
HAL Id: tel-04630184
https://hal.science/tel-04630184v1

Submitted on 1 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collaborative Cascading Failure Management on
Internet of Thing Devices

Amal Guittoum

To cite this version:
Amal Guittoum. Collaborative Cascading Failure Management on Internet of Thing Devices. Com-
puter Science [cs]. UGA (Université Grenoble Alpes), 2024. English. �NNT : �. �tel-04630184�

https://hal.science/tel-04630184v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information,
Informatique Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble et Orange Innovation

Gestion Collaborative des Pannes en Cascade sur les
Objets Connectés

Collaborative Cascading Failure Management on Internet of
Things Devices

Présentée par :
Amal GUITTOUM
Direction de thèse :

Noel DE PALMA
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes
Sébastien BOLLE
DIRECTEUR DE PROGRAMME DE RECHERCHE, Orange Innovation
Fabienne BOYER
PROFESSEURE ASSOCIEE, Université Grenoble Alpes
François AISSAOUI
INGENIEUR DOCTEUR, Orange Innovation

Directeur de thèse

Co-encadrant de thèse

Co-directrice de thèse

Co-encadrant de thèse

Rapporteurs :
Fabien GANDON
DIRECTEUR DE RECHERCHE, Centre INRIA d' Université Côte d'Azur
Olivier BOISSIER
PROFESSEUR, École Nationale Supérieure des Mines de Saint-Étienne

Thèse soutenue publiquement le 23 février 2024, devant le jury composé de :

Présidente

Directeur de thèse

Rapporteur

Rapporteur

Examinateur

Examinatrice

Examinateur

Sihem AMER-YAHIA
DIRECTRICE DE RECHERCHE, CNRS Délégation Alpes
Noel DE PALMA
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes
Fabien GANDON
DIRECTEUR DE RECHERCHE, Centre INRIA d' Université Côte
d'Azur
Olivier BOISSIER
PROFESSEUR, École Nationale Supérieure des Mines de Saint-
Étienne
Thierry MONTEIL
PROFESSEUR, INSA Toulouse
Nathalie HERNANDEZ
PROFESSEURE DES UNIVERSITES, Université de Toulouse - Jean
Jaurès
Didier DONSEZ
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

ي إ� ي زو�� م حلقو أحمد وحبيي�

ي أ�ي إ� ن وأي� الغاليني

Acknowledgements
For accepting to review my thesis, I would like to thank Fabien Gandon and Olivier Boissier. I
would also like to thank Sihem Amer-Yahia, Nathalie Hernandez, Didier Donsez, and Thierry
Monteil who accepted to be on my jury.

I would like to express my deepest gratitude to my advisors, Fabienne, François, Noel,
and Sébastien for their unwavering support, guidance, and invaluable insights throughout the
entire journey of my doctoral research. Their mentorship has been instrumental in shaping
the direction and quality of this thesis. More precisely, I would like to thank Fabienne for
making me learn how to write a good research paper and for the time we spent together at
her desk discussing our papers, François for transferring to me his deep thinking, ideas, and
technical skills, Noel’s availability and advice, despite his significant responsibilities, have been
truly appreciated, Sébastien who was the "hard work model" for me, his large and transversal
research vision has contributed a lot to my doctoral research.

I am also thankful for the encouragement and constructive feedback provided by my team
at Orange Innovation whose expertise has enriched the content and rigor of my work. I extend
my appreciation to the Orange company for providing a stimulating research and development
environment and resources essential for the completion of this research.

I am grateful to my colleagues and peers who have contributed to this work. Many thanks
to Matthieu, an Orange expert, who made me learn about the USP protocol, and to Julien, a
researcher at Orange, with whom I worked on the Collaborative LAN troubleshooting demon-
stration. I would like to thank also Sybille and Melissa, responsible for the DOMUS testbed, for
their precious contributions.

My heartfelt thanks go to my best friend Yasmine, and all my family, my mother Fadila,
my sisters Amina, Aya, Khadidja, my brother Hassan for their unwavering support, love, and
understanding during the challenging phases of this doctoral journey. Their encouragement has
been my pillar of strength. Special thanks to my father Moussa, who is my main source of
courage, and to my husband Sir Ahmed who has been a constant source of love and support.

Lastly, I extend my gratitude to all those who, directly or indirectly, have been a part of this
academic endeavor. This thesis stands as a collective achievement, and I am deeply appreciative
of the collaborative spirit that has fueled its completion.

iii

Contents

Acknowledgements iii

Table of Contents iv

List of Figures viii

List of Tables x

List of Terms and Abbreviation xi

1 Introduction 1
1 The management of the Internet of Things devices 1
2 Problem Statement . 3

2.1 Smart Home Use Case . 4
2.2 On the need of Collaborative DM . 4
2.3 Cascading Failure Management . 7

3 Global Overview of the proposed solutions . 8
3.1 A Semantic Digital Twin for IoT dependency Inference 8
3.2 A Semantic Multi-agent System for automatic and collaborative CFM . . 9

4 Contributions . 10
4.1 Research Contributions . 10
4.2 Experimental Contributions . 10

5 Thesis Structure . 11

2 Background 14
1 Industrial Context . 15

1.1 Internet of Things . 15
1.1.1 Architecture . 15
1.1.2 IoT challenges . 18

1.2 IoT Device Management . 19
1.2.1 DM Protocols and Standards . 20
1.2.2 Market DM solution . 22
1.2.3 Research trends on DM . 24
1.2.4 DM Challenges . 25

1.3 Orange motivation behind the presented research 26
2 Scientific Context . 27

2.1 Semantic Web . 27
2.1.1 Architecture . 28

iv

Contents

2.1.2 Semantic Web Applications . 31
2.1.3 Semantic Web and IoT . 32

2.2 Digital Twin . 33
2.2.1 DT Platforms . 34
2.2.2 Thing in The future, more than a DT Platform 35
2.2.3 Applications of Digital Twin . 36
2.2.4 Digital Twin and IoT . 37

2.3 Multi-agent System . 37
2.3.1 Multi-agent Programming Paradigms and Tools 39
2.3.2 Application of multi-agent system 42
2.3.3 Multi-agent system and IoT . 44

2.4 The combination of MAS, DT, and SW standards 44
3 Conclusion . 45

3 State of The Art 47
1 IoT dependency extraction and modeling . 48
2 Failure Management in Distributed Systems . 53

2.1 Failure Detection approaches . 53
2.2 Fault-handling approaches . 53

2.2.1 Reactive Fault handling . 53
2.2.2 Proactive Fault handling . 55

3 Failure Management in IoT . 56
3.1 IoT device failures . 57
3.2 IoT failure management from research perspective 58

3.2.1 Failure Detection . 58
3.2.2 Failure Diagnosis . 60
3.2.3 Failure Recovery . 61

3.3 IoT Failure management from industrial perspective 62
4 Ontologies for IoT . 66

4.1 Ontologies of reference in IoT . 66
4.2 Ontologies for IoT dependency Modeling 67
4.3 Ontologies for IoT Failure Modeling . 67

5 Conclusion . 69

4 Inferring Threatening IoT Dependencies using Semantic Digital Twins 70
1 Motivating Examples . 71
2 Context-Based Modeling for Threatening Dependencies 73

2.1 Threatening Dependencies Characterization 73
2.2 Threatening Dependencies Data Sources 74
2.3 Threatening Dependencies Modeling . 74

3 Proposed Framework . 77
3.1 Step 1: Context Extraction . 77
3.2 Step 2: Entity Resolution . 79

3.2.1 Problem Statement . 79
3.2.2 Method . 80

3.3 Step 3: Dependency Inference . 84
4 Evaluation . 88

4.1 Qualitative Evaluation . 89
4.1.1 Simulated Smart Home Scenario 89
4.1.2 Realistic Smart Home: DOMUS Testbed 89

v

Contents

4.1.3 IoT-D ontology Qualitative Evaluation 91
4.2 Quantitative Evaluation . 92

4.2.1 Performance Evaluation . 92
4.2.2 IoT-D ontology Quantitative Evaluation 94

5 Conclusion . 95

5 Solving The Cascading Failure Dilemma using A Semantic Multi-agent Sys-
tem 96
1 Illustration of Cascading Failure Dilemma . 97
2 Semantic Multi-OSAMA For Collaborative CFM 98

2.1 OSAMA BDI model . 99
2.2 Diagnosis Artifact . 101
2.3 Dependency Artifact . 103
2.4 Monitoring and Recovery Artifacts . 104
2.5 Collaborative CFM Protocol . 105

3 Evaluation . 107
3.1 Technical Architecture . 108
3.2 Qualitative Evaluation . 110

3.2.1 OSAMA agents Qualitative Evaluation 110
3.2.2 IoT-F Qualitative Evaluation . 110

3.3 Quantitative Evaluation . 111
3.3.1 CFM Performance Evaluation 111
3.3.2 OSAMA Impact on Resource Consumption 112
3.3.3 IoT-F Quantitative Evaluation 115

4 Conclusion . 116

6 Collaborative LAN Troubleshooting Demonstration 117
1 Context and Motivation . 117
2 Technical Architecture . 118
3 Customer Care Agent Assistance: A User Story 119

3.1 Targeted Cascading Failure Scenario . 123
3.2 Dependency Calculation . 123
3.3 Solving The Cascading Failure . 123

4 Conclusion . 127

7 Conclusion 128
1 Summary of Contributions . 128
2 Perspectives . 129

2.1 Short term perspectives . 130
2.1.1 Agent-based extraction of IoT dependency topology 130
2.1.2 More shared artifacts to value Orange Home Services 130
2.1.3 Declarative RDF generation using RML 130
2.1.4 Verification of the CFM protocol 131
2.1.5 Tests on realistic scenarios . 131

2.2 Medium term perspectives . 131
2.2.1 Handle uncertainty using Neuro-Symbolic AI 131
2.2.2 CFM protocol optimization using learning 131
2.2.3 Automatic Extraction of failure information 132
2.2.4 Handling multiple data store queries using Federative SPARQL . 132
2.2.5 Enabling an effective data governance using the Solid Framework 132

vi

Contents

2.2.6 Enhancing the traceability of OSAMA agents 133
2.3 Long term perspectives . 133

2.3.1 Cascading Failure Tolerance, Prediction, and Prevention 133
2.3.2 Integration of end users as an effective DM actor 134
2.3.3 Toward Standardized IoT Failure Management 134
2.3.4 Exploring other Collaborative DM use cases 134

A FMSim: IoT Failure Simulator 135
1 Introduction . 135
2 IoT simulators: State of the Art . 136
3 FMSim, an iFogSim extension . 137
4 Conclusion and Perspectives . 139

B Correctness verification of the Collaborative CFM protocol 140
1 Introduction . 140
2 Challenging Scenarios . 141
3 Discussion . 141

Résumé en Français 143
1 Contexte et Problématique . 143
2 Contributions . 144

2.1 Un système de jumeau numérique sémantique pour l’inférence automa-
tique des dépendances entre les équipements IoT 144

2.2 Un système multi-agent sémantique pour la correction automatique et
collaborative des pannes en cascade . 145

2.3 La démonstration "Collaborative LAN troubleshooting" 146
3 Conclusion . 147

3.1 Synthèse . 147
3.2 Perspectives . 148

Bibliographie 149

vii

List of Figures

1.1 Siloed Management of Interdependent IoT devices. 3
1.2 Smart home architecture . 5
1.3 Collaborative DM use cases. 7
1.4 A global overview of the proposed solution. 9

2.1 IoT architecture . 16
2.2 Generic architecture of an IoT device [Ray, 2018] 16
2.3 IoT Connectivity protocols From [Qorvo, 2021] 17
2.4 Matter data model [GoogleDev, 2023] . 18
2.5 DM architecture from [Aïssaoui, 2020] . 20
2.6 Architecture of the LwM2M protocol form [Sinche, 2020] 21
2.7 The architecture of the USP protocol from [Avsystem, 2023] 22
2.8 Orange Motivation behind the presented research 27
2.9 Semantic Web Stack [Berners-Lee, 1998] . 29
2.10 Updated Semantic Web Stack [Gandon, 2018] . 30
2.11 Features of the standard proposed by TopQuadrant 30
2.12 The Thing Description Ontology [Charpenay, 2020] 31
2.13 IBM reference architecture for DT [Andy Stanford-Clark, 2019] 34
2.14 Thing in The Future Architecture [Derrien, 2019] 36
2.15 A representation of the MAS from the talk of Stefano Albrecht in The multi-agent

research group in the Alain turning Institution [Stefano Albrecht, 2020] 38
2.16 The BDI agent architecture [Arnaldo Perez, 2019] 40
2.17 The Agent and Artifact Meta-model [Ricci, 2011] 41
2.18 A global view of Multi-agent oriented programming dimensions [Boissier, 2020] . 43
2.19 The combination of MAS, SW and DT . 45

3.1 IoT interaction model. 48
3.2 Sensor Failures . 58
3.3 Taxonomy of IoT device failures. 59
3.4 Failure management profiles. 63

4.1 The presented cascading failure scenario . 72
4.2 Threatening dependencies taxonomy. 73
4.3 IoT-D ontology. 75
4.4 Framework overview - On-demand inference of threatening IoT dependencies. . . 77
4.5 Thing in Data Injection Enabler . 79
4.6 Illustration of the ER problem. 80
4.7 Illustration of the proposed SHACL-based ER approach. 81

viii

List of Figures

4.8 The inferred dependencies topology from the simulated Smart Home Scenario. . . 87
4.9 DOMUS Testbed [DOMUS, 2023]. 90
4.10 The inferred dependencies topology from DOMUS Testbed. 90
4.11 Completion time of the ER step. 93
4.12 SHACL VS SWRL for dependency inference. 94

5.1 An example of cascading failure dilemma. 98
5.2 Overview of Semantic Multi-OSAMA For Collaborative CFM 99
5.3 IoT-F: IoT Failure Ontology. 102
5.4 Agent Communication Modality Ontology . 104
5.5 CFM protocol illustration. 107
5.6 Technical Architecture of Multi-OSAMA agents. 108
5.7 Deployment Architecture of OSAMA agents in the Cloud. 109
5.8 CFM completion time as a function of the DKG depth 112
5.9 Simulation Topology . 112
5.10 Resources gain of using OSAMA instead of legacy solution 113

6.1 Collaborative LAN troubleshooting - Technical Architecture 118
6.2 Orange Home 3D Simulator. 119
6.3 Supervision UI describing devices in the 3D Home simulators. Device state and

outputs are also displayed within this view to allow the detection of failures in
sensor data such as high variance. 120

6.4 Dependency Calculator UI currently embeds the Thing in platform to allow de-
pendency inference on the 3D simulated Smart Home. It allows the query of the
IoT Dependency Knowledge Graph (DKG) through the Thing in platform. 121

6.5 OSAMA Supervision Agent UI integrate the four (04) OSAMA agents managing
the simulated 3D home namely Orange, Amazon, Phillips and Kelvin. It displays
recovery logs including message exchange between the different OSAMA agents. . 122

6.6 The inferred Dependency Topology, from the Simulated 3D Smart Home, de-
scribed by the DKG. It includes 183 dependency relationships. 124

6.7 Dependency Topology of the alarm device, including the smoke sensors installed
in the living room, the bedroom, the office, and the kitchen, which has state
dependency to the alarm due to automation rules that launch the alarm upon
detection of fire. 125

6.8 Recovery Log OSAMA Supervision Agent UI displaying message exchange be-
tween the OSAMA agents to solve the alarm failure. 126

A.1 Components of iFogSim [Gupta, 2016] . 138
A.2 FMSim conceptual model . 138

B.1 Un système de jumeau numérique sémantique pour l’inférence automatique des
dépendances entre les équipements IoT. 145

B.2 Un système multi-agent sémantique pour la correction automatique et collabora-
tive des pannes en cascade . 146

B.3 Interface Web de supervision. 147

ix

List of Tables

1.1 DM actors managing the Smart Home . 5
1.2 The smart home automation rules . 6

2.1 DM in market IoT platforms enriched version from the study [Sinche, 2020] . . . 23

3.1 Related Work on IoT dependency extraction and modeling. 52
3.2 Related Work on IoT Failure Management . 65
3.3 Related Work on Ontologies for IoT . 68

4.1 Part of the identified CQs. 92
4.2 OntoQA Evaluation results IoT-D Ontology. 95

5.1 OSAMA Internal and External Actions . 100
5.2 Cascading Failure scenarios . 110
5.3 Part of the identified CQs. 111
5.4 Resource Characteristics . 113
5.5 Tuple Characteristics . 113
5.6 Simulation Parameters . 114
5.7 OntoQA Evaluation results IoT-F ontology. 115

A.1 Study of IoT Simulators . 136

B.1 Challenging Scenarios for CFM protocol. 142

x

List of Terms and Abbreviation

API Application Programming Interfaces

BDI Belief Desire Intention

CFM Cascading Failure Management

DKG IoT Dependency Knowledge Graph

DM Device Management

DMP DM Platform Provider

DT Digital Twin

ER Entity Resolution

FKB Failure Knowledge Base

FMEA Failure Mode Effect Analysis

IoT Internet of Things

IoT-D Internet of Things Dependency

IoT-F Internet of Things Failure

KG Knowledge Graph

LwM2M Lightweight M2M

MAS Multi-Agent System

MN Device Manufacturers

OSAMA cOllaborative caScading fAilure Management Agent

OWL Web Ontology Language

QoE Quality of Experience

RDF Resource Description Framework

SHACL Shapes Constraint Language

SP Service Provider

xi

List of Terms and Abbreviation

SPARQL SPARQL Protocol and RDF Query Language

SW Semantic Web

TD Thing Description

Thing in Thing In The Future

USP User Services Platform

W3C World Wide Web Consortium

xii

Chapter 1
Introduction

This chapter introduces the Thesis by first defining its context and scope. Then, it
highlights the addressed challenges through a Smart Home use case. After that, it
provides a global overview of the proposed solution and the thesis contributions.

Summary

Contents
1 The management of the Internet of Things devices . 1
2 Problem Statement . 3

2.1 Smart Home Use Case . 4
2.2 On the need of Collaborative DM . 4
2.3 Cascading Failure Management . 7

3 Global Overview of the proposed solutions . 8
3.1 A Semantic Digital Twin for IoT dependency Inference 8
3.2 A Semantic Multi-agent System for automatic and collaborative CFM 9

4 Contributions . 10
4.1 Research Contributions . 10
4.2 Experimental Contributions . 10

5 Thesis Structure . 11

1 The management of the Internet of Things devices

The Internet of Things (IoT) is increasingly becoming a transformative technological force by
reshaping the very fabric of our modern world, enabling various industries and sectors, each with
its unique set of applications and benefits. For instance, in smart homes, IoT is revolutionizing
how we interact with and manage our living spaces. IoT devices, from thermostats to smart
speakers, communicate with each other to create an environment that responds to our needs
and preferences. For instance, smart thermostats can learn our temperature preferences and
adjust accordingly, not only enhancing comfort but also saving energy. For the same purpose,

1

Chapter 1. Introduction

IoT is enabling smart grid technologies to foster energy saving and management. These grids
incorporate sensors, communication networks, and advanced analytics to monitor and manage
the flow of electricity more efficiently. Smart grids can detect and respond to power outages,
balance supply and demand in real-time, and integrate renewable energy sources.

One of the pivotal elements for creating substantial value within IoT ecosystem resides in the
capability of IoT devices to autonomously perform tasks with minimal human intervention. This
ability to collect, process, and transmit data, make decisions, and interact with other devices
and systems is at the heart of what makes IoT transformative. However, to ensure the correct
and efficient operation of IoT systems, it is imperative to have robust systems in place for the
monitoring and management of these devices. This is referred to as Device Management (DM).

DM constitutes a set of operations and processes essential to ensure the well-functioning of
IoT devices. These operations are executed remotely on IoT devices through DM solutions and
platforms, which allow for efficient maintenance of IoT devices’ health, security, and longevity.
Among DM operations, we find device firmware 1 updates, device reboot and reset, and device
monitoring and failure management.

Indeed, Regular firmware updates are essential for keeping IoT devices up-to-date with the
latest features, security patches, and bug fixes. These updates ensure that devices can adapt to
evolving standards and protocols. Moreover, devices must be equipped with the latest security
measures to protect against vulnerabilities and cyber threats. Regarding device reboot and reset,
IoT devices may encounter issues or performance degradation that can be resolved through a
simple reboot, where DM solutions can remotely initiate reboots to restore normal operation. A
device may require a factory reset to return to its default configuration in more complex cases.
This can be especially important when devices need to be decommissioned i.e., removed from
the IoT system.

While firmware updates, device reboots, and resets are important DM operations, the scope
of this discipline extends far beyond these elementary actions. Continuous monitoring of device
health is an essential DM feature. This includes tracking factors like temperature, battery
life, network connectivity, and sensor accuracy. It may be enhanced with an alert system or
sophisticated data analytics features to detect and address IoT device failures, ensuring they
remain in their correct state. After the detection of failures through device monitoring, DM
solutions may perform failure diagnosis and recovery remotely through DM operations. We
refer to this process starting from monitoring and failure detection to failure recovery as IoT
failure management.

In current IoT systems, the DM features are often provided through separate and isolated
DM platforms and solutions, each of which is administered by different stakeholders. These
stakeholders can include operators, service providers, and device manufacturers [Aïssaoui, 2020;
Jia, 2021; Shibuya, 2016].

DM platforms, such as Amazon Web Service2, LiveObjects3, are provided by DM platform
providers to offer DM as a service, providing users and IoT suppliers with essential DM features

1Firmware is a microcode or software that is embedded into the memory of IoT devices to help them operate.
2https://aws.amazon.com/fr/iot-device-management/
3https://liveobjects.orange-business.com/

2

https://aws.amazon.com/fr/iot-device-management/
https://liveobjects.orange-business.com/

2. Problem Statement

Figure 1.1: Siloed Management of Interdependent IoT devices.

to maintain and optimize their interdependent IoT devices. To achieve this, these platforms offer
integration capabilities, allowing them to work with IoT devices from various device manufac-
turers. This integration is made possible through dedicated Application Programming Interfaces
(API) that ease communication between the DM platform and heterogeneous IoT devices.

Moreover, Device Manufacturers often contribute to the DM ecosystem by developing mobile
applications that serve as user interfaces, enabling consumers to configure, monitor, and control
their IoT devices, such as Hue app 4 proposed by Philips. These interactions can take place
through local connections or cloud-based services, offering users flexibility and convenience in
managing their devices. On the other hand service providers ensure IoT connectivity and provide
IoT services via various devices such as Orange’s LiveBox for connectivity and Samsung’s Smart-
Things hub for home automation services. Each service provider proposes its own proprietary
DM platform for managing its devices.

This results in a complex landscape where IoT devices, each potentially manufactured by a
different manufacturer, are managed and controlled by separate DM solutions and platforms.
This reveals the following practical reality (see Figure 1.1): Interdependent IoT devices are
managed by siloed DM solutions and platforms governed by different actors.

2 Problem Statement

These siloed DM solutions exhibit several challenges when managing interdependent IoT devices
in an uncoordinated and chaotic manner [Jia, 2021]. To address these challenges, we believe that
there are needs for the cultivation of collaboration and interoperability functionalities within the
confines of these isolated DM solutions. These capabilities allow siloed DM solutions to work
together to solve complex problems concerning their multi-actor governance. We refer to this

4https://www.philips-hue.com/en-us/explore-hue/apps

3

https://www.philips-hue.com/en-us/explore-hue/apps

Chapter 1. Introduction

paradigm of collaborating DM solutions as Collaborative DM.
In this section, we illustrate challenges facing siloed DM solutions through a Smart Home

use case including a set of IoT devices managed by multiple DM solutions governed by different
actors, in order to demonstrate the need for the collaborative DM. Then, we focus on one of these
challenges, namely Cascading Failure Management (CFM), which is the challenge addressed by
this Thesis due its valuable business impact in practice.

2.1 Smart Home Use Case

We consider a smart home managed by five DM actors (see Figure 1.2). It will be used to
demonstrate the need for collaborative DM. Moreover, it will be used in the rest of the thesis
for illustration purposes. It consists of three intelligent systems deployed in a home consisting
of a living room and a kitchen:

• Light management system Relies on a light sensor, presence detection sensors, light
bulbs installed in the living room and the kitchen, and a light control unit. The latter
controls light using the light measurement service supplied by the light sensor, the presence
detection services of the presence sensors, and the light bulbs’ services.

• Temperature management system Controls the home temperature using a temperature
sensor and an airconditioner. It is mainly based on automation rules5 1–3 described in
Table 1.2.

• Security control system Launches an alarm when intruders, fires, or leaks are detected.
It consists of an alarm that uses the presence detection services provided by the presence
sensors to detect intruders. The alarm also uses temperature, smoke, and leak sensors’
services for fire and leak detection. This system is reinforced by rules 4–7.

A gateway provided by Orange connects devices in the living room to the Internet, while
an Orange Wi-Fi repeater connects the kitchen devices. The SmartThings platform6 enables
automation rules described in Table 1.2 using a SmartThings Hub 7. Devices in the smart
home are managed by five DM actors with different profiles each proposing its own solution for
managing devices integrated into its system (see Table 1.1).

2.2 On the need of Collaborative DM

The siloed DM actors described in the use case are exposed to new threats due to interdepen-
dencies among IoT devices. These interdependencies are related to data and service exchange
among IoT devices, which may be generated through for example automation rules. For in-
stance, rule 2 (see Table 1.2) makes the windows dependent on the air-conditioner as it acts
on the firsts based on the state of the second. These dependencies are complex, abundant, and
generate various threats that current DM solutions can not face with their siloed capabilities.

5Automation rules allow the automated composition of IoT services in a connected environment.
6SmartThings is Samsung’s IoT platform that enables automation rules across IoT devices in Smart Homes.
7https://www.samsung.com/us/smart-home/smartthings/hubs/samsung-smartthings-hub-f-hub-us-2/

4

https://www.samsung.com/us/smart-home/smartthings/hubs/samsung-smartthings-hub-f-hub-us-2/

2. Problem Statement

12

15

1 Presence sensor

2 Window lock

3 Door lock

4 Air conditoner

5 Temperature sensor

6 Smoke sensor
13 Water valve

14 Leak detector

15 Vocal Assistant

12 SmartThings

 Hub

7 Alarm

8 Light control Unit

9 Light bulb

10 Wi-Fi repeater

11 Gateway
13

DM

Provider

Device

Manufacturer

DM

Provider

DM

Provider

DM actors

Device

Manufacturer

Figure 1.2: Smart home architecture

Table 1.1: DM actors managing the Smart Home

DM actors Profile Managed devices

Orange
DM Provider
Service Provider

Leak detector, airconditioner, water valve,
temperature sensor, windows, door,
Gateway, Wi-Fi repeater

Samsung Service Provider SmartThings Hub

Amazon DM Provider Alarm, lights bulb, smoke sensor,
light control unit, vocal assistant

Philips Device Manufacturer Motion sensor, light bulbs, light control unit
windows, door, alarm

Kelvin Device Manufacturer Temperature sensor, airconditioner, leak detector,
water valve

One such threat is the phenomenon of cascading failures, where the failure of one device
triggers a cascade of undesired state changes in devices that depend on it [Xing, 2021]. Root
cause identification and failure recovery in such a scenario are complex since devices are man-
aged by siloed DM solutions unaware of interdependencies between devices. Let us take the
scenario where the airconditioner in the living room fails. This failure propagates to its de-
pendent devices and services: 1) the vocal assistant cannot respond to the prompt ”Turn off
the airconditioner”, and 2) the SmartThings hub can no longer close the windows when the
airconditioner is deactivated and open it when the temperature exceeds a threshold (see Rules 2
and 3 in Table 1.2). These failed devices are managed by different DM actors: Orange manages

5

Chapter 1. Introduction

Table 1.2: The smart home automation rules

No. Type Automation Rule

1 Comfort Adjust the air conditioner regarding the temperature returned by the
temperature sensor.

2 Comfort Open the two windows when the air conditioner is deactivated.

3 Comfort Close the two windows and turn on the air conditioner when the
temperature exceeds a threshold.

4 Security Turn on the alarm and unlock the door and both windows upon detection
of fire.

5 Security Turn on the alarm and close the water valve when a leak is detected.

6 Security Notifies the User, closes the windows, closes the door, and turns on the
alarm when detecting an intruder while the User is out of the home.

7 Security Set light bulbs to red when the alarm is activated.

the airconditioner, which is built by Kelvin, Amazon manages the vocal assistant, and Samsung
manages the SmartThings hub. These siloed DM actors cannot identify the failure’s root cause
since they do not have knowledge of dependency relationships among IoT devices.

Another threat is failures during the execution of DM operations, e.g., reboot or firmware
update, on interdependent devices. Indeed, DM operations can cause devices to be temporarily
unable to provide their services, leading to failures on dependent devices and breaking up-
dates [Mezghani, 2020; Zdankin, 2021]. These failures are exacerbated by the uncoordinated
and parallel execution of DM operations using multiple DM solutions [Jia, 2021] and are usually
hard to revert [Zdankin, 2021]. Let’s suppose Orange reboots the gateway while Amazon up-
dates the vocal assistant. Due to the connectivity dependency, the gateway reboot interrupts the
vocal assistant’s Internet connection, which results in the firmware image not being downloaded
correctly and the vocal assistant failing [Mezghani, 2020].

In addition, siloed DM solutions suffer from service reconfiguration issues. Namely, they
find it difficult to automatically integrate new devices within multi-actor IoT services. Let’s
assume the user wants to install a new light bulb in the smart home to be controlled through
the vocal assistant. Considering current DM capabilities, the light bulb control can no longer
be installed automatically on the vocal assistant, since they are managed by the different DM
actors: Orange and Amazon.

The Figure 1.3 summarizes the motivations behind the collaborative DM in the form of three
(03) use cases, namely, CFM, DM failure management, and service reconfiguration. In our work,
we leverage the collaborative DM paradigm to conceive a collaborative CFM solution on IoT
devices managed by siloed DM actors. However, our proposed solution is generic enough to be
extended to cover other collaborative DM use cases. In the following, we detail the CFM use
case.

6

2. Problem Statement

Figure 1.3: Collaborative DM use cases.

2.3 Cascading Failure Management

As mentioned above, Cascading Failures is a serious dilemma facing market DM actors. They
arise when the failure of one device instigates the failure of dependent devices and applica-
tions [Xing, 2021]. They are particularly problematic because they generate more customer
calls to customer care applications of DM actors. Their mitigation usually requires human
intervention, which increases the cost of Customer Care. For example, the Orange company
reports a cost of 20€ for one customer call and 100€ for sending a technician, where customers
perform 100 calls per week to request IoT device recovery. Moreover, failures are one of the
main causes of energy waste in connected environments. Studies show that 25–45% of HVAC
energy consumption is wasted due to failures [Najeh, 2019]. Despite cascading failures leading
to business and environmental damages, there is no existing solution for managing them in
multi-actor IoT systems, to the best of our knowledge.

Managing cascading failure on interdependent devices managed by siloed DM actors needs
to consider the following challenges:

• CH01: DM solution heterogeneity
Legacy DM solutions are heterogeneous, each using its own protocol and data model. Thus,
building a collaborative solution across these heterogeneous DM solutions must integrate
an interoperability layer allowing them to understand each other and work together toward
CFM.

• CH02: Distributed governance of data and control
IoT devices are managed by siloed DM solutions each having partial control and data of
IoT devices. A global governance strategy must be considered to allow information sharing
and collaborative control across IoT devices.

• CH03: Recognition of the global dependency topology
The first step towards managing cascading failures is the recognition of dependency re-

7

Chapter 1. Introduction

lationships among IoT devices. This allows the identification of the failure’s root cause.
However, this task is challenging since IoT dependency is abundant, dynamic, and governed
by different actors, i.e., the data describing IoT dependencies is distributed across siloed
DM solutions managed by different actors. For instance, in the described smart home
use case, automation rules are governed by Samsung while connectivity dependencies are
governed by Orange.

• CH04: Complexity of the IoT system
IoT devices are abundant and more and more interdependent in exchanging data and
services. Moreover, they are heterogeneous, leading to heterogeneity in their failure be-
havior and information. Thus, the CFM solution needs to be scalable, and able to handle
heterogeneous IoT failure information.

Considering these challenges, we propose automatic and collaborative solutions for managing
cascading failure on interdependent IoT devices managed by siloed DM solutions. In the follow-
ing, we discuss the proposed solutions and highlight its contributions.

3 Global Overview of the proposed solutions

This research work proposes an automatic and collaborative CFM approach for IoT devices
managed by siloed DM solutions. It relies on two main systems, namely A Semantic Digital
Twin for IoT dependency inference and A Semantic Multi-agent System for automatic and
collaborative CFM (see Figure 1.4).

3.1 A Semantic Digital Twin for IoT dependency Inference

We propose a framework that allows DM actors to collaboratively infer dependency relation-
ships among IoT devices that we refer to as IoT dependency Topology. The framework accesses
heterogeneous dependencies data from siloed DM solutions and aggregates them using the Se-
mantic Digital Twin (DT) technology, which refers to a virtual and synchronized representation
of real-world entities and processes built using a standardized vocabulary called Ontology. More
precisely, the dependency relationships are represented as a global IoT Dependency Knowledge
Graph (DKG) served as a DT view, representing the current devices and their dependencies.

Conceptually, the proposed framework relies on an ontology called Internet of Things Depen-
dency (IoT-D) that enables a shared representation of IoT dependencies across heterogeneous
DM solutions. The IoT-D ontology describes a set of contextual data that delineates dependen-
cies among devices. By leveraging the IoT-D ontology, the framework automatically constructs
the global DKG through a three-step process namely Context extraction, Entity resolution, and
Dependency inference. The first step extracts the context data from legacy DM solutions and
transforms it into KGs, the second aggregates the extracted context KGs, and the last infers
the DKG from the aggregated context KGs.

The proposed framework relies on the Orange DT platform Thing In The Future (Thing

8

3. Global Overview of the proposed solutions

Figure 1.4: A global overview of the proposed solution.

in) 8 and is designed to be integrated into customer care applications of DM actors as a human-
based decision support tool to help efficient management of dependencies-related threats. More
specifically, it can be used in various business scenarios, such as identifying the root cause of a
cascading failure, and dependency-aware planning of DM operations, e.g., firmware update to
prevent DM failures.

3.2 A Semantic Multi-agent System for automatic and collaborative CFM

To go beyond the human-based analysis of the IoT dependency topology, we propose a practical
solution allowing siloed DM actors to manage cascading failures in an automatic and coordinated
manner, by relying on the developed framework for IoT dependency inference. This solution
consists of a cooperative Multi-Agent System (MAS), which refers to a network of software agents
that operate independently while being loosely connected to address complex problems that are
beyond the individual capacities or knowledge of each agent. More precisely, we rely on cOl-
laborative caScading fAilure Management Agent (OSAMA), a semantic agent to be integrated
into the legacy DM platforms in order to help them understand, collaborate, and make effective
decisions regarding CFM.

OSAMA exploits a set of Semantic Web (SW) standards, such as ontologies, in order to sim-
plify failure information exchange and enhance the interoperability among siloed DM platforms.
It leverages the Semantic DT technology, modeling dynamic dependency relationships among
IoT devices for failure root cause identification. Upon failure, OSAMA agents start a collabo-
rative protocol that allows them to automatically identify the roots of the failures and recover
the failed devices. They adopt a Belief Desire Intention (BDI) model to handle effectively and
smartly cascading failure events that spread across devices managed by different actors.

Within their shared environment, OSAMAs are provided by four (04) Artifacts encapsulating
external services that they can explore at runtime to ease CFM: 1) Monitoring Artifact: Allows

8https://www.thinginthefuture.com/

9

https://www.thinginthefuture.com/

Chapter 1. Introduction

to monitor IoT devices and detect failures using legacy DM platforms; 2) Diagnosis Artifact:
Allows to identify failure type and its compensatory actions using Failure Knowledge Base
structured according to an ontology called Internet of Things Failure (IoT-F); 3) Dependency
Artifact: Thanks to Semantic DT, this artifact allows to automatically access an accurate view
of dynamic dependency relationships between IoT devices in order to ease cascading failure root
cause identification; 4) Recovery Artifact: Allows to execute recovery actions on IoT devices
using legacy DM platforms.

4 Contributions

This work includes research and experimental contributions. The latter is guided by the indus-
trial context of our work related to the Orange company.

4.1 Research Contributions

• The IoT-D ontology that provides context-based modeling for IoT dependencies in the form
of a KG. This ontology allows DM actors to have a common and shared understanding of
dependency relationships between IoT devices.

• A KG entity resolution approach using rules and functions from the advanced features of
Shapes Constraint Language (SHACL)9 for aggregating dependency information extracted
from siloed DM solutions.

• A rule-based approach to infer the topology of IoT dependency relationships, relying on
the SHACL standard.

• The IoT-F ontology, which describes IoT failure information such as device failures and
their recovery actions. This ontology allows DM actors to have a common and shared
understanding of IoT failure information.

• The OSAMA agent leveraging the BDI model to enable collaborative CFM across legacy
DM solutions.

• A collaborative CFM protocol allowing the OSAMA agents to collaborate toward CFM.

4.2 Experimental Contributions

• A proof of concept for the IoT dependency inference framework, integrated into the Orange
DT platform Thing in, which was validated on simulated Smart Home scenarios and the
realistic testbed DOMUS 10.

• A proof of concept for the semantic MAS solution with Cloud-based deployment, demon-
strating its potential impact in reducing time to repair failure, and minimizing resource
consumption in IoT infrastructures, such as energy consumption.

9https://www.w3.org/TR/shacl-af/
10https://www.liglab.fr/fr/recherche/plateformes/domus

10

https://www.w3.org/TR/shacl-af/
https://www.liglab.fr/fr/recherche/plateformes/domus

5. Thesis Structure

• The FMSim simulator, a simulator we developed in the context of this work, extending
the state of the art simulators for IoT failures injection and recovery simulation. This
simulator allowed us to evaluate our proposed solution for CFM.

• The Collaborative LAN Troubleshooting Demonstration, an innovative demonstration de-
veloped in collaboration with other teams at Orange Innovation highlighting the benefit of
our work in enhancing the customer care services of the Orange company and potentially
all market DM actors.

The present research work was carried out in the FLAM team of Orange, Meylan in collaboration
with the ERODS research team of the LIG lab. It led to the following research publications:

• Amal Guittoum, François Aïssaoui, Sébastien Bolle, Fabienne Boyer, and Noel De Palma.
"A Semantic Framework for IoT dependency Inference using Semantic Digital Twins".
COMPAS 2022: Conférence francophone d’informatique en Parallélisme Architecture et
Système (Compas), MIS - Laboratoire Modélisation, Informatique et Système - de l’Université
de Picardie Jules Verne., Jul 2022, Amiens, France.

• Amal Guittoum, Francois Assaoui, Sébastien Bolle, Fabienne Boyer, and Noel De Palma.
"Inferring Threatening IoT Dependencies Using Semantic Digital Twins Toward Collabo-
rative IoT Device Management". Proceedings of the 38th ACM/SIGAPP Symposium on
Applied Computing. SAC 23. Tallinn, Estonia: Association for Computing Machinery,
2023, pp. 1732–1741

• Amal Guittoum, François Assaoui, Sébastien Bolle, Fabienne Boyer, and Noel De Palma.
"Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Depen-
dencies". SIGAPP Appl. Comput. Rev. 23.3 (2023), pp. 32–48

• Amal Guittoum, François Assaoui, Sébastien Bolle, Fabienne Boyer, and Noel De Palma.
"Solving the IoT Cascading Failure Dilemma Using a Semantic Multi-agent System". The
Semantic Web – ISWC 2023. Lecture Notes in Computer Science, vol 14266.

Moreover, our work has been presented in the Chair MIAI Edge Intelligence 11, Eclipse IoT
Days 12, Orange Silicon Valley, and awarded in the contest Ma thèse en trois Minutes (see
the final pitch13). Furthermore, it has been published in a general public article within The
Conversation France journal 14.

5 Thesis Structure

The rest of this Thesis is organized into seven (07) chapters, with two (02) Appendix:
11https://edge-intelligence.imag.fr/
12https://wiki.eclipse.org/Eclipse_IoT_Day_Grenoble_2023
13https://mastermedia.orange.com/publicMedia?t=pmqNUEy1Hy
14https://theconversation.com/objets-connectes-quand-les-pannes-en-cascade-se-propagent-dun-objet-a-lautre-203713

11

https://edge-intelligence.imag.fr/
https://wiki.eclipse.org/Eclipse_IoT_Day_Grenoble_2023
https://mastermedia.orange.com/publicMedia?t=pmqNUEy1Hy
https://theconversation.com/objets-connectes-quand-les-pannes-en-cascade-se-propagent-dun-objet-a-lautre-203713

Chapter 1. Introduction

Chapter 02: Background

The chapter 2 introduces the industrial and scientific context of our work. It highlights the
motivation of Orange behind the present research. It introduces the different concepts used in
our method namely SW standards, DT, and MAS systems. It presents applications of those
concepts and the benefits of their combination, to justify our technical choices. Moreover, this
chapter presents the different technologies involved in realizing our proposed methods and proof
of concepts such as Thing in and JaCaMo.

Chapter 03: State of The Art

The chapter 3 presents the state of the art of the different research axes to which our work has
contributed. Namely, IoT dependency extraction and modeling, Failure management, Ontologies
for IoT. We discuss research efforts on these axes and identify research gaps.

Chapter 04: Inferring Threatening IoT dependencies using Semantic Digital
Twins

The chapter 4 presents our contributions proposed for IoT dependency inference. We shed light
on our modeling for IoT dependencies and highlight essential technical steps allowing for the
extraction and inference of IoT dependencies collaboratively and automatically.

Chapter 05: Solving the IoT cascading failure dilemma using Semantic Multi-
agent systems

The chapter 5 shows our contributions to CFM across siloed DM platforms and solutions. We
present how the framework IoT dependency inference, presented in the previous chapter, is
extended using a MAS allowing for automatic and collaborative cascading failure diagnosis and
recovery.

Chapter 06: Collaborative LAN Troubleshooting Demonstration

The chapter 6 sheds light on the concrete demonstration of our work, the Collaborative LAN
Troubleshooting Demonstration. We present its technical architecture and practical user stories
highlighting the outcomes of our current research within an industrial context at Orange.

Chapter 07: Conclusion

The chapter 7 concludes this work by summarizing our main contributions and discussing several
perspectives for enhancing and preparing the road for the large adoption of our work in the DM
market.

Appendix A: FMSim, IoT Failure Simulator

The Appendix A describes an experimental contribution of the thesis, which consists of the
FMSim simulator for IoT failure injection and recovery simulation.

12

5. Thesis Structure

Appendix B: Correctness verification of the Collaborative CFM protocol

The Appendix B presents a correctness verification study of the proposed CFM protocol through
an experimental approach allowing the verification of its behavior regarding a set of challenging
scenarios such as request deadlock.

13

Chapter 2
Background

This chapter introduces the industrial and scientific context of our work. It in-
troduces the different concepts used in our method namely Semantic Web (SW)
standards, Digital Twin (DT), and Multi-Agent System (MAS). We highlight ap-
plications of those technologies and the benefits of their combination, to justify our
technical choices. Moreover, this chapter presents the different technologies involved
in realizing our proposed methods and proof of concepts such as Thing In The Future
(Thing in) and JaCaMo.

Summary

Contents
1 Industrial Context . 15

1.1 Internet of Things . 15
1.2 IoT Device Management . 19
1.3 Orange motivation behind the presented research . 26

2 Scientific Context . 27
2.1 Semantic Web . 27
2.2 Digital Twin . 33
2.3 Multi-agent System . 37
2.4 The combination of MAS, DT, and SW standards . 44

3 Conclusion . 45

As mentioned in the introduction, the main goal of this thesis is to manage cascading failure
on interdependent Internet of Things (IoT) devices managed by different actors and siloed
Device Management (DM) platforms. The achievement of such a goal has started by building
knowledge on IoT and DM considering industry and research insights, which will be presented in
the first part of this chapter. The second part describes our research’s scientific context, includ-
ing concepts and technologies that we rely on in our methods: Semantic Web (SW) technologies,
Multi-Agent System (MAS), and Digital Twin (DT). Moreover, we discuss their current appli-
cation and combination to justify our technical choices.

14

1. Industrial Context

1 Industrial Context

1.1 Internet of Things

For over two decades, the IoT has transformed industries and led digital transformation in
various domains. The term Internet of Things was introduced in 1999 by the British technology
pioneer Kevin Ashton to describe the connection of the physical world objects to the Internet
through sensors [Keith D Foote, 2022]. There is, however, no single, universal definition of
the IoT. The ITU-T defines the IoT as: "a global infrastructure for the information society,
enabling advanced services by interconnecting (physical and virtual) things based on existing
and evolving interoperable information and communication technologies" [ITU-T Y2060, 2012].
Authors in [Rose, 2015] argue that IoT encompasses situations in which objects, sensors, and
ordinary items that aren’t typically seen as computers are empowered with network connectivity
and computing capabilities. This enables these devices to autonomously produce, share, and
utilize data without human intervention.

IoT has become increasingly widespread in everyday life, demonstrating potential impact
and large adoption, thanks to continuous technological developments and considerable invest-
ments. The widely adopted application of IoT is Smart Homes, where IoT devices control and
automate various aspects of a home, such as lighting, thermostats, security cameras, appliances,
and entertainment systems, providing increased convenience and energy efficiency. However, it
is also adopted in other domains including but not limited to: manufacturing and industrial
settings, enabling the monitoring and optimizing of equipment and processes, leading to im-
proved efficiency, predictive maintenance, and better resource management; healthcare, where
IoT devices play a crucial role in remote patient monitoring, wearable health trackers, and con-
nected medical devices, allowing for real-time health data collection and personalized care; and
transportation, enabling better traffic management, autonomous vehicles, and improved public
transportation services.

Several companies and research organizations argue on the potential impact and large adop-
tion of IoT: Huawei forecasts 100 billion IoT connections by 2025 [HuaweiTechnologies, 2018];
McKinsey Global Institute predicts the financial impact of IoT may be as much as 3.9$ to 11.1$
trillion by 2025 [Manyika, 2015]; The Orange company deploys and manages today 21.1 mil-
lion connected objects for risk prevention, comfort, and resource optimization [OrangeBuisness,
2023].

In the following, we present a global overview of the IoT architecture and technologies and
highlight IoT challenges.

1.1.1 Architecture

Currently, there is a lack of a unified reference architecture for IoT, and creating one is prov-
ing extremely complex, despite numerous standardization efforts being made [Lombardi, 2021].
The most common architecture (see Figure 2.1) includes three components represented by IoT
devices, connectivity, and IoT platforms [Celik, 2019]. A centralized gateway often links devices
within a physical environment. This gateway utilizes cloud services to synchronize device states,

15

Chapter 2. Background

Figure 2.1: IoT architecture

Figure 2.2: Generic architecture of an IoT device [Ray, 2018]

process IoT data, and offer remote control and monitoring interfaces.

• IoT devices: consist of sensors and actuators that enable interaction with a physical envi-
ronment. Sensors detect physical events and collect and send data to other IoT devices,
the gateway, or IoT platforms to be processed and used to actuate the devices. For ex-
ample, a presence sensor detects a presence event and interacts with the connected light
switch (actuator) that turns on the lights [Celik, 2019]. From an architectural point of
view (see Figure 2.2), an IoT device may consist of several interfaces to ensure the storage,
data processing, network connectivity, and communication to other devices [Ray, 2018].

• Connectivity: represented by a set of protocols and technologies that allow IoT devices
to communicate with each other and to network devices. Several low-power connectivity
technologies have been proposed in the IoT market (see Figure 2.3) such as Zigbee 1,

1https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.
pdf

16

https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf

1. Industrial Context

Figure 2.3: IoT Connectivity protocols From [Qorvo, 2021]

Zwave 2 and Thread 3 to connect IoT devices in smart Home, and LoRaWAN that enable
IoT devices to communicate over significant distances such as in smart cities. Recently, the
Connectivity Standards Alliance and other major IT companies, including Apple, Google,
and Amazon, launched the connectivity standard Matter4, which enhances the previously
mentioned protocols to allow communication between IoT devices proposed by different
vendors. Matter is based on existing IP protocols such as TCP/IP, HTTP, and TLS, and
uses a common data model to ensure interoperability between devices. The structure of
this data model (see Figure 2.4) describes an IoT device by a set of Nodes, each node
describes the global functionality of the device and is composed of a set of Endpoints that
represent a specified functionality of a device such as dimmable light. Each endpoint is
described by a set of Clusters that describe an elementary functionality of the endpoint
such as the on/off function for the dimmable light. We find in each cluster a set of Attributes
that represent proprieties of the cluster and a set of Commands and Events to control the
function described by the cluster. The specifications of Matter include several clusters
such as Network Cluster defines how devices discover and join a Matter network, and the
cluster dedicated to IoT device diagnosis is named Diagnostics Cluster. It describes a set
of IoT device failure causes and monitoring indicators, to ease IoT failure management.

• IoT platforms are pivotal in delivering application-specific services to end users by ef-
fectively managing IoT devices and facilitating their interactions. These platforms have
essential functions, including IoT data collection and analytics, ensuring interoperability
among devices, and device management. They extend across diverse domains such as
healthcare, transportation, and agriculture, empowering organizations and individuals to
access innovative services tailored to their needs. One widely adopted type of IoT platform
is the trigger-action platform, empowered by the end user programming paradigm, enabling
end users to build intelligent services by connecting their devices through automation rules
and scenes. These rules follow a straightforward format: "if trigger, then action," where a
predefined set of actions is executed when a specific event or trigger occurs. For instance,
envision a user setting up an automation rule: "If the presence sensor detects movement,
then turn on the light bulb". Several trigger-action platforms were proposed in the IoT

2https://www.z-wave.com/
3https://www.threadgroup.org/What-is-Thread/Thread-Benefits
4https://csa-iot.org/all-solutions/matter/

17

https://www.z-wave.com/
https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://csa-iot.org/all-solutions/matter/

Chapter 2. Background

Figure 2.4: Matter data model [GoogleDev, 2023]

market, such as IFTTT 5, SmartThings6 and OpenHab7. IoTMashup is the internal Orange
trigger-action platform. These platforms provide REST API for users and IoT developers
to allow them to register IoT devices and create automation rules using dedicated Rule
Model. For instance, the SmartThings platform provides the Rule API for automation
rule management. IoT platforms and more precisely Trigger-action platforms create abun-
dant interactions and dependencies relationships among IoT devices to deliver complex
and innovative IoT services.

1.1.2 IoT challenges

IoT technology faces several challenges that must be addressed to realize its potential and
widespread adoption [Radoglou Grammatikis, 2019]. Some of the key challenges include:

• Security: IoT devices often collect and transmit sensitive data, making them susceptible
to cyberattacks and unauthorized access. Moreover, most devices and IoT products do
not get enough testing and updates to protect them from various security threats. To
address these security challenges, IoT operators should consider robust security measures,
e.g., regular updates, when deploying IoT solutions.

5https://ifttt.com/
6https://www.smartthings.com/
7https://www.openhab.org/

18

https://ifttt.com/
https://www.smartthings.com/
https://www.openhab.org/

1. Industrial Context

• Interoperability: is the capability of diverse systems, devices, or components to work
together, enabling collaboration and efficient data exchange. Ensuring interoperability
between various IoT devices and platforms provided by various manufacturers and service
providers is challenging. To handle such a challenge, organizations and industry groups
are working to establish standards and protocols to ensure interoperability between IoT
devices and platforms. The oneM2M standard 8 was proposed in 2012 as a worldwide
initiative to ensure the scalability and interoperability of IoT systems. In January 2016, the
European Commission initiated funding for seven projects focused on addressing different
aspects of interoperability within IoT. One of these projects, INTER-IoT 9, aims to design,
implement, and experiment with an open cross-layer framework and methodology [Ganzha,
2017]. So far, the European Union has also funded several research projects under the
H2020 program focusing on the federation of IoT platforms [Noura, 2019]. Despite these
efforts, no universal interoperability standards have been adopted for the IoT and none
can be expected to materialize in the near future. Thus, interoperability between IoT
devices and platforms needs to be addressed when conceiving any IoT solution.

• Scalability: the number of IoT devices are increasing exponentially, with 70 billion IoT
devices by 2025 10. Thus, managing and scaling IoT system become more complex. In-
deed, IoT systems must be designed to handle large volumes of data and ensure the
well-functioning of an ever-growing number of devices.

• Reliability: refers to the ability to provide a correct service continuously. In the context
of IoT, devices are provided with limited computing resources and often deployed in harsh
environments or remote locations where maintenance is difficult, making them widely
exposed to failures that result in service disruptions and impact the overall reliability
of the IoT system. Statistics have shown that an IoT device may fail four hours per
day [Norris, 2022]. Thus, ensuring the reliability of these devices is crucial to avoid failures
and disruptions in the IoT system.

1.2 IoT Device Management

An efficient solution to handle some of the above-mentioned challenges facing the IoT is to
perform what we call Device Management (DM), which refers to the remote administration of
IoT devices to ensure they are well-functioning. It is defined by the ITU-T in recommendation
Y.4702 as "an essential set of management capabilities in the IoT, providing support for, but
not be limited to, devices’ remote activation and de-activation, diagnostics, firmware/software
updating, and sensor node working status management" [ITU-T Y4702, 2016].

Technically, DM adopts a client-server architecture (see Figure 2.5) consisting of a DM
server managing a software component called DM client installed on IoT devices to allow their
remote administration. Communication between DM servers and DM clients is ensured using

8https://www.onem2m.org/
9https://inter-iot.eu/

10https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

19

https://www.onem2m.org/
https://inter-iot.eu/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

Chapter 2. Background

Figure 2.5: DM architecture from [Aïssaoui, 2020]

DM protocol. Relying on this architecture, common capabilities of DM include:

• Provisioning: includes pre-commissioning to pre-provision the IoT device with a set of cre-
dentials that allow it to securely connect to a given DM server or platform; commissioning
or onboarding that refers to registering the device to allow its remote configuration; and
configuration of new functionalities and services on IoT devices.

• Maintenance consists mainly of firmware over-the-air (FOTA) and software over-the-air
(SOTA) updates of IoT devices to fix bugs, enhance functionalities, and prevent eventual
security threats.

• Troubleshooting: including monitoring device states to detect device failure and security
breaches and diagnosing device failure to define failure type and adequate recovery actions.

Due to the importance of DM, several efforts were conducted by researchers, industrial com-
panies, and standard organizations to shape its architecture and functionalities. Several DM
protocols were proposed and integrated into a dedicated industrial DM platform, while some
research efforts have been proposed to unlock specific DM challenges. The following discusses
DM protocols as well as research and market DM solutions. Finally, we highlight DM challenges.

1.2.1 DM Protocols and Standards

A DM protocol implements a set of DM operations e.g., a firmware update that the DM server
can execute on the IoT device. Technically, it consists of a specific DM data model implemented
in the DM client side, representing different resources such as device capabilities, device data,
and supported DM operations exposed to manipulate these resources as CRUD operations. The
most promising DM protocols are the Lightweight M2M (LwM2M) protocol11 from the Open
Mobile Alliance or the User Services Platform (USP) 12 from the Broadband Forum. The
former is more adopted by market DM solutions and is more adapted to IoT devices with low
computing resources.

• Lightweight M2M (LwM2M)
A standardized DM protocol with its first version published in 2017. It proposes a

11https://www.openmobilealliance.org/release/LightweightM2M/
12https://usp.technology/

20

https://www.openmobilealliance.org/release/LightweightM2M/
https://usp.technology/

1. Industrial Context

Figure 2.6: Architecture of the LwM2M protocol form [Sinche, 2020]

lightweight architecture and is quite effective over unstable connections and low-bandwidth
networks. It implements a dedicated data model to describe devices’ resources as objects,
listing their attributes and access policies. The communication is based on User Datagram
Protocol working over Constrained Application Protocol with the support of various data
formats such as Type-Length-Value. LwM2M utilizes Datagram Transport Layer Security
as a security layer to ensure authentication, confidentiality, and data integrity. LwM2M
implements four (04) interfaces (see Figure 2.6) to enable dedicated DM operations be-
tween LwM2M server and LwM2M clients [Sinche, 2020]:

– Bootstrap: allows LwM2M servers to perform pre-commissioning on LwM2M clients.

– Client registration: allows LwM2M clients to register on LwM2M servers.

– DM and service enablement: allows LwM2M servers to perform CRUD operations on
LwM2M client’s resources represented as Objects.

– Information reporting: allows LwM2M server to track changes in LwM2M client
objects through a notification system.

• User Services Platform (USP)
A modern DM standard created by the Broadband Forum as a successor of the TR-069
standard. For USP, DM server is called Controller and DM client is referred to as Agent
(see Figure 2.7). USP proposes several data models such as TR-181 13 that allow the
representation of device resource called Service Element. These service elements are rep-
resented in the USP agent and can be accessed by one or many USP controllers. Data

13https://usp-data-models.broadband-forum.org/tr-181-2-15-1-usp.html

21

https://usp-data-models.broadband-forum.org/tr-181-2-15-1-usp.html

Chapter 2. Background

Figure 2.7: The architecture of the USP protocol from [Avsystem, 2023]

transfer in USP can be securely ensured by several Message Transfer Protocols such as
STOMP and MQTT, thanks to data encryption and strict access control support. Among
the advantages of USP are its modular and rich data models and its multi-controller ar-
chitecture that allows customers to participate as well in the management of their devices,
reducing the workload of customer care centers and improving customer satisfaction.

1.2.2 Market DM solution

As DM matters, big vendors like Amazon, Orange, and Microsoft have proliferated in the DM
market by integrating DM services into their IoT platforms (see Table 2.1).

Amazon proposes a set of DM services integrated into its platform Amazon Web Service
(AWS) mainly in AWS IoT core and AWS IoT Device Defender14. The main functionalities
consist of registering and organizing a fleet of IoT devices, performing OTA updates, and mon-
itoring device state with an alert system. Orange have deployed a DM as a service solution
through its platform LiveObjects15, by proposing several DM functionalities such as massive
provisioning, devices inventory, configurations and firmware updates, and device monitoring.
Liveobjects DM solution supports standardized protocols such as LwM2M, MQTT, and LoRa.
The platform AZURE16 of Microsoft proposes several DM features such as provisioning new
devices, monitoring, and configuration using the LwM2M protocol. The latter was also used

14https://aws.amazon.com/fr/iot-device-management/
15https://liveobjects.orange-business.com/#/liveobjects
16https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-device-management-overview

22

https://aws.amazon.com/fr/iot-device-management/
https://liveobjects.orange-business.com/##/liveobjects
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-device-management-overview

1. Industrial Context

in Samsung’ platform ARTIK Cloud, NOKIA’ platform IMPACT 17, IBM ’ platform WATSON
IoT 18, and Coiote 19 platform of the AVSYSTEM company to enable multiple DM features.

Table 2.1: DM in market IoT platforms enriched version from the study [Sinche, 2020]

DM solution Company DM protocol Features

Amazon Web Service Amazon MQTT

Registering and organizing a fleet of
IoT devices,
Performing OTA updates,
Monitoring device state with
an alert system.

LiveObjects Orange

LwM2M,
MQTT,
websockets,
REST,
LoRa,
SMS

Massive provisioning and
campaign management,
Devices inventory,
Configurations and firmware updates,
Device monitoring.

AZURE IoT Microsoft LwM2M

Provisioning of IoT device fleet,
Configuring and updating
IoT device fleet,
Device monitoring using ML solution.

ARTIK Cloud Samsung LwM2M
Registering IoT devices,
Device connectivity monitoring,
OTA updates.

WATSON IoT IBM LwM2M
MQTT

Registering IoT devices,
OTA updates.

Coiote AVSYSTEM

LwM2M
CoAP
SNMP
MQTT

Device discovery,
OTA updates.

IMPACT NOKIA LwM2M
Device monitoring,
Device discovery,
OTA updates.

Each DM solution is built upon a specific IoT infrastructure, encompassing the underly-
ing hardware, software, and communication protocols that enable device connectivity. Some
platforms might rely on cloud-based infrastructures, while others might opt for edge-computing
solutions to minimize latency and enhance real-time processing capabilities. They even use
proprietary DM Protocols, designed to offer optimized performance, security, and efficiency for
their specific ecosystem of devices. These protocols are carefully crafted to suit the unique re-
quirements of the platform, ensuring data exchange and device control. However, most rely on
standard-Compliant DM protocols to ensure interoperability and compatibility between devices

17https://www.nokia.com/networks/internet-of-things/impact-iot-platform/
18https://internetofthings.ibmcloud.com/
19https://www.avsystem.com/coiote-iot-device-management-platform/

23

https://www.nokia.com/networks/internet-of-things/impact-iot-platform/
https://internetofthings.ibmcloud.com/
https://www.avsystem.com/coiote-iot-device-management-platform/

Chapter 2. Background

from different manufacturers. To ensure efficient data handling, storage, and analysis, market
DM platforms often employ their data models. These models define how data is structured,
processed, and interpreted within the platform. While some platforms may follow common data
models, others might create proprietary ones optimized for specific use cases. As a result, mar-
ket DM solutions are heterogeneous, each promotes its own IoT infrastructure, proprietary and
standard– compliant protocols, and data models.

1.2.3 Research trends on DM

There has been several academia efforts addressing DM problems and proposing technical frame-
works to enhance legacy DM features:

The work [Datta, 2015] proposes a framework for managing IoT devices. The device con-
figurations are described using the CoRE Link format 20. The framework has three layers:
the Proxy layer that manages devices unable to integrate the system due to their limited DM-
supported capabilities; the Configuration layer responsible for extracting and managing device
configurations; and the Service layer that allows access control and configuration management
via RESTful APIs. This framework can be deployed in a smart device, a gateway, or the cloud
depending on the size of the managed IoT devices. In terms of implementation, the proposed
solution has been implemented via the oneM2M standard. This work was improved in [Perumal,
2016] which enriched the Configuration layer with device discovery functionalities and processing
services, the latter being used to collect device data for reasoning and self-management.

In [Pham, 2016], the authors propose an architecture that combines the two management
approaches used to manage devices in smart homes: direct, where devices are managed directly
by a cloud platform, and indirect, where DM is done through a gateway that interacts with the
remote management platform. The solution is based on installing smart applications for data
management, which are placed according to the device’s capacity: in the IoT device or the smart
gateway.

In [Ferreira, 2017], a framework named DEVMEN is proposed, consisting of a set of web
services for adding, automatically provisioning, and monitoring new IoT devices on the network.
A semantic ontology (see Chapter 2 Section 2.1.1) was used to identify the devices and create
their profile by matching the existing device’s profiles in the knowledge base.

A DM system based on an interoperable lightweight agent is proposed in [Maloney, 2019].
The solution assists in executing updates and security configurations on a large fleet of IoT
devices. The work [Mavromatis, 2020] proposes a distributed framework for managing devices
belonging to different applications (multi-domain). The solution mainly addresses the scalability
problem and uses software-defined networking (SDN) in an Edge environment for IoT device
control and provisioning. Authors in [Armando, 2019] propose a unified management solution
to address the problem of heterogeneity between sensor types by considering virtual and human
sensors. The solution uses the concept of extended IoT, the ITU-T reference architecture, and
the LwM2M protocol. Authors in [Moura, 2019] propose an interoperable DM solution in an
Industrial IoT environment. The proposed solution allows for managing any devices involved

20https://tools.ietf.org/html/rfc6690

24

https://tools.ietf.org/html/rfc6690

1. Industrial Context

in industrial operations. It includes several modules for device configuration, maintenance, and
security and a central module to coordinate between the other modules. However, the proposed
solution has not been validated.

Recently, Jia Yan et al. propose in [Jia, 2021] the framework CGuard to address the phe-
nomenon of chaotic device Management that describes the non-alignment of security policies
on an IoT device managed by siloed and fragmented DM solutions, which may lead to serious
security threats.

The industrial community conducted some research efforts to handle the fragmentation of
the DM market. The operator KDDI argues that DM is performed in a horizontal specialization
business model, where devices are managed by multiple DM platforms governed by different
actors. In their work [Shibuya, 2016], they propose a federated approach to calculate the cu-
mulative failure rate of devices in a horizontal business model where device history information
is managed by multiple manufacturers and service providers. The cumulative failure rate is an
index that measures the reliability of a fleet of devices. It is defined as the ratio of failed devices
to the number of devices. The approach analyzes several distributed information systems to
extract the device’s operation history to calculate the cumulative failure rate.

In the same context, Orange claimed the necessity to federate DM solutions in their presenta-
tion [Bolle, 2019] for the European Telecommunications Standards Institute (ETSI). Next, they
propose in [Aïssaoui, 2020] a semantic model for the DM domain to enable the unified manage-
ment of IoT devices managed by multiple actors. The proposed model describes the DM domain
to provide a unified understanding of DM for heterogeneous and distributed DM solutions man-
aged by different actors. The proposed ontology is based on the SAREF ontology21 and describes
the supported DM functions for each device and the means to access them. The solution was
enriched via a use case of selecting a proxy for integrating a new device in an existing IoT
system. This ontology was used in the work [Mezghani, 2020], which proposes an autonomous
system using MAPE-K loop for autonomous coordination between heterogeneous DM solutions.
The solution orchestrates the execution of DM operations by considering conflicts related to
connectivity dependencies between IoT devices. Moreover, Orange has conducted several efforts
to address the scalability of legacy DM solutions by proposing solutions for distributing the
DM processes through autonomous MAPE-K loop and constraint programming [Ayeb, 2020b;
Moualla, 2022].

1.2.4 DM Challenges

Despite these efforts, current DM is facing several challenges due to the complexity and diversity
of the IoT network:

• Multi-level heterogeneity: The current DM is facing significant challenges due to multi-
level heterogeneity, which includes heterogeneity among IoT devices, DM protocols, and
DM platforms. DM platforms must integrate heterogeneous IoT devices with their various
supported connectivity protocols and consider their heterogeneous capabilities. Moreover,

21https://saref.etsi.org/

25

https://saref.etsi.org/

Chapter 2. Background

current market DM platforms are quite heterogeneous and governed by different vendors,
leading to fragmented and siloed DM solutions managing interdependent IoT devices and
applications. This architecture presents several challenges that prevent DM solutions from
providing full business value. A main challenge is cascading failure, where a failure of one
IoT device spreads across devices managed by siloed DM platforms. In such scenarios,
it is difficult to identify the source of failure and recover the failed devices. Therefore,
interoperability across siloed DM platforms is crucial to enable collaborative DM processes
across siloed DM solutions to unlock these challenges.

• Scalability: managing the huge number of IoT devices and their data in a complex task.
Indeed, billions of devices must be provisioned, registered, and continuously monitored and
updated within the DM platforms. This challenge may be addressed through distributed
computing and load-balancing within DM platforms.

• Dependency-related threats: complex and abundant interdependencies relationships be-
tween IoT devices generate several threats that the current DM solution can not han-
dle. In addition to the cascading failure discussed above, failures during the execution
of DM operations, e.g., firmware update or reboot on interdependent devices, are another
dependency-related threat. Indeed, DM operations can cause devices to be temporarily
unable to provide their services, leading to failures on dependent devices and breaking
updates [Mezghani, 2020; Zdankin, 2021]. These failures are exacerbated by the uncoordi-
nated execution of DM operations using multiple DM solutions [Jia, 2021] and are usually
hard to revert [Zdankin, 2021].

In our work, we are particularly interested in endowing market DM solutions with efficient and
interoperable capabilities to tackle dependency-related threats, mainly cascading failures on IoT
devices.

1.3 Orange motivation behind the presented research

As a telecommunications operator, Orange currently manages over 21 million IoT devices, pri-
marily in the Smart Home domain, deployed at its customers’ premises. These devices require
continuous maintenance and repairs to ensure a better Customer Quality of Experience (QoE),
a key business element, particularly for Orange. For that, Orange disposes of a set of DM so-
lutions within customer care services to manage and troubleshoot customer devices, involving
interacting with customers through phone calls: The customer reports the failure on their de-
vice; Orange technician uses a set of tools to identify the source of the failure and relies on the
DM solution to remotely perform management operations on the device; If the reported failure
persists, the Orange technician guides the customer through steps to resolve the problem or
schedules an on-site technical intervention. However, this process incurs a significant cost in
terms of time and money, impacting the QoE of Orange customers. Indeed, Orange reports a
cost of 20€ for one customer call and 100€ for sending a technician, where customers perform
100 calls per week to request IoT device recovery. These costs are exacerbated when failures

26

2. Scientific Context

Research

Motivations

Orange as a valuable

 federative operator

Optimized IoT energy

consumption

B
e
tte

r
 C

u
s
to

m
e
r
 Q

o
EO

p
ti

m
iz

e
d

 C
u

s
to

m
e
r

c
a
r
e
 c

o
s
ts

Figure 2.8: Orange Motivation behind the presented research

are caused by the failure of other devices managed by other operators and service providers.
In such a situation of cascading failures, it is quite difficult for Orange and other operators to
identify the source of failure and recover the failed devices since they provide isolated solutions
for failure management. Moreover, these failures are one of the main causes of energy waste in
connected environments. Studies show that 25-45% of HVAC energy consumption is wasted due
to failures [Najeh, 2019].

In this context, our work within Orange, more precisely Orange Innovation 22 is guided
by the following motivations (see Figure 2.8): 1) Boosting Orange value in the DM market by
proposing federative tools for other operators. This motivation is guided by the Orange vision of
Service facilitator consisting in the development of future Home services with partners, such as
helping them manage cascading failures on their devices; 2) Enhancing Orange customer QoE;
3) Reducing customer care costs by minimizing customer calls and technician intervention; 4)
Optimizing IoT energy consumption, by minimizing energy loss related to IoT device failures.

2 Scientific Context

This section describes scientific concepts used in our methods. We present their architectures
and technological implementations as well as their utility especially for tackling the cascading
failure problem.

2.1 Semantic Web

When it appeared, the Semantic Web (SW) was envisioned as an enhancement of the current
World Wide Web with machine-understandable information, in order to move from a web linking
documents serving mostly human-to-human communication to one linking everything such as
applications, things, and people, where humans efficiently exploit web information with the help

22Orange Innovation is the research and innovation Lab of the Orange company.

27

Chapter 2. Background

of machines [Gandon, 2018]. The main motivation is to enhance scalability and allow more
sophisticated processing and exploitation of data provided by the Web involving both humans
and machines.

The story of the SW started in September 1998 when a researcher called Tim Berners-Lee
introduced the SW Road map giving the blueprints of the architecture of the SW [Berners-Lee,
1998]. Then, the concept was given significant visibility to a broad audience in 2001 through an
article in the Scientific American [Berners-Lee, 2001]. However, there were other efforts, such
as the DARPA Agent Markup Language (DAML) program started in 2000 to develop a SW
language and corresponding tools.

After that, several SW tools, methods, and standards were developed, focusing on how to
represent the data on the Web, and make it understandable by machines together with services
a.k.a "intelligent agents" utilizing and reasoning on the Web data. Such intelligent agents make
the SW overlap with the field of Artificial Intelligence [Hitzler, 2021].

These developments have reshaped the SW’s initial vision, i.e., "extending the current Web"
to a more valuable vision. Indeed, the SW community noticed that the methods and tools
developed by the field can also provide added value in information integration and management
fields, by easing data sharing, discovery, integration, and reuse.

In our work, we rely on such vision to respond to our research questions. We leveraged several
SW standards to ease information management in the context of Cascading Failure management.
In the following, we present the SW standards used by our work within the SW architecture
and highlight recent SW applications mainly in the information management field.

2.1.1 Architecture

The architecture of the SW was proposed during the first half of the years 2000 by the World
Wide Web Consortium (W3C) in the form of a stack known as "SW Layer Cake" structuring the
SW technologies and standards (see Figure 2.9). It includes data identification standards through
URI/IRI, data representation language and formats, meta-data representation language, which
allows more efficient representation of data, data query languages, and tools for reasoning on the
data. This stack was updated in [Gandon, 2018] to consider recent standards and technologies
(see Figure 2.10). This work uses the term "stack overflow" to denote the growing number of
proposed standards for the SW that confirms the interest it generates in various fields. In the
following, we present SW standards used in our work.

• Resource Description Framework (RDF) 23: is a standard model for data representation
and interchange on the Web with its current version (1.1) published in 2014. RDF leverages
URIs to name entities and the relationship between them. These entities and relationships
are structured as triples represented by subject, predicate representing the relationship,
and object. Thanks to this structure, unstructured and structured data with different
schemas can be mixed, exposed, and shared across heterogeneous applications.

23https://www.w3.org/TR/rdf11-concepts/

28

https://www.w3.org/TR/rdf11-concepts/

2. Scientific Context

Figure 2.9: Semantic Web Stack [Berners-Lee, 1998]

• Web Ontology Language (OWL)24: is a standard schema language published in 2009. It is
designed to represent a common vocabulary known as "Ontology" for published data. The
most common definition of an ontology was given by [Studer, 1998] as "a formal, explicit
specification of a shared conceptualization". An ontology describes three elements: 1) a
set of concepts called classes described through 2) a set of data properties, and linked
with each other through 3) relations called object properties. The goal of an ontology is to
achieve Semantic interoperability i.e., providing a common understanding of a domain of
knowledge across heterogeneous systems. OWL provides dedicated language to describe
classes, data, and object properties. Moreover, it disposes of advanced features such as
defining sophisticated semantics called axioms on the ontology element e.g., constraints
and restriction, and linking multiple ontologies together by linking their concepts and
relations.

• SPARQL Protocol and RDF Query Language (SPARQL)25: In order to query published
data formalized in RDF, the SPARQL query language was proposed in 2008. It allows
adding, removing, and retrieving data from RDF data, thanks to graph pattern-matching
techniques. Moreover, it uses mathematical operations and utility functions to create
filters and bindings. SPARQL also supports optional graph patterns along with their
conjunctions and disjunctions.

• Shapes Constraint Language (SHACL) Advanced Features 26: The SHACL27 standard
has been defined in the reasoning layer of the SW stack mainly for RDF data validation

24https://www.w3.org/TR/owl-features/
25https://www.w3.org/TR/rdf-sparql-query/
26https://www.w3.org/TR/shacl-af/
27https://www.w3.org/TR/shacl/

29

https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/shacl-af/
https://www.w3.org/TR/shacl/

Chapter 2. Background

Figure 2.10: Updated Semantic Web Stack [Gandon, 2018]

Figure 2.11: Features of the standard proposed by TopQuadrant 28

(see Figure 2.11). The SHACL reasoner checks RDF data regarding a set of constraints
called "shapes" and returns a validation report. A working group note was proposed to
extend SHACL through a set of advanced features named SHACL rule and SHACL func-
tion. SHACL rule allows inferring new triples in RDF data by reasoning on existing ones.
SHACL functions define operations that produce an RDF term, giving a set of parameters
and a data graph. SHACL functions can be used within FILTER or BIND clauses within
SPARQL queries or in SHACL rules in order to perform data transformations such as
string concatenation or mathematical operations.

• Thing Description (TD)29: this standard describes, in the form of ontology, a set of the
metadata and interfaces of thing interactions in the Web. A Thing is an abstraction of a

28https://www.topquadrant.com/
29https://www.w3.org/2019/wot/td

30

https://www.topquadrant.com/
https://www.w3.org/2019/wot/td

2. Scientific Context

Figure 2.12: The Thing Description Ontology [Charpenay, 2020]

physical or virtual entity that exposes modalities that allow their interactions in the Web
of Things. Three types of interactions named affordances are defined (see Figure 2.12):
Action Affordance allows to invoke a function of the Thing; Property Affordance exposes
information of the Thing. This information can be retrieved or updated; and Event Affor-
dance describes events related to the Thing. These affordances are described using links
and forms proposed in Hypermedia Controls Ontology30, allowing a shared representation
of links and access form in the Web.

2.1.2 Semantic Web Applications

Within more than 20 years of existence, the SW applications have evolved through three per-
spectives. The earlier was the one using the SW as an extension for the Web. The second
perspective includes applying the SW standards and tools for information management and
integration. The more recent perspective involves investigating the usage of ontologies, linked
data, and more recently, Knowledge Graph (KG) together with the W3C SW standards [Hitzler,
2021]. Linked data refers to design principles for linking and sharing opened RDF data on the
Web based on community contribution. While the KG technology, proposed firstly by Google
in 2012, represents closed knowledge separately governed and managed by industrial actors.
Relying on these perspectives, several applications of the SW were proposed in the literature in
a wide range of domains. In the following, we discuss relevant applications of the SW standards
extracted mainly from the in-use track of the International Conference of Sematic Web (ISWC),
which is the premier forum of SW. We focused on applications showing practical adoptions of
SW standards to break silos and unlock industrial challenges.

The work [Piro, 2016] presents a relevant application of Semantic Technologies in health-
30https://www.w3.org/2019/wot/hypermedia

31

https://www.w3.org/2019/wot/hypermedia

Chapter 2. Background

care data analysis that has emerged from the collaboration between Oxford University and
Kaiser Permanente a US healthcare provider (HMO). The idea is to use SW technologies mainly
SPARQL and rule-based reasoning through RDFox 31 to compute quality measures of healthcare
providers such as the proportion of diabetic patients having regular eye examinations, across
multiple and heterogeneous data sources. The use of SW technologies led to highly encourag-
ing results: only 174 rules were required, compared to the roughly 3,000 lines of complex and
hard-to-maintain SQL code of their previously used HMO solution. Secondly, RDFox could
easily handle 1.6 billion triples of patient data and compute the quality measures in approxi-
mately 30 minutes. In the same healthcare information management context, SW technologies
were applied in the pharmaceutical domain, where heterogeneous and unstructured technical
information was efficiently and automatically retrieved from PDF files to boost pharmaceutical
documents and information searches [Gentile, 2019].

Accenture company has leveraged the SW technologies for project risk management and
mitigation within their Intelligent Risk Management tool (IRM) [Wu, 2017]. The approach
integrates projects and their context data into an enterprise knowledge graph and interprets
risk mitigation actions based on quality manager profiles through semantic reasoning. User
studies showed that quality managers could efficiently select actions for risk mitigation.

The Open University (OU), in collaboration with Springer Nature, created Smart Book Rec-
ommender (SBR), an ontology- based recommender system supports their Computer Science
editorial team in selecting the products to market at specific venues. SBR proved its usability
through a user study involving seven SN editors and seven OU researchers showed that SBR
was able to suggest relevant materials [Thanapalasingam, 2018]. Another ontology-based rec-
ommendation system was proposed in [Obeid, 2018] to guide high school students in selecting a
major and a university.

A relevant application of SW technologies was introduced in [Rojas, 2021b] to help the
European Union Agency for Railways structure its 28 distributed and independent data sources
describing technical information about the European railways, such as railway infrastructure
aspects and rolling stock. The proposed approach was validated through the use case of route
compatibility checks.

2.1.3 Semantic Web and IoT

Moving to the IoT domain, the SW technologies have played a pivotal role in achieving inter-
operability, a major challenge for the IoT (see Chapter 2 Section 1.1.2). Within the IoT, the
SW standards aim to define consensus that facilitates the sharing, reuse, integration, and in-
terrogation of data, extracted from different IoT devices and applications, ensuring cooperation
between the IoT devices by facilitating communication between them to boost their intelligence
aspects. The combination between IoT and SW standards led to a new paradigm, the SW of
Things (SWoT) [Scioscia, 2009]. Several projects were involved in the development of the SWoT,

31https://www.w3.org/2001/sw/wiki/RDFox

32

https://www.w3.org/2001/sw/wiki/RDFox

2. Scientific Context

like IoT-A 32 and the linked open vocabulary project (LOV4IoT 33) that collects and regroups
numerous relevant ontologies for the IoT domain.

Moreover, SWoT has been applied in several works, mainly for usages related to IoT data
representation and IoT services description, discovery, and selection [Rhayem, 2020]. Regarding
IoT data representation, the Semantic Sensor Network Incubator Group, belonging to the W3C,
developed an ontology called Semantic Sensor Network (SSN) to represent IoT sensor data. The
MELODY projects introduced a semantic actuator network (SAN)34 to represent the semantics
of actuator capabilities. Many other ontologies were proposed to semantically describe various
IoT aspects [Seydoux, 2018].

SWoT has been leveraged as an efficient tool to ease IoT services discovery and selection.
IoT service selection consists in selecting the most relevant service from as set of discovered IoT
devices based on several criteria, such as Quality of Service (QoS). The idea is to semantically
annotate IoT services to allow IoT devices and applications to efficiently discover and select IoT
services [Pahl, 2019; Khadir, 2020; Khadir, 2022].

Recently, Orange has initiated the usage of SWoT to manage IoT devices provided by siloed
DM platforms [Bolle, 2019], by modeling DM data of IoT devices and leveraging the TD stan-
dard (see Section 2.1.1) to perform DM operations on interdependent IoT devices managed by
siloed DM platforms [Aïssaoui, 2020]. Our work explores more use cases of SWoT to provide
interoperable DM.

2.2 Digital Twin

The rapid growth of several technologies such as cloud computing, big data, IoT, and sensor
technologies has given birth to the Digital Twin (DT) technology, which refers to the virtual and
synchronized representation of physical world objects. In 2017, 2018, and 2019, Gartner classified
the DT as one of the top ten most promising technological trends in the next decade [Tao, 2018].
In 2020, Gartner also listed the DT as an emerging technology for the next 5-10 years [Tao, 2022].
The emergence of the concept of Metaverse in 2022 has revived the use of DT. Within the 3D
digital spaces, physical world entities are represented as DT, powered by the technologies of
virtual reality, augmented reality, and artificial intelligence [Far, 2022].

The concept of DT was first presented by Grieves in 2003 at the University of Michi-
gan [Grieves, 2014]. Years later, the National Aeronautical Space Administration (NASA)
established a crucial milestone in defining the DT, with their famous definition: "DT is a multi-
physics, multiscale, probabilistic, ultra fidelity simulation that reflects, in a timely manner, the
state of a corresponding twin based on the historical data, real-time sensor data, and physical
model" [Glaessgen, 2012]. Up to now, several explanations and definitions of DT have been
proposed. The DT Consortium 35 defines the DT as: "A DT is a virtual representation of
real-world entities and processes, synchronized at a specified frequency and fidelity". The CIRP
Encyclopedia of Production Engineering proposed the following definition: "A DT is a digital

32https://www.iot-a.eu/
33http://www.lov4iot.appspot.com/
34https://www.irit.fr/recherches/MELODI/ontologies/SAN.html
35https://www.digitaltwinconsortium.org/hot-topics/the-definition-of-a-digital-twin/

33

https://www.iot-a.eu/
http://www.lov4iot.appspot.com/
https://www.irit.fr/recherches/MELODI/ontologies/SAN.html
https://www.digitaltwinconsortium.org/hot-topics/the-definition-of-a-digital-twin/

Chapter 2. Background

Figure 2.13: IBM reference architecture for DT [Andy Stanford-Clark, 2019]

representation of an active unique product (real device, object, machine, service, or intangible
asset) or unique product-service system (a system consisting of a product and a related service)
that comprises its selected characteristics, properties, conditions, and behaviors by means of
models, information, and data within a single or even across multiple life cycle phases" [Stark,
2019].

From an architectural point of view, IBM provided a 7-layer reference architecture for the
DT technology (see Figure 2.13). The first layer describes IoT technologies such as sensors
allowing data collection from the physical world, and the second, third, and fourth layer allows
collecting, managing, and structuring data according to a specific DT model. The fifth layer
allows analyzing the DT data through artificial intelligence tools. And as an appropriate user
interface is very important for almost every service of the DT [Steindl, 2020], the sixth layer
provides utilities for DT visualization. And the last layer allows process management through
the DT to boost decision-making, reduce time to market and improve quality. These seven
layers are enhanced with integration, governance, and security capabilities to ensure the DT
system is appropriately coupled, and governed to ensure the quality of data and secured [Andy
Stanford-Clark, 2019].

In the following, we provide market and open source DT implementations through the pre-
sentation of market DT platforms, focusing on the Orange implementation of the DT namely
Thing in The future platform. Finally, we discuss current applications of the DT in various
domains mainly the IoT.

2.2.1 DT Platforms

To meet the need for large adoption and deployment of the DT technology, major software com-
panies such as Amazon and Microsoft have begun providing support for creating and operating
the DT, commonly referred to as DT platforms. The open-source community has also taken
part in developing the DT through various platforms.

34

2. Scientific Context

• AWS IoT TwinMaker36 is the DT platform proposed by Amazon. Thanks to customized
data connectors, this platform connects heterogeneous data such as IoT, video, and ap-
plication data to build an accurate DT in a graph-based model, which can be visualized
in 3D format and combined with existing 3D models to get a holistic view of the physical
system. Moreover, it provides plugins allowing to building of various web applications
to serve several use cases such as predictive maintenance, production optimization, and
building monitoring.

• Azure Digital Twin37 proposed by Microsoft. It collects data from IoT and enterprise appli-
cations to build a virtual representation of the physical world. It relies on an open-language
model to create a DT of any connected environment. It proposes several connectors to
other Microsoft platforms such as Azure IoT Hub for data collection and Azure Data Ex-
plorer and Event Hub to track changes in the DT. Moreover, it enables the DT historization
features to keep track of different changes in the DT. This allows for an insightful analysis
of the connected environment such as predicting system failures.

• Ditto 38 there are some open-source initiatives for the DT such as iTwin.js39, Kuzzle
IoT 40, and Ditto. The latter is among the valuable open-source efforts for the DT. It
builds a DT for devices connected to the Internet. It proposes various features such as
device monitoring, state, and access control management for the DT. DT data is collected
through a connectivity layer supporting various technologies and protocols such as Eclipse
Hono, MQTT, and Apache Kafka. It can be accessed through multiple IoT applications
using HTTP and WebSocket. Ditto is currently used by several enterprise such as Bosch
as part of their platform Bosch IoT things.

2.2.2 Thing in The future, more than a DT Platform

Thing In The Future (Thing in) 41 is the research DT platform proposed by Orange [Der-
rien, 2019]. It represents connected and non-connected objects and their interactions within the
physical world. It allows real-world data collection from IoT platforms using connectors. IoT
device’s data are accessed using data access modalities relying on the SW standard TD (see
Chapter 2 Section 2.1.1). The collected data are combined and mapped to a graph-based repre-
sentation that can be syntactic or semantic using SW ontologies (see Chapter 2 Section 2.1.1).
These graph-based representations are leveraged even for human-based analysis or to build other
business services.

The architecture of Thing in (see Figure 2.14) is composed of three layers namely Core layer,
Enabler layer, and Service layer.

36https://aws.amazon.com/fr/iot-twinmaker/
37https://azure.microsoft.com/en-us/products/digital-twins/
38https://www.eclipse.org/ditto/
39https://www.itwinjs.org/
40https://kuzzle.io/kuzzle-iot-open-source-platform/digital-twins/
41https://www.thinginthefuture.com/

35

https://aws.amazon.com/fr/iot-twinmaker/
https://azure.microsoft.com/en-us/products/digital-twins/
https://www.eclipse.org/ditto/
https://www.itwinjs.org/
https://kuzzle.io/kuzzle-iot-open-source-platform/digital-twins/
https://www.thinginthefuture.com/

Chapter 2. Background

Figure 2.14: Thing in The Future Architecture [Derrien, 2019]

• Core Layer : encompasses descriptions of the physical world objects, a.k.a Avatars, in the
form of a graph including their properties and relationships, these descriptions can be
based on semantic ontologies. This layer exposes APIs for performing CRUD operations
on these descriptions (e.g., create avatar, update avatar, delete avatar).

• Enabler Layer : Thing in enablers are services that are used to add functionalities to Thing
in through the use of APIs offered by the Core layer such as Injection Enabler which allows
injecting raw data in different formats such as JSON and BIM to generate and combine
graph representations in Thing in.

• Service Layer : using Thing in enablers, this layer involves business use cases of Thing
in for creating value-added services and applications such as product management in a
factory 42, as well as security management in a smart building 43.

In addition to its DT features, Thing in is a multi-sided federation platform. Namely, it allows
information sharing across various partners, customers, and suppliers collaborating to build
valuable business services. In our work, we rely on both the DT and multi-sided capabilities of
Thing in to enable cascading failure management on IoT devices managed by different actors.

2.2.3 Applications of Digital Twin

The DT is affecting all industries, leveraging the digital-twin-based simulation as key to per-
forming effective decisions. For instance, manufacturing processes within Industry 4.0 leverage
the DT to replicate production systems in real-time and analyze them, enabling various activ-
ities such as monitoring, maintenance, management, optimization, and safety [Cimino, 2019].

42https://www.thinginthefuture.com/spip.php?article117#main_nav_fermer
43https://www.thinginthefuture.com/spip.php?article118#main_nav_fermer

36

https://www.thinginthefuture.com/spip.php?article117##main_nav_fermer
https://www.thinginthefuture.com/spip.php?article118##main_nav_fermer

2. Scientific Context

In Healthcare, DT are mainly used in two cases: patient DT and DT of medical devices. The
patient’s DT is formed by translating their physical attributes and physiological changes into a
real-time digital representation, aiming to provide accurate diagnosis and the subsequent imple-
mentation of treatments tailored to each patient. The DT for medical devices improves device
development, functionality, and maintenance [Erol, 2020]. Moving to the energy management
domain, the concept of energy DT is under exploration to enhance on-site operations and reduce
targeted energy consumption. This approach helps in the development of energy-efficient de-
signs and the evolution of production processes and facilities. Moreover, it enables the transition
to renewable fuels and improved integration of locally generated renewable energy sources [Yu,
2022]. Besides, the DT are used for disaster management in Smart cities, enhancing prepared-
ness, response, and mitigation efforts by creating a virtual environment representing real-world
disaster scenarios [Ford, 2020]. The DT enables other valuable use cases in the construction
industry. Indeed, a DT for building involves creating a virtual representation of a physical
building in a digital environment. This digital representation involves various aspects of the
building’s design, construction, operation, and maintenance [Opoku, 2021]. The BIM2TWIN 44

European collaborative project, in which Orange is a partner, is a practical example of using
DT for construction.

2.2.4 Digital Twin and IoT

The relationship between IoT and the DT is characterized by a bidirectional exchange of benefits.
Indeed, IoT feeds data to the DT through sensors that collect real-time data from physical
assets, environments, and processes. This data is fed into the DT, enabling an accurate and
synchronized virtual representation of the physical system. Thus, allowing the DT to monitor
the health, performance, and operational status of assets, enabling predictive maintenance and
timely interventions. Several works proposed to integrate IoT [Al-Ali, 2020] and industrial
IoT [Souza, 2019] to the DT architecture for real-time data collection. IoT actuation could also
be used as a way to reflect the status of the system in the digital back to its physical counterpart.

On the other side, the DT boosts IoT design and maintenance. Namely, the DT simulates
IoT-enabled systems, allowing for predictive modeling and analysis. IoT data analyzed within
the DT helps predict device failures, reducing downtime and minimizing IoT operational risks.
For instance, the work [Gupta, 2021] used DT for anomaly detection on IoT-based healthcare
systems, and authors in [Nguyen, 2022] propose TaS, a DT based tool for test and simulation
of IoT environments, in order to detect and predict failures in evolving IoT systems.

In our work, we leverage the latter direction by using the DT to enhance IoT operations,
mainly managing cascading failure on IoT devices.

2.3 Multi-agent System

Multi-Agent System (MAS) was introduced as a branch of distributed artificial intelligence [Dorri,
2018] during the Distributed Artificial Intelligence Workshop in June 1980 at Endicott House,

44https://bim2twin.eu/

37

https://bim2twin.eu/

Chapter 2. Background

Figure 2.15: A representation of the MAS from the talk of Stefano Albrecht in The multi-agent
research group in the Alain turning Institution [Stefano Albrecht, 2020]

Massachusetts Institute of Technology 45. It refers to a network of loosely coupled entities
known as Agents that interact within their shared environment to solve complex problems be-
yond each agent’s individual capabilities or knowledge. The most valuable work conducted by
the researcher Michael Wooldridge defines the MAS as multiple agents that interact with each
other. These agents often act on behalf of distinct users with varied goals and motivations.
To effectively interact, they must be able to collaborate, synchronize, and negotiate with each
other as humans do [Wooldridge, 2009]. Another definition provided by [Boissier, 2020] is "an
organized ensemble of autonomous goal-oriented entities called agents, communicating with each
other and interacting within an environment." (see Figure 2.15). This work argues that agents
may go beyond software to cover humans, hardware, or any other autonomous entity having a
goal to achieve independently of other entities. Based on these definitions, a MAS has a set
of properties that allows distinguishing it from other similar systems such as object-oriented
programming and expert system [Rocha, 2017; Boissier, 2020; Dorri, 2018]:

• Autonomy: Each agent in the MAS must be autonomous, allowing it to perform actions
independently based on its own goals, local knowledge, and its perception of the environ-
ment.

• Decentralization: Agents in the MAS have full decentralized control and knowledge, where
each agent governs a portion of knowledge and can perform a subset of control actions to
reach its own goal or to coordinate with other agents toward common goals.

• Coordination: Agents communicate with each other through a set of coordination algo-
rithms, mechanisms, and processes, allowing them to interact and collaborate with each
other to achieve common goals.

45https://dspace.mit.edu/handle/1721.1/41155

38

https://dspace.mit.edu/handle/1721.1/41155

2. Scientific Context

• Heterogeneity: Denotes the diversity and variety among individual agents. Each agent has
its own characteristics, capabilities, knowledge, goals, or behaviors. This diversity is a key
feature of MAS and contributes to their ability to handle complex and varied tasks.

• Adaptation: Refers to the ability of individual agents or the MAS to adjust their behaviors,
strategies, or structures in response to environmental changes, agent characteristics, or
goals.

Relying on these properties, the MAS provides several advantages for developing efficient, decen-
tralized, and open software systems designed to function in an ever-changing environment, en-
gaging with and executing tasks on behalf of human users and legacy software systems [Boissier,
2013]. More precisely, it provides the following advantages:

• Increase performance: Within the MAS, a complex task is divided into smaller tasks, each
assigned to a distinct agent. This process naturally distributes the related costs, such as
processing and energy usage, among multiple agents. This often leads to a cost-effective
resolution, unlike an alternative where a centralized and potent entity attempts to tackle
the complex problem.

• Reliability: Thanks to the decentralization property, the MAS provides high reliability.
Namely, when an agent fails, its tasks can be readily reassigned to other agents, avoiding
the "single point of failure" problem.

• Human integration: Integrating humans as "human agents" into the MAS allows to address
several challenges that are difficult for purely automated approaches. Indeed, human
agents may empower other computer-based agents with their expertise, intuition, and
judgment, particularly in complex, uncertain, or ambiguous situations.

• Legacy system integration and collaboration: The MAS facilitates the integration and
cooperation of legacy systems, which might be geographically dispersed. By enveloping
these systems with agent interfaces, they can collaborate and share information to solve
complex problems.

In our work, we leverage these advantages of MAS, mainly the last one to allow legacy DM
solutions to collaborate towards solving cascading failure on interdependent IoT devices. In the
following, we present methods and tools for multi-agent programming and highlight relevant
applications of MAS mainly in IoT.

2.3.1 Multi-agent Programming Paradigms and Tools

Developing the MAS requires considering its key properties mentioned above and addressing
complex challenges such as learning and security. Several programming paradigms and tools were
proposed to fulfill these challenges. Regarding the multi-agent development paradigms, almost
five (05) visions were proposed in the literature [Boissier, 2013]: Agent-oriented programming;
Interaction-oriented programming; Environment-oriented programming, Organization-oriented

39

Chapter 2. Background

Figure 2.16: The BDI agent architecture [Arnaldo Perez, 2019]

programming, and Multi-agent oriented programming. Each of these paradigms has given rise
to several tools and software implementations. In the following, we discuss the multi-agent
development paradigms with their associated tools:

• Agent-oriented programming: this paradigm was introduced by Shoham [Shoham, 1993].
It mainly leverages the Belief-Desire-Intention model to program rational autonomous
agents. The BDI agent model (see Figure 2.16) aims at programming rational agents
based on human mental attitudes of beliefs, desires, and intentions [Bratman, 1987; Silva,
2020]. Beliefs correspond to an agent’s understanding of its surroundings, other agents,
and itself. Desires refer to the conditions an agent wants to achieve, and intentions are
the commitments to achieving those desires. In order to accomplish its desires, an agent
utilizes a collection of plans executed in specific contextual circumstances. These plans
consist of a series of actions that an agent must undertake, given the conditions implied by
its belief base. The belief base is updated based on events that the agent perceives from its
surrounding environment. Many programming languages and tools were developed as an
implementation for the BDI model and more generally for the agent-programming model.
Among these tools we found JACK platform and its language Jal [Howden, 2001], 3APL
language [Dastani, 2004], and AgentSpeak language and its extension Jason [Bordini, 2007].

• Environment-oriented programming: This paradigm considers the environment a first-class
entity in the MAS. This is because exploiting the MAS environment results in better solu-
tions for complex and dynamic system infrastructure and advanced problem domains such
as ad-hoc networks or ubiquitous computing [Weyns, 2005]. More precisely, programming
the environment of the MAS can be used to 1) allow agents to access the environment
properties and adapt to their changes dynamically; 2) ease agents’ access to the external
services and resources in the environment; 3) introduce well-designed computational struc-
tures that aid agents in their tasks, even extending to moderating and governing agents’
interactions to promote organizational and coordination objectives [Ricci, 2011]. Some
agent programming tools such as Jason and 2APL have proposed to implement the envi-
ronment as a single computational object, with a single state. While more valuable efforts

40

2. Scientific Context

Figure 2.17: The Agent and Artifact Meta-model [Ricci, 2011]

were introduced through the Agent and Artifact (A&A) meta-model [Omicini, 2008] (see
Figure 2.17), in which the environment is encoded as a dynamic collection of interactive
entities referred to as artifacts. These artifacts essentially embed various resources and
services that agents within the shared environment can collectively utilize and leverage.
They expose a set of Operations allowing agents to perceive their environment events a.k.a
Observable Events and act on its properties a.k.a Observable properties. These artifacts
might be structured within singular or multiple Workspaces potentially spread across dis-
tinct network nodes. A workspace serves as a domain encompassing one or more tasks
that engage a group of agents along with associated artifacts [Ricci, 2011]. The most
valuable implementation of the agent environment meta-model A&A is the technology
CArtAgO [Ricci, 2009].

• Organization-oriented programming: refers to a paradigm where agents’ design, behavior,
and interactions are structured around organizational structures and goals. This approach
emphasizes establishing a predefined organizational structure such as agent groups and
roles with their responsibilities, to achieve specific organizational objectives. Thus, agents
are not treated as isolated entities but as organization entities part of an organized collec-
tive with well-defined roles and relationships [Hannoun, 2000]. Some effort on organization-
oriented programming was presented as teamwork-oriented programming proposing several
programming tools such as Karma [Pynadath, 2003]. Other efforts have adopted the term
organization-oriented programming by developing many tools for organization structure
description and execution, such as OPERA [Dignum, 2004], MOISE [Hannoun, 2000] and
its extensions S-MOISE+ [Hübner, 2005] and MOISE+ [Hubner, 2007]. With these tools,
the structure of the agent organization is represented by as set of agent Groups. Within
a group, each agent member plays a Role, Based on its role, an agent performs a set of
Missions and should respect a set of Norms. Agent missions are sub-goals of the global
Goal the agent organization wants to achieve.

41

Chapter 2. Background

• Interaction-oriented programming: was introduced by [Huhns, 2001] to handle in a robust
manner the interactions among agents, their environment, and their organizations. In
other words, this programming paradigm aims to define how agents exchange information,
coordinate actions, and collaborate to achieve collective goals within the MAS, to avoid
erroneous behavior and increase reliability. This paradigm was implemented in several
agent communication languages such as Jason through speech acts theory, where agents
inform each other about changes and exchange novel information [Seidita, 2022].

• Multi-agent oriented programming: was proposed in [Boissier, 2013], aiming to provide
an efficient programming paradigm for complex MAS by bringing together the above-
mentioned paradigms considered as dimensions (see Figure 2.18), namely agent, environ-
ment, organization, and interaction, and keeping their integration alive from design to
execution. The interaction dimension defines interactions between the other dimensions.
The combination of these dimensions enables a more controllable and effective program-
ming model that is easily extensible and reusable thanks to its modularity. One proposed
implementation for this recent paradigm is the JaCaMo framework 46 that combines the
abstraction of the following tools: Jason to implement the agent dimension, CArtAgO for
the environment dimension and MOISE for the organization dimension. More precisely,
the abstractions of the agent dimension are related to the Jason meta-model, inspired by
the BDI architecture. The environment dimension is based on the CArtAgO meta-model,
where the agent environment is described using the A&A meta-model. The organization
dimension is based on MOISE meta-model, describing agent organization structure such
as group and roles with their associated missions and norms [Boissier, 2020].

In our work, we have chosen to adopt the multi-agent-oriented programming paradigm, lever-
aging its implementation through JaCaMo to develop our multi-agent-based solution. This
strategic decision enables us to create a MAS that excels in robustness, modularity, and overall
coherence, setting the foundation for a highly effective multi-agent solution. More precisely, it
allows us to effectively model different aspects of the cascading failure problem, such as mod-
eling the IoT device’s environment including their interactions and dependencies through the
environment dimension, with the integration of legacy DM solutions using the agent dimension,
and a potential usage of the organization dimension to elaborate roles and norms between DM
actors when managing cascading failures.

2.3.2 Application of multi-agent system

As mentioned above, a MAS’s advantages stem from its decentralized, adaptive, efficient, and
collaborative nature. These properties enable the system to tackle complex problems, distribute
tasks effectively, and adapt to changing environments, making it a valuable approach in var-
ious domains. The MAS may be applied for system modeling and simulation or as software
development architecture to solve various problems at run time.

46https://jacamo.sourceforge.net/

42

https://jacamo.sourceforge.net/

2. Scientific Context

Figure 2.18: A global view of Multi-agent oriented programming dimensions [Boissier, 2020]

A wide range of multi-agent applications in robotics applied to industry, security, and mil-
itary domains were studied for over two decades [Dorri, 2018]. More precisely, multi-robot
systems use MAS for efficient cooperation and coordination between robots and their trajectory
planning. Thus allowing them to perform complex dynamic tasks distributed in space, enhance
coordination, adapt to feedback, and integrate machining perturbation and imperfection [Pou-
vreau, 2023; Dong, 2023]. In the context of autonomous vehicles, MAS can enhance traffic
flow, manage intersections, and optimize routes for multiple vehicles, reducing congestion and
improving overall traffic efficiency [Arel, 2010]. In these applications, the MAS is combined with
Reinforcement Learning and Distributed Optimization to boost agent intelligence and learning
capabilities and address specific problem domains.

Another relevant application of MAS is smart grid management, including balancing energy
loads, fault detection and isolation, marketing energy, pricing, scheduling energy, reliability,
and smart grid network security [Mahela, 2022]. Several works [Ikram, 2022; Babalola, 2016;
Babalola, 2014] have leveraged domain-specific MAS to detect and mitigate cascading failures
in smart grids using collaborative load regulation.

Moreover, MAS have been used in logistics and supply chains for modeling, optimizing, and
managing distributed processes by coordinating the actions of multiple entities in a dynamic
and complex environment. For instance, the work investigates using the MAS with game theory
for parking management with multiple gates [Noviello, 2023]. In [Jaimez-González, 2021],
authors propose a collaborative MAS that explores different strategies of the whole production
process with different stakeholders and offers solutions for managing supply chains in distributed
e-commerce environments.

43

Chapter 2. Background

2.3.3 Multi-agent system and IoT

MAS can boost the impact of IoT in three forms: First, as IoT seeks to automate operations
and forge an intelligent ecosystem where diverse components engage in autonomous interac-
tions, MAS can empower these features to add more autonomy, reliability, and efficiency to
IoT architecture [Gheysari, 2022]. For instance, authors in [Singh, 2017] address using MAS to
support distributed computing, taking the IoT as a use case. This work argues that building
MAS-based IoT solutions allows the integration of multiple stakeholders within the distributed
digital process to engage in complex interactions, sometimes over highly constrained resources,
easing networking, data management, and analytics. Second, MAS can be used for IoT in the
simulation of IoT devices and applications at the test and design stage to identify product de-
fects and increase their quality [Jung, 2018]. Third, a MAS may be used to manage IoT failures,
such as to conceive an intrusion detection system [Liang, 2020], as it allows handling distributed
and large failure data for IoT failure detection. However, the last use case is slightly addressed
in the literature. In our work, we further explore using MAS for IoT management, mainly for
handling cascading failures on IoT devices managed by different actors.

2.4 The combination of MAS, DT, and SW standards

It is undeniable that DT, MAS, and SW standards have attracted the research community’s
interest in recent years. In the previous sections, we have discussed the key properties of each
of these technologies independently. In this section, we investigate their amalgamation and how
they can be combined to boost the value of each other.

Several efforts have studied the relationship between MAS and DT [Minerva, 2020; Pretel,
2022]. The most common vision is adopting the MAS as a software architecture for building
the digital part of the DT. This is because DT and MAS have common properties, such as
their goal to represent physical entities through software components. Thus, researchers tried
to learn from approaches and tools proposed for MAS to fulfill DT’s development requirements,
especially for large DT [Minerva, 2020], adding some level of autonomy so that DT features
could be exploited by autonomous agents. Moreover, there have been suggestions to use the
MAS for enabling the coordination and interaction of multiple DT [Niati, 2020; Pretel, 2022].

On the other side, DT may feed agents with large and real-time data allowing them to
make better decisions. In this case, DT are seen as a database artifact part of the multi-agent
environment. In this context, the work [Croatti, 2020] introduces the vision of agent-based DT
considering DT as an effective blueprint for MAS allowing them to conceive and design digital
environments mirroring the physical world, providing models to reason about them, and support
their decision-making, and cooperation with human users as well.

Within these various visions of combining the DT and MAS, SW standards are used to ease
(Big) data integration and reasoning within DT and enable interoperability across heterogeneous
agents. Indeed, several works leveraged semantic ontologies to organize the knowledge of the
physical asset in their DT, which is fed by heterogeneous and abundant data [Moder, 2020; Boje,
2020; Yu, 2021]. On the other hand, the idea of SW-enabled intelligent agents and MAS has

44

3. Conclusion

Semantic Web

Digital Twins Multi-agent System

- Structure the Digital Twin

knowledge.

- Ease the integration of heterogenous

 physical world data.

- Enable reasoning and augmentation

of Digital Twin Knowlege.

-Provide a software architecture

for building the digital part of the

Digital Twins.

-Coordinate multiple Digital Twins.

-Feed agents with large and

real-time data.

- Provide e�cient design for

agent environment, easing the

access of resources.

- Improve process interoperability

across heterogeneous agents

and their environments.

- Ease information sharing and

resource discovering for agents.

Figure 2.19: The combination of MAS, SW and DT

been around for almost as long as the idea of the SW itself [Ciortea, 2018]; this idea is becoming
more active, especially with the emergence of new standards such as Linked Data or SWoT,
which aim to improve the interoperability of heterogeneous environments and provide a solid
foundation for building effective MAS. Several works were proposed to integrate SW standards
into the MAS architecture. Authors in [Schraudner, 2021] introduce a semantic-enabled MAS
comprising simple reflex agents tightly integrated into the application layer of the SW. In [Bella,
2022], authors propose the OASIS ontology, an Ontology for Agents, Systems, and Integration
of Services, to deliver a higher-level, semantic representation system as well as a communication
protocol for agents and their commitments. Moreover, several programming tools were proposed
such as Hypermedea47, an advanced version of the JaCaMo multi-agent programming framework,
that has been extended to operate within Web and Web of Things settings, enabling it to
effectively navigate Linked Data [Charpenay, 2022; Ciortea, 2019]. Recently, AJAN 48 a modular
framework designed for engineering agents built upon SW standards, was proposed. AJAN
offers a versatile execution and modeling environment through web services, complemented by
an RDF-based modeling language tailored for deliberative agents [Antakli, 2023].

In our work, we adopt the vision of using the DT as an artifact to empower a MAS knowledge
and adaptation. This vision is underpinned by a twofold usage of SW standards: firstly, as an
efficient AI tool facilitating the organization and rationalization of knowledge inherent to the
DT; secondly, as an interoperability enabler for our MAS approach.

3 Conclusion

In conclusion, this chapter has laid the foundation for the research presented in this Thesis, which
aims to address the critical issue of managing cascading failures in interdependent IoT devices
that are managed by various actors and siloed IoT device management platforms. The chapter
began by providing an extensive background in IoT and IoT device management, drawing from

47https://hypermedea.github.io/
48https://github.com/aantakli/AJAN-service

45

https://hypermedea.github.io/
https://github.com/aantakli/AJAN-service

Chapter 2. Background

industry and research insights. This knowledge serves as a crucial backdrop for the subsequent
research and analysis.

Furthermore, we explored the scientific context of our research, delving into key concepts and
technologies such as SW technologies, MAS, and DT. We not only introduced these concepts
but also discussed their current applications and combinations. This discussion served to justify
the technical choices made in the research, laying the groundwork for the subsequent chapters
that will delve deeper into the methods, experiments, and findings aimed at achieving the stated
research goal.

46

Chapter 3
State of The Art

This chapter presents the state of the art of the different research axes to which
our work has contributed. Namely, IoT dependency extraction and modeling, Fail-
ure management, Ontologies for IoT. We discuss research efforts on these axes and
identify research gaps.

Summary

Contents
1 IoT dependency extraction and modeling . 48
2 Failure Management in Distributed Systems . 53

2.1 Failure Detection approaches . 53
2.2 Fault-handling approaches . 53

3 Failure Management in IoT . 56
3.1 IoT device failures . 57
3.2 IoT failure management from research perspective . 58
3.3 IoT Failure management from industrial perspective 62

4 Ontologies for IoT . 66
4.1 Ontologies of reference in IoT . 66
4.2 Ontologies for IoT dependency Modeling . 67
4.3 Ontologies for IoT Failure Modeling . 67

5 Conclusion . 69

We believe the first step towards automatic management of Internet of Things (IoT) cas-
cading failures is identifying dependency relationships among IoT devices, in order to identify
the root cause and elaborate a convenient plan for recovering the failed devices. That’s why we
start by studying related work on IoT dependency extraction and modeling. Secondly, literature
on failure management in distributed systems in general and IoT in particular is discussed. We
investigate the presented methods for failure detection, diagnosis, and recovery and its consid-
eration of cascading failure. Last, as we relied on ontology-based modeling in our solutions, we
studied proposed ontologies for IoT, their scopes, and how they can be reused and combined to

47

Chapter 3. State of The Art

fulfill our solution’s specifications, mainly related to the IoT Cascading Failure Management
(CFM) domain.

1 IoT dependency extraction and modeling

Identifying IoT dependencies is crucial for designing, deploying, and managing IoT systems
effectively [Huang, 2016]. An IoT dependency refers to the unidirectional relationship between
two IoT devices resulting from their direct and indirect interactions in IoT environments. These
interactions may be the exchange of data and services, e.g., connectivity service, between them
directly, through IoT applications and platforms, or the physical environment (see Figure 3.1).

Figure 3.1: IoT interaction model.

Automatically identifying IoT dependencies is a challenging task since they are:

• Abundant: due to the large size of IoT systems. Moreover, the number of IoT dependencies
is exacerbated by the large adoption of trigger-action platforms by smart home users (27
million users for IFTTT platform). As mentioned in Chapter 2 Section 1.1.1, trigger-
action platforms generate many dependencies between IoT devices as they link IoT devices
through automation rules, which act on IoT devices based on the state of the others and
compose their services.

• Dynamic: due to the dynamicity of the IoT system, which is continually evolving in
response to shifting conditions and the introduction of new devices.

• Undocumented: as IoT dependencies are described in high technical forms. For instance,
the direct exchange of services among devices may be described using an API call or within
a broker in the case of a publish-subscribe communication model.

• Heterogeneous: IoT dependencies are described using heterogeneous data models depend-
ing on the technological environment where they are implanted, such as a specific technol-
ogy of a trigger-action platform or a connectivity broker.

48

1. IoT dependency extraction and modeling

• Governed by different actors: since IoT devices are managed by different actors (see Chap-
ter 2 Section 1.2.2), IoT dependencies information are distributed across heterogeneous IoT
platforms and connectivity devices governed by different actors that may be operators or
service providers.

IoT dependencies extraction and modeling are only partly treated in the literature. Some
works discuss models for IoT dependencies, while others are interested in IoT dependency iden-
tification and extraction.

To build a tool for security analysis of IoT systems, the work [Mohsin, 2016] proposes a for-
mal model for IoT dependencies and interactions through Satisfiability Modulo Theories (SMT),
which is a logic-based model used for system verification. The proposed model for IoT depen-
dencies is used with other SMT models for policy-level behavior and IoT-specific threats to
unveil complex chains of hidden attack vectors, given a pre-defined attacker’s objectives. This
work models functional dependencies, where IoT devices use common sensor data and act on
the same actuators or when they perform operations over common environmental features, and
network-based dependencies, where IoT devices depend on network devices for communication.
However, it does not consider IoT dependency generated through IoT applications.

Guided by the motivation to establish a benchmark for modeling, developing, and managing
IoT devices, the authors of [Huang, 2016] propose a stochastic model to describe and analyze
service dependencies among IoT devices. The model is based on Markov chains, where each state
in the proposed Markov model represents an IoT device, and dependencies are represented by
transitions between these states. Transition probabilities are extracted through the analysis and
normalization of network traffic collected from the router connecting IoT devices. The Markov
chain solution, which represents stationary probabilities, allows for modeling the usage time of
an IoT device within the system. This information provides insight into critical devices, such
as the most frequently used ones. However, this work considers only dependencies extracted
from network traffic, which do not allow the identification of indirect dependencies, such as IoT
dependencies generated through the physical environment and IoT applications.

The authors in [Mohsin, 2017] propose the IoTChecker framework, which is used to auto-
matically detect security misconfigurations in an IoT system. The solution provides a set of
semantic ontologies that describe the behavior of IoT devices, access network configurations,
and security configurations. A set of Semantic Web Rule Language rules (SWRL) has been
proposed to infer the knowledge required to detect security constraint violations. Among the
proposed ontologies, we found the IoT behavior ontology (IoTB), describing the functioning
context IoT devices, including event-driven transformations, information communication and
processing, and interaction between IoT devices and the physical environment. More precisely,
IoTB ontology considers two types of IoT dependencies: direct dependencies, which means one
IoT device uses another to perform its function, and indirect dependencies, where the actions
of one device can have an indirect impact through the environment on the function of its de-
pendent device. However, this ontology does not model IoT dependency generated through IoT
applications.

The work [Laštovička, 2017] introduces a theoretical concept for a dynamic graph-based

49

Chapter 3. State of The Art

model, which automatically identifies and extracts IoT dependencies by analyzing network traf-
fic. Graph-based algorithms, such as Clique detection, are employed to analyze the graph that
depicts IoT dependencies. The main goal of this research is to assess IoT device criticality. These
critical devices are those on which a substantial number of dependencies rely. However, like the
work [Huang, 2016], this work model only dependencies that can be extracted from network
traffic, which do not include IoT dependencies generated through the physical environment and
IoT applications.

Recently, authors in [Mariani, 2023] propose a multi-agent learning approach to discover
environment-based IoT dependencies, referred to as Causal Network. IoT causal networks rep-
resent change causality among IoT devices within their shared environment. For instance, recog-
nizing that the states of the air conditioner and the temperature sensor in a room are not simply
correlated but that the first causes the second to change. The proposed approach assumes a
Multi-Agent System (MAS) is deployed in an IoT environment, e.g., a Smart Home. Each agent
has a partial view of the IoT causal network learned using Bayesian inference. To unveil the
global IoT causal network, agents collaborate with each other according to a collaborative learn-
ing protocol. The main purpose of the proposed approach is to allow agents in agent-based IoT
deployment to understand their operational environment better, properly decide action plans,
and explain such decisions.

On the other hand, many works have proposed solutions for different IoT management and
security problems assumed to have IoT dependency information without proposing methods
for their extraction and modeling. For instance, the work [Mezghani, 2020] presents a solution
for coordinating Device Management (DM) operations on IoT devices considering their de-
pendencies to avoid failures during the execution of DM operations on IoT devices. This work
assumes having prior knowledge of IoT dependencies among IoT devices. The same hypothesis
was adopted in the works [Zdankin, 2021; Xing, 2018; Yu, 2015] proposing solutions for de-
pendency preserving updates in smart home, cascading failure analysis, and cascading attacks
management, respectively.

50

1. IoT dependency extraction and modeling

The landscape of research on IoT dependency modeling and extraction reveals many
limitations (see Table 3.1):

• Foremost among these limitations is the pervasive challenge of the accuracy and
scalability of existing models designed for IoT dependency. For instance, using
Bayesian network-based modeling, while conceptually robust, is encumbered
by its reputation as a computationally intensive paradigm. The computational
demands imposed by Bayesian network-based modeling often limit its practical
utility, particularly within large-scale IoT environments.

• Moreover, the proposed models do not consider modeling direct and indirect
interactions between IoT devices and they do not provide a documented model
of IoT dependencies despite the work using a semantic ontology, which offers
the promise of a richer and interoperable representation of dependency rela-
tionships.

• Furthermore, it bears noting that these models frequently fail to address the
dynamic aspect of IoT dependencies, where IoT dependency information is ex-
tracted and maintained by human intervention. Some works consider periodic
extraction of IoT dependencies by analyzing network traffic. However, this
does not include indirect dependencies, especially environment-based ones.

• Last, the proposed works do not consider the practical reality: IoT is managed
by multiple actors, although dependency information is governed by different
actors.

Research Gaps

51

Chapter 3. State of The Art

Ta
bl

e
3.

1:
R

el
at

ed
W

or
k

on
Io

T
de

pe
nd

en
cy

ex
tr

ac
tio

n
an

d
m

od
el

in
g.

W
or

k
M

od
el

D
yn

am
ic

ity
A

cc
ur

ac
y

D
oc

um
en

ta
tio

n
Sc

al
ab

ili
ty

H
et

er
og

en
ei

ty
M

ul
ti-

ac
to

r
D

ep
en

de
nc

y
T

yp
e

[M
oh

sin
,2

01
6]

SM
T

✗
✓

✗
✗

✗
✗

D
ire

ct
de

pe
nd

en
cy

En
vi

ro
nm

en
t

de
pe

nd
en

cy

[H
ua

ng
,2

01
6]

M
ar

ko
v

ch
ai

n
✓

✓
✗

✓
✗

✗
D

ire
ct

de
pe

nd
en

cy

[M
oh

sin
,2

01
7]

O
nt

ol
og

y
w

ith
SW

R
L

in
fe

re
nc

e
ru

le

✗
✓

✓
✓

✓
✗

D
ire

ct
de

pe
nd

en
cy

En
vi

ro
nm

en
t

de
pe

nd
en

cy
N

et
w

or
k

de
pe

nd
en

cy

[L
aš

to
vi

čk
a,

20
17

]
G

ra
ph

T
he

or
y

✓
✓

✗
-

✗
✗

D
ire

ct
de

pe
nd

en
cy

[M
ar

ia
ni

,2
02

3]
B

ay
es

ia
n

ne
tw

or
k

✗
✗

✗
✗

✗
✗

D
ire

ct
de

pe
nd

en
cy

En
vi

ro
nm

en
t

de
pe

nd
en

cy
ap

pl
ic

at
io

n-
ba

se
d

de
pe

nd
en

cy

52

2. Failure Management in Distributed Systems

2 Failure Management in Distributed Systems

Distributed systems are groups of interconnected nodes, which work towards a shared goal.
They can be homogeneous e.g., cluster, or heterogeneous e.g., Grid, Cloud, P2P, and IoT, and
are subjected to different kinds of challenges such as Resource Allocation, Security, and Failure
Management a.k.a Fault Tolerance [Ledmi, 2018]. Fault Tolerance in distributed systems consists
on two elements Failure Detection and Fault handling.

2.1 Failure Detection approaches

Failure detection in distributed systems consists of monitoring components by collecting relevant
information allowing to deduce the failed state [Ozeer, 2019]. Detecting failure in a distributed
system is no longer obvious. Indeed, distributed systems, especially large ones, are characterized
by a high level of asynchrony, long message delay, and a high probability of message loss, and
their topology might change as a result of reconfigurations [Hayashibara, 2002]. Two main
models for failure detection are proposed: Push Model and Pull Model [Hayashibara, 2002;
Ozeer, 2019].

• Push Model: in this model, the monitored components take an active role, while the
monitoring entity (the failure detector) is passive. Each monitored component regularly
dispatches messages, typically in the form of heartbeat messages, to the failure detector
responsible for overseeing it. The role of the failure detector is to detect a suspected
component failure, specifically when it ceases to receive a heartbeat message from the
component within a predefined time interval. This absence of a heartbeat indicates a
potential crash or failure of the monitored component.

• Pull Model: in this model, the monitored components assume a passive role, whereas the
monitor or failure detector takes an active stance. The monitor proactively sends inquiries
at regular intervals to the monitored components. In response to these aliveness requests,
the monitored component acknowledges by sending a reply back to the monitor. However,
if the monitor does not receive a reply from a monitored component within a specified
time window (timeout), it assumes a potential failure.

2.2 Fault-handling approaches

Once the failure is detected, fault-handling approaches are employed to recover the failed parts.
Several fault-handling approaches were proposed in the literature, which are divided into reactive
and proactive approaches.

2.2.1 Reactive Fault handling

Reactive fault tolerance methods are employed to mitigate the effects of system failures once
they have unexpectedly occurred. These techniques are designed to respond to failures that
were not anticipated in advance. The most well-known techniques for reactive fault handling

53

Chapter 3. State of The Art

in distributed systems are Replication, State Saving, and Reconfiguration [Ozeer, 2019]. These
techniques may be used independently or combined to ensure fault handling in distributed
systems.

• Replication: refers to duplicating critical hardware, software, or data across multiple nodes
or servers within a distributed system. If a failure occurs on one node, the system can eas-
ily switch to a redundant copy, maintaining service availability and data integrity. There
are two main classes of replication techniques: primary-backup replication and active repli-
cation [Guerraoui, 1996]. Primary backup replication, also known as active-passive repli-
cation, is a fault tolerance technique used in distributed computing systems to enhance
system reliability and availability. In primary backup replication, there are two or more
identical copies of a service or component, with one designated as the primary and the
others as backups. The primary component actively handles requests and operations while
the backups remain in a standby state, ready to take over in case the primary component
fails. This replication method ensures that the system can continue functioning even when
the primary component encounters a failure [Budhiraja, 1993]. Active replication is a fault
tolerance technique used in distributed computing systems to ensure the high availabil-
ity and reliability of services or components. In active replication, multiple copies of a
service or component run concurrently, and all of them actively process client requests
simultaneously. The Delta-4 is one of the concrete implementations of active replication,
representing an open dependable distributed computing systems architecture using a ded-
icated protocol for coordinating active replicas [Chereque, 1992].

• State Restoration consists of saving the correct state of distributed system components and
restoring them in case of failure. There are two main approaches for saving information
from which the correct state of a failed component in a distributed system can be restored:
Checkpoint and Message logging. Checkpoint refers to a procedure that preserves the cur-
rent state of a computation by storing it in stable storage. These checkpoints are created
at regular intervals during the routine operation of a program. This stored information,
including the process’s state, its operating environment, register values, and more, is re-
tained in stable storage for potential use in the event of node failures. In case a failure
is detected, the process can be reverted to the most recent saved state [Bansal, 2011].
Message logging consists of recording emitted and received messages on a stable storage.
Once an entity fails within a distributed system, its messages are replaying in a carefully
defined sequence, to reach the pre-failure state [Ozeer, 2019]. There are many proposed
techniques for message logging such as pessimistic message logging, which operates on the
assumption that a failure could happen at any moment. As a result, it takes proactive
measures by logging an event onto stable storage before the event is actually processed.
This proactive step ensures that all processed messages are reliably recorded on stable
storage, eliminating the risk of losing critical data in the event of a failure [Alvisi, 1998].

• Reconfiguration refers to the process of dynamically adjusting the configuration of a dis-
tributed system in response to changes such as node failures, network issues, or changes

54

2. Failure Management in Distributed Systems

in system requirements. Reconfiguration can involve adding or removing replicas, redis-
tributing workload, or changing the communication patterns within the distributed system.
Several approaches were proposed for dynamic reconfiguration for distributed system and
applications. The work [Ozeer, 2019] proposes a set of reconfiguration techniques pro-
posed for distributed IoT applications deployed on the Fog nodes. It relies on wrappers
that encapsulate software elements and IoT devices involved in IoT applications allowing
their reconfiguration. For software elements, the reconfiguration process begins with an
initial attempt to restart on the local fog node. In case of failure, alternative involves a
placement reconfiguration, which entails the re-initialization of the software element on an
alternate fog node. For IoT device failures, the reconfiguration initially entails a reboot
of the failed device. If this reboot attempt is unsuccessful, a more extensive architectural
reconfiguration is necessary to replace the failed device. In cases where a replacement
device is not available, a functional reconfiguration, referred to as operating in a degraded
mode, is executed as a fallback measure. Authors in [Castaldi, 2003] introduce Lira, a
framework for dynamic reconfiguration of distributed system. This framework is designed
to bolster the fault tolerance of component-based applications by identifying failures and
effecting recovery through on-the-fly reconfiguration, both at the component and applica-
tion levels. During run-time, the system determines an appropriate new configuration by
adhering to a predefined set of reconfiguration policies. The architecture of Lira consists of
a collection of agents that interact with managed application components. These agents
are responsible for implementing the reconfiguration logic and engage in asynchronous
communication with other agents via the SNMP management protocol. In [Bouchenak,
2005], the middleware JADE is proposed for repair management in distributed system,
mainly J2EE application server clusters. JADE includes several fault tolerance techniques
such as replication and dynamic reconfiguration. It relies on the FRACTAL component
model allowing the reconfiguration of the managed application, by adding and removing
replicated components, and updating connections.

2.2.2 Proactive Fault handling

Proactive fault tolerance techniques in distributed systems are strategies and mechanisms im-
plemented to prevent or mitigate potential faults and failures before they occur. More precisely,
proactive techniques are forward-looking and aim to anticipate and prevent issues, whereas re-
active mechanisms respond to issues after they have occurred. Among these techniques, we find
Software Rejuvenation, Load balancing, and Preemptive Migration [Ledmi, 2018].

• Software Rejuvenation: is a proactive fault tolerance technique used in distributed systems
and other computing environments to enhance system reliability and prevent potential
failures. The main idea behind software rejuvenation is to intentionally restart or refresh
software components or the entire system before they become susceptible to aging-related
failures or issues. This proactive approach helps mitigate the gradual degradation of
system performance and stability over time, reducing the risk of unplanned outages or

55

Chapter 3. State of The Art

service disruptions.

• Load Balancing: is a technique used to distribute incoming network traffic or computa-
tional workload across multiple nodes, servers, or resources to ensure efficient resource
utilization, maximize system performance, and prevent any single component from be-
coming a bottleneck. The main function of load balancing is to achieve optimal resource
allocation and maintain high availability of services while minimizing response time and
preventing overloading of individual components, which prevent failures in distributed
systems.

• Preemptive Migration: is a proactive fault tolerance technique used in distributed sys-
tems to enhance system reliability and availability by preemptively relocating resources or
services before a failure occurs. This technique aims to mitigate the impact of potential
failures by moving resources away from problematic conditions or unstable components.
Preemptive migration can be particularly valuable in scenarios where the cost of down-
time or system unavailability is high, such as in cloud computing, data centers, and critical
infrastructure systems.

The existing approaches for fault detection and handling in distributed systems may be
adapted to manage IoT failures, mainly managing IoT application failures [Ozeer, 2019]. How-
ever, failure management in IoT systems raises a set of unique challenges regarding traditional
distributed systems. These challenges have been discussed in [Norris, 2022] and include: 1) the
diversity of IoT failures, which is related to the IoT heterogeneity; 2) IoT failures are highly
contextual depending on the physical environment; 3) IoT failures are characterized by their
cascading behavior; 4) IoT failure management must be performed with minimum human inter-
vention. To address these challenges, many failure management approaches were proposed for
the IoT, which will be discussed in the following.

3 Failure Management in IoT

As described in Chapter 2 Section 1.1.1, IoT integrates physical processes with digital connectiv-
ity, often using three components represented by devices, connectivity, and IoT platforms. While
failures may occur in any of these components, IoT platforms and connectivity networks are less
likely to fail. This is because they are carefully designed, deployed, and monitored thanks to the
reliability of advanced technologies such as Cloud computing and 5G/6G networks. Conversely,
IoT devices, are characterized by constrained computational resources, environmental rigors,
software intricacies, and power limitations, making them more likely exposed to failure [Nor-
ris, 2022]. Furthermore, these frequent failures on IoT devices are exacerbated by the cascading
failure phenomenon. Namely, owing to the interdependencies among IoT devices, the failure of
a single device can potentially trigger a hazardous and cascading sequence of failures in others.
Thus, managing IoT device failures is key to ensuring the reliability and efficiency of IoT sys-
tems to provide better Quality of Experience (QoE). In our work, we are interested by managing
failures on the IoT device level with particular interest on cascading failures.

56

3. Failure Management in IoT

IoT failure management on IoT devices consists of three steps: Failure detection, Failure
diagnosis for failure type and root cause identification, and Failure recovery [Nishiguchi, 2018].
These steps must be carefully considered and integrated together in order to build an end-to-end
IoT failure management solution able to automatically handle failures on IoT devices [Norris,
2022].

Before discussing research work on IoT device failure detection, diagnosis, and recovery, we
present taxonomies for IoT device failures. After that, we discuss failure management capabilities
in market DM platforms and customer care services. Finally, we highlight research gaps in IoT
failure management in both research and industry.

3.1 IoT device failures

Several taxonomies were proposed in the literature for IoT device failures [Norris, 2022; Chakraborty,
2018; Sharma, 2010; Ozeer, 2019]. To the best of our knowledge, there is no single standard
reference taxonomy. This is due to the heterogeneity and diversity of IoT devices, including soft-
ware and hardware diversity, which result in various failure types. In the following, we discuss
failure taxonomies proposed in the literature. Then, we present our taxonomy for IoT device
failures that aggregates and enriches the state-of-the-art taxonomies.

The work [Nishiguchi, 2018] proposes a taxonomy of failures in smart home environments.
Failures are classified into two categories: Equipment failures, represented by hardware and
software failures, and Network failure such as interference between connectivity devices. While
authors in [Power, 2020] adopt a taxonomy proposed for distributed systems [Cristian, 1991]
to describe IoT device failures, represented by: Omission when an IoT device stops sending
and receiving messages. Crash when an IoT device stops totally. Timing when an IoT device’s
response arrives too early or too late. Response, when the value of an IoT device response or the
state transition occurs, is incorrect. Arbitrary when an IoT device sends an arbitrary response
at an arbitrary time.

Some works focus on failures related to data generated by IoT devices. This class of failure
is widely discussed in the literature due to the importance of data accuracy, especially in critical
environments (e.g., nuclear power plants). Additionally, these failures occur relatively frequently.
For instance, the work [Shih, 2016] mentions that a temperature sensor has more than 15%
false measurements. This failure class has the following sub-classes [Choi, 2018; Chakraborty,
2018] (see Figure 3.2): High Variance: when a device oscillates between states faster than the
environment dictates; Stuck-at: when a device fails in reflecting changes in the environment;
Spike: when the numeric state of a device increases or decreases at a faster rate than what is
determined by the environment; Outlier : when a device reports an incorrect state for a single
poll; Calibration: when sensor data shows an offset, i.e., it has a different gain than the actual
ground truth value. The work [Norris, 2020] proposes a taxonomy for IoT device failure based
on the failure impact: Fail-Stop failures occur when a device stops functioning and no longer
responds to external requests; Non-fail stop failures occur when a device exhibits an incorrect
state, either by producing incorrect sensor readings or not responding correctly to a request;
Cascading failures occur when a failed IoT device triggers failures on other devices.

57

Chapter 3. State of The Art

High variance Spike

Stuck-at

Outlier

Calibration

Failure Behaviour

Correct Behaviour

Figure 3.2: Sensor Failures

The authors [Ayeb, 2020b; Mezghani, 2020] discussed failures occurring during the execution
of DM operations on IoT devices. These failures referred to as DM failures, may be related to
connectivity issues so that DM operations such as updates can not be executed properly. They
are exacerbated by the chaotic and uncoordinated execution of DM operations by multiple DM
platforms on interdependent IoT devices [Mezghani, 2020].

Based on these taxonomies, we propose a global taxonomy for IoT failures presented in Fig-
ure 3.3, covering failures on IoT devices: IoT device failures are classified into three categories:
single failure, cascading failure, and DM failures. Single failures are classified into fail-stop and
non-fail stop failure. The former includes the typical failure of distributed systems, namely
omission, and crash. The latter includes the different failure classes related to sensor data
explained above, namely high variance, stuck-at, outlier, calibration, and spike. Our work con-
siders the management of single and cascading failures on IoT devices managed by different DM
platforms. Managing DM failures is out of the scope of our work. We refer the reader to the
works [Ayeb, 2020b; Ayeb, 2020a] on DM failure management.

3.2 IoT failure management from research perspective

3.2.1 Failure Detection

Most academia efforts on IoT failure management focus on IoT failure detection, mostly known
as Anomaly Detection, which detects failures and often notifies users to act themselves [Norris,
2022]. Several failure detection frameworks, such as SMART [Kapitanova, 2012] and IDEA
[Kodeswaran, 2016], rely on the analysis of Activities of Daily Living as a way to detect problems
or failures in IoT devices. For example, if a smart thermostat fails to adjust the temperature
as expected during the daily routine, the system might detect this anomaly as a potential

58

3. Failure Management in IoT

IoT device Failure

Single Failure

Fail-stop Failure

Omission

Response

Outlier

High Variance

Calibration

Spike

Stuck-at

Non Fail-stop Failure

Cascading Failure DM Failure

Figure 3.3: Taxonomy of IoT device failures.

IoT device failure. Other approaches rely on network traffic analysis to detect failure on IoT
devices [Najari, 2021; Najari, 2022; Portela, 2023], which mostly build the normal behavior
of IoT devices through their network traffic. Then, the current behavior of the IoT device is
compared to the normal one at run time to detect anomalies.

Within these approaches, anomalies are detected using even geometrical, statistical, or ma-
chine learning-based methods. Geometrical methods, known also as proximity-based methods,
rely on density-based and distance-based techniques to separate anomalous data points, which
appear in sparse regions compared to the normal data. Statistical methods consist of building a
statistical model of what is considered "normal" behavior within the dataset. This often involves
calculating statistical measures such as mean, standard deviation, or percentiles. This statistical
model is used to establish filters or thresholds that define the range of values within which most
data points should fall. Data points that fall outside these predefined ranges are considered
anomalies. Machine learning-based, unlike statistical-based approaches that rely on predefined
statistical measures, learn patterns directly from the data, making them more adaptable and
suitable for more complex scenarios [Giannoni, 2018].

The adopted machine learning model for anomaly detection depends on several character-
istics of the managed IoT system, such as the type of training data such as audio and time
series, and the availability of training labels. For instance, long short-term memory (LSTM)
and transformer models are the best choice for audio data [Chatterjee, 2022].

Machine learning-based anomaly detection is an active research area, where 441 works have
been published on this topic in 2022 according to the Web of Science 1. The proposed works

1http://webofscience.com/

59

http://webofscience.com/

Chapter 3. State of The Art

address several problems such as the privacy and distribution of learning data [Wang, 2023] and
learning the normal behavior from data including anomalies [Najari, 2022].

3.2.2 Failure Diagnosis

IoT failure diagnosis aims to not only detect but also identify failure types and perform failure
root cause identification. Few works have been proposed for IoT failure diagnosis. Early solutions
propose a model-based approach, which consists of a mathematical model that describes the
running behavior of devices. Then, this model is used to estimate device output. The differences
between the estimated outputs and the measured outputs are monitored to detect failures and
determine their type [Lazarova-Molnar, 2016; Chi, 2022a]. Observers are one of the output
estimators that are effective for failure diagnosis. A nonlinear observer-based failure diagnosis
method is introduced in [Subramaniam A, 2018] for diagnosing a wide variety of actuator failures
in HVAC systems. An adaptive observer is used in [Teng, 2021] to determine the location of
failed sensor and actuator failures in Wind Turbines. However, observers are limited in handling
random noises or uncertainties in model inputs [Chi, 2022a]. To fill this gap, stochastic models
mainly filter-based ones were proposed for output estimation combined with statistic testing. For
instance, authors in [Alsabilah, 2021] combine Kalman filter and Shapiro-Wilk test to diagnose
cyber-attacks in smart home networks. Despite filters provide high accuracy models with low
computation [Chi, 2022a; Alsabilah, 2021]. They are still not adapted for complex systems such
as large-scale IoT systems [Chi, 2022a].

To fill this gap, failure diagnosis techniques have evolved into data-driven approaches that
analyze failure from signals or operational data using machine learning methods. Signal-based
methods utilize measured signals rather than explicit input-output models for failure diagno-
sis [Gao, 2015a]. They consist of real-time analysis of a set of measured signals such as vibration,
noise, or pressure using signal processing algorithms e.g., Fourier transforms [Najeh, 2019; Chi,
2022a]. In [Giantomassi, 2014a; Giantomassi, 2014b], authors proposed a signal-based diag-
nosis approach for smart home by monitoring the trend of ambient temperature using Kernel
Canonical Variate Analysis and Multi-Scale Principal Component Analysis, respectively. The
main limitation of the signal-based method is the negligence of system dynamic inputs, whose
diagnosis performance may be degraded under unknown input disturbances or unbalanced con-
ditions [Gao, 2015b]. Machine learning-based approaches leverage sensor device data (named
also historical data) to build models for failure identification and characterization [Chi, 2022a].
Several algorithms were proposed for IoT failure diagnosis to detect and determine faulty devices
and the type of failure: Support Vector Machine [Li, 2019], Artificial Neural Network [Borhani,
2022], Fuzzy Neural Network [Chen, 2017], Bayesian Network [Zhang, 2018]. However, the avail-
ability and quality of learning data of all possible failure types of large-scale systems such as
IoT systems could be impossible [Wilhelm, 2021].

The work [Chi, 2022a] argues that knowledge-based failure diagnosis is especially well-suited
for complex or multi-actor systems for which detailed mathematical models are not available
and diagnosis learning data are governed by different actors. These approaches consist of a
knowledge base (KB) that contains failure diagnosis information provided by experts at the

60

3. Failure Management in IoT

design or the operational level of devices. Failure diagnosis information describes, according to
failure symptoms, failure types with their possible recovery actions. Experts-based fed of failure
diagnosis KB ensures more accurate diagnosis results [Chi, 2022b].

The common limitation of existing approaches for failure diagnosis is that they only consider
failure type identifications, neglecting failure root source identification, which is an important
process especially when dealing with cascading failures. Failure root cause identification has
been addressed in the context of IoT reliability modeling and analysis, which refers to the
process of building a mathematical model to represent the system failure criteria in a logical
manner and then evaluating the model to obtain the system reliability metric [Xing, 2020; Fu,
2021]. However, these approaches are proposed to enhance the design of IoT systems to prevent
cascading failure not to enable failure root cause identification at run time for cascading failure
mitigation. The work [Nishiguchi, 2018] proposes a theoretical framework for network failure
diagnosis on IoT devices by developing plugins to discover the network topology in IoT systems.
However, the authors have not proposed any concrete implementation of these plugins. To the
best of our knowledge, there are no failure management solutions for IoT that include concrete
failure root cause identification features.

3.2.3 Failure Recovery

Failure recovery consists of performing a set of operations on failed IoT devices to bring them to
their correct state. To this end, some technical frameworks have been proposed in the literature:
Authors in [Nishiguchi, 2018] propose a framework using recovery actions according to the failure
cause such as device replacement or recharging when the failure cause is device battery failure.
The proposed recovery actions include device replacement, which consists of replacing the failed
device with other devices even by replicating devices or discovering devices providing similar
services as the failed device; device reconfiguration to deal with DM failures; and typical DM
operations such as update, and reboot.

In [Norris, 2020; Norris, 2022], authors propose the IoTRepair framework, a solution that au-
tomates failure recovery on IoT devices. The solution provides a set of failure recovery functions
based on the type of failure and device, as well as a failure manager that combines recovery func-
tions to fix complex failures. Among the proposed failure functions, we find reboot, update, and
other failure tolerance techniques such as device replacement. The author proposes an adapted
checkpointing with rollback for IoT devices, which consist of saving the correct states of IoT
devices and restore these states in case of failures. The correct state of an IoT device is defined
by its outputs. For instance, an IoT system equipped with a presence sensor, motion sensor, and
light functionality can feature a Checkpoint represented as ["Presence": 1, "Motion": 0, "Light":
1]. This configuration signifies that Presence has been detected, Motion is not detected, and
the Light is turned on. Sensor states, which encompass environmental data, are immutable and
collectively define the system’s current state. Conversely, actuator states are modifiable through
actuation and constitute the elements that can be rolled back.

Authors in [Ozeer, 2019] propose a framework to recover failures in IoT applications deployed
in Fog devices. The proposed framework relies on device replacement as the main function to

61

Chapter 3. State of The Art

recover IoT applications using failed devices. Device candidates for device replacement are
discovered from the Orange digital twin system Thing’in (see Chapter 2 Section 2.2.2).

The existing frameworks rely mainly on device replication and replacement to recover from
failure, which is costly and not effective [Norris, 2022]. Moreover, they assume having central
control of all devices that they integrate through APIs, neglecting the practical reality: IoT is
managed by multiple actors using siloed DM platforms, where device and failure information are
governed by different DM actors.

DM operations are key recovery actions for IoT devices enabling automatic and remote
failure recovery. Nonetheless, there are instances where these automated procedures fall short,
necessitating human intervention to restore normal device functionality, such as when remote
recovery actions fail or are not supported by the devices.

3.3 IoT Failure management from industrial perspective

In practice, current IoT systems are managed by multiple actors, each having its legacy solution
for managing failures on its IoT devices as part of its customer care services. We have conducted a
market-based study2 on the FM capabilities of these siloed solutions. As a result, we identify the
following profiles with distinct failure management capabilities, including Device Manufacturers
(MN), DM Platform Provider (DMP), and Service Provider (SP) (see Figure 3.4).

• MNs build and deliver IoT devices to end users and IoT suppliers. Mostly, MNs do not
have DM platforms to perform recovery DM operations on their IoT devices. However,
they may propose a mobile application-based solution in order to allow end users to per-
form basic DM operations on IoT devices such as firmware update. Moreover, they may
acquire information about IoT device failures, their causes, effects, and recovery actions.
This failure information is usually identified during the design and test stage for risk
assessments using several approaches such as Failure Mode Effect Analysis (FMEA) [Em-
manouilidis, 2020]. It may be represented in tables used by customer care services to
recover failures manually or build support pages to help end users manage failures on their
devices [Steenwinckel, 2018].

• DMPs propose a DM platform that allows several DM operations such as firmware update
and device reboot. These DM platforms propose DM as a service solution for end users
and enterprises to help them manage their IoT devices. They integrate IoT devices built
by different MNs. Some of these DM platforms propose failure detection features using
Machine Learning 3 or alarm-based system 4. They may recover elementary failures on IoT
devices remotely using DM operations. However, they do not acquire end-to-end solutions
for automatic FM and are limited when the failure spreads across IoT devices managed
by different DM platforms.

2This study is limited by the information available online.
3https://www.avsystem.com
4https://aws.amazon.com/fr/iot-device-management/

62

https://www.avsystem.com
https://aws.amazon.com/fr/iot-device-management/

3. Failure Management in IoT

Figure 3.4: Failure management profiles.

• SPs ensure IoT connectivity and provide IoT services via various devices such as Orange’s
LiveBox for connectivity and Samsung’s SmartThings hub for home automation services.
Each SP proposes its own proprietary DM platform for managing its devices. Proprietary
DM platforms proposed by SP allow similar features as the DMP DM platform. Moreover,
SPs own failure information on their provided devices.

As a result, in Market failure management solutions mainly DM platforms, there is a pressing
requirement for an end-to-end failure management solution tailored for IoT devices. This im-
perative arises from the fact that actors within this ecosystem possess only partial knowledge
concerning failures, and they exert a degree of control over interdependent IoT devices. To ad-
dress this complexity effectively, there is an acute need to facilitate collaborative efforts among
these actors, with the main objective of resolving failures, particularly those of a cascading
nature, in an automatic and effective manner.

63

Chapter 3. State of The Art

Numerous limitations can be discerned within the existing research approaches of
IoT failure management, as delineated in Table 3.2.

• In the area of failure detection, most relevant approaches rely on the application
of Machine Learning models. However, these data-driven strategies confront
many constraints due to their dependence on the availability and veracity of
learning data, describing the behavior of IoT, a large, complex, and highly
heterogeneous system.

• In terms of failure diagnosis, knowledge-based methods have emerged as a
promising avenue for the accurate identification and description of IoT device
failures. However, these approaches neglect to incorporate failure root cause
identification features.

• Turning to the realm of failure recovery, a myriad of frameworks has been
advanced. Nonetheless, they tend to neglect the IoT device heterogeneity and
the multiplicity of connectivity protocols governing their operation, particularly
when orchestrating remote recovery actions. Furthermore, these frameworks
disproportionately rely on device replacement as the principal action for recov-
ering failures, an approach that is not only cost-prohibitive but also fraught
with inefficacy and raises a problem of sustainability.

• It is worth noting that although several approaches have been proffered for
failure detection, diagnosis, or recovery, none have tried to holistically integrate
these facets into a comprehensive and end-to-end framework for IoT failure
management.

• An oversight prevalent in existing approaches is the absence of a concerted
strategy for managing cascading failures afflicting IoT devices. Notably, there
exists a work that tentatively addresses cascading failures through the de-
ployment of checkpointing and rollback recovery techniques, necessitating the
preservation of the precise state of all IoT devices.

• Moreover, it is imperative to underscore that all the existing approaches operate
under the implicit assumption of possessing total control over IoT devices,
thereby overlooking the complex governance structures wherein these devices,
in practice, are managed by distinct actors with varying degrees of authority
and influence.

• From the industrial perspective, market failure management solutions are miss-
ing holistic and end-to-end approaches for failure management on IoT devices,
which underscores the need of collaborative failure management efforts.

Research Gaps

64

3. Failure Management in IoT

Ta
bl

e
3.

2:
R

el
at

ed
W

or
k

on
Io

T
Fa

ilu
re

M
an

ag
em

en
t

W
or

k
D

et
ec

tio
n

D
ia

gn
os

is
R

ec
ov

er
y

C
as

ca
di

ng
Fa

ilu
re

M
ul

ti-
ac

to
r

[K
ap

ita
no

va
,2

01
2]

✓
✗

✗
✗

✗

[G
ia

nt
om

as
si,

20
14

a;
G

ia
nt

om
as

si,
20

14
b]

✗
✓

✗
✗

✗

[K
od

es
w

ar
an

,2
01

6]
✓

✗
✗

✗
✗

[G
ao

,2
01

5a
]

✗
✓

✗
✗

✗

[L
az

ar
ov

a-
M

ol
na

r,
20

16
]

✗
✓

✗
✗

✗

[G
ao

,2
01

5b
]

✗
✓

✗
✗

✗

[C
he

n,
20

17
]

✗
✓

✗
✗

✗

[S
ub

ra
m

an
ia

m
A

,2
01

8]
✗

✓
✗

✗
✗

[N
ish

ig
uc

hi
,2

01
8]

✓
✗

✓
✗

✗

[N
aj

eh
,2

01
9]

✗
✓

✗
✗

✗

[L
i,

20
19

]
✗

✓
✗

✗
✗

[Z
ha

ng
,2

01
8]

✗
✓

✗
✗

✗

[O
ze

er
,2

01
9]

✓
✗

✓
✗

✗

[A
lsa

bi
la

h,
20

21
]

✗
✓

✗
✗

✗

[N
or

ris
,2

02
2;

N
or

ris
,2

02
0]

✗
✗

✓
✓

✗

[N
aj

ar
i,

20
21

]
✓

✗
✗

✗
✗

[B
or

ha
ni

,2
02

2]
✗

✓
✗

✗
✗

[T
en

g,
20

21
]

✗
✓

✗
✗

✗

[P
or

te
la

,2
02

3]
✓

✗
✗

✗
✗

65

Chapter 3. State of The Art

4 Ontologies for IoT

In order to allow legacy DM platforms to automatically and collaboratively manage cascading
failures on IoT devices, heterogeneous DM platforms need to be able to understand each other
through a common language. Semantic ontologies are key to allowing these features (see Chap-
ter 2 Section 2.1.1). In the following, we first present reference ontologies in IoT. Then, we
discuss existing ontologies and investigate their capabilities to model IoT failure and cascading
failure management domains, represented by modeling dependency relationships between IoT
devices and their failure information.

4.1 Ontologies of reference in IoT

• SAREF 5 [García-Castro, 2023]: firstly developed, in close interaction with the indus-
try, to represent smart appliances with the aim to facilitate the management of energy
and services on smart appliances managed by different stakeholders [Daniele, 2015]. It is
supported by the European Commission and then adopted by the European Telecommu-
nications Standards Institute as a reference ontology for IoT. It was built in a bottom-up
fashion based on market data models for smart appliances [Seydoux, 2018]. It has several
extensions 6 each cover a specific domain such as SAREF4SYST for systems, connections,
and connection points and SAREF4ENER for the energy domain.

• SSN 7 [Hitzler, 2019]: proposed by W3C Semantic Sensor Network Incubator group to
model sensors and observations, it allows representing the properties and measurement
capabilities of sensors to provide a generic description of these devices. It also serves to
describe the data collected by the sensors and the context of their acquisition. It provides
a standardized and semantically rich framework for describing and modeling sensor data
and sensor-related information framework that different sensor networks and IoT platforms
can adopt [Compton, 2012].

• oneM2M Base 8: documented in the Technical Specification TS-00129. It defines the
core concepts involved in the oneM2M standard architecture such as Device, Service, and
Variable. The oneM2M standard represents a global standard for IoT that provides a
common platform and framework for developing and deploying IoT solutions.

• IoT-Lite 10: a lightweight ontology that instantiates the old version of SSN ontology named
SSNX to allow the representation of IoT elements and resources to enable interoperability
and efficient discovery of sensor data in heterogeneous platforms. The IoT-Lite core’s
straightforwardness and adaptability contributed to its integration into two European

5https://saref.etsi.org/
6https://saref.etsi.org/extensions.html
7https://www.w3.org/TR/vocab-ssn/
8https://git.onem2m.org/MAS/BaseOntology/
9https://www.onem2m.org/images/pdf/TS-0012-Base_Ontology-V3_7_3.pdf

10https://www.w3.org/submissions/iot-lite/

66

https://saref.etsi.org/
https://saref.etsi.org/extensions.html
https://www.w3.org/TR/vocab-ssn/
https://git.onem2m.org/MAS/BaseOntology/
https://www.onem2m.org/images/pdf/TS-0012-Base_Ontology-V3_7_3.pdf
https://www.w3.org/submissions/iot-lite/

4. Ontologies for IoT

projects, FIWARE 11 and FIESTA-IoT 12 [Seydoux, 2018].

• IoT-O 13: serves as a foundational IoT ontology, focusing on capturing fundamental con-
cepts related to IoT systems and applications. Its primary purpose is to represent broad,
cross-cutting knowledge about IoT, with the flexibility to incorporate specialized, application-
specific information as needed. To design IoT-O, a set of well-defined ontologies are reused,
such as SSN, SAN 14, and MSM 15.

4.2 Ontologies for IoT dependency Modeling

As discussed in the previous section, several ontologies were proposed to model multiple aspects
of IoT systems. The standardized ontology SSN16 is considered the more valuable effort in this
area. Other ontologies have extended this ontology to model other aspects of IoT systems, IoT
resources in IoT-Lite ontology,17 and IoT system evolution with power constraints in IoT-O
ontology. The SAREF ontology is another widely acknowledged ontology enabling semantic
interoperability for smart appliances. However, these efforts do not consider modeling interac-
tions and dependencies within IoT systems. The work [Mohsin, 2017] proposed a network of
ontologies to assess security risks in IoT systems. Among them, the IoTB ontology describes de-
pendencies between IoT devices. Despite the IoTB ontology covering a set of IoT dependencies,
it doesn’t consider indirect dependencies such as application-based dependencies. This last have
been partially modeled in the EuPont ontology 18 [Corno, 2017], which allows the representation
of interactions between IoT devices within IoT application and automation rules.

4.3 Ontologies for IoT Failure Modeling

Previous works have demonstrated that the use of semantic modeling is of interest for failure
information, reflecting the need for dynamic failure knowledge composition and utilization. In-
deed, failure information within DM platforms and customer care services is generally described
in the form of tables generated using risk assessment methods such as FMEA, which provide
prior information gathering expert-driven insights into the system. However, many people are
involved in this process, resulting in disambiguations and incompleteness. This motivates the
research community to leverage this failure information in order to define a domain-specific
ontology based on the FMEA concepts. Thus, allowing such knowledge to be more complete,
accurate and efficiently exploitable at operating time. Several ontologies have been proposed
for a range of assets such as Wind Turbines [Zhou, 2015], Loaders [Xu, 2018], Rotating Machin-
ery [Chen, 2015], Production Printers [Emmanouilidis, 2020], and NORIA-O ontology 19 for IT

11https://www.fiware.org/
12https://cordis.europa.eu/project/id/643943
13https://www.irit.fr/recherches/MELODI/ontologies/IoT-O.html
14https://www.irit.fr/recherches/MELODI/ontologies/SAN.html
15https://lov.linkeddata.es/dataset/lov/vocabs/msm
16https://www.w3.org/TR/vocab-ssn/
17https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/
18https://elite.polito.it/ontologies/eupont.owl
19https://orange-opensource.github.io/noria-ontology/NORIA-O/doc

67

https://www.fiware.org/
https://cordis.europa.eu/project/id/643943
https://www.irit.fr/recherches/MELODI/ontologies/IoT-O.html
https://www.irit.fr/recherches/MELODI/ontologies/SAN.html
https://lov.linkeddata.es/dataset/lov/vocabs/msm
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/
https://elite.polito.it/ontologies/eupont.owl
https://orange-opensource.github.io/noria-ontology/NORIA-O/doc

Chapter 3. State of The Art

Table 3.3: Related Work on Ontologies for IoT

Ontology Dependency Modeling Failure Modeling
Direct
Dependency

Application-based
Dependency

Environment-based
Dependency

SAREF

SSN

SOSA

IoT-Lite

IoT-O

EuPont

oneM2M Base

IoTB

Folio

network [Lionel Tailhardat, 2022], Cyber-physical system [Sanislav, 2017; Sanislav, 2019; Ali,
2018], Wireless Sensor Network [Benazzouz, 2014], and Folio ontology20 for IoT systems [Steen-
winckel, 2018]. The latter is the only proposed work to describe IoT failures, to the best of our
knowledge. However, expressive classification for IoT failure behaviors, recovery actions, and
failure symptoms is missing in this ontology.

Numerous ontologies have been proposed to model various aspects of the IoT. How-
ever, they are limited regarding modeling the IoT cascading failure domains (see
Table 3.3). One significant limitation of existing IoT ontologies is their failure to
adequately capture direct and indirect dependencies and interactions among IoT
devices, which is crucial in identifying root causes of failure. Regarding direct de-
pendencies modeling, some ontologies such as SAREF allow the description of IoT
devices and their exposed services which allows partial representation of direct de-
pendencies. However, they do not provide semantics related to the usage of these ex-
posed services by other devices. Semantics describing IoT device’s interaction within
IoT applications have been partially considered only in the EuPont ontology. While
environment-based dependencies have been modeled in several ontologies through
the representations of the environment elements and their properties. Furthermore,
the existing reference IoT ontologies do not consider modeling failure information
related to IoT devices, which were partially handled by the Folio ontology. Thus,
existing ontologies need to be semantically enriched and combined to address the
modeling of both direct and indirect dependencies and failure information.

Research Gaps

20https://github.com/IBCNServices/Folio-Ontology

68

https://github.com/IBCNServices/Folio-Ontology

5. Conclusion

5 Conclusion

In conclusion, this chapter has set the stage for our research journey into the automatic man-
agement of cascading failures in IoT systems managed by different DM actors. We began by
emphasizing the critical importance of identifying dependency relationships among IoT devices
as the initial step in resolving these complex issues and developing effective recovery plans. To
do so, we embarked on a thorough exploration of the existing body of research in this area.

Our study encompassed two main dimensions: first, we delved into the realm of IoT depen-
dency extraction and modeling, aiming to gain insights into the methodologies and techniques
available for understanding the complex dependencies among IoT devices. This foundational
knowledge is pivotal for root cause identification and recovery planning.

Secondly, we ventured into the broader domain of failure management in distributed systems,
with a particular focus on IoT. We examined the existing literature to uncover the various
methods and approaches proposed for failure detection, diagnosis, and recovery, paying special
attention to their applicability in the context of cascading failures.

Finally, as our research heavily relies on ontology-based modeling, we conducted a literature
review of the ontologies proposed for IoT. This exploration encompassed the scopes and purposes
of these ontologies and how they can be effectively reused and combined to align with the specific
requirements of our solution, particularly in the realm of IoT cascading failure management.

By addressing these essential aspects in this chapter, we have identified key research gaps to
support our contributions, which will be presented in the next chapters.

69

Chapter 4
Inferring Threatening IoT Dependencies
using Semantic Digital Twins

This chapter presents our proposed solution for IoT dependency inference. First,
we show our modeling for IoT dependencies. Then, we shed light on the proposed
framework for automatic and collaborative inference of IoT dependencies from DM
solutions managed by different DM actors. We illustrate our approach in a smart
home use case based on the Digital Twin (DT) platform Thing In The Future
(Thing in).

Summary

Contents
1 Motivating Examples . 71
2 Context-Based Modeling for Threatening Dependencies . 73

2.1 Threatening Dependencies Characterization . 73
2.2 Threatening Dependencies Data Sources . 74
2.3 Threatening Dependencies Modeling . 74

3 Proposed Framework . 77
3.1 Step 1: Context Extraction . 77
3.2 Step 2: Entity Resolution . 79
3.3 Step 3: Dependency Inference . 84

4 Evaluation . 88
4.1 Qualitative Evaluation . 89
4.2 Quantitative Evaluation . 92

5 Conclusion . 95

Inferring IoT dependency relationships among Internet of Things (IoT) devices is crucial for
Cascading Failure Management (CFM) in order to identify the failure root cause and recover the
system effectively [Xing, 2020]. It is also a key element in unlocking several IoT issues such as
Device Management (DM) failures [Mezghani, 2020] and dependency-related attacks [Yu, 2015].

70

1. Motivating Examples

We refer to these issues as Dependency-related threats, and to dependencies generating these
threats as threatening dependencies.

As elaborated upon in the previous section (see Chapter 3 Section 1), the task of inferring
threatening IoT dependencies is highly intricate. It necessitates the identification of a dynamic
and extensive array of dependencies, drawing from heterogeneous data sources maintained by
diverse DM actors. The review of existing literature, as detailed in Chapter 3 Section 1, exposes
several research gaps in the domain of IoT dependency modeling and extraction. Existing models
and approaches, in terms of both accuracy and scalability, leave much to be desired. Additionally,
these models often fail to adequately address the dynamic nature of IoT dependencies, which
are frequently managed through manual interventions. Moreover, they neglect that dependency
information is distributed across siloed and heterogeneous DM solution governed by different
DM actors.

In this chapter, we propose a collaborative framework that infers and characterizes the topol-
ogy of threatening dependencies by accessing and aggregating data from legacy DM solutions. It
combines the assets of Semantic Web (SW) (see Chapter 2 Section 2.1) and Digital Twin (DT)
(see Chapter 2 Section 2.2) technologies to capture on-demand the topology of dependencies,
and it is designed to be integrated into legacy DM solutions within customer care services of
DM actors to boost decision making and enhance customer Quality of Experience (QoE). Our
framework relies on Orange’s DT platform Thing in (see Chapter 2 Section 2.2.2) for federation
and information sharing across DM actors, as well as to implement DT features.

The present chapter is organized as follows. We present motivating examples to illustrate
dependency-related threats in the smart home scenario presented in Chapter 1 Section 2.1.
Then, we give our model for threatening dependencies and the proposed framework. Finally, we
present extensive qualitative and quantitative evaluations of the proposed contributions.

We highlight that the contributions of this chapter have been published in [Guittoum, 2023b;
Guittoum, 2023c] and presented in Eclipse IoT Days 2023 1.

1 Motivating Examples

We rely on the smart home use cases presented in Chapter 1 Section 2.1 to illustrate the
dependencies-related threats that are difficult to overcome with siloed DM solutions.

Example 1. (Cascading Failure) As a reminder, cascading failure corresponds to the case
where a failure of a device triggers the failure of some of its dependent devices. Let us take the
scenario where the temperature sensor fails and starts to return high-temperature values. This
failure referred to as Spike failure (see Chapter 3 Section 3.1). Due to dependencies between
devices, this failure propagates to the temperature dependent devices and services (see Figure 4.1):
1) the air conditioner becomes inoperable (see Rule 1 and 3), 2) the two windows reflect failed
behavior swapping from closed (see Rule 3) and open (see Rule 4) states, 3) the alarm turns on
announcing fire is detected (see Rule 4 in Table 1.2), 4) the light bulb is inexplicably set to red
due to the alarm failure (see Rule 7 in Table 1.2), 5) the door is unexpectedly unlocked upon the

1https://wiki.eclipse.org/Eclipse_IoT_Day_Grenoble_2023

71

https://wiki.eclipse.org/Eclipse_IoT_Day_Grenoble_2023

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

Figure 4.1: The presented cascading failure scenario

false detection of fire (see Rule 4 in Table 1.2), and 6) SmartThings hub can no longer control the
chaotic event generated due to automation rules. These failed devices are managed by different
DM actors (see Table 1.1): Orange manages the temperature sensor, the windows, the door, and
the airconditioner. Amazon manages the alarm and the light bulb, while Samsung manages the
SmartThings hub. Moreover, these devices are built by different manufacturers Kelvin for the
temperature sensor and the airconditioner and Philips for the windows, the door, the alarm, and
the light bulb. These siloed actors cannot identify the failure root cause since they do not have
knowledge of dependency relationships among IoT devices.

Example 2. (DM failures) DM failures correspond to the case where processing a DM
operation on a device triggers the failure of its dependent’s devices. Let’s suppose Orange reboots
the gateway while Amazon updates the vocal assistant. Due to the connectivity dependency, the
gateway reboot interrupts the vocal assistant’s Internet connection, which results in the firmware
image not being downloaded correctly and the vocal assistant failing [Mezghani, 2020].

Example 3. (Dependency-related Attacks) Attacks related to device dependencies cor-
respond to the case where an attacker exploits device dependencies to compromise IoT systems.
For instance, an attacker can exploit the state dependency between the airconditioner and the
windows (see Rule 2 in Table 1.2) to gain access to the home by disabling the airconditioner to
open the windows [Yu, 2015]. Siloed DM actors need to be aware of these threatening dependen-
cies in order to create dependency-aware security policies to defend against dependency-related
attacks.

As a first step toward solving and preventing these threats, DM actors need a decision-
support framework that allows extracting the dependencies between IoT devices, considering
their abundant character and their dynamic aspects. We can see that dependencies can be
deduced from the functional contexts of IoT devices, such as service exchange between devices,
connectivity topology on the gateway2, and automation rules described in the SmartThings Hub.
This information is heterogeneous and distributed across siloed DM actors. In the following, we

2Connectivity topology of a connectivity device such as gateway or Wi-Fi repeater represents the list of devices
connected to it.

72

2. Context-Based Modeling for Threatening Dependencies

will show how this information can be automatically extracted, unified according to a shared
model, and leveraged to infer the global threatening dependency topology.

2 Context-Based Modeling for Threatening Dependencies

This section illustrates our interoperable approach for modeling threatening dependencies. We
explain how we evolved from a characterization of IoT dependencies by analyzing dependencies-
related threats to the Internet of Things Dependency (IoT-D) ontology, which provides a com-
prehensive and interoperable representation of threatening dependencies and their context.

2.1 Threatening Dependencies Characterization

We conducted an analysis study of dependencies generating the different threats illustrated in
Chapter 4 Section 1. The result of this study is a taxonomy of threatening dependencies (See
Figure 4.2). We distinguish two types of threatening dependencies: direct and indirect.

Dependencies are direct when IoT devices use direct services of each other. We call this type
of dependencies Service dependencies. For example, the alarm using the smoke sensor’s detection
service has a service dependency on the smoke sensor. A special kind of service dependencies
is Connectivity dependencies when IoT devices use connectivity services of connectivity devices
such as a gateway or Wi-Fi repeater. Interactions between sensors and actuators through the

Figure 4.2: Threatening dependencies taxonomy.

physical environment create indirect dependencies between them called Environment-based de-
pendencies. For example, the temperature sensor has an environment-based dependency on the
airconditioner because it measures the room temperature modified by the airconditioner. Indi-
rect dependencies can also arise from applications running on top of IoT devices, thus forming
Application-based dependencies. Indeed, an automation rule applies actions to a set of devices
depending on how the state of other devices changes, creating State-based dependencies. For
example, an automation rule may open the two windows depending on the state of the air condi-
tioner whether it is active or not (see Rule 2 in Table 1.2). In addition, IoT applications generate
an implicit exchange of services between IoT devices. For example, Rule 1 in Table 1.2 uses
the temperature value returned by the temperature sensor to adjust the airconditioner. Here

73

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

the airconditioner implicitly uses the temperature sensor service. We call these dependencies
Implicit service dependencies.

State-based dependencies, explicit and implicit service dependencies exacerbate cascading
failure propagation, as illustrated in Example 1. Meanwhile, connectivity dependencies generate
failures during the execution of DM operations when not respected, as demonstrated in Example
2. State-based and environment-based dependencies are used to develop attacks on user security,
as shown in Example 3.

2.2 Threatening Dependencies Data Sources

Threatening dependencies described in Chapter 4 Section 2.1 can be derived from a set of
information that we call context data. Context data refer to, but are not limited to, connectivity
topology, exchange of services between devices, or applicative automation rules. It is distributed
across siloed DM data sources governed by different DM actors and following heterogeneous data
models.

Example 4. (Dependency context data) Let us take the use case as an example: As-
suming Orange and Amazon DM platform are using the USP DM protocol (see Chapter 2 Sec-
tion 1.2.1). In this case, device services and their interactions within the physical environment
are distributed across Orange and Amazon DM platforms and represented in the USP controller
according to the data model TR-181,3 which enables the representation of the IoT capabilities4

of a given device. Interactions at the IoT application level reside in the SmartThings platform
in the form of automation rules represented using the dedicated data model.5 The topology of
connectivity resides in the gateway managed by Orange, where it is described in the USP con-
troller according to the data model TR-181, which enables the representation of the connectivity
topology discovered using the standard IEEE 1905.1 [standard, 2013].6

To obtain the global topology of threatening dependencies, this heterogeneous context data
must be represented according to a unified data model. To build such a model, we rely on an
Ontology, which is a key enabler of data sharing and interoperability across siloed organizations
and systems (see Chapter 2 Section 2.1.1).

2.3 Threatening Dependencies Modeling

We propose an ontology called Internet of Things Dependency (IoT-D) (shown in Figure 4.3)
that allows an interoperable representation of threatening dependencies context data in the form
of Knowledge Graph (KG), as well as the modalities allowing their extraction. The context data
KG is used to infer the IoT Dependency Knowledge Graph (DKG). The dependency relationships
are represented by inferred object properties 7 in the form iotd:has*DependencyTo, where (*)

3https://usp-data-models.broadband-forum.org/
4https://usp.technology/specification/14-index-iot-data-model-theory-of-operation.html
5https://developer-preview.smartthings.com/docs/automations/rules
6https://cwmp-data-models.broadband-forum.org/tr-181-2-11-0.html#D.Device:2.Device.IEEE1905.
7Inferred object property results from classical inferences that happen as soon as we use ontology-oriented

knowledge graphs.

74

https://usp-data-models.broadband-forum.org/
https://usp.technology/specification/14-index-iot-data-model-theory-of-operation.html
https://developer-preview.smartthings.com/docs/automations/rules
https://cwmp-data-models.broadband-forum.org/tr-181-2-11-0.html#D.Device:2.Device.IEEE1905.

2. Context-Based Modeling for Threatening Dependencies

sa
re

f:
D

ev
ic

e

sa
re

f:
St

at
e

Io
td

:T
ri

gg
er

eu
po

n
t:

A
ct

io
n

eu
po

n
t:

T
ri

gg
er

Io
td

:A
ct

io
n

Io
td

:A
pp

li
ca

ti
on

Io
td

:T
ri

gg
er

A
ct

io
n

P
la

tf
or

m
Io

td
:B

ro
ke

r

Io
T

d:
P

ro
ce

ss
or

Io
T

d:
C

on
n

ec
ti

vi
ty

D
ev

ic
e

Io
T

d:
C

on
n

ec
ti

vi
ty

Se
rv

ic
e

td
:P

ro
pe

rt
yA

ff
or

da
n

ce

h
ct

l:
Fo

rm

Io
T

d:
Io

T
D

ev
ic

e

sa
re

f:
Se

n
so

r
sa

re
f:

m
ea

su
re

sP
ro

pe
rt

y

Io
td

:r
el

at
ed

T
o

Io
td

:c
on

su
m

es

Iotd:hasRule

dk
:f

lo
w

sT
o

Io
td

:h
as

A
pp

li
ca

ti
on

A
ct

io
n

eu
po

n
t:

h
as

A
ct

io
n

eu
po

n
t:

h
as

T
ri

gg
er

sa
re

f:
co

n
tr

ol
sP

ro
pe

rt
y

td
:h

as
Fo

rm

saref:hasProperty

sa
re

f:
A

ct
u

at
or

sa
re

f:
Se

rv
ic

e

sa
re

f:
Fe

at
u

re
O

fI
n

te
re

st

In
fe

rr
ed

 o
bj

ec
t p

ro
pe

rt
y

*
de

n
ot

es
 th

e
ty

pe
 o

f d
ep

en
de

n
cy

su
bC

la
ss

O
f

D
ev

ic
e-

E
n

vi
ro

n
m

en
t I

n
te

ra
ct

io
n

D
ep

en
de

n
cy

 E
xt

ra
ct

io
n

D
ev

ic
e-

D
ev

ic
e

In
te

ra
ct

io
n

sa
re

f:
P

ro
pe

rt
y

eu
po

n
t:

R
u

le

dk
:D

at
aF

lo
w

D
ev

ic
e-

A
pp

li
ca

ti
on

 I
n

te
ra

ct
io

n

sa
re

f:
of

fe
rs

Io
td

:a
ll

ow
sA

ct
io

n

dk
:f

lo
w

sF
ro

m

Io
td

:h
as

{*
}D

ep
en

de
n

cy
T

o

sa
re

f:
h

as
St

at
e

td
:h

as
P

ro
pe

rt
yA

ff
or

da
n

ce

Fi
gu

re
4.

3:
Io

T
-D

on
to

lo
gy

.

75

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

refers to the type of dependency relationship. This context-based representation allows for
rich documentation of threatening dependencies to support decision-making when addressing
dependencies-related threats. For instance, when a cascading failure occurs, in addition to the
topology of dependencies helping to identify the source of the failure, this representation allows
the identification of the services that caused the failure and even similar devices that could
replace the failed device. Moreover, using the KG-based model for IoT dependencies allows
for efficient analysis of large, heterogeneous, structured, and unstructured dependency context
data [Fensel, 2020].

The IoT-D ontology is designed using the ontology engineering methodology NeOn [Suárez-
Figueroa, 2012] that considers ontology engineering best practices, such as reusing existing
ontologies and modularization. It extends the standardized ontology SAREF8 (see Chapter 3
Section 4.1), with the reuse of Data Knowledge ontology (DK)9, End user Programming ontology
(EuPont)10, and the TD ontology (see Chapter 2 Section 2.1.1). It includes four modules:

1. Device-Device Interaction module: describes the capabilities of IoT devices in terms of
service provisioning and usage to model the context of direct dependencies. It is based
on the enrichment of the SAREF ontology by describing the direct exchange of services
between devices through the relation iotd:consumes and specializing the saref:Service and
saref:Device to account for connectivity devices and services, allowing the inference of
service and connectivity dependencies between devices.

2. Device-Environment interaction module: represents, using the SAREF ontology, the inter-
action of devices within the physical environment through sensing and actuation, enabling
the inference of environment-based dependencies. More precisely, the variables of the en-
vironment such as living room are represented through the class saref:FeatureOfInterest.
Their properties such as living room temperature are represented through the class saref:
Property. Interactions of IoT devices with these properties are modeled using the object
properties saref:measuresProperty and saref:controlsProperty for sensing and actuating in-
teractions respectively.

3. Device-Application interaction module: describes device interactions in IoT applications.
Based on the EuPont ontology, an IoT application is represented using rules and actions.
A rule is in the form if iotd:Trigger then iotd:Action. Triggers are related to device
state changes (saref:State). Actions are executed by IoT services (saref:Service). This
trigger-action-based model allows representing state dependencies between devices, i.e.,
when an IoT application acts on one device based on the state of another. Also, it allows
the representation of implicit service dependencies context in the form of data flows e.g.,
temperature measurements between iotd:Action, using the class dk:DataFlow of the DK
Ontology.

4. Dependency Extraction module: describes modalities allowing the proposed framework to
8https://saref.etsi.org/core/v3.1.1/
9http://www.data-knowledge.org/dk/1.2/index-en.html

10https://elite.polito.it/ontologies/eupont.owl

76

https://saref.etsi.org/core/v3.1.1/
http://www.data-knowledge.org/dk/1.2/index-en.html
https://elite.polito.it/ontologies/eupont.owl

3. Proposed Framework

extract the dependency information, described in the other modules, from DM solutions. It
leverages the TD standard with the class td:Property Affordance to represent dependency
data endpoints in an interoperable manner. Dependency data endpoints are REST APIs
allowing to access context data from DM solutions. Dependency extraction modalities will
be explained more with relevant examples in Chapter 4 Section 3.1.

Note that the IoT-D ontology conceptualization is representative of IoT systems with no
regard to the application domain (e.g., smart home, smart city), which makes it reusable in
a wide scope of domains [Seydoux, 2018]. Moreover, this ontology can be easily extended to
consider other types of IoT dependencies thanks to its modular design. We make available online
the documentation of the IoT-D ontology. 11 12

3 Proposed Framework

Relying on the IoT-D ontology, we propose a framework (see Figure 4.4) that allows on-demand
inference of threatening dependencies owned by siloed DM solutions. The framework relies on
the DT platform Thing in to expose the inferred DKG and to communicate with DM actors.
It involves three main steps that rely on SW standards, namely Context extraction, Entity
resolution, and Dependency inference. The first step extracts the context data from legacy DM
solutions and transforms it into KGs, the second aggregates the extracted context KGs, and
the last infers threatening dependencies topology described by the DKG from the aggregated
context KGs. These steps are detailed in the following.

Device

manufucturer

Service

provider

Operator

Device

manufucturer

Service

provider

Operator

Threatening dependencies

data sources DM managers

(1) Context Extraction (2) Entity Resolution (3) Dependency Inference

Figure 4.4: Framework overview - On-demand inference of threatening IoT dependencies.

3.1 Step 1: Context Extraction

This step aims to extract the context data from the siloed DM solutions and transform it into
KGs according to the IoT-D ontology. We rely on the TD standard to describe the extraction
modalities that allow context data extraction from DM solutions. An extraction modality in-
cludes information about the data to be extracted, such as the URL of the extraction and the

11https://w3id.org/iotd
12https://github.com/Orange-OpenSource/ISWC-IoT-D-ontology-Documentation

77

https://w3id.org/iotd
https://github.com/Orange-OpenSource/ISWC-IoT-D-ontology-Documentation

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

format e.g., json. It is provided to the framework by DM actors through a federative data injec-
tion enabler of the Thing in platform (see Figure 4.5). It is stored in Thing in to be used by the
context extraction step. Note that: 1) using the TD standard enables technology-agnostic data
extraction, which eases the integration of heterogeneous DM solutions, 2) the extracted context
data is operational data extracted from reliable DM solutions so it does not contain outliers.

1 /*Declaration of the extraction data source here is the gateway*/
2 : Gateway rdf:type
3 iotd: ConnectivityDevice ;
4 td: hasPropertyAffordance [
5 td: hasForm [
6 /*Definition of information about the extraction data*/
7 hctl: forContentType
8 " application /json" ;
9 hctl: hasOperationType

10 td: readProperty ;
11 /*Definition of the extraction link*/
12 hctl: hasTarget
13 "{ $USPLink }/ dataModel = Device . IEEE1905 . NetTopology ."
14]].

Listing 4.1: Connectivity topology extraction modality.

Example 5. (Context extraction) Let us consider the extraction of the connectivity topology
from the gateway managed by Orange: the operator Orange injects into Thing in the extraction
modality described in Listing 4.1. The context extraction step uses this modality to extract the
connectivity topology from the gateway by accessing the operator’s USP controller, using the link
presented with the property hasTarget (lines 11-13). The extracted data described in the TR-181
model (see Listing 4.2) is then transformed into KG and stored in Thing in.

1 [{" requested_path ":
2 " Device . IEEE1905 . NetTopology .",
3 " resolved_path_results ": [
4 { " resolved_path ":
5 " Device . IEEE1905 . NetTopology .",
6 " result_params ": [
7 {
8 " param_name ": " IEEE1905Device .1. FriendlyName ",
9 "value": " TempSensor "

10 },
11 { " param_name ": " IEEE1905Device .2. FriendlyName ",
12 "value": "bulb1"
13 },
14 { " param_name ": " IEEE1905Device .3. FriendlyName ",
15 "value": " LightSensor "
16 } ...

Listing 4.2: Part of the extracted connectivity topology.

78

3. Proposed Framework

Thing in the future
Explore Develop Provide Design Stats Learn Hello GUITTOUM

You are on the Qualif instance platform

Injected Semantic Data

Method for data injection

Figure 4.5: Thing in Data Injection Enabler

3.2 Step 2: Entity Resolution

3.2.1 Problem Statement

As an IoT device may be managed by multiple DM solutions [Jia, 2021], the extracted con-
text KGs may contain duplicate entities, such as devices with different representations (see
Figure 4.6). For example, the temperature sensor may be named tempSensorModelX in Or-
ange gateway, while being registered as TempSensor in Samsung’s SmartThings Hub. These
duplicated representations must be identified and resolved to allow consistent reasoning across
the extracted KGs. This problem is referred to in the literature as the Entity Resolution (ER)
problem, which consists of aggregating similar entities in data extracted from different sources
to increase data quality [Saeedi, 2020].

The ER problem has been widely studied for over 70 years in different domains such as
knowledge fusion and social network reconciliation [Saeedi, 2020; Li, 2020a; Leitão, 2013]. It is
also treated in the KG domain for KG completion, where several heuristics are mainly based on
ML [Mugeni, 2023]. However, for cases where training data is unavailable, which is our case,
non-learning approaches are suitable [Christophides, 2020]. The authors propose in [Benbernou,
2021] a non-learning ER approach based on SWRL rules that leverages a set of functional keys,
which represents a set of attributes allowing the identification of similar entities. However,

79

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

Figure 4.6: Illustration of the ER problem.

this approach does not consider complex similarity computation between the functional keys.
This work has inspired us to propose a novel non-learning ER approach based on the advanced
features of the Shapes Constraint Language (SHACL) standard (see Chapter 2 Section 2.1.1),
which allow embedding complex similarity computations in ER inference rules. In the following,
we formally describe the ER problem for our case. Then, we present our proposed SHACL-based
ER approach.

Entities to resolve in our case are instances of iotd:IoTDevice and SAREF:Service, since they
are shared entities among the siloed DM solutions. More formally, consider n DM solutions, a
context KG extracted from the ith DM solution is a tuple:
KGi = (Ei,Ri,Ai,Li, Ti), where Ei is the set of entities, Ai the set of data properties, Ri the
set of object properties, Li the set of literals and Ti is the set of triples. We distinguish data
triples TA and object triples TR, where TA : E × A × L are triples linking entities and literals,
and TR : E × R × E link entities. Our goal is to build the global context KG i.e., KGg, by
identifying and linking similar entities in the extracted context KGs. The KGg consists on
the union of the extracted context KGs: KG1,KG2, ...KGn enriched by similarity object triples
TRS : E×{owl : sameAs}×E that links similar entities, and the object property owl : sameAs,
i.e.,

KGg = (
i=n⋃
i=1
Ei,

i=n⋃
i=1
Ri ∪ {owl:sameAs},

i=n⋃
i=1
Ai,

i=n⋃
i=1
Li,

i=n⋃
i=1
Ti ∪ TRS)

3.2.2 Method

To determine the KGg, we rely on an inference rule-based ER approach using the advanced
features of the SHACL standard: SHACL rule and SHACL function (see Figure 4.7).

First, each entity to be resolved in the extracted context KGs is automatically annotated by
a set of resolution attributes.

Definition 1 (Resolution attribute) a resolution attribute RA describes a DM metadata
that allows entity identification across the siloed DM solutions. For instance, device serial

80

3. Proposed Framework

Figure 4.7: Illustration of the proposed SHACL-based ER approach.

number is a resolution attribute for IoT devices. These resolution attributes are extracted from
DM solutions during the context extraction step and represented in the context KGs as literals
with associated data properties such as iotd:hasSerialNumber.

An annotated context KG is described by KG′
i :

KG′
i = (Ei,Ri,Ai ∪ { iotd:hasRAk} ,Li ∪ {RAk} , Ti ∪ TRA)

∀e ∈ Ei, e instance of iotd:IoTDevice or e instance of SAREF:Service, ∀RAk a resolution attribute
extracted form the ith DM solution and TRA = (e , iotd:hasRAk, RAk), represents data triples
that link entities e with their resolution attributes RAk. After the annotation process, a SHACL
Rule is used to build the KGg by performing the ER on the annotated context KG i.e., KG′

i.
This rule automatically infers the owl:sameAs relationship between similar entities. SHACL
functions allow the ER SHACL rule to perform similarity computations among entities in the
extracted KGs using the resolution attributes. The similarity between two entities is a weighted
sum of similarities between their resolution attributes. The similarity between two resolution
attributes is calculated using similarity functions.

Definition 2 (Similarity function) a similarity function sim: L2 → R+ is a string simi-
larity function associated with a given resolution attribute e.g., strict string similarity for device
serial number and Jaro similarity for device manufacturer name.

Definition 3 (Resolution attribute weight) a resolution attribute weight w ∈ R+represents
the impact of the resolution attribute in the resolution, such as 0.9 for device serial number and
0.5 for device name.

To optimize the number of created owl:sameAs object properties, we perform the ER only
between the KGs extracted from the DM providers and the KGs extracted from other actors
i.e., service providers and device manufacturers, since DM providers acquire information about
all IoT devices and their services. The attribute property orgIoT:source 13 is used to define from
which actor an entity is extracted.

13An attribute property related to the ontology Orange IoT used in Thing in to manage Digital Twins.

81

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

More formally, consider the entity ei extracted from the service providers or the device
manufacturer DM solution. It is linked to the set of resolution attributes RAi using a set of
data properties Ai. Resolving this entity consists of finding its most similar entity ep extracted
from the DM provider’s DM solution that satisfies: max

∑
Ak∈Ai∩Ap wk · simk

(
RAi

k, RAp
k

)
, such

as RAp is the set of resolution attributes linked to ep using the data properties Ap, simk and
wk are the similarity function, and the weight associated with the resolution attribute RAk

respectively. We consider the intersection between the resolution attribute data properties sets
since DM solutions may contain different resolution attribute types.

1 iotd: EntityResolution
2 rdf:type sh: NodeShape ;
3 sh: targetClass iotd: IoTDevice ;
4 sh:rule [
5 rdf:type sh: SPARQLRule ;
6 sh: construct """
7 /*Construct the sameAs relationship between the similar device’s representations*/
8 CONSTRUCT {
9 $this owl: sameAs ? device .

10 }
11 /*Constraints to check before building the sameAs relationship*/
12 /*Constraints are similarity evaluation between device’s representations based on the

resolution attributes*/
13 WHERE {
14 /*For each device representation ($this), find its most similar representation

(?devices) */
15 {
16 SELECT $this ? device WHERE {
17 {
18 /*Calculate the similarity by calling SHACL functions*/
19 SELECT $this

20 (MAX (0.5* iotd: similarityFunction (?n2 , ?n1)+0.1* iotd:
similarityFunction (?mn2 , ?mn1)

21 +0.9* iotd: similarityFunction (?sn2 , ?sn1)) AS ?val) WHERE
22 {
23 /*Select the resolution attributes used in the similarity calculation */
24 $this orgIoT : source ?s .
25 OPTIONAL {$this iotd: hasDeviceName ?n2 .}
26 OPTIONAL {$this iotd: hasManufacturerName ?mn2 .}
27 OPTIONAL {$this iotd: hasSerialNumber ?sn2 .}
28 ? device a iotd: IoTDevice .
29 ? device orgIoT : source ?src .
30 OPTIONAL {? device iotd: hasDeviceName ?n1.}
31 OPTIONAL {? device iotd: hasManufacturerName ?mn1 .}
32 OPTIONAL {? device iotd: hasSerialNumber ?sn1 .}
33 FILTER (? device !=$this && ?s="other" && ?src=" DMProvider ")
34 }
35 group by $this

82

3. Proposed Framework

36 }
37 OPTIONAL {$this iotd: hasDeviceName ?n2 .}
38 $this orgIoT : source ?s .
39 OPTIONAL {$this iotd: hasManufacturerName ?mn2 .}
40 OPTIONAL {$this iotd: hasSerialNumber ?sn2 .}
41 OPTIONAL {? device iotd: hasDeviceName ?n1 .}
42 OPTIONAL {? device iotd: hasManufacturerName ?mn1 .}
43 OPTIONAL {? device iotd: hasSerialNumber ?sn1 .}
44 ? device orgIoT : source ?src .
45 Filter (? device !=$this && ?s="other" && ?src=" DMProvider " &&
46 (0.5* iotd: similarityFunction (?n2 , ?n1) +0.1* iotd: similarityFunction

(?mn2 , ?mn1)
47 +0.9* iotd: similarityFunction (?sn2 , ?sn1))=? val)} } }""";] ; .

Listing 4.3: SHACL rule for Entity Resolution.

Concretely, consider the SHACL rule presented in Listing 4.3. It performs ER between IoT
device representations using the resolution attributes: Device Name, Manufacturer Name, and
Serial number. Their weights are 0.5, 0.1, and 0.9, respectively, representing their impact on
the resolution. The ER is performed as follows: for each IoT device in the KG extracted from
service providers (defined by orgIoT:source=”other”), its most similar representation in the
KGs of DM providers (defined by orgIoT:source=”DMProvider”) is retrieved (line 16) and the
owl:sameAs relationship is created among them (line 9). Similarity functions (lines 20-21, 46-47)
are implemented using SHACL functions (see Listing 4.4), which are developed using SPARQL
extension via registered URI (line 19).14 To the best of our knowledge, this is the first ER
approach based on the SHACL standard.

1 iotd: similarityFunction
2 a sh: SPARQLFunction ;
3 /*Define the operators of the function */
4 sh: parameter [
5 sh:path iotd:op1 ;
6 sh: datatype xsd: string ;
7 sh: description "The first operand " ;
8] ;
9 sh: parameter [

10 sh:path iotd:op2 ;
11 sh: datatype xsd: string ;
12 sh: description "The second operand " ;
13] ;
14 /*Define the output type*/
15 sh: returnType xsd: double ;
16 /*Define the function call */
17 sh: select """
18 SELECT
19 (<http :// www. example .org/ StrictStringFunction >($op1, $op2)

14https://www.w3.org/TR/rdf-sparql-query/#extensionFunctions

83

https://www.w3.org/TR/rdf-sparql-query/#extensionFunctions

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

20 AS ? result) WHERE { } """ .

Listing 4.4: String similarity function as SHACL function.

3.3 Step 3: Dependency Inference

This step infers the threatening dependencies topology from the global context KG obtained
after the ER is performed, using the SHACL standard again: We design a SHACL rule for each
dependency type described in Chapter 4 Section 2.1. These SHACL rules infer dependency
relationships between devices by reasoning around contextual relationships in the global context
KG. The developed SHACL rules for dependency inference will be presented in the following.

Service dependency inference

The rule presented in Listing 4.5 infers service dependency between two IoT devices by creating
hasServiceDependencyTo relationship (line 10) when a device consumes a service offered by
another device (lines 17-19).

1 iotd: ServiceDependency
2 rdf:type sh: NodeShape ;
3 sh: targetClass dp: IoTDevice ;
4

5 sh:rule [
6 rdf:type sh: SPARQLRule ;
7 sh: construct """
8 /*Construct the dependency relationship (here is the service dependency) */
9 CONSTRUCT {

10 $this iotd: hasServiceDependencyTo ? device .
11 }
12 /*Constraints to check before constructing the dependency relationship */
13

14 /*Constraints are contextual relationships */
15 WHERE {
16 /*Contextual relationships required to infer the service dependency*/
17 ? device a iotd: IoTDevice .
18 ? device core: offers ? service .
19 $this iotd: consumes ? service .
20 }""" ;] ;.

Listing 4.5: SHACL rule for Service dependency inference.

Connectivity dependency inference

The rule presented in Listing 4.6 infers connectivity dependency between IoT devices and con-
nectivity devices by creating hasConnectivityDependencyTo relationship (line 10) when an IoT
device consumes a connectivity service offered by a connectivity device (lines 16-18).

84

3. Proposed Framework

1 iotd: ConnectivtyDependency
2 rdf:type sh: NodeShape ;
3 sh: targetClass dp: IoTDevice ;
4

5 sh:rule [
6 rdf:type sh: SPARQLRule ;
7 sh: construct """
8 /*Construct the dependency relationship (here is the connectivity dependency) */
9 CONSTRUCT {

10 $this iotd: hasConnectivityDependencyTo ? device .
11 }
12 /*Constraints to check before constructing the dependency relationship */
13 /*Constraints are contextual relationships */
14 WHERE {
15 /*Contextual relationships required to infer the connectivity dependency*/
16 ? device a iotd: ConnectivityDevice .
17 ? device core: offers ? service .
18 $this iotd: consumes ? service .
19 }
20 """ ;] ;.

Listing 4.6: SHACL rule for connectivity dependency inference.

Environment-based dependency inference

The rule illustrated in Listing 4.7 deduces environment-based dependencies. It accomplishes
this by establishing a hasEnvironmentDependencyTo relationship between two IoT devices (line
11). This linkage is established when the initial IoT device observes a property of the physical
environment, such as the Living Room temperature, which is altered by the actions of the other
IoT device (lines 15-17).

1 iotd: EnvDependency
2 rdf:type sh: NodeShape ;
3 sh: targetClass dp: IoTDevice ;
4 sh:rule [
5 rdf:type sh: SPARQLRule ;
6 sh: construct """
7 /*Construct the dependency relationship (here is the environment dependency) */
8 CONSTRUCT {
9 $this iotd: hasEnvironmentDependencyTo ? device .

10 }
11 /*Constraints to check before constructing the dependency relationship */
12 /*Constraints are contextual relationships */
13 WHERE {
14 /*Contextual relationships required to infer the environment dependency*/
15 ? device a iotd: IoTDevice .

85

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

16 ? device iotd: changesProperty ? property .
17 $this core: measures ? property .
18 .}""";] ;.

Listing 4.7: SHACL rule for environment dependency inference.

State-based dependency inference

The rule showcased in Listing 4.8 infers state-based dependencies. It accomplishes this by
establishing a hasStateDependencyTo relationship between two devices (line 9). This relationship
is established when the rule detects an automation rule that acts on one device based on the
state of another (lines 15-24).

1 iotd: StateBasedDependency
2 rdf:type sh: NodeShape ;
3 sh: targetClass iotd: IoTDevice ;
4 sh:rule [
5 rdf:type sh: SPARQLRule ;
6 sh: construct """
7 /*Construct the dependency relationship (here is the state-based dependency) */
8 CONSTRUCT {
9 $this iotd: hasStateDependencyTo ? device .

10 }
11 /*Constraints to check before constructing the dependency relationship */
12 /*Constraints are contextual relationships */
13 WHERE {
14 /*Contextual relationships required to infer the state-based dependency*/
15 ? device a iotd: IoTDevice ;
16 saref: hasState ?state .
17 ? trigger a iotd: Trigger
18 iotd: relatedTo ?state .
19 $this core: offers ? service .
20 ? service a saref: Service ;
21 iotd: allowsAction ? action .
22 ?rule a eupont :Rule ;
23 eupont : hasAction ? action ;
24 eupont : hasTrigger ? trigger .
25 } """ ;] ;.

Listing 4.8: SHACL rule for State-based dependencies inference.

86

3. Proposed Framework

E
n

ti
ty

 R
e

so
lu

ti
o

n

D
e

p
e

n
d

e
n

c
y

 t
o

p
o

lo
g

y

T
e

m
p

e
ra

tu
re

 s
e

n
so

r

S
e

rv
ic

e

d
e

p
e

n
d

e
n

c
y

A
la

rm

P
:

P
ro

c
e

ss
o

r

S
:

S
e

n
so

r

A
:

A
c

tu
a

to
r

C
:

C
o

n
n

e
c

ti
v

it
y

 d
e

v
ic

e
O

b
je

c
ts

:1
7

,
li

n
k

s:
4

4

C
o

n
n

e
c

ti
v

it
y

D
e

v
ic

e
 (

2
)

Io
T

D
e

v
ic

e
 (

15
)

P
ro

c
e

ss
o

r
(4

)

A
c

tu
a

to
r

(6
)

S
e

n
so

r
(5

)

h
a

sA
p

p
li

c
a

ti
o

n
D

a
ta

D
e

p
e

n
d

e
n

c
y

h
a

sE
n

v
ir

o
n

m
e

n
tD

e
p

e
n

d
e

n
c

y

h
a

sS
e

rv
ic

e
D

e
p

e
n

d
e

n
c

y
T

o
h

a
sS

ta
te

D
e

p
e

n
d

e
n

c
y

T
o

h
a

sC
o

n
n

e
c

ti
v

it
y

D
e

p
e

n
d

e
n

c
y

sh
o

w
 a

ll
 l

in
k

s

T
h

in
g

 i
n

 t
h

e
 f

u
tu

r
e

E
x

p
lo

r
e

D
e

v
e

lo
p

P
r

o
v

id
e

D
e

s
ig

n
S

ta
ts

L
e

a
r

n
H

e
ll

o
 G

U
IT

T
O

U
M

Y
o

u
 a

r
e

 o
n

 t
h

e
 Q

u
a

li
f

in
s

ta
n

c
e

 p
la

tf
o

r
m

h
id

e
 a

ll
 l

in
k

s

Fi
gu

re
4.

8:
T

he
in

fe
rr

ed
de

pe
nd

en
ci

es
to

po
lo

gy
fr

om
th

e
sim

ul
at

ed
Sm

ar
t

H
om

e
Sc

en
ar

io
.

87

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

Implicit service dependency inference

The rule depicted in Listing 4.9 deduces implicit service dependencies by establishing a hasIm-
plicitServiceDependencyTo relationship between two IoT devices (line 11). This relationship is
established when, within a specific IoT application, the first IoT device receives data flows from
other IoT devices through IoT application actions (lines 15-21).

1 iotd: ImplicitServiceDependency
2 rdf:type sh: NodeShape ;
3 sh: targetClass dp: IoTDevice ;
4 sh:rule [
5 rdf:type sh: SPARQLRule ;
6 sh: construct """
7 /*Construct the dependency relationship (here is the implicit service dependency) */
8 CONSTRUCT {
9 $this iotd: hasImplicitServiceDependencyTo ? device .

10 }
11 /*Constraints to check before constructing the dependency relationship */
12 /*Constraints are contextual relationships */
13 WHERE {
14 /*Contextual relationships required to infer the implicit service dependency*/
15 ? device a iotd: IoTDevice .
16 ? device core: offers ? service1 .
17 $this core: offers ? service2 .
18 ? service1 iotd: allowsAction ? action1 .
19 ? service2 iotd: allowsAction ? action2 .
20 ? dataFlow dk: flowsFrom ? action1 .
21 ? dataFlow dk: flowsTo ? action2 .}""";] ;.

Listing 4.9: SHACL rule for implicit service dependency inference.

Note that current version of the SHACL Advanced Features performs inference only in a
single iteration of rules and the proposed rules for dependency inference are not dependant.
This ensures a reliable stopping criteria for dependency inference and avoid infinite loop com-
plications.

Once the global context KG is enriched by the inferred DKG describing threatening de-
pendencies, it is exposed as a DT feature describing devices and their dependencies. That
representation can be easily analyzed and queried by multiple DM actors thanks to Thing in
APIs 15. The inferred dependency topology from the smart home use case is shown in Figure 4.8.

4 Evaluation

We comprehensively evaluated our framework, encompassing both qualitative and quantitative
aspects. In the qualitative evaluation, we: i) Inferred the threatening IoT dependency topology
within a simulated smart home environment. ii) Extended our analysis to a real-world smart

15https://wiki.thinginthefuture.com/

88

https://wiki.thinginthefuture.com/

4. Evaluation

home environment, specifically the DOMUS testbed 16. iii) Thoroughly assessed the proposed
IoT-D ontology, focusing on its qualitative attributes such as completeness. Additionally, in
the quantitative evaluation, we: i) Assessed the performance of our framework, providing in-
sights into its efficiency and effectiveness. ii) Conducted a quantitative evaluation of the IoT-D
ontology, showing valuable quantitative metrics to measure its semantic richness.

4.1 Qualitative Evaluation

4.1.1 Simulated Smart Home Scenario

We evaluated the proposed framework on the simulated smart home scenario in Chapter 1
Section 2.1. IoT devices were simulated using the Open Source USP agents17. Regarding the
involved DM solutions, we deployed the Orange implementation of the USP controller locally,
and leveraged the cloud developer API of the Smarthings platform 18 to create and query the
automation rules. Using the proposed framework, we were able to identify 44 threatening
dependency relationships among the simulated Smart Home IoT devices (see Figure 4.8). We
depended on human-based verification to validate the accuracy of these results, and the findings
affirmed their correctness. This approach enables us to perform a qualitative validation of the
proposed methodology within the specified use case.

4.1.2 Realistic Smart Home: DOMUS Testbed

We evaluated the proposed framework on DOMUS testbed19 (see Figure 4.9), which represents
a connected apartment of 62m2 including more than 90 IoT devices installed in four rooms: a
living room, a bedroom, a kitchen, a bathroom, controlled from an independent control room.
The latter includes software and hardware allowing the monitoring of the whole apartment. IoT
devices of the DOMUS testbed are connected to each other through the OpenHab Platform,20

(see Chapter 2 Section 1.1.1) which enables a set of automation rules and allows the devices to
access the Internet thanks to brigdes devices 21.

To infer the DOMUS’ dependency topology, we followed a four-step process, which can be
adopted to infer the dependency topology in any other realistic IoT system: First, we identified
the context data source that describes IoT dependencies, represented by the automation rules
and connectivity links between the OpenHab bridges and the IoT devices. This information is
described in the configuration files of the OpenHab platform. Second, we defined REST end-
points that allow the extraction of these context data. We formalized the extraction modalities
related to these REST endpoints using the TD standards to be used by the proposed framework
for on-demand context data extraction (see Listing 4.10). Third, we defined a mapping that
allows the transformation of the extracted context data to KG according to the IoT-D ontology.

16https://www.liglab.fr/fr/recherche/plateformes/domus
17https://github.com/BroadbandForum/obuspa
18https://developer.smartthings.com/docs/api/public#tag/Rules
19https://www.liglab.fr/fr/recherche/plateformes/domus
20https://www.openhab.org/
21https://www.openhab.org/docs/concepts/things.html#bridges

89

https://www.liglab.fr/fr/recherche/plateformes/domus
https://github.com/BroadbandForum/obuspa
https://developer.smartthings.com/docs/api/public##tag/Rules
https://www.liglab.fr/fr/recherche/plateformes/domus
https://www.openhab.org/
https://www.openhab.org/docs/concepts/things.html#bridges

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

Figure 4.9: DOMUS Testbed [DOMUS, 2023].

Last, we ran our framework to infer the threatening dependency topology. The result is depicted
in Figure 4.10 representing the inferred dependency topology. We have automatically identi-
fied 106 threatening dependency relationships among DOMUS IoT devices. We validated the
accuracy of these results through human-based verification in collaboration with the engineer
responsible for DOMUS, affirming their correctness. This method enables us to qualitatively
validate the proposed approach within the DOMUS use case.

Figure 4.10: The inferred dependencies topology from DOMUS Testbed.

90

4. Evaluation

1 iotd: openHab rdf:type iotd: Application ;
2 td: hasPropertyAffordance iotd: propappOpenHabRules , iotd:

propappOpenConnectivityTopology .
3

4 iotd: propappOpenHabRules rdf:type td: PropertyAffordance ;
5 td: hasForm demo: capabilitiesOpenHabRules

.
6 iotd: capabilitiesOpenHabRules rdf:type hctl:Form ;
7 hctl: forContentType " application /json" ;
8 hctl: hasOperationType td: readProperty ;
9 hctl: hasTarget "http :// openhab :8080/

api/v1/rules/" .
10 iotd: propappOpenConnectivityTopology rdf:type td:

PropertyAffordance ;
11 td: hasForm iotd:

capabilitiesOpenHabConnectivity .
12 iotd: capabilitiesOpenHabConnectivity rdf:type hctl:Form ;
13 hctl: forContentType " application /json" ;
14 hctl: hasOperationType td: readProperty ;
15 hctl: hasTarget "http :// openhab :8080/

api/v1/ connectivityFile /" .

Listing 4.10: DOMUS data extraction modalities.

4.1.3 IoT-D ontology Qualitative Evaluation

The evaluation of a semantic ontology can be conducted through qualitative methods, utilizing a
set of Competency Questions (CQ) and executing SPARQL queries against the instances of the
ontology to determine if the defined ontology can effectively address these CQs [Uschold, 1996;
Ihsan, 2023]. In this study, we identified a total of 22 CQs that were categorized into three classes:
Topology Recognition (TR), Dependency Information (DI), and Dependency Information Access
(DIA). A sample of these CQs can be found in Table 4.1. Subsequently, we formulated a series
of SPARQL queries for each individual CQ. These queries were designed to assess the capability
of the ontology to provide relevant answers. The Listing 4.11 presents an example of a SPARQL
query allowing to answer the competency question CQ22. We make available online all the
competency questions with their associated SPARQL queries.22

Finally, we executed the specified SPARQL queries using the Protégé SPARQL endpoint on
two distinct datasets: one derived from the simulated smart home scenario and another from
the DOMUS testbed. Notably, we found that the context KG built upon the IoT-D ontology
successfully provided answers to all the CQs. This result proves the IoT-D ontology’s complete-
ness and its ability to encompass diverse IoT scenarios effectively.

22https://github.com/Orange-OpenSource/ISWC-IoT-D-ontology-Documentation/blob/master/CQs/
CompentencyQuentions.md

91

https://github.com/Orange-OpenSource/ISWC-IoT-D-ontology-Documentation/blob/master/CQs/CompentencyQuentions.md
https://github.com/Orange-OpenSource/ISWC-IoT-D-ontology-Documentation/blob/master/CQs/CompentencyQuentions.md

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

Table 4.1: Part of the identified CQs.

No. Competency Question Class

CQ1 What are IoT devices
present in the managed IoT system? TR

CQ2 What are IoT applications present
in the managed IoT system? TR

CQ3 What are the services
consumed by a given device? DI

CQ4 What are device actions
associated with a given automation rule? DI

CQ5 How to access the connectivity
topology of a given connectivity device? DIA

..

CQ22
How to access the connectivity
topology of a given connectivity
device?

DIA

1 SELECT ?uri ? contentType WHERE {
2 ? propertyAffordance a td: PropertyAfforance .
3 ? connectivityDevice a iotd: ConnectivityDevice ;
4 td: hasPropertyAffordance ? propertyAffordance .
5 ?form a hctl:Form.
6 ? propertyAffordance hctl: hasForm ?form.
7 ?form hctl: hasTarget ?uri.
8 ?form hctl: forContentType ? contentType .
9 /* The URI of the connectivity device is provided as input */

10 FILTER (? connectivityDevice =<URI >) }

Listing 4.11: The SPARQL query of the CQ22.

4.2 Quantitative Evaluation

4.2.1 Performance Evaluation

We carried out a set of performance evaluations by i) measuring the completion time of the ER
and dependency inference steps23 on smart home scenarios with different scales; ii) comparing
SHACL to SWRL,24 another formalism for inference rules used by competing approaches for
direct dependencies inference [Mohsin, 2017] and entity resolution [Benbernou, 2021]. The

23We do not provide an evaluation for the context extraction step, since it depends on DM solutions performance
and network characteristics.

24https://www.w3.org/Submission/SWRL/

92

https://www.w3.org/Submission/SWRL/

4. Evaluation

comparison was performed according to step 3, dependency inference. The test data sets are
smart home scenarios with different scales generated by duplicating the semantic description of
the smart home scenario described in Chapter 1 Section 2.1. We executed tests on an Ubuntu
20.04 with 32Go RAM and Intel Corei7 2.5 GHz processors. SHACL inference is implemented
using TopBraid SHACL API (version 1.0.1),25 and SWRL inference is performed using Openllet
reasoner with OWL API (version 2.6.5)26 used by competing approaches. We note that the
comparison results are limited by these technological choices.

Figure 4.11: Completion time of the ER step.

We found that the completion time of the dependency inference step is almost negligible
(on average, 32.5 ms for 868 triples and 63 ms for 4340 triples). The ER completion time (see
Figure 4.11) is more time-consuming due to: 1) the graph pattern complexity of the ER rules
and 2) the calculations performed by the ER rules in addition to the inference task. Overall, the
framework’s performance appears sufficient for a human-based decision-support tool. However,
this time should be discussed more from the perspective of integrating the proposed framework
in automated DM processes e.g., automatic cascading failure management.

Comparing SHACL with SWRL (see Figure 4.12) according to the dependency inference
time shows that SHACL performs the best, especially for a large number of dependencies. This
can be justified from two perspectives: 1) from the technological perspective, SHACL has the
same format as the validated data, which simplifies the technology stack required to implement
it, unlike SWRL [Frank, 2021]; 2) from the theoretical complexity perspective, SWRL com-
plexity is exponential [Mei, 2006]. Meanwhile, SHACL complexity depends on the complexity
of SPARQL query language, 27 which is polynomial if the graph pattern uses only AND and
FILTER operators [Pérez, 2006], which is the case for the dependency inference rules. We make
available online the quantitative evaluation source code with the generated smart home data
sets.28

25https://github.com/TopQuadrant/shacl
26https://github.com/Galigator/openllet
27https://book.validatingrdf.com/bookHtml013.html
28https://github.com/Orange-OpenSource/ISWC-ReasoningCode

93

https://github.com/TopQuadrant/shacl
https://github.com/Galigator/openllet
https://book.validatingrdf.com/bookHtml013.html
https://github.com/Orange-OpenSource/ISWC-ReasoningCode

Chapter 4. Inferring Threatening IoT Dependencies using Semantic Digital Twins

Figure 4.12: SHACL VS SWRL for dependency inference.

4.2.2 IoT-D ontology Quantitative Evaluation

We assessed the quality of the IoT-D ontology using the OntoQA methodology [Tartir, 2005],
which evaluates the ontology using a set of metrics such as schema metrics. To evaluate the
richness of the IoT-D ontology, we have selected the following metrics inspired by the work [Ihsan,
2023]:

• Relationship richness (RR) measures the diversity of relations within the ontology. For-
mally, it is defined by

RR = |P |
|P |+ |SC|

(4.1)

P is the number of relationships in the ontology, and SC is the number of subclass rela-
tionships.

• Attribute richness (AR) shows the richness of concept description through attributes (a.k.a
data properties) of the ontology. Formally, AR is defined by

AR = |AT |
|C|

(4.2)

AT is the number of attributes for all classes, and C is the number of classes.

• Inheritance richness (IR) characterizes the dispersion of information among various levels
of the inheritance tree within the ontology. It reflects how knowledge is organized and
categorized into distinct classes and subclasses in the ontology. Formally, IR is defined by

IR = |SC|
|C|

(4.3)

We compared the OntoQA results of the IoT-D ontology with the IoTB ontology results. The
latter is the only found ontology representing dependencies among IoT devices [Mohsin, 2017].
The result (see Table 4.2) shows that the IoT-D ontology outperforms the IoTB ontology for

94

5. Conclusion

all the OntoQA metrics. This signifies that our ontology has more diversity in relationships,
and represents a wider range of knowledge and more knowledge per instance compared to IoTB
ontology, which is useful for knowledge-based decision support. Moreover, the IoT-D ontology
has a lower number of concepts, which means that it is able to represent the same domain of
knowledge in a more concise manner, which increases performance and reduces reasoning time.

Table 4.2: OntoQA Evaluation results IoT-D Ontology.

Ontology C SC AT P RR AR IR

IoTB 30 11 0 21 0,66 0 0,37

IoT-D 22 09 15 22 0,71 0,68 0,41

5 Conclusion

In this chapter, we shed light on our practical framework that infers threatening dependency
topology to help legacy DM solutions efficiently address dependencies-related threats. We have
identified several business use cases of the proposed framework, such as remote cascading failure
management, allowing for reduced DM costs and enhancing customers’ quality of experience.
Other creative use cases may be developed by exploiting the DKG and its context KG.

The proposed framework leverages established SW standards of W3C and ETSI, such as
TD, SHACL, and SAREF, to enable interoperability across siloed DM solutions. It adopts a
KG-based model for efficiently analyzing heterogeneous, large, and unstructured dependencies
data. It uses the DT technology to address the dynamic aspect of IoT dependencies as well
as for knowledge management and information sharing between DM actors. It is based on a
three-step process involving extracting dependencies data from siloed DM solutions, resolving
this data, and finally inferring and reasoning around threatening dependencies.

We validated the proposed solution by inferring threatening dependencies topology in a smart
home scenario managed by multiple DM actors. However, our approach is generic enough to
be applied to IoT applications other than smart homes thanks to the IoT-D ontology, which
proposes application-agnostic modeling for IoT dependencies. Moreover, our approach can be
taken up in other domains where there is a need to connect siloed and dynamic data to unlock
innovative use cases.

To go one step further in managing dependencies-related threats, especially cascading failure,
we extended the proposed framework to enable collaborative and automatic cascading failure
diagnosis and recovery across legacy DM solutions using a cooperative Multi-Agent System
(MAS) system. This solution will be discussed in the next chapter.

95

Chapter 5
Solving The Cascading Failure Dilemma
using A Semantic Multi-agent System

This chapter shows our approach enabling autonomous cascading failure diagnosis
and recovery on IoT devices managed by siloed DM actors, using a Semantic Multi-
Agent System (MAS).

Summary

Contents
1 Illustration of Cascading Failure Dilemma . 97
2 Semantic Multi-OSAMA For Collaborative CFM . 98

2.1 OSAMA BDI model . 99
2.2 Diagnosis Artifact . 101
2.3 Dependency Artifact . 103
2.4 Monitoring and Recovery Artifacts . 104
2.5 Collaborative CFM Protocol . 105

3 Evaluation . 107
3.1 Technical Architecture . 108
3.2 Qualitative Evaluation . 110
3.3 Quantitative Evaluation . 111

4 Conclusion . 116

In the previous chapter, we introduced our solution aimed at facilitating the inference of
dependencies between Internet of Things (IoT) devices to simplify the process of identifying
the root causes of cascading failures for Device Management (DM) actors. Nevertheless, it is
important to acknowledge that this human-centric analysis tool possesses inherent limitations.
Consequently, there exists a need to go beyond human-based decision-making towards the de-
velopment of automated mechanisms that can effectively facilitate the diagnosis and recovery of
cascading failures, even in the presence of disparate and siloed DM solutions.

96

1. Illustration of Cascading Failure Dilemma

As detailed in Chapter 3 Section 3.2, literature approaches proposed for IoT failure manage-
ment expose several research gaps. In the realm of failure detection, ML models are commonly
employed but face constraints due to data availability and accuracy, given the complexity of
IoT systems. In terms of failure diagnosis, knowledge-based methods show promise but often
lack root cause identification. Turning to failure recovery, numerous frameworks exist but tend
to overlook IoT device diversity and connectivity protocols, relying heavily on costly device
replacement. Surprisingly, no comprehensive end-to-end framework integrates detection, diag-
nosis, and recovery in IoT failure management. Cascading failures are not adequately addressed,
and current approaches assume full control over IoT devices, overlooking real-world governance
complexities.

Moreover, our study of the capabilities of market DM solutions (see Chapter 3 Section 3.3)
in performing failure management shows they lack holistic solutions for IoT failure management,
highlighting the need for collaborative DM efforts to solve the cascading failure dilemma.

In this chapter, we present a collaborative and end-to-end failure management approach to
help DM actors effectively manage failures and solve cascading failure dilemmas using a co-
operative Multi-Agent System (MAS) (see Chapter 2 Section 2.3). More precisely, we rely on
cOllaborative caScading fAilure Management Agent (OSAMA), a semantic agent to be inte-
grated into the legacy DM platforms in order to help them understand, collaborate, and make
effective decisions regarding Cascading Failure Management (CFM). OSAMA exploits a set
of Semantic Web (SW) standards, such as ontologies, in order to simplify failure information
exchange and enhance the interoperability among siloed DM platforms. It leverages our previ-
ously presented solution of IoT dependency inference for failure root cause identification. Upon
failure, OSAMA agents start a collaborative protocol that allows them to automatically identify
the roots of the failures and recover the failed devices.

In the following, we illustrate the cascading failure dilemma using the smart home use case
presented in Chapter 1 Section 2.1. Then, we present our multi-OSAMA system for Collabora-
tive CFM: First, we show our modeling for OSAMA. Then, we discuss OSAMA’s capabilities
and functioning. Last, we provide the collaborative CFM protocol and show how it can be used
to solve cascading failure dilemmas. We note that the contributions described in this chapter
have been published at the in-use track of the 22nd International Conference of Semantic Web
(ISWC’23) [Guittoum, 2023a].

1 Illustration of Cascading Failure Dilemma

IoT failures (described in Chapter 3 Section 3.1) can generate multiple cascading failures when
occurring on interdependent IoT devices. Managing these cascading failures by siloed DM
actors is no longer obvious, especially with their limited failure management capabilities (see
Chapter 3 Section 3.3). Take the scenario presented in Figure 5.1 as an example, in which a
cascading failure occurs due to a high variance failure on the leak detector. The failure affects
the alarm and the water valve, which are state-dependent on the leak detector (see Rule 5
in Table 1.2). Additionally, the light bulbs are affected as they are state-dependent on the

97

Chapter 5. Solving The Cascading Failure Dilemma using A Semantic Multi-agent System

Figure 5.1: An example of cascading failure dilemma.

alarm, as per Rule 7. Such cascading failures pose a significant challenge for DM actors. In
this case, the alarm and light bulbs are managed by the Amazon DM platform, whereas the
water valve and leak detector are managed by the Orange DM platform (see Table 1.1). As a
result, these siloed DM actors cannot identify the failure’s root cause. Furthermore, the failure
recovery information is distributed across different device manufacturers: Kelvin and Philips,
which further complicates the situation.

Thus, there is a need for a collaborative DM solution for tackling cascading failure dilemmas
to effectively identify failure root causes and automate failure recovery.

2 Semantic Multi-OSAMA For Collaborative CFM

MAS enables the collaboration between multiple legacy systems by developing an agent wrapper
around them, enabling their participation in collaborative problem-solving and decision-making
processes (see Chapter 2 Section 2.3). Relying on this advantage, we propose a MAS to help
legacy DM solutions automatically manage cascading failure dilemmas. Our solution consists
of a set of cooperative agents called OSAMA to be integrated by DM actors in their legacy
solutions. It is conceived using the multi-agent-oriented programming paradigm including the
two dimensions: agent and environment dimensions (see Chapter 2 Section 2.3.1): 1) Within the
agent dimension, OSAMAs adopt a BDI model to handle cascading failures. They collaborate
according to a collaborative CFM protocol to recover from cascading failures that spread across
devices managed by different actors; 2) Within their environment, OSAMAs are provided by
four (04) Artifacts encapsulating external services that they can explore at runtime to ease CFM
(see Figure 5.2):

• Monitoring Artifact: Allows to monitor IoT devices and detect failures using legacy DM
platforms. Each OSAMA agent has its own monitoring artifact exposing the monitoring
capabilities of its legacy DM solutions.

98

2. Semantic Multi-OSAMA For Collaborative CFM

• Diagnosis Artifact: Allows to identify failure type and compensatory actions using Failure
Knowledge Base (FKB). Each OSAMA agent related to a DM actor, owning failure infor-
mation on its devices, has its own diagnosis artifact exposing an FKB including information
about device failures according to their type.

• Dependency Artifact: Thanks to Semantic Digital Twin (DT), this artifact allows au-
tomatic access to an accurate view of dynamic dependency relationships between IoT
devices in order to ease cascading failure root cause identification. It is shared between
the OSAMA agents allowing them to build collaboratively the global dependency topol-
ogy and use it for failure root cause identification. It relies on our framework described in
Chapter 4.

• Recovery Artifact: Allows to execute DM recovery actions on IoT devices using legacy DM
platforms. Each OSAMA agent has its own recovery artifact.

In the following, we discuss the OSAMA BDI model, OSAMA artifacts, and the Collabora-
tive CFM Protocol.

Figure 5.2: Overview of Semantic Multi-OSAMA For Collaborative CFM

2.1 OSAMA BDI model

The OSAMA design follows a BDI model, which is helpful in developing autonomous agents
in various domains thanks to its flexibility, robustness, and transparency [Silva, 2020]. As a
reminder (see Chapter 2 Section 2.3.1), the BDI agent model aims at programming rational
agents based on human mental attitudes of beliefs, desires, and intentions [Bratman, 1987;
Silva, 2020]. Beliefs correspond to an agent’s understanding of its surroundings, other agents,
and itself. Desires refer to the conditions an agent wants to achieve, and intentions are the
commitments to achieving those desires. In order to accomplish its desires, an agent utilizes a

1Symptoms refers to device characteristics describing device failed states such as memory usage.

99

Chapter 5. Solving The Cascading Failure Dilemma using A Semantic Multi-agent System

Table 5.1: OSAMA Internal and External Actions

Action Type Description

sendCF MRequest(devicei, OSAMAk) Internal

Send by the OSAMA that initiates
the recovery of a detected cascading failure
scenario requesting the OSAMAk to
check and recover the devicei.

responseCF MRequest(device, OSAMAk) Internal

Send by the OSAMA that participates
in the recovery of a cascading failure
scenario involving devicei, to the
OSAMAk, the initiator of the cascading
failure recovery.

requestDiagnosis(OSAMAk, devicei, S) Internal

Send by the OSAMA to request diagnosis
information from the OSAMAk for devicei

having the symptoms1 S, when it could not
perform diagnosis by itself.

getDiagnosisAgent(devicei) External

Allows an OSAMA to get candidate
OSAMAd able to perform diagnosis on
device devicei when it could not
perform diagnosis by itself.

getDeviceState(devicei) External
Allows an OSAMA to check whether
the devicei is failed or not by accessing
the monitoring artifact.

getDeviceSymptoms(devicei) External
Allows an OSAMA to get symptoms
of the devicei by accessing the
monitoring artifact.

getDependency(devicei) External
Allows an OSAMA to get a list
of devices to which the devicei depends
on by accessing the dependency artifact.

recover(recoveryAction, devicei) External
Allows an OSAMA to perform
the recoveryAction on the devicei

by accessing the recovery artifact.

diagnosis(devicei, symptoms) External

Allows an OSAMA to get diagnosis
information such as proposed recovery
action for the failed devicei based
on a set of symptoms by accessing
the diagnosis artifact.

collection of plans executed in specific contextual circumstances. These plans consist of a series
of actions that an agent must undertake, given the conditions implied by its belief base. The
belief base is updated based on events that the agent perceives from its surrounding environment.

Based on the explained BDI model terminology, we define the OSAMA as a tuple < Evt, Blf,

P l, Act >, where:

100

2. Semantic Multi-OSAMA For Collaborative CFM

• Evt= {evt1, evt2, ..., evtn} represents a set of failure events perceived by the OSAMA
through the monitoring artifact or reported by other OSAMAs during CFM. A failure event
evti = (devicek, sourceType, source), where sourceType indicates the failure is detected
by monitoring artifact or other OSAMA specified by source. Failure events allow the
OSAMA to update its Belief Base and take actions to handle failures.

• Blf = {blf1, blf2, ..., blfn} represents positive ground literals in a first-order logical lan-
guage describing IoT devices state such as blf i

j = failed(devicei) if devicei is failed,
recovered(devicei) otherwise. It is updated when receiving failure events or recovering a
failed device.

• Act represents a set of internal and external actions that the OSAMA performs for CFM.
Internal actions are executed by the OSAMA, while external actions access shared artifacts
that abstract external services deployed in the OSAMA environment (See Table 5.1).

• Pl= {p1, p2, ..., pn} represents OSAMA plans. A plan pi ≡ evt → Acti has an event evt,
including adding or deleting failure beliefs and receiving CFM requests. Such an event
triggers a subset of OSAMA actions Acti to handle failures and OSAMA requests.

2.2 Diagnosis Artifact

This artifact embeds an FKB that allows OSAMAs to get failure information such as possible
compensatory actions e.g., device reboot, given a set of failure symptoms such as failure code.

More precisely, this artifact uses the SPARQL query described in Listing 5.1, to perform
the diagnosis. We assume that each DM actor generates an FKB involving its governed failure
information (see Chapter 3 Section 3.3). These FKBs are built using an ontology called Internet
of Things Failure (IoT-F)2 (see Figure 5.3) that we developed using the ontology engineering
methodology NeOn [Suárez-Figueroa, 2012].

1 SELECT ? compensatoryAction
2 WHERE {
3 ? failureMode rdf:type iotf: FailureMode .
4 ? failureMode iotf: hasCompensatoryAction ? compensatoryAction .
5 ? failureMode iotf: happensAt ? deviceType .
6 OPTIONAL {? failureMode iotf: Symptom [Failure Symptoms ex: ? failureCode].

}
7 Filter ([a set of failure symptoms])
8 }

Listing 5.1: SPARQL Query for failure diagnosis.

The main purpose of the IoT-F ontology is to allow OSAMA agents to share a global under-
standing of heterogeneous and distributed failure information. However, it has other intended
usages: 1) connecting distributed and heterogeneous IoT failure diagnosis information governed
by different actors; 2) assist DM actors in structuring failure information, which is characterized

2https://w3id.org/iotf

101

https://w3id.org/iotf

Chapter 5. Solving The Cascading Failure Dilemma using A Semantic Multi-agent System

Io
T
-F
:F
a
il
u
r
e
M
o
d
e

Io
T
-F
:F
a
il
S
to
p

Io
T
-F
:N

o
n
F
a
il
S
to
p

Io
T
-F
:C
o
m
m
u
n
ic
a
ti
o
n
F
a
il
u
r
e

Io
T
-F
:D

e
v
ic
e
T
y
p
e

S
A
R
E
F
:D

e
v
ic
e

S
A
R
E
F
:S
e
n
s
o
r

S
A
R
E
F
:A
c
tu
a
to
r

S
A
R
E
F
:M

e
a
s
u
r
e
m
e
n
t

Io
T
-F
:F
a
il
u
r
e
C
a
u
s
e

Io
T
-F
:h
a
p
p
e
n
s
A
t

Io
T
-F
:h
a
s
E

e
c
t

Io
T
-F
:h
a
s
C
a
u
s
e

Io
T
-F
:h
a
s
C
o
m
p
e
n
s
a
to
r
y

A
c
ti
o
n

Io
T
-F
:S
y
m
p
to
m

Io
T
-F
:h
a
s
D
e
v
ic
e
T
y
p
e

S
A
R
E
F
:m

a
k
e
s
M
e
a
s
u
r
e
m
e
n
t

Io
T
-F
:F
a
il
u
r
e
E

e
c
t

Io
T
-F
:S
y
m
p
to
m

Io
T
-F
:C
o
n
n
e
c
ti
v
it
y
F
a
il
u
r
e

Io
T
-F
:S
o
ft
w
a
r
e
F
a
il
u
r
e

Io
T
-F
:H

a
r
d
w
a
r
e
F
a
il
u
r
e

Io
T
-F
:B
a
tt
e
r
y
F
a
il
u
r
e

Io
T
-F
:N

o
n
V
o
la
ti
le

M
e
m
o
r
y
E
r
r
o
r

Io
T
-F
:R
a
d
io
F
a
il
u
r
e

Io
T
-F
:B
L
E
F
a
il
u
r
e

Io
T
-F
:C
e
ll
u
la
r
F
a
il
u
r
e

Io
T
-F
:S
o
ft
w
a
r
e
U
p
d
a
te

Io
T
-F
:F
ir
m
w
a
r
e
U
p
d
a
te

Io
T
-F
:S
o
ft
w
a
r
e
R
e
s
ta
r
t

Io
T
-F
:H

a
r
d
w
a
r
e
R
e
s
ta
r
t

Io
T
-F
:C
a
li
b
r
a
ti
o
n

Io
T
-F
:H

ig
h
V
a
r
ia
n
c
e

Io
T
-F
:O

u
tl
ie
r

Io
T
-F
:S
p
ik
e

Io
T
-F
:S
tu
c
k
A
t

Io
T
-F
:O

m
is
s
io
n
F
a
il
u
r
e

Io
T
-F
:B
a
tt
e
r
y
L
e
v
e
l

Io
T
-F
:C
P
U
U
s
a
g
e

Io
T
-F
:M

e
m
o
r
y
U
s
a
g
e

Io
T
-F
:T
e
m
p
e
r
a
tu
r
e

Io
T
-F
:T
im

in
g
F
a
il
u
r
e

...

...

S
u
b
C
la
s
s
O
f

O
b
je
c
tP

r
o
p
e
r
ty

C
la
s
s

Fi
gu

re
5.

3:
Io

T
-F

:I
oT

Fa
ilu

re
O

nt
ol

og
y.

102

2. Semantic Multi-OSAMA For Collaborative CFM

by heterogeneity, incompleteness, and ambiguity [Steenwinckel, 2018]; 3) enable efficient
search for recovery plans, failure cause, and its impact thanks to the KG structure.

The IoT-F ontology reuses the standardized ontology SAREF. Its architecture is based on
two levels inspired by the work [Emmanouilidis, 2020]:

• Upper level: This level is based on the Failure Mode Effect Analysis (FMEA) 3 con-
cepts, which are related to a quality assessment methodology providing a generic model
for failure description in any domain of interest (see Chapter 3 Section 4.3). We reused
FMEA concepts proposed in [Emmanouilidis, 2020], which have been inspired by rele-
vant standards such as IEC608124 ISO133725, ISO133066, and ISO2041 7. It includes the
concept IoT-F:FailureMode representing IoT failures associated with an IoT device type
IoT-F:DeviceType, described by: a set of symptoms IoT-F:Symptom representing failure
symptoms, causes IoT-F:FailureCause, effects IoT-F:FailureEffect, and possible compen-
satory actions IoT-F:CompensatoryAction.

• Application-specific level: This level represents failures in IoT systems by specializing each
class in the upper level. To build the application-specific level, we reused a set of non-
ontological resources that describe relevant information about IoT failure, such as literature
taxonomies [Norris, 2022; Chakraborty, 2018; Sharma, 2010; Ozeer, 2019] for IoT failure,
failure cause, and recovery actions taxonomies (see Chapter 3 Section 3.1), and market
DM models mainly Matter8 and TR-1819 (see Chapter 2 Section 1.1.1) for IoT failure
symptoms specialization.

2.3 Dependency Artifact

This shared artifact allows OSAMA agents to identify failure root causes through the analysis
of dependency relationships among IoT devices. It incorporates our framework (see Chapter 4),
which enables automatic inference and analysis of dynamic dependency relationships among IoT
devices using semantic DT. Namely, the dependency relationships are represented through an
IoT Dependency Knowledge Graph (DKG) exposed as DT for OSAMA agents.

In this DKG, IoT device representations are annotated with information about the OSAMAs
that manage them, represented through Agent Communication Modality Ontology (ACMO) (see
Figure 5.4) that we developed. This annotation allows OSAMAs to communicate with each
other while exploring the DKG for failure root cause identification. The ACMO aims to model
communication modalities allowing agents within a multi-agent system to reach each other
regardless of their implementation technologies.

3https://asq.org/quality-resources/fmea
4https://webstore.iec.ch/publication/26359
5https://www.iso.org/standard/52256.html
6https://standards.globalspec.com/std/10272557/en-13306
7https://www.iso.org/standard/68734.html
8https://csa-iot.org/all-solutions/matter/
9https://usp-data-models.broadband-forum.org/

103

https://asq.org/quality-resources/fmea
https://webstore.iec.ch/publication/26359
https://www.iso.org/standard/52256.html
https://standards.globalspec.com/std/10272557/en-13306
https://www.iso.org/standard/68734.html
https://csa-iot.org/all-solutions/matter/
https://usp-data-models.broadband-forum.org/

Chapter 5. Solving The Cascading Failure Dilemma using A Semantic Multi-agent System

acmo:Agent

saref:Device

hctl:Form

xsd:string

xsd:string
xsd:string

foaf:Agent

acmo:Communication

 A ordance

td:Interaction

 A ordance

webSec:SecurityScheme

td
:h

asS
ecu

rit
y

Con
gura

tio
n

acmo:hasCommunicatio
n

A
ord

ance td:hasForm

acmo:manages

hctl:hasTarget

fo
a
f:n

a
m

e

acm
o:com

m
u
n
ication

N
am

e

SubClassOfObjectProperty Data Property

Figure 5.4: Agent Communication Modality Ontology

In order to build the ACMO, we studied communication modalities in different agent plat-
forms and standards such as FIPA 10, JaCaMo [Boissier, 2020], and DARPA [Patil, 1992]. As
a result, we found that agent communication modalities are often represented by agent name
or agent address. Thus, we chose to represent these communication modalities by the class
acmo:CommunicationAffordance, which extends the class td:InteractionAffordance of the Thing
Description (TD) ontology (Chapter 2 Section 2.1.1). The acmo:CommuincationAffordance can
be either the agent’s name or agent address including URI, port, or IP address, represented by the
class hctl:Form and its data property hctl:hasTarget. It is associated with each agent represented
by the class acmo:Agent through the object property acmo:hasCommunicationAffordance.

From a technical standpoint, OSAMA agents rely on the Orange DT platform Thing in,
providing a set of REST APIs to query the DKG when identifying failure root causes.

2.4 Monitoring and Recovery Artifacts

These artifacts embed monitoring and recovery functions of the legacy DM platform to allow
OSAMAs to monitor IoT devices, detect failures, and execute recovery actions. The monitoring
artifact proactively sends failure events to its associated OSAMA. The recovery artifact allows
OSAMAs to execute recovery actions remotely, thanks to the remote management capabilities of
legacy DM platforms. Note that we have chosen to reuse legacy DM platforms for monitoring and
recovery as most of them provide such capabilities (see Chapter 3 Section 3.3) [Sinche, 2020].
This could boost usability and save integration costs by avoiding developing a solution from
scratch, which consists of integrating heterogeneous IoT devices through APIs to be accessed
by OSAMAs for monitoring and recovery.

10http://www.fipa.org/

104

http://www.fipa.org/

2. Semantic Multi-OSAMA For Collaborative CFM

2.5 Collaborative CFM Protocol

Using the artifacts mentioned above, the OSAMAs collaborate with each other to solve cascading
failure dilemmas according to a collaborative CFM protocol. We specialized the OSAMA into
three different profiles, including OSAMA-SP, OSAMA-DMP, and OSAMA-MN, each having
specified missions and artifacts according to their FM capabilities (see Chapter 3 Section 3.3):
Service Provider (SP), DM Platform Provider (DMP), and Device Manufacturers (MN).

OSAMA-SP and OSAMA-DMP are responsible for managing cascading failure requests.
The first has full FM capabilities to manage failure on its devices. It collaborates with other
OSAMA-SPs and OSAMA-DMPs for CFM. The latter manages failures collaboratively with
OSAMA-MNs by requesting failure information owned by them.

Based on these profiles, the collaborative CFM protocol is described in Algorithm 1. The
protocol is executed by OSAMA-SP and OSAMA-DMP when a failure event is reported on a
device (line 2). OSAMA starts by updating the belief base in order to activate failure plans (line
3). Then, it requests device symptoms from the monitoring artifact (line 5). Next, depending
on its profile, it either performs the diagnosis by itself (lines 6-8) or requests a diagnosis from
other OSAMAs (lines 9-13) to get possible recovery actions. Next, it recovers the IoT device
by executing the proposed compensatory action using the recovery artifact (line 14). If the
device is still in a failed state (line 15), the OSAMA launches the plan for CFM: it queries the
DKG of the failed device (line 17); for each device in the , it requests cascading failure check
from OSAMA managing it (line 18-21). Requested OSAMA deals with requests following the
same algorithm by propagating on their turn the CFM request if they could not recover the
failure. They respond when no more devices exist to explore (lines 27-29). After receiving all
the responses, the OSAMA initiating the CFM request recovers the device (line 22) and notifies
the customer care service if it is still in a failed state (lines 23-25). Then, it updates its belief
base considering the device as recovered (line 26).

Let us illustrate the CFM protocol in the cascading failure dilemma presented in Chapter 5
Section 1. In this scenario, a high variance failure is detected in the light bulbs by Amazon’s
OSAMA. To address this issue, Amazon OSAMA requests assistance from Philips OSAMA, the
MN of the light bulbs, to diagnose and obtain recovery actions. Subsequently, Amazon OSAMA
executes the proposed recovery plan; however, the light bulbs still report a high variance failure.
The Amazon OSAMA assumes that the failure is due to a cascading failure and initiates the
CFM, which involves retrieving the DKG describing devices that the light bulbs depend on.
The DKG refers to the alarm device, which is managed by Amazon OSAMA. Collaboratively,
Amazon DKG and Philips OSAMA diagnose the alarm device and execute the recovery plan.
However, the alarm device still reports a high variance failure. Amazon OSAMA continues the
CFM approach by retrieving the DKG of the alarm device, which refers to the leak detector man-
aged by Orange OSAMA. Amazon OSAMA requests assistance from Orange OSAMA, which
collaboratively diagnoses the leak detector with the assistance of Kelvin OSAMA, the OSAMA
of the leak detector. After diagnosing and recovering the leak detector, Orange OSAMA noti-
fies Amazon OSAMA, which notices that the alarm and light bulbs have returned to normal,
successfully concluding the CFM request (see Figure 5.5).

105

Chapter 5. Solving The Cascading Failure Dilemma using A Semantic Multi-agent System

Algorithm 1 Collaborative CFM Protocol
1: BEGIN
2: if failure event evt = (devicei, sourceType, source) arrives then
3: Update the belief base Blf with predicate failed(devicei)
4: [Local Failure Plan]
5: S ← getDeviceSymptoms(devicei)
6: if Profile=SP then
7: recovery← diagnosis(devicei, S)
8: end if
9: if Profile=DMP then

10: OSAMAd← getDiagnosisAgent(devicei)
11: requestDiagnosis(OSAMAd, devicei, S)
12: Wait for proposed recovery action recovery from OSAMAd.
13: end if
14: recover(recovery, devicei)
15: if getDeviceState(devicei) = failed then
16: [Cascading Failure Plan]
17: DKG ← getDependency(devicei)
18: for (devicek, OSAMAk) in DKG do
19: sendCFMRequest(devicek, OSAMAk)
20: Wait for response OSAMAk

21: end for
22: recover(recovery, devicei)
23: if getDeviceState(devicei) = failed then
24: Notify customer care service
25: end if
26: Update the belief base Blf with predicate recovered(devicei)
27: if sourceType = OSAMA then
28: responseCFMRequest(devicei, source)
29: end if
30: end if
31: end if
32: END

106

3. Evaluation

Figure 5.5: CFM protocol illustration.

3 Evaluation

In this section, we present an extensive evaluation of our proposed solution including an evalu-
ation of OSAMA agents and the IoT-F ontology. In our evaluation of OSAMA agents, we aim
to answer the following questions: (1) How effectively can our OSAMA agents handle various
cascading failure scenarios?, (2) What is their performance in terms of computation time?, and
(3) What is the impact of using it instead of the Orange legacy DM solutions in terms of time to
repair failures and resource consumption?. To this end, we performed a qualitative evaluation
by checking how our OSAMAs perform regarding a set of cascading failure scenarios. Moreover,
we quantitatively evaluated the performance by measuring the completion time of the collab-
orative CFM protocol. In addition, we assessed the impact of using our solution on resource
consumption in IoT infrastructures, using our extension of the simulator iFogSim [Gupta, 2016]
that we refer to as FMSim 11 (see Appendix A).

To prove the quality of the IoT-F ontology, we provide a qualitative and quantitative evalu-
ation to assess its completeness and richness.

In the following, we present technical details and discuss evaluation results. We note that
the code source is available from GitHub 12.

11https://github.com/Orange-OpenSource/collaborativeDM-FM-Simulator/
12https://github.com/Orange-OpenSource/collaborativeDM-OSAMA-agent/

107

https://github.com/Orange-OpenSource/collaborativeDM-FM-Simulator/
https://github.com/Orange-OpenSource/collaborativeDM-OSAMA-agent/

Chapter 5. Solving The Cascading Failure Dilemma using A Semantic Multi-agent System

3.1 Technical Architecture

The technical architecture is described in Figure 5.6, we implemented the OSAMAs with the
JaCaMo framework (version 1.1)13, which allows adaptable and scalable MAS management
and coordination in complex environments [Boissier, 2020]. Within the JaCaMo framework,
the CFM protocol described in Algorithm 1 is implemented using the Jason14 BDI technology
allowing OSAMA agent to handle failure events in a parallel and coherent manner. The OSAMAs
artifacts are implemented with the Cartago15 technology that allows agents to access resources
and services within their shared environment.

Figure 5.6: Technical Architecture of Multi-OSAMA agents.

We associated to each OSAMA agent a Private Workspace that includes its private arti-
facts such as Recovery and Monitoring Artifacts for OSAMA-DMP and Diagnosis Artifact for
OSAMA-MN. These artifacts are deployed in the DM actor infrastructure. Regarding shared
artifacts namely Dependency Artifact, it is installed in a shared workspace that can be deployed
in an edge device such as Orange LiveBox. We leverage the framework JaCaMo-Rest16 to allow
agent distribution on multiple nodes. Reasoning in the diagnosis artifact is implemented with
Apache Jena (version 3.4.0)17. To better represent a multi-actor deployment, we deployed the
OSAMAs associated with the smart home use case (see Chapter 1 Section 2.1) in an Orange
cloud infrastructure with the following resource: 1000 MIPS as CPU and 2GB as requested
memory. The Figure 5.7 describes the deployment architecture of OSAMA agents present in the
use case 18.

13https://github.com/jacamo-lang/jacamo
14https://jason.sourceforge.net/wp/
15https://cartago.sourceforge.net/
16https://github.com/jacamo-lang/jacamo-rest
17https://github.com/apache/jena
18As distributed artifacts are not implemented yet in JaCaMo, we duplicated the deployment of the dependency artifact in each agent.

108

https://github.com/jacamo-lang/jacamo
https://jason.sourceforge.net/wp/
https://cartago.sourceforge.net/
https://github.com/jacamo-lang/jacamo-rest
https://github.com/apache/jena

3. Evaluation

Fi
gu

re
5.

7:
D

ep
lo

ym
en

t
A

rc
hi

te
ct

ur
e

of
O

SA
M

A
ag

en
ts

in
th

e
C

lo
ud

.

109

Chapter 5. Solving The Cascading Failure Dilemma using A Semantic Multi-agent System

3.2 Qualitative Evaluation

3.2.1 OSAMA agents Qualitative Evaluation

The qualitative evaluation has been performed on the smart home use case presented in Chap-
ter 1 Section 2.1, by checking how our OSAMAs perform regarding cascading failure scenarios
presented in Table 5.2. As described above, the smart home includes 17 IoT devices managed
by five DM actors and interconnected through 46 dependencies described by the DKG. Each
DM actor was associated with an OSAMA agent. The experiment involved injecting failures
in OSAMA agents’ belief bases and letting them perform CFM. We validated the accuracy of
these results through human-based verification of recovery logs, affirming their correctness.

Table 5.2: Cascading Failure scenarios

Scenario Root cause Impacted devices Detected at

1 High Variance on the
leak detector

Alarm
Water Valve
Light bulbs

Light bulbs

2 High Variance
on Smoke sensor

Alarm
Light bulbs
door
windows

Door

3 Stuck at no motion on
the motion sensor

Light control
unit
Light bulb

Light bulbs

4 Outlier on the
temperature sensor

Window
Airconditioner Airconditioner

5 Stuck at smoke detected
on the smoke sensor

Alarm
Light bulbs
Door
Windows

Alarm

6 Spikes on the
temperature sensor

Window
Airconditioner Airconditioner

7 Fail stop on the
Wi-Fi repeater

Alarm,
light bulb
smoke sensor,
water valve

Alarm

8 Stuck at leak detected
on the leak detector

Alarm
Water Valve
Light bulbs

Water valve

3.2.2 IoT-F Qualitative Evaluation

We followed the same methodology used for the evaluation of the IoT-D ontology through Com-
petency Questions (CQ) and executing SPARQL queries against the instances of the ontology to

110

3. Evaluation

determine if the defined ontology can effectively address these CQs. In this study, we identified
a total of 08 CQs (see Table 5.3). Subsequently, we formulated a series of SPARQL queries

Table 5.3: Part of the identified CQs.

No. Competency Question

CQ1 What are IoT device Types available in the FKB?

CQ2 What are failure modes on a given IoT device type?

CQ3 What are symptoms of a given failure mode?

.. ..

CQ08 What are possible failure mode and their compensatory
actions given a set of symptoms?

for each CQ. The Listing 5.2 presents an example of a SPARQL query allowing to answer the
competency question CQ08. We make available online all the competency questions with their
associated SPARQL queries.19

1 SELECT ? failureMode ? compensatoryAction WHERE {
2 ? failureMode a iotf: FailureMode .
3 ? compensatoryAction a iotf: CompensatoryAction .
4 OPTIONAL {? failureMode iotf: Symptom [Failure Symptoms ex: ? failureCode].

}
5 Filter ([a set of failure symptoms]) }

Listing 5.2: SPARQL Query

Finally, we executed the specified SPARQL queries using the Protégé SPARQL endpoint on a
generated FKB 20 21. Notably, we found that the FKB built upon the IoT-F ontology successfully
provided answers to all the CQs. This result proves the IoT-F ontology’s completeness.

3.3 Quantitative Evaluation

3.3.1 CFM Performance Evaluation

We evaluate the performance of the collaborative CFM protocol performed by the use case
OSAMA agents in a cloud-based deployment. We measured the completion time of the collabo-
rative CFM protocol on cascading failure scenarios involving devices with different dependency
depths since this latter is the parameter that impacts the number of message exchanges between
the OSAMAs during the collaborative CFM. We found that it takes, on average 5s (see Figure
5.8), which we consider acceptable compared to the Orange legacy solution taking from 15 to 20
min according to Orange customer care service. Moreover, this performance can be enhanced

19https://github.com/Orange-OpenSource/collaborativeDM-IoTF-ontology-documentation/blob/
master/cqs-sparql.md

20https://github.com/Orange-OpenSource/collaborativeDM-OSAMA-agent/blob/master/
QualitativeEvaluation-ISWC/FKB-Kelvin.owl

21https://github.com/Orange-OpenSource/collaborativeDM-OSAMA-agent/blob/master/
QualitativeEvaluation-ISWC/FKB-Phillips.owl

111

https://github.com/Orange-OpenSource/collaborativeDM-IoTF-ontology-documentation/blob/master/cqs-sparql.md
https://github.com/Orange-OpenSource/collaborativeDM-IoTF-ontology-documentation/blob/master/cqs-sparql.md
https://github.com/Orange-OpenSource/collaborativeDM-OSAMA-agent/blob/master/QualitativeEvaluation-ISWC/FKB-Kelvin.owl
https://github.com/Orange-OpenSource/collaborativeDM-OSAMA-agent/blob/master/QualitativeEvaluation-ISWC/FKB-Kelvin.owl
https://github.com/Orange-OpenSource/collaborativeDM-OSAMA-agent/blob/master/QualitativeEvaluation-ISWC/FKB-Phillips.owl
https://github.com/Orange-OpenSource/collaborativeDM-OSAMA-agent/blob/master/QualitativeEvaluation-ISWC/FKB-Phillips.owl

Chapter 5. Solving The Cascading Failure Dilemma using A Semantic Multi-agent System

2 4 8 16
Dependency KG Depth

0

1000

2000

3000

4000

5000

6000

7000
C
o
m
p
le
ti
o
n
 T
im

e
 (
m
s)

Collaborative CFM Protocol

Figure 5.8: CFM completion time as a function of the DKG depth

by reducing message exchange between OSAMAs using learning capabilities such as predicting
the root cause of a cascading failure or offloading OSAMAs to the edge to reduce latency. The
DKG could also be deployed at the edge, as Thing in allows this feature.

Figure 5.9: Simulation Topology

3.3.2 OSAMA Impact on Resource Consumption

Failures in IoT infrastructures can result in a significant loss of resources, as they make the
infrastructure propagate useless and failed data and execute failed tasks. To show the impact
of OSAMA in reducing such resource loss, we compared the resource consumption of IoT in-
frastructures managed by OSAMAs with those managed by the Orange legacy DM solutions
using the simulator FMSim, our extension for the iFogSim simulator. The latter is a widely

112

3. Evaluation

Table 5.4: Resource Characteristics

Resource Speed (MIPS) RAM (GB) Uplink (MBPS) Downlink(MBPS)
Cloud 44800 40000 10000 10000
Gateways 500 1000 10000 10000

used Discrete Event Simulator for Fog and IoT because of its flexibility, scalability, and acces-
sibility [Perez Abreu, 2020]. It uses a Sense-Process-Act model based on sensors, application
modules, and actuators. Sensors send data to application modules deployed in Fog devices,
which send actions as events, a.k.a Tuple, to actuators according to a defined application logic.
However, iFogSim does not support failure simulation on IoT devices.

To this end, we developed FMSim, an extension for iFogSim allowing failure injection and
recovery simulation on IoT devices. We have been inspired by the failure injection method
proposed in the simulator CloudSimPlus that alters simulation data streams by injecting failure
events according to a probabilistic distribution [Nita, 2014]. We simulate failure recovery by
stopping failure events from the simulation data stream.

Config1 Config2 Config3 Config4
Configuration

101

102

103

R
e
so
u
rc
e
 G
a
in

Energy(MJoule)

Network Usage(Bytes)

Execution Time(s)

Cloud Cost(Million cost Unit)

Figure 5.10: Resources gain of using OSAMA instead of legacy solution

Table 5.5: Tuple Characteristics

Tuple Type CPU Length (MIPS) N/W Length
MOTION 1000 2000
LIGHT_CONTROL 100 100
LEAK 2500 2000
VALVE_CONTROL 14 500
ALARM_CONTROL 14 100
SMOKE 2000 2000

113

Chapter 5. Solving The Cascading Failure Dilemma using A Semantic Multi-agent System

Ta
bl

e
5.

6:
Si

m
ul

at
io

n
Pa

ra
m

et
er

s

P
ar

am
et

er
V

al
ue

R
ef

er
en

ce
Si

m
ul

at
io

n
T

im
e

02
da

ys
-

Tu
pl

e
ch

ar
ac

te
ris

tic
s

Ta
bl

e
5.

5

[M
ah

m
ud

,2
02

2;
G

up
ta

,2
01

6;
G

up
ta

,2
01

7;
N

aa
s,

20
18

]
R

A
M

M
od

ul
e

10
M

B
Fo

g
D

ev
ic

e
ch

ar
ac

te
ris

tic
s

Ta
bl

e
5.

4
Io

T
de

vi
ce

La
te

nc
y

1
m

s
G

at
ew

ay
La

te
nc

y
10

0
m

s

Se
ns

or
re

ad
in

g
di

st
rib

ut
io

n
-L

ea
k

de
te

ct
or

se
ns

or
:

1
de

te
ct

io
n/

da
y.

-M
ot

io
n

se
ns

or
:

1
de

te
ct

io
n/

4-
10

m
in

ut
es

.
-S

m
ok

e
se

ns
or

:
1

de
te

ct
io

n/
3

ho
ur

s.
H

um
an

ac
tiv

ity
tr

ac
e

Fa
ilu

re
Fr

eq
ue

nc
y

02
tim

es
/

da
y

[N
or

ris
,2

02
2]

Fa
ilu

re
T

yp
e

H
ig

h
Va

ria
nc

e,
St

uc
k-

at
-

Fa
ilu

re
D

ist
rib

ut
io

n
U

ni
fo

rm
C

lo
ud

Si
m

Pl
us

22
,[

N
ita

,2
01

4]
Fa

ilu
re

D
et

ec
tio

n
T

im
e

N
eg

lig
ib

le
-

T
im

e
to

re
pa

ir
Le

ga
cy

so
lu

tio
n

15
-2

0
m

in
ut

es
O

ra
ng

e
C

us
to

m
er

C
ar

e
Se

rv
ic

e

114

3. Evaluation

FMSim allows us to inject cascading failures (scenarios 1–6 described in Table 5.2) in simu-
lated IoT infrastructures with different configurations (see Figure 5.9). The different simulation
parameters are described in Table 5.6.

Relying on these configurations, we measure resource consumption in the two cases: 1)
The time to delete failure is set to OSAMA recovery time, and 2) The time to delete failure
is set to legacy solution recovery time, represented by the average of failure recovery time of
the Orange legacy solution taking from 15 to 20 min. Resource consumption is represented by
energy consumption, network usage, IoT application execution time, and the cost of executing
IoT applications in the cloud.

We report in Figure 5.10 the relative resource gain achieved by our approach compared
to legacy approaches deployed within the Orange organization. Specifically, in Configuration
4, we observed resource gains of 16 Mjoule, 650 bytes in terms of energy consumption and
network usage respectively, which indicates that managing failures on IoT infrastructure using
our solution instead of the legacy solution saves 16 Mjoule in energy consumption and 650 bytes
in network usage. These gains can be attributed to the faster repair time achieved by OSAMAs
compared to legacy solutions. As a result, OSAMAs enable swift recovery from resource-intensive
failures, such as High Variance, thereby reducing resource loss in IoT infrastructure. Simulation
traces are available from GitHub 23 to allow result reproducibility.

3.3.3 IoT-F Quantitative Evaluation

We assessed the quality of the IoT-F ontology using the OntoQA methodology, which we have
used to evaluate the IoT-D ontology (see Chapter 4 Section 4.2.2).

We compared the OntoQA results of the IoT-F ontology with the FOLIO ontology results.
The latter is the only found ontology representing failures among IoT devices [Steenwinckel,
2018]. The result (see Table 5.7) shows that the IoT-F ontology outperforms the FOLIO ontology
for the IR and AR OntoQA metrics. This signifies that our ontology represents a wider range
of knowledge and more knowledge per instance than FOLIO ontology, allowing richer failure
knowledge representation. The IoT-F ontology has a lower RR i.e., it includes more rdfs:subclass
relationships than object property relationships, as it provides a richer taxonomy of failures and
recovery actions compared to the FOLIO ontology.

Table 5.7: OntoQA Evaluation results IoT-F ontology.

Ontology C SC AT P RR AR IR

FOLIO 29 22 3 19 0,46 0,10 0,76

IoT-F 38 33 13 5 0,13 0,34 0,87

23ISWCMaterial/SimulationTraces

115

ISWC Material/Simulation Traces

Chapter 5. Solving The Cascading Failure Dilemma using A Semantic Multi-agent System

4 Conclusion

In this chapter, we presented our practical solution to help market DM actors address the
dilemma of IoT cascading failures. It consists of a set of cooperative agents called OSAMAs,
allowing siloed DM actors to manage cascading failures in an automatic and coordinated manner.

We considered several design choices to ease and accelerate the adoption of the proposed
solution by market DM actors, such as 1) the adoption of the BDI model that reflects human-
like behavior, which eases the integration of the proposed solution by the DM actors, 2) the
use of the FMEA model to design the IoT-F ontology, which has shown its usability in the
literature based on a System Usability Scale (SUS) tests [Emmanouilidis, 2020], 3) the reuse
of legacy platform features within the OSAMA agent for monitoring and recovery to save costs
and accelerate integration efforts, and 4) the respect of legacy failure management data and
processes governance within each DM actor.

In the upcoming chapter, we will showcase a tangible demonstration of our work: the Col-
laborative LAN Troubleshooting. This demonstration has been developed in collaboration with
other teams at Orange Innovation, aiming to exemplify and apply the outcomes of our current
research within an industrial context at Orange.

116

Chapter 6
Collaborative LAN Troubleshooting
Demonstration

In this chapter, we shed light on the concrete demonstration of our work, the Col-
laborative LAN Troubleshooting demonstration. This innovative demonstration was
developed in partnership with other teams at Orange Innovation to effectively high-
light the outcomes of our current research within an industrial context at Orange.

Summary

Contents
1 Context and Motivation . 117
2 Technical Architecture . 118
3 Customer Care Agent Assistance: A User Story . 119

3.1 Targeted Cascading Failure Scenario . 123
3.2 Dependency Calculation . 123
3.3 Solving The Cascading Failure . 123

4 Conclusion . 127

1 Context and Motivation

Enhancing the Quality of Experience (QoE) stands as a pivotal component of the Orange strat-
egy. In this context, our proposed Collaborative LAN Troubleshooting demonstration unveils a
prototype of a transformative solution. Indeed, our main goal through this demonstration is
to elucidate how we can empower customer care services, led primarily by Orange, through a
cutting-edge web-based supervision tool. This tool is designed to provide customer care agents
with the means to efficiently manage cascading failures. By doing so, we aim to boost Orange
capacity to address customer concerns effectively.

More precisely, this demonstration integrates the contributions proposed by the present
research to enable both human-based and automated management of cascading failure in a

117

Chapter 6. Collaborative LAN Troubleshooting Demonstration

simulated 3D smart home build with the Orange Home Simulator.
In the following, we will present the technical architecture of the demonstration. Then, we

discuss a user story to highlight the usefulness of the proposed solutions in enhancing customer
care services.

2 Technical Architecture

As mentioned above, the proposed demonstration integrates the results of the presented work
into a web-based supervision tool to manage a simulated 3D Smart Home. The technical archi-
tecture is presented in Figure 6.1 . It includes six (06) components, namely Orange Home 3D
Simulator, Planner, Dependency Calculator, OSAMA supervision agents, Supervision UI, and
Request scheduler :

Orange Home

 3D Simulator

Planner OSAMA Supervision

Agent

Supervision UI

Dependency

 Calculator

Request Scheduler

Thing in The Future

Dependency

 KG

Start

Recovery

Start

Recovery

Inject FailureSend Sensor

Data

<MQTT Broker>

Send Recovery

Logs

Recieve

Recovery

Logs

Push dependency

into Thing'in
Calculate

dependency

Send failure/activity

commands
Send Sensor

Data

Calculate

dependency

Figure 6.1: Collaborative LAN troubleshooting - Technical Architecture

• Orange Home 3D Simulator : represents a simulated 3D home, developed using Unity tech-
nology1, that aims at generating simulated data at a smart home through the simulation
of human activity and their interactions with simulated sensors and actuators (see Fig-
ure 6.2). It includes two (02) floors with six (06) rooms: a living room, a kitchen, a toilet, a
bathroom, an office, and a bedroom, connected by a staircase, a walkway, and an entrance.
These rooms include 115 IoT devices connected with a gateway and WiFi-repeater. The
simulated smart home includes a user called Malcolm who interacts with the different IoT
devices within his daily activities. We assume that devices in the simulated smart home
are managed by four (04) actors: Orange, Philips, Kelvin Technology, and Amazon.

• Planner: represents a Python script allowing to plan the activities of Malcolm and the IoT
devices in the simulated 3D home by sending specific commands to trigger various events.
For instance, the command sendEvent("Relation:ActivitySit", [] , ["Malcolm", "Sofa"]) set
the state of Malcolm in sitting on the living room sofa.

1https://unity.com/fr

118

https://unity.com/fr

3. Customer Care Agent Assistance: A User Story

(a) Floor 01 (b) Floor 02

Figure 6.2: Orange Home 3D Simulator.

• Dependency Calculator: represents our framework for IoT dependency inference presented
in Chapter 4, which allows on-demand inference of dependency relationships in the simu-
lated 3D home.

• OSAMA supervision agents: represents our solution for automatic Cascading Failure
Management (CFM) presented in Chapter 5, allowing automatic and collaborative CFM
on the simulated 3D home. This component includes four (04) cOllaborative caScading
fAilure Management Agent (OSAMA) supervision agents associated with each DM actor,
namely OSAMA-Orange, OSAMA-Philips, OSAMA-Kelvin, and OSAMA-Amazon.

• Supervision UI: represents a web interface provided for customer care technicians to mon-
itor devices in the simulated 3D home by visualizing device data (see Figure 6.3). Upon
failure, the customer care technician may perform failure diagnosis using the dependency
calculator (see Figure 6.4) to identify the failure root cause or make the call to the OSAMA
supervision agents for automatic CFM (see Figure 6.5).

• Request scheduler: represents an MQTT Broker to link the Supervision UI with the differ-
ent components to allow displaying IoT device data and launching dependency calculation
and OSAMA-based failure recovery.

3 Customer Care Agent Assistance: A User Story

This section shows how a customer care agent may use the proposed tool to solve cascading
failure dilemmas based on the simulated 3D smart home.

119

Chapter 6. Collaborative LAN Troubleshooting Demonstration

Fi
gu

re
6.

3:
Su

pe
rv

isi
on

U
I

de
sc

rib
in

g
de

vi
ce

s
in

th
e

3D
H

om
e

sim
ul

at
or

s.
D

ev
ic

e
st

at
e

an
d

ou
tp

ut
s

ar
e

al
so

di
sp

la
ye

d
w

ith
in

th
is

vi
ew

to
al

lo
w

th
e

de
te

ct
io

n
of

fa
ilu

re
s

in
se

ns
or

da
ta

su
ch

as
hi

gh
va

ria
nc

e.

120

3. Customer Care Agent Assistance: A User Story

Fi
gu

re
6.

4:
D

ep
en

de
nc

y
C

al
cu

la
to

r
U

I
cu

rr
en

tly
em

be
ds

th
e

T
hi

ng
in

pl
at

fo
rm

to
al

lo
w

de
pe

nd
en

cy
in

fe
re

nc
e

on
th

e
3D

sim
ul

at
ed

Sm
ar

t
H

om
e.

It
al

lo
w

s
th

e
qu

er
y

of
th

e
Io

T
D

ep
en

de
nc

y
K

no
w

led
ge

G
ra

ph
(D

K
G

)
th

ro
ug

h
th

e
T

hi
ng

in
pl

at
fo

rm
.

121

Chapter 6. Collaborative LAN Troubleshooting Demonstration

Fi
gu

re
6.

5:
O

SA
M

A
Su

pe
rv

isi
on

A
ge

nt
U

Ii
nt

eg
ra

te
th

e
fo

ur
(0

4)
O

SA
M

A
ag

en
ts

m
an

ag
in

g
th

e
sim

ul
at

ed
3D

ho
m

e
na

m
el

y
O

ra
ng

e,
A

m
az

on
,

Ph
ill

ip
s

an
d

K
el

vi
n.

It
di

sp
la

ys
re

co
ve

ry
lo

gs
in

cl
ud

in
g

m
es

sa
ge

ex
ch

an
ge

be
tw

ee
n

th
e

di
ffe

re
nt

O
SA

M
A

ag
en

ts
.

122

3. Customer Care Agent Assistance: A User Story

3.1 Targeted Cascading Failure Scenario

Malcolm, the user of the smart home, noticed the alarm device installed in the entrance of his
home starts to behave in a chaotic manner. As the alarm device is managed by Orange, Malcolm
calls the Orange customer care service to inquire about the alarm recovery.

3.2 Dependency Calculation

To address this issue, the customer care agent relies on our proposed tool and initiates the reso-
lution process by calculating the device dependency relationships within the smart home system
using the suggested portals. This generates a comprehensive DKG that includes information
about devices and their dependencies, stored within the Thing in platform as Digital Twin
(DT) (see Figure 6.6). Subsequently, the customer care agent formulates a query based on the
resulting DKG to specifically identify the devices on which the alarm relies. This query, detailed
in the provided Listing 6.1, yields a visual representation (see Figure 6.7) illustrating the alarm’s
dependency on four smoke sensors installed in the living room, the bedroom, the office, and the
kitchen.

1 {
2 "query": [
3 {
4 "$iri": "http :// thingin . orange .com/

demoCollabTroubleShooting / entrance_alarm ",
5 "->http :// www. semanticweb .org/ OrangeLab / ontologies /2021/9/

IoTD# hasStateDependencyTo " : " objects "
6 },
7 {
8 " $domain ": "http :// thingin . orange .com/

demoCollabTroubleShooting /",
9 " $alias ": " objects "

10 }
11],
12 "view": {}
13 }

Listing 6.1: Dependency Identification Query.

3.3 Solving The Cascading Failure

To identify the source of the failure, the customer care technician may leverage the Supervision UI
to monitor the output data originating from the smoke sensors. Nevertheless, this methodology
may prove inefficient when tasked with assessing a substantial number of dependent devices.
For such cases, the customer care agent can automatically recover this cascading failure through
OSAMA supervision agents portal. This portal allows to display recovery logs (see Figure 6.8)
allowing to explain the results of the recovery, in order to ensure the system coherence.

123

Chapter 6. Collaborative LAN Troubleshooting Demonstration

Fi
gu

re
6.

6:
T

he
in

fe
rr

ed
D

ep
en

de
nc

y
To

po
lo

gy
,

fr
om

th
e

Si
m

ul
at

ed
3D

Sm
ar

t
H

om
e,

de
sc

rib
ed

by
th

e
D

K
G

.
It

in
cl

ud
es

18
3

de
pe

nd
en

cy
re

la
tio

ns
hi

ps
.

124

3. Customer Care Agent Assistance: A User Story

L
iv
in
g
R
o
o
m
_s
m
o
k
e
S
e
n
so

r

O

�

ce
_s
m
o
k
e
S
e
n
so

r

K
it
ch

e
n
_s
m
o
k
e
S
e
n
so

r

B
e
d
R
o
o
m
_s
m
o
k
e
S
e
n
so

r

E
n
tr
a
n
ce

_a
la
rm

Fi
gu

re
6.

7:
D

ep
en

de
nc

y
To

po
lo

gy
of

th
e

al
ar

m
de

vi
ce

,i
nc

lu
di

ng
th

e
sm

ok
e

se
ns

or
s

in
st

al
le

d
in

th
e

liv
in

g
ro

om
,t

he
be

dr
oo

m
,t

he
offi

ce
,a

nd
th

e
ki

tc
he

n,
w

hi
ch

ha
s

st
at

e
de

pe
nd

en
cy

to
th

e
al

ar
m

du
e

to
au

to
m

at
io

n
ru

le
s

th
at

la
un

ch
th

e
al

ar
m

up
on

de
te

ct
io

n
of

fir
e.

125

Chapter 6. Collaborative LAN Troubleshooting Demonstration

Fi
gu

re
6.

8:
R

ec
ov

er
y

Lo
g

O
SA

M
A

Su
pe

rv
isi

on
A

ge
nt

U
Id

isp
la

yi
ng

m
es

sa
ge

ex
ch

an
ge

be
tw

ee
n

th
e

O
SA

M
A

ag
en

ts
to

so
lv

e
th

e
al

ar
m

fa
ilu

re
.

126

4. Conclusion

4 Conclusion

In conclusion, the outlined chapter presented the Collaborative LAN Troubleshooting demon-
stration. The chapter has established the primary goal of this demonstration, which is to
augment Orange’s customer care services and then to improve Orange customers’ satisfaction.
The demonstration includes a web-based supervision tool, enabling the efficient management
of cascading failures. We presented the technical architecture of the demonstration and a user
story, illustrating the tangible and practical advantages of the proposed solutions in advancing
and optimizing customer care services within the Orange company.

127

Chapter 7
Conclusion

This chapter concludes this Thesis by summarizing our key contributions. Perspec-
tives and future work to extend the proposed approach are also discussed.

Summary

Contents
1 Summary of Contributions . 128
2 Perspectives . 129

2.1 Short term perspectives . 130
2.2 Medium term perspectives . 131
2.3 Long term perspectives . 133

This Thesis proposed an automatic and collaborative cascading failure management approach
for IoT devices managed by different DM actors. The approach aims to help market DM
actors reduce customer care costs and time to repair failures for better customer quality of
experience. In the following, we provide a summary of the proposed contributions. Then, we
discuss directions for future work in order to enrich and optimize the proposed solution and
favor its large adoption in the market.

1 Summary of Contributions

This section summarizes our contributions to design an automatic and collaborative Cascad-
ing Failure Management (CFM) approach for IoT devices managed by different DM actors.
We describe our story of building practical solutions and demonstrations to address industrial
challenges by relying on both theoretical assets provided by academia as well as cutting-edge
technologies available in the market.

First, we started by building an extensive literature review from an industry and research
perspective in which we identified research gaps in the IoT failure management domain. More-
over, we learned about cutting-edge technologies and tools and how they could be combined

128

2. Perspectives

to fulfill the identified research gaps. Then, we presented an interesting discussion about the
combination of Semantic Web (SW), Multi-Agent System (MAS), and Digital Twin (DT) to
enable autonomous decision-making on heterogeneous data governed by different actors and
organizations.

Then, to ease failure root cause identification, we proposed a framework enabling automatic
and collaborative inference of dependency relationships between IoT devices managed by dif-
ferent DM actors. The proposed framework relies on our proposed ontology named Internet
of Things Dependency (IoT-D), facilitating a unified representation of IoT dependencies across
heterogeneous DM solutions, to automatically construct the global dependency KG, a.k.a IoT
dependency topology, through a sequential three-step process: Context Extraction, Entity Res-
olution, and Dependency Inference. The initial step extracts context data from existing DM
solutions and transforms it into KGs, the second aggregates the extracted context KGs, and the
final step deduces the IoT dependency topology from the aggregated context KGs. The global
IoT dependency topology is exposed as a DT view for DM actors using the Orange DT platform
Thing In The Future (Thing in).

We validated the proposed framework by inferring the IoT dependency topology in simulated
and realistic smart home scenarios managed by multiple DM actors.

After that, we proposed the muti-OSAMA agents, a semantic MAS, to enable collaborative
and automatic CFM on IoT devices managed by different actors. We developed cOllaborative
caScading fAilure Management Agent (OSAMA), a semantic agent to be integrated into the
legacy DM platforms in order to help them understand, collaborate, and make effective decisions
regarding CFM. OSAMA exploits a set of Semantic Web standards, such as ontologies, in order
to simplify failure information exchange and enhance the interoperability among siloed DM
platforms. It leverages the Semantic DT technology, modeling dynamic dependency relationships
among IoT devices for failure root cause identification. Upon failure, OSAMA agents start a
collaborative protocol that allows them to automatically identify the roots of the failures and
recover the failed devices. We proved the efficiency of this solution by solving several cascading
failure dilemmas in simulated smart home scenarios managed by multiple DM actors. We also
demonstrated its added value compared to legacy DM solutions according to time to repair
failures and resource consumption in IoT infrastructures.

Relying on the proposed solutions, we developed the Collaborative LAN Troubleshooting
demonstration that integrates our proposed contributions into a web-based supervision tool
aiming to help in the management of cascading failures. Through this demonstration, we pre-
sented a user story illustrating the tangible and practical advantages of the proposed solutions
in advancing and optimizing customer care services within the Orange company.

2 Perspectives

This section presents various paths to address the limitations, enhance the current work, and
guide the trajectory for the large adoption of the proposed solutions in the DM market.

129

Chapter 7. Conclusion

2.1 Short term perspectives

2.1.1 Agent-based extraction of IoT dependency topology

One of the main limitations of our framework is that DM actors should manually publish and
maintain extraction modalities within our framework for IoT dependency inference. Despite
being inspired by the ITU-T Recommendation Y.4459 [ITU-T, 2020] for information exchange
between isolated organizations in the form of digital entities, manual data sharing may impact
the coherence of the generated context KGs and the fidelity of the constructed digital twins.
Moreover, sharing information describing different dependencies among IoT devices may intro-
duce problems regarding data governance for DM actors.

An alternative solution for these limitations is to provide OSAMA agents with proactive ca-
pabilities either for maintaining the extraction modalities or to deploy and maintain distributed
digital twins describing dependencies in their systems. In this case, OSAMA agents may query
digital twins of each other for failure root cause identification.

2.1.2 More shared artifacts to value Orange Home Services

In the current stage of our solution, we have proposed the shared artifact Dependency artifact for
DM actors, allowing to value digital twins and federation services provided by Orange. Other
shared artifacts may be proposed relying on Orange platforms and services such as anomaly
detection artifact, an Orange service to detect anomalies on IoT devices, to help DM actors
detect anomalies using network traffic analysis on the Orange LiveBox. Another proposed
artifact would be the Flamingo artifact, integrating the Orange platform Flamingo which is
an innovative platform allowing to execute DM operations on multiple DM platforms. In this
case, DM actors should integrate their DM platforms into the Flamingo platform so that the
identified recovery actions will be sent to the Flamingo platform, where they will be executed
in coherent order on the dependent IoT devices. The use of the Flamingo artifact may be
also useful for devices that are not integrated into a specific DM platform. In this case, proxy
capabilities of the Flamingo platform may be used to integrate them and enable their remote
recovery.

2.1.3 Declarative RDF generation using RML

Another limitation in our proposed solutions is the use of dedicated scripts to generate RDF
triples of the context KG, which adds barriers to integrating DM data sources using new tech-
nologies and data models. Alternatives to address this problem could explore the use of RDF
Mapping Language (RML) rules [Dimou, 2014]. They are based on a fully declarative approach
for the KG generation process, which is adaptable to additional data sources [Rojas, 2021a].
This reduces maintenance and integration costs.

130

2. Perspectives

2.1.4 Verification of the CFM protocol

Ensuring the coherence of the CFM protocol in recovering cascading failures on interdependent
IoT devices is necessary to consider to ensure the consistency of IoT infrastructures managed
by OSAMA agents. This may include the consideration of tricky communication situations
between OSAMA agents when executing the CFM protocol. For instance, consider the deadlock
situations where a set of OSAMA agents are blocked because each OSAMA agent is receiving
a CFM request and waiting for another CFM request answer occupied by some other OSAMA
agents. We have studied some of these tricky situations using an experimental approach. The
results are provided in Appendix B. We found that some of these situations may be handled by
default within the JaCaMo framework. Other cases should be considered at the development
level. A potential path to formally verify the correctness of the CFM protocol would be the
exploration of Model Checking approaches [Ozeer, 2019].

2.1.5 Tests on realistic scenarios

We validated our solutions on simulated IoT infrastructures using generated failure information.
To further prove the efficiency of the proposed solution, tests on realistic IoT infrastructures
should be considered, with the use of realistic DM platforms such as Amazon Web Service (AWS)
and LiveObjects, and the consideration of realistic failure information that may be retrieved
within customer care services in Orange or Orange partners.

2.2 Medium term perspectives

2.2.1 Handle uncertainty using Neuro-Symbolic AI

A limitation of our proposed approaches for ER and dependency inference is that it relies on
symbolic AI, which involves manipulating symbols based on predefined rules, and is often used to
represent and reason about knowledge in a structured manner. However, real-world knowledge
is inherently uncertain. Neuro-symbolic AI can incorporate uncertainty into symbolic repre-
sentations, allowing for the modeling of imprecise or incomplete information. Neuro-symbolic
AI is an interdisciplinary approach that combines elements of symbolic reasoning with neural
network-based machine learning techniques [Garcez, 2023]. This integration allows for the rep-
resentation and manipulation of symbolic knowledge alongside the ability to learn from data,
making it well-suited to address uncertainty in various domains. To enable this integration for
our case, we could leverage the knowledge graph embedding with link prediction and knowledge
completion machine learning models to enable ER and dependency inference [Rivas, 2022].

2.2.2 CFM protocol optimization using learning

The performance of the CFM protocol could be optimized by reducing message exchange be-
tween OSAMA agents. A promising solution for that is to provide OSAMA agents with learning
capabilities. For instance, OSAMA agents associated with the DMP profile may leverage feder-
ative learning capabilities to build a model that learns on FKB of multiple MN OSAMA agents

131

Chapter 7. Conclusion

to avoid message exchange between DMP OSAMA agents and MN OSAMA agents for failure
diagnosis. Another solution is to use machine learning models to predict recovery actions based
on previous cascading failure recovery experiences given a failed device. This would avoid per-
forming failure diagnosis and IoT dependency topology exploration for certain cascading failure
scenarios.

2.2.3 Automatic Extraction of failure information

In our solution, we assume that FKB is built manually by MN experts. However, this task
could be time-consuming and impact the overall maintainability of the proposed solution. An
alternative solution could be to propose an automatic approach for FKB construction. This
approach may leverage natural language processing capabilities such as large language models
for named entity recognition [Li, 2020b] and relation extraction [Nasar, 2021], or any other text
extraction technologies such as optical character recognition. It can be provided as an additional
private artifact for MN OSAMA agents to allow them to automatically construct their FKB.

2.2.4 Handling multiple data store queries using Federative SPARQL

In our solution we consider that each device manufacturer acquires one FKB that can be ac-
cessed using SPARQL queries. To handle the situation where one device manufacturer publishes
multiple FKB that may be distributed on the web, SPARQL Federated Query 1 may be used,
allowing OSAMA agents to query multiple and distributed FKB. SPARQL Federated Query
is recognized as a W3C extending SPARQL for executing queries distributed over different
SPARQL endpoints.

2.2.5 Enabling an effective data governance using the Solid Framework

During the 28th birthday of the Web, Tim Berners-Lee, the inventor of the Web, wrote the
blog Three challenges for the Web, according to its inventor 2, explaining that one of the main
challenges of the Web is that the Web users are losing control of their personal data. Indeed,
the existing structure of the Web results in the centralization of power, with dominant entities
like Google or Facebook acting as identity providers. These centralized actors offer free services,
leveraging access to our personal data, which they then monetize. Not only do they manage our
identities within their own platforms, but they also extend this role to numerous third-party
applications. Consequently, these major players gather extensive data on our social interactions
and service consumption, extending well beyond their own primary offerings. To address this
issue, the Solid framework3 was created by Tim Berners-Lee at MIT, and it is now supported by
a W3C community group. Solid is an API standard that lets users store their data securely in
decentralized data stores, which can be shared with multiple applications according to specific
access control policies managed by the users themselves. This potential benefit of Solid for
individual users can be extended for organizations, enabling the decentralization of information

1https://www.w3.org/TR/sparql11-federated-query/
2https://webfoundation.org/2017/03/web-turns-28-letter/
3https://solidproject.org/about

132

https://www.w3.org/TR/sparql11-federated-query/
https://webfoundation.org/2017/03/web-turns-28-letter/
https://solidproject.org/about

2. Perspectives

and cooperative processes across siloed organizations. This benefit could open the door for
our solution to leverage the Solid framework as a tool for data governance and customized
collaboration across siloed DM solutions. Indeed, heterogeneous DM actors may adopt the Solid
framework to manage the access of the shared information related to failure and dependencies.
Thus, data access may be enabled according to the degree of partnership between different DM
actors.

2.2.6 Enhancing the traceability of OSAMA agents

To facilitate the integration of OSAMA agents into customer care services, ensuring their trace-
ability is crucial. In the demonstration detailed in Chapter 6, we illustrated how this could be
accomplished by logging the message exchanges of OSAMA agents during the failure recovery
process. To manage these logs more effectively, a knowledge graph can be utilized to store the
log data. This knowledge graph can be generated using the standardized ontology, PROV-O 4.

2.3 Long term perspectives

2.3.1 Cascading Failure Tolerance, Prediction, and Prevention

Our solution allows for cascading failure recovery when they appear. This means that the failed
IoT device or service will still be unavailable until the failure is recovered, which would impact
customer quality of service. To address this limitation, a cascading Failure tolerance approach
could extend our solution by failure tolerance techniques allowing to keep IoT services available
even in the presence of failures. One potential solution is to adapt failure tolerance techniques
proposed for distributed systems to the IoT context and the specifications of our solution (see
Chapter 3 Section 2). For instance, the use of checkpointing to save the correct state of IoT de-
vices to restore them in case of failure. This technique may be integrated into our solution using
a shared artifact that leverages the knowledge graph historization features provided by the Thing
in platform to store IoT devices correct states. The historized knowledge graph may be fed by
accessing siloed DM solutions. Other failure tolerance techniques may be considered such as de-
vice replacement by discovering devices providing the same features as the failed device using the
Thing in platform. The device reconfiguration technique may be used to automatically replace
the failed devices by coordinating DM operations on multiple DM solutions. It may be also used
to reconfigure the IoT system to enable cascading failure prevention. Device replacement and
reconfiguration may be integrated also as shared artifacts to be accessed by OSAMA agents for
cascading failure tolerance and prevention. These approaches may be enforced through failure
isolation techniques such as using the dependency KG to identify dependencies that could be
temporarily deactivated during failure recovery to stop the cascade and maintain some level of
operation. Moreover, different cascading failure management historical data may be leveraged
to predict the occurrence of cascading failure so that they can be prevented.

4https://www.w3.org/TR/prov-o/

133

https://www.w3.org/TR/prov-o/

Chapter 7. Conclusion

2.3.2 Integration of end users as an effective DM actor

In its current form, our solution targets DM actors as the main client, which corresponds to a
B2B business model. In some practical scenarios, end users are provided with mobile applications
that allow them to perform DM operations on their IoT devices. In other cases, IoT devices are
deployed by end users and are not integrated within a DM solution. These particular scenarios
need to be handled in our solution through the adoption of a B2B2C model, where end users
are considered effective actors and involved in the collaborative CFM. An OSAMA agent may
be associated with each end user to allow such transformation.

2.3.3 Toward Standardized IoT Failure Management

Since our solution involves the collaborative effort of multiple DM actors, the standardization
path may be a potential plan to foster its large adoption in the DM market. This may be
achieved by two main means: First, study the position of our solution regarding current stan-
dards and initiatives such as Matter 5 and Prpl 6, which are trendy initiatives in which Orange
is involved. Second, submit our solutions as a standard draft to standardization organizations in
which Orange is involved such as the European Telecommunications Standards Institute (ETSI)
or the Connectivity Standards Alliance (CSA) to enable collaborative improvement and widest
adoption of the proposed solution by several DM actors and experts. Another potential stan-
dardization plan would be the submission of IoT-D and IoT-F ontologies to the ETSI as an
extension of the standardized ontology SAREF modeling the IoT failure management domain.

2.3.4 Exploring other Collaborative DM use cases

As mentioned in Chapter 1 Section 2.2, several issues are generated due to the siloed management
of IoT devices by different DM actors. This brings us to investigate the Collaborative DM
paradigm, which aims to break DM silos and foster collaborative and digital processes to address
potential problems. In this work, we addressed the cascading failure problem. Future work
may consider the exploration of other use cases of Collaborative DM, such as coordinating DM
operations to avoid DM failures. This can be easily achieved by adopting our MAS architecture
with specific artifacts and collaborative protocols.

5https://csa-iot.org/all-solutions/matter/
6https://prplfoundation.org

134

https://csa-iot.org/all-solutions/matter/
https://prplfoundation.org

Appendix A
FMSim: IoT Failure Simulator

This part describes an experimental contribution of the thesis, which consists of the
FMSim simulator for IoT failure injection and recovery simulation.

Summary

1 Introduction

The IoT has emerged as a transformative force, interconnecting an ever-expanding array of de-
vices and systems to enable seamless communication and data exchange. As IoT deployments
become increasingly integral to our daily lives and critical infrastructure, the need for robust
and resilient systems is more paramount than ever. This need can be fulfilled through the en-
hancement of IoT infrastructure by failure management and tolerance approaches. However,
validating such approaches at the design level is a challenging task. Indeed, failure injection in
IoT devices may result from deliberate actions, such as interrupting the power supply using a
smart plug for devices connected to wall sockets or utilizing an external power source modula-
tor circuit for battery-powered devices. However, subjecting these devices to repeated failure
injections for assessment purposes can be detrimental, leading to irreversible damage and defi-
nite failure. In such scenarios, simulating the failure of a device becomes crucial for inferential
analysis. There are some practical techniques for failure simulation such as employing a Fara-
day cage can block wireless communication for a wireless IoT device, and deliberately shutting
down the network interface of an IoT device allows the failure detection mechanism to deduce
its malfunction [Ozeer, 2019]. However, these techniques do not allow to simulate all type of
failures on IoT devices such as non-fail-stop failures (see Chapter 3 Section 3.1).

This chapter presents the new simulator FMSim tailored for IoT environments, specifically
designed to simulate IoT failure injection and recovery. This simulator is an experimental
contribution of our work that extends the iFogSim simulator [Gupta, 2016], a simulator for
IoT devices and applications, to allow failure injection and recovery simulation as well as the

135

Appendix A. FMSim: IoT Failure Simulator

quantification of resource consumption on an IoT or Fog computing infrastructure in the presence
of failures. The main goal is to allow the quantification of resource loss generated due to time-
consuming failures such as High Variance Failure (see Chapter 3 Section 3.1) as well as the
impact of failure recovery approaches in reducing such resource loss.

2 IoT simulators: State of the Art

On our road to building the FMSim simulator, we studied several simulators in the literature
according to several specifications (a.k.a simulation capabilities) representing different aspects
that we would like to simulate in order to validate our failure management solution: 1) the
capability to simulate IoT devices and their data; 2) the capability to simulate IoT applications,
especially the trigger-action platforms; 3) the capability to simulate dependencies between IoT
devices; 4) the capability to simulate failures and cascading failures; 5) the capability to simulate
recovery actions; 6) the capability to interact with simulator components during the simulation.

Our study relied on relevant research surveys in the area [Nayyar, 2015; DAngelo, 2016;
Chernyshev, 2017; Patel, 2019]. The results are depicted in Table A.1 describing the different
simulators we studied, compared according to our specifications. We concluded that there is
no simulator that covers all our specifications. This gap can be filled by building a multi-level
simulator that extends and combines existing simulators to address multiple specifications in
the simulation model.

Table A.1: Study of IoT Simulators

Capabilities
/Simulators Sensor Actuator IoT application Dependencies Failure injection

and recovery Interactive Open-Source
IoTIFY1 ✓ ✓ ✗ ✓ ✗ ✓ ✗
Bevywise IoT2 ✓ ✓ ✗ ✓ ✗ ✗ ✗
Cooja3 ✓ ✗ ✗ ✓ ✗ ✗ ✓
YAFS4 ✗ ✗ ✗ ✓ ✓ ✗ ✓
Fogify5 ✗ ✗ ✗ ✓ ✓ ✓ ✓
TiedNets6 ✗ ✗ ✗ ✓ ✓ ✗ ✓
Tiger7 ✗ ✗ ✗ ✓ ✓ ✗ ✓
NS-38 ✓ ✗ ✗ ✓ ✗ ✗ ✓
NetSim9 ✓ ✗ ✗ ✓ ✗ ✗ ✗
CloudSim10 ✓ ✗ ✗ ✓ ✗ ✗ ✓
CloudSimPlus11 ✓ ✗ ✗ ✓ ✓ ✗ ✓
iFogSim12 ✓ ✓ ✓ ✓ ✗ ✗ ✓

We have chosen to extend the open-source simulator iFogSim by failure injection and recovery
capabilities since it is the simulator that covers almost all of our specifications and it is easy to

1https://docs.iotify.io/
2https://www.bevywise.com/iot-simulator/
3\https://ns3simulation.com/contiki-cooja-simulator/
4\https://yafs.readthedocs.io/en/latest/
5https://ucy-linc-lab.github.io/fogify/
6\https://github.com/TiedNets/TiedNets
7\https://graph-tiger.readthedocs.io/en/latest/index.html
8\https://www.nsnam.org/
9\https://www.tetcos.com/index.html

10\https://github.com/Cloudslab/cloudsim
11\https://cloudsimplus.org/
12\https://github.com/Cloudslab/iFogSim1

136

https://docs.iotify.io/
https://www.bevywise.com/iot-simulator/
\ https://ns3simulation.com/contiki-cooja-simulator/
\ https://yafs.readthedocs.io/en/latest/
https://ucy-linc-lab.github.io/fogify/
\ https://github.com/TiedNets/TiedNets
\ https://graph-tiger.readthedocs.io/en/latest/index.html
\ https://www.nsnam.org/
\ https://www.tetcos.com/index.html
\ https://github.com/Cloudslab/cloudsim
\ https://cloudsimplus.org/
\ https://github.com/Cloudslab/iFogSim1

3. FMSim, an iFogSim extension

extend [Mahmud, 2022]. Moreover, it allows reproducible evaluation of resource consumption in
IoT infrastructure using various performance parameters such as energy consumption, latency,
response time, and network usage [Bala, 2020].

3 FMSim, an iFogSim extension

iFogSim is an open-source simulation toolkit developed specifically for modeling and simulating
fog computing environments. Fog computing extends cloud computing capabilities to the edge
of the network, closer to where data is generated and consumed. iFogSim allows researchers and
developers to design, model, and evaluate fog computing applications and infrastructures. It is
designed to simulate and study fog computing scenarios, considering factors such as data pro-
cessing at the edge, efficient resource management, and the dynamic nature of fog environments.
It provides a framework for modeling various aspects of fog computing, including IoT devices,
communication networks, and IoT application workflows. It is designed to be scalable, allowing
users to simulate large-scale fog computing infrastructures and evaluate the performance of ap-
plications in such environments. It allows for modeling and analysis of the energy consumption
of fog nodes, which is crucial for assessing the sustainability and efficiency of fog computing sys-
tems. iFogSim is built on CloudSim, another popular open-source cloud computing simulation
toolkit. This integration enables the modeling of interactions between fog and cloud comput-
ing resources. These relevant features make iFogSim widely used simulators by researchers and
practitioners to explore and experiment with various fog computing scenarios, optimize resource
allocation, and develop efficient algorithms for task scheduling and management in distributed
edge environments.

iFogSim’s technical architecture comprises three components, namely: physical component,
logical component, and management component (see Figure A.1). Physical components, includ-
ing sensors that generate tuples, akin to tasks in cloud computing, through event-driven task
generation. Intervals between tuples are determined by a specific distribution during sensor
creation. Actuators, on the other hand, receive these tuples. The logical components involve
AppModule, responsible for receiving, processing, and sending tuples, while AppEdge facilitates
linking and synchronization between two app modules and their input/output tuples based on a
fractional selectivity. AppLoop calculates end-to-end latency from one AppModule to another.
In the management component, the Controller oversees simulation execution, and the Mapping
Module Object establishes links between application modules. Controller, Sensor, and Actuator
inherit from the abstract component of CloudSim simulator SimEntity, while Tuple is inherent
from SimEvent. Relying on the same logic of extending CloudSim to iFogSim, we introduced new
simulation entities that inherit from the SimEntity and SimEvent as well as iFogSim component
to model failure injection and recovery. We have been inspired by the failure injection method
proposed in the simulator CloudSimPlus that alters simulation data streams by injecting failure
events according to a probabilistic distribution [Nita, 2014].

More precisely, we introduced FailureInjector and FailureRecoverer extending SimEntity to
inject and recover failure events represented by Failure that inherits from SimEvent (see Fig-

137

Appendix A. FMSim: IoT Failure Simulator

Figure A.1: Components of iFogSim [Gupta, 2016]

ure A.2). In order to integrate these entities into the other simulation entities in iFogSim,
we added FailedSensor and FailedActuator that extend the iFogSim components Sensor and
Actuator to handle failed events and recovery actions received from FailureInjector and Failur-
eRecoverer. Moreover, we introduced FailureController allowing to program failures and their
recovery on the simulator according to a specified distribution such as deterministic distribution.
We note that only high variance and stuck-at failures are considered in the current version of the
simulator. This could be easily extended to consider other failures, such as outliers and fail-stop
failures, thanks to our generic conceptual model.

FailureRecoverer

FMSim

CloudSim iFogSim

FailedSensor

FailedActuator

Sensor

Actuator

SimEntity

SimEvent

FailedController

Controller

Failure

FailureInjector

Figure A.2: FMSim conceptual model

138

4. Conclusion and Perspectives

4 Conclusion and Perspectives

In this chapter, we presented the FMSim, a simulator for IoT failure management. FMSim
extends the well-known simulator iFogSim through failure entities. We have been inspired by
the failure injection method proposed in the simulator CloudSimPlus that alters simulation
data streams by injecting failure events according to a probabilistic distribution [Nita, 2014].
We simulate failure recovery by deleting failure events from the simulation data stream. FMSim
allows for validating failure management approaches and quantifying their impact on resource
consumption of IoT infrastructures.

In its current version, FMSim considers a limited type of IoT failure. However, this may
easily handled thanks to its extensible design. Moreover, the current version is not interactive,
i.e., failure management approaches can not interact with simulation entities at runtime. The
simulation should be programmed after the execution of failure management approaches and
the use of time to repair failures as a means to program recovery actions on simulation entities.
Future work may handle this limitation by integrating interactive capabilities into simulation
entities through Threads for example.

We note that the current version of the FMSim is available from GitHub 13.

13https://github.com/Orange-OpenSource/collaborativeDM-FM-Simulator

139

https://github.com/Orange-OpenSource/collaborativeDM-FM-Simulator

Appendix B
Correctness verification of the Collaborative
CFM protocol

In this chapter, we present a correctness verification study of the proposed Cascading
Failure Management (CFM) protocol through an experimental approach allowing the
verification of its behavior regarding a set of challenging scenarios.

Summary

Contents
1 Introduction . 140
2 Challenging Scenarios . 141
3 Discussion . 141

1 Introduction

As we saw in Chapter 5 Section 2.5, cOllaborative caScading fAilure Management Agent
(OSAMA) agents rely on a distributed collaborative Cascading Failure Management (CFM)
protocol to manage automatically cascading failures. Designing this protocol proves challenging
and error-prone, primarily because of the extensively distributed nature of the IoT ecosystem
and DM solutions, necessitating a distributed architecture for effective failure management.
Consequently, the behaviors of distinct OSAMA agents run concurrently, adding complexity to
the approach’s design. As a result, validating the correctness of this distributed failure manage-
ment approach becomes paramount. In this chapter, we check the correctness of the proposed
CFM protocol through an experimental approach allowing the verification of its behavior regard-
ing challenging scenarios. We provide interpretations for the verification results and highlight
perspectives for enhancing the proposed CFM protocol. Finally, we provide a global discus-
sion on the verification and the validation of the proposed CFM protocol using model checking
approaches.

140

2. Challenging Scenarios

2 Challenging Scenarios

We elaborated a set of challenging scenarios describing tricky situations that OSAMA agents
may encounter when executing the collaborative CFM protocol. We ran a series of experiments
to verify the resilience of the collaborative CFM protocol regarding these challenging scenarios.
Table B.1 provides interpretations of the experiment results and highlights perspectives for
enhancing the proposed CFM protocol.

3 Discussion

The previous section showed how OSAMA agents perform within the collaborative CFM protocol
regarding challenging scenarios such as deadlocks. We concluded that most of the presented
challenges could be handled by our proposed solution thanks to our technical choice JaCaMo,
which is well suited for concurrent and parallel computing allowing OSAMA to handle parallel
CFM requests. Other challenging scenarios such as deadlocks could be easily handled at the
development level, or by enhancing our solution by more features that are described in Chapter 7.

To go one step further in the verification and validation of our solution, future work could
investigate the use of model checking approaches, which is a formal verification technique em-
ployed to ensure the correctness of complex systems by exhaustively exploring their state spaces
and verifying whether they satisfy specified properties [Ozeer, 2019]. This approach involves the
systematic examination of all possible states and transitions within a system model to determine
whether it adheres to desired behaviors or constraints. There are several model-checking ap-
proaches, each with its own methodologies and advantages. Symbolic model checking represents
states and transitions symbolically, leveraging decision procedures and binary decision diagrams
for efficient exploration of the state space. Temporal logic model checking utilizes temporal logic
to express properties, allowing for the verification of complex temporal relationships. Explicit
state model checking explores the state space explicitly, employing algorithms like depth-first or
breadth-first search. Bounded model checking focuses on a subset of the state space within fixed
limits, providing efficient error detection within a constrained exploration. Probabilistic model
checking extends the approach to handle systems with probabilistic transitions, accommodating
uncertainty in system behavior. Hybrid model checking integrates different techniques to handle
systems with both discrete and continuous components. The choice of model checking approach
depends on the specific characteristics and requirements of the system under consideration,
allowing for a tailored verification process [Clarke, 1997].

1https://www.w3.org/TR/shacl/

141

Appendix B. Correctness verification of the Collaborative CFM protocol

Table B.1: Challenging Scenarios for CFM protocol.

Challenge Verification Interpretation

Request Deadlock •✓(partially)

In the situation where two IoT devices (or more) are
dependent on each other forming a cycle topology
in such case OSAMA agents managing
such devices will counter a request deadlock problem,
which refers to the situation
where two or more OSAMA agents are waiting for the
response of each other for the same scenario of
cascading failure. Such a challenge is partially solved
in our solution, where only cycles of size two are handled
by allowing OSAMA agents to check whether the received
cascading failure request belongs to a device that the
managed device depends on. In such case, the OSAMA
agent will not send a request to this device instead it
recovers the managed device and answers with a deadlock
message. Cycle with a size greater than two needs to be
considered. For that, we suggest handling them technically
or checking that the dependency graph does not include
cycles. This may be achieved through SHACL shapes for
graph validation. 1

Failure of one OSAMA
agent or network distribution •✓

Time-out failures may occur when the requested OSAMA
agent fails or due to network disruptions. This problem
is solved thanks to the JaCaMo primitive wait allowing
to define a time-out on a request. After the defined
time out, the CFM request is stopped and the failure is
reported to the customer care service.

Parallel detection of a cascading
failure by multiple OSAMA agents •✓

Thanks to the concurrent and parallel exchange of
messages enabled by the JaCaMo framework,
OSAMA agents can handle parallel detection of a given
cascading failure dilemma in a coherent manner.
Nevertheless, in this scenario, devices undergo recovery
processes multiple times for the same cascading failure.
To address this concern, OSAMA may contemplate abstaining
from executing recovery actions that arrive within
the same time slot for the identical device.

Parallel CFM request arriving
on the same OSAMA agent •✓

Thanks to the concurrent and parallel exchange of
messages enabled by the JaCaMo framework,
OSAMA agents can handle multiple cascading failure
dilemmas simultaneously and in parallel manner.

No answers from the FKB •✓
In this situation, OSAMA agent notify the customer
care services.

Multiple answers from the FKB •✓

In this situation, OSAMA agent choose the first proposed
recovery action. This may be customized to choose the
less costly recovery action or the more effective one based
on the recovery history.

Parallel execution of
DM operation (recovery actions) To be handled

Parallel handling of multiple cascading failure dilemmas
may result in chaotic executions of DM operations on
IoT devices. This may generate DM failures on IoT
devices (see Chapter 1 Section 2.2) , which may handled by providing
OSAMA agents with more collaborative features allowing
them to coordinate DM operations on IoT
devices (see Chapter 7 Section 2.3.4).

No dependencies related to
the failed device or
Thing’in is not available

•✓
In this situation, OSAMA agent notify the customer
care services.

A device has no OSAMA-DMP
(is not integrated in
a given DM platform)

To be handled
This situation may be handled through the use of the
Orange platform Flamingo with proxy features
(see Chapter 7 Section 2.1.2) to integrate these devices.

142

Résumé en Français
1 Contexte et Problématique

Orange, en tant qu’opérateur de télécommunication, gère plus de 21 millions d’équipements
aujourd’hui principalement dans le domaine de la Maison Intelligente avec les passerelles Internet
et des décodeurs TV déployés chez ses clients. Ces équipements doivent être maintenus à jour et
réparés à distance grâce à des solutions informatiques appelées Device Management (DM), afin
d’assurer une meilleure Qualité d’Expérience (Quality of Experience, QoE) aux clients. Parmi
les indicateurs mesurant la QoE, nous trouverons le coût engendré par les appels au service client
et sa capacité à répondre, dans les meilleurs délais, aux demandes des clients à la suite d’une
panne survenue sur leurs équipements. Le service client classique repose sur une interaction avec
le client via des appels téléphoniques: Le client déclare la panne survenue sur son équipement.
Son interlocuteur utilise un ensemble d’outils pour identifier la source de la panne, et s’appuie
sur le système de DM pour lancer à distance des opérations de réparation sur l’équipement. Si la
panne persiste, l’interlocuteur programme une intervention technique. Cependant, ce processus
engendre un coût non-négligeable, en termes de temps et d’argent, impactant la QoE de clients.

Les circonstances d’impact sur la QoE de clients et d’augmentation de ces coûts seront
exacerbées avec l’avènement de l’Internet des objets (Internet of Things, IoT). En effet, la
quantité d’équipement IoT en 2025 est estimée à plus de 70 milliards selon Statista. De plus,
dans un système IoT complexe (i.e., usine intelligente, transport intelligent), les équipements IoT
seront de plus en plus interconnectés : soit pour assurer la connectivité, soit pour échanger des
informations. Ainsi, si une panne est survenue sur l’un des équipements, elle pourra être propagé
en cascade et impactera le fonctionnement de ceux qui lui sont dépendants. La résolution des
pannes en cascade est exacerbé lorsque les équipements sont gérés par des acteurs différent, ex.,
des opérateurs, des constructeurs d’équipements, et des fournisseurs de service, proposant chacun
son propre solution DM qui permet de gérer les pannes sur ces équipements. Ces solutions DM
isolée sont limités face au problème des pannes en cascade car ils manquent d’une connaissance
sur les liens de dépendances entre les équipements et un contrôle global sur les équipements. Ce
qui complique le diagnostique et la correction automatique des pannes en cascade.

Les pannes en cascade amèneront des dysfonctionnements sur d’autres équipements donc une
dégradation de la QoE, plus d’appels et une augmentation des coûts du service client. De plus,
les pannes en cascade engendrent des pertes d’énergie dans les environnements connectés: les
statistiques ont montré que 25-45% d’énergie des systèmes intelligents de chauffage, ventilation
et climatisation est gaspillée en raison de pannes [Najeh, 2019].

Dans ce cadre, cette thèse a pour objectif est d’aider les solutions DM existantes dans

143

Appendix B. Résumé en Français

la résolution des pannes en cascades. Plus précisément, nous visons à proposer une solution
collaborative et automatique permettant aux acteurs DM de gérer automatiquement les pannes
en cascade sur les équipements IoT interdépendants. Ceci afin d’assurer à la fois une meilleure
QoE aux clients (minimiser le temps de réparation), minimiser l’énergie perdue à cause des
pannes (enjeu environnemental), et assurer une meilleure maîtrise des coûts de service client
(réduire le nombre d’appels et les interventions techniques).

2 Contributions

Pour atteindre notre objectif, nous avons commencé par l’étude de l’état de l’art pour mieux
cerner et justifier nos questions de recherche. Et vu le contexte industriel, nous avons étudié
la possibilité de réutiliser l’existant chez Orange et dans le marché en termes de plateformes
et technologies pouvant servir et accélérer la construction de notre solution. En se basant sur
les synthèses ressorties de l’état de l’art, nous avons pu proposer trois contributions qui seront
présentées dans ce qui suit.

2.1 Un système de jumeau numérique sémantique pour l’inférence automa-
tique des dépendances entre les équipements IoT

La première contribution permet de faciliter la gestion des pannes en cascade en identifiant
automatiquement la topologie de dépendances entre les équipements IoT dans un environnement
connecté donné ex. Maison intelligente. La topologie de dépendances, qui décrit les équipements
IoT avec les liens de dépendances entre eux, sera utilisée par les acteurs DM pour identifier la
source des pannes en cascade et faciliter leur diagnostic.

Notre approche se base sur l’utilisation d’un ensemble de standards de Web sémantique et
la représentation des connaissances combinées avec la technologie de jumeaux numériques pour
permettre une représentation interopérable et fidèle de la topologie de dépendances entre les
équipements IoT. Plus précisément, la solution proposée repose sur une ontologie appelée Inter-
net of Things Dependency (IoT-D) qui permet une représentation partagée des dépendances IoT
à travers des solutions DM hétérogènes. L’ontologie IoT-D décrit un ensemble de données con-
textuelles décrivant les dépendances et les interactions entre les équipements IoT. En se basant
sur l’ontologie IoT-D, notre solution construit automatiquement le graphe global de dépendances
selon un processus en trois étapes (voir Figure B.1), à savoir Extraction de contexte, Résolution
d’entité, et Inférence de dépendance. La première étape extrait les données de contexte depuis
les solutions DM existantes et les transforme en graphe de connaissance, la deuxième agrège les
graphes de contexte extraites, et la dernière infère la topologie des dépendances IoT à partir des
graphes de contexte agrégés.

Notre solution s’appuie sur la plateforme de jumeau numérique d’Orange Thing In The
Future (Thing in) et est conçu pour être intégré aux services client des acteurs DM en tant
qu’outil d’aide à la décision pour aider à la gestion efficace des pannes en cascade, tels que
l’identification de la cause d’une panne en cascade.

144

2. Contributions

Device

manufucturer

Service

provider

Operator

Device

manufucturer

Service

provider

Operator

Threatening dependencies

data sources DM managers

(1) Context Extraction (2) Entity Resolution (3) Dependency Inference

Figure B.1: Un système de jumeau numérique sémantique pour l’inférence automatique des
dépendances entre les équipements IoT.

Nous avons développé une preuve de concept qui a permet d’identifier automatiquement la
topologie de dépendances entre les équipements IoT dans des maison connectées simulées et
réelles telle que l’appartement intelligente DOMUS2.

2.2 Un système multi-agent sémantique pour la correction automatique et
collaborative des pannes en cascade

Pour aller plus loin dans la gestion des pannes en cascade, nous avons proposé une deuxième con-
tribution permettant aux acteurs DM isolés de gérer les pannes en cascade de manière automa-
tique et collaborative, en s’appuyant sur notre première contribution développée pour l’inférence
des dépendances IoT. Cette solution consiste en un système multi-agent coopératif, qui fait
référence à un réseau d’agents logiciels opérant indépendamment tout en étant faiblement con-
nectés pour résoudre des problèmes complexes qui dépassent les capacités ou les connaissances
individuelles de chaque agent. Plus précisément, nous nous appuyons sur cOllaborative caScading
fAilure Management Agent (OSAMA), un agent sémantique à intégrer dans les plateformes DM
existantes afin de les aider à comprendre, collaborer et prendre des décisions efficaces concernant
la gestion des pannes en cascade (voir Figure B.2).

OSAMA exploite un ensemble de standard du Web sémantique, telles que les ontologies,
afin de simplifier l’échange d’informations sur les pannes et d’améliorer l’interopérabilité entre
les plateformes DM isolées. Il tire parti de la technologie de jumeau numérique, modélisant les
relations de dépendance dynamique entre les équipements IoT pour l’identification de la cause
des pannes. A la détection d’une panne, les agents OSAMA lancent un protocole collaboratif qui
leur permet d’identifier automatiquement les causes des pannes et de corriger automatiquement
les équipements en panne. Ils adoptent un modèle Belief Desire Intention (BDI) pour gérer
les pannes en cascade et collaborent selon un protocole collaboratif pour corriger les pannes en
cascade qui se propagent sur des équipements gérés par des acteurs DM différent.

Dans leur environnement partagé, les agents OSAMA sont fournis par quatre (04) Artéfacts
encapsulant des services externes qu’ils peuvent explorer à l’exécution pour faciliter la gestion des
pannes en cascade: 1) Artéfact de surveillance : permet de surveiller les équipements IoT et de

2https://www.liglab.fr/fr/recherche/plateformes/domus

145

 https://www.liglab.fr/fr/recherche/plateformes/domus

Appendix B. Résumé en Français

Figure B.2: Un système multi-agent sémantique pour la correction automatique et collaborative
des pannes en cascade

détecter les pannes à l’aide des plateformes DM existantes ; 2) Artéfact de diagnostic : permet
d’identifier le type de panne et ses actions correctives à l’aide d’une base de connaissances
sur les panne structurée selon une ontologie appelée Internet of Things Failure (IoT-F) ; 3)
Artéfact de dépendance : s’appuye sur notre solution de l’inférence de dépendance pour accéder
automatiquement à une vue des relations de dépendance entre les équipements IoT pour faciliter
l’identification de la cause des pannes en cascade ; 4) Artéfact de correction : permet d’exécuter
des actions correctives sur les équipements IoT à l’aide des plateformes DM existantes. Ces
agents OSAMA seront installés dans les infrastructures des acteurs DM du marché pour leurs
aider dans la gestion automatique des pannes en cascade et l’amélioration de leurs services client.

Nous avons prouvé l’efficacité de cette solution en résolvant plusieurs scenario de panne
en cascade dans des maisons connectés simulés gérés par plusieurs acteurs DM. Nous avons
également démontré sa valeur ajoutée par rapport aux solutions DM existante en termes de
temps de réparation des pannes et de consommation de ressources dans les systèmes IoT.

2.3 La démonstration "Collaborative LAN troubleshooting"

Pour valoriser nos travaux au sein de l’entreprise Orange, nous avons proposé la démonstration
pratique Collaborative LAN troubleshooting qui illustre l’utilité de nos travaux dans l’amélioration
des services client d’Orange. Cette démonstration illustre comment un agent de service client
Orange peut utiliser nos solutions pour le diagnostic et la résolution des pannes en cascade
à travers un outil de supervision Web (voir Figure B.3). Cet outil permet la supervision des
équipements IoT, le calcule automatique des dépendances entre les équipements IoT, ainsi que
la correction automatique des pannes en cascade à l’aide des agents OSAMA. Ce qui a permet
d’illustrer les avantages tangibles et pratiques des solutions proposées pour faire progresser et
optimiser les services client au sein de l’entreprise Orange.

146

3. Conclusion

Figure B.3: Interface Web de supervision.

3 Conclusion

3.1 Synthèse

Cette thèse a proposé une approche automatique et collaborative pour la gestion des pannes en
cascade des équipements IoT gérés par des acteurs différent. L’approche vise à aider les acteurs
DM du marché à réduire les coûts de service client et le temps de réparation des pannes, pour
une meilleure qualité d’expérience client.

Les travaux ont débuté par une revue approfondie de la littérature, identifiant les lacunes
de recherche et explorant des technologies avancées telles que le Web Sémantique, les systèmes
multi-agents, et les jumeaux numériques pour la prise de décision autonome. Ensuite, un nou-
veau outil d’inférence de dépendances a été introduit, exploitant une ontologie pour fournir une
représentation unifiée des dépendances IoT. La validation du cet outil a impliqué des simula-
tions et des scénarios réels, et son intégration avec la plateforme de jumeau numérique d’Orange
Thing in a facilité une visualisation tangible du jumeau numérique pour les acteurs DM.

Ensuite, le système multi-agent OSAMA a été proposé pour permettre une gestion collabo-
rative des pannes en cascade, démontrant son efficacité dans la résolution des panne en cascade
au sein de scénarios de maison intelligente. Les solutions ont également été présentées dans la
démonstration "Collaborative LAN Troubleshooting", illustrant les avantages pratiques pour les
services de support client au sein de l’entreprise Orange.

En résumé, les contributions de cette thèse couvrent des bases théoriques, des outils innovants
et des solutions pratiques et validées, abordant collectivement les complexités de la gestion des
pannes en cascade dans les écosystèmes IoT gérés par divers acteurs DM.

147

Appendix B. Résumé en Français

3.2 Perspectives

Notre solution est à l’étape de la preuve de concept, mais nous avons plusieurs plans pour
favoriser son adoption à grande échelle.

À court terme, plusieurs perspectives sont proposées. Tout d’abord, pour améliorer l’outil
d’inférence des dépendances, la possibilité de doter les agents OSAMA de capacités proactives
pour déployer des jumeaux numériques distribués est envisagée. De plus, l’introduction de plus
d’artefacts intègrant les outils d’Orange, tels qu’un artefact de détection d’anomalies basé sur
l’apprentissage automatique, est suggérée pour élargir les capacités des agents OSAMA. Une
étude sur la résilience du protocole collaboratif de gestion des pannes en cascade est proposée
pour assurer la cohérence globale de la solution. Des tests de scénarios réalistes à l’aide de
plateformes DM de marché telles que Amazon Web Service et LiveObjects sont préconisés pour
valider davantage l’efficacité des solutions proposées.

À moyen terme, les perspectives incluent la gestion de l’incertitude par l’IA neuro-symbolique,
l’optimisation du protocole collaboratif de gestion des pannes en cascade en utilisant des capac-
ités d’apprentissage, et l’exploration d’approches automatiques pour la construction des bases
de connaissances sur les pannes.

À long terme, l’accent est mis sur la tolérance aux pannes en cascade, la prédiction et la
prévention. Des techniques telles que le checkpointing, le remplacement d’équipements et la
reconfiguration sont suggérées pour maintenir les services IoT disponibles pendant les pannes et
renforcer la résilience globale du système. L’exploration d’une gestion standardisée des pannes
IoT est proposée. Cela pourrait être réalisé en étudiant la position de nos solutions par rapport
aux standards et initiatives actuelles, telles que Matter et Prpl. En outre, soumettre nos solutions
en tant que projet de standard aux organisations de standardisation auxquelles Orange participe,
telles que l’Institut européen des normes de télécommunications (ETSI) ou la Connectivity
Standards Alliance (CSA), est envisagé. Un autre plan potentiel de standardisation serait de
soumettre les ontologies IoT-D et IoT-F en tant qu’extension de l’ontologie normalisée SAREF
modélisant le domaine de la gestion des pannes IoT.

Enfin, d’autres perspectives à long terme incluent l’exploration de nouveaux cas d’utilisation
de DM collaboratif au-delà de la gestion des pannes en cascade, tels que la coordination des
opérations DM pour éviter les pannes DM. Cela pourrait être réalisé en adoptant notre archi-
tecture avec des artefacts et protocoles collaboratifs spécifiques.

148

Bibliographie

[Aïssaoui, 2020] François Aïssaoui, Samuel Berlemont, Marc Douet, and Emna Mezghani. “A Semantic Model
Toward Smart IoT Device Management”. Web, Artificial Intelligence and Network Applications. Ed. by Leonard
Barolli, Flora Amato, Francesco Moscato, Tomoya Enokido, and Makoto Takizawa. Cham: Springer Interna-
tional Publishing, 2020, pp. 640–650 (cit. on pp. 2, 20, 25, 33).

[Al-Ali, 2020] Abdul-Rahman Al-Ali, Ragini Gupta, Tasneem Zaman Batool, Taha Landolsi, Fadi Aloul, and
Ahmad Al Nabulsi. “Digital twin conceptual model within the context of internet of things”. Future Internet
12.10 (2020), p. 163 (cit. on p. 37).

[Ali, 2018] Nazakat Ali and Jang-Eui Hong. “Failure Detection and Prevention for Cyber-Physical Systems
Using Ontology-Based Knowledge Base”. Computers 7.4 (2018) (cit. on p. 68).

[Alsabilah, 2021] Nasser Alsabilah and Danda B. Rawat. “Anomaly Detection in Smart Home Networks Using
Kalman Filter”. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS). 2021, pp. 1–6 (cit. on pp. 60, 65).

[Alvisi, 1998] Lorenzo Alvisi and Keith Marzullo. “Message logging: Pessimistic, optimistic, causal, and opti-
mal”. IEEE Transactions on Software Engineering 24.2 (1998), pp. 149–159 (cit. on p. 54).

[Andy Stanford-Clark, 2019] Martin Harris Andy Stanford-Clark Erwin Frank-Schultz. What are digital twins?
https://developer.ibm.com/articles/what-are-digital-twins/. 2019 (cit. on p. 34).

[Antakli, 2023] André Antakli, Akbar Kazimov, Daniel Spieldenner, Gloria Elena Jaramillo Rojas, Ingo Zinnikus,
and Matthias Klusch. “AJAN: An Engineering Framework for Semantic Web-Enabled Agents and Multi-Agent
Systems”. Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The
PAAMS Collection. Ed. by Philippe Mathieu, Frank Dignum, Paulo Novais, and Fernando De la Prieta. Cham:
Springer Nature Switzerland, 2023, pp. 15–27 (cit. on p. 45).

[Arel, 2010] Itamar Arel, Cong Liu, Tom Urbanik, and Airton G Kohls. “Reinforcement learning-based multi-
agent system for network traffic signal control”. IET Intelligent Transport Systems 4.2 (2010), pp. 128–135
(cit. on p. 43).

[Armando, 2019] Ngombo Armando, Jose Fernandes, Soraya Sinche, Duarte Raposo, Jorge Sa Silva, and Fer-
nando Boavida. “A Unified Solution for IoT Device Management”. Vol. 2019-November. IEEE Computer So-
ciety, 2019 (cit. on p. 24).

[Arnaldo Perez, 2019] Arnaldo Perez. Leveraging the Beliefs-Desires-Intentions Agent Architecture. 2019 (cit. on
p. 40).

[Avsystem, 2023] Avsystem. “User Service Protocol”. Avsystem (2023) (cit. on p. 22).
[Ayeb, 2020a] Neil Ayeb. “Administration autonomique et décentralisée de flottes d’équipements de l’Internet

des Objets”. PhD thesis. Université Grenoble Alpes [2020-....], 2020 (cit. on p. 58).
[Ayeb, 2020b] Neil Ayeb, Eric Rutten, Sebastien Bolle, Thierry Coupaye, and Marc Douet. “Coordinated au-

tonomic loops for target identification, load and error-aware Device Management for the IoT”. 2020 15th
Conference on Computer Science and Information Systems (FedCSIS). 2020, pp. 491–500 (cit. on pp. 25, 58).

[Babalola, 2016] Adeniyi A Babalola, Rabie Belkacemi, and Sina Zarrabian. “Real-time cascading failures pre-
vention for multiple contingencies in smart grids through a multi-agent system”. IEEE Transactions on Smart
Grid 9.1 (2016), pp. 373–385 (cit. on p. 43).

[Babalola, 2014] Adeniyi Abdulrasheed Babalola. “Implementation of multi-agent system algorithms for dis-
tributed restoration and cascading failure blackout prevention in a smart grid system”. PhD thesis. Tennessee
Technological University, 2014 (cit. on p. 43).

149

https://developer.ibm.com/articles/what-are-digital-twins/

Bibliographie

[Bala, 2020] Mohammad Irfan Bala and Mohammad Ahsan Chishti. “Offloading in Cloud and Fog Hybrid Infras-
tructure Using iFogSim”. 2020 10th International Conference on Cloud Computing, Data Science Engineering
(Confluence). 2020, pp. 421–426 (cit. on p. 137).

[Bansal, 2011] Sanjay Bansal, Sanjeev Sharma, and Ishita Trivedi. “A Detailed Review of Fault-Tolerance Tech-
niques in Distributed System.” International Journal on Internet & Distributed Computing Systems 1.1 (2011)
(cit. on p. 54).

[Bella, 2022] Giampaolo Bella, Domenico Cantone, M Nicolosi-Asmundo, and Daniele Francesco Santamaria.
“The Ontology for Agents, Systems and Integration of Services: recent advancements of OASIS”. Proceedings
of WOA. 2022, pp. 1–2 (cit. on p. 45).

[Benazzouz, 2014] Yazid Benazzouz, Oum-El-keir Aktouf, and Ioannis Parissis. “A Fault Fuzzy-ontology for
Large Scale Fault-tolerant Wireless Sensor Networks”. Procedia Computer Science 35 (2014), pp. 203–212 (cit.
on p. 68).

[Benbernou, 2021] Salima Benbernou, Xin Huang, and Mourad Ouziri. “Semantic-Based and Entity-Resolution
Fusion to Enhance Quality of Big RDF Data”. IEEE Transactions on Big Data 7.2 (2021), pp. 436–450 (cit. on
pp. 79, 92).

[Berners-Lee, 1998] Tim Berners-Lee et al. Semantic web road map. 1998 (cit. on pp. 28, 29).
[Berners-Lee, 2001] Tim Berners-Lee, James Hendler, and Ora Lassila. “The semantic web”. Scientific american

284.5 (2001), pp. 34–43 (cit. on p. 28).
[Boissier, 2020] Olivier Boissier, Rafael H Bordini, Jomi Hubner, and Alessandro Ricci. Multi-agent oriented

programming: programming multi-agent systems using JaCaMo. Mit Press, 2020 (cit. on pp. 38, 42, 43, 104,
108).

[Boissier, 2013] Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and Andrea Santi. “Multi-
agent oriented programming with JaCaMo”. Science of Computer Programming 78.6 (2013), pp. 747–761 (cit.
on pp. 39, 42).

[Boje, 2020] Calin Boje, Annie Guerriero, Sylvain Kubicki, and Yacine Rezgui. “Towards a semantic Construc-
tion Digital Twin: Directions for future research”. Automation in Construction 114 (2020), p. 103179 (cit. on
p. 44).

[Bolle, 2019] Sébastien Bolle, Marc Douet, Samuel Berlemont, Emna Mezghani, and François Aïssaoui. Towards
a Unified IoT Device Management Federative Platform - Presentation at ETSI IoT Week 2019. https://www.
researchgate.net/publication/337160142_Towards_a_Unified_IoT_Device_Management_Federative_
Platform_-_Presentation_at_ETSI_IoT_Week_2019. 2019 (cit. on pp. 25, 33).

[Bordini, 2007] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons, 2007 (cit. on p. 40).

[Borhani, 2022] Alireza Borhani and Hamid R. Zarandi. “ThingsDND: IoT Device Failure Detection and Diag-
nosis for Multi-User Smart Homes”. IEEE, 2022, pp. 113–116 (cit. on pp. 60, 65).

[Bouchenak, 2005] S. Bouchenak, F. Boyer, D. Hagimont, S. Krakowiak, A. Mos, N. de Palma, et al. “Architecture-
based autonomous repair management: an application to J2EE clusters”. 24th IEEE Symposium on Reliable
Distributed Systems (SRDS’05). 2005, pp. 13–24 (cit. on p. 55).

[Bratman, 1987] Michael Bratman. Intention, Plans, and Practical Reason. Cambridge: Cambridge, MA: Har-
vard University Press, 1987 (cit. on pp. 40, 99).

[Budhiraja, 1993] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg. “The primary-backup
approach”. Distributed systems 2 (1993), pp. 199–216 (cit. on p. 54).

[Castaldi, 2003] Marco Castaldi, Antonio Carzaniga, Paola Inverardi, and Alexander L. Wolf. “A Lightweight
Infrastructure for Reconfiguring Applications”. Software Configuration Management. Ed. by Bernhard West-
fechtel and André van der Hoek. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 231–244 (cit. on
p. 55).

[Celik, 2019] Z. Berkay Celik, Gang Tan, and Patrick Mcdaniel. “IoTGuard: Dynamic Enforcement of Security
and Safety Policy in Commodity IoT”. Proceedings 2019 Network and Distributed System Security Symposium
(2019) (cit. on pp. 15, 16).

[Chakraborty, 2018] Tusher Chakraborty, Akshay Uttama Nambi, Ranveer Chandra, Rahul Sharma, Manohar
Swaminathan, Zerina Kapetanovic, et al. “Fall-Curve: A Novel Primitive for IoT Fault Detection and Isolation”.
Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems. SenSys ’18. Shenzhen, China:
Association for Computing Machinery, 2018, pp. 95–107 (cit. on pp. 57, 103).

150

 https://www.researchgate.net/publication/337160142_Towards_a_Unified_IoT_Device_Management_Federative_Platform_-_Presentation_at_ETSI_IoT_Week_2019
 https://www.researchgate.net/publication/337160142_Towards_a_Unified_IoT_Device_Management_Federative_Platform_-_Presentation_at_ETSI_IoT_Week_2019
 https://www.researchgate.net/publication/337160142_Towards_a_Unified_IoT_Device_Management_Federative_Platform_-_Presentation_at_ETSI_IoT_Week_2019

Bibliographie

[Charpenay, 2020] Victor Charpenay and Sebastian Käbisch. “On Modeling the Physical World as a Collection
of Things: The W3C Thing Description Ontology”. The Semantic Web 12123 (2020), pp. 599–615 (cit. on
p. 31).

[Charpenay, 2022] Victor Charpenay, Antoine Zimmermann, Maxime Lefrançois, and Olivier Boissier. “Hyper-
medea: A Framework for Web (of Things) Agents”. Companion Proceedings of the Web Conference 2022. WWW
’22. Virtual Event, Lyon, France: Association for Computing Machinery, 2022, pp. 176–179 (cit. on p. 45).

[Chatterjee, 2022] Ayan Chatterjee and Bestoun S. Ahmed. “IoT anomaly detection methods and applications:
A survey”. Internet of Things 19 (2022), p. 100568 (cit. on p. 59).

[Chen, 2015] Rong Chen, Zude Zhou, Quan Liu, Duc Truong Pham, Yuanyuan Zhao, Junwei Yan, et al. “Knowl-
edge modeling of fault diagnosis for rotating machinery based on ontology”. 2015 IEEE 13th International
Conference on Industrial Informatics (INDIN). 2015, pp. 1050–1055 (cit. on p. 67).

[Chen, 2017] Yingyi Chen, Zhumi Zhen, Huihui Yu, and Jing Xu. “Application of Fault Tree Analysis and Fuzzy
Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture”. Sensors 17.1 (2017) (cit.
on pp. 60, 65).

[Chereque, 1992] M. Chereque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron. “Active replication in Delta-
4”. [1992] Digest of Papers. FTCS-22: The Twenty-Second International Symposium on Fault-Tolerant Com-
puting. 1992, pp. 28–37 (cit. on p. 54).

[Chernyshev, 2017] Maxim Chernyshev, Zubair Baig, Oladayo Bello, and Sherali Zeadally. “Internet of things
(iot): Research, simulators, and testbeds”. IEEE Internet of Things Journal 5.3 (2017), pp. 1637–1647 (cit. on
p. 136).

[Chi, 2022a] Yuanfang Chi, Yanjie Dong, Z. Jane Wang, F. Richard Yu, and Victor C. M. Leung. “Knowledge-
Based Fault Diagnosis in Industrial Internet of Things: A Survey”. IEEE Internet of Things Journal 9.15
(2022), pp. 12886–12900 (cit. on p. 60).

[Chi, 2022b] Yuanfang Chi, Z. Jane Wang, and Victor C. M. Leung. “Distributed Knowledge Inference Frame-
work for Intelligent Fault Diagnosis in IIoT Systems”. IEEE Transactions on Network Science and Engineering
9.5 (2022), pp. 3152–3165 (cit. on p. 61).

[Choi, 2018] Jiwon Choi, Hayoung Jeoung, Jihun Kim, Youngjoo Ko, Wonup Jung, Hanjun Kim, et al. “De-
tecting and identifying faulty IoT devices in smart home with context extraction”. Institute of Electrical and
Electronics Engineers Inc., 2018, pp. 610–621 (cit. on p. 57).

[Christophides, 2020] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis, and Kostas
Stefanidis. “An overview of end-to-end entity resolution for big data”. ACM Computing Surveys (CSUR) 53.6
(2020), pp. 1–42 (cit. on p. 79).

[Cimino, 2019] Chiara Cimino, Elisa Negri, and Luca Fumagalli. “Review of digital twin applications in manu-
facturing”. Computers in Industry 113 (2019), p. 103130 (cit. on p. 36).

[Ciortea, 2019] Andrei Ciortea, Simon Mayer, Fabien Gandon, Olivier Boissier, Alessandro Ricci, and Antoine
Zimmermann. “A Decade in Hindsight: The Missing Bridge Between Multi-Agent Systems and the World
Wide Web”. AAMAS 2019 - 18th International Conference on Autonomous Agents and Multiagent Systems.
Montréal, Canada, 2019, p. 5 (cit. on p. 45).

[Ciortea, 2018] Andrei Ciortea, Simon Mayer, and Florian Michahelles. “Repurposing Manufacturing Lines on
the Fly with Multi-Agent Systems for the Web of Things”. Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems. AAMAS ’18. Stockholm, Sweden: International Foundation
for Autonomous Agents and Multiagent Systems, 2018, pp. 813–822 (cit. on p. 45).

[Clarke, 1997] Edmund M. Clarke. “Model checking”. Foundations of Software Technology and Theoretical Com-
puter Science. Ed. by S. Ramesh and G. Sivakumar. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997,
pp. 54–56 (cit. on p. 141).

[Compton, 2012] Michael Compton, Payam Barnaghi, Luis Bermudez, Raúl García-Castro, Oscar Corcho, Simon
Cox, et al. “The SSN ontology of the W3C semantic sensor network incubator group”. Journal of Web Semantics
17 (2012), pp. 25–32 (cit. on p. 66).

[Corno, 2017] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “A Semantic Web Approach to
Simplifying Trigger-Action Programming in the IoT”. Computer 50.11 (2017), pp. 18–24 (cit. on p. 67).

[Cristian, 1991] Flavin Cristian. “Understanding Fault-Tolerant Distributed Systems”. Commun. ACM 34.2
(1991), pp. 56–78 (cit. on p. 57).

[Croatti, 2020] Angelo Croatti, Matteo Gabellini, Sara Montagna, and Alessandro Ricci. “On the integration of
agents and digital twins in healthcare”. Journal of Medical Systems 44 (2020), pp. 1–8 (cit. on p. 44).

151

Bibliographie

[DAngelo, 2016] Gabriele D’Angelo, Stefano Ferretti, and Vittorio Ghini. “Simulation of the Internet of Things”.
2016 International Conference on High Performance Computing & Simulation (HPCS). IEEE. 2016, pp. 1–8
(cit. on p. 136).

[Daniele, 2015] Laura Daniele, Frank den Hartog, and Jasper Roes. “Created in close interaction with the in-
dustry: the smart appliances reference (SAREF) ontology”. Formal Ontologies Meet Industry: 7th International
Workshop, FOMI 2015, Berlin, Germany, August 5, 2015, Proceedings 7. Springer. 2015, pp. 100–112 (cit. on
p. 66).

[Dastani, 2004] Mehdi Dastani, M Birna van Riemsdijk, Frank Dignum, and John-Jules Ch Meyer. “A program-
ming language for cognitive agents goal directed 3APL”. Programming Multi-Agent Systems: First International
Workshop, PROMAS 2003, Melbourne, Australia, July 15, 2003, Selected Revised and Invited papers 1. Springer.
2004, pp. 111–130 (cit. on p. 40).

[Datta, 2015] Soumya Kanti Datta and Christian Bonnet. “A lightweight framework for efficient M2M device
management in oneM2M architecture”. Institute of Electrical and Electronics Engineers Inc., 2015 (cit. on
p. 24).

[Derrien, 2019] Sylvie Derrien, Pierre Meye, and Phillippe Raıpin. “Thing in, a research platform for the Web
of Things”. 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). 2019, pp. 431–432 (cit. on pp. 35, 36).

[Dignum, 2004] Virginia Dignum, Javier Vázquez-Salceda, and Frank Dignum. “Omni: Introducing social struc-
ture, norms and ontologies into agent organizations”. International Workshop on Programming Multi-Agent
Systems. Springer. 2004, pp. 181–198 (cit. on p. 41).

[Dimou, 2014] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik Mannens, and Rik
Van de Walle. “RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data”. Proceedings
of the 7th Workshop on Linked Data on the Web. 2014 (cit. on p. 130).

[DOMUS, 2023] DOMUS. Living Lab DOMUS (LIG). https://maci.univ-grenoble-alpes.fr/nos-espaces/
living-lab-domus-lig. 2023 (cit. on p. 90).

[Dong, 2023] Yi Dong, Zhongguo Li, Xingyu Zhao, Zhengtao Ding, and Xiaowei Huang. “Decentralised and
cooperative control of multi-robot systems through distributed optimisation”. arXiv preprint arXiv:2302.01728
(2023) (cit. on p. 43).

[Dorri, 2018] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. “Multi-Agent Systems: A Survey”. IEEE Access 6
(2018), pp. 28573–28593 (cit. on pp. 37, 38, 43).

[Emmanouilidis, 2020] C Emmanouilidis, M. Gregori, and A. Al-Shdifat. “Context Ontology Development for
Connected Maintenance Services”. IFAC-PapersOnLine 53.2 (2020), pp. 10923–10928 (cit. on pp. 62, 67, 103,
116).

[Erol, 2020] Tolga Erol, Arif Furkan Mendi, and Dilara Doğan. “The Digital Twin Revolution in Healthcare”.
2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). 2020,
pp. 1–7 (cit. on p. 37).

[Far, 2022] Saeed Banaeian Far and Azadeh Imani Rad. “Applying digital twins in metaverse: User interface,
security and privacy challenges”. Journal of Metaverse 2.1 (2022), pp. 8–15 (cit. on p. 33).

[Fensel, 2020] Dieter Fensel, Umutcan Şimşek, Kevin Angele, Elwin Huaman, Elias Kärle, Oleksandra Panasiuk,
et al. “Introduction: What Is a Knowledge Graph?” Knowledge Graphs: Methodology, Tools and Selected Use
Cases. 2020, pp. 1–10 (cit. on p. 76).

[Ferreira, 2017] Jose Ferreira, Joao Nuno Soares, Ricardo Jardim-Goncalves, and Carlos Agostinho. “Manage-
ment of IoT Devices in a Physical Network”. Institute of Electrical and Electronics Engineers Inc., 2017,
pp. 485–492 (cit. on p. 24).

[Ford, 2020] David N. Ford and Charles M. Wolf. “Smart Cities with Digital Twin Systems for Disaster Man-
agement”. Journal of Management in Engineering 36.4 (2020), p. 04020027. eprint: https://ascelibrary.
org/doi/pdf/10.1061/%28ASCE%29ME.1943-5479.0000779 (cit. on p. 37).

[Frank, 2021] Matthias Frank. “Knowledge-Driven Harmonization of Sensor Observations: Exploiting Linked
Open Data for IoT Data Streams” (2021), pp. 0–236 (cit. on p. 93).

[Fu, 2021] Xiuwen Fu and Yongsheng Yang. “Modeling and analyzing cascading failures for Internet of Things”.
Information Sciences 545 (2021), pp. 753–770 (cit. on p. 61).

[Gandon, 2018] Fabien Gandon. “A survey of the first 20 years of research on semantic Web and linked data”.
Revue des Sciences et Technologies de l’Information-Série ISI: Ingénierie des Systèmes d’information (2018)
(cit. on pp. 28, 30).

152

 https://maci.univ-grenoble-alpes.fr/nos-espaces/living-lab-domus-lig
 https://maci.univ-grenoble-alpes.fr/nos-espaces/living-lab-domus-lig
https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29ME.1943-5479.0000779
https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29ME.1943-5479.0000779

Bibliographie

[Ganzha, 2017] Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja, and Katarzyna Wasielewska.
“Semantic interoperability in the Internet of Things: An overview from the INTER-IoT perspective”. Journal
of Network and Computer Applications 81 (2017), pp. 111–124 (cit. on p. 19).

[Gao, 2015a] Zhiwei Gao, Carlo Cecati, and Steven X. Ding. “A Survey of Fault Diagnosis and Fault-Tolerant
Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches”. IEEE Transactions on
Industrial Electronics 62.6 (2015), pp. 3757–3767 (cit. on pp. 60, 65).

[Gao, 2015b] Zhiwei Gao, Carlo Cecati, and Steven X. Ding. “A Survey of Fault Diagnosis and Fault-Tolerant
Techniques—Part II: Fault Diagnosis With Knowledge-Based and Hybrid/Active Approaches”. IEEE Trans-
actions on Industrial Electronics 62.6 (2015), pp. 3768–3774 (cit. on pp. 60, 65).

[Garcez, 2023] Artur d’Avila Garcez and Luis C Lamb. “Neurosymbolic AI: The 3 rd wave”. Artificial Intelligence
Review (2023), pp. 1–20 (cit. on p. 131).

[García-Castro, 2023] Raúl García-Castro, Maxime Lefrançois, María Poveda-Villalón, and Laura Daniele. “The
ETSI SAREF Ontology for Smart Applications: A Long Path of Development and Evolution”. Energy Smart
Appliances: Applications, Methodologies, and Challenges. 2023, pp. 183–215 (cit. on p. 66).

[Gentile, 2019] Anna Lisa Gentile, Daniel Gruhl, Petar Ristoski, and Steve Welch. “Personalized knowledge
graphs for the pharmaceutical domain”. The Semantic Web–ISWC 2019: 18th International Semantic Web
Conference, Auckland, New Zealand, October 26–30, 2019, Proceedings, Part II 18. Springer. 2019, pp. 400–
417 (cit. on p. 32).

[Gheysari, 2022] Mohmmad Gheysari and Mahsa Seyed Sadegh Tehrani. “The Role of Multi-Agent Systems in
IoT”. Multi Agent Systems: Technologies and Applications towards Human-Centered. Ed. by Shibakali Gupta,
Indradip Banerjee, and Siddhartha Bhattacharyya. Singapore: Springer Nature Singapore, 2022, pp. 87–114
(cit. on p. 44).

[Giannoni, 2018] Federico Giannoni, Marco Mancini, and Federico Marinelli. “Anomaly detection models for
IoT time series data”. arXiv preprint arXiv:1812.00890 (2018) (cit. on p. 59).

[Giantomassi, 2014a] Andrea Giantomassi, Francesco Ferracuti, Sabrina Iarlori, Sauro Longhi, Alessandro Fonti,
and Gabriele Comodi. “Kernel canonical variate analysis based management system for monitoring and diag-
nosing smart homes”. 2014 International Joint Conference on Neural Networks (IJCNN). 2014, pp. 1432–1439
(cit. on pp. 60, 65).

[Giantomassi, 2014b] Andrea Giantomassi, Francesco Ferracuti, Sabrina Iarlori, Gloria Puglia, Alessandro Fonti,
Gabriele Comodi, et al. “Smart home heating system malfunction and bad behavior diagnosis by Multi-Scale
PCA under indoor temperature feedback control”. 22nd Mediterranean Conference on Control and Automation.
2014, pp. 876–881 (cit. on pp. 60, 65).

[Glaessgen, 2012] Edward Glaessgen and David Stargel. “The digital twin paradigm for future NASA and US Air
Force vehicles”. 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference
20th AIAA/ASME/AHS adaptive structures conference 14th AIAA. 2012, p. 1818 (cit. on p. 33).

[GoogleDev, 2023] GoogleDev. Matter The Device Data Model. 2023 (cit. on p. 18).
[Grieves, 2014] Michael Grieves. “Digital twin: manufacturing excellence through virtual factory replication”.

White paper 1.2014 (2014), pp. 1–7 (cit. on p. 33).
[Guerraoui, 1996] Rachid Guerraoui and André Schiper. “Fault-tolerance by replication in distributed systems”.

Reliable Software Technologies — Ada-Europe ’96. Ed. by Alfred Strohmeier. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 38–57 (cit. on p. 54).

[Guittoum, 2023a] Amal Guittoum, François Aïssaoui, Sébastien Bolle, Fabienne Boyer, and Noel De Palma.
“Solving the IoT Cascading Failure Dilemma Using a Semantic Multi-agent System”. The Semantic Web –
ISWC 2023. Ed. by Terry R. Payne, Valentina Presutti, Guilin Qi, María Poveda-Villalón, Giorgos Stoilos,
Laura Hollink, et al. Cham: Springer Nature Switzerland, 2023, pp. 325–344 (cit. on p. 97).

[Guittoum, 2023b] Amal Guittoum, Francois Aıssaoui, Sébastien Bolle, Fabienne Boyer, and Noel De Palma.
“Inferring Threatening IoT Dependencies Using Semantic Digital Twins Toward Collaborative IoT Device
Management”. Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing. SAC ’23. Tallinn,
Estonia: Association for Computing Machinery, 2023, pp. 1732–1741 (cit. on p. 71).

[Guittoum, 2023c] Amal Guittoum, François Aıssaoui, Sébastien Bolle, Fabienne Boyer, and Noel De Palma.
“Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies”. SIGAPP
Appl. Comput. Rev. 23.3 (2023), pp. 32–48 (cit. on p. 71).

[Gupta, 2021] Deepti Gupta, Olumide Kayode, Smriti Bhatt, Maanak Gupta, and Ali Saman Tosun. “Hierar-
chical Federated Learning based Anomaly Detection using Digital Twins for Smart Healthcare”. 2021 IEEE
7th International Conference on Collaboration and Internet Computing (CIC). 2021, pp. 16–25 (cit. on p. 37).

153

Bibliographie

[Gupta, 2016] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya. iFogSim: A
Toolkit for Modeling and Simulation of Resource Management Techniques in Internet of Things, Edge and Fog
Computing Environments. 2016. arXiv: 1606.02007 [cs.DC] (cit. on pp. 107, 114, 135, 138).

[Gupta, 2017] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya. “iFogSim: A
toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and
Fog computing environments”. Software: Practice and Experience 47.9 (2017), pp. 1275–1296. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2509 (cit. on p. 114).

[Hannoun, 2000] Mahdi Hannoun, Olivier Boissier, Jaime S Sichman, and Claudette Sayettat. “MOISE: An
organizational model for multi-agent systems”. Ibero-American Conference on Artificial Intelligence. Springer.
2000, pp. 156–165 (cit. on p. 41).

[Hayashibara, 2002] N. Hayashibara, A. Cherif, and T. Katayama. “Failure detectors for large-scale distributed
systems”. 21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings. 2002, pp. 404–409 (cit. on
p. 53).

[Hitzler, 2021] Pascal Hitzler. “A review of the semantic web field”. Communications of the ACM 64.2 (2021),
pp. 76–83 (cit. on pp. 28, 31).

[Hitzler, 2019] Pascal Hitzler, Armin Haller, Krzysztof Janowicz, Simon J.D. Cox, Maxime Lefrançois, Kerry
Taylor, et al. “The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors,
observations, sampling, and actuation”. Semant. Web 10.1 (2019), pp. 9–32 (cit. on p. 66).

[Howden, 2001] Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas. “JACK intelligent
agents-summary of an agent infrastructure”. 5th International conference on autonomous agents. Vol. 6. 2001
(cit. on p. 40).

[Huang, 2016] Jiwei Huang, Guo Chen, and Bo Cheng. “A Stochastic Approach of Dependency Evaluation for
IoT Devices”. Chinese Journal of Electronics 25 (2016), pp. 209–214 (cit. on pp. 48–50, 52).

[HuaweiTechnologies, 2018] Huawei.Technologies. “Unlocking the Potential of the Internet of Things”. Global
Industry Vision (2018) (cit. on p. 15).

[Hubner, 2007] Jomi F Hubner, Jaime S Sichman, and Olivier Boissier. “Developing organised multiagent sys-
tems using the MOISE+ model: programming issues at the system and agent levels”. International Journal of
Agent-Oriented Software Engineering 1.3-4 (2007), pp. 370–395 (cit. on p. 41).

[Hübner, 2005] Jomi Fred Hübner, Jaime Simao Sichman, and Olivier Boissier. “: a middleware for developing
organised multi-agent systems”. International Conference on Autonomous Agents and Multiagent Systems.
Springer. 2005, pp. 64–77 (cit. on p. 41).

[Huhns, 2001] Michael N. Huhns. “Interaction-Oriented Programming”. Agent-Oriented Software Engineering.
Ed. by Paolo Ciancarini and Michael J. Wooldridge. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 29–44 (cit. on p. 42).

[Ihsan, 2023] Ahmad Zainul Ihsan, Said Fathalla, and Stefan Sandfeld. “DISO: A Domain Ontology for Mod-
eling Dislocations in Crystalline Materials”. Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing. 2023, pp. 1746–1753 (cit. on pp. 91, 94).

[Ikram, 2022] Muhammad Ikram, Salman Ahmed, and Safdar Nawaz Khan. “Cascade Failure Management
in Distributed Smart Grid Using Multi-Agent Control”. 2022 17th International Conference on Emerging
Technologies (ICET). 2022, Proc-31-Proc–36 (cit. on p. 43).

[ITU-T, 2020] ITU-T. Recommendation Y.4459: Digital entity architecture framework for Internet of things
interoperability. 2020 (cit. on p. 130).

[ITU-T Y2060, 2012] ITU-T Y.2060. Overview of the Internet of things. 2012 (cit. on p. 15).
[ITU-T Y4702, 2016] ITU-T Y.4702. Y.4702 : Common requirements and capabilities of device management in

the Internet of things. 2016 (cit. on p. 19).
[Jaimez-González, 2021] Carlos R. Jaimez-González and Wulfrano A. Luna-Ramírez. Towards a Multi-Agent

System Architecture for Supply Chain Management. 2021. arXiv: 2110.08125 [cs.MA] (cit. on p. 43).
[Jia, 2021] Yan Jia, Bin Yuan, Luyi Xing, Dongfang Zhao, Yifan Zhang, XiaoFeng Wang, et al. “Who’s In

Control? On Security Risks of Disjointed IoT Device Management Channels”. Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’21. Virtual Event, Republic of Korea:
Association for Computing Machinery, 2021, pp. 1289–1305 (cit. on pp. 2, 3, 6, 25, 26, 79).

[Jung, 2018] Tobias Jung, Payal Shah, and Michael Weyrich. “Dynamic Co-Simulation of Internet-of-Things-
Components using a Multi-Agent-System”. Procedia CIRP 72 (2018), pp. 874–879 (cit. on p. 44).

154

https://arxiv.org/abs/1606.02007
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2509
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2509
https://arxiv.org/abs/2110.08125

Bibliographie

[Kapitanova, 2012] Krasimira Kapitanova, Enamul Hoque, John A. Stankovic, Kamin Whitehouse, and Sang
H. Son. “Being SMART about Failures: Assessing Repairs in SMART Homes”. Proceedings of the 2012 ACM
Conference on Ubiquitous Computing. UbiComp ’12. Pittsburgh, Pennsylvania: Association for Computing
Machinery, 2012, pp. 51–60 (cit. on pp. 58, 65).

[Keith D Foote, 2022] Keith D. Foote. A Brief History of the Internet of Things. 2022 (cit. on p. 15).
[Khadir, 2022] Karima Khadir, Nawal Guermouche, Amal Guittoum, and Thierry Monteil. “A Genetic Algorithm-

Based Approach for Fluctuating QoS Aware Selection of IoT Services”. IEEE Access 10 (2022), pp. 17946–
17965 (cit. on p. 33).

[Khadir, 2020] Karima Khadir, Nawal GUERMOUCHE, Thierry MONTEIL, and Amal GUITTOUM. “To-
wards avatar-based discovery for IoT services using social networking and clustering mechanisms”. 2020 16th
International Conference on Network and Service Management (CNSM). 2020, pp. 1–7 (cit. on p. 33).

[Kodeswaran, 2016] Palanivel Kodeswaran, Ravi Kokku, Sayandeep Sen, and Mudhakar Srivatsa. “Idea: A sys-
tem for efficient failure management in smart IoT environments”. Association for Computing Machinery, Inc,
2016, pp. 43–56 (cit. on pp. 58, 65).

[Laštovička, 2017] Martin Laštovička and Pavel Čeleda. “Situational Awareness: Detecting Critical Dependen-
cies and Devices in a Network”. 11th IFIP International Conference on Autonomous Infrastructure, Man-
agement and Security (AIMS). Ed. by Daphne Tuncer, Robert Koch, Rémi Badonnel, and Burkhard Stiller.
Vol. LNCS-10356. Security of Networks and Services in an All-Connected World. Zurich, Switzerland: Springer
International Publishing, 2017, pp. 173–178 (cit. on pp. 49, 52).

[Lazarova-Molnar, 2016] Sanja Lazarova-Molnar, Hamid Reza Shaker, Nader Mohamed, and Bo Norregaard
Jorgensen. “Fault detection and diagnosis for smart buildings: State of the art, trends and challenges”. 2016
3rd MEC International Conference on Big Data and Smart City (ICBDSC). 2016, pp. 1–7 (cit. on pp. 60, 65).

[Ledmi, 2018] Abdeldjalil Ledmi, Hakim Bendjenna, and Sofiane Mounine Hemam. “Fault Tolerance in Dis-
tributed Systems: A Survey”. 2018 3rd International Conference on Pattern Analysis and Intelligent Systems
(PAIS). 2018, pp. 1–5 (cit. on pp. 53, 55).

[Leitão, 2013] Luıs Leitão and Pável Calado. “An Automatic Blocking Strategy for XML Duplicate Detection”.
SIGAPP Appl. Comput. Rev. 13.2 (2013), pp. 42–53 (cit. on p. 79).

[Li, 2020a] Bohan Li, Yi Liu, Anman Zhang, Wenhuan Wang, and Shuo Wan. “A Survey on Blocking Technology
of Entity Resolution”. Journal of Computer Science and Technology 35 (2020), pp. 769–793 (cit. on p. 79).

[Li, 2019] Jiaming Li, Ying Guo, Josh Wall, and Sam West. “Support vector machine based fault detection and
diagnosis for HVAC systems”. International Journal of Intelligent Systems Technologies and Applications 18
(2019), p. 204 (cit. on pp. 60, 65).

[Li, 2020b] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. “A survey on deep learning for named entity
recognition”. IEEE Transactions on Knowledge and Data Engineering 34.1 (2020), pp. 50–70 (cit. on p. 132).

[Liang, 2020] Chao Liang, Bharanidharan Shanmugam, Sami Azam, Asif Karim, Ashraful Islam, Mazdak Za-
mani, et al. “Intrusion Detection System for the Internet of Things Based on Blockchain and Multi-Agent
Systems”. Electronics 9.7 (2020) (cit. on p. 44).

[Lionel Tailhardat, 2022] Lionel Tailhardat, Yoan Chabot, and Raphaël Troncy. “NORIA-O: an Ontology for
Anomaly Detection and Incident Management in ICT Systems”. 2022 (cit. on p. 68).

[Lombardi, 2021] Marco Lombardi, Francesco Pascale, and Domenico Santaniello. “Internet of Things: A General
Overview between Architectures, Protocols and Applications”. Information 12.2 (2021) (cit. on p. 15).

[Mahela, 2022] Om Prakash Mahela, Mahdi Khosravy, Neeraj Gupta, Baseem Khan, Hassan Haes Alhelou,
Rajendra Mahla, et al. “Comprehensive overview of multi-agent systems for controlling smart grids”. CSEE
Journal of Power and Energy Systems 8.1 (2022), pp. 115–131 (cit. on p. 43).

[Mahmud, 2022] Redowan Mahmud, Samodha Pallewatta, Mohammad Goudarzi, and Rajkumar Buyya. “iFogSim2:
An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog com-
puting environments”. Journal of Systems and Software 190 (2022), p. 111351 (cit. on pp. 114, 137).

[Maloney, 2019] Matthew Maloney, Elizabeth Reilly, Michael Siegel, and Gregory Falco. “Cyber Physical IoT
Device Management Using a Lightweight Agent”. IEEE, 2019, pp. 1009–1014 (cit. on p. 24).

[Manyika, 2015] James Manyika, Michael Chui, Peter Bisson, Jonathan Woetzel, Richard Dobbs, Jacques Bughin,
et al. “Unlocking the Potential of the Internet of Things”. McKinsey Global Institute 1 (2015) (cit. on p. 15).

[Mariani, 2023] Stefano Mariani, Pasquale Roseti, and Franco Zambonelli. “Multi-agent Learning of Causal
Networks in the Internet of Things”. Advances in Practical Applications of Agents, Multi-Agent Systems, and
Cognitive Mimetics. The PAAMS Collection. Ed. by Philippe Mathieu, Frank Dignum, Paulo Novais, and
Fernando De la Prieta. Cham: Springer Nature Switzerland, 2023, pp. 163–174 (cit. on pp. 50, 52).

155

Bibliographie

[Mavromatis, 2020] Alex Mavromatis, Carlos Colman-Meixner, Aloizio P. Silva, Xenofon Vasilakos, Reza Neja-
bati, and Dimitra Simeonidou. “A Software-Defined IoT Device Management Framework for Edge and Cloud
Computing”. IEEE Internet of Things Journal 7 (3 2020), pp. 1718–1735 (cit. on p. 24).

[Mei, 2006] Jing Mei and Harold Boley. “Interpreting SWRL Rules in RDF Graphs”. Electronic Notes in The-
oretical Computer Science 151.2 (2006), pp. 53–69 (cit. on p. 93).

[Mezghani, 2020] Emna Mezghani, Samuel Berlemont, and Marc Douet. “Autonomic Coordination of IoT Device
Management Platforms”. 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE). 2020, pp. 30–35 (cit. on pp. 6, 25, 26, 50, 58, 70, 72).

[Minerva, 2020] Roberto Minerva, Gyu Myoung Lee, and Noël Crespi. “Digital Twin in the IoT Context: A
Survey on Technical Features, Scenarios, and Architectural Models”. Proceedings of the IEEE 108.10 (2020),
pp. 1785–1824 (cit. on p. 44).

[Moder, 2020] Patrick Moder, Hans Ehm, and Eva Jofer. “A Holistic Digital Twin Based on Semantic Web
Technologies to Accelerate Digitalization”. Digital Transformation in Semiconductor Manufacturing. Ed. by
Sophia Keil, Rainer Lasch, Fabian Lindner, and Jacob Lohmer. Cham: Springer International Publishing,
2020, pp. 3–13 (cit. on p. 44).

[Mohsin, 2016] Mujahid Mohsin, Zahid Anwar, Ghaith Husari, Ehab Al-Shaer, and Mohammad Ashiqur Rah-
man. “IoTSAT: A formal framework for security analysis of the internet of things (IoT)”. 2016 IEEE Conference
on Communications and Network Security (CNS). 2016, pp. 180–188 (cit. on pp. 49, 52).

[Mohsin, 2017] Mujahid Mohsin, Zahid Anwar, Farhat Zaman, and Ehab Al-Shaer. “IoTChecker: A data-driven
framework for security analytics of Internet of Things configurations”. Computers & Security 70 (2017), pp. 199–
223 (cit. on pp. 49, 52, 67, 92, 94).

[Moualla, 2022] Ghada Moualla, Sebastien Bolle, Marc Douet, and Eric Rutten. “Self-adaptive Device Man-
agement for the IoT Using Constraint Solving”. 2022 17th Conference on Computer Science and Intelligence
Systems (FedCSIS). 2022, pp. 641–650 (cit. on p. 25).

[Moura, 2019] Ralf Luis De Moura, Tiago Monteiro Brasil, Luciana De Landa Ceotto, Alexandre Gonzalez, Luiz
Paulo Barreto, and Ludmilla Bassini Werner. “Industrial internet of things: Device management architecture
proposal”. Institute of Electrical and Electronics Engineers Inc., 2019, pp. 1174–1178 (cit. on p. 24).

[Mugeni, 2023] John Bosco Mugeni and Toshiyuki Amagasa. “A Graph-Based Blocking Approach for Entity
Matching Using Contrastively Learned Embeddings”. SIGAPP Appl. Comput. Rev. 22.4 (2023), pp. 37–46
(cit. on p. 79).

[Naas, 2018] Mohammed Islam Naas, Jalil Boukhobza, Philippe Raipin Parvedy, and Laurent Lemarchand.
“An Extension to iFogSim to Enable the Design of Data Placement Strategies”. 2018 IEEE 2nd International
Conference on Fog and Edge Computing (ICFEC). 2018, pp. 1–8 (cit. on p. 114).

[Najari, 2021] Naji Najari, Samuel Berlemont, Grégoire Lefebvre, Stefan Duffner, and Christophe Garcia. “RADON:
Robust Autoencoder for Unsupervised Anomaly Detection”. 2021 14th International Conference on Security
of Information and Networks (SIN). Vol. 1. 2021, pp. 1–8 (cit. on pp. 59, 65).

[Najari, 2022] Naji Najari, Samuel Berlemont, Grégoire Lefebvre, Stefan Duffner, and Christophe Garcia. “Ro-
bust Variational Autoencoders and Normalizing Flows for Unsupervised Network Anomaly Detection”. Ad-
vanced Information Networking and Applications. Ed. by Leonard Barolli, Farookh Hussain, and Tomoya
Enokido. Cham: Springer International Publishing, 2022, pp. 281–292 (cit. on pp. 59, 60).

[Najeh, 2019] Houda Najeh. “Diagnosis in building : new challenges”. Theses. Université Grenoble Alpes ; École
nationale d’ingénieurs de Gabès (Tunisie), 2019 (cit. on pp. 7, 27, 60, 65, 143).

[Nasar, 2021] Zara Nasar, Syed Waqar Jaffry, and Muhammad Kamran Malik. “Named entity recognition and
relation extraction: State-of-the-art”. ACM Computing Surveys (CSUR) 54.1 (2021), pp. 1–39 (cit. on p. 132).

[Nayyar, 2015] Anand Nayyar and Rajeshwar Singh. “A comprehensive review of simulation tools for wireless
sensor networks (WSNs)”. Journal of Wireless Networking and Communications 5.1 (2015), pp. 19–47 (cit. on
p. 136).

[Nguyen, 2022] Luong Nguyen, Mariana Segovia, Wissam Mallouli, Edgardo Montes de Oca, and Ana R. Cavalli.
“Digital Twin for IoT Environments: A Testing and Simulation Tool”. Quality of Information and Commu-
nications Technology. Ed. by Antonio Vallecillo, Joost Visser, and Ricardo Pérez-Castillo. Cham: Springer
International Publishing, 2022, pp. 205–219 (cit. on p. 37).

156

Bibliographie

[Niati, 2020] Asmaa Niati, Cyrine Selma, Dalila Tamzalit, Hugo Bruneliere, Nasser Mebarki, and Olivier Cardin.
“Towards a Digital Twin for Cyber-Physical Production Systems: A Multi-Paradigm Modeling Approach in
the Postal Industry”. Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems: Companion Proceedings. MODELS ’20. Virtual Event, Canada: Association for
Computing Machinery, 2020 (cit. on p. 44).

[Nishiguchi, 2018] Yuki Nishiguchi, Ai Yano, Takeshi Ohtani, Ryuichi Matsukura, and Jun Kakuta. “IoT fault
management platform with device virtualization”. Vol. 2018-January. Institute of Electrical and Electronics
Engineers Inc., 2018, pp. 257–262 (cit. on pp. 57, 61, 65).

[Nita, 2014] Mihaela-Catalina Nita, Florin Pop, Mariana Mocanu, and Valentin Cristea. “FIM-SIM: Fault Injec-
tion Module for CloudSim Based on Statistical Distributions”. Journal of telecommunications and information
technology 4 (2014) (cit. on pp. 113, 114, 137, 139).

[Norris, 2020] Michael Norris, Z. Berkay Celik, Patrick Mcdaniel, Gang Tan, Prasanna Venkatesh, Shulin Zhao,
et al. “IoTRepair: Systematically Addressing Device Faults in Commodity IoT”. 2020 IEEE/ACM Fifth Inter-
national Conference on Internet-of-Things Design and Implementation (IoTDI) (2020), pp. 142–148 (cit. on
pp. 57, 61, 65).

[Norris, 2022] Michael Norris, Z. Berkay Celik, Prasanna Venkatesh, Shulin Zhao, Patrick McDaniel, Anand
Sivasubramaniam, et al. “IoTRepair: Flexible Fault Handling in Diverse IoT Deployments”. ACM Trans. In-
ternet Things 3.3 (2022) (cit. on pp. 19, 56–58, 61, 62, 65, 103, 114).

[Noura, 2019] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. “Interoperability in Internet of
Things: Taxonomies and Open Challenges”. Mob. Netw. Appl. 24.3 (2019), pp. 796–809 (cit. on p. 19).

[Noviello, 2023] Francesco Noviello, Munyque Mittelmann, Aniello Murano, and Silvia Stranieri. “Parking Prob-
lem with Multiple Gates”. Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive
Mimetics. The PAAMS Collection. Ed. by Philippe Mathieu, Frank Dignum, Paulo Novais, and Fernando De
la Prieta. Cham: Springer Nature Switzerland, 2023, pp. 213–224 (cit. on p. 43).

[Obeid, 2018] Charbel Obeid, Inaya Lahoud, Hicham El Khoury, and Pierre-Antoine Champin. “Ontology-Based
Recommender System in Higher Education”. Companion Proceedings of the The Web Conference 2018. WWW
’18. Lyon, France: International World Wide Web Conferences Steering Committee, 2018, pp. 1031–1034 (cit.
on p. 32).

[Omicini, 2008] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. “Artifacts in the A&A meta-model for
multi-agent systems”. Autonomous agents and multi-agent systems 17 (2008), pp. 432–456 (cit. on p. 41).

[Opoku, 2021] De-Graft Joe Opoku, Srinath Perera, Robert Osei-Kyei, and Maria Rashidi. “Digital twin appli-
cation in the construction industry: A literature review”. Journal of Building Engineering 40 (2021), p. 102726
(cit. on p. 37).

[OrangeBuisness, 2023] OrangeBuisness. “Avec Orange l’internet des objets change le monde pour tout le
monde”. OrangeBuisness (2023) (cit. on p. 15).

[Ozeer, 2019] Umar Ibn Zaid Ozeer. “Autonomic resilience of distributed IoT applications in the Fog”. Theses.
Université Grenoble Alpes, 2019 (cit. on pp. 53–57, 61, 65, 103, 131, 135, 141).

[Pahl, 2019] Marc-Oliver Pahl and Stefan Liebald. “A Modular Distributed IoT Service Discovery”. 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). 2019, pp. 448–454 (cit. on p. 33).

[Patel, 2019] ND Patel, BM Mehtre, and Rajeev Wankar. “Simulators, emulators, and test-beds for internet of
things: A comparison”. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and
Cloud)(I-SMAC). IEEE. 2019, pp. 139–145 (cit. on p. 136).

[Patil, 1992] Ramesh Patil, Richard Fikes, Peter Patel-Schneider, Donald P McKay, Tim Finin, Thomas Gru-
ber, et al. “The DARPA knowledge sharing effort: Progress report”. Proceedings of the Third International
Conference on Principles of Knowledge Representation and Reasoning. 1992 (cit. on p. 104).

[Pérez, 2006] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and Complexity of SPARQL”.
The Semantic Web - ISWC 2006. Ed. by Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel
Schwabe, Peter Mika, et al. 2006, pp. 30–43 (cit. on p. 93).

[Perez Abreu, 2020] David Perez Abreu, Karima Velasquez, Marilia Curado, and Edmundo Monteiro. “A com-
parative analysis of simulators for the Cloud to Fog continuum”. Simulation Modelling Practice and Theory
101 (2020), p. 102029 (cit. on p. 113).

[Perumal, 2016] Thinagaran Perumal, Soumya Kanti Datta, and Christian Bonnet. “IoT device management
framework for smart home scenarios”. Institute of Electrical and Electronics Engineers Inc., 2016, pp. 54–55
(cit. on p. 24).

157

Bibliographie

[Pham, 2016] Cu Pham, Yuto Lim, and Yasuo Tan. “Management architecture for heterogeneous IoT devices
in home network”. Institute of Electrical and Electronics Engineers Inc., 2016 (cit. on p. 24).

[Piro, 2016] Robert Piro, Yavor Nenov, Boris Motik, Ian Horrocks, Peter Hendler, Scott Kimberly, et al. “Seman-
tic technologies for data analysis in health care”. The Semantic Web–ISWC 2016: 15th International Semantic
Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II 15. Springer. 2016, pp. 400–417 (cit.
on p. 31).

[Portela, 2023] Ariel L. Portela, Rafael A. Menezes, Wanderson L. Costa, Matheus M. Silveira, Luiz F. Bit-
tecnourt, and Rafael Lopes Gomes. “Detection of IoT Devices and Network Anomalies based on Anonymized
Network Traffic”. NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium. 2023, pp. 1–
6 (cit. on pp. 59, 65).

[Pouvreau, 2023] Quentin Pouvreau, Jean-Pierre Georgé, Carole Bernon, and Sébastien Maignan. “Optimization
of Complex Systems in Photonics by Multi-agent Robotic Control”. International Conference on Practical
Applications of Agents and Multi-Agent Systems. Springer. 2023, pp. 272–283 (cit. on p. 43).

[Power, 2020] Alexander Power, Supervisor Dr, and Gerald Kotonya. A Predictive Fault-Tolerance Framework
for IoT Systems. 2020 (cit. on p. 57).

[Pretel, 2022] Elena Pretel, Elena Navarro, Víctor López-Jaquero, Alejandro Moya, and Pascual González.
“Multi-Agent Systems in Support of Digital Twins: A Survey”. Bio-inspired Systems and Applications: from
Robotics to Ambient Intelligence. Ed. by José Manuel Ferrández Vicente, José Ramón Álvarez-Sánchez, Félix
de la Paz López, and Hojjat Adeli. Cham: Springer International Publishing, 2022, pp. 524–533 (cit. on p. 44).

[Pynadath, 2003] David V Pynadath and Milind Tambe. “An automated teamwork infrastructure for heteroge-
neous software agents and humans”. Autonomous Agents and Multi-Agent Systems 7 (2003), pp. 71–100 (cit. on
p. 41).

[Qorvo, 2021] Qorvo. Matter Gets Everybody “Talking”. 2021 (cit. on p. 17).
[Radoglou Grammatikis, 2019] Panagiotis I. Radoglou Grammatikis, Panagiotis G. Sarigiannidis, and Ioannis

D. Moscholios. “Securing the Internet of Things: Challenges, threats and solutions”. Internet of Things 5 (2019),
pp. 41–70 (cit. on p. 18).

[Ray, 2018] P.P. Ray. “A survey on Internet of Things architectures”. Journal of King Saud University - Com-
puter and Information Sciences 30.3 (2018), pp. 291–319 (cit. on p. 16).

[Rhayem, 2020] Ahlem Rhayem, Mohamed Ben Ahmed Mhiri, and Faiez Gargouri. “Semantic Web Technologies
for the Internet of Things: Systematic Literature Review”. INTERNET OF THINGS 11 (2020) (cit. on p. 33).

[Ricci, 2011] Alessandro Ricci, Michele Piunti, and Mirko Viroli. “Environment programming in multi-agent
systems: an artifact-based perspective”. Autonomous Agents and Multi-Agent Systems 23 (2011), pp. 158–192
(cit. on pp. 40, 41).

[Ricci, 2009] Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini. “Environment programming
in CArtAgO”. Multi-agent programming: Languages, tools and applications (2009), pp. 259–288 (cit. on p. 41).

[Rivas, 2022] Ariam Rivas, Diego Collarana, Maria Torrente, and Maria-Esther Vidal. “A neuro-symbolic system
over knowledge graphs for link prediction”. Semantic Web Preprint (2022), pp. 1–25 (cit. on p. 131).

[Rocha, 2017] Jorge Rocha, Inês Boavida-Portugal, and Eduardo Gomes. “Introductory Chapter: Multi-Agent
Systems”. Multi-agent Systems. Ed. by Jorge Rocha. Rijeka: IntechOpen, 2017. Chap. 1 (cit. on p. 38).

[Rojas, 2021a] Julián Andrés Rojas, Marina Aguado, Polymnia Vasilopoulou, Ivo Velitchkov, Dylan Van Assche,
Pieter Colpaert, et al. “Leveraging Semantic Technologies for Digital Interoperability in the European Railway
Domain”. The Semantic Web – ISWC 2021. 2021, pp. 648–664 (cit. on p. 130).

[Rojas, 2021b] Julián Andrés Rojas, Marina Aguado, Polymnia Vasilopoulou, Ivo Velitchkov, Dylan Van Assche,
Pieter Colpaert, et al. “Leveraging semantic technologies for digital interoperability in the European railway
domain”. International Semantic Web Conference. Springer. 2021, pp. 648–664 (cit. on p. 32).

[Rose, 2015] Karen Rose, Scott Eldridge, and Lyman Chapin. “The internet of things: An overview”. The in-
ternet society (ISOC) 80 (2015), pp. 1–50 (cit. on p. 15).

[Saeedi, 2020] Alieh Saeedi, Eric Peukert, and Erhard Rahm. “Incremental Multi-source Entity Resolution for
Knowledge Graph Completion”. The Semantic Web. Ed. by Andreas Harth, Sabrina Kirrane, Axel-Cyrille
Ngonga Ngomo, Heiko Paulheim, Anisa Rula, Anna Lisa Gentile, et al. 2020, pp. 393–408 (cit. on p. 79).

[Sanislav, 2017] Teodora Sanislav and George Mois. “A dependability analysis model in the context of Cyber-
Physical Systems”. 2017 18th International Carpathian Control Conference (ICCC). 2017, pp. 146–150 (cit. on
p. 68).

158

Bibliographie

[Sanislav, 2019] Teodora Sanislav, Sherali Zeadally, George Dan Mois, and Hacène Fouchal. “Reliability, fail-
ure detection and prevention in cyber-physical systems (CPSs) with agents”. Concurrency and Computation:
Practice and Experience 31.24 (2019), e4481. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
cpe.4481 (cit. on p. 68).

[Schraudner, 2021] Daniel Schraudner. “Stigmergic Multi-Agent Systems in the Semantic Web of Things”. The
Semantic Web: ESWC 2021 Satellite Events. Ed. by Ruben Verborgh, Anastasia Dimou, Aidan Hogan, Claudia
d’Amato, Ilaria Tiddi, Arne Bröring, et al. Cham: Springer International Publishing, 2021, pp. 218–229 (cit. on
p. 45).

[Scioscia, 2009] Floriano Scioscia and Michele Ruta. “Building a Semantic Web of Things: Issues and Per-
spectives in Information Compression”. 2009 IEEE International Conference on Semantic Computing. 2009,
pp. 589–594 (cit. on p. 32).

[Seidita, 2022] V Seidita, F Lanza, AMP Sabella, A Chella, et al. “Can agents talk about what they are doing?
A proposal with Jason and speech acts”. CEUR WORKSHOP PROCEEDINGS. Vol. 3261. CEUR-WS. 2022,
pp. 17–29 (cit. on p. 42).

[Seydoux, 2018] Nicolas Seydoux. “Towards interoperable IOT systems with a constraint-aware semantic web
of things”. Theses. INSA de Toulouse, 2018 (cit. on pp. 33, 66, 67, 77).

[Sharma, 2010] Abhishek B. Sharma, Leana Golubchik, and Ramesh Govindan. “Sensor Faults: Detection Meth-
ods and Prevalence in Real-World Datasets”. ACM Trans. Sen. Netw. 6.3 (2010) (cit. on pp. 57, 103).

[Shibuya, 2016] M. Shibuya, T. Hasegawa, and H. Yamaguchi. “A Study on Device Management for IoT Services
with Uncoordinated Device Operating History”. 2016 (cit. on pp. 2, 25).

[Shih, 2016] Chi-Sheng Shih, Jyun-Jhe Chou, Niels Reijers, and Tei-Wei Kuo. “Designing CPS/IoT Applications
for Smart Buidlings and Cities”. IET Cyber-Physical Systems: Theory & Applications 1 (2016) (cit. on p. 57).

[Shoham, 1993] Yoav Shoham. “Agent-oriented programming”. Artificial Intelligence 60.1 (1993), pp. 51–92 (cit.
on p. 40).

[Silva, 2020] Lavindra de Silva, Felipe Meneguzzi, and Brian Logan. “BDI Agent Architectures: A Survey”.
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20. Ed. by
Christian Bessiere. International Joint Conferences on Artificial Intelligence Organization, 2020, pp. 4914–4921
(cit. on pp. 40, 99).

[Sinche, 2020] Soraya Sinche, Duarte Raposo, Ngombo Armando, André Rodrigues, Fernando Boavida, Vasco
Pereira, et al. “A Survey of IoT Management Protocols and Frameworks”. IEEE Communications Surveys &
Tutorials 22.2 (2020), pp. 1168–1190 (cit. on pp. 21, 23, 104).

[Singh, 2017] Munindar P. Singh and Amit K. Chopra. “The Internet of Things and Multiagent Systems: De-
centralized Intelligence in Distributed Computing”. 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). 2017, pp. 1738–1747 (cit. on p. 44).

[Souza, 2019] Vinicius Souza, Robson Cruz, Walmir Silva, Sidney Lins, and Vicente Lucena. “A Digital Twin
Architecture Based on the Industrial Internet of Things Technologies”. 2019 IEEE International Conference
on Consumer Electronics (ICCE). 2019, pp. 1–2 (cit. on p. 37).

[standard, 2013] IEEE 1905.1 standard. “IEEE Standard for a Convergent Digital Home Network for Heteroge-
neous Technologies Amendment 1: Support of New MAC/PHYs and Enhancements”. IEEE Std 1905.1a-2014
(Amendment to IEEE Std 1905.1-2013) (2013) (cit. on p. 74).

[Stark, 2019] Rainer Stark and Thomas Damerau. “Digital Twin”. CIRP Encyclopedia of Production Engineer-
ing. Ed. by Sami Chatti and Tullio Tolio. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, pp. 1–8 (cit. on
p. 34).

[Steenwinckel, 2018] Bram Steenwinckel, Pieter Heyvaert, Dieter De Paepe, Olivier Janssens, Sander Vanden
Hautte, Anastasia Dimou, et al. “Towards Adaptive Anomaly Detection and Root Cause Analysis by Automated
Extraction of Knowledge from Risk Analyses”. SSN@ISWC. 2018 (cit. on pp. 62, 68, 103, 115).

[Stefano Albrecht, 2020] Stefano Albrecht. Intro: UK Multi-Agent Systems Symposium - Stefano Albrecht, Uni-
versity of Edinburgh & Turing. 2020 (cit. on p. 38).

[Steindl, 2020] Gernot Steindl, Martin Stagl, Lukas Kasper, Wolfgang Kastner, and Rene Hofmann. “Generic
Digital Twin Architecture for Industrial Energy Systems”. Applied Sciences 10.24 (2020) (cit. on p. 34).

[Studer, 1998] Rudi Studer, V Richard Benjamins, and Dieter Fensel. “Knowledge engineering: Principles and
methods”. Data & knowledge engineering 25.1-2 (1998), pp. 161–197 (cit. on p. 29).

159

https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4481
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4481

Bibliographie

[Suárez-Figueroa, 2012] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Mariano Fernández-López.
“The NeOn Methodology for Ontology Engineering”. Ontology Engineering in a Networked World. Ed. by Mari
Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Enrico Motta, and Aldo Gangemi. 2012, pp. 9–34 (cit. on
pp. 76, 101).

[Subramaniam A, 2018] Mona Subramaniam A and Tushar Jain. “Nonlinear Observer-based Fault Diagnosis for
a Multi-Zone Building∗∗This work is financially supported by MeitY, Govt. of India, under the Visvesvaraya
Ph.D Scheme and SERB - DST under the grant agreement no. ECR/2016/001025.” IFAC-PapersOnLine 51.24
(2018), pp. 544–549 (cit. on pp. 60, 65).

[Tao, 2022] Fei Tao, Bin Xiao, Qinglin Qi, Jiangfeng Cheng, and Ping Ji. “Digital twin modeling”. Journal of
Manufacturing Systems 64 (2022), pp. 372–389 (cit. on p. 33).

[Tao, 2018] Fei Tao, He Zhang, Ang Liu, and Andrew YC Nee. “Digital twin in industry: State-of-the-art”.
IEEE Transactions on industrial informatics 15.4 (2018), pp. 2405–2415 (cit. on p. 33).

[Tartir, 2005] Samir Tartir, Ismailcem Arpinar, Michael Moore, Amit Sheth, and Boanerges Aleman-Meza.
“OntoQA: Metric-Based Ontology Quality Analysis”. IEEE ICDM 2005 Workshop on Knowledge Acquisition
from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources. 2005 (cit. on p. 94).

[Teng, 2021] Jing Teng, Changling Li, Yizhan Feng, Taoran Yang, Rong Zhou, and Quan Z. Sheng. “Adaptive
Observer Based Fault Tolerant Control for Sensor and Actuator Faults in Wind Turbines”. Sensors 21.24 (2021)
(cit. on pp. 60, 65).

[Thanapalasingam, 2018] Thiviyan Thanapalasingam, Francesco Osborne, Aliaksandr Birukou, and Enrico Motta.
“Ontology-based recommendation of editorial products”. The Semantic Web–ISWC 2018: 17th International
Semantic Web Conference, Monterey, CA, USA, October 8–12, 2018, Proceedings, Part II 17. Springer. 2018,
pp. 341–358 (cit. on p. 32).

[Uschold, 1996] Mike Uschold and Michael Gruninger. “Ontologies: Principles, methods and applications”. The
knowledge engineering review 11.2 (1996), pp. 93–136 (cit. on p. 91).

[Wang, 2023] Xiaofeng Wang, Yonghong Wang, Zahra Javaheri, Laila Almutairi, Navid Moghadamnejad, and
Osama S. Younes. “Federated deep learning for anomaly detection in the internet of things”. Computers and
Electrical Engineering 108 (2023), p. 108651 (cit. on p. 60).

[Weyns, 2005] Danny Weyns, H. Van Dyke Parunak, Fabien Michel, Tom Holvoet, and Jacques Ferber. “En-
vironments for Multiagent Systems State-of-the-Art and Research Challenges”. Environments for Multi-Agent
Systems. Ed. by Danny Weyns, H. Van Dyke Parunak, and Fabien Michel. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 1–47 (cit. on p. 40).

[Wilhelm, 2021] Yannick Wilhelm, Peter Reimann, Wolfgang Gauchel, and Bernhard Mitschang. “Overview on
hybrid approaches to fault detection and diagnosis: Combining data-driven, physics-based and knowledge-based
models”. Procedia CIRP 99 (2021), pp. 278–283 (cit. on p. 60).

[Wooldridge, 2009] Michael Wooldridge. An introduction to multiagent systems. John wiley & sons, 2009 (cit. on
p. 38).

[Wu, 2017] Jiewen Wu, Freddy Lécué, Christophe Gueret, Jer Hayes, Sara Van De Moosdijk, Gemma Gallagher,
et al. “Personalizing actions in context for risk management using semantic web technologies”. The Seman-
tic Web–ISWC 2017: 16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017,
Proceedings, Part II 16. Springer. 2017, pp. 367–383 (cit. on p. 32).

[Xing, 2020] Liudong Xing. “Cascading failures in internet of things: review and perspectives on reliability and
resilience”. IEEE Internet of Things Journal 8.1 (2020), pp. 44–64 (cit. on pp. 61, 70).

[Xing, 2021] Liudong Xing. “Cascading Failures in Internet of Things: Review and Perspectives on Reliability
and Resilience”. IEEE Internet of Things Journal 8.1 (2021), pp. 44–64 (cit. on pp. 5, 7).

[Xing, 2018] Liudong Xing, Guilin Zhao, Yujie Wang, and Lavanya Mandava. “Competing Failure Analysis in
IoT Systems with Cascading Functional Dependence”. 2018 Annual Reliability and Maintainability Symposium
(RAMS). 2018, pp. 1–6 (cit. on p. 50).

[Xu, 2018] Feixiang Xu, Xinhui Liu, Wei Chen, Chen Zhou, and Bingwei Cao. “Ontology-Based Method for
Fault Diagnosis of Loaders”. Sensors 18.3 (2018) (cit. on p. 67).

[Yu, 2021] Gang Yu, Yi Wang, Zeyu Mao, Min Hu, Vijayan Sugumaran, and Y. Ken Wang. “A digital twin-
based decision analysis framework for operation and maintenance of tunnels”. Tunnelling and Underground
Space Technology 116 (2021), p. 104125 (cit. on p. 44).

160

Bibliographie

[Yu, 2015] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and Chenren Xu. “Handling a Trillion
(Unfixable) Flaws on a Billion Devices: Rethinking Network Security for the Internet-of-Things”. Proceedings
of the 14th ACM Workshop on Hot Topics in Networks. HotNets-XIV. Philadelphia, PA, USA: Association for
Computing Machinery, 2015 (cit. on pp. 50, 70, 72).

[Yu, 2022] Wei Yu, Panos Patros, Brent Young, Elsa Klinac, and Timothy Gordon Walmsley. “Energy digi-
tal twin technology for industrial energy management: Classification, challenges and future”. Renewable and
Sustainable Energy Reviews 161 (2022), p. 112407 (cit. on p. 37).

[Zdankin, 2021] Peter Zdankin, Matthias Schaffeld, Marian Waltereit, Oskar Carl, and Torben Weis. “An Algo-
rithm for Dependency-Preserving Smart Home Updates”. 2021 IEEE International Conference on Pervasive
Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). 2021, pp. 527–
532 (cit. on pp. 6, 26, 50).

[Zhang, 2018] Haibin Zhang, Qian Zhang, Jiajia Liu, and Hongzhi Guo. “Fault Detection and Repairing for
Intelligent Connected Vehicles Based on Dynamic Bayesian Network Model”. IEEE Internet of Things Journal
5.4 (2018), pp. 2431–2440 (cit. on pp. 60, 65).

[Zhou, 2015] Anmei Zhou, Dejie Yu, and Wenyi Zhang. “A research on intelligent fault diagnosis of wind turbines
based on ontology and FMECA”. Advanced Engineering Informatics 29.1 (2015), pp. 115–125 (cit. on p. 67).

161

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Terms and Abbreviation
	Introduction
	The management of the Internet of Things devices
	Problem Statement
	Smart Home Use Case
	On the need of Collaborative DM
	Cascading Failure Management

	Global Overview of the proposed solutions
	A Semantic Digital Twin for IoT dependency Inference
	A Semantic Multi-agent System for automatic and collaborative CFM

	Contributions
	Research Contributions
	Experimental Contributions

	Thesis Structure

	Background
	Industrial Context
	Internet of Things
	Architecture
	IoT challenges

	IoT Device Management
	DM Protocols and Standards
	Market DM solution
	Research trends on dm
	DM Challenges

	Orange motivation behind the presented research

	Scientific Context
	Semantic Web
	Architecture
	Semantic Web Applications
	Semantic Web and IoT

	Digital Twin
	dt Platforms
	Thing in The future, more than a dt Platform
	Applications of Digital Twin
	Digital Twin and IoT

	Multi-agent System
	Multi-agent Programming Paradigms and Tools
	Application of multi-agent system
	Multi-agent system and IoT

	The combination of mas, dt, and sw standards

	Conclusion

	State of The Art
	iot dependency extraction and modeling
	Failure Management in Distributed Systems
	Failure Detection approaches
	Fault-handling approaches
	Reactive Fault handling
	Proactive Fault handling

	Failure Management in iot
	iot device failures
	iot failure management from research perspective
	Failure Detection
	Failure Diagnosis
	Failure Recovery

	iot Failure management from industrial perspective

	Ontologies for iot
	Ontologies of reference in iot
	Ontologies for iot dependency Modeling
	Ontologies for iot Failure Modeling

	Conclusion

	Inferring Threatening iot Dependencies using Semantic Digital Twins
	Motivating Examples
	Context-Based Modeling for Threatening Dependencies
	Threatening Dependencies Characterization
	Threatening Dependencies Data Sources
	Threatening Dependencies Modeling

	Proposed Framework
	Step 1: Context Extraction
	Step 2: Entity Resolution
	Problem Statement
	Method

	Step 3: Dependency Inference

	Evaluation
	Qualitative Evaluation
	Simulated Smart Home Scenario
	Realistic Smart Home: DOMUS Testbed
	IoT-D ontology Qualitative Evaluation

	Quantitative Evaluation
	Performance Evaluation
	IoT-D ontology Quantitative Evaluation

	Conclusion

	Solving The Cascading Failure Dilemma using A Semantic Multi-agent System
	Illustration of Cascading Failure Dilemma
	Semantic Multi-OSAMA For Collaborative CFM
	OSAMA BDI model
	Diagnosis Artifact
	Dependency Artifact
	Monitoring and Recovery Artifacts
	Collaborative CFM Protocol

	Evaluation
	Technical Architecture
	Qualitative Evaluation
	OSAMA agents Qualitative Evaluation
	IoT-F Qualitative Evaluation

	Quantitative Evaluation
	CFM Performance Evaluation
	OSAMA Impact on Resource Consumption
	IoT-F Quantitative Evaluation

	Conclusion

	Collaborative LAN Troubleshooting Demonstration
	Context and Motivation
	Technical Architecture
	Customer Care Agent Assistance: A User Story
	Targeted Cascading Failure Scenario
	Dependency Calculation
	Solving The Cascading Failure

	Conclusion

	Conclusion
	Summary of Contributions
	Perspectives
	Short term perspectives
	Agent-based extraction of IoT dependency topology
	More shared artifacts to value Orange Home Services
	Declarative RDF generation using RML
	Verification of the CFM protocol
	Tests on realistic scenarios

	Medium term perspectives
	Handle uncertainty using Neuro-Symbolic AI
	CFM protocol optimization using learning
	Automatic Extraction of failure information
	Handling multiple data store queries using Federative SPARQL
	Enabling an effective data governance using the Solid Framework
	Enhancing the traceability of osama agents

	Long term perspectives
	Cascading Failure Tolerance, Prediction, and Prevention
	Integration of end users as an effective DM actor
	Toward Standardized IoT Failure Management
	Exploring other Collaborative DM use cases

	FMSim: IoT Failure Simulator
	Introduction
	IoT simulators: State of the Art
	FMSim, an iFogSim extension
	Conclusion and Perspectives

	Correctness verification of the Collaborative CFM protocol
	Introduction
	Challenging Scenarios
	Discussion

	Résumé en Français
	Contexte et Problématique
	Contributions
	Un système de jumeau numérique sémantique pour l'inférence automatique des dépendances entre les équipements IoT
	Un système multi-agent sémantique pour la correction automatique et collaborative des pannes en cascade
	La démonstration "Collaborative LAN troubleshooting"

	Conclusion
	Synthèse
	Perspectives

	Bibliographie

