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Résumé:
L’intensité et la fréquence des vagues de

chaleur augmentent en réponse au réchauffe-
ment climatique d’origine anthropique. Cette
thèse étudie les aspects statistiques et dy-
namiques des événements de chaleur extrêmes
et très extrêmes dans les moyennes latitudes,
en particulier en Europe. Elle aborde les
questions des températures maximales de sur-
face qui peuvent être atteintes pendant une
vague de chaleur, la différence entre les mé-
canismes physiques conduisant à des vagues
de chaleur extrêmes et des vagues de chaleur
très extrêmes, la possibilité de simuler efficace-
ment des vagues de chaleur très extrêmes dans
un modèle climatique et l’évolution dynamique
des vagues de chaleur extrêmes avec le réchauf-
fement climatique.

La première partie de la thèse étudie les
aspects statistiques des vagues de chaleur ex-
trêmes. Elle aborde la question de la lim-
ite supérieure des températures de surface.
L’approche est basée sur la théorie des valeurs
extrêmes (TVE) et compare les résultats cette
méthode aux processus physiques qui limitent
fondamentalement l’augmentation des tem-
pératures. Des lacunes de l’approche TVE tra-
ditionnelle sont démontrées et je propose une
approche pour atténuer ces dernières en con-
traignant physiquement le fit des distributions
de probabilité basées sur la TVE.

La deuxième partie de la thèse porte sur la
question des mécanismes dynamiques à travers
lesquels le système climatique s’organise pour
produire des événements de chaleur intenses.

Je montre tout d’abord dans un long run de
contrôle d’un modèle climatique que les événe-
ments de chaleur extrêmes ont tendance à être
typiques, c’est-à-dire à être plus semblables les
uns aux autres que les événements de chaleur
modérés. L’étude des extrêmes étant limitée
par un fort problème de sous-échantillonnage,
je détaille ensuite l’intérêt d’utiliser des algo-
rithmes dits d’événements rares qui permet-
tent d’échantillonner plus d’extrêmes que les
simulations habituelles ne peuvent en fournir.
J’applique un tel algorithme d’événements
rares dans le modèle IPSL-CM6A-LR pour
échantillonner des étés extrêmes et très ex-
trêmes en Europe occidentale dans des con-
ditions préindustrielles, actuelles et futures de
forçages anthropiques. J’étudie en particulier
les changements dans la dynamique conduisant
à ces étés extrêmes au cours des différentes
périodes. Je montre que, dans le modèle,
le réchauffement climatique est associé à une
diminution de la variabilité de la circulation
atmosphérique mais à une augmentation de la
variabilité thermodynamique.

Le travail présenté dans cette thèse dé-
montre l’intérêt de faire le lien entre les ap-
proches physiques et statistiques pour l’étude
des événements climatologiques extrêmes et
très extrêmes. Je montre en particulier que
l’utilisation de techniques comme les algo-
rithmes d’événements rares permet de répon-
dre à des questions physiques sur le système
climatique qui sont hors de portée des méth-
odes classiques.
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Abstract:
Heatwaves are increasing both in frequency

and intensity as a result of anthropogenic
global warming. This PhD studies statistical
and dynamical aspects of extreme and very ex-
treme heat events in the mid-latitudes with a
particular focus on European heatwaves. It
addresses the questions of the maximal near-
surface air temperatures that can be reached
during a heatwave event, the difference be-
tween the physical mechanisms leading to ex-
treme vs very extreme heatwaves, the possibil-
ity to simulate efficiently very extreme heat-
waves in a climate model and the dynami-
cal evolution of extreme heatwaves with global
warming.

The first part of the PhD investigates sta-
tistical aspects of extreme heatwaves. It ad-
dresses the question of the upper bound for
near-surface air temperatures. The approach is
based on Extreme Value Theory (EVT) and I
compare the results of this method to the phys-
ical processes that fundamentally limit the in-
crease of air surface temperatures. The short-
comings of the traditional EVT approach are
demonstrated and I propose an approach to al-
leviate the latter by physically constraining the
fit of the EVT-based probability distributions.

The second part of the PhD addresses
the question of the dynamical mechanisms by

which the climate system organizes to produce
intense heat events. I first show in a long con-
trol run of a climate model that extreme heat
events tend to be typical, i.e. to be more sim-
ilar to each other than moderate heat events.
Because the study of extremes is impaired by
a strong under-sampling problem, I then detail
the interest of using so-called rare events algo-
rithms which allow to sample more extremes
than regular simulations can provide. I ap-
ply such a rare events algorithm in the IPSL-
CM6A-LR model to sample extreme and very
extreme hot summers in Western Europe under
pre-industrial, present and future conditions of
anthropogenic forcings. In particular I investi-
gate changes in the dynamics leading to these
extreme summers in the different periods. I
show that, in the model, global warming is as-
sociated to a decrease of the variability of the
atmospheric circulation but to an increase of
the thermodynamic variability.

The work presented in this thesis demon-
strate the interest of bridging the gap be-
tween physical and statistical approaches for
the study of extreme and very extreme climate
events. I show in particular that using tech-
niques like rare events algorithms allows to an-
swer physical questions about the climate sys-
tem that are out of reach for classical methods.





Résumé long

Il n’y a aujourd’hui aucun doute pour la communauté scientifique que la température
globale de la Terre augmente en réponse aux émissions anthropogéniques de gaz à
effet de serre et aux changements dans l’utilisation des sols. L’une des conséquences
les plus marquantes de ce réchauffement est l’augmentation de la fréquence et de
l’intensité des vagues de chaleur. Les surfaces continentales des latitudes moyennes
boréales - qui englobent l’Europe, l’Amérique du Nord et la partie septentrionale
du continent eurasien - se réchauffent en particulier plus rapidement que le reste
du monde, et les extrêmes dans certaines de ces régions se réchauffent encore plus
vite que la température moyenne. Au cours des 20 dernières années, des événements
d’une intensité extrême et sans précédent ont été observés aux latitudes moyennes,
notamment en 2003 et 2019 en Europe occidentale, en 2010 en Russie et en 2021
dans l’ouest du Canada. Ce dernier événement a surpris même la communauté
scientifique travaillant sur les vagues de chaleur, avec des températures de surface
maximales atteignant 49,6 °C à Lytton, en Colombie-Britannique (50°N), battant
les précédents records de 5 °C.

Historiquement, les sciences du climat se sont surtout intéressées aux pro-
priétés moyennes à long terme du système climatique. L’étude des moments d’ordre
supérieur des distributions statistiques des variables atmosphériques et océaniques,
et en particulier des extrêmes, est plus récente et a pris de l’importance en raison de
la quantité croissante de données disponibles et des impacts observés des extrêmes
sur les sociétés et les écosystèmes. Les extrêmes constituent un élément essentiel des
propriétés statistiques du système climatique et, malgré leur rareté, peuvent avoir
des conséquences considérables sur les multiples composantes du système climatique.

Dans cette thèse, je m’intéresse aux propriétés statistiques et dynamiques
des événements de chaleur extrême et très extrême dans les moyennes latitudes.
J’aborderai les questions suivantes :

1. Quelles sont les températures maximales qui peuvent être atteintes
pendant une vague de chaleur ?

2. Les mécanismes physiques qui conduisent aux événements de
chaleur très extrême sont-ils similaires à ceux qui conduisent aux
événements de chaleur extrême ?

3. Est-il possible de simuler efficacement des vagues de chaleur extrême
à l’aide de modèles climatiques ?
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4. Comment la dynamique des vagues de chaleur extrêmes évoluera-t-
elle avec le changement climatique ?

La thèse commence (chapitre 1) par une introduction générale sur la définition
des événements extrêmes dans un contexte climatologique et sur le problème fon-
damental de sous-échantillonnage qui empêche l’étude de ces événements avec les
méthodes habituelles employées en climatologie. Je détaille ensuite les mécanismes
physiques connus qui conduisent à des événements de chaleur extrêmes dans le sys-
tème climatique, en mettant particulièrement l’accent sur les vagues de chaleur des
moyennes latitudes et de l’Europe, et je souligne les incertitudes qui subsistent à
propos de ces événements. Enfin, je passe en revue l’évolution dynamique atten-
due des vagues de chaleur avec le réchauffement climatique. Le reste de la thèse
est organisé en deux parties qui étudient respectivement les aspects statistiques et
dynamiques des vagues de chaleur.

Dans la première partie (chapitres 2 et 3), j’étudie la question des tempéra-
tures maximales près de la surface qui peuvent être atteintes pendant une vague de
chaleur. L’approche est principalement statistique, utilisant la théorie des valeurs
extrêmes (EVT), et compare ses résultats aux processus physiques qui limitent fon-
damentalement l’augmentation de la température de surface de l’air (chapitre 2).
En particulier, j’étudie les limites des estimations statistiques basées sur la théorie
des valeurs extrêmes et je propose une approche pour atténuer leurs défauts en
contraignant physiquement l’ajustement des distributions de probabilité (chapitre
3).

Dans la deuxième partie (chapitre 4, chapitre 5, chapitre 6 et chapitre 7), je
m’intéresse aux mécanismes physiques dynamiques qui permettent au système cli-
matique de produire des événements de chaleur extrêmes et très extrêmes. Comme
l’étude des extrêmes est entravée par un fort problème de sous-échantillonnage,
j’utilise des algorithmes dits d’événements rares qui permettent d’échantillonner plus
d’extrêmes que les simulations régulières ne peuvent en fournir. Le chapitre 4 pro-
pose un examen de ces méthodes. Je détaille les principaux algorithmes utilisés
dans des contextes géophysiques, j’étudie les principaux avantages et inconvénients
de ces méthodes et je propose des solutions pour atténuer ces derniers. Le chapitre
5 étudie la dynamique typique conduisant à des extrêmes dans une simulation de
contrôle du modèle climatique de l’IPSL (IPSL-CM6A-LR) dans une configuration
préindustrielle – c’est-à-dire la dynamique qui est censée être échantillonnée par les
algorithmes d’événements rares. Je propose l’idée que la dynamique typique est le
concept pertinent pour étudier les mécanismes dynamiques conduisant aux extrêmes
dans un contexte climatologique plutôt que météorologique. Dans les chapitres 6 et
7, j’applique un algorithme d’événements rares dans le même modèle pour échantil-
lonner les étés extrêmement chauds en Europe occidentale dans le cadre de scénarios
pré-industriels, actuels et futurs de forçages anthropiques. En particulier, j’étudie
comment la dynamique menant à ces étés extrêmes change entre ces différentes
périodes.
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“Beauty, I hear you ask, do not the Graces flee where integrals stretch forth their necks?”
– Ludwig Boltzmann
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Introduction

There is nowadays no doubt in the scientific community that the global temperature
of the Earth is increasing as a result of anthropogenic emissions of greenhouse gases
and land use changes. One of the most global and consequential result of this warm-
ing is the increasing frequency and intensity of heatwave events. Mid-latitudinal
boreal land surfaces — encompassing Europe, North America and the northern part
of the Eurasian continent — are in particular warming faster than the rest of the
world and the extremes in some of these regions are warming even faster than the
mean temperature. In the last 20 years, events of extreme and unprecedented in-
tensities have been observed in the mid-latitudes, among them 2003 and 2019 in
Western Europe, 2010 in Russia and 2021 in Western Canada. The latter has star-
tled even the scientific community working on heatwaves, with maximum surface
temperatures up to 49.6°C in Lytton, British Columbia (50°N), breaking previous
records by up to 5°C.

Historically, climate science has been mostly interested in long term mean prop-
erties of the climate system. The study of higher order moments of the statistical
distributions of atmospheric and oceanic variables, and in particular extremes, is
more recent and took importance as a result of both an increasing amount of data
and the large observed impacts of extremes on societies and ecosystems. Extremes
are indeed a fundamental part of the statistical properties of the climate system and,
despite their rarity, can have tremendous consequences on the multiple components
of the climate system.

In this PhD, I am interested in the statistical and dynamical properties of
extreme and very extreme heat events in the mid-latitudes. I will address
the following questions:

1. What is the maximal near-surface air temperature that can be
reached by a heatwave event?

2. Are the physical mechanisms leading to very extreme heat events
similar to those leading to extreme ones?

3. Is it possible to simulate efficiently extreme heatwaves with climate
models?

4. How will the dynamics leading to extreme heatwaves change with
climate change?
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The thesis begins (chapter 1) with a general introduction on the definition of
extreme events in a climatological context and the fundamental under-sampling issue
preventing the study of these events with usual methods employed in climatology.
I then detail the known physical mechanisms leading to extreme heat events in the
climate system with a particular focus on mid-latitude and European heatwaves and
emphasize what is still uncertain about these events. Finally, I review the expected
dynamical evolution of heatwaves with global warming. The rest of the thesis is or-
ganized in two parts investigating respectively the statistical and dynamical aspects
of heatwaves.

In the first part (chapter 2 and chapter 3) I investigate the question of the
maximal near-surface air temperature that can be reached during a heatwave event.
The approach is mainly statistical, making use of Extreme Value Theory (EVT), and
compare its results to the physical processes that fundamentally limit the increase of
air surface temperature (chapter 2). In particular, I investigate the discrepancies
of the statistical estimates based on EVT and propose an approach to alleviate
their shortcomings by physically constraining the fit of the probability distributions
(chapter 3).

In the second part (chapter 4, chapter 5, chapter 6 and chapter 7), I
am more interested in the dynamical physical mechanisms which allow the climate
system to produce extreme and very extreme heat events. Because the study of ex-
tremes is impaired by a strong under-sampling problem, I use so-called rare events
algorithms which allow to sample more extremes than regular simulations can pro-
vide. Chapter 4 proposes a review of these methods. I detail the main algorithms
used in geophysical contexts, investigate the main advantages and drawbacks of these
methods and propose some solutions to alleviate the latter. Chapter 5 investigates
the typical dynamics leading to extremes in a control run of the IPSL-CM6A-LR
model in a pre-industrial configuration — which is the dynamics that is expected
to be sampled by rare events algorithms. I propose the idea that the typical dy-
namics is the relevant concept for studying the dynamical mechanisms leading to
extremes in a climatological rather than meteorological context. In chapter 6 and
chapter 7, I apply a rare events algorithm in the IPSL-CM6A-LR model to sample
extreme and very extreme hot summers in Western Europe under pre-industrial,
present and future scenarios of anthropogenic forcings. In particular I investigate
how the dynamics leading to these extreme summers changes between these different
periods.
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Chapter 1

Extreme heat events in the
climate system

This introductory chapter is organized as follows. In section 1.1, I recall key defining
elements on the climate system and its statistical properties. In section 1.2, I discuss
the definition of extreme events in the climate system and the associated under-
sampling issue hampering their study. Finally, in section 1.3, I review the literature
on the dynamical mechanisms associated to heatwaves and how they may change in
the future under global warming.

1.1 Definition elements
1.1.1 The climate system and its description
The last IPCC report glossary provides the following definition for the climate
system (IPCC 2023): “The global system consisting of five major components:
the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere
and the interactions between them.”. In other words, the climate system consists
of all components of the Earth and how they co-evolve at all time scales. As such,
the climate system may be one of the most complex systems subject to scientific
study, involving a wide range of disciplines such as physics, chemistry, meteorology,
oceanography, biology etc.

The main physical properties of the climate system — especially with regards
to the study of extreme events — can be summarized by a few ideas. Ghil and
Lucarini (2020) begin their recent review of the physics of the climate system with
a statement on its key properties: the climate system is “forced, dissipative, chaotic
and out of equilibrium”. The forced, dissipative and out of equilibrium properties
are a result of the differences in the absorption of solar radiation both longitudinally,
latitudinally and vertically. This results into compensating vertical and horizontal
energy fluxes which give rise to the large scale circulation motions of the oceans
and the atmosphere (Schneider 2006; Wunsch and Ferrari 2004), and more generally
drives forced variability at long time scales. This has lead to a description of the
climate system as a thermal engine transforming (radiative) heat from the Sun
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into mechanical energy (Lorenz 1955; Lorenz 1967; Lucarini et al. 2014). Although
average large scale circulations exist, due to internal instabilities and non-linearities,
the climate system is also chaotic at a broad range of time scales resulting into
internal (or natural) variability (Ghil 2001).

The evolution of the components of the climate system (e.g. atmosphere, oceans,
land surfaces, ice masses) is mainly described using the continuum approximation to
model these components as mathematical fields evolving in time according to partial
differential equations (PDEs). The equations describing their evolution express in
mathematical form the physical principles of the conservation of mass — including
phase changes —, 3D momentum and energy, with a general state equation for
fluid components (Peixoto and Oort 1992; Ghil and Lucarini 2020; Vallis 2017)
1. Nonetheless, the source and sink terms in these equations — especially those
who describe the interactions of two or more sub-systems, such as between the
atmosphere and the oceans, or between liquid an vapor phases of water in clouds —
are usually not known at time and spatial scales relevant for their parametrization
in the evolution equations of the large scale circulation (a few dozens of kilometers
and a few hours), which renders the mathematical description of the climate system
fundamentally uncertain.

The use of a particular form of PDEs is a first approximation to describe the
evolution of the climate system. Their analytic resolution is impossible in general
and the scientific community nowadays mostly relies on the numerical integration of a
spatially discretized form of these equations, which constitutes a second fundamental
approximation. As a consequence, the temporal evolution of the climate system can
be described very generally in the framework of dynamical systems:

dX

dt
= b(X(t), t, θ(t)) (1.1)

where X(t) ∈ Ω ⊂ Rd is the state vector of the system, encompassing all the physical
elements describing the climate system at time t (especially the discretized version of
the fields describing the atmosphere and the oceans), and b is the evolution equation
which allows to compute the future evolution of the system, i.e. a climate model.
It is convenient to note very generally θ(t) an ensemble of forcing parameters that
may or may not depend on time. Whether these parameters are considered internal
or external may be the subject of debate — for example the increase of greenhouse
gases (GHG) due to human activities. The dimension d of the phase space Ω ⊂ Rd of
the full system is usually very high in modern climate models, probably of the order
of 108 or higher even for so-called low-resolution model2. This spatially-discrete but
time-continuous version of the evolution equations has also to be rendered time-
discrete for practical numerical integration.

1 For the atmosphere and the oceans, these equations are a special form of the Navier-Stokes
equations. 2 The IPSL-CM6A-LR model (Boucher et al. 2020) has for example a spatial
resolution of 142 × 144 × 79 ≃ 1.5 × 106 grid points for the atmosphere. This resolution has
to be multiplied by the number of resolved 3D variables, and one has to add the number of
surface 2D variables explicitly resolved by the model.
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1.1.2 Mathematical definition of the climate
a) Ergodic theory and dynamical systems analysis

Although the definition of the climate system contains the word “climate”, what
comes first in the definition of this object of study is the “climate system” itself.
The possibility to define precisely the notion of climate is a consequence of the
bridge that was made during the 20th century between ergodic theory and dynamical
systems analysis (Tantet et al. 2016).

The development of equilibrium statistical physics at the end of the 19th and
the beginning of the 20th century (Maxwell 1860; Gibbs 1902; Boltzmann 1909) was
based on the problem that there are too many particles to follow inside a gas —
and therefore one cannot describe analytically their evolution. However, it is still
possible to describe the macroscopic properties of the gas by assuming the existence
of a probability distribution µ invariant under the dynamics of the system. This
distribution is nowadays called the Boltzmann-Gibbs distribution and it depends
on the energy and the temperature of the system (Landau and Lifshitz 1969). The
relevance of this distribution to compute macroscopic quantities relies on an ergodic
hypothesis that was later proved by Birkhoff (Birkhoff 1927; Birkhoff 1931). This
hypothesis states that whatever the initial starting state X0 of the system, the
temporal average of a (macroscopic) quantity of interest F : Rd → R (called an
observable) will be equal to its phase space average:

lim
T→∞

1
T

∫ T

0
F (X(t))dt =

∫
Ω
F (X)µ(dX) (1.2)

where Ω is the phase space of the system and X(t = 0) = X0. In other words,
the Birkhoff theorem proves that the computation of temporal averages is equivalent
to distribution averages of the system and therefore gives a practical way to compute
the latter.

On the other hand, in dynamical system analysis, the pioneering work of Poincaré
(Poincaré 1881) showed the existence of unstable (i.e. chaotic) solutions to differen-
tial equations. The study of chaos was subsequently mainly driven by mathemati-
cians (Lyapunov 1892; Perron 1929; Kolmogorov 1954; Livi et al. 2003) until the
work of Lorenz (1963) showed the relevance of chaos for forced-dissipative physical
systems with the paradigmatic example of Rayleigh-Bénard convection3 and thanks
to the first developments of numerical integration. Lorenz importantly showed that
such systems exhibit somewhat paradoxical properties: (i) the existence of aperi-
odic but bounded solutions with strong sensitivity to initial conditions and (ii) the
convergence of these solutions towards a complicated topological object in the phase
space (later called a strange attractor) which is neither a fixed point nor a peri-
odic orbit. In other words, Lorenz both showed that there are inherent limitations
to meteorological forecasts due to the chaotic nature of the atmosphere, but that
at longer time scales the system still exhibits a form of order (cf. Fig. 1.1). The
work of Anosov (1962) later showed more generally that if a system is hyperbolic
3 Non-rotating plane setting in which the fluid is in contact with two reservoirs at different
temperatures.
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(i.e. sufficiently chaotic, Araújo and Viana (2009)), statistical properties are robust
even though individual trajectories are sensitive to perturbations.

Figure 1.1: Lorenz attractor and convergence towards the station-
ary probability distribution. (a) Lorenz (1963) attractor, and empir-
ical average for increasing time T in x-axis: (b) ET [x] = 1

T

∫ T
0 x(t)dt, (c)

ET [y] = 1
T

∫ T
0 y(t)dt and ET [z] = 1

T

∫ T
0 z(t)dt. The different colors show the

convergence to a climatological average of trajectories with different starting
conditions.

This paved the way to interpret dynamical systems in topological terms, i.e.
with respect to the geometrical properties of their (strange) attractors and made a
formal link with their statistical properties (Eckmann and Ruelle 1985). Ruelle and
Takens (1971) demonstrated that strange attractors emerge in forced-dissipative
systems far from equilibrium. The link between the dynamics of hyperbolic sys-
tems (Smale 1967) and their statistical properties was formalized by Sinai (1972)
and Bowen and Ruelle (1975). Even though forced-dissipative systems are out-of-
equilibrium — so that classical equilibirum statistical mechanics does not apply —
a unique invariant probability distribution with physical relevance still exists: the
so-called Sinai-Ruelle-Bowen (SRB) probability distribution (also called measure,
Ruelle (2009)). This probability distribution corresponds to what is sometimes re-
ferred to as a Non-Equilibrium Steady State (NESS) (Gallavotti and Ruelle 1997).
Importantly, the SRB probability distribution is invariant under the dynamics of
the system: the probability of a set on the attractor is constant even if the set is
deformed by the integration of the system.

The correspondence between time and phase-space averages — which is crucial
to define meaningful macroscopic properties of a complex dynamical system — that
was present in equilibrium statistical mechanics could now be expanded to out-of-
equilibrium systems. The SRB probability distribution plays the role of the Gibbs
probability distribution in equilibrium thermodynamics but has different mathemat-
ical properties. Because of the presence of forcing and dissipation, the attractor is
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strange: its mathematical dimension is smaller than the dimension of the phase
space and even non-integer. The attractor is not (even locally) a smooth manifold,
so that one cannot write:

µ(dx) = µ(x)dx. (1.3)

The attractor can be better conceptualized as the Cartesian product of a smooth
manifold — corresponding to unstable (i.e. chaotic) directions of the flow — and a
fractal set — corresponding to contracting directions of the flow arising as a result
of dissipation (Lucarini et al. 2014).

The existence of SRB probability distributions for an important class of chaotic
systems provides a rigorous framework for the study of non-equilibrium physical
systems (Ruelle 1999; Gallavotti 2014). Although their properties are not intuitive,
the existence of these probability distributions allows to compute phase-space aver-
ages: they give the weight(s) to be used to compute expectations. Again, thanks to
the ergodicity hypothesis, one can compute the phase-space average of quantities of
interest simply as the limit of time averages.

b) Definition of the climate in a stationary case

The last IPCC report glossary gives the following definition of the climate (IPCC
2023): “Climate in a narrow sense is usually defined as the average weather, or
more rigorously, as the statistical description in terms of the mean and variability
of relevant quantities over a period of time ranging from months to thousands or
millions of years. The classical period for averaging these variables is 30 years, as
defined by the World Meteorological Organization (WMO). The relevant quantities
are most often near-surface variables such as temperature, precipitation, and wind.
Climate in a wider sense is the state, including a statistical description, of the
climate system.”. In this section, I give a precise mathematical sense to this classical
definition of the climate that one can summarize as “the ensemble of statistical
properties of the climate system”.

The developments on ergodic theory and dynamical systems in the previous sec-
tion allows to give a mathematically precise definition of the concept of climate
as soon as one can justify that the mathematical framework presented can reason-
ably fit with the climate system. The relevance of the mathematical category of
hyperbolic systems for the study of more general chaotic systems with a large num-
ber of degrees of freedom is based on an extension of the ergodic hypothesis: the
chaotic hypothesis proposed by Gallavotti and Cohen (1995). This hypothesis states
that, very generally, a system exhibiting chaotic motions should be considered as
hyperbolic, and therefore one can assume the existence of an attractor and an SRB
probability distribution for this system. Because of its chaoticity — especially for
the atmosphere as experienced every day by meteorological operational forecasters
(Bauer et al. 2015) — the climate system constitutes a good candidate to apply
the chaotic hypothesis. As soon as one mentions climatological quantities, this is
implicitly the hypothesis that is made and I will follow this practice here.

In a stationary context, the climate is therefore the SRB probability
distribution µθ associated with the climate system seen as a dynamical
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system. The stationary hypothesis implies in the notation used here that the exter-
nal parameters θ do not depend on time and that the evolution function b(X(t), t, θ)
does not depend explicitly on t (or its dependence is periodic). In other words, the
climate is both the very complex attractor on which the trajectories of the climate
system are converging (i.e. a topological object in the phase space) and the associ-
ated probability distribution that one can define on this object and which renders
the computation of phase-space averages possible. The distribution of states inside
the attractor is what is usually referred to as internal variability in climate science.
The SRB probability distribution µθ therefore defines what states in the phase space
can possibly be reached by the dynamics of the system.

Because of the high dimensionality of the climate system and therefore of its
(strange) attractor, any attempt to find directly the probability distribution µθ is
doomed to fail. One has to rely on the ergodic hypothesis to define climatological
properties: phase-space averages using the probability distribution µθ are equivalent
to long time averages whatever the starting point of the dynamics:

Eµθ
[F ] = lim

T→∞

1
T

∫ T

0
F (X(t))dt =

∫
Ω
F (X)µθ(dX). (1.4)

This justifies the WMO definition of the climate, as soon as the averaging period
is long enough with respect to the typical time scales of the quantities averaged. For
components with a longer time scale than the atmosphere (for instance the oceans),
the somewhat arbitrary 30 years averaging period can clearly not be a suitable
approximation of the infinite time limit.

With this framework, the study of climate change is equivalent to finding how
the climatological probability distribution µθ changes when the forcing parameters
θ change. One would for example be interested in the change of climatological
quantities:

∆F = Eµθ+dθ
[F ] − Eµθ

[F ] (1.5)

where both expectations on the right hand side are defined according to their
respective probability distribution for the forcing parameters θ and θ + dθ. As
a consequence climatology as an object of study is well defined and investigating
how the climate will be in 100 years is meaningful — because it is a statistical
and therefore boundary conditions problem — even though the state of the climate
system cannot be predicted in the next 10 days — because it is an initial value
problem in a chaotic system.

c) Definition of the climate in a non-stationary case

As explained above, the relevance of the definition of climate as the ensemble of sta-
tistical properties of the climate system crucially depends on the ergodic hypothesis
to identify temporal and phase-space averages. Once this hypothesis is broken —
and one could argue that it has always been the case throughout Earth’s history —
the use of temporal averages to define the climate bears little meaning (see Arguez
and Vose (2011) for such limits of the 30 years average definition of the WMO).
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In the context of climate change, there is anyway no doubt that the stationary ap-
proximation used to define the concept of climate is not valid anymore: increasing
concentrations of GHGs in the atmosphere caused by human activities are equivalent
to imposing a time-varying forcing to the climate system.

It is nonetheless still possible to give a sense to the notion of climate in a non-
stationary case, i.e. for non-autonomous dynamical systems. Since the 1990s, math-
ematicians have clarified the understanding of non-autonomous dynamics and the
concept of snapshot attractors has emerged (Crauel and Flandoli 1994; Arnold
et al. 1995; Kloeden and Rasmussen 2011; Carvalho et al. 2012; Kuehn et al. 2015).
In the field of climate science, Michael Ghil used the term pullback attractors to
define a similar object (Ghil et al. 2008; Chekroun et al. 2011; Bódai et al. 2011;
Bódai and Tél 2012; Drótos et al. 2015).

The general idea of snapshot or pullback attractors is to still be able to define a
probability distribution with which computing phase-space averages is meaningful,
but this probability distribution will evolve in time. The reader is invited to refer to
the cited literature for the mathematical details of the definition. Here I will simply
state that the way to describe a probability distribution µt evolving with time is to
consider an (infinite) ensemble of trajectories evolving according to the dynamics of
the system which are initialized infinitely far in the past. The snapshot/pullback
attractor, and the associated probability distribution µt, of a forced dynamical sys-
tem can therefore be understood as the ensemble of states in which the system can
be at time t. The expectation of any observable is then defined simply as:

Eµt [F ] = lim
N→∞

1
N

N∑
i=0

F (Xi(t)) =
∫

Ωt

F (X)µt(dX) (1.6)

where the Xi(t) are trajectories initialized infinitely far in the past and Ωt is the
snapshot/pullback attractor at time t. Note that as a consequence, the expectation
of the observable F is evolving in time.

In the context of climate science, this is equivalent to defining the climate as
an ensemble average. This has lead some authors to use the term parallel climate
realizations (Tél et al. 2020) to describe the use of ensembles of a model. The
practice of the ensemble average to define the climate is also possible in the stationary
case and has been mentioned to define the climate (Leith 1975; Peixóto and Oort
1984; Peixoto and Oort 1992). It however becomes an absolute necessity in a non-
stationary context where the ergodic hypothesis is not valid anymore. The ensemble
of parallel members of a climate model is therefore the generalization of the Gibbs
probability distribution from equilibrium statistical physics for a non-equilibirum
system whose parameters are drifting in time.

A radical interpretation of these mathematical elements could lead someone to
think that it is impossible to define the climate in a non-stationary model with-
out running several members. It is actually more a question of time scales of the
physical phenomena studied: if the forcing changes slowly so that the transients to
the attractor are irrelevant for the dynamics then it is valid to compute 30 years
averages to define climatological quantities (or at least it is a good approximation).
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If on the other hand the time scales of the physical phenomena studied are of the
same order of magnitude as the time scales of the forcing, then the only way to
define a meaningful notion of climate is through an ensemble average. It is likely
that given the typical time scales of the climate system (especially for the oceans)
and the speed with which the anthropogenic forcings are imposed nowadays, the cli-
mate system is clearly in this realm and ensembles are absolutely needed to evaluate
climate change. Climate scientists have indeed increasingly recognized the necessity
to use large ensembles to define future evolutions of the climate (see for example
the introduction of Maher et al. (2019) for a review of large ensembles of climate
models).

1.2 What is an extreme event?
Although the notion of climate can be described as the ensemble of statistical prop-
erties of the climate system, historically, for feasibility reasons, its vast and rich
properties have often been reduced to the study of the first order moments of the
statistical distribution: average of temperatures, precipitations, winds, positions of
the jets etc. The large scale circulations mentioned above is an example of such
first order moments. It is only in the recent decades that the interest of the climate
community has shifted towards higher order moments and quantiles of the climate
variables distributions, and in particular towards extreme events. The increasing
interest in extremes is partly due to an increasing amount of data and partly to
the reconnaissance that extreme events can have disproportionately more effects on
the system they affect than their frequency of occurrence would suggest (Ghil et al.
2011). The last IPCC report for example includes a whole chapter focusing on the
projected changes of extreme events under climate change (Seneviratne et al. 2021).
The very definition of what constitutes an extreme event in the climate system is
nevertheless still not fixed. In this section I give a brief review of the issues associated
to the definition and the study of extreme events.

1.2.1 Definition issues
The last IPCC report glossary (IPCC 2023) defines an extreme weather event as:
“an event that is rare at a particular place and time of year. Definitions of ‘rare’ vary,
but an extreme weather event would normally be as rare as or rarer than the 10th
or 90th percentile of a probability density function estimated from observations.”.
On the other hand an extreme climate event occurs “when a pattern of extreme
weather persists for some time”. In the following, I will follow the practice of the
IPCC report which generally calls extreme weather and extreme climate events as
extreme climate events, in the sense of extremes happening in the climate system,
whatever the time scales considered.

This first definition therefore relies on the rarity of the event occurring by fixing
a somewhat arbitrary threshold at the 90th (or 10th) percentile of the empirical
probability distribution of an observable. Alternatives exist, such as using a fixed

10



1.2. What is an extreme event?

threshold associated to impacts (for example the 35°C threshold for wet bulb temper-
ature, Lu and Romps (2023)) or defining as extreme any event which has important
socio-economic consequences. In a cross-disciplinary review, McPhillips et al. (2018)
showed that that there is a wide variety of definitions used in the literature on ex-
tremes in geosciences and a lack of coherence in what is or is not considered as an
extreme event, especially with regards to whether the impacts should be included
in the definition of the event. The WMO advises to define extreme events with
respect to their magnitude (how much they depart from a baseline or threshold),
duration and geographical extent (WMO 2023). However, apart from a general ad-
vice to base the thresholds on local climatological conditions, the organisation does
not give precise guidance for defining when an event is considered extreme or not.

These definition issues are not minor because they can impact what kind of
scientific conclusions one can draw. The use of a relative threshold with respect
to climatology is probably the most employed metric in climate science, but the
value of the quantiles considered can vary and this can have scientific consequences.
For example when considering the 90th quantile as an extreme threshold for high
temperature events, does one consider the quantile of the yearly distribution of
temperature? This implies that on average 36-37 days per year would be considered
extreme, very likely in summer due to the seasonal cycle, which means that around
1/3 of days in summer would be considered as extreme. But one may also consider
the 90th quantile of the daily distribution of temperature, which implies that around
10 days per summer would be considered as extreme. On the other side of the
extremeness spectrum, one may consider that an extreme event is an event occurring
only every 10 years, which makes around 0.1 days per summer extreme. All these
events are coherent with the threshold based definition but they will be associated
with different degrees of challenges in their study and probably also to different
physical conclusions. For example, it is mathematically possible to imagine that
global warming would be associated to a change in the shape of the probability
distribution of temperatures in summer so that the 90th percentile-like events of the
past are less likely in the future, while making the 99th percentile-like events of the
past more likely in the future. In such a case, should one conclude that extreme
events have become more or less likely?

1.2.2 Extreme events in a climatological context
It is not possible to avoid the scientific issues associated to the very definition of
extreme events: one will always be dependent on the arbitrariness of the threshold
considered. To make this issue explicit and draw the link with what has been said
above about the definition of climate, I use a general definition of an extreme event
as a quantile of a certain order for a given observable:

Definition: a state X of the climate system is said to be extreme at the α-th
order with respect to the observable F if

Pµ[F ≥ F (X)] :=
∫

Ω
1(F (Y ) ≥ F (X))µ(dY ) = 1 − α (1.7)
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where the probability is taken with respect to the appropriate probability distribu-
tion µ defining the climate in the context considered. 1 is the indicator function: it
is equal to 1 if F (Y ) ≥ F (X) and 0 elsewhere. The value of F (X) is then the return
level for an extreme event of F with a return period (or time) of 1/(1−α). In the
following, I will distinguish between extreme and very extreme events. Although
these denominations are somewhat arbitrary, I will consider that very extreme
events are events of exceptional intensities, i.e. whose return time is equal or larger
than 10 years.

This definition makes clear that being extreme is a property of a point (or a set
of points) in the phase space of the climate system that depends on a given observ-
able F and a relative threshold of the observable distribution. A state is therefore
not extreme per se: it may be extreme with respect to one observable but not with
respect to another. It also makes clear that being extreme is fundamentally a clima-
tological statement: one needs to refer to the climatological probability distribution
of the system considered.

Note that with this definition, the issue of defining a physically meaningful ex-
treme stems from the definition of the observable F . For example the question of
the duration of the event can be addressed by defining F with a temporal rolling
mean:

F (X(t)) :=
∫ u=T

u=−T
F̃ (X(t+ u))du (1.8)

where F̃ is also an observable. For example, an extreme heat event can be defined
as an event such that the 5-, 10- or 15-days rolling mean is above the 90th quantile
of its climatological distribution.

Similarly, the properties of extremes of an observable Fϕ,λ defined at the grid-
point of latitude ϕ and longitude λ may defer from the properties of the extremes
of the same observable at another grid point Fϕ′,λ′ . From a purely statistical point
of view there is no reason to expect that the phenomenologies of the extremes are
similar when one changes the location where the observable is computed: they are
fundamentally different observables (e.g. Lucarini et al. (2023)).

Although coherent with the IPCC definition, this definition is not perfectly
aligned with the practices of atmospheric scientists who would rather define extremes
as a category of phenomenon with similar physical mechanisms. For example, heat-
waves are considered as the same kind of events because they are associated to the
same kind of atmospheric dynamics (see section 1.3) even though they correspond
to extremes at different locations on Earth. The rationale to do so in atmospheric
science is usually to increase the sample size of events and obtain statistically mean-
ingful results, which clearly makes sense when few data is available. However, with
the exponential increase in the quantity of data (especially from model outputs), it
may be time to adopt a more restrictive definition of what is an extreme to make
clear what is common and what is not among similar kind of events occurring at
different places.

With this definition, for instance, extreme temperature events at different loca-
tions may not be considered as belonging to the same category because it would
make more sense to define them with respect to a local temperature observable Tϕ,λ
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(e.g. Stefanon et al. (2012) and Cattiaux and Ribes (2018)). This leads in fact to
two scientific questions that are often mixed in the literature and that it may be
worthwhile to separate: (i) what are the physical mechanisms to reach extremes of
Tϕ,λ and (ii) how those physical mechanisms change with ϕ and λ. In other words,
it may be interesting to separate the threshold question (why is an extreme not like
a regular event?) from the geographical question (is an extreme at two locations
reached via the same physical mechanisms?).

1.2.3 The burden of rareness
Up to know I have considered statistical properties in a case where the system studied
is sampled by an infinite number of trajectories. This is obviously never the case in
practice, especially for a (very) high dimensional system such as the climate system
for which we only have access to limited time series. I present here a discussion of
the main challenge for the study of extreme (and rare) events: the lack of statistics.

Suppose one has an unfair coin and wishes to estimate the probability that the
coin lands on heads. Suppose also that this coin is extremely unfair: its (unknown)
probability of landing on heads is p = 10−2. If one throws 100 times the coin,
then the results may be 0, 1, 2, 3 heads, or, much less likely, more than 3 heads.
The associated estimated probability may therefore be 0, 0.01, 0.02 and 0.03, which
makes it erroneous by up to a factor 3. This intuitive example shows that one would
need to throw a large number of times the coin to estimate precisely p: 100 times is
far from enough and the estimation of the true probability is associated with a lot
of uncertainty. This constitutes a general result for rare events: a brute force Monte
Carlo simulation is inefficient and I now demonstrate that more rigorously.

Suppose one wants to estimate the probability pA of a random process Xt reach-
ing the set A using samples (Xi)1≤i≤N independent and identically distributed.
These would typically correspond, for instance, to daily samplings from a climate
model run. A represents an event of interest, for example extreme values of an ob-
servable F : A = {X | F (X) ≥ a} for a given threshold a. With a brute force Monte
Carlo strategy, the naive estimator for the probability pA = P[Xt ∈ A] is simply:

p̂A = 1
N

N∑
i=1

1A(Xi), (1.9)

where 1A is the indicator function of the set A. In other words, one simply
computes the empirical frequency with which the random process Xt reaches the
set A. This estimator is unbiased (E[p̂A] = pA) and, thanks to the independence of
each sample, its variance is:

V[p̂A] = V[1A]
N

= pA(1 − pA)
N

≃ pA
N

(1.10)

using the fact that pA ≪ 1, i.e. assuming that the set A is rare. The relative
error RE of this estimator is therefore:

RE :=
√
V[p̂A]
E[p̂A] = 1√

pAN
(1.11)
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If one wants, for example, to estimate a return level for a return period of 1000
years, then pA ≃ 10−3 and to have a relative error of just 10% one needs N ≃ 105

which is a prohibitive amount of samples for any complex model, such as most
climate models. When considering the expected value of any observable ψ in the
rare set A estimated similarly by averaging ψ(X) for events X that reach the set A:

ψ̂ =
∑N
i=1 ψ(Xi)1(Xi ∈ A)∑N

i=1 1(Xi ∈ A)
, (1.12)

the relative error of the estimation is also large for reasonable values of the
standard deviation and the mean of ψ in set A (see section A.1.1 in annex for the
derivation).

As a consequence, the study of extreme events is fundamentally limited by the
lack of statistics and by the large variance associated to any estimator. This therefore
renders the detailed study of their phenomenology difficult. Any procedure seeking
to estimate quantities of interest for low probability events has to propose a way to
reduce the variance of the naive estimator. The most obvious, but costly, approach
is to increase the sample size: running a long simulation in a stationary context
or a large ensemble in a non-stationary context (e.g. Suarez-Gutierrez et al. (2023),
Bevacqua et al. (2023), and McHugh et al. (2023)) — see chapter 5. Another solution
is to make assumptions on the probability distribution of the extremes,
as for example done by Extreme Value Theory (EVT) (Coles 2001) — see chapter
2 and chapter 3. Similarly, but with different founding hypotheses, Large Deviation
Theory (LDT) seeks to estimate the occurrence of large deviations of a sum of
random variables from its mean via computation of the rate function from a limited
sample (Gálfi et al. 2021).

However, neither EVT nor LDT allow one to simulate entire trajectories leading
to extreme events. For the same reasons as presented above when estimating a very
low probability, the system does not provide spontaneously numerous trajectories
leading to rare events with a usual Monte Carlo simulation. The goal of a set of
methods called rare events algorithms is to circumvent this issue by making the
simulation of rare events of interest more likely by several orders of magnitude for a
limited computational cost. Rare events algorithms may be seen as tools to explore
the phase space of complex systems in regions of the attractor that are seldom
visited, but still reachable. I present a review of the use of rare events algorithms in
chapter 4 and I use a rare events algorithm to sample extreme summers in a climate
model in chapters 6 and 7.

1.3 Extreme heat events in the climate system:
definition, physical mechanisms and future
evolution

In this section I present a review of the scientific literature on heatwaves with a
special focus on mid-latitude and European heatwaves. A large part of the heatwave
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literature has indeed focused on this region of the world (Perkins 2015), because of
institutional, socio-economic but also scientific reasons. Europe has been a hot spot
for extreme heat events in the last 30 years (Rousi et al. 2022; Faranda et al. 2023b):
extremes have warmed faster than the mean (Huntingford et al. 2024) and faster than
expected by most climate models (especially in Western Europe Patterson (2023)
and Vautard et al. (2023)). Very impactful events have occurred in Europe in the
last 20 years — like in 2003 in France (Stott et al. 2004; Black et al. 2004; García-
Herrera et al. 2010) or 2010 in Russia (Dole et al. 2011; Otto et al. 2012; Trenberth
and Fasullo 2012; Di Capua et al. 2021). Being situated at the exit of the North
Atlantic storm track, Europe is a region where atmospheric wave breaking occurs
and its meteorology is thus complex (Hoskins 1983). There is therefore a scientific
challenge to better understand the dynamics of heatwaves in this region, explain
why there are such discrepancies between models and observations and forecast the
future evolution of heatwaves.

The interest of the meteorological and climatological communities in the dynam-
ics of heatwaves is rather new. The lack of high-quality data and the limited size
of data sets (cf. the discussion above on the burden of rareness) have been — and
still are — major constraints for the scientific research on heatwaves. Most of the
literature has been published after the record breaking 2003 summer in Western
Europe, notably starting with the seminal paper of Stott et al. (2004) who proposed
the first attribution statement of an extreme event. Numerous extreme and very
extreme events have occurred since then, sparkling a strong interest in the statistics
and dynamics of heatwaves. The current state of knowledge on heatwaves presented
below is based on the reviews of Perkins (2015), Horton et al. (2016), and the more
recent Domeisen et al. (2023) and Barriopedro et al. (2023).

1.3.1 What is a heatwave?
I begin the review with a definition of a heatwave event. In the following I use
indifferently the denomination heatwave and extreme heat event. I will also use
the denomination extreme heatwaves or very extreme heat event for heatwaves
of exceptional intensity, i.e. with a return time equal or larger than 10 years. The
last IPCC report glossary (IPCC 2023) defines a heatwave as “a period of abnormally
hot weather, often defined with reference to a relative temperature threshold, lasting
from two days to months”. A heatwave is therefore a climatological extreme in
the sense proposed above: it characterizes the state of the climate system and is
defined with respect to the climatology of the near-surface temperature observable.
A heatwave occurs when near-surface temperatures — typically 2-m air temperature
— present large positive anomalies with respect to what should be expected at a
certain location and period of the year.

Numerous metrics have been used in the literature to define and characterize
heatwave events — not to say that each study redefines its own metrics —, with
several authors advocating for a normalization of practices in order to obtain com-
parable results from one study to another (Russo et al. 2014; Perkins 2015; Perkins-
Kirkpatrick and Lewis 2020; Barriopedro et al. 2023; Russo and Domeisen 2023).

15



Chapter 1. Extreme heat events in the climate system

Classically, the definition proposed is an event of at least n (with n typically between
2 to 6 days) consecutive days with temperatures exceeding a percentile α of the cli-
matological distribution, typically the α = 90th or 95th percentile (Perkins and
Alexander 2013) but with large data sets more stringent conditions like the 99th or
99.9th percentiles have been used. The choice of the threshold is usually also driven
by the limited sampling and therefore the trade-off between having a large enough
data set of extreme events and selecting events that are sufficiently extreme. How-
ever, the very estimation of these relative thresholds is not straightforward and may
induce discontinuities in metrics at the beginning or end of the reference period (Dif-
fenbaugh 2020; Brunner and Voigt 2024). This is especially the case in the presence
of long-term trends such as global warming. Sippel et al. (2015) for example showed
that normalizing temperature data relative to the local mean and variability of a
reference period leads to the overestimation of probabilities of extremes. Whether
authors consider daily maximum, mean or even minimum temperatures varies from
one study to another. The daily maximum and mean temperatures are usually used
for climate-oriented studies (Barriopedro et al. 2023) while minimum temperature
is more relevant for impacts, especially on human health (Kovats and Hajat 2008).
This classical definition encompasses an idea of intensity (above a high α percentile)
and duration (n days) at the grid-cell level. Other definitions also take into account
the spatial extent of the event (Perkins 2015).

The differences between studies usually do not arise in what constitutes a heat-
wave but in metrics to measure their characteristics. Metrics focusing on intensity,
duration, frequency, timing and spatial extent have been used. Russo and Domeisen
(2023) for example studied the differences in the observed temporal trends obtained
for four intensity metrics and found vastly different results. Most of the discrepan-
cies likely arise as a result of different needs by different scientific communities: the
meteorological and physical climatology communities are interested in dynamical
mechanisms leading to extremes, while the climatological impact community may
be more interested in the impact-based metrics such as cumulative heat for example
(Russo et al. 2015). Impact-based metrics notably include other quantities than
temperature, such as humidity for heat stress and may use absolute rather than
relative thresholds to define a heatwave — e.g. above 35°C rather than above the
90th percentile of the local temperature distribution (Barriopedro et al. 2023).

1.3.2 Dynamics of heatwave events
In this section I review the main physical mechanisms associated to the short term
dynamics of heatwaves. I detail what are the known mechanisms by which the
climate system organizes to produce extreme near-surface air temperatures at time
scales of days to weeks. I therefore mainly detail the contributions of the atmosphere
and land surfaces. Slower components of the climate system and external forcings
(such as SSTs, aerosols, GHGs etc) are reviewed in the next sections. From now on,
I will implicitly consider heatwaves in the mid-latitudes although most mechanisms
also occur in other regions of the world, but with important regional variations.
Recent studies on the polar and sub-polar regions have for example shown specific
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dynamics — especially driven by advection through atmospheric rivers — that are
seldom seen in the mid-latitudes (Hermann et al. 2020; Mattingly et al. 2023; Murto
et al. 2023; Blanchard-Wrigglesworth et al. 2023; Wille et al. 2024a,b). I will also
consider only summer heatwaves — therefore both relative and absolute temperature
extremes — despite the fact that winter heatwaves are not as much studied but can
also have strong impacts (Gloege et al. 2022).

It should be emphasized that a large part of what is known on the dynamics
of heatwaves is based on the analysis of case studies of events that have occurred
in the last 20 years in the mid-latitudes (e.g. Russo et al. (2015), Hauser et al.
(2016), Hoy et al. (2017), Sánchez-Benítez et al. (2018), Wehrli et al. (2019, 2020),
Sánchez-Benítez et al. (2022), Tuel et al. (2022), Serrano-Notivoli et al. (2023),
Tripathy and Mishra (2023), and Rousi et al. (2023)), especially very intense events
like 2003 in Western Europe or 2010 in Western Russia. Heatwaves rarely happen
again at the exact same place and in the same configuration therefore it is usually
assumed that knowledge about mechanisms occurring at one longitude/latitude can
be transferred to another longitude/latitude in the mid-latitudes: the burden of
rareness is overcome by extending the spatial range of study. In other words, there
is a ‘leap of faith’ between numerous meteorological case studies and climatological
properties of heatwaves in general. This may lead to conundrums about different
dynamics leading to extreme temperatures that could actually be the result of either
natural variability or regional variations in the dynamics of heatwaves.

a) Atmospheric dynamics

A heatwave is primarily an atmospheric-driven event (Horowitz et al. 2022): a spe-
cific atmospheric dynamics is a necessary condition for the appearance of a heat-
wave. The first studies investigating the atmospheric dynamics leading to extreme
near-surface temperatures in the mid-latitudes early observed the co-occurrence of
heatwaves with stationary anticyclonic structures disrupting the climatological west-
erlies. These anticyclones are usually embedded in a slow-moving or quasi-stationary
larger scale wave structure, often called an atmospheric block (Xoplaki et al. 2003;
Meehl and Tebaldi 2004; Stefanon et al. 2012; Pfahl and Wernli 2012; Schaller et al.
2018; Castañeda and Wang 2024), but it was later recognized that in more equator-
ward regions of the mid-latitudes — in the south of Europe in particular — heat-
waves occur in conjunction with stationary subtropical ridges rather than traditional
omega blocking patterns (Marshall et al. 2014; Sousa et al. 2018; Jiménez-Esteve
et al. 2022). The main variable for this diagnosis is geopotential height, usually
taken in mid-troposphere (500hPa) but the high pressure system extends over the
full troposphere (Perkins 2015). Close to the surface on the other hand, a heat (or
thermal) low can be present, creating local weak cyclonic circulation (Della-Marta
et al. 2007; Fischer et al. 2007).

Lagrangian analyses. Heatwaves occur in the planetary boundary layer and in
particular close to the ground where the dynamics is usually not geostrophic. There-
fore, one cannot simply read the origin of air masses on a geopotential height map.
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Lagrangian backward analyses (Santos et al. 2015) following particles of air inside
the heatwave regions have proposed quantification of the different processes leading
to large positive anomalies of near-surface air temperature. There are essentially
three physical processes in the atmosphere which can lead to positive temperature
anomalies:

• Advection from hotter neighbouring regions — usually from climato-
logically warmer regions,

• Adiabatic warming by large-scale subsidence at the core of the anticy-
clonic anomaly — also favoring clear skies and increased surface short wave
insolation,

• Diabatic warming induced by various phenomenons such as turbulent sen-
sible heat flux, latent heat release by condensation of water or short and long
wave insolation.

Which of these mechanisms is the dominant driver of heatwaves varies greatly from
one region to another, one heatwave to another and probably also with the intensity
of the heatwave one is interested in (Lee and Grotjahn 2016; Quinting and Reeder
2017; Zschenderlein et al. 2019; Schielicke and Pfahl 2022). An important result
from these studies is that in the mid-latitudes, hot events are usually not associated
with strong heat advection from very remote regions (> 2000 km) for particles close
to the surface (Zschenderlein et al. 2018). Most of the air particles are already near
to — especially to the east — or in the target area three days prior to the heatwaves,
although transport above non-local but not far away dry soils may play an important
role for advection of hot and dry air (see below). Remote advection is mainly present
at mid- and upper-level, cf. Figure 1.2 for an example in Central Europe (Nakamura
et al. 1997; Pfahl et al. 2015; Steinfeld and Pfahl 2019; Zschenderlein et al. 2020).
Hotz et al. (2024) proposed a Lagrangian analysis of the vertical structure of recent
extreme heatwaves revealing complex mechanisms that depend on the event study.
In mid- and high-troposphere the anomalies are mostly advective, while they are
adiabatic in low troposphere and diabatic in both low and high troposphere.

Large positive anomalies at the surface in the mid-latitudes are usually caused by
strong adiabatic warming, and surface and radiative diabatic fluxes (Bieli et al. 2015;
Zschenderlein et al. 2019). Much of the warming is therefore in situ — even though
it is also clearly influenced by remote processes. Röthlisberger and Papritz (2023)
recently proposed a quantification of the three physical processes presented above
over the entire globe using ERA5 data in the 1979-2020 period. They showed strong
geographical variations with a dominance of advection over mid-latitude oceans,
adiabatic warming near mountain ranges and diabatic heating over tropical and
subtropical land masses. Over Western Europe in particular, the anomalies with
respect to the mean are around 8–10°C for maximum temperatures and decompose
in around 2°C for the advective part, 4–6°C for the adiabatic part and 3–4°C for
the diabatic part. They also show that most trajectories are local both in time and
space.
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Figure 1.2: Schematic representation of the origin of air parcels at
mid and high-level in anticyclones during heatwave events in central
Europe. Source: Zschenderlein et al. (2020), Fig. 11.

Lagrangian studies use reanalyses or climate models outputs to compute back-
ward trajectories. These simulations usually do not resolve convection explicitly
and rely on parametrization schemes that are an imperfect representation of actual
vertical movement of air in the atmosphere, especially during extreme events for
which little is known. This may constitute an important source of uncertainties for
the origin of warm anomalies at small scales. In general, processes occurring inside
the planetary boundary layer (PBL) during extreme events are not fully understood
and therefore well represented in models (Vautard et al. 2013). The dynamics of
the PBL may play an important role in the intensification of extreme heatwaves by
allowing a multi-day build-up of heat and entrainment of warm air over multiple
days (Miralles et al. 2014). The use of convection permitting and/or high resolution
models to better represent these mechanisms is a promising but stammering avenue
of research (Sangelantoni et al. 2023; Williams et al. 2024).

Atmospheric blocking. The association between stationary anticyclonic struc-
tures, called atmospheric blocking, and mid-latitude heatwaves is well established
(Kautz et al. 2022). What creates a heatwave is usually the persistence of this
particular atmospheric structure: it is in general both a necessary and sufficient
condition to reach extreme near-surface temperatures (Hoskins and Woollings 2015;
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Pfleiderer and Coumou 2018; Röthlisberger and Martius 2019; Kautz et al. 2022).
Blocking systems are long-lasting quasi-stationary and self-sustaining tropospheric
flow patterns that are associated with a large meridional flow component and thus an
interruption and/or deceleration of the zonal westerly flow (Fig. 1.3). Even though
atmospheric blocking is usually understood as a so-called omega blocking pattern
— with two low pressure systems on each flanks of the anticyclone —, dipole blocks
and amplified ridges also fall into this category (Kautz et al. 2022). Various indices
have been used to diagnose blocking situations (Woollings et al. 2018), but for most
indices Europe is a dominant region of blocking due to the configuration of a strong,
meridionally tilted storm track upstream of a large land mass.

Figure 1.3: Schematic representation of a typical blocking situation
over Western Europe and associated meteorological impacts in sum-
mer. Source: Kautz et al. (2022), adapted from Fig. 2.

The meteorological and climate literature on atmospheric blocking mechanisms
is rich as these systems were studied as early as atmospheric data were available
(Charney and DeVore 1979; Coughlan 1983). There is nevertheless limited under-
standing on the factors determining the onset and maintenance of these atmospheric
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systems in general and in conjunction with large anomalies of near-surface temper-
ature in particular (Barriopedro et al. 2023). These factors are numerous and may
vary regionally, but they usually involve the interaction of atmospheric waves of
different scales. Recent advances also underline the key role of latent heat release by
condensation in moist ascending air streams in baroclinic systems upstream of the
anticyclones for both formation and maintenance of blocking, especially for intense
and large blocks (Pfahl et al. 2015; Steinfeld and Pfahl 2019) — see for example
Schumacher et al. (2022a), Neal et al. (2022), and Baier et al. (2023) for the role of
this mechanism to explain the intensity of the 2021 British Columbia extreme heat-
wave. Blocking situations may involve complex processes and origins of air parcels
as shown by Zschenderlein et al. (2020): during European heatwaves, as much as half
of air parcels inside the anticyclonic region have been diabatically heated by latent
heat release. Two branches are identified in the North Atlantic: a remote branch
— key for onset — above the western North Atlantic and related to the warm con-
veyor belt of upstream cyclones, and a nearby branch — key for maintenance —
located in northwestern Africa which is diabatically heated by convection (cf. Fig.
1.2). Also, despite some recent progress, the frequency of blocking events remain
underestimated by current climate models (Brunner et al. 2018; Kleiner et al. 2021).

Rossby waves. At synoptic and planetary scale, because of the presence of an
atmospheric block, heatwaves are associated with an excursion of the extratropical
jet from its climatological position, forming north-south meanders. These structures
are called Rossby waves (Rossby 1939) and result from the conservation of so-called
potential vorticity by atmospheric air parcels. Potential vorticity is a function of
relative and planetary vorticity and of static stability. Because there is a north-south
gradient of planetary vorticity on Earth, an air parcel that is displaced northward
(southward) will begin to rotate anticyclonically (cyclonically), i.e. change its rel-
ative vorticity to conserve its potential vorticity, giving rise to Rossby waves. The
large scale mid-latitude circulation can be decomposed in two groups of Rossby
waves: (i) fast-moving synoptic-scale waves (sometimes called free waves) with high
zonal wave numbers (≥ 6) propagating mainly in the longitudinal direction with
a phase speed of 6-12 m/s, and (ii) slow-moving quasi-stationary planetary-scale
Rossby waves with low zonal wave numbers (< 6) and close to zero phase speed
(Schneider et al. 2015). The former can have various origins, including baroclinic
development, diabatic heating in the tropics (Stan et al. 2017) or anomalous SSTs,
while the latter are the climatological response to spatially inhomogeneous diabatic
sources/sinks and orography and shape large scale seasonal mean circulation pat-
terns (Hoskins and Karoly 1981; Held et al. 2002; White et al. 2021).

Rossby waves are ubiquitous in the atmosphere because they are its spontaneous
response to perturbations. However, such potential vorticity anomalies in the atmo-
sphere exist on a large spectrum from individual blocks and localized Rossby wave
packets (RWP) to circumglobal Rossby waves (CGW). A theory of the linear behav-
ior of Rossby waves propagation was developed in the second half of the 20th century
(Hoskins and Karoly 1981; Branstator 1983; Held 1983; Hoskins and Ambrizzi 1993;
Vallis 2017) and there has been a recent renewed interest for them because of their
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links with extreme events (Schubert et al. 2011; Palmer 2013; Hoskins and Woollings
2015; Wirth et al. 2018). The latter can indeed arise from anomalously persistent
and/or high amplitude Rossby waves.

The linear theory for the propagation of Rossby waves is based on a Reynolds
decomposition of the atmospheric flow into the sum of a background flow and (small)
perturbations. It introduces the concept of a refractive index for the atmosphere:
Rossby waves are refracted towards regions of higher refractive index. Classical ray
tracing allows to determine the expected propagation of Rossby waves for a given
background flow. As the refractive index increases toward the equator, Rossby
waves should be refracted towards the tropics where they would break and dissi-
pate. But atmospheric jets can produce a local maximum of refractive index when
jets are strong and narrow. There thus exists turning latitudes on both sides of
the jet for waves of particular wavenumbers: between these two turning latitudes a
waveguide exists which constrain the propagation of Rossby wave — and therefore
synoptic-scale energy. As such, the atmospheric jets force Rossby waves to prop-
agate zonally, enabling the propagation of energy over long distances and creating
teleconnection patterns that synchronize the weather in remote regions of the world
(Teng and Branstator 2019). This theory fundamentally depends on the so-called
Wentzel-Kramers-Brillouin (WKB) approximation which states that the background
flow should vary gradually relative to the scale of the waves, which is largely ques-
tionable in the atmosphere. An alternative perspective considers strong gradients of
potential vorticity as waveguides: Rossby waves can propagate along a step function
separating a region of high and a region of low PV (Platzman 1968; Swanson et al.
1997; Martius et al. 2010; Wirth 2020).

Whether the waveguide theories are correct for explaining the meanders of the jet
is fundamentally a question of time scales. On climatological time scales, the causal
relationship between waveguides and meridionally constrained Rossby waves has
been well established (White et al. 2022). On subseasonal and synoptic time scales
the correspondence is not so clear: the jet waveguides are impacted and shaped
by the waves themselves. The waves are usually not small perturbations on the
background flow and the separation between the two is difficult, particularly for high
amplitude events that are associated to near-surface extremes (Wirth and Polster
2021). A full fundamental theory for the growth and propagation of Rossby waves
on the spatial and temporal scales relevant to extreme events is lacking, particularly
under strongly non-linear conditions. Although the role of amplified Rossby waves is
well recognized for the emergence of persistent anticyclonic anomalies, two different
mechanisms have been proposed for the formation of heatwaves blocking anticyclones
(Horton et al. 2016): amplified quasi-stationary circumglobal Rossby waves (CGW)
or high-amplitude transient non-circumglobal Rossby wave packets (RWP).

Circumglobal Rossby waves. The hypothesis of amplified CGW by waveg-
uides for explaining heatwaves was first proposed by Petoukhov et al. (2013) and
the associated physical mechanism is named quasi-resonant amplification (QRA).
The authors suggested that a common mechanism for the generation of persistent,
longitudinal, planetary-scale, high amplitude patterns of the atmospheric circulation
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in the mid-latitudes with high zonal wave numbers (especially 5 and 7, cf. Fig. 1.4)
results from trapping within mid-latitude waveguides of free synoptic waves. The
quasi-stationary dynamical response with these high wavenumbers is usually weak
but under the right conditions (especially a double jet), mid-latitude waveguides may
favor a strong amplification of that response through quasi-resonance for preferred
phases — and thus preferred location for extremes — of the wave patterns (so-called
phase-locking behavior). This is similar to an oscillator forced near the natural fre-
quency which enhances the amplitude of waves. This would create highly persistent
configurations in summertime, reducing summer variability and favoring extremes
at remote places at the same time — this mechanism being particularly relevant for
concurrent heatwaves around the hemisphere. Several studies have investigated the
relevance of this mechanism for recent heatwaves (Coumou et al. 2014; Petoukhov
et al. 2016; Mann et al. 2017; Kornhuber et al. 2019; He et al. 2023; Screen and
Simmonds 2014).

Figure 1.4: Circumglobal Rossby waves and surface extremes. (a,c)
Composite plots of meridional wind velocity and (b,d) surface temperature
anomalies during weeks of high-amplitude waves with wavenumbers 5 and
7. Statistically significant at 5% deviations from climatology are hatched.
This analysis uses the NCEP reanalysis over the period 1979-2018. Source:
Kornhuber et al. (2020), Fig. 2.

Although the link between preceding patterns of anomalous atmospheric plan-
etary waves and surface heatwaves has been shown by several studies (Teng et al.
2013), the QRA mechanism has been criticized. In general, summer waveguides
tend to be weaker than winter waveguides and not to be circumglobal (Teng and
Branstator 2019). The contributions of CGW to temperature extremes is not higher
than that of non-circumglobal patterns (Fragkoulidis et al. 2018; Röthlisberger et
al. 2016). Although there is a statistically significant link between jet waviness
on a hemispheric scale and monthly temperature anomalies (Screen and Simmonds
2014), and on synoptic time scales periods of frequently occurring temperature ex-
tremes have been linked to low storm track activity (Lehmann and Coumou 2015;
Coumou et al. 2015; Pfleiderer et al. 2019), the link between jet waviness and the
occurrence of weather extremes is stronger for regional scale than hemispheric jet
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waviness (Röthlisberger et al. 2016). Jet waviness may be more linked to the oc-
currence of daily weather extremes via synoptic scale weather systems. Branstator
and Teng (2017) for example analyzed correlation maps of the sub-seasonal vari-
ability of 200-hPa meridional wind to quantify the waveguidability and found that
waviness in the upper troposphere is typically not stretched out circumglobally but
organized in eastward propagating patches of limited spatial extent (Fragkoulidis
et al. 2018). Also, the very definition of a waveguide may be problematic and some
authors (Wirth and Polster 2021) have suggested that jets may arise as the conse-
quence rather than the cause of waves with large amplitudes. Overall it is not clear
that linear theory is still relevant for high amplitude events when the intensity of
eddies is of the same order of magnitudes as the background flow.

Recurrent Rossbywave packets. Critics of the QRA hypothesis have pointed
out that it is less likely than not that a persistent atmospheric blocking system arises
as a result of a circumglobal phase-locked wave train. Another explanation for large
and persistent anticyclonic anomalies is the recurrence of transient, fast-moving and
amplified RWP that can arise from a variety of sources (Wirth et al. 2018). RWP are
Rossby waves for which the amplitude has a local maximum and decays to smaller
values at larger distances. RWP also propagate in the zonal direction, especially
along waveguides, and they transfer energy from one individual trough or ridge to
its downstream neighbor, a process called downstream development (cf. Fig 1.5 for
an example).

Figure 1.5: Example of a Rossby Wave Packet. (a) 0000 UTC 7 Aug and
(b) 0000 UTC 9 Aug 2002 300hPa meridional wind restricted to zonal wave
numbers 4-10 and averaged over 40°-60°N (blue) and envelope (red). Source:
Wirth et al. (2018), Fig. 3.

Recurrent RWPs arising from multiple transient synoptic scale wave packets re-
amplifying in the same geographical region may result into a persistent anomalies
(Tuel and Martius 2024). This can be seen on a Hovmöller diagram of the 250-hPa
meridional wind but not on monthly composite maps (Röthlisberger et al. 2019). As
such recurrent RWP can trigger persistent surface weather anomalies over multiple
synoptic wavelengths while blocking is more local (one synoptic wavelength). Waves
amplifying in the same phase upstream of the block could continuously reinforce the
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block and lead to recurrent RWP conditions upstream. As explained above, dia-
batic processes and latent heat release associated with a series of transient synoptic
cyclones upwind of the block can also contribute to the onset and maintenance of a
stationary block and therefore a heatwave at the surface (Steinfeld and Pfahl 2019;
Zschenderlein et al. 2020; Kautz et al. 2022).

There is indeed a statistical link between upper-tropospheric transient RWP
and lower-tropospheric temperature extremes (Zschenderlein et al. 2018). The 2003
and 2010 heatwaves were not associated with CGW for example (Fragkoulidis et
al. 2018). Recurrent RWP have also been linked to wet and dry spells (Ali et
al. 2021). Jiménez-Esteve et al. (2022) showed on an idealized model simulation
that mid-latitude heatwaves are associated with the eastward propagation and local
amplification of Rossby wave packets. Pyrina et al. (2024) recently investigated the
debate between CGW and non-circumglobal RWP for the occurrence of concurrent
and non-concurrent heatwaves over the Northern and Southern hemispheres. In the
clusters they identified, mid-latitude heatwaves typically occur at the leading edge
of a RWP — where wave breaking takes place — to form or reinforce a block. These
RWP were not associated to a specific zonal wave number. These results would
tend to favor the recurrent RWP hypothesis. The authors nevertheless find that
for high amplitudes CGW, concurrent heatwaves occur more often in the Northern
Hemisphere when the dominant zonal wave number is 7.

b) Land surfaces

Heatwaves are extreme climate events in so far as they happen at the interface and
through the interaction of several components of the climate system, the main ones
being the atmosphere and the land surfaces. I now detail the crucial role of the
latter in reaching extreme near-surface air temperatures. The atmosphere and the
land surfaces are coupled through various exchanges of mass, energy and momentum
happening in the PBL (Dickinson 1995). Here I mainly focus on the most impor-
tant variable through which the atmosphere and land surfaces are coupled during
heatwaves: soil moisture. It is only in the recent years that the importance of land
surface evaporation for climate and climate extremes has been highlighted (Miralles
et al. 2019). Soil moisture refers to the amount of water stored in the unsaturated
soil zone, i.e. close to the surface. Soil moisture is the variable coupling land — and
atmosphere — energy and water balances through the evapotranspiration (ET) term,
i.e. the transfer of water from Earth’s surface (open water and ice surfaces, bare
soil and vegetation) to the atmosphere via evaporation and transpiration through
the stomata of plant leaves. ET being highly sensitive to changes in radiation and
temperature, it acts as a transmission belt of global and local changes throughout
the entire water cycle, and therefore also the carbon cycles through its coupling to
photosynthesis. Land surfaces represent a water and energy storage and therefore
induce persistence and memory at longer timescales than the typical 5-10 days of
the atmosphere (Lorenz et al. 2010).

The most direct effect of soil moisture for reaching high temperatures is through
its role in the energy budget via the energy partitioning at the surface: high soil
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moisture favors evaporation and surface cooling through latent heat flux. On the
other hand, whenever soil moisture limits latent heat fluxes, more energy is available
for sensible heating, inducing an increase of near-surface air temperatures (Senevi-
ratne et al. 2010). Classically, a conceptual model where three soil moisture regimes
are distinguished is used to present the interaction between soil moisture and the
atmosphere:

• dry regime: soil moisture is lower than the wilting point, i.e. the amount of
water under which plants wilt, and no or little ET happens,

• wet regime: soil moisture is higher than a critical value where the partition-
ing between latent and sensible heat fluxes is independent of the soil moisture
content,

• transitional regime: soil moisture is on average between the wilting point
and the critical value.

The wet regime is said to be energy-limited: soil moisture does not impact ET
variability because incoming energy — mostly by short wave solar radiation — is
the fundamental limiting factor. Dry and transitional regimes are both soil moisture-
limited but only in the latter does soil moisture impact ET variability and therefore
resulting energy fluxes to the atmosphere. In transitional regimes soil moisture -
temperature interactions therefore increase summer temperature variability (Mueller
and Seneviratne 2012).

In transitional regimes soil moisture deficit plays a key role for reaching extreme
temperatures, under the appropriate anticyclonic atmospheric conditions (Alexan-
der 2011; Perkins 2015; Gevaert et al. 2018). Crucially, there are large observational
and modelling evidences for the asymmetric role of soil moisture on the temperature
distribution: land - atmosphere coupling is stronger and more impactful during hot
days than on average (Mueller and Seneviratne 2012; Seneviratne et al. 2013; He
et al. 2022; Mukherjee et al. 2023). Models have for example shown that interactive
or fixed soil moisture simulations have different behavior (Vogel et al. 2017): soil
moisture - temperature feedbacks significantly contribute to the amplified warming
of the hottest days compared to that of mean temperature. Most of Europe being in
the transitional regime (Seneviratne et al. 2010), this mechanism is key for explain-
ing the physical processes leading to increasing temperature extremes in this region.
Similarly, anthropogenic interventions such as irrigation (Thiery et al. 2017), over-
exploitation of lands (Cowan et al. 2020) or heat release in cities (Chen et al. 2023)
have been shown to have limited influence on annual mean temperature but to en-
hance extremes (up to 1°C). Strandberg and Kjellström (2019) for example showed
in simulations that in regions where water is not a large constraint, afforestation
leads to a stronger cooling in the maximum rather than mean local near-surface
temperatures.

The interaction of favorable atmospheric conditions for heatwaves with low soil
moisture essentially leads to the self-amplification of heatwave events. Pre-existing
low soil moisture implies that a larger fraction of incoming radiation is employed
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to warm up the environment, which leads to an accumulation of sensible heat in
the atmosphere (Fischer et al. 2007). But more importantly, there is a feedback
loop between high temperatures and low soil moisture. The persistent anticyclonic
patterns lead to low relative humidity, high air temperature and reduced cloudi-
ness, causing a high atmospheric demand for water that increases ET. As soil and
vegetation dry out, latent heat fluxes will be reduced, implying the partitioning of
already higher incoming solar energy towards more sensible heat fluxes. Air in the
PBL therefore becomes drier and hotter, reinforcing the already high atmospheric
evaporative demand (Teuling et al. 2013; Miralles et al. 2019). Cloud cover also
declines as a result of drier air and limited latent heat flux, decreasing precipitations
and increasing incoming shortwave radiation (Vogel et al. 2017; Vogel et al. 2018).

Importantly, studies have shown that the influence of soil moisture on heatwaves
can be non-local through heat advections from dry neighboring regions (see also the
discussion on the Lagrangian analyses above). Several works have shown the impact
of remote dry spring conditions for favoring heat in the summer during particularly
strong heatwave events, especially dry conditions in the south of Europe spreading
in the north of Europe through atmospheric transport of anomalously warm and
dry air (Vautard et al. 2007; Zampieri et al. 2009; Quesada et al. 2012). Physically,
dry air forming over dry soils in the Mediterranean region induces less convection
and diminished cloudiness. This air can then get transported northward in the
PBL, increasing local temperature and vegetation evaporative demand, activating
the feedback loop described above. Especially, summer heat is more sensitive to
the occurrence of specific weather regimes in initially dry than wet cases, inducing
asymmetry also in summer heat predictability. Several studies on so-called mega-
heatwaves — i.e. heatwaves with an exceptional spatial and temporal extent —
have shown such a mechanism of heat building by large-scale upwind horizontal
advection (Miralles et al. 2014; Schumacher et al. 2019). Schumacher et al. (2019)
for example showed using a Lagrangian tool tracking the origin of heat, the role
of upwind land-atmosphere feedbacks in the 2003 and 2010 heatwaves: up to 30%
of the advected sensible heat was caused by the drought upwind. Besides of the
self-amplification mechanism, a self-propagation for droughts via an atmospheric
bridge and through heat advection — and therefore potentially heatwaves — has
been proposed (Schumacher et al. 2022b).

Several studies have suggested an influence of land surface anomalies not only
on local and regional PBL properties (Ek and Holtslag 2004; Lemordant et al. 2016)
— affecting its stability and growth and therefore entrainment of air from the top
and avection from the surroundings — but also on the large scale tropospheric
circulation which may act as an amplification mechanism (Douville 2002; Douville
and Chauvin 2000; Koster et al. 2016; Wang et al. 2019; Teng et al. 2019; Domeisen et
al. 2023). Local dry-hot surface conditions can influence the tropospheric circulation
by producing an intense surface heat low and favoring anticyclonic circulation in
the mid-troposphere, which could constitute a feedback between continental-scale
circulation and extreme temperatures (Fischer et al. 2007; Haarsma et al. 2009;
Zampieri et al. 2009). Mega-heatwaves in particular can create exceptionally hot
and deep PBL (Miralles et al. 2014), which are likely to substantially modify the
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global circulation as shown by model simulations (Merrifield et al. 2019), favoring
non-local heatwave amplification in subsequent months. Inhomogeneous warming
can also amplify quasi-stationary waves (Sato and Nakamura 2019), which may
constitute a reinforcing mechanism for long lasting events. Koster et al. (2016) in
particular showed in a simulation that an idealized diabatic heating anomaly creates
a positive feedback loop enhancing further the overall dryness of the continental
interior. Knowledge on the link between surface anomalies, mesoscale and synoptic
circulations during heatwaves nevertheless remains low (Barriopedro et al. 2023).

Despite the now widely recognized role of soil moisture in shaping the right tail
of the distribution of temperatures, the understanding of soil moisture - atmosphere
feedbacks during heatwaves remains incomplete. Especially, it remains a large source
of uncertainties in current and future climate model projections (Vogel et al. 2018;
Luo et al. 2022; Al-Yaari et al. 2023). Al-Yaari et al. (2023) for example recently
showed that in the CMIP6 ensemble over the historical period the mean intensity of
heatwaves tends to be overestimated because of overly pronounced soil dessication
during the events. Measurements and observations of surface hydrology are not as
global as atmospheric observations and they more strongly depend on local contexts.
The intricate relationships between different variables also limit the formal identi-
fication of causal links outside models, especially for non-local feedbacks (Miralles
et al. 2019). There are therefore substantial discrepancies between models and ob-
servations (Hirschi et al. 2011; Dirmeyer et al. 2018). The crucial partitioning of
surface energy into latent and sensible heat fluxes is in particular incorrectly rep-
resented which leads to errors expanding throughout the surface energy and water
cycles.

Because soil moisture impact on ET is largely mediated by plants transpira-
tion (Seneviratne et al. 2010), representing correctly vegetation characteristics are
essential for these interactions (Kala et al. 2016). Modelling the response of large
and diverse ecosystems to temperature and water stress remains a difficult problem
due to the variety of plant physiological responses (De Kauwe et al. 2015). Because
the coupling between the atmosphere and land surfaces is stronger during heatwave
events, this can lead to substantial errors on the daily maximum temperatures. Sté-
fanon et al. (2012) for example showed with the example of the June and August
2003 heatwaves that accounting for interactive plant phenology would attenuate
June heat wave but amplify the August heatwave by suppressing ET leading to
enhanced daily maximum temperatures by up to 1.5°C.

The different mechanisms presented in the last two subsections are summarized
in Figure 1.6.

1.3.3 Modulation at longer time scales
At longer time scales, heatwaves are modulated by various slow components of the
climate system. However, much less is known about the exact importance of these
mechanisms (Barriopedro et al. 2023). An important role is played by local and re-
mote SSTs. In general, anomalous SSTs have been linked to changes in the general
circulation of the atmosphere (Gastineau and Frankignoul 2015). Simulations and
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Figure 1.6: Summary of the large-scale-to-regional drivers of heat-
waves. The figure excludes external forcings such as greenhouse gases, aerosols
and land-use/land-cover changes affecting long-term trends. Source: Barriope-
dro et al. (2023), Fig. 8.

observations have suggested that anomalous patterns of SSTs could trigger anoma-
lous Rossby wave trains, quasi-stationary hemispheric waves or shifts in mid-latitude
jets position leading to heatwaves (Duchez et al. 2016; McKinnon et al. 2016b; Wolf
et al. 2020; Luo et al. 2022; Deng et al. 2022; Luo et al. 2023; Wallberg et al. 2024).
Tropical SST drivers for heatwaves are clearly established and involve interactions
with large-scale modes of variability such as ENSO, IOD or MJO (Stan et al. 2017;
Domeisen et al. 2023), although these drivers usually highly depend on the region
of the world where the heatwave occur.

The role of natural and anthropogenic aerosols is also increasingly recognized as
an important factor for explaining the intensity of recent heatwaves, and more gen-
erally regional patterns of warming (Schumacher et al. 2024). The role of aerosols
during heatwaves involve complex atmospheric physics and chemistry, with direct
effects on solar radiation and indirect effects from the interaction with clouds mi-
crophysics. Aerosols could either buffer (Dey et al. 2021) or intensify (Baró et al.
2017) heatwaves. Importantly, the role of the diminution of anthropogenic aerosol
emissions — especially over the North Atlantic region — could have been in the
past and be in the future stronger than the role of GHG increase (Dong et al. 2017;
Samset et al. 2018; Zhao et al. 2019; Wang et al. 2023). Nevertheless, little is known
on the mechanisms involving aerosols during heatwaves (Barriopedro et al. 2023).
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1.3.4 Future evolution of heatwaves
a) Thermodynamical evolution

The question of the past and future evolution of heatwaves — especially under
anthropogenic global warming — is crucial for societal adaptation. It is also a fun-
damental climatological question: how do extreme heat events in the climate system
respond to a change in the external forcings? This question can be decomposed into
two elements: the thermodynamical evolution and the dynamical evolution. The
thermodynamical evolution refers to the global increase of near-surface tempera-
tures. This evolution is well understood: global (GHG concentrations) antropogenic
forcings have been undoubtedly recognized as the major drivers of the increase in fre-
quency, duration and intensity of heatwaves worldwide. The continued warming of
the Earth caused by enhanced trapping of the long-wave thermal radiation emitted
by the planet results in local warming of the temperature distribution, which clearly
increases the frequency of heat extremes defined using fixed thresholds (Seneviratne
et al. 2021; Barriopedro et al. 2023; Domeisen et al. 2023).

Changes in temperature extremes have accelerated in the last decades at a faster
rate than the mean temperatures (Perkins-Kirkpatrick and Lewis 2020; Barriopedro
et al. 2023; Huntingford et al. 2024). The last IPCC report stated that it is virtually
certain that there has been an increase in the number of warm days and nights since
1950 (Seneviratne et al. 2021). There has also been an increase in warm season
heatwave characteristics such as magnitude, duration and frequency, even though
confidence can vary locally. Importantly for societal adaptation, there has been a
strong increase in record breaking events: for all continents the top three years for
heatwave magnitude occurred during the 21st century (Barriopedro et al. 2023). The
amount of record-breaking and record-shattering events is also expected to increase
and depend on the rate of warming (Bador et al. 2016; Power and Delage 2019;
Fischer et al. 2021).

Most of the changes in heatwaves characteristics are explained by the increase
in the mean temperatures, the latter being the result of global warming with im-
portant regional variations (oceans vs land, equatorial vs polar regions) (Domeisen
et al. 2023; Van Loon and Thompson 2023). A key question is whether the trends
in extremes currently observed could also be driven by a change in variability and
higher order moments (Simolo and Corti 2022). In general, a faster increase in the
probability of extremes is not incompatible with a change of only the mean: for
a fixed heatwave threshold and, for example, a Gaussian distribution for temper-
atures, the probability to be above this threshold will increase non-linearly with
a linear increase of the mean. Several studies have emphasized the importance of
increasing variability (Kodra and Ganguly 2014; Douville et al. 2016). But in many
regions a shift in the mean can explain a large fraction of the observed changes
(McKinnon et al. 2016a) and there is currently no clear evidence for the hypothesis
of global increases in temperature variance. The change in mean temperature caused
by increased radiative forcing dominates future changes of warm extremes. The con-
tribution from increased variability is expected to be larger in transitional regions
(see below) but projected changes in variability are small (Barriopedro et al. 2023).
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Future heatwave characteristics may therefore have a similar relationship to the cor-
responding future climatology as today’s characteristics do to today’s climatology
(Vogel et al. 2020).

Overall, there is strong evidence for the anthropogenic influence in the observed
trends of temperature extremes at different temporal scales (Fischer et al. 2014;
Christidis et al. 2015; Kim et al. 2016; Diffenbaugh et al. 2017; Dunn et al. 2020;
Ossó et al. 2022; Skrzyńska and Twardosz 2023; Ruosteenoja and Jylhä 2023). Cur-
rent levels of global warming may already be responsible for approximately 75% of
hot days globally (Fischer and Knutti 2015). Quantifying the relative contribution
of different anthropogenic forcings is nevertheless still problematic. Locally, land-
use/land-cover practices may play an important role (Lejeune et al. 2018). Extensive
practices such as irrigation or cropland intensification may have dampened the re-
gional increases in hot extremes to the point of reversing the warming trend in some
regions (Mueller et al. 2016; Thiery et al. 2020). Internal variability — especially
multi-decadal modes of variability — may also have played and will play an impor-
tant role and represent an important source of uncertainty for projections (O’Reilly
et al. 2021; Barriopedro et al. 2023; Blanusa et al. 2023; Luo et al. 2023). At high
latitudes, up to 25%-50% of the projected spread in warm season heatwave days
may depend on natural variability (Perkins-Kirkpatrick and Gibson 2017). CMIP
models do capture the observed changes in extreme indices for heatwaves, although
with some tendency to overestimate the magnitude trends in hot days (Fan et al.
2020; Al-Yaari et al. 2023). There has nevertheless been only limited additional im-
provements in terms of mean biases or model spread between the difference versions
of CMIP (Fan et al. 2020; Kim et al. 2020; Wehner et al. 2020).

b) Atmospheric circulation

Dynamical changes of the atmospheric circulation and/or of local feedback mecha-
nisms with soil moisture could imply a faster (or slower) increase in extremes than
the linear shift of the distribution of extreme temperatures would imply. This would
translate into a change of the shape of the temperature distribution. The level of
confidence on projected dynamical changes in general and for extremes in partic-
ular is however low (White et al. 2022). As stated by Shepherd (2014): “Nearly
everything we have any confidence in when it comes to climate change is related to
global patterns of near-surface temperature, which are primarily controlled by ther-
modynamics”. The question of the evolution of atmospheric dynamics with climate
change is hotely debated and no clear consensus has been reached for the moment
(Coumou et al. 2015; Horton et al. 2015; Rogers et al. 2022; Rousi et al. 2022).

One large issue to reach consensus on this matter is that current climate models
are biased in the way they represent the circulation, especially for extremes (e.g.
Vautard et al. (2023) and Patterson (2023) for Western Europe). The limits of
models include the limited horizontal resolution, the representation of air-sea in-
teractions, the land-atmosphere coupling, the land-cover and land-use changes, the
parametrization of boundary layer processes and surface fluxes, the hydrological cy-
cles etc. Simulating correctly the mean state of the climate and at the same time
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the multi-scale interactions leading to heatwaves in the present and in the future
is therefore very challenging for current climate models (White et al. 2022). These
limits explain why the dynamical evolution of the atmosphere under anthropogenic
forcing is largely uncertain.

Even when considering only the average atmospheric circulation, there is no clear
consensus at this point. One of the key question in the changes of the Northern
Hemisphere circulation is the evolution of mid- and high-level jets (Barnes and
Screen 2015). A lot of the debate on the changes in atmospheric circulation revolves
around changes in mid-latitude jets positions, speed and waviness (White et al.
2022). There is also an ongoing debate about the specific mechanisms at play in
connections to dynamical changes, for extreme events in particular (Barnes and
Screen 2015; Francis 2017; Huguenin et al. 2020; Stendel et al. 2021). Even if some
statistically significant trends in the atmospheric circulation have been observed
in the recent decades (detection question), in general it is not clear whether they
represent a forced response to anthropogenic forcings (attribution question). The
detection of robust circulation trends is difficult and risky due to the limited period
of observations and large internal variability. On the other hand, the attribution
of dynamical changes is also problematic since they are often not well understood
and/or robustly simulated by models (Shepherd 2014; Hoskins and Woollings 2015;
Shaw 2019; Simmons 2022).

Several studies have shown that simulations of the CMIP ensemble of climate
models do not project a dynamical change of weather patterns associated to heat-
waves in the future (Cattiaux et al. 2012; Brunner et al. 2018; Ventura et al. 2023).
In particular, the association with blocking events is still present as one could expect
physically (Zhang et al. 2023). It is therefore reasonable to assume that, at least
for limited global warming, the mechanisms by which high near-surface air tempera-
tures are reached will be similar in the future — although their relative importance
could change. The debate on the dynamical changes in the atmosphere is thus es-
sentially focused on the question of whether the patterns associated with heatwaves
will occur more often: will there be a change in the frequency of blocking events in
particular and in the waviness of jets in general?

In the recent years there has been more circulation patterns favoring heatwaves
over Western Europe, which partially explain the large increases in extremes in
this region of the world (Horton et al. 2015; Jézéquel et al. 2018; Alvarez-Castro
et al. 2018; Vautard et al. 2023; Singh et al. 2023; Patterson 2023; Faranda et al.
2023b; D’Andrea et al. 2024). Global change in weather patterns is however highly
uncertain (Grotjahn et al. 2016) and there is for the moment no robust compelling
evidence of increase in the amplitude or frequency of wavy patterns associated with
heatwaves across the diversity of the metrics proposed (Simmons 2022; Barriopedro
et al. 2023). Similarly, there is no obvious trend in blocking frequencies in summer.
There may be an emerging consensus in models for decreasing blocking frequency
and increasing blocking duration (Hoskins and Woollings 2015; Davini and d’Andrea
2020; Kautz et al. 2022), but with important regional variations. Moreover trends
computed over the historical period are weak and contrast with observations. The
observed evolution of blocking is not clear and may depend on the indices used for
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diagnosis (Barnes et al. 2014; Woollings et al. 2018). Natural variability is high and
may dominate the future evolution, at least in the next few decades.

The mechanism often invoked for potential changes in the dynamics of atmo-
spheric jets is Arctic amplification (Previdi et al. 2021). Arctic amplification refers
to the enhancement of near-surface air temperature change over the Arctic relative
to lower latitudes and involve several physical mechanisms, mainly changes in the
albedo due to sea-ice loss, but also energy transport from lower latitudes. As a conse-
quence, the meridional near-surface temperature gradient between the Equator and
the Pole is expected to decrease as a result of global warming. This would change
the baroclinicity, reduce the speed of jets and more generally change the atmospheric
circulation in boreal summer. On the other hand, due to enhanced deep convection
and latent heating in the tropics, the meridional upper-level temperature gradient is
expected to increase, which would strengthen the mid-latitude westerlies (Coumou
et al. 2018). As such, the expected evolution of the mid-latitude jets is stuck in the
so-called tug-of-war between these two opposite influences. For the moment, the
atmospheric response to Arctic sea ice loss is not robust in observations and models
(Barnes and Screen 2015; Screen et al. 2018) and observed changes may simply be
the result of natural variability (Huntingford et al. 2019).

For heatwaves in particular, in addition to a climatological change in the mean
position of the jets which would impact the mean summer temperature, two com-
peting mechanisms for future dynamical changes have been proposed (Horton et al.
2016) (Fig. 1.7):

• Increasingly favorable conditions for the amplification of free waves leading to
high amplitudes CGW by the QRA mechanism described above,

• Weakening of the summer storm track leading to more persistent weather
patterns.

Both mechanisms would lead to an increase in the variability of the boreal summer
and therefore would explain the recurrence of weather patterns leading to more
heatwaves than a linear shift of the temperature distribution would suggest.

Several studies have claimed to have found recent statistically significant increase
in the frequency of high amplitude events in July and August (Coumou et al. 2014;
Rogers et al. 2022). This may arise as a result of Arctic amplification which would
favor in particular the increase in frequency and persistence of double jet structures
(Mann et al. 2017; Kornhuber et al. 2019; Rousi et al. 2022). However, model sim-
ulations and theoretical arguments suggest a reduced waveguidability for weakened
jets under climate change, which is in contradiction to what one should expect if
more CGW are to be seen in the future (Teng and Branstator 2019).

Another possibility is the weakened summer circulation in the North Atlantic
caused by reduced low-level baroclinicity and therefore less or weaker synoptic-scale
cyclogenesis in summer. This would lead to slower propagating synoptic weather
systems, and which would favor more persistent weather patterns (Kornhuber and
Tamarin-Brodsky 2021; Luo et al. 2024). Coumou et al. (2015) showed a significant
weakening of the summer circulation in observations using a variety of metrics (zonal
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Figure 1.7: Schematic representation of proposed mechanisms for the
evolution of atmospheric circulation during boreal summer. Source:
Coumou et al. (2018), Fig. 3.

wind, eddy kinetic energy, amplitude of fast-moving Rossby wave) and the associ-
ation between monthly heat extremes and weak circulation in the North Atlantic.
This weakening is expected to continue with more global warming (Lehmann et al.
2014; Kornhuber and Tamarin-Brodsky 2021). These mechanisms are quite robust
in so far as theoretical, observational and modeling evidence supports the hypothesis
that summer storm tracks weaken with enhanced Arctic warming (Coumou et al.
2018).

Some studies have indeed detected enhanced predictability/persistence (Hoff-
mann 2018; Pfleiderer and Coumou 2018; Pfleiderer et al. 2019; Kornhuber and
Tamarin-Brodsky 2021), especially for heatwaves, in the Euro-Atlantic region. These
results have however been criticized (Huguenin et al. 2020), mainly because they are
often metrics-dependent. Some studies (Dorrington et al. 2022) even found less
persistent weather regimes in a warming worlds, with an increasing zonal flow.

Meridional temperature gradients are however not the only large scale changes
to consider for the dynamics of mid-latitude jets. The tug-of-war also applies to
land-sea temperature gradients which are expected to increase as the result of in-
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creased radiative forcing and lower thermal capacity of the lands (Shaw and Voigt
2015). This change in thermal forcing may also be able to cause an amplification of
quasi-stationary atmospheric waves leading to an intensification of summer trends in
temperatures at certain locations (Sato and Nakamura 2019) via wavier jets (Moon
et al. 2022).

c) Land surfaces

Besides atmospheric dynamics, an another important driver of the increased fre-
quency and intensity of heatwaves in the future is the increasing occurrence of soil
moisture limitations and droughts. Even though there are still large uncertainties
on the response of soil moisture to rising GHG concentrations (Vogel et al. 2018),
there is confidence in a northward shift of soil-moisture limited regimes in the mid-
latitudes, creating a new transitional climate zone with strong land - atmosphere
coupling in Central and Eastern Europe (Seneviratne et al. 2006). This implies that
evapotranspiration variability would strongly increase under global warming, which
translates into an increased variability of sensible heat fluxes and therefore near-
surface air temperatures (Seneviratne et al. 2010; Perkins 2015; Gao et al. 2023).
A preferential heating of the upper tail of the temperature distribution would thus
largely be governed by increased coupling with (low) soil moisture (Diffenbaugh et
al. 2007; Fischer et al. 2012; Dirmeyer et al. 2012; Al-Yaari et al. 2023; Huntingford
et al. 2024). Soil moisture - temperature feedbacks may represent the main factor
driving projected increases in hot extremes in mid-latitudes and explain why hot
extremes are warming faster than the mean (Schwingshackl et al. 2018; Domeisen
et al. 2023). Teng et al. (2016) for example showed in a model simulation that the
amplification of future heat waves is largely driven by local energy fluxes and not
induced by planetary wave events variability.

However, as explained above, soil moisture - temperature interactions are im-
perfectly represented in models which leads to large uncertainties in climate models
projections (Vogel et al. 2018; Miralles et al. 2019). Typical regional errors includ-
ing too persistent and/or intense heatwaves and overestimated variability in extreme
temperatures have been linked to too strong land-atmosphere feedbacks (Mueller and
Seneviratne 2014; Miralles et al. 2019; Van Loon and Thompson 2023). Vegetation
effects — especially land-cover and land-use historical changes or parametrization
of biogeophysical processes — are not well represented and can cause opposite re-
sponses in extremes depending on dominant mechanisms (Barriopedro et al. 2023).
Climate models also often ignore future irrigation changes. Subtle effects like the
impact of an increasing level of CO2 in the atmosphere can also affect plant dy-
namics during extremes as shown by Lemordant et al. (2016): increased CO2 levels
change the seasonality of the water cycle through stomatal regulation and increased
leaf area. The water saved during the growing season through higher water use
efficiency could mitigate summer dryness and the impacts on heatwaves.
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Summary

Context

In this introductory chapter I give definition elements for the climate system,
for the concept of climate as the ensemble of statistical properties of the cli-
mate system and for extreme events in general. I discuss the under-sampling
issue inherent to the study of extreme and rare events and present the three
solutions that will be used in this thesis: Extreme Value Theory (EVT), long
simulations and rare events algorithms. Finally, I review the physical mecha-
nisms associated to heatwaves in the mid-latitudes and how they may change
with anthropogenic global warming. I outline in particular the uncertainties
related to the evolution of the atmospheric dynamics associated to heatwaves.

Goals

This thesis is about statistical and dynamical aspects of extreme heatwaves
in the mid-latitudes. In the rest of the manuscript I will address the following
questions:

1. What is the maximal near-surface air temperature that can
be reached by a heatwave event? (chapter 2 and chapter 3)

2. Are the physical mechanisms leading to very extreme heat
events similar to those leading to extreme ones? (chapter 5)

3. Is it possible to simulate efficiently extreme heatwaves with
climate models? (chapter 4, chapter 6 and chapter 7)

4. How will the dynamics leading to extreme heatwaves change
with climate change? (chapter 7)

36



Chapter 2

Maximal reachable temperatures
for Western Europe in current
climate

2.1 Introduction
In this chapter I present a work motivated by the recent paper of Zhang and Boos
(2023) who proposed an estimate of a physically realistic upper bound for surface
temperatures in the mid-latitudes. The question motivating this work is how more
intense an observed extreme heat event could have been. I present a case study
of the record breaking July 2019 heat event in Western Europe. The event was
short but extremely intense in Western Europe, breaking previous records by a large
margin (larger than 2°C for the Paris-Montsouris weather station, for example). I
compare the physical estimate of the upper bound with a statistical estimate based
on Extreme Value Theory (EVT). I show that the EVT-based upper bound likely
underestimate the worst heatwave event physically possible.

The rationale for investigating the July 2019 event in Western Europe comes from
the results of recent works (Patterson 2023; Vautard et al. 2023) which have shown
that this region of the mid-latitudes has seen a more rapid trend in extreme tem-
peratures than predicted by most climate models. Vautard et al. (2023) employed
a flow analogues methodology and attributes a part of this trend to atmospheric
patterns changes. Here I also condition on the atmospheric dynamics of the July
2019 event but rather investigate thermodynamical changes influencing the intensity
of the event between two past periods (1940-1980 and 1981-2021).

2.2 Article published in Environmental Research
Letters
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Abstract
Human bodies, ecosystems and infrastructures display a non-linear sensibility to extreme
temperatures occurring during heatwave events. Preparing for such events entails to know how
high surface air temperatures can go. Here we examine the maximal reachable temperatures in
Western Europe. Taking the July 2019 record-breaking heatwave as a case study and employing a
flow analogues methodology, we find that temperatures exceeding 50 ◦C cannot be ruled out in
most urban areas, even under current climate conditions. We analyze changes in the upper bound
of surface air temperatures between the past (1940–1980) and present (1981–2021) periods. Our
results show that the significant increase in daily maximum temperatures in the present period is
only partially explained by the increase of the upper bound. Our results suggest that most of the
warming of daily maximum surface temperatures result from strengthened diabatic surface fluxes
rather than free troposphere warming.

1. Introduction

Extreme weather events have strong impacts on soci-
eties and ecosystems [1]. Among them, heatwaves
have been the focus of extensive attention due to
their increasing frequency and intensity with global
warming [2]. Most biological and technical systems
have a limiting capacity to cope with extreme tem-
peratures and can respond non linearly once cer-
tain thresholds are reached. These include human
bodies [3–6], plants [7, 8], ecosystems [9] and
infrastructures [10]. Urban areas are particularly at
risk due to the so-called heat island effect [11] which
enhancesmaximum temperatures during the day and
minimum temperatures during the night. The capa-
city to predict and anticipate futuremaximum intens-
ities of heatwaves is therefore of primary importance
for adaptation to climate change.

The physical mechanisms leading to heatwaves in
the midlatitudes combine specific atmospheric syn-
optic conditions and anomalously low soil moisture,
which can interact to further increase the intensity

of the event [11–14]. Heatwaves are associated with
a slow moving, sometimes called quasi-stationary,
high-amplitude Rossby wave [15] which is often
embedded in a hemispheric pattern of wave number
5 or 7 [16–18]. Above the heatwave region, a blocking
anticyclone builds up at mid- and upper-level tropo-
sphere in conjunctionwith a change in the jet stream’s
climatological path, towards a large polewardmeridi-
onal meander. The anticyclone sustains the poleward
advection of warm air along its western flank, adia-
batic warming by subsidence and clear skies at its cen-
ter. When linked to abnormally dry soils, these con-
ditions promote warming through short-wave insol-
ation, resulting in the allocation of incoming solar
energy towards sensible rather than latent heat [19–
26]. If the anticyclone stays stationary, extreme tem-
perature can be reached. Although it is well estab-
lished that global warming renders the temperat-
ure distribution hotter on average, how the coupled
dynamics between the atmosphere, the oceans and
the soils will evolve in response to this forcing during
the hottest days is still debated [11, 14, 27–31].

© 2023 The Author(s). Published by IOP Publishing Ltd



Environ. Res. Lett. 18 (2023) 094061 R Noyelle et al

One way to quantify the risk associated with
heatwaves is to measure the tail probabilities of the
temperature distribution, e.g. the risk of the max-
imum annual temperature reaching a certain level.
A classical approach to deal with this assessment is
extreme value theory (EVT). EVT has been used to
determine statistical models for maxima (or min-
ima) of climate variables of interest [32], such as
temperatures. It is based on a convergence principle
of the probability distribution of block maxima or
peaks-over-threshold [33–35] towards a generalized
extreme value (GEV) distribution. It allows to com-
pute return values corresponding to very large return
periods (i.e. longer than the period of observations),
even in non stationary contexts [36]. This approach is
for example extensively used by attribution methods
to compare the probabilities of reaching extreme tem-
peratures between a counterfactual world without cli-
mate change and a factual world with climate change
[37–39]. This allows to estimate how climate change
made a particular event more (or less) likely.

Fitting a GEV distribution to extreme temper-
atures usually gives estimates of the shape para-
meter that are robustly negative (e.g. [40, 41]). This
implies that, in a stationary context, the distribu-
tion of annual maximum temperatures is bounded
upwards. This upper bound is often the informa-
tion asked to the scientific community by practition-
ers who want to prepare for the worst case scenario.
However, recent intense heatwaves such as in 2010 in
Russia [18], 2019 in Western Europe [42] and 2021
in the Pacific Northwest [43, 44] have challenged the
reliability of this statistical upper bound by breaking
it sometimes by a large margin. Another approach to
estimatemaximal reachable temperatureswould be to
run a long simulation with a climate model to sample
more extreme events than those observed in the past.
Apart from the inherent limitations of models to rep-
resent correctly the entire temperature distribution—
especially at its tail [40, 45, 46]— this method is lim-
ited by the fact that estimating precisely small prob-
abilities requires an extremely long simulation [47],
which is too costly for most complex models. Various
approaches have been suggested to address this prob-
lem, like rare events algorithms [48–50] or ensemble
boosting [51].

Recently, [52] proposed a physics-based theory
to address the question of the upper bound for
extreme temperatures over midlatitude continental
areas. They provide evidence for the hypothesis that
moist convective instability sets a fundamental upper
limit for surface temperatures. This allows for an
estimate of maximal temperatures based on large
scale circulation of the free-troposphere and surface
specific humidity. In this paper, we make use of this
theory to investigate themaximal reachable temperat-
ure in Western Europe in the current climate. We use

the flow analogues attribution method [53–55]. We
condition the estimate of maximal temperatures on
the free-troposphere large scale circulation observed
during the most intense event of the recent years in
Western Europe, namely the July 2019 heatwave. 2019
saw two exceptional heatwaves in June and July [56]
with maximum temperatures very unlikely in a world
without anthropogenic climate change [45, 57].

We focus on the July 2019 heatwave—when most
records of Western Europe cities were broken—and
we estimate the maximal temperatures this event
could have reached in the present climate. We also
investigate how these upper bounds have changed
with respect to the past and detail the physical mech-
anisms related to the changes in daily maximum of
surface temperatures.

This paper is organized as follows: in section 2,
we present the data used, the computation of the
heatwave maximal temperature and the flow analogs
methodology. Section 3 presents and discusses the
results. Finally, the conclusions drawn from our ana-
lysis are presented in section 4.

2. Data andmethods

We use the ERA5 reanalysis data set of the European
Center for Medium Range Weather Forecasting
(ECMWF) over the period 1940–2021 [58]. The data
have a horizontal resolution of 0.25◦ × 0.25◦. For
illustration purposes, we additionally use daily tem-
perature data from the Paris Montsouris weather sta-
tion taken from the Infoclimat website (https://www.
infoclimat.fr/climatologie/globale/paris-montsouris/
07156.html).

To study how more intense an observed heatwave
event could have been, we use the criteria developed
by [52] who provided evidence for the hypothesis that
convective instability fundamentally limits maximal
surface air temperatures over midlatitude land. This
hypothesis states that, during heatwaves, surface air
temperature T reaches its maximal value when the air
column is neutrally stratified. Accordingly, the heat-
wave stops when precipitation is triggered by the con-
vective instability of the boundary layer. This happens
when the surface air parcel moist static energy

MSE = cpT+ Lvq+ gzs (1)

is equal to the free-tropospheric saturation moist
static energyMSE∗a . Here cp is the specific heat of air at
constant pressure, Lv the latent heat of vaporization, q
the specific humidity at the surface, g the gravitational
acceleration and zs the geopotential height of the sur-
face. We choose to define the free-tropospheric situ-
ation as the state of the atmosphere at 500 hPa and
MSE∗a is therefore computed from equation (1) by
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replacing T with the air temperature at 500 hPa T500,
q with the saturation specific humidity at T500:

qsat(T500) ≃ ϵesat(T500)

500hPa
(2)

where ϵ is the molar ratio between water vapor and
dry air and esat(T500) is the saturation vapor pres-
sure given by the Clausius–Clapeyron relation—and
zs with the geopotential height at 500 hPa z500. The
maximal surface temperature is therefore:

Ts,max = T500 +
Lv
cp

(qsat(T500) − q)+
g

cp
(z500 − zs).

(3)

This temperature is maximized if q is null.
However, such a low specific humidity is unrealistic
for midlatitude land because of the presence of sur-
face waters and vegetation. In the following, except
specified explicitly, we therefore use the hourly June–
July–August–September (JJAS) minimum qmin ever
observed over the period 1940–2021 at each grid
point. Using q at 2m to compute Ts,max is a con-
servative choice because when an air parcel rises, it
entrains surrounding dryer air, which decreases its
specific humidity. For T500 and z500 we use the daily
mean values as the diurnal cycle does not influence
strongly these quantities.

Ts,max defines a heatwave potential in the sense
that it gives the maximal temperature potentially
reachable given the synoptic situation. Whether this
temperature will be reached is however not certain
because, for example, the circulation pattern may
change too fast for the temperature to have time to
increase under the forcing of incoming energy fluxes.
LettingTX1d be the observed daily temperaturemax-
imumat the surface, one can therefore define an index
ITX1d for how much an observed heatwave is close to
its maximal potential:

ITX1d :=
TX1d−Tclim

Ts,max −Tclim
, (4)

where Tclim is a climatological temperature and TX1d
is the observed daily maximum temperature. Here
we use the July averaged daily mean temperature as
a climatological value. When this index is close to 1,
the event is close to its maximal potential intensity: it
could not have been more intense.

To determine how global warming may have
impacted the physical mechanisms leading to the
extremely intense event of July 2019 in Western
Europe, we employ an attribution methodology. The
most common attribution method of a specific event
[37] consists in comparing the probabilities of an
observable reaching a certain level in a counterfactual
world and in a factual world. The difference between
the two periods usually lies in their global mean

temperature, i.e. worlds with or without anthropo-
genic global warming. The ratio of the probabilit-
ies gives how much more likely an observed event
has been rendered because of global warming. This
method however does not condition the result on the
large scale circulation and therefore bears the risk of
comparing atmospheric dynamics that are different
even though they give rise to the same values for the
observable of interest.

Here we make use of the flow analogues attri-
bution methodology proposed by [55] and adapted
from [53] (see also [59, 60]). The idea of the method
is to compare the expectation of a variable of interest
X in the counterfactual world (F= 0) and in the fac-
tual world (F= 1), conditional on the large scale cir-
culation C(ζ) of the observed event ζ :

∆C(ζ)X = E[X | F = 1,C(ζ)] −E[X | F = 0,C(ζ)].
(5)

In our analysis, ζ corresponds to the 25 July 2019
situation, the day where the heat peak was reached.
The conditioning on the large scale circulation C(ζ)
should be understood as being in a reasonable vicin-
ity of the circulation of the event rather than as a
strict equality, which cannot be enforced. This frame-
work allows to answer the question: how a similar
large scale circulation pattern in the two worlds leads
to different outcomes in an observable of interest?
If the difference ∆CX is statistically significant, then
one can say that in the factual world the event has
been rendered more (or less) intense by ∆CX. This
method allows to disentangle the role of thermody-
namics and dynamics (see [61] for the 2019 event).
Whether the event has become more likely can in
principle be obtained [53] if one can estimate the
probabilities P[C(ζ) | F] and P[C(ζ) | X > x], where x
is a given threshold, in the two worlds.

This method can be used with climate mod-
els output with or without anthropogenic forcing
to define the factual and counterfactual worlds.
However, models have known deficiencies, including
biases [62] and incorrect dynamics of extremes under
forcing over Western Europe [40, 45, 46]. As in [55]
we therefore choose to rely on reanalysis outputs only,
which, even though they also present limitations, are
the closest we have to the actual past state of the atmo-
sphere. Here, we define the counterfactual world as
the past period (1940–1980) and the factual world as
the present period (1981–2021).

To condition on the synoptic circulation, we select
in both periods the best 40 analogs as the daily
mean 500 hPa geopotential height (z500) maps min-
imizing the pointwise Euclidean distance with the
daily mean z500 map of the target day ζ . In the fac-
tual period we also impose that no analog can be
found within a 20 calendar days window around the
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25 July 2019 to avoid selecting the event itself. The
reason for choosing to condition on z500 is that in the
quasi-geostrophic approximation relevant for synop-
tic scales, z500 acts as an approximate streamfunction
for the general circulation and has been shown to be
a good conditioning field for temperatures [54]. Over
the period 1940–2021, the troposphere has warmed
and geopotential heights may therefore have inflated.
To avoid this factor to bias the analogs selection, we
remove a spatially uniform trend to the geopoten-
tial heights before computing the Euclidean distance.
This ensures that the spatial gradients are preserved
and therefore that analogs have a similar synoptic cir-
culation. To compute the trend we average spatially
the z500 maps and fit a second degree polynomial to
this time series. The second order was chosen because
of the so-called warming pause in the global temper-
ature of the Earth in the period 1950–1970 [63]. The
analogs are computed over the domain depicted with
a dashed box in figure 1 panel (c). This domain is
chosen because it encompasses the observed heatwave
region at the surface and the relevant associated syn-
optic pattern, namely a large polewardmeander of the
jet streamassociatedwith a strong anticyclonic anom-
aly overWestern Europe. The analogs are chosen only
in the months June, July, August and September to
ensure closeness with the event. We verified that the
results are not qualitatively sensitive to the choice of
the number of analogs provided that we extract 20 or
30 analogs maps.

Forty-one years long factual and counterfactual
periods ensure a large enough statistical sample of
z500 maps to be able to select sufficiently representat-
ive analogs over such a limited geographical area. The
counterfactual period can be assumed to satisfy the
assumption of climate stationarity—for examplewith
regards to the mean (not shown) or extreme (see e.g.
figure 1 panel (a)) temperatures in summer—with
respect to anthropogenic climate change. This period
is also long enough for the interannual and inter-
decadal natural variability of the atmospheric circu-
lation to be averaged over. The same is not necessarily
true for the factual period for which there is a strong
warming of Western Europe between the 1980 s and
the 2010 s decades. A direct identification of the fac-
tual period and a stationary warmer world should
therefore be made with care and it is more relevant
to frame our results as showing a difference between
a past world and a present world [64].

Once obtained the two sets of analogs for the
factual and counterfactual periods, we average them
out to search for significant differences in observ-
ables X of interest. To determine significant changes,
we apply a two-tail Welch t-test [65], with different
variances, at each grid point. We mark as signific-
ant only grid point changes for which the p-value of
the test is below 0.05. In the following, as the ref-
erence event takes place in July we chose to display
anomalies with respect to the July monthly mean and

standard deviation over the period 1990–2021. Apart
when specified explicitly, this convention concerns all
anomalies.

3. Results and discussion

3.1. Description of the event and intensity potential
In the end of July 2019, Western Europe was hit
by a heatwave which broke many records in France,
Belgium, the Netherlands and Western Germany
([45], figure 1 panel (b)). The heatwave peaked on the
25 July and, for instance, the Paris Montsouris station
recorded its largest temperature since 1900with a new
record of 42.6 ◦C, breaking the previous 1940 record
by a margin of 2.2 ◦C (figure 1 panel (a)). The synop-
tic situation was characterized by a strongly meridi-
onal meander of the high level jet (figure 1 panel (c))
sustaining advection of warm air and anomalies of up
to 7K at 500 hPa above the North Sea (figure 1 panel
(b)). Extreme surface temperatures were reached after
an anomalously dry and hot month (30% of cli-
matological precipitations and +2.4 ◦C temperature
anomaly for the Paris region) following the previous
June heatwave [56], which made the event develop
under desiccated soils (figure 1 panel (d)). The event
however only lasted a few days and daily max-
imum temperatures decreased by more than 10K on
the 26 July.

Figure 2 panel (a) shows the difference between
the maximal surface air temperature Ts,max and the
observed daily maximum temperature TX1d for the
25 July 2019. To ensure realism in the value of Ts,max,
we use the hourly JJAS minimum specific humidity
qmin ever observed over the period 1940–2021 at each
grid point. Over the core heatwave region (Northern
France and Benelux), the daily maximum temper-
ature provided by the reanalysis data set is close to
the maximal potential intensity by a margin of 4–
6K, and consequently the heatwave potential index is
close to 90%.

Table 1 shows the estimation of Ts,max for several
major urban areas in Western Europe which all set
their 1940–2021 maximum temperature record dur-
ing the July 2019 event. For all of them, we used a
four grid point average encompassing most of the
main city and its surroundings. We compare the
estimated maximal surface temperature to the max-
imum value of a non-stationary GEV distribution
fitted on the summer temperature maxima over the
1940–2021 period using the ERA5 reanalysis data set
(see supplementary materials for more information).
We emphasize that these values are conservative with
respect to what can be actually measured by a weather
station at the surface because they are averaged over
a roughly 50 km by 50 km square. For example, the
value for TX1d for the Paris region with ERA5 gives
41.4 ◦C whereas the Paris Montsouris station meas-
ured 42.6 ◦C.
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Figure 1. (a) Annual maximum temperature for the Paris Montsouris station (black) and the grid point where the station is
located for ERA5 (red). The black dashed line corresponds to the temperature reached on the 25 July 2019 at the Paris Montsouris
station. (b) Daily maximum 2m air temperature (colors) and daily mean 500 hPa temperature anomalies (contours). (c) Daily
mean meridional wind at 250 hPa (colors) and geopotential height at 500 hPa (contours). (d) Daily mean normalized soil
moisture anomaly (colors) and hourly mean 2m specific humidity at the time when maximum 2m air temperature is reached
(hashed). The hashed regions represent anomalies below−0.5 standard deviation. All maps are drawn for the 25 July 2019.

Figure 2. (a) Difference between the maximal air surface temperature Ts,max and the observed daily maximum temperature TX1d
for the 25 July 2019. (b) Heatwave potential index for the 25 July 2019. We show land grid points where the daily maximum
temperature on the 25 July 2019 exceeded the 99th percentile of daily maximum temperature in July over the period 1990–2021.
Ts,max is computed using the hourly summer minimum specific humidity qmin ever observed over the period 1941–2021 at each
grid point.

Strikingly, even in the current climate, it is not
possible to rule out the possibility of reaching 50 ◦C
in all of these cities once we include the uncer-
tainty on the minimum surface specific humidity.
For example, for the Paris area the ERA5 data-
set provides a daily maximum of 41.4 ◦C, while
Ts,max is 46.6 ◦C [45.2, 53.8]. Reaching such temper-
atures would imply either a very intense drought,
with very low values of surface specific humidity,
and/or massive advection of heat from neighbour-
ing regions. The non-stationary GEV estimate for the
upper bound is significantly lower than Ts,max by 5 to

10K. Themedian estimate is even lower than the 2019
value for Paris and Lille. For most cities, the estim-
ated Ts,max is inside the uncertainty range of the GEV
estimate, but much closer to the upper bound than to
the lower one. This suggests that the statistical analysis
of past time series of maximum temperatures under-
estimates the risk of reaching extreme temperatures.

3.2. Flow analogs analysis
Figure 3 panel (a) shows the difference between the
factual and counterfactual periods of the analogs
averaged daily maximum 2m air temperature TX1d
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Table 1.Maximal temperatures in ◦C for several urban areas in Western Europe. All of them reached their 1940–2021 maximum
temperature record during the July 2019 event. See supplementary materials for the detail of the computation of the uncertainty range.

City TX1d (ERA5) Ts,max (realistic) Ts,max (absolute) GEV estimate

Paris 41.4 46.6 [45.2, 54.6] 54.2 [53.8, 54.6] 40.8 [40.0, 47.2]
Lille 39.7 47.1 [45.0, 55.0] 54.9 [54.6, 55.0] 39.2 [38.3, 48.5]
Bruxelles 38.9 47.1 [45.4, 54.9] 54.8 [54.5, 54.9] 42.8 [37.6, 49.7]
Amsterdam 35.6 47.8 [44.7, 56.2] 55.9 [55.7, 56.2] 37.3 [33.7, 41.5]
Köln 40.2 48.4 [45.9, 55.5] 55.3 [55.0, 55.5] 42.1 [39.6, 48.4]
Franckfurt 39.3 50.1 [46.4, 56.8] 56.6 [56.3, 56.8] 42.2 [39.3, 49.2]
London 35.6 48.6 [46.9, 56.0] 55.8 [55.6, 56.0] 42.9 [36.3, 51.0]
Luxembourg 37.8 45.4 [45.2, 54.1] 53.8 [53.5, 54.1] 41.1 [37.6, 47.5]

Figure 3. Difference between the factual (1981–2021) and counterfactual (1940–1980) analogs averaged (a) daily maximum 2m
air temperature TX1d and (b) absolute maximal surface temperature Ts,max. Hashed grid points correspond to a significant
difference at the 5% level. (c) Percentage of change in TX1d explained by the change in Ts,max between the two periods. For all
panels we show grid points where the maximum temperature on the 25 July 2019 exceeded the 99th percentile of daily maximum
temperature in July over the period 1990–2021 (heatwave event region).

overWestern Europe. In the heatwave region (France,
England, Benelux and Western Germany) TX1d is
between 2 and 3K more intense in the recent period.
It should also be noted that this analogs difference is
stronger by approximately 1 K than the difference in
the daily mean temperature (see figure C1 in supple-
mentary materials).

Figure 3 panel (b) displays the difference of the
absolute maximal surface temperature Ts,max. This
quantity has not changed significantly over most of
Western Europe—except a small region above the
Netherlands which coincides with an increase of T500

(not shown). Figure 3 panel (c) shows the percent-
age of change in TX1d explained by the increase in
Ts,max. The latter corresponds to nomore than 30%of
the actual change between the two period over France
(Paris region) but as much as 70% over Benelux and
Western Germany.

The change in T500 is the dominant factor for
the stronger increase in absolute Ts,max over the
Netherlands, with an increase of 0.7 K, whereas only
0.4 K over Paris (see vertical profiles in figure C2).
There is also a more significant drying of surface
air over the Netherlands (figure C2 panels (b) and
(d)). These two elements lead to a much stronger

increase in the analogs averaged lifting condensa-
tion level (LCL) between the two regions: 21 hPa
over the Netherlands vs 14 hPa over Paris, although
the difference between the two periods is non sig-
nificant at the 5% level. Dryer air parcels in a hot-
ter troposphere follow the dry adiabatic temperat-
ure profile longer, which leads to increased sur-
face temperature as can be seen when comparing
white and magenta lines in figure C2 panels (a) and
(c). These elements suggest that under the synop-
tic atmospheric conditions associated with the 25
July 2019 event, most of the observed change in 2m
air temperature maximum in France between the
two periods is caused by surface processes—either
local diabatic heating or advection from neighboring
regions.

Figure 4 shows the analogs analysis for TX1d and
z500 (first row), surface specific humidity q and T500

(second row). In both periods the averaged z500 pat-
tern matches the event z500 pattern (figure 1 panel
(c)) and the difference between the periods is min-
imal as can be seen by the fact that there are almost
no significant differences in the z500 field (figure 4
panel (c)). We are therefore confident on the quality
of the analogs and the relevance of the comparison
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Figure 4. First row: analogs averaged TX1d anomalies (colors) and daily mean z500 (contours) for (a) the counterfactual and
(b) the factual periods. (c) Difference between panels (a) and (b). For TX1d the anomalies are computed with respect to the
1990–2021 July monthly mean 2m air temperature climatology. Second row: analogs averaged hourly mean 2m specific humidity
at the time when TX1d is reached (colors) and daily mean T500 (contours) for (d) the counterfactual and (e) the factual periods.
(f) Difference between panels (d) and (e). In the last column, for all fields only the grid point with a significant difference at the
5% level are displayed.

between mean observables conditional on the synop-
tic circulation.

Figure 4 panel (f) shows no significant difference
in theT500 fields between the twoperiods. This should
however be taken with care because in equation (3)
this variable is used to compute esat(T500) which
evolves strongly non-linearly with T500. A small dif-
ference in T500, even non significant, can therefore
lead to significant Ts,max differences at the surface as
shown in figure 3 panel (b). Finally, over the heatwave
region the difference in specific humidity is not signi-
ficant (figure 4 panel (f)), except over a small area in
Western Germany.

In figure C3 in supplementary materials we
present the same plot for upper layer soil mois-
ture, which is a variable closely related to 2m spe-
cific humidity (low soil moisture reduces the evapo-
transpiration potential). There is a general drying
pattern overmost of the heatwave region in the factual
period, but it is significant only over the same region
as specific humidity in figure 4 panel (f).

The flow analogsmethod for these two variables is
however less robust because soil moisture may show
a much slower dynamics than z500. The distribution
of soil moisture (and therefore specific humidity) is
likely to depend on the full trajectory followed by the
atmospheric dynamics rather than its last state. The
association between the synoptic circulation C(ζ) of
the 25 July 2019 and dry soils/low surface specific
humidity may therefore be a coincidence, especially
for such a short extreme. As a consequence, it is pos-
sible that the framework presented in equation (5)
may not be relevant for these variables.

Figure C4 in supplementary materials indeed
shows that the JJAS daily minimum of hourly
mean specific humidity at 2 m displays a significant

increase between the two periods for Western Europe
(figure C4 panel (c)), probably as a result of moisture
advection fromnearby oceans [66]. This is apparently
in contradiction with the analogs analysis presented
here only if one dismisses the conditioning on the
z500 pattern. Nonetheless, whether the soil desiccation
pattern observed between the two periods is a relev-
ant feature of the change in the physical mechanisms
leading to extreme temperatures in the two periods
can be questioned.

Previous literature showed that there is a decrease
of surface specific humidity during the hottest days
[56, 67–69], but this may arise as both a cause and
a consequence of intensifying surface temperature
extremes [70]. We note also that although soil mois-
ture is well represented in ERA5, the temporal drying
trend may be underestimated [71].

Figure 5 shows the Ts,max indicator computed in
both periods using either the actual specific humid-
ity at the surface q or the 1940–2021 minimum
specific humidity qmin. As already shown above,
figure 5 panel (f) shows a significant change in abso-
lute Ts,max only over a limited region, which can-
not explain the intensity change in TX1d between
the two periods. Moreover, if one takes into account
the moistening of minimum surface specific humid-
ity over Western Europe in the factual period, this
small differencemay disappear completely as it would
decrease Ts,max in the factual period. When one
uses the actual q of the analogs, the difference
is much stronger between the two periods: there
is an increase of more than 3K of Ts,max over a
large region encompassing most of Germany. This
region however does not coincide perfectly with the
region with a significant change in TX1d in figure 4
panel (c).
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Figure 5. First row: analogs averaged Ts,max computed using the specific humidity of the analogs when TX1d is reached for (a) the
counterfactual and (b) the factual periods. (c) Difference between panels (a) and (b). Second row: analogs averaged Ts,max

computed using the minimum specific humidity over the 1940–2021 period for (d) the counterfactual and (e) the factual periods.
(f) Difference between panels (d) and (e). In the last column, the hashed grid points correspond to a significant difference at the
5% level.

Figure 6. Analogs averaged of the sum of downwards energy fluxes at the surface for (a) the counterfactual and (b) the factual
periods. (c) Difference between the two periods. In panel (c), the hashed grid points correspond to a significant difference at the
5% level.

To investigate this question, we analyze incom-
ing energy fluxes. Even though the heatwave poten-
tial intensity has not changed much between the two
periods, the actual capacity of a synoptic circulation
to reach this maximal intensity may be greater in the
factual period. Figure 6 displays the analogues aver-
age of the sum of daily mean incoming energy fluxes
at the surface (downward positive). It includes latent
and sensible heat fluxes, in addition to net shortwave
radiation and downward longwave radiation. Figure 6
panel (c) shows that there is a significant and strong
difference in incoming energy fluxes between the
two periods which coincide with the heatwave region
where the difference in TX1d is significant. These
fluxes are strongly coupled to the boundary layer and
soils states—especially with regards to the partition-
ing between sensible and latent heat. Therefore one

cannot claim that energy fluxes are a fully external
cause of the increase of TX1d between the periods.
However, they are an indicator of the strong increase
in local diabatic heating.

The observed increase in TX1d could also be
the result of increased sensible heat advection from
neighboring regions with increasingly desiccated land
surface [24, 72]. It is possible that this phenomenon
of non-local self-propagation of dry and hot condi-
tions played an important role for the 25 July 2019
event as shown by [56], especially with regards to
the aftermath of the June heatwave which desiccated
soils in the south of France and the Iberian penin-
sula. However, it is unlikely to be the case for all of
the 40 analogues in both periods: as shown by [73],
in Europe, hot events are generally associated with
weaker horizontal transport, but strong adiabatic
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warming and local temperature increase caused by
enhanced surface fluxes.

We emphasize that the results presented here are
very sensitive to changes in surface specific humid-
ity. This variable has significantly increased in the fac-
tual period, which according to equation (3), should
compensate the increase in T500 due to mean tropo-
spheric warming with climate change. If we take the
example of the Paris grid point, the change between
the two periods in Ts,max due to the change in analogs
averaged T500 is equal to +0.58K. On the contrary, if
we assume that minimum specific humidity is expec-
ted to shift by the same amount as the mean differ-
ence between the distribution of daily minimum of
hourly mean specific humidity (+0.52 g kg−1), then
one could expect a change ofTs,max by−1.29K, which
would largely compensate the tropospheric warming.
This simple reasoning however assumes that themin-
imum of specific humidity during the hottest days
would increase as the rest of the distribution. This is
in opposition to the analogs analysis presented here
which shows in contrast drying during the days asso-
ciated with a synoptic circulation similar to the 2019
event. This analysis therefore supports the idea that
the increase in the variability in temperatures, espe-
cially at the tail, is the result of increased variabil-
ity in soil moisture and surface specific humidity. As
a consequence, under the appropriate atmospheric
conditions—namely a large anticyclonic anomaly—
the response in daily maxima of surface temperature
is stronger in the recent period.

4. Conclusion

We investigated the maximal reachable temperatures
in Western Europe in the current climate. We took
the July 2019 record-shattering heatwave event as a
paradigmatic example and investigated how themax-
imum temperatures reached during this event could
have been higher. We found that even in the current
climate, we cannot rule out the possibility that 50 ◦C
cannot be reached in most urban areas of Western
Europe. With a similar atmospheric pattern as the
2019 event, this would need a massive and large scale
drought, with levels of surface specific humidity lower
than the lowest observed in the last 80 years.

We then employed a flow analogues method to
investigate how the upper bound of surface temperat-
ures has changed between the past (1940–1980) and
the present (1981–2021).Wedemonstrated that in the
present period, the conditional expectation of daily
maximum 2m air temperature has increased signific-
antly. This increase is stronger by around 1K than the
increase in the daily mean temperature. The change
in the expected heatwave intensity potential Ts,max

explains part of this increase over the Netherlands
and Western Germany where a small increase in T500

combined with dry soils to increase Ts,max by more

than 3K in the recent period. The same does not apply
over France and Belgium, where the change in Ts,max

is small and insignificant with limited and non signi-
ficant surface drying andnoT500 difference.However,
over these regions, incoming energy fluxes at the sur-
face have increased strongly in the present period
which may explain why higher TX1d are reached
compared to the past period even though the intens-
ity potential has not changed. Our results suggest that
most of the increase in observed daily maximum sur-
face temperature may result from strengthened sur-
face diabatic warming processes rather than free tro-
posphere warming.

What would be the impact of a similar weather
pattern as the July 2019 event in the future has been
investigated by [74] under various warming scen-
arios and using a storyline approach. They found
that an analogous event would entail peak temper-
atures around 50 ◦C in Central Europe under a high
emission scenario. Combined with our results, these
elements show that the past extreme temperatures
are not a good guide of the worst case scenario
under global warming. The fast increase ofmaximum
surface temperatures already observed demands a
massive update of adaptation strategies.
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Appendix A. Non-stationary GEV
estimation

If we consider the maximum Mn = max{X1, . . . ,Xn}
of n i.i.d. random variables X1, . . . ,Xn, the extremal
theorems [33, 34] state that if there exist sequences
an > 0 and bn so that the distribution P(Mn−bn

an
⩽ z)

converges towards G(z) when n goes to infinity, then
G(z) is given by:

G(z) =

{
exp

{
−
[
1+ ξ ( z−µ

σ )
]−1/ξ

}
if ξ ̸= 0

exp
{
−exp

[
−( z−µ

σ )
]}

if ξ = 0

(A.1)

where µ is called the location parameter, σ the
scale parameter and ξ the shape parameter. This
distribution is usually called the GEV distribution.
Importantly, it is bounded upwards for ξ < 0 and the
upper bound is given by:

zmax = µ − σ

ξ
. (A.2)

Here we estimate a non-stationary GEV by let-
ting the parameter µ depend on another covariate T
encompassing the warming of the Earth: µ = µ1 +
µ2T. We chose T to be the annual average of 2 m
air temperature of North-Hemisphere over land as
described in [75]. TheGEVdistribution is then estim-
ated using the maximum likelihood method and we
compute the upper bound using the formula (A.2).

We then report the ‘upper’ upper bound for T
in 2021:

zmax(2021) = µ0 + µ1T2021 − σ

ξ
. (A.3)

We compute the uncertainty range over this
upper bound using n= 1000 bootstrap samples of

the initial series. For each bootstrap series, we fit a
non-stationary GEV law (with T as a covariate on µ)
and compute the upper bound. We take the median
values of these bootstrapped estimates as the best
estimate andwe define the lower (resp. higher) bound
of the estimate as the 97.5% and 2.5% quantiles of the
bootstraped zmax.

Appendix B. Uncertainty in Ts,max
estimation

For computing the uncertainty range of the absolute
Ts,max for the urban areas, we use for T500 and z500
the spread of the 10 ensemble members of the ERA5
reanalysis simulation. The lowest (resp. highest)
bound of the range uses the lowest (resp. highest)T500

and z500 over the members. The ensemble spread is
small therefore the uncertainty range for the absolute
Ts,max is around 1K.

For the computation of the more realistic Ts,max,
we also need to take into account the uncertainty in
the qmin value. To do so, we fit a stationary GEV law
over the JJAS annual minimum of hourly 2m air spe-
cific humidity over the 82 years between 1940–2021.
This allows to give an approximate value to P(q) :=
P(qmin ⩾ q) where q is a fixed threshold. We com-
pute the uncertainty range over this estimated prob-
ability using n= 1000 bootstrap samples of the ini-
tial series. For each bootstrap series, we fit a GEV
law and compute the return level q82 associated with
a probability P(q82) = 1

82 , similar to the probability
of the minimum observed in the ERA5 dataset. We
then take the 97.5% and 2.5% quantiles of the boot-
straped q82 as the uncertainty range for qmin. Due to
the resampling procedure, the 2.5% quantile is neg-
ative for all cities. As this is not physical, we take this
lower bound to be null. We then combine the low-
est (resp. highest) T500 and z500 over the members
to the highest (resp. lowest) qmin to get the uncer-
tainty range. Due to the large uncertainty in qmin,
the uncertainty range for the realistic Ts,max is also

large.
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Appendix C. Additional figures

Figure C1. Analogs averaged daily mean 2m air temperature T2M for (a) the counterfactual and (b) the factual periods.
(c) Difference between the two periods of the averaged field. In panel (c), only the grid points with a significant difference at the
5% level are displayed.

Figure C2. Vertical profiles of analogs averaged air temperature for (a) the Paris region (lat= [47.5◦,49.5◦], lon= [1◦,5◦]) and
(c) the Netherlands region (lat= [51◦,53.25◦], lon= [5◦,9◦]). Vertical profiles of analogs averaged air specific humidity for
(b) the Paris region and (d) the Netherlands region. The white and magenta dots show the mean lifting condensation level in the
two periods. The associated vertical bars display a two standard deviation spread over the analogs.

Figure C3. Analogs averaged daily mean upper layer soil moisture (10 cm) for (a) the counterfactual and (b) the factual periods.
(c) Difference between the two periods of the averaged field. In panel (c), the hashed grid points correspond to a significant
difference at the 5% level.
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Figure C4. June-July-August-September average of daily minimum of hourly mean specific humidity at 2 m for (a) the
counterfactual period and (b) the factual period. (c) Difference between the two periods of the averaged field. In panel (c), the
colored grid points represent a significant difference at the 5% level.
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2.3. Perspectives

2.3 Perspectives
The first contribution of this work is to propose a comparison between a physical
and a statistical estimate for the upper bound of surface temperatures in the mid-
latitudes, taking the July 2019 event in Western Europe as a case study. I show
the large difference between the two estimations, with physical upper bounds being
5–10°C above the statistical upper bounds. The fact that the median estimate of the
latter is below the actual value observed in Paris in 2019 is worrying for the capacity
of the GEV estimate to be able to provide a plausible worst case scenario. This casts
some doubt on statements of the impossibility of an event occurring without global
warming, even when the event is very extreme (Philip et al. 2021). Even though the
physical upper bounds may appear unrealistic, their intensity seems plausible when
compared to the 2019 event, and at least more plausible than the GEV estimates
which are overpassed by actual events. This suggests that observed past events —
and the statistics fitted on them — largely underestimate the worst possible events.
I explore this discrepancy and propose a way to alleviate the problem in the next
chapter.

The second contribution of this work is to explore the thermodynamical mecha-
nisms leading to heat events under atmospheric conditions similar to the July 2019
event. The analogues analysis has shown that it can satisfactorily reproduce the pat-
tern observed using analogs in both past periods (1940-1980 and 1981-2021) which
allows to isolate the sole role of thermodynamics. I show that even when condition-
ing on similar atmospheric patterns as the one of the July 2019 event, the intensity
of daily maximum temperatures has largely increased between these two periods.
This increase is much larger than what would suggest the change in the thermody-
namic limit provided by the upper bound of Zhang and Boos (2023), i.e. mainly by
mid-tropospheric warming. I have therefore attributed this increase to strengthened
surface heat fluxes between the two periods. As a consequence, it is likely that the
rapid increase in the intensity of extremes in Western Europe is caused by a combi-
nation of both more favorable weather patterns (Vautard et al. 2023) and enhanced
thermodynamic surface processes. The latter could be related to a northward shift
of the transitional zone for soil moisture (Seneviratne et al. 2010). Whether these
changes are forced by the increase of GHGs global levels — and the decrease of
aerosols emission (Schumacher et al. 2024) — or whether they arise as a result of
natural variability (Singh et al. 2023) is an important question for future research
— especially with regards to adaptation to climate change in Europe.
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Chapter 2. Maximal reachable temperatures for Western Europe in current
climate

Summary

Context and goals

Extreme Value Theory (EVT) is one of the most employed statistical method
to estimate probabilities and return times for extreme events. For tempera-
tures, it also gives an estimate of the upper bound for maximal values reach-
able. The reliability of this upper bound has been questioned by recent very
intense events. The goal of this chapter is to investigate this discrepancy and
give an estimate for how more intense an observed extreme heat event could
have been.

Methods

I Investigate the question of the upper bound for surface temperatures in
Western Europe with a statistical approach based on EVT and a physical ap-
proach based on the stability of the air column (Zhang and Boos 2023) using
the July 2019 heatwave event as a case study. I also employ a flow analogues
methodology to study the evolution of thermodynamical mechanisms influ-
encing the intensity of the event for atmospheric patterns similar to those of
the July 2019 event between two past periods (1940-1980 and 1981-2021).

Results

I show that the statistical upper bound provided by EVT is likely largely
underestimated. The latter is 5–10°C lower than the upper bound based on
the stability of the air column. For the Paris region grid points, the median
estimate of the EVT-based upper bound is below the actual value observed
in Paris in 2019.
With the flow analogues methodology, I also find that even when condition-
ing on similar atmospheric patterns as the one of the July 2019 event, the
intensity of daily maximum temperatures has largely increased between the
1940-1980 period and the 1981-2021 period. This increase is much larger than
what would suggest the mid-tropospheric warming observed between the two
periods. I attribute this increase to strengthened surface heat fluxes.
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Chapter 3

Integration of physical bound
constraints to alleviate
shortcomings of statistical
models for extreme
temperatures

3.1 Introduction
In this chapter I present a follow-up of the work presented in the previous chapter.
I show in chapter 2 on a case study in Western Europe that the statistical and the
physical estimates of the upper bound for surface temperatures vastly differ. The
example of the Paris grid point showed that the statistical estimate probably largely
underestimates the true upper bound. A recent work by Zeder et al. (2023) showed
more generally using a large ensemble of a climate model and synthetic data that
the GEV fits on a limited-size sample underestimate the probability of rare events
— at least when using the most common fitting packages.

Here I propose to bridge the gap between the physical and statistical estimates
of the upper bounds for surface temperatures. I take for granted that the GEV
fits with a limited amount of data underestimates low probability events, i.e. the
most extreme and impactful events. I seek to avoid this effect — i.e. also to avoid
‘climatic surprises’: events that are said to be impossible but that still happen (e.g.
Philip et al. (2021)). To do so I propose to physically constrain the GEV fits by
imposing that the upper bound of the GEV — which is computed as a function
of the parameters of the distribution — is equal to an external physical estimate
for this upper bound. The question was then which estimate of the upper bounds
should be chosen.

The first idea was to impose a very large upper bound (∼ 70°C), way above the
maximum air surface temperature ever observed on Earth, to ensure that climatic
surprises are not possible. However I showed on synthetic GEV data that, on the
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contrary, this tends to bias upwards the estimation of low probability events (see
below). I therefore implement an adapted version of the upper bound proposed by
Zhang and Boos (2023). Although the value of this upper bound can be discussed —
in particular other mechanisms could limit the maximal surface temperatures before
the convective limit is reached1 — it gives a good first estimate of the (unknown)
value one could impose to a GEV fit.

3.2 Article submitted to the Journal of Climate
I show here the manuscript submitted on the 29th of February 2024 to the Journal
of Climate.

1 I thank Jacopo Riboldi, Matthias Röthlisberger and Erich Fischer for the discussions we
had on this topic.
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ABSTRACT: Heatwaves have devastating impacts on societies and ecosystems. Their frequencies

and intensities are increasing globally with anthropogenic climate change. Statistical models using

Extreme Value Theory (EVT) have been used for quantifying risks of extreme temperatures but

recent very intense events have cast doubt on their ability to represent the tail probabilities of

temperatures. Using outputs from a large ensemble of a climate model, we show that physics-

based estimates of the upper-bound of temperatures in the mid-latitudes are 3–8°C higher than

suggested by EVT-based models. We propose a new method to bridge the gap between the physical

and statistical estimates by forcing the EVT-based models to have an upper bound coherent with

the bound provided by the instability of the air column. We show that our method reduces the

underestimation of tail risks while not deteriorating the performance of the statistical models on

the core of the distribution of extreme temperatures.
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SIGNIFICANCE STATEMENT: The usual application of extreme value theory to determine the22

probabilities of extreme temperatures tends to underestimate the risks. We propose a method to23

reduce this underestimation by imposing a physically relevant upper bound estimate based on the24

stability of the air column. The coupling between extreme value theory and physics knowledge25

alleviates many of the shortcomings of usual statistical approaches used in heatwave attribution.26

1. Introduction27

Heatwaves and their impacts have been the focus of extensive attention in the context of global28

climate change (National Academies of Sciences Engineering and Medicine 2016; Pörtner et al.29

2022). There is indeed a clear signal pointing towards increasing frequency and intensity for these30

events worldwide (Seneviratne et al. 2021). Human bodies (Campbell et al. 2018; Breshears et al.31

2021; Huang et al. 2022; Masselot et al. 2023), plants (Hatfield and Prueger 2015; Brás et al. 2021),32

ecosystems (Bastos et al. 2021) and infrastructures (Zuo et al. 2015) have a limited capacity to cope33

with extreme temperatures and can suffer large damages once certain thresholds are reached. The34

capacity to predict and anticipate future maximum intensities of heatwaves is therefore of primary35

importance for adaptation to climate change.36

A simple way to quantify the risks associated with extreme temperatures is to run a long simulation37

with a climate model to sample more extreme events than those observed in the past. Apart from38

the inherent limitations of models to represent correctly the entire temperature distribution —39

especially at its tail (Naveau et al. 2018; Vautard et al. 2020; Van Oldenborgh et al. 2022; Patterson40

2023; Vautard et al. 2023) — this method is limited by the fact that estimating precisely small41

probabilities requires extremely long simulations (Wouters and Bouchet 2016), which is too costly42

for most complex — and therefore realistic — models. Various approaches have been suggested43

to address this problem, like rare events algorithms (Ragone et al. 2018; Yiou and Jézéquel 2020;44

Ragone and Bouchet 2021) or ensemble boosting (Gessner et al. 2021; Fischer et al. 2023), but,45

although less costly, they still require extensive climate simulations.46

An other classical approach is to measure the upper tail probabilities of temperatures distribution47

— typically the risk of the yearly maximum of daily maximum 2-m air temperature reaching a48

certain level — using results from Extreme Value Theory (EVT). EVT is a mathematical theory49

based on a convergence principle of the probability distribution of block maxima (Coles et al. 2001;50
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Beirlant et al. 2005) towards a Generalized Extreme Value (GEV) distribution. It has been used to51

devise statistical models for maxima (or minima) of climate variables of interest (Ghil et al. 2011;52

Katz et al. 2002), such as temperatures. It is extensively used by attribution methods to compare53

the probabilities of reaching extreme levels between a counterfactual world without climate change54

and a factual world with climate change (Hannart and Naveau 2018; Philip et al. 2020; Naveau55

et al. 2020; Kiriliouk and Naveau 2020; Van Oldenborgh et al. 2021; Worms and Naveau 2022).56

A GEV distribution has three parameters: the location 𝜇, scale 𝜎 and shape 𝜉 parameters. Fitting57

such a distribution to extreme temperatures usually gives estimates of the shape parameter that58

are negative (Van Oldenborgh et al. 2022; Auld et al. 2021). This implies that the distribution of59

annual maximum temperatures is bounded upwards by a value:60

𝐵(𝜇,𝜎, 𝜉) = 𝜇− 𝜎

𝜉
(1)

which depends on the parameters of the distribution. Observing a record temperature above this61

upper bound should then have a null probability, i.e. it should be impossible. The upper bound is62

an important quantity insofar as it provides an ultimate worst case scenario for societal adaptation63

(Palmer 2002; Fischbacher-Smith 2010; Scher et al. 2021). An underestimation of this quantity64

may therefore have daunting consequences in impact studies.65

In the context of non-stationary data — as is most of climate data under climate change — it66

is customary to let at least one GEV parameter depend on an external covariate representing the67

effect of climate change, such as Global Mean Surface Temperature (GMST). Making the location68

parameter evolve linearly with GMST is a natural choice to take into account the shifting towards69

more intense values of temperatures distribution with anthropogenic global warming. One can also70

let the scale parameter evolve with the covariate. We emphasize that if some of the parameters of71

the distribution depend on GMST, then the statistical bound 𝐵 will also depend on this covariate.72

Recent intense heatwaves such as in 2010 in Russia (Di Capua et al. 2021), 2019 in Western73

Europe (Mitchell et al. 2019) and 2021 in the Pacific Northwest (Philip et al. 2021; Thompson74

et al. 2022) have nonetheless challenged the reliability of the estimation of the statistical upper75

bound by breaking it sometimes by a large margin (Fischer et al. 2021). Several issues indeed76

arise when applying EVT to empirical data: the pre-asymptotic nature of these data (Gomes 1984;77

Coles et al. 2001), the parametric hypotheses made for taking into account the non-stationarity78
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induced by global warming and the limited number of points to fit the distribution. For extreme79

temperatures, the latter is probably the most problematic insofar as one usually has no more than80

70-80 historical years to fit a GEV distribution. The mis-specification of the statistical GEV model,81

upper bound included, may therefore lead to an underestimation of the tail risks of very intense82

events (Diffenbaugh 2020; Zeder et al. 2023).83

The physical mechanisms leading to heatwaves in the mid-latitudes occur at various spatial84

and temporal scales (Perkins 2015; Horton et al. 2016; Domeisen et al. 2022; Barriopedro et al.85

2023). In the mid- and upper-level troposphere, these events are associated to a quasi-stationary86

high-amplitude Rossby wave (Petoukhov et al. 2013) which can be embedded in a hemispheric87

pattern (Coumou et al. 2014; Kornhuber et al. 2020; Di Capua et al. 2021). A blocking anticyclone88

is situated above the heatwave region sustaining the poleward advection of warm air along its89

western flank and causing adiabatic warming by subsidence and clear skies at its center. The latter90

causes warming through short-wave insolation of the lower layers of the atmosphere, which can be91

amplified if soils are dessicated and water is limited for plants evapotranspiration. This results in92

the allocation of incoming solar energy towards sensible rather than latent heat, increasing further93

surface air temperature (Seneviratne et al. 2006; Fischer et al. 2007; Seneviratne et al. 2010; Hirschi94

et al. 2011; Miralles et al. 2012, 2014; Rasmijn et al. 2018; Dirmeyer et al. 2021).95

If the anticyclone stays stationary, extreme temperatures can be reached. High temperature96

increases are fundamentally limited by the moist convective instability of the air column (Zhang97

and Boos 2023), which defines a relevant upper bound for surface temperatures in the mid-98

latitudes. During heatwaves, surface air temperatures reach their maximal values when the air99

column is neutrally stratified. Accordingly, temperatures drop when precipitations are triggered by100

the convective instability of the boundary layer.101

As a consequence, one can derive an estimate of the maximum reachable temperature at the102

surface from characteristics of the free-troposphere (temperature and geopotential at 500hPa) and103

surface specific humidity. This allows to propose an estimate of the physical upper bound 𝐵𝜙 of104

temperature for mid-latitudes regions, for which Noyelle et al. (2023) showed that it is 5–10°C105

higher than statistical estimates of the upper bound in a case study for Western Europe. Additionally,106

as shown by Zhang and Boos (2023) this upper bound increases with global warming.107
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In this paper, we address the issue of the underestimation of tail risks for extreme temperatures by108

bridging the gap between the physical and statistical theories of extreme temperatures. We propose109

to estimate statistical GEV models on time series of yearly maxima where the upper bound of the110

distribution is imposed by the physical knowledge of the system:111

𝐵(𝜇,𝜎, 𝜉) = 𝐵𝜙. (2)

This reduces the space parameter dimension by one. We show that this method estimates112

correctly the GEV distribution parameters and reduces the underestimation bias of traditional113

fitting methods.114

This paper is organized as follows. Section 2 presents the climate data and the statistical models115

used. In this section we detail how we compute an estimate of the physical upper bound for116

surface temperatures. The results of the analysis are presented in section 3. We first demonstrate117

the inadequacy of the estimation of the upper bound with traditional methods. Then we show118

the relevance of our approach on synthetic GEV data and on a large ensemble of climate model119

outputs. Finally, we discuss the results in section 4.120

2. Data and methods121

a. Climate model data122

Here we use the large ensemble of the state-of-the-art IPSL-CM6A-LR model (Boucher et al.123

2020) with the CMIP6 configuration under an extended historical simulations spanning historical124

forcing over the period 1850-2014 and RCP2-4.5 forcing over the period 2014-2059. The ensemble125

encompasses 31 independent members. For each member and each year, the GMST is computed126

as the area weighted global mean 2-m air temperature. For each member and each grid point over127

the Northern Hemisphere (30°N-80°N) we extract the yearly maximum of daily maximum 2-m128

air temperature. To compute the physical upper bound of surface temperature 𝐵𝜙 we additionally129

consider the yearly maximum over the months June, July, August and September of the daily130

mean air temperature at 500hPa (𝑇500), daily mean geopotential height at 500hPa (𝑍500) and yearly131

minimum of daily mean 2-m air specific humidity. For the period 1850-1949, only 10 members132
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are available for the variables 𝑇500 and 𝑍500. At each grid point, we therefore resample randomly133

from these 10 members to create data series of yearly maxima of 𝑇500 and 𝑍500.134

The use of climate data that we make here is not intended to give precise and relevant values for135

adaptation purposes but merely as an illustration of our method on physically relevant data points.136

b. Statistical models137

Classically, the distribution of yearly maxima of daily maximum 2-m air temperature (TXx)138

is modelled using a member of the so-called Generalized Extreme Value (GEV) family of dis-139

tributions. The probability of a yearly maxima 𝑍 to be below a threshold 𝑧 is expressed as140

𝑃(𝑍 ≤ 𝑧) = 𝐺 (𝑧) where:141

𝐺 (𝑧) =



exp
{
− [

1+ 𝜉 ( 𝑧−𝜇𝜎 )]−1/𝜉}
, if 𝜉 ≠ 0,

exp
{−exp

[−( 𝑧−𝜇𝜎 )]} , if 𝜉 = 0,
(3)

where 𝜇 is the location parameter, 𝜎 is the scale parameter and 𝜉 is the shape parameter. We denote142

this model M0. The use of this family of distributions is motivated by the extremal theorems which143

state that at a suitable limit of an infinite number of samples, the distribution of maxima converges144

towards a member of the GEV family (Coles 2001). It is therefore implicitly assumed that the145

pre-asymptotic distribution of yearly maxima can be correctly represented by this distribution.146

To account for non-stationarity in the temperatures distribution, one can first let the location147

parameter depend linearly on GMST:148

𝜇 = 𝜇0 + 𝜇1GMST. (4)

and the scale parameter 𝜎 is constant. We denote this model M1. We also consider a statistical149

model M2 where the scale parameter is also dependent on GMST:150



𝜇 = 𝜇0 + 𝜇1GMST

𝜎 = log (1+ exp(𝜎0 +𝜎1GMST)) .
(5)

The functional form for the scale parameter assures that it stays positive and — although it151

is non-linear — for typical values that we consider here the scale parameter depends almost152
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linearly on GMST. Importantly, for all these models if the shape parameter 𝜉 is negative, the153

distribution is bounded upwards and the bound 𝐵 depends on the three parameters (cf. Eq.1). We154

use the maximum likelihood method to provide estimators 𝜇̂, 𝜎̂ and 𝜉 (and correspondingly for155

non-stationary ones) of the parameters of the GEV distribution. The estimator for the bound is156

then:157

𝐵̂ = 𝜇̂− 𝜎̂

𝜉
. (6)

Note that in the non-stationary cases, the estimate 𝐵̂ depends on the covariate GMST and therefore158

on time.159

In the following, we mimic the practice of attribution studies (Philip et al. 2020) by fitting the160

statistical models with one (M1) and two non-stationary parameters (M2) on 70 TXx randomly161

resampled from the pool of the 31 climate model members over the period 1945-2014 using the162

ensemble mean GMST as a covariate (see Fig. B1a for its time evolution). The choice to use only163

70 points was made in reference to the average number of data points available for most weather164

stations (which were installed after 1945). To obtain distributions of the quantities of interest165

displayed below, we repeat the fitting procedure 1000 times.166

c. Computation of the physical upper bound167

As in Zhang and Boos (2023) and Noyelle et al. (2023), the maximum reachable surface tem-168

perature is computed as the surface temperature for which the moist static energy of the surface169

air parcel is equal to the saturated moist static energy of the free-troposphere (considered to be at170

500hPa):171

𝑇𝑠,𝑚𝑎𝑥 = 𝑇500 + 𝐿𝑣

𝑐𝑝
(𝑄𝑠𝑎𝑡 (𝑇500) −𝑄) + 𝑔

𝑐𝑝
(𝑍500 − 𝑍𝑠). (7)

where 𝑇500 is the air temperature at 500hPa, 𝑄 the surface specific humidity of the air parcel, 𝑍500172

the geopotential height at 500hPa and 𝑍𝑠 the elevation of the surface. 𝑇𝑠,𝑚𝑎𝑥 is computed from173

these four variables using the latent heat of vaporization 𝐿𝑣, the specific heat of air at constant174

pressure 𝑐𝑝, the gravitational constant 𝑔 and the equation 𝑄𝑠𝑎𝑡 (𝑇500) ≃ 𝜖𝑒𝑠𝑎𝑡 (𝑇500)
500hPa where 𝑒𝑠𝑎𝑡 (𝑇500)175

is the saturation vapor pressure given by the Clausius-Clapeyron relation.176
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The relation 7 is maximal when 𝑇500 and 𝑍500 are maximized and 𝑄 is minimized. However, by177

plugging the yearly maximum value of the two first quantities and the yearly minimum of the last178

one, it is possible that we either overestimate the physical upper bound 𝐵𝜙 — because there could179

not be a meteorological situation that combines the extremized values of these three quantities at180

the same time — or that we underestimate it — because the yearly natural variability may not181

provide sufficiently extreme values of these three quantities.182

To propose a reasonable value of the physical upper bound 𝐵𝜙 for each resampling of 𝑛 values183

of TXx that may be computable in practice, we also resample the corresponding 𝑛 yearly maxima184

of 𝑇500 (𝑇𝑋500,𝑖) and 𝑍500 (𝑍𝑋500,𝑖), and 𝑛 yearly minima of 𝑄 (𝑄𝑁𝑖). For each year 1 ≤ 𝑖 ≤ 𝑛185

resampled we compute the physical upper bound 𝐵𝜙,𝑖 using equation 7 with the corresponding186

yearly maxima of 𝑇500 and 𝑍500. However, we treat differently the air specific humidity 𝑄 variable187

which, as shown by Noyelle et al. (2023), is critical to have a relevant estimation of the upper188

bound. For this variable we use the same value for each of the 𝑛 resampled years. This value189

is defined as the covariate-trend adjusted minima 𝑄𝑁𝑚𝑖𝑛 of the (𝑄𝑁𝑖)1≤𝑖≤𝑛 over the 𝑛 resampled190

years. If the trend on 𝑄𝑁 is non significant, we use simply the minima of 𝑄 over the 𝑛 resampled191

years. This procedure gives us 𝑛 values of the physical upper bound 𝐵𝜙,𝑖:192

𝐵𝜙,𝑖 = 𝑇𝑠,𝑚𝑎𝑥 (𝑇𝑋500,𝑖, 𝑍𝑋500,𝑖,𝑄𝑁𝑚𝑖𝑛). (8)

We then regress the 𝐵𝜙,𝑖 on the covariate GMST (or RMST) which gives us a linear estimate for193

the physical upper bound194

𝐵𝜙 (GMST) = 𝐴+𝐵×GMST. (9)

This procedure is straightforward to apply and gives a reasonable estimate for the physical upper195

bound. It should nonetheless be stated that this value constitutes only a rough estimate of the196

true upper bound and is subject to uncertainties. We note that our procedure can be more easily197

conceptualized in a bayesian context for which one could define a prior distribution on 𝐵𝜙 (GMST)198

(Robin and Ribes 2020).199
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During the fit of the statistical models presented in the preceding subsection, we then impose200

that the statistical upper bound be equal to the physical upper bound:201

𝐵̂ = 𝜇− 𝜎

𝜉
= 𝐵𝜙. (10)

Doing so is equivalent to imposing a constraint on the GEV parameters and therefore reduces the202

dimension of the parameters space by one. The statistical modesl for which the bound is imposed203

are denoted as M𝐵
0 , M𝐵

1 and M𝐵
2 .204

3. Results205

a. Shortcomings of the traditional fitting approach206

We first show the inadequacy of the traditional fitting approach for estimating tail probabilities207

of the yearly maximum of daily maximum temperature (TXx) with a GEV distribution (see also208

Fischer et al. (2023); Zeder et al. (2023)). To do so, we use the outputs of the large ensemble (31209

members). We fit the statistical models with one (M1) and two non-stationary parameters (M2)210

on 70 TXx randomly resampled from the pool of the 31 members over the period 1945-2014 using211

the ensemble mean GMST as a covariate. We then investigate whether the upper bounds 𝐵1 and212

𝐵2 estimated with the two models are ”true” upper bounds, i.e. whether they are exceeded on the213

full dataset over the period 1850-2059 for the 31 members. By doing so 1000 times, we have an214

estimate of the probability that the estimated upper bounds of the two models will be exceeded at215

least once (see appendix A for the detail of the computation).216

Figure 1ab shows the result of this computation for every land grid points in the Northern217

Hemisphere mid-latitudes (30N-80N). For most of the grid points, the probability to exceed the218

upper bound estimated on the period 1945-2014 is above 40%. Remarkably, there is not a single219

grid point over the region studied for which the probability to exceed the upper bound is equal to220

0 after 1000 resamplings. Model M1 (first column) performs better for this test than model M2221

(second column) but both statistical models largely underestimate the value of the upper bound.222

This shows that, at least on climate model outputs, the estimation of the upper bound of the223

TXx distribution is not reliable. Figure 1cd gives an estimation of the empirical return time that224

corresponds to the values of the bounds 𝐵1 and 𝐵2. The return time — which should be infinite225
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— is in practice closer to 2000 years for model M1 (Fig. 1c) and to 200 years for model M2 (Fig.226

1d). We also note that, for model M1, large regions in the eastern side of continental masses show227

a large return time of the upper bound (above 6000 years, colored in light blue), which suggests228

that for these regions the upper bound is only slightly underestimated. Finally, the ratio between229

the GEV and the empirical probabilities of a centennial event is depicted in Figure 1ef. A positive230

(negative) value gives how much more (less) likely a centennial event occurs in the dataset with231

respect to the GEV estimate (see 4 for the detail of the computation). For both models, the intensity232

of events which are predicted to be centennial according to the GEV estimate actually happen every233

25 to 50 years, which make them 2 to 4 times more likely than predicted. Apart for a few grid234

points, this underestimation occurs almost everywhere.235

Increasing the size of the sample for fitting the models only slightly improves the situation (see245

Fig. B2 for 100 years and Fig. B3 for 150 years) and for most grid points the probability to exceed246

the upper bound estimated is above 20% even with 150 years of data. Similarly, changing the247

fitting period towards a period with more variation in the covariate does not change the results248

significantly (Fig. B4 with 70 points resampled over the period 1956-2025). Finally, using the249

Regional Mean Surface Temperature (RMST) rather than GMST as a covariate only marginally250

changes the results (Fig. B1bcd for the regional covariates, and Fig. B5 for the results of the251

fits). Figure 2 shows that the statistical estimation of the upper bound is lower than the physical252

estimation of the upper bound by a margin of 3 to 8°C. Except for a small region in Western Russia,253

the statistical upper bound is systematically lower than the physical upper bound. We additionally254

note that the estimation of the physical upper bound is much more precise than the statistical upper255

bound, cf. Figure B6 in appendix showing the standard deviation of the estimation computed on256

the 1000 resamplings.257

b. Imposing the upper bound on synthetic GEV data263

We first demonstrate the interest of the method of imposing the upper bound in the GEV fit using264

synthetic data with parameters typical of the parameters found when fitting a GEV on TXx data265

(see appendix A for the detail). We simulate 1000 series of 50, 100 and 200 points distributed266

according to the model M1, i.e. with a non-stationarity on the location parameter only. We then267

fit the full model M1 and the model M𝐵
1 where the (correct) upper bound is imposed during the268
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Fig. 1. Bias of tail risks of extreme temperatures with the traditional GEV fitting approach. First row (a-

b): empirical probability that the statistical upper bound estimated using 70 points resampled on the period

1945-2014 over all 31 members is exceeded at least once on the full dataset (1850-2059). Second row (c-d):

estimated return time of this upper bound on the full dataset. Grid points where only one TXx exceeds the upper

bound (return time above 6000 years) are colored in light blue. Third row (e-f): ratio between the GEV and

the empirical probabilities of a centennial event. A positive (negative) value gives how much more (less) likely

a centennial event occurs in the dataset with respect to the GEV estimate. First column: statistical model with

a linear dependence on GMST of the location parameter only (M1). Second column: statistical model with a

linear dependence of both the location and scale parameters (M2).
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fit. For comparison purposes, we additionally fit three other models derived from M1 where either269

the (correct) location (M𝜇
1 ), scale (M𝜎

1 ) or shape parameter (M𝜉
1) is imposed to the model.270
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Fig. 2. Absolute values of the upper bounds. Panels a and b show the median statistical upper bound estimated

with models M1 and M2 obtained after 1000 fits with data resampled over the period 1945-2014. Panels c and

d show the corresponding median physical upper bound. Panels e and f show the difference between the two.

For all the plots we chose the covariate to be +0.5K above the 1951-1980 average (corresponding roughly to the

year 2000).
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Figure 3 shows the results for the estimation of the different parameters (Fig. 3abcd) and several276

metrics (Fig. 3efghi). All models estimate correctly the location parameters 𝜇0 and 𝜇1 — with277

a slight overestimation of the first one and underestimation of the second one — but they almost278

all underestimate the scale parameter (Fig. 3c). Models M1, M𝜇
1 and M𝜎

1 underestimate the279

shape parameter and there is a large spread around the true value (Fig. 3d). On the contrary,280

when we impose the upper bound the estimation of the shape parameter is remarkably precise.281
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Fig. 3. Fit of the statistical models derived from M1 on synthetic GEV data. Estimation of the parameters of

the model: (a) and (b) location parameters, (c) scale parameter and (d) shape parameter. Metrics to measure the

quality of the fit: (e) bias in the upper bound, (f) bias in the return level at 1%, (g) bias in the return time for the

true return level at 1%, norm (h) 𝐿∞ and (i) norm 𝐿2 between the estimated and the true CDFs. Each boxplot is

derived from 1000 fits of randomly sampled GEV data from a M1 model with 𝑛 = 50,100 and 200 samples.
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As a consequence, the upper bound is systematically underestimated for models M1, M𝜇
1 and282

M𝜎
1 . It is also the case for the model M𝜉

1 but the estimation is much more precise. We note here283
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the paramount importance of correctly estimating the shape parameter for correctly estimating the284

upper bound and vice versa.285

The return level at 1% (Fig. 3f) is underestimated and the corresponding return time (Fig. 3g)286

is overestimated for all models but the model with the upper bound imposed perform best both in287

bias and in spread. When comparing models in terms of the norms 𝐿∞ and 𝐿2 with respect to the288

true Cumulative Distribution Function (CDF), the model M𝜇 performs best but the other models289

have similar performance. Increasing the sample size improves the estimation for all models, but290

for the estimation of tail probabilities the model M𝐵
1 remains the best (e.g. Fig. 3g).291

Appendix B provides similar estimations for the models M0 (Fig. B7) and M2 (Fig. B8) for292

which we have similar results as those presented here. Our results demonstrate that once one293

knows the upper bound of a bounded GEV distribution, imposing the value of the bound during294

the fit gives the best fitting results on the metrics displayed here. Nonetheless, when it comes to295

non-synthetic data, it is likely that we will make an error on the imposed value of the upper bound296

— which is unknown. To investigate this issue, we additionally fitted the model M𝐵
1 with an error297

𝐵𝑒𝑟𝑟 on the bound 𝐵. Results are presented in d for an error of 𝐵𝑒𝑟𝑟 = +2.5 (Fig. B9) and 𝐵𝑒𝑟𝑟 = +5298

(Fig. B10). In these cases, the scale parameter (Fig. B9c) tends to be underestimated and the shape299

parameter (Fig. B9d and B10d) to be overestimated. Accordingly, the return level at 1% (Fig. B9fc300

and B10f) is overestimated and the return time for the true return level at 1% is underestimated301

(Fig. B9g and B10g). We nevertheless note that the error made is small when compared to the302

spread around the estimation for the other models and that for 𝐵𝑒𝑟𝑟 = 2.5 the overestimation of the303

return time is of the same order of magnitude as the underestimation of the full model M1. On the304

rest of the distribution, the performance of the biased model M𝐵+𝐵𝑒𝑟𝑟

1 is comparable to the other305

models (Fig. B9hi and B10hi). For the quality of the fit it is therefore preferable to impose an306

upper bound as close as possible to the correct upper bound but errors up to +5°C can be tolerated307

even though they tend to overestimate events at the upper tail of the distribution. We come back to308

this question in the discussion section.309

c. Imposing the upper bound on a climate model outputs310

We apply our approach to temperatures simulated by a climate model and determine the dis-311

tribution of yearly maxima of daily maximum temperature at one grid point in Western Europe312
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(lon=0°, lat=49.44°N) for the 31 members of the IPSL model over the period 1850-2059. Figure313

4a shows the evolution of these maxima with time. We note in particular that there is an extreme314

outlier on the year 2019 which reaches the value of 38.6°C (shown by a black triangle), shattering315

the previous record of all members by a margin of 1.9°C. We fit the models M1 and M2 with the316

GMST as covariate by resampling 1000 times over all members during the period 1945–2014 (70317

years), as previously. Figure 4a shows the median, 5th and 95th percentiles of the estimated upper318

bounds 𝐵1 and 𝐵2 for both statistical models along with the estimated physical upper bound 𝐵𝜙.319

The median estimates of upper bounds 𝐵1 and 𝐵2 are below 10 data points of the temperature time320

series. On the contrary, the physical upper bound is never reached and is above the 95-th percentile321

of the distribution of the upper bounds 𝐵1 and 𝐵2.322

Figure 4b illustrates the issue of the underestimation of the upper bound with the case of the 2019323

extreme event. In black we show the empirical distribution of maxima for years 2016-2021, for324

which the value of the covariate GMST is similar to the one of 2019 (14.32°C vs 14.24 to 14.38°C).325

As an illustration we show the PDF fitted on member 14 during the period 1945-2014 for models326

without the upper bound imposed (M1 and M2) and with the upper bound imposed (M𝐵
1 and327

M𝐵
2 ). The PDF of the former are very close and are not distinguishable on the graph. Remarkably,328

they both estimate an upper bound which is around 1°C smaller than the 2019 extreme outlier.329

To show that we did not choose member 14 for its underestimation of the bound, the two blue330

boxplots shows the distribution of 1000 estimations of the 2019 upper bound done by resampling331

as previously. More than 75% of these estimations are below the maximum value of 2019.332
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maxima of daily maximum temperature (TXx) at a grid point in Western Europe (lon=0°, lat=49.44°N) for the

31 members of the IPSL model (black), median, 5 and 95-th percentiles of the distribution of upper bounds 𝐵1

and 𝐵2 (blue plain and dashed) for statistical models M1 and M2 for 1000 fits with resampled data points on

the period 1945-2014 (black arrow), and median, 5 and 95-th percentiles of the distribution of physical upper

bounds 𝐵𝜙 (orange). The black triangle shows the value of the 2019 extreme outlier (38.6°C). (b) Histogram of

TXx over the period 2016-2021 (black) and PDFs (colors) using the fit on member 14 for statistical models M1,

M2, M𝐵
1 and M𝐵

2 . The black dotted line shows the extreme 2019 event and the colored lines shows the physical

upper bound and the estimated statistical upper bounds for the fit on member 14 (the blue plain and dashed lines

are almost confounded). The boxplots shows the distribution of upper bounds for the different models for 1000

fits on resampled data. (c) Distribution of return time for the return level at 1% for all statistical models. Average

norms (d) 𝐿∞ and (e) 𝐿2 between the estimated and the empirical CDFs.
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Fig. 4c shows a comparison between the estimated return time in the full data set (1850-2059) of345

the 1% return level using the fits of the different models. Models M1 and M2 vastly overestimate346

this return time: the median return time empirical estimate for the return level at 1% according347

to their distribution is around 40 years. On the contrary, models M𝐵
1 and M𝐵

2 underestimate this348

return time, by around 250 years for the latter and 100 years for the former. This translates into349

an overestimation of tail risks of extreme temperatures for the two models for which the physical350

upper bound is imposed. Figure 4de show the performance of the different models on the rest of351

the distribution using average norms 𝐿∞ and 𝐿2 between the fitted CDF and the empirical CDF352

(see SI for the detail of the computation). Models have similar performance for both metrics, with353

a slightly better one for models M1 and M𝐵
1 . Models where the upper bound is prescribed perform354

slightly worse compared to traditional models. We provide in d the same figure using the RMST355

as covariate (Fig. B11), which gives similar results.356

Finally, Figure 5 shows the same results as Fig. 1 for models where the upper bound is prescribed367

(M𝐵
1 and M𝐵

2 ). Remarkably, Fig. 5ab show that a for a majority of grid points the probability368

to exceed the upper bound is null after 1000 resamplings (grid points colored in blue). For grid369

points where the probability is not null, it is close to zero (e.g. in the Iberian peninsula or in North370

West America). There is however two regions over Western Russia and Central Eurasia where the371

probability to exceed the upper bound at least once is still above 60 %. Nevertheless, Fig. 5cd show372

that for the vast majority of these grid points, the return time of the estimated upper bound is very373

high: above 6000 years which implies that only a single TXx on the dataset is above this value.374

In Fig. B12 and B13 we provide the fits for example grid points in these two regions. They show375

that only one TXx in the 19th century is actually above the median estimate of the physical upper376

bound (respectively in 1850 and 1860). We also note that for those grid points the statistical and377

physical estimates of the upper bounds are much closer than for the grid point in Western Europe378

— although the physical upper bound is more precisely estimated.379

Additionally, Fig. 5ef show that imposing the upper bound partially alleviates the issue of380

underestimation of centennial events. Contrary to Fig. 1ef, there is no uniform underestimation381

of the return level of the centennial events. In particular, coastal regions even tend to overestimate382

the risk of these events. This effect is probably due to the choice we made to take the lowest383

value of the surface specific humidity in the resampled data to compute an estimate of the physical384
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upper bound estimated using 70 points resampled on the period 1945-2014 over all 31 members is exceeded at

least once on the full dataset (1850-2059). The grid points where the probability is null are colored in light blue.

Second row (c-d): estimated return time of this upper bound on the full dataset. Grid points where only one
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TXx exceeds the upper bound are colored in white. Third row (e-f): ratio between the GEV and the empirical
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event occurs in the dataset with respect to the GEV estimate. First column: statistical model with a linear
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1 ). Second column: statistical model with a linear

dependence of both the location and scale parameters (M𝐵
2 ).
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upper bound. On the other hand, the overestimation bias over Europe for example is largely385

reduced and some regions even slightly overestimate the risk. One should note that there are386
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still large regions where our procedure underestimate the risk of centennial events, for example in387

Canada, Western Russia and Central Eurasia. This effect may be due to historical aerosols forcing388

which are used by the model and the choice we made to use data between 1945 and 2014 for389

the fit. This period indeed corresponds to higher anthropogenic aerosols levels in these regions,390

which are increasingly recognized to strongly influence the magnitude of extreme temperatures391

(Sillmann et al. 2013; Dong et al. 2017; Westervelt et al. 2020; Luo et al. 2020; Seong et al. 2021).392

Nevertheless, the overestimation is reduced to around 2.5 more events in the dataset than according393

to the GEV estimate (Fig. 5e). Finally, as previously, model M𝐵
2 performs worse according to this394

metric than model M𝐵
1 .395

4. Discussion and conclusions396

We presented a new method to bridge the gap between physical knowledge and statistical estimates397

of tail probabilities of extreme mid-latitude surface temperatures. We proposed to incorporate a398

physical estimate of the upper bound during the fit of GEV distributions for yearly maximum of399

daily maximum 2-m air surface temperature. We showed on synthetic GEV data and on climate400

model outputs that doing so leads to more precisely fitted parameters — especially the crucial shape401

parameter, reduces the underestimation of tail probabilities and does not deteriorate the performance402

of the fit on the rest of the distribution. The underestimation of the upper bound is largely avoided403

and we additionally showed that our method improves the estimation of probabilities of centennial404

events, although this was not intended by the method. Our method also has the advantage of405

rendering the statistical fit more stable with respect to its tail properties. Figure B6 indeed shows406

that the standard deviation on the estimated upper bounds is much smaller for models M𝐵
1 and M𝐵

2407

than for classical models M1 and M2. It especially ensures that the upper bound always exists —408

which even though is clear physically, is not often found in practice. We additionally showed that409

overestimating the upper bound of the distribution would tend to also overestimate tail probabilities410

and therefore risks of very high temperatures. This overestimation is however of the same order of411

magnitude as the underestimation associated with classical fits of GEV distribution.412

Other metrics could have been chosen to quantify the quality of the fits with respect to data. We413

nevertheless emphasize that all classical metrics based on the log-likelihood, such as the Akaike414

information criterion (Akaike 1998), the Bayesian information criterion (Schwarz 1978) or the415
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Likelihood ratio test (Coles et al. 2001), are not adapted here because they give an infinitely bad416

score to classical models. The latter indeed underestimate the upper bound: a model which gives417

a zero probability to an event which still occurs has an infinite log-likelihood. To the best of our418

knowledge there is also no consensus on the metrics to evaluate the quality of the fit of a model in419

a non-stationary context.420

Choosing the value of the upper bound to be imposed during the fit is the crucial element for421

the success of our procedure. The estimation procedure of the physical upper bound 𝐵𝜙 that we422

proposed here likely tends to overestimate this quantity because it combines extremized value of423

temperature and geopotential at 500hPa and surface specific humidity which are unlikely to happen424

at the same time in practice. As shown on synthetic GEV data and on climate model outputs, it425

is therefore possible that we overestimate tail risks at some places. However, given the fact that426

GEV estimates of tail probabilities may be used by practitioners for adaptation purposes, it is not427

only a scientific but also an ethical question to choose to over- or underestimate risks of very high428

temperature events. Because of the large consequences that an underestimation of tail probabilities429

could have on societies, we here advocate for a scientific choice which avoids this underestimation430

even though it comes at the risk of overestimation of tail probabilities.431
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APPENDIX A442

Computation details443

a. Computation details for Figure 1444

1) Probability of exceeding the upper bound445

We here detail the procedure to compute the probability of exceeding the upper bound that is446

presented in Figure 1. This procedure is applied for each grid point over the Northern Hemisphere447

mid-latitudes (30N-80N). We first draw randomly 70 TXx from the pooled data of the 31 members448

between the period 1945-2014 (2170 data points) without replacement. We then fit the statistical449

model into consideration. If the shape parameter of the fit is negative (i.e. if there is indeed an450

upper bound), we consider the estimated statistical upper bound 𝐵̂𝑖 and we count the number 𝑛𝑖451

of TXx in the full dataset (1850-2059, 6510 data points) that are above 𝐵̂𝑖. Note that for models452

M1 and M2 the estimated upper bound depends on the covariate GMST (or RMST, see below)453

and therefore on time. We do this procedure 𝑁 = 1000 times and the probability of exceeding the454

upper bound at least once is then computed as:455

𝑃̂(𝑍 > 𝐵̂) = 1
𝑁

𝑁∑︁
𝑖=1

1(𝑛𝑖 > 0) (A1)

where 1(𝑛𝑖 > 0) is equal to 1 if 𝑛𝑖 > 0 and equal to 0 otherwise.456
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2) Median return time of the upper bound457

The median return time of the estimated upper bound is then computed as:458

𝑟 (𝑍 > 𝐵̂) =
(
Med

(
𝑛𝑖
𝑁𝑑

))−1
(A2)

where 𝑁𝑑 = 6510 is the size of the full dataset and Med is the median operation. 𝑛𝑖
𝑁𝑑

is an estimation459

of the probability that the yearly maxima is above the bound 𝐵̂𝑖 for the fit 𝑖. We then compute the460

median of this probability over the 𝑁 = 1000 resampling and inverse it to give an estimate of the461

return time of the estimated upper bound.462

3) Ratio between the GEV and the empirical probabilities of a centennial event463

We proceed similarly to estimate the return time of a centennial event. For each fit 𝑖, we first464

find the return level 𝑧𝑝=1%,𝑖 corresponding to the 99th quantile of the fitted GEV PDF. Note that465

for models M1 and M2 the estimated return level depends on the covariate GMST (or RMST, see466

below) and therefore on time. We then count the number 𝑛̃𝑖 of TXx in the full dataset (1850-2059,467

6510 data points) that are above 𝑧𝑝=1%,𝑖. The median empirical return time of the centennial return468

level is thus:469

𝑟 (𝑍 > 𝑧𝑝=1%) =
(
Med

(
𝑛̃𝑖
𝑁𝑑

))−1
(A3)

where as previously 𝑁𝑑 = 6510 is the size of the full dataset and Med is the median operation. 𝑛̃𝑖
𝑁𝑑

470

is an estimation of the probability that the yearly maxima is above the GEV centennial return level471

𝑧𝑝=1%,𝑖 for the fit 𝑖. We then compute the median of this probability over the 𝑁 = 1000 resampling472

and inverse it to give an estimate of the empirical return time of the estimated centennial return473

level. If the fit corresponds to the true underlying distribution, we should find 𝑟 (𝑍 > 𝑧𝑝=1%) = 100474

by definition of the centennial return level. However this is not the case in practice and we quantify475

this difference by dividing by the true return time. The ratio presented in Figure 1 is then computed476

as:477

Ratio =



−𝑟 (𝑍 > 𝑧𝑝=1%)/100, if 𝑟 (𝑍 > 𝑧𝑝=1%) > 100,

100/𝑟 (𝑍 > 𝑧𝑝=1%), if 𝑟 (𝑍 > 𝑧𝑝=1%) ≤ 100.
(A4)

23



If for example 𝑟 (𝑍 > 𝑧𝑝=1%) = 50, the events that are said to be centennial by the statistical478

model actually occur every 50 years in the dataset. Therefore the ratio is equal to 2: these events479

are twice more likely in the dataset than according to the GEV estimate. On the other hand, if480

𝑟 (𝑍 > 𝑧𝑝=1%) = 200, the events that are said to be centennial by the statistical model actually occur481

every 200 years in the dataset. Therefore the ratio is equal to −2: these events are twice less likely482

in the dataset that according to the GEV estimate.483

b. Computation of RMST484

To define the RMST covariates, we split the Northern Hemisphere mid-latitude regions (30N-485

80N) into three parts: North America (180W-30W), Europe (30W-50E) and Asia (50E-180E). For486

each grid points in these three regions, we first compute the area weighted 2-m air temperature487

average. The RMST is then the ensemble mean of these quantities. The results are presented in488

Fig. B1bcd.489

c. Computation details for synthetic GEV data490

1) Simulations491

For the simulation of synthetic GEV data we use the following parameters:492

M0




𝜇 = 23

𝜎 = 1.35

𝜉 = −0.15

(A5)

M1




𝜇0 = 23

𝜇1 = 1.6

𝜎 = 1.35

𝜉 = −0.15

(A6)
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M2




𝜇0 = 23

𝜇1 = 1.6

𝜎0 = 1.35

𝜎1 = 0.1

𝜉 = −0.15.

(A7)

2) Norm metrics493

The norm metrics 𝐿∞ and 𝐿2 are computed between the CDFs of the fitted distribution 𝐹̂ and494

the true distribution 𝐹 as such:495

∥𝐹̂ −𝐹∥∞ = sup
𝑡∈R

|𝐹̂ (𝑡) −𝐹 (𝑡) | (A8)

and:496

∥𝐹̂ −𝐹∥2 =

√︄∫ +∞

−∞
(𝐹̂ (𝑡) −𝐹 (𝑡))2𝑑𝑡. (A9)

Numerically these two quantities are computed using a sampling at 𝑑𝑡 = 10−2 for 𝑡 between -200497

and 200.498

d. Norm metrics for climate model outputs499

The distribution of return times presented in Figure 4 panel c and Figure B11 panel c are500

computed the same way as for the return time presented above for Figure 1. The norm metrics 𝐿∞501

and 𝐿2 are computed between the empirical CDF 𝐹𝑒 of data and the fitted CDF 𝐹̂ for each year502

(using the 31 members) and then averaged over the full period (1850-2059).503
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APPENDIX B504

Additional figures505
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Fig. B1. Evolution of covariate for the GEV fit. (a) Ensemble mean (black) and members (red) GMST.

(b) Same for RMST over North America (180W-30W, 30N-80N). (c) Same for RMST over Europe (30W-50E,

30N-80N). (d) Same for RMST over Asia (50E-180E, 30N-80N).
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Fig. B2. Same as Fig. 1. with 100 points resampled over the period 1915-2014.
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Fig. B3. Same as Fig. 1. with 150 points resampled over the period 1865-2014.
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Fig. B4. Same as Fig. 1. with 70 points resampled over the period 1956-2025.
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Fig. B5. Same as Fig. 1. with 70 points resampled over the period 1945-2014 with a regional covariate.
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Fig. B7. Same as Figure 3 with synthetic data simulated according to model M0.
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Fig. B8. Same as Figure 3 with synthetic data simulated according to model M2.
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Fig. B9. Same as Figure 3 with an error 𝐵𝑒𝑟𝑟 = 2.5 imposed for model M𝐵
1 .

33



22

23

24

25

µ̂
0

a

0.5

1.0

1.5

2.0

2.5

µ̂
1

b

1.0

1.2

1.4

1.6

σ̂

c

−0.4

−0.3

−0.2

−0.1

0.0

0.1

ξ̂

d

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

B̂
−
B

e

−2

−1

0

1

2
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Fig. B10. Same as Figure 3 with an error 𝐵𝑒𝑟𝑟 = 5 imposed for model M𝐵
1 .
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Fig. B11. Same as Fig. 4 with a regional covariate.
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Fig. B12. Same as Fig. 4 with a grid point in Western Russia (lon=47.5°E, lat=57.04°N).
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Fig. B13. Same as Fig. 4 with a grid point in Eastern Kazakhstan (lon=80°E, lat=49.44°N).
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3.3. Perspectives

3.3 Perspectives
In this work I make a proposition to avoid the shortcomings of GEV fits for esti-
mating low probability events as outlined by Zeder et al. (2023). Extreme value
theory (EVT) is a powerful and versatile theory which gives general results for any
underlying distributions. Nonetheless, it is clear at this point that the convergence
to a correct estimate of an EVT-based distribution for low probability events with
the typical sample size of climate data (around 70-80 or less yearly maxima for most
weather stations) is not ensured. I propose a way to alleviate this issue and avoid the
catastrophic error of giving a null probability to events that can actually happen,
i.e. to avoid ‘climatic surprises’.

Although the proposition made here has interesting properties when applied to
synthetic GEV data, when applied to a large ensemble of a climate model it also has
several drawbacks. In particular, although it avoids the systematic underestimation
of the probability of centennial events, it now tends to overestimate the probability
of some events. The value of the upper bound imposed on the GEV fits is a key
element of the precision of the method as shown in synthetic GEV data. It is
therefore crucial to estimate the upper bound as precisely as possible. The main
contribution of this work is to propose the idea of imposing the upper bound, not the
method by which I estimate this upper bound physically using a modified version of
the formula proposed by Zhang and Boos (2023). As stated in the manuscript, the
method proposed would be more suited in a Bayesian context: the upper bound is
itself unknown and therefore constitutes a random variable. One should therefore
have a prior distribution estimate of this value. Whether this estimation is based on
the method of computation proposed here or on another — especially outside the
mid-latitudes — is a secondary, yet important, point.

Finally, I want to emphasize that, as detailed in the conclusion of the article,
under- or overestimating the probability of very extreme events is not a symmetric
error. Infrastructures are often built with respect to a very low probability threshold
and/or a worst case scenario. Therefore, underestimating the probability of a very
extreme event is much worse (especially if the event is said to be impossible) than
overestimating it (Taleb 2010). The questions of very extreme events and the esti-
mation of worst case scenarios are therefore not only technical but also have strong
societal implications (Sutton 2019).

99



Chapter 3. Integration of physical bound constraints to alleviate shortcomings
of statistical models for extreme temperatures

Summary

Context and goals

The EVT-based fits on limited-size samples underestimate the probability
of very intense events. In particular, some of these events are said to be
impossible according to the statistical distribution but still occur in models
and in the real world.

Methods

I propose the idea of physically constraining the fit of EVT-based statistical
distributions for extreme temperatures. The upper bound of the distribution
is imposed by a physically realistic value derived from properties of the mid-
atmosphere and surface humidity. I use outputs of a large ensemble of a state-
of-the-art climate model over historical and near future periods to check the
accuracy of this new fit.

Results

Imposing the upper bound partially alleviates the issue of the underestima-
tion of very extreme events — typically centennial events — and, more im-
portantly, avoids the appearance of climatic surprises, i.e. events that are
said to be impossible but that still occur. The method proposed tends to
overestimate very extreme events if the upper bound imposed is too high.
However, under- or over-estimating very extreme events is not a symmetric
error. While the former leads to linearly increasing costs of preparation, the
latter can lead to catastrophic damages on societies that would face events
they thought to be impossible.
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Chapter 4

Rare events algorithms and their
application to geophysical
systems

4.1 Introduction
This chapter aims to present a review of both the theoretical paradigms currently
available to understand the trajectories leading to rare events in dynamical systems
in general and geophysical fluid systems in particular, and the techniques that have
been employed in geophysical fluid models to sample these trajectories. Due to the
practical orientation of this PhD thesis, I refer only briefly to the mathematical
literature or to works with applications outside climate or meteorological sciences.

It is only recently that theoretical advances and algorithmic techniques have
been developed to understand better not only the return statistics of extreme events,
but also the dynamical path leading to extremes in physical systems (e.g. Vanden-
Eijnden et al. (2010), Grafke and Vanden-Eijnden (2019), and Bouchet et al. (2019)).
I call generally the techniques aiming to simulate rare events as rare events al-
gorithms, even though this term is usually restricted to importance sampling or
splitting methods (Rubino, Tuffin, et al. 2009). Rare events algorithms have been
applied in many different systems: percolation (Adams et al. 2008), molecular dy-
namics and computational chemistry (E et al. 2002; Noé et al. 2009; Vanden-Eijnden
et al. 2010), turbulence (Grafke et al. 2013), planetary dynamics (Abbot et al. 2021)
etc. With the exception of turbulence problems, most of them have not been ap-
plied to systems which bear similarities with geophysical systems, namely: time-
and space-continuity, high dimensionality and no spectral gap.

This chapter is organized as follows. Section 4.2 presents a review of the appli-
cation of rare events algorithms to geophysical systems. Section 4.3 details mathe-
matical concepts that I keep referring to when it comes to understanding the path
leading to extreme events in dynamical systems. Section 4.4 gives a description
of the algorithms employed in the literature, with a focus on so-called splitting
methods. As splitting methods are by far the most employed, section 4.5 presents
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the current challenges associated with their application and some propositions to
overcome them.

The reader not interested in the details of the implementation of rare
events algorithms and their technical shortcomings may skip this chapter.
The algorithm employed in chapters 6 and 7 is presented in section 4.4.3c,
but its main characteristics are recalled shortly in chapter 6.

4.2 Review of the use of rare events algorithms
in geophysical systems

In the context of geophysical systems, rare events algorithms have been used for two
main purposes. The first one concerns the study of transitions from a fixed point to
another fixed point, or from a basin of an attractor to the basin of another attractor.
In other words, this first application deals with the question of multistability of
geophysical systems. The second purpose seeks to investigate the occurrences of
extreme values of an observable of interest, without changing the attractor
itself. Its purpose is to sample regions of the system’s attractor which are seldom
visited but that do not lead a priori to a bifurcation in the overall properties of the
system. The review is summarized in table 4.1.

4.2.1 Sampling rare transitions between metastable
states

Complex systems can have multiple states of equilibrium for the same values of the
forcing parameters. Similarly, non-equilibrium systems can have several attractors
corresponding to disjoint basins of attraction. The question that naturally arises
is therefore how and how often does the system go from one of these states to
another. Indeed, if the parameters of the system do not change, then each state is
stable and it is not possible to go spontaneously from one attractor to another. If
now a more realistic model with — for example — a stochastic noise which may
represent disturbance from inside or outside of the system is considered, then one
recognizes intuitively that a sufficiently strong noise could force a transition into
another basin of attraction. It is therefore natural to understand this crossing of the
barrier between basins of attraction as a rare event and to use rare events algorithms
to sample these transitions.

Weare (2009) was one of the first to develop such an approach, using path sam-
pling methods. He studied the bimodality of the Kuroshio current using a parallel
marginalization step in conjunction with a hybrid Monte Carlo scheme to improve
samples generated by standard particle filters. Laurie and Bouchet (2015) studied
rare transitions in a barotropic quasi-geostrophic model with a stochastic forcing.
They used the instanton formalism and apply a numerical optimization algorithm to
compute the most probable rare transition between two states: vortex dipoles and
zonal jets. Bouchet et al. (2019) studied multistability of jet dynamics in a barotropic
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β-plane model of atmospheric dynamics. They showed the presence of very rare tran-
sitions between an equilibrium with 2 and an equilibrium with 3 jets and the typical
phenomenology associated. In Simonnet et al. (2021) the same authors make a full
statistical mechanics study of the same barotropic β-plane quasi-geostrophic model.

Reviewing numerical computation of rare events via large deviation theory, with
a particular focus on instantons simulation, Grafke and Vanden-Eijnden (2019) show
the effectiveness of the instanton method on a stochastic version of the Charney and
DeVore (1979) model, which exhibits two fixed points corresponding to zonal and
blocked flows of the mid-latitude atmospheric circulation. They show that they are
also able to study the relative stability of the two configurations: the zonal state
being exponentially preferred in the low-noise limit. Finkel et al. (2020) used a
framework inspired by Transition Path Theory (TPT) to study a low-order model
of Sudden Stratospheric Warming (SSW) composed of two stable states. In Finkel et
al. (2021a) the same authors studied a more complex model of SSW with 75 degrees
of freedom, and applied a procedure they call Dynamic Galerkin Approximation
(DGA) (Finkel et al. 2021b) with only short simulations to compute the quantities of
interest from TPT. Baars et al. (2021) used a modified version of the Adaptive Mul-
tilevel Splitting (AMS) algorithm (see below), what they call Trajectory-Adaptive
Multilevel Sampling (TAMS) algorithm, to apply it to a high-dimensional system.
They apply their method on a 2D model of the Atlantic Meridional Overturning
Circulation (AMOC) to compute transition paths and probabilities of collapse. Cini
et al. (2024) also studied the noise-induced collapse of the AMOC driven by internal
climate variability and used the Giardina-Kurchan-Tailleur-Lecomte (GKTL) rare
events algorithm (see below) in an intermediate complexity model.

4.2.2 Sampling extreme values of an observable
The second purpose for which authors used rare events algorithms in the geophysical
context is to simulate trajectories which lead to extreme values of an observable of
interest. This purpose is different from investigating multistability for at least three
reasons. The first reason is that ‘extreme states’ are usually ‘unstable’: contrary to
navigating from one basin of attraction to another, one has to deal with the fact
that the system tends to be repelled by these states (else they would not be rare).
The second reason is that when one investigates multistability, especially in simple
models, the two fixed points or two basins of attractions that constitute the starting
and the ending points of the rare trajectories are generally known. In the contrary
for extreme values of an observable, one does not always have strong clues on the
phenomenology of the extreme states, i.e. also on their position in the phase space.
Finally, several separated regions of the phase space may a priori correspond to
extreme values of the same observable.

Wouters and Bouchet (2016) used a genealogical particle analysis algorithm to
study the Lorenz (1996) toy model of the atmosphere and showed several imple-
mentation issues on a Orstein-Uhlenbeck process for which exact probabilities can
be calculated. They used an analog of energy and computed the probability that it
reaches extreme values. Ragone et al. (2018) used the Giardina-Kurchan-Tailleur-
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Lecomte (GKTL) algorithm to study extremes of summer temperatures with the
intermediate complexity climate model PlaSim. They show that the algorithm is
able to increase massively the amount of available statistics of warm extremes in a
perpetual summer setting of the model. In Ragone and Bouchet (2021) the same
authors used this methodology with — for the first time — a state-of-the-art climate
model (CESM1.2.2) and are also able to produce hundreds of times more extremes
than a control run with the same computational cost. Moreover, the abundance of
statistics allow them to identify precisely teleconnection patterns associated with
warm summers in Europe.

Working on previous ideas from Hoffman et al. (2006a) and Hoffman et al.
(2006b), Plotkin et al. (2019) investigated the process of rapid intensification of
two tropical cyclones by applying an action minimization algorithm to nudge an
atmospheric forecasting model into forming more intense tropical cyclones. The
algorithm is able to determine the optimal (small) perturbations to make the trop-
ical cyclones more intense. Remarkably, the optimal perturbations obtained are far
from trivial and give interesting insights in the phenomenology of tropical cyclones
rapid intensification. Webber et al. (2019) also investigated the use of a rare events
algorithm to study tropical cyclones. More generally, they emphasized the need of
adaptation of rare events algorithms to mesoscale weather and contrary to Plotkin
et al. (2019) investigate not only the likeliest path but statistics of extreme mesoscale
weather. They used what they call the Quantile Diffusion Monte Carlo (QDMC)
algorithm to sample extreme tail behavior of two historical tropical cyclones.

Yiou and Jézéquel (2020) used an importance sampling algorithm associated with
a Stochastic Weather Generator (SWG) based on circulation analogues to simulate
an ensemble of heat waves with a large return period. Using this Markov chain
model and biasing the probability matrix in favours of hot days, they are able to
simulate unseen but possible trajectories of the atmospheric circulation leading to
heatwaves in a computationally efficient way. Yiou et al. (2023) used this method to
sample extreme 15-days heatwaves in a SWG for a period of time corresponding to
the 2024 Paris Olympics. Carney et al. (2020) compared two rare events algorithms
with EVT and brute force Monte Carlo simulation estimations of small probabilities.
Using three dynamical models (the Ornstein-Uhlenbeck process, the Lorenz (1996)
system and a simplified GCM (Plasim)) as test beds, they study how well the rare
event probability estimation of each technique compares to a gold standard afforded
by a very long run control. They find that classical extreme value theory methods
outperform the other methods for estimating small probabilities. Wouters et al.
(2023) tested the application of a rare events algorithm in an intermediate complexity
model to sample seasonal precipitation extremes. Sauer et al. (2024) used the GKTL
rare events algorithm in an intermediate complexity model (PlaSim-LSG) to sample
extreme negative summer pan-Arctic sear ice area anomalies.

Gessner et al. (2021) developed a storyline approach based on the resampling of a
5000-yr pre-industrial climate model simulation (CESM1) called ensemble boosting
generating large samples of reinitialized extreme heatwaves, but without providing
the associated probabilities. In Gessner et al. (2022), the same authors extended
the method to generate coherent climate model-based drought storylines of different
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intensities and for different locations. Fischer et al. (2023) provided a review of the
method with examples for very intense heatwave events.

Paper Phenomena Purpose Method Algorithm
Sauer et al. (2024) Sea ice Extremes Splitting GKTL
Cini et al. (2024) AMOC Multistability Splitting GKTL

Wouters et al. (2023) Precipitations Extremes Splitting GKTL
Fischer et al. (2023) Heatwaves Extremes Splitting Ensemble boosting
Yiou et al. (2023) Heatwaves Extremes Biased dynamic Biasing

Gessner et al. (2022) Droughts Extremes Splitting Ensemble boosting
Simonnet et al. (2021) Jets dynamics Multistability Splitting AMS
Gessner et al. (2021) Heatwaves Extremes Splitting Ensemble boosting

Ragone and Bouchet (2021) Heatwaves Extremes Splitting GKTL
Baars et al. (2021) AMOC Multistability Splitting AMS

Finkel et al. (2021a) SSW Multistability Direct computation DGA
Carney et al. (2020) Heatwaves Extremes Splitting GKTL, DMC

Yiou and Jézéquel (2020) Heatwaves Extremes Biased dynamic Biasing
Finkel et al. (2020) SSW Multistability Direct computation Discret. of PDEs

Grafke and Vanden-Eijnden (2019) Synoptic circulation Multistability Direct computation gMAM
Bouchet et al. (2019) Jets dynamics Multistability Splitting AMS
Webber et al. (2019) Tropical cyclones Extremes Splitting QDMC
Plotkin et al. (2019) Tropical cyclones Extremes Biased dynamic Action minimization
Ragone et al. (2018) Heat waves Extremes Splitting GKTL

Wouters and Bouchet (2016) Lorenz96 Extremes Splitting DMC
Laurie and Bouchet (2015) Synoptic circulation Multistability Direct computation MAM

Weare (2009) Kuroshio Multistability Biased dynamic Particle filters

Table 4.1: Summary of the applications of rare events algorithms in geophysical
systems.

4.3 Mathematical elements
This section introduces theoretical tools for understanding the simulation of rare
events in geophysical systems. I first describe the formalism of Stochastic Differential
Equations (SDEs) and discuss why this formalism is suited to study rare events.
Then I present two theories aiming to understand the dynamical path leading to rare
events: Transition Path theory (TPT) and instanton theory. These two theories are
not mutually exclusive and may be seen as two ways of describing the same object.
Finally, I give an example of the key quantities of interest of these two theories with
a 1D Brownian motion, also known as an Orstein-Uhlenbeck process.

4.3.1 Stochastic differential equations formalism
Classicaly, the dynamics of the atmosphere and the oceans is described using Partial
Differential Equations (PDEs). Models are therefore usually fully deterministic, even
though there is a growing interest in representing sub-grid processes using stochastic
terms (Palmer 2019). The results that I present in the following are mathematically
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valid for systems with an explicit stochastic term in the limit of small noise. It is
therefore reasonable to consider them in the context of meteorological, oceanic and
climate models for which it is natural to assume that simulation results should be
robust to the addition of such a small noise.

Using a suitable basis of functions and truncating at a certain threshold, PDEs
can be transformed into Ordinary Differential Equations (ODEs) for which there is
no explicit spatial continuity. When simulating rare events numerically, this differ-
ence does not exist anymore as any PDEs has to be truncated to be simulated on
a computer. By adding a stochastic term to these ODEs, one obtains Stochastic
Differential Equations (SDEs). I choose to use this formalism because it has a broad
generality and it is one of the most employed in the literature. The results are also
stronger on the mathematical side in this case (Grafke and Vanden-Eijnden 2019).

Let Xt ∈ Rd represents the state of the system in the phase space at time t, with
d the number of dimensions needed to describe the system. Consider a SDE in Xt

composed of a deterministic part b : Xt 7→ b(Xt) ∈ Rd and an additive stochastic
term proportional to σ : Xt 7→ σ(Xt) ∈ Rd×d:

dXt = b(Xt)dt+ σ(Xt)dWt. (4.1)

In the language of SDEs, b is called the drift and σ the diffusion matrix. Wt ∈ Rd

is a Wiener process, also called a Brownian motion, so that dWt is what is commonly
referred to as a white noise in physics. If the diffusion matrix σ(Xt) is not diagonal,
the added noise may be the same for several variables of the system. Entire lines
of the diffusion matrix may be null to represent the effect of stochasticity on only
some components of the system.

This equation is supposed to be able to represent the evolution of the state of
the system. The drift term b(Xt) represents the deterministic part of the dynam-
ics, typically the Navier-Stokes equations in a GCM. The diffusion term σ(Xt)dWt

represents the effect of unresolved processes on the dynamics of the system — for
example sub-grid processes in the context of geophysical flows simulation. The form
4.1 assumes that the stochasticity is additive with respect to the deterministic part.

I am interested in statistics of observables computed on this system. Observables
are smooth functions of phase-space variables f : Rd → R which are of physical
interest. Mean temperature over a given area may be seen, for example, as an
observable of a GCM output. Associated with equation 4.1 is an operator L which
describes the evolution of observable functions forward in time following a trajectory.
By definition:

Lf(x) = d

dt
E[f(Xt)|X0 = x]|t=0. (4.2)

Ito’s lemma — which is the equivalent of the chain rule for SDEs — allows to
represent L as a partial differential operator:

Lf(x) =
∑
i

bi(x)∂f(x)
∂xi

+
∑
i,j

Dij
∂2f(x)
∂xi∂xj

(4.3)
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where Dij = 1
2(σσT )ij . The generator L has the remarkable property of provid-

ing statistics along simulated paths as the solutions to PDEs, i.e. without stochastic
terms.

The stochastic process described by equation 4.1 admits a time-dependent prob-
ability density ρ(x, t) which can be derived from the generator. The density spreads
out from its initial point over time according to the Fokker-Planck equation, which
can be written in terms of the adjoint L∗ of the generator:

∂ρ(x, t)
∂t

= L∗ρ(x, t) (4.4)

where L∗ is defined by: < Lf, g >=< f,L∗g > for two observables f and g and
< ·, · > is the euclidean inner product in L2(Rd). L∗ can then be shown to be equal
to:

L∗f(x) =
∑
i

∂

∂xi

−bi(x)f(x, t) +
∑
j

∂

∂xj
(f(x, t)Dij(x))


= ∇ · [−b(x)f(x, t) + ∇ · (f(x, t)D(x))]

(4.5)

Assuming that the process is ergodic (cf. the discussion in chapter 1 section a)),
the density forgets the initial condition and stabilizes into a long-term stationary
probability density ρS(x) solution of L∗ρS = 0. This probability can be approxi-
mated by either simulating the SDE for a long time and making statistics, or directly
solving the stationary PDE L∗ρS = 0 with the normalization:

∫
ρS(x)dx = 1.

4.3.2 Transition path theory
Initially developed for molecular simulation (Vanden-Eijnden et al. 2010), Transition
Path Theory (TPT) has since been used in various domains to understand the
statistics of trajectories in the phase space leading to rare events of interest. I present
the key concepts of the theory as in Vanden-Eijnden (2006). In this PhD I do not
use techniques from TPT, but as it is one of the few available theories to describe
mathematically the dynamical path leading to extreme values of an observable in a
dynamical system, I think it is worth detailing here.

The stationary density ρS defined above is an equilibrium quantity characterizing
the long-term occupation statistics in the phase space. But it is not enough to
describe some events of interest which are characterized by a dynamics. These
events are called transition paths: they are trajectories beginning inside a set A
and ending in another set B of the phase space. Typically, transition paths would
correspond to the trajectories leading to extremes of an observable of interest. Two
quantities describe those trajectories: forward and backward committor functions.

The forward committor q+ describes the progress of a stochastic trajectory trav-
eling from set A to set B:

q+(x) = P[Xt reaches set B before set A|X0 = x] (4.6)
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so that q+(x ∈ A) = 0 and q+(x ∈ B) = 1. The forward committor can be
shown to obey the following boundary value problem:


Lq+(x) = 0 if x ∈ (A ∪B)c,
q+(x) = 0 if x ∈ A,

q+(x) = 1 if x ∈ B.

(4.7)

While q+ describes the future of a transition, the backward committor q− de-
scribes its past. It is defined as:

q−(x) = P[Xt comes from set A rather than set B|X0 = x] (4.8)

so that q−(x ∈ A) = 1 and q−(x ∈ B) = 0. Then q− solves the following
boundary value problem:


L̃q−(x) = 0 if x ∈ (A ∪B)c,
q−(x) = 1 if x ∈ A,

q−(x) = 0 if x ∈ B

(4.9)

where L̃ is the time-reversed generator, which evolves observables backward in
time. It can be shown to be such that for all smooth-function f , L̃f = 1

ρS
L∗(ρSf)

with ρS the equilibrium density of Xt.
A trajectory Xt is said to undergo a transition at time t if it is on the way from

set A to set B. The trajectory is then said to be a reactive trajectory1. The proba-
bility density of a reactive trajectory ρR(x), that is the probability of observing the
system Xt at the location x during a transition, is proportional (up to a normaliza-
tion constant) to the product ρS(x)q−(x)q+(x). This density is large in regions of
phase space that are highly sampled by reactive trajectories. This is how TPT gives
information about precursors: indicating regions of the phase space that are usually
visited by the system over the course of a transition path. The strength of TPT
is to transform a differential equation with a stochastic term in two more classical
boundary value problems for deterministic PDEs that can in principle be solved
by discretization. Once the boundary values problems for the forward and back-
ward committor functions are solved, one has enough information to characterize
transitions from set A to set B.

The direction and intensity of this transition is specified by the reactive current.
The probability current JJJ is a vector field that satisfies a continuity equation with
the time-dependent density ρ:

∂ρ

∂t
= L∗ρ = −∇ · JJJ. (4.10)

At equilibrium, i.e. when ρ = ρS , JJJ is therefore non-divergent: ∇ · JJJ = 0. The
reactive current on the other hand JJJAB between set A and set B is also defined as
1 This terminology comes from computational chemistry.
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a flux of probability, but restricted to reactive paths. It therefore has a divergence:
A is a source and B a sink. JJJAB is defined implicitly by saying that given any
surface S, the surface integral of JJJAB over S gives the probability flux of reactive
trajectories across S. More precisely if S is any surface enclosing set A but not set
B, with outward normal vector nnn, then the flux

∮
S JJJAB ·nnndS = RAB is the number

of forward transitions per unit time, called the transition rate between A and B.
A streamline of JJJAB is therefore similar to a typical — or most probable —

transition path (see next section). It will almost surely not be realised by any real
transition path, but it gives the common geometric features in phase space of all
transition paths. It can be shown (Metzner et al. 2006) that JJJ and JJJAB can be
expressed in terms of the more fundamental quantities defined above as:

{
JJJ = ρSb− ∇ · (ρSD),
JJJAB = q+q−JJJ + ρSD(q−∇q+ − q+∇q−).

(4.11)

The forward transition rate, captures the frequency of transitions between A and
B rather than the overall time spent in each. Since a B → A transition must occur
between every two A → B transitions, RAB = RBA = R, called more generally
the transition rate. In the climate community working on extremes, the quantity of
interest is often the return time associated with a particular event. Here, the return
time is expressed as the inverse of the transition rate.

In general in non-linear systems, the forward and backward transitions to and
from an extreme events are not the reverse of one another. One question is
for example the speed of the transition. The equilibrium statistic E[q+(Xt)] =∫
q+(x)ρS(x)dx partially answers this as when it is inferior (superior) to 1/2 it in-

dicates more time spent on the way to A (B).
Another typical quantity of interest, coming from chemistry (Vanden-Eijnden

2014), is the rate constant kAB, which is larger if A → B transitions happen faster
than B → A transitions. One therefore normalizes the transition rate by the overall
time spent having come from A, which is E[q−(Xt)]:

kAB = R

E[q−(Xt)]
. (4.12)

1/kAB then estimates the total transition time between entering A (having last
visited B) and next reentering B.

Although initially designed for studying the statistical behavior of transitions in
the ergodic limit of a stationary system, TPT was recently extended to periodically
forced dynamics and time-dependent finite-time systems by Helfmann et al. (2020).

4.3.3 Instanton theory
TPT sees the path leading to extreme events in a probabilistic sense: it gives in-
formation on the probability of the system being in certain regions of the phase
space when transitioning from set A to set B. In high-dimensional systems, such as
the climate system, it is probably hopeless to be able to compute such probability
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distributions on the full phase space. Instanton theory takes a more deterministic
point of view and derives explicit equations for the most likely path leading to rare
regions of the phase space.

Here I present the instantons as seen from the Freidlin-Wentzell theory point of
view (Freidlin and Wentzell 1984), i.e. using a large deviations theory perspective.
Their properties and equations can also be derived using the Martin-Siggia-Rose-
Janssen-de Dominicis (MSRJD) formalism, developed in the early 1970s to calculate
statistical properties of classical systems using a path integral formulation (Grafke
et al. 2015).

In the SDE 4.1 presented above, one can assume that the noise is small and
rewrite the diffusion matrix as:

σ(Xt) =
√
ϵσ̃(Xt) (4.13)

as in the limit ϵ → 0 is considered. One can also assume that the noise covariance
D̃ = σ̃σ̃T = 2D is invertible.

The Freidlin-Wentzell theory has its roots in the application of Large Deviation
Theory (LDT) to dynamical systems under random perturbations. In general, a
family of random processes Xϵ

t defined on t ∈ [0, T ] is said to fulfill a large deviation
principle (LDP), if:

P[Xϵ
t ∈ Ω] ≍ exp

(
−1
ϵ
IT (Xϵ

t )
)

(4.14)

where ≍ is to be understood as the ratio of the logarithms of both sides tending
to unity as ϵ → 0. The left-hand side of this equation describes the probability of
ending up in a given set of interest Ω which would typically correspond to extreme
values of an observable F . The right-hand side displays the functional IT which is
called the rate function. In the following, the ϵ is dropped for simplicity but one
should keep in mind that the results presented are valid in the limit ϵ → 0.

The Freidlin-Wentzell theory gives the expression of this rate function:

IT (X) =
{∫ T

0 L(X, Ẋ)dt if the integral exists,
+∞ otherwise,

(4.15)

where

L(X, Ẋ) = 1
2 ||Ẋ − b(X)||2

D̃
(4.16)

is the equivalent of a Lagrangian for the system. The norm ||f ||2χ =< f, D̃−1f >

is induced by the noise covariance D̃, with < ·, · > the inner product in the space
considered.

In Eq. (4.14), when ϵ → 0, the probability is dominated by the process X̂ which
minimizes the rate function. The minimizer X̂ represents the trajectory with the
maximum likelihood of realization with the given boundary conditions. Under the
stated conditions, the probability distribution accumulates near X̂: this most likely
of the least likely trajectories is called the instanton.
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It is possible to associate a Hamiltonian H(X,P ) to the Lagrangian 4.16 via a
Legendre transform:

H(X,P ) = sup
Ẋ

[
< P, Ẋ > −L(X, Ẋ)

]
(4.17)

which here gives:

H(X,P ) =< b(X), P > +1
2 < P, D̃(X)P > (4.18)

where P = ∂L
∂Ẋ

is the conjugate momentum to X. Now, the minimizer X̂ can
also be expressed as the solution of Hamilton’s equations:{

Ẋ = ∂XH = b(X) + D̃P,

Ṗ = −∂XH = −(∇Xb(X))∗P+ < P,∇XD̃(X)P >
(4.19)

where (∇Xb(X))∗ is the adjoint of ∇Xb(X). This formalism is still valid when
the system considered is modeled with PDEs and in this case, D̃P denotes the
convolution product between D̃ and P in the phase space. These equations are
called instanton equations.

The first equation is simply the original SDE where the stochastic term has been
replaced by the deterministic term D̃P which represents the ‘optimal’ forcing of the
system leading to the extreme event of interest. It can indeed be shown (Grafke and
Vanden-Eijnden 2019) that one also obtains the instanton equations when trying to
reach the set Ω while minimizing the integral of the square added noise. In other
words, the instanton equations can also be obtained as the result of an optimal
control problem. The second equation is the equation for the forcing term P and
depends mostly on the adjoint (∇Xb(X))∗ of the model. The very existence of those
two Hamiltonian equations is an important result in so far as it is valid for any SDE
of the form 4.1, even if the deterministic part does not derive from a Hamiltonian
system as in most discretized form of geophysical equations.

The minimizer X̂ also needs to fulfill given boundary conditions at t = 0 and
t = T on X or on a functional F . Solving numerically this boundary value problem
is especially difficult as there is no initial condition for P . One would make repeated
guess for the initial value of P , hoping that the forward integration in time would give
the good values for the boundary conditions on X at t = T . To make this problem
easier, one can implement the constraint directly in the optimization problem using
a Lagrange multiplier λ ∈ R, making the problem unconstrained:

X̂ = arg min
X

{IT (X) + λ(F [X(t = T )] − a)} , (4.20)

where F [X(t = T )] = a is the final constraint on the observable F . This results
in the same instanton equations but with different boundary conditions: X(0) =
X0 and P (T ) = λ∇XF [X(t = T )]. For the instanton leading to extremes of an
observable of the form F [X] =

∫ T
0 f(X)dt, then the equation for P becomes

Ṗ = −(∇Xb(X))∗P+ < P,∇XD̃(X)P > +λ∇Xf(X) (4.21)
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and the boundary conditions are X(0) = X0 and P (T ) = 0. The correspondence
between λ and a is recovered by the condition X(t = T ) = a or

∫ T
0 f(X)dt = a.

P (a) = P[F [X(t = T )] = a] or P[
∫ T

0 f(X)dt) = a] is estimated using equation 4.14
with the minimizer X̂ to compute the value of the rate function.

This framework holds rigorously in the limit ϵ → 0, but it is possible to loosen
conditions on the stochastic process and consider the case ϵ fixed and λ → ∞ (Grafke
and Vanden-Eijnden 2019). The reason is that for large λ only extreme events of the
process are considered and a large deviation principle might hold for the observable
even for finite noise.

The instanton formalism gives powerful results about the path in the phase
space leading to extreme events in dynamical systems. If the hypotheses of the
Freidlin-Wentzell theory apply, then the path leading to any extreme is unique, or
more precisely dominated exponentially in probability by one unique path called the
instanton2. However, one may note that this path depends on two parameters: the
departure point X0 and the time of integration T . The trajectory usually called
the instanton is often not dependent on time T as one wishes to take the path
minimizing the action for any T , including T being infinite. Although the instanton
is the unique dominating path leading to an extreme event, it depends on its starting
point so that the different paths may change for different starting points sampling
the underlying attractor of the dynamical system. In an attractor with a strong
mixing property, it may nevertheless be possible to loosen this condition.

4.3.4 Instantons in deterministic systems
Most climate models are not explicitly stochastic and one may wonder how the
previous framework may apply in this case. In this section I propose an adaptation
to the fully deterministic case based on the derivation by Lucarini et al. (2023)3.
The idea here is that the explicit stochasticity in equation 4.1 is replaced by an
‘implicit’ stochasticity arising from the position of the starting point on the attractor
of the system (on which an SRB probability distribution can be assumed to exist,
cf. chapter 1 section a)).

Let us consider a chaotic dynamical system evolving continuously in time. Let
Xt ∈ Rd be the state vector at time t. It is assumed that X evolves according to
the following ordinary differential equation:

dX

dt
= b(X) (4.22)

where, as previously, b : X 7→ b(X) ∈ Rd defines the dynamics of the system. It
is assumed that the transients have died out and all trajectories considered belong
to the attractor of the system and that there is a unique climatological probability
distribution µ on this attractor. I am again interested in the statistics of observables

2 Note that the uniqueness is guaranteed by the uniqueness of the minimizer of the rate
function. If there are several minimizers, then several paths are possible. It may for example
be the case if there are symmetries in the system and/or the observable extremized. 3 I
thank Valerio Lucarini for our discussions on this subject.
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f computed on the attractor. For q ∈ R, one can define the set Ωq as the set of
points X on the attractor such that f(X) ∈ [q, q + dq]. It is explicitly assumed
that f admits a large deviations principle, i.e. the set Ωq of interest is exponentially
rare with respect to the probability distribution µ with increasing q. Then, one can
write:

P[f(Xt) = q] = µ(Ωq) ≍ exp
(

− min
X∈Ωq

I(X))
)

(4.23)

where ≍ means that the ratio of the logarithms of both sides tends to unity when
q → +∞. Here q plays the role of the large deviations parameter 1/ϵ of the previous
section, even though it does not appear explicitly as such in Eq. (4.23). The
functional I is the rate function and is given by the Legendre transform (Dematteis
et al. 2019):

I(X) = max
P

(⟨P,X⟩ − S(P )) (4.24)

of S(P ) = logEµ[e⟨P,X⟩], the cumulant generating function of X under the probabil-
ity distribution µ with ⟨· , ·⟩ the inner product in Rd. When q → +∞ in Eq. (4.23),
the probability is exponentially dominated by the point X̂ which minimizes the rate
function: X̂ = argmin

X∈Ωq

I(X).

Whether this mathematical framework fully applies to climate models can nat-
urally be questioned. Nonetheless, it provides good reasons to expect that, when
investigating more and more intense extremes, the dynamical path leading to these
extremes tend to be unique. I explore this idea with a long control run of a climate
model in chapter 5.

4.3.5 Example with the Orstein-Uhlenbeck process
In this section I illustrate the concepts defined above with a simple model. I consider
the following one dimensional SDE:

dXt = −αXtdt+ σdWt, (4.25)

with α and σ two positive real numbers. This SDE is usually called an Orstein-
Uhlenbeck (OU) process, a Brownian motion or even a red noise process. It was
for example used to model the variability of the ocean in the seminal paper of
Hasselmann (1976). The deterministic drift b(X) = −αX models an exponential
decay towards 0 while the diffusion term σdWt provides random variability and
drives the system out of equilibrium.

For the OU process (4.25), the Fokker-Planck equation is given by:

∂ρ

∂t
= α

∂(xρ)
∂x

+ 1
2σ

2 ∂
2ρ

∂x2 (4.26)

which can be solved explicitly in general. With an initial condition constituted
for example by a Dirac distribution centered at x0, the solution is given by:
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ρ(x, t) = 1√
π σ

2
α e

−2αt(e2αt − 1)
exp

(
− (x− x0e

−αt)2

σ2
α e

−2αt(e2αt − 1)

)
. (4.27)

This PDF converges exponentially fast towards the stationary PDF given by:

ρS(x) =
√

α

σ2π
e− α

σ2 x
2
. (4.28)

Figure 4.1a displays the evolution of one example trajectory of the OU process
with α = 1 and σ = 1. The integration of the SDE Eq. (4.25) was made using the
order (3.0,1.5) strong stochastic Runge-Kutta methods for SDEs proposed by Rößler
(2010) with a time step dt = 0.001 and a total integration time T = 1. Figure 4.1b
shows the corresponding stationary PDF.
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Figure 4.1: One example trajectory and PDF of the Orstein-
Uhlenbeck process. (a) An example trajectory of the Orstein-Uhlenbeck
process (α = 1 and σ = 1) and (b) associated stationary PDF.

Transition Path Theory. One can define the set A as A =] − ∞, 0] and the set
B as B = [a,+∞[ for a > 0. Schematically, the process starts at 0 and I am looking
for the typical transition path for reaching a certain threshold a. Then using the
definition above, the boundary value problem for the forward committor function
q+ gives:


Lq+(x) = −αx∂q

+(x)
∂x + 1

2σ
2 ∂2q+

∂x2 = 0 if 0 < x < a,

q+(x) = 0 if x ≤ 0,
q+(x) = 1 if x ≥ a.

(4.29)
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Similarly, the boundary value problem for the backward committor function q−

is:


Lq−(x) = 1

ρS(x)

[
α ∂
∂x(xρS(x)q−(x)) + 1

2σ
2 ∂
∂x2 (ρS(x)q−(x))

]
= 0 if 0 < x < a,

q−(x) = 1 if x ≤ 0,
q−(x) = 0 if x ≥ a.

(4.30)

Solving those two problems one finds q+(x) and q−(x) for x ∈ [0, 1]:


q+(x) =

∫ x

0 e
α

σ2 y2
dy∫ a

0 e
α

σ2 y2
dy
,

q−(x) = 1 −
∫ x

0 e
α

σ2 y2
dy∫ a

0 e
α

σ2 y2
dy

= 1 − q+(x).
(4.31)

The quantities of interest of TPT for x ∈ [0, 1] are:


ρR(x) = q−(x)q+(x)ρS(x)∫

q−(y)q+(y)ρS(y)dy

J(x) = 0
JAB(x) = 1

2

√
ασ2
π

1∫ a

0 e
α

σ2 y2
dy

(4.32)

In the particular case of the OU process studied here, I have shown that q+ =
1−q−. This is a direct consequence of the fact that it is a gradient system: −αXt =
−∇V (Xt) with V (Xt) = αX2

t . For gradient systems, the path leading from set A
to set B is the minimum energy path and is the same as the path leading from B

to A, therefore q+ = 1 − q−. This is however not true in general and especially for
geophysical dynamical systems.

The fact that J(x) = 0 is natural when considering a 1D process in so far as a
non-divergent J in 1D implies J being constant which leads to J = 0 for a flux with
no source and no sink. One can also remark that JAB does not depend on x — and
therefore also has no divergence in 1D — but is not null as it has a source (set A)
and a sink (set B).

Figure 4.2 displays the forward q+ and backward q− committor functions, and
the PDF of a reactive trajectory ρR for the OU process with α = 1 and σ = 1 and
for the set A and B defined above with a = 2.5. One can remark on the figures that
the threshold q+(x) = 0.5 is not reached until x ∼ 2.4, illustrating the difficulty for
the system to reach the 2.5 threshold as shown by the low probability associated
with this value in Figure 4.1b.

With these numerical values, one finds JAB = RAB = R = 2.44 × 10−3 and
kAB = R

E[q−(Xt)] = 2.45 × 10−3. The return time of the event is then 1
R = 409 and

the total transition time between entering A and reentering B is 1
kAB

= 408.
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Figure 4.2: Key functions of interest of Transition Path Theory for the
Orstein-Uhlenbeck process. Forward (plain black) and backward (dashed
black) committor functions and PDF of a reactive trajectory for the Orstein-
Uhlenbeck process (α = 1 and σ = 1). The sets A and B for computing these
functions are defined as A =] − ∞, 0] and B = [2.5, +∞[.

Instanton analysis. For the OU process, the instanton equations are:{
Ẋ = −αX + σ2P,

Ṗ = αP.
(4.33)

I consider the instanton solution for the boundary conditions X(0) = 0 and
X(T ) = a for a given a. Then, the equation for P gives: P (t) = P (0)eαt, which in
the equation for X with the two boundary conditions gives:

X(t) = a
sinh(αt)
sinh(αT ) . (4.34)

This formula gives the explicit expression of the most likely trajectory leading
to X(t = T ) = a when starting from X(0) = 0. One way of checking whether it
is correct is the so-called instanton filtering procedure (Grafke et al. 2015). In a
long simulation of a SDE, it consists in averaging trajectories starting at X(0) = 0
for which X(t) ∼ a. Figure 4.3a presents such a filtering procedure for the OU
process with α = 1 and σ = 1. I simulated 1000 trajectories which have X(T ) ∈
[a − 0.1, a + 0.1] with a = 2.5. The black curves is the mean of these trajectories
and the red curve is the theoretical result for the instanton. The two curves overlap
almost perfectly.

One should note that the instanton trajectory depends critically on the observ-
able chosen. If for example one considers the observable F [Xt] =

∫ T
0 Xdt then the
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instanton equations are: {
Ẋ = −αX + σ2P,

Ṗ = αP + λ.
(4.35)

In this case, the solution of the two equations with the condition
∫ T

0 Xdt = a is

X(t) = αa
3
2 + 1

2e
−2αT − 2e−αT − αT

[
sinh(αt)e−αT + e−αt − 1

]
. (4.36)

Figure 4.3b presents the same filtering procedure as above but this time choosing
1000 trajectories for which

∫ T
0 X(T ) ∈ [a − 0.05, a + 0.05] with a = 1.5. Again,

the theoretical prediction is almost identical to the empirical mean found with the
filtering procedure.
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Figure 4.3: Empirical and theoretical trajectories leading to extremes
for the Orstein-Uhlenbeck process. (a) Empirical PDF (colours) of 1000
trajectories of the Orstein-Uhlenbeck process (α = 1 and σ = 1) for which
X(t = T ) ∈ [a − 0.1, a + 0.1] with a = 2.5. The empirical mean of these
trajectories (black) and the associated instanton for the observable F [Xt] =
X(t = T ) = a (red) are plotted for comparison. (b) Same but for trajectories
with

∫ T
0 X(t)dt ∈ [a − 0.05, a + 0.05] with a = 1.5 (colours), their empirical

mean (black) and the instanton for the observable F [Xt] =
∫ T

0 X(t)dt = a.

4.4 Rare events algorithms
I propose here to classify rare events algorithms into three main categories: direct
computation methods, biased dynamic methods and splitting methods.
Those are gross classifications as there is no official denomination and in practice
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some algorithms overlap two categories. Direct computation methods aim at solving
directly equations associated to key quantities of interest for sampling the dynamics
leading to extremes, either deterministically (instantons) or probabilistically (TPT).
Biased dynamic methods refer to methods that directly modify the dynamics of the
system to make a rare event more likely to appear. Splitting methods run several
members of a model in parallel and periodically kill members that move away from
the target region of the phase space associated with the rare event studied, and clone
members that come closer to this region.

Here I present the main algorithms used in the geophysical dynamical systems
literature (cf. table 4.1). A large number of rare events algorithms exist in the
literature (e.g. string method and nudged elastic band method for transition path
sampling in molecular systems, Vanden-Eijnden et al. (2010)) but they are often
designed for systems with a low number of degrees of freedom, discrete in time
and/or deriving from a gradient, which is generally not the case for geophysical
systems and therefore of lesser interest to this thesis.

4.4.1 Direct computation methods
a) TPT-based methods

As shown above, in TPT the quantities of interest (ρS , q+, q− and JJJAB) are solutions
to PDEs involving the generator L. Those equations can be solved explicitly by
spatial discretization. This is the approach taken by Finkel et al. (2020) using a
finite volume scheme to directly discretize the adjoint L∗ as a matrix on a regular
grid with a model with 3 dimensions.

However when the phase space has more dimensions this procedure leads to
difficulties related to the burden of dimensionality: the volume expands quickly with
the dimension and the discretization in the phase space is not feasible anymore. In
Finkel et al. (2021a), the authors expand TPT and generalize committors functions
to forecast not only where the trajectory ends up, but what happens along the way
using what they call forecast/aftcast functions. These functions also obey PDEs
which are still local in state space. Based on previous works especially in molecular
dynamics (Thiede et al. 2019; Strahan et al. 2021; Finkel et al. 2021b), the authors
note that those PDEs can still not be solved easily by discretization, but that the
essential property of spatial locality allows for data-driven approximation with a
large ensemble of short trajectories. They use a Galerkin approximation with a
suitably defined set of basis functions and therefore reduce the dimension of the
problem. The PDEs to be solved then becomes a system of linear equations that
can be solved more easily.

As noted by Finkel et al. (2021a), the main important limitation of the method
is the data generation step. One indeed needs to use a long stationary trajectory to
first sample the attractor. This is intended both to seed initial data points for short
trajectories and provide a ground truth for validating the accuracy of the method.
This long data set may be difficult to obtain from a real model. The authors note
that using splitting methods to sample more efficiently the attractor could help to
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solve the first point. Even though this method gives precise and direct estimates of
the quantities of interest, which allow for a thorough investigation of the properties of
reactive trajectories, there are limitations associated with the sampling of the phase
space and the Galerkin approximation to make it feasible for a high-dimensional
system.

b) Instanton methods

I follow the presentation of Grafke and Vanden-Eijnden (2019) for the two main
methods used to find instantons: numerical action minimization and direct integra-
tion of instanton equations.

The main algorithm used in fluid mechanics to find numerically instantons is
the geometric Minimum Action Method (gMAM) (Heymann and Vanden-Eijnden
2008). For an arbitrary action functional, general methods of minimization have
already been proposed in the past in the context of gradient systems, such as in
chemistry with the so-called string method (E et al. 2004). The gMAM method
can be viewed as a generalization of the string method for non-gradient fields. Its
starting point is a modified action functional similar to the Freidlin-Wentzell action
functional 4.15 for which the minimizers are identical to the infinite time minimizers
of the original action. An important class of problems that can be solved efficiently
by the gMAM are noise-driven transitions between stable fixed points in the context
of metastability, as there is perfect knowledge of starting and ending points. This
method can however not be applied for extremes if one has no idea of their position
in the phase space.

The alternative to minimizing the action functional is to solve directly the cor-
responding instanton equations 4.19. This is especially relevant when looking for
instantons leading to extremes of an observable. Problems of this type are indeed
difficult to frame in the context of minimization of the action functional, as the final
condition is not fixed but only subject to a constraint. One could rely on shooting
methods (Keller 2018) but it is usually hopeless in high-dimensional systems. One
can rather consider the dual problem. The only input being a restriction on a single
degree of freedom of the final condition, the instanton formalism provides the most
probable final state which fulfills the constrain, the most probable evolution in time
from a given initial condition into this state, and the force that was necessary to
achieve this evolution (via the value of the action).

The seminal paper of Chernykh and Stepanov (2001) proposed an algorithm to
solve iteratively the instanton equations with a final constraint. The implementa-
tion proceeds as follows. One has to first begin with a guess either for P (x, t) or
for X(x, t). Suppose an initial guess is made for X(x, t) = X0(x, t) (for example
X0(x, t) = 0). One then chooses a value for λ and iterates over k until Xk(x, t) has
converged to a fixed value:

1. Solve equation for P backward in time using Xk as input and P (T ) =
λ∇XF [Xk(t = T )] as the initial condition. The solution of this equation
is P k.
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2. Solve equation for X forward in time using P k as input and X(0) = X0 as
the initial condition. The solution of this equation is Xk+1.

Having found the fixed point of the iterative algorithm, one can recover the optimal
forcing by evaluating D̃P . Using this algorithm avoids having to rely on shooting
methods but has a drawback: instead of choosing directly the value a of the ob-
servable, its dual λ is prescribed and the corresponding value of a is obtained a
posteriori. In practice, this is usually not a problem, typically one is interested in
the complete distribution P (a) and therefore producing instantons for a whole range
of λ similarly covers a whole range of a. This procedure is quite straightforward to
apply but there are two main computational challenges: (i) numerical instability and
(ii) convergence issues related to the fact that one needs sometimes to take T → ∞
in order to compute the minimizer (Grafke et al. 2014).

Finally one should note that they are links between the instanton methods and
other rare events algorithms once the instanton is known (which is however not the
case for most complex systems). When looking at biased dynamic methods, the
instanton can be considered as the optimal tilt in the small-noise limit and used as
such to ‘push’ the system in the direction of interest. For splitting methods, the
instanton can be used in the reweighting process (Ebener et al. 2019) to orient the
parallel trajectories into following its path in the phase space.

With the exception of Laurie and Bouchet (2015) and Grafke and Vanden-
Eijnden (2019) who computed instanton for low-dimensional geophysical dynami-
cal systems, to the best of my knowledge no studies tried to compute explicitly
the instanton path in a geophysical system, not to mention a state-of-the art cli-
mate or meteorological model. The main issue is of course the need of having an
ajoint model to compute the ‘optimal’ noise, i.e. integrate the equation for the
conjugate momentum in the instanton equations. Even if one has access to such
an adjoint, the Chernykh-Stepanov algorithm may not converge easily on a high-
dimensional, chaotic system. Nonetheless, there are interesting works which applied
such a computation to high-dimensional systems (Grafke et al. 2015; Grafke and
Vanden-Eijnden 2019; Schorlepp et al. 2022).

The explicit computation of instantons is a strong numerical challenge. Nev-
ertheless, the paradigm set by instanton theory for explaining the uniqueness of
the route to extreme events in stochastic dynamical systems can definitely not be
ignored. The practice of making composite maps of similar events in climate and
meteorological science finds a strong justification in this paradigm and corresponds
to the instanton filtering procedure detailed above. It is therefore natural to de-
mand that rare events algorithms in general sample the instanton leading to extreme
events, i.e. the most probable path (cf. chapter 5).

4.4.2 Biased dynamic methods
Biased dynamic methods aim at modifying directly the dynamics of the system in
a controlled way in order to make rare events happen more often. Those methods
have been extensively studied and employed on discrete stochastic systems (Bucklew
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2004). They are more difficult to employ when it comes to time-continuous systems
for which the entire phase space is not known — even after a long control run —
and therefore not mapped with a transition probability matrix.

These methods are close to the idea of control methods and some authors (Hart-
mann et al. 2019) proposed an adaptive importance sampling method where the
stochastic differential equation is modified to include a control drift term. An op-
timal drift term can then be found by solving a stochastic control problem. It is
however still doubtful that this procedure is feasible for high-dimensional systems.

a) Finite states phase space

In the context of a discrete stochastic model such as a Stochastic Weather Generator
(SWG), Yiou and Jézéquel (2020) proposed an importance sampling procedure to
alter the probability matrix of the SWG in the direction of warmer temperatures. To
do so, one considers the K best analogues of the atmospheric circulation Xt at time
t. The values of the observable of interest F — temperature in Yiou and Jézéquel
(2020) — of the K analogues are sorted in decreasing order so that the ranks are
written Rk. The weights to modify the probability matrix are then chosen as:

wkt = Ae−αRk (4.37)

and A is a normalization constant so that
∑
k w

k
t = 1. In this context, the weight

values do not depend on time and not on the unit of the variable either, so that this
procedure does not need major adaptation to simulate any observable.

The next state of the trajectory, that is one of the K best analogues, is chosen at
random by sampling the dates of the analogues with the weights wkt so that if F̃t is
the simulated observable among the analogue observables F kt then P[F̃t = F kt ] = wkt .
The expected value of F̃ is then:

E[F̃t] = A
K∑
k=0

e−αRkF kt = A
K∑
k=0

e−αRksort(Ft)k (4.38)

where sort(Ft) are the sorted values of Ft in descending order. This allows to
select the circulation analogues that favor the highest value of observable Ft. The α
parameter controls the strength of the selection procedure. The analogue importance
sampling tilts the trajectories towards the largest values of Ft.

The probability distribution of the simulations is controlled by the value of α.
According to Yiou and Jézéquel (2020) a formulation of the expected probability
associated with each simulation can be obtained heuristically. If one note Q the
smallest number so that:

A
Q∑
k=1

e−αk > 1 − ϵ (4.39)

where ϵ > 0 is a small number, then the probability of dynamic trajectories
with parameter value α is close to (Q/K)M , where M is the average number of
independent days during the simulated season and K is the number of analogues.
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This formulation may suffer from numerical problems for large values of α and small
values of K. An alternate empirical estimation of the probability distribution of the
average of the trajectory is to consider that the seasonal average of the observable
closely follows a Gaussian distribution. Then an empirical estimate of the probability
is obtained by comparing the quantiles of the observed distribution of the average of
the observable and the mean of simulated averages. With a chosen value of K = 20,
Yiou and Jézéquel (2020) show that the heuristic and empirical approximations give
similar estimates of the probability or return periods for values of α ≤ 0.5.

Once one has access to a discrete stochastic model of the system of interest —
such as a SWG for the atmosphere — this method is efficient to simulate a large
number of plausible physical trajectories. When biasing in favour of high values of
an observable of interest F , this method samples unseen but possible trajectories
with extreme values of the time-integrated observable. Even though the number of
possible trajectories is high with such a SWG, when strongly biasing in favor of an
observable, the number of trajectories leading to extreme values may become small
as the algorithm will loop over the small number of states which have the highest
values of the observable. In other words, this method is limited to states which
have already been seen and cannot generate other states with intense values of the
observable.

b) Infinite states phase space

Plotkin et al. (2019) proposed a method to maximize the intensity of two simulated
cyclones by pushing the system into unseen states. This method is based on mini-
mizing an action and is close to the one proposed in E et al. (2004). As Plotkin et al.
(2019) explicitly modify the dynamics of their model, this method fits better with
the biased dynamic category than with the direct computation methods category.

The main idea is to add small perturbations to true model trajectories in order
to achieve a transition into a rare state while minimizing the magnitude of the
perturbations added to keep trajectories physically relevant. Plotkin et al. (2019)
note that this problem is close to the one of data assimilation, with a different score
function. This framing of the problem is also close to the instanton formalism, which
explicitly looks for the ‘optimal’ noise to push the system in the direction of interest.

The objective is to minimize the perturbations added to a true model trajectory
in order to obtain a trajectory that results in a lower value of an observable F at
the final state XN with N the number of optimization time steps. Then the method
seeks to minimize the following action functional:

I =
N−1∑
i=0

1
2R2

i

η̃Ti D
−1η̃i + 1

R2
f

F (XN ) (4.40)

with Xi = b̃(Xi−1) + η̃i, b̃ = bdt being the recurrence function and η̃i = dWi the
perturbation added at time i. The initial state is restricted to stay close to state X̄0:
X0 = X̄0 + η̃0. D is the background covariance matrix, i.e. the time-averaged outer
product of the differences between 12- and 24-hr forecasts with the model over the
course of several months in their case. Ri and Rf are constants that balance running
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cost against final cost: they determine the relative importance of the running cost
at each time step and of the final cost.

This method needs a model with adjoint capabilities as shown by the presence
of the derivative of the recurrence function when maximizing I. In Plotkin et al.
(2019) they adapt the WRF Variational Data Assimilation model, initially used for
assimilation purposes. They optimize over perturbations to zonal and meridional
wind, surface pressure, temperature, water vapor mixing ratio and geopotential.
Optimizing the perturbations over a limited set of variables could be a way ahead for
finding more easily instanton-like trajectories in climate and meteorological models.
The method proposed by Plotkin et al. (2019) is indeed natural in this context.

This scheme allows the authors to study the phenomenology of the optimal
perturbations, in particular the one that lead to rapid intensification of tropical
cyclones. Remarkably, they show that the optimal perturbations need not be sym-
metric contrary to what has been thought before. However, this scheme does not
allow to access the probabilities of the new intensification levels attained thanks to
the optimal perturbations.

4.4.3 Splitting methods
As shown in table 4.1, splitting methods are by far the most employed methods for
simulating rare events in geophysical dynamical systems. In the following I detail
the different algorithms employed in the literature. As these methods are both
promising and challenging, I shall present the main issues associated with their use
in the next section, illustrating them with simple models.

The general idea of splitting methods is to start N parallel members of a model
with different initial conditions. The members evolve according to the model and
at each resampling time some of them are killed and some of them are cloned,
depending on weights computed according to their past evolution. The weights
are to be chosen carefully so that high values of the weights are equivalent to the
trajectories moving close to the rare event of interest. This general method is also
known in the literature as genealogical particle analysis, genetic algorithm or “go
with the winners” algorithm (Grassberger 2002; Bouchet et al. 2019).

The algorithms are generally guided by a one-dimensional coordinate θ : Rd 7→ R
from the phase space to R that is high in some regions of the phase space and low in
other regions. Where θ is high, the algorithms should exhibit a greater propensity
toward splitting. Where θ is low, the algorithms should exhibit a greater propensity
toward killing. θ is therefore reminiscent of the probability of a reactive trajectory
ρR in the framework of TPT. This PDF is however unknown in most cases and
is usually determined heuristically — for example by choosing the very observable
one seeks to extremize. θ is known as a reaction coordinate, an order parameter
or a score function. I call it here a score function. The particular choice of a
score function is crucial for the efficiency of the algorithm for computing rare events
statistics.

In the following, I use the standard vocabulary of climate science. A simulation
corresponds to the integration of a climate model over a given amount of time. An
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ensemble simulation is a simulation run with several members in parallel, i.e.
several trajectories in the phase space that may or may not start from the same
initial conditions. Note that in the rare events literature, what is called ‘members’
in the climate literature is usually called ‘trajectories’ or ‘particles’. I use either
members or trajectories in the following, but it should be emphasized that the
word ‘trajectories’ refers to phase space trajectories t 7→ Xt and not to Lagrangian
trajectories of tracers or particles of air for example.

a) Ensemble boosting

Ensemble boosting is a method proposed in climate sciences by Gessner et al. (2021).
The idea of the method is close to the other rare events algorithm presented below,
although it may not always be used iteratively in practice. The ensemble boosting
method seeks to answer the question: how much an event that has occurred could
have been more intense? It is therefore a storyline approach and — at least for now
— does not allow to recover associated probabilities of extremes (see below for a
discussion on this point).

The algorithm is depicted schematically in Figure 4.4. One starts from a long
and/or multi-member simulation of a climate model. Then one selects N extreme
events that have happened during the long simulation. The idea of the method is
to resample these extremes by starting a multi-member simulation some days/weeks
before the moment where the extremes have occurred and add a small perturbation
to the original simulation. Because of the chaoticity of the system, the different
members eventually separates and by choosing a proper lead time before the event,
one can sample events that are more intense than the original event (Fischer et al.
2023). This allows to have access to physically consistent storylines for very intense
events.

As it has been used up to now, the algorithm does not allow to recover the clima-
tological expectations and therefore the probabilities of the extreme events sampled
— hence the use of the term ‘storyline’ to describe the trajectories sampled by the
algorithm. It should nevertheless be noted that under mild assumptions, it may be
possible to recover the initial probabilities (see A.2.1 in annex for a proposition and
also the recent work of Finkel and O’Gorman (2024)).

b) Diffusion Monte Carlo

I present a version of the Diffusion Monte Carlo (DMC) algorithm close to the one
formalized in Webber et al. (2019). DMC has been the subject of mathematical
analyses (Del Moral 2004), which describe the convergence and asymptotic behavior
of the algorithm as the ensemble of size N approaches infinity. DMC estimates
are unbiased and converge as the number of members N tends to infinity under
mild integrability conditions. These theoretical results are general, holding true for
systems with arbitrarily high dimension d. Any quantity that can be estimated by
direct sampling can also be estimated by DMC. Estimates can include functions that
depend on the entire path from time 0 until a later time ti.
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Figure 4.4: Schematic representation of the ensemble boosting rare
events algorithm. (a) Initial unperturbed integration of a 3-members en-
semble simulation. (b) The three extremes of the θ metric are resampled by
starting new ensembles of the climate models a few days/weeks before the
occurrence of the extreme after adding a small perturbation to the original
simulation.

Let’s note (Xn
t )1≤n≤N the N members of the simulation. I consider a finite

series of resampling times 0 = t0 < t1 < · · · that may or may not be separated
homogeneously (see below for a discussion). In the following I note Xn

i := Xn
ti . I

consider a family (Vi)i of splitting functions which are functions of the score function
θ.

The algorithm is depicted schematically in Figure 4.5. The implementation of the
algorithm proceeds as follows. First, initialize N independent members (Xn

0 )1≤n≤N .
Then iterate the following procedure over i:

1. Reweighting: for each member n

• if i = 0, define initial weights as:

wn0 = eV0(Xn
0 ), (4.41)

• if i > 0, define weights as:

wni = w̄i−1e
Vi(Xn

i )−Vi−1(X̂n
i−1). (4.42)

Compute the average weight: w̄i = 1
N

∑N
n=1w

n
i .
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2. Resampling: create an ensemble of updated members (X̂n
i )1≤n≤N consisting

of Nn
i copies of each member Xn

i . The numbers Nn
i must be randomly chosen

to ensure:
∑
nN

n
i = N and E[Nn

i ] = wn
i
w̄i

.

3. Simulation: run the model from time ti to time ti+1.

If the splitting functions (Vi)i are chosen correctly, the simulation with the DMC
algorithm oversamples regions where the score function θ is large and undersamples
regions where θ is small. The distribution of members converges to the distribution
Xti weighted by a likelihood ratio Li(X) = eVi(X)

E[eVi(Xti
)]

which favors high values of θ.
For any observable ψ, to estimate its climatological expectation Eµ[ψ(Xti)], DMC
uses the following estimator:

Eµ[ψ(Xti)] ≃ w̄i
N

N∑
n=1

ψ(X̂n
i )e−Vi(X̂n

i ). (4.43)

Using this formula with the observable ψ = 1(f(Xt) ≥ a) for a ∈ R and an
observable f , one then has access to the probability of f taking extreme values
(Eµ[1(f(Xt) ≥ a)] = Pµ[f(Xt) ≥ a]). One should note that the DMC algorithm
applies a selection procedure before the first simulation step. In practice if one does
not want to apply this first selection step, it can be avoided by choosing V0 = 0.

There are several practical ways of performing the resampling step. I present
two of them used in the literature:

• For the first one, proposed by Ragone et al. (2018), the number of copies
produced by each member is:

cni = ⌊w̃ni + uni ⌋ (4.44)

where w̃ni = wn
i
w̄i

to ensure that
∑
n w̃

n
i = N , ⌊.⌋ is the integer part and the

uni are N independent random numbers sampled from a uniform distribution
between 0 and 1. When cni = 0 the member is killed. After the killing
process the total number of members is Ni =

∑N
n=1 c

n
i . Then one computes

the difference: ∆Ni = Ni −N :

– if ∆Ni > 0, then ∆Ni members are randomly selected (without repeti-
tion) among the remaining members and killed,

– if ∆Ni < 0, then ∆Ni members are randomly selected (with repetition)
among the remaining members and cloned.

• For the second one, proposed by Webber (2019) and named sorted stratified
resampling scheme, one proceeds as follows:

1. Reindex the weights and the members (wni , Xn
i )1≤n≤N so that

θ(X1
i ) ≤ · · · ≤ θ(XN

i ) (4.45)
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2. Construct the empirical quantile function qi for the ensemble
(wni , Xn

i )1≤n≤N as: qi(x) = θ(Xn
i ) for

∑n−1
j=1 w

j
i∑N

j=1w
j
i

≤ x <

∑n
j=1w

j
i∑N

j=1w
j
i

. (4.46)

3. Select updated members X̂n
i = qi(

n−1+un
i

N ) where uni are N independent
random variables following a uniform law over [0, 1].

Figure 4.5: Schematic representation of the Diffusion Monte Carlo
rare events algorithm. (a) Simulation step where the different members
evolve from time ti to time ti+1.(b) Reweighting step. The ∆Vn represent the
arguments of the exponential weights updated at this step. (c) Killing and
cloning step when the members with the lowest weights are killed (member 1
here) and members with the highest weights are cloned (member 2 here).

The splitting functions (Vi)i are the most important parameters for determining
the dynamics of DMC. It is therefore also the key weakness of the algorithm as
it is quite sensitive to the particular splitting functions that are used. The most
straightforward example of a splitting function is Vi(X) = Cθ(X) where C > 0
is a splitting parameter chosen by the user that controls how many times a single
particle can be split to create new copies. The main issue with this scheme is that
the number of copies per member may become too much biased in favor of high
values of θ for certain non-linear processes. In this case, one faces the problem of
extinction, that is the fact that the final members selected by the algorithm are
too similar to one another. While the algorithm remains unbiased also in this case,
the estimator 4.43 may have a high variance, which renders the algorithm useless.
As a consequence, the practical application of DMC requires tuning to avoid both
extinction and low selection.

To counteract these issues, Webber et al. (2019) proposed to adapt the DMC
algorithm to make it more robust, in the context of mesoscale extreme weather
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events (tropical cyclones in their case). Their key idea is to adaptively rescales at
each resampling time the score function θ to match a target distribution νi, which
would typically be the normal distribution. It is the rescaled score function θ′

i that
is used for splitting and killing of simulations. They call their algorithm Quantile
Diffusion Monte Carlo (QDMC).

QDMC is distinguished from standard DMC by an adaptation step. After es-
timating the distribution of θ(Xti), QDMC builds a transformation θ′

i = γi(θ) so
that the distribution of θ′

i(Xti) approximates a target distribution νi. In particular,
QDMC builds a transport function from distribution θi to the target distribution νi
of the form

γi(y) = F−1
νi

(Fθi
(y)). (4.47)

Here, Fθi
is the cumulative distribution function for the distribution θi and F−1

νi

is the quantile function for the distribution νi, i.e. the inverse of the cumulative
distribution function Fνi . The typical target distribution is νi = N (0, 1).

Intuitively, it is natural to ask for the rare events algorithms to be insensitive to a
monotonic bijective change of the score function θ, which is not the case for the DMC
algorithm but is for QDMC. QDMC definitely makes a step in the direction of such
a more flexible rare events algorithm, even though the choice of some parameters
remain arbitrary (see the discussion below).

c) Giardina-Kurchan-Tailleur-Lecomte algorithm

As first formulated by Giardina’ et al. (2006), the Giardina-Kurchan-Tailleur-
Lecomte (GKTL) algorithm aims to compute large deviation functions. It was for
example used by Tailleur and Kurchan (2007) and Laffargue and Tailleur (2014) to
compute rare trajectories using finite-time Lyapunov exponents, leading to what the
authors call Lyapunov Weighted Dynamics (LWD). Giardina et al. (2011) reviewed
the algorithm and its applications for various dynamical systems. The name ‘GKTL’
was employed by Ragone et al. (2018) and I follow this denomination.

In the GKTL algorithm the weights are chosen to favour members which exhibit
large values of a time-averaged observable F , rather than values at resampling times
as in DMC. The algorithm is nonetheless almost identical to the DMC algorithm
if one chooses a primitive θ =

∫
F of the observable F as the score function and

constant splitting functions Vi(θ) = kθ. I describe the algorithm as presented in
Ragone et al. (2018).

The algorithm is depicted schematically in Figure 4.6. The implementation of
the algorithm proceeds as follows. First, one initializes N independent members
(Xn

0 )1≤n≤N . Then one iterates the following procedure over the resampling times
ti = iτ with τ the resampling duration, from t1 = τ until ti = T/τ (with T an
integer multiple of τ):

1. Simulation: run each member from time ti−1 = (i− 1)τ to time ti = iτ .
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2. Reweighting: Assign to each member Xn
ti the weight:

wni = e
k
∫ ti

ti−1
F (Xn

t )dt

Ri
(4.48)

with Ri the normalization factor so that:
∑
nw

n
i = N : Ri =

1
N

∑N
n=1

e
k
∫ ti

ti−1
F (Xn

t )dt

Ri
.

3. Resampling: create an ensemble of updated members (X̂n
i )1≤n≤N consist-

ing of Nn
i copies of each member Xn

i . The numbers Nn
i must be randomly

chosen to ensure:
∑
nN

n
i = N and E[Nn

i ] = wni (see above for the resampling
schemes).

Figure 4.6: Schematic representation of the Giardina-Kurchan-
Tailleur-Lecomte rare events algorithm. (a) Simulation step where the
different members evolve from time ti to time ti+1. (b) Reweighting step. The
red areas under the different curves represent the arguments of the exponential
weights updated at this step. (c) Killing and cloning step when the members
with the lowest weights are killed (member 1 here) and members with the
highest weights are cloned (member 3 here).

The parameter k is a control parameter chosen by the user: positive (negative)
values of k favor members with high (low) values of the time-averaged F observable.
The highest the absolute value of k, the more selective the algorithm will be — with
the risk of selecting only one or a few members at each resampling time. Ragone
et al. (2018) emphasize that the N initial conditions should be independent and
provide a reasonable sampling of the attractor of the system, even though this
may be difficult to enforce in a high-dimensional system with N low. The version
presented here assumes that resampling times are distributed homogeneously, more
precisely that they are integer multiple of the resampling time τ . In principle this
strategy could also be implemented with heterogeneous resampling times.
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As in DMC, the distribution of members converges to the climatological distri-

bution weighted by a likelihood ratio L(X) = e
k
∫ T

0
F (Xt)dt

Eµ[ek
∫ T

0
F (Xt)dt]

which favors extreme

values of the time-averaged observable F . For any observable ψ an estimator of
Eµ[ψ({Xt}0≤t≤T )] is then:

Eµ[ψ({Xt}0≤t≤T )] ≃ 1
N

N∑
n=1

ψ({Xt}0≤t≤T )w−1
n (4.49)

with

wn = ΠT/τ
i=1w

n
i . (4.50)

d) Adaptive Multilevel Splitting

Multilevel splitting was the first idea developed to sample rare events and dates
back to the work of Kahn and Harris (1951). Here I present a modern version of
the algorithm, namely the Adaptive Multilevel Splitting (AMS) proposed by Cérou
and Guyader (2007). Cérou et al. (2019) reviewed the algorithm, including recent
theoretical advances such as unbiasedness and central limit theorems for its variance.

The general idea is to decompose a (small) probability p of transitioning from
a set A to a set B into a chain of products of (larger) conditional probabilities.
As in TPT, a reactive trajectory is a particular realisation of this transition. I
present a version of the algorithm slightly modified from the original algorithm of
Cérou and Guyader (2007). In this version, trajectories have a fixed duration T

(Cérou et al. 2019; Bouchet et al. 2019; Rolland 2021). This description is closed
to the Trajectory-Adaptive Multilevel Sampling (TAMS) algorithm described by
Baars et al. (2021). For simplicity, I present a version of the algorithm where only
one trajectory/member is resampled at each step, but note that it can be adapted
straightforwardly for multiple resampling at each step.

The algorithm is depicted schematically on Figure 4.7. The implementation of
the algorithm proceeds as follows. First, one initializes N independent members
(Xn

0 )1≤n≤N all starting in the set A. Contrary to DMC and GKTL, one then runs
all members until t = T is reached, or the member ends up in a target set B. Each
member Xn

t has a certain maximum value of the score function θ in [0, T ] which can
be noted Qn. Set k = 1 and w0 = 1. One then repeats the following steps until
minnQn ≥ zmax with a user-chosen value of zmax or the number of iterations k is
greater than a user-chosen value K:

1. Identify the member with minimal score function: consider l so that
Ql = minnQn, which is the index of the member for which the maximum
value of the score function over [0, T ] is minimal. This member is stored and
assigned the weight wk−1. Since the member X l

t has the smallest value of Qn,
all other members n have some time tj for which θ(Xn

tj ) ≥ Ql.

2. Update the weight:
wk =

(
1 − 1

N

)
wk−1 (4.51)
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3. Resample the member with minimal score function:

• Select randomly a member Xr
t with r ̸= l among the remaining members

and set (X̃ l
t)0≤t≤tmin = (Xr

0 , ..., X
r
tmin

) where tmin is the smallest time
for which θ(Xr

tmin
) ≥ Ql.

• Simulate the rest of the trajectory starting from Xr
tmin

until again the
member reaches either t = T or the set B. This member has a new
maximum value of the score function Q̃l which is always greater than or
equal to Ql.

• Set X l = X̃ l and Ql = Q̃l.

Figure 4.7: Schematic representation of the Adaptive Multilevel Split-
ting rare events algorithm. (a) Initial run of all members over the time
period from 0 to T . (b) Identification of the member with the minimal value of
the maximal score function value (member 1 here). This member is then killed.
(c) Resampling of the killed member starting from the time t2min corresponding
to the minimal time for which the member from which it is resampled (member
2 here) reached the value of the maximum score function of the killed member.
The member from which the new member is resampled is chosen randomly
among the remaining ones.

The weights computed at each step represent the probability of a member reach-
ing iteration k + 1. At the end of the iteration loop, the remaining members are
assigned the weight wK . This gives an unbiased estimator of the transition proba-
bility:

pAB ≃ NBwK
N

= NB

N

K∏
k=1

(1 − 1
N

) (4.52)

where K is the final number of iterations and NB is the number of members that
reached B. The climatological expectation of any observable ψ can be computed
using the following formula:
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Eµ[ψ(Xt)] ≃ 1
N

N+K−1∑
k=0

ψ(Xk
t ) wk∑N+K−1

k=0 wk
(4.53)

where for k ≥ K, wk = wK . The summation is computed over all the discarded
(0 ≤ k < K) and the remaining members (K ≤ k < K +N).

As it is made clear by the separation between the set A and the set B, the AMS
algorithm is especially suited to estimate transition probabilities between two sets,
especially between two fixed points or two basins of attraction. It has to be adapted
for studying extreme values of an observable ψ. In this latter case, one uses ψ itself
as the score function. It is not mandatory to explicitly prescribe the set B and
therefore each member is run until time T , whatever the values reached by ψ. The
probability of ψ reaching values above a threshold a ∈ R is then computed using the
formula 4.53 with the observable 1(ψ(Xt) ≥ a).

Contrary to the DMC and GKTL algorithms, the AMS algorithm does not run
several members in parallel and selects at regular time step. The AMS algorithm
first run all members for a fixed time and then re-run some parts of the members
that have not reached high enough values of the score function. Therefore, the
computation and space requirements are different from DMC and GKTL (especially
in the number of initial members) and the total size is only partially controlled by
the K parameter.

The AMS algorithm may also be subject to the extinction problem if one tries
to reach high values of the observable ψ. Indeed, up to a point, because members
with minimal score function are resampled from other members, the algorithm has
a tendency to replace all members by a single one reaching the highest values of
the score function and selecting time of resampling only at the very end of the
simulation. Therefore the total number of iterations K should remain reasonable.
A good approximation for the number of iterations (Lestang et al. 2018) is that to
reach events with a probability p ≃ 10−β one should set approximately K = Nβ

iterations.

4.4.4 Example with the Orstein-Uhlenbeck process
To illustrate the DMC, GKTL and AMS algorithms, I show their application on the
Orstein-Uhlenbeck (OU) process presented above with α = 1 and σ = 1. I seek to
estimate paths leading to extreme (positive) values of the observable F : Xt → Xt

over a finite simulation time T = 1 and their corresponding probabilities. The three
algorithms are therefore run using the simple score function θ = F : Xt 7→ Xt.

The integration is made using the order (3.0,1.5) strong stochastic Runge-Kutta
methods for SDEs proposed by Rößler (2010) with a step dt = 0.001 and a total
integration time T = 1. For both DMC and GKTL algorithms, I choose to imple-
ment 10 homogeneous resampling times between 0 and T : ti = i × T

10 . DMC and
GKTL algorithms are run with N = 1000 parallel members. I choose for the split-
ting parameters C = 3.5 for DMC and k = 10 for GKTL. For the AMS algorithm,
the number of initial members is Nini = 200 and I choose K = 1500. The values of
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the parameters were chosen by trial and error to obtain similar extreme values with
the three algorithms (see below).

Figure 4.8 presents the results of the application of these algorithms. The first
(resp. second and third) column displays the application of the DMC (resp. GKTL
and AMS) algorithm. The first row shows the evolution of all members between each
resampling times for DMC and GKTL — i.e. before the resampling step and there-
fore including members which are subsequently killed — and all discarded members
for AMS. The second row displays the final members selected by the algorithms,
i.e. the members that have survived the selection process. The third row compares
the probabilities of the OU process reaching a threshold a for a ∈ [0, 3.5] at t = T

starting from X(t = 0) = 0. The exact probability is computed using formula 4.27
and is depicted in red. The black dots correspond to the probability estimated by
the corresponding algorithm.

Figure 4.8hij demonstrate the efficiency of the rare events algorithms: they are
able to sample paths leading to extreme events with a probability as low as 10−6 while
running only N = 1000 members. The estimation of the corresponding probabilities
is accurate and begins to deviate from the true probability only for high threshold
(a > 3) for which the variance of the algorithms increases again. Running the same
algorithms several times would allow to partially control this issue.

One may note that the final trajectories selected are not similar for the three
algorithms. For DMC, the trajectories are overall pretty close to the instanton pre-
sented in Figure 4.3a. If I had chosen a stronger C parameter, the algorithm would
have reached lower probabilities but the selection would also have been stronger
and therefore the extinction problem may have been more important, leading to an
increase in the variance of the estimated probabilities. For the GKTL algorithm,
because the weights are computed using the full integral of θ(Xt) = Xt, it is not
anormal that the algorithm selects concave trajectories because the instanton is dif-
ferent than for DMC as presented in the difference between Fig.4.3a and Fig.4.3b. I
used the GKTL algorithm to estimate maximum values of Xt and not integrals of an
observable as the algorithm is intended to be used, which my explain the somewhat
less precise estimation of low probabilities of XT .

Lastly, it should be noted that the AMS algorithm produces more trajectories
(2200 vs 1000) than the DMC and GKTL algorithms because of its different re-
sampling strategy. This is a little more space consuming but also allows precise
estimates of the corresponding probabilities. The final trajectories selected (Fig.
4.8f) seem to be in between the two different instantons in Fig. 4.3. Overall each
algorithm selects the instanton corresponding to different observables: maximizing
the value at the end of the trajectory for DMC and maximizing the integral over the
trajectory for GKTL. For the AMS algorithm, if one was to increase the total num-
ber of trajectories simulated K one would sample trajectories that look more like
those selected by DMC (not shown). Even though each algorithm provides unbiased
estimates of the mean of any observable along the selected path, it is clear that the
most likely trajectory for reaching extremes of an observable or for moving from one
fixed point to another may not be the one sampled by the chosen algorithm. This
point is crucial when interpreting the physics of the trajectories sampled by the rare
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events algorithm.
The example of the application of splitting methods on the OU process shows the

strength of the rare events algorithms but also substantial challenges for choosing
the parameters of the algorithms. In the next section, I shall discuss more this issue
and propose some guidelines and solutions when it is already possible.
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Figure 4.8: Application of the DMC, GKTL and AMS rare events
algorithms to the Orstein-Uhlenbeck process. First (resp. second and
third) column displays the application of the DMC (resp. GKTL and AMS)
algorithm to the OU process (α = 1 and σ = 1). (a, b and c) Evolution
of all members between each resampling times for DMC and GKTL and all
discarded trajectories for AMS. Vertical dashed lines represents the resampling
times for DMC and GKTL. (d, e and f) Evolution of the final members selected
by the algorithms. The black line is the average of final members. (h, i and j)
Probabilities of the OU process reaching a threshold a for a ∈ [0, 3.5] at t = T
starting from X(t = 0) = 0. The exact probability is depicted in red and
the black dots correspond to the probability estimated by the corresponding
algorithm.
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4.5 Challenges for the application of splitting
methods

Splitting methods have found promising applications for sampling rare events in geo-
physical fluid systems. The algorithms presented above greatly increase the available
statistics for rare events of interest while also providing unbiased probability esti-
mates. However, there are also several drawbacks and opened questions concerning
their implementation that prevent a more widespread use of these methods. In this
section, I shall try to point out some of them and propose some solutions.

4.5.1 Score function
The efficiency of splitting methods for sampling extreme events are based on the
existence of a score function θ which maps the phase space and gives a ‘distance’
from the class of rare events one wishes to reach. Even though these algorithms
are unbiased in the large ensemble limit, their performance depends dramatically
on the quality of the score function and/or splitting functions used. On the theo-
retical side, the conditions that have to apply on the score function mainly consist
in having a non-zero gradient everywhere on the phase space, always pointing in
the direction associated with the rare event of interest (Cérou et al. 2011). These
conditions are difficult to ensure in practice and authors have mainly chosen score
functions heuristically using their physical knowledge of the key processes of the
system studied.

For the DMC and GKTL algorithms, when looking to sample extreme values
of an observable, the natural score function would be the observable itself — as
used directly in the GKTL algorithm. For instance, if one seeks to sample extreme
heatwaves, it is natural to choose 2-m air temperature as the score function (cf.
chapters 6 and 7). However this choice does not ensure the performance of the
algorithm to be good in every possible system. One could imagine that high values
of this observable are not reached gradually and therefore the algorithms may not
be able to select correctly the relevant trajectories. I give here an example of this
behavior. Let us define the following stochastic systems of equations:{

dXt = −αXtdt+ σdWt

Ut = Xt cos(ωt).
(4.54)

Suppose one has access only to Ut and wants to sample its extreme values with a
rare events algorithm. There are two time scales involved in the system: τX = 1/α
the time scale of Xt and τcos = 2π/ω the time scale of the cosinus oscillation.
Depending on the ratio between these two time scales, the variable Ut itself may not
be used as a good score function to sample its own extremes:

• if τX ≪ τcos then the cosinus is a slow variable that is almost not changing
on the time scales of X and therefore using U directly as a score function can
sample extremes (even though these extremes may not be maximally extreme
if for example cos(ωt) is close to 0),
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• if τX ≫ τcos then the cosinus is a fast variable on the time scales of X and U

cannot be used directly as a score function: the fast oscillation of the cosinus
imposes a time scale to U and do not let enough time to members selected
by the rare events algorithm to separate so that the selection procedure leads
the system towards extreme values of U .

This issue is illustrated in Figure 4.9. Fig. 4.9a shows a case where τX ≫ τcos.
I first run an initial trajectory and then 100 trajectories are initiated at t = 0.25.
Because the time scale of the OU process in X is slower than the oscillation of the
cosinus, all trajectories follow the oscillation of the cosinus and as a consequence, if
one were to use U as a score function to sample extremes, it would not be possible to
sample extremes: the trajectories resampled have no time to separate and reach even
greater value of the observable. Depending on the phase of the cosinus oscillation,
high values of U are not a good score function to sample even more extreme values of
U in the future. On the other hand, Fig. 4.9b shows a case where τX ≪ τcos. In this
case, the slow oscillation of the cosinus is almost irrelevant for reaching high values
of U : only the dynamics in X is important and this dynamics can be sampled by a
rare events algorithms. Compared to the first case, in the second case trajectories
resampled have enough time to separate and reach higher values of the score function
without being forcibly embedded in the dynamics of the cosinus oscillation.

0.00 0.25 0.50 0.75 1.00
Time
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1
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Figure 4.9: Illustration of the time scales issue when choosing the
score function. (a) Evolution of one trajectory with τX = 1 and τcos =
0.1 (black) and 100 similar trajectories starting at t = 0.25 from the initial
trajectory (blue). (b) Evolution of one trajectory with τX = 1 and τcos =
10 (black) and 100 similar trajectories starting at t = 0.25 from the initial
trajectory (blue).
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This simple system is an example of a more general problem. If the typical time
scale τext(ψ) associated with an extreme of the observable ψ is smaller than τsep(ψ)
the typical time scale of separation of the observable ψ for two trajectories initialized
closely (i.e. close to the Lyapunov time scale of the system), then one cannot simulate
the extreme events of ψ using θ = ψ as a score function. One needs to find another
score function θ̃ for which τext(ψ) > τsep(θ̃) and ideally τext(ψ) ≫ τsep(θ̃). Whether
this score function always exists and is easy to find may be a difficult question
to answer. As a consequence, the DMC and GKTL algorithms are not suited to
sample extremes which have a typical time scale inferior to the Lyapunov time scale
of the system, which is around 5–10 days for the atmosphere. To give an example,
using cumulative precipitations as a score function, the GKTL algorithm is suited to
study monthly or longer anomalies but not daily extremes — unless one is capable of
providing a score function which can ‘predict’ the occurrence of short extremes weeks
in advance. For short extremes, the ensemble boosting approach is more relevant
as one already knows that an extreme has occurred (see also Finkel and O’Gorman
(2024)). See also Lestang et al. (2018) who found a similar issue with the AMS
algorithm when sampling extreme pressure fluctuations in a turbulent channel flow.

For the AMS algorithm, the optimal score function is the committor function
(Giardina et al. 2011). However this function is unknown as it is precisely the
function one wishes to estimate with the algorithm. A good score function should
therefore display the same isosurfaces as the one of the committor functions but us-
ing a non-optimal score function leads to reactive trajectories that do not correspond
to the most probable one (Rolland and Simonnet 2015). A recent proposition made
by Lucente et al. (2021) is to use machine learning methods to learn an approxi-
mate committor function that would then be used to guide the algorithm, provide
better statistics of rare events and therefore learn a more accurate committor func-
tion (Miloshevich et al. 2023). This reinforcing feedback loop is appealing on the
paper but its applicability to high-dimensional geophysical systems has still to be
demonstrated.

More generally, if one already has clues on the phenomenology of the rare events
under study (e.g. low soil moisture and persistent anticyclonic conditions leading to
heatwaves in Europe, cf chapter 1 section 1.3), it may be possible to build an approx-
imate score function with a low-dimensional projection of the system phase space.
One could for example use Fourier modes, wavelets basis or Empirical Orthogonal
Functions (EOFs) and couple them with time-dependent splitting functions such as
in Webber et al. (2019) or Bréhier and Lelièvre (2019).

Another possibility illustrated by Tailleur and Kurchan (2007) and Laffargue
and Tailleur (2014) is to use a ‘ubiquitous’ measure of rarity in the phase space,
grounded in dynamical systems theory, such as finite-time Lyapunov exponents in
their case. Using this kind of measures does not target a specific rare event but rather
uses properties of the phase space to sample ubiquitously ‘rare events’, i.e. regions
of the phase space with low values of the climatological probability distribution.
Other examples of such interesting indices in the phase space include local dimension
and/or analogs quality (Faranda et al. 2017a). To the best of my knowledge, this has
never been done for complex high-dimensional systems. This proposition may be
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interesting to explore the variability of the climate attractor but it does not ensure
that rare values of the observable of interest will be reached.

Overall, the procedure to find relevant score functions for targeting rare events of
interest in geophysical dynamical systems is still empirical. One may notice that this
issue is fundamentally hard or even impossible in so far as it consists in predicting
the direction that the model will follow before doing the actual calculation. This
definitely has strong theoretical limitations especially because of mixing properties of
chaotic systems such as most geophysical fluid ones (Katok and Hasselblatt 1997).
Nevertheless, the iterative process consisting in simulating some rare events and
using the knowledge obtained on the phenomenology leading to these extremes to
sample more efficiently other rare events is promising, especially in combination with
so-called reinforcement learning algorithms able to infer patterns in large dataset
(Lucente et al. 2021).

4.5.2 Resampling times and total integration time
Resampling times. To the best of my knowledge, there is no theoretical prin-
ciples to guide the choice of resampling times for the DMC and GKTL algorithms.
Intuitively, there is however a clear trade-off between too short and too long resam-
pling times.

Selections should indeed not be performed too frequently, as cloning increases
correlations between the members and therefore reduces the effective number of inde-
pendent members, increasing the estimator variance: this is the already-mentioned
extinction problem. For deterministic systems and stochastic systems with a weak
noise, cloned members may also not have the time to separate one from another,
making the selection step irrelevant.

On the contrary, if not performing selections frequently enough, the members
distribution relaxes to the unbiased climatological probability distribution, lead-
ing to the poor brute force Monte-Carlo variance. Those two requirements usually
translate into resampling intervals close to the Lyapunov time and/or mean auto-
correlation time of the system. However, the system studied may behave differently
depending on the region of the phase space where it is evolving (the finite-time Lya-
punov time may be different from the mean Lyapunov time). For example, with the
Orstein-Uhlenbeck starting from any position X0 = x, the mean converges to 0 as
E[Xt] = xe−αt and the variance converges to 1 as V[Xt] = 1 − e−2αt.

Therefore, even though the easiest way to define the resampling times is to use
a homogeneous scheme — given a resampling time τ and a total integration time T
that is an integer mutliple of τ , one then defines the resampling times as ti = iτ —
it may not be the most appropriate choice, especially to sample extreme values of an
observable which are situated in phase space regions intrinsically repellent for the
system. Webber et al. (2019) proposed an alternative time-heterogenous resampling
strategy: they define resampling times (ti)1≤i≤K so that

∫ t1

0
e2αtdt =

∫ t2

t1
e2αtdt = · · · =

∫ tK

tK−1
e2αtdt (4.55)
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with α the decaying parameter in the Orstein-Uhlenbeck process and more generally
an indicator of the rate of decrease of the variance of the observable of interest.

With the time-homogeneous strategy the natural choice of splitting functions for
DMC is Vi(x) = Cθ(x) whereas for the time-heterogeneous strategy, Webber et al.
(2019) propose to define splitting functions as Vi(x) = Ceα(ti−1)θ(x). Therefore,
with the time-heterogeneous strategy, strength and frequency of splitting increase
exponentially with time. This translates into more clones for members with high
values of the score function θ as the last resampling time is approached (see also
(Wouters and Bouchet 2016)).

Total integration time. The total integration time of splitting methods is not
often mentioned as a relevant parameter to investigate. There are indeed few the-
oretical requirements associated with its value. Intuitively, it is clear that if the
total integration time is too short, the noise to be added to reach an extreme value
of an observable or another basin of attraction is unrealistically large. However, if
the total integration time is too long, then the trajectory may not be representative
of the actual path followed by the system to reach a rare region. The instanton
is indeed the Freidlin-Wentzell action minimizer over all integration times but it is
not possible in practice to let T → ∞. Authors often use heuristics to choose this
total integration time T , the main one being that T should be of the order of 5 to
10 times the auto-correlation time associated with the observable of interest when
sampling its extreme values.

There is actually a trade-off between the number of resampling times K and
the total integration time T . To reach a given extreme value of an observable on a
dynamical system, the best strategy would be to select frequently (K large) and let
the system evolve for a long time (T large). However, such a strategy encounters
rapidly the extinction problem: because at each resampling time one overwrites
the killed members with the cloned members, the number of effectively different
members decreases rapidly and the variance of the estimator becomes large.

Selecting frequently with a small total integration time (K large, T small) would
reduce the extinction problem in so far as having smaller resampling times means
less spread in the weights, weaker selection and therefore less extinction. However,
a small T gives the system less time to reach a high value of an extreme. On
the contrary, selecting less frequently but over a long period of time (K small, T
large) would let enough time to the system to reach high values of the observable
of interest and avoid the extinction problem but not selecting strongly enough let
the system comes back to its climatological probability distribution which do not
display extreme values.

To illustrate this trade-off, I run the DMC algorithm on the OU process for pairs
of the K and T parameters: K = 2, 4, . . . , 20 and T = 0.25, 0.50, . . . , 2.50. For each
pair (K,T ), the DMC algorithm is run 50 times with homogeneous resampling times,
N = 500 trajectories and C = 3.5. Figure 4.10 displayed the results for metrics of
interest. Fig. 4.10a shows the mean value reached by the trajectories at t = T .
As expected, the highest values are reached for K and T as large as possible. The
associated probabilities computed by the algorithm is shown in Fig. 4.10b. For each
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pair (K,T ) the average p̂ of probabilities estimated by the 50 runs of the algorithm is
shown. Fig. 4.10c illustrates the extinction problem. It shows the mean extinction
rate for the 50 runs, defined as the proportion of initial trajectories that have been
killed along the selection process. This extinction rate increases with K and T .
Finally, Fig. 4.10d shows the relative error

√
V(p̂)/p̂ for the estimated probability

p̂, where the variance is computed over the 50 runs. The relative error is minimum
for K small and T large.

From Figure 4.10, it seems that the best trade-off for a splitting parameter C for
the DMC algorithm is given by an integration time as long as possible — although
this may be cost-limited in practice for complex geophysical models — and an inter-
mediate number of resampling times, around 10 in this case. Choosing such values
allows an equilibrium between reaching extreme values of an observable while at the
same time keeping the estimation of the corresponding probabilities precise. These
observations point towards a classical bias-variance dilemma for choosing the imple-
mentation parameters of the rare events algorithm: selecting more often decrease
the bias (with respect to an extreme levels one wishes to attain) but increases the
variance of the estimated probability.

4.5.3 Number of parallel members
Theoretical analyses (Del Moral 2004) ensure that the algorithms presented above
converge to the true probability of the rare events when the number of members
run in parallel N goes to infinity. However, to the best of my knowledge there
is no indication for the actual number of parallel members N to run for practical
applications, especially in high-dimensional systems. Authors often use around 100
members but the reasons are mostly because of computational cost issues rather than
a thorough theoretical analysis. In practice, the larger N the better: a too small
value of N not only gives results with large variance but also triggers extinction by
loss of diversity (all members collapse to a single one). An alternative is also to
run the algorithm several times with similar initial conditions, which weakens the
extinction risk and also allows to estimate a variance of the estimator associated with
each algorithm. For a total fixed computational cost, there is therefore a trade-off to
find between the number of times the algorithm is run and the number of members
by run.

4.5.4 Sensitivity to parameters
Every algorithm presented above has user-tuned parameters (see table 4.2), espe-
cially when it comes to the intensity of the selection (C parameter in splitting func-
tions for DMC and k parameter for GKTL). These parameters can require delicate
tuning as the algorithms can become unbalanced. Members with the highest posi-
tions could be split into dozens or hundred of clones thus members become highly
correlated leading to volatile and error-prone estimates for rare event probabilities.
QDMC is a possible response to this over-selecting problem, transforming every dis-
tribution of the score function at resampling times to a normal distribution and
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Figure 4.10: Illustration of the trade-off between the number of re-
sampling times K and the total integration time T with the DMC
algorithm and the Orstein-Uhlenbeck process. For each pair (K,T ), the
DMC algorithm is run 50 times with homogeneous resampling times, N = 500
trajectories and C = 3.5. (a) Mean value a(K,T ) reached by the members at
t = T . (b) Mean estimated probability p̂ given by the algorithm for the mean
value a(K,T ): p̂ ≃ P[XT > a(K,T )] (c) Proportion of initial trajectories discarded
by the algorithm. (d) Relative error

√
V(p̂)/p̂ for the estimated probability p̂.

therefore rendering every selection step equivalent. However such a normalisation
procedure does not exist for the GKTL algorithm. In general, tuning may become
much more difficult when sampling a process with poorly known dynamics.

4.5.5 Sensitivity to initial conditions
The question of initial conditions for the members of the splitting algorithms is
seldom treated in the literature. When one studies multistability, it is rather under-
standable as one wishes to go from one fixed point to another and therefore taking
initial conditions close to the starting fixed point is natural. It is also the case when
studying transition between two basins of attraction, even though it can be trickier
in this case — if the initial conditions on one attractor are close to the separation
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Algorithm Parameters

DMC

- total integration time T
- number of members N
- resampling times (ti)i

- splitting functions (Vi)i

- score function θ
- initial conditions

- splitting parameter C

GKTL

- total integration time T
- number of members N
- resampling times (ti)i

- score function θ
- initial conditions

- splitting parameter k

AMS

- total integration time T
- number of members N

- score function θ
- initial conditions

- number of iterations K

Table 4.2: User-chosen parameters for the three splitting algorithms presented

between the two basins of attraction it may be easier to cross the frontier.
When studying extreme values of an observable, the question seems however

more relevant as the attractor may be extended in a high-dimensional space and the
instanton leading to rare regions may be different starting from one point or another
of the attractor. On paper, initial conditions should sample uniformly the attractor.
However, it is not clear how to ensure such a condition on a high dimensional
attractor. In particular, certain region of the phase space may be more important
to sample than others, for example sea surface temperature of the North Atlantic
for temperature extremes in Western Europe.

One solution could be to condition the results of the algorithm on a region
of the phase space X0 where the initial conditions are drawn. This is equivalent
to estimating conditional means E[F (Xt)|X0] and making the choice of the initial
conditions set X0 clear. This is particularly relevant when there are variables in the
system that have typical time scales much slower than the time scale of the extremes
sampled by the rare events algorithms.

4.5.6 Multiple time scales
The path in the phase space leading to rare events may involve several time scales
that are not taken into account by the algorithms. For example, in the climate
system, to reach the most intense heatwaves in British Columbia, one may need first
an intense ENSO event (time scale of several years), low soil moisture conditions due
to a Spring drought (time scale of several months) and a persistent anticyclone (time
scale of several weeks). If one uses a rare events algorithm with a total integration
time of one or two months, it would not be able to grasp the full potential of the
rare event.
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The importance of taking into account multiple time scales phenomena to sim-
ulate rare events is a profound question about the very nature of extreme events
in geophysical dynamical systems. Sapsis (2021) proposed to differentiate between
extreme events due to (i) weak energy transfers between wavenumbers without the
occurrence of positive Lyapunov exponents and (ii) violent energy transfers between
degrees of freedom associated with intermittently positive Lyapunov exponents in
the underlying dynamics. I could rephrase this distinction by saying that events of
type (i) result from co-occurrence between phenomena with different time scale while
events of type (ii) result from an intrinsic instability of the system. This distinction
has also consequences when using splitting methods to sample extreme events.

In the second case, the question of multiple time scales phenomena is not a
strong issue as what is at stake is to find the right way to guide the system towards
the instability region to sample extreme events (however this may be difficult in
practice). In the first case however, the algorithm has to sample phenomena occur-
ring at different time scale and therefore may have to select trajectories based on a
complex and maybe time-dependent score function.

Webber et al. (2019) mentioned that applying rare event sampling in a dynamical
downscaling context should be a multitiered process: a GCM can be run either
directly or with a splitting method. Then starting from the initial conditions selected
from GCM output, a regional weather model can be run either directly or with a
splitting method. To the best of my knowledge there is no practical application which
used such a framework and there is also no theoretical results taking into account
those multiple time scales with many phenomena interacting, but this idea seems
of definite interest for efficiently sampling extreme events in geophysical dynamical
systems.

To illustrate this issue, I propose to apply the DMC rare events algorithm to the
following system of two OU processes with different time scales:{

dX1
t = −αX1

t dt+ σdW 1
t ,

dX2
t = −αβX2

t dt+
√
βσdW 2

t .
(4.56)

These two processes are independent one from another and have the following
relationship between their PDF : ρ1(x, t) = ρ2(x, t/β). In particular, they have the
same stationary PDF. The processes X1

t and X2
t are in fact the same OU process

with different time scales: if for example one chooses β = 0.01 then X2
t is 100

times ‘slower’ than X1
t . X2

t is intended to model a slow variable in the system (for
example the oceans) while X1

t represents the fast variable of the system (for example
the atmosphere).

I am looking for extremes of an observable which would depend on both of these
variables: I choose the observable F : (X1

t , X
2
t ) 7→ X1

t + X2
t . Because X1

t and X2
t

are independent, their joint distribution is ρ(X1,X2) = ρ1 × ρ2. The probability of F
taking values above a threshold a over a time T can therefore be computed as the
convolution product of ρ1 and ρ2:

P[F ≥ a] =
∫ +∞

−∞
ρ1(x1, T )

(∫ +∞

a−x1
ρ2(x2, T )dx2

)
dx1 (4.57)
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where ρ1 and ρ2 are given by formula (4.27).
I first model what would happen if one applies a rare events algorithm for max-

imizing this observable while only taking into account the typical time scale of the
X1
t process. To do so I run the DMC algorithm with 10 homogeneous resampling

times over a total integration time T = 1, with a splitting strength C = 3.5 and
N = 1000 members. The score function is F itself. For initial conditions, I take
X1

0 = 0 and X2
0 distributed according to its stationary PDF. Results of this first

strategy are depicted in Figure 4.11.

Figure 4.11: Reaching extreme values of an observable with two
Orstein-uhlenbeck processes without preliminary selection. Applica-
tion of the DMC algorithm to the system 4.56 with 10 homogeneous resampling
times over a total integration time T = 1, with a splitting strength C = 3.5
and N = 1000 trajectories. The score function is F itself. For initial condi-
tions, I take X1

0 = 0 and X2
0 distributed according to its stationary PDF. (a)

Evolution of the observable F (X1
t , X2

t ) = X1
t + X2

t for all members between
each resampling times. Vertical dashed lines represents the resampling times.
(b) Evolution of the final members selected by the algorithm. (c)Probabilities
P[F ≥ a] for a ∈ [0, 8]. The exact probabilities are depicted in red and the
black dots correspond to the probabilities estimated by the algorithm.

Secondly, I propose an algorithm in two steps:

1. The first step consists in finding high values of the variable X2
t by running

the DMC algorithm with 10 homogeneous resampling times over T ′ = 100,
a splitting strength C = 3.5 and N = 1000 trajectories. The score function
is F ′ : (X1

t , X
2
t ) 7→ X2

t . For initial conditions, I take X1
0 and X2

0 distributed
according to their stationary PDF.

2. The second step consists in finding high values of the variable X1
t by running

the DMC algorithm with 10 homogeneous resampling times over T = 1, a
splitting strength C = 3.5 and N = 1000 trajectories. The score function is
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F . For initial conditions, I take X1
0 = 0, but I take the X2

T ′ found by the first
stage.

To compute the expectation of any observable G, formula (4.43) has to be mod-
ified to take into account the biased initial conditions selected by the first stage:

E[G(Xti)] ≃ w̄i
N

N∑
n=1

G(X̂n
i )

eVi(X̂n
i )

× w̄T ′

eVT ′ (Ŷ n
T ′ )

(4.58)

where w̄T ′ is the mean weight computed by the first stage at its last resampling
time and eVT ′ (Ŷ n

T ′ ) is the exponential of the splitting function computed by the first
stage at its last resampling time for member n. This is equivalent to giving an initial
weight to each member in the short simulation.

Results of this second strategy are depicted in Figure 4.12. Comparing with
Figure 4.11, the two-stages algorithm is able to estimate precisely much lower prob-
abilities: there is a gain of almost 4 orders of magnitude. One has to note that the
two-stage algorithm is not simply two DMC algorithms with the same score function
θ = F applied one after the other, which would not allow to give such low probability
(not shown). By targeting both X1 and X2, the score function F would indeed not
be specific enough. Coupled with resampling times at the first stage too large for
the process X1, the PDF ρ(X1,X2) would come back to its unbiased stationary PDF
between each resampling times. In the contrary, the two-stage algorithm targets first
the slow variable X2 with the adapted score function θ′ = F ′ : (X1

t , X
2
t ) 7→ X2

t , for-
getting the fast variable X1

t and selecting ‘optimal’ initial conditions for the second
stage of the algorithm targeting specifically the X1

t variable. This strategy could be
applied broadly in complex geophysical systems with phenomena of different time
scales resulting of extremes of an observable of interest.

4.5.7 Deterministic systems
In the case of stochastic systems, splitting methods functions naturally because
once a member is cloned, the resulting members naturally diverge one from another
because of the different realization of the noise applied on the system. This is
however not the case for deterministic systems for which a perturbation has to be
added after the cloning step. The issue when doing so is that there is also a trade-off
on the amplitude of the noise to be added: if the noise is too small then the members
will not rapidly differentiate one from another, while if it is too high it will push the
trajectories out of the attractor and the full trajectory will not be physical anymore.

For high-dimensional real systems such as climate models, there is usually no
difference as uncertainties arising from sub-grid processes are high enough so that
adding a random noise to separate members should keep each member physically
plausible. This may however not always be the case for simpler systems. Wouters
and Bouchet (2016) proposed to apply the noise a few time steps before the re-
sampling times so that when the rebranching is done at the resampling times the
trajectory has converged to the attractor. They also mention that this does not
affect the results when compared with a long brute force Monte Carlo simulation.
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Figure 4.12: Reaching extreme values of an observable with two
Orstein-uhlenbeck processes with preliminary selection. Application
of the DMC algorithm to the system 4.56 with 10 homogeneous resampling
times over a total integration time T = 1, with a splitting strength C = 3.5
and N = 1000 trajectories. The score function is F itself. For initial condi-
tions, I take X1

0 = 0 and X2
0 selected by the first stage. (a) Evolution of the

observable F (X1
t , X2

t ) = X1
t + X2

t for all members between each resampling
times. Vertical dashed lines represents the resampling times. (b) Evolution
of the final members selected by the algorithm. (c) Probabilities P[F ≥ a]
for a ∈ [0, 8]. The exact probabilities are depicted in red and the black dots
correspond to the probabilities estimated by the algorithm.
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Summary

Context

The study of rare and extreme events is hindered by their under-sampling in
real world data and in model simulations. One of the way to overcome this
issue is to use so-called rare events algorithms, which are general methods
aiming to sample extremes efficiently in dynamical systems.

Goals

In this chapter I present a review of these methods, with a particular focus
on methods that have and can be applied in geophysical systems. I first
present a review of the application of rare events algorithms for geophysical
systems. This review then presents key mathematical concepts to frame the
simulation of the paths leading to extreme events in a more general, physical
and mathematical context. I explain in particular the concept of instanton, or
most probable path leading to an extreme event. I then present the algorithms
employed to study geophysical systems with a particular emphasis on so-called
splitting methods for which I give the details of the algorithms employed.
I finally present the challenges associated to their application in complex
climate models and propose some solutions to alleviate these challenges.
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Chapter 5

Investigating the typicality of the
dynamics leading to extreme
temperatures in the
IPSL-CM6A-LR model

5.1 Introduction
In this chapter1 I investigate the idea of the typical dynamics — or instanton —
leading to extreme events introduced in chapter 4 section 4.3.3: the dynamics of
extremes tend to concentrate around a most probable path. The rationale for this
investigation is twofold. First, there is a practical aspect: as shown in chapter 4
section 4.4.4 on the simple Orstein-Uhlenbeck process, it is natural to impose that
the dynamics sampled by rare events algorithms is the most probable dynamics
associated with the extreme event one seeks to sample. Investigating this typical
dynamics leading to extreme events is therefore a prerequisite to the application of
rare events algorithms.

Second, I want to propose here the idea that the concept of typical dynamics is
the fundamental concept to understand the dynamics leading to extreme events in a
climate context. A lot of extreme events have been investigated in the meteorological
context, cf. section 1.3 for examples. However, how the dynamics associated with an
extreme event should be conceptualized in a climate context? Up to now, extremes
have been mainly treated statistically in a climate context (e.g. chapters 2 and
3). One may be interested in the probability that an observable F — near-surface
temperature for example — be above a certain level a:

Pµ[F ≥ a] :=
∫

Ω
1(F (X) ≥ a)µ(dX), (5.1)

where X is the state vector of the system and µ the appropriate probability
1 I am deeply indebted to Valerio Lucarini and Vera Melinda Galfi for the ideas developed
in this chapter. I warmly thank them for our discussions on this subject. I also thank Tobias
Grafke for discussing these results with me.
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distribution. I propose that the dynamical equivalent of equation 5.1 is the typical
dynamics associated with events reaching level a for observable F :

t 7→ Eµ[Xt | F (X0) ≥ a]. (5.2)

In this definition, the typical dynamics is a function that depends on a centered
time so that the extreme event happens at t = 0. The output of this function is a
trajectory in the full phase space of the system t 7→ Xt, which corresponds to the
most probable path followed by events that have reached level a. In other words,
the typical dynamics is the climatological dynamical concept associated to extreme
events (which is itself a static property of points in the phase space as defined in
chapter 1 section 1.2.2).

The definition proposed in equation (5.2) is actually straightforward for a climate
scientist: it is simply the definition of lagged composite maps for different events
that have reached the level a, and therefore corresponds to a common practice in
climate science. The added value of this definition is to formalize the statistical
object that is estimated through composite maps: the most probable path leading
to an extreme. It should be emphasized that this definition allows to conceptualize
the effect of, for example, climate change on the dynamics leading to extreme events:
one would typically be interested in how the typical dynamics changes under the
influence of an external forcing.

5.2 Article published in Climate Dynamics
In this chapter I investigate the concept of typical dynamics in a 2000-y control
run of the IPSL climate model under pre-industrial stationary forcings. This work
was very much inspired by the recent paper of Lucarini et al. (2023) who looked
at the typicality of the dynamics leading to extreme events similar to the 2021
heatwave event in Western Canada (Philip et al. 2021). If the typical dynamics
concept is relevant, one should expect that when the threshold for defining extremes
increases, the typicality also increases: extreme events tend to look more and more
alike. This the idea behind the so-called perfect storm: all extreme event ingredients
align perfectly to form a very extreme event. As a consequence, all events that have
reached very extreme levels of an observable have had these same ingredients and are
therefore very close. Here I investigate this prediction by looking at the dynamics of
independent events that reach extreme temperatures at different locations in Europe
in the 2000-y pre-industrial control run of the IPSL-CM6A-LR climate model.
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Abstract
Determining the underlying mechanisms leading to extreme events in dynamical systems is a challenging task. Under mild 
hypotheses, large deviations theory predicts that, as one increases the threshold defining an extreme, dynamical trajectories 
which reach the extreme look more and more like one another: they converge towards a typical, i.e. most probable, trajec-
tory called the instanton. In this paper, we use a 2000-year simulation of the IPSL-CM6A-LR model under a stationary 
pre-industrial climate to test this prediction on the case of hot extremes. We investigate whether the physical mechanisms 
leading to extreme temperatures at four locations in Europe are more similar with increasing extreme temperatures. Our 
results show that most physical variables exhibit the expected convergence towards a most probable trajectory, with some 
geographical and temporal variations. In particular, we observe the presence of a cut-off low in some trajectories, which sug-
gests the existence of multiple pathways leading to extreme temperatures. These findings confirm the relevance of instanton 
dynamics to understand the physical mechanisms driving extreme events in climate models.

Keywords  Extreme events · Large deviations theory · Instanton · Typicality · Atmospheric dynamics

1  Introduction

Extreme weather events can have tremendous impacts on 
societies and ecosystems (Pörtner et al. 2022). Among them, 
heatwaves have been the focus of extensive attention due to 
their increasing frequency with global warming (Seneviratne 
et al. 2021). Their impacts include adverse health effects, 
increased power consumption, infrastructure damages, for-
est fires, droughts and crop failures (Koppe et al. 2004; Zuo 
et al. 2015; Yaghmaei 2020). In the last decade, extensive 

research has been conducted to better understand the dynam-
ics leading to heatwaves (Perkins 2015; Horton et al. 2016; 
Domeisen et al. 2022a). The general scenario combines 
specific atmospheric synoptic conditions and anomalously 
low soil moisture, which can interact to further increase the 
intensity of the event.

Heatwaves in the midlatitudes are usually associated 
with a slow moving, sometimes called quasi-stationary, 
high-amplitude Rossby wave (Petoukhov et al. 2013). This 
structure is often embedded in a hemispheric pattern of wave 
patterns 5–7, which can trigger extreme heat and rainfalls 
simultaneously at different places (Coumou et al. 2014; 
Kornhuber et al. 2020; Di Capua et al. 2021). The mecha-
nisms and causes of the amplification of such wave patterns 
are still discussed, especially their dependence on climate 
change (Screen and Simmonds 2014; Petoukhov et al. 2016; 
Kornhuber et al. 2017; Mann et al. 2017, 2018; Kornhuber 
and Tamarin-Brodsky 2021). Over the heatwave region, an 
anticyclone builds up—a situation called ‘blocked’—at mid- 
and upper-level troposphere in conjunction with a change in 
the jet stream from its climatological path towards a large 
poleward meander. The anticyclone sustains the poleward 
advection of warm air along its western flank, adiabatic 
warming by subsidence and clear skies at its center. Those 
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conditions favor warming by short-wave insolation, espe-
cially at the peak of the seasonal cycle. Close to the ground, 
a positive feedback loop is initiated as anomalously dry soils 
favor the partition of incoming solar energy into sensible 
rather than latent heat, which enhances surface evapora-
tion and may reinforce the anticyclonic structure (Hirschi 
et al. 2011; Miralles et al. 2012, 2014; Rasmijn et al. 2018; 
Dirmeyer et al. 2021).

These mechanisms all played a role in the record-break-
ing heatwaves of 2003 in western Europe (García-Herrera 
et al. 2010) and 2010 in Russia (Dole et al. 2011; Otto et al. 
2012; Trenberth and Fasullo 2012; Di Capua et al. 2021). 
The same mechanisms are also present in the exceptionally 
intense heatwave that occurred in Western North America 
in June 2021. Previous records of temperature were broken 
by up to 5 ◦ C (Philip et al. 2021) making it one of the most 
intense heatwaves ever recorded (Thompson et al. 2022). 
Due to its exceptional nature, this event triggered extensive 
research. Dry soils (Zhang et al. 2021, 2022) likely com-
bined with an intense omega blocking anticyclone resulting 
from a wave breaking event, associated with southern excur-
sion of the polar vortex (Overland 2021; Neal et al. 2022), 
and interacting with an atmospheric wave emanating from 
the tropical Pacific (Bartusek et al. 2022). Some authors also 
suggested the role of latent heat release through moisture 
advection by an unusual atmospheric river through the North 
Pacific (Qian et al. 2022; Lin et al. 2022; Mo et al. 2022). 
Lucarini et al. (2023) however showed using a long simula-
tion in a pre-industrial climate that this event was typical 
with respect to other intense events simulated by the model 
at this location.

Extreme Value Theory (EVT) has been used to deter-
mine statistical models for maxima (or minima) of climate 
variables of interest (typically temperature or precipitation) 
(Ghil et al. 2011). EVT is based on a convergence principle 
of the probability distribution of maxima or peaks-over-
threshold (Coles et al. 2001). It allows to compute return 
values corresponding to very large return periods (i.e. 
longer than the period of observations), even in non station-
ary contexts (Cheng et al. 2014). In practice, EVT has been 
an efficient framework to estimate statistical variations on 
short lived extremes (e.g. the highest daily temperature). In 
principle multi-variate EVT provides a framework to investi-
gate events that combine several variables (e.g. temperature, 
precipitation and the atmospheric circulation) (Tawn 1990), 
but such analyses are not designed to investigate long lasting 
events, for which the time persistence is a key factor in the 
extreme (although using the so-called extremal index par-
tially alleviates this issue, e.g. Moloney et al. 2019).

Large Deviations Theory (LDT) is however the key sta-
tistical framework employed in statistical physics (Touchette 
2009) and has begun to gain momentum in climate sciences 
(Ragone et al. 2018; Galfi et al. 2021). In contrast to EVT, it 

provides asymptotic laws at the leading exponential order for 
extremes of sums of random variables. One of its applica-
tions is the path integral formalism in stochastic dynamical 
system (Martin et al. 1973; Janssen 1976; Dominicis 1976; 
Freidlin and Wentzell 1987) which uses the theory of large 
deviations to describe the dynamics leading to extremes as 
an optimal realisation of the noise. It predicts that, under 
mild hypotheses, the dynamics leading to extremes of any 
observable concentrates around a single most probable tra-
jectory, usually called the instanton, as the noise amplitude 
decreases (Chetrite and Touchette 2015; Dematteis et al. 
2019a; Grafke and Vanden-Eijnden 2019). Recent applica-
tions of instanton theory in complex systems have proved 
to give valuable insights in the typical dynamics leading to 
extremes (Bouchet et al. 2019; Finkel et al. 2021; Dubrulle 
et al. 2022; Fuchs et al. 2022). Dematteis et al. (2019b) pre-
sented an extension of this framework for extremes in sys-
tems with a general stochastic component. Lucarini et al. 
(2023) showed that this leads to a concentration of trajec-
tories leading to extremes around a typical one for non-sto-
chastic dynamical system with a physical invariant measure.

In this paper, we investigate the typicality of the dynam-
ics leading to extremes in a long simulation of a climate 
model. In particular, we address the question whether there 
is a concentration of trajectories leading to extreme 2 m air 
temperature events.

As a case study, we take the 2000 years pre-industrial 
control run of the IPSL-CM6A-LR Earth System Model 
(ESM) (Boucher et al. 2020). We examine the characteris-
tics of trajectories leading to heatwaves as their duration and 
intensity vary. We evaluate how typical the heatwaves are by 
examining the key dynamic factors that contribute to their 
formation. Lastly, we study how the dynamics change when 
the location at which the heatwaves are observed is altered.

This paper is organized as follows: in Sect. 2, we intro-
duce the methodology employed to isolate the dynamics 
leading to extremes and the normalized variance metrics 
used to measure convergence. Section 3 presents the results 
of the analysis, focusing first on one observable and then 
on three observables at different locations. In Sect. 4 we 
discuss the LDT framework in a non-stochastic dynamical 
system. Finally, the conclusions drawn from our analysis are 
presented in Sect. 5.

2 � Data and methods

2.1 � Climate model data

We use the output of the pre-industrial control run of the 
IPSL-CM6A-LR model (Boucher et al. 2020) for the Cou-
pled Model Intercomparison Project phase 6 (CMIP6) 
(Eyring et al. 2016). This simulation is 2000 years long and 
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represents a stationary climate with a CO2 concentration cor-
responding to pre-industrial levels. The model has a hori-
zontal atmospheric resolution of 2.5◦ in longitude and 1.3◦ in 
latitude. During the 2000 years, the global mean 2-meter air 
temperature of the Earth slightly drifts by 0.25K. We assume 
that this drift can be neglected when it comes to studying 
extremes in the midlatitudes, because we are interested in 
deviations that can exceed several K. We use the sea level 
pressure (SLP), upper level soil moisture (SM), air tem-
perature at 2-m (T2M), air temperature at 850 hPa (T850), 
geopotential height at 500 hPa (Z500) and the meridional 
component of the wind at 250 hPa (V250) fields. These vari-
ables are sampled with a daily frequency. Due to a technical 
issue, approximately 1/4 of the data for the Z500 variable 
are missing. In the following, we therefore present results 
for Z500 only for the dates available in our data set. We have 
checked that when restricting to the period when we have the 
Z500 variable available for the other variables do not affect 
the results. We therefore present the results for those other 
variables over the whole 2000 years.

2.2 � Extracting the typical dynamics

We define some mathematical notions first. Let us consider 
a chaotic dynamical system evolving continuously in time 
with x(t) ∈ ℝd its state vector at time t, where d is the num-
ber of dimensions needed to describe the system. We assume 
that x evolves according to the following ordinary differen-
tial equation

where b ∶ x ↦ b(x) ∈ ℝd defines the dynamics of the sys-
tem. In the following we always assume that the transients 
have died out and all trajectories considered are supposed to 
belong to the attractor of the system. We assume that there 
is a unique physical invariant measure � on this attractor. 
We are interested in the statistics of observables computed 
on the attractor. Observables are smooth functions of phase-
space variables F ∶ ℝ

d
→ ℝ which have a physical interest.

Our observables will be of the following type:

where f is also an observable and r ∈ ℝ is the size of the 
rolling mean window. In the following, f is the daily mean 
temperature over a specific area. For q ∈ ℝ , we define 
the set Ωq as the set of points x on the attractor such that 
Fr(x) ∈ [q, q + dq] . In other words, we are interested in the 
states of the system for which the value of the observable 
Fr is close to q, where q will correspond to extreme quan-
tiles of the distribution of Fr . Here we investigate the typical 

(1)
dx

dt
= b(x)

(2)Fr(xt) =
1

r ∫
r∕2

−r∕2

f (xt+t� )dt
�

state—also called the instanton—x̂q ∶= �[x ∣ x ∈ Ωq] con-
ditional on Fr(x) = q . To do so, we employ an instanton 
filtering procedure adapted from Grafke et al. (2013). It con-
sists of averaging independent events x taken from a long 
simulation of the dynamical system for which the value of 
the observable Fr(x) is close to an extreme level. To assess 
the convergence towards the typical state, we compare the 
conditional variance � [x ∣ x ∈ Ωq] to the unconditional vari-
ance � [x].

Contrary to Lucarini et al. (2023), we do not consider 
events above a certain level �[x ∣ Fr(x) ≥ q] . The rationale of 
this choice is twofold. First we want to investigate the con-
vergence properties for different values of q for a fixed num-
ber of independent events in each case. Second, if a large 
deviations principle applies for sufficiently extreme values 
of q, then the events for which Fr(x) ∼ q are exponentially 
favored compared to the ones with Fr(x) > q , therefore we 
should not expect a large difference between �[x ∣ Fr(x) ≃ q] 
and �[x ∣ Fr(x) ≥ q] . This is however a limit result and we 
may see some differences with a finite data set. Morevoer, 
we cannot a priori rule out the possibility of a non linear 
dependance of the dynamics �[x ∣ Fr(x) = q] with respect to 
q when reaching extremes. Therefore, the dynamical mecha-
nisms needed to reach high temperatures may be different 
than the ones to reach very high temperatures.

2.3 � Experimental set‑up

In the following, we consider four observables derived 
from T2M: T2M at three grid points situated in Southern 
(38–39◦ N, 5.25–3.75◦W), Western (49–50◦ N, 1.25–3.75◦ E) 
and Northern Europe (59–60◦ N, 13.75–16.25◦ E) and T2M 
averaged over a region extending in Western and Central 
Europe (46–53.5◦ N, 0–25◦E). These observables are named 
respectively S, W, N and WCE. We want to investigate the 
highest values reached by these observables, therefore we 
restrict the analysis to the three months of the meteorologi-
cal summer: June, July and August (JJA). Except specified 
explicitly, we do not consider detrended or deseasonalized 
variables. To investigate how the dynamics can change for 
longer events, we consider the extremes of the observable 
after applying a rolling mean window of r = 1, 5 and 15 
days. The size of these windows were chosen to investigate 
both short and long lasting heatwaves events.

We consider the time series of one given observable Fr 
among S, W, N and WCE regions during the summer months 
for a given rolling mean window r. For a quantile q� of a 
given order � of the empirical distribution of Fr , we select 
the pool of the n = 50 independent events xi for which the 
values of their observable Fr(xi) are the closest to the value 
of the quantile q� . In other words, we find the dates of the 
n-nearest neighbors of the quantile q� of the observable. 
These events are searched over any of the days in the JJA 
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months. To ensure that these events are independent one 
from another, we impose that for a nearest neighbor to be 
chosen, it must be separated by more than 15 days from any 
nearest neighbor already present in the pool. The choice of 
this timescale was made with regards to the typical chaotic 
timescale of the atmosphere (around 10 days). Our proce-
dure is equivalent to defining the set Ωq as:

for � as small as possible to ensure that the number of ele-
ments in Ω� is #Ω� = n . We consider the quantiles of order 
� = 0.75, 0.95, 0.99 and 0.999 of the empirical distribu-
tions of observables S, W, N and WCE. These quantiles are 
arbitrary and are chosen to ensure homogeneity between the 
different observables for which the extreme values may be 
very different.

Figure 1 presents the histograms of the empirical dis-
tributions of the four observables (rows) for the different 
rolling mean windows (columns). The vertical lines in color 
present the quantiles for the different orders considered. The 
horizontal lines of the same colors present the spread � of 
the observables for the points found with our procedure. For 
the smallest orders (0.75, 0.95 and 0.99), the spread is barely 
visible, which means that the values of the observable for 
points in Ω� are very close to the value of the quantile. For 

(3)Ωq�
∶= Ω� = {x ∣ Fr(x) ∈ [q� − �, q� + �]}

the order 0.999, the spread is bigger but still small compared 
to the standard deviation of the full empirical distribution.

For each value of the �-th order quantile, a given 
observable Fr and a rolling mean window r, we therefore 
consider fields (SLP, SM, T2M, T850, Z500 and V250) 
��,r,Fr

(�, �, t,m) that have four arguments: the longitude 
� and latitude � , the time t—where the time is expressed 
relative to the day t when the observable is such that 
Fr(xt) ≃ q� —, and the number m among the points in Ω� 
( m = 1, 2,… , n ). In the following we skip the �, r,Fr indices 
for simplicity, but note that the quantities introduced are 
always relative to a given value of this triplet. For any field 
� , we use the term composite to denote the average Âr

�
 of � 

over the points in Ω� and the rolling mean window r:

2.4 � Reduction of variance for extremes

To measure the clustering of points in Ω� , we compare the 
conditional variance � [x ∣ x ∈ Ωq] to the unconditional vari-
ance � [x] over the summer:

(4)Âr
�
(�, �, t) =

1

n

n∑
m=1

1

r

r∕2∑
t=−r∕2

�(�, �, t,m).

Fig. 1   Histograms of the observables and associated quantiles. Rows: 
observables derived from the T2M variable at three grid points 
situated in Southern Europe (S: 38–39◦ N, 5.25–3.75◦W), West-
ern Europe (W: 49–50◦ N, 1.25–3.75◦ E) and Northern Europe (N: 
59–60◦ N, 13.75–16.25◦ E) and over one grid box extending in the 

Western and Central Europe (WCE, 46–53.5◦ N, 0–25◦E). Columns: 
rolling mean windows for the computation of the observable of r = 1, 
5 and 15 days. The vertical bars show the value of the quantiles of 
order � of the time series for � = 0.75, 0.95, 0.99 and 0.999. The hor-
izontal lines show the spread of the observables for the points in Ω�
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where �m is the variance over the points in Ω� and 
�� r ,clim(�, �) is the climatological variance over the whole 
summer (JJA) of the field � after applying a rolling average 
with window r. The variance in Eq. 5 is normalized in the 
sense that it is compared to the variance observed over the 
whole summer. In the following, it is thus expressed in per-
centage. The lower the value of this percentage, the smaller 
the variance between the points in Ω� . If we were to select n 
days randomly over the full data set, we could expect to find 
a variance close to �� r ,clim (after the rolling average). There-
fore, the closer V̂r

�
 is to one (or 100%), the less specific is the 

dynamics of the averaged field Âr
�

 at (�, �, t) . The closer it 
is to zero, the more concentrated are the n points in Ω� . To 
test whether V̂r

�
 is significantly different than 1, we assume 

that the climatological variance is well estimated and we 
use a �2 test at the 5% level with the null hypothesis being 
that the unconditional variance is not significantly higher 
than the conditional variance. With n = 50 , this condition 
is equivalent to �Vr

𝜓
< 0.7.

We will note the normalized variance V̂r=1
�

(�, �, t) as 

Ṽ� (�, �, t) . We emphasize that in general V̂r
�
(�, �, t) is not the 

rolling mean of Ṽ� (�, �, t) over a window r. In order to have 
simple diagnosing metrics, we also average the Ṽ� variance 
spatially:

(5)V̂r
�
(�, �, t) = �m

[
1

r

r∕2∑

t=−r∕2

�(�, �, t,m)

]
∕ �� r ,clim(�, �)

(6)⟨Ṽ� (t)⟩ =
�

�,�

Ṽ� (�, �, t) cos(�) ∕
�

�,�

cos(�)

over either the Northern Hemisphere ( � ∈ [22.5◦ N, 90◦ N] 
and � ∈ [0◦ E, 360◦E]) or the Euro-Atlantic sector ( � ∈ 
[22.5◦ N, 70◦ N] and � ∈ [80◦ W, 50◦E]). For simplicity, we 
drop the index � in the following where it is not ambiguous.

3 � Results

3.1 � Concentration of trajectories leading 
to extreme temperatures in Western Europe

In this section and the next one we present the results for 
the extremes of T2M at the grid point in Western Europe 
(observable W). Figure 2 shows the composite maps of 
anomalies of T2M and Z500 over the Euro-Atlantic sector 
for the n = 50 points for which the values of their observable 
is the closest to the quantile and over the rolling window 
r = 5 days for the four quantiles considered. The anomalous 
T2M values and their spatial extension increase as the �
-th order quantile increases. As � increases, the deviation 
in Z500 also increases, reaching a maximum of 160 m 
at the center of the high-pressure system located above 
North-Western Europe. There is also a warm anomaly in 
Eastern North-America and a cold anomaly in Western 
Russia. Figure 11 in annex shows the same results over the 
whole Northern Hemisphere. Anticyclonic anomalies are 
present all over the Hemisphere, with a distinct wave num-
ber 4 hemispheric pattern at mid-troposphere for the highest 
quantiles. These structures coincide with warm anomalies 
at the ground.

Figure 3 shows in contours the composite T2M field and 
in colors the normalized variance V̂r . For all values of � , 

Fig. 2   Composite maps Âr of anomalies of T2M and Z500 for increas-
ing �-th order of the quantile of the W observable’s empirical distri-
bution. The figure is computed for a rolling mean window of r = 5 

days. Colors: anomaly of air temperature at 2 m (T2M (K)). Contours: 
anomaly of geopotential height at 500 hPa (Z500 (m)). Anomalies are 
computed with respect to the JJA average. The green box displays the 
location where the observable is computed
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the lowest values of the normalized variance are located in 
Western Europe, i.e. around the location where the observa-
ble is computed. When � increases, the normalized variance 
decreases: for example, the normalized variance exceeds 
60% in most of the North Atlantic region for � = 0.75 , and 
it decreases to less than 40% for � = 0.999 . Figure 4 pre-
sents the same analysis for Z500. The extension of regions of 
highest variance also decreases when increasing the order � . 
The regions with the lowest variance is again centered at the 
location where the observable is computed. For � = 0.999 

for example, a large region of very low normalized variance 
( �Vr < 20 %) embraces most of Western Europe. The decrease 
of variance is not uniform, with high variance remaining 
downstream of the anticyclonic region and a smaller local-
ized region west of the Iberian peninsula. We come back to 
this latter structure below. We finally remark that on Fig. 4, 
for the highest quantiles the composite Z500 field shows that 
the large anticyclone over Western Europe is not centered 
just above the location of the observable, but is rather situ-
ated to its south-east.

Fig. 3   Composite Âr (contours, ◦ C) and normalized variance V̂r 
(colors) of the T2M field for increasing �-th order of the quantile of 
the W observable’s empirical distribution. The figure is computed 
for a rolling mean window of r = 5 days. The normalized variance is 

computed after averaging over the rolling window and is expressed in 
%. The blank regions correspond to a normalized variance not signifi-
cantly different than 100% at the 5% level. The green box displays the 
location where the observable is computed

Fig. 4   Composite Âr (contours, m) and normalized variance V̂r 
(colors) of the Z500 field for increasing �-th order of the quantile of 
the W observable’s empirical distribution. The figure is computed 
for a rolling mean window of r = 5 days. The normalized variance is 

computed after averaging over the rolling window and is expressed in 
%. The blank regions correspond to a normalized variance not signifi-
cantly different than 100% at the 5% level. The green box displays the 
location where the observable is computed
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Figures 12 and 13 in annex display the same analysis 
over the whole Northern Hemisphere. The reduction of 
variance is seen over remote regions of the atmosphere, 
for example with a region of low variance ( �Vr < 20% ) in 
the North-Eastern Pacific for � = 0.999 for Z500 (Fig. 13 
panel d). We emphasize that for all those maps, the number 
of points in Ω� is always the same ( n = 50 for T2M, n ∼ 30 
for Z500 due to the missing data). The outcome shown 
implies that the dynamics leading to extreme temperatures 
concentrates within a large geographical region.

The results for r = 1 day and r = 15 days for the com-
posite anomaly maps of T2M and Z500 are similar to 
Fig. 2 and are thus not shown. As can be seen in Figs. 14 
and 15 in annex for r = 1 day and in Figs. 16 and 17 in 
annex for r = 15 days, there is also a reduction of vari-
ance when � increases but the results depend on r. The 
decrease of variance is stronger for higher values of r. This 
suggests that longer extremes of temperatures tend to be 
more typical than shorter ones (Galfi and Lucarini 2021). 
We also note that the region of high variance situated on 
the South-West of the anticyclone is not present for r = 15 
(Fig. 17). It is not clear however whether this is the result 
of a different dynamics for longer extremes and we inves-
tigate this point further below.

The analyses presented so far support the typicality inter-
pretation of extreme events: the higher the value of the quan-
tile q� , the stronger the concentration of trajectories reaching 
this quantile around a single trajectory. To check whether 
our visual inspection is correct, we present in Fig. 5 the 
temporal evolution of the normalized variance ⟨Ṽ(t)⟩ aver-
aged over both the Euro-Atlantic sector (plain lines) and the 
entire Northern Hemisphere (dashed lines) from t = −15 to 
t = +15 days with respect to the event for all the variables 
and all the rolling windows r. The general picture drawn 
above is validated by the results presented in this figure: 
overall, the higher the value of the order � for the quantiles 
of the observable empirical distribution, the smaller the 
value of the normalized variance ⟨Ṽ(t)⟩ . This result holds 
when averaging over either only the Euro-Atlantic sector—
where the observable is computed and the synoptic situation 
is the most relevant for the event—or the entire Northern 
Hemisphere. However, when we focus on the details of the 
different panels, we see that this behavior is less clear for 
some variables. The convergence is clear for T2M (panels 
a–c) and T850 (panels (m–o)) for which the normalized vari-
ance ⟨Ṽ(t)⟩ is a decreasing function of � for almost all val-
ues of t. For dynamical variables such as Z500, we see that 
the convergence is stronger for higher values of the rolling 
window (compare for example panel f and panel d). This 
could be explained by the fact that a long extreme needs a 
persistent anticylonic circulation, which is more likely to 
be typical than for a short extreme. For the SM and SLP 
variables the situation is the most blurred. Higher values of 

� broadly correspond to smaller values of the normalized 
variance ⟨Ṽ(t)⟩ , but the ordering of the quantiles changes 
with both r and t.

We also note that the dates at which these extremes are 
reached are less dispersed around the peak of the T2M sea-
sonality when � increases: the standard deviation in the 
calendar days of the points in Ω� goes from 23.1 days for 
� = 0.75 to 15.5 days for � = 0.999.

In Fig. 4 there is a small isolated region of high variance 
situated west of the Iberian peninsula for all quantiles. We 
investigated this discrepancy by looking at individual events. 
It turns out that the synoptic dynamics at the mid-tropo-
sphere associated with some of the high temperature events 
are characterized by the presence of a cut-off low around 
this location. Table 1 in Appendix presents the percentage of 
such events. The presence of a cut-off low was investigated 
in a semi-objective way by looking at the existence of an 
isolated minimum of the stream function at 500 hPa located 
within [ −30◦ S, +5◦ N] and [ −40◦ W, +0◦ E] from the location 
where the observable W is computed and not embedded in 
the upper-level jet (250 hPa) (Muñoz et al. 2020). We how-
ever note that it is sometimes difficult to distinguish between 
a true cut-off low and a large meander of the jet caused by a 
deep, almost isolated, low pressure system over the Atlantic. 
The percentage of cut-off lows vary between 15 to 30%, with 
an average around 20%, depending on the quantiles and the 
size of the rolling mean window considered but without any 
clear trend (the differences may be due to the limited sample 
size). These cut-offs are not visible on the averaged maps 
(e.g. Fig. 4) not only because they represent only 20% of 
the events but also because their characteristic size is of the 
same order as the variance in the location of their center. 
Therefore even when considering only events with a cut-
off low, they tend to be averaged out. The fact that even for 
very high quantiles there is a substantial amount of events 
with such a cut-off (around 20%) seems in contradiction with 
the unique path hypothesis. It therefore suggests that there 
may be at least a bi-modality in the typical dynamical paths 
to reach extremes for the W observable. We however note 
that if there are indeed two such paths, the convergence of 
trajectories that we showed above using all trajectories sug-
gests that they are close to one another in the phase space.

3.2 � Typical dynamics of extreme temperatures 
in Western Europe

In this section, we briefly present the key dynamical features 
associated to the instanton leading to extremes of observable 
W in the IPSL-CM6A-LR model. The concept of instanton 
is dynamic and it would be more rigorous to speak of the 
instanton as a function t ↦ �[xt ∣ F(x0) = q] . For practical 

reasons, we present here only the composites Âr and we refer 
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the reader to supplementary material for the videos of the 
composites t ↦ Âr=1(t).

Figure 6 shows composites (colors) and zones of high 
variance ( �Vr > 70% , hatches) for the other variables studied: 
anomaly of soil moisture (SM, panel a), anomaly of sea-level 
pressure (SLP, panel b), air temperature at 850 hPa (T850, 
panel c) and meridional wind speed at 250 hPa (V250, panel 
d). This figure is drawn for r = 5 days and � = 0.999.

Panel a shows the large area of anomalously dry soils over 
most of Western and Central Europe. The small variance 
over this region demonstrate the key importance of local 
dry soils for reaching very high temperatures. The conver-
gence is stronger to the east of the location of the observable, 
which agrees with the results of Zschenderlein et al. (2019). 
This pattern is similar to the one found by Faranda et al. 
(2022) using the SPEI index (Beguería et al. 2014). We also 

Fig. 5   Evolution of the normalized variance ⟨Ṽ(t)⟩ averaged over 
the Euro-Atlantic sector (plain lines) and the  Northern Hemisphere 
(dashed lines) for the different variables (W observable). The normal-

ized variance is expressed in %. The colors show the �-th order quan-
tile of the observable empirical distribution. The time is expressed 
relative to the day when the observable is such that Fr(xt) ≃ q� . The 
gray horizontal dashed line shows the 75% level
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note that when checking at t = −15 d (i.e. 15 days before the 
event, not shown), the anomaly is still strong ( ≃4 kg/m2 ) 
and the variance still small ( �V < 30% ), which supports our 
preceding statement for the role of dry soils. Contrary to 
other fields (Fig. 6 panels b–d), the region of low variance 
is concentrated around the observable and do not extend 
over large regions.

Panel b shows a large positive anomaly of SLP north-
east of the observable location and the low-level thermal 
low associated with the heatwave in Western Europe. The 
normalized variance is low over these regions. The positive 
anomaly situated above the Western Atlantic ocean may not 
be a relevant feature of the typical dynamics because the 
variance is high at this place, contrary to the anomalous low 
pressure over Greenland. Panel c shows the composite map 
of T850. The large intrusion of warm air from the south is a 
key feature of the dynamics. Even though the variance is low 
over mainland Western Europe, we detect a region of high 
variance extending from the west of the Iberian peninsula to 
Ireland and southern Norway and Sweden, i.e. to the west-
ern flank of the anticylonic structure (Fig. 4 panel d). This 
tongue of high variance is located at the highest gradient of 
T850. It is therefore difficult to decide between the two fol-
lowing explanations for this feature: either different dynami-
cal mechanisms between the points in Ω� (e.g. advection of 
warm air from the tropics) or a slightly displaced anticyclone 
which, combined with the strong gradients, would display 
such a strong variance tongue.

Finally, panel d shows the dynamics in the upper tropo-
sphere with the meridional wind speed at 250 hPa. The 
situation is characterized by a strongly meridional circula-
tion west of the observable, which is consistent with the 
anticyclonic situation presented in Fig. 2. The regions of 

high variance are more extended than for the other vari-
ables. Some regions of high variance also coincide with 
regions with the highest gradients of V250, e.g. west of 
the positive anomaly centered on Ireland and above the 
Balkans and the Black Sea. The latter suggests the pres-
ence of an arm of the jet stream oriented to the north. We 
checked this explanation using the zonal wind speed at 
250 hPa (not shown) and found that the synoptic situation 
over the event corresponds indeed to a splitting of the jet 
caused by the large blocked anticyclonic situation over 
Western Europe.

Figure 7 presents the same analysis over the entire North-
ern Hemisphere. For soil moisture (panel a), the only region 
outside the Euro-Atlantic sector where there are important 
anomalies and low variance is the South-Western coast of the 
USA. This region is also characterized by positive T2M tem-
perature anomalies as can be seen in Fig. 11. Panel b shows 
a good agreement among points in Ω� for the low-level low 
over Greenland and the Ural. We also notice a positive SLP 
anomaly over the North-Pacific, but this region is associated 
with high variance. Apart from the high variance tongue in 
Western Europe, and high variance around the Arctic region, 
panel c shows a good agreement between points in Ω� for the 
T850 field, including over most of the Atlantic and Pacific 
oceans. Finally, panel d shows a wave pattern 6–7 extending 
over the entire Northern Hemisphere upper-troposphere. It 
should be noted, however, that the anomaly is stronger and 
the variance is smaller in the upstream area compared to the 
downstream area of the observable. Specifically, there is lit-
tle structure visible above the Western Pacific region. This 
situation may be the result of either an hemispheric quasi-
stationary pattern (Coumou et al. 2014; Kornhuber et al. 
2020) or a transient Rossby wave packet (Fragkoulidis et al. 

Fig. 6   Composite maps Âr for SM, SLP, T850 and V250 for the 
quantile of order � = 0.999 of the W observable’s empirical distri-
bution. The hatched areas correspond to �Vr > 70% . The figure is 
computed for a rolling mean window of r = 5 days. Anomaly of a 

soil moisture (SM), b sea-level pressure (SLP) and c temperature at 
850 hPa (T850) with respect to their average over the summer (JJA), 
and d meridional wind speed at 250 hPa (V250). The green box dis-
plays the location where the observable is computed
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2018) depending on the points in Ω� , which may explain the 
relatively higher variance associated with this field.

Up to this point we analyzed the typical dynamics 
�[x ∣ Fr(x) = q] conditional on the value reached by an 
observable Fr . We demonstrated the concentration of 
the trajectories as the value q of the observable reaches 
extremes. We can now sketch the mechanisms associated 
with extreme temperatures at the grid point considered in 
Western Europe (observable W). The mechanisms summa-
rized in the reviews of Perkins (2015), Horton et al. (2016) 
and Domeisen et al. (2022a) are present. To ensure very 
high temperatures, one needs dry soils, a large mid-trop-
osphere anticyclone centered slightly to the south-east of 
the location of the extreme and an upper level Rossby wave 
train of 6–7 wave number. This situation ensures both the 
advection of warm air from the south at the west flank 
of the anticyclone, subsidence and associated adiabatic 

heating at the center of the anticyclone, and clear skies 
caused by the high-pressure system that allows for more 
radiative heating of the lowest layer of the atmosphere in 
conjunction with reduced water evaporation.

3.3 � Results for the other locations

In this section we present the same analysis applied to the 
three other observables: T2M at two grid-points situated 
in the south (observable S) and north of Europe (observ-
able N), and T2M averaged over a large area in Western 
and Central Europe (WCE observable). The results for the 
evolution of their normalized variance ⟨Ṽ(t)⟩ is presented 
in Figs. 18, 19 and 20 respectively in annex. As above, the 
general picture of decreasing variance with increasing � is 
still valid but there are substantial inter-location variations. 
We note for example that the dynamical signal represented 

Fig. 7   Composite maps Âr for SM, SLP, T850 and V250 for the 
quantile of order � = 0.999 of the W observable’s empirical dis-
tribution. The hatch areas correspond to �Vr > 70 %. The figure is 
computed for a rolling mean window of r = 5 days. Anomaly of a 

soil moisture (SM), b sea-level pressure (SLP) and c temperature at 
850 hPa (T850) with respect to their average over the summer (JJA), 
and d meridional wind speed at 250 hPa (V250). The green box dis-
plays the location where the observable is computed
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by the variables Z500, SLP and V250 is much clearer for 
locations farther to the North (Fig. 18 vs Fig. 19 panels d–f 
for example). On the contrary, soil moisture plays a bigger 
role for the locations situated farther to the south (Fig. 18 
vs Fig. 19 panels g–i). This suggests that extremes of tem-
perature at places situated to the south are more “local” in 
the sense that they require less large scale organized circu-
lation to be reached, which is consistent with the results of 
Sousa et al. (2018) who showed that a ridge situation better 
described the occurrence of heatwaves in southern Europe 
than the blocked situation as in northern Europe. This inter-
pretation however needs to be validated at other locations 
and in particular may arise simply as a result of the fact that 
the Iberian peninsula is surrounded by water masses. We 
also note that these dynamical differences between lower 
and higher latitudes may be related to the skewness differ-
ences in the distribution of the summer temperature between 
observables (Fig. 1).

The observable over a large area (observable WCE) has a 
similar behavior to the W and N observables, with a stronger 
concentration of trajectories for dynamical variables than for 
soil moisture. We also note that the absolute values of the 
normalized variances for this observable are smaller than 
the one for the observable W which is situated around the 
same latitudes. It suggests that the typicality of the dynamics 

leading to anomalies of T2M over a large geographical area 
is stronger than for a localized observable. This seems rea-
sonable in so far as it is less likely to have anomalies over 
a larger than a smaller area situated inside the larger one, 
hence the smaller number of synoptic conditions which can 
lead to an extreme for an extended observable.

Figure 8 presents the composite maps and the normalized 
variance maps for the S observable for the order � = 0.999 
and a rolling mean window of r = 5 days. The situation over 
the North-Hemisphere is presented in annex in Fig. 21. 
The synoptic situation is characterized by a large anticy-
clone centered south-east of the observable (panel b) and a 
positive SLP anomaly extending from Algeria to Northern 
France (panel d). The upper-level circulation displays a short 
wavelength Rossby wave (panel f, wave number 6–7). We 
however note that its amplitude is smaller than for the W 
observable. As previously, this dynamics leads to high T2M 
and T850 values and it has been anticipated by dry soils over 
most of Southern Europe and Northern Africa. The variance 
is lowest close to the location where the observable is com-
puted. We note a large region of high variance downstream 
of the observable for V250 (panel f), but upstream for SLP 
and Z500 (panels b and d). As for the W observable, we see 
a high variance region at the west of the maximum gradients 
of T850 (panel e). The percentage of cut-offs associated with 

Fig. 8   Composite maps Âr for T2M, Z500, SM, SLP, T850 and V250 
for the quantile of order � = 0.999 of the S observable’s empirical 
distribution. The hatch areas correspond to �Vr > 70 %. The figure is 
computed for a rolling mean window of r = 5 days. Anomaly of a air 
temperature at 2-m (T2M), b geopotential height at 500 hPa (Z500), 

c soil moisture (SM), d sea-level pressure (SLP) and e temperature at 
850 hPa (T850), and f meridional wind speed at 250 hPa (V250). The 
anomalies are computed with respect to their average over the sum-
mer (JJA). The green box displays the location where the observable 
is computed
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these events (Table 1) is between 15 and 30%, similar to the 
W observable.

Figure 9 presents the same analysis for the N observ-
able. The situation over the North-Hemisphere is presented 
in annex in Fig. 22. The synoptic situation is characterized 
by an anticyclone centered south of the observable (panel 
b), positive anomalies of SLP north of the observable (panel 
d) and a large amplitude Rossby wave at 250 hPa (panel f). 
The soil moisture situation (panel c) is almost the opposite 
of the one of the observable S, with a moist Southern Europe 
and a dry Northern Europe. The dry soils over Northern 
Europe, as for the region of anomalous T2M (panel a), 
extends over a large region encompassing Northern Europe 
and the Scandinavian and Baltic areas. This is in opposition 
to the extension of the anomaly in Fig. 8 panel a, which is 
confined to the Iberian peninsula. We also note the region 
of low variance associated with strong negative anomaly of 
soil moisture east of the observable (panel c) (Zschenderlein 
et al. 2019). The percentage of cut-offs is similar to the W 
and S observables but when looking at individual events we 
remark that a majority (> 50%) of these cut-offs are embed-
ded in a so-called modon structure (Butchart et al. 1989) 
with a blocking high above Scandinavia and a symmetric 
low above the eastern Mediterranean, splitting the jet into 

two branches. Again, for the reasons explained above, these 
structures are averaged out on composite maps.

Figure 10 presents the results for the WCE observable. 
The situation over the Northern Hemisphere is presented in 
annex in Fig. 23. Contrary to the observables S, W and N, 
WCE has a large spatial extension as it encompasses most of 
West and Central Europe. In this case the synoptic situation 
is characterized by an anticyclone centered just above the 
observable (panel b), contrary to the precedent ones. The 
upper-level circulation looks very similar to the previous 
ones, with a short wavelength Rossby wave (panel f, wave 
number 6–7). The soil moisture anomalies (panel c) extend 
over a large region of Northern, Central and Eastern Europe 
and this feature is consistent across points in Ω� . We also 
note a region of high variance above Southern Sweden for 
T850 (panel e), which is a feature similar to what was found 
for observable W (cf. Fig. 6 panel c). This feature could 
reflect different advecting dynamics of warm air above the 
boundary layer. The percentage of cut-offs is much higher 
than for the other observables (around 50%). As for the N 
observable most of these cut-offs are embedded in a modon 
structure.

Fig. 9   Composite maps Âr for T2M, Z500, SM, SLP, T850 and V250 
for the quantile of order � = 0.999 of the N observable’s empirical 
distribution. The hatch areas correspond to �Vr > 70 %. The figure is 
computed for a rolling mean window of r = 5 days. Anomaly of a air 
temperature at 2-m (T2M), b geopotential height at 500 hPa (Z500), 

c soil moisture (SM), d sea-level pressure (SLP) and e temperature at 
850 hPa (T850), and f meridional wind speed at 250 hPa (V250). The 
anomalies are computed with respect to their average over the sum-
mer (JJA). The green box displays the location where the observable 
is computed
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4 � Discussion

Our results show that for all the observables studied here 
the variance between trajectories reaching the extreme 
decreases as the level of extremeness of the observable 
increases. This indicates that there is a concentration of 
trajectories around a most probable one for extremes of 
2-m air temperature in the IPSL-CM6A-LR model. One 
may wonder why it should be the case. In classical pres-
entations of instanton dynamics (e.g. Grafke and Van-
den-Eijnden 2019), the system is supposed to be explic-
itly stochastic and the probability of an observable can 
be expressed as a path integral. The path integral then 
becomes dominated by the contribution of minimum action 
trajectories in the limit of vanishing noise. In this frame-
work, the variance around the most probable path reaching 
an extreme level is of the magnitude of the variance of the 
noise. There is therefore no reason to expect such a vari-
ance decrease. In deterministic chaotic systems—such as 
climate models—with a physical measure � , Dematteis 
et al. (2019b) and Lucarini et al. (2023) showed that one 
can also find a large deviation principle where the role of 
the small parameter is played by the increasing thresholds 

reached by an observable. We follow here the presentation 
of Lucarini et al. (2023).

We consider the chaotic dynamical system defined in 
Sect. 2, with a unique physical invariant measure � and an 
attracting set Ω . We are interested on extremes of observa-
bles F ∶ Ω → ℝ . For q ∈ ℝ , we consider the set Ω̃q as the 
set of points x on the attractor Ω such that F(x) ≥ q . Then, 
under minimal assumptions (Dematteis et al. 2019b), one 
can write:

where ≍ means that the ratio of the logarithms of both sides 
tends to unity when q → +∞ . Here q plays the role of the 
large deviations parameter even though it does not appear 
explicitly as such in Eq. (7). The functional I is called the 
rate function and is given by the Legendre transform:

of

(7)ℙ(F(x) ≥ q) = 𝜇(Ω̃q) ≍ exp

(
−min
x∈Ω̃q

I(x))

)

(8)I(x) = max
p

(⟨p, x⟩ − S(p))

Fig. 10   Composite maps Âr for T2M, Z500, SM, SLP, T850 and 
V250 for the quantile of order � = 0.999 of the WCE observable’s 
empirical distribution. The hatch areas correspond to �Vr > 70 %. The 
figure is computed for a rolling mean window of r = 5 days. Anomaly 
of a air temperature at 2-m (T2M), b geopotential height at 500 hPa 

(Z500), c soil moisture (SM), d sea-level pressure (SLP) and e tem-
perature at 850 hPa (T850), and f meridional wind speed at 250 hPa 
(V250). The anomalies are computed with respect to their average 
over the summer (JJA). The green box displays the location where the 
observable is computed
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the cumulant generating function of x under the measure 
� with ⟨⋅ , ⋅⟩ the inner product in ℝd . The large deviation 
principle is thus based on the uncertainty of the points in Ω 
which are distributed according to the measure �.

When q → +∞ in Eq. (7), the probability is exponentially 
dominated by the point x̂ which minimizes the rate function: 
�x = argminx∈Ω̃q

I(x) . The minimizer x̂ represents physically 
the state with the maximum likelihood of realization. Under 
the stated conditions, the probability measure accumulates 
near x̂ : this most likely of the least likely states is usually 
called the instanton. The physical intuition behind this result 
is the following: because extremes of an observable are rare 
(i.e. have low probability), the system has a set of paths with 
small probability measure in the phase space to reach those 
extremes. If the system had many paths to reach the 
extremes, then these would not be rare. This idea of unique-
ness of limit behaviors in a dynamical system is reminiscent 
of the uniqueness of the limit distribution in EVT (Coles 
et al. 2001).

In our context, the long simulation of the model gives an 
empirical probability distribution for the states of the system 
in the phase space and the instanton can therefore be con-
sidered as the optimal initial conditions defining a trajectory 
which leads to the intense heatwave. Although we have no 
means to demonstrate that the average trajectories shown in 
this work correspond to the true instantons, the conditional 
dynamics sampled with the method presented here may be 
considered as a reasonable approximation. The long simula-
tion of the model acts as a random sampling of states distrib-
uted according to the measure � of the system. The fact that 
the probability measure concentrates around a most probable 
state for high thresholds q implies that states reaching the 
threshold will be on average closer to the most probable 
state when the threshold increases. Hence, the mean distance 
from this state—measured by our normalized variance—will 
decrease with increasing threshold.

5 � Conclusions

In this paper we have investigated the typicality of the 
dynamics leading to extreme events using air temperature at 
2-m (T2M) at four locations in Europe in the IPSL-CM6A-
LR model (Boucher et al. 2020) pre-industrial control run 
as our observables of interest. Using the 2000-year simula-
tion, we employed an instanton filtering procedure (Grafke 

(9)S(p) = log∫Ω

e⟨p,x⟩�(dx)
et al. 2013) consisting in averaging trajectories which reach 
a similar extreme value of these observables.

We have shown that the variance between trajectories 
reaching the extreme decreases as the level of extremeness 
of the observable increases. In other words, the more intense 
the extreme of T2M, the more likely that the trajectories 
reaching this extreme all look the same. We demonstrated 
this convergence on all variables considered: air tempera-
ture at 2-m (T2M), geopotential height at 500 hPa (Z500), 
upper level soil moisture (SM), sea-level pressure (SLP), 
temperature at 850 hPa (T850) and meridional wind speed 
at 250 hPa (V250) for a grid point observable in Western 
Europe (observable W). Remarkably, the variance decreases 
even at places far from the location of the observable, which 
suggests a hemispheric dynamics leading to very intense 
heatwaves. We also showed a stronger decrease of variance 
for higher values of the rolling mean window r, indicating 
that the typicality is more easily reached when looking at 
longer time averages as suggested by Lucarini et al. (2023).

The instanton dynamics found with our analysis is con-
sistent with the mechanisms identified by previous literature 
for heatwaves dynamics in mid-latitudes (Perkins 2015; Hor-
ton et al. 2016; Domeisen et al. 2022a). In the IPSL-CM6A-
LR model with a pre-industrial CO2 level, very high air tem-
perature at 2-m are reached by a combination of dry soils, a 
large mid-troposphere anticyclone and an upper level Rossby 
wave of 6–7 wave number. This situation ensures both the 
advection of warm air from the south at the west flank of the 
anticyclone over the whole troposphere, subsidence, asso-
ciated adiabatic heating, and clear skies which favors the 
radiative heating of the lowest layers of the atmosphere in 
combination with reduced water evaporation.

We investigated the instanton hypothesis for three other 
observables: T2M at two grid points situated in the south 
(observable S) and north (observable N) of Europe and T2M 
averaged over an area covering most of Western and Central 
Europe (observable WCE). We found a similar convergence 
mechanism of different trajectories, but with some discrep-
ancies. The convergence of variance is much stronger for 
observable N than observable S for dynamical variables 
(SLP, Z500 and V250), and also stronger for observable 
WCE than observable W for most variables. We showed that 
the global dynamics described above is similar for reach-
ing extremes at these locations. Overall we found that the 
instanton hypothesis is consistent with our results, but the 
convergence is stronger for observable farther to the north, 
observables computed on extended spatial locations and 
for longer extremes (higher values of the rolling mean win-
dow r). We also investigated the local discrepancies on the 
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convergence of variance and found that a substantial amount 
of dynamical paths (around 20% for the grid point observa-
bles) are associated to the presence of cut-off lows. This 
suggests that there may be a multi-modality in the dynami-
cal paths reaching very intense hot events. This is however 
not clear what are the precise effects—either dynamical or 
thermodynamical—of the presence of these cut-offs on the 
intensity of the observed heatwaves.

The observed discrepancies in the decrease of the vari-
ance for some variables at certain location however do not 
allow to disprove the instanton hypothesis. Indeed, with an 
order � = 0.999 for the quantile of the observable’s empiri-
cal distribution over the JJA months and 2000 summers, it 
corresponds to roughly choosing n = 50 heatwaves with a 
return time around 40 years. This amount of data is greater 
than what has been recorded through observations since 
the start of the satellite era. Nonetheless, this may not be 
sufficient to ensure full convergence and this could explain 
why the variance remain high at certain locations. A much 
longer data set would be needed to investigate the dynam-
ics leading to more extreme temperatures, especially daily 
records. For such very intense events, the bi-modality sug-
gested here may disappear. Even if our analysis suggests 
that very high extremes are reached by a strengthening 
of the mechanisms leading to high extremes, it cannot be 
completely ruled out that the mechanisms can change if 
one wants to reach even higher values. One possible expla-
nation could be the release of latent heat from tropical air 
in conjunction with an atmospheric river over the North 
Atlantic, which seems to be one of the reinforcing struc-
tures of the 2021 North-Western America heatwave (Qian 
et al. 2022; Lin et al. 2022; Mo et al. 2022). To the best of 
our knowledge, such a dynamics has never been observed 
for heatwaves in Western Europe.

In this paper we did not study long term potential precur-
sors of heatwaves such as anomalous sea surface tempera-
ture (SST) patterns or large-scale modes of climate vari-
ability (Domeisen et al. 2022a). Anomalous SST patterns 
are known to be present in observed heatwaves (Black and 
Sutton 2007; Duchez et al. 2016; McKinnon et al. 2016), 
and a convergence of the surface oceanic dynamics to reach 
extreme land temperature is therefore likely in climate mod-
els. It may also be the case for large-scale modes of climate 
variability such as the El Nino-Southern Oscillation (ENSO) 
(Martija-Díez et al. 2021), the Atlantic Multidecadal Oscilla-
tion (AMO) or the Pacific Decadal Oscillation (PDO). These 
processes are nonetheless suggested by the large regions of 

low variance for T2M above the Atlantic and the Pacific 
oceans found with our analysis.

One may wonder how the paradigm of the typical 
dynamics leading to heatwaves is consistent with the 
presence of different clusters of heatwaves demonstrated 
by several studies on empirical data (e.g. Stefanon et al. 
2012; Gibson et al. 2017; Wang et al. 2018; Keellings and 
Moradkhani 2020; Mondal and Mishra 2021). As we have 
shown here, the typical dynamics highly depends on the 
observable considered. It may therefore be possible that 
the typical dynamics leading to extremes of neighboring 
grid points is very similar and changes dramatically when 
crossing relevant physical barriers, such as mountains 
(Lucarini et al. 2023). Moreover, if one considers less 
extreme values of the distribution of grid point observa-
bles, it is possible that the typicality is not reached for 
this observable but it may be reached for another observ-
able encompassing a broader region. One could therefore 
compare the event observed to the typical events for the 
observable which maximizes its spatiotemporal rarity as 
proposed by Cattiaux and Ribes (2018) in the context of 
attribution of extreme events.

Despite the lack of data for extremely rare events, 
the typical dynamics hypothesis offers a significant sim-
plification by predicting that studying such events is 
equivalent to studying a single trajectory (assuming that 
their is no multi-modality). Therefore, this framework is 
encouraging for gaining predictive power on the dynamics 
leading to extreme events and it may explain why summer 
heatwaves are among the most predictable meteorological 
extremes on subseasonal timescales (Vitart and Robertson 
2018; Vitart et al. 2019; Domeisen et al. 2022b). Here 
we studied the extremes of air temperature close to the 
surface. For other variables of interest our preceding state-
ment of the validity of the instanton hypothesis should 
also be tested. More generally, this paper documents a 
method to study the dynamics leading to extreme events 
in non-equilibrium physical systems. Our framework 
suggests a connection between the statistical method of 
studying extreme events and the in-depth examination of 
specific events through case studies.

Appendix A: Additional figures

See Figs. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 
23 and Table 1.
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Fig. 11   Composite maps Âr of anomalies of T2M and Z500 for 
increasing �-th order of the quantile of the W observable’s empiri-
cal distribution. The figure is computed for a rolling mean window of 

r = 5 days. Colors: anomaly of T2M (K). Contours: anomaly of Z500 
(m). Anomalies are computed with respect to the JJA average. The 
green box displays the location where the observable is computed
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Fig. 12   Composite Âr (contours,  ◦ C) and normalized variance V̂r 
(colors) of the T2M field for increasing �-th order of the quantile of 
the W observable’s empirical distribution. The figure is computed 
for a rolling mean window of r = 5 days. The normalized variance is 

computed after averaging over the rolling window and is expressed in 
%. The blank regions correspond to a normalized variance not signifi-
cantly different than 100% at the 5% level. The green box displays the 
location where the observable is computed
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Fig. 13   Composite Âr (contours,  m) and normalized variance V̂r 
(colors) of the Z500 field for increasing �-th order of the quantile of 
the W observable’s empirical distribution. The figure is computed 
for a rolling mean window of r = 5 days. The normalized variance is 

computed after averaging over the rolling window and is expressed in 
%. The blank regions correspond to a normalized variance not signifi-
cantly different than 100% at the 5% level. The green box displays the 
location where the observable is computed
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Fig. 14   Composite Âr (contours,  ◦ C) and normalized variance V̂r 
(colors) of the T2M field for increasing �-th order of the quantile of 
the W observable’s empirical distribution. The figure is computed for 
a rolling mean window of r = 1 day. The normalized variance is com-

puted after averaging over the rolling window and is expressed in %. 
The blank regions correspond to a normalized variance not signifi-
cantly different than 100% at the 5% level. The green box displays the 
location where the observable is computed

Fig. 15   Composite Âr (contours,  m) and normalized variance V̂r 
(colors) of the Z500 field for increasing �-th order of the quantile of 
the W observable’s empirical distribution. The figure is computed for 
a rolling mean window of r = 1 day. The normalized variance is com-

puted after averaging over the rolling window and is expressed in %. 
The blank regions correspond to a normalized variance not signifi-
cantly different than 100% at the 5% level. The green box displays the 
location where the observable is computed
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Fig. 16   Composite Âr (contours,  ◦ C) and normalized variance V̂r 
(colors) of the T2M field for increasing �-th order of the quantile of 
the W observable’s empirical distribution. The figure is computed for 
a rolling mean window of r = 15 days. The normalized variance is 

computed after averaging over the rolling window and is expressed in 
%. The blank regions correspond to a normalized variance not signifi-
cantly different than 100% at the 5% level. The green box displays the 
location where the observable is computed

Fig. 17   Composite Âr (contours,  m) and normalized variance V̂r 
(colors) of the Z500 field for increasing �-th order of the quantile of 
the W observable’s empirical distribution. The figure is computed for 
a rolling mean window of r = 15 days. The normalized variance is 

computed after averaging over the rolling window and is expressed in 
%. The blank regions correspond to a normalized variance not signifi-
cantly different than 100% at the 5% level. The green box displays the 
location where the observable is computed

Table 1   Percentage of cut-off lows in the dynamics leading to extremes

Observable r = 1 r = 5 r = 15

0.95 (%) 0.99 (%) 0.999 (%) 0.95 (%) 0.99 (%) 0.999 (%) 0.95 (%) 0.99 (%) 0.999 (%)

S 22 30 22 22 16 24 24 22 16
W 22 16 20 14 30 28 16 22 24
N 28 26 14 20 20 20 16 32 20
WCE 56 44 50 38 60 48 42 32 58
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Fig. 18   Evolution of the normalized variance < �V(t) > averaged over 
the Euro-Atlantic sector (plain lines) and the Northern  Hemisphere 
(dashed lines) for the different variables (S observable). The normal-
ized variance is expressed in %. The colors show the �-th order quan-

tile of the observable’s empirical distribution. The time is expressed 
relative to the day when the observable is such that Fr(xt) ≃ q� . The 
gray horizontal dashed line shows the 75% level
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Fig. 19   Evolution of the normalized variance < �V(t) > averaged over 
the Euro-Atlantic sector (plain lines) and the  Northern Hemisphere 
(dashed lines) for the different variables (N observable). The normal-
ized variance is expressed in %. The colors show the �-th order quan-

tile of the observable’s empirical distribution. The time is expressed 
relative to the day when the observable is such that Fr(xt) ≃ q� . The 
gray horizontal dashed line shows the 75% level
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Fig. 20   Evolution of the normalized variance < �V(t) > averaged 
over the Euro-Atlantic sector (plain lines) and the  Northern Hemi-
sphere (dashed lines) for the different variables (WCE observable). 
The normalized variance is expressed in %. The colors show the �

-th order quantile of the observable’s empirical distribution. The 
time is expressed relative to the day when the observable is such that 
Fr(xt) ≃ q� . The gray horizontal dashed line shows the 75% level
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Fig. 21   Composite maps Âr for T2M, Z500, SM, SLP, T850 and 
V250 for the quantile of order � = 0.999 of the S observable’s empir-
ical distribution. The hatch areas correspond to �Vr > 50 %. The fig-
ure is computed for a rolling mean window of r = 5 days. Anomaly 
of a air temperature at 2-m (T2M), b geopotential height at 500 hPa 

(Z500), c soil moisture (SM), d sea-level pressure (SLP) and e tem-
perature at 850 hPa (T850), and f meridional wind speed at 250 hPa 
(V250). The anomalies are computed with respect to their average 
over the summer (JJA). The green box displays the location where the 
observable is computed
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Fig. 22   Composite maps Âr for T2M, Z500, SM, SLP, T850 and 
V250 for the quantile of order � = 0.999 of the N observable’s empir-
ical distribution. The hatch areas correspond to �Vr > 50 %. The fig-
ure is computed for a rolling mean window of r = 5 days. Anomaly 
of a air temperature at 2-m (T2M), b geopotential height at 500 hPa 

(Z500), c soil moisture (SM), d sea-level pressure (SLP) and e tem-
perature at 850 hPa (T850), and f meridional wind speed at 250 hPa 
(V250). The anomalies are computed with respect to their average 
over the summer (JJA). The green box displays the location where the 
observable is computed
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Fig. 23   Composite maps Âr for T2M, Z500, SM, SLP, T850 and 
V250 for the quantile of order � = 0.999 of the WCE observable’s 
empirical distribution. The hatch areas correspond to �Vr > 50 %. The 
figure is computed for a rolling mean window of r = 5 days. Anomaly 
of a air temperature at 2-m (T2M), b geopotential height at 500 hPa 

(Z500), c soil moisture (SM), d sea-level pressure (SLP) and e tem-
perature at 850 hPa (T850), and f meridional wind speed at 250 hPa 
(V250). The anomalies are computed with respect to their average 
over the summer (JJA). The green box displays the location where the 
observable is computed
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Chapter 5. Investigating the typicality of the dynamics leading to extreme
temperatures in the IPSL-CM6A-LR model

5.3 Perspectives
The analyses carried out in this chapter show that the typical dynamics concept,
i.e. the idea that very extreme events tend to look alike dynamically, is a relevant
property of extremes, at least for surface temperatures in the long control run of
the IPSL climate model. As a consequence — and somewhat paradoxically — even
if one samples a few very extreme events, it may still be possible to have a correct
first approximation of the atmospheric dynamics associated in so far as it is more
likely than not that these events followed the typical dynamics. In other words, the
burden of rareness is partially alleviated by this concentration property in the tail
of the distribution.

As explained in the paper, there are nonetheless several discrepancies associated
with the typical dynamics concept when one looks at different fields. It would
therefore be important to validate this analysis on (i) other models and (ii) other
observables. For example, even if the concentration of trajectories around a most
probable one happens for all observables, the intensity of the extreme at which
this happens may be so high that it lacks all practical relevance. This may for
instance be the case for extreme precipitations, which can be associated to various
atmospheric dynamics. Comparing how the typical dynamics — when it is relevant
— changes from one model to another is another interesting avenue of research,
especially in the context of intercomparison projects such as CMIP6. As explained
in the introduction of this chapter, the concept of typical dynamics also paves the
way for investigating rigorously how the dynamics leading to extreme events may
change with climate change. It nevertheless should be mentioned that even though
the typical, i.e. most probable, dynamics is identified with the average of paths in
the phase space of trajectories reaching an extreme, there is no guarantee that this
path is physical, i.e. that it can be reproduced by the model starting from optimal
conditions. I think it is reasonable to assume that it is the case, at least up to small
perturbations of the model. This issue is common and applies more generally to
each analysis based on composites.

Finally, one of the initial motivation for this work was to investigate whether
the dynamics leading to very extreme events was similar to the dynamics leading to
‘regular’ extremes. One could indeed see a shift to a different most probable path
when imposing that events should be above a more extreme quantile of the observable
studied. In other words, other physical mechanisms may have to be put into action
to reach very extreme rather than extreme events: this is the idea behind so-called
dragon-kings (Sornette and Ouillon 2012). Such a phenomenon has been observed
in more simple systems and is usually called dynamical phase transition (Nyawo and
Touchette 2017). My results on surface temperature in Europe in a pre-industrial
configuration do not suggest such a phase transition: the very extreme events studied
are similar to the extreme ones with more intense anomalies. This was also the
conclusion reached by Gessner et al. (2021) using the ensemble boosting method. It
may however be the case for other observables and/or other locations. Precipitations
in the tropics are a good candidate: moderate extremes may be more likely reached
by local thunderstorms but more intense extremes may need a dynamical phase
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transition, such as a tropical cyclone for example (Peters et al. 2012).
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Chapter 5. Investigating the typicality of the dynamics leading to extreme
temperatures in the IPSL-CM6A-LR model

Summary

Context and goals

How the dynamics leading to extremes should be understood in a general
climatological context is not often discussed. Here I study the idea of a
typical, most probable dynamics leading to extreme and very extreme events
in the climate system that was proposed by previous works.

Methods

I use the 2000-y pre-industrial control run of a climate model and investigate
how the dynamics of the model leading to extreme heat events at several
locations in Western Europe change when one looks at more and more intense
events. I propose a metric to quantify the typicality of these events.

Results

I show that, for most of these events, the variance of the dynamics leading to
extremes tend to decrease as the intensity of the events considered increases.
In other words, very extreme events tend to have a more similar dynamics
than extreme ones. This idea supports the existence of a most probable path
leading to extremes — the so-called instanton. I propose that the concept
of the instanton should be considered as the climatological object defining
the dynamics leading to extremes. For extreme heat events in this model, in
Western Europe and under this configuration, my results also suggest that
the dynamics leading to very extreme events corresponds to an amplification
of the mechanisms leading to extreme events rather than the appearance of
different mechanisms.
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Chapter 6

Statistical and dynamical aspects
of very extreme summers
sampled in the IPSL-CM6A-LR
climate model with a rare events
algorithm

6.1 Introduction
In this chapter I implement the GKTL rare events algorithm — presented in chapter
4 section 4.4.3c and employed for the first time in climate science by Ragone et al.
(2018)1 — on the state-of-the-art IPSL-CM6A-LR climate model in an atmosphere-
land configuration to sample extreme and very extreme summers. I address the
question of the statistical and atmospheric dynamics characteristics of these sum-
mers. In particular, I detail what are the physical mechanisms which render the
summers sampled extreme.

This chapter is organized as follows. In section 6.2 I first present the simulations
made with the rare events algorithm and the tools employed to diagnose the atmo-
spheric dynamics characteristics of the rare summers sampled. Section 6.3 shows
the results obtained. The section begins by a statistical description of the extreme
summers, then investigate the mean spatial structures of the centennial events sam-
pled by the algorithm and finally details their atmospheric dynamics. In particular,
I stress the dynamical role of cut-off lows to reach very extreme temperatures. Fi-
nally, section 6.4 summarizes the results obtained and discusses the advantages and
drawbacks with regards to using the GKTL rare events algorithm to sample very
intense extremes.

1 I thank Francesco Ragone and Freddy Bouchet for our discussions on the use of rare events
algorithms.
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Chapter 6. Statistical and dynamical aspects of very extreme summers sampled
in the IPSL-CM6A-LR climate model with a rare events algorithm

6.2 Methods

6.2.1 Rare events algorithm
I use the GKTL algorithm presented in chapter 4 section 4.4.3c. I briefly recall
how the algorithm works and what kind of extreme events one may expect it would
sample. The idea of the algorithm is to run an ensemble simulation of a climate
model with N members. A member corresponds to one integration of the model,
i.e. to one trajectory t 7→ X(t) in the phase space. Contrary to a regular ensemble,
the rare events algorithm ensemble makes members interact during the course of
the simulation. Between two resampling times ti and ti+1, I run the N ensemble
members (Xn)1≤n≤N in parallel. The integration is stopped at ti+1 and I compute
a score function F (Xn(t)) ∈ R, that allows to assign a weight wn(i) to each member
n:

wn(i) = e
k
∫ ti+1

ti
F (Xn(t))dt

1
N

∑N
i=1 e

k
∫ ti+1

ti
F (Xn(t))dt

(6.1)

where k is a control parameter which determines the strength of the selection.
If k is positive (negative), the weight is high for high (low) values of the time-
averaged score function F . The higher the absolute value of k, the more members
with an extreme value of the time-averaged score function will be favored. Then
each member is either killed or cloned depending on the value of its weight: the
strongest the weight — and therefore the integral of the score function F — the
highest the number of descendants of each member (see below for the discussion of
the number of descendants per member). If the weight of one member is too small,
i.e. if it performs poorly according to the score function F , there is a chance that the
member is killed and therefore that it disappears from the ensemble. The number
of descendants for each member is stochastic, but on average it is proportional to
its weight. After several resampling times, the distribution of

∫
F (X(t))dt in the

ensemble is biased towards the right (k > 0) or left (k < 0) tail of the climatological
distribution.

Here I employ the same resampling procedure as in Ragone et al. (2018), see
chapter 4 section 4.4.3c for the detail. Note that the total number of members N
stays constant during the full process, therefore at each resampling time the number
of killed members is equal to the number of cloned members. In the simulations
presented here the resampling is done every 5 days and a random perturbation on
the potential temperature field is added to let the cloned members diverge from their
parent as the model is fully deterministic. The random perturbation is computed
as follows: ηri,j,kθi,j,k on every value θi,j,k of the potential temperature at each grid
point and levels indexed by i, j, k, where ri,j,k is a random number uniformly dis-
tributed in [−1, 1] and η = 10−4. This implies that the perturbation is at maximum
of the order of 0.01% of the initial value. The typical precision obtained with climate
models are much lower than this value, therefore in the following I consider that all
simulations obtained are physical, i.e. that they could have been reached by the
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model and are not an artifact of the random perturbations added2.
The choice of the score function is crucial because it determines what kind of

extremes are selected. By construction the GKTL algorithm does not favor members
that will experience an extreme event, but select retrospectively members which have
experienced an extreme event in the last resampling period. Nonetheless, by the
choice of the score function and the physics of the system, favoring members which
have experienced an extreme may actually favor the appearance of other similar
extremes in the future. This is especially the case for heatwaves and the associated
feedback loop with soil moisture: heatwaves favor soil desiccation which may favor
later more intense heatwaves under the right atmospheric conditions (cf. chapter 1
section 1.3). Here I choose four different score functions:

• 2-m air temperature in °C (T2M) at grid point 1 (49.5°N, 2.5°E) with control
parameter k = 0.04/°C/day,

• geopotential height at 500hPa (Z500) at grid point 1 with control parameter
k = 0.0015/m/day,

• upper-level soil moisture at grid point 1 (SM1) with control parameter k =
−0.05/kg.m2/day,

• upper-level soil moisture at grid point 2 (SM2) (49.5°N, 7.5°E) with control
parameter k = −0.05/kg.m2/day.

In the following, I mention these simulations as the ‘biased simulations’ — bi-
ased in the sense that they favor a kind of extremes. I call them according to the
variable they extremize, respectively biased T2M, Z500, SM1 and SM2. For each
score function, I run 9 independent simulations using N = 100 members each. The
simulations are independent in the sense that there is no inter-simulation interaction
between the members. Because at each resampling time the number of descendants
of each member is stochastic and the added perturbations are also stochastic, each
simulation is different. There is a trade-off between the number of members per
simulation and the number of simulations one can run (for a fixed computational
cost). The number of members cannot be too low else the algorithm would be bi-
ased or have a high variance, but if it is too high then one needs to reduce the
number of simulations made, which may also increase the variance. I choose the
9 simulations × 100 members per simulation trade-off by trial and error. I addi-
tionally run a control ensemble of 900 independent members with the same starting
conditions and a random perturbation for differentiation.

The rationale for using the first score function is straightforward: 2-m air tem-
perature is the variable classically used to define heatwaves. I therefore aim to select
longer and more intense heat events with the algorithm. The rationale for using the
second and third score functions is to sample respectively atmospheric and surface
conditions which are typically associated with intense heat events: by maximizing
2 Note that I chose the η value as large as possible for trajectories to separate rapidly, but
at the same time not too large to let each simulation still be physical.
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the geopotential height at 500hPa I try to sample more anticyclonic structure and
by minimizing3 upper-level soil moisture I pre-condition dry soils which would favor
more intense sensible heat fluxes and therefore heatwaves. The last score function
used is not, contrary to the others, computed at the same grid point but at a slightly
longitudinally shifted ones which corresponds to the grid point with the strongest
correlation with hot summers at the (49.5°N, 2.5°E) grid point in the work presented
in chapter 5.

Contrary to previous applications (Ragone et al. 2018; Ragone and Bouchet
2021) I choose grid point score functions rather than extended spatial averages. By
doing so I seek to impose a minimum amount of constraint on the full system and
recover the spontaneous temporal and spatial scales of heat events in the grid point
studied. When using extended spatial averages, one bears the risk of mixing up
the dynamics of heat events occurring on one side or on another side of the spatial
domain. As a result, composite maps could combine several dynamics that do not
occur at the same time for individual events.

If it is assumed that the distribution of the score functions are Gaussian, then
one can estimate the value of the summer averaged anomaly a that are sampled by
the algorithm (Ragone and Bouchet 2020):

a ≃ 2τcσ2k (6.2)

where τc is the autocorrelation time of the score function and σ is its (daily)
standard deviation. With the values of k chosen here, for summer anomalies one
has: aT2M = 2.7°C = 2.6std, aZ500 = 54m = 2.6std, aSM1 = −13kg/m2 = −5.8std
and aSM2 = −11kg/m2 = −4.7std. The distributions of the score functions are
actually not Gaussian (especially for soil moisture), but this approximation gives an
order of magnitude of the results that can be expected.

Here however I did not choose the values of k using this approximation. The
rule of thumb I employed was to take the first five days of the control simulation
— i.e. the first resampling period — and find the value k for each score function so
that the average maximum number of descendants over all members was around 5.
The rationale for this rule is to ensure that even if one member has 5 descendants
and each of its descendants also has 5 descendants, in a period of 10 days — which
is around the Lyapunov time scale of the atmosphere and therefore the time taken
by members to drift apart after adding the random perturbations —, one member
cannot, on average, populate more than 25% of the full ensemble. This is to avoid
that a member which would be very extreme at the beginning but then falls back very
quickly to the climatology would reduce too much the diversity inside the ensemble.
I therefore chose values of k which are as strong as possible while avoiding the
over-selection problem which would lead to too much extinction.

As explained in chapter 4 section 4.4.3, rare events algorithms do not only pro-
duce physically coherent very intense events, they also allow to compute the unbiased
— i.e. climatological — expectations for these events. For any observable ψ (i.e. a
smooth enough function), the climatological expectation of ψ using the rare events
3 k < 0 for this score function.
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algorithm ensemble is:

Eµ[ψ] = 1
N

N∑
i=1

w−1
n ψ(Xn(t)) (6.3)

where Eµ is the expectation with respect to the climatological probability distri-
bution µ, wn = Πiwn(i) and Xn(t) is the state vector of member n at time t. It is
important to note that even if the weights wn are computed according to the score
function F , the formula is valid for the expectation of any other observable ψ.

In particular, if one wants to know the climatological properties of events for
which the score function is above a certain level a, one computes:

Eµ[ψ | F (X(t)) ≥ a] = Eµ[ψ × 1(F (X(t)) ≥ a)]
Eµ[1(F (X(t)) ≥ a)] , (6.4)

or in plain words, one computes the observable only for members that have
reached the level a and divide by the probability to reach the level a (Eµ[1(F (X(t)) ≥
a)] = Pµ[F (X(t)) ≥ a]). For the reasons explained above (cf. chapter 1 section
1.2.3), these expectations are unprecisely estimated as long as a corresponds to a
high quantile of the distribution of F . With the rare events algorithm, there are more
members that reach high quantiles, but they come with a certain weight. Therefore
the expectations in this equation are computed using formula (6.3) and with the
weights wn. Note that when Ns rare events algorithm simulations are run, each give
an estimation for Eµ[ψ | F (X(t)) ≥ a] using equation (6.3). They are then simply
averaged to give a final estimation of Eµ[ψ | F (X(t)) ≥ a].

In the following, two kind of averages are shown:

1. rare events algorithm ensemble averages, i.e. regular ensemble averages with
equal weights for every ensemble member even if the simulation has been
biased to produce extremes. Such a statistic is ‘technical’ in the sense that
it displays what kind of trajectories are sampled by the algorithm and should
be taken carefully when trying to infer climatological results,

2. climatological averages corresponding to centennial events, i.e. choosing a so
that Pµ[F (X(t)) ≥ a] ≃ 10−2 and applying formula (6.4).

In the second case, it is important to note that some members sampled by the
rare events algorithm are therefore discarded (because 1(F (Xn(t)) ≥ a) = 0). The
results obtained using centennial events only or with a regular average on the biased
simulations are very similar (not shown here).

How to obtain statistical significance statements with the outputs of the rare
events algorithm simulations — especially how to combine the results from the dif-
ferent simulations and take into account the fact that some members are very cor-
related — is not clear currently in the literature. In the following I therefore mainly
show results normalized by removing the average and dividing by the standard de-
viation obtained on the control simulation, and I take a high anomaly threshold to
interpret the results (> 0.5 std in absolute value). For comparison, if one considers
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summer averages, with 900 members the significance at 5% with a Student t-test is
obtained as long as the normalized anomaly is greater in absolute value than 0.07
std.

6.2.2 Configuration of the model
I use the IPSL-CM6A-LR model (Boucher et al. 2020) in its atmosphere - land sur-
faces configuration (LMDZOR) under pre-industrial forcing conditions. The model
has a horizontal resolution of 2.5° in longitude and 1.27° in latitude and 79 vertical
layers. I start by selecting a year in a 2000-y control run of the fully coupled model.
This year is selected randomly and does not present any particular feature. A 4-
months spin-up simulation (January to April) of the uncoupled model with oceanic
and ice conditions of the initial coupled simulation is then run to let the atmosphere
adapt to the uncoupling with the oceans and to provide initial conditions for the rare
events simulation in summer. Random perturbations are added at the beginning of
May to create a 100-member starting ensemble. The perturbations are added in May
to avoid having to simulate the 100 members from January to April while still letting
enough time for the different members to separate until the beginning of the rare
events simulation in June. All the simulations begin on the 1st of June from those
same 100 members and end on the 28th of August (90 days). To create the ensemble,
a similar perturbation is added on all potential temperature levels as explained previ-
ously. Except specified explicitly, the variables used in the following are daily means.
The ensemble simulations are launched through a tool developed by Arnaud Caubel
and Yann Meurdesoif (https://zenodo.org/doi/10.5281/zenodo.7848738)4.

I have made the explicit choice of having similar oceanic conditions for all sim-
ulations. As a result, the expectations obtained in the following (either with or
without the rare events algorithm) should be more rigorously defined as conditional
expectations with respect to the oceanic conditions used. In principle I could have
started from a larger set of initial conditions encompassing different oceanic condi-
tions and claim to have reached ‘true’ climatological expectations. In practice, first
it is much more computationally expensive to do so. Second, because there is the
extinction issue with the rare events algorithm (cf. chapter 4 section 4.4.3), in the
end of the simulation there are only a few different remaining starting members in
the ensemble (see below). This is almost equivalent to a start from fixed oceanic
conditions and I therefore prefer to make this choice explicit. In a second step, one
could also apply the same procedure starting from different initial oceanic conditions
to evaluate the oceanic impact on the extreme summers sampled.

6.2.3 Atmospheric dynamics diagnostics
In this chapter I seek to understand the atmospheric dynamics mechanisms leading
to centennial-like extreme summers. To do so I employ metrics used in the meteo-
rological literature to diagnose the transfer of energy from eddies to the mean flow
(E-vector), Rossby waves dynamics and cut-off low presence. To diagnose wave-like
4 I warmly thank them for their help in launching simulations with the IPSL model.
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behaviors I follow the common practice in the literature (e.g. Jiménez-Esteve et
al. (2022)) which considers high-level tropospheric winds between 300 and 200hPa.
Here I employ the 200hPa level as it is a standard output of the model. This alti-
tude is nonetheless a little bit too high because in the mid-latitudes it is almost in
the stratosphere. I therefore also present the results using the wind at 500hPa in
supplementary materials for comparison. For the simulations analyzed in the next
chapter I do have access to vertical distributions of the wind and cross-sections show
that the 200hPa wind field behaves similarly as the 300hPa wind field (cf. figure
7.16). In this section I detail how the diagnostic metrics are computed.

E-vector. The propagation and tilt of transient eddies can be diagnosed using
the so-called E-vector (Hoskins et al. 1983; Trenberth 1986; Schemm et al. 2018):

E = (Ex, Ey) =
(1

2v
∗2 − u∗2,−u∗v∗

)
(6.5)

where u∗ and v∗ are transient wind components and the overbar denotes a tempo-
ral average. The horizontal component Ex is proportional to the group speed of
transient eddies and therefore diagnose the direction of propagation of wave energy.
The meridional component Ey shows the tilt of transient eddies: equatorward (resp.
poleward)-pointing E indicate anticyclonically (resp. cyclonically) tilted eddies, i.e.
also anticyclonic (resp. cyclonic) wave breaking. Up to a good approximation, the
divergence of E corresponds to the transfer of zonal momentum from the eddies
towards the mean flow, and the reverse for convergence. Here the transients u∗ and
v∗ are defined as anomalies with respect to a 7-day rolling average of the wind fields
at 200hPa. It is common to use 6-hourly data and consider the daily average to
compute the overbar (Schemm et al. 2018; Riboldi et al. 2022). Here I only have
access to daily data therefore the overbar is approximated by computing a 3-day
rolling average of v∗2 − u∗2 and u∗v∗.

Space-time spectral analysis. The characteristics of Rossby waves are diag-
nosed by performing a longitude-time Fourier decomposition of the meridional wind
anomaly field at 200hPa (Randel and Held 1991; Riboldi et al. 2022). The anomalies
are computed with respect to the daily ensemble average of the control simulation.
With the temporal and spatial resolution of the model, it is possible to resolve har-
monics of minimal zonal wavelength of 5° and minimal frequencies of 2 days. This
somewhat limits the precision of the analysis proposed here but is still sufficient
to resolve the largest Rossby waves of synoptic scales (> 1000km), which are the
most relevant for the dynamics of heatwaves. For the sake of representation, in the
following the results are interpolated below these two limits.

At each latitude ϕ, the meridional wind anomaly field is decomposed as a linear
superposition of monochromatic zonally propagating waves. The Fourier coefficients
V̂ (kϕ, ω) with zonal wavenumber kϕ ≥ 0 and angular frequency ω are given by:

V̂ (kϕ, ω) =
√

2∆t
Nλ

√
Nt

Nt∑
nt=1

Nλ∑
nλ=1

V (nt, nλ)e−i(ωnt∆t+2πkϕnλ/Nλ) (6.6)
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where V (nt, nλ) is the meridional wind anomaly at longitude nλ and time nt, Nλ =
144 is the number of longitudes, Nt = 90 is the number of days in the summer and
∆t = 1d is the temporal resolution of the simulation. The periodogram P (kϕ, ω) is
obtained by computing the square of the modulus of the Fourier coefficients V̂ (kϕ, ω)
and applying a smoothing Gaussian kernel in the ω dimension. Finally, the power
spectral density ρ(kϕ, cp) in the wavenumber kϕ-phase speed cp space is recovered
as:

ρ(kϕ, cp) = P (kϕ, ω) kϕ
2πRE cosϕ (6.7)

where RE is the radius of the Earth and the results are interpolated from cp =
−30m/s to cp = 30m/s in steps of 1 m/s.

This procedure is applied for all latitudes between 35° and 65°N and average
the results to obtain a space-time spectrum for the summer. The ensemble average
is then computed simply as the average over ensemble members of this procedure
(except for the biased simulations for which to each member is applied the weight
corresponding to centennial events as explained above).

Additionally, at all latitudes the enveloppe of Rossby wave packets is calculated
as the modulus of the complex-valued Hilbert transform of meridional wind anoma-
lies at 200hPa (Zimin et al. 2003).

Amplitude-phase decomposition. To identify the phase-shift of quasi-
stationary Rossby waves, a similar procedure as Jiménez-Esteve et al. (2022) is
employed on the meridional wind at 200hPa. The area-weighted latitudinal mean
between 35° and 65°N is first computed and a 7-day running mean is applied to fil-
ter out transient eddies. Contrary to Jiménez-Esteve et al. (2022), I present results
with and without removing the climatological mean of the area-weighted latitudinal
mean, computed here using the control simulation ensemble average. Even though
anomalies have no preferred phase in the control simulation (by definition of anoma-
lies), this may not be the case in the biased simulations. I intend to use this analysis
to diagnose the shift in the amplitude and/or phase of quasi-stationary Rossby waves
between the control and biased simulations.

The temporally and spatially averaged field Ṽ200 obtained is then decomposed
into its Fourier components:

Ṽ200(λ, t) =
+∞∑
kϕ=0

A(t) cos(kϕλ+ Φ(t)) (6.8)

with A(t) the amplitude and Φ(t) the phase. In the following the 2D amplitude
A – phase Φ histograms is computed to diagnose the shift occurring for the extreme
summers sampled by the rare events algorithm.

Cut-off low frequency. Several algorithms exist to detect the presence of so-
called cut-off lows — i.e. isolated minima of potential vorticity (PV) or geopotential
height in the mid- to high-level troposphere — especially based on PV anomalies
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(Wernli and Sprenger 2007; Favre et al. 2012; Pinheiro et al. 2017). Here the presence
of 500hPa cut-off lows is diagnosed using an adaptation of the detection algorithm
proposed by Muñoz et al. (2020). The algorithm does not rely on PV, and is better
adapted to mid-level systems which are physically more relevant in the context of
surface heatwaves. A cut-off low at 500hPa is considered to be present at a particular
grid point if all of the following criteria are fulfilled:

1. Local geopotential height minimum: the 500hPa geopotential height of the
grid point is at least 10m lower than the geopotential height in at least six of
the eight surrounding grid points,

2. Isolation from the main westerly wind: there is an easterly flow in at least one
of the four grid points located poleward of the grid point,

3. Cold core and thickness ridge eastward of the low: the difference between the
geopotential height thickness between 500 and 850hPa at the grid point and
at its immediate eastward neighbor is positive,

4. Frontal zone on the eastern flanck of the low: the thermal front parameter
(TFP) on the immediate eastward neighbor of the grid point is negative. The
TFP is computed as the change of the temperature gradient in the direction
of the temperature gradient (at 500hPa):

TFP = −∇|∇T | ·
( ∇T

|∇T |

)
. (6.9)

With the outputs of the model, the algorithm tends to detect the presence of cut-
off lows at high latitudes, in particular northward of the eddy-driven jet. Such
systems may indeed fill all the preceding criteria but they do not really qualify as an
isolated minimum of geopotential height in the middle-high troposphere. Another
criteria could have been added to impose that the grid points of cut-offs are below
the jet position to correct for this behavior. However, as I am more interested in
the dynamics of cut-off lows situated well below the jet, this error does not impact
strongly the analysis.

6.3 Results
6.3.1 Grid point statistics
This section presents statistics for the grid points where the score functions are
extremized. Figure 6.1 shows the empirical probability density functions (PDFs) of
summer averaged 2-m air temperature (Fig. 6.1a), geopotential height at 500hPa
(Fig. 6.1b), upper-level soil moisture (Fig. 6.1c) at grid point 1 and upper-level soil
moisture at grid point 2 (Fig. 6.1d). When compared to the control PDFs, the PDFs
of the score functions that are extremized by the rare events algorithm — i.e. for
example T2M for the biased T2M simulation — demonstrate the efficient sampling of
the tail of the summer averages distribution. For all score functions the rare events
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algorithm sample extreme summers that are unprecedented in the 900-members
control simulation. The choice of score functions closely related to the dynamics
of heatwaves results in the sampling of extreme summers also for observables for
which the algorithm does not extremize — i.e. for example Z500 for the biased T2M
simulation. Figure 6.1b shows that the far tail of the extreme Z500 distribution is
better sampled when maximizing for temperature rather than directly Z500, at least
in grid point 1. This result is unexpected in so far as the Gaussian approximation
presented above suggested an expected anomaly of the same order of magnitude
for both simulations (aT2M = 2.7std vs aZ500 = 2.6std). For the interpretation of
Figure 6.1c and d, one should note that there is a hard coded limit of 8.14 kg/m2 in
the model for the upper-level soil moisture for the grid points considered. Therefore,
summer averages close to this value correspond to extremely dry summers, almost
the dryest that are possible in the model5. Finally, Figure 6.1a and b show that
minimizing soil moisture at grid point 2, i.e. remotely with respect to where the
T2M and Z500 variables are maximized, is more efficient for sampling more intense
summer averaged T2M and Z500 than minimizing soil moisture at grid point 1. I
come back below to this shift between soil moisture and temperature anomalies for
extreme summers.

The time series of daily distributions presented in Figure 6.2 show how extreme
are the summers sampled. Even the ensemble mean of the biased simulations is
extreme compared to the control simulation: Figure 6.2a, c and d show that the
ensemble mean in the middle of the summer is close to the 95% quantile of the
control simulation and therefore the 95% quantile (or 5% quantile for soil moisture)
of the biased simulations samples events that are seldom sampled by the control
simulation. When maximizing for Z500 (Fig. 6.2b), the ensemble mean is higher
but not extremely higher than the control ensemble mean. Figure 6.2a could give
the false impression that the extremely hot summers sampled by the algorithm are
constituted by members which are individually always moderately above the control
mean and that extreme summers are reached this way. This is however not the case,
and on individual time series (see Figure A.2a in supplementary materials for an
example), there is a large variability in the temperature time series. The typical
pattern is more of an alternation between intense heatwave events and returns to
the climatological mean.

Figure A.2 also shows the extinction problem that has been mentioned before:
once the simulation has run and the members are reconstituted from the 1st of
June, only a few initial members have survived (4.4 on average). The evolution of
the number of effectively different members after the simulation has run is shown
in Figure 6.3. It illustrates the extinction issue: up to the middle of the simulation
(mid-summer), there are only around 10 effectively different members. This shows
why one needs to run several different 100-member simulations with the same pa-
rameters of the algorithm. One should also not that a selection is done at the last
step of the algorithm which explains why there are around 65 and not 100 effectively
5 This hard coded limit is justified physically by the fact that not all water contained in the
soils can be used by plants for evapotranspiration, and a limited, but positive, quantity of
water is always present.
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Figure 6.1: Empirical probability density functions (PDFs) of summer
averaged grid point observables. PDFs of the summer averaged (a) 2-m air
temperature, (b) geopotential height at 500hPa, (c) upper-level soil moisture
at grid point 1 and (d) upper-level soil moisture at grid point 2. The PDFs
are obtained by a kernel smoothing of the empirical histograms.

different members at the end of the simulation. This ratio of 65 surviving members
vs 35 killed members is the approximate ratio at each resampling time during the
simulation.

This issue of the substructure (Röthlisberger et al. 2020) of extremely hot sum-
mers is explored further in my simulations by counting the number and mean length
of heatwaves during the summer. A heatwave is defined classically as a continuous
period of time of at least 3 days for which the daily mean temperature is above
the 90% daily climatological quantile of the temperature distribution. The latter is
computed using the control simulation. All such events are computed at grid point
1. Figure 6.4 depicts the result of this computation. Figure 6.4a shows that for

193



Chapter 6. Statistical and dynamical aspects of very extreme summers sampled
in the IPSL-CM6A-LR climate model with a rare events algorithm

Figure 6.2: Time series of the ensemble mean and the 5 and 95%
quantiles of grid point observables. (a) 2-m air temperature, (b) geopo-
tential height at 500hPa and (c) upper-level soil moisture at grid point 1 and
(d) upper-level soil moisture at grid point 2. For all the plots the plain/dashed
line shows the ensemble mean and the shading the 5 and 95% quantiles of the
variable displayed. For the biased simulations, all members of all simulations
are pooled together to compute the 5 and 95% quantiles.

biased T2M simulations the mean number of heatwaves in the summer goes from
around 1.3 in the control to around 4.8 in the biased simulation, while their mean
duration goes from 4.6 to 7.3 days. The algorithm therefore selects both more heat-
wave events and longer heatwave events. When maximizing the geopotential height
(Figure 6.4b) the mean duration increases to 5.7 days while the number of events
increases to less than 3.7, illustrating the key role of high geopotential anomalies to
reach high temperatures. When minimizing the local soil moisture (Figure 6.4c) on
the other hand, the mean duration of heatwave events does not change much with
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Figure 6.3: Evolution of the number of effectively different members
during the simulation. The effective number of members represents the
number of members in each 100-member simulation which are truly unique at
time t. The computation is done after the simulation is run and the members
are reconstructed from the 1st of June, hence the increasing function. The
jumps show the moments when the resamplings occur. The shadings show the
minimum and maximum of the effective number of members over the Ns = 9
simulations.

respect to the control (4.8 vs 4.6), but the number of events increases to around
2.3 per summer. When minimizing soil moisture at grid point 2 however, there is
an increase in both the duration (6.2 days) and the number of heatwaves (3.0 per
summer). Neither the biased Z500 nor the SM1 and SM2 biased simulations are
enough to reach metrics as high as the ones of the biased T2M simulation. This
results is strongly in favor of the need for combined non-local dry soils and high
local geopotential height to obtain long and intense heatwaves.
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Figure 6.4: Number of heatwaves per summer and mean length. All
heatwaves are computed at grid point 1. For all plots a heatwave is a continuous
period of time of at least 3 days when daily mean temperature is above the
90% climatological quantile. The stars show the ensemble mean.

As explained above, the algorithm provides weights to compute climatological
averages of observables of interest. This allows in particular to recover the probabil-
ities of extreme summers. Figure 6.5 shows the probabilities for the simulations run
here, each using their own score function as the observable of interest (i.e. using the
observable on which the rare events algorithm is expected to be the most efficient).
For the control simulation, the shadings represent the uncertainty on the estimation
of the probability. The uncertainties are computed using bootstrap on the original
900 members and the 5–95% quantiles obtained are shown. For the biased simula-
tions, the shadings show the minimum and maximum estimation of the probability
over the Ns = 9 simulations. All simulations sample very extreme summers, with
probabilities ranging from 10−2 to 10−6, i.e. return times between one hundred and
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one million years. This demonstrates a large efficiency gain compared to the control
simulation, which, with 900 members, can only sample precisely summers with a
100 years return time. The variations from one simulation to another of the esti-
mated probability are nonetheless important, one order of magnitude on average.
Although the algorithm is asymptotically unbiased, one could wonder whether such
low probabilities sampled here are really correct. The only way to prove this is the
case would be to run a much larger number of control members, until even very
low probability events happen — but this entails a corresponding high computa-
tional cost. Although this is not a formal proof, one can see in Figure 6.5 that the
probabilities given by the rare events algorithm are in the continuity of the control
simulation probabilities and therefore the two results seem at least coherent on the
region where they overlap.

Insofar as summer averages (i.e. 90 days averages) are considered, by the central
limit theorem, one may expect that the associated distribution is Gaussian. However,
the central limit theorem is valid only in the vicinity of the average (Touchette
2009) and the tails of the distribution — i.e. the regions sampled here — must be
described by large deviations theory (Gálfi et al. 2021). To illustrate the deviations
from Gaussianity, the mean and standard deviation of a Gaussian distribution are
fitted on the control run members and it is shown in dashed line in Figure 6.5 the
associated extrapolation of the probability. Although this extrapolation is correct
up to probabilities as low as 10−1, it diverges for lower probabilities. Figure 6.5a for
example shows that an extreme summer with average temperature around 23°C are
10 times more likely than predicted by the Gaussian approximation. The Gaussian
approximation is nevertheless on the range of uncertainty of the algorithm when
running Ns = 9 simulations. For the other simulations (Fig. 6.5b, c and d), this is
the contrary: extreme summers are less likely than predicted by the Gaussian. This
is especially clear for soil moisture, which is, contrary to the Gaussian distribution,
bounded downwards in the model as explained above. The uncertainty ranges for
these simulations also make clear that the tail of the summer average quantities are
not Gaussian.

It should be noted however that the performance of the algorithm rapidly deteri-
orates when one tries to estimate the probabilities of observables that are not closely
related to the summer averaged score function. Figure A.3 in supplementary mate-
rials shows a similar computation of probabilities as in Figure 6.5 but for low soil
moisture at grid point 1 for biased T2M and Z500 simulations (Fig. A.3ab) and for
high 2-m air temperature at grid point 1 for biased SM1 and SM2 simulations (Fig.
A.3cd). The estimations are incompatible with the control estimations by one to
two order of magnitudes. Although the GKTL algorithm is unbiased in the limit of
an infinite number of members simulated, with N = 100 members its performance is
better than the control simulation only when one focuses on the observables closely
related to the score function. I come back to this issue in the discussion section.

To explore the link between the summer averaged quantities in the different
simulations, a scatter plot of their cross distributions is shown in Figure 6.6. Figure
6.6b and d show the strong link between high summer-averaged geopotential heights
and both high surface temperature and low soil moisture (although the correlation
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Figure 6.5: Probabilities of an extreme summer according to the naive
estimator (control simulation) and the rare event estimator. (a) Prob-
ability of the summer averaged 2-m surface temperature and (b) probability
of the summer averaged geopotential height at 500hPa to be above a certain
threshold at grid point 1. (c) Probability of the summer averaged upper-level
soil moisture at grid point 1 and (d) probability of the summer averaged upper-
level soil moisture at grid point 2 to be below a certain threshold. The blue
dashed lines represent the corresponding probabilities for a Gaussian distribu-
tion fitted on the control simulation by the method of moments. The shadings
for the control simulation show the 5–95% quantiles of the estimated probabil-
ity obtained using bootstrap on the 900 members. For the biased simulations
the shadings show the minimum and maximum of the estimated probability
over the Ns = 9 simulations.

is not as strong in the second case). This link is conserved in the biased simulations,
which, when maximizing for either temperature or geopotential height, sample the
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tail of the joint PDFs of these observables. As illustrated by Figure 6.6a and c, the
link between soil moisture and temperature is however not as obvious. Although in
the control simulation there is a small correlation between those two quantities, the
correlation is lost in the biased simulations. Very hot summers sampled by the rare
events algorithm are dryer than the average (see also Figure 6.1c and d), but there
is a wide range of different possible temperatures for the same level of dryness. A
similar phenomenon is observed for very dry summers. Interestingly, contrary to
geopotential height and surface temperature in Figure 6.6b, the algorithm does not
sample the combined tail of the PDFs (except for a few members in the biased SM2
simulation): there are no both very hot and very dry summers. This suggests that
the well-known correlation between these two variables may not be present in the
far tail of their joint distribution. One hypothesis to explain such a surprising result
could be that when one member reaches very high temperatures at grid point 1, this
tends to trigger convection and therefore rain, which is not favored when one wants
to minimize soil moisture. Thus, dry summers may have to be hot but not too hot.

6.3.2 Summer averaged spatial structures
In this section I investigate the summer averaged spatial structures associated to
the extreme summers sampled by the algorithm. As explained in section 6.2, I
consider here centennial-like events, i.e. extreme summers that have a probability
below 10−2 to occur. Contrary to the preceding section, in this section I therefore
show climatologically relevant averages, i.e. conditional on reaching a threshold
corresponding to centennial events.

The normalized anomalies of upper-level meridional wind (200hPa) and 2-m air
temperature are shown in Figure 6.7. The normalization is computed by removing
the climatological mean and dividing by the climatological standard deviation esti-
mated on the control simulation at each grid point. Figure 6.7a shows the results for
the biased T2M simulation. In an approximately 1000km-diameter circle centered
around grid point 1, the summer averaged temperature is 3 standard deviations
above the climatology. However, this strong anomaly is concentrated close to grid
point 1: although there are corresponding cold and warm anomalies downstream,
those are much less intense than in Western Europe. The upper-level wind pat-
tern is also concentrated close to Western Europe, with a large and very anomalous
meander around grid point 1. The meander is tilted eastward over Eastern Eu-
rope, suggesting a recurrence of wave-breaking phenomena. Similarly, the positive
anomaly above the East Mediterranean region is the result of a northward shift of
the subtropical jet (not shown). Interestingly, the anomalies upstream are small
and there are no hemispheric pattern contrary to what has been suggested by some
authors (see chapter 1 section a)). The size of most anomalies is of 1 to 2 synoptic
wavelengths. These observations extend to the other simulations, with the excep-
tion that the anomalies of both V200 and T2M are smaller when minimizing soil
moisture either at grid point 1 or 2. Finally, there is a longitudinal shift of anoma-
lies between the four simulations. For example, contrary to Figure 6.7a, in Figure
6.7c only the western facade of France and the Iberian peninsula present positive
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Figure 6.6: Scatter plot of summer averaged grid point observables.
(a) Summer averaged 2-m air temperature vs. upper-level soil moisture at grid
point 1. (b) Summer averaged 2-m air temperature vs. geopotential height
at 500hPa at grid point 1. (c) Summer averaged 2-m air temperature vs.
upper-level soil moisture at grid point 2. (d) Summer averaged upper-level
soil moisture vs. geopotential height at 500hPa at grid point 1.

anomalies of T2M. There is a corresponding shift in anomalies of V200. It should
be also mentioned that there are almost no significant anomalies in the tropics and
not at all in the southern hemisphere for the fields displayed (not shown), which
suggests a climatological atmospheric dynamics leading to extreme summers mostly
confined to the mid-latitudes.

Figure 6.8 shows the average of the E-vector at 200hPa for the summer (see
fig. A.4 for the E-vector at 500hPa). The anomalous southward pointing vector
over Eastern Europe in Figure 6.8a shows the anticyclonic wave-breaking already
mentioned. Interestingly, there is also a region of anticyclonic wave breaking west
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Figure 6.7: Summer averaged normalized anomalies of 2-m air tem-
perature (colors) and meridional wind at 200hPa (contours) for cen-
tennial events. For both fields, normalized anomalies are computed by re-
moving at each grid point the mean and dividing by the standard deviation
computed on the control simulation. The contours are drawn every 0.5 stan-
dard deviation starting at +/- 0.5. Plain (dashed) lines represent positive
(negative) values of the standard deviation.

of the Iberian peninsula. Especially, Figure 6.8b, c and d show slightly shifted
anticyclonic wave breaking regions compared to the control simulation. I come back
to this observation below. Finally, all simulations show less wave-breaking in the
entrance of the storm track region, associated to a more zonal wave guide. For
these extreme summers, waves tend therefore to break at preferred regions of the
Euro-Atlantic sector, leading to the anomalies presented in Figure 6.7.
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Figure 6.8: Summer averaged E-vector at 200hPa for centennial
events. In each panel the blue arrows show the climatological E-vector com-
puted on the control simulation.

Figure 6.9 shows the normalized anomalies of geopotential height at 500hPa
and upper-level soil moisture. All simulations have a large anticyclonic anomalies
above Western Europe, but the center of the anomalies is slightly shifted from one
simulation to another: for Figure 6.9b, corresponding to the simulation maximizing
Z500, as expected the anomaly is maximum above grid point 1, whereas it is shifted
to the east for Figure 6.9a, to the west for Figure 6.9d and to the south-west for
Figure 6.9c. Again, the Z500 anomalies are maximum above Western Europe and
do not extend around the entire Northern Hemisphere. It should be also noted for
all regions, the small negative Z500 anomaly south-east of the anticyclonic region,
which corresponds to the isolation of low pressure systems by anticyclonic wave
breaking above Eastern Europe. The strongest soil moisture anomalies in Figure 6.9
are also restricted to the European region and present an eastward shift with respect
to the region of maximum anticyclonic anomaly. For Figure 6.9a in particular, the
anomaly of soil moisture at grid point 1 — i.e. where the temperature is maximized
— is not as strong as the soil moisture anomalies encompassing Germany and Poland
regions.

One hypothesis to explain this shifted pattern is related to the advection of dry
and hot air at the core of the heatwave regions. Previous studies (cf. chapter 1
section a)) computing Lagrangian backward trajectories in reanalysis and climate
model outputs have shown that most of the air parcels during heatwave events in
Western Europe come from either the heatwave region itself or its immediate east.
This would plead in favor of the shifted low soil moisture pattern to be a precursor
of intense heat events at grid point 1 in so far as low soil moisture promote high
sensible heat fluxes and diabatic warming. It is however difficult to know whether
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this pattern is a cause or a result of heat events.

Figure 6.9: Summer averaged normalized anomalies of upper-level
soil moisture (colors) and geopotential height at 500hPa (contours)
for centennial events. For both fields, normalized anomalies are computed
by removing at each grid point the mean and dividing by the standard devi-
ation computed on the control simulation. The contours are drawn every 0.5
standard deviation starting at +/- 0.5. Plain (dashed) lines represent positive
(negative) values of the standard deviation.

An idea of the origin of air parcel in a Eulerian framework can be given by
analyzing the vertical structure of the anomalies of geopotential height and sea-
level pressure, even though I did not run a Lagrangian particle tracing analysis
which would be necessary to validate this result. Figure 6.10 shows the anomalies
of sea-level pressure (SLP), geopotential height at 850hPa (Z850) and geopotential

203



Chapter 6. Statistical and dynamical aspects of very extreme summers sampled
in the IPSL-CM6A-LR climate model with a rare events algorithm

height at 200hPa (Z200). All panels illustrate the westward tilted vertical structure
of the summer anticyclone, with for example for Figure 6.10a the maxima of SLP
anomalies situated above Poland while the maxima of Z200 situated above Southern
UK. This vertical structure suggests, at grid point 1, advection from the east on the
lower layers of the atmosphere, while from the south-west on the upper-levels. This
reveals a non-barotropic vertical structure of the anticyclone leading to extreme
temperature events, contrary to what is sometimes suggested in the literature (cf.
chapter 1 section a)).

6.3.3 Atmospheric dynamics
In this section I investigate the atmospheric dynamics associated with extreme sum-
mers. Figure 6.11 shows the wavenumber-phase speed spectra at 200hPa obtained
for centennial events and the difference with the climatological spectrum (see Fig.
A.5 for the spectra at 500hPa). The spectra are different from one biased simulation
to another. The biased T2M and Z500 simulations are similar in their increase in
stationary and/or westward moving waves with low zonal wavenumbers (4 to 6),
highlighting the persistence of anticyclonic blocking patterns. On the other hand,
the biased Z500 simulation is associated with a decrease of fast-moving high zonal
wavenumbers waves which is not the case for the biased T2M simulation. The results
for soil moisture minimizing simulations is more surprising: for both of them there
is an increase in stationary/westward-moving waves with high zonal wavenumbers
(8 for both, 6 for SM1 and 5 for SM2) and a decrease of eastward moving waves with
similar zonal wave numbers. The differences with the climatological spectrum are
nevertheless small (around 10%) and the raw spectra are similar from one simulation
to another.

I investigate the properties of slow-moving quasi-stationary waves through the
amplitude-phase histogram detailed in section 6.2. The results are presented in
Figure 6.12 for meridional wind speed anomalies at 200hPa for centennial events
(see Fig. A.7 for meridional wind speed anomalies at 500hPa). Figure A.8 in
supplementary material shows its aggregated version along the amplitude and phase
axis (Fig. A.9 for the 500hPa level). Simulations with an extremization of the score
function do not differ strongly in the quantity of energy distributed in the different
zonal wave-numbers: they have approximately the same aggregated spectrum for
each of them. However, they differ strongly in the phase of the different wave
numbers. Figure 6.12b2 for example shows a 2-3 times increase in the frequency of
waves with phase around π/2 compared to the control for wave number 4. There
is a similar behavior for the other simulations but the preferred phase changes from
a zonal wave-number to another. For example, for kϕ = 3 − 5 biased simulations
have a different preferred phase (which is coherent with the longitudinal shift that
was described in Figure 6.7) but for k = 6 they all have the same preferred range
of phases. The same decomposition using the raw meridional wind field at 200hPa
is presented in Figure A.6 (cf. Fig. A.10 for meridional wind at 500hPa and Fig.
A.11 and A.12 for the aggregated spectra). There is no clear shift in neither the
amplitude nor the phase of the stationary waves in the biased simulations, except
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Figure 6.10: Summer averaged normalized anomalies of sea-level pres-
sure (colors), geopotential height at 850hPa (red contours) and at
200hPa (black contours) for centennial events. For all fields, normalized
anomalies are computed by removing at each grid point the mean and dividing
by the standard deviation computed on the control simulation. The contours
are drawn every 0.5 standard deviation starting at +/- 0.5. Plain (dashed)
lines represent positive (negative) values of the standard deviation.

maybe for wavenumbers kϕ = 4 and kϕ = 5 for the biased T2M simulation (Fig.
A.6b2 and b3). In the aggregated spectrum (Fig. A.11b–c2) a small shift in the
phase for all simulations is seen for wavenumber kϕ = 6.

Whether the excitation of certain modes and their phase-locking behavior is a
result of an underlying physical amplification mechanism of the system or the simple
consequence of the Fourier decomposition of anomalies leading to the patterns of
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Figure 6.11: Wavenumber-phase speed spectra of meridional wind
anomalies at 200hPa for centennial events. Raw spectrum in m/s (con-
tours) and difference with the climatological spectrum (colors).

Figure 6.7 is not clear though. In particular, with this procedure it is assumed that
the stationary hemispheric Fourier modes exist and are physically relevant. However,
when the original field is reconstructed with for example modes kϕ = 3 to kϕ = 10
(not shown), it is found that they — as expected — correspond to a localized
anomaly above Western Europe (i.e. the pattern of Figure 6.7). In other words,
even though it is mathematically correct to decompose the field on hemispheric
scale patterns, most of the dynamics is local and confined to the North Atlantic in
practice. It is therefore difficult to interpret physically hemispheric modes (not to
mention the fact that these modes only have a zonal and no meridional component).

On the other hand, Figure 6.13 shows the composite Hovmöller plot of anomalies
of meridional wind speed at 200hPa averaged between 35°N and 65°N and normalized
anomalies of 2-m air temperature averaged between 45°N and 55°N for the heatwave
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Figure 6.12: Amplitude-phase histograms of meridional wind speed
anomalies at 200hPa for centennial events. Wave numbers kϕ = 3 to
kϕ = 10 in columns and biased simulations in rows: (a) control simulation, (b)
biased T2M simulation, (c) biased Z500 simulation, (d) biased SM1 simulation
and (e) biased biased SM2 simulation.

events that occur in each simulations. As previously, a heatwave event is defined as
a continuous period of time of at least 3 days for which the temperature is above the
90% climatological quantile. In all simulations the atmospheric dynamics is similar:
there is a Rossby wave packet of 2-synoptic wavelength propagating to the east and
amplifying locally in Western Europe. Because there are a lot of heatwave events
in biased simulations, it is even possible to see the recurrence of new Rossby wave
packets at 6-8 days after the heatwave (Fig. 6.13bce1). The temperature anomalies
on the other hand are restricted to the region of amplification of the Rossby wave
packet, i.e. where the score functions of the rare events algorithm are computed.
For the biased T2M simulation (Fig. 6.13b2), the temperature anomalies are larger
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during the heatwave and extend both before and after, which may be linked to a
near zero phase speed of the Rossby wave packet. A similar mechanism, although
less intense, may be happening for both the biased Z500 and SM2 simulations (Fig.
6.13ce2).

Indeed, when one looks at daily maps (see Figure 6.14 for two example hot days),
the explanation in terms of hemispheric scale patterns is rather doubtful. Figure
6.14a1 for example shows the omega blocking-type structure above Western Europe
that is amplified only locally, as shown by the envelope on Figure 6.14b1. On the
other hand, one also observes not only wave-like but also vortex-like structures as in
Figure 6.14a2 with an isolated minimum of Z500 — i.e. a cut-off low — west of the
Iberian peninsula which is not embedded in a hemispheric Rossby wave nor a local
Rossby wave packet pattern (Fig. 6.14b2).

I investigate further the role of these structures (as already mentioned in chapter
5). The frequency and frequency anomaly of cut-offs low over the Euro-Atlantic
sector for the biased simulations is presented in Figure 6.15. All biased simulations
have anomalously high frequency of cut-off lows over the Atlantic. Biasing for 2-m air
temperature at grid point 1 lead for example to a 2-3 times increase in the frequency
of cut-off lows west of the Iberian peninsula. For Z500 and SM1 biased simulations
on the other hand, the frequency anomaly is not as high and is concentrated on the
center of the North Atlantic. The biased SM2 simulation has the strongest anomaly,
with a 4-5 times increase of cut-off lows with respect to the climatology around the
30°W-40°N grid point.

The composite atmospheric situation associated to the presence of a cut-off low
west of the Iberian peninsula is shown in Figure 6.16 for the biased T2M simulation
only. Figure 6.16a shows the well isolated minimum of Z500, which is not embed-
ded in the jet, the latter being actually mostly zonal and situated much more to
the north (50 to 60°N). The meridional wind speed on Figure 6.16b makes clear
that the cut-off low is not embedded in a Rossby wave train (at least at 200hPa)
and therefore justifies the use of the term ‘vortex’ to designate this structure. Al-
though the E-vector composite suggests an anticyclonic wave breaking origin for
the cut-off low, it is actually very difficult to validate this hypothesis in so far as,
once isolated, cut-off lows behave very erratically and because their size is of the
same order of magnitude as the variance in their position, they tend to vanish on
composite maps. The dynamical consequence of the presence of such a cut-off low
is likely to be the advection of negative PV anomalies and hot air to its north-east
flank (i.e. above Western Europe) at mid-troposphere favoring the appearance and
maintenance of a blocked anticyclone which can subsequently break above Eastern
Europe (as suggested also by the southward pointing E-vector in the Baltic region).

Above Western Europe, a 1.5 standard deviation localized maxima of air tem-
perature at 850hPa is present, associated with a similar anomaly of T2M. There
is a coincidence between the region where the T850 anomaly associated to cut-off
lows is maximum and the region where anomalous trends are found in Europe is
striking (Patterson 2023; Vautard et al. 2023). The anomalous temperatures above
the boundary layer are the result of south-west advection by the cut-off low, but
whether the anomaly is mainly due to advective, adiabatic or diabatic (especially
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Figure 6.13: Composite Hovmöller plot of the atmospheric and surface
dynamics during heatwave events. First column: meridional wind speed
at 200hPa anomalies averaged between 35°N and 65°N. Second column: 2-
m air surface temperature normalized anomalies averaged between 45°N and
55°N. The time is expressed relative to the hottest day of each heatwave event.
Rows: (a) control simulation, (b) biased T2M simulation, (c) biased Z500
simulation, (d) biased SM1 simulation and (e) biased biased SM2 simulation.
Number of events: (a) n = 1141, (b) n = 4307, (c) n = 3290, (d) n = 2080
and (e) n = 2670.

lattent heat release by precipitation) mechanisms is not clear. The three mecha-
nisms probably play a role, but one would need a Lagrangian analysis to quantify
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Figure 6.14: Snapshot of the atmospheric dynamics for two heatwave
days in Western Europe. The two example days are sampled from the
same member of the same biased T2M simulation. The first (resp. second)
column shows the snapshot dynamics for day 206 (resp. 163). (a1-a2) 200hPa
meridional wind (colors) and geopotential height at 500hPa (contours). The
geopotential height contours are drawn every 75m starting at 5200m. (b1-b2)
Rossby wave packet envelope (colors) and E-vector (arrows). The envelope
is drawn where it exceeds 15 m/s and the arrows where the norm of the E-
vector exceeds 15 m2/s2. (c1-c2) 2-m air temperature normalized (colors) and
500hPa air temperature (contours) anomalies. The anomalies are computed
with respect to the daily ensemble mean and standard deviation from the con-
trol simulation. The contours are drawn every 1 standard deviation, starting
from +/- 1. Plain (dashed) lines represent positive (negative) values of the
standard deviation.

their respective importance. Although there is a 4mm precipitations contour east
of the cut-off low, this value is quite small and probably not enough to explain such
large anomalies above Western Europe. An other explanation may be the lifting of
the hot boundary layer created over Spain and Morocco above Western Europe 6. If
one plots the same analysis on the control simulation (Figure A.13 in supplementary
materials), the temperature anomalies are lower, with no strong anomaly over West-
ern Europe. The atmospheric dynamics in particular is quite different, with weaker
meridional winds associated to the cut-off and no anticyclonic wave breaking above
Eastern Europe. This suggests that the cut-off low-heatwave association is not so
straightforward and may occur only when some other conditions — especially with
regards to the synoptic dynamics or soil moisture — are present.

I have shown that the presence of an Iberian cut-off low can be linked dynamically

6 I thank Jacopo Riboldi for our discussions on this hypothesis.
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Figure 6.15: 500hPa cut-off lows frequency and frequency anomaly.
The anomaly is computed with respect to the control simulation.

to the occurrence of abnormally hot conditions in Western Europe, at least in the
biased T2M simulation. On the other hand Figure 6.17 shows whether the presence
of a heatwave in grid point 1 (defined as above) was preceded by the presence of
an Iberian cut-off low. The occurrence of heatwaves are centered by considering the
time when the maximum temperature during the heatwave is reached at t = 0. For
each event and each time t, one counts whether there has been a cut-off west of the
Iberian peninsula in the t + 10 days before (hence a strictly increasing cumulative
frequency). Figure 6.17a shows that for the control simulation, around 20% of
heatwaves have had a cut-off low west of the Iberian peninsula in the 10 days before
— which is a proportion similar to the one found in chapter 5. For the biased
Z500 and SM2 simulations the proportion is similar. However, it reaches 25% for
biased T2M and goes as low as 13% for SM1. This suggests different dynamics for
the heatwaves in those two cases, probably more driven by advective dynamics and
adiabatic warming in the first case and local diabatic warming in the second case.
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Figure 6.16: Atmospheric dynamics associated to cut-off lows west
of the Iberian peninsula. The composites are made for all events (n =
1887) in the biased T2M simulation for which a cut-off low is detected in the
33.5°N-42.5°N - 22.5°W-10°W area. (a) Geopotential height at 500hPa (black
contours), 3-day average precipitations (colored contours) and 3-day average
air temperature at 850hPa anomaly (colors). The geopotential height contours
are drawn every 20 meters starting at 5200m. The precipitations contours are
drawn every 2mm starting at 2mm. (b) 3-day average 2-m air temperature
anomaly (contours), E-vector (arrows) and meridional wind speed at 200hPa
(colors). The E-vector is drawn for norms above 10 m2/s2. The anomalies
are computed with respect to the daily ensemble mean and standard deviation
of the control simulation. For panel (b), the anomalies are drawn every 0.5
standard deviation, starting at +/- 0.5 std. Plain (dashed) lines represent
positive (negative) values of the standard deviation.

Figure 6.17: Occurrence of an Iberian cut-off low when a heatwave is
happening at grid point 1 at t = 0. The cumulative percentage of cut-
offs at time t gives the percentage of heatwave events which have had at least
one Iberian cut-off in the last t + 10 days. The shadings for the anomaly of
maximum daily temperature TX1d shows the 25 and 75% quantiles. Number
of events: (a) n = 1141, (b) n = 4307, (c) n = 3290, (d) n = 2080 and (e)
n = 2670.

212



6.4. Conclusions and discussion

6.4 Conclusions and discussion
I have shown that the use of a rare events algorithm biasing for different score
functions allows to vastly increase the amount of extreme summers simulated using
the state-of-the-art IPSL climate model. For a similar computational cost as a
control simulation, it is possible to sample events that are 102-104 times less likely
than the ones sampled in the original control simulation. This allows to reach precise
climatological results on the dynamics leading to extreme summers. As such the rare
events algorithm is clearly an improvement compared to the brute force sampling
by a long simulation.

I have shown here that extremely hot summers in the IPSL climate model un-
der pre-industrial forcings are the result of synoptic rather than planetary scale
atmospheric anomalies. Centennial-like events correspond to a large positive tem-
perature anomaly that is centered in Western Europe but that does not extend at
the planetary scale. Vertically, the anticyclonic structure above the heatwave region
is not barotropic: dry soils and high sea-level pressures are situated to the east
of the maximum 2-m air anomaly while the 200hPa anticyclone is situated to its
west. 20-25% of heatwave events are associated to an Iberian cut-off low, reinforcing
the anticyclone in mid-troposphere. Statistically I have additionally shown that ex-
tremely hot summers are around 10 times more likely than predicted by a Gaussian
approximation.

My results on this pre-industrial model simulation thus strongly favor the hy-
pothesis of localized and recurrent dynamics via Rossby wave packets to explain
the appearance of hot and very hot summers in Western Europe. It is nevertheless
difficult to validate these results with observational data in so far as the undersam-
pling issue for very rare and intense events also applies to them: there is not enough
cases to compare to. My results may also be strongly model-dependent and it seems
necessary to apply the same methodology at the same place for different models —
which could also constitute a test bed for comparing models on their capacity to
sample the physical mechanisms leading to very extreme events.

Nevertheless, the use of a rare events algorithm comes with several drawbacks
that should be stated here. The main issue of the method is the extinction problem.
Because some members are killed and others are cloned at each resampling times,
when the simulations are reconstructed from the 1st of June, a lot of diversity in
the ensemble is lost at the beginning of the simulation: around 95% of the initial
members are completely discarded. This may make the results obtained with the
algorithm depend strongly on a few initially selected members and therefore imposes
that the algorithm is run several times. Here I have done so 9 times to balance the
number of score functions I could explore and the precision of the results, and it
is likely that one cannot go much below this number (Ragone and Bouchet (2021)
chose to repeat the simulation 10 times). Another consequence of the extinction
problem is that even if the model allows to obtain precise results on the tail of the
distribution of the summer averaged score functions, the estimation of probabilities
for observables that are not closely related to the score functions used are imprecise.
In other words, the price of having a gain in the variance at the tail of a local score
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functions is paid by increasing the variance almost everywhere else.
The other physical limit on the use of the GKTL algorithm concerns the kind

of extremes that are sampled. As explained in section 6.2, the algorithm favors
long lasting events which create large summer-averaged anomalies: the algorithm
samples large deviations from the summer mean. As a consequence (see also chapter
4 section 4.4.4), the algorithm is not fitted to sample short, very intense events. At
the beginning of this work, the rationale for sampling extremely low soil moisture
was to favor the typical conditions which lead to very short and intense events.
However, even though these kind of events exist in the biased simulations, their
intensity is only slightly higher than the intensity of the strongest events in the
control simulations (around 1°C, cf. Figure A.14 for the summer maximum of daily
maximum temperature).

Another technical drawback is that the way the IPSL model — and probably
most climate models — is currently implemented makes it unfitted to run a multitude
of members over a limited time span7. The 5 days resampling period imposes that all
members are run for 5 days, then stopped, resampled and rerun. On the other hand,
control simulations are run by continuous periods of one month and do not require
resampling. With the current implementation, the control simulation is run in 8
hours per month, for a total of 24 hours for N = 100 members for the summer. The
biased simulations are run in 2 hours per 5 days period, for a total of 36 hours for
N = 100 members for the summer. The rare events algorithm therefore makes the
integration of the model around 50% longer. Most of the additional computational
cost is not caused by the resampling procedure — which is almost immediate — but
on loading the starting files of the model at the beginning of each 5 days simulation
period. However, it should be noted that this time may be reduced by a change
in the implementation of the model in the future. In particular, it may be possible
to run the algorithm inside the simulation without having to stop the simulation
at each resampling time, which would allow to avoid loading the starting files and
therefore save time.

Thus, even though the computational gain is in principle of the order of 102-104

with respect to a control simulation, in practice with the rare events algorithm there
is an additional computational cost increase of 50% and one needs to run around 10
times the algorithm with the same k parameter to avoid the extinction problem. As
a consequence, the real computational gain is more around 6-600 — which is still a
substantial gain.

Finally, it should be emphasized that even though there is a net computational
gain compared to a control simulation, the gain is actually local. As I have shown
there is no free lunch: the model samples very well the tail of a local score function
but loses quality in its estimation almost everywhere else. In particular, one cannot
really use a biased simulation to estimate climatological results far from the location
where the score function is computed. As a consequence, if a 1000-y long control
simulation can be used to obtain climatological results — including for extreme

7 Note that I run the model on 712 CPUs thanks to an ensemble simulation tool which
allows to launch simulations by pools of 10 ensemble members.
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events — everywhere on Earth, one would have to run the rare events algorithm for
each score function of interest (especially at various grid points) which may largely
compensate the computational gain initially obtained by the rare events algorithm
(not to mention the additional storage cost due to the multiple rare events simula-
tions). As a consequence, it seems clear that rare events algorithms cannot replace
long control run or large ensemble simulations. The latter are actually more com-
putationally competitive when one considers their multiple potential applications.
The typical use case of rare events algorithm is for case studies of extremes that are
of particular interest for a physical problem (like an unexplained bias in the control
simulation) or a practical application (like the sampling of very intense extremes for
the development of storylines (Shepherd et al. 2018)).
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Summary

Context and goals

Extreme events are under-sampled by brute force and/or ensemble simula-
tions. The use of rare events algorithms allow to sample much more extremes
than are provided in a regular simulation. These large samples of extremes
can be used to provide physical insights in the dynamical mechanisms leading
to extremes. In this chapter I study in particular the dynamical mechanisms
leading to extreme hot summers in Western Europe.

Methods

I apply a rare events algorithm to a climate model to sample extreme and very
extreme summers under pre-industrial forcings. I investigate the dynamics
leading to extremely hot summers in Western Europe by biasing an ensemble
simulation towards favoring summers with high near-surface temperatures,
high geopotential height and low soil moisture.

Results

The rare events algorithm allows to recover climatological probabilities and I
show that it samples events with probabilities of occurrence between 10−2 and
10−6. I show that hot summers are characterized by both more and longer
heatwaves. These summers arise as a combination of local non-barotropic high
geopotential height and non-local soil moisture anomalies. The atmospheric
dynamics of these summers is mainly driven by a recurrence of short Rossby
wave packets rather than circumglobal wave patterns.
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Chapter 7

Statistical and dynamical
evolution between present and
future very hot summers in the
IPSL-CM6A-LR climate model

7.1 Introduction

In this chapter I expand the work presented in chapter 6 under present and fu-
ture scenarios of external forcings. I seek to investigate statistical and dynamical
changes in very hot summers between pre-industrial, present, SSP2-4.5 and SSP3-
7.0 conditions. The target time period for the SSPs (O’Neill et al. 2014) is the last
decade of the 21st century. The main forcing changes between these four config-
urations are the level of greenhouse gases, especially CO2, aerosols concentration
and land-use/land-cover changes which lead to a global warming of around +1.6°C
in the present, +3.9°C in SSP2-4.5 and +5.2°C in SSP3-7.0 with respect to the
pre-industrial simulation — for the IPSL model. I implement the same GKTL rare
events algorithm as previously. In this chapter, only temperature at one grid point
is used as a score function due to limited computational resources.

This chapter is organized as follows. In section 7.2 I present the changes made
in the rare events algorithm and the configuration of the model with respect to
the previous chapter. Section 7.3 displays the results obtained. The section begins
by a statistical description of the extreme summers. I then display the changes
in the summer climatologies of key thermodynamical and dynamical variables. In
particular, I show an increase in the thermodynamic variability and a decrease in the
dynamic variability between the present and the future scenarios. I then investigate
the mean spatial structures of the centennial events sampled by the algorithm and
I finally detail their atmospheric dynamics. Section 7.4 summarizes the results
obtained and the conclusions reached.
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7.2 Methods
In this chapter, the same rare events algorithm as in chapter 6 is employed. I
therefore do not detail again how the algorithm works and the choices made for its
implementation.The reader is invited to refer to section 6.2 of the previous chapter.
Here I apply the GKTL algorithm with present and two future scenarios for external
forcings on the climate system. The present starting conditions are extracted from
a 32-member ensemble simulation of the fully coupled IPSL model (Boucher et
al. 2020) under extended historical forcings between 2015 and 2025. For future
scenarios, an intermediate warming scenario (SSP2-4.5, +3.9°C in the model) and
a high warming scenario (SSP3-7.0, +5.2°C in the model) with respect to the pre-
industrial simulation are chosen. For both warming scenarios, the starting conditions
are chosen from a 11-member ensemble of the fully coupled model over the period
2090-2100.

To be comparable, simulations in the past, present and future should occur in
similar phases of the slow components of the climate system. It is not possible
to fully ensure that it is the case due to the limited sampling of the variability in
the fully coupled simulations I have access to. Therefore, only two modes that are
thought to be the most important for both the climate system as a whole and hot
summers in Western Europe are chosen: the El-Nino Southern Oscillation (ENSO)
and the Atlantic Meridional Oscillation (AMO), cf. chapter 1 section 1.3.3. The
ENSO index in the model is computed as the 1-y rolling mean of the spatial average
over the 190°E–240°E and 5°S–5°N area of the sea surface temperatures (SSTs).
The AMO index in the model is computed as the 1-y rolling mean of the spatial
average over the 75°W–7°W and 25°N–60°N area of the SSTs. Both indices are then
normalized by removing the mean and dividing by the standard deviation. The cross-
distribution of these indices for the pre-industrial, present and future simulations
are presented in Figure 7.1. The black dots show the ENSO-AMO indices for the
pre-industrial simulations of chapter 6. The AMO is in a slightly negative phase
(AMO index around -1) while the ENSO is in a strong negative phase (ENSO index
around -2). I find years as close as possible to this combination in the present and
future scenarios as shown by the red dots in Fig. 7.1bcd. Nonetheless, one should
note that in the 2000-y pre-industrial control run, the Pearson correlation between
the ENSO index over the summer and the summer averaged temperature at grid
point 1 is almost null (ρ = 0.01, p > 0.05) while the correlation with the AMO index
is only moderate (ρ = 0.24, p < 0.001).

The score function used for each simulation is the same as previously: 2-m air
temperature in °C (T2M) at grid point 1 (49.5°N, 2.5°E) with control parameter
k = 0.04/°C/day. With the value of k chosen here, under a Gaussian approxima-
tion, the summer averaged anomalies expected to be sampled by the algorithm are
apresent = 2.3°C = 2.5std, aSSP2 = 2.5°C = 2.5std and aSSP3 = 2.6°C = 2.6std. Due
to limited computational resources, here I only run T2M biased simulations. As
shown in chapter 6, this score function is well suited to sample extremely hot sum-
mers. As previously, the model is run in its atmosphere - land surfaces configuration
(LMDZOR). First, a 4-months spin-up simulation (January to April) of the uncou-
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Figure 7.1: ENSO-AMO indices distribution and values for the sim-
ulation years. ENSO-AMO index distribution for (a) pre-industrial 2000-y
control run, (b) 32 members between 2015-2025, (c) 11 members between 2090-
2100 under SSP2-4.5 and (d) 11 members between 2090-2100 under SSP3-7.0.
In all panels, the black dots show the values of the ENSO-AMO indices for
the 12 months of the year chosen for initial conditions of the rare events algo-
rithm (REA) in the pre-industrial simulation. For panels (b), (c) and (d) the
red dots show the values of the ENSO-AMO indices for the 12 months of the
year chosen for initial conditions of the rare events algorithm (REA) in the
corresponding period.

pled model with oceanic and ice conditions of the initial coupled simulation is run
to let the atmosphere adapt to the uncoupling with the oceans and to provide ini-
tial conditions for the rare events simulation in summer. Random perturbations on
potential temperature at all levels and grid points are then added at the beginning
of May to create a 100 members starting ensemble. The perturbations are added in
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May to avoid having to simulate the 100 members from January to April while still
letting enough time for the different members to diverge until the beginning of the
rare events simulation in June. All the simulations begin on the 1st of June from
those same 100 members and end on the 28th of August (90 days).

I run Ns = 9 rare events simulations with N = 100 members each for the present
and the future scenarios. A 900-member control ensemble without the resampling
procedure is additionally run for each period. In the following, I mainly consider
centennial events, i.e. choosing a level a so that Pµ[F (X(t)) ≥ a] ≃ 10−2 where F is
the summer averaged 2-m air temperature at grid point 1 and µ is the climatological
probability distribution. These centennial events correspond to the following levels:
apresent = 22.2°C, aSSP2 = 25.5°C and aSSP3 = 27.5°C (cf. Fig. 7.6).

Here I do not detail again how the atmospheric dynamics diagnostics are com-
puted. The reader is invited to refer to section 6.2. For consistency with the analysis
of chapter 6 the 200hPa level is mainly used to investigate the dynamics of Rossby
wave and the corresponding figures at 500hPa are shown in supplementary materi-
als. As previously, except specified explicitly, daily averaged outputs of the model
are considered.

7.3 Results

7.3.1 Grid point statistics
This section presents statistics mainly for grid point 1, i.e. where the summer
averaged 2-m air temperature is maximized in the biased simulations. Figure 7.2
shows the empirical histograms of the control and the biased simulations for summer
averaged 2-m temperature (T2M, Fig. 7.2a), geopotential height at 500hPa (Z500,
Fig. 7.2b), soil moisture at grid point 1 (SM1, Fig. 7.2c) and soil moisture at grid
point 2 (SM2, Fig. 7.2d). As expected, summer averaged temperatures are stronger
in the future: T2Mm = 19.8°C for the present, T2Mm = 23.1°C for SSP2-4.5
and T2Mm = 25.1°C for SSP3-7.0. This makes these summers respectively 1.6°C,
4.9°C and 6.9°C hotter than the control summers in the pre-industrial simulations
of chapter 6, demonstrating an amplification with respect to global warming of
respectively +0.0°C, +1.0°C and +1.7°C in the three periods. There is also a small
increase in the standard deviations of the summer averaged temperature (0.93°C
in the present, 0.99°C in SSP2-4.5 and 1.03°C in SSP3-7.0) but only the difference
between present and SSP3-7.0 is significant at the 5% level with a Bartlett test
(Bartlett 1937), even with 900 control members, indicating only a modest increase
of the standard deviation of summer averaged temperatures at grid point 1. There is
however a significant increase (p < 0.001) in the standard deviation of the summer
distribution of daily temperatures (3.6°C in the present, 4.0°C in SSP2-4.5 and
3.8°C in SSP3-7.0), the SSP2-4.5 being the more variable. As the distribution of
daily mean temperatures over the summer is not Gaussian, the Levene test (Levene
1960) is used for the significance of the change in the variance. The fact that the
moderate warming scenario is the more variable may be a result of the transition zone
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northward shift and the feedback with soil moisture that leads to stronger variability
when soils are neither too dry nor too moist (Seneviratne et al. 2010), cf. next section
for more elements on this point. Additionally, there is a constant amplitude of the
anomaly corresponding to a centennial event for the summer averaged temperature
at grid point 1: the anomaly is around +2.6°C in the pre-industrial simulation, and
+2.4°C in the present, in SSP2-4.5 and in SSP3-7.0.

Figure 7.2: Empirical probability density functions (PDFs) of summer
averaged grid point observables. PDFs of the summer averaged (a) 2-m air
temperature, (b) geopotential height at 500hPa, (c) upper-level soil moisture
at grid point 1 and (d) upper-level soil moisture at grid point 2. The PDFs
are obtained by a kernel smoothing of the empirical histograms.

As expected, the biased T2M simulations sample much more extreme summer
averaged temperatures and geopotential height, including extremes which are un-
precedented in the control simulations. For example, the present biased T2M simu-
lation displays summers which are as intense as the average ones expected with the
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SSP2-4.5 scenario at the end of the 21st century. The summer averaged Z500 also
increases in the two scenarios with respect to present conditions, while the summer
averaged soil moisture decreases but more moderately, being in particular always
bounded downwards by the 8.14 kg/m2 limit (see chapter 6). As a consequence,
contrary to other observables, the control distributions of the two future scenarios
for soil moisture are very close. The difference between the biased simulations in
the present and in the future are therefore smaller than the differences observed for
temperatures. Biased T2M simulations are dryer than their climatology but only
moderately dryer and similarly when they are compare between each other.

Figure 7.3: Time series of the ensemble mean and the 5 and 95%
quantiles of 2-m air temperature at grid point 1. For all the plots the
plain line shows the ensemble mean and the shading the 5 and 95% quantiles
of the variable displayed. For the biased simulations, all members of all simu-
lations are pooled together to compute the 5 and 95% quantiles.

The average time series of temperature at grid point 1 are shown in Figure
7.3. As previously, the average of the rare events algorithms simulations are several
degrees above the climatological average obtained with the control simulations. The
95% quantile of the biased T2M simulations therefore sample very extreme daily
temperatures. This is also shown by Figure 7.5 which displays the distribution
of the summer maxima of maximum daily temperature (TXx) in the biased and
control simulations. On average these maxima are around 3°C higher in the biased
simulation, but the overall maxima of TXx in the biased simulation are not higher
— even a little bit lower for the SSP2-4.5 and SSP3-7.0 — than the maximum over
the 900 members in the control simulations. As explained previously, the GKTL
algorithm is better suited to sample long persisting anomalies (i.e. large deviations)
rather than short intense events.

Figure 7.3 could give the impression that members selected are continuously
hotter than the control. This is however false in general as shown by Figure 7.4
displaying the number of heatwaves per summer and their average length. As previ-
ously, a heatwave is defined as a continuous period of time of at least 3 days length
for which the daily mean temperatures are above the 90% climatological quantile

222



7.3. Results

Figure 7.4: Heatwaves number per summer and mean duration at
grid point 1. For all plots a heatwave is a continuous period of time where
daily mean temperatures are above the 95% climatological quantile. The stars
show the ensemble mean.

Figure 7.5: Comparison of the distribution of summer maxima of
maximum daily temperatures (TXx) at grid point 1. The boxplots
show the 25 and 75% quantiles, the median and the outliers.

computed on the control simulations. Biased T2M simulations have both more heat-
waves and longer heatwaves. The number and mean length of heatwaves is constant
in the control simulation for the present and the two future scenarios: around 1.2
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heatwaves per summer with an average length of 4.6 days in the present, 4.5 days in
SSP2-4.5 and 4.8 days in SSP3-7.0. There is however an increase for biased simula-
tions in the number of heatwaves from present to future simulations (4.1 per summer
for present, 4.4 for SSP2-4.5 and 5.0 for SSP3-7.0), and also an increase in mean
duration (6.6 days for present, 6.8 for SSP2-4.5 and 7.6 for SSP3-7.0). It is however
not clear whether these increases are due to a change in the properties of the system
or to the variability of the sampling caused by the rare events algorithm between
the three periods.

The intensity of the selection for the three periods is shown in Figure A.15. The
final intensity of the extinction (around 65 effective members) is equivalent to the
one in the pre-industrial simulations (cf. Fig. 6.3). This is expected in so far as
the four simulations have a similar value of the parameter k in the GKTL algorithm
that controls the strength of the selection — which, as shown in section 7.2, should
lead to similar anomalies of the summer averaged temperature at grid point 1.

Figure 7.6: Probabilities of an extreme summer according to the naive
estimator (control simulation) and the rare event estimator. Proba-
bility of the summer averaged 2-m surface temperature to be above a certain
threshold at grid point 1. The blue dashed lines represent the corresponding
probabilities for a Gaussian distribution fitted on the control simulation by
the method of moments. The shadings for the control simulation show the
5–95% quantiles of the estimated probability obtained using bootstrap on the
900 members. For the biased simulations the shadings show the minimum and
maximum of the estimated probability over the Ns = 9 simulations.

Figure 7.6 shows the mean probabilities of the summer averaged temperature to
be above a given level at grid point 1 given by the algorithm for the three periods. As
previously, the algorithm provides accurate probabilities as low as 10−6, i.e. events
with a return period of one million years. The uncertainty range from one simulation
to another is small – around a few degrees. Contrary to Figure 6.5a, the present and
SSP2-4.5 simulations follow closely the Gaussian extrapolation for low probabilities.
This is however not the case for SSP3-7.0, which shows a similar departure from
Gaussianity as in Figure 6.5a. This is likely related to the bimodality in the biased
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temperature distribution in Figure 7.2b. It should nevertheless be noted that the
Gaussian extrapolation is still in the uncertainty range. Whether this change is the
result of a truly different mechanism is difficult to confirm with the simulations run
here. Increasing the number Ns of simulations could lead to a clearer view on this
topic. Physically, the pre-industrial and SSP3-7.0 simulations have in common a low
level of anthropogenic atmospheric aerosols, which could explain a change in the tail
behavior (cf. chapter 1 section 1.3.3).

Figure 7.7: Scatter plot of summer averaged grid point observables.
(a) Summer averaged geopotential height at 500hPa at grid point 1, (b) sum-
mer averaged upper-level soil moisture at grid point 1 and (c) upper-level soil
moisture at grid point 2 vs summer averaged 2-m air temperature at grid point
1.

Finally, Figure 7.7 explores the cross-distribution between summer averaged 2-m
air temperature at grid point 1 (T2M) and summer averaged (a) geopotential height
at 500hPa (Z500), (b) upper-level soil moisture at grid point 1 (SM1) and (c) upper-
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level soil moisture at grid point 2 (SM2). As previously, there is a strong link between
T2Mm and Z500m in both the control and the biased simulations and this link is
preserved in the future scenarios. For soil moisture, similar to the pre-industrial
simulations, hot summers are dryer but not much dryer than the climatology and
the algorithm does not explore the joint tail of the distribution. The future scenarios
are dryer and hotter than the present, but at grid point 1 — as stated previously —
the distributions of soil moisture in SSP2-4.5 and SSP3-7.0 are quite similar and the
difference is mainly a shift in the temperature distribution (Fig. 7.7b2 and b3). At
grid point 2 the situation is similar, except for SSP3-7.0 for which some members of
the biased simulation sample both very hot and very dry summers.

7.3.2 Average thermodynamic and dynamic evolution be-
tween present and future scenarios

In the next sections I investigate the evolution of thermodynamical and dynamical
mechanisms leading to centennial hot summers between the present and the future
scenarios simulations. The fields shown are mainly normalized anomalies which are
computed with respect to the climatology of each period. As a consequence, for the
correct interpretation of the maps shown, in this section I first detail the summer
averaged evolution of thermodynamical and dynamical fields between the control
simulations of the three periods. The thermodynamical fields refer to variables
which are related to diabatic energy fluxes (2-m air temperature, soil moisture,
sensible and latent fluxes) while dynamical fields refer to variables related to the
atmospheric dynamics (zonal and meridional winds). I show essential figures for the
understanding of the results obtained for centennial events. The rest of the figures
are shown in supplementary materials.

The differences in the summer averages, standard deviation in the summer av-
erages and standard deviation in the full summer distribution are investigated. The
standard deviation in the summer averages is computed between the N = 900 mem-
bers of the control simulation. The standard deviation in the full summer distri-
bution is computed between the pooled data of the N = 900 members and the 90
days of the control simulation. The statistical significance at 5% is evaluated with a
Welch t-test (Welch 1947) for the summer averages, and an F-test for the standard
deviations. By doing so it is assumed that the distribution of summer averages are
close to a Gaussian, which is expected because of the central limit theorem. For the
distribution of daily mean temperatures however the Gaussian hypothesis is clearly
wrong and a Levene test (Levene 1960) is therefore used. For the summer averages,
with 900 members the statistical significance is obtained for differences larger than
0.07 std. For the standard deviations, the changes in the percentage with respect
to the present are shown: ∆σ/σp where ∆σ is the change in standard deviation
between the two periods and σp is the standard deviation estimated on the present
simulations. With 900 members in each simulation, with an F-test, the significance
at 5% is obtained with a difference larger than 7% for the standard deviation in the
summer averages and with a difference larger than 1% for the standard deviation
in the full summer distribution. Climatologies shown are restricted to the Northern
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Hemisphere mid-latitudes in so far as this is the region of interest for the extremes
of near-surface air temperature as shown by chapter 6.

The differences in summer-averaged 2-m air temperature and upper-level soil
moisture between the present and the future simulations is shown in Figures A.16
and A.17. As expected, future summers are much hotter in the future scenarios
almost everywhere on the Northern Hemisphere, with stronger warming over the
land and close to the pole rather than over the oceans and close to the Equator.
Future summers are also significantly dryer in almost all of the European continent.
Latent heat fluxes are moderately decreasing over Western Europe (Figure A.18),
the strongest decrease being observed north of the Black Sea. This is likely the
results of the competition between less available water but more potential for evapo-
transpiration due to the increasing mean temperatures caused by the radiative effect
of GHGs. On the other hand, there is a consistent increase in sensible heat fluxes
over the European continent (Figure A.19).

Figure 7.8 shows a significant increase of around 15-30% in the standard de-
viation of the summer averaged temperature over France and the Balkanic area in
SSP3-7.0 with respect to the present. This is in contrast to the results of the preced-
ing section on grid point 1 and the difference may arise as a result of the tempering
influence of the nearby sea for this grid point. It is likely that there is also an
increase for SSP2-4.5 but it is non-significant at the 5% level with 900 members.
Figure A.22 in supplementary materials shows that this is the case in the summer
distribution of daily 2-m air temperature. For soil moisture, Figure A.20 for the
summer averages and Figure A.23 for the full distribution show a decrease of vari-
ability in the Mediterranean basin but a small increase in Western Europe (5-10%)
that is non-significant in the summer averages. On the other hand, the variability
in both latent heat (Fig. A.21, cf. Fig. A.24 for the full summer distribution) and
sensible heat fluxes (Fig. 7.9, cf. Fig. A.25 for the full summer distribution) is
strongly increasing, around 30-40% for SSP3-7.0 in Western Europe.

The evolution of the summer averaged 500hPa zonal and meridional winds is
shown in Figures A.26 and A.27 (see Figures A.28 and A.29 for the winds at 200hPa).
There is both a northward shift and a decrease in intensity of the jet over North-
America that is extending in the western part of the Atlantic basin. Over Europe
there are only minor changes in SSP2-4.5, and a moderate decrease (1-2 m/s) of
zonal winds in SSP3-7.0. In the latter, there is also an increase in meridional winds
over Morocco and Spain, which may favor warm advection at mid-troposphere in
Western Europe.

The major change in the dynamics is however not on the mean circulation but
on the variability. Figures 7.10 and 7.11 show that over the Euro-Atlantic region
there is a clear tendency towards a decrease in the standard deviation of the summer
averaged fields. Figure A.32 and Figure A.33 show that this is even clearer in the
standard deviation of the summer distribution of daily fields. As a whole, there is a
decrease of variability in the atmospheric dynamics between 10 to 20% in SSP3-7.0
with respect to the present simulation. Figures A.30, A.31, A.34 and A.35 show a
similar — although more moderate — decrease of the variability in the Euro-Atlantic
region of the winds at 200hPa.
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Figure 7.8: Standard deviation of the summer averaged 2-m air tem-
perature in (a) the present simulation (°C, contours) and standard
deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (%, colors). For
panels b and c, the anomalies are computed with respect to the present sim-
ulations. The grid point where the normalized anomaly with respect to the
present simulation is below 15% in absolute value are colored in white.

To summarize this section, apart from the mean warming and drying between the
present and future scenarios, the climatological changes over the Atlantic basin and
Western Europe in the summers simulated can be described as two major evolutions:
(i) an increase in the variability of the surface/thermodynamical variables (2-m air
temperature, upper-level soil moisture, latent and sensible heat fluxes) and (ii) a
decrease in the variability of the dynamical variables (500 and 200hPa zonal and
meridional winds). I come back below to these changes to interpret the results
obtained with the rare events algorithm.

7.3.3 Summer averaged spatial structure
In this section I investigate the summer averaged spatial structure of centennial-like
events. Figure 7.12 shows in contour the normalized summer averaged meridional
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Figure 7.9: Standard deviation of the summer averaged sensible heat
flux in (a) the present simulation (°C, contours) and standard de-
viation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (%, colors). For
panels b and c, the anomalies are computed with respect to the present sim-
ulations. The grid point where the normalized anomaly with respect to the
present simulation is below 15% in absolute value are colored in white.

wind at 200hPa and in colors the normalized 2-m air temperature. The average
patterns of temperature are very similar in the past (cf. Fig. 6.7a), present and
future. In all periods, the strongest anomalies are concentrated in Western Europe
and only moderately extend in the rest of the Eurasian continent. The atmospheric
dynamics at 200hPa is also very similar, with the strongest meander concentrated
around grid point 1 and not extending throughout the whole Northern hemisphere.
There also seems to be a decrease of the spatial extension of the V200 and T2M
anomalous patterns – compare for example Fig. 7.12a and Fig. 7.12b and c in
Eastern Siberia. I come back to this observation below.

The summer averaged E-vector at 200hPa for centennial events is shown in
Figure 7.13 (cf. Figure A.36 for the 500hPa E-vector). For all periods the difference
with the control simulation is not as strong as in the pre-industrial case (cf. Figure
6.8). For the present simulation there is for example more anticyclonic wave breaking
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Figure 7.10: Standard deviation of the summer averaged 500hPa zonal
wind in (a) the present simulation (m/s, contours) and standard
deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (%, colors).
For panels b and c, the anomalies are computed with respect to the present
simulations. The grid point where the normalized anomaly with respect to the
present simulation is below 15% in absolute value are colored in white.

in the Western part of the North Atlantic in the biased rather than the control
simulation, which is the opposite of what was found for the pre-industrial case.
Similarly, the strength of the anticyclonic wave breaking over Eastern Europe is
smaller than in the pre-industrial simulation. Finally, there is a slight northward
shift and decrease of the intensity of the eddies from the present to the future
scenarios.

Figure 7.14 shows the summer averaged anomalies of Z500 (contours) and upper-
level soil moisture (colors). As previously, the patterns are close to the ones obtained
for the pre-industrial case (cf. Fig. 6.9) and there is minimal change from the
present to the future scenarios. There is nevertheless a decrease of the spatial area
with very low (< −1.5 std) soil moisture over Central Europe – see especially Fig.
7.14b for SSP2-4.5 — which is likely due to the model lower bounds for soil moisture.
The strong anomalies of Z500 are concentrated in Western Europe for all periods
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Figure 7.11: Standard deviation of the summer averaged 500hPa
meridional wind in (a) the present simulation (°C, contours) and
standard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (%,
colors). For panels b and c, the anomalies are computed with respect to the
present simulations. The grid point where the normalized anomaly with re-
spect to the present simulation is below 15% in absolute value are colored in
white.

and extend only moderately elsewhere. As noted previously, most of the strongest
anomalies of soil moisture are found east of the grid point where the temperature
is maximized. For SSP3-7.0, there is an extended but moderate negative anomaly
of Z500 East of Greenland, and more generally in the polar and sub-polar regions,
that is not present in the other periods.

Figure 7.15 shows a proxy of the vertical structure of the summer averaged
atmosphere using SLP, Z850 and Z200 fields as in Figure 6.10. Similar to the pre-
industrial simulation, the vertical structure is not barotropic but rather slightly tilted
westward. In Europe the atmospheric patterns are remarkably similar between the
past, present and future periods. The only major change is the low pressure system
west of Greenland for SSP3-7.0 as noted previously.

For the simulations run in this chapter I have access to the outputs at various
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Figure 7.12: Summer averaged normalized anomalies of 2-m air tem-
perature (colors) and meridional wind at 200hPa (contours) for cen-
tennial events. For both fields, normalized anomalies are computed by re-
moving at each grid point the mean and dividing by the standard deviation
computed on the control simulation. The contours are drawn every 0.5 stan-
dard deviation starting at +/- 0.5. Plain (dashed) lines represent positive
(negative) values of the standard deviation.

levels in the atmosphere. Figure 7.16 therefore presents a longitudinal cross-section
averaged between 40 and 60°N of the summer averaged normalized anomalies of air
temperature (first row) and meridional wind (second row). The strong anomalies of
air temperature extend over the troposphere up to the 300hPa level, with a tilted
westward structure. Above the 200hPa level, a negative anomaly of temperature is
present above the heatwave region in the stratosphere as a result of the anticyclonic
anomaly below. The amplitude and spatial extension of the positive temperature
anomaly close to grid point 1 are similar in the three periods but there is a major
change in the longitudinal structure of anomalies. Whereas in the present there is
an alternating pattern of 5 regions with significant air temperature anomalies, it is
reduced to around 4 in SSP2-4.5 and to 2 in SSP3-7.0. This shows that extremely
hot summers are more dynamically local in the future than in the present. This
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Figure 7.13: Summer averaged E-vector at 200hPa for centennial
events. In each panel the blue arrows show the climatological E-vector com-
puted on the control simulation.

233



Chapter 7. Statistical and dynamical evolution between present and future very
hot summers in the IPSL-CM6A-LR climate model

Figure 7.14: Summer averaged normalized anomalies of upper-level
soil moisture (colors) and geopotential height at 500hPa (contours)
for centennial events. For both fields, normalized anomalies are computed
by removing at each grid point the mean and dividing by the standard devi-
ation computed on the control simulation. The contours are drawn every 0.5
standard deviation starting at +/- 0.5. Plain (dashed) lines represent positive
(negative) values of the standard deviation.

results is confirmed by the second row showing meridional wind speed anomalies.
The anomalies extend barotropically over the entire troposphere and the beginning
of the stratosphere in all periods. However, the anomalies are more local and do
not extend as far longitudinally in the future scenarios compared to the present
simulations.

Figure 7.17 shows the same vertical cross-section with specific humidity (first
row) and geopotential height (second row). The increasing locality of the anomaly
with future scenarios is striking for the geopotential height (Fig. 7.17a2 vs Fig.
7.17b2 and c2). The westward tilted structure of the anticyclone is also confirmed
in this plot: anomalies of the geopotential height are on the east of grid point 1 close
to the ground but above it or slightly to its west at 200hPa. The vertical pattern of
anomalies of specific humidity corroborates the hypothesis stated in chapter 6: the
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Figure 7.15: Summer averaged normalized anomalies of sea-level pres-
sure (colors), geopotential height at 850hPa (red contours) and at
200hPa (black contours) for centennial events. For all fields, normalized
anomalies are computed by removing at each grid point the mean and dividing
by the standard deviation computed on the control simulation. The contours
are drawn every 0.5 standard deviation starting at +/- 0.5. Plain (dashed)
lines represent positive (negative) values of the standard deviation.

strongest positive anomalies are to the west of grid point 1 and above the boundary
layer (above the 850hPa level), while the strongest negative anomalies are to the
east of grid point 1 between 850 and 1000hPa. This strongly suggests advection
from the south west above the boundary layer but from the east close to the surface.

The desiccation of soils during heatwaves results in the reallocation of incoming
solar energy from latent towards sensible heat, enhancing diabatic heating of the
lower layers of the atmosphere. Figures A.37 and A.38 show respectively the sum-
mer averaged normalized anomalies of latent and sensible heat fluxes. Consistent
with the low soil moisture patterns of Figure 7.14, the latent heat fluxes anomalies
are negative and the sensible heat fluxes are positive east of grid point 1 — but only
moderately strong at grid point 1 where the temperature is yet maximized. Heat
fluxes are especially strong for SSP3-7.0 for latent heat fluxes. This observation is
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Figure 7.16: Vertical cross-section of summer averaged normalized
anomalies of air temperature and meridional wind for centennial
events. Columns corresponds to the biased T2M simulation in (a) present,
(b) SSP2-4.5 and (c) SSP3-7.0. For both fields, normalized anomalies are com-
puted by removing at each grid point the mean and dividing by the standard
deviation computed on the control simulation. The cross-section is computed
after a latitudinal average between 40 and 60°N. The black dashed line shows
the longitude of grid point 1.

coherent with the increasing locality of the extreme temperature events in the future
scenarios: it suggests that future extremes are more driven by local diabetic rather
than adiabatic warming caused by specific atmospheric patterns. These observations
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Figure 7.17: Vertical cross-section of summer averaged normalized
anomalies of air specific humidity and geopotential height for cen-
tennial events. Columns corresponds to the biased T2M simulation in (a)
present, (b) SSP2-4.5 and (c) SSP3-7.0. For both fields, normalized anomalies
are computed by removing at each grid point the mean and dividing by the
standard deviation computed on the control simulation. The cross-section is
computed after a latitudinal average between 40 and 60°N. The black dashed
line shows the longitude of grid point 1.

with the biased simulations are coherent with the increasing variability in thermo-
dynamic variables while increasing variability in the dynamic variables found in the
previous section. As a result, the anomalies of the boundary layer height are stronger

237



Chapter 7. Statistical and dynamical evolution between present and future very
hot summers in the IPSL-CM6A-LR climate model

in the future rather in the past (cf. Figure A.39 in supplementary materials).

7.3.4 Atmospheric dynamics
In this section I investigate the atmospheric dynamics leading to the anomalies
and the average spatial patterns shown in the previous sections. Figure 7.18 shows
the wave-number-phase speed spectra of meridional wind anomalies at 200hPa for
centennial events (cf. Figure A.40 for meridional wind speed anomalies at 500hPa).
The difference with the pre-industrial case (Fig. 6.11a) is quite striking: although
the increase in westward moving/quasi-stationary waves with 4-5 wavenumbers is
still seen for the present simulation it mostly disappears for SSP2-4.5 and SSP3-
7.0 simulations. On the contrary, these simulations have weak anomalies (<10%)
compared to their control simulations.

Figure 7.18: Wavenumber-phase speed spectra of meridional wind
anomalies at 200hPa for centennial events. Raw spectrum (contours)
and difference with the climatological spectrum (colors).

The distribution of quasi-stationary Rossby waves is investigated through
an amplitude-phase diagram of meridional wind speed anomalies at 200hPa for
wavenumbers kϕ = 3 − 10 in Figure 7.19 (cf. Fig. A.41 for the 500hPa version).
The 2D histograms are shown only for the biased simulations: by definition the
anomalies for the control simulations do not have preferred phases. The aggregated
version of these histograms along the amplitude and phase axis are presented in
Figure A.43 (cf. Fig. A.44 for the 500hPa version). The distributions are similar
for all periods and all wavenumbers, including when compared to the pre-industrial
period (cf. Fig. 6.12). There is a moderate difference for wavenumber kϕ = 6 for
the present simulation, which has preferred phase around 0 rather than π/2 as in
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the two other periods, but this may only be due to the variability of the trajectories
sampled and not to a real physical difference. There is not a strong difference for
this wavenumber in the aggregated spectrum (cf. Fig. A.43a2).

Figure 7.19: Amplitude-phase histograms of meridional wind speed
anomalies at 200hPa for centennial events. Wave numbers kϕ = 3 to
kϕ = 10 in columns and biased simulations in rows: (a) present, (b) SSP2-4.5
and (c) SSP3-7.0.

The histograms for the non-anomalous fields are presented in Figure A.42 (Fig.
A.45 for the 500hPa level) and their aggregated versions are shown in Fig. A.46 for
the 200hPa level and Fig. A.47 for the 500hPa level. The climatological histograms
computed on the control simulations are provided in supplementary material (cf.
Fig. A.48 for the 200hPa level and Fig. A.49 for the 500hPa level). The stationary
waves are constant from the pre-industrial to present and future scenarios, for either
the control or the biased simulations – the latter being closed to the climatology
of the former. This is expected as they mainly arise as a result of the orography
and land-oceans distribution of the Northern Hemisphere. The only difference is
again a phase shift for wavenumber kϕ = 4 for the present biased T2M simulation
as already noted for the pre-industrial biased T2M simulation. This shift is clear in
the aggregated form of the spectrum (cf. Fig. A.46a2). For the two future scenarios
there is more spread in the phase for this wavenumber than in their respective control
simulation, but there is not clearly a phase shift of the distribution.

On the contrary, the composite Hovmöller plots of both meridional wind speed
anomalies at 200hPa and 2-m air temperature normalized anomalies for heatwave
events in the biased simulations (Figure 7.20) show that heatwaves arise as a result
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of the amplification of a short Rossby wave packet (RWP) in all periods. The RWP
is also stronger and more extended in the present simulation compared to the future
ones, which reinforces the interpretation in terms of locality of future temperature
anomalies. This is however not seen on the control simulations (cf. Figure A.50),
for which there are nonetheless around four times less heatwaves than in the biased
simulations.

Figure 7.20: Composite Hovmöller plot of the atmospheric and surface
dynamics during heatwave events for the biased simulations. First
column: meridional wind speed at 200hPa anomalies averaged between 35°N
and 65°N. Second column: 2-m air surface temperature normalized anomalies
averaged between 45°N and 55°N. The time is expressed relative to the hottest
day of each heatwave event. Rows: (a) present, (b) SSP2-4.5 and (c) SSP3-7.0.
Number of events: (a) n = 3733, (b) n = 3929 and (c) n = 4513.

As previously, I investigate the presence of cut-off lows in the biased T2M simu-
lations. Figure 7.21 presents the frequency and frequency anomalies of cut-off lows
for the biased simulations in the present and two future scenarios. For the present
and SSP2-4.5 scenario there is still a positive anomaly of cut-off lows west of the
Iberian peninsula, but it is much reduced compared to the pre-industrial case (cf.
Fig. 6.15a1–2). Overall the total number of cut-off lows over the North-Atlantic
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Figure 7.21: 500hPa cut-off lows frequency and frequency anomaly.
The anomaly is computed with respect to the control simulation.

basin is diminishing when evolving from pre-industrial to present and then future
scenarios. For SSP3-7.0, the positive anomaly of cut-off lows frequency west of the
Iberian peninsula is also smaller and slightly shifted westward.

This is confirmed by Figure 7.22 which shows the cumulative frequency of cut-off
lows when a heatwave is occurring at grid point 1 in the control and biased T2M
simulations. In the control simulations, there is a clear decrease of the cumulative
percentage of the number of cut-off lows west of the Iberian peninsula from the
present to the SSP2-4.5 and SSP3-7.0. For the present this number is already lower
than the value in the pre-industrial period (cf. Fig. 6.17): around 13% vs around
20%. For the biased T2M simulation, the cumulative number of cut-offs when an
heatwave is occurring at grid point 1 is similar but slightly higher (SSP2-4.5 and
SSP3-7.0) to the control simulations. The role of cut-off lows for reaching high tem-
peratures in Western Europe is therefore still present but much reduced in the future
scenarios according to the simulations made here. This results is also coherent with
the increased variability in thermodynamics and decreased variability in dynamics
observed previously.
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Figure 7.22: Occurrence of an Iberian cut-off low when a heatwave is
happening at grid point 1 at t = 0. A heatwave is a continuous period
of time when the daily mean temperature is above the 90% quantile of the
daily distribution of T2M for at least three days. The cumulative percentage
of cut-offs at time t gives the percentage of heatwave events which have had at
least one Iberian cut-off in the last t + 10 days. The shadings for the anomaly
of maximum daily temperature TX1d shows the 25 and 75% quantiles. The
dashed horizontal line shows the cut-offs cumulative percentage at t = 0 for the
present control simulations. Number of events: (a1) n = 1089, (b1) n = 1091,
(c1) n = 1085, (a2) n = 3733, (b2) n = 3929 and (c2) n = 4513.

7.4 Conclusions and discussion

In this chapter I have expanded the application of the GKTL rare events algorithm
presented in chapter 6 to present conditions and two future scenarios for the external
forcings of the IPSL-CM6A-LR model in its atmosphere - land surfaces configuration.
As previously, I have shown that the algorithm is able to sample efficiently very rare
summers for a much reduced computational cost (see the 6.4 for the discussion on
this point). This allows to draw physical conclusions on the thermodynamical and
dynamical mechanisms leading to centennial-like hot summers in Western Europe
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in the model and how they change with climate change.
Statistically, I found that the anomaly corresponding to a centennial hot summer

is constant in the pre-industrial, present and two future scenarios: around +2.4°C
with respect to the mean at grid point 1. I however obtained conflicting results on
the shape of the right tail of the distribution of summer averaged temperature at
grid point 1: there seems to be a departure from Gaussianity in the pre-industrial
and SSP3-7.0 simulations but not in the present and SSP2-4.5 simulations which
both closely follow the Gaussian approximation fitted on the control. Also the
number and mean duration of heatwave events — i.e. events with at least three
days above the 90% climatological quantile of daily mean near-surface temperatures
— is similar in all periods. Consequently, the GKTL rare events algorithm sample
similarly intense hot summers at grid point 1, compared to the control simulations,
in the past, present and future configurations. There is nevertheless more and longer
heatwaves for more intense global warming scenarios.

Dynamically, I found mostly similar results as the one obtained in the pre-
industrial case: the vertical structure of the anticyclone above the hot grid point
is not barotropic, the anomalous low soil moisture pattern associated with the hot
summers is shifted to the east and the atmospheric pattern of winds associated with
the hot summers is of synoptic rather than planetary scale and related to the local
amplification of short Rossby wave packets. The dynamics sampled with the rare
events algorithm is mostly similar to the typical dynamics found in chapter 5 on a
2000-y pre-industrial control run of the same model. This gives confidence in the
relevance of the dynamics sampled by the algorithm in the pre-industrial period —
and therefore also in other periods.

However, I also found important dynamical changes happening between the four
periods. The main result obtained on the control simulations is a consistent increase
in the summer variability of thermodynamical variables (2-m air temperature, upper-
level soil moisture and as a consequence surface sensible and latent heat fluxes) and
decrease in the summer variability of dynamical variables (winds at 200 and 500hPa).
As a result, I showed that the typical longitudinal extension of the anomalous pat-
terns of winds and geopotential height extending through the troposphere during
hot summers is reduced in future warming scenarios. Also, the number of cut-off
lows — especially Iberian cut-off lows — during heatwave events halved in future
simulations compared to the pre-industrial case. These results point toward a more
important role of local diabatic fluxes rather than the large scale organization of
the atmosphere for creating hot summers in a warmer world (see also Teng et al.
(2016)). This conclusion is likely to be extended to heatwaves in general in so far
as hot summers appear primarily as a result of a succession of heatwaves during the
summer.

It should be noted here that the decrease of variability in the dynamics alone
should decrease the intensity of heatwaves (the temperature distribution would
shrink), while it is the contrary for the increase of variability in thermodynamical
variables (the temperature distribution would spread). The fact that the intensity
of the anomaly of a centennial-like event is mostly constant through out the sim-
ulations may result as an equilibrium between these two competing mechanisms.
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Validating this hypothesis is not straightforward, but one way of investigating this
question could be to nudge wind patterns corresponding to centennial-like summers
in the present with the thermodynamics of the future, and vice versa. How the
anomaly corresponding to a centennial-like events change in the two cases could
show whether the ‘compensating hypothesis’ is correct.

To conclude these two chapters on the statistical and dynamical aspects of very
hot summers in Western Europe in the IPSL-CM6A-LR model, the natural question
one may ask is how much these results are a faithful representation of the actual
climate system. The IPSL-CM6A-LR is biased (Boucher et al. 2020) — although
the biases are small in Europe — and more generally climate models have difficulties
to represent faithfully how intense extreme events can get (cf. chapter 1 section 1.3).
Moreover, here I do not simulate the oceans whereas one should expect a feedback
of the oceanic circulation on the atmosphere especially considering the intensity of
the anomalies simulated in the atmosphere. As explained previously, the main issue
is however that in reanalysis data there are no, or very few, events which are as
extreme as the ones sampled here. As a consequence, the burden of rareness also
applies to real world data and there is simply no data to know whether the dynamics
sampled by the model is correct or not. What makes the results obtained here not
completely worthless is that I mainly sample a lot of moderately intense heatwaves
and the dynamics sampled by the model is mostly coherent with the results found in
the literature on heatwaves (cf. chapter 1 section a)). Consequently, it is probably
reasonable to assume that the dynamics sampled here could happen in the climate
system and that the simulations made here can be used for adaptation purposes.
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Summary

Context and goals

How the atmospheric dynamics may change in the future is a climatological
question whose answer can have tremendous impacts on societal adaptation
to climate change. In this chapter I investigate the evolution of physical
mechanisms leading to heatwaves with global warming.

Methods

I apply a rare events algorithm in a climate model to sample extreme hot
summers under present and end-of-the-century conditions for two scenarios
of anthropogenic forcings (SSP2-4.5 and SSP3-7.0).

Results

In the control simulations in the three periods, I show both a decrease in the
variability of the atmospheric circulation over the North Atlantic in summer
and an increase in the variability of thermodynamical surface quantities such
as soil moisture, temperature and local energy fluxes. With the simulations
maximizing near-surface air temperature in Western Europe, I demonstrate
that the dynamics leading to heatwaves tend to be more local and less large
scale-organized. In the future, high temperatures are still reached via a large
anticyclone over Western Europe, but anomalies do not extend as far longitu-
dinally as in the present and arise as a result of an increase in the variability
of thermodynamical variables such as soil moisture and energy fluxes.
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Chapter 8

Involvement in other scientific
projects

8.1 Introduction
During my PhD I was involved in several collective scientific projects not directly
related to the main topics of this thesis. In this chapter I give some details on these
projects and on my contribution to each of them. For the projects which lead to
the publication of an article in which I am first author the published version of the
article can be found in annex to this thesis.

8.2 First author articles

8.2.1 Extreme rainfalls in Australia
This work was published in the Asia-Pacific Journal of Atmospheric Sciences and
is available in annex B. In February and March 2022, the eastern coast of Australia
recorded an unprecedented amount of precipitation with extended floods and dam-
ages to properties. We investigated the statistical and dynamical aspects of this
event with the aim of providing an attribution statement. We employed both a
classical statistical approach based on the difference in return times after the fit of a
GEV in a past and present period and a more recent analog attribution methodology
which conditions the attribution on the occurrence of similar atmospheric patterns
(see also below). The main variable of interest is the 3-day averaged precipitations.
By defining the 1948-1977 period as counterfactual and the 1990-2019 period as
factual, we find that the dynamics of the event consisted in an unprecedented com-
bination of several factors: a tropical atmospheric river, the presence of the Coral
low pressure system and a blocking anticyclone offshore Eastern Australia.

An original contribution of the paper is to propose both a past vs present and
an El Nino vs La Nina discrimination to define factual and counterfactual periods.
Our main finding is however that no clear attribution statements can be made, both
because of the unprecedented nature of this event, the lack of long high quality avail-
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able data and the dependence of the results on the La Nina phase of the El Nino
Southern Oscillation (ENSO). This study does not make use of climate models to
provide a strong attribution statement. The biases in the representation of the cur-
rent and future evolution of ENSO in climate models (e.g. Sobel et al. (2023)) indeed
makes the reliance on models for attribution difficult in this region of the world. My
contribution to this paper was to run the analogs attribution methodology, propose
the El Nino vs La Nina discrimination for the attribution methodologies and write
the paper.

8.2.2 Evolution of the jet stream variability
This work was published in Climate Dynamics and is available in annex C. Dur-
ing my research internship before the beginning of my PhD I worked on a simplified
model of the jet stream (Faranda et al. 2019). I investigated the patterns of variabil-
ity of a simple reduction of the low-level eddy-driven jet based on ERA5 reanalysis
data and found intriguing results. We wanted to continue this work further on and I
therefore supervised two interns — Vivien Guette and Akim Viennet — during the
first year of my PhD. The idea of their work was to investigate with new metrics
(Faranda et al. 2017b) from dynamical systems theory the evolution of the variabil-
ity of the low-level eddy driven jet stream over the Euro-Atlantic basin. Our work
led to the publication provided in annex.

Although the eddy-driven jet is mostly zonal in climatological mean, it actually
meanders at meteorological time scales. Large meanders of the jet are often asso-
ciated with extreme events in the mid-latitudes (cf. chapter 1 section a)). How
the spatial and temporal variability of the jet will evolve in the future is therefore
a crucial and hotly debated question. In this work, we studied the eddy-driven jet
stream over the Euro-Atlantic sector and assess its dynamical properties in ERA5
and ERA20C reanalysis data set using indicators from dynamical system theory and
more classical metrics of its mean characteristics. The ERA20C reanalysis data set
spanning the 1900-2010 period is in particular used to evaluate the long term evolu-
tion of variability metrics. There are important inter-decadal fluctuations but apart
from the mean speed of the jet — which is increasing almost linearly with time —
it is difficult to see a large evolution over the 20th century despite a global warming
of around 1°C. We therefore proposed a linear model to control for global modes of
variability and aerosols emissions to disentangle the sole impact of global warming
from the impact of natural variability of the climate system on the jet. Our main
result is that there is a statistically significant signal in the direction of increasing
speed and stability of the low-level jet. Our metrics show a consistent decrease in the
variability of the jet, especially in summer. This suggests a zonalisation of the jet
under global warming. Interestingly, our results are coherent with the results of the
control simulations presented in chapter 7 which also showed a reduced variability of
the atmospheric circulation in the future in summer. My contribution to this work
was to design the study — especially the variability metrics and the linear model to
control for natural variability —, supervise the interns who worked on this project
and write the paper.
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8.3 Co-author articles

8.3.1 Climate-change attribution retrospective using the
analogs method

This work was published in Weather and Climate Dynamics (Faranda et al. 2022).
We address the question of the role of climate change in key extremes that occurred
in year 2021 over Europe and North America: the Winter Storm Filomena, the
French spring cold spell, the Westphalia floods, the Mediterranean summer heat
wave, Hurricane Ida, the Po Valley tornado outbreak, Medicane Apollo and the
late-autumn Scandinavian cold spell. We used the ERA5 reanalysis dataset from
1950 to present and employed an analog methodology finding most similar sea-level
pressure patterns to the extreme events of interest in the factual and counterfactual
worlds. We then compute significant shifts in the spatial characteristics, persistence,
predictability, seasonality and other characteristics of these analogues. We also
diagnose whether in the present climate the analogues of the studied events lead to
warmer/cooler or dryer/wetter conditions than in the past.

The main conclusion of the article is that most of the extreme events we
investigate are significantly modified in the present climate with respect to the
past, because of changes in the location, persistence and/or seasonality of cy-
clonic/anticyclonic patterns in the sea-level pressure analogues. My contribution
in this paper was to run the analogs attribution methodology for the Westphalia
floods case and write the corresponding part in the paper.

8.3.2 Ensembles of simulation of extreme heatwaves for
Paris Olympics

This work was published in npj Climate and Atmospheric Science (Yiou et al. 2023).
We employed the rare events algorithm based on analogs of the atmospheric circula-
tion described in chapter 4 section a). We investigated the most extreme heatwaves
in Ile-de-France that are physically plausible, under climate change scenarios, for
the decades around 2024, finding analogues in the CMIP6 runs of different models.

The main conclusion of this article is that the 2003 record can be exceeded by
more than 4°C in Ile-de-France before 2050. As explained above, the algorithm
employed here is well suited when a large dataset such as CMIP6 is available and
we want to investigate long-lasting events. My contribution to this paper was in
the writing of the paper and the analysis of the outputs of the analogs rare events
algorithms.

8.3.3 A statistical physics and dynamical systems perspec-
tive on geophysical extreme events

This work is currently under review at Physical Review E (Faranda et al. 2023a).
This paper is a perspective follow-up of discussions held during the UNDERPIN
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symposium in Erice, Italy in 2022 that I had the opportunity to attend. The sym-
posium brought together climatologists, statistical physicists and mathematicians
on the subject of extreme events. The contributions cover a broad spectrum from
statistical physics and dynamical systems theory. The paper delineates knowledge
gaps, presenting some related challenges and new formalisms which arise in the study
of geophysical extreme events and may help better understand them. My contri-
bution in this paper is a joint work with Caroline Wormell in which we proposed
an estimator of the phase space gradient of a quantity called local dimension which
measures the clustering of points in the phase space of a general dynamical system.
We additionally propose an application to atmospheric circulation data with the
NCEP reanalysis dataset. This work is still exploratory but could in principle be
applied to explain what kind of structures in a large scale synoptic pattern make a
pattern rare with respect to the climatology.

8.3.4 Dynamical changes in tropical Indo-Pacific
This work is currently under review at Nature Geoscience. This project lead by
Chenyu Dong and Gianmarco Mengaldo investigates thermodynamical and dynam-
ical changes in the tropical Indo-Pacific region in the ERA5 reanalysis dataset and
relates this changes to the evolution of extreme events. The method is based on the
detection of analogs of different fields (mainly total column water vapor and 850hPa
streamfunction) and the investigation of their increasing or decreasing frequency.
The method was proposed by Faranda et al. (2023b) and is here applied to another
region of the world. We show that, over the past 80 years, the strengthening of the
Pacific Walker circulation — consisting of rising air motion over Southeast Asia and
descending air motion over the eastern Pacific — has led to a steady increase in
weather patterns associated with extreme weather in the region, specifically heat-
waves and extreme precipitation. This result is coherent with a more La Nina-like
phase of the ENSO oscillation in the recent years. My contribution to this work
was to make part of the code for the computation of the streamfunction and the
detection of analogs increasing/decreasing in frequency. I was also largely involved
in the writing of the paper and the discussion on the detection vs attribution results
that we show.
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Summary and conclusions reached
In this PhD I have been interested in the statistics and dynamics of extreme
and very extreme heat events in the mid-latitudes in general and in
Europe in particular. I have addressed the questions of the maximal near-
surface air temperature that can be reached during a heatwave event,
the difference between the physical mechanisms leading to extreme vs
very extreme heat events, the possibility to simulate efficiently extreme
heatwaves in a climate model and the evolution of the climate system
dynamics leading to extreme heatwaves with global warming. To frame
my work in a general physical and climatological context, I explored and proposed
methods to explore the under-sampled regions of the climate attractor, i.e. provide
climatological results for rare and extreme events.

In chapter 2, I investigated the question of the upper bound for surface tem-
peratures in Western Europe with a statistical approach based on Extreme Value
theory (EVT) and a physical approach based on the stability of the air column
(Zhang and Boos 2023) using the July 2019 event as a case study. I showed that
the statistical upper bound provided by EVT is likely largely underestimated. I also
employed a flow analogues methodology to study the evolution of thermodynam-
ical mechanisms influencing the intensity of the event and found that even when
conditioning on similar atmospheric patterns as the one of the July 2019 event,
daily maximum temperatures have largely increased between the past (1940-1980)
and the present (1981-2021). This increase is much larger than what would suggest
the mid-tropospheric warming observed between the two periods. I have attributed
this increase to strengthened surface heat fluxes. The question nevertheless remains
of the part of the observed change that is a result of a forced dynamics — i.e. by
anthropogenic climate change — and the part that is the result of natural variability.

In chapter 3, I proposed the idea of physically constraining the fit of EVT-
based statistical distributions for extreme temperatures. More specifically, the up-
per bound of the distribution is imposed by a physically realistic value derived from
properties of the mid-atmosphere and surface humidity. I showed using outputs of
a state-of-the-art climate model over the historical and near future periods that this
partially alleviates the issue of the underestimation of very extreme events — typi-
cally centennial events — and, more importantly, avoids the appearance of climatic
surprises, i.e. events that are said to be impossible but that still occur. I argued
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that even though the method I proposed tends to overestimate very extreme events
if the upper bound imposed is too high, under- or over-estimating very extreme
events is not a symmetric error. While the former leads to linearly increasing costs
of preparation, the latter can lead to catastrophic damages on societies that would
face events they thought to be impossible.

In chapter 4, I proposed a review of so-called rare events algorithms, which are
methods aiming to sample extremes in a dynamical system, and their applications in
geophysical systems. I showed that there is a growing interest for these methods in
the geophysical context thanks to their capacity to sample more efficiently rare and
very rare events that are seldom observed even in long simulations. Nevertheless,
there are currently many challenges to their application in complex climate models
and I proposed some solutions to alleviates the latter.

In chapter 5, I studied the idea of a typical dynamics leading to extreme and
very extreme events in the climate system. I used the 2000-y pre-industrial control
run of a climate model and investigated how the climate system dynamics of the
model leading to extreme heat events at several locations in Western Europe change
when one looks at more and more intense events. I showed that, for most of these
events, the variance of the dynamics leading to these extremes tend to decrease
as the intensity of the events considered increases. In other words, very extreme
events tend to have a more similar dynamics than extreme ones. This idea parallels
the idea of the instanton, i.e. the existence of a most probable path leading to
extremes. I proposed that the concept of the instanton should be considered as the
climatological object defining the dynamics leading to extremes and could be used
to investigate changes induced by external forcings such as anthropogenic climate
change. For extreme heat events in this model, in Western Europe and under this
configuration, my results also suggest that the dynamics leading to very extreme
events corresponds to an amplification of the mechanisms leading to extreme events
rather than the appearance of different mechanisms. This may however not be the
case for other types of extremes.

In chapter 6, I applied a rare events algorithm to a climate model to sample
extreme and very extreme summers under a pre-industrial configuration. I investi-
gated the dynamics leading to extremely hot summers in Western Europe by biasing
an ensemble simulation towards favoring summers with high near-surface temper-
atures, high geopotential height and low soil moisture. The rare events algorithm
allows to recover climatological probabilities and I showed that I sampled events
with probabilities of occurrence between 10−2 and 10−6. I showed that hot sum-
mers are characterized by both more and longer heatwaves. These summers arise
as a combination of local non-barotropic high geopotential height and non-local soil
moisture anomalies. The atmospheric dynamics of these summers is mainly driven
by a recurrence of short Rossby wave packets rather than circumglobal wave pat-
terns.

In chapter 7, I applied the same rare events algorithm with present and two fu-
ture scenarios of anthropogenic forcings, especially increased GHG concentrations.
I sampled extremely hot summers in these three periods and provide an unbiased
estimation of their (low) probabilities. In the control simulations under these three
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configurations, I showed both a decrease in the variability of the atmospheric circu-
lation over the North Atlantic in summer and an increase in the variability of ther-
modynamical surface quantities such as soil moisture, temperature and local energy
fluxes. For the simulations maximizing near-surface air temperature in Western Eu-
rope, I demonstrated that the dynamics leading to heatwaves tend to be more local
and less large scale-organized. In the future, high temperatures are still reached
via a large anticyclone over Western Europe, but anomalies do not extend as far
longitudinally as in the present and arise as a result of an increase in the variability
of thermodynamical variables such as soil moisture and energy fluxes.

Perspectives
In the different chapters of this manuscript I have discussed perspectives of the work
proposed. In this last section I summarize the main elements of these perspectives
and propose more general ideas inspired by the analyses and methods I have used.

Extreme temperatures, EVT and risk assessment. The use of EVT in cli-
mate science is motivated both by its strong and universal mathematical foundations
and by its capacity to give probabilities to unobserved events. It is therefore exten-
sively used for, for instance, attribution studies and more generally risk assessment
studies. My and others (Diffenbaugh 2020; Zeder et al. 2023) works have shown
that with the typical size of climate relevant samples, the evaluation of EVT-based
statistical distributions leads to a systematic underestimation of the probabilities
and intensities of very extreme heat events. This strongly appeals for cautiousness
in the use of these methods to provide present and future worst-case scenarios for
adaptation. Physically constraining the statistical results of EVT seems extremely
important, and justify the use of so-called storylines approaches (Shepherd et al.
2018), which, although they are usually unable to provide climatological probabil-
ities, are able to exhibit actual physical trajectories leading to extreme and very
extreme events. The physical constraint that I proposed in chapter 3 is only a first
step in this direction and needs to be refined for temperature extremes and to be
extended for other kind of extremes (precipitations, winds etc). In terms of epis-
temological position, it seems to me that one should be extremely cautious when
stating that a particular return level for an extreme event is impossible: despite the
modern extensive and real-time system of measurements of the Earth, the attractor
of the climate system — and therefore the possibility of very intense events — is
fundamentally under-sampled.

Typicality of extreme dynamics. The idea of a convergence of the climate
system dynamics leading to very extreme events is mirroring the results of EVT
which finds a universal convergence towards a similar law for maxima of random
variables. It therefore suggests a paradoxical simplification of the dynamics of very
extreme events and a partial overcoming of the burden of rareness. I provided some
evidence for such a mechanism for extreme temperatures in the long control run of a
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climate model, although I also showed that there are several practical discrepancies
(presence of cut-off lows for some but not all extremes, no convergence of the variance
for some fields etc). It would be interesting to investigate whether this idea of typical
dynamics is also relevant for other types of extremes at other locations in the world,
and especially how the typical dynamics vary spatially (Lucarini et al. 2023). This
avenue of research is more theoretical but could also have practical applications.
It could for example constitute a measure for comparing the dynamics sampled by
different climate models. Additionally, it could provide the most probable dynamics
for extremes of interest, similar to storylines, for adaptation purposes.

Use of rare events algorithms in a climate context. In the conclusion of
chapter 6 I provided a critical review of the use of rare events algorithms based on
my experience in applying a rare events algorithm with the IPSL model. I showed
that the use of the GKTL algorithm to sample unprecedented, large, summer-long
deviations of an observable is feasible and much more efficient than a regular brute
force simulation. The algorithm works particularly well for score functions which
have a ‘red noise-like’ behavior, i.e. for anomalies which results in the sum of small
deviations over a long period of time. Near-surface air temperature and soil moisture
fall into this category. The fact that I also succeeded in sampling large deviations of
the geopotential height at 500hPa is nevertheless encouraging for applying the same
method to other atmospheric dynamics-based score functions. On the other hand,
the GKTL algorithm is not suited to sample short very intense events because the
different members cannot be selected along the way and do not have enough time to
diverge once a small perturbation has been added (cf. the discussion of this issue in
chapter 4 section 4.4.3). For these applications, methods such as ensemble boosting
are better suited (Fischer et al. 2023).

On the other hand, one cannot go over the fact that the use of a rare event
algorithm for a particular score function of interest is still computationally expensive
and even though it allows to reduce the variance in the tail of one observable,
precision is lost almost everywhere else. In other words, rare events simulations are
one-purpose simulations while a large ensemble and/or long simulation of a climate
model can be used for multiple purposes. This needs to be taken into account
when evaluating the opportunity to use a rare events algorithm. Moreover, one will
always face the problem of evaluating whether the extreme summers sampled via
the algorithm are physically realistic. The trajectories are physical in the sense that
they could have been spontaneously simulated by the model, had I let it enough
time to do so. However it is not clear whether the physics of the model realistically
simulate what would happen in the climate system for such rare events. The fact
that I did not simulate the oceans is a first limit insofar as with such strong anomalies
of the atmospheric circulation the oceans will probably have responded differently
than simulated in the control coupled simulation from which the boundary files are
used. A second limit is the absence of dynamics in the vegetation: during extremely
dry summers, it is likely that in the real climate system non-linear new phenomena
would have appeared — forest fires for example. Finally, it is doubtful that the
physics of the model — especially parametrization schemes — are still physically
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relevant given the extremeness that I sampled. All these elements call again for
cautiousness in the transposition of the trajectories sampled in the real world and
my position is that rare events algorithms are first and foremost tools to explore
limit properties of climate models.

In this direction, an interesting avenue of research for the application of rare
events algorithms is the conditioning of extreme events to better understand the
interaction of different components of the model. It is indeed common practice to
do experiments in models such as changing one variable manually and measuring
how the full system reacts. For example, one would impose low soil moisture (Fis-
cher et al. 2007) and investigate the impacts on the heatwaves simulated by the
model. However, doing so is artificial: there is no clear indication that it would have
happened this way in the climate system. Another slow variable could cause both
low soil moisture and high temperatures. With a rare events algorithm on the other
hand, one can simulate physically coherent trajectories of low (or high) soil moisture
as starting conditions and then run the model classically. The initial trajectories
simulated are physically possible therefore if another variable is influencing both low
soil moisture and high temperatures, it will be correctly sampled by the model. It
would be interesting to compare systematically the results of this procedure with the
procedure of imposing low soil moisture by hand. The rare events-based procedure
could very much benefit the study of oceanic oscillations which arise as a result of
interactions with the atmosphere: the oceans are often modelled as a red noise-like
process driven by the white noise imposed by the atmosphere (Hasselmann 1976).
Sampling extreme ENSO events with the GKTL algorithm is an interesting avenue
of research for example.

Dynamics of heatwaves in the past, present and future. I showed that
the use of rare events algorithms can be framed to answer physical questions about
the dynamics of very intense events. My results obtained in the atmosphere-land
surfaces configuration of the IPSL climate model clearly points in the direction of
reduced atmospheric variability for the atmospheric circulation in the boreal summer
but increase variability in surface energy fluxes. This paints a picture of more local,
less large-scale organized heatwaves in the future compared to the present.

Nevertheless, from a physical point of view the result obtained in the present
and the two SSPs used here are unsatisfactory. The main reason is that two many
different forcings are applied at the same time on the system and therefore it is
difficult to distinguish which forcings is changing which component of the system.
Especially, it is not clear at this point whether the changes observed arise as a
result of global warming of the Earth by the increase of GHG concentrations or
reduced aerosol levels, globally and/or regionally. Both elements likely play a role
but it is not possible to distinguish the two. It would be interesting — but probably
also costly — to run the same simulations with GHG and aerosols forcings only to
separate their respective dynamical role.

Similarly, as I explained in chapter 6, I ran simulations for a particular combina-
tion of the ENSO-AMO oceanic forcings. It would be valuable to know what is the
impact of other phases of these oscillations on the dynamics of European heatwaves.
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A large positive phase of the AMO oscillation could for example largely influence
the results found here.
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Appendix A

Supplementary materials

A.1 Supplementary materials for chapter 1
A.1.1 Relative error for the estimation of an observable in

a rare set
In this section I show that the estimation the expectation of a general observable
in a rare set is rendered difficult by the large variance associated — the so-called
burden of rareness.

Let us note (Xi)1≤i≤N N independent samplings of the system of interest. Let us
consider ψ an observable and A a set with a low probability pA. I want to estimate
the mean value of ψ in the set A. The naive estimator of E[ψ(X) | X ∈ A] is:

ψ̂ =
∑N
i=1 ψ(Xi)1(Xi ∈ A)∑N

i=1 1(Xi ∈ A)
. (A.1)

The numerator is noted as N :=
∑N
i=1 ψ(Xi)1(Xi ∈ A) and the denominator

as D :=
∑N
i=1 1(Xi ∈ A). I also note ψA = ψ(X)1(X ∈ A). Then, using the

independence of each term in the two sums:

E[N ] = NE[ψA] (A.2)
E[D] = NpA (A.3)
V[D] = NpA(1 − pA) (A.4)

E[N D] = NE[ψA]((N − 1)pA + 1) (A.5)
Cov[N ,D] = E[N D] − E[N ]E[D] = NE[ψA](1 − pA) (A.6)

Therefore one can estimate the expectation of ψ̂ (Kendall et al. 1948):

E[ψ̂] = E[N ]
E[D]

(
1 − Cov[N ,D]

E[N ]E[D] + V[D]
E[D]2

)
= E[ψA]

pA
= E[ψ(X) | X ∈ A]. (A.7)

This shows that the naïve estimator is unbiased. I now want to estimate the
variance of this estimator. One needs to compute the second moment of ψ̂ the same
way. For the second moment of N and D one shows easily that:
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E[N 2] = N
(
E[ψ2

A] + (N − 1)E[ψA]2
)

(A.8)

E[D2] = NpA(1 + (N − 1)pA). (A.9)

The term E[N 2D2] is less straightforward. To begin, here is the definition of the
product:

N 2D2 =
N∑

i,j,k,m=1
ψ(Xi)ψ(Xj)1(Xi ∈ A)1(Xj ∈ A)1(Xk ∈ A)1(Xm ∈ A). (A.10)

This sum hasN4 terms that can be decomposed into four cases for the quadruplet
(i, j, k,m):

• two terms in the quadruplet are equal and the two others are different and
different from one another, e.g. i = j = 2, k = 3 and m = 4. Among them:

– there are N(N − 1)(N − 2) such quadruplets for which i = j and the
associated expectation for each of them is:

E[ψ(Xi)2
1(Xi ∈ A)]E[1(Xk ∈ A)]2 = E[ψ2

A]p2
A (A.11)

– there are 5N(N − 1)(N − 2) such quadruplets for which i ̸= j and the
associated expectation for each of them is:

E[ψ(Xi)1(Xi ∈ A)]2E[1(Xk ∈ A)] = E[ψA]2pA (A.12)

• three terms in the quadruplet are equal and the last one is different from them,
e.g. i = j = k ̸= m. Among them:

– there are 2N(N−1) such quadruplets for which i = j and the associated
expectation for each of them is:

E[ψ(Xi)2
1(Xi ∈ A)]E[1(Xk ∈ A)] = E[ψ2

A]pA (A.13)

– there are 2N(N−1) such quadruplets for which i ̸= j and the associated
expectation for each of them is:

E[ψ(Xi)1(Xi ∈ A)]2 = E[ψA]2 (A.14)

• the four terms in the quadruplet are equal: there are N such quadruplets and
the associated expectation is:

E[ψ(Xi)2
1(Xi ∈ A)] = E[ψ2

A] (A.15)

• the four terms in the quadruplet are different: there are N4 −6N(N −1)(N −
2) − 4N(N − 1) −N such quadruplets and the associated expectation is:

E[ψ(Xi)1(Xi ∈ A)]2E[1(Xk ∈ A)]2 = E[ψA]2p2
A (A.16)
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In the end:

E[N 2D2] =
(
N4 − 6N(N − 1)(N − 2) − 4N(N − 1) −N

)
E[ψA]2p2

A

+N(N − 1)(N − 2)E[ψ2
A]p2

A

+ 5N(N − 1)(N − 2)E[ψA]2pA
+ 2N(N − 1)E[ψ2

A]pA
+ 2N(N − 1)E[ψA]2

+NE[ψ2
A].

(A.17)

Applying this formula for ψ = 1, one retrieves the fourth moment of D:

E[D4] =
(
N4 − 6N(N − 1)(N − 2) − 4N(N − 1) −N

)
p4
A

+ 6N(N − 1)(N − 2)p3
A

+ 4N(N − 1)p2
A

+NpA.

(A.18)

The relative error in the estimator ψ̂ should then be estimated. It is defined as:

RE :=

√
V[ψ̂]
E[ψ̂]

=

√√√√E[ψ̂2]
E[ψ̂]2

− 1. (A.19)

The expectation of the second moment of ψ̂ can be estimated by the same formula
as above but it leads to unnecessary heavy computations and I now introduce the
hypotheses which take into account the fact that the expectation is estimated over
a set with low probability. The first hypothesis is that pA ≪ 1 and one can typically
take pA ∼ 10−3. The second hypothesis is that I am interested in events that are
at the edge of what is available with the data set, i.e. NpA ∼ 1, therefore here
N ∼ 103. Using the conditional expectation of ψ, by definition:

E[ψA] = pAE[ψ(X) | X ∈ A], (A.20)
E[ψ2

A] = pAE[ψ(X)2 | X ∈ A]. (A.21)

The hypotheses therefore gives:

E[N 2] ≃ E[ψ(X)2 | X ∈ A] + E[ψ(X) | X ∈ A]2 (A.22)
E[D2] ≃ 2 (A.23)
E[D4] ≃ 12 (A.24)

E[N 2D2] ≃ 7E[ψ(X) | X ∈ A]2 + 5E[ψ(X)2 | X ∈ A]. (A.25)

Therefore, after introducing the ratio r = E[ψ(X)2|X∈A]
E[ψ(X)|X∈A]2 ≥ 1:

E[ψ̂2] = E[N 2]
E[D2]

(
1 − E[N 2D2]

E[N 2]E[D2] + E[D4]
E[D2]2

)
(A.26)

= E[ψ(X) | X ∈ A]2 r + 1
2

(
1 − 5r + 7

2r + 2 + 12
4

)
, (A.27)
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after which follows:

RE =

√
V[ψ̂]
E[ψ̂]

=
√
r + 1

2 (4 − 5r + 7
2r + 2) − 1. (A.28)

The function on the right hand side is a strictly increasing function of r. It
is null — which corresponds to an infinitely precise estimate — for r = 1 but it
increases strongly with r: for r as small as 1.1, the relative error is already of 27%.
For r = 2.35, the error in the estimate of the observable is of the same order of
magnitude as the estimate.

For an estimation that is precise at 10%, one needs r ≃ 1.01. If one assumes
that the conditional distribution of ψ in the set A is Gaussian with a mean µ and a
variance σ2, this conditions imposes:

µ2 + σ2

µ2 ≤ 1.01 (A.29)

which gives:

σ ≤ µ

10 . (A.30)

In other words, the standard deviation of ψ in the set A has to be 10 times
smaller than how much the average of ψ in the set A deviates from its climatological
average. This condition is very stringent for most climate extremes.
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A.2 Supplementary materials for chapter 4
A.2.1 Ensemble boosting estimator for extreme events
This section proposes a derivation of the estimator associated with the ensemble
boosting method proposed by Gessner et al. (2021). It allows in particular to recover
climatological probabilities of extreme events. The idea of the derivation originates
from the work of V. Humphrey and L. Bloin-Wibe that we discussed during a visit
at ETH Zürich. My contribution here is to propose a formalization of the derivation
of the estimator and compute its variance.

a) Ensemble boosting estimator

Let us assume that one has access to an initial simulation which is N -days long.
This would typically be the summer days of an initial run of a climate model.
Let (Xi)1≤i≤N be the corresponding state vectors of the climate system (including
atmosphere, land, eventually oceans etc) and (Ti := T (Xi))1≤i≤N the associated
temperatures at a place of interest. Let us note Tref a given temperature reference
threshold that would correspond to a high quantile of the temperatures distribution.
One can consider Text ≥ Tref an extreme value above this reference threshold.

Let us note ACt the ensemble of climate system conditions such that at at a lead
time t, the temperature at the place of interest is equal or greater than the reference
threshold:

ACt := {X0 | T (Xt) ≥ Tref}, (A.31)

where Xt is the successor of the starting conditions X0 under the dynamics of
the system – i.e. if the model starts at X0 the state vector will be equal to Xt at
time t. Let us consider a slightly bigger ensemble of starting conditions to account
for the perturbations added during the boosting procedure:

ÃC
ϵ
t := {X0 | ∃X ∈ ACt, ∥X0 −X∥ ≤ ϵ} (A.32)

for some norm ∥.∥ and some ϵ > 0 which controls the size of the perturbations
added at the initial step. Clearly, ACt ⊂ ÃC

ϵ
t.

Then by definition of the conditional probability:

P
(
(T (Xt) ≥ Tref ) ∩ ÃC

ϵ
t

)
= P

(
T (Xt) ≥ Tref | ÃCϵt

)
P(ÃCϵt). (A.33)

By definition of ACt and because ACt ⊂ ÃC
ϵ
t: P ((T (Xt) ≥ Tref ) ∩ ÃC

ϵ
t) =

P(T (Xt) ≥ Tref ). Similarly:

P
(
(T (Xt) ≥ Text) ∩ ÃC

ϵ
t

)
= P

(
T (Xt) ≥ Text | ÃCϵt

)
P(ÃCϵt) (A.34)

and because Text ≥ Tref : P((T (Xt) ≥ Text) ∩ ÃC
ϵ
t) = P(T (Xt) ≥ Text).

It should now be remarked that if the lead time t is not too big with respect to the
time scale of the seasonal cycle, the probabilities P(T (Xt) ≥ Tref ) and P(T (Xt) ≥
Text) represent the climatological probabilities over the summer: Pµ(T ≥ Tref ) and
Pµ(T ≥ Text).
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From this, one therefore derives:

Pµ(T ≥ Text) = Pµ(T ≥ Tref )Pµ(T ≥ Text | ÃCϵt)
Pµ(T ≥ Tref | ÃCϵt)

. (A.35)

In the following, for simplicity, I drop the µ subscript indicating the climatologi-
cal nature of the probability estimated. On the right hand side, the first term is the
probability of the Tref threshold, which can be estimated straightforwardly using
the initial simulation:

P(T ≥ Tref ) ≃ p̂T≥Tref
:= 1

N

N∑
i=1

1(Ti ≥ Tref ). (A.36)

The boosting ensemble will provide estimators for the ratio of conditional proba-
bilities. Let us note now (Xb

i )1≤i≤Nb
the state vectors of the climate system obtained

with the boosting procedure, starting from points in ÃCϵt and (T bi := T (Xb
i ))1≤i≤Nb

the associated temperatures at the place of interest. Here all boosted ensemble
members are pooled together, whatever their starting conditions. The estimators
for the numerator and the denominator are then:

P(T ≥ Text | ÃCϵt) ≃ p̂bT≥Text
:= 1

Nb

Nb∑
i=1

1(T bi ≥ Text) (A.37)

and

P(T ≥ Tref | ÃCϵt) ≃ p̂bT≥Tref
:= 1

Nb

Nb∑
i=1

1(T bi ≥ Tref ). (A.38)

In other words, one computes simply the empirical frequency on which, in the
boosted ensemble, the Tref and Text thresholds are reached. Now the questions are
on the properties of the boosting estimator

p̂T≥Text := p̂T≥Tref

p̂bT≥Text

p̂bT≥Tref

(A.39)

of P(T ≥ Text): is this estimator unbiased ? Is it reducing the variance ?

b) Unbiasedness of the boosting estimator

To estimate the expectation of the boosting estimator, I make the assumption that
on the right hand side, the estimator p̂T≥Tref

is independent from the ratio
p̂b

T ≥Text

p̂b
T ≥Tref

.

In other words, I assume that the probability to reach Tref on the initial dataset
is independent from how more likely it is to reach Text than to reach Tref in the
boosted ensemble. I make a second approximation, which is that in the boosted
ensemble the (T bi )1≤i≤Nb

are independent one from another.
Both of these approximations may not be correct if the ensemble ACt contains

two few starting conditions — i.e. if one chooses a too high Tref threshold —,
or if the lead time t used for the ensemble boosting procedure is too low — i.e.
if members in the boosted ensemble do not have time to diverge sufficiently and
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become quasi-independent (which is guaranteed by the mixing property of a chaotic
system). There are therefore clearly several trade-offs to consider: choosing Tref
high enough to sample extremes but not too high to avoid having too few starting
conditions, and choosing t large enough to let members separate enough but not too
large to still be able to sample extremes above Tref .

Under these approximations, the expectation of the boosting estimator is:

E[p̂T≥Text ] = E[p̂T≥Tref
]E
[
p̂bT≥Text

p̂bT≥Tref

]
. (A.40)

The first term on the right hand side is easily estimated:

E[p̂T≥Tref
] = P(T ≥ Tref ). (A.41)

Let us note N :=
∑Nb
i=0 1(T bi ≥ Text) and D :=

∑Nb
i=0 1(T bi ≥ Tref ) the numerator

and denominator of the ratio on the right hand side.The expectation of the ratio is
then (Kendall et al. (1948)):

E[N
D

] = E[N ]
E[D]

(
1 − Cov[N ,D]

E[N ]E[D] + V[D]
E[D]2

)
. (A.42)

The terms in this equation can be estimated independently:

E[N ] := NbE[p̂bT≥Text
] = NbP(T ≥ Text | ÃCϵt) = Nb ∗ pbT≥Text

(A.43)
E[D] = NbE[p̂bT≥Tref

] = NbP(T ≥ Tref | ÃCϵt) = Nb ∗ pbT≥Tref
(A.44)

V[D] =
Nb∑
i=0

V[1(T bi ≥ Tref )] = Nb ∗ pbT≥Tref
(1 − pbT≥Tref

) (A.45)

E[N D] =
Nb∑
i,j=0

E[1(T bi ≥ Text)1(T bj ≥ Tref )]. (A.46)

For the last equation, one can separate the cases:

• there are Nb cases where i = j:

E[1(T bi ≥ Text)1(T bi ≥ Tref )] = E[1(T bi ≥ Text)] = pbT≥Text
(A.47)

because Text ≥ Tref ,

• there are Nb(Nb − 1) cases where i ̸= j, using the independence assumption:

E[1(T bi ≥ Text)1(T bj ≥ Tref )] = E[1(T bi ≥ Text)]E[1(T bj ≥ Tref )] = pbT≥Text
pbT≥Tref

.

(A.48)

In the end, this gives:

E[N D] = Nb · pbT≥Text
∗ (1 + (Nb − 1) · pbT≥Tref

). (A.49)

Therefore:
V[D]
E[D]2 =

1 − pbT≥Tref

Nb · pbT≥Tref

(A.50)
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and

Cov[N ,D]
E[N ]E[D] = E[N D]

E[N ]E[D] − 1 =
1 + (Nb − 1) · pbT≥Tref

Nb ∗ pbT≥Tref

− 1 =
1 − pbT≥Tref

Nb · pbT≥Tref

. (A.51)

As a result:
E[N

D
] = E[N ]

E[D] , (A.52)

which shows that the boosting estimator is unbiased:

E[p̂T≥Text ] = P(T ≥ Text). (A.53)

c) Variance of the ensemble boosting estimator

For the boosted estimator to be useful to sample extremes, one needs to show that
the relative error made when using this estimator is better than when using a naive
estimator on the initial simulation. I now estimate the variance of the boosted
estimator. With the same independence argument as previously:

E[p̂2
T≥Text

] = E[p̂2
T≥Tref

]E[N
2

D2 ]. (A.54)

The E[p̂2
T≥Tref

] term can be computed the same way as for the E[N D] term
previously, which gives:

E[p̂2
T≥Tref

] =
pbT≥Tref

∗ (1 + (Nb − 1) ∗ pbT≥Tref
)

Nb
. (A.55)

The ratio can then be computed using the same formula as previously:

E[N
2

D2 ] = E[N 2]
E[D2]

(
1 − Cov[N 2,D2]

E[N 2]E[D2] + V[D2]
E[D2]2

)
. (A.56)

The terms E[N 2] and E[D2] can be estimated as previously:

E[N 2] = Nb ∗ pbT≥Text
∗ (1 + (Nb − 1) ∗ pbT≥Text

) (A.57)
E[D2] = Nb ∗ pbT≥Tref

∗ (1 + (Nb − 1) ∗ pbT≥Tref
). (A.58)

The term E[N 2D2] is less straightforward. By the definition of the product:

E[N 2D2] =
N∑

i,j,k,m=1
E[1(T bi ≥ Text)1(T bj ≥ Text)1(T bk ≥ Tref )1(T bm ≥ Tref )].

(A.59)
This sum hasN4 terms that can be decomposed into four cases for the quadruplet

(i, j, k,m):

• two terms in the quadruplet are equal and the two others are different and
different from one another, e.g. i = j = 2, k = 3 and m = 4. Among them:
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– there are N(N − 1)(N − 2) such quadruplets for which i = j and the
associated expectation for each of them is:

E[1(T bi ≥ Text)]E[1(T bk ≥ Tref )]E[1(T bm ≥ Tref )] = pbT≥Text
(pbT≥Tref

)2

(A.60)

– there are 5N(N − 1)(N − 2) such quadruplets for which i ̸= j and the
associated expectation for each of them is:

E[1(T bi ≥ Text)]E[1(T bj ≥ Text)]E[1(T bk ≥ Tref )] = (pbT≥Text
)2pbT≥Tref

(A.61)

• three terms in the quadruplet are equal and the last one is different from them,
e.g. i = j = k ̸= m. Among them:

– there are 2N(N−1) such quadruplets for which i = j and the associated
expectation for each of them is:

E[1(T bi ≥ Text)]E[1(T bk ≥ Tref )] = pbT≥Text
pbT≥Tref

(A.62)

– there are 2N(N−1) such quadruplets for which i ̸= j and the associated
expectation for each of them is:

E[1(T bi ≥ Text)]E[1(T bj ≥ Text)] = (pbT≥Text
)2 (A.63)

• the four terms in the quadruplet are equal: there are N such quadruplets and
the associated expectation is:

E[1(T bi ≥ Text)] = pbT≥Text
(A.64)

• the four terms in the quadruplet are different: there are N4 −6N(N −1)(N −
2) − 4N(N − 1) −N such quadruplets and the associated expectation is:

E[1(T bi ≥ Text)]E[1(T bj ≥ Text)]E[1(T bk ≥ Tref )]E[1(T bm ≥ Tref )] = (pbT≥Text
pbT≥Tref

)2

(A.65)

Thus, in the end:

E[N 2D2] =
(
N4 − 6N(N − 1)(N − 2) − 4N(N − 1) −N

)
(pbT≥Text

pbT≥Tref
)2

+N(N − 1)(N − 2)pbT≥Text
(pbT≥Tref

)2

+ 5N(N − 1)(N − 2)(pbT≥Text
)2pbT≥Tref

+ 2N(N − 1)pbT≥Text
pbT≥Tref

+ 2N(N − 1)(pbT≥Text
)2

+NpbT≥Text

(A.66)
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With a similar manner, one retrieves the fourth moment of D (to compute the
variance of D2):

E[D4] =
(
N4 − 6N(N − 1)(N − 2) − 2N(N − 1) −N

)
(pbT≥Tref

)4

+ 6N(N − 1)(N − 2)(pbT≥Tref
)3

+ 4N(N − 1)(pbT≥Tref
)2

+NpbT≥Tref
.

(A.67)

Using the formulas above, one can then give an expression for the variance of
the boosted estimator and the relative error (of which I do not give a closed form
here):

RE :=

√
V[p̂T≥Text ]
E[p̂T≥Text ]

=

√√√√ E[p̂2
T≥Text

]
E[p̂T≥Text ]2

− 1. (A.68)

The relative error of the boosted estimator therefore depends on:

• the size N of the initial simulation from which the starting conditions are
boosted,

• the probability P(T ≥ Tref ) of the reference threshold Tref in the initial
ensemble (this probability would be typically close to the value of the quantile
chosen on the initial simulation),

• the number Nb of members in the boosted ensemble,

• the probability P(T ≥ Tref | ÃCϵt) to be above the reference threshold in the
boosted ensemble (which may depends only marginally on the value of the
threshold itself),

• the probability P(T ≥ Text | ÃCϵt) to be above an extreme value Text in the
boosted ensemble.

Of these parameters, only the three first ones can be fixed by the experimenter,
but the values of the last two ones can be estimated to give an idea of the error
made using the boosted estimator.

d) Numerical application

Let us do an example with realistic values of these parameters:

• I consider a 1000y-long simulation and I am interested in summer days: N =
1000 × 100 = 105,

• I consider two quantiles of the initial empirical distribution: the 99th (P(T ≥
Tref ) = 10−2) and the 99.99th (P(T ≥ Tref ) = 10−4). The 99th quantile is
very well estimated with N = 105 whereas the 99.99th quantile is at the top
limit of what can be estimated precisely with this amount of data (only 10
days are above this value),
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• I take the number of boosted members to vary from Nb = 100 and Nb = 500
to Nb = 1000,

• the value of the probability P(T ≥ Tref | ÃCϵt) may have to be estimated in
practice, here I take for the example P(T ≥ Tref | ÃCϵt) = 0.25,

• P(T ≥ Text | ÃCϵt) will be the varying parameter (it will define how low
P(T ≥ Text) one can estimate).

Figure A.1 shows the results of the computation of the relative error for these
parameters. For not so extreme values of the quantile chosen to define Tref , the naive
estimator performs better than the boosted ensemble. However, when one considers
higher values of the quantile (Fig. A.1b), the boosted estimator performs better.
As one could expect, the greater the number of members in the boosted ensemble,
the more precise is the estimation. With 1000 members, one can estimate precisely
probabilities one to two order of magnitudes less likely than what is possible with
the naive estimator using the initial long simulation. Finally, the relative error of
the boosted ensemble is bounded downward by the precision in the estimation of the
quantiles chosen for Tref , which shows the importance to consider a not so extreme
reference threshold to choose starting conditions for the boosting.

Figure A.1: Relative error of the ensemble boosting estimator. (a)
P(T ≥ Tref ) = 10−2 and (b) P(T ≥ Tref ) = 10−4. The variance of the naive
estimator (i.e. using only the initial long simulation) is shown in dashed line.
The vertical dashed lines show P(T ≥ Tref ).
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A.3 Supplementary materials for chapter 6
A.3.1 Additional figures

Figure A.2: Example of individual time series of grid point observ-
ables. All the plots are drawn for one biased simulation with N = 100 mem-
bers. (a) 2-m air temperature, (b) geopotential height at 500hPa and (c)
upper-level soil moisture at grid point 1 and (d) upper-level soil moisture at
grid point 2. For all the plots the plain blue line shows the ensemble mean and
the shading the 5 and 95% climatological quantiles of the variable displayed.
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Figure A.3: Probabilities of an extreme summer according to the
naive estimator (control simulation) and the rare event estimator.
Same as Figure 6.5 with the following observables. Probability of the sum-
mer averaged upper-level soil moisture at grid point 1 to be below a certain
threshold for (a) the biased T2M simulation and (b) the biased Z500 simula-
tion. Probability of the summer averaged 2-m air temperature at grid point
1 to be above a certain threshold for (c) the biased SM1 simulation and (d)
the biased SM2 simulation. The blue dashed lines represent the corresponding
probabilities for a Gaussian distribution fitted on the control simulation by
the method of moments. The shadings for the control simulation show the
5–95% quantiles of the estimated probability obtained using bootstrap on the
900 members. For the biased simulations the shadings show the minimum and
maximum of the estimated probability over the Ns = 9 simulations.
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Figure A.4: Summer averaged E-vector at 500hPa for centennial
events. In each panel the blue arrows show the climatological E-vector com-
puted on the control simulation.
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Figure A.5: Wavenumber-phase speed spectra of meridional wind
anomalies at 500hPa for centennial events. Raw spectrum (contours)
and difference with the climatological spectrum (colors).
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Figure A.6: Amplitude-phase histograms of meridional wind speed
at 200hPa for centennial events. Wave numbers kϕ = 3 to kϕ = 10 in
columns and biased simulations in rows: (a) control simulation, (b) biased
T2M simulation, (c) biased Z500 simulation, (d) biased SM1 simulation and
(e) biased biased SM2 simulation.
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Figure A.7: Amplitude-phase histograms of meridional wind speed
anomalies at 500hPa for centennial events. Wave numbers kϕ = 3 to
kϕ = 10 in columns and biased simulations in rows: (a) control simulation, (b)
biased T2M simulation, (c) biased Z500 simulation, (d) biased SM1 simulation
and (e) biased biased SM2 simulation.
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Figure A.8: Spectrum of meridional wind speed anomalies at 200hPa
for centennial events. The first column shows the average amplitude per
zonal wave number. The second column shows the average phase per zonal
wave number. The shadings show a +/- 1 std range around the average.
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Figure A.9: Spectrum of meridional wind speed anomalies at 500hPa
for centennial events. The first column shows the average amplitude per
zonal wave number. The second column shows the average phase per zonal
wave number. The shadings show a +/- 1 std range around the average.
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Figure A.10: Amplitude-phase histograms of meridional wind speed
at 500hPa for centennial events. Wave numbers kϕ = 3 to kϕ = 10 in
columns and biased simulations in rows: (a) control simulation, (b) biased
T2M simulation, (c) biased Z500 simulation, (d) biased SM1 simulation and
(e) biased biased SM2 simulation.
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Figure A.11: Spectrum of meridional wind speed at 200hPa for cen-
tennial events. The first column shows the average amplitude per zonal wave
number. The second column shows the average phase per zonal wave number.
The shadings show a +/- 1 std range around the average.
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Figure A.12: Spectrum of meridional wind speed at 500hPa for cen-
tennial events. The first column shows the average amplitude per zonal wave
number. The second column shows the average phase per zonal wave number.
The shadings show a +/- 1 std range around the average.
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Figure A.13: Atmospheric dynamics associated to cut-off lows west of
the Iberian peninsula. The composites are made for all events (n = 1124) in
the control simulation for which a cut-off low is detected in the 33.5°N-42.5°N -
22.5°W-10°W area. (a) Geopotential height at 500hPa (black contours), 3-day
average precipitations (colored contours) and 3-day average air temperature at
850hPa anomaly (colors). The geopotential height contours are drawn every 20
meters starting at 5200m. The precipitations contours are drawn every 2mm
starting at 2mm. (b) 3-day average 2-m air temperature anomaly (contours),
E-vector (arrows) and meridional wind speed at 200hPa (colors). The E-vector
is drawn for norms above 10 m2/s2. The anomalies are computed with respect
to the daily ensemble mean and standard deviation of the control simulation.
For panel (b), the anomalies are drawn every 0.5 standard deviation, starting
at +/- 0.5 std. Plain (dashed) lines represent positive (negative) values of the
standard deviation.
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Figure A.14: Comparison of the distribution of summer maxima of
maximum daily temperatures (TXx) at grid point 1. The boxplots
show the 25 and 75% quantiles, the median and the outliers.
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A.4 Supplementary materials for chapter 7
A.4.1 Additional figures

Figure A.15: Evolution of the number of effectively different members
during the simulation. The effective number of members represents the
number of members in each 100-member simulation which are truly unique at
time t. The computation is done after the simulation is run and the members
are reconstructed from the 1st of June, hence the increasing function. The
jumps show the moments when the resamplings occur. The shadings show the
minimum and maximum of the effective number of members over the Ns = 9
simulations.
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Figure A.16: Summer averaged (a) 2-m air temperature in the present
simulation (°C, contours) and 2-m air temperature anomaly in (b)
SSP2-4.5 and (c) SSP3-7.0 (°C, colors). For panels b and c, the anomalies
are computed with respect to the present simulations. The grid point where
the normalized anomaly with respect to the present simulation is below 0.25
std in absolute value are colored in white.
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Figure A.17: Summer averaged (a) upper-level soil moisture in the
present simulation (kg/m2, contours) and upper-level soil moisture
anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (°C, colors). For panels b
and c, the anomalies are computed with respect to the present simulations.
The grid point where the normalized anomaly with respect to the present
simulation is below 0.25 std in absolute value are colored in white.
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Figure A.18: Summer averaged (a) latent heat flux at the ground
(W/m2, contours) and latent heat flux anomaly in (b) SSP2-4.5 and
(c) SSP3-7.0 (°C, colors). For panels b and c, the anomalies are computed
with respect to the present simulations. The grid point where the normalized
anomaly with respect to the present simulation is below 0.25 std in absolute
value are colored in white.
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Figure A.19: Summer averaged (a) sensible heat flux at the ground
(W/m2, contours) and sensible heat flux anomaly in (b) SSP2-4.5
and (c) SSP3-7.0 (°C, colors). For panels b and c, the anomalies are
computed with respect to the present simulations. The grid point where the
normalized anomaly with respect to the present simulation is below 0.25 std
in absolute value are colored in white.
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Figure A.20: Standard deviation of the summer averaged upper-level
soil moisture in (a) the present simulation (°C, contours) and stan-
dard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (%, colors).
For panels b and c, the anomalies are computed with respect to the present
simulations. The grid point where the normalized anomaly with respect to the
present simulation is below 15% in absolute value are colored in white.
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Figure A.21: Standard deviation of the summer averaged latent heat
flux in (a) the present simulation (°C, contours) and standard de-
viation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (%, colors). For
panels b and c, the anomalies are computed with respect to the present sim-
ulations. The grid point where the normalized anomaly with respect to the
present simulation is below 15% in absolute value are colored in white.
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Figure A.22: Standard deviation of the summer distribution of daily
2-m air temperature in (a) the present simulation (°C, contours)
and standard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0
(%, colors). For panels b and c, the anomalies are computed with respect to
the present simulations. The grid point where the normalized anomaly with
respect to the present simulation is below 5% in absolute value are colored in
white.
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Figure A.23: Standard deviation of the summer distribution of daily
upper-level soil moisture in (a) the present simulation (°C, contours)
and standard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0
(%, colors). For panels b and c, the anomalies are computed with respect to
the present simulations. The grid point where the normalized anomaly with
respect to the present simulation is below 5% in absolute value are colored in
white.
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Figure A.24: Standard deviation of the summer distribution of daily
latent heat flux in (a) the present simulation (°C, contours) and
standard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (%,
colors). For panels b and c, the anomalies are computed with respect to
the present simulations. The grid point where the normalized anomaly with
respect to the present simulation is below 5% in absolute value are colored in
white.
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Figure A.25: Standard deviation of the summer distribution of daily
sensible heat flux in (a) the present simulation (°C, contours) and
standard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (%,
colors). For panels b and c, the anomalies are computed with respect to
the present simulations. The grid point where the normalized anomaly with
respect to the present simulation is below 5% in absolute value are colored in
white.
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Figure A.26: Summer averaged (a) 500hPa zonal wind in the present
simulation (m/s, contours) and 500hPa zonal wind anomaly in (b)
SSP2-4.5 and (c) SSP3-7.0 (°C, colors). For panels b and c, the anomalies
are computed with respect to the present simulations. The grid point where
the normalized anomaly with respect to the present simulation is below 0.25
std in absolute value are colored in white.
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Figure A.27: Summer averaged (a) 500hPa meridional wind in the
present simulation (m/s, contours) and 500hPa meridional wind
anomaly in in (b) SSP2-4.5 and (c) SSP3-7.0 (°C, colors). For panels
b and c, the anomalies are computed with respect to the present simulations.
The grid point where the normalized anomaly with respect to the present sim-
ulation is below 0.25 std in absolute value are colored in white.
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Figure A.28: Summer averaged (a) 200hPa zonal wind in the present
simulation (m/s, contours) and 200hPa zonal wind anomaly in (b)
SSP2-4.5 and (c) SSP3-7.0 (°C, colors). For panels b and c, the anomalies
are computed with respect to the present simulations. The grid point where
the normalized anomaly with respect to the present simulation is below 0.25
std in absolute value are colored in white.
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Figure A.29: Summer averaged (a) 200hPa meridional wind in the
present simulation (m/s, contours) and 200hPa meridional wind
anomaly in in (b) SSP2-4.5 and (c) SSP3-7.0 (°C, colors). For panels
b and c, the anomalies are computed with respect to the present simulations.
The grid point where the normalized anomaly with respect to the present sim-
ulation is below 0.25 std in absolute value are colored in white.
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Figure A.30: Standard deviation of the summer averaged 500hPa
zonal wind in (a) the present simulation (m/s, contours) and stan-
dard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (%, colors).
For panels b and c, the anomalies are computed with respect to the present
simulations. The grid point where the normalized anomaly with respect to the
present simulation is below 15% in absolute value are colored in white.
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Figure A.31: Standard deviation of the summer averaged 500hPa
meridional wind in (a) the present simulation (°C, contours) and
standard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0 (%,
colors). For panels b and c, the anomalies are computed with respect to the
present simulations. The grid point where the normalized anomaly with re-
spect to the present simulation is below 15% in absolute value are colored in
white.
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Figure A.32: Standard deviation of the summer distribution of daily
500hPa zonal wind in (a) the present simulation (m/s, contours)
and standard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0
(%, colors). For panels b and c, the anomalies are computed with respect to
the present simulations. The grid point where the normalized anomaly with
respect to the present simulation is below 5% in absolute value are colored in
white.
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Figure A.33: Standard deviation of the summer distribution of daily
500hPa meridional wind in (a) the present simulation (m/s, con-
tours) and standard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-
7.0 (%, colors). For panels b and c, the anomalies are computed with respect
to the present simulations. The grid point where the normalized anomaly with
respect to the present simulation is below 5% in absolute value are colored in
white.
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Figure A.34: Standard deviation of the summer distribution of daily
500hPa zonal wind in (a) the present simulation (m/s, contours)
and standard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-7.0
(%, colors). For panels b and c, the anomalies are computed with respect to
the present simulations. The grid point where the normalized anomaly with
respect to the present simulation is below 5% in absolute value are colored in
white.
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Figure A.35: Standard deviation of the summer distribution of daily
200hPa meridional wind in (a) the present simulation (m/s, con-
tours) and standard deviation anomaly in (b) SSP2-4.5 and (c) SSP3-
7.0 (%, colors). For panels b and c, the anomalies are computed with respect
to the present simulations. The grid point where the normalized anomaly with
respect to the present simulation is below 5% in absolute value are colored in
white.
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Figure A.36: Summer averaged E-vector at 500hPa for centennial
events. In each panel the blue arrows show the climatological E-vector com-
puted on the control simulation.
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Figure A.37: Summer averaged normalized anomalies of latent heat
flux at the ground for centennial events. Normalized anomalies are com-
puted by removing at each grid point the mean and dividing by the standard
deviation computed on the control simulation.
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Figure A.38: Summer averaged normalized anomalies of sensible heat
flux at the ground for centennial events. Normalized anomalies are com-
puted by removing at each grid point the mean and dividing by the standard
deviation computed on the control simulation.
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Figure A.39: Summer averaged normalized anomalies of boundary
layer height for centennial events. Normalized anomalies are computed by
removing at each grid point the mean and dividing by the standard deviation
computed on the control simulation.
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Figure A.40: Wavenumber-phase speed spectra of meridional wind
anomalies at 500hPa for centennial events. Raw spectrum (contours)
and difference with the climatological spectrum (colors).

Figure A.41: Amplitude-phase histograms of meridional wind speed
anomalies at 500hPa for centennial events. Wave numbers kϕ = 3 to
kϕ = 10 in columns and biased simulations in rows: (a) present, (b) SSP2-4.5
and (c) SSP3-7.0.
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Figure A.42: Amplitude-phase histograms of meridional wind speed
at 200hPa for centennial events. Wave numbers kϕ = 3 to kϕ = 10 in
columns and biased simulations in rows: (a) present, (b) SSP2-4.5 and (c)
SSP3-7.0.
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Figure A.43: Spectrum of meridional wind speed anomalies at 200hPa
for centennial events. The first column shows the average amplitude per
zonal wave number. The second column shows the average phase per zonal
wave number. The shadings show a +/- 1 std range around the average.
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Figure A.44: Spectrum of meridional wind speed anomalies at 500hPa
for centennial events. The first column shows the average amplitude per
zonal wave number. The second column shows the average phase per zonal
wave number. The shadings show a +/- 1 std range around the average.
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Figure A.45: Amplitude-phase histograms of meridional wind speed
at 500hPa for centennial events. Wave numbers kϕ = 3 to kϕ = 10 in
columns and biased simulations in rows: (a) present, (b) SSP2-4.5 and (c)
SSP3-7.0.

318



A.4. Supplementary materials for chapter 7

Figure A.46: Spectrum of meridional wind speed at 200hPa for cen-
tennial events. The first column shows the average amplitude per zonal wave
number. The second column shows the average phase per zonal wave number.
The shadings show a +/- 1 std range around the average.
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Figure A.47: Spectrum of meridional wind speed at 500hPa for cen-
tennial events. The first column shows the average amplitude per zonal wave
number. The second column shows the average phase per zonal wave number.
The shadings show a +/- 1 std range around the average.
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Figure A.48: Climatological amplitude-phase histograms of merid-
ional wind speed at 200hPa for centennial events. Wave numbers
kϕ = 3 to kϕ = 10 in columns and biased simulations in rows: (a) present,
(b) SSP2-4.5 and (c) SSP3-7.0.
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Figure A.49: Climatological amplitude-phase histograms of merid-
ional wind speed at 500hPa for centennial events. Wave numbers
kϕ = 3 to kϕ = 10 in columns and biased simulations in rows: (a) present,
(b) SSP2-4.5 and (c) SSP3-7.0.
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Figure A.50: Composite Hovmöller plot of the atmospheric and sur-
face dynamics during heatwave events for the control simulations.
First column: meridional wind speed at 200hPa anomalies averaged between
35°N and 65°N. Second column: 2-m air surface temperature normalized
anomalies averaged between 45°N and 55°N. The time is expressed relative
to the hottest day of each heatwave event. Rows: (a) present, (b) SSP2-4.5
and (c) SSP3-7.0. Number of events: (a) n = 1089, (b) n = 1091 and (c)
n = 1085.
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Abstract
In February and March 2022, the eastern coast of Australia recorded an unprecedented amount of precipitation with
extended floods and damages to properties amounting at least to AUD 2.3 billions. In this paper we use both reanalysis
and observations to perform a statistical and dynamical attribution of this precipitation event to climate change. We define
1948-1977 as the counterfactual period and 1990-2019 as the factual one. The statistical attribution is based on fitting
the generalized extreme value distribution for 3-days averaged precipitation annual maxima for the two periods, while the
dynamical attribution aims at looking at the recurrence properties of sea-level pressure and geopotential height patterns in
both periods. We find that the dynamics of the event consists in an unprecedented combination of several factors: a tropical
atmospheric river, the presence of the Coral low pressure system and a blocking anticyclone offshore Eastern Australia. Our
main finding is that no clear attribution statements can be made, both because of the unprecedented nature of this event,
the lack of long high quality available data and the dependence of the results on the La Nina phase of El Nino Southern
Oscillation.
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1 Introduction

In the latest IPCC report (Masson-Delmotte et al. 2021),
researchers confirm the role that human activity plays in
the climate upheavals of recent decades. The scientists
also confirm the role of anthropogenic greenhouse gases
emissions in modifying frequency and intensity of extreme
weather events that we experience today. The IPCC
scientists warn in particular about the effects that climate
change is having on the water cycle. Studies have shown
that rising temperatures are leading to more intense rainfall,
flooding but also to more severe droughts (Cook et al.
2018) in some regions of the world. The distribution,
frequency and intensity of precipitations are changing
significantly across the globe, especially in subtropical
regions accustomed to monsoons (Douville et al. 2021).
In the 21st century, coastal areas are already experiencing
and will increasingly experience flooding due to heavy
precipitations and sea level rise (Wilby and Keenan 2012).
Flooding from rising seas, which was only occasional a
few decades ago, could occur every year by the end of the
century (Hirabayashi et al. 2013).

Australian average land temperatures have risen by 1.44◦
since 1910, according to the recent study by Grainger et al.
(2022). The oceans surrounding the continent have also
warmed by an average of one degree over the same period,
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leading to more frequent marine heat waves. Half of the
corals in Australia’s Great Barrier Reef have died since 1995
because of this rise in water temperature in conjunction
with increased acidification (Wolff et al. 2018; Holland
et al. 2020). There is a wide consensus on the fact that
sea levels will rise in future climates, affecting Australian
coasts (Church et al. 2006; Woodruff et al. 2013; Church
et al. 2017). As in other regions, this will likely increase
the hazards linked to storm surges associated with tropical
cyclones. Other authors have also pointed out that rainfall
has decreased in southwestern Australia as well as in the
fire-ravaged southeast, while increasing in the north, which
has been hit by major floods and destructive cyclones in
recent years (Dey et al. 2019; Abram et al. 2021).

If climate change projections for Australia are worrying,
the country is already experiencing severe extreme weather
events. Indeed, climate change has already taken its toll on
Australia (Head et al. 2014; Abram et al. 2021; Canadell
et al. 2021), which has been hit by fires, drought and intense
cyclones. In 2019-2020 the country was already ravaged
by wildfires of exceptional proportions after experiencing
the hottest and driest year on record (Borchers Arriagada
et al. 2020; Jetten et al. 2021). The fires destroyed an area
almost the size of the United Kingdom, killed several people
and killed or displaced nearly three billion animals, costing
the Australian economy about 7 billion AUD (Filkov
et al. 2020). In the current 2022 year, both high and low
temperature records have been broken in Australia. On one
hand, on the 13/01, the coastal town of Onslow reached an
unprecedented 50.7◦, the hottest temperature ever recorded
in Australia for sixty-two years (The Guardian 2022). On
the other hand, on the 02/06, the temperature at the Thredbo
Top weather station reached −6.9◦ and historic snowfalls
for this time of year (The New Daily 2022). Future
projections of climate-related disasters for the coastal areas
as well as the vast island-continent report an increasing
risk of extreme events capable of heavily damaging natural
ecosystems and impact health and agriculture (Hobday et al.
2018; Dey et al. 2019; Ukkola et al. 2020).

Here we will focus on the record-breaking extreme
precipitation event which occurred from the last week
of February to mid-March 2022, in the eastern coast of
Australia. Heavy precipitations - 345mm of rain were
recorded at Brisbane on the 28th of February - met soils
already close to saturation from the recent rains in the
end of 2021. This lead to severe and enduring flooding in
March. This event caused 22 recorded casualties, rendered
uninhabitable 25,000 homes and businesses, forced 200,000
people to evacuate and produced massive power and
transports outages for a total of ∼2.32 billion AUD of
damage (Foreign Policy 2022).

In order to explain this rain bomb event, we have
identified two main ingredients: i) an atmospheric river,

formed north of the continent around the 22nd of February,
in the upper atmosphere – between eight and 10 kilometres
up – moved from the ocean to the south reaching the
continent and producing a continuous flux of precipitation
originating from the tropics, and ii) a dipolar structure
consisting of a low pressure system in the Coral Sea and a
blocking anticyclone further east. The combination of these
elements allowed to transport moist air from the tropics
to the Coral Sea, and then condense the moisture that
has then fallen as rain thanks to the low pressure, while
winds were pushing rain over Queensland’s south east.
Precipitation was further enhanced by orographic effects.
At an even larger scale, the phenomena were embedded
in a strong La Nina phase, which induces additional air
moisture in the south west Pacific and wind circulation
patterns that could have played a role in the intensity of the
event.

Preliminary results of the University of Melbourne
reported by national and international newspapers (see, e.g.
(The Guardian 2022)) showed that on the 26th and 27th
of February, the two days with heaviest rain, 16 times the
water held by Sydney harbour (500 bn liters) flowed in the
atmospheric river above Queensland. Indeed, during those
days rainfall of over 400 millimetres was recorded across
the greater Brisbane area. This would add up on the 28th
February to a total of 676.8 millimetres of rainfall, the
largest three, and seven, day total ever recorded in Brisbane.
Another record breaking amount of rainfall was recorded in
Mount Glorious which received rainfall in excess of 1770
millimetres in the week until 28th of February. More than 30
locations across the south-east recorded rainfall in excess of
1000 millimetres, resulting in the floods being more intense
than that of 1974. The unprecedented flooding that raised
many rivers above record highs moved south, leaving towns
underwater. The area of Sydney was more affected on the
3rd and the 8th of March with the city’s chief reservoir,
spilling at a rate in excess of 70 gigalitres a day on March 3.
Residents in parts of western Sydney were told to evacuate
for the second year in a row as the city’s Warragamba Dam
overflowed. But the system stalled before it passed over
Sydney.

Damage from floods is only partially estimated at this
stage, but is expected to reach almost AUD 2.3 billion
(Foreign Policy 2022), an estimate that exceeds that of
the Insurance Council of Australia, which also summed-up
the cost of claims from the disaster to AUD 1.45 billion
(ClimateCouncilAustralia 2022). However, this is only a
lower bound, as the estimates are still expected to grow.

Figure 1(a) presents the synoptic situation averaged over
the 26th, 27th and 28th of February over the region. We
see the dipole structure with an upper level low pressure
system centered above the Brisbane region and a high
pressure system over the Coral sea. Figure 1(b) presents the

Korean Meteorological Society



Challenges in Attributing the 2022 Australian Rain Bomb to Climate Change

standardized anomaly of accumulated precipitations for a
one month period (20/02-20/03) with respect to the 1990-
2019 period. The standardized anomaly was computed by
considering the series of accumulated precipitations for
the 20/02-20/03 period for each year over 1990-2019,
removing the mean and dividing by the standard deviation.
The Eastern coast of Australia saw extremely strong
precipitations, with many locations exceeding 5 standard
deviation anomalies with respect to the climatology.

We study whether this event can be attributed to climate
change using dynamical systems theory to target the
concurrent atmospheric circulation patterns and search for
pattern recurrences in the far (1948-1977) and recent past
(1990-2019). Our working hypothesis is that the far past
acts as a counterfactual world where the Earth climate was
not influenced by anthropogenic forcing when compared to
the recent past (the factual world). Additionally, we assume
that the 30-year period is long enough to average out the
interannual variability of the atmospheric motions (as that
caused, for example, by El-Niño - Southern Oscillation).
Finally we verify that these events produce similar impacts
on the targeted regions.

The paper is organized as follows: Section 2 describes the
data and methods used in this study. This is followed by the
results (Section 3) providing both a statistical a dynamical
attribution analysis. We conclude with a discussion and
perspectives in Section 4.

2 Data andMethods

2.1 Data

In order to detect significant changes in the circulation
associated with Australian Rain bombs, we use daily sea

level pressure (slp), 500hPa geopotential height (z500)
and 2m air temperature (t2m) data from the NCEP/NCAR
reanalysis (Kalnay et al. 1996) over the period 01/01/1948
– 31/03/2022. The data have a horizontal resolution of
2.5◦ × 2.5◦.

The precipitation data are taken from the high resolution
daily rainfall gridded datasets of the Bureau of Meteorology
of Australia. The data have a horizontal resolution of
0.05◦ × 0.05◦. Daily precipitation data from the Alderley
station, close to Brisbane, the Cairns Aero and the Sidney
Botanic gardens stations are also used. The gridded data set
will be used for the dynamical attribution (Section 3.2) and
the station data for the statistical attribution (Section 3.1).
For the ENSO index, we used the Nino3.4 detrended index
as in Van Oldenborgh et al. (2021).

2.2 Methods

Extreme Value Theory (EVT) has been introduced in the
study of atmospheirc flows a decade ago (Freitas et al.
2008) and has gained a considerable amount of attention
in both the applied mathematics and the climate science
communities (Lucarini 2012; Lucarini et al. 2016; Faranda
et al. 2019). It can be used to compute recurrence times
statistics for meteoroloical observables, but also gives
access to important information on the stability and the
predictability of a particular climatic state. We can apply
this framework to the study of how weather extremes
are influenced by anthropogenic-driven climate change
conditioned to the occurrence of a specific atmospheric
circulation pattern (Faranda et al. 2020). Indeed weather
extremes are associated with synoptic objects, i.e. a cyclone,

Fig. 1 Description of the rain bomb event. (a) Geopotential height at
500hPa (colors) and sea level pressure (contours) averaged over the
26th, 27th and 28th of February 2022. (b) Standardized anomaly of

accumulated precipitations for the period 20th February - 20th March
with respect to the 1990-2019 period. Regions in white correspond to
standardized anomaly above 15 standard deviations
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an anticyclone, or a couple of these structures. During this
identification, we select a region (a longitude/latitude box)
that fits the synoptic objects that we want to examine. Once
fixed the day of interest ζ , we scan all the 3-days rolling
averaged sea-level pressure (slp) and 500hPa geopotential
(z500) maps of the selected region in two periods: 1948-
1977 (counterfactual world) and 1990-2019 (factual world).
For both periods, we select the best 35 analogs as the
slp and z500 maps minimizing the pointwise euclidean
distance with the target day ζ . We verified that the results
are not sensitive to the choice of the number of analogs
provided that we extract between 25 and 50 analog maps. 30
years long factual and counterfactual periods ensure a large
enough statistical sample of slp and z500 maps to be able to
select sufficiently authentic analogs. Furthermore, it is short
enough to satisfy the assumption of climate stationarity,
with respect to anthropogenic climate change, while still
long enough for the interannual and interdecadal natural
variability of the atmospheric circulation to be averaged
over.

Once obtained the two sets of analogs for the factual
and counterfactual periods, we average them out to search
for significant differences �slp and �z500. To determine
significant changes, we apply a two-tails Welch’s t-test
(Welch 1947) with different variance at each grid point.
We mark as significant only grid point changes for which
the p-value of the test is below 0.05. Conditioning to the
dates determined for slp or z500 maps, we also study the
associated 2 meters temperatures t2m and total precipitation
maps tp. The Welch’s t-test procedure is repeated on these
ensembles to identify significant changes.

Using the dynamical systems framework described
above, we then introduce a few metrics to determine the
recurrence properties of the map in the counterfactual and
factual worlds. These metrics are computed twice, once with
the set of analogs obtained in each period. The formulas for
computing these metrics are given in Appendix A. For more
information, please refer to Faranda et al. (2022).

• Analogs Quality Q: We can study the typicality of
ζ by comparing the euclidean distance of ζ from
its analogs with the distances of the analogs from
their own analogs. If the value of Q belongs to the
same distribution as the values of Q analogs, then the
typicality of the event is ensured and attribution of
ζ can be performed. If instead the Q for the chosen
day is larger than that of the analog days, then this
is an unprecedented slp or z500 configuration and the
results for attribution must be taken more carefully. A
difference in Q between the counterfactual and factual
periods indicate a change in typicality of the event due
to climate change.

• Predictability Index D: Also called instantaneous
dimension. For an atmospheric state ζ , D(ζ) measures
the density of similar configurations. We can compute
D(ζ) in both the periods to detect a climate-change
induced shift in predictability. Indeed, D is a proxy for
the number of degrees of freedom of the map, meaning
that the higher the dimension the more unpredictable
the next slp or z500 maps will be. If the dimension D

of the chosen day is higher or lower than that of the
analogs, then the day will be less or more predictable
than its closest dynamical situations.

• Persistence Index �: Another information derived from
the dynamical systems theory is the persistence of a
given configuration. The persistence counts for how
many days we are likely to observe a map that will
resemble ζ . Once again we will compute � for the two
different periods and using the analogs as well to detect
shifts from the factual to the counterfactual worlds.

• Seasonality of Analogs: We can also simply count the
number of analogs in each month to detect whether a
given circulation shifts towards earlier or later months.
This can have strong thermodynamic implications.

We also provide results of the attribution conditional
not on the past and present climate, but on the El-Niño
- Southern Oscillation (ENSO) mode. ENSO is known
to be a major factor in the variability of tropical and
subtropical regions around the Pacific and likely played
a role in the February 2022 event for which the mode
was strongly negative. Therefore, we decided to run the
attribution analysis conditional on the Nino3.4 index being
above the 75% percentile (ENSO+) and below the 25%
percentile (ENSO-) for the period 1948-2019. Analogs are
then computed in those two pools of data using either 3-days
rolling averaged slp or z500 maps.

3 Results

3.1 Statistical Attribution

In order to assess the possible changes in the probability of
occurrence for the event due to climate change, we use the
rapid statistical attribution method described in Section 2.
We fit the 3-days averaged precipitation yearly maxima to
a Generalized Extreme Value (GEV) law for the factual
and counterfactual periods for three stations, namely the
Alderley station (Brisbane) at the epicentre of the 26th-28th
February event, the Sydney Botanic garden station and the
Cairns Aero station. We repeat the same analysis over the
region 152◦ − 154◦W, 25.5◦ − 31◦S centered on Brisbane
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where the event was the most extreme (see, e.g. Fig. 1b) .
Figure 2 shows the resulting GEV fits for Brisbane (a),

Brisbane region (b), Sydney (c) and Cairns (d). In both the
factual and counterfactual worlds the event of April 2022 in
Brisbane was exceptional, with return periods estimated of
more than a thousand years. The event was also a 100-year
precipitation event in the Brisbane region in both periods.
The 26th-28th February event was less extreme in Sydney
and Cairns, with return periods of less than a decade in
both stations for the factual and counterfactual periods.
In Alderley station return levels are slightly higher in the
counterfactual period. We can explain this by the occurrence
of an extreme precipitation events in January 1974, that also
produced floods in Brisbane. However, the 95% confidence
intervals are too wide to conclude to any detectable effect of

climate change with this method.
Figure 3 shows the same analysis but conditioned to

the phases of ENSO. In particular, we condition using
Nino3.4 index, sampling ENSO+ and ENSO- phases,
defined respectively as the first and last quartile of the
index. Results show a stronger effect of the la Niña phase
(ENSO-) on precipitation rates at both Brisbane stations
(Fig. 3a). The 2022 26th to 28th February event is very
rare during ENSO+ phases with a return period of over
400 years. Instead, it has a return period of 120 years in
ENSO- phases. This is in agreement with the influence of
the strong la Niña phase currently ongoing on the intensity
of the 2022 event suggested in Section 1. This effect is
less clear if we consider the Brisbane region (Fig. 3b):
in this case the confidence intervals are so wide that it

Fig. 2 Fit of the annual maximum of 3-days averaged precipitation
running means at Brisbane (Alderley station) (a), the Brisbane region
(152◦ − 154◦W, 25.5◦ − 31◦S) (b), Sydney (Sydney Botanic gar-
dens station) (c) and Cairns (Cairns Aero station) (d) to a GEV in
the factual and counterfactual periods. Gumbel plot of the GEV fit over

1948-1977 (blue lines with 95% confidence intervals), and 1992-2021
(red lines) using the maximum likelihood estimation. The purple line
shows the value of intensity of the observed event at the station or area
of interest in 2022
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Fig. 3 Fit of the annual maximum of 3-days averaged precipitation
running means at Alderley station (a) and over the Brisbane region
(152◦ − 154◦W, 25.5◦ − 31◦S) (b) to a GEV, depending on El Niño
3.4 detrended index. Gumbel plot of the GEV fit over years in the 1st

quartile (red lines) and 4th quartile (blue lines) of NINO3.4 index
average over JFM from 1948 to 2021, with 95% confidence intervals.
The purple line shows the value of intensity of the observed event at
Alderley station in 2022

is difficult to draw any conclusion. The same procedure
applied to Sydney (Fig. 3c) and Cairns (Fig. 3d) station
data does not allow drawing any conclusion because of the
wide confidence intervals, wich prevent to obtain statistical
significant differences, at least at the 95% level chosen in
this study.

3.2 Dynamical Attribution

To identify the dynamic and thermodynamic factors which
may have played a role in the intensity of the event, we ran
the dynamical attribution framework presented previously.

Figures 4 and 5 present the results using respectively slp

and z500 analogs. These figures display the slp/z500 (a–d),
t2m (e–h) and prate (i–l) maps and, from left to right, the
maps of the event (a,e,i), the composites of counterfactual

(b,f,j) and factual (c,g,k) analogs and the difference between
the factual and counterfactual analogs (d,h,l) where hashed-
filled areas show significant differences. Distributions of
additional metrics comparing the counterfactual and factual
periods, namely analogs quality, predictability, persistence
and distribution by season are shown in panels m–p,
respectively.

For the slp analogs, we firstly notice that the analogs
quality (Q) is not good and therefore results must be
interpreted carefully (panel (m)). In the factual period, there
is a signal of intensified high-pressures over New Zealand,
which may be related to the stronger advection of moist
air from the Coral sea. When we look at the precipitation
difference map (Fig. 4 (l)), there are indeed stronger
precipitations on the Eastern coast of Australia in the factual
period but only few regions are significantly different than
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Fig. 4 Dynamical attribution using slp analogs for the Australian rain
bomb on 27-02-2022. 3-days rolling mean sea-level pressure slp (a),
2-meter temperatures t2m (e) and total precipitation prate (i) centered
on the 27-02-2022. Average of the 35 sea-level pressure analogs found
for the counterfactual [1948-1977] (b) and factual [1990-2019] (c)
periods and corresponding 2-meter temperatures (f,g) and daily precip-
itation rate (j,k). �slp (d), �t2m (h) and �prate (i) between factual

and counterfactual periods: hashed-filled areas show significant differ-
ences. Violin plots for counterfactual (blue) and factual (red) periods
for the Analogs Quality Q (m) the Predictability index D (n), the Per-
sistence index θ (o) and the distribution of analogs in each month (p).
Values for the selected day are marked by a black dot. Black (resp. red)
lines represent the empirical mean (resp. median) of the distribution

the counterfactual period and do not fully correspond to
the regions where the precipitations are maximum during
the February 2022 event. There is moreover no strong
temperature signal as depicted in panel (h) using 2m air
temperature which does not display significant differences
between the factual and counterfactual periods on the
Eastern coast and in the Coral sea. However, panel (o) and
(p) show that the predictably is lower and the persistence
is higher in the factual period. The event is particularly
persistent compared to its analogs in the factual period
which may explain the intensity of the event.

These results are confirmed when using the z500 analogs
(Fig. 5), which are better as shown in panel (m). The factual
period displays stronger high z500 over the northern region
but also almost no significant temperature signal (panel (h)).
The low predictability D (panel (n)) but high persistence �

(panel (p)) of the event is also noticed using z500 analogs.
When it comes to precipitations, even though they are
stronger during the factual period (panel (l)), this difference
is not significant.

These results are coherent with the statistical attribution
in so far as the temperature signal associated with climate

change is weak. There is however a noticeable dynamical
signal in the two periods as represented in the slp and
z500 analogs difference maps. One may indeed notice
that ENSO, which is the major driver of variability in
the region, was in a strong and persistent La Nina phase
during the event, which is not fully represented using
analogs (see Fig. 6). We therefore decided to run the same
dynamical attribution analysis using the Nino3.4 index to
define ENSO- phases and factual ENSO+ phases.

The results of this analysis are presented in Figs. 7
and 8 using respectively slp and z500 analogs. On the
dynamical side, there is a significant stronger upper level
low during ENSO- phases (Fig. 8 panel (d)) analogs. Using
both analogs, the temperature signal is much stronger during
ENSO+ phases, which may explain the absence of signal
when doing the analysis during past and present periods:
the natural variability is stronger than the climate change
signal on this region. When it comes to precipitations, there
is a strong positive signal on the Eastern coast and Brisbane
regions during La Nina phases using slp analogs but the
quality of analogs is low and these results are not significant
using z500 analogs.
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Fig. 5 Dynamical attribution using z500 analogs for the Australian
rain bomb on 27-02-2022. 3-days rolling mean 500hPa geopotential
height z500 (a), 2-meter temperatures t2m (e) and total precipita-
tion prate (i) centered on the 27-02-2022. Average of the 35 500hPa
geopotential height analogs found for the counterfactual [1948-1977]
(b) and factual [1990-2019] (c) periods and corresponding 2-meter
temperatures (f,g) and daily precipitation rate (j,k). �z500 (d), �t2m

(h) and �prate (i) between factual and counterfactual periods:
hashed-filled areas show significant differences. Violin plots for coun-
terfactual (blue) and factual (red) periods for the Analogs Quality Q

(m) the Predictability index D (n), the Persistence index θ (o) and
the distribution of analogs in each month (p). Values for the selected
day are marked by a black dot. Black (resp. red) lines represent the
empirical mean (resp. median) of the distribution

4 Conclusions

In this paper we have performed a statistical and dynamical
attribution of the Australian rain bomb event of February
2022. We have used both reanalyses and historical
records of daily precipitations in the past (1948-1977,
counterfactual) and present (1990-2019, factual) periods.

From a statistical point of view, this extreme precipitation
event was unprecedented in the Brisbane region and very
intense with respects to previous historical records in the
broader Eastern coast of Australia. The statistical attribution
suggests that this event has a low probability of happening
both in the past and present climate (less than one in
a century). There is no clear signal of a climate change

Fig. 6 Distribution of ENSO
index between factual and
counterfactual periods for the
two types of analogs. Blue (resp.
red) violin plots represent the
distribution of the ENSO index
for the analogs in the
counterfactual (resp. factual)
period. The red (resp. black) line
depicts the median (resp. mean)
of the distribution. The black dot
corresponds to the value of the
ENSO index during the February
2022 event. The last violin plot
depicts the distribution of the
ENSO index for all dates
between 1948 and 2019
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Fig. 7 Dynamical attribution using slp analogs for the Australian rain
bomb on 27-02-2022 relative to the ENSO index. 3-days rolling mean
500hPa geopotential height z500 (a), 2-meter temperatures t2m (e) and
total precipitation prate (i) centered on the 27-02-2022. Average of
the 35 sea-level pressure analogs found for the counterfactual [ENSO-]
(b) and factual [ENSO+] (c) periods and corresponding 2-meter tem-
peratures (f,g) and daily precipitation rate (j,k). �z500 (d), �t2m (h)

and �prate (i) between factual and counterfactual periods: hashed-
filled areas show significant differences. Violin plots for counterfactual
(blue) and factual (red) periods for the Analogs Quality Q (m) the Pre-
dictability index D (n), the Persistence index θ (o) and the distribution
of analogs in each month (p). Values for the selected day are marked
by a black dot. Black (resp. red) lines represent the empirical mean
(resp. median) of the distribution

influence (high uncertainty) which translates in a low
evidence for the attribution of this event to climate change.

The dynamical attribution, performed using the method
of analogs circulation patterns proposed in Faranda et al.
(2022) to those observed during the events suggest the
exceptional characteristics of the event which appears to
be unprecedented in both the factual and counterfactual
distributions of weather patterns. It has arisen as the
combination of ingredients: the tropical moisture was
deflected to the subtropics, collected and lifted by a low
pressure system which stationed over Eastern Australia
blocked by an high pressure offshore the Coral sea.
This combination created an atmospheric river capable
of transporting several gigaliters of water towards the
Queensland and the South West of the continent. Finally, La
Niña phase of the ENSO likely played a significant role in
the intensity of the event.

The main limitation of this study is that we do not use
climate models: the rational for doing so comes from the
evidence that both large, regional and local phenomena
contributed to this event. In order to perform an attribution
study based on models, we would need a large ensemble of
convection permitting models resolving at least the region

shown in Fig. 1, with specific runs capable to evaluate also
the contribution of la Nina to the event. Even with such
models, the detailed physics of the precipitation could still
depend on the microphysics introduced in the model as
shown by Ban et al. (2021). A further limitation of this study
is the use of factual and counterfactual periods consisting
of only 30 years. While we could in principle consider the
whole period twice, as in the protocol described by Philip
et al. (2020), we cannot here use the implicit assumption
of stationarity of the variability of the rainfall extremes
that is underlying the protocol. While this is a limitation
on the available data, it is a fair way to account for the
variability of extremes, allowing for a larger uncertainty and
a conservative estimates on the role of climate change to
triggering this event.

To frame our results in a more general framework, we
observe that they are in line with what the IPCC report AR6,
WG1, Chapter 11.4, states about rainfall over the region,
namely that “Available evidence has not shown an increase
or a decrease in heavy precipitation over Australasia as
a whole (medium confidence), but heavy precipitation
tends to increase over Northern Australia (particularly the
north-west) and decrease over the eastern and southern
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Fig. 8 Dynamical attribution using z500 analogs for the Australian
rain bomb on 27-02-2022 relative to the ENSO index. 3-days rolling
mean 500hPa geopotential height z500 (a), 2-meter temperatures t2m
(e) and total precipitation prate (i) centered on the 27-02-2022. Aver-
age of the 35 500hPa geopotential https://www.overleaf.com/project/
627ba03eceee706667e9e0ca height analogs found for the counterfac-
tual [ENSO-] (b) and factual [ENSO+] (c) periods and corresponding
2-meter temperatures (f,g) and daily precipitation rate (j,k). �z500 (d),

�t2m (h) and �prate (i) between factual and counterfactual periods:
hashed-filled areas show significant differences. Violin plots for coun-
terfactual (blue) and factual (red) periods for the Analogs Quality Q

(m) the Predictability index D (n), the Persistence index θ (o) and
the distribution of analogs in each month (p). Values for the selected
day are marked by a black dot. Black (resp. red) lines represent the
empirical mean (resp. median) of the distribution

regions.” (Seneviratne et al. 2021). We however observe
that the compounding dynamical elements driving this event
are also observed in a series of unprecedented extreme
weather events occurred in the last few years, including the
2021 Canada heat dome, the Antarctica atmospheric rivers,
the 2022 Indian, Chinese, Western European and North
American heatwaves. Such series of record breaking events
raise the question of the emergence of new phenomena
linked to global warming, a field to explore statistically,
e.g. by using the concept of time of emergence introduced
in Hawkins and Sutton (2012) and dynamically, e.g. by
looking the possible presence of tipping elements in the
climate system (Lenton et al. 2008).

Appendix A: Predictability and Persistence
Indices

The attractor of a dynamical system is a geometric object
defined in the space hosting all the possible states of the
system (phase-space). Each point ζ on the attractor can
be characterized by two dynamical indicators: the local
dimension D, which indicates the number of degrees of

freedom active locally around ζ , and the persistence �,
a measure of the mean residence time of the system
around ζ (Faranda et al. 2017). To determine D, we
exploit recent results from the application of extreme value
theory to Poincaré recurrences in dynamical systems. This
approach considers long trajectories of a system — in our
case successions of daily SLP latitude–longitude maps —
corresponding to a sequence of states on the attractor. For
a given point ζ in phase space (e.g., a given SLP map),
we compute the probability that the system returns within
a ball of radius ε centered on the point ζ . The (Freitas
et al. 2010) theorem, modified by Lucarini (2012), states
that logarithmic returns:

g(x(t)) = − log(dist(x(t), ζ )) (1)

yield a probability distribution such that:

Pr(z > s(q)) � exp

[
−ϑ(ζ )

(
z − μ(ζ )

σ (ζ )

)]
(2)

where z = g(x(t)) and s is a high threshold associated to
a quantile q of the series g(x(t)). Requiring that the orbit
falls within a ball of radius ε around the point ζ is equivalent
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to asking that the series g(x(t)) is over the threshold s;
therefore, the ball radius ε is simply e−s(q). The resulting
distribution is the exponential member of the Generalized
Pareto Distribution family. The parameters μ and σ , namely
the location and the scale parameter of the distribution,
depend on the point ζ in phase space. μ(ζ ) corresponds to
the threshold s(q) while the local dimension D(ζ) can be
obtained via the relation σ = 1/D(ζ ). This is the metric of
predictability introduced in Section 2.2.

When x(t) contains all the variables of the system,
the estimation of D based on extreme value theory has a
number of advantages over traditional methods (e.g. the box
counting algorithm (Liebovitch and Toth 1989; Sarkar and
Chaudhuri 1994)). First, it does not require estimating the
volume of different sets in scale-space: the selection of s(q)

based on the quantile provides a selection of different scales
s which depends on the recurrence rate around the point
ζ . Moreover, it does not require the a priori selection of
the maximum embedding dimension as the observable g is
always a univariate time-series.

The persistence of the state ζ is measured via the
extremal index 0 < ϑ(ζ ) < 1, an adimensional parameter,
from which we extract �(ζ) = �t/ϑ(ζ ). Here, �t is the
timestep of the dataset being analysed. �(ζ) is therefore the
average residence time of trajectories around ζ , namely the
metric of persistence introduced in Section 2.2, and it has
unit of a time (in this study days). If ζ is a fixed point of
the attractor, then �(ζ) = ∞. For a trajectory that leaves
the neighborhood of ζ at the next time iteration, � = 1. To
estimate ϑ , we adopt the Süveges estimator (Süveges 2007).
For further details on the the extremal index, see Moloney
et al. (2019).
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Abstract
The atmospheric eddy-driven jet stream is one of the main features of the mid-latitude circulation. Although mostly zonal 
in climatological mean, the jet stream meanders at meteorological time scales. The jet and its variability have been under 
great scrutiny in the past years for their role in the triggering of extreme events (e.g. heat or cold waves) in mid-latitudes 
regions. Because of the large variability of the jet, the impact of climate change remains elusive. Here we study the eddy-
driven jet stream over the Euro-Atlantic sector and assess its dynamical properties in ERA5 and ERA20C reanalysis data 
set using indicators from dynamical system theory. We control for global modes of variability and aerosols emissions to 
disentangle the impact of global warming from the impact of natural variability of the climate system on the jet. We find that 
over the period 1900–2010, global warming decreased the local dimension and spatial variability of the jet. This decrease in 
variability is connected to an increase in jet persistence and speed. We additionally observe a poleward shift of the jet. Our 
results suggest a zonalisation of the jet under global warming. This evolution is more pronounced in summer than in winter.

Keywords  Jet stream · Global warming · Inter-decadal variability

1  Introduction

Jet streams are narrow, fast-flowing westerly air currents in 
the troposphere. They are a major feature of the large-scale 
atmospheric circulation and modulate the frequency, sever-
ity and persistence of weather events across the extratropics 

(Charney 1947; Holton 1973; Hurrell and Deser 2010). Two 
types of atmospheric jets can be identified: thermally driven 
subtropical jets associated with the eastward deflection of 
the upper branch of the Hadley cell (Held and Hou 1980), 
and eddy-driven jets caused by the transfer of energy from 
baroclinic eddies to the mean flow at the polar front (Held 
1975; Rhines 1975). Real jets may arise from a combination 
of these mechanisms and thermally and eddy-driven jets are Robin Noyelle, Vivien Guette and Akim Viennet contributed 
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actually two limits in a continuous spectrum (Lee and Kim 
2003; Spensberger and Spengler 2020; Messori et al. 2021).

Even though the climatological eddy-driven jet is mostly 
zonal flowing to the east, on a daily basis it can present 
large meanders. In these cases, the local flow becomes pre-
dominantly meridional or can even split or break. Those 
meanders have a typical spatial and temporal variability of 
a few thousand kilometers and of 10 days (Röthlisberger 
et al. 2016). The meanders allow air masses coming from 
the south or the north to persist around mid-latitude regions, 
potentially triggering temperature or precipitation extremes 
(Kautz et al. 2022). For its role in the triggering of extreme 
events in mid-latitude regions, the eddy-driven jet has been 
under great scrutiny in the past years.

The variability of the eddy-driven jet stream is an example 
of the large spontaneous variability of the climate system. 
The inter-decadal jet variability is important, with decades 
of strong and steady jet being interspersed with decades of a 
weak and more variable jet (Woollings et al. 2018; Simpson 
et al. 2019; Osman et al. 2021). Therefore, identifying the 
impact of global warming on the jet has remained elusive 
and controversial (Barnes and Screen 2015).

Even though there is a broad agreement on the poleward 
shift of the tropospheric subtropical jets (Pena-Ortiz et al. 
2013; Gulev et al. 2021), the impact of global warming on 
the Euro-Atlantic eddy-driven jet mean latitudinal position 
and other characteristics is still a matter of debate (Wooll-
ings et al. 2014; Oudar et al. 2020; Lee et al. 2021; Stendel 
et al. 2021). Indeed, the jet has been caught in the ’tug-of-
war’ (Held 1993) between two competing phenomena: the 
Artic amplification (AA) and the tropical upper-tropospheric 
warming.

As the Artic is warming more rapidly than the rest of the 
world (Cohen et al. 2018)—reducing the Arctic-to-mid-lati-
tude temperature gradient—it has been argued that this could 
lead to changes in the configuration of the jet stream (Francis 
and Vavrus 2015). The reduced equator-to-pole tempera-
ture gradient could weaken the predominant westerly winds, 
which, in turn, could cause larger-amplitude waves in the 
midlatitude circulation. However, global warming also leads 
to tropical upper-tropospheric warming, which would in con-
trary act to increase the equator to pole temperature gradient, 
reinforcing the jet (Stendel et al. 2021). Another mechanism 
could increase the waviness of the jet: the increased land-
sea gradients (Portal et al. 2022), as supported by the recent 
theoretical work of Moon et al. (2022).

Changes in the latitudinal or longitudinal temperature 
gradients are however not the only mechanisms through 
which the dynamics of the jet could have changed during 
the twentieth century. Antropogenic aerosols emissions and 
internal variability of the climate system are two other com-
peting factors. Several studies have demonstrated the role of 

antropogenic aerosols in changing the dynamics of the North 
Atlantic atmosphere (e.g. Pausata et al. (2015); Diao and Xu 
(2022); Murakami (2022); Robson et al. (2022)) through 
anomalous heating or cooling in the mid-latitudes. Low fre-
quency variability of the ocean is another confounding phe-
nomenon. The Atlantic Multi-decadal Oscillation (AMO), 
a 60–80 year basinwide quasi-oscillation in North Atlantic 
sea surface temperatures (Kerr 2000), could be invoked to 
explain the inter-decadal changes in the dynamics of the jet. 
The variations in the coupled El-Nino–Southern Oscillation 
(ENSO) and Pacific Decadal Oscillation (PDO) could also 
influence the variability of the jet through the generation of 
Rossby wave trains (Ding et al. 2017; Jiménez-Esteve and 
Domeisen 2018; Mezzina et al. 2020).

Studies on reanalysis data and climate models projec-
tions have shown conflicting results on the evolution of jets 
under global warming with some of them concluding to a 
weakening of the North Atlantic jet (Francis and Vavrus 
2015; Coumou et al. 2015; Harvey et al. 2020), while oth-
ers concluded to a stronger jet under global warming (Iqbal 
et al. 2018; Tenenbaum et al. 2022; Hallam et al. 2022). 
Some studies have also targeted directly the measurement of 
the “waviness” of the mid-latitude circulation, with various 
metrics (Cattiaux et al. 2016; Peings et al. 2018; Blackport 
and Screen 2020). A common theme of those studies is that 
the natural variability of the jet stream may be a sufficient 
explanation to the recent observed increases of its waviness 
(Osman et al. 2021; Blackport and Screen 2020). Therefore, 
the recent observed covariability between waviness and tem-
perature gradients on interannual to decadal time scales may 
not represent a forced response.

Here, we address the question of quantifying the changes 
in the characteristics of the Euro-Atlantic eddy-driven jet 
stream due solely to global warming over the twentieth 
century.

Several approaches have been developed to detect the 
eddy-driven jet stream position from wind and pressure 
maps, each with advantages but also limitations. Some algo-
rithms were developed to capture the 3D (Limbach et al. 
2012) or 2D structure (Molnos et al. 2017; Spensberger et al. 
2017) of the jet. A large part of the literature investigating 
the jet variability however reduces the jet to a single point 
characterized by a latitude, the so-called Jet Latitude Index 
(JLI), and a wind speed by finding the point where the zon-
ally averaged low-level zonal wind is maximum (Woollings 
et al. 2010). This method provides useful insights and is 
very helpful to make time-series statistics using only two 
indexes, nonetheless it misses key geometric features of the 
jet such as the omega-shaped pattern associated with block-
ing events. Here we adopt a more geometric view by con-
sidering the latitudinal position of the jet at each longitude 
(Faranda et al. 2019b).



Decrease of the spatial variability and local dimension of the Euro‑Atlantic eddy‑driven jet…

1 3

We analyze this representation of the jet with recently 
developed indicators (Lucarini et al. 2016; Faranda et al. 
2017; Messori et al. 2021) based on dynamical systems 
theory. We expand the results of Faranda et al. (2019a) 
and Rodrigues et al. (2018) who have shown the interest 
of using time series of these indicators to detect changes in 
the large scale circulation. Here we target specifically the 
eddy-driven jet. We finally propose a linear model where we 
control for the influence of confounding factors (Kretschmer 
et al. 2021)—internal variability and anthropogenic aerosols 
emissions—and quantify the sole effect of global warming 
on various indicators of the jet variability.

This paper is organized as follows: in Sect. 2, we intro-
duce the data used and the methods developed to detect the 
jet stream position and quantify its variability. In Sect. 3, 
we assess the ability of our indicators to characterize the jet 
variability by investigating how they are related to other jet 
characteristics. We also show the relevance of targeting spe-
cifically the jet as an atmospheric feature rather than study-
ing sea-level pressure or geopotential maps. In Sect. 4, we 
investigate the inter-decadal variability of the eddy-driven 
jet over the twentieth century and relate it to classical indices 
of natural variability. Finally, the discussion of the results 
and the conclusions drawn from our analysis are presented 
in Sect. 5.

2 � Data and methods

2.1 � Data

The analyses proposed here are based on the ERA5 reanaly-
sis data of the European Centre for Medium range Weather 
Forecasts (Hersbach et al. 2020). We use daily averaged 
fields with a 0.25◦ horizontal resolution over the 1950–2021 
period for the Euro-Atlantic region from 22.5◦ N to 70◦ N in 
latitude and from 80◦ W to 50◦ E in longitude. For disentan-
gling the role of natural and forced response on the low-fre-
quency evolution of the jet variability, we use the ERA20C 
reanalysis dataset, which is the twentieth century reanalysis 
of the ECMWF (Poli et al. 2016), over the 1900–2010 period 
with the same spatial extension. This dataset has a resolution 
of 1.125◦ . For both data sets, the variables considered are 
the daily-averaged geopotential height at 500 hPa (Z500), 
sea-level pressure (SLP) and horizontal wind speed between 
850 and 700 hPa.

For quantifying the link between the variability of the jet 
position, classical indices of natural variability and global 
warming, we use monthly indices downloaded from the 
Climate Explorer web tool (https://​clime​xp.​knmi.​nl/). For 
the AMO, we use the AMO index of the Met Office Had-
ley Centre/Climatic Research Unit (van Oldenborgh et al. 
2009). This index corresponds to the average of monthly 

Sea Surface Temperature (SST) anomalies with respect to 
the ensemble mean of the reanalysis over the North Atlantic. 
For the PDO, we use the PDO index of the Hadley Center 
based on an EOF decomposition of Pacific SSTs. For the 
ENSO we take the Nino 3.4 index, which is the area aver-
aged SST from 5°S–5°N and 170–120°W (Van Oldenborgh 
et al. 2021). For quantifying global warming, we use the 
monthly global mean Earth surface temperature anomalies 
(relative to the 1961–1990 period) provided by the Had-
ley Centre (HadCRUT5 data set, Morice et al. (2021)). For 
the AMO, PDO and ENSO indices a linear trend has been 
removed to account for the global warming signal.

We further consider the impact of aerosols forcing. We 
use the ambient aerosol absorption optical thickness at 550 
nm provided at a monthly time scale by the IPSL model 
(Dufresne et al. 2013) under the CMIP5 historical configu-
ration for the 1900–2005 period and under the RCP4.5 sce-
nario for the period 2006–2021. The optical thickness is 
provided at each grid point and we average the field over an 
extended sector encompassing most of North America ( 125◦ 
W–50◦ E and 22.5◦ N–70◦ N) as aerosols emitted there could 
influence the jet by cooling the land and increasing land-sea 
contrast (Robson et al. 2022). The ERA5 and ERA20C rea-
nalyses both use the CMIP5 forcing files for aerosols con-
centration (Poli et al. 2016; Hersbach et al. 2020), which 
consists of monthly 10 year-averaged files.

2.2 � Detecting the jet position

For detecting the jet position, we first average over 850–700 
hPa pressure levels the horizontal wind speed. Contrary to 
Woollings et al. (2010), we investigate the variability of the 
jet not only over the North Atlantic ocean but also over con-
tinental Europe (80◦ W–50◦ E). In order to avoid bound-
ary layer effects over continental Europe we prefer to begin 
the averaging process at a higher pressure level: 850 hPa 
rather than 925 hPa. We checked that the detection of the 
jet position is not sensitive to averaging between 850–700 
hPa or 925–700 hPa over the Euro-Atlantic sector. We then 
apply a 10 days low-pass Lanczos filter with a window of 
61 days to remove the influence of transient eddies (Duchon 
1979). At this point we do not apply a zonal mean but take 
a two-step approach close to the procedure used by Faranda 
et al. (2019b). The first step consists in finding, for each 
longitude, the latitude at which the wind horizontal kinetic 
energy E = 1

2
u⃗2H is maximum. The second step is to apply a 

longitudinal rolling median with a 25◦ window to the pre-
vious positions. This rolling median is applied to avoid a 
nonphysical detection of breaks in the jet. With a 0.25◦ hori-
zontal resolution for ERA5 and considering the low-level jet, 
the algorithm sometimes detects high-wind speeds in the lee 
of mountains. 25◦ of longitudes approximately corresponds 
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to 2000 km at 45◦ N, which is also the typical size of mid-
latitude baroclinic disturbances (Hoskins and James 2014) 
so that we consider that this rolling median has a physical 
basis. An example of the jet position found with this method 
is given in Fig. 1.

Our approach considers the jet position as a vector of 
positions indexed by longitudes. To study time series, we 
however need lower-dimensional objects. The following sec-
tions present the indicators we used.

2.3 � Dynamical indicators

In physics, dynamical systems can be defined as objects 
whose states vary with time. In atmospheric physics in par-
ticular, fields such as sea-level pressure, temperature or pre-
cipitation can be considered as observables of a dynamical 
system, namely the atmospheric flow (Lucarini et al. 2016; 
Faranda et al. 2017). In our case, the observable we are 
studying is the jet position at each longitude, going through 
different daily states, noted � . A state of our system can be 
described as a vector of dimension nlon where nlon repre-
sents the number of grid points along the longitudinal axis. 
The yth position in this vector contains the latitudinal value 
of the jet position for the yth longitude. The ensemble of 
states of the jet at all time approximate the dynamics of 
the atmospheric flow and should retain some of the proper-
ties of the full, high dimensional, attractor of mid-latitude 
atmospheric motions.

To fully characterize the properties of this attractor, one 
needs to know how often each state � occurs over a cer-
tain time interval and how long the dynamics “sticks” to � 
before leaving its neighborhood. Those two quantities are 
characterized by the local dimension d and the persistence 
�−1 . The distribution of instantaneous dimensions of the 
attractor of a dynamical system is a proxy for the predict-
ability of observed states because it is related to the Lyapu-
nov exponents (Young 1982). The persistence around one 
state gives instantaneous measures of the tendency of the 
dynamics to stay around one state. Therefore, estimating the 

distributions of these metrics in the phase space defined by 
the jet positions helps characterizing the overall dynamics 
of this system.

d is a proxy for the system’s active number of degrees 
of freedom when reaching a region of phase space. Thus, 
even when considering a system with a large number—pos-
sibly infinite—of dimensions, d provides the local number of 
dimensions that the system can be summarized to. Therefore 
a state 1 with a local dimension d1 greater than the local 
dimension d2 of another state 2 means that the behavior of 
the system around state 1 has more dimensions on which to 
evolve and is therefore less predictable than around state 2 
(Messori et al. 2017; Hochman et al. 2019). Additionally, 
Pons et al. (2020) showed that d can be used as a measure of 
co-dependance: a high degree of synchronization between 
the variables defining the system is associated with a low 
value of d. The second dynamical system indicator we use 
is the persistence �−1 of a given state � , which is equivalent 
to the mean residence time of the trajectories when they 
enter the neighborhood of � . This metric corresponds to the 
inverse of a well defined statistical quantity introduced in 
extreme value statistics, namely the extremal index � . Note 
that in the framework of dynamical systems, we find � = 0 
at stable fixed points of the dynamics (the trajectory resides 
an infinite amount of time in the neighborhood of this state), 
with an infinite number of infinitely time resolved trajecto-
ries. Conversely, � = 1 is found at non persistent states of 
the dynamics (see Moloney et al. (2019) for more details). 
In general, for time-continuous systems sampled at a given 
resolution dt, 𝜃−1 > 1 . For daily sea-level pressure fields over 
the North Atlantic, Faranda et al. (2017) found �−1 values 
varying between 2 and 3 days. One may note that these val-
ues depend on the size and the time step of the data set used, 
and on the chosen percentile q. Therefore the local persis-
tence �−1 is to be used to compare different states within the 
same data set.

Both of these indicators are computed using the fact that 
the probability for a recurrence of a system configuration (a 
state) can be linked to the generalized Pareto distribution 
(Pickands 1975). To compute this probability from data, we 

Fig. 1   Snapshot of the horizon-
tal wind kinetic energy and jet 
position for one example day. 
Wind horizontal kinetic energy 
E = 1

2
u⃗2H  (colors) and jet position 

found by the algorithm (orange 
line). The yellow and brown 
lines represent respectively the 
jet latitude index JLI and the 
mean position of the jet Ȳ  found 
with our method
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compute the series of distances dist(x(t), �)) between a state 
of the system � and all other points x(t) on the trajectory 
of the system. This time series of distances is then trans-
formed into: g(t) = − log(dist(x(t), �)) so that being close to 
state � is equivalent to exceeding a threshold s(q) where q 
is a percentile of the series g(t). We use the 98% percen-
tile of all values of g(t), which ensures to have enough data 
while keeping only the extremes. For the calculation of the 
distances between states, we use the Euclidian distance. It 
can be shown that the probability distribution of g(t) when 
it exceeds s(q) converges to a Pareto distribution (Lucarini 
et al. 2016) with scale parameter � , and a shape parameter 
� = 0 . The local dimension d is practically estimated as the 
inverse of the scale parameter of the generalized Pareto dis-
tribution fitted on the data which satisfies g(t) > s(q) . The 
persistence is here estimated using the (Süveges 2007) esti-
mator on the time series g(t).

2.4 � Other variability indicators

To the local dimension d and persistence �−1 indicators we 
add three other indicators of the jet stream state for analysing 
its variability. For each day we compute:

•	 the jet mean position Ȳ  , defined as the zonal average of 
the jet positions found with the detection algorithm. As 
illustrated in Fig. 1 one should note that this indicator is 
not equivalent to the JLI for two reasons: (1) our indica-
tor is computed on the full Euro-Atlantic sector and not 
only over the North Atlantic and (2) the mean position 
is computed without applying a zonal average to zonal 
wind speed;

•	 the jet mean speed Ū , defined as the zonal average of the 
norm of the horizontal wind vector u⃗

J
 at the jet position: 

Ū =
1

nlon

∑
lon

�
u2
J
+ v2

J
 . For each longitude, the horizon-

tal wind vector u⃗
J
 is computed as the mean of horizontal 

wind vectors within a 2.5◦ latitudinal extent around the 
jet position. Again, this indicator is not equivalent to the 
zonal jet speed as defined in Woollings et al. (2010);

•	 the jet waviness W, defined as the longitudinal stand-
ard deviation of the jet position. Before computing this 
parameter, we remove a linear longitudinal trend to the 
jet position as the jet has a tendency to present a north-
ward tilt over the North Atlantic. This indicator is always 
positive and indicates a jet without (with) meanders when 
taking low (high) values.

In addition to our indicator Ȳ  and Ū , we also use the more 
classical jet latitude index JLI and zonally-averaged zonal 
wind speed UJLI . We note that an increase in the indicator 
Ū can happen even if the maximum speeds of the jet overall 

do not change. This can be interpreted as an increase in the 
extension of the jet inside continental Europe, contrary to 
an increase in UJLI . Nevertheless, we also note that UJLI is 
computed using zonal wind only, contrary to Ū , therefore 
if the jet is more zonal UJLI will increase and this may not 
reflect an increase in the maximum speeds either.

There is no universally accepted metric to measure the 
“waviness” of mid-latitude circulation and therefore several 
measures have been used in the literature (Blackport and 
Screen 2020). Our measure of waviness W is straightforward 
to compute, intuitive and gives easily interpretable results. 
We note that our approach is close to the sinuosity metric 
proposed by Cattiaux et al. (2016).

2.5 � Causal networks theory

Using only pairwise correlations between jet metrics and 
global mean temperature to quantify the past changes in the 
jet characteristics due to global warming bears the risk of 
missing to control for some important variables and there-
fore leading to a wrong estimation of its effect (Runge et al. 
2014; Kretschmer et al. 2016). Here we want to estimate 
what is the response of the mean values of key metrics char-
acterizing the jet for a given state of the Earth system defined 
by its global mean temperature T. However, T and natural 
oscillations—ENSO for instance—are affecting the jet and 
are simultaneously changing. Only looking at the effect of T 
without controlling for ENSO would over or under estimate 
its effect on the jet. To quantify the evolution of jet metrics 
over the last century, we formalize our hypotheses using 
so-called causal inference theory (Kretschmer et al. 2021).

In causal statistics (Pearl 2009; Pearl and Mackenzie 
2018), a causal inference from a process X to another pro-
cess Y means that intervening in X while keeping everything 
else fixed changes the probability distribution of Y (Glymour 
et al. 2016). This ”interventional” probability distribution 
may be different from the conditional probability distribu-
tion of Y on X in general. Intervening in the climate system 
is generally not possible, but quantifying causal effects to 
predict the effects of interventions based on observational 
data is possible considering that naturally occurring ”inter-
ventions” in X that led to changes in Y are present in the data 
but are confounded by other processes that affect both X 
and Y. To isolate the causal effect from X to Y, one therefore 
needs to take into account the influence of such confounders.

Causal inference theory is a process-based framework 
which can formalize hypotheses about physical mecha-
nisms in the form of a causal network (e.g. Hannart et al. 
2016; Jiménez-Esteve and Domeisen 2018; Lee et  al. 
2019; Hirt et al. 2020; Monnin et al. 2022). Causal net-
works are Directed Acyclic Graphs (DAG) consisting of 
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physical variables involved in the process (nodes) and 
indications of the presence and direction of assumed 
causal relationships between these variables (links). 
These networks represent plausible models of the data-
generating processes. It is not feasible to represent all 
the physical processes involved in the climate system in 
a causal network, therefore one can use only a causal net-
work limited to the processes of importance in the case 
studied. The key point is to include all common drivers 
of X and Y, which could confound the causal effect of X 
on Y, and omit variables being consequences of X (media-
tors) or Y (colliders).

In a second step, one chooses how to estimate the pro-
posed network. Here we use simply multi-linear regres-
sion but other methods are possible (Kretschmer et al. 
2021). We stress that while the use of non-zero lags may 
in some cases be helpful, these are not an essential part 
of the causal network framework: as explained above, the 
key point is to represent the effect of confounding vari-
ables, which can be done in a model with no lags.

We emphasize that the ”causal effect” quantified with 
this analysis is causal only if the proposed data-generat-
ing process formalized in the DAG is correct, which is 
always unclear. For example, it is hard to guarantee that 
all relevant confounders have been taken into account, 
and omission of any one would make any strict claim of 
causality impossible. In the following we make use of 
available climate literature to choose one reasonable data-
generating process. We emphasize that the quantification 

that follows from this choice is “causal” only in the sense 
described here, and with these provisos in mind.

3 � Diagnosing the jet variability

Faranda et al. (2017) made the case for the use of dynami-
cal indicators to investigate the weather variability over the 
Euro-Atlantic sector with the tools presented in 2.3 using 
SLP as a state vector. Here we specifically target the jet posi-
tion (Faranda et al. 2019b; Messori et al. 2021). Figure 2 
presents the cross distribution of d and �−1 computed on 
SLP, Z500 and jet positions reanalysis data over the Euro-
Atlantic sector. The dynamical indicators for SLP and Z500 
are correlated (Pearson correlation coefficient r = 0.45 for d 
and r = 0.71 for �−1 ), which was expected in so far as those 
fields carry similar information about the synoptic mete-
orological state of the atmosphere. Conversely, almost no 
correlation is observed between the dynamical indicators 
computed on the jet position and the one computed on the 
SLP or the Z500. According to this analysis the persistence/
predictability of a jet position is unrelated to the persistence/
predictability of the corresponding SLP/Z500 pattern. The 
reason is that even though the jet is one of the main struc-
tures of the Euro-Atlantic circulation, other structures are 
present in the SLP/Z500 pattern which influence its per-
sistence and its predictability (Dorrington and Strommen 
2020).

The absolute values of the indicators can be compared 
from one data set to another in so far as they have a similar 

Fig. 2   Cross distributions of dynamical indicators for Z500, SLP 
and jet positions (ERA5). a Cross distributions of the local dimen-
sion d between the Z500 field and jet position, the Z500 field and the 
SLP field, and jet position and the SLP field. b Cross distributions 
of the local persistence �−1 between the Z500 field and jet position, 

the Z500 field and the SLP field, and jet position and the SLP field. 
For computational reasons, the dynamical indicators on the Z500 and 
the SLP fields have been computed with a spatial resolution of 0.5◦ 
instead of 0.25◦
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sampling frequency. The mean local dimension found for 
the ERA5 data set is 7.6. With a different spatial resolu-
tion (0.25◦ vs 1.125◦ ), we find a mean value of 7.5 for the 
ERA20C data set. These values must be compared with the 
values of 11.4 and 13.5 for the mean local dimension of the 
Z500 and SLP fields on the ERA5 data set. For the persis-
tence, we find values evolving in the same range for the three 
variables (between 2 and 3 days).

Figure 3c displays the cross distribution of points for 
the dynamical indicators d and �−1 computed on the jet 
position vectors. The marginal distributions are shown in 
Fig. 3a and d. The points are colored with respect to which 
tercile of the distribution of the waviness indicator W they 
belong to (Fig. 3b). The less wavy jets are associated with 
high values of �−1 and low values of d while the most wavy 
jets are found to have lower values of �−1 and higher values 
of d. These results are consistent with what Messori et al. 
(2021) found using an idealised quasi-geostrophic model 

and computing indicators on the wind field. Figures A1 
and A2 in Online appendix present the same analysis for 
the Ū and Ȳ  indicators. Contrary to Fig. 3, the d and �−1 
indicator have difficulties discriminating the jet dynamical 
behavior when using the mean speed and mean position. 
This analysis suggests that the spatial variability in the 
jet pattern is not well captured by the indicators Ū and Ȳ  
contrary to d and �−1.

As in Faranda et al. (2017) and Messori et al. (2017), 
to better understand what kind of dynamical information 
the indicators reveal, we analyze the extreme cases of the 
d and �−1 indicators. We take the composite maps over the 
days belonging to the top 2% in term of one of the indicator 
and for which the other one is not extreme (in the sense that 
it does not belong to the top 2% neither to the bottom 2% 
quantiles). The results shown are not sensitive to moderate 
changes in the value of this quantile. We define four situa-
tions: low local dimension ( N = 377 ), high local dimension 

Fig. 3   Link between the 
dynamical indicators and the jet 
waviness (ERA5). a Distribu-
tion of local dimension d for the 
three terciles of the waviness W. 
b Distribution of W. c Cross dis-
tribution of d and �−1 colored by 
the tercile of the W indicator. d 
Distribution of local persistence 
�−1 for the three terciles of the 
waviness W 

Fig. 4   Extreme d and �−1 situations (ERA5). Composite maps of 
SLP anomalies in hPa (contours), density of jet positions (colors) and 
associated mean position (orange lines) for the days with extreme val-
ues of the local dimension d and the local persistence �−1 . The black 

dashed lines are the main modes (more than 30% of the trajectories) 
and the gray dashed lines are the minor modes (less than 30% of the 
trajectories)
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( N = 458 ), low local persistence ( N = 457 ) and high local 
persistence ( N = 357 ), which are presented in Fig. 4.

In the high local dimension case, the synoptic meteoro-
logical situation shows no clear pattern, and the density 
of the jet position is widespread. This behavior is con-
sistent with the concept of local dimension: for points 
with a very high local dimension, the system has many 
degrees of freedom and can correspond to many dynami-
cal situations. In the low local dimension case, the density 
of the jet stream position shows a bi-modality over the 
eastern part of the American continent and a tri-modality 
over the European continent, leading to five distinct clus-
ters of trajectories. The two main modes represented by 
black dashed lines count for approximately 60% of all 
the trajectories. The synoptic situation displays a large 
anticyclone over North-Western Europe reminiscent of 
the NAO+ weather regime but is associated with several 
possible patterns of the jet.

In the low local persistence case, the anomalies of SLP 
show a pattern, close to the Scandinavian Blocking situ-
ation. The averaged jet pattern is peculiar but nonethe-
less well defined—in so far as there is a low dispersion 
of the jet position density—and has a pronounced dip 
over the Mediterranean Sea in its main mode (80% of 
the trajectories). This very wavy situation of the jet is 
reminiscent of recent synoptic situation corresponding to 
temperature extremes over Western Europe (e.g. Mitchell 
et al. (2019)). Finally, the high local persistence case is 
reminiscent of the NAO- situations with a positive SLP 
anomaly over Greenland and a negative SLP anomlay 
over the Azores (Michelangeli et al. 1995).

We now turn to using these indicators to study the 
recent past evolution of the Euro-Atlantic eddy-driven 
jet stream and its relation to usual modes of variability of 
the climate. In the following, we mainly display results 
based on the ERA20C data set because it spans a longer 

time period. The corresponding results for the ERA5 data 
set are presented in Online appendix.

4 � Inter‑decadal variations 
of the eddy‑driven jet stream

Figure 5a and b present the temporal evolution of the 1-year 
rolling mean of the d and �−1 indicators computed on the jet 
position vectors for the ERA20C reanalysis data set over the 
1900–2010 period. A Gaussian filter with a cut-off frequency 
of 5 years was applied on the raw time series for obtaining 
the smoothed time series. The 5 years cut-off frequency was 
chosen to average out most inter-annual variability. Both 
indicators display substantial inter-decadal variability, up to 
∼30% (6.5–8.5) with respect to its mean for local dimension 
but only ∼10% with respect to its mean for local persistence 
(3.5–3.8). When computing the power spectrum on the raw 
time series of our indicators (panel (c)) one sees a strong 
peak at the 1 year period, which corresponds to the annual 
cycle. For higher periods, the log-log plot shows that the 
indicators behave as red noises (straight line), except around 
the 50 years period where a dominant peak emerges. We ran 
a similar spectrum analysis over the 1950–2020 period for 
the ERA5 data set and found a similar peak around the 50 
years period (Fig. A3). This peak is also seen when using 
other indicators (Fig. 6). Nonetheless, a 50 year period in a 
110 (or 70) years data set is near the limit of detectability, 
therefore we cannot assert that this is a relevant feature of 
the jet variability.

Figure 5a displays a decrease of local dimension from 
1970 to 1990 and then an increase up to 2000. This inter-
decadal variation is large even after applying a 5-year low 
pass filter ( ∼10% of the mean value). A well documented 
phenomenon occurred in the North Atlantic ocean during 
the period 1970–2000 (Sutton and Dong 2012; Robson et al. 

Fig. 5   Time series and 
power spectrum of d and �−1 
(ERA20C). a Time series of d 
with a 1-year rolling mean and 
a 5-year low-pass filter. b Time 
series of �−1 with a 1-year roll-
ing mean and a 5-year low-pass 
filter. c Power spectrum of d 
and �−1
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2016; Jackson et al. 2022). The European climate experi-
enced substantial changes, with anomalously mild and wet 
summers in Northern Europe, and hot and dry summers in 
Southern Europe. This coincided with a major warming 
of the North Atlantic Ocean due to a strengthening of the 
Atlantic Meridional Overturning Circulation (AMOC). On 
Fig. A3 we also see an increase of inter-decadal variability 
between the periods 1950–1980 and 1990–2020.

Figure 6 shows the same plot for the Ū , Ȳ  and W indica-
tors. The most striking feature of this figure is the increase 
by almost 2 m/s of the mean speed of the jet Ū between 1900 
and 2010. We come back to this observation below. The 
mean speed and position indicators show no peculiar evolu-
tion during the 1970–2000 period. The W indicator however 
seems to display a similar evolution as d. It should be noted 
that these changes in the observed behavior of the North-
Atlantic eddy-driven jet stream between the 1950–1980 and 
1990–2010/2020 periods may be due to different data col-
lection processes. It is indeed well-known that the so-called 
satellite era beginning in the 1980s increased by a large fac-
tor the quantity of available data. The large scale structures 
of the atmosphere are usually well resolved in reanalysis 
data (e.g. Slivinski et al. (2021)), nonetheless we cannot 
completely rule out the possibility that the observed changes 
are not physically relevant features of the jet (see Rodrigues 
et al. (2018) for a similar discussion). The purpose of this 
paper is not to evaluate whether these changes are artifacts 
of the data collection process, but one should be cautious 
when attributing these results to a real physical behavior of 
the jet position.

We now wish to estimate the effect of global warming 
on the characteristics of the jet using our indicators. Iso-
lating the contribution of global warming to the observed 
changes in the behavior of the jet is not straightforward in 
so far as the jet displays a large variability and any signal of 
forced change may therefore be obscured by the influence 
of other factors. Controlling for these factors would allow 
to isolate the global warming signal, but one should take 

care of controlling only for the relevant factors. It is neces-
sary to control only for factors that are confounders of the 
link between global warming and the variability of the jet 
(Kretschmer et al. 2021) as explained in Sect. 2.5. Based on 
existing literature (Newman et al. 2016; Levine et al. 2017; 
Lin and Qian 2022), we propose the DAG depicted in Fig. 7. 
This graph summarizes our hypotheses for quantifying the 
impact of global warming on the jet on inter-decadal time-
scales. It does not include all possible phenomenon influenc-
ing the jet but rather those that we hypothesise are crucial for 
confounding the influence of the global warming index T.

Fig. 6   Time series and power 
spectrum of Ū , Ȳ  and W 
(ERA20C). a Time series of Ū 
with a 1-year rolling mean and 
a 5-year low-pass filter. b Time 
series of Ȳ  with a 1-year rolling 
mean and a 5-year low-pass 
filter. c Time series of W with 
a 1-year rolling mean and a 
5-year low-pass filter. d Power 
spectrum of Ū , Ȳ  and W 

Fig. 7   Estimated DAG of the influence of global warming on the jet. 
AMO stands for Atlantic Multi-decadal Oscillation, ENSO for El-
Nino Southern Oscillation, PDO for Pacific Decadal Oscillation, ARF 
for Aerosols Radiative Forcing and T for global mean temperature of 
the Earth
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Potential confounders of the variability of the North-
Atlantic eddy-driven jet stream and global warming are 
supposed to be the AMO, the ENSO, the PDO and Aero-
sols Radiative Forcing (ARF). The variability of the jet is 
strongly linked to anomalies of SSTs in the North Atlan-
tic (Simpson et al. 2018), therefore it is natural to posit an 
impact of the AMO on the jet, even though here we do not 
precise what is the exact physical phenomenon by which 
the AMO influences the jet. We note that whether the AMO 
is a true oceanic oscillation is still a subject of scientific 
debate (Mann et al. 2021), but we assume it is the case here. 
The impact of the ENSO and the PDO on the Euro-Atlantic 
climate are also well documented (Ding et al. 2017; Jimé-
nez-Esteve and Domeisen 2018; Mezzina et al. 2020), and 
these two modes influence the inter-decadal variability of 
the global temperature of the Earth (Foster and Rahmstorf 
2011). To the natural variability of the ocean presented by 
the AMO, the ENSO and the PDO, we add the ARF over the 
Euro-Atlantic sector in so far as the changes in the emissions 
of aerosols can alter the global circulation (Pausata et al. 
2015; Diao and Xu 2022; Murakami 2022). To measure this 
quantity, we average over an extended spatial region ( 125◦ 
W–50◦ E and 22.5◦ N–70◦ N) the aerosols optical thickness 
at 550nm computed using the IPSL-CM5 model (Dufresne 
et al. 2013) which uses the same forcing files as the ERA20C 
and ERA5 reanalysis. As documented by Qin et al. (2020), 
ARF impacted the AMO over the twentieth century, but this 
mode still possesses its own variability. We stress that in the 
DAG proposed in Fig. 7, even if the influence of the previ-
ous confounders on T is small or even nonexistent, includ-
ing them in the regression would not bias the estimation of 
the impact of T on the jet and in the contrary would help to 
decrease its variance.

One may note that the model we are estimating does not 
show any feedback loop between global warming and the 
AMO, the PDO and the ENSO. The SSTs of the oceanic 
regions on which those indicators are computed did change 
during the twentieth century in response to the radiative 
forcing caused by anthropogenic emissions, but here we use 
the detrended time series of these indicators. We therefore 
explicitly assume that the global increase of temperature on 
the Earth had no impacts on the natural evolution of the 
AMO, PDO and ENSO indicators over the period studied 
that is not taken into account when removing a linear trend 
(Trenberth and Shea 2006). For small increases of the global 
temperature, this hypothesis is reasonable. However, when 
extrapolating our results in the future with a much larger 
warming level, this hypothesis may prove to be wrong.

We use monthly-averaged normalized time series and 
we apply low-pass Gaussian filters with 2, 5 and 10-year 
cut-off frequencies to ensure robustness with respect to the 
time-filtering procedure. The rationale for using low-pass 

filters with cut-off frequencies greater than 2 years is to 
remove any variations that are irrelevant at the inter-dec-
adal time scale, the main one being the annual cycle. For 
the filters with 5 and 10-year cut-off frequencies, it may be 
possible that the ENSO signal is filtered out and therefore 
we will mainly interpret the results found using the 2-year 
filter. For simplicity reasons, we choose to estimate a lin-
ear model. The model is the following:

In Eq. (1), the “Jet” variable represents the different indica-
tors on which we compute the regression and T is the global 
warming index. The � term represents a noise term supposed 
to be normally distributed. Even though controlling for the 
AMO, the PDO, the ENSO and the ARF is essential to esti-
mate the response to an increase of T, we stress that their 
associated coefficients cannot be interpreted as a total causal 
effect of their respective phenomena on the variability of 
the jet. We are estimating only a limited part of the DAG, 
therefore we only interpret the � coefficient associated with 
the T parameter.

Figure 8 displays the results of the estimation of the � 
coefficient in Eq. (1) for the local dimension d, the local 
persistence �−1 , the mean speed Ū , the mean position Ȳ  , 
the waviness W, the jet latitude index JLI and the zonal 
wind speed at the jet latitude index UJLI using the ERA20C 
data set over the period 1900–2010. All estimated � coef-
ficients are significant at the 0.1% level ( p < 0.001 ) when 
estimating confidence intervals with a maximum likeli-
hood estimator (see Table A1). Results are stable when 
applying different cut-off frequencies for the low-pass 
filter. For illustrative purposes, Fig.  8 also shows in 
red the regression without controlling for the potential 
confounders.

We find that global warming is associated with a 
decrease of the local dimension d and the waviness W 
of the jet position and with a slight increase of its per-
sistence. We also find that global warming is associated 
with an increase in the mean speed Ū and the zonal wind 
speed UJLI at the JLI. The increase in Ū may reflect both 
an increase in the maximum jet speed and an increase in 
the extension of the jet inside continental Europe. The 
increase in UJLI in contrast is not related to the extension 
of the jet but also incorporates a change due to the zon-
alisation of the jet, because it can increase even if the 
total kinetic energy of the jet does not change. We do not 
disentangle these effects here but it is likely that they all 
play a role (Oudar et al. 2020).

Finally, global warming is associated with a poleward 
shift of the position of the eddy-driven jet, measured using 
either the mean position Ȳ  or the JLI. When going back 
to dimensionalized units, we estimate that a 1K increase 

(1)Jet = �T + �AMO + �ENSO + �PDO + �ARF + �.
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of the global temperature of the Earth leads to a decrease 
of 2.4% [1.8, 3.0] ( −0.18/K [ −0.22, −0.14]) of the local 
dimension and 7.9% [6.8, 9.0] ( −0.48◦ /K [ −0.55, −0.42]) 
of the waviness of the jet position with respect to their 
mean over the 1900–2010 period. It also leads to an 
increase of the local persistence by 0.5% [0.3, 0.7] (0.02 
d/K [0.01, 0.03]), of the mean speed by 9.7% [9.3, 10.2] 
(1.25 m s −1 /K [1.20, 1.31]), of the zonal wind speed at the 
JLI by 10.9% [10.1, 11.7] (1.26 m s −1 /K [1.17, 1.35]), of 
the mean position by 1.5% [1.2, 1.8] (0.75◦ /K [0.59, 0.91]) 
and of the JLI by 1.8% [1.3, 2.3] (0.86◦ /K [0.62, 1.11]).

The results of this analysis are dependent on whether 
the proposed DAG correctly contains all relevant vari-
ables. In particular, our results would be sensitive to the 
exclusion of any confounder of T and Jet. To investigate 
this question, we apply the sensitivity analysis proposed 
by Cinelli and Hazlett (2020) on the 2-year filtered time 
series. This analysis investigates how strong the influence 
of an omitted confounder (or a group of confounders) has 
to be to change our conclusions and how robust are our 
results to all omitted confounders acting together (possibly 
non-linearly). We especially test for the sign of the � coef-
ficient. For every confounder C included in our regression 
(C = AMO, PDO, ENSO and ARF), the test investigates 
whether an omitted variable which would have up to three 
times the impact of C on both T and Jet would change the 
sign of the � coefficient (given a confidence level of 5%). 
The results of this analysis are reported in Online appendix 
(Figs. A4, A5). All regressions are robust to the presence 
of an omitted confounder, except for the ARF confounder 
in the regression on �−1 . For the latter, the sensitivity 

analysis shows that an omitted confounder which would 
have twice the impact that ARF has on T and on the per-
sistence �−1 of the jet could change the sign of our results 
(from an increase to a decrease of the persistence). This is 
coherent with the small increase of �−1 determined by our 
analysis. We nonetheless emphasize that it is not straight-
forward to imagine what would be a confounder whose 
influence on both the global mean temperature of the Earth 
and the dynamics of the Euro-Atlantic eddy-driven jet is 
twice as important as the one of anthropogenic aerosols 
emissions over the twentieth century. Therefore we are still 
confident with respect to this result.

Previous work on the evolution of the jet have often 
focused on specific seasons (e.g. Coumou et al. 2018; 
Harvey et al. 2020). The physical changes associated with 
global warming can indeed be different from one season 
to another. We therefore perform our analysis for the 
meteorological winter (DJF) and summer (JJA) seasons 
and the results are presented in Fig. 9. The estimation 
of the � coefficient displays strong differences from one 
season to another for some indicators. There is no evo-
lution in the persistence indicator for winter, whereas it 
increases in summer. The changes in local dimension and 
waviness are close to zero in winter, but strongly nega-
tive in summer. The increase in the jet speed, measured 
either with Ū or UJLI is preserved in both seasons. There 
is a small but insignificant at the 5% level increase in the 
jet mean position ( ̄Y  and JLI) in winter, but strangely 
enough the results for Ȳ  and JLI in summer diverge: Ȳ  
increases strongly whereas the change in JLI is null. The 
discrepancy between those indicators in summer may be 

Fig. 8   Estimation of the impact of global warming on indicators of 
the jet variability (ERA20C). The plot represents the estimated � 
coefficient for the local dimension d, the local persistence �−1 , the 
mean speed of the jet Ū , the mean position of the jet Ȳ  , the wavi-
ness of the jet W, the jet latitude index JLI and the zonal wind speed 
at the jet latitude index U

JLI
 . The dots represent the estimated coef-

ficient and the shaded vertical bars the associated 95% confidence 
interval. The orange (resp. blue and green) estimation is found using 
the time series after applying a 2-year (resp. 5-year and 10-year) low-
pass Gaussian filter. The red estimation is found using the time series 
with the 2-year filter with only T as a regressor. All time series are 
monthly averages
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caused by increased high pressure systems over continen-
tal Europe which systematically deviate the jet towards 
the North, an effect which would be small over the ocean 
because of the differential warming rate enhanced in sum-
mer in both regions.

Figures A6 and A7 in Online appendix present the same 
analysis using the ERA5 data set over the 1950–2020 period. 
Broadly speaking, the estimations of the � coefficients are 
much less precise and many coefficients are not statistically 
different from zero. The decrease in waviness is still present 
but not significant and the results by season are opposed to 
the results in the ERA20C data set. This is also the case for 
local dimension. The result on local persistence are not dis-
tinguishable from zero. The mean speed Ū does not seem to 
be affected by global warming over the year but the results 
points toward an acceleration in winter. For UJLI , the results 
depend on the filter used but the winter acceleration seems 
to also be present. The shift in position measured either with 
Ȳ or JLI, points towards a southward shift, especially in sum-
mer. These results using the ERA5 data set are much less 
precise and inconsistent from one specification of the filter 
to another, in contrast with the stability of the results for the 
ERA20C data set.

5 � Discussion and conclusions

We studied the variability of the North Atlantic eddy-driven 
jet stream described by its instantaneous latitudinal posi-
tion at each longitude. We used indicators from dynamical 
system theory to characterize the underlying attractor on 
which the jet is evolving. We showed that this representa-
tion is more relevant to characterize the jet variability than 
using the more classical Z500 and SLP fields and associ-
ated weather regimes. Z500 and SLP fields carry more 

information than needed and targeting the jet position per 
se as we did allows to focus on the sole dynamics of the jet.

We then studied the inter-decadal variability of the jet 
using the dynamical indicators. After controlling for poten-
tial confounders between the global temperature of the Earth 
and the jet, we estimate the impact of global warming on 
key indicators of the jet variability. We showed that, over the 
1900–2010 period, global warming is associated to a decrease 
of the local dimension and waviness of the jet position and an 
increase of its persistence. Global warming is also linked to an 
increase in the wind speed of the jet and a northward shift in 
its mean position. These results are stronger in summer than 
in winter, the latter showing small or insignificant evolution 
of local dimension, persistence and waviness. Our results are 
robust to the presence of an omitted confounder.

Our results on the evolution of dynamical indicators (d 
and �−1 ) are coherent with previous studies. Faranda et al. 
(2019a) and Rodrigues et al. (2018) also showed a decrease 
in local dimension over the North-Atlantic in future warming 
scenarios using the SLP field as a state vector. Faranda et al. 
(2019a) attribute this decrease to the warming of the ocean. 
Our results suggest a similar mechanism may apply to the 
eddy-driven jet. We note that we find an increase in the vari-
ability of the jet over the 1990–2020 period with respect to 
the 1950–1980 period, but this observation is not consistent 
with the general trend over the twentieth century. This may 
explain the contradicting results found in the literature on the 
recent changes of the variability of the jet stream (Francis 
and Vavrus 2015; Coumou et al. 2015; Harvey et al. 2020).

The validity of our results strongly relies on the qual-
ity of the reanalysis data sets, especially with regards to 
their capacity to reproduce correctly the behavior of the 
North-Atlantic eddy-driven jet stream in the past. Even 
though the large structures of the atmosphere are probably 
the features best resolved by reanalysis (Slivinski et al. 

Fig. 9   Estimation of the 
impact of global warming on 
indicators of the jet variability 
for the DJF and JJA seasons 
(ERA20C). The plot represents 
the estimated � coefficient for 
the local dimension d, the local 
persistence �−1 , the mean speed 
of the jet Ū , the mean position 
of the jet Ȳ  , the waviness of the 
jet W, the jet latitude index JLI 
and the zonal wind speed at 
the jet latitude index U

JLI
 . The 

dots represent the estimated 
coefficient and the shaded 
vertical bars the associated 95% 
confidence interval
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2021), there is no doubt that the reanalysis over the period 
1980–2020, the so-called satellite era, provide much more 
accurate results than in the previous periods. It is not clear 
whether we should have more confidence on the results 
found on the ERA5 data set over the period 1950–2020 
or on the ERA20C data set over the period 1900–2010. 
The properties of the jet are probably closer to reality in 
the first data set but the natural variability of the climate 
system is better sampled in the second. Therefore, even 
though we control the influence of confounders from the 
influence of global warming of the Earth on the jet, we 
are cautious in asserting that our results give the causal 
impact of global warming on the variability of the jet. 
Note that if the proposed estimated impact is correct, the 
pathways are expected to be through Arctic amplification, 
tropical upper-troposphere warming and increased land-
sea gradient as mentioned in the Introduction. How much 
each of these pathways contributed to the change in jet 
characteristics is an interesting avenue for future research.

Finally, our results demonstrate the interest of using tools 
from dynamical system theory to target specific patterns of 
the large scale atmospheric circulation and quantify their 
natural and forced variability. We also think that these tools 
could be used to evaluate whether climate models are able to 
represent correctly the natural variability of the jet position 
and we are currently investigating this question.
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