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Résumé

À une époque impactée par des phénomènes météorologiques de plus en plus variables qui
peuvent modifier profondément les communautés, l’importance de prédictions fiables
des précipitations extrêmes à de multiples échelles n’a jamais été aussi prédominante.

Malgré sa portée cruciale, une prédiction précise demeure un défi de taille, en particulier dans les
régions montagneuses, qui sont particulièrement exposées aux risques associés aux précipitations
extrêmes. Par conséquent, des outils plus robustes sont nécessaires pour une prédiction fiable.

Les relations Intensité-Durée-Aire-Fréquence (IDAF) résument les principales caractéristiques
statistiques des précipitations extrêmes. Elles sont utilisées pour la quantification des aléas de
précipitations et le développement de systèmes d’alerte précoce. Alors que les relations Intensité-
Durée-Fréquence (IDF) pour les précipitations ponctuelles ont été largement étudiées, les relations
IDAF, prenant en compte la zone d’accumulation, ont reçu beaucoup moins d’attention et, à notre
connaissance, seulement pour les extrêmes. Cette thèse vise à modéliser les relations IDAF des
précipitations pour toute la gamme des précipitations non nulles dans des zones à la topographie
complexe (avec application en Suisse), où des modèles robustes et flexibles sont nécessaires en
raison de la forte variabilité spatio-temporelle des précipitations. La grande originalité de cette
thèse est que les relations IDAF sont développées pour toute la gamme des intensités de précipi-
tations non nulles, et pas seulement pour les extrêmes. Les distributions marginales robustes des
relations modélisées peuvent être utilisées dans les générateurs stochastiques de précipitation.

Premièrement, nous avons identifié un modèle parcimonieux au sein de la famille EGPD (ex-
tended generalized Pareto) pour modéliser la distribution des intensités non nulles. Deuxième-
ment, nous avons développé trois modèles de régionalisation pour améliorer la robustesse et la
fiabilité des estimations quotidiennes des précipitations. Les résultats montrent que toutes les
méthodes régionales offrent une robustesse et une fiabilité accrues en matière de prédiction par
rapport au modèle local (sans régionalisation). La méthode spatiale basée sur des modèles additifs
généralisés (GAM) a démontré de meilleurs résultats pour les extrêmes, alors que la méthode sur
l’approche de la région d’influence a conduit à de meilleurs résultats dans le centre de la distribu-
tion.

Troisièmement, nous avons développé des modèles de relations IDF en utilisant toutes les in-
tensités de précipitations non nulles afin d’inclure efficacement les informations disponibles. Trois
approches ont été envisagées. La première est basée sur la propriété d’invariance d’échelle des pré-
cipitations, la deuxième est basée sur la formulation générale des IDF et la dernière est purement
basée sur les données ( data-driven), employant des équations déterminées empiriquement pour
modéliser les relations IDF. Les meilleurs résultats ont été obtenus par la troisième. Des courbes
IDF à l’échelle de bassins versants ont été générées à partir de ce modèle pour une utilisation
opérationnelle, et les distributions marginales journalières dérivées des modèles sont destinées à
être utilisées dans un générateur stochastique de précipitation.

Enfin, nous avons construit des relations IDAF basées sur une approche data-driven en util-
isant un produit de réanalyse radar. Le modèle nous a permis de caractériser l’aléa de précipitations
surfaciques pour un continuum d’échelles spatio-temporelles. Dans l’ensemble, les résultats ont
permis de mieux comprendre les variabilités saisonnières et régionales de l’aléa de précipitation
en Suisse. Pour de courtes durées, les niveaux les plus élevés sont observés en été, tandis qu’à
l’échelle journalière, les niveaux les plus élevés sont observés en automne, notamment au Tessin,
région identifiée comme la plus exposée aux précipitations extrêmes à toutes les échelles.

Mots-Clés: Précipitations extrêmes, Courbes IDF, Relations IDAF, Régionalisation, Échelle
spatio-temporelle, Alpes suisses.
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Abstract

I n an era marked by increasingly volatile weather patterns and their profound impact, reliable
predictions of extreme precipitation across multiple scales has never been more challenging.
Despite its pivotal significance, accurate prediction remains a formidable challenge, espe-

cially in mountainous regions that are particularly susceptible to extreme precipitation hazards.
As a result, more robust and efficient tools are needed for reliable prediction.

Intensity-Duration-Area-Frequency (IDAF) relationships summarize the main statistical char-
acteristics of extreme precipitation. They are used for areal rainfall hazard quantification, storm
characterization, and early warning system development. While Intensity-Duration–Frequency
(IDF) relationships for point precipitation have been extensively studied, IDAF relationships, ac-
counting for the area of accumulation, have received far less attention and to our knowledge only
for extremes. This thesis aims to model the IDAF relationships for the whole range of non-zero
precipitation in topographically complex areas (with application in Switzerland) where robust and
flexible models are required due to the strong spatio-temporal variability of precipitation. The
key novelty is that IDAF relationships are developed for the whole range of non-zero precipitation
intensities, not just extremes. In addition to its usual application, the marginal distributions from
the relationships can be utilized in stochastic weather generators.

Four objectives were identified and carefully addressed. First, we identified a parsimonious
three-parameter model within the extended generalized Pareto distribution (EGPD) family to
model the distribution of non-zero precipitation intensities. Second, we build regionalization
models based on three regionalization approaches to improve the robustness and reliability of
daily precipitation estimates. The first relies on a fast algorithm that defines distinct homogeneous
regions based on upper tail similarity, the second is based on the region-of-influence (ROI) ap-
proach, and the third is a spatial approach based on Generalized Additive Model (GAM). All the
regional models offered improved robustness and reliability in prediction compared to the local
model (without regionalization). The GAM-based method was better in the upper tail, while the
ROI method performed better in the bulk of the distribution.

Third, we developed IDF relationships using all non-zero rainfall intensities for 30 min to 72
hr, making efficient use of available information. Three approaches were considered, the first is
based on precipitation scale invariance, the second relies on the general IDF formulation, and the
last is purely data-driven, employing empirically determined relationships to model the IDF rela-
tionships. The best results were shown by the model based on the data-driven approach. It repro-
duced the known space and time variability of extreme rainfall across Switzerland, catchment-level
IDF curves were generated from it for operational use, and the daily marginal distributions derived
from the models are intended to be used in a stochastic weather generator currently developed for
operational use.

Finally, we constructed IDAF relationships based on a data-driven approach for 1 to 72 hr
and 1 to 1,089 km2 at each pixel, utilizing a radar-reanalysis product. The model allowed us
to characterize areal precipitation hazards for a continuum of spatio-temporal scales. Overall,
the results provided insights into the seasonal and regional patterns of precipitation hazards in
Switzerland, highlighting the importance of considering multiple spatio-temporal scales when as-
sessing extreme precipitation hazards. For short durations (e.g. 1 hr), the highest levels are almost
exclusively observed in summer, while for the daily scale, the highest levels are observed during
autumn, particularly in Ticino, a region identified as the most exposed to extreme precipitation
across all scales.

Keywords: Extreme Precipitation, IDF curves, IDAF relationships, Regionalization, Spatio-
temporal scale, Swiss Alps.
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Chapter I. Introduction

I.1 Motivation

Extreme precipitation, characterized by its intensity, duration, and spatial extent, has the poten-
tial to trigger disasters and associated risks, which pose profound threats to communities, ecosys-
tems, and infrastructure. These include devastating floods, landslides, debris flows, erosion, water
quality deterioration, etc. A striking example is the case of Hurricane Ian, a tropical cyclone,
which in 2022 caused wind and flooding damage in western Cuba, Florida, and the Carolinas.
The disaster resulted in 161 fatalities, insured losses of $50-65 billion (Chandan et al., 2023), and
estimated damage of $113 billion. The storm hit an area of high economic value, and population
growth, and was described as the third-costliest weather disaster in US history (Flinch, 2022).

Mountainous regions are particularly susceptible to extreme precipitation hazards (Frei et al.,
2000). One of the primary factors contributing to these hazards is orographic lifting. When moist
air masses encounter mountain ranges, they are forced to ascend, cool, and condense, resulting
in heavy precipitation. This phenomenon is often intensified when warm, moist air collides with
cooler, elevated terrain. The topography of mountainous areas also plays a significant role in their
vulnerability to extreme precipitation and the space and time variability (Buytaert et al., 2006).
Steep slopes, narrow valleys, and rugged terrain can exacerbate the impact of heavy precipitation
or rapid snowmelt. These conditions increase the likelihood of flash floods, landslides, and debris
flows, which pose a considerable threat to both the natural environment and human settlements.

The Alpine region (Frei and Schär, 1998), and particularly Switzerland (Stucki et al., 2012),
stands out for its vulnerability to extreme precipitation and the resulting flood hazards. In addi-
tion, the Alps are influenced by both Atlantic and Mediterranean climatic regimes, which include
events of stratiform and convective nature. According to the Swiss Federal Office for the Envi-
ronment, FOEN1, nine out of ten Swiss communes have already been affected by natural hazards,
and around one-fifth of the Swiss population is currently exposed to the risk of flooding. River
flooding, for example, resulting from high precipitation is one of the most devastating and costly
natural hazards in Switzerland (Froidevaux et al., 2015). Furthermore, between 1972 and 2022,
the cost of the average damage caused by natural hazards in Switzerland, 90% of which are linked
to flooding and debris flows, was around CHF 305 million per year1. In particular, the August
2005 flood in Switzerland led to six deaths and a total of three Billion Swiss francs (3×109 CHF)
in material damage (FOEN, 2008).

What makes this situation even more critical is the undeniable impact of human activities
on our climate. The latest report from the Intergovernmental Panel on Climate Change (IPCC,
2023) makes it clear that human actions, especially the emission of greenhouse gases, have signif-
icantly warmed the planet, with the global surface temperature reaching 1.1°C above 1850–1900
in 2011–2020. Switzerland, in particular, has experienced a warming trend almost double the
global average (Scherrer et al., 2016b). As a result of this warming trend, heavy precipitation is
expected to become more frequent and intense due to the increased moisture-holding capacity of
the atmosphere.

Given the potentially catastrophic consequences associated with extreme precipitation-related
hazards, there is an imperative demand for more robust and efficient models capable of enhancing
our understanding and enabling reliable prediction of extreme precipitation across multiple spatial
and temporal scales. This is even more crucial in topographically complex areas where robust
and flexible models are required due to the substantial spatio-temporal variability of precipitation.
This thesis contributes to this need in topographically complex locations, with particular appli-
cation in Switzerland, by proposing robust models of Intensity-Duration-Area-Frequency (IDAF)
relationships for precipitation. IDAF relationships summarize the main statistical characteristics

1https://www.bafu.admin.ch/bafu/en/home/topics/natural-hazards/in-brief.html. Last access:
06-Nov-2023
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I.2. Extreme floods in Switzerland (EXCH) project

of extreme precipitation (return level, return period, duration, and area). They extend the conven-
tional Intensity-Duration-Frequency (IDF) curves by accounting for the spatial extent of precipi-
tation (i.e., the area). These models are crucial for quantifying the risk and magnitude of extreme
precipitation events across space and time scales. They provide essential insights into the likeli-
hood and intensity of extreme events over different time and spatial scales. This will enable us
not only to assess areal precipitation hazards, but also to better protect against flooding disasters,
develop more effective policies, plan for emergency response and flood mitigation, and enhance
flood protection measures against the ravages of extreme weather events.

I.2 Extreme floods in Switzerland (EXCH) project

This thesis is part of the Extreme Floods in Switzerland (EXCH) project that aims to evaluate
the hazards linked to extreme floods in Switzerland. The project is funded by the Federal Office
for the Environment (FOEN) and the Swiss Federal Office of Energy (SFOE). It aims to improve
the reliability of estimating the risks posed by such events in the future. The outcomes of the
project will serve as a foundation for conducting safety assessments of buildings, facilities, and
infrastructures crucial for public safety and the Swiss economy.

A particular difficulty in reliable assessments of extremely rare flood events, however, is that
very long time series of discharge data are required. Unfortunately, this is hampered by the rela-
tively short historical record of observed discharge data. To overcome this limitation, a particularly
appealing way is to employ a chain of hydro-meteorological simulations. This approach employs
stochastic weather generators to generate scenarios of long series of precipitation and temperature.
The generated synthetic series is then used as input for a hydrological model, which simulates the
corresponding discharge scenarios at any location within the studied catchments.

In a previous phase of the project titled "Extreme flood events on the River Aare and Rhine"
(EXAR) (Andres et al., 2021), two stochastic weather generators, GWEX (Evin et al., 2018) and
SCAMP (Raynaud et al., 2020) were developed and employed to generate 30 weather scenarios,
each of 10,000-years, for time scales of 1 and 3 days. A lumped hydrological model was then used
to simulate the corresponding discharge scenarios (Viviroli et al., 2022). The focus was on large
catchments (area > 1,000 km2) located mostly in the northern part of Switzerland (catchment
area of the Aare River). Critical structures in the Aare drainage basin include 19 dams and the
Mühleberg, Gösgen, and Beznau I and II nuclear power plant (Andres et al., 2021).

In the current phase of the project, the scope has been extended to cover the entirety of Switzer-
land, with a particular focus on small hydrological catchments. As a consequence, the spatio-
temporal scales of interest are now in the range of 10 to 1,000 km2, and 1 to 72 h. The project has
two specific goals. The first objective is to develop a stochastic weather generator of mean areal
precipitation suitable for small catchments. This task is handled by a separate Ph.D thesis. The
second objective, which is the primary goal of the current thesis, is to develop models of IDAF
relationships of non-zero precipitation. The key deliverable of the thesis to the project is IDF
curves for areal precipitation over predefined catchments. In addition, marginal distributions from
IDF models developed in the course of the thesis are intended to be used to feed and validate the
stochastic weather generator in the first thesis. Further details of the IDAF model are discussed in
the following section.
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Chapter I. Introduction

I.3 Thesis objectives

The main goal of the thesis is to develop a model of IDAF relationships of non-zero precipi-
tation to be applicable everywhere in Switzerland. The model will allow assessing the frequency
of a given mean areal precipitation intensity, for a given duration (1 hr to 72 hr) and over an area
of interest (10 to 1,000 km2). Within the context of this thesis, the interest is to model not only
the extremes but the entire range of non-zero precipitation intensities (including low, medium, and
extreme intensities).

While IDF relationships for point precipitation have been extensively studied in the literature
(Chow, 1962; Burlando and Rosso, 1996; Koutsoyiannis et al., 1998; Blanchet et al., 2016), con-
sideration of the area of accumulation, as provided by the IDAF relationships, has received far less
attention and, to the best of our knowledge, only for extremes (De Michele et al., 2001; Overeem
et al., 2010; Panthou et al., 2014; Mélèse et al., 2019). The key novelty of the thesis is that IDAF
relationships are developed for the whole range of non-zero precipitation intensities, inclusive of
low, medium, and extremes. Modeling IDF and IDAF relationships using all the non-zero data in-
stead of only the extremes, has some advantages. First, by using all the non-zero data, estimation
uncertainty is expected to reduce, resulting in more accurate predictions. Secondly, in addition to
having IDF and IDAF curves, the robust marginal distributions derived from the IDF models can
be used to feed and validate stochastic weather generators, (e.g. the one developed in the EXCH
project), for the simulation of synthetic scenarios of mean areal precipitation.

To achieve the goal of the thesis, the specific objectives are formulated in terms of the follow-
ing research questions:

1. What is the most suitable and parsimonious probability distribution to model the entire range
of non-zero precipitation intensities in a topographically complex area?

2. What is the most effective regionalization method to improve the robustness and reliability
of daily precipitation estimates in a topographically complex area?

3. What is the best model of IDF relationships for the full range of non-zero precipitation
intensities in a topographically complex area?

4. What is an appropriate model of IDAF relationships for the full range of non-zero precipi-
tation intensities in a topographically complex area?

The study area is Switzerland, a topographically complex location with substantial seasonal
and regional precipitation variability.

The research questions presented above are designed to help achieve the specific goal of the
thesis, which is to develop a model of IDAF relationships of non-zero precipitation. The first
question aims to identify the appropriate marginal distribution of non-zero precipitation intensi-
ties required in the IDAF relationships. The second question explores various regionalization ap-
proaches to enhance the robustness and reliability of the estimates from the marginal distribution
identified in the first question. The third question investigates, builds, and compares approaches
suitable for modeling IDF relationships of non-zero precipitation (without area) using the distri-
bution identified in the first question. Finally, the fourth question extends the IDF relationships
to account for the spatial extent (area) of precipitation by modeling the IDAF relationships of
non-zero precipitation (the main goal of the thesis).
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I.4 Thesis outline

The thesis is logically organized to address the four research questions outlined in the previous
section. The study area is presented in Chapter II, while the theoretical background is presented in
Chapter III. The four research questions are addressed in the order of Chapters IV to VII, followed
by conclusions and discussions of the perspectives in Chapter VIII.

More specifically:

• Chapter II describes our study area, including the climatology of temperature and precipi-
tation. This chapter also introduces the three precipitation datasets utilized throughout the
thesis.

• Chapter III offers a theoretical foundation for the statistical and hydro-meteorological tools
employed to address our research questions. It begins with a background on statistical mod-
eling of extreme precipitation, followed by reviews of approaches to modeling the whole
distribution of non-zero precipitation (Question 1). The regionalization methods we employ
to address Question 2 are then outlined, followed by an introduction of the approaches for
modeling IDF (Question 3) and IDAF relationships (Question 4). The chapter concludes
by presenting the split-sampling cross-validation framework and the evaluation criteria we
apply to compare the various models developed in this thesis.

• Chapter IV is dedicated to answering Question 1, by identifying a parsimonious distribution
that can model the entire range of non-zero precipitation in Switzerland. Following the
bibliography, a particular focus is given to the Extended Generalized Pareto Distribution
(EGPD) of Naveau et al. (2016). Three parametric families of the EGPD are compared
based on their ability to model daily precipitation data in Switzerland. The best model is
chosen based on its parsimony and then employed to characterize extreme daily and hourly
precipitation in Switzerland. Finally, the model is retained for subsequent use in developing
IDF and IDAF relationships.

• Chapter V addresses Question 2 by examining regionalization methods to improve the ro-
bustness, accuracy, and reliability of daily precipitation estimates with the EGPD. Various
regionalization models based on different concepts are developed and compared using the
split-sampling cross-validation framework. The results are contained in Paper 1 (Haruna
et al., 2022).

• Chapter VI addresses Question 3, starting with a review of existing approaches to construct-
ing IDF relationships. Models of IDF relationships are developed and compared, with the
best model selected through split sampling cross-validation. The results are contained in
Paper 2 (Haruna et al., 2023b). The chapter concludes with the presentation of catchment-
level IDF curves, developed using the best model identified in Paper 2, for hydrological
applications in Switzerland.

• Chapter VII tackles the final research question (Question 4) by building models for Intensity-
Duration-Frequency-Area (IDAF) relationships using all non-zero precipitation. The chap-
ter begins by evaluating the gridded data, which is required for building IDAF relationships,
against raingauge measurements through point-to-pixel comparison. The IDAF relation-
ships are then developed for various spatio-temporal scales, ranging from 1 hr/1 km² to 72
hr/1000 km². The model is evaluated and applied to assess areal precipitation hazards and
build IDAF curves in Switzerland. The findings are presented in Paper 3 (Haruna et al.,
2023a).
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• Chapter VIII concludes the thesis by stating the conclusions and discussing the relevant
perspectives for the research undertaken.
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II
Study area and Data

Chapter overview

T his chapter first introduces the area under study, Switzerland, along with its
precipitation and temperature climatology. Next, the precipitation datasets

that are used in the course of the thesis are described.
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Chapter II. Study area and Data

II.1 Study area

Our study area is Switzerland, a country spanning 41,285 km2. Figure II.1 shows the map of
the study area. Despite its small size, Switzerland exhibits a complex topography, with elevation
ranging from 191 to 4,127 m above sea level. Approximately 30% of the land is situated above
1,500 m (Figure II.2), leading to significant spatial variations in both precipitation intensity and
occurrence. Various factors, including the Alps, the Atlantic Ocean, and the Mediterranean Sea
influence the country’s climate. These factors contribute to seasonal and spatial variability in
precipitation, as documented in prior studies (see e.g. Sodemann and Zubler, 2009; Giannakaki
and Martius, 2015; Scherrer et al., 2016a).

(Ticino)

Figure II.1: Map of Switzerland, the study area. The background color denotes the elevation
(m) above sea level. The red-broken lines demarcate the four climatological zones (northwest,
northeast, Alps, and south (Ticino)). Some major lakes are highlighted in light blue. The names
and locations of some cities are shown in black, while the location of the Jura mountain is shown
in blue.

II.2 Climatology

II.2.1 Temperature

Figure II.3, reprinted from MeteoSwiss (2023), shows the map of the annual mean temperature in
Switzerland for the period 1991–2020. The mean annual temperature ranges from below −9◦C
to over 14◦C. There seems to be a strong correlation between elevation and temperature, with the
lowest temperatures observed at the highest elevations in the Alps, and the highest temperatures
in the low-lying areas, such as the inner valleys, south of the Alps in Ticino, and north of the Alps
in the Swiss plateau. Specific regions with very high temperatures include the area along Lake
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Figure II.2: Hypsometric curve of Switzerland based on 1 km by 1 km elevation grid.

Geneva and the foothills of the Jura mountains in western Switzerland, the inner valleys as well
as the Ticino region in the south of the Alps. July and August are the months in which the highest
temperatures are recorded, with average maximum temperature exceeding 25◦C in the low-lying
regions (MeteoSwiss, 2023).

Figure II.3: Annual mean temperature (◦C) for the period 1991-2020. Reprinted with permission
from MeteoSwiss (2023).

II.2.2 Precipitation

In Switzerland, precipitation patterns exhibit specific regional differences with four main climatic
zones (see e.g. Frei and Schär, 1998; Molnar and Burlando, 2008). The four zones are shown in
Figure II.1. The first two zones are located in the northern alpine foreland and are divided into the
northwest and northeast. The northeast exhibits little variability while the northwest is influenced
by the Jura mountain, leading to higher accumulations compared to the northeast. Next is the
central part where the Alps is located, and precipitation here is mainly affected by orography and
shadowing of the inner valleys. Finally, the south of the Alps, around Lake Maggiore, is heavily
influenced by the Mediterranean Sea, leading to high accumulations and intense precipitation.

Annual precipitation sums vary across the regions (Figure II.4a), with the highest annual totals
exceeding 2,000 mm in areas like the Alps, the Jura region (northwest), and the Ticino region
(south of the Alps). Conversely, shielded from both sides, the inner valleys such as the Rhône
and Inn experience minimal annual precipitation, between 400 to 800 mm. In terms of seasonality
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Figure II.4: a) Annual precipitation sums (mm) and b) Seasonal precipitation sums (mm) for the
period 1991–2020, computed from RhireD (see Section II.3.2.2 for the description of this dataset).

(Figure II.4b), summer is the primary precipitation season throughout Switzerland. An exception
is Ticino where the main season is autumn. Conversely, winter records the lowest precipitation
across all regions.

Figure II.5: a) Average of 1 hr seasonal precipitation maxima (mm) computed from Combiprecip
and b) Average of 1 day seasonal precipitation maxima (mm) computed from RhiresD. See Section
II.3.2.2 for the description of the two datasets.

Figure II.5 shows the spatial distribution of heavy precipitation, defined here as the average
of seasonal maxima. It can be observed that the spatial distribution depends on the accumulation
duration. For short-duration accumulations (e.g., 1 hr), the most intense precipitation occurs dur-
ing summer nationwide, with peak intensities of up to 30 mm/hr in areas like Ticino, Jura, and the
northern rim. Since precipitation at this time scale is mainly convective, it is not surprising that the
lowest intensities are observed in winter. For longer accumulations (e.g. 1 day), Ticino receives
the heaviest precipitation with autumn experiencing maximum 1 day totals surpassing 130 mm. In
other regions, heavy precipitation mainly occurs during summer.
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II.3 Data

This section introduces the datasets of precipitation measurement that we use in the thesis.
Two categories of data are available, point precipitation measurements recorded at rain gauge
networks, and gridded data at a spatial resolution of 1 km by 1 km square grids.

II.3.1 Point precipitation data

In general, point data from rain gauge measurement networks provide the longest available mea-
surement for precipitation. They are also considered the most accurate and reliable source of
precipitation measurement in comparison to other methods such as weather radar and satellite
observations. Despite their reputation, some major sources of uncertainties (e.g. errors induced
by wind, wetting, splashing, and evaporation errors) affect the accuracy of rain gauge measure-
ments which leads to systematic bias. Another major limitation of point measurements is their
lack of spatial representativeness. These errors contribute inevitably to the overall uncertainty in
any statistical analysis with rain gauge data.

In Switzerland, point measurements from rain gauge networks are subjected to substantial and
very rigorous quality control checks by the Swiss Federal Office for Meteorology and Climatology
(MeteoSwiss) to ensure the reliable quality of the data (MeteoSwiss, 2017; Fukutome et al., 2018).
These include checks to ensure that recorded values are within climatologically physical limits,
they are consistent with those from nearby gauges, and they satisfy inter-parameter consistency
and variability tests.

For our thesis, point precipitation measurements are available at two sampling resolutions. The
first measurements at 10 min sampling resolution are recorded using tipping-bucket rain gauges
at automatic weather stations across the country. The second measurements are made daily and
come from the manual precipitation monitoring network. The two datasets are described in the
following sections.

II.3.1.1 10 min precipitation data

The precipitation data at 10 min sampling resolution comes from 81 stations. They are spread
across Switzerland and their locations, represented by the blue-colored circles, are shown in Fig.
II.6. Out of this total, 71 stations belong to the Swiss Meteorological Network (SwissMetNet)
of MeteoSwiss, while 10 belong to the canton of Luzerne, a partner network of MeteoSwiss.
The precipitation data is measured with a tipping-bucket gauge of 0.1 mm depth resolution at
a sampling resolution of 10 min. Most of the stations at high altitudes are shielded from wind
and the tipping gauge is heated in order to account for snow. The sample data has a variable
length ranging from a minimum of 20 years to a maximum of 40 years from 1981 to 2020. The
stations are located at elevations ranging from a minimum of 203 m, an average of 952.4 m, and a
maximum of 3294 m. This dataset is aggregated to 1 hr and used in Chapter IV to model hourly
precipitation, while it is aggregated to durations from 30 min to 72 hr in Chapter VI to build
Intensity-Duration-Frequency curves.

II.3.1.2 Daily precipitation data

We have a comprehensive dataset from 1176 stations for the daily precipitation measurements.
Their locations are shown by the red-colored crosses in Figure II.6. From this total, 500 are located
within Switzerland and 676 in the neighboring countries (France, Italy, Austria and Germany). The
data has a variable length ranging from a minimum of 20 years to a maximum of 156 years, from
1863 to 2019. Although our study is limited to Switzerland, the use of the data in the neighboring
countries is simply to improve our model estimates near the border through a technique called
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Figure II.6: Map of Switzerland showing the four datasets available for the study. The blue-
colored circles represent the 81 rain-gauge stations at 10 min resolution, the red-colored crosses
show the locations of the 1176 daily stations, the yellow background shows the extent of RhiresD,
and the dark green-colored line with light green background shows the coverage of CombiPrecip
(CPC)

regionalization (see Chapter V for more details). In Switzerland, the measuring instruments for
daily measurements have evolved with time. It started from completely manual rain gauges (400
cm2 ombrometers to 200 cm2 Hellmann raingauge) recorded at 06:00 UTC, to fully automatic
gages (tipping-buckets and weighing gauges) with a sampling resolution of 10 min (Fukutome
et al., 2018; MeteoSwiss, 2021). The daily data from the other countries are also recorded at
06:00 UTC, except Italy where measurements are at 08:00 UTC (Isotta et al., 2014). We use this
dataset in Chapter IV to model daily precipitation, and in Chapter V to build regionalized models.

II.3.2 Gridded data

As pointed out earlier, while rain gauges provide direct measurements of precipitation, their major
drawback is their limited spatial representativeness. Furthermore, in this thesis, addressing the
fourth research question (see Chapter I), which has to do with building IDAF curves, requires
information on areal precipitation intensities everywhere in the study area. To obtain this informa-
tion, we make use of two gridded products, one based on radar-reanalysis called CombiPrecip,
and another based on spatial interpolation of daily precipitation data named RhiresD. The two
datasets are presented in the following subsections, along with their related uncertainties.

II.3.2.1 Radar-reanalysis product: CombiPrecip

CombiPrecip (CPC) is a radar-reanalysis product resulting from the geostatistical merging of
radar and rain gauge in an operational setting (Sideris et al., 2014a). It combines the high accuracy
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of rain gauge with the high spatial coverage of radar. The geostatistical merging is through co-
kriging with external drift, where the rain gauge data is treated as the primary source, and the
radar data as the external drift. Information from rain gauges comes from more than 250 automatic
stations at 10 min resolution, and that from the radar comes from five polarimetric C-band Doppler
radars that are suitably located to provide the reliable coverage required in the topographically
complex area (Table II.1). The radars were initially three C-band Doppler radars located at Albis
(installed in 1959), La Dole (1959), and Monte Lema (1993), which were upgraded to polarimetric
Doppler radars in 2011. Later, two additional radars were installed, one at Pointe de la Plaine
Mortes in 2014 and another at Weissfluhgipfel in 2016, to make a total of five (Germann et al.,
2006; Panziera et al., 2018; Germann et al., 2022).

Name Altitude (m) Year installed Year upgraded

Albis 938 1959 2012

La Dole 1682 1959 2011

Monte Lema 1626 1993 2011

Pointe de la Plaine Morte 2937 2014 -

Weissfluhgipfel 2840 2016 -

Table II.1: MeteoSwiss radars altitude in m above sea level and year of installation/upgrade to
dual-polarized radars

The data from the radar is subjected to substantial quality control before being employed in
the CPC algorithm. Treatment of the radar data (Germann et al., 2006) involves clutter elimi-
nation through a robust algorithm designed for this purpose, visibility correction resulting from
orthographic shielding, correction for vertical profile of reflectivity, and bias correction. This is in
addition to an automatic hardware calibration of the radars to check the stability/accuracy of the
components and a tailored operational scan strategy (20 elevation sweeps every five min) crucial
in mountainous regions such as Switzerland (Germann et al., 2015).

Known limitations and sources of uncertainty in the use of CPC involve the limited length
of the data, non-homogeneity of the series due to radar upgrades and evolution of the number of
radars, and conditional bias. CPC was used in several applications in Switzerland for extreme
value analysis (Panziera et al., 2016), climatological studies (see e.g. Panziera et al., 2018), me-
teorological forcing of hydrological model (see e.g. Andres et al., 2016), and has been evaluated
in several aspects (see e.g. Gabella et al., 2017; Panziera et al., 2018; Gugerli et al., 2020). It is
available at hourly temporal resolution and a spatial grid of 1 km by 1 km and extends 100 - 150
km beyond the borders of Switzerland. It has been available since 2005, and 17 years of data, from
1st January 2005 to 31st December 2021 is used to build IDAF curves in Chapter VII.

II.3.2.2 Spatial analysis of daily precipitation: RhiresD

The second gridded data is RhiresD that results from the spatial interpolation of station data at a
daily scale (MeteoSwiss, 2021). It contains daily precipitation totals, corresponding to accumu-
lations from 06:00 UTC of the day D to 06:00 UTC of the day D+1. It uses information from
over 600 manual and automatic gauging stations, within and outside Switzerland, whose density
has evolved with time. The interpolation scheme is based on a regionally varying precipitation-
topography relationship, estimated by local weighted linear regression. There are two main sources
of uncertainty associated with the dataset. The first comes from rain gauge measurement errors
such as wind-induced deflections and under-catch that result in underestimation of true precip-
itation. The second source of error is related to interpolation, which potentially results in the
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overestimation of light and the underestimation of intense precipitation. RhiresD has been used
in many applications in the literature (see e.g. Köplin et al., 2014; Panziera et al., 2018; Gugerli
et al., 2019; Pfister et al., 2020). A total of 61 years of data, from January 1961 to December 2021,
at a spatial resolution of 1 km2, is available for this study. We use this data to evaluate the statistics
of the CPC data for 24 hr totals in Chapter VII.
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III
Statistical methods and hydro-meteorological

relationships

Chapter overview

T his chapter introduces the statistical methods and hydro-meteorological re-
lationships applied in the thesis. An overview of the extreme value theory

models followed by methods for modeling the entire distribution of non-zero
precipitation is presented. Regionalization methods to improve the at-site esti-
mates of return levels are then described. Next, methods for modeling Intensity-
Duration-Frequency (IDF) and Intensity-Duration-Area-Frequency (IDAF) rela-
tionships of precipitation are presented. Finally, the evaluation framework for
the comparison of statistical models developed in the course of the thesis is de-
scribed.
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III.1. Statistical modeling of extreme precipitation

III.1 Statistical modeling of extreme precipitation

In engineering, the key safety design requirement of a structure, such as a dam, is that it should
not fail within its intended design life. This means that the dam should safely evacuate the largest
discharge that it will experience within its design life. Such a large discharge is rare or has a
very low frequency of occurrence, and in engineering terms, a very high "return period" T . A
typical return period for such design based on standards is T = 10,000 years. This means that the
discharge has on average 1/10,000 or 0.0001 probability of being exceeded in any given year.

The question is now how to give a reasonable estimate of such an amount that will be used for
dimensioning the dam. For reliable estimates, a 10,000-year event requires at least 10,000 years of
observed data (Hosking and Wallis, 2005). The main difficulty, however, is that the observed data
required to estimate the rare event usually spans only a few decades. Accordingly in the absence
of the required length of data, there is a need for a sound mathematical framework to justify the
necessary extrapolation to estimate this rare event. Gladly, extreme value theory (EVT) provides
this solid framework for the statistical modeling of extreme events (Coles, 2001).

III.1.1 Extreme Value Theory

Under the EVT framework, there are two main classical modeling approaches. The first is an
approach based on the block maxima of a time series using the Generalized Extreme Value (GEV)
distribution. The second is based on peaks over threshold (POT) using the Generalized Pareto
distribution (GPD). Figure III.1 illustrates the block maxima and the POT samples. In this section,
we will give a brief account of the theory behind the two approaches. For details of other modeling
approaches, the reader is referred to Coles (2001).

III.1.1.1 Approach based on block maxima

Let us consider a sequence of independent and identically distributed (iid) random variables
X1,X2, .....Xn, having the same cumulative distribution F . In our context, Xi can be assumed as
the daily precipitation amount recorded at a rain gauge station in Switzerland on day i. Let us also
define Mn as the maxima over a block of size n, such that Mn = max(X1,X2, .....Xn). If the block
size is taken as 1 year, then n = 365 and Mn=365 is the annual maximum (see Figure III.1).

We want to find, or at least, approximate the cumulative distribution function (CDF) of Mn.
Knowing the CDF of Mn is enough to compute the return period T corresponding to any non-
exceedance probability p from T = 1

p . Then the question is "What is the CDF of Mn?"
A first starting point is to obtain the CDF of Mn as :

P(Mn ≤ x) = P(X1 ≤ x,X2 ≤ x, .....Xn ≤ x) = Fn(x).

However, this will lead to degeneracy because as n −→ ∞, then Fn(x) = 0 as x → 0 or Fn(x) = 1
as x gets more extreme.

This degeneracy can be avoided if we consider normalized maxima, that is if we can find some
sequence of real numbers an > 0 and bn such that P

(
Mn−bn

an
≤ x
)

convergences in distribution to a
non-degenerate distribution function G. This can be written as:

P
(

Mn −bn

an
≤ x
)
= Fn(anx+bn)

n→∞−→ G(x).

If this condition holds, then we say that F is in the maximum domain of attraction of G, written
as F ∈ MDA(G).

Fisher and Tippett (1928) and Gnedenko (1943) showed that if an > 0 and bn exist, then G has
to be one of the families of the GEV distribution defined as:
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Figure III.1: Time series of daily precipitation at a station in Zürich from 2001–2010. All the
observations above the threshold, taken as the 98% quantile (green-colored line), constitute the
peaks over threshold (POT). The annual maxima are highlighted by the red points. In this case,
there are 10 annual maxima and 74 POT.

Gµ,σ ,ξ (x) =

{
exp
[
−
(
1+ξ

x−µ

σ

)−1/ξ

+

]
if ξ ̸= 0

exp
[
−exp

(
− x−µ

σ

)]
if ξ = 0

, (III.1)

defined on the set {x : 1+ ξ (x− µ)/σ > 0}, where µ ∈ R is the location, σ > 0 is the scale and
ξ ∈ R is the shape parameter.

Three particular cases of the GEV can be identified depending on the value of the shape pa-
rameter ξ . Figure III.2 gives an illustration of the density and return level plot for the three cases.

• If ξ > 0, then Gµ,σ ,ξ is Fréchet type, and heavy-tailed.

• If ξ = 0, then Gµ,σ ,ξ is Gumbel type, and light-tailed.

• If ξ < 0, then Gµ,σ ,ξ is Weibull type, and bounded-tailed.

Now that we know that GEV is the asymptotically justified distribution for the block maxima,
we can use its CDF to obtain the return level corresponding to any return period T of interest. The
T−year return level can be obtained from the quantile function of the GEV distribution as:

xT =

 µ − σ

ξ

{
1− [− log(1− 1

T )]
−ξ

}
if ξ ̸= 0

µ −σ log
[
− log(1− 1

T )
]

if ξ = 0
, (III.2)

where xT is the quantile that is exceeded with a probability p = 1
T . A plot of xT as a function of

T (called the return level plot) for different values of ξ is shown in Figure III.2. It can be seen
that the plot is linear for ξ = 0, convex with asymptotic limit for ξ < 0 and concave with no finite
bound when ξ > 0.
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Figure III.2: Illustration of a) the density plot and b) the return level plot for the three special
cases of the GEV, i.e. Weibull type (ξ = −0.2), Gumbel type (ξ = 0) and Fréchet type (ξ = 0.2).
In each case, the location parameter µ = 4 and the scale parameter σ = 1.

III.1.1.2 Approach based on peaks over threshold

While the GEV, presented in the previous section, is the classical approach to model extremes,
the major drawback lies in the wasteful use of the data, since within each block, only one value
is retained, and the other values are discarded. In Figure III.1 for example, only 10 values (high-
lighted in red), representing the annual maxima in the 10 years time series will be retained, and the
others will be discarded. The issue is that some extremes may be contained in the discarded data,
especially in cases where the extreme events are sporadic or irregularly spaced. In Figure III.1,
the annual maximum of 2003 is not more extreme than other non-annual maxima values (in 2010
for example). It is therefore apparent that a more suitable approach that will use all the extremes,
not only the block maxima is needed.

A judicious approach (see Coles, 2001), is to consider all the excesses above a sufficiently
high threshold u and use them in the modeling. These excesses are called peaks over threshold
(POT), and an example of the POT samples is shown in Figure III.1 in blue. The next task is to
find an asymptotically justified model for the POT.

Recall from Section III.1.1.1 that X1,X2, .....Xn, is a sequence of independent and identically
distributed random variables having the same cumulative distribution F . If F belongs to the do-
main of attraction of G, that is, if the block maxima of X can be approximated by GEV, then
Balkema and De Haan (1974) and Pickands III (1975) showed that the limiting distribution of the
excesses (X −u), conditioned on X > u, is the generalized Pareto (GPD). That is:

P(X −u ≤ x|X > u) u→xF−→ Hξ

(
x

σu

)
for 0 ≤ x < xF −u,

with

Hξ

(
x

σu

)
=

 1− (1+ξ
x

σu
)
−1/ξ

+ if ξ ̸= 0

1− exp(− x
σu
) if ξ = 0

, (III.3)

where a+ = max(a,0), σu > 0 is the scale parameter, and ξ ∈ R is the shape parameter. The
subscript u in σu indicates that σu depends on the chosen threshold u. GPD therefore has only two
parameters, σu and ξ . The GEV and the GPD are related, such that σu = σ +ξ (u−µ) with both
distributions having the same shape parameter ξ . µ and σ are respectively the location and scale
parameters of the GEV. Three cases of the distribution are possible, the bounded case (short-tailed)
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when ξ < 0, the exponential case (light-tailed) when ξ = 0, and the unbounded case (heavy-tailed)
when ξ > 0. An illustration of the three cases is shown in Figure III.3.

Figure III.3: Illustration of the a) density plot and b) return level plot for the three special cases of
the GPD, i.e. bounded case (ξ =−0.2), exponential case (ξ = 0) and unbounded case (ξ = 0.2).
In each case the scale parameter σu = 1.

The T−year return level using the GPD is obtained from:

yT =

 u+ σu
ξ

[
(T nyζu)

ξ −1
]

if ξ ̸= 0

u+σu log(T nyζu) , if ξ = 0
, (III.4)

where ζu = P(X > u) is estimated from the sample proportion of the points exceeding u, i.e. k
n ,

with k the number of exceedances of u and n the total number of observations. ny is the number of
observations per year. The return level plot is shown in Figure III.3 b) for different values of ξ .

The use of GPD has significantly improved the estimation uncertainty as reported by Lan-
gousis et al. (2016). This is because GPD uses more data compared to GEV. The authors have
also highlighted that the GPD performs better in many hydrologic applications, particularly when
ξ > 0. To demonstrate this, we applied both models to 30 years of daily data shown in Figure III.1.
The maximum likelihood estimation was used for fitting the models, and the delta method (refer
to Coles, 2001, for the details of the method) was used to estimate the uncertainty. The return level
plots, along with the 95% confidence bounds, are presented in Figure III.4. It can be observed that
narrower bounds are obtained with the GPD due to the more efficient use of data.

Despite the potential advantage of GPD over GEV, a major drawback in the application of the
GPD is the lack of a unified framework for the choice of u, in spite of several advancements (see
reviews in Scarrot and MacDonald, 2012; Fukutome et al., 2015; Langousis et al., 2016; Northrop
et al., 2017). The correct choice is crucial because of the resulting bias-variance trade-off. A high
threshold leads to small bias but increased estimation variance, while a smaller threshold leads to
significant bias due to the deviations from a perfect GP model (Coles, 2001).

III.1.2 Modeling the whole range of non-zero precipitation

In addition to the delicate issue of threshold selection in the application of GPD, the issue of inef-
ficient use of hydrologic information nonetheless remains, since the POT still accounts for a very
minute fraction of the whole data (less than 5% if a threshold of 95% is used). In Figure III.1,
for instance, all the data below the POT (highlighted in grey) will be discarded. Another major
drawback is the inability to model the bulk of the distributions. Modeling the whole range of pre-
cipitation has applications in water resources management for urban water supplies, hydropower,
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Figure III.4: Illustration of the return level uncertainty on the daily data shown in Figure III.1
with a) GEV and b) GPD. In both plots, the points represent the observed values, the black lines
represent the fitted return levels, and the gray dashed lines represent the 95% confidence intervals
obtained with the delta method (see Coles, 2001, for the details of the method)
.

flood forecasts, and irrigation systems. As an example, marginal distribution for the entire range of
precipitation is required in stochastic generators (see examples of application in Evin et al., 2018;
Viviroli et al., 2022). Simulated precipitation from the generators is used as input to conceptual
hydrological models for subsequent flood modeling and risk assessment. Other practical applica-
tions are in the evaluation of numerical weather simulations or investigation of the climatology of
precipitation events as outlined in Blanchet et al. (2019).

Within the framework of modeling the whole range of precipitation, gamma distribution is
often the preferred candidate. However, a major drawback is the potential to underestimate heavy
precipitation (Katz et al., 2002). This is because gamma distribution is light-tailed since it is in the
Gumbel domain of attraction (Haan and Ferreira, 2006). As a consequence, several approaches
were proposed as alternatives to the gamma distribution. In the following sections, we will present
a brief review of some approaches for modeling the whole range of non-zero precipitation. While
some of the approaches are explicitly for modeling the whole range of non-zero precipitation,
others are meant to simply add flexibility to the fit of the GPD in terms of the threshold selection.

III.1.2.1 Models based on GP-Mixtures

Mixture models generally involve modeling the upper tail of the distribution with the asymptot-
ically justified GPD, and another for the bulk of the distribution. Depending on the type of the
model for the bulk of the distribution, they can be categorized into parametric, semi-parametric,
or non-parametric (Scarrot and MacDonald, 2012; Naveau et al., 2016). In the parametric models,
for example, Frigessi et al. (2002) employed the Weibull distribution along with a weighting func-
tion, Behrens et al. (2004) used a gamma distribution, and Carreau and Bengio (2009) applied a
Gaussian distribution for the bulk of the distribution. In the semiparametric approach, Cabras et al.
(2009) approximated the bulk distribution by an equispaced binning of the data, followed by fitting
a Poisson log-link GLM to the counts. do Nascimento et al. (2012) on the other hand utilized a
weighted mixture of gamma densities for the bulk distribution. For the nonparametric approach,
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MacDonald et al. (2011) used a kernel density estimator for the bulk of the distribution, while
Tancredi et al. (2006) employed a flexible mixture of uniform distributions for below-threshold
data. An illustration of some mixture densities is shown in Figure III.5. A common drawback of
this approach, which is based on mixtures, is its lack of parsimony in terms of the high number of
parameters, the resulting inferential challenge, and the lack of robustness in keeping the two tails
separated (Scarrot and MacDonald, 2012; Naveau et al., 2016)

Figure III.5: Illustration of some mixture densities. Figure taken from Scarrot and MacDonald
(2012).
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III.1.2.2 Models based on probability integral transform

Papastathopoulos and Tawn (2013) proposed an approach to extend the GPD by allowing for
the use of a sub-asymptotic threshold while still preserving the GPD distribution in the upper
tail. The ultimate goal here is to create models that are more flexible, in terms of the threshold
choice, compared to the GPD, thereby yielding an improvement in the estimation of the upper
tail. This is a different motivation from the previously mentioned approaches that intended to
model the full range of the distribution. The model is constructed through a probability integral
transform, where GPD-like random variables are generated by replacing the uniform draws, with
something more flexible, that has support on the unit interval [0,1], and contains the uniform draws
as special cases. Three parameter extensions were proposed by the authors, which are based on
power law, incomplete beta function, and incomplete gamma. They both have one additional
parameter compared to the GPD, and all showed less sensitivity to threshold choice compared to
the GPD, in parameter and return level estimates.

Gamet and Jalbert (2022) noticed that the three extended models proposed in Papastathopoulos
and Tawn (2013) either have a null or infinite density at the origin (i.e. at the location of the
threshold). An illustration is given in Figure III.6 for the case of power law defined as K(u) = uκ .
This is a practical constraint since in many applications where the GPD is used, the density at
the threshold is positive and finite. To overcome this, they proposed two more extensions, one
based on the truncated normal distribution, and another based on the truncated beta distribution,
that satisfy the constraint of being positive and finite at the origin. The authors showed that their
extensions provided a better estimate of the upper tail index than the previous extensions. In
addition to the use of a sub-asymptotic threshold, it is also possible to use a zero threshold for
precipitation.
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Figure III.6: Illustration of the EGP of Papastathopoulos and Tawn (2013) based on power law
defined as K(u) = uκ . The density is zero at the origin when κ > 1 (blue line) and infinite when
κ < 1 (red line). The case where κ = 1 corresponds to the density of GPD (black line). Adapted
from Gamet and Jalbert (2022).
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III.1.2.3 Meta-statistical extreme value (MEV) distribution

Beyond the class of GPD extensions, the meta-statistical extreme value (MEV) distribution (Marani
and Ignaccolo, 2015) has been widely applied in modeling hydro-meteorological extremes (see
Zorzetto et al., 2016; Marra et al., 2018, 2019; Gründemann et al., 2023; Falkensteiner et al.,
2023, for examples). This method does not require the asymptotic assumption, like in the EVT,
and makes full use of all the data, referred to as "ordinary events" rather than only the extremes
(block maxima or peaks over threshold). The ordinary events in each year, defined as all the pre-
cipitation events above a small threshold (e.g. 0.3 mm for 3 hr intensities in Gründemann et al.,
2023), are modeled with the Weibull distribution. The CDF of the MEV is given as:

F(x) =
1
M

M

∑
j=1

[
1− e

(
− x

σ j

)w j]n j

, (III.5)

where M is the number of years in the record, n j is the number of ordinary events in the jth year,
σ j > 0, and w j > 0 are the Weibull scale and shape parameter for the jth year. The shape parameter
w controls the tail decay of the distribution. The tail behavior is exponential when w = 1, heavier
than exponential when w < 1, and fast decaying, while still retaining an infinite upper-end point
when w < 1 (Gründemann et al., 2023). However, unlike the EVT distribution where the upper tail
is completely controlled by the shape parameter ξ , the tail decay of the MEV is also controlled by
the inter-annual variations of w j, σ j and n j (Marra et al., 2018). The density of the MEV for the
case when the parameters are time-invariant (Schellander et al., 2019), that is w j = w, σ j = σ and
n j = n is illustrated in Figure III.7.
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Figure III.7: Illustration of the density of MEV (Marani and Ignaccolo, 2015) for various values
w, σ and n.

This approach allows more efficient use of the available data and has been shown to outperform
GEV and GPD in estimation uncertainty for longer return periods (Zorzetto et al., 2016), and
provided smoother spatial patterns of local extremes (Gründemann et al., 2023). Later extensions
of the model were proposed for sub-daily scale (Marra et al., 2018), a simplified version, simplified
MEV (SMEV), to account for mixture distributions (Marra et al., 2019), and a temporal MEV
(TMEV) to account for sub-yearly evolution of distribution parameters (Falkensteiner et al., 2023).
It is worth noting that, while the MEV distribution and its extensions use all the data, the interest
is on having more robust estimates of the extreme quantiles rather than having a model for the full
range of non-zero precipitation.
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III.1.2.4 Extended GPD of Naveau et al. (2016)

Coming back to the class of GPD extension, Naveau et al. (2016) proposed a method that ex-
tends the framework of Papastathopoulos and Tawn (2013) to model the full range of non-zero
precipitation, not just to improve the upper tail estimation. The delicate choice of the GPD thresh-
old is entirely avoided and both the lower and the upper tails are modeled according to the GPD
distribution while allowing a smooth transition between the two tails.

Similar to the approach of Papastathopoulos and Tawn (2013), the extension of the GPD is
through probability integral transform. In particular, any continuous random variable can be gen-
erated by applying its inverse CDF to uniform draws. For instance, a GP random variable can
be simulated from Y = σH−1

ξ
(U), where U is a uniform random variable on [0,1]. Additional

flexibility is achieved by replacing U with V = K−1(U), where K is a continuous CDF that is also
defined on [0,1]. The random variable I = σH−1

ξ
[K−1(U)], is then said to be distributed according

to the Extended Generalized Pareto distribution (EGPD) with CDF defined as

P(I ≤ i) = K
[

Hξ

(
i
σ

)]
. (III.6)

The choice of K has to ensure that both the lower and upper tails of I are EVT compliant.
Specifically, Naveau et al. (2016) defined some limiting constraints to ensure that EVT compliance
of the two tails is achieved. The first constraint given in Equation III.7 ensures that I has an upper
tail that is equivalent to the GP tail. If we denote K̄ = 1−K as the tail of K, then

lim
v→0

K̄(1− v)
v

= a, for some finite a > 0. (III.7)

The second constraint in Equation III.8 ensures that the low precipitation (modeled as −I) also
has a GPD tail of the Weibull type.

lim
v→0

K(v)
vs = c, for some finite c > 0 and s > 0. (III.8)

The authors proposed four parametric families of K that satisfied the above constraints, the
simplest of which is a power law, defined as K(u) = uκ . Below we show how this model satisfies
the constraints in the upper (Equation III.7) and lower (Equation III.8) tails.

Starting with the upper tail, we need to show that the ratio of the upper tails of the EGPD and
GPD tails approaches a constant for very large i. That is:

lim
i→∞

K̄[Hξ (
i
σ
)]

H̄ξ (
i
σ
)

.

By putting v = H̄ξ (
i
σ
), the limit becomes lim

v→0

K̄(1− v)
v

, and by applying l’Hopitals rule, and

taking K(u) = uκ , it becomes limv→0 κ(1− v)κ = κ, for κ > 0. Hence, the constraint is achieved
for a κ > 0.

Regarding the second constraint in the lower tail, Naveau et al. (2014) showed that under EVT
assumption, low precipitation intensities might be adequately described by a power law of the
form P(I ≤ i)≈ constant × is, for any small i ≥ 0 where s ≥ 0 denotes the shape parameter.

For tail equivalence, the ratio of the tails for low precipitation intensities
G[Hξ (i/σ)]

is needs to
converge to a finite constant. The ratio can be expressed as

K
[
v

Hξ (v)
v

]
K(v)

K(v)
vs σ

−s,
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with v = i/σ . Knowing that lim
v→0

Hξ (v)
v

= 1 from Taylor expansion, the ratio becomes σ−s K(v)
vs .

Taking K(u) = uκ and applying l’Hôpital’s rule, lim
v→0

K(v)
vs becomes lim

v→0

K(v)
vs = σ

−s lim
v→0

κvκ−1

svs−1

which simplifies to σ−k > 0 with κ = s. This is why κ controls the shape of the lower tail of this
class of EGPD. The lower tail constraint here is also met by the Gamma distribution, and so this
model behaves like the Gamma distribution in its lower tail.

The choice of K(u) = uκ therefore satisfies the constraints and ensures EVT compliance in
both upper and lower tails. Under this formulation, the CDF of the EGPD is expressed as:

P(I ≤ i) =
[

Hξ

(
i
σ

)]κ

. (III.9)

The model has three parameters. κ > 0, σ > 0 is the scale parameter, and ξ ≥ 0 controls
the upper tail. Hξ

( i
σ

)
is as defined in Equation III.3. With just one additional parameter, κ , the

distribution is parsimonious and able to adequately model the full range of non-zero precipitation.
The density of the model is shown in Figure III.8. This model has seen wide applications in the
modeling of precipitation in several locations (see e.g. Blanchet et al., 2019; de Carvalho et al.,
2021), and especially in our study area (see Evin et al., 2018; Le Gall et al., 2022). This is the
model we use for the non-zero precipitation intensities, defined as I =X |X > 0, all along the thesis,
and we will elaborate on this choice in Chapter IV.
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Figure III.8: Illustration of the EGPD of Naveau et al. (2016) based on power law defined as
K(u) = uκ . The density is shown for various values of κ . In each case, σ = 1, and ξ = 0.5.
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III.2 Regionalization of at-site estimates of return level with EGPD

The main difficulty in extreme value analysis is the limited amount of data for model estima-
tion. This is because extremes are scarce by definition and so return level estimates are marred by
huge variance. The shape parameter ξ that controls the upper tail behavior in the extreme value
distributions is difficult to estimate based on a few decades of data. Figure III.9 illustrates the
sensitivity of theoretical return levels to the value of ξ . It can be seen that the 100-year return
level for ξ = 0.2 is almost double the estimate when ξ = 0. Therefore a small error in the estimate
of this parameter can lead to large changes in the return level estimates.

Figure III.9: Sensitivity of theoretical EGPD return levels to the values of the shape parameter ξ .
The plot is shown for three values of the shape parameter (ξ = 0,0.1,0.2) with the scale parameter
σ = 5 and κ = 2.

Since precipitation is spatial by nature, several studies (e.g. Cunnane, 1988; Burn, 1990; Hosk-
ing and Wallis, 2005) proposed the use of observations surrounding the local station to increase
the quantity of data available for estimation, thereby reducing estimation uncertainty. In this the-
sis, we explore some regionalization approaches with the aim of improving the robustness and
reliability of the at-site estimates of the EGPD distribution in Switzerland. We focus on two main
approaches, the first is based on regional frequency analysis (RFA) that relies on the assumption
of homogeneity of regions in terms of their precipitation distribution. The second approach is a
spatial method that does not require regional homogeneity, but all the data is pooled in order to
estimate the spatial surface of each of the model parameters. The core theoretical concepts of the
different methods are presented in this section, while the results are shown in Chapter V.

III.2.1 RFA based on distinct homogenous regions

Regional frequency analysis is defined as the process of polling data from several sites to esti-
mate the frequency distribution (Hosking and Wallis, 2005). The classical RFA method proposed
in Hosking and Wallis (2005) involves the definition of homogeneous regions of hydrologically
similar sites up to a scaling factor. To identify the regions, cluster analysis, in combination with
some carefully chosen covariates such as geographical and atmospheric characteristics, is applied.
Cluster analysis is usually performed using clustering algorithms such as K-means, hierarchical
clustering, and partitioning around medoids (PAM) (see Kaufman and Rousseeuw, 2005, for de-
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tails of these clustering methods). Statistical homogeneity tests are then applied to accept or reject
the homogeneous regions. Thereafter, a chosen distribution is fitted to the scaled observations
in the identified region, and all stations within this region share the same regional parameters.
Station-specific parameters and quantiles can then be inferred by appropriate rescaling. This ap-
proach has been applied in several studies with a specific interest in the extremes using GEV
distribution and GPD (e.g. Gaál and Kyselý, 2009; Malekinezhad and Zare-Garizi, 2014; Deidda
et al., 2021).

While this classical RFA approach has seen wide applications in the literature, it has some ma-
jor drawbacks which include the difficulty associated with covariate selection and the application
of the homogeneity test. Another major issue is that the method results in contiguous homoge-
neous regions that are separated by distinct boundaries. This produces abrupt shifts in the return
level estimates along the boundaries of the contiguous regions. Such discontinuities cannot be
justified, since precipitation, except in cases such as orography, varies seamlessly in space. To
circumvent some of these drawbacks, novel methods were proposed, and we present two of these
approaches in the next two sections.

III.2.2 RFA based on region of influence approach (ROI)

RFA based on the region of influence method (ROI), as proposed in Burn (1990), is similar in
concept to the classical RFA method. It, however, circumvents the drawback of having contiguous
regions separated by distinct boundaries. Instead, a region of influence is assigned to each station
and all the scaled observations in the identified ROI are used to estimate its regional parameters.
This method has been applied by various authors (e.g. Gaál et al., 2008; Kyselý et al., 2011;
Carreau et al., 2013; Evin et al., 2016; Das, 2017, 2019)

The application of this method involves several choices. For instance, the choice of scale
factor for normalization, the distance metric to define the closeness of each station to every other,
the threshold of the radius to define the cutoff for the inclusion of stations into the ROI for a
site, and the choice of homogeneity test. These choices have a considerable influence on the
method application, so they have to be objectively decided. Different authors in the application of
the method have explored some or all of these factors, starting from Burn (1990), to Gaál et al.
(2008), and in Evin et al. (2016).

In this thesis, we follow the objectively selected steps and choices similar to Evin et al. (2016)
in the application of the method in the Southeastern part of France, containing the Alps (similar to
our case). The authors applied the method by considering POT (exceedances of a 70% quantile)
of central rainfalls (largest observations in 3-day rainfall events) and on some distributions (Expo-
nential, GPD, and Weibull). We apply the same procedure but on non-zero precipitation and the
EGPD model. The application of this regionalization method on daily precipitation is presented
and discussed in Chapter V.

III.2.3 RFA based on upper tail behavior

This RFA method was developed by Le Gall et al. (2022) to circumvent some of the issues with
the classical RFA method of Hosking and Wallis (2005), which involves covariate selections and
the application of homogeneity tests. The method is based on a fast algorithm that defines distinct
homogeneous regions relying on their upper tail similarity. It requires neither covariate selection
nor the application of any homogeneity test. Only the precipitation data at hand is used, thereby
avoiding the need for any covariate. More so, since the regions are delineated based on the sim-
ilarity of their upper-tail behavior, they are inherently homogeneous, so the application of any
homogeneity test is avoided.

To apply the method, the upper tail behavior for each station is summarized by ω , a ratio of
probability-weighted moments (PWMs) which is defined as
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ω =
3α2 −α0

2α1 −α0
−1, (III.10)

where α j denotes the PWM of order j.
Le Gall et al. (2022) showed that ω summarizes the upper tail behavior of the data at hand.

Stations with high values of ω have very intense extremes, and those with low values have less
intense extremes. Additionally, they showed that within the EVT framework, ω depends mainly
on the shape parameter ξ and the flexibility parameter κ of the EGPD, while being independent
of the scale parameter σ . In the case of the GPD and GEV, it only depends on the ξ .

After ω is estimated at each station, the next task is to group the stations into clusters based
on their estimated value of ω . From the definition of ω , all the stations within the same cluster are
homogeneous in terms of their upper tail similarity. Grouping the stations can be achieved using
a clustering algorithm such as K-means, hierarchical clustering, or partitioning around medoids
(PAM). In the final step, data from all the stations belonging to the cluster are pooled to estimate
the regional parameters according to an algorithm defined by the authors. In the case of the EGPD,
one can choose to keep the regional ξ in each cluster, and estimate site-specific κ and σ , or keep
both the regional ξ and regional κ and estimate a station-specific scale parameter σ . The former
and the latter options are called "semi-regional" and "regional" approaches respectively (Le Gall
et al., 2022).

The application of the method for regionalization of extreme precipitation is shown in Chapter
V. It will be shown in the chapter that although the method does not use any covariate information,
geographically coherent regions, with a few isolated cases, are produced. A drawback of the
method is that similar to the classical regional frequency methods, when contiguous regions are
formed, they result in abrupt shifts in the regional parameters along the boundaries. Moreover,
inherent in cluster analysis, the decision on the optimal number of clusters requires some level of
subjectivity. Furthermore, in an application of the method, Le Gall et al. (2022) discovered that
the method tends to be "economical" in terms of the number of clusters, i.e. it usually results in
the formation of only a few homogeneous regions (Le Gall et al., 2022).

III.2.4 Spatial method based on Generalized Additive Model (GAM)

The next method we consider for regionalization is a spatial method that is based on semi-parametric
regression using Generalized Additive Models (GAM) (Hastie and Tibshirani, 1986). This is in
contrast to the previous methods where regionalization is based on the homogeneity of normalized
data or upper tail similarity.

Consider I(x) the daily non-zero precipitation measured at a location in Switzerland, indexed
by the covariate x such as longitude, latitude, or altitude. Let us assume that I(x) follows the
three-parameter EGPD with parameters k(x), σ(x), and ξ (x), that is:

I(x)∼ EGPD[k(x),σ(x),ξ (x)], (III.11)

where x denotes some covariate and each of the model parameters depends on some form of x.
We assume that each of the three parameters has a smooth-varying relationship with x. The

relationship is explained using GAM, represented by smoothing splines written as:

ηα{α(x)}=
Jα

∑
j=1

f j,α(x j,α), (III.12)

where α ∈ {κ,σ ,ξ} and ηα(.) is a link function. Although the parameters are defined such
that κ > 0, σ > 0, and ξ ≥ 0, we use the identity link for all of them. However, we imposed
the necessary constraints during optimization to ensure that the parameters remained within the
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desired bounds. Jα is the total number of smooth functions for the parameter α , f j,α( ·) is the jth

smooth function for the parameter α . Each of the smooth functions is approximated in terms of
basis function expansions:

f (x) =
K

∑
k=1

βkbk(x), (III.13)

where βk are the unknown coefficient to be estimated, and bk(x) are some known basis functions
of dimension k. The basis functions can be for example cubic regression splines, thin plate splines,
cyclic splines, etc (see Wood, 2017, for other types).

Estimating the EGPD parameters involves simply estimating the coefficients of the relation-
ships (β ) in Equation III.13. In this thesis, we estimate β directly from the data using the evgam
I package (Youngman, 2020) that we adapted for EGPD. Station-specific EGPD parameters can
be obtained from the fitted surfaces, using the information on the covariates at the location.

Examples of applications of this spatial method can be found in Chavez-Demoulin and Davi-
son (2005); Blanchet and Lehning (2010); Youngman (2019, 2020); Carrer and Gaetan (2022).
This regionalization method makes the most efficient use of information since all the data in
the study area is pooled to estimate the smooth surfaces. The application of this regionaliza-
tion method on daily precipitation in our study area and a comparison with the other methods is
presented in Chapter V.

III.3 Intensity-Duration-Frequency (IDF) relationships

Intensity-Duration-Frequency (IDF) curves are used by engineers and water practitioners for
the hydrological designs and management of structures such as sewer lines, culverts, drains, dams,
dykes, etc. IDF curves summarize the main characteristics of extreme point precipitation across
different timescales, i.e. return level, the associated return period, and the duration of the event.
An example of IDF curves is shown in Figure III.10. The x-axis represents the duration of a
precipitation event, in this case from 1 hr to 72 hr, and the y-axis gives the intensities in mm/hr.
Each parallel line represent events with the same probability of exceedance.

Figure III.10: Illustration of Intensity-Duration-Frequency (IDF) curves.
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In this section, we will provide a brief introduction and theory behind the development of IDF
curves. Results of the modeling of the IDF curves relationship for our study area are presented in
Chapter VI.

Let us define the random variable I(D) as the average non-zero precipitation intensity over
the duration D. It is described by the CDF FD(i) such that FD(i) = P(I(D)< i). The exceedance
frequency is defined as pD(i) = 1−FD(i). The return period of any non-zero intensity i as a func-
tion of pD is given by T = 1

pD×δD
, where δD denotes the average number of non-zero precipitation

intensities of duration D per year. Consequently, the T -year return level over duration D, i(T,D),
is defined as the (1− 1

T×δD
) quantile of Fd . By assuming Fd to be the CDF of the EGPD, the IDF

curve, i(T,D) is expressed as:

i(T,D) =
σ(D)

ξ (D)


[

1−
(

1− 1
T ×δD

) 1
κ(D)

]−ξ (D)

−1

 , (III.14)

where κ(D)> 0, σ(D)> 0 and ξ (D)≥ 0 are the three EGPD parameters for the duration D, T is
the return period in years, δD is the average number of non-zero precipitation intensities per year
for the duration D and is estimated by the long term average.

The next task is to decide whether each of the three parameters; κ , σ , and ξ depends on D
or not, and the exact form of the relationship. In the following subsections, we will present three
approaches to determine the type of relationship. The first approach is based on precipitation
scale-invariance, the second depends on the general formulation of Koutsoyiannis et al. (1998),
and the third is a data-driven approach.

III.3.1 Scaling IDF curves

This approach is based on scale invariance. It has been shown that precipitation exhibits this
property within some scales (e.g. Schertzer and Lovejoy, 1987; Gupta and Waymire, 1990, 1993;
Over, 1995; Harris et al., 1997; Lima, 1998; Molnar and Burlando, 2008; Veneziano and Lepore,
2012; Paschalis, 2013). This property provides the physical justification for modeling IDF curves,
and thus the possibility of inferring return levels of interest across scales. This approach is arguably
the most commonly used approach, possibly because of its rich theoretical background, physical
basis, and ease of application in regions with scarce availability of sub-daily precipitation series.
IDF curves based on this approach can be found in several applications (e.g. Burlando and Rosso,
1996; Menabde et al., 1999; Willems, 2000; Van de Vyver and Demarée, 2010; Panthou et al.,
2014; Blanchet et al., 2016; Innocenti et al., 2017; Sane et al., 2018; Mélèse et al., 2018).

Scale invariance in the strict sense is defined by Gupta and Waymire (1990) as the property
where the probability distribution of I(D) can be inferred from the distribution of I(D0) at the
reference duration D0 through:

I(D)
dist
= Cλ I(D0), (III.15)

where the parameter Cλ determines the type of scaling; simple-scaling or multi-scaling.
A weaker assumption, the so-called "wide sense scaling", implied by Equation III.15, is when

the scaling is in the moments according to:

E [I(D)q] =

(
D
D0

)−k(q)

E [I(D0)
q] , (III.16)

where q is the order of the moment, k(q) is called the moment scaling function, D0 is the reference
duration.

When the parameter in Equation III.15, Cλ =
(

D
D0

)−H
, i.e a scalar that depends only on the

ratio of the scales, we have "strict sense simple-scaling" expressed as:
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I(D)
dist
=

(
D
D0

)−H

I(D0), (III.17)

where 0 < H < 1 is the scaling exponent, and other variables retain their meanings.
Similar to Equation III.16, wide sense simple-scaling, implied by Equation III.17, is when the

moment scaling function in Equation III.16 is linear in q, i.e. k(q) = Hq. This is expressed as:

E [I(D)q] =

(
D
D0

)−Hq

E [I(D0)
q] . (III.18)

Assuming that the random variable I(D0) follows the EGPD, that is I(D0)∼ EGPD(κD0 ,σD0 ,-
ξD0), and combining this with the assumption of simple-scaling in Equation III.17, we have:

P[I(D)≤ x] = P

[
I(D0)≤

(
D
D0

)H

x

]
.

Putting this in terms of the CDF of the EGPD, we have:

P[I(D)≤ x] = P

[
I(D0)≤

(
D
D0

)H

x

]
=

1−

1+ξD0

(
D
D0

)H
x

σD0


−1/ξD0

+


κD0

for ξD0 ̸= 0.

(III.19)
This can be written as :

P[I(D)≤ x] = P

[
I(D0)≤

(
D
D0

)H

x

]
=

1−

1+ξD0

x(
D
D0

)−H
σD0


−1/ξD0

+


κD0

for ξD0 ̸= 0.

(III.20)
Therefore, under the simple-scaling assumption, I(D) follows the EGPD with parameters:

κ(D) = κD0

σ(D) =
(

D
D0

)−H
σD0

ξ (D) = ξD0

.

By substituting these expressions in Equation III.14, IDF curves under simple scaling assump-
tion can be expressed as

i(T,D) =

(
D
D0

)−H
σD0

ξD0


[

1−
(

1− 1
T ×δD

) 1
κD0

]−ξD0

−1

 . (III.21)

An illustration of this model for κ0 = 2, σ0 = 5, ξ0 = 0.1, and H = 0.8 is shown in left panel
(Model A) of Figure III.11. It can be seen that the IDF curves are parallel to each other. We
note here that the parallel curves are obtained by assuming that the parameter δD is the same
across all durations. In practice, however, it decreases with duration, so the IDF relationship is
not a separable function of T and D and the curves will not be parallel even with the simple
scaling assumption. This is discussed in more detail in Chapter VI using real precipitation data in
Switzerland.
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Figure III.11: Illustration of Intensity-Duration-Frequency (IDF) curves with the three ap-
proaches. Model A is based on the simple scaling assumption. Model B is based on the general
IDF formulation and Model C is based on the data-driven approach.

III.3.2 General IDF formulation

This second approach is based on the general formulation of Koutsoyiannis et al. (1998), a gen-
eralization of the various empirical formulations for modeling IDF curves (e.g. Sherman, 1931;
Bernard, 1932; Chow, 1962; Carreteras, 1987). He showed that all of them can be simplified into
the following form:

i(T,D) =
a(T )
b(D)

, (III.22)

where b(D) = (D+θ)H . The parameter θ > 0 is the duration offset, and 0 < H < 1 is the duration
exponent. a(T) is the (1− 1

T ) quantile of the re-scaled intensities I(T,D)b(D).
This formulation is consistent with both probabilistic theories and the physical constraints of

scaling across duration. Several applications of this formulation to build IDF curves can be found
in the literature (e.g. Koutsoyiannis et al., 1998; Van de Vyver and Demarée, 2010; Blanchet et al.,
2016; Sane et al., 2018; Ulrich et al., 2020; Fauer et al., 2021; Roksvåg et al., 2021). This method
can be seen as an extension of the scaling approach in which an additional parameter (θ ) is added
to allow for the curvature of the return levels curves for short durations (Menabde et al., 1999).

Under this framework, the EGPD parameters as a function of duration are
κ(D) = κD0

σ(D) =
(

D+θ

D0+θ

)−H
σD0

ξ (D) = ξD0

.

By substituting these expressions in Equation III.14, IDF curves can be expressed as

i(T,D) =

(
D+θ

D0 +θ

)−H
σD0

ξD0


[

1−
(

1− 1
T ×δD

) 1
κD0

]−ξD0

−1

 . (III.23)

An illustration of this model for κ0 = 2, σ0 = 5, ξ0 = 0.1, H = 0.8, and θ = 1.5 is shown in
middle panel (Model B) of Figure III.11. It can be seen that θ introduces some curvature for short
durations, while the longer durations are not affected. The application and performance of this
model are also presented in Chapter VI.
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III.3.3 Data-driven IDF curves

The third approach is based on Overeem et al. (2008) and is called the "data-driven" approach. The
term "data-driven" is used to show that the functional relationship (linkage) between IDF model
parameters and duration is empirically determined from the data itself. The method involves fitting
a parametric model, for example, EGPD, to data of each duration. A particular regression model is
then fitted for each parameter as a function of duration. As a consequence, the return level of any
duration can be inferred from the inverse of the distribution, with parameters obtained from the re-
gression model. This approach does not impose the assumption/existence of scaling. Interestingly,
both the two previous approaches can be seen as special cases of the data-driven approach with
particular functional relationships imposed on the parameters. We note that, although the other
two approaches also consider the link between parameter and duration, the specific forms rely on
some underlying theoretical or physical hypothesis. However, with the data-driven method, the
functional relationship is empirically determined from the data itself, hence its name.

To illustrate IDF curves with this approach, we assume the following parametric models for
the three EGPD parameters: 

κ(D) =
(

D
D0

)−bκ

aκ

σ(D) =
(

D
D0

)−bσ

aσ

ξ (D) = aξ +bξ log(D).

.

IDF curves are shown in the right panel (Model C) of Figure III.11 for aκ = 2, bκ =−0.4, aσ = 5,
bσ = 0.8, aξ = 0.1, bξ =−0.02. It can be seen that, even with δD constant, the IDF curves are not
parallel, they rather scale differently.

We comment here that unlike in Overeem et al. (2008) where the coefficients in the paramet-
ric model of each GEV parameter were fitted separately, we extend his approach by fitting our
distribution (EGPD) with parameters as a function of D. Application on real data and further
discussions are presented in Chapter VI.

III.4 Intensity Duration Area Frequency (IDAF) relationships

The IDF relationships presented in the previous section do not account for the spatial extent
of precipitation, that is area (A). Accounting for the spatial component is essential, especially in
hydrological applications, since watersheds and river basins integrate the precipitation falling over
their respective areas, leading to the accumulation of runoff and subsequent flood generation.

When this spatial component is accounted for, we have the so-called Intensity-Duration-Area-
Frequency (IDAF) relationships. They provide the mathematical link between precipitation in-
tensities (I), durations (D), areas (A), and frequency of occurrence (F). They summarize the main
statistical characteristics of extreme precipitation (return level, return period, duration, and area)
and are useful tools for engineers and hydrologists in hydrological design (e.g. Bertini et al., 2020),
quantification of areal precipitation hazard (e.g. Overeem et al., 2010; Panthou et al., 2014; Mélèse
et al., 2019; Zhao et al., 2023), storm characterization (e.g. Ramos et al., 2005; Ceresetti et al.,
2012; Blanchet and Mélèse, 2020), and development of early warning systems (e.g. Panziera et al.,
2016).

Let us define I(D,A) as the random variable of non-zero precipitation intensities for a given
duration D and area A. We further assume that I(D,A) follows the EGPD, i.e.:
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I(D,A)∼ EGPD[κ(D,A),σ(D,A),ξ (D,A)], (III.24)

where κ(D,A)> 0, σ(D,A)> 0 and ξ (D,A)≥ 0 are the three EGPD parameters for the duration
D and area A.

Let FD,A(i) be the CDF of I(D,A), such that FD,A(i) = P(ID,A < i), then the IDAF curve, which
is the T -year return level over duration D and area A is defined by the quantile function of FD,A,
i.e.:

i(T,D,A) =
σ(D,A)
ξ (D,A)


[

1−
(

1− 1
T ×δD,A

) 1
κ(D,A)

]−ξ (D,A)

−1

 , (III.25)

where κ(D,A)> 0, σ(D,A)> 0 and ξ (D,A)≥ 0 are the three EGPD parameters for the duration
D and area A. T is the return period in years, δD,A is the average number of non-zero precipitation
intensities for duration D and area A per year.

We illustrate a conceptual plot of IDAF curves in Figure III.12. A plot of IDAF curves is
3-dimensional (Figure III.12a), with intensity (I) along the vertical axis, duration (D) along the
horizontal axis, and area (A) along the third axis which is perpendicular to the other two axes. For
each specific return period (e.g. 2-year, 10-year, or 50-year), a curve is shown to visualize how
the intensity changes across A and D. However, a much simpler approach is to decouple the 3-
dimensional plot into two sub-plots, each in 2-dimension. The first one shows how the intensities
of specific return periods change across durations for a fixed area, i.e. IDF curves (Figure III.12b),
and the second one, a plot of Intensity-Area-Frequency (IAF) curves, shows how the intensities
change across areas for a fixed duration (Figure III.12c).
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Figure III.12: a) Conceptual illustration of IDAF curves in 3-dimension. IDF curves for A = 81
km2 (shown in panel b) are obtained by cutting a plane on the IDAF curves in panel a at A = 81
km2 (red-colored broken lines). The IAF curves on panel c) are obtained by cutting a plane at D
= 6 hr on panel a (blue-colored broken lines).

The literature provides two main methods of modeling IDAF relationships, namely areal re-
duction factor (ARF) and data-driven IDAF models which are presented in the following subsec-
tions.
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III.4.1 ARF-based IDAF models

ARF-based IDAF curves are built by coupling IDF curves and ARF. That is

i(T,D,A) = i(T,D)ARF(T,D,A), (III.26)

where i(T,D,A) is the IDAF curves, i(T,D) is the IDF curves obtained from Equation III.14 for
example, and 0 < ARF(T,D,A) < 1 is the areal reduction factor. An example of ARF (Kout-
soyiannis and Xanthopoulos, 1999) is given in Equation III.27 for example for the case when ARF
is independent of T .

ARF(D,A) = 1− 0.048·A0.36−0.01ln(A)

D0.35 , (III.27)

where A is the area in Km2 and D is the duration in hr.
Applications of the ARF-based IDAF models can be found in the literature, for example,

De Michele et al. (2001) derived an ARF formulation based on the concept of dynamic scaling of
precipitation and used it to model IDAF curves in Milan. Later, Ceresetti et al. (2012) used the
ARF of De Michele et al. (2001) to model IDAF curves for storm severity assessment in southern
France. Panthou et al. (2014) also applied the same ARF formulation to build IDAF models and to
characterize areal precipitation in West Africa. Ramos et al. (2005) introduced an empirical ARF
formulation to model IDAF curves for storm severity assessment in Marseille. Bertini et al. (2020)
employed the ARF formulation in Equation III.27 to build IDAF curves for dam design in Italy.
Mélèse et al. (2019) and Blanchet and Mélèse (2020) applied an extension of the ARF formulation
of De Michele et al. (2001) to build IDAF curves respectively for areal hazards and storm severity
assessment in southern France. The extension was to cope with the significant spatio-temporal
variability in the mountainous area.

The ARF formulation given in Equation III.27 is one of many examples in the literature, but
there are several methods of estimating ARF, ranging from hypothesis-based analytical methods
to purely empirical methods (see Svensson and Jones, 2010, for a review). The analytical methods
are developed based on some theoretical frameworks that rely on some hypothesis on the relation-
ship between point precipitation and areal precipitation. Examples of such ARF models are those
based on the spatial correlation of precipitation (Rodriguez-Iturbe and Mejía, 1974; Sivapalan and
Blöschl, 1998), crossing properties (e.g. Bacchi and Ranzi, 1996), or dynamic-scaling and multi-
fractal analysis (e.g. De Michele et al., 2001; Veneziano and Langousis, 2005). Empirical methods
do not make any distributional assumption on the precipitation process but rely on the observed
relationship between point precipitation extremes and areal precipitation extremes. Examples of
ARF based on this approach can be found in Svensson and Jones (2010).

ARF generally increases with duration, since events of short duration (e.g. convective events)
are more localized and so ARF decreases faster with the area, while those of longer durations
extend over a larger area (e.g. frontal events) and so the ARF is less steep. In the same argu-
ment, ARF decreases with an increase in area for a given duration. More so, ARF decreases with
the return period (frequency of occurrence) since weak precipitation events can extend over large
regions, leading to flatter ARF curves, while intense events are more localized, leading to ARF
curves that are steeper. A common assumption however is to treat ARF as independent of T (e.g.
Koutsoyiannis and Xanthopoulos, 1999; De Michele et al., 2001; Svensson and Jones, 2010; Pan-
thou et al., 2014). This general behavior of ARF depends on the season, catchment characteristics,
and the type of precipitation event (Svensson and Jones, 2010) and a strong deviation from this
general behavior (e.g. ARF > 1) can be observed in mountainous regions (e.g. Figure 2 of Mélèse
et al., 2019).
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III.4.2 Data-driven IDAF models

Beyond the ARF-based IDAF curves modeling approach, Overeem et al. (2010) proposed a purely
data-driven approach to model IDAF curves. This involves modeling the parameters of the sta-
tistical distribution of the precipitation intensities as functions of duration and area. The type of
relationship is empirically determined from the data, with no underlying physical hypothesis such
as spatial correlation (as done in Rodriguez-Iturbe and Mejía, 1974) or scaling (as performed in
De Michele et al., 2001). This can be written as

ηα(α(D,A)) = fα(D,A), (III.28)

where α ∈ {κ,σ ,ξ} is a given EGPD parameter, ηα( ·) is a link function, fα(D,A) is a function
of D and A (see Equation VII.5 for example).

After fitting the relationships in Equation III.28, the IDAF curves i(T,D,A) can be obtained
from Equation III.25 by appropriate substitutions.

In addition, ARF for a given D, A, and T can be estimated from

ÂRF(T,D,A) =
î(T,D,A)
î(T,D,A0)

, (III.29)

where î(T,D,A) and î(T,D,A0) denote the T -year return levels of areal and point precipitation
respectively, obtained from the fitted IDAF model. A0 usually corresponds to the raingauge surface
area, however, to avoid extrapolation of the relationships in Equation III.28, A0 can be considered
as the smallest A used to fit the relationships. For instance, A0 = 1 km2 in our case where we use
CPC data.

As highlighted by Mélèse et al. (2019), this approach has the advantage of being flexible and
applicable in cases where the assumptions of the analytical ARF formulations cannot be veri-
fied. Results of modeling IDAF relationships in the study area using the data-driven approach are
presented and discussed in Chapter VII.

III.5 Evaluation framework

The thesis involves comparing different statistical models and to ensure objective comparison,
we need an appropriate evaluation framework and suitable criteria. In this section, we briefly
introduce the framework and the criteria that we used to compare the models.

We apply the evaluation framework and the criteria proposed in Garavaglia et al. (2011) and
Renard et al. (2013) which involves the use of split-sampling cross-validation to assess the predic-
tive performance of a given model in an independent validation data set. A justification for this
approach in comparison to the classical statistical goodness of test fits is that the latter lacks the
ability to assess the model’s ability to predict unobserved values and that they are also not very
efficient for three-parameter distributions (see Garavaglia et al., 2011, and the references therein).

III.5.1 Split-sampling cross validation

In the split-sampling cross-validation, we consider each station and divide the time series into two
subsamples of the same length but on different randomly chosen years. We then fit each of the
competing models on the first sub-sample and evaluate the predictive performance on the second
sub-sample (validation sample). The evaluation is carried out using some well-chosen criteria that
are described in the next section. We repeat the same procedure on the second sub-sample (use
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it to train the models and validate using the first sub-sample). Since the split sampling is done
randomly, we repeat the procedure several times to address sampling bias. We apply the same
procedure at the other stations in the study area and select the model that has the best regional
performance (average of the scores over all the stations).

III.5.2 Comparison criteria

The criteria are chosen to ensure that the model is robust and reliable in the prediction of extremes
as well as the bulk of the distribution. A robust model yields similar estimates of a high quantile
when the calibration sample is changed, and a reliable model assigns the correct exceedance prob-
ability to high values. Robustness is measured by SPAN (Equation III.30), reliability is measured
by FF (Equation III.31), and the accuracy/reliability of the model in the bulk of the distribution
is measured by NMRSE_CV (Equation III.32). An illustration of the three criteria is shown in
Figure III.13, while their expressions are given below:
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Figure III.13: Conceptual illustration of the three comparison criteria, SPAN, FF, and
NRMSE_CV. The green line spans from the left to the right tail, indicating that NRMSE_CV is
applied to all the quantiles. FF applies only to the maximum value, and SPAN is applied at ex-
trapolation.

• Robustness: The Robustness criteria SPAN is computed as:

SPANs,T =
2
∣∣∣î(1)s,T − î(2)s,T

∣∣∣
î(1)s,T + î(2)s,T

, (III.30)

where î(1)s,T and î(2)s,T are the T -year return levels estimated from sub-sample 1 and 2 respec-
tively at station s. A SPAN of 0.5 means that the absolute difference between the two return
levels is half of their average. A regional value of SPAN in the study area is computed
as SPANreg,T = 1− 1

N ∑
N
s=1 SPANs,T , where N is the total number of stations. A perfectly

robust model should have SPANreg,T = 1. SPAN is usually computed to test the models at
extrapolation (e.g. T = 100 years, 1,000 years)

• Reliability in predicting the maximum value: The FF criteria is calculated from:

38



III.5. Evaluation framework

FF(12)
s =

{
F̂(1)

s

[
max(i(2)s )

]}n(2)s
, (III.31)

where FF(12)
s is the cross-validation criteria computed at station s, by predicting the proba-

bility of the maximum value in sub-sample 2, of sample size n(2)s using the model F̂(1)
s fitted

on sub-sample 1. FF(21)
s is computed symmetrically.
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Figure III.14: Illustration of the FF criteria. Panel a) Shows the histogram of the N values of FF,
and the theoretical uniform density (dash-blue line) while the difference between the two densities
is shown in panel b). The difference in area (di f f ) = 0.22 in this case.

As noted by Renard et al. (2013) and Blanchet et al. (2015), if the fitted model is a good
estimate of the true distribution of the data, FF(12)

s should be a realization of a uniform dis-
tribution. Hence, the difference in the area, noted di f f , between the density of a theoretical
uniform and that of the N values of FF(12)

s (computed over the N stations), should be close
to zero. An illustration of di f f is shown in Figure III.14. FFreg at the regional scale, given
as 1− di f f , should therefore take a value of 1 for a reliable model and 0 for a completely
unreliable model; the lower the value the less reliable the model is.

• The reliability/accuracy over the entire observations: While the previous scores, FF and
SPAN, focus on extremes only, it is important that the model is also reliable in the bulk
of the distribution, especially given that we use the EGPD. To measure the reliability of
a model in predicting all the observations in cross-validation, we use the normalized root
mean square error (NRMSE_CV), which is expressed as:

NRMSE_CV(12)
s =

[
1

n(2)s
∑

n(2)s
j=1

(
i(2)s,Tj

− î(1)s,Tj

)2
]1/2

i(2)s

, (III.32)

where NRMSE_CV(12)
s is the score computed at station s, n(2)s is the sample size of the

second sub-sample, i(2)s,Tj
is the empirical quantile with return period Tj =

ns+1
j×δ

, δ is the

average number of non-zero precipitations per year in sub-sample 2, î(1)s,Tj
is the correspond-

ing Tj return level estimated from the model fitted on sub-sample 1. The denominator is
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the mean of non-zero precipitation in sub-sample 2 at station s computed as 1
n(2)s

∑
n(2)s
j=1 i(2)s,Tj

.

Similar to the other criteria, the regional score is computed from NRMSE_CV(12)
reg = 1−

1
N ∑

N
s=1 NRMSE_CV(12)

s , and NRMSE_CV(21)
reg is computed symmetrically. NRMSE_CVreg =

1 indicates a perfectly accurate model (the model accurately predicts the empirical return
levels).

This evaluation framework and criteria are used throughout the study and adapted to each case.
They are applied to compare regionalization models (Chapter V), models of IDF curves (Chapter
VI), and models of IDAF curves (Chapter VII).
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IV
Modeling precipitation intensities with the EGPD

in Switzerland

Chapter overview

T his chapter answers Question 1, by evaluating the ability of the extended
generalized Pareto distribution (EGPD) of Naveau et al. (2016) to model

the hourly and daily precipitation intensities in the study area. We also justify
the choice of the simplest family, the three-parameter model based on the power
law, over more complex candidates. A delicate issue that has to do with the lower
censoring threshold in the application of the model is also discussed.
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Chapter IV. Modeling precipitation intensities with the EGPD in Switzerland

IV.1 Parametic families of the EGPD

Recall from Chapter III that the CDF of the EGPD is expressed as P(I ≤ i) = K
[
Hξ

( i
σ

)]
,

and the exact form depends on the choice of the function K. The constraints in the choice of K
to ensure that both lower and upper tails are EVT compliant were presented in Equation III.7 and
III.8. Using these constraints, Naveau et al. (2016) proposed four parametric families for K written
as:

1. Model 1: K(u) = uκ with κ > 0. The parameter κ controls the shape of the lower tail.
The model therefore has a total of three parameters: σ , ξ , and κ . The density function for
various values of κ is shown in Figure IV.1. When κ > 1 (red and purple), the density is
zero at the origin, when κ < 1 (blue and yellow) the density is infinite at the origin, and
when κ = 1 (black) the model reduces to the GPD. It can be observed that the smaller the
value of κ , the more the density is concentrated near zero.

2. Model 2: K(u) = puκ1 +(1− p)uκ2 with κ2 ≥ κ1 > 0 and p ∈ [0,1]. This model increases
the flexibility of Model 1 by adopting a mixture of power laws. The lower tail is controlled
by κ1 while κ2 modifies the shape of the density in its central part. The model therefore has
a total of five parameters: σ , ξ , p, κ1, and κ2. The density function for various values of κ1
and κ2 is shown in Figure IV.1. In each case, p = 0.5. Similar to the case of Model 1, when
κ1 > 1 (red and purple), the density is zero at the origin, when κ1 < 1 (blue and yellow) the
density is infinite at the origin, and when κ1 = κ2 = 1 (black) the model reduces to the GPD.

3. Model 3: K(u) = 1−Qδ1

[
(1−u)δ1

]
with δ1 > 0 where Qδ1 is the CDF of a Beta random

variable with parameters 1/δ1 and 2, that is:

Qδ1(u) =
1+δ1

δ1
u1/δ1

(
1− u

1+δ1

)
.

The model has three parameters: σ , ξ , and δ1. The additional parameter δ1 increases the
flexibility in the central part of the distribution. The authors noticed a drawback of this
model due to the imposition of a behavior of type χ2 at the lower tail. This means that the
shape of the lower tail is not determined by the data but imposed by the model. This point
is illustrated in Figure IV.1, where the density is always zero at the origin. The central part
is however modified by the various values of δ1. When δ1 → ∞ (black) the model reduces
to the GPD.

4. Model 4: K(u) =
{

1−Qδ1 [(1−u)δ1 ]
}δ2/2

with δ1,δ2 > 0. This model extends model 3 by
one additional parameter δ2 to allow flexibility in the lower tail. Hence δ2 controls the lower
part of the distribution, while δ1 controls the central part. The model thus has a total of four
parameters: σ , ξ , δ1, and δ2. The density of the model is shown in Figure IV.1, and it can
be seen that flexibility is now achieved at the lower tail for various values of δ2. Model 3 is
regained when δ2 = 2, while GPD is regained when δ2 = 2 and δ1 → ∞.

In summary, all four models have two parameters in common: scale parameter σ and GPD
shape parameter ξ . They however have additional parameters, ranging from one to three, for
additional flexibility to model the whole distribution. The authors compared the performance of
the four models on hourly data in Lyon, France, and found out that Model 1 with three parameters
outperformed the other models in terms of the Akaike information criteria (AIC) (Akaike, 1974).
On the other hand, Model 3 with equally three parameters, showed the worst performance due to
its lack of flexibility, resulting from the constraint imposed on the lower tail of the distribution.

We comment here that while all the four models presented above are based on parametric
forms for K, the choice of K doesn’t have to be parametric. For instance, Tencaliec et al. (2020)
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Figure IV.1: Density function corresponding to the four EGPD families. In each case σ =
1, and ξ = 0.5.

introduced a semi-parametric choice of K based on Bernstein polynomial approximations. We
however limit our applications to the parametric families because of our interest in modeling para-
metric IDF and IDAF relationships, where each EGPD parameter can be modeled as a function of
duration (for IDF) or duration and area (for IDAF relationships).

IV.2 Comparison of the EGPD families using daily data

In this section, we compare the family of EGPD models presented in the preceding section
using daily data in our study area. We will however only consider Models 1, 2, and 4, since Model
3 was shown by the authors to lack adequate flexibility in the lower tail. In the remaining of the
chapter, we will refer to the three models as EGPD-Power (Model 1), EGPD-Mixtures (Model 2),
and EGPD-Beta (Model 4). We consider a total of 500 daily stations in Switzerland with variable
record lengths ranging from 20 years to 156 years. The reader is referred back to Chapter II for a
detailed description of the data. Due to the apparent seasonality of precipitation in the study area,
the data is divided into four seasons, winter (DJF), spring (MAM), summer (JJA), and autumn
(SON). The three models are then fitted on the seasonal precipitation data and their performance
is compared.

IV.2.1 Comparison criteria

We compare the performance of the models using three criteria described below:
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1. Normalized root mean square error (NRMSE):

NRMSE =

[
1
n ∑

n
j=1
(
ip j − îp j

)2
]1/2

i
, (IV.1)

where n is the sample size, ip is the empirical p-quantile of non-zero precipitation, îp is
the corresponding p-quantile estimated from the fitted model, and the denominator i is the
mean of non-zero precipitation. The normalization is done to enable the comparison of the
score across the stations. NRMSE gives an aggregate measure of the goodness-of-fit of the
model, with emphasis on the largest quantiles. A perfect model should have a score = 0.

2. Relative bias (rBias):

rBiasp =
ip − îp

ip
, (IV.2)

where ip is the empirical p−quantile of non-zero precipitation and îp is the corresponding
estimate from the fitted model. We focus on some specific probabilities (p = 0.01, 0.1, 0.25,
0.5, 0.75, 0.9, 0.99, 0.999), to assess the bias across the entire distribution. For an unbiased
model, rBias = 0. A positive value indicates that the model is underestimating the empirical
quantiles, while a negative value indicates overestimation.

3. Akaike Information Criteria (AIC) (Akaike, 1974):

AIC =−2log(L)+2nparam, (IV.3)

where L is the maximized likelihood in Equation IV.4 and nparam is the number of parameters
to be estimated. AIC rewards the goodness-of-fit, as measured by the likelihood, but also
penalizes model complexity in terms of the number of parameters to be estimated. The
lower the AIC, the better the model.

IV.2.2 Inference

Two classical inference methods for fitting the models were proposed by the authors. The first one
is based on maximum likelihood estimation (MLE), and the second one is based on the probability-
weighted moments (PWM) (which are more robust compared to classical moments). The authors
found out that the MLE has slightly better performance compared to the PWM approach for sim-
ulated data. However, the MLE performed poorly in the case of real data (hourly rainfall in Lyon,
France). More specifically, the shape parameter ξ and the corresponding return level estimates
were grossly overestimated by the MLE. The authors explained that the poor performance of the
MLE was likely due to the effect of data discretization caused by instrumental precision. Since the
likelihood applies to each observation, it is affected by the numerous small values close to zero.
PWM is however based on summary statistics of the data rather than the individual observations,
and so less sensitive to mispecified settings. To improve the parameter inference, the two meth-
ods, MLE and PWM, were modified to account for left-censoring and interval-censoring of the
data (see Naveau et al., 2016, for details). The inference with the left-censoring approach led to
a remarkable performance improvement with the MLE, while the PWM showed only a marginal
improvement.

Despite the higher robustness of the PWM compared to MLE, the latter has a key advantage
since it can be used in regression settings to account for various cases of non-stationarity, such
as temporal, spatial, or spatio-temporal non-stationarity. The non-stationarity is usually achieved
by modeling the parameters as a function of some chosen covariates. This is a fundamental re-
quirement in our context because the approach we will use for the development of IDF and IDAF
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relationships requires modeling the distribution parameters as a function of covariates, specifically
duration, and area. We note however that some attempts have been made to use covariates with
PWM, for instance, Ribereau et al. (2008) extended the PWM to model non-stationary GEV. How-
ever, a drawback of their approach is that non-stationarity is only possible in the location parameter
while the scale and shape parameters have to remain constant. Carreau et al. (2017) allowed the
non-stationarity in the GPD scale parameter within homogeneous regions, but the shape parameter
had to remain constant. Both approaches therefore involve constraints that limit their general ap-
plicability, since non-stationarity, especially in space, can be observed in the scale parameter (e.g.
Chavez-Demoulin and Davison, 2005; Davison et al., 2012; Youngman, 2019) and shape param-
eter (e.g. Chavez-Demoulin and Davison, 2005; Blanchet and Lehning, 2010; Youngman, 2019).
With MLE on the other hand, non-stationarity can be flexibly allowed for each parameter. As a
consequence, our inference methodology will be based on MLE using the censored likelihood.

As already mentioned, the authors proposed the use of two types of censoring approaches, left-
censoring and interval-censoring. They however discussed that interval-censoring is less effective
compared to the left-censoring, and so we only consider the latter. The censored likelihood is
written as:

Lc(ψ) = ∏
i:xi<C

F(C) ∏
i:xi≥C

f (xi) , (IV.4)

where C ≥ 0 is a censoring threshold, ψ is the vector of parameters to be estimated, with size
ranging from three in the case of EGPD-Power to five for EGPD-Mixtures. F and f denote the
CDF and densities of the model respectively. For now, we will use C = 2 mm to compare the
models, later in Section IV.3 we will elaborate on this point.

IV.2.3 Results

Figure IV.2: Seasonal boxplots of the NRMSE across the 500 stations. The boxplots are colored
by model. The lower the score, the better the model.

The boxplot of the NRMSE for the four seasons is shown in Figure IV.2. All four models
show generally good model performance, with the median around 0.05, albeit the presence of few
outliers in each season. There is no noticeable difference in the performance of the three models,
with nearly indistinguishable median scores. EGPD-Beta shows slightly the lowest variability in
winter but the most in autumn.
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Figure IV.3: Seasonal boxplots of relative bias, rBias (%) across the 500 stations. The boxplots
are colored by model. The best model is the one with a score = 0.

Figure IV.4: Boxplots of the empirical quantiles across the 500 stations. The boxplots are colored
by seasons, and they correspond to the non-exceedance probabilities shown along the x-axis.

To compare the models in terms of relative bias, Figure IV.3 shows the boxplots for some
specific quantiles that correspond to non-exceedance probabilities of 0.01, 0.1, 0.25, 0.5, 0.75,
0.9, 0.99, and 0.999 of non-zero precipitation. The choice of these quantiles is to assess the
potential bias of the models for low, medium, and extreme quantiles. Here also, the models show
nearly the same bias for all seasons and quantiles. Notwithstanding, the EGPD-Beta slightly
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shows the least bias in comparison to the other models. Furthermore, it can be observed that
all three models display the least bias in the bulk and upper tail of the distribution, but show
the highest bias in the lower tail of the distribution. To investigate the bias, it is pertinent to
understand what these quantiles correspond to in terms of precipitation amount. Figure IV.4 shows
the precipitation amounts, across the 500 stations, to which the quantiles correspond. The 0.01-
quantile, for example, which is underestimated in each case, corresponds to 0.1 mm, the resolution
of the rain gauge. It can therefore be argued that this underestimation is actually caused by the
instrumental precision rather than a failure of the models. This is because, while the rain gauge is
limited to 0.1 mm, the models can predict any non-zero precipitation, depending on the estimated
parameters. The 0.25-quantile has a median ranging between 1 and 1.5 mm, which might be
considered small at the daily time scale. This point shows that the observed bias in the lower tail
might not translate to the failure of the models in modeling the lower tail.

Figure IV.5: Result of model selection according to AIC across the 500 stations. a) Histogram of
the number of times a model is selected; b) Map of Switzerland with colored points showing the
locations of the stations. Each color represents the model selected at the location.

The two criteria presented above, NRMSE and rBias, reward only the goodness-of-fit of the
model, without accounting for the model complexity in terms of the number of parameters. To
account for this, we select the model with the lowest AIC score at each of the 500 stations. Figure
IV.5 shows the result of the model selection. The histogram on the left (Figure IV.5a) shows that
the three-parameter EGPD-Power (colored blue) is the most parsimonious model of all three. It
is closely followed by the four-parameter EGPD-Beta (colored pink), while the five-parameter
EGPD-Mixtures is only selected in very few stations. The map on the right (Figure IV.5b) shows
that there is no specific spatial or seasonal pattern in the model performance to warrant the use
of more than one model in our application. Accordingly, we choose the three-parameter EGPD-
Power model for the rest of the thesis. As highlighted before, this model has been widely applied
in the literature for modeling both daily and sub-daily precipitation (e.g. Naveau et al., 2016;
Blanchet et al., 2019; de Carvalho et al., 2021), and especially in our study area (e.g. Evin et al.,
2018; Le Gall et al., 2022).
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IV.3 Left-censored maximum likelihood estimation

In the previous section, we used the censored likelihood in Equation IV.4 to fit the models
using C = 2 mm. We will now further investigate and make an attempt to address some potential
questions that are likely to arise. For instance, why is censoring necessary in the application
of the EGPD model? Do all the EGPD families presented above require censoring? What is
the appropriate censoring threshold to use? How does using the left-censoring threshold affect
the performance of the model across the entire distribution, especially the part below the chosen
threshold? Below we present our attempt to answer the questions.

Figure IV.6: Model performance for the case when no censoring is applied (red), and for the case
when a censoring of 2 mm (blue) is applied to all the 500 stations (left). The dashed lines colored
black and red correspond to NRMSE = 0.05 and 0.1 respectively.

The first question has been answered by the authors of the model, and they attribute it to the
effect of discretization of the data due to instrumental precision that strongly affects low values.
To counteract this effect, the data is treated as left-censored, and the likelihood in Equation IV.4 is
used to estimate the parameters. We need to emphasize that the censoring threshold C employed
here should not be confused with the GPD upper threshold u. In the GPD case, the model applies
only to the data above u. In our case, however, both the data below and above C are accounted for
in the likelihood function, albeit in different ways. The data above C is believed to be observed,
and though the density function f is applied to them. For the data below C, it is assumed that their
precise magnitude is not known, although they have been observed. All that is known is that they
are less than C, and so the distribution function F is applied.

The next question is: do all the EGPD families presented above require censoring? To answer
this question, Figure IV.6 shows the boxplots of the NRMSE of the three EGPD models for the
case when no censoring is applied (left) and the case when C = 2 mm. We can observe from the
figure that the two EGPD models based on power law (EGPD-Power and EGPD-Mixtures) are
more affected compared to EGPD-Beta. Even then, when censoring was applied, the performance
of the EGPD-Beta model improved (see the case of winter for example).

To answer the question of the appropriate censoring threshold to use, we investigate the per-
formance of the models based on three choices of C. In the first two cases, we consider a uniform
threshold C = 1 mm, and C = 2 mm respectively across all stations and seasons. In the third
case, we considered a station-specific threshold C = Cs. We determine Cs as the threshold that
minimizes the NRMSE of the fitted model. Figure IV.7 displays the boxplots of NRMSE for the
different values of C. The case when C = 0 mm means no censoring was applied. It can be seen
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Figure IV.7: Effect of the left-censoring threshold C on the performance of each model (x-axis).
The performance is measured with the NRSME (y-axis). The dashed lines colored black and red
correspond to NRMSE = 0.05 and 0.1 respectively. Each panel corresponds to a season and
the boxplots, across the 500 stations, are colored according to the threshold. Cs corresponds to
station-specific thresholds, while C = 0 mm means no censoring was applied.

that the best result for all seasons and models is when C = Cs, that is when the station-specific
threshold is applied. This is the case especially when considering the outliers in the boxplots.

Finally, we answer the question of the effect of censored likelihood on the overall distribution,
especially the part below the chosen threshold. Figure IV.8 shows the seasonal boxplots of rBias
(%) across the 500 stations. The boxplots are colored according to the censoring threshold used.
All three models showed similar behavior so we show the results only for the case of EGPD-
Power. Looking at all the seasons, all four cases show similar levels of performance for 0.5 to
0.9-quantiles. When we focus on quantiles above the 0.9-quantile, however, the case when C = 0
mm shows the worst performance, whereas the case when C = Cs mm shows the best results.
Coming down to small quantiles, i.e., 0.25-quantiles and below, the case when C = Cs shows
generally the least performance as seen from the large variability. Since C =Cs mm optimizes the
NRMSE, it is not surprising that the model performed better for the large values, at the expense of
the smaller values. To elaborate on this point, Figure IV.9 shows the quantile-quantile plot for a
station in Airolo in summer. We observe that a threshold of 1 mm (green points), and 2 mm (blue
points) yield poor performance in the bulk and upper tail (Panel A and B). A threshold of 9.2 mm
has to be used to ensure an adequate fit. This however results in a poor fit at the left tail (Panel
C) as all the empirical quantiles are underestimated. The implication is that the fitted model with
C = 9.2 mm can be used for extrapolation, i.e. estimation of high return levels, but will result in
the underestimation of the small rainfall amounts. Finally, we comment that censoring in general
improves the model performance not only in the upper tail but the left tail as well. This point can
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Figure IV.8: Effect of the left-censoring threshold C on the performance of EGPD-Power for
specific quantiles (x-axis). The performance is measured based on rBias (y-axis). The red lines
correspond to rBias of 0%. Each panel corresponds to a season and the boxplots, across the 500
stations, are colored according to the threshold. Cs corresponds to station-specific thresholds,
while C = 0 mm means that we did not apply any left-censoring.

Figure IV.9: Quantile-quantile plots for a station located in Airolo in summer. The points are
colored according to the censoring threshold used. For this case, Cs = 9.2 mm. Panel A shows
the qq-plot for the whole range of data. Panel B zooms within the bulk of the distribution (10 to
100 mm), and panel C zooms on the left tail in order to explore the fit below the chosen censoring
threshold, i.e. Cs = 9.2 mm. The dash-black line represents the diagonal. For a good performance,
the points should fall on the diagonal.

be observed in Figure IV.8, since the case when no censoring is applied (C = 0 mm) has a higher
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bias (although lower variability) compared to the other cases for 0.1 to 0.5-quantiles.
To summarize, the result in this section revealed that all the models showed improved perfor-

mance when censoring was applied. It also showed that the models based on power law are most
affected by this issue, and require censoring before application. Another point observed is that the
best model performance is obtained when station-specific censoring is applied rather than using a
generic threshold for all stations and seasons. In this application, we automate the choice of the
site-specific threshold choice by finding the value that minimizes the NRMSE. This choice was
shown to ultimately improve the model performance, especially in the upper tail, although it re-
sulted in a lower performance in the lower tail of the distribution. The decision to the exact choice
depends on the type of applications at hand. Since our target is on the development of models for
extreme precipitation, we keep the station-specific threshold that minimizes the NRMSE.
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IV.4 Modeling extreme daily and hourly precipitation with the EGPD

The goal of this section is to investigate and understand the seasonal characteristics of ex-
treme precipitation in our study area by modeling non-zero precipitation using the three-parameter
EGPD-Power model. Our analysis is conducted at two distinct temporal scales: daily scales, us-
ing data from 500 stations, and hourly scales, using data collected from 81 stations. We remind
the reader that both datasets have been introduced in Chapter II. Additionally, from this section
onward and throughout the rest of this thesis, we will simplify our references to the EGPD-Power
model by using the term "EGPD". The fitting of the model is through MLE using the censored
likelihood in Equation IV.4 and station-specific threshold. The return level is obtained from

iT =
σ

ξ


[

1−
(

1− 1
T ×δ

) 1
κ

]−ξ

−1

 , (IV.5)

where κ > 0, σ > 0 and ξ ≥ 0 are the three EGPD parameters, T is the return period in years, δ

is the average number of non-zero precipitation intensities per season and is estimated by the long
term average.

IV.4.1 Daily scale

Winter Spring Summer Autumn

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
k

Winter Spring Summer Autumn

6 9 12 15 18 21 24 27 30 33 36
σ

Winter Spring Summer Autumn

0.05 0.10 0.15 0.20 0.25 0.30 0.35
ξ

Winter Spring Summer Autumn

60 70 80 90 100 120 140 160 180 210 240 280 320 360
100-year

Figure IV.10: Seasonal maps of the fitted EGPD parameters, κ , σ , ξ (row 1 to 3 respectively) and
100-year return level (bottom row) of daily precipitation amount.
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Figure IV.10 shows the maps of the three fitted EGPD parameters and 100-year return levels of
daily precipitation. Each row in the figure corresponds to a parameter, and each column corre-
sponds to a season. The first row from the top shows the seasonal maps of κ , the parameter that
controls the lower tail. As a reminder, when κ < 1, the lower tail of the density is infinite, and
when κ > 1, the density is zero at the origin, and the larger the value, the lesser the mass is con-
centrated at the origin. Looking at the maps, the values of the parameter range from 0.2 to 1.25,
across all the seasons, with a median of around 0.75 (boxplots not shown here). It can be seen
also that there are no large seasonal differences in the magnitude of the parameter. For all seasons,
however, the south of Switzerland appears to be the region with the lowest value of κ .

Moving to the second row, the seasonal maps of the scale parameter σ are shown. The param-
eter represents the spread or variability of non-zero precipitation in the study area. Areas with a
large value of σ correspond to locations with large variability of non-zero precipitation and, those
with small values correspond to locations with small variability. The maps show that there is both
seasonal and regional pattern in the magnitude of the parameter. We observe that all the regions
have their lowest values of σ in winter and the largest in summer. An exception is Ticino where
the largest values are observed in autumn. Among the regions, the inner valleys possess the lowest
values and the Ticino area has the largest values of σ . In the north of Switzerland, the largest
values are observed along the northern alpine rim, especially in summer.

The third row shows the seasonal maps of the shape parameter ξ , which controls the upper tail
of the EGPD. Around 75% of the stations have ξ < 0.15, and a median ξ < 0.1 for all seasons.
Summer and spring have the largest values of ξ compared to autumn and winter. Unlike the scale
parameter, the southern part of the Valais region and the eastern part of Switzerland show the
largest values, indicating that more extraordinary precipitation is to be expected in these areas.

Finally, the seasonal maps of the 100-year return level (Equation IV.5) are shown in the bot-
tom row. Similar to the scale parameter, spatial and seasonal patterns are clearly observed. In all
regions, the lowest levels are observed in winter. In the north of the Alps, the largest values are
observed in summer, while in the south, the largest values are observed in autumn. The similarity
of the observed spatial and seasonal pattern of the 100-year return levels with those of the scale
parameter indicates that, at least for this return period, σ rather than ξ controls the extreme precip-
itation. Similar behavior was observed by MeteoSwiss using the GEV (personal communication
with Christoph FREI). It is expected however that for much longer return periods, i.e more into the
right tail, the spatial pattern of the return levels should be controlled by the the shape parameter ξ .

IV.4.2 Hourly scale

Moving to the hourly scale, Figure IV.11 shows the seasonal maps of the fitted EGPD parameters
and 50-year return level. Similar to the daily scale, the case of κ < 1 is mostly observed every-
where, except in spring where κ > 1 is observed in the northern plateau. The maps of the scale
parameter σ indicate that the largest variability in the hourly non-zero precipitation is observed
explicitly in summer and the lowest in winter. Regionally, Ticino in the south presents the largest
variability compared to all other regions. The north of the Alps presents similar variability with-
out differences due to the topography. The shape parameter ξ on the other hand shows the largest
values in summer, followed by spring, while the lowest values are observed in winter. Regionally,
the largest values are observed in the north for spring and summer. On the other hand, in autumn,
values that are comparable to those in the north are also observed in Ticino.

The return level maps in the bottom row, show that summer is the season experiencing the
largest value of the 50-year return level, and winter is the lowest. In winter, there is no distinct
spatial pattern, and the levels in the south are nearly of the same magnitude as those in the north.
In spring, the levels in the north and the Ticino start to increase, and they reach their highest
values in summer. Similar to the map of σ in summer, there is nearly no noticeable effect of the
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topography on the magnitude of the return levels in the north. In autumn, the levels in all regions
except Ticino, have nearly the same magnitude as those in spring. Ticino area remains the region
subjected to the largest levels irrespective of the season.

Our return level estimates at the hourly scales are similar to those in Fukutome et al. (2015),
and climatological discussions for the seasonal and spatial pattern of the return levels can be found
therein. For instance, in autumn, the high return levels in Ticino might result from southerly air
flows approaching the Alps as the mid-latitude cyclones reach further south as winter approaches.
This can lead to intense precipitation events when the warm and humid Mediterranean air is com-
pelled to ascend rapidly over a relatively short distance, ultimately reaching the altitude where
free convection can occur. In summer, thunderstorms initiate in the Jura Mountains and along the
northern Alpine rim, subsequently migrating towards the plateau region. This movement pattern
leads to the occurrence of nearly equivalent levels of extreme precipitation in these areas. In con-
trast, during the winter season, extreme precipitation at the hourly scale tends to be at its minimum.
This phenomenon can be attributed to the fact that extreme precipitation events at this timescale
are primarily driven by convection, which is less prevalent during the colder winter months.

Figure IV.11: Seasonal maps of the fitted EGPD parameters, κ , σ , ξ (row 1 to 3 respectively) and
50-year return level (bottom row) of hourly precipitation intensities.
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IV.5 Summary

To sum up, the main take-home message from this chapter is summarized below:

Question 1: What is the most suitable and parsimonious probability distribution
to model the entire range of non-zero precipitation intensities in a topographically
complex area?

• Three parametric families of the EGPD were compared, and the three-
parameter model based on power law appeared to be the most parsimo-
nious. The model is therefore retained for subsequent use in the thesis.

• Left-censored MLE is required for the application of the considered EGPD
models, especially for the models based on power law.

• A station-specific threshold choice is required for adequate performance of
the model. The use of a uniform threshold might result in poor performance
at some stations.

• The use of a high censoring threshold is likely to result in poor model
performance at the left tail.

• The three-parameter EGPD model based on power law adequately modeled
the hourly and daily extreme precipitation in Switzerland.
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V
Regionalization of daily precipitation estimates in

Switzerland

Chapter overview

T his chapter addresses Question 2 by presenting the results of the regional-
ization of daily precipitation. The regionalization is aimed at improving the

robustness and reliability of the at-site return level estimates using the EGPD in
Switzerland.
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Preamble to the paper

Recall from Chapter IV that the three-parameter EGPD was shown to be parsimonious and able
to adequately model the precipitation intensities in the study area. The main goal of this article
is to use the concept of regionalization to improve the robustness and reliability of daily pre-
cipitation estimates using the EGPD. To achieve this goal, the article begins by identifying and
reviewing three regionalization approaches. The first method is built on the idea of conventional
Regional Frequency Analysis (RFA) but is based on a fast algorithm that defines distinct homo-
geneous regions relying on their upper tail similarity. It includes only the precipitation data at
hand without the need for any additional covariate. The second is based on the region-of-influence
(ROI) approach in which neighborhoods, containing similar sites, are defined for each station.
The third is a spatial method that adopts Generalized Additive Model (GAM) forms for the model
parameters. Regionalized EGPD models are then developed and compared using a split-sample
cross-validation framework. The article presents several significant contributions. Firstly, region-
alization is applied to the EGPD for the first time, a distribution that models both low, medium,
and extreme intensities. Secondly, our comparison approach is more comprehensive and based on
criteria that focus on the predictive ability of the models. Lastly, regionalization methods, which
have not been previously compared, are considered.
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Abstract
In this article, we compare the performance of three regionalization approaches in im-
proving the at-site estimates of daily precipitation. The first method is built on the idea
of conventional RFA (Regional Frequency Analysis) but is based on a fast algorithm that
defines distinct homogeneous regions relying on their upper tail similarity. It uses only
the precipitation data at hand without the need for any additional covariate. The second
is based on the region-of-influence (ROI) approach in which neighborhoods, containing
similar sites, are defined for each station. The third is a spatial method that adopts Gen-
eralized Additive Model (GAM) forms for the model parameters. In line with our goal
of modeling the whole range of positive precipitation, the chosen marginal distribution
model is the Extended Generalized Pareto Distribution (EGPD) on which we apply the
three methods. We consider a dense network composed of 1176 daily stations located
within Switzerland and in neighboring countries. We compute different criteria to assess
the models’ performance in the bulk of the distribution and the upper tail. The results
show that all the regional methods offered improved robustness over the local EGPD
model. While the GAM method is more robust and reliable in the upper tail, the ROI
method is better in the bulk of the distribution.

V.1.1 Introduction

Flood events occurring at different time scales pose hazards that are of enormous consequences to
life and property. Even though necessary for risk assessments and safe design, reliable prediction
remains a challenge and a difficult task. Usually, in the context of risk assessment, river flows are
simulated via hydrological models. These models take as inputs, among others, meteorological
data such as temperature and precipitation. However, whatever the complexity of the model and
how it represents the underlying hydrological behavior of the catchment, the accuracy, robustness,
and reliability of the flood predictions rely on the quality of the input data.

Precipitation intensities, the key input signal, is modeled using probabilistic methods. Within
this framework, a good probabilistic model should predict precipitation intensities of any return
level, whether low, medium, or extreme with reliable accuracy. Gamma distribution, a common
choice over models such as log-normal, Weibull, exponential, fails in this aspect, as the tail is too
light to model heavy intensities (Katz et al., 2002). Models based on the classical extreme value
theory (EVT), such as the Generalized Pareto (GP), can model the upper tail but one has to choose
another model for the other intensities below the chosen threshold.

Since GPD has been favored in hydrological applications (see e.g. Langousis et al., 2016),
many authors in the framework of modeling the full range observations have considered different
approaches to adding flexibility to this model. A common approach is the use of mixture mod-
els where GPD is combined with another appropriate model for the bulk of the distribution, (see
review in Scarrot and MacDonald, 2012). Mixture models, however, have the drawback of in-
flating the number of parameters to estimate (Naveau et al., 2016) and thus complexify statistical
inference.

As an alternative, Naveau et al. (2016) proposed a model which is an extension of the GP
(afterward called EGPD). It has the advantage of avoiding the need for threshold selection (a
drawback of GP) while being parsimonious by avoiding the use of mixtures. The model is gamma-
like in the lower tail and heavy-tailed (GP) in the upper, with a smooth transition in-between. It
is able to model adequately the entire range of positive precipitation and many author within the
framework of precipitation modelling have used this model, (e.g. Blanchet et al., 2015; Evin et al.,
2018; Tencaliec et al., 2020; Le Gall et al., 2022).

Modeling the whole range of precipitation has various practical applications. For instance in
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flood risk assessments, where stochastic precipitation generators are used to simulate long series
of positive precipitations, extremes included (e.g. in Evin et al., 2018). The simulated precipita-
tion is then used as input to conceptual hydrological models for the simulation of long series of
river flows. Other practical applications are in the evaluation of numerical weather simulations or
investigation of the climatology of precipitation events as outlined by Blanchet et al. (2019)

Although EGPD uses all the data to estimate the parameters, the shape parameter which con-
trols the upper tail behavior remains difficult to estimate based on a few decades of data, the usual
length of precipitation data. This is because there are usually few extremes exhibiting much vari-
ability. As precipitation is spatial by nature, several studies (Cunnane, 1988; Burn, 1990; Hosking
and Wallis, 2005) proposed the use of observations surrounding the local station to increase the
quantity of data available for estimation, thereby reducing the uncertainty involved in the estima-
tion.

Different methods exist in the literature to use information surrounding the station at hand (see
Cunnane, 1988; Hosking and Wallis, 2005). Methods based on regional homogeneity (e.g. method
of Hosking and Wallis (2005)) pool all observations in hydrologically similar sites to increase the
sample size, and by so yielding more accurate estimates of the parameters. Hydrologically similar
sites are first defined using cluster analysis and then subjected to some statistical homogeneity tests
on the scaled observations. Thereafter, a chosen distribution is fitted to the scaled observations in
the identified region, and all stations within this region would share the same regional parameters.
Station-specific parameters and quantiles can then be inferred by appropriate scaling. This method
has been applied by various authors (e.g. Gaál and Kyselý, 2009; Malekinezhad and Zare-Garizi,
2014) and on various distributions such as the GEV and the GP. Variants of this method exist such
as the region of influence (ROI) proposed by Burn (1990), which avoids defining fixed regions,
but assigns homogeneous regions (neighborhood of different shapes according to the method) for
each site. Scaled observations within the neighborhood of each station are then used to estimate
the regional parameters of that station. This method has been applied by various authors (see Gaál
et al., 2008; Kyselý et al., 2011; Carreau et al., 2013; Evin et al., 2016; Das, 2017, 2019).

In contrast to the aforementioned methods that generally rely on some covariates such as spa-
tial coordinates to define the homogeneous regions, another variant, recently developed by Le Gall
et al. (2022) defines homogeneous regions based on the similarity of their upper tail behavior. This
method avoids the use of any covariate but relies completely on the precipitation data at hand. The
upper tail behavior for each station is summarized based on a ratio of probability-weighted mo-
ments (PWMs) (refer to Eq V.4). Subsequently, a clustering algorithm is used to partition these
ratios into distinct homogeneous regions, and then regional parameters can be estimated.

Spatial methods exist in which all the observations from all the stations are pooled and then
used to estimate spatial surface for each of the model parameters. The surface for each of the model
parameters is defined as a function of some well-chosen covariates such as longitude, latitude,
altitude, etc. Estimating the parameters involve simply the estimation of the coefficients of these
relationships. From the fitted surfaces, station-specific model parameters can be inferred as a
function of the covariates at that specific location. Surfaces that are smooth and flexible can be
obtained by fitting generalized additive models (GAM) to the relationships (see Chavez-Demoulin
and Davison, 2005; Blanchet and Lehning, 2010; Youngman, 2019, 2020). Other alternatives to
the classical RFA include the Bayesian spatial modeling (see Madsen et al., 1995; Cooley et al.,
2007) and those discussed in Cunnane (1988).

Recent analyses have been done to compare the performance of regional approaches with a
particular interest in distributions allowing to model extremes only. Gaál et al. (2008) compared
different versions of the ROI method against the classical RFA method of Hosking and Wallis
(2005). The ROI versions were distinguished by the choice of the distance metric and the maxi-
mum threshold to delineate neighborhoods. For all the methods, GEV distribution was assumed
as the underlying distribution. The authors, through a Monte Carlo simulation study, concluded
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that the ROI approach was superior to the classical RFA involving distinct clusters. In an interpo-
lation framework, Carreau et al. (2013) compared three methods; spatial interpolation of locally
estimated parameters. method of ROI and a rainfall generator called SHYPRE. For the first two
methods, GEV distribution was assumed. The author found comparable performance between the
ROI and SHYPRE, and a lack of robustness in the method based on interpolation of local param-
eters. Deidda et al. (2021) also used GEV to compared the classical RFA of Hosking and Wallis
(2005) and geostatistical interpolation of locally estimated parameters. They highlighted the limi-
tation of the former in yielding distinct regions and being of less accuracy compared to the latter.
Other comparisons include those of Gaál and Kyselý (2009); Kyselý et al. (2011) and Das (2019).

Our approach differs from the aforementioned studies in the following aspects. First, in con-
trast to the case where the underlying distributions are basically for modeling only extremes (e.g.
Burn, 1990; Gaál et al., 2008; Gaál and Kyselý, 2009; Kyselý et al., 2011; Carreau et al., 2013;
Evin et al., 2016; Das, 2019; Deidda et al., 2021), we consider the EGPD that models both low,
medium and extreme precipitations. This is in line with our goal of having a robust and reliable
model, that can model the whole distribution and not only the extremes. Secondly, our comparison
approach is more general and based on Garavaglia et al. (2011) and Renard et al. (2013), focus-
ing on the predictive ability of the models in a cross-validation framework similar to the case of
authors such as Blanchet et al. (2015); Evin et al. (2016), rather than simply based on quality of
fit (e.g. Gaál et al., 2008; Kyselý et al., 2011; Deidda et al., 2021). Finally, in our contribution,
we compare new methods not previously compared viz-a-viz. The first method defines distinct
homogeneous regions based on their similarity in upper tail behavior (Le Gall et al., 2022). The
second method is based on the ROI approach framework of Evin et al. (2016). The last method is
a spatial approach that assumes generalized additive models (GAM) forms for the model parame-
ters. For all the methods, we assume the EGPD as the underlying marginal distribution. We apply
this comparison to a dense network of over 1100 daily stations located within Switzerland and in
the neighboring countries.

The paper is organized as follows: Section V.1.2 presents the data and the study area. Section
V.1.3 introduces the competing models while section V.1.4 describes the comparison methodology
as well as the criteria used. The results are presented in section V.1.7. Finally, we discuss the
conclusion and the relevant perspectives in section V.1.8.

V.1.2 Data and study area

The comparison is made considering daily precipitation observations from 1176 stations shown
in Figure V.1. From this total, 500 are located within Switzerland and 676 in the neighboring
countries. The data has a variable length ranging from a minimum of 20 years to a maximum of
156 years, from 1863 to 2019. The bar plot in Figure V.1 shows the number of stations installed in
each country during each decade of the study period. While the main study area is Switzerland, we
use the data in the neighboring countries simply to improve the estimates of the stations located
around the border of Switzerland. Consequently, although we use all the stations (both within
and outside) for regionalization and model fitting, we apply the performance criteria only on the
stations located in Switzerland.

Daily precipitation in Switzerland is characterized by seasonality arising from multiple mois-
ture sources brought by prevailing winds (Sodemann and Zubler, 2009; Umbricht et al., 2013;
Giannakaki and Martius, 2015). It is also characterized by spatial variability both in intensity and
occurrence resulting from the complex topography (Sevruk, 1997; Sevruk et al., 1998; Frei and
Schär, 1998; Molnar and Burlando, 2008; Isotta et al., 2014). Winter receives the least precipita-
tion and summer is the main season of precipitation all over Switzerland. An exception is in the
case of Ticino in the South, where autumn is the main season. This region is also subject to the
heaviest precipitation. In the North of the country, the topography plays an important role; the
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Figure V.1: Description of the data used for the study. Left: Map of Switzerland and the neighbor-
hood showing the location of the 1176 daily stations. The color indicates the length of the series,
minimum of 20 years and maximum of 156 years. Right: Bar plot showing the number of stations
installed in each country for each decade.

northern rim and the Jura mountain receive heavier precipitation compared to the plateau.
As a result of the marked seasonality, and the importance of taking it into account (Leonard

et al., 2008; Garavaglia et al., 2011), we apply a seasonal based analysis approach. We divide the
data into the four distinct seasons of three months each: Winter (Dec, Jan, Feb), Spring (Mar, Apr,
May), Summer (Jun, Jul, Aug), and Autumn (Sep, Oct, Nov).

V.1.3 Candidate Methods

In this section, we start by presenting the marginal distribution (EGPD). We then give a brief
description of three different methods of regionalization that we will use to improve the local
estimates of the EGPD. They are: i) Regional frequency analysis based on the upper tail behavior,
ii) Region of influence approach (ROI), and iii) Spatial method using generalized additive model
(GAM) forms. Finally, we summarize the regional models that are developed based on the three
outlined methods of regionalization as applied to the EGPD.

V.1.3.1 Marginal distribution of positive precipitation

We use the marginal distribution of precipitation proposed by Naveau et al. (2016), which is able
to model sufficiently the full spectrum of positive (non zero) precipitation. The model is EVT
compliant in the upper and lower tail while providing a smooth transition in-between. It provides
an alternative to the light-tailed distributions such as Gamma, which can underestimate extremes
(Katz et al., 2002). Four parametric families of this model have been proposed by Naveau et al.
(2016), and more recently a non-parametric scheme of the transition function by Tencaliec et al.
(2020). However, the simplest of the parametric family is parsimonious and can adequately model
precipitation intensities without the need for GPD threshold selection (Naveau et al., 2016; Evin
et al., 2018; Le Gall et al., 2022). We therefore use this model in our study.

Let X be a random variable representing positive daily precipitation intensity that is distributed
according to the EGPD, then the cumulative distribution function (CDF) is given by

F(x) = P(X ≤ x) = G
[
Hξ

( x
σ

)]
, (V.1)
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where G is any CDF that ensures a smooth transition between the EVT compliant upper and lower
tail, and

Hξ

( x
σ

)
=

 1− (1+ξ
x
σ
)
−1/ξ

+ if ξ ̸= 0

1− exp(−x/σ) if ξ = 0
, (V.2)

with a+ = max(a,0).
For the parsimonious model we use, the function G is simply defined as G(v) = vk. Therefore

the model is given as:

F(x) =
[
Hξ

( x
σ

)]k
. (V.3)

The model has three parameters. k > 0 controls the lower tail, ξ ≥ 0 controls the upper tail, and
σ > 0 is the scale parameter.

Inference of the model parameters can be done through maximum likelihood estimation (MLE),
or through the method of probability-weighted moments (PWM).

V.1.3.2 Methods of regionalization

V.1.3.2.a RFA based on upper tail behavior: Classical regional frequency analysis (Hosking
and Wallis, 2005) defines regions that are homogeneous up to a scaling factor. To identify the
regions, covariates have to be carefully chosen, which usually include at-site characteristics such
as geographical and atmospheric characteristics. However, this information might not be generally
available at each station. Homogeneity tests then have to be applied to confirm that the regions are
sufficiently similar.

Le Gall et al. (2022) proposed a fast and efficient method to delineate regions based on the
homogeneity of their upper tail behavior. The method relies on the precipitation data at hand only
without the need for additional covariates. More so, regions identified are inherently homoge-
neous, thereby avoiding the need for the application of some homogeneity tests. For each station
i, a ratio ω given in Eq. V.4 that is based on probability weighted moments (PWM) is obtained.

ω̂ =
3α̂2 − α̂0

2α̂1 − α̂0
−1, (V.4)

where α̂ j denotes the PWM of order j.
The authors showed that ω summarizes the upper tail behavior of the data at hand, and for the

EGPD model, it depends mainly on the ξ parameter (effect of k not very significant, (see Le Gall
et al., 2022)). Stations with high values of ω have high intense extremes, and those with low
values have less intense extremes. The idea is to classify or form regions with similar values of ω ,
which is possible using any of the clustering algorithms such as K-means, hierarchical clustering,
Partitioning around medoids (PAM), For details of these clustering methods, see Kaufman and
Rousseeuw (2005).

V.1.3.2.b RFA based on region of influence approach (ROI): The region-of-influence (ROI)
method (Burn, 1990) is similar in concept to the classical RFA method. It circumvents the draw-
back of having contiguous regions separated by distinct boundaries that result in “undesirable step
changes of the variables and estimated quantiles” (Gaál et al., 2008). Instead of defining distinct
homogeneous regions separated by some boundaries, a region of influence is assigned to each sta-
tion. All the scaled observations in the identified ROI are used to estimate its regional parameters.
To apply this method, several choices have to be made. These involve the choice of the scale
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factor, distance metric, radius delimitation, and homogeneity test. The choices influence the ap-
plication of the method and have to be carefully and objectively decided. Different authors in the
application of the methods have explored some or all of these factors, starting from Burn (1990),
and in Gaál et al. (2008).

In this work, we follow the objectively selected steps and choices similar to Evin et al. (2016)
in the application of the method in the Southeastern part of France. The authors applied the method
by considering POT (exceedances of a 70 % quantile) of central precipitations (largest observations
in 3-day precipitation events) and on some distributions (Exponential, GPD and Weibull). We
apply the same procedure but on positive precipitation and EGPD model.

V.1.3.2.c Spatial method based on Generalized Additive Model (GAM): In contrast to the
previous methods where regionalization is based on homogeneity of normalized data or upper tail
similarity, this is a regression-based method for fitting the parameters of models, by allowing for
spatial non-stationarity of the parameters. Accordingly, we pool all the observations from all the
stations to estimate flexible and smooth spatial surfaces for each parameter, relying on the ground
that pooling of spatial information can help improve the at-site estimates, and hence the extreme
quantiles. In particular, we let the parameters have a generalized additive model (GAM) form,
represented by smoothing splines. In effect, we assumed them to have some form of flexible
relationship with some covariates x, which can be explained by GAM forms.

V.1.3.3 Regional models

This section summarizes the regional models that are compared in the study. The models are built
based on the concepts of the three regionalization methods outlined in section V.1.3.2. Table V.1
presents the four models plus the local EGPD model.

Table V.1: Summary of the regional models that are compared in this study. The first model is
the local EGPD model, the next three models are based on regional homogeneity, while the last
model is a spatial methods based on GAM. The second column gives the name of the model. The
next three columns are the parameters of the EGPD model, and indicates whether the parameter
is estimated locally (from the data of the station at hand only) or though regionalization. The last
column gives reference to the section where the method is described.

S/N Model κκκ σσσ ξξξ Ref. Section

1 Local EGPD local local local V.1.3.1

2 Omega EGPD local local regional V.1.3.3.a

3 ROI EGPD Full neighborhood neighborhood neighborhood V.1.3.3.b

4 ROI EGPD Semi local local neighborhood V.1.3.3.c

5 GAM EGPD spatial spatial spatial V.1.3.3.d

V.1.3.3.a Omega EGPD Model: This model is built based on the regionalization method
described in section V.1.3.2.a, i.e, RFA based on upper tail behavior. To build this model that
relies on regionalization of the shape parameter, the following steps are followed:

1. For each station i, i = 1, · · · ,N use the positive data to estimate the ratio ω̂i.

2. Identification of homogeneous regions: Use an appropriate clustering algorithm alongside
an internal validation criteria to decide on the optimal number of homogeneous clusters
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based on the estimated ω̂1, · · · , ω̂i, · · · , ω̂N . In our case, after doing a simulation study (re-
sult not shown), we settled on the PAM algorithm and three criteria, Silhouette (Rousseeuw,
1987), Davies Bouldin (DB) (Davies and Bouldin, 1979), and S_Dbw (Halkidi and Vazir-
giannis, 2001).

3. For each homogenous region C,

(a) Fit EGPD locally to find (ki, σi, and ξi).

(b) Find the regional shape parameter ξr as average of all ξi in that region.

(c) Fit EGPD locally again to find new estimates k̂i,new and σ̂i,new, given the estimated ξr.

We have also explored other options to estimate ξr after obtaining the homogeneous regions:

• The first method involves pooling all the observations in a homogeneous region (cluster)
after scaling them by their mean, and then fitting a regional EGPD to estimate the regional
parameters (k(R),σ (R),ξ (R)). We then retain ξ (R) and then refit an EGPD locally to estimate
kiand σi. Every station in that cluster will have similar ξ (R) but locally estimated ki and σi.

• The second approach is similar to the main method where we take the the average of the
locally estimated ξ , but here, we take a weighted average. The idea is that, for each cluster,
the locally estimated ξ for the medoid station (the station with the least average dissimilarity
to all the other stations in the same cluster) should be assigned the highest weight in the
average, all other stations should then have weights as a function of their dissimilarity to
this medoid. Thus very similar stations to the medoid should have higher weights, while
those that are less similar should have smaller weights. The dissimilarity is measured by the
Manhattan distance |ωm−ωi|, where ω is given in Eq. V.4, while the indices m and i denote
respectively the medoid and the station i.

After testing these three approaches to estimate ξr, by measuring the accuracy of the resulting
quantile-quantile plot according to the normalized-root-mean-square-error (NRMSE) (see section
V.1.4 for details of this criteria,) results (not shown here) showed that the first method, where we
simply take the average of the locally estimated ξ , resulted in the least error. We thus retain this
approach in our subsequent analysis.

V.1.3.3.b ROI EGPD Full Model: This model is based on the method of ROI described in
V.1.3.2.b.

Let Xi ∼ EGPD(ki,σi,ξi) be the random variable of daily positive precipitation at station i
which is distributed according to the EGPD. We assume also that Yi =

Xi
mi

is the daily positive
precipitation normalized by a scale factor mi. If we consider several stations (whose data has been
normalized as well) that have similar distribution as Yi and use the data to estimate the regional pa-
rameters k(R),σ (R), and ξ (R) , then, Yi will have parameters (k(R),σ (R)ξ (R)). Accordingly, by back
transformation, the unnormalized random variable Xi will have the parameters (k(R),miσ

(R),ξ (R)).
This shows that for a random variable that is distributed according to the EGPD, after regionaliza-
tion, the parameters k and ξ are those obtained regionally, while the scale parameter σ has to be
multiplied by the scale factor for that station.

The general procedure of application is summarized below and the details can be found in
Evin et al. (2016).

1. For each station and season, exceedances of a threshold of 95% quantile (POT) are selected
and scaled by a factor. The scale factor is the mean of all positive daily precipitation.
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2. We start the search from a radius of 2 km starting from the current station. If we find other
stations within this radius, we apply the homogeneity test on the scaled POT found in step
1. If the test is positive, we increase the radius by another 2 km and repeat the test. We stop
the search when the test fails or when we reach a maximum radius beyond which we doubt
the existence of homogeneity. We use 100 km as the upper bound.

3. The distance metric we use is the “crossing distance” (Gottardi et al., 2012) given in Equa-
tion V.5. This distance takes into account the effect of elevation and is summed over all
the pixels along a straight line between two targeted stations. We use a weight on elevation
equal to 20 similar to Evin et al. (2016) to account for the effect of relief. Again, following
the same authors, we use the test of Hosking and Wallis (2005) on mean and L-coefficient
of variation (L-CV).

d =
√

∑
pixels

(∆x2 +∆y2 +20∆z2). (V.5)

4. We estimate the regional parameters by a weighted-MLE on the scaled positive observations
in the ROI. The target station has the highest weights and the closer the station, the higher
the weights.

The full regional model is such that Xi ∼ EGPD(k(R),miσ
(R),ξ (R)). We call this model -

ROI_EGPD_Full afterward.

V.1.3.3.c ROI EGPD Semi Model: This model follows exactly as the ROI_EGPD_Full in the
preceding section. The only difference is that here we retain the regional shape parameter ξ (R)

obtained from the neighborhood, and then estimate the two other parameters locally, i.e. from
only the data at the station i. We refer to this model as ROI_EGPD_Semi.

The semi regional model is such that Xi ∼ EGPD(ki,σi,ξ
(R)).

V.1.3.3.d GAM EGPD Model: For this spatial EGPD model, we have X(xxx)∼ EGPD(σ(xxx),-
k(xxx),ξ (xxx)), where xxx denotes some covariate, and each of the model parameter depends on some
form of xxx. The relationship between the model parameter (say α) and the covariate xxx is through
an identity link:

α(xxx) = β0 +
K

∑
k=1

Dk

∑
d=1

βkdbkd(xxx), (V.6)

where βkd and bkd are respectively the basis coefficients and the basis functions. K is the number
of smooths and Dk is the dimension (number of knots) for smooth k.

For the choice of spatial covariates, we use longitude, latitude, and mean daily precipitation
because they give better Akaike information criterion (AIC) (Akaike, 1974). To fit EGPD with
GAM, we extended the functions already available in the evgam R package (Youngman, 2020).

V.1.4 Comparison and evaluation criteria

This section presents the comparison framework and the performance criteria used to compare the
regional models.

V.1.5 Comparison framework

The evaluation framework and criteria is as proposed by Garavaglia et al. (2011) and Renard et al.
(2013). Garavaglia et al. (2011) and the references there in, argued that the classical statistical
goodness of test fits such as Kolmogorov– Smirnov test (Kolmogoroff, 1941; Sminorv, 1944) ,
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Anderson– Darling Test (Anderson and Darling, 1952) , Cramer von-Mises criterion (Cramer,
1928; Darling, 1957) lack the ability to assess the models ability to predict unobserved values, and
that they are also not very efficient for three-parameter distributions.

Accordingly, we follow a split sampling procedure and a cross-validation framework. For
each station i, we used 1/3rd of the data by choosing every third observation to reduce temporal
dependence. Then, we divide the non-zero observations into two equal sub-samples of the same
length but on different years that are randomly chosen. We call the first and second sub-samples
S(1)i and S(2)i . We then fit a model F̂(1)

i and F̂(2)
i on sub-sample S(1)i and S(2)i respectively. We then

compute the criteria C(12)
i at station i, by comparing F̂(1)

i vs S(2)i (i.e model fitted on sub-sample 1
vs observations in sub-sample 2). In the same way we compute criteria C(21)

i . Given that we have
N stations, and so N values of both C(12)

i and C(21)
i , the regional score is obtained as the average of

these scores. This procedure is repeated 50 times to obtain 50 regional averages of these indices.

V.1.6 Evaluation criteria

For each method, four (4) criteria C are computed. We first judge the methods based on how
they accurately fit the entire observations at each site. Next, we compare them in terms of their
robustness in extrapolation, i.e. how stable a high quantile estimate is, depending on which sub-
sample is used in the estimate. We finally judge the performance based on the reliability to predict
precipitation maxima.

In the following paragraphs, we describe the four criteria used for the comparison:

V.1.6.1 Accuracy of the whole distribution

The accuracy of the model in predicting the positive observations at a given station is given by
the normalized root mean square error (NRMSE) (Blanchet et al., 2019). For each site i, the
positive observed values in S(2)i are associated to their empirical return periods. We then use the
fitted model on S(1)i , i.e F̂(1)

i , to estimate the modeled quantiles associated to these return levels
and finally compute the normalized root mean squared error associated to these quantiles. The
normalization is by the average daily precipitation. This score is given as:

NRMSE(12)
i =

{
1

n(2)i
∑

n(2)i
k=1

(
r(2)i,Tk

− r̂(1)i,Tk

)2
}1/2

1
n(2)i

∑
n(2)i
k=1 r(2)i,Tk

, (V.7)

where NRMSE12
i is the score computed at station i, r(2)i,Tk

is the kth observation of return period T in

S(2)i , r̂(1)i,Tk
is the corresponding T return level estimated from F̂(1)

i . The denominator 1
n(2)i

∑
n(2)i
k=1 r(2)i,Tk

is

the average daily precipitation at site i. Details on the score are given in Blanchet et al. (2019).
Finally, the regional score computed over the N stations, i.e. NRMSE(12)

reg is given as:

NRMSE(12)
reg = 1− 1

N

N

∑
i=1

NRMSE(12)
i . (V.8)

NRMSE(21)
reg is computed in similar way. We thus finally have 2 × 50 values of NRMSEreg

resulting from the cross-validation on both periods. NRMSEreg = 1 means a perfect model, and
the closer the value is to 1, the more accurate the model is.
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V.1.6.2 CRPS

The continuous ranked probability score (CRPS) has been used as a metric to compare the perfor-
mance of two competing probabilistic forecasts models (Jordan et al., 2018). It gives a combined
measure of both spread and reliability of a forecast distribution, given the observation or outcome
that is observed.

For a given observation xi,t at station i and time step t that is contained in S(1)i , we have 50 of its
quantile estimates coming from the 50 fitted models F(2)

i ( models fitted with data not containing
xi,t ). If the method used to estimate all this 50 models is accurate enough, then these 50 quantile
estimates should be similar (low spread), and very close to the observed value xi,t . The same
applies to an observation xi,t contained in S(2)i when compared to its quantile estimates from the
50 models of F(1)

i . Thus the CRPS of xi,t should be low, and when applied to all the observations
at station i, the average, CRPSi should be also low.

The CRPSi averaged over the observed data from time step t = 1 to t = Ti at station i is given
as:

CRPSi =
1
Ti

Ti

∑
t=1

∫
R
{Fi,t(y)−H (y− xi,t)}2 dy, (V.9)

where H(z) denotes the Heaviside function that is 0 if z ≤ 0 and 1 otherwise. Fi,t(y) and xi,t are
the CDF of the 50 estimates, and the observed value at time step t of station i respectively. Note
that for the cross-validation, if xi,t belongs to S(1)i (resp. S(2)i ), then Fi,t(y) will be the CDF of the
50 quantile estimates of the 50 models F(2)

i (resp. F(1)
i ). The smaller the CRPS score, the better

the model.
Given that we have N stations, in the end, we will have N values of CRPS computed for each

of the competing models. This is different from the other criteria with 50 or 100 values per model.

V.1.6.3 Stability of high quantile estimate

The robustness of a model is measured by the stability of a high quantile estimated from two
sub-samples. A robust model should have a similar estimate of say, a 100-year event, when the
sub-sample/calibration data is changed. The SPAN criteria (Garavaglia et al., 2011; Blanchet et al.,
2019) gives the measure of the stability of a chosen quantile estimated from two sub-samples.

The score is computed as the absolute difference between the two quantile estimates divided
by their average and is given as:

SPANi,T =
2
∣∣∣r̂(1)i,T − r̂(2)i,T

∣∣∣(
r̂(1)i,T + r̂(2)i,T

) , (V.10)

where r̂(1)i,T and r̂(2)i,T are the T -year return levels estimated from F̂(1)
i and F̂(2)

i respectively at station
i.

The score is computed for all the N stations and the regional score SPANreg,T is computed as:

SPANreg,T = 1− 1
N

N

∑
i=1

SPANi,T . (V.11)

In the end, we have 50 values of SPAN. A robust model should have a SPANreg,T of 1, therefore
the closer the value is to 1, the more stable/robust the model is.
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V.1.6.4 Reliability in predicting the maximum observed value

The reliability of a model is defined as its ability to associate the correct probability to a given
observation. Specifically, the FF criteria measure the reliability of the model in predicting the
maximum value in a given sample. The score is defined as:

FF(12)
i =

[
F̂(1)

i

(
max(2)i

)]n(2)i
, (V.12)

where FF(12)
i is the cross validation criteria computed at station i, by predicting the probability of

the maximum value in sub-sample 2, S(2)i , of sample size n(2)i using the model F̂(1)
i fitted on the

sub-sample 1, S(1)i .
According to Renard et al. (2013) and Blanchet et al. (2015), if the model is reliable, then

FF(12)
i is realization of a uniform distribution. Accordingly, if we compute the score for all the

stations, i,e. FF(12)
1 , · · · ,FF(12)

i , · · · ,FF(12)
N , we should end up with a set FF(12) of N realizations

of a uniform distribution. Blanchet et al. (2015) therefore, concluded that, the area between the
density of FF(12) and an uniform density should be close to zero.

The regional score FF(12)
reg is computed as 1−AREA(FF(12)) and FF(21)

reg is computed in sim-
ilar way. The closer the value is to 1, the more reliable the model is in prediction of the maxima.
We have at the end 2×50 values of FFreg .

V.1.7 Results

V.1.7.1 Estimated regions with RFA by upper tail behavior

Figure V.2: Maps of Switzerland showing the optimal number of clusters identified with the PAM
algorithm for each season. For each season, the regions identified are color coded. From top left,
going clock wise, DJF (2 clusters), MAM (2 clusters), JJA (3 clusters) and SON (3 clusters).

Fig V.2 shows the optimal number of clusters identified for each season. We have 3 clusters in
the case of winter (DJF), 2 in spring (MAM), 3 clusters in summer (JJA), and 2 in autumn (SON).
Notably, although the spatial coordinates are not used, the identified clusters are somehow spatially
plausible for each season. Stations in the South are generally in the same cluster. In the North, the
stations located in the Northern rim and the Jura generally fall in the same cluster. This is partly
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according to our knowledge of the spatial pattern of heavy precipitations in the respective seasons.
A few stations for each season, however, appeared in clusters different from their neighbors.

V.1.7.2 Estimated Regions with method of ROI

Figure V.3 presents the the neighborhoods found for each station. On the left is the map of Switzer-
land showing the stations with the size corresponding to the size of the radius identified and the
color indicating local fit will be done (for stations without any neighbors) or a regional fit (for
stations with at least one neighbor) For those without neighbors, the search terminated sometimes
at a very small distance. This means that although they have proximate neighbors according to the
crossing distance, homogeneity test failed. For some stations, however, no neighbors are found.
These are stations whose closest neighbors are at large crossing distances, and the test failed after
application.

On the right of Figure V.3, the histogram of the neighborhood size, as well as the average
number of neighbors identified for each class is shown. Only a few stations reach the bound of
100 km. The observed seasonal differences are due to the seasonality and spatial variability of
daily precipitation in Switzerland. We recall that the identification of the regions for each station
is based on the homogeneity of the scaled extremes. The occurrence of these extremes and their
quantity, which affects the test of homogeneity (Evin et al., 2016), depend on the season and hence
the observed seasonal differences

In our subsequent experiments, we keep these neighborhoods and fit accordingly the model
versions described in section V.1.3.3.b, and V.1.3.3.c i.e. ROI_EGPD_Full and ROI_EGPD_Semi.
For all the stations without any neighborhood, we simply fit a local EGPD model.

Figure V.3: Properties of the ROI identified for each station. Left: Seasonal maps showing the
size of the ROI per station. For each season, the size of the circle is proportional to the ROI size,
the smallest is 0 [km], and the largest is 100 [km]. The color of the circle indicates whether a
local fit is done, or a regional fit. Right: Histogram of the size of the ROI identified. The red points
indicates the average number of neighbors identified for each ROI class.

V.1.7.3 Choice of covariates in GAM

Following the outlined methodology for the spatial model in section V.1.3.2.c, we present in this
part the choice of covariate combinations made for the EGPD model.

We use longitude, latitude and the mean daily precipitation to explain the parameters of EGPD,
that is k, σ and ξ . Other covariates would be possible but we use these ones because they are
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readily available and so estimation at ungauged locations would be possible. After testing different
combinations of the covariates, we use the following forms for the relationships:

k = s(m) (V.13)

σ = s(lon, lat)+ s(m) (V.14)

ξ = s(lon, lat) (V.15)

where s(lon, lat) means a thin plate spline smooth s on the longitude lon and latitude lat, s(m)
means a cubic spline on the mean daily precipitation (m).

Although all the three model parameters have to be positive, we still used the identity link func-
tion to reduce the complexity in the generation of the gradients of the negative likelihood function
of the EGPD model (necessary for model fitting in GAM, see Wood et al., 2016). We, however,
imposed constraints in the likelihood function to ensure that the parameters remain positive.

V.1.7.4 Model comparison

In this section, we present the results of the comparison between the competing models, as judged
by the criteria introduced in Section V.1.4. We remind that the sampling was repeated 50 times
for all the models, and so for clarity, we show the boxplots of the criteria. Each boxplot contains
50 values of the criteria obtained per run in the case of SPAN, 100 in the case of FF and NRMSE,
and 500 in the case of CRPS (500 corresponds to the number of stations in Switzerland, for which
the criteria was computed on).

First, the accuracy/reliability of the models in the bulk of the distribution as measured by the
NRMSE is shown on the left of Figure V.4. The results are shown per season and the closer
the value is to 1, the more accurate the model is. From this result we can clearly see that for
all seasons, the two models based on ROI are the most reliable. ROI_EGPD_Full model (where
we regionalize according to the method of ROI, all the three parameters of the EGPD model)
being the best model compared to ROI_EGPD_Semi model 4 (where only the shape parameter is
regionalized, but the other two parameters are locally estimated). The performance of the other
regional models is similar and there is no large improvement of these models over the local EGPD
model according to this criteria. The CRPS score gives a combined measure of the spread and
reliability of the competing models. A model should not only assign the correct probabilities to
the observations, but the spread of the probabilities estimated from the different sub samples (100
in our case) should be low as well. We computed this score for all the positive observations at
every station. The best model should have the smallest score.

The plot on the right of Figure V.4 presents the seasonal boxplots for the CRPS of the 5
models. Each box plot consists of 500 points, one per station (Recall the scores are computed
for only the 500 stations located within Switzerland). From the boxplots and the medians, it is
clear that ROI_EGPD_Full has the smallest value of this score. For all seasons, (except summer)
the local model has the largest score, showing that the models offer improvement over the local
model.

The stability/robustness of the estimate of a 100-year return level in between two periods as
measured by the SPAN criteria is shown on the left of Figure V.5. Obviously all the regional
models show clear improvement in robustness over the local EGPD model. The spatial model
(GAM_EGPD) shows the highest robustness over all the models, except in autumn when it is
slightly overtaken by ROI_EGPD_Full model. The results also shows that of all the four regional
models, the RFA model based on upper tail (Omega_EGPD) has the smallest robustness. In the
case of the two ROI models, ROI_EGPD_Full is more robust compared to the ROI_EGPD_Semi
model. The former involves regionalizing all the model three parameters while the latter involves
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Figure V.4: Criteria applied on the bulk of the distribution for each season. Left: Accuracy of the
whole distribution as measured by the NRMSE, each boxplot contains 100 values. Right: CRPS
score, each boxplot contain 500 points, 1 per station.

only the shape parameter regionalization. Looking at the two models where only the shape param-
eter is regionalized, the model based on ROI (ROI_EGPD_Semi) is more robust in all the seasons
compared to the model based on upper tail behavior that involves clustering (Omega_EGPD).

Finally, the FF score measures the reliability of the models in the upper tail, more precisely
in the prediction of the maximum observed value. This criterion is also optimized at a value of 1.
The plot on the right of Figure V.5 shows generally high values of this score for all the models,
indicating that they are generally reliable in the prediction of the maximum observed value. For
all seasons all the regional models appear to be more reliable compared to the local model. An
exception is however in the case of the model (Omega_EGPD) in winter and ROI_EGPD_Semi
in summer (looking at the median). In autumn and summer, GAM_EGPD model emerges as the
most reliable. Whereas in winter ROI_EGPD_Full is the most reliable, ROI_EGPD_Semi is the
most reliable in spring.

To conclude, we present an overall summary of the results in Table V.2 by focusing on the
median of the boxplots. We also show the map of seasonal 100-year return level predicted with
the ROI_EGPD_Full model in Figure V.6. The maps reveal clear seasonality and spatial pattern.
Ticino in the south is subject to the highest levels, especially in the autumn, where up to 400mm
can be expected.
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Figure V.5: Criteria applied on the upper tail for each season. Left: Robustness of the local EGPD
and the four candidate models, as measured by the SPAN criteria. The stability is measured with
respect to a 100-year return level estimate. Each boxplot contain 50 values. Right: Reliability in
prediction of the maxima as measured by the FF criteria, each boxplot contain 100 values.

Table V.2: Summary of the comparison results from the four criteria used. For each season and
criteria, the model with the highest median is shown. In the case of the CRPS score however, the
model with the smallest median CRPS is shown.

Season NRMSE CRPS SPAN 100 FF

Winter ROI_EGPD_Full ROI_EGPD_Full GAM_EGPD ROI_EGPD_Full

Spring ROI_EGPD_Full ROI_EGPD_Full GAM_EGPD ROI_EGPD_Semi

Summer ROI_EGPD_Full ROI_EGPD_Semi GAM_EGPD GAM_EGPD

Autumn ROI_EGPD_Full ROI_EGPD_Full ROI_EGPD_Full GAM_EGPD

V.1.8 Conclusions and Discussion

The objective of this contribution was to compare three methods to improve the at-site estimates
of daily precipitation. By considering a dense network of 1176 stations mainly located in Switzer-
land, we compared methods based on different philosophies to regionalize the estimation of daily
precipitation. The first method defines homogeneous regions based on their upper tail similarity.
No covariate is used in the delineation of regions, but only the precipitation data at hand. The
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Figure V.6: Map of Switzerland showing the 100year return level for the four seasons as predicted
with ROI_EGPD_Full model.

second method avoids defining "hard" clusters but assumes that every station has its homogeneous
region that can be identified using homogeneity tests. The third method is spatially based, so all
the data is used to estimate smooth and flexible surfaces for the model parameters. Pooling the
data to estimate the surfaces thus ensures sharing of information between stations. Using these
methods, we built four regional EGPD models and compared them. The comparison is based
on the accuracy, robustness, and reliability of the models in a cross-validation framework. More
precisely, we assessed the performance in both the bulk of the distribution (NRMSE and CRPS)
and the upper tail (SPAN and FF).

In contrast to most comparative studies of regionalization approaches that focused on extreme
distributions (GEV or POT), we assumed the daily data to follow the EGPD. This distribution
can adequately model the full spectrum of precipitation intensities. It has the elegant property of
being EVT compliant in both the upper and lower tails while providing for a smooth transition in
between.

The results showed that regionalization offers improvement in robustness and reliability even
in the case of a full-scale model (EGPD) that includes the whole data in the estimation of its
parameters.

From the four criteria used, the performance depends on the season, but we can still make the
following conclusions:

• In terms of the reliability/accuracy over the whole distribution, the ROI model (ROI_EG-
PD_Full), with all parameters regionalized, emerged as the most accurate.

• Reliability in the prediction of the maxima, as measured by FF, indicated that the GAM
model is the most reliable, especially the seasons with the heaviest precipitation (summer
and autumn).

• GAM model emerged as the most robust (SPAN) and is followed closely by the ROI model
(ROI_EGPD_Full).

In conclusion, two models compete hand in hand; the ROI model (ROI_EGPD_Full) and the
GAM model. When we focus on the bulk of the distribution (NRMSE and CRPS), ROI_EGP-
D_Full is the best model. When we however focus on the far tail (FF and SPAN), the GAM model
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is the best. As Garavaglia et al. (2011) pointed out, the two properties of reliability and robustness
are complementary. For two models of similar reliability, the model with the best robustness
should be preferred. Given this, the GAM model on EGPD, combining both properties in the
upper tail can be said to be the preferred method. We note, however, a major drawback of GAM.
It requires significant computational time as compared to the ROI, especially in our case where we
have a dense network (1176 stations), with long series (up to 156 years for some stations), and we
use all the positive precipitation. In practice thus, it would be much easier to use ROI compared
to GAM, given that the performance of both is similar, and the former is more reliable when we
consider the whole distribution (a feature of interest in our case), not only maxima.

It is worthy to note that in the course of the present study, we focused our evaluation at the
station level, where we have observations. A further step will be to assess the models more gen-
erally by looking at their performance at ungauged locations in spatial cross-validation as done by
Blanchet and Lehning (2010), Carreau et al. (2013) or more generally the framework proposed by
Blanchet et al. (2019). In this aspect, the spatial model based on GAM offers a key advantage over
the other methods since it inherently results in a regional model that can be applied everywhere.
In the case of the other methods, however, the step of choosing the appropriate interpolation tech-
nique has to be considered. Also, it is worth mentioning the inherent drawback of conventional
RFA approaches involving "hard" clustering, in this case, the Omega_EGPD model. They are
known to produce abrupt parameter shifts (in our case, the shape parameter) along the boundaries
of the contiguous regions. Again, estimation at ungauged locations between two homogeneous re-
gions with a significant difference in the regional shape parameter will be a difficult decision. The
method of ROI however circumvents some of the drawbacks of the conventional RFA approach.

Finally, our approach also assumed the spatial independence of the observations. This assump-
tion will however not be true, especially since we have considered all the positive precipitation.
We however expect the benefit of the regional approach to outweigh the consequences of ignoring
the spatial dependence (Hosking and Wallis, 1988), especially since our interest is on the marginal
distribution only (Zheng et al., 2015). An interesting aspect also is to improve the method based
on omega (see V.1.3.2.a) to take into account both the margins and the dependence between sites.

Open Research

The functions to run the EGPD using the GAM model (see Section V.1.3.3.d) can be found at
https://github.com/abuharuna/egpdGAM
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V.2 Selection of regionalization method for ungauged sites

The comparison in the previous section focused on the performance of the regionalization
methods at the station scale. A major point of interest is the issue of ungauged sites, that is lo-
cations in the study area where there are no measurements. It will be interesting therefore to
check how the models perform at ungauged sites. This involves comparing the models in a spatial
cross-validation framework as against the previous case (Section V.1) that involved comparison
in a temporal cross-validation framework. We consider two of the models that appeared to com-
pete hand in hand in the previous comparison. They include the GAM_EGPD model based on
the spatial approach (GAM) and the ROI_EGPD_Full model based on the region of influence ap-
proach (ROI). For ease of reference, we will henceforth simply call them GAM and ROI models
respectively.

V.2.1 Parameter regionalization

The GAM model gives automatically a regional model, so the parameters do not need to be in-
terpolated, however, the parameters of the ROI model need to be interpolated. The search for
an appropriate technique for interpolation is an immense task of its own since there are different
methods, such as linear regression, kriging, regression with smoothing splines, etc., each again
with different variants. For instance, within kriging, it is possible to consider ordinary kriging,
kriging with external drift, or co-kriging. Fortunately, Blanchet et al. (2019), in a similar context
to ours, compared the three methods, along with their variants, and found out that the thin plate
spline (TPS) with elevation as external drift is the best method. We therefore follow their footsteps
and use the TPS method to interpolate the parameters of the ROI model. In each case, longitude,
latitude, and elevation are used as covariates.

V.2.2 Spatial cross-validation framework

In the spatial cross-validation framework, we randomly divide the 1,176 stations into two equal
sizes S1 and S2, each containing 50% of the stations (588 stations). These are the same stations
used in Section V.1 of this chapter and their locations are shown in Figure V.1, and their description
is given in Section V.1.2 of this chapter.

In the first instance, we consider S1 as the calibration sample and fit the GAM and ROI models
to the stations in the sample. The fitting procedure for both models is described in Section V.1.3.3.
Next, for the case of the ROI model, we interpolate the fitted EGPD parameters using TPS to
estimate the response surface for each parameter. As stated earlier, the GAM model gives the
response surface directly for each parameter, so there is no need for further interpolation. We then
use the fitted response surfaces from both GAM and ROI to estimate the EGPD parameters at the
location of the stations in S2 to have F̂1 models. The C12 criteria are computed on S2 stations
by comparing their observations with the F̂1 models. C21 criteria are computed symmetrically by
using S2 as the calibration sample and S1 as the validation sample. The cross-validation procedure
is replicated 20 times to address sampling bias.

The criteria we compute in each case are the NRMSE, FF, and SPAN. The reader is referred
back to Sections III.5 and V.1.6 for the formulations of these criteria. As a reminder, NRMSE mea-
sures the accuracy and reliability of the model over all the observations (the entire distribution),
FF assesses the reliability of the model to assign the correct probability to the overall maximum
at the validation stations and SPAN evaluates the robustness of a model at extrapolation, i.e. the
stability of a high return level estimate from the model when the calibration data set is changed.
In this application, we compute SPAN for return periods of 100, 1,000, and 10,0000 years.

To compute FF and NRMSE, the fitted model is validated against the observations at a given
location, so these criteria can only be computed at the validation stations (588 stations). SPAN, on
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the other hand, compares return level estimates from two models F̂1 and F̂2 at a given location.
Hence it can be computed even at ungauged locations by estimating F̂1 and F̂2 from the fitted
response surface using information from the covariates. Hence, we consider 41,308 fictitious
locations situated at a 1 by 1 km grid in Switzerland to compute the SPAN.

V.2.3 Result and discussion

Figure V.7: Left panel: Accuracy of the model in the whole distribution (NRMSE). Right panel:
Reliability criteria on the far tail (FF). Each criterion is optimized for a value of 1. Each boxplot
contains 40 points corresponding to 20 samplings in a spatial cross-validation framework.

The spatial cross-validation results for the NRMSE and FF criteria are shown in Figure V.7.
The best model for both criteria should have a value of one (1). In both cases, the figures reveal
that ROI when parameters are interpolated with TPS is the best compared to the GAM model.
The robustness criteria shown in Figure V.8 reveal the same result, the ROI model has better
performance compared to the GAM model. On an ideal basis, the GAM model should theoretically
be the better model since the ROI model relies on post-interpolation of the parameters, however,
the results show otherwise. One possible explanation could be that for all seasons, precipitation in
Switzerland exhibits significant spatial variability resulting from the interplay of multiple sources
and complex topography. Consequently, it was difficult for the GAM model to fit surfaces that
were flexible enough to capture/explain this complex variability. Furthermore, we are coupling
GAM with a distribution (EGPD) that uses all the non-zero precipitation. This will result in
considerable computational demand and difficulty in the optimization of the number of required
parameters (coefficients of the basis functions as well as the smoothing parameters). A commonly
adopted technique for expediting the computational speed in the case of the large dataset is to set a
maximum number of rows, and then to sample the observations without replacement (Youngman,
2020). Nevertheless, since we use all non-zero precipitation. we didn’t find this technique practical
due to the risk of excluding extreme precipitation events from the analysis.

In summary, based on the results from both temporal and spatial cross-validation, the regional
model that combines the ROI approach with TPS interpolations emerges as the most effective
method for regionalizing extreme daily precipitation in both gauged and ungauged locations within
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100 years 1,000 years 10,000 years

Figure V.8: Stability of 100, 1,000, and 10,000-year return level estimates, as measured by SPAN
in a spatial cross-validation framework, for the four seasons. SPAN is optimized for a value of 1.
Each boxplot contains 20 points, with each point corresponding to 1 simulation run. The SPAN is
averaged over a 1 by 1 km grid covering the entire Switzerland.

our study area. However, a notable limitation of this model is its independent interpolation of
the EGPD parameters, which overlooks potential dependencies and correlations among the three
EGPD parameters.

One potential solution to address this limitation involves adopting a hierarchical approach for
interpolating the ROI-EGPD parameters, as demonstrated in a prior study by Deidda et al. (2021)
for GEV distribution. To apply this approach, four steps, outlined below are followed.

• First, the shape parameter ξ at the station location that was regionalized using the ROI
model is interpolated.

• Subsequently, the remaining two parameters, σ , and κ are re-estimated at the station loca-
tions, conditioned on the interpolated ξ .

• In the third step, σ is interpolated, while κ is re-estimated conditionally taking into account
the interpolated values of both ξ and σ .

• Finally, the re-estimated κ values are interpolated to obtain a fully regional EGPD model.

In the future, it will be interesting to employ this hierarchical approach and assess its perfor-
mance compared to other methodologies. This will contribute valuable insights into the effective-
ness of addressing parameter dependencies within the context of extreme precipitation regional-
ization.
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V.3 Summary

To sum up, the main take-home message from this chapter is summarized below:

Question 2: What is the most effective regionalization method to improve the
robustness and reliability of daily precipitation estimates in a topographically
complex area?

• Three regionalization methods were compared to improve the robustness
and reliability of daily precipitation estimates using the EGPD.

• The results show that all the regional models offered improvement com-
pared to the local application of the EGPD.

• Two of the regional models, one based on ROI and the other based on
GAM, appeared to compete hand in hand in temporal cross-validation and
were further compared in spatial cross-validation.

• The spatial cross-validation results showed that the ROI coupled with thin
plate spline interpolation emerged as the best model for both gauged and
ungauged locations.

• A possible limitation of the approach is that it neglects the likely correla-
tion between the EGPD parameters and a hierarchical approach was rec-
ommended to be explored in the future.
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VI
Modeling of Intensity-Duration-Frequency (IDF)

Relationships in Switzerland

Chapter overview

T his chapter addresses Question 3 by focusing on modeling IDF relationships
of precipitation in Switzerland using all the non-zero precipitation intensi-

ties. The three-parameter EGPD model is used as the distribution for the non-zero
precipitation intensities. Various approaches to building IDF relationships are ex-
plored and their performance is compared using some well-chosen criteria. The
best approach is retained and used to build IDF curves in Switzerland for hydro-
logical applications.
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Preamble to the paper

The goal of this article is to use the extended generalized Pareto distribution (EGPD) to build
Intensity-Duration-Frequency (IDF) relationships using non-zero precipitation intensities. To achie-
ve this aim, the article starts by reviewing three outlined approaches for building IDF relationships.
The first approach is based on the scale invariance theory, where IDF relationships are built based
on the scaling behavior of precipitation. The second method is based on the general IDF formu-
lation of Koutsoyiannis et al. (1998), which generalizes the various traditional IDF formulations.
The last approach is called the data-driven approach, where each parameter can vary with dura-
tion, and the form of the relationship is empirically determined by the data at hand. Models of
IDF relationships are then built based on these three approaches and some extensions to account
for scaling breaks and varying shape parameters with duration. This leads to a total of ten IDF
models with parameters ranging from four to ten. The models are compared first in calibration
and then in a split-sample cross-validation approach. To the best of our knowledge, this article is
the first to present an objective comparison of the three outlined IDF curve modeling approaches.
Furthermore, while several applications of the EGPD have been presented in the literature, this
work presents the first attempt to apply this distribution in IDF curve development. Finally, as far
as we know, this study presents the first attempt to model IDF curves for the whole of Switzerland
that link parameters with duration, in addition to the traditional IDF curves.
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Abstract
Intensity-Duration-Frequency curves are useful in water resources engineering for the
planning and design of hydrological structures. As opposed to the common use of only
extreme data to build IDF curves, here, we use all the non-zero precipitation intensities,
thereby making efficient use of the available information. We use the Extended General-
ized Pareto Distribution (EGPD) to model the distribution of the non-zero precipitation
intensities. We consider three commonly used approaches for building IDF curves. The
first approach is based on the scale-invariance property of precipitation, the second relies
on the general IDF formulation of Koutsoyiannis et al. (1998) while the last approach
is purely data-driven (Overeem et al., 2008). Using these three approaches, and some
extensions around them, we build a total of 10 models for the IDF curves, and then we
compare them in a split-sampling cross-validation framework. We consider a total of 81
stations at 10 min resolution in Switzerland. Due to the marked seasonality of precipi-
tation in the study area, we performed a seasonal-based analysis. The results reveal the
model based on the data-driven approach as the best model. It is able to correctly model
the observed intensities across duration while being reliable and robust. It is also able to
reproduce the space and time variability of extreme precipitation across Switzerland.

VI.1.1 Introduction

Intensity-Duration-Frequency (IDF) curves provide the link between precipitation intensity, dura-
tion, and non-exceedance frequency (or rather the return period). It is a very common and useful
tool in the area of water resources engineering. IDF curves are practically used to infer high
return levels of precipitation intensities for the hydrological designs of structures such as sewer
lines, culverts, drains, dams, dykes, etc. They are also used to calibrate/validate stochastic weather
generators (Ritschel et al., 2017).

IDF curves are traditionally modeled by first fitting a statistical model, e.g a Gumbel distribu-
tion, to extreme data of each duration separately. Secondly, selected return levels, e.g. 2, 5, and
10 years are obtained for each duration from the fitted distribution. And lastly, the inferred return
levels are linked to duration by some empirical formulation (e.g. Sherman, 1931; Bernard, 1932;
Chow, 1962; Carreteras, 1987; Meylan et al., 2012). Although common and easy to implement,
there are several drawbacks to this approach. The approach lacks parsimony because several pa-
rameters have to be fitted (a set for each return period). It is not robust in the sense that IDF curves
are only available for specific return levels. Thus, whenever a new return level is needed, the pro-
cess has to be repeated. Another major drawback is that uncertainty in the return levels obtained at
the initial steps is not taken into account in the last step. Lastly, there can be intersections between
curves of different return levels that cannot be theoretically justified.

To overcome the outlined limitations of the traditional parametric methods, novel approaches
were considered to link the different durations together in IDF curves. In general, in spite of
the approach, two choices have to be made: the model for the distribution of the precipitation
intensities, and the model for the dependence of intensity on duration.

For the choice of the model for the distribution of the precipitation intensities, extreme value
distributions are usually considered. For example, in the case of annual maxima series, General-
ized Extreme Value (GEV) (e.g. Blanchet et al., 2016; Innocenti et al., 2017; Van de Vyver, 2018;
Sane et al., 2018; Mélèse et al., 2018; Ulrich et al., 2020; Jurado et al., 2020; Fauer et al., 2021), or
a special case of the GEV, that is Gumbel (e.g. Yu et al., 2004; Agbazo et al., 2016; Chang et al.,
2016; Ghanmi et al., 2016). For the peaks over threshold (POT), Generalized Pareto Distribution
(GPD) has been used (e.g. Madsen et al., 1995; Ben-Zvi, 2009; Van de Vyver and Demarée, 2010).

Regarding the model for the dependence of intensity on duration, many formulations that are
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based on different approaches have been proposed in the literature. Here we identify and focus on
three major approaches.

The first approach is based on scale invariance. It has been shown that precipitation exhibits
this property within some scales (see Schertzer and Lovejoy, 1987; Gupta and Waymire, 1990,
1993; Over, 1995; Harris et al., 1997; Lima, 1998; Molnar and Burlando, 2008; Veneziano and
Lepore, 2012; Paschalis, 2013). This property provides the physical justification for modeling IDF
curves, and thus the possibility of inferring return levels of interest across scales. This approach is
arguably the most commonly used approach, possibly because of its rich theoretical background,
physical basis, and ease of application in regions with scarce availability of sub-daily precipitation
series. IDF curves based on this approach can be found in several applications (Burlando and
Rosso, 1996; Menabde et al., 1999; Willems, 2000; Van de Vyver and Demarée, 2010; Blanchet
et al., 2016; Innocenti et al., 2017; Sane et al., 2018).

The second approach is based on the general formulation of Koutsoyiannis et al. (1998), a
generalization of the various empirical formulations for modeling IDF curves. This formulation
has the key advantage of being a separable function of return levels and duration. It is also consis-
tent with both probabilistic theories and the physical constraints of scaling across duration. Several
applications of this formulation to build IDF curves can be found in the literature (e.g. Koutsoyian-
nis et al., 1998; Van de Vyver and Demarée, 2010; Blanchet et al., 2016; Sane et al., 2018; Ulrich
et al., 2020; Fauer et al., 2021; Roksvåg et al., 2021). This method can be seen as an extension of
the scaling approach in which an additional parameter (θ ) is added to allow for the curvature of
the return levels curves for short durations.

The third approach is based on Overeem et al. (2008) and is called the data-driven approach.
Here the functional relationship (linkage) between IDF model parameters and duration is empiri-
cally determined from the data itself. The method involves fitting a parametric model, for example,
GEV, to data of each duration. A particular regression model is then fitted for each parameter as a
function of duration. As a consequence, the return level of any duration can be inferred from the
inverse of the distribution, with parameters obtained from the regression model. This approach
imposes neither the assumption/existence of scaling nor the separability condition in the case of
the general formulation of Koutsoyiannis et al. (1998). Interestingly, both approaches can be seen
as special cases of the data-driven approach with particular functional relationships imposed on
the parameters. We note that, although the other two approaches also consider the link between
parameter and duration, the specific forms rely on some underlying theoretical hypothesis. How-
ever, with the data-driven method, the functional relationship is empirically determined from the
data itself, hence its name.

There are also nonparametric approaches, which rather than imposing a parametric model on
the intensities, use stochastic rainfall models to estimate the IDF curves (for a brief review, see
Langousis and Veneziano, 2007; Veneziano et al., 2007; Tyralis and Langousis, 2019). Here, we
focus on the class that uses parametric models for the intensities.

The common use of GEV and GPD as models for the distribution of the precipitation intensi-
ties in IDF curves is justified by the practical use of IDF curves, which is to infer high return levels
for hydrological designs. However, there is a major drawback in using these distributions. This
is mainly due to poor utilization of already scarce data; only one value per block (in GEV distri-
bution), or only values above a given threshold (as in GPD). This is why Langousis et al. (2016)
mentioned that compared to the GEV, GPD is more favored for extreme return level estimation
since it makes more efficient use of hydrologic information and hence the resulting decrease in
estimation uncertainty. Despite that, the delicate issue of threshold remains with the GPD.

As a remedy, Naveau et al. (2016) proposed the Extended Generalized Pareto Distribution
(EGPD) to model all the non-zero precipitation intensities. It has the advantage of using all the
information present in the sample of non-zero precipitation data, and not only one value per block
(like GEV distribution) or only values above a given threshold (as in GPD distribution), thereby
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reducing uncertainty. It doesn’t require the choice of GPD threshold and has the advantage of
being compliant with extreme value theory (EVT) in both the lower and upper tails. Another
advantage is its ability to model all non-zero precipitation. This has applications in water resources
management for urban water supplies, hydropower, flood forecast, and irrigation systems. As
an example, marginal distributions for the entire range of non-zero precipitation are required in
stochastic generators (see an example of application in Evin et al., 2018; Viviroli et al., 2022).
Simulated precipitation from the generators is used as input to conceptual hydrological models for
subsequent flood modeling and risk assessment. Other practical applications are in the evaluation
of numerical weather simulations or investigation of the climatology of precipitation events as
outlined by Blanchet et al. (2019). On the contrary, the assumption of independence in estimation
is more likely to be violated in the case of EGPD which uses all the information compared to the
GEV and GPD. A common approach to reducing the dependence is to apply temporal declustering,
e.g. by taking one-third of the data as done in Naveau et al. (2016); Le Gall et al. (2022); Haruna
et al. (2022).

The goal of this article is to use the EGPD to build IDF curves for the non-zero precipitation
intensities, based on the three outlined approaches, i.e., scale-invariance, the general formula-
tion of Koutsoyiannis et al. (1998) and the data-driven approach. Due to the marked seasonality
of precipitation in the study area, we consider a seasonally-based analysis, with winter (Dec-
Jan-Feb), spring (Mar-Apr-May) summer (Jun-Jul-Aug), and autumn (Sep-Oct-Nov). We use a
split-sampling cross-validation framework, based on some well-chosen criteria to compare and
select the best model. To the best of our knowledge, this study is the first to present an objec-
tive comparison of the three outlined IDF curve modeling approaches. Furthermore, while several
applications of the EGPD have been presented in the literature (e.g. Evin et al., 2018; Blanchet
et al., 2019; Tencaliec et al., 2020; Rivoire et al., 2021; Le Gall et al., 2022; Haruna et al., 2022),
our study presents the first attempt to use this distribution in IDF curves development. In addition
to the common application of IDF curves for return level estimation, IDF curves based on all the
non-zero precipitation data (modeled with EGPD) will allow for a more comprehensive validation
of stochastic weather generators. Finally, apart from the traditional IDF curves (see Eicher and
Krejci, 1996), as far as we know, this study presents the first attempt to model IDF curves that
consider linking parameters with duration over the whole of Switzerland.

The rest of the paper is organized as follows: Section VI.1.2 introduces the data and the
area under study, and Section VI.1.3 presents the EGPD, the models for the IDF curves, and
the evaluation framework. Section VI.1.4 presents the results and discussion and finally, Section
VI.1.5 draws the conclusions and gives relevant perspectives.

VI.1.2 Data and area under study

The study area is Switzerland, a small country by size with an area of 41,285 km2. Despite
its relatively small size, it however presents a complex topography with elevations ranging from
191 m to 4127 m above mean sea level. Around 30% of the area is located above the elevation of
1500 m above sea level. This results in marked spatial variability both in intensity and occurrence
of precipitation.

Point precipitation data from a total of 81 stations, with a minimum record length of 20 years,
are available for this study. They are spread across Switzerland and their location is shown in
Fig. VI.1. Out of this total, 71 stations belong to the SwissMetNet of the Swiss Federal Office for
Meteorology and Climatology (MeteoSwiss) while 10 belong to the canton of Lucerne, a partner
network of MeteoSwiss. The precipitation data is measured with a tipping-bucket gauge of 0.1
mm depth resolution at a sampling resolution of 10 minutes. Most of the stations at high altitudes
are shielded from wind and the tipping gauge is heated in order to account for snow. As a result,
heating-related losses can result in up to 24% underestimation compared to the measurements us-
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ing an electronic weighting system (Savina et al., 2012). The sample data has a variable length
ranging from a minimum of 20 years to a maximum of 40 years from 1981 to 2020. The sta-
tions are located at elevations ranging from a minimum of 203 m, an average of 952.4 m, and a
maximum of 3294 m.
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Figure VI.1: Map of Switzerland showing the location of the 81 stations. The color of the points
indicates the length of the precipitation data in years. The background color shows the elevation
above sea level in meters.

The climate of Switzerland is influenced by the Alps, the Atlantic Ocean, as well as the
Mediterranean sea (Sodemann and Zubler, 2009; Giannakaki and Martius, 2015). As a result,
precipitation is characterized by seasonality and spatial variability both in intensity and occur-
rence (Sevruk, 1997; Sevruk et al., 1998; Frei and Schär, 1998; Molnar and Burlando, 2008; Isotta
et al., 2014). Annual precipitation is largest in the Alps and its rims, along the Jura (in the north-
west), and in the Ticino (south of the Alps). In these areas, annual sums are generally larger than
2000 mm. On the other hand, the inner valleys (Rhône and Inn) receive the least annual precipita-
tion (less than 700 mm). Summer is the main season of precipitation all over Switzerland, except
in Ticino where autumn is the main season. For all regions, winter receives the least precipitation.
In terms of heavy precipitation (see Panziera et al., 2018), the spatial distribution depends on the
accumulation duration. For short-duration accumulations (e.g. 1 hour), the heaviest precipitation
occurs in summer everywhere. It is largest in Ticino, Jura, and the northern rim, where maximum
summer hourly intensities can reach up to 30 mm/hr. For higher accumulations (1 day and greater),
Ticino receives the heaviest precipitation, where a maximum of more than 130 mm over 24 hours
can be expected in autumn. For the other regions, the heaviest precipitation almost always occurs
in summer.

Due to this marked seasonality, we consider a seasonally-based analysis. We divide the data
into four seasons of three months each. Winter includes Dec-Jan-Feb, Spring Mar-Apr-May, Sum-
mer Jun-Jul-Aug while Autumn includes Sep-Oct-Nov. A similar seasonal approach was used in
previous studies in this area (see Molnar and Burlando, 2008; Fukutome et al., 2015; Evin et al.,
2018; Haruna et al., 2022),.

VI.1.3 Methodology

In this section, we start by presenting the distribution for the non-zero precipitation intensities, we
then present the various IDF models, and finally the inference strategy to estimate the parameters.
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A flowchart for the framework is shown in Figure VI.2.
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Figure VI.2: Flowchart of the framework for the study

VI.1.3.1 Marginal distribution for non-zero precipitation intensities

We define the random variable I to represent non-zero precipitation intensities. We intend to find
a distribution that will allow us to model the entire distribution of I, i.e. both its small, medium,
and extreme values. A natural choice would be the Gamma distribution, but it has been reported
to underestimate extreme precipitation (Katz et al., 2002).

When looking at only the extremes, the extreme value theory (Coles, 2001) tells us that, the
probability that the excesses of I above a high threshold u are less than or equal to a large value i
can be approximated by the Generalized Pareto Distribution (GPD) given as:

P(I −u ≤ i|I > u)−→ Hξ

(
i
σ

)
, (VI.1)

with the cumulative distribution function (CDF)
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Hξ

(
i
σ

)
=

 1− (1+ξ
i
σ
)
−1/ξ

+ if ξ ̸= 0

1− exp(− i
σ
) if ξ = 0

, (VI.2)

where a+ = max(a,0), σ > 0 is the scale parameter, and −∞ < ξ <+∞ is the GP shape parameter
that controls the upper tail of the distribution. The bounded case (short-tailed) is when ξ < 0, the
exponential case (light-tailed) when ξ = 0, and the unbounded case (heavy-tailed) when ξ > 0.

The GPD has a key advantage over the GEV since it makes use of all the observations above
the threshold u, compared to the GEV case where only the largest observation within a block,
usually a season or year, is retained. However, some major issues remain. First, there is yet no
unified method for the choice of the optimum threshold u over which excesses are GP distributed.
Secondly, the observations that are below the chosen threshold u, although precious and not easy
to come by, are discarded and entirely not utilized. Lastly, the question of modeling the whole
range of non-zero precipitation which has applications in water resource management remains.

Figure VI.3: Density of the EGPD for G(v) = vk for σ = 1, ξ = 0.5 and κ = 0.8, 1 and 2 (adapted
from Naveau et al. (2016)). The density of gamma distribution with both shape and scale = 1.4 is
shown in blue color. The right panel zooms on the right tail. Indeed the gamma tail decays much
faster while having a similar shape in the bulk of the distribution for the case of κ = 2. The case
where κ = 1 is the exact GP case.

Many parametric, semi-parametric, and non-parametric models have been proposed in the
literature as extensions to the GPD to model the full distribution of I, and not only its upper tail
as given in Equation VI.1 (Scarrot and MacDonald, 2012, see review in ). In particular, Naveau
et al. (2016) proposed a family of models they called the extended generalized Pareto distributions
(EGPD) that are defined as:

P(I ≤ i) = G
[

Hξ

(
i
σ

)]
, (VI.3)

where G is a continuous CDF that is also defined on [0,1], with constraints given in Naveau et al.
(2016) to ensure that the distribution of I remains GP in its upper tail, a gamma-like lower tail,
and a smooth transition in between. Four parametric families of G were proposed by the authors,
the simplest of which is defined as G(v) = vk. The CDF of this model is defined as:

P(I ≤ i) =
[

Hξ

(
i
σ

)]k

. (VI.4)
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The model thus has three parameters. k > 0 controls the lower tail, σ > 0 is the scale parameter,
and ξ ≥ 0 controls the upper tail. Hξ

( i
σ

)
is as defined in Eq. VI.2. We exclude the bounded case

(ξ < 0) since we are dealing with precipitation. We thus assume precipitation to be either light-
tailed (ξ = 0) or heavy-tailed (ξ > 0). The density of the model, alongside that of the Gamma
distribution, is illustrated in Figure VI.3. With just one additional parameter, κ , the distribution is
parsimonious and able to adequately model the full range of non-zero precipitation (see applica-
tions in Evin et al., 2018; Le Gall et al., 2022; Haruna et al., 2022). We thus use this model in the
rest of the paper.

VI.1.3.2 IDF models

We define the random variable Id as the average non-zero precipitation intensity over the duration
d. It is described by the CDF, Fd(i), such that Fd(i) = P(Id < i). The exceedance frequency is
defined as pd(i) = 1−Fd(i). The return period of any non-zero intensity i, as a function of pd is
given by T (Id ≥ i) = 1

pd×δd
, with δd the average number of non-zero precipitation intensities of

duration d per year. We estimate δd based on the long-term average of the non-zero precipitation
intensities per year. Consequently, the T -year return level over duration d, i(T,d), is defined as
the (1− 1

T×δd
) quantile of Fd .

Accordingly, IDF relationship is a mathematical function (T,d) 7→ i(T,d) that relates non-zero
precipitation intensity i with its duration d, and the frequency of exceedance pd (or rather the return
level T). In this article, the CDF of Id , Fd(i) is defined by the EGPD presented in Section VI.1.3.1.
All the different formulations considered here simply differ by how they define this mathematical
relationship between i, T and d, while taking Fd(i) as an EGPD model.

In the following subsections, we present the different IDF-EGPD models based on the three
outlined approaches, i.e., scale-invariance, the general formulation of Koutsoyiannis et al. (1998),
and data-driven approaches. For sake of simplicity, we drop the "EGPD" term and simply refer to
the IDF models as IDFmodelname, where the subscript "modelname" refers to the approach used to
build the model.

For all the models, the IDF curve, corresponding to the (1− 1
T×δd

) quantile of the EGPD is
defined in Eq. VI.5 as:

i(T,d) =
σd

ξd


(

1−
[

1− 1
T ×δd

] 1
κd

)−ξd

−1

 , (VI.5)

where κd > 0, σd > 0 and ξd ≥ 0 are the three EGPD parameters for the duration d, T is the
return period in years, δd is the average number of non-zero precipitation intensities per year for
the duration d. The choice of the model determines whether each of the three parameters; κ , σ ,
and ξ varies with d or not, and the form of the relationship.

We consider thirteen durations, i.e., d = 30 min, 40 min, 1, 2, 3, 6, 10, 12, 16, 18, 24, 48,
and 72 hours. We consider durations up to 72 hours (3 days) because according to Froidevaux
et al. (2015), precipitation accumulations from 0 to 3 days before an event are the most relevant
for triggering floods of high magnitudes in Switzerland. The intermediate durations are meant to
ensure a good spread in a logarithmic scale and for a later comparison of our quantiles with those
provided by MeteoSwiss (not in this paper). We use a fixed window to aggregate the data from the
gauge resolution of 10 mins, to the various durations. For instance, the 24hr intensities correspond
to amounts accumulated from 00h00 to 24h00 UTC of every day, divided by 24. We chose this
time window because, in the study area, convective events are mostly in the evening. This will
allow us to differentiate between the first and last 12 hours starting from 00 hrs. The choice of a
fixed window over a moving window will likely result in omitting the highest intensities in each
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duration. However, since we are using all the non-zero precipitation intensities, using a moving
window will result in significant dependence in the time series.

VI.1.3.2.a Scaling IDF model: Scale invariance in the strict sense of Gupta and Waymire
(1990) refers to the property where the probability distribution of Id can be inferred from the
distribution of Id0 at the reference duration d0 through:

Id
dist
= Cλ Id0 , (VI.6)

where the parameter Cλ determines the type of scaling; simple-scaling or multi-scaling. For our
case, the reference duration d0 is taken as 1 hour.

A weaker assumption, the so-called "wide sense scaling" (Gupta and Waymire, 1990), is when
the scaling is in the moments according to:

E
[
Iq
d

]
=

(
d
d0

)−k(q)

E
[
Iq
d0

]
, (VI.7)

where q is the order of the moment, k(q) is called the moment scaling function, d0 is the reference
duration. Moment scaling analysis as described by Gupta and Waymire (1990) is used to determine
the type of scaling.

When the parameter in Eq. VI.6, Cλ =
(

d
d0

)−H
, i.e, a scalar that depends only on the ratio of

the scales, we have "strict sense simple-scaling". This is expressed in Eq. VI.8.

Id
dist
=

(
d
d0

)−H

Id0 , (VI.8)

where 0 < H < 1 is the scaling exponent. The other variables retain their meanings.
Wide sense simple-scaling is when the moment scaling function in Eq. VI.7 is linear in q, i.e.

k(q) = Hq, as expressed in Eq. VI.9.

E
[
Iq
d

]
=

(
d
d0

)−Hq

E
[
Iq
d0

]
. (VI.9)

It can be shown that, under the strict sense simple-scaling, only one parameter of the EGPD
is scaling, which is σ , whereas κ and ξ are independent of duration. For the rest of the paper, we
drop the term "strict sense", and simply use "simple scaling" for convenience. Accordingly, the
simple-scaling EGPD model, IDFss, is defined such that: κd = κd0 , ξd = ξd0 , and σd is a power
law given as:

σd =

(
d
d0

)−H

σd0 , (VI.10)

where κd0 > 0, σd0 > 0 and ξd0 ≥ 0, are the parameters of the reference duration d0 = 1 hour, and
0 < H < 1 is the scaling exponent. The inference method for the parameters is described in section
VI.1.3.3.

An important issue is the existence of multiple scaling regimes in precipitation. This means
that different scaling behaviors (scaling exponents) exist for different ranges of duration. IDF
curves have to be modeled considering the existence of this change in scaling (e.g. Yu et al., 2004;
Bougadis and Adamowski, 2006; Courty et al., 2019). To illustrate this behavior, we consider
the case of a station at Robbia in Graubünder in winter. We fit the EGPD to the data of each of
the 13 durations separately by maximum likelihood. We then inspected how the estimated scale
parameter (σ ) varies with duration. The result is given in Fig. VI.4a. Here, a single power law
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Figure VI.4: Illustration of a) Break in scaling of the σ parameter in winter at a station, Robbia
in Graubünden. The points colored black are the estimated σ for each duration separately. The
models in blue and red are given in Eq. VI.10 and VI.11 respectively. b) Dependence of ξ on
duration in summer at a station in Zurich. The black colored points are the estimated ξ for each
duration separately. The lines are the fitted linear models whose equations are given in A.2.1. The
broken lines represent the 95% confidence interval for the fitted models. The plots of the complete
EGPD parameters with duration at these two stations are also given in Appendix A.2.1.2 for the
four seasons.

(log-log given in Eq. VI.10 ) in blue is not enough to explain the scaling. To account for this break
in the scaling relationship, we define the two-regime simple-scaling EGPD IDF model, IDFss_T R

as:

σd =


(

d
d0

)−H1
σd0 if d ≤ K(

d
d0

)−H2
σd0 ×KH2−H1 if d > K

. (VI.11)

An illustration of this equation is in Figure VI.4a (log-log TR in red). Where K is the duration
of the scaling break, σd0 > 0 is the scale parameter for the reference duration d0 = 1 and σd is
continuous in d = K. The other parameters, 0 < H1 < 1 and 0 < H2 < 1 are the scaling exponents
of the first and second regimes. The other two EGPD parameters κd = κd0 , ξd = ξd0 , remain
independent of durations. Hence for this model, a total of six parameters have to be estimated, i.e.,
κd0 , σd0 , ξd0 , H1, H2 and K.

Lastly, although the simple-scaling EGPD model imposes a constraint on the linkage of ξ with
d, i.e, ξd = ξd0 , we however notice some of the stations to show an apparent variation of ξ with
respect to d. For illustration, we consider a station in Zurich in summer. We fit EGPD to the data of
each of the 13 durations separately by maximum likelihood. We then inspected how the estimated
shape parameter (ξ ) varies with duration and modeled the relationship through a linear-log form
as expressed in Eq. VI.12. Fig. VI.4b illustrates this and how the linear-log model fits the points
correctly:

ξd = aξ +bξ log(d), (VI.12)

where aξ and bξ are the intercepts and slopes respectively. This leads to two additional IDF mod-
els, with ξ = f (d), namely:

• IDFss_ξ (d): an extension of the basic simple-scaling model IDFss, to allow ξ to vary with d
according to Eq. VI.12.
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• IDFss_T R_ξ (d): an extension of the two-regime simple-scaling model IDFss_T R, to allow ξ to
vary with d according to Eq. VI.12.

VI.1.3.2.b General IDF formulation: Koutsoyiannis et al. (1998) proposed a general formu-
lation for the different traditional formulations of the IDF curves in the literature. He showed that
all of them can be simplified into the form:

i(T,d) =
a(T )
b(d)

, (VI.13)

where b(d) = (d+θ)H . The parameter θ > 0 is the duration offset, and 0 < H < 1 is the duration
exponent. a(T) is the (1− 1

T ) quantile of the re-scaled intensities Idb(d). a(T) is independent of d
and completely determined by the statistical model considered for Id , in our case, the EGPD.

This formulation has the key advantage of being a separable function of return levels a(T),
and duration b(d) that is consistent with both probabilistic theories and the physical constraints
of scaling across duration. Menabde et al. (1999) showed that this formulation is the same as the
scale-invariant model if θ is set to zero.

When applied to the EGPD, IDFkouts is defined such that: κd = κd0 σd =
(

d+θ

d0+θ

)−H
σd0

ξd = ξd0 . Five parameters, κd0 > 0, σd0 > 0, ξd0 ≥ 0, θ > 0 and 0 < H < 1 have to be inferred.
The reference duration here is taken as d0 = 1−θ .

Following the same arguments discussed in Section VI.1.3.2.a regarding the existence of a
break in the scaling relationship, and the dependence of ξ with d, we propose three extensions to
this model:

• IDFkouts_T R: Allowing for a break in the scaling regime. This model is defined as:

σd =


(

d+θ

d0+θ

)−H1
σd0 if d ≤ K(

d
d0

)−H2
σd0 ×KH2−H1 if d > K

, (VI.14)

where K is the duration of the scaling break, σd0 > 0 is the scale parameter for the reference
duration d0 = 1−θ and σd is continuous in d = K. The other parameters, 0 < H1 < 1 and
0 < H2 < 1 are the scaling exponents of the first and second regimes. The other two EGPD
parameters κd = κd0 , ξd = ξd0 , remain independent of durations. Hence for this model, a
total of six parameters have to be estimated, i.e., κd0 , σd0 , ξd0 , H1, H2 and K.

• IDFkouts_ξ (d): an extension of the basic model IDFkouts, to allow ξ to vary with d according
to Eq. VI.12.

• IDFkouts_T R_ξ (d): an extension of the two-regime model IDFkouts_T R, to allow ξ to vary with
d according to Eq. VI.12.

VI.1.3.2.c Data-Driven IDF model: The scaling theory and the specific form of Eq. VI.13
impose particular functions for the relation between the scale parameter, σ of the EGPD with re-
spect to duration, d. However, in the case of the data-driven models, the expression of the relation-
ship for each of the three EGPD parameters is empirically determined by the data itself. To guide
our choice of the appropriate functional relationship, we inspected how each locally estimated
EGPD parameter varies with duration. Fig. VI.4 gives an example for the σ and ξ parameters
at two stations. We finally settled on the following functions to model the three parameters with
respect to duration:
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κd =

 exp [aκ +b1,κ log(d)] if d ≤ Kκ

exp [aκ +b2,κ log(d)+(b1,κ −b2,κ) log(Kκ)] if d > Kκ

, (VI.15)

σd =

 exp [aσ +b1,σ log(d)] if d ≤ Kσ

exp [aσ +b2,σ log(d)+(b1,σ −b2,σ ) log(Kσ )] if d > Kσ .
. (VI.16)

For the first two parameters, κ and σ , the function is a continuous two-linear piece-wise model
in log space. K∗ is the duration of the break-point (σ continuous for d = K∗). a∗, b1,∗,b2,∗ are the
intercepts and slopes of the first and second lines respectively. In the case of ξ , the function was
already given in Eq. VI.12.

Note that, by keeping κ and σ independent of duration, and using either σd =
(

d
d0

)−H
σd0 or

σd =
(

d+θ

d0+θ

)−H
σd0 , the simple-scaling or the general formulations of Koutsoyiannis et al. (1998)

presented in Section VI.1.3.2.a and VI.1.3.2.b respectively can be obtained from this data-driven
approach.

We consider two IDF models in this class, IDFDDglobal and IDFDDlocal , both impose the same
type of functional relationships (Eq. VI.15, VI.16, VI.12), but simply differ in the way the regres-
sion parameters are estimated. The inference strategy is explained in detail in section VI.1.3.3.

The different models compared in this study are summarized in Table VI.1.

Table VI.1: Summary of the IDF models that are compared in this study.

Model No. of
Params Name of Approach Inference Method Ref. Section

1 IDFss 4 Simple-scaling Global MLEa VI.1.3.2.a

2 IDFss_T R 6 Simple-scaling " " VI.1.3.2.a

3 IDFss_ξ (d) 5 Extension of Simple-scaling " " VI.1.3.2.a

4 IDFss_T R_ξ (d) 7 Extension of Simple-scaling " " VI.1.3.2.a

5 IDFkouts 5 Koutsoyiannis et al. (1998) " " VI.1.3.2.b

6 IDFkouts_T R 7 Ext. of Koutsoyiannis et al. (1998) " " VI.1.3.2.b

7 IDFkouts_ξ (d) 6 Ext. of Koutsoyiannis et al. (1998) " " VI.1.3.2.b

8 IDFkouts_T R_ξ (d) 8 Ext. of Koutsoyiannis et al. (1998) " " VI.1.3.2.b

9 IDFDDglobal 10 Data-driven " " VI.1.3.2.c

10 IDFDDlocal 10 Data-driven
Two-step

(MLE + Regr) VI.1.3.2.c

a Maximum Likelihood Estimation

VI.1.3.3 Inference

In this section, we describe the inference methods to estimate the parameters of the ten (10) IDF
models presented in Table VI.1.

As a prerequisite to an objective comparison, the same estimation strategy has to be employed
for all the models. For this reason, we use a global maximum likelihood estimation for all the
models (as done by Blanchet et al., 2016), which we describe in the next paragraph. An exception
is the case of only one model, the IDFDDlocal , which involves a two-step method. In this case, first,
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we fit, for a given station, the EGPD on the data of each duration separately (using maximum
likelihood estimation). Secondly, we fit for each fitted parameter, the chosen regression model as
a function of duration. The parameters in Eq. VI.15 and VI.16 are estimated by segmented regres-
sion (i.e regression model with break-points), while those of Eq. VI.12 by ordinary least squares
(OLS). The segmented regression we use here is based on the algorithm of Muggeo (2003), and
with the functions that are implemented in the I segmented package. Details of the algorithm
can be found in Muggeo (2003).

We now come back to the global maximum likelihood for the other nine (9) IDF models. This
method involves pooling, for each station, all the data from the thirteen durations to estimate the
model parameters. The duration d is used as a covariate. We note here that by pooling all the
data, we made the hypothesis of independence between the intensities of the different time steps
and different durations (since we use independence likelihood (as in Blanchet et al., 2016)). This
hypothesis is difficult to justify given that we consider all the non-zero intensities. Note that by
taking fixed windows rather than moving windows, we have reduced the dependence between the
different time steps. Previous studies considered similar approaches to reduce temporal depen-
dence between different time steps, by taking a fraction of the data (Naveau et al., 2016; Le Gall
et al., 2022; Haruna et al., 2022)). The dependence between the intensities of different duration
e.g. intensities of 1 hour vs those of 2 hours, however, remains. While it might be possible to
account for this dependence using different strategies proposed in the literature (Davison et al.,
2012; Sebille et al., 2017, e.g.), we believe this requires a complete task of its own and will likely
complicate the optimization of the models. This is in addition to the possibility of performance
deterioration due to dependence structure misspecification. We take this as a limitation of the
present study and a topic for future research.

The log-likelihood (ll) that is maximized here (given in Eq. VI.17) takes left censoring into
account. The importance of using left censoring in fitting precipitation data by maximum likeli-
hood has been pointed out by Naveau et al. (2016), and they showed that better performance is
obtained by taking it into account.

llEGPD(κd ,σd ,ξd) = llcensored(κd ,σd ,ξd)+ lluncensored(κd ,σd ,ξd), (VI.17)

where llcensored and lluncensored are the contributions of the censored and uncensored data, given in
Eq. VI.18 and VI.19 respectively, as

llcensored(κd ,σd ,ξd) = ∑
d

∑
j:id<cd

κd log

[
1−
(

1+
ξdcd

σd

)− 1
ξd

]
, (VI.18)

lluncensored(κd ,σd ,ξd) = ∑
d

∑
j:id≥cd

logκd −∑
d

∑
j:id≥cd

logσd −∑
d

∑
j:id≥cd

[
1+

ξd id, j
σd

][1+ 1
ξd

]
+

∑
d

∑
j:id≥cd

[
1−

((
1+

ξd id, j
σd

)− 1
ξd

)][κd−1]

(VI.19)

where d ranges over the 13 durations and j ranges over the number of time steps in the data of
duration d. κd > 0, σd > 0, ξd ≥ 0 are the EGPD parameters for duration d. id, j is the precipitation
intensity for the duration d and time step j. cd ≥ 0 is the left censoring threshold applied to the
data of duration d. Many authors have taken this censoring approach into account but they usually
take a uniform threshold value for all the stations (e.g. Tencaliec et al. (2020) used 2 mm for
daily precipitation). Here we didn’t find the use of a common threshold over the 81 stations
sufficient. We had to select, for each station and duration, the lower threshold c that minimizes the
Normalized Root Mean Square Error (NRMSE) of Eq. VI.20 in Section VI.1.3.5.
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In both Eqs. VI.18 and VI.19, the choice of the IDF model specifies the function linking the
EGPD parameters to duration. For instance, in the case of the simple-scaling , IDFDDss , κd =

κd0 σd =
(

d
d0

)−H
σd0 ξd = ξd0 .

For the cases where two linear models are fitted (see Eq. VI.11, VI.14, VI.15, VI.16, VI.12),
we use segmented regression to estimate the regression parameters. We then use the fitted param-
eters as initial values in the optimization of the likelihood function.

We note here that other estimation methods were used in other studies for the simple-scaling
approach and the general IDF formulation of Koutsoyiannis et al. (1998), besides the global MLE.
In the case of the simple-scaling models, a two-step procedure, where the scaling exponent in Eq.
VI.8 is first obtained through moment scaling analysis, then all re-scaled intensities from all the
durations are pooled to fit the IDF model using MLE for example, (see Nhat et al., 2008; Panthou
et al., 2014; Innocenti et al., 2017). For the general IDF formulation of Koutsoyiannis et al. (1998),
the authors proposed two different estimation strategies; the so-called ’robust estimation’, and
the ’one-step least square method’. The robust estimation is a two-step procedure that involves
the estimation of the parameters of b(d), and then those of a(T ) (see Eq. VI.13), through the
minimization of the Kruskal-Wallis statistic. The one-step least square method involves the joint
estimation of all the parameters of Eq. VI.13 that minimizes the squared error of the observed
and modeled quantiles from the IDF model. Despite this, we only use the global MLE method in
order to objectively compare the models based on the same inference strategy. In addition, it has
the advantage of being a one-step estimation procedure and is better suited than least squares for
non-gaussian distribution estimation.

VI.1.3.4 Uncertainty Estimation

We employ a block bootstrap approach for the uncertainty estimation in all the models considered
in this study. The principle of the block bootstrap involves sampling with replacement, all the data
contained in a block of a given size B, R number of times. Here, for computational reasons, we
use R = 500. We then use the percentile method to estimate the 95% confidence interval (CI).
The choice of the appropriate block size B is a delicate issue in the scientific community, but one
common way is to choose B large enough to ensure that the temporal dependence in the data is
maintained. A block size B too small will underestimate the uncertainty. Here, we check the
autocorrelation in the seasonal data (result not shown), and saw that it does not decrease after a lag
of more than 1 week. Hence we choose B = 2 weeks. To maintain the dependence between data
of different durations d, we always ensured that all the data of the different durations d contained
in the same block B = 2 weeks are sampled together. A summary of the block bootstrapping is
summarized in the steps below:

For each station s and season:

1. Aggregate the data to intensities of the 13 duration d, store the data in a matrix of n by d.
Where n is the number of observations and d = 13. We call this matrix, Morig.

2. Sample with replacement, n
B blocks from the row of matrix Morig in the previous step to form

the bootstrap matrix Mboot . Both Morig and Mboot have the same dimensions. By sampling
from the rows of Morig, we keep the data of the different durations d together, and hence the
dependence structure.

3. Fit the IDF model on the data in Mboot and estimate the intended return level.

4. Repeat step 2 to 3 a total of 500 times (R = 500) to obtain the bootstrap distribution of the
return level.
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5. Obtain the 95% CI of the intended return level by percentile method. This is done by
taking the empirical 0.025 and 0.975 quantiles of the bootstrap distribution of the return
level obtained in step 4.

We note here that to ensure all the models use the same bootstrap matrix Mboot , we use the
"set.seed" in I to keep track of the random number generation in the sampling of step 2. Exam-
ples of the CI obtained with this approach are later given in Figure VI.10.

VI.1.3.5 Evaluation framework

We evaluate the performance of the models in two aspects. First, in calibration, that is how well a
given model predicts the data that was used in training it. Secondly, we evaluate their predictive
performance in a cross-validation framework.

VI.1.3.5.a Calibration: We use two criteria to evaluate the performance of the models in cal-
ibration (in-sample performance). They are itemized below:

• Normalized Root Mean Square Error (NRMSE): The normalization, which here is done by
the mean, allows the comparison of intensities of different duration across different stations.
For each station s, and duration d, we compute the NRMSE over the non-zero precipitation
intensities as:

NRMSEs(d) =

{
1

ns(d) ∑
ns(d)
j=1

(
rs,Tj(d)− r̂s,Tj(d)

)2
}1/2

rs(d)
, (VI.20)

where NRMSEs(d) denotes the score computed at station s, and duration d, ns(d) is the
number of non-zero precipitation intensities for duration d , rs,Tj(d) is the empirical quan-
tile with return period Tj =

ns(d)+1
j×δd

, δd the average number of non-zero precipitations of
duration d per year, r̂s,Tj(d) is the corresponding Tj-year return level estimated from the
fitted model. The denominator is the average precipitation at site s and duration d, given
as 1

ns(d) ∑
ns(d)
j=1 rs,Tj(d). The best model according to this criteria is the one with the lowest

NRMSEs(d).

• Akaike Information Criteria (AIC) (Akaike, 1974): This information criterion rewards the
goodness of fit, as measured by the likelihood, but also penalizes the additional number of
parameters to be estimated. It is computed as:

AIC =−2log(L)+2p, (VI.21)

where L is the maximized likelihood from Equation VI.17 and p is the number of parameters
to be estimated (see Table VI.1). The lower the AIC, the better the model.

VI.1.3.5.b Cross-validation: We follow a split sampling procedure in a cross-validation
framework. For each station s, we divide the 10 min precipitation intensities into two equal sub-
samples of the same length but on different years that are randomly chosen. We then aggregate
the data into intensities of various duration, d = 30 min, 40 min, 1,2, 3, 6, 10, 12, 16, 18, 24, 48,
and 72 hours. Then we fit each of the 10 IDF models.

We then evaluate the performance of the models fitted on sub-sample 1 on the observations in
sub-sample 2 and vice versa, by computing the relevant cross-validation criteria. We repeat this
procedure 10 times.

In the following, we present three different criteria we use to evaluate the models. These crite-
ria have been used in several studies to evaluate and compare competing models, (see Garavaglia
et al., 2011; Renard et al., 2013; Blanchet et al., 2015; Evin et al., 2016; Haruna et al., 2022).
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• The Robustness criteria, SPAN, measures the stability of the estimate of a high return level
when the training data is changed. It is computed as:

SPANs,T (d) =
2
∣∣∣r̂(1)s,T (d)− r̂(2)s,T (d)

∣∣∣(
r̂(1)s,T (d)+ r̂(2)s,T (d)

) , (VI.22)

where r̂(1)s,T (d) and r̂(2)s,T (d) are the T -year return levels estimated from sub-sample 1 and 2
respectively at station s and duration d. A SPAN of 0.5 means that the absolute difference
between the two return levels is half of their average.

For each duration d, a regional score over all the N stations (N = 81) is computed as
SPANreg,T (d) = 1 − 1

N ∑
N
s=1 SPANs,T (d) and a perfect model in terms of robustness ac-

cording to this criteria should have SPANreg,T (d) = 1.

• The reliability of the model fitted on sub-sample 1 in predicting the maxima in sub-sample
2 and vice versa is measured by the FF criteria:

FF(12)
s (d) =

[
F̂(1)

s (d)
(

max(2)s (d)
)]n(2)s (d)

, (VI.23)

where FF(12)
s (d) is the cross-validation criteria computed at station s, and duration d, by

predicting the probability of the maximum value in sub-sample 2, of sample size n(2)s (d)
using the model F̂(1)

s (d) fitted on the sub-sample 1. FF(21)
s (d) is computed symmetrically.

For a given duration, Renard et al. (2013) and Blanchet et al. (2015) showed that each
FF(12)

s (d) at a station should be a realization of a uniform distribution. So the difference in
the area, di f f between a theoretical uniform distribution and that of the N set of FF(12)

s (d)
(computed over the N stations), should be close to zero. FFreg(d) at the regional scale, given
as 1− di f f , should therefore take a value of 1 for a reliable model and 0 for a completely
unreliable model; the lower the value the less reliable the model is.

• The reliability/accuracy of the model in predicting the entire observations in cross-validation
is measured by the NRMSE_CV.

NRMSE_CV(12)
s (d) =

{
1

n(2)s (d)
∑

n(2)s (d)
j=1

(
r(2)s,Tj

(d)− r̂(1)s,Tj
(d)
)2
}1/2

r(2)s (d)
, (VI.24)

where NRMSE_CV12
s (d) is the score computed at station s, and duration d, n(2)s (d) is the

sample size, r(2)s,Tj
(d) is the empirical quantile with return period Tj in sub-sample 2 , r̂(1)s,Tj

(d)

is the corresponding Tj return level estimated from F̂(1)
s (d). The denominator is the average

daily precipitation in sub-sample 2 at site s given as
1

n(2)s (d)
∑

n(2)s (d)
j=1 r(2)s,Tj

(d).

Finally, for each duration d, the regional score computed over the N stations is given as:
NRMSE_CV(12)

reg (d) = 1− 1
N ∑

N
s=1 NRMSE_CV(12)

s (d).

NRMSE_CV(21)
reg (d) is computed in similar way. NRMSE_CVreg = 1 means a perfect model

and indicates that there is a complete agreement between all the empirical and theoretical
quantiles for all return periods. The closer the value is to 1, the more accurate the model is.
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VI.1.4 Results and discussion

We present the results in the following order: first we investigate the appropriateness of the EGPD
to fit the data of each duration. Then we present the results of the comparison of the IDF models
in calibration, and then in cross-validation. Finally, we show some IDF curves modeled with the
best model.

VI.1.4.1 Assessment of EGPD goodness of fit
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Figure VI.5: Boxplots of 1−NRMSEs(d) versus duration for the base EGPD model, i.e., fitted on
data of each duration separately. Each boxplot contains 81 points, with each point corresponding
to one station.

The first issue is to investigate whether EGPD is an appropriate model for the precipitation data
at hand. To check this, we fitted the model at each station and for each duration, independently.
We call this EGPD model fitted on each data separately as the "base" model. We then assess the
quality of the resulting fits by computing the NRMSE given in Eq. VI.20. The seasonal boxplots
of the score for each duration are shown in Fig. VI.5. The higher the score, the better the model.

In spring and summer, the quality of the fit is less good for durations lower than 2 hours. In
winter, on the other hand, the fit is less good for d = 48 and 72 hours. Overall, more than 74% of
the scores fall above 0.9 and 96% above 0.8. We, therefore, consider the EGPD to be a reasonable
model for the data.

The fitted shape parameter ξ with respect to duration is shown on Fig. VI.6. Each boxplot
contains 81 values, one for each station. We can observe strong dependence of this parameter on
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duration, especially in summer. For this season, while 75% of the stations have a ξ > 0.17 for
d = 1hr, only 25% have ξ > 0.06 at d = 24hr. In winter, however, the dependence is not very
strong, as judged by the large variability of the boxplots.
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Figure VI.6: Boxplots of the fitted ξ versus duration obtained with the base model. Each boxplot
contains 81 points, with each point corresponding to one station.

VI.1.4.2 Comparison of models

Results of the model comparison are presented under two frameworks, first in calibration, and then
secondly in cross-validation based on split sampling.

VI.1.4.2.a Evaluation in calibration: Figure VI.7 presents the seasonal boxplots of the 1-
NRMSE for the 10 IDF models and the base model. Each of the boxplots contains 1053 points,
summarizing the score over 81 stations and 13 durations. In the case of the base model (in yellow),
the scores are the same as those in Fig. VI.5, but here we merge the scores for all the durations
together.

For all seasons, the two data-driven IDF models, IDFDDlocal and IDFDDglobal always show the
best performance compared to the others. When looking at the two, the IDFDDglobal generally
outperforms the IDFDDlocal . This means that the global fitting of the model improves the estimation
performance compared to the simple interpolation of the locally estimated parameters.

Comparing the IDFss and the IDFkouts (white vs red boxplots), the results show that for all
seasons, the IDFkouts has a better performance compared to the IDFss. Recall that the two models
differ by the additional parameter θ in the former to account for curvature for short durations.
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Figure VI.7: Boxplots of the (1-NRMSE) in calibration. Each boxplot contains 1053 points, each
point corresponding to one station and duration.

Allowing for ξ = f (d) (models with subscript _ξ (d)) increased the performance of the models
mainly in summer, where all the models without this addition showed very poor performance. For
the other seasons, the gain in performance is not as pronounced.

Lastly, the models allowing for scaling break (those with subscript _T R), show improved
performance compared to those with the single regime for all the seasons, except summer (e.g.
IDFss vs IDFss_T R, i.e. the white and violet boxplots).

We note here that we used the NRMSE (Figure VI.7) to measure the accuracy over all non-
zero intensities . This is because we are using the EGPD model, which is supposed to model
correctly all the non-zero intensities. However, we also computed the NRMSE on extremes only,
which we define as the exceedances over the 98% quantile overall intensities (including zeros).
The normalization was done by the average of the exceedances. The result (not shown) maintains
the same performance ranking order of the models as in Figure VI.7.

The result in Figure VI.7 as measured by the NRMSE assesses the in-sample accuracy of the
models but doesn’t reward parsimony in terms of the number of model parameters. A natural
question to ask is whether the additional performance is worth the additional complexity. To
answer this, we compute the AIC for each model at each of the 81 stations. Each time, we rank
the models from the best (rank = 1, smallest AIC) to the least (rank = 10, largest AIC). Figure VI.8
shows results in the form of stacked-bar chars for the four seasons. The horizontal axis shows the
rank from 1 to 10, and the vertical axis shows the percentage of stations over which a model is
ranked. For instance, in winter, IDFDDglobal is the best (rank = 1) in 82.7% of the stations, while the
base model is the best in 17.3% of the stations.
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Figure VI.8: AIC results for the four seasons. Each panel shows the percentage of stations (y-
axis) over which a model is ranked (x-axis) according to the AIC criteria. The ranks are such that
’1’ is the best and ’10’ is the worst.

The result shows that for all the seasons, the 1st and 2nd rank is almost exclusively shared
between the IDFDDglobal and the base model. To summarize the results, Table VI.2 gives the ranking
of the models for the four seasons. The model with the highest percentage is selected for each rank
(most likely model at each rank). For all the seasons, the Data-driven (IDFDDglobal ) is the best, the
base model following behind. The results also revealed the relevance of the models allowing for
shape parameters to vary with duration only in summer. For the other three seasons, however, the
gain in performance is not worth the additional parameter modeling of the shape parameter as a
function of duration. Comparing the models with a constant shape parameter, while the IDFkouts
is always the most parsimonious, the simple-scaling (IDFss) remained the worst.

In summary, the IDFDDglobal which had the best in-sample performance among the IDF models
(as measured by the NRMSE in Figure VI.7), remained the best across all the seasons based on the
AIC criteria. Although our focus has been to compare the IDF models that consider the linkage
of parameters with duration, we still included the base model in the comparison of the AIC. The
result here showed that the base model (with 39 parameters) is less parsimonious compared to the
IDFDDglobal for most of the stations.

Finally, it wasn’t possible to consider the IDFDDlocal here, because, unlike the 10 models that
are based on maximum likelihood estimation, this model involves a two-step estimation process.
The first is a maximum likelihood followed by a second step to estimate the link between the
parameters and duration through least squares and segmented regressions. Nevertheless, this is not
an issue because this model is based on the same principle as the IDFDDglobal and simply differs by
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Table VI.2: Summary of the AIC ranking of the models in the four seasons. The model with rank 1
is the best, i.e it has the smallest AIC for most of the stations in that season. A rank of 10 indicates
the worst-performing model.

Model No. of Parameters Winter Spring Summer Autumn

base 39 2 2 2 2

IDFDDglobal 10 1 1 1 1

IDFss 4 6 6 10 6

IDFss_ξ (d) 5 10 10 6 10

IDFkouts 5 3 3 7 3

IDFkouts_ξ (d) 6 9 7 3 9

IDFss_T R 6 5 4 8 5

IDFss_T R_ξ (d) 7 8 9 4 7

IDFkouts_T R 7 4 5 9 4

IDFkouts_T R_ξ (d) 8 7 8 5 8

the estimation method. Thus, comparing the two IDFDDglobal vs IDFDDlocal can be seen as comparing
two estimation methods within the same model, and according to the NRMSE results in Figure
VI.7, better performance is achieved with the IDFDDglobal compared to the IDFDDlocal .

VI.1.4.2.b Evaluation in cross-validation: The split-sampling procedure allows for the com-
parison of the models in a cross-validation framework. We use three regional criteria: NRMSE_CV,
FF, and SPAN (see Section VI.1.3.5.b), to enable the comparison of the models based on their pre-
dictive capabilities. We want to select a model, which in addition to being able to fit the data used
to train it, is able to perform reliably and robustly in the presence of new data.

In the following, we present the results in three paragraphs, first according to the reliabil-
ity/accuracy of the model in predicting all the observations as measured by NRMSE_CV, then the
reliability in predicting the maxima as measured by the FF criterion, and lastly, the robustness of
the model in predicting the 100-year return level as measured by SPAN100. Figure VI.9 presents
the results for the four seasons. For all the criteria, the model with a regional score equal to 1 is
the best model.

For all seasons, the NRMSE_CV shows the data-driven models, specifically the IDFDDglobal , to
be the most accurate/reliable in predicting the entire observations compared to the other models. In
winter, however, the difference in the performance of the models is not very clear. Looking at the
summer results, the models without accounting for ξ = f (d) always have the worst performance.

In terms of the FF criterion, the best performance in predicting the maxima in winter is shown
by the IDFss_T R model. In fact, all the models with no allowance for ξ = f (d) happen to be
the most reliable models in this season. The converse is however true in the case of the remaining
seasons. In summer, while IDFDDlocal , is the best model, IDFss_ξ (d) is the best in spring and autumn.

The robustness criteria, SPAN100 shows the models with no allowance for ξ = f (d) to be
the most robust models. An exception to this is in summer, where the IDFDDglobal model is the
most robust model. Also, higher robustness is found for the models not accounting for ξ = f (d)
compared to their counterparts, for example, IDFss vs IDFss_ξ (d). This is despite the fact that the
former performs poorly in calibration, and is the least performing according to the other cross-
validation criteria of reliability. This confirms the previous comments of Garavaglia et al. (2011)
that a robust model can completely fail to model/predict the data. Hence the robustness criteria
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Figure VI.9: Boxplots of the regional cross-validation criteria, NRMSE_CV, FF, and SPAN. For
the first two criteria, each boxplot contains 2× 130 points, corresponding to one regional score
for each of the 13 durations and 10 repetitions of the split sampling. For the SPAN, each boxplot
contains 130 points. The optimal value for each criterion is equal to 1.

should only be used alongside other reliability criteria, such that the most robust model is only
selected among models of similar reliability.

To summarize the results, the best IDF model should perform well in calibration, and should
not be very sensitive to the data used to train it. In calibration, the data-driven model IDFDDglobal

showed the best performance compared to all the other nine models, it also remains accurate and
reliable at predicting the entire observations in the split-sampling cross-validation (as measured
by the NRMSE_CV), especially in summer. This is an important feature since we are interested
in the complete range of intensities. Finally, it generally showed more robustness compared to the
other models of similar reliability.

VI.1.4.3 IDF curves

Figure VI.10a shows the IDF curves from two models, IDFss and IDFDDglobal , along with their 95%
CI in summer, at a station in Zurich which is located in the Northeast of Switzerland. In this
region, summer is the main season of heavy precipitation. As a reminder, the IDFss allows scaling
only in the scale parameter, σ of the EGPD, the other two parameters (κ and ξ ), are independent
of duration. The IDFDDglobal on the other hand allows each of the three parameters to vary with
duration. The curves are for return periods T = 2, 5, 10, 50, and 100 years, while points are
the empirical levels for T = 2, 5, and 10 years. The IDFss performed poorly at predicting the
empirical quantiles. The curves modeled by the IDFDDglobal on the other hand are in agreement
with the empirical levels. Similar IDF curves for autumn are shown in Fig. VI.10b for a station in
Locarno which is located in the Ticino area in the south of Switzerland. The Ticino area is subject
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to the heaviest precipitation compared to the other regions in Switzerland. Again, the IDFDDglobal

is able to model the empirical levels correctly for both the short and long durations.
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Figure VI.10: Simple-scaling (IDFss) and data-driven (IDFDDglobal ) curves a) in summer at a
station in Zurich (North-east). b) in autumn at a station in Locarno (Ticino area in the south). The
curves are for the return periods T = 2, 5, 10, 40, and 100 years. The points are the empirical
quantiles corresponding to T = 2, 5, and 10 years. The envelopes represent the 95% confidence
bounds obtained by block bootstrap.

The 95% confidence bounds for the return periods T = 2, 5, 10, 50, and 100 years in both
stations are shown in Figure VI.11 along with the empirical levels for T = 2, 5, and 10 years
(broken lines). For comparison sake, we also include those of the base model, i.e where EGPD
is fitted to the data of each duration separately (without linkage of parameters to duration). It
can be seen that narrower confidence intervals are obtained with the simple scaling (IDFss) and
data-driven IDFDDglobal compared to the base model. This is because the base model uses less
amount of data in its inference compared to the other two models where all the data of the 13
durations are pooled together in the estimation. It is expected that the width of the CI would be
narrower as the available data for estimation increases. The IDFss has six parameters less than
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those of the IDFDDglobal , so a natural question is whether the CI will be wider in the latter model.
Indeed for levels where both models predicted the empirical level correctly (d = 1 hour in the
case of Locarno, second row of Figure VI.11), the CI is a bit narrower in the case of the IDFss.
But looking at the same station for d = 24 hours, the bounds are wider, in addition to the bias in
predicting the empirical level. Of course, a narrower CI is only relevant if it contains the empirical
level.
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Figure VI.11: Return level estimates (points) and their 95% CI bounds (lines) for return levels T
= 2, 5, 10, 50, and 100 years estimated with the simple-scaling (IDFss), data-driven (IDFDDglobal )
and the base model (no linkage of EGPD parameters with duration). The confidence bounds were
obtained using block bootstrap. The top row is for a station in Zurich (northeast) in summer for
d = 1 hour and 24 hours. The second row is for a station in Locarno (Ticino area in the south) in
autumn for d = 1 hour and 24 hours. In all cases, the broken lines in red, black, and yellow are
the empirical levels for T = 2, 5, and 10 years respectively.

In Fig. VI.10, the curves of the simple-scaling model (IDFss) are not parallel. This behavior
resulted from the definition of IDF models for non-zero precipitation in Eq. VI.5. From this
equation, we see that the T -year return level is defined as (1− 1

T×δd
). The term δd , representing
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the average number of non-zero precipitation per year varies across the durations leading to a
non-constant slope for the different curves.

We finally show, in Fig VI.12 and VI.13 respectively, the seasonal 100-year return level maps
for d = 1hr and 24h. The levels in the maps can be interpreted as the levels which are expected
to be exceeded every 100 seasons. The levels were obtained with the best performing model, i.e.
IDFDDglobal . Looking at the return levels for d = 1hr (Fig. VI.12), we see that the levels in winter
are the lowest, with no specific spatial pattern or variability. In spring, the levels in the north and
Ticino starts to increase. Summer has the highest levels, and similar levels are obtained all along
the plateau in the north. In autumn, while the levels in the north are comparable to those in winter,
those in Ticino are comparable to those in summer. A different spatial pattern is however observed
for the 100-year return level for d =24hr. Specifically for summer, the levels in the plateau are
lower than those along the northern alpine rim (Prealps). The exhibited spatial pattern of the levels
produced by this model is similar to those observed in earlier studies (see Fukutome et al. (2015)
for the hourly, and Haruna et al. (2022) for the 24hr precipitation).

VI.1.4.4 Discussion

In the following paragraphs, we briefly discuss some of our choices in terms of the functional
forms of the data-driven models, taking into account the varying shape parameter with duration,
and the issue of scaling break in the data.

First, for the data-driven models, we limited our choice of functional relationships to simple
parametric models, specifically to piece-wise linear models. Other choices would be possible
such as smooth regression splines (e.g. Youngman, 2019, 2020). This choice has its advantage
and drawback. The advantage is that the splines are able to automatically adjust to fit any form
of relationship. The main drawback is that it is inherently non-parametric, and so the mapping
of the IDF models, to allow predictions at ungauged locations, is not directly possible. One can
only map the three EGPD parameters for a particular duration. For instance, for 13 durations, this
means 3× 13 = 39 maps. For our choice of linear functions, 10 parameters are able to describe
the IDF curves at each station, and hence 10 maps for the whole area under study.

Regarding the variation of the shape parameter ξ with respect to duration d, some earlier
studies did observe or discuss it (Veneziano et al., 2007; Ulrich et al., 2021, e.g.). They however
did not model it, either due to the weak form of the relationship, or because the IDF model did
not allow for it. Here, especially, in summer, we found very strong dependence, and the results
have shown that taking it into account is invaluable. For the other seasons, however, the AIC
results showed that it is more parsimonious to let the parameter be independent of duration. We
note that the strength of the variation of the shape parameter with duration is different in the four
seasons. In our case, it is strongest in summer and weakest in winter. A possible explanation is
that the underlying precipitation formation mechanism responsible for the formation of short and
long-duration precipitation is different in the four seasons. For instance, in winter, the same frontal
system is responsible for both short and long-duration events, and hence the variation of the shape
parameter with duration is weak. In summer where the linkage is strong, different systems are
responsible for the short-duration intensities (e.g. due to short convective events) and long-lasting
duration intensities (e.g. due to frontal systems). The other seasons (spring and autumn) present a
mixture of the two behaviors.

Finally, we observed a break in the scaling relationship of the EGPD scale parameter. The
existence of scaling regimes has been investigated by Fraedrich and Larnder (1993) and they linked
it to atmospheric processes such as the structure of frontal systems, the diurnal cycle, the seasonal
periodicity, and climatic variability. Hence, break points in the regime observed at stations could
be explained by the possible transition from one precipitation system to another. For example,
from short convective events at short duration to frontal systems at longer duration. For breaks
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Figure VI.12: Map of Switzerland showing the seasonal 100-year return level in mm/hr for d = 1
hr. Levels predicted with IDFDDglobal .
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Figure VI.13: Map of Switzerland showing the seasonal 100-year return level in mm/hr for d = 24
hr. Levels predicted with IDFDDglobal .
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at very short durations in the range of around 1 hour, however, it is generally attributed to being
artificial, imposed by the resolution of the gauge (measurement precision errors). Despite this, the
identification of scaling breaks involves some level of uncertainty depending on the method used.
For instance, Paschalis (2013) tried to identify scaling breaks in Switzerland using the same 10
mins datasets as in our case. He used spectral density analysis based on the Fourier transform, and
another based on wavelet decomposition. While both methods agree on the existence of scaling
breaks, the exact times of the breaks were different in both. The author also mentioned that no
clear seasonal or regional pattern was observed. In our case, we rely on the estimated EGPD
scale parameter to identify the scaling breaks. Other authors relied on moment analysis (plot of
moment vs duration in log-log scale for different orders) to identify breaks in scaling (Bougadis
and Adamowski, 2006; Nhat et al., 2008). In reference to this, we do not rule out the possible
effect of the EGPD model on the observed scaling breaks. A detailed study of its own might be
required to study and characterize/interpret the scaling breaks in the study area since any detailed
interpretation might be premature.

VI.1.5 Conclusions

Our aim in this paper was to build IDF curves using all the non-zero precipitation data in Switzer-
land. To achieve this, we used the EGPD model as the parametric model for the precipitation in-
tensities. The literature presents various approaches to link the different durations together in IDF
curves. We considered three of these approaches to build the IDF curves while using the EGPD as
the parametric model. The first approach is based on the scale invariance theory, where IDF curves
are built based on the scaling behavior of precipitation. The second approach is based on the gen-
eral IDF formulation of Koutsoyiannis et al. (1998), which generalizes the various traditional IDF
formulations. The last approach is called the data-driven approach, where each parameter can vary
with duration, and the form of the relationship is empirically determined by the data at hand.

We started from these three approaches and added some extensions to account for scaling
break and varying shape parameter with duration. We ended up with a total of ten IDF models.
We then compared them, first in calibration, and then in a split-sample cross-validation approach.

The results showed that, given the EGPD as the parametric model, the data-driven IDF-EGPD,
particularly the IDFDDglobal , is the best model for the data at hand. The AIC also showed this model
to be more parsimonious compared to the base model where no linkage of parameter with duration
is considered. The IDF curves based on simple-scaling and the general formulation of Koutsoyian-
nis et al. (1998), did not perform as efficiently even with the added extensions in terms of scaling
break and in the way the shape parameter varies with duration. The fact that the simple-scaling
IDF models performed poorly in summer confirms the previous findings of Molnar and Burlando
(2008) and Paschalis (2013) that in Switzerland, precipitation in summer shows multiscaling be-
havior.

Although our work focused on Switzerland, the data-driven approach can be applied every-
where, especially for regions where high-resolution data are available. This is because the ap-
proach considers the empirical relationship between the model parameters and duration, and is not
constrained by the hypothesis of scaling across durations. Our result also showed that it is possible
to model the linkage of the shape parameter with duration in IDF curve modeling. Moreover, the
study highlights the need to explore in detail the empirical relationship of model parameters with
duration prior to the application of any of the widely used IDF construction approaches Finally,
we showed that it is possible to use the EGPD for IDF curve modeling.

In terms of perspectives, it would be interesting to produce maps of the parameters to allow
for predictions at ungauged sites. This could be achieved by simple interpolation of the local IDF
parameters as done by Blanchet et al. (2016), or through quantile regression methods (Ouali and
Cannon, 2018), or by global estimation using spatial covariates (e.g. Ulrich et al., 2020). Another
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possibility is to use a regionalization technique, such as the method of Hosking and Wallis (2005)
and then interpolate the index flood to allow predictions at the ungauged sites (Mascaro, 2020,
e.g.).

It should be mentioned that throughout this work, we estimated the IDF models through the
independence likelihood, thus omitting the correlation between different timesteps and durations.
In the case of annual maximum series (GEV), Nadarajah et al. (1998) has modeled the depen-
dence between the different time steps using multivariate extreme value distributions (MEVD),
and Tyralis and Langousis (2019) followed suit by using max-stable processes. Later, Jurado et al.
(2020), investigated the impact of accounting for this dependence in extremes and showed that
there is little gain in performance, in addition to the added complexity of using max-stable pro-
cesses. Since all these authors focused on the distributions that are based on extreme data only,
an interesting perspective will be to investigate the effect of accounting for the dependence in IDF
curve modeling for the case of the EGPD that uses all the non-zero data

Lastly, consideration of the effect of climate change in building IDF curves is invaluable. For
instance, Cheng and AghaKouchak (2014) showed that by neglecting nonstationarity in modeling
IDF curves, there could be up to 60% underestimation of extreme precipitation, especially for short
durations. It would therefore be interesting to model the curves while accounting for a warmer
climate (e.g. Mirhosseini et al., 2013; Cheng and AghaKouchak, 2014; Ragno et al., 2018; Ouarda
et al., 2019; Kristvik et al., 2019).
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VI.2 Catchment IDF curves for hydrological applications in Switzer-
land

In the previous section (Paper 2), we identified the data-driven IDF model, denoted as IDF-
DDglobal , as the best model in the study area. This model allows linking the parameters with duration
based on empirically determined parametric relationships. It allows departure from simple scaling
relationships and the presence of scaling breaks. In this section, we will apply this model to
construct IDF curves at the catchment level for operational purposes in Switzerland. The reader is
referred back to Section VI.1.3.2.c for the model formulation and Section VI.1.3.3 for the inference
strategy. In the remainder of the section, for the sake of simplicity, we will drop the subscript in
IDFDDglobal and refer to the model simply as IDF model.

A total of 24 large catchments, shown in Figure VI.14, are considered. They are catchments of
river Aare, Rhine, Limamat, Saane, and Rhône, with areas ranging from 900 km2 to 35,000 km2.
These catchments were provided by the current EXCH project, specifically, the Swiss Federal
Office of Energy (SFOE), and are the same ones used in the previous phase of EXAR project
(Andres et al., 2021).

VI.2.1 Data

We consider mean areal precipitation at hourly resolution for each of the 24 catchments, covering
a period of 90 years from 1930 to 2019. Similar to the catchments, the data was provided by
the project and a detailed description of how the data was obtained can be found in EXAR report
(Andres et al., 2021). To summarize, daily mean annual precipitation for each catchment was
obtained through spatial interpolation of daily precipitation observed at rain gauge stations using
Thiessen polygons. The daily mean areal precipitation was then disaggregated using the method of
fragments (Wójcik and Buishand, 2003) to obtain the pseudo-observations of hourly mean areal
precipitation. The daily rain gauge stations considered for this purpose were the same as those
used in Evin et al. (2018).

VI.2.2 IDF curves

Figure VI.15 shows the seasonal IDF curves for 4 out of the 24 catchments. Each column corre-
sponds to a season, while each row corresponds to a catchment. Their areas are 17,601, 34,970,
3,219 and 10,303 km2 (in that order from top to bottom). The IDF curves for the remaining
catchments can be found in Appendix A.2.3. The curves represent the modeled return levels for
T ∈ {2,5,10,30,100} years, while the points are the corresponding empirical return levels. It can
be seen that there is generally a good agreement between the empirical and modeled return levels
for all the seasons. The flexibility of the adopted IDF model allows the curves to have different
forms depending on the season, climate, and catchment area.

Figure VI.16 shows the maps of summer 100-year return level in mm/day for 24 hr duration.
The levels are obtained from the IDF curves shown in Figure VI.15. The 100-year return level
ranges from 75 mm (e.g. Rupperswil-Auenstein) to 150 mm in the case of small catchments (e.g.
Reichenau). The Aare catchment at Beznau (17,600 km2) has nearly the same 100-year level as
the Rhine catchment at Birsfelden (34,970 km2). The catchments with the largest levels are the
Lavey of the Rhône and the Reichenau of the Rhine River.

The IDF curves we built provide critical information for designing infrastructure in the ana-
lyzed catchments, such as stormwater drainage systems, reservoirs, and flood protection measures.
Additionally, the presented maps offer valuable insights into extreme precipitation and can guide
emergency response planning, infrastructure design for extreme events, and the assessment of po-
tential flood damages. Decision-makers can use these maps to identify regions at higher risk of
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Figure VI.14: Map of the 24 hydrological catchments. The dashed-black line shows the border
of Switzerland. The catchments are arranged according to the river they drain and the number in
the black box represents the area of each catchment in km2.

extreme precipitation and prioritize mitigation efforts accordingly.
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Figure VI.15: Seasonal IDF curves for 4 out of the 24 large catchments. The lines are the
modeled return levels, while the points are the corresponding empirical return levels. Both are
colored according to the return period for T ∈ {2,5,10,30,100} years.
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Figure VI.16: 100-year return level of summer mean areal precipitation for 24 hr duration.
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VI.3 Summary

To sum up, the main take-home message from this chapter is summarized below:

Question 3: What is the best model of Intensity-Duration-Frequency (IDF) rela-
tionships for the full range of non-zero precipitation intensities in a topographi-
cally complex area?

• Models of IDF relationships were developed using all non-zero precipita-
tion intensities. The three-parameter EGPD was used as the model for the
precipitation intensities.

• Three approaches to modeling IDF curves, along with some extensions to
account for scaling break and varying shape parameters with duration, were
considered.

• The first approach relies on the scale invariance of precipitation, the sec-
ond is based on the general IDF formulation of Koutsoyiannis et al. Kout-
soyiannis et al. (1998), and the third is called the data-driven approach,
where each parameter can vary with duration based on empirically deter-
mined relationships.

• The IDF models were compared in calibration and cross-validation, and
the model based on the data-driven approach was shown to be the best per-
forming. It was used to build catchment-level IDF curves for hydrological
applications in Switzerland.

• As a limitation, the independence likelihood was used to estimate the
model parameters, thereby neglecting the serial correlation and the cor-
relation between data from different durations. It will be interesting to
investigate the effect of this assumption.
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VII
Modeling of Intensity-Duration-Area-Frequency

(IDAF) Relationships in Switzerland

Chapter overview

I n the last chapter, we developed a model of Intensity-Duration-Frequency
(IDF) relationships in Switzerland using all the non-zero precipitation inten-

sities. This chapter addresses Question 4 by extending the IDF relationships to
account for the spatial extent of precipitation, i.e. area (A), by modeling the
Intensity-Duration-Area-Frequency (IDAF) relationships including all the non-
zero precipitation intensities.
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VII.1 Evaluation of the gridded datasets

Building models of Intensity-Duration-Area-Frequency (IDAF) relationships requires infor-
mation on areal precipitation, and to obtain this, precipitation data is required everywhere in the
study area. This information is usually obtained from either station interpolation (e.g. Panthou
et al., 2014) or more commonly from radar (e.g. Overeem et al., 2010), or radar reanalysis data
(e.g. Overeem et al., 2010; Mélèse et al., 2019; Blanchet and Mélèse, 2020). As outlined in Section
II.3, there are two gridded datasets in Switzerland, Combiprecip (CPC) and RhiresD. CPC is a
radar-reanalysis product at hourly resolution and RhiresD results from the spatial interpolation of
rain gauge data at the daily resolution. Both datasets are at a spatial resolution of 1 km by 1 km.

CPC is the only gridded dataset available at the sub-daily timescale in our study area, and so it
is the product we use to build the IDAF models. However, before using the data, it is essential to
evaluate the time series from CPC in comparison with those from the rain gauge network as well
as the other gridded data set, RhiresD. The evaluation is done through a point-to-pixel analysis
that involves comparing the time series from a gauge to the time series from the pixel underlying
the gauge.

We consider hourly data from 71 gauge locations and in each case, the data from the gauge
is considered the "truth". These 71 stations have no missing data from 2005 to 2020 (the period
of overlap of the three datasets). The comparison is performed in two steps: in the first step, we
compare the two time series using some chosen criteria and in the second step, we fit EGPD to
both time series and compare the 20-year return level estimate. The comparison of the datasets at
the daily timescales and above is shown in this section, while the comparison results for sub-daily
time scales (applicable for the CPC data only) is presented later in Paper 3 (see Section VII.2.4.1).

VII.1.1 Comparison of the empirical values at daily time scales and above

Recall from Section II.3.2.2 that RhiresD contains daily precipitation totals. The value recorded
on day D corresponds to accumulations from 06:00 UTC of day D to 06:00 UTC of day D+1. For
a fair comparison, we aggregate both CPC and the raingauge data using the same time window.

VII.1.1.1 Criteria on all observations

Following the work of Zambrano-Bigiarini et al. (2017), we use the three sub-components of the
Kling-Gupta-Efficiency (KGE) criterion (Kling et al., 2012) to compare a given gridded dataset
(CPC or RhiresD) to the reference dataset (rain gauges). The criterion is computed from:

KGE = 1−
√

(r−1)2 +(β −1)2 +(γ −1)2, with


r = Cov(igrid ,igauge)

σgridσgauge

β =
µgrid

µgauge

γ =
CVgrid

CVgauge

,

where r is the Pearson correlation coefficient that measures the linear correlation between the
gridded data (igrid ) and the gauge data (igauge). Cov is the co-variance between the two time
series and σ denotes the standard deviation. β evaluates the bias between the two time series (the
tendency of gridded data to under- or overestimate the gauge data), with µ the mean. γ is the
variability ratio, that is the ratio between the coefficient of variations (CV) of the two time series.
It measures the under or over-dispersion of gridded data compared to the gauge. For a perfect
match between the two time series, r, β , γ , and KGE should be equal to 1.
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Figure VII.1: Seasonal boxplots of the KGE and its sub-components. Each boxplot contains 71
points, 1 point for each pair of rain gauge and the underlying pixel.

The seasonal boxplot of the KGE and its sub-components are shown in Figure VII.1. Start-
ing from the top row, the correlation coefficient r shows that there is a good temporal correlation
between the two gridded data sets and the raingauge data for all seasons and durations (median >
0.95). For all seasons, the correlation increases with the aggregation duration. CPC exhibits its
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lowest correlation in summer, while RhiresD shows its lowest correlation in winter. Overall, how-
ever, except for summer, CPC has a better correlation with the gauge data compared to RhiresD.
In the second row, β shows that CPC has a higher tendency toward overestimation of the data in
spring and summer compared to RhiresD, while RhiresD has a higher overestimation tendency in
autumn and winter. There is no difference in the durations since the bias is based on the seasonal
average. The dispersion bias γ in the third row shows that both datasets generally have a negative
dispersion bias. Nonetheless, RhiresD has a higher negative dispersion bias compared to CPC for
all seasons and durations. Finally, KGE which summarizes the three components shows that CPC
has a better performance compared to RhiresD in spring, and autumn, while the latter is better in
summer. In spring, CPC has a higher median, although the largest variability.

VII.1.1.2 Criteria on extremes

Next, we evaluate the ability of CPC and RhiresD to correctly detect extreme precipitation as
measured by the gauge. Extremes here are defined as the exceedances of 99.5% quantile over the
whole sample (zeros included). We compute three scores based on Table VII.1 similar to Panziera
et al. (2018).

gauge ≥ 99.5th perc. gauge < 99.5th perc.

gridded data ≥ 99.5th perc. a b

gridded data < 99.5th perc. c d

Table VII.1: Contingency table to compare gridded data and rain gauge data

The scores are given below:

1. Bias of hits: This score measures the bias in extreme precipitation totals recorded on the
days that are detected as extreme in both datasets (gridded and gauge). If extGridi indicates
extremes detected by the gridded data and extGaugei indicates extremes detected by the
gauge for i = 1,2, .....,a, then the bias of hits is computed as:

Bias =
∑

a
j=1 extGrid j

∑
a
j=1 extGauge j

.

For a perfect agreement, Bias should be equal to 1.

2. Probability of detection (POD). This score computes the ability of the gridded data to clas-
sify events as extremes, given that they are also extremes according to the gauge. POD is
computed from:

POD =
a

a+ c
.

For a perfect agreement, POD should be equal to 1.

3. False alarm ratio (FAR): This score measures the rate at which the gridded data classify
events as extremes when they are not extremes according to the gauge. FAR is computed
from:

FAR =
b

a+b
.

For a perfect agreement, FAR should be equal to 0.
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Figure VII.2: Seasonal boxplots of the KGE and its subcomponents. Each boxplot contains 71
points, 1 point for each pair of rain gauge and the underlying pixel.

Figure VII.2 shows the seasonal boxplots of the three scores. Starting from the top row, the
bias of hits shows that CPC has a lower bias compared to RhiresD for all seasons and durations.
The median of the bias of CPC is nearly equal to one, which indicates that the data is almost
unbiased in terms of the extreme precipitation totals. Moving to the second row, the boxplot of
the POD shows that CPC has a better score compared to RhiresD for all seasons except summer.
The median of the score for CPC ranges from 0.7 to 0.99, which means that 70% to 99% of the
gauge extreme events are correctly classified as extremes by the CPC. The boxplots of FAR in the
third row similarly show a better performance of CPC compared to RhiresD for all seasons except
summer.
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Figure VII.3: Seasonal boxplots of relative bias (rBias) of a T -year return level estimate for
T ∈ {20,50,100} years. Each column corresponds to a season, and each row corresponds to
a return period. The boxplots contain 71 points, 1 point for each pair of rain gauge and the
underlying pixel.

VII.1.2 Comparison of return level estimates

In the final step, we compare the T -year return level estimates, for T ∈ {20,50,100}, from the
gridded data to those from the gauge stations. We fit EGPD to each dataset, estimate the T -year
return level, and compute the relative bias (rBias) from:

rBiasT =
îT,grid − îT,gauge

îT,gauge
,

where îT,grid and îT,gauge are the T -year return level estimates from the gridded data and the gauge
data respectively.

Figure VII.3 shows the seasonal boxplot of rBias in the T -year return level estimates. A
positive bias indicates that the estimates from the gridded data are higher than the gauge estimate.
For all seasons and return periods, CPC shows lower bias in the return level estimates compared
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to RhiresD. The median of the bias from CPC is slightly positive in summer which signifies a
tendency towards having higher estimates with CPC compared to the gauge.

VII.1.3 Conclusion and discussion

This section was aimed at evaluating CPC data, in comparison to daily data from the rain gauge
and RhiresD, before using it in modeling the IDAF relationships. We comment here that, whilst
CPC is corrected using the rain gauge data, some differences still remain between the two, mainly
due to the nugget effect in the variogram model, and the convection control scheme in summer
(Sideris et al., 2014a).

In general, from all the criteria considered, CPC showed a better agreement with the gauge
data compared to RhiresD, especially for extremes. The better agreement of CPC might result
from the effective resolution of the two datasets. CPC fields can be seen as areal estimates over
a 1 km by 1 km grid. RhiresD, although on a 1 km by 1 km grid, has an effective resolution in
the order of 15–20 km (MeteoSwiss, 2021), and therefore can be seen as areal estimates over a
250–400 km2. Consequently, RhiresD fields are expected to be much smoother than those from
CPC. This is seen from the bias of hits (the top row in Figure VII.2) where RhiresD shows a
higher tendency to underestimate the extreme precipitation totals compared to CPC.

In the remainder of the thesis, only CPC is used to build the IDAF models since it is beyond
the scope of the thesis to develop a new gridded product for our topographically complex study
area. Moreover, it is the only product at the sub-daily temporal resolution. It also brings the
required spatial information needed for modeling IDAF relationships which cannot be obtained
from rain gauges due to their limited spatial representativity. We however acknowledge its obvious
limitations, such as the limited length (17 years), conditional bias, and the non-homogeneity of
the series due to radar upgrades and the evolution of the number of radars. These limitations will
undoubtedly contribute to the uncertainties related to our analysis and results.
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Preamble to the paper

Recall that in Chapter VI, we built Intensity-Duration-Frequency (IDF) models in the study area
and used the selected model to construct catchment-level IDF curves for operational use (see sec-
tion VI.2). A major drawback of IDF relationships is that they do not explain the relationship in
space. In other words, they do not account for the spatial extents (i.e. area). This paper aims to
develop models for Intensity-Duration-Area-Frequency (IDAF) relationships, which extend con-
ventional IDF relationships to account for the areal extent of precipitation. These models can be
used for quantifying areal rainfall hazards, characterizing storms, and developing early warning
systems. The IDAF relationships are developed using all non-zero precipitation intensities, not
just the extreme ones. The article uses the three-parameter extended generalized Pareto distribu-
tion (EGPD) to model the precipitation intensities and 17 years of data from the CombiPrecip
radar-reanalysis product, which merges radar and rain gauge data in an operational setting using
geostatistics. The article starts by reviewing and identifying a flexible and robust method of build-
ing IDAF models that is suitable for topographically complex locations. The method is based on a
data-driven approach that links EGPD parameters with duration and area based on empirically de-
termined parametric relationships. After evaluating the model’s performance using split-sampling
cross-validation, it is applied to construct IDF and Intensity-Area-Frequency (IAF) curves and to
characterize and assess extreme areal precipitation hazards in Switzerland, the study area.

120

https://doi.org/10.22541/essoar.169111775.53035997/v1


VII.2. Paper 3: Modeling Areal Precipitation Hazard: A Data-driven Approach to Model
Intensity-Duration-Area-Frequency Relationships using the Full Range of Non-Zero

Precipitation in Switzerland

Abstract
Intensity-Duration-Area-Frequency (IDAF) models provide the mathematical link be-
tween precipitation intensities (I), durations (D), areas (A), and frequency of occurrence
(F). They play a critical role in hydrological design, areal rainfall hazard quantification,
storm characterization, and early warning system development. IDAF models extend the
conventional Intensity-Duration-Frequency (IDF) models by accounting for the spatial
extent of precipitation(i.e., the area). In this study, we develop IDAF models using the
entire non-zero precipitation intensities, not only the extremes. We use the extended
generalized Pareto distribution (EGPD) to model the precipitation intensities. To build
the IDAF models, we adopt a data-driven approach that allows the linkage of EGPD
parameters with duration and area, based on empirically determined parametric relation-
ships. The inference of model parameters is done using a global maximum likelihood
estimation, and uncertainties are assessed by the bootstrap method. The study area is
Switzerland, a topographically complex region of 42,000 km2 with regional precipitation
variability and clear seasonality. The study utilizes 17-years of data from CombiPrecip,
a radar-reanalysis product developed by geostatistically merging radar and rain gauge
data in an operational setting. We build the IDAF models for the spatio-temporal range
of 1 to 72 hours and 1 to 1,089 km2 at each pixel in the study area. To the best of
our knowledge, our study is the first attempt to use the EGPD in IDAF curve model-
ing. It discusses the use and limitations of CombiPrecip in extreme value analysis and
highlights the challenges of modeling areal precipitation in a complex topographical en-
vironment.

VII.2.1 Introduction

In the face of escalating threats posed by climate change and increasingly volatile weather pat-
terns, understanding and predicting extreme precipitation is necessary, now more than ever, in
safeguarding communities and infrastructure. One of the key factors driving flood generation is
the spatial aggregate of precipitation over a given area, rather than just the precipitation at a spe-
cific point location. This is because watersheds and river basins integrate the precipitation falling
over their respective areas, leading to the accumulation of runoff and subsequent flood generation.
Additionally, extreme precipitation events, manifesting at varying scales, contribute differently
to flood dynamics. Short and small-scale intense precipitation may induce rapid, localized flash
flooding, whereas longer and larger-scale precipitation events can lead to sustained fluvial flooding
(Sikorska et al., 2015). However, the interactions and synergies between these scales are crucial in
shaping the overall flood risk landscape. As a consequence, it is vital to consider multiple spatio-
temporal scales in the modeling of extreme precipitation. This will enhance our ability to better
predict and manage the impacts on communities and infrastructure, ensuring their resilience in an
ever-changing climate.

Intensity Duration Area Frequency (IDAF) curves summarize the main statistical character-
istics of extreme precipitation (return level, return period, duration, and area.) They provide the
mathematical link between precipitation intensities (I), durations (D), areas (A), and frequency of
occurrence (F). They are useful tools for engineers and hydrologists in hydrological design (see
Bertini et al., 2020, for example), quantification of areal rainfall hazard (Overeem et al., 2010;
Panthou et al., 2014; Mélèse et al., 2019; Zhao et al., 2023), storm characterization (Ramos et al.,
2005; Ceresetti et al., 2012; Blanchet and Mélèse, 2020), and development of early warning sys-
tems (Panziera et al., 2016). IDAF models extend the well-known Intensity Duration Frequency
curves (IDF) by incorporating the spatial extent of precipitation (i.e., the area).

IDAF curves are commonly built by coupling IDF models and a coefficient, the areal reduction
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factor (ARF) that transforms point rainfall of a given duration and return period to areal return
levels of the corresponding duration and return period. Applications of the ARF-based IDAF
models can be found in the literature, for example, De Michele et al. (2001) derived an ARF
formulation based on the concept of dynamic scaling of rainfall and used it to model IDAF curves
in Milan. Later, Ceresetti et al. (2012) used the ARF of De Michele et al. (2001) to model IDAF
curves for storm severity assessment in southern France. Panthou et al. (2014) also used the
same ARF formulation to characterize areal rainfall in West Africa. Ramos et al. (2005) used
an empirical ARF formulation to model IDAF curves for storm severity assessment in Marseille.
Bertini et al. (2020) used another empirical ARF formulation to build IDAF curves and used it to
design a dam in Italy. Mélèse et al. (2019) and Blanchet and Mélèse (2020) used an extension
of the ARF formulation of De Michele et al. (2001) to build IDAF curves respectively for areal
hazards and storm severity assessment in southern France. The extension was to cope with the
significant spatio-temporal variability in the mountainous area

Beyond the ARF-based IDAF curves modeling approach, Overeem et al. (2010) proposed a
purely data-driven approach to model IDAF curves. This involves modeling the parameters of the
statistical distribution of the precipitation intensities as a function of duration and area. The type
of relationship is empirically determined from the data, with no underlying physical hypothesis
such as spatial correlation (as done in Rodriguez-Iturbe and Mejía, 1974) or scaling (as done in
De Michele et al., 2001). As highlighted by Mélèse et al. (2019), this approach has the advantage
of being flexible and applicable in cases where the assumptions of the analytical ARF formulations
cannot be verified.

In spite of the chosen method of building the IDAF curves, whether ARF-based or purely data-
driven, the previously cited works have one thing in common; the precipitation data they used and
by extension, the underlying parametric distribution. To elaborate more, all the authors used only
extreme data in the form of block maxima and, as the distribution, the generalized extreme value
(GEV) distribution (Overeem et al., 2010; Ceresetti et al., 2012; Panthou et al., 2014) or its special
case, the Gumbel distribution (Nhat et al., 2007; Mélèse et al., 2019; Blanchet and Mélèse, 2020;
Bertini et al., 2020), or lognormal distribution (De Michele et al., 2011). A rare application of
generalized Pareto distribution (GPD) for threshold excesses is found in Zhao et al. (2023) for
IDAF curve modeling. A major drawback of such approaches is the inefficient use of the data
since only one value is retained in a block (usually the maximum in a year) or the excesses of
a threshold (a tiny fraction of the data), and all the other data in the block is discarded. This
can result in significant uncertainty in estimation, especially in cases where the length of the data
series is not sufficiently long. The problem of short record length is more apparent with radar and
radar reanalysis products, which are usually used in IDAF curve modeling (Overeem et al., 2010;
Mélèse et al., 2019; Blanchet and Mélèse, 2020; Zhao et al., 2023), due to the required spatial
information they provide.

To address this issue, our approach here is to make efficient use of information by including
all the non-zero precipitation intensities, instead of only the block maxima, in modeling the IDAF
curves. We then use the extended generalized Pareto distribution (EGPD) of Naveau et al. (2016)
as the parametric model for the intensities. This distribution is compliant with extreme value
theory in both tails (an advantage over the gamma distribution), it models the entire distribution of
non-zero precipitation and does not require the choice of the threshold as in the generalized Pareto
distribution (GPD). It has been shown in many applications to be able of adequately modeling
precipitation (Naveau et al., 2016; Evin et al., 2018; Le Gall et al., 2022; Haruna et al., 2022,
2023b). In particular, Haruna et al. (2023b) showed that it is possible to model IDF curves (without
Area) with the EGPD, and we intend to extend their work to model IDAF curves with the EGPD.
To our best knowledge, this is the first time the EGPD is used in modeling IDAF curves.

Modeling IDAF curves using all the non-zero data has two potential advantages. First, by us-
ing all the non-zero data, estimation uncertainty is expected to reduce, resulting in more accurate
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predictions. Secondly, in addition to having IDAF curves, we will have robust marginal distri-
butions for the entire non-zero precipitation that can be used in stochastic weather generators for
simulations, or verification of weather and climate models.

We apply the model in Switzerland, a topographically complex location with seasonality, re-
gional variability, and multiple precipitation regimes. Following the work of Mélèse et al. (2019)
which underscores the complex spatio-temporal variability of precipitation in mountainous areas,
we use the more flexible data-driven method of Overeem et al. (2010) to model the IDAF curves.

The data and study area are presented in Section VII.2.2. The EGPD, the methodology for
building the IDAF curves, and the method for uncertainty assessment are explained in Section
VII.2.3. Results on the goodness-of-fit of the model and areal rainfall hazard assessment in the
study area are presented and discussed in Section VII.2.4. Finally, conclusions and perspectives
are given in Section VII.2.5

VII.2.2 Study area and Data

VII.2.2.1 Study Area

Dole

Plaine Morte

Weissfluhgipfel

Lema

Albis

Figure VII.4: Map of Switzerland, the study area. The background color denotes the elevation
(meters) above mean sea level. The Radar symbols show the location of the five radars in Switzer-
land, with their names in the white boxes. The name of some cities is shown in black and the name
of some mountains and regions are shown in red. The black-colored square shows exemplarily the
maximum extent of the rectangular window used for data aggregation, i.e. 1089 km2.

Our study focuses on Switzerland, a country covering 41,285 km2. Despite its small size,
Switzerland exhibits a complex topography, ranging in elevation from 191 to 4,127 m above mean
sea level. Figure VII.4 shows the map of the study area. Approximately 30% of the land is situ-
ated above 1,500 m elevation, resulting in pronounced spatial variability in both the intensity and
occurrence of precipitation. The climate of Switzerland is influenced by multiple factors, such
as the Alps, the Atlantic Ocean, and the Mediterranean Sea, and these contribute to the seasonal
and spatial variability of precipitation, as documented in previous studies (Sodemann and Zubler,
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2009; Giannakaki and Martius, 2015; Scherrer et al., 2016a). Precipitation patterns show distinct
regional differences, with the highest annual sums exceeding 2,000 mm in the Alps, the Jura region
(northwest), and the Ticino region (south of the Alps). Conversely, the inner valleys such as the
Rhône and Inn receive the lowest annual precipitation, less than 700 mm. Summer is the primary
season for precipitation throughout Switzerland, except in Ticino, where autumn dominates. Con-
versely, winter experiences the least amount of precipitation across all regions. In terms of heavy
precipitation, defined as the average seasonal maxima, the spatial distribution varies according
to accumulation duration (Panziera et al., 2018). For short-duration accumulations (e.g., 1 hr),
the heaviest precipitation occurs in summer across the entire country, with maximum intensities
reaching up to 30 mm/hr in Ticino, Jura, and the northern rim. For longer accumulations (1 day
and more), Ticino receives the most intense precipitation, with autumn experiencing maximum 24
hr totals exceeding 130 mm. In other regions, heavy precipitation predominantly occurs during
summer.

VII.2.2.2 CombiPrecip

CombiPrecip (CPC) is a radar-reanalysis product resulting from the geostatistical merging of
radar and rain gauge in an operational setting (Sideris et al., 2014a). It combines the high accu-
racy of rain gauge with the high spatial coverage of radar. The geostatistical merging is through
co-kriging with external drift, where the rain gauge data is treated as the primary source, and the
radar data as the external drift. Information from rain gauge comes from more than 250 automatic
stations at 10 minutes resolution, and that from the radar comes from five polarimetric C-band
Doppler radars that are suitably located to provide the reliable coverage required in the topograph-
ically complex area (see Figure VII.4). Since CPC is produced operationally, only rain gauge data
within Switzerland are used in the algorithm, As a result, an algorithm for the treatment of extrap-
olation is used in which some radar pixels outside the Switzerland border are used as virtual rain
gauges in the merging. Additionally, a convection control scheme is implemented to overcome
the limited representativeness of rain gauges during convection events, especially in summer (see
Sideris et al., 2014b, for details)

The data from both the rain gauge and radar are subjected to substantial quality control before
being employed in the CPC algorithm. The gauge data is checked to ensure that recorded values
are within climatologically physical limits, they are consistent with those from nearby gauges,
they satisfy inter-parameter consistency, and variability tests (MeteoSwiss, 2017). Treatment of
the radar data (Germann et al., 2006) involves clutter elimination through a robust algorithm de-
signed for this purpose, visibility correction resulting from orthographic shielding, correction for
vertical profile of reflectivity, and bias correction. This is in addition to an automatic hardware
calibration of the radars to check the stability/accuracy of the components and a tailored opera-
tional scan strategy (20 elevation sweeps every five minutes) crucial in mountainous regions such
as Switzerland (Germann et al., 2015).

CPC is available at hourly temporal resolution and a spatial grid of 1 km by 1 km and extends
100-150 km beyond the borders of Switzerland. It has been available since 2005, and 17 years of
data are available for this study, from 1st January 2005 to 31st December 2021. It has been used in
several applications in Switzerland for extreme value analysis (Panziera et al., 2016), climatolog-
ical studies (Panziera et al., 2018), meteorological forcing of hydrological model (Andres et al.,
2016), and has been evaluated in several aspects (Gabella et al., 2017; Panziera et al., 2018; Gugerli
et al., 2020). Known limitations of CPC involve the limited length of the data, non-homogeneity
of the series due to radar upgrades and evolution of the number of radars, and conditional bias
(MeteoSwiss, 2017). Despite these limitations, it is the only sub-daily gridded data available in
the study area, and producing a gridded product is beyond the scope of the present study. We note
that these limitations are not unique to CPC alone, but common to other radar and radar-reanalysis
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products, and notwithstanding, they have been used in IDAF modeling (e.g. Overeem et al., 2010;
Mélèse et al., 2019; Blanchet and Mélèse, 2020), or extreme value analysis (Durrans et al., 2002;
Allen and DeGaetano, 2005; Wright et al., 2014; Goudenhoofdt et al., 2017; Panziera et al., 2018).
This is due to the detailed spatial representativeness they provide, especially in mountainous areas,
which is practically unobtainable with rain gauge networks alone.

VII.2.3 Methodology

VII.2.3.1 Space-time aggregation of the data

The total area of Switzerland is 41,285 km2, and so we have hourly time series of precipitation at
41,285 CPC pixels, each of size 1 km2. We take each time series and stratify it into four seasons,
with winter (Dec-Jan-Feb), spring (Mar-Apr-May), summer (Jun-Jul-Aug), and autumn (Sep-Oct-
Nov). This seasonal approach is done to account for the pronounced seasonality in the study
area, as done in several studies in the same area (Molnar and Burlando, 2008; Fukutome et al.,
2015; Panziera et al., 2018; Evin et al., 2018; Haruna et al., 2022, 2023b). To produce the areal
precipitation for use in modeling the IDAF relationships, we aggregate the data into 10 spatial
scales (area) and 10 temporal scales (duration). The area includes 1, 9, 25, 49, 81, 169, 289,
529, 729, and 1,089 km2, centered around each pixel in the study domain, which corresponds to
squares of sides 1, 3, 5, 7, 9, 13, 17, 23, 27 and 33 km. Since CPC is available beyond the borders,
it allows us to have spatially aggregated rainfall everywhere in Switzerland (including the pixels
close to the border). We comment here that the choice of the squared area is for simplicity and
convenience since the CPC data is originally in this geometry. Other choices are possible such as
circular or elliptical shapes as discussed in Mélèse et al. (2019). The durations include 1, 2, 3,
6, 10, 12, 16, 24, 48 and 72 hr. We consider durations up to 72 hr (3 days) because according to
Froidevaux et al. (2015) these time scales are the most relevant for flood-triggering precipitation
accumulations in Switzerland. The intermediate area and durations are meant to ensure a good
spread on a logarithmic scale. At the end of the aggregation, we have a total of 100 time series
of areal precipitation, each for a pair (D, A). Unlike in the case where only block maxima will be
used for modeling the IDAF relationships, here, we retain and use all the non-zero precipitation
intensities in modeling the IDAF relationships. Although we have the areal precipitation at all
the pixels, for computational reasons (an average of 260,000 non-zero observations in summer, at
each pixel location), we fit the IDAF model only at a subset of the pixels, by considering every
second and third pixel along the latitude and longitude respectively. This results in a total of 7,056
pixels.

VII.2.3.2 Marginal Distribution for Non-Zero Precipitation Intensities

We use the three-parameter EGPD of Naveau et al. (2016) as the marginal distribution for the
non-zero rainfall intensities in the IDAF model. The model is an extension of the classical GPD
(which applies only to the excesses of a chosen threshold) to model the entire distribution of
precipitation intensities (the low, medium, and extremes). The first advantage of EGPD is that
since it is an extension of GPD, it is compliant with extreme value theory, so it behaves like the
GPD in the upper tail of the distribution, i.e. the same shape parameter (see Tencaliec et al.,
2020, for demonstration). Secondly, since it makes use of all the non-zero precipitation data,
one does not need to worry about the delicate issue of threshold selection that is known with the
GPD. Finally, it models the whole range of non-zero precipitation, which has several practical
applications in cases where the interest is not only in the largest values but in the medium and low
values as well (e.g. in simulation frameworks or climatological studies).

We define the random variable I to represent non-zero rainfall intensities. We assume that it
follows the EGPD whose cumulative distribution function (CDF) is defined as:
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where a+ = max(a,0), σ > 0 is the scale parameter, and ξ ≥ 0 is the shape parameter that controls
the upper tail of the distribution. The flexibility parameter, κ > 0 controls the lower tail. With the
addition of only one parameter, κ , compared to the GPD, the distribution is able to model the full
range of non-zero precipitation (see applications in Evin et al., 2018; Le Gall et al., 2022; Haruna
et al., 2022, 2023b).

VII.2.3.3 EGPD-IDAF Model

Our assumption is that the random variable of non-zero precipitation intensities for any duration
D and area A, I(D,A) follows the EGPD, i.e.:

I(D,A)∼ EGPD[κ(D,A),σ(D,A),ξ (D,A)], (VII.3)

where κ(D,A)> 0, σ(D,A)> 0 and ξ (D,A)≥ 0 are the three EGPD parameters for the duration
D and area A.

Let FD,A(i) be the CDF of I(D,A), such that FD,A(i) = P(ID,A < i), then IDAF curve, which is
the T -year return level over duration D and area A is defined by the quantile function of FD,A, i.e.:

i(T,D,A) =
σ(D,A)
ξ (D,A)


(

1−
[

1− 1
T ×δ (D,A)

] 1
κ(D,A)

)−ξ (D,A)

−1

 , (VII.4)

where κ(D,A)> 0, σ(D,A)> 0 and ξ (D,A)≥ 0 are the three EGPD parameters for the duration D
and area A. T is the return period in years, δ (D,A) is the average number of non-zero precipitation
intensities for duration D and area A per year. We estimate δD,A based on the long-term average of
the non-zero precipitation intensities per year.

As already highlighted in Section VII.2.1, we use the data-driven approach of Overeem et al.
(2010) to model the IDAF relationships. The approach involves empirically finding the appropriate
regression model to explain the relationship between each of the three EGPD parameters as a
function of duration and area. We will now explain our methodology to determine the appropriate
regression model.

We begin by considering each pixel and fitting EGPD separately to the 100 aggregated time
series of scales (D, A) at that pixel location. We then examine how the three EGPD parameters
change with A and D. To model the relationships, we test various regression models using A,
D, their transformations; log(A), log(D),

√
A,

√
D, as well as some interactions terms. To avoid

having a different regression model at each pixel, we compare competing models regionally by
assessing their predictive performance in cross-validation. In the end, we retain the following
regression models for the EGPD parameters:

log[κ(D,A)] = β0,κ +β1,κA+β2,κD+β3,κ log(A)+β4,κ
√

D+β5,κ
√

D log(A)+β6,κD log(A)

log[σ(D,A)] = β0,σ +β1,σ A+β2,σ D+β3,σ log(A)+β4,σ
√

D+β5,σ
√

D log(A)+β6,σ D log(A)

ξ (D,A) = β0,ξ +β1,ξ D+β2,ξ log(A)+β3,ξ
√

D+β4,ξ
√

D log(A)+β5,ξ D log(A)

,

(VII.5)
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where D is in hours and A is in km2. βi,∗ for i = 0,1, ..6 are the regression coefficients. The scale
(σ ) and flexibility parameter (κ) both have a log link transformation because of their positive
support. They both have seven regression parameters (βi for i = 0,1, ..6)). The shape parameter ξ

has six parameters, making a total of 20 parameters for the complete EGPD-IDAF model for each
season and pixel location. We note here that while the number of parameters might appear large,
the model is still parsimonious compared to fitting EGPD separately for each time series of (D,A),
which amounts to a total of 300 parameters (three (3) EGPD parameters for the 100-time series
in our case). In the result Section we will show additional performance comparisons between
the 20-parameter EGPD-IDAF model, and the 300-parameter base model. In addition to this, the
relative complexity of the model (in terms of parameterization), highlights the inherent difficulty
of modeling areal precipitation in mountainous regions, where areal rainfall is less homogeneous
in space compared to relatively flat regions. A similar attempt to model IDAF curves in southern
France (Massif Central) by Mélèse et al. (2019) highlights similar complexity.
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Figure VII.5: a) Conceptual illustration of IDAF curves in 3-dimension. IDF curves for A = 81
km2 (shown in panel b) are obtained by cutting a plane on the IDAF curves in panel a at A = 81
km2 (red-colored broken lines). The IAF curves on panel c) are obtained by cutting a plane at D
= 6 hr on panel a (blue-colored broken lines).

To conclude this section, we illustrate a conceptual plot of IDAF curves in Figure VII.5. A
plot of IDAF curves is 3-dimensional (Figure VII.5a ), with Intensity (I) along the vertical axis,
duration (D) along the horizontal axis, and area (A) along the third axis which is perpendicular to
the other two axes. For each specific return period (e.g. 2-year, 10-year, or 50-year), a curve is
shown to visualize how the intensity changes across A and D. However, a much simpler approach
is to decouple the 3-dimensional plot into two sub-plots, each in 2-dimension. The first one shows
how the intensities of specific return periods change across durations for a fixed area, i.e. IDF
curves (Figure VII.5b), and the second one, a plot of Intensity-Area-Frequency (IAF) curves,
shows how the intensities change across areas for a fixed duration (Figure VII.5c).

VII.2.3.4 Model Estimation

Let us call θθθ the vector of 20 regression parameters of the EGPD-IDAF model to be estimated at
a given pixel location. We estimate θθθ by maximizing the censored log-likelihood of the EGPD-
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IDAF model, which is given by:

l(θθθ) = ∑
A

∑
D

∑
j:i(D,A, j)<C(D,A)

logFD,A [C(D,A)]+∑
A

∑
D

∑
j:i(D,A, j)≥C(D,A)

log fD,A [i(D,A, j)] , (VII.6)

where θθθ is the vector of the 20 regression parameters to be estimated. FD,A and fD,A are the
CDF and PDF of the EGPD associated with (D, A), i(D,A, j) is the precipitation intensity for (D,
A) and time step j. C(D,A) ≥ 0 is the left censoring threshold applied to the data of (D, A). The
log-likelihood is finally expressed in Equation VII.7 as:

l(θθθ) = ∑
A

∑
D

∑
j:i(D,A, j)<C(D,A)

κ(D,A) log

[
1−
(

1+
ξ (D,A)C(D,A)

σ(D,A)

)− 1
ξ (D,A)

]
+

∑
A

∑
D

∑
j:i(D,A, j)≥C(D,A)

logκ(D,A)−∑
A

∑
D

∑
j:i(D,A, j)≥C(D,A)

logσ(D,A)−

∑
A

∑
D

∑
j:i(D,A, j)≥C(D,A)

[
1+

ξ (D,A)i(D,A, j)
σ(D,A)

][1+ 1
ξ (D,A)

]
+

∑
A

∑
D

∑
j:i(D,A, j)≥C(D,A)

[
1−

((
1+

ξ (D,A)i(D,A, j)
σ(D,A)

)− 1
ξ (D,A)

)][κ(D,A)−1]

,

(VII.7)

where κ(D,A) > 0, σ(D,A) > 0 and ξ (D,A) ≥ 0, are the EGPD parameters for (D,A) and the
other variables retain their earlier definitions.

We highlight two important points here: the use of censored likelihood, and the use of the
independence likelihood. First, the use of censored likelihood is done to reduce the influence of the
small intensities on the MLE. Without censoring, the smaller intensities influence the parameter
estimation, thereby resulting in a large overestimation of the upper tail shape parameter (ξ ). This
is likely due to the insufficient flexibility of the three-parameter EGPD model to adequately model
the left tail of the distribution or the associated uncertainty in the instrumental recording of very
small intensities. A usual censoring approach is to apply a uniform censoring threshold (e.g. 2
mm for all the daily data, or 0.5 mm for all the hourly intensities), but as highlighted by Haruna
et al. (2023b), this is not usually sufficient, and so, an appropriate censoring threshold has to be
obtained for each time series. We follow their footstep and estimate a threshold, for each time
series of (D, A) that minimizes the squared error between the modeled and empirical quantiles
(see Equation VII.9). This approach usually results in an adequate fit of the model.

The second point is on the use of independence likelihood, which assumes independence in
the data. This assumption is unlikely to hold given that we have three levels of dependence in the
data; serial dependence within time series of the same (D, A), dependence between time series of
different durations (e.g. time series of 1 hr and 1 km2, versus time series of 2 hr and 1 km2), and
lastly the dependence between time series of different spatial scales (e.g. time series of 1 hr and
1 km2, versus time series of 1 hr and 3 km2). Despite these, since our target is on the marginal
(univariate) return levels, the violation of the independence assumption is unlikely to induce bias
in our estimates (Sebille et al., 2017). Additionally, within the framework of modeling IDF curves
using generalized extreme value (GEV) distribution, Jurado et al. (2020) showed that little gain
in performance is achieved by explicitly modeling the dependence between the data of different
durations, in addition to the added complexity. Since their application is with GEV rather than
EGPD, an interesting perspective is to investigate this effect with the EGPD. Here we retain the
independence assumption to avoid additional complexity to our model which already has 20 free
parameters. Notwithstanding, we apply temporal declustering to reduce the serial dependence
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in our time series (as done in Naveau et al. (2016); Le Gall et al. (2022); Haruna et al. (2022,
2023b)). To achieve this, we retain every 3rd observation in the 1 hr time series, and every 4th, 5th,
8th, 10th, 12th, 16th, 24th, 48th, 72nd , respectively in the time series of 2, 3, 6, 10, 12, 16, 24, 48,
and 72 hr. Finally, to avoid underestimating uncertainties in our model, which is one of the main
consequences of the independence assumption, we resort to block-bootstrapping for uncertainty
assessment (see Section VII.2.3.5).

VII.2.3.5 Uncertainty Assessment

In order to assess uncertainty in the EGPD-IDAF model, we use the block bootstrap approach
(Kunsch, 1989). The principle of the block bootstrap involves dividing the time series into blocks
of consecutive observations. Resamples are then generated by randomly selecting blocks with
replacements and concatenating them to create a bootstrap sample. By preserving the block struc-
ture, the block bootstrap can capture the dependence structure of the original data. This approach
is suitable for uncertainty estimation in our case, where we made the independence assumption in
the likelihood estimation of the parameters. The block bootstrap method was used for uncertainty
estimation by Overeem et al. (2010) in IDAF curves modeling, and by Overeem et al. (2009);
Haruna et al. (2023b) in IDF curves modeling.

To apply the block bootstrap approach, we take the seasonal time series at each pixel and
estimate the uncertainty by following the outlined steps below:

1. Aggregate the time series into the 10 durations and 10 areas, resulting in a total of 100-time
series, each for a pair of duration and area (D, A). Decluster each of the series according to
the declustering procedure explained in Section VII.2.3.4. We call this sample Morig.

2. Randomly select blocks of size 2 weeks with replacement, G times, to form the resampled
time series (Mboot). Both Morig and Mboot have the same dimensions. The block bootstrap-
ping ensures that we keep the data of the different durations D and areas A together, and
hence the dependence structure. We use a block size of 2 weeks, beyond which the autocor-
relation in the data does not decrease, as done in Haruna et al. (2023b) for the same study
area in the case of IDF curve modeling.

3. Fit the EGPD-IDAF model to the data in Mboot and estimate the intended return levels.

4. Repeat steps 2 to 3 a total of 300 times to obtain the bootstrap distribution of the return lev-
els. Finally, compute the 95% Confidence Interval (CI) of the return levels by the percentile
method. This is done by taking the empirical 0.025 and 0.975 quantiles of the bootstrap
distribution of the return levels obtained in step 4.

As a measure of model precision, we compute the normalized width of the 95% CI of a T -year
return level estimate (Shehu and Haberlandt, 2023). For a given pixel location s, it is computed
from:

n95CIwidth ,s =
rT,97.5% − rT,2.5%

r̄T,
, (VII.8)

where rT,p% is the p% quantile of the 300 bootstrap estimates of the T -year return level (rT ) and
r̄T denotes the average of the 300 estimates. The normalization is to enable the comparison of
uncertainty width across intensities of different scales and return periods.
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VII.2.3.6 Goodness-of-fit of the EGPD IDAF model

To assess the goodness of fit of the EGPD-IDAF model, we compute the normalized root-mean-
square error (NRMSE) and the normalized bias (NBias) at each pixel s and spatio-temporal scale
(D, A). The criteria are computed by comparing the estimated return levels from the model to
the empirical levels computed using the Weibull plotting position defined as j

n+1 with j being the
rank (from largest to smallest) and n is the sample size. The normalization allows comparison of
the score across intensities of different spatio-temporal scales (D, A). For a given pixel s, the two
criteria are given as:

NRMSEs =

{
1
ns

∑
ns
j=1

(
r̂s,Tj − rs,Tj

)2
}1/2

rs
, (VII.9)

NBiass =
1
ns

∑
ns
j=1

(
r̂s,Tj − rs,Tj

)
rs

, (VII.10)

where ns is the sample size, rs,Tj is the empirical quantile with return period Tj =
ns+1
j×δ

, δ is
the average number of non-zero precipitations for (D, A) per year, r̂s,Tj is the corresponding Tj

return level estimated from the EGPD-IDAF model. The denominator is the mean of non-zero
precipitation of (D, A) at pixel s computed from 1

ns
∑

ns
j=1 rs,Tj .

NRMSE measures the accuracy of the model in predicting the empirical quantiles. A good
model should have NRMSE = 0, and the smaller the score, the better the model. NBias measure
the ability of the model to avoid systematic underestimation (NBias < 0) or overestimation (NBias
> 0) of the empirical quantiles. NBias = 0 means an unbiased model.

VII.2.3.7 Cross validation

A natural question to ask is whether the EGPD-IDAF model which links the EGPD parameters
with duration and area is a better model, in terms of some performance indicators, compared to
fitting the EGPD model separately to each time series of spatio-temporal scale (D, A). The two
models will henceforth be referred to as the global model and the base model, respectively. To
answer this, we compare the two models in a split-sample cross-validation framework. We will
start by describing the cross-validation framework, and then introduce the criteria for measuring
the performance.

In the split sampling cross-validation, we consider each pixel and divide the time series into
two subsamples of the same length but on different randomly chosen years. We consider the
first sub-sample, aggregate the data into the 10 durations and 10 areas, and fit the two competing
models, i.e., the base model and the global model. We then assess how the two models perform on
the second sub-sample (validation sample). A good predictive model should perform well in the
data not used in training it. We do the same on the second sub-sample (use it as the training sample,
and the first sub-sample as the validation sample). Since the split sampling is done randomly, we
repeat the procedure 40 times to address sampling bias. We apply the same procedure to all the
pixels in the study area. We then select the method that has the best regional performance (average
of the scores over all the pixels.)

We use some well-chosen predictive performance criteria to measure the performance of the
models. The criteria have seen wide applications in the literature (see Garavaglia et al., 2011;
Renard et al., 2013; Blanchet et al., 2015; Evin et al., 2016; Haruna et al., 2022, 2023b). We give
a brief overview of the criteria, while details can be found in the cited references.

• Robustness: The Robustness criteria, SPAN, measures the ability of a model to give similar
estimates of a high return level when data from two different calibration periods are used to
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train the model (Garavaglia et al., 2011). At a given pixel (s) and for a spatio-temporal scale
(D, A), SPAN is computed as:

SPANs,T =
2
∣∣∣r̂(1)s,T − r̂(2)s,T

∣∣∣(
r̂(1)s,T + r̂(2)s,T

) , (VII.11)

where r̂(1)s,T and r̂(2)s,T are the T -year return levels estimated from sub-sample 1 and 2 respec-
tively at pixel s. A SPAN of 0.5 means that the absolute difference between the two return
levels is half of their average.

A regional value of SPAN, over Switzerland, is computed as SPANreg,T = 1− 1
N ∑

N
s=1 SPANs,T ,

where N = 7,056 is the total number of pixels. A perfectly robust model should have
SPANreg,T = 1.

• Reliability in predicting the maximum value: At a given pixel (s) and for a given spatio-
temporal scale (D, A), the reliability of the model fitted on sub-sample 1 in predicting the
maxima in sub-sample 2 and vice versa is measured by the FF criteria as follows:

FF(12)
s =

[
F̂(1)

s

(
max(2)s

)]n(2)s
, (VII.12)

where FF(12)
s is the cross-validation criteria computed at pixel s, by predicting the probability

of the maximum value in sub-sample 2, of sample size n(2)s using the model fitted on the sub-
sample 1. FF(21)

s is computed symmetrically.

As noted by Renard et al. (2013) and Blanchet et al. (2015), if the fitted model is a good
estimate of the true distribution of the data, FF(12)

s should be a realization of a uniform
distribution. Hence, the difference in the area, noted di f f , between a theoretical uniform
distribution and that of the N = 7,056 values of FF(12)

s (computed over the N pixels), should
be close to zero. FFreg at the regional scale, given as 1−di f f , should therefore take a value
of 1 for a reliable model and 0 for a completely unreliable model; the lower the value the
less reliable the model is.

• The reliability/accuracy over the entire observations: While the previous reliability score
(FF), and SPAN focus on extremes only, it is important that the model is also reliable in the
bulk of the distribution, especially given that we use the EGPD. To measure the reliability
of a model in predicting all the observations in cross-validation, we use the normalized root
mean square error (NRMSE_CV), which is expressed as:

NRMSE_CV(12)
s =

{
1

n(2)s
∑

n(2)s
j=1

(
r(2)s,Tj

− r̂(1)s,Tj

)2
}1/2

r(2)s

, (VII.13)

where NRMSE_CV12
s is the score computed at pixel s, n(2)s is the sample size of the second

sub-sample, r(2)s,Tj
is the empirical quantile with return period Tj =

ns+1
j×δ

, δ is the average

number of non-zero precipitations for (D, A) per year in sub-sample 2, r̂(1)s,Tj
is the corre-

sponding Tj return level estimated from the model fitted on sub-sample 1. The denominator

is the mean of non-zero precipitation in sub-sample 2 at pixel s computed as 1
n(2)s

∑
n(2)s
j=1 r(2)s,Tj

.

Similar to the other criteria, the regional score for each spatio-temporal scale (D,A), com-
puted over the N pixels, is given as NRMSE_CV(12)

reg = 1− 1
N ∑

N
s=1 NRMSE_CV(12)

s . The
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other score, NRMSE_CV(21)
reg is computed symmetrically. NRMSE_CVreg = 1 indicates a

perfectly accurate model (the model accurately predicts the empirical return levels).

VII.2.4 Results and Discussion

VII.2.4.1 Validation of CPC data

We start with a validation/quality check on the CPC by comparing the time series with those from
the rain gauge through a point-to-pixel analysis. This involves comparing the time series from a
gauge to the time series from a CPC pixel at the location of the gauge. We consider 71 gauge
locations and in each case, the data from the gauge is considered the "truth". These 71 stations
have no missing data from 2005 to 2020 (the period of overlap of both datasets). The comparison
is in two steps, in the first step, we compare the two-time series using some chosen criteria and in
the second step, we fit EGPD to both time series and compare the 20-year return level estimate.
The result of the comparison is presented in the following subsections.

VII.2.4.1.a Comparison on the empirical values
i) Criteria on all observations
Following the work of Zambrano-Bigiarini et al. (2017), we use the three sub-components

of the Kling-Gupta-Efficiency (KGE) criterion (Kling et al., 2012) to compare the two datasets
(see Equation A.15 in Appendix A.3.1). The first is the bias (the tendency of CPC to under or
overestimate the gauge data). The second is the variability ratio, which measures the under or
over-dispersion of CPC data compared to the gauge. The third component measures the linear
correlation between the two time series. For a perfect match between the gauge and CPC, all the
criteria should be equal to 1.
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Figure VII.6: Boxplots of linear correlation (a) and probability of detection (POD) (b) for the four
seasons. Each boxplot contains 71 points, 1 point for each pair of rain gauge and the underlying
CPC pixel.

The boxplot of the correlation coefficient is shown in Figure VII.6a for the four seasons and
eight aggregation durations (1, 2, 3, 6, 12, 24, 48, and 72 hr). Generally, there is a good temporal
correlation between the two data sets for all seasons and durations (median > 0.9). For all seasons,
the correlation increases with the aggregation duration. Summer generally exhibits the lowest
correlation irrespective of the duration, due to the localized and isolated nature of convective
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events that are likely to be missed by the rain gauge. The bias and variability scores are given in
Appendix A.3.1. There is generally a tendency toward overestimation of the data (Figure A.11a
by the CPC for all seasons (median > 0), again the bias is more pronounced in summer compared
to the other seasons. Lastly, the dispersion bias (Figure A.11b is generally negative with a median
of 5% for all seasons

ii) Criteria on extremes
Next, we evaluate the ability of CPC to correctly detect extreme precipitation as measured by

the gauge. Extremes here are defined as the exceedances of 99.5% quantile over the whole sample
(zeros included). We compute three criteria similar to Panziera et al. (2018). The first criterion
measures the bias in extreme precipitation totals. The second criterion computes the probability
of detecting extremes (POD), i.e., the ability of CPC to classify events as extremes, given that
they are also extremes according to the gauge. Lastly, we compute the false alarm ratio (FAR),
which measures the rate at which CPC classifies events as extremes when they are not extremes
according to the gauge. For a perfect agreement, bias should be equal to 0, POD should be equal
to 1, and FAR should be equal to 0.

Figure VII.6b shows the seasonal POD scores. The median of the score ranges from 0.7
to 0.99, which means that 70% to 99% of the gauge extreme events are correctly classified as
extremes by the CPC. Again, summer shows the lowest values compared to the other seasons.
Surprisingly, the median score tends to decrease with duration. The same trend is observed in
the case of FAR in Figure A.12b in Appendix A.3.1. The median of the bias in the extremes
precipitation totals (Figure A.12a is less than 5% for all cases. Summer in this case has the lowest
bias but shows the most spread in the case of short durations.
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Figure VII.7: Boxplots of relative bias in a 20-yr return level estimate for the four seasons. Each
boxplot contains 71 points, 1 point for each pair of rain gauge and the underlying CPC pixel.

VII.2.4.1.b Comparison of return level estimates In the final phase, we compare the 20-year
return level estimates from the two datasets. We fit EGPD to each dataset and estimate the 20-year
return level. Figure VII.7 shows the relative bias in the 20-year return level estimates. A positive
bias indicates that the CPC estimates are higher than the gauge estimate. In general, the bias for
durations greater than 6 hr is close to zero. For the 1 hr duration, however, there is a tendency to
have lower estimates with CPC for all seasons, except summer which shows the opposite.

In conclusion, the result of the comparison shown in these sections is aimed at checking and
validating the CPC data before using it in modeling the IDAF relationships. In spite of the no-
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ticeable disagreements, there is generally, a good agreement between the two datasets, given the
inherent uncertainties in both databases (gauge versus radar reanalysis). Although CPC is cor-
rected using the rain gauge data, some differences still remain between the two, mainly due to
the nugget effect in the variogram model, and the convection control scheme in summer (Sideris
et al., 2014a). As emphasized in Section VII.2.2.2, it is beyond the scope of this study to develop
a new gridded dataset for this topographically complex study area. CPC presents the only dataset
at the sub-daily temporal resolution in the study area. It brings the required spatial information
needed for modeling IDAF which cannot be obtained from rain gauges due to their limited spatial
representativity. In the remainder of the article, only CPC is used to build the IDAF models.

VII.2.4.2 EGPD parameters as a function of Duration and Area

The purpose of this section is to show the complex relationship that exists between the EGPD
parameters and duration D, and area A. Moreover, it aims to showcase that the EGPD-IDAF
model is flexible enough to adequately capture this complexity.
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Figure VII.8: EGPD parameters as a function of duration D and area A at a pixel located in
Adelboden (elevation of 1354 m, see FigureVII.4), for the four seasons (columns). The first row
is for κ(D,A), the second row is for σ(D,A), and the last row is for ξ (D,A). In each panel. the
lines represent the modeled relationship using the EGPD-IDAF model, and the points show the
parameter estimates using the base model. The lines and points are colored by duration.

As an illustration, we focus on a single pixel located at an elevation of 1,351 m in Adelboden,
west of the Bernese Alps (see Figure VII.4). The estimated EGPD parameters as a function of
D and A for the four seasons are shown in Figure VII.8. In each panel. the lines represent the
modeled relationship using the EGPD-IDAF model, and the points show the parameter estimates
using the base model. It can be observed from the figure that there is a clear season-dependent
relationship of the parameters with D and A. We will focus on winter and summer since the other
two seasons present behavior in between the two.
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Starting with the top row, the flexibility parameter κ that controls the bulk and lower tail of the
distribution shows a clear relationship with both D and A. For large A, it shows a positive mono-
tonic relationship with D, while for small A, it shows a non-monotonic relationship, decreasing
and then increasing with D. This non-monotonic relationship with D was also observed by Haruna
et al. (2023b) while modeling IDF curves in the study area using rain gauge data. Next, looking
at the middle row, the scale parameter σ decreases with an increase in D for all A in both seasons.
It however shows a non-monotonic relationship with A, which also varies with D. Finally, in the
bottom row, the upper tail shape parameter ξ shows a season-dependent relationship with D and
A. The strongest relationship is observed in summer, where it decreases with both D and A. While
it shows exponential tail (ξ ≈ 0) for D > 24 hr irrespective of A, it shows a heavy tail (ξ > 0.1) for
D = 1 hr even at A = 1089 km2. In winter, however, it shows an exponential tail for all D and A.

We highlight here that the pattern of relationship observed at this pixel location is not general
all over Switzerland, and our aim is just to illustrate the complexity of the relationship by focusing
on this pixel. For instance, for some locations, σ can show a positive-monotonic relationship with
A for all D. The shape parameter ξ can remain positive for all D and A in winter increases with D,
or increases with A. This intricate relationship of the parameters with D and A underscores the dif-
ficulty and complexity of modeling relationships of areal precipitation in topographically complex
locations, due to the regional heterogeneity of the rainfall process. Despite this, the EGPD-IDAF
model adequately captures the relationships as seen in Figure VII.8, and so the proposed regres-
sion models in Equation VII.5 are flexible enough to capture the observed trends in the points
corresponding to the base model estimates. In the next section, we will present the results of the
goodness of fit of the EGPD-IDAF model at all the pixel locations in Switzerland.

VII.2.4.3 Goodness of fit of the EGPD-IDAF model

Figure VII.9: Goodness of fit of the EGPD-IDAF model. a) Boxplots of (1-NRMSE) and b ) NBias
for the four seasons. Each boxplot contains 7,056 by 10 points, 1 point each for a pixel and a
spatio-temporal scale (D, A).

We fitted the 20-parameter EGPD-IDAF at each pixel and for each of the four seasons and
assessed the goodness of fit of the model using NRMSE and NBias (see Section VII.2.4.3). The
normalization allows comparison of the score across intensities of different spatio-temporal scales
(D, A). Figure VII.9 shows the results for the two criteria. In both figures, each of the four panels
shows the score for a given season. The results are shown as a function of area (A), and so each
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boxplot contains the results of 7,056 pixels for the 10 aggregation durations of a given A. Figure
VII.9a shows the result for 1 - NRMSE and so the ideal score is 1. For all seasons, the median
of the score is greater than 0.8 and the score gets better as A increases, possibly because as we
aggregate the process over larger spatial domains, the variability decreases and the fit of the model
gets better. While the score is relatively the same across seasons, summer shows slightly lower
scores for smaller A (as seen from the width of the boxplot). These smaller scales in summer
largely correspond to those experiencing more intense and skewed rainfall due the convective
events. As such the shape parameter is heavy, and so the fit becomes more difficult. In Figure
VII.9b, the median of the NBias remains close to zero which means that the model does not
consistently overestimate or under-estimate the empirical quantiles. As with the other score, the
variability around zero decreases as A increases.

These two scores show that the model can adequately reproduce the areal precipitation across
durations in the study area. It shows good predictive performance as judged by the NRMSE, and
doesn’t show a systematic tendency to overestimate or underestimate the empirical values (NBias).

VII.2.4.4 Comparison of the EGPD-IDAF model with the base model
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Figure VII.10: Boxplots of the cross-validation criteria for the four seasons. Each boxplot con-
tains 2 × 100 × 40 points for NRMSE_CV and FF ( 2 regional scores (i.e. FF(12)

reg and FF(21)
reg ) for

each pair of (D, A), and 40 resamplings). In the case of SPAN20, each boxplot contains 100 × 40
points (1 regional score for each pair of (D, A) and 40 resamplings).

VII.2.4.4.a Cross validation results The result of the split sampling cross-validation for the
comparison of the EGPD-IDAF model (global model) and the base model is shown in Figure
VII.10. This Figure shows the three cross-validation scores (NRMSE_CV, FF, and SPAN20), one
panel for each criterion. As a reminder, the 20-parameter global model allows the linkage of the
EGPD parameters with duration and area, the base model fits a separate EGPD model to each of
the 100-time series of spatio-temporal scales (D, A). The best model in each case has a score of 1.
Starting with the first panel from the left, NRMSE_CV is nearly the same for both models, which
means that both models have the same accuracy in predicting the whole non-zero precipitation.
Next, the FF criterion also shows similar performance by the two models. A noticeable exception
is in summer, where the global model shows better performance. Hence, according to this crite-
rion, while the models have similar reliability in predicting the maximum value, the global model
is slightly better in summer. Finally, SPAN20 shows that a better performance is obtained with the
global model for all seasons compared to the base model. This means that the global model gives
a more stable estimate of a 20-year return level when the calibration sample is changed.
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In summary, both models have similar reliability in their predictive ability (NRMSE_CV and
FF), however, the global model is more robust in 20-year return level estimations (SPAN20). The
robustness of the global model can be explained by the fact that the model is trained with much
more data (all the 100-time series are pooled in the parameter estimation), compared to the base
model.
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Figure VII.11: Boxplots of n95CIwidth(%) for a 50-year return level estimate, using the base model
and the global model. Each boxplot contains 7,056×10 points (7,056 pixels, 10 durations).

VII.2.4.4.b Uncertainty Since the two models have similar predictive performance, we also
go a step further to compare the models in terms of their uncertainty estimates. While a good
model should give correct predictions, the uncertainty of the prediction should not be too large.
Figure VII.11 shows the n95CIwidth(%)) (Equation VII.8) of a 50-year return level estimate with
both the global and base model. The smaller the score, the better the preciseness of the model
(less uncertainty). Each panel in this Figure shows the result for a given season. The results
are shown as a function of area (A), and so each boxplot contains the results of 7,056 pixels for
the 10 aggregation durations of a given A. For all seasons, the global model has the smallest
values of the n95CIwidth as seen from the median and width of the boxplots. The lower values
of the global model mean less uncertainty compared to the base model, which can be explained
by the fact that the global model is trained with more data, and this translates to less uncertainty
(narrower confidence intervals). Two more comments can be made from Figure VII.11. First, for
all seasons, the uncertainty decreases with A, which can be a result of the smoothing effect due to
spatial averaging. Secondly, some inter-seasonal differences are noticeable, with summer (winter)
having the highest (lowest) uncertainty. A possible explanation is that since more extremes are
observed in summer (especially at sub-daily time scales), the uncertainty is expected to be larger.
For a given return period, the magnitude of the return levels in summer at the small scale is larger
compared to the other seasons, and so will the uncertainty.

To conclude, the results shown so far demonstrate that the modeled EGPD-IDAF can be used
in the study area. It has adequate goodness of fit, is reliable and robust in prediction, and has
relatively low uncertainty in estimation. With this validation, we will now proceed to showcase
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examples of IDAF curves constructed from the EGPD-IDAF model at some pixel locations in the
next section.

VII.2.4.5 IDAF curves

Figure VII.12 shows an application of the EGPD-IDAF model to build summer IDF and IAF
curves at the pixel located in Adelboden. This pixel has been introduced in Section VII.2.4.2 and
is shown in Figure VII.4. Starting with the top row (Figure VII.12a), IDF curves are shown in the
case of four aggregation areas i.e A = 1, 25, 529, and 1,089 km2 (1 column each). In each column,
the colored lines represent the T -year return level estimate across duration for T = 2, 10, and 20
years. The corresponding empirical estimates are shown by the colored points. It can be seen
that the EGPD-IDAF correctly predicts the observation as they are within the 95% CI (shown by
the colored envelopes). We also see that the uncertainty (indicated by the width of the bounds) is
higher for shorter durations. Finally, irrespective of the spatial scale (A), the return levels decrease
as the duration increases.
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Figure VII.12: Application of the fitted EGPD-IDAF model at a pixel location in Adelboden
for the summer season. The top row (a) shows some IDF curves for four spatial scales (one per
column). The bottom row (b) shows the IAF curves for four temporal scales (one per column). The
lines and the points show the modeled and empirical levels respectively, colored by their return
periods. The colored envelopes are the 95% confidence intervals of the model estimates obtained
by block bootstrap. The 50-year empirical values are not shown due to the short record length of
the data

The second row (Figure VII.12b) shows the IAF curves for four temporal scales, D = 1, 3, 24,
and 72 hr. While the model shows an adequate performance for longer durations (D ≥ 24 hr), the
fit is less good in the case of shorter durations, especially for higher return periods. Looking at the
IAF curves for short durations, we see that the return levels tend to decrease with an increase in the
spatial scale. For longer durations, however, the return levels have nearly the same magnitude (flat
IAF curves) irrespective of the spatial scale. A possible explanation is that at short durations, the
rainfall events are more localized (typical of convective events) and so the magnitude decreases
due to spatial averaging. For longer durations, however, the rainfall is more homogeneous in space
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(typical of frontal events), with no significant variations in rainfall intensity, leading to similar
marginal distributions for the considered areal rainfall.
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Figure VII.13: Same as Figure VII.12 but for autumn at a location in Sion in the Canton of Valais
(see Figure VII.4).

To explore the regional and seasonal variability of the IDAF relationships, Figure VII.13 shows
the autumnal IDF curves (top row) and IAF curves (bottom row) at a location in Sion, in the
inner valleys, southwestern Switzerland. This location is at a relatively low elevation of 482
m and experiences low-intensity rainfall due to the shielding effect of the Alps on both sides.
Remarkably, the IDF and IAF curves at this pixel location exhibit a distinctive behavior, diverging
from the conventional trend of decreasing return levels with increasing spatial scales. The IAF
curves (bottom row) highlight this feature. It can be seen that the IAF curves for 1 hr are nearly flat,
and the IAF curves for D ≥ 24 hr have positive slopes. A plausible explanation of this behavior
is that rainfall, of short and long duration, is less intense at the pixel location compared to its
neighborhood locations, which are at a higher altitude (see Figure 6 to 8 of Panziera et al. (2018)).
As a consequence, more intense rainfall is observed as the rainfall is spatially aggregated around
the pixel location. Figure VII.4 shows that a spatial window of 1,089 km2, centered around the
pixel (elevation of 480 m), extends well beyond the valley into the Bernese alpine slopes (elevation
up to 2,400 m). This seasonal and regional variability highlights the complexity of modeling areal
precipitation in the study area due to the complex topography.

VII.2.4.6 Areal rainfall hazard in Switzerland

In this last section, we use the EGPD-IDAF model to assess areal rainfall hazards in the study area.
We investigate the 20-year return level for two spatio-temporal scales, specifically the scales (D =
1 hr, A = 1 km2) and (D = 24 hr, A = 1,089 km2). The corresponding maps of the seasonal 20-year
return level are shown in Figure VII.14a and Figure VII.14b respectively. For the scale (D = 1
hr, A = 1 km2), we observe that the highest return levels occur during the summer months, while
the lowest values are observed in winter. This can be attributed to the prevalence of convective
rainfall during summer. We also see significant regional variability across all seasons, particularly
during summer. The Ticino region in the south of the Alps, the Bernese Alps in the north, and
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Figure VII.14: Map of seasonal 20-year return level obtained with the EGPD-IDAF model for
the spatio-temporal scales a) (D = 1 hr, A = 1 km2) and b) (D = 24 hr, A = 1,089 km2). The
black-colored square in b) shows exemplarily the maximum extent of the rectangular window used
for data aggregation, i.e. 1089 km2.

the Jura Mountains consistently exhibit the highest return levels. Conversely, the inner valleys in
Valais and Grisson, due to their location between mountains, depict the lowest values as they are
shielded from both directions.

Moving to the scale (D = 24 hr, A = 1,089 km2), we see a shift in the seasonal and regional
variability of the 20-year return level. The black colored square shows the spatial coverage of A
= 1,089 km2, centered around a pixel in Adelboden. The map in Figure VII.14b shows that the
largest values are observed in Ticino, regardless of the season. The Ticino region consistently
exhibits the highest levels of extreme precipitation in Switzerland. In the north of the Alps, the
plateau displays lower levels compared to the pre-Alps (along the Glarus Alps). These results em-
phasize the influence of spatio-temporal scale on the seasonality and regional patterns of rainfall
hazard in Switzerland. Smaller scales show a higher hazard during summer, while larger scales
demonstrate a higher hazard during autumn, particularly in the Ticino region. It is important
to note that the Ticino region consistently remains at a higher hazard of extreme precipitation,
irrespective of the scale. Conversely, the inner valleys in Valais and Grisson exhibit lower suscep-
tibility to extreme precipitation events.

In conclusion, this result provides insights into the seasonal and regional patterns of rainfall
hazards in Switzerland, highlighting the importance of considering spatio-temporal scales when
assessing extreme precipitation hazards. It is important to note that while this assessment focuses
on the hazard of extreme precipitation, it is essential to consider other factors such as exposure
and vulnerabilities at specific locations to fully evaluate the overall risk.

VII.2.5 Conclusions

This paper focused on modeling the relationship of extreme precipitation across duration and area
through Intensity-Duration-Frequency (IDAF) curves in Switzerland. We proposed a novel ap-
proach to model IDAF curves, by using all the non-zero (low, medium, and extremes) precipitation
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data, instead of only the extremes. To build the IDAF curves, we used the EGPD as the parametric
distribution for the precipitation intensities. The EGPD has the key advantage of adequately mod-
eling the entire distribution of non-zero precipitation while being compliant with extreme value
theory in both tails. We followed the footsteps of Overeem et al. (2010) to model the IDAF curves
through a data-driven approach. This approach involves modeling the EGPD parameters as a func-
tion of area and duration, with the form of the relationship being empirically determined from the
data. We used 17 years of data from the radar-reanalysis product, CombiPrecip (CPC) (Sideris
et al., 2014a) to build the EGPD-IDAF model at each pixel location in the study area.

We used the model to assess areal rainfall hazard for some spatio-temporal scales in Switzer-
land. More than any region, the results showed that Ticino, located south of the Alps, is the most
exposed to extreme precipitation for all the scales considered. Overall, the result provided in-
sights into the seasonal and regional patterns of rainfall hazards in Switzerland, highlighting the
importance of considering multiple spatio-temporal scales when assessing extreme precipitation
hazards. We comment here that although we used the EGPD-IDAF model for areal rainfall haz-
ard assessment, it can be used in several applications, such as the design of hydraulic structures
(Bertini et al., 2020), or the determination of thresholds for use in early-warning systems (Panziera
et al., 2016). Another potential application is that since the EGPD models the whole distribution
of non-zero precipitation, not only the upper tail, it can be used as marginal distribution in stochas-
tic weather generators for areal rainfall generation. The model will provide for a robust marginal
distribution, given the quantity of data used to train it.

Additional results through a point-to-pixel comparison showed that both CPC and rain gauge
data provided similar return level estimates, especially for longer durations. While this can be seen
as a sort of validation of the CPC in extreme value analysis, the inferred return levels have to be
interpreted with caution, mainly due to the limited length of the data. Notwithstanding, our work
still provided a framework for further analysis in the presence of longer time series, e.g. from
simulated series using weather generators.

Some perspectives for the present work involve using splines to model the relationships in the
EGPD-IDAF model rather than regression forms. A possibility is to use Generalized Additive
Models (GAMs) as implemented in Youngman (2020), or its extension that uses censored like-
lihood as used in Haruna et al. (2022). While splines can be promising due to their flexibility,
a likely drawback is the enormous computational time required for inference of the model when
using the EGPD, which uses all non-zero data. Our experience in Haruna et al. (2022) shows that
the model requires significant time before convergence. The problem will be more complicated
in this case where 100 time series is used and for more than 7,000 pixels. Another avenue for
further research involves developing an Areal-Reduction-Factor (ARF)-based IDAF model and
comparing it with the data-driven approach used in this model. While empirical (e.g. Mineo et al.,
2018) and analytical (e.g. De Michele et al., 2001) ARF formulations exist in the literature (see
Svensson and Jones, 2010, for a review), our suggestion is to empirically develop an ARF model
that works in the study area. This is because a previous research by Mélèse et al. (2019) showed
that in mountainous regions, ARF formulations can exhibit unusual behavior (e.g. increasing
value of ARF with an increase in Area, or ARF > 1). Finally, from an inference point of view,
it will be interesting to explicitly account for dependence in the likelihood of the EGPD model
(Equation VII.7). Beyond addressing the potential of likelihood misspecification, it will allow the
possibility to estimate the conditional probability of observing an extreme event of a particular
spatio-temporal scale, given that an extreme of another scale has been observed. This kind of
information is invaluable in practice for risk management and planning.
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VII.3 Summary

To sum up, the main take-home message from this chapter is summarized below:

Question 4: What is an appropriate model of Intensity-Duration-Area-Frequency
(IDAF) relationships for the full range of non-zero precipitation intensities in a
topographically complex area?

• We develop models of IDAF relationships using all non-zero precipitation
intensities. The three-parameter EGPD was used as the model for the pre-
cipitation intensities.

• Following the work of Overeem et al. (2010), we developed a data-driven
approach, where each parameter is modeled as a function of duration and
area based on empirically determined relationships.

• We applied the model to construct IDF and IAF curves and to characterize
and assess extreme areal precipitation hazards in Switzerland. Addition-
ally, the marginal distribution from the IDAF model can be employed in
simulation settings to feed stochastic weather generators for areal rainfall
generation.

• The proposed parametric relationships in the IDAF model could be used
in other regions with similar climates, we however expect them to be less
complex in regions with lesser precipitation variability.

• As a limitation, the independence likelihood was used to estimate the
model parameters, it will be interesting to explicitly model the dependence
and to investigate the potential effect of the independence assumption.

• Another perspective is to develop an Areal-Reduction-Factor (ARF)-based
IDAF model and compare it with the data-driven approach we considered.
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Conclusions and perspectives

Chapter overview

T his chapter presents the general conclusions and some relevant avenues for
future research to address some of the limitations of the thesis.
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VIII.1 Conclusion

The goal of the thesis was to develop a model of IDAF relationships of non-zero precipitation
applicable everywhere in Switzerland. To achieve this aim, four research questions were raised
and answered accordingly in Chapter IV through Chapter VII. The main results are summarized
below:

• The first question, "What is the most suitable and parsimonious probability distribu-
tion to model the entire range of non-zero precipitation intensities in a topographically
complex area?" was addressed in Chapter IV. We considered three parametric families of
the EGPD proposed by Naveau et al. (2016) and compared them using seasonal daily pre-
cipitation in the study area. The three-parameter model based on power law for the bulk
of the distribution appeared to be the parsimonious model and was retained for subsequent
application in the thesis. The inference procedure we adopted is based on maximum like-
lihood estimation due to its flexibility in accommodating covariates in regression settings.
We however discovered that a station-specific threshold choice in the left-censored maxi-
mum likelihood estimation is needed to ensure adequate model performance, as a uniform
threshold may result in poor performance at some stations. We then applied the chosen
model to characterize extreme daily and hourly precipitation in Switzerland. In particular,
the magnitude and spatial patterns of the seasonal return levels obtained are in agreement
with those in the literature.

• Chapter V answered the second question, "What is the most effective regionalization
method to improve the robustness and reliability of daily precipitation estimates in a
topographically complex area?". To answer the question, we developed regional mod-
els based on three regionalization methods and we compared them based on their ability
to improve the robustness and reliability of daily precipitation estimates using the EGPD.
The results showed that all the regional models offered improvement compared to the local
application of the EGPD. Of the regional models, the one based on ROI and the other based
on GAM appeared to compete hand in hand in temporal cross-validation and were further
compared in spatial cross-validation. The spatial cross-validation results showed that the
ROI coupled with thin plate spline interpolation emerged as the best model for both gauged
and ungauged locations. The maps of seasonal 100-year return levels of daily precipitation
using the model revealed a clear seasonality and spatial pattern. Ticino, located south of the
Alps, is subjected to the highest levels, especially in autumn, where up to 400 mm can be
expected.

• The third question raised was "What is the best model of Intensity-Duration-Frequency
(IDF) relationships for the full range of non-zero precipitation intensities in a topo-
graphically complex area?". We tackled this question in Chapter VI by building models
of IDF relationships using all non-zero precipitation intensities with the three-parameter
EGPD as the model for the precipitation intensities. We considered three approaches to
modeling IDF curves, along with their extensions to account for potential breaks in the scal-
ing relationship of precipitation and varying shape parameters with duration. We then built
IDF models and compared them in calibration and cross-validation. The model based on
the data-driven approach was shown to have the best performance and was applied to build
catchment-level IDF curves for hydrological applications in Switzerland. The seasonal maps
of the 100-year return level obtained with the IDF model revealed that the seasonal and re-
gional patterns depend on the considered accumulation duration. For short durations (e.g.
1 hr), the highest levels are almost exclusively observed in summer, while for the daily
scale, the highest levels are observed during autumn, particularly in Ticino. Additionally,
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the marginal distributions derived from the model are intended to be used in a stochastic
weather generator currently developed in the EXCH project.

• Finally, Chapter VII answered the last question which is "What is an appropriate model of
Intensity-Duration-Area-Frequency (IDAF) relationships for the full range of non-zero
precipitation intensities in a topographically complex area?". We developed models
of IDAF relationships using all non-zero precipitation intensities with the three-parameter
EGPD as the model for the precipitation intensities. We applied the model to construct IDF
and IAF curves and to characterize and assess extreme areal precipitation hazards in Switzer-
land. Overall, the results provided insights into the seasonal and regional patterns of rainfall
hazards in Switzerland, highlighting the importance of considering multiple spatio-temporal
scales when assessing extreme precipitation hazards. The results showed that Ticino is the
most exposed to extreme precipitation for all the scales considered.

VIII.2 Perspectives

Despite the results obtained, there are still avenues for further research to address the limita-
tions of the thesis. These perspectives are outlined in the following sections:

VIII.2.1 Modeling in a non-stationarity context

Throughout the thesis, we assumed a stationary climate, mainly due to the requirement of the
EXCH project. However, since Switzerland has experienced a warming trend almost double the
global average (Scherrer et al., 2016b), it will be necessary to investigate the observed and future
trends of extreme precipitation in the study area, and more generally in mountainous regions and
to adapt the IDF/IDAF relationships accordingly.

VIII.2.1.1 Observed and future trends

Several studies were performed to investigate the observed changes in both mean and heavy precip-
itation in Switzerland. Such studies include the work of Widmann and Schär (1997) and Schmidli
et al. (2002) for the 1901-1990 period, Schmidli and Frei (2005), for the 1901–2000 interval,
Begert et al. (2005) for the duration covering 1864–2000, Masson and Frei (2016) for the 1901–
2008 period. Their conclusions on the trend and significance varied depending on the dataset and
the period considered. However, the most recent work for the 1901–2013 period by Scherrer et al.
(2016a) reported a significant positive trend in the case of annual and winter precipitation, while
no significant trends were observed in spring, summer, and autumn. Regarding heavy precipita-
tion, Scherrer et al. (2016b) reported a positive trend in both the intensity and frequency of heavy
precipitation throughout Switzerland during the 1901–2014 period. The trends were observed both
at the annual and seasonal scales. All regions displayed a positive trend, with the inner Alps show-
ing the lowest. In terms of frequency, the trends were larger in the northern part of the country
compared to the south.

In addition to the observed trend above, based on climate change scenarios in Switzerland
(CH2018, 2018), the positive trend in heavy precipitation is expected to continue throughout the
century, especially in winter, where less snow is expected in favor of liquid precipitation. In
addition, heavy precipitation at the hourly scale in summer is also expected to increase at a rate of
6–7% per degree warming (Clausius-Clapeyron scaling rate). A recent work by Vergara-Temprado
et al. (2021) showed that even at sub-hourly scales, heavy precipitation in Switzerland will increase
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according to the Clausius-Clapeyron scaling rate. The mean precipitation on the other hand is
likely to increase in winter and decrease in summer. A weak increase in northern Switzerland is
likely during spring, whereas no clear changes are expected in autumn.

The changes are not particular to Switzerland, but general to other regions in the European
Alps. For instance, Ménégoz et al. (2020) also reported a significant increase in annual and winter
precipitation and a reduction in summer precipitation in the northwestern Alps. Heavy seasonal
precipitation is also observed to have increased at the annual and seasonal scale. In addition,
most of the Alpine regions are projected to experience an increase in the intensity of extreme
precipitation events in all seasons except summer. This increase will be most significant and
widespread during the fall, especially in the northern Alpine region (Gobiet et al., 2014).

Based on the findings mentioned above, an interesting perspective is to model the trends using
the EGPD and to account for the non-stationarity in building the IDF and IDAF relationships. This
is elaborated more in the following sections:

VIII.2.1.2 Modeling trend with the EGPD

A starting point could be to use the EGPD to model the non-stationarity and to explore the physical
mechanism associated with the trends. While GEV is widely used for modeling non-stationarity
(e.g. Cheng and AghaKouchak, 2014; Blanchet et al., 2021; Zhao et al., 2023), the EGPD could
be an interesting choice since it models both the bulk and the upper tail. This is particularly useful
because the same distribution could be used to explore potential trends and their associated drivers
in both the bulk and the extremes, which may differ. One possibility to model the non-stationarity
using the EGPD is to model the parameters as parametric functions of time or other climatic
covariates such as global mean temperature. This can be achieved by using the generalized linear
model (GLM) for instance. The non-stationary EGPD model within the GLM framework can be
written as:

ηγ (γ) = β0,γ +
mγ

∑
j=1

β j,γx j,γ , (VIII.1)

where γ ∈ {κt ,σt ,ξt , p0t}. The subscript t indicates that each parameter is time-dependent. p0
is the probability of zeros required for return level estimate, ηγ( ·) is the link function (e.g. log
link for κt and σt , identity for ξt , and logit for p0t ),

(
β0,γ , . . . ,βmγ ,γ

)
are model parameters to

describe the trends of the parameter γt , x j,γ( j = 1, . . . ,mγ) are the time-dependent covariates for
the parameter γ introduced to explain the non-stationarity, and mγ is the number of covariates for
the parameter γ .

VIII.2.1.3 Modeling trend in IDF relationships

The observed and future trends in the intensity and frequency of heavy precipitation at daily and
sub-daily time scales in the study area have broad implications for the application of the IDF curves
developed under the stationary assumption because a structure designed under this assumption is
likely to fail more frequently than intended. It is thus an interesting perspective to consider non-
stationarity in the IDF relationships. To the best of our knowledge, no work has been done to
account for non-stationarity in IDF curves in Switzerland. A review of approaches to account for
non-stationarity in IDF relationships can be found in the literature (e.g. Martel et al., 2021; Yan
et al., 2021). In summary, the approaches can be described as follows:

• First, the IDF relationships developed under the stationarity assumption can be updated by
a simple percentage increase (e.g. 30% in Belgium as reported in Martel et al., 2021), or
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a percentage increase based on the Clausius-Clapeyron relationship. The latter is given in
Martel et al. (2021) as:

i f ut = ire f ×
(

100+Rsc

100

)∆T

,

where i f ut and ire f denote the projected future and reference period precipitation intensities
respectively, Rsc is the precipitation scaling factor (%) based on the Clausius-Clapeyron
relationship and ∆T is the projected change in local temperature (◦C).

• The second way is to develop covariate-based IDF curves. In this case, the EGPD param-
eters in the IDF relationship are modeled as parametric functions of time or other physical
covariates related to urbanization, temperature, global warming, etc. (see Yan et al., 2021).
This can be achieved by using the generalized linear model (GLM) for instance (e.g. Cheng
and AghaKouchak, 2014; Agilan and Umamahesh, 2016; Ouarda et al., 2019). In addition
to the duration dependence of the EGPD parameters, they are also modeled as functions of
time-dependent covariates.

• The third approach is to consider climate model-based future IDF curves (e.g. Agilan and
Umamahesh, 2016; Zhao et al., 2022). These future IDF curves are developed by performing
frequency analysis directly on projected high-resolution precipitation data obtained from
Regional Climate Models (RCMs) or Global Climate Models (GCMs). The future IDF
curves as well as their related changes can then be evaluated.

In any case, each approach has its drawbacks. The percentage increase method adopts the
same percentage irrespective of the duration and frequency of the precipitation. The established
relationship between the model parameters and the explanatory variables in the covariate-based
IDF curves is assumed to remain unchanged when extrapolating in the future. The climate model-
based future IDF curves on the other hand involve precipitation simulations with various levels
of uncertainties ranging from the emission scenario, model structure, internal climate variability,
downscaling method, and post-processing of climate simulations.

VIII.2.1.4 Modeling trend in IDAF relationships

Several studies have shown that a warming climate is likely to result in a potential shift in the
spatial organization and spatial dependence of storms (e.g. Wasko et al., 2016; Blanchet et al.,
2018; Matte et al., 2022). This has the potential to increase the spatial concentration and the
intensity of precipitation which could increase the severity of flooding. Modeling the trend in the
IDAF relationships can help investigate potential shifts in the structure of precipitation, the spatial
organization of storms, and the potential physical drivers. Similar to the case of IDF relationships,
non-stationarity in IDAF models can be modeled by letting the EGPD parameters in the IDAF
relationships depend on time or time-related covariates using the GLM framework. A circular
aggregation window could be employed to better approximate storm shapes. A main difficulty
however is that for our study, the observed gridded data at the hourly scale is limited in length to
only a few years (≈ 17 years). It will be impossible, therefore, to reliably investigate any trend
using the data set. Another possibility is to use RhiresD which covers a much longer period (≈
60 years). However, this dataset is available at the daily scale so no insight will be obtained for
the sub-daily time scale which is related to the intense convective events.

VIII.2.2 Comparing EGPD-IDAF models with those from other distributions

In this thesis, EGPD was used as the distribution of non-zero precipitation intensities to model the
IDF and IDAF relationships. The motivation for using the EGPD was to make efficient use of in-
formation thereby reducing estimation uncertainty. This decision was also motivated by the need
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to have a robust marginal distribution to be applied in the stochastic weather generator developed
during the EXCH project. An avenue for further research is to make an objective comparison of the
performance of the EGPD and other distributions, such as GEV or GPD, or the recently proposed
meta-statistical extreme value (MEV) distribution (Marani and Ignaccolo, 2015) in modeling ex-
treme precipitation, such as daily data.

The MEV distribution, in particular, and its variants (see Section III.1.2.3) have become in-
creasingly popular in hydrological applications (e.g. Schellander et al., 2019; Gründemann et al.,
2023) because it does not require the asymptotic assumption, and it uses more data compared to
GEV and GPD. Recent comparison has been done to compare the MEV and the classical EVT
distributions such as GEV and GPD and the former has been shown to yield more accurate esti-
mates especially when the length of the available record is short (Marani and Ignaccolo, 2015) less
uncertainty (Marani and Ignaccolo, 2015; Zorzetto et al., 2016; Marra et al., 2018, 2019), more
robust (Schellander et al., 2019) and more spatially coherent estimates (Gründemann et al., 2023).
However, except for the work of Milojevic et al. (2023) which reported better performance of
EGPD over MEV at high return level estimates from short records, to the best of our knowledge,
no work has been done to comprehensively compare EGPD and MEV.

A further step would be to build IDF and IDAF models using the GEV/GPD/MEV and to
make a performance comparison with the EGPD. The evaluation framework and criteria used in
this thesis (Section III.5) can be applied to compare these distributions. Additionally, the criterion
proposed by Gründemann et al. (2023) to measure the heaviness of the tail of the distribution can
also be employed. This will allow a thorough evaluation of the advantages and potential drawbacks
of using the EGPD when the interest is only in the extremes. In any case, the EGPD has an
edge over the GPD/GEV/MEV distributions since it models the entire non-zero precipitation (low,
medium, and extremes), while the latter distributions only model the extremes.

VIII.2.3 Regional IDAF model

The IDAF model we developed in Chapter VII modeled the EGPD parameters as functions of
duration (D) and area (A), and each model was separately fitted at each pixel in Switzerland. That
is:

I(D,A)∼ EGPD[κ(D,A),σ(D,A),ξ (D,A)], (VIII.2)

where κ(D,A)> 0, σ(D,A)> 0 and ξ (D,A)≥ 0 are the three EGPD parameters for the duration
D and area A.

The proposed model has a total of 20 parameters, with 7 each for σ and κ , and 6 for ξ

(see Section VII.2.3.3). Since we fitted the model at each of the 7,000 pixels in Switzerland, we
ended up with (20× 7,000) parameters. This is obviously a large number of parameters, so one
possible solution is to model the EGPD parameters as functions of geographical covariates such
as longitude, latitude, and elevation. This way, Equation VIII.2 becomes:

I(D,A,xxx)∼ EGPD[κ(D,A,xxx),σ(D,A,xxx),ξ (D,A,xxx)], (VIII.3)

where xxx denotes a vector of geographical covariates, and each EGPD parameter α ∈ {κ,σ ,ξ}
depends on some form of xxx. One possibility is to extend the relationships in Equation VII.5 to
model each parameter as a smooth function of xxx, that is:

ηα(α(D,A,xxx)) = gα(D,A)+ fα(xxx,D,A), (VIII.4)

where α is a given parameter, ηα( ·) is a link function, gα(D,A) is a function of D and A (see Equa-
tion VII.5) and fα(xxx,D,A) is a smooth function, modeled with GAM, allowing for the potential
interaction between the vector of covariates xxx, D, and A.
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The model can be estimated by pooling all the data of different durations and areas in the study
area to estimate the parameters of the model. Using the independence likelihood will impose an
assumption of independence between neighboring pixels in addition to the dependence between
intensities of different durations and areas. This is however unlikely to be an issue since vari-
ous authors (e.g. Chavez-Demoulin and Davison, 2005; Davison et al., 2012; Zheng et al., 2015)
suggest that spatial dependencies can be neglected for the estimation of point-wise return levels.
Anyways, explicitly modeling the dependence will largely inflate the number of parameters to be
estimated. Even with the independence assumption, a potential difficulty is that since EGPD uses
all non-zero precipitation data, the model will most likely require a lot of computational time,
and a robust optimization algorithm will be necessary to estimate a large number of parameters.
Nonetheless, Equation VIII.3 means that only one model will be estimated for the entire study
area, with far fewer parameters compared to fitting a separate model at each pixel.

VIII.2.4 Accounting for dependence in the IDF and IDAF relationships

Since our interest was on the marginal (univariate) return levels, the IDF and IDAF models devel-
oped in this study were based on the hypothesis of independence between intensities of different
durations (e.g. time series of 1 hr versus time series of 2 hr) in the IDF models (Equation VIII.5)
and independence between intensities of different durations and different areas (e.g. time series of
1 hr and 1 km2, versus time series of 2 hr and 9 km2) in the IDAF models (Equation VIII.6):

l(θθθ) = ∏
D∈D

∏
j∈J

fD [i(D, j)] , (VIII.5)

l(θθθ) = ∏
A∈A

∏
D∈D

∏
j∈J

fD,A [i(D,A, j)] , (VIII.6)

where f∗ is the PDF of the EGPD and θθθ is the vector of parameters to be estimated, D and J are
respectively the considered sets of duration and area, and i(D,A, j) is the non-zero precipitation
intensities for duration D, area A and time step j.

This independence assumption neglects the correlation between intensities of different dura-
tions and different areas. Previous studies investigated this issue in the case of IDF curve modeling
and the annual maximum series (GEV). For instance, Nadarajah et al. (1998) modeled the depen-
dence between the different durations using multivariate extreme value distributions (MEVD),
and Tyralis and Langousis (2019) followed suit by using max-stable processes. Later, Jurado et al.
(2020) investigated the impact of accounting for this dependence in extremes using max-stable
processes and showed that there is little gain in performance for return level estimates, in addition
to the added complexity of using max-stable processes.

However, all these studies only focused on IDF models and marginal distributions based on
extreme data. To our knowledge, modeling dependence with EGPD, which includes all the non-
zero precipitation data has not been done yet. It would therefore be interesting to explicitly model
the dependence in IDF and IDAF curve modeling for the case of the EGPD and to investigate the
potential gain in the inferred return levels.

A starting point in the case of the IDF models (the same procedure applies to the IDAF model),
could be to follow the footsteps of Tyralis and Langousis (2019) and Jurado et al. (2020) by model-
ing the dependence using the Brown-Resnick max-stable model (Padoan et al., 2010). According
to this approach, the joint distribution function of any pair of unit-Frechét variables Z(Di), Z(D j)
drawn from a Brown Resnick process is given by:
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P [Z (Di)≤ zi,Z (D j)≤ z j] =

exp

[
− 1

zi
Φ

(√
γ(h)
2

+
1√
γ(h)

log
z j

zi

)
− 1

z j
Φ

(√
γ(h)
2

+
1√
γ(h)

log
zi

z j

)]
, (VIII.7)

where Φ denotes the standard normal distribution function, γ2(h) = 2
(

h
ρ

)τ

, with 0 < τ ≤ 2 the
smooth parameter and ρ > 0 the range parameter of the semivariogram. h is a measure of the
distance between duration pairs (Di, D j) and following Jurado et al. (2020), h = log2

(
D j
Di

)
with

j > i.
To proceed, the EGPD distribution of each non-zero precipitation data for duration D is trans-

formed into unit Frechét using

z(D) =− 1
log{FD(i(D))}

, (VIII.8)

where FD( ·) is the EGPD CDF. To link i(D) to z(D), the relationships in Equation VI.12, to VI.15
can be employed. The model thus has a total of 12 parameters, 10 for the IDF formulation in
Section VI.1.3.2.c and two, α and ρ , for the variogram that models the asymptotic dependence.
The estimation can be done using pairwise likelihood as shown in Jurado et al. (2020), after which
the IDF curves can be obtained from Equation III.14. In addition, the extremal coefficient that
gives information on the dependence at extreme levels between Di and D j can be obtained from
Ψ(h) = 2Φ [γ(h)/2]1/2. In general 1 ≤ Ψ(h) ≤ 2, for complete dependence Ψ(h) = 1, and com-
plete independence Ψ(h) = 2.

A potential difficulty in applying this approach is that the EGPD considers all the non-zero
precipitation intensities. This means that the number of non-zero observations in the EGPD case
decreases with duration, For instance, in a 20-year record, there are (20×365×24× the fraction
of wet hours) of hourly non-zero observations, while there is (20×365× the fraction of wet days)
of 24 hr non-zero precipitation. This is unlike the annual maxima series where there are the same
number of observations regardless of the duration. The open question is then how to account for
this difference while applying Equation VIII.7 in the case of the EGPD. Furthermore, in the case
of IDF curves the distance between Di and D j is obtained from h = log2

(
D j
Di

)
with j > i, another

difficulty in the case of IDAF model is in the definition of the distance between (D,A) and (D′,A′).
In any case, by explicitly accounting for the dependence in the likelihood, we can avoid poten-

tial model misspecification that might occur when using Equations VIII.5 and VIII.6. Moreover,
such an approach enables us to estimate the conditional probability of observing an extreme event
of a particular spatio-temporal scale, given that an extreme of a different scale has already been
observed. This information can be extremely valuable in practice, especially for issuing alerts.
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Appendix A. Appendix

A.1 Appendix of Chapter III

A.1.1 GPD

A.1.1.1 Justification of the GPD

Now that we know that GPD is the model for the excesses, we will now show the justification as
outlined in Coles (2001). First, the conditional distribution of the excess of u can be written as:

Fu(x) = P(X −u ≤ x | X > u) =
F(x+u)−F(u)

1−F(u)
, (A.1)

for 0 ≤ x < xF − u, xF being the right endpoint of F . The conditional distribution of the tail,
1−Fu(x) in turn can be written as:

P(X −u > x | X > u) =
1−F(x+u)

1−F(u)
for x > 0. (A.2)

Since F is not always known, we seek to find the approximation of Fu within the EVT frame-
work. Let us recall from Section III.1.1.1 that if the random variable X has the CDF F , then for
large n, the distribution of the block maxima of X , Mn can be expressed approximated by the GEV,
that is:

Fn(x)≈ exp

{
−
[

1+ξ

(
x−µ

σ

)]−1/ξ
}
, (A.3)

with µ ∈ R the location, σ > 0 the scale and ξ > 0 the shape parameter.
By taking the logarithm of both sides, applying Taylor expansion on logF(x) for large values

of x, Equation A.3 becomes:

1−F(u)≈ 1
n

[
1+ξ

(
u−µ

σ

)]−1/ξ

. (A.4)

Similarly, for x > 0,

1−F(u+ x)≈ 1
n

[
1+ξ

(
u+ x−µ

σ

)]−1/ξ

. (A.5)

By substituting Equation A.4 and A.5 in Equation A.2, simplifying, and writing P(X −u ≤ x |
X > u) = 1−P(X − u > x | X > u), the conditional distribution of excesses above a threshold in
A.1 can be expressed as:

P(X −u ≤ x | X > u) = 1−
(

1+
ξ x
σu

)−1/ξ

for ξ > 0,

where

σu = σ +ξ (u−µ).

This shows that the GEV and the GPD are related, such that σu = σ + ξ (u− µ) with both
distributions having the same shape parameter ξ . µ and σ are respectively the location and scale
parameters of the GEV.
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A.1.1.2 GPD Return Level Estimation

We now proceed to the important question of return level estimation. To do this, we need to recall
from Equation III.3, that the CDF of the excesses X − u, conditioned on X > u is approximated
by the GPD. By substituting y = x+u, and recalling that the nonexcedance probability P(X −u >
x|X > u) = 1−P(X −u ≤ x|X > u), the equation becomes:

P(X > y|X > u) =


[
1+ξ

(y−u)
σu

]−1/ξ

+
if ξ ̸= 0

exp
[
− (y−u)

σu

]
if ξ = 0

. (A.6)

The left hand side of the equation, P(X > y|X > u) can be expressed as P(X > y|X > u) =
P(X>y∩X>u)

P(X>u) = P(X>y)
P(X>u) . Substituting this in Equation A.6, we have

P(X > y) =


P(X > u)

[(
1+ξ

y−u
σu

)−1/ξ

+

]
if ξ ̸= 0

P(X > u)
{

exp
[
− (y−u)

σu

]}
if ξ = 0

. (A.7)

By putting P(X > y) = 1
m , the level that is exceeded on average once every m observations is

obtained by writing the equation in terms of ym, that is

ym =

 u+ σu
ξ

[
(mζu)

ξ −1
]

if ξ ̸= 0,

u+σu log(mζu) if ξ = 0
, (A.8)

with ζu = P(X > u).
Since our target is to associate y to a given return period T in years, we need to substitute

m = T ×ny. This means that there are T years, with each year having ny number of observations.
Accordingly, The T−year return level using the GPD is obtained from:

yT =

 u+ σu
ξ

[
(T nyζu)

ξ −1
]

if ξ ̸= 0

u+σu log(T nyζu) , if ξ = 0
. (A.9)

ζu = P(X > u) is estimated from the sample proportion of the points exceeding u, i.e. k
n , with

k the number of exceedances of u and n the total number of observations.

A.2 Appendix of Chapter VI

A.2.1 EGPD parameters vs duration

A.2.1.1 Parametric models for the EGPD shape parameter vs duration

• constant:

ξd =
1
n

n

∑
j=1

ξd,n (A.10)

• linear:
ξd = aξ +bξ d (A.11)
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• log-linear:
log(ξd) = aξ +bξ d (A.12)

• linear - log:
ξd = aξ +bξ log(d) (A.13)

• log-log:
log(ξd) = aξ +bξ log(d) (A.14)

A.2.1.2 Plots of the EGPD parameters vs duration

In this section, we explore the relationship between the three EGPD parameters with respect to
duration. Two stations located at Zurich (KLO) and Robbia in Graubünden (ROB) are given as
examples. For each season, the fitted parameter from the base model is plotted against the duration
d.
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Figure A.1: Relationship between the EGPD κ parameter and duration d for a station in Zurich
(KLO). To obtain this, we fitted EGPD to the data of each of the 13 durations separately by
maximum likelihood. The black points are the fitted κ . The broken lines in red represent the 95%
confidence interval for the fitted model (log-log TR) see Eqn. VI.11.
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Figure A.2: Same as in Figure A.1, but for the EGPD scale parameter σ .

0.00

0.05

0.10

0.15

(b)   ξ(d) in Winter

Duration 

ξ

30
m

in
40

m
in 1h 2h 3h 6h 10
h

16
h

24
h

48
h

72
h

constant
linear
log-linear

linear-log
log-log

0.05

0.10

0.15

0.20

0.25

0.30

(b)   ξ(d) in Spring

Duration 

ξ

30
m

in
40

m
in 1h 2h 3h 6h 10
h

16
h

24
h

48
h

72
h

constant
linear
log-linear

linear-log
log-log

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b)   ξ(d) in Summer

Duration 

ξ

30
m

in
40

m
in 1h 2h 3h 6h 10
h

16
h

24
h

48
h

72
h

constant
linear
log-linear

linear-log
log-log

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b)   ξ(d) in Autumn

Duration 

ξ

30
m

in
40

m
in 1h 2h 3h 6h 10
h

16
h

24
h

48
h

72
h

constant
linear
log-linear

linear-log
log-log

Figure A.3: Same as in Figure A.1, but for the EGPD shape parameter ξ . The equations for the
fitted models are given in A.2.1. The broken lines represent the 95% confidence interval for the
linear-log model.
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Figure A.4: Same as in Figure A.1, but for a station at Robbia in Graubünder (ROB)

0.4

0.6

0.8

1.0

(a)   σ(d) in Winter

σ
 

30
m

in

40
m

in 1h 2h 3h 6h 10
h

12
h

16
h

24
h

48
h

72
h

log-log
log-log TR

0.4

0.6

0.8

1.0

(a)   σ(d) in Spring

σ
 

30
m

in

40
m

in 1h 2h 3h 6h 10
h

12
h

16
h

24
h

48
h

72
h

log-log
log-log TR

0.4

0.6

0.8

1.0
1.2
1.4

(a)   σ(d) in Summer

σ
 

30
m

in

40
m

in 1h 2h 3h 6h 10
h

12
h

16
h

24
h

48
h

72
h

log-log
log-log TR

0.5

1.0

1.5

(a)   σ(d) in Autumn

σ
 

30
m

in

40
m

in 1h 2h 3h 6h 10
h

12
h

16
h

24
h

48
h

72
h

log-log
log-log TR

Figure A.5: Same as in Figure A.4, but for the EGPD scale parameter σ .
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Figure A.6: Same as in Figure A.4, but for the EGPD shape parameter ξ . The equations for the
fitted models are given in A.2.1. The broken lines represent the 95% confidence interval for the
linear-log model.
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A.2.2 Variables and their meaning

Table A.1: List of variables and their meaning

Variable Meaning Range Unit

1 H Power-law scaling exponent 0 < H < 1 -

2 θ Duration offset θ > 0 hour

3 d0 Reference duration
d0 = 1 in Simple scaling

d0 = 1−θ in General IDF formulation hour

4 κd0 EGPD kappa parameter for d0 κd0 > 0 -

5 σd0 EGPD scale parameter for d0 σd0 > 0 mm/hr

6 ξd0 EGPD shape parameter for d0 ξd0 ≥ 0 -

7 K, K∗ Duration of scaling break K > 0, K∗ > 0 hr

8 H1 , H2 1st and 2nd slopes in two-scaling regimes 0 < H1 < 1, 0 < H2 < 1 -
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A.2.3 Catchment IDF curves

This section presents the catchment level IDF curves modeled in section VI.2.
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Figure A.7: Seasonal IDF curves for 6 out of the 24 large catchments. The lines are the model
return levels, while the points are the corresponding empirical return levels. Both are colored
according to the return period for T = 2, 5, 10, 30, and 100 years.
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Figure A.8: Seasonal IDF curves for 6 out of the 24 large catchments. The lines are the model
return levels, while the points are the corresponding empirical return levels. Both are colored
according to the return period for T = 2, 5, 10, 30, and 100 years.
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Figure A.9: Seasonal IDF curves for 6 out of the 24 large catchments. The lines are the model
return levels, while the points are the corresponding empirical return levels. Both are colored
according to the return period for T = 2, 5, 10, 30, and 100 years.
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Figure A.10: Seasonal IDF curves for 6 out of the 24 large catchments. The lines are the model
return levels, while the points are the corresponding empirical return levels. Both are colored
according to the return period for T = 2, 5, 10, 30, and 100 years.
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A.3 Appendix of Chapter VII

A.3.1 Comparison criteria

The Kling-Gupta Efficiency (KGE) (Kling et al., 2012) is computed from:

KGE = 1−
√
(r−1)2 +(β −1)2 +(γ −1)2, (A.15)

where r = Cov(iCPC,iGauge)
σ2

CPCσ2
Gauge

is the Pearson correlation coefficient between the CPC data (iCPC ) and

the station data (iGauge), Cov is the co-variance between the two time series and σ denotes the
standard deviation. β = µCPC

µGauge
, evaluates the bias between the two time series, with µ being the

mean. γ = CVCPC
CVGauge

is the variability ratio, that is the ratio between the coefficient of variations of
the two time series.
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Figure A.11: a): Boxplots of bias (β ) for the four seasons. b): Boxplots of variability ratio (γ)
for the four seasons. Each boxplot contains 71 points, 1 point for each pair of gauge and the
underlying CPC pixel.
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Figure A.12: a): Boxplots of the bias in extreme precipitation totals for the four seasons. b):
Boxplots of the false alarm ratio (FAR) for the four seasons. Each boxplot contains 71 points, 1
point for each pair of gauges and the underlying CPC pixel.
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