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Abstract

The numerical simulation of wave propagation phenomena is of paramount importance
in many scientific and engineering disciplines. Many time-harmonic problems can be
solved with finite elements in theory, but the computational cost is a strong constraint
that limits the size of the problems and the accuracy of the solutions in practice. Ide-
ally, solution techniques should provide the best accuracy at minimal computational
cost for real-world problems. They should take advantage of the power of modern par-
allel computers, and they should be as easy as possible to use for the end user. In this
HDR thesis, contributions are presented on three topics: the improvement of domain
truncation techniques (i.e. high-order absorbing boundary conditions and perfectly
matched layers), the acceleration of substructuring and preconditioning techniques
based on domain decomposition methods (i.e. non-overlapping domain decomposi-
tion methods with interface conditions based on domain truncation techniques), and
the design of a new hybridization approach for efficient discontinuous finite element
solvers.
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Chapter 1

Context and statement

1.1 Scientific context

The numerical simulation of wave propagation phenomena is of paramount importance in many scientific
and engineering disciplines. Aircraft noise reduction, medical imaging, electromagnetic compatibility
study, non-destructive testing and seismic risk assessment are examples where reliable simulations play an
essential role. In these examples, many physical phenomena are dictated by the frequency of waves. When
the number of frequencies of interest is limited, frequency-domain procedures based on the numerical
solution of time-harmonic problems are commonly used. The Helmholtz equation is a typical example.
Such problems are solved to simulate wave propagation in the harmonic regime at a given frequency,
whereas time-dependent problems are better suited to the study of transient phenomena.

To obtain reliable time-harmonic numerical solutions for real-world problems in reasonable time,
numerical schemes must be accurate, robust and computationally efficient. Today, several approaches are
well established, such as the asymptotic, collocation and boundary element methods based on boundary
integral equations (BIEs), and the finite difference, finite volume and finite element methods based on
partial differential equations (PDEs). The BIE-based methods naturally deal with wave propagation in
unbounded domains, and the degrees of freedom are associated only with the interfaces/boundaries of the
domain. Unfortunately, they rely on fundamental solutions that are generally known only for problems
with homogeneous media. In contrast, complex material properties and more general physical problems
can be treated with PDE-based methods. However, the degrees of freedom are associated with the entire
mesh/grid of the domain, and the computational domain must be artificially truncated to simulate
phenomena occurring in unbounded regions. All of these approaches are generally competitive for ranges
of applications, not necessarily the same, and much effort is currently being invested to overcome their
limitations and to improve the computational efficiency of each one of them.

In this work, we consider finite element methods (FEMs), which are a very popular family of numerical
methods. They are widely used to solve real-world applications because of their ability to reliably
represent complex geometric configurations and heterogeneous media. They are versatile thanks to
formulations based on weak forms of the equations, the possibility of using unstructured meshes and high-
order discretization techniques, and flexibility in the choice of the basis functions used to represent the
numerical solutions. However, when solving large-scale time-harmonic problems, the two main difficulties
inherent to the PDE-based methods remain (1) the artificial truncation of the computational domain,
and (2) the computational cost required to solve the algebraic system arising from the discretization.

Efficient domain truncation techniques. Many wave propagation problems are naturally defined
on large or infinite spatial domains, while the finite element solution procedures should be performed on
computational domains as small as possible in order to limit the computational cost. In practice, the
numerical solutions are computed with modified problems defined on truncated domains with artificial
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boundaries. Although these boundaries are not physical, they must be carefully modeled in order to
recover the solutions corresponding to the original physical problems. If the exterior problem can be
simulated with a BIE-based method, the FEM solver can be coupled to that method. This approach
is accurate, but results in significant additional cost due to the nonlocal nature of this type of method,
which leads to dense matrix blocks in the discrete weak formulation. The cheapest approach is to use
a Robin boundary condition, which is very easy but introduces modeling errors that can be significant
in some cases. Alternative approaches, such as high-order absorbing boundary conditions (HABCs) and
perfectly matched layers (PMLs), can provide better accuracy at a moderately higher computational
cost. In practice, there is a trade-off between accuracy and computational cost when selecting and
tuning a domain truncation technique. An efficient technique should be accurate, robust, easy to use
and competitive from a computational cost perspective.

Large indefinite sparse algebraic system. Designing efficient computational solvers for time-
harmonic problems using finite element methods is notoriously difficult because it involves solving large
algebraic systems for which the matrices are sparse, complex and indefinite. The number of degrees of
freedom (DOFs) can be very large because the mesh cells must be small enough to accurately represent
the oscillations of waves, as well as any phenomena related to wave-structure interactions. Moreover, in
the high-frequency regime, corresponding to situations where the wavelength is very small compared to
the characteristic size of the structures, the pollution error requires the refinement of the mesh and/or the
use of high-order basis functions, further increasing the size of the systems. Unfortunately, the standard
algebraic methods are not very efficient for solving such linear systems. On the one hand, sparse direct
methods exhibit poor scalability in terms of memory and computational time in parallel environments.
On the other hand, most iterative methods that have proven successful for coercive problems become
inefficient when applied to indefinite problems. General strategies based on hp-adaptivity and static
condensation help to reduce the number of DOFs for a given accuracy, as well as the computational cost
with both direct and iterative methods. However, they do not overcome the inherent limitations of the
standard direct/iterative methods, and they do not lead to scalable solution methods.

Wave-specific strategies to speed up iterative procedures. Iterative methods can be accelerated
by using, in one way or another, some knowledge about the time-harmonic problems. The resulting
solvers can be very specific, but they can be much more efficient for the considered problems. Many
complementary and competing approaches have been proposed over the last decades, and they are still
intensively studied in the applied mathematics and computational engineering research communities.
For example, substructuring and preconditioning techniques based on domain decomposition methods
(DDMs) aim at reducing the number of iterations. They rely on using, at each iteration, of the solutions
of local problems defined on subdomains in a partition of the physical domain. A first wave-specific
strategy consists in using transmission operators based on domain truncation techniques at the interfaces
between the subdomains. Another approach, called sweeping preconditioners, involves solving the local
problems in a specific order that mimics the wave propagation across the domain partition. Discontinuous
finite element methods offer flexibility in the choice of the basis functions, and several ways to weakly
enforce the continuity of the solution at the interface between the elements. Examples of wave-specific
strategies include the use of an ultra-weak variational formulation (UWVF) with interface conditions
related to absorbing boundary operators.

Many time-harmonic problems can be solved with finite elements in theory, but the computational
cost is a strong constraint that limits the size of the problems and the accuracy of the solutions in
practice. The goal is to combine the best strategies for each specific case. Ideally, each combina-
tion should provide the best accuracy at minimal computational cost for real-world problems. It
should take advantage of the power of modern computers, consisting of many-core processors and
accelerators. It should be as easy to use as possible for the end user.
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1.2 Context of this habilitation

Since the beginning of my career, I have been working on strategies to improve and accelerate finite
element solvers for large-scale wave propagation problems in the perspective of real-world applications.
This topic is at the intersection of engineering sciences, applied mathematics and high-performance com-
puting, which are my areas of interest. In this manuscript, I present more specifically my contributions
to efficient time-harmonic finite element solvers, on which I started working on shortly after being hired
as a CNRS researcher. All these contributions have been obtained in the context of collaborations, which
are listed in the next section.

I joined the POEMS laboratory (Palaiseau, France) as a CNRS researcher in October 2016, after a
PhD in Belgium, and postdoctoral positions in Belgium and in the USA. POEMS is at the same time a
research laboratory associated to the CNRS Section 09 (topics: solid mechanics, materials and structures,
biomechanics, acoustics), a project team of the Inria Saclay Center, and a research team of the Applied
Mathematics Unit of ENSTA Paris. The research activities of POEMS are mainly dedicated to the
analysis and numerical simulation of wave propagation phenomena. The team is composed of about 15
permanent researchers and academics, who can be considered as applied mathematicians, mechanical
engineers, or a blend of both profiles. I would place myself in the latter category.

While I had only worked on time-dependent problems during my PhD and postdoctoral studies, I
decided to focus my activities on time-harmonic problems shortly after arriving at POEMS. From a
computational point of view, designing efficient solvers for time-harmonic problems turned out to be
much more challenging than for time-dependent problems, and I was glad to start working on these
new challenges. I had, and I still have, the ambition to develop efficient GPU-accelerated finite element
solvers for solving time-harmonic problems.

The contributions presented in this manuscript are grouped into three topics: the improvement of
domain truncation techniques, the acceleration of substructuring and preconditioning techniques based on
domain decomposition methods, and the design of a new hybridization approach for efficient discontinuous
finite element solvers. These contributions are presented for time-harmonic scalar wave problems, but
generalizations are discussed in the last chapter of the manuscript.

Three of my research projects are not covered in this manuscript: the analysis of time-harmonic
electromagnetic problems with anisotropic/complex media (related to the PhD of D. Chicaud), the
coupling of a discontinuous finite element method and a spectral method for time-dependent acoustic
problems (related to the postdoctoral research of R.-C. Meyer) and the convergence analysis of Krylov’s
methods for solving time-harmonic problems with finite elements (related of the PhD of T. Raynaud).
The first one is briefly summarized at end of Section 1.3, and the other two are in their early stages.

Organization of the manuscript. The remainder of this chapter contains a summary of my
contributions (Section 1.3), and a list of my mentoring activities and funded research projects (Sec-
tion 1.4). The main chapters of this manuscript are dedicated to a presentation of contributions
organized by topic: domain truncation methods (Chapter 2), domain decomposition methods (Chap-
ter 3), and discontinuous finite element solvers (Chapter 4). In these chapters, each section is either
a general presentation of a topic, or a summary of a contribution. Open questions, ongoing works
and future research directions are discussed in Chapter 5. The bibliography at the end of this
manuscript is divided into works of which I am a co-author (references starting with the letter “A”,
e.g. [A1]) and other works (references without a letter, e.g. [1]).
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1.3 Contributions, collaborations and positioning

In this section, I summarize my contributions with emphasis on the novelties and collaborative networks.
All my contributions have been obtained in collaborations.

During my PhD studies with C. Geuzaine (ULiège, Belgium) and my postdoctoral research with
T. Warburton (VirginiaTech, USA), I mainly worked on finite element solvers for time-dependent prob-
lems. More specifically, I improved domain truncation techniques [A5, A7, A8, A10, A11] and I acceler-
ated discontinuous Galerkin finite element solvers thanks to GPU computing [A2, A13, A14, A5]. For
the second topic, I had the opportunity to work with researchers from oil and gas companies, Shell and
TotalEnergies, which gave me a taste for industrial collaborations. After arriving at POEMS in October
2016, I completed ongoing works related to my PhD and postdoctoral researches, and then I quickly
started working on time-harmonic problems.

About domain truncation methods [Chapter 2]

When using a HABC at the artificial boundary of a truncated domain, modeling errors can be reduced
by increasing the number of auxiliary fields in the HABC or by using higher order partial derivatives.
Similarly, modeling errors due to PMLs can generally be reduced by increasing their thickness. In
both cases, however, the computational cost increases. My contributions aimed at (1) improving the
implementations to deal with convex truncated domains of general shape (providing geometric flexibility
when choosing the shape of the domain) and (2) guiding the selection of the HABC or PML parameters.
The ultimate goal of the practical challenges is to achieve the best accuracy at the lowest cost.

In collaboration with X. Antoine (Lorraine U., IECL) and C. Geuzaine, we have studied corner
treatments for Padé-type HABCs for the finite element solution of Helmholtz problems with polygo-
nal/polyhedral computational domains [A9]. To the best of our knowledge, only a few corner treatments
for HABCs were available in the literature, and no extensive accuracy studies were proposed. We have
developed and compared approaches based on (1) compatibility relations at the corners and (2) for-
mulations for curved boundaries with numerical curvatures at the corners. The compatibility relations
were obtained for corners with right angles. They work perfectly for these cases, and they can be used
empirically as is for non-right angles. We have observed that the first approach is better for angles close
to π/2, and the second one is better for configurations with very obtuse angles.

In collaboration with H. Bériot (SIEMENS, Belgium), we have studied a comprehensive PML imple-
mentation strategy for the finite element solution of acoustic scattering problems with convex truncated
domains of general shape [A1]. The direct implementation of a standard PML formulation for convex
domains requires the knowledge of geometric data in the layer, which are not always known. Our strat-
egy requires only the knowledge of the mesh of the exterior boundary of the domain. The layer and the
required geometric data are generated during an extrusion process. The PML is included in the scheme
thanks to a specific modification of the reference Jacobian matrix in the element-wise finite element
integrals. This approach can be considered as a specific finite element approximation of the conformal
PML for domains with smooth boundaries, and it is an empirical technique for domains with corners.
It has been implemented in a toolbox developed by SIEMENS for solving acoustic scattering problems.
The end user has only to specify the thickness of the layer, the distance between the scattering object
and the boundary of the computational domain.

About domain decomposition methods [Chapter 3]

I contributed to the design of a class of DDM solvers with non-overlapping subdomains and transmission
conditions based on domain truncation methods. This approach finds its origin in a seminal work of
Després [97, 99] on a DDM iterative scheme for the parallel solution of Helmholtz problems, which was
related to works of Lions [215]. At each iteration of the scheme, the Helmholtz equation is solved on
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each subdomain with Robin transmission conditions at the interfaces between the subdomains. Then,
transmission data are exchanged between the subdomains. Over time, many extensions have been pro-
posed, see e.g. [135, 137, 139]. For example, the Robin transmission condition can be replaced with more
general conditions. Transmission conditions based on HABCs and PMLs have been used empirically to
locally reproduce the transmission of waves at the interfaces between subdomains. The iteration can be
combined with Krylov methods, and it can also be used as a preconditioner rather than as a solver.

I started working on this topic with X. Antoine and C. Geuzaine, after our collaboration on the corner
treatments for HABC. This collaborative network has been extended to E. Béchet (ULiège, Belgium),
R. Dai (UCLouvain, Belgium), J.-F. Remacle (UCLouvain, Belgium) and A. Royer (ULiège, Belgium).

In [A12, A15], we have extended non-overlapping DDM solvers with HABC and PML transmission
conditions to deal with checkerboard domain partitions. Previous solvers using these conditions were
only tailored for 1D domain partitions (e.g. partitions in layers or in onion skins), e.g. [52, 289, 281].
Checkerboard partitions have interior cross-points (i.e. interior points of the partition that belong to
more than two subdomains) and boundary cross-points (i.e. points that belong to both the boundary of
the physical domain and at least two subdomains), which require some care. If the cross-points are not
handled carefully, the convergence of the DDM solvers can be deteriorated. For configurations where the
HABC and PML are also used at the boundary of the computational domain, the DDM solvers may even
converge to incorrect solutions. We have proposed and studied strategies where the HABC and PML
are rewritten as Dirichlet-to-Neuman operators, and where the corner treatments used for these domain
truncation techniques are adapted to provide cross-point treatments. The good convergence properties
generally observed for 1D domain partitions are then recovered for checkerboard partitions.

Due to the local nature of the data transfers, the DDM solvers with HABC and PML transmission
conditions cannot scale with the number of subdomains without an efficient preconditioning technique.
In [A4], we have proposed and compared multidirectional sweeping preconditioners. Sweeping precondi-
tioners involve solving the local problems associated with subdomains in specific orders, mimicking the
wave propagation across the domain partition. Depending on the strategy, the problems can be solved
forward, backward, or in both directions simultaneously. Several approaches have been studied for 1D
domain partitions, e.g. [233, 270, 290, 138]. We have extended some of them for checkerboard domain
partitions by combining sweeps in multiple directions (e.g. horizontal, vertical and diagonal), by using
sequential and parallel sweeps, and by alternating the sweeps thanks to a flexible version of GMRES.
These preconditioners provide an efficient way to quickly transfer information to the different regions of
the computational domain, and then they accelerate the convergence of iterations.

In parallel to my collaboration with the “belgian network”, I started a collaboration with P. Ciarlet
(ENSTA Paris, POEMS) on time-harmonic electromagnetic problems with complex anisotropic media.
Our initial motivation was to extend and to analyze DDMs for a general class of material tensor fields,
which first required a careful analysis of the PDE problems. We co-advised the PhD research of D. Chi-
caud (ENSTA Paris, POEMS) [69] on the mathematical analysis of these problems [A3], with preliminary
results on DDMs. We have clarified the functional framework for material tensor fields that verify an
ellipticity condition, and we have obtained preliminary theoretical results on the convergence of the DDM
iterative scheme. We are continuing this work in the context of the CIEDS project ElectroMath, obtained
with colleagues from POEMS and IDEFIX (the sibling Inria team of POEMS at ENSTA Paris). This
research direction, which is still a work in progress, is presented in Chapter 5.

About discontinuous finite element methods [Chapter 4]

The finite element methods used to solve time-harmonic problems are generally conformal. The numerical
solutions are represented by continuous basis functions belonging to the space of physical solutions, and
hp-adaptivity and static condensation can be used to improve the accuracy and to reduce the number
of DOFs, e.g. [40]. Several nonconformal approaches with discontinuous basis functions, which do not
belong to the space of physical solutions, have been investigated in the last decades. In particular, the
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hybridizable discontinuous Galerkin (HDG) methods, originally proposed for diffusion problems [80], have
been applied and studied for time-harmonic problems e.g. in [229, 157, 65]. These methods are based
on standard discontinuous Galerkin (DG) formulations, the definition of auxiliary variables associated
with numerical traces on the faces of the elements, and the elimination of the physical unknowns from
the system, leading to a reduced system or hybrid system associated only with the auxiliary variables.

In 2021, I received a ANR JCJC grant for the project WavesDG to work on accelerated DG finite
element solvers for time-harmonic problems. In collaboration with T. Chaumont-Frelet (Inria, RAP-
SODI), we have obtained promising first results for Helmholtz problems. In [A6], we have proposed and
analyzed a new HDG method with auxiliary variables associated to characteristic variables. At the cost
of increasing the memory required for the reduced system, this choice greatly improves its properties
and makes it more suitable for iterative solution procedures. With the new method, called the CHDG
method, the reduced system can be written in the form (I − ΠS)g = b, where I is the identity and the
operator ΠS is a strict contraction. This system can then be solved with the fixed-point iteration without
relaxation. We have observed that the condition numbers of the global reduced matrix and the local
element-wise matrices are always smaller with CHDG than with the standard HDG method. We have
also observed that the convergence of the GMRES and CGNR iterations is always faster with CHDG
than with the standard HDG method. This contribution is the first step of an ongoing work in the
context of the ANR project WavesDG.

We are currently investigating extensions in the context of the PhD research project of S. Pescuma
(ENSTA Paris, POEMS), which I supervised together with G. Gabard (Le Mans U., LAUM). With the
ANR project WavesDG, my ultimate goal is to develop a FEM solver for time-harmonic problems that
would be efficient on GPU clusters.

Other works

About the analysis of time-harmonic electromagnetic problems. The numerical simulation of
time-harmonic electromagnetic problems with anisotropic/complex media is an important tool for the
design of optical metamaterials/metasurfaces, and for the study of wave propagation in plasmas. The
mathematical and numerical analysis of Maxwell problems with isotropic media is well known. Results
exist for anisotropic media, but they are generally restricted to real symmetric (or complex Hermitian)
positive definite material tensors, see e.g. [14]. In the context of the PhD research of D. Chicaud
[A3, 69, 70], we have studied time-harmonic electromagnetic problems with elliptic material tensor fields,
which are a general class of material coefficients. We have considered boundary value problems with
Dirichlet, Neumann, and Robin boundary conditions. For each problem, we have derived an extended
functional framework, we proved the well-posedness of a variational formulation, and we have obtained
regularity estimates for the solution and its curl, generalizing well-known results. We have paid special
attention to the functional spaces involved in the Robin boundary condition. Some of these tools have
been used to study the DDM scheme described above, and they provide a solid foundation for further
studies planned within the framework of the CIEDS project ElectroMath.

About accelerated discontinuous Galerkin solvers for time-dependent acoustic problems.
In collaboration with H. Bériot, we obtained a funding from France Relance, supplemented with an in-
dustrial funding from SIEMENS (France), to work on accelerated DG solvers for time-dependent acoustic
problems. The postdoctoral research position of R.-C. Meyer (ENSTA Paris, POEMS) was funded by
this project. This project had two parts: acceleration thanks to GPU computing, and acceleration by
coupling DG methods with spectral methods. A preprint on the second part is in preparation.

About the convergence of Krylov’s methods for time-harmonic acoustic problems. My
most recent collaboration concerns the PhD research of T. Raynaud, which I supervise together with
P. Marchand (Inria, POEMS) and V. Dolean (TU/e, The Netherlands), funded by the CIEDS project
ElectroMath. We aim to improve our understanding of the convergence of Krylov methods for solving
time-harmonic problems, and then to improve preconditioning strategies.
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1.4 List of research projects and mentorship activities

I am the principal investigator or co-principal investigator of the following research projects:

• Project WavesDG (2021/12 – 2025/12) funded by the ANR (Agence Nationale pour la Recherche)
[Call 2021; JCJC; ANR-21-CE46-0010]; Principal investigator.

• Industrial project with SIEMENS (2022/01 – 2024/01) funded by France Relance and SIEMENS
[Call 2021]; Principal investigator.

• Project ElectroMath (2022/10 – 2026/09) funded by the CIEDS (Centre Interdisciplinaire d’Etudes
pour la Défense et la Sécurité) [Call 2022]; Co-principal investigator with Patrick Ciarlet (EN-
STA Paris, POEMS).

I have been, or I am, the co-advisor or mentor of the following PhD students and postdoctoral researchers:

• Damien Chicaud (2018/10 – 2021/12), PhD student co-advised (50%) with Patrick Ciarlet (ENSTA
Paris, POEMS) on “Analysis of time-harmonic electromagnetic problems in elliptic anisotropic
media” [69] (defense 2021/12). Funded by the Direction Générale de l’Armement (DGA) and
ENSTA Paris. Related publications [A3, 70].

• Rose-Cloé Meyer (2022/01 – 2024/01), postdoctoral researcher on “Accelerated discontinuous Galerkin
solvers for time-dependent acoustic problems” in the context of an industrial project funded by
France Relance and SIEMENS.

• Simone Pescuma (since 2022/10), PhD student co-advised (70%) with Gwénaël Gabard (Le Mans
U., LAUM) on hybridizable discontinuous Galerkin methods for time-harmonic problems. Funded
by the ANR project WavesDG.

• Timothée Raynaud (since 2023/10), PhD student co-advised (40%) with Pierre Marchand (Inria,
POEMS) and Victorita Dolean (TU/e, The Netherlands) on “Analysis and acceleration of Krylov
iterative methods for the numerical solution of time-harmonic wave problems”. Funded by the
CIEDS project ElectroMath.

• Ari Rappaport (since 2023/04), postdoctoral researcher on “Hybridizable discontinuous finite el-
ement method for time-harmonic electromagnetism in complex media”. Funded by the CIEDS
project ElectroMath.

I have contributed informally to the following doctoral works:

• Ruiyang Dai. PhD student of Chistophe Geuzaine (ULiège, Belgium) and Jean-François Remacle
(UCLouvain, Belgium) on “Generalized sweeping preconditioners for domain decomposition methods
applied to Helmholtz problems” [91] (defense 2021/10). Related publication [A4].

• Anthony Royer. PhD student of Chistophe Geuzaine (ULiège, Belgium) and Eric Béchet (ULiège,
Belgium) on “Efficient finite element methods for solving high-frequency time-harmonic acoustic
wave problems in heterogeneous media” [257] (defense 2023/04). Related publications [A12, A15].
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Chapter 2

Domain truncation methods

High-order absorbing boundary conditions (HABCs) and perfectly matched layers (PMLs) are two families
of non-reflecting boundary treatments used to simulate wave propagation phenomena in large area with
truncated computational domains. They can be considered as intermediate approaches between methods
based on boundary integral equations (generally more accurate, but more expensive) and basic absorbing
boundary conditions (cheaper, but generally less accurate). We look for methods that can handle real-
world problems with general geometries and complex physical configurations, with the right trade-off
between accuracy and computational cost.

To describe the methods, we consider a general Helmholtz problem defined in the unbounded domain
Rd (with d = 2 or 3) with a region of interest Ω ⊂ Rd that is bounded. We are looking for the field
u(x) ∈ H1

loc(Rd) that verifies −∆u− κ2u = s, in Rd,

lim
∥x∥→∞

∥x∥(d−1)/2
(
∂∥x∥ − ıκ

)
u = 0,

(2.0.1)

where the wavenumber κ(x) is a positive real function that is constant outside Ω, and s(x) ∈ L2(Ω)

is a given source function with compact support in Ω. The last equation is the Sommerfeld radiation
condition1, which ensures that the solution is bounded and unique, provided there is no resonance inside
Ω. In practice, the finite element simulations are performed on the truncated domain Ω. The solution
u ∈ H1(Ω) is then computed by solving{

−∆u− κ2u = s, in Ω,

(boundary treatment) on Γ := ∂Ω,
(2.0.2)

The solution of the modified problem (2.0.2) with domain truncation must be as close as possible to the
solution of the original problem (2.0.1). The boundary treatment must represent the outward propagation
of the waves, without reflection, at the artificial boundary Γ. Note that these methods can be extended
to other physical problems, but it can be quite difficult, and similar methods can be developed for other
categories of problems (e.g. waveguide problems). We take the convention that the time-dependence of
the fields is e−ıωt, where ω is the angular frequency and t is the time.

A general presentation of HABCs and PMLs for Helmholtz problems are proposed in Sections 2.1
and 2.3, respectively. My contributions are described in Sections 2.2 and 2.4.

1This condition is motivated by physical considerations: “The sources must be sources, not sinks, of energy. The energy
which is radiated from the sources must scatter to infinity; no energy may be radiated from infinity into the prescribed
singularities of the field.” [268]
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2.1 Overview of HABCs for Helmholtz problems

Today, a complete review and comparison of absorbing boundary conditions (ABCs) for Helmholtz prob-
lems would be difficult. We could refer to some old articles of Givoli [145, 146, 147], Hagstrom [161]
and Thompson [282]. In this section, we present an overview of HABCs for planar boundaries. We then
discuss extensions to deal with curved boundaries, domains with corners and other physical problems.
Note that many of the references cited in this section deal with boundary operators proposed for time-
dependent problems, for on-surface radiation conditions, or for preconditioned BIE solvers. However,
these boundary operators can be used directly to design HABCs for time-harmonic problems.

The simplest ABC for problem (2.0.1) is

∂nu− ıκu = 0, on Γ,

where ∂n is the exterior normal derivative. This boundary condition can be interpreted as taking the
Sommerfeld condition at a finite distance, or as prescribing the incoming characteristic variable to zero,
see e.g. [175]. It is exact in 1D, and it can be used as an approximate condition in 2D and 3D. For cases
with more than one dimension, HABCs are generally obtained by using an exact representation of the
solution in the exterior domain and/or by approximating an exact nonlocal boundary condition.

2.1.1 Exact planar ABC for the Helmholtz equation

We consider the Helmholtz equation in the unbounded domain R3, which is decomposed into the interior
region Ω := {x = (x, y, z) ∈ R3 : x < 0} and the exterior region Ωext := {x ∈ R3 : x > 0} separated
by the planar interface Γ := {x = 0}. The exterior medium is assumed to be homogeneous and free
of sources. The boundary condition prescribed on Γ must represent the outward propagation of waves
leaving Ω. The exact ABC is obtained by solving the exterior Helmholtz problem defined in Ωext for
some Dirichlet data ū given on Γ [110, 161]. Let y be the position in the tangent plane, such that
x = (x,y). Applying the multidimensional Fourier transform Fy in the transverse direction to the
Helmholtz equation yields (

∂2x + λ+λ−
)
Fy[u](x, ξ) = 0, for x > 0, ξ ∈ R2,

where ξ is the dual variable of y in the Fourier space, and the symbols λ+ and λ− are defined as

λ±(ξ) := ±ıκ
√
1− (∥ξ∥/κ)2.

The only admissible solution reads

Fy[u](x, ξ) = Fy[ū](ξ) e
xλ+(ξ),

which corresponds to an outgoing propagating wave if κ > ∥ξ∥, a grazing wave if κ = ∥ξ∥ or an evanescent
wave if κ < ∥ξ∥. Taking the derivative in x of this solution, applying the inverse Fourier transform F−1

y

and taking the restriction on Γ give the exact ABC for the interior problem:

∂xu = Bu, on Γ,

where B is the pseudo-differential Dirichlet-to-Neumann (DtN) operator defined as

B := F−1
y [λ+(ξ) Fy] = ıκ

√
1 + ∆Γ/κ2, (2.1.1)

with the Laplace-Beltrami operator ∆Γ := ∆− ∂xx. The boundary condition is nonlocal because of the
square root in the symbol of B.
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2.1.2 Rational approximations of the square root
√
1 +X

Local boundary conditions can be derived by approximating the square root in the symbol of the DtN
operator (2.1.1). Let define the function f(X) :=

√
1 +X, where X = −(∥ξ∥/κ)2.

Padé approximation. In their seminal paper, Engquist and Majda [110] derived a family of HABCs
by using the Padé approximation of the square root. The (M − 1)th-order Padé approximation, denoted
fPadé
M (X), can be represented as the continued fraction provided by the sequence [111]

fPadé
m (X) = 1 +

X

1 + fPadé
m−1(X)

, with m = 2, . . . ,M, (2.1.2)

fPadé
1 (X) = 1,

or, equivalently, as a sum of rationals [18, 158, 218, A9]

fPadé
M (X) = 1 +

2

M

N∑
n=1

anX

1 + bnX

= 1 +
2

M

N∑
n=1

cn

(
1− cn + 1

cn + 1 +X

)
, if M = 2N + 1 is odd, (2.1.3)

fPadé
M (X) = 1 +

X

M
+

2

M

N∑
n=1

anX

1 + bnX

= 1 +
X

M
+

2

M

N∑
n=1

cn

(
1− cn + 1

cn + 1 +X

)
, if M = 2N + 2 is even,

with an = sin2(nπ/M), bn = cos2(nπ/M) and cn = tan2(nπ/M). The Padé approximation can also be
represented as a product of rationals [158, 218]. To the best of our knowledge, that representation has
never been used to derive HABCs.

To study the accuracy of the HABC, we consider the reflection coefficient

R(X) =

∣∣∣∣f(X)− f approx(X)

f(X) + f approx(X)

∣∣∣∣ ,
where f approx(X) it the approximate square root, see e.g. [161]. In Figure 2.1, the reflection coefficient is
plotted as a function of the decay factor ρ(X) = κ

√
−X − 1 for evanescent modes (i.e. X ∈ ]−∞,−1[)

and as a function of the angle of incidence θ(X) = arcsin(
√
−X) for propagating modes (i.e.X ∈ ]− 1, 0[).

The Padé approximation converges towards the exact value of the square root as M increases, expect
when X is on the branch cut of the square root (i.e. X ∈ ]−∞,−1[). Therefore, conditions based on
this approximation are perfectly reflective for evanescent modes. For propagating modes, the reflection
depends on the angle of incidence. The reflection is small for nearly normal incidences (i.e. with ∥ξ∥ ≈ 0

or, equivalently, θ ≈ 0°) and large for nearly grazing modes (i.e. with ∥ξ∥ ≈ κ or, equivalently, θ ≈ 90°).

Padé approximation with rotation of the branch cut. To deal with evanescent modes, the Padé
approximation can be applied to the square root after a change of variable to rotate the branch cut by
some angle ϕ. For the Padé approximation (2.1.3), we then have

fϕM (X) = eıϕ/2 fPadé
M (e−ıϕ(1 +X)− 1) = eıϕ/2

[
1 +

2

M

N∑
n=1

cn

(
1− eıϕ(cn + 1)

(eıϕcn + 1) +X

)]
.

This strategy was first proposed by Milinazzo et al. [228] for parabolic wave equations. The HABC
can effectively deal with evanescent modes [10], but it increases the reflection of propagating modes, see
Figure 2.1. The effect is more important as the rotating angle ϕ grows.
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(a) Evanescent waves
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(b) Propagative waves
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Figure 2.1: Reflection coefficient for evanescent waves (left) and propagating waves (right) with different approx-
imations of the square root. Incidence angle θ = 0° corresponds to normal incidence. Grazing waves correspond
to ρ = 0 and θ = 90°. The second-order ABC I and II correspond to (2.1.6) and (2.1.8), respectively.

General rational approximations. More general approximations, leading to HABCs possibly more
accurate thanks to a larger number of tuning parameters, have been proposed e.g. in [177, 171, 218,
168, 169, 262, 163]. In particular, HABCs proposed by Higdon [177] are exact for propagating waves
with angles of incidences of a given set {θm}m=1...M , but they are inefficient for evanescent waves. The
complete radiation boundary conditions (CRBCs) proposed by Hagstrom and Warburton [168] can deal
with both propagating and evanescent modes. These general boundary conditions correspond to the
rational approximation fM (X) provided by the sequence

fm(X) = αm +
X + 1− α2

m

αm + fm−1(X)
, for m = 2 . . .M, (2.1.4)

f1(X) = α1,

where {αm}m=1...M are complex coefficients, e.g. [A9]. The real and imaginary parts of these coefficients
attenuate respectively propagating and evanescent parts of waves. We have the following coefficients:

• Padé-type HABC without rotation of the branch cut [110, 111]: αm = 1;
• Padé-type HABC with ϕ-rotation of the branch cut [194]: αm = eıϕ/2;
• Higdon-type HABC [177, 160, 167]: αm = cos θm, with θm ∈ [0, π/2[;
• CRBC [168]: αm = cos θm − σm/(ıκ), with θm ∈ [0, π/2[ and σm > 0.

In an alternative version of the CRBC, the coefficients are separated into a set of purely real parameters
and a set of purely imaginary parameters [169, 163, 164].

2.1.3 Planar HABCs for the Helmholtz equation

Formulations with high-order partial derivatives. Early HABCs were written using high-order
partial derivatives [110, 177]. In the seminal paper of Engquist and Majda [110], the 0th, 1st and 2nd-order
Padé approximations lead respectively to

∂xu− ıκu = 0, on Γ, (2.1.5)

∂xu− ıκu+
1

2ıκ
∆Γu = 0, on Γ, (2.1.6)[

1 +
1

4κ2
∆Γ

]
∂xu− ıκu+

3

4ıκ
∆Γu = 0, on Γ, (2.1.7)

12



corresponding to M = 1, 2 and 3. In fact, the general sequence (2.1.4) leads to[
M∏

m=1

(∂x − ıκαm)

]
u = 0, on Γ,

which is very easy to write, but requires the computation of high-order normal derivatives.

In practice, these formulations are only used at low orders, because the accurate discretization of
high-order derivatives may be difficult. The first two conditions, equations (2.1.5) and (2.1.6) are also
obtained with the 0th and 1st-order Taylor approximations, while the 2st-order Taylor approximation lead
to a condition different than equation (2.1.7). Even if it is obtained with the 1st-order Padé or Taylor
approximations, equation (2.1.6) is commonly called “second-order ABC” in the literature. Another
second-order ABC is obtained by approximating the inverse square root [101],[

1− 1

2κ2
∆Γ

]
∂xu− ıκu = 0, on Γ. (2.1.8)

Formulations with auxiliary fields defined on the boundary. Formulations with only low-order
partial derivatives can be obtained by introducing auxiliary fields and auxiliary equations. This approach
was first used by Lindman [214] and then by Renaut [254] and Collino [82, 83] to solve time-domain wave
problems with finite differences. Subsequently, similar formulations were proposed for approximations
of the square root written as sums of prime fractions [194, A5] or as continued fractions [149, 167, 287,
148, 165, 168, 169, 262], mainly for time-domain problems.

In the Padé case with M = 2N +1 odd, the approximation written as a sum of rationals (2.1.3) lead
to the HABC

∂xu− ıκu =
2ıκ

M

N∑
n=1

cn (u+ φn) , on Γ,

where {φn}n=1,...,N are N auxiliary fields defined only on Γ and governed by

−∆Γφn − κ2(cn + 1)(u+ φn) = 0, on Γ, for n = 1 . . . N.

Similarly, the approximation written with the continued fraction (2.1.2) lead to an alternative HABC
with M auxiliary fields {ϕm}m=1,...,M ,

∂xu− ıκu = ϕ1, on Γ,

∂xϕm − ıκϕn = ϕm+1, on Γ, for m = 1, . . . ,M, (2.1.9)

with ϕM+1 = 0. With this formulation, the auxiliary equations are coupled in a recursive way, while
the auxiliary fields are decoupled with the previous formulation. If M is even, this HABC can also be
rewritten with N auxiliary fields {ϑn}n=1,...,N ,

∂xu− ıκu = ϑ1, on Γ,

−∆Γ(ϑn−1 + 2ϑn + ϑn+1)− 4κ2ϑn = 0, on Γ, for n = 1, . . . , N, (2.1.10)

with ϑN+1 = 0, see [167]. Similar formulations can be obtained for the other rational approximations.

Formulations with layers. For specific finite difference schemes [16, 105] and finite element schemes
[160, 159, 262], HABCs based on continued fractions can be interpreted as absorbing layers, sometimes
called discrete perfectly matched layers (DPMLs) by analogy with the PMLs. Note the similarity between
the first term of the auxiliary equations (2.1.10) and the central finite difference of a second-order partial
derivative. Each auxiliary field then corresponds to an additional layer of the DPML.

With the double absorbing boundary (DAB) technique [162, 201], the computational domain is ex-
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tended with a layer. The auxiliary equations (2.1.9) are used both at the domain-layer interface and at
the exterior boundary. The auxiliary fields {ϕm}m=1,...,M are defined inside the layer, where they are
governed by the Helmholtz equation. This approach is easy to use, but the auxiliary fields have to be
computed in a layer rather than just on the boundary, which increases the computational cost.

2.1.4 Discussions and extensions

Dealing with curved boundaries. Many ABCs have been proposed for circular, elliptic, spherical
and spheriodal domains, see e.g. [110, 29, 28, 150, 23, 24, 291, 264, 226]. Some of them have been
extended to general convex domains with curved regular boundaries, see e.g. [191, 6, 8, 7, 280]. For
example, we have the following ABCs for a general curved surface Γ,

∂nu = ıκu−Hu, on Γ, (see e.g. [8])

∂nu = ıκu−Hu+
1

2ıκ
(K −H2)u− 1

2ıκ
∆Γu, on Γ, (see e.g. [8])

∂nu = ıκ
√
1 + ∆Γ/κ2εu, with κε = κ+ ıε and ε > 0, on Γ, (see [10])

∂nu = ıκ
√

1 + ∆Γ/κ2εu−Hu− divΓ

( H
2κ2

∇Γu

)
, on Γ, (2.1.11)

where H and K are the mean and Gaussian curvatures of Γ, respectively. The first two conditions have
been obtained by approximating an exact non-reflecting DtN operator for regular curved surfaces [8].
Unfortunately, these ABCs are not accurate for evanescent modes. To deal with evanescent modes,
Antoine, Darbas and Lu [10] proposed using Padé-type approximations of the square-root operator with
a complex wavenumber, which empirically accounts for curvature effects, and additional terms were
suggested in [194]. These approaches lead to the last two conditions above.

Dealing with corners. Planar HABCs can be prescribed on the boundary of polygonal and polyhedral
domains, but the direct application of these conditions without corner/edge treatments generates errors.

Corner conditions based on compatibility relations, which avoid any error, have been obtained for
rectangular and cuboidal domains with right angles. They have been derived for time-dependent problems
with a second-order ABC [19], Padé-type HABCs [82, 286, A5], a Higdon-type HABCs [167] and a CRBC
[168]. Mathematical analyses of Helmholtz problems with a second-order ABC [190] and a CRBC [164]
have been proposed, with corner conditions in both cases. The DPML and DAB techniques can handle
corners and edges quite naturally, but this comes at the cost of a larger number of degrees of freedom.

It is difficult to deal with non-right angles. The corner conditions cited above are derived by using the
fact that the normal vector at one edge of a rectangular domain is tangent to the adjacent edges. Corner
conditions for non-right angles have been studied for the CRBC in [192] and for a second-order ABC
[100]. The DPML has been applied to polygonal domains [159], but the error generated at the corners has
not been clearly investigated. Alternatively, HABC formulations derived for regular curved boundaries
can be prescribed at the boundary of polygonal domains with numerical curvatures to reproduce in a
heuristic way any effect related to the corners [6]. The half-space matching method (HMM) [48], which is
based on an alternative integral representation of the exterior problem, has been extended to truncated
domain with non-right angles.

Dealing with other physical waves and media. The extension of HABCs to other physical waves
and heterogeneous media is challenging. Padé-type HABCs have been proposed and studied for elastic
waves [76, 111, 177, 178, 62, 224] and electromagnetic waves [108]. A first extension with smoothly-
varying media has been recently proposed in [221] for time-harmonic acoustic problems. The HMM [48]
offers an alternative approach to deal with heterogeneous media.
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2.2 Corner treatments for Padé-type HABCs

The contribution is the result of a collaboration with X. Antoine and C. Geuzaine. It corresponds
to the article [A9]. I obtained the numerical results by using GetDP scripts.

In this contribution, we aim to use Padé-type HABCs for truncated domains with non-regular
boundaries. These HABCs are accurate and computationally efficient for planar and regular curved
boundaries. However, applying these conditions to the boundaries of polygonal/polyhedral domains
without specific corner/edge treatments generates errors.

As explained in Section 2.1.4, exact corner/edge treatments based on compatibility relations
have been proposed for HABCs in settings with right angles. The treatment of non-right angles
is challenging, regardless of the boundary truncation technique considered. Few corner treatments
have been tested and, to the best of our knowledge, only in 2D with polygonal domains.

In [A9], we have proposed and studied two approaches for using Padé-type HABCs with trun-
cated domains having right and non-right angles in 2D and 3D. These approaches are based on
compatibility relations and boundary regularization.

2.2.1 Compatibility conditions for corners with right angles

We consider the Helmholtz equation on the quarter space Ω = {(x, y) ∈ R2 : x < 0, y < 0} with a
Padé-type HABC with ϕ-rotation of the branch cut on each edge, i.e.

∂xu|Γx = L(u|Γx , φx
1 , . . . , φ

x
N ), on Γx := {(x, y) ∈ R2 : x = 0, y < 0},

∂yu|Γy = L(u|Γy , φy
1, . . . , φ

y
N ), on Γy := {(x, y) ∈ R2 : x < 0, y = 0},

with the multivariate function L defined as

L(w,w1, . . . , wN ) := ıκeıϕ/2
[
w +

2

M

N∑
i=1

ci (w + wi)
]
,

where the sets of auxiliary fields {φx
i }i and {φy

j}j defined on Γx and Γy, respectively, are governed by

∂yyφ
x
i + κ2

(
(eıϕci + 1) φx

i + eıϕ(ci + 1) u|Γx

)
= 0, for i = 1 . . . N, on Γx, (2.2.1)

∂xxφ
y
j + κ2

(
(eıϕcj + 1) φy

j + eıϕ(cj + 1) u|Γy

)
= 0, for j = 1 . . . N, on Γy, (2.2.2)

with M = 2N + 1 and ci = tan2(iπ/M).

From a mathematical point of view, additional boundary conditions have to be prescribed on the
auxiliary fields at the corner P xy = (0, 0) because of the second-order spatial derivative in equations
(2.2.1)-(2.2.2). From a modeling point of view, these additional conditions provide information about
the exterior problem. If we are looking for a solution to the free space problem, the corner treatment
should accurately represent the outward propagation of waves at the corner.

Our strategy relies on additional compatibility relations that provide the missing boundary conditions
at the corners. In a nutshell, these relations are obtained by applying the HABC prescribed at one edge
to the auxiliary fields defined at the other edge, and by defining new auxiliary variables at the corner
(see justifications in [A9]). After some simplifications, we obtain the additional relations

∂xφ
y
j

∣∣
Pxy

= L(φy
j |Pxy , φxy

1j , . . . , φ
xy
Nj), for j = 1 . . . N, at P xy,

∂yφ
x
i |Pxy = L(φx

i |Pxy , φxy
i1 , . . . , φ

xy
iN ), for i = 1 . . . N, at P xy,
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with N2 auxiliary variables {φxy
ij }ij defined at the corner and given by

φxy
ij = −

(cj + 1) φx
i |Pxy + (ci + 1) φy

j |Pxy

ci + cj + e−ıϕ
, for i, j = 1 . . . N, at P xy.

The Padé-type HABC and the corner treatment are incorporated quite naturally in the variational
form of the Helmholtz problem (2.0.2). Let us consider the Helmholtz equation on a rectangular domain
Ω, the HABC on each edge Γf (with f = 1 . . . 4), and the corner treatment at each corner P fg = Γf ∩Γg

(where Γf and Γg are any adjacent edge). We introduce N auxiliary fields {φf
i }i on each edge Γf , and

we define N2 auxiliary variables {φfg
ij }ij as

φfg
ij := −

(cj + 1) φf
i |P fg + (ci + 1) φg

j |P fg

ci + cj + e−ıϕ
, for i, j = 1 . . . N, at each corner P fg. (2.2.3)

The variational formulation of the Helmholtz problem is:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find u ∈ H1(Ω) and φf
i ∈ H1(Γf ), with f = 1 . . . 4 and i = 1 . . . N , such that∫

Ω

[
∇u · ∇v − κ2uv

]
dΩ−

4∑
f=1

∫
Γf

L
(
u|Γf , φf

1 , . . . , φ
f
N

)
v dΓ =

∫
Ω

sv dΩ, ∀v ∈ H1(Ω),

and ∫
Γf

[(
∂τfφf

i

) (
∂τf ρf

)
− κ2

(
(eıϕci + 1) φf

i + eıϕ(ci + 1) u|Γf

)
ρf

]
dΓ

−
∑
g

[
L
(
φf
i |P fg , φfg

i1 , . . . , φ
fg
iN

)
ρf

]
= 0, ∀ρf ∈ H1(Γf ),

for f = 1 . . . 4 and i = 1 . . . N .

In the second equation, the index g corresponds to any edge Γg adjacent to Γf .

This approach is extended to 3D for cuboidal domains in [A9]. In this case, N 2D auxiliary fields
are defined on each face, N2 1D auxiliary fields are defined on each edge, and N3 auxiliary variables
are defined at the corners. Auxiliary differential equations similar to the 2D and 1D versions of the
Helmholtz equation must be solved on the faces and the edges, respectively.

2.2.2 Numerical validation of the compatibility conditions

The compatibility conditions have been validated with 2D and 3D finite element simulations. We have
considered the scattering of a plane wave by a disk in a square truncated domain (Figure 2.2a) and by
a sphere in a cuboidal truncated domain (Figure 2.3a). These results have been obtained with the mesh
generator Gmsh [142] and the finite element solver GetDP [106]. Repository: https://gitlab.onelab.
info/doc/models/-/tree/master/HelmholtzHABCwithCorners.

A Padé-type HABC is prescribed on the edges of the square (or on the faces of the cube), and the
compatibility relations are used at the corners of the square (or at the edges and corners of the cube).
The real part of the error on the numerical solutions (with and without the rotating angle ϕ) compared
to the reference free-space analytic solution are shown in Figures 2.2 and 2.3. This error takes into
account both modeling errors due to the approximate boundary treatment and numerical errors due to
the numerical approximations. With ϕ = 0, surface waves propagate along the artificial boundaries in
both cases. In 2D, these spurious waves are canceled with ϕ = π/3, and the numerical error due to the
dispersion of the scheme dominates the global error. In 3D, the amplitude of these waves are reduced
by taking ϕ = π/4, and they disappear when increasing N from 2 to 3 (results not shown here).

In Figure 2.4, the L2-norm of the error is plotted as a function of the mesh density for the 2D case
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(a) Reference solution (b) Error with ϕ = 0 (c) Error with ϕ = π/3

Figure 2.2: Square truncated domain: real part of the reference solution (a) and simulation error with a Padé-type
HABC (N = 4 and either ϕ = 0 (b) or ϕ = π/3 (c)) and the corner compatibility conditions. Parameters: domain
Ω = [−1.1, 1.1]2, disk of radius R = 1, plane wave uinc(x) = eıκx, boundary condition on the disk ∂nu = −∂nu

inc,
wavenumber κ = 25, second-order curvilinear triangular elements, second-degree polynomial basis functions, mesh
density nλ ≈ 10. Reproduced from [A9].

(a) Reference solution (b) Error with ϕ = 0 (c) Error with ϕ = π/4

Figure 2.3: Cuboidal truncated domain: real part of the reference solution (a) and simulation error with a
Padé-type HABC (N = 2 and either ϕ = 0 (b) or ϕ = π/4 (c)) and the corner/edge compatibility relations.
Parameters: domain Ω = [−1.41, 1.41]3, sphere of radius R = 1, plane wave uinc(x) = eıκx, boundary condition
on the disk ∂nu = −∂nu

inc, wavenumber κ = 10, second-order curvilinear triangular elements, second-degree
polynomial basis functions, mesh density nλ ≈ 10. Reproduced from [A9].

with different values of N and ϕ. The numerical solution is again compared to the reference free-space
analytic solution. We also show the projection error between the reference solution and its L2-projection
onto the finite element space. By Céa’s lemma, this is the smallest error that can be obtained, regardless
of the boundary treatment.

For the coarsest meshes, the smallest error is reached with a few auxiliary fields N , both for ϕ = 0

and ϕ = π/3, but this error is significantly higher than the projection error. As the mesh is refined, the
error decreases until it reaches a plateau, which corresponds to a modeling error due to the approximate
boundary treatment. Increasing N decreases the level of the plateau, and using ϕ = π/3 instead of ϕ = 0

accelerates this decrease. For N = 5 and ϕ = π/3, the error is very close to the projection error for the
finest meshes. Therefore, the modeling error is negligible compared to the numerical error.

These results confirm the effectiveness of both the Padé-type HABC and the compatibility relations
for simulating non-reflecting boundaries with rectangular and cuboidal truncated domains. Using the
strategy with the rotating parameter ϕ is critical because it improves the quality of the solution at
no additional computational cost. The optimal value of ϕ depends on the case, but π/4 and π/3 are
frequently used. A numerical investigation is proposed in [A9].
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(a) HABC with ϕ = 0
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(b) HABC with ϕ = π/3
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Figure 2.4: Square truncated domain: relative L2-error as a function of the mesh density. The error takes into
account both modeling errors due to the domain truncation and numerical errors due to the scheme. The black
line corresponds to the relative projection L2-error. The mesh density

√
#nodes, is computed by using the total

number of nodes in the mesh (6 nodes per triangle). Reproduced from [A9].

2.2.3 Approximate treatments for corners with non-right angles

The corner compatibility relations cannot be straightforwardly extended to configurations with non-right
angles. Indeed, we used the fact that the normal derivative for one edge is a tangential derivative for the
other edge, which does not hold for non-right angles. In [A9], we have tested approximate corner/edge
treatments based on approximate conditions and regularization strategies.

To describe the corner treatments, we consider the Helmholtz equation on the infinite wedge domain
Ω = {(x, y) ∈ R2 : xa < 0 and yb < 0}, where (xa, ya) and (xb, yb) are Cartesian coordinates associated
with the edges Γa and Γb, respectively, see Figure 2.5a. The angle between the edges is denoted α. The
Padé-type HABC is prescribed on each edge,

∂xau|Γa = L(u|Γa , φa
1 , . . . , φ

a
N ), on Γa,

∂ybu
∣∣
Γb = L(u|Γb , φb

1, . . . , φ
b
N ), on Γb,

with auxiliary fields {φa
i }i and {φb

j}j defined on Γa and Γb, respectively, and governed by

∂2yayaφa
i + κ2eıϕ

(
(ci + e−ıϕ) φa

i + (ci + 1) u|Γa

)
= 0, ∀i, on Γa,

∂2xbxbφ
b
j + κ2eıϕ

(
(cj + e−ıϕ) φb

j + (cj + 1) u|Γb

)
= 0, ∀j, on Γb.

We seek a treatment to prescribe at the corner P = (0, 0) for any angle α ∈ ]0, π],

(a) Approximate corner condition

α
•

Ω

Γa

Γb

P

ya

xa

yb

xb

(b) Illustration of the regularization techique

•
Ω

Γ

P

n

τ

Artificial
curvature

Figure 2.5: Coordinate systems for a corner with a non-right angle. Reproduced from [A9].

18



Approximate conditions at corners and edges. A first approach consists in applying the compat-
ibility relations derived in the right-angle case to cases where α ̸= π/2, which makes sense if α ≈ π/2. A
second approach consists in prescribing the basic ABC on the auxiliary fields, i.e.

∂yaφa
i |P = ıκφa

i |P , for i = 1 . . . N, at P,

∂xbφb
j

∣∣
P
= ıκφb

j |P , for j = 1 . . . N, at P.

This treatment is an approximation, even for α = π/2, and the computational cost is small. In 3D,
when using the HABC on the faces of polyhedral domains, supplementary boundary conditions must be
prescribed at the edges for the auxiliary fields belonging to the faces. Similarly to the 2D case, we have
tested several approximate conditions for settings with non-right angles [A9].

Treatment by regularization of boundary. Another approach consists in replacing the sharp cor-
ners with rounded corners, see Figure 2.5b, avoiding the need for corner conditions. The Padé-type
HABC can be used with only one set of auxiliary fields that are continuous at the corner of the original
mesh. This is obviously an approximation, which we have called a hard regularization.

To improve the treatment, a Padé-type HABC for curved boundaries (e.g. equation (2.1.11) in 3D)
can be used with a numerical curvature, which should reproduce in a heuristic way the wave propagation
at the corner. This approach is called a soft regularization. Selecting a numerical curvature γnum (in 2D)
or a numerical mean curvature Hnum (in 3D) is tricky. In our approach, they are obtained by solving
auxiliary problems on the boundary of the mesh, denoted with Γh, as a pre-processing step. First, the
L2-projection of n onto a finite element space defined on Γh is computed. Then, in 2D, the numerical
curvature is computed by solving the following variational problem:∣∣∣∣ Find γnum ∈ Vh,Γ such that

∫
Γ

(γnum − t · ∂τnproj)ψ = 0, ∀ψ ∈ Vh,Γ,

where Vh,Γ is a scalar finite element space on Γh. In 3D, the main curvature is computed by solving
weakly the formula 2H = −∇ · ñ, where ñ is an extension of n in a neighborhood of the surface
[127]. The numerical evaluation of curvature and mean curvature is already used for simulations with
domains having regular borders, see e.g. [2, 62, 108]. Using this approach for domains having corners
was suggested in [6, 7]. However, to the best of our knowledge, the accuracy of the resulting schemes
has never been studied. Let us mention that the curvature can also be defined with heuristic formula,
see e.g. [7, 59, 220].

2.2.4 Numerical comparison of the approximate corner treatments

The corner treatments have been compared by using several 2D and 3D configurations in [A9]. Selected
results are presented below. The benchmark is still the scattering of a plane wave by a disk or a sphere,
but the truncated domain is polygonal or polyhedral. The HABC is prescribed on all the edges in 2D
(resp. faces in 3D), and the same treatment is used for all the corners (resp. corners and edges).

Snapshots of the error are shown for a triangular domain with different corner treatments in Figure 2.6.
In all cases, we observe errors similar to corner waves and grazing waves propagating along the edges.
These errors are likely due to the corner treatment, since the error related to the HABC was negligible
for a square domain with the same simulation parameters (see Figure 2.2). The error is smaller with the
approximate corner conditions than with the regularization techniques.

In Figure 2.8, the relative L2-error obtained with regular polygonal domains is plotted as a function of
α for different corner treatments and two meshes. For the triangle (i.e. α = π/3), both corner conditions
give the smallest relative error. For the square (i.e. α = π/2), the simulation error is very close to the
projection error with the compatibility relations, and it is much larger with the other strategies. As
α increases, the error increases with both corner conditions, and it decreases with the regularization
techniques. For α > 2π/3, the best result is always obtained with a soft regularization technique. The
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(a) Solution Re(uref) (b) Basic ABC at corn. (c) π/2 compatibility (d) Hard regulariz. (e) Soft regulariz.

Figure 2.6: Triangular truncated domain: real part of the reference solution (a) and simulation error with a
Padé-type HABC (N = 4 and ϕ = π/3) and different corner treatments: approximate corner conditions (b)-(c)
and regularization techniques (d)-(e). Parameters: see caption of Figure 2.2. Note that increasing N does not
significantly change the results. Reproduced from [A9].

(a) Solution Re(uref) (b) Error Re(u− uref) (c) Solution Re(uref) (d) Error Re(u− uref)

Figure 2.7: Polyhedral truncated domains: reference solution and simulation error with a Padé-type HABC
(N = 2 and ϕ = π/4) and approximate corner/edge conditions (for the tetrahedron (a)-(b)) or a soft regularization
technique (for the icosahedron (c)-(d)). Parameters: see caption of Figure 2.3. Reproduced from [A9].
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Figure 2.8: Polygonal truncated domains: relative L2-error as a function of the angle α for different corner
treatments and two meshes (numbers of vertices per wavelength nλ = 10 or 20). The numerical solution is
compared to the free-space analytic solution. For α = π, the results have been obtained with a circular domain
and the exact curvature. The black line corresponds to the relative L2-projection error. Parameters: see caption
of Figure 2.2, polygonal domains with mid-radius 1.65, circular domain with radius 1.65. Reproduced from [A9].

errors do not vary much when refining the mesh, which confirms that they are due to modeling errors,
except for α = π/2 with the compatibility relations. Similar results have been obtained with a truncated
domain corresponding to the slice of a disk, and with regular polyhedra (see illustrations in Figure 2.7).

In summary, approximate corner conditions based on the π/2 compatibility relations are appropriate
for configurations with α ≈ π/2. The soft regularization techniques are the bests for configurations with
very obtuse angles. Dealing with angles far from π/2 and π is challenging, and the error can be only
slightly reduced with the considered strategies.
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2.3 Overview of PMLs for Helmholtz problems

The perfectly matched layers (PMLs) were introduced by Bérenger [38, 39] in the early 90’s for solving
time-dependent electromagnetic problems with finite differences and truncated rectangular/cubic do-
mains. With Bérenger’s approach, the truncated domain is extended by one layer in each Cartesian
direction, each equation is split into the Cartesian directions, and directional damping terms are added
in the split equations. The resulting PML medium is both dissipative and perfectly matched to the orig-
inal medium. Therefore, with accurate discretization schemes, any outgoing wave leaving the truncated
domains is perfectly transmitted to the layer, regardless of the angle of incidence, and it is damped inside
the layer. This was not possible with the existing layer techniques, see e.g. [189, 181].

Because of its interesting properties, the PML was quickly applied to other physical and geometric
configurations. In particular, the technique has found a convenient interpretation for time-harmonic
problems: the PML equations are obtained by stretching the spatial coordinates in the complex plane
[68, 251, 252]. This approach has been reinterpreted as a modification of the metric tensor [278, 207] and
as a modification of the material properties [141, 261, 294]. These interpretations simplify the derivation
and implementation of PMLs for truncated domains of general shape.

2.3.1 The Cartesian PML for the Helmholtz equation

We consider the modified Helmholtz problem (2.0.2) with a cuboid truncated domain Ωdom = ]− L,L[
3.

The domain is extended in each Cartesian direction by a layer of constant thickness δpml. The resulting
layer is Ωpml := ]− L− δpml, L+ δpml[

3 ∖
[−L,L]3. The regions of this layer correspond to the faces,

edges and corners of the truncated domain. In these regions, the waves must then be damped in one,
two and three Cartesian directions, respectively.

Complex coordinate stretch. To derive a PML with a damping in the direction ex, corresponding
to the regions with x ∈ ]− L− δpml,−L[ and x ∈ ]L,L+ δpml[, the Helmholtz equation is first rewritten
with the local coordinate ξx(x) := L− |x| ∈ ]0, δpml[. Then, this coordinate is replaced by the stretched
complex coordinate

ξ̃x(ξx) :=

∫ ξx

0

sx(ξ
′
x) dξ

′
x, with sx(ξx) := 1− σx(ξx)/(ıκ),

where sx(x) is the stretching function and σx(ξx) is the absorption function. The absorption function is
real and positive. The function ξ̃x(ξx) can be interpreted as a parameterization of a curve in the complex
plane. In practice, the PML equation is obtained by replacing ∂ξx by ∂ξ̃x = s−1

x ∂ξx , where we have used
the chain rule to get back to the real coordinate. This is equivalent to replacing ∂x with ∂x̃ = s−1

x ∂x.

This strategy is applied in multiple directions within the regions corresponding to the edges and
corners of the truncated cuboid domain. For corner PML regions, the gradient operator is then replaced
by a complex gradient operator,

∇x :=
[
∂x ∂y ∂z

]⊤ −→ ∇x̃ = J−1
pml∇x,

where ∇x is the gradient operator written in Cartesian coordinates, and Jpml is the Jacobian of the
transformation from the Cartesian coordinates (x, y, z) to the stretched Cartesian coordinates (x̃, ỹ, z̃),

Jpml :=
∂(x̃1, x̃2, x̃3)

∂(x1, x2, x3)
= diag (sx, sy, sz) ,

with the stretching functions sx(ξx), sy(ξy), sz(ξz), and the absorption functions σx(ξx), σy(ξy), σz(ξz)
corresponding to the three Cartesian directions. This approach can be interpreted as a change of the
metric tensor, where sx, sy, sz are the scale factors of the resulting metric tensor [141, 261, 275].
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PML equations. Applying the complex coordinate stretches in the Cartesian directions in the Helmholtz
equation, we obtain the PML equation

−J−1
pml∇x · (J−1

pml∇xu)− κ2u = 0. (2.3.1)

This equation can also be written as

−∇x · (Λpml∇xu)− αpmlκ
2u = 0, (2.3.2)

with the complex material parameters

αpml := sxsysz and Λpml := diag
(
sysz
sx

,
sxsz
sy

,
sxsy
sz

)
.

The PML can then be interpreted as a complex anisotropic medium. This formulation is simply equivalent
to using complex frequency-dependent anisotropic material parameters. It is very easy to use in practice,
as it can be naturally incorporated into existing codes adapted for general material parameters.

Variational formulations. The resulting problem consists of solving the Helmholtz equation in the
domain Ωdom, the PML equation in the layer Ωpml, continuity conditions at the interface Γint and a
boundary condition at the exterior border Γext. In practice, the homogeneous Neumann condition is
often chosen. We introduce the region containing both the domain and the layer, Ω := int(Ωdom ∪ Ωpml).
The PML equations (2.3.1) and (2.3.2) lead to the variational formulations∣∣∣∣∣∣∣∣∣∣∣

Find u ∈ H1(Ω) such that, ∀v ∈ H1(Ω),∫
Ωdom

[
∇xu · ∇xv − κ2uv

]
dΩ

+

∫
Ωpml

[
(J−⊤

pml∇xu) · (J−⊤
pml∇xv)− κ2uv

]
(det Jpml) dΩ =

∫
Ωdom

sv dΩ

(2.3.3)

and ∣∣∣∣∣∣∣∣∣∣∣

Find u ∈ H1(Ω) such that, ∀v ∈ H1(Ω),∫
Ωdom

[
∇xu · ∇xv − κ2uv

]
dΩ

+

∫
Ωpml

[
(Λpml∇xu) · ∇xv − αpml κ

2uv
]
dΩ =

∫
Ωdom

sv dΩ,

(2.3.4)

respectively. This first formulation can also be obtained by performing the complex coordinate stretches
and the changes of variables directly on the classical sesquilinear form of the Helmholtz equation [225].
It emphasizes the important role of the Jacobian matrix Jpml.

Reflection coefficient. An elementary plane-wave analysis shows that the PML is perfectly matched,
i.e. any traveling wave is perfectly transmitted from the domain to the layer, regardless of its frequency
and angle of incidence. For a PML of finite thickness, plane waves can be reflected by the exterior
boundary of the layer, and they can re-enter the domain if they are not sufficiently damped. The
reflection coefficient R associated with a layer of thickness δpml is

R = exp

[
−2 cos θ

∫ δpml

0

σ(ξ′) dξ′
]
, (2.3.5)

where θ is the angle of incidence of the plane wave. If σ is unbounded, the reflection coefficient is zero,
and the layer is perfectly absorbing.
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Figure 2.9: Curvilinear coordinates and local frame associated with the boundary Γint in two dimensions. The
curves of iso-value coordinates are represented in figure (a). Gray curves are parallel. Red lines are straight and
perpendicular to Γint. Figure (b) shows the local frame and the radial coordinate ξ1.

2.3.2 The conformal PML for the Helmholtz equation

The coordinate stretch can be used with other coordinate systems to derive PML formulations for
truncated domains of other shapes, such as cylinders, spheres or ellipsoids, see e.g. [57, 86, 277]. However,
this technique requires a global coordinate system associated with the interface between the domain and
the PML, which can be complicated to use in practice for convex domains with more general shapes.

With the conformal PML technique [275, 276], the coordinate stretch is performed in a local curvilin-
ear coordinate system based on surfaces parallel to the interface, see Figure 2.9a. To use this technique,
the truncated domain must be convex with a sufficiently regular boundary, and the layer has a constant
thickness δpml. The conformal PML was studied for the Helmholtz equation in [205, 207], and it has
been applied to solve time-harmonic problems [109] and time-dependent problems [A11].

Local curvilinear coordinate system. The domain is assumed to be convex, and its boundary is
sufficiently regular. Then, each point x of the layer Ωpml can be represented as

x(r,p) = p+ rn(p), (2.3.6)

where p is the closest point belonging to the interface Γint, r = ∥x−p∥ ∈ ]0, δpml[ is the distance between
x and the interface Γint, and n(p) is the unit normal of Γint at p pointing towards the exterior of Ωdom.
The local curvilinear coordinate system (ξ1, ξ2, ξ3) associated to Γint is defined as follows. For each point
x(ξ1, ξ2, ξ3) of the layer, the coordinate ξ1 = r is the distance function, and the coordinates ξ2 and ξ3
are provided by a local parametrization of Γint. The local parametrization is chosen in such a way that

∂n

∂ξi
= κiti, with ti =

∂p

∂ξi
, for i = 2, 3,

where t2(ξ2, ξ3) and t3(ξ2, ξ3) are the principal directions and κ2(ξ2, ξ3) and κ3(ξ2, ξ3) are the principal
curvatures of the surface Γint at p(ξ2, ξ3), see e.g. [8, A11]. Equation (2.3.6) can then be rewritten as

x(ξ1, ξ2, ξ3) = p(ξ2, ξ3) + ξ1n(ξ2, ξ3).

The coordinates (ξ1, ξ2, ξ3) form an orthogonal curvilinear coordinate system. The vectors (e1, e2, e3) :=
(n, t2, t3) form an orthonormal frame. The 2D version of this system is illustrated in Figure 2.9b.

Complex coordinate stretch, complex Jacobian matrix and complex material parameters.
The PML equation is obtained by writing the Helmholtz equation in the local coordinate system, and
then by stretching the real coordinate ξ1 (i.e. the distance function) into the complex plane. The real

23



coordinate is replaced with the stretch complex coordinate

ξ̃1(ξ1) := ξ1 −
1

ıκ
f(ξ1), with f(ξ1) :=

∫ ξ1

0

σ(ξ′1) dξ
′
1, for ξ1 ∈ ]0, δpml[, (2.3.7)

where σ(ξ1) is the absorption function.

For the practical implementation in finite element codes, it is convenient to have the PML equation
and the variational formulation in Cartesian coordinates. In fact, the problem can be written with
the same variational formulations as for the Cartesian case, i.e. equations (2.3.3) and (2.3.4), with
the complex Jacobian matrix and the complex material parameters corresponding to the coordinate
stretch (2.3.7). The complex Jacobian matrix corresponding to the transformation from the Cartesian
coordinates (x1, x2, x3) to the stretched coordinates (x̃1, x̃2, x̃3) can be factorized as

Jpml =
∂(x̃1, x̃2, x̃3)

∂(ξ̃1, ξ̃2, ξ̃3)

∂(ξ̃1, ξ̃2, ξ̃3)

∂(ξ1, ξ2, ξ3)

∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)
.

This factorization emphasizes the successive changes of variables: the transformation from Cartesian
coordinates to curvilinear coordinates in the complex space, the use of the complex coordinate stretch to
come back in the real space, and the transformation from curvilinear coordinates to Cartesian coordinates
in the real space. For the specific curvilinear coordinate system described above, we have

Jpml = I− 1

ıκ

(
σ(ξ1) nn

⊤ +
κ2
h2
f(ξ1) t2t

⊤
2 +

κ3
h3
f(ξ1) t3t

⊤
3

)
, (2.3.8)

where h1, h2, h3 are the scale factor of the curvilinear coordinate system,

h1 = 1,

hi = 1 + κi(ξ2, ξ3) ξ1, for i = 2, 3,

see e.g. [275, A11, A1]. The corresponding complex material parameters are

Λpml = (det Jpml) J
−1
pmlJ

−⊤
pml,

αpml = det Jpml,

see e.g. [225]. The complex Jacobian matrix Jpml, and then the complex material parameters Λpml and
αpml, contain all the information related to the geometry and the complex coordinate stretch. They
can be used in the variational formulations (2.3.3) and (2.3.4). If the surface is locally plane, then
κ2 = κ3 = 0, and the Jacobian matrix of a Cartesian PML with damping in one direction is recovered.

2.3.3 Discussions and extensions

Parameter selection. The accuracy of PMLs depends on the absorption function σ, the thickness
δpml and the spatial discretization. To some extent, increasing the thickness and refining the spatial
discretization improve the accuracy. However, this comes at a higher computational cost. The absorption
function, which controls the attenuation of waves inside the layer, must be carefully chosen. It should be
large enough to sufficiently attenuate outgoing waves. However, it should not introduce a too sharp decay
that would not be represented by the discrete scheme, as this would generate numerical reflections. For
practical applications, the choice of σ is a critical issue that has been studied e.g. in [43, 71, 87, 173, A8].

Polynomial absorption functions that ensure a progressive damping are frequently used. In particular,
the quadratic and cubic functions, i.e.

σquad(ξ) = σ̄(ξ/δpml)
2 and σcub(ξ) = σ̄(ξ/δpml)

3, (2.3.9)
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are very common choices, although an additional free parameter σ̄ is introduced. One approach to choose
σ̄ is to set the reflection coefficient for outgoing waves with normal incidence, and then compute the value
of the parameter with equation (2.3.5) [87]. For the cubic function, the parameter is σ̄ = (2/δpml)(lnR

−1
0 ),

where δpml and R0 are given. Nevertheless, σ̄ should not be too large to prevent any significant numerical
reflection [87]. It has been shown in [43, 71, A8] that specific unbounded absorption functions provide
high-fidelity solutions without requiring the tuning of parameters. In particular, the hyperbolic and
shifted hyperbolic functions

σhyp(ξ) =
1

δpml − ξ
and σsf(ξ) =

1

δpml − ξ
− 1

δpml
(2.3.10)

are effective for finite element simulations. Nevertheless, the numerical approximation requires some care
because this function is singular on the exterior border of the layer.

Mathematical analysis. The well-posedness of time-harmonic scattering problems with PML has
been studied for several configurations: with a circular PML [42], a Cartesian PML [56, 195] and a con-
formal PML [206, 207]. Note that these papers make different assumptions about absorption functions.

Dealing with other physical waves. Bérenger’s PML was initially introduced for time-dependent
simulations of electromagnetic waves [38, 39]. It was then quickly applied and studied for other time-
dependent wave equations, such as elastic wave equations [67, 174, 88, 199], Euler’s equations [1, 184,
232, 273] and shallow water equations [93, 235]. Many alternative approaches and theoretical studies
have been proposed to improve and ensure the stability of the formulations. In particular, anisotropic
and dispersive media cause additional difficulties, see e.g. [32, 17, 33, 170] and the references cited in
these articles. More general PML formulations have been derived by using a complex frequency shifted
(CFS) stretch (see e.g. [200, 256, 34]), where both the real and imaginary parts of the coordinates are
stretched.

The PML formulations used for time-dependent problems can be directly applied to time-harmonic
problems. In fact, the formulations can be simplified for time-harmonic problems. For acoustic and
electromagnetic problems, the PML equations can be written with the original equations and complex
anisotropic material coefficients [261, 66, 294]. The same approach can be used for elastic problems,
but important symmetries of the elastic tensor are lost [225]. Several finite element implementations
have been proposed for elastic waves, see e.g. [26, 172, 126]. We refer to [225, 288] for a very useful
clarification of the functional framework, and variational formulations suitable for several standard wave
models. PML formulations for the convected Helmholtz equation, which is dispersive, have been proposed
and studied in [30, 31, 222].

Related approaches. The PML has been implemented in Trefftz finite element method in [185]. The
concept of complex scale has been combined with infinite element methods in [180, 230]. In [95], an
alternative strategy has been proposed to derive PMLs for time-dependent anisotropic acoustics, and to
deal with non-right angles.

25



2.4 A PML implementation for convex domains of general shape

This contribution is the result of a collaboration with H. Bériot. It corresponds to the article [A1].
The numerical results have been obtained with MATLAB and Simcenter 3D by H. Bériot.

We have investigated the practical use of the conformal PML for finite element simulations with
convex domains of general shape. The conformal PML can be easily implemented with standard
finite element methods, but it requires the knowledge of geometric data that may not be available
in practice. In 3D, the principal curvatures κ2, κ3, the principal directions t2, t3, and the normal
n of the interface must be known, as well as the distance r between any point of the layer and
the interface, see equation (2.3.8). In addition, for some applications, only polygonal/polyhedral
meshed domains are available, while the conformal PML is derived for convex domains with regular
boundaries. A typical example is a circular domain meshed with straight-sided elements.

Few PML implementations have been studied for truncated domains of general shape. Zschiedrich
et al. [295] proposed a 2D PML implementation for polygonal domains in which the complex coordi-
nate stretch is performed in a local prismatoidal coordinate system. Ozgun and Kuzuoglu [240, 241]
proposed a locally-conformal PML finite element implementation in which the distance r is esti-
mated by solving a minimization problem, and the coordinate stretch is performed directly on the
coordinates of the mesh nodes. This approach is flexible and easy to implement, since it does not
require any further geometric data or any modification of the equations, but it involves additional
approximations that introduce numerical errors, see [41].

In [A1], we proposed an approach, which we called the automatically matched layer (AML)
implementation, to deal with convex domains of general shape with regular and non-regular bound-
aries. For domains with regular boundaries, it is a specific implementation of the conformal PML
that requires less geometric data than the original formulation. In the AML approach, the layer
is generated by extruding the surface mesh of the domain boundary, and geometric data recorded
during the extrusion are extrapolated onto the mesh. The coordinate stretch is embedded into the
finite element scheme by a simple modification of the Jacobian matrix in the element-wise integrals.

2.4.1 Description of the AML implementation

We consider the conformal mesh of a convex domain, denoted Ωdom,h. The nature of the elements
inside Ωdom,h does not matter to present our approach. The restriction of these elements on the exterior
boundary, denoted Γint,h, gives a conformal surface mesh made of linear straight elements (Ngeo = 1) or
quadratic curvilinear elements (Ngeo = 2), but our approach could be extended to more general elements.

Mesh extrusion and geometric data. The mesh of the layer, denoted Ωpml,h, is generated by
extrusion. The vertices and the second-order nodes belonging to the surface mesh Γint,h are extruded
in a direction nh, which should correspond to the exterior normal of Γint,h. However, the definition of
this normal is ambiguous if the surface is not regular. To define nh, we have followed empirical rules,
which are illustrated in 2D in Figure 2.10. The extrusion is performed Npml times with a constant
extrusion distance hpml. The resulting layer is structured and consists of quadrangular elements (in 2D)
or prismatic and hexahedral elements (in 3D). The thickness of the layer is δpml = Npmlhpml.

During the mesh extrusion, geometric data are recorded at the extruded nodes. For a node generated
at the nth extrusion, the numerical distance rh is equal to nhpml, the extrusion direction nh is the same
as for the initial node belonging to the interface, and the closest point ph belonging to the interface
corresponds to the initial node. The nodal values are then extrapolated on each element by using the
finite element shape functions. The distance field obtained using this strategy is illustrated in Figure 2.10.

Let us consider a hexahedral element De of the layer. The reference coordinates associated to the
reference element Dref = [−1, 1]3 are denoted (u1, u2, u3). If the coordinate u1 is aligned with the
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Figure 2.10: Illustration of the mesh extrusion with Npml = 2 for 2D configurations with linear elements (left)
and quadratic curvilinear elements (right). The mesh vertices and the second-order nodes are shown, as well as
the interpolated distance field rh ∈ [0, δpml] (in blue) and the extrusion directions nh. Reproduced from [A1].

stretching direction, the position vector can then be written as

xe(u1, u2, u3) = pe(u2, u3) + re(u1) n
e(u2, u3), (2.4.1)

where re, ne and pe are the extrapolated fields.

Local coordinate system and complex coordinate stretch. The complex coordinate stretch is
performed in the extrusion direction nh. In contrast to the continuous case (see Section 2.3.2), the
interface Γint,h can be irregular and nh is an interpolated field.

On each element De of the layer, we define a local coordinate system (ηe1, η
e
2, η

e
3). The first coordinate

is the numerical distance, i.e. ηe1(u1) = re(u1). The second and third local coordinates are the second and
third reference coordinates, i.e. ηe2(u2) = u2 and ηe3(u3) = u3, which constitute a local parametrization of
Γint,h. The coordinate ηe1 is then replaced with η̃e(ηe1) := ηe1 − f(ηe1)/ıκ, which is equivalent to replacing
re(u1) with r̃e(u1) = re(u1)− f(re(u1))/ıκ. The stretched position vector then reads

x̃e(u1, u2, u3) := pe(u2, u3) + r̃e(u1) n
e(u2, u3) = xe(u1, u2, u3)−

1

ıκ
f(re(u1)) n

e(u2, u3). (2.4.2)

Thanks to these formulas, we can derive Jacobian matrices to switch between the Cartesian coordinates,
the reference coordinates, and the curvilinear coordinates in both real and complex spaces.

Practical computation of the element-wise integrals. The variational formulation (2.3.3) can
be used with the Jacobian matrix of the PML transformation, i.e. Jepml := ∂(x̃e1, x̃

e
2, x̃

e
3)/∂(x

e
1, x

e
2, x

e
3),

which can be explicitly derived thanks to equations (2.4.1) and (2.4.2). Nevertheless, in practice, the
implementation is simplified if Jepml is combined with the Jacobian matrix of the mapping with the
reference element, i.e. Jeref := ∂(xe1, x

e
2, x

e
3)/∂(u1, u2, u3).

Let us consider an entry (A,B) of the global matrix of the discrete system obtained with the varia-
tional formulation (2.3.3). The element-wise integral corresponding to an element De ⊂ Ωpml,h reads∫

De

[
([Jepml]

−⊤∇xΨA) · ([Jepml]
−⊤∇xΨB)− κ2ΨAΨB

]
(det Jepml) dD

e,

where ΨA and ΨB are global basis functions. By using the mapping between the physical coordinates
(xe1, x

e
2, x

e
3) and the reference coordinates (u1, u2, u3), this term can be rewritten as∫

Dref

[
([Jepml]

−⊤[Jeref ]
−⊤∇uψa) · ([Jepml]

−⊤[Jeref ]
−⊤∇uψb)− κ2ψaψb

]
(det Jepml) (det J

e
ref) dDref ,

where ψa and ψb are local basis functions defined on Dref , ∇u = [∂u1 ∂u2 ∂u3 ]
⊤ is the gradient in the

reference coordinate system, and a and b are the local indices associated to the global indices A and B.
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Combining the Jacobian matrices gives∫
Dref

[
([Je]−⊤∇uψa) · ([Je]−⊤∇uψb)− κ2ψaψb

]
(det Je) dDref

with the combined Jacobian matrix Je that can be written as

Je := JepmlJ
e
ref =

∂(x̃e1, x̃
e
2, x̃

e
3)

∂(u1, u2, u3)
= Jeref −

1

ıκ

[
(∂u1

re) σ(re) ne f(re) ∂u2
ne f(re) ∂u3

ne
]
, (2.4.3)

thanks equation (2.4.2).

In a nutshell, the AML implementation consists of adding an imaginary part to the Jacobian matrix
used in the element-wise integrals, see equation (2.4.3). It requires only a distance function re(u1) and
an extrusion direction ne(u2, u3), which are obtained by extrapolating nodal values on the mesh.

Discussion and comparison. If the interface is smooth, the AML implementation can be seen as a
conformal PML with approximate geometric parameters. Indeed, if ne is an accurate approximation of n,
then the matrix (2.4.3) is recovered by combining the matrix (2.3.8) of the conformal PML transformation
and the Jacobian matrix Jeref associated to the mapping with the reference element. For non-smooth
interfaces, the AML is an approximate conformal PML with empirical parameters.

The LC-PML implementation proposed by Ozgun and Kuzuoglu in [240, 241] consists in replacing
the coordinates of the mesh nodes with the stretched coordinates, which leads to the Jacobian matrix

Je =
[
∂u1

x̃e ∂u2
x̃e ∂u3

x̃e
]
, (2.4.4)

where x̃e is a polynomial representation of the stretched coordinates. In fact, the real part of this
matrix is identical with the AML (i.e. with equation (2.4.3)), but the imaginary part is different. The
LC-PML approach is a priori simpler, but it involves additional numerical approximations. Indeed, the
stretched coordinates are interpolated with polynomial shape functions, and the resulting functions are
differentiated numerically in equation (2.4.4). By contrast, with the AML, the absorbing function σ(re)
and the integrated function f(re) are evaluated exactly in the Jacobian matrix without any polynomial
interpolation and numerical differentiation.

Unbounded absorbing functions, such as the hyperbolic function σhyp (2.3.10), can be used efficiently
with the AML, while local instabilities can appear with the LC-PML, see [41]. In our numerical results,
we have used σhyp with the Gauss-Legendre quadrature without any difficulty, despite the singularity of
σhyp at the exterior boundary of the layer.

Strategies to address non-right angles have been proposed for absorbing layers that are defined differ-
ently [160, 159, 95]. Nevertheless, these strategies do not apply to standard PML formulations, and they
involve specific modifications of the computational scheme at the corners. By contrast, the implemen-
tations considered here correspond to the standard PML on the regular parts of the domain boundary,
with a corner treatment implicitly embedded in the coordinate stretch based on the mesh extrusion.

2.4.2 Numerical results: validation, comparison and illustration

The AML implementation has been compared to the direct implementation of the conformal PML, and to
the LC-PML implementation. Selected representative 2D results and a 3D illustration with a commercial
code are presented below, see [A1] for more results.

The reference benchmark corresponds to the scattering of a plane wave by a sound-hard disk. The
solutions obtained with circular and pentagonal truncated domains are shown in Figure 2.11. The default
parameters are written in the caption of the figure. The domain is meshed with Gmsh [142], and the layer
is generated by extrusion at run time by the solver, which is a MATLAB code.

In preliminary comparisons (not shown), we have observed that the performance of the hyperbolic
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Figure 2.11: Circular/pentagonal truncated domain: mesh (left), real part of the numerical solution (center) and
error distribution (right) obtained with the AML implementation. Parameters: circular domain of radius 1.65,
pentagonal domain of midradius 1.65, scattering disk of radius 1, wavenumber κ = 25, plane wave uinc(x) = eıκx,
∂nu = −∂nuinc on Γsca, ∂nu = 0 on Γext, second-order curvilinear triangles in Ωdom, second-order curvilinear
quadrangles in Ωpml, second-order polynomial basis functions, characteristic size of a mesh cell h ≈ 1/25, number
of extrusions Npml = 4, layer thickness δpml = Npmlh, hyperbolic absorbing function σhyp. Reproduced from [A1].

function σhyp (2.3.10) and the cubic function σcub (2.3.9) for layers with several cells is similar if the
parameter σ̄ of σcub is well-chosen. The function σcub is slightly outperformed by σhyp for layers with
one or two mesh cells. It is rather clear that using σhyp is advantageous, especially for small layers. Here,
σcub is used with the empirical rule σ̄ = (2/δ)(lnR−1

0 ) and R0 = 10−6.

Cases with a circular domain. The scattering disk of radius 1 is placed in the center of a circular
truncated domain of radius 1.1. Figure 2.12 shows the relative L2-error as a function of the numbers
of extrusions Npml, for polynomial shape functions with the degrees p = 1, 2 and 3, and both functions
σhyp and σcub. The numerical solution unum is compared to the reference free-space analytic solution
uref inside the truncated domain.

The AML implementation and the direct implementation of the conformal PML give identical results
in all the cases, which is expected for truncated domains with regular boundaries. The LC-PML imple-
mentation did not give satisfactory results with σhyp (i.e. the solution blows up, results not shown). It
can be used with σcub, but, for thin layers, the errors are always smaller with the AML (Figure 2.12b).
Recall that the LC-PML approach introduces approximation errors due to the interpolation of complex
coordinates on the finite element mesh.

Cases with polygonal domains. The scattering disk of radius 1 is placed in the middle of polygonal
domains of midradius 1.65, and in the middle of a circular domain of radius 1.65, see Figure 2.11. Figure
2.13 shows the relative L2-error as a function of Npml obtained with the AML implementation (with
σhyp) and the LC-PML implementation (with σcub and R0 = 10−6). As a reference, the Cartesian PML
is tested with both absorbing functions for the configurations with the square domain. The relative
projection error has nearly the same value for all the computational domains.

Both AML and LC-PML implementation are equivalent for thick layers, i.e. with Npml ≥ 5. The
results are satisfactory, except for the triangular case, where the angles are acute. For thin layers, which
allow for a reduction of the computational cost, combining the AML with σhyp is the most efficient
approach. The 3D results discussed in [A1] lead to a similar conclusion.
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(a) AML imp. / Direct imp. ; σhyp
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(b) AML imp. / LC-PML imp. ; σcub (R0 = 10−6)
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Figure 2.12: Circular truncated domain: L2-error in the truncated domain as a function of Npml with different
PML implementations and two absorbing functions. The LC-PML did not give satisfactory results with σhyp.
The results of the AML and the direct implementation of the conformal PML were identical with σcub. The
dashed lines correspond to the best interpolation error. Parameters: wavenumber κ = 25, characteristic size of
the mesh cells h = pλ/dλ, wavelength λ = 2π/κ, resolution rate dλ = 20. Reproduced from [A1].

(a) AML imp. ; σhyp ; p = 2
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(b) LC-PML imp. ; σcub (R0 = 10−6) ; p = 2
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Figure 2.13: Polygonal truncated domain: L2-error in the truncated domain as a function of Npml with the AML
equipped with σhyp (left) and the LC-PML equipped with σcub (right). Light and dark colors correspond to
polygonal domains with many and few edges, respectively. The black lines correspond to the results with the
standard Cartesian PML for the square domain. The dashed lines correspond to the best interpolation error.
Parameters: wavenumber κ = 25, polynomial degree p = 2, resolution rate dλ = 20. Reproduced from [A1].

Illustration of application. To illustrate the interest of the AML for 3D realistic cases, we consider
the scattering of a plane wave by a shark submarine (Figure 2.14a). To minimize the number of degrees
of freedom, the exterior surface of the truncated domain is automatically generated by using a convex
hull algorithm based on [20] (Figure 2.14b). Then, the mesh of this surface is extruded to generate the
layer. The final model was set up and run by H. Bériot (Siemens, Belgium) using the simulation package
Simcenter 3D [266] developed by Siemens Industry Software.

The numerical solution obtained with Npml = 5 is shown in Figure 2.14c. To study the influence of
the PML on the accuracy, the directivity of the scattered field on a circle of radius 2 in the xz-plane is
shown in Figure 2.14d for Npml = 1, 5 and 10. The results obtained with the different thicknesses are
very close. A thin absorbing layer, with a thickness of only few mesh cells, is sufficient to get accurate
results, although the interface between the domain and the layer is very close to the submarine.
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(a) Scattering object (b) Mesh and convex hull

(c) Numerical solution (d) Directivity plot

Figure 2.14: Illustration of application: (a) original CAD model of unit length; (b) mesh and convex exterior
surface generated at the minimal distance 2h from the submarine; (c) real part of the scattered field; (d) directivity
plot of the scattered field on a circle or radius a = 2, in the zx-plane, centered at z = 0.5a, with several thicknesses
of PML. Parameters: incidence vector κinc = [0, 0,−1]⊤, wavenumber κ = 40, characteristic length h = 15×10−3,
quadratic elements, polynomial degree p = 2, resolution rate dλ = 20. Reproduced from [A1].

Table 2.1: Illustration of application: characteristics for truncated domains with different shapes. The distance
between the interface and the submarine is equal to 2h and an extruded layer with Npml = 5 is generated.

Shape Volume # Elements # DoFs Memory
of domain of domain Domain Ext. layer Domain Ext. layer Total for facto.

Convex envelope 6.8e−2 302 803 109 670 439 884 438 700 878 584 11.6 Gb
Cuboid 19.7e−2 546 837 151 020 773 064 604 100 1 377 164 23.5 Gb
Cylinder 21.1e−2 608 502 146 140 854 097 584 580 1 438 677 28.3 Gb

In the solution process, the most computationally intensive operation was solving the linear discrete
system, which was done with a LU factorization. The computational cost, in terms of runtime and
memory storage, is directly related to the total number of degrees of freedom, and then to the volume of
the domain. Using the convex hull algorithm to define the domain, instead of a more standard geometry,
reduces the size of the domain. To illustrate this, we have generated cuboidal and cylindrical domains
that are aligned with the main axis of the submarine. For each geometry, the minimal distance between
the exterior boundary and the submarine is equal to 2h, and the exterior surface mesh is extruded to
generate a layer with Npml = 5. The characteristics of the resulting models are compiled in Table 2.1.

The use of a convex envelope allows to reduce the size of the resulting global system by about 40%
as compared to a canonical truncation. This results in a significant memory footprint reduction of 60%
(resp. 50%) compared to the cylindrical (resp. cuboidal) case. It is important to limit the volume of the
domain and the thickness of the layer to control the computational cost, especially in 3D. This advocates
using the AML with an efficient unbounded absorbing functions, such as the hyperbolic one.
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Chapter 3

Domain decomposition methods

In this chapter, we aim to accelerate the iterative solution of time-harmonic problems discretized with
finite elements by using domain decomposition methods (DDMs). This family of methods actually covers
a wide range of computational strategies. They are all based on a partition of the computational domain
into subdomains, and the definition of local problems on these subdomains. These local problems are
solved at each step of a global iterative process, and the local solutions are used in one way or another
to speed up the convergence of the process.

This research topic is very active and benefits from a large community. Most of the methods pro-
posed for elliptic problems have been studied mainly for coercive problems. Unfortunately, the classical
methods do not work so well for time-harmonic problems, which are generally indefinite, and tailored
approaches are required, see e.g. [117, 138]. For example, the convergence of the global iterative pro-
cess can be accelerated by using transmission conditions based on domain truncation techniques at the
interfaces between the subdomains, which improves the representation of the waves propagating across
these interfaces. In sweeping preconditioners, the local problems are solved in a certain order to sweep
the partition, which mimics the wave propagation in the global domain. Several other approaches are
described below.

I have contributed to non-overlapping DDMs with transmission conditions based on HABC and PML
for checkerboard domain partitions. These domain partitions have cross-points, which are points shared
by more than two subdomains, or points shared by at least two subdomains and belonging to the exterior
boundary of the computation domains. If the presence of cross-points is not taken into account in the
construction of a DDM, the efficiency of this method can be reduced and, in the worst cases, it can even
converge to a wrong solution.

This chapter is structured as follows. After a brief review of standard and current approaches (Section
3.1), three contributions are presented: two substructuring methods with HABC and PML transmission
for checkerboard domain partitions (Sections 3.2 and 3.3, respectively), and a family of sweeping pre-
conditioners adapted to these partitions (Section 3.4).
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3.1 Overview of DDMs for Helmholtz problems

In this section, we briefly present and review of domain decomposition domains (DDMs) that have been
applied or specifically developed for time-harmonic problems discretized with finite elements. For general
presentations of DDMs for finite element solvers, see e.g. the reference books [250, 285, 223, 244, 103]
and the review article [154]. The parallel solution of time-harmonic problems is discussed in more detail
e.g. in [223, chapter 18], [103, chapter 2] and [202]. We also refer to the recent reviews [138, 139].

To describe the methods, we consider the Helmholtz equation on a 2D computational domain Ω with
an ABC on the exterior boundary Γext := ∂Ω. The problem reads:∣∣∣∣∣∣∣∣

Find u ∈ H1(Ω) such that{
−∆u− κ2u = s, in Ω,

∂nu− ıκu = 0, on Γext,

(3.1.1)

with a strictly positive wavenumber κ(x), the exterior normal derivative ∂n, and a source term s(x).

3.1.1 A first convergent domain decomposition algorithm

In the early 90’, Després [97, 99, 35] proposed a non-overlapping domain decomposition algorithm for the
finite element solution of Helmholtz problems. This algorithm was adapted from the non-overlapping
Schwarz algorithm studied shortly before by Lions [215] for Laplace and coercive problems. It this
method, the local problems are coupled with Robin (or impedance) transmission conditions. Després
[97] proved that the iterative process is convergent for Helmholtz problems with specific impedance
coefficients.

We consider a partition of the domain Ω into non-overlapping subdomains {ΩI}I=1...Ndom
. We have

Ω = ∪IΩI and ΩI ∩ ΩJ = ∅ if I ̸= J . The exterior boundary of a subdomain ΩI is denoted by
Γext,I := ∂ΩI ∩ Γext. The interface with a neighboring subdomain ΩJ is denoted by ΓIJ := ∂ΩI ∩ ∂ΩJ .

The iterative process starts with an initial local solution u0I on each ΩI . Then, at each step ℓ ≥ 0,
an updated local solution uℓ+1

I is computed on each ΩI by solving∣∣∣∣∣∣∣∣∣∣
Find uℓ+1

I ∈ H1(ΩI) such that
−∆uℓ+1

I − κ2uℓ+1
I = s, in ΩI ,

∂nI
uℓ+1
I − ıκuℓ+1

I = 0, on Γext,I ,

∂nI
uℓ+1
I − ıκuℓ+1

I = gℓIJ , on each ΓIJ ,

(3.1.2)

with the exterior normal derivative ∂nI
and the transmission variable gℓIJ defined as

gℓIJ := ∂nI
uℓJ − ıκuℓJ ,

where uJ is the local solution associated to the neighboring subdomain ΩJ . The transmission variable
gℓIJ can be interpreted as information transferred from ΩJ to ΩI . Note that ΓIJ = ΓJI , ∂nI

= −∂nJ
and

gℓIJ ̸= gℓJI . Since a local problem similar to system (3.1.2) is defined on ΩJ , we have the transmission
condition ∂nJ

uℓJ − ıκuℓJ = gℓ−1
JI on ΓIJ . Combining this condition with the definition of gℓIJ gives

gℓIJ = −gℓ−1
JI − 2ıκuℓ−1

J .

This formula is convenient for updating the transmission variables because it does not require the Neu-
mann trace of the local solution, which can be difficult to obtain in practice in finite element schemes.
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3.1.2 Substructuring techniques

The reduced problem. The non-overlapping domain decomposition algorithm of Després [97] can
be rewritten in a compact form, which is useful for studying or proposing DDMs. Let us recast all
the transmission variables in the set of all transmission variables gℓ ∈ G. By using the linearity of the
problem and eliminating the local solutions from the algorithm, the global process can be rewritten as

gℓ+1 = Tgℓ + b (3.1.3)

where T : G → G is an iteration operator and b ∈ G depends on the source term s. This process can be
seen as a fixed-point iteration applied to linear system

Fg := (I − T)g = b, (3.1.4)

which is called the substructured problem, the interface problem or the reduced problem. This problem can
be solved with Krylov-type iterations instead of the fixed-point iteration, and preconditioning techniques
can be used to speed up the iterative process.

The operator T can be rewritten as the successive application of a scattering operator S and an
exchange operator Π [99, 84], i.e. T = ΠS. The operator S acts as an “incoming to outgoing” operator
for each subdomain. It requires the solution of the local problem with incoming transmission variables,
and it computes outgoing data to send to the neighboring subdomains. The operator Π exchanges the
data at the interfaces between the subdomains. The problem then reads

(I −ΠS)g = b, (3.1.5)

with the identity operator I.

Transmission conditions based on domain truncation techniques. The convergence of the non-
overlapping DDMs strongly depends on the transmission conditions enforced at the interfaces between
the subdomains. In the local problem (3.1.2), the transmission conditions can be replaced with

∂nI
uℓ+1
I − TIJuℓ+1

I = gℓIJ , on each ΓIJ ,

where TIJ is a transmission operator. The optimal operator corresponds to the non-local Dirichlet-to-
Neumann (DtN) map related to the complement of each subdomain, which is a Schur complement at the
discrete level. Since the computation of the exact DtN is prohibitive, strategies based on approximate
DtN operators started to be investigated in the late 80’s and early 90’s, see e.g. [166, 234]. This question
is closely related to the development of domain truncation techniques, where boundary operators are
used to represent the outward propagation of waves. Here, transmission operators should represent the
transmission of waves at the interfaces.

The transmission operator corresponds to the basic ABC operator in [97] and to the standard 2nd

order ABC operator in [249]: T u = ıκu and T u = ıκu − ∆Γu/(2ıκ). General 0th and 2nd order
operators with optimized parameters were proposed in [135]: T u = αu and T u = αu+β∆Γu. Two-sided
transmission conditions were studied in [132]. More sophisticated transmission conditions are based on
HABC operators [52, 54, 196], PML operators [263, 270, 289] and integral operators [84, 272, 209, 208, 85].
These operators speed up the convergence of the iterative process (up to a certain point) with an extra
cost per iteration. The cost is related to the order of the HABC, the thickness of the PML, and the kind
of the integral operator. Note that the interfaces between the subdomains must be regular to use these
approaches, and the cross-points require some care, see below. For a more detailed review of DDMs with
domain truncation techniques, we refer to the survey of Gander and Zhang [139].

Cross-point issues and strategies. Most of the DDMs with 2nd order, HABC, PML and non-local
operators were initially studied and tested for configurations with 1D domain partitions, such as partitions
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in layers or in onion skins. Such partitions do not have interior cross-points, which are points where
more than two subdomains meet. However, for large 2D and 3D applications, the amount of data to be
transferred can be much smaller with multidimensional partitions, such as Cartesian and checkerboard
partitions, or general mesh partitions with irregular interfaces. For such partitions, the interior cross-
points may require some care at the continuous level, the discrete level, at both. Additional difficulties
arise when a HABC, a PML or an integral equation is prescribed on the exterior boundary of the global
domain. In these cases, the boundary cross-points that belong to both the exterior boundary and two
subdomains also require some care.

The convergence of the iterative process (3.1.3) with the transmission operator T = ıκ has been proved
at the continuous level for a general domain partition, possibly with cross-points, see [97]. The method
works perfectly after discretization with a mixed finite element method, but the direct discretization of
the reduced system with a nodal finite element method leads to an underdetermined problem. In fact, the
discrete equations associated to the interior cross-points are linearly dependent. This issue is not limited
to Helmholtz problems, see e.g. [250, 285, 103], and can be treated in different ways. The reduced
system can be solved with a preconditioned Krylov-type methods, which can solve underdetermined
system. This approach is used in the FETI [94] and FETI-H [120, 121] methods1. In the FETI-DPH
method [118], a global problem is associated to the discrete physical unknowns defined on the cross-
points, and the reduced system associated to the interface unknowns is build in such a way that it is
solvable. In a strategy proposed in [53, 36], the discrete physical unknowns defined at the cross-points
are kept in the reduced system. These approaches improve the convergence, but they require global
communication between the subdomains to solve a reduced system. In the context of elliptic problems,
several cross-point techniques have been proposed and studied in [133, 134, 216, 136].

For 2nd order, HABC, PML and non-local operators, difficulties already appear when defining the
algorithm at the continuous level. Cross-point treatments have recently been investigated for 2nd order
operators [239, 100, 101, 131]. Strategies have also been proposed for HABC and PML transmission
conditions in [A12] and [210, A15], respectively, for checkerboard domains partitions. The contributions
[A12] and [A15] are presented in Sections 3.2 and 3.3, respectively. The FEM-BEM coupling with domain
decomposition has been investigated e.g. in [204, 37, 45].

In a promising approach recently investigated in a series of works by Claeys et al. [242, 72, 75, 74, 73],
the reduced system (3.1.5) is written with a more general definition of the exchange operator, which
naturally accommodates the presence of cross-points for general mesh partitions.

3.1.3 Preconditioning techniques

Preconditioning strategies have been developed for both the global problem and the reduced problem to
speed up the iterative solution procedures. Let Au = b be the algebraic system resulting from the finite
element discretization of the global problem (3.1.1). The left and right preconditioned systems of this
problem are (P−1A)u = (P−1b) and (AP−1)(Pu) = b with a preconditioner P. The matrix P must be
chosen such that applying its inverse on any vector is affordable, and solving the preconditioned system
is faster than solving the original system.

Several preconditioning strategies not related to DDMs have been proposed, see e.g. [113]. For
example, in [27], the matrix resulting from the discretization of a Laplace problem is used to precondition
the Helmholtz problem. In the complex shifted Laplace (CSL) preconditioner proposed in [116], a complex
scalar term is added to the Laplace operator. The CSL preconditioner has been studied and combined
with multigrid and/or deflation strategies in [115, 130, 203, 107]. Multilevel preconditioning consists
in applying successively two or more preconditioners, corresponding to the different preconditioning
strategies, or to the same strategy with different parameters at each level, see e.g. [114, 265].

1Note that, in the FETI-H method, only one ABC transmission condition is prescribed at each interface, and the
additional interface condition enforce the continuity of the Dirichlet traces.
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Schwarz preconditioners. The Schwarz preconditioners are defined by using local problems posed
on the subdomains of a domain partition. They are used on the system associated to the global problem.
There are many variants, generally with overlapping subdomains, see e.g. [269, 129, 103].

The restricted additive Schwarz (RAS) preconditioner [269] is given by

P−1 =
∑
I

RT
I DIAI

−1RI ,

where RI is the restriction matrix that selects the entries of the input vector that belong to the subdomain
ΩI , DI is a partition unity matrix such that I =

∑
I R

T
I DIRI is the identity matrix, and AI = RIAR

T
I is

a local finite element matrix associated to a local problem defined on ΩI . This method is related to the
block Jacobi method and the original parallel Schwarz algorithm, where the local problem can be solved in
parallel. In the multiplicative Schwarz (MS) method, the local problems are solved sequentially, allowing
information transfer across the entire domain partition at each iteration. This approach is related to the
alternating Schwarz algorithm, the block Gauss-Seidel method and the sweeping methods (see below).

To speed up the convergence, each matrix AI can be modified such that a Robin boundary condition or
a domain truncation technique is prescribed at the boundary of ΩI . This approach leads to the optimized
restricted additive Schwarz (ORAS) and optimized multiplicative Schwarz (OMS) methods. The ORAS
method has been studied for Helmholtz problems with optimized 0th and 2nd order operators in [137]. In
[284, 49], a PML is used at the boundary of each subdomain. The convergence of Schwarz preconditioners
for Helmholtz problems with and without absorption has been studied in [155, 156, 151, 51, 152].

Sweeping methods. In the sweeping methods, local problems associated with the subdomains are
solved sequentially in a certain order to sweep the partition at each iteration. The principle is the same
as for the MS method, but this point of view is more general. It leads to domain decomposition algorithms
and to preconditioning techniques for both the global problem (3.1.1) and the reduced problem (3.1.5).

For 1D domain partitions, the matrices of the global and reduced systems can be rewritten as block
tridiagonal matrices if the subdomains are numbered in a consecutive order. Sweeping methods based on
the Gauss-Seidel algorithm consist of forward and backward sweeps, which are performed sequentially
or in parallel, depending on the algorithm. In the context of Helmholtz problems, these sweeps follow
the natural propagation of waves in the domain.

These methods were first proposed and studied in the 90’s for convection-diffusion problems [231, 233].
They have attracted much interest for Helmholtz problems, promising a number of iterations that is
quasi independent of the number of subdomains, see e.g. [58, 112, 270, 289, 271, 290, 55]. They are very
efficient for waveguide and open cavity configurations, which have a unique natural direction in which
information is transferred. More recently, multidimensional sweeping preconditioners for checkerboard
domain partitions have been proposed in [292, 293, 274, 210, 211, A4]. The contribution [A4] is presented
in section 3.4. See [138, 55] for more detailed reviews and comparisons of sweeping preconditioners.

DDM with multilevel preconditioning. The DDMs involving only local communications between
the subdomains, such as ORAS, cannot scalable with respect to the number of subdomains. The sweeping
and OMS methods can scalable, but they require sequential operations that reduce the parallel perfor-
mance. With a second preconditioning level, the DDM is enriched by using a coarse problem defined
on the entire domain partition. The coarse problem must be cheap to solve, and it introduces global
exchanges. The combination of a coarse space method with a substructuring or preconditioning DDM is
generally referred to as a two-level DDM.

The design of robust coarse space methods for Helmholtz problems is very challenging, and several
approaches have been (and are still being) investigated in the community. Several coarse preconditioning
matrices have been tested for the reduced system of the FETI and FETI-like methods, see e.g. [94, 120,
118, 15]. In [197, 89, 46, 140, 50], several coarse spaces are combined with the RAS and ORAS methods,
which correspond to two-level Schwarz preconditioners.

37



3.2 DDM with HABC transmission and cross-point treatment

This contribution is the result of a collaboration with X. Antoine, C. Geuzaine and A. Royer. It
corresponds to the article [A12]. I obtained the numerical results using GetDDM scripts.

In the contribution, we consider a non-overlapping domain decomposition substructuring method
with high-order transmission conditions proposed by Boubendir, Antoine and Geuzaine [52]. In that
work, no specific cross-point treatment was used, and only low-order exterior ABCs were considered.

We have proposed a cross-point treatment for checkerboard domain partitions when the Padé-
type HABC operator is used in the transmission condition, in the exterior condition, or in both.
For a complete definition of the local problems defined on the subdomains, additional conditions are
required at the interior corners of the subdomains. In our approach, appropriate corner conditions
based on [A9] are introduced, and additional transmission variables are defined at the cross-points.

The proposed cross-point treatment speeds up the convergence of the DDM. If the exterior
boundary condition is a HABC, the method cannot converge without the cross-point treatment.
While this approach is designed for regular checkerboard domain partitions (i.e. with only parallel
and perpendicular interfaces) and homogeneous media, we have observed that it gives good results
with distorted partitions and smoothly varying heterogeneous media.

3.2.1 Description of the substructuring method

Global problem. We consider the Helmholtz equation on a rectangular domain Ω, with Padé-type
HABCs on the edges (denoted Γf for f = 1 . . . 4), and compatibility relations at the corners (denoted
Cff ′ for any adjacent edges Γf and Γf ′). The problem reads as follows.

• An unknown field u defined on Ω is governed by{
−∆u− κ2u = s, in Ω,

∂nf
u− L

(
u, {φf,i}i=1...N

)
= 0, on each Γf .

(3.2.1)

• On each edge Γf , auxiliary fields {φf,i}i=1...N are governed by{
−∂τfτfφf,i − κ2

(
(eıϕci + 1)φf,i + eıϕ(ci + 1)u

)
= 0, on Γf .

∂τfφf,i − L
(
φf,i, {ψff ′,ii′}i′=1...N

)
= 0, on each Cff ′ ,

for i = 1 . . . N , where Γf ′ corresponds to any adjacent edge of Γf .
• At each corner Cff ′ , auxiliary variables {ψff ′,ii′}i,i′=1...N are defined by compatibility relations

similar to equation (2.2.3).

In these equations, the wavenumber κ is a strictly positive real constant, s(x) is a source term, N is the
number of auxiliary fields, and ϕ is a rotating angle of the Padé-type HABC. For each Γf , ∂nf

is the
exterior normal derivative, and ∂τf is the tangential derivative. The function L is defined as

L
(
w, {wi}i=1...N

)
:= ıκeıϕ/2

[
w +

2

M

N∑
i=1

ci(w + wi)
]
,

with M = 2N + 1 and ci = tan2(iπ/M).

DDM with HABC transmission conditions for checkerboard domain partition. We consider a
partition of Ω into a grid of rectangular non-overlapping subdomains ΩI (with I = 1 . . . Ndom). Each edge
ΓI,f (with f = 1 . . . 4) of ΩI is either an interior edge if it is shared by two subdomains (i.e. ΓI,f ̸⊂ ∂Ω)
or a boundary edge otherwise (i.e. ΓI,f ⊂ ∂Ω). Two types of points deserve attention: the interior
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Figure 3.1: Terminology and notations. In this example, the continuity of the local solution u1 and u2 on the
interior edge Γ1,f = Γ2,g is ensured thanks to the transmission variables g1,f and g2,g. Reproduced from [A12].

cross-points that do not touch the boundary of the global domain, and the boundary cross-points that
touch the boundary of the global domain. See illustration in Figure 3.1 for a 2× 2 partition.

The global problem (3.2.1) is decomposed into local problems defined on the subdomains, with trans-
mission conditions based on Padé-type HABC operators. For the sake of simplicity, we assume that the
parameters of the HABC operators are identical to those used for the exterior condition (i.e. N and ϕ).
However, more general parameters could be used with some rules to maintain consistency, see [A12]. For
each subdomain ΩI , the local problem reads as follows.

• An unknown field uI defined on ΩI is governed by{
−∆uI − κ2uI = s, in ΩI ,

∂nI,f
uI − L

(
uI , {φI,f,i}i=1...N

)
= gI,f , on each ΓI,f ,

(3.2.2)

where gI,f is a transmission variable.
• On each edge ΓI,f , auxiliary fields {φI,f,i}i=1...N are governed by

−∂τI,fτI,fφI,f,i − κ2
(
(eıϕci + 1)φI,f,i + eıϕ(ci + 1)uI

)
= 0, on ΓI,f , (3.2.3)

for i = 1 . . . N .

If ΓI,f is a boundary edge, the second equation of system (3.2.2) is an exterior boundary condition,
and gI,f is set to zero. If ΓI,f is an interior edge, the equation is a transmission condition, and the
transmission variable is defined as gI,f := ∂nI,f

uJ − L
(
uJ , {φJ,g,i}i=1...N

)
, where ΩJ is the neighboring

subdomain, ΓJ,g = ΓI,f is the shared edge, uJ is the local solution on ΩJ , and {φJ,g,j}j=1...N are the
auxiliary fields on ΓJ,g. Since a problem similar to system (3.2.2) is defined on ΩJ , the transmission
condition ∂nJ,g

uJ −L
(
uJ , {φJ,g,j}j=1...N

)
= gJ,g is prescribed on ΓJ,g. Therefore, gI,f can be written as

gI,f =

{
0, if ΓI,f ⊂ ∂Ω,

− gJ,g − 2L
(
uJ , {φJ,g,j}j=1...N

)
, if ΓI,f ̸⊂ ∂Ω.

(3.2.4)

Because of the second-order partial derivative in equation (3.2.3), boundary conditions must be
prescribed on the auxiliary fields at the extremities of the edges. These extremities are the corners of the
subdomains, which are interior/boundary cross-points or corners of the global domain. At the corners of
Ω, the corner treatment based on compatibility relations must be applied for consistency with the global
problem. At the cross-points, the missing conditions are provided by the treatment described below.

Cross-point treatment. The treatment is based on the following principles. The corner conditions
described in Section 2.2.1 are prescribed at the corners of each subdomain. A corner condition can
become a transmission condition by adding a transmission variable in the right-hand side. Therefore, at
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Figure 3.2: Transmission variables across the boundary and interior cross-points, if the HABC operator is used
both in the exterior boundary condition and in the interface conditions. In the example, the continuity of
the auxiliary fields φ1,f,i and φ4,g,i (defined on the aligned edges Γ1,f and Γ4,g) at the interior cross-point
C1,ff ′ = C4,gg′ is ensured thanks to the transmission variables g1,ff ′,i and g4,gg′,i. Reproduced from [A12].

each extremity of each edge ΓI,f , a boundary or transmission condition is prescribed on the auxiliary
fields. It is a boundary condition if the adjacent edge ΓI,f ′ is a boundary edge, and it is a transmission
condition if the adjacent edge is an interior edge. In the latter case, the transmission condition ensures
the continuity of the auxiliary fields that are on the same line of the domain partition.

Following these principles, the description of the formulation with domain decomposition can be
completed. For each edge ΓI,f , the auxiliary fields {φI,f,i}i=1...N defined on ΓI,f are governed by{

−∂τI,fτI,fφI,f,i − κ2
(
(eıϕci + 1)φI,f,i + eıϕ(ci + 1)uI

)
= 0, on ΓI,f ,

∂nI,f′φI,f,i − L
(
φI,f,i, {ψI,ff ′,ii′}i′=1...N

)
= gI,ff ′,i, on each CI,ff ′ ,

(3.2.5)

where CI,ff ′ is any corner shared by ΓI,f and an adjacent edge ΓI,f ′ . If ΓI,f ′ is a boundary edge, the
second equation is a boundary condition, and the transmission variables are set to zero. If ΓI,f ′ is an
interior edge, the second equation is a transmission condition, and the transmission variables depend on
the solution of the other side of ΓI,f ′ . On each CI,ff ′ , the transmission variables {gI,ff ′,i}i=1...N verify

gI,ff ′,i =

{
0, if ΓI,f ′ ⊂ ∂Ω,

− gJ,gg′,i − 2L
(
φJ,g,i, {ψJ,gg′,ii′}i′=1...N

)
, if ΓI,f ′ ̸⊂ ∂Ω,

(3.2.6)

for i = 1 . . . N . In the latter case, the indices are chosen in such a way that ΩJ is the neighboring
subdomain on the other side of ΓI,f ′ , ΓJ,g′ = ΓI,f ′ is the shared edge, and ΓJ,g is aligned with ΓI,f ,
see Figure 3.2. The transmission conditions enforce the continuity of φI,f,i and φJ,g,i at the cross point.
The variables ψI,ff ′,ii′ and ψJ,gg′,ii′ are defined by compatibility similarly to equation (2.2.3).

Global solution procedure. With the fixed-point iteration, each step of the global solution procedure
consists of solving a local problem on each subdomain, and updating the transmission variables at both
edges and cross-points. The procedure starts with initial values for the transmission variables. At each
iteration ℓ, the solution u

(ℓ)
I and the auxiliary fields {φ(ℓ)

I,f,i}f,i are updated by solving equation (3.2.2)
and equation (3.2.5) for each subdomain ΩI . Then, the interface and cross-point transmission variables
are updated by using relations based on equations (3.2.4) and (3.2.6).

The global process can be recast as one application of an iterative operator A : G → G defined by
g(ℓ+1) = Ag(ℓ) + b, where g(ℓ) ⊂ G is the set of transmission data, and b depends on the source term
s. This can be seen as a fixed-point iteration to solve the linear system (I − A)g = b, where I is the
identity operator. This system can be solved by using a Krylov iterative solvers. Here, by contrast with
most of the approaches, transmission data are associated to both interfaces and cross-points.
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(a) Benchmark with basic ABC (b) Benchmark with HABC (c) Benchmark with B.-T. ABC

Figure 3.3: Real part of the reference numerical solution for three configurations. The basic ABC, the Padé-type
HABC (N = 6 and ϕ = 0.3π) and the second-order Bayliss–Turkel ABC are set on the exterior border Γext.
Parameters: scattering disk of radius 1, square subdomains of size 2.5× 2.5, plane wave uinc(x) = eıκx, boundary
condition u = −uinc on Γsca, wavenumber κ = 4π, number of vertices per wave length nλ = 10, second-order
curvilinear triangular elements, second-degree polynomial basis functions. Reproduced from [A12].

3.2.2 Computational results

To validate and study our approach, we have considered reference benchmarks that represent the scatter-
ing of a plane wave by a sound-soft circular obstacle. The simulations are performed on a square domain
with a 3 × 3 checkerboard domain partition. Either a basic ABC (Figure 3.3a) or a Padé-type HABC
with corner conditions (Figure 3.3b) is prescribed on the exterior boundary. The relative L2-errors of the
numerical solutions compared to the reference free space analytic solution are 2.2× 10−1 and 2.4× 10−3,
respectively. See [A12] for results with a circular domain (Figure 3.3c).

The DDM procedure with the GMRES iteration, the HABC transmission condition, and the cross-
point treatment. The same HABC parameters N and ϕ are used for all the interior edges, but they can
be different from the parameters of the HABC on the boundary edges. The results have been obtained
with the mesh generator Gmsh [142], the solver GetDP [106], and the interface GetDDM [281]. Repository:
https://gitlab.onelab.info/doc/models/-/tree/master/HelmholtzDDMwithCrosspoints.

Convergence history. The relative residual and the relative L2-error are plotted as functions of the
number of iterations in Figure 3.4. The L2-error is computed by comparing the local solution obtained
in each subdomain with the global solution computed on the same mesh without domain decomposition.
The dotted lines correspond to results without the cross-point treatment, i.e. the associated terms are
removed from the formulation, which is equivalent to a homogeneous Neumann boundary condition on
the auxiliary fields at the cross-points.

When the basic ABC is prescribed on ∂Ω, the residual and the error decrease during the iterations
in all the cases (Figures 3.4a and 3.4b). The decay is faster when the cross-point treatment is enabled.
It can be accelerated further, up to a certain point, by taking N sufficiently large. When the HABC is
prescribed on ∂Ω, the impact of the cross-point treatment is more important. Note that, if the cross-point
treatment is not enabled, the residuals decrease with the iterations (Figure 3.4c), but the relative errors
reach a plateau and stagnate at 10−1 (Figure 3.4d). This can be explained by noting that auxiliary fields
are defined on the edges of the domain Ω, and the continuity of these auxiliary fields must be ensured at
the boundary cross-points. Without the cross-point treatment, the problem with domain decomposition
is not compatible with the original problem, and the iterations converge towards a wrong solution.

With the cross-point treatment, the residual and the error drop between the 3rd and 4th iterations
in all the cases. This can be interpreted by looking at the solution after each iteration (Figure 3.5).
Initially, only the subdomain containing the scattering object has a non-zero numerical solution. This
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(a) Residual history for benchmark with basic ABC
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(b) L2-error history for benchmark with basic ABC
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(c) Residual history for benchmark with HABC
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(d) L2-error history for benchmark with HABC
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Figure 3.4: Evolution of relative residual (left) and relative L2-error (right) during the GMRES iterations. The
L2-error is computed by comparing the numerical solution to the reference numerical solution obtained without
domain decomposition. HABC transmission conditions with N = 0, 2, 4, 6 auxiliary fields and ϕ = 0.3π are
used. The dotted lines correspond to the results obtained when the cross-point treatment is not used (only for
N = 2, 4, 6). Handling the cross-point procedure is represented by continuous lines. Reproduced from [A12].

(a) After initialization (b) After 1 iteration (c) After 2 iterations (d) After 3 iterations (e) After 4 iterations

Figure 3.5: Evolution of the solution during the GMRES iterations for configuration 1 and the HABC-based
transmission condition with N = 4 and ϕ = 0.3π. The first picture is obtained after initialization of the right-
hand side of the transmission system. Reproduced from [A12].

solution is already quite accurate since the transmission condition acts as a HABC, and the cross-point
treatment behaves as the appropriate corner treatment. The signal is then propagated from subdomain
to subdomain during the iterations, and it reaches the last subdomain in the 4th iteration.

42



(a) Influence of the wavenumber κ (with nλ = 10)
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(b) Influence of the mesh density nλ (with κ = 4π)
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(c) Influence of the number of auxiliary fields N and the
rotating angle ϕ in the HABC transmission condition
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Figure 3.6: Influence of the parameters on the number of GMRES iterations to reach the relative residual 10−6.
In Figures (a) and (b), the dotted lines correspond to the results obtained when the cross-point treatment is
not used. In Figure (c), the yellow cells correspond to the smallest number of iterations for each N . Figure (d)
corresponds to a weak scaling analysis where the size of the size of the domain increases with the number of
subdomains. Parameters: κ = 4π, nλ = 10, N = 6, ϕ = 0.3π, Ndom,x ×Ndom,y = 3× 3. Reproduced from [A12].

Influence of the parameters. The number of GMRES iterations to reach the relative residual 10−6 is
computed by modifying the parameters of the problem/method one by one. We consider only the problem
with the basic ABC on the exterior boundary, and the cross-point treatment at every cross-point.

Influence of the wavenumber κ and the mesh density nλ (Figures 3.6a and 3.6b). High frequency
simulations are challenging because they require fine meshes with high mesh densities to avoid the
pollution effect. The efficiency of the method for large values of κ and nλ is therefore an important issue.
For N = 0, the number of iterations slowly increases with respect to κ. By contrast, for higher values
of N , the convergence does not change significantly with κ when the cross-point treatment is used. For
all the values of N , the number of iterations increases with the mesh density nλ. Fortunately, with the
cross-point treatment, the number of iterations can be kept constant when increasing nλ by taking N
larger, and a convergence independent of the mesh density can be achieved provided that N is sufficiently
large. This was already observed in [52] on configurations without interior cross-points. These results
indicate that the method is well-adapted to high-frequency problems with high density meshes.

Influence of the parameters of the HABC transmission condition (Figure 3.6c). We observe that the
Padé case (i.e. rotating angle ϕ = 0) gives the worst result whatever the number of auxiliary fields N ,
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(a) Velocity model (b) Real part of the solution

(c) Number of iterations without cross-point treatment

ϕ→ 0 0.1π 0.2π 0.3π 0.4π 0.5π
N = 0 120 94 88 91 103 123
N = 1 >200 56 51 48 48 49
N = 2 >200 51 47 47 47 48
N = 3 >200 51 47 47 47 47

(d) Number of iterations with cross-point treatment

ϕ→ 0 0.1π 0.2π 0.3π 0.4π 0.5π
N = 0 120 94 88 91 103 123
N = 1 >200 54 49 47 46 48
N = 2 >200 47 45 44 44 44
N = 3 >200 45 43 43 44 44

Figure 3.7: Marmousi benchmark: Pictures of the spatially varying medium (a) and the real part of the solution
(b) with the domain partition. Numbers of GMRES iterations to reach the relative residual 10−4 without/with
cross-point treatment (c)-(d). Reproduced from [A12].

and it should be avoided. For any given ϕ > 0, increasing N accelerates the convergence, up to a certain
limit. Unfortunately, increasing N leads to a higher computational cost and a slightly larger amount
of communication. By contrast, the selection of the parameter ϕ can accelerate the convergence of the
iterative process at no additional cost. The optimal value of ϕ depends on N , which makes the choice of
the parameter rather tricky. Fortunately, the number of iterations is not very sensitive to ϕ as soon as
ϕ is sufficiently large. Here, we always use ϕ = 0.3π, which is a nearly-optimal value in all the cases.

Influence of the number of subdomains (Figure 3.6d). The simulation is performed by increasing the
number of subdomains in both Cartesian directions (i.e. Ndom,x and Ndom,y), and by increasing the size
of the main domain accordingly. We observe that the number of iterations increases linearly with the
number of subdomains in each direction. This is expected, because the transmission of information from
subdomain to subdomain is local. The method could be combined with a preconditioning technique with
global communications between the subdomains, e.g. sweeping or coarse spaces techniques.

Experiments with heterogeneous media or non-right angles The proposed DDM is a priori only
suitable for wave propagation in homogeneous media and domain partitions with right angles. However,
it can be used as an empirical approach with heterogeneous media and partitions with non-right angles.

Heterogeneous medium. We consider a rectangular domain partitioned into 4 × 15 rectangular sub-
domains with a velocity map c(x) representing a geological structure (Figure 3.7a) and a Dirac source
on an interior cross-point (Figure 3.7b). The spatially varying κ(x) = ω/c is used as is in the equations,
which were originally derived for a constant κ. The number of GMRES iterations to reach the relative
residual 10−4 is given in Tables 3.7c and 3.7d for configurations without/with cross-point treatment, re-
spectively. The lowest number of iterations is obtained by using the HABC transmission condition with
the cross-point treatment, and taking N ≥ 1 and ϕ > 0. However, the speedup rapidly stagnates as N is
increased, and using N = 1 or 2 is sufficient. Nevertheless, this approach provides a significant speedup
in comparison with the basic impedance condition, with a moderate supplementary computational cost,
and the cross-point treatment remains effective.

Non-right angles. The scattering benchmarks considered above were tested with distorted partitions:
the cross-points are moved, creating acute and obtuse angles in the partitions. In the numerical results
(not shown for brevity), we have observed that the method with the cross-point treatment converges
to the correct solution, even with a significant distortion of the partition. In almost all the cases, the
number of GMRES iterations increases when the distortion of the partitions is increased, but using the
HABC transmission condition and the cross-point treatment still speeds up the convergence.
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3.3 DDM with PML transmission and cross-point treatment

This contribution is the result of a collaboration with E. Béchet, C. Geuzaine and A. Royer, in the
framework of the doctoral research of A. Royer. It corresponds to the article [A15]. The numerical
results have been obtained by A. Royer with the libraries GmshFEM and GmshDDM.

In this contribution, we have proposed a non-overlapping DDM with PML transmission con-
ditions for checkerboard domain partitions. It is similar to the one presented in Section 3.2, but
the difficulties are different. The domain is partitioned into subdomains, and each subdomain is
extended with a Cartesian PML. To define properly the DDM, the continuity of the solution at the
interface between the PML regions and the subdomain is enforced only weakly by using Lagrange
multipliers. These multipliers can be interpreted as Neumann traces of the solution at the interfaces.
We have considered two different discretization techniques for these multipliers.

Interior and boundary cross-points are considered in a rather natural way. The numerical results
and the conclusions are similar to those for the DDM with HABC transmission conditions presented
in Section 3.2.

3.3.1 Description of the substructuring method

We consider the 2D Helmholtz equation on a rectangular domain Ω surrounded by a Cartesian PML
Ωpml. A homogeneous Neumann boundary condition is prescribed on the exterior boundary of the PML.
Denoting the union of the domain and the PML by Ωall, the problem reads as follows:∣∣∣∣∣∣∣∣∣∣∣

Find uall ∈ H1(Ωall) such that, for all vall ∈ H1(Ωall),∫
Ωdom

[
∇uall · ∇vall − κ2uallvall

]
dΩ

+

∫
Ωpml

[
(Λpml∇uall) · ∇vall − αpml κ

2uallvall

]
dΩ =

∫
Ωdom

svall dΩ,

(3.3.1)

where the wavenumber κ is a strictly positive real constant, the tensor field Λpml(x) and the scalar field
αpml(x) are complex material parameters defined in Section 2.3.1, and s(x) is a source term which the
support is compact on Ω.

Variational formulation of the global problem with Lagrange multipliers. The Cartesian PML
is partitioned into edge PMLs and corner PMLs associated, respectively, to the edges and the corners
of the domain, see Figure 3.8. The edges of the domain are denoted by Γf (with f = 1 . . . 4), and its
corners are denoted by Cff ′ (where Γf and Γf ′ are any adjacent edges). The edge PML and corner PML
corresponding to Γf and Cff ′ are denoted by Ωf and Ωff ′ , respectively. The interface between an edge
PML Ωf and a corner PML Ωff ′ is denoted by Γff ′ . Let us note that Ωff ′ = Ωf ′f , but Γff ′ ̸= Γf ′f .

The global problem (3.3.1) is rewritten as the coupling of local problems associated to the domain
and the edge/corner PMLs. The corresponding local solutions are denoted by u, uf and uff ′ , for Ω,
Ωf and Ωff ′ , respectively. The continuity of the local solutions on the interfaces are enforced weakly
by using Lagrange multipliers. We introduce an edge Lagrange multiplier λf on each Γf , and a corner
Lagrange multiplier λff ′ on each Γff ′ . Let us note that uff ′ = uf ′f , but λff ′ ̸= λf ′f .

The collections of local solutions and Lagrange multipliers are denoted by uall and λall, respectively.
They belong to the following functional spaces:

Uall := H1(Ω)⊕
[⊕

Ωf
H1(Ωf )

]
⊕

[⊕
Ωff′ H

1(Ωff ′)
]
,

Lall :=
[⊕

Γf
H−1/2(Γf )

]
⊕
[⊕

Γff′ H
−1/2(Γff ′)

]
.
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(a) Global domain Ω and the associated
edge/corner PMLs.
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Γ1,f = Γ2,g

Γ1,f ′
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(b) Partition of the global domain Ω
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•
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(c) Data exchanges between the subdo-
mains Ω1 and Ω2.

Figure 3.8: Notations for the global domain Ω (a), notations for the domain partition (b) and illustration of the
data exchange at the interface between two subdomains (c). The black box on (a) corresponds to a zoom on the
black bock on figure (b). Adapted from [A15].

The variational formulation of the problem then reads:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find (uall, λall) ∈ Uall × Lall such that, for all (vall, µall) ∈ Uall × Lall,∫
Ω

[
∇u · ∇v − κ2uv

]
dΩ

+
∑
Ωf

∫
Ωf

[
(Λpml∇uf · ∇vf − αpml κ

2ufvf

]
dΩ

+
∑
Ωff′

∫
Ωff′

[
(Λpml∇uff ′ · ∇vff ′ − αpml κ

2uff ′vff ′

]
dΩ

+
∑
Γf

∫
Γf

λf (vf − v) dΓ +
∑
Γff′

∫
Γff′

λff ′(vff ′ − vf ) dΓ =

∫
Ω

sv dΩ,

∑
Γf

∫
Γf

(uf − u)µi dΓ +
∑
Γff′

∫
Γff′

(uff ′ − uf )µff ′ dΓ = 0.

(3.3.2)

In this formulation, the Lagrange multipliers can be interpreted as Neumann traces of the fields at the
interfaces, i.e.

λf = n · ∇u = −n · (Λpml∇uf ) on each Γf ,

λff ′ = nf · (Λpml∇uf ) = −nf · (Λpml∇uff ′) on each Γff ′ ,

where n and nf are the external unit normal vectors relative to Ω and Ωf , respectively.

DDM with PML transmission conditions for checkerboard domain partition. The domain Ω

is partitioned into Ndom non-overlapping rectangular subdomains ΩI (with I = 1 . . . Ndom) on a 2D grid,
see illustration on Figure 3.8. The edges of each subdomain ΩI are denoted by ΓI,f (with f = 1 . . . 4).
An edge can be either a boundary edge if ΓI,f ⊂ ∂Ω or an interior edge if ΓI,f ̸⊂ ∂Ω.

Each subdomain is extended with a Cartesian PML. The PML is used as a DtN operator thanks to
the strategies developed in the previous section. To write the local problem associated to subdomain ΩI ,
we introduce the sets of physical fields and Lagrange multipliers, denoted by uI,all and λI,all, respectively,
for the subdomain ΩI , the surrounding PML regions (denoted by ΩI,f and ΩI,ff ′) and the interfaces
(denoted by ΓI,f and ΓI,ff ′). The corresponding functional spaces are denoted by UI,all and LI,all.

A variational formulation similar to formulation (3.3.2) is used for every subdomain, but terms with
transmission variables are added in the right-hand side of the first equation in order to enforce the
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coupling between the local problems. For each subdomain ΩI , the variational formulation reads:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find (uI,all, λI,all) ∈ UI,all × LI,all such that, ∀(vI,all, µI,all) ∈ UI,all × LI,all,∫
ΩI

[
∇uI · ∇vI − κ2uIvI

]
dΩ

+
∑
ΩI,f

∫
ΩI,f

[
(ΛI,pml∇uI,f ) · ∇vI,f − αI,pml κ

2uI,fvI,f

]
dΩ

+
∑

ΩI,ff′

∫
ΩI,ff′

[
(ΛI,pml∇uI,ff ′) · ∇vI,ff ′ − αI,pml κ

2uI,ff ′vI,ff ′

]
dΩ

+
∑
ΓI,f

∫
ΓI,f

λI,f (vI,f − vI) dΓ +
∑

ΓI,ff′

∫
ΓI,ff′

λI,ff ′(vI,ff ′ − vf ) dΓ

=

∫
ΩI

svI dΩ+
∑

ΓI,f ̸⊂Γf

∫
ΓI,f

gI,fvI dΓ +
∑

ΓI,ff′ ̸⊂Γff′

∫
ΓI,ff′

gI,ff ′vI,f dΓ,

∑
ΓI,f

∫
Γf

(uI,f − uI)µI,f dΓ +
∑

ΓI,ff′

∫
ΓI,ff′

(uI,ff ′ − uI,f )µI,ff ′ dΓ = 0.

The terms in blue introduce couplings at the interfaces “subdomain/edges PML” and “edge PML/corner
PML” for neighboring subdomains. These couplings are illustrated in Figure 3.8c.

The variables gI,f and gI,f,j can be considered as edge transmission variables and corner transmission
variables, respectively. At each step ℓ of the iterative solution procedure, these variables are updated
using the relations

g
(ℓ+1)
I,f = −g(ℓ)J,g + 2λ

(ℓ)
J,g on each ΓI,f ̸⊂ Γf

g
(ℓ+1)
I,ff ′ = −g(ℓ)J,gg′ + 2λ

(ℓ)
J,gg′ on each ΓI,ff ′ ̸⊂ Γff ′ ,

where the Lagrange multipliers λJ,g and λJ,gg′ are computed in the local problem associated to the neigh-
boring subdomain ΩJ . This version of the DDM takes into account cross-points through the definition
of the corner transmission variables.

Finite element discretization. The physical fields and the Lagrange multipliers are approximated
by using finite elements. After discretization, formulation (3.3.2) leads to the saddle point problem[

U L⊤

L 0

] [
uall
λall

]
=

[
s

0

]
, (3.3.3)

where uall and λall correspond to the discrete unknowns associated with the physical fields and the
Lagrange multipliers, respectively, and s corresponds to the source term. The matrix U corresponds to
the interactions between the physical fields, the matrix L corresponds to the terms with the Lagrange
multipliers. The saddle point problem (3.3.3) has a unique solution if and only if (1) L is surjective and
(2) the projection of U in the kernel of L is surjective.

The discretization strategies influence the properties of the system. The physical fields defined on
the domain and the PMLs are discretized by using standard continuous finite elements with hierarchical
polynomial basis functions, see e.g. [267]. For the Lagrange multipliers defined on the interfaces, we have
considered two techniques.

Continuous Lagrange multipliers. In the first approach, the multipliers are discretized by using
continuous finite elements with Lobatto polynomial basis functions. The multipliers are continuous over
each interface. If the same polynomial degree is used for the physical fields and the multipliers, then the
basis functions of the multipliers correspond to the restriction of the basis functions of the physical fields.
Unfortunately, at each cross-point, the relations involving the nodal value of the Lagrange multipliers are
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1.09

0.0

−1.09

(a) Numerical solution and domain partition (b) Mesh of one subdomain with the extruded PMLs

Figure 3.9: Reference benchmark: scattering of a plane wave by a disk in a square domain with a 3× 3 domain
partition. Default parameters: size of a subdomain 2 × 2, radius of disk R = 0.5, wavenumber κ = 4π, charac-
teristic mesh size h ≈ 1/30, straight geometric finite elements, second-degree polynomial basis functions, shifted
hyperbolic absorbing function σsh, layer thickness δpml = hNpml with Npml = 6. Reproduced from [A15].

linearly dependent. Then, L is not surjective, and problem (3.3.3) is not solvable. To remove the linear
dependence, an additional constraint has been introduced by using an additional Lagrange multiplier. A
similar strategy was used by Peng and Lee [245] to improve a DDM for time-harmonic electromagnetic
problems.

Discontinuous Lagrange multipliers. In the second approach, the multipliers are discretized by using
discontinuous finite elements with Legendre polynomial basis functions. The continuity of the multipliers
is not ensured at the interface between the elements. If the polynomial degree for the multipliers is lower
than the polynomial degree of the physical fields, i.e. degree(λall) < degree(uall), then the system is
underdetermined, and the continuity of the physical fields at the interfaces is not ensured. In contrast,
the continuity is ensured if degree(λall) ≥ degree(uall), but the system is overdetermined, and it is not
solvable because L is not surjective. To overcome this issue, we have tested a penalization strategy, where
a mass matrix is added in system (3.3.3),[

U L⊤

L τM

] [
uall
λall

]
=

[
s

0

]
,

where τ is a penalization parameter to be tuned and M is the mass matrix associated to the Lagrange
multipliers, see e.g. [44]. Because of the penalization, the continuity of the discrete solution is not
ensured, but it can be controlled thanks to τ . We have observed that the best approach corresponds to
degree(λall) = degree(uall) with the penalization strategy, see [A15].

In this manuscript, we consider either the continuous discretization with the additional constraint, or
the discontinuous discretization with the penalization strategy. In both cases, degree(λall) = degree(uall).
Several alternative strategies have been studied in [A15].

3.3.2 Computational results

Description of the benchmark. We consider the scattering of a plane wave uinc(x) = eiκx by a
sound-soft disk. The finite element simulations are performed on a square domain surrounded by PMLs
with a 3 × 3 checkerboard domain partition, and the disk is placed in the middle of the lower left
subdomain, see Figure 3.9a. Every subdomain is meshed with triangular elements, and the surrounding
PMLs are generated with extruded square elements, see Figure 3.9b.

The problem is solved by using the DDM procedure with the GMRES iteration. The absorbing
function σ and the layer thickness δpml = hNpml can be different for the PML transmission conditions
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(a) Residual history with continuous Lag. multipliers
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(b) L2-error history with continuous Lag. multipliers
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(c) Residual history with discontinuous Lag. multipliers
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(d) L2-error history with discontinuous Lag. multipliers
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Figure 3.10: Relative GMRES residual (left) and the relative L2-error (right) obtained with PML transmission
conditions (for different layer thicknesses) and the standard impedance transmission condition. In all the cases,
the exterior PML is used with a thickness of Npml = 6 mesh cells. Adapted from [A15].

(i.e. for interior edges) and the PML exterior condition (i.e. for boundary edges). For the exterior
condition, Npml = 6 and the shifted hyperbolic function σsh (2.3.10) are used. By default, we consider
second-degree polynomial basis functions for both physical fields and Lagrange multipliers. The results
have been obtained by A. Royer with GmshDDM, a dedicated C++ code based on the open-source finite
element solver GmshFEM [258] and the mesh generator Gmsh [142].

Convergence history. In Figure 3.10, the relative residuals and the relative L2-errors are plotted
as functions of the number of iterations for both discretization techniques of the Lagrange multipliers.
The relative L2-error is computed by comparing the local solution obtained in each subdomain with a
reference numerical solution computed on the same mesh without domain decomposition. Because the
same discretization technique is used for multipliers corresponding to interior and boundary edges, the
reference numerical solution depends on the considered discretization. In both case, the relative error
between the reference numerical solution and the (free space) analytic solution is equal to 6.8× 10−3.

We observe that both the residual and the L2-error decrease with the number of iterations in all the
cases, and they have approximately the same order of magnitude at each iteration. The decay is faster
with the one-cell PML transmission condition than with the basic impedance transmission condition.
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(a) Influence of the wavenumber κ with nλ = 15
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(b) Influence of the mesh size h with κ = 4π
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Figure 3.11: Number of GMRES iterations required to reach the relative residual 10−6 as a function of the
wavenumber κ with a constant number of point by wavelength nλ = 15 (a) and as a function of the inverse of
the characteristic mesh size 1/h with a fixed wavenumber κ = 4π (b) Different number of layers in the PML
transmission conditions have been considered with P2 elements (bold lines) and P4 elements (thin lines). Adapted
from [A15].

Increasing the PML thickness in the transmission conditions accelerates the convergence of the DDM
process up to a particular point where it does not change the convergence anymore.

With both discretization techniques, there is a sharp decay of the residual and the L2-error between
the 3rd and the 4th iterations. This can be interpreted by considering that, at each iteration, information
are transferred only between neighboring subdomains. Given the position of the source in the domain
partition, four iterations are required to propagate the signal across all the subdomains. Because PML
transmission conditions are particularly well-suited for this benchmark, the DDM solution is very close
to the physical solution after only four iterations. These results are very similar to those obtained with
the HABC transmission conditions and the cross-point treatment presented in Section 3.2.

The results obtained with the continuous and discontinuous Lagrange multipliers are similar. From
the point of view of the number of DOFs, the discontinuous discretization is slightly more expensive. In
the remaining of this section, we only consider the continuous discretization.

Influence of the simulation parameters. The influence of the different parameters of the simulation
have been studied by modifying them one by one. We have done the following observations.

Influence of the wavenumber κ and the finite element discretization. The PML transmission conditions
are efficient for high-frequency problems, as soon as the layers are sufficiently thick. Indeed, we observe
on Figure 3.11 that the number of iterations slightly increases with the κ and 1/h for very thin PMLs
(i.e. with only one or two mesh cells in the thickness), but it remains very stable for thick PMLs. The
results are similar for second and fourth degree basis functions.

Influence of the absorbing function of the PML transmission conditions. When the PML is used at
the exterior boundary of a truncated domain, the accuracy of the solution depends on the absorbing
function. In [A15], we have compared PML transmission conditions with the quadratic function σq, the
hyperbolic function σh and the shifted hyperbolic function σhs as absorbing function. We have observed
that the convergence is faster with σh and σsh than with σq for one-cell PMLs (for the selected parameter
σq), and the different absorbing functions provide similar results for thick PMLs.

Influence of the number of subdomains. The weak scaling of the method has been studied in [A15]
by increasing the number of subdomains in each Cartesian direction. We have observed that the number
of iterations increases linearly with the number of subdomains in each direction, which is expected for a
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(a) Wavenumber distribution κ(x)
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Figure 3.12: Marmousi benchmark: (a) wavenumber distribution, (b) numerical solution and (c) residual history.
Parameters: frequency f = 30Hz, rectangular finite elements with first-degree polynomial basis functions, charac-
teristic mesh size h ≈ 10 m. Adapted from [A15].

DDM without global exchange.

Experiments with heterogeneous media. The DDM procedure with PML transmission conditions
has been tested with a spatially varying medium, though it is a priori designed for problems with a
constant wavenumber. We have considered the Marmousi model (Figure 3.12a) on a rectangular domain
Ω is surrounded with PMLs. The spatially varying wavenumber is given by κ(x) = 2πf/ν(x) with the
velocity map ν(x) and the frequency f . The equation −∆u− κ(x)2u = δ(x− xs) is solved on Ω, where
δ is the Dirac delta function and xs is the position of a source point.

The domain is partitioned into a checkerboard grid of 15 × 4 subdomains (Figure 3.12a), and the
finite element solution is computed by using a structured mesh of rectangular elements with first-degree
polynomial basis functions on each subdomain. The source term is placed at a cross-point (Figure 3.12b).
The method is tested with PML thicknesses equal to Npml = 1, 2 and 3 mesh cells in the transmission
conditions, and equal to Npml = 6 for the exterior boundary condition. Because the wavenumber is not
constant, a strategy must be chosen to define the wavenumber in the PMLs. Inside the edge PMLs, the
value of the wavenumber is simply extruded from the interface with the subdomain, then it does not
vary in the normal direction. Inside the corner PMLs, the wavenumber is constant, equal to the value
at the corresponding corner of the subdomain.

The convergence history for the relative residual is shown on Figure 3.12c. In all the cases, the final
relative L2-error between the DDM solution and the reference numerical solution is close to 10−6. As for
the cases with a constant κ, we observe that the convergence if the iterative procedure is faster with the
PML transmission conditions than with the standard impedance transmission conditions. Increasing the
thickness of the PML accelerate the convergence, but the efficiency is not much better when increasing
the thickness from Npml = 2 to 3. The behavior of the PML transmission for this benchmark is very
similar to the one reported with HABC transmission conditions.
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3.4 Multi-directional sweeping preconditioning

The contribution is the result of a collaboration with R. Dai, X. Geuzaine and J.-F. Remacle, in
the framework of the doctoral research of R. Dai. It corresponds to the article [A4]. The numerical
results have been obtained by R. Dai with a dedicated C code.

We have proposed and studied multidimensional sweeping preconditioning techniques for DDMs
with checkerboard domain partition. The preconditioning matrices are applied to the reduced sys-
tem obtained with the non-overlapping DDMs with HABC transmission and cross-point treatment
presented in Section 3.2.

For 1D domain partitions, such as partitions in layers or onion skins, the global matrix can be
written as a block tridiagonal matrix. This particular structure has been used to propose 1D sweeping
preconditioners, see Section 3.1.3. In [A4], we have extended some of these sweeping preconditioners
for checkerboard domain partitions by using specific numbering systems for the subdomains, and
by rewriting the global matrix as a block tridiagonal matrix. These strategies can be interpreted as
sweeping in multiple directions (e.g. Cartesian or diagonal directions), in sequence, in parallel or in
alternation. It can be related to works on L-sweeps preconditioners [274] and diagonal sweeps [211]
proposed for the polarized traces method and the source transfer method, respectively.

3.4.1 Description of the preconditioning methods

To describe the methods, we consider the DDM with basic ABC transmission conditions (presented in
Section 3.1.1) for the Helmholtz equation on a rectangular domain with a checkerboard domain partition.
The method can be easily extended to DDMs with HABC or PML transmission conditions.

The matrix form of the reduced problem (3.1.4) is denoted by

Fg := (I− T)g = b, (3.4.1)

with the set of all the transmission variables g, the identity matrix I, the iteration matrix T, and the
source term b. The transmission variables are associated with the interfaces between the subdomains,
i.e. the edges of the domain partition. We seek a preconditioning matrix for the global matrix F.

Algebraic structure of the transmission problem. The global matrix F can be represented as a
Ndom ×Ndom sparse block matrix, where each block corresponds to the coupling between the unknowns
associated with two subdomains. The abstract system (3.4.1) can then be rewritten as

Ndom∑
J=1

FJ
I gJ = bI , I = 1 . . . Ndom,

where the vectors gI and bI contain the transmission variables and the source terms, respectively, for
ΩI , and the matrix FJ

I corresponds to a coupling between the transmission variables of ΩI and ΩJ .

To be more specific, if ΩI and ΩJ are neighboring subdomains, applying FJ
I on a vector vJ corresponds

to solving the subproblem defined on ΩI with the transmission data contained in vJ , and computing the
transmission data vI := FJ

I vJ associated with ΩI . If ΩI and ΩJ are not neighbors, the block FJ
I is a zero

matrix because there is no direct coupling between the corresponding transmission variables. The size
of gI and bI depends on the number of interior edges for ΩI . The block FJ

I can then be rectangular if
the subdomains ΩI and ΩJ have different numbers of interior edges. The blocks are sparse, see [A4].

With 1D domain partitions, the global matrix is block tridiagonal if the neighboring subdomains
are numbered in a consecutive order. With checkerboard partitions, there are at most four off-diagonal
blocks in each line and each column of the global block matrix, because there are at most four neighboring
subdomains for each subdomain. Nevertheless, a block tridiagonal structure can be recovered.
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Figure 3.13: Two numbering systems for the subdomains with a 3×3 checkerboard domain partition. The colored
arrows indicate interactions between groups of subdomains. Adapted from [A4].

The proposed sweeping preconditioners are based on numbering systems by column and by diagonal,
which are illustrated in Figure 3.13 for a 3×3 checkerboard partition of the domain. For these numbering
systems, the reduced system can be represented as
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,

respectively, where II is the identity matrix associated with the subdomain ΩI . The colors correspond
to the interactions between subdomains represented in Figure 3.13. With the numbering by column, the
global matrix can be rewritten as a 3×3 block tridiagonal matrix, where the large blocks on the diagonal
(resp. off the diagonal) correspond to interactions between subdomains of a given column (resp. of two
different columns). With the numbering by diagonal, the matrix of the system can also be written as a
block tridiagonal matrix with large blocks corresponding to interactions between subdomains belonging
to two diagonals of the domain partition. By contrast with the other numbering system, the blocks on
the diagonal are identity matrices because subdomains belonging to the same group are never neighbors.

With both numbering systems, the global system can be represented with a block tridiagonal matrix.
For convenience, we introduce the general representation

F
[1]
[1] F

[2]
[1]

F
[1]
[2] F

[2]
[2] F

[3]
[2]

F
[2]
[3] F

[3]
[3] F

[4]
[3]

F
[3]
[4] F

[4]
[4] F

[5]
[4]

F
[4]
[5] F

[5]
[5]





g[1]

g[2]

g[3]

g[4]

g[5]


=



b[1]

b[2]

b[3]

b[4]

b[5]


, (3.4.2)

where the vectors g[I] and b[I] are associated with one group of subdomains and each block F
[J]
[I] corre-

sponds to the coupling between the transmission variables of two groups. The groups of subdomains, cor-
responding to columns or diagonals of subdomains in Figure 3.13, are denoted by Ω[S], with S = 1 . . . Ngr.
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Symmetric Gauss-Seidel (SGS) preconditioner. This technique consists in applying the Gauss-
Seidel preconditioner forward and backward successively [260]. The preconditioning matrix is

PSGS = (D+ L̊)D−1(D+ Ů),

where D, L̊ and Ů are respectively the diagonal part, the strictly lower triangular part and the strictly
upper triangular part of the block matrix F represented in equation (3.4.2).

Assuming that there is no coupling between subdomains of the same group, the diagonal part is an
identity matrix, i.e. D = I, and the preconditioning matrix can then be rewritten as

PSGS = LU =



I

F
[1]
[2] I

F
[2]
[3] I

. . . . . .

F
[Ngr−1]

[Ngr]
I





I F
[2]
[1]

I F
[3]
[2]

. . . . . .

I F
[Ngr]

[Ngr−1]

I


.

To use this preconditioner, the inverse of L and U could be computed explicitly, but it is not necessary.
In fact, applying L−1 on any vector r corresponds to solving the local problems associated with the
subdomains of each group by following the numbering of the groups. The local problems associated with
Ω[1] are solved in the first step by using the transmission data contained in r, then the local problems
associated with Ω[2] are solved by using the updated data, and so on. Similarly, applying U−1 corresponds
to solving the local problems in the decreasing order of the groups, i.e. from Ω[Ngr] to Ω[1].

The SGS preconditioner can then be interpreted as a forward sweep followed by a backward sweep,
where information is propagated forward and backward in the domain partition at each application. This
strategy is very close to the 1D sweeping techniques considered e.g. in [233, 270, 290]. The direction
of the sweep is determined by the numbering system. Numbering systems by column and by diagonal
result in horizontal and diagonal sweeps, respectively. Note that, with the numbering by column, the
blocks on the diagonal are not identity matrices, and then D ̸= I. Therefore, the interactions between
subdomains of the same column are ignored with this approach.

Parallel Double Sweep (DS) preconditioner. In the approach, the matrices L and U are modified
in so that they commute. The forward and backward sweeps can then be performed in parallel, reducing
the runtime per iteration by a factor of two in parallel environments. The preconditioning matrix is

PDS = L̃ Ũ = Ũ L̃,

where L̃ and Ũ are modified versions of L and U. To remove the dependencies between L and U, the
blocks are modified so that, for any group Ω[S], the forward sweep (resp. the backward sweep) does not
use transmission data of the edges shared with the subdomains of Ω[S+1] (resp. Ω[S−1]). Depending on
the sweeping direction, transmission data are simply cancelled to remove dependencies.

Combination of sweeping directions. In the SGS and DS sweeping preconditioning strategies, the
sweeps are performed forward/backward in only one direction. In practice, it may be advantageous to
combine different directions in order to propagate information faster to different zones of the compu-
tational domain. This can be achieved thanks to the Flexible GMRES (FGMRES) [259, 260], where a
different preconditioning strategy can be used at each iteration.

Discussion of parallelization strategies. With the SGS preconditioner (resp. the DS precondi-
tioner), the forward and backward sweeps are sequential operations (resp. parallel operations). For both
preconditioners, the solution of the local problems associated with the subdomains of each group can
be performed in parallel, because we have assumed that the dependencies between these subdomains
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were ignored. In distributed-memory parallel environments, the placement of the subdomains raises
new questions. When using diagonal sweeps, it can be advantageous to place one row of subdomains
on each processor. In [A4], this question has not been investigated further, and the results have been
obtained only in shared-memory parallel environments. Strategies to improve the parallel efficiency have
been discussed in [290] for 1D domain partitions. Placement strategies have been discussed in [274] for
L-sweeps preconditioners with checkerboard domain partitions.

3.4.2 Computational results

A first intuitive result. We consider the scattering of a plane wave uinc(x) = eıκx by a sound-soft
disk, placed in the middle of a square computational domain Ω. The Dirichlet boundary condition is
prescribed on the boundary of the disk. The Padé-type HABC is prescribed on the exterior border
of the square domain with the compatibility conditions at the corners. The computational domain is
partitioned into 5×5 square subdomains, the DDM with HABC transmission is used with the cross-point
treatment, and the resulting interface system is solved by using GMRES or FGMRES with the sweeping
preconditioning techniques. The solution is computed by using a standard high-order finite element
method on meshes made of triangles and generated with Gmsh [142]. The results have been obtained
with a dedicated C code (https://gitlab.com/ruiyang/ddmwave).

Figure 3.14 shows snapshots of the solutions after the first iterations with the SGS and DS precondi-
tions and different sweeping directions. After the very first iteration, the zone of influence of the source
corresponds to the subdomains that are mainly along the sweeping direction, starting from the center of
the domain. In Figure 3.14b, the subdomains at the right-up and left-down corners cannot be reached
by the source after the first iteration, because the forward and backward diagonal sweeps are performed
independently with the DS preconditioner. In contrast, with the SGS preconditioner, these subdomains
can be reached during the backward sweep, which is performed after the forward sweep (Figure 3.14a).

For the diagonal sweeps, four iterations are required to obtain an accurate solution in all the subdo-
mains with the DS preconditioner, while only two iterations are required with the SGS preconditioner.
For the horizontal sweeps, three iterations are required with both preconditioners (Figures 3.14c and
3.14d). An accurate solution is obtained after two iterations with both preconditions when FGMRES is
used with the alternating diagonal sweeps (Figures 3.14e and 3.14f). These observations are confirmed
by comparing the residual histories with P1 and P7 finite elements (not shown here, see [A4]).

Influence of the simulation parameters. The benchmark is modified by placing two scattering
disks in the middle of the lower left and lower right subdomains (see Figure 3.15a). This case is slightly
more complicated than the previous one because of the multiple reflections between the two disks. By
default, the parameters are the same as before.

Influence of the number of subdomains. We have studied the weak scaling of the preconditioning
strategies by performing the simulation on square domains of increasing size, with checkerboard partitions
of Ndom,x × Ndom,y square subdomains for Ndom,x = Ndom,y = 4, 8, 12, 16 and 20. In all the cases, the
size of all the subdomains is always 2.5× 2.5, and the scattering objects are placed in the center of the
lower left and lower right subdomains. We observe in Figure 3.15b that the SGS and DS preconditioners
do not scale with the fixed diagonal and horizontal sweep directions. The number of iterations to
reach the relative residual 10−6 increases with the number of the subdomains per direction, but the
increase is slower than without preconditioning (bold black line). In contrast, the method scale for both
preconditioners when FGMRES is used with the alternating diagonal sweeping directions. This is mainly
due to the position of the scattering disks: each diagonal direction is well suited to one of the disks.

Influence of the wavenumber κ. Without preconditioner, we have observed that the DDM with HABC
transmission conditions remains efficient for high-frequency scattering problems with a single scattering
object (see Section 3.2.2), provided that the HABC parameters are well chosen. In [A4], we have studied
the influence of κ, varying from 5 to 25, for a given mesh density. We did not observe any significant
effect of κ on the convergence with the different preconditioning strategies.
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(a) Diagonal sweeps – GMRES with SGS preconditioner

(b) Diagonal sweeps – GMRES with DS preconditioner

(c) Horizontal sweeps – GMRES with SGS preconditioner

(d) Horizontal sweeps – GMRES with DS preconditioner

(e) Alternating diagonal sweeps – FGMRES with SGS preconditioner

(f) Alternating diagonal sweeps – FGMRES with DS preconditioner

Figure 3.14: Benchmark with one obstacle. Solution after 1, 2, 3 and 4 (F)GMRES iterations with different
preconditioning strategies: diagonal sweeps (from lower left to upper right, then vice versa), horizontal sweeps
(to the right, then to the left), alternating diagonal sweeps with FGMRES (between lower left and upper right,
and between upper left and lower right, in alternance). Parameters: radius of disk R = 1, size of subdomain
= 2.5× 2.5, HABC parameters N = 8 and ϕ = π/3 for both boundary and transmission conditions, wavenumber
κ = 2π, P1 elements, characteristic mesh size h = 1/20. Reproduced from [A4].
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(a) Configuration for the 5× 5 domain partition (b) Influence of the number of subdomains per direction
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Figure 3.15: Benchmark with two obstacles. Solution for the 5 × 5 domain partition (left) and number of
(F)GMRES iterations to reach the relative residual 10−6 as a function of the number of subdomains per direction
with the different preconditioning strategies (right). Parameters: See legend of Figure 3.14. Adapted from [A4].

(a) Configuration (b) Numerical solution (c) Domain partition

Figure 3.16: Benchmark “turbofan intake”. Geometry and boundary conditions (a), numerical solution (b) and
the domain partition for the 24 × 32 configuration (c). Parameters: P5 finite elements, HABC operators with
N = 4 and ϕ = π/3 for both interior and boundary edges. Reproduced from [A4].

Illustrative example with a non-rectangular domain. Our approach can be applied to compu-
tational domains that are not rectangular. To illustrate this, we have considered the geometry shown
in Figure 3.16a, which represents the cylindrical duct of a generic turbofan intake. The 2D Helmholtz
equation is solved in the computational domain, with a sinusoidal non-homogeneous Dirichlet boundary
condition at the interior of the turbofan, and a Padé-type HABC on the artificial boundaries.

Since the domain is not rectangular and our approach is a priori designed for checkerboard domain
partitions, additional steps are required. The domain partition is performed for a rectangular region
containing the computational domain, and the solution procedure is performed by iterating over all sub-
domains. Several subdomains are partially or completely outside the computational domain. There are
fewer or no unknowns associated with these subdomains. Therefore, the code developed for checkerboard
partitions can be easily applied to this case.

The different preconditioning strategies have been compared in [A4] from the point of view of both
the number of iterations (to reach a given relative residual) and the runtime (in a shared-memory parallel
environment). We have observed that all the preconditioning strategies with fixed sweeping directions
reduce the number of iterations, but the runtime is sometimes higher due to the inner steps of these
preconditioners at each iteration. Nevertheless, for many subdomains, FGMRES with the alternating
diagonal sweeping performs the best, reducing both the number of iterations and the runtime.
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Chapter 4

Discontinuous finite element solvers

In this chapter, we consider discontinuous Galerkin (DG) finite element methods, as an alternative to the
conforming Galerkin methods with continuous basis functions. In DG schemes, the numerical solution
and the test functions are discontinuous at the interfaces between the elements, and the continuity of
the solution at the interfaces is weakly enforced thanks to interface terms involving numerical fluxes in
the variational formulation. This approach provides some flexibility in the choice of interface terms and
basis functions.

The DG methods have a tremendous success for time-dependent wave propagation problems. With
explicit time-stepping schemes, the algorithmic procedures require intensive local element-wise operations
and limited memory storage, which is well suited for efficient parallel computing on modern computers.
In addition, the degrees of freedom (DOFs) are associated only with elements, and they can be linearly
indexed in memory, allowing for efficient parallel implementations on modern parallel computer architec-
tures, including clusters with GPUs, see e.g. [176, 198, A13, A14]. However, for time-harmonic problems,
the DG methods still lead to large sparse ill-conditioned systems, which are difficult to solve. Today,
the research about DG methods for time-harmonic problems is very active, including developments on
improved formulations, non-standard basis functions and accelerated iterative solvers.

This chapter is related to the JCJC ANR project “WavesDG”, which is still in progress. In WavesDG,
we investigate accelerated iterative DG finite element solvers for time-harmonic problems. By building
the DG solver with wave-specific strategies at all the levels, we seek to improve the properties of the
resulting algebraic system in order to speed up the iterative solution procedures in parallel environments.

In the first contribution of the project [A6], we have proposed a new hybridization strategy for a
standard DG scheme based on upwind fluxes. Compared to the standard DG scheme and the standard
hybridizable discontinuous Galerkin (HDG) scheme, the iterative procedures converge with a smaller
number of iterations with the new approach, which we called the “CHDG method”. The first letter
corresponds to the “C” of characteristic variables, which play a key role in our approach.

An overview of DG methods for Helmholtz problems is proposed in Section 4.1, with a description of
the standard DG and HDG methods with upwind fluxes. My contribution to this topic, corresponding to
[A6], is presented in Section 4.2. The current work and perspectives related to WavesDG are presented
in Chapter 5.
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4.1 Overview of DG methods for Helmholtz problems

4.1.1 A rapid survey of DG formulations and computational strategies

The first discontinuous Galerkin (DG) method was proposed in 1973 by Reed and Hill [253] to solve
steady-state neutron transport problems. It was then rapidly extended and studied for a wide range of
PDE problems, see for example the reference books [81, 176, 255, 102] and the review articles [13, 78].
The DG framework offers more flexibility than the continuous methods because many basis functions, and
many interface treatments are possible. High-order polynomial basis functions are very easily handled,
which limits the dispersion errors that occur when considering high-frequency problems [187, 4], and
non-polynomial functions can also be used.

Many DG formulations have been proposed for time-harmonic problems, and a comprehensive review
would be complicated. Below we describe some of the main approaches and computational strategies.

IPDG formulations. In the interior penalty discontinuous Galerkin (IPDG) method, the main un-
known of the formulations corresponds to the scalar field governed by the Helmholtz equation. The
variational formulations are obtained using the standard Galerkin approach, similarly to the continuous
Galerkin methods, but the grad-grad term is defined element per element, and penalty terms are intro-
duced at the interfaces between the elements to ensure consistency and stability. The IPDG method
has been initially proposed by Arnold [12] for parabolic problems. Formulations have been derived and
analyzed for the Helmholtz equation [5, 217, 123, 124, 182, 227]. Similar formulations have been studied
for the time-harmonic Maxwell equations, see e.g. [247, 183], with a vector field as the main unknown,
and a curl-curl term on each element in the variational formulations.

Hybridized DG formulations. Mixed DG formulations are obtained by introducing an additional
vector field corresponding to the gradient of the scalar field, or by first rewriting the Helmholtz equation
as a first-order PDE system, such as the pressure-velocity system. In fact, for time-dependent problems,
many formulations have been derived from first-order PDE systems, inspired by the literature on the finite
volume methods [283]. In particular, DG formulations with upwind fluxes are widely used [176, 193].
For time-harmonic problems, this approach introduces additional unknowns, which can increase the size
of the algebraic system to be solved, but the system can be reduced thanks to the hybridization strategy.

In the hybridized discontinuous Galerkin (HDG) methods, the physical unknowns associated to dif-
ferent elements are decoupled by introducing additional unknowns at the interface between the elements.
Depending on the method, these additional unknowns can be interpreted as Lagrange multipliers or
numerical fluxes. The physical unknowns are then removed from the system by solving local element-
wise problems. This strategy is related to the static condensation, and leads to a reduced system with
unknowns defined only on the skeleton of the mesh, i.e. on the faces of the elements.

The HDG approach [80] was first proposed for coercive problems, and has been widely studied in the
last two decades, see e.g. the review articles [77, 78]. HDG formulations have been proposed and analyzed
more specifically for Helmholtz problems e.g. in [229, 157, 65, 90]. Several extensions for different wave
propagation models have been studied e.g. in [236, 237, 143, 212, 153, 25].

The standard DG method with upwind fluxes and the related HDG method for the Helmholtz equation
are described in Sections 4.1.2 and 4.1.3, respectively.

DPG formulations. In the discontinuous Petrov-Galerkin (DPG) methods, the spaces of the trial
and test functions are different. DPG formulations have been studied for time-harmonic problems in
[96, 248].

Trefftz and wave-based methods. In Trefftz methods, the trial and test functions are local solu-
tions of the target equations. They are popular for time-harmonic problems because the approximation
spaces contain oscillating basis functions and can achieve better approximation properties than classical
polynomials, see e.g. [179].
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Plane-wave basis functions are often considered in Trefftz DG methods because the linear systems
are easy to construct, and the wave directions can be optimized with physical considerations. Cessenat
and Després [60] proposed a method based on the ultra-weak variational formulation (UWVF) of the
Helmholtz problems with plane-wave basis functions, which was studied and extended in [186, 61, 144].
Plane-wave basis functions have also been used in DG formulations based on Lagrange multipliers [279]
and upwind fluxes [128]. However, conditioning and stability problems can arise with plane-wave basis
functions [179]. Numerical strategies to reduce these problems have been studied in [21, 246]. Many
other approaches, such as the use of phase-based basis functions [238], evanescent basis functions [243]
and BEM formulations inside each element [22], have also been proposed. To deal with spatially varying
coefficients, basis functions based on approximate local solutions are also investigated e.g. in [188].

Many other approaches with wave-based basis functions have been proposed. For example, in [119],
the standard polynomial space is enriched with plane waves in a DG formulation. For a more complete
survey, we refer to the review article by Hiptmair, Moiola and Perugia [179].

Combinations with DDMs. DDMs are usually developed and tested with standard finite difference
schemes and continuous finite element schemes, but they can also be applied to DG schemes. Several com-
binations have been proposed for time-harmonic problems. In [186, 11], additive Schwarz preconditioners
is applied to Trefftz DG schemes with plane-wave basis functions. A DG scheme based on Lagrange
multipliers was combined with a FETI DDM in [122]. A non-overlapping DDM with impedance-type
transmission conditions is combined with a DG scheme in [104] and a HDG scheme in [213, 3]. In the
latter references, the same transmission condition is used for both the DDM and the DG scheme.

4.1.2 Standard DG method with upwind fluxes for Helmholtz problems

To describe the DG and HDG methods, with consider a time-harmonic scalar wave propagation problem
on a Lipschitz polytopal domain Ω ⊂ Rd, with d = 2 or 3,

−ıκu+∇ · q = 0, in Ω,

−ıκq +∇u = 0, in Ω,

u− n · q = s, on Γ := ∂Ω,

(4.1.1)

with the unknown fields u and q, the wavenumber κ (assumed to be a positive real constant), the outgoing
unit normal n, and a given boundary data s(x) defined on Γ.

Mesh, approximation spaces and notations. We consider a conforming mesh Th of the domain Ω

consisting of simplicial elements K. The set of element boundaries is denoted by ∂Th := {∂K |K ∈ Th}.
The set of faces of the mesh is denoted by Fh, and the set of faces of an element K is denoted by FK .

The approximate fields are piecewise polynomials. For the sake of simplicity, we fix a polynomial
degree p ≥ 0 and introduce

Vh :=
∏

K∈Th

Pp(K) and V h :=
∏

K∈Th

Pp(K),

where Pp(·) and Pp(·) denote the spaces of scalar and vector complex-valued polynomials of degree
smaller or equal to p. By convention, the restrictions of uh ∈ Vh and uh ∈ V h on K are denoted by uK
and uK , respectively. We introduce the sesquilinear forms

(u, v)K :=

∫
K

uv dx, (u,v)K :=

∫
K

u · v dx, ⟨u, v⟩∂K :=
∑

F∈FK

∫
F

uv dσ(x),

(u, v)Th
:=

∑
K∈Th

(u, v)K , (u,v)Th
:=

∑
K∈Th

(u,v)K , ⟨u, v⟩∂Th
:=

∑
K∈Th

⟨u, v⟩∂K .
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By convention, the quantities used in the surface integral ⟨·, ·⟩∂K correspond to the restriction of fields
defined on K (e.g. vK and vK) or quantities associated to the faces of K (e.g. nK,F with F ∈ FK).

Standard DG formulation. The general DG formulation of system (4.1.1) reads:∣∣∣∣∣∣∣∣
Find (uh, qh) ∈ Vh × V h such that, for all (vh,ph) ∈ Vh × V h,{

−ıκ(uh, vh)Th
− (qh,∇vh)Th

+ ⟨n · q̂(uh, qh), vh⟩∂Th
= 0,

−ıκ(qh,ph)Th
− (uh,∇ · ph)Th

+ ⟨û(uh, qh),n · ph⟩∂Th
= 0,

(4.1.2)

where û(uh, qh) and n · q̂(uh, qh) are the numerical fluxes. The properties of the DG formulation depend
strongly on the choice of the numerical fluxes. In this work, we consider the upwind fluxes defined as{

ûF := (uK + uK′)/2 + nK,F · (qK − qK′)/2,

nK,F · q̂F := nK,F · (qK + qK′)/2 + (uK − uK′)/2,
if F ̸⊂ Γ, (4.1.3a){

ûF := (uK + nK,F · qK + s)/2,

nK,F · q̂F := (uK + nK,F · qK − s)/2,
if F ⊂ Γ. (4.1.3b)

For an interior face F ̸⊂ Γ, K ′ is the neighboring element and nK,F is the unit outward normal to K on
F . For a boundary face F ⊂ Γ of an element K, the fluxes take the boundary condition into account.
These fluxes are consistent, i.e. û(u, q) = u and n · q̂(u, q) = n · q on both interior and boundary faces.

Under standard assumptions, the method achieves the optimal convergence rate for the numerical
fields uh and qh in L2-norm, i.e. p + 1 where p is the polynomial degree of the basis functions. Error
estimates have been derived for HDG formulations, equivalent to the DG formulation above, for the
Helmholtz problem with a Dirichlet boundary condition in [157] and a Robin boundary condition in [125,
90]. By using a post-processing, the convergence rate for uh can be increased by one, see e.g. [79].

Origin of the upwind fluxes. Let us consider the time-domain version of the governing equations.
Assuming there is no source and the fields are varying only in direction n, we get{

∂tu+ c ∂n(n · q) = 0,

∂t(n · q) + c ∂nu = 0.

A simple linear combination gives the transport equations{
∂t(u+ n · q) + c ∂n(u+ n · q) = 0,

∂t(u− n · q)− c ∂n(u− n · q) = 0.

Therefore, g⊕ = u + n · q and g⊖ = u − n · q correspond to quantities transported in the domain in
directions +n (downstream) and −n (upstream), respectively, at velocity c. The variables g⊕ and g⊖,
commonly called characteristic variables, are used to define upwind fluxes for solving time-dependent
problems, see e.g. [283]. For more general problems, characteristic variables and upwind fluxes are
obtained by solving local Riemann problems along the normal direction, see e.g. [176, 283].

4.1.3 Standard HDG method for Helmholtz problems

In standard HDG formulations, an additional variable ûh corresponding to the numerical flux û is intro-
duced at the interface between the elements and on the boundary faces. The additional variable, which
is called the numerical trace in the HDG literature, belongs to the space V̂h :=

∏
F∈Fh

Pp(F ). The
discrete unknowns associated to the fields uh and qh are eliminated in the solution procedure, leading
to a reduced system with discrete unknowns associated to ûh on the skeleton, see e.g. [80, 77].

After observing that n · q̂(uh, qh) = uh+n ·qh− ûh, we obtain the following HDG formulation, where
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the numerical trace appears as a hybrid variable:∣∣∣∣∣∣∣∣∣∣∣∣∣

Find (uh, qh, ûh) ∈ Vh × V h × V̂h such that, for all (vh,ph, v̂h) ∈ Vh × V h × V̂h,
−ıκ(uh, vh)Th

− (qh,∇vh)Th
+ ⟨uh + n · qh − ûh, vh⟩∂Th

= 0,

−ıκ(qh,ph)Th
− (uh,∇ · ph)Th

+ ⟨ûh,n · ph⟩∂Th
= 0,

⟨ûh, v̂h⟩Fh
− ⟨ 12 (uh + n · qh), v̂h⟩∂Th

= ⟨ 12s, v̂h⟩Γ,
for a given surface data s on Γ.

This formulation is equivalent to the standard DG formulation (Problem 4.1.2) in the sense that the
discrete solutions uh and qh are identical, see e.g. [212].

In the HDG literature [80, 157, 212], a generalization of the above formulation is often considered
with

n · q̂(uh, qh) = n · qh + τ(uh − ûh),

where τ is the so-called stabilization function. The case τ = 1 corresponds to the standard upwind fluxes,
which are widely used in practice.

Local element-wise problems. In the hybridization procedure, the fields uh and qh are eliminated
by solving local element-wise problems, where the numerical trace ûh is considered as a given data. For
each element K, the local problem reads:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find (uK , qK) ∈ Pp(K)×Pp(K) such that, for all (vK ,pK) ∈ Pp(K)×Pp(K),
−ıκ(uK , vK)K − (qK ,∇vK)K +

∑
F∈FK

⟨uK + nK,F · qK , vK⟩F =
∑

F∈FK

⟨ûF , vK⟩F ,

−ıκ(qK ,pK)K − (uK ,∇ · pK)K = −
∑

F∈FK

⟨ûF ,nK,F · pK⟩F ,

for given surface data ûF ∈ Pp(F ) for all F ∈ FK .

(4.1.4)

This local discrete problem is similar to a Helmholtz problem defined on K with a non-homogeneous
Dirichlet boundary condition on ∂K. At the continuous level, Helmholtz problems with Dirichlet bound-
ary conditions are ill-posed if the frequency corresponds to an eigenvalue of the Laplace operator, but the
discrete problem is well-posed without any constraint. Nevertheless, the matrices of the local systems
become ill-conditioned as kh goes to zero, see e.g. in [153, A6].
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4.2 A hybridizable DG method with characteristic variables

This contribution is the result of a collaboration with T. Chaumont-Frelet in the framework of the
ANR project WavesDG. It corresponds to the article [A6]. I obtained the numerical results using
dedicated MATLAB scripts.

We have proposed a novel hybridization strategy, called the CHDG method, to accelerate the
iterative solution of time-harmonic problems discretized with upwind DG finite element schemes.
The CHDG method uses characteristic variables defined at the interface between the elements as
the hybrid variables, as opposed to the Dirichlet traces in the standard HDG method. This choice
leads to favorable properties for the resulting reduced system and to more efficient iterative solution
procedures compared to the standard hybridization strategy.

Specifically, the reduced system can be written in the form (I − ΠS)g = b, where g corresponds
to the characteristic variables, Π is an exchange operator, and S is scattering operator. We have
proven that ΠS is a strict contraction, so that the system is well-posed and can be solved with a
fixed-point iteration. Numerical results show that CHDG always requires fewer iterations than the
standard DG and HDG methods to reach a given accuracy with the GMRES and CGNR iterations.

4.2.1 Description of the CHDG method

We consider the standard DG formulation (4.1.2) with the upwind fluxes (4.1.3a)-(4.1.3b) for the time-
harmonic problem (4.1.1). The CHDG method is a specific hybridization of this formulation in terms of
the characteristic variables. For each face F of each element K, the upwind fluxes are rewritten as{

ûF = (g⊕K,F + g⊖K,F )/2,

nK,F · q̂F = (g⊕K,F − g⊖K,F )/2,

with the outgoing characteristic variable g⊕K,F and the incoming characteristic variable g⊖K,F defined as

g⊕K,F = uK + nK,F · qK and g⊖K,F =

{
g⊕K′,F if F ̸⊂ Γ is shared by K and K ′,

s if F ⊂ Γ.

The outgoing characteristic variable depends only on the physical unknowns defined on K. The incoming
characteristic variable depends on the unknowns of the neighboring element K ′ if F is an interior face
(i.e. F ̸⊂ Γ), and it depends on the boundary condition if F is a boundary face (i.e. F ⊂ Γ). For an
interior face, the outgoing characteristic variable of one side corresponds to the incoming characteristic
variable of the other side, i.e. g⊕K,F = g⊖K′,F and g⊖K,F = g⊕K′,F . The notations are illustrated on Figure 4.1.

The CHDG formulation. We introduce an additional variable, denoted g⊖h , corresponding to the
incoming characteristic variable at the boundary of each element. The variable g⊖h belongs to the space
Gh :=

∏
K∈Th

∏
F∈FK

Pp(F ). Therefore, at each interior face, there are two variables corresponding to

nK,F

F

K

K ′
g⊕K,F

g⊖K,F

Figure 4.1: Notations for the outgoing and incoming characteristic variables (resp. g⊕K,F and g⊖K,F ) at the face F
shared by an element K and a neighboring element K′. Reproduced from [A6].
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the incoming variables associated with the neighboring elements. The CHDG formulation then reads:∣∣∣∣∣∣∣∣∣∣∣∣∣

Find (uh, qh, g
⊖
h ) ∈ Vh × V h ×Gh such that, for all (vh,ph, ξh) ∈ Vh × V h ×Gh,

−ıκ(uh, vh)Th
− (qh,∇vh)Th

+ ⟨ 12 (g⊕(uh, qh)− g⊖h ), vh⟩∂Th
= 0,

−ıκ(qh,ph)Th
− (uh,∇ · ph)Th

+ ⟨ 12 (g⊕(uh, qh) + g⊖h ),n · ph⟩∂Th
= 0,

⟨g⊖h −Π(g⊕(uh, qh)), ξh⟩∂Th
= ⟨b, ξh⟩∂Th

,

with g⊕(uh, qh) := uh + n · qh.

(4.2.1)

In the last equation, we have introduced the global exchange operator Π : Gh −→ Gh and the global
right-hand side b. For each face F of each element K, they are given by

Π(g⊕)|K,F =

{
g⊕K′,F if F ̸⊂ Γ is shared by K and K ′,

0 if F ⊂ Γ,
and b|K,F =

{
0 if F ̸⊂ Γ,

s if F ⊂ Γ.

With these definitions, the last equation of system (4.2.1) weakly enforces that the incoming characteristic
variable of an element is the outgoing one of the neighboring element at each interior face. At each
boundary face, it weakly enforces the boundary condition. The DG, HDG and CHDG are equivalent.

Local element-wise problems. In the hybridization procedure, the physical variables are eliminated
from the formulation by solving local element-wise problems, where the incoming characteristic variable
is considered as a given data. For each element K, the local problem reads:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find (uK , qK) ∈ Pp(K)×Pp(K) such that, for all (vK ,pK) ∈ Pp(K)×Pp(K),
−ıκ(uK , vK)K − (qK ,∇vK)K +

∑
F∈FK

⟨ 12g⊕K,F , vK⟩F =
∑

F∈FK

⟨ 12g⊖K,F , vK⟩F ,

−ıκ(qK ,pK)K − (uK ,∇ · pK)K +
∑

F∈FK

⟨ 12g⊕K,F ,nK,F · pK⟩F = −
∑

F∈FK

⟨ 12g⊖K,F ,nK,F · pK⟩F ,

with g⊕K,F = uK + nK,F · qK , for given surface data g⊖K,F ∈ Pp(F ) for all F ∈ FK .

(4.2.2)

This local problem is well-posed [A6, Theorem 2.9]. It can be interpreted as a discretized Helmholtz
problem defined on K with a Robin boundary condition on ∂K. In contrast to Helmholtz problems with
Dirichlet boundary conditions, these local problems are always well-posed at the continuous level.

Reduced problem. To write the reduced problem obtained after removing the physical variables, we
introduce the global scattering operator S : Gh −→ Gh. For each face F of each element K, it is given by

S(g⊖h )
∣∣
K,F

:= uK(g⊖h ) + nK,F · qK(g⊖h ),

where (uK , qK) is the solution of the local problem (4.2.2) with the surface data (g⊖K,F )F∈FK
contained

in g⊖h . This operator can be interpreted as an “incoming characteristic variable to outgoing characteristic
variable” operator. The reduced problem then reads:∣∣ Find g⊖h ∈ Gh such that ⟨g⊖h −ΠS(g⊖h ), ξh⟩∂Th

= ⟨b, ξh⟩∂Th
for all ξh ∈ Gh,

which can be rewritten as ∣∣ Find g⊖h ∈ Gh such that (I −ΠS)g⊖h = bh. (4.2.3)

with the global projected right-hand side bh ∈ Gh defined such that ⟨b, ξh⟩∂Th
= ⟨bh, ξh⟩∂Th

for all ξh ∈ Gh.
The reduced problem is equivalent to the global problem because the local problems are well-posed.

Systems with the same form as the reduced system (4.2.3) appear in non-overlapping substructuring
DDMs, see Section 3.1.2. This system is also similar to the UWVF proposed in the framework of Trefftz
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DG methods with non-polynomial basis functions for time-harmonic problems, see e.g. [60, 219, 21, 246].
The operator ΠS was already used in the seminal works of Després [98] and Cessenat and Després [60]. In
fact, the CHDG method can be seen as an element-wise DDM, where the discrete transmission conditions
are built from the numerical fluxes that naturally arise in the DG setting. Here, cross-points where
multiple mesh faces meet are naturally handled without any special treatment. In contrast, DDMs based
on conformal FEMs may require special treatments to properly account for cross-points, see Section 3.1.2.

Analysis of the reduced problem. In [A6, Section 3.2], we have proved that the operator ΠS is a
strict contraction for the norm ∥·∥ defined as

∥g⊖h ∥2 :=
∑

K∈Th

∑
F∈FK

∥g⊖K,F ∥2F ,

where ∥·∥F is the L2 norm on F . As a consequence, the reduced problem is always well-posed, and it
can be solved with the fixed-point iteration (at least in principle). The result is as follows.

Proposition 4.2.1. .

• The operator S is a strict contraction: ∥S(g⊖h )∥ < ∥g⊖h ∥, for all g⊖h ∈ Gh\{0}.
• The operator Π is a contraction: ∥Π(g⊖h )∥ ≤ ∥g⊖h ∥, for all g⊖h ∈ Gh.

• The operator ΠS is a strict contraction: ∥ΠS(g⊖h )∥ < ∥g⊖h ∥ for all g⊖h ∈ Gh\{0}.
If a Dirichlet or Neumann boundary condition is prescribed on Γ instead of a Robin boundary con-
dition, then Π is an involution and an isometry: Π2 = I and ∥Π(g⊖h )∥ = ∥g⊖h ∥, for all ∀g⊖h ∈ Gh.

The strict contraction of ΠS is due to the fact that S and/or Π dissipate energy. The scattering
operator S is always strictly contracting whereas, in a continuous context, it preserves energy. This
property is a numerical artifact related to the fact that there is no polynomial solution to the Helmholtz
equation. The exchange operator Π can dissipate energy with a Robin condition, and it is an involution
with a Dirichlet or Neumann condition. Therefore, there are two sources of dissipation: numerical
dissipation, which is always present but can become small as the mesh is refined (possibly leading to
slow convergence of fixed-point iterations for energy-preserving problems), and physical dissipation.

Note that, for conservative methods (including standard conforming FEMs), S does not dissipate,
and ΠS preserve energy if there is no physical dissipation. In fact, the convergence of standard DDMs
is proven only for energy-preserving problems with relaxation, e.g. [75]. It has been proven recently in
[246] that the iteration matrix of a Trefftz DG method is also a strict contraction for a configuration
with a Robin boundary condition. To the best of our knowledge, this is the only other example of FEM
that can be written with a strictly contracting iterative matrix for Helmholtz problems.

4.2.2 Numerical study of the algebraic system

Algebraic system. In this work, the physical fields uh and qh are represented with standard hier-
archical shape functions based on Lobatto functions, see e.g. [267, 40]. The hybrid fields defined on
the skeleton, i.e. ûh for HDG and g⊖h for CHDG, are univariate polynomials on each face. A possible
choice of shape functions would be the Lobatto functions, which correspond to the restriction of the shape
functions used for the physical fields. We can also consider the scaled Legendre functions that are scaled
so that the local mass matrix of each face is the identity matrix. Both approaches give rigorously the
same numerical solution (up to floating point errors), but they lead to different algebraic systems.

In fact, the algebraic system corresponding to the scaled Legendre functions, denoted by Ag = b, can
be obtained from the one corresponding to the Lobatto functions, denoted by ALobgLob = bLob, by using
a symmetric preconditioning: A = M

−1/2
Lob ALobM

−1/2
Lob , g = M

1/2
LobgLob and b = M

−1/2
Lob bLob, where MLob is

the mass matrix associated to the faces. In preliminary comparisons, we have observed that, for both
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(a) Benchmark 1: Robin problem (Plane wave) (b) Benchmark 2: Dirichlet problem (Cavity)

(c) Benchmark 3: Robin/Dirichlet problem (Half-open waveguide)

Figure 4.2: Real part of the reference solution of the three benchmarks with the default parameters. Reproduced
from [A6].

HDG and CHDG, the convergence of the iterative solution procedures (without preconditioning) is faster
with the scaled Legendre functions than with the Lobatto functions. The preconditioning approach is
equivalent to using MLob as a left preconditioner and using ⟨·, ·⟩F as inner product in weighted Krylov
methods. For the sake of brevity, only results with the scaled Legendre functions are presented below.

Reference benchmarks. We have considered three benchmarks already used in [64], see Figure 4.2.
The simulations were performed with a dedicated MATLAB code and Gmsh [142] for the pre- and post-
processing operations. For each benchmark, we have used third-degree polynomial bases (i.e. p = 3),
two values for the wavenumber κ, and an element size h corresponding to a relative error close to 10−2

in each case. In this work, we always consider the relative error of the physical fields defined as√
∥uh − uref∥2Ω + ∥qh − qref∥2Ω

/√
∥uref∥2Ω + ∥qref∥2Ω,

where uref(x) and qref(x) correspond to the reference analytical or semi-analytical solution.

Benchmark 1: Robin problem (Plane wave). The plane wave uref(x) = eıκd·x with d = (1, 1)/
√
2 is

prescribed at the boundary of Ω = ]0, 1[× ]0, 1[ by using a non-homogeneous Robin boundary condition.
We have used κ = 15π and h = 1/16 (default parameters), and κ = 30π and h = 1/34 (higher frequency).

Benchmark 2: Dirichlet problem (Cavity). The homogeneous Dirichlet boundary condition on p is
used on the boundary of Ω = ]0, 1[ × ]0, 1[ with a unit source term on Ω. The eigenvalues of this
problem are κ2n,m := (n2+m2)π2 for all m,n > 0. The reference solution, which is real, is obtained semi-
analytically by truncating the Fourier expansion, see [64]. We have used κ = (7+1/10)

√
2π and h = 1/10

(default parameters), and κ = (7 + 1/100)
√
2π and h = 1/15 (parameters closer to an eigenvalue).

Benchmark 3: Robin/Dirichlet problem (Half-open waveguide). We consider the waveguide Ω =
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HDG – p = 2
HDG – p = 1
HDG – p = 0 (formula)
CHDG – p = 3
CHDG – p = 2
CHDG – p = 1
CHDG – p = 0 (formula)

Figure 4.3: Maximum condition number of the local HDG/CHDG matrices as a function of 1/(κhmax) for
p = 1, 2 and 3, where κ is the wavenumber and hmax is the length of the longest edge. The condition numbers
corresponding to formulas (4.2.4) and (4.2.5) are plotted with dashed lines. Reproduced from [A6].

]0, 4[× ]0, 1[ with the non-homogeneous Robin condition ∂nu− ıκu = eıκd·x on the right side, and u = 0

on the other sides. The reference solution is computed by using a semi-analytical approach, see [64]. We
have used κ = 6π and h = 1/8 (default parameters), and κ = 12π and h = 1/17 (higher frequency).

Memory storage. The number of degrees of freedom (DOFs) is almost twice as high with the CHDG
method than with the HDG method because there are two characteristic variables and only one numerical
trace per interior face. The number of non-zero entries (NNZ) in the reduced matrices AHDG and ACHDG

can be estimated. Assuming that the number of boundary faces is negligible compared to the number
of interior faces, we have obtained the estimate #NNZ(ACHDG)

/
#NNZ(AHDG) ≈ 1.6. For the matrices

of the reference benchmarks, this ratio varies between 1.54 and 1.66. Thus, although CHDG has almost
twice as many DOFs as HDG, the number of non-zero elements does not increase as much. These results
are similar in 3D, but the ratio between the number of non-zero entries is smaller (1.43).

Conditionning of the local matrices. The construction of the reduced matrix A of HDG and
CHDG, and the application of A in matrix-free iterative procedures, require the solution of the local
element-wise problems (4.1.4) and (4.2.2), respectively. As a preliminary study, the local problems are
defined on a square element of side length h with constant shape functions, i.e. p = 0. This configuration
was considered in [153]. The condition number of the matrices corresponding to the HDG local problem
(4.1.4) and the CHDG local problem (4.2.2) are

cond(AHDG,loc) =
√

1 + 16/(κh)2, (4.2.4)

cond(ACHDG,loc) =
√

((κh)2 + 4)/((κh)2 + 1). (4.2.5)

The condition number is always the larger for the HDG local matrix, and this matrix becomes ill-
conditioned as κh goes to zero, while the CHDG local matrix remains well-conditioned.

To continue the study, we have considered an unstructured mesh of Ω = ]0, 1[2 with 1478 triangles.
The condition number of the local matrices is computed on all triangles. On Figure 4.3, the maximum
condition number is plotted as a function of 1/(κhmax), which is a measure of the mesh density. We
observe that the condition number increases linearly with 1/(κhmax) in all cases, except for CHDG with
p = 1. Therefore, refining the mesh for a given wavenumber, or using a smaller wavenumber with a
given mesh, increases the condition number of the local matrices. For a given p, the condition number is
always higher with HDG than with CHDG. Increasing p increases the condition number in all the cases.
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(b) Benchmark 2 (cavity) with
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Figure 4.4: Condition number of the global/reduced matrix A of the different methods as a function of 1/(κhmax),
where hmax is the length of the longest edge. Two benchmarks are considered with two values of κ. The black
squares correspond to configurations with a relative error close to 10−2. Reproduced from [A6].

Conditionning of the global matrices. The condition number of the global/reduced matrix A is
plotted as a function of 1/(κhmax) for the DG, HDG and CHDG methods on Figure 4.4. The first two
benchmarks are considered with two sets of parameters. For all the results, the relative error is smaller
than 10−1. The black squares correspond to configurations with a relative error close to 10−2.

The condition number is always smaller with CHDG than with HDG and DG by one or two orders
of magnitude in almost all the cases. Moreover, the condition number increases almost linearly with
1/(κhmax) for DG and CHDG, while the increase is almost quadratic for HDG. The influence of κ on the
condition number is similar for HDG and CHDG: the condition number increases with the wavenumber.
In contrast, the condition number for the DG method without hybridization does not vary much with κ.

4.2.3 Numerical study of the iterative solution procedures

Convergence of the fixed-point iterative scheme for CHDG. The algebraic CHDG system can
be written as (I − ΠS)g = b, where I, Π and S are the identity, exchange and scattering matrices,
respectively. Since ΠS is a strict contraction, the spectral radius ρ(ΠS) must be strictly lower than 1,
and the Richardson iteration converges without relaxation. For a given initial guess g(0), the procedure
reads g(ℓ+1) = ΠSg(ℓ) + b, for ℓ = 0, 1, . . . . If the eigenvalues of the iteration operator are far from the
unit disk, i.e. ρ(ΠS) << 1, this procedure will converge rapidly.

The values of the spectral radius ρ(ΠS) obtained with the different benchmarks and different param-
eters are given in Table 4.1. In all the cases, the eigenvalues are strictly inside the unit circle, and we will
see below that the fixed-point iteration effectively converges. Nevertheless, some eigenvalues are close
to the unit circle, so that the spectral radius is close to one. For each benchmark, we observe that the
spectral radius is closer to one when using a finer mesh (second column of each benchmark in Table 4.1)
or when using the second wavenumber with the fine mesh (third column).

Table 4.1: Spectral radius ρ(ΠS) for the three benchmarks with different parameters. Reproduced from [A6].

Benchmark 1 (plane wave) Benchmark 2 (cavity) Benchmark 3 (waveguide)
κ 15π 15π 30π 7.1

√
2π 7.1

√
2π 7.01

√
2π 6π 6π 12π

h 1/16 1/34 1/34 1/10 1/15 1/15 1/8 1/17 1/17
κh 2.95 1.39 2.77 3.15 2.10 2.08 2.36 1.11 2.22

1 − ρ(ΠS) 2.9 10−3 7.8 10−5 5.5 10−4 2.8 10−4 1.5 10−5 1.4 10−5 5.5 10−5 2.5 10−6 2.9 10−5
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(c) Benchmark 2 – κ = (7 + 1/10)
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(d) Benchmark 2 – κ = (7 + 1/100)
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Figure 4.5: Error history with different iterative schemes and different DG schemes for two benchmarks. The
dashed horizontal lines correspond to the relative errors obtained with a direct solver. Reproduced from [A6].

Comparison of DG, HDG and CHDG with for iterative solution procedures. The error
histories obtained with the fixed-point iteration (for CHDG only), CGNR (i.e. conjugate gradient applied
to the normal equation A∗Ag = A∗b) and GMRES (without restart) are shown on Figure 4.5 for the
different methods and the first two benchmarks. The numerical solution is always compared to the
analytical or semi-analytical reference solution. See [A6] for more results.

We observe that the fixed-point iteration effectively converges for the CHDG method, but the per-
formance strongly depends on the physical setting. The convergence is very fast for purely propagating
cases, and it is slow for cavity or waveguide cases. In the latter cases, the asymptotic regime, which
can start relatively quickly, is rather slow. The fixed-point iteration does not converge for the DG and
HDG methods. If the problem is solved with either CGNR or GMRES, the convergence of the iterative
process is always faster with the CHDG method than with the DG and HDG methods.

When using the CHDG method, the convergence is always slightly faster with GMRES than with
CGNR, but the difference is not very large. In the worst case (Figure 4.5b), the number of iterations to
achieve the reference relative error (obtained with the direct solver) is twice larger with CGNR than with
GMRES. Considering the computational cost of GMRES, which increases at each iteration, the CGNR
is a potential good candidate for realistic cases.
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Chapter 5

Perspectives

In this chapter, I describe open questions, ongoing works and possible future research directions that are
directly related to the work presented in this manuscript.

About domain truncation methods

HABC with corner/edge treatments for other wave models. Padé-type HABCs are available for electromag-
netic, elastic and heterogeneous scalar waves, but only for smooth artificial boundaries [108, 62, 224, 221].
To the best of my knowledge, no corner treatment has been proposed for these models, except one ap-
proach by Collino [83] for the time-domain Maxwell equations discretized with finite differences. The
extension of the corner compatibility relations derived in [A9] remains to be done for these models, but
this is technically more difficult than for the acoustic case because of the transverse operators involved
in the corresponding HABCs. In contrast, the numerical curvature strategy studied in [A9] can be used
directly in the formulations available for curved boundaries.

AML implementation of the PML for other wave models. The AML implementation has only been tested for
acoustic waves, but similar implementations could be derived for electromagnetic and elastic waves. For
these models, PML formulations that exhibit the complex Jacobian matrix of the PML transformation
are available [225]. It should then be possible to derive AML finite element implementations similarly
to the acoustic case. Note that, for elastic wave models, the choice of parameters may be trikier due to
the different types of elastic waves.

Dealing with non-right and non-flat angles. Both HABC and PML implementations are much less accurate
for configurations with angles far from 90° and 180°. For Padé-type HABCs, the modeling errors due
to the corners can be reduced thanks to the treatments presented e.g. in [A9], but these errors are still
significant. The generalization of the corner/edge compatibility relations for non-right angles is still an
open question for the Padé-type HABC. The adaptation of techniques proposed for other truncation
methods [159, 95, 47, 192] could be explored.

Other uses of the domain truncation methods. As presented in Chapter 3, the domain truncation operators
can be used to improve DDMs. In [63, 9, 92], Padé-type HABC operators are also used in the definition
of boundary integral formulations in order to speed up iterative solution procedures based on these
formulations. Investigating combinations with the improved domain truncation methods presented in
this manuscript could be an interesting research direction. A first study was carried out in the context
of the M1 internship of N. Kesmia, in collaboration with S. Chaillat (CNRS, POEMS).

About accelerated iterative solvers

Extending the DDMs with HABC/PML transmissions and cross-point treatments. The DDM strategies
presented in this manuscript could be extended to other physical models and 3D checkerboard domain
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partitions, provided that the corner/edge treatments are available for the HABC and PML boundary
operators. The 3D extension is not an issue in the acoustic case: 3D results have been presented in the
PhD theses of R. Dai [91] and A. Royer [257] for DDMs with HABC and PML transmissions, respectively.
A. Royer also proposed DDM results for 2D and 3D elastic wave models with a PML transmission and
cross-point treatments. A similar extension should not be too complicated to obtain for electromagnetic
waves. In contrast, cross-point treatments for DDMs with HABC transmission are currently out of reach
for other wave models due to the unavailability of corner/edge treatments. In practice, general mesh-
based domain partitioning is often used, and extensions of our approaches could be explored for such
partitions. However, I am not sure if this is a good way to go, since the HABC and PML techniques are
initially designed for smooth boundaries (with special treatments for corners/edges), and adaptation to
non-straight boundaries would require several additional non-trivial steps.

Extending the multidirectional sweeping preconditioners. The sweeping preconditioners presented in Sec-
tion 3.4 can be extended to 3D checkerboard domain partition, see [91] for preliminary results. The
idea remains to propagate information as fast as possible across the domain partition, possibly with
parallel sweeps in different directions. It would be interesting to investigate similar sweeping strategies
for general mesh-based domain partitions, as well as placement strategies when using parallel computing
on distributed memory architectures.

Improving our understanding of the convergence of iterative solvers. Iterative solvers based on Krylov meth-
ods are widely used to solve time-harmonic problems discretized with finite elements. By using DDM,
we aim to improve the properties of the resulting algebraic systems in order to speed up the iterative
solution procedures. However, it is difficult to know which properties to study and how to interpret
them. In the context of the PhD research of T. Raynaud, which I supervise together with P. Marchand
(Inria, POEMS) and V. Dolean (TU/e, The Netherlands), we aim to improve our understanding of the
convergence of Krylov methods for solving time-harmonic problems, and then to improve preconditioning
strategies.

About discontinuous finite element solvers

Dealing with other wave models. In principle, the CHDG method that we proposed for acoustic waves
in [A6] could be extended to other physical waves and to heterogeneous media. DG formulations with
upwind fluxes are available for most of the standard wave propagation models, and hybridization strate-
gies with characteristic variables (or similar transmission variables) could be explored. For heteroge-
neous media and more complicated physical models, several choices of numerical fluxes are possible (see
e.g. [102, 283]), which raise additional questions. For each model, the goal is to find the best numer-
ical fluxes and the best hybrid variables that lead to reduced systems with good properties for fast
iterative solutions procedures. The aeroacoustic and heterogeneous cases are currently studied in the
context of the PhD research of S. Pescuma, in collaboration with G. Gabard (LAUM, Le Mans U.). The
electromagnetic case will be studied in the context of ElectroMath.

Coupling with other methods. Many extensions of the CHDG method can be explored to improve the
accuracy of the numerical solution and the efficiency of the iterative procedures. Some of these are
planned in the context of WavesDG. First, the CHDG formulation could be tested with plane-wave
basis functions (or other wave-specific basis functions), instead of the polynomial basis functions, in the
spirit of the Trefftz methods. Second, HABC and PML can be incorporated into CHDG formulations
to improve the representation of artificial boundaries for e.g. scattering problems. In [A11, A5], we
have implemented HABC and PML in DG formulations based on upwind fluxes for a time-dependent
acoustic model. Similar formulations could be proposed with the CHDG methods. During his internship,
S. Pescuma investigated the use of HABC with a Trefftz DG method. Finally, we plan to investigate
DDM substructuring and preconditioning strategies for the reduced system obtained with CHDG. These
extensions are natural continuations and intersections of the different works presented in this manuscript.
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Towards time-harmonic electromagnetic problems with anisotropic media [ElectroMath]

The numerical simulation of time-harmonic electromagnetic problems with anisotropic/dissipative media
is of paramount importance for the study of wave propagation in plasmas, optical metamaterials and
metasurfaces. Both theoretical and practical aspects are challenging areas of research.

In the context of the PhD research of D. Chicaud [A3, 69, 70], which I co-supervised with P. Ciarlet
(ENSTA Paris, POEMS), we studied time-harmonic electromagnetic problems with elliptic material
tensor fields, which are a general class of material coefficients. A complex d-by-d tensor field ξ ∈ L∞(Ω)

is elliptic if there exist θξ ∈ R and ∃ξ− > 0, almost everywhere in Ω, ℜ{eıθξ z∗ξz} ≥ ξ−|z|2, for all
z ∈ Cd. We extended the functional framework that was available for isotropic media, and we generalized
well-posedness and regularity results. We considered problems with Dirichlet and Neumann boundary
conditions in [A3], and D. Chicaud and P. Ciarlet [70] completed analyses for the Robin case with an
impedance tensor field. Some of these tools have been used to study the DDM iterative schemes, which
was our initial motivation.

These results provide a solid foundation for further studies, some of which are planned within the
CIEDS project ElectroMath. We are currently extending the analysis of DDM for electromagnetic wave
propagation in anisotropic media, which was started at the end of the PhD research of D. Chicaud. We
plan to investigate a CHDG method for electromagnetic problems with media of increasing complex-
ity (i.e. isotropic, anisotropic, dissipative, ...). We would like to link the proposed methods with real
applications by classifying problems coming from physicists and physical engineers.

Towards GPU-accelerated CHDG solvers for time-harmonic problems [WavesDG]

To conclude this manuscript, I would like to mention that one of my long-term goals is to develop
efficient time-harmonic solvers that scale on modern supercomputers composed of many-core processors
and limited-memory accelerators (such as GPUs). Existing approaches are not well suited for efficient
computation on these architectures because they require sparse direct solvers or large memory storages,
or they are prohibitively expensive in terms of the number of iterations. I believe that the research
done in the WavesDG project is a step in the direction of more efficient solvers. The use of wave-specific
strategies at all levels, with the CHDG finite element method combined with suited DDM preconditioning
and substructuring strategies, could lead to efficient solvers for GPU clusters.
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