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Abstract

Amorphous solids under oscillatory shear, at small to moderate driving amplitudes under athermal
quasi-static conditions, settle in reversible steady states such that further driving at the same amplitude
leaves the system unchanged in particle positions. Beyond a critical amplitude of driving such periodic
responses holding reversible plastic deformation, also known as limit cycles, disappear and the particles
exhibit diffusive motion. This irreversibility transition presents typical features of a critical transition
and has served as a probe to understand yielding in cyclically sheared amorphous solids. Recent particle
scale simulations probed the nature of this transition as a function of initial degree of annealing of the
glass sample. These shown that a threshold degree of annealing separates the ductile from a brittle failure
of glass under cycle driving in an attempt to reconcile similar observations made under uniform shear.

As a first step, we develop a novel mesoscale elastoplastic model that can faithfully capture limit
cycles as observed in experiments and atomic-scale simulations of amorphous solids under oscillatory
shear. The novel ingredient is the quenched nature of the random landscape which governs the local
threshold to plastic re-arrangements at the mesoscale level. With such a model, when we shear a glass
sample at low driving amplitudes we always find limit cycles. If the driving amplitude is large no limit
cycles are found. Our model shows that the transition between the two regimes becomes sharper with
increasing system size.

By introducing a simple glass preparation protocol we tune the initial degree of annealing of the
sample. For poorly annealed samples, the number of driving cycles required to settle in a limit cycle
increases with the forcing amplitude and shows a power-law divergence as we approach the irreversibility
transition from below. The measured exponent is consistent with those observed in particle scale
simulations. Better annealed samples show a contrasting behavior. Limit cycles are either attained
quickly in a few driving cycles or not at all. Such results further strengthen observations on particle scale
simulations and mean-field models that predict a threshold degree of annealing separating brittle from
ductile failure of glasses.

Using our model, we use a recently developed transition graph technique to study the response of
amorphous solids under arbitrary shear deformation protocol. The technique projects the deformation
trajectory of sheared amorphous solids on a directed transition graph. Nodes represent mechanically stable
particle configurations while the edges as connections between them represent plastic re-arrangements.
By looking at a key topological property of these transition graphs, we reveal the emergence of a
phase-separation like process associated with the aging of the glass.



We also use our elasto-plastic model to study memory effects in amorphous solids. We begin
by capturing memory of single amplitude of training and propose and demonstrate a method to read
memory of shear direction. We compare the robustness of these memories with respect to read-out
protocols and the amplitude of training. We also discuss the effect of frustrated interactions through
multi-period limit cycles and their effect on memory of training amplitude. We compare and contrast the
evolution of such memories as function of number of driving cycles imposed on the initial undeformed
state. Depending on the ordering of training amplitudes, we also show that a sheared glass sample can
remember multiple amplitudes of training. We show that a training sequence that encodes multiple
memories can be manipulated to erase or recover memories of training amplitudes by altering the state
on which a read-out operation is performed. We also study the effect of mechanical training on further
encoding of memories of training amplitude in amorphous solids and discuss differences with mean-field
models.
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Chapter 1

Introduction

1.1 Plasticity and yielding in amorphous solids

Amorphous materials are ubiquitous in nature. These include hard glasses such as oxide or metallic
glasses, glassy polymers etc. but can also cover a wide range of soft materials such as colloidal assemblies,
gels, emulsions, and pastes[21, 82]. The length scales at which the elementary constituents making up
these solids live span from the Angstrom scale for the molecular glasses to millimeter scale for some of
their soft counterpart. How these materials respond under externally applied stress or strain is a question
of both industrial and fundamental importance that remains not well answered to the day[82, 106, 111].

Fig. 1.1 An overview of range of amorphous solids with constituent particle sizes spanning several
orders of magnitude and the corresponding damping regime of the constituents. Figure taken from [82].
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Introduction

Elementary carriers of plasticity: Shear transformations

The lack of long-range order in amorphous solids makes understanding their mechanical properties
more complex than their crystalline counterpart. Indeed, in contrast to crystalline solids[69], their
structural disorder eliminates the notion of isolated defects as elementary carriers of plasticity. It was
the pioneering work of Argon and Kuo with bubble rafts as an analog for metallic glass[6] who first
showed that the elementary process of plasticity in such disordered solids are local events in space that
involve the rearrangement of a few particles called shear transformations (ST). Strikingly, similar shear
transformations have since been observed at different length scales including experiments on colloidal
systems[110], granular media[4], concentrated emulsions[99], and many atomistic simulations of low-
temperature shear[39, 75, 119, 121]. These studies have thus showed that the shear transformations are
a universal characteristic and carriers of plasticity in amorphous solids.

Fig. 1.2 Schematic of the elementary mechanism of plasticity in amorphous solids: localized rearrange-
ment of a few tens of atoms. Figure taken from [112].

Fig. 1.2 shows a sketch of a localized atomic rearrangement of a few dozen of atoms that are seen as
units of plasticity in amorphous solids as early proposed by Argon[5].

Yielding in amorphous solids

At small deformations amorphous solids respond elastically, but the behavior becomes fluid like with a
plastic-flowing state at large deformations[21]. This transition from the elastic response to the flowing
state is known as yielding. An important and a well debated aspect[11, 32, 86–88, 92, 115, 117] of
yielding under uniform shear is on the dependence on the initial degree of annealing of the amorphous
solid. When subjected to uniform deformation, soft (or poorly aged) glasses yield to the flowing state in
a smooth ductile manner while the hard (or well aged) glasses show an abrupt brittle response through a
macroscopic stress drop. Yielding in the well annealed case, under athermal quasistatic shear (AQS), have
been shown to follow a discontinuous non-equilibrium transition, accompanied by sudden appearance of
system spanning shear bands[86–88, 117]. These studies considered the AQS response of amorphous

2



1.1 Plasticity and yielding in amorphous solids

systems at different degrees of annealing to understand the nature of yielding transition under uniform
shear[86]. The response could be categorised into two groups: samples that were well-annealed showed
that the yielding transition was abrupt while it was gradual for the poorly annealed samples. It was
shown that that the two kinds of responses were separated by a critical degree of annealing with the
corresponding critical point described to belong in the random-field Ising model universality class. Such
an observation has been questioned regarding the existence of a well defined ductile to brittle transition
under uniform shear[11].

  

Fig. 1.3 Transient time (on the vertical axis) to steady state under cyclic driving versus strain amplitude
(horizontal axis) at strains below and above the critical amplitude in particle scale simulations of 3-
dimensional amorphous solids at two different system sizes for the same initial degree of annealing of the
glass sample. The steady state is an arrested state when the driving amplitude is lower than the critical
amplitude. The system settles in a diffusive state for driving amplitude above the critical value. The
transient time diverges as the transition between the two regimes is approached. Figure taken from [42].

Yielding of amorphous solids under cyclic driving has also been studied. When subjected to cyclic
shear loading, amorphous solids tend to either evolve into periodic response or reach a diffusive regime,
depending on the value of the amplitude of the loading cycles. This transition presents typical features
of a critical transition. In particular, power-law divergence of the number of loading cycles to reach the
periodic response below the transition, as well as the power law dependence of the diffusivity above the
transition have been observed both for atomistic and mesoscopic models [16, 42, 66, 90, 98, 103, 104, 129].
The features of the irreversibility transition depend on glass preparation [16–18, 129].

For example, in figure 1.3 taken from reference [42], we show the transient time required for the
system to settle in a steady state as a function of driving amplitude in particle scale simulations of
amorphous solids in 3-dimensions obtained at two different system sizes. The system settles in an
arrested state for amplitudes below the critical amplitude. For amplitudes above the critical amplitude,
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the system dettles in a diffusive state with a well defined diffusion constant for the steady state. The
transient time diverges as the transition between the two regimes is approached. We also note that the
amplitude at which the transient time diverges depends on the system size.

One of the main objectives of this thesis is to understand yielding in cyclically sheared solids through
a coarse-grained model of amorphous plasticity. In particular, we will be interested in studying the effects
of system size and degree of annealing as we approach yielding from below. To facilitate this study, we
will introduce a novel yet simple glass preparation scheme which will help us prepare and tune the initial
degree of annealing of our glass sample in a continuous manner. We will then introduce a novel quenched
landscape for driving under an athermal quasistatic protocol which plays a central role in capturing the
non-trivial steady states known as limit cycles which have been observed in experiments[31, 34, 57, 96]
and atomic scale simulations[42, 63, 98, 103] at strain amplitudes below and approaching the yield point.

1.2 Memory in cylically driven amorphous systems

Disordered systems with many interacting or non-interacting degrees of freedom can be trained under
periodic driving to encode memory reflecting features of driving[59? ]. Examples include systems
ranging from ferromagnets[10, 97, 113], crumpled sheets[116], spin glass[36] to dense amorphous
materials[59]. The diversity of such materials can be classified based on the type of interactions that
are at play in the dynamics of the individual constituents of the system. For example, rearrangements
of individual constituents in systems with ferromagnetic interactions, such as ferromagnets, enable
rearrangements in the same direction. On the contrary, systems with anti-ferromagnetic interactions
suppress rearrangements in the same direction. A mixture of ferromagnetic and anti-ferromagnetic
interactions, as in crumpled sheets, spin glass and dense amorphous solids, can give rise to rich dynamics
under external forcing leading to various features of memory which are otherwise not present in purely-
ferromagnetic or anti-ferromagnetic systems alone[127].

We show for example in figure 1.4, adapted from reference [116], the force response of crumpled
sheet against applied displacement under oscillatory driving. Interaction among the mechanical bits of
the system are a mixture of ferromagnetic and anti-ferromagnetic interactions. After a certain number
of driving cycles, the system settles in an approximate limit cycle which is charaterised by a repeating
feature encoded in the force jumps in the hysteresis cycle which happen nearly at the same displacement
values. Such limit cycles can also show a form of memory known as return point memory (RPM) which
is related to our studies in amorphous solids.

Experiments[54, 77] and particle scale simulations[43, 103, 104] have shown that dense amorphous
materials under cyclic driving, in the absence of thermal fluctuations, below a critical strain amplitude set-
tle in periodic states such that particle positions under stroboscopic measurements remain unchanged[59].
Such periodic states, also known as limit cycles, hold memory of the driving history such as the amplitude
of cyclic driving which can be read using suitable read-out protocols[55].

Plastic rearrangements in amorphous solids have recently been modelled as hysterons, two-state
hysteretic elements which switch states under the effect of an externally applied field[58, 72]. Such
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Fig. 1.4 Limit cycle in a cyclically driven crumpled sheet: Force as a function of displacement for a
crumpled sheet under oscillatory drive. The response after a few driving cycles settles in an approximate
limit cycle during which the force jumps occur at nearly the same displacement values. The response
is hysteretic, interspersed with sudden force jumps throughout the cycle with near repeating features
signalling the presence of a limit cycle. Figure adapted from [116].

models have complemented studies on memory formation in amorphous materials. The simplest such
model, known as a Preisach model[97], uses a collection of non-interacting hysterons. The disorder is
encoded in the threshold values (or swiching fields) of the external field at which hysterons change states
which are drawn from a distribution. The model shows that under cyclic driving the system finds a limit
cycle bearing memory of the training amplitude. However, the absence of interactions in the model leads
to many features at odds with those observed in experiments and particle scale simulations on amorphous
solids[59]. Among important differences, the model is guaranteed to hold return point memory (RPM).
RPM, which we describe soon below, was proven to hold exactly for non-interacting/ferromagnetically
interacting systems[113]. Amorphous solids violate RPM because the interactions between the potential
plastic re-arrangements is of the Eshelby type which provide both positive and negative stress kicks
on the surrounding material following a local plastic event[59]. Among other differences, the number
of driving cycles to a limit cycle in a Preisach model can be at most 1 with period of limit cycles not
exceeding unity. The same holds true for systems with purely ferromagnetic interactions[59]. Absence
of interactions also eliminates the possibility of avalanches which play a key role in the dynamics of
sheared amorphous systems.

5
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Amorphous solids under shear accumulate plastic deformation through local plastic events. Plastic
events in amorphous solids do not occur independently of each other. To improve on the Preisach model,
interacting hysteron-based models have been invented to fill the gap. Interactions are incorporated in the
model such that the applied field for a hysteron to switch between the two states depends on the state of
other hysterons[58, 72]. The interactions are modelled as perturbations on the switching fields that allow
the flexibility of introducing a mixture of ferromagnetic and anti-ferromagnetic interactions between
individual hysterons. With such an ingredient, the model shows various features in line with sheared
amorphous materials. Number of driving cycles to limit cycles and the corresponding period both exceed
unity. Avalanches can be observed. RPM can be violated. When driven to a limit cycle, the model
encodes memory of the driving amplitude. Hoewever, doubts have been cast over the possibility of such
models to correctly capture the transients during external driving which are responsible for capturing
yielding in cyclically sheared amorphous systems.

Elastoplastic models have also been used extensively in studies on sheared amorphous solids[106].
Many studies have been devoted to understanding the yielding transition in amorphous solids under
unidirectional or uniform shear[82]. These models have only recently been accomodated to understand
the yielding behaviour of cyclically sheared amorphous systems[60]. In particular, these models could
capture the diveregence of the transient time to limit cycle at the critical amplitude of cyclic driving.
Above the critical amplitude, the system becomes diffusive with a diffusion coefficient that shows a
power law dependence on the amplitude of cyclic driving. One of the main aims of the thesis is to extend
these class of models to also study memory effects in amorphous solids.

1.3 t-graphs

Quite recently, deformation pathways of amorphous solids in response to external shear under athermal
quasi-static conditions have been mapped to directed transition graphs or t-graphs[78]. A t-graph is a
collection of nodes which are connected by edges. In the context of driven amorphous solids, nodes
represent mechanically stable particle configurations while the edges are connections between nodes
representing avalanches triggered in response to external forcing. Given an initially stable configuration,
and under athermal quasi-static conditions, a t-graph then encodes all the possible deformation trajectories
obtainable under any combination of forward and reverse shear[78]. As has been demonstrated recently,
such t-graphs serve as a valuable tool to understand various features relating to response of sheared
amorphous solids[101]. Such t-graphs have also been constructed in experiments to study the effect of
interactions on various possible topological features of t-graphs and their relation to return point memory
in disordered materials[14]. Other simulation studies on t-graphs have concentrated on the topological
features in the absence of interactions which become identifiers of motifs signalling weak Preisach like
interactions in sheared amorphous materials and also served as a starting point to study memory capacity
in such solids[101, 123].

In this thesis, with the novel ingredient that helps our elastoplastic model capture limit cycles, we
generate t-graphs to further understand the role of sample preparation on the dynamics of sheared
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amorphous solids. This becomes all the more useful as elastoplastic models can easily access larger
system sizes which is a limitation for particle scale simulations. Also, in our thesis we demonstrate a
well defined glass preparation protocol that helps tune the initial degree of annealing of the sample. With
such a preparation protocol we can also prepare initial samples that are very well annealed, a feature that
is difficult to obtain in particle scale simulations. Thus, our studies using elastoplastic model set the stage
for understanding the effect of degree of annealing, ranging from poorly annealed to very well-annealed
glass samples, on the detailed dynamics of such solids under shear and possible role of finite size effects
through the features encoded in and associated with the t-graphs. In this section, we briefly underline
some key conclusions that such t-graphs have drawn in explaining the dynamics of driven amorphous
solids[78, 101] and make connections to our own studies in this thesis where possible.

1.3.1 Transient time to limit cycles and the irreversibility transition

  

Fig. 1.5 A t-graph from our elastoplastic model for a ductile glass sample. Nodes represent mechanically
stable states while the edges represent avalanches triggered under forward or reverse shear. The color
of each node indicates the strongly connected component (SCC) of the graph that it belongs to and the
initial state of the prepared glass has been marked with a larger red vertex labeled 𝐎. Nodes/vertices
belonging to SCCs of size less than 10 have been colored in light gray.

Recent studies have focussed on the response of cyclically sheared amorphous solids as a complemen-
tary means to studying yielding in such solids[16, 53, 102, 103]. As a first step, these studies established
a rather striking observation where, under the effect of cyclic driving, the system settles in a periodic state
such that stroboscopic measurements on particle configurations remained unchanged. The reason this
observation was taken with surprise is because within a cycle plastic re-arrangements occured in a manner
precise enough to revert all re-arrangements and recover the state at the beginning of the cycle exactly.
This implied that the trajectory of all the individual particles in response to plastic re-arrangements
were such that their trajectories formed closed loops under a cycle of the externally imposed forcing.

7



Introduction

Given the fact that a sheared amorphous solid has access to a plethora of metastable states, locking into
a periodic response (also known as a limit cycle) was therefore considered a very non-trivial behaviour.
The existence of limit cycles also implied that plasticity in driven amorphous solids become reversible.
The existence of limit cycles is contingent on the amplitude of cyclic driving. If the amplitude is low
the system always finds limit cycles. If the amplitude is large, limit cycles disappear and the system
settles in a state such that particles exhibit diffusive motion. The two contrasting types of responses,
existence of limit cycles at low driving amplitudes and diffusive state at large driving amplitudes, were
infact found to be separated by a critical behaviour[102]. As the critical driving amplitude is approached
from below, the number of driving cycles required to settle in limit cycles diverges like a power law. On
the other hand, for driving amplitude greater than the critical amplitude a non-zero diffusion constant
appears with a power law dependence on the driving amplitude. These have been well documented in
the following references [16, 42, 66, 90, 98, 103, 104, 129].

t-graphs help us understand the response of amorphous solids as one approaches the critical driving
amplitude from below[101]. More precisely, it explains the divergence of the transient time to limit
cycles. To understand this, one must first understand a key topological property of t-graphs known as
strongly connected components (SCCs) of the graph. An SCC is a collection of nodes (nodes are also
termed as mesostates in the original study) such that it is possible to use a deformation trajectory to
reach any node from any other in that SCC. This implies that a pair of nodes belonging to the same SCC
are mutually reachable. In the language of t-graphs, a limit cycle is nothing but a collection of nodes
connected by a deformation trajectory that form a closed loop on the t-graph. Thus, a limit cycle must
belong to a single SCC by definition. The size of an SCC is then defined as the number of nodes that
it contains. Coming back to the question, transient time to limit cycles diverges as one approaches the
irreversibility transition. In a recent study, it was observed that the available sizes of SCCs at driving
amplitudes close to the irreversibility transition were multiple standard deviations away from average
SCC sizes that were actually available[101]. It must be noted that as the driving amplitude increases,
number of plastic events increase during a cycle which implies that if a limit cycle is found it must also
belong to an SCC atleast containing as many number of nodes as the number of stable configurations in
the limit cycle. Diverging transients to limit cycles at critical amplitude was then understood as a search
for an SCC of appropriate size which became increasingly rare to find under external forcing[101].

We end our discussion by showing show a t-graph extracted from our simulations of elastoplastic
model for a ductile glass sample in figure 1.5. As stated before, each node represents a mechanically stable
state. A node has two outgoing transitions, one under forward shear (in gray) and another under reverse
shear (in orange). Nodes belonging to the same SCC use the same color. The t-graph encodes various
possible deformation trajectories under forward and reverse shear beginning from the initial state 𝐎.
These include trajectories leading to SCCs, the carriers of limit cycles. In Chapter 5, using the t-graphs
obtained from our elastoplastic model we will show, among other things, how the irreversibility transition
can impose strong constraints on the structure of the t-graphs when combined with the physical properties
associated with the dynamics of sheared amorphous solids. We also contrast such a dependence on
degree of annealing of the glass sample.
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1.3.2 Reversible and irreversible transitions

Existence of limit cycles under periodic forcing implies that particle positions remain unchanged strobo-
scopically. This means that plastic events belonging to a limit cycle are reversible. However, plastic
events also occur during the period in which the search for limit cycle is not complete. Such plastic
events have been termed as irreversible because the system does not visit the same states during the
transient. However, both reversible and irreversible plastic events involve particle re-arrangements and
it is therefore difficult to distinguish them from each other. t-graphs help distinguish reversible from
irreversible plastic events unambiguously. To understand this let us revisit the SCCs. Since any pair
of nodes belonging to an SCC are mutually reachable, it must mean therefore that any plastic event or
avalanche (represented by an arrow on the t-graph in figure 1.5) belonging to an SCC must be reversible.
In other words, an avalanche or plastic event belonging to an SCC is part of atleast one deformation
trajectory that forms a closed loop on the t-graph in that SCC such that the effect of the avalnche can
be undone completely. Such a plastic event must therefore be reversible. On the other hand, plastic
events connecting nodes of different SCCs are irreversible. This means that there is a deformation path
consisting of a plastic event, the irreversible plastic event, leading from a node in an SCC to a node in
another SCC but no deformation path back. t-graphs thus make a clear distinction between plastic events
which are reversible and those which are not.

For example, in figure 1.5 arrows connecting nodes of the same color represent plastic events that
are reversible while those connecting nodes of different color are irreversible. In Chapter 4, we will
demonstrate through our elastoplastic model that amorphous systems under cyclic driving can learn
features of driving, for example the amplitude. We will explain some of these features using the distinction
between reversible and irreversible transitions and their role in memory formation in driven amorphous
systems. Additionally, we will use this distinction to understand some of our results in Chapter 5 where
we study the effect of degree of annealing and system size on the toplogical features of t-graphs.

1.3.3 Return Point Memory

In this thesis, we will study memory effects in driven amorphous systems using our elastoplastic model. In
contrast to amorphous systems, systems possessing purely ferromagnetic or no interactions are guaranteed
to hold return point memory[113]. Although return point memory can be violated in systems possessing
anti-ferromagnetic interactions[14, 127], driven amorphous solids can show behaviour consistent with
RPM, if not perfectly[78]. In case of amorphous solids, the change in stress experienced due to a
local plastic event elsewhere in the system can be negative or positive depending on the position with
respect to the re-arranging site. Such interactions can then be seen as a mixture of ferromagnetic and
anti-ferromagnetic interactions in space. The presence of anti-ferromagnetic interactions in amorphous
solids raises the expectation that RPM be violated. However, recent studies used a t-graph construction
to map out the deformation trajectory of sheared amorphous solids to observe a near-perfect RPM[78].
Since we interpret our results on memory effects in light of RPM, below we describe what it means.
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We demonstrate RPM through a non-interacting Preisach model[97] for ferromagnets that describes
the response in magnetisation of the system driven by an external magnetic field. It is a non-interacting
model useful to understand memory formation in periodically driven disordered systems. The basic
building block of such a model are what are known as hysterons. A hysteron represents a magnetic domain
which can take a +1 or −1 state. The switching of state of a hysteron is determined by its threshold values
𝐻+ and 𝐻− which follow a constraint 𝐻+ > 𝐻− implying a dissipative system. Further, to account
for disorder in the material the thresholds have a distribution. If the external magnetic field 𝐻 >𝐻+

then the hysteron is in +1 state. It takes a −1 state if 𝐻 <𝐻−. The state of the hysteron depends on the
driving history when 𝐻− <𝐻 <𝐻+. A switching of state of a hysteron does not affect other hysterons
implying that the system is non-interacting. A collection of such hysterons under the effect of external
magnetic field displays return point memory.

Fig. 1.6 (a) Average magnetisation 𝑀 of a simulated Preisach sample as the external field 𝐻 is varied.
(b) Signature of the memories at 𝐻 =𝐻𝐶 and 𝐻 =𝐻𝐵 as the external field is varied from 𝐻𝑐 to 𝐻𝐴.
The inset shows signatures of memories as discontinuity in the slope 𝑑𝑀

𝑑𝐻
at 𝐻 = 𝐻𝐶 and 𝐻 = 𝐻𝐵.

Figures adapted from [59].

RPM in Figure 1.6 (a) is visible in the driving sequence that takes the sample from 𝑎→ 𝐵 → 𝑏→ 𝐵.
RPM means that returning the external field𝐻 =𝐻𝐵 will always restore the system to the same microstate
when it first left the outer loop (in blue), provided the external field during the excursion, for example
on the inner loop, obeys the constraint that 𝐻𝑎 <𝐻 <𝐻𝐵. The system holds memory of the turning
point in the external field as long as the previously applied extremum values (or turning points) were not
exceeded. The sub-sequence 𝑎→ 𝐵 → 𝑏, which has a turning point at 𝐻 =𝐻𝐵, has created a memory
of the state at 𝐻 =𝐻𝐵 and persists as long as 𝐻𝑎 <𝐻 <𝐻𝐵 is satisfied.

RPM also opens the possibility of storing multiple memories. A driving sequence 𝑏→ 𝐶 → 𝑐, as
shown in Figure 1.6 (a), obeying the constraint 𝐻𝑏 <𝐻 <𝐻𝐶 encodes a second memory, that of the
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state at 𝐻 =𝐻𝐶 . As the external field is swept from 𝐻𝑐 to 𝐻𝐴, the memories of the states at 𝐻 =𝐻𝐶

and 𝐻 =𝐻𝐵 are seen as clear discontinuities in the slope 𝑑𝑀
𝑑𝐻

at the corresponding points. The nested
structure of loops in Figure 1.6 (a) imply that storage of multiple memories of 𝐻 demand a nested
ordering on the turning points in 𝐻 , which are the values being stored, to be satisfied. We refer the
reader to references [59, 114] for a more detailed description of the subject. Finally, we note that RPM
can be violated in systems which contain both ferromagnetic and anti-ferromagnetic interactions. RPM
violation in the Figure 1.6 (a) would mean that driving in the external field through the sub-sequence
𝐻𝑏 →𝐻𝐵 will not end in the same state as it when it the left the parent loop (in blue) at 𝐻 =𝐻𝐵 during
the excursion 𝐵 → 𝑏. Such RPM violations, as observed in particle scale simulations on amorphous
solids [78], prohibit a strict hierarchical nesting of loops within loops like in Figure 1.6 (a).

Systems with interactions ranging from ferromagnets [10, 97, 113] to high temperature superconduc-
tors [89] also show RPM. Interactions between individual elements of these systems are cooperative
meaning that a local state change encourages other elements to change their state in the same direction.
A simple example is the well-studied Random Field Ising Model (RFIM) for ferromagnets in which
the the individual spin sites could either take a +1 or -1 state. The model uses cooperative interactions
meaning that a spin flip to +1 state encourages others to do so. Systems with such kind of interactions
were proven to hold return point memory [113]. RPM allows a system to remember a nested series of
turning points in the externally applied driving field thus permitting the storage of multiple amplitudes
of training [59]. The nesting of turning points in the external field implies that there is a constraint on
the order in which these turning points can be arranged. Storage of multiple amplitudes thus demand
that such a constraint on the ordering of turning points be satisfied.

In Chapter 4, using our elastoplastic model, we will also show that cyclically driven amorphous
systems under variable amplitude driving can encode memory of multiple amplitudes of training. We
will manipulate such a training sequence to elucidate responses that are single shear cycle apart to
erase/recover some or all memories, respectively, of training. With this, we raise the question whether
the trained state holding multiple memories of training can hold features effectively that of ferromagnetic
systems and thus return point memory? Our results will leave certain open questions like the possibility
of correlations in the soft-spots which are active within the limit cycles in the light of observations made
under multiple memory case.

1.4 Summary and Overview

Yielding and memory effects in cyclically driven amorphous systems have so far been studied in
experiments and particle scale simulations. These studies, performed under athermal-quasistatic (AQS)
conditions, have highlighted the role of non-trivial steady states, i.e. limit cycles, in how these systems
yield and encode memories of training. Limit cycles, as observed under a shear cycle, visit the same
sequence of metastable states implying that stroboscopic measurements on particle configurations remain
unchanged. Moreover, such limit cycles can have period 𝑇 > 1 such that reaching the same state
requires 𝑇 driving cycles. Given the structural disorder of amorphous solids such observations remain
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highly non-trivial. In addition to holding memory of training, such limit cycles also remain sensitive
to the amplitude of cyclic driving and disappear beyond a certain critical amplitude which marks the
irreversibility transition. Hysteron-based models have only recently been developed to capture and
explain some of these observations. These models underline the importance of nature of interactions in
determining limit cycles, associated periods, and memory effects. However, they do not capture and
explain many observations made on cyclically driven amorphous solids including yielding under cyclic
driving and the effect of sample preparation. Coarse-grained elastoplastic models, on the other hand, are
commonly used in studies on yielding in sheared amorphous solids. In this thesis, we utilise simple and
novel ingredients to develop a mesoscale elastoplastic model capable of capturing limit cycles to study
the irreversibility transition in cyclically driven amorphous solids. A key ingredient is a quenched local
landscape for potential soft-spots in the system which allow the possibility of finding limit cycles. We
also use a tunable preparation protocol to generate glass samples with different degrees of annealing.
This helps us understand the nature of irreversibility transition for glass samples with different degrees
of annealing. Using the same coarse-grained model, we also study memory effects in cyclically sheared
amorphous systems. In our studies on memory effects, we first show that under suitable driving/training
protocols our model can hold memories of single and multiple amplitudes of training and then setup
various studies thereafter. Additionally, we perform a t-graph construction of the AQS response of
sheared amorphous solids in our elastoplastic model to understand the role of annealing of the glass
sample in determining the response of such solids to arbitrary shear driving protocols. In particular,
we combine topological features of the t-graph with physical properties of sheared amorphous systems
to reveal the effect of degree of annealing of the glass samples. Through these studies we probe the
interplay of sample preparation and finite size effects on the structure of t-graphs.

This thesis is organised as follows:

(i) In chapter 2, we discuss general ingredients of various elastoplastic models (EPMs) popular in
literature aimed at capturing sheared response of amorphous solids. We then describe features of
our EPM which includes a quenched landscape for shear driving.

(ii) In chapter 3, we introduce a simple and physically motivating glass preparation protocol that helps
us tune the initial degree of annealing of the glass sample at the mesoscale level. We then perform
unidirectional (or uniform) shear tests on these samples as a test on our preparation protocol. We
then perform extensive simulations of the mesoscale model to study the response of cyclically
sheared amorphous solids for different degrees of annealing and system size to probe the nature of
the irreversibility transition.

(iii) In chapter 4, we study memory effects in cyclically sheared amorphous solids using our elastoplas-
tic model. We begin by showing that our model is able to capture single and multiple memories of
driving/training amplitude under suitably designed training and read-out protocols. These studies
are complemented by studying the effects of multi-periodic limit cycles and large driving ampli-
tudes spanning across the irreversibility transition to question the robustness of such memories.
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We show that memory of training can be revealed in novel ways that have remained unexplored in
the literature so far. We complement some of our results using observations from our studies on
t-graphs. We also study the effect of prior training under cyclic driving on further encoding of
memories in amorphous solids and attempt to make some comparisons with existing results from
mean-field hysteron-based models.

(iv) In chapter 5, we capture the transition graph representation of AQS response of amorphous solids
using our elastoplastic model. We study some of the key topological features of these transition
graphs and combine our observations on plasticity and yielding in amorphous solids to reveal the
effect of degree of annealing of the glass samples. We also study the effect of system size on the
structure of t-graphs. We also complement our observations from t-graphs obtained from atomic
scale simulations of model amorphous solids.

(v) In chapter 6, we summarise the main findings of our thesis and discuss potential directions which
could further be explored.

Results of the thesis presented in Chapter 3 and Chapter 5 belong to our published work [61]. Results
of the thesis presented in Chapter 4 is part of an article under preparation.

13





Chapter 2

Mesoscopic Elasto-Plastic Model

In this chapter, we will introduce the building blocks of the elastoplastic model (EPM) used in the thesis.
The first part of the discussion will pertain to common ingredients of EPM with typical variations in the
literature complemented with references. This will be followed by a brief history of such models and
their extensions in the studies of yielding and rheology of amorphous solids. Finally, we will introduce
the details of our elastoplastic model in the context of the problems addressed in the thesis. The details
of our model can be found in Section 2.3 onwards.

2.1 Building blocks of elasto-plastic models

In this section, we first highlight general ingredients used in building mesoscale models and then motivate
and underline the features we choose to pick for this thesis.

Studies on amorphous solids using elastoplastic models are built on the idea of dividing the material
into mesoscopic cells which can alternate between elastic and plastic states. For example, see figure
2.1 for a schematic illustration. A cell switching from an elastic to a plastic state is considered a proxy
for shear transformations which mimic local plastic rearrangements in space. This local state switching
induces stress perturbations in the system, allowing the cells to interact with each other elastically, forms
the basis of these models. The main aim of these models has been to use minimal ingredients, and thus
catch applicability in a wide range of materials, to reproduce various universal properties as observed in
the mechanical response of amorphous solids in experiments and atomistic simulations [82].

EPM models [9, 23, 70, 81, 82, 94] share some key common features listed below:

• A local yield criterion to determine the onset of a plastic rearrangement.
• An elastic coupling that accounts for the effect of a plastic rearrangement on the surrounding

medium.
• An evolution rule for the local yield criterion following plastic rearrangements to account for local

structural changes.
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• A flow rule that associates slip amplitude and/or a time scale to these plastic rearrangements.
Various possibilities exist, for example: the model can be built in the athermal quasistatic limit
or time and temperature effects could be put in by using, for example, a kinetic Monte Carlo
algorithm.

Below, we expand on the points mentioned above.

2.1.1 Onset of local plastic transformation

Most of the EPM models, including the one used in this thesis, are scalar in nature. This means that the
tensorial nature of local stress or strain is neglected in the mesoscopic cells making up the system. Such
an assumption holds only when local volume changes can be neglected and the externally applied shear
acts uniformly on the system. The external deformation then simplifies to affecting only the deviatoric
part of the local stress or strain tensor, thus fitting the scalar description [82]. The scalar approximation
thus amounts to consider that at microscopic scale (within a cell) the material slips along the very same
direction as the one imposed by the external loading. The criterion determining the onset of shear
transformations then becomes simpler.

Fig. 2.1 A cartoon depicting a local plastic event in amorphous media. Such an event comprises an
elastic response followed by mechanical instability resulting in a plastic rearrangement. This plastic
rearrangement results in a stress redistribution throughout the system that may further trigger a cascade
of such events. Figure taken from [20].

Local yield criterion

Plasticity in amorphous solids is known to proceed through shear transformations which are localized
plastic rearrangements in space. In scalar EPMs, the onset of such rearrangements is modelled by
assuming a stress-based criterion:

𝜎(𝑥) = 𝜎+(𝑥). (2.1)
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where, 𝜎(𝑥) is the local shear stress and 𝜎+ the local yield stress at a cell position 𝑥, implying that
a local plastic event is triggered when 𝜎(𝑥) ≥ 𝜎+(𝑥). Such a criterion assumes that thermal effects are
negligible [82].

Local yield stresses can be chosen to be spatially homogeneous [94, 95] or heterogeneous [9, 33, 51,
120]. In the case of spatially homogeneous yield stress, cells do not yield instantly upon exceeding the
threshold but do so with some fixed rate. The associated time delay is thought to capture the stochasticity
of rearrangement processes in the system. On the other hand, the heterogeneous picture treats the local
yield stress as random variables drawn from some statistical distribution without correlations. In this
case, a cell yields instantly upon exceeding the threshold. In the thesis, we will always concern ourselves
with disorder of the latter type.

Elastoplastic models have also been proposed that take thermal activation of plastic events into
account. Such a criterion introduces a probability for activating plastic regions following ∝ exp(−𝐹∕𝑇 ),
where 𝐹 is the free energy required for the local plastic event and 𝑇 is the temperature [24].

2.1.2 Evolution rule for the local yield criterion

Another essential ingredient in the EPMs concerns the evolution of the yield criterion. Once a plastic
rearrangement has taken place, the local structure of the rearranging region changes which may change
the local yield stress. In some models, the local yield stress does not change post-plastic event [24, 48, 49,
94, 95] while in others a new value is drawn from a stationary distribution without correlation [9, 120]. In
this thesis, we will resort to the second option and consider only stationary renewal threshold distributions
after local yielding. Finally, new models deal with the gradual evolution of this renewal law with plastic
deformation in order to be able to take into account the effect of the different preparation protocols on
the mechanical response [27, 124].

The above three ingredients can be summarised in figure 2.1. The figure shows a cartoon of a potential
STZ local in space under the effect of external loading. It first responds elastically before reaching a
critical state and suffering a plastic rearrangement. This transition is marked by an irreversible change
of neighbours, the effect of which is felt throughout the system through long-range stress distribution.
Qualitatively, the same figure then demonstrates an EPM approach of dividing the system into individual
cells which act as candidates for such events and interact with each other via Eshelby stresses, as disussed
in the following sections.

2.1.3 Interaction via the elastic matrix

Since EPMs aim to capture the collective effects of shear transformations (STs), their interactions must
be specified. These interactions result due to the stress distribution following a plastic event to restore
mechanical balance. Indeed, successive STs are not independent, as evidenced in numerical simulations
and experiments [64, 76]. This mechanism is based on the surrounding medium’s elastic nature, which
is key to transmitting elastic waves post a local yield event. Continuum equations of elasticity [62] can
then be used to determine the shear stress increment caused by the local rearranging zone through what
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is known as the elastic propagator 𝐺. Eshelby first solved this plastic inclusion problem in 3D [37],
where an ellipsoidal inclusion of arbitrary size was considered to be embedded in an elastic medium.
Eshelby’s results highlighted two important features of the propagator 𝐺 [94], first it is long-range, and
second it has a varying sign. For example, the stress field induced by a plastic inclusion under pure shear,
in the far field has the form: 𝐴𝐶𝑜𝑠 4𝜃∕𝑟2.

EPMs, including ours, use this equation as the basis for interaction among the mesoscopic cells.
As a demonstration, we show in figure 2.2 the stress redistribution due to a plastic rearrangement in
the central block. One notices a striking agreement between all the three approaches: Experiments,
Simulations, and theory.

Fig. 2.2 Average stress redistribution due to a plastic event. (a) In an experiment on dense emulsions.
(b) In an atomistic simulation using a binary Lenard-Jones glass. (c) In Theory: Far field solution of an
Eshelby inclusion. Figure taken from [82].

Analytical results have also been achieved by employing mean-field extensions of EPM [46, 118].
These models ignore the spatial features of the propagator G. These can use a constant stress distribution
throughout the system following a local slip event or statistical variants in which the elastic responses
following a slip event are drawn from an uncorrelated random distribution [82]. However, the relative
simplicity of these models in treating the stress redistribution results in failure to capture the build-up of
spatially correlated plastic events, for example, the shear banding phenomena in brittle glasses.

2.1.4 Driving

One can make two main choices while driving the system through external loading. The first method is
athermal and quasistatic in nature which ignores thermal and rate effects [9, 33, 95, 120]. The second
method, also known as the kinetic Monte Carlo algorithm, considers thermal and rate effects [24, 49, 50].
We will use the former method in this thesis.

To mimic athermal quasistatic driving protocol, we use an extremal dynamics (Baret et al., 2002; Lin
et al., 2014b; Talamali et al., 2012) to shear our mesoscopic system. At each step, this driving protocol
triggers one and only one plastic event resulting in a vanishing shear rate. In the algorithm, starting
with a mechanically stable state, the weakest site in the system is identified by finding the cell with
the smallest value of 𝜎+(𝑥)−𝜎(𝑥). The cell is then subjected to a local slip event followed by a stress
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distribution according to the Eshelby kernel. The local yield stress is updated according to the evolution
rule mentioned in section 2.1.2. From this single destabilisation an avalanche of plastic events can occur.
The process is repeated when the avalanche terminates.

2.2 A brief history of mesomodels

Before we discuss our model in detail, we give a brief survey of mesomodels for the reader to contrast
various historical objectives of elastoplastic models put in the context of the problems studied in the
later chapters of the thesis.

To our knowledge, the first discrete model to study plasticity in amorphous solids was proposed by
Argon and Bulatov in 1994 [24–26]. This model was based on an earlier work of Argon and Kuo [6],
which showed that the elementary unit of plasticity in such solids is the localized rearrangement of
particles in space called shear transformations. The model tesselated the material into hexagonal
cells forming a hexagonal lattice. Once a shear transformation was triggered at a cell location due to
fluctuations in local stress, stress released by the local plastic event would be redistributed throughout the
system according to the Eshelby propagator resulting from mechanical equilibrium constraint. The effect
of temperature on plasticity was captured by allowing plastic events to be thermally activated through an
activation probability ∝ exp(−𝐹∕𝑇 ), where 𝑇 is temperature and 𝐹 is the free energy barrier of local
plastic rearrangement. Homer and Schuh [49, 50] proposed an extension of this model by introducing
a kinetic Monte Carlo method to follow the dynamics of plastic deformation and study their spatial
correlations in the amorphous media.

Baret et al. [9] came up with another model to study amorphous plasticity but instead at zero
temperature. It used structural disorder and long-ranged interactions for stress redistribution following
plastic events. The model displayed critical behaviour much like statistical models for earthquakes [13,
28]. In close spirit, Picard et. al. [95] studied the spatiotemporal behavior of a yield stress fluid using an
athermal model with quadrupolar elastic interaction between the cells. This model was the first model to
study finite shear rate rheology with the aim of capturing the Herschel-Bulkley (HB) law. In this model,
disorder was introduced through rates at which the cells switched from elastic to plastic states. The model
showed consistency with experimental results by predicting flow governed by spatially correlated plastic
events with diverging correlation length as the shear rate decreased to vanishing values. Interestingly,
Nicolas et. al. [83] in 2014, building on the ideas of the Picard model, successfully recovered the HB
law by instant trigger of plastic events beyond a threshold stress for which a distribution was defined.
The plastic events in the model were given a fixed duration to relax locally.

Mean field versions of elastoplastic modelling have also proved valuable in understanding plasticity in
amorphous solids. These models allow for an analytical extension of elastoplastic models as they discard
correlated dynamics of plastic events. One of the most popular among such models is the so-called
Hébraud-Lequeux (HL) model [118] designed for athermal materials at fixed shear rate rheology. The
HL model uses Gaussian noise to model the effect of stress redistribution due to slip events on the
surrounding medium. It can, however, be shown that the Eshelby stress propagator leads to a power-law
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distributed noise [71]. This power law distribution is not surprising if one looks at the singularity present
in the far field solution of the Eshelby inclusion, which becomes more pronounced in the low shear rate
limit due to increasingly correlated plastic events. Inspite of this simplification, the HL model was able
to recover the transition between an arrested state to a flowing state through a Herschel-Bulkley law [47],
which fits well for the stationary flow regime of yield stress fluids [21]. The non-Gaussian nature of the
mechanical noise was later studied and confirmed through a more general HL model [71].

The Kinetic Elastoplastic (KEP) Theory of Bocquet et al. [20], building on the HL model, predicted
a decrease of correlation length (dictated by the spatial plastic activity) with shear rate as one moved
away from the dynamic yield stress through the Herschel-Bulkley law with an exponent 1/4, in contrast
to work of Lemaıtre and Caroli [67] based on modulecular dynamics simulations, who predicted an
exponent of 1/2.

The above discussion on mean field models is for athermal materials. In contrast, the Soft Glassy
Rheology model of Sollich et al. [118] treats mechanical noise as an effective temperature to handle the
effect of slip events. More precisely, cells below yield stress are assigned an yield rate according to an
Arrhenius law while the unstable ones are made to slip immediately. As the temperature in the model is
reduced, the shear rate dependence of steady state stress transits from a Newtonian regime to a power
law regime. Decreasing the temperature further, a yield stress emerges recovering the celebrated HB law
for athermal soft amorphous solids.

2.3 Our Model

In this section, we will introduce our elastoplastic model which, among other details, bears the novel
ingredient that is a local landscape that is quenched in the direction of plastic deformation. Such an
ingredient is central to capturing limit cycles and study yielding and memory effects in cyclically sheared
amorphous solids.

We consider a scalar 2D lattice-based mesoscale elasto-plastic model. The physics of this class of
models relies on the coupling between a threshold dynamics and an elastic interaction induced by the
incremental local plastic slip which arises as a result of a mechanical instability [82]. We use here a
variant of the model introduced in Refs.[120, 125, 126].

We consider a square grid of 𝑁 ×𝑁 cells of size 𝑎×𝑎. The model is scalar, so that we account for
one and only one shear direction, along which we can shear the system forward and backwards. We
assume a uniform shear modulus 𝜇. Each individual cell (𝑖, 𝑗) is characterized by a stack of local elastic
branches indexed by a variable 𝓁, each of which relates the local stress 𝜎𝑖𝑗 to the local strain 𝜀𝑖𝑗 , as shown
in Fig. 2.3. The stability of each such local elastic branch 𝓁 is limited by two bounds: a maximum stress
threshold 𝜎+

𝑖𝑗,𝓁 , and a minimum stress threshold −𝜎−
𝑖𝑗,𝓁 . Note that in order to ease notation, whenever no

explicit reference to a particular branch number 𝓁 is made, we will omit it in the following. The two
thresholds 𝜎+

𝑖𝑗 and 𝜎−
𝑖𝑗 are drawn from a random distribution with support in 𝐑+ so as to ensure −𝜎−

𝑖𝑗 < 𝜎+
𝑖𝑗 ,

i.e. the existence of a stability domain for the cell (𝑖, 𝑗). Whenever the local stress 𝜎𝑖𝑗 overcomes one of
the two bounds, the cell experiences a plastic event and its stability domain is shifted to a neighboring
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elastic branch. Since the cell is surrounded by other cells, and can be seen as an Eshelby inclusion within
an elastic matrix, this plastic event induces a stress redistribution in the system so that other cells can get
destabilized.
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Fig. 2.3 Local elastic branches associated with a cell (𝑖, 𝑗). Each elastic branch 𝓁 is characterized by a
pair of stress thresholds 𝜎±

𝑖𝑗,𝓁 and a plastic strain 𝜖pl𝑖𝑗,𝓁 , which prescribe the behavior of the local stress 𝜎𝑖𝑗
under elastic strain 𝜖el𝑖𝑗 = 𝜖𝑖𝑗−𝜖pl𝑖𝑗 , as shown for the branch labeled 𝓁 in the figure. When the stress reaches
the upper or lower stress threshold, a transition to the corresponding neighbouring branches, 𝓁±1 occurs.
The current stress state of the cell is denoted by a red filled symbol on the elastic branch 𝓁. This allows us
to define the local plastic strengths 𝑥+𝑖𝑗 = 𝜎+

𝑖𝑗 −𝜎𝑖𝑗 and 𝑥−𝑖𝑗 = 𝜎−
𝑖𝑗 +𝜎𝑖𝑗 which give the distance to threshold

in the forward and backward directions, respectively. The slopes of the local branches are identical and
equal to 2𝜇.

In the present model, the local stress 𝜎𝑖𝑗 experienced by the cell (𝑖, 𝑗) originates from two distinct
contributions: a global stress Σ due to the external loading, and an internal stress associated to the
interactions with other cells, so that 𝜎𝑖𝑗 = Σ+𝜎int

𝑖𝑗 . The latter contribution fluctuates spatially and is by
definition of zero average so that we have 𝜎𝑖𝑛𝑡

𝑖𝑗 = 0, and therefore 𝜎𝑖𝑗 = Σ. Here 𝐴 denotes the spatial
average of the observable 𝐴.

Due to the external loading and the stress interactions, the local stress 𝜎𝑖𝑗 is in general non-zero so
that the amount of (external) stress that needs to be applied in order to reach one of the boundaries of the
elastic branch is not a priori equal to the stress thresholds 𝜎+

𝑖𝑗 ,𝜎
−
𝑖𝑗 . Instead, it is given by the local plastic

strengths in the positive and negative directions, which we define as 𝑥+𝑖𝑗 = 𝜎+
𝑖𝑗 −𝜎𝑖𝑗 and 𝑥−𝑖𝑗 = 𝜎𝑖𝑗 +𝜎−

𝑖𝑗 ,
respectively. Note that for a mechanically stable configuration we require that −𝜎−

𝑖𝑗 < 𝜎𝑖𝑗 < 𝜎+
𝑖𝑗 , so that

the quantities 𝑥±𝑖𝑗 must be positive in that case.
The separation Δ𝜀 between two neighboring local elastic branches that belong to a given cell (𝑖, 𝑗)

defines the local plastic strain 𝜀pl𝑖𝑗,𝓁 experienced by the cell after the local stress has reached the threshold
in one or the other direction.

21



Mesoscopic Elasto-Plastic Model

Stress interaction

Local plastic strains are generated within an elastic matrix (the other cells of the lattice). This incom-
patibility induces an internal Eshelby stress field of quadrupolar symmetry [38]. Since we assume
homogeneous elasticity, the elastic response to a unit plastic slip can be computed once and for all. The
internal stress thus directly arises from the convolution of the field of plastic strain with the Green function
of Eshelby stresses. The latter is computed from the discrete Fourier Transform of the analytical solution
in the reciprocal space. Details on the implementation and a discussion can be found in Refs. [120, 125].

The typical stress drop associated to a rearrangement of plastic strain Δ𝜀 is of order 𝜇Δ𝜀. For the
sake of comparisons with atomistic simulations, we consider here 𝜇 = 10, a typical value observed in
Lennard-Jones binary model glasses [91, 103]

Random landscape

The stress thresholds are drawn from a random distribution 𝑃 (𝜎±). Here we consider a Weibull distri-
bution of parameters 𝜆 = 1.0,𝑘 = 2.0, where 𝜆 and 𝑘 are constants in the cumulative density function
given by 1− 𝑒−(𝜎±∕𝜆)𝑘 . The plastic strain increment Δ𝜀 = 𝜀pl𝑖𝑗,𝓁+1− 𝜀pl𝑖𝑗,𝓁 between two neighbor elastic
branches 𝓁 and 𝓁+1 is also a random variable, cf. Fig. 2.3. We choose it to be correlated to the two
plastic thresholds associated with the transition 𝓁 → 𝓁+1, i.e. 𝜎+

𝑖𝑗,𝓁 in the forward direction and 𝜎−
𝑖𝑗,𝓁+1

in the backward direction. More specifically, we choose Δ𝜀 from a uniform distribution in [0,Δ𝜀𝑚𝑎𝑥]
with Δ𝜀𝑚𝑎𝑥 = 𝜂(𝜎+

𝑖𝑗,𝓁 +𝜎−
𝑖𝑗,𝓁+1)∕(2𝜇), where 𝜂 is a tunable parameter. Note that the parameter 𝜂 thus

controls the strength of the elastic interaction [22, 120]: the larger 𝜂, the larger the short-range stress
kicks that trigger the avalanche, but also the larger the amplitude of the mechanical noise arising from
the small positive and negative contributions of the long-range stress interaction. We have set 𝜂 = 1 in
our simulations.

Nature of disorder

In the following we will consider two different cases:

(i) An annealed disorder where after a plastic slip new values of the thresholds 𝜎+
𝑖𝑗 , 𝜎−

𝑖𝑗 are computed
in the absence of any memory;

(ii) A quenched disorder, as a result of which the stress landscape of any given cell remains fixed so
that the very same elastic branches are revisited in the course of a back and forth motion.

The landscape with quenched disorder is implemented through the use of a counter-based random
number generator (CRNG) [109] so that the value of a threshold at the local elastic branch 𝓁 only
depends on the index 𝓁 of that branch and on a previously defined key 𝜅. In this way, the access to, say,
𝜎+
𝓁 = 𝑓𝜅(𝓁) requires just a simple call to the generator without the need of storing a full sequence of

random numbers.
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2.3 Our Model

In the following we will use an annealed disorder throughout the glass preparation step and a quenched
disorder throughout the quasi-static shear driving steps. More specifically, we first “fabricate” our glasses
using a two-step process, which mimics a thermalization step at high 𝑇 and a subsequent aging step at
vanishing temperature. We control the degree of aging of our glasses in this manner. Details regarding
the glass preparation protocol is discussed in Chapter 3. At the end of this preparation protocol the
different fields (thresholds in the forward/backward directions 𝜎±

𝑖𝑗 and internal stress 𝜎𝑖𝑗) are stored; the
plastic strain field is reinitialized at zero and this initial configuration is inserted as the slice of index
𝓁 = 0 of a stack of quenched disorder thresholds at each cell (𝑖, 𝑗). This quenched configuration is then
used to perform mechanical loading.

Driving

Two kinds of mechanical loading are considered in this study: monotonous shear loading and cyclic
loading. In both cases, the driving is strain controlled and changed quasi-statically. The elementary steps
consist in:

(i) identifying the first site1 (𝑖∗, 𝑗∗) which becomes unstable in the shear loading direction, i.e. the
extremal site;

(ii) incrementing the external strain 𝜀 up to the point where the extremal site (𝑖∗, 𝑗∗) becomes unstable;
(iii) incrementing the plastic strain of (𝑖∗, 𝑗∗) by Δ𝜀 to trigger the transition 𝓁 → 𝓁±1 to the next

elastic branch by the instability (plastification);
(iv) updating the internal stresses of all sites;
(v) identifying any site that has in turn become unstable due to the internal stress update, plastifying

these sites as well, updating the internal stress etc. until the end of the avalanche, i.e. until all
sites have become stable again;

(vi) repeat steps (i)–(v) as needed.

Avalanches

The precise treatment of step (v), i.e. the avalanche, deserves more detail. Once a list of unstable sites has
been identified, the question remains about the order in which these sites will be updated. Indeed, since
the elastic interaction can induce both positive and negative stress kicks, an unstable site can be healed
and get stable again after another one has been plastified and the resulting internal stresses at the other
sites have been updated, steps (iii) and (iv). Hence the order of the updates matters. The effect of the
ordering of updates on the dynamical properties has been recently discussed by Ferrero and Jagla [41].
Some of us opted for a synchronous update [126]: all unstable sites are plastified simultaneously in

1We will henceforth use the terms cell and site interchangeably
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Mesoscopic Elasto-Plastic Model

parallel; the internal stress is updated afterwards; after this first sweep, a new configuration is reached, a
stability test is performed, if all sites are stable, the avalanche is over, otherwise a new list of unstable
sites is identified and the process is iterated until a stable configuration is reached. Here we make a
different choice and perform a sequential update: the most unstable site, i.e. the extremal site, is updated
first (plastic slip followed by an update of the associated elastic stress field) and we repeat this procedure
until all sites become stable again. This choice of updating protocol happens to be very close to the
extremal driving proposed in Ref. [9]

2.4 Summary

In this chapter, we started by explaining various building blocks of EPM and common variants employed
in studies on plasticity in driven amorphous solids. We then proceeded to briefly discuss the history of
EPMs so that the one can appreciate these advances while moving on to the later chapters of the thesis.
Finally, we discussed the novelty of our model built to study the history-dependence of such solids to
shear but also aimed at capturing limit cycles for probes on yielding and memory under cyclic loading in
amorphous solids.
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Chapter 3

Cyclic driving and the irreversibility
transition

In this chapter, we will first introduce a glass preparation protocol to tune the initial degree of annealing
of the glass samples at the mesoscale level. We will then test our preparation protocol against uniform
shear tests. Using the samples from our glass preparation protocol, we will then study the response of
cyclically driven amorphous system at different degrees of annealing and system sizes to reveal the effect
on the nature of the irreversibility transition.

3.1 Preparation of initial states

The structure and the mechanical behavior of glasses depend on their thermo-mechanical history. In order
to account for this preparation dependence in mesoscopic elastoplastic models, one usually specifies a
particular distribution of local thresholds and/or internal stress in the initial configuration [107, 128]. In
contrast to atomistic simulations these distributions do not derive from a well-defined quench protocol
but must be introduced by hand. Here we propose two simplistic protocols of preparation allowing us
to mimic (i) an instant quench from a high-temperature liquid, and (ii) an aging process at vanishing
temperature. Although they are un-realistic caricatures of actual glass preparations, the combination of
these two protocols allows us to continuously tune the system from a very disordered fresh soft glass to a
very aged hard glass in a (statistically) reproducible way. Since we have observed that the use of the
quenched local landscape during the aging protocol in our elastoplastic model lead to responses that
become cyclic and hence aging the glass sample becomes difficult, we will use an annealed disorder
in our glass preparation protocols. We note at this point that despite the absence of an explicit energy
landscape in our model, which would allow us to equilibrate the system at a finite temperature and
to perform a quench to zero temperature [24], it is possible to implement the two limit-cases of glass
preparation as we discuss next.
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Cyclic driving and the irreversibility transition

3.1.1 Instant quench of a high temperature liquid
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Fig. 3.1 Glass preparation - mimicking instant quench from high T: (a) evolution of the mean stress-
threshold 𝜎+ with the number of (random) thermalization steps per site and for system sizes 𝑁 = 16,32,
and 64. The inset shows the same (b) Evolution for the standard deviations of the stress thresholds 𝛿𝜎+,
internal stresses 𝛿𝜎, and local plastic strength 𝛿𝑥+ with the number of thermalization steps per site for
system sizes 𝑁 = 16,32, and 64.
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Fig. 3.2 Glass preparation - mimicking instant quench from high T: Stationary distributions of the fields
𝜎, 𝜎+ and 𝑥+ for 𝑁 = 64.

At high temperature the local energy barriers associated with the stress thresholds are very low with
respect to the available thermal energy so that in the 𝑇 →∞ limit, all plastic rearrangements are equally
probable. We then define a thermal step by selecting a site uniformly in space at random and choosing
one of the two directions with probability 1∕2. The chosen site thus experiences a plastic slip and jumps
onto a new elastic branch, which is characterized by two new plastic thresholds. Next, the stress field
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3.1 Preparation of initial states

is updated to account for the stress redistribution. The stress redistribution can make some other sites
mechanically unstable and thereby induce an avalanche. Updates are then performed until the avalanche
stops and the system is stable again. The system is subjected in this manner to a sequence of thermal
steps until it reaches a stationary state. In Fig. 3.1(a) we show for different system sizes 𝑁 how the
mean stress-threshold 𝜎+ of our samples evolves with the number of thermal steps. We see that when
plotted against the average number of thermal steps per site, the curves for the different sizes collapse
and 𝜎+ reaches a stationary value rather quickly, after about 4-5 thermal events per site. Fig. 3.1(b)
shows at different system sizes the corresponding evolution of the standard deviations 𝛿𝜎+, 𝛿𝜎, and 𝛿𝑥+,
of the stress threshold, the internal stress, and the plastic strength, respectively. When plotted against the
average number of thermal steps per site, we find again little size dependence. In Fig. 3.2 we show the
stationary distributions of the stress-thresholds, internal stress and local plastic strengths for our 𝑁 = 64
sample.

3.1.2 Aging at vanishing temperature

We now turn to the other limit, namely aging at very low temperature, 𝑇 → 0. In the framework
of activated behavior, the activity at low temperature is restricted to overcoming the lowest barriers.
Moreover, in the limit of vanishing temperature, the lowest barrier becomes dominant. We define an
extremal aging step as follows: recall that for each site (𝑖, 𝑗) its plastic strength in the positive and negative
directions are given as 𝑥+𝑖𝑗 = 𝜎+

𝑖𝑗 −𝜎𝑖𝑗 and 𝑥−𝑖𝑗 = 𝜎𝑖𝑗 +𝜎−
𝑖𝑗 , respectively. We identify the site and direction

with the lowest plastic strength and let it experience a local slip so that stresses are redistributed, and
new stress thresholds are assigned to the yielded site. As in the case of the “thermal” procedure with
randomly selected sites, a stability check is performed after each slip. If one or more sites get unstable,
they are updated in turn and with the most unstable sites updated first, as explained before. The procedure
is iterated until the avalanche triggered by the initial extremal step terminates. Then, the next site and
direction of the lowest plastic strength is identified and allowed to slip.

The present “aging” procedure is thus similar to the “thermal” procedure, differing only in the choice
of the initial site to be slipped: in the case of “aging” an extremal site is selected for slip, i.e. the cell and
direction with least plastic strength, while in the thermal case the selection of site and direction is random.
This difference drastically alters the dynamics, since it induces a systematic statistical bias. When a site
yields, it acquires a new pair of thresholds. The latter are drawn from a prescribed distribution. However,
in the framework of the aging procedure, this takes place at an extremal site, which is characterized by
a very low plastic strength (either in the positive or in the negative direction). We thus get a typical
exhaustion phenomenon: low thresholds get replaced by “normal” ones. This systematic bias induces a
drift in the threshold distributions and thus a systematic hardening.

Starting from an initial state corresponding to the inherent state obtained from a “high temperature
liquid”, as described in the previous section, we thus “age” the system by slipping a number of least
stable sites. As shown in Fig. 3.3(a), we observe a logarithmic growth of the mean thresholds 𝜎+ with
the number of aging steps. Again, the dependence of this evolution on system size becomes negligible
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Fig. 3.3 Glass preparation - low temperature aging: (a) evolution of the mean stress-threshold 𝜎+ with
the number of aging steps per site and for system sizes 𝑁 = 16,32, and 64. (b) Evolution of the standard
deviation of local stress 𝛿𝜎, thresholds 𝛿𝜎± and plastic strength 𝛿𝑥 with the number of aging steps per
site for system sizes 𝑁 = 16,32, and 64.
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Fig. 3.4 Glass preparation - low temperature aging: Distributions of the stress-thresholds for an 𝑁 = 64
sample, that has not been aged at all (thermal), or aged with an average number of 0.8 (PA), 15 (MA),
and 150 (WA) aging steps per site, corresponding to a poorly-, moderately- and well-aged glasses,
respectively.

when we consider the average number of aging steps per site, instead of the total number of steps. We
find that after about 103 aging steps per site, the mean threshold doubles in value.

Figure 3.3(b) shows, at different system sizes, the evolution of the standard deviation of the stress-
threshold, internal stress and plastic strength. When plotted against the average number of thermal steps
per site, we find again little size dependence. The standard deviation of thresholds shows a slow decrease
(about 20% over 103 aging steps per site). Together with the doubling of the mean thresholds over the

28



3.2 Annealed versus Quenched disorder for shear driving protocols

same range of 103 steps, this corresponds to a significant narrowing of the threshold distributions upon
aging.

Interestingly, after a fast decrease in the early stage of the aging protocol (less than one aging step per
site) the standard deviation of internal stress remains almost constant upon aging. In recent studies on
the dependence of plastic behavior of amorphous solids on glass preparation [86, 107], the width of the
stress fluctuation distribution has been used as a proxy for the level of stability of the amorphous solids
while keeping constant (actually uniform) the value of the plastic threshold. We get here a different
situation: an increase of the mean threshold and stability of the stress fluctuations upon aging. A way
to reconcile these contrasting observations is to consider the fluctuations of the local plastic strength
𝑥± = 𝜎±∓𝜎 and to note that in the case of uniform thresholds the standard deviation of plastic strength
equals that of internal stress 𝛿𝑥± = 𝛿𝜎. Upon aging, we indeed observe a continuous decrease of 𝛿𝑥±
which gets halved after about 103 aging steps per site.

In Fig. 3.4 we display distributions of the stress thresholds 𝜎+ for our 𝑁 = 64 samples, which were
either not aged at all (thermal), or aged at 0.8,15, and 150 aging steps per site, for 𝑁 = 64. These aging
levels have been indicated by the appropriately colored circles on the graph showing the evolution of
mean stress-thresholds with aging in panel (a). Henceforth we will refer to these levels of aging as
poorly-aged (PA), moderately-aged (MA), and well-aged (WA).

The effect of our aging procedure is dramatic: it opens a growing gap in the distribution of stress-
thresholds 𝜎+. In spirit, we recover here a phenomenology which is close to that of ultrastable glasses
obtained via swap Monte-Carlo methods [15]. The opening of a gap will induce a perfect elastic behavior
over a finite range of strains which contrasts with the quasi-elastic behavior (short elastic branches
punctuated by plastic events) typically observed in less equilibrated glasses.

3.2 Annealed versus Quenched disorder for shear driving protocols

In the case of a monotonic loading, every time a cell experiences a plastic deformation, its threshold
is renewed. Independently of the particular method chosen to draw random thresholds, the quenched
character of the disorder is automatically obtained since a unique value of the threshold 𝜎±

𝑖𝑗,𝓁 is assigned
to each triplet (𝑖,𝑗,𝜀𝑝𝑙𝑖𝑗 ). The possibility of back and forth motions requires more care in the definition of
the threshold disorder. When performing cyclic shear tests, we use a quenched disorder. In practice,
we resort to a counter-based random number generator (see. Ref. [109] for a pedagogical introduction)
to assign efficiently a unique pair of random thresholds to each triplet without having to store the full
sequence in memory. Bidirectionality – Since cyclic loading (in addition to a simple monotonic loading)
is studied in this thesis, two local thresholds are defined instead of only one for each cell: one threshold
𝜎+
𝑖𝑗 in the forward direction and another one 𝜎−

𝑖𝑗 in the backward direction. To summarise, all the shear
driving protocols in our mesoscale simulations always use the same quenched local landscape which
was first introduced towards the end of the Chapter 2.

29



Cyclic driving and the irreversibility transition

3.3 Monotonic Loading: Dependence on thermal history

Depending on glass preparation, stress-strain curves show either a monotonic behavior up to a plateau
or exhibit a stress peak followed by a softening branch that slowly approaches the stress plateau at a
steady-state stress Σss. The existence of a stress peak is usually associated with shear-banding behavior.

In the previous section, we proposed a glass preparation protocol for our mesoscopic model which
mimics aging at vanishing temperature. While tuning an aging duration is very different from tuning
a quench rate from the liquid state, both methods allow us to transit continuously from a soft/poorly
equilibrated glass to a hard/well equilibrated glass. Our protocol actually allows us to obtain in this way
very different glassy states. In Fig. 3.5, we show stress-strain curves corresponding to a poorly-aged,
a medium-aged, and well-aged glass, aged at an average of 0.8,15, 150 number of steps per site. The
system size is 𝑁 = 32 and the curves were obtained by averaging over 500 realizations. While the
poorly-aged glass does not exhibit a stress peak, such a peak emerges and becomes more pronounced as
the samples are aged more. Thus by tuning the duration of aging we are able to transit from a poorly-aged
to a well-aged glass. We checked that all curves do converge to the same stress plateau for large enough
shear strains. More details on the size dependence of these stress-strain curves are discussed later in the
text.
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Fig. 3.5 Stress-strain curves upon monotonic loading: (Left) Stress-strain curves obtained for a meso-
scopic glasses of size 𝑁 = 32, aged at an average number of 0.8 (poorly-aged PA), 15 (moderately-aged
MA) and 150 (well-aged WA) aging steps per site. The moderately- and well-aged glasses show a stress
peak followed by a softening branch which crosses over into a stress plateau. The triangles mark the
strain amplitudes where the probability to find cyclic response under symmetric oscillatory shear is
still larger than 2% (refer to Section 3.4 for details). The dotted vertical lines terminating with small
circles mark the range of strains sampled by the transition graphs discussed in Chapter 5. (Right) The
corresponding curves obtained from simulations of 2d atomistic glasses that were quenched from a high
temperature liquid state at a fast and slow rate. All data from atomistic simulations used in this thesis
were provided by Ido Regev.
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3.3 Monotonic Loading: Dependence on thermal history

Comparison with atomistic simulations – Atomistic simulations were performed on a two-dimensional
binary system with 𝑁 = 1024 particles of two sizes, where half the particles are 1.4 times larger than
the other half. We used a two-body radially-symmetric interaction introduced in Ref. [68] and used
in Ref. [103], employing the same units of temperature and time discussed there. The initial sample
is prepared by first simulating the system at a high temperature in a liquid state, and then quenching
the liquid to zero temperature. We used two different preparation protocols to obtain soft and hard
glasses. To obtain a soft glass, starting from 𝑇 = 1 we equilibrated the system for 𝑡 = 20 simulation
time units and then reduced the temperature to 𝑇 = 0.1 and equilibrated for another 𝑡 = 50. To obtain
a hard glass, starting from 𝑇 = 1 we cooled the system to 𝑇 = 0.1 in steps of Δ𝑇 = 0.025, where at
each step the system was equilibrated for 𝑡 = 10. Once an initial solid sample was prepared, it was
sheared quasistastically using a standard AQS protocol: at each strain step, the system is sheared using
the Lees-Edwards boundary conditions [65] such that the total strain increases by 10−4. Immediately
after strain is applied, the energy is minimized using the FIRE minimization algorithm [19]. In Fig. 3.5
(b), we show for reference two stress-strain curves obtained by atomistic simulations under athermal
quasi-static shear for a slow and fast quench, respectively. The slow quench curve shows a distinct stress
peak while apart from fluctuations, the fast quench curve is almost monotonic. Due to computational time
limitations, it is difficult to obtain strongly contrasting quenches and consequently stress-strain curves
when using molecular dynamics for the glass preparation. The recently developed swap Monte-Carlo
methods give access to a wider range of glass preparation although they are more restrictive with respect
to the nature of the model glasses [15].

Let us emphasize that it has not been attempted here to adjust the parameters of the elasto-plastic
model to quantitatively reproduce the stress-strain curve obtained by atomistic simulations. Rather, our
goal is to compare generic features, such as the brittle to ductile transition under monotonic loading, and
how the behavior upon cyclic loading depends on the soft/hard nature of a glass. Recent analyses of
coarse-graining atomistic simulation to be used to feed mesoscopic elasto-plastic models with realistic
parameters can be found in Ref. [40].

Effect of annealing and system size – Fig. 3.6 shows the dependence of stress under monotonic strain
loading on system size and aging. Different colors correspond to different system sizes, as indicated in the
legend, while the line shapes correspond to the different degrees of aging. The curves have been obtained
at various extent of aging and for systems of size 𝑁 = 16(4000), 32(1600), 64(750), where the numbers
in parenthesis indicate the number of realizations used to obtain our results. While the poorly-aged
samples (PA with 0.8 aging steps per site) show no discernible size-dependence, with increasing amount
of aging a rather weak system size dependence emerges, particularly near the stress peak, as shown in
the inset.
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Fig. 3.6 (Left) Stress-strain curves upon monotonic loading for various system sizes and thermal histories.
(Right) A blow-up of the region near the stress peak. The ultra-aged (UA) glass is not shown to improve
visibility.

3.4 Amorphous solids under cyclic shear: An elastoplastic approach

3.4.1 Introduction

GI Taylor famously demonstrated the time reversibility of simple shear flows at low Reynolds num-
ber [122]. He placed a drop of dye in a viscous fluid contained between two concentric cylinders (also
known as circular Couette flow) and rotated the inner cylinder many times. The drop disappears but
interestingly is almost perfectly reconstructed when the rotation is reversed. Inspired by this experiment,
Pine et. al. [96] used the same Couette flow configuration but also added colloidal particles in the viscous
fluid. They then used this setup to impose a slow periodic shear on the dilute suspension of colloidal
particles as a prototype to study the transition from reversible to irreversible motion in many-body
systems. The authors observed that there is a critical shear amplitude below which the steady state
behaviour displays reversible motion such that the stroboscopic particle positions remain unchanged.
Above this shear amplitude, particles in the steady state respond irreversibly and show diffusion such
that their mean squared displacement increases linearly with time. Corte et. al. took this study a step
further with random initial states, using simulations and experiments, to determine the time required to
settle in reversible or irreversible steady state as a function of strain amplitude. They observed a power
law singularity at a critical strain amplitude that separated reversible from the irreversible response in
steady state with exponents consistent with that belonging to the Directed Percolation (DP) university
class [31].

The above studies were focused on dilute systems which, like systems with short range interactions,
were imagined to find reversible steady states rather easily [? ] as particle contacts are infrequent. A very
non trivial question would be extending this problem to the strongly interacting case. Amorphous solids
thus become a perfect candidate for probing this question as particle contacts are abundant and long
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3.4 Amorphous solids under cyclic shear: An elastoplastic approach

range strain fields are present. In fact many studies have focused on studying the response of periodically
sheared amorphous solids [42–44, 52, 54, 58, 60, 80, 103, 104]. It is natural to expect that the reversible
motion in solids would occur at small strain amplitudes such that the response is completely elastic.

However, periodic shearing of amorphous solids display reversible behaviour at strains for which
uniform shear would display significant plasticity. Plasticity is thought to be an irreversible process but
the emergence of a reversible phase well within the plastic regime thus seems to suggest otherwise.

As an example demonstrating the reversible phase, we show in Figure 3.7 from reference [104], the
particle trajectories of athermal quasistatic periodically sheared amorphous solid in 2-dimensions. The
reversible motion is evident in the fact that particles change their (mechanical) equilibrium positions but
repeat the same trajectories such that, when viewed stroboscopically, their positions remain unchanged.
Such reversible states have been termed as limit cycles. A limit cycle has an associated period which is
the number of cycles required for the system to return to its initial configuration. In the figure, a period
two limit cycle is shown such that the particles revisit the same position every two cycles of driving.

These limit cycles have become a valuable tool to probe the yielding transition in cyclically sheared
amorphous solids. Poorly annealed glasses subject to cyclic shear at small strain amplitudes settle in
limit cycles after short transients. As the strain amplitude increases the transient time increases. At
yielding, the transient time to limit cycles diverges. Atomistic simulations and experiments show that
there is a power law divergence in the transient time to limit cycles as a function of strain amplitude
close to yielding. The associated exponent was measured to be 2.66, quite different from the universality
class of dilute systems (the same exponent was measured to be 1.33) where collective effects are absent.

Fig. 3.7 Particle trajectories in an amorphous solid following a multi-periodic limit-cycle. (a) A system of
4096 particles subject to periodic shear. (b) A blow-up showing individual particles and the trajectories
performed by their centers marked in blue and green, where blue represents the first cycle and green
represents the second cycle. (c) A blow-up showing the trajectory of a single particle. During the first
cycle the particle performs the blue trajectory, followed by the green trajectory during the second cycle.
(d) The strain as a function of simulation steps (quasistatic equivalent of time) in the cycle. Figure taken
from ref. Regev et. al. [104]

In parallel, many studies have focused on understanding the nature of yielding in sheared amorphous
solids using uniform shear protocol. Poorly annealed amorphous solids yield in a smooth ductile manner
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while well-annealed samples yield with a sharp stress drop with appearance of a thin liquid shear band.
While studies tend to distinguish between these two types of yielding a debate is still open: poorly
annealed samples can also show stress overshoot. Finite size effects apart, understanding yielding through
transients, as is the case in uniform shear protocol, may not suffice to settle the discussion[73]. Since
cyclic shear protocols offer the possibility of studying the yielding transition using stationary states, they
become an important counterpart in assisting such studies.

In the previous chapter we showed that our model recovers the effect of preparation on the plastic
behaviour upon monotonic loading; in particular the transition between brittle and ductile responses as
discussed above. The main aim of this chapter is to study the response of cyclically sheared amorphous
solids using the our elastoplastic model. We will uncover the effects of system size and degree of
annealing of the glass sample to understand the nature of yielding in cyclically sheared amorphous
solids. More precisely, we consider the irreversibility transition, and in particular the response to cyclic
shear of our poorly-aged (PA) and moderately-aged (MA) mesoscopic glasses whose preparation was
described in section 3.1. The well-aged (WA) mesoscopic glasses yield a response to cyclic shear that is
qualitatively similar to that of the (MA) glasses and will therefore not be considered in this section.

3.4.2 Irreversibility transition

When subjected to cyclic shear loading, amorphous solids tend to either evolve into periodic response
or reach a diffusive regime, depending on the value of the amplitude 𝜖amp of the loading cycles. This
transition presents typical features of a critical transition. In particular, power-law divergence of the
number 𝜏 of loading cycles to reach the periodic response below the transition, as well as the power law
dependence of the diffusivity above the transition have been observed both for atomistic and mesoscopic
models [16, 42, 66, 90, 98, 103, 104, 129]. The features of the irreversibility transition depend on glass
preparation [16–18, 129]. Fig. 3.8 shows the response of an 𝑁 = 32 sample of a poorly-aged mesoscopic
glass to cyclic shear at strain ampitude below, panel (a), and above, panel (b), of the irreversibility
transition. In the former case a cyclic response was obtained after 𝜏 = 158 cycles, while for the latter
cyclic response was still absent after 104 driving cycles. The main plots show the evolution of stress
and strain over the last 30 cycles, each of which have been color-coded in increasing shades of red,
as indicated by the legend in (a). The lower insets show a detail from the main plot, while the upper
insets show the evolution of the difference of stresses at the beginning of two consecutive driving cycles.
Below the irreversibility transition, panel (a), this stress difference eventually vanishes (after 𝜏 = 158
while above the transition in panel (b) it keeps showing finite fluctuations at least until 𝜏 = 104. In the
following, we show results for the size dependence of the irreversibility transition in our PA and MA
mesoscopic glasses. Specifically, we consider systems of size 𝑁 = 16(7500), 32(3000), 64(400), where
the numbers in parenthesis indicate the number of realizations used to obtain our results.

We first focus on the poorly-aged (PA) systems. Figure 3.9 shows the mean success-rate 𝑝succ, i.e. the
fraction of PA systems (circles) within our ensemble of realizations that reach a limit cycle when subject
to a given number 𝜏max of symmetric loading cycles at amplitude 𝜖amp: 0→ 𝜖amp → 0→ −𝜖amp → 0. The
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3.4 Amorphous solids under cyclic shear: An elastoplastic approach

different colors correspond to the system sizes, as indicated in the legend of the figure. For system sizes
𝑁 = 16, 32, and 64 we used a cut-off of 𝜏max = 104 driving cycles, so that if cyclic response had not been
established at that point we considered the run to be unsuccessful. A clear transition can be observed
between a low amplitude regime with convergence to a limit cycle and a high amplitude regime with
no limit cycle. The transition between these two regimes gets increasingly sharper with system size. A
clear size dependence is also observed in the location of the transition which tends to occur at lower
strain amplitudes for larger systems. The size effect exhibited by our poorly-aged glasses is all the more
striking as it turns out to be completely absent in the response to monotonic loading, and only weakly
present in the case of our moderately- and well-aged glasses, (as shown in Fig. 3.6).
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Fig. 3.8 Response of the 𝑁 = 32 poorly-aged glass to cyclic shear at a strain amplitude below, (a) and
above (b) the irreversibility transitions by Δ𝜀 = 5×10−3. The main panels show the evolution of the
stress-strain curve over the last 30 cycles with each subsequent cycle colored in a darker shade of red,
as indicated in the legend. The insets to the lower right show a detail of this evolution. The insets in
the upper left show the stroboscopic stress difference, obtained by taking the difference in stress at the
beginning of two consecutive cycles, using the same coloring for the last 30 cycles. In (a) cyclic response
is attained after a transient of 𝜏 = 158 cycles, while in (b) such a response is still not obtained after 104
cycles.

For each size 𝑁 , we estimate the strain 𝜖irr(𝑁) at which the irreversibility transition occurs, as the
loading amplitude such that 50% of the realizations reach a limit cycle, i.e. 𝑝succ = 1∕2, as indicated
by the pink horizontal line in Fig. 3.9. The inset of Fig. 3.9 shows the size and ageing dependence of
𝜖irr(𝑁) for 𝑁 = 16,32, and 64, for the PA, MA and WA glasses. We see that for a given degree of ageing,
𝜖irr(𝑁) decreases with increasing system size. Moreover, a dependence of 𝜖irr on aging at fixed system
size is clearly visible, in particular for the larger sizes 𝑁 = 32 and 64. At these sizes the MA glasses have
slightly larger 𝜖irr then the PA ones, while the WA glasses have overall larger values of 𝜖irr for all system
sizes considered. The behavior of 𝜖irr with aging is consistent with atomistic simulations of cyclically
sheared amorphous solids which show that the strain marking the onset of the irreversibility transition
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is largely independent of aging for sufficiently poorly-aged samples, but that it starts to increase as the
samples are better aged[16, 129].

We turn next to the response of our moderately-aged (MA) glasses to cyclic shear. The diamond
symbols in Figure 3.9 show the fraction 𝑝succ of MA glasses in our ensembles of realizations that reach a
limit cycle when subject to cyclic loading of amplitude 𝜖amp. Similarly to the poorly-aged samples, as
the system size is increased, the irreversibility transition exhibits an increasingly sharper decline of the
success-rate from one to zero. However for a given system size, the rapid fall-off of the success rate in
the MA glasses occurs at consistently larger strain values than for the PA glasses, which is in agreement
with the behavior of 𝜖irr discussed above.
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Fig. 3.9 Success rate 𝑝succ of the convergence to a limit cycle under cyclic shearing at amplitude 𝜖amp.
Shown are results for ensembles of poorly-aged (circles) and moderately-aged (diamond) glasses with
system sizes 𝑁 = 16 (red), 32 (blue), and 64 (green). Intersections with the dashed horizontal line
indicate strain amplitudes where the probability of finding a limit-cycle is 1∕2. Inset: The plot of strain
amplitudes 𝜖irr at which 𝑝succ = 1∕2 against 1∕𝑁2 for the poorly-, moderately-, and well-aged glasses,
PA, MA and WA.

3.4.3 Transient regime and limit cycles

Another feature of the irreversibility transition is the divergence of the duration of the transient regime:
atomistic simulations show that the number of loading cycles needed to reach the limit cycles diverges
as a power-law according to 𝜏(𝜖amp) ∝ |𝜖irr − 𝜖amp|

−𝛼, as shown in Refs. [53, 60, 103, 104].
In Fig. 3.10a, we plot 𝜏(𝜖amp) against |𝜀irr(𝑁)−𝜖amp| for our poorly-aged glasses and different system

sizes 𝑁 . Here 𝜀irr(𝑁) is the loading amplitude at which half of the realizations reach limit cycle, as
defined previously. Once again, a significant size effect is observed: for a given |𝜖irr(𝑁)− 𝜖amp|, the
larger the system size, the shorter the transient regime. An indicative power-law behavior of exponent
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𝛼 = 2.8 is plotted as a dashed line. We see that the results obtained for 𝑁 = 16,32, and 64 are reasonably
consistent with this trend over roughly one decade for the larger samples. Note that the value 𝛼 = 2.8 is
close to the estimate of 𝛼 ≈ 2.7, recently reported in Ref. [60], as well as 𝛼 ≈ 2.6, which was obtained
using atomistic simulations by Regev et al. [103, 104]. It is also close to the value 𝛼 ≈ 2.66 obtained by
Corté et al. [31] for a simplified model of interacting particles under flow. The saturation observed for
large values of 𝜏(𝜖amp) naturally stems from the hard limit associated with the finite number of loading
cycles 𝜏max = 104 that we used in our numerical simulations for 𝑁 = 16,32, and 𝑁 = 64.

In Fig. 3.10b, we also plot the period of the limit cycle 𝑇 (𝜖amp) against |𝜖irr(𝑁) − 𝜖amp| for our
poorly-aged glasses and different system sizes 𝑁 . As already observed in Ref [60], we see that the
limit cycles get more and more complex, with an increasing period when the amplitude 𝜖amp of the
cyclic loading approaches the irreversibility transition 𝜖irr . For illustrative purpose we show that the fast
increase of the period is consistent with a power law behavior 𝑇 (𝜖amp) ∝ |𝜖irr(𝑁)− 𝜖amp|

−𝛽 with 𝛽 = 1.5
plotted as a dashed line in Fig. 3.10b.
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Fig. 3.10 Convergence to limit cycles of poorly-aged (PA) glasses: (a) Duration 𝜏 of transients vs.
relative cycle amplitude |𝜖irr − 𝜖amp|, where 𝜖irr is the system size dependent strain amplitude where the
success-rate 𝑝succ of cyclic response is 1∕2, cf. Fig. 3.9. The dashed line is a power-law with exponent
2.8 and serves as a guide to the eye. (b) The period 𝑇 of the cyclic response in units of the number of
driving cycles for the poorly-aged samples at different system sizes. The dashed line is a power-law with
exponent 1.5 and serves as a guide to the eye.

In Fig. 3.11, we show the same observables 𝜏(𝜀amp) and 𝑇 (𝜀amp) close to the irreversibility transition,
now for the moderately-aged glasses. For small systems sizes (𝑁 = 16,32), we again observe a diverging
trend in the transient duration and the limit cycles period. It appears actually that the larger the system
size, the narrower the range of amplitudes over which this diverging behaviour holds. Another behaviour
gradually becomes dominant: for large system sizes, a limit cycle is reached after just a few loading
cycles, and the response is mainly elastic. Moreover, as can be seen for the 𝑁 = 64 glass in Figs. 3.9 and
3.11 the transition to irreversibility is rather abrupt and discontinuous. The system either reaches a 𝑇 = 1
cyclic response rather quickly or not. These findings are consistent with results reported in the literature,
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Fig. 3.11 Convergence to limit cycles of moderately-aged (MA) glasses: (a) Duration 𝜏 of transients vs.
relative cycle amplitude |𝜖irr − 𝜖amp|, where 𝜖irr is the system size dependent strain amplitude where the
success-rate 𝑝succ of cyclic response is 1∕2, cf. Fig. 3.9 (inset). (b) The period 𝑇 of the cyclic response
in units of the number of driving cycles for the moderately-aged samples at different system sizes.

e.g. work by Bhaumik[16] et al. where the authors consider simulations of a 3d amorphous solid subject
to cyclic shear. In their paper’s supplement shows the evolution of the transient for a well-aged sample
by monitoring the average potential energy per particle. Depending on the shear amplitude, the transient
is either very short or a cyclic response is not attained at all.

3.4.4 Finite-size effects and the irreversibility transition

As our cyclic shear simulations show, at strain amplitudes close to but below the irreversibility transition,
cyclic response may eventually be attained, but after a long transient. In particular, for the better-aged
MA and WA samples we find that with increasing system size the transition to irreversibility becomes
abrupt, meaning that we either reach cyclic response after a few driving cycles (typically 1 or 2 cycles) or
not at all, implying a rather sharp and possibly discontinuous transition from reversibility to irreversibility.
Our simulations indicate that this transition becomes smoother when the system size is fixed and the
samples are less aged or when we reduce the system size at fixed aging steps per site. Thus, for example,
for system sizes 𝑁 = 16 and 𝑁 = 32, the moderately-aged samples are able to attain limit-cycles (cf.
Fig. 3.11(a)), and even at strain amplitudes that are well beyond the location of the stress peak under
uniform shear, which is thought of as marking the onset of yielding. To demonstrate this, we have used
red triangles to mark on the monotonic loading curves of Fig. 3.5 (Left) the strain amplitudes beyond
which the probability of finding a cycle is less than 2%. For the MA and WA samples they are located
beyond the stress peak.

These observations are consistent with findings in a recent work on periodically sheared 3𝑑 atomistic
glass formers [1]. There it was found that small samples that were moderately- or well-aged exhibit cyclic
response at amplitudes well beyond the value of the strain at the stress peak. As the size of the samples

38



3.5 Summary

increases, a sharp irreversibility transition at the stress peak is recovered. We should note however, that
in Ref. [1] such behavior was found to be the case only for totally asymmetric shear protocols of the form
0→ 𝜖amp → 0→ 𝜖amp⋯

Summarizing all of these findings: (i) we think that for the better-aged samples, the cycles reached
after relatively long transients and at amplitudes beyond the stress-peak, meaning that the cyclic driving
must have passed through it at least once, are an artefact of the system’s finite size. (ii) Related to
this, we also find that as the samples get increasingly better aged, finite-size effects are not necessarily
characterized by long transients. A case in point is the response to cyclic shear for the 𝑁 = 32 UA
(ultra-aged samples obtained using 4000 aging steps per site in the glass preparation protocol). Here
it turns out that a cyclic response after only a few cycles is reached even at strain amplitudes as large
as 0.4, which is well beyond the location of the stress peak. A better understanding of such finite size
effects, particularly in the ultra-stable glasses is clearly desirable and the subject of future work.

3.5 Summary

In this chapter, we proposed a simple and yet physically motivating glass preparation protocol at the
mesoscale level. The first part of the protocol generates samples that evolve towards and eventually
settle in thermalised states with distributions of all local quantities reaching a stationary distribution
independent of the system size. The second part then takes these thermalised states to tune the degree
of annealing of the sample. The effect of such an annealing procedure, for example, can be seen as a
systematic increase in the mean of the local stress thresholds with an amount depending on the degree
of annealing provided. Another aspect reflecting the well annealed nature is seen through the variance
of the same quantity which decreases with increasing amount of annealing. The effect of system size
again remained negligible. The contrasting nature of the states obtained using the two methods is due
to the difference in avalanche deciding step. In the thermalisation part of the protocol, the avalanche
deciding plastic event is chosen at random in space (and in direction) which under the assumption that
the evolution of plastic activity occurs at high temperatures. While in the aging protocol, the samples
are annealed assuming the limit of vanishing temperature in which the avalanche deciding plastic event
is controlled by the least unstable site (also in direction) in the system.

To validate our glass preparation protocol, we then performed unidirectional or uniform shear tests
on the samples. We observed that samples which are poorly aged, under the effect of external strain,
transition from an initially elastic state in a smooth ductile manner into a plastic flowing state. As the
degree of annealing is increased, we see that the stress-strain response near the transition develops a
stress overshoot followed by a macroscopic stress drop before settling in a plastic flowing state. The
size of the macroscopic stress drop close to yielding increased as the degree of annealing of the sample
was increased. We checked and found that independent of degree of annealing and system size, the
stress-strain response in the plastic flowing state all converged to the same steady-state at large values of
strain. While we do not see any system size effects for poorly annealed samples, well annealed samples
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near yielding do show a weak dependence on system size. The macroscopic stress drop near yielding are
observed to drop slightly more sharply for larger system sizes.

Finally, using our elastoplastic model, we studied the response of cyclically sheared amorphous
systems at different degrees of annealing and system size to understand the nature of the irreversibility
transition. At driving amplitudes below the irreversibility transition, limit cycles are found. These limit
cycles disappear for driving amplitude above the irreversibility transition. The transition between the two
regimes depends significantly on system size independent of degree of annealing of the sample. However,
for better annealed samples the limit cycles are obtained through short transients or not obtainable at all,
implying a sharp transition between the two regimes and possibly discontinuous. For poorly-aged glasses,
the transient time to limit cycles grows like a power law as the irreversibility transition is approached.
The corresponding exponents are in good agreement with atomic scale simulations. Our model also
captures multi-periodic limit cycles, whose period increases as the irreversibility transition is approached.
The approach to the irreversibility transition is affected significantly by the system size which intrestingly
remain absent (or present weakly for well-aged systems) under uniform shear tests.
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Chapter 4

Memory effects

4.1 Introduction

Many disordered systems under periodic driving ranging from non-Brownian dilute suspensions, dense
amorphous solids to charge density wave conductors show memory effects [59].

In the non-Brownian dilute suspensions [57, 93] case for example, periodically driving (or training)
in strain at a certain amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 below a critical value 𝛾𝑐 helps find the system a reversible steady
state. Further cyclic driving the steady state leaves the system stroboscopically unchanged in particle
positions. When such a steady state is subjected to cycles of increasing amplitude of shear strain 𝛾𝑟𝑒𝑎𝑑
sweeping past 𝛾𝑡𝑟𝑎𝑖𝑛, stroboscopic measurement of particle displacements for example, shows a dramatic
increase from zero when 𝛾𝑟𝑒𝑎𝑑 ≥ 𝛾𝑡𝑟𝑎𝑖𝑛, revealing the memory of training amplitude. In the same studies
it was also shown that when the driving amplitude changed from one cycle to the next during the training
phase, the system retained memory of multiple amplitudes. However, memory of multiple amplitudes
could survive only before the steady state was reached. Earlier to the studies on non-Brownian dilute
suspensions, similar memory effects were discovered in charge density wave conductors despite being a
completely unrelated system [30].

Memory effects are also observed in experiments and particle scale simulations on amorphous solids
[59]. However, some crucial differences exist as compared to the dilute suspensions case.

In dilute suspensions, particle-particle contacts vanish in the steady state and the system cannot
permit collective effects. Particle motion trace the same forward and backward trajectory. In the case of
amorphous solids however, contacts are abundant and endure shear cycles including during the steady
state. The abundance of contacts imply that shear cycles on steady states could be holding a dynamic
length scale supporting collective effects [105].

Another crucial difference lies in the fact that multiple memories in amorphous solids are persistent.
This means that, unlike dilute suspensions, the steady state can encode multiple memories [43]. However,
there is a constraint on the ordering of amplitudes during the training phase. Each applied training
amplitude must be smaller than the preceding one, a trait reminiscent of disordered solids obeying return
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point memory. It should be pointed out that memory in dilute suspensions do not pose any restriction on
the order in which the training amplitudes should be applied [59].

In this chapter, we show that our mesoscale elastoplastic model (EPM) for amorphous solids can
capture single memories of training and present results that cover the effects of driving past the irre-
versibility transition. Our model uses Eshelby interactions for stress kicks post local yield events and
thus guarantee to break return point memory (RPM). Despite this, we find that an ordering of training
amplitude consistent with RPM produces memory of multiple amplitudes of training. Such a result is
in agreement with observations in particle scale simulations on amorphous solids where a near perfect
RPM behaviour was observed at least till below the yielding strain [78]. We show that the direction of
training can also be revealed through suitable read-out measurements on the trained steady state. We
show that such a memory of shear direction can be encoded from the first shear cycle onwards and persist
even past the irreversibility transition. We present results on the distribution of various local quantities of
the EPM as an independent tool to reveal and understand the memory of training. We also demonstrate
that our EPM can recover multiple amplitudes of training and proceed to understand the role of prior
training using cyclic driving on the possibility of encoding further memories of training amplitude.

4.2 Training and readout protocol

In this chapter, we show that our elastoplastic model can capture single and multiple memories of training
amplitude. The initial state of the glass sample is generated using thermalisation and aging protocols
introduced in Chapter 3. Such an initial state is then subjected to a training protocol that involves shear
driving the sample resulting in a trained state. A read-out protocol on the trained state is then performed
to probe the memory of training and direction. Below we describe the training and read-out protocols
for the single and multiple memory case separately.

4.2.1 Single memory

In the single memory case, the training protocol constitutes of shear driving an initial state at constant
strain amplitude for a maximum of 104 cycles. A training cycle at a strain amplitude 𝛾1 is of the following
form in strain: 0→ 𝛾1 → −𝛾1 → 0. Such a training cycle is applied one after the other to form a training
sequence represented in strain amplitude as: 𝛾1𝛾1𝛾1.. . Each entry in this sequence represents one training
cycle at amplitude 𝛾1. The state obtained at the end of training, called a trained state, could either belong
to a limit cycle or not depending on the amplitude. The training phase continues until the sheared sample
finds a state belonging to a limit cycle at which point the training terminates or continues to a maximum
of 104 cycles ending in a trained state in case no limit cycles are found. The maximum number of cycles
performed to obtain a trained state equals 104 cycles. Unless otherwise stated, results on single memories
will always use such a training protocol.

A trained state is then subjected to a read-out protocol to reveal the memory of training. We employ
two types of read-out protocol. A parallel read protocol, which has been employed in particle scale
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simulations and remain inaccessible to experiments. And a sequential read out protocol that can be used
in experiments. These are described below and shown schematically in figure4.1:

(a) Parallel read: Identical copies of the trained sample are made. Each copy is then subjected to a
single shear cycle with a different strain amplitude at the end of which the state of the system is
recorded. The recorded state is compared with the trained state. Strain amplitudes range from
0 to 0.17, sweeping past and well above the training amplitude. For comparison, as noted from
Chapter 3, 𝛾𝑖𝑟𝑟 for system sizes 𝑁 = 16 and 𝑁 = 32 are 0.069 and 0.0499, respectively.

(b) Sequential read: The trained sample is subjected to a series of cycles with increasing amplitude.
At the end of every cycle the state of the system is recorded and compared to the trained state.
Strain amplitudes range from 0 to 0.17, sweeping past and well above the training amplitude. The
increase in strain amplitude per cycle is 0.001 and 0.0001 for system sizes 𝑁 = 16 and 𝑁 = 32,
respectively. Our results are insensitive to step size per cycle in the strain amplitude.
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Fig. 4.1 Training and parallel read-out protocol: Training cycles (solid line in red) beginning from the
undeformed state at zero strain at fixed amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 lead to a trained state (red square symbol). Read
out phase begins with making multiple copies of the same trained state. Each copy is then subjected
to a single cycle of strain (solid line in black) at different strain amplitude 𝛾𝑟𝑒𝑎𝑑 ending in a read state
(blue square symbol). Read state in blue symbol is compared to the trained state in red symbol to reveal
memory of training. (Left) Read cycle is in phase with the last applied training cycle. Two different read
cycles are shown with read amplitude 𝛾𝑟𝑒𝑎𝑑 below and above the training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 each leading
to a different read state. (Right) Read cycle is out of phase with the last applied training cycle. Two
different read cycles are shown with read amplitude 𝛾𝑟𝑒𝑎𝑑 below and above the training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛
each leading to a different read state.

As mentioned in the Introduction, our EPM can also reveal the direction of training. The initial
undeformed state can be trained using a driving sequence of amplitude 𝛾1 either like 0→ 𝛾1 → −𝛾1 → 0
or 0→ −𝛾1 → 𝛾1 → 0. The two separate types of training differ only in direction. One drives the initial
state clockwise in the global stress-strain response while the other in the anti-clockwise direction. Results
presented in this chapter always use a clockwise training protocol. To reveal the direction of training we
consider read-out protocols as defined next.
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(a) In-phase read-out protocol: The trained state is subject to a read-cycle in shear of the following
form in strain: 0→ 𝛾𝑟𝑒𝑎𝑑 → −𝛾𝑟𝑒𝑎𝑑 → 0. We note that, since a single training cycle in strain is
of the form 0→ 𝛾𝑡𝑟𝑎𝑖𝑛 → −𝛾𝑡𝑟𝑎𝑖𝑛 → 0, such a read protocol remains in-phase with the last applied
cycle in the training phase.

(b) Out-phase read-out protocol: The trained state is subject to a read-cycle in shear of the following
form in strain: 0→ −𝛾𝑟𝑒𝑎𝑑 → 𝛾𝑟𝑒𝑎𝑑 → 0. Such a read protocol is clearly out of phase in the applied
strain with respect to training cycles.

We will see in a later section that a comparison of the response of the trained state to the above two
types of read-out protocol reveals the direction of shear imposed on the sample during the training phase.

For our purposes of study in this chapter, a read-out protocol will therefore have four possibilities:
A parallel in-phase read-out (Figure 4.1 (Left)), a parallel out-phase readout (Figure 4.1 (Right)), a
sequential in-phase readout (Figure 4.2 (Right)), and a sequential out-phase read-out(Figure 4.2 (Left)).
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Fig. 4.2 Training and sequential read-out protocol: Training cycles (solid line in red) beginning from the
undeformed state at zero strain at fixed amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 lead to a trained state (red square symbol). The
read-out phase subjects the trained state to a sequence of read-cycles (solid line in black) with increasing
amplitude. States are saved at the end of each cycle (blue square symbol) in the read sequence. Each
read state in blue symbol is compared to the trained state in red symbol to reveal memory of training.
(Left) Read cycle is in phase with the last applied training cycle. (Right) Read cycle is out of phase with
the last applied training cycle.

To reveal the presence or absence of memory of training we use a function which measures how
different a read-state (recorded at the end of the read-out phase) is from the trained state. We define the
function next. Let (𝑖, 𝑗) represent the spatial coordinate of a particular cell in our mesoscopic model.
The stroboscopic distance uses a field variable 𝐸(𝑖, 𝑗), which we call the event field, that measures the
net local count of number of plastic events that a cell has suffered since the initial undeformed state
as a result of external shear applied to the system. Since our scalar elastoplastic model is built on the
assumption that local plastic events are reversible, a plastic event at (𝑖, 𝑗) in the forward direction means
that 𝐸(𝑖, 𝑗) should be incremented by 1. If following this, a plastic event in the reverse direction occurs
then the current value of 𝐸(𝑖, 𝑗) should be decreased by 1. Δ𝐸(𝑖, 𝑗) for such a cell is then zero. It is thus
clear that the value of 𝐸(𝑖, 𝑗) is always an integer which can be negative, 0 , or positive for a cell (𝑖, 𝑗).
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4.2 Training and readout protocol

The initial undeformed state has an event field 𝐸(𝑖, 𝑗) = 0 for all (𝑖, 𝑗) in the system. We use such an
event field for the purpose of recovery of memory of training in our model.

Let 𝐸(𝑖, 𝑗)𝑡𝑟𝑎𝑖𝑛 and 𝐸(𝑖, 𝑗)𝑟𝑒𝑎𝑑 represent the event field corresponding to the trained state and the
recorded state from the read-out phase, respectively. If 𝜁 is the set of all the cells (𝑖, 𝑗) such that
𝐸(𝑖, 𝑗)𝑡𝑟𝑎𝑖𝑛 − 𝐸(𝑖, 𝑗)𝑟𝑒𝑎𝑑 ≠ 0, then the stroboscopic distance is defined as follows:

1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
|𝜁 |

𝑁 ×𝑁
. (4.1)

Here, |𝜁 | is the cardinality of the set 𝜁 and system size equals 𝑁 ×𝑁 . We will call 1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 as
the stroboscopic distance for purpose of discussions in this chapter. To summarise, the stroboscopic
distance is the fraction of cells of the trained sample whose local event field do not match the reference
sample (or the recorded state) obtained during the readout phase. Obvious from the definition, the range
of the stroboscopic distance is [0,1]. It is zero when the event field of the trained state and the recorded
state from the read-out phase are identical. It is equal to 1 if no cell in the trained state matches the
recorded state in the read-out phase.

4.2.2 Multiple memory

  Cycles0 1 τ-γSt
ra

in

+γ
 0

Fig. 4.3 Training protocol for multiple memories: Training cycles (line in red) beginning from the
undeformed state at zero strain leading to a trained state (red square symbol). The first two training
cycles are of the following form in strain: 0 → 𝛾2 → −𝛾2 → 0 → 𝛾1 → −𝛾1 → 0. Note that the first
applied training amplitude on the undeformed state is 𝛾2 (> 𝛾1). The training sequence in the amplitude
representation is of the form: 𝛾2𝛾1𝛾2𝛾1𝛾2𝛾1.. . The last applied strain amplitude in the training sequence
can either be 𝛾2 (in solid red) or 𝛾1 (in dashed red) affecting the possibility of revealing multiple memories
of training, that is, 𝛾1 and 𝛾2 during the read-out phase.

In the multiple memory case, we use two training amplitudes 𝛾1 and 𝛾2 for simplicity. A single
training cycle at any given amplitude, 𝛾2 for example, is of the following form in strain: 0→ 𝛾2 →−𝛾2 → 0.
Assuming 𝛾2 > 𝛾1, the first applied training cycle on the undeformed initial state is always at strain
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amplitude 𝛾2. The training sequence can then be represented using the amplitudes in the following
form: 𝛾2𝛾1𝛾2𝛾1𝛾2𝛾1.. . Each entry in the sequence represents a single training cycle at the corresponding
amplitude in the sequence. The first two training cycles on the undeformed state are also shown in
Figure 4.3. The trained state could either result in a limit cycle or not depending on the amplitude of 𝛾2.
As in the training protocol in the single memory case, the training terminates upon finding a limit cycle.
The last applied training amplitude ending in a trained state could then either be 𝛾2 or 𝛾1. If no limit
cycle is found the training terminates after 104 cycles and the state obtained will be termed as a trained
state. Unless otherwise stated, results on multiple memory will always be presented under the above
stated conditions. The training protocol is also summarised using the Figure 4.3.

A trained state is then subjected to a read-out protocol to reveal memory of training amplitudes, that
is, 𝛾1 and 𝛾2. The read-out protocols are exactly the one used in the single memory case. However, we
present results from the parallel in-phase read-out protocol only. The same definition of stroboscopic
distance is utilised.

4.3 Memory of training amplitude

As discussed in the Introduction, experiments [55, 77] and particle scale simulation [2, 43] have revealed
that cyclically driven amorphous systems can encode memory of training amplitude. In these studies, a
glass sample is driven at fixed amplitude 𝛾1 with a driving cycle of the following form: 0→ 𝛾1 →−𝛾1 → 0.
The driving continues for a certain number of cycles ending in a trained state. Such a trained state is then
subjected to a read-out protocol, sequential in case of experiments for example, to reveal the memory of
training amplitude. As an example, we use Figure 4.4 from the reference [55] that shows memory of
single amplitude of training in experiments. In their experiments, the authors first trained their sample at
a strain amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 to reach a steady-state such that stroboscopic difference of particle positions are
zero. A sequential read-out is performed on the trained state to reveal memory of training amplitude.
The training and read-out protocols are summarised in Figure 4.2 (Left). In Figure 4.4, we see a local
minimum in the mean squared displacement of particles when plotted against 𝛾𝑟𝑒𝑎𝑑 . The local minimum
occurs at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 reflecting a memory of training amplitude for each of the training amplitude
listed in the legend.

Here we capture these results using our EPM. In agreement with these studies, our results show that
the memory of training amplitude can be revealed for 𝛾𝑡𝑟𝑎𝑖𝑛 < 𝛾𝑖𝑟𝑟. However, our results also indicate
that, for a measurement of memory based on the stroboscopic distance that we have defined, systems
could recall the training amplitude even past the irreversibility transition 𝛾𝑖𝑟𝑟. The quality of memory at
𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 does degrade as the amplitude of training increases past the 𝛾𝑖𝑟𝑟.

4.3.1 Mean of the stroboscopic distance

We first discuss Figure 4.5 (Left). Here we recall that we are using a parallel in-phase read-out protocol.
We consider four training amplitudes, two above and two below the irreversibility transition 𝛾𝑖𝑟𝑟. At
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Fig. 4.4 Mean squared displacement over all the particles normalised with respect to typical distances
between particle centers versus strain amplitude during read-out. Training amplitude is indicated in
the legend. Training and read-out protocols are the same as in Figure 4.2 (Left). Figure adapted from
reference [55].

the smallest training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.03, we see that the stroboscopic distance drops to zero at
𝛾read = 𝛾train reflecting a clear memory of training amplitude. At such a training amplitude all the
samples find limit cycles and their period equals one. Since the read-out protocol shears trained states for
single cycles only, period one samples must contribute to a zero value of the stroboscopic distance. At
𝛾𝑡𝑟𝑎𝑖𝑛 = 0.05, which is still below 𝛾𝑖𝑟𝑟, we see a sharp local minimum at 𝛾read = 𝛾train but the stroboscopic
distance is not zero anymore. At such a training amplitude all the samples find limit cycles. However,
the period of limit cycles for some samples are greater than 1. Such samples with multi-period limit
cycles then contribute to a non-zero value of the stroboscopic distance at 𝛾read = 𝛾train. Inspite of this, a
local minimum in the stroboscopic distance exists, implying that multi-periodicity in the trained states
do not eliminate memory of training amplitude. At training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.07, which is greater
than 𝛾𝑖𝑟𝑟, nearly half of the trained states do not find limit cycles. The value of the overlap at 𝛾read = 𝛾train
is such that nearly 25% of the mesoscopic cells in the read state do not match the trained state and yet we
see a clear memory of training amplitude through a local minimum at 𝛾read = 𝛾train. At 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.076, a
sharp local maximum at 𝛾read = 𝛾train does not exist anymore. At this training amplitude, only about 5%
of the samples find limit cycles as estimated in our previous works [61].

47



Memory effects

0.00 0.02 0.04 0.06 0.08 0.10

γread

0.0

0.2

0.4

0.6

0.8

1.0

〈 1
−

O
v
er
la
p
〉

γt <γirr

γt >γirr

0.00 0.02 0.04 0.06 0.08 0.10

γread

0.0

0.2

0.4

0.6

0.8

1.0

〈 1
−

O
v
er
la
p
〉

γt <γirr

γt >γirr

Fig. 4.5 Memory of training amplitude: stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for (Left) Parallel read-out
protocol and (Right) Sequential read-out protocol. Each curve in a given figure corresponds to a different
training amplitude. Curves in shades of blue correspond to training amplitudes below the irreversibility
transition while those in shades of red are above it. Dotted vertical lines on the 𝛾𝑡𝑟𝑎𝑖𝑛-axis represent, in
the same color, the corresponding value of the training amplitude. System size = 16×16, poorly aged
(PA) samples. Each readout curve has been obtained by averageing over 1000 realizations of the trained
state.

Next, we discuss the sequential read protocol in Figure 4.5 (Right). Unlike the parallel read protocol
which requires making multiple copies of the trained state, the sequential read-out protocol can be used
in experiments [55]. In the figure, the stroboscopic distance shows memory of training amplitude by
developing a local minimum which appears exactly when 𝛾read = 𝛾train. But unlike the parallel read
protocol, as the training amplitude increases, this local minimum occurs at 𝛾read < 𝛾train. The value of
the 𝛾read at which such a minimum occurs is well below the training amplitude corresponding to the
irreversibility transition 𝛾𝑖𝑟𝑟. This implies that the memory of training amplitude cannot be perfectly
revealed through a sequential readout protocol even below the irreversibilty transition.

The stroboscopic distance is non zero for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛, but depending on the amplitude of training
𝛾𝑡𝑟𝑎𝑖𝑛 the stroboscopic distance could either be zero at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 or assume a finite positive value. In
the simpler case of parallel read-out, a non-zero value of the stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 can
be due to the presence of multi-period limit cycles and/or due to the fact that a limit cycle was not found.
In the case of sequential read-out, this can additionally also be due to the history dependent nature of the
protocol. It should also be noted that a non-zero value of the stroboscopic distance for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛 is
expected when the global stress-strain response of the trained state under a shear cycle with amplitude
𝛾𝑡𝑟𝑎𝑖𝑛 shows non-zero hysteresis.

A non-zero contribution to the stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 due to multi-period limit
cycles underlines the effect of frustrated interactions through the Eshelby kernel present in our model.
A non-interacting Preisach or a Random Field Ising Model for ferromagnets under external driving
cannot admit multi-period limit cycles and therefore such contributions to the stroboscopic distance is
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Fig. 4.6 Evolution of the value of the minimum of the stroboscopic distance (corresponding to the cusp
in the vicinity of 𝛾𝑡𝑟𝑎𝑖𝑛 as in Figure 4.5) versus training amplitude for parallel and sequential read-out
protocols. (Left) On Lin-Lin scale (Right) On Log-Log scale. Dashed line in green represents the
maximum training amplitude till which only period one limit cycles are found. Dashed line in blue
represents the maximum training amplitude till which all the samples find limit cycles. Dashed line in
magenta represents the irreversibility transition 𝛾𝑖𝑟𝑟(= 0.06899) at which only 50% of the samples find
limit cycles.

not possible in these kind of models [97, 113]. On the other hand, spin glass models [36] and mean-field
hysteron based models [72] with interactions that can both enable or suppress local plastic rearrangements
admit multi-period limit cycles in the steady-state. It would thus be interesting to probe the role of the
spatial resolution of the Eshelby kernel on the memory of training and drawing comparisons with spin
glass or especially mean-field hysteron based models where such spatial features in the interaction are
absent but nevertheless admit multi-periodicity in the steady state while being driven quasistatically.

We now show a more quantitative comparison of the two types of read-out protocols that have been
considered to reveal memory of training. We define a quantity ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min which measures the
value of the local minimum of ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩ that appears at 𝛾read ≤ 𝛾train for the respective read-out
protocols in the Figures 4.5. At low values of 𝛾read, ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min is obtained at 𝛾read = 𝛾train. When
the training amplitude is increased further, ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min is achieved at 𝛾read < 𝛾train. In the Figure 4.6
(Left), we see that the value of ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min is lower for the parallel read-out than the sequential
read-out protocol irrespective of the training amplitude. Therefore, the memory of training amplitude is
revealed more precisely using a parallel read-out than a sequential protocol. At low training amplitudes
we always find limit cycles. The dashed vertical line in green at 𝛾train = 0.03 represents the largest value
of the training amplitude for which the trained state always finds limit cycles but of period one only.
Since the parallel read-out protocol shears the trained state for one cycle only, we therefore expect,
for training amplitudes less than or equal to 0.03, that ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min is zero. This is confirmed in
the Figure 4.6 (Right) where on the log-log scale we can see that a parallel read-out protocol shows a
zero value of ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min at least till 𝛾train = 0.03. The sequential read-out protocol at 𝛾train = 0.03
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in the same figure, however, shows a non-zero value of ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min confirming our expectation
that the non-zero contribution to the stroboscopic distance for the sequential read-out protocol can also
additionally be due to the history dependent nature of the protocol.

We now take a closer look at the effect of multi-period limit cycles on memory of training amplitude
using Figure 4.6. For 𝛾train between 0.03 and 0.054, marked by the region between the dashed vertical
lines in green and blue, all the trained states find limit cycles but some of them have period greater
than one. We observe that the difference in the value of ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min for sequential and parallel
read-out protocol increases with 𝛾train. In fact, the effect of multi-periodic limit cycles on memory of
training amplitude is more drastic for the sequential read-out protocol. As an example, at the largest
training amplitude in this range, that is, 𝛾train = 0.054, the value of ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min for parallel read-out
protocol is around 0.045 while the value for sequential read-out protocol is around 0.145. This is roughly
a factor of three difference in the value of ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min even at a training amplitude where all the
trained states find limit cycles. We also note from Figure 4.6 (Right) that the smallest 𝛾train for which
⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min takes a non-zero value in the parallel read-out protocol is 0.04, at which we first begin
to observe multi-period limit cycles.

For 𝛾train > 0.054, the value of ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min will also be affected by trained states which could
not find limit cycles. Interestingly, the effect of such trained states is to decrease the difference in the
value of ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min between sequential and parallel read-out protocol. We observe such a behavior
till 𝛾train ∼ 𝛾irr . As 𝛾train is increased further from 𝛾irr , we see a reversal of the trend where the difference
of ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min between the two read-out protocol increases.

The value of 𝛾read at which ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min is found will be denoted by 𝛾min
read. To complement

the observations of Figure 4.6, we plot 𝛾min
read versus 𝛾train for the two read-out protocols. In Figure 4.7,

we see that 𝛾min
read is equal to 𝛾train till 𝛾train = 0.04 implying perfect retrieval of memory of training

amplitude through both the read-out protocols . For 𝛾train > 0.04, 𝛾min
read = 𝛾train for the parallel read-out

protocol for training amplitudes upto 0.075. However, for the sequential read-out protocol 𝛾min
read < 𝛾train

for 𝛾train > 0.04 implying that the memory of training amplitude can not be revealed perfectly well below
the irreversibility transition through such a protocol. We also note that 𝛾min

read for sequential read-out
protocol is always less than the parallel read-out protocol for 𝛾train > 0.04. Finally, irrespective of the
read-out protocol we observe that 𝛾min

read ≤ 𝛾train.

4.3.2 Variance of the stroboscopic distance

Here we show that sample to sample fluctuations in the stroboscopic distance, quantified through the
variance, can also encode memory of training amplitude. We emphasise that we are considering parallel
read protocol for purpose of our discussion in this section. Results are obtained at system size equals
32×32 and number of realisations equals 800. At small to moderate amplitudes, in the parallel read-out
protocol, the memory of training reveals itself as a local minimum in the variance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. When
the amplitude of training is increased further, the variance shows the memory of training at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛
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Fig. 4.7 𝛾min
read, that is, 𝛾read corresponding to ⟨1−𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩min versus 𝛾train for seqential and parallel

read-out protocols. Vertical lines in green, blue, and magenta represent the same as in Figure 4.6. Black
dashed line with slope one is a guide helping our comparison of the two read-out protocols. System size
= 16×16 for which 𝛾irr = 0.06899.

as a local maximum instead. The change in the nature of local extrememum in the variance happens due
to appearance of multi-period limit cycles in the trained state as 𝛾𝑡𝑟𝑎𝑖𝑛 is increased.
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Fig. 4.8 Memory of training amplitude: Variance of stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for parallel read-
out protocol. Dotted vertical line represents the value of the training amplitude. System size = 32×32,
poorly aged (PA) samples. 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.03 < 𝛾𝑖𝑟𝑟. Inset: Same figure as in the main panel on a Log-Log
scale.
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In Figure 4.8, we see a local minimum in the variance of the stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛
reflecting memory of training amplitude. For 𝛾𝑟𝑒𝑎𝑑 ≤ 𝛾𝑡𝑟𝑎𝑖𝑛, increasing 𝛾𝑟𝑒𝑎𝑑 first increases the variance
in the stroboscopic distance which takes a local maximum and then starts decreasing towards the local
minimum obtained at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. For 𝛾𝑟𝑒𝑎𝑑 > 𝛾𝑡𝑟𝑎𝑖𝑛, we see a steep increase in the variance leading
to another significantly larger maximum (global) beyond which it starts to decrease. The inset of the
figure plots the same result on log-log scale showing a power law increase in variance for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛
with an exponent roughly equal to 1.0 and a power-law decay for 𝛾𝑟𝑒𝑎𝑑 > 𝛾𝑡𝑟𝑎𝑖𝑛 with the nearly the same
exponent. The exponents of the two power laws do change with 𝛾𝑡𝑟𝑎𝑖𝑛 but we do not elaborate on this
aspect further. Since we are using a parallel read out protocol that shears the trained state for single cycle
only, when the all the trained states find limit cycles and with period one only, we expect the variance
of the stroboscopic distance to drop to zero when 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. The inset does not show the variance
dropping to zero at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 because some samples admit multi-period limit cycles.

We also see that the variance in the stroboscopic distance is much smaller for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛 than
when 𝛾𝑟𝑒𝑎𝑑 > 𝛾𝑡𝑟𝑎𝑖𝑛. Such a behaviour is expected as the trained state at low 𝛾𝑡𝑟𝑎𝑖𝑛 always finds limit
cycles. As discussed in Chapter 5, limit cycles by definition always belong to a strongly connected
component (SCC) of the t-graph. Since transitions within an SCC are reversible, we expect that the
mesostates that they connect are not very different in their event fields. Put differently, the variance over
the event field calculated over mesostates belonging to an SCC must be small. When 𝛾𝑟𝑒𝑎𝑑 is increased
beyond 𝛾𝑡𝑟𝑎𝑖𝑛, we expect to leave the SCC that confines the limit cycle. The shear drive performed
during the read-out phase could span multiple SCCs in this case. Event fields of mesostates belonging to
different SCCs connected by plastic events could lead to very different event fields as the transitions
are irreversible. Such irreversible transitions must be generating an increased variance over the event
fields over mesostate trajectories spanning multiple SCCs. This could explain the contrasting values of
variance for read amplitudes above and below 𝛾𝑡𝑟𝑎𝑖𝑛. Finally, for 𝛾𝑟𝑒𝑎𝑑 ≫ 𝛾𝑡𝑟𝑎𝑖𝑛 we expect that the read
state and the trained state do not match in the event fields at all and therefore the stroboscopic distance
is 1 for each sample implying a zero value for the variance in this limit. An interesting feature that we
don’t understand yet is why does the variance decrease with increasing 𝛾𝑟𝑒𝑎𝑑 at higher values.

Effect of training amplitude

The aim of this section is to examine the effect on the memory of training amplitude shown in the variance
of the stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 at different values of training amplitude sweeping across the
irreversibility transition. We consider four different training amplitudes: 0.043,0.048,0.050, and 0.057.
System size equals 32×32 and the irreversibility transition at this system size is at 𝛾𝑖𝑟𝑟 = 0.0499. In
Figure 4.9, we show the effect of these training amplitudes in the variance of the stroboscopic distance
versus 𝛾𝑟𝑒𝑎𝑑 . The local maximum in the variance for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛 is not present for any of the training
amplitudes considered. We see that if 𝛾𝑟𝑒𝑎𝑑 > 𝛾𝑡𝑟𝑎𝑖𝑛 and 𝛾𝑟𝑒𝑎𝑑 is large then, irrespective of the training
amplitude, variance decreases with increasing 𝛾𝑟𝑒𝑎𝑑 . When 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛 then at small 𝛾𝑟𝑒𝑎𝑑 values,
irrespective of the training amplitude, variance increases with increasing 𝛾𝑟𝑒𝑎𝑑 . The dependence of the
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4.3 Memory of training amplitude

variance close to 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 on either sides can show different behaviors depending on the value of
𝛾𝑡𝑟𝑎𝑖𝑛. Our choice of 𝛾𝑡𝑟𝑎𝑖𝑛 in Figure 4.9 covers all possible behaviors.
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Fig. 4.9 Variance of the stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for parallel read-out protocol at 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.043
(Upper Left), 0.048 (Upper Right), 0.050 (Lower Left), and 0.057 (Lower Right). Dotted vertical lines
represent the value of the training amplitude in the corresponding figures. System size = 32×32, poorly
aged (PA) samples. 𝛾𝑖𝑟𝑟 = 0.0499.

We first focus on the evolution of the variance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 as a function of increasing training
amplitude across the four different figures in Figure 4.9. At 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.043, we observe that the variance
is non-zero and such that a memory of training amplitude is visibly difficult to ascertain as a local
extremum. Considering the effect of 𝛾𝑡𝑟𝑎𝑖𝑛 in the increasing sequence of 0.048,0.050, and 0.057, we see
a non-monotonic change in the variance across the irreversibility transition. We see that the memory
of training amplitude at such values of 𝛾𝑡𝑟𝑎𝑖𝑛 appear as a local/global maximum which is contrastingly
different from the behavior at low training amplitudes such as in Figure 4.8. We also note that such
a global maximum persists at training amplitude 0.057 at which no trained state is able to find a limit
cycle. Through Figure 4.9 (Lower-right), we also conclude that if 𝛾𝑡𝑟𝑎𝑖𝑛 is well above the irreversibility
transition such that no trained state finds limit cycle then the variance starts decreasing immediately upon
exceeding 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. This is in sharp contrast to training amplitudes well below the irreversibility
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transition, as in Figure 4.8, where the variance for 𝛾𝑟𝑒𝑎𝑑 upon exceeding 𝛾𝑡𝑟𝑎𝑖𝑛 first shows a sharp increase
to a maximum before showing a decrease with 𝛾𝑟𝑒𝑎𝑑 .

Finally in figure 4.10, we show the maximum of variance of the stroboscopic distance calculated
over 𝛾𝑟𝑒𝑎𝑑 as a function of 𝛾𝑡𝑟𝑎𝑖𝑛. We see a non-monotonic change in the maximum of variance which
peaks at the irreversibility transition at 𝛾𝑡𝑟𝑎𝑖𝑛 = 𝛾𝑖𝑟𝑟. This also serves as an alternative characterisation
of the irreversibility transition.
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Fig. 4.10 Maximum of the variance of the stroboscopic distance calculated over 𝛾𝑟𝑒𝑎𝑑 versus training
amplitude 𝛾𝑡𝑟𝑎𝑖𝑛. Dashed vertical line represents the irreversibility transition 𝛾𝑖𝑟𝑟 = 0.0499.

To understand the change in the nature of variance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛, we plot the distribution of the
stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 for different values of training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛. We see in the
Figure 4.11 (Left) that at small 𝛾𝑡𝑟𝑎𝑖𝑛 values, the stroboscopic distance is a Dirac delta distribution located
at zero stroboscopic distance. This means that all the samples find limit cycles with period equals one,
implying that the trained state match the corresponding read-out state perfectly during the read-out phase.
As the training amplitude is increased, limit cycles with period greater than one also start to appear. The
stroboscopic distance is zero for samples that find period one limit cycles and non-zero for samples with
period greater than one. A distribution of the stroboscopic distance at these training amplitudes therefore
start showing a bi-modal distribution.

As the training amplitude is increased further, the distance between the two sub-distributions start
increasing as some of the samples are not able to find any limit cycles at all. Maximum variance in the
stroboscopic distance is expected when the two sub-distributions are furthest apart but also similar in
weight. This in our simulations happen at the irreversibility transition 𝛾𝑡𝑟𝑎𝑖𝑛 = 𝛾𝑖𝑟𝑟 where only half of
the samples are able to find limit cycles. The bi-modal structure of the distribution vanishes completely
when none of the samples are able to find limit cycles. The distribution shifts rightwards with increasing
𝛾𝑡𝑟𝑎𝑖𝑛 thereafter.

To answer why the distribution becomes bi-modal, we select 𝛾𝑡𝑟𝑎𝑖𝑛 values at which we clearly see
a bi-modal distribution and do the following: Find the distribution of the stroboscopic distance over
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Fig. 4.11 Distribution of the stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 for parallel read-out protocol at
𝛾𝑡𝑟𝑎𝑖𝑛 as listed in the legend. (Left) Distribution over all the samples (Right) Distribution over all the
samples excluding those with period one limit cycles. System size = 32×32, poorly aged (PA) samples.
𝛾𝑖𝑟𝑟 = 0.0499.

samples that do not have period one limit cycles. We see in the Figure 4.11 (Right) that the bi-modal
structure in the distribution vanishes. This means that the bi-modal structure in the distribution is due
to samples holding period one limit cycles. The fraction of samples finding period one limit cycles
decreases with increasing 𝛾𝑡𝑟𝑎𝑖𝑛. As 𝛾𝑡𝑟𝑎𝑖𝑛 is increased further period one limit cycles are not found at
all and the bi-modal distribution of the stroboscopic distance becomes uni-modal thereafter. This also
explains the non-monotonicity in the variance of the stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛.

Finally, based on the above observations we speculate that the sharp local/global maximum in the
variance of the stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 is due to period one limit cycles which do not
contribute as much to the variance when 𝛾𝑟𝑒𝑎𝑑 ≠ 𝛾𝑡𝑟𝑎𝑖𝑛.

Discussions

At low training amplitudes, the variance develops a local minimum and drops to zero at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛.
This is expected in the parallel read protocol as single shear cycles on the trained state are performed.
A zero variance in the overlap implies only period one limit cycles in the trained state. As the training
amplitude increases, multi-period limit cycles start to emerge. Different initial states, driven at fixed
training amplitude, can lead to limit cycles with different periods. The emergence of multi-periodicity
in the steady state together with sample to sample variability of the period of limit cycles causes the
variance to become finite at the local minimum, that is, at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. Surprisingly, a local minimum
at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 transitions into a sharp local maximum as the training amplitude approaches and
increases past the irreversibility transition. Increasing the training amplitude further, the local maximum
at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 still persists but becomes diffuse instead. To understand the observed behavior in the
variance, we list down the factors affecting the value of the stroboscopic distance:
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1. The nature of plastic transitions present in the shear cycle during the read-out phase. A plastic
transition is reversible if it is inside an SCC and irreversible if it connects two different SCCs. If a
read cycle on the trained state consists of reversible transitions only, then we expect the value of
the stroboscopic distance to be small. On the other hand, if irreversible plastic transitions populate
the read-cycle then we expect the same value to be high.

2. The success probability of finding limit cycles. This will particularly be more relevant for the value
of the stroboscopic distance calculated for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛. For a given 𝛾𝑟𝑒𝑎𝑑 and 𝛾𝑡𝑟𝑎𝑖𝑛, samples that
do not find limit cycles will contribute differently to the stroboscopic distance than those which
don’t.

3. A single shear cycle at a read amplitude 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 (as is the case in our parallel read protocol)
on a trained state with a multi-period limit cycle will lead to a read state different from the trained
state. Such a sample would then contribute to a non-zero stroboscopic distance. If different
samples end in trained states with limit cycles of different periods (> 1) then the value of the
stroboscopic distance will also fluctuate from sample to sample thus giving a non-zero variance.
Such sample to sample fluctuations in the stroboscopic distance can also exist among samples with
the same period provided the period of the limit cycle is greater than 1. If all the samples, on the
other hand, end in period one limit cycle then a single read cycle at a read amplitude 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛
will give a read state that is identical to the trained state. The value of the stroboscopic distance
will be the same (and equal to zero) for all the samples and therefore the variance will be zero.

4. Depending on the training amplitude, various possibility on the ratios of reversible to irreversible
transitions can exist while performing a full read cycle on the trained state. Their relative population
can further be decomposed based on the two possible shear direction within a read cycle. A change
in these ratios will affect the read state relative to the trained state and hence change the value of
the stroboscopic distance. This is distinct from the item listed above in 3 because it accounts for
the effect of trained states that do not find limit cycles at all and thus irreversible transitions can be
part of read cycles at 𝛾𝑟𝑒𝑎𝑑 ≤ 𝛾𝑡𝑟𝑎𝑖𝑛.

5. For the case when 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛, an additional factor affecting the value of the stroboscopic
distance are plastic transitions that violate RPM. RPM violating transitions can be irreversible.
We therefore expect that when RPM violations are absent the value of the stroboscopic distance
could be lower.

4.3.3 Distributions of the trained state

Revealing memory of training amplitude requires performing a read-out protocol that involves shear
driving the trained state. We now ask if the trained state alone holds features of the training amplitude?
For this purpose, we look at the distributions of the local distance to stress thresholds in the forward and
reverse slip direction. We also compare the distributions of the trained state with the initial undeformed
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Fig. 4.12 PDF of local distance to stress threshold in the forward 𝑥+ and reverse 𝑥− slip direction for the
undeformed initial state. Dotted vertical line corresponds to a value equal to 2𝜇𝛾𝑡𝑟𝑎𝑖𝑛 on the horizontal
axis which is useful for comparisons drawn in the text and Figure4.14. System size = 32×32, poorly
aged (PA) samples.

state to contrast the effect of mechanical training on the sample. We highlight again at this point that the
initial undeformed state is generated using the thermal and aging glass preparation protocol as discussed
in Chapter 3.
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Fig. 4.13 Schematic of a typical stress-strain hysteresis curve obtained after cycling a trained state ‘a’ for
a single shear cycle at an amplitude 𝛾 = 𝛾𝑡𝑟𝑎𝑖𝑛. Response during a half cycle, 𝐴→ 𝑎 for example, consists
of an almost perfect elastic response (no plastic events) with a corresponding increase in stress 𝜎 that is
equal to 2𝜇𝛾 indicating memory of training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛.

We recall from Chapter 2 that the local plastic strengths for the mesoscopic cell (𝑖, 𝑗) in the positive
and negative directions are defined as 𝑥+𝑖𝑗 = 𝜎+

𝑖𝑗 −𝜎𝑖𝑗 and 𝑥−𝑖𝑗 = 𝜎𝑖𝑗 +𝜎−
𝑖𝑗 , respectively. These measure

the amount of local stress required to trigger a plastic event in the respective directions. Here, 𝜎+
𝑖𝑗 and
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𝜎−
𝑖𝑗 are the local stress thresholds in the two directions and 𝜎𝑖𝑗 is the local internal stress at cell (𝑖, 𝑗)

associated to interactions with other cells. In the following, we will drop the subscripts in 𝑥+𝑖𝑗 or 𝑥−𝑖𝑗 for
our discussions.

Before we discuss results, we show an example hysteresis curve in Figure 4.13. Such a hysteresis
loop is obtained from a training protocol for single memories at fixed training amplitude 𝛾 . The training
protocol ends in a trained state as marked by 𝑎 in the figure on the hysteresis loop. The response to a
shear cycle in strain of the form 0→ 𝛾 → −𝛾 → 0 on such a trained state is shown in Figure 4.13 during
which the sample takes the route 𝑎→ 𝐵 → 𝐴→ 𝑎. We will generate distributions of 𝑥+ and 𝑥− at points
marked as 𝑎 and 𝑏 to check if memory of the training amplitude exists. We also emphasise through
this figure that the response to strain during −𝛾 → 0 and 𝛾 → 0 is largely elastic with a shear modulus
roughly of the initial undeformed state and equals 2𝜇. This is also depicted in 𝐴→ 𝑎 and 𝐵 → 𝑏 part
of the hysteresis loop. In fact, Figures 3.8 in Chapter 3 already hint such an elastic response with a
corresponding change in global stress that equals 2𝜇𝛾 . We note again that 𝛾 is the amplitude of training
that generated the trained state 𝑎.
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Fig. 4.14 PDF of local distance to stress threshold in the forward 𝑥+ and reverse 𝑥− slip direction for
(Left) The trained state ‘a’ and (Right) State ‘b’. States ‘a’ and ‘b’ are marked on the schematically
shown hysteresis curve in figure 4.13. Dotted vertical line corresponds to a value equal to 2𝜇𝛾𝑡𝑟𝑎𝑖𝑛 on the
horizontal axis. System size = 32×32, poorly aged (PA) samples. 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.03 < 𝛾𝑖𝑟𝑟.

In Figure 4.12, we see that the distributions of 𝑥+ and 𝑥− are identical for the initial undeformed
state. Such an observation is expected as the glass preparation protocol treats the two available local
slip directions for a cell equally. The shear modulus of the undeformed state for small deformations
would thus be identical if sheared in the forward or reverse direction. We now show the effect of training
and look at the distributions of 𝑥+ and 𝑥− in the trained state, such as 𝑎 marked in the Figure 4.13.
The distributions of 𝑥+ and 𝑥− sampled at 𝑎 are presented in the Figure 4.14 (Left). In contrast to the
distributions of the initial state, we see that the distributions of 𝑥+ and 𝑥− are not identical in the trained
state. The training protocol applied on the initial undeformed state has created an asymmetry in the
distributions with respect to forward and reverse shear directions. In the same figure, the distribution
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of 𝑥− shows a sharp kink at 2𝜇𝛾𝑡𝑟𝑎𝑖𝑛 revealing the memory of training. This also raises the question
whether such asymetries in the distribution of the trained state are a necessary prequisite for memory of
training amplitude in amorphous solids?

We now sample the distributions of 𝑥+ and 𝑥− on state 𝑏 marked in the Figure 4.13. In the Figure 4.14
(Right), we see that the distributions are still asymmetric with respect to forward and reverse shear
direction but the roles of 𝑥+ and 𝑥− are reversed. The memory of training amplitude persists even in this
state but now appears as a kink in the distribution of 𝑥+ at 2𝜇𝛾𝑡𝑟𝑎𝑖𝑛.

Finally, from the Figure 4.14 (Right) for example, we note that the trained state has much higher
probability of finding small value of 𝑥+ than 𝑥−. This means that a uniform shear on such a trained
state would reveal a much softer response in the forwad shear direction than the reverse shear direction.
This reflects a Bauschinger effect, a phenomena that has been studied well for amorphous solids under
uniform shear using particle scale simulations [91] where it reveals a memory of shear direction.

4.4 Memory of shear direction

Given the trained state only and in absence of any other information, can we tell the direction in which
the sample was driven to the trained state? The answer is yes, which we explain in this section. We also
consider the two read-out protocols, parallel and sequential, to test the robustness of such a memory.
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Fig. 4.15 Memory of direction: stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for (Left) Parallel read-out protocol
and (Right) Sequential read-out protocol. Solid curve represents the response to in-phase read-out while
the dashed curve is the response to an out-phase read-out. Dotted vertical line on the 𝛾𝑡𝑟𝑎𝑖𝑛-axis represent
the value of the training amplitude which equals 0.03. System size = 16×16, poorly aged (PA) samples.
𝛾𝑡𝑟𝑎𝑖𝑛 < 𝛾𝑖𝑟𝑟 = 0.07.

We consider three different training amplitudes 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.03, 0.05, 0.076 and present results for
each. We consider a system size of 16×16 for which the irreversibility transition is 𝛾𝑖𝑟𝑟 = 0.07. We
recall that the undeformed state is subjected to a training and read-out protocol as demonstrated in
Section 4.2.1 for single memories.
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We first describe results for 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.03. In the Figure 4.15 (Left), we use a parallel read-out
protocol to reveal the memory of shear direction. An in-phase read-out protocol displays a non-monotonic
response in stroboscopic distance for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛, exhibiting a local maximum before showing a sharp
local minimum and dropping to zero at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. For 𝛾𝑟𝑒𝑎𝑑 > 𝛾𝑡𝑟𝑎𝑖𝑛, the stroboscopic distance increases
monotonically. An out of phase read-out protocol reveals a different response. In the same figure we
see that, for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛, the stroboscopic distance now shows a monotonically increasing response. A
memory of training amplitude exists but appears as a kink at a finite value in the stroboscopic distance at
𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. For 𝛾𝑟𝑒𝑎𝑑 > 𝛾𝑡𝑟𝑎𝑖𝑛, the stroboscopic distance increases monotonically. We thus conclude
that although both in-phase and out-phase read-out protocol reveal memory of training amplitude, they
do so in contrastingly different ways. This difference in response thus serves as a tool to determine
the memory of shear direction in which the sample was trained during the training phase. As a test
of robustness of the memory of shear direction, we now present the response of the trained state to a
sequential read-out protocol. We see a similar response in the Figure 4.15 (Right).
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Fig. 4.16 Memory of direction: stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for (Left) Parallel read-out protocol
and (Right) Sequential read-out protocol. Solid curve represents the response to in-phase read-out while
the dashed curve is the response to an out-phase read-out. Dotted vertical line on the 𝛾𝑡𝑟𝑎𝑖𝑛-axis represent
the value of the training amplitude which equals 0.05. System size = 16×16, poorly aged (PA) samples.
𝛾𝑡𝑟𝑎𝑖𝑛 < 𝛾𝑖𝑟𝑟 = 0.07.

We now test the effect of increasing 𝛾𝑡𝑟𝑎𝑖𝑛 on our observations. For this purpose we set 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.05
in the training phase. Figure 4.16 (Left) and (Right) show stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for parallel
and sequential read-out protocol, respectively. We again see that the response to an in-phase read-out
is different from an out-phase read-out protocol implying that the trained state has a memory of the
direction of shear. However, the memory of training amplitude in the out-phase read-out protocol seen
through a kink in the stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 becomes visibily less distinct. We stress
again at this point that the memory of shear direction is revealed solely based on how the trained state
responds to a read-out operation which precludes any prior information about the history of deformation
during the training phase.
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4.5 Comparison with the Preisach Model

We also show for comparison the same curves for 𝛾𝑡𝑟𝑎𝑖𝑛 > 𝛾𝑖𝑟𝑟. In Figure 4.17, we see that the memory
of direction can be revealed even above the irreversibility transition. The memory of training amplitude
present as a kink in the stroboscopic distance in the out-phase read-out at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 is now completely
absent.

0.00 0.02 0.04 0.06 0.08 0.10

γread

0.0

0.2

0.4

0.6

0.8

1.0

〈 1
−
O
v
er
la
p
〉

In-Phase Read

Out-Phase Read

0.00 0.02 0.04 0.06 0.08 0.10

γread

0.0

0.2

0.4

0.6

0.8

1.0

〈 1
−
O
v
er
la
p
〉

In-Phase Read

Out-Phase Read

Fig. 4.17 Memory of direction: stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for (Left) Parallel read-out protocol
and (Right) Sequential read-out protocol. Solid curve represents the response to in-phase read-out while
the dashed curve is the response to an out-phase read-out. Dotted vertical line on the 𝛾𝑡𝑟𝑎𝑖𝑛-axis represent
the value of the training amplitude which equals 0.076. System size = 16× 16, poorly aged (PA)
samples. 𝛾𝑡𝑟𝑎𝑖𝑛 > 𝛾𝑖𝑟𝑟 = 0.07.

To summarise, a read-out operation on a trained state reveals contrastingly different response de-
pending on whether the read-out begun in-phase or out-phase with the training cycle. This difference
in response during read-out helps determine the direction in which the sample was trained during the
training phase. We see that this memory of shear direction can persist well past the irreversibility
transition irrespective of the read-out protocol.

4.5 Comparison with the Preisach Model

In this section, we compare the memory of training amplitude in our elasto-plastic model against a non-
interacting Preisach Model[97]. Before we proceed, we remind that the training and readout protocols
correspond to those shown in Figure 4.1. For our study, we first set up the following definitions: Consider
the set of active sites, i.e. cells that yield at least once over the full period of a limit cycle. Let us call
this the set T. Also, consider the set of active sites during a read-out cycle and call it the set R.

We show that for any read-out amplitude and regardless of whether the read-out is in phase
or out-of phase, as long as the read-out amplitudes is less than the training amplitude, the
following holds:

R is a subset of T (4.2)
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In order to show that equation 4.2 holds true in our EPM, we define a quantity Δ = |𝐑⧵𝐓|
which measures the number of elements that belong to R but not T. Thus, Δ measures the
number of cells which are active during the read-out cycle which were not active in the limit
cycle. In the Figure 4.18, we show Δ divided by system size 𝑁2, as we vary read-out amplitude
and read-out protocol (in-phase vs. out-phase). This fraction is identically or at least very close
to zero for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛. That is, for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛 in the figure, we see that Δ = 0 for both the
readout protocols. This implies that an in-phase readout cycle may make a different collection
of cells active than an out-phase readout cycle but they both must be a subset of those cells that
are active in the limit cycle. The figure also shows that both readout protocols reveal memory
of training amplitude but the dependence of memory upon direction has been lost.
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Fig. 4.18 Δ∕(𝑁2) as a function 𝛾𝑟𝑒𝑎𝑑 for parallel in-phase and parallel out-phase readout protocols.
Angular brackets represent average over independent realisations. Dotted vertical lines represent the
corresponding value of the training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛. System size = 32×32, poorly aged (PA) samples.

We note that, in the case of the Preisach model equation 4.2 is necessarily true by virtue
of the no-passing property. In the EPM model, because of the Eshelby kernel governing the
interactions among the cells, we do not have the no-passing property so equation 4.2 need not
hold. Indeed, we have observed violations of equation 4.2 in our elastoplastic model and can
occur due to RPM violating transitions[78]. However, these violations are rare such that Δ is
identically or at least very close to zero for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛. As an example, consider a limit cycle
obtained at 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.04 at system size = 32×32. A readout cycle for 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛 can make
as many as ∼ 700 cells active. Among these set of cells, we do not observe more than one cell
which was not active in the limit cycle.

We therefore conclude that, despite the availability of multiple elastic branches in our
quenched local landscape for a cell and Eshelby interactions among different cells, the limit
cycles obtained in our EPM share a property in common with the Preisach model. It thus
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appears that what is really the memory is the selection of the set T. The read-out protocols are
just different ways of probing this set T and – not surprisingly – some protocols are more useful
than others.

4.6 Evolution of memory of training

A sample in our EPM under cyclic driving, upon locking into a limit cycle, ceases to evolve
stroboscopically. We observe this both in the global stress-strain response when the hysteresis
curve closes perfectly but also in the local field variables, for example, the local plastic strain
field. Such a trained state can therefore not be trained further to increase the imprint of memory
of training. A natural question arises: How does the system, starting from the initial state,
acquire memory of training as it eveolves towards a limit cycle? The same question can also be
asked for samples that are unable to find limit cycles when the driving amplitude is large.

We answer these questions using our EPM. For a given cycling amplitude 𝛾𝑡𝑟𝑎𝑖𝑛, we subject
an initial state for a fixed number of training cycles 𝜏𝑡𝑟𝑎𝑖𝑛. 𝜏𝑡𝑟𝑎𝑖𝑛 ranges 1 to 500 in our simulations.
Average stroboscopic distance is obtained for different values of 𝛾𝑟𝑒𝑎𝑑 by averaging over trained
states at fixed 𝛾𝑡𝑟𝑎𝑖𝑛 and 𝜏𝑡𝑟𝑎𝑖𝑛.

4.6.1 Learning the training amplitude

We set the training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.05 at a system size 32 × 32. We drive the initial
undeformed state for a fixed number of driving cycles 𝜏𝑡𝑟𝑎𝑖𝑛 followed by a parallel read-out
protocol on the trained state to evaluate the memory of training amplitude. By changing the value
𝜏𝑡𝑟𝑎𝑖𝑛, number of driving cycles since the undeformed initial state, we compare the evolution of
memory of training amplitude.

In Figure 4.19 (Left), we see that the stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 at 𝜏𝑡𝑟𝑎𝑖𝑛 = 1 does
not indicate a memory of the training amplitude. However at 𝜏𝑡𝑟𝑎𝑖𝑛 = 10, we see that the
response becomes clearly non-monotonic in the interval 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛 with a local minimum
in the stroboscopic distance appearing in the same interval close to 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. As 𝜏𝑡𝑟𝑎𝑖𝑛
increases, we see that the local minimum shifts and at 𝜏𝑡𝑟𝑎𝑖𝑛 = 100 establishes a sharp local
minimum at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 indicating a clear memory of the training amplitude. The average
number of training cycles required to reach a limit cycle, also called as steady state in the
figure, at 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.05 is 3640. This implies that a memory of training amplitude can thus be
encoded in the sample well before reaching the steady state. For 𝜏𝑡𝑟𝑎𝑖𝑛 > 100, we see that the
local minimum in the stroboscopic distance stays at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 but displays a slow decay
towards the steady state value with increasing 𝜏𝑡𝑟𝑎𝑖𝑛. Finally, we note that the local maximum of
the stroboscopic distance, including the response upto it, in the interval 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛 remains
almost unchanged for 𝜏𝑡𝑟𝑎𝑖𝑛 > 10.
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Fig. 4.19 (Left) Evolution of (single) memory of training: stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for different
number of training cycles for a fixed value of 𝛾𝑡𝑟𝑎𝑖𝑛. Read-out curve showing memory of training
amplitude in the steady-state is shown in black for comparison. Dotted vertical lines on the 𝛾𝑡𝑟𝑎𝑖𝑛-axis
represents the value of the training amplitude. (Right) Evolution of the value of the local minimum of
the stroboscopic distance versus number of training cycles on a Lin-Log scale. Inset: Same curve as in
the main panel shown on a Log-Log scale. System size = 32×32, poorly aged (PA) samples.

In Figure 4.19 (Right), we plot the value of the local minimum in the stroboscopic distance
versus 𝜏𝑡𝑟𝑎𝑖𝑛. In the main panel we show the response on a lin-log scale while the inset shows the
same response on a log-log scale. Through this figure we want to highlight the slow evolution
in the value of the local minimum with increasing and higher values of 𝜏𝑡𝑟𝑎𝑖𝑛.
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Fig. 4.20 Cycle to cycle stroboscopic distance versus cycle number for a particular realisation under
cyclic driving at 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.05 ∼ 𝛾𝑖𝑟𝑟 before finding a limit cycle. System size = 32×32, poorly aged
(PA) samples.

Next, we want to contrast the evolution of memory behavior against spatial plastic activity
with driving cycles prior to finding a limit cycle. For this purpose, we define a quantity called
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cycle-to-cycle stroboscopic distance. Let 𝐸(𝑖, 𝑗)𝑘+1 and 𝐸(𝑖, 𝑗)𝑘 represent the event fields
measured at the end of 𝑘+1𝑡ℎ and 𝑘𝑡ℎ driving cycles respectively. If 𝜁 is the set of all the
cells (𝑖, 𝑗) such that 𝐸(𝑖, 𝑗)𝑘+1 − 𝐸(𝑖, 𝑗)𝑘 ≠ 0, then we define the cycle-to-cycle stroboscopic
distance as:

1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠𝑡𝑟𝑜𝑏𝑜 =
|𝜁 |

𝑁 ×𝑁
. (4.3)

Here, |𝜁 | is the cardinality of the set 𝜁 and system size equals 𝑁 ×𝑁 . The value of the
function will become zero (or periodic for multi-period) with driving cycles once a limit cycle
is found.

We now show the cycle-to-cycle count of plastic activity with number of driving cycles
for a single realisation driven at the same cycling amplitude, 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.05, during the training
phase but before settling in a limit cycle. In the Figure 4.20, we see that 1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠𝑡𝑟𝑜𝑏𝑜
during the first driving cycle is as high as 0.55 meaning that 55% of the 𝑁 ×𝑁 cells were
active. This value quickly settles in a statistical steady state after first ∼ 10 driving cycles. For
driving cycles above 10, the evolution of spatial plastic activity with driving cycles seems like
a random process whose statistical properties don’t change with time and not indicating that the
system is evolving towards a limit cycle. Such a behavior is in sharp contrast with the evolution
of memory as shown in figure 4.19 which shows a slow decay towards the steady state value
and gradual build-up of memory of training.

  

Fig. 4.21 Evolution of (single) memory of training: Mean squared displacement (MSD) versus 𝛾𝑟𝑒𝑎𝑑
for different number of training cycles for a fixed value of 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.06 below an appropriately defined
irreversibility transition. Figure taken from reference [43]. MSD was calculated between the trained state
and read state configurations obtained from a parallel read-out protocol as schematically demonstrated
in Figure 4.1.
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We point out that the question of evolution of memory of training amplitude has been probed
in particle scale simulations of dense amorphous solids [43]. The authors used a training and
read-out protocol same as schematically demonstrated in Figure 4.1. The training amplitude was
set to 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.06 which is below the amplitude corresponding to an irreversibility transition.
For the purpose of revealing the memory of training amplitude, the authors computed the mean
squared displacement (MSD) between trained state and read state at different values of read
amplitudes 𝛾𝑟𝑒𝑎𝑑 . In Figure 4.21, we see that as the number of training cycle increases, a local
minimum in the measured MSD emerges at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 for number of training cycles 10 and
above. This reflects a memory of training amplitude. In this case, and when 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑡𝑟𝑎𝑖𝑛, we
also observe a non-monotonic response in the measured MSD.

4.6.2 Learning the direction of shear

As pointed out before, the training phase on the initial state can shear cycle at a given amplitude
in two possible directions starting from zero strain. Our EPM predicts that the steady state holds
memory of this direction of shear which can be revealed by performing read-out operations.
We now show that the first shear cycle alone on the initial state is sufficient to encode memory
of shear direction. We keep 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.05 just as in section 4.6.1. In Figure 4.22 (Left), we plot
the evolution of the stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for a parallel out-phase read-out protocol
at different values 𝜏𝑡𝑟𝑎𝑖𝑛. We see that the stroboscopic distance shows a weak dependence on
𝜏𝑡𝑟𝑎𝑖𝑛. To confirm that the memory of shear direction is established from the first training cycle
onwards, we define a quantity called 𝛿⟨ 1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩𝛾𝑟𝑒𝑎𝑑=𝛾𝑡𝑟𝑎𝑖𝑛 as:

𝛿⟨ 1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩𝛾𝑟𝑒𝑎𝑑=𝛾𝑡𝑟𝑎𝑖𝑛 =
(

⟨ 1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩𝑜𝑢𝑡 𝑝ℎ𝑎𝑠𝑒− ⟨ 1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩𝑖𝑛 𝑝ℎ𝑎𝑠𝑒
)|

|

|

|𝛾𝑟𝑒𝑎𝑑=𝛾𝑡𝑟𝑎𝑖𝑛
.

(4.4)
Here, 𝛿⟨ 1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩𝛾𝑟𝑒𝑎𝑑=𝛾𝑡𝑟𝑎𝑖𝑛 is the difference of the average stroboscopic distance of

the out-phase and in-phase read-out protocol evaluated at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. In Figure 4.22 (Right),
we show 𝛿⟨ 1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝⟩𝛾𝑟𝑒𝑎𝑑=𝛾𝑡𝑟𝑎𝑖𝑛 versus 𝜏𝑡𝑟𝑎𝑖𝑛. We observe that the value of this function is
non-zero from the first shear cycle onwards. This means that a single shear cycle on the initial
undeformed state is sufficient to encode the memory of shear direction which can be read by
evaluating the response under an in-phase or out-phase read-out protocol.

4.6.3 Memory under asymmetric shear and return point memory

In this section, we will study memory of training under asymmetric shear and use it to establish
whether our model of sheared amorphous solids displays return point memory. The training
and read-out protocol has been described in figure 4.23. The initial undeformed sample is first
trained asymmetrically such that a single cycle in shear of amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 is of the following
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Fig. 4.22 (Left) Evolution of (single) memory of training: stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for different
number of training cycles for a fixed value of 𝛾𝑡𝑟𝑎𝑖𝑛 for out-phase read-out. Dotted vertical line on the
𝛾𝑡𝑟𝑎𝑖𝑛-axis represents the value of the training amplitude. System size = 32×32, poorly aged (PA)
samples. (Right) On a Lin-Log scale: Difference of the average stroboscopic distance between the
out-phase and in-phase read-out protocol evaluated at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 versus 𝜏𝑡𝑟𝑎𝑖𝑛. Inset: Same plot as in
the main panel showed on Log-Log scale.
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Fig. 4.23 Training and read-out protocol under asymmetric shear: The training phase constitutes of
individual cycles of the following form in strain 0→ 𝛾𝑡𝑟𝑎𝑖𝑛 → 0. The training phase drives the system to
a trained state belonging to a limit cycle. The trained state is marked as red square symbol. The read-out
phase consists of making multiple copies of the trained state and then each copy is sheared at different
amplitude with asymmetric shear cycles of the form 0→ 𝛾𝑟𝑒𝑎𝑑 → 0 ending in a read state shown in blue
square symbol. Read-states and trained states are compared using the same definition of stroboscopic
distance as in equation 4.1.

form in strain: 0 → 𝛾𝑡𝑟𝑎𝑖𝑛 → 0. The maximum training amplitude considered for studies in
this section is 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.06 at a system size 16×16. The choice of training amplitude ensures
that the probability of finding limit cycles is one and only period one limit cycles exist in the
trained state. This helps our study to make comparisons on return point memory. The read
protocol makes multiple copies of the trained state and which are then sheared at different
read amplitudes 𝛾𝑟𝑒𝑎𝑑 sweeping across the training amplitude to test a memory of the training
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amplitude. A shear cycle during the read-out phase is also asymmetric and such that a single
read cycle at amplitude 𝛾𝑟𝑒𝑎𝑑 is of the following form in strain: 0→ 𝛾𝑟𝑒𝑎𝑑 → 0. All results in
this section have been obtained by averaging over 400 independent realizations. The values
of training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 considered are such that 𝛾𝑡𝑟𝑎𝑖𝑛 < 𝛾𝑖𝑟𝑟, where 𝛾𝑖𝑟𝑟 was quantified and
discussed in Chapter 3.
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Fig. 4.24 Memory of training amplitude under (Left) Asymmetric training and read-out and for compari-
son; (Right) Symmetric training and read-out for the same values of training amplitude. Dashed vertical
lines correspond to 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. System size equals 16×16.
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Fig. 4.25 A typical limit cycle under a shear cycle 0→ 𝛾𝑡𝑟𝑎𝑖𝑛 → 0 for (Left) 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.03 and (Right)
𝛾𝑡𝑟𝑎𝑖𝑛 = 0.04

The training protocol helps the system settle in a trained state belonging to a limit cycle
under asymmetric shear. A read-out protocol on the trained state as discussed above becomes
a test on return point memory. For a given training amplitude 𝛾1 and any 𝛾𝑟𝑒𝑎𝑑 ≤ 𝛾1, if the
read-state and trained-state are not identical then this implies a violation of return point memory.
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In figure 4.24 (Left), we show the memory of training amplitude for the training and read-out
protocol demonstrated in figure 4.23. We see that the stroboscopic distance remains seemingly
zero for 𝛾𝑟𝑒𝑎𝑑 ≤ 𝛾𝑡𝑟𝑎𝑖𝑛 beyond which it rises rapidly and monotonically. This seems to suggest
that sheared amorphous solids obey return point memory. To contrast this observation against
results from previous sections, for the same values of 𝛾𝑡𝑟𝑎𝑖𝑛 under a training and read-out that
use symmetric shear cycles only, we show in figure 4.24 (Right), the response is completely
different. We point out that such a contrasting response in memory under symmetric and
asymmetric response is due to the fact that the range in strain over which limit cycles are found
under asymmetric shear is larger than their symmetric shear counterpart so that an irreversibility
transition is delayed. For example, for system size 16×16, at driving amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.0699
the system is at irreversibility transition under symmetric shear while it finds limit cycles with
probability one with almost all periods eqaul to one under asymmetric shear till this amplitude.
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Fig. 4.26 A typical limit cycle under a shear cycle 0→ 𝛾𝑡𝑟𝑎𝑖𝑛 → 0 for (Left) 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.05 and (Right)
𝛾𝑡𝑟𝑎𝑖𝑛 = 0.06

Figure 4.24 (Left) suggests that the stroboscopic distance is zero for 𝛾𝑟𝑒𝑎𝑑 ≤ 𝛾𝑡𝑟𝑎𝑖𝑛. We
will now confirm that such a behavior indeed arises even when the limit cycles are hysteretic
composed of plastic events. Figure 4.25 (Left) and (Right) show limit cycles obtained at
𝛾𝑡𝑟𝑎𝑖𝑛 = 0.03 and 0.04, respectively. Figure 4.26 (Left) and (Right) show limit cycles obtained at
𝛾𝑡𝑟𝑎𝑖𝑛 = 0.05 and 0.06, respectively. We have checked that the general behavior of limit cycles
at these amplitudes is hysteretic and therefore observation of the stroboscopic distance falling
to zero for 𝛾𝑟𝑒𝑎𝑑 ≤ 𝛾𝑡𝑟𝑎𝑖𝑛 is a non-trivial behaviour suggesting RPM.

As a further test, we show figure 4.24 (Left) plotted on a Log-Lin scale in figure 4.27. We
see that the stroboscopic distance is not perfectly zero for 𝛾𝑟𝑒𝑎𝑑 ≤ 𝛾𝑡𝑟𝑎𝑖𝑛 as would have been
required by a strict RPM. Also, the maximum of the stroboscopic distance over 𝛾𝑟𝑒𝑎𝑑 ≤ 𝛾𝑡𝑟𝑎𝑖𝑛
seems to increase slowly with 𝛾𝑡𝑟𝑎𝑖𝑛. Nevertheless, for the values of 𝛾𝑡𝑟𝑎𝑖𝑛 considered, we see
clearly hysteretic behaviour in the limit cycles and yet a value of the stroboscopic distance that
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Fig. 4.27 Data same as in figure 4.24 (Left) such that y-axis is on a logarithmic scale, and a linear scale
on the x-axis. Data points at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 drop to zero on Log y-scale. The immediate neighbors of such
data points are finite and their difference on the 𝛾𝑟𝑒𝑎𝑑-axis is not very fine. This is why the data may
seem diconnected around 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛.

is nearly zero suggesting that the RPM is held by the system, if not perfectly. This means that
soft-spots which are active within such a limit cycle could show correlated behavior underlining
effectively cooperative interactions even though the interaction kernel used in our model is of
the Eshelby type. This remains to be checked.

4.7 Multiple memories

This section is inspired by the question if driven disordered systems, and glassy amorphous
systems in particular, could be trained such that memory be added without erasing another.

Before we proceed further on our discussion of multiple memories it is useful to remind
the reader of the concept of return point memory (RPM) which was introduced in Chapter 1.
It will help us understand the consequences of our results against systems guaranteed to hold
RPM which are at odds with amorphous solids.

Disordered systems, with many interacting degrees of freedom, can be trained through exter-
nal driving to encode memories of multiple training amplitude [59]. Examples include systems
ranging from ferromagnets [10, 97, 113], spin ice [35, 45], to high temperature superconductors
[89]. Interactions between individual elements of these systems are cooperative meaning that
a local state change encourages other elements to change their state in the same direction.
A simple example is the well-studied Random Field Ising Model (RFIM) for ferromagnets
in which the the individual spin sites could either take a +1 or -1 state. The mmodel uses
cooperative interactions meaning that a spin flip to +1 state encourages others to do so. Systems
with such kind of interactions were proven to hold return point memory [113] (RPM). RPM
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allows a system to remember a nested series of turning points in the externally applied driving
field thus permitting the storage of multiple amplitudes of training [59]. The nesting of turning
points in the external field implies that there is a constraint on the order in which these turning
points can be arranged. Storage of multiple amplitudes thus demand that such a constraint on
the ordering of turning points be satisfied.

Experiments [55, 77] and particle scale simulations of amorphous solids [1], with interac-
tions known to violate RPM, have shown that an RPM obeying ordering of turning points on
driving shear strain can still generate a trained state holding memories of multiple amplitudes
of training. As an example, we show Figure 4.28 from reference [1] showing memories of
multiple amplitudes of training obtained from particle scale simulations for a model amorphous
solid. The training phase in their simulations is the same as in Figure 4.3. They used a parallel
read-out protocol same as discussed in Section 4.2.2 with the only difference that they use
mean squared displacement (MSD) of the particles instead of using event fields to uncover
the memory of training amplitude. We note that, although it is possible to derive an MSD
based on coarse-grained quantities in our elasto-plastic model, we restrict our measurements
on memory using event fields only. Figure 4.28 shows that their particle scale model encodes
memories of two amplitudes 𝛾2 = 0.06 and 𝛾1 = 0.04 in the trained state which is revealed
after performing the read-out phase. The memory of training amplitude is reflected through
the MSD at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 for the smaller training amplitude of 0.04 which drops to zero while
a sharp kink is observed at the larger value of the training amplitude 0.06 at which the MSD
is not zero but finite. Two large but different number of training cycles were considered to
highlight the fact that steady state can encode multiple memories and hence conclude that
multiple memories in amorphous solids are persistent. In this section we will first show that
our EPM can capture such an effect.

To demonstrate that our elasto-plastic model can display memories of multiple amplitudes
of training, we consider two training amplitudes 𝛾1 and 𝛾2. Let these be such that 𝛾2 > 𝛾1. The
training sequence is same as discussed in Section 4.2.2 and described in the figure 4.3. We
recall that the training sequence in the amplitude form is the following: 𝛾2𝛾1𝛾2𝛾1𝛾2𝛾1.. . For
small to moderate values of 𝛾2, the training sequence results in a state belonging to a limit cycle.
As 𝛾2 increases the probability of finding limit cycles decreases. We note again that, though
multiple training amplitudes are present, a single cycle of shear at an amplitude 𝛾 is still defined
as: 0→ 𝛾 → −𝛾 → 0.

Let us say that we have been given a pair of training amplitudes 𝛾1 and 𝛾2. We consider two
types of averaging of the stroboscopic distance while plotting against 𝛾𝑟𝑒𝑎𝑑 . In the first case,
we average over those trained states only for which the amplitude of the last applied cycle in
the training sequence was 𝛾1. In the second case, the average is over those trained states for
which the last applied cycle in the training sequence was 𝛾2. We plot the stroboscopic distance
versus 𝛾𝑟𝑒𝑎𝑑 separately for the two types of averaging. In the figure 4.29, we have considered
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Fig. 4.28 Mean squared displacement of particles trained at multiple amplitudes versus strain amplitude
during read-out in particle scale simulations. Training and read-out protocols are the same as in Figure 4.3.
Training amplitudes are: 𝛾2 = 0.06 and 𝛾1 = 0.04. Legends indicate number of driving cycles performed
to reach the trained state. Figure adapted from reference [1].

𝛾2 = 0.038 and 𝛾1 = 0.028 and see striking differences between the conditional averages. We
observe that an averaging that is performed over samples for which the last applied shear cycle
is 𝛾2, the memory of the smaller training amplitude is absent. However, a memory of 𝛾2 is
clearly present as a sharp local minimum which drops to zero at 𝛾𝑟𝑒𝑎𝑑 = 𝛾2. In fact, the response
strikingly resembles curves obtained for training that uses single amplitudes only. Contrastingly,
if the average is performed over those samples only for which the last applied training cycle had
an amplitude 𝛾1, we observe memories of both the training amplitudes 𝛾1 and 𝛾2. The memory
of 𝛾1 is revealed as a sharp local minimum dropping to zero at 𝛾𝑟𝑒𝑎𝑑 = 𝛾1 and the memory of
𝛾2 appears as a sharp kink at 𝛾𝑟𝑒𝑎𝑑 = 𝛾2. Solid and dashed vertical lines in black are plotted at
𝛾𝑟𝑒𝑎𝑑 = 𝛾1 and 𝛾𝑟𝑒𝑎𝑑 = 𝛾2, respectively. Such memories of multiple amplitudes of training have
been observed in experiments recently [55, 56].

We now show that multi-period orbits do not impede memories of multiple training am-
plitudes, that is, 𝛾1 and 𝛾2. For this purpose, we consider 𝛾2 = 0.05 and 𝛾1 = 0.04. At these
values of 𝛾1 and 𝛾2, all the samples find limit cycle but a fraction of them admit multi-period
limit cycles. In the figure 4.30, we see that depending on the amplitude of the last applied
training cycle we can either only have the memory of the larger amplitude 𝛾2 or both 𝛾1 and
𝛾2. However, we observe that the effect of multi-periodicity is to shift the value of the local

72



4.7 Multiple memories

0.00 0.01 0.02 0.03 0.04 0.05 0.06

γread

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

〈 1
−
O
v
er
la
p
〉

γendt = γ1

γendt = γ2

γ1

γ2

−0.04 −0.02 0.00 0.02 0.04

γ

−0.5

0.0

0.5

Σ
Fig. 4.29 Memory of multiple amplitudes: (Left) stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for a parallel read-out
protocol. Curve with ▴ symbol was obtained by averaging over trained states for which the last applied
training amplitude was 𝛾2 (< 𝛾1). Curve with ⦁ symbol was obtained by averaging over trained states
for which the last applied training amplitude was 𝛾1. Solid and Dotted vertical lines on the 𝛾𝑡𝑟𝑎𝑖𝑛-axis
represent the training amplitudes 𝛾1 and 𝛾2 respectively. (Right) A limit cycle from a particular realization
obtained under variable amplitude driving for the same pair of amplitudes 𝛾1 and 𝛾2 as in the left. System
size = 16×16, poorly aged (PA) samples.

minimum in the stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾1 to higher value and similarly in the kink at
𝛾𝑟𝑒𝑎𝑑 = 𝛾2 without affecting the memories of training.
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Fig. 4.30 Memory of multiple amplitudes: (Left) stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for a parallel read-out
protocol. Curve with ▴ symbol was obtained by averaging over trained states for which the last applied
training amplitude was 𝛾2 (< 𝛾1). Curve with ⦁ symbol was obtained by averaging over trained states
for which the last applied training amplitude was 𝛾1. Solid and Dotted vertical lines on the 𝛾𝑡𝑟𝑎𝑖𝑛-axis
represent the training amplitudes 𝛾1 and 𝛾2 respectively. (Right) A limit cycle from a particular realization
obtained under variable amplitude driving for the same pair of amplitudes 𝛾1 and 𝛾2 as in the left. System
size = 16×16, poorly aged (PA) samples.
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Finally, we present the effect of increasing the amplitude of training on storage of multiple
memories. For 𝛾𝑖𝑟𝑟 > 𝛾2 > 𝛾1, a read-out on the trained state preserves memories of both training
amplitudes 𝛾1 and 𝛾2. We note here that 𝛾𝑖𝑟𝑟, as defined and discussed in Chapter 3, is the
training amplitude which marks the irreversibility transition based on shear driving at single
amplitude of training. To study the effect of increasing training amplitude for the case when
multiple memories can be stored, we consider the following pairs of (𝛾1, 𝛾2) in the figure 4.31:
(0.03,0.04), (0.04,0.05), (0.05,0.06), (0.06,0.07). We note that 𝛾𝑖𝑟𝑟 = 0.07. In the figure 4.31,
we see that for the training amplitude pair (0.03,0.04) the memory of smaller amplitude 𝛾1
shows in stroboscopic distance by dropping to zero while the memory of larger amplitude 𝛾2
appears as a kink at finite value at the respective values of the read amplitudes. As we increase
the values of the amplitude pair, memory of both 𝛾2 and 𝛾1 is preserved but only shifts to higher
values of the stroboscopic distance. For the amplitude pair (0.06,0.07) however, we observe
that the memory of larger amplitude, expected as a kink at 𝛾𝑟𝑒𝑎𝑑 = 0.07, is absent while the
memory of the smaller amplitude is still present.
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Fig. 4.31 Memory of multiple amplitudes: stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 under parallel read-out pro-
tocol for different pairs of training amplitudes (𝛾1, 𝛾2): (0.03,0.04), (0.04,0.05), (0.05,0.06), (0.06,0.07).
System size = 16×16, poorly aged (PA) samples.

Discussion

Our elastoplastic model shows that memories of multiple training amplitudes can be encoded
provided an ordering is respected in the sequence of applied amplitude leading to a trained
state. In figure 4.29, for a given value of 𝛾𝑟𝑒𝑎𝑑 , we see that the stroboscopic distance between
the trained state and the read state can be significantly different when 𝛾𝑟𝑒𝑎𝑑 < 𝛾1. In particular,
when memories of both 𝛾1 and 𝛾2 are present the stroboscopic distance between the trained state
and the read state is significantly smaller than when only the memory of the larger amplitude 𝛾2
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is present. This implies that the spatial plastic activity due to avalanches over a full read cycle
is significantly less when the trained state is holding memories of multiple training amplitudes.
This raises the question whether the set of active sites for the case when multiple memories are
present are only a subset of active sites when only the memory of largest training amplitude
survives. Presence of memories of multiple training amplitudes could then imply correlations
among the active soft spots during read cycles on the trained state. Such correlations can
highlight the possibility whether the nature of interactions among the active soft-spots inside a
limit cycle could be ferromagnetic (or anti-ferromagnetic) alone.

4.7.1 Effect of mechanical annealing

Non-interacting [97] or systems with ferromagnetic interactions [10, 113] can be trained using
single shear cycles to encode memory of the training amplitude. For these systems it has also
been observed that the memory of training amplitude can be erased using single shear cycles
if the amplitude is greater than the training amplitude while also establishing memory of the
larger amplitude. For the case when the shear cycle has an amplitude smaller than the training
amplitude, memories of both amplitudes can be recovered. Here we ask using our EPM if
training at a single amplitude produces a trained state amenable to encoding memory using
single shear cycles alone? This also help us understand memory formation in driven amorphous
materials against non-interacting/ferromagnetically interacting systems. Training and read-out
protocols are defined in the Figure 4.32.
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Fig. 4.32 Training, perturbing and reading memory of training: Training cycles (solid line in red)
beginning from the undeformed state at zero strain at fixed amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 lead to a trained state (red
square symbol). The trained state is then subjected to a single perturbation shear cycle (solid line in
green) leading to a perturbed state (green square symbol). Read out phase begins with making multiple
copies of the same perturbed state. Each copy is then subjected to a single cycle of strain (solid line in
black) at different strain amplitude 𝛾𝑟𝑒𝑎𝑑 ending in a read state (blue square symbol). Read state in blue
symbol is compared to the perturbed state in green symbol to reveal the effect of perturbation on the
trained state.
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As demonstrated in Figure 4.32, the training phase consists of shear driving the initial
undeformed state at a single training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 for a maximum of 104 cycles to reach a
trained state. We then subject the trained state to a single cycle of shear at an amplitude 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏
ending in a perturbed state. The perturbed state is then subjected to a parallel read-out protocol
to evaluate if the perturbed state holds memory of 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏. Additionally, the read-out protocol
on the perturbed state also serves to determine if a single perturbation cycle can eliminate
memory of 𝛾𝑡𝑟𝑎𝑖𝑛. In our simulations the training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 varies from 0.03 to 0.044,
while the perturbation amplitude 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 is kept fixed at 0.04. This allows us to set up our
study at perturbation amplitudes both below and above the training amplitude. In Figure 4.33,
we first consider the case when 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 < 𝛾𝑡𝑟𝑎𝑖𝑛. These correspond to the training amplitudes
𝛾𝑡𝑟𝑎𝑖𝑛 = 0.042 and 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.044 as also shown in the legend. At these values we see that a single
perturbation cycle is sufficient to encode memory of 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 which appears as a sharp local
minimum at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏. We also note that the memory of training amplitude is retained in the
perturbed state as seen as a kink in the stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛. Next, we consider
𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 > 𝛾𝑡𝑟𝑎𝑖𝑛 which correspond to the training amplitudes 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.030 and 𝛾𝑡𝑟𝑎𝑖𝑛 = 0.035
shown in the legend of the figure. Interestingly, we observe the absence of a local minimum in
the stroboscopic distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛 implying that a single perturbation cycle has erased
the memory of training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛. We also observe that the memory of perturbation
amplitude 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 has not been established either, as the cusp (if any) in the stroboscopic distance
appears at 𝛾𝑟𝑒𝑎𝑑 < 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏. To summarise figure 4.33, when 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 < 𝛾𝑡𝑟𝑎𝑖𝑛, single shear cycles
alone, of amplitude 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏, acting on the trained state can encode memory of 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 while
also retaining memory of 𝛾𝑡𝑟𝑎𝑖𝑛. Contrastingly, when 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 > 𝛾𝑡𝑟𝑎𝑖𝑛 single cycles of shear
perturbation erase memory of training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 but also do not encode memory of
𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏.

Discussion

We now make some final comparisons of our results in figure 4.33 against hysteron based
non-interacting and interacting systems built to study memory in driven disordered systems.
Non-interacting or systems with ferromagnetic interactions take at most one training cycle to
find a limit cycle and it is probably therefore not surprising that the memory of training can
be erased completely using single cycles of shear perturbation with amplitude greater than the
training amplitude. Our EPM is built on interactions that are not purely ferromagnetic and can
display long transients to limit cycles. Erasing memory of training amplitude with single shear
cycle alone is therefore an interesting observation in figure 4.33. It has been shown that when
𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 > 𝛾𝑡𝑟𝑎𝑖𝑛 (represented schematically in figure 4.32) in non-interacting/ferromagnetically
interacting system, the memory of perturbation amplitude 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 is encoded immediately, that
is, in single shear cycle alone which is also in contrast to what we observe in figure 4.33. Finally,
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Fig. 4.33 Robustness of single memory of training amplitude: stroboscopic distance versus 𝛾𝑟𝑒𝑎𝑑 for
different values of training amplitude. Dotted vertical lines on the 𝛾𝑟𝑒𝑎𝑑 - axis represent, in the same color,
the corresponding value of the training amplitude 𝛾𝑡𝑟𝑎𝑖𝑛 which are also marked in the legend. The black
dashed line represents 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 on the 𝛾𝑟𝑒𝑎𝑑 - axis. System size = 32×32, poorly aged (PA) samples.

in contrast to our observations in figure 4.33, hysteron-based models [72] with mean-field
interactions show that when 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 > 𝛾𝑡𝑟𝑎𝑖𝑛, memory of 𝛾𝑝𝑒𝑟𝑡𝑢𝑟𝑏 can be encoded using single
cycles alone. We therefore conclude that the nature of mean-field interactions as in reference
[72] could also be overestimating the tendency of memory formation. Such differences with
respect to our results could be due to the nature of interaction present in our Eshelby kernel.

We also observe that first shear cycle in the training phase, as in the figure 4.19 (Left), cannot
encode the memory of training amplitude. Such a behavior is in sharp contrast to samples
that have been trained to a steady state at a given training amplitude. Such a steady state, as
observed in Figure 4.33, can encode memory of driving amplitude in single cycle of shear if the
imposed amplitude is lower than the training amplitude. Our EPM thus also helps us conclude
that an undeformed glass sample can have strikingly different affinity towards learning a given
amplitude of shear cycle than a glass sample which has already been trained mechanically.

4.8 Conclusion

In this chapter, we have shown that our EPM can capture memory of training as observed in
cyclically sheared amorphous systems in experiments and particle scale simulations. For the
case when such solids are shear driven at a single amplitude to trained state, a read-out protocol
on the trained state can reveal the value of the training amplitude. Our EPM captures such an
effect succesfully. Using a range of training amplitudes, from small to large, we see that the
memory of training can persist even past the irreversibility transition depending on the read-out
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protocol. The quality of memory, as measured in the sharpness of the average stroboscopic
distance at 𝛾𝑟𝑒𝑎𝑑 = 𝛾𝑡𝑟𝑎𝑖𝑛, does degrade however with increasing amplitude of training past the
irreversibility transition. Our results also show that the memory of the training amplitude can
also be revealed through sample to sample fluctuations in the stroboscopic distance during the
read-out phase. We also showed that the trained state alone, in the absence of a read-out protocol,
can reveal memory of training amplitude in the distributions of the distance to local stress
thresholds. By looking at the evolution of memory of training amplitude with number of training
cycles, we also concluded that the memory of the training amplitude can be encoded well before
reaching the steady state. This means that one does not have to cycle an amorphous solid for
a large number of driving cycles, especially in the vicinity of the irreversibility transition, to
encode memory of training amplitude.

Our results also demonstrate that cyclically driven amorphous systems can encode the
memory of direction of shear. A read-out under cyclic shear with increasing amplitude, sweeping
past the training amplitude, reveals contrastingly different responses depending on the relative
phase with the training sequence. This serves as a tool to decipher the direction in which a
sample was trained. We also observe that such memories persist past the irreversibility transition
irrespective of the read-out protocol used. We have also demonstrated that the memory of shear
direction is encoded from the first cycle onwards.

Depending on the ordering of training amplitudes amorphous solids can remember multiple
amplitudes of training. Our EPM also displays this effect. We show that a training sequence that
encodes multiple memories can be manipulated to either erase or recover training amplitudes by
altering the state on which a read-out cycle is performed. These alterations in our discussions
are nothing but those that generate trained states that are one shear cycle apart. Erasure/recovery
of training amplitudes based on single cycles of shear is a property shared by systems with
ferromagnetic/no interactions. However, we observe such an effect even with interactions that
are not purely ferromagnetic as encoded in the Eshelby stresses generated post local yield events.
We wonder if such discrepancies arising from the long transients that system takes to settle
into limit cycles. Such an observation is not dissimilar to a recent ring-down training protocol
[56] in experiments that can help find an amorphous solid settle in a state such that single
training cycles alone are sufficient to encode the memory of training. Finally, we showed that
memories of multiple training amplitudes can be encoded even if the trained state belongs to
multi-periodic limit cycles. We also studied the effect of increasing the amplitude of training
for the multiple memory case.

We also studied the effect of prior training on further encoding of memories of training
amplitude. We concluded that a sample that is trained to a steady state at an amplitude 𝛾𝑡𝑟𝑎𝑖𝑛
can encode memory of shear cycles of amplitude less than 𝛾𝑡𝑟𝑎𝑖𝑛 using single cycles only. Prior
training under cycling thus makes a disordered glassy solid more amenable to storing memory
of training amplitude. We also showed that single shear cycles on the trained state are unable
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to encode memory for amplitudes greater than 𝛾𝑡𝑟𝑎𝑖𝑛. We also discussed these results in light
of non-interacting/ferromagnetically interacting systems but also those which use mean-field
interactions in hysteron based models for disordered materials.
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Chapter 5

Characterization of the disorder
landscape via transition graphs

In order to characterize better the disorder landscape underlying our mesoscopic model, we
turn next to the transition graph (𝑡-graph) representation of the dynamics under AQS shear [75].
As was shown recently [78, 101], such 𝑡-graphs can be extracted from atomistic simulations
of sheared amorphous solids. Features of the AQS dynamics, such as yielding and return
point memory, are thereby encoded in the topology of the 𝑡-graph [78, 79, 101]. Thus 𝑡-graphs
provide useful information about the underlying disorder landscape. At the same time, the
representation of AQS dynamics via 𝑡-graphs extracted from simulations provides a unified
framework within which we can compare the dynamics of atomistic as well as mesoscopic
models in a rather direct and comprehensive manner.

5.1 AQS transition graphs

To fix ideas, we consider first the sheared amorphous solid in an atomistic setting. Under AQS
conditions, a given mechanically stable particle configuration can be sheared in the positive
and negative direction until a mechanical instability occurs. Denoting by 𝜖± the critical values
of the external shear strain at which the instability sets in, for shear strains between 𝜖− and 𝜖+,
the configuration of particles deforms smoothly and reversibly in response to the applied shear
strain. These sets of mechanically stable particle configurations constitute an elastic branch of
the system which we simply refer to as a mesostate [78]. We will use capital letters to label
mesostates, and denote the critical strain values of a mesostate 𝐴 by 𝜖±[𝐴]. When 𝜖 = 𝜖+[𝐴]
(or 𝜖 = 𝜖−[𝐴]), a fast relaxation to a new mechanically stable particle configuration occurs. This
particle configuration must necessarily be part of another mesostate, i.e. belong to a different
elastic branch, say 𝐵. Thus the instability at 𝜖 = 𝜖+[𝐴] triggers a transition from mesostate 𝐴 to
𝐵. A similar transition occurs when 𝜖 = 𝜖−[𝐴]. The transition between mesostates can therefore
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Fig. 5.1 Transition-graph representation of the AQS dynamics and thermal history – atomistic (AS)
vs mesoscopic (Meso) models. Excerpts of transition graphs extracted from atomistic (a,b) and 𝑁 =
32 mesoscopic glasses (c,d) with different thermal histories: (a,c) poorly-aged/fast quenched, (b,d)
moderately aged/slow quenched. The color of each vertex indicates the strongly connected component
(SCC) of the graph that it belongs to (refer to text for details) and the initial mesostate of the prepared
glass has been marked with a larger red vertex labeled 𝐎. Vertices belonging to SCCs of size less than
10 have been colored in light gray.

be represented in terms of a directed graph, the AQS transition graph or simply 𝑡-graph. The
vertices of the 𝑡-graph are the mesostates, while from each mesostate we have two outgoing
transitions which constitute the directed edges of the graph. We shall denote the transitions
when 𝜖 = 𝜖+[𝐴] or 𝜖 = 𝜖−[𝐴] as the 𝐔-, respectively, 𝐃-transition out of 𝐴. We will refer to the
states that these transitions lead to as 𝐔𝐴 and 𝐃𝐴.

The 𝑡-graph along with the critical strains 𝜖±[𝐴] associated with each mesostate forms a
complete representation of the AQS dynamics under arbitrary shearing protocols [79]. Given
an initial mesostate 𝐴 and a shear protocol, the sequence of mesostates visited can be read off
by following the corresponding 𝐔- and 𝐃-edges, while checking each time whether the critical
strains needed to trigger the transition have been exceeded or not. Note that since 𝐔𝐴 and 𝐃𝐴
are mesostates reached from 𝐴, their stability ranges must contain the strains 𝜖±[𝐴] at which
these transitions were triggered, i.e. we have the AQS conditions [79] :
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𝜖−[𝐃𝐴] < 𝜖−[𝐴] < 𝜖+[𝐃𝐴],
𝜖−[𝐔𝐴] < 𝜖+[𝐴] < 𝜖+[𝐔𝐴]. (5.1)

It follows that 𝜖+[𝐴] < 𝜖+[𝐔𝐴] < 𝜖+[𝐔2𝐴] < … and thus the upper critical strains are
monotonously increasing with repeated 𝐔-transitions. An analogous result holds for the lower
strain threshold under 𝐃-transitions. An immediate consequence of this observation is that the
sub 𝑡-graphs, which are obtained by considering only transitions under 𝐔 (or 𝐃), are necessarily
acylic, i.e. they cannot contain any cycles. Thus any cyclic behavior must arise from an interplay
of the 𝐔- and 𝐃-transitions.

5.2 Catalog acquisition and 𝑡-graphs from simulations

The numerical algorithm of extracting 𝑡-graphs from simulations of sheared amorphous solids
has been described in detail in the supplementary material of Ref. [78]. Here we will sketch
out the main idea. We start with an initial configuration that is part of a mesostate 𝑂 which we
call the reference state. We assign to 𝑂 the generation number 𝑔 = 0. Next, we execute the 𝐔-
and 𝐃-mesostate transitions out of 𝑂, leading to the mesostates 𝐔𝑂 and 𝐃𝑂, and we assign
these to generation 𝑔 = 1. Everytime we reach a new mesostate, we compare it to the catalog
of mesostates we have obtained so far to see whether it has been encountered before. If not,
we add it to our catalog. By proceeding generation by generation, we acquire in this manner a
catalog of mesostates: each mesostate 𝐴 is assigned an ID, its critical strains 𝜖±[𝐴] and the
IDs of the mesostates it transits into under a 𝐔- or 𝐃-transitions are determined. The 𝑡-graph is
then assembled from such catalogs. In our mesoscopic models, each mesostate corresponds to
a configuration of the local elastic branches associated with each of the cells. The event based
nature of their simulations facilitates the identification of mesostates and their transitions.

We obtain catalogs from 10 realizations each of the 𝑁 = 32 poorly-, moderately-, and
well-aged glasses, as described in the previous section. Tables 5.1, 5.2, and 5.4 (in Section
5.7) detail various properties, such as the number of generations and mesostates contained in
them. The ranges of strains that these catalogs sample are indicated in Fig. 3.5, showing how
far these catalogs reach out in strain relative to the yield strain under monotonous loading. In
addition, we produced 10 catalogs from samples of an ultra-stable glass aged by an average of
4.103 steps per-site. For comparison purposes, we also extracted catalogs from our atomistic
simulations, using a set of 8 soft and 30 moderately hard reference configurations, that were
obtained via fast and slow quenches from a high-temperature liquid. The description of these
atomistic catalogs is given in Section 5.7.
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Fig. 5.1 shows sample 𝑡-graphs from each of the four sets of samples: fast quenched atomistic
glass (AS Fast #4), slow quenched atomistic glass (AS Slow #2), poorly-aged mesoscopic glass
(Meso PA #1), and the moderately-aged mesoscopic glass (Meso MA #4). The numbers after
the # sign specify the particular realization of the glass, as listed in Tables 5.1, 5.2, 5.6, and
5.7. The placement of the vertices of the graph is arbitrary. The mesostate corresponding to the
initially prepared glass, i.e. the reference state, is indicated by the large vertex in red and labeled
𝑂. Note the general tree-like structures in all four 𝑡-graphs which appear to be qualitatively
similar, despite the different underlying model (atomistic vs. mesoscopic) and also the different
degreee of glass preparation. The color of each vertex indicates the SCC that it belongs to, as
we discuss in the next section.

A note of caution when comparing simulations of atomistic and mesoscopic models is in
order. As we argue in Section 5.8, our atomistic simulations correspond to an elastoplastic
model with size somewhere between 𝑁 = 5 and 10. Thus our atomistic simulations involve
systems of smaller size and possibly suffer more from finite-size effects. Moreover, the way the
atomistic systems have been aged is different from the aging protocol used for our mesoscopic
systems. All of these features make detailed comparisons difficult and we want to stress again,
that our main aim in presenting our mesoscopic model is not to quantitatively reproduce the
results of atomistic simulations. We will return to this point when comparing the SCC size
distributions in section 5.4.

5.3 AQS graph topology and strongly connected components (SCCs)

We will probe the topology of the 𝑡-graphs more deeply by focusing on their SCCs to which
any cyclic response must be confined [101], as we explain now. Two mesostates 𝐴 and 𝐵 are
connected, if on the 𝑡-graph there is a directed path of 𝐔- and 𝐃-transitions that leads from
𝐴 to 𝐵. Physically, this implies that there is some shearing protocol that, when applied to 𝐴,
gives rise to a deformation pathway terminating in 𝐵. We say that two mesostates 𝐴 and 𝐵
are mutually reachable, if there is a deformation pathway from 𝐴 to 𝐵 as well as one from 𝐵
to 𝐴. Mutual reachability is an equivalence relation (in particular, if the pairs 𝐴,𝐵 and 𝐵,𝐶
are mutually reachable, so must be the pair 𝐴,𝐶). Therefore, the vertices of the 𝑡-graph can
be partitioned into equivalence classes under mutual reachability and these classes form its
SCCs [12]. Numerical details on how to extract SCCs from 𝑡-graphs have been provided in
Ref. [101].

By construction, transitions between any two mesostates belonging to different SCCs are
irreversible: there may be a deformation pathway from one to the other, but not back, since
otherwise the pair of states would have been mutually reachable. Thus mutual reachability also
partitions the set of transitions between mesostates into reversible ones, i.e. those connecting a
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Table 5.1 Properties of the 10 catalogs obtained from poorly-aged (PA) glasses of the mesoscopic model
with 𝑁 = 32. The catalogs are labeled by their run number, as given in the first column, while 𝑔comp
identifies the generation upto which all outgoing mesostate transitions have been identified. The number
of mesostates and SCCs found in the catalog are given by 𝑁0 and 𝑁SCC, respectively. The last four
columns provide statistics about limit-cycles under symmetric cyclic shear contained in the catalog: the
number 𝑛cycles of limit-cycles found, the number 𝑁 supp

SCC of SCCs that support at least one limit-cycle,
the size 𝑠max

suppSCC of the largest SCC supporting a limit-cycle, and the number 𝑛maxSCC
cycles of limit-cycles

contained in the largest supporting SCC (refer to text for details). The last row is a cumulative total over
the entries in the corresponding columns.

Run 𝑔comp 𝑁0 𝑁SCC 𝑛cycles 𝑁 supp
SCC 𝑠max

suppSCC 𝑛maxSCC
cycles

1 35 26093 5817 21631 4598 91 97
2 35 59281 11084 44902 8579 175 84
3 35 28418 5963 23956 4261 128 116
4 35 131100 29478 123341 24215 106 104
5 35 48832 10374 52900 9474 73 67
6 35 89710 22955 101298 21130 132 116
7 35 46049 11498 36801 9301 139 124
8 35 145281 43409 133984 34033 104 67
9 35 52641 12854 56017 11595 148 124
10 35 49355 10155 47003 7377 115 153
ALL n/a 676760 163587 641833 134563 n/a 1052

pair of mesostates within the same SCC, and irreversible ones, where the two mesostates must
belong to different SCCs. Any periodic and hence reversible response to some shear protocol
must therefore be confined to a single SCC. The SCCs are thus the “containers” of reversible
behavior [101].

5.4 Comparison of the poorly- and moderately-aged catalogs

Tables 5.1 and 5.2 show the properties of the 10 catalogs with 𝑁 = 32 which were obtained by
taking the poorly- and moderately-aged mesoscopic glasses as reference states. The second
column lists the number of generations 𝑔comp up to which all outgoing mesostate transitions
were identified. Thus 𝑔comp = 39 means that we have identified every mesostate that can be
reached from the reference configuration by a sequence of 39 𝐔− and 𝐃-transitions. Next, 𝑁0
and 𝑁SCC list the number of mesostates and SCCs contained in the catalog. The last row of
each table provides the cumulative totals. We will discuss the results shown in the last four
columns later in this section.

SCC size distributions – In Fig. 5.2 we compare the size distribution of the SCCs found in
these catalogs. The blue boxes and black circles show the size distribution of SCCs extracted
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from all 10 catalogs of the 𝑁 = 32 mesoscopic glasses. All curves are normalized but have been
vertically offset for clarity. Observe that the size distributions are broad and that the moderately-
aged catalogs contain larger SCCs. Nevertheless, power-law fits using the method of Clauset et
al. [29] yield a comparable power-law exponent of about 2.3±0.3 for both distributions1. For
comparison purposes, we also show the SCC size distributions obtained from our atomistic
simulations under slow and fast quench, labeled as AS slow (triangles) and AS fast (diamonds),
corresponding to moderately- and poorly-aged glasses. These catalogs reveal similarly broad
distributions, with the moderately-aged catalogs containing again larger SCCs, while the fitted
power-law exponents 2.7±0.3 are comparable.

Note the presence of a finite-size cut-off around SCC sizes of about 30 and 100 for the
mesoscopic PA and MA catalogs, respectively. The SCC size distributions obtained from the
atomistic simulations do not feature such a cut-off. In Section 5.8 we argue that the mesoscopic
equivalent size 𝑁 corresponding to our atomstics simulations is somewhere between 𝑁 = 4
and 𝑁 = 10. Thus the atomistic samples are in effect smaller. Fig. 5.6 of Section 5.8 shows the
corresponding SCC size distributions when we compare the atomistic simulations with the size
distributions obtained from 𝑁 = 8 mesoscopic catalogs. While still there, the finite-size cut-off
appears to be less prominent in the distributions of the mesoscopic models, particularly for the
MA samples. We think that the suppression of the cut-off is a finite-size effect. In fact, among the
8 AS fast catalogs there are considerable fluctuations in the size 𝑠max of the largest SCC found in
each of them. Ordered from smallest to largest, we find 𝑠max = 106,243,244,259,379,413,458,
and 929. Among these, the smallest value 𝑠max = 106 is realized in catalog #4, whose transition
graph is shown in Fig. 5.1, while the largest value 𝑠max = 929 is observed in catalog #2, whose
transition graph is given in Fig. 1(b) of ref. [101]. In fact, we checked for AS fast that the data
points for the largest SCC sizes in Fig. 5.2, are singletons corresponding to the largest SCCs
found in the catalogs.

Note that while the 𝑡-graphs and SCC size distributions obtained from our mesoscopic and
atomistic model are qualitatively similar, the dependence of these on the degree of aging is rather
weak. In other words, the topology of the 𝑡-graphs alone does not appear to contain features
that are directly linked to the different amount of aging these samples have been subjected to.
As we will show next, the effect of aging on the samples reveals itself when we combine the
topological features of the 𝑡-graphs with additional physical properties, such as the prevalence
of cycles, the strain stability ranges and plastic strains associated with the mesostates and their
SCCs.

Prevalence of cycles – We next turn to the population of cycles in our catalogs. We
are again interested in cycles that can be traversed under a symmetric cyclic shear protocol:

1For the estimate of the exponent, we considered only SCCs with sizes 𝑠SCC ≥ 4, as in earlier work [101], where this choice
was justified by the empirical observation that small SCCs containing mesostates that were added to the catalog at the last
generations are more likely to increase in size, if the catalog is augmented by going to a higher number of generations.
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Fig. 5.2 Statistics of SCCs vs thermal history – Comparison of the SCC size distributions obtained
from simulations of the atomistic (AS) and 𝑁 = 32 mesoscopic models (Meso) and distinguished by
the extent of aging they have been subjected to: moderately-aged, labeled as Meso MA and AS slow,
and poorly-aged, labeled as Meso PA and AS fast, respectively. The dashed lines are power-law fits to
the data, which were obtained using a common lower SCC size cut-off of 𝑠SCC = 4. Curves have been
vertically offset for clarity.
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Table 5.2 Properties of the 10 catalogs obtained from moderately-aged (MA) glasses of the 𝑁 = 32
mesoscopic model. A brief summary of the quantities listed is given in the caption of Table 5.1, while
further details are provided in the text.

Run 𝑔comp 𝑁0 𝑁SCC 𝑛cycles 𝑁 supp
SCC 𝑠max

suppSCC 𝑛maxSCC
cycles

1 39 46059 8148 3510 857 269 7
2 39 36279 8164 1732 363 451 11
3 39 130733 33324 3933 1148 542 129
4 39 19344 4244 1659 490 207 3
5 39 147476 49335 989 437 133 2
6 39 64096 11678 1731 643 166 2
7 39 117680 30721 6189 1809 244 58
8 39 64693 12657 5317 1219 651 179
9 39 118964 33857 3067 1143 141 12
10 39 91758 26814 8516 2011 201 127
ALL n/a 837082 218942 36643 10120 n/a 530

0→ 𝜖amp → −𝜖amp → 0 with some shear amplitude 𝜖amp. We consider every mesostate in our
catalog that is stable at zero strain and apply this cyclic shear protocol, checking whether a
cyclic response has set in or not. The column labeled 𝑛cycles of Tables 5.1 and 5.2 lists the total
number of distinct cycles found in our catalogs obtained from our moderately- and poorly-aged
mesoscopic glasses. We find that the poorly-aged catalogs contain a significantly larger number
of cycles, although the total number of mesostates in these catalogs is comparable (836082 and
676760 mesostates, respectively).

As we have noted before, the mesostates forming a cyclic response must all be confined
to a single SCC, i.e. a cycle cannot traverse multiple SCCs. We therefore ask next how the
cycles found in the catalogs are distributed across the available SCCs. In particular, we ask
for the number of SCCs that support at least one symmetric cycle, which we define as 𝑁 supp

SCCand list in Tables 5.1 and 5.2. For ease of comparison, we have put together in Table 5.3 the
cumulative totals listed in the last lines of these tables along with the corresponding data from
our atomistic simulations.

Starting with the mesoscopic glasses, there is again a stark contrast between catalogs
obtained from poorly-aged (PA) and moderately-aged (MA) samples (first two rows of Table
5.3). In the MA glasses the symmetric cycles are contained in a relatively small fraction of
SCCs (10120 out of a total of 218942 available ones), while for the poorly-aged catalogs a large
fraction of SCCs supports at least one such cycle (134563 SCCs that support symmetric cycles
out of a total of 163587). From Tables 5.1 and 5.2, we see that this is true also for the individual
catalogs. It is thus apparent that in the moderately-aged catalogs a relatively small fraction
of SCCs support most of the cycles found, while in the poorly-aged catalogs the opposite is
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Table 5.3 Comparison of the cumulative totals of the number of mesostates 𝑁0, SCCs 𝑁SCC, and
SCCs that support symmetric cycles 𝑁 supp

SCC . The top two rows show data for the poorly-aged (PA) and
moderately-aged (MA) mesoscopic glasses. The bottom two rows compare these quantities for the fast
and slow cooled atomistic glasses. Refer to text for further details and the Tables 5.6 and 5.7 in Section
5.7 for the sample-by-sample characterization of the atomistic catalogs.

Catalogs 𝑁0 𝑁SCC 𝑁 supp
SCC

Meso PA 676760 163587 134563
Meso MA 837082 218942 10120
AS Fast 459508 210864 10933
AS Slow 555332 244334 5863

the case and almost every SCC supports at least one cycle. A similar, albeit less pronounced
behavior is seen also in our atomistic simulations, cf. the last two rows of Table 5.3. Note that
the cumulative data for poorly-aged (moderately-aged) initial states have been sampled from 8
(30) catalogs (Tables 5.6 and 5.7 in Section 5.7), so that it is hard to compare the overall number
of cycles. Nevertheless, we observe also in our atomistic simulations that the number of cycle
supporting SCCs in the poorly-annealed catalogs appears to be disproportionally larger.

We finally consider the largest SCCs that support symmetric cycles, comparing their sizes
𝑠max
suppSCC and the number of cycles they contain 𝑛maxSCC

cycles . These numbers are shown in the last
column of Tables 5.1 and 5.2. Again, we find contrasting behavior. The largest cycle supporting
SCCs found in the moderately-aged catalogs are generally larger than those in the poorly-aged
ones, but despite of this, they contain fewer cycles.

5.5 The disorder landscape: SCCs and SCC exit strains

Our results for the prevalence of symmetric cycles can be summarized as follows: while the
poorly-aged catalogs contain a large number of such cycles which are distributed across a large
number of SCCs of various sizes, we find that the opposite is true for the catalogs obtained
from the moderately-aged samples. For the latter, the number of symmetric cycles contained is
far less and these cycles are confined to a small subset of available SCCs.

In order to understand better the difference of the disorder landscape arising from moderately-
aged and poorly-aged samples, we coarse-grain the 𝑡-graph to the level of SCCs, since – as we
have shown – any cyclic response must be confined to a single SCC. Every SCC has at least one
outgoing 𝐔- and one outgoing 𝐃-transition. Let us denote the states from which these outgoing
transitions originate as the 𝐔- and 𝐃-exits of the SCC. Suppose now that the SCC has only one
𝐔- and one 𝐃-exit and denote the threshold strains triggering these exiting transitions as ±

SCC.
Consequently, given any mesostate 𝐴 belonging to that SCC and applying strains confined to
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Fig. 5.3 The coarse-grained disorder-landscape, atomistic vs. mesoscopic models, and the effect of
aging – The six panels show the scatter plots of the SCCs found in catalogs obtained from atomistic
(first column) and our 𝑁 = 32 mesoscopic simulations (second and third columns). Panels (e) and (f)
depict the disorder landscape extracted from increasingly better-aged samples of the mesoscopic model.
Each symbol represents an SCC, while the size and color correspond to the size of the SCC and the
average plastic strain 𝜖pl of the mesostates constituting that SCC. Each SCC has at least one 𝐔- and
one 𝐃-transition that leads to another SCC, and we denote by ±

SCC the threshold strains to trigger these
transitions. As explained in the text, taking the extremes of these exit strains, the corresponding interval
(−

SCC,
+
SCC) provides a range of strain values over which the system will be trapped in that SCC. These

strains are used as coordinates for placing the SCC in the plot. Box-shaped symbols indicate that the
SCC supports at least one cycle under symmetric cyclic shearing. The area shaded in red in panels (d)
and (e) indicates where cycle supporting SCCs would have to be located if they were to contain cycles at
strain amplitudes beyond the onset of the irreversibility transition, as obtained from the inset of Fig. 3.9.
For panels (c) and (f) this region lies outside the plot window. The diagonal dashed lines corresponds to
the average SSC strain range of Eq. 5.3, estimated as +

SCC−−
SCC = Σss∕𝜇, where Σss is the steady-state

stress under monotonous strain loading. Refer to text for further details.

the interval −
SCC < 𝜖 < +

SCC, the resulting sequence of mesostates must remain confined to
the SCC. This follows from the observation made before, namely that for any mesostate 𝐴,
𝜖+[𝐴] < 𝜖+[𝐔𝐴] and 𝜖−[𝐃𝐴] < 𝜖−[𝐴].

In the case of multiple 𝐔- or 𝐃-exits from an SCC, we define +
SCC and −

SCC as the largest,
respectively lowest, strain triggering the outgoing transitions. It actually turns out that for
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5.5 The disorder landscape: SCCs and SCC exit strains

the SCCs considered in our catalogs only a very small fraction of SCCs have multiple 𝐔- or
𝐃-exits.2

Assuming therefore that each SCC has exactly one outgoing 𝐔- and 𝐃-transition, it follows
that in order for the SCC to support cyclic response under the strain protocol 0 → 𝜖amp →

−𝜖amp → 0⋯, we must require that +
SCC > 𝜖amp and −

SCC < −𝜖amp. In particular, this implies
that :

−
SCC < 0 < +

SCC. (5.2)
Distinguishing the SCCs by (i) their size, and (ii) whether they support a symmetric cycle or

not, we now ask how these SCCs are scattered in the plane spanned by −
SCC and +

SCC. Panels
(a) and (b) of Fig. 5.3 show the SCC scatter plots obtained from single catalogs of our atomistic
poorly-aged and moderately-aged samples, while panels (c) and (d) show the same for catalogs
obtained from our mesoscopic poorly-aged and moderately-aged 𝑁 = 32 samples. Panels (e)
and (f) show SCC scatter plots obtained from even further aged mesoscopic samples, with an
average of 150 and 4000 aging steps per site, respectively (details of these catalogs are provided
in Section 5.7). In each panel of the figure the number after the # sign indicates the particular
sample from which the data shown came from. The size of the symbols represent the size of the
SCCs, as indicated in the legend, while the boxed symbol shape indicates that the SCC actually
supports a limit-cycle, as determined by inspecting our catalogs. The highlighted upper left
quadrant of each plot corresponds to the region where the inequality (5.2) holds. Since this is
the region where any SCC which supports cyclic response under symmetric oscillatory shear
must be located, we will refer to it as the cycle-quadrant.

We start with a comparison of the poorly-aged (PA) and moderately-aged (MA) SCC scatter
plots obtained from our atomistic and mesoscopic glasses, panels (a) – (d). Comparing the
catalogs obtained from the PA samples, panels (a) and (c), with those of the MA samples, panel
(b) and (d), we see that in all cases the cycle supporting SCCs (boxes) are indeed confined
to the cycle-quadrant, i.e. the highlighted region in the top left part of the figure, as they
should. Moreover, note the relative sparsity of cycle-supporting SCCs in the atomistic (b) and
mesoscopic (d) MA samples, when compared with their poorly-aged counterparts, panels (a)
and (c). This is consistent with our earlier observation, namely that relative to the poorly-aged
samples, in the MA catalogs only a small fraction of SCCs actually support symmetric cycles.

Plotting the SCCs against their exit strains (−
SCC,

+
SCC) also visualizes possible correlations

in the locations of cycle supporting SCCs. For the poorly-aged samples, panels (a) and (c),
these SCCs fill out the cycle-quadrant rather uniformly and the extent to which this region is
filled seems to be limited mainly by the size of the catalog we have sampled, i.e. the number of

2For the 6 catalogs shown in Fig. 5.3 the percentages of SCCs with more than one 𝐔- or 𝐃-exits are: 1.7% (AS Fast), 1.7%
(AS Slow), 2.9% (PA), 3.6% (MA), 0.9% (WA), and 7.2% (UA). The low number of exits from SCCs is also apparent from the
transition graph excerpts shown in Figs. 5.1 and 5.5.
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generations we tracked3. This is in contrast to the case of the moderately-aged samples, panels
(b) and (d): not only are there fewer SCCs in the cycle-quadrant, but these SCCs tend to cluster
around its boundaries, +

SCC = 0 and −
SCC = 0, implying thereby that these SCCs can only

support cycles with low amplitudes of a symmetrical shear protocol. In fact, for the mesoscopic
samples we find that the scarcity of SCCs within the cycle-quadrant and their clustering near its
boundary becomes even more pronounced when the samples are aged more, as shown in the
SCC scatter plots of panels (e) and (f) which were generated from samples that underwent 150
and 4000 aging steps per site, respectively.

Thus panels (a) – (d) reveal that the SCC scatter plots obtained from our mesoscopic model
are qualitatively very similar to their atomistic counterparts: our mesoscopic model captures
rather well the difference of the samples due to their aging as well the spatial distribution of the
SCCs in the plane plane of exit strains (−

SCC,
+
SCC).Before proceeding, we should note that there are sample-to-sample fluctuations in the scatter

plots obtained from the individual glasses. This is also apparent in the variation of catalog
properties listed in Tables 5.1 and 5.2, as well as in the tables for the other catalogs given in
Section 5.7. In particular, the spatial population of SCCs in the cycle-quadrant varies from
sample to sample. Moreover, within a given sample the populations of SCCs in the (−

SCC,
+
SCC)-plane does not perfectly display the statistical ±

SCC → −∓
SCC symmetry which arises under

interchange of the forward and reverse shearing directions, even though the number of SCCs
shown in these plots are rather large. Nevertheless, the features we have been discussing so far
and in the following are typical and appear to be robust from sample to sample. Section 5.5.1
contains a discussion of the strip-like arrangement of the SCCs in the plain of exit strains, which
is highly pronounced in the case of the atomistic samples, as well as the better-aged mesoscopic
ones.

5.5.1 Arrangement of SCCs on the plane of exit strains ±
SCC

We discuss the spatial arrangement of SCCs along a strip-like region in the (−
SCC,

+
SCC), that

is clearly evident for the atomistic systems as well as the WA and UA mesoscopic samples in
the SCC scatter plots of Fig. 5.3. The diagonal dashed line in each of the plots corresponds to:

ΔSCC = +
SCC−−

SCC. (5.3)
As one would expect, the larger the strain range ΔSCC over which mesostates are trapped

within an SCC, the larger the size of the SCC itself. This trend is clearly visible in all six panels
of the plots. The smallest (and most numerous) SCCs are clustered around small values ΔSCC,

3Note the different strain ranges when comparing atomistic and mesoscopic catalogs, panels (a) – (d) of Fig. 5.3. While the
atomistic catalogs sample SCCs whose exit strains well exceed the yield-strain (about 0.13), the mesoscopic catalogs stay well
below yielding. This is due to the fact, that the 𝑁 = 32 mesoscopic systems correspond to much larger atomistic systems, then
the ones we simulated.
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while particularly for the WA and UA samples there appears to be a value ΔSCC = Δmax
beyond which it is unlikely to find SCCs, except for the outlier SCCs that we have associated
with mesostates not having experienced the stress-peak. A naive estimate for Δmax can be
made as follows. Denote by Σss the steady-state yield stress reached under monotonous loading
(cf. Fig. 3.5). Assuming that between −Σss and Σss the system responds purely elastically, we
obtain the estimate Δmax = Σss∕𝜇. From Fig. 3.5 we find that for the mesoscopic samples
Σss ≈ 0.85, while for the atomistic samples Σss ≈ 2.4. The dashed lines shown in Fig. 5.3
correspond to these choices, i.e. +

SCC−−
SCC = Σss∕𝜇.

5.6 The disorder landscape: Dependence of plastic strains on aging

Having established that the SCC scatter plots are a good proxy to probe topological features
of the disorder landscape, we next look more closely at the effect of aging on our mesoscopic
glasses. Panels (c) – (f) of Fig. 5.3 show SCC scatter plots obtained from increasingly better
aged samples of our mesoscopic glass which – apart from the PA, MA and WA samples we
considered so far – now includes also an ultra-aged (UA) glass, obtained from a treatment with
4000 aging steps per site. The properties of the 10 catalogs extracted from these glasses are
listed in Table 5.5 of Section 5.7.

Note that the moderately-aged (MA), well-aged (WA), and ultra-aged (UA) samples each
display distinct outlier SCCs in the cyclic quadrant. For the MA sample these SCCs are located
around (−

SCC,
+
SCC) = (−0.05,0.05), while for the WA samples these are found at larger strains.

These SCCs turn out to be formed by mesostates that can be reached from the initially prepared
glass by strain deformation protocols that do not go beyond the stress-peak and hence do not
suffer the subsequent large stress-drop.

To understand why with increased aging the cyclic quadrant becomes less densely populated
by SCCs and why these tend to cluster near its boundaries, we consider next the plastic strains.
Recall that with each mesostate 𝐴 we associate an elastic branch in the stress-strain plane. In the
case of our mesoscopic model, this branch is by construction linear and the plastic strain 𝜖pl[𝐴]
associated with the branch is the (extrapolated) value of the strain where the stress vanishes.
By averaging over the plastic strains of the mesostates that belong to an SCC, we obtain a
coarse-grained plastic strain for each SCC. The colors of the plot symbols shown in Fig. 5.3
represent the plastic strains of the SCCs, as indicated by the color table legends. Note that for
the mesoscopic samples, panels (c) – (f), we have color-coded the same range of plastic strains.
Thus the shift of colors towards blue and red as the samples get better aged indicates that the
magnitudes of typical plastic strains increase with aging.

Moreover, we see that the distribution of plastic strains across SCCs is strikingly different
for the differently aged samples. The well- and ultra-aged samples reveal a clear bi-modal
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Fig. 5.4 (a) Distribution of plastic strains of mesostates whose deformation paths have passed through
the forward (FW) or backward (BW) stress peak. The distributions were extracted from all moderately-,
well- and ultra-aged catalogs aged, respectively, by 15 (MA), 150 (WA) and 4000 (UA) aging steps per
site, and are labeled by circle-, diamond- and square-shaped plotting symbols. Each color refers to a
different choice of aging and whether the FW or BW stress peak was encountered first, as indicated in
the legend. The inset shows the evolution of the mean values of the FW (red symbols) and BW (blue
symbols) plastic strain distributions. The standard deviation of the distributions is indicated by the
black bars. (b) and (c) sample strain and stress deformation path for a mesostate 𝐴 from the WA sample
#8, which experiences the FW stress peak first. 𝐴 is reached from the well-aged glass by undergoing
15 𝐔-transitions followed by 25 𝐃-transitions. The 𝑥-axis indexes the sequence of transitions while
the black and red circles on the 𝑦-axis indicate the strains, panel (b), and stresses, panel (c), at which
the transitions occur. The vertical blue lines indicate the extents of each of the elastic branches of the
mesostates encountered along the deformation path from 𝑂 to 𝐴. The FW stress drop of ΔΣ≈ 0.4 occurs
during the 𝐔-transition at 𝑔 = 7, as visible in panel (c). The green diamonds in panel (b) mark the plastic
strains associated with the elastic branches visited. Refer to the text for further details.

distribution of plastic strains, characterized by very few SCCs that have vanishing plastic
strains4. For the poorly-aged sample, panel (c), the distribution of plastic strains appears to be
unimodal, with a large number of SCCs, particularly those in the cycle quadrant, having plastic
strains of very small magnitude.

To understand better the segregation of SCCs by plastic strain, we turn to the mesostates and
their deformation histories. Given a mesostate 𝐴, we consider the deformation path that leads to
it from the initially prepared glass state 𝑂. In particular, we are interested in mesostates whose
deformation path experiences the stress-peaks and subsequent stress-drops, that are encountered

4In all four panels of Fig. 5.3 the green color used in the legend of the SCCs sizes corresponds to the color-coding of
vanishing plastic strains.
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during monotonous shearing in the forward or backward direction. We distinguish such states
by whether the stress-drop in the forward or backward direction was experienced first, and call
these FW, respectively BW mesostates. In Fig. 5.6(a) we plot for each level of aging (MA, WA,
or UA) the plastic strain distribution extracted from the elastic branches associated with the
FW mesostates found in all 10 catalogs. We do the same for BW mesostates. For each level
of aging we have thus two distributions of plastic strains: one associated with FW, and one
associated with BW mesostates. We see that these distributions are peaked and the location of
the peaks move away from each other as the samples are better aged. This can also be seen in
the inset of Fig. 5.6(a) where we plot the averages of these distributions against the aging level.
The bars accompanying each symbol indicate the standard deviation of these distributions.

Panels (b) and (c) of Fig. 5.6 show the deformation path of one particular FW mesostate
𝐴 from the WA catalog. In both panels the horizontal axis labels the mesostate transitions
starting from the initial glass state 𝑂 and leading to 𝐴. Panel (b) shows the evolution of strain,
while (c) depicts the evolution of stress. Black and red circles mark the values at which each
transition occurs, respectively indicating whether the transition happened as a result of a strain
increase (black) or decrease (red). The blue vertical lines indicated the extent in strain (b) and
stress (c) for each of the elastic branches associated with the mesostates encountered along the
deformation path.

The protocol of applied strain that leads from 𝑂 to 𝐴 has an initial segment where the strain
is monotonously increased to about 𝜀 = 0.08 (black dashed horizontal line), giving rise to 15
𝑈 -transitions. Subsequently, the strain is monotonously decreased to about zero (red dashed
horizontal line) over 25 𝐷-transitions. The large FW stress drop of ΔΣ ≈ 0.4 is seen to occur at
step 𝑔 = 7, while the strain is still increasing. The green curve superimposed in panel (b) shows
the plastic strain associated with each of the mesostate elastic branches along the deformation
path. We see that the stress-drop at step 𝑔 = 7 is accompanied by a large increase in the plastic
strain. As we keep on increasing the driving strain, the plastic strain continues to increase with
𝑔, though much more slowly. Remarkably, once we start decreasing the strain again, the plastic
strain does not change appreciably. This shows that the changes in plastic strain accrued as
a result of experiencing the stress drop are subsequently very difficult to undo, since even a
monotonous and prolonged decrease of strain does not seem to change the plastic strain value
very much.

We verified that for the better aged glasses, MA, WA and UA, that all mesostates with an
appreciable plastic strain have a deformation history that experiences the stress drop. We thus
are able to link the bi-modal nature of the SCC plastic strain distribution to the passage through
the corresponding stress peak which is then accompanied by a stress-drop, as demonstrated in
Fig. 5.6(b), (see also the 𝑡-graph excerpts shown in Fig. 5.5 of Section 5.7, where transitions
accompanied by larger stress drops have been marked). The better the aging, the larger the
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stress drops, and hence the larger the jumps in plastic strain, and the more separated are the
peaks of the FW and BW distributions.

More importantly, as the evolution of plastic strains in Fig. 5.6(b) clearly shows, these
gains in plastic strain due to the experienced stress drop are apparently very hard to undo
by subsequently shearing in the reverse direction. We find that under shearing in the reverse
direction the sample has now been significantly softened, i.e. it has become more plastic (the last
5 transitions from 𝑔 = 35 to 40 happen at nearly constant strain), indicating a rejuvenation of the
sample [8]. Thus for the well-aged and ultra-well-aged samples the diagonal −

SCC++
SCC = 0

divides the plane of exit strains into an upper and lower half. SCCs located in the upper (lower)
half of the plot are SCCs whose mesostates were reached by passing through the forward
(reverse) stress peak. This is also consistent with the excerpts from the corresponding transition
graphs shown in Fig. 5.5 of Section 5.7.

5.7 Catalogs extracted from simulations of the atomistic model and the
mesoscopic model with well-aged reference configurations.

In addition to the Tables 5.1 and 5.2 in the main text, which describe the properties of catalogs
extracted from moderately- and poorly-aged glasses of our mesoscopic model with 𝑁 = 32, we
also list here the properties of (i) two increasingly better-aged mesoscopic catalogs, prepared
from glasses subjected to 150 and 4000 aging steps per site, which we will refer to as the
well-aged (WA) and ultra-aged (UA) glasses, respectively, and (ii) atomistic catalogs obtained
from 8 poorly-aged and 30 well-aged reference configurations. The aging of the atomistic
glasses is controlled by the rate of quenching to zero temperature from a high temperature liquid,
as described in Section 3.3. We refer to these as fast (AS Fast) and slowly (AS Slow) quenched
atomistic glasses, respectively.

Fig. 5.5 shows an excerpt of the transition graph extracted from samples of sample #8 of
our WA glass, panel (a), and sample #3 of the ultra-stable UA glass, panel (b). The number of
mesostates displayed in the 𝑡-graph excerpts shown are 1665 and 4610, respectively. We have
obtained the graphs shown in Fig. 5.1 of the main text as well as in Fig. 5.5 by starting out in
the reference configuration and following SCCs and the transitions between them until at least
1500 mesostates have been collected. For every SCC reached in this way, we added also the
remaining mesostates belonging to that SCC so that the total number of vertices constituting the
graph excerpt is typically larger than 1500. The number of SCCs shown in the excerpts of the
two graphs in Fig. 5.5 are 216 (WA) and 19 (UA). The sizes of SCCs seen in the WA excerpt are
small (𝑠SCC ≤ 56), while the UA excerpt has three very large SCC with sizes 𝑠SCC = 3173,1271,
and 82, shown in pink, yellow, and green, respectively. These findings are consistent with the
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well-aged reference configurations.

  

Fig. 5.5 Excerpts of transition graphs extracted from well-aged (WA) and ultra-well-aged (UA) meso-
scopic glasses with 𝑁 = 32. Refer to text for further details.
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Table 5.4 Properties of the 10 catalogs obtained from the𝑁 = 32well-aged (WA) reference configurations
aged at 150 aging steps per site of our mesoscopic model. Refer to the caption of Table 5.1 for the
description of the columns.

Run 𝑔comp 𝑁0 𝑁SCC 𝑛cycles 𝑛suppSCC 𝑠max
suppSCC 𝑛maxsuppSCC

cycles

1 39 79565 25151 130 44 60 50
2 39 91201 27337 60 33 475 1
3 39 114686 36931 305 14 300 219
4 39 124298 33459 525 107 344 32
5 39 38629 13207 685 181 419 12
6 39 64475 13240 1388 606 127 7
7 39 26421 6677 115 45 38 12
8 39 80317 37092 122 65 56 50
9 39 68154 17009 43 5 26 38
10 39 84064 34515 66 2 88 42
ALL n/a 771810 244618 3439 1102 n/a 463

Table 5.5 Properties of the 10 catalogs obtained from the 𝑁 = 32 ultra-aged (UA) reference configurations
aged at 4000 aging steps per site of our mesoscopic model. Refer to the caption of Table 5.1 for the
description of the columns.

Run 𝑔comp 𝑁0 𝑁SCC 𝑛cycles 𝑛suppSCC 𝑠max
suppSCC 𝑛maxsuppSCC

cycles

1 45 24999 2714 162 57 433 1
2 45 22443 1758 486 114 625 72
3 45 25541 1834 468 79 3173 43
4 45 28065 5796 205 77 703 5
5 45 77224 24002 94 51 168 8
6 45 19225 1643 314 107 2489 4
7 45 17750 1394 300 104 1292 1
8 45 15036 1066 681 107 1428 35
9 45 68780 14479 94 54 60 2
10 45 17118 1129 911 161 1467 93
ALL n/a 316181 55815 3715 911 n/a 264

SCC scatter plots shown in panels (e) and (f) of Fig. 5.3. We believe that the emergence of the
giant SCCs in the ultra-stable sample is a finite-size effect.

The stress-strain curves of the well-aged samples under uniform shear exhibit large stress
changes across the yielding transition. For the WA and UA samples shown in Fig. 5.5, the
magnitude of these stress-jumps under shear in the forward and reverse directions are ΔΣ =
0.46,0.45 for the WA glass and ΔΣ = 0.62,0.70 for the ultra-stable UA glass. In the graphs
shown in Fig. 5.5 we have highlighted transitions that involve stress-jumps with a magnitude of
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at least 0.1, by fat black (𝐔-transition) and red arrows (𝐃-transition). Despite of the relative
low threshold value chosen for these jumps, only very few transitions in the two graphs shown
experience large stress changes. Note that for both the WA and UA samples the transitions
involving the large stress-jumps under forward and reverse shear tend to partition the graph
into two halves (at least to the resolution of the number of vertices shown). This effect is even
more dramatic for the ultra-stable glass sample where the transitions with large stress jumps
immediately leads to giant SCCs.
Table 5.6 Properties of the 8 catalogs obtained from poorly-aged (fast quench) reference configurations
of our atomistic model. Refer to the caption of Table 5.1 for the description of the columns.

Run 𝑔comp 𝑁0 𝑁SCC 𝑛cycles 𝑁 supp
SCC 𝑠max

suppSCC 𝑛maxSCC
cycles

1 40 57638 24123 4650 1617 929 215
2 43 56158 27733 4515 1451 413 217
3 37 55658 24119 5380 1305 106 9
4 36 55057 24931 6972 1901 244 255
5 41 57602 27645 3297 834 458 396
6 35 53114 27939 4694 1453 259 244
7 41 65842 29580 4323 1185 379 253
8 45 58439 24794 5068 1187 234 235
ALL n/a 459508 210864 38899 10933 n/a 1824

5.8 Estimating the mesoscopic equivalent of the size of atomistic simula-
tions

Although our goal is not to quantitatively map the elastoplastic model onto atomistic simulations,
we must ensure that the disordered landscape statistics are comparable between the two types
of models. From this point of view, being able to estimate the number of simulated elements
of the mesoscopic model, i.e. the system’s number of degrees of freedom, is essential for a
reasonable comparison which takes also into account possible finite-size effects.

To estimate the equivalent number of simulated elements, one must first determine the
element size of the elastoplastic model below which the mechanical description is unresolved.
This size corresponds to an upper limit of the characteristic plastic rearrangement size. Several
experimental approaches have been performed to estimate the size of rearrangements ranging
from direct observations in colloidal systems [110] to indirect estimations from strain rate
sensitivity analysis in metallic glasses [74]. In all of these cases, the results show that plastic
rearrangement cores contain a few dozen particles, so that the overall sizes of these cores range
from about two to three particle diameters.
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Characterization of the disorder landscape via transition graphs

Table 5.7 Properties of the 30 catalogs obtained from well-aged (slow quench) references configurations
of our atomistic model. Refer to the caption of Table 5.1 for the description of the columns.

Run 𝑔comp 𝑁0 𝑁SCC 𝑛cycles 𝑁 supp
SCC 𝑠max

suppSCC 𝑛maxSCC
cycles

1 37 21105 11892 908 118 642 285
2 39 16416 7202 797 211 196 148
3 34 13894 5774 1101 264 503 135
4 34 13710 5188 874 246 328 153
5 37 18417 10118 552 140 371 120
6 40 17618 6659 1660 275 718 302
7 31 21250 10511 1373 371 330 64
8 37 20940 8876 907 349 802 170
9 43 18145 8578 664 26 980 78
10 34 16847 6895 793 200 334 33
11 32 13849 7535 766 201 521 178
12 40 17723 7326 1200 233 356 148
13 36 19814 10441 465 106 343 193
14 41 22248 8824 1132 220 513 251
15 35 14288 7221 727 123 377 199
16 39 20930 7124 1562 257 2688 712
17 42 15207 4769 1884 252 1017 375
18 42 20779 7891 1719 271 1232 583
19 35 16019 7276 712 186 729 263
20 39 17477 6786 765 169 1489 307
21 37 22784 11117 447 78 486 226
22 38 17773 6717 473 96 853 181
23 34 18273 7791 549 180 118 48
24 42 24157 8904 1099 256 451 102
25 37 14743 4966 1092 207 1199 274
26 39 19295 9505 664 192 383 89
27 36 19070 9547 873 301 518 146
28 39 23452 10941 786 105 892 172
29 42 18683 8289 822 89 833 341
30 39 20426 9671 1493 141 963 883
ALL n/a 555332 244334 28859 5863 n/a 7159

The determination of this length scale in atomistic simulations poses several difficulties.
First, the presence of avalanches makes it challenging to identify the individual rearrange-
ments. Second, there is no method yet to spatially distinguish between the non-linear and
non-affine elastically strained zones from the non-reversible plastic responses. Finally, another
complication arises from the fact that the same zone can contain several slip directions in
a realistic particle system [7, 84, 108], resulting in an effective higher density of potential
rearrangements than that of a scalar description. Several approaches have been implemented to
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deal with these difficulties. They rely on the analysis of long-range elastic fields [3, 84], the
quantitative calibration of elasto-plastic models [40], the calculation of the spatial extension
of rearrangements [100], the strain’s spatial correlations [67, 85], and the reproduction of the
mechanical response from the spatial density of barriers [91]. These approaches, particularly
those using a two-dimensional system under AQS loading like ours, lead to a consistent estimate
of the linear size of plastic rearrangements lying between 3 and 7 particle diameters. For our
atomistic system containing 1024 atoms, these bounds lead to an equivalent mesoscopic system
size between 𝑁 = 5 and 10.

We conclude this section with a comparison of the SCC distributions obtained from our
atomistic simulations with those obtained from catalogs of its mesocopic size-equivalent with
𝑁 = 8. The properties of our 𝑁 = 8 mesoscopic catalogs are given in Table 5.8 below. The
distributions are broad, and a prominent size cut-off at largest SCC sizes is now less prominent
for the mesoscopic distributions when compared with the SCC size distributions obtained from
the 𝑁 = 32 mesoscopic catalogs, shown in Fig. 5.2.
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Fig. 5.6 Comparison of the SCC distribution obtained from the atomistic simulations with those obtained
from a mesoscopic model with compatible system size 𝑁 = 8. Shown are the distributions for poorly-
and medium-aged glasses.
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Table 5.8 Properties of the 10 catalogs obtained from the mesoscopic 𝑁 = 8 poorly-aged and moderately-
aged reference configurations, shown in the left and right table respectively. Refer to the caption of Table
5.1 for the description of the columns.

Run 𝑔comp 𝑁0 𝑁SCC

1 35 154630 45402
2 35 88933 22904
3 35 53179 15172
4 35 72471 21710
5 35 121168 33327
6 35 26003 5610
7 35 45376 11676
8 35 74215 20657
9 35 66648 15469
10 35 31616 7181
ALL n/a 734239 199108
Run 𝑔comp 𝑁0 𝑁SCC

1 44 74274 17668
2 44 74301 18749
3 44 54534 12360
4 44 148645 39763
5 44 113394 26659
6 44 246908 76190
7 39 341077 99587
8 44 25234 4347
9 44 163766 38098
10 44 154641 33074
ALL n/a 1396774 366495
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Chapter 6

Conclusion and future directions

In this thesis, by using a novel ingredient for the well established elastoplastic models, we
capture limit cycles to study the irreversibility transition in cyclically sheared amorphous solids
by accounting the effects of sample preparation and system size. The key ingredient is a local
stress landscape accessible to the individual lattice sites in our model which are quenched in
“time”, that is, along the direction of the deformation.

Irrespective of the degree of annealing of the glass sample, we have shown that the approach
to the irreversibility transition depends significantly on system size. However, the nature of
the transition marked by the disappearance of limit cycles across the irreversibility transition
depends on the degree of annealing of glass samples. Poorly-aged samples show a power-law
response for both the duration of transients and the mean period of limit cycles close to the
irreversibility transition. Contrastingly, well-aged glass under cyclic shear at larger system sizes
emerge with limit cycles almost immediately or not at all. This signals that the irreversibility
transition under cyclic shear of well-aged glass is sharp and possibly a discontinuous transition.
In the case of the better aged samples, we find that cyclic response under oscillatory shear
emerges after only a few loading cycles. The dependence on system size is more pronounced in
this case. Samples of small size exhibit a cyclic response containing many plastic events and
this response continues up to strain amplitudes at which the system would have yielded under
monotonous shear loading. However, as the sample size increases, the cyclic response becomes
more elastic and the range of strain amplitudes at which it is exhibited shrinks. Changing the
system size in our moderately- and well-aged samples allows us to gradually transition from a
cyclic response whose phenomenology is characteristic of poorly-aged glasses to one where
this cyclic response is dominantly elastic at larger sizes.

To further understand the role of annealing, we turn to transition graph or a 𝑡-graph rep-
resentation of the dynamics of sheared amorphous solids. A 𝑡-graph representation captures
the response to arbitrary shear driving protocols under any combination of forward and reverse
shear. To study the effect of annealing, we generate 𝑡-graphs at different degrees of annealing
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and system size. We considered a particular topological quantity characterizing the 𝑡-graphs,
its strongly connected components (SCCs), since any cyclic response has to be confined to
a single SCCs. The size distribution of SCCs sampled from both atomistic and mesoscopic
simulations of differently aged samples all follow a power-law with an exponent that varies
little with the extent of aging but is slightly smaller for the mesoscopic systems than for the
atomistic ones. A closer inspection that also takes into account physical properties associated
with the SCCs, in particular their range of stability and typical plastic strains, turns out to be
extremely informative. We find that the sample age induces a gradual phase separation between
domains of stability centered either on the initial state or at a finite positive or negative plastic
strain. The complex age-dependence of the interplay between the amplitude of the center of the
domain and the width of the stability ranges has important consequences on the accessibility of
limit cycles depending on the particular parameters of the cycling protocols.

Our studies on the effect of sample preparation on the dynamics of sheared amorphous solids
is made possible by introducing a simple but physically motivated glass preparation protocol
that helps tune the initial degree of annealing of the sample continuously. Such a preparation
protocol is tested to recover the response of such samples against unidirectional shear. This
includes a ductile to brittle transition as the degree of annealing is increased with a macroscopic
response to strain that settle in the same stationary state irrespective of the degree of annealing
of the sample.

Finally, using our elastoplastic model, we also study memory effects in cyclically sheared
amorphous solids for poorly-aged glasses. We first show that we can capture memories of
single and multiple training amplitudes. We also show how the emergence of multi-period limit
cycles and/or absence of limit cycles affect the memories of training as the driving increases
past the irreversibility transition. We complement these studies using our observations from
𝑡-graph. We showed that the memory of training is also encoded in the distributions measuring
local distance to stress thresholds of the trained state. We then demonstrated that while it
may take a glass sample many cycles to settle in a limit cycle especially in the vicinity of the
irreversibility transition, the number of driving cycles required to encode memory of training
can be significantly less. Our studies also highlight that, irrespective of the training amplitude,
a trained state obtained under cyclic driving can encode memory of shear direction which
can be revealed through suitably desgined read-out protocols. A memory of shear direction
is established rather immediately under cyclic driving. Almost all these observations are
supplemented under two different types of protocols that reveal memory of training. One that is
accessible in simulations only while the other can be realised in experiments. Finally, we show
that a glass sample that is trained under cyclic shear can have very different affinity towards
learning additional memories of training against fresh undeformed glass samples. We also
discuss some of our observations against well studied hysteron-based models and also make
connections to previous studies where interactions are neglected or purely ferromagnetic.
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6.1 Perspectives

6.1 Perspectives

Having demonstrated that our mesoscopic model reproduces key features of amorphous solids
under variable athermal quasistatic loading, we conclude with a discussion of possible directions
for future research. Compared to atomistic models, the computational cost of simulation of
mesoscale models is rather low, allowing us to perform extensive numerical computations as
well as probing system sizes not accessible to atomistic simulations. In this context, it would
be nice to understand better the complex interplay between finite-size effects and the degree
of aging that we have observed under oscillatory shear. In the same vein, a detailed statistical
analysis of the spatial structure and correlations of sites that undergo plastic activity will be of
interest both near the yielding transition, and also in the evolution of the transients toward cyclic
response under oscillatory shear. In this context, it would be relevant to understand how the
spatial structure of sites of plastic activity associated with transitions within an SCC correlates
with the size of the SCC and its stability range. In fact, one can regard the set of such active sites
as a fingerprint of its SCC and ask how this set changes under transitions to neighbouring SCCs,
thereby defining an overlap function between SCCs. Since SCCs are containers of periodic
response, the strength of such overlaps will have implications for memory formation. Strong
overlaps would imply that similar cyclic responses can be realized in neighbouring SCCs. At
the same time, such overlaps can also be used to characterize in greater detail the topology of
the disorder landscape and its possible hierarchical organization.

Our findings have also implications for memory formation in amorphous solids. Cyclic
response under oscillatory shear can encode information and thus form a “memory” about the
forcing that caused the response [59]. Viewed within the framework of the 𝑡-graphs any periodic
response must be confined to one of its SCCs. Thus the evolution under oscillatory shear is
primarily a search for a confining SCC. In fact, such SCCs not only contain the cycle forming
the cyclic response, but a hierarchy of nested cycles, one of which forms the cyclic response. A
hierarchical organization of cycles is typically associated with return point memory [78, 79, 101].
In particular, the size of an SCC, i.e. the number of configurations they contain, can be regarded
as a proxy for memory capacity [101].

Since we find that the distribution of SCC sizes is broad, irrespective of the thermal histories
of the glasses from which these distributions were sampled, this suggest a high memory capacity
even for well-aged glasses. However, a closer look at the stability ranges of the SCCs found in
these glasses, reveals that only the poorly-aged samples have a large abundance of SCCs that
can support symmetric cyclic shearing protocols. Contrastingly, in the case of the well-aged
glasses very few SCCs support cyclic response to such oscillatory shear protocols. We find
that those that do are characterized by loading/driving histories that did not experience the
stress-peak and subsequent stress drop. Consequently, their cyclic response is largely elastic
and confined to few and relatively small SCCs.
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On the other hand, loading histories in which a stress peak and subsequent stress drop are
encountered, invariably give rise to rejuvenation of the sample which is also accompanied by
a jump of the plastic strain to non-zero values. As a result, a large number of SCCs become
dynamically accessible. However, due to the jumps in plastic strain, these SCCs will only
support cyclic response to oscillatory shear if the shear strain is centred around the value of
their plastic strain.

106



References

[1] Adhikari, M., Mungan, M., and Sastry, S. (2022). Yielding behavior of glasses under
asymmetric cyclic deformation. arXiv preprint arXiv:2201.06535.

[2] Adhikari, M. and Sastry, S. (2018). Memory formation in cyclically deformed amorphous
solids and sphere assemblies. The European Physical Journal E, 41:1–17.

[3] Albaret, T., Tanguy, A., Boioli, F., and Rodney, D. (2016). Mapping between atomistic
simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model.
Physical Review E, 93(5):053002.

[4] Amon, A., Nguyen, V. B., Bruand, A., Crassous, J., and Clément, E. (2012). Hot Spots in
an Athermal System. Physical Review Letters, 108(13):135502.

[5] Argon, A. (1979). Plastic deformation in metallic glasses. Acta Metallurgica, 27(1):47–58.
[6] Argon, A. and Kuo, H. (1979). Plastic flow in a disordered bubble raft (an analog of a

metallic glass). Materials Science and Engineering, 39(1):101–109.
[7] Barbot, A., Lerbinger, M., Hernandez-Garcia, A., García-García, R., Falk, M. L., Vandem-

broucq, D., and Patinet, S. (2018). Local yield stress statistics in model amorphous solids.
Physical Review E, 97(3):033001.

[8] Barbot, A., Lerbinger, M., Lemaître, A., Vandembroucq, D., and Patinet, S. (2020). Reju-
venation and shear banding in model amorphous solids. Physical Review E, 101(3):033001.

[9] Baret, J.-C., Vandembroucq, D., and Roux, S. (2002). An extremal model of amorphous
plasticity. Phys. Rev. Lett., 89:195506.

[10] Barker, J. A., Schreiber, D., Huth, B., and Everett, D. H. (1983). Magnetic hysteresis
and minor loops: Models and experiments. Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, 386(1791):251–261.

[11] Barlow, H. J., Cochran, J. O., and Fielding, S. M. (2020). Ductile and brittle yielding in
thermal and athermal amorphous materials. Physical Review Letters, 125(16):168003.

[12] Barrat, A., Barthelemy, M., and Vespignani, A. (2008). Dynamical processes on complex
networks. Cambridge University Press, Cambridge.

[13] Ben-Zion, Y. and Rice, J. R. (1993). Earthquake failure sequences along a cellular fault
zone in a three-dimensional elastic solid containing asperity and nonasperity regions. Journal
of Geophysical Research: Solid Earth, 98(B8):14109–14131.

[14] Bense, H. and van Hecke, M. (2021). Complex pathways and memory in compressed
corrugated sheets. Proceedings of the National Academy of Sciences, 118(50):e2111436118.

107



References

[15] Berthier, L., Coslovich, D., Ninarello, A., and Ozawa, M. (2016). Equilibrium sampling of
hard spheres up to the jamming density and beyond. Physical review letters, 116(23):238002.

[16] Bhaumik, H., Foffi, G., and Sastry, S. (2021). The role of annealing in determining the
yielding behavior of glasses under cyclic shear deformation. Proceedings of the National
Academy of Sciences, 118(16):e2100227118.

[17] Bhaumik, H., Foffi, G., and Sastry, S. (2022a). Avalanches, clusters, and structural change
in cyclically sheared silica glass. Physical Review Letters, 128(9):098001.

[18] Bhaumik, H., Foffi, G., and Sastry, S. (2022b). Yielding transition of a two dimensional
glass former under athermal cyclic shear deformation. The Journal of Chemical Physics,
156(6):064502.

[19] Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., and Gumbsch, P. (2006). Structural
relaxation made simple. Physical review letters, 97(17):170201.

[20] Bocquet, L., Colin, A., and Ajdari, A. (2009). Kinetic theory of plastic flow in soft glassy
materials. Physical review letters, 103(3):036001.

[21] Bonn, D., Denn, M. M., Berthier, L., Divoux, T., and Manneville, S. (2017). Yield stress
materials in soft condensed matter. Reviews of Modern Physics, 89(3):035005.

[22] Budrikis, Z., Castellanos, D. F., Sandfeld, S., Zaiser, M., and Zapperi, S. (2017). Universal
features of amorphous plasticity. Nature Comm., 8:15928.

[23] Budrikis, Z. and Zapperi, S. (2013). Avalanche localization and crossover scaling in
amorphous plasticity. Phys. Rev. E, 88:062403.

[24] Bulatov, V. V. and Argon, A. S. (1994a). A stochastic model for continuum elasto-
plastic behavior. II. A study of the glass transition and structural relaxation. Modelling and
Simulation in Materials Science and Engineering, 2(2):185–202.

[25] Bulatov, V. V. and Argon, A. S. (1994b). A stochastic model for continuum elasto-
plastic behavior. II. A study of the glass transition and structural relaxation. Modelling and
Simulation in Materials Science and Engineering, 2(2):185–202.

[26] Bulatov, V. V. and Argon, A. S. (1994c). A stochastic model for continuum elasto-plastic
behavior. III. Plasticity in ordered versus disordered solids. Modelling and Simulation in
Materials Science and Engineering, 2(2):203–222.

[27] Castellanos, D. F., Roux, S., and Patinet, S. (2022). History dependent plasticity of glass:
A mapping between atomistic and elasto-plastic models. Acta Materialia, 241:118405.

[28] Chen, K., Bak, P., and Obukhov, S. (1991). Self-organized criticality in a crack-propagation
model of earthquakes. Physical Review A, 43(2):625.

[29] Clauset, A., Shalizi, C. R., and Newman, M. E. (2009). Power-law distributions in
empirical data. SIAM Rev., 51(4):661–703.

[30] Coppersmith, S., Jones, T., Kadanoff, L., Levine, A., McCarten, J., Nagel, S., Venkatara-
mani, S., and Wu, X. (1997). Self-organized short-term memories. Physical review letters,
78(21):3983.

108



References

[31] Corte, L., Chaikin, P. M., Gollub, J. P., and Pine, D. J. (2008). Random organization in
periodically driven systems. Nature Physics, 4(5):420–424.

[32] da Rocha, H. B. and Truskinovsky, L. (2020). Rigidity-controlled crossover: From spinodal
to critical failure. Physical Review Letters, 124(1):015501.

[33] Dahmen, K. A., Ben-Zion, Y., and Uhl, J. T. (2009). Micromechanical model for deforma-
tion in solids with universal predictions for stress-strain curves and slip avalanches. Phys.
Rev. Lett., 102:175501.

[34] Denisov, D. V., Dang, M. T., Struth, B., Zaccone, A., Wegdam, G. H., and Schall, P.
(2015). Sharp symmetry-change marks the mechanical failure transition of glasses. Scientific
reports, 5(1):1–8.

[35] Deutsch, J., Dhar, A., and Narayan, O. (2004). Return to return point memory. Physical
review letters, 92(22):227203.

[36] Deutsch, J. M. and Narayan, O. (2003). Subharmonics and aperiodicity in hysteresis loops.
Physical review letters, 91(20):200601.

[37] Eshelby, J. D. (1957a). The determination of the elastic field of an ellipsoidal inclusion,
and related problems. Proceedings of the royal society of London. Series A. Mathematical
and physical sciences, 241(1226):376–396.

[38] Eshelby, J. D. (1957b). The determination of the elastic field of an ellipsoidal inclusion,
and related problems. Proc. Roy. Soc. A, 241:376–396.

[39] Falk, M. L. and Langer, J. S. (1998). Dynamics of viscoplastic deformation in amorphous
solids. Physical Review E, 57(6):7192.

[40] Fernández Castellanos, D., Roux, S., and Patinet, S. (2021). Insights from the quantitative
calibration of an elasto-plastic model from a Lennard-Jones atomic glass. C. R. Phys.,
22:135–162.

[41] Ferrero, E. E. and Jagla, E. A. (2019). Criticality in elastoplastic models of amorphous
solids with stress-dependent yielding rates. Soft Matter, 15:9041.

[42] Fiocco, D., Foffi, G., and Sastry, S. (2013). Oscillatory athermal quasistatic deformation
of a model glass. Physical Review E, 88(2):020301.

[43] Fiocco, D., Foffi, G., and Sastry, S. (2014). Encoding of memory in sheared amorphous
solids. Physical review letters, 112(2):025702.

[44] Galloway, K., Teich, E., Ma, X., Kammer, C., Graham, I., Keim, N., Reina, C., Jerolmack,
D., Yodh, A., and Arratia, P. (2022). Relationships between structure, memory and flow in
sheared disordered materials. Nature Physics, 18(5):565–570.

[45] Gilbert, I., Chern, G.-W., Fore, B., Lao, Y., Zhang, S., Nisoli, C., and Schiffer, P. (2015). Di-
rect visualization of memory effects in artificial spin ice. Physical Review B, 92(10):104417.

[46] Hébraud, P. and Lequeux, F. (1998). Mode-coupling theory for the pasty rheology of soft
glassy materials. Physical review letters, 81(14):2934.

[47] Herschel, W. H. and Bulkley, R. (1926). Konsistenzmessungen von gummi-benzollösungen.
Kolloid-Zeitschrift, 39:291–300.

109



References

[48] Homer, E. R., Rodney, D., and Schuh, C. A. (2010). Kinetic monte carlo study of
activated states and correlated shear-transformation-zone activity during the deformation of
an amorphous metal. Physical Review B, 81(6):064204.

[49] Homer, E. R. and Schuh, C. A. (2009). Mesoscale modeling of amorphous metals by
shear transformation zone dynamics. Acta Mat., 57:2823–2833.

[50] Homer, E. R. and Schuh, C. A. (2010). Three-dimensional shear transformation zone
dynamics model for amorphous metals. Modelling and Simulation in Materials Science and
Engineering, 18(6):065009.

[51] Jagla, E. A. (2007). Strain localization driven by structural relaxation in sheared amorphous
solids. Phys. Rev. E, 76:046119.

[52] Jana, P. K., Alava, M. J., and Zapperi, S. (2017). Irreversibility transition of colloidal
polycrystals under cyclic deformation. Scientific Reports, 7(1):1–8.

[53] Kawasaki, T. and Berthier, L. (2016). Macroscopic yielding in jammed solids is accompa-
nied by a nonequilibrium first-order transition in particle trajectories. Physical Review E,
94(2):022615.

[54] Keim, N. C. and Arratia, P. E. (2014). Mechanical and microscopic properties of the
reversible plastic regime in a 2d jammed material. Physical review letters, 112(2):028302.

[55] Keim, N. C., Hass, J., Kroger, B., and Wieker, D. (2020). Global memory from local
hysteresis in an amorphous solid. Physical Review Research, 2(1):012004.

[56] Keim, N. C. and Medina, D. (2022). Mechanical annealing and memories in a disordered
solid. Science Advances, 8(40):eabo1614.

[57] Keim, N. C. and Nagel, S. R. (2011). Generic Transient Memory Formation in Disordered
Systems with Noise. Phys. Rev. Lett., 107:010603.

[58] Keim, N. C. and Paulsen, J. D. (2021). Multiperiodic orbits from interacting soft spots in
cyclically sheared amorphous solids. Science Advances, 7(33):eabg7685.

[59] Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S., and Nagel, S. R. (2019). Memory
formation in matter. Reviews of Modern Physics, 91(3):035002.

[60] Khirallah, K., Tyukodi, B., Vandembroucq, D., and Maloney, C. E. (2021). Yielding
in an integer automaton model for amorphous solids under cyclic shear. Phys. Rev. Lett.,
126:218005.

[61] Kumar, D., Patinet, S., Maloney, C. E., Regev, I., Vandembroucq, D., and Mungan, M.
(2022). Mapping out the glassy landscape of a mesoscopic elastoplastic model. The Journal
of Chemical Physics, 157(17).

[62] Landau, L. D., Lifšic, E. M., Lifshitz, E. M., Kosevich, A. M., and Pitaevskii, L. P. (1986).
Theory of elasticity: volume 7, volume 7. Elsevier.

[63] Lavrentovich, M. O., Liu, A. J., and Nagel, S. R. (2017). Period proliferation in periodic
states in cyclically sheared jammed solids. Physical Review E, 96(2):020101.

[64] Le Bouil, A., Amon, A., McNamara, S., and Crassous, J. (2014). Emergence of coopera-
tivity in plasticity of soft glassy materials. Physical review letters, 112(24):246001.

110



References

[65] Lees, A. and Edwards, S. (1972). The computer study of transport processes under extreme
conditions. Journal of Physics C: Solid State Physics, 5(15):1921.

[66] Leishangthem, P., Parmar, A. D., and Sastry, S. (2017). The yielding transition in amor-
phous solids under oscillatory shear deformation. Nature communications, 8(1):1–8.

[67] Lemaître, A. and Caroli, C. (2009). Rate-Dependent Avalanche Size in Athermally Sheared
Amorphous Solids. Physical Review Letters, 103(6):065501.

[68] Lerner, E. and Procaccia, I. (2009). Locality and nonlocality in elastoplastic responses of
amorphous solids. Physical Review E, 79(6):066109.

[69] LIFSHITZ, E., KOSEVICH, A., and PITAEVSKII, L. (1986). Chapter iv - dislocations.
In LIFSHITZ, E., KOSEVICH, A., and PITAEVSKII, L., editors, Theory of Elasticity (Third
Edition), pages 108–132. Butterworth-Heinemann, Oxford, third edition edition.

[70] Lin, J., Lerner, E., Rosso, A., and Wyart, M. (2014). Scaling description of the yielding
transition in soft amorphous solids at zero temperature. Proc. Nat. Acd. Sci., 111:14382–
14387.

[71] Lin, J. and Wyart, M. (2016). Mean-field description of plastic flow in amorphous solids.
Physical review X, 6(1):011005.

[72] Lindeman, C. W. and Nagel, S. R. (2021). Multiple memory formation in glassy landscapes.
Science Advances, 7(33):eabg7133.

[73] Liu, C., Ferrero, E. E., Jagla, E. A., Martens, K., Rosso, A., and Talon, L. (2022). The fate
of shear-oscillated amorphous solids. The Journal of Chemical Physics, 156(10):104902.

[74] Ma, Y., Ye, J., Peng, G., Wen, D., and Zhang, T. (2015). Nanoindentation study of size
effect on shear transformation zone size in a Ni–Nb metallic glass. Materials Science and
Engineering: A, 627:153–160.

[75] Maloney, C. E. and Lemaître, A. (2006). Amorphous systems in athermal, quasistatic
shear. Physical Review E, 74(1):16118–16118.

[76] Maloney, C. E. and Robbins, M. O. (2008). Evolution of displacements and strains in
sheared amorphous solids. Journal of Physics: Condensed Matter, 20(24):244128.

[77] Mukherji, S., Kandula, N., Sood, A., and Ganapathy, R. (2019). Strength of mechan-
ical memories is maximal at the yield point of a soft glass. Physical review letters,
122(15):158001.

[78] Mungan, M., Sastry, S., Dahmen, K., and Regev, I. (2019). Networks and hierarchies:
How amorphous materials learn to remember. Physical Review Letters, 123:178002.

[79] Mungan, M. and Terzi, M. M. (2019). The structure of state transition graphs in hysteresis
models with return point memory: I. general theory. Ann. Henri Poincaré.

[80] Nagasawa, K., Miyazaki, K., and Kawasaki, T. (2019). Classification of the reversible–
irreversible transitions in particle trajectories across the jamming transition point. Soft matter,
15(38):7557–7566.

[81] Nicolas, A. and Barrat, J.-L. (2013). Spatial cooperativity in microchannel flows of soft
jammed materials: a mesoscopic approach. Physical review letters, 110(13):138304.

111



References

[82] Nicolas, A., Ferrero, E., Martens, K., and Barrat, J.-L. (2015). Deformation and flow of
amorphous solids: a review of mesoscale elastoplastic models. Rev. Mod. Phys., 90:045006.

[83] Nicolas, A., Martens, K., and Barrat, J.-L. (2014a). Rheology of athermal amorphous
solids: Revisiting simplified scenarios and the concept of mechanical noise temperature.
EPL, 107(4).

[84] Nicolas, A. and Rottler, J. (2018). Orientation of plastic rearrangements in two-dimensional
model glasses under shear. Physical Review E, 97(6):063002.

[85] Nicolas, A., Rottler, J., and Barrat, J.-L. (2014b). Spatiotemporal correlations between
plastic events in the shear flow of athermal amorphous solids. The European Physical
Journal E, 37(6).

[86] Ozawa, M., Berthier, L., Biroli, G., Rosso, A., and Tarjus, G. (2018). Random critical
point separates brittle and ductile yielding transitions in amorphous materials. Proceedings
of the National Academy of Sciences, 115(26):6656–6661.

[87] Ozawa, M., Berthier, L., Biroli, G., and Tarjus, G. (2020). Role of fluctuations in the
yielding transition of two-dimensional glasses. Physical Review Research, 2(2):023203.

[88] Ozawa, M., Berthier, L., Biroli, G., and Tarjus, G. (2022). Rare events and disorder
control the brittle yielding of well-annealed amorphous solids. Physical Review Research,
4(2):023227.

[89] Panagopoulos, C., Majoros, M., Nishizaki, T., and Iwasaki, H. (2006). Weak magnetic
order in the normal state of the high-t c superconductor la 2- x sr x cuo 4. Physical review
letters, 96(4):047002.

[90] Parmar, A. D., Kumar, S., and Sastry, S. (2019). Strain localization above the yielding
point in cyclically deformed glasses. Physical Review X, 9(2):021018.

[91] Patinet, S., Barbot, A., Lerbinger, M., Vandembroucq, D., , and Lemaître, A. (2020).
Origin of the bauschinger effect in amorphous solids. Physical Review Letters, 124:205503.

[92] Patinet, S., Vandembroucq, D., Hansen, A., and Roux, S. (2014). Cracks in random brittle
solids: From fiber bundles to continuum mechanics. The European Physical Journal Special
Topics, 223(11):2339–2351.

[93] Paulsen, J. D., Keim, N. C., and Nagel, S. R. (2014). Multiple transient memories in
experiments on sheared non-brownian suspensions. Physical review letters, 113(6):068301.

[94] Picard, G., Ajdari, A., Lequeux, F., and Bocquet, L. (2004). Elastic consequences of a
single plastic event: A step towards the microscopic modeling of the flow of yield stress
fluids. The European Physical Journal E, 15(4):371–381.

[95] Picard, G., Ajdari, A., Lequeux, F., and Bocquet, L. (2005). Slow flows of yield stress
fluids: Complex spatiotemporal behavior within a simple elastoplastic model. Physical
Review E, 71(1):010501.

[96] Pine, D. J., Gollub, J. P., Brady, J. F., and Leshansky, A. M. (2005). Chaos and threshold
for irreversibility in sheared suspensions. Nature, 438(7070):997–1000.

[97] Preisach, F. (1935). Über die magnetische nachwirkung. Zeitschrift für physik, 94(5-
6):277–302.

112



References

[98] Priezjev, N. V. (2013). Heterogeneous relaxation dynamics in amorphous materials under
cyclic loading. Physical Review E, 87(5):052302.

[99] Princen, H. (1983). Rheology of foams and highly concentrated emulsions: I. elastic
properties and yield stress of a cylindrical model system. Journal of Colloid and interface
science, 91(1):160–175.

[100] Puosi, F., Olivier, J., and Martens, K. (2015). Probing relevant ingredients in mean-field
approaches for the athermal rheology of yield stress materials. Soft Matter, 11(38):7639–
7647.

[101] Regev, I., Attia, I., Dahmen, K., Sastry, S., and Mungan, M. (2021). Topology of the
energy landscape of sheared amorphous solids and the irreversibility transition. Physical
Review E, 103(6):062614.

[102] Regev, I. and Lookman, T. (2018). Critical diffusivity in the reversibility–irreversibility
transition of amorphous solids under oscillatory shear. Journal of Physics: Condensed
Matter, 31(4):045101.

[103] Regev, I., Lookman, T., and Reichhardt, C. (2013). Onset of irreversibility and chaos in
amorphous solids under periodic shear. Physical Review E, 88(6):062401.

[104] Regev, I., Weber, J., Reichhardt, C., Dahmen, K. A., and Lookman, T. (2015). Reversibil-
ity and criticality in amorphous solids. Nature communications, 6(1):8805.

[105] Reichhardt, C., Regev, I., Dahmen, K., Okuma, S., and Reichhardt, C. (2023). Reversible
to irreversible transitions in periodic driven many-body systems and future directions for
classical and quantum systems. Physical Review Research, 5(2):021001.

[106] Rodney, D., Tanguy, A., and Vandembroucq, D. (2011). Modeling the mechanics of
amorphous solids at different length scale and time scale. Modelling and Simulation in
Materials Science and Engineering, 19(8):083001.

[107] Rossi, S. and Tarjus, G. (2022). Emergence of a random field at the yielding transition
of a mean-field Elato-Plastic model. arxiv, page 2201.06388.

[108] Ruan, D., Patinet, S., and Falk, M. L. (2022). Predicting plastic events and quantifying
the local yield surface in 3d model glasses. Journal of the Mechanics and Physics of Solids,
158:104671.

[109] Salmon, J. K., Moraes, M. A., Dror, R. O., and Shaw, D. E. (2011). Parallel Random
Numbers: As easy as 1, 2, 3. SC’11: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–12.

[110] Schall, P., Weitz, D. A., and Spaepen, F. (2007). Structural Rearrangements That Govern
Flow in Colloidal Glasses. Science, 318(5858):1895–1899.

[111] Schuh, C., Hufnagel, T., and Ramamurty, U. (2007). Mechanical behavior of amorphous
alloys. Acta Materialia, 55(12):4067–4109.

[112] Schuh, C. A. and Lund, A. C. (2003). Atomistic basis for the plastic yield criterion of
metallic glass. Nature Materials, 2(7):449–452.

[113] Sethna, J. P., Dahmen, K., Kartha, S., Krumhansl, J. A., Roberts, B. W., and Shore,
J. D. (1993). Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase
transformations. Physical Review Letters, 70(21):3347.

113



References

[114] Sethna, J. P., Dahmen, K. A., and Perkovic, O. (2004). Random-field ising models of
hysteresis. arXiv preprint cond-mat/0406320.

[115] Shi, Y. and Falk, M. (2005). Strain localization and percolation of stable structure in
amorphous solids. Physical Review Letters, 95(9).

[116] Shohat, D., Hexner, D., and Lahini, Y. (2022). Memory from coupled instabili-
ties in unfolded crumpled sheets. Proceedings of the National Academy of Sciences,
119(28):e2200028119.

[117] Singh, M., Ozawa, M., and Berthier, L. (2020). Brittle yielding of amorphous solids at
finite shear rates. Physical Review Materials, 4(2):025603.

[118] Sollich, P., Lequeux, F., Hébraud, P., and Cates, M. E. (1997). Rheology of soft glassy
materials. Physical review letters, 78(10):2020.

[119] Srolovitz, D., Vitek, V., and Egami, T. (1983). An atomistic study of deformation of
amorphous metals. Acta Metallurgica, 31(2):335–352.

[120] Talamali, M., Petäjaä, V., Vandembroucq, D., and Roux, S. (2012). Strain localization
and anisotropic correlations in a mesoscopic model of amorphous plasticity. Comptes Rendus
Mécanique, 340(4-5):275–288.

[121] Tanguy, A., Leonforte, F., and Barrat, J. L. (2006). Plastic response of a 2D Lennard-
Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain rate.
The European Physical Journal E, 20(3):355–364.

[122] Taylor, G. I. (1967). Film notes for low reynolds number flow. Illustrated Experiments in
Fluid Mechanics: The National Committee for Fluid Mechanics Films Book of Film Notes.

[123] Terzi, M. M. and Mungan, M. (2020). State transition graph of the preisach model and
the role of return-point memory. Physical Review E, 102(1):012122.

[124] Tyukodi, B., Barbot, A., García-García, R., Lerbinger, M., Patinet, S., and Vandembroucq,
D. (2023). Coarse-graining amorphous plasticity: impact of rejuvenation and disorder.
Comptes Rendus. Physique, 24(S1):1–19.

[125] Tyukodi, B., Patinet, S., Roux, S., and Vandembroucq, D. (2016). From depinning
transition to plastic yielding of amorphous media: A soft modes perspective. Phys. Rev. E,
93:063005.

[126] Tyukodi, B., Vandembroucq, D., and Maloney, C. E. (2018). Diffusion in Mesoscopic
Lattice Models of Amorphous Plasticity. Physical Review Letters, 121(14).

[127] van Hecke, M. (2021). Profusion of transition pathways for interacting hysterons. Physical
Review E, 104(5):054608.

[128] Vandembroucq, D. and Roux, S. (2011). Mechanical noise dependent aging and shear-
banding behavior in a mesoscopic model of amorphous plasticity. Phys. Rev. B, 84:134210.

[129] Yeh, W.-T., Ozawa, M., Miyazaki, K., Kawasaki, T., and Berthier, L. (2020). Glass
stability changes the nature of yielding under oscillatory shear. Physical review letters,
124(22):225502.

114





MOTS CLÉS

mémoire, plasticité, amorphe, cycles limites, graphes de transitioon

RÉSUMÉ

Les solides amorphes (verres, polymères, émulsions, etc.) sont omniprésents dans notre vie quotidienne. Lorsqu’ils sont

soumis à une contrainte externe importante, ils s’écoulent et/ou se cassent. Comprendre leurs propriétés mécaniques est

donc une question d’importance à la fois fondamentale, mais aussi une technologique. Nous construisons un nouveau

modèle élasto-plastique minimal pour étudier la déformation dans les solides amorphes soumis à un cisaillement oscilla-

toire. Sous l’effet des oscillations, ces matériaux peuvent atteindre des cycles limites entièrement réversibles et même

encoder une mémoire, par exemple, de l’amplitude du forçage. Notre modèle permet de saisir ces effets de mémoire et

de comprendre leur dépendance à l’égard des protocoles de préparation, d’apprentissage et de lecture. Nous étudions

également l’effet du vieillissement sur la transition d’écoulement et utilisons une technique de graphe de transition pour

analyser les résultats.

ABSTRACT

Amorphous solids, ranging from hard glasses to soft materials such as polymers and emulsions are ubiquitous in our daily

life. When subjected to large external stress they yield and display plastic flow and/or break. Understanding the mech-

anisms governing their mechanical properties is therefore a question of both fundamental importance and technological

significance. We build a novel and minimal elasto-plastic model to study yielding in amorphous solids under oscillatory

shear. Under oscillatory driving such materials can reach fully reversible limit cycles and even encode memory, for exam-

ple, of the amplitude of forcing. We capture such memory effects through our model and understand their dependence

on yielding, training and read-out protocols. We also study the effect of glass preparation on the approach to the yielding

transition and use a transition graph technique to analyse our results. Finally, we discuss mechanical training protocols

designed to store multiple memories.

KEYWORDS

memory, plasticity, amorphous, limit cycles, transition graphs
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