

47



Chapter 2

The plasma-reactions are

electron impact ionization e+M → 2e+ p,

electron-neutral attachment e+M → n,

electron-ion recombination e+ p→M,

ion-ion recombination n+ p→ 2M,

whereM stands for a neutral particle. The rate coefficients of this three-specie, four-reaction kinetic

model are described in table 2.1 and are function of Ê.

Number Reaction Rate coefficient Data/Evaluation Reference
1 e+M → 2e+ p α (m3 s−1) by BOLSIG+ [67]
2 e+M → n η (m3 s−1) by BOLSIG+ [67]
3 e+ p→M kep (m3 s−1) 2× 10−13 [15]
4 n+ p→ 2M knp (m3 s−1) 1.7× 10−13 [15]

Table 2.1: Rate coefficients of the three-specie, four-reaction kinetic model

The kinetic source terms, without photoionization, read as,
Se(Ê, ne, np) =

(
α(Ê)− η(Ê)

)
Nne − kep(Ê)nenp,

Sp(Ê, ne, np, nn) = α(Ê)Nne − kep(Ê)nenp − knp(Ê)nnnp,

Sn(Ê, ne, np, nn) = η(Ê)Nne − knp(Ê)nnnp.

If photoionization is taken into account, the source term Sph given by eq. (1.9) is added in to the

electron and positive ion source terms, i.e.
Se(Ê, ne, np) =

(
α(Ê)− η(Ê)

)
Nne − kep(Ê)nenp + Sph,

Sp(Ê, ne, np, nn) = α(Ê)Nne − kep(Ê)nenp − knp(Ê)nnnp + Sph,

Sn(Ê, ne, np, nn) = η(Ê)Nne − knp(Ê)nnnp.

Example 2.2 (Kinetic scheme from [54]). The set of species consists of electrons (e), generic positive
ions (p), oxygen negative ions (O−, zO− = −1), dioxygen negative ions (O−

2 , zO−
2
= −1) and ozone
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negative ions (O−
3 , zO−

3
= −1), i.e. S =

{
e, p, O−, O−

2 , O
−
3

}
. The plasma-reactions are

electron impact ionization e+M → 2e+ p,

electron-neutral attachment e+O2 → O− +O,

three-body attachment e+O2 +M → O−
2 +M,

O−
2 -electron detachment O−

2 +M → e+O2 +M,

O−-electron detachment O− +N2 → e+N2O,

two-body charge transfer O− +O2 → O +O−
2 ,

three-body charge transfer O− +O2 +M → O−
3 +N,

where the O2 and N2 densities are fixed at NO2 = 20%N and NN2 = 80%N . The rate coefficients of

this five-specie, seven-reaction kinetic model are described in table 2.2.

Number Reaction Rate coefficient Data/Evaluation Reference

1 e+M → 2e+ p α (m3 s−1)


4.1× 105 exp

(
−680× 10−21

E/N

)
µeE/N if E/N < 186× 10−21Vm2

(
1 +

6× 10−57

(E/N)3

)
12.5× 105 exp

(
−1010× 10−21

E/N

)
µeE/N otherwise

[54]

2 e+O2 → O− +O η (m3 s−1) 4.3× 103 exp
(
−1.05 |5.3− ln(E/N)− 21ln(10)|3

)
µeE/N [54]

3 e+O2 +M → O−
2 +M η3b (m6 s−1) 1.59× 10−44µe(E/N)−0.1 [54]

4 O−
2 +M → e+O2 +M kd−O2 (m3 s−1) 1.24× 10−17 exp

(
−
(

179× 10−21

8.8× 10−21 + E/N

)2
)

[54]

5 O− +N2 → e+N2O kd−O (m3 s−1) 1.16× 10−18 exp

(
−
(

48.9× 10−21

11× 10−21 + E/N

)2
)

[54]

6 O− +O2 → O +O−
2 kct−2b (m3 s−1) 6.96× 10−17 exp

(
−
(

198× 10−21

5.6× 10−21 + E/N

)2
)

[54]

7 O− +O2 +M → O−
3 +M kct−3b (m6 s−1) 1.1× 10−42 exp

(
−
(

E/N

65× 10−21

)2
)

[54]

Table 2.2: Rate coefficients of the five-specie, seven-reaction kinetic model (only available for the
LFA model)

The kinetic source terms of charged species read as,

Se

(
Ê, ne, nO− , nO−

2

)
=
(
α(Ê)− η(Ê)− η3b(Ê)NO2

)
Nne

+kd−O2(Ê)NnO−
2
+ kd−O(Ê)NN2nO− ,

Sp(Ê, ne) = α(Ê)Nne,

SO−(Ê, ne, nO−) = η(Ê)Nne

−
(
kd−O(Ê)

NN2

N
+ kct−2b(Ê)

NO2

N
+ kct−3b(Ê)NO2

)
NnO− ,

SO−
2

(
Ê, ne, nO− , nO−

2

)
= η3b(Ê)NO2Nne − kd−O2(Ê)NnO−

2
+ kct−2b(Ê)NO2nO− ,

SO−
3
(Ê, nO−) = kct−3b(Ê)NO2NnO− .
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The name of the model - local field approximation - comes from the fact that the drift-diffusion
coefficients µs, Ds as well as the reaction coefficients α

N
, η
N

are all functions of the reduced field

strength Ê.

The floor density hypothesis

In practice, the electron density is assumed to be always larger than a user-defined density
ψ(x), called the floor density, which represents the smallest electron density that exist because
of various plasma-chemical processes that are unaccounted for in the discharge model. The floor
density hypothesis means that the constraint

ne(t,x) ≥ ψ(x), (t,x) ∈ (0, T )× Ω,

is imposed on the electron density. This point will be addressed carefully in chapter 6.

Poisson equation

The potential field variation does not only depend on the (volumetric) charge density, but also on
the charges accumulated on the dielectric surface Γd ≡ Ω∩Ωϕ \ Ω (see fig. 2.1b). The surface Γd can
be described by the equation gΓd(x) = 0 in Cartesian coordinates, where the parametric function g
is chosen such that gΓd(x) > 0 for x ∈ Ω and gΓd(x) < 0 for x ∈ Ωϕ \ Ω. The accumulated charges
on Γd per surface unit, σΓd , is given by

σΓd(t,x) = −
∫ t

0

j(s,x) · ∇gΓd(x)
|∇gΓd(x)|

δ(gΓd(x))ds, (t,x) ∈ (0, T )× Ωϕ,

j(t,x) = q
∑
s∈S

zsf s(t,x), (t,x) ∈ (0, T )× Ω,

j(t,x) = 0, (t,x) ∈ (0, T )× (Ωϕ \ Ω),

(2.2)

where δ(x) is the delta function.

Finally, the Gauss law is expressed in the form of a Poisson equation which is written in the
following way,

−∇ · (εr(x)ε0∇ϕ(t,x)) = ρ(t,x) + σΓd(t,x)|∇gΓd(x)|, (t,x) ∈ (0, T )× Ωϕ,

ρ(t,x) = q
∑
s∈S

zsns(t,x), (t,x) ∈ (0, T )× Ω,

ρ(t,x) = 0, (t,x) ∈ (0, T )× (Ωϕ \ Ω),

(2.3)

where εr(x) is the relative permittivity of the domain, ε0 is the vacuum permittivity, ϕ(t,x) is the
potential field, ρ(t,x) is the electric charge density and q is the elementary charge. The second
term on the right-hand side of the first equation is the equivalent volume charge density of a surface
distribution of charges [113]. The electric field is computed from the potential as

E = −∇ϕ. (2.4)
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2.1.2 Local energy approximation (LEA) model

The LEA model has basically the same structure as the LFA model except that the coefficients
such as µs, Ds,

α

N
, η
N

now are functions of themean electron energy εe instead of the reduced
field strength, and the evolution of the electron energy density nε ≡ neεe is taken into account in
addition2.

The conservation law of nε is also written in the form of a drift-diffusion equation,∂tnε(t,x) +∇ · f ε (E(t,x), εe(t,x), nε(t,x)) = Sε(E(t,x), εe(t,x), ne(t,x)),

f ε(E, εe, nε) = −µε(εe)Enε −Dε(εe)∇nε,
(2.5)

with (see [64]), µε(εe) =
5

3
µe(εe), Dε(εe) =

5

3
De(εe),

Sε(E, εe, ne) = −qf e(E, εe, ne) ·E − kε(εe)Nne.
(2.6)

The two term of the energy source term represent resp. mean energy gain from heating by the
electric field (Joule heat) and mean energy loss in collisions3.

2.2 Boundary conditions

2.2.1 For the conservation laws

The boundary conditions for the conservation laws are imposed on the particle flux f s. Different
boundary conditions exist and each is defined on a non-overlapping boundary portion Γk. The union
of these portions is the domain boundary Γ: Γ =

⋃
k

Γk (see fig. 2.1a).

Boundary conditions for particle density have been the subject of still-ongoing debates but to
our knowledge, quite a few formulations have been investigated [16, 65, 59] without definitive
conclusions. This subject is not in the scope of this thesis. In ONERA’s plasma solver COPAIER, we
use a set of boundary conditions that are described below. In our opinion, the effects of boundary
conditions on the discharge, especially on the formation and evolution of electrode sheaths and/or of
microdischarges need to be carefully clarified in future works.

1. On free-flow boundaries Γf , which are fictive interfaces between the discharge domain and
the outer air space, we assume that they are far enough from the “core” discharge so that the
density gradients are null, i.e.

fs ≡ f s · ν = nsus · ν, s ∈ S, (2.7)

where ν(x) is the unit outward normal of Ω at x ∈ Γ and us ≡ sign(zs)µsE is the drift
velocity4 of specie s.

2we have εe ∈ S, but whenever εe passes into subscripts, the notations are simplified to, for example, µε, Dε, etc.
3note that the unit of kε is J m3 s−1

4by convention, zε = −1
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2. On symmetric boundaries Γs, which are fictive interfaces between symmetric discharge do-
mains, the boundary conditions are

fs = 0, s ∈ S. (2.8)

3. On wall boundaries Γw, which are physical interfaces between the discharge domain and the
electrodes or dielectric barriers, we assume that there is no particle reflection from the walls
and only electron secondary emission due to ion bombardment is involved. The boundary
conditions read as

fs = nsmax (us · ν, 0) +
vs
2
ns, s ∈ S \ { e, εe } ,

fe = nemax (ue · ν, 0) +
ve
2
ne − 2γfp,

fε = nεmax (uε · ν, 0) +
vε
2
nε − 2εwγfp,

(2.9)

where vs ≡
(
8kBTs
πms

) 1
2

for S \ { εe } and vε =
5

2
ve are mean thermal velocities, Ts is the

mean kinetic temperature,ms is the particle mass of the specie s and εw = 2 eV, meaning that
an electron emitted from the wall has an energy of 2 eV. Here, Ts = 300 K for S \ { e, εe }
(room temperature); Te = 11600 K (or equivalent to 1 eV in energy) in the LFA model and
Te =

2

3

εe
kB

in the LEA model.

2.2.2 For the Poisson equation

Different boundary conditions exist and each is defined on a non-overlapping boundary portion
Γk. The union of these portions is the domain boundary Γϕ: Γϕ =

⋃
k

Γk (see fig. 2.1b). The boundary

conditions for the Poisson equation are described in the following way,∇ϕ · ν = 0 on Γf ∪ Γs,

ϕ = ϕw on Γw,
(2.10)

where ϕw is the wall potential which might not be the same for different walls (for example anode
has different potential than cathode).

2.2.3 Wall potential and circuit current

The physical model needs to be closed by determining the potential ϕw. In the simplest configu-
ration5 (see fig. 2.1b) that we have one stressed electrode (corresponding to the boundary Γw,1) and
one non-stressed electrode (Γw,2 = Γw \ Γw,1) in series with a power generator VG and an ohmic
resistance R, the non-stressed electrode being grounded (ϕw = 0 on Γw,2), we only have to compute
ϕw on Γw,1 which is given by Ohm’s law6,

ϕw(t) = VG(t)−RI(t).

5that all the simulations in this thesis are set in
6here VG is a function of t since it could be an alternative-current generator
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Here I is the circuit current that appears due to the movement of charges as well as the rate of
change of the electric field. The current I is determined by the Sato formula [129, 105]

I(t) =

∫
Ω

(
ε0
∂E

∂t
(t,x) + j(t,x)

)
· ∇ϕ̃(x)dx, (2.11)

with

j(t,x) =
∑
s∈S

js(t,x), js(t,x) = qzsf s(t,x),

while ϕ̃(x) is a function that depends only on the geometry of the actuator and satisfies
∆ϕ̃ = 0 in Ω,

ϕ̃ = 1 on Γw,1,

ϕ̃ = 0 on Γw,2.

Further algebraic manipulations that can be consulted in [105] show that ϕw (on Γw,1) is the
solution of the following differential equation,(

ε0R

∫
Ω

∣∣∣∇ϕ̃∣∣∣2 dx) dϕw
dt

+ ϕw = VG −R

∫
Ω

j · ∇ϕ̃dx. (2.12)

2.3 Initial data
In open air, the level of pre-ionization charged species is dictated by natural radioactive decays,

especially those of radon [117]. The appearance rate of an electron-positive ion pair is up to 109

m−3 s−1 which yields an equilibrium density of 109-1010 m−3. On the contrary, the seed negative
ion density is usually considered negligible.

For the gas composition in example 2.1 (S = { e, p, n }), we could setn0
e(x) = n0

p(x) = 109 m−3,

n0
n(x) = 0,

where n0
s(x) is the initial particle density of s. For example 2.2 (S =

{
e, p, O−, O−

2 , O
−
3

}
),n0

e = n0
p = 109 m−3,

n0
O− = n0

O−
2
= n0

O−
3
= 0.

2.4 Summary of the discharge models
From eqs. (2.1), (2.3) and (2.5), the discharge system of equations can be written in a more compact

form in the following way,∂tU (t,x) +∇ · F
(
(E(t,x), w(t,x),U(t,x)

)
= S(E, w,U), (t,x) ∈ (0, T )× Ω,

−∇ · (εr(x)ε0∇ϕ(t,x)) = ρ(t,x) + σΓd(t,x)|∇gΓd(x)|, (t,x) ∈ (0, T )× Ωϕ,
(2.13)

where
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• U ≡ (ns)s∈S (for the LEA model, the mean electron energy is also a “specie”, i.e. εe ∈ S7),
F ≡ (f s)s∈S, S ≡ (Ss)s∈S;

• w implies the dependence of the mobility, diffusion and reaction coefficients on (i) w = Ê in
the LFA model or (ii) w = εe in the LEA model;

• S is given in example 2.1 or example 2.2 and eq. (2.6);

• ρ, σΓd and E are resp. given in eq. (2.3), eq. (2.2) and eq. (2.4).

The system (2.13) is completed with the boundary conditions in eqs. (2.7) to (2.9) for the con-
servation laws as well as in eqs. (2.10) and (2.12) for the Poisson equation and with the initial data
described in section 2.3.

2.5 Validity limit and improvements of the LFA model
In certain specific discharge conditions such as when large-gradient charge density layers are

present in the densities or the field, numerical simulations in the framework of the LFA model exhibit
some nonphysical properties that can be attributed to the validity limit of the model. In [138], a
simulation example was made in a one-dimensional test case where the discharge was initiated in a
two-component gas (positive ions and electrons) between a 4 mm gap. The initial population of each
charged specie was 1020 m−3 on the 2 mm left half of the domain and 0 on the right half. A high
background field of 10 MV m−1, pointing from left to right, was applied between the gap.

Figure 2.2: Nonphysical growth of electron population computed with the LFA model, taken from
[138]

Under these conditions, the electrons should be evacuated to the left and we would not expect
any strong ionization process on the 2 mm-right half of the domain. This proves to be not true as
we observe the evolution in time of the electron density in fig. 2.2. In fact, electrons from the left

7but we write nε instead of nεe
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half-domain could escape into the right half due to diffusion, and since the ionization coefficient
depends on the field strength in the LFA model, the ionization process rapidly takes place on the
right half-domain. This phenomenon could not happen in real world since the escaping electrons
(from the left half-domain) will lose their energy moving against the field and cannot effectively
ionize the gas as predicted by the simulation [135]. Moreover, the increasing charge density can
severely limit the numerical timestep (see chapter 3). It must be also noted that refining the grid did
not put off this undesirable behavior, so it is not a numerical artifact but a manifest of the validity
limit of the LFA model. Further evidences of the latter can be found in chapter 7 via the simulation
results of a microdischarge approaching an electrode surface.

This section presents an analysis of the LFA model that unveils the reason why it does not work
in large-gradient density, high field condition. This analysis follows the derivation of the LFA model
from the LEA model that was carried out by Arcese et al. [4]. Some amendments of the ionization
coefficient for the LFA model [135, 138] which attempt to erase the nonphysical density growth
problem will be briefly introduced in section 2.5.2.

2.5.1 Derivation of the LFA model from the LEA model

Since the mean electron energy is concerned in particular, we are interested in the electron
particle and energy drift-diffusion equations, and, for simplicity, we only take into account the
electron impact ionization source term. The considered equations for the analysis reads as

∂tne −∇ · (µeEne +De∇ne) = αNne,

∂tnε −∇ ·
(
5

3
µeEne +

5

3
De∇ne

)
= q(µeEne +De∇ne) ·E − kεNne.

(2.14)

Let νi ≡ αN (ionization frequency) and νε ≡
kεN

εe
(inverse of the electron energy relaxation

time). As nε = neεe, system (2.14) is equivalent to
∂tne −∇ · (µeEne +De∇ne) = νine,

∂tεe −
1

ne
∇ ·
(
5

3
µeEne +

5

3
De∇ne

)
+
εe
ne

∇ · (µeEne +De∇ne)

= q

(
µeE +De

∇ne
ne

)
·E − (νi + νε)εe.

(2.15)

In order to properly rescale (2.15) and obtain meaningful information from its dimensionless
form, it is important to well define some characteristic parameters in our problem. As ionization and
diffusion processes were specifically mentioned, we choose for the characteristic time scale t0 and
space scale x0 to be

t0 =
1

νi
, x0 =

√
D0

νi
,

with D0 the characteristic diffusion coefficient. The characteristic velocity is therefore u0 =
√
D0νi.

Furthermore, let n0, µ0, E0, ε0, νi,0 and νε,0 be resp. the characteristic values of ne, µe, E, εe, νi and
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νε. In particular, we also define the characteristic drift velocity as ud0 = µ0E0. Using the Einstein
relation [126, Chapter 2] as the approximation formula of the diffusion equation which reads as

De =
kBTeµe

q
,

we have

ξ ≡ ud0
u0

=
qE0

kBTe

√
D0

νi
.

We proceed to introduce a rescaling in system (2.15) by setting

t = t0t̃, x = x0x̃, ne = n0ñe, µe = µ0µ̃e, E = E0Ẽ,

De = D0D̃e, νi = νi,0ν̃i, εe = ε0ε̃e, νi + νε = (νi,0 + νε,0)(ν̃i + νε).

Apparently, the tilded values are on the order of 1. Using this change of variables and then
omitting the tildes, system (2.15) becomes

∂tne −∇ · (ξµeEne +De∇ne) = νine,

∂tεe −
1

ne
∇ ·
(
5

3
ξµeEne +

5

3
De∇ne

)
+
εe
ne

∇ · (ξµeEne +De∇ne)

=
1

δ

((
ξµeE +De

∇ne
ne

)
·E − χ(νi + νε)εe

)
.

(2.16)

with δ ≡ ε0
qE0x0

and χ ≡ ε0(νi,0 + νε,0)

qE0u0
.

Near a streamer head, the characteristic values are typically E0 = 107 V m−1, Te = 105 K (10
eV), νi,0 = 1011 s−1 and D0 = 10−2 m2 s−1. Therefore, ξ ≈ 0.38.

If we assume that δ ≪ 1, the second equation of (2.16) is reduced to(
ξµeE +De

∇ne
ne

)
·E = χ(νi + νε)εe. (2.17)

As both sides of this equation are positive (they correspond resp. to the energy gain and loss terms),
it is necessary that ξ is on the order of 1, which means that we can choose ε0 ∝ qE0u0

νi,0 + νε,0
and

consequently δ ∝ νi,0
νi,0 + νε,0

. Moreover, eq. (2.17) tells us that if µe,
νi
N2

and νε
N2

are functions of εe,

as well as if ∇ne
ne

is neglected, then a dependence law of εe on Ê could be figured out.

The LFA model thus can be viewed as the formal limit of the LEA model as δ → 0 under the
hypothesis ∇ne/ne ≈ 0, the latter is clearly not satisfied near a streamer head (numerical evidences

in section 5.3). Furthermore, we have the estimation νε,0 ≈
√
me

m0

νm,0 wherem0 is the typical mass

of a neutral particle8 while νm,0 is the characteristic effective collision frequency for momentum
transfer, νm,0 ≈ 3× 1012 s−1 [126, Chapter 2]. So νε,0 ≈ 4× 108 s−1 which is much smaller than νi
near a streamer head so δ ≈ 1 in fact. This analysis has therefore shown that the LFA model is not
valid in certain discharge conditions such as streamers and will raise some numerical problems in
certain configurations (see chapter 7).

8take nitrogen for example: m0 ≈ 4.7× 10−23 g
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2.5.2 Improvements of the ionization source term for the LFA model

Due to the drawback of the LFA model that could lead to nonphysical growth of electric charge,
the simple remedy is to switch to the LEA model. Nevertheless, some authors still prefer to work
with the LFA model because of its simplicity and attractiveness in term of computational cost (one
less equation to solve). This leads to some attempts to correct the ionization rate coefficient α since
the ionization process are mainly responsible for charge production. As α

N
, a function of Ê in the

LFA model, is computed, for example, by the application BOLSIG+ [67] where the gas medium as
well as the field are assumed to be homogeneous, these attempts are somewhat justified.

Soloviev & Krivtsov [135] are perhaps the first to propose a method to recompute the ionization
rate coefficient. Their approach was derived from the dimensional form of eq. (2.17) which reads as

q

(
µeE +De

∇ne
ne

)
·E = (νi + νε)εe.

The coefficients that we use by default in the LFA model that are denoted here as ν̂i and ν̂ε are
computed by neglecting the density gradient term, i.e.

qµeE
2 = (ν̂i + ν̂ε)εe.

Therefore, we have

(νi + νε)εe = (ν̂i + ν̂ε)εe

(
1 +

De∇ne ·E
µeE2ne

)
,

and we set

νi =

(
1 +

De∇ne ·E
µeE2ne

)
ν̂i. (2.18)

J. Teunissen [138] proposed another ionization frequency in the following way,

νi =
|µeneE +De∇ne|

µeneE
ν̂i.

This approach coincides with Soloviev & Krivtsov’s in the case where ∇ne aligns with E. If ∇ne
acts on the opposite direction ofE, for example in the situation observed in fig. 2.2, then νi < ν̂i and
we would expect less ionization in the region where it is not supposed to be strong. On the other
hand, if∇ne acts on the same direction of E then νi > ν̂i. Therefore, [138] further proposed to set

νi = min

(
1,

|µeneE +De∇ne|
µeneE

)
ν̂i. (2.19)

Comparing to eq. (2.18), there is less legit argument for the derivation of eq. (2.19). Nevertheless,
the latter approach will be used in the simulations in chapter 7.
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In this chapter, we present some key features of ONERA’s in-house plasma solver COPAIER [46],
conceived and developed for two-dimensional simulations of electric discharge in air.

3.1 Meshing of the computation domain
Let Ω be the computation domain of the specie densities (an open bounded domain of R2). We

start with the definition of a grid (or mesh) on Ω while assuming at first that Ω is a polygonal
domain. In COPAIER, structured (rectangular) or unstructured (triangular) grids or the mixing of
both can be used.

Definition 3.1. Let Ω be an open connected polygonal of R2. A conforming grid of Ω is a set T
of open polygonal domains (or cells) (ΩK)1≤K≤N with N = Card(T ), that satisfies the following

conditions.

1. ΩK are convex.

2. No three or more vertices of an ΩK are aligned.

3. ΩK ⊂ Ω and Ω =
N⋃
K=1

ΩK .

4. For any two polygons ΩK and ΩL of T , the intersection ΩK ∩ ΩL is either empty or a common

vertex or a common segment λKL (or indifferently λLK) such that λKL is an edge of both ΩK and

ΩL.

The nodes of the grid T are the vertices of the polygons ΩK ∈ T . By convention, for each ΩK ∈ T ,

we denote as hK the diameter of the smallest circle that contains ΩK , and

hT = max
K=1,...,N

hK .

We also denote as EK the set of edges of ΩK ∈ T , and ET =
N⋃
K=1

EK .

The third condition of definition 3.1 which characterized the conforming property of T , ensures
that there is no hanging node in the grid, meaning that there is no vertex of a cell of T that lies on
an edge of another cell.

For an edge λ ∈ EK , we denote as resp. xKλ and νKλ the midpoint of λ and the unit outward
normal of ΩK on λ. In the case that λ is the common edge of ΩK and its neighbor ΩL (see for
example fig. 3.1), we can use the notations xλKL (or indifferently xλLK) and νKL instead of xKλ and
νKλ. Finally, the center of gravity xcK of ΩK is defined as

xcK =
1

|ΩK |

∫
ΩK

xdx,

where |ΩK | ≡
∫
ΩK

dx is the surface of ΩK .
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xcK

xKλ

xcL

νKλ

λKλ

ΩL

ΩK

Figure 3.1: Two neighbor cells of a triangular conforming grid

Remark 3.1 ([3, Chapter 6]). If Ω is not a polygonal domain but its boundary is sufficiently smooth,

we start by approximating Ω by a polygonal domain Ωp and then mesh Ωp with a grid T . We can choose

Ωp and T in such a way that

dist(Γ,Γp) ≤ ChT ,

where Γ = Ω \ Ω, Γp = Ωp \ Ωp and C > 0 is a constant only depending on the boundary Γ.

For the computation domainΩϕ of the potential, wemesh the subdomainΩϕ\Ωwith a conforming
grid T̃ , such that the union T ∪ T̃ is also a conforming grid on Ωϕ.

The meshing work for all the simulations of COPAIER is done by the free mesh-generator Gmsh
[58].

3.2 Discretization of the conservation laws

3.2.1 Discretization in space

In COPAIER, we employ the finite volume method for the spatial approximation of the conser-
vation laws. Let us assume that the densities U and the source terms S in system (2.13) are locally
integrable. Integrating the continuity equations in (2.13) on each ΩK ∈ T and dividing it by |ΩK |,
we have

dUK(t)

dt
+

1

|ΩK |
∑
λ∈EK

∫
λ

F (t,x) · νKλdl = SK(t), (3.1)

whereUK ≡ (ns,K)s∈S, vK ≡ 1

|ΩK |

∫
ΩK

v(x)dx for any locally integrable function v(x), F ·νKλ ≡

(f s · νKλ)s∈S and dl is the unit length element.

Since S is usually nonlinear in U (see examples 2.1 and 2.2), we can make some approximations
in SK so that the resulted source term depends on UK and the computation of UK would be easier.
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Taking for instance the kinetic scheme in example 2.1, we can use the following approximations
(αne)K(t) ≈ α(t,xcK)ne,K(t),

(ηne)K(t) ≈ η(t,xcK)ne,K(t),

(kepnenp)K(t) ≈ kep(t,x
c
K)ne,K(t)np,K(t),

(knpnnnp)K(t) ≈ knp(t,x
c
K)nn,K(t)np,K(t).

(3.2)

For the mean energy source term Sε, we refer to section 6.4.2 for details.

For a specie s ∈ S, the flux-integral
∫
λ

f s(t,x) · νKλdl is evaluated by the midpoint rule and its
approximant reads as

|λ|f̂s,Kλ(t,xKλ) ≡ |λ|f s(t,xKλ) · νKλ. (3.3)

Therefore, with eqs. (3.2) and (3.3) we replace eq. (3.1) for each ΩK ∈ T by (we keep the same
notation for UK)

dUK(t)

dt
+

1

|ΩK |
∑
λ∈EK

|λ|F̂Kλ(t,xKλ) = ŜK

(
E(t,xcK), w(t,x

c
K),UK(t)

)
, (3.4)

where |λ| ≡
∫
λ

dl, F̂Kλ ≡ (f̂s,Kλ)s∈S and ŜK is obtained by replacing resp. α(t,xcK)ne(t), etc. for

αne(t), etc. in SK .

Remark 3.2. Since F̂Kλ, α(t,xcK) and ne,Knp,K are resp. second-order approximations in hK of∫
λ

F (t,x) · νKλdl, α(x) and (nenp)K on ΩK , we have in fact added a numerical error O(h2T ) on the

passage from eq. (3.1) to eq. (3.4).

3.2.2 Flux approximation

The flux f̂s,Kλ can be written as the sum of the drift flux f̂us,Kλ(t) ≡ us,Kλ(t)ns(t,xKλ) and the
diffusion flux f̂Ds,Kλ(t) ≡ −Ds,Kλ(t)∇ns(t,xKλ)·νKλ (see eq. (2.1)) with us,Kλ(t) ≡ us(t,xKλ)·νKλ,
us(t,x) ≡ sign(zs)µs(t,x)E(t,x) and Ds,Kλ(t) = Ds(t,xKλ).

Let us denote as ΩL the neighbor cell of ΩK that shares the common edge λ. The drift flux is
approximated by the central-difference scheme

f̂Ds,KL ≈ f
D

s,KL ≡ −Ds,Kλ
ns,L − ns,K

dKL
, (3.5)

where dKL (or indifferently dLK) equals |xcK − xcL|.

The drift flux f̂us,Kλ is computed using either a first-order upwind scheme or a second-order
MUSCL scheme. For the latter, the density gradients are estimated with a dual-mesh algorithm [46]
on triangular grids. The first-order upwind scheme reads as

f̂us,KL ≈ f
u,1

s,KL ≡ max(us,KL, 0)ns,K +min(us,KL, 0)ns,L. (3.6)
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ΩK

ΩD
K λDKL

νD
KL

xvB xvC

xvA

xcM

xcL

xcN

Figure 3.2: Dual cell (gray) ΩD
K of a triangle ΩK (maroon)

For the MUSCL scheme, f̂us,Kλ is computed in the following way,

f̂us,KL ≈ f
u,2

s,KL ≡ max(us,KL, 0)
(
ns,K + ϕs,KDns,K · (xλKL − xcK)

)
+min(us,KL, 0)

(
ns,L + ϕs,LDns,L · (xλLK − xcL)

)
, (3.7)

where Dns,K(t) is an approximation of the gradient ∇ns(t,xcK) while ϕs,K(t) is a slope limiter that
is added to avoid nonphysical oscillations.

In order to compute Dns,K , let us define the dual cell ΩD
K of ΩK ∈ T as the triangle whose

vertices are the centers of gravity of the three neighbor cells ΩL, ΩM and ΩN of ΩK . Let us denote
as λDqr the segment joining xcq and xcr, and as νD

qr the unit outward normal of ΩD
K on λDqr with

q, r ∈ { L,M,N }, q ̸= r (see fig. 3.2). The approximantDns,K reads as [10]

Dns,K =
1

2|ΩD
K |

∑
q,r∈{ L,M,N },q ̸=r

(ns,q + ns,r)λ
D
qrν

D
qr.

In order to compute ϕs,K , let us denote as xvA, xvB and xvC the three vertices of ΩK (see fig. 3.2),

nmax
s,K ≡ max

q∈{K,L,M,N }
ns,q, nmin

s,K ≡ min
q∈{K,L,M,N }

ns,q,

ns,K,r ≡ ns,K +Dns,K · (xvr − xcK), r ∈ { A,B,C } .

Let us define, for r ∈ { A,B,C } [6],

ϕs,K,r =



min

(
1,
nmax
s,K − ns,K

ns,K,r − ns,K

)
, if ns,K,r − ns,K > 0,

min

(
1,
nmin
s,K − ns,K

ns,K,r − ns,K

)
, if ns,K,r − ns,K < 0,

1, otherwise.

Then the limiter ϕs,K is evaluated in the following way,

ϕs,K = min
r∈{A,B,C }

ϕs,K,r.
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3.2.3 Discretization in time

With the numerical flux f s,Kλ
(
w(t,xKλ),UK(t)

)
as the sum of (3.5) and (3.6) or (3.7), the system

of equations (3.4) is transformed into

dUK(t)

dt
= G(t,UK(t)),

G(t,UK(t)) = ŜK

(
E(t,xcK), w(t,x

c
K),UK(t)

)
− 1

|ΩK |
∑
λ∈EK

|λ|FKλ

(
E(tl,xKλ), w(t,xKλ),UK(t)

)
,

(3.8)

with FKλ = (f s,Kλ)s∈S.

Let T > 0, 0 = t0 < t1 < · · · < tL = T be an increasing series of real numbers call time levels
and ∆tl ≡ tl+1 − tl > 0 (l = 0, . . . ,L− 1) be the timesteps. We can even simplify more eq. (3.8) by
making the approximations E(t,x) ≈ E(tl,x) and w(t,x) ≈ w(tl,x) for t ∈ [tl, tl+1). For each l,
eq. (3.8) is then replaced by

dUK(t)

dt
= Gl(UK(t)), t ∈ [tl, tl+1)

Gl(UK(t)) = ŜK

(
E(tl,xcK), w(t

l,xcK),UK(t)
)

− 1

|ΩK |
∑
λ∈EK

|λ|FKλ

(
E(tl,xKλ), w(t

l,xKλ),UK(t)
)
,

(3.9)

Now we can discretize eq. (3.9) with a chosen time scheme (see examples 3.1 to 3.4). For l ≥ 0,
we denote as U l

K an approximation of UK(t
l)1.

Example 3.1 (Forward Euler scheme). U l+1

K is computed in the following way,

U
l+1

K = U
l

K +∆tlGl(U l

K).

Example 3.2 (Runge-Kutta-Heun scheme).
U
l+ 1

3
K = U

l

K +∆tlGl(U l

K),

U
l+ 2

3
K = U

l+ 1
3

K +∆tlGl(U l+ 1
3

K ),

U
l+1

K =
1

2

(
U l
K +U

l+ 2
3

K

)
.

Example 3.3 (Third-order strong stability-preserving (SSP) scheme [60]).

U
l+ 1

4
K = U

l

K +∆tlGl(U l

K),

U
l+ 2

4
K = U

l+ 1
4

K +∆tlGl(U l+ 1
4

K ),

U
l+ 3

4
K =

3

4
U
l

K +
1

4
U
l+ 2

4
K + Gl

(
3

4
U
l

K +
1

4
U
l+ 2

4
K

)
,

U
l+1

K =
1

3
U l
K +

2

3
U
l+ 3

4
K

Example 3.4 (Backward Euler scheme).

U
l+1

K = U
l

K +∆tlGl(U l+1

K ).

1U
0

K is simply the average of U0(x) on ΩK
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3.2.4 The CFL condition

It is well known that the use of explicit time schemes like those in examples 3.1 to 3.4 imposes a
constraint on the numerical timesteps ∆tl called CFL condition [90, 91]. In practice, it is expressed
in the following way,

∆tl ≤ C min
K=1,...,N

(
h2K

ule,KhK + 2Dl
e,K

)
, (3.10)

where C ≤ 1 is a user-defined parameter, ule,K andDl
e,K are resp. approximations of |ue(tl,xcK)| and

De(t
l,xcK). The CFL condition only depends on electrons since they are the lightest specie so their

transport-diffusion timescale is much shorter than other heavy species.

3.3 Approximation of the potential and the plasma coefficients

3.3.1 Discretization of the Poisson equation

In COPAIER, the Poisson equation of the potential (2.3) is discretized using the P1-Lagrange
finite element method. Let ϕl(x) be an approximation of ϕ(tl,x). Firstly, we approximate the
right-hand-side of the first equation in (2.3) by the cell-averaged charge density. Equation (2.3) is
replaced by 

−∇ ·
(
εr(x)ε0∇ϕl(x)

)
= ρlK , x ∈ ΩK ,

ρlK = q
∑
s∈S

zsn
l
s,K , if ΩK ∈ T ,

ρlK = 0, if ΩK ∈ T̃ ,

(3.11)

where we recall that T̃ is the conforming grid defined on the subdomain Ωϕ \ Ω.

The Poisson equation is then multiplied with the finite element basis functions which allow to
characterize ϕl by its values at the grid nodes. The process of solving eq. (3.11) by the finite element
method can be found in many textbooks on this subject, such as [3]. The rigid matrix resulting from
the discretization of eq. (3.11) is factorized using the LU decomposition method [125]. But since
the stiffness matrix only depends on the grid (which is unchanged), its factorization is done at the
beginning and stored throughout the simulation. Therefore, eq. (3.11) is solved each time merely by
forward and backward substitutions.

3.3.2 Computation of the drift-diffusion-reaction coefficients

The drift-diffusion coefficients us,Kλ and Ds,Kλ in eqs. (3.5) to (3.7) require an approximation of
the field E at edge centers xKλ, while the reaction coefficients α, η, etc. (for the LFA model) in the
right-hand side of eq. (3.2) require an approximation of the field strength E at cell centers xcK . These
quantities of the field can be easily evaluated in the finite element framework as the solution ϕl(x)
of eq. (3.11) can be expressed using the finite element basis functions and the approximant El(x) of
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the field E(tl,x) simply is

El(x) = −∇ϕl(x).

3.3.3 The dielectric relaxation time

When solving the discharge system with an explicit time scheme, for instance the forward Euler
method in example 3.1, the numerical timesteps ∆tl must also respect a constraint related to the
dielectric relaxation time [63], which will be introduced in the following.

Let us go back to the system eqs. (2.1) and (2.3) and assume, for practical reason, that Ds = 0 for
all species s. By definition of the charge density ρ in eq. (2.3), taking the time derivative of ρ, using
the continuity equations eq. (2.1) and the fact that

∑
s∈S

zsSs = 0, we have

∂tρ+∇ ·

(
q

(∑
s∈S

|zs|µsns

)
E

)
= 0. (3.12)

We define the conductivity of the gas medium (which is always positive) as σ ≡ q
∑
s∈S

|zs|µsns.

The time-discrete version of eq. (3.12) (using the forward Euler method) reads as

ρl+1 − ρl +∆tl∇ · (σlEl) = 0, l = 1, . . . ,L,

where ρl(x) is an approximation of ρ(tl,x), etc.

With this equation and the Poisson equation (2.3), we have

∇ · (εrε0El+1) = ∇ · ((εrε0 −∆tlσlIΩ)El),

with IΩ the indicator function of the domain Ω. Then multiplying this equation with ϕl+1, integrating
on Ωϕ and using integration by parts lead to∫

Ωϕ

εrε0|El+1|2dx =

∫
Ωϕ

(εrε0 −∆tlσlIΩ)El ·El+1dx.

Here we have made the boundary terms vanish since the boundary conditions are either Dirichlet
for ϕl or homogeneous Neumann for El (see section 2.2). Using the Cauchy-Schwarz inequality, we
obtain an estimate on the time-discrete total electrical energy Eϕ(t) ≡

∫
Ωϕ

εrε0E
2dx as follows,

(E l+1
ϕ )

1
2 ≤ sup

x∈Ωϕ

∣∣∣∣1−∆tl
σlIΩ
εrε0

∣∣∣∣ (E lϕ) 1
2 . (3.13)

It can be shown that Eϕ is non-increasing. Indeed, by substituting eq. (3.12) in the time derivative
of eq. (2.3), we obtain the local conservation of the total current (displacement current plus conducting
current) which reads as follows,

∇ · (εrε0∂tE + σE) = 0.

66



Numerical modeling - COPAIER

Multiplying this equation with ϕ and integrating on Ωϕ leads to
d

dt

∫
Ωϕ

εrε0E
2dx+

∫
Ωϕ

σE2dx = 0,

where we have also made the boundary terms vanish (no outer energy source). We then have dEϕ
dt

≤ 0

since σ ≥ 0.

Therefore, a necessary condition ensuring that the time-discrete energy E lϕ is non-increasing can
be derived from eq. (3.13) that is

sup
x∈Ωϕ

∣∣∣∣1−∆tl
σlIΩ
εrε0

∣∣∣∣ ≤ 1.

As σl, ε0, εr are positive and εr = 1 on Ω (air), this condition takes the form of a constraint on the
timestep,

∆tl ≤ 2ε0
supx∈Ω σ

l
. (3.14)

In practice, it has been numerically observed that if this constraint on the timesteps is violated, then
the simulation will in fact become unstable.

The quantity on the right-hand side of eq. (3.14) is the so-called dielectric relaxation time. In
practical implementation, we use the approximants σlK of σl(xcK) and compute the timesteps as
follows,

∆tl ≤ C
2ε0

maxK=1,...,N σlK
≡ ∆tlϕ, (3.15)

where C ≤ 1 is a user-defined parameter. In order to evaluate σlK , we compute the drift-diffusion
coefficients from the field El(xcK) (see section 3.3.2) and the gradients at cell centers xcK using the
dual-cell reconstruction (see section 3.2.2).

3.3.4 Semi-implicit method for the computation of the potential

It is straightforward that if we use an implicit time scheme for the time-discretization of eq. (3.12),
for instance the backward Euler method in example 3.4, then the electric field at tl+1 satisfies

∇ · ((εrε0 +∆tlσl+1IΩ)El+1) = ∇ · (εrε0El). (3.16)

Therefore, the total electrical energy is immediately non-increasing as E l+1
ϕ ≤ E lϕ since σl+1 ≥ 0.

However, eq. (3.16) is usually not simple to solve because of the presence of the implicit conductivity
σl+1. In order to overcome this technical difficulty, a semi-implicit approach [155, 16, 63] was
proposed in which the conductivity is taken into account explicitly, i.e. eq. (3.16) is replaced by

∇ · ((εrε0 +∆tlσlIΩ)El+1) = ∇ · (εrε0El). (3.17)

Equation (3.17) allows to compute the field with a timestep as 50 times larger as the dielectric
relaxation time [16, 63]. However, the LU factorization is required at each time tl since the stiffness
matrix of eq. (3.17) changes each time. Therefore, the trade-off between larger timesteps and higher
complexity of the numerical method needs to be carefully balanced so that the use of the semi-implicit
scheme will not be counterproductive.
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4.0 Aperçu
Dans ce chapitre, nous présentons une généralisation d’ordre élevé du schéma de Scharfetter-

Gummel (SG), proposé dans [130], qui est utilisé pour résoudre les équations de dérive-diffusion qui
apparaissent dans le modèle de décharge (2.13). Le schéma de Scharfetter-Gummel est largement
utilisé dans la simulation des décharges dans l’air. De plus, il est peut-être plus connu dans le domaine
des semi-conducteurs, d’où l’existence de nombreuses études et variations du schéma SG, par exemple
[101, 31, 30, 32, 52, 33, 13, 14, 122] . Cependant, à notre connaissance, aucun de ces travaux n’a
conduit à la dérivation d’un schéma de type SG qui soit plus précis que le second ordre.

Les équations de dérive-diffusion sont également largement présentes dans de nombreux autres
domaines scientifiques, tels que la mécanique des fluides. Pour la discrétisation de ces équations
dans l’espace, il existe un grand nombre d’études disponibles qui entrent dans la catégorie des
méthodes de volumes finis. Sans vouloir être exhaustif, nous n’en mentionnerons que quelques-
unes. La méthode la plus standard a été proposée par Eymard et al. [53], qui ont utilisé le schéma
décentré du premier ordre pour discrétiser le flux de dérive et le schéma de différence-centrale
pour le flux de diffusion. Une technique plus intéressante qui produit des solutions numériques
de meilleure qualité est celle des schémas MUSCL qui ont été proposés par B. van Leer dans ses
articles pionniers [148, 149, 150, 151, 152], qui s’appuient sur la reconstruction du gradient de densité
pour obtenir une plus grande précision numérique. Ces schémas numériques ont été principalement
conçus pour les problèmes hyperboliques (sans diffusion) et dédiés aux problèmes de capture des
chocs. Il y a en fait une très grande recherche sur les méthodes d’ordre élevé pour approcher le
flux de dérive. Sweby [137], Harten [70] et d’autres auteurs ont ensuite étendu les travaux de B.
van Leer et étudié systématiquement la classe des méthodes de variation totale décroissante (TVD)
qui utilisent des limiteurs de flux ou des limiteurs de pente pour supprimer les oscillations dans les
solutions numériques qui pourraient déstabiliser la simulation. Colella et Woodward [37] ont mis
en œuvre le limiteur PPM pour la reconstruction quadratique. Plus tard, Harten et al. [71, 72] ont
introduit une technique pour construire des schémas d’ordre arbitrairement élevé qui sont exempts
d’oscillations nonphysiques. Leurs travaux ont ouvert la voie aux recherches toujours en cours sur
les méthodes d’ENO/WENO et d’autres schémas de ce type (voir [134, 143] et les références qui y
figurent). D’autres développements sur les processus de reconstruction d’ordre élevé de la densité
peuvent être trouvés, par exemple, dans [9] pour la reconstruction par moindres carrés, ou [69]
pour la reconstruction itérative et adaptée pour faire du MPI. Ces schémas d’ordre élevé souffrent
d’oscillations parasites, en particulier en présence de discontinuités ou de couches de gradient fort
dans la densité. A notre connaissance, il n’existe pas aujourd’hui de technique unifiée de limitation
pour les schémas d’ordre arbitrairement élevé de la même manière que la technique MUSCL pour
les schémas du second ordre. Quelques tentatives ont été faites, comme dans [162] où les auteurs
ont appliqué successivement les limiteurs TVD sur les approximants des dérivées de la densité. Les
techniques mentionnées jusqu’à présent sont généralement appelées limitation a priori, car les
limiteurs sur la densité reconstruite sont appliqués avant d’avancer dans le temps. Les autres sont les
techniques de limitation a posteriori, qui ont été popularisées par la méthode MOOD [36], qui
permet d’avancer dans le temps avec une reconstruction d’ordre élevé de la densité, puis de recalculer
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la solution avec une reconstruction d’ordre inférieur sur les cellules où présentent des oscillations
parasites. D’autre part, le développement de méthodes de haute précision pour la discrétisation du
flux de diffusion est moins souligné, à notre connaissance. Nous renvoyons à [115, 153] pour la
discussion sur ce sujet.

Une classe particulière de méthodes numériques spécifiques aux équations de dérive-diffusion
sont les schémas exponentiels. Allen & Southwell [56] et A. M. Il’in [75] ont introduit un schéma
de différences finies qui résout exactement les équations de diffusion-dérive stationnaires avec des
coefficients constants, ce qui signifie que la solution numérique se coïncide avec la vraie solution
de l’équation différentielle sur les points de maillage. Scharfetter & Gummel [130] ont introduit
la même année qu’A. M. Il’in un schéma de différences finies basé sur une intégration locale du
flux de particules entre les centres des cellules du maillage. Bien que ces différentes approches
aient abouti à l’obtention du même schéma, les philosophies qui sous-tendent la dérivation de ce
schéma sont différentes les unes des autres. Comme cette dernière approche facilite la construction
d’un schéma de volumes finis puisqu’elle raisonne sur le flux de densité, nous préférons le nom de
Scharfetter-Gummel (SG) pour désigner cette méthode numérique. Le schéma SG est uniformément
convergent au premier ordre pour les équations de dérive-diffusion-réaction stationnaires en général,
ce qui signifie que sa constante d’erreur ne dépend pas du gradient de la solution, un résultat qui a
été prouvé dans [75] par une méthode à deux maillages et dans [127] avec une étude asymptotique de
la solution de l’équation différentielle. E. C. Gartland [57] a proposé en outre une famille de schémas
uniformément convergents d’ordre arbitrairement élevé - les schémas HODIE - mais qui nécessitent
des points d’évaluation auxiliaires à l’intérieur d’un stencil compact. Pour une bonne lecture sur
les schémas exponentiels, nous renvoyons au livre [127]. Plus récemment, ten Thije Boonkkamp
& Anthonissen [142] ont introduit une amélioration du schéma SG qui a été dérivé en prenant en
compte en plus le terme source de l’équation de dérive-diffusion, pas seulement l’équation de flux
comme dans la dérivation du schéma SG. Le flux résultant est une combinaison de deux composante
: une composante “homogène” qui est similaire au flux SG et une composante “inhomogène” qui
intègre le terme source. Liu et al. [96] ont ensuite prouvé que ce schéma est uniformément convergent
au second ordre.

Comme nous le pouvons observer dans [19] et dans nos simulations dans le chapitre 5, le schéma
SG fournit généralement des solutions de simulation de mauvaise qualité sur des maillages grossiers,
car sa précision dégénère au premier ordre si le régime de dérive est prédominant. Par conséquent,
les schémas d’ordre élevé tels que les méthodes MUSCL sont fréquemment utilisés à la place dans la
simulation de la décharge de gaz, par exemple dans [106, 46, 48, 140], pour la discrétisation du flux de
dérive. Au contraire, l’un des intérêts du SG est qu’il discrétise en même temps les flux de dérive et
de diffusion, de sorte que s’il existe une généralisation d’ordre élevé du schéma SG, il pourrait s’agir
d’un moyen simple de résoudre les équations de dérive-diffusion.

La structure de ce chapitre est la suivante : la section 4.2 présente brièvement le schéma de
Scharfetter-Gummel (le schéma SG “standard”), la section 4.3 décrit la construction, sur des maillages
unidimensionnelles, de nouvelles méthodes d’ordre élevé, appelées les schémas de Scharfetter-
Gummel avec correction du current (SGCC), qui sont en fait une généralisation d’ordre élevé
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du schéma SG standard. Ensuite, dans la section 4.4, nous étudions certaines de leurs propriétés, à
savoir leur comportement dans les limites de dérive et de diffusion ainsi que leur consistence de flux.
Dans les sections 4.5 à 4.7, nous discutons de l’extension des nouveaux schémas sur des maillages
bidimensionnelles ainsi que des techniques de limitation pour s’assurer que les solutions numériques
sont exemptes d’oscillations parasites. Enfin, queslques cas de test simples sont proposés dans la
section 4.8 pour vérifier l’ordre de convergence numérique des schémas SGCC.

4.1 Overview
In this chapter, we introduce a high-order generalization of the Scharfetter-Gummel (SG) flux

scheme, proposed in [130], that is employed to solve the drift-diffusion equations that appear in the
discharge model (2.13). The Scharfetter-Gummel scheme has been widely used in computational gas
discharge physics. However, it is perhaps more well known in the semiconductor field, hence there
exists numerous studies as well as variations of the SG scheme in this domain, for example [101, 31,
30, 32, 52, 33, 13, 14, 122] . However, to our knowledge, none of the works has lead to the derivation
of a SG-like scheme that is more accurate than second-order.

Drift-diffusion equations are also widely present in many other science fields, such as fluid
mechanics. For the space discretization of these equations, there are a huge array of available studies
that fall into the category of finite volume methods. Without trying to be complete, we only mention a
few of them. The most standard method was proposed by Eymard et al. [53], who used the first-order
upwind scheme to discretize the drift flux and the central-difference scheme for the diffusion flux.
A more interesting technique that produces better-quality numerical solutions is the well known
MUSCL schemes that were put forth by B. van Leer in his pioneer series of papers [148, 149, 150, 151,
152], which relies on the reconstruction of the density gradient to gain more numerical precision.
These numerical schemes were mainly designed for hyperbolic problems (no diffusion) and dedicated
to shock capturing problems. There is actually a very large research on high-order methods to
approximate the drift flux. Sweby [137], Harten [70] and other authors later extended the work of
B. van Leer and systematically studied the class of total-variation diminishing (TVD) methods that
feature the use of flux limiters or slope limiters to suppress nonphysical oscillations in the numerical
solutions that could destabilize the simulation. Colella and Woodward [37] developed the so-called
PPM limiter for quadratic reconstruction. Later on, Harten et al. [71, 72] introduced a technique to
construct arbitrarily high-order schemes that are free of spurious oscillations. Their work paved
the way for the still on-going research on the ENO/WENO methods and other related schemes (see
[134, 143] and the references therein). Further developments on high-order density reconstruction
techniques can be found in, for example, [9] for least-squares reconstruction, or [69] for iterative
and MPI-friendly reconstruction. Such high-order schemes suffer spurious oscillations, especially
in the presence of discontinuities or large-gradient layers in the density. To our knowledge, there
is until now no unified framework of limiting technique for arbitrarily high-order schemes in the
same fashion as the MUSCL technique for second-order schemes. Some attempts have been made,
such as in [162] where the authors applied successively the TVD limiters on the approximants of
the density derivatives. The techniques that have been mentioned so far are generally dubbed as
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a priori limiting, since the limiters on the reconstructed density are applied before advancing in
time. Their counterparts are the a posteriori limiting techniques, which was popularized by the
MOOD method [36], that allows the advance in time with a high-order reconstruction of the density
and then recomputing the solution with lower-order reconstruction on cells that exhibit spurious
oscillations. On the other hand, the development of high-accuracy methods for the discretization
of the diffusion flux are less emphasized though, to our knowledge. We refer to [115, 153] for the
discussion on this subject.

A particular class of numerical methods specific to drift-diffusion equations are the exponentially
fitted schemes. Allen& Southwell [56] and A. M. Il’in [75] introduced a finite difference scheme that
solves exactly the stationary drift-diffusion equations with constant coefficients, meaning that the
numerical solution fits exactly the true solution of the differential equation on grid points. Scharfetter
& Gummel [130] introduced in the same year as A. M. Il’in a finite difference scheme which is based
on a local integration of the density flux between cell centers. Although these different approaches
ended up in obtaining the same scheme, the philosophies behind the derivation of this scheme are
different from each other. Since the latter approach somewhat facilitates the construction of a finite
volume scheme since it reasons on the particle flux, we prefer the name Scharfetter-Gummel (SG) to
refer to this numerical method. The SG scheme is uniformly first-order convergent for general steady
drift-diffusion-reaction equations, meaning that its error constant does not depend on the gradient of
the solution, a result that was proved in [75] by a two-grid method and in [127] with an asymptotic
study of the solution of the differential equation. E. C. Gartland [57] proposed in addition a family of
uniformly convergent schemes of arbitrary order - the HODIE schemes - but they require auxiliary
evaluation points within a compact stencil. For a good reading on the exponentially fitted schemes,
we refer to the book [127]. More recently, ten Thije Boonkkamp & Anthonissen [142] introduced
an improvement of the SG scheme that was derived by taking into account in addition the source
term of the stationary drift-diffusion equation, not just the flux equation as in the derivation of the
SG scheme. The resulting flux is a combination of two parts: a “homogeneous” component which is
similar to the SG flux and an “inhomogeneous” part which integrates the source term. Liu et al. [96]
later proved that this scheme is uniformly second-order convergent.

As observed in [19] and in our simulations later in chapter 5, the SG scheme usually provides
poor-quality simulation solutions on coarse grids since its accuracy degenerates to first order if
the drift regime is predominant. Therefore, high-order schemes such as the MUSCL methods are
frequently used instead in simulation of gas discharge, for example in [106, 46, 48, 140]. On the
contrary, an interest of SG is that it discretizes at the same time the drift and diffusion fluxes, so if a
high-order generalization of the SG scheme exists, it could be a simple way to solve drift-diffusion
equations.

The structure of this chapter is arranged as follows: section 4.2 briefly introduces the Scharfetter-
Gummel flux scheme (the “standard” SG scheme), section 4.3 describes the derivation, on one-
dimensional grids, of new high-order methods that are coined Scharfetter-Gummel schemes with
correction of current (SGCC), which are in fact a high-order generalization of the SG scheme. Then
in section 4.4, we study some of their properties, namely their behavior in the drift and diffusion limits
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xxcixci−1 xci+1

xi+ 1
2

xi− 1
2

Figure 4.1: A one-dimensional grid with cell centers illustrated by big dots and cell interfaces
illustrated by vertical strokes

as well as their flux consistency. In sections 4.5 to 4.7, we discuss the extension of the novel schemes
on two-dimensional grids as well as limiting techniques to ensure that the numerical solutions are
oscillation-free. Finally, some academic tests are proposed in section 4.8 to verify the numerical
convergence order of the SGCC schemes.

4.2 The Scharfetter-Gummel scheme
Let us first consider a one-dimensional domain Ω, T > 0 and a drift-diffusion equation defined on

Ω with, for simplicity, constant (both in space and time) drift velocity u and diffusion coefficient D,∂tn(t, x) + ∂xf(t, x) = 0, (t, x) ∈ (0, T )× Ω,

f(t, x) = un(t, x)−D∂xn(t, x).
(4.1)

The domain Ω is partitioned into N non-overlapping adjacent intervals, or cells, whose centers
are enumerated increasingly from left to right with integers, while the cell interfaces are enumerated
with half-integers (see fig. 4.1). The position of cell centers and interfaces are denoted as resp. xci
for i = 1, . . . ,N and xi+ 1

2
for i = 0, . . . ,N . In the finite volume framework, we search for an

approximation of the particle flux density f(t, x) at each interface xi+ 1
2
.

The idea of Scharfetter & Gummel [130] is to replace the flux f(tl, x), at each time tl and for
x ∈ (xci , x

c
i+1), with a constant f l|0

i+ 1
2

, i = 1, . . . ,N − 1, and then to solve the second equation of

eq. (4.1), called flux equation, with f l|0
i+ 1

2

on the left-hand side, while considering two constants nli
and nli+1 as boundary values for n at xci and xci+1. For numerical implementation, it is practical to
choose the cell-averaged values nli, nli+1 for nli, nli+1. We also drop the time dependence of n as well
as the upper index l without ambiguity since the problem invokes only x. In summary, we want to
solve the following ordinary differential problem for f |0

i+ 1
2

on each interval (xci , xci+1),un(x)−Dn′(x) = f
|0
i+ 1

2

, x ∈ (xci , x
c
i+1),

n(xci) = ni, n(xci+1) = ni+1.
(4.2)

The first equation of (4.2) is equivalent to f |0
i+ 1

2

= −D exp
( u
D
x
)(

n(x) exp
(
− u

D
x
))′

, so we
have

f
|0
i+ 1

2

u

(
exp

(
− u

D
xci

)
− exp

(
− u

D
xci+1

))
= n(xci) exp

(
− u

D
xci

)
− n(xci+1) exp

(
− u

D
xci+1

)
.
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Multiplying this equation with exp
( u
D
xi+ 1

2

)
and defining κi+ 1

2
≡
xci+1 − xi+ 1

2

∆xi+ 1
2

, χi+ 1
2
≡
xi+ 1

2
− xci

∆xi+ 1
2

with ∆xi+ 1
2
≡ xci+1 − xci yield

f
|0
i+ 1

2

u

(
exp

(
u∆xi+ 1

2

D
χi+ 1

2

)
− exp

(
−
u∆xi+ 1

2

D
κi+ 1

2

))

= ni exp

(
u∆xi+ 1

2

D
χi+ 1

2

)
− ni+1 exp

(
−
u∆xi+ 1

2

D
κi+ 1

2

)
.

Using κi+ 1
2
+ χi+ 1

2
= 1 and defining the numerical Péclet number as pi+ 1

2
≡ −

u∆xi+ 1
2

D
, we have

f
|0
i+ 1

2

= u

(
ni

1

1− e
p
i+1

2

− ni+1
1

e
−p

i+1
2 − 1

)
.

Definition 4.1 (SG scheme). We define the Bernoulli function as B(p) ≡ p

ep − 1
and so the

approximate flux reads as

f
|0
i+ 1

2

=
D

∆xi+ 1
2

(
B(pi+ 1

2
)ni − B(−pi+ 1

2
)ni+1

)
. (4.3)

The SG flux can also be recast into a different form. Firstly, we have

f
|0
i+ 1

2

=
D

∆xi+ 1
2

[(
B(pi+ 1

2
)− B(−pi+ 1

2
)
)
ni − B(−pi+ 1

2
)(ni+1 − ni)

]
=

D

∆xi+ 1
2

[
B(pi+ 1

2
)(ni − ni+1)−

(
B(−pi+ 1

2
)− B(pi+ 1

2
)
)
ni+1

]
.

As B(−p)− B(p) = p and B(−p) + B(p) = p coth
(p
2

)
, summing the two lines on the right-hand

side and dividing by 2 yield

f
|0
i+ 1

2

= u
ni + ni+1

2
−Dφ(pi+ 1

2
)
ni+1 − ni
∆xi+ 1

2

,

with φ(p) ≡ p

2
coth

(p
2

)
. Therefore, the SG flux can be interpreted as a central-difference flux with

a modified diffusion coefficient Dφ(pi+ 1
2
) that depends on the grid size. Moreover, since φ(p) → 1

as p → 0 and pi+ 1
2
→ 0 as ∆xi+ 1

2
→ 0, it is easy to see that the SG flux f |0

i+ 1
2

is a second-order
approximation of the real flux f(xi+ 1

2
) on uniform grids.

An interesting property of the Bernoulli function is that B(p) ∼ −p as p → −∞ and B(p) → 0

as p → +∞. Therefore, in the diffusion limit p → 0, the SG scheme behaves as the central-difference
scheme in a pure diffusion problem, which is second-order on uniform grids,

f
|0
i+ 1

2

→ −Dni+1 − ni
∆xi+ 1

2

.
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On the contrary, in the drift limit p → −∞ (assume that u > 0), the SG flux behaves as the first-order
upwind scheme in a pure drift problem,

f
|0
i+ 1

2

→ uni.

As a consequence, the numerical precision of the SG flux deteriorates quickly on uniform grids as
the Péclet number increases (in absolute value). This is an obstacle for simulation of drift-dominated
problems because in these cases, extremely refined grids are required to obtain high-accuracy
numerical results, which are costly in terms of CPU memory as well as CPU time.

Remark 4.1. A distinction should be made when we choose n(xci) and n(x
c
i+1), or ni and ni+1 for

the boundary values ni and ni+1. In the former case, the approximate flux, still denoted as f |0
i+ 1

2

, is a

function of point-wise values of the real density n; for this reason, we call it the point-wise flux. In

the latter case, we denote the approximate flux as f
|0
i+ 1

2
to emphasize its dependence on the numerical

cell-averaged density; it is alternatively known as the discrete flux.

When solving the first equation of (4.1) with the SG scheme and an explicit time integration
method, e.g. the forward Euler scheme, it is necessary to impose a CFL condition on the numerical
timestep ∆tl = tl+1 − tl in the same fashion as (3.10). The discrete equation reads as

nl+1
i − nli
∆tl

+
f
l|0
i+ 1

2
− f

l|0
i− 1

2

∆xi
= 0,

with ∆xi ≡ xi+ 1
2
− xi− 1

2
. In other words,

nl+1
i =

(
1− ∆tl

∆xi

Dφ(pi+ 1
2
)

∆xi+ 1
2

− ∆tl

∆xi

Dφ(pi− 1
2
)

∆xi− 1
2

)
nli

+
∆tl

∆xi

(
Dφ(pi+ 1

2
)

∆xi+ 1
2

− u

2

)
nli+1 +

∆tl

∆xi

(
Dφ(pi− 1

2
)

∆xi− 1
2

− u

2

)
nli−1.

Since
Dφ(pi+ 1

2
)

∆xi+ 1
2

− u

2
=

D

∆xi+ 1
2

(
φ(pi+ 1

2
) +

pi+ 1
2

2

)
and φ(p) + p

2
> 0 for any p, the condition for

which the scheme is positive is

∆tl ≤

(
Dφ(pi+ 1

2
)

∆xi+ 1
2

+
Dφ(pi− 1

2
)

∆xi− 1
2

)−1

∆xi, ∀i = 1, . . . ,N . (4.4)

Remark 4.2. In its simplest form with homogeneous grid size, i.e. ∆xi+ 1
2
= ∆x, (4.4) reads as

∆tl ≤ ∆x

u
tanh

(
u∆x

2D

)
. In the diffusion limit u∆x ≪ D, tanh

(
u∆x

2D

)
∼ u∆x

2D
so the CFL

condition ∆tl ≤ ∆x2

2D
reflects the domination of the diffusion term. On the contrary, in the drift limit

u∆x ≫ D, tanh
(
u∆x

2D

)
≈ 1 so the CFL condition ∆tl ≤ ∆x

u
reflects the domination of the drift

term.
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4.3 Construction of high-order Scharfetter-Gummel schemes

The idea is to replace the flux f(tl, x), at each time tl and for x ∈ (xci , x
c
i+1), with a polynomial

F
l|p
i+ 1

2

(x) of degree p, i = 1, . . . ,N − 1, and then to solve the flux equation in eq. (4.1) with F l|p
i+ 1

2

on

the left-hand side. F l|p
i+ 1

2

can be written in a general form as1

F
|p
i+ 1

2

(x) = f
[0|p]
i+ 1

2

+ f
[1|p]
i+ 1

2

(
x− xi+ 1

2

)
+

1

2
f
[2|p]
i+ 1

2

(
x− xi+ 1

2

)2
+ · · ·+ 1

p!
f
[p|p]
i+ 1

2

(
x− xi+ 1

2

)p
,

where f [q|p]
i+ 1

2

, for q = 0, . . . , p, are real numbers that we need to solve for. In the following, we omit

the upper index p in f [q|p]
i+ 1

2

without ambiguity.

Now if we make an assumption that n is a smooth function of x and derive the flux equation in
eq. (4.1) q times with respect to x, with F |p

i+ 1
2

on the left-hand side, then the result is2

un(q)(x)−Dn(q+1)(x) =
(
F

|p
i+ 1

2

(x)
)(q)

=

p∑
m=q

1

(m− q)!
f
[m]

i+ 1
2

(
x− xi+ 1

2

)m−q
,

for q = 0, . . . , p, where n(q) is the qth-derivative (with respect to x) of n. Following the derivation
of the SG scheme of section 4.2, we prescribe the boundary values n(q)

i and n(q)
i+1 for n(q)(x) at xci

and xci+1, for each q = 0, . . . , p. Therefore, we end up at solving in total p+ 1 ordinary differential
problems on each interval (xci , xci+1),

un(q)(x)−Dn(q+1)(x) =

p∑
m=q

1

(m− q)!
f
[m]

i+ 1
2

(
x− xi+ 1

2

)m−q
,

n(q)(xci) = n
(q)
i , n(q)(xci+1) = n

(q)
i+1.

(4.5)

Let us begin with q = p in eq. (4.5). This is the simplest problem since the right-hand side of the
first equation is a constant, i.e.un

(p)(x)−Dn(p+1)(x) = f
[p]

i+ 1
2

,

n(p)(xci) = n
(p)
i , n(p)(xci+1) = n

(p)
i+1.

This single case is very much similar to the SG problem (4.2), so the computation of f [p]

i+ 1
2

follows

strictly the same algebraic manipulations. Thus, the expression of f [p]

i+ 1
2

echoes eq. (4.3), which is

f
[p]

i+ 1
2

=
D

∆xi+ 1
2

(
B(pi+ 1

2
)n

(p)
i − B(−pi+ 1

2
)n

(p)
i+1

)
. (4.6)

Let us continue with q = p− 1. The flux equation of eq. (4.5) in this case reads as

−D exp
( u
D
x
)(

n(p−1)(x) exp
(
− u

D
x
))′

= f
[p−1]

i+ 1
2

+ f
[p]

i+ 1
2

(
x− xi+ 1

2

)
.

1omitting the upper index l without ambiguity
2dropping the time dependence of n for the sake of simplicity
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Multiplying this equation with 1

D
exp

(
− u

D

(
x− xi+ 1

2

))
and integrating on (xci , x

c
i+1) yield

n
(p−1)
i exp

(
−pi+ 1

2
χi+ 1

2

)
− n

(p−1)
i+1 exp

(
pi+ 1

2
κi+ 1

2

)
=
f
[p−1]

i+ 1
2

D

∫ xci+1
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exp
(
− u

D

(
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2

))
dx+

f
[p]

i+ 1
2

D

∫ xci+1
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exp
(
− u

D

(
x− xi+ 1

2

))(
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2

)
dx.

Using
∫ xci+1

xci

exp
(
− u

D

(
x− xi+ 1

2

))
dx =

D

u

(
exp

(
−pi+ 1

2
χi+ 1

2

)
− exp

(
pi+ 1

2
κi+ 1

2

))
and making

the variable change ξ =
x− xi+ 1

2

∆xi+ 1
2

, we have

f
[p−1]

i+ 1
2

=
D

∆xi+ 1
2

(
B(pi+ 1

2
)n

(p−1)
i − B(−pi+ 1

2
)n

(p−1)
i+1

)
− ψ

[1]

i+ 1
2

∆xi+ 1
2
f
[p]

i+ 1
2

, (4.7)

where ψ[1]

i+ 1
2

≡

∫ κ
i+1

2

−χ
i+1

2

exp
(
pi+ 1

2
ξ
)
dξ

−1 ∫ κ
i+1

2

−χ
i+1

2

exp
(
pi+ 1

2
ξ
)
ξdξ.

Repeating this process for q = p− 2, . . . , 0, we obtain a recurrence formula of f [q]

i+ 1
2

as follows,

f
[q]

i+ 1
2

=
D

∆xi+ 1
2

(
B(pi+ 1

2
)n

(q)
i − B(−pi+ 1

2
)n

(q)
i+1

)
−

p∑
m=q+1

ψ
[m−q]
i+ 1

2

(m− q)!

(
∆xi+ 1

2

)m−q
f
[m]

i+ 1
2

, (4.8)

for q = p − 1, . . . , 0, while the case q = p was treated in eq. (4.6). Here the “ψ-factors” ψ[q]

i+ 1
2

are
defined as

ψ
[q]

i+ 1
2

=

∫ κ
i+1

2

−χ
i+1

2

exp
(
pi+ 1

2
ξ
)
dξ

−1 ∫ κ
i+1

2

−χ
i+1

2

exp
(
pi+ 1

2
ξ
)
ξqdξ. (4.9)

By integration by parts, we can also derive a recurrence formula for them which reads as
ψ

[0]

i+ 1
2

= 1,

ψ
[q]

i+ 1
2

=
e
p
i+1

2 κq
i+ 1

2

−
(
−χi+ 1

2

)q
e
p
i+1

2 − 1
− q

pi+ 1
2

ψ
[q−1]

i+ 1
2

, q = 1, . . . , p.
(4.10)

Remark 4.3. In practical implementation, we need to take the Taylor development of ψ[q] (omitting the

subscript i+
1

2
here for simplicity) to avoid division by zero if p is close to zero, i.e. |p| < pmin where

pmin > 0 is a small parameter. For example, we have

ψ[1] =
1

ep − 1
− 1

p
+

1

2
+
κ− χ

2
,

ψ[1] ∼
0

κ− χ

2
+

p

12
− p3

720
+

p5

30240
+O(p7).

For the simulations in sections 4.8 and 6.6 and chapters 5 and 7, we set pmin = 0.1.
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Let us get back to eqs. (4.6) to (4.8). From the first two equations we have

f
[p−1]

i+ 1
2

=
D

∆xi+ 1
2

(
B(pi+ 1

2
)Q

[p−1]

i+ 1
2
,i
− B(−pi+ 1

2
)Q

[p−1]

i+ 1
2
,i+1

)
, (4.11)

withQ[p−1]

i+ 1
2
,r
≡ n(p−1)

r −ψ[1]

i+ 1
2

∆xi+ 1
2
n(p)
r , r = i, i+1. This example and the structure of the recurrence

formula (4.8) show that f [q]

i+ 1
2

can be written in a more compact expression as laid out in lemma 4.1.

Lemma 4.1. For q = p, . . . , 0,

f
[q]

i+ 1
2

=
D

∆xi+ 1
2

(
B(pi+ 1

2
)Q

[q]

i+ 1
2
,i
− B(−pi+ 1

2
)Q

[q]

i+ 1
2
,i+1

)
, (4.12)

where Q[q]

i+ 1
2
,r
≡

p∑
m=q

Θ
[m|q]
i+ 1

2

n(m)
r for r = i, i+ 1 and Θ[m|q]

i+ 1
2

satisfies the following relation3 for fixed q,


Θ

[q|q]
i+ 1

2

= 1,

Θ
[m|q]
i+ 1

2

= −
m∑

k=q+1

ψ
[k−q]
i+ 1

2

(k − q)!

(
∆xi+ 1

2

)k−q
Θ

[m|k]
i+ 1

2

, m > q.
(4.13)

Moreover, Θ[m|q]
i+ 1

2

= Θ
[m−q|0]
i+ 1

2

form > q.

Remark 4.4. Q[q]

i+ 1
2
,r
is a simplified notation; the full notations should be Q[q|p]

i+ 1
2
,r
. On the contrary, we

shall see in lemma 4.2 that Θ[m|q]
i+ 1

2

does not depend on p.

Proof. Equations (4.12) and (4.13) hold true for q = p, p− 1 as shown in eqs. (4.6) and (4.11). Assume
that they also hold true for a certain q + 1 with q < p, then from eq. (4.8) we have

f
[q]

i+ 1
2

=
D

∆xi+ 1
2

(
B(pi+ 1

2
)Q̃

[q]

i+ 1
2
,i
− B(−pi+ 1

2
)Q̃

[q]

i+ 1
2
,i+1

)
,

where we have defined Q̃[q]

i+ 1
2
,r
≡ n(q)

r −
p∑

k=q+1

ψ
[k−q]
i+ 1

2

(k − q)!

(
∆xi+ 1

2

)k−q
Q

[k]

i+ 1
2
,r
for r = i, i + 1. Using

Q
[k]

i+ 1
2
,r
=

p∑
m=k

Θ
[m|k]
i+ 1

2

n(m)
r , for k = q + 1, . . . , p, we can further write

Q̃
[q]

i+ 1
2
,r
= n(q)

r −
p∑

k=q+1

p∑
m=k

ψ
[k−q]
i+ 1

2

(k − q)!

(
∆xi+ 1

2

)k−q
Θ

[m|k]
i+ 1

2

n(m)
r

= n(q)
r −

p∑
m=q+1

 m∑
k=q+1

ψ
[k−q]
i+ 1

2

(k − q)!

(
∆xi+ 1

2

)k−q
Θ

[m|k]
i+ 1

2

n(m)
r .

3note thatm ≥ q here
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Since the right-hand side is a linear combination of n(m)
r , m = q, . . . , p, we can set Q̃[q]

i+ 1
2
,r
=

p∑
m=q

Θ
[m|q]
i+ 1

2

n(m)
r and a simple comparison with the above equation confirms the relation (4.13) as well

as the equivalence between Q̃[q]

i+ 1
2
,r
and Q[q]

i+ 1
2
,r
.

Finally, it is evident that Θ[q|q]
i+ 1

2

= Θ
[0|0]
i+ 1

2

(= 1) for all q ≥ 0. Assume that the equality Θ
[q+k|q]
i+ 1

2

=

Θ
[k|0]
i+ 1

2

holds for all q ≥ 0 and for all k strictly smaller than a certain natural numberm. Then from
the second equation of (4.13) we have

Θ
[q+m|q]
i+ 1

2

= −
q+m∑
k=q+1

ψ
[k−q]
i+ 1

2

(k − q)!

(
∆xi+ 1

2

)k−q
Θ

[q+m|k]
i+ 1

2

= −
q+m∑
k=q+1

ψ
[k−q]
i+ 1

2

(k − q)!

(
∆xi+ 1

2

)k−q
Θ

[m|k−q]
i+ 1

2

,

since q+m− k < m for k = q+1, . . . , q+m. Using the index change h = k− q and eq. (4.13) yield

Θ
[q+m|q]
i+ 1

2

= −
m∑
h=1

ψ
[h]

i+ 1
2

h!

(
∆xi+ 1

2

)h
Θ

[m|h]
i+ 1

2

= Θ
[m|0]
i+ 1

2

. ■

The final point of lemma 4.1 asserts that only Θ[q|0]
i+ 1

2

, for q ≥ 0, need to be computed. This point is
addressed in lemma 4.2.

Lemma 4.2. Let Im(q) denote the set of strictly positivem-tuples4 (xr)r=1,...,m whose sum of elements

equals q, i.e.

Im(q) =

{
X = (xr)r=1,...,m

∣∣∣xr ∈ N∗,
m∑
r=1

xr = q

}
.

Then 
Θ

[0|0]
i+ 1

2

= 1,

Θ
[q|0]
i+ 1

2

=
(
∆xi+ 1

2

)q q∑
m=1

(−1)m
∑

X∈Im(q)

∏
xr∈X

ψ
[xr]

i+ 1
2

xr!
, q > 0.

(4.14)

Proof. Let us first note that I1(1) = { (1) }, I1(2) = { (2) } and I2(2) = { (1, 1) }. Then eq. (4.14)
holds for q = 1, 2 since from eq. (4.13) we have

Θ
[1|0]
i+ 1

2

= ∆xi+ 1
2

(
−ψ[1]

i+ 1
2

)
,

Θ
[2|0]
i+ 1

2

= −ψ[1]

i+ 1
2

∆xi+ 1
2
Θ

[1|0]
i+ 1

2

−
ψ

[2]

i+ 1
2

2

(
∆xi+ 1

2

)2
=
(
∆xi+ 1

2

)2−
ψ

[2]

i+ 1
2

2
+
(
ψ

[1]

i+ 1
2

)2 .

4anm-tuple is a ordered list ofm integer numbers that may contain multiple instances of a number, for example
(1, 1, 2) is a 3-tuple; two m-tuples (xr,1)r=1,...,m and (xr,2)r=1,...,m are equivalent if and only if xr,1 = xr,2 for all
r = 1, . . . ,m
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Assume that eq. (4.14) also holds for all k = 0, . . . , q−1with a certain q ≥ 1. Then from eq. (4.13)
we have

Θ
[q|0]
i+ 1

2

= −
q∑

h=1

ψ
[h]

i+ 1
2

h!

(
∆xi+ 1

2

)h
Θ

[q|h]
i+ 1

2

= −
q−1∑
k=0

ψ
[q−k]
i+ 1

2

(q − k)!

(
∆xi+ 1

2

)q−k
Θ

[k|0]
i+ 1

2

, (4.15)

where we have made the index change k = q − h and used Θ
[q|q−k]
i+ 1

2

= Θ
[k|0]
i+ 1

2

. Using eq. (4.14) for
k = 0, . . . , q − 1, we have

Θ
[q|0]
i+ 1

2

= −
ψ

[q]

i+ 1
2

q!

(
∆xi+ 1

2

)q
−

q−1∑
k=1

ψ
[q−k]
i+ 1

2

(q − k)!

(
∆xi+ 1

2

)q k∑
m=1

(−1)m
∑

Y ∈Im(k)

∏
xr∈Y

ψ
[xr]

i+ 1
2

xr!

=
(
∆xi+ 1

2

)q−
ψ

[q]

i+ 1
2

q!
−

q−1∑
m=1

(−1)m
q−1∑
k=m

ψ
[q−k]
i+ 1

2

(q − k)!

∑
Y ∈Im(k)

∏
xr∈Y

ψ
[xr]

i+ 1
2

xr!


=
(
∆xi+ 1

2

)q−
ψ

[q]

i+ 1
2

q!
+

q∑
m=2

(−1)m
q−1∑

k=m−1

ψ
[q−k]
i+ 1

2

(q − k)!

∑
Y ∈Im−1(k)

∏
xr∈Y

ψ
[xr]

i+ 1
2

xr!


(4.16)

Now the question is how to list all them-tuplesX that belong to the set Im(q), form = 2, . . . , q.
There are at least two ways to do so. The first one is a no-thinker: we just do it directly! The
alternative way is more sophisticated and we need to do it step by step.

1. Firstly, we fix an integer k and list all the (m− 1)-tuples Y = (xr)r=1,...,m−1 that belong to the
set Im−1(k). Since all elements of Y are strictly positive integers, k must be greater or equal
tom− 1.

2. Then we set xm = q − k and add it to each (m − 1)-tuple Y of Im−1(k) to build a m-tuple
X = (xr)r=1,...,m. For suchX belongs to Im(k), xm must be greater or equal to 1, so k must
be lesser or equal to q.

3. We repeat the two previous steps for all k = m− 1, . . . , q − 1.

For two different integers k1 and k2, such tuple construction process never yields redundant m-
tuples X1 = (xr,1)r=1,...,m and X2 = (xr,2)r=1,...,m such that Y 1 = (xr,1)r=1,...,m−1 ∈ Im−1(k1) and
Y 2 = (xr,2)r=1,...,m−1 ∈ Im−1(k2), since xm,1 ̸= xm,2.

The equivalence of the two listing-methods allows us to deduce that

∑
X∈Im(q)

∏
xr∈X

ψ
[xr]

i+ 1
2

xr!
=

q−1∑
k=m−1

ψ
[q−k]
i+ 1

2

(q − k)!

∑
Y ∈Im−1(k)

∏
xr∈Y

ψ
[xr]

i+ 1
2

xr!
, (4.17)
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form = 2, . . . , q. The casem = 1 is trivial since I1(q) = { q }. Hence, inserting this equality to the
last line of eq. (4.16) would yield

Θ
[q|0]
i+ 1

2

=
(
∆xi+ 1

2

)q−
ψ

[q]

i+ 1
2

q!
+

q∑
m=2

(−1)m
∑

X∈Im(q)

∏
xr∈X

ψ
[xr]

i+ 1
2

xr!


=
(
∆xi+ 1

2

)q q∑
m=1

(−1)m
∑

X∈Im(q)

∏
xr∈X

ψ
[xr]

i+ 1
2

xr!
. ■

So nowwith eqs. (4.12) and (4.14) we have a complete description of the approximation polynomial
F

|p
i+ 1

2

(x). However, we actually only need the value of the flux at the interface xi+ 1
2
, i.e. F |p

i+ 1
2

(xi+ 1
2
).

This is called the p-degree5 Scharfetter-Gummel flux with current correction (SGCC-p) and is
denoted as f |p

i+ 1
2

.

Definition 4.2 (SGCC-p scheme). To sum up the principal result of this section,

f
|p
i+ 1

2

= f
[0|p]
i+ 1

2

=
D

∆xi+ 1
2

(
B(pi+ 1

2
)Q

|p
i+ 1

2
,i
− B(−pi+ 1

2
)Q

|p
i+ 1

2
,i+1

)
(4.18)

where Q|p
i+ 1

2
,r
=

p∑
m=0

(
∆xi+ 1

2

)m
W

[m]

i+ 1
2

n(m)
r for r = i, i + 1, the “W-functions” W [m]

i+ 1
2

≡
Θ

[m|0]
i+ 1

2(
∆xi+ 1

2

)m
are defined in the following way,

W
[0]

i+ 1
2

= 1,

W
[m]

i+ 1
2

=
m∑
k=1

(−1)k
∑

X∈Ik(m)

∏
xr∈X

ψ
[xr]

i+ 1
2

xr!
, m = 1, . . . , p,

(4.19)

and the ψ-functions ψ[xr]

i+ 1
2

are defined in eq. (4.10).

Remark 4.5. From definitions 4.1 and 4.2, it is straightforward to see that the standard SG scheme is in

fact the SGCC-0 scheme. Therefore, the SGCC-p scheme is indeed a high-order generalization of the SG

scheme.

Remark 4.6. In the case that u and/or D are smooth functions of x, we might replace u and D in

eq. (4.18) with resp. the approximants ui+ 1
2
andDi+ 1

2
of u(xi+ 1

2
) andD(xi+ 1

2
). The numerical flux then

features ui+ 1
2
and Di+ 1

2
instead of u and D.

It is noticeable that the SGCC-p scheme (4.18) has the very same structure as the SG scheme (4.3).
Therefore, it can be interpreted as the sum of a drift flux and a diffusion flux, i.e.

f
|p
i+ 1

2

= u
Q

|p
i+ 1

2
,i
+Q

|p
i+ 1

2
,i+1

2
−Dφ(pi+ 1

2
)
Q

|p
i+ 1

2
,i+1

−Q
|p
i+ 1

2
,i

∆xi+ 1
2

.

5not to be confused with the precision order
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Moreover, the SGCC-p flux can also be interpreted as a sum of the SG flux f |0
i+ 1

2

and a residual flux,
i.e.

f
|p
i+ 1

2

= f
|0
i+ 1

2

+
D

∆xi+ 1
2

(
B(pi+ 1

2
)
(
Q

|p
i+ 1

2
,i
− ni

)
− B(−pi+ 1

2
)
(
Q

|p
i+ 1

2
,i+1

− ni+1

))
.

We shall see in the next section that f |p
i+ 1

2

is a (p+ 1)th-order approximation of the real flux f(xi+ 1
2
),

so the residual flux plays a role of a high-order correction added to the SG flux (or current, if we deal
with motion of charges instead of particles); hence the name of the scheme.

Remark 4.7. Finally, a distinction should be made when we choose n(q)(xci) and n
(q)(xci+1), or n

(q)
i

and n(q)
i+1 in the place of n(q)

i and n(q)
i+1, where n

(q)
i is a numerical approximation of n(q)(xci) that can be

computed via a density reconstruction technique. In the former case, the approximate flux, still denoted

as f |p
i+ 1

2

, is a function of point-wise values of the real density derivatives n(q); we call it the point-wise

flux. In the latter case, we denote the approximate flux as f
|p
i+ 1

2
, alternatively known as the discrete

flux.

4.4 Properties of the point-wise SGCC-p flux
In this section, the velocity u and the diffusion coefficient D are always assumed to be constant.

In the case u and D are functions of x (see remark 4.6), the approximation error of u and D at the
interfaces need to be accounted as it might alter the consistency order of the flux.

4.4.1 Drift and diffusion limits

It is instructive to inquire the behavior of the SGCC-p flux f |p
i+ 1

2

in the diffusion limit pi+ 1
2
→ 0,

as well as in the drift limit pi+ 1
2
→ ±∞, as we did for the SG flux in section 4.2. Let us at first cite in

lemma 4.3 some useful properties of the ψ-functions (4.10) as well as theW -functions (4.19).

Lemma 4.3. For q ≥ 0,

ψ
[q]

i+ 1
2

→ (−χi+ 1
2
)q, W

[q]

i+ 1
2

→
χq
i+ 1

2

q!
as pi+ 1

2
→ −∞, (4.20)

ψ
[q]

i+ 1
2

→ κq
i+ 1

2

, W
[q]

i+ 1
2

→
(−κi+ 1

2
)q

q!
as pi+ 1

2
→ +∞, (4.21)

ψ
[q]

i+ 1
2

→
κq+1

i+ 1
2

− (−χi+ 1
2
)q+1

q + 1
, W

[q]

i+ 1
2

→ W
[q]

i+ 1
2

as pi+ 1
2
→ 0, (4.22)

where W
[k]

i+ 1
2

satisfy
q∑

k=0

κq−k+1

i+ 1
2

− (−χi+ 1
2
)q−k+1

(q − k + 1)!
W

[k]

i+ 1
2

= 0 for q ≥ 1.

Proof. For the ψ-functions ψ[q]

i+ 1
2

, the case q = 0 is trivial. Assume that eqs. (4.20) and (4.21) hold for
ψ

[q]

i+ 1
2

for a certain q ≥ 0, then the limits of ψ[q]

i+ 1
2

as pi+ 1
2
→ ±∞ are finite. Then from eq. (4.10) it is
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straightforward that eqs. (4.20) and (4.21) also hold for ψ[q+1]

i+ 1
2

. On the other hand, using eq. (4.9) we
have6

ψ
[q]

i+ 1
2

→

∫ κi+1
2

−χ
i+1

2

ξqdξ∫ κi+1
2

−χ
i+1

2

dξ
=
κq+1

i+ 1
2

− (−χi+ 1
2
)q+1

q + 1
, as pi+ 1

2
→ 0.

For theW -functionsW [q]

i+ 1
2

, the case q = 0 is trivial for eqs. (4.20) and (4.21). Let us remark that

W
[q]

i+ 1
2

=
Θ

[p|p−q]
i+ 1

2(
∆xi+ 1

2

)q for 0, . . . , p. Therefore from eq. (4.15) we have, for q = 1, . . . , p,

W
[q]

i+ 1
2

= −
q−1∑
k=0

ψ
[q−k]
i+ 1

2

(q − k)!
W

[k]

i+ 1
2

. (4.23)

Assume that eqs. (4.20) and (4.21) hold forW [k]

i+ 1
2

for all k smaller than a certain q > 0. So now we
have

W
[q]

i+ 1
2

→ −
q−1∑
k=0

(−χi+ 1
2
)q−k

(q − k)!

χk
i+ 1

2

k!
= −

χq
i+ 1

2

q!

q∑
k=0

q!

(q − k)!k!
1k(−1)q−k +

χq
i+ 1

2

q!
=
χq
i+ 1

2

q!
,

as pi+ 1
2
→ −∞. Similarly, we have

W
[q]

i+ 1
2

→ −
q−1∑
k=0

κq−k
i+ 1

2

(q − k)!

(−κi+ 1
2
)k

k!

= −
κq
i+ 1

2

q!

q∑
k=0

q!

(q − k)!k!
1q−k(−1)k +

κq
i+ 1

2

q!
(−1)q =

(−κi+ 1
2
)q

q!
,

as pi+ 1
2
→ +∞. Finally, the case pi+ 1

2
→ 0 is straightforward by substitution of eq. (4.22) in

eq. (4.23). ■

Now we can derive the diffusion and drift limits of the SGCC-p flux f |p
i+ 1

2

, with the assumption
that n is a smooth function of x.

Proposition 4.1. In drift limits, the SGCC-p flux f |p
i+ 1

2

behaves as a (p+ 1)th-order upwind scheme in

a pure drift problem. More precisely,

f
|p
i+ 1

2

→ u

p∑
q=0

(
xi+ 1

2
− xci

)q
q!

n(q)(xci), as pi+ 1
2
→ −∞,

f
|p
i+ 1

2

→ u

p∑
q=0

(
xi+ 1

2
− xci+1

)q
q!

n(q)(xci+1), as pi+ 1
2
→ +∞.

6recall that κi+ 1
2
≡
xci+1 − xi+ 1

2

∆xi+ 1
2

, χi+ 1
2
≡
xi+ 1

2
− xci

∆xi+ 1
2

and κi+ 1
2
+ χi+ 1

2
= 1
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In the diffusion limit pi+ 1
2
→ 0, f |p

i+ 1
2

behaves as a (p+ 1)th-order central scheme in a pure diffusion

problem. More precisely,

f
|p
i+ 1

2

∼ Dn′(xi+ 1
2
) +O

((
∆xi+ 1

2

)p+1
)
.

Proof. Using B(pi+ 1
2
) ∼ −pi+ 1

2
as pi+ 1

2
→ −∞, B(pi+ 1

2
) → 0 as pi+ 1

2
→ +∞ and eqs. (4.12), (4.20)

and (4.21) yields

f
|p
i+ 1

2

→ u

p∑
q=0

(
∆xi+ 1

2

)q χqi+ 1
2

q!
n(q)(xci) = u

p∑
q=0

(
xi+ 1

2
− xci

)q
q!

n(q)(xci), as pi+ 1
2
→ −∞,

f
|p
i+ 1

2

→ u

p∑
q=0

(
∆xi+ 1

2

)q (−κi+ 1
2
)q

q!
n(q)(xci+1)

= u

p∑
q=0

(
xi+ 1

2
− xci+1

)q
q!

n(q)(xci+1), as pi+ 1
2
→ +∞.

It is straightforward that the right-hand side of each equation is the (p+1)th-order Taylor expansion
of un(x) at xci and xci+1 respectively, evaluated at xi+ 1

2
.

For the case pi+ 1
2
→ 0, using B(pi+ 1

2
) → 1 as pi+ 1

2
→ 0 and eqs. (4.12) and (4.22) we have

f
|p
i+ 1

2

→ − D

∆xi+ 1
2

p∑
q=0

(
∆xi+ 1

2

)q
W

[q]

i+ 1
2

(
n(q)(xci+1)− n(q)(xi)

)
.

Substituting the following Taylor developments,

n(q)(xci+1) = n(q)(xi+ 1
2
) +

p−q+1∑
m=1

(
∆xi+ 1

2

)m κm
i+ 1

2

m!
n(q+m)(xi+ 1

2
) +O

((
∆xi+ 1

2

)p−q+2
)
,

n(q)(xi) = n(q)(xi+ 1
2
) +

p−q+1∑
m=1

(
∆xi+ 1

2

)m (−χi+ 1
2
)m

m!
n(q+m)(xi+ 1

2
) +O

((
∆xi+ 1

2

)p−q+2
)
,

(4.24)

to the above equation, we have

f
|p
i+ 1

2

∼ − D

∆xi+ 1
2

p∑
q=0

(
∆xi+ 1

2

)q
W

[q]

i+ 1
2

p−q+1∑
m=1

(
∆xi+ 1

2

)m κm
i+ 1

2

− (−χi+ 1
2
)m

m!
n(q+m)(xi+ 1

2
)

+O
((

∆xi+ 1
2

)p+1
)
.

Making the index change k = m+ q − 1 and switching the two summations yield

f
|p
i+ 1

2

∼ − D

∆xi+ 1
2

p∑
k=0

(
∆xi+ 1

2

)k+1

n(k+1)(xi+ 1
2
)

k∑
q=0

W
[q]

i+ 1
2

κk−q+1

i+ 1
2

− (−χi+ 1
2
)k−q+1

(k − q + 1)!

+O
((

∆xi+ 1
2

)p+1
)
.
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Finally, using the last point of lemma 4.3 for k > 0, we have

f
|p
i+ 1

2

∼ −Dn′(xi+ 1
2
) +O

((
∆xi+ 1

2

)p+1
)
, as pi+ 1

2
→ 0. ■

Corollary 4.1. In particular, if χi+ 1
2
= κi+ 1

2
and p is even, then we have a super-convergence in the

case pi+ 1
2
→ 0, since

f
|p
i+ 1

2

∼ Dn′(xi+ 1
2
) +O

((
∆xi+ 1

2

)p+2
)
.

Proof. The first observation is that W[2l−1]

i+ 1
2

= 0 for l ≥ 1. Indeed, from the last equality in lemma 4.3
with q = 2l − 1, l ≥ 1, and the fact that χi+ 1

2
= κi+ 1

2
, we have

l∑
r=1

W
[2r−1]

i+ 1
2

2κ2l−2r+1
i+ 1

2

(2l − 2r + 1)!
= 0.

Therefore, by substituting successively l = 1, 2, . . . , it is straightforward thatW[2l−1]

i+ 1
2

= 0.

Now let us proceed as in the proof of proposition 4.1, except that we take the Taylor expansion
up to the p− q + 2 degree in eq. (4.24). As a result, we have

f
|p
i+ 1

2

∼ −Dn′(xi+ 1
2
) +

(
∆xi+ 1

2

)p+2

n(p+2)(xi+ 1
2
)

p∑
q=0

W
[q]

i+ 1
2

κp+2−q
i+ 1

2

− (−χi+ 1
2
)p+2−q

(p+ 2− q)!

+O
((

∆xi+ 1
2

)p+2
)
,

but
p∑
q=0

W
[q]

i+ 1
2

κp+2−q
i+ 1

2

− (−χi+ 1
2
)p+2−q

(p+ 2− q)!
= −W

[p+1]

i+ 1
2

= 0 since p is even. ■

4.4.2 Flux consistency

In this section, we investigate the consistency of the SGCC-p flux. More specifically, we want to
see if the difference

∣∣∣f |p
i+ 1

2

− f(xi+ 1
2
)
∣∣∣ decreases with the grid size and how fast if it does.

Let us at first remark an interesting relation between the approximation polynomial F |p
i+ 1

2

(x) and
the real flux f(x) that emerges directly from eqs. (4.1) and (4.5),∫ xci+1

xci

exp
(
− u

D
x
)(

F
|p
i+ 1

2

)(q)
(x)dx =

∫ xci+1

xci

exp
(
− u

D
x
)
f (q)(x)dx, q = 0, . . . , p.

This property of F |p
i+ 1

2

(x) allows us to derive the flux consistency of the SGCC-p scheme in the
following proposition.

Proposition 4.2. Assume that n is a smooth function of x. Then the SGCC-p scheme is consistent in

the sense that ∣∣∣f |p
i+ 1

2

− f(xi+ 1
2
)
∣∣∣ < Mi+ 1

2
(e− 1)pςp+1

i+ 1
2

(
∆xi+ 1

2

)p+1

,

88



SGCC schemes: derivation, properties and extension in 2D

whereMi+ 1
2
= sup

x∈(xci ,xci+1)

∣∣un(p+1)(x)−Dn(p+2)(x)
∣∣ and ςi+ 1

2
= max

(
κi+ 1

2
, χi+ 1

2

)
.

Proof. Let g(x) = F
|p
i+ 1

2

(x)−f(x) for x ∈ (xci , x
c
i+1)which satisfies

∫ xci+1

xci

exp
(
− u

D
x
)
g(q)(x)dx = 0

for q = 0, . . . , p. For each q, the Taylor expansion of g(q)(x) at xi+ 1
2
which stops at the term g(p)(xi+ 1

2
)

reads as,

g(q)(x) =

p∑
m=q

g(m)(xi+ 1
2
)

(m− q)!

(
x− xi+ 1

2

)m−q
+R[q|p](x), (4.25)

where the remainder R[q|p](x) in the Lagrange form is defined as

R[q|p](x) =
g(p+1)(x[q])

(p− q + 1)!

(
x− xi+ 1

2

)p−q+1

, (4.26)

for some real number x[q] between x and xi+ 1
2
. From the fact that

∫ xci+1

xci

exp
(
− u

D
x
)
g(q)(x)dx = 0

and eq. (4.25), we have

G
∣∣∣g(q)(xi+ 1

2
)
∣∣∣ ≤ p∑

m=q+1

∣∣∣g(m)(xi+ 1
2
)
∣∣∣

(m− q)!

(
∆xi+ 1

2

)m−q
∫ xci+1

xci

exp
(
− u

D
x
) ∣∣∣∣∣x− xi+ 1

2

∆xi+ 1
2

∣∣∣∣∣
m−q

dx

+

∫ xci+1

xci

exp
(
− u

D
x
) ∣∣R[q|p](x)

∣∣ dx
≤

p∑
m=q+1

∣∣∣g(m)(xi+ 1
2
)
∣∣∣

(m− q)!
Gςm−q

i+ 1
2

(
∆xi+ 1

2

)m−q
+

∫ xci+1

xci

exp
(
− u

D
x
) ∣∣R[q|p](x)

∣∣ dx, (4.27)

where G =

∫ xci+1

xci

exp
(
− u

D
x
)
dx > 0 and ςi+ 1

2
= max

(
κi+ 1

2
, χi+ 1

2

)
. From eq. (4.26), an estimate

on
∣∣R[q|p](x)

∣∣ reads as
∣∣R[q|p](x)

∣∣ ≤ Mi+ 1
2

(p− q + 1)!

(
∆xi+ 1

2

)p−q+1

∣∣∣∣∣x− xi+ 1
2

∆xi+ 1
2

∣∣∣∣∣
p−q+1

≤
Mi+ 1

2
ςp−q+1

i+ 1
2

(p− q + 1)!

(
∆xi+ 1

2

)p−q+1

, (4.28)

whereMi+ 1
2
= sup

x∈(xci ,xci+1)

∣∣g(p+1)(x)
∣∣ = sup

x∈(xci ,xci+1)

∣∣f (p+1)(x)
∣∣ since (F |p

i+ 1
2

)(p+1)

(x) = 0.

Now in the case q = p, it is straightforward from eqs. (4.27) and (4.28) that
∣∣∣g(p)(xi+ 1

2
)
∣∣∣ ≤

Mi+ 1
2
ςi+ 1

2
∆xi+ 1

2
. Assume the ansatz that

∣∣∣g(m)(xi+ 1
2
)
∣∣∣ < Mi+ 1

2
(e − 1)p−mςp−m+1

i+ 1
2

(
∆xi+ 1

2

)p−m+1

form = p, . . . , q + 1 with a certain q < p, then combining with eqs. (4.27) and (4.28) we deduce that∣∣∣g(q)(xi+ 1
2
)
∣∣∣ < p∑

m=q+1

Mi+ 1
2
(e− 1)p−mςp−q+1

i+ 1
2

(m− q)!

(
∆xi+ 1

2

)p−q+1

+
Mi+ 1

2
ςp−q+1

i+ 1
2

(p− q + 1)!

(
∆xi+ 1

2

)p−q+1

< Mi+ 1
2
(e− 1)p−q−1ςp−q+1

i+ 1
2

(
∆xi+ 1

2

)p−q+1
p−q+1∑
m=1

1

m!
< Mi+ 1

2
(e− 1)p−qςp−q+1

i+ 1
2

(
∆xi+ 1

2

)p−q+1

.

Therefore, the ansatz holds for every q = p, . . . , 0, and in particular for q = 0. ■

89



Chapter 4

4.5 Extension of the SGCC-p flux scheme on two-dimensional
grids

We have discussed the construction of the SG and SGCC-p schemes on one-dimensional grids in
sections 4.2 and 4.3. Let us consider now a two-dimensional polygonal domain Ω as well as a grid T
defined on Ω, with the notations introduced in section 3.1.

The extension of the SGCC schemes on two-dimensional grids is not straightforward since the
segment (xcKxcL) between the centers of gravity of two neighbor cells ΩK and ΩL is not always
parallel to the normal νKL, so there is a lack of consistency if we evaluate the edge-normal flux
f · νKL on this segment [53, Chapter 3]. In this section, we present a technique of evaluating the
normal flux-integral

∫
λKL

f ·νKLdl in a general setting (structured and unstructured grids). We note

that this technique will be tested on cartesian grids in sections 4.8 and 5.3 and partly tested (only
for the first-order SG scheme) on triangular grids with ONERA’s own plasma solver COPAIER in
chapter 7.

4.5.1 Flux integration on cell edges

We use the Gauss-Legendre quadrature [1] to evaluate the flux-integral
∫
λKL

f(x) · νKLdl. For

the integration of a smooth function g(x) over the interval [−1, 1], the quadrature rule takes the form∫ 1

−1

g(x)dx ≈
Q∑
q=1

wqg (xq) where Q is the number of sample points, wq are the quadrature weights

and xq are the roots of the Q-degree Legendre polynomial. The set of wq and xq is the unique that
allows to exactly integrate (2Q− 1)-degree polynomials. The Gauss-Legendre quadrature rules for
Q = 1 to 4 are listed in table 4.1.

Let xλKL,l and xλKL,r be the coordinates of the two end-points of the edge λKL. Then the coordi-
nates of the qth quadrature point on λKL is

xλKL,q ≡
xλKL,r − xλKL,l

2
xq +

xλKL,l + xλKL,r
2

,

and the quadrature rule reads as∫
λKL

f(x) · νKLdl ≈
|λKL|
2

Q∑
q=1

wqf
(
xλKL,q

)
· νKL.

For the following sections, let xΩ
KL,q (resp. xΩ

LK,q) be the coordinates of the intersection between
an edge of ΩK (resp. ΩL) other than λKL and the line orthogonal to λKL passing through xλKL,q such
that the segment (xλKL,q,xΩ

KL,q) (resp. (xλLK,q,xΩ
LK,q)) lies entirely within ΩK (resp. ΩL) (see fig. 4.2).

The evaluation points of the flux f
(
xλKL,q

)
· νKL (analogous to the points xi and xi+1 in section 4.3

for one-dimensional grids7) are defined in the following way,

xKL,q ≡
xΩ
KL,q + xλKL,q

2
, xLK,q ≡

xΩ
LK,q + xλKL,q

2
.

7by this logic, xλ
KL,q is analogous to xi+ 1

2
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Q xq wq

1 0 2

2 ± 1√
3

1

3
0

8

9

±
√

3

5

5

9

4
±

√
3

7
− 2

7

√
6

5

18 +
√
30

36

±

√
3

7
+

2

7

√
6

5

18−
√
30

36

Table 4.1: Gauss-Legendre quadrature rules for Q = 1 to 4.

4.5.2 Edge-normal SGCC-p flux

We now evaluate f
(
xλKL,q

)
· νKL for q = 1, . . . , Q by following the flux evaluation technique in

section 4.3 on the one-dimensional coordinates system defined by the line (xKL,qxLK,q), the vector
νKL and the origin xλKL,q.

Let ℵ(y) ≡ n
(
xλKL,q + yνKL

)
be the restriction of n(x) on this coordinates system with y ∈ R.

Let Dmn(x) ∈ Sm
(
R2
)8 be the mth-derivative tensor of n, i.e. (Dmn(x))k1...km =

∂mn(x)

∂xk1 . . . ∂xkm
with kr ∈ { 1, 2 }. Then themth-derivative of ℵ reads as

ℵ(m)
KL,q(y) = Dmn

(
xλKL,q + yνKL

)
• ν⊗m

KL . (4.29)

Let uKL = u · νKL, ∆xKL,q = |xKL,q − xLK,q| and

χKL,q =

∣∣xKL,q − xλKL,q
∣∣

∆xKL,q
, κKL,q =

∣∣xLK,q − xλKL,q
∣∣

∆xKL,q
, pKL,q = −uKL∆xKL,q

D
. (4.30)

The normal component to λKL of the point-wise SGCC-p flux reads as follows,

f
|p
KL,q =

DKL,q

∆xKL,q

(
B(pKL,q)Q|p

KL,q − B(−pKL,q)Q
|p
LK,q

)
, (4.31)

where, remarking that

ℵ(m)
KL,q (−∆xKL,qχKL,q) = Dmn (xKL,q) • ν⊗m

KL , ℵ(m)
KL,q (∆xKL,qκKL,q) = Dmn (xLK,q) • ν⊗m

KL ,

8Sm
(
R2
)
is the space of symmetricm-dimensional arrays, or symmetric tensors of rankm, with 2 elements in each

dimension (see appendix A)
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ΩK

ΩLxλKL,q

xKL,q

xLK,q

xΩ
KL,q

xΩ
LK,q

λKL

(a) A rectangular (structured) grid

ΩL

ΩK

xΩ
KL,q

xKL,q

xLK,q
xλKL,q

xΩ
LK,q

λKL

(b) A triangular (unstructured) grid

Figure 4.2: Geometric notations

we have

Q
|p
KL,q =

p∑
m=0

(∆xKL,q)
mW

[m]
KL,qℵ

(m)
KL,q (−∆xKL,qχKL,q) ,

Q
|p
LK,q =

p∑
m=0

(∆xKL,q)
mW

[m]
KL,qℵ

(m)
KL,q (∆xKL,qκKL,q)

In the above expressions, the ψ-functions ψ[m]
KL,q , hidden inW [m]

KL,q , are computed by replacing χKL,q ,
κKL,q and pKL,q for resp. χi+ 1

2
, κi+ 1

2
and pi+ 1

2
in eq. (4.9). The W -functions W [m]

KL,q are computed
from eq. (4.19) with ψ[m]

KL,q in place of ψ[m]

i+ 1
2

.

Remark 4.8. In the case u and/or D are smooth functions of x, we might replace uKL and D in the

Péclet number pKL,q in eq. (4.30) with resp. certain approximants uKL,q and DKL,q of u(xλKL,q) · νKL
and D(xλKL,q).

In the next step, the point-wise values of the real derivatives ℵ(m) have to be replaced with their
numerical approximations for practical implementation of the flux schemes. More precisely, we need
to compute the approximants of Dmn, since in the finite volume method, the discrete derivatives
of n are not stored, but only the cell-averaged values of density are. A derivative reconstruction
technique will be the subject of the next section.

4.6 High-order reconstruction of particle density
Parts of this section is an adaptation from the paper [69]. It is edited for the sake of continuity of

the workflow of this chapter. We emphasize that the reconstruction technique will be only tested on
cartesian grids in sections 4.8 and 5.3, but in general it can be imagined on any conforming grids.
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ΩK ΩL

Figure 4.3: ΩK and its neighbors

4.6.1 Cell neighborhoods

Let ΩK ∈ T 9. We define the first-level neighborhood of ΩK , denoted as V1
K , as the set of

elements of T that share an edge with ΩK . Subsequently, we define the second-level neighbor-
hood10 of ΩK , denoted as V2

K , as the set of all elements of V1
K as well as those belonging to the

first-level neighborhood of any element of V1
K , excluding ΩK . In fig. 4.3, the elements of V1

K are
colored in yellow, while the elements of V2

K are colored in yellow and blue. More generally, the
kth-level neighborhood of ΩK is defined in the following way,

V1
K =

{
ΩL ∈ T | ∃λ ∈ EK ,ΩL ∩ ΩK = λ

}
,

VkK =
⋃

ΩL∈Vk−1
K

V1
L \ ΩK , k > 1.

We also employ the notations V k ≡ Card
(
VkK
)11 and VkK ≡ VkK ∪ { ΩK }.

4.6.2 Ghost cells and boundary conditions

The definition of the neighborhood of a border cell12 or a cell near the boundaries becomes
problematic since the area of the neighborhood could extend beyond the computation domain. One
simple approach to overcome this problem is to extend the computation domain to include a few
additional cells beyond the boundaries, called ghost cells. For cartesian grids, we can construct
a ghost cell by taking the symmetric image of a cell near a boundary Γk with respect to Γk. For
example, in fig. 4.4, the ghost cells Ωg

K , Ω
g
L, Ω

g
M and Ωg

N are resp. the symmetry images of ΩK , ΩL,
ΩM and ΩN . The ghost cells are imagined in this way until the neighborhood of each cell of T is
well defined.

The values on the ghost cells are set at the beginning of each time level and depend on the type
9we refer again to section 3.1 for grid notations
10by convention, the second-level neighborhood is the same as the first-level neighborhood on one-dimensional

grids
11assuming of course that every cell has the same number of edges, i.e. no mixing triangles/quadrilaterals
12a cell ΩK is a border cell if there exists λ ∈ EK such that λ ⊆ Γ = Ω \ Ω
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ΓkΩK ΩL

ΩN ΩM

Ωg
K Ωg

L

Ωg
N Ωg

M

Figure 4.4: Border cells (maroon) and ghost cells (blue)

of boundary condition (BC) on Γk. If it is the homogeneous Dirichlet BC (for example if Γk is the
wall boundary13, i.e. Γk = Γw (see section 2.2), the charge density inside the wall is assumed to be
zero), then the density values on the ghost cells are zero. If it is the homogeneous Neumann BC
(for example if Γk = Γf ), then we set nKg = nNg = nK and nLg = nMg = nL, where nKg is the
density value on Ωg

K . Finally, if Γk is the symmetry axis, then nKg = nK , nLg = nL, nMg = nM and
nNg = nN .

We note that this approach introduces first-order errors into the values on border cells that could
potentially propagate into the interior cells [91, Chapter 7]. High-order extrapolations for density
values on ghost cells were not addressed in this thesis and could be one of future works.

4.6.3 A reconstruction technique

Let n(x) be a locally integrable function defined on Ω, i.e. n ∈ L1
loc(Ω). Let N = Card(T ) and

p > 0 be a positive integer. LetRN
|K be the set of allN -component arrays nwith nL = 0 for ΩL /∈ VpK .

Definition 4.3. For each ΩK an element of T , the associated local average operator Pp
K is defined as

Pp
K : L1

loc(Ω) → RN
|K

n(x) 7→ n with

nL = nL, if ΩL ∈ VpK ,

nL = 0, otherwise.

As stated before, the writing of the discrete SGCC-p flux requires approximants of the derivatives
of n(x), but the information of n(x) is only stored in its cell averages nK . In this section, on each
neighborhood VpK , also called reconstruction stencil, we search for a polynomial approximation
of n(x) using the cell values nK which possesses the properties of p-exactness and local mass
conservation that are introduced in the following definitions.

Definition 4.4. For each ΩK , the associated local reconstruction operatorRp
K is defined as

Rp
K : RN

|K → Pp
(
VpK
)

(4.32)

n 7→ N (x) =

p∑
m=0

1

m!
D[m|p]nK • (x− xcK)

⊗m (4.33)

13but note that in section 5.3, though, the BC on the wall is homogeneous Neumann
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where • is the contraction operator between two same-rank tensors (see appendix A) andD[m|p]nK ∈
Sm
(
R2
)
which depends linearly on n, i.e.

D[m|p]nK =
∑

ΩL∈V
p
K

d
[m|p]
KL nL, (4.34)

with d
[m|p]
KL ∈ Sm

(
R2
)
, independent of n.

Definition 4.5 (p-exactness [69]). A reconstruction operatorRp
K : RN

|K → Pp
(
VpK
)
is called p-exact

on the neighborhood VpK if Rp
K is the left inverse of the restriction of Pp

K on Pp
(
VpK
)
, i.e.

Rp
K ◦ Pp

K|Pp(VpK)
= IdPp(VpK).

The existence of such Rp
K exceeds the scope of this thesis and we refer to [69] for the discussion

on this subject. But a necessary condition for the existence of the left inverse of Pp
K on Pp

(
VpK
)
is

that Card
(
VpK
)
≥ Card (Pp

K). This explains why the reconstruction stencil needs to be enlarged as
the polynomial degree increases.

In the following, we assume that the p-exact reconstructionRp
K exists and focus on the technique

of computing this operator. In particular, for a non-zero constant function n(x) on Ω, we would
haveD[m|p]nK = 0, i.e.

∑
ΩL∈V

p
K

d
[m|p]
KL = 0, i.e.

∑
ΩL∈VpK

d
[m|p]
KL = −d

[m|p]
KK . Therefore,

D[m|p]nK =
∑

ΩL∈VpK

d
[m|p]
KL (nL − nK) . (4.35)

Definition 4.6 (Local mass conservation). Let n ∈ L1
loc(Ω) andN

|p
K = Rp

K ◦Pp
Kn. The reconstruction

operatorRp
K : RN

|K → Pp
(
VpK
)
conserves mass locally if

1

|ΩK |

∫
ΩK

N |p
K (x)dx = nK =

1

|ΩK |

∫
ΩK

n(x)dx

Therefore, if Rp
K : RN

|K → Pp
(
VpK
)
conserves mass locally then from eq. (4.33) we have

D[0|p]nK = nK −
p∑

m=1

1

m!
D[m|p]nK • h[m]

KK with h
[m]
KL ≡ 1

|ΩL|

∫
ΩL

(x− xcK)
⊗m dx. Consequently,

N |p
K (x) = nK +

p∑
m=1

1

m!
D[m|p]nK •

[
(x− xcK)

⊗m − h
[m]
KK

]
. (4.36)

In the rest of this section, we assume that n(x) is a polynomial, i.e. n ∈ Pp(Ω). Then forΩL ∈ VpK ,

nL = n (xcK) +

p∑
m=1

1

m!
Dmn (xcK) • h

[m]
KL, (4.37)

and so for ΩL ∈ VpK ,

nL − nK =

p∑
m=1

1

m!
Dmn (xcK) •

(
h

[m]
KL − h

[m]
KK

)
. (4.38)
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Let us now compute the derivative approximantsD[m|p]nK . SinceDmn (xcK) and h
[m]
KL − h

[m]
KK

are elements of Sm, eq. (4.38) could be explicitly rewritten in the following way,

nL − nK =

p∑
m=1

1

m!

∑
i∈Jm

(Dmn (xcK))i

(
h

[m]
KL − h

[m]
KK

)
i

=

p∑
m=1

∑
i∈Jm

1

1(i)!(m− 1(i))!
(Dmn (xcK))i

(
h

[m]
KL − h

[m]
KK

)
i

=

p∑
m=1

∑
i∈Jm

(Dmn (xcK))i
˜(

h
[m]
KL − h

[m]
KK

)
i
, (4.39)

where Jm is the set of indices of a Sm
(
R2
)
-tensor, Jm and the tilded version of a Sm

(
R2
)
-tensor

are defined in appendix A.

Let dm ≡ dim
(
Pm
(
R2
))

− 1 =
(m+ 1)(m+ 2)

2
− 1. We define the sorting operator Σp as

follows,

Σp : S1 × · · · × Sp → Rdp(
a1, . . . ,ap

)
7→ A

Here A is an array such that Al+dm−1 , for l = 1, . . . ,m + 1 andm = 1, . . . , p, is the lth element of
am that is stored14; the stored elements of am are sorted by an order induced by Jm.

Example 4.1. For p = 3, A =
(
a11 a12 a211 a212 a222 a3111 a3112 a3122 a3222

)t.
With this notation, we define the following arrays,

Up
K ≡ Σp

(
D1n (xcK) , . . . ,D

pn (xcK)
)
,

Dp
KL ≡ Σp

(
d
[1|p]
KL , . . . ,d

[p|p]
KL

)
,

Hp
KL ≡ Σp

(
˜

h
[1]
KL − h

[1]
KK , . . . ,

˜
h

[p]
KL − h

[p]
KK

)
,

Hp
K(x) ≡ Σp

(
˜

(x− xcK)
⊗1 − h

[1]
KK , . . . ,

˜
(x− xcK)

⊗p − h
[p]
KK

)
.

Moreover, let Dp
K be a dp× V p

K matrix andHp
K be a V p

K × dp matrix with V p
K ≡ Card (VpK), such that

Dp
K =

(
Dp
K1 . . . D

p
KV pK

)
, Hp

K =
(
Hp
K1 . . . H

p
KV pK

)t
.

Now eq. (4.39) re-reads as nL − nK = Up
K · Hp

KL. We substitute this into eq. (4.35) and then
eq. (4.36) to obtain

(Rp
K ◦ Pp

Kn) (x) = N |p
K (x) = nK + (Dp

KH
p
K)U

p
K ·Hp

K(x).

On the other hand, from eq. (4.37) we deduce that

n(x) = nK + Up
K ·Hp

K(x).

14not all 2m elements of am are stored since am is a symmetric tensor
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Hence, ifRp
K ◦Pp

K = IdPp(VpK) then it is sufficient thatDp
KH

p
K = Ip, where Ip is the dp×dp identity

matrix. The solutions Dp
K of this problem are in general not unique since V p

K ≥ dp. A particular
solution known as the least-square solution is the Moore-Penrose inverse of Hp

K which minimizes
the Frobenius norm

√
Tr (Dp

K)
tDp

K [68] and reads as

Dp
K =

(
(Hp

K)
tHp

K

)−1
(Hp

K)
t . (4.40)

Finally, the derivative approximantsD[m|p]nK can be evaluated from the reconstruction matrix
Dp
K according to eq. (4.34). We note that the grid matrix Hp

K only depends on the grid parameters
(distance, cell size, etc.). Therefore, if the grid is fixed then Hp

K , and consequently Dp
K , could be

computed once for all at the beginning of the simulation.

4.6.4 Approximation error

In the more general case where n(x) is a smooth function on Ω, we have the following result
which is inspired from [69].

Theorem 4.1. Let p > 0 be an integer and make the following assumptions.

1. Each component of Dp+1n is bounded on Ω.

2. There exists a constant C0 > 0 independent of hT 15 such that for all ΩK ∈ T andm = 0, . . . , p,

the reconstruction operator satisfies, for any function g ∈ L1
loc(Ω),

∥Dm (Rp
K ◦ Pp

Kg)∥(L∞(VpK))
2m ≤ C0

hmT
|Pp

Kg|,

where |Pp
Kg| is the Euclidean norm of the array Pp

Kg.

Then there exists a constant C > 0 independent of hT such that for all ΩK ∈ T andm = 0, . . . , p,

∥Dm (Rp
K ◦ Pp

Kn)−Dmn∥
(L∞(VpK))

2m ≤ Chp−m+1
T . (4.41)

Proof. We follow the proof of Theorem 3.9 in [69]. Apply Taylor’s theorem to n(x) at the point xcK
we have n(x) = p(x) + r(x) with

p(x) =

p∑
m=0

1

m!
Dmn (xcK) • (x− xcK)

⊗m ,

and there exists a constant C1 > 0 independent of hT such that ∥Dmr∥
(L∞(VpK))

2m is bounded by

C1h
p−m+1
T form = 0, . . . , p, since Dp+1n is bounded on Ω.

15definition in section 3.1

97



Chapter 4

Since Rp
K is exact for all polynomials Pp

(
R2
)
, we have Rp

K ◦ Pp
Kn = p +Rp

K ◦ Pp
Kr and as a

resultDm (Rp
K ◦ Pp

Kn) = Dmp+Dm (Rp
K ◦ Pp

Kr). Consequently,

∥Dm (Rp
K ◦ Pp

Kn)−Dmn∥
(L∞(VpK))

2m = ∥Dm (Rp
K ◦ Pp

Kr)−Dmr∥
(L∞(VpK))

2m

≤ C0

hmT
|Pp

Kr|+ C1h
p−m+1
T .

Since16 |Pp
Kr| ≤ V p

KC1h
p+1
T , it is straightforward that

∥Dm (Rp
K ◦ Pp

Kn)−Dmn∥
(L∞(VpK))

2m ≤ (V p
KC1C0 + C1)h

p−m+1
T . ■

4.6.5 The discrete SGCC-p flux

We denote N |p
K (x) = Rp

K ◦ Pp
Kn(x). Let us define, as the discrete counterpart of eq. (4.29),

ℵ(m)

KL,q(y) ≡ DmN |p
K

(
xλKL,q + yνKL

)
• ν⊗m

KL , y ∈ R,

and replace ℵ(m)
KL,q in section 4.5.2 and eq. (4.31) with ℵ(m)

KL,q. We achieve the discrete SGCC-p flux
f
|p
KL,q which reads as

f
|p
KL,q =

DKL,q

∆xKL,q

(
B(pKL,q)Q

|p
KL,q − B(−pKL,q)Q

|p
LK,q

)
,

Q
|p
KL,q =

p∑
m=0

(∆xKL,q)
mW

[m]
KL,qℵ

(m)

KL,q (−∆xKL,qχKL,q) ,

Q
|p
LK,q =

p∑
m=0

(∆xKL,q)
mW

[m]
KL,qℵ

(m)

KL,q (∆xKL,qκKL,q) .

4.7 Choices of slope limiters

4.7.1 For piece-wise linear reconstruction on one-dimensional grids

Consider the grid in fig. 4.1 and an a cell Ωi ≡ (xi− 1
2
, xi+ 1

2
) such that xi− 1

2
, xi+ 1

2
do not coincide

with the domain boundaries. For linear reconstruction, i.e. p = 1, the grid matrix reads as H1
i =(

xi+1 − xi

xi−1 − xi

)
=

(
∆xi+ 1

2

−∆xi− 1
2

)
, and so from eq. (4.40) the reconstruction matrix is

D1
i =

 ∆xi+ 1
2(

∆xi− 1
2

)2
+
(
∆xi+ 1

2

)2 ,− ∆xi− 1
2(

∆xi− 1
2

)2
+
(
∆xi+ 1

2

)2
 .

Plugging this into eq. (4.35) we derive the gradient approximant as follows,

D[1|1]ni =
∆xi+ 1

2
(ni+1 − ni)(

∆xi− 1
2

)2
+
(
∆xi+ 1

2

)2 +
∆xi− 1

2
(ni − ni−1)(

∆xi− 1
2

)2
+
(
∆xi+ 1

2

)2 . (4.42)

16recall that V p
K = Card (Vp

K)
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It is well known that this central-difference approximation generates numerical solutions with
spurious oscillationswhenever there is a large-gradient layer in the density, typically in drift-dominant
flows, i.e. for large Péclet numbers p. For stability reason, we are interested in a special class of
numerical methods that are total-variation diminishing (TVD), being known for their ability
to suppress the undesirable oscillations [90]. We refer to [90, 53, 91] for a detailed lecture, or to
appendix B for a brief presentation on this subject.

The linear scheme with the slope in eq. (4.42) is not TVD since it would contradict the fact that
any linear TVD scheme is at most first-order [90, Theorem 16.1]. In order to achieve a TVD method
while still retaining second-order accuracy for smooth solutions, one possible choice is to use a TVD
slope limiter Φ(θ) so that the linear reconstruction of n(tl, x) on the cell Ωi reads as

N l|1
i (x) = nli +

∆xi
2

nli+1 − nli
∆xi+ 1

2

Φ
(
θli
)
,

for the case u > 0, where θi ≡
nli − nli−1

nli+1 − nli
. In the case u < 0, we simply switch to

N l|1
i (x) = nli +

∆xi
2

nli − nli−1

∆xi− 1
2

Φ
(
θli
)
,

with θli ≡
nli+1 − nli
nli − nli−1

. So for now on we assume that u > 0.

Let us assume now that the grid is uniform, i.e. ∆xi = ∆x > 0. The notion of TVD slope limiters
as well as some examples of limiters that will be used in section 4.8 and chapter 5 are introduced
below.

Definition 4.7 ([137]). A slope limiter Φ(θ) is called TVD if

0 ≤ Φ(θ)

θ
≤ 2

0 ≤ Φ(θ) ≤ 2
. In this case, the graph

of Φ locates within the TVD region.

Example 4.2. Some examples of TVD slope limiters [91, Chapter 6] (see fig. 4.5).

1. Minmod ΦM(θ) = max(0,min(1, θ)).

2. Superbee ΦS(θ) = max(0,min(1, 2θ),min(2, θ)).

3. Monotonized central-difference (MC) ΦMC(θ) = max

(
0,min

(
1 + θ

2
, β, βθ

))
with 1 ≤

β ≤ 2.

We now investigate whether the SGCC-1 scheme combining with TVD slope limiters are actually
TVD.
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1 2 3 4

1

2
ΦS

ΦMC

ΦM

θ

Figure 4.5: Some limiters with the TVD region in maroon and β = 1.5 for ΦMC

Definition 4.8. The TVD-SGCC-1 flux schemes writes as follows,

f̂
l|1
i+ 1

2

=
D

∆x

(
B(p)

(
nli +∆xW [1]n

l
i+1 − nli
∆x

Φ
(
θli
))

− B(−p)

(
nli+1 +∆xW [1]n

l
i+2 − nli+1

∆x
Φ
(
θli+1

)))
, (4.43)

with p = −u∆x
D

andW [1] = −ψ[1] = −1

2

ep + 1

ep − 1
+

1

p
.

The following result is due to Harten [70].

Theorem 4.2. Suppose that a numerical scheme could be written in the form

nl+1
i = nli + Ali

(
nli+1 − nli

)
−Bl

i−1

(
nli − nli−1

)
. (4.44)

If Ali ≥ 0, Bl
i ≥ 0 and

• Ali +Bl
i ≤ 1, then the scheme is TVD;

• Ali +Bl
i−1 ≤ 1, then ∥n

(
tl+1, ·

)
∥L∞(R) ≤ ∥n

(
tl, ·
)
∥L∞(R).

Substituting eq. (4.43) into eq. (9) yields a numerical scheme in the form of eq. (4.44) with

Ali = a

(
1 +W [1]Φ

(
θli+1

)
θli+1

)
, Bl

i−1 = b
(
1−W [1]Φ

(
θli−1

))
+ (a+ b)W [1]Φ

(
θli
)

θli
,

a =
D∆t

(∆x)2
B(−p), b =

D∆t

(∆x)2
B(p).

Based on theorem 4.2, we can demonstrate that the TVD-SGCC-1 schemes are in fact TVD.

Proposition 4.3. Assume that n(t0, ·) ∈ BV(R)17. Then the scheme (4.44) with the numerical flux

(4.43) is TVD and satisfies ∥n
(
tl+1, ·

)
∥L∞(R) ≤ ∥n

(
tl, ·
)
∥L∞(R), for l = 0, . . . ,L − 1, if the following

CFL condition is respected,

∆t ≤ ∆x

2u
tanh

(
u∆x

2D

)
≡ ∆tCFL. (4.45)

17the definition of the BV(R) space can be found in appendix B
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Proof. Let us first notice that a, b > 0 and 0 ≤ W [1] ≤ 1

2
since p < 0 (we have assumed that u > 0).

With Φ
(
θli
)
being a TVD slope limiter (see definition 4.7), it is straightforward that Ali, Bl

i ≥ 0.

The inequality Ali +Bl
i ≤ 1 is equivalent to

1− b

a+ b
W [1]Φ

(
θli
)
+

2a+ b

a+ b
W [1]Φ

(
θli+1

)
θli+1

≤ 1

a+ b
.

We have the following estimates,

0 ≤ b

a+ b
W [1]Φ

(
θli
)
≤ 2b

a+ b
W [1], 0 ≤ 2a+ b

a+ b
W [1]Φ

(
θli+1

)
θni+1

≤ 2
2a+ b

a+ b
W [1].

It can be shown that 2b

a+ b
W [1] ≤ 1 and 2

2a+ b

a+ b
W [1] is decreasing as well as bounded from above

by 1 for p < 0, so ∣∣∣∣∣ b

a+ b
W [1]Φ

(
θli
)
− 2a+ b

a+ b
W [1]Φ

(
θli+1

)
θli+1

∣∣∣∣∣ ≤ 1,

and hence,

1− b

a+ b
W [1]Φ

(
θli
)
+

2a+ b

a+ b
W [1]Φ

(
θli+1

)
θli+1

≤ 2.

Thus, a sufficient condition for which the scheme is TVD, according to theorem 4.2, is that a+ b ≤ 1

2
which is equivalent to the CFL condition (4.45)18.

Finally, the inequality Ali +Bl
i−1 ≤ 1 is proven in the same manner since it is equivalent to

1− b

a+ b
W [1]Φ

(
θli−1

)
+

a

a+ b
W [1]Φ

(
θli+1

)
θli+1

+W [1]Φ
(
θli
)

θli
≤ 1

a+ b
.

Therefore, from theorem 4.2 we have ∥n
(
tl+1, ·

)
∥L∞(R) ≤ ∥n

(
tl, ·
)
∥L∞(R) under the condition

(4.45). ■

4.7.2 For piece-wise parabolic reconstruction on one-dimensional grids

For p = 2, the grid matrix reads as

H2
i =

 ∆xi+ 1
2

1

6
∆xi+ 1

2
∆xi,i+1

−∆xi− 1
2

1

6
∆xi− 1

2
∆xi,i−1


with ∆xi,i±1 ≡ ∆xi + 2∆xi±1. Thus, the reconstruction matrix is

D2
i =

(
H2
i

)−1
=

1

∆xi+ 1
2
∆xi− 1

2
(∆xi,i+1 +∆xi,i−1)

(
∆xi− 1

2
∆xi,i−1 6∆xi− 1

2

−∆xi+ 1
2
∆xi,i+1 6∆xi+ 1

2

)
18recall that B(p) + B(−p) = p coth

(p
2

)
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Plugging this into eq. (4.35) we derive the derivative approximants as follows,

D[1|2]ni =
∆xi− 1

2
∆xi,i−1 (ni+1 − ni) + ∆xi+ 1

2
∆xi,i+1 (ni − ni−1)

∆xi+ 1
2
∆xi− 1

2
(∆xi,i+1 +∆xi,i−1)

,

D[2|2]ni = 6
∆xi− 1

2
(ni+1 − ni)−∆xi+ 1

2
(ni − ni−1)

∆xi+ 1
2
∆xi− 1

2
(∆xi,i+1 +∆xi,i−1)

.

We use an extension of the MC limiter to piece-wise parabolic reconstruction [162] which is a
sequential application of the MC limiter to the second derivative approximant and then to the first
derivative approximant. This approach is a particular case of the parameter-free generalized moment
limiter for high-order methods (GML) proposed in [162]. We define as such, for 1 ≤ β ≤ 2,

D̂
[2|2]

ni ≡ minmod

(
D[2|2]ni, β

D[1|2]ni+1 −D[1|2]ni
∆xi+ 1

2

, β
D[1|2]ni −D[1|2]ni−1

∆xi− 1
2

)
,

D̂
[1|2]

ni ≡ minmod

(
D[1|2]ni, β

ni+1 − ni
∆xi+ 1

2

, β
ni − ni−1

∆xi− 1
2

)
.

To our knowledge, there is not yet a theoretical result on the stability or convergence of this
limiting approach. However, there have been numerical evidences showing that this scheme is stable
for some simple convection problems with sharp discontinuities and exhibits high accuracy near the
shocks [162]. Furthermore, even though some overshoots of the numerical solutions were observed
near the discontinuity, their amplitude is very small and do not transform into spurious oscillations
[154].

4.7.3 A limiter on two-dimensional grids

On two-dimensional grid, we extend the slope limiter of Barth & Jespersen [10] for high-order
reconstruction polynomials and flux integration over the edges. For a cell ΩK , let

nmax
K ≡ max

ΩL∈V
1
K

nL, nmin
K ≡ min

ΩL∈V
1
K

nL

be resp. the local maximum and local minimum discrete values of the density on the neighborhood
V1

K . The idea is to calibrate the reconstruction polynomial such that its values at any flux evaluation
point on the edges of ΩK , i.e. the points xλKL,q (see fig. 4.2), for every ΩL ∈ V1

K , fall between nmin
K

and nmax
K .

More precisely, let us consider a Q-point quadrature rule (see section 4.5), n = (nK)ΩK∈T and
N |p
K (x) = (Rp

Kn) (x). For every point xλKL,q, we define the “local” limiter ΦKL,q in the following
way,

ΦKL,q =



min

(
1,

nmax
K − nK

N |p
K

(
xλKL,q

)
− nK

)
if N |p

K

(
xλKL,q

)
> nK ,

min

(
1,

nmin
K − nK

N |p
K

(
xλKL,q

)
− nK

)
if N |p

K

(
xλKL,q

)
< nK ,

1 otherwise,
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and then define the limiter ΦK as the minimum of these ΦKL,q, i.e.

ΦK ≡ min
ΩL∈V1

K

min
q=1,...,Q

ΦKL,q.

Subsequently, the limited version of the derivative approximants read as

D̂
[m|p]

nK = ΦKD
[m|p]nK ,

and therefore from eq. (4.36), the limited version of the reconstructed density reads as

N̂ |p
K (x) = nK +

p∑
m=1

1

m!
D̂

[m|p]
nK •

[
(x− xK)

⊗m − h
[m]
KK

]
= nK + ΦK

(
N |p
K (x)− nK

)
.

We can easily check that nmin
K ≤ N̂ |p

K

(
xλKL,q

)
≤ nmax

K for every L, q, so we could at least avoid the
overshoots or undershoots of numerical solutions near large-gradient layers due to the reconstruction
process. However, there is a drawback of this limiter which is that if nK is a local maximum or a
local minimum, i.e. nK = nmax

K or nK = nmin
K , then ΦK = 0 and we lost the high-order precision on

the cell ΩK since N̂ |p
K (x) = nK . This loss of accuracy will be observed in section 4.8. Furthermore, at

this point there is no theoretical proof that the numerical method ensued from this limiting technique
is stable and convergent; the only evidences are numerical observations which will be presented in
sections 4.8 and 5.3.

Remark 4.9. In practical implementation with variable u, D and non-uniform grids, the timesteps are

limited by the CFL condition of electrons,

∆tl ≤ C min
K=1,...,N

(
hK
ule,K

tanh

(
ule,KhK

2Dl
e,K

))
≡ C∆tle, (4.46)

where ule,K , D
l
e,K are resp. the approximations of |ue(tl,xcK)|, De(t

l,xcK) and C ≤ 1

2
is a user-defined

parameter. We also define the CFL condition of ions that will be useful for the time-implicit simulations

in chapter 7,

∆tl ≤ C min
s∈S\{ e,εe }

min
K=1,...,N

(
hK
uls,K

tanh

(
uls,KhK

2Dl
s,K

))
≡ C∆tlion. (4.47)

4.8 Numerical verification

4.8.1 On one-dimensional grids

We begin the numerical tests with two one-dimensional examples to verify the spatial convergence
order, only for the SGCC-1 and SGCC-2 schemes. The superbee as well as minmod limiters (see
section 4.7.1) are employed for the first scheme while the GML limiter (see section 4.7.2) is used for
the latter. We also include numerical results of the standard SG method as well as the second-order
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MUSCL-central-difference scheme [90] for comparison with the novel methods. The MUSCL-central-
difference flux scheme reads as follows, assuming that u > 0,

fMUSCL
i+ 1

2
= u

(
ni +

∆xi
2

ni+1 − ni
∆xi+ 1

2

ΦM(θi)

)
−D

ni+1 − ni
∆xi+ 1

2

.

Throughout this section, we consider uniform grids and the third-order SSP-Runge-Kutta scheme19

is used for time discretization. The timestep is set to C∆tCFL (see eq. (4.45)) with C = 0.8. The first
test is the ideal transport-diffusion of a Gaussian hat with constant diffusion rate and drift velocity.
The other one taken from [83] is the transport-diffusion of a hyperbolic tangent profile.

Test 4.1 (moving Gaussian hat). We consider (0, T )× Ω = (0, 0.25)× (0, 1), a constant drift velocity

u = 1, a constant diffusion rate D taking three different values of 10−2, 10−4, 10−6 as well as the

homogeneous Neumann condition on the boundaries. The initial datum is

n0(x) = exp

(
−(x− x0)

2

2σ

)
,

with x0 = 0.25 and σ = 10−4. Since n0(x) is flat and near-zero near the domain boundaries, the exact

solution of eq. (4.1) with this initial datum could be considered as

nex(t, x) =

(
σ

2Dt+ σ

) 1
2

exp

(
−(x− x0 − ut)2

4Dt+ 2σ

)
.

When the simulations are finished, we evaluate the discretization error in the L1-norm of the
numerical solutions at the last iteration L =

T

∆t
. The discretization error of a scheme S reads as

follows,
eS∆x ≡ ∥nL − nex(T, ·)∥L1(Ω).

An estimation of the convergence order is then given by log2

(
eS∆x
eS∆x

2

)
. We also evaluate the error

ratio,

rS∆x ≡
eS∆x
eSGCC-2∆x

,

for more clarity in lecture.

The numerical results are grouped in tables 4.2 to 4.4. We could observe that when the diffusion
is large, e.g. D = 10−2, the SG, SGCC-1 and MUSCL schemes are second-order. Meanwhile, the
SGCC-2 scheme is fourth-order, which is predicted by corollary 4.1.

The convergence orders deteriorate with the diffusion rate. The SG scheme is at most first-order
since the drift is dominant. On the contrary the SGCC-1 and MUSCL schemes maintain more or less
a high convergence order. Overall, SGCC-1 are more accurate than MUSCL in this test case. It is
worth noted that the embedded TVD limiters are first-order at extrema, so while the grid is sparse it
is comprehensible that these schemes are first-order. The same observation and argument could be
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SG SGCC-1 MUSCL SGCC-2N
e∆x order r∆x e∆x order r∆x e∆x order r∆x e∆x order

100 3.26e-2 _ 1.9 1.62e-2 _ 0.95 1.63e-2 _ 0.95 1.71e-2 _
200 2.79e-2 0.23 4.07 4.96e-3 1.72 0.72 4.95e-3 1.72 0.72 6.85e-3 1.32
400 2.22e-2 0.33 11.6 3e-3 0.72 1.56 3e-3 0.72 1.56 1.92e-3 1.84
800 1.64e-2 0.43 56.9 1.35e-3 1.15 4.69 1.35e-3 1.15 4.69 2.88e-4 2.73
1600 1.11e-2 0.56 309 6.98e-4 0.96 19.4 7.02e-4 0.94 19.6 3.59e-5 3.00
3200 6.9e-3 0.69 1516 2.49e-4 1.49 54.7 2.51e-4 1.48 55.2 4.55e-6 2.98

Table 4.2: Test 4.1, D = 10−6. Convergence order in L1-norm, errors in function of number of grid
cells N .

SG SGCC-1 MUSCL SGCC-2N
e∆x order r∆x e∆x order r∆x e∆x order r∆x e∆x order

100 2.95e-2 _ 2.2 1.24e-2 _ 0.93 1.25e-2 _ 0.93 1.34e-2 _
200 2.43e-2 0.28 5.52 2.99e-3 2.05 0.68 3.06e-3 2.03 0.7 4.4e-3 1.6
400 1.82e-2 0.42 19.5 1.7e-3 0.82 1.81 1.77e-3 0.79 1.89 9.35e-4 2.23
800 1.2e-2 0.6 99.2 8.36e-4 1.02 6.9 1.01e-3 0.81 8.35 1.21e-4 2.95
1600 6.49e-3 0.89 467 2.03e-4 2.04 14.6 3.22e-4 1.64 23.2 1.39e-5 3.12
3200 2.56e-3 1.34 1925 4.28e-5 2.24 32.2 8.83e-5 1.86 66.4 1.33e-6 3.39

Table 4.3: Test 4.1, D = 10−4. Convergence order in L1-norm.

SG SGCC-1 MUSCL SGCC-2N
e∆x order r∆x e∆x order r∆x e∆x order r∆x e∆x order

100 9.73e-4 _ 57.2 2.25e-4 _ 13.2 4.89e-4 _ 28.8 1.7e-5 _
200 2.54e-4 1.94 244 5.63e-5 2 54.1 1.71e-4 1.52 164 1.04e-6 4.03
400 6.42e-5 1.98 1017 1.4e-5 2.01 222 4.58e-5 1.9 726 6.31e-8 4.04
800 1.61e-5 2 4128 3.49e-6 2 895 1.16e-5 1.98 2974 3.9e-9 4.02
1600 4.02e-6 2 16475 8.71e-7 2 3570 2.93e-6 1.99 12008 2.44e-10 4
3200 1.01e-6 2 63522 2.18e-7 2 13711 7.33e-7 2 46101 1.59e-11 3.94

Table 4.4: Test 4.1, D = 10−2. Convergence order in L1-norm.
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Figure 4.6: Test 4.1. L1-norm errors e∆x in function of the CPU time.

applied for the SGCC-2 scheme combining with the GML limiter. But overall, the SGCC-2 scheme is
third-order in drift-dominant regimes.

Figure 4.6 displays the L1-norm errors eS∆x in function of the CPU time. Apparently, the greater
number of cells N we have, the more CPU time the simulation costs. We observe clearly that for
D = 10−6, D = 10−4 and N greater than 400 (corresponding to the third node from the left on
each curve), the computation time of higher-order schemes are shorter than lower-order schemes
for the same level of precision. For D = 10−2, the performance of SGCC-2 on N = 400 grid cells
(third node from the left on the red curve) is even better than lower-order schemes on N = 3200

elements (last nodes on other curves). These indicate that the complexity of high-order schemes is
well compensated by their enhanced accuracy.

Test 4.2 (moving canyon). We take (0, T ) × Ω = (0, 4 × 10−5) × (0, 1), N = 200, u(x) = −ax,
19see example 3.3
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Figure 4.7: Test 4.2. Numerical and benchmark solutions at T = 4× 10−5 for x ∈ (0.3, 0.6).

D = 1 and

n0(x) = a1 +
a2
2

(
1 + tanh

(
x− x0
σ

))
,

with a = 104, a1 = 102, a2 = 1012, x0 = 0.7 and σ = 0.02. If we neglect the diffusion term, the

solution to the resulting drift equation, which could serve as a benchmark since D ≪ u∆x, is given in

the following way,

nbench(t, x) = n0
(
xeat

)
eat.

In fig. 4.7, we illustrate the numerical solutions at the final time T of the SG-based schemes.
We remark that the assumptions that guarantee TVD solutions in section 4.7.1 (constant cell size
and drift velocity) do not hold in this test. We also include the solution of Kulikovsky’s improved
Scharfetter-Gummel scheme (ISG0) with ϵ = 0.01 (see [83]). It does not exhibit any oscillations near
the large-gradient layer, but this is usually not guaranteed.

The numerical solution of the MUSCL scheme are very close to SGCC-1 so it is not displayed.
The SGCC-1-superbee scheme seems to be more compressing since it generates a solution that is
wavy in the large-gradient layer. On the other hand, the SGCC-1-minmod is more diffusing as it leads
to a more smooth-looking solution. The SG scheme is too diffusive as it smears the large-gradient
layer a lot more than other schemes. Finally, the SGCC-2 scheme also produces some ripples in the
large-gradient layer but overall, this numerical solution is the closest to the benchmark solution
nbench(t, x).

4.8.2 On two-dimensional cartesian grids

We extend test 4.1 on uniform N ×N square grids with N elements on each direction. In this
section, we verify the convergence order of the SGCC-p schemes for p = 1, 2, 3, 4 in two cases: (i)
with the slope limiter ΦK defined in section 4.7.3 and (ii) without limiter, i.e. ΦK = 0. The time
scheme is always the third-order SSP-Runge-Kutta method and the timestep is set to C∆tCFL (see
eq. (4.45)) with C = 0.8.
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Test 4.3 (2D Gaussian hat). We consider (0, T ) × Ω = (0, 0.5) × (0, 1)2, a constant drift velocity

u = (u1, u2)
t = (0.5, 0.25)t, a constant diffusion rate D taking two different values of 10−4, 10−6 as

well as the homogeneous Neumann condition on the boundaries. The initial datum is

n0(x) = exp

(
−(x1 − a)2

σ1
− (x2 − b)2

σ2

)
,

with x = (x1, x2)
t, a = 0.3, b = 0.5, σ1 = 0.004 and σ2 = 0.003. The solution of the dimensional

version of eq. (4.1),

∂tn+∇ · (un−D∇n) = 0,

with this initial datum reads as

nex(t,x) =

(
σ1σ2

(4Dt+ σ1)(4Dt+ σ2)

) 1
2

exp

(
−(x1 − a− u1t)

2

4Dt+ σ1
− (x2 − b− u2t)

2

4Dt+ σ2

)
.

In the first case, the numerical results with the limiter ΦK defined in section 4.7.3 are grouped
in tables 4.5 and 4.6. We could observe that when the diffusion is large, e.g. D = 10−4, all the
schemes except SGCC-4 exhibits good convergence order, i.e. p + 1, which is coherent with the
flux consistency analysis in section 4.4. However, when the diffusion coefficient decreases, their
convergence rates also drop. Specifically for the SGCC-3 scheme with D = 10−6 and the SGCC-4
scheme with both values of D, the rate is not optimal as we lose at least an order of convergence.
This phenomenon is more severe for the SGCC-4 scheme where its convergence rate is only roughly
that of the SGCC-3 scheme when D = 10−6. A possible explanation of this situation is the fact that
the limiter ΦK is inactive in local maximum of the solution as remarked in section 4.7.3. Therefore,
the sharper the shape of the solution is, i.e. the smallerD is, the less accurate the numerical methods
are.

SG SGCC-1 SGCC-2 SGCC-3 SGCC-4N
e∆x order e∆x order e∆x order e∆x order e∆x order

64 4.6e-3 7.4e-4 9.0e-4 5.0e-4 7.0e-4

96 3.4e-3 0.75 3.3e-4 2.04 3.3e-4 2.52 1.7e-4 3.21 1.7e-4 3.44

144 2.5e-3 0.82 1.4e-4 2.10 9.9e-5 2.94 3.7e-6 3.24 4.1e-5 3.58

216 1.7e-3 0.87 6.0e-5 2.07 3.0e-5 2.94 1.0e-5 3.10 1.2e-5 3.09

324 1.2e-3 0.91 2.6e-5 2.08 9.2e-6 2.91 2.9e-6 3.18 3.2e-6 3.19

Table 4.5: Test 4.3, with limiter. L1-error and convergence order for D = 10−6.

In the second case, the numerical results without slope limiters, i.e. ΦK = 0, are grouped in
tables 4.7 and 4.8. In this test, it happens that the unlimited reconstruction works fine without
generating any oscillations or instabilities, plausibly because the solution is smooth and the grid size
is small enough. The interesting remark is that the order of converge for all schemes agrees well
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SG SGCC-1 SGCC-2 SGCC-3 SGCC-4N
e∆x order e∆x order e∆x order e∆x order e∆x order

64 4.4e-3 6.6e-4 8.4e-4 4.4e-4 6.4e-4

96 3.2e-3 0.80 2.7e-4 2.20 2.9e-4 2.59 1.1e-4 3.42 1.5e-4 3.62

144 2.2e-3 0.89 1.0e-4 2.37 8.8e-5 2.99 2.6e-5 3.61 3.0e-5 3.93

216 1.5e-3 0.97 3.8e-5 2.47 2.5e-5 3.05 5.6e-6 3.73 6.3e-5 3.81

324 9.8e-4 1.07 1.2e-5 2.73 7.2e-6 3.11 1.1e-6 3.99 1.2e-6 4.11

Table 4.6: Test 4.3, with limiter. L1-error and convergence order for D = 10−4.

with the flux consistency analysis and no convergence rate deterioration is observed even when D
decreases. This confirms that the use of slope limiters, at least for the one defined in section 4.7.3, has
a negative effect on the accuracy of the numerical solution, especially if the latter possesses many
local extrema or large-gradient layers.

SG SGCC-1 SGCC-2 SGCC-3 SGCC-4N
e∆x order e∆x order e∆x order e∆x order e∆x order

64 4.6e-3 6.5e-4 9.3e-4 2.9e-4 5.7e-4

96 3.4e-3 0.75 2.8e-4 2.09 3.2e-4 2.67 5.2e-5 4.18 1.1e-4 4.16

144 2.5e-3 0.82 1.2e-4 2.09 9.9e-5 2.85 9.1e-6 4.31 1.6e-5 4.65

216 1.7e-3 0.87 5.2e-5 2.06 3.0e-5 2.94 1.6e-6 4.24 2.3e-6 4.86

324 1.2e-3 0.91 2.3e-5 2.03 9.0e-6 2.98 3.0e-7 4.15 3.0e-7 4.94

Table 4.7: Test 4.3, without limiter. L1-error and convergence order for D = 10−6.

Finally, we note that the discretization errors of the SGCC-4 scheme are always larger than those
of the SGCC-3 scheme for both cases, with or without limiter. This shows that the convergence order
does not absolutely guarantee an accurate numerical solution since we often work with a fixed grid
size but not with multiple decreasing grid sizes. The precision of a numerical method relies on many
other factors such as the error constant which depends on the derivatives of the solution.

4.9 Closing remarks
In this chapter, we have proposed a generalization of the classical Scharfetter-Gummel flux

scheme into a set of high-order methods collectively known as the Scharfetter-Gummel schemes with
correction of current (SGCC) that are employed to solve the drift-diffusion equations which appear
frequently is gas discharge modeling. The derivation of the new flux(es) was based on a polynomial
matching of the particle flux (the continuous flux) in the neighborhood of each cell interface. The
degree p of the matching polynomial could be a priori as large as needed.
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SG SGCC-1 SGCC-2 SGCC-3 SGCC-4N
e∆x order e∆x order e∆x order e∆x order e∆x order

64 4.4e-3 5.8e-4 8.6e-4 2.5e-4 5.2e-4

96 3.2e-3 0.80 2.3e-4 2.25 2.9e-4 2.72 4.4e-5 4.31 9.4e-5 4.23

144 2.2e-3 0.89 9.0e-5 2.33 8.8e-5 2.92 7.0e-6 4.54 1.4e-5 4.73

216 1.5e-3 0.97 3.4e-5 2.43 2.6e-5 3.04 1.1e-6 4.64 1.8e-6 4.97

324 9.8e-4 1.07 1.1e-5 2.66 7.2e-6 3.12 1.5e-7 4.83 2.3e-7 5.11

Table 4.8: Test 4.3, without limiter. L1-error and convergence order for D = 10−4.

The SGCC-p flux has been theoretically demonstrated to be consistent with the continuous flux and
the consistency order is p+1. The new schemes inherit a special property of the standard SG method
in which they switch automatically between a high-order upwind scheme for the discretization of
the drift flux and a high-order central-difference scheme for the discretization of the diffusion flux,
depending on the nature of the flow regime (drift-dominant or diffusion-dominant). Therefore, the
interests of the SGCC methods are twofold: on one hand, they allow to gain more precision and on
the other hand, they provide a unified framework for the discretization of both the drift and diffusion
operators.

The derivation of the novel schemes is intrinsically an exponential interpolation between the
particle densities at two points on different sides of a cell interface. It is by all means a one-dimensional
process. Therefore, it is natural to extend the SGCC schemes in two-dimensional setting (probably
multi-dimensional as well) in the finite volume framework, since the edge-normal fluxes play a
central role in the finite volume method. The extension is not straightforward though and we have
proposed an interpolation method that allows to evaluate the numerical flux in the normal direction
to a cell edge.

The high-order SGCC fluxes are function of the derivatives of the particle density as similar to high-
order upwind schemeswhich use the Taylor expansion of the density to gainmore numerical precision.
This dependency necessitates thus a polynomial reconstruction of the density from (the approximants
of) its cell-averaged values. Moreover, slope limiting techniques are also a priori required to ensure
the stability of the simulation since high-order linear schemes usually generate spurious oscillations
on the numerical solutions. The reconstruction aspect was addressed by a least-square algorithm
and the slope limiting was addressed with the use of TVD limiters for linear reconstruction and GML
limiters for quadratic reconstruction in one dimension, and a Barth-Jespersen-inspired limiter on
two-dimensional grids.

The workflow presented in this chapter enables the implementation of the SGCC methods in two
proto-plasma solvers, one for one-dimensional tests and the other for two-dimensional simulations.
The two solvers were tested against some simple drift-diffusion problems and showed adequate
convergence results that were coherent with the theoretical consistency order of the SGCC schemes,
except in certain cases where the (a priori) limiters were strongly active, such as in drift-dominant
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regimes where the density gradients are steep. But as the limiters were turned off, the convergence
order regained as expected. The reduction of convergence order could potentially be avoided with a
posteriori limiting techniques such as MOOD [36] if one could find a way to detect “trouble” cells
where the numerical solution is contaminated with nonphysical oscillations.

In the next chapter, the two proto-plasma solvers are updated to simulate fully-developed plasma
discharges. We shall investigate the capability as well as the interests of the high-order SGCC schemes
in more complex simulation settings.

4.10 Remarques finales
Dans ce chapitre, nous avons proposé une généralisation du schéma de flux standard de Scharfetter-

Gummel en un ensemble de méthodes d’ordre élevé connues collectivement sous le nom des schémas
de Scharfetter-Gummel avec la correction du courant (SGCC) qui sont utilisées pour résoudre les
équations de dérive-diffusion qui apparaissent fréquemment dans la modélisation des décharges
de gaz. La dérivation des nouveaux flux est basée sur une approximation polynomiale du flux de
particules (le flux continu) dans le voisinage de chaque interface d’une cellule. Le degré p du polynôme
d’approximation peut être a priori aussi grand que nécessaire.

Il a été démontré théoriquement que le flux SGCC-p est consistent avec le flux continu et que
l’ordre de consistance est de p + 1. Les nouveaux schémas héritent d’une propriété spéciale de la
méthode SG standard qui permet de passer automatiquement d’un schéma décentré d’ordre élevé
pour la discrétisation du flux de dérive à un schéma de différence centrale d’ordre élevé pour la
discrétisation du flux de diffusion, en fonction de la nature du régime d’écoulement (à la dérive
dominante ou à la diffusion dominante). L’intérêt des méthodes SGCC est donc double : d’une part,
elles permettent de gagner en précision numérique et, d’autre part, elles fournissent un cadre unifié
pour la discrétisation des opérateurs de dérive et de diffusion.

La dérivation des nouveaux schémas est intrinsèquement une interpolation exponentielle entre
la densité en deux points situés de part et d’autre d’une interface d’une cellule. Il s’agit donc d’un
processus unidimensionnel. Par conséquent, il est naturel d’étendre les schémas SGCC dans sur des
maillages bidimensionnels (probablement multidimensionnels aussi) dans le cadre de la méthode des
volumes finis, puisque les flux normaux de bord jouent un rôle central. L’extension n’est cependant pas
évident et nous avons proposé une méthode d’interpolation qui permet d’évaluer le flux numérique
dans la direction normale au bord d’une cellule.

Les flux SGCC d’ordre élevé sont fonctions des dérivées de la densité des particules, à l’instar
des schémas décentrés d’ordre élevé qui utilisent l’expansion de Taylor de la densité pour gagner en
précision numérique. Cette dépendance nécessite donc une reconstruction polynomiale de la densité
à partir (des approximants) de ses valeurs moyennes sur les cellules. En outre, des techniques de
limitation des pentes sont également nécessaires pour garantir la stabilité de la simulation, étant
donné que les schémas linéaires d’ordre élevé entraînent généralement des oscillations parasites sur
les solutions numériques. La reconstruction a été traité par un algorithme des moindres carrés et
la limitation des pentes a été traitée par les limiteurs de TVD pour la reconstruction linéaire et les
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limiteurs de GML pour la reconstruction quadratique en une dimension, et un limiteur inspiré de
Barth-Jespersen en deux dimensions.

Le travail présenté dans ce chapitre permet la mise en œuvre des méthodes SGCC dans deux
proto-solveurs de plasma, l’un pour les simulations unidimensionnelles et l’autre pour les simulations
bidimensionnelles. Les deux proto-solveurs ont été testés sur quelques problèmes simples de dérive-
diffusion et ont montré des résultats de convergence adéquats qui étaient cohérents avec l’ordre de
consistance théorique des schémas SGCC, sauf dans certains cas où les limiteurs (a priori) étaient
fortement actifs, comme dans les régimes dominés par la dérive où les gradients de densité sont raids.
Mais lorsque les limiteurs ont été désactivés, l’ordre de convergence s’est rétabli comme prévu. La
réduction de l’ordre de convergence pourrait potentiellement être évitée en utilisant des techniques
de limitation a posteriori telles que le MOOD [36] si l’on pouvait trouver un moyen de détecter les
cellules “problématiques” où la solution numérique est contaminée par des oscillations parasites.

Dans le chapitre suivant, les deux proto-solveurs plasma sont mis à niveau pour simuler des
décharges de plasma complètes. Nous étudierons les capacités ainsi que les intérêts que les schémas
SGCC d’ordre élevé apportent dans des simulations plus complexes.
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5.0 Aperçu
Ce chapitre poursuit le travail du chapitre 4 en étudiant la capacité de la méthode SGCC, jusqu’à

l’ordre 6, dans la simulation de certaines décharges électriques complexes dans l’air, à savoir une
décharge couronne fil-fil et la propagation d’un streamer positif. À notre connaissance, il n’existe
aucune recherche sur les simulations de décharges dans la littérature où la discrétisation des équations
de continuité a une précision supérieure à l’ordre 3. Les résultats numériques de ce chapitre sont
obtenus avec nos propres solveurs de plasma.

Nous devons cependant souligner que l’équation de Poisson est résolue avec des schémas du
premier ordre tels que la méthode des éléments finis P1-Lagrange dans la section 5.2 et une méthode
des volumes finis du premier ordre dans la section 5.3. Par conséquent, le schéma numérique global
est du premier ordre. Néanmoins, il semble que l’erreur de discrétisation de l’équation de Poisson
ait peu d’influence sur la qualité des solutions numériques des décharges. D’après les résultats
des sections 5.2 et 5.3, l’effet de la précision numérique est essentiellement dû aux équations de
dérive-diffusion.

Dans la section 5.2, nous fournissons une validation numérique des nouveaux schémas SGCC-1
et SGCC-2 dans des simulations unidimensionnelles d’une décharge couronne fil-fil. Les résultats
numériques des schémas SG standard et MUSCL sont également inclus pour comparaison. Dans
la section 5.3, nous étudions les schémas SGCC-p, pour p = 1, 2, 3, 4, 5, dans des simulations
bidimensionnelles de la propagation d’un streamer positif à travers différents cas de test - avec une
densité initiale d’électrons élevée ou faible, avec ou sans le splitting directionnel, et avec ou sans
limiteurs des pentes. Les résultats numériques des schémas SG et MUSCL sont parfois inclus pour
comparaison. Nous nous concentrons également sur la pertinence physique des solutions numériques,
la comparaison entre les schémas de différents ordres de précision ainsi que l’efficacité du calcul au
niveau de l’équilibre entre la précision numérique et le temps de calcul.

5.1 Overview
This chapter continues the work of chapter 4 by investigating the capability of the SGCC method,

up to the sixth-order scheme, in the simulation of some complex electric discharges in air, namely a
wire-to-wire corona discharge and the propagation of a positive streamer. As far as we are aware,
there had not existed any research on atmospheric gas discharge simulations in the literature where
the discretization of the specie continuity equations has a precision higher than third-order. The
numerical results of this chapter are obtained with self-implemented codes.

We have to stress, though, that the Poisson equation is solved with first-order schemes such
as the P1-Lagrange finite element method in section 5.2 and a first-order finite volume method in
section 5.3. Therefore, the global numerical scheme is first-order. Nevertheless, it seems that the
discretization error on the Poisson equation has little influence on the quality of numerical solutions
of the discharges. Based on the results of sections 5.2 and 5.3, the effect of numerical precision is
essentially due to the drift-diffusion equations.
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Figure 5.1: Schematics of the wire-to-wire actuator

In section 5.2, we provide numerical validation of the new SGCC-1 and SGCC-2 schemes in
one-dimensional simulations of a wire-to-wire corona discharge. Numerical results of the standard
SG and MUSCL schemes are also included for comparison. In section 5.3, we study the SGCC-p
schemes, for p = 1, 2, 3, 4, 5, in two-dimensional simulations of the propagation of a positive streamer
through different test cases - with high or low electron initial density, with or without directional
splitting, and with or without slope limiters. Numerical results of the standard SG and MUSCL
schemes are sometimes included for comparison. We also focus on the physics relevance of the
numerical solutions, the comparison between schemes of different precision orders as well as the
computation efficiency in terms of trade-off between numerical accuracy and CPU time.

5.2 Simulations of corona discharge on one-dimensional grids

5.2.1 Description of the test case and numerical parameters

The sketch of the electric actuator is illustrated in 5.1. It is composed of a small wire of radius
r1 = 0.35 mm and a bigger wire r2 = 1 mm, parallel to each other and d = 40 mm apart. Each wire
is Lwire = 16 cm long and there is no presence of other dielectric materials other than air (εr = 1).
We apply a voltage VG = 40 kV on the smaller wire (the stressed electrode) and the larger wire is
grounded.

If we suppose that the plasma is uniform along the wires then the three-dimensional problem is
transformed into a two-dimensional one. In order to further transform it into a one-dimensional
problem, a quasi-2D model was developed in [106] in which we suppose that the plasma is uni-
formly contained in a “bumpy” layer between the electrodes, bounded by the segment Γ0 ≡
{ (x1, 0) | x1 ∈ (r1, r1 + d) } from the bottom and the graph of a function S(x1) > 0 from the
top (see fig. 5.1). S(x1) is computed from the relation

d

dx1

(
Eext

1 (x1, 0)S(x1)
)
= 0, (5.1)

where Eext(x1, x2) =
(
Eext

1 (x1, x2),E
ext
2 (x1, x2)

)t
= −∇ϕext(x1, x2) is the analytic expression of
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the electrostatic field generated by the voltage between the electrodes, i.e. the solution of
−∇ ·

(
ε0∇ϕext(x1, x2)

)
= 0,

ϕ = VG, on S1,

ϕ = 0, on S2,

(5.2)

where S1, S2 are resp. the smaller and larger wire surfaces. In this wire-to-wire configuration, the
expression of ϕext(x1, x2) is given in [92] in the following way,

ϕext(x1, x2) = VG − VG

2ln
(
A
r1

) ln( (x1 −Br1)
2 + x22

(Bx1 − r1)
2 + (Bx2)

2

)
, (5.3)

with

A =
CD − r21 −

√
(C2 − r21) (D

2 − r21)

C −D
> 0, (5.4)

B =
CD + r21 +

√
(C2 − r21) (D

2 − r21)

r1(C +D)
> 0, (5.5)

C = r1 + d, D = r1 + d+ 2r2. (5.6)

In the next parts, we simply write x instead of x1. Since the elementary volume unit in this

quasi-2D setting is equal to S(x)Lwiredx, the divergence of a field F (x) reads as∇ · F =
1

S

d(SF )

dx
.

Therefore, eq. (5.1) is just a rewriting of the first equation of (5.2). By some algebraic manipulations,
from eqs. (5.1) and (5.3) we deduce that

S(x) = G (Bx− r1) (Br1 − x) ,

where G is a positive constant. Moreover, a straightforward computation shows that S reaches its

maximum value Smax at xmax =
(B2 + 1)r1

2B
and Smax = S (xmax) = G

(B2 − 1)
2
r21

4B
. Therefore,

S(x) =
4BSmax

(B2 − 1)2 r21
(Bx− r1) (Br1 − x) .

In the simulations of this section, we use the prescribed value Smax = 5 mm. The two-dimensional
problem is thus transformed in to a one-dimensional one, where Γ0 serves as the computation domain.

A constant floor density ψ is imposed on the electron density (see section 2.1.1). The justification
of this practice will be presented in details in chapter 6. In the following simulations, we set ψ = 109

m−3. This value is also used for the initial data: n0
s = 109 m−3.

For this one-dimensional test, we consider the kinetic scheme of example 2.1 (S = { e, p, n })
without photoionization. Additionally, we assume that Dp = Dn = 0 for simplicity. Using the
variable change vs(t, x) ≡ S(x)ns(t, x), the one-dimensional discharge model now reads as∂tV + ∂xF (V ) = S(V ),

−∂x(ε0S∂xϕ) = Sρ,
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where V =

vevp
vn

, F (V ) =

u
S
e ve −De∂xve

upvp

unvn

, uSe = −µeE +De
S ′

S
and S(V ) =

SeSp
Sn

 with


Se = (α− η)ve −

kep
S
vevp,

Sp = αve −
kep
S
vevp −

knp
S
vnvp,

Sn = ηve −
knp
S
vnvp.

The computation domain Γ0 = (r1, r1 + d) is partitioned intoN non-overlapping intervals (cells)
such that the left interface of the first cell and the right interface of the last cell coincide resp. with the
anode surface and the cathode surface. The cell sizes satisfy a refinement criterion in the following
way,

∆xi = aS

(
r1 +

(
i− 1

2

)
d

N

)
, i = 1, . . . ,N ,

where a is a positive constant. Therefore, since
N∑
i=1

∆xi = d, we have

∆xi = d
S
(
r1 +

(
i− 1

2

)
d
N

)∑N
l=1 S

(
r1 +

(
l − 1

2

)
d
N

) .
This refinement technique is employed to capture correctly the discharge dynamics in the electrode
sheaths and relax the cell size in the middle region (outside the electrode sheaths) where no ionization
process takes place and the charged species only drift along electric field. Indeed, the cell size ∆xi
becomes small whenever the field strength is large as S(x) is proportional to the inverse of the latter.

Since ions weigh much heavier than electrons, their drifting time is also much longer. As we use
explicit time integration in this section, the CFL conditions of species are disparate. Furthermore,
the charge density in the corona discharge is not extremely high (around 1015-1018 m−3), hence
the dielectric relaxation time is much larger than the CFL conditions. Therefore, a sub-cycling
strategy [46] is employed to boost the CPU time. The second-order Runge-Kutta-Heun method (see
example 3.2) is used for time integration. The CFL condition satisfies eq. (4.46) with C = 0.49. The
P1-Lagrange finite element method is employed to solve the Poisson equation. The second-order
MUSCL scheme is used to solve the ion transport equations and the SGCC-1, SGCC-2, MUSCL
and SG schemes are used to solve the electron continuity equation.

Finally, the simulation time of the discharge is T = 4 ms. All the geometric and numerical
parameters are gathered in table 5.1.

5.2.2 Definition of steady-state discharge based on electric current

We define the steady state of a corona discharge as when the value of the circuit current I (see
eq. (2.11)) does not change more than 10−4% between two successive time levels. More precisely,
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r1 0.35 mm VG 40 kV ψ 109 m−3

r2 1 mm Smax 5 mm n0
s 109 m−3

Lwire 16 cm N 400, 800, 3200 T 4 ms

d 40 mm C 0.49

Table 5.1: Parameters for one-dimensional wire-to-wire discharge simulations

if I(tl), I(tl+1) are the computed values of the electric current at resp. tl, tl+1, the steady state is
reached when ∣∣∣∣I(tl+1)− I(tl)

I(tl)

∣∣∣∣ < 10−6.

For this wire-to-wire test case, it happens that the steady state exists, or at least could be observed
numerically. The simulation time T = 4 ms is chosen since the steady state is reached at this instant
in all the simulations of this section.

5.2.3 Numerical results

We employ the notation NS to refer to a simulation with the scheme S that is used to solve the
electron continuity equation, on the N -cell grid. For example, the simulation with SGCC-2 on the
400-cell grid is denoted as 400SGCC-2.

At t = 0, a potential VG = 40 kV is applied on the anode and abruptly causes a breakdown. In
figs. 5.2a to 5.2d, we display the evolution of the field strength and the density of charged species
within the first 210 µs of the discharge, obtained by the 400SGCC-2 simulation. The field strength at
the anode surface (near x = 0) is over 10 MV m−1 and at the cathode surface (near x = 40 mm) is
about 4 MV m−1 which surpasses the critical ignition value around 3.75 MV m−1, thus we expect
ionization in the vicinity of both electrodes but mainly at the anode.

Within the first 10 µs, multiple electron avalanches occur ahead the anode, producing a high-
density ion cloud with np = nn = 2 × 1017 m−3. Meanwhile, the electrons are all absorbed by
the anode. The field drops abruptly because of the electric screening of the anode due to a large
concentration of negative charges. At t = 1 µs, we observe a current surge of about 200 µA (see
fig. 5.3a) due to steep variation of the field as well as absorption of electrons by the anode. At t = 10

µs, the current drops significantly to about 25 µA.

After t = 10 µs we enter the ion collection phase [109] where the ions drift towards the opposite-
sign electrode. As the negative-charge cloud is gradually absorbed, the screening effect around the
anode fades away and the field strength gradually increases.

From t = 60 µs and on, the field is only slightly distorted in the middle region due to ion drifting
while electron impact ionization takes place stably in the anode sheath, forming a positive corona.
The newly produced positive ions follow the previously departing ions to the cathode (see fig. 5.2c)
where a small “sink” separates the two ion clouds that will slightly decreases the current at t = 250

µs (see fig. 5.3a), which corresponds roughly to the instant when the sink arrives at the cathode.
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Figure 5.2: Evolution of the field strength and specie densities of the 400SGCC-2 simulation

Since ionization is no longer disrupted, the electron density within the anode sheath gradually
increases (see fig. 5.2b) and so does the circuit current I . On the other side, weak ionization and
electron secondary emission also form a cathode sheath. A population of negative ions appear near
the cathode at the beginning of the simulation due to high concentration of electrons, then drift
towards the anode. At the same time, electron attachment gradually increases the negative ion
density in front of the ion wave (see fig. 5.2d). From about t = 500 µs and on, the ion populations in
the middle region slightly increase until they reach a steady state.

In figs. 5.3a and 5.3c, we compare the numerical currents obtained by different flux schemes
applied to the discretization of the electron continuity equation. We mainly present the results on the
400 and 800-cell grids, since the CPU time of a simulation on the 3200-cell grid would take months
to finish. Therefore, we only present the result of 3200MUSCL up to t = 290 µs as a benchmark for
other cases.

We observe a tendency in which the current decreases as the grid is refined. However, the
standard SG scheme overestimates tremendously the current intensity even on the 800-cell grid,

119



Chapter 5

0 0.5 1 1.5 2 2.5 3 3.5 4

101.5

102

t (ms)

I
(µ
A
)

400MUSCL 800MUSCL
400SG 800SG
400SGCC-1 800SGCC-1
400SGCC-2 800SGCC-2
3200MUSCL

(a) t = 0-4 ms

0.15 0.2 0.25

101.8

101.9

102

t (ms)

I
(µ
A
)

(b) t = 0.11-0.29 ms

0.15 0.2 0.25

101.75

101.8

101.85

t (ms)

I
(µ
A
)

(c) t = 0.11-0.29 ms

Figure 5.3: Comparison of the circuit current I of different schemes and grid sizes, on 0-4 ms (left)
and on 110-290 µs (right)

comparing to the benchmark curve (in black) as well as other second-order schemes on the 400-cell
grid, which demonstrates its low numerical precision. The SGCC-1 scheme produces results very
close to the MUSCL scheme since they have the same convergence order. Interestingly, SGCC-2
gives virtually the same current on both 400-cell and 800-cell grids which also agree well with the
benchmark curve before t = 290 µs (see fig. 5.3c).

Figure 5.3c displays a zoom on the currents from t = 110 µs to 290 µs. Although MUSCL and
SGCC-1 produce fairly good results comparing to the standard SG scheme, on the 400-cell grid the
maximal discrepancy between the corresponding currents and the benchmark current is about 10
µA, or 15% of the benchmark current. On the contrary, the result of 400SGCC-2 is exceptionally close
to that of 3200MUSCL and even better than the results of 800MUSCL and 800SGCC-1. This shows the
advantage of high-order schemes since they allow simulations to be well performed on coarser grids.
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5.3 Simulation of streamer propagation on two-dimensional
cartesian grids

5.3.1 Description of the test case and numerical parameters

The second test case taken from [7] is the propagation of a positive streamer. This reference
provides a comparison between numerical solutions of six simulation codes from six different research
groups from China and Europe, and serves as a benchmark document for code verification in streamer
simulations. Based on the quality of their performance, we use the results of the groups CWI (the
Netherlands) [141] and FR (France) [48] as benchmarks to compare with our simulation results. CWI
used a 5-point central difference scheme whereas FR used the Fourier transform and a first-order
finite volume method to solve the Poisson equation. Both teams used the MUSCL scheme to solve the
electron continuity equation in which the CWI team used Koren’s limiter [78] and the FR team used
the superbee limiter. The CWI group employed in particular an adaptive mesh refinement technique
in their plasma solver, allowing the CPU time to be cut short to matter of minutes.

The cylindrical coordinates are used and the discharge is assumed to be symmetric in the azimuthal
direction. Therefore, the three-dimensional problem reduces to a two-dimensional one on radial and
axial coordinates (r, z). The computation domain Ω is the square (0, d)2 with d = 1.25 cm, hence
the left boundary of Ω aligns with the symmetric axis r = 0 (see fig. 5.4a). Two planar electrodes are
placed resp. at z = 0 and z = d. A potential VG = 18.75 kV is applied on the upper electrode while
the lower one is grounded.

The numerical model considered here only takes into account two species: electrons (e) and
positive ions (p). The simulation time T is 13-24 ns, so the drift and diffusion of ions can be neglected,
i.e. µp = dp = 0, since they are much heavier than the electrons and considered unmoved on this
short time scale. Only two plasma-chemical reactions are considered in this test case: electron impact
ionization e+N → 2e+ p and electron attachment e+N → n. Thus, the discharge model reads as
follows, 

∂tU(r, z) +∇ · F (E(r, z), Ê(r, z),U(r, z)) = S(Ê(r, z),U(r, z)),

−∇ · (ε0∇ϕ(r, z)) = ρ(r, z),

ρ(r, z) = q(np(r, z)− ne(r, z)), E(r, z) = −∇ϕ(r, z),

with U = (ne, np)
t, F = (−µeEne −De∇ne, 0)t and S = ((α− η)Nne, (α− η)Nne)

t. The coeffi-
cients µe, De, α and η depend only on the reduced field strength Ê = E/N with N = 2.414× 1025

m−3 and are given analytically in [7].

The Dirichlet conditions ϕ = VG, ϕ = 0 as well as the homogeneous Neumann condition are
applied for the potential resp. on the top, bottom and right boundaries of Ω. For the electron density,
the homogeneous Neumann condition is applied on all boundaries except the left one.

In order to initiate the formation of a streamer, an initial population of positive ions is injected
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Figure 5.4: Geometry of the discharge with the computation domain in brown (left) and initial electric
field with equipotential lines (right)

between the gap in the following way,

n0
p(r, z) = max

(
N0 exp

(
−r

2 + (z − z0)
2

σ2

)
, n0

)
, (5.7)

with N0 = 5 × 1018 m−3, σ = 0.4 mm, z0 = 1 cm and n0 = 109 or 1013 m−3. For the electrons,
n0
e(r, z) = n0. These initial data generate a high electric field strength (see fig. 5.4b) that facilitates

the primary avalanches.

In this section, the grids are partitioned into rectangular cells so that direction splitting of spatial
derivative operators is straightforward. In sections 5.3.2 and 5.3.5, we use the Strang splitting [136]
to solve the electron continuity equation. The advantage of this method is that it allows us to deal
with a two-dimensional problem with the numerical methods inherited from section 5.2 to solve
one-dimensional problems, so it is quite simple to implement. Then in sections 4.6 and 4.7, we study
the numerical schemes in “full” two dimensions (i.e. without direction splitting).

The grid consists of Nr ×Nz cells, with Nr cells on the r-direction and Nz on the z-direction.
In the axial direction, the grid size is always constant whereas in the radial direction, it is constant
from r = 0 to R0 = 0.6 mm and gradually becomes larger for r > 0.6 mm. The minimum grid size
in the r-direction ∆rmin is chosen close to the grid size in the z-direction ∆z. Furthermore, Nz is
always a power of 2, so that the Poisson’s equation could be tensorized by the Fourier transform in
the z-direction. In the radial direction, the resulting one-dimensional elliptic equation corresponding
to each frequency is solved with a first-order finite volume scheme (see section 3.3).

The third-order SSP-Runge-Kutta method is used for time discretization. The CFL condition
satisfies eq. (4.46) with C = 0.4. All geometric and numerical parameters are gathered in table 5.2.

The numerical results are presented as follows. In section 5.3.2, the simulations are conducted
with n0 = 1013 m−3 and Strang splitting combining with the SG, MUSCL, SGCC-1 or SGCC-2 for
flux approximation1. The superbee limiter is used in the MUSCL as well as SGCC-1 schemes and

1referred to as “SS” simulations for Strang Splitting
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d 1.25 cm Nz 212, 213, 214 n0
p eq. (5.7)

VG 18.75 kV Nr 262, 400, 600 n0
e 109, 1013 m−3

T 13 to 24 ns ∆rmin 3, 1.5, 0.8 µm
R0 0.6 mm C 0.4

Table 5.2: Parameters of the streamer propagation simulations

the GML limiter is used in the SGCC-2 scheme. In section 5.3.32, we solve the electron continuity
equation without direction splitting and without slope limiters, for n0 = 1013 m−3. Section 5.3.33

is almost identical to section 5.3.4 but with the Barth-Jespersen limiter introduced in section 4.7.3.
Finally, Section 5.3.54 is identical to section 5.3.2 but for n0 = 109 m−3.

Throughout these sections, we employ the notation ∆rminS to refer to a simulation with the
scheme S on the grid having a minimum size ∆rmin (µm). For example, the simulation with SGCC-2
on the 3 µm-grid is denoted as 3SGCC-2.

5.3.2 Numerical results with high initial density, direction splitting and
slope limiters (SS simulations)

In fig. 5.5, we display the evolution of the field strength E = |E|, obtained by the 3SGCC-2
simulation up to the simulation time T = 16 ns. What can be observed is that the initial Gaussian
distribution of positive ions enhances the electric field and transforms into a streamer within the first
4 ns, which then propagates in the direction of the cathode (the lower electrode). The space charge
in the streamer head is positive which affirms that this is a positive streamer and the field strength in
this region exceeds 14 MV m−1 after t = 4 ns (see fig. 5.6b) which is well beyond the ignition field
strength in air around 2.5 MV m−1. It is the electron avalanches taking place in the streamer head
that play a decisive role of the streamer advancement [126]. On the way to the cathode, the streamer
leaves behind a very weak-field column, known as streamer body, manifested by a dark-colored trace
in fig. 5.5. This is the quasi-neutral region consisting of free electrons and positive ions that form a
plasma conducting channel.

Figure 5.6b shows the axial component Ez of E on the symmetry axis in dotted lines as well as
the space charge ρ in solid lines. A large-gradient layer ofEz propagates along the axis with a narrow
but highly concentrated positive space charge distribution. In a cathode-directed streamer, this
positive-charge acts as a beacon that attracts and accelerates free electrons from outside the streamer
body so that the incident electrons have enough energy to ionize the gas in front of the streamer
head. Electrons produced from the avalanches then move inwards the streamer body, creating a
deficit of negative charges downstream of the streamer head. As a result, one could observe that the
streamer head advances progressively towards the cathode. In fig. 5.6a, the evolution of electron
density ne on the axis r = 0 is shown. Within the first 4 ns, the density increases exponentially until

2referred to as “WOL” for WithOut Limiters
3referred to as “WL” for With Limiters
4referred to as “SSL” for Strang Splitting with Low n0
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Figure 5.5: (SS) Evolution in time of the electric field strength E (MVm−1) of 3SGCC-2. Visualization
of the field is symmetrized by flipping on the axis r = 0 and only shown up to r = 2 mm.

it reaches about 1.4 × 1020 m−3. This phase corresponds to the formation phase of the streamer.
Beyond t = 4 ns, the electron density is maintained between 1020 to 1.2× 1020 m−3 in the streamer
body; this is the stable propagation phase.

It is interesting to note that when the propagation is stable, the peak space charge ρmax diminishes
in time but the width of the streamer head, denoted as Rρ, increases. Rρ is measured as the distance
between two point z1, z2 on the axis such that ρ|z1| = ρ|z2| = 1%ρmax. Moreover, the maximum field
strength on the symmetry axis, Emax(t) ≡ max

z

∣∣Ez|r=0(t,x)
∣∣, which locates in the streamer head is

almost independent of time. This indicates that charge concentration in the layer should be more
or less conserved in time. This conjecture was put forth and numerically verified in [85]. It was
postulated that the maximum field strength and the peak space charge were related in the following
way,

Emax ≈ ρmaxRρ

3ε0
− EL,

for some (almost constant) field strength EL.

In table 5.3, we list the values ofEmax, ρmax andRρ at different times t from the 1.5SGCC-1, 3SGCC-
2 and 1.5SGCC-2 simulations. We exclude the 3SGCC-1 simulation since the electron density in this
case is contaminated with seemingly nonphysical oscillations (see fig. 5.6a). The same phenomenon
is observed in the 3MUSCL simulation. Since these two simulations did carry on until they finished,
we suspect that the nature of these oscillations is not linked to the numerical schemes but to the
coarse grid size (∆rmin = 3 µm) that failed to capture correctly the ionization process and/or limit
effectively the numerical diffusion. The data in table 5.3 show that EL is around 2 MV m−1 and the
variations in time of ρmaxRρ and Emax are always less than 10%, which agree with the observations
in [85].
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Figure 5.6: (SS) Numerical results of 3SGCC-2 except the dashed line on the left figure which is
obtained by 3SGCC-1

1.5SGCC-1 3SGCC-2 1.5SGCC-2
4 ns 8 ns 12 ns 16 ns 4 ns 8 ns 12 ns 16 ns 4 ns 8 ns 12 ns 16 ns

Rρ 63 75 95 122 61 73 89 116 61 72 93 124

ρmax 7.7 6.2 4.8 3.9 7.5 6.1 4.9 4 8.2 6.5 4.9 4

Rρ × ρmax

3ε0
18.1 17.4 17.2 17.9 17.3 16.9 16.3 17.5 18.7 17.4 17.2 18.4

Emax 16.3 15.6 15.1 15.6 16.1 15.4 15 15.5 16.7 15.8 15.3 15.9

EL 1.8 1.8 2.1 2.3 1.2 1.5 1.3 2 2 1.6 1.9 2.5

Table 5.3: (SS) Evolution in time of ρmax (C m−3), Rρ (µm) and Emax (MV m−1) obtained with
1.5SGCC-1, 3SGCC-2 and 1.5SGCC-2
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We now compare the new SGCC-1 and SGCC-2 schemes with other existing methods, namely
the standard SG and MUSCL schemes. Figure 5.7 show resp. the streamer length L(t) as well as the
maximum field strength Emax(t) as a function of L(t). The streamer length is defined as

L(t) = z0 − zmax(t),

where zmax(t) ≡ argmax
z

∣∣Ez|r=0(t)
∣∣. The simulations that we use as benchmarks from the CWI and

FR groups were performed on the 0.8 µm-grid, and are denoted subsequently as 0.8CWI and 0.8FR.
Comparing to these benchmark results, the relative error on the streamer length generated by any of
our simulations is computed in the following way,

E(t) =
∣∣L(t)− Lbenchmark(t)

∣∣
Lbenchmark(t)

, (5.8)

where Lbenchmark(t) is the streamer length produced by one of the benchmark simulations, i.e. 0.8CWI
or 0.8FR. The relative errors for the SGCC-1 and SGCC-2 schemes are presented in fig. 5.8.

At first, we remark from fig. 5.7 that the SG scheme overestimates both the streamer length and
the maximum field strength and since the streamer propagates too fast, it reaches the cathode within
only 13 to 15 ns comparing to 16 ns in simulations with other schemes. Even on the 0.8 µm-grid, the
blue curves of the SG schemes deviate visibly too much from the benchmarks. Similar overestimation
behavior of the SG scheme was also observed in [29] which highlights the lack of numerical precision
of this method.

The MUSCL and SGCC-1 schemes in the other hand produce much more accurate results. On
the 3 µm-grid, the largest relative error generated by both schemes is less than 10% with respect
to both benchmarks, while on the 0.8 µm-grid they are even less than 1% (see fig. 5.8). We remark
that on the 3 µm-grid, both schemes produce Emax that is not quasi-constant in time as speculated
by [85]. We suspect that this might be linked to the fact that numerical results on the 3 µm-grid
of these schemes are contaminated with nonphysical oscillations (see again fig. 5.6a). Therefore, it
is recommended to use better-resolution grid to obtain high-quality results. But in general, both
second-order schemes show better accuracy than the SG scheme and the difference between their
numerical results and the benchmarks decreases with the grid size (see figs. 5.7 and 5.8).

The final method, SGCC-2, show finest results with relative errors never exceeding 3% (see fig. 5.8).
Moreover, in terms of maximum field strength, we have seen in table 5.3 and now from fig. 5.7 that
Emax is quite steady, even on the 3 µm-grid, during the stable propagation phase (corresponding
to t > 4 ns or L(t) > 0.4 cm). Nevertheless, we remark that the relative error of 0.8SGCC-2 turns
out to be almost always larger than 1.5SGCC-2 with respect to both benchmarks - an undesirable
result in any mesh convergence test, but the relative errors almost never exceed 1%. This might be
explained by the fact that (i) the benchmarks used different discretizations of the Poisson equation,
(ii) different approximations of coefficients on cell edges, (iii) the low-order approximation of the
Poisson equation, etc. or (iv) because the flux schemes used in the benchmarks are second-order,
therefore their solutions are less accurate than those of the third-order SGCC-2 scheme.

In terms of computation costs, table 5.4 shows the CPU time, the simulation time as well as the
CPU processor type used in each test case. Note that the simulation times of the SG scheme are not
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Figure 5.7: (SS) Numerical results of the SG, MUSCL, SGCC-1 and SGCC-2 schemes as well as of
the teams CWI [140] and FR [48]. We subtract νt from L(t), with ν = 0.05 cm ns−1, to enhance the
difference between the curves.
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Figure 5.8: (SS) Relative errors on the streamer length L generated by the SGCC-1 and SGCC-2
schemes

SG SGCC-1 SGCC-2 MUSCL
∆rmin

TCPU T TCPU T TCPU T TCPU T
CPU processor

3 µm 2.1 12 2.9 16 3.3 16 2.7 16 i5-10210U @ 1.60GHz
1.5 µm 40 14 44 16 111 16 41 16 i5-10210U @ 1.60GHz
0.8 µm 187 15 334 16 768 16 327 16 E5-4650 @ 2.70GHz

Table 5.4: (SS) CPU time TCPU (hours), simulation time T (ns) and CPU processor type used in the
simulations

the same as other schemes since it is very diffusive that the streamer reaches the cathode before
T = 16 ns.

In order to study the efficiency of the schemes in terms of trade-off between CPU time and
numerical accuracy, we evaluate the total relative error E tot of each schemewith respect to benchmark
results in function of the effective CPU time T CPU, both defined in the following way,

E tot =

∣∣∣∣∑i L(ti)− Lbenchmark(ti)∑
i L

benchmark(ti)

∣∣∣∣ , (5.9)

T CPU =
T ref

T
TCPU × CPU clock rate (GHz), (5.10)

where T ref = 16 ns, T is measured in ns, ti ∈ { 1 ns, 2 ns, . . . , T } and the CPU clock rates are given
in table 5.4.

The T CPU-E tot curves are displayed in fig. 5.95, showing that the relative errors of the 3SGCC-2
simulation (2 to 3%) are closed to those of 1.5SGCC-1 (3 to 4%) but the CPU time of the former is
only 4% of the latter. Similarly, the relative errors of 1.5SGCC-2 (0.4 to 2%) are comparable to those
of 0.8SGCC-1 (0.3 to 1%) but the CPU time of the former is one-fifth of the latter. Therefore, the

5note that simulations on more refined grids cost more CPU time
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third-order SGCC-2 scheme is more efficient than the second-order SGCC-1, at least for the streamer
discharge in this section.

In summary, all four numerical schemes demonstrate their capability to numerically reproduce a
complex and dynamic electric discharge and exhibit mesh convergence with decreasing grid size.
Among them, the SGCC-2 scheme proves to be the most accurate and efficient method. However, this
assertion only holds for these simulations using the Strang splitting, as we shall see in sections 5.3.3
and 5.3.4 that it is no longer true.

5.3.3 Numerical results with high initial density, without direction split-
ting and without slope limiters (WOL simulations)

We investigate here the numerical results of the SGCC-p schemes with p = 1 to 5. The initial
density n0 is fixed to 1013 m−3 and the electron continuity equation is directly discretized in two
dimensions. No slope limiters are used since as it turns out, the simulations in this section could be
conducted without any limiting techniques.

For the benchmark solutions, we use instead the results of the Strang splitting 0.8SGCC-2
method in section 5.3.2 instead of the CWI and FR groups. The evolution in time of the streamer
length L as well as the maximum field strength Emax are shown in fig. 5.10. Simulations are carried
out on the 3 µm-grid and 1.5 µm-grid.

The relative errors defined in eq. (5.8) for the SGCC-1,2,3,4,5 schemes are presented in fig. 5.11.

In contrast to section 5.3.2, the two-dimensional 3SGCC-1 simulation yields a more stable maxi-
mum field strength during the propagation phase (see fig. 5.10). In particular, the SGCC-1 scheme
is even more accurate than the SGCC-2 scheme on the 3 µm-grid, with the relative error on the
streamer length around 3% max, comparing to 7% max of the latter (see fig. 5.11). Another surprise
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Figure 5.10: (WOL) Numerical results of the SGCC-1,2,3,4,5 schemes as well as of the Strang splitting
0.8SGCC-2 simulation in section 5.3.2 as benchmark. We subtract νt from L(t), with ν = 0.05 cm

ns−1, to enhance the difference between the curves.
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Figure 5.11: (WOL) Relative errors on the streamer length L generated by the SGCC-1,2,3,4,5 schemes

is that the SGCC-5 scheme is also not as good as the SGCC-2 scheme on the 3 µm-grid.

However, on the 1.5 µm-grid, all the curves are visibly very close to each other as well as to the
benchmark curves in fig. 5.10, with the cumulative error (at the end) around 0.6 to 1%. The relative
errors of the SGCC-2 scheme become almost identical to the SGCC-1 scheme. Although we do not
have the numerical results of the SGCC-5 scheme for t > 6 ns, it seems from fig. 5.11 that the relative
errors of 1.5SGCC-5 are close to 1.5SGCC-3 and 1.5SGCC-4, which are well smaller than 1.5SGCC-1
and 1.5SGCC-2. This is consistent with the convergence order of the schemes.

5.3.4 Numerical results with high initial density, without direction split-
ting and with slope limiters (WL simulations)

The use of Barth-Jespersen limiter described in section 4.7.3 does not change much the numerical
solutions, at least on the 3 µm-grid (see fig. 5.12). The discrepancy on the streamer length (fig. 5.13)
is roughly the same as the test case in section 5.3.3, with a minor exception that the relative errors of
the SGCC-5 scheme are smaller than SGCC-1 in this section.

5.3.5 Numerical results with low initial density, direction splitting and
slope limiters (SSL simulations)

In this section, we present the numerical results of the same schemes, on the same grids as
in section 5.3.2 but with lower initial density n0 = 109 m−3. Figure 5.14 shows that the electron
density ne of this case is almost as twice as in section 5.3.2 (see fig. 5.6a). Comparing to the latter,
the simulations in this section are more challenging due to the steeper field gradient in the streamer
head and the streamer takes longer, roughly T = 24 ns, to cross the inter-electrode gap. Indeed, on
the 3 µm-grid, only the 3SGCC-2 simulation succeeds to reach the cathode, whereas 3SG stops at
t = 3 ns while 3SGCC-1 and 3MUSCL both crash at t = 10 ns due to the amplification of nonphysical
oscillations that were similarly observed in fig. 5.6a. From fig. 5.14, we note that these oscillations
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Figure 5.12: (WL) Numerical results of the SGCC-1,2,3,4,5 schemes as well as of the Strang splitting
0.8SGCC-2 simulation in section 5.3.2 as benchmark. We subtract νt from L(t), with ν = 0.05 cm
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Figure 5.13: (WL) Relative errors on the streamer length L generated by the SGCC-1,2,3,4,5 schemes
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Figure 5.14: (SSL) Numerical results of 1.5SGCC-1 and 1.5SGCC-2 at T = 20 ns

even persist for 1.5SGCC-1 (as well as for 1.5MUSCL but not shown), as the electron density as well as
the field strength exhibit a wavy structure on the two laterals of the streamer body. Additionally, we
also observe intermittent peaks of the electron density inside the streamer body. On the contrary, the
results of 1.5SGCC-2 are “smooth”. On the 3 µm-grid, the SGCC-2 scheme (not shown here) behaves
in the same way as 1.5SGCC-1 and also manages to stay stable until the end of simulation.

The streamer length L(t) and the maximum field strength Emax are shown in fig. 5.15. The
benchmarks are again the solutions of the CWI and FR groups. As in section 5.3.2, the SG scheme
is always too diffusive that it provides inadequate results. On the 1.5 µm-grid it crashes at t = 10 ns,
while on the 0.8 µm-grid it overestimates L as well as Emax and the streamer already reaches the
cathode at t = 20 ns.

The relative errors defined in eq. (5.8) for the SGCC-1 and SGCC-2 schemes are presented in
fig. 5.16.

On fig. 5.15, we observe the aforementioned oscillations that exhibit on the maximum field
strength of 3SGCC-2, 1.5SGCC-1 and 1.5MUSCL, which disappear once the grid size decreases. From
figs. 5.15 and 5.16, we remark that the numerical results of 3SGCC-2 are comparable to 1.5SGCC-1 as
well as 1.5MUSCL, having relative errors around 10% with respect to both benchmarks. On the other
hand, 1.5SGCC-2 are roughly the same as 0.8SGCC-1 and 0.8MUSCL with the maximum relative errors
around 2 to 3%. The relative errors of 0.8SGCC-2 with respect to the 0.8CWI benchmark are smaller
that those of 1.5SGCC-2; however, they become mysteriously closer as the simulations advance in
time. With respect to the 0.8FR benchmark, the relative errors of 0.8SGCC-2 are definitely larger than
1.5SGCC-2, suggesting that other sources of numerical error (for example from the Poisson equation)
are relevant or because that the numerical result of 0.8FR has not come close to the mesh-converged
solution.
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Figure 5.15: (SSL) Numerical results of the SG, MUSCL, SGCC-1 and SGCC-2 schemes as well as of
the teams CWI [140] and FR [48]. We subtract νt from L(t), with ν = 0.03 cm ns−1, to enhance the
difference between the curves.
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Figure 5.16: (SSL) Relative errors on the streamer length L generated by the SGCC-1 and SGCC-2
schemes

SG SGCC-1 SGCC-2 MUSCL
∆rmin

TCPU T TCPU T TCPU T TCPU T
CPU processor

3 µm 8.2 24 i5-10210U @ 1.60GHz
1.5 µm 48 24 62 24 44 24 E7-8890 @ 2.20GHz
0.8 µm 576 20 797 24 2755 23 1000 24 X7550 @ 2.00GHz

Table 5.5: (SSL) CPU time TCPU (hours), simulation time T (ns) and CPU processor of the simulations

Table 5.5 shows the CPU time, the simulation time as well as the CPU processor used in each
simulation, except for 3SG, 3SGCC-1, 3MUSCL and 1.5SG which crash before the streamer reaches
the cathode.

Figure 5.17 shows the T CPU-E tot curves of the schemes SGCC-1 and SGCC-2, with T ref = 24 ns

in eq. (5.10). It follows from the visualization that the total relative errors of 3SGCC-2 are roughly the
same as 1.5SGCC-1 but the CPU time of the former is only 13% of the latter. Similarly, the CPU time
of 1.5SGCC-2 is one-tenth of 0.8SGCC-1 for the same level of precision. Therefore, the third-order
SGCC-2 scheme is again more efficient than the second-order SGCC-1 for the streamer discharge in
this section.

5.4 Closing remarks
This chapter investigated the capability of the SGCC schemes in the simulation of some complex

electric discharges in air. The numerical results of this chapter were obtained with self-implemented
codes: one for the corona discharge in section 5.2 and the other for the positive streamer propagation
in section 5.3. In particular, our code for the streamer simulation was verified against the works of
two research groups from Europe that had been published in [7].

Evidences in sections 5.2, 5.3.2 and 5.3.5 show the accuracy gain with the high-order Scharfetter-
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Figure 5.17: (SSL) T CPU-E tot curves of the SG, MUSCL, SGCC-1 and SGCC-2 schemes with respect
to the benchmarks 0.8CWI and 0.8FR

Gummel schemes since with the same grid size, the quality of the numerical solutions is better
as the precision order is increased. Particularly, sections 5.3.2 and 5.3.5 also show that the third-
order SGCC-2 scheme is more efficient than the second-order SGCC-1 in terms of trade-off between
numerical accuracy and CPU time. Moreover, section 5.3.5 highlights the robustness of the SGCC-2
method as it succeeds to reach the simulation time, even on the coarsest grid, as opposed to the SG
or SGCC-1 schemes. The simulations in these sections used the Strang splitting to discretize the
electron continuity equation.

The numerical results of sections 5.3.3 and 5.3.4 validate the SGCC-1,2,3,4,5 schemes, but also
show on the contrary to sections 5.2, 5.3.2 and 5.3.5 that the SGCC-2 scheme yields less accurate
solutions comparing to SGCC-1 on the 3 µm-grid. A possible explanation for this observation is that
the constant error of SGCC-2 is greater than that of SGCC-1. On the 1.5µm-grid though, the two
schemes perform equivalently well.

We remark again that the Poisson equation was solved with first-order schemes throughout this
chapter, so the global precision is first-order. Nevertheless, it seems that the quality of the numerical
results depends essentially on the discretization of the electron continuity equation, as we observe
from sections 5.2 and 5.3 that with the same grid size, the solutions came closer to the benchmarks
as the precision order was increased. The influence of the Poisson equation should not be totally
disregarded, though, without any hard evidences in certain unwanted situations such as the rise in
total relative error of the 0.8SGCC-2 simulation in sections 5.3.2 and 5.3.5 and the under-performance
of the SGCC-2,5 schemes on the 3 µm-grid in sections 5.3.3 and 5.3.4. Therefore, we think that it will
be interesting if a study with high-order approximation of the Poisson equation is carried out in the
future.

A general take-away from this chapter is that high-order schemes allow us to save time as they
could be performed on coarse grids and still yield satisfactory solutions. However, their combination
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with explicit time integration still keeps them away from large-scale simulations, as it took hours to
months to complete a corona discharge simulation in one dimension (section 5.2), or hours to
simulate some tens of nanoseconds of a streamer discharge (section 5.3). Consequently, the main
goal of the next chapter is to develop an implicit time integration strategy that is able to considerably
shorten the CPU time of discharge simulations.

5.5 Remarques finales
Dans ce chapitre, on a étudié la capacité des schémas SGCC à simuler certaines décharges

électriques complexes dans l’air. Les résultats numériques de ce chapitre ont été obtenus avec les
codes réalisés de scratch : l’un pour la décharge couronne dans la section 5.2 et l’autre pour la
propagation de streamers positifs dans la section 5.3. En particulier, nos codes ont été vérifiés contre
les travaux de deux groupes de recherche européens qui avaient été publiés dans [7].

Les preuves dans les sections 5.2, 5.3.2 et 5.3.5 montrent le gain de précision avec les schémas de
Scharfetter-Gummel d’ordre élevé puisqu’avec la même taille de maillage, la qualité des solutions
numériques est meilleure à mesure que l’ordre de précision augmente. En particulier, les sections 5.3.2,
5.3.5 et 5.3.5 montrent également que le schéma SGCC-2 du troisième ordre est plus efficace que le
SGCC-1 du deuxième ordre en termes de l’équilibre entre la précision numérique et le temps de CPU.
En outre, la section 5.3.5 met en évidence la robustesse de SGCC-2 puisqu’elle parvient à atteindre
la fin de simulation, même sur le maillage le plus grossier, contrairement aux SG et SGCC-1. Les
simulations présentées dans ces sections ont utilisé le splitting de Strang pour discrétiser l’équation
de continuité des électrons.

Les résultats numériques des sections 5.3.3 et 5.3.4 valident les schémas SGCC-1,2,3,4,5, mais
montrent également, contrairement aux sections 5.2, 5.3.2 et 5.3.5, que SGCC-2 produit une solution
moins précise que SGCC-1 sur le maillage de 3 µm. Cette observation peut s’expliquer par le fait que
la constante d’erreur de SGCC-2 est plus importante que celle de SGCC-1. Sur le maillage de 1.5 µm
cependant, les deux schémas ont des performances équivalentes.

Nous remarquons à nouveau que l’équation de Poisson a été résolue avec des schémas du premier
ordre tout au long de ce chapitre, de sorte que la précision globale est du premier ordre. Néanmoins,
il semble que la qualité des résultats numériques dépende essentiellement de la discrétisation de
l’équation de continuité des électrons, car nous observons dans les sections 5.2 et 5.3 qu’avec la
même taille de maillage, les solutions se rapprochent des références à mesure que l’ordre de précision
augmente. L’influence de l’équation de Poisson ne doit cependant pas être totalement ignorée,
en l’absence de preuves tangibles dans certaines situations indésirables telles que l’augmentation
de l’erreur relative totale de la simulation 0,8SGCC-2 dans la sections 5.3.2 and 5.3.5 et la sous-
performance des schémas SGCC-2,5 sur le maillage de 3 µm dans la sections 5.3.3 and 5.3.4. Par
conséquent, nous pensons qu’il serait intéressant de réaliser à l’avenir une étude avec une approxi-
mation d’ordre élevé de l’équation de Poisson.

Il ressort de ce chapitre que les schémas d’ordre élevé nous permettent de gagner du temps, car
ils peuvent être lancés sur des maillages grossiers tout en produisant des solutions satisfaisantes.
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Cependant, leur combinaison avec une intégration temporelle explicite les tient encore à l’écart des
simulations à grande échelle, car il a fallu des heures à des mois pour terminer une simulation de
décharge de couronne dans une dimension (section 5.2), ou des heures pour simuler quelques
dizaines de nanosecondes d’une décharge de streamer (section 5.3). Par conséquent, l’objectif
principal du chapitre suivant est de développer une stratégie d’intégration temporelle implicite
capable de réduire considérablement le temps de CPU des simulations.
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6.0 Aperçu
L’objectif de ce chapitre est de concevoir une stratégie d’intégration implicite en temps pour la

simulation de la décharge couronne.

Comme nous l’avons déjà mentionné, la simulation de la décharge couronne s’avère très difficile en
termes de temps de CPU car il existe une grande disparité entre les échelles de temps caractéristiques
de plusieurs phénomènes au sein de la décharge. En effet, l’échelle de temps du régime couronne
est de l’ordre de 10−4 s, mais l’échelle de temps du transport d’électrons n’est que de l’ordre des
picosecondes. La résolution du modèle de décharge (2.13) avec une méthode explicite en temps est
exhaustive car les pas de temps numériques sont limités par la condition de CFL liée au transport
d’électrons.

Certains efforts numériques ont été réalisés pour réduire le temps de calcul. Par exemple, Adamiak
& Atten [2] ont proposé un modèle simplifié et stationnaire composé de l’équation de Poisson et
d’une équation non linéaire pour la charge d’espace, au détriment de la capture de la dynamique de
décharge. Seimandi et al. [132] ont proposé des modèles asymptotiques pour réduire la dimension
du problème (de 2D à 1D) dans les gaines d’électrodes. Dufour & Rogier [46] ont développé un
algorithme de sous-cyclage dans le solveur de plasma COPAIER de l’ONERA.

Il convient dementionner qu’il existe desméthodes implicites qui ont été appliquées à la simulation
des décharges de gaz dans l’air, mais pas nécessairement pour le régime couronne. Ventzek et al. [155]
ont proposé un schéma semi-implicite qui a permis de relâcher la contrainte de pas de temps liée au
temps de relaxation diélectrique. Hagelaar& Kroesen [66] ont proposé un schéma similaire qui prend
en compte l’équation de l’énergie moyenne des électrons. Il existe d’autres méthodes numériques
telles que les schémas entièrement implicites [11, 119, 156] ou une mise-à-jour asynchrone des
variables [147], mais leurs développements visent généralement à traiter les microdécharges où
le temps de relaxation diélectrique miniature est miniature. Par conséquent, leur application aux
décharges couronnes, où le temps de relaxation diélectrique est beaucoup plus important, ne semble
pas être bénéfique.

Un obstacle au développement de la méthode implicite présentée dans ce chapitre est la contrainte
de maintenir la densité électronique ne toujours supérieure à une densité prescrite qui est désignée
par ψ(x).

Cette densité prescrite est appelée densité de fond, et même si elle dépend a priori de x, ψ
est souvent supposée constante. L’imposition de la contrainte ne(t,x) ≥ ψ(x) peut être inter-
prétée comme une tentative d’équilibre entre la nécessité de produire des solutions numériques qui
s’accordent bien avec les mesures expérimentales et la simplicité du modèle de décharge afin de limiter
la complexité numérique. En fait, le schéma cinétique de la décharge dans les simulations dédiées au
contrôle d’écoulements tend à être simplifié autant que possible, puisqu’il n’est pas nécessaire de
surreprésenter les réactions chimiques qui se produisent sur des échelles de temps beaucoup plus
petites que celle du vent ionique. Par exemple, l’équipe de J.-P. Bœuf a utilisé un modèle cinétique à
trois espèces et quatre réactions (décrit dans example 2.1) dans ses études numériques [17, 19, 15, 87,
146]. En imposant ne ≥ ψ, on peut limiter le modèle cinétique à un modèle simple, mais aussi ajuster
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les solutions numériques aux données expérimentales en choisissant une valeur raisonnable pour ψ.
Cette approche de la densité de fond a été utilisée dans COPAIER pour reproduire les courants de
circuit mesurés dans une décharge couronne entre un fil et un profil aérodynamique [99], où ψ a été
pris entre 1011-1012 m−3.

D’autres approches ont également été adoptées pour calibrer le courant numérique. Le modèle
proposé par Adamiak&Atten [2] a été validé par rapport aux données expérimentales pour différentes
géométries d’actionneur telles que le point-plan [2], l’aiguille-plan [165], le fil-cylindre-plaque [103]
et l’aiguille-anneau [159]. Un modèle similaire, mais dépendant du temps, a été proposé par Guan et
al. [62] mais la condition limite pour l’équation de charge dépend du courant électrique expérimental.

La résolution du système de décharge (2.13) et l’imposition de la contrainte ne ≥ ψ semblent sim-
ples à première vue : à l’instant tl, nous calculons l’approximant discret (nl+1

e,K)K=1,...,N de ne(tl+1,x)

puis nous prenons nl+1
e,K := max(nl+1

e,K , ψ) pour chaque K = 1, . . . ,N . Cette méthode fonctionne
bien avec les schémas explicites en temps, mais beaucoup moins bien avec les schémas implicites,
comme on le verra dans section 6.6, car elle ne conserve pas le courant en régime stationnaire (si la
décharge en régime stationnaire existe).

Afin de concevoir une méthode d’intégration implicite “correcte”, nous proposons dans ce chapitre
une reformulation mathématique du modèle de décharge de sorte que la contrainte sur la densité
électronique apparaisse dans la loi de conservation des électrons. La dérivation formelle de cette
reformulation du modèle est présentée dans la section 6.2. La section 6.3 réexamine la question de
l’existence et de l’unicité de la solution de la loi de conservation des électrons proposée sous certaines
hypothèses spécifiques. La section 6.4 discute une stratégie de discrétisation du modèle de plasma afin
que les lois de conservation des particules soient découplées de l’équation de Poisson ainsi que les
traitements spécifiques pour les termes sources. Ensuite, nous étudions dans la section 6.5 quelques
algorithmes pour résoudre numériquement le modèle de décharge proposé. Comme le problème est
non linéaire en raison de la présence de la contrainte de densité électronique, les méthodes directes
ne sont pas appropriées et, par conséquent, des méthodes de splitting telles que le splitting de Lie
ou des méthodes itératives telles que les algorithmes de Douglas-Rachford ou de Gauss-Seidel sont
employées. Enfin, des tests numériques sont effectués dans la section 6.6 pour évaluer la performance
de ces algorithmes.

6.1 Overview
The goal of this chapter is to devise an implicit time integration strategy for the simulation of

corona discharge.

As mentioned earlier, simulation of corona discharge proves to be very challenging in terms of
CPU time [111] since there is a great disparity among characteristic time scales of several phenomena
within a discharge. Indeed, the time scale of corona regime is on the order of 10−4 s, but the time
scale of electron transport is only on the order of picoseconds. The resolution of the discharge model
(2.13) with an explicit time method is exhaustive because the numerical timesteps are limited by the
CFL condition related to electron transport.
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Some numerical efforts have been made to reduce the CPU time. For instance, Adamiak & Atten
[2] proposed a simplified, stationary model consisting of the Poisson equation and a nonlinear
equation for the space charge, at the expense of capturing the discharge dynamics. Seimandi et al.
[132] proposed some asymptotic models to reduce the dimension of the problem (2D to 1D) in the
electrode sheaths. Dufour & Rogier [46] developed a sub-cycling algorithm in ONERA’s plasma
solver COPAIER.

It is worth mentioning that there exists implicit methods that have been applied in simulation of
gas discharge in air, but not necessarily suitable to the corona regime. Ventzek et al. [155] proposed a
semi-implicit schemewhich allowed to relax the timestep constraint related to the dielectric relaxation
time. Hagelaar & Kroesen [66] proposed a similar scheme that takes into account the electron mean
energy equation. There are other numerical methods such as fully-coupled implicit schemes [11,
119, 156] or asynchronous time stepping [147], but their developments usually aim to deal with the
miniature dielectric relaxation time in microdischarges. Hence, their application in corona discharge,
where the dielectric relaxation time is much larger, does not seem to be beneficial.

An obstacle to the development of the implicit method in this chapter is the requirement to keep
the electron density ne always higher than a prescribed density that is denoted as ψ(x).

This prescribed density is called floor density, and even though it depends a priori on x, ψ
is frequently assumed to be constant. The imposition of the constraint ne(t,x) ≥ ψ(x) can be
interpreted as an attempt to balance the need of producing numerical solutions that agree well
with experiment measurements, and the simplicity of the discharge model to keep the numerical
complexity low. As a matter of fact, kinetic schemes in simulations dedicated to flow control tend to
be simplified as much as possible, since there is no need to over-represent the chemical reactions
which occur on much smaller time scales than that of ionic wind. For instance, the team of J.-P. Bœuf
used a three-specie, four-reaction kinetic model (described in example 2.1) in their numerical studies
[17, 19, 15, 87, 146]. By imposing ne ≥ ψ, one can limit the kinetic model to a simple one, but also
can fit the numerical solutions with experiment data by choosing a reasonable value for ψ. This floor
density approach was employed in COPAIER to reproduce measured circuit currents in a corona
discharge between a wire and an airfoil [99], and ψ was determined to be between 1011-1012 m−3.

There has also been other approaches to calibrate the numerical current. The model proposed by
Adamiak & Atten [2] have been validated against experiment data for different actuator geometries
such as point-to-plane [2], needle-to-plane [165], wire-cylinder-plate [103] and needle-to-ring [159].
A similar model, but time-dependent, was proposed by Guan et al. [62] but the boundary condition
for the charge equation depends on experimental electric currents.

The resolution of the discharge system (2.13) and the imposition of the constraint ne ≥ ψ seems
to be simple at first glance: at time tl, we compute the discrete approximants (nl+1

e,K)K=1,...,N of
ne(t

l+1,x), then set nl+1
e,K := max(nl+1

e,K , ψ) for every K = 1, . . . ,N . This method works well with
explicit time schemes but not so much with implicit schemes as will be shown in section 6.6, since it
does not conserve the steady-state current (if the steady-state discharge exists).

In order to devise a “correct” implicit time integration method, in this chapter, we propose a
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mathematical reformulation of the discharge model so that the constraint on the electron density
appears in the electron conservation law. The formal derivation of this model reformulation is
presented in section 6.2. Section 6.3 revisits the question of existence and uniqueness of the solution
of the proposed electron conservation law under some specific hypotheses. Section 6.4 discusses
a discretization strategy of the plasma model so that the particle conservation laws are decoupled
from the Poisson equation as well as specific treatments for the source terms. Then, we investigate in
section 6.5 some algorithms to solve (numerically) the proposed discharge model. Since the problem
is nonlinear due to the presence of the electron density constraint, direct methods are not suitable
to use and hence, splitting methods such as Lie operator splitting or iterative methods such as
Douglas-Rachford or Gauss-Seidel algorithms are employed. Finally, numerical tests are performed
in section 6.6 to evaluate the performance of these algorithms.

6.2 Formulation of the gas discharge model with floor density

Let us consider an open bounded domain (0, T )× Ω ⊂ R× Rd (d = 1, 2). As first mentioned in
sections 5.2 and 5.3, we introduce a positive function defined on Ω,

ψ(x) ≥ 0, x ∈ Ω,

which is the floor density, to represent the smallest electron density that exists because of various
plasma-chemical processes unaccounted for by the discharge model. We enforce the following
constraint on the electron density,

ne(t,x) ≥ ψ(x), ∀(t,x) ∈ (0, T )× Ω, (6.1)

which also satisfies a priori the equation, recalling from eq. (2.1),∂tne +∇ · f e = Se,

f e = uene −De∇ne,
(6.2)

where ue, De and Se are resp. the electron drift velocity, diffusion coefficient and source term.

The problem as a whole is ill-posed since the solution of eq. (6.2) does not necessarily respect the
constraint (6.1). Therefore, a new reformulation of the problem is required. In the next parts, we
consider a Hilbert spaceH of functions defined on Ω.

Definition 6.1 (Characteristic functions). Let K be a non-empty closed convex subset of H. The

characteristic function IK of K is defined in the following way,

∀g ∈ H, IK(g) =

0 if g ∈ K,

+∞ if g /∈ K.

Definition 6.2 (Subdifferentials [5]). LetG be a function fromH toR∪{+∞} such that dom(G) ̸= ∅1.
We define, for g ∈ dom(G) and h ∈ H,

DG(g)(h) = lim
ε→0+

G(g + εh)−G(g)

ε
∈ [−∞,+∞],

1dom(G) is the domain of G
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which is known as the derivative from the right of G at g in the direction of h. The subdifferential of

G at g is the closed convex subset

∂G(g) = { v ∈ H∗ | ∀h ∈ H, ⟨v, h⟩ ≤ DG(g)(h) } , (6.3)

where ⟨·, ·⟩ is the duality pairing between H and its topological dual H∗. The elements v of ∂G(g) are

called subgradients of G at g.

Furthermore, if G is a convex functional, then

∂G(g) = { v ∈ H∗ | ∀h ∈ H, G(g) + ⟨v, h− g⟩ ≤ G(h) } .

Let us denote as Kψ the closed convex set of functions in H that satisfy the constraint eq. (6.1),
i.e.

Kψ = { g ∈ H | g(x) ≥ ψ(x) for a.e. x ∈ Ω } 2.

We could easily verify that IKψ is a convex function onH and thus, from definition 6.2 we have

∂IKψ(g) =


∅ if g /∈ Kψ,

{ 0 } if g > ψ,

{ v ∈ H∗ | ∀h ∈ Kψ, ⟨v, h− g⟩ ≤ 0 } otherwise.

(6.4)

As we have discussed, the constraint eq. (6.1) may not be compatible with eq. (6.2), but if we
assume anyway, for now, that the solution ne of eq. (6.2) satisfies the constraint (6.1), i.e. ne(t, ·) ∈ Kψ

for a.e. t, then we would formally have

Se(t, ·)− ∂tne(t, ·)−∇ · f e(t, ·) + ne(t, ·) = ne(t, ·) ≥ ψ. (6.5)

This relations suggest that the projection of Se(t, ·)− ∂tne(t, ·)−∇ · f e(t, ·) + ne(t, ·) on Kψ is
in fact ne(t, ·). On the other hand, we have the following functional analysis result from [27].

Theorem 6.1. LetH be a Hilbert space endowed with an inner product (·, ·) andK ⊂ H be a non-empty

closed convex. Then for all h ∈ H, there exists a unique g ∈ K, called the projection of h on K, such

that

|h− g| = min
v∈K

|h− v|,

where | · | is the norm induced from (·, ·). Furthermore, g is characterized by the property

(h− g, v − g) ≤ 0, ∀v ∈ K. (6.6)
2without ambiguity, we write g ≥ ψ
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Thus from eqs. (6.5) and (6.6),(
Se(t, ·)− ∂tne(t, ·)−∇ · f e(t, ·) + ne(t, ·)− ne(t, ·), v − ne(t, ·)

)
≤ 0,

for a.e. t ∈ (0, T ) and for all v ∈ Kψ. By using the Riesz representation theorem to identify
Se(t, ·)− ∂tne(t, ·)−∇ ·f e(t, ·) with a (unique) element of H∗, this inequality and eq. (6.4) formally
imply that Se(t, ·) − ∂tne(t, ·) − ∇ · f e(t, ·) is an element of the set ∂IKψ (ne(t, ·)). Let us define
Sψ(ne(t, ·)) ≡ −∂IKψ(ne(t, ·)) ≡

{
−v
∣∣ v ∈ ∂IKψ(ne(t, ·))

}
. The electron conservation law that

integrates the floor density constraint now transforms into a differential inclusion [8] which writes
as

∂tne +∇ · f e ∈ Se + Sψ, (6.7)

where Se + Sψ denotes the set { v + Se | v ∈ Sψ }.

6.3 Existence and uniqueness of the solution of the differential
inclusion

We remark that the sign of Se and ∂tne +∇ · fe in inclusion (6.7) is not arbitrarily chosen (we
could have had otherwise Se ∈ ∂tne +∇ · fe + Sψ). The existence and uniqueness of the solution of
this nonlinear problem have been the subject of numerous studies in the field of monotone operators
[25] or variational inequalities [93, 24, 76], and will be revisited in this section.

In [93], the existence and uniqueness of the solution of (6.7) was demonstrated with the use of
a penalization problem, which is obtained by replacing the operator −Sψ(ne(t, ·)) in (6.7) with the
operator

1

ζ
B̂(ne(t, ·)) ≡ −1

ζ
(ψ − ne(t, ·))+, (6.8)

which is in fact the Yosida approximation of ∂IKψ , with (ψ−ne(t, ·))+ the positive part3 ofψ−ne(t, ·).
In this section, we instead replace −Sψ with

1

ζ
B(ne(t, ·)) ≡

1

2ζ
(sign(ne(t, ·)− ψ)− 1) ,

sign(g) =

 h ∈ H | h(x) ∈


{ −1 } , if g(x) < 0

[−1, 1], if g(x) = 0

{ 1 } , if g(x) > 0

for a.e. x ∈ Ω

 .

(6.9)

In order to compare the two penalization methods in a simple way, let us assume that ψ ∈ R and
consider the following ordinary differential inclusion problem,

dg(t)

dt
+ ∂IKψ(g(t)) ∋ 0, t > 0,

g(0) = g0 ∈ R.
(6.10)

3g+(x) = max(g(x), 0) for a.e. x ∈ Ω
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The penalization problems corresponding to the penalizing operators (6.8) and (6.9) are resp.
dg(t)

dt
− 1

ζ
(ψ − g(t))+ = 0, t > 0,

g(0) = g0 ∈ R,
(6.11)

and 
dg(t)

dt
+

1

2ζ
(sign(g(t)− ψ)− 1) ∋ 0, t > 0,

g(0) = g0 ∈ R.
(6.12)

The solutions of the problems (6.10), (6.11) and (6.12) are resp.4

g(t) = max(g0, ψ),

ĝζ(t) =

g0, if g0 ≥ ψ,

(g0 − ψ)e−
t
ζ + ψ, if g0 < ψ,

gζ(t) =


g0, if g0 ≥ ψ,

max

(
g0 +

t

ζ
, ψ

)
, if g0 < ψ.

We have then ĝζ → g, gζ → g in L2(0,+∞) as ζ → 0, but if g0 < ψ then gζ(t) = ψ after a finite
time t0 (more precisely t0 = ζ(ψ − g0)) while ĝζ is always strictly smaller than ψ. This shows the
difference between the proposed penalizing operator (6.9) and the “classic” penalizing operator (6.8).

6.3.1 Preliminaries

Let H = L2(Ω) be endowed with the inner product (g, h)H ≡
∫
Ω

g(x)h(x)dx with g, h ∈ H,
and V be a Hilbert subspace of H such that V ⊂ H with dense and compact embedding. We identify
the linear functionals on V with (·, ·)H so that the embeddingH ⊂ V∗ is also dense and compact [26,
Chapter V]. Let | · |H be the norm induced by (·, ·)H onH, ∥ · ∥V be a norm on V and ⟨·, ·⟩ the dual
pairing between V and V∗.

Let K be a closed convex of V . We set V = L2(0, T ;V), H = L2(0, T ;H), V ∗ = L2(0, T ;V∗)

and

K = {φ ∈ V | φ(t) ∈ K for a.e. t ∈ (0, T )}.

The differential inclusion (6.7) is addressed in a more general setting in the following way.

Let a(·, ·) be a continuous and coercive bilinear form onV , i.e. there exists constantsM,C1, C2 > 0

such that for all g, h ∈ V ,
|a(g, h)| ≤M∥g∥V∥h∥V ,

a(g, g) ≥ C1∥g∥2V − C2|g|2H.
(6.13)

4the solution of (6.10) is derived in section 6.5.3
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Given n0 ∈ H, we aim to find a function n ∈ V such that∀g ∈ K,

〈
dn

dt
, g − n

〉
+ a(n, g − n) ≥ 0, a.e. on (0, T ),

n(0) = n0.

(6.14)

To this problem we associate the notions of strong and weak solutions.

Definition 6.3 (Strong solutions [24]). A function n is called a strong solution of (6.14) if n ∈ K ,
dn

dt
∈ V ∗ and n satisfies (6.14) for a.e. t ∈ (0, T ).

Definition 6.4 (Weak solutions [24]). A function n is called a weak solution of (6.14) if n ∈ K and

for all g(t,x) ∈ K such that
dg

dt
∈ V ∗, n satisfies∫ T

0

(〈
dg

dt
, g − n

〉
+ a(n, g − n)

)
dt ≥ −1

2
|g(0, ·)− n0|2H. (6.15)

Let A ∈ L(V ,V∗)5 defined by ⟨An, g⟩ = a(n, g), for n, g ∈ V . The restriction of A into H, still
denoted as A, is characterized by dom(A) = {g ∈ V | Ag ∈ H}.

Remark 6.1. For inclusion (6.7), we suppose for simplicity that Se = (α − η)Nne with α, η the

ionization and attachment coefficients and N the neutral particle density. Let V = H1
0 (Ω) with the

usual norm ∥g∥2V = |g|2H +
d∑
i=1

∣∣∣∣ ∂g∂xi
∣∣∣∣2
H
, ψ ∈ V and K = Kψ. Assume that ue ∈ V d, De ∈ V and

α− η ∈ H . From definition (6.4), inclusion (6.7) is equivalent to the following variational inequality,

∀g ∈ K,

〈
dne
dt

, g − n

〉
+ ⟨∇ · (uene −De∇ne)− (α− η)Nne, g − ne⟩ ≥ 0.

Therefore, An = ∇ · (uene −De∇ne)− (α− η)Nne and dom(A) = H2
0(Ω). By using integration by

parts, we can identify a(·, ·) as

a(n, g) =

∫
Ω

(−nue · ∇g +De∇n · ∇g − (α− η)Nng) dx.

Additionally, if we assume that ue ∈ V d ∩ L∞ (0, T ;L∞(Ω)d
)
, De ∈ V ∩ L∞(0, T ;L∞(Ω)) with

De(t,x) ≥ cD > 0 a.e. on (0, T )× Ω where cD is a constant and α− η ∈ H ∩ L∞(0, T ;L∞(Ω)), we

can verify that a(·, ·) is continuous on V × V since

|a(n, g)| ≤
(
|ue|L∞(0,T ;L∞(Ω)d) + |De|L∞(0,T ;L∞(Ω)) + |α− η|L∞(0,T ;L∞(Ω))N

)
∥n∥V∥g∥V ,

for any n, g ∈ V . Further more, a(·, ·) is coercive on V according to definition (6.13). Indeed, for any
g ∈ V ,

a(g, g) ≥ −|ue|L∞(0,T ;L∞(Ω)d)|g|H∥g∥V + cDC∥g∥2V − |α− η|L∞(0,T ;L∞(Ω))N |g|2H,

5the space of linear maps from V to V∗
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where C is the positive constant from the Poincaré inequality. Thus, using the Cauchy-Schwarz

inequality, we have

a(g, g) ≥ cDC

2
∥g∥2V −

|α− η|L∞(0,T ;L∞(Ω))N +
|ue|2L∞(0,T ;L∞(Ω)d)

2cDC

 |g|2H.

6.3.2 A penalization problem

For a small parameter ζ > 0, we introduce the following penalization problem to (6.14),
dn

dt
+ An+

1

ζ
B(n) ∋ 0 a.e. on (0, T ),

n(0) = n0,
(6.16)

with n0 ∈ H and B(n) defined in (6.9).

The corresponding variational formulation of problem (6.16) writes as follows,∀g ∈ V ,
〈
dn

dt
, g

〉
+ a(n, g) +

1

ζ
(B(n), g)H ∋ 0 a.e. on (0, T ),

n(0) = n0,

(6.17)

where the last scalar product in the first equation is a notation abuse; it should be understood that
(B(n), g)H = { (h, g)H | h ∈ B(n) }.

In addition, we can verify that B(g) is the subdifferential of the functional G defined on H as
follows,

G(g) =

∫
Ω

(ψ − g)+dx, (6.18)

where (ψ − g)+ is the positive part of ψ − g. Indeed, for all h ∈ B(g) and by (6.9),

(h, g − ψ)H =
1

2

∫
Ω

(|g − ψ| − (g − ψ)) dx = G(g).

Hence, for all v ∈ H,

(h, v − g)H +G(g) = (h, v − ψ)H = (h, (ψ − v)−)H − (h, (ψ − v)+)H,

≤ (−h, (ψ − v)+)H ≤
∫
Ω

(ψ − v)+dx = G(v).

where (ψ−g)− is the negative part6 of ψ−g. The first inequality is due to the fact that h(x) ≤ 0 and
the second is due to h(x) ≥ −1 for a.e. x ∈ Ω. SinceG is convex, proper and lower semi-continuous,
B is a maximal monotone operator with dom(B) = H [25, Lemma 2.1].

6for g ∈ H, g−(x) = max(−g(x), 0) for a.e. x ∈ Ω

148



Modeling of corona discharge

6.3.3 Weak solutions

The existence and uniqueness of the solution of the penalization problem (6.17) under reasonable
conditions are presented in the following result (the proof is postponed to section 6.3.4).

Theorem 6.2. Given n0 ∈ H and ζ > 0. Then the penalization problem (6.17) has a unique solution
nζ ∈ H1(0, T ;V∗) ∩ V and the following estimate holds a.e. on (0, T ) and for all g ∈ K,

|nζ(t, ·)− g|2H +

∫ t

0

(
3C1

2
∥nζ(s, ·)− g∥2V +

2

ζ

∫
Ω

(ψ − nζ(s, ·))+dx
)
ds

≤ exp(2C2T )

(
|n0 − g|2H +

2M2T

C1

∥g∥2V
)
, (6.19)

whereM,C1, C2 are the constants from (6.13).

A special property of the solution of (6.17) is that it is larger than ψ a.e. after a finite time, given
the right conditions, even if the initial datum does not necessarily respect this constraint.

Proposition 6.1. Assume that ψ ∈ dom(A), n0 ∈ H such that (ψ−n0)
+ ∈ L∞(Ω) and, furthermore,

∀g ∈ V , a(g, g+) ≥ C1∥g+∥2V − C2|g+|2H, (6.20)

where g+ is the positive part of g and C1, C2 are the constants from (6.13).

For ζ > 0, let nζ be the solution of the penalization problem (6.17). We have the following results,

• if n0 ∈ K, then for any ζ > 0 such that ζAψ ≤ 1 a.e. on Ω, nζ ≥ ψ a.e. on (0, T )× Ω;

• if n0 ∈ H \ K, given β > 0, then for any ζ > 0 such that ζAψ ≤ 1− β a.e. on Ω, there exists

a finite time T0 ≥ 0 such that nζ ≥ ψ a.e. on [T0, T )× Ω.

The proof of this proposition is postponed to section 6.3.5.

Remark 6.2. For the discharge problem (6.7) and ψ constant, the condition ζAψ ≤ 1 − β a.e. is

equivalent to ζ(η − α)Nψ ≤ 1− β a.e. (see remark 6.1). Therefore, the penalization parameter ζ must

satisfy ζ ≤ 1− β

N

(
max

(
sup
Ω
η − α

)
, 0

)−1

so that the penalizing source term B(n) in (6.16) could
be “strong” enough to fight back the depletion of electrons due to attachment.

In turn of the variational problem (6.14), the existence and uniqueness of its weak solution are
the subject of the following theorem (the proof is postponed to section 6.3.6).

Theorem 6.3. Given n0 ∈ H. Then the variational problem (6.14) has a unique weak solution n in

the sense of definition 6.4. Let nζ denote the solution in theorem 6.2 with ζ > 0, then nζ ⇀ n in V and

nζ → n in H as ζ → 0.
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6.3.4 Proof of theorem 6.2

Proof. The proof is divided into three parts: the first one shows the uniqueness of the solution, the
second one demonstrates the existence of the solution for n0 ∈ V and the last part concludes the
existence of the solution for n0 ∈ H.

(i) Let nζ (resp. ñζ) ∈ H1(0, T ;V∗) ∩ V satisfy (6.17) with initial condition n0 (resp. ñ0), then
choosing g = nζ(t, ·)− ñζ(t, ·) ∈ V in (6.17), there exists hζ ∈ B (nζ(t, ·)) and h̃ζ ∈ B (ñζ(t, ·)) such
that

1

2

d

dt
|nζ − ñζ |2H + a (nζ − ñζ , nζ − ñζ) +

1

ζ

(
hζ − h̃ζ , nζ − ñζ

)
H
= 0.

Since B is monotone7,
(
hζ − h̃ζ , nζ − ñζ

)
H
≥ 0, so combining with (6.13) we deduce that

d

dt
|nζ − ñζ |2H + 2C1∥nζ − ñζ∥2V − 2C2|nζ − ñζ |2H ≤ 0.

With w(t) = exp(2C2t), we have

d

dt

|nζ − ñζ |2H
w

≤ −2C1∥nζ − ñζ∥2V
w

,

therefore for a.e. t ∈ (0, T ),

|nζ(t, ·)− ñζ(t, ·)|2H + 2C1

∫ t

0

∥nζ(s, ·)− ñζ(s, ·)∥2Vds ≤ exp(2C2T )|n0 − ñ0|2H. (6.21)

It is clear that if n0 = ñ0 a.e. on Ω then nζ = ñζ a.e. on (0, T )× Ω.

(ii) Let us show now the existence of the solution of (6.17) with n0 ∈ V by adapting the proof
of Ito & Kunisch [76, Theorem 1]. We consider the implicit Euler discretization for (6.16) with a
constant timestep ∆t > 0,

nlζ − nl−1
ζ

∆t
+ Anlζ +

1

ζ
B(nlζ) ∋ 0, (6.22)

with n0
ζ = n0 ∈ V , l = 1, . . . ,L and L =

T

∆t
. The bilinear form (·, ·)H + 2∆ta(·, ·) with ∆t ≤ 1

2C2

is continuous, coercive on V so by the Lax-Milgram theorem [26, Chapter V], I +2∆tA is a maximal
monotone operator of H. Therefore in the light of lemma C.1 withM :=

2∆t

ζ
B andN := Id+2∆tA

(note that dom(M) = H), the operator Id+2∆tA+
2∆t

ζ
B is maximal monotone onH. Consequently,

for each l > 0 there exists (a unique) nlζ ∈ dom(A) ⊂ V that satisfies (6.22).

Multiplying (6.22) with nlζ − g ∈ V , g ∈ K, we have(
nlζ − nl−1

ζ

∆t
, nlζ − g

)
H

+ a(nlζ , n
l
ζ − g) +

1

ζ
(B(nlζ), n

l
ζ − g)H ∋ 0,

7for the definition of monotone and maximal monotone operators, see appendix C
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i.e. in particular, there exists hlζ ∈ B(nlζ) such that(
nlζ − nl−1

ζ

∆t
, nlζ − g

)
H

+ a(nlζ , n
l
ζ − g) +

1

ζ
(hlζ , n

l
ζ − g)H = 0. (6.23)

Since

2(nlζ − nl−1
ζ , nlζ − g)H = |nlζ − nl−1

ζ |2H + |nlζ − g|2H − |nl−1
ζ − g|2H,

a(nlζ , n
l
ζ − g) ≥ a(nlζ − g, nlζ − g)− |a(g, nlζ − g)|

≥ C1∥nlζ − g∥2V − C2|nlζ − g|2H −M∥g∥V∥nlζ − g∥V

≥ 3C1

4
∥nlζ − g∥2V − C2|nlζ − g|2H − M2

C1

∥g∥2V , (6.24)

and since g ≥ ψ, hlζ ≤ 0 a.e. on Ω,

(hlζ , n
l
ζ − g)H =

∫
Ω

(ψ − nlζ)
+dx+

∫
Ω

hlζ(ψ − g)dx ≥
∫
Ω

(ψ − nlζ)
+dx,

we have, by multiplying eq. (6.23) with 2∆t,

(1− 2C2∆t)|nlζ − g|2H − |nl−1
ζ − g|2H + |nlζ − nl−1

ζ |2H

+
3C1∆t

2
∥nlζ − g∥2V +

2∆t

ζ

∫
Ω

(ψ − nlζ)
+dx ≤ 2M2∆t

C1

∥g∥2V . (6.25)

Let wl = (1− 2C2∆t)
−l for l = 0, . . . ,L. For any arbitrary sequence of real numbers (vl)l=0,...,L,

we have
vl

wl
− vl−1

wl−1
=

(1− 2C2∆t)v
l − vl−1

wl−1
.

Using this equality with vl = |nlζ − g|2H and the fact that 1 = w0 ≤ wl ≤ wL =

(
1− 2C2

T

L

)−L

≤

exp(2C2T ), while dividing (6.25) by wl and summing it over k = 1, . . . , l, we now have, for all
l = 1, . . . ,L,

l∑
k=1

(
|nkζ − g|2H

wk
−

|nk−1
ζ − g|2H
wk−1

+
|nkζ − nk−1

ζ |2H
wk

+
3C1∆t

2wk
∥nkζ − g∥2V

+
2∆t

ζwk

∫
Ω

(ψ − nkζ )
+dx

)
≤

l∑
k=1

2M2∆t

C1wk
∥g∥2V ≤ 2M2l∆t

C1

∥g∥2V ≤ 2M2T

C1

∥g∥2V .

Therefore, using the fact that w
l

wk
≥ 1 for k ≤ l,

|nlζ − g|2H +
l∑

k=1

|nkζ − nk−1
ζ |2H +∆t

l∑
k=1

(
3C1

2
∥nkζ − g∥2V +

2

ζ

∫
Ω

(ψ − nkζ )
+dx

)
≤ wl

(
|n0 − g|2H

w0
+

2M2T

C1

∥g∥2V
)

≤ exp(2C2T )

(
|n0 − g|2H +

2M2T

C1

∥g∥2V
)
. (6.26)

151



Chapter 6

Let us define the functions n∆t
ζ (t,x), n̂∆t

ζ (t,x) and h∆tζ (t,x) in the following way,
n∆t
ζ (t, ·) = nlζ

n̂∆t
ζ (t, ·) = nlζ +

t− l∆t

∆t
(nlζ − nl−1

ζ )

h∆tζ (t, ·) = hlζ

for a.e. t ∈ ((l − 1)∆t, l∆t], l ≥ 1. (6.27)

Inequality (6.26) implies that ∆t
L∑
l=1

∥nkζ − g∥2V is bounded independently of ∆t, and since

n0, n
l
ζ , g ∈ V for l = 1, . . . ,L as well as∫ T

0

∥n̂∆t
ζ (t, ·)∥2Vdt =

L∑
l=1

∫ l∆t

(l−1)∆t

(
∥nlζ∥2V +

(
t− l∆t

∆t

)2

∥nlζ − nl−1
ζ ∥2V

)
dt

= ∆t
L∑
l=1

(
∥nlζ∥2V +

1

3
∥nlζ − nl−1

ζ ∥2V
)

≤ ∆t
L∑
l=1

(
∥nlζ − g∥2V + ∥g∥2V +

1

3
∥nlζ − g∥2V +

1

3
∥nl−1

ζ − g∥2V
)

= T∥g∥2V +
4∆t

3
∥nL

ζ − g∥2V +
∆t

3
∥n0 − g∥2V +∆t

L−1∑
l=1

(
5

3
∥nlζ − g∥2V

)
,

we deduce that n̂∆t
ζ is bounded in V independently of ∆t. Moreover, from inclusion (6.22) we see

that for any v ∈ V ,〈
nlζ − nl−1

ζ

∆t
, v

〉
≤ |a(nlζ , v)|+

1

ζ
|(hlζ , v)H| ≤M∥nlζ∥V∥v∥V +

1

ζ
|Ω|

1
2 |v|H, (6.28)

with hlζ ∈ B(nlζ) and since |hlζ | ≤ 1 a.e. on Ω. Since V is continuously embedded inH, there exists a
constant C > 0 such that |v|H ≤ C∥v∥V for any v. Thus, n̂∆t

ζ is bounded in H1(0, T ;V∗) uniformly
in ∆t (since Ω is bounded) and consequently, for any sequence

(
n̂∆t
ζ

)
∆t

with fixed ζ and ∆t → 0,
there exists a subsequence, still denoted as the same, such that n̂∆t

ζ converge weakly to a function nζ
in H1(0, T ;V∗) ∩ V as ∆t→ 0. Using theorem C.3 (Aubin-Lions-Simon) with B0 = V , B1 = H and
B2 = V∗, we have in addition that n̂∆t

ζ converge strongly to nζ in H as ∆t→ 0.

Now providing that ∫ T

0

|n∆t
ζ − n̂∆t

ζ |2Hdt =
∆t

3

L∑
l=1

|nlζ − nl−1
ζ |2H → 0,

as∆t→ 0 (a consequence of estimate (6.26)), we also have n∆t
ζ → nζ inH . Furthermore, as∆t→ 0,∫ T

0

∫
Ω

∣∣(ψ − n∆t
ζ )+ − (ψ − nζ)

+
∣∣ dxdt ≤ ∫ T

0

∫
Ω

∣∣n∆t
ζ − nζ

∣∣ dxdt
≤ |Ω|

1
2

∫ T

0

|n∆t
ζ − nζ |Hdt ≤ T

1
2 |Ω|

1
2

∫ T

0

|n∆t
ζ − nζ |2Hdt→ 0, (6.29)
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we conclude, by letting ∆t → 0 in estimate (6.26) and using the fact that ∥nζ(t, ·) − g∥V ≤
lim inf
∆t→0

∥n∆t
ζ (t, ·)− g∥V a.e. on (0, T ), that estimate (6.19) holds for nζ .

On the other hand, h∆tζ (t, ·) is bounded in L∞(Ω) a.e. on (0, T ) and in particular in H since Ω is
bounded. As a consequence, we can extract a subsequence for fixed ζ , still denoted as

(
h∆tζ (t, ·)

)
∆t
,

such that h∆tζ (t, ·) ⇀ yζ in H as ∆t → 0. We now check if yζ ∈ B(nζ(t, ·)). By property (6.2) of
subdifferentials as well as definition (6.18) of the functional G, we have

∀v ∈ H, G(v)−G(n∆t
ζ (t, ·)) ≥ (h∆tζ (t, ·), v − n∆t

ζ (t, ·))H.

Using (6.29) and letting ∆t→ 0, we have

∀v ∈ H, G(v)−G(nζ(t, ·)) ≥ (yζ , v − nζ(t, ·))H,

i.e. yζ ∈ B(nζ(t, ·)). Therefore, by multiplying inclusion (6.22) with any v ∈ V , i.e.〈
dn̂∆t

ζ (t, ·)
dt

, v

〉
+ a

(
n∆t
ζ (t, ·), v

)
+

1

ζ

(
h∆tζ (t, ·), v

)
H = 0,

and letting ∆t→ 0, we conclude that inclusion (6.17) holds a.e. on (0, T ) for n0 ∈ V .

(iii) Finally, for each n0 ∈ H there exists a sequence (n0,p)p such that n0,p ∈ V and n0,p → n0 in
H as p→ ∞ since V is dense inH. Let nζ,p be the (unique) solution of inclusion (6.17) corresponding
to the initial datum n0,p. From estimate (6.21), we infer that (nζ,p)p is a Cauchy sequence in V ,
therefore there exists an nζ ∈ V such that nζ,p → nζ in V as p→ ∞ and consequently dnζ,p

dt
→ dnζ

dt
in the distributional sense.

Moreover, since dnζ,p
dt

is bounded in L2(0, T ;V∗) for fixed ζ (see estimate (6.28)), there exists a

function g ∈ L2(0, T ;V∗) such that dnζ,p
dt

⇀ g in L2(0, T ;V∗). Hence, we identify dnζ
dt

= g and as a
result, nζ ∈ H1(0, T ;V∗) ∩ V . We recover (6.17) and (6.19) for nζ by just letting p→ ∞. ■

Corollary 6.1. Similar to the case n0 ∈ V , in the case n0 ∈ H we also have n∆t
ζ → nζ inH as∆t→ 0,

where n∆t
ζ is the piecewise-constant approximation of nζ defined as in (6.22) and (6.27).

Proof. Let n∆t
ζ,p be the piecewise-constant approximation of nζ,p defined as in (6.22) and (6.27) where

(nζ,p)p is a sequence in V having nζ as an accumulation point. From inclusion (6.22), there exists
h∆tζ,p ∈ B

(
n∆t
ζ,p

)
and h∆tζ ∈ B

(
n∆t
ζ

)
such that, for any g ∈ V ,(

nlζ,p − nl−1
ζ,p

∆t
, g

)
H

+ a(nlζ,p, g) +
1

ζ
(hlζ,p, g)H = 0,(

nlζ − nl−1
ζ

∆t
, g

)
H

+ a(nlζ , g) +
1

ζ
(hlζ , g)H = 0.
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Choosing g = nlζ,p − nlζ with l ≥ 1, subtracting the two equations and using the fact that B is
monotone, we have(

nlζ,p − nl−1
ζ,p

∆t
−
nlζ − nl−1

ζ

∆t
, nlζ,p − nlζ

)
H

+ a
(
nlζ,p − nlζ , n

l
ζ,p − nlζ

)
≤ 0,

from which can be further deduced that

(1− 2C2∆t)|nlζ,p − nlζ |2H − |nl−1
ζ,p − nl−1

ζ |2H + 2C1∆t∥nlζ,p − nlζ∥2V ≤ 0.

Therefore, by proceeding as in the derivation of estimate (6.26), for a.e. t ∈ (0, T ) we have

|n∆t
ζ,p(t, ·)− n∆t

ζ (t, ·)|2H + 2C1

∫ t

0

∥n∆t
ζ,p(s, ·)− n∆t

ζ (s, ·)∥2Vds ≤ exp(2C2T )|n0,p − n0|2H,

which is a discrete version of estimate (6.21). This suggests that n∆t
ζ,p → n∆t

ζ in V as p → ∞. We
already established that n∆t

ζ,p → nζ,p in H and nζ,p → nζ in V as ∆t→ 0 and the convergences are
in subsequence. Therefore, we could conclude that n∆t

ζ → nζ in subsequence in H as ∆t→ 0. ■

Remark 6.3. We point out that the weak convergence of ñ∆t
ζ to nζ inH1(0, T ;V∗)∩V and subsequently

the strong convergence in H do not hold for n0 /∈ V , since ñ∆t
ζ (t, ·) does not a priori belong to V for

t ∈ [0,∆t). Hence, the proceeding from n0 ∈ V to n0 ∈ H is necessary in the proof of theorem 6.2.

6.3.5 Proof of proposition 6.1

Proof. (i) If n0 ∈ K, we note that ψ satisfies the inclusion

dψ

dt
+ Aψ +

1

ζ
Bψ ∋ Aψ − 1

ζ
.

Together with inequality (6.17) and the assumption that ζAψ ≤ 1, we have

1

2

d

dt
|(ψ − nζ)

+|2H + a(ψ − nζ , (ψ − nζ)
+) ≤

(
Aψ − 1

ζ
, (ψ − nζ)

+

)
H
≤ 0.

Hence, there exists a constant C > 0 such that (ψ − nζ)
+ ≤ C(ψ − n0)

+ = 0 a.e. on (0, T ) × Ω,
which means that nζ ∈ K since n0 ∈ K.

(ii) If n0 ∈ H \ K, let us consider the following function,

w(t,x) =
βt

ζ
− |(ψ − n0)

+|L∞(Ω) + ψ(x).

On (0, T0), with T0 =
ζ

β
|(ψ − n0)

+|L∞(Ω) > 0, we have w ≤ ψ. Therefore, w satisfies
dw

dt
+ Aw +

1

ζ
Bw ∋ Aψ +

β − 1

ζ
,

w(0) = −|(ψ − n0)
+|L∞(Ω) + ψ.
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Combining with inequality (6.17), we have the following result a.e. on (0, T0),

1

2

d

dt
|(w − nζ)

+|2H + a(w − nζ , (w − nζ)
+) ≤

(
Aψ +

β − 1

ζ
, (w − nζ)

+

)
H
.

Then if ζ satisfies ζAψ ≤ 1− β, the right-hand-side is negative and we deduce that there exists
a constant C > 0 such that

(w − nζ)
+ ≤ C(w(0, ·)− n0)

+ = C(−|(ψ − n0)
+|L∞(Ω) + ψ − n0)

+ = 0.

In particular, nζ(T0, ·) ≥ w(T0, ·) = ψ, and we arrive at the conclusion by applying the result
of the case n0 ∈ K on the penalization problem (6.17) with t ∈ (T0, T ) and the initial datum
n0 := nζ(T0). ■

6.3.6 Proof of theorem 6.3

Proof. Estimate (6.19) suggests that nζ is bounded in V as well as
∫ T

0

∫
Ω

(ψ − nζ)
+dxdt → 0 as

ζ → 0. Therefore, there exists n ∈ V such that nζ ⇀ n in subsequence in V . Moreover, nζ → n in
subsequence in H according to theorem C.3 (Aubin-Lions-Simon) as dnζ

dt
∈ L2(0, T ;V∗). We also

have n ∈ K since (ψ − n)+ = 0 a.e. on Ω.

We now prove that n satisfies inequality (6.15). For each g ∈ K such that dg
dt

∈ V ∗, replacing
g := g − nζ in inclusion (6.17) and integrating it on (0, T ) yield∫ T

0

(〈
dnζ
dt

, g − nζ

〉
+ a(nζ , g − nζ) +

1

ζ
(hζ , g − nζ)H

)
dt = 0,

with hζ ∈ H such that hζ(t, ·) ∋ B(nζ(t, ·)). For the first term in the above equation, we have∫ T

0

〈
dnζ
dt

, g − nζ

〉
dt =

∫ T

0

〈
dg

dt
, g − nζ

〉
dt+

1

2
|g(0, ·)− n0|2H − 1

2
|g(T, ·)− nζ(T, ·)|2H

≤
∫ T

0

〈
dg

dt
, g − nζ

〉
dt+

1

2
|g(0, ·)− n0|2H.

For the second term, we have

a(nζ , nζ) = a(nζ , n) + a(n, nζ)− a(n, n) + a(nζ − n, nζ − n)

≥ a(nζ , n) + a(n, nζ)− a(n, n) + C1∥nζ − n∥2V − C2|nζ − n|2H.

As nζ(t, ·)⇀ n(t, ·) in V and nζ(t, ·) → n(t, ·) inH, taking the lim inf of the above inequality and
using lim inf

ζ→0
∥nζ − n∥2V ≥ 0 yield

lim inf
ζ→0

a(nζ , nζ) ≥ a(n, n).
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For the third term, based on the fact that hζ ≤ 0 a.e. and g ≥ ψ a.e., we simply have

(hζ(t, ·), g(t, ·)− nζ(t, ·))H = −G(nζ(t, ·)) + (hζ(t, ·), g(t, ·)− ψ)H ≤ 0.

Consequently,∫ T

0

(〈
dg

dt
, g − nζ

〉
+ a(nζ , g)− a(n, n)

)
dt ≥ −1

2
|g(0, ·)− n0|2H,

and letting ζ → 0 leads to (6.19).

Lastly, let n (resp. ñ) be a solution of problem (6.15) with initial datum n0 ∈ H (resp. ñ0 ∈ H).
Let (ζ) be a sequence of small positive numbers and nζ (resp. ñζ) be the solution of problem (6.17)
with initial datum n0 (resp. ñ0). Since nζ ⇀ n (resp. ñζ ⇀ ñ) in subsequence in V as ζ → 0, we infer
from (6.21) that

|n(t, ·)− ñ(t, ·)|2H + 2C1

∫ t

0

∥n(s, ·)− ñ(s, ·)∥2Vds ≤ exp(2C2T )|n0 − ñ0|2H, (6.30)

which also shows the uniqueness of the solution of problem (6.15). ■

Another proof of the existence of the solution of inequality (6.15) could be inspired by [76,
Theorem 5], and shown in the following result.

Corollary 6.2. Let n be the solution of inequality (6.15). For each ∆t > 0, there exists n∆t defined in

the similar way as in (6.27) with the piecewise values nl satisfying, for a.e. t,

∀g ∈ K,

〈
nl − nl−1

∆t
, g(t, ·)− nl

〉
+ a(nl, g(t, ·)− nl) ≥ 0, (6.31)

for l = 1, . . . ,L, such that n∆t converges to n in subsequence as ∆t→ 0, weakly in V and strongly in

H .

Proof. The idea is that from estimate (6.26) of piecewise-constant approximations of nζ , for fixed ∆t
and for each l ≥ 1, nlζ is bounded in V uniformly in ζ , so there exists nl ∈ V such that nlζ ⇀ nl in V
and consequently, nlζ → nl inH as ζ → 0 since V is compactly embedded inH. Combining with the

fact that 1
ζ

∫
Ω

(ψ − nlζ)
+dx is bounded uniformly in ζ , we deduce that nl ∈ K for l ≥ 1. We could

verify, by letting ζ → 0 in eq. (6.23), that nl satisfies inequality (6.31) which is the discrete version
of inclusion (6.14). Note that if ∆t is small enough then according to the Stampacchia theorem [26,
Theorem V.6], nl is the unique solution of (6.31).

In the case n0 ∈ V , we define the approximations n∆t and n̂∆t of n in the similar way as in
(6.27). There exists ñ ∈ V such that n∆t, n̂∆t converge to ñ in subsequence as ∆t → 0, weakly in

V since they are bounded in V uniformly in ∆t and strongly in H since dn̂∆t

dt
∈ H ⊂ L2(0, T ;V∗)

(consequences of estimate (6.26) in the limit ζ → 0). Furthermore, ñ ∈ K since n∆t ∈ K .
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Substituting n∆t and n̂∆t in inequality (6.31) yields,〈
dn̂∆t

dt
, g − n∆t

〉
+ a(n∆t, g − n∆t) ≥ 0,

for a.e. t. In other words,〈
dg

dt
, g − n̂∆t

〉
+

〈
dn̂∆t

dt
− dg

dt
, g − n̂∆t

〉
+

〈
dn̂∆t

dt
, n̂∆t − n∆t

〉
+ a(n∆t, g − n∆t) ≥ 0.

Since∫ T

0

〈
dn̂∆t

dt
− dg

dt
, g − n̂∆t

〉
dt =

1

2
|n0 − g(0, ·)|2H − 1

2
|nL − g(T, ·)|2H ≤ 1

2
|n0 − g(0, ·)|2H∫ T

0

〈
dn̂∆t

dt
, n̂∆t − n∆t

〉
dt = −1

2

L∑
l=1

|nl − nl−1|2H ≤ 0,

− lim inf
∆t→0

a(n∆t, n∆t) ≤ −a(n, n),

we could easily verify that inequality (6.15) holds for ñ, i.e. ñ = n.

Lastly, the existence ofn and the convergence ofn∆t ton in the casen0 ∈ H could be demonstrated
in the line of the last point of the proof of theorem 6.2 and the proof of corollary 6.1. ■

Remark 6.4. Although
dnζ
dt

∈ L2(0, T ;V∗), the same conclusion could not be made for
dn

dt
since

the latter is likely not bounded in the L2(0, T ;V∗)-norm. Indeed, estimate (6.28) is not useful since the
right-hand side blows up as ζ → 0.

Remark 6.5. Based on the proofs of theorems 6.2 and 6.3 and corollaries 6.1 and 6.2, we have the

following convergence diagram,

n∆t
ζ −→

∆t→0
nζyζ→0

yζ→0

n∆t −→
∆t→0

n

where the convergences are strong in H .

6.4 Implicit time discretization and treatment of the source
terms

In light of the proposed reformulation (6.7) for the electron conservation law, the standard
discharge model (2.13) is supplanted by∂tU +∇ · F (E, w,U) = S(E, w,U ) + Sψ(U), (t,x) ∈ (0, T )× Ω,

−∇ · (εr(x)ε0∇ϕ) = ρ, (t,x) ∈ (0, T )× Ωϕ,
(6.32)
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where (Sψ(U))e = Sψ(ne) and (Sψ)s = 0 for s ̸= e since the floor density constraint is not imposed
on other species. We remark that the standard discharge system (2.13) is charge-conservative since∑
s∈S

zsSs = 0, so the proposed system (6.32) is not charge-conservative due to the presence of Sψ.

However, since the floor density ψ that we choose in the simulations is much smaller than the
charge density, the lack of charge conservation does not, in general, change the characteristics of the
discharge.

In corona discharges, at each time level tl the dielectric relaxation time∆tlϕ (3.15) is usually much
larger than the most severe CFL condition - that of electrons ∆tle (4.46) - by a factor of 104 to 107.
The latter is on the order of 10−13-10−12 s comparing to the characteristic time of ionic wind on
the order of 10−3 s. This huge discrepancy results in unbearable CPU time which can amount to
weeks or even months in two-dimensional simulations, even on multiple processors. Therefore, for
simulation of corona discharge, we employ a time-stepping strategy that was put forth in [23] and
described later in section 6.4.1.

6.4.1 Density-field decoupling strategy for simulation of corona discharge

For a time level l ≥ 0, let us denote as gl(x) an approximant of the function/vector function
g(tl,x) at time tl. For the vector density U , let us assume that ∂tU(tl+1) is approximated by the

backward Euler scheme U l+1 −U l

∆tl
. We consider the following semi-discrete discretization (in time)

of system (6.32),
U l+1 −U l

∆tl
+∇ · F (El, wl,U l+1) ∈ S(El, wl,U l,U l+1) + Sl+1

ψ ,

−∇ · (εrε0∇ϕl+1) = ρl+1.
(6.33)

The superscript l of w in the time-discrete flux indicates that the drift and diffusion coefficients
are evaluated at time tl. In addition, the field are also taken at tl in the flux, which allow the left-hand
side of the first inclusion of system (6.32) to be linear with respect to U l+1. On the other hand, the
specie density approximants U l and U l+1 are mixed together in the source terms S, which explains
why S in system (6.33) depends on both and not only on U l+1 as expected in a standard implicit
method. The mixing of densities is specifically chosen such that system (6.33), without the term Sψ ,
is linear in U l+1 and will be detailed in section 6.4.2.

6.4.2 Treatment of the source terms

Implicit treatment of the charge specie source terms

For charge species, a thumb rule is that if a reaction involves one and only one specie s ∈ S,
then the density approximant is treated implicitly, i.e. taken at time tl+1. Otherwise, the specie
densities are taken at time tl. For illustration, we consider the discretization of S for the two kinetic
schemes in examples 2.1 and 2.2.
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Figure 6.1: Rate coefficients of the three-specie, four-reaction kinetic model

Example (Kinetic scheme from example 2.1). The kinetic source terms of charged species read as,
Se(w,U) = (α− η)Nne − kepnenp,

Sp(w,U) = αNne − kepnenp − knpnnnp,

Sn(w,U ) = ηNne − knpnnnp,

and the time-discrete source terms according to the thumb rule are give in the following way,
Se(w

l,U l,U l+1) = (αl − ηl)Nnl+1
e − klepn

l
en

l
p,

Sp(w
l,U l,U l+1) = αlNnl+1

e − klepn
l
en

l
p − klnpn

l
nn

l
p,

Sn(w
l,U l,U l+1) = ηlNnl+1

e − klnpn
l
nn

l
p.

(6.34)

The explicit treatment of the two-charged-body recombination reactions are somewhat justified in

this case. Indeed, if we estimate that the maximum density of charged species in corona discharges is

around 10−7 ×N , then the rescaled rate coefficients of the recombination reactions are well below the

coefficients of the ionization and attachment reactions (see fig. 6.1) for field strength larger than the

breakdown value, which is around 10−19 V m2.

Example (Kinetic scheme from example 2.2). The kinetic source terms of charged species read as,

Se(w,U) = (α− η − η3bNO2)Nne + kd−O2NnO−
2
+ kd−ONN2nO− ,

Sp(w,U) = αNne,

SO−(w,U ) = ηNne −
(
kd−O

NN2

N
+ kct−2b

NO2

N
+ kct−3bNO2

)
NnO− ,

SO−
2
(w,U ) = η3bNO2Nne − kd−O2NnO−

2
+ kct−2bNO2nO− ,

SO−
3
(w,U ) = kct−3bNO2NnO− ,
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and the time-discrete source terms according to the thumb rule are give in the following way,

Se(w
l,U l,U l+1) = (αl − ηl − ηl3bNO2)Nn

l+1
e + kld−O2Nn

l+1

O−
2

+ kld−ONN2n
l+1
O− ,

Sp(w
l,U l,U l+1) = αlNnl+1

e ,

SO−(wl,U l,U l+1) = ηlNnl+1
e −

(
kld−O

NN2

N
+ klct−2b

NO2

N
+ klct−3bNO2

)
Nnl+1

O− ,

SO−
2
(wl,U l,U l+1) = ηl3bNO2Nn

l+1
e − kld−O2Nn

l+1

O−
2

+ klct−2bNO2n
l+1
O− ,

SO−
3
(wl,U l,U l+1) = klct−3bNO2Nn

l+1
O− .

In practice, we replace the densities NO2 and NN2 with the sole neutral density N . This requires to

simply rescale the rate coefficients in the corresponding reactions with the proportion of dioxygen and

dinitrogen in air.

Implicit treatment of the energy source term

For the electron mean energy, we adopt the implicit treatment as well as the linearization process
of the energy source term that was put forth in [66]. The reason that the energy source term needs
to be implicitly evaluated is that it is stiff in the sense that using large numerical timesteps could
generate “small oscillations in the energy density which are amplified and spread rapidly throughout
the whole system of equations” [63]. Let us recall that the energy source term Sε reads as (see
section 2.1.2)

Sε(E, εe,U) = −qE · F e − kεNne,

which gives rise to the following implicit time-discrete evaluation,

Sε(E
l+1, εl+1

e ,U l+1) = −qEl+1 · F l+1
e − kl+1

ε Nnl+1
e . (6.35)

We simplify the discrete approximant by taking the field as well as the electron density at time tl,
i.e. replacing the time-discrete source term (6.35) with the following,

Sε(E
l, εl+1

e ,U l,U l+1) = −qEl · F l+1
e − kl+1

ε Nnle. (6.36)

Then, F l+1
e as well as kl+1

ε are linearized with respect to the electron mean energy εe,

F l+1
e ≈ F l

e +

(
∂F e

∂µe

)l(
∂µe
∂εe

)l (
εl+1
e − εle

)
+

(
∂F e

∂De

)l(
∂De

∂εe

)l (
εl+1
e − εle

)
= F l

e −
(
∂µe
∂εe

)l
Elnle

(
εl+1
e − εle

)
−
(
∂De

∂εe

)l
∇nle

(
εl+1
e − εle

)
, (6.37)

kl+1
ε ≈ klε +

(
∂kε
∂εe

)l (
εl+1
e − εle

)
, (6.38)

where
(
∂µe
∂εe

)l
,
(
∂De

∂εe

)l
and

(
∂kε
∂εe

)l
are resp. the approximants of ∂µe

∂εe
, ∂De

∂εe
and ∂kε

∂εe
at time tl

and can be computed from lookup tables of µe, De, and kε provided by the BOLSIG+ application [67]
(using linear interpolation for example).
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Now recalling that nε = εene (see section 2.1.2), we have

εl+1
e = εle +

(
∂εe
∂nε

)l (
nl+1
ε − nlε

)
+

(
∂εe
∂ne

)l (
nl+1
e − nle

)
= εle +

1

nle

(
nl+1
ε − nlε

)
− nlε

(nle)
2

(
nl+1
e − nle

)
= εle +

1

nle

(
nl+1
ε − nlε

nle
nl+1
e

)
.

Plugging this relation into eqs. (6.36) to (6.38), we can supplant the time-discrete source term (6.36)
by a linearized energy source term in the following way,

Sε(E
l, εle,U

l,U l+1) = −qEl · F l
e − klεNn

l
e

+

(
q|El|2

(
∂µe
∂εe

)l
+ qEl · ∇n

l
e

nle

(
∂De

∂εe

)l
−
(
∂kε
∂εe

)l
N

)(
nl+1
ε − nlε

nle
nl+1
e

)
. (6.39)

Remark 6.6. In [66], the linearized energy source term took into account the derivatives of the fully

discrete (i.e. in time and space) electron flux that gives rise to, for example if we use the Scharfetter-

Gummel scheme for flux approximation, the appearance of the terms(
∂φ(pe)

∂p

)l(
∂pe
∂µe

)l
,

(
∂φ(pe)

∂p

)l(
∂pe
∂De

)l
,

before
(
∂F e

∂µe

)l
and

(
∂F e

∂De

)l
, where pe is the numerical Péclet number of electrons and φ(p) =

p

2
coth

(p
2

)
.

In eq. (6.39), this is not the case, which is probably less consistent comparing to the approach of [66]

but much less complicated to implement since we only had the approximation of ∇nle at cell centers in
COPAIER (see the end of section 3.3.3).

Treatment of the photoionization source terms

TheHelmholtzmodel (1.9)-(1.8) is employed to compute the photoionization source termSQph(w, ne),
which is not stiff by numerical observations. Therefore, we evaluate SQph explicitly in time from the
values wl and nle.

6.5 Solving the conservation laws

6.5.1 Time-discrete system of conservation laws

In this section, we consider the LFA model and the three-specie, four-reaction kinetic model
in example 2.1 (S = { e, p, n }). For the LEA as well as other kinetic schemes, such as the one in
example 2.2, the discretization process in this section can be derived in the similar way.

We recall that the time-discrete system of conservation laws in (6.33) with the time-discrete

161



Chapter 6

source terms (6.34) writes as, in an explicit form,
nl+1
e − nle +∆tl∇ · f e(El, wl,U l+1) = ∆tl(αl − ηl)Nnl+1

e −∆tlklepn
l
en

l
p +∆tlSψ(n

l+1
e ),

nl+1
p − nlp +∆tl∇ · f p(El, wl,U l+1) = ∆tlαlNnl+1

e −∆tlklepn
l
en

l
p −∆tlklnpn

l
nn

l
p,

nl+1
n − nln +∆tl∇ · fn(El, wl,U l+1) = ∆tlηlNnl+1

e −∆tlklnpn
l
nn

l
p

(6.40)

Let I denote the identity operator,

Al : U 7→

∇ · f e(El, wl,U)− (αl − ηl)Nne

∇ · f p(El, wl,U)− αlNne

∇ · fn(El, wl,U )− ηlNne

 ≡


(
AlU

)
e(

AlU
)
p(

AlU
)
n

 ,

andRl =

 nle −∆tlklepn
l
en

l
p

nlp −∆tlklepn
l
en

l
p −∆tlklnpn

l
nn

l
p

nln −∆tlklnpn
l
nn

l
p

 ≡

Rl
e

Rl
p

Rl
n

. Then at tl, system (6.40) can be recast

as

(I +∆tlAl −∆tlSψ)U
l+1 ∋ Rl. (6.41)

6.5.2 Fully discrete system of conservation laws

Let us consider a open bounded polygonal domain Ω in R2 and a conforming grid T on Ω (see
section 3.1 for the grid notations). Let us consider in particular the electron conservation law in
system (6.40),

nl+1
e − nle
∆tl

+∇ · f e(El, wl,U l+1)− (αl − ηl)Nnl+1
e + klepn

l
en

l
p = hl+1,

with hl+1 ∈ Sψ(n
l+1
e ). Now averaging this equation on a cell ΩK and dividing it by |ΩK |, we have8

nl+1
e,K − nle,K

∆tl
+

1

|ΩK |
∑
L∈V1

K

∫
λKL

f l,l+1
e · νKLdl−

(
(αl − ηl)Nnl+1

e

)
K
+
(
klepn

l
en

l
p

)
K
= h

l+1

K , (6.42)

where, recall from section 3.1 that vK ≡ 1

|ΩK |

∫
ΩK

v(x)dx for any function v, f l,l+1
e ≡ f e(E

l, wl,U l+1),

dl is the unit length element, λKL is the common edge of ΩK and ΩL while νKL is the unit outward
normal of ΩK on the edge λKL.

We approximate αl(x) for x ∈ ΩK (and similarly for η, kep) by αlK ≡ αl(xcK),
∫
λKL

f l,l+1
e ·νKLdl

by |λKL|f l,l+1
e,KL · νKL ≡ |λKL|f l,l+1

e (xλKL) · νKL with xλKL the midpoint of λKL and then nenp by
nenp. As such, (6.42) is replaced by

nl+1
e,K − nle,K

∆tl
+

1

|ΩK |
∑
L∈V1

K

|λKL|f l+1
e,KL · νKL − (αlK − ηlK)Nn

l+1
e,K + klep,Kn

l
e,Kn

l
p,K = h

l+1

K , (6.43)

8recall that V1
K is the first-level neighborhood of ΩK (see section 4.6)
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for every ΩK ∈ T .

Now for any locally integrable function/vector function v defined on Ω, we define a piecewise
constant function v on Ω such that

v(x) = vK , ∀x ∈ ΩK .

It is not evident how h
l with hl ∈ Slψ relates to the floor density ψ and nle. Therefore, we make

an approximation that

h
l ∈ Sψ(n

l
e) ≡ −∂IKψ(nle), Kψ =

{
v
∣∣ v ≥ ψ

}
. (6.44)

In order to transition to a fully discrete (both in space and time) discharge system, we use the
standard Scharfetter-Gummel scheme (see section 4.2) to approximate the flux f l,l+1

e,KL · νKL. The flux
approximant writes as9

f
l,l+1

e,KL =
Dl
e,KL

dKL

(
B(ple,KL)nl+1

e,K − B(−ple,KL)n
l+1
e,L

)
, λKL ⊈ Γ = Ω \ Ω,

f
l,l+1

e,KL = ule,KLn
l+1
e,K , λKL ⊆ Γf ,

f
l,l+1

e,KL = 0, λKL ⊆ Γs,

f
l,l+1

e,KL = max(ule,KL, 0)n
l+1
e,K +

vle
2

− γ

(
max(ulp,KL, 0)n

l+1
p,K +

vp
2

)
, λKL ⊆ Γs,

with dKL = |xKL − xLK |10, ple,KL = −
ule,KLdKL

Dl
e,KL

while ule,KL and Dl
e,KL are resp. approximants of

ue(t
l, xλKL) · νKL and De(t

l, xλKL) (see section 3.3.2).

Therefore, the fully discrete version of the time-discrete cell-averaged electron conservation law
(6.43) reads as follows,

nl+1
e,K − nle,K

∆tl
+

1

|ΩK |
∑
L∈V1

K

|λKL|f
l,l+1

e,KL − (αlK − ηlK)Nn
l+1
e,K + klep,Kn

l
e,Kn

l
p,K = h

l+1

K , (6.45)

for every ΩK ∈ T . Similarly, the discrete flux f l,l+1

p,KL and f l,l+1

n,KL of positive and negative ions can be
computed in the same way as f l,l+1

e,KL and the fully discrete version of the time-discrete ion conservation
laws in system eq. (6.40) are given in the following way,

nl+1
p,K − nlp,K

∆tl
+

1

|ΩK |
∑
L∈V1

K

|λKL|f
l,l+1

p,KL = αlKNn
l+1
e,K − klep,Kn

l
e,Kn

l
p,K − klnp,Kn

l
n,Kn

l
p,K ,

nl+1
n,K − nln,K

∆tl
+

1

|ΩK |
∑
L∈V1

K

|λKL|f
l,l+1

n,KL = ηlKNn
l+1
e,K − klnp,Kn

l
n,Kn

l
p,K .

(6.46)

9for the flux at boundaries, see section 2.2
10we refer to section 4.5.1 for the definition of xKL and xLK , noting that the subscript q is dropped since there is only

one quadrature point
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Let us define Ul ≡ (nls,K)s∈S,ΩK∈T ∈ R|S||T | the vector of unknowns at tl, I the identity matrix,
Al a |S||T | × |S||T | matrix such that

Al
: U 7→



1

|ΩK |
∑
L∈V1

K

|λKL|f
l,

e,KL − (αlK − ηlK)Nne,K

1

|ΩK |
∑
L∈V1

K

|λKL|f
l,

p,KL − αlKNne,K

1

|ΩK |
∑
L∈V1

K

|λKL|f
l,

n,KL − ηlKNne,K


K=1,...,N

≡


(
Al

U
)
e,K(

Al
U
)
p,K(

Al
U
)
n,K


K=1,...,N

,

andRl =

 nle,K −∆tlklep,Kn
l
e,Kn

l
p,K

nlp,K −∆tlklep,Kn
l
e,Kn

l
p,K −∆tlklnp,Kn

l
n,Kn

l
p,K

nln,K −∆tlklnp,Kn
l
n,Kn

l
p,K


K=1,...,N

≡

Rl
e

Rl
p

Rl
n


K=1,...,N

.

With these notations, the fully discrete system (6.45)-(6.46) can be recast in a more compact form,

(I +∆tlAl −∆tlSψ)U
l+1 ∋ Rl, (6.47)

Here, the writing SψU
l is a notation abuse since Ul is a discrete vector. In fact, inclusion (6.47)

should be understood in the sense of (6.44) and (6.45).

We shall investigate in the next sections some algorithms to solve the discrete conservation
laws (6.47). The complex structure of the operator I + ∆tlAl − ∆tlSψ makes the evaluation of
(I +∆tlAl −∆tlSψ)

−1Rl often hard to achieve. Therefore, we explore some splitting and iterative
methods to solve this problem, namely the Lie operator splitting, the Douglas-Rachford method
[94] and a Gauss-Seidel-inspired algorithm. The first one is a classical and very simple method to
implement. The second one is also classical and well known in convex optimization [120]. The last
method is derived from the Gauss-Seidel algorithm which is used for solving linear systems. We
shall compare the performance of these methods further in section 6.6.

6.5.3 Lie splitting

Let us remark first of all that if (I +∆tl∂IKψ)g ∋ h then from definition (6.4), we have
h− g

∆tl
∈ ∂IKψ(g) ⇐⇒ ∀v ∈ Kψ, (h− g, v − g) ≤ 0.

It is shown that g is the projection of h on Kψ, i.e. g(t,x) = max(h(t,x), ψ(x)), which is unique
according to theorem 6.1. Therefore, ifH = (he hp hn)

t and J∆t
−Sψ

= (I−∆tSψ)
−1 (the resolvent

of −Sψ) then

J∆tl

−Sψ
H =

(
max(he, ψ) hp hn

)t
. (6.48)

Remark 6.7. From inclusion (6.41), the electron density at tl+1 isnl+1
e = max

(
Rl
e −∆tl(AlU l+1)e, ψ

)
which implies that nl+1

e = max
(
Rl
e −∆tl(AlU l+1)e, ψ

)
. By this point, making the assumption (6.44)

is in fact to approximate the right-hand side of this equation with max
(
Rl
e −∆tl(AlU l+1)e, ψ

)
.

Further approximations of flux and chemical coefficients lead finally to

nl+1
e = max

(
Rl

e −∆tl(Al
Ul+1)e, ψ

)
, which is the solution of inclusion (6.47).
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Remark 6.8. J∆tl

−Sψ
is independent of ∆tl > 0, which means that the electrons are instantaneously

created to reach the floor density. Therefore, we can omit the timestep and write J−Sψ instead of J∆tl

−Sψ
.

The simplest operator splitting method is the Lie algorithm which is first-order in time. At tl, we
compute the numerical solution of (6.47), still denoted asUl+1, in the following way,

Ul+1 = J−Sψ
J∆tl

Al
Rl. (6.49)

The evaluation of J∆tl

Al
Rl is classical since it is equivalent to inverting a linear system.

6.5.4 Douglas-Rachford algorithm

The second method that we consider is the Douglas-Rachford algorithm [94, 47]. The original
method was introduced as a first-order-in-time operator splitting to solve the evolution problem∂τU + (A+B)U ∋ R,

U(τ = 0) = U0 ∈ dom(A) ∩ dom(B),
(6.50)

where A and B are maximal monotone operators. The algorithm is described as follows: we choose
V 0 ∈ (I +∆τB)U0 and form ≥ 0, define

V m+1 = J∆τ
A (2J∆τ

B − I)V m + (I − J∆τ
B )V m +∆τJ∆τ

A R.

The approximation of U at timem∆τ is then Um = J∆τ
B V m. A crucial property of this method is

that as m → ∞, Um converges to the steady-state solution U∞ of (6.50) (i.e. (A + B)U∞ ∋ R) if
the latter exists.

We adopt the Douglas-Rachford algorithm to solve the semi-discrete problem (6.41) by considering
it as a stationary problem. More precisely, we search for the steady-state solution of the following
pseudotime [77] problem,

dU(τ)

dτ
+

(
I
∆tl

+Al − Sψ

)
U(τ) ∋ 1

∆tl
Rl,

U(0) = U l,

where τ is the pseudotime variable. We apply the Douglas-Rachford algorithm (6.50) for

A =
I
∆tl

+Al, B = −Sψ, R =
1

∆tl
Rl, ∆τ = ∆tl, (6.51)

and when it converges, we set U l+1 = U∞.

Finally, the discrete version of the Douglas-Rachford method, applied to solve the discrete problem
(6.47) is presented in algorithm 1.

Remark 6.9. The requirement that A is monotone imposes a constraint on the timestep ∆tl which

is related to the Townsend ionization rate α. In order to see this, let us assume for simplicity that Ds,
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Algorithm 1 Douglas-Rachford
1: Let ϵ > 0, U0 = Ul, V 0 ∈ (I −∆tlSψ)U

0, δ > ϵ

2: while δ > ϵ do
3: Set V m+1 = J1

I+∆tlAl
(2J−Sψ

− I)V m + (I − J−Sψ
)V m + J1

I+∆tlAl
Rl

4: Set Um+1 = J−Sψ
V m+1 and let

(
n(m+1)
e n(m+1)

p n(m+1)
n

)t
= Um+1

5: Update δ = max
s∈S

(
|n(m+1)
s − n

(m)
s |∞

|n(m)
s |∞

)
where | · |∞ is the discrete L∞-norm

6: end while
7: SetUl+1 = Um

us, α are constant and other reaction coefficients are zero. We define the scalar product on the space

H3 ≡ H×H×H as

(U ,V )H3 = (ne, we)H + (np, wp)H + (nn, wn)H,

with U = (ne np nn)
t, V = (we wp wn)

t. Since A is a linear operator it is sufficient to check

the sign of (AU ,U)3H. By some algebraic manipulation we have

(AU ,U)H3 =
∑
s∈S

(
1

∆tl
|ns|2H +Ds|∇ns|2H +

1

2

∫
Γ

(us · ν)n2
sdl

)
− αN |ne|H(1 + |np|H).

If C > 0with C = αN |ne|H(1+|np|H)−
∑
s∈S

Ds|∇ns|2H−
1

2

∑
s∈S

∫
Γ

(us·ν)n2
sdl, for (AU ,U)H3 ≥

0, ∆tl must satisfy

∆tl ≤ 1

C

∑
s∈S

|ns|2H. (6.52)

In case of very large α such as in streamers or microdischarges, the timestep is severely restricted in spite

of implicit integration.

6.5.5 Gauss-Seidel algorithm

For a discrete linear system AU = R where A is a square matrix, the solution U can be obtained
iteratively in the following way,

Um+1 = (M +D)−1 (R−NUm) , m ≥ 0,

where U0 is an initial guess, D, M , N are resp. the diagonal, strictly lower and upper triangular
components ofA. By using the forward substitution, the elements ofUm can be computed sequentially
as follows,

Um+1
p =

1

1 + App

(
Rp −

∑
q>p

ApqU
m
q −

∑
q<p

ApqU
m+1
q

)
, p = 1, 2, . . . ,
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where Um
p is the pth element of Um and Apq is the element of A on the pth row and qth column.

For the nonlinear problem (6.47), by analogy to the Gauss-Seidel method we propose the following
iteration for forward substitution,

Um+1 = (I +∆tlMl +∆tlDl −∆tlSψ)
−1
(
Rl −∆tlN lUm

)
,

where Dl,Ml, N l are resp. the diagonal, strictly lower and upper triangular components of Al. Its
element-wise form reads as(

I − ∆tl

1 + ∆tlAl

pp

Sψ

)
Um+1
p =

1

1 + ∆tlAl

pp

(
Rl

p −∆tl
∑
q>p

Al

pqU
m
q −∆tl

∑
q<p

Al

pqU
m+1
q

)
.

As long as 1 + ∆tlAl

pp > 011, ∀p so that − ∆tl

1 + ∆tlAl

pp

Sψ is monotone, the resolvent of Sψ is

well defined as in eq. (6.48) and we have

Um+1
p =

J−Sψ

1 + ∆tlAl

pp

(
Rl

p −∆tl
∑
q>p

Al

pqU
m
q −∆tl

∑
q<p

Al

pqU
m+1
q

)
.

The complete description of the proposed algorithm is presented in algorithm 2.

Algorithm 2 Gauss-Seidel
1: Let ϵ > 0, U0 = Ul, δ > ϵ

2: while δ > ϵ do
3: Forward substitution
4: Um+ 1

2 = (I +∆tlMl +∆tlDl −∆tlSψ)
−1
(
Rl −∆tlN lUm

)
5: Backward substitution
6: Um+1 = (I +∆tlN l +∆tlDl −∆tlSψ)

−1
(
Rl −∆tlMlUm+ 1

2

)
7: Let

(
n(m+1)
e n(m+1)

p n(m+1)
n

)t
= Um+1

8: Update δ = max
s∈S

(
|n(m+1)
s − n

(m)
s |∞

|n(m)
s |∞

)
9: end while
10: SetUl+1 = Um

6.6 Comparison of algorithms on one-dimensional grids

6.6.1 Conservation of steady state

For the wire-to-wire test case described in section 5.2, it happens that the steady state exists (see
section 5.2.2), but the capacity of the code to reproduce this steady state depends strongly on the
algorithm used to solve the discrete conservation laws (6.47) as we show in the next paragraphs. In

11this imposes a restriction on∆tl which is a discrete version of inequality (6.52)
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Figure 6.2: Lie splitting: electric current I with different values of C

this section, all the simulations are conducted on a 400-cell grid with the smallest cell size∆xmin = 5.5

µm.

At each time level tl, we compute the numerical timestep as follows,

∆tl = min(C∆tlion,∆t
l
ϕ),

where ∆tlion, ∆tlϕ are resp. given by eqs. (3.15) and (4.47) and C is a user-defined parameter.

The simulation time is set at T = 7 ms for which we observe a steady-state current as defined
in section 5.2.2. For 0 ≤ t ≤ 0.04 ms, we fix C = 0.01 since at the discharge onset, there is a rapid
charge multiplication and the dielectric relaxation time ∆l

ϕ decreases quickly. So having a small
timestep ∆tl ensures that the plasma dynamics are captured correctly. After t = 0.04 ms, we choose
C between 1 and 102. After t = 0.4 ms, the discharge enters the ion collection phase (slow-changing
current with ∆l

ϕ ≫ ∆tlion) and we set C = 103.

Lie splitting

The computed electric currents with the algorithm (6.49) are shown in fig. 6.2. We show that the
Lie splitting does not conserve the steady state: indeed, the current changes when we vary the time
step.

Douglas-Rachford (DR) algorithm

We defined the stop criterion as ϵ = 10−6 (see algorithm 1). The electric current at steady state is
conserved by the Douglas-Rachford algorithm as shown in fig. 6.3. This feature was remarked in
[94]. At T = 7 ms, the current of C = 102 differs only 0.007% from the current of C = 1.

Gauss-Seidel (GS) algorithm

We defined the stop criterion as ϵ = 10−6 (see algorithm 2). The electric current at steady state
is also conserved by the Gauss-Seidel algorithm as shown in fig. 6.4. At T = 7 ms, the current of
C = 102 differs only 8× 10−7% from the current of C = 1.
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Figure 6.3: Douglas-Rachford algorithm: electric current I with different values of C
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Figure 6.4: Gauss-Seidel algorithm: electric current I with different values of C

6.6.2 Performance comparison of the DR and GS algorithms

We have seen that the steady-state current computed with the DR and GS algorithms is virtually
independent of timesteps. Therefore, these algorithms should be preferred over the Lie splitting to
conduct implicit simulations of corona discharge. However, there is a huge difference between the
two methods in term of computation time as shown in table 6.1.

In order to understand why, we count the number of iterations N(tl) at each time level tl that is
necessary for the algorithms to converge. Then we evaluate the averaged number of iterations N by
dividing it with the number of time levels. Furthermore, we only count the iterations from T = 1 ms

to 7 ms, since before 1 ms the dielectric time ∆tlϕ can fall below C∆tlion so N(tl) would not depend
on C. To sum up, we have,

N =

7 ms∑
tl=1 ms

N(tl)

Number of time levels .

We remark from table 6.1 that the averaged number of iterations of the DR algorithm scales
almost linearly with C. This explains why the DR computation time is not shortened although we
increase the timesteps. On the contrary, the averaged number of iterations of the GS algorithm is
almost the same regardless of the time step and reduces the CPU time significantly. Therefore, we
exclusively use the GS algorithm from now on.
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C
DR GS

N CPU time N CPU time
1 14 45 1 17

10 84 26 1.13 4.65

100 856 24 1.33 1.68

Table 6.1: Averaged number of iterations N and CPU time (in minute) of DR and GS algorithms for
simulations on a 400-cell grid
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Figure 6.5: Standard SG scheme: electric current I with different mesh size ∆xmin

6.6.3 Mesh convergence

In this section, we conduct a mesh convergence study to ensure that the GS algorithm is able
to capture correctly the discharge dynamics. We perform the simulations on five grids with 400

cells (smallest cell size ∆xmin = 5.5 µm), 800 cells (2.6 µm), 1600 cells (1.3 µm), 3200 cells (0.6 µm)
and 6400 cells (0.3 µm). We use the standard SG scheme and the SGCC-1, SGCC-2 schemes (see
section 4.3) for flux approximation. Since the latter two are nonlinear because of slope limiters, we
use the fixed-point algorithm to iterate on the slopes12.

The electric currents of each flux scheme are shown in figs. 6.5 to 6.7. They are compared to
the current of the SGCC-2 scheme obtained on the 0.3 µm-grid (the black dashed curve). We can
conclude that the whole numerical scheme is able to perform corona discharge simulation with
confidence by observing that the electric currents converges to the black reference curve as the mesh
size decreases. We also remark the high-order flux schemes (SGCC-1, SGCC-2) increases significantly
the numerical precision.

Finally, we note that a mesh convergence study for the SGCC schemes with explicit time integra-
tion was only partially conducted in section 5.2 but the simulation on the 3200-cell grid was only
launched up to 300 µs. The reason is that it would have taken months to obtain the steady-state
current. In this section, the simulations are extremely rapid. For example, a computation with the

12see appendix E
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Figure 6.6: SGCC-1 scheme: electric current I with different mesh size ∆xmin
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Figure 6.7: SGCC-2 scheme: electric current I with different mesh size ∆xmin
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SGCC-2 scheme takes only an hour on the 3200-cell grid and four hours on the 6400-cell grid.

6.7 Closing remarks
The main results of this section are summarized as follows.

The conservation law of electrons were reformulated into a differential inclusion so that the
floor density constraint on the electron density, ne ≥ ψ, appears directly in the discharge model.
The accounting of this constraint manifests via a set-valued source term which is related to the
subdifferential of the characteristic function of the convex set Kψ of functions that satisfy the
constraint.

The existence and uniqueness of the solution of the electron conservation law were demonstrated
under some specific hypotheses. The proof of this result features the use of a regularization problem
with a regularization parameter ζ . The smallness of ζ characterizes how fast the solution of the
regularization problem moves into the convex Kψ from an initial datum that is not necessarily in Kψ

(proposition 6.1). It has been demonstrated that the solution of the electron conservation law is the
limit of the solution of the regularization problem as ζ → 0. Therefore, the solution of the electron
conservation law is instantaneously an element of Kψ, meaning that electrons are created with a
infinite production rate to satisfy the constraint ne ≥ ψ.

The conservation laws were discretized in time using the backward Euler scheme and some
specific treatments of the source terms were derived to reduce the nonlinearity of the discrete
discharge system. The latter is still nonlinear though because of the set-valued source term in the
electron conservation law.

The mathematical reformulation of the electron conservation law was proved to be necessary
as it allows to derive some iterative algorithms to correctly solve the discharge problem. The
Douglas-Rachford and Gauss-Seidel algorithms, in particular, demonstrated the conservation of
the steady-state current of a corona discharge, which was not the case with the widely used Lie
splitting method. The Gauss-Seidel algorithm converges however much faster and thus is preferred
over the Douglas-Rachford algorithm. However, we only tested the latter with the pseudo-timestep
equal to the discharge timestep, i.e. ∆τ = ∆tl in eq. (6.51). It would be interesting to study the
Douglas-Rachford algorithm with other values of ∆τ .

The proposed implicit strategy enhances significantly the performance of the numerical solver.
We were able to continue the mesh-convergence study of the SGCC-1 and SGCC-2 schemes on the
one-dimensional corona discharge problem in section 5.2. Indeed, the proposed implicit strategy was
able to cut short the CPU time, frommonths with an explicit time integration method, to a matter
of hours.

6.8 Remarques finales
Les principaux résultats de cette section sont résumés comme suit.

La loi de conservation des électrons a été reformulée sous forme d’une inclusion différentielle de
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sorte que la contrainte de densité de fond sur la densité des électrons, ne ≥ ψ, apparaît directement
dans le modèle de décharge. La prise en compte de cette contrainte se manifeste par un terme source
multivalué qui est lié au sous-différentiel de la fonction caractéristique de l’ensemble convexe Kψ

des fonctions qui satisfont la contrainte.

L’existence et l’unicité de la solution de la loi de conservation des électrons ont été démontrées
sous certaines hypothèses spécifiques. La preuve de ce résultat repose sur l’utilisation d’un problème
de régularisation avec un paramètre de régularisation ζ . La petitesse de ζ caractérise la vitesse à
laquelle la solution du problème de régularisation se déplace dans le convexe Kψ à partir d’une
donnée initiale qui n’est pas nécessairement dans Kψ (proposition 6.1). Il a été démontré que la
solution de la loi de conservation des électrons est la limite, dans un certain espace fonctionnel, de
la solution du problème de régularisation lorsque ζ → 0. Par conséquent, la solution de la loi de
conservation des électrons est instantanément un élément de Kψ, ce qui signifie que les électrons
sont créés avec un taux de production infini pour satisfaire la contrainte ne ≥ ψ.

Les lois de conservation ont été discrétisées en temps avec le schéma d’Euler implicite et certains
traitements spécifiques des termes sources ont été dérivés pour réduire la nonlinéarité du système de
décharge discret. Ce dernier reste cependant nonlinéaire en raison du terme source multivalué dans
la loi de conservation des électrons.

La reformulation mathématique de la loi de conservation des électrons s’est avérée nécessaire car
elle permet de dériver quelques algorithmes itératifs pour résoudre correctement le problème de la
décharge. Les algorithmes de Douglas-Rachford et de Gauss-Seidel, en particulier, ont démontré la
conservation du courant en régime stationnaire d’une décharge couronne, ce qui n’était pas le cas avec
la méthode de splitting de Lie largement utilisée. L’algorithme de Gauss-Seidel converge cependant
beaucoup plus rapidement et est donc préféré à l’algorithme de Douglas-Rachford. Cependant, nous
n’avons testé ce dernier qu’avec un pas de pseudo-temps égal au pas de temps de la décharge, c’est-à-
dire ∆τ = ∆tl dans l’eq. (6.51). Il serait intéressant d’étudier l’algorithme de Douglas-Rachford avec
d’autres valeurs de ∆τ .

La stratégie implicite proposée améliore considérablement les performances du solveur numérique.
Nous avons pu poursuivre l’étude de convergence des maillages des schémas SGCC-1 et SGCC-2
sur le problème de décharge de couronne unidimensionnelle introduit dans la section 5.2. En effet,
la stratégie implicite proposée a permis de réduire le temps de CPU des mois avec une méthode
d’intégration temporelle explicite à seulement des heures.
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7.0 Aperçu
Ce chapitre présente la validation du modèle de densité du fond sur les électrons ainsi que la

stratégie d’intégration implicite en temps qui ont été introduits dans la section 6.1 et ont été mis
en œuvre dans le solveur de plasma de l’ONERA - COPAIER [46]. Les cas tests sont une décharge
couronne fil-fil positive (section 7.2) et une décharge couronne aiguille-anneau (section 7.3, pour les
polarités positives et négatives). Dans les deux cas, la force électromotrice VG prend la forme d’une
rampe de tension : le potentiel à l’électrode stressée est augmenté progressivement sur une courte
période pour éviter le développement de micro-décharges (au moins pour les tensions positives), puis
maintenu constant par la suite. Nous nous intéressons en particulier, et chaque fois qu’elle existe, au
courant continu des décharges, puisque cette phase se produit sur une longue échelle de temps (de
l’ordre de 1 ms) et contribue principalement à la force EHD.

Les solutions numériques (courant de circuit, vitesse du vent ionique) sont comparées aux données
expérimentales dans la mesure du possible afin de démontrer la capacité de COPAIER à reproduire
des mesures réelles. Les résultats des expériences sont disponibles dans [12] pour la décharge fil-fil
et dans [163] pour la décharge aiguille-anneau positive. Il est montré que l’inclusion de la contrainte
de densité fond sur la densité électronique permet de calibrer les solutions numériques pour qu’elles
s’adaptent aux données expérimentales. Une densité fond constante ψ = 1011 m−3 semble donner
des résultats adéquats pour les décharges positives fil-fil et aiguille-anneau. Pour la décharge aiguille-
anneau négative, les simulations prennent beaucoup de temps, de sorte que la comparaison avec les
données expérimentales n’a pas été réalisée.

Pour rappel, les méthodes numériques utilisées dans ce chapitre sont du premier ordre en espace
(schéma de Scharfetter-Gummel standard) et en temps (schéma d’Euler implicite). Le pas de temps
numérique à chaque instant tl est fixé comme suit,

∆tl = min

C∆tlions,∆t
l
ϕ,

0.1|VG(tl)|∣∣∣dVG(tl)dt

∣∣∣+ ϵ

 ,

où C = 103, le pas de temps CFL des ions ∆tlions est défini dans l’eq. (4.47), le temps de relaxation
diélectrique ∆tlϕ est défini dans l’eq. (3.15), ϵ = 10−6 pour éviter la division par zéro, et la dernière
quantité du côté droit est là pour s’assurer que la simulation capture la dynamique de la décharge
pendant la variation de VG. Le nombre maximum d’itérations avant que l’algorithme de Gauss-Seidel
converge est fixé à 104. Si l’algorithme ne converge pas,∆tl est automatiquement réduit d’un facteur
de 10 et le calcul recommence à partir de tl.

7.1 Overview
This chapter provides the validation of the electron floor density model as well as the implicit

time integration strategy that were laid out in section 6.1 and were implemented in ONERA’s plasma
solver COPAIER [46]. The test cases are a positive wire-to-wire corona discharge (section 7.2) and
a needle-to-ring corona discharge (section 7.3, for both positive and negative polarities). In either
situation, the electromotive force VG takes the form of a ramp voltage: the potential at the stressed
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electrode is raised gradually over a short time to avoid the development of microdischarges (at
least for positive voltages) and then kept constant afterwards. We are interested in particular, and
whenever it exists, in the direct-current component of the discharges, since this phase occurs on a
long timescale (on the order of 1 ms) and contribute mainly to the EHD force.

The numerical solutions (circuit current, ionic wind velocity) are compared to experiment data
whenever possible to demonstrate the capability of COPAIER in reproducing real-life measurements.
The experiment results are available in [12] for the wire-to-wire discharge and in [163] for the positive
needle-to-ring discharge. It is shown that the inclusion of the floor density constraint on the electron
density allows to calibrate the numerical solutions to fit the experiment data. A constant floor density
ψ = 1011 m−3 seems to deliver adequate results for both positive wire-to-wire and needle-to-ring
discharges. For the negative needle-to-ring discharge, the simulations take a lot of time to complete,
so the comparison with experiment data has not yet been achieved.

As a reminder, the discretization methods used in this chapter are first-order in space (standard
Scharfetter-Gummel scheme) and time (backward Euler scheme). The numerical timestep at each
time tl is set as

∆tl = min

C∆tlions,∆t
l
ϕ,

0.1|VG(tl)|∣∣∣dVG(tl)dt

∣∣∣+ ϵ

 ,

where C = 103, the CFL timestep of ions ∆tlions is defined in eq. (4.47), the dielectric relaxation time
∆tlϕ is defined in eq. (3.15), ϵ = 10−6 to avoid division by zero, and the last quantity on the right-hand
side is there to ensure that the simulation captures the discharge dynamics during the variation of
VG. The maximum number of iterations before the Gauss-Seidel algorithm converges is set at 104. If
the algorithm does not converge, ∆tl is automatically reduced by a factor of 10 and the computation
restarts from tl.

7.2 Wire-to-wire corona discharge

7.2.1 Description of the test case and numerical parameters

A sketch of the actuator is shown in fig. 7.1. Two wires hanged in air are connected to a resistorR
and a generator VG. The length of each wire is L, the smallest gap between the electrode surfaces is
d, the domain height is h and the smallest distance between the surface of an electrode and its closest
vertical border is l. The coordinate origin x = (0, 0) is located at the center of the left (smaller) wire.

The particular geometry of the wire-to-wire actuator intensifies the electrostatic field in the
electrode sheaths. Therefore, all chemical reactions are much stronger in the sheaths than in the
outer region between the wires. As a result, the grids that we use are strongly refined near the
electrodes as illustrated in fig. 7.2. The minimal grid size is fixed to a value ∆xmin.

The boundary conditions are shown on fig. 7.1 and described in section 2.2. The initial data are
given in section 2.3. The electron floor density ψ is chosen between 1 and 1014 m−3. The secondary
emission coefficient γ is fixed to 10−4. The simulation time is set at T = 5 ms so that the discharge

177



Chapter 7

r2
r1

VGR

Ω
Γf Γf

Γf

Γs Γs Γs

Γw
Γw

x1

x2

Figure 7.1: Sketch of the geometry of the actuator (not drawn to scale) and the computation domain
Ω (inside the solid-line loop)

Figure 7.2: Grid refinement near the smaller wire (the left one on fig. 7.1) generated by Gmsh [58]
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r1 0.1-0.5 mm h 8 mm ∆xmin 5 µm

r2 1 mm l 4 mm ψ 1-1014 m−3

L 20 cm VG 9-37 kV γ 10−4

d 10-40 mm R 10 kΩ T 5 ms

Table 7.1: Parameters of the wire-to-wire corona discharge simulations

reaches a steady state in the sense of the definition in section 5.2.2.

In terms of kinetic model, we use the scheme of Bœuf et al. [15] (see example 2.1) which is
available for both LFA and LEA models, or the scheme of Ferreira et al. [54] (see example 2.2) which
is only available for the LFA model. The simulations of sections 7.2.2 to 7.2.4 are performed with the
LFA model and the kinetic scheme of example 2.1 by default, unless indicated otherwise.

To avoid the formation of streamers that can reduce significantly the dielectric timestep and
prolong the simulations, we increase the voltage gradually on 2 µs until it reaches the maximal value
VG.

Each simulation in this section was launched on four MPI processes1. The CPU time for the
implicit time method introduced in chapter 6 was drastically shorten to three to five hours instead
of a week for the explicit time methods that are available in COPAIER.

The characteristics of the actuator and the numerical parameters are grouped in table 7.1.

7.2.2 Dynamics of the discharge

In this section, we present the numerical solution for VG = 13 kV, r1 = 0.1 mm, d = 10 mm and
ψ = 1010 m−3.

As the voltage rises, a cloud of positive ions starts to build up around the anode (the smaller wire)
because of the ionization process. Figure 7.3 shows the evolution of positive ion density np between
the electrodes on the symmetry axis. At t = 1.17 µs, np is up to 1014 m−3 in the anode sheath. We
do not show the negative ion and electron densities since they are much smaller to the positive ion
density. Therefore, the EHD force density fEHD ≡ ρE depends largely on np and E. Figure 7.5
shows that the force strength fEHD = |fEHD| at t = 1.17 µs is concentrated around the axis and on
the right-hand side of the anode facing the cathode.

After the voltage reaches its maximum, the ionization process stops increasing and the positive
ion cloud starts spreading out from the anode under the influence of the electrostatic field. At t = 2.23

µs, the cloud centers at 0.3 mm from the anode and the ion density builds up to 4× 1017 m−3 which
distorts the field a little bit (see Figure 7.4). We observe a “detonation” at this stage where the EHD
force is released from the anode and moves away to the cathode (Figure 7.6) with an intensity up to
260 kN m−3.

At t = 3.32 µs, the positive ion cloud diffuses progressively as they enters the low-field region
1see appendix F for the MPI implementation of the Gauss-Seidel algorithm
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Figure 7.3: Positive ion density np between the electrodes on the symmetry axis
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Figure 7.4: Field strength E between the electrodes on the symmetry axis

Figure 7.5: EHD force strength fEHD (N m−3) at t = 1.17 µs near the anode
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Figure 7.6: EHD force strength fEHD (N m−3) at t = 2.23 µs

Figure 7.7: EHD force strength fEHD (N m−3) at t = 3.32 µs

and the ion density is not high enough to create a high field as in streamers. As a result, the EHD
force within the front loses its intensity gradually. Its strength now concentrates in the anode sheath
(Figure 7.7) where the positive ions are continuously produced through stable ionization process.

From t = 7.04 µs and on, the positive ions produced by ionization in the anode sheath continue
to drift away, resulting in a wave traveling toward the cathode. This is the ion collecting phase of a
corona discharge [109]. After some milliseconds, the ion density stabilizes at around 1016 m−3 and
the EHD force strength at around 16kN m−3. Figure 7.8 shows the x1-component of the EHD force
density f1 ≡ ρE1 at t = 4 ms when the discharge reaches the steady state. The result shows that
between the electrodes, there is a force density of 16kN m−3 which points towards the cathode. On
the left-hand side of the anode, the EHD force points in the reverse direction and reaches −4.6kN

m−3.

Figure 7.8: x1-component f1 of the EHD force density (N m−3) at t = 4 ms (figure reflected on the
symmetry axis)
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Figure 7.9: ψ-I curves for r1 = 0.1 mm. The curve of VG = 13 kV & d = 10 mm is colored in blue,
VG = 20 kV & d = 20 mm in orange, VG = 37 kV & d = 40 mm in green.

7.2.3 Influence of the floor density on numerical solutions

We conduct a parametric study in which we compute the steady-state current for each (constant)
electron floor density ψ. In fig. 7.9, we show the ψ-I curves for fixed anode radius r1 = 0.1 mm

while changing the wire gap d. For each d, the circuit voltage VG is chosen closed to the maximal
potential reached before the apparition of spark discharge as documented in [12]. In fig. 7.10, we do
the reverse by fixing d = 10 mm and changing r1.

In fig. 7.9, the minimal electron density, when there is no floor density, is more than 108 m−3 for
all d, suggesting that the discharges are self-sustaining and do not need other sources of electrons
other than impact ionization and secondary emission from the cathode surface. For this reason, we
do not show in fig. 7.9 the values of I for ψ smaller than 5 × 108 m−3. Although the discharges
maintain themselves, the current is far from the experimental value if there is no additional electron
source (see section 7.2.4 for d = 10 mm). The current I (µA) clearly depends on ψ as suggested
in fig. 7.9, but the dependence seems to differ in each value interval of ψ. For ψ between 109-1011

m−3, we have a (fitting) law I ∼ ψ0.07. For ψ between 1012-1014 m−3, I ∼ ψ0.7. This suggests that ψ
should be between 109-1011 m−3 for this wire-to-wire discharge, since a too high value of ψ may
overestimate the circuit current.

In fig. 7.10, we highlight the fact that in certain circumstances, the discharge is not self-sustaining
unless there is an additional source of electrons other than electron impact ionization and surface
secondary emission, which justifies the use of floor density. The curve corresponding to r1 = 0.5

mm shows that I is close to 0 when ψ is small (1 m−3), suggesting that there is no discharge at all
although this is not true from experiment measurements (see fig. 7.11).

7.2.4 Comparison with experiment data

Being able to reproduce experiment data is the first step for a plasma solver to become a predictive
simulation tool. In this section, we compare our numerical results to the data of Bérard et al. [12].
The simulations are conducted for d = 10 mm, r1 takes values among 0.1, 0.175, 0.2 and 0.5 mm

and VG ranging from 9 to 17 kV. Figure 7.11 shows the numerical V -I curves with filled markers
and the experiment data with hollow circle markers.
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Figure 7.10: ψ-I curves for d = 10 mm. The curve of r1 = 0.1 mm & VG = 13 kV is colored in blue,
r1 = 0.5 mm & VG = 16.5 kV in orange.
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Figure 7.11: V -I curves for d = 10 mm and r1 = 0.1 to 0.5 mm of experiment data (hollow circles)
and numerical solutions (squares for ψ = 1010, triangles for ψ = 10−11 m−3)

As an attempt to fit the data, we use two values of ψ, 1010 m−3 (filled square markers) and 1011

m−3 (filled triangles). For r1 = 0.1 mm, the numerical currents of ψ = 1010 m−3 fit the data very
well. For r1 = 0.175 mm, the currents of ψ = 1011 m−3 only agree with the experiments for high
voltages, and as VG decreases so does the slope of the numerical curve. The two smallest values seem
to agree more with the 1010 m−3-curve but this curve itself deviates too much for large voltages.
The situation is quite similar for r1 = 0.2 mm but the numerical solutions differ even more from
experimental data. For r1 = 0.5 mm, the simulation results are mediocre. Not only the currents are
not exact, but the V -I slopes are completely wrong.

For corona discharges, the V -I characteristics is given by the law [126, Chapter 12]

I = kV IVG(VG − Vc), (7.1)

where Vc is the breakdown voltage and kV I is a coefficient. The fitting of experimental and numerical
currents with this quadratic law gives kV I and Vc for each curve. The characteristics associated to
the curves in fig. 7.11 are gathered in table 7.2.
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r1 = 0.1 mm r1 = 0.175 mm r1 = 0.2 mm

data ψ = 1010 ψ = 1011 data ψ = 1010 ψ = 1011 data ψ = 1010 ψ = 1011

kV I (µA kV−2) 2.42 2.3 2.33 2.8 1.71 2.13 2.77 1.69 2.24

Vc (kV) 8.88 8.54 7.64 10.55 10.66 9.68 11.53 11.51 10.51

Table 7.2: V -I characteristics of experiment data [12] (“data”) and numerical solutions for different
values of ψ (m−3)

The results show that the ignition voltages Vc for ψ = 1010 m−3 are closer to experiment data.
On the contrary, the slope kV I of ψ = 1011 m−3 is closer to experiment data. In our opinion, the
coefficient kV I should be more emphasized than Vc, since Vc itself is the subject of many factors of
incertitude and depends strongly on the discharge conditions (composition of gas, humidity, electrode
material, etc.).

Overall, we find that the proposed numerical model provides quite good estimates of experiment
data, considering the simplicity of the model, the first-order discretization in space and time and
other factors in the experiments that could change the current that could not be precisely modeled,
such as impurities on electrode surfaces or secondary emission.

7.3 Needle-to-ring corona discharge

7.3.1 Description of the test case

A sketch of the actuator is shown in fig. 7.12. The actuator is composed of a small metal needle
which serves as the stressed electrode and a metal ring. The curvature of a the needle tip is σ and
the length of the needle (excluding the tip) is L. The inner radius of the ring is r1 and the outer
radius is r2. The thickness of the ring is h and the gap between it and the needle tip is d. A high
voltage VG is applied to the needle while the ring is grounded and the two electrodes are wired to
a resistance R. The numerical computation is perform in cylindrical coordinate. In section 7.3.3,
we evaluate the flow velocity generated by the discharge at a pointM on the symmetry axis at a
distance l downstream from the ring.

The corona ignition voltage V e
c for different electrode gaps d were measured experimentally in

[163] and are listed in table 7.3 for positive voltage polarity. For negative polarity at d = 20 mm,
V e
c = −5.2 kV. The overvoltage is defined as ∆VG ≡ VG − V e

c .

The grids are particularly refined near the needle tip as shown in fig. 7.13. The minimal grid size

d (mm) 20 25 30

V e
c (kV) 7.1 7.4 8.0

Table 7.3: Experimentally measured ignition voltage V e
c of positive corona discharge for different

electrode gaps d
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Figure 7.12: Sketch of the needle-to-ring actuator (not drawn to scale), the computation domain is
colored in maroon

Figure 7.13: Grid refinement near the needle tip generated by Gmsh [58]

for simulations of positive corona discharge (section 7.3.3) is ∆xmin = 4.5 µm. For negative corona
simulations (section 7.3.4), the grid near the flat surface of the needle is also refined like the tip with
∆xmin = 2.25 µm in order to capture the microdischarges that appear near the tip in the beginning
of the discharge which then propagate upwards.

The boundary conditions are shown on fig. 7.12 and described in section 2.2. The initial data are
given in section 2.3. The electron floor density ψ is chosen between 109 and 1012 m−3. The secondary
emission coefficient γ is fixed to 10−4 or 5× 10−4.

The simulation time is set at T = 4 ms for positive discharges (when steady-state solution is
reached) and T = 0.1 ms for negative discharges. Furthermore, we use the kinetic scheme of Bœuf
et al. in example 2.1 and the LFA model.

To avoid the formation of streamers in positive discharges, we increase the voltage gradually on
10 µs until it reaches the maximal value VG. On the contrary, the microdischarges always appear
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during the negative corona no matter how large the voltage slope is, so we raise the voltage on 1 ns

in this case.

Each simulation in section 7.3.3 was launched on 32MPI processes and took three to five hours
to complete. Each simulation in section 7.3.4, on the other hand, was on 72 processes but took about
a week to finish.

7.3.2 Computation of ionic wind and numerical parameters

Uniquely for positive corona discharges, we use the EHD force density fEHD = ρE at steady
state T = 4 ms in conjunction with the incompressible Navier-Stokes equations to evaluate the
induced airflow by the actuator. Since the characteristic timescales of the discharge dynamics (on
the order of 10−5-10−4 s) and the ionic wind (1 ms) are disparate [46], it is reasonable to solve them
separately to save computation resources.

We solve for the steady-state solutions of the incompressible Navier-Stokes equations which read
as follows [61, Chapter 2],∇ · u = 0,

∇ · (u⊗ u)−∇ · (νeff∇u)−∇νeff · ∇u = − 1

ρ0
∇p+ 1

ρ0
fEHD,

(7.2)

where u(x) is the ionic wind velocity, νeff(x) (m2 s−1) is the effective kinematic viscosity, p(x) is
the pressure and ρ0 ≈ 1 kg m−3 is the volumetric mass of air.

The form of νeff depends on the flow model. In case of the (Newtonian) laminar model, νeff = ν

where ν ≈ 1.5 × 10−5 m2 s−1 is the kinematic viscosity of air. We also use the realizable k-ε
turbulence model [133] with νeff = ν + νt where νt(x) is the kinematic turbulence viscosity. νt is
modeled by the law [104]

νt = Cν
k2

ε
, (7.3)

with
Cν =

1

A0 + ASu∗
k
ε

, A0 = 4, AS =
√
6 cos(φ), φ =

1

3
cos−1(

√
6W ),

W = min

(
max

(
(DD) •D
D •D

,− 1√
6

)
,
1√
6

)
, D =

1

2
(∇u+∇ut),

u∗ = (D •D +Ω •Ω)
1
2 , Ω =

1

2
(∇u−∇ut).

(7.4)

We recall that (DD)i,j =
∑
k

Di,kDk,j and D •D =
∑
i,j

Di,jDi,j .

The turbulence kinetic energy per unit mass k(x) (m2 s−2) is given by

∇ · (ku) = ∇ ·
((

ν +
νt
σk

)
∇k
)
+Gk − ε,

σk = 1, Gk = 2νtD •D.

(7.5)
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Figure 7.14: Wedge-like domain for the computation of u

σ 0.1 mm L 5 mm ∆VG 2-14 kV (section 7.3.3) ∆xmin 4.5 µm (section 7.3.3)
r1 10 mm l 5 mm It 10%, 20%, 30% 2.25 µm (section 7.3.4)
r2 20 mm h 2 mm R 20 kΩ T 4 ms (section 7.3.3)
d 20-30 mm γ 10−4 ψ 109-1012 m−3 0.1 ms (section 7.3.4)

Table 7.4: Parameters of needle-to-ring corona discharge simulations

And finally, the turbulence kinetic energy dissipation rate ε(x) (m2 s−3) is given by

∇ · (εu) = ∇ ·
((

ν +
νt
σε

)
∇ε
)
+ Cε,1ε(2D •D)

1
2 − Cε,2

ε2

k +
√
νε
,

σε = 1.2, Cε,1 = max

(
0.43,

χ

χ+ 5

)
, χ =

k

ε
(2D •D)

1
2 , Cε,2 = 1.9.

(7.6)

The system of eqs. (7.2) to (7.6) is entirely solved by the open-source CFD code OpenFOAM [160].
The computation of ionic wind necessitates a wedge-like domain (extrusion around the symmetry
axis, see fig. 7.14) as well as a prescription of the inflow boundary conditions (on the top surface) for
k and ε [61, Chapter 7] as follows,

kin =
3

2
(Itu

ref)2, εin =
C

3
4
µ k

3
2
in

lm
, (7.7)

where kin and εin are resp. the inflow values of k and ε, It is the turbulence intensity, uref = 3 m s−1

is the reference inflow speed at the top surface, Cµ = 0.09 and lm is the Prandtl mixing length which
is set at lm = 5%× 2σ (roughly 5% of the flow jet diameter).

The characteristics of the actuator and the numerical parameters are grouped in table 7.4. By
default, r1 = 10 mm, r2 = 20 mm, d = 20 mm, γ = 10−4 and It = 30% unless stated otherwise.

7.3.3 Positive corona

Steady-state solution

The positive ion at the steady state (T = 4 ms) concentrates in front of the needle tip with a
density up to 2.5× 1018 m−3 (see fig. 7.15). The density of other species are negligible comparing
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Figure 7.15: Positive ion density np (m−3) near the needle tip for ∆VG = 12 kV and ψ = 1011 m−3

(a) fr (b) fz

Figure 7.16: Radial and axial components fr and fz (N m−3) of the EHD force density near the needle
tip for ∆VG = 12 kV and ψ = 1011 m−3

to np as ne is on the order of 1016 m−3 and nn is on the order of 1015 m−3. Therefore, np accounts
for most of the EHD force. Figure 7.15 shows that the positive ions do not form a cone in front of
the tip but rather a structure like the bottom of a bell pepper (the maximum position of np is not
on but around the symmetry axis). The positive ions also forms a ring-like structure around the tip
at r ≈ σ with np around 1018 m−3. The special charge distribution around the anode seems to be a
consequence of the ring geometry of the cathode.

As a result, the EHD force density has a large r-component fr at r ≈ σ that acts on the outward
direction from the needle as observed in fig. 7.16a. The influence of fr on the induced airflow should
be important in principle as the maximum strength of fr is roughly two-third the maximum strength
of the z-component force density fz (see fig. 7.16b), but it is not clear how it effects the property
of the ionic wind. Indeed, we can observe from figs. 7.17a and 7.17b that air is accelerated as if in
an annular jet from the position r ≈ σ where fr is maximal. However, despite fr being oriented
outward, the r-component of the flow velocity ur actually points inwards to the stressed electrode.

The question on the mechanism of interaction between the plasma and the airflow will be left
open for now, but it is an interesting one and should be revisited in the future. As we shall see in
the rest of the discussion, the laminar Navier-Stokes equations overestimates significantly the flow
speed comparing to experiment data. The use of the k-ε turbulence model with the tuning parameter
It (turbulence intensity) gives much more coherent results otherwise, although the Reynolds number
Re = umax2σ/ν of this jet is roughly 200, where umax = 16 m s−1 is the maximum flow speed (see
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(a) ur (b) uz

Figure 7.17: Radial and axial components ur and uz (m s−1) of the flow velocity near the needle tip
obtained with the turbulence model, for ∆VG = 12 kV and ψ = 1011 m−3

data ψ = 109 ψ = 1011 ψ = 1012

kV I (µA kV−2) 0.174 0.12 0.121 0.119

Table 7.5: V -I characteristics of experiment data [163] (“data”) and numerical solutions for d = 20

mm and different values of ψ (m−3)

figs. 7.18a and 7.18b), 2σ is the characteristic length (diameter of the jet) and ν ≈ 1.5× 10−5 m2 s−1

is the kinematic viscosity of air, so in principle the flow is laminar. In figs. 7.18a and 7.18b, we can
already observe that the jet profiles of the laminar and the turbulence models are clearly different as
the flow obtained with the turbulence model is visibly more diffusive in downstream comparing to
the laminar flow.

Comparison with experiment data - circuit current

The same analysis as in section 7.2 on the V -I characteristics is carried out for the positive
needle-to-ring discharge and the characteristic curves are shown on fig. 7.19 for different values of ψ.
Using a quadratic fitting for the curves, we found that the V -I characteristics also satisfy the law
(7.1) and the proportionality coefficients kVI are listed in table 7.5.

Overall, the coefficients kVI computed from the numerical solutions are practically the same but
differ slightly from the experiment data from [163]. Since the curve of ψ = 1011 m−3 seems to fit the
experiment data better than ψ = 109 m−3 for high values of ∆VG in the range of 10-12 kV, we will
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(a) Laminar flow (b) Turbulent flow

Figure 7.18: Magnitude of flow velocity u = |u| (m s−1) obtained with the laminar model and the
turbulence model (eqs. (7.2) to (7.6)), for ∆VG = 12 kV and ψ = 1011 m−3
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Figure 7.19: V -I curves for d = 20 mm. Comparison between experiment data [163] and numerical
solutions for different values of ψ. The dotted line is the linear fitting of experiment data.
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Figure 7.20: V -I curves for ψ = 1011 m−3. Comparison between experiment data [163] (hollow
markers) and numerical solutions for different values of d (filled markers). The dotted lines are the
linear fittings of experiment data.

d = 20 mm d = 25 mm d = 30 mm

data ψ = 1011 data ψ = 1011 data ψ = 1011

kV I (µA kV−2) 0.17 0.12 0.12 0.08 0.08 0.05

Table 7.6: V -I characteristics of experiment data [163] (“data”) and numerical solutions for ψ = 1011

m−3 and different values of d

set ψ = 1011 m−3 for the rest of the positive needle-to-ring simulations.

Figure 7.20 show the V -I characteristics obtained with different values of d as well as experiment
curves taken from [163]. As for d = 20 mm, the coefficients kV I computed for d = 25 and 30 mm

also differ slightly from experiment data (see table 7.6). Since the circuit current is quite sensitive to
many factors in a discharge, such as gas composition or impurities on electrode surfaces, etc., these
differences are not particularly concerning. Our conjecture is that it is more interesting to compare
instead the aerodynamic effects since the timescale of ionic wind is considerably larger than that of
the discharge, so it is probable that the ionic wind is less affected by discharge conditions.

Comparison with experiment data - flow velocity

After using the EHD force density corresponding to the discharge currents in fig. 7.20 to compute
the steady-state flows, we find that the laminar model overestimates significantly the jet velocity
comparing to experiment data even though the flow is in low-Reynolds regime. In fig. 7.21, we
present the velocity profile for d = 20 mm and ∆VG = 12 kV on the line z = −(σ + d+ h+ l), i.e.
5 mm downstream of the ring. The maximum jet speed reproduced by the laminar model is almost
twice as large as the measurements in [163]. On the other hand, the maximum velocity from the
experiments can be matched by numerical solutions of the turbulence model (eqs. (7.2) to (7.6)), but
with a tuning parameter It (in eq. (7.7)) that represents turbulence intensity at inflow boundaries.
We found that the computed velocity with It = 30% provides good agreement with data within the
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Figure 7.21: Ionic wind profile at z = −(σ + d + h + l) (i.e. 5 mm downstream of the ring) for
d = 20 mm and ψ = 1011 m−3. Comparison between experiment data [163] and numerical solutions
obtained with laminar and turbulence models for different values of It.

d = 20 mm d = 25 mm d = 30 mm

data It = 30% data It = 30% data It = 30%

kV u (m s−1 kV−1) 0.48 0.5 0.4 0.34 0.27 0.25

Table 7.7: V -u characteristics of experiment data [163] (“data”) and numerical solutions for It = 30%

and different values of d

jet “core” r < 2 mm. For this reason, we set It = 30% for the rest of the jet simulations.

It has been shown in [163] that jet velocity on the symmetry axis is linearly proportional to the
overvoltage. In particular, we have

uM = kVu∆VG, (7.8)

where kVu > 0 is the proportionality coefficient and is tabulated for each value of d in table 7.7.

The numerical coefficients kVu are actually closer to experiment data, except for d = 25 mm.
Nevertheless, it seems that the measurements for d = 25 mm deviate a bit from the law (7.8) for
∆VG in the range of 10-13 kV (see fig. 7.22). Therefore, the experimental slope kV u is probably not
well estimated in this case. Otherwise, it is clear that the comparison of the voltage-velocity slope
kVu is more reliable than the voltage-current slope kVI.

7.3.4 Negative corona

Simulation of negative corona discharges is much more challenging as microdischarges always
appear at the beginning of the simulation and the electron density can reach up to 1021 m−3, thus
heavily restricting the timesteps. The large ionization coefficient α due to strong field/electron mean
energy is also a contributing factor to the stiffness of the negative corona simulations. Indeed, in
section 6.5.5 we have seen the necessary condition I + ∆tlAl

pp > 0 for which the Gauss-Seidel
algorithm could work. Let us recall that the matrixAl stems from the rearrangement of drift-diffusion-
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Figure 7.22: V -u curves for It = 30%. Comparison between experiment data [163] (hollow markers)
and numerical solutions for different values of d (filled markers).

reaction terms in eq. (6.43), so the condition I +∆tlAl

pp > 0 can be achieved in two ways. (i) If the
grid is sufficiently refined so that the flux-related term (from f e,Kλ · νKλ in eq. (6.43)) dominates
the ionization term αlN (due to the factor |λ|/|ΩK |), then Al

pp > 0. (ii) Otherwise, Al

pp < 0 and ∆tl

needs to be smaller than (−Al

pp)
−1. Either way, the simulation is costly in terms of computation

resources. We refer to [157] for a more comprehensive reading on this constraint related to the
ionization source term α.

Let us denote as Sα ≡ αNne the source term due to electron impact ionization reaction and
Sl+1
α,K its discrete counterpart at tl+1 and on the cell ΩK . All the simulations in sections 7.2 and 7.3.3

have been using Sl+1
α,K = αlKNn

l+1
e,K as described in eq. (6.43). In this section, simulations with this

source term is not stable in the sense that the specie densities can reach nonphysical values and
the code can crash. For this reason, numerical methods featuring this ionization source term are
called non-avalanche-stable (NAS), adapting the terminology that was coined in [157]. Figure 7.23a
shows the positive ion density obtained with the NAS method-LFA model at t = 1.06 ns for d = 20

mm and VG = −17.2 kV. The maximum density is very high - 4.7 × 1021 m−3 - and keeps rising
which leads to the code crashing shortly afterwards.

In order to stabilize the simulation, we use the avalanche-stable (AS) method proposed in
[157] that features a new way to compute Sl+1

α,K . The electrons are not created on ΩK anymore but
originates from influx electrons from neighbor cells. More precisely, Sl+1

α,K is replaced by

Ŝl+1
α,K =

αlK
GK

∑
L∈V1

K

|λLK |max(ule,LK , 0)ne,L, GK =
∑
L∈V1

K

|λLK |max(ule,LK , 0),

where we recall that V1
K is the first-order neighborhood of ΩK (see section 4.6) and ule,LK is an

approximant of u(tl,xλLK) · νLK .

The AS method-LFA model turns out to be not stable either. The simulation manages to go on
until t = 6 ns but then crashes almost immediately. The last saved result shows that the positive ion
density is up to 1.9× 1021 m−3 but the maximum position is strangely not on the symmetry axis, as
shown in fig. 7.23b.
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(a) t = 1.06 ns (b) t = 6 ns

Figure 7.23: Positive ion density np (m−3) near the needle tip, obtained with the LFA-NAS model
(left) and the LFA-AS method (right) right before they crash

The problem lies in the limit of the LFA model that was discussed in section 2.5. The high
concentration of positive charges close to the stressed electrode (cathode) generates an extremely
strong field that is ready to ionize electrons that are diffused into the region near the cathode, since
the ionization coefficient α depends on field strength in the LFA model. To remedy this problem, we
use eq. (2.19) to modify α. This approach is dubbed as the full-flux scheme (FFS) in [138] and allow
the simulation to complete at T = 0.1 ms.

The evolution of positive ion density, obtained with the LFA-AS-FFS method, during the first
ten nanoseconds of the discharge is shown in fig. 7.24. The first avalanches occur in front of the
tip and then extend upwards along the needle surface until the charges completely surround the
electrode surface. The maximum positive ion density as well as electron density (not shown) well
exceed 3× 1020 m−3, which explain the immense circuit current, on the order of −0.1 to −1 A on
0-10 ns (see fig. 7.25a).

From 10 ns to 60 µs, the charge density slowly decreases to around 7× 1018 m−3 and so does the
circuit current. But from t = 60 µs, successive current pulses begin to form and persist until the end
of the simulation (see fig. 7.25b). The pulse peaks are on the order of −1 mA with the frequency of
repetition around 0.7-1 MHz.

We also tested the LEA model combining with the AS method. The LEA-AS method persists
until t = 1.487 ns but then crashes because the condition I + ∆tlAl

pp > 0 was violated for the
electron mean energy. This suggest that the AS method should be extended to the (positive part
of the) energy source term. Figure 7.26 compares the positive ions density obtained with the two
methods LFA-AS-FFS and LEA-AS arount t = 1.5 ns. It reveals that the maximum density of the first
model is substantially smaller than the latter one, but the morphology of the particle distribution is
the same. This suggests that the LEA-AS method is on the right track of development and only needs
some improvements to be totally avalanche-stable.

Finally, we switched the explicit resolution method of the Poisson equation (see section 3.3.1) to

194



Simulations with COPAIER

(a) t = 1 ns (b) t = 2 ns (c) t = 4 ns (d) t = 6 ns (e) t = 10 ns

Figure 7.24: Evolution of the positive ion density np (m−3) near the needle tip during the first ten
nanoseconds, obtained with the LFA-AS-FFS method
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Figure 7.25: Circuit current I obtained with the LFA-AS-FFS method
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(a) t = 1.508 ns (b) t = 1.487 ns

Figure 7.26: Positive ion density np (m−3) near the needle tip, obtained with the LFA-AS-FFS method
(left) and the LEA-AS method (right) right before the latter crashes
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Figure 7.27: Comparison between the circuit currents I (log-scale of absolute values) obtained with
the LFA-AS-FFS method and the LFA-AS-FFS-SI method

the semi-implicit method (SI) introduced in section 3.3.4. The comparison between the circuit currents
I obtained with the LFA-AS-FFS method (explicit resolution of the field) and the LFA-AS-FFS-SI
method in fig. 7.27 shows that the two methods yield very similar results. The timesteps of the
LFA-AS-FFS-SI method is computed in the following way,

∆tl = min

C∆tlions,∆tϕ,0,
0.1|VG(tl)|∣∣∣dVG(tl)dt

∣∣∣+ ϵ

 ,

with C = 103 and ∆tϕ,0 = 10−11 s. The LFA-AS-FFS-SI method took about one hour to compute
the first ten nanoseconds of the discharge, where the dielectric relaxation time is on the order of
10−13-10−12 s, as opposed to three hourswith the LFA-AS-FFS method on the same computer cluster
and with the same number of MPI processes.
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7.4 Closing remarks
The implicit time method developed in chapter 6 has been implemented in COPAIER and tested

against a wire-to-wire and a needle-to-ring corona discharges with direct-current voltages and
constant floor densities ψ.

For the positive wire-to-wire discharge, a parametric study on the value of ψ shows that the
numerical electric currents obtained with ψ = 1011 m−3 are coherent with experiment data for
small anode radii. The numerical V -I curve, however, deviates more from the experimental curve
as the larger the anode radius is. This highlights the drawback of the proposed discharge model in
application to less-energetic discharges. However, since large-voltage discharges are more interesting
as they generate stronger ionic wind, we find that the numerical results in this test cases are quite
satisfactory, especially with the fact that they were obtained with a very simple kinetic model. It was
also shown that the integration of ψ in the model is necessary to maintain the discharge in some
cases.

For the positive needle-to-ring discharge, the numerical V -I curves are not coherent with exper-
iment data, but the voltage-flow speed characteristics agree well with experiment measurements.
This suggests that V -u curves are better comparison indicators than V -I curves since the circuit
current I is more sensitive to discharge conditions than the flow speed u. It was also shown that the
flow is turbulent and a boundary parameter of the flow - the turbulence intensity It - needs to be
calibrated to obtain good values of flow speed. The cause of turbulent flows, as well as the correlation
between It and u, are not yet determined.

Overall, the CPU time of positive discharges in this chapter was cut short to a few hours instead
of weeks with explicit methods. Therefore, the performance of COPAIER is significantly enhanced
with the proposed implicit method.

For the negative needle-to-ring discharge, the advantage of the proposed implicit method is
hindered due to the appearance of microdischarges, especially during the first 10 ns of discharge
where the numerical current can reach the order of −1 A. However, it still only took five to seven
days to reach the simulation time T = 0.1 ms as opposed to more than a month with explicit
methods. Moreover, it has been shown that negative discharges are more challenging to compute than
positive ones. Indeed, an avalanche-stable scheme as well as a modified evaluation of the ionization
coefficient were employed lest more refined grids need to be used. Even so, a series of low-intensity
microdischarges, exhibited by intermittent peaks of current, appear from t = 70 µs and on but their
nature is not yet to be understood. They could be Trichel pulses or numerical artifacts perhaps due
to insufficient refinement of the grid.

7.5 Remarques finales
La méthode implicite en temps développée dans le chapitre 6 a été mise en œuvre dans COPAIER

et testée sur les décharges couronne fil-fil et aiguille-anneau avec les tensions de courant continu et
les densités de fond ψ constantes.
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Pour la décharge positive fil-fil, une étude paramétrique sur la valeur de ψ montre que les courants
électriques numériques obtenus avec ψ = 1011 m−3 sont cohérents avec les données expérimentales
pour des petits rayons d’anode. La courbe numérique V -I , cependant, s’écarte davantage de la courbe
expérimentale à mesure que le rayon de l’anode est plus grand. Ceci met en évidence l’inconvénient du
modèle de décharge proposé pour l’application aux décharges moins énergétiques. Cependant, étant
donné que les décharges à haute tension sont plus intéressantes car elles génèrent un vent ionique
plus fort, nous trouvons que les résultats numériques dans ce cas test sont tout à fait satisfaisants,
d’autant plus qu’ils ont été obtenus avec un modèle cinétique très simple. Il a également été montré
que l’intégration de ψ dans le modèle est nécessaire pour maintenir la décharge dans certains cas.

Pour la décharge positive aiguille-anneau, les courbes numériques V -I ne sont pas cohérentes
avec les données expérimentales, mais les caractéristiques tension-vitesse d’écoulement s’accordent
bien avec les mesures expérimentales. Cela suggère que les courbes V -u sont des meilleurs indicateurs
de comparaison que les courbes V -I puisque le courant du circuit I est plus sensible aux conditions
de décharge que la vitesse d’écoulement u. Il a également été démontré que l’écoulement est turbulent
et qu’un paramètre aux limites de l’écoulement - l’intensité de turbulence It - doit être calibré pour
obtenir de bonnes valeurs de la vitesse d’écoulement. La cause des écoulements turbulents, ainsi que
la corrélation entre It et u, ne sont pas encore déterminées.

Dans l’ensemble, le temps de calcul des décharges positives dans ce chapitre a été réduit à
quelques heures au lieu de semaines avec les méthodes explicites. Par conséquent, la performance
de COPAIER est considérablement améliorée avec la méthode implicite proposée.

Pour la décharge négative aiguille-anneau, l’avantage de la méthode implicite proposée est
entravé par l’apparition de micro-décharges, en particulier pendant les 10 premières nanosecondes
de la décharge où le courant numérique peut atteindre de l’ordre de −1 A. Cependant, il n’a fallu
que cinq à sept jours pour atteindre le temps de simulation T = 0.1 ms, contre plus d’un mois
avec les méthodes explicites. En outre, il a été démontré que les décharges négatives sont plus
difficiles à calculer que les décharges positives. En effet, un schéma stable-aux-avalanches ainsi
qu’une évaluation modifiée du coefficient d’ionisation ont été utilisés afin d’éviter l’utilisation de
maillages plus raffinées. Malgré cela, une série de microdécharges de faible intensité, caractérisée par
des pics de courant intermittents, apparaît à partir de t = 70 µs, mais leur nature n’a pas encore été
élucidée. Il pourrait s’agir d’impulsions de Trichel ou d’artefacts numériques dus à un raffinement
insuffisant du maillage.
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Conclusion
La modélisation numérique des décharges de plasma dans l’air n’a jamais été une tâche facile

en raison de sa nature multi-échelle. En effet, une décharge électrique est le siège de nombreux
phénomènes physiques qui se produisent à des échelles de temps très différentes. Du point de vue
de la modélisation, les modèles mathématiques et numériques doivent être suffisamment riches
pour décrire correctement la dynamique du plasma, mais aussi suffisamment simples pour limiter
la complexité numérique. Cette thèse travaille avec des descriptions hydrodynamiques du plasma,
où les lois de conservation des espèces prennent la forme d’équations de dérive-diffusion, et aborde
deux objectifs dans la modélisation numérique des décharges de gaz dans l’air : (i) amélioration de la
qualité de la précision des solutions numériques et (ii) réduction du temps CPU des simulations.

Pour le premier objectif (abordé dans les chapitres 4 et 5), nous avons conçu de schémas de flux
d’ordre élevé connus collectivement sous le nom de méthodes de Scharfetter-Gummel avec correction
de courant (SGCC) pour résoudre les équations de dérive-diffusion, ce qui sont la généralisation
du schéma standard de Scharfetter-Gummel (SG) qui est largement utilisé dans la simulation de
plasma. La dérivation d’un flux SGCC est basée sur une approximation polynomiale de degré p ∈ N
du flux de particules (le flux exact) dans un voisinage de chaque interface de cellule. Il a été démontré
théoriquement que les flux SGCC-p sont consistants avec le flux exact et validés numériquement
pour p ≤ 4 avec des cas tests simples de transport-diffusion unidimensionnels et bidimensionnels.
Ils ont également été appliqués à des simulations de décharges de gaz sur des maillages cartésiens,
à savoir une décharge couronne fil-fil et une décharge de streamer positif. Sur le même maillage,
les schémas SGCC d’ordre élevé fournissent des solutions numériques beaucoup plus précises que
le schéma SG standard, et permettent donc d’économiser plus de ressources informatiques que le
schéma SG pour obtenir la même qualité de résultats numériques.

Pour le deuxième objectif (abordé dans les chapitres 6 et 7), nous avons développé une stratégie
d’intégration implicite en temps pour la simulation de la décharge couronne qui est basée sur une
nouvelle formulation du modèle de plasma. Ce travail se concentre sur la réduction du temps de CPU
tout en garantissant que les résultats numériques soient comparables avec les mesures expérimentales.
Afin de calibrer les solutions numériques, une contrainte qui exige que la densité électronique soit
toujours plus grande qu’une densité de fond ψ a été implémentée auparavant dans le solveur plasma
de l’ONERA - COPAIER. Le système de décharge avec cette contrainte peut être résolu avec des
schémas temporels explicites en utilisant une simple méthode de splitting puisque les pas de temps
numériques sont petits, mais cette stratégie n’est pas pratique pour les schémas implicites puisque
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les solutions de régime stationnaire dépendraient des pas de temps numériques. Par conséquent,
la loi de conservation des électrons a été reformulée sous forme d’une inclusion différentielle afin
que la contrainte de densité de fond puisse être directement intégrée dans le modèle de décharge.
Certains algorithmes ont ensuite été explorés pour résoudre le système nonlinéaire résultant de la
discrétisation implicite du modèle de décharge et un algorithme nonlinéaire de Gauss-Seidel s’émerge
comme le candidat le plus solide. Cette approche a ensuite été utilisée dans des simulations de
décharges couronnes fil-fil et aiguille-anneau avec COPAIER (sur des maillages triangulaires). Des
études paramétriques ont ensuite montré que les solutions numériques avec une densité de fond de
l’ordre de 1010-1011 m−3 sont en bon accord avec les données expérimentales, et que le temps de
CPU a été réduit avec succès, des jours ou semaines avec des méthodes explicites, à seulement des
heures avec la méthode implicite proposée.

Perspectives
Il y a certainement des possibilités d’amélioration des méthodes numériques que nous avons

introduites dans cette thèse, ainsi que des idées de travaux futurs.

Les méthodes SGCC (chapitres 4 et 5) n’ont été mises en œuvre que sur des maillages cartésiens. Il
y a donc encore beaucoup de travail à faire pour que les schémas puissent être testés sur des maillages
nonstructurés. De plus, le solveur de plasma que nous avons développé dans cette thèse pour valider
les schémas SGCC n’a pas été parallélisé comme dans COPAIER. L’implémentation du parallélisme
des schémas d’ordre élevé n’est pas nécessairement un travail facile puisque la reconstruction de
la densité nécessite l’échange de données à travers les sous-domaines, et le volume de l’échange
est déterminé par le stencil du schéma de flux qui est plus grand à mesure que l’ordre de précision
augmente. Un algorithme de reconstruction spécifique adapté à MPI pourrait être nécessité, par
exemple celui proposé dans [69].

En outre, le schéma standard de Scharfetter-Gummel est connu pour être uniformément conver-
gent en fonction de la taille du maillage [127], ce qui signifie que la constante d’erreur du schéma
est indépendante du gradient de la solution. Le schéma décentré classique du premier ordre, par
exemple, ne possède pas cette propriété car son erreur de discrétisation augmente en réalité dès que
le maillage est raffiné au point où les points de maillage commencent à entrer dans la couche de
gradient fort de la solution, et ne diminue comme il se doit que lorsque le maillage est suffisamment
raffiné et qu’il y a suffisamment de points de maillage à l’intérieur de la couche de gradient fort pour
l’approcher de manière efficace. Il serait intéressant de savoir si les schémas SGCC héritent de la
propriété de convergence uniforme du schéma SG.

En ce qui concerne la méthode implicite développée pour la simulation de la décharge couronne
(chapitres 6 et 7), nous n’avons jusqu’à présent utilisé que des schémas du premier ordre pour la
discrétisation en espace et en temps. Par conséquent, les solutions numériques pourraient ne pas
être précises, ce qui entraîne une certaine incertitude quant à l’estimation de la densité de fond ψ
qui a été obtenue par comparaison avec les données expérimentales. En effet, notre étude dans cette
thèse a conclu que ψ est de l’ordre de 1010-1011 m−3, mais les résultats dans [99] (simulations par

202



Conclusion

COPAIER avec des schémas explicites du second ordre en espace et en temps) ont montré que ψ
est de l’ordre de 1011-1012 m−3. La valeur de ψ pourrait bien sûr varier en fonction de chaque cas
test, mais une étude complète utilisant des méthodes d’ordre élevé, par exemple les schémas SGCC,
devrait être anticipée avant de tirer des conclusions.

En outre, la vitesse de convergence de l’algorithme nonlinéaire de Gauss-Seidel - le moteur qui a
été construit pour résoudre le système discret de décharge - est d’autant plus lente que le maillage
est fin. Il s’agit d’une observation à partir des simulations de décharge effectuées dans le cadre de
cette thèse. Sur un maillage de taille minimale de 4.5 µm, l’algorithme GS peut prendre jusqu’à
100 itérations pour converger; avec une taille minimale de 2.25 µm, il peut prendre jusqu’à 103

itérations et avec une taille minimale de 1 µm, le nombre maximum d’itérations peut atteindre 104.
Par conséquent, il convient de concevoir un préconditionneur pour l’algorithme GS.

Enfin, le développement d’une technique implicite pour réduire le temps de CPU de la simulation
des microdécharges en est encore à son début, comme le montre le dernier chapitre. Le point de
départ est le schéma semi-implicite pour résoudre l’équation de Poisson. L’étude de cette question
est toujours en cours et nécessitera plus d’efforts, certainement en dehors de la durée de cette thèse,
pour traiter ce régime de décharge complexe.
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Conclusion
Numerical modeling of electric discharge in air has never been an easy task owing to its multiscale

nature. An electric discharge is the siege of numerous intertwined physical phenomena that occur on
disparate time scales. From the modeling point of view, mathematical and numerical models must be
rich enough to correctly describe the plasma dynamics, but also sufficiently simple to limit numerical
complexity. This thesis works with hydrodynamic descriptions of plasma, where the conservation
laws of species take the form of drift-diffusion equations, and addresses two objectives in numerical
modeling of gas discharge in air: (i) improving the precision quality of numerical solutions and (ii)
reducing the CPU time of simulations.

For the first objective (addressed in chapters 4 and 5), we have conceived a set of high-order
flux schemes collectively known as the Scharfetter-Gummel methods with correction of current
(SGCC) to solve the drift-diffusion equations, which is a generalization of the standard Scharfetter-
Gummel (SG) scheme that is widely used in plasma simulation. The derivation of a SGCC flux is
based on a polynomial matching of degree p ∈ N of the particle flux (the continuous flux) in the
neighborhood of each cell interface. The SGCC-p fluxes have been theoretically demonstrated to be
consistent with the continuous flux and numerically validated for p ≤ 4with simple one-dimensional
and two-dimensional transport-diffusion test cases. They have also been applied to simulations of
gas discharge on cartesian grids, namely a wire-to-wire corona discharge and a positive streamer
discharge. On the same grid, the high-order SGCC schemes provide much more accurate numerical
solutions than the standard SG scheme, therefore they allow to save more computation resources
than the SG scheme to obtain the same quality of numerical results.

For the second objective (addressed in chapters 6 and 7), we have developed an implicit time
integration strategy for simulation of corona discharge that is based on a new formulation of the
plasma model. This work focused on shortening the CPU time while simultaneously ensuring that the
numerical results match the experiment measurements. In order to calibrate the numerical solutions,
a constraint which requires that the electron density must be always larger than a floor density
ψ had been implemented before in ONERA’s plasma solver COPAIER. The discharge system with
this constraint can be solved with explicit time schemes by using a simple splitting method since
the numerical timesteps are small, but this strategy is impractical for implicit schemes since the
computed steady-state solutions would depend on timesteps. Therefore, the conservation law of
electrons were reformulated into a differential inclusion so that the floor density constraint could
be directly integrated into the discharge model. Some algorithms were subsequently explored to
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solve the nonlinear system that resulted from the implicit discretization of the discharge model and
a nonlinear Gauss-Seidel algorithm stood out as the strongest candidate. This approach was later
used in simulations of wire-to-wire and needle-to-ring discharges with COPAIER (on triangular
grids). Parametric studies then showed that numerical solutions with a floor density on the order of
1010-1011 m−3 agreed well with experiment data, and the CPU time was successfully cut short, from
days or weeks with explicit methods, to a matter of hours with the proposed implicit method.

Prospects
There certainly rooms for improvements of the numerical methods that we have introduced in

this thesis as well as for some ideas on future works.

The SGCC methods (chapters 4 and 5) were only implemented on cartesian grids. Hence, there is
still a lot of work to do be done so that the schemes can be tested on unstructured grids. Furthermore,
the plasma solver that we have developed in this thesis to validate the SGCC schemes was not
parallelized as in COPAIER. The parallelism implementation of high-order schemes is not necessarily
a light work since the density reconstruction requires exchange of data across subdomains, and the
volume of exchange is determined by the stencil of the flux scheme which is larger as the precision
order increases. A specific MPI-friendly reconstruction algorithm might be required, for example the
one proposed in [69].

In addition, the standard Scharfetter-Gummel scheme is known to be uniformly convergent with
respect to grid size [127], which means that the error constant of the scheme is independent of the
gradient of the solution. The classical first-order upwind scheme, for example, lacks this property
because its discretization error actually increases as soon as the grid is refined to the point where
grid points begin to enter the large-gradient layer of the solution, and only decreases as it should
have to when the grid is sufficiently refined and there are enough grid points inside the gradient
layer to effectively approximate it. It would be interesting to know if the SGCC schemes inherit the
uniform convergence property of the standard SG scheme.

On the implicit method developed for the simulation of corona discharge (chapters 6 and 7), so
far we have only employed first-order schemes for discretization in space and time. As a result,
the numerical solutions could be not accurate, causing some incertitude on the estimation of the
floor density ψ which was obtained from comparison with experiment data. Indeed, our study in
this thesis concluded that ψ is on the order of 1010-1011 m−3, but the results in [99] (simulations by
COPAIER with explicit second-order schemes in space and time) showed that ψ is on the order of
1011-1012 m−3. The value of ψ could of course vary depending on each test case, but a comprehensive
investigation using high-order methods, for example the SGCC schemes, should be expected before
making any conclusions.

Furthermore, the convergence speed of the nonlinear Gauss-Seidel algorithm - the engine that
was built to solve the discrete discharge system - is slower the more the grid is refined. This is an
observation from the discharge simulations in this thesis. On a grid with a minimum size of 4.5 µm,
the GS algorithm can take up to 100 iterations to converge; with a minimum grid size of 2.25 µm,
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it can take up to 103 iterations and with a minimum grid size of 1 µm, the maximum number of
iterations can be as high as 104. As a result, a preconditioner for the GS algorithm should be devised.

Finally, the development of an implicit technique to reduce the CPU time of microdischarge
simulations is still in its early stage as shown in the last chapter. The starting point is the semi-implicit
scheme for solving the Poisson equation. The study on this issue is still ongoing and will take more
efforts, certainly outside the duration of this thesis, to address this complex discharge regime.
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A Notations on multi-dimensional arrays - tensors

For an integerm > 0, let Sm
(
R2
)
be the space of symmetricm-dimensional arrays, or symmetric

tensors of rankm, with 2 components on each dimension. For example, a vector is an element of
S1
(
R2
)
, while a symmetric 2 × 2 matrix is an element of S2

(
R2
)
. For two elements a and b of

Sm
(
R2
)
, we define the contraction of a and b as

a • b ≡
2∑

k1=1

· · ·
2∑

km=1

(a)k1...km(b)k1...km .

where (a)k1...km , (b)k1...km are the elements of a, b.

For two tensors a ∈ Sm1
(
R2
)
and b ∈ Sm2

(
R2
)
, the tensor product of a and b is an element

of Sm1+m2
(
R2
)
and denoted as a⊗ b such that

(a⊗ b)k1...km1 l1...lm2
= (a)k1...km1

(b)l1...lm2
.

For a tensor a ∈ Sm
(
R2
)
and an integer k > 0, the power k of a is an element of Skm

(
R2
)
and

is defined as a⊗1 = a,

a⊗k = a⊗k−1 ⊗ a, for k > 1.

For an integer m > 0, let Om be the group of permutations of the set { 1, . . . ,m } and Jm ≡
{ 1, 2 }m be the set of indices of a Sm

(
R2
)
-tensor. The group Om induces a natural equivalence

relation on Jm [69] which is defined in the following way,

(i1, . . . , im) ∼ (k1, . . . , km) ⇐⇒ ∃π ∈ Om, (i1, . . . , im) =
(
kπ(1), . . . , kπ(m)

)
.

Hence, for a symmetric tensor a of Sm
(
R2
)
we have (a)i1,...,im = (a)k1,...,km if (i1, . . . , im) ∼

(k1, . . . , km).

Let i = (i1, . . . , im) ∈ Jm, then we could find a permutation π ∈ Om such that iπ(1) ≤ · · · ≤
iπ(m). Each equivalence class ofJ

m is then represented by a unique element i such that i1 ≤ · · · ≤ im.
Therefore, we define the quotient set Jm ≡ Jm

/ ∼ that contains these representatives of all
equivalence classes of Jm. We define also an order on Jm as follows,

(i1, . . . , im) ⪯ (k1, . . . , km) ⇐⇒

i1 < k1,

(i2, . . . , im) ⪯ (k2, . . . , km) , if i1 = k1.

with (i1, . . . , im) , (k1, . . . , km) ∈ Jm. Furthermore, let i ∈ Jm and 1(i) be the number of indices
in i that equals 1, then the equivalence class of Jm represented by i contains m!

1(i)!(m− 1(i))!
elements.
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Example A.1. Let a ∈ S3
(
R2
)
. Then its components corresponding to each equivalence class of J 3

are



a111

a112 = a121 = a211

a122 = a212 = a221

a222

. There is only need to store the components corresponding to the elements

of J 3 which are sorted as a111 ⪯ a112 ⪯ a122 ⪯ a222.

For any tensor a ∈ Sm(R2), we define the tensor ã such that for any i = (i1, . . . , im) ∈ Jm,

ãi =
1

1(i)!(m− 1(i))!
(a)i .

B A brief presentation on total variation diminishing schemes

Definition B.1 ([90, 91]). A function n ∈ L1
loc((0, T ) × R) belongs to the set of bounded-variation

functions, denoted as BV((0, T )× R), if |n|BV((0,T )×R) < +∞, where

|n|BV((0,T )×R) = lim sup
ϵ→0

1

ϵ

∫ T

0

∫
R
|n(t, x+ ϵ)− n(t, x)| dxdt

+ lim sup
ϵ→0

1

ϵ

∫ T

0

∫
R
|n(t+ ϵ, x)− n(t, x)| dxdt.

For a piece-wise constant function n, for example n(t, x) = nli on [tl, tl+1)× Ωi for l = 0, . . . ,L
and i = 1, . . . ,N , the semi-norm |n|BV((0,T )×R) simply reduces to

|n|BV((0,T )×R) =
L∑
l=0

+∞∑
i=−∞

(
∆tl

∣∣nli+1 − nli
∣∣+∆xi

∣∣nl+1
i − nli

∣∣) ,
where we have simply extended the function n(t, ·) by 0 outside the domain Ω. The BV spaces play
an very important role in demonstrating the convergence2 of numerical solutions to the solution of
eq. (4.1) when ∆t, ∆x tend to 0, since they are endowed with a compactness property. In fact, the
following examples from resp. [53] and [90] are compact sets in L1

loc((0, T )× R),

S1 = BV((0, T )× R) ∩ L∞((0, T )× R),

S2 = BV((0, T )× R) ∩ { n | ∃M > 0, Supp(n(t, ·)) ⊂ [−M,M ] a.e. t ∈ [0, T ] } .

In [53], the S1 space was used to prove the convergence of numerical solutions, obtained by
monotone flux schemes, for a general nonlinear hyperbolic equation. [90] extended the issue for a
class of numerical methods known as total variation diminishing (TVD) schemes. Both used the
Lax-Wendroff theorem (documented in these references) to attain the convergence proof.

2in the scalar case
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Let us recall the time explicit discretization of (4.1),

nl+1
i − nli
∆tl

+
f
l

i+ 1
2
− f

l

i− 1
2

∆xi
= 0, (9)

where the numerical flux f li+ 1
2
is the function of nlk on some neighborhood cells Ωk of Ωi. Consider a

function n(t, x) in L1
loc((0, T )× R) such that

n(t, x) =

nli on [tl, tl+1)× Ωi,

0 on [0, T )× (R \ Ω).

In this case, we have a useful lemma which says that we simply need to evaluate the total variation
with respect to the space discretization.

Lemma B.1 ([90]). Assume that f
l

i+ 1
2
is Lipschitz-continuous with respect to all its arguments and

there exists some C > 0 such that∣∣n(tl, ·)∣∣
BV(R) ≤ C, l = 0, . . . ,L, (10)

then n ∈ BV((0, T ) × R). Here BV(R) is a set of functions v ∈ L1
loc(R) such that |v|BV(R) < +∞

with

|v|BV(R) = lim sup
ϵ→0

1

ϵ

∫
R
|v(x+ ϵ)− v(x)| dx.

If v is a piece-wise function such that v(x) = vi onΩi, then we simply have |v|BV(R) =
+∞∑
i=−∞

|vi+1 − vi|.

The numerical methods that satisfy eq. (10) are also known as BV schemes. The aforementioned
TVD schemes, i.e. numerical methods such that

∣∣n(tl+1, ·)
∣∣
BV(R) ≤

∣∣n(tl, ·)∣∣
BV(R) for l = 0, . . . ,L−1,

constitute in fact a subset of BV schemes3.

C Monotone operators and some useful results from func-
tional analysis

Definition C.1 (Monotone operators [5, 8]). A set-valued mapM from H to H is called monotone, or

accretive, if and only if ∀g, h ∈ dom(M), ∀v ∈Mg, ∀w ∈Mh,

(v − w, g − h)H ≥ 0.

Furthermore,M is maximal monotone, or m-accretive, or maximal accretive4 if there is no other

monotone set-valued map M̃ whose graph strictly contains the graph ofM . Here, the graph ofM is the

set graph(M) = { (g, v) ∈ H ×H | v ∈Mg }.
3with the assumption that n(t0, ·) ∈ BV(R)
4the three definitions coincide on the Hilbert spaceH and its dualH∗ identified by the scalar product (·, ·)H
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An important property to identify maximal monotone operators is introduced in the following
theorem.

Theorem C.1 ([5, 8]). LetM be a monotone set-valued operator on H. ThenM is maximal monotone

if and only if, for any λ > 0, R(Id + λM) = H, where R(M) denotes the range of M and Id denotes

the identity operator.

A class of operators “nearly” monotone/accretive is introduced as follows.

Definition C.2 (ω-accretive operators [8]). A set-valued mapM fromH toH is called ω-accretive

(resp. ω-m-accretive, with ω ∈ R, if M + ωI is accretive/monotone (resp. m-accretive/maximal

monotone).

Finally, we cite some results from functional analysis that are useful for the proofs in chapter 6
and appendix D.

Lemma C.1 ([25, Corollary 2.7]). LetM and N be two maximal monotone operators. If ˚dom(M) ∩
dom(N) ̸= ∅ thenM + N is maximal monotone and dom(M) ∩ dom(N) = dom(M) ∩ dom(N).

Here S̊ and S are resp. the interior and closure of the set S ⊂ H with respect to the norm | · |H.

Theorem C.2 ([8, Chapter 3]). LetM be an ω-m-accretive operator. Then, for each n0 ∈ dom(M),

there exists a unique function n ∈ W 1,1([0, T ];H) such that
dn

dt
(t, ·) +Mu(t, ·) ∋ 0, for a.e. t ∈ (0, T ),

n(0, ·) = n0,

and satisfies ∣∣∣∣dndt (t, ·)
∣∣∣∣
H
≤ exp(ωt)

∣∣M0n0

∣∣
a.e. on (0, T ). HereW 1,1([0, T ];H) is the space

{
g ∈ L1([0, T ];H) | dg

dt
∈ L1([0, T ];H)

}
and the

map u 7→ M0u maps u ∈ dom(M) to the element of Mu having the smallest norm, i.e. M0u is the

projection of 0 onMu, which exists and is unique sinceM is maximal monotone and thusMu is a

closed convex subset of H [5, Chapter 3].

Theorem C.3 (Aubin-Lions-Simon [22, Theorem II.5.16]). Let B0, B1, B2 be three Banach spaces, the

embedding of B1 in B2 be continuous and the embedding of B0 in B1 be compact. Let p, r be such

that 1 ≤ p, r ≤ +∞. For T > 0, let us define

Ep,r =

{
g ∈ Lp(0, T ;B0) |

dg

dt
∈ Lr(0, T ;B2)

}
.

Then,

1. if p < +∞, the embedding of Ep,r in Lp(0, T ;B1) is compact;

2. if p = +∞ and r > 1, the embedding of Ep,r in C0(0, T ;B1) is compact.
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D Regularity results for problems (6.2) and (6.3)

Lemma D.1. Let n0 ∈ dom(A) and ζ > 0. Then the penalization problem (6.17) has a unique solution
nζ ∈ W 1,1([0, T ];H) ∩ V such that∣∣∣∣dnζdt

(t, ·)
∣∣∣∣
H
≤ exp(C2t)

∣∣A0n0

∣∣ (11)

a.e. on (0, T ), where C2 is the constant from eq. (6.13).

Proof. This result is a corollary of theorem C.2. Let us verify that the operator A +
1

ζ
B is ω-m-

accretive. Indeed, for any λ > 0, the bilinear form (·, ·)H + λã(·, ·) is continuous on V × V , with
ã(·, ·) ≡ a(·, ·) + C2(·, ·)H, and |g|2H + λã(g, g) ≥ λC1∥g∥2V for any g ∈ V (see eq. (6.13)). Therefore,
according to the Lax-Milgram theorem [26, Chapter V], for any h ∈ V∗, there exists a unique g ∈ V
such that (g, v)H + λã(g, v) = ⟨h, v⟩ for all v ∈ V , or in other words, ⟨g, v⟩ + λ

〈
Ãg, v

〉
= ⟨h, v⟩

with Ã ≡ A + C2Id. In particular, the range of the restriction of Id + λÃ to H, still denoted as
Id + λÃ, isH, i.e. R(Id + λÃ) = H. Hence, Ã is a maximal monotone operator onH according to
theorem C.1.

By the virtue of lemma C.1 with M :=
1

ζ
B and N := Ã, the operator Ã +

1

ζ
B is maximal

monotone on H (and dom

(
Ã+

1

ζ
B

)
= dom(A) since dom(B) = H). Consequently, A +

1

ζ
B is

ω-m-accretive with ω = C2.

From theorems C.2 and 6.2, nζ ∈ W 1,1([0, T ];H) ∩ V and satisfies inequality (11). ■

This lemma provides a bound on dnζ
dt

(t, ·) which is usable to prove the existence of a strong
solution of the variational inequality (6.14). Indeed, if n0 /∈ dom(A), then there is no viable estimate
of dnζ

dt
(t, ·) (see remark 6.4).

Theorem D.1. Given n0 ∈ dom(A) ∩ K, then the problem (6.14) has a unique strong solution n ∈ K .

Proof. It has been established that n is the unique weak solution of inequality (6.14). For ζ > 0, let
nζ be the solution of the penalization problem (6.17). From the proof of theorem 6.2, we have nζ ⇀ n

in V and nζ → n in H. As a result, dnζ
dt

→ dn

dt
as ζ → 0 in the distribution sense.

We now show that5 |A0
ζn0|H, with Aζ ≡ A +

1

ζ
B, does not depend on ζ provided that n0 ∈

dom(A) ∩ K. Indeed, if v0 = A0
ζn0 then (v0, v − v0)H ≥ 0 and in other words, |v0|H ≤ |v|H for any

v ∈ Aζn0, since v0 is the projection of 0 on the set Aζn0. Since n0 ∈ K which means that Bn0 ∋ 0,
we have An0 ∈ Aζn0. Therefore, |A0

ζn0|H ≤ |An0|H for any ζ > 0.
5recall that the definition of the operator A0 for an operator A is given in theorem C.2
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From eq. (11), we have in particular that∥∥∥∥dnζdt

∥∥∥∥
L∞(0,T ;H)

≤ exp(C2T )|A0
ζn0|H ≤ exp(C2T )|An0|H.

As a consequence, there exists v ∈ L∞(0, T ;H) and a subsequence, still denoted as (ζ), such that
dnζ
dt

converges to v weakly-∗ in L∞(0, T ;H) and in particular weakly in H = L2(0, T ;H) since Ω

is bounded. We can identify next that dn
dt

= v and hence, n ∈ H1(0, T ;H).

Multiplying the first equation of (6.16) with g − nζ with any g ∈ K and using the fact that
(Bnζ , g − nζ)H ≤ 0 yield 〈

dnζ
dt

, g − nζ

〉
+ a(nζ , g − nζ) ≥ 0.

Now letting ζ → 0 and using the property lim inf
ζ→0

a(nζ , nζ) ≥ a(n, n), we conclude that n is the
strong solution of problem (6.14) in the sense of definition 6.3. ■

E Implicit integration of the SGCC schemes

Recall that the SGCC-p flux for a specie s ∈ S, at time tl, reads as follows (see definition 4.2
and remark 4.6),

f
l|p
s,i+ 1

2

=
Dl
s,i+ 1

2

∆xi+ 1
2

(
B(pl

s,i+ 1
2
)Q

l|p
s,i+ 1

2
,i
− B(−pl

s,i+ 1
2
)Q

l|p
s,i+ 1

2
,i+1

)
.

It can be decomposed as

f
l|p
s,i+ 1

2
= f

l|0
s,i+ 1

2
+ f̃

l|p
s,i+ 1

2

,

which is the sum of the standard Scharfetter-Gummel flux and a high-order correction which writes
as

f̃
l|p
s,i+ 1

2

=
Dl
s,i+ 1

2

∆xi+ 1
2

(
B(pl

s,i+ 1
2
)
(
Q
l|p
s,i+ 1

2
,i
− nls,i

)
− B(−pl

s,i+ 1
2
)
(
Q
l|p
s,i+ 1

2
,i+1

− nls,i+1

))
,

In the above equation,
(
Q
l|p
s,i+ 1

2
,i
− nls,i

)
is usually a nonlinear term due to the presence of slope

limiters. Following the steps in section 6.5, we can write the discretization of the conservation laws
with the SGCC scheme in the following way,

(I +∆tlAl
+∆tlÃl|p −∆tlSψ)U

l+1 ∋ Rl,

where Ãl|p is the nonlinear operator ensued from f̃ l|p. We adapt a fixed-point method to solve this
problem (see algorithm 3).
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Algorithm 3 Fixed-point
1: Let ϵ > 0, U0 = Ul, δ > ϵ

2: while δ > ϵ do
3: Set V q = Ãl|pU q

4: Use algorithm 1 or algorithm 2 to solve (I +∆tlAl −∆tlSψ)U
q+1 ∋ Rl −∆tV q

5: Let
(
n(q+1)
e n(q+1)

p n(q+1)
n

)t
= U q+1

6: Update δ = max
s∈S

(
|n(q+1)
s − n

(q)
s |∞

|n(q)
s |∞

)
7: end while
8: SetUl+1 = U q

F MPI implementation of the Gauss-Seidel algorithm
The sequential nature of the Gauss-Seidel algorithmmakes the parallel-computing implementation

not evident. In fact, if we imagine a simple partition of the simulation domain (see fig. 28) and the
cells on the second subdomain all have ordering numbers larger than those on the first subdomain,
then the density update on the second subdomain would have to wait for the update on the first
subdomain to finish before getting started. For this reason, we rather send the values of Um than
those of Um+1 (Um, Um+1 defined in algorithm 2) on the border cells (yellow triangles) from the first
subdomain to the second and vice versa. Meanwhile, the variables on interior cells (red triangles) are
updated normally by the Gauss-Seidel algorithm. The overall algorithm resembles a block-Jacobi
method where each block is affiliated to a subdomain.

1

2

Figure 28: In this figure the computation domain is partitioned into two subdomains, sharing the
thick black line as interface. The triangles which share an edge with the interface are called border
cells and are painted in yellow. The other triangles are called interior cells and are painted in red.
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Titre : Développement d'une méthode numérique multiéchelle pour les plasmas atmosphériques et application au contrôle d'écoulements
Mots clés : méthode multiéchelle, schéma implicite, méthode de volumes finis, plasma non-équilibre, décharge électrique, modèle hydrodynamique
Résumé : Les récents événements météorologiques extrêmes qui se sont produits dans le monde entier récemment suscitent de grandes
inquiétudes concernant le changement climatique et renforcent la nécessité de développer des technologies écologiques permettant d’enrayer la
tendance croissante à la destruction de l’écosystème. Selon une étude publiée en 2021, l’industrie aéronautique est responsable de 3.5% des
facteurs de changement climatique liés aux activités humaines entre 2010 et 2018, dont les émissions de dioxyde de carbone et d'oxydes d'azote.
Les études menées au cours des deux dernières décennies ont montré que les dispositifs à décharge électrique appelés actionneurs de plasma sont
capables de contrôler l'écoulement autour d'un profil aérodynamique et de réduire la traînée sur sa surface, ce qui est prometteur pour réduire la
consommation de carburant des aéronefs.
Cette thèse contribue à la modélisation numérique des décharges électriques dans l'air qui n'a jamais été
une tâche facile en raison de sa nature multi-échelle à la fois en espace et en temps. Nos travaux se focalisent sur deux axes : l'amélioration de la
qualité de précision des solutions numériques et la réduction du temps CPU des simulations.
Pour le premier objectif, nous avons concevons des
schémas d'ordre élevé connus collectivement sous le nom de méthodes de Scharfetter-Gummel avec correction de courant (SGCC) pour résoudre les
équations de dérive-diffusion qui apparaissent dans le modèle mathématique de la décharge. Les schémas SGCC sont une généralisation du schéma
standard Scharfetter-Gummel (SG) qui est largement utilisé dans la simulation des plasmas. Nous allons montrer, à l'aide de nombreux cas tests,
qu'ils fournissent des solutions numériques beaucoup plus précises que celles du schéma SG standard pour les mêmes conditions de simulation.
Pour le deuxième objectif, nous développons une stratégie d'intégration temporelle implicite pour la simulation de la décharge couronne qui est
basée sur une nouvelle formulation du modèle de plasma. Ce travail se concentre sur la réduction du temps CPU tout en garantissant que les
résultats numériques sont cohérents avec les données expérimentales disponibles dans la littérature, en imposant une contrainte minimale sur la
densité d'électrons. La méthode implicite proposée a permis de réduire le temps de calcul à quelques heures. Au contraire, le temps de calcul des
méthodes explicites utilisées précédemment peut atteindre plusieurs semaines. En conséquence, nous bénéficions d'une amélioration significative
de la performance du solveur de plasma, ce qui pourrait potentiellement ouvrir la porte à des simulations de plasma plus réalistes dans l'avenir.

Title: Development of a multiscale numerical method for gas discharge in air and application to flow control
Key words: multiscale method, implicit scheme, finite-volume method, non-equilibrium plasma, gas discharge, hydrodynamic model
Abstract: Recent extreme weather events that have been occurring more frequently around the globe have raised further concerns about climate
change and fuels the need of developing environment-friendly technologies that could halt the increasing trend of ecosystem destruction. According
to a study in 2021, the aviation industry is responsible for 3.5% of all drivers of climate change from human activities from 2010 to 2018, including
emissions of harmful gases such as carbon dioxide and nitrogen oxides. Studies carried out over the last two decades have shown that electric
discharge devices called plasma actuators are capable of controling the flow around an airfoil and reducing the drag force on its surface, thus are
promising to decrease the fuel consumption of aircrafts.
This thesis contributes to the numerical modeling of electric discharge in air which has never
been an easy task owing to its multiscale nature both in space and time. Our works focus on two axes : improvement of the precision quality of
numerical solutions and reduction of the CPU time of simulations.
For the first objective, we conceive a set of high-order flux schemes collectively
known as the Scharfetter-Gummel methods with correction of current (SGCC) to solve the drift-diffusion equations that appear in the discharge
mathematical model. The SGCC schemes are a generalization of the standard Scharfetter-Gummel (SG) scheme that is widely used in plasma
simulation. It will be shown, through numerous test cases, that they provide much more accurate numerical solutions than those of the standard SG
scheme for the same simulation conditions.
For the second objective, we develop an implicit time integration strategy for simulation of corona
discharge that is based on a new formulation of the plasma model. This work focuses on shortening the CPU time while simultaneously ensuring
that the numerical results are coherent with experiment data available in the literature, by imposing a minimum constraint on the electron density.
The CPU time was successfully reduced to a matter of hours with the proposed implicit method. On the contrary, the CPU time of the previously
used explicit methods can be weeks long. As a result, we obtain a significant enhancement in the performance of the plasma solver, which could
potentially open the door to more realistic plasma simulations in the future.
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