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FOREWORD

In the last couple of years, we witnessed a revolution in the field of protein structure
prediction, with protein models reaching unprecedented levels of near-experimental ac-
curacy [37, 109]. The 50-year-old problem of determining how a single protein folds in
three dimensions (3D) seems to be resolved. However, this is not the end of structural
bioinformatics and structural biology, it is rather the very beginning of our understand-
ing of how to solve very difficult or even previously thought infeasible biological prob-
lems using big data and machine learning (ML) techniques [131]. For example, the next
big breakthroughs in the field will be most likely linked to predicting structures of large
protein assemblies and their interactions in the living cell, predicting structures and
dynamics of macromolecules at physiological conditions, and virtual design of novel
proteins and drug-like molecules.

I was lucky to start working in the field of structural bioinformatics during my Ph.D.
project supervised by Valentin Gordeliy, Georg Bueldt, and Artur Baumgaertner. I have
been at the frontier of big-data discoveries for some time already and witnessed the
revolution of protein structure prediction happening right now. This manuscript covers
some of the developments I have been working on together with my colleagues and
students since my Ph.D. thesis.

I started my independent research using classical techniques fully based on physics
and geometry and gradually switched to data-driven approaches. I am very grateful to
Gerhard Gompper from Forschungszentrum Jiilich, who allowed me to freely work on
my project during my first post-doctoral contract. Later, my studies were very much
influenced by two researchers I was lucky to work with. The first was my postdoctoral
adviser Stephan Redon, a group leader from Inria Grenoble, who later left academia
to lead his startup. He shared with me lots of his crazy ideas (and his office!) about
transferring developments and algorithms from computer graphics to the modeling of
biological objects. It was also thanks to him that I finally learned algorithms from com-
puter science that I had never formally studied, and how to create and manage big
software projects in C++. The second one was Dave Ritchie, a group leader from In-
ria Nancy, whose passion dragged me into the study of polynomial expansions for the
description of 3D shapes and interactions between them.

I should add that physics-based approaches, for example, molecular dynamics simu-
lations of proteins and ML would rarely meet together even twenty years ago. In my
case, the first critical turn towards ML and the discovery of its power happened around
2010, when a Master’s student from MIPT Moscow, Georgy Derevyanko, fulfilling his
Master’s project in my lab, forced me, despite my initial skepticism, trying the formula-
tion similar to support vector machines (SVM) for the problem of classification of native
protein-protein interfaces. Thanks to him, I became confident that convex optimization
techniques can be very powerful and helpful in many problems related to structural
bioinformatics and can be used together or even instead of more classical approaches.
Again, I was lucky to be surrounded by true mathematicians Anatolii Juditsky, Roland
Hildenbrandt, and Jerome Malick, who supported me in multiple ways and helped me
to find proper optimization formulations for some of my problems.

I shall also confess that my work would not be possible without the help and ideas
of my students and colleagues. Chapter 2 heavily relies on the initial formulation of de-
scribing molecular shapes with orthogonal polynomials by Dave Ritchie. We extended
it for the Hermite polynomials with Georgy Derevyanko and roto-translational correla-
tions with Dmitrii Zhemchuzhnikov. Developments in Chapter 3 would not be possible
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without Guillaume Pages, who worked on describing protein assemblies during his
Ph.D. thesis. Guillaume has also created most beautiful illustrations in this thesis. The
part on symmetrical protein docking was developed together with Dave Ritchie, who
also created the corresponding software package. Chapter 4 uses a part of Alexandre
Hoffmann’s Ph.D. thesis that we later extended with my colleague Elodie Laine. Chap-
ter 5 presents some developments of my Master’s students Maria Garkavenko and Loic
Broyer. Finally, Chapter 6 includes contributions from Georgy Derevyanko, who pro-
posed the convex formulation for ML-based potentials and a 3D convolutional network
for the assessment of 3D protein models, Maria Kadukova and Georgy Cheremovskiy,
who worked on ML for protein-ligand interactions, Petr Popov and Emilie Neveu, who
applied ML for protein-protein interactions, Guillaume Pages and Benoit Charmettant,
who extended the 3D CNN framework and Ilia Igashov, Kliment Olechnovic, Nikita
Pavlichenko, and Dmitrii Zhemchuzhnikov who worked on different aspects of the
graph, and more generally, geometric learning.



PUZZLES OF STRUCTURAL BIOLOGY

Structural biology hides many puzzles that seem very difficult to solve by using pure sta-
tistical physics approaches. For example, the question of how a protein sequence adopts
its 3D shape arose already more than a half-century ago. In the early 1970s, Christian B.
Anfinsen, the Nobel Prize Laureate, postulated that at least for a small globular protein
at its physiological conditions, its native structure is fully determined by the protein’s
amino acid sequence [11]. Around the same time, in 1969, Cyrus Levinthal conducted
the famous thought experiment, now known as the Levinthal paradox [138]. He noted that
because of the very big number of degrees of freedom in a polypeptide chain, a protein
molecule has an astronomical number of possible conformations. Indeed, according to
his estimates, a polypeptide composed of 100 residues will have 99 peptide bonds, and
therefore 198 ¢ and ¢ dihedral angles (in more realistic folding experiments we have to
necessarily include other degrees of freedom!). Assuming an sp3-hybridization of the
C, atom, each of these dihedral angles can be around one of three stable conformations,
and thus, the protein’s polypeptide chain may adopt as many as 3'% ~ 10% different
states.

Therefore, if a protein were to attain its correctly folded configuration by sequentially
sampling all the possible conformations, even at a speed of 1 femtosecond per confor-
mation (the fastest molecular vibration time), it would require a time longer than 108
seconds, much more than the age of the universe (about 4.3610'7 seconds). The “para-
dox” consists of the fact that most small proteins fold spontaneously on a microsecond-
millisecond time scale. These findings motivated the research community to study com-
putational approaches for protein folding and structure prediction and later led to the
establishment of the blind CASP (Critical Assessment of protein Structure Prediction)
challenge and a practical solution to the protein structure prediction problem using
deep-learning techniques [109].

1.1 EXPERIMENTAL TECHNIQUES AND NEW CHALLENGES

Our knowledge about macromolecular structures and interactions has been mostly gained
thanks to numerous experiments in structural biology based on a range of experimen-
tal methods. These include X-ray crystallography, Nuclear Magnetic Resonance (NMR),
cryo-electron microscopy (cryo-EM), and more. X-ray crystallography is a relatively old
and well-established technique [59]. A vast majority of macromolecular structures stored
in the Protein Data Bank (PDB) [24] are currently solved with it. However, the structure
of molecular crystals may bias our understanding of protein functions and interactions
under physiological conditions. Indeed, high-resolution diffraction images can only be
obtained from very-well ordered particles in a crystal lattice with minimal motion, typi-
cally at low temperatures, and with possibly artificial crystal contacts.

Sometimes what we see in a crystal is different from what we would see in a so-
lution. This has been demonstrated, e.g., in the CASP13 small-angle X-ray scattering
(SAXS) data-assisted subchallenge [101]. There, over half of the protein targets (7 out
of 12) were found to be in a different architectural conformation than that found in the
crystal. Indeed, the solution SAXS profiles did not correspond to those computed from
the crystal structures. This discrepancy may suggest non-physiological protein confor-
mations for some of the crystallographic protein structures. SAXS is a very promising
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technique in this respect, as it allows rapidly verifying global protein shape in solution
under physiological conditions [68].

NMR is another technique that allows studying proteins in solution [273]. Indeed,
NMR can be applied to proteins under physiological conditions, it can record high-
resolution signals, and the proteins can even be flexible or disordered. The downside of
this technique, however, is that it can only study rather short, single-domain proteins.

Larger molecules, including macromolecular complexes without crystal packing, can
be studied with cryo-EM [45]. This technique, however, contrary to NMR, is currently
only applicable to larger particles, typically, macromolecular complexes. It also requires
state-of-the-art and rather expensive hardware. Very recently, cryo-EM has advanced to
also reconstruct continuous structural heterogeneity [210, 281].

Most often proteins do not act alone and perform their function via interactions with
other molecules. Sometimes they form stable complexes, which can be homo- or het-
eromeric. They can even be organized in higher-order assemblies. And very often these
assemblies follow strict symmetrical principles. Thus, our understanding of these princi-
ples will help us to also understand the physics of life and hopefully will pave the way
to designing new macromolecular machines [78].

Protein structures under physiological conditions are neither rigid - indeed, proteins
often perform their function by changing conformational states, or regulating the am-
plitude of fluctuations upon binding. Describing and predicting their internal motions
will be the next frontier of structural biology and bioinformatics. However, we still have
very little high-quality experimental data on protein structural heterogeneity to reliably
train transferrable deep-learning models. Therefore, physics-based models and priors
for machine-learning models will still be widely used in the future for modeling protein
flexibility.

The thesis below describes some of my studies about protein interactions and flexibil-
ity. Chapter 2 gives some mathematical preliminaries. Chapter 3 describes several new
methods to analyze and predict symmetrical protein assemblies. Chapter 4 introduces
our approach to modeling nonlinear protein motions. Chapter 5 describes our procedure
to compute small-angle scattering profiles and accordingly optimize molecular shapes.
Chapter 6 lists our developments with machine and more recently deep learning. Finally,
Chapter 7 summarizes my outlook on the future of structural bioinformatics.



POLYNOMIAL EXPANSIONS

This Chapter gives some mathematical preliminaries used later in the Manuscript.

2.1 SPHERICAL HARMONICS AND SPHERICAL BESSEL TRANSFORM

Spherical harmonics are complex functions defined on the surface of a unit sphere that
constitute a complete set of orthonormal functions and, thus, an orthonormal basis. They
are generally defined as

e = \/(%41(?&;)?)!PZ%OS”QW @)

where 0 < 6 < 7 is the azimuthal angle of point (), 0 < v < 27 is its polar angle, and
P™(cos @) are associated Legendre polynomials with indices [ and m referred to as the
degree and the order, respectively. As mentioned above, by definition these functions
are orthonormal,

/ Y™ ()Y (Q)dQ = 81y (2)
4

where the second function W(Q) is complex-conjugated, and J;; is the Kronecker delta.
Any square-integrable function f(7) : R?* — C can be expanded in spherical harmonics
as

o) +1
FE =23 fr )Y@, (3)
=0 m=—1

Reversely, the expansion coefficients f/"(r) can be determined as

[y = [ F(P)Y(Qr)dCY,. (4)

Spherical Bessel transform (SBT, sometimes referred to as spherical Hankel transform)
of order [ computes Fourier coefficients of spherically symmetric functions in 3D,

Fi(p) = SBT,(f(r)) = / F()ji(pr)rdr, (5)

where p is the reciprocal radius, and j;(r) are spherical Bessel functions of order I. The
inverse transform has the following form,

£(r) = SBI; (o) = © [ Fioditlor)dp, ©

Spherical Bessel functions of the same order are orthogonal with respect to the argu-
ment,

7 ' 2dr = ——5(p1 — pa).
/O Jilp1r)gi(par)r=dr p1rm (p1 — p2) (7)
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2.2 PLANE WAVE EXPANSION
The plane wave expansion is the decomposition of a plane wave into a linear combi-
nation of spherical waves. It is very useful when changing the basis from Cartesian
to spherical coordinates, or when decoupling a function with respect to its arguments.

According to the spherical harmonic addition theorem, a plane wave can be expressed
through spherical harmonics and spherical Bessel functions,

o) l
e =4r >N il (pr) Y (Q,) Y Q). ®)

=0 m=-1
2.3 3D FOURIER TRANSFORMS IN SPHERICAL COORDINATES
The 3D Fourier transform of a function f(7) is defined as
F(p)= | f(F)exp dr. ()
R3
The spherical harmonics expansion of this transform has the following form,
o) = [ F@¥m(©0,)i0,. (10)

The Fourier spherical harmonics expansion coefficients relate to the real-space spherical
harmonics coefficients through SBT,

F/™(p) = 4m(—i)'SBT,(f{"(r)). (11)

This equation can be also rewritten as follows,

R o) = an(=i)! [ £@ilrn) V@ )ar (12)

2.4 TRANSLATION OPERATOR

Let us translate a 3D function f(7) along the z-axis by an amount A. The expansion
coefficients of a translated function will be

BP0 = [ Flpe vy, ®

Using the plane-wave expansion and triple spherical harmonics integrals defined through
Slater coefficients /2 (I, m, 11, m;),

c2(lm, 1y, my) = ) Y QY Q)Y (Q)dQ, (14)

we obtain

I+p
2p+1
-y Y A 2 | yrey@y@o

P=0 =max(|i—pl, ml)
l+p
- m 2p+1
= E E 'ijp(pA)Fl’ (p)4’ﬂ' cp(l’,m,l,m).

0 - 47
p= max(|l—pl,|m|)

(15)



2.5 ROTATION OF SPHERICAL HARMONICS AND WIGNER D-MATRICES

Changing the summation order and introducing the maximum expansion order L, we
arrive at

“E

Z Tll’ :01 F‘lr’n(p)a (16)

U'=|ml|

2p+1
Tll’ P, Zzpjp A Cp(llvmvl7m)' (17)

2.5 ROTATION OF SPHERICAL HARMONICS AND WIGNER D-MATRICES

The Wigner D-matrices D; are the irreducible representations of SO(3) that can be ap-
plied to spherical harmonics functions to express the rotated functions with tensor op-
erations on the original ones,

l
"(AQ) = Y Dl (MY (Q), (18)

m/=—1

where A € SO(3).

2.6 ORTHOGONALITY OF WIGNER D-MATRICES

Let us consider the normalized orthogonality relation of the Wigner rotation matrices
D’

mk’

OQW da [ dp sinﬁf dry DY g ( B,’y)*Diﬂk(a

.B8,7)

m’ '( B 7) (a7577)> = -
< ‘ A={afn) 0 "da [ dBsinf3 f02 dy

(19)

B (S O/ 10415
2j+1 m'mOk'k0j’ 5 1 Sind
= = Oy 15047 5. 20
]2 2] 1mm k'kOj4'4 ( )

Thus, the following angular average will simplify according to

< Z Z Z Dmm1 A2 T‘lﬂl“(qA) mlmg(Al)Ollmz(q) (21)

mi=—ll;= \m1| mo=—I1

I L
> > Z D, Ty (QA)DI ,(A1)Op ., (9) > (22)
1 A1hs

= Uy =} | my=—1}

1+2l Z Z Z 1—|—2l | N (qA)| ‘Ollmz( )|2 (23)

mi1=—ll1=|mi| ma=—h

2.7 ORTHOGONALITY OF SMALL-D WIGNER MATRICES

Similarly, we can also consider the normalized orthogonality relation for the real-valued
small-d Wigner rotation matrices dmk,

<di§k<5>d%k(6)> _ g dsing dhy (DB (8) _ it 1
B

(24)

[T dBsin B 2 2j+197



8 POLYNOMIAL EXPANSIONS

Similarly,

™ . 1
<déo<6>> = b ot B s, (25)
B

Jo dBsing 2

2.8 LINEAR WIGNER AVERAGES

First of all, we consider singular-term averages of the form

2 s . 2 j
<Dan(a7577)> = fO da fO dp Slnﬁfo dy Dink(aa ﬁyV) _ 8772(5m5k5j _ (5m5k(5]
A={o,B,7}

027r da [; dBsin 3 fo% dry 82
(26)

Cross-terms of the form

L l
%Z Z < |: Z Z Z Dmml (Az Tlnl“(qA)Dfrlnmz (A1) Otymy (q)

Ol*m(Q)>
A1A2A

=0 m=-1 mi1=—ll1=|m1| ma=—
(27)
_ i O 2 TO A
1 1000(0) P{T8 (4. (28)
thus reduce to a single value. Slater integrals of zero angular oder equal to
(0,0,0,0) = -2 (20)
SN 9
Therefore, zero-order translation matrix elements are
T50(pA) = jo(pA). (30)
And radial averages for a given fractal dimension d will be
| S o(pr)rldr
<]O(IOA)>A,d = j‘rrnfax T.d—ldr ’ (31)
thus
. Si(prmax) - Si(prmin)
Jo(pA))Ad=1 = (32)
< (p )>A ! p(rmax - Tmin) 3
. 2|cos(prmin) — cOS(Prmax
(Jo(pA))ad=2 = [cos{ 57 5 ) 2< ) (33)
p (rmax - Tmin)

3[sin(prmax) — Prmax €08(Prmax) — sin(prmin) + PTmin €OS(PTmin )]

(oA =
<]0(p )>A7d—3 p3(T§nax_T§I1in)

(34)

More general cross-terms will be also reduced to a single value,

L
%Z Z < |: Z Z Z Dmml A2 Tlnl11 (qA) m1m2(A1)Ol1m2(Q)] (35)

mi1=—ll1=|m1| me=—11

Iy

! L
{Z Z Z Dy, (A/) L (qA’)DfT:m (A/)Ol’ '( )}> (36)
A1 AAN, ALA!

=1ty = | =1}

= ﬁ\Ooo(q)!2<T&o(qA)>A<T8,0(qA/)>A/ = ﬁ]Ooo(q)P(T&O(qA))%. (37)
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2.9 HERMITE FUNCTIONS

There are multiple ways to analytically rotate and translate functions defined in 3D.
Another way of doing this will be 3D Hermite decomposition. Orthogonal Hermite
function of order n is defined as,

VA A2z?
\V2rnl\/m 2
where H,(z) are the Hermite polynomials of order n and A is the scaling parameter.

These functions form an orthonormal basis set in L? (R). The 3D orthogonal Hermite
functions can be composed as follows,

Up(z; ) = VH, (\z), (38)

wn,l,m(xawa;)‘) = ¢n(x7)‘)wl(y>/\)'¢m(z7)‘) (39)

This composition forms an orthonormal basis set in L? (]Rg). A 3D function f(z,y,z2)
represented as a band-limited expansion in this basis reads

N N—iN—i—j

.YJ Y, 2) = ZZ Z 7, sz,]k z,Y,z; )‘) (40)

i=0 j=0 k=0
2.10 LAPLACIAN FILTER IN THE HERMITE BASIS

The Cartesian expression of the polynomial basis may have multiple advantages over
the spherical expression. For example, in the Hermite basis, the Laplacian filter has a
particularly simple form. Using the well-known recurrence relation for the derivatives
of the Hermite functions, we can easily derive the following relation for the second
derivative of a 1D basis function:

j;wn(x; A) = A; <\/n(n — Dthn—a(230) + (20 + D)tba (3 X) + 1/ (0 + 1) (0 + 2)¥nsa (23 )\)) .

(41)
A similar relationship holds for the coefficients of the decomposition,
N A2 N N A
hl' = 5 < n(n—1)hp—a+ 2n+1)h, +1/(n+2)(n+ 1)hn+2> , (42)

where h,, and 1", are the n-th order decomposition coefficients of the original basis
and its Laplacian representation, respectively. For n < 0 and n > N we let /, = 0 and
W', = 0. Due to the properties of the Laplace operator and the 3D Hermite decomposi-
tion, the contribution of the derivatives along each axis are additive. The derivation of
the formula for the 3D decomposition derivative is straightforward and we omit it for
brevity.

2.11 ROTATION OF THE HERMITE DECOMPOSITION

Following Park et al. [188], who presented a method to perform an in-plane rotation of
a 2D orthogonal Hermite decomposition, we extended id it for the 3D case [54]. Let us
tirst consider the decomposition of a 2D function into a 2D orthogonal Hermite function
basis,

N—m

N

m=0
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POLYNOMIAL EXPANSIONS

The decomposition of a function f9(x,y) rotated clock-wise by an angle 6 reads

N m m
fe(xa y) = Z Z(Z fn,m—nsz?n)wk(l', )\)wmfk(y; /\)a (44)

m=0 k=0 n=0

where coefficients S, are computed using the following recurrent formulas [188],

1 n ) m m—-—n-+1 m
Sym - = 4 /7771 ) sm(@)Sq,n,l + ’lim — Cos(H)Sq’n

m—+1
Sprt = pe———— COS(G)S(T().
n m—-n—+1 .
Srnr?illn = m—+1 cos(0) nn;,n—l -/ Tmtl sm(G)ngm
Smiio = —sin(6) S o

The key idea that allows to generalize these formulas to a 3D decomposition is that we
can factorize a rotation in 3D space into 3 independent in-plane rotations around three
different axes, and then rotate each 2D decomposition using eq. 44. Let us consider the
following 3D decomposition,

=

—n N—m—n
=0

N
Flr,y,2) = tn(a3 ) D Famatm (Y Nz N). (45)
n=0

l

3
Il
o

If we rotate this decomposition about x axis, this rotation will be equivalent to N rota-
tions of different 2D decompositions in the yz-plane,

N—n N—m—n
P 2) =) > Fumatom (s (25 0). (46)
m=0 [=0

This observation means that in order to perform such rotation, we need to recompute
rank-3 tensor of coefficients f, ,; slice by slice N times using eq. 44. Each rotation of
the coefficients in one plane corresponds to a multiplication of these coefficients with a
rotation matrix. Therefore, a 3D rotation defined with three Euler angles is equivalent
to three sequential rotations of coefficients in three planes.

2.12 TRANSITION FROM THE HERMITE TO THE FOURIER BASIS

In order to perform a fast convolution of two 3D signals, we proposed to convert the
decomposition coefficients from the Hermite basis into the Fourier basis [54]. This al-
lows using the fast convolution algorithm based on the Fourier convolution theorem.
Consider the decomposition of a function f(r) in the 3D Hermite basis with the decom-
position coefficients f; ; x (eq. 40). Orthogonal Hermite functions are the eigenfunctions
of the continuous Fourier transform,

27

[ naine e do = (i (e ) = G, )

where w is the frequency in the reciprocal space. In order to compute Fourier coefficients
of f(r) up to order M, we first compute the Fourier transforms of the basis functions
Yi(x; N), ¥i(y; A), and ¢ (2; \) using eq. 47. After, we substitute these coefficients into
eg. 40 and obtain the following expression for fl,m,nr the Fourier coefficients of f(r),

N N—iN—i—j
1 J

~ o | -~ . m -
fl,m,n: -La:TyI/z _OZ Z fi,j,klﬁi(fx;k)wj(f;)\)wk(

i=0 j=0 k=0 Y

;A)- (48)

SE

These values can be computed in O(M3 - N + M? - N? + M - N3) steps [54].



SYMMETRICAL ASSEMBLIES AND ANALYSIS OF PROTEIN
COMPLEXES

Large macromolecular machines are very often symmetric. This symmetry is not occasional
but is linked with their structure, function, and evolution. I have been interested in
multiple aspects of macromolecular symmetry — how symmetrical complexes can be effi-
ciently analyzed, what is the physics of the formation of the assemblies, and how one
can efficiently predict molecular complexes under symmetry constraints. Our approach
is generally based on the analysis of the correspondence between molecular subunits
A(T) related by spatial transformations, which also include point-group symmetry oper-
ators 17, (w). This correspondence can be formally expressed by the following equation,

7.(D)R(c. B.7)A(F) > R, (w)T.(D)R(a. B,7)A(F), (49)

where 7. (D) and 72(c, 3,7) are the rigid-body translation and rotation operators, corre-
spondingly, applied to the assembly subunits. The correspondence sign <— can mini-
mize the geometrical mismatch, maximize the shape complementarity, etc., depending
on a particular application.

Using this formalism, we proposed an interactive modeling tool under symmetry
constraints [85], studied efficient methods to compute interactions between rigid objects
[13], and then developed a very efficient tool for the analytical analysis of symmetries
and pseudo-symmetries in molecular complexes [183, 185, 186]. The latter method has
already been transferred to the PDBe web-based resource and was also used in the
assessment of multimeric submissions for the international protein structure prediction
challenge CASP starting from Round 13. On our side, it allowed us to study the spatial
organization of large molecular complexes on the PDB-wise level.

We have also used this formalism for symmetry-assisted protein docking under ana-
lytical symmetry constraints of any point-group symmetry [217]. We demonstrated that
the above rigid-body correspondence equation could be expressed in the Fourier space
in spherical coordinates using the Fourier correlation theorem,

S(w; Dy 5.7) = Y e 0mmag) () ALy, AL (50)

nlmp

with dS,ZL),,(w) being the small Wigner rotation matrix, and A;sz and A’ precomputed
expansion coefficient of a shape A(7). This allowed us to accelerate the exhaustive search
of positioning subunits in a symmetric assembly using the fast Fourier transform. Cur-
rently, I am extending this formalism for modeling protein assemblies in crowded cell
environments [260].

I have been studying how 3D molecular shapes can be compared efficiently. This led
me to discoveries using the quaternion-based arithmetic, and, more generally, geometric
algebra. For example, with my student Petr Popov, we demonstrated that the 2-norm
in the Cartesian space between conformations of a rigid molecule could be seen as a

quadratic form of the following shape,
2 = w4 o o
RMSD?*(w,ii, 1) = sin o 7 i+, (51)

where a molecule with N atoms and inertia tensor I is rotated by an angle w about a unit
axis 77 and translated by a vector / [204]. This allowed us to construct very efficient algo-

11
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rithms for constant-time comparison of molecular shapes. We then demonstrated multi-
ple applications and extensions of this equation for docking of trimeric assemblies [206],
comparison of flexible shapes [177], comparison of symmetrical assemblies [183, 186],
equidistant rigid-body assembly [203] and more. Currently I am reusing this equation
for modeling protein assemblies in crowded cell environments. The proof-of-concept
study has just been published with my US colleagues Ilya Vakser and Eric Deeds [260].

Another way to compare 3D shapes would be to use their representation using com-
pact polynomial expansions. This interest led me to the development of several shape-
matching algorithms using novel polynomial forms, i.e., using orthogonal Hermite poly-
nomials [54], Spherical Harmonics [176, 217], and classical Fourier functions extended to
higher-order correlations [95]. Currently, we are developing even more efficient ways to
encode molecular shapes in 3D [278].

3.1 INTRODUCTION

Symmetrical protein complexes are very common in nature [186], and many of these
are deposited to the Protein Data Bank (PDB) [219]. Indeed, it appears that symmetri-
cal assemblies have many advantages compared to individual proteins [142, 143] and
thus many of these have been selected during evolution. Thus, there is a considerable
interest in studying the structures and mechanisms of formation of symmetric assem-
blies [4, 10, 141, 154, 217, 229]. In particular, it has been demonstrated that molecular
symmetries are important for evolution [143, 230], stability [29], and folding and func-
tion [77]. As function of proteins is very often determined by their structure, it appears
that complex function requires complex structures [142, 143]. High-order symmetries
are thus essential to build large and complex protein assemblies. In particular, dihedral
and cubic groups are overrepresented among large protein assemblies with some spe-
cific structural functions, for example those of viral capsids. Also, high-order symmetry
drastically reduces the complexity of de novo design of self-assembling nanomaterials
[20, 97, 122, 123].

Although many symmetrical complexes have been solved by X-ray crystallography
and cryo-electron microscopy, this can often be a difficult and time-consuming process,
and it would be useful to be able to generate high quality candidate complex structures
for use as templates in molecular replacement (MR) techniques [174, 221], to provide
angular parameters for locked MR search functions [257], or to dock high resolution
structural models into low resolution cryo-EM density maps [220], for example. From
a protein design point of view, it would also be very useful to be able to predict com-
putationally whether or not a given monomer might self-assemble into a symmetrical
structure [98].

Also, the growing amount of data from constantly solved structures of macromolecules
together with even bigger amount of data obtained with protein structure prediction
methods and molecular dynamics simulations require fast and robust computational
tools for the processing of these data. For example, some tools have been developed
to detect and assess internal cyclic symmetries, based either on protein sequence [171],
structure [42, 173], or both [232]. All these have a common idea of comparing a protein
structure with a rotated version of itself. Another set of methods for the continuous
chirality and symmetry analysis has been developed by David Avnir and colleagues [60,
196, 197] and also by Michel Petitjean [191], however these do not seem computationally
suitable for processing large amounts of macromolecular data, specifically those from
PDB. On the other hand, determining a symmetry group of a molecular assembly, find-
ing its axes of symmetry, and assessing the quality of this symmetry are the essential
steps in analysis of structural molecular data. For example, a basic analysis method
has been proposed by Emmanuel Levy [142], but this is not fully satisfying due to its
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limited precision imposed by a set of discretely chosen axes with about 6 degrees of
angular step, which results in total of about 600 axes. Also, this method is significantly
more time consuming compared to the one presented below.

Regarding symmetry-assisted docking, in the last few years, several ab initio protein-
protein docking programs such as MolFit [22], ClusPro [48], M-Zdock [193], and Symm-
Dock [223] have been adapted to apply various geometric filtering constraints to extract
approximately symmetrical pair-wise docking orientations. Symmetry-constraint pro-
tocols may be applied to refine the coordinates of a given symmetric structure using
RosettaDock [9]. The Haddock docking engine allows up to six distance restraints to be
defined when refining oligomeric complexes with certain cyclic or dihedral symmetries
[116]. However, to our knowledge, we developed the first ab initio docking algorithm
which can automatically generate perfectly symmetrical protein complexes for arbitrary
point group symmetry types.

In order to build symmetrical protein complexes, it is necessary to locate a certain
number of protein monomers in orientations that satisfy the symmetry elements of a
given point group. Here, we are mainly concerned with cyclic (C,,) and dihedral (D,,)
point groups, but we have also generalized our methods for building complexes with
tetrahedral (T'), octahedral (O), and icosahedral (7).

To assess the quality of symmetry for molecular assemblies, a cyclic symmetry mea-
sure is necessary, as the cyclic axes constitute the basic bricks from which one can re-
construct high-order symmetry groups. However, considering each symmetry axis sep-
arately would result in a globally incorrect assessment, as there are strict geometrical
constraints between different axes of symmetry in high-order symmetry groups. This
also motivated us to develop a symmetry detection method for cyclic groups and extend
it to dihedral and cubic groups. Indeed, the need for such symmetry detection method
exists, as some approximate methods, i.e. those from BioJava [209], are massively used
to display the symmetry axes on the PDB website [219].

Inspired by the quaternion arithmetic applied to the best superposition of a set of
points [55, 96, 121] together with our recent developments [177, 204], this Chapter also
proposes a new symmetry measure and an analytical method to find the best symmetry
axes of a symmetrical assembly possessing multiple symmetry axes. The method guar-
anties that the detected axes are consistent with the symmetry constraints. Our method
produces results with a machine precision, its cost function is solely based on 3D Eu-
clidean geometry, and most of the operations are performed analytically. This makes
it extremely fast and particularly suitable for exhaustive analysis of PDB data. Below
we provide details about the high-order symmetry measure and the computation of the
symmetry axes for an assembly possessing any point symmetry group. The method
first perceives the topology between different chains, and is able to deal with complex
subunits that are composed of multiple chains. Then it iteratively solves a constrained
quadratic optimization problem using a set of analytical solutions.

3.2 MATERIALS AND METHODS
3.2.1  Notations

Below, for 3D rotations and translations, we will be generally dealing with 3 x 3 matrices
and 3-vectors. Therefore, for linear algebra operations we will stick to the following
notation. Bold upper case letters (i.e. A) will denote matrices, bold lower case letters (i.e.
b) will denote vectors, and normal weight lower case letters (i.e. ¢) will denote scalars.
For trigonometric operations and illustrations we will also use an arrow notation for

—

3-vectors, such as ¢. A rotation by an angle « about an axis ¢ will be noted R(«, 7)

13
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3.2.2  Quaternion arithmetic

It is very convenient to express three-dimensional rotations using quaternion arithmetic.
Thus, we will give a brief summary of it here. More informations on quaternions can be
found elsewhere [204], for example. We consider a quaternion () as a combination of a
scalar s with a 3-component vector q = {g, gy, ¢:}*, Q = [s,q]. Quaternion algebra de-
fines multiplication, division, inversion and norm, among other operations. The product
of two quaternions Q1 = [s1,q:1] and Q2 = [s2, Q2] is a quaternion and can be expressed
through a combination of scalar and vector products,

Q1- Q2 = [s1,q1] - [s2,q2]

(52)
= [s152 — (q1 - 92), 5192 + s2q1 + (a1 X q2)] .

The squared norm of a quaternion @ is given as |Q|* = s> + q - q, and a unit quaternion
is a quaternion with its norm equal to 1. Finally, a unit quaternion () corresponding to
a rotation by an angle o around a unit axis v is given as () = [cos §,vsin §], and its
; e -1 — a L a

inverse is Q7" = [cos §, —vsin §].

3.2.3 Shape Matching Master Equation

In order to develop the equations necessary for a docking search, or for the analysis of
protein assemblies, it is useful to introduce a “matching operator”, <—, such that the
notation

A(r) «— B(r) (53)

is taken to mean a geometrical or functional correspondence (e.g. docking, steric interaction,
or match of potential energy fields) between proteins (or, more generally, shapes) A and
B.

In the rigid-body shape-matching problem we let the expression

A(r) +— T(z,y,2)R(e, 8,7)B(r) (54)

represent a general interaction between protein A and a rotated and translated version
of protein B.

It is worth noting that the symbol «— can be treated like an equality in the sense that
applying an inverse translation to each side of Equation 54

T(x,y,2) " A(r) «— R(a, 8,7)B(r) (55)

represents exactly the same relative orientation of the two protein monomers as in the
previous expression.

3.2.4 Root mean square deviation

The root mean square deviation (RMSD) is one of the most widely used similarity cri-
teria in structural biology and bioinformatics. It can also be seen as a 2-norm between
points in a N-dimensional space (see below) and be applied to the comparison of rigid
bodies. We will stick to this measure for multiple reasons, e.g., it is very powerful, easy
to understand and also because it can be computed very efficiently. For our particular
needs we will use the definition of RMSD between two ordered sets of points, where
each point has an equal contribution to the overall RMSD loss. More precisely, given a
set of N points A = {a;}y and B = {b;}y, the RMSD between them is defined as

1
RMSD(4, B)? = N > Jai— byl (56)
1<i<N
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3.2.5 RMSD Master Equation

Let us formally define the problem of the best superposition of two rigid bodies (e.g.

molecules). Suppose that the operator associated with a rotation about axis ¥ by an
angle o may be labelled R(«,#). Let us also suppose that the operator associated with
a translation by a vector i is labelled 7'(i). We should mention that we have borrowed
the presented formalism from the molecular docking methods [217], where it appears
very useful.

Let u be a translation vector and ) = [s, q] a rotation quaternion corresponding to the
operators T'(i), and R(«,¥), respectively. We apply these to an assembly A composed
of N subunits with N, atoms at positions A = {a; j}n, n, With a;; = {z;,vij, 2z},
and compare the result with the positions of a molecule B with the same number of
subunits and atoms at positions B = {b;;}n,n, With b;; = {&] v} ;, 2 ;}". Using
a similar reasoning to what we presented previously [204], the RMSD between new
positions of A and B in the reference frame bound to the center of mass (COM) of A is

given as
. N 4
RMSD*(T' (i) R(c, ¥) A, B) = NqTI'q +4s5q”x ) 4+ u? + 2ulx,, + z,. (57)

Here, the modified inertia tensor I’ is given as

S (Wigij+2igai) = (g migyi ) /2 =30 Rt Tz ) /2
!
U= =Xy, +2i9i5)/2  2(@igai; +zigzg) = 22U %5 + Vigzij) /2
=2 (@ijz @ 2i5) /2 =3 (Vigziy +Viz) /2 (@i + vigvi )
(58)
The vectors x|, X,,, and the scalar z, are
X| = Zbiyj X aZ-J/N
ij
Xm = Z bij/N (59)
ij
Tg = Z(am- - bz"j)Q/N.
i7j

Below, we will analytically determine axes that correspond to the chosen C,, symmetries
by minimizing eq. 57 with proper constraints.

We should specifically mention that if the coordinates of A and B are only different
by a permutation of their indexes, as it happens in many practical cases of symmetry
detection described below, then the vector x,,, becomes zero. This uncouples the RMSD
master equation with respect to the translation and rotation and greatly simplifies many
corresponding equations. More precisely, minimization of RMSD with respect to u in
this case gives a trivial solution u = 0.

We shall also mention that if A and B conformations are equivalent in eq. 57, then we
obtain a simplified RMSD equation,

A N 4 4
RMSD?(T' (@) R(a, ¥) A, B) = NqTI'q +u? = N sin? %VTI’V +u? (60)

15

If the center of mass c of the A subunit is nonzero, we will have an additional +2u” (R — E3) c

term in this equation, where R is a rotation matrix corresponding to the rotation quater-
nion Q, and Eg isa 3 x 3 identity matrix.
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Figure 1: A: An assembly with an almost perfect Cs symmetry. Each subunit is represented with
an outline whose shapes are slightly different from each other. B: The 1-permuted version of this
assembly, the shapes are the same as in A but the labelling is different. C: The rotated version of
the assembly A by an angle 27 /5.

3.2.6 Working with molecular assemblies

As we work with assemblies composed of macromolecules such as proteins, it is con-
venient to introduce an intermediate level of structural hierarchy between the complete
assembly and its V atoms. Let us consider a molecular assembly as a list of N, subunits,
each containing NN, atoms such that N = N, N,. The RMSD between two assemblies is
then

1
RMSD(4, B)? = N S an =gl (61)
0<i<N, 0<j<Nq

We can assume that every subunit has the same number of reference points. Technically,
we achieve it by performing a multiple sequence alignment of the subunits and keeping
only the aligned parts for the subsequent analysis. More precisely, the reference points
are located at the positions of the aligned C, atoms. This makes our method robust
against various inconsistencies in the input data.

It will be convenient to assume that the subunits in the assembly are labelled with
integers modulo of n, i.e. i and i 4 n refer to the same subunit. Let us also assume that
the labelling is sequential, meaning that the subunit i is located between the subunits 7 — 1
and i + 1. Finally, let us define a k-permuted version A* of the assembly A by

al; =aj,; (62)

Note that according to this definition, A is equal to its o-permuted version, and a k-
permuted assembly matches itself rotated by 2km/n. If the subunits are not labelled se-
quentially, finding the permutation between the subunits, that is associated with every
rotation operator, is not straightforward. Our initial approach consisted in projecting
the centers of mass of the different subunits on the plane orthogonal to the principal
eigenvector of the inertia matrix of the assembly, and then reordering the subunits ac-
cording to this projection. During the second part of this work [183], we developed a
much more general and robust method that automatically determines the permutations
between the subunits for each rotation operator in a certain symmetry group including
cyclic, dihedral and cubic cases.

3.2.7 Complete C,, assembly

Let us first assume that we have as input a complete cyclic assembly, for which we want
to assess the quality of the cyclic symmetry. A cyclic symmetry group of order n can
be uniquely described with its symmetry axis @, the position of this axis, and its order
n. As it is explained above, the translational part of the RMSD master equation 57 in
this case is equal to zero, because the two sets of points are permutations of each other.
The angles of the rotation operators are constrained to be {kw}o<r<, with w = 27/n. To
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determine the quality of a rotation axis ¥, we compute the RMSD between the assembly

rotated by an angle of kw (see Fig. 1C) and a k-permuted version of the original assembly

(see Fig. 1B), as it is shown in Figure 1. This RMSD will thus be our symmetry measure.
The quaternion representation of the k" C,, symmetry operator is given as

QF = [s,q] = [cos k—w,sin hw

9 7‘,]’ (63)

with 0 < k < n . According to the RMSD master equation, with B = AF and u = 0, we
obtain

. 4
RMSD? (R (kw, ¥)A, A¥) = NqTI;q +4sql xp | + Ths. (64)
Here
> Wigh+ig t Zigotig) 2 @kig¥ig + TigUhrig) /2 — 2Tk gZig + Tigzkerig) /2
=2 (@i Yhrig + Thtig¥ii) /2 Y (TigTheig t ziganeig) 2 (YktigZig T YigZheig) /2
=2 (@ij2hiy + Thtigzig) /2 = 2 (Yighrig + Ykrigzig) /2 D (TiThri + YiYkei)
(65)
and
Xl = Zak+z’,j xa;;/N
.
(66)
Lhs — Z(ai’j — ak+i,j)2/N.
i’j
Finding the best rotation axis reduces to the following optimization problem,
min RMSD?(v) = vI Apv +dlv + fi
v ) (67)
st. viv=l1,
where
4 k
Aj = — sin® Tw %
(68)

dy = 2sin(kw)xg1
Jk = Ts.

Equations 67-68 formulate a minimization problem to find an axis corresponding to a
particular rotation operator with a fixed rotation angle. However, our goal is to deter-
mine the axis that is the best for all the rotation operators. We can thus sum up the
above expressions for every k, as the axis ¥, which we are seeking for, is the same for
all the rotation operators. Finally, finding the best axis of symmetry for a C,, group is
equivalent to solving the following trust-region subproblem,

k<n k<n k<n
m‘}n VTZAkv—i-ZdZV—Fka
k=1 k=1 k=1 (69)

st. viv=1.

This is a well-studied optimization problem. It can be efficiently solved with a number
of different methods. In our case, the dimensionality of the problem is very low and
thus we have chosen the solver based on the Sorensen method [235], which typically
converges to machine precision in 3 - 10 iterations in our case. Equation 69 constitutes
the first principal result of this work. We should note that in a particular C; case, the d}
coefficients vanish and the solution of the problem 69 reduces to the smallest eigenvector
of matrix S7=" Ay.
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Figure 2: Illustration of the rotation of a subunit ag. The original and rotated versions of ag are
represented as tetrahedrons having four differently colored faces (red, green, blue and yellow).
For the clarity of the representation, the green face was removed from ag and the blue face was
removed from R(kw,#)ag. The T vector connects the COM of ag with the symmetry axis. The
AT vector connects the COM of ag with the COM of R(kw, ¥)ag.

3.2.8 C, assembly with missing subunits

Some examples of molecular assemblies with presumably cyclic symmetry are not com-
plete and have missing subunits. This automatically raises two questions: what should
be the order of the complete assembly and how to reconstruct it? The ability to find
the rotation operator that produces the smallest RMSD between the present subunits
with a constrained angle answers these two questions. To determine the best order of
the cyclic symmetry, we can simply exhaustively test all the different possible orders by
changing the constraint on the angle of the rotation operator, as it is given by equation
63, and then solving the RMSD master equation 57. Once this step is done, we obtain
the order and the axis of symmetry, which makes the reconstruction of the complete
assembly trivial. However, in this case, we need to solve the full version of the RMSD
master equation, since the translational component of RMSD is not null.

To determine the axis of the rotation operator, similarly to the case with the complete
assembly considered above, we will compare the rotated version of the partial assembly
with its permuted version. We should mention that in the case of partial assembly we
assume the sequential order of the input subunits. If it is not the case, the order has to
be specified manually, since the performance of the automatic procedure for the order
perception is largely affected by the missing subunits. Let us assume that the subunit
ap = {x0,5,Y0,5, 20, }{1 <i<Na) is present. Let us label the vector that connects the COM

of the ag subunit with the symmetry axis ¥, and which is perpendicular to it, as 7.

Following Figure 2, the translation vector AT that connects the COM of ay with the
COM of R(kw,¥)ag is

AT* = (1 — cos(kw)) T — sin(kw)v x T. (70)
The squared 2-norm of this vector is given as
2
(AT’“) = 45in? %‘"TQ. (71)

Now we are ready to substitute the rotation quaternion from equation 63 and the ob-
tained translation vector into the RMSD master equations 57. The RMSD is now a func-
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tion of T and v vectors. Keeping the quaternion representation from equation 63, we
obtain

4 k
RMSD? :NqTI'q +4sq’ x| + 4sin® ?wT2

(72)
+ ((1 = cos(kw)) T — sin(kw)v x T) xp, + 4,
which reduces to the following optimization problem,
min  RMSD?(v,T) = vIApv+b,T? +vIC,T
+div+elTH+ fi
(73)
viv=1
s.t.
vIT =0
Here, the coefficients are given as
4 k
Ay = ¥ sin?( ;)I'
by = 4sin?("2)
0 Xm3 —Xm2
Cj = 2sin(kw) ( —Xm3 0 X1 ) (74)
Xm2 —Xml 0

dk =2 sin(kw)xl

k
e, = —4 sinz(g)xm

fk = Ts,

which follows from the substitution of egs. 63 and 70 into the RMSD master equation 57.
In the above equation the definitions of matrix I’, and vectors x; and x,, are taken from
equations 58 and 59 with the substitutions of a = ag and b = ay. At this point, vectors
v and T are defined independently from the index k, thus we can sum up equation 73
for all k£ corresponding to the present subunits, and provide the global coefficients that
will define the overall symmetry measure RMSD?(v, T) = Y, RMSD; (v, T) as

A=) A,
k
b=> by
k
C=>) ¢,
’ (75)
d=) dy
k
e — Z €L
k
f= Z x.
k
Using the Lagrangian formalism, we can introduce two Lagrange multipliers A\; and A,

with the Lagrangian function L(v, T, A1, A2) that incorporates two equality constraints
from eq. (73) as

L(v,T, A1, X)) =vI Av +bTTT +vICT

6
+div+el T+ f+ M (viv—1)+ v T (76)
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Here, matrix A is symmetric and positive definite, while matrix C is skew-symmetric.
Setting the gradient Lt to zero gives

(CT + \E3)v+e+20T =0

viv=1 (77)
s.t. ,

vIT=0
where E3 is a 3 x 3 identity matrix. Left-multiplying the first equation by v7, we obtain
Ao+ elv=0. (78)
Therefore, we can determine the first unknown vector T as
T = —2%) (e + Cclv — (eTV)V) ) (79)
Now, substituting it to the minimization function RMSD? (v, T), we obtain

RMSD?(v, T) =vIAv +dlv + f

+ 4%(—92 +2ef'Cv —vIcCTv +vleelv). (80)
As a result, our initial optimization problem 773 reduces to the following form,
minv! Xv +ylv+z
v ) (81)
st. viv=1
where the coefficients X, y, and z are given as
X=A+ i(—CCT +eel)
y = %CTe +d (82)
z= —%eTe + f.

This is once again the previously introduced trust-region subproblem. Equations 81-82
constitute the second principal result of this work.

3.2.9 Detection of helical symmetry parameters

Let us parametrize a rigid body by its reference frame (for now let us assume the origin
of the reference is aligned with the COM of the rigid body) and its inertia tensor I in
the COM frame. Let us assume that the rigid body moves along a screw (a spiral or a
helix) along the unit normal vector 7, such that the shortest distance from the COM of
the rigid body to the screw axis is . Generally, we suppose that the screw axis does
not intersect COM of the rigid body. Let also p be the pitch of the screw, i.e. the height
of one complete screw (helix) turn, measured parallel to the axis of the screw 7. Now,
we are ready to write the expression of the RMSD? between rigid body’s positions as a
function of the rotation angle about the screw o,

p’wi
(2m)* (83)

. pwr \T
+2 ((1 —coswy) To — (sinwg)v x Tp + gv) X + Ts.

4
RMSD} =—q"T'q + 4sq"x, + 4sin’ %Tg 1
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Let us first compute the optimal pitch p* by setting the derivative of Y", RMSD; with
respect to p to zero,

p* Zk: wi = —7TVT zk: wkxfn. (84)

This leads to

Z T (e wrxy )(kakx )iV
and
TZWX vE (5 ) (D k) v
> Wi ' (5

Let us also express To (that connect the COM of ag (or, more generally, the i-th subunit),
" with the rotation axis ) in the global reference system, so we can solve different sub-
units with the same global vector T, which connects the origin of the global coordinate
system with ¥ and is perpendicular to it. It is easy to show that

To=—m'+T+ (7-m")7. (87)
This gives
T2 = m”? + T? - vIm'm?'v — 2m'T, (88)

and

2 ((1 — coswy) Ty — (sinwg)v x To)" xp, =
2 (1 —coswy) (—m7Tx,,) +2xI T+ vi2m'x! v (89)

+2sinwg (v x m") %, — 2sinw, (v x T)Tx

This allows to reduce the original least-square problem to the following optimization
form, provided that optimization in w is performed at a separate step,

min RMSD};(v,T) = v’ Ayv+b;T? +v ' CyT

v, T
+dfv+e T+ f;
(90)
vliv=1
s.t.
viT =0
Here, the coefficients at fixed wy, and p are given as
4 A
A = N sin? 7])1’ +2m'x? — 4sin (w;j )m'm’”
bij = 4sin2(%)
2
0 Xm3 —Xm2
Cij = 25inwij< —Xm3 0 Xml )
Xm2 _Xml 0 (91)

d;j = 2(sinw;;)x 1.

+ QSlnwwm X Xy,

e;; = —4sin (w2] )Xm — 8sin’ ( 5 JYm’ + 2x,,

2,2
pwij

(2m)?

fij = xs + + 4sin? ( 5 JyYm2 + 2 (1 —coswij) (mTxy,).
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Figure 3: Computational orientations for tetrahedral (T), octahedral (O) and icosahedral (I)
complexes. For each symmetry type, a solid black line shows one of the 3-fold axes. Candidate

symmetrical complexes may be created by placing a C3 trimer at each vertex (white sphere) of
the desired symmetry type.

At this point, vectors v and T are defined independently from the indices ij, thus we
can sum up equation 73 for all 75, and provide the global coefficients that will define the

overall geometric loss. If we also provide p at its optimal value p*, then the coefficients
will be given as

T
A= Z[S St -+ ot — 4 mem™] ] 1 (S ) (e

4 w2,
b= Z4sin %
ij

tj g

0 Xm3 —Xm2
E ij
C= 2sin Wij _Xm3 0 X1

X ]
Xm2 —Xm1 0

d= E 2sinwijx’L + 2sinw;;m" x x%}

e:Z 4 sin? ( 2]) — 8sin? ( 5 J)m —|—2x”}
ij

f= Z $§J + 4Sin2(%)mi2 +2 (1 — cosw;j) (m’Tx” )} .

(92)

These equations extend the cyclic case for the helical symmetry with the additional
search variables.

3.2.10 Higher-order symmetry groups

Here we will use the same notations as in our previous Section on cyclic symmetries
[186]. From now on, for simplicity, we will only write equations for the cubic group.
Figure 3 gives a schematic illustration of these groups. Indeed, the equations for the
dihedral group are obtained by substituting the index n for the index 3. Our goal is to
minimize the loss function for each element g of the chosen symmetry group. The con-
tribution to the loss function is the RMSD between 7,(A) and Ay = {a,,(;) ;}. According



3.2 MATERIALS AND METHODS

to the RMSD master equation 57 with B = A, we can say that A and B have the same
COM, so the translational part of RMSD becomes null and we obtain

4
RMSD?(r,(A), A,) = NqTng +4sq’xy1 + 24, (93)
where
Wi iYoq(i).g t ZigZog(i)g)  — 2o(Toy(i)¥ig T Tig¥oe(i)i) /2 — 2 (Bog(i),i2ig T TijZeg(i),) /2
L= | —X@iYo,0)5 + Toy)j¥id) /2 2(@ijT0,6)j + ZijZe,(i),)) = 2oy (i),j%i5 t YiriZoy(i),5) /2
=2 (TijZ04(i),5 T Toy().%0) /2 = 2 YigZay(i)g T Yoy)%d) /2 L(TigTey ) T Yigle,().)
(94)
and
Xg 1 —Za (i) X &ij/N
(95)

Tgs = Z(a@j = ag,(i),4)" /N
irj

Our aim will be to minimize the sum of squared RMSDs over all elements g of the
group I'. Let us first assume that we know the value of one of the two axes v3 or vy, for
example, vs. In practice, we first compute v3 axis as a cyclic axis using the method from
the cyclic Section [186], then we alternate the computations of v, and v3 considering the
other axis as known. This method converges to machine precision in about 10 iterations.
Thanks to the RMSD master equation, we can write the loss function as a function of
the axis vo as follows,

> RMSD}(vy) =

gel

1 1 4
) bgﬁIg +2) bycqnLolvalx + >_cilvsl XTNIQ Vsl | vz

gerl gerl gerl
(96)
4 4
+ |2 Z agbgvgﬁlg +2 Z agchgNIg +4 Z sgnggTL Vo
gel gel gel
—|—Za V3 IV3+4ngb XgJ_V3+ngS
gel gel gel

We can rewrite this equation as the following minimization problem with respect to vs,

arg min VQTAVQ +blvy+ec
v2

Ty — 1 (97)
s.t. vav2

VgVQ = q.

The two constraints come from the unit norm of the rotation axes and the geometry of
the generator axes. The above equations have the following coefficients,

4 4 4
A= Z ngIg + QZ bgCgNIg[Vg]X + ZC;[ViﬂXTNIg[V?,]X
ger gGF gerl

_2Zag gV3 I +22agcgv3Ng+4ZSgb ng_ (98)
gel’ g€eT ger

4

2.T T

c= E agvs —NIgv;g +4 E SgnggLV;g + E Tgs.
ger ger ger

Similar equations can be written for the optimization of the loss function with respect
to vs.
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3.2.11 2D trust-region optimization problem

The optimization problem (97) can be efficiently solved by reducing it to the standard
form of the trust-region subproblem. However, in our particular case, we can use one of
the constraints in eq. (97) to project the optimization problem to a two-dimensional
subspace. This allows us to solve it analytically, as we explain below.

First of all, it is convenient to chose an orthonormal basis (v, vy, v3) and rewrite the
vector vy in this basis as

Vo = avy + vy +yvy. (99)
Then, the optimization problem (97) reduces to
. 2 (T T 2 (T
arg rglyn T (vx sz) + 2xy (Vm Avy) +y (Vy Avy)
+x (2O¢v:7,;AV3 + bTvx) +y (204V;FAV3 + bTvy)

(100)
—|—a2v3TAV3 +blvs+ec
s.t. x2—|—y2 =1-a2
To solve it, we find stationary points of the corresponding Lagrangian L(z,y, A),
L(z,y, \) = ka? + 2lay + my? + 2px + 2qy + M2 +9? — 1 +a?), (101)
with the following coefficients
k=vIAv,
l= ngvy
T
m=v, Av
v (102)

1
p = ongAv?, + ibTvx
1
T T
q=av,Avs + §b Vy.
Assigning the partial derivatives of the Lagrangian to zeros, we arrive to the following
system of equations,
kx+ly+p+Ax =0
lx+my+qg+Ay=20 (103)
22 4+y?=1-a

After eliminating A we obtain

22 4+ (m—k)zy —ly?> +qv —py =0
(104)
2+ =1-a%

Finally, we exclude the last equation by changing the variables and introducing the new
optimization variable ¢,
_2tV1—-a? (1-12)V1—a?

P = (105)

Then, making the change of variables and multiplying the first equation by non-zero
(1+t%)? we obtain,

(—l(l —a?) +pty/1 —a2) 42 ((1 —a?)(k—m) + /1 —a2q> 3

(106)
—|—6(1—a2)lt2—|—2(1—042)(—k—|—m)—|— 1—a2q)t—(1—a2)l—p:().
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Figure 4: Assembly with C5 symmetry and a missing subunit. A: The arrows show the compar-
isons made using the subunit with diagonal lines as the master subunit ap. B: With the same
assembly, one rotation operator has been chosen, the part with vertical lines represents the vir-
tual reference subunit and the part with horizontal lines is the virtual target subunit (they overlap).
C: The arrows shows the comparisons resulting from the subunits’ definition made in B.

This is our final fourth-order algebraic equation, whose roots can be found analytically
[175]. After finding all of its roots, we discard the complex ones, then compute the
corresponding values of x and y, substitute them in the original quadratic function (100)
and choose the pair of x and y that gives the smallest value. We also additionally test the
case of y = —v1 — @? and z = 0 that has been excluded during the change of variables

in eq. (105).
3.2.12  Choice of Symmetry Measure

While the symmetry measure for the complete cyclic assembly is trivial and unique,
there are multiple choices of this for partial assemblies. Indeed, in the later case the
determined symmetry axis depends on the choice of the master subunit a; and also
on the performed comparisons. Figure 4A shows the simplest choice of the symmetry
measure, where the master subunit is progressively superposed with every other subunit,
while the other ones are only superposed with ag. The symmetry measure then reports
the mean RMSD corresponding to the symmetry-constrained superposition of the master
subunit with the rest of the assembly. Ideally, we would like to compare every subunit to
every other subunit. However, this type of comparison makes the RMSD master equation
57 intractable using the presented techniques.

Therefore, orthogonally to the first approach, we can also choose a symmetry rotation
operator and compare all the subunits that are superposed by this operator, as it is
shown in Figures 4B-C. This can be seen as a redefinition of subunits by grouping all
the matching subunits into new larger virtual subunits. More precisely, we can introduce
a virtual reference subunit composed of all subunits that will be matched with other
subunits by this operator. We can also introduce a virtual target subunit composed of
all the subunits to which the virtual reference subunit matches. These virtual subunits
are automatically perceived to contain the maximum number of individual subunits.
We then compare these two virtual subunits, as it is shown in Figure 4B. This way, we
uniquely define the symmetry measure for one rotation operator. This will report the
mean RMSD corresponding to the subunits superposed by this operator.

The released version of our method implements the rotation operator approach, as
it is shown in Figures 4B-C. Once the cyclic group to be tested is specified by the user,
the software automatically tests each rotation operator of this group, and provides the
best rotation axis and the resulting RMSD. We should specifically mention that in most
of the practical cases we have assemblies with only two subunits. In this case, there is
only one rotation operator that superposes the present subunits and the comparisons
presented in Figure 4A and 4C will be equivalent to each other. In the examples we have
encountered, the different results coming from the choice of different rotation operators
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are very close to each other, and in the case where the symmetry is perfect, any chosen
method will provide exactly the same result.

3.2.13 Docking Master Equation

Let us now move to the docking problem. Let us assume the functions A(r) and B(r)
represent 3D shape-density functions of the two proteins, while r represents a spherical
coordinate in 3D space, r = (r,0,¢) = (z,y, z). Without loss of generality, these can be
geometrical 3D shapes, or, more generally, interaction potential fields.

Following the original Hex docking algorithm, A(r) and B(r) consist of linear com-
binations of 3D interior and surface skin density functions [215]. Thus, a 3D overlap
integral of the form

S—K / A(r)*B(r)dr (107)

may be treated as a shape-based docking score, or pseudo interaction energy (the as-
terisk denotes complex conjugation of A(r)). While the functions A(r) and B(r) are
initially entirely real, adopting the convention of conjugating one of these functions in
the above overlap expression ensures that the docking score (taken as the real part of
S) remains meaningful with complex functions. Indeed, by treating A(r) and B(r) as
complex quantities, it is possible to accelerate the search over multiple candidate dock-
ing orientations using FFT techniques [215, 216]. In the subsequent analysis, we will use
only the symbols A(r) and B(r) instead of the actual linear combinations for the sake
of clarity.

In the rigid-body docking problem where the relative orientations of A and B are
unknown, we adopt the convention that the centres of mass of proteins A and B are
initially located at the origin, and we let the expression

A(r) «— T(z,y,2)R(a, 8,7)B(r) (108)

represent a general interaction between protein A and a rotated and translated version
of protein B. Consequently, the aim is to find the six parameters (z, v, 2, o, 3,7) that give
the most favourable interaction. The pair-wise docking score, .S, that corresponds to the
above interaction would be calculated as a 3D overlap integral of the form

S = /A(r)*[TA(fU,yvZ)R(a,ﬁ,v)B(r)}dr- (109)

Here, we represent protein shapes as SPF expansions of complex spherical harmonic,
Yim (0, ¢), and Gauss-Laguerre, R, (r), radial basis functions

A(f) = Z AnlmRnl(T)}/lm(ea Qb), (110)

nlm

where the A,,,, are complex expansion coefficients (see [217]). Nonetheless, when work-
ing in the SPF domain, it is often more efficient to calculate one side of a given “docking
equation” than the other. Thus, it is important to consider the most efficient order of
operators for a given symmetry type.

3.2.14 Docking Cyclic C,, Complexes

With SPF basis functions, rotations and translations of SPF representations are most
easily implemented with respect to the z axis. Hence, it is convenient to associate the z
axis with the main (1D FFT) rotational and translational degrees of freedom (DOFs) and
to associate the y axis with the principal rotational symmetry axis.
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Figure 5: The coordinate systems used for pair-wise docking in C,. The figure on the left shows
the computational coordinate frame for a pair of monomers, A and B, with A at the origin in
the zz plane and B at a distance D along the positive z axis. The figure on the right shows the
symmetry frame of a C3 trimer with the monomers arranged about the y axis (which points
out of the plane towards the viewer). Here, w = 27/n is the C,, symmetry angle. From basic
geometry, S = D/(2cos¢) = D/(2sin(w/2)) is the distance from the principal symmetry axis
to the centre of each monomer. We also have ¢ = 7 — ¢ = (7/2+ w/2), which defines the
rotation that relates the two coordinate systems.

Because an individual protein monomer is asymmetric, we normally have to assume
that it can take any orientation in space relative to a set of fixed coordinate axes. Thus,
describing a particular orientation of a given monomer, A, with respect to a random
starting orientation will absorb three rotational DOFs. Let us suppose that the operator
associated with that description is ﬁ(a, B,7). If we then copy the rotated A into an
equally rotated monomer B, we can describe the docking interaction between of a pair
of C,, symmetry mates by applying the following transformations:

Ry(wj+1)T:(D)R(a, B,7)B(r) «— Ry(w;) T (D) R(ex, B,7) A(r), (111)

where the angles w; = 27j/n are rotations around the principal symmetry axis. This
equation highlights the fact that there exist only four degrees of freedom (D, «,3,7)
between the monomers in a complex with C,, symmetry. It is easy to demonstrate that
the range of the o rotation angle must be restricted to 0 < o < .

For a symmetric dimer or trimer, the above pair-wise A<—B interaction is the only
interaction that needs to be calculated. For C,,~3, there may also exist additional higher-
order (i.e. 14—3, ... 1+—(n/2+1)) interactions which should in principle be taken into
account. However, these are likely to be small or negligible in most cases, and are ig-
nored in the current work.

Nonetheless, a weakness of the above approach is that when n becomes large, it be-
comes necessary to translate each monomer far from the origin in order to achieve the
desired separation between consecutive pairs of monomers. Such large translations can
seriously reduce the resolution of the shape-density representations due to the expo-
nential fall-off in the SPF radial basis functions. Therefore, in order to have expressions
which involve only small translations, it is desirable to perform the SPF docking search
near the origin, and to transform only the top solutions back to the symmetry frame.
Figure 5 describes the problem graphically.

Thus, with the aid of Figure 5, it is preferable to begin instead with

T.(S) R(cv, B,7)A(r) «— Ry(w)To(S)R(a, 8,7)B(r), (112)

where w = 27/n and S = D/(2sin(w/2)). To calculate this equation with A at the
origin, we apply 7, (S)~! to each side to give

R(a, ) A(r) «— To(8) " Ry () T:(S) R(a, B,7) B(r). (113)
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Then, to locate B on the positive the z axis, we apply R,(—1) to each side, where ¢y =
/2 + w/2 (see Figure 5), to obtain

By(—=p)R(a, B,7) A(r) +— (110
Ry (=) T.(S) " Ry (w)T.(S) R(ev, B,7) B(r).

It can then be shown that
Ry(_w)TZ(S)ilﬁy(w)TZ(S) = TZ(D)Ry(W)Ry(_¢)7 (115)

where D is the distance between the two monomers. Furthermore, if we assume that
we are starting from a random monomer orientation, we can “bury” the y-rotation by
putting

By(—¢)R(a, 8,7) = R(', 8,7 (116)
to give
R(o', 8,7 )A(r) «— To(D)Ry(w)R(/, 8',7") B(r). (117)

As shown below, we can use a 1D FFT search near the origin to determine the parameters
(D,d/,(',7"). We can then transform the solution back to the original coordinate frame
by applying the operator T, (S)R, (1) to each side. In other words, if the FFT search
finds solutions (D, o/, 8,7/ ), the transformation matrix, M7}, that should be applied to
locate the A monomer on the positive z axis for the & docking solution is given by

M =T, (Sk)R,(7/2+ w/2)R(a, Bi,vh)- (118)
Similarly, the docked B monomer may be located by applying the matrix
M =T, (Sk)R,(7/2+w/2)T (D) R, (w)R(c, B Vi) (119)

Because it can be seen that M kB = Ey(w) M4, it follows that all remaining symmetry
mates may be generated from the coordinates of the A monomer.
Regarding the actual FFT calculation, by putting

A(r) = B(r) = R(0, 8',7)A(r), (120)

and by exploiting the fact that R, (a’) and 7, (D) commute, the docking equation in the
computational frame becomes

T.(D) 1 A(r) +— R.(/) 'Ry (w)R. (/) B(r)’ (121)
or more simply
A(r)" +— R, (o) 'Ry (w)R.(a/)B(r)". (122)

The Fourier series representation of the A monomer may be rotated and translated using

nlm Z Dmm )Anlm’ (123)
and

nlm Z TLTIL] k]m? (124)



3.2 MATERIALS AND METHODS

)

mm/

where each D’ ,(«,3,7) are matrix elements of the Wigner rotation matrices for the

spherical harmonics [27] and each Tqm€ j(D) is a translation matrix element for the SPF
basis functions [214]. Then, writing the rotations for monomer B in terms of the Wigner

rotation matrix elements (see eq. 18) gives

A A

R.(a/) ' Ry(w)R.(a")B(r) = 33" D) (~a’,0,0)x

nlm Tpq (125)
DY (0,w,0)DY) (o, 0,0) Bl Rt () Vi (6, 6),
and hence
R.(o) T Ry(w)Ro(a')B(r) = Z e~ ip=m)a’y
nime (126)

divp (@) By Rt (1) Yi (6, 6).

Taking the complex conjugate of A(r)” and integrating over the product with B then
gives a O(N?) complexity docking score

S(aiw,D,87") = 37 0T iy @) By A (27

nlmp

Summing over n and [ using
Cmp = Z dgl)p(w) ’:ﬂp ;flkm (128)
nl

reduces this to

S(o/;w,D,8,9) = Cpupe™ P, (129)
mp

The o rotation (which here is restricted by symmetry to the range 0 < o/ < 7) may be
scaled back onto the natural range of the FFT (see [216, 217]) by putting o/ = 2o/ and
writing

e =Y A (130)
t
to obtain
S(O/; W, Dv ﬁ/a ’7/) = Z Cmp)\z(:i)m’te_ita”- (131)
mpt

Finally, summing over m and p as
Qt = Z Cmp)‘g(:i)m,t- (132)
mp

gives a 1D Fourier series in o’
S(a;w,D,8,7) = > Qe (133)
t

Because we now have a simple complex exponential on the right-hand side, this expres-
sion shows that for a given translation D and rotation (f',7’) the pair-wise docking
score in an arbitrary C,, system may be calculated over a range of samples in o” by
using a 1D FFT.
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Figure 6: Left: Illustration of the C3 point group symmetry with the y axis as the principal
rotational symmetry axis and w = 27 /n. Each asymmetric protein monomer is represented by
a tetrahedron having four differently coloured faces (red, green, blue, and yellow). Right: A D3
system may be generated from two planar C3 solutions but note the change of axes here with
respect to the C'3 system on the left). When starting from a C), solution, the D, assembly problem
has one translational and one rotational DOF, here denoted as 7. (E) and R.(n), respectively.
From symmetry, the rotational search range in R (n) may be restricted to 0 < n < 27 /n.

3.3 RESULTS AND DISCUSSION
3.3.1 AnAnaS Computational Details

We implemented the method using the C++ programming language. The method is
called AnAnaS, which stands for Analytical Analysis of Symmetries. It is available as a
standalone executable and also as a module with graphical user interface for the SAM-
SON software platform. We can also provide the source code upon request.

We have exhaustively assessed our program with all the structures labeled as symmet-
ric in the PDB. This demonstrates the reliability and robustness of our method overall,
and its heuristic for the discrete optimization steps in particular. Running the tests on
all of these structures took us about 10 hours on a Windows laptop equipped with an
Intel Core iy @ 3.1 GHz CPU. For all the examples we tested, the running time was
largely dominated by the multiple sequence alignment, which is required to compare
the relevant alpha carbons in different subunits. Only in one case (2qzv) with a D,g sym-
metry, the computational bottleneck turned out to be the graph matching Indeed, the
perception of dihedral and cubic groups is based on a robust determination of permu-
tations between the assembly subunits corresponding to each rotation operator within
the symmetry group.

This sequence alignment can be seen as a potential weakness in the procedure as
it is not analytical. However, for homomeric assemblies, which are the most common
ones, the alignment is trivial since all the chains have the same sequence. The alignment
also prevents from comparing unrelated parts of different chains. Finally, it significantly
reduces the number of possible matches between atoms in different chains and makes
the method robust against inconsistencies in the input data.

Then, the formulation of the optimization problem takes time linear with the num-
ber of matched atoms, typically a few milliseconds. Finally, solution of the constrained
quadratic optimization problems 81 takes only constant time and the solver of the trust-
region subproblem converges to machine precision in 3-10 iterations, which takes a few
microseconds.
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Cy:1A0K C3:2WNV

Figure 7: Example of symmetry detection of four pseudo-symmetrical assemblies with Cy, Cs,
C5, and Cg symmetries. The determined symmetry axes are orthogonal to the screen. The order
n of each axis is represented with a regular n-gone, except of order 2 shown with a rhombus. The
corresponding RMSD symmetry measures are 1.406 A, 2.226 A, 1.613 A, and 2.736 A, respectively.
This illustration and some of the illustrations below were produced in SAMSON (www.samson-
connect.net).

We should also say that if no symmetry group is specified by a user, then the program
exhaustively tests all the symmetry groups that are consistent with the number of chains
in the input assembly. Also, we label an assembly as symmetric only if the corresponding
RMSD measure is smaller than 7 A and smaller than half of its radius of gyration. The
second condition is added to filter out very small asymmetric assemblies.

3.3.2 Pseudo-Symmetrical C,, detection

We will first demonstrate our method on complete pseudo-symmetrical assemblies,
for which we will determine the axis of symmetry and the RMSD measure. Pseudo-
symmetrical assemblies are complexes that look symmetrical, however their sequences
in different subunits are not the same. For the following example we have picked one
pseudo-symmetrical assembly from each of C», C3, Cs, and Cg cyclic groups that are
available in PDB. The PDB codes of these assemblies are 1AOK, 2WNYV, 5KX]I, and 3IYG,
correspondingly. Figure 7 shows the output of our method. The RMSD symmetry mea-
sures for these assemblies are 1.406 A, 2.226 A, 1.613 A, and 2.736 A, correspondingly.
The determined symmetry axes are shown with polygons.

3.3.3 Reconstruction of assemblies with missing subunits

Figure 8: Cyclic reconstructions of the PDB structure 2GZA. The grey color corresponds to the
asymmetric unit, which consists of three chains. A: In red we show the reconstruction of the
assembly based on the crystallographic information. The corresponding RMSD measure is 4.85
A. B: In blue we show the reconstruction made with the optimal Cg axis. The corresponding
RMSD measure is 2.74 A. C: In green we show the reconstruction made with the optimal C7 axis.
The corresponding RMSD measure is 4.24 A.

In the following example we will illustrate the possibility of finding the axis of sym-
metry of a partial assembly that does not pass through its COM. For this purpose we
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Order | RMSD (A) Axis
Cy 12.39 (
Cs 5.61 (0.991, 0.129, -0.036)

Cs 2.34 (0.994, 0.110, -0.030)

(
(

0.986, 0.161, -0.050)

Cr 3.93 0.995, 0.097, -0.027)
Cs 6.20 0.996, 0.089, -0.025)

Table 1: RMSD symmetry measures and the symmetry axes computed for several symmetry
orders of the 2GZA structure.

will consider the PDB structure 2GZA. The asymmetric subunit of this structure contains
three chains with identical sequence and crystallographic information explains that this
subunit should be replicated two times around the z-axis to obtain the biological assem-
bly.

From the three chains in the PDB file, we computed the RMSD for cyclic symmetries
of different order. Table 1 lists the obtained results. We can see that the asymmetric unit
present in the PDB file is consistent with a Cg symmetry (RMSD of 2.34 A), but a C
symmetry (RMSD of 3.93 A) could also be possible. We should also mention that the
found axes of symmetry are rather different from the z-axis provided by the crystallo-
graphic information. For example, for the Cs case, the two axes have about 6 degrees of
difference.

Using the computed axes, we can also reconstruct the Cs and C7 assemblies by a repli-
cation of the asymmetric unit for the Cg case, and a replication of the asymmetric unit
plus one more chain for the C7 case. Figures 8B-C show the obtained assemblies. If we
compute RMSDs for the reconstructed assemblies, we obtain the values of 2.74 A for
the Cg reconstruction (Fig. 8B), 4.24 A for the C; reconstruction (Fig. 8C), and 4.85
A for the reconstruction from crystallographic information (Fig. 8A). The big difference
between the symmetry measures obtained by reconstruction with and without the crys-
tallographic information, and the fact that in a crystal this assembly is less symmetric
than the C'7 reconstructed version, may suggest that this protein forms a C7 assembly in
solution and is forced to be in a Cs conformation in a crystal.

3.3.4 Completion by symmetry of AlphaFold2 predictions

The AlphaFold2 (AF2) method has recently become the baseline not only for single-
domain but also for multimeric predictions [35, 64, 66, 76, 108, 166, 276]. However, the
complexity and the memory consumption of the AlphaFold2 algorithm scale quadrati-
cally with the size of the assembly. Therefore, it is often preferable to reconstruct only
pair-wise or partial interactions within the assembly. As a result, a robust method
is needed to reconstruct the full assembly from partial predictions. A few stochastic
sampling approaches have just been proposed [35, 64]. However, we can exploit the
known symmetry of the final assembly and reconstruct it from partial predictions using
AnAnaS. We have applied this idea to a small benchmark composed of incomplete as-
semblies extracted from dihedral PDB structures of 1fo6, 1lk5, 1p8c, 1tgj. Then, we also
tested it on several blind AF2 predictions that demonstrated multiple binding interfaces.
Figure 9 shows one of the D3 completions of AF2 partial predictions.

3.3.5 Generation of perfectly symmetrical assemblies
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Figure 9: A: A partial prediction of a D3 assembly by AF2. B: Symmetric completion by AnAnaS.

A particularly interesting task in molecu-
lar modeling and crystallographic appli-
cations is to use an approximately sym-
metrical assembly as a starting model and
generate a perfectly symmetrical structure
from it. As a starting structure one can use
an assembly from molecular dynamics _ ,
simulations, a pseudo-symmetrical assem- Figure 101 A: A pseudo-symmetrical C'3 assem-
bly, or the one with non-crystallographic bly (PDB code 2IX2) with the axis of symme-
try shown with the triangle. Its three chains
symmetry, for example. Then, we proceed . .
by computing the best C, axis from the are shown with three different colors and are
n

= slightly different from each other. B: The sym-
initial model. After, we choose one of the yetrized version of this assembly. Here, we ar-

subunits as a ‘master” subunit and repli- bitrarily chose the red chain from the complex in
cate it around this axis to obtain the per- A and replicated it to obtain the perfectly sym-
fectly symmetrical assembly. Figure 10 il- metrical assembly.

lustrates this approach when using a pseudo-symmetrical C'3 assembly (PDB code 21X2)
as an input structure. This structure is composed of three chains with two different se-
quences. The RMSD measure of this structure is 6.20 A. The symmetrized assembly is
perfectly symmetrical and obviously has the RMSD measure of o A.

)

3.3.6 Comparison of AnAnaS with other methods

In order to demonstrate the efficiency of our approach, we compared it with two other
published techniques. The first one was developed by Dryzun, Zait, and Avnir [61], and
we will refer to it as to CSM (Continuous Symmetry Measure). It considers all the atoms
in the input assembly and finds the symmetry axis by alternatively refining the axis of
rotation and the permutation between the atoms. Table 3 lists all the cyclic examples
found in the CSM article [61]. We should note that Dryzun, Zait, and Avnir [61] report
either the symmetry measure or the computational time. The CSM symmetry measure
can easily be converted to the RMSD symmetry measure by the following equation,

CSM x R2
50 ’

where R, is the radius of gyration of the assembly. The second method is from Levy et al.
[142], and will be called Levy. It exhaustively scans a finite set of axes of symmetry and
chooses the best one. Unlike the previous technique, it has to be fed with lists of atoms
organized in subunits. Therefore, to prepare the input, we used the same alignment
procedure as we implemented in our method, and we used parameters suggested by
the author.

Table 3 lists the execution time and the symmetry measure (RMSD value) for the three
tested methods. It shows that our method scales with the size of the input assembly

RMSD? = (134)
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PDB Code Group RMSD(AnAnaS) RMSD(CSM) RMSD(Levy) AnAnaSTime?® CSM Time® Levy Time?

1HPV Co 023 A - 023 A 0.02's 1.9s 0.11s
1LGN Cs 0.20 A - 036 A 0.15 S 34s 1.02 8
1NN2¢ Cy 0.00 A - 0.00 A 0.19s 77's 0.77s
2FKW Coy 028 A - 081 A 0.15 S 1175 S 3.9s
2XE2 C3 o012 A 023 A o012 A 0.11 S - 0.42's
3FVg Cs 277 A 19.8 A >7 A 0.73 8 - 7.32'8
3FVg Cy 048 A 7.6 A 0.60 A 0.73 s - 1.36 s
3KML Ci7 036 A 045 A 0.67 A 178 - 748

4 AnAnaS and Levy times were measured on a Windows laptop equipped with an Intel i7 @ 3.1 GHz.
b CSM times were taken from [61] with a different, a 7 year older, CPU. However, we believe that the order
of magnitude of these timings is still correct.
¢ For this structure, the biological assembly was used.
Table 2: Comparative results between AnAnaS, CSM and Levy methods tested on cyclic examples

collected from the CSM paper [61].

much better than the two other methods. Indeed, its runtime typically stays below one
second, even for large assemblies.

On all the tested examples, our method is significantly faster than the one from Levy
and it also produces a lower RMSD measure. In practice, we obtain the same RMSD
when the actual symmetry axis is among the ones sampled by Levy’s method. Compar-
ison to CSM is a bit more difficult because this method considers more atoms (reference
points) than we do, and also because we do not have the computed axes for the analysis.
These additional atoms can explain small differences in the computed RMSD values. We
should note that more freedom in choosing the correspondence between the atoms can
significantly lower RMSD in poorly symmetrical assemblies. These two effects explain
the small differences in the 2XE2 and 3KML examples, and also the difference in the
3FVg example when measuring the Cg symmetry. However, we believe that the iterative
process of CSM was stuck in a local minimum when measuring the C; symmetry. In-
deed, visual inspection reveals that the 3FV9g assembly has a D, symmetry that seems
of a very high quality, thus it is not possible that the average deviation between the
different dimers is more than 7A, as reported by CSM. In this example, the dihedral
symmetry makes the 4-fold axis much more difficult to detect by CSM, because several
2-fold axes are also present.

3.3.7 High-order Symmetry Examples

Figure 11 presents an example of symmetry axes detection for each of the cubic groups,
i.e. tetrahedral, octahedral and icosahedral, and for a dihedral group of order 6. These
assemblies do not possess any particular computational difficulty.

A B C. D

Figure 11: Four examples of symmetric assemblies with their axes. All of these are seen from a
3-fold axis except for the last one, seen from a 6 fold axis. The order n of each axis is represented
with a regular n-gone, except of order 2 represented with a rhombus. A: A tetrahedral assembly
(1doi) with the RMSD loss of 0.36 A. B: An octahedral assembly (1bfr) with the RMSD loss of
0.22 A. C: A perfect icosahedral assembly (1stm) with the RMSD loss of 0.0 A. D: A dihedral Dg
assembly (1f52) with the RMSD loss of 0.20 A.
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Figure 12: The 5tov octahedral assembly. The homologous chains are colored with the same color.
A: The chains of the first type form an octahedral assembly with the RMSD loss of 2.94 A. B:
The chains of the second type also form an octahedral assembly with the RMSD loss of 2.67 A.
The axes are slightly different from the first assembly, with about 1° of difference. C: The axes
are computed for the full assembly, with the RMSD loss of 2.83 A.

Some assemblies contain more chains than the number of asymmetric subunits ex-
pected from their point group symmetry. Each subunit thus must be composed of sev-
eral chains. For example, Figure 12 shows the 5tov structure, which is an octahedral as-
sembly with 48 chains and a stoichiometry of A24B24. This example demonstrates that
our method determines symmetry axes in assemblies where the asymmetric subunits
are composed of multiple chains. We should also note that in this case it is important
to rigorously take into account all the chains, since the angular difference in the axis
determination can be as large as 1° if only chains A or B are considered.

While scanning the PDB, we found several assemblies that are classified with a low-
order symmetry group, but can alternatively possess a higher symmetry group. For
example, Figure 13 shows the 10cw structure, which is a perfect Cy assembly with a
stoichiometry of A4B4 and the RMSD loss of o A. Our algorithm also detects a Dy
pseudo-symmetry with the RMSD loss of 2.68 A, which is rather low. The visual inspec-
tion of this protein confirms this possibility (see Fig. 13). Similarly, we also discovered
some assemblies with cubic symmetries that were labelled as cyclic in the PDB database.
Figure 14 shows two of such examples. One is the gitv protein labelled as Cy (RMSD loss
of 4.44 A), but also possessing a tetrahedral symmetry with the RMSD loss of 10.94 A.
The other is the shpn protein labelled as C5 (RMSD loss of 0.68 A), but also possessing
an icosahedral symmetry with the RMSD loss of 0.56 A.

Figure 13: The 10cw protein colored in blue for the A chains and red for the B chains. A: as seen
from the 4-fold axis. B: as seen from a 2-fold axis computed with our method.
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—

Figure 14: A: The 4itv protein classified in PDB as Cy (RMSD loss of 4.44 A), also has a tetrahedral
symmetry with the RMSD loss = 10.94 A. B: The shpn protein classified in PDB as C5 (RMSD
loss of 0.68A), also has an icosahedral symmetry with the RMSD loss = 0.56 A.

3.3.8 Comparison with other methods

We compared our approach with two other published methods following the compari-
son strategy from our previous work on symmetry detection in cyclic protein assemblies
[186]. More precisely, we compared it to the results published by David Avnir and col-
leagues [61, 198]. We will refer to it as to CSM (Continuous Symmetry Measure). We
also compared our method to the the one from Emmanuel Levy [142], and will refer to
it as to Levy. Please refer to the first part of our paper [186] for more details.

For the comparison, we have selected all dihedral assemblies presented in the original
CSM publications [61, 198]. These are listed in Table 3. We have also complemented
these assemblies with three examples of cubic groups, 5x47 with tetrahedral symmetry,
4p18 with octahedral symmetry, and 4zor with icosahedral symmetry.

Table 3 lists the execution time and the symmetry measure (RMSD value) for the
three tested methods. As in the cyclic case [186], it clearly shows that our method scales
with the size of the input assembly much better than the two other methods. This is
especially notecable for large assemblies. Regarding the accuracy of the obtained results,
it is typically much better than in the Levy method for high-order symmetries. As we
have mentioned in the first part of this work, comparison to CSM is trickier because this
method considers more atoms than we do. Therefore, the additional atoms add more
freedom to the CSM method when it chooses the correspondences between these, which
can explain small differences in the computed RMSD values. For example, in the 1f52
case CSM reports a smaller RMSD measure than we do (0.15 A vs. 0.19 A).

3.3.9 Exhaustive analysis of symmetric structures in the PDB

10000 1

To demonstrate the efficiency of our ap- " ST;I;;(;{W
proach, we exhaustively analyzed all the £ 1000 ‘
structures labelled as symmetric in the £ L] Cyelic
PDB. To do so, we downloaded their bi- E 100 Il Dihedral
ological assemblies (about 40,800 cyclic, g 0 I Cubic
9,800 dihedral and 1,300 cubic examples ~

as for January 2018) and assessed the sym- T

metry for each of these. Figure 15 plots the SS2s3S3 ‘;MOSD’:E A

distribution of the RMSD symmetry mea- Figure 15: Distribution of the RMSD symmetry
sures for assemblies with different types measure for different types of symmetry shown
of symmetry. We should note that there in alog-log scale.
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PDB Code Group RMSD(AnAnaS) RMSD(CSM) RMSD(Levy) AnAnaS Time® CSM Time® Levy Time?®

1mso° D3 1.36A - 1.39A 0.138 3.78 0.498
2hhb Do 1.64A 2.43A 1.64A 0.05s 12.28 0.28s
2Nnwc Dy 0.81A - 0.89A 0.63s 39508 2.3s
2rgw D3 0.34A 0.39A 0.47A 0.23S - 1.8s
10di Ds 0.35A 0.50A 0.47A 0.148 - 1.58
1f52 Dg 0.19A 0.15A 0.54A 1.218 - 16.65
5X47 T 0.85 A - 1.02 A 0.32'8 - 5.62's
4p18 @) 0.19 A - 213 A 3158 - 131
4zor® I 1.05 A - 238 A 18.8 s - 1118 s

2 AnAnaS and Levy times were measured on a Windows laptop equipped with an Intel iy @ 3.1 GHz.
b CSM times and CSM symmetry measures were taken from [61] and [198] with a different, 7 year older, CPU. However, we believe
that the order of magnitude of these timings is still correct.
¢ For these structures, the biological assembly was used.
Table 3: Comparative results between AnAnaS, CSM and Levy methods for dihedral and cubic molecular

assemblies.
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Figure 16: Distribution of the RMSD symmetry measure with respect to the radius of gyration

for non-perfectly symmetric assemblies from PDB.

are many structures with a very low RMSD value (< 0.001A), which is the precision
of the pdb format. These are typically obtained by replicating subunits with crystallo-
graphic symmetry or BIOMT transforms, so they have a perfect symmetry. Regarding all
other structures, we can see that all the three distributions of cyclic, dihedral, and cubic
groups follow the same law in the log-log scale. The maxima of the distributions belong
to the range of 0.2-0.5 A, and there are no noticeable differences between the shapes of
all of these.

Another interesting question we are able to answer using our tool is whether the de-
gree of asymmetry is related to the size of the assembly under consideration. In other
words, we can study if the RMSD symmetry measure is related with the radius of gy-
ration of the symmetric assemblies. A geometrical intuition would suggest that as the
angular uncertainty should stay constant with the size of the assembly, and of protein
assembly grows larger, the imperfections of its symmetry become more pronounceable.
Visually, we would expect a linear correlation between the RMSD symmetry measure
and the radius of gyration of the assemblies. However, it is not the case in reality. Indeed,
Figure 16 does not demonstrate any clear relation between the size and the imperfection
of the PDB assemblies, and the correlation between these two variables is only about o.1.
Interestingly enough, large assemblies are very well organized with sufficiently small
values of the RMSD measure. This is one of the reasons behind our choice of RMSD as
the symmetry measure instead of its normalization by the size of the structure (as it is
often done in other methods [61, 198]). We should specifically add that in the case of
very small assemblies, we consider them symmetric only if the corresponding RMSD
measure is smaller than half of the radius of gyration of the assembly.
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3.3.10 How good are symmetry annotations in the PDB?

Our tool also allows to assess the overall quality of annotations of symmetric assemblies
in the PDB. More precisely, we compared the highest symmetry group suggested by our
method with the group provided in the PDB. If these two groups are different, there are
two types of possible errors. First, one of the two groups can be a subgroup of the other
one (e.g. Cy is a subgroup of D). This type of errors simply results from a difference of
sensibility between the annotation methods. We call the groups compatible. Second, the
two groups may also be incompatible (e.g. Cs and Ds). This case means that one of the
two results is wrong and a careful visual inspection is generally required.

Table 4 lists the results for 51,358 PDB structures. In 50,378 cases (98.1% of all the
cases), the symmetry group annotated by the PDB is the one found by our method. These
cases are located at the green diagonal of the table. Red cells show the incompatible
groups, while white cells show the compatible groups. Our method is generally more
sensitive compared to the PDB annotation. Indeed, there are 845 structures (1.6%) for
which it finds a higher order compatible group, while only in 125 cases (0.2%) the PDB
annotated compatible group has a higher order. Finally, there are only 13 cases (0.03%)
that present incompatible groups. We have visually inspected all of these structures.
The two of these annotated as 7" and detected as C; are gaod and gaoe, for which the
biological assemblies are indeed C5. The 11 other cases have uncertainties between Co
and C3 annotation. In all of these cases, both symmetries are detected by our method,
and the difference of RMSD between the two symmetries is smaller than 1 A. Moreover,
some of these examples have less than 5 amino acids in each chain, and are at the limit
of the usability of the annotation techniques. We can also mention two particular cases.
One is 3alz, for which both perfect C3 and C axes are detected, and is actually a part of
a D3 assembly. The other is 3aqq, which is annotated as C3 in the PDB, but looks much
more like a partial C3 assembly.

The first column of Table 4 lists 75 structures for which AnAnaS was not able to detect
symmetry. There are 4 reasons that explain this:

¢ For the 6 icosahedral structures, we ran out of memory at the discrete optimization
step. Thus, no results were outputted and we considered these cases as assymetric.

* Some structures have missing or additional chains that are not supported by our
program. For example, 2z12 has a D7 symmetry but contains 24 chains, 10 of them
being very small peptides. AnAnaS expects a multiple of 14 chains as input to test
a D7 symmetry and, therefore, does not test it. However, if we remove these small
peptides, we detect a D; symmetry with an RMSD of 0.35 A.

* Some structures are at the edge of the threshold that we set up for the assemblies
to be symmetric. More precisely, as we explain it below, RMSD must be smaller
than 7 A and also smaller than half of the radius of gyration.

¢ Finally, some structures do not possess the symmetry annotated in the PDB. For
example, 20l9 is the structure of two identical peptides translated with respect to
each other, and these are annotated as Cs, while a s symmetry would necessarily
require a rotation between the two peptides.

3.3.11  SAM Results

To test our symmetry assembly approach, we selected a representative example struc-
ture of each complex symmetry type for which 3D structures exist in the 3D-Complex
database. These examples are listed in Table 5. For each complex, we manually extracted
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PD naS| Cy | Cy | C3 | Cy | C5 | Cs | C7 | Cs | Dy | Ds | Dy | Ds | Dg | D7 |[Ds | T | O | I |Total
Cs 54 |3309] 8 | 23 6 470| 15 | 7 | 1 | 1 |205] 2 33883
C3 2 3 [4188 16 60 4269
Cy 1 2 1046 7 4 1060
Cs 6 561 1 568
Ce 2 2 411 1 416
Cr 104 6 110
Cs 34 3 37
Do 3 | 26 6571 6 1 2 6609
Ds 8 15 1939 1952
Dy 1 1 654 5 661
Ds 1 236 237
Dg 106 106
D~ 1 1 99 101
Dg 34 34
T 2 359| 3 364
o 329 329
1 6 2 617 | 625

Table 4: Summary of the symmetry groups annotated in the PDB (rows) against the ones dis-
covered by AnAnaS (columns). Red cells mark incompatible groups, while white cells mark
compatible groups and green cells mark identical groups. For example, first cell shows that
there are 54 structures annotated as Co in the PDB for which we found a C; symmetry (i.e. no
symmetry).

the first monomer from the PDB file to serve as the A monomer, and we applied the SPF
assembly algorithm for the given symmetry type using SPF expansions to polynomial
order N=30.

More specifically, for the C,, correlation search (and for the initial trimeric search in
the higher symmetry types), the (3,v) angular samples were generated from an icosa-
hedral tessellation of the sphere with 812 sample vertices with an angular separation
between the vertices of approximately 7.5°. The FFT search in a was calculated using
64 steps of approximately 2.8° in the first hemisphere, and up to 64 translational steps
of 0.8 A were applied starting from an initial inter-monomer distance estimated from
the monomer radius. Thus, a total of approximately 6 x 10 trial A; «— B orientations
were generated and scored in the FFT search. The B; monomers of the generated solu-
tions were then clustered using a greedy clustering algorithm with a 3 A RMSD cluster
threshold in order to remove near-duplicate solutions, and the top-scoring member of
each of the first 100 clusters were retained as distinct solutions. For the C,, complexes,
any remaining monomer coordinates were generated by symmetry, and the top 100 so-
lutions were saved as PDB files. When calculating the FFT correlations in parallel using
these parameters, it takes approximately 30 seconds to generate 100 (), complexes on
a dual processor workstation with two 2.3 GHz E4510 Intel Xeon processors (8 cores in
total).

For the D,, T, O, and I complexes, similar angular and translational search parame-
ters were then used again in the subsequent trimeric assembly search using the top 100
trimeric solutions. For these complexes, the calculation time is governed by the cost of
constructing the trimeric pseudo-molecules and the cost of performing the subsequent
correlation search explicitly, without the benefit of a FFT. Typical execution times are
between 60 and 9o seconds per complex.

To assess the quality of the generated complexes, the coordinates of the crystallograph-
ically determined complex structure were used as a reference structure with which to
calculate root-mean-squared deviations (RMSDs) between the calculated and reference
monomer coordinates. For all of the examples in Table 5, the “Rank-C,,” and “RMSD-
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M-Zdock M-Zdock M-Zdock ~ SymmDock SymmDock SymmDock SAM SAM SAM  SAM SAM SAM
PDB  #Res Sym Rank-C,, RMSD-B; Time Rank-C,, RMSD-B; Time Rank-C,, RMSD-B; RMSD-B5 Rank RMSD Time
iM4G 182 Co N/F N/F 5963 26 21.47 6 1 1.82 - 1 1.82 45
1F70 117 C3 1 2.33 4641 1 2.32 14 1 2.82 - 1 2.82 48
1F8C 389 C4 1 2.00 11171 1 2.37 62 1 2.04 - 1 2.04 40
1G8Z 104 Cs 1 1.87 3187 1 2.02 15 1 1.62 - 1 1.62 43
1GLy 412 Cg 1 1.41 14228 1 1.41 40 1 0.68 - 1 0.68 50
1181 75 Cr 1 1.95 2571 1 4.02 7 1 1.17 - 1 117 43
1VsW 240 Cg 1 2.49 7354 1 2.93 14 1 2.51 - 1 2.51 44
1QAW 68 C11 1 2.61 2196 1 1.75 5 1 1.09 - 1 1.09 43
1XIB 389 Dy - - - - - - 1 1.01 0.68 1 086 319
1GUN 68 D3 - - - - - - 2 1.35 0.99 1 1.19 308
1BgL. 120 Dy - - - - - - 1 1.34 1.57 1 1.46 393
1L6W 221 Dp - - - - - - 1 1.26 3.61 5 2.70 479
1ZNN 246 Dg - - - - - - 1 1.34 1.92 1 1.66 439
1YG6 194 D7 - - - - - - 1 1.94 3.30 1 270 381
1Q3R 519 Dg - - - - - - 2 3.65 10.83 25 7.98 397
2CCy 65 T - - - - - - 1 1.97 2.63 1 232 199
1IES 175 O - - - - - - 1 1.24 0.94 1 1.10 201
1HQK 155 T - - - - - - 1 1.45 1.88 1 1.68 200

Table 5: Example symmetrical complexes assembled from a single monomer by the SAM algo-
rithm with N=30. Here, #Res denotes the number of residues in one monomer of each structure,
B denotes the B monomer of the first C), system, and By denotes a B monomer of the second
ring system in D,, complexes or of an adjoining C3 trimer for T', O, and I complexes. All RMSD
values are in A units and all times are elapsed seconds for a Linux workstation with dual 6-core
(2.67 GHz) Intel X5650 processors. “N/F” denotes not found. A hyphen denotes not applicable.

B,” columns show the rank and RMSD for the first B monomer of the C;,, complexes (or
the trimeric component in the higher symmetry cases) found within 10 A of the crystal
structure. This column shows that in all but one case (1GUN), our 1D FFT search is cor-
rectly identifying a near-native interface between the A and B monomers. Given that this
calculation is rigidly assembling monomers which should fit perfectly, these very good
results are not especially surprising. Nonetheless, these figures confirm that our FFT cor-
relation expressions are implemented correctly. Figure 17 shows cartoon representations
of the first near-native solution found for each complex.

In order to compare the performance of SAM with some examples of existing symme-
try docking algorithms, we selected M-Zdock [193] as a good example of a FFT-based
algorithm and SymmDock because it is based on a geometric hashing technique [223].
Table 5 shows that these algorithms can also successfully find rank-1 solutions with
low RMSDs for all of our (), examples (both M-Zdock and SymmDock were designed
only for C,, complexes) except for the first Cy structure (1M4G) for which M-Zdock
does not find a solution in its top 10 predictions and for which SymmDock finds a very
poor solution only at rank 26. However, if we consider the 7 examples (C3 to C11) for
which all three algorithms produce rank-1 solutions, Table 5 shows that SymmDock is
approximately twice as fast as SAM, while SAM is approximately 130 times faster than
M-Zdock, with average execution times of 23s for SymmDock, 44s for SAM, and 5,734s
for M-Zdock. Furthermore, the RMSD-B; columns of this table show that SAM often
gives considerably better quality solutions, with average RMSD values of 1.70 for SAM,
2.09 for M-Zdock, and 2.40 for SymmDock. These results show that SAM performs quite
favourably when compared to these previous approaches.

In order to assess the trimeric pseudo-molecule assembly step for the D,, T, O, and I
complexes, the “RMSD-B,” column of Table 5 reports the best RMSD found by SAM for
the calculated coordinates of the B, monomer. This column shows that our strategy of
scoring the interactions between trimeric pseudo-molecules works very well for all of the
examples except for the Dg complex (PDB code 1Q3R). Finally, the “Rank” and “RMSD”
columns give the rank and overall RMSD of the first B; and B> solutions found within
10 A of the crystal structure. These columns show that in 16 out of the 18 examples,
the first solution calculated by SAM corresponds very closely to the crystal structure.
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Figure 17: The example symmetrical complexes assembled by SAM, starting from a single
monomer from the crystal structure. Computational details are provided in Table 5.

For the D5 example (PDB code 1L6W), the first near-native structure is found at rank
5. Although a good trimer is found at rank 2 for the Dg example (PDB code 1Q3R), the
subsequent trimer assembly step finds a rather poor near-native orientation only at rank
25.

A limitation of the SPF approach is that most of the zeros in the basis functions appear
within about 50A from the origin. This means that very large protein domains, typically
greater than about 500 residues, cannot be represented accurately by a single SPF ex-
pansion. We believe that this explains the poor performance of the 1Q3R example (519
residues per monomer). Taking into account the possibility that one monomer might
consist of several chains, we have calculated that 87% (9,024/10,176) of C,, complexes,
91% (2,704/2,965) of D,, complexes, and 43% (60/139) of the T (43/86), O (12/47), and
(non-viral) I (5/6) complexes in the 3D-Complex database have less than 500 residues
per monomer. In other words, we estimate that SAM could be usefully be applied in
approximately 89% of protein docking problems that involve point group symmetry.
One way to circumvent the monomer size limitation would be to use a coarse-grained
force-field model to perform the trimeric assembly step, for example. Indeed, since FFT
correlation function used here is based on a simple surface skin density model of pro-
tein shape [215], it would be advisable to refine and re-score the SAM models using a
conventional molecular mechanics force field if clash-free atomic models are required.

While this approach focuses on complexes having point group symmetry, we expect
it would be relatively straight-forward to extend the SAM algorithm to deal with com-
plexes having translational symmetry such as cylindrical and helical structures. Cylin-
drical structures could be made in the same way that we make a D,, complex from two
C,, systems, but without applying a flip (&, (71)). Helical structures could be made by
introducing an additional translational DOF in our (), assembly algorithm. This would
correspond to replacing R, (w) with T, (n) R, (w) throughout Section 3.2.14, where T}, (1)
represents a translation along the major helical axis.

The SAM program may be downloaded for academic use at http://sam.loria.fr/.
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3.4 CONCLUSION

This Chapter presents an efficient computational approach to assess the quality of point-
group symmetries in macromolecular assemblies called AnAnaS. We express the quality
through the symmetry measure using a Euclidian 3D distance. We showed that the
problem of finding the best symmetry axis can be formulated as a constrained quadratic
optimization problem and provided an efficient solution to it. More precisely, using
the quaternion arithmetic, we expressed the rotation operators through quadratic forms
with constraints. This allowed us to find the unique solution using efficient methods
developed for the trust-region sub-problem. We have demonstrated the efficiency of the
method on several examples including partial assemblies and pseudo symmetries. We
have also compared the presented method with two other published techniques and
showed that out method is significantly faster and generally much more robust and
efficient on all the tested examples.

We have demonstrated the efficiency of our method on all the structures marked
as symmetric in the PDB, including those with multiple chains per asymmetric sub-
unit or with pseudo-symmetry. It allowed us to verify symmetry annotations in the
PDB and detect several inconsistencies in the annotations. For example, in 1.6 % of
the cases, we detected a higher symmetry group compared to those provided in the
PDB. We have also compared structural organization of protein assemblies with differ-
ent point group symmetries and concluded that these follow the same distribution laws.
Finally, we have detected that the angular impurity in symmetry does not scale with the
size of the assemblies. More precisely, very often these are the largest and high-order
symmetry systems that are organized the most regularly. The method is available at
https:/ /team.inria.fr/nano-d /software/ananas/.

This Chapter also presents a novel FFT-based approach called SAM for building mod-
els of protein complexes with arbitrary point group symmetry. The basic approach re-
lies on a novel and very fast 1D symmetry-constrained spherical polar FFT search to
assemble cyclic C), systems from a given protein monomer. Structures with higher order
(Dp, T, O, and I) symmetries may be built by performing a subsequent symmetry-
constrained Fourier domain search to assemble trimeric pseudo-molecules. Overall, our
results demonstrate that the SAM algorithm can correctly and rapidly assemble protein
complexes with arbitrary point group symmetry from a given monomer structure in
17 out of 18 test complexes. The main limitation of our approach is that the resolution
of the SPF representation begins to degrade with monomers having more than about
500 residues, and this therefore sets a limit on the size of symmetrical complexes that
can be modelled. We propose that one way to address this limitation would be to use a
residue-based coarse-grained force field representation in place of the Fourier domain
pseudo-molecules during the final trimeric assembly stage.
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MODELING MOLECULAR MOTIONS

Macromolecular flexibility links protein structures with their function. I have been examin-
ing multiple ways how it can be efficiently described and predicted. For its description,
we have proposed a scheme for the nonlinear Cartesian normal mode analysis of large
macromolecules, such as proteins and their complexes [94]. It allows rapid computation
and a very compact representation of complex molecular motions. The method is very
CPU and memory efficient, it is typically two orders of magnitude faster compared to
the state of the art. The tool is getting popular in the community and we have multiple
ongoing methodological collaborations (Elodie Laine at University Sorbonne; the team
of Randy Reed at MRC Cambridge; Nathalie Reuter at the University of Bergen; Pablo
Chacon at IQFR-CSIC Madrid). The main idea of this method is to compute collective
motions in a reduced rigid-body space using diagonalization of the reduced Hessian
matrix PTHP, where P is a rigid-body projector, and H is the all-atom Hessian. Then,
we demonstrated that the obtained rigid-body linear motions (&, ¥') can be nonlinearly
extrapolated to large amplitudes ¢ and all-atom representation A’(t) using the following
equation,

A'(t) = R(@t) (A — ) + 7 + U t, (135)

where R(&t) is the rotation matrix describing a rigid block’s rotation about axis & by an
angle wt, 7 is the center of rotation of a rigid block, determined using values of (&, ¥),
and 7| is a component of v collinear to &.

I have applied this technique to some practical biological examples with my experi-
mental collaborators [89, 107]. We then also combined this methodology with FFT-based
shape matching [95], and applied it to flexible docking [177] and flexible fitting of tem-
plates into small-angle scattering profiles [83]. We used this technique to predict protein
transition between multiple states [84, 130], and also as a component of protein structure
prediction pipeline in data-assisted challenges in CASP13 [67, 101].

4.1 INTRODUCTION

Large macromolecules, including proteins and their complexes, are intrinsically flexi-
ble, and this flexibility is often linked with their function. A molecule in solution can
be viewed as a structurally heterogeneous ensemble, where a finite number of confor-
mational states (e.g. active-inactive, bound-unbound) may become stable under certain
conditions to perform specific tasks. Identifying the molecular states relevant to protein
functioning is necessary for our understanding of biological processes. Moreover, target-
ing protein functional motions bears a great potential to control and modulate proteins’
activities and interactions in physio-pathological contexts.

Structural heterogeneity can be probed by various experimental techniques. These in-
clude X-ray crystallography, cryo-electron microscopy (cryo-EM), nuclear magnetic reso-
nance (NMR), small-angle scattering and many others [23]. The two first methods allow
obtaining large macromolecular structures at high resolution. While X-ray crystallogra-
phy captures single stable states, cryo-EM allows observing conformational ensembles
in solution. The resolution attained by cryo-EM is very often lower than that of X-ray
structures, mainly due to the structural heterogeneity of the measured samples. However,
the ongoing revolution in cryo-EM instrumentation [36] has supplied an exponentially
growing body of near-atomic resolution structures. These techniques provide valuable
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insights on proteins’ functioning and interactions with their environment. Neverthe-
less, experimental protein structure determination remains a time consuming and costly
process. The systematic description of the variety of shapes a protein adopts under par-
ticular environmental conditions, upon post-translational modifications and/or partner
binding still remains out of reach. Hence, there is a need for computational tools able
to efficiently and accurately predict functionally relevant protein conformations and
macromolecular motions in general.

Several decades ago, Hayward and Go [92] observed that large-scale protein dynam-
ics can be described with a set of just a few collective coordinates, accessible through the
normal mode analysis (NMA). Thus, the latter provides an efficient way for reducing the
dimensionality of the initial system and allows to study conformational transitions in
proteins and their complexes. This has motivated the development of NMA-based tools
for multiple biological applications, including flexible fitting of atomistic structures into
cryo-EM maps [150, 227, 228, 242, 246, 247, 250, 279] or one-dimensional scattering pro-
files [79], prediction of crystallographic temperature factors [126, 163, 283], generation of
structural ensembles for cross-docking [38, 172], prediction of protein hinge regions [65,
225], flexible docking [70, 161, 170, 177], refinement of crystallographic structures [52,
146] and docking solutions [145, 160, 264], and many others. The suitability of the NMA
to model conformational dynamics varies widely depending on the system studied and
on the type of motions involved [155]. The NMA was shown to better describe highly
collective motions, compared to localized deformations [245].

Overall, the NMA is an old and well established technique [272] that has recently
found many new applications in the field of structural biology and structural bioinfor-
matics [18]. The internal motions of a protein have been a topic of great interest for a
long time. One reason for this interest is the fact that some of these motions are known
to play an important role in protein functions [17, 18, 118, 162, 271]. While molecular
dynamics can nowadays accurately predict these motions, it is typically very compu-
tationally expensive, whereas NMA is relatively cheap and easily allows us to either
extract the so-called essential dynamics of the protein from the MD trajectories [8], or to
compute some low-frequency collective motions for a single structure [15, 33, 118, 139].
These low-frequency motions are particularly interesting to the structural biology com-
munity because they are commonly assumed to give more insight into protein function
and dynamics [18, 93].

Atomistic molecular dynamics (MD) simulations represent an alternative to the NMA.
They provide a practical tool to describe the structural heterogeneity around an equilib-
rium state and the flexibility exhibited by solvent-exposed small regions, such as loops.
For instance, MD-based sampling has been applied to model the conformational diver-
sity embedded in localized regions of cryo-EM maps [30]. In addition, the concept of col-
lective coordinates has been extended to MD [7, 237, 238], which, as a result, have been
applied to the study of free energy changes between different conformational states, and
rare-event dynamics [69]. Nevertheless, MD simulations are much more costly than the
NMA and the characterization of conformational transitions on a large scale with the
former still remains computationally prohibitive.

This Chapter presents an efficient real-time method to compute nonlinear normal
modes (the nonlinear rigid block, NOLB, NMA method [94]) and to predict biomolecu-
lar transitions involving a wide range of motions, from local deformations, e.g. of a small
loop, to highly collective domain motions. It follows several of our publications [84, 94,
130, 177] and also presents some unpublished work. NOLB extends the classical NMA to
describe nonlinear motions. Specifically, it extrapolates motions computed from instanta-
neous linear and angular velocities to large amplitudes. The resulting molecular motion
is represented as a series of rigid block twists. We apply this nonlinear extrapolation
to a combination of a few low-frequency normal modes to approximate conformational
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transitions. Importantly, our approach is conceptually simple and explores the confor-
mational space in the Cartesian coordinate system. The nonlinearity of the computed
motions allows a better approximation of experimentally observed transitions.

So far, the computation of nonlinear transitions using the NMA formalism has only
been possible by cutting them in small steps and recomputing the normal modes at
each step, and/or by performing the NMA in the internal coordinate system [75, 150,
152, 163]. On average, the internal-coordinate NMA (iNMA) requires a smaller number
of modes than the classical Cartesian-coordinate NMA to describe large structural tran-
sitions [163], and better predicts transitions upon protein docking [75]. Working with
internal coordinates also allows for large dimensionality reduction through variable se-
lection and model simplification [115, 140, 151, 153, 163, 179]. Despite these advantages,
iNMA implies solving the generalized eigenvalue problem and dealing with necessarily
dense interaction matrices. This makes it computationally costly and prevents its appli-
cation on a large scale. Moreover, small changes in the internal coordinates may result
in very large overall structural changes, which makes the approach less amenable to
conformational space exploration, as it generates instability in the solution.

To demonstrate the advantages of the method reported here, we assess structural tran-
sitions computed with the classical linear normal modes, the Cartesian nonlinear normal
modes, and an iterative scheme where the nonlinear modes are updated while progress-
ing to the target state. For this purpose, we composed three test benchmarks of proteins
exhibiting various types of structural transitions. The first test case presents examples
of large domain motions, where ‘open” and ’closed” conformations can be clearly iden-
tified [150]. The second one is comprised of proteins changing their conformation upon
binding to other proteins [265]. The third one contains test cases from the Cryo-EM
2015/2016 Model Challenge, where the transition takes place between a crystal form
and a conformation in solution [135]. We find that the classical linear NMA behaves
well on the first set, where the motions are mostly collective, but is not suited to de-
scribe the more localized deformations and very small transitions exhibited by the two
other sets. We show that our Cartesian nonlinear approach systematically obtains better
transitions compared to the linear one. Indeed, the final predicted structures are closer
to the experimentally known targets and display less distortions. The improvement is
particularly significant on changes associated to partner binding. Also, the transitions
are stereochemically correct, as highlighted by high Procheck [133] G-factors along the
transitions. Moreover, structures along the transitions approach several experimentally
validated intermediate states. We further demonstrate the usefulness of nonlinearity and
mode updating to extend the applicability of the NMA to localized and disruptive mo-
tions. We also show that if the target structure is unknown and the amplitudes of the
deformations along each mode are sampled randomly, there is still a sufficiently high
success rate to predict the transition. Last, but not least, our approach is very computa-
tionally and memory efficient. It is implemented as a fully automated tool available at:
https://team.inria.fr/nano-d /software /nolb-normal-modes/.

Our results allow revisiting the NMA-based description of biomolecular transitions.
They pave the way to the systematic targeting and modulation of protein-protein inter-
actions.

4.2 DATASETS

To assess the NOLB method, we have selected three types of tests. Fist, we chose three
molecular systems for the visual inspection of the motions. These systems are the T7
large terminase (pdb code 4bij), the TAL effector PthXo1 bound to its DNA target (pdb
code 3ugm), and the cytoplasmic domain of a bacterial chemoreceptor from thermotoga
maritima (pdb code 2chy). Our second test is the energy comparison between the linear
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and nonlinear deformations along some low-frequency modes at different deformation
amplitudes. For this test we have selected four structures of molecular systems from
those provided in the 2015/2016 Cryo-EM Model Challenge [134]. These are the struc-
ture of the Ty large terminase described above, the structure of the human ~-secretase
(pdb code 5a63), the structure of the capsaicin receptor TRPV1 (pdb code 3j9j), and the
structure of the TRPV1 ion channel (pdb code 3j5p). Finally, in the third test we mea-
sured the memory and CPU consumption of our method with five molecular structures
of increasing size ranging from 4,630 of atoms to 284,479 of atoms. These are the struc-
ture of the cytoplasmic domain of a bacterial chemoreceptor from thermotoga maritima
(pdb code 2chy with 4,630 of atoms excluding hetero atoms), the structure of the human
~-secretase (pdb code 5a63 with 9,646 of atoms excluding hetero atoms), the structure
of the Ty large terminase (pdb code 4bij with 18,855 of atoms excluding hetero atoms),
the structure of the photosystem II complex (pdb code 5bse, 40,908 of atoms excluding
hetero atoms), and the structure of the E. coli 70S ribosome (pdb code 5j8a, 284,479 of
atoms excluding hetero atoms). We should mention that the last structure is one of the
largest that the protein data bank [23] currently contains.

The first test set for the assessment of structural transitions is comprised of structures
from the iMod benchmark [151] prepared by Chacén and colleagues. It was recently
used to assess three coarse-grained elastic network model-based flexible fitting methods
[252]. It contains 23 proteins, each given in “open” and “closed” conformations, and
represents a wide variety of macromolecular motions, mostly hinge motions, but also
shear and other complex motions. The structures were extracted from the molecular
motions database MolMovDB [63]. All of them have less than 3% Ramachandran outliers
(as computed by the MolProbity program [44]), do not have any broken chain or missing
atom. The average root mean square deviation (RMSD) for this set is 5.1 & 3.0 A.

For the second test set we have chosen some examples from the Protein-Protein Dock-
ing Benchmark v5 (PPDBv5) [265]. This benchmark contains 230 protein complexes with
at least one of the partners solved in both bound (complexed) and unbound (free) states.
All structures have a resolution better than 3.25 A, and some of them contain more than
one chain. We extracted 95 proteins with C, RMSD between the two states above 2 A.
This test set is well suited for assessing the range of applicability of flexible docking
methods [57]. We should also mention that some of the structure pairs can be classified
as open-closed pairs. The average displacement for this test set is 4.0 & 3.9 A.

For the third test set we have selected seven cases from the Cryo-EM 2015/2016 Model
Challenge [135]. The initial set was comprised of eight cases, but we decided not to
consider one of them, namely the 70S ribosome. Each one of them comprises one or
several starting structures solved by X-ray crystallography and one or several target
structures corresponding to a Model Challenge map. In one case (y-secretase) we did
not find homologous X-ray structures for the starting state and used several cryo-EM
structures instead. The map resolutions range from 2.2 to 4.3 A. The average C, RMSD
displacement between the two states is 2.6 + 3.2 A.

4.3 MATERIALS AND METHODS
4.3.1  Outline of the method

Protein shapes and motions are governed by a multitude of interatomic forces, resulting
from intra- and inter-molecular interactions. Despite this high complexity, many func-
tional motions can be approximated by a few low-frequency modes characteristic of the
protein’s geometrical shape [127, 245, 256]. To compute these modes, we represent the
protein as an elastic network (Fig. 18, top panel on the left), where each node stands
for an atom and two nodes i and j are connected by a spring whenever the distance
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dij between the corresponding atoms is smaller than a cutoff value, typically 5 A. The
normal modes are obtained by diagonalizing the mass-weighted Hessian matrix of the
potential energy of this network. To reduce the dimensionality of this diagonalization
problem, we consider each protein residue as a rigid block, according to the rotation
translation blocks (RTB) approach [62, 248] (Fig. 18, middle panel on the left). With this
coarse-grained representation, the computed normal modes are composed of instanta-
neous linear velocities v and instantaneous angular velocities J, defining translations and
rotations for each block/residue.

A straightforward way to compute normal-mode guided structural transitions is to
calculate instantaneous displacements of each atom in a residue and then linearly ex-
trapolate these up to a given amplitude a. However, at large amplitudes, this will distort
interatomic distances and produce unrealistic molecular conformations. To circumvent
this problem, we apply a nonlinear extrapolation (Fig. 18, bottom panel on the left),
where each residue undergoes a screw (or a twist) motion. Specifically, the linear velocity
U is decomposed in two terms, namely UH, which is collinear to &, and ¥, which is
orthogonal to &. We further represent the pair of & and ¥/| as a pure rotation around a
new center 7. Hence, instead of rotating about the axis defined by & passing through its
center of mass, each residue is rotated about the new axis defined by & passing through
7o and translated only in the direction of . This nonlinear extrapolation guarantees
preservation of the topology or the protein structure subject to the motion.

Our method computes normal mode-guided nonlinear conformational transitions,
starting from an experimentally determined structure or a high-quality 3D model. Specif-
ically, normal modes are computed from the starting structure, which is then deformed
along a selection of these modes up to a given amount of conformational deviation (Fig.
18, right panel). The simulated conformational change can be potentially very large (sev-
eral tens of A). The algorithm may be run in an iterative mode, where the normal modes
are re-computed on intermediate conformations. This allows modifying the topology of
the network representing the structure and going further away from the starting struc-
ture (Fig. 18, right panel, compare orange and red conformations). The method guaran-
tees producing plausible physics-based motions and conformations.

4.3.2  Equilibrium dynamics

Let us consider a molecular system with N atoms near an equilibrium position. Let V()
be a potential energy function of our system evaluated at a position z € R3*". The near-
equilibrium motion of our system can be described with Newton’s equation of motion
in the harmonic approximation as

Mi+VV(zx)~ Mi+ Hz =0, (136)

where M is a 3N x 3N diagonal mass matrix, and H is a 3N x 3N Hessian matrix of the
potential energy V' evaluated at the equilibrium position. It is very convenient to work
with mass-weighted Cartesian coordinates =% [272] defined as

2" = M3z, (137)
In these coordinates, the motion equation is simplified to
@ 4+ H"zY =0, (138)

where H" is a mass-weighted Hessian matrix H* = M ~3HM 2. The solution of this
equation is obtained by the diagonalization of matrix H" as

HY = LY ALYT, (139)
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Elastic network model

RTB coarse graining

Nonlinear extrapolation

Figure 18: Principle of the NOLB method and the nonlinear transitions. Left panel: The three
main ingredients of the method are depicted: the elastic network model, the rotation translation
blocks (RTB) projection and the nonlinear extrapolation of motions. The protein is represented
as an elastic network (on top), where all the atom pairs within a certain cutoff distance are
connected with harmonic springs. Coarse-graining is achieved by replacing each protein residue
by a rigid block (in the middle). The color code indicates the one-to-one correspondence between
residues (on the left) and blocks (on the right). Each block has six degrees of freedom, three for
rotation and three for translation. At each step of the transition, each residue/block undergoes a
screw (twist) motion (at the bottom) defined from the instantaneous linear and angular velocities
U and & obtained by the NMA. The initial and final atomic positions are denoted as A and 4/,
respectively. O is the origin of the coordinate system and Cis the residue’s center of mass. Right
panel: Examples of nonlinear transitions computed for coagulation factor VIla upon binding to
tissue factor. The intermediate structures in orange were determined from the normal modes of
the known unbound structure (1qfk:HL, in grey). Those in red were further obtained by updating
the normal modes three times. The final predicted structure (in opaque) is 1.3 A from the known
bound structure (1fak:HL).

where L™ are the mass-weighted eigenvectors of H", also referred to as to mass-weighted
normal modes, and A is a diagonal matrix of associated eigenvalues. Assuming that in
the equilibrium positions z = 0, the harmonic Cartesian motions as a function of time
along a i-th normal mode L; of frequency w; will be given as
V2kT
z(t) = M_%Lﬁf”—B sin w;t, (140)
i

where kT is the temperature factor. Here we have also used the equipartition theorem
to calculate the amplitude of the motion, and assumed the energy of each mode to be
kT /2. Accordingly, the instantaneous atom velocities in the equilibrium position at
time ¢t = 0 corresponding to this mode will be

dli—o = M™2LY\/2k5T. (141)
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This equation connects the 2-norm of mass-weighted normal mode vectors L}’ with the
kinetic energy of this mode K at a temperature 7'. Indeed,

LwTrw — K

-5 (142)

where the kinetic energy is defined as K = %chM %. We will refer to the columns of the
M~Y2[, matrix as to Cartesian linear normal modes. We should specifically mention that
these normal modes are not generally orthogonal, unless all the masses in M are equal
to each other.

4.3.3 Motions of rigid bodies and the RTB projection method

Many methods have been proposed to reduce the dimensionality of the NMA diago-
nalization problem. For example, Noguti and G& [179] and Levitt et al. [140], and later
Ma et al. [153], Mendez and Bastolla [163], and Chacén et al. [151] explored the NMA
approach in internal coordinates. However, an orthogonal idea of reducing the dimen-
sionality of the original system by coarse-graining its representation has gained much
more popularity. One of the first coarse-graining methods was the rotation translation
blocks (RTB) approach introduced by Durand et al. [62] and further developed by Tama
et al. [248] and Li and Cui [144]. In this method, individual or several consecutive amino
residues are considered as rigid blocks that can only exhibit rotational and translational
motions [62, 248].

Similarly to the above case, Newton’s equation of motion can also be written for a
system composed of rigid bodies, or a composition of rigid bodies and individual atoms.
Each rigid body is parametrized with a 3-vector of its centre of mass ¢, a 3-vector of its
orientation 5, its mass m, and its inertia tensor I, computed relatively to the center of mass.
As before, it is very convenient to introduce mass-weighted rigid-body coordinates,

= /mé (143)
g = %4, (144)

The kinetic energy Krp of a rigid body will then be given as

1 =
Krp = §(Cw)2 +

Ly, (145)

[\)

It is also useful to mention momentum conservation laws in these coordinates, assuming
that a rigid body is composed of individual atoms at positions Z; with masses my,

Vme? = Z\/mkx_”",;” (146)
k
1w w_ [T 7 W
I29 = Z(.’Ek — HC ) X Xy - (147)

The momentum conservation laws provide a linear relationship between instantaneous
motions in the Cartesian and the rigid-body spaces. It can be compactly represented
with a 6B x 3N projector matrix P, which translates Cartesian instantaneous motions of
N atoms into the rigid-body space composed of B rigid blocks. [62, 248] Projector matrix
P is composed of B positional P and orientational PY matrices of size 3 x 3N, each,
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where N, is the number of atoms in the b-th rigid body. Each of them is composed of NV,
3 x 3 square matrices,

100

m
PE=y/—=10 1 0
m

0 0 1
1 —
Pg = ,/mkl_i[mk —CTX

where £k is one of N, atom indices.
Now, one can project instantaneous motions into the rigid-body (RB) space,

; (148)

rp = PL". (149)
Alternatively, we can apply projectors P directly to the Hessian matrix,
HYs = PHYPT = PLYALYTPT = LY ALYE, (150)

obtaining an RB-projected mass-weighted Hessian matrix Hj; with the corresponding
eigenvectors L} ;. Schematically, this projection can be illustrated as

6N} 3

N,
6, : 6N,| pT x
3N,

a H X | P3N,

3N, 6Ny

We should note that generally, the 2-norm of L is smaller or equal to the 2-norm of
LY. Indeed, from the momentum conservation laws, for each mode 7 we again obtain a
relation equivalent to eq. 151,

Kgrp
LwT w —
RB;RB; TBT ) (151)

where the kinetic energy Krp for a set of rigid bodies is defined in this case by eq. 145.
The kinetic energy before and after application of the rigid constraints is not preserved,
as some of the energy is stored inside the constraints. Therefore, strictly speaking, vec-
tors L',z need to be normalized to become eigenvectors of Hp .

We should explain the physical meaning and the properties of the projection matrix.
As it was stated above, the projection matrix P projects the instantaneous motions of the
initial system into the RB subspace. Its transpose P maps rigid-body motions to the
original atomic representation linearizing them. The two satisfy the following identity by
construction,

PPT = Iy, (152)

where I is a 6B x 6B identity matrix. We should specifically note that PT P is 3N x 3N
matrix, which is not identity. Matrix PP can be seen as a rigid-body liniarization operator,
which transforms initial all-atom motions to the motions compatible with the separation
of the system into a set of rigid bodies. For example, we can obtain approximate all-atom
mass-weighted normal modes L" by applying this linearization to mass-weighted RB
normal modes L,

LY~ PTLY . (153)
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4.3.4 The NOLB method

Molecular vibrations in a multi-dimensional harmonic oscillator are all uncoupled and
can be found by solving eq. 138. Diagonalization of the RTB-projected mass-weighted
Hessian gives a set of eigenvectors that are composed of instantaneous linear velocities v,
and instantaneous angular velocities &, of individual rigid blocks. For a rigid block with
mass M, and inertia tensor I, we first compute these in non-mass weighted coordinates
as follows,

(154)

Then, given a deformation amplitude a, the translational increment in the rigid block’s
position Az and the angular increment in its orientation A¢ can be computed as

AY = av
i =&/ ||d]]2 (155)
Ap = al|d||2,

where the rigid block’s rotation is described with a unit axis 77 passing though its center
of mass (COM) ¢, and an angle ¢. Finally, we rewrite the increment in the rigid block’s
position A7 as a sum of two orthogonal vectors,

AT = AfJ_—FAfH, (156)

where AZ, is orthogonal to 7i, and AZ)| is collinear to 7i. We then represent the A7 -
related motion as a pure rotation about a new center 7 given as

Fo=+ (T x T1.)/||&])2, (157)

such that the final rigid block’s positions A’ is expressed through the initial positions A
as

A = R(A¢, ) (A — 7o) + 7o + AZ, (158)

where R(A¢, ) is the rotation matrix describing rigid block’s rotation about an axis 7
by an angle A¢. More details can be found in the original NOLB publication [94]. It is
easy to demonstrate that this is the only type of rigid-body motion that conserves the
original kinetic energy. Indeed, using the parallel axis theorem it is readily seen that
the initial energy contribution of linear velocity v2 /2 is transformed into equivalent
contribution from the angular velocity.

4.3.5 Linear structural transitions

Let us assume we know two conformations of the same molecular system and the cor-
respondence between their atoms. The latter can be robustly deduced from sequence
alignment if the two systems are composed of not fully identical proteins. Let us also
assume we are given the displacement vector A7 between the two conformations after
their optimal rigid superposition. It is easy to demonstrate that in this case, the COMs
of the two conformations match. We can now find the minimum RMSD between the two
conformations, if one of them is allowed to deform along its A/ lowest normal modes
L € R3V*M which are not necessarily orthonormal, as

RMSD? = — (Ar — La)? = %ATT [I—-L(LTL)"'LT] Ar, (159)

1
N
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where N is the number of atoms in the system, I is the identity matrix, and a are the
optimal amplitudes of linear deformations given as

a= (LTL)"'LTAr. (160)

If the normal modes L are orthonormal (which may happen if the mass matrix in eq.
137 is identity), the above equation simplifies to

1
RMSD? = NATT [I—LL"] Ar. (161)

It can be readily seen that if all the 3NV modes are activated, the matrix L becomes square,
LL" turns into an identity, and the RMSD reduces to zero.

4.3.6  Nonlinear structural transitions

The NOLB method produces nonlinear deformations. Therefore, eq. 159 would not be
exact in this case. However, given the displacement vector A7 between the two con-
formations as in the previous case, we can still construct a deterministic deformation
trajectory and compute the corresponding RMSD. We should specifically mention that
rotation operators do not commute, and thus the result of applying two rotations will
generally depend on the order of these operators. Therefore, to make the method deter-
ministic, when combining several modes, we always order them from the lowest to the
highest frequencies. This choice is dictated by the fact that slower modes result in larger
amplitudes of thermal fluctuations.

To produce a nonlinear deformation towards the target structure, we use an iterative
procedure (see Algorithm 1 in Supplementary Material). At each step of the iteration we
approximate the amplitudes of the nonlinear deformation by the analytically computed
linear amplitudes using eq. 160. This approximation will not be valid at large deforma-
tion amplitudes a. Therefore, if the RMSD computed for the linear approximation (eq.
159) is larger than a certain threshold (we have chosen 0.1 A), we split the deformation
into smaller pieces. Each piece is computed based on the values of the linear amplitudes
scaled in such a way that the total linear RMSD of the deformation equals to the thresh-
old value of 0.1 A. We terminate the algorithm when the maximum number of iterations
is exceeded (100 by default), or if the relative deformation becomes smaller than a toler-
ance of le — 6. This algorithm can be iterated multiple times, the elastic network model
being updated and the normal modes recomputed at each iteration (see Algorithm 2 in
Supplementary Material). On-the-fly normal mode re-computation has been previously
proposed in the context of cryo-EM fitting and morphing applications [150-152].

Our nonlinear model and the way we assess the predicted transitions naturally over-
come the limitations of classical NMA schemes highlighted in Jernigan et al. [234, 274]
when the transition involves a substantial protein domain rotation.

4.3.7 Nonlinear random sampling

If one of the two conformations is not known, which is the case in many practical applica-
tions, the NOLB method samples the conformational space around the known structure
up to a given RMSD. In this case, the amplitudes of the selected modes are chosen ran-
domly [177]. To test whether such random exploration could be useful to recapitulate
functional states, we implemented a simulation protocol producing 10 ooo conforma-
tions (see Algorithm 3 in Supplementary Material). In this protocol, the starting struc-
ture is first deformed along its 3 slowest modes, then the modes are recomputed and
the new starting structures are deformed along their 10 slowest modes. An intermediate
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step with 5 modes is added in case of large deformations (>4.5 A). The biggest part of
the displacement is accomplished in the first step. Keeping the number of modes very
small (3) at this step allows limiting the combinatorics of the conformational search.

4.3.8 Potential function

Classical NMA methods can use any potential function, provided that it corresponds to
the equilibrium position of the molecular system. Some recent developments can also
assume non-equilibrium state of the initial system [279]. In our method we use an all-
atom anisotropic network model (ANM) [15, 58], where the initial structure is always at
equilibrium. The all-atom ANM has the following potential function,

Vi) = D 2(dy—d}) (162)

d?j <Re¢

where d;; is the distance between the ith and the j*" atoms, d?j is the reference distance
between these atoms, as found in the original structure, v is the spring constant, and R,
is a cutoff distance, typically between 3.5 A and 15 A. By default we let this value to 5
A. However, if there are loosely connected structural fragments in the system, it makes
sense to increase this value to 10 A or even more. The Hessian matrix corresponding to
this potential function is composed of the following blocks [15, 18, 58],

9*U Y o T . .
Hij EE) a_q* |O (d?]) 5 LijL; 1 7é J
82 o T ) (163)

where 7;; = ¥; — &;. To rapidly compute this matrix, we use an efficient neighbor search
algorithm [13].

4.3.9 Extension for symmetric systems

Let us assume that a replica of the original molecular system is rotated with a matrix R
and then translated by a vector 7. Then, the interaction energy between the system and
its replica will be written as

v = =
Vig) = Z§(’in+T—$]‘| —d?j)Q, (164)
ij
where d;; is the distance between the i atom in the replica and the jth atom in the

original system, d is the reference distance between these atoms, and + is the stiffness
constant. The gradlent elements will be

gﬂz Zd —d))RT(RZ+T —%;) i#]
: (165)
= = djj(dij - ) (R 1) (R + T—3) i=
And the Hessian elements will be
8828@\0 (dl) RIZyTl i ]
U 5 Lij T TR i+ , (166)

07,007 " = (d?-)

o*U o
By a—*T‘O (dO) (R I)me T(R I)
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where Z;; = RZ; + T-7 ;. We should mention that for the inverse transform { Riny, ﬁm,} =
{RT, —R™T}, we get the following Hessian elements,

0*U v oL o
GraaT = @ 10 (67
v ij

such that the final Hessian matrix is symmetric.

4.3.10 Assessment of the transitions

Transition coverage

To assess the ability of NOLB to reach the target structure by deforming the starting

structure along its lowest normal modes, we compute the transition coverage, expressed

as

RMSD; — RMSD¢
RMSD; ’

Coverage = (168)
where RMSD; is the initial root mean square deviation between the starting and tar-
get structures, and RMSDy is the deviation between the final structure obtained from
the computed transition and the target structure. The coverage varies between o (null
prediction) and 1 (perfect prediction).

To assess the ability of NOLB to recapitulate known intermediate structures, we com-
puted the improvement score described in [270] and expressed as

min(RMSDSI, RMSDT]) — minj (RMSDpj])
min(RMSDg;, RMSD7y) ’

Improvement = (169)
where S, I and T are the starting, intermediate and target structures, respectively, and
P; is the jth conformation predicted by NOLB. In the best-case scenario, one of the con-
formations predicted by NOLB is identical to the known intermediate structure, leading
to an improvement of 100%. In the worst-case scenario, all conformations predicted by
NOLB are further away from the intermediate than the starting and target structures,
leading to a negative value.

Collectivity

Collective motions can be characterised by their collectivity s, which is proportional to
the exponential of the information entropy [34]. The collectivity of a transition between
two structures of a molecule with N atoms can be computed [245] as

N
1
i =~ exp <— Zl q; log %‘2> : (170)
1=

where ¢; are scaled Cartesian displacements of individual atoms, ¢; = aAriz, with the
normalization factor o taken such that >>N | ¢? = 1. Nk gives an effective number of
nonzero displacements ql-z. Thus, « is confined to the interval {1/N;1}. If k = 1, then the
corresponding transition is maximally collective and has all the displacements ¢? iden-
tical, which happens for rigid-body motions, for example. In the limit of an extremely
localized motion, where only one single atom is affected, x is minimal and equals to
1/N. In a similar way, one can estimate the degree of collectivity of a normal mode. For
example, collectivity of the jth mode is given by the same equation above provided that
g; are now the scaled normal mode’s displacements,

(M—l/QL)JZ’gi + (]\/_,-—1/2[,)?73Hl + (M—I/QL)?73i+2

my

¢ =a (171)
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Figure 19: Left: Comparison of linear (A, C, E) and nonlinear (B, D, F) motion extrapolations of a
coiled coil protein (pdb code 2chy). Three types of motions are shown, bending (A, B), stretching
(C, D), and twisting (E, F). Several snapshots at different deformation amplitudes are superposed
to each other. These are colored according to the values of the overall deformation, as measured
by the RMSD. The colorbars show the RMSD with respect to the initial position. The arrows
follow the trajectories of individual atoms. Right: Comparison of linear (A, C) and nonlinear
(B, D) motions computed for two molecular systems. Several snapshots at different deformation
amplitudes are superposed to each other. These are colored according to the values of the overall
deformation, as measured by the RMSD. The colorbars show the overall RMSD with respect to
the initial positions. The arrows follow the trajectories of individual atoms. (A, B). Sliding of a
DNA-binding protein (colored from cyan to purple) in the groove of the surface of the DNA
(pdb code 3ugm). (C, D). Motion of two subunits of a terminase pentamer protein (pdb code
4bij). Three other subunits are shown in the surface representation. The 5-fold symmetry axis
points towards the top of the figure.

4.4 RESULTS AND DISCUSSION
4.4.1  Visual inspection of the nonlinear motions

For the first test we have computed some lowest-frequency normal modes for several
molecular systems and present the difference between the linear and the nonlinear ex-
trapolation approaches, as it is described below. The first molecular system demonstrates
three basic types of internal motions (see Figure 19 Left) and the other two systems illus-
trate some biologically relevant motions (see Figure 19 Right). Overall, Figure 19 clearly
demonstrates that the nonlinear extrapolation produces visually better and physically
more realistic motions than the standard approach. We should mention that in this test
we used a single residue as a rigid block. We have additionally performed experiments
with a larger number of residues per block, up to 10, and the results are very similar
with the same conclusions as stated below.

There are, generally, three basic types of internal motions that a molecular system may
exhibit. These are bending, stretching and twisting. All of these motions can be clearly
seen with symmetric elongated rod-like objects. Therefore, for the first illustration we
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have chosen a coiled-coil water-soluble protein from the cytoplasmic domain of a bacte-
rial chemoreceptor (pdb code 2chy). For this protein, we have computed its ten lowest
normal modes and specifically selected those that correspond to the described basic
types of motions. Then, we have computed the linear and nonlinear motion extrapo-
lations at different amplitudes. These are presented in Figure 19 Left. The difference
between the two types of extrapolations is especially apparent for motions with a large
portion of involved rotation. For example, Figures 19 Left A-B show a bending type of
motion and Figures 19 Left E-F show a twisting motion. For these two types of motions
the difference between the two extrapolation approaches is visually clear. This is be-
cause for these types of motions the translational component is typically negligible with
respect to the rotational component, which is given as a pure rotation of rigid blocks
about a certain center. Thus, the nonlinear extrapolation produces a very different result
at large deformation amplitudes. However, for the stretching motion, which is shown in
Figures 19 Left C-D, there is no noticeable visual difference between the two types of
motion extrapolation. This is because in this case the motion is mostly represented by its
translation component and there is almost no difference between the two extrapolation
approaches.

Another interesting type of motion where the nonlinear extrapolation produces a
noticeable different result is the spiral sliding of a transcription activator-like effector
(TALE) protein in a surface groove of its DNA target. This motion, both using linear
and nonlinear extrapolations at large amplitudes, is shown in Figures 19 Right A-B.
Here, we can see very similar motions of the DNA molecule (colored from green to
red), while the extrapolated motions of the TALE protein (colored from cyan to purple)
look more physically realistic in the nonlinear case. We should note that the maximum
overall RMSD, as measured for the linear extrapolation, is about 9 A. At such large
deformation amplitudes, the linear extrapolation significantly perturbs the structure, as
can be illustrated by broken covalent bonds. We should also emphasize that this sliding
motion, as computed by the NOLB analysis around the system’s equilibrium position,
is biologically relevant, as has been recently demonstrated by the direct observation of
TALE protein dynamics [50]. More precisely, the TALE proteins are capable of rapid
diffusion along DNA using a combination of sliding and hopping.

Finally, as the last example, we have chosen a pentameric assembly of terminase pro-
teins with the U5 cyclic symmetry. The terminase is a powerful motor that converts ATP
hydrolysis into mechanical movement of the DNA [51]. Similar to the previous exam-
ples, we have computed the lowest normal modes for the whole assembly and chosen
the one that is responsible for the opening and closing of the channel in the middle of
the assembly. More precisely, here each of the five subunits rotates symmetrically such
that the channel in the middle changes its shape. Figures 19 Right C-D show the differ-
ence between both the linear and the nonlinear extrapolations of this motion. In order to
make the figure more comprehensible, we show the motion of only two out of five sub-
units, colored from cyan to purple according to the amplitude of the deformation. The
three remaining subunits (shown in surface representation) are static. Again, we can see
that at large amplitudes the nonlinear extrapolation looks more physically realistic than
the linear one. Similar to the previous example, this motion composed of symmetric
rotations of each of the five subunits, as computed by the NOLB analysis, is biologically
relevant and has been noticed during the cryo-electron microscopy reconstruction of the
T7 large terminase [51]. More precisely, the five terminase subunits rotate to adapt the
channel in such a way that it can accommodate the guest DNA.
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4.4.2  Comparison of local deformations

As we have discussed above, the nonlinear normal modes approach demonstrated vi-
sually better results on all the tested examples. However, both linear and nonlinear
extrapolation methods result in physically unrealistic local geometries at large defor-
mation amplitudes. Thus, an additional energy minimization is typically required to
relax the locally disturbed molecular geometries. Therefore, in this test we estimate the
computational difficulty of such a minimization, which should be proportional to the
deformation energy of the final structure. More precisely, we assume that the covalent
bonds in the initial molecular structure are represented by harmonic springs with a force
constant of 500 kcal/(mol A?), which is a typical value in classical force fields [156, 267],
and we also assume that the total potential energy in the system is given by the sum of

the bond contributions.

For this test, we mea-
sured the potential en-
ergy of the molecular
structures generated by
both linear and nonlin-
ear extrapolations at var-
ious deformation ampli-
tudes. Figures 20(a,d,g,j)
show potential energy
for several molecular
structures averaged over
ten lowest normal modes
as a function of the
overall RMSD of the fi-
nal structure with re-
spect to the initial one.
We can see that for all
the systems the non-
linear normal modes
approach produces ge-
ometries with a lower
bond energy than the
standard linear NMA
method, at least for de-
formations that do not
exceed 25 A in RMSD.
This means that, in prin-
ciple, it will be computa-
tionally more efficient to
optimize the structures
produced by the NOLB
approach compared to
the standard one.

To extend the analysis
of the produced molecu-
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Figure 20: Comparison of linear and nonlinear deformations aver-
aged over the 10 lowest normal modes computed for the following
systems, (a-c) 4bij, (d-f) 5263, (g-1) 3j9j, and (j-1) 3j5p. In (a,d,g,j) the
bond harmonic energy as a function of the deformation amplitude
is shown. In (b,e,h,k) the total number of broken bonds as a function
of the deformation amplitude is shown (in a log scale). In (c,f,i,1) the
number of broken bonds between individual amino acids is shown
as a function of the deformation amplitude. See the main text for
details.

lar topologies, we compared the number of broken covalent bonds in the final molecular
structures. We define a covalent bond between two atoms as broken if its length exceeds
the sum of the corresponding van der Waals radii multiplied by a factor of 0.6. Figures
20 (b,e,h k) show the total number of broken covalent bonds for the two approaches and
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Figure 21: Comparison of linear and nonlinear deformations of the coiled-coil cytoplasmic do-
main of a bacterial chemoreceptor (pdb code 2chy) assessed by the MolProbity server [44]. Re-
sults for the bending motion are shown in the left column, for the twisting motion are shown
in the middle column, and for the stretching motion are shown in the right column. Multiple
MolProbity statistics are plotted as a function of the deformation amplitude. The “clashscore’ is
the number of serious clashes (atomic overlap > 0.4 A) per 1,000 atoms. Bad bonds and angles
are those that are further away than four standard deviations from the expected values. The
MolProbity score is a log-weighted combination of the clash-score, the percentage of not favored
Ramachandran angles, and the percentage of bad side-chain rotamers, giving one number that
reflects the crystallographic resolution at which those values should be expected.

clearly demonstrate that the linear extrapolation perturbs local molecular geometries
much more compared to the NOLB method. Indeed, we can see that the gap between
the two curves increases when the deformation amplitudes become larger. However,
since the NOLB NMA approach relies on the rigid body dynamics and all the individ-
ual amino acids are treated as rigid blocks, we additionally compared the number of
broken covalent bonds between individual amino acids for the two extrapolation ap-
proaches. Figures 20 (c,f,i,l) show these comparisons. For this case we can see that at
small deformation amplitudes, the NOLB method breaks more covalent bonds, which
should be expected. At large deformation amplitudes, however, the NOLB method per-
forms better than the standard approach. Nonetheless, we should only consider the total
number of broken bonds, or the total deformation energy of the system. In all the cases,
as Figure 20 demonstrates, the NOLB NMA approach produces much better results com-
pared to the standard method. In Supporting Information we also provides individual
tables that list the data for each of the normal modes individually for all the described
molecular structures.
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To complete the analysis, we have also evaluated the quality of several selected struc-
tures using a popular MolProbity server [44]. For this evaluation we chose three types of
deformations of a coiled coil cytoplasmic domain of a bacterial chemoreceptor presented
in Fig. 19 LEft, namely, bending, twisting, and stretching. MolProbity is a structure val-
idation web service widely used to evaluate the quality of X-ray or NMR structures.
For the analysis it uses a variety of physics- and knowledge-based algorithms. Figure
21 presents the computed MolProbity statistics. More precisely, it shows the amount of
serious clashes (with atomic overlap > 0.4 A), the percentage of statistically abnormal
bonds and angles, and finally, the cumulative "MolProbity score’, which reflects the crys-
tallographic resolution at which these structures should be expected. As before, we can
see that at large deformation amplitudes the NOLB method produces consistently bet-
ter structures than the standard linear approach. This conclusion is true for all studied
types of motions. At small deformation amplitudes, the linear NMA approach performs
slightly better if we consider the total number of serious clashes in the structures. In-
terestingly enough, this number can even decrease compared to the crystallographic
structure, presumably because of its moderate resolution.

The presented examples demonstrate that the NOLB approach is able to generate
structures with a fewer number of geometric distortions compared to the linear NMA
method. However, after a certain amplitude of deformation, our method will also pro-
duce topological artefacts. This amplitude will generally depend on the type of motion,
or, more technically, on the amount of the involved rotation compared to the transla-
tion (see eq. 158). For a pure rotational motion, for example, trajectories of all the rigid
blocks will be located on certain circles and thus the maximum geometrical distortion
of the structure will be always bounded by the circles radii regardless the deformation
amplitude. Figure 19 Left F gives a fare approximation of such a motion. For the other
extreme case of a pure translational motion, there will be no difference between the two
approaches and the distortions produced by the NOLB method will be the same as in
the standard approach, as it is shown in Fig. 19 Left D.

We would like to conclude this section mentioning that structural distortions pre-
sented above are not a serious obstacle for the applicability of the Cartesian NMA
approaches. Indeed, the produced molecular structures can be straightforwardly opti-
mized using standard techniques, for example, gradient-based minimizers and classical
force-fields. However, as we hinted above, it will be computationally more efficient to
optimize a structure produced by the NOLB approach compared to the linear one due
to a typically lower energy of the NOLB structure. Also, at large NMA deformation
amplitudes, the result of such an optimization for the linear technique will be generally
different from the one of the nonlinear technique. Thus, the presented NOLB approach
is a computationally cheap alternative to the other NMA methods when large deforma-
tion amplitudes are required.

4.4.3 Memory and CPU consumption

Here, we demonstrate the scalability of our method on five molecular structures of
various sizes and geometries, as we have described in more detail above. We should
specifically mention that these results only demonstrate the performance of our RTB
NMA implementation. The subsequent nonlinear analysis of the motions takes only a
marginal piece of the total time, which can be ignored. More technically, our method
uses sparse data representation and the Lanczos scheme to find a subset of eigenvectors
of the Hessian matrix. As a reference, we also provide results of other state-of-the-art
NMA methods. These are the RTB module of the ProDy package [19] and the iMod
method that performs NMA in internal coordinates [151]. Both of these methods oper-
ate with dense matrices and use LAPACK routines for the partial diagonalization. ProDy
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Table 6: Memory consumption of the NOLB NMA method on the tested molecular structures. All
the computations were performed using the double precision variables. We set the interatomic
interaction cutoff to 10 A. The number of atoms is listed without the heteroatoms. The size of
the matrices is given as the number of rows (or columns) they contain.

Name PDB code Number of atoms All-atom Hessian size RTB Hessian size Memory required
Chemoreceptor 2chy 4,630 13,890 3,702 123 Mb
Human v-secretase 5263 9,646 28,938 7,338 310 Mb
Terminase 4bij 18,855 56,565 14,220 570 Mb
Photosystem II 5bse 40,908 122,724 31,494 1,3 Gb
70S ribosome 5j8a 284,479 853,437 123,804 9,3 Gb

computes a subset of eigenvectors of a real symmetric matrix, whereas iMod seeks for
a subset of eigenvectors of the generalized symmetric definite eigenvalue problem. We
should mention that we also tested the original RTB NMA implementation of Yves-Henri
Sanejouand and colleagues [62, 248], but it turned out to be much slower than the other
tested methods because of the full Hessian diagonalization. Also, the CHARMM pro-
gram used to have a generalized RTB method called block-normal-modes (BNM) [144],
but it disappeared from the recent CHARMM releases and we could not assess its perfor-
mance. We present the numerical results measured on a MacBook Pro Mid 2015 laptop
with a 2.8 GHz Intel Core iy processor and 16 GB 1600 MHz DDR3 RAM. The same inter-
action cutoff value of 10 A was used in all the tested methods. The rigid blocks in both
ProDy and NOLB were constructed on a single residue basis. For the iMod method, we
chose all the dihedral angles as degrees of freedom. Table 6 lists the memory consump-
tion of the NOLB method on the tested structures. We can see that even the structure
of the E. coli 70S ribosome with ~300,000 of atoms, which is one of the largest in the
protein data bank, can be computed with our method on all the modern computers.
Figure 22 shows the total execu-

tion time of the NOLB, ProDy 105 -©- 10 modes, NOLB —A— 10 modes, ProDy
and iMod methods to compute -2~ 100 modes, NOLB —— 100 modes, ProDy
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the first 10, 100, and 1,000 nor- 104 - = o
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trix, thus its total time can be o
generally attributed solely to the 10" N
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the output of the computed nor- Number of atoms

mal modes, as this might take a

o . ¢ Figure 22: Total time taken by the NOLB, ProDy and
significant portion of time. Over-

iMod methods to compute first 10, 100, and 1,000 normal
all, the timing for our method ,odes for five molecular structures as a function of their
scales linearly with the size of sizeina log-log scale. Several data points are missing be-
the molecular structure and non- cause ProDy failed on the largest system and iMod failed
linearly with the number of the on the smallest and the largest systems. See the main text
computed normal modes. Re- for details.

garding the other two methods, we can draw several observations. First of all, in terms
of speed ProDy and iMod are very similar to each other despite the fact that one uses
the RTB model in the Cartesian space, while the other uses model representation in the
internal coordinates. Second, the performance of these two methods is almost indepen-
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dent of the number of requested modes. We should mention that iMod failed on the
smallest chemoreceptor system outputting zero eigenvectors, so we removed these data
from the plot. Finally, both methods failed with the segmentation fault on the largest
system during the computation of the Hessian matrix. Therefore, we repeated the test
removing all the RNA chains from the ribosome molecule, such that the final structure
contained only 90,587 atoms, but the two methods failed again. To conclude, if only a few
normal modes are required (up to 100), then the sparse iterative scheme based on the
Lanczos diagonalization algorithm seems to be advantageous over the other strategies.
The difference becomes very significant for mid- to large-size systems starting at about
20,000 of atoms. On the other hand, if all the modes are required, then the dense diag-
onalization methods are much more effective. Finally, for molecular systems of a very
large size starting from about 100,000 of atoms, only the sparse method implemented
in NOLB completed the job. We should mention here that, of course, more aggressive
coarse-graining schemes can be used for large systems such that dense diagonalization
methods will be very efficient as well. Also, our test case is far from being exhaustive
and more rigorous comparisons of different diagonalization techniques can be found
elsewhere, for example in a recent study from the authors of iMod [149], where they
drew the same conclusions regarding the advantage of the iterative Krylov subspace
techniques. Overall, this test demonstrated that modern NMA algorithms compute the
slowest normal modes for mid-size molecular systems in a very reasonable time, typi-
cally in less than a minute, and in many cases these are computed in several seconds
almost at the interactive rates.

4.4.4 NOLB nonlinear transitions better predict a wide range of functional motions

We assessed the nonlinear transitions computed by NOLB against 132 pairs of experi-
mentally determined structures displaying a wide range of biologically relevant confor-
mational changes. The root mean square deviation (RMSD) between the two structures
ranges from 0.5 A to 33 A and the motions involve up to 80% of the protein atoms.
For each pair, we defined a starting structure and a target structure. For a subset of
23 pairs (open-closed set, see below), each structure alternatively played the role of the
starting structure and the target structure, resulting in a total of 155 predicted tran-
sitions. The transitions were computed by deforming the starting structure along its
lowest-frequency modes, with the mode amplitudes being inferred from the displace-
ment between the starting and target structures. This allows obtaining the optimal (or
close-to-optimal) transitions within our framework. Nevertheless, we should stress that
the knowledge of the target structure is only used to determine the sense and extent
of the deformation along each mode, not the modes themselves. Hence, our approach
is markedly different from linear interpolation or other morphing approaches imple-
mented in popular tools [73, 125, 152, 168, 178, 180]. We set the number of selected
modes to 10, as it was shown to be sufficient to describe 90% of open-to-closed confor-
mational transitions [151]. Moreover, this allows performing real-time calculations. To
compute all transitions reported here, it took us less than 5 minutes with one iteration,
and about 15 minutes with five iterations, on a single CPU.

The quality of the conformations produced by NOLB was assessed by computing
Procheck [133] G-factor (Fig. 23A). A model resembling experimental structures de-
posited in the PDB should have a G-factor greater than -0.5 (red dotted line) and the
higher the better. The vast majority of NOLB conformations are as good as an exper-
imental structure. By comparison, the quality of the conformations produced by the
classical linear extrapolation is much more variable, with a significant proportion dis-
playing very low G-factors. Moreover, about three quarters of the predicted transitions
are exclusively comprised of high-quality conformations when we use NOLB. This pro-
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Figure 23: Transition quality, coverage and collectivity. A. Comparison of the overall G-factors
computed by Procheck [133] on the conformations produced with the classical NMA (linear
extrapolation) and with the NOLB method (nonlinear extrapolation). The distributions contain
7 676 and 8 769 conformations, respectively, corresponding to 155 transitions between 132 struc-
ture pairs (see text for details). B. Closing of the calcium ATPase pump (1su4-1t5s). Conforma-
tions predicted by the classical NMA and by NOLB are shown on the left and the right, respec-
tively. The residues undergoing the highest displacements are highlighted in color. C. Compari-
son of the coverage achieved by the NOLB nonlinear modes with 5 iterations (y-axis) versus the
classical linear modes (z-axis) for the 155 transitions. The colors indicate the degrees of collectiv-
ity of the experimental transitions. D. Histogram of the collectivity degrees for all structure pairs
from the three test sets. The transitions are labelled as localized (below 0.2), collective (between
0.2 and 0.6) and highly collective (above 0.6).

portion drops to 21% when we use the classical linear extrapolation. Let us stress that
7 (out of 155) transitions start from an experimental structure of poor quality (G-factor
below -0.5). The better quality of the NOLB conformations can also be appreciated by
directly looking at them, and is particularly visible when dealing with large displace-
ments. For instance, the calcium ATPase pump (1sug-1t5s) undergoes a large domain
motion of 13.5 A, taking place during active transport. While the nonlinear transition
computed by NOLB very well preserves the structure of the protein (Fig. 23B, on the
right, the linear transition visibly distorts the cytoplasmic headpiece, where the closing
motion takes place (Fig. 23B, on the left).

We also evaluated how close the final conformations produced by NOLB were to the
target structures. For this, we computed the transition coverage, i.e. the relative RMSD be-
tween the initial and target structures explained by the predicted transition. To give an
example, if the initial RMSD is of 5 A, a prediction achieving a coverage of 70% will pro-
duce a final conformation 1.5 A away from the target structure. On average, the NOLB
predictions, computed with five iterations, covered 48% of the transitions. For compari-
son, the average coverage obtained with the classical linear modes was 40%. Moreover,
the nonlinear predictions better approximated the transitions in 92% of the cases (Fig.
23C). The superiority of the NOLB predictions was also found significant without any
update of the modes along the transition. Hence, beyond producing conformations with
better stereo-chemical properties, the NOLB method also better exploits the informa-
tion contained in the starting structure’s geometry to get closer to the target structure.
The anticoagulation factor VIla (Fig. 18, right panel ) gives an illustrative example of
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Open-to-closed (on the left) and closed-to-open (on the right) transitions. B. Unbound-to-bound
transitions. C. Crystal-to-solution transitions. The plot on the right shows the improvement of
the predictions when increasing the number of active normal modes from 10 to 4o0.

a partner-binding associated large but localized transition (6.2 A) that is clearly better
described by NOLB. The transition involves a complex motion of an “arm” comprising
about 20% of the protein. The classical linear modes covered one third of the transition,
producing a conformation 4.1 A away from the target. The nonlinear NOLB normal
modes achieved 44% coverage (Fig. 18, conformations in orange) and 79% after updat-
ing the modes 3 times (conformations in red). The final conformation is only 1.3 A away
from the target.

Noticeably, 8 transitions are poorly predicted by classical NMA and by NOLB iterative
scheme (coverage below 3.5%, see the points on the diagonal on Fig. 23C). The majority
of these cases (5 out of 8) correspond to very small transitions (see also below). Visual
inspection revealed that 2 of the remaining cases may be explained by ambiguities or
errors in the experimental data (transitions involving the C-a only 4.2 A resolution cryo-
EM structure 3cau) and 1 case displays drastic rearrangements that linear and nonlinear
normal modes fail to describe correctly. Let us stress that we did not observed any
significant correlation between the transition coverage and the resolution of the starting
and/or final structure(s).

4.4.5 NOLB extends the applicability of the normal mode analysis to localized motions

We collected the pairs of experimental structures from three benchmark sets designed
for different practical applications, namely NMA, docking and cryo-EM fitting. The first
set comprises 23 proteins undergoing opening/closing motions. The vast majority of
these transitions involve more than 40% of the protein atoms (Fig. 23D, dark grey bars).
They can be explained by a few low-frequency normal modes (typically 1-3) computed
from the open form (Fig. 24A, see bars in blue tones on the left). The second set contains
95 structural transitions associated to the binding of a protein partner. Such transitions
are particularly challenging for protein docking applications [57, 70, 158, 170, 176, 177].
Indeed, they are often induced by the spatial proximity of the partner (induced-fit mech-
anism), which makes them very difficult to estimate starting only from the knowledge
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Figure 25: Examples of predictions and random sampling assessment. A-B. Super1mpos1t1on of
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structures. The conformations in blue were produced by classical NMA while those in other
colors were produced by NOLB. The amplitude of the modes were either determined using
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right, with colors matching panel C). A. Transition of actin upon binding to DNase I (1atn:r).
The initial RMSD is 2.7 A and the motion involves 10% of the protein atoms. B. Closing of
the diaminopimelate dehydrogenase (3dap-1dap). The initial RMSD is 4.2 A and the motion
involves about half of the protein atoms. C. RMSDs computed between the 100 closest-to-target
randomly sampled conformations and the target structure. In total, 10 0ooo conformations were
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of the unbound state. This set includes a great variety of motions, from highly local-
ized to highly collective ones (Fig. 23D, medium grey bars). The transition coverage
achieved by the classical linear normal modes is rather low (below 40%) for the majority
of transitions (Fig. 24B, see colored bars). The few transitions explained by the first three
modes (see right part of the plot) involve more than 70% of the protein atoms and are
all antibodies. The third set comprises 14 transitions between either a crystal structure
and a solution structure solved by cryo-EM or between two cryo-EM solution structures.
Contrary to the other two sets, it is dominated by very small transitions, even below 1
A. The explanative power of the 10 first modes is very poor on this set (Fig. 24C, left
panel). Using 40 active modes significantly improves the coverage (Fig. 24C, right panel).
Nonetheless, the small transitions remain difficult to predict.

Overall, the ability of the classical NMA to predict transitions is largely determined
by the transitions’ collectivity degrees (Fig. 23C, see the color gradient along the z-axis).
Highly collective motions tend to be very well predicted while localized motions tend
to be poorly predicted, in agreement with previous works [163, 245, 274]. We found that
our nonlinear scheme permits to go beyond this observation and extends the applicability of
the NMA. Indeed, the highest improvement of NOLB predictions over the classical NMA
is observed for localized transitions, involving less than 20% of the protein atoms (Fig.
23C, grey dots). The transition coverage is more than twice as big, on average, reaching a
maximum value of 60% (versus 40% for the linear normal modes). As illustrative exam-
ples, let us mention Ephrin B4 receptor (2hle:r), Cystein protease (1pxv:r), actin (1atn:r
and 2btf:r) and Rabex-5 VPSg domain (20t3:1), which undergo localized motions upon
binding to their partners (Fig. 24B, see the location of the orange and red segments).
While the linear modes predict between 23 and 36% of their transitions, our nonlin-
ear scheme predicts between 43 and 60% of them. The linear and nonlinear transitions
predicted for actin are illustrated in Fig. 25A (in blue and orange).
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4.4.6  Updating of the modes allows relaxing the elastic network’s constraints

The transitions predicted by the classical NMA strongly depend on the geometrical
shape of the starting structure. This is particularly visible on the first test set, where
the closed-to-open transitions are significantly worse than the open-to-closed ones (com-
pare the two plots in Fig. 24A). Moreover, the number of transitions explained (at more
than 40%) by the first three modes reduces from 18 to 8 upon starting from the closed
structure. This effect was observed previously [245] and has a clear physical explanation
connected to the limitations of the elastic network model. Indeed, the low-frequency
modes are a consequence of the shape of the protein, and the shape of an open structure
provides more information about its dynamical potential.

By re-computing the modes along the transition, our iterative scheme permits to over-
come this limitation. Namely, it increases the coverage in the closed-to-open direction
from 53% to 61%, on average (Fig. 24A, see the location of the red segments on the
right). This result can be explained by the fact that, at each iteration, some elastic links
are removed, alleviating some of the constraints that exert on the closed structure. As
a consequence, the discrepancy between open-to-closed and closed-to-open predictions
is largely reduced (compare the left and right plots). In four cases, namely the aspar-
tate amino transferase (gaat-itama), the maltodextrin binding protein (1omp-1anf), the
alcohol dehydrogenase (8adh—2jhf) and the guanylate kinase (1ex6-1exy), the coverage
achieved in the two directions even becomes equivalent. The highest increase in cover-
age is obtained for the diaminopimelate dehydrogenase (1dap—3dap), from 31% without
any update to 54% after one update.

4.4.7 NOLB recapitulates known intermediates

Beyond stereochemical realism, we investigated whether the transitions predicted by
NOLB could recapitulate known intermediate states. We selected four proteins undergo-
ing large conformational transitions (>6 A) for which at least one intermediate structure
is known (Fig. 26). Three of these proteins were previously studied in similar contexts
[180, 270]. We recorded the RMSD from the experimental structures along the predicted
transitions (Fig. 26A-D) and quantified the extent to which these transitions sponta-
neously approached the known intermediate states by computing the improvement mea-
sure proposed in [270]. It reflects the relative improvement of the predicted transition
in recapitulating a given intermediate structure, compared to the starting and target
structures.

For the ribose binding protein, the NOLB transition allowed reaching the two inter-
mediate states and the target state with a deviation smaller than 1 A (Fig. 26A). The
improvements are of 56% and 69% for the first and second intermediates, respectively.
For the 5"-Nucleotidase, NOLB produced conformations less than 2 A away from the
intermediate structures and covered 75% of the complete 9 A transition (Fig. 26B). The
two intermediates are very similar and the improvement is in the 54-57% range. For
the calcium ATPase pump, we focused on the transition from the open E1-2Ca*" state,
with a splayed-headpiece, to the closed-headpiece ATP-bound E1-2Ca?" state (Fig. 23B).
NOLB covered 76% of the transition, with a final RMSD to the target structure of 3.3
A, and produced conformations about 4 A away from sarcolipin-bound E1-Mg?" struc-
tures (Fig. 26C). The latter might represent distorted intermediates due to the presence
of sarcolipin, known to interfere with the transition by stabilizing the E1-Mg?" state
[258]. This may explain the fact that the predicted conformations remain relatively dis-
tant from them, with improvement values of 19 and 26%.

Our last case study is that of the chaperone HSP9o, which undergoes dramatic confor-
mational changes upon binding to nucleotides. Many states have been characterized but
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Figure 26: Prediction of transitions with known intermediates. A. Bacterial ribose binding protein.
B. Bacterial 5'-Nucleotidase. C. Mammalian calcium ATPase pump. D-E. HSPgo homologs from
bacteria (HTPG, 2ioq), yeast (HSP82, 2cg9) and mammals (GRP94, 201u). The transitions were
predicted with 5 iterations of NOLB. A-D. RMSD computed along the predicted transition with
respect to some experimental structures. The gray and red curves correspond to the starting
and target structures respectively, while the curves in blue tones correspond to intermediate
structures. The dots indicate the predicted conformations being the closest to the intermediate
states. E. Superimposition of predicted conformations (in colored cartoons) onto experimental
structures (in transparent grey surface) for HSPgo.

for some of them only SAXS-based or EM-based low-resolution models are available.
Here, we considered three crystallographic structures of HSPgo homologs, suggested to
correspond to different steps in the conformational cycle of the chaperone [128]. NOLB
covers 63% of the transition from the starting open apo structure to the target closed
ATP-bound structure and approaches a semi-open ADP-bound structure along the way
(Fig. 26D). The latter was suggested to represent an intermediate between the two others,
or a non-catalytic conformation [128]. Although NOLB conformations remain relatively
far from this structure (about 12 A away), it is significantly closer than the two extreme
structures, with an improvement of 29%. We should stress that this case is particularly
challenging as the transition is of several tens of A and we are dealing with proteins
coming from different organisms and sharing about 40% sequence identity. Sequence
divergence may be accompanied by local conformational rearrangements increasing the
RMSD. Visual inspection of the conformations shows a good match with the experimen-
tal structures (Fig. 26E).

4.4.8 NOLB produces near-target conformations by random sampling

In the general case, the target is not known and one has to sample the amplitudes of
the modes. In most of the practical applications, however, the sampling is guided by ad-
ditional information, which can be docking scores, small-angle scattering profiles, Cryo-
EM envelopes, cross-linking constraints, etc. To test whether this case could be dealt
with in practice, we devised a conformational sampling strategy and applied it to a sub-
set of 29 proteins from our datasets (Fig. 25). These proteins either display collective or
highly collective transitions that are very well predicted (>70% coverage with NOLB),
or localized motions poorly described by the linear modes (<30%) but well described
by our iterative scheme (>40%). For each protein, we generated 10 0ooo conformations
by progressively deforming the starting structure along its slowest normal modes using



4.5 CONCLUSION

NOLB. The relative amplitudes of the modes were randomly sampled and fitted to a
given RMSD. The simulation was decomposed into two or three steps, depending on
the expected extent of the deformation. The first step performs most of the expected
displacement using only the three slowest modes. For large transitions (>4.5A), an ad-
ditional second step is performed using 5 modes and a smaller displacement. The final
step consists in exploring the space around the previously generated conformations
within 1 A and exploiting all 10 slowest modes.

Depending on the protein, the simulation was able to produce conformations as close
as 0.8-3 A to the target structure (Fig. 25C). Moreover, for a large majority of proteins
(22 out of 29), the simulation produced several conformations with deviations smaller
than 2 A. The localized motions are more difficult to recapitulate than the collective
ones (Fig. 25C, compare left and right subpanels) but some generated conformations are
still as close as 1.3-1.8 A to the target. For instance, the closest-to-target conformation
generated for actin (1atn:r) deviates by 1.3 A from the target (Fig. 25A, in green). This
is better than the conformation produced by target-informed classical NMA (1.9 A, in
blue) and only slightly worse than that produced by target-informed NOLB (1.1 A, in
orange). For the collective transitions, there is a clear tendency for further away targets
to be more difficult to reach (Fig. 25C, see the correlation between the bars and dots
color gradients). For example, in the case of carbon monoxide dehydrogenase (10a0),
the best conformation is found 2.9 A away from the target state (Fig. 25B, in pink).
This is about 1.5 A more than the conformations predicted using the knowledge of the
target state (in blue and orange). Nevertheless, we can see that the randomly sampled
conformation superimposes well onto the target structure and recapitulates most of the
transition. We performed four additional simulations replicates, for each protein, using
different random seeds for sampling the modes” amplitudes, and they produced similar
results.

4.5 CONCLUSION

This Chapter revisits the formalism of normal modes and demonstrates its applicability
to the previously inaccessible cases of localized motions. Firstly, we present a conceptu-
ally simple and computationally efficient method for the nonlinear normal mode analysis.
It relies on the rotation-translation of rigid blocks theoretical basis developed by Y.-H.
Sanejouand and colleagues [62, 248]. Secondly, this Chapter critically assesses the rele-
vance of the normal mode analysis to the computation of various structural transitions
in biological macromolecules.

Our results challenge the long-standing belief that the lowest-frequency modes can
only describe collective transitions. Indeed, we show that nonlinear normal modes can
also approximate local deformations such as loop motions. Moreover, iterative recompu-
tation of the normal modes relaxes constraints imposed by the geometry of the protein
and allows pushing the transitions even further. Another important advantage of our
method is that the predicted conformations have a much better local geometry than
those resulting from linear NMA perturbations. We demonstrated it by computing the
quality of the transition intermediate states using the MolProbity and Procheck scores.
We also showed that the predicted transitions recapitulate the known intermediate states
solved experimentally, and that we can predict the transitions by randomly sampling the
amplitudes of the lowest normal modes.

Small structural changes, for example those present in the Cryo-EM 2015/2016 Model
Challenge benchmark, despite our recent efforts [130], still remain very difficult to pre-
dict with the NMA formalism. Indeed, in this case adding nonlinearity and iterative
computations did not improve the results significantly. Activating a much larger num-
ber of modes can help approximating the transitions, but at the expense of a signifi-
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cant computational cost. Indeed, the full diagonalization of the Hessian matrix scales
as O(N?3) with the number of degrees of freedom N. Therefore, it becomes preferable
to use MD-based or other stochastic optimization techniques, i.e. simulated annealing,
with the full range of degrees of freedom.

Our method is very CPU and memory efficient — it took us about 9 minutes to com-
pute the nonlinear structural transitions for all proteins from the PPDBv5 (460 in total)
set on a desktop computer. This implies that the method can be applied on a very large
scale. For instance, it can be used to model flexibility in docking calculations or to gen-
erate putative conformations that can be targeted by small molecules.



SCATTERING

My interest in Spherical Harmonics and the plane-wave expansion has led me to the de-
velopment of a near-linear-scaling method for the calculation of small-angle X-ray and
neutron scattering profiles [83]. This is the fastest method so far (Pepsi-SAXS and Pepsi-
SANS), and it has started being used by the community. Together with my experimental
colleagues Anne Martel and Sylvain Prevost from ILL Grenoble, we have integrated this
tool into a modeling platform at https://pepsi.app.ill.fr. I have applied this method to
practical questions within CASP12/13 protein structure modeling exercises [101] and
also to the molecular systems of my experimental collaborators [71]. In particular, I con-
tributed to the development of a SAXS- and SANS-based ensemble refinement method
using a Bayesian/Maximum Entropy approach [132].

5.1 INTRODUCTION

Small-angle scattering is one of the fundamental techniques for structural studies of bi-
ological systems. Small-angle X-ray scattering (SAXS) is a type of small-angle scattering
where X-rays scatter elastically from the sample and are then collected at very small an-
gles. Compared to other structure determination methods, SAXS experiments are very
simple conceptually and thanks to advances in instrumentation [236], the SAXS tech-
nique, particularly, solution-state SAXS, is becoming very popular in the recent years
as a complement to other methods in structural biology [80, 211]. SAXS also allows to
overcome some restrictions of other experimental techniques, for example, it is applica-
ble to all system’s sizes, it allows to study particles in solution, it is relatively fast and
destroy the sample only marginally. On the downside, SAXS can only determine the
electron density’s distance distribution function at a supra-nm resolution, however, it
can distinguish conformations of a protein at a sub-nm resolution [280].

Over the years, a number of computational tools have been developed for the analysis
of the solution-state SAXS curves, calculation of theoretical profiles and low-resolution
reconstruction of model shapes. The most prominent of them is the ATSAS package de-
veloped at EMBL Hamburg [192]. To test a structural hypothesis or to construct a model
system based on a SAXS experiment, an accurate and rapid calculation of a model SAXS
profile is required. The running time of a method depends, among others, on the num-
ber of atoms in a model NV, and the number of points in the scattering curve M. Tools
that directly use the Debye equation have the cost of O(N?), whereas methods that
use a linear approximation to the scattering equation have the cost of O(N). Generally
speaking, the same type of calculations should be repeated for each point in the scatter-
ing curve, which determines the worst-case performance of O(N?M ). Keeping in mind
the typical values of M and N to be of several thousands, this running time is usually
prohibitive to do any kind of multiple model assessment. Thus, many efforts have been
put in recent years to reduce the running time of SAXS computational tools without de-
grading the quality of their approximations. Below we give a brief overview of the most
notable computational methods for the calculation of theoretical SAXS profiles given an
atomic model as input. A deeper discussion of different computational techniques can
be found elsewhere [212].

The most popular method is the CRYSOL program developed by Svergun and col-
leagues [243]. The method uses the theory of multipole expansions of scattering intensity
initially developed by Stuhrmann [240]. The running time of the initial implementation
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of the method had linear dependence on both the number of atoms in a molecule N,
and the number of points in the scattering curve M as O(NM). A more recent version
of the program, however, maps experimental scattering intensities and associated er-
rors onto a sparser grid [192], thus, reducing the computational cost to O(N + M). The
method is, generally, very fast, but has the major disadvantage (as of CRYSOL2) of a
simplistic representation of the sample’s hydration shell using a two-dimensional angu-
lar function [241]. CRYSOL3 introduces a better approximation of the hydration shall,
being, however, significantly more computationally expensive, and also having one ad-
ditional adjustable parameter [72]. The SASSIM method is very similar to CRYSOL, but
the hydration shell is defined in terms of spherical harmonics and is calculated using a
Lebedev grid [164].

Another popular FoXS program uses a linear approximation to the Debye scattering
equation, which decouples the dependency of the running time on the number of atoms
N in a model and the number of points in the scattering curve M as O(N? + M N) [224,
226]. When created, the program was notably faster compared to the initial implemen-
tation of CRYSOL if tested on experimental curves with several thousands of points.
However, the later development of CRYSOL, as we demonstrate below, outperforms
FoXS for nearly all test cases.

A logical extension of the multipole expansion method is the computational scheme
that uses three-dimensional Zernike polynomials for the representation of the electron
density [148]. Here, the angular dependence of scattering amplitudes on the scattering
vector is described, similarly to CRYSOL, using the spherical harmonics, but the radial
dependence is expanded using a set of orthogonal functions. The computational com-
plexity of this method is O(N + M), however, the hidden time-limiting step is the com-
putation of the three-dimensional Zernike moments. In order to calculate them, atomic
models are mapped onto a three-dimensional grid, whose size can be adjusted according
to the resolution of data.

Recently, some other linear-scaling schemes have been proposed. The golden-ratio
scheme by Watson and Curtis [268] uses the Euler’s formula to compute the rotation-
ally averaged scattering intensity I(¢) by evaluating I(q) in several scattering directions
using the exact expression for I(¢) at a given wave-vector q. The orientations of the
q vectors are taken from a quasi-uniform spherical grid generated by the golden ratio.
The hierarchical algorithm for fast summation of the Debye equation by Gumerov et al.
[88] is similar to the fast multipole method (FMM) and is based on a hierarchical spa-
tial decomposition of electron density using local harmonic expansions and translation
operators for these expansions. Its computational cost is O(N log N).

Some efforts have been spent to a more precise description of solvation. The AXES
method uses explicit water molecules equilibrated in a water box using molecular dy-
namics (MD) simulations to accurately model the scattering amplitudes of the surface
and displaced solvent [82]. Another method calculated hydration shell intensities from
MD trajectories of water molecules around a fixed protein [187]. The AquaSAXS method
models non-uniform hydration shell of a protein by taking advantage of recently devel-
oped methods that compute the solvent-distribution around a given solute on a 3D grid
such as the Poisson-Boltzmann-Langevin formalism or the three-dimensional reference
interaction site model [201].

Finally, to increase the speed of calculations, several coarse-grained schemes have been
proposed. For example, one recent method is based on the Debye formula and a set of
scattering form factors for dummy atom representations of amino acids [239]. The Fast-
SAXS-pro [275] algorithm uses the Debye-based approach and coarse-grained residue-
and nucleotide- level structure factors. The method explicitly takes into account the non-
homogeneous distribution within the hydration layer by assigning a different scaling fac-
tor for dummy water molecules according to their proximity to protein and DNA /RNA.
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Finally, the method by Zheng and Tekpinar [280] uses a one-bead-per-residue coarse-
grained protein representation coupled with the elastic network model. The hydration
shell is modelled implicitly by combining each residue and its nearby implicit water
molecules into a composite representation.

This Chapter present Pepsi-SAXS (Pepsi stands for Polynomial Expansions of Protein
Structures and Interactions) [83], a new implementation of the multipole-based scheme
proposed by Stuhrmann [240]. Overall, our method is significantly faster compared to
CRYSOL, FoXS, and the 3D-Zernike implementation from the SAStbx package [147],
as we demonstrate below using an excessive number of test cases. We use a very fast
model for the hydration shell computation based on a uniform grid of points. We also
use the adaptive order of the multipole expansion. More precisely, according to the
Nyquist-Shannon-Kotelnikov sampling theorem [157], we determine the required ex-
pansion order using the radius-of-gyration of the model’s hydration shell and the value of
the maximum scattering vector ¢,,... Then, we represent the scattering intensity curve
using a cubic spline interpolation, which allows us to significantly speed up the run-
ning time of our method. Finally, we introduce partial scattering intensities to rapidly fit
the theoretical curve to the experimental one using exhaustive search in two adjustable
parameters. We should also mention that we paid particular attention when deriving
parameters for the form factors, especially those for charged and resonance groups.

5.2 MATERIALS AND METHODS
5.2.1 The Multipole Expansion Theory

The scattering theory presented here closely fol-
lows the works of H. B. Stuhrmann [240] and D.
Svergun [243, 244], as it has been presented in our
original Pepsi-SAXS method [83]. The spherically
averaged scattering intensity I(g) from a single
molecule immersed in a solvent with bulk scatter-
ing density p can be written as

— 2
I(q) = <|Aa<g> N pAC(Q) +3pAs(q)l >Q’ (172) Figure 27: Schematic representation

. . . of a molecular geometry and the
where A,(q) is the scattering amplitude from the three scattering contributions Ay (g),

molecule in vacuum, A4, (q) is the scattering ampli- Bim(q), and Cyyn(q). The bulk density

tude from the excluded volume, and Ay(q) is that is p and the difference near the molec-
from the hydration shell, which is assumed to have ular surface compared to the bulk is
the scattering density different from the bulk value 0.

by dp [243]. The scattering vector ¢ is defined as ¢ = 47 sin 6/, where 26 is the scattering
angle and )\ is the wavelength of the incident X-ray beam. Due to the spherical averag-
ing of the intensity, it is very convenient to introduce the multipole expansion of the
scattering intensities and amplitudes in the spherical coordinates system [240]. Using
this expansion up to the maximum expansion order L, we can re-write the intensity as

Is

L l
I(q) = =Y > [Aun(q) = pCim(q) + 6pBim(a) |, (173)

=0 m=—1

W

7

where A, (q), Bim(q), and Cyyy, (q) are the expansion coefficients of the amplitudes A4 (g),
Ap(q), and A.(q), respectively [243]. Given atomic coordinates of a molecule consisting
of N atoms expressed in the spherical coordinate system r; = (7;,w;), and the corre-
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sponding form factors f;(¢), we can write the vacuum scattering amplitude expansion
coefficients as

Alm = 47”1 Z fz ]l qri lem (wl) (174)

where j;(gr;) are the spherical Bessel functions and Y}’ (w;) are the complex conjugated
spherical harmonics. Similarly, given coordinates of the hydration shell of the molecule
sampled at IV}, points, its expansion coefficients can be written as

Npgq
Bin(q) = 4mi'h(q Zﬂ qri)Yim (wi), (175)

where h(q) is the form factor of a water molecule scaled with the ratio of the bulk water
density to the density of the sampling points in the hydration shell. Finally, the excluded
volume contribution can be written as

Clm = 47”l Z gl ]l qri lem (W'L) (176)

where g¢;(q) are the form factors of the dummy atoms centered at the positions of molec-
ular atoms r;. Figure 27 schematically illustrates the contributions A;,,(¢), Bim(¢), and
Cim(q) to the total scattering intensity of a molecule.

5.2.2  Scattering from multiple particles

Let A;(q) be the the fotal scattering amplitude of a single
particle,

Ai(q) = Au(q) — pAc(q) +0pAs(g), (177)

and Oy, (¢) be the multipole expansion coefficients of the
total amplitude,

Oin(q) = Aim(q) — pCim(q) + 0pBim(q)- (178)

Let now move this particle to a new position in space by
applying a Compcisition of spatial operators, first, a rotation Figure 2: Schematic repre-
about the origiAn R by a set of angles Ay, then, a translation ¢aptation of a molecular ge-
along axis z, 1%, Aby amount A, and then another rotation ometry between 2 rigid par-
about the origin I by a set of angles A,. Figure 28 schemat- ticles.

ically shows the geometry of the scattering particles. The expansion coefficients will
transform according to following equations,

(R<A2>TZ(A>R(A1 Z Dmml A2 Z T’lnlhb1 qA Z Dmlmg Ay Ol1m2( )

mi=—1 l1=|m1]| ma=—11

(179)

where T}, are translation matrix elements given by

2+ 1
T (ph) = Zzp],, pA)dry p+ P m,l,m), (180)
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and c'2(I,m, 1, m ) are Slater coefficients defined through the triple spherical harmonics
integrals [16, 278],

E(lm,lym) = [ HQ)YMH(Q)YTH(Q)dO. (181)
4

These equations substitute the basis for the rapid rigid-body modeling of proteins and
their complexes.

5.2.3 Analytical modeling of particle aggregation effects

Now, let us express the total scattering from multiple identical particles that have a
certain radial distribution from the central one, and that also have a uniform angular
distribution with respect to three Euler angles A. The total scattering intensity will be

L 1
1
I mz 3> Oula)Oinlat
=0 m=—1
L 1 l
1
EZ Z Z Z Z Dmm1 A2 1—‘1771 (qA)Dirlumg(Al)Ollmz(Q)
=0 m=—1 mi=—lli=|mi| ma=—h
l L i
Z D zzf (qA)D mm (AI) ng(Q) > +
my=—tl=|m}| m’f—l' Az
L 1
1 *
2SS ([ 5 3 Db A 001 ()00 010
=0 m=—1 ml—flll \m1|m2—711 A1A2A
1L d !
=2 2 [Omla !2+fZ > Tra
l 0 m=-—I 1=0 m=—1

l L
< DD Z 1+2l T (g A)|2|Oz1m2(q)|2> +25 0ol (T80 ()

mi=—ll1=|mi| ma=—lh A

(182)

This relation follows from the orthogonality of Wigner matrices, please see Section 2.6 for
more detail, and the fact that all cross-terms (D! (A) Ty} (gA) DY . (A1)Opms (2)O05, (7)) Ay Asa

mmq mima
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Figure 29: Comparison of a scattering profile of single particle and the same particle with the
aggregation effect.

vanish except for [ = m = 0, please see Section 2.8 . Let us look closer to the space-
average term, regrouping the terms we obtain

I

L 0, 2| & +min(Ll1)
S| 3 BpuES Y )<!¢G’,’ZE<QA>!2>
A

11=0 | ma=—11 =0 myi=—min(l,l;
L Iy L +min(l,lh)
_ 2 : ’Ol1m2 (Q)‘ 2 :
1421
11=0 | mo=—I1 1 =0 m1=—min(l,l1)

=

Va+1 > <j§(pA)> ?(1,0,11,0).
A

1=0 p=[l—1|
(183)

We should note that ¢?(1,0,11,0) = ¢?(11,0,1,0). To proceed further, we need to compute
radial averages for a given fractal dimension d of the form

| 7 et ar
<]5(pA)> = ml}rrrix iy, . (184)
A,d

Tmin

Next sections provide the computation of the radial averages under different approxi-
mations of the particle distributions with respect to the fractal dimension d.

5.2.4 Fractal dimension 3

Let us first consider the case of fractal dimension d = 3. In other words, this is the case
when scattering particles are evenly distributed within 3D clusters. The result can be
expressed through the closed-form integral H7(z) (see eq. 48 from [28]),

3

(@)= [ 2o de = 7 (@) ~ ()i (0)). (185)
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Then,
3 Tmax 3
) .2 2
A == d =
<jp (p )> 471—(7-13}121)( - 7ﬁrgnin) /7" i ]p (p,r)r ' 477'(7”%1&)( - Tr3nin)
A7d:3 min
[Trsnax (Jf) (Prmax) — Jp—1 (PTmaX)jp+1 (meaX)) - r?nin (jz (Prmin) — Jp—1 (ﬂTmin)ij (Prmin)) } .

(186)

For the special case of the Oth order we have (also see eq. 41 from [28]),

3
<j(2)(pA)> =1 TP —— {0.5prmax—0.25 sin(2prmax) — 0.507min +0.25 sin(2prmin)}.
A,d=3 TP"max ™ "min

(187)

Figure 29 shows a difference between profiles with and without aggregation.

5.2.5 Fractal dimension 2

For the fractal dimension d = 2 we will obtain a recurrent relation for the integral H, ll (z)
using eq. 46 from [28] and a closed-form expression 47 for H; ' (z),
1

H)(z) = H} (z) — 5(21 —2)H " (z) + %jlfl(x)Q —xji-1(x)ji(x) (188)

5.2.6  Fractal dimension 1

Unfortunately, the above recurrent relation can not be applied to the evaluation of HY(z).
Instead, we will combine equations gb, 61 and 72 from [28] to obtain

20+1 HE o(x) — H} () 1 N2
Hl+1( ) 2l—|—3Hl <‘T> + (2l +3)2 o 21 + 3:E]Z(IE> ) (189)
with
Hg(:c) = Si(2z) — xjo(x)Q, (190)
and
H(z) = %az — %sin 2z. (191)

5.2.7 Cylindrical averaging of the scattering intensity

Let us now introduce an extension of the previous method to cylindrically-averaged
scattering profiles. In the case where all the particles are oriented in the same direction
(thats to some external electric field or water flow, for example), the scattering intensity
in eq. 172 is not spherically averaged anymore . Instead, it is only cylindrically averaged
over the ¢ angle in the reciprocal space. Then, this equation becomes

1(g,0) = (|A(2) A; (2)),, sin(0), (192)

where we again introduced the total scattering amplitude A¢(q) = A.(q) — pAc(q) +
dpAp(q) to simplify the notations. Then, it is again useful to introduce its expansion co-
efficients Oy, (¢) from eq. 178. After substituting the expansions 174-176 to the previous
equation, we obtain

L l

/ Z Z Ot (q)Yim (0 Z Z O ()Y (0, 0) sin0dep. (193)

=0 1—0 m=—1 —0m/=—1'
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Figure 30: Experimental versus calculated scattering profiles for a cylindrically-averaged intensi-
ties of a fibril cristal.

Thanks to the orthogonality of spherical harmonics, this integral simplifies to

I(q,0) = 27sind Z Z Z O (q) K1 Pim (cos 0) O}, (q) Kyrm Py (cos 0), (194)

m=—L[=|m|l'=|m|
with constants

e [T

5.2.8 Angular distribution along the orientation axis

For the cylindrical averaging case, we have assumed that the particle’s orientation is
fixed along a single axis. In reality, however, there is a certain statistical distribution of
the orientations around this axis. Here we aim to model this effect in a computationally
efficient way. Let angle /5 represent the deviation from the cylindrical axis, and let us
also assume (3 distributed following a Gaussian distribution with the mean ¢ = 0 and
the standard deviation o.

Let us first introduce the angular dependence to the expansion coefficients Oy, (q)
using eq. (18,

O (g, c, B,7) Z O (g)e™ " dj, 1 (B)e™ ™. (196)
p—

Now, we can compute a spherical average of the intensity I(q, 0, a, 3,7) weighted with
the Gaussian distribution over j3. This requires the evaluation of the following integrals,

2

1
V2ro
(197)

This integral is not analytical and we will use a Gaussian quadrature scheme to approx-
imate it numerically. Figure 30 shows a fibril cristal and an overlap of the experimental
and simulated scattering profiles.

s
e 202 gin BdS.
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5.2.9 Form factors and unified atomic groups

Computation of the expansion coefficients A;,,,(¢), Bin(q), and Cj,,(q) requires knowl-
edge of form factors fi(¢), ¢i(q), and h(g). For the calculation of form factors for the
individual atoms, we use the five-gaussian approximation with coefficients taken from
[266],

5
flg) =c+ Z ae e (198)
i=1

However, structural databases such as the Protein Data Bank (PDB) [25] typically pro-
vide coordinates of only non-hydrogen atoms. Therefore, it is useful to introduce unified
atomic groups with the positions located at the centers of the heavy atom’s nuclei and the
corresponding scattering parameters computed for the heavy atoms with the covalently
bonded hydrogen atoms. For example, the form factor for such a group fcm, with n
H-atoms attached to the C heavy atom can be computed using the Debye equation as
follows,

sin(qrpy)
D

fem,(0)* = fo(@)? +n* fu(q)? +2nfu 7 (199)
where fc and fp are the atomic form factors for C and H atoms given by the five-
gaussian approximation (eq. 198), and rg is the distance between C and H atoms. Dis-
tances ry between the heavy atom and hydrogens in various atomic groups typical for
biological molecules are taken from [6].We should note that a simpler approximation
holds for practical values of scattering vector ¢ [91],

sin(qrp)
D

fen, (a) = fela) +nfu , (200)
which can also be derived from the spherical averaging of the scattering amplitudes
instead of the scattering intensities.

We explicitly introduced individual form factors for charged groups of carboxylate,
phosphate, guanidine, and ammonium. Form factors for NHT, NH;, NI—I;)r from guani-
dine and ammonium groups were approximated according to the model of the elec-
tron distribution in the ammonium ion [21]. More specifically, we modelled the central
spherical charge cloud with six electrons around the N nucleus with unperturbed hy-
drogen electron distributions centered not on the protons but inwards along the N-H
bonds at 0.76 of the N-H separation distance. We also paid a particular attention to
the resonance forms of charged groups of carboxylate, phosphate, and guanidine. More
precisely, we modelled form factors of the resonance groups as a linear combination of
the non-resonance form factors. Given the analytic form of the atomic form factors for
unified atomic groups (eq. 200), we computed their five-gaussian approximation, which
were tabulated for a later use.

5.2.10 Form factors for dummy atoms

Following Fraser et al. [74], we express the form factors of the dummy atoms through
the observed displaced solvent volumes V; as

9i(q) = Viexp <—7rq2Vi2/3). (201)

We should specifically add that this is a very crude approximation with some parameters
generally valid only for globular proteins (see, e.g., the discussion in Chatzimagas and
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Figure 31: A schematic grid representation of the hydration shell with the resolution of 4 A for
the SASDAW3 model from the SASBDB database. Red dots represent the positions of the sam-
pled points in the hydration shell. The effective width of the shell in this case is 5 A.

Hub [41]). Following Svergun [243], we introduce the effective atomic radius 79, an
adjustable parameter that scales the observed displaced solvent volumes according to

Vi(ro) = omry = (202)

where r; are the tabulated actual values of atomic group radii, and r,, are the actual
average radii of atomic groups. Changing the adjustable parameter to §r = rg — r,,, we
can expand the previous expression to the first order in Jr using the Maclaurin series as

m

gi(q,0r) = V;exp (—7Tq2Vi2/3) [1 + o (3 — 27rq2VZ-2/3>] + 0 ((57“2) ) (203)

This equation can be further simplified to the form of expressions (12-13) from [243] as

gi(q,0r) = Viexp <—7rq2Vi2/3) [1 + f—r (3 — (47r/3)2/327rq2r72n)} +0 ((5r2) , (204)
with the term independent of r being the reference dummy atoms form factor g;(¢), and
the term in the square brackets being the adjustable overall expansion factor G(g, or).
We can even simplify the second term further dropping the ¢ dependency. Using the
last expression, the excluded volume amplitudes Cj,,, (¢, 6r) can be adjusted through the
reference values Cj,,,(q) as

Clm(Qa 6T) = Clm(Q)G(qv 5T>a (205)

where the reference amplitudes Cj,(q) are computed only once using the reference
dummy atoms form factors g;(¢q). To compute excluded volumes and radii of the unified
atomic groups, we used parameters provided in Svergun et al. [243].

5.2.11 Hydration shell

To compute the scattering contribution of the molecule’s hydration shell (eq. 175), we
first constructed its grid approximation using the linked-cell approach [14]. Figure 31
shows an example of our hydration shell model. More precisely, we constructed a grid
with the cell size of 3 to 4 A padded by at least 12 A in each direction and associated
each atom of the molecule with a cell in the grid. Then, we removed those grid cells,
whose centers are closer to any atom within the corresponding cell and its 26 direct
neighbours than 3 A or further to all of these atoms than 3 A plus the width of the
shell. Finally, we used the centers of the remaining cells as the grid approximation of the
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Figure 32: A comparison of scattering profiles between Pepsi-SAXS and CRYSOL-2 for a
molecule with a very complex shape.

hydration shell. For the width of the shell we adopted the value of 3 A for molecules with
the radius of gyration smaller than 15 A, the value of 5 A for molecules with the radius
of gyration larger than 20 A, and used a linear interpolation in between. The width value
of 5 A is somewhat larger compared to what is usually assumed to be the width of the
hydration shell. However, our numerical experiments demonstrated the least overfitting
of the experimental data with this value. We should mention that the actual effect of
the hydration shell depends not only on its width, but also on its contrast. Thus, the
critical parameter that defines the potential overfitting is the product of the width of
the hydration shell with its maximum contrast. In our case, this parameter equals to
0.167 e/ A2, which is smaller than, for example, 0.180 e/ A? used in CRYSOL. We have
also experimented with a lower resolution of the grid representation by decreasing the
linear density of grid points by a factor of two. This did not demonstrate any significant
change in the quality of fitting of the modelled profiles into experimental data, however,
the execution time improved on average by about 10%, thus we optionally provide this
possibility for the user with the "-fast” flag. Figure 32 shows a comparison in scattering
profiles for a multi-domain protein with a very complex shapes computed with Pepsi-
SAXS and CRYSOL-2, which uses a simplistic manifold representation of the solvation
surface. We can see a drastic difference in the obtained results.

5.2.12 Adaptivity

We adapt the maximum expansion order L of the multipole expansion according to the
radius-of-gyration of the hydration shell R, and the maximum scattering vector of the ex-
perimental curve g,,,,.. More precisely, we can estimate the value of L from the Nyquist-
Shannon-Kotelnikov sampling theorem [157], which defines the angular resolution of
encoding with complex spherical harmonics of order L to be 27/ L. On the other hand,
the spatial resolution of experimental data is R = 27/ ¢mnqe, thus we can relate the two
resolutions using the radius-of-gyration R, as

L= 271'% = RyGmaz- (206)
This expression provides the default value of the maximum expansion order for our
method. We use the same idea to approximate the radial functions in eqgs. 174-176.
There, the radial basis set is given by the spherical Bessel functions of maximum or-
der L. Therefore, we sample expansion coefficients A;,,,(¢), Bim(q), and Cjy,(q) in 2L
equidistant points and after use the cubic spline interpolation [208] to reconstruct the
values of the expansion coefficients at any point g.
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5.2.13 Fitting

If the experimental curve I, (q) is provided, we adjust two parameters §r and dp such
that the goodness of fit x? is minimized,

X2 _ ; Z <Iemp(Qj) — CIthEOT(qj)>2 , (207)

N-1% o(q;)

where N is the number of points in the experimental curve, o(q) are the experimental
errors, Iineor(q) is the theoretical intensity calculated according to eq. 173, and c is the
scaling factor given as [243]

¢ — Z Iexp(Qj)Ithem"(qj) / Z M . (208)

— o) " o(a,)?

If the errors are not provided, we model them as o(g) = 0.01 x Iz, (q). To speed-up
the calculations of the theoretical scattering intensity curve at different values of /r and
dp, we re-write it as a sum of partial intensities, as it shown in Supporting Information.
This allows us to reduce the computational cost of the theoretical scattering intensity
curve by a factor of O(L?). We assume the bulk scattering density p to be constant and
equal to 334 e/nm?. We then exhaustively search for the optimal values of 7 and §p
parameters on a grid of size 100 x 100. The values of 07 are searched in the range of
—0.05 < 0r/ry < 0.05. This effectively means 0.95r, < r¢ < 1.057,, with the mean
7m value over our dataset of 1.64 A. The range of values of dp is 0 e/nm? < dp <
33.4 e/nm3. We should note that upon request from the user we allow the contrast
of the hydration shell ép to be slightly negative up to —15 e/nm?. Indeed, as it has
been demonstrated by X-ray diffraction, neutron and more recently X-ray reflectivity
studies of water-hydrophobic interfaces, there is an unambiguous and distinguishable
density-depleted interfacial region near hydrophobic interfaces [40, 106, 165, 259]. At
these interfaces, water density drops below the bulk values. There is, however, a certain
controversy about the width and the density of this depletion region [259]. We should
admit that protein surfaces are never fully hydrophobic. Nonetheless, we allow negative
dp values upon request from the user. Below, we report the results for the two cases.
We should also note that some experimental measurements have a systematic error in
the determination of the intensity values. To account for this error, we can optionally
introduce the offset constant « and re-write the goodness of fit as it is shown below.

5.2.14 Fitting with a constant

Some experimental measurements have a systematic error in the determination of the
intensity values. To account for this error, we introduce the offset constant ~ and re-write
the goodness of fit x? as

1 Iey <q’)+’€_c(ﬁ)Ith T(q')>2
2 _ (Y] coridy , 20
=y ( - (209
where the scaling factor ¢(k) is
c(k) = ¢+ kb, (210)
with the constant b given as
iheor(a5)/ o (g5 2
b— Zj theor (45)/ () (211)

B Zj Itheor(Qj)z/O'(Qj)Q .
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Now we can compute the optimal offset constant « for each sampled value of ér and
dp of the theoretical intensity curve I;;co(¢) by analytically minimizing the least-square
discrepancy x? as follows,

> (Zeap(a;) — cltheor(47)) (1 = bltheor(a;)) /0(q;)? > (Zeap(a;) — clineor(45))/ 0(q;)?

Ej(l = blineor (45))?/ o (q;)? B Ej(l = blineor(a;))*/ o (q5)?
(212)

5.2.15 Flexible fitting to experimental profiles

We have extended the Pepsi-SAXS method for the flexible optimization of the initial
molecular shapes along the lowest nonlinear normal modes, as described in the pre-
vious Chapter [84, 94, 130]. By default, we precompute the ten lowest modes, sample
each of them sequentially in 10 points, such that the maximum deformation is about
54, and choose the conformation with the minimum value of x2. We also apply a sim-
ple optimization of the local geometry, such that bond lengths and angle values stay
around the initial positions. The optimization is rather rapid, the whole pipeline takes
a few minutes for a single-chain protein with multiple domains. The method has been
successfully tested in CASP12 and CASP13 blind challenges and our team produced
top-ranked models in the data-assisted sub-challenges [101, 249].

5.2.16  Benchmarks

We tested our methods using two benchmarks constructed from the structural models
with the corresponding experimental SAXS profiles. We collected the experimental data
from two large databases dedicated to the study of biological molecules by SAXS exper-
iments. The first database is Biolsis, which was designed by Dr. Robert P. Rambo at the
Lawrence Berkeley National Lab [100]. It contained 99 SAXS scattering profiles of biolog-
ical molecules and their complexes with both known and unknown structure. The first
entry in Biolsis is dated by 2009. The second database is the Small Angle Scattering Bi-
ological Data Bank (SASBDB), powered by the Biological Small Angle Scattering Group
at European Molecular Biology Laboratory, Hamburg Outstation [261]. This database
contained 125 scattering profiles. The first data for SASBDB were collected in 1998. For
our tests we collected all those experimental scattering profiles from the two databases
that had the corresponding atomic models. Overall, we use 28 entries from Biolsis and
23 entries from SASBDB. Models from Biolsis range from 424 to 23,149 atoms, having
on average 6,676 atoms. Models from SASBDB range from 602 to 25,761 atoms, having
on average 6,443 atoms.

5.2.17  Implementation Details

The presented method is implemented using the C++ programming language and com-
piled with the gcc-4.8 compiler on Linux, the clang compiler on Mac OS, and the MSVC
compiler on Windows systems. To speed up computations of the expansion coefficients
in eqgs. 174-176, we use single-instruction-multiple-data (SIMD) instructions when possi-
ble. We also use multi-threaded computations for the evaluation of the expansion coeffi-
cients, as well as for the fitting procedure, if multiple CPU cores are available.

The test benchmarks were run on a MacBook Pro Mid 2015 laptop with a 2.8 GHz Intel
Core iy processor and 16 GB 1600 MHz DDR3 RAM. Pepsi-SAXS can optionally provide
the output formatted using JSON, and change the initially guessed angular units of the
experimental profile. On demand from the user, we allow for the negative contrast of
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Figure 33: Pepsi-SAXS output from a nanocage particle. Left panel: Some of the standard out-
put information. Right panel: An illustration of the nanocage PDB file and the corresponding
scattering profiles.

the hydration shell using the "-neg’ flag. We also provide a coarser representation of the
hydration shell with the ’-fast” flag, which also improves the execution time by about
10%. By default, the maximum scattering angle is set to 0.5 A~!. The user can change it
using the "-ms’ flag. Finally, the user can optionally require fitting experimental profile
with a constant background noise using the -cst’ flag. Figure 33 shows a typical output
and a scattering curve of the method applied to a nanocage composed of 162,120 heavy
atoms [20].

5.3 RESULTS AND DISCUSSION

To demonstrate speed and accuracy of the present method, we conducted seven numer-
ical experiments using excessive experimental data. In the experiments, we compared
the performance of Pepsi-SAXS with three widely used methods, CRYSOL version 2.8.2
[192, 243], FoXS [224] and SAStbx [147]. We should note that SAStbx provides implemen-
tations of three different methods, but we have specifically chosen the novel 3D-Zernike
technique, with the "data_reduct’ and "solvent_scale” options set to "true’. We did not use
more computational methods for the comparison because a recent study of the FoXS
method [226] demonstrated an advantage in speed and accuracy of FoXS and CRYSOL
over other tested programs.

5.3.1 Biolsis database

In the first series of tests, we aimed to compare the four methods on the data from the
Biolsis database. More precisely, we measured the goodness of fit for the modelled inten-
sities to the experimental SAXS profiles (eq. 207) and the corresponding timings. Table
7 lists the results of the tests. Pepsi-SAXS outperforms the other methods in running
time for all the test profiles. On average, Pepsi-SAXS is about 7 times faster compared
to CRYSOL, and 29 and 36 times faster compared to FoXS and SAStbx, correspondingly.
As can be expected, for small molecules the difference in running time between Pepsi-
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Figure 34: Comparison of modelled and experimental scattering profiles. A) Comparison of
Pepsi-SAXS, CRYSOL, and FoXS on the SASDAW3 profile from the SASBDB database. B) Com-
parison of Pepsi-SAXS, CRYSOL, and FoXS on the BID_1SPXGP profile from the Biolsis database.
C) Effect of the adaptive expansion order on the model quality of Pepsi-SAXS applied to the
BID_GISRUP profile from the Biolsis database. D) Comparison of Pepsi-SAXS modelled scat-
tering profiles without the subtraction (two fitting constants) and with the subtraction (three
fitting constants) of the constant systematic error from the experimental data calculated for the
BID_ZGDWKP model from the Biolsis database.

SAXS and CRYSOL becomes larger, and the difference between Pepsi-SAXS and FoXS
becomes smaller. For large molecules, however, FoXS is significantly slower compared to
CRYSOL and Pepsi-SAXS. For example, Pepsi-SAXS computes the scattering profile for
model BID_MnmGEP about 62 times faster compared to FoXS. We should mention that
the reported speed-up critically depends on the number of available CPU cores. Thus,
we did an additional artificial test and executed Pepsi-SAXS on a single CPU core. The
average running time over the Biolsis dataset in this case was 0.36 seconds, still several
times smaller compared to CRYSOL and other methods.

Regarding the accuracy of the modelled profiles, on average Pepsi-SAXS produces
scattering curves very similar to the ones computed by CRYSOL and FoXS with approx-
imately the same x values, if these are computed for the same range of the scattering
angles. We should specifically mention that in all the tests we have restricted the max-
imum scattering angles of Pepsi-SAXS to the default value of 0.5 A~!. This was done
for the rigorous comparison of the x values with the results of CRYSOL and FoXS. We
should also mention that in some cases of noisy experimental data FoXS restricts the
maximum scattering angles even further, thus producing on average higher x values.
This, however, does not necessarily mean that the quality of the computed profiles is
worse compared to the results of Pepsi-SAXS and CRYSOL. SAStbx generally provides
a significantly worse quality of fit and is thus excluded from the detailed comparison.
Figures 34B-D show three examples of modelled scattering profiles from the Biolsis
database. Generally, we can conclude that Pepsi-SAXS computes scattering profiles that
are comparable to the other two methods. Below, we will also study the effect of the
adaptive resolution in comparison with CRYSOL in more detail.

We should also mention that a smaller x value achieved with a certain method for
a scattering profile does not necessarily mean a better quality of the computed profile.
Generally, one should be concerned about possible flexibility and conformational hetero-

83



84

SCATTERING

geneity of the modelled proteins. Also, some of the models from the two benchmarks
are not crystallographic structures but were produced with molecular dynamics simu-
lations or MODELLER [269], for example. Therefore, small values of x for some of the
models would rather indicate a potential overfitting of experimental profiles than be a
demonstration of the superiority of the fitting method. Finally, we should add that dif-
ferent methods use different ranges of fitting parameters, and also different models for
the hydration shell, which, consequently, contribute differently to a potential overfitting
of experimental data.

Ideally, a reference dataset of native structures supplemented with experimental SAXS
profiles along with non-native decoys should be established for the evaluation of SAXS
algorithms. Then, different methods can be tested on this dataset by scoring the non-
native decoys. The absence of overfitting in a SAXS method can be confirmed, for ex-
ample, if the native structures will have the least x values among all the scored decoys.
To support our method, we should say that we use a small range of adjustable param-
eters as compared to other methods such as CRYSOL and FoXS. Thus, we believe that
Pepsi-SAXS does not have any significant overfitting of experimental data.

N.of| CRYSOL FoXS SAStbx Pepsi-SAXS
# structures|atoms|y Time, s|x Time, s|x Time, s|x Time, s
Average 28 6678 [2.79 0.81 |273 3.51 (492 4.38 [|2.55 o0.12

Average with con- 28 6678

stant background
Table 7: Comparison of four methods, CRYSOL, FoXS, SAStbx (using the 3D-Zernike technique
and data reduction option), and Pepsi-SAXS, when fitting modelled intensity profiles to experi-
mental data collected from the Biolsis database. For each method, we provide the value of x and
the running time measured in seconds for each of the scattering profiles. We also list the number
of atoms in the models along with the average values of x and running time.

255 0.86 [2.98 3.5 - - 2.34 0.12

5.3.2  Biolsis database with a systematic error

In the second series of tests, we compared the three methods, excluding SAStbx, on the
same data from Biolsis, but this time measuring the goodness of fit for the modelled
intensities to the experimental SAXS profiles and the corresponding timings for data
with a constant systematic error (see eq. 209). Table 7 lists the detailed results of the tests.
For all the three methods, the running time becomes larger only marginally. Regarding
the accuracy of the models, both Pepsi-SAXS and CRYSOL on average improve the
value of x by about 9%, and FoXS unexpectedly worsens the averaged value of x. Figure
34D shows an example of fitting for two profiles calculated by Pepsi-SAXS with and
without the constant systematic error into the experimental curve. We can see a drastic
improvement of the model when subtracting the constant noise from experimental data.

5.3.3 SASBDB database

In the third series of tests, we compared the four methods on the data from SASBDB.
Here, we again first measured the goodness of fit for the modelled intensities to the
experimental SAXS profiles (eq. 207) and the corresponding timings. Table 8 lists the
detailed results of the tests. Similarly to the previous tests, Pepsi-SAXS significantly out-
performs the other methods in running time. Here, on average, Pepsi-SAXS is about 5
times faster compared to CRYSOL, and 21 and 25 times faster compared to FoXS and
SAStbx, correspondingly. The speed-up in the running time of Pepsi-SAXS compared to
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the other methods is somewhat smaller compared to the previous tests due to on aver-
age higher expansion orders used here. More precisely, for SASBDB, Pepsi-SAXS uses
the average expansion order of 19 and for Biolsis it uses the order of 14. Regarding the
accuracy of the modelled profiles, on average Pepsi-SAXS, CRYSOL and FoXS achieve
the same values of x if these are computed using the same range of scattering angles.
SAStbx was not able to process a half of the scattering profiles. Anyway, it was again
the slowest method among the four. Figure 34A shows an example of modelled scatter-
ing profiles from this database. The model (SASDAW3) has a complex shape, thus, we
expected the quality of the CRYSOL’s modelled profile to be lower compared to profiles
built with FoXS and Pepsi-SAXS.

N.of | CRYSOL FoXS SAStbx Pepsi-SAXS
# of structures|atoms|y Time, s|yx Time, s|x Time, s|x Time, s
Average 23 6443 [2.32 081 |2.71 3.56 [2.26 4.17 |2.33 0.17
Average with com 23 6443 |2.19 0.89 [2.93 3.55 |- - 2.16 0.19
stant background

Table 8: Comparison of four methods, CRYSOL, FoXS, SAStbx (using the 3D-Zernike technique
and data reduction option), and Pepsi-SAXS, when fitting modelled intensity profiles to experi-
mental data collected from the SASBDB database. For each method, we provide the value of x
and the running time measured in seconds for each of the scattering profiles. We also list the
number of atoms in the models along with the average values of x and running time. SAStbx
failed for some of the profiles, the corresponding values of x and time are marked with a dash.

5.3.4 SASBDB database with a systematic error

In the forth series of tests, we again compared the three methods, excluding SAStbx,
on the data from SASBDB and measured the goodness of fit with a constant systematic
error (see eq. eq:chizk) and the corresponding timings. Table 8 lists the detailed results
of the tests. As before, the running time becomes larger only marginally. Regarding the
accuracy of the models, Pepsi-SAXS on average improves the value of x by 8%, CRYSOL
improves it by 6%, and, FoXS again shows no improvement of fit.

5.3.5 Running times

For the fifth test we decided to compare the running time of the four methods if a user
computes a scattering profile without fitting it into the experimental data. Here, we
considered two scenarios, a profile with 51 points, as it used to be the default option
in CRYSOL, and a profile with 512 points, which better corresponds to the modern
experimental measurements. Table g lists the timings for all the four methods run on
atomic models from the Biolsis and SASBDB databases. For the 51 points-profiles, Pepsi-
SAXS is on average about 3 times faster compared to CRYSOL, and 19 and 27 times
faster compared to FoXS and SAStbx, correspondingly. With the 512 points-profile, Pepsi-
SAXS, FoXs and SAStbx increase the timings only marginally. However, the running time
of CRYSOL depends linearly on the number of points in the scattering profile. Therefore,
its timing increases by about ten times.

Time for 512 points, s / Time for 51 points, s

# of structures|N. of atoms|CRYSOL ‘FOXS ‘SAXStbx ‘Pepsi-SAXS
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Average 51 6572.0 ‘3.59 / o.45‘3.51 / 3.25‘4.63 / 4.6‘0.18 / 0.17

Table 9: Comparison of four methods, CRYSOL, FoXS, SAStbx (using the 3D-Zernike technique),
and Pepsi-SAXS, when calculating intensity profiles for models collected from the Biolsis and
SASBDB databases. No fitting to experimental data is performed. For each method, we provide
two running times measured in seconds when calculating the intensity profile with 512 points
and with 51 points, correspondingly. We also list the number of atoms in the models along with
the average values of running times. SAStbx failed for some of the profiles, the corresponding
values of timmings are marked with dashes.

5.3.6 Adaptive choice of the multipole expansion order

In the sixth series of tests, we compared the effect of the adaptive choice of the multipole
expansion order using data from the Biolsis and SASBDB databases. To do so, we first
fixed the expansion order to the value of 15, which is used by default in CRYSOL, and
ran Pepsi-SAXS in comparison with CRYSOL. Then, we chose the value of the expan-
sion order adaptively according to eq. 206 and ran the two programs again. Table 10
lists the details of the comparisons. As we can see from this table, using the default ex-
pansion order of 15, Pepsi-SAXS demonstrates very similar quality of models compared
to CRYSOL, with a slightly smaller value of x. Adaptive resolution lowers the value of
x for the two methods, by about 1% for CRYSOL and about 2% for Pepsi-SAXS. We
attribute the more pronounced effect of the adaptive resolution in Pepsi-SAXS to the
different model of the hydration shell in our method. Figure 34C shows an example of
scattering profiles plotted at a different expansion order in comparison with the exper-
imental curve for a large molecule (BID_GISRUP). We can see a pronounced difference
between the curves at large values of ¢, which corresponds to a fine resolution in the
real space that is not well encoded using low multipole expansion orders.

Finally, in the sevens series of tests, we compared the values of two adjustable param-
eters 79 and Jp for the three methods, excluding SAStbx, on data from the Biolsis and
SASBDB databases. In case of FoXS, we computed the values of ry and dp by rescaling
its internal fitting parameters c; and ¢ as suggested by the authors [224]. Table 11 lists
the adjustable parameters along with the mean values and the standard deviations for
the three methods. We can see that all the methods agree on the average value of the
effective atomic radius ¢ of 1.64 A. However, the standard deviation of this parameter
in FoXS and Pepsi-SAXS is only 0.05 A, which constitutes 3% of the average value and
is several times smaller compared to the standard deviation of 0.18 A in CRYSOL. We
should note that if we double the width of the search window for the ry parameter to
make it more comparable with the CRYSOL settings, the quality of fit to experimental
data improves only marginally.

Regarding the second adjustable parameter, the contrast of the hydration shell dp, all
the methods provide different mean values. More precisely, CRYSOL allows variation
of dp between 0 and 60 e/nm?, with the average of 22.4 + 21.7 e/nm3>. FoXS allows neg-
ative values of dp in the range of —27 ¢/nm? < 6p < 54 e/nm3. Thus, its average p
is lower compared to the one computed by CRYSOL and equals to 16.6 + 22.2 e/nm?.
In our model, by default, we allow only positive values of dp up to one tenth of the
bulk density value of 33.4 e/ nm?3. As a results, our mean value of the contrast of the
hydration shell ép lies in between those computed by CRYSOL and FoXS, however, with
a significantly lower standard deviation, §p = 18.4 +11.2 e/nm?. Allowing for a neg-
ative contrast of the hydration shell or for a larger width of the search window in the
0p parameter provides slightly better fits with the experimental profiles. However, this
choice of adjustable parameters might overfit the actual experimental data.
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Figure 35: Probability for a random docking decoy from the Protein-Protein Benchmark v4 with
RMSD < cutoff to have a better score than a random decoy with RMSD > cutoff.

Number Expansion order=15 Adaptive expansion order
# of structures| of CRYSOL Pepsi-SAXS CRYSOL Pepsi-SAXS
atoms |y Time, s x Time, s |Order y Time, s ¥ Time, s
Average 51 6572.0 |2.58 0.81 25 011 16.18 2.55 0.94 245 0.14

Table 10: Comparison of CRYSOL with Pepsi-SAXS when using adaptive multipole expansion
orders. Experimental data is collected from the Biolsis and SASBDB databases. For each method,
we provide the value of x and the running time measured in seconds when using the default
expansion order of 15 and the adaptive expansion order. We also list the number of atoms in the
models, the order of the adaptive multipole expansion, along with the average values of x and
running time.

Fitting Parameters
# of strucy CRYSOL FoXS Pepsi-SAXS
tures
X oA 6p,e/nm  x g A ép,e/nm  x g A 8p, e/nm
Average |51 2.58 1.64 +0.18 22.4 £21.7 2.72 1.64 +£0.05 16.6 £22.2 2.45 1.64 +0.05 18.4 +11.2

Table 11: Comparison of three methods, CRYSOL, FoXS, and Pepsi-SAXS, when fitting mod-
elled intensity profiles to experimental data for models collected from the Biolsis and SASBDB
databases. For each method, we provide the value of y, the fitted value of ry parameter, and the
fitted value of the contrast of the hydration shell parameter §p. We also list the average values of
x along with the average values and the standard deviations of the fitting parameters.

5.3.7 Applications to the rigid-body docking

To test the rigid-body formalism, we used the Protein-Protein Benchmark v4 with 176
protein-protein complexes in both bound and unbound states [103]. We simulated scat-
tering profiles using the bound states of the complexes, and used rigid-body docking
predictions from the unbound states. The docking predictions were generated with the
Zdock software. We used precomputed docking decoys with 6 degree sampling, corre-
sponding to 54,000 conformations per protein complex. We then compared scoring the
docking poses with the Zdock score and 2. The whole experiment took about 2 hours
on a MacBook Pro Mid 2015 laptop with a 2.8 GHz Intel Core iy processor and 16 GB
1600 MHz DDR3 RAM. Figure 35 shows the average results of the experiments. This is
the probability for a random docking decoy with RMSD < cutoff having a better score
than a random decoy with RMSD > cutoff. One can see that scoring by x? significantly
increases the probability to pick a near-native decoy structure.
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Figure 36: A: Bound conformation of the eEF2-ETA-bTAD complex, PDB code 1ZM4. B: Zdock
scores of the unbound docking decoys for this complex. C: Goodness of fit of the scattering
profiles of the docking decoys compared with the bound-state scattering profile.

Scoring by the protein profiles appears to be especially effective for the complexes
with non-trivial shapes. Figure 36A shows one of such examples with the bound state
of the eEF2-ETA-bTAD complex, (PDB code 1ZM4). Zdock scores of the docking decoys
for this examples have no correlation with the ligand-RMSD to the bound state (see
Fig. 36B). However, x? goodness of fit to the bound-state scattering profile has a much
better correlation with the ligand-RMSD and can serve as a proxy for the selection of
near-native docking decoys (see Fig. 36C).

5.3.8 Scattering profiles of MDD trajectories

We have extended the Pepsi-SAXS method for the computation of scattering profiles
on molecular trajectories. We aimed to achieve two goals. Firstly, we have extended the
method to be used in fitting the MD simulations trajectories and the calculation of tra-
jectories profiles. Secondly, we explored the possibility of explaining experimental data
with multiple molecular conformations. In our approach, we compute the solvation shell
and the maximum expansion order individually for each of the trajectory snapshots.
Standard MD trajectory formats are also supported. An example of such a calculation
can be found in multiple studies from my collaborators [1-3, 31, 119, 132, 159, 189, 190,

218, 253-255].
5.4 CONCLUSION

We developed a new method called Pepsi-SAXS that calculates small angle X-ray scat-
tering profiles from atomistic models. Our method is based on the multipole expansion
scheme and has quite a number of distinct features. Firstly, we use a very fast model for
the scattering contribution from the hydration shell based on a uniform grid of points.
Secondly, we use the adaptive resolution of the multipole expansion estimated accord-
ing to the Nyquist-Shannon—Kotelnikov sampling theorem. Then, we introduce partial
scattering intensities to rapidly fit the modelled profiles to the experimental data using
exhaustive search in two adjustable parameters. Finally, we introduce individual form
factors for charges and resonance groups, which increase the quality of the modelled
scattering profiles.

Overall, the Pepsi-SAXS method is significantly faster compared to CRYSOL, FoXS
and SAStbx (with the 3D-Zernike option) methods with on average the same quality of
scattering profiles. Thanks to its speed and modular architecture, it has been already
well adapted in the bioinformatics and biophysics community.

Pepsi-SAXS is freely available for the academic community. We have also developed
a web-interface at https://pepsi.app.ill.fr, which also provides access to Pepsi-SANS, a
method for the computation of small-angle scattering neutron profiles. Finally, we have
been working on several novel methodological developments of the method, e.g., the
computation of scattering profiles from flexible particles.
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MACHINE LEARNING

For quite a long time, I have been interested in how classical convex optimization and
more recent machine-learning techniques based on neural networks can help solve very
challenging sampling problems in statistical physics. This led us to designing several
knowledge-based potentials for 3D structures of biological molecules and their com-
plexes and also allowed us to prototype convex relaxations for combinatorial sampling
problems [200, 213]. We developed descriptor-based methods [86, 110-114, 117, 176, 205],
and also methods based on features learned with deep convolutional neural networks
[53, 104, 105, 182, 184, 278]. For example, thanks to the ideas of my student Georgy
Derevyanko, we proposed to learn the functional form of the interaction potentials
f*(r) by expanding them along with the geometrical features »"/(r) into orthogonal
polynomial bases 1, (), which leads to an easy expression for the interaction energy E,

Tmazx Tmazx Tmazx

el RUCOCERTEY FUCTCE:ES o) IECINCERDS
0 0 0 q
(213)

We then pushed forward these ideas to other applications with Petr Popov, Georgy Cher-
emovskiy, Emilie Neveu, and Maria Kadukova. I should also add that thanks to my stu-
dents Georgy Derevyanko, Guillaume Pages, Benoit Charmettant, Dmitrii Zhemchuzh-
nikov, Ilia Igashov, and Nikita Pavlichenko, we were one of the first teams worldwide
who started designing deep-learning applications for molecular data in 3D.

6.1 CONVEX OPTIMISATION AND POLYNOMIAL EXPANSIONS FOR KNOWLEDGE-
BASED POTENTIALS

6.1.1 Problem Formulation

Let us consider N native 3D structures of proteins or protein complexes, P, i = 1...N.
Let us also assume that for each protein or protein complex number i, we can generate
its D non-native structures (decoys), ]P?jmmat, j = 1...D, where the first index runs over
different proteins / complexes and the second index runs over the decoys. Our goal is
to find a scoring functional F, defined for all possible protein or protein-protein complex
structures IP, such that for each native structure 7 and its nonnative decoy j, the following
inequality holds:

(PP < F(Pme) (214)

Without loss of generality, from now on we will only consider the problem os scoring
protein-protein complexes. This is a very difficult problem in such a general formulation.
In order to simplify it, we can assume the following. First, the functional ' depends only
on the interface between the proteins in a complex. We define the interface as a set of all
atom pairs at a distance smaller than a certain cutoff distance r,,4,, such that the first
atom in each pair belongs to the first protein and the second atom in each pair belongs
to the second protein. Second, the protein is represented as a set of discrete interaction
sites located at the centers of the atomic nuclei. All interaction sites are split into M
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interaction types according to the properties of the corresponding atomic nuclei. Here
we choose M = 20. More generally, we may say that all the atoms in all amino acids
have different properties, which leads to A/ = 167. Third, the functional F' depends only
on the distribution of the distances between the interaction sites F(IP) = F(n(r)), where
nkl(r) is the number density of site-site pairs separated by a distance 7, with site k located
on the first protein, and site / located on the second protein. Finally, we assume that F' is
a linear functional, F'(ani(r) + Bna(r)) = aF(ni(r)) + BF(n2(r)). This is a very strong
assumption, but we demand it for an efficient optimization scheme. One of the simplest
functionals F'(n(r)) fulfilling these assumptions can be written as:

Tmax

_ S kL kL
Fn(r) =3} / WM (UM () dr (215)

k=1 1=k

It contains unknown functions U*!(r) that can be determined from the training set of
protein complexes. From now on, we will call these functions scoring potentials. * Once
the scoring potentials are known, to compute the value of F, we only need to define site-
site number densities n*!(r). In practice, we compute them as a sum of all kl-distances
in a given protein complex using the following equation,

1 (r=ri;)?
kl —_——
n™(r) = g e 202 (216)
Iy V2mo?

where each distance distribution is represented as a Gaussian centered at r;; with the
standard deviation of o. The sum is taken over all ki-site pairs ¢« and j separated by a
distance r;; smaller than r,,,,, with site k located on the first protein of the complex,
and site [ located on the second protein. In the limiting case of ¢ tending to zero, eq. 216
turns into a sum over Dirac delta functions. In the present study we assume the value
of o to be fixed for all site-site distributions. However, if one has additional information
about individual distance distributions, e.g., Debye-Waller factors, molecular dynamics
trajectories, etc., it can be used for more precise parametrization of the standard devia-
tion or even instead of the Gaussian approximation in eq. 216. Finally, we compute the
score of each conformation as a sum of pair-wise contributions Y*!(r;;) taken over all
pairs of atoms i and j separated by the distance 7;; smaller than 7,4,

Tmax 2
(r—rij)

1
Ja ZYH(W) — Z L / e 22 UM (r) dr, (217)
ij ij W 0

with atom ¢ of type k located on the first protein of the complex, and atom j of type [
located on the second protein. We will refer to functions Y*!(r) as to the scoring functions.

6.1.2  Expansion of U(r) and n(r) in an orthogonal basis

Given a set of functions ¢,(r) orthogonal on the interval [r;7;] with a nonnegative
weight function Q(r) such that

[ 0010100 dr = by (218)

Though the scoring function 215 is similar by the structure to e.g. the excess internal energy [90], our
scoring potentials U*!(r) are not equal to the potential energy functions between sites k and 1.
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Figure 37: Two types of orthogonal functions. Left: shifted Legendre polynomials orthogonal on
the interval [0; 10]. Right: shifted rectangular functions.

where 0,,p, is the Kronecker delta function, scoring potentials Uy () and number densi-
ties ny (1) can be expanded on [ry; o] as

Ui (r) = Zwﬁlqﬁp(r)y/ﬂ(r), r € [r;m2] (219)
ng(r) = leglgbp(r)\/()(r), r € [ri;ral. (220)

Expansion coefficients w}' and z%' can be determined from the orthogonality condition
218 as

T2

utl = [Uur)6, (0 /00r) ar (221)

T1
T2

x];l = /”kl(r)%(r) QO(r) dr. (222)

T1

Here we use two types of functions ¢,(r) orthogonal on the interval [0; 10] with a unit
weight, (i) shifted Legendre polynomials and (ii) traditionally used shifted rectangular
functions. These two types of functions are plotted in Figure 37. Other types of orthog-
onal functions can also be used. If the functions ¢, (r) are chosen to be negligibly small
outside the interval [0;7,,4,] or if their interval of orthogonality [ri;72] coincides with
the interval [0; rynqq), as is the case for two sets of our functions, then using eqgs. 219-220,
the scoring functional F'(n(r)) can be expanded up to the expansion order P as

M M P
Fn(r) ~ Y 3 S uflall = (wx), wxeR™ 7 (223)
k=1 Il=k p=1
We will refer to the vector w as to the scoring vector and to the vector x as to the structure
vector. Formulas 216 and 222 provide the projection from a protein complex structure
into the scoring space RP*M*(M+1)/2 Using these formulas, we can project structural
information of each protein complex into a certain structure vector x on RFP*M*(M+1)/2,

6.1.3 Connection to convex optimization

Now we can reformulate the scoring problem 214 as follows — given NN native structure
4

vectors x* and N x D nonnative structure vectors x%""”at, find a scoring vector w €

RPXMx(M+1)/2 gych that:

Vi=1.N,Vj=1.D (x* w)<(x{"" w), (224)
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or, equivalently,

Vi=1..N,Vj=1..D ([xP"* —x" . w) > 0), (225)

1J %

which defines N x D half-spaces in RY*M*(M+1)/2 with a common normal w. Thus,

finding the scoring vector is equivalent to finding the common normal w to the planes in eq.
225. Geometrical representation of three groups of structure vectors separated by three
parallel hyperplanes with the common normal w is given in Fig. 38.

In the training set, some decoy struc-
tures can be very close to the native struc-
tures. In practice, we define the native
structure as a structure with ligand root-
mean-square deviation (IRMSD) smaller
than 2 A. Therefore, for each complex
we may have several native structure vec-
tors along with several nonnative struc-
ture vectors. Fig. 39A presents an example

. of a single complex when infinitely man
Figure 38: Structure vectors for three complexes h lg p h y ] Y
are shown. Native structure vectors are plotted 1'YPETP1anes can sep arate the two classes

as blue circles. Nonnative structure vectors are ©Of structure vectors. Fig. 39B presents an
plotted as red squares. Native structure vectors example when no hyperplane can sepa-
in each complex are separated from nonnative rate the two classes of structure vectors for
ones by three hyperplanes with a common nor- a single complex. Similar examples can
rr.lal: This n'ormal is the scoring vector w we are  he constructed for the case with multiple
aiming to find. complexes. Given two classes of vectors,
Vapnik proposed to use the optimal separating hyperplane [263], which is unique and max-
imizes the distance to the closest point from either class. For the non-separable case,
Cortes and Vapnik proposed to relax the condition for the optimal separating hyper-
plane [49], including an additional term. This term minimizes the sum of penalties for
misclassified vectors. Following these ideas, we introduce for each decoy set slack vari-
ables &;;, which are positive for misclassified structure vectors and zero otherwise. A
non-zero value of ¢;; allows the structure vector z;; to overcome inequality conditions
225 at a cost proportional to the value of §;; (see Fig. 39B). The resulting quadratic
optimization problem reads:

>
L1

Minimize ( in w, bj,&;) : 3w w+ 3, Cijij
Yij [W *Xij — b]] -1 +£U > O, 1= 1N, ] =1.D
&; >0

The solution of this problem provides a trade-off between how large will be the sep-
aration between the two classes of structure vectors for each complex and how many
misclassified vectors will be in the solution. Parameters C;; can be regarded as regular-
ization parameters. Small values of C;; maximize the structure vector separation whereas
large values of C;; minimize the number of misclassified structure vectors. We choose
parameters C;; to be different for native and nonnative structure vectors of each complex
because fewer native structure vectors should have the larger weight (see e.g. [5]). The

following observation provides the foundation for the numerical scheme used in this
work:

Subject to: (226)

Observation 1. The optimal scoring vector is unique and given by the solution of problem 226.

Remark. Here, the scoring vector is optimal in the sense that it maximizes the separation be-
tween native and nonnative structure vectors and minimizes the number of misclassified vectors.
Regularization parameters C;; in 226 tune the importance of either factors.
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Figure 39: Two classes of structure vectors for a single complex are shown. Native structure vec-
tors are plotted as blue circles. Nonnative structure vectors are plotted as red squares. A) The
case when infinitely many hyperplanes can separate the two classes. B) The case when no op-
timal separating hyperplane exists. Slack variables ¢; and &; for misclassified structure vectors
are added, which are the distances to the corresponding margin hyperplanes. The optimal hy-
perplane, which maximizes the separation between the two classes, is plotted as a dashed line.
Two margin hyperplanes are plotted as solid lines.

6.1.4 The dual form

Optimization problem 226 can be solved by the classical method of Lagrange multipliers
[32, 49]. If we introduce N x D nonnegative Lagrange multipliers )\;; associated with the
first set of inequality constraints from 226 and N x D nonnegative Lagrange multipliers
v;; associated with the second set of inequality constraints from 226, the solution of
problem 226 is equivalent to determining the saddle point of the following Lagrangian
function'

L=—— + Z Czj§2j Z)\zg yz] W Xij — b] -1+ gz])
- Z%‘j&j, (227)
ij
Wlth L = ﬁ(W,b,f,)\,V), Where b = (bl,bQ,...,bD), 5 = (51175127--'a§ND)/ A=
(M1, M2, ..., Anvp), and v = (vi1,119,...,vND). At the saddle point, £ has a minimum

with respect to w, b and £ and a maximum with respect to A and v. According to
the classical Karush-Kuhn-Tucker (KKT) conditions [32, 129], which is a generalization of
the method of Lagrange multipliers to inequality constraints, the saddle point of the
Lagrangian function 227 satisfies the four following conditions:

1. Stationarity conditions:

&; >0

oL
w W ZyU)\Ux” =0 (228)
Z Yijhij = 0 (229)
oL
7201”—)\2"—%“:0 230
¢, J J J (230)
2. Complementary slackness conditions:
Aij (i [W %35 = bj] =14 &j) =0 (231)
vij&ij =0 (232)
3. Primal feasibility conditions:
Yij [W-Xij = bj] =14 &; > 0 (233)

(234)
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4. Dual feasibility conditions:

Aij 20 (235)
Vij > 0 (236)

Using equation 227 along with the aforementioned KKT conditions 228-236, we can
rewrite the original optimization problem 226 as:

Maximize £(Xij) = 355 Nij = 5 224 2w YigYiNij A Xij - X
0 < \ij < Cjj . (237)

Subject to:
>iYijhij =0

6.1.5 The optimization algorithm

Properties and solutions of quadratic optimization problems similar to the one stated
above 226 have been extensively studied in the theory of convex optimization [32, 263].
For instance, using the Lagrangian formalism, the optimization problem 226 can be con-
verted into its dual form (see subsection above), and the resulting dual optimization
problem is convex:

Maximize L(\;j) = Zij Aij — %Zw Dk YigUkiNij AkiXij - X
Subject to: 0= %y = Gy Vio : (238)
YAy =0, Vj

where the maximization is performed with respect to the Lagrange multipliers X;;. This
dual problem is similar to the the soft-margin SVM optimization problem [49]. The
difference lies in the constraints. For the soft margin SVM, conditions on the parameters
written in the same two-indexed form as in eq. 238, are }_;; y;;Ai; = 0. Vectors x;; for
which A;; > 0 are called support vectors. Once the dual problem 238 is solved and the
Lagrange multipliers );; are found, we can express the solution of the original primal
problem 226 as a linear combination of the support vectors:

W = Z yiininj' (239)

support vectors

The dual representation 238 of the original primal problem 226 allows us to break the
original large problem into a series of smaller sub-problems. Due to its enormous size,
the problem 238 can not be easily solved by standard techniques. The quadratic form in
238 involves a matrix with number of elements proportional to the squared number of
the training structure vectors. This matrix often exceeds the size of available RAM, for
instance, explicit storage of the matrix used in the present study requires about 20GB
of memory. Nonetheless, algorithms that deal with large datasets are widely used in
machine learning. More precisely, various decomposition techniques have been devel-
oped to reduce the requirements of solvers to the size of available RAM [136, 181, 199,
262]. Here, we employ the block-decomposition technique and propose the block sequential
minimal optimization (BSMO) algorithm, which is described below.

6.1.6 The BSMO algorithm

Here we explain the block sequential minimal optimization (BSMO) algorithm. Briefly, we
partition the training set into IV blocks, each comprising D + 1 structure vectors, both
native and nonnative ones. Then, for each block i, we iteratively optimize each pair of
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Lagrange multipliers (A1, \2), preserving the equality constraint y; A1 + y2A2 = const. To
do this, we write the Lagrangian 238-237 as a function of A\; and As:

1
L(A1,X2) = 577)\3 — nA2AS + Xy (y2 — y1)
+ Aoya(xi1 — Xi2) - W + Const., (240)
with
N = 2X;1 - X2 — X41 - X1 — X2 * X42. (241)

Then, we analytically maximize this Lagrangian with respect to A\; and A2 according to
the sequential minimal optimization (SMO) algorithm [199]. We provide details about the
SMO algorithm in the next subsection. After the minimization, we obtain new values

of A\ and Ay. After each iteration, we recompute the current scoring vector w"** (see
equation 239) according to:
W = wold £ AN y1xi1 4 Adoyaxio. (242)

For each block ¢, we continue the iterative optimization of the Lagrangian 240 until
the relative change in its value between two successive inner cycles of iterations is less
than the desired tolerance. Each inner cycle consists in the optimization of all pairs of
Lagrange multipliers for a given block i. Globally, we terminate the optimization when
the relative change in the value of the Lagrangian 238,237 between two successive outer
cycles is less than the desired tolerance. Each outer cycle consists in the optimization of
all the blocks of the training set.

As it is seen from equation 241, our BSMO algorithm requires only scalar products of
the structure vectors within the same block. Therefore, it is sufficient to load each block
into RAM sequentially, which results in memory efficiency of our method. Precisely,
RAM required for our implementation of the block-decomposition solver is N? times
less compared to the standard quadratic programming solvers.

6.1.7 The SMO algorithm

Here we describe how the SMO algorithm [199] solves the problem 238,237 for two
Lagrange multipliers A\; and A;. All quantities that refer to the first multiplier have
a subscript 1 and all quantities that refer to the second multiplier have a subscript 2.
SMO first computes the constraints on these multipliers and then solves the problem
238,237 for the constrained maximum. The inequality constraints in 238,237 force the
two multipliers to lie within a box [0, C1] x [0, C2], while the equality constraints in
238,237 force the two multipliers to lie on a diagonal line segment:

Y1A1 + Yoo = . (243)

This equation explains why one needs to optimize the two Lagrange multipliers simul-
taneously. Precisely, it is not possible to optimize a single multiplier without breaking
the equality constraints in 237-238, and, subsequently, breaking the constraints 243.

Without loss of generality, SMO first computes the second Lagrange multiplier A\, and
then expresses the ends of the diagonal line segment in terms of \;. The following lower
and upper bounds, Ly and Hj, apply to Ao:

1. if y1 = yo:

Ly = max(0, yy2 — C1)
Hy = min(Cs, vy2)
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2. if y1 # yo:
Ly = max(0, 7y2)
Hy = min(Cy, vy2 +C1)

On the next step, SMO computes the location of the unconstrained maximum of the
Lagrangian with respect to As:

OL(\, )

The corresponding unconstrained A, will be:

(x2 —x1) WO + 1 — g

)\r21ew — /\(Q)Id + Yo V

(245)

Next, SMO computes the constrained maximum by clipping the unconstrained maxi-
mum to the ends of the line segment:

L, iV <L
cli d
Ny PP = & Nmew - if [ < Amew < - (246)

H, if X3V > H
Finally, SMO determines the value of \; from the new clipped value of \;:

clipped
M = AP gy (AR g (247)

6.1.8 Training database

Here, we used the training database of 851 non-redundant protein-protein complex
structures prepared by Huang and Zou [99]. This database contains protein-protein com-
plexes extracted from the PDB [23] and includes 655 homodimers and 196 heterodimers.
We updated three PDB structures from the original training database: 2Q33 supersedes
1N98, 2ZOY supersedes 1V7B, and 3KK] supersedes 1YVV. The training database con-
tains only crystal dimeric structures determined by X-ray crystallography at resolution
better than 2.5 A. Each chain of the dimeric structure has at least 10 amino acids, and
the number of interacting residue pairs (defined as having at least 1 heavy atom within
4.5 A) is at least 30. Each protein-protein interface consists only of 20 standard amino
acids. No homologous complexes with the sequence identity > 70% were included in
the training database.

Our algorithm requires as input native and nonnative structure vectors (see, e.g., eq.
225). Native structure vectors can be computed from the native protein-protein contacts
in the training database using eq. 222. However, for the computation of the nonnative
structure vectors for each protein-protein complex from the training database, we need
to generate decoys. Since our optimization algorithm is very general and has no special
requirements for nonnative protein-protein contacts, we generated them by “rolling” a
smaller protein (ligand) over the surface of a bigger protein (receptor) using the Hex
protein docking software [215]. To do so, we initialized Hex exhaustive search algorithm
with the radial search step of 1.5 A and expansion order of the shape function equal
to 31. We used only the shape complementarity energy function from Hex (i.e., elec-
trostatic contribution was omitted). Afterwards, we clustered Hex docking results with
a root mean square (RMS) threshold of 8 A. The top 200 clusters, ranked by Hex sur-
face complementarity function, plus the native protein-protein complex conformation
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(giving in total 201 structures) were then used to compute the distance distribution func-
tions 216. Then, we computed the structure vectors using eq. 222 and labeled them as
"native” if the RMSD of the corresponding ligand was < 2 A from its native position.
Otherwise, the structure vector was labeled as “nonnative”. On average, we obtained
about 2.5 native structure vectors per protein-protein complex. To each structure vector
x;j, we assigned a regularization parameter C;; according to

native nonnative

. 4 . (248)
nonnative __ native .
G5 = CDj /Dj

We repeated the same procedure for each protein-protein complex from the training
database. We used M = 20 atom-centered interaction sites based on the atom types
definitions provided by Huang and Zou [99], resulted in total of 210 pair potentials.

6.1.9 Results : Overfitting and Convergence

Various methods of derivation of the knowledge-based potentials usually produce re-
sults biased towards the training data set. Typically, such algorithms maximize the pre-
dictive accuracy of the corresponding potential on a set of training data, which does not
imply that the same potential will perform equally well on a new set of data. Indeed,
titting the potential to the training data set also fits the noise in the data. Thus, very of-
ten a knowledge-based potential memorizes noisy features of the training data instead
of deducing general predictive concepts from it. This phenomenon is usually referred
to as overfitting [56]. A clear indication of an ”overfitted” potential can be, for example,
the need for post-smoothing techniques applied to the initial knowledge-based potential.
Overfitting is clearly not desirable. In order to avoid it, many regularization techniques
have been successfully proposed to penalize the initial objective function with various
additional terms [12, 120]. These terms serve to achieve a better predictive accuracy on
the off-training data owing to the predictions on the training data.

To avoid overfitting, we introduced two regularization parameters, o for the width
of the Gaussian distribution of distances in eq. 216, and C' for the amplitude of the
hinge loss function in eq. 226. To find the best values of these parameters we used the
following cross-validation procedure. Firstly, we divided the training set into two parts,
consisting of 200 complexes (temporary training set) and 651 complexes (temporary
test set). Then, for each value of o and C, we obtained the scoring potentials using the
temporary training set and verified it on the temporary test set. Finally, we chose those
values of o and C that correspond to the maximum number of guessed structures in the
temporary test set. We define the structure as guessed if its native complex has the score
better than all of its decoys. Figure 40 shows the predictive performance of the scoring
potential on the two sets as a function of ¢ and C. Obviously, the maximum predictive
performance on the training set is achieved at the highest values of C' (Figure 4oLeft).
However, the validation on the test set highlights the best choice of these values to be
C =10°...10" and 0 = 0.4 A (Figure 40Center).

Figure 4oRight shows the convergence of the success rate on the training set with
the number of iterations of the BSMO algorithm. The success rate was measured as the
number of guessed structures divided by the total number of protein-protein complexes.
We can see a fast convergence of the method. In principle, a hundred optimization
steps is sufficient to obtain the final result. We have also observed that increasing the
regularization parameter C leads to a slower convergence and vice versa. We should
note that thanks to the convexity of our optimization problem, its solution is unique
and does not depend on the starting point and the optimization method used.
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Figure 40: Left and Center : Predictive performance of the Convex-PP scoring potential as a
function of the smoothing parameter ¢ and the regularization parameter C. Left: Performance
obtained if the scoring functions are trained on the whole training set and verified on the same
set. Center: Performance obtained if the scoring functions are trained on 200 protein complexes
and verified on the other 651 complexes from the training set. Here the best performance is
obtained with ¢ = 0.4 A and C = 10°...107. Right : Success rate of the scoring potentials
on the training set versus the number of iterations of the BSMO algorithm. The scoring poten-
tials were obtained using the Legendre basis and the whole training set, without excluding any
homologous proteins. Parameters o and C were set to the optimal values of o = 0.4 A and
C = 10°.

6.1.10 Results : Extracted Potentials

Our method can in principle use any type of orthogonal polynomials to decompose the
structural statistics and reconstruct the potentials. However, since rectangular functions
are the simplest and the most widely used ones, we employed them as a reference.
Additionally, we did computational experiments using the Legendre basis orthogonal
on the interval [0;10]. We chose this basis because of its simplicity, in particular because
its weight function is distance-independent.
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Figure 41: Scoring functions trained in two different polynomial bases. Solid lines correspond
to the potentials obtained using the rectangular basis functions. Dashed lines correspond to the
potentials obtained using the Legendre basis functions. Left: Potential between aliphatic carbons
bonded to carbons or hydrogens only. Right: Potential between a guanidine nitrogen with two
hydrogens and an oxygen in carboxyl groups.

From now on, we call the obtained scoring potentials the Convex Protein Protein
(Convex-PP) potentials. Figure 41 shows typical scoring potentials derived using the
two different orthogonal bases. Obtained potentials are smooth by construction, thanks
to the Gaussian kernel in eq. 216. We can see that the shape of the potentials does not
depend on the basis set that was used to derive it. This is the consequence of the global
convergence of the optimization problem (see Observation 1). We can also see that the
obtained potentials tend to zero as the interaction distance increases. On the other hand,
all the potentials approach zero at short distances. The latter is the consequence of the
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Figure 42: Dependence of the extracted scoring functions on the decomposition order P in the
Legendre basis. After order P = 25, the potentials are indistinguishable from each other and
thus not shown for clarity. Left: Potential between aliphatic carbons bonded to carbons or hydro-
gens only. Right: Potential between a guanidine nitrogen with two hydrogens and an oxygen in
carboxyl groups.

absence of statistics for the native structures at short separation distances and the result
of the w - w regularisation term in optimization problem 226. We discuss this behaviour
in more detail below.

Due to the Gaussian smoothing of statistics, it is sufficient to use the maximum ex-
pansion order of P4y = Tmaz/0. For o = 0.4 A and r,4; = 10 A, the estimate on
the number of basis functions is P, = 25. However, due to the adjustment of o with
the cross-validation procedure, in our experiments we used a larger expansion order,
P = 40. Figure 42 demonstrates how the resulting potentials depend on the expansion
order. We should note that decompositions of orders above 25 are almost indistinguish-
able and thus are not shown.

6.1.11 Results : Protein-Protein docking benchmarks

First we tested the Convex-PP scoring function on the protein-protein docking bench-
mark version 3.0. It consists of 124 crystallographic structures of protein-protein com-
plexes extracted from the PDB database [102]. These are divided into three groups: rigid,
medium and difficult cases. The decoys for the scoring were generated using ZDOCK
3.0 [194] with the sampling step equal to 6 degrees (we call this set of docking position
ZDOCK benchmark below). We also compared our scoring function with the well estab-
lished ZRANK reranking protocol [195]. Figure 43A shows ROC curves (success rate
vs the number of top predictions considered). We see that Convex-PP scoring functions
outperform ZRANK and ZDOCK if the number of considered predictions is more than
eight.

We also assesed our scoring function using the Rosetta benchmark. Baker, Gray et
al generated the Rosetta benchmark from 54 complexes of the protein-protein docking
benchmark version 0.0 [43] using a flexible docking protocol, which is a part of the
RosettaDock suite [81]. Figure 43B compares the results of RosettaDock[81], ITScore-
PP[99] and our Convex-PP scoring functions. It shows that our potentials significantly
improve prediction rate over the ITScore-PP and RosettaDock scoring functions while
also outperforming them according to the other criteria. Unlike the results on the ZDock
benchmark, the results on the Rosetta unbound benchmark slightly decrease when we
remove homologous complexes from the training set.

6.1.12 Discussion : Short Distances.
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Figure 43: A) Dependence of the success rate on ZDock benchmark on the number of top pre-
dictions in consideration for the three methods. B) The same for the Rosetta protein docking
benchmark. The data for ITScore-PP and RosettaDock were taken from the original publications
[81, 99]-

The key property of a scoring function is

the existence of the correlation between

the score of a structure and its similar-

ity to the corresponding native structure.

Conventionally, the ligand-RMSD is taken

as the measure of similarity of the decoys

to the native structure. Ligand-RMSD is

the ligand (the smaller protein in a com-

plex) root mean square deviation of C,

atoms of a decoy relative to the native

complex structure when receptors (the

larger proteins in the complexes) are su-

perposed. To verify that our potentials in-

deed correlate with the similarity to the

native structures, we plotted the Convex-

PP score of each decoy versus the ligand-

RMSD for all decoys from the ZDOCK

and Rosetta benchmarks. Figure 44 shows

some typical plots for the complexes from

the training set and the two benchmarks.

Typically, in the training set we see a wide

separation between native and non-native  Figure 44: The plots of the Convex-PP versus the
structures. This happens because decoys ligand-RMSD for the decoy structures from the
in the training set have only few near- training set (1A7N, 1J7L), Rosetta benchmark
native structures with ligand-RMSD<10A. (1SPB, 2KAI) and ZDOCK benchmark(1N8O,
On the contrary, about 28% of the Rosetta 2CHE). Qn the lef’f we show the plots thajc gxhibit
funnel-like behaviour near the frame origin. On
the right side the plots without obvious funnels
are shown.

decoys are the near-native structures. The
ZDOCK benchmark has few near-native
decoys compared to Rosetta, only 1.5% of
the decoys have the near-native conformations.

Figure 45 plots normalized atom-pairs distance distributions for 1CGI and 1PPE com-
plexes. From this figure we see that the distance distributions for the Rosetta benchmark
are much closer to the native distributions compared to the ZDOCK and training set
distributions. We can also see that the Hex docking program [215], which we used for
the generation of the training set, produces fewer short-distance atom contacts com-
pared to ZDOCK. Since Rosetta decoys were additionally minimized using the Rosetta
scoring function, they do not have short-distance atom contacts and generally their dis-
tance distributions resemble the native statistics. Native structures neither have statistics
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Figure 45: The normalized atom-pairs distance distributions for two complexes 1CGI and 1PPE.
For each complex, four plots are shown: average ZDock distribution, average Rosetta distribu-
tion, average training set distribution and the native distribution. The average is taken over all
decoys from the two benchmarks and the training set.

at short distances. Therefore, reconstructed potentials in the vicinity of zero are not
reliable and can not provide fair scores for e.g. decoys generated with ZDOCK, since
these decoys have many short-distance contacts. Ideally, one needs to additionally pe-
nalize short-distance contacts using, e.g., empirical scores that cannot be obtained with
statistics from the native structures. This was one of our motivations to develop scoring
potentials further, see, e.g., the KSENIA potential below.

6.1.13 Discussion : Filtering

Some knowledge-based potentials are smoothed with a smoothing filter a posteriori. For
example, Mitchel et al. [167] and Huang et al. [99] used a “1:2:4:2:1” filter, DOPE poten-
tial is smoothed using cubic polynomials [231], etc. On the contrary, our method intro-
duces an assumption about interaction pair distance uncertainty a priory. More specifi-
cally, we collect statistics using gaussian events 216 with the standard deviation of 0. We
determine the value of o from the afore-mentioned cross-validation procedure. Then,
according to eq. 217, Convex-PP scoring function is smooth by construction. In other
words, we do not need to apply a smoothing filter to the obtained potentials, since we
introduce the uncertainty when we collect statistics. Another parameter that indirectly
influences the smoothness of the resulting potential is the regularization parameter C'
(se eq. 248). According to eq. 239, the scoring vector w, from which the scoring po-
tentials are derived, is a weighted sum of the support structure vectors x;;. The more
support structure vectors are in the sum, the more regular the scoring vector w will be.
On the other hand, this number equals to the number of non-zero Lagrange multipliers
Aij 239, which is uniquely defined by the value of the regularization parameter C' [202].
Decreasing C results in the increase of the number of non-zero \;; therefore resulting
in smoother scoring potentials. We also determine the value of this parameter by the
cross-validation procedure. The consistent determination of the two parameters o and
C' allows us to obtain smooth potentials according to eq. 217 directly as the solution of
the optimization problem 226.

6.1.14 Discussion : Uniqueness of the solution and the reference state

The concept of the statistical knowledge-based potentials is based on the definition of
two states: the observed state and the reference state [169, 233, 251]. The observed state
is usually the state when a single protein or a complex has the native conformation. It
can be derived from the crystal structures. Reference state was introduced as an atom
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pair distance distribution when the interactions between the atom pairs are absent. The
knowledge-based potential is then expressed in terms of these two states as:

NObs () /) Nobs
wij(r) = —RTln( i 1)/ N ) ,

T e — (249)
ref ref
NI (r) /N

where N[jef (r) and NZP*(r) are the numbers of atomic pairs i, at a distance r in the

reference and observed states, correspondingly, and numbers N;jef and ijbs are the
total numbers of pairs 4, j in these states. Some widely used approaches to derive the
reference state for protein folding are the ideal-gas approximation [282], the shuffling
of atoms [222], a random-walk chain [277], etc. For protein docking Chuang et al. used
decoys as the reference state [47], Bernard and Samudrala took the average over the
atomic pairs and a cumulative distribution function for all pairs as two reference states
[26], etc. The very wide variety of approaches to derive the reference state has its roots
in the loose definition and the complexity of the problem.

Recently, the new algorithms that avoid the reference state calculation appeared. We
should mention the iterative scheme used by Huang et al. [99] and the neural network
classifier by Chae et al. [39]. These algorithms indeed avoid the definition of the reference
state. However, they do not guarantee the uniqueness of their solution. On the contrary,
we showed that our algorithm converges to the global minimum of the function 226.
Thus, we avoid dependence on the initial guess of the interaction potential.

6.2 IDENTIFICATION OF WATER MOLECULES AROUND A PROTEIN

sromticcarbon 1F -

We used the methodology described above to dis-
cover water molecules around X-ray protein struc-
tures. Figure 46 shows an example of our poten- I : TR

tial trained and assessed for a blind predictions F1gu.re 46: Kn(?wledge—based solvation
of water positions at protein-protein interface, per- szflgfgafx;’::ﬁolt ecmlje;n ;hero(t);(i}r:
formed as part of the critical assessment of pre- gtoms as a function of the seplzration
dicted interactions (CAPRI) community-wide ex- dJistance. Left: water — aromatic car-
periment for the CAPRI Target 47. Our method bon. Middle: water — carboxyl oxygen
was the only one that predicted near zero false pos- (like in aspartic and glutamic acids).

itive water positions [137]. Right: water — charged nitrogen (like
in lysins). Was developed for [137].
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63 THE KSENIA DOCKING POTENTIAL

We later fixed the shortcoming of the
Convex-PP scoring function that did not
penalize interactions at very short interac-
tion distances not seen during the training

Figure 47: Examples of the KSENIA distance-
dependent scoring functions between atoms of
phase. To do so, we extrapolated the scor- types N2+ — O2- , C3 — C3 and C, — C,, re-
ing potentials Uy (r) from eq. 220 using spectively. Here, N2+ are guanidine nitrogens
a cubic spline interpolation with a num- with two hydrogens, O2- are oxygens in car-
ber of reference points. Figure 47 shows boxyl groups, C3 are aliphatic carbons bonded

to carbons or hydrogens only and C, are the
backbone C,, atoms. Black, dashed: initially de-

. . rived scoring functions without taking into ac-
fact that we only used information about - _
count the absence of statistics at short distances.

the native protein-protein interfaces dur- pjye solid: redefined scoring functions that take
ing training. To solve the binary classifica- into account the absence of statistics at short dis-
tion problem, for the second class labels, tances.

we generated random near-native conformations with coordinate deformations along

some of the obtained potentials. Another
novelty of the scoring functions was the
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the low-frequency normal modes. During the scormg phase we also introduced a rigid-
body minimazion algorithm [207].

Then, I integrated the obtained potentials and
optimization algorithms into an interactive molecu-
lar docking environment. Figure 48 shows an ex-
ample of this environment during CAPRI session
predictions.

FPS: 1685118717,

64 PEPSI-DOCK ML-BASED SYSTEMATIC DOCK-
ING

Finally, we demonstrated that an arbitrary-shaped
ML-based potential can be integrated into an FFT-
accelerated systematic docking engine. More con-
cretely, we developed Pepsi-Dock [176], a protein docking algorithm that uses a very
precise energy function [205] to explore the 6D search space. It combines a very fast
FFT-accelerated exhaustive search with a detailed data-driven model of the binding
free energy. This was the first demonstration how computation of a distance-dependent
knowledge-based pairwise energy function can be accelerated by FFI. The method is
available at team.inria.fr/nano-d/software/PEPSI-Dock/ .

The main methodological idea of the method is the fact that a potential field in 3D
acting on an object, if the field is created by a set of points with spherically-symmetric
potentials, which are additive, can be also represented as a sum of 1D integrals. Let us
assume a receptor molecule composed of R; atoms of type i exerting a potential field
fij(x) that acts on a ligand molecule composed of L; atoms of type j at positions g(x):

Figure 48: An example of flexible inter-
active docking for CAPRI Target 53.
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E=500 Iy fii R 21, (x —Xpg;) 9(x —xr,) dV used in systematic FFT-based search

=0 2R, L L fij(r)gpp(r—xr,)dr used in the ML optimization
(250)
Then, the total interaction energy, given I Geometrc fetures 5 prgcion 3. Oprimisaton
Xtractio
us a sum Zij of 3D volumetric contri- T B -
butions over all atom type combinations, ‘ oo S
O N =
STy 2R, 20, fii(x = xR,) g(x = x,;) dV, E S 3
can be also seen as a sum of 1D radial- EET - perpiane g_
dependent integrals, where symmetrical N | 5
«Q
angular-dependent degrees of freedom
have been integrated out, f fij(r )9 (r— _
xr,;)dr. It is convenient to use the latter g
expression in the ML task, as it coincides <o
with the optimization problem 226. And @
the former expression is identical to those | 5 g ., of a3 porental g & P25t esploration 7. Ranked
A . - setup of a 5L potential fie of the search space  docking solutions
used in systematic 3D FFT-based dock- PR -
in 1 . 1 ] engine \:a“
g engines. Figure 49 shows a schematic & L
pipeline of the method. /41 i » g
g || Q
B =1
VA N g Lg
6.5 DOCKING OF SMALL MOLECULES gy '}’

In molecular biology and pharmacology, a Figure 49: S.chemaFic representation o.f the PePsi-
Dock algorithm. Firstly, we learn the interaction

small molecule is a low molecular weight
potentials. Then, we use them in a systematic
organic compound that may help regu- ppy_sccelerated dockin

late a biological process, with a size on the order of 1 nm. %[ost drugs are small
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Knodle : KNOwledge-Driven Ligand Extractor
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Figure 50: Schematic workflow of the Knodle method.

molecules. Current computational challenges in this field include prediction of protein-
small molecule docking poses, virtual screening of drug-like compounds, and rational
drug design.

Our initial goal was to extend ML-based potentials developed for protein-protein in-
teractions to protein-ligand tasks. However, we did not aim using classical parametriza-
tion of small drug-like molecules. Instead, we wanted to learn everything from available
data. This lead us to the problem of the assignment of atom types and bond orders in
low molecular weight compounds, for which we developed a prediction model based on
nonlinear Support Vector Machines (SVM). Figure 50 shows a schematic illustration of
the Knodle pipeline. We implemented the developed methods in a KNOwledge-Driven
Ligand Extractor called Knodle, a software library for the recognition of atomic types,
hybridization states and bond orders in the structures of small molecules [111]. We
trained the model using an excessive amount of structural data collected from the PDB-
bindCN database. Accuracy of the results and the running time of our method is com-
parable with other popular methods, such as NAOMI, fconf, and I-interpret. Overall,
our study demonstrated the efficiency of nonlinear SVM in structure perception tasks.
Knodle is available at https://team.inria.fr/nano-d/software/Knodle.

6.6 THE CONVEX-PL AND CONVEX-PLR POTENTIALS
Convex-PL

Distance distributions =~ —— Optimisation

Grounded on the Knodle typization of small
molecules, we then derived a novel protein-ligand
interaction potential called Convex-PL [86, 87, 112].
We did not impose any functional form of the
scoring function. Instead, we decomposed it into
a polynomial basis and deduced the expansion co-
efficients from the structural knowledge base us-
ing a convex formulation of the optimization prob-
lem 226. Here, our optimization problem had the
dimensionality of ~ 50,000 with about 150,000 of
linear constraints. Also, for the training set we did
not generate false poses with molecular docking Figure 51: Schematic workflow of the
packages, but use constant RMSD rigid-body de- ConvexPL derivation.
formations of the ligands inside the binding pockets. This allowed the obtained scoring
function to be generally applicable to scoring structural ensembles generated with differ-
ent docking methods. The method was also patented [46]. We assessed the Convex-PL
scoring function using data from D3R Grand Challenge 2 submissions and the docking
test of the CASF 2013 study. We demonstrated that our results outperformed the other
20 methods previously assessed in CASF 2013, as it is shown in Fig. 52. The method is
available at http://team.inria.fr/nano-d/software/Convex-PL/.

Later, we analyzed scoring functions” performance in the CASF benchmarks and dis-
covered that the vast majority of them have a strong bias towards predicting larger
binding interfaces. This motivated us to extend our protein-ligand interaction potential

non-native
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and develop a physical model with additional entropic terms with the aim of penaliz-
ing such a preference. We parameterized the new model using affinity and structural
data, solving a classification problem followed by regression. The new model, called
Convex-PL®, demonstrated high-quality results on multiple tests and a substantial im-
provement over its predecessor Convex-PL. Convex-PL can be used for molecular
docking together with VinaCPL, our version of AutoDock Vina, with Convex-PL inte-
grated as a scoring function. Convex-PLZ, Convex-PL, and VinaCPL are available at
https:/ /team.inria.fr /nano-d/convex-pl/.

67 PROTEIN-LIGAND DOCKING METHODS

We then integrated the Knodle parametrization g .
and the Convex-PL and Convex-PL” potential into e : {{ {{ i

a docking engine that predicts binding poses of i 1
small molecules with respect to their protein re- " =y
ceptors [110]. Molecular interactions are precom- ;;fg;;gég’gﬁé’é & {i[ |
puted on a rigid grid, small molecules are treated  censmosan S o

in the dihedral angle subspace with all the ro- sz 1{% }; j
tatable bonds active, and the search is made Ao — "

with Monte-Carlo and rapidly exploring random e o % e e e e e w

Success rate (%)

trees (RRT) techniques. This method has been Figure 52: Perfomance of ConvexPL
used in a number of blind assessment exercises potential on the docking test of the
and is available for download on our website at CASF 2013 benchmark.

https:/ /team.inria.fr/nano-d /convex-pl/.

6.8 KORP-PL POTENTIAL

Despite the progress made in studying protein—
ligand interactions and the widespread application
of docking and affinity prediction tools, improv-
ing their precision and efficiency still remains a
challenge. Computational approaches based on the
scoring of docking conformations with statistical
potentials constitute a popular alternative to more
accurate but costly physics-based thermodynamic
sampling methods. In this context, a minimalist
and fast sidechain-free knowledge-based potential . i o<
. . . . . tential. Schematic view defining the
with a high docking and screening power is ex- . : : s
; ] relative orientation and position of a
tremely useful when screening a big number of ligand relative to a protein. The rela-
putative docking conformations. This observation tive orientation of a ligand atom is de-
motivated us to explore the idea of implicit (coarse- scribed by two spherical angles, i) 6,

grained) representations of protein molecules in the angle between the r and 2 vectors,
and ii) ¢, the angle between z and the

projection of r into the zy plane.

Figure 53: KORP-PL coarse-graind po-

protein-ligand interactions. As a result, we devel-
oped KORP-PL [114], a novel coarse-grained po-
tential defined by a 3D joint probability distribution function that only depends on
the pairwise orientation and position between protein backbone and ligand atoms .
Figure 53 explains the geometrical description used in KORP-PL. Despite its extreme
simplicity, our approach yields very competitive results with the state-of-the-art scor-
ing functions, especially in docking and screening tasks. For example, we observed a
twofold improvement in the median 5% enrichment factor on the DUD-E benchmark
compared to the state-of-the-art Autodock Vina results. Moreover, our results prove
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Figure 55: A schgmatic representation of the convolutional neural network architecture from [53].
Unless otherwise specified, line connections across boxes denote the consecutive application of
a 3D convolutional layer (‘Convolution’), a batch normalization layer (‘BatchNorm’) and a ReLU
layer. Grey arrows between boxes denote maximum pooling layers (‘MaxPooling’). Labels ‘M’
denote the number of 3D grids and the number of filters used in the corresponding convolutional
layer. The grey stripes denote one-dimensional vectors and crossed lines between them stand for
fully-connected layers with ReLU nonlinearities.

that a coarse sidechain-free potential is sufficient for a very successful docking pose
prediction. We also used the developed method in two blind challenges (GPCR Dock
2021 and CASP15). This work was carried out with Pablo Chacon from IQFR-CSIC
Madrid, Spain with the support from FlexMol Inria associate team (2019-2022). The stan-
dalone version of KORP-PL with the corresponding tests and benchmarks are available
at https://team.inria.fr/nano-d/korp-pl/ and https://chaconlab.org/modeling/korp-

plL
6.9 SBROD PROTEIN SINGLE-MODEL QUALITY ASSESSMENT METHOD

Our work on ML applied to protein interactions T~ T
motivated us to extend the application domain of 7
our methods and develop a technique specifically
for recognition of protein folds. Thus we created
a novel protein single-model quality assessment
method called SBROD [117]. The SBROD (Smooth
Backbone-Reliant Orientation-Dependent) method
uses only the conformation of the protein back-
bone, and hence it can be applied to scoring Bulkwae - _
the coarse-grained protein models. The proposed Figure % Schematic representation
. . . of physical and geometrical features
method deduces the scoring function from a train- .4 i\ the SBROD potential.
ing set of protein 3D models. It is smooth with
respect to atomic coordinates, and is composed of four terms related to differ-
ent structural features, residue-residue orientations, contacts between the backbone
atoms, hydrogen bonding, and solvent-solvate interactions. The method is available at
https:/ /team.inria.fr /nano-d /software /SBROD.

6.10 DEEP LEARNING
6.10.1 3D CNNs

Our deep-learning campaign started with the 3D convolutional neural network (3D
CNN) developed by my student Georgy Derevyanko [53]. We were generally motivated
by the computational prediction of a protein structure from its sequence and were look-
ing into multiple methods to assess the quality of protein models. Early-stage ML-based
methods, like SBROD developed in our team, even being very competitive at the CASP
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Order

Axis

Figure 57: A schematic representation of the DeepSymmetry architecture [:?34]. The input layer
containing a 3D density map is followed by five residual convolutional layers. The output is then
reshaped into a linear array and five residual layers of a fully connected network are added. The
output vector contains information about the order and the axis of the putative symmetry.

blind assessments, still relied on engineered structural features, defined as some func-
tions of the atomic coordinates [117]. Very few methods had attempted to learn these
features directly from the data. As a result, we demonstrated for the first time that deep
CNNis can be used to predict the ranking of protein model structures solely on the basis
of their raw three-dimensional atomic densities, without any feature tuning. Figure 55
schematically shows our architecture. We trained the network on decoy protein models
from the the CASPy to CASP10 datasets, tuned it parameters using the CASP11 dataset,
and validated the performance on CASP12, CAMEQO, 3DRobot, and blind testing in
CASP13 datasets, where it performed on par with the state-of-the-art algorithms.

ORNATE: The previous 3D CNN architecture,
despite being very innovative, had a number of
fundamental flaws. Most importantly, it was not
invariant to the orientation of the initial 3D model
and had to be trained on multiple orientations
of the same data. Also, it operated on volumet-
ric grids of a predefined size and used an exter-
nal parametrization (channels) of protein atoms.
These challenges motivated us to develop Ornate
(Oriented Routed Neural network with Automatic
Typing) — a novel method for single-model pro-
tein quality assessment (QA) [182]. Ornate is a
residue-wise scoring function that takes as input
3D density maps. It predicts the local (residue-
wise) and the g‘l(‘)bal model qualhity throu.gh a deep protein residue, as it it implemented in
3D CNN. Specifically, Ornate aligns the input den- .. Ornate architecture [182]. The ori-
sity map, corresponding to each residue and its entation is fixed by the topology of the
neighborhood, with the backbone topology of this central residue’s backbone. The atoms
residue. This circumvents the problem of ambigu- of the considered residue are shown in
ous orientations of the initial models. Also, Ornate dark colors and the atoms of its neigh-
includes automatic identification of atom types Porhood areshowninlight colors. The
and dynamic routing (gating) of the data in the orange.box, Sho‘.Ns the boundaries of
. the residue’s neighborhood. Only the
network. Established benchmarks (CASP 11 and atoms within this neighborhood are
CASP 12) demonstrated the state-of-the-art perfor- ¢ own and considered by the architec-
mance of our approach among single-model QA ture.
methods. It was also a very competitive architecture in the subsequent blind CASP
challenges CASP13 and CASP14. The method is available at https:/ /team.inria.fr /nano-
d/software/Ornate/.

Figure 56: Example of the oriented vol-
umetric input corresponding to one
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Figure 58: Schematic representation of the VoroCNN Voronoi-based geometric learning algo-
rithm. Firstly, a Voronoi tessellation of a 3D-model is computed with the Voronota library. Then,
based on Voronoi 3D-tessellation, a graph is built. Finally, a graph neural network predicts local
CAD-scores of all residues in the initial model.

DEEPSYMMETRY: Motivated by the initial successes of 3D convolutional neural net-
works in multiple tasks, we applied the same ideas for the detection of structural repe-
titions in proteins and their density maps and created a deep neural architecture called
DeepSymmetry [184]. We designed our method to identify tandem repeat proteins, pro-
teins with internal symmetries, symmetries in the raw density maps, their symmetry
order, and also the corresponding symmetry axes. Detection of symmetry axes is based
on learning six-dimensional Veronese mappings of 3D vectors, and the median angular er-
ror of axis determination is less than one degree. Figure 57 shows a schematic workflow
of our architecture. We demonstrated the capabilities of our method on benchmarks
with tandem repeated proteins and also with symmetrical assemblies. For example, we
have discovered about 7,800 putative tandem repeat proteins in the PDB. According to
our tests, the method is able to detect the order of a cyclic symmetry with a > 90% ac-
curacy, and guesses the direction of the axis of symmetry with an average error of < 1°.
The method is available at https://team.inria.fr /nano-d/software/deepsymmetry/.

6.10.2  Voronoi tessellations and geometric learning

Learning molecular representations in three dimensions (3D) poses numerous algorith-
mic challenges. These include rotational invariance of the representation, rotational de-
pendence of the geometric features, learning chemical-geometrical features, and many
more. One of the ideas to crack this problem was to descibe a molecular shape using
irregular 3D tessellations, such as Voronoi diagrams or molecular graphs, and then to
apply geometric deep learning to them. This motivated us to create the first geometric
learning methods operating on Voronoi tessellations of molecular shapes — VoroCNN
and its extension to angular filters S-GCN [104]. It turned out that geometric learning
is very efficient, as two of these models, VoroCNN and S-GCN, were ranked among
the top-3 methods in the recent assessment of protein model quality prediction tasks in
CASP 14 (December 2020). Figure 58 and Figure 59 schematically show our ideas.

vOROCNN: VoroCNN (Fig. 58) was the first deep convolutional neural network (CNN)
constructed on a Voronoi tessellation of 3D molecular structures [105]. Despite the irreg-
ular data domain, our data representation allowed to efficiently introduce both convo-
lution and pooling operations of the network. We trained our model to predict local
qualities of 3D protein folds. The prediction results were competitive to the state of
the art and superior to the previous 3D CNN architectures built for the same task
(the model was ranked in top-3, among over 70 methods, for the blind CASP14 chal-
lenge). In the manuscript, we also discussed practical applications of VoroCNN, for ex-
ample, in the recognition of protein binding interfaces. The method is available at https:
//team.inria.fr/nano-d/software/vorocnn/ and in gitlab repository. This project was con-
ducted in a close collaboration with the team of f Ceslovas Venclovas from Vilnius Uni-
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Figure 59: Illustration of a molecular graph representation used by the S-CGN scheme. (A)
3D protein structure is partitioned into Voronoi cells, shown with the dashed lines. The central
amino acid has the associated coordinate system, which is built according to the topology of its
backbone (atoms C, C,, N) with the center at the position of the C, atom. R symbols denote
amino acid residues. The spherical angles ¢ and 6 of the neighboring residues are computed
with respect to the local coordinate system of the central residue. (B) Graph corresponding to
the Voronoi tessellation, v is the central node,  is its neighbor, x,, and x,, are the corresponding
feature vectors, which are also shown with colored boxes. A graph-learning network is then
constructed on this graph, such that graph convolutional filters have angular dependence on
spherical angles ¢ and 6.

versity, Lithuania, supported by the PHC Gilibert 2019-2020 grant. VoroCNN was also
presented as a highlight talk at the ICML 2021 Workshop on Computational Biology.

s-cGN: Then, we extended VoroCNN with Spherical Graph Convolutional filters [104].
In a protein molecule, individual amino acids have common topological elements. This
allowed us to unambiguously associate each amino acid with a local coordinate system
and construct rotation-equivariant spherical filters that operate on angular information
between graph nodes (Fig. 59). More technically, our main idea was to approximate
spherical convolutional filters (matrix functions) F : S; — R%*42 trough a finite expan-
sion series in spherical harmonics Y™ (6, ¢),

L l
F(0,0) ~F(0,0) =) Y WY"(0,¢), (251)
1=0 m——1

where matrices W denote expansion coefficients of the function F in the Y, basis. This
allowed us to introduce the spherical convolution operation for the vertex v in a graph
in the following way,

Fouv = Z F(6, 0")x,. (252)
ueN (v)

Considering matrices W;" to be optimized parameters, we thus learn a spherical filter.
We should specifically emphasise that matrices W;" are rotation-equivariant by construc-
tion.

Within the framework of the protein model quality assessment problem, we demon-
strated that the proposed spherical convolution method significantly improves the qual-
ity of model assessment compared to the standard message-passing approach. It is also
comparable to state-of-the-art methods, as we demonstrated on Critical Assessment of
Structure Prediction (CASP) benchmarks and in the CASP14 blind challenge, where the
model was ranked in top-3 among over 70 methods. The proposed technique operates
only on geometric features of protein 3D models. This makes it universal and applicable
to any other geometric-learning task where the graph structure allows constructing local
coordinate systems. The method is available at https://team.inria.fr/nano-d/software/
s-gen/ and in gitlab repository. S-GCN was also presented as a highlight talk at the
ICML 2021 Workshop on Computational Biology.
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Figure 60: A. Six-dimensional (6D) convolution between a filter w(7) and a function f(7 + 7).
The function f(r + 7) describes the local environment of a protein residue and is defined within
a certain radius Ry from the corresponding C, atom. The local coordinate system zyz is
built on the backbone atoms C,, C, N of each protein residue. R denotes the location of a
residue’s side-chain. B. The spherical Fourier space with the reciprocal spacing Ap and the
maximum resolution of pyqz. Grey dots schematically illustrate points where the Fourier image
is stored. C. An illustration of a protein chain representation. Each protein residue has its own
coordinate system zyz and the corresponding local volumetric description Ff (p) within a certain
sphere of R;,q, radius. Spheres of different residues may overlap. Two residues are considered
as neighbors in the graph representation if their C,, atoms are located within a certain threshold
R;,. D. The graph representation of the protein structure. The node features are learned by the
network and are represented with colored rectangles. The edge features are assigned based on
the types of the corresponding residues and the topological distance of the protein graph.

6.10.3 6DCNN, local equivariance, and physics-based neural layers

3D molecular data turns out to be rather different from classical 2D images in that
respect, that in big molecules we may have multiple identical 3D pattens with different
orientations. The challenge in novel convolutional networks will be to find relations
between these pattens by using operations preserving local equivariance. Classical CNN
operators would require sampling 6 degrees of freedom for each new convolutional
filter in 3D. This is certainly out of reach for today’s CPU and RAM hardware, as the
dimensionality of network’s parameters would increase exponentially with the number
of layers in the network.

This motivated us to develop six-dimensional (6D) Convolutional Neural Network
(6DCNN) designed to tackle the problem of detecting relative positions and orientations
of local patterns when processing three-dimensional volumetric data [278]. Technically,
the main idea was to extend the convolution operation with an integration of all possible
filter rotations. Let f(7) : R? — R% and w(7) : R? — R% x R% be the initial signal
and a spatial filter, correspondingly. We proposed to extend the classical convolution as
follows,

/dr £(ro+7r)w —>/dA /drfro—i—A r)w(AT), (253)
where A € SO(3) is a 3D rotation (see Fig. 60A). 6(DCNN also includes SE(3)-equivariant
message-passing and nonlinear activation operations constructed in the Fourier space.
Working in the Fourier space allows significantly reducing the computational complexity
of our operations. Indeed, let the functions f(7) and w(7) be finite-resolution and have
spherical Fourier expansion coefficients F*(p) and W (p), correspondingly, which are
nonzero for [ < than some maximum expansion coefficient L. Then, the result of the 6D
convolution has the following Fourier coefficients,

I+,

[Foutlf ( Z Z 2l1+1 W) Y kL, —k)FE R (), (254)

Lh=0ki=—1 la=|l—1|

where ¢! are the products of three spherical harmonics. For a single reciprocal distance
p, the complexity of this operation is O(L’), where L is the maximum order of the
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Figure 61: Left : Comparison between protein representations for human PCNA (PDB
code:1AXC, chain A). Right : Schematic representation of the inputs and outputs of deep
learning-based methods in CASP14, excluding pipelines compiling several methods coming from
different sources, and methods lacking a clear description. The blue and red lines indicate the
input and output levels, respectively. Pretrained: sequence embeddings determined from NLP
models pre-trained on huge amounts of sequence data. MSA: raw multiple sequence alignement.
MSA-feat: MSA features (such as PSSMs, covariance and precision matrices). Contacts: contact
or distance matrix. Geometry: geometrical features, typically including contacts/distances and
torsion angles. Structure: 3D coordinates. QA: model quality. In case of several inputs and/or
outputs, we report those closest to the “end”.

spherical harmonics expansion. We demonstrated the properties of the 6D convolution
and its efficiency in the recognition of spatial patterns. We also assessed the 6DCNN
model on several datasets from the recent CASP protein structure prediction challenges.
There, 6(DCNN improved over the baseline architecture and also outperformed the state-
of-the-art.

6.10.4 Review for the CASP14 special issue on the progress of deep learning

After the end of the CASP14 protein structure prediction blind challenge in December
2020, the CASP organizers invited me to contribute with an overview paper on the DL-
related methodological advances in the field for the CASP14 special issue. I invited 3
of my colleagues and we compiled our opinion of the novel deep-learning approaches
developed between 2018-2020 and widely used in CASP14 . We specifically reviewed
novel representations of protein structures, such as tessellations, surfaces, molecular
graphs, and point clouds (see Fig. 61Left), carefully listed and explained all recent DL
architectures (see Fig. 61Right), and also provided our outlook on the current impact of
DL on structural biology and the future in the field [131].

6.11 CONCLUSION

The potential of deep learning has been recognized in the structural bioinformatics
community for already some time and became indisputable after CASP13 in 2018. In
CASP14 (2020) and CASP 15 (2022) blind experiments, deep learning has boosted the
field to unanticipated levels reaching near-experimental accuracy of single-domain pre-
dictions (CASP14) and protein assemblies (CASP15). This success comes from ideas and
advances transferred from other machine learning areas and methods specifically de-
signed to deal with protein sequences and structures and their abstractions. The future
of structural bioinformatics seems to orient toward exploiting vast collections of data
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in a mostly unsupervised fashion. Current technological advances, both in experimental
and computational sciences, bring us to a new level of understanding of how cellular ma-
chinery works and what will be the algorithmic needs in the nearest future. Open chal-
lenges include understanding the principles of functioning very flexible or disordered
macromolecules, such as proteins and RNAs, and also various aspects of molecular inter-
actions beyond stable protein-protein assemblies. I would argue that physics-based and
geometrical priors will be very useful in future method developments. Thus, I am confi-
dent that physics-based and engineering approaches will not disappear from structural
bioinformatics.



OUTLOOK

Following the enormous progress in sequencing techniques and instrumentation, we
have just witnessed the revolution in Cryo-EM, sub-Angstrém protein crystallography
and microscopy, and finally, massive protein structure prediction on the genomic scale.
Similar technological advances take place in other disciplines — I can only mention the
unprecedented quality of language translation and text generation, generative models in
image and video processing and automatic speech recognition. How do all these break-
throughs impact the future of structural biology and bioinformatics? At first glance, it
may seem we will only need big data from now on to train deep-learning models, and
then these models will answer all types of biological questions. However, the reality may
not be so bright for the data science. Big data would not be available for many questions
in hand, its interpretation would not be straightforward, and the biological community
will continue assessing the quality of machine learning models with new experimental
measurements.

What are the possible solutions when collecting large corpus of data is out of the ques-
tion in the near future? My guess is — we will still use classical physics-based tools, or at
least very strong physical and geometrical priors on statistical models. Somewhat ironi-
cally, the state-of-the-art crystallographic and cryo-EM data processing pipelines follow
the opposite scenario. Indeed, they impose statistical priors and Bayesian inference to
optimize the free parameters of the models built on experimental measurements.

Finally, as I have mentioned above, many classical questions in bioinformatics and
biology have just been answered and we are ready to move toward new boundaries.
For example, we seem to understand the structure and function of most globular single-
domain proteins and even some of their stable assemblies. Now it is time to shift our
main attention to multi-domain proteins, their complexes with other molecules, the role
and function of weak transient interactions, and also highly flexible or even disordered
macromolecules.

Protein flexibility and their observed structural heterogeneity is the question that has
puzzled me for already some time. The problem is not easy — we do not have well-
annotated data, it is very inhomogeneous, some observations are sparse, and classical
models based on stochastic sampling or the theory of linear elasticity do not seem to
fully explain experimental observations. In the future, I aim to combine my develop-
ments for physics-based predictions of protein motions with deep-learning architectures.
The first goal would be fixing potential flaws in the parametrization of the physical mod-
els. Then I would like to go beyond simple physical descriptions, including linear elas-
ticity, elastic network models, etc. I ultimately intend to learn novel mean-field motion
laws that correspond to some complex physics that would not be practical to apply di-
rectly because of too many degrees of freedom in the system that need to be integrated
over.

Thanks to the large collections of available protein models, we can now deepen our
understanding of their organizational complexity and function. We can do it, e.g., by
including in our models the effects of post-translational modifications (phosphoryla-
tion, acetylation, glycosylation, lipidation, etc.), non-covalent interactions with small
molecules, lipids, RNAs, and DNAs, and also the effect of physiological environments,
such as different levels of molecular concentration, pH, salt, and temperature. This shall
ultimately allow us to go as far as whole-cell modeling and simulation at the atomic
resolution. As whole-cell modeling still seems a rather far perspective, I nonetheless
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intend to model proteins in crowded environments. Crowding is an essential physical
phenomenon. It shall allow us to describe proteins’ structure, dynamics, and function in
physiological conditions. To study and parameterize the crowding effect, I will model a
part of the Escherichia coli cytoplasm system, which has a rich experimental character-
ization. Then, I plan to model the crowded behavior of antibodies and some molecular
motors, e.g., proteasome and dynein.

Another fascinating area of research is molecular (e.g., protein) design. We have seen
steady progress in the experimental optimization of protein’s affinity and thermosta-
bility, optimization of protein-protein interfaces, de-novo design of very rigid protein
domains and then multi-component systems, and recent advances in the level of nat-
ural sequences’ recovery. Currently, we can achieve levels of natural sequence recovery
higher than 50%, which was not possible even several years ago when protein folds were
optimized for their stability. The future challenges will be to transfer these successes to
other types of molecules — RNAs, DNAs, peptides, and drug-like small molecules.
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