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Abstract

With the advent of machine learning, the government institutions and other bureau-
cracy are undergoing a paradigm shift, as algorithms increasingly assist in and even
replace some of their functions. Consequently, just as early 20th-century philoso-
phers scrutinized these institutional changes, it is crucial to analyze these algorithms
through the lens of their societal impact.

In line with this general objective, this thesis aims to examine and propose ways to
mitigate the harms associated with employing machine learning (ML). Specifically,
we study the impact of ML algorithm in the settings where groups of population are
unfairly assigned or withheld opportunities and resources. In response, we propose
a series of algorithms designed to measure and counteract unfairness throughout the
ML pipeline. We begin by proposing FairGrad, a gradient based algorithm which
dynamically adjusts the influence of examples throughout the training process to
ensure fairness. We then examine FairGrad, and various other fairness enforcing
mechanism from the lens of intersectionality where multiple sensitive demographic
attributes are considered together. Our experiments reveal that several approaches
exhibit “leveling down” behavior, implying that they optimize for current fairness
measures by harming the involved groups. We introduce a new fairness measure
called ³-Intersectional Fairness which helps uncover this phenomena.

Building upon these findings, our next step focuses on addressing the leveling down
issue. To mitigate its effects, we introduce a data generation mechanism that exploits
the hierarchial structure inherent to the intersectional setting, and augments data for
groups by combining and transforming data from more general groups. Through our
experiments we find that this approach not only produces realistic new examples
but also enhances performance in worst-case scenarios. Finally, we explore the inter-
section of privacy, another societal concern, with fairness. We present FEDERATE, a
novel method that combines adversarial learning with differential privacy to derive
private representations that lead to fairer outcomes. Interestingly, our results suggest
that in our experimental context privacy and fairness can coexist and frequently
complement each other.
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Résumé

Avec l’arrivée de l’apprentissage automatique, les institutions gouvernementales et
autres bureaucraties connaissent un changement de paradigme, car les algorithmes
les assistent de plus en plus, voire remplacent certaines de leurs fonctions. Par
conséquent, tout comme les philosophes du début du XXe siècle ont examiné ces
changements institutionnels, il est essentiel d’analyser ces algorithmes sous l’angle
de leur impact sociétal.

Conformément à cet objectif général, cette thèse vise à examiner et à proposer des
moyens d’atténuer les préjudices associés à l’utilisation de l’apprentissage machine.
Plus précisément, nous étudions l’impact des algorithmes d’apprentissage automa-
tique dans les contextes où des groupes de population se voient attribuer ou refuser
des opportunités et des ressources de manière injuste. En réponse, nous proposons
une série d’algorithmes conçus pour mesurer et contrecarrer l’injustice tout au long du
processus d’apprentissage automatique. Nous commençons par proposer FairGrad,
un algorithme fondé sur le gradient qui ajuste dynamiquement l’influence des ex-
emples pendant le processus d’entraînement, afin de garantir l’équité. Ensuite, nous
examinons FairGrad et divers autres mécanismes d’application d’équité sous l’angle
de l’intersectionnalité, où de multiples attributs démographiques sensibles sont pris
en compte simultanément. Nos expériences révèlent que plusieurs approches présen-
tent un comportement de nivellement par le bas : elles optimisent les mesures d’équité
actuelles en portant atteinte aux groupes concernés. Nous présentons une nouvelle
mesure d’équité, ³-Intersectional Fairness (³-Équité intersectionnelle), qui aide à
mettre au jour ce phénomène.

Sur la base de ces résultats, notre étape suivante se concentre sur la résolution du
problème de nivellement par le bas. Pour en atténuer les effets, nous introduisons un
mécanisme de génération de données qui exploite la structure hiérarchique inhérente
au cadre intersectionnel et augmente les données des groupes en combinant et en
transformant les données de groupes plus généraux. À travers nos expériences,
nous montrons que cette approche permet non seulement de produire de nouveaux
exemples réalistes, mais aussi d’améliorer les performances dans les scénarios les plus
défavorables. Enfin, nous explorons l’intersection entre protection de la vie privée,
autre préoccupation sociétale, et équité. Nous présentons FEDERATE, une nouvelle
méthode qui combine l’apprentissage antagoniste et la confidentialité différentielle
pour dériver des représentations privées qui conduisent à des résultats plus équitables.
Il est intéressant de noter que nos résultats suggèrent que, dans notre contexte
expérimental, vie privée et équité peuvent coexister et se complètent fréquemment.
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Chapter 1

Introduction

Decision-making is central to human society. The choices we make and the actions we
take profoundly shape our lives. Nonetheless, outcomes and levels of success often
hinge not just on personal decisions but also on choices made by others. For instance,
decisions related to university admissions or loan approvals can significantly impact
individuals, and these determinations are often made by external bodies. Given the
impact of these decisions on individuals, it is imperative that they are made in a
transparent and reliable manner, as well as for the right reasons.

Entrusting individuals with these crucial decisions introduces risks of subjectivity,
arbitrariness, and inconsistency (Barocas, Hardt, and Narayanan, 2019). For instance,
discrepancies in criminal sentencing can arise due to the personal beliefs of the
judges (Albanese, 1984). A study from the 1919 (Everson, 1919) highlighted this
issue by revealing that penalties for the same crime and similar income in New York
City’s Magistrate’s court ranged from 17% to 80% of the offender’s income. Another
comprehensive analysis of 7,442 cases discovered that the imprisonment rates set by
different judges varied from 34% to 58%. Similarly, healthcare studies (Chapman,
Kaatz, and Carnes, 2013; Hood, 2001; Devine and Plant, 2012) have found biases in
medical treatments that are influenced by the doctor’s personal beliefs, which can
correlate with the patient’s race, ethnicity, or other factors. In education, Sprietsma
(2013) found that essays associated with Turkish-sounding names were graded lower
by German school teachers compared to those with German-sounding names. Like-
wise, Harber et al. (2012) observed that European American teachers provided more
constructive feedback to essays they presumed were written by European American
students than to those believed to be authored by African American students. Apart
from these inconsistencies, individuals find articulating the reasoning behind their
choices also challenging (Strandburg, 2019).

To counteract such biases, decision-making authority has increasingly shifted from
individuals to collectives represented by bureaucratic systems and institutions, which
operate based on well-defined processes and regulations (Weber, 2016). For instance,
decisions concerning university admissions or loan approvals are typically shaped
by the policies, rules, and protocols of established bureaucracies. They are taken col-
lectively rather than by single individuals. Similarly, many countries have instituted
medical boards and associations to standardize treatment procedures. To further
enhance consistency, many jurisdictions have introduced sentencing guidelines for
crimes, thus limiting individual discretion.



2 Chapter 1. Introduction

The development of these regulations often involves multiple experts and stakehold-
ers and is typically subject to public scrutiny. While far from perfect, these institutions
reduces inconsistency and subjectivity prevalent in individual decision-making. Fur-
thermore, in addition to clear rules and regulations, bureaucracies usually offer
mechanisms to challenge and correct decisions.

1.1 Machine assisted Bureaucracies

In recent years, to enhance the efficiency of bureaucratic systems and further reduce
biases, there has been a notable increase in the automation of various institutional
aspects. Barocas, Hardt, and Narayanan (2019) outline several methods by which
software systems have started to assist bureaucracies. We can broadly categorize
these methods into two main groups:

• Software assisted rule based automation: These involve the use of software
engineering to automate decisions by translating explicit rules and regulations
which were set down by hand into the software. For instance, automatically
determine eligibility and enrolment in the government program such as Medi-
caid1, or to screen resumes based on keywords (Sinha, Amir Khusru Akhtar,
and Kumar, 2021).

• Machine Learning assisted automation: These involve use of machine learning
to either replicate the informal judgment of bureaucrats or uncovering patterns
in data to assist policy making. Example include grading essays automati-
cally (Ramesh and Sanampudi, 2022) or guiding policing strategies, 2 such as
determining which areas to prioritize during patrolling.

Rule-based automation, often referred to as robotic process automation (RPA)3,
streamlines bureaucracies by eliminating repetitive tasks traditionally performed
by humans. This results in enhanced efficiency and speed. According to a recent
survey4, 65% of federal agencies in the United States have adopted some form of
RPA. Despite its benefits, RPA introduces several concerns. It can make the process
more brittle and error-prone, as software developers could incorrectly implement
or interpret rules. Additionally, it can further exacerbate the dehumanizing effect of
bureaucracies (Nissenbaum, 1996). However, it is important to note that the concerns
raised due to this automation are more inherent to software development.

Automating the informal judgment of humans via machine learning can help ad-
dress the concerns of arbitrariness and inconsistency in human decision making.
For instance, automatic grading systems have been shown to be more consistent
than teachers (Wang, Chang, and Li, 2008). Similar examples can be found in health
care, such as more consistent and earlier detection of diabetic retinopathy (Alyoubi,
Shalash, and Abulkhair, 2020) or better patient triage in emergency department (Raita
et al., 2019). However, learning from human decisions risks replicating and exacer-
bating the biases of those who made these decisions before (Caliskan, Bryson, and
Narayanan, 2017; Chang, Prabhakaran, and Ordonez, 2019). Additionally, machine
learning systems might achieve similar performance as humans but could have

1https://www.medicaid.gov/medicaid/eligibility/index.html
2https://www.predpol.com/
3https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/public-sector/deloit

te-nl-Robotic-process-automation-in-the-public-sector.pdf
4https://cdn.fedscoop.com/robotic-process-automation-in-government-report.pdf

https://www.medicaid.gov/medicaid/eligibility/index.html
https://www.predpol.com/
https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/public-sector/deloitte-nl-Robotic-process-automation-in-the-public-sector.pdf
https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/public-sector/deloitte-nl-Robotic-process-automation-in-the-public-sector.pdf
https://cdn.fedscoop.com/robotic-process-automation-in-government-report.pdf
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completely different error patterns (Ribeiro, Singh, and Guestrin, 2016), failing in
unexpected ways. In other words, they could be right for the wrong reason.

In addition to replicating human judgment, machine learning is increasingly utilized
as a tool for policy creation. Here, experts define the target objective, and then, instead
of relying on experts’ intuition and normative reasoning, algorithms are employed
to discover the features and patterns from the data to achieve the objective. This
form of assistance has found several use cases, ranging from optimizing costs in
industries (Evans and Gao, 2016; Li et al., 2019) to the discovery of new drugs (Patel
and Shah, 2022). However, this methodology is not without risks, such as a potential
mismatch between the objective and the target (Dressel and Farid, 2018), or the
lack of diverse examples in the dataset (Suresh and Guttag, 2021). O’Neil (2016)
highlights issues in various domains, from justice to finance, where machine learning
has adversely affected specific subgroups.

Furthermore, machine learning’s influence is not confined to merely supplanting
traditional systems; it is progressively permeating myriad facets of human society.
Consequently, understanding the potential ramifications of deploying such systems
becomes imperative. In the seminal keynote talk at NeurIPS 20175, Kate Crawford
identified two predominant types of harm6 associated with machine learning:

• Allocation harm occurs when certain subgroups are unfairly assigned or with-
held opportunities and resources due to algorithmic intervention. An infamous
example of this kind of harm is COMPAS7 software, which systematically ac-
cused the African-American defendants of reoffending more than the European-
American defendant.

• Representational harm emerges when algorithmic systems perpetuate and am-
plify stereotypes of certain groups. These include examples such as stereotypical
representation of race in large language models (Weidinger et al., 2021; Bender
et al., 2021), or skewed portrayal of woman in image searches (Otterbacher,
Bates, and Clough, 2017; Kay, Matuszek, and Munson, 2015).

While allocation harms are typically direct, immediate, and measurable, represen-
tational harms tend to be more long-term, diffused, and challenging to measure.
Addressing them often requires moving beyond mathematical models and thinking
from broader social context involving multiple stakeholders8 which is beyond the
scope of this thesis.

In this thesis, we propose various methods to measure and mitigate allocation
harm when machine learning systems are used to either replicate informal
judgment or uncover patterns in the data. Our proposed solutions attack
these problem at various stages of machine learning pipelines including data
generation, training mechanism, and evaluation metrics.

5The Trouble with Bias: https://www.youtube.com/watch?v=fMym_BKWQzk
6Overtime researchers have further subdivided and added different kinds of harm. For a more

complete list, please refer to Shelby et al. (2022).
7https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sen

tencing
8https://machinesgonewrong.com/

https://www.youtube.com/watch?v=fMym_BKWQzk
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Data Collection 
& Preparation

Model 
Evaluation

Model 
Training

Model 
Deployment

FIGURE 1.1: A typical machine learning pipeline consists of a data collection phase,
followed by a training module that interacts with an evaluation module. Once the
model is trained, it is deployed in real-world scenarios where users interact with
the model. These interactions are subsequently gathered as training data, serving to

continually improve the model.

1.2 Source of Unfairness in ML pipeline

To discuss the different ways unfairness can infiltrate and propagate into machine
learning systems, we begin by introducing a generic machine learning pipeline.
Presented in Figure 1.1, this simplified pipeline consists of the following phases: data
collection and preparation, followed by model training and evaluation, and finally
deployment. In the following, we elaborate on the issues that can arise in each of
these stages and highlight how our contributions aim to address them.

1.2.1 Data collection and Preparation

Data serve as the foundation of any machine learning system. It operationalizes and
delineates the practitioner’s goal, subsequently guiding later stages to achieve the
task at hand. This step typically involves defining a target population and recording
features and labels considered relevant by the practitioner. After data collection,
pre-processing steps such as encoding and standardizing transform the data making
it easy to process.

Mehrabi et al. (2022) and Suresh and Guttag (2021) outline multiple types of bias
that can emerge during the data collection phase. These include representational

bias (Suresh and Guttag, 2019), where parts of the population are underrepresented,
resulting in models to poorly generalize over these subgroups. For instance, the
widely-utilized Twitter Hate Speech dataset (Huang et al., 2020) for training hate
speech detection models contains over 50,000 tweets. However, target demographics
are skewed, with young European American males having over 10 times more
samples than elderly African American females. Consequently, models trained on
this data show much lower error rates for young European American males than
elderly African American females. Another prevalent form of bias is historical bias,
where the collected data reflects the biases and prejudices of the real world (Ahmed,
Granberg, and Khanna, 2021; Quillian et al., 2017). Measurement bias is also common,
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where the label imprecisely captures the true goal or exhibits variable accuracy due to
measurement error across different demographic groups of the population (Hoffmann
and Tarzian, 2001; Phelan et al., 2015).

In Chapter 6 of this thesis, we address the problem of representational bias by
proposing a novel data generation mechanism. Specifically, we propose a Max-
imum Mean Discrepancy-based (Gretton et al., 2012) approach that generates
data for a group such as elderly African American females by combining and
transforming data from related parent groups like elderly African American,
elderly females, and African American females. This strategy capitalizes on
the fact that these parent groups by design have more examples than the tar-
geted group itself. Through experiments over various datasets, we find that a
classifier trained with our proposed data augmentation mechanism improves
its performance over these underrepresented groups.

1.2.2 Model Evaluation

The evaluation module works in conjunction with the training mechanism to assess
model performance across different settings. It typically involves defining a target
metric that best captures the model’s effectiveness for the given task and data. For
instance, in predictive justice scenarios with the stance that it is better to let a guilty
person go free than to condemn the innocent9, metric such as False Positive rate can
potentially captures the task objective. It measures predictions where the model
incorrectly rejects the null hypothesis – that a defendant is innocent, thus minimizing
it aligns with the objective of avoiding harm to the innocent.

Conventional evaluation metrics such as Accuracy and True Positive Rate provide
aggregated insights over the entire population. However, these broad measures can
obscure performance declines and disparities amongst different demographic groups.
For example, while a hate speech detection model might demonstrate high overall
accuracy, it could still exhibit performance gaps across different demographics like
African Americans versus European American. Additionally, focusing solely on one
metric type, such as False Positive Rate, could hide disparities in other error types
like True Positive Rate. In response to such concerns, the fairness research community
has introduced various fairness definitions (Hardt, Price, and Srebro, 2016; Calders,
Kamiran, and Pechenizkiy, 2009; Zafar et al., 2017a). These definitions typically
strive to mathematically capture the unfairness caused due to the performance gaps
across different demographics, while also capturing stances like the predictive justice
example described above.

Much of the discourse in this field centers on singular demographic identities, for
example, gender or race. However, capturing unfairness at the level of a single
identity does not ensure fairness when multiple sensitive axes are considered together,
such as those defined by both gender and race. These observations also resonate
with the analytical framework of intersectionality (Crenshaw, 1989), which argues that
systems of inequality based on various demographic attributes (like gender and race)
may “intersect” to create unique effects.

9https://www.law.cornell.edu/supremecourt/text/156/432

https://www.law.cornell.edu/supremecourt/text/156/432
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In Chapter 5, we benchmark various fairness inducing approaches in intersec-
tional fairness settings. We find that several methods improve over existing
fairness metrics by “leveling down”, that is, by harming the groups involved.
In response, we propose a new measure called the ³-Intersectional Fairness,
which is robust to leveling down. More specifically, ³-Intersectional Fairness
combines the absolute and the relative performance across different demo-
graphic groups and can be seen as a generalization of existing fairness mea-
sures. We also highlight several desirable properties of the proposed measure
and analyze its relation to other fairness measures.

1.2.3 Model Training

The model training phase typically involves defining a loss function, and a parameter-
ized model architecture. The model’s parameters are then optimized by minimizing
the loss function over the training data using specialized optimizers. Generally,
multiple loss functions, optimizers, and model architectures are tested to achieve
optimal performance, as measured by the evaluation module. For classification tasks
using deep neural networks, the model architecture commonly consists of two main
components: (i) an encoder that transforms the raw input into a representative em-
bedding, which is then passed to (ii) a classifier that classifies the embedding. A key
advantage of this architecture is that encoders can be pre-trained on large volumes of
possibly unlabelled data which reduces reliance on task-specific in-domain data and
annotation.

Modern machine learning techniques are surprisingly good at modeling the objective
based on the training data. In other words, the models can faithfully reflect the
characteristics of the underlying data. However, this implies that without any specific
intervention, any bias in the training data might not only get reflected in the output,
but can get amplified (Hall et al., 2022). As highlighted by Barocas, Hardt, and
Narayanan, 2019, a part of the training data represents the signal we wish to mine,
but might also consists of stereotypical pattern that we might want to avoid. As a
practitioner, it is difficult to control what the model focuses on.

For example, De-Arteaga et al. (2019) investigated predicting occupations from bio-
graphical descriptions to improve job recommendations and hiring decisions. Their
analysis revealed that the classifier tends to be more correct when the occupation
aligns with the stereotypical gender. For instance, the biographies authored by male
doctors were more likely to be classified as doctors than those written by female
doctors. Analogous gender-based stereotypical tendencies were observed for other
professions, including professor, model, and accountant. Addressing these inherent
biases within the training data is a nontrivial, owing to the myriad of latent and con-
founding variables influencing these associations. For instance, even after removing
explicit gender indicators such as pronouns and names and balancing the training
data, they found that the classifier still exhibited gender bias.

Thus, eliminating bias from the training data is not only challenging, but also often
inadequate. Furthermore, it is unclear how to manipulate training data to enforce fair-
ness definitions described above. Moreover, certain design decisions during the train-
ing phase, like the choice of optimization function or regularization techniques, might
inadvertently introduce unfairness, even when the input data is unbiased (Baeza-
Yates, 2018; Danks and London, 2017).
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To address these issues, various in-processing approaches have been developed that
augments existing training mechanisms to promote fairness. These methods range
from introducing additional constraints during the training phase to improving data
sampling. In this context, we also propose two distinct mechanisms (Chapter 7 and
Chapter 4 respectively), each targeting different components of the model architec-
ture:

• FEDERATE, which approaches the fairness problem from the lens of
removing stereotypical associations at the level of encoder. It combines
the ideas from differential privacy and adversarial training to create
representations devoid of demographic information resulting in fairer
models.

• FairGrad, where instead of removing sensitive information, we directly
optimize the fairness definition at hand by adding it as an additional loss
function. This results in a simple-to-use fairness-enforcing mechanism
that requires minimal changes to the existing machine-learning pipeline
while supporting various fairness definitions.

1.2.4 Model Deployment

Once trained, models are generally deployed in real-world settings for people to use.
Deployment involves steps like packaging the model into a production environment,
monitoring performance over time, and logging user interactions that may be then
used to further refine training.

One potential fairness issue arises when user feedback is misinterpreted. For instance,
in a recommendation system, a user clicking the first link could reflect relevance or
just placement (Lerman and Hogg, 2014). Similarly, in predictive policing, targeting
areas of predicted high risk can increase police presence and arrests there. This
amplifies a feedback loop, as more arrests further raise the assessed risk (Lum and
Isaac, 2016; Ensign et al., 2018). Additionally, population shifts over time may alter
real-world error rates, even if the model was fair on training data. Addressing
these challenges requires examining the broader techno-social systems encompassing
machine learning, an important direction for future work, but one that is beyond this
thesis’s scope.

1.3 Thesis Outline

The remainder of this thesis is organized into three main parts. First, we introduce
relevant background and related work. We then present our various contributions
over the next four chapters. Finally, in the concluding chapter, we summarize the
work and discuss future research directions.

Chapter 2 introduces various concepts related to supervised machine learning, specif-
ically focusing on tools and techniques relevant to the thesis. We then provide
background on fair machine learning in Chapter 3, covering the historical framework,
metrics, and methods proposed in this field.

In Chapter 4, we address the problem of fairness in classification. More specifically,
we propose FairGrad, a method to enforce fairness based on a re-weighting scheme
that iteratively learns group-specific weights based on whether they are advantaged
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or not during training. Our experiments reveal that FairGrad is competitive with
standard baselines over various datasets, including ones used in natural language
processing and computer vision.

In Chapter 5, we analyze various fairness-inducing techniques, including FairGrad,
from the lens of intersectionality. We find that many of these methods optimize
for existing intersectional fairness measures by harming the subgroups, also called
“leveling down” (Mittelstadt, Wachter, and Russell, 2023). To counter these problems,
we propose ³-Intersectional Fairness, which combines the performance of a classi-
fier over the worst-off subgroup and the relative performance between subgroups.
Through various experiments, we show that our proposed metric is more robust and
generalizes over existing fairness measures. In Chapter 6, we propose a novel MMD-
based data generation mechanism to counter the above leveling-down phenomena.
We validate our approach over various datasets and find it consistently improves
performance of a classifier over both best and worst-off groups.

Chapter 7 shifts the focus to privacy, another critical ethical concern in modern ma-
chine learning systems. Our empirical analysis investigates the relationship between
privacy and fairness, revealing that they can mutually enhance each other in certain
scenarios. Specifically, we introduce an approach that integrates differential privacy
with adversarial learning to learn privatized text representations that also leads to
fairer models. Our extensive experiments demonstrate that our proposed mechanism
can achieves simultaneous fairness and privacy with minimal impact on accuracy.
Finally, Chapter 8 summarizes our contributions and outlines several promising
avenues for future research.

1.4 List of Publications

• Gaurav Maheshwari, Aurélien Bellet, Pascal Denis, and Mikaela Keller. "Fair
NLP Models with Differentially Private Text Encoders." In Findings of the Asso-
ciation for Computational Linguistics: Empirical Methods in Natural Language
Processing 2022.

• Gaurav Maheshwari, and Michael Perrot. "FairGrad: Fairness Aware Gradient
Descent". Transactions on Machine Learning Research (2023).

• Gaurav Maheshwari, Pascal Denis, Mikaela Keller, and Aurélien Bellet. "Fair
NLP Models with Differentially Private Text Encoders." In Empirical Methods
in Natural Language Processing 2023.
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Chapter 2

Neural Networks

This thesis builds upon several key concepts and techniques developed in machine
learning, which we introduce in this chapter. We begin by an overview of learning
framework, focusing on empirical risk minimization and its component in supervised
setting. We then discuss model architectures commonly used in this thesis.

2.1 Learning Framework

In their seminal work, Michalski, Carbonell, and Mitchell (2013) define a machine
learning algorithm as:

A computer program that learns from examples E with respect to a specific
class of tasks T and performance measure L, improving its performance
on tasks in T, as measured by L, through examples E.

In other words, the central objective is to devise algorithms that effectively generalize
over task T. Here generalization refers to the algorithm’s ability to perform well on
new, previously unseen examples. This concept of generalization is captured by
the notion of risk. However, before delving into risk, we first describe the setup for
supervised learning.

In a typical supervised learning setup, we assume an input space X and a label space
Y . We further assume that there exists a unknown distribution D over X ×Y . The
objective is then to find parameters θ ∈ Θ for an hypothesis h, such that hθ : X → Y
the output of hθ should correctly represent the relationship between X and Y for the
points drawn from D. However, D is generally unknown, and instead we have access
to finite dataset T = {(xi, yi)}n

i=1 consisting of n examples drawn i.i.d. from D. The
primary objective of a machine learning algorithm is to learn hθ using T , so that it
generalizes well over new examples drawn from D.

A crucial component in the aforementioned setup is the formulation of a loss function,
which quantifies the model’s performance for a given problem. The design of the
loss function can vary considerably based on the problem at hand. For instance, in
classification task where Y is finite and discrete, with the aim to predict the precise
class, an appropriate loss function l(·, ·) can be formulated as:
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l(hθ , z) =

{

0 if hθ(x) = y

1 otherwise
(2.1)

where z is an example of the form (x, y) ∈ D and hθ is the hypothesis function
under consideration. In the above defined loss function, the value is zero if, and
only if, the prediction matches the true label exactly, disregarding any closeness in
prediction. Conversely, for regression problems where y is continuous, the objective
is to get predictions as close to the true value as feasible. In other words, given two
predictions, the one closer to the true label is a better prediction than the one further
away. However, in classification problems, both predictions are equally incorrect.
Thus a more appropriate loss function for regression would emphasize this notion of
closeness. Below is an example of such a loss function:

l(hθ , z) = |hθ(x)− y| (2.2)

A loss function l : Θ × Z → R+, given a hypothesis hθ parametrized with θ ∈ Θ

and example z ∈ D, returns a positive real value in R+. In Section 2.2, we provide
examples of commonly used loss functions. Equipped with loss, we define risk as.

Definition 1. True Risk: Given a loss function l : Θ ×Z → R+, and a distribution D,
the true risk of an hypothesis hθ is:

R(hθ) = E
z∼D

[l(hθ , z)] (2.3)

Recall that our ultimate goal is to find optimal parameters of the hypothesis that best
describes the distribution D. This goal can be casted as an optimization problem
where the best parameters hθ∗ minimizes the above risk:

hθ* = arg min
θ∈Θ

R(hθ) (2.4)

Although appealing, the risk R(hθ) cannot be generally calculated as D is usually
unknown. Instead, it is estimated on the dataset T and is termed the empirical risk.

Definition 2. Empirical Risk: Given a loss function l : Θ ×Z → R+ and a distribu-
tion D, the empirical risk of an hypothesis hθ is:

R̂(hθ) =
1
n ∑

z∈T

l(hθ , z) (2.5)

Consequently, empirical risk minimization can be defined as:

hθ∗ = arg min
θ∈Θ

R̂(hθ) (2.6)

The idea behind empirical risk minimization is that we hope that minimizing it leads
to minimizing the true risk. In other words:

arg min
θ∈Θ

R(hθ) ≈ arg min
θ∈Θ

R̂(hθ) (2.7)
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Several factors influence the approximation of the true risk by the empirical risk. Key
among them are:

• The amount of training data available. More data typically narrows the gap
between the two terms.

• The loss function l. A well-designed loss function with various properties
such as strong convexity, Lipschitz continuity, and smoothness enables better
generalization.

• The complexity of the set of hypotheses {hθ ; θ ∈ Θ}, and the training mecha-
nism to pick the appropriate parameters θ .

An important tradeoff for machine learning practitioners is balancing model com-
plexity. Complex hypotheses, i.e. hypothesis with large number of parameters, can
overfit training data, leading to lower empirical risk but higher true risk. In contrast,
simpler models might not capture the underlying patterns of the task sufficiently.
This tradeoff between different complexity model is known as bias-variance trade-
off. We refer the interested readers to (Mohri, Rostamizadeh, and Talwalkar, 2018;
Shalev-Shwartz and Ben-David, 2014; Neal et al., 2018; Yang et al., 2020) for in-depth
discussion of this tradeoff. In the remainder of this chapter, we will discuss various
loss functions, common hypothesis classes, and training mechanisms. We will also
discuss mechanisms to control model complexity and a common technique used to
reduce the volume of training data required to effectively train the model.

2.2 Loss Functions

At its core, the objective of the loss function is to evaluate the quality of a hypothesis
for a given example and assign it a numerical score.

Definition 3. Loss function Given an hypothesis hθ parametrized by θ ∈ Θ, and data
space Z , a loss function l : Θ ×Z → R+ is any function such that.

• ∀θ ∈ Θ and z ∈ Z , l(hθ , z) g 0

• hθ1 , hθ2 ∈ Θ and z ∈ Z , l(hθ1 , z) f l(hθ2 , z) indicates that hypothesis hθ1 per-
forms better than hθ2 on example z.

We now discuss several standard loss functions for classification tasks.

Zero-One loss: As described in introduction, it is a simple loss function which
counts the misclassification by an hypothesis. It returns 1 for a misclassification, and
returns 0 otherwise:

∀θ ∈ Θ, z ∈ Z , l(hθ , z) =

{

0 if hθ(x) = y

1 otherwise
(2.8)

While appealing the loss is typically not used in practice as it is neither convex nor
continuous. Lack of these properties makes the optimization problem relying on
these loss functions difficult to solve. Instead, various surrogates have been proposed
that approximate the zero-one loss by either relaxing or upper-bounding this loss.
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Hinge Loss: It approximates the zero-one loss by linearly penalizing every predic-
tion proportional to disagreement. The Hinge loss (Gentile and Warmuth, 1998) is
defined as:

∀θ ∈ Θ, z ∈ Z , l(hθ , z) = max(0, 1 − hθ(x) · y) (2.9)

Although not strictly convex, this loss is continuous and almost differential ev-
erywhere (except at hθ(x) · y = 1), leading to several applications. Notably, it is
frequently used to optimize the Support Vector Machines (Boser, Guyon, and Vap-
nik, 1992; Mathur and Foody, 2008). The primary limitation of the hinge loss is
its sensitivity to outliers. Additionally, its non-differentiability at hθ(x) · y = 1 can
sometimes make optimization unstable. To address this, variants like smooth hinge
loss (Rennie, 2005) and quadratically smooth hinge loss (Zhang, 2004) have been
introduced. Several other loss functions, such as Huber loss (Huber, 1965) and square
loss (Tibshirani, 1996), also extend the idea of the zero-one loss.

The losses discussed so far are based on the concept of margin. They typically
compare the final prediction with the target label. In contrast, probability-based loss
functions take the prediction’s probability into account. One of the most commonly
used one is:

CrossEntropyLoss: The cross entropy loss is defined as:

∀θ ∈ Θ and z ∈ Z , l(hθ , z) = ∑
y′∈Y

p(y′) · log(p(hθ(x) = y′)) (2.10)

where p(hθ(x) = y′) is the probability of prediction y′ by hypothesis h for input x,
and p(y′) is the probability of the true label to be y′. For a given example (x, y):

∀(x, y) ∈ Z p(y′) =

{

1 if y’ = y

0 otherwise
(2.11)

Intuitively, the cross-entropy loss measures the average number of bits needed to
identify an example if a coding scheme is based on the estimated distribution instead
of the true distribution D. This concept of entropy has also found applications in
Negative Log-Likelihood (NLL) and Kullback-Leibler (KL) divergence loss. We refer
the more interested readers to Ciampiconi et al. (2023), which provides an extensive
overview of various loss functions.

2.3 Regularization

Loss functions are commonly evaluated over training data. A potential pitfall of
minimizing these loss functions solely based on training data is the risk of overfitting.
In essence, the hypothesis could excel on the training data but fail to generalize.
To counteract overfitting and promote model simplicity (biasvariance tradeoff), an
additional term known as regularization is incorporated alongside the loss function
either implicitly or explicitly. An example of a regularization term is:

lp norms: Parameterized by p g 0, the lp norm can be defined as:
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∀θ ∈ Θ ∥θ∥p = (
d

∑
i=1

∥θi∥p)
1
p (2.12)

where Θ is a R
d space. In practice it is typical to set the value of p to 1 or 2 corre-

sponding to l1 (Tibshirani, 1996) and l2 norm (Cortes and Vapnik, 1995).

In the fairness literature, various mechanisms, just like regularization, introduce an
additional term to the loss function to promote fairness. This term penalizes the
model for exhibiting unfair behavior towards specific subsets of the population. In
Section 3.5.2, we list several such approaches.

2.4 Hypothesis Functions

In this section, we explore the hypothesis function, a crucial component of empirical
risk minimization. Although a myriad of hypothesis functions exist, we will narrow
our focus to Neural Networks in the classification context. We begin our discus-
sion with simple linear neural networks, then build toward nonlinear architectures,
including multi-layer perceptrons, convolutional neural networks, and transformers.

there is a confusion here: logistic regression is not a hypothesis function, it is the
combination of choosing a linear hypothesis with softmax and the cross-entropy loss.

I would just call this linear model and note that combined with the cross-entropy loss,
this leads to (multinomial) logistic regression

Linear Model: A simple yet prevalent hypothesis function is linear model which
learns a linear map between the input space X and the discrete label space consisting
of c labels {0, · · · , c}. More specifically, linear model consists of transformation func-
tion, followed by a softmax funtion, and then an argmax function. The transformation
function can be expressed as:

hθ(x) = Wx + b

here, W ∈ R
c×d, b ∈ R

c, x ∈ R
d. The variables d represent the dimension of the input

example. Typically, W is referred to as weight matrix and b is the bias vector. Together,
they constitute the model’s parameters, denoted by θ which includes W, b. In order
to transform the output of hθ(x) from a vector of numbers to vector of probability, it
is typical combined with a softmax function and can be expressed as.

l = hθ(x)

ŷ = softmax(l)

where l ∈ [0, 1]c and ŷ ∈ [0, 1]c. Here, softmax is defined as:
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softmax(l) = [
el0

∑
c
j=0 elj

, · · · ,
eli

∑
c
j=0 elj

, · · · ,
elc

∑
c
j=0 elj

]

where li and lj are the i-th and j-th coordinate of vector l. In pratice, it is common to
optimize the above function with cross entropy loss (See Section 2.2) and is called
logistic regression. To get the final predictions, we take an argmax of ŷ. Thus the final
linear hypothesis function which maps input x to output classes is:

ˆf inal_y = arg max(softmax(hθ(x)))

where ˆf inal_y ∈ {0, · · · , c}.

Feed Forward Neural Network: While linear models are effective, it captures only
linear relationships. To address this limitation, non-linearity is incorporated. A
simple feed forward neural network also called two-layer multilayer perceptron can
be expressed as:

xtrans f ormed = Ã(W1x + b1)

output = W2xtrans f ormed + b2

ŷ = softmax(output)

In this equation, W1, W2, b1, b2 are the parameters of the hypothesis function, and Ã
is the activation function which introduces the non-linearity. Some of the most widely
used activation functions include:

• Sigmoid: This activation function maps real numbers to the interval between 0
and 1. It is represented as:

Ã(x) =
1

1 + e−x
(2.13)

• Hyperbolic Tangent (tanh): Unlike sigmoid, this function maps real numbers
to the interval between -1 and 1. Its expression is:

Ã(x) = tanh(x) (2.14)

• Rectified Linear Unit (ReLU) (Agarap, 2018): It is a combination of a threshold
and a linear function, which can be represented as:

Ã(x) = max(0, x) (2.15)

Neural networks are compositions of multiple functions. For instance, linear model
can be expressed as e( f (g(x))) where e() is the arg max function, f () is the softmax
function, and g() is the linear model Wx + b. In neural network terminology, each
of these functions is a layer and their composition is akin to stacking these layers
atop one another. Generally, all layers apart from the output layer are called hidden
layers. For instance, in the multilayer perceptron architecture described above, the
first hidden layer is Ã(W1x + b1), the second is W2 x⃗trans f ormed + b2, and the output
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FIGURE 2.1: Neural Network with two hidden layers with input
x ∈ R

3 and l ∈ [0, 1]2.

layer is ŷ = so f tmax(output). Given its two hidden layers, it is also called a two-layer
feed forward network. A m layer feed forward network can be characterized as:

l0 = Ã(W1x + b1)

...

lk = Ã(Wklk−1 + bk)

...

lm = Ã(Wmlm−1 + bm)

ŷ = softmax(lm)

Here Wk and bk are the parameters of the layer k where k ∈ {0, · · · , m}.

Figure 2.1, visualizes a two-layer neural network, alongside weight matrix and bias
parameters. Different layers have been devised to cater to specific modalities and
tasks:

• Feed Forward Layer: Comprises of a weight matrix that linearly transforms its
input. Multi layer perceptron is built by stacking multiple feed forward layers
with some non-linearities.

• Convolutional Layer: Typically used for image analysis, this layer performs
convolutional operations on grid-like data using parameterized multi dimen-
sional kernels.

• Recurrent Layer: Applied for sequential tasks, such as text processing, recurrent
layers retain a "memory" of past inputs. This memory is updated according to
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the current input. In essence, this layer functions similarly to a feed forward
layer but shares parameters across inputs.

• Attention Layer: Drawing inspiration from the human concept of attention, this
layer allows the neural network to focus on specific parts of the input. Variants
include self-attention (Bahdanau, Cho, and Bengio, 2015), cross-attention, and
multi-head attention (Vaswani et al., 2017).

A typical neural network combines multiple such layers. For example, ResNet-
152 (He et al., 2016a) consists of 152 layers. Similarly, BERT (Devlin et al., 2019), a
large neural network typically used for text processing, is composed of 12 transformer
blocks. Each transformer block is further composed of multiple attention and feed
forward layers.

2.5 Optimization

Recall, our objective is to find optimal parameters θ∗ which minimizes the following
empirical risk:

hθ∗ = arg min
θ∈Θ

R̂(hθ) (2.16)

In this section, we discuss common methods for selecting parameters that effectively
capture the relationship between inputs and outputs. A direct method involves
searching for a closed-form solution to the optimization problems outlined earlier.
However, the hypothesis functions we explore in this study have several thousand
parameters, rendering analytical solutions impractical. Furthermore, the typical loss
functions used for classification often lack closed-form solutions. As a result, we turn
our attention to gradient-based optimization techniques. Although these techniques
do not always guarantee optimal parameter selection, they are generally effective in
practical applications. Most of the gradient-based optimization techniques assume
that the loss function is differentiable, a property exhibited by most of the previously
discussed loss functions. We begin our discussion with gradient descent and then
move on to various extensions commonly employed in machine learning.

Batch Stochastic Gradient Descent (SGD): It is a first-order optimization algo-
rithm (Robbins, 1951; Kiefer and Wolfowitz, 1952) that iteratively refines its initial
guess to find a minimum of the empirical risk. The core idea behind gradient descent
is to take repeated steps in the opposite direction of the gradient of the loss function
at the current step. Algorithm 1 illustrates Batch SGD:

Based on the batch size, the algorithm mentioned has three primary variants:

• Gradient Descent (GD): Here, the batch size is set to n, representing the total
number of examples in the dataset. Consequently, the gradient at time t is
the average of all the examples in the datasets. This variant is rarely used in
practice due to its memory and computation intensive nature. Moreover the
convergence is generally slow and suffers from overfitting when training deep
neural network.

• Stochastic Gradient Descent (SGD): For this variant, the batch size is one. In
other words, the parameters of the model are updated after each example in the
dataset. While appealing, the convergence path of SGD is much noisier than
GD.
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Algorithm 1 Batch Stochastic Gradient Descent

Input: Dataset T = {(xi, yi)}n
i=1, hypothesis hθ0 parameterized by θ0 ∈ R

d as our
initial guess, l(; ) as the loss function, T as the number of iterations, learning rate ³,
and b is the batch size.
Output: θT

1: for t = 0 to T − 1 do

2: gt = 0
3: Randomly sample b number of examples from T and set it to T b

4: gt =
1
b · ∑(x,y) in T b ∇l(hθt(x), y)

5: θt+1 = θt − ³ · gt

6: end for

7: return θT

• Batch Stochastic Gradient Descent (Batch SGD): This merges the benefits of the
previous two variants by using a small batch size, encompassing a small subset
of examples.

While Batch SGD has been employed in various practical applications, it tends to
converge slowly due to the noise in individual gradients (Sutton, 1986). Additionally,
it can get trapped in bad local minima where gradients become zero, resulting in
no parameter update. We discuss a few optimizers designed to address these issues.
Instead of detailing the entire optimization algorithm as in Algorithm 1, we focus on
the core update step. For instance, the update step for Batch SGD is:

θt+1 = θt − ³ · gt (2.17)

Stochastic Gradient Descent with Momentum: The core concept of momentum (Qian,
1999) involves considering past gradients. Specifically, it computes an exponentially
weighted average of gradients to update model parameters. By accounting for prior
gradients, momentum can build inertia, akin to a ball rolling downhill, to overcome
local minima and oscillations arising from noisy gradients. The update step is as
follows:

vt = γ · vt−1 + ³ · gt

θt+1 = θt − vt

Here, ³ is the learning rate, γ is the momentum term, vt−1 represents weighted sum
of gradients until time t − 1, and gt are the gradients at time t.

Adagrad: In addition to noisy gradients, a challenge with batch SGD is the necessity
for practitioners to carefully adjust the learning rate. Moreover, in sparse data scenar-
ios, certain parameters undergo updates more often than others. Adagrad (Duchi,
Hazan, and Singer, 2011) addresses these issues by modifying the learning rate for
each parameter independently. It applies larger updates for infrequently updated
parameters and smaller updates for those adjusted more regularly. Before delving
into a vectorized approach, we first demonstrate a per-parameter update. Let gt,i be
the gradients of the parameter θi at time t for example (x, y):
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gt,i = ∇l(hθt,i(x), y) (2.18)

The update step of Adagrad for parameter θt,i becomes:

θt+1,i = θt,i − ³
√

Gt,ii + ϵ
· gt,i (2.19)

Gt ∈ R
d∗d is a diagonal matrix, with ii representing the sum of squares of gradients

with respect to θi until time t. In other words, Gt represents outer product of all
previous gradients, i.e. Gt = ∑

t
Ä=0 gÄ · gT

Ä Here ϵ is the smoothening factor to avoid
zero divisibility. The overall vectorized updates step becomes:

θt+1 = θt −
³√

Gt + ϵ
» gt (2.20)

Here » represents the element wise matrix multiplication between two diagonal
matrices, and (i, i) element in gt represents gradients of parameter θt,i.

Adam: Introduced by Kingma and Ba (2015), it combines the idea of momentum
with Adagrad alongside bias correction terms. However, unlike Adagrad which
normalizes the current gradients with the sum of squares of all previous gradients,
Adam uses an exponential moving average strategy. The update step is as follows:

mt = ´1mt−1 + (1 − ´2)gt

vt = ´1vt−1 + (1 − ´2)g2
t

m̂t =
mt

1 − ´1

v̂t =
vt

1 − ´2

θt+1 = θt −
³√

vt + ϵ
m̂t

Here ´1 and ´2 are the initial decay rates, and m̂ and v̂ are bias correction terms.
Throughout this thesis, we adopt Adam as our default optimizer, unless specified
differently. For a comprehensive overview of other loss functions, we direct interested
readers to Ruder (2016).

2.6 Training Neural Networks

In this section, we combine the ingredients discussed thus far to perform empirical
risk minimization with neural networks. First, we introduce two key concepts -
forward propagation and backpropagation.

Forward Propagation: As highlighted in Section 2.4, neural networks are essentially
layers stacked upon one another. These layers progressively transform the input into
the final output. This mechanism wherein the output of a preceding layer serves as
the input for the subsequent layer is termed forward propagation.
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Backpropagation: Recall, in Section 2.2 we discussed several loss functions which
are then optimized using optimizers discussed in Section 2.5 to pick optimal param-
eters of the hypothesis function. These optimizers typically rely on calculating the
gradient of each parameter with respect to the loss function. In order to efficiently
compute these gradients, we commonly use the backpropagation algorithm (LeCun
et al., 1989) based on dynamic programming and chain rule.

The central idea of backpropagation, a cornerstone algorithm in neural network
training, is to compute these gradients through a systematic application of the chain
rule, propagating the gradient of the loss backward through the network’s layers.
More specifically, the calculation of gradients of parameters in layer Lk with respect
to the loss function l, only relies on the gradients of layer Lk+1 with respect to loss
function, the input to the layer Lk and the gradients of the output with respect to layer
Lk. To illustrate backpropogation, consider a simple m layer feed forward network
(as defined in Section 2.4) where a layer Lk is characterized as follows:

l⃗k = Ã(Wk · l⃗k−1) (2.21)

Here, Wk is the weight matrix of layer Lk, and Ã represents sigmoid activation function.
l⃗k−1 is the output of layer Lk−1. For simplicity, we exclude bias parameters. Using the
chain rule, gradients of Wk with respect to loss l can be reformulated as:

∂l

∂Wk
=

∂l

∂Wk+1

∂Wk+1

∂Wk
(2.22)

Given the derivative of Ã(x) with respect to x is Ã(x) · (1 − Ã(x)), we can simplify
the equation as:

∂l

∂Wk
=

∂l

∂Wk+1
· Ã(Wk · l⃗k−1) · (1 − Ã(Wk · l⃗k−1)) · l⃗k−1 (2.23)

This demonstrates that gradients ∂l
∂Wk

only depend on the gradients of the next layer,
gradient of the output of the current layer with respect to its parameters, and input to
the current layer. Thus to compute the gradients for each layer, backpropogation starts
with the last layer and then propagates the gradients backwards, giving the technique
its name. Modern neural networks often utilize specialized autograd libraries like
PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al., 2015), and Jax (Bradbury et al.,
2018) for computing these gradients.

With the necessary components in place, Algorithm 2 presents a conventional training
loop. This process typically involves sampling training examples, passing them
through the model (forward propagation), computing the loss, determining the
gradients (backward propagation), and finally employing the optimizer to update the
model parameters. In the fairness literature, various methods enhance this training
procedure by incorporating instance reweighting (Iosifidis and Ntoutsi, 2019; Jiang
and Nachum, 2020), refining the sampling mechanism (Chakraborty et al., 2020; Roh
et al., 2021), and applying bi-level training strategies (Ozdayi, Kantarcioglu, and Iyer,
2021). We provide an overview of these techniques in Section 3.5.
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Algorithm 2 Typical Training Procedure
Input: Input dataset T
Output: Trained hypothesis.

1: Define and initialize hypothesis h.
2: Define and set hyperparameters of loss function l.
3: Define and set hyperparameters of optimizer o.
4: for T b to T do

5: Forward pass T b through hypothesis h, and save its output.
6: Calculate loss over the output.
7: Calculate gradients with respect to the loss.
8: Use optimizer to update the parameters of the hypothesis based on the gradi-

ents.
9: end for

10: return Trained hypothesis h.

FIGURE 2.2: Encoder Decoder Networks which embeds the input to
an intermediary representation which gets decoded by the decoder to

final representation.

2.7 Common Neural Network Architectures

In this section we discuss two neural network architectures which we use throughout
the thesis.

2.7.1 Encoder Decoder Networks

Neural networks have found applications across a diverse range of tasks, encompass-
ing multiple input modalities like images (Li et al., 2014; Guo et al., 2017), text (Wang,
Jiang, and Luo, 2016; Wang et al., 2018), videos (Karpathy et al., 2014; Kappeler et al.,
2016), and music (Choi et al., 2017; Singh and Bohat, 2021). Correspondingly, their
outputs can range from text generation (Floridi and Chiriatti, 2020; Su et al., 2021)
and classification (Wang, Jiang, and Luo, 2016; Karpathy et al., 2014) to image gen-
eration (Ramesh et al., 2022; Wu, Lischinski, and Shechtman, 2021). For instance, in
image captioning, the input is an image and the output is a text caption. In sentiment
classification, the input is a textual passage and the outputs are its corresponding
sentiment classes. To address this wide spectrum of modalities, a standard strategy in
neural networks is the encoder-decoder architecture, which comprises two primary
components:

• Encoder: This component of the model takes an example from the input space
X and encode it to latent feature space Xenc. Ideally, this mapping preserves all
the information pertinent to the task within the encoded feature space.

• Decoder: This component of the model decodes the representation in Xenc to
produce the output in space Y .
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With the use of the intermediary representation (Xenc), the encoder-decoder archi-
tecture effectively decouples input and output modality. This flexibility means that
different layers can be interchanged with minimal engineering overhead. Figure 2.2,
visualizes this setup and we represent this architecture as follows:

enc = E(x)

output = C(enc)

Here E is the encoder, C is the decoder, and x is the input example.

One of the disadvantage of large neural networks is that they require enormous
amount of training data which is often not available. The encoder-decoder framework
addresses this issue: the encoder can be pre-trained on a vast array of related data,
often using unsupervised methods. This pre-training ensures that the encoder can
learn overarching patterns within the modality, like edge detection in images or
semantic nuances in text. Subsequently, the combined encoder-decoder structure,
or occasionally just the decoder, is fine-tuned on the specific dataset in question.
This approach will be especially useful in our context, as fairness datasets tend to be
limited in volume and span various modalities.

2.7.2 Adversarial Networks

Adversarial Networks augment the encoder-decoder architecture by equipping it
with the capability to selectively remove specific types of information during the
encoding process. As we will see in Chapter 7 the architecture can be used to
enforce fairness by removing sensitive demographic information from the encoded
representation. This is typically achieved through the addition of an adversarial
classifier designed specifically to predict this sensitive attribute. The encoder, in this
setup, has a twofold role: (i) generating a representation that prevents the adversarial
classifier from discerning sensitive information and (ii) ensuring that the primary
task-relevant information remains intact in the encoded representation. Formally, the
adversarial neural networks can be characterized as:

enc = E(x)

output = C(enc)

adv_output = A(enc)

Here E is the encoder, C is the task classifier, A is the adversarial classifier, and x is the
input example. A simple way to train this network would be to add the adversarial
loss to the task loss. However, adding these two loss functions would result in the
encoder striving to improve both the adversarial and task classifiers. Instead, we
reverse the sign of gradients flowing from the adversarial classifier to the encoder.
This results in the encoder aiming to make the adversarial classifier worse while the
adversarial classifier tries to improve itself based on the encoder representation. In
other words, the adversarial classifier and the encoder play a minmax game. Thus,
the final optimization equation can be represented as:
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min
θE,θC

max
θA

lclass(θE, θC)− ¼ladv(θE, θA), (2.24)

where lclass(θE, θC) is the loss function for the encoder and classifier branch, while
ladv(θE, θA) is the loss function for adversarial brach. θE, θC, θA are the parameters of
the encoder, task classifier, and adversarial classifier respectively. Hyperparameter
¼ g 0 here represents the tradeoff between adversarial and task loss.

2.8 Conclusion

In this chapter, we presented an overview of the learning framework, emphasizing
empirical risk minimization. We outlined its fundamental components, which include:
(i) the hypothesis function, with a particular focus on neural networks; (ii) the loss
function that quantifies the performance of the hypothesis function; (iii) optimization
that selects the optimal parameters for a given hypothesis class; and (iv) the training
procedure that ties all these components together. Additionally, we discussed a
few prevalent neural network architectures. In subsequent chapters, we will build
upon these foundations to enhance fairness in machine learning systems. In the next
chapter, we delve deeper into fairness in machine learning.
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Chapter 3

Fairness in Machine Learning

In Chapter 1, we introduced various sources of unfairness in machine learning in the
context of a generic pipeline. In this chapter, we delve deeper into fairness in machine
learning, covering historical context, common metrics, and prevalent methods. We
also provide a general introduction to the problem and define key terminology
used throughout the thesis. Note that while this chapter gives a comprehensive
background necessary to understand our contributions, we reserve the detailed
examination of methods and metrics closely related to our contributions to their
corresponding chapters.

3.1 History of Studies on Fairness

While fairness in machine learning is a relatively new field, with early roots tracing
back to seminal works by Pedreschi, Ruggieri, and Turini (2008), Dwork et al. (2012),
and Calders, Kamiran, and Pechenizkiy (2009), concerns about fairness in broader
social systems are much older. Hutchinson and Mitchell (2019) trace the history of
fairness to the United States Civil Rights Act of 1964,1 which effectively outlawed
discrimination based on identities such as gender, color, or race in government and
employment sectors.

This act shaped public opinion on unfairness and spurred research efforts in the
field of social science. Early focus areas included employment sectors (Guion, 1966;
Williams et al., 1980) and standardized testing in higher education (Cleary, 1966),
where various concepts were proposed to define and measure unfairness (Petersen
and Novick, 1976; Darlington, 1971) across social and cultural contexts. Interestingly,
several contemporary concepts currently emerging in fair machine learning have
parallels to these older notions. Yet, as highlighted by Hutchinson and Mitchell (2019),
this research field faded in the 1970s as multiple, often conflicting fairness concepts
left practitioners confused on the applicability and validity of these notions.

With machine learning rapidly automating critical bureaucratic functions, as dis-
cussed in the Introduction (see Chapter 1), the potential for harm has sparked calls
for greater accountability and transparency by researchers (Weidinger et al., 2021;
Burrell, 2016; Metcalf and Crawford, 2016), government agencies (Commission, 2018;

1https://www.dol.gov/agencies/oasam/civil-rights-center/statutes/civil-rights-act

-of-1964

https://www.dol.gov/agencies/oasam/civil-rights-center/statutes/civil-rights-act-of-1964
https://www.dol.gov/agencies/oasam/civil-rights-center/statutes/civil-rights-act-of-1964
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Barocas et al., 2017) and NGOs (Buchanan, 2012). This has reinvigorated interest in
fairness, with researchers responding in two primary ways:

• Define and Detect Unfairness: By formulating metrics (Zafar et al., 2017a;
Berk et al., 2021), testing framework (Jentzsch et al., 2019; May et al., 2019),
and datasets (Nadeem, Bethke, and Reddy, 2021; Nangia et al., 2020) that
encapsulate and define various facets of harm. These can be divided into
two categories based on the type of harm uncovered: allocation harm and
representational harm (see Chapter 1).

• Fairness Promoting Mechanisms: By developing mechanisms to mitigate the
aforementioned formalized harms through data manipulation (Kamishima et
al., 2012; Calders and Verwer, 2010), training modifications (Cotter, Jiang, and
Sridharan, 2019; Kearns et al., 2018), and post-processing of the machine learn-
ing pipeline output (Hardt, Price, and Srebro, 2016; Kleinberg, Mullainathan,
and Raghavan, 2017).

In this context, our contribution in Chapter 5 belongs to the category of designing
metrics, while Chapters 4, 6, and 7 fall under the category of intervention strategies. In
Section 3.3 we provide an in-depth overview of allocation harm based metrics, which
is the focus of thesis. We then provide a brief overview of metrics related to allocation
harm in Section 3.4. Finally, in Section 3.5, we delve into fairness interventions
mechanisms. However, we first begin by describing a simple case study which we
will use to illustrate key concepts. We also formalize the notion of sensitive groups
and introduce notation that will be used across the thesis.

3.2 Groups and Performance Measures

In this section, we introduce key terminology used throughout the thesis using a
case study as an illustrative tool. The case study involves a simplified binary task
of determining creditworthiness (accept or reject) of an applicant while ensuring
fairness across gender (binary) and race (binary). In this setup, the favorable label
benefiting applicants is "accept". To formalize the case study, we first discuss the
concepts of sensitive attributes and corresponding sensitive groups. Finally, we also
introduce the concept of group wise performance measure which forms the basis of
several fairness definitions introduced later.

3.2.1 Groups

Sensitive Axes Most fairness interventions in machine learning aim to achieve
equality among various sensitive or protected groups, terms we use interchangeably
throughout this thesis (Verma and Rubin, 2018). These groups are in turn defined
using demographic attributes of the population such as gender, ethnicity, and age. In
this thesis, we refer to these socio-demographic features as sensitive axes. Although
the specific set of sensitive axes may vary depending on the application, several
frameworks legally categorize certain axes as sensitive (Yeung, 2018; Lee, 2018).

It is imperative to carefully select these sensitive axis as they underpin most fairness
interventions. Omitting a relevant axes implies fairness approaches are unlikely
to positively impact the excluded groups. Additionally, some attributes, while not
explicitly sensitive, can act as strong proxies for protected characteristics, e.g., zip
codes serving as indicators of race (Datta et al., 2017; Chen and Krieger, 2021).
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FIGURE 3.1: Various ways of partitioning groups and their correspond-
ing encoding mechanism.

Therefore, practitioners must diligently identify and define sensitive axes for their
applications. The chosen axes largely influence the scope and efficacy of fairness-
enhancing solutions (Caton and Haas, 2020).

Notations for Sensitive Axes Let p represent the number of distinct sensitive axes
of interest. We denote these axes as A1, . . . , Ap, where each Ai is a set of discrete-
valued sensitive attributes. For example, in our case study the sensitive axes are
gender and race, where gender= {male, female} and race= {European American,
African American}. Furthermore, we add another sensitive attribute + to each Ai,
representing the union of all sensitive attributes for that axis. We illustrate and clarify
the use of + in the subsequent paragraph. Finally, for simplicity we encode these
categorical values as {0, 1}. Thus the final representation is A1 = {0, 1,+}, A2 =
{0, 1,+}, where A1 and A2 correspond to gender and race respectively.

Sensitive Groups After determining the sensitive axes, we partition the population
into sensitive groups. A sensitive group g is any k-dimensional vector in the Cartesian
product set G = A1 × · · · × Ap of these axes. A group g ∈ G can be expressed as
(a1, . . . , ap), where aj ∈ Aj. For instance, in our case study with two sensitive axes, the
group of all males which are European American is (0, 0). As previously mentioned,
if one or more axes are not considered, their value defaults to +, representing the
union of all the attributes for the said axis. For instance, the group of all females
can be represented as (1,+), which effectively entails the union of the groups (1, 0)
and (1, 1). These sets of sensitive groups can be further divided into three major
categories as identified by Yang, Cisse, and Koyejo (2020):

• Independent Groups: Comprised of groups formed by creating a separate
group for each attribute value within each sensitive axis. These groups overlap,
meaning a member can belong to multiple groups. In our notation, groups with
“+” for all dimensions except one constitute this set. For p binary sensitive
attributes, this set contains 2p groups.

• Intersectional Groups: Consist of groups derived from all possible combina-
tions of all the sensitive axes. These groups are non-overlapping, ensuring
members belong to only a single group. In our notation, all groups having
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FIGURE 3.2: Overall performance of a classifier and the performance
split on the basis of gender.

no + in any dimension constitute this set. For p binary sensitive axes, this set
comprises of 2p groups.

• Gerrymandering Groups: Encompass groups formed using any combination of
sensitive axes. Like independent groups, these groups overlap. In our notation,
all possible group representations form this set. Given p binary sensitive axes,
the total number of groups in this set is 3p − 1.

Formalizing the Case Study Let the input be represented as x ∈ X . In our case
study, x could include features such as an applicant’s credit history, income, and ad-
dress. Each input is associated with a binary response variable, y ∈ {0, 1}, indicating
“accept” or “reject”. Moreover, each example has two binary sensitive axes: A1 for
gender and A2 for race. Figure 3.1 illustrates all potential groups and their associated
categories in this context. We also consider a model hθ parameterized by θ, trained
on this dataset. This model produces predictions as in the form of ŷ ∈ {0, 1} where 0
stands for “reject" and 1 stands for “accept”.

3.2.2 Performance Metrics

Most of the fairness evaluation mechanisms rely on calculating group wise per-
formance measure and then comparing them. In this subsection, we illustrate the
commonly performance metrics by using the case study described above. These
performance metrics can be explained through a confusion matrix, which is presented
in Figure 3.2. The left side of Figure 3.2 shows a hypothetical confusion matrix for
model hθ applied to the case study dataset. The right side splits this by gender. For
simplicity, we omit race in these examples.

• True Positive (TP): Refers to instances where the model correctly predicts the
positive class. In other words, the predicted label matches the actual label, and
both belong to the positive class. In our case study, there are 1200 true positives;
800 for males and 400 for females when broken down by gender.

• False Positive (FP): Denotes instances where the model incorrectly predicts the
case to be positive class when the actual label is negative. In our study, there
are 400 false positives; 200 for males and 200 for females.
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• True Negative (TN): Akin to TP, it refers to cases where the model correctly
predicts the label of examples belonging to negative class. In our case study,
700 are true negatives; 300 for males and 400 for females.

• False Negative (FN): Analogous to FP, this represents situations where the
model incorrectly labels negative instances. In our study, there are 600 false
negatives; 200 for males and 400 for females.

Based on these quantities, we compute the following performance metrics:

• True Positive Rate (TPR): Also known as sensitivity or recall, this metric mea-
sures the proportion of actual positive cases that are correctly identified as
positive ( TP

TP+FN ). In our study, the overall TPR is 2
3 , with 4

5 for males and 1
2

for females. From a probabilistic perspective, it refers to the probability of the
positive examples to be classified as positive (P (ŷ = 1|y = 1)).

• False Positive Rate (FPR): Also called specificity, this metric quantifies the
fraction of negative examples incorrectly predicted as positive class ( FP

FP+TN ). In
our context, the FPR is 4

11 overall, with 2
5 for males and 1

3 for females. From a
probabilistic perspective, it refers to the probability of the negative examples to
be classified as positive (P (ŷ = 1|y = 0)).

• Accuracy: Refers to the fraction of correctly predicated examples (positive or
negative) out of all the examples ( TP+TN

TP+TN+FP+FN ). In our study, the overall
accuracy is 19

29 ; 11
15 for males and 4

7 for females. From a probability standpoint, it
assesses the likelihood of an instance being correctly classified, irrespective of
label (P (ŷ = a|y = a) ∀a ∈ {0, 1})).

These metrics are inherently in range between [0, 1]. It is important to note that for
most of the performance metrics mentioned above, higher values signify superior
performance, except for FPR where lower values are preferable. We now begin our
discussion on various fairness definitions.

3.3 Metrics for Allocation Harm

Allocation harm occurs when a machine learning system unevenly allocates resources
and opportunities to various population subgroups. As defined by Mehrabi et al.
(2022), fairness denotes the absence of prejudice or favoritism towards an individual or a group
based on their inherent or acquired traits during decision-making. However, translating this
broad perspective into a precise definition is challenging (Chan, 2011), as terms like
“absence”,“prejudice”, and “group” can shift in meaning across social contexts and
applications. Given the absence of a universal definition of fairness, it is unsurprising
that the research community has proposed myriad, and at times conflicting (Kleinberg,
Mullainathan, and Raghavan, 2017; Chouldechova, 2017), concepts of fairness. In
this section, we delve into several prevalent definitions that aim to encapsulate and
quantify unfairness in machine learning systems. We categorize these definitions into
three primary categories:

• Independent Group Fairness: These definitions typically consider fairness
along single sensitive axis, like gender or race. For datasets featuring multiple
sensitive axes, the definitions treat them independently, akin to the Independent
groups mentioned in Section 3.2.1. For example, if a dataset contains both
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gender and race, and a model satisfies these fairness notions, it indicates fairness
with respect to race and gender individually, not jointly.

• Intersectional Group Fairness: These definitions are usually applied when
multiple sensitive axes are present in the dataset. Unlike previous definitions,
they consider all axes jointly rather than independently, akin to the Intersec-
tional groups mentioned in Section 3.2.1. Thus, if a model satisfies intersectional
fairness for a dataset with gender and race, it indicates fairness with respect
to the combination of gender and race simultaneously, not just each attribute
individually.

• Individual Fairness: Distinct from the group-centric definitions mentioned
above, these definitions emphasize fairness at the individual instance level,
advocating that similar individuals receive similar treatment.

This section is geared towards classification problems in independent and intersec-
tional group fairness setting, which is the focus of this thesis. We provide a very
brief overview of individual fairness and refer the interested readers to Mehrabi
et al. (2022). Moreover, we assume sensitive axes are pre-defined and all sensitive
attributes for each example are present.

3.3.1 Independent Group Fairness

Independent group fairness forms the most widely used set of fairness definitions,
with over 10 specific definitions identified by researchers (Verma and Rubin, 2018;
Mehrabi et al., 2022). The core idea behind these definitions is to compare performance
metrics (as outlined in the preceding section) across various independent groups.
In this subsection, given that sensitive attributes are evaluated independently, we
narrow our case study to exclusively focus on binary gender. As explained above,
we represent the two gender groups, male and female, as g = (0,+) and g′ = (1,+),
respectively.

Demographic Parity (also called Statistical Parity by Dwork et al. 2012, Equal Ac-

ceptance Rate by Zliobaite 2015): A model hθ satisfies demographic parity (Dwork
et al., 2012) with respect to all group g ∈ G, where y = 1 is the preferred label if:

P (hθ(x) = 1) = P (hθ(x) = 1|g)

In other words, the probability of being classified as credit worthy (y = 1) should
be equal between for group g and the overall population, regardless of the true
label. Demographic parity is typically employed in scenarios where the underlying
representations and the label cannot be trusted as one of the groups has been histori-
cally prejudiced. In other words, demographic parity is generally applied in settings
where bias such as representational bias, or historical bias can emerge during the
data collection phase (see Section 1.2.1). For example, an automated loan allocation
system might disproportionately reject minority applicants as it has been trained on
data that shows strong historical stigma against them. However, beyond the specific
contexts such as the one described before, applying demographic parity might lead
to unintended consequences, as it overlooks the inherent differences between the
groups.
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Equal Opportunity (also known as Predictive Parity by Chouldechova 2017): A
model hθ satisfies equal opportunity (Hardt, Price, and Srebro, 2016) with respect to
group g ∈ G, where y = 1 is the preferred label if:

P (hθ(x) = 1|y = 1) = P (hθ(x) = 1|g, y = 1)

In other words, the probability that a credit worthy person is classified as credit
worthy should be equal for any group and the overall population. In contrast to de-
mographic parity, equal opportunity focuses on fairness specifically among qualified
candidates who “deserve” the positive classification. This implies, while demographic
parity aligns positive prediction rates across all groups regardless of qualifications,
equal opportunity aims to equalize the rate only amongst qualified people.

Accuracy Parity: A model hθ satisfies accuracy parity (Berk et al., 2021) with respect
to all group g ∈ G if:

P (hθ(x) = a|y = a) = P (hθ(x) = a|g, y = a) ∀a ∈ {0, 1}

In other words, if the accuracy between any group and overall population is similar
then it satisfies accuracy parity. However, one shortcoming of accuracy parity is its
inability to differentiate between distinct error types, like false positives and false
negatives, which may impact different subgroups differently.

Equalized Odds (also called Disparate Mistreatment by Zafar et al. 2017a): A
model hθ satisfies equalized odds (Hardt, Price, and Srebro, 2016) with respect to all
group g ∈ G if:

P (hθ(x) = 1|y = a) = P (hθ(x) = 1|g, y = a) ∀a ∈ {0, 1}

This means that a model achieves equalized odds when its predictions are inde-
pendent of group membership, given the true label y. It can also be interpreted as
requiring the same false positive and true positive rates across all groups. In con-
trast, equal opportunity only considers true positive rates. While equal opportunity
focuses solely on true positive rates, equalized odds, by considering both false and
true positive rates, recognizes that misclassifications can disproportionately affect
disadvantaged groups (Weerts et al., 2023). For instance, while modelling negative
outcomes, such as recidivating, which already disproportionately affects minority,
false positives reflect the pre-existing disparities in outcomes between groups. Fur-
thermore, in contrast to accuracy parity, equalized odds specifically considers distinct
error rates, requiring similar FPR and TPR across all groups.

In the next two chapters, we will extensively utilize these definitions to quantify
unfairness. Some other independent group fairness metrics include equalizing disin-
centives (Jung et al., 2020), false positive error rate balance (Chouldechova, 2017), and
treatment equality (Berk et al., 2021). The definitions we have discussed until now
focus solely on the predicted outcome and the true label. However, some fairness def-
initions, termed as calibration-based fairness definitions, consider predicted probabil-
ities instead of just the final outcome. Examples include test fairness (Chouldechova,
2017) and well-calibration (Kleinberg, Mullainathan, and Raghavan, 2017). For an
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extensive list of both independent and calibration fairness definitions, we refer the
interested readers to Verma and Rubin (2018).

3.3.2 Quantifying Unfairness in Independent Group Fairness

In the literature, unfairness is typically quantified either as the absolute difference
or as the ratio of the metric being studied. According to demographic parity, the
unfairness of the model, defined based on the difference is, ϵ if:

−ϵ f P (hθ(x) = 1)− P (hθ(x) = 1|g) f ϵ

while the unfairness of the model, defined based on the ratio, is ϵ if:

1
ϵ
f P (hθ(x) = 1)

P (hθ(x) = 1|g) f ϵ

A classifier is said to be strictly fair if ϵ = 0. In our case study (see Figure 3.2), ϵ for
gender is 0.34 and 1.62 for difference and ratio respectively. In many cases, instead
of aiming for strict equality, models are evaluated based on approximate fairness.
Here, the goal is to achieve comparable performance within a specific threshold. The
idea originates from a widely-accepted guideline suggesting the selection ratio for
minorities should be within 80% of the majority selection.2 This corresponds to setting
ϵ as 0.8 in the above equation. It is crucial to emphasize that these guidelines were
formulated specifically within the employment context. Applying them elsewhere
could be problematic and potentially harmful.3

3.3.3 Intersectional Group Fairness

These definitions are based on the idea that discrimination cannot be captured by
looking at a single identity alone (Crenshaw, 1989). A model might exhibit fairness
along a single sensitive dimension, yet display bias towards intersectional groups. For
instance, Buolamwini and Gebru (2018) found that multiple commercial classifiers
exhibited higher error rates for darker-skinned females compared to their lighter-
skinned male counterparts. In contrast to independent group fairness, the emphasis
here is on achieving fairness for both intersectional and gerrymandered groups.
This subfield has attracted relatively limited attention, characterized by substantially
fewer definitions compared to independent group fairness. Among these, Kearns
et al. (2018) pioneered the concept of subgroup fairness, marking one of the earliest
attempts to quantify intersectional unfairness.

Subgroup Fairness: A model hθ is γ-SG fair , if ∀g ∈ G:

|P (hθ(x) = 1)− P (hθ(x) = 1|g)| · P (g) f γ

Subgroup fairness consists of the product of two terms, namely: (i) The difference
between the overall TPR and the TPR for the group in question, and (ii) the size of
the group. The aforementioned equation is similar in spirit to equal opportunity

2https://www.law.cornell.edu/cfr/text/29/1607.4
3https://fairlearn.org/v0.9/user_guide/fairness_in_machine_learning.html#the-porta

bility-trap

https://www.law.cornell.edu/cfr/text/29/1607.4
https://fairlearn.org/v0.9/user_guide/fairness_in_machine_learning.html#the-portability-trap
https://fairlearn.org/v0.9/user_guide/fairness_in_machine_learning.html#the-portability-trap
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described in the previous section, as both take TPR into account. Kearns et al. (2018)
also proposed a similar definition for FPR where they replaced the TPR term in the
equation with FPR.

Definitions of subgroup fairness have also been adapted to other contexts. No-
tably, Hébert-Johnson et al. (2018) and Gopalan et al. (2022) generalized the definition
to calibration-based fairness notions that consider predicted probabilities, while Yona
and Rothblum (2018) addressed the problem by considering the distance between
groups. For a comprehensive overview of various intersectional fairness measures,
we direct interested readers to the work by Gohar and Cheng (2023).

One potential drawback of subgroup fairness is its inclusion of the second term.
By reweighing the outcome by the size of the subgroup, the definition reduces the
impact of small subgroups. Consequently, smaller subgroups, which are often the
most vulnerable, may remain unprotected.

Differential Fairness: To circumvent the aforementioned issue, Foulds et al. (2020)
proposed Differential Fairness (DF), which puts a constraint on the relative perfor-
mance between all pairs of groups. A model hθ is ϵ-Differentially Fair, if ∀g, g′ ∈ G:

P (hθ(x) = 1|g′)
P (hθ(x) = 1|g) f γ

In contrast to prior definitions, DF safeguards all groups, not just the larger ones.
Furthermore, it also has other useful properties such as by evaluating DF on only
intersectional groups ensures fairness over gerrymandered groups. Morina et al.
(2019) extended DF to other group fairness notions as well, including false positive
rate equality and equalized odds.

In Chapter 5, we highlight several limitations of DF. Our analysis reveals
that DF can be trivially satisfied by harming all involved groups, potentially
hiding the leveling down phenomena. It is primarily due to its strict egalitarian
view that considers only relative, not individual, group performance. We also
introduce new definitions that not only generalize over DF but also mitigate
these shortcomings.

3.3.4 Individual Fairness

In contrast to group-based fairness measures, which assign individuals to a sensitive
group and then compare and contrast group wise performance, individual fairness
definitions make direct comparisons between individuals in the dataset. In this
subsection, we delve into some of these definitions. For a more comprehensive
treatment, we refer the interested readers to Mehrabi et al. (2022).

Counterfactual Fairness: A model satisfies counterfactual fairness (Kusner et al.,
2017) if its prediction for an individual is the same in the actual world and in a
counterfactual world where the individual belongs to a different sensitive group.
Such definitions are commonly applied when explicit demographic attributes are
available. For instance, in text-based problems where gender is the sensitive attribute,
inputs can be transformed by altering gendered words, such as names and pronouns
in English language. Several works (Kilbertus et al., 2017; Chiappa, 2019) have also
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approached this fairness definition from a causal perspective, examining the influence
of the sensitive attributes on the final predictions. One of the difficulties in applying
this definition is that implicit indicators might predict sensitive attributes, and thus
must be carefully considered when creating counterfactuals.

Fairness Through Awareness: A model satisfies fairness through unawareness if
it gives similar predictions for similar individuals (Dwork et al., 2018). The central
concept of this definition involves proposing a similarity metric between individuals
and then evaluating the model’s behavior over similar individuals. A significant
advantage of these definitions is their acknowledgment of plurality of individuals
amongst the same groups. However, defining the right similarity metric to capture
relevant similarities is often challenging in practice, limiting their applicability.

3.4 Metrics for Representational Harm

Representational harm arises when a machine learning system misrepresents some
sensitive groups, often reinforcing their subordination (Shelby et al., 2022). This
includes stereotyping (Weidinger et al., 2022), erasing (Katzman et al., 2023), alienat-
ing (Wang, Ramaswamy, and Russakovsky, 2022; DeVos et al., 2022), and demeaning
groups (Sweeney, 2013). Unlike allocation harms, representational harms are typically
indirect with long-term implications, making them harder to quantify. Moreover,
allocation harm focuses on the final classification outputs, which are easier to measure.
In contrast, representational harm involves the model’s internal representations and
requires deeper social/cultural understanding. This is similar in spirit to individual
fairness discussed in the previous section. To capture such unfairness, researchers
typically construct challenge sets, featuring both stereotypical and anti-stereotypical
examples, and then compare model representations and outputs against them. These
challenge sets are generally domain, language, and application specific. In this section,
we briefly outline some of these methods.

Word Embedding Association Test (WEAT): The test (Jentzsch et al., 2019) quanti-
fies bias in word embeddings using the cosine similarity between two sets of target
words and two sets of attribute words. It involves constructing attribute word sets
representing two sensitive groups, and target word sets with stereotypical relations
to the attribute sets. Embeddings are considered unbiased if the relative similarity be-
tween target and attribute sets is equal. In other words, WEAT evaluates how related
the target word sets are to each attribute set. It was originally designed for binary
gender-occupations and race-pleasant/unpleasant word biases in English. Several
extensions have been proposed in the literature, including new languages (Sabbaghi
and Caliskan, 2022; Mulsa and Spanakis, 2020) and improvements in the underlying
mechanism (Schröder et al., 2021; Ethayarajh, Duvenaud, and Hirst, 2019). Most
notably, May et al. (2019) proposed an extension to evaluate contextualized embed-
ding models. Here, instead of a set of words, sentence templates such as "[Male
Name/Female Name] is a/an [Occupation]" are used for evaluating bias.

Context Association Test (CAT): Proposed by Nadeem, Bethke, and Reddy (2021),
the test measures the language model affinity towards stereotypical outputs com-
pared to neutral and anti-stereotypical outputs. This is operationalized as a sentence
completion task with three completion options, namely: (i) Anti-stereotypical, (ii)
Stereotypical, and (iii) Meaningless. The fairness score is based on the number of
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times the model choose a stereotypical setting in comparison to the other options.
Similarly, Nangia et al. (2020) proposed the Crowdsourced Stereotype Pairs bench-
mark, where a model is presented with a more and less stereotyping sentence. In this
case, they used a pseudo-log-likelihood fairness metric based on the perplexity score
of all tokens conditioned on the stereotypical tokens in the sentence.

In Natural language Processing, several similar challenge tasks, such as Discovery
of correlations (Webster et al., 2020), Direct Bias (Bolukbasi et al., 2016), have been
proposed. A primary limitation with these challenge sets is their limited applicability
with monolingual focus. Most of these solutions need to be adopted for different
languages and cultures. Additionally, a model devoid of representational harm
does not guarantee fairness against allocation harm. Overall, there is a need for
comprehensive formal testing alongside alongside multi-faceted bias measures (Stanczak
and Augenstein, 2021). In conclusion, akin to the concerns with allocation harms,
practitioners should exercise caution when utilizing representational harm metrics.
Performance on these limited benchmarks does not necessarily indicate fairness in
deployment.

3.5 Fairness Promoting Mechanisms

In this section, we provide a brief overview of various fairness intervention ap-
proaches in machine learning. Following d’Alessandro, O’Neil, and LaGatta (2019)
and Mehrabi et al. (2022), we categorize these algorithms according to their point of
intervention in the ML pipeline to mitigate harm:

• Pre-Processing: These methods transform the training data with the goal of
making models trained on transformed data fairer

• In-Processing: These approaches manipulate the training mechanism and the
model itself to promote fairness.

• Post-Processing: These strategies adjust the outputs of a previously trained, yet
potentially unfair, model to enhance fairness.

We will now provide a brief overview of all the three categories. Note that this
section is heavily derived from various survey works on fairness in machine learning
including d’Alessandro, O’Neil, and LaGatta (2019), Mehrabi et al. (2022), Caton
and Haas (2020), Parraga et al. (2022), and Gohar and Cheng (2023). Moreover, with
myriads of fairness interventions approaches proposed in the literature, not every
approach neatly falls into the above three categories (Caton and Haas, 2020). Several
of them are hybrid falling into multiple categories, or into neither of them. Lastly,
similar to the prior section, the framework in which these fairness approaches are
defined is classification settings and assume access to sensitive axes.

3.5.1 Pre-Processing Methods

These methods address the problem of fairness in machine learning at the data
collection and preparation stage (see Section 1.2.1). The central idea is that models
trained on more representative and less biased data will be fairer (Parraga et al., 2022).
In the following discussion, we will highlight several techniques commonly used to
modify data.
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Blinding Methods: A direct strategy to address fairness involves removing sensitive
attributes from the data (Kamishima et al., 2012). For instance, in our case study, we
might decide against collecting gender information during the data gathering process.
However, various studies have indicated that such blinding of models to sensitive vari-
ables often leads to a decrease in accuracy while still perpetuating unfairness (Calders
and Verwer, 2010; Kamishima et al., 2012; Pedreschi, Ruggieri, and Turini, 2008). An-
other major concern is that other variables can serve as proxy indicators, potentially
predicting the sensitive attribute and thus introducing overt (Kleinberg et al., 2018)
or latent biases (Pin Calmon et al., 2018). For instance, name can be a proxy indicator
for age and location. Moreover, many problems, especially those involving text and
images, do not have clear-cut sensitive attributes that can be readily excluded.

Causal Methods: These mechanisms (Galhotra, Brun, and Meliou, 2017; Kusner
et al., 2018; Salimi, Howe, and Suciu, 2019) focus on identifying causal relationships
between the model output and sensitive attributes, and leveraging this understanding
to modify the training data. For instance, Capuchin (Salimi et al., 2019) excludes
certain data points and adjusts the empirical distribution to minimize the influence of
the sensitive attribute on the model’s predictions. Other works, such as those of Adler
et al. (2018) and Chiappa and Isaac (2018), have employed analogous mechanisms to
model the relationships between proxy indicators and sensitive attributes, further
diminishing their impact. However, these methods require extensive background
context to model these dependencies accurately. This often proves to be impractical,
consequently narrowing the scope of their application (Salimi et al., 2019).

Sampling and Reweighing Methods: These methods alter the training data distri-
butions either by modifying the number of examples in each sensitive group or by
reweighing the group itself. One of the first reweighing approach was introduced
by Calders, Kamiran, and Pechenizkiy (2009), in which they proposed reweighing
individual instances based on both group membership and labels. The core principle
is that by increasing or decreasing the weights of instances within a particular group,
one can effectively alter that group’s influence during the model’s training phase.
This was further extended by Li and Liu (2022), who proposed assigning weights to
individual instances instead of using broader group-level weights.

Reweighing can also be achieved by altering the data distribution through downsam-
pling (Chakraborty et al., 2020; Roh et al., 2021; Iofinova, Konstantinov, and Lampert,
2022) or upsampling specific groups. While downsampling typically involves re-
moving data points to reduce representation, upsampling can be achieved either by
duplicating existing data points (Iosifidis and Ntoutsi, 2018; Roh et al., 2021) or syn-
thesizing new ones (Yan, Kao, and Ferrara, 2020; Singh et al., 2022; Dablain, Krawczyk,
and Chawla, 2022). Generative techniques, such as SMOTE (Chawla et al., 2002),
MixUp (Zhang et al., 2018), and generative adversarial networks (Goodfellow et al.,
2014b), have been utilized for this purpose. Additionally, counterfactual (Sharma
et al., 2020) and causal mechanisms (Zhang, Wu, and Wu, 2017) have also been
investigated by researchers to create new data instances.

Transformation Methods: These methods seek to transform data by projecting
or mapping it into a space with reduced bias while preserving as much relevant
information as possible. These methods are especially useful in case of historical
bias where the collected data reflects existing prejudice. Most of these techniques
frame the challenge as an optimization problem (Zemel et al., 2013; Zehlike, Hacker,
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and Wiedemann, 2020; Lahoti, Gummadi, and Weikum, 2019), having two primary
objectives: to eliminate sensitive information and to minimize the loss of other
essential signal. For example, Bolukbasi et al. (2016) proposed a two-step strategy
to remove sensitive information, like gender from word representation. First, they
identify the direction of the gender subspace using representative words. Then,
they remove the gender subspace from all gender-neutral word representations while
ensuring these remain equidistant from gender-specific terms. Other researchers have
explored using neural style transfer (Quadrianto, Sharmanska, and Thomas, 2018),
auto-encoders (Wu et al., 2022; Oh et al., 2022), and dimensionality reduction (Calders,
Kamiran, and Pechenizkiy, 2009) to transform data effectively. However, Caton and
Haas (2020) enumerate several challenges with these transformations, including (i)
the lack of guarantees that the transformed data is bias-free, (ii) the computational
expense of optimization in high-dimensional settings, and (iii) the persistent issue of
proxy variables—a challenge also present in blinding and causal methods.

Relabelling and Perturbation Methods: These methods represent a subset of trans-
formation approaches where they perturb and/or relabel the dataset to improve the
representation of underlying groups. Relabelling techniques such as those presented
in Calders, Kamiran, and Pechenizkiy (2009) and Žliobaite, Kamiran, and Calders
(2011), are termed “Data Massaging” by Kamiran and Calders (2009). They typically
involve identifying candidates using decision boundary or neighborhood informa-
tion (Thanh, Ruggieri, and Turini, 2011)—and then change their labels. In contrast to
label alteration, perturbation techniques (Feldman et al., 2015; Lum and Johndrow,
2016; Li et al., 2022a) adjust non-sensitive attributes to make the representations of
different sensitive groups more alike. Caton and Haas (2020) highlights that perturba-
tion techniques are especially common in discrimination-aware data mining and are
often employed for privacy preservation.

Generative Methods: These methods aim to enhance the fairness of classifiers by
training them on augmented and modified datasets. Most research in this category
has proposed GAN-based data augmentation, predominantly focusing on images. For
example, GANSan (Aïvodji et al., 2021) creates new instances from the original data,
making it more challenging to infer sensitive information. Similarly, FairGan (Xu et al.,
2018) and FairGan+ (Xu et al., 2019b) generate entirely new distributions designed to
protect sensitive attributes. In the realm of NLP, Qian et al. (2022) introduced PANDA,
a seq-2-seq model that perturbs the original data, resulting in fairer language models.
However, a notable limitation of these approaches is their modality specificity, which
poses challenges in adapting them to broader contexts.

In Chapter 6 of this thesis, we present a pre-processing technique designed to
enhance the performance of the classifier for the most disadvantaged sensitive
group in intersectional setting. Our approach exploits the hierarchical structure
of intersectional groups to generate data for these disadvantaged groups. More
specifically, we propose to transform examples from more abstract groups
to more specific groups using statistical distance based measures and then
augment the original examples with the generated ones. Further, in Chapter 7,
drawing inspiration from the domain of differential privacy, we explore the
use of randomly perturbing data representations to improve the fairness of the
model
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3.5.2 In-Processing Methods

Although pre-processing methods are appealing and useful, they often fall short
because data is not the only source of bias. As discussed in Section 1.2.3, training
procedures can introduce and amplify biases absent in the training data (Wang et al.,
2019; Wang and Russakovsky, 2021). Moreover, with modern neural networks, it is
common to use pre-trained models, and practitioners may lack access or resources to
debias data and retrain. In-processing methods address these issues by directly incor-
porating fairness into model training, modifying models and augmenting training
procedures. Additionally, they can fine tune and debias pre-trained models with-
out huge retraining efforts. In this section, we provide a brief overview of various
in-processing techniques used to induce fairness.

Regularization and Constraint Optimization Methods In the context of fairness,
these methods often incorporate constraints into the loss function to represent the
specific notion of fairness being considered. A primary challenge they confront is
that fairness constraints are non-convex and non-differentiable. This often leads to an
unstable training process, exhibiting significant variations with minor changes in the
dataset (Cotter et al., 2019). To tackle these challenges, fairness procedures typically
relax the fairness constraints (Zafar et al., 2017a; Donini et al., 2018; Wu, Zhang, and
Wu, 2019) and devise specialized training mechanisms (Cotter, Jiang, and Sridharan,
2019; Agarwal et al., 2018). For instance, Agarwal et al. (2018) proposed to relax the
problem by searching for a distribution rather than a single model and then proposed
a training procedure based on cost-sensitive learning. Similarly, Cotter, Jiang, and
Sridharan (2019) proposed a projected gradient descent-based approach after replac-
ing the fairness error term with the corresponding loss. Several works (Kamiran,
Calders, and Pechenizkiy, 2010; Wang, Li, and Wang, 2022) have modified the split-
ting criteria in decision tree-based models to incorporate fairness. Although these
methods were initially introduced for independent group fairness definitions, many
works have now extended them to individual (Gillen et al., 2018; Kim, Reingold, and
Rothblum, 2018) and intersectional fairness (Padh et al., 2021; Kearns et al., 2018).

Reweighing Methods: Akin to the sampling methods discussed in the previous
subsection, these techniques (Ozdayi, Kantarcioglu, and Iyer, 2021; Roh et al., 2020;
Iosifidis and Ntoutsi, 2019; Jiang and Nachum, 2020) assign weights to either groups
or individual instances. However, in contrast to pre-processing—which typically
allocates static weights prior to training—these methods adjust instance weights
dynamically throughout the training process. The general idea is to allocate lower
weights to the advantaged groups and higher weights to the disadvantaged ones,
thereby modulating their influence. For example, Ozdayi, Kantarcioglu, and Iyer
(2021) introduce a bilevel optimization approach for fairness, learning weights in the
outer loop while optimizing accuracy in the inner loop. Likewise, Iosifidis and Ntoutsi
(2019) propose a boosting-based framework where instance weights are determined
by both the performance of the current strong classifier and group membership.
Instead of modifying instance weights, FairBatch (Roh et al., 2020) suggests adjusting
the sampling distributions for each batch based on the model’s current fairness level.

Adversarial Learning: These techniques introduce an adversary in the form of a
classifier and train both the model and the adversary simultaneously (Dalvi et al.,
2004; Ganin et al., 2016). The adversary typically serves as a feedback mechanism
to fine-tune the model for fairness. For instance, (Raff and Sylvester, 2018; Beutel
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et al., 2017; Sadeghi, Yu, and Boddeti, 2019) employ adversarial learning to gener-
ate representations such that the adversary cannot predict the sensitive attributes,
while preserving sufficient information for the model to predict class label. Several
methods, such as (Lahoti et al., 2020; Petrovic et al., 2022), explore the use of ad-
versarial feedback to reweigh instances, akin to the approaches mentioned above.
Researchers have also investigated the application of adversarial learning in the
context of individual (Yurochkin, Bower, and Sun, 2020) and causal fairness (Xu et al.,
2019a).

Multiple Model Methods: These approaches (Oneto et al., 2019; Monteiro and
Reynoso-Meza, 2021) typically train multiple models and use a separate model for
each sensitive group (Boulitsakis-Logothetis, 2022) or an ensemble-based mechanism
for prediction (Chen et al., 2022; Kobayashi and Nakao, 2022). For instance, Dwork
et al. (2018) propose learning a separate model for each sensitive group. However,
to combat data scarcity, they combine it with transfer learning. Training multiple
classification models also enables researchers to explore multiple fairness-accuracy
tradeoffs (Blanzeisky and Cunningham, 2022; Roy, Iosifidis, and Ntoutsi, 2021) and
as well as fulfill various fairness definitions simultaneously (Mishler and Kennedy,
2022).

In Chapter 4, we present FairGrad, a simple-to-implement reweighing mech-
anism which supports multiple fairness definitions. More specifically, we
propose a training procedure which iteratively learns group specific weights
thereby increasing or decreasing their influence in the final loss function. Ad-
ditionally, within this chapter, we illustrate the connection between constraint
optimization and reweighing techniques. Finally, in Chapter 7 of this the-
sis, we introduce FEDERATE, a method that augments adversarial learning
with differential privacy to learn private representations devoid of sensitive
information which also induces fairer downstream model.

3.5.3 Post-Processing Methods

In this subsection, we discuss fairness intervention techniques applied after the model
has been trained. A distinct advantage of some of these methods is that they can treat
the model and the training data as black boxes, as they typically rely on manipulating
the input data (Adler et al., 2018; Li et al., 2022b) (at inference time) and the model
output.

Calibration Methods: The primary idea behind these approaches is to change the
response of the classifier to ensure fairness with respect to the fairness definitions
at hand. For instance, Hardt, Price, and Srebro (2016) propose to randomly flip
the output of the classifier to ensure fairness. However, this approach negatively
affects accuracy, and the instances for which the decision was flipped are not neces-
sarily positively affected (Kleinberg, Mullainathan, and Raghavan, 2017; Pleiss et al.,
2017). Noriega-Campero et al. (2019) tackle these problems by proposing an approach
that balances the error parity and calibration. Researchers have also explored the idea
in the context of decision trees by relabeling leaf nodes (Kamiran, Calders, and Pech-
enizkiy, 2010) as well as changing the branching threshold (Kanamori and Arimura,
2021).
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FIGURE 3.3: Outline of the key components of fairness literature and
our contributions within these components.

Thresholding Methods: These methods rely on the idea that most unfairness stems
from instances close to the classifier’s decision boundary (Caton and Haas, 2020).
To mitigate this, researchers have proposed distinct thresholds for each sensitive
group (Menon and Williamson, 2018) or advocated for post-processing regulariza-
tion (Fish, Kun, and Lelkes, 2016). In a similar vein, Valera, Singla, and Rodriguez
(2018) employ a posterior sampling-based approach, while Iosifidis, Fetahu, and
Ntoutsi (2019) introduce an ensemble comprising of multiple classifiers.

3.6 Datasets

As discussed in Section 1.2.1, datasets serve as the cornerstone of all machine learning
systems by operationalizing the objective and forming the foundation for subsequent
steps. Unsurpisingly, a variety of datasets have been proposed in the field of fair-
ness, differing in (i) size, with instances ranging from 1,000 to 300,000, (ii) domain,
spanning finance to social media, and (iii) modality, incorporating both images and
text. Table 3.1 provides a compilation of datasets utilized to evaluate our proposed
methods and hypotheses.

3.7 Summary

In this section, we explored various fairness definitions designed to capture the po-
tential biases in a machine learning system. We also discussed a range of fairness
promoting mechanisms, each optimized for distinct stages of the machine-learning
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pipeline. Figure 3.3 offers a visual summary of this section and places the contribu-
tions of this thesis in this context.

It is important to note that many of these definitions have assumptions built into them.
For instance, Demographic Parity implicitly assumes that either the task or the data
is biased. In contrast, Equal Opportunity assumes a similar cost of misclassification
across different sensitive groups. Similarly, Accuracy Parity posits that different
types of error rates do not disproportionately affect various groups. It is also worth
noting that many fairness definitions can be at odds with one another. Therefore,
practitioners must assess their relevance carefully, as violating these assumptions can
result in a misleading sense of fairness. Additionally, they must rigorously evaluate
demographic factors as any group not initially included typically would not benefit
from fairness measures.

Just as fairness definitions vary, fairness promoting mechanisms each have their
strengths and weaknesses (Pessach and Shmueli, 2023). Pre-processing mechanisms
might be favored for their model-agnostic nature and ease of integration into machine
learning pipelines. However, they are generally difficult to tailor to a specific fairness
definition and might lead to reduced model accuracy (Woodworth et al., 2017). On
the other hand, post-processing mechanisms are valuable since they can function
without needing access to the model or its training data. They are especially relevant
when fairness interventions are employed after a model is deployed. Yet, similar to
pre-processing, they may result in decreased accuracy and support a limited number
of fairness definitions. In-processing approaches are particularly suited for fairness
as they can explicitly impose fairness measures. This is also reflected in the literature,
where a large majority of the fairness promoting mechanisms belong to this category.
However, these techniques are tightly coupled with the model definition and training.

A central challenge inherent to these approaches is navigating the balance between
accuracy and fairness. While numerous studies, such as (Menon and Williamson,
2018; Chen, Johansson, and Sontag, 2018), have emphasized this tradeoff by fram-
ing it through various analytical perspectives, recent advancements challenge its
inevitability. For instance, work by Dutta et al. (2020) has conceptualized theoretical
datasets in which methods can simultaneously achieve optimal accuracy and fairness.
They argue that methods trained over real world datasets shows this tradeoff because
of noisier mappings for the unprivileged group due to historical differences in opportunity,
representation, etc., make their positive and negative labels less separable.

Efforts have been dedicated to discerning the most effective fairness mechanisms.
Yet, results often lack consensus, with different mechanisms excelling in different
scenarios (Roth, 2018; Friedler et al., 2019; Jones et al., 2020). Therefore, practitioners
must be proactive in experimenting with a myriad of strategies. It is also vital to
remain aware of the underlying assumptions of fairness definitions and the ever-
present accuracy-fairness tradeoff.
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Dataset Description Size Type Sensitive
Axes

UCI Adult Derived from the 1994 Current
Population Survey conducted by
the US Census Bureau. Consists
of various attributes such as in-
come, location, and age (Kohavi,
1996).

45,222 Tabular Gender

Folktables An updated version (Ding et al.,
2021) of the Adult dataset de-
rived from newer data released
by the US Census Bureau.

1,664,500 Tabular Gender

CelebA Comprises images of human
faces alongside 40 binary at-
tributes such as gender, hair
color, and presence of eye-
glasses (Liu et al., 2015).

202,599 Images +
Tabular

Can vary:
any of the 40
attributes

Dutch Derived from the Dutch Cen-
sus, it (Žliobaite, Kamiran, and
Calders, 2011) consists of 12 at-
tributes such as income and loca-
tion, similar to the Adult dataset.

60,420 Tabular Gender

Compas Includes 53 features and is aimed
at predicting recidivism (Larson
et al., 2016).

6,172 Tabular Race

Crime Consists of 128 features with the
aim of predicting violent crimes
in the community (Redmond
and Baveja, 2002).

1,994 Tabular Race

German Credit Comprises 20 features with the
objective of predicting a person’s
creditworthiness (Dua, Graff, et
al., 2017).

1,000 Tabular Age

Twitter Senti-
ment

Consists of tweets annotated
with sentiment labels and
race (Blodgett, Green, and
O’Connor, 2016).

200k Text Race

Bias in Bios Comprises biographies anno-
tated with gender and occupa-
tion labels (De-Arteaga et al.,
2019).

393,424 Text Gender

Twitter Hate
Speech

Derived from a multilin-
gual Twitter hate speech
corpus (Huang et al., 2020),
consisting of tweets annotated
with various demographic
attributes of the author.

8,502 Text Age, Race,
Gender,
Country

Numeracy Consists of free-text responses
alongside numerical scores, re-
flecting the individual’s nu-
merical comprehension capabil-
ity (Abbasi et al., 2021).

1,000 Text Gender,
Race, Age,
Income

TABLE 3.1: Summary of the datasets used in this thesis.
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Chapter 4

FairGrad: Fairness Aware Gradient
Descent

Abstract

In this chapter, we introduce FairGrad, an in-processing approach to enforcing fair-
ness in classification. FairGrad is based on a re-weighting scheme that iteratively
learns group-specific weights based on whether they are advantaged or not. It is
easy to implement, accommodates various standard independent group fairness
definitions, and has minimal overhead. Furthermore, through our experiments, we
show that it is competitive with standard baselines over various datasets, including
ones used in natural language processing and computer vision.

This chapter is based on the article - Maheshwari, Gaurav, and Michaël Perrot. “Fair-
Grad: Fairness Aware Gradient Descent.” Transactions on Machine Learning Re-
search, 2023. It is also available as a PyPI package at - https://pypi.org/project/f
airgrad

4.1 Introduction

In the Introduction Chapter, we outlined a simplified machine learning pipeline (see
Figure 4.1) consisting of four main components: (i) data collection and preparation,
(ii) evaluation, (iii) training, and (iv) deployment. In our first contribution we focus
on the model training aspect of the pipeline, specifically, on in-processing fairness
promoting methods (see Section 3.5.2). A key challenge of employing these methods
is that they present significant adaptation challenges when integrating them into
existing training pipeline. They often require specialized training procedures or
modifications to the original model. For instance, constraint optimization methods,
discussed in Section 3.5.2, typically require specialized training mechanisms such as
casting the problem as cost-sensitive learning in Agarwal et al. (2018) or altering the
underlying solver in Cotter et al. (2019). Adversarial methods, in contrast, requires
the use of nonlinear models and changes to it in the form of adversarial branch.

Moreover, in-processing approaches are also limited in the range of problems to
which they can be applied. For example, the work of Agarwal et al. (2018) can only
be applied in a binary classification setting, while the work of Ozdayi, Kantarcioglu,
and Iyer (2021) is limited to two sensitive groups. Furthermore, they may come

https://pypi.org/project/fairgrad
https://pypi.org/project/fairgrad
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FIGURE 4.1: Fairgrad targets the model training aspect of the machine
learning pipeline.

with several hyper-parameters that need to be carefully tuned to obtain fair models.
For instance, the scaling parameter in adversarial learning (Raff and Sylvester, 2018;
Li, Baldwin, and Cohn, 2018) or the number of iterations in inner optimization
for bi-level optimization based mechanisms (Ozdayi, Kantarcioglu, and Iyer, 2021).
The complexity of the existing methods might hinder their deployment in practical
settings. Hence, there is a need for simpler methods that are straightforward to
integrate into existing systems.

Contributions: To circumvent above challenges we present FairGrad, a general
purpose approach to enforce fairness in empirical risk minimization solved using
gradient descent. We propose to dynamically update the influence of the examples
after each gradient descent update to precisely reflect the fairness level of the models
obtained at each iteration and guide the optimization process in a relevant direction.
Hence, the underlying idea is to use lower weights for examples from advantaged
groups than those from disadvantaged groups. Our method is inspired by recent
re-weighting approaches, as discussed in Section 3.5.2, that also propose to change
the importance of each group while learning a model (Iosifidis and Ntoutsi, 2019;
Krasanakis et al., 2018; Jiang and Nachum, 2020; Roh et al., 2020; Ozdayi, Kantar-
cioglu, and Iyer, 2021). Interestingly, we also find that FairGrad can be seen as solving
a kind of constrained optimization problem. In Section 4.3, we expand upon this link
and show how FairGrad can be seen as a solution that connects these two kinds of
methods.
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1 # The library is available at https :// pypi.org/project/fairgrad.

2 from fairgrad.torch import CrossEntropyLoss

3

4 # Same as PyTorch ’s loss with some additional meta data.

5 # A fairness rate of 0.01 is a good rule of thumb for standardized data

.

6 criterion = CrossEntropyLoss(y_train , s_train , fairness_measure ,

fairness_rate =0.01)

7

8 # The dataloader and model are defined and used in the standard way.

9 for x, y, s in data_loader:

10 optimizer.zero_grad ()

11 loss = criterion(model(x), y, s)

12 loss.backward ()

13 optimizer.step()

LISTING 4.1: A standard training loop where the PyTorch’s loss is
replaced by FairGrad’s loss.

A key advantage of FairGrad is that it is straightforward to incorporate into standard
gradient based solvers that support examples re-weighting like Stochastic Gradient
Descent. Hence, we developed a Python library where we augmented standard
PyTorch losses to accommodate our approach. From a practitioner point of view, it
means that using FairGrad is as simple as replacing their existing loss from PyTorch
with our custom loss and passing along some meta data, while the rest of the training
loop remains identical. This is illustrated in Figure 4.1. It is interesting to note that
besides the usual optimization hyper-parameters (learning rates, batch size, . . . ),
FairGrad only brings one extra hyper-parameter, the fairness rate. Moreover, FairGrad
incurs minimal computational overhead during training as it relies on objects that
are already computed for standard gradient descent, namely the predictions on the
current batch and the loss incurred by the model for each example. In particular, the
overhead is independent of the number of parameters of the model. Furthermore, as
many in-processing approaches in fairness (Cotter, Jiang, and Sridharan, 2019; Roh
et al., 2020), FairGrad does not introduce any overhead at test time.

Overall, FairGrad is a lightweight solution that is compatible with various group
fairness notions, including exact and approximate fairness, can handle both multiple
sensitive groups and multiclass problems, and can fine tune existing unfair models.
Through extensive experiments, we also show that, in addition to its versatility,
FairGrad is competitive with several standard baselines in fairness on both standard
datasets as well as complex NLP and CV tasks.

4.2 Problem Setting, Notations

In the remainder of this chapter, we assume that we have access to a feature space X ,
a finite discrete label space Y , and a set G of all sensitive groups (see Section 3.2.1).
We further assume that there exists a distribution D ∈ DZ where DZ is the set of
all distributions over Z = X × Y × G. Our goal is then to learn an accurate model
hθ ∈ H, with learnable parameters θ ∈ R

d, such that hθ : X → Y is fair with respect
to a given fairness definition that depends on the sensitive groups. In Section 4.2.1,
we formally define the family of fairness measures that are compatible with our
approach and provide several examples of popular notions encompassed by our
fairness definition.
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As usual in machine learning, we will assume that D is unknown and that we only
get to observe a finite dataset T = {(xi, yi, gi)}

n
i=1 of n examples drawn i.i.d. from

D. Let P (E(X, Y, G)) represent the probability that an event E happens with respect
to (X, Y, G) ∼ D while P̂ (E(x, y, g)) = 1

n ∑
n
i=1 IE(xi ,yi ,gi) is an empirical estimate with

respect to T where IP is the indicator function which is 1 when the property P is
verified and 0 otherwise. In the remainder of this chapter, all our derivations will be
considered in the finite sample setting and we will assume that what was measured
on our finite sample is sufficiently close to what would be obtained if one had access
to the overall distribution. This seems reasonable in light of the previous work on
generalization in standard machine learning (Shalev-Shwartz and Ben-David, 2014)
and the recent work of Woodworth et al. (2017) or Mangold et al. (2022) which show
that the kind of fairness measures we consider in this chapter tend to generalize
well when the hypothesis space is not too complex, as measured respectively by the
VC or the Natarajan Dimension (Shalev-Shwartz and Ben-David, 2014). Since these
generalization results only rely on a capacity measure of the hypothesis space and are
otherwise algorithm agnostic, they are applicable to the models returned by FairGrad
when they have finite VC or Natarajan dimensions. This is for example the case for
linear models.

4.2.1 Fairness Definition

In this chapter, we assume that the data may be partitioned into K disjoint groups
denoted T1, . . . , Tk, . . . , TK such that

⋃K
k=1 Tk = T and

⋂K
k=1 Tk = ∅. These groups

highly depend on the fairness notion under consideration. They might correspond to
the usual intersectional sensitive groups (defined in Section 3.2.1) as is the case for
Accuracy Parity (see Example 1), or might be subgroups of the intersectional sensitive
groups, as in Equalized Odds where the subgroups are defined with respect to the
true labels (see Example 2 in Appendix A.1). For each group, we assume that we
have access to a function F̂k : Dn ×H → R such that F̂k > 0 when the group k is
advantaged by the given classifier and F̂k < 0 when the group k is disadvantaged.
Furthermore, we assume that the magnitude of F̂k represents the degree to which the
group is (dis)advantaged. Finally, we assume that each F̂k can be rewritten as:

F̂k(T , hθ) = C0
k +

K

∑
k′=1

Ck′

k P̂ (hθ(x) ̸= y|Tk′) (4.1)

where the constants C are group specific and independent of hθ . The probabilities
P̂ (hθ(x) ̸= y|Tk′) represent the error rates of hθ over each group Tk′ with a slight
abuse of notation. Below, we show that Accuracy Parity (Zafar et al., 2017a) respects
this definition. In Appendix A.1, we show that Equality of Opportunity (Hardt, Price,
and Srebro, 2016), Equalized Odds (Hardt, Price, and Srebro, 2016), and Demographic
Parity (Calders, Kamiran, and Pechenizkiy, 2009) also respect this definition. It means
that using this generic formulation allows us to simultaneously reason about multiple
fairness notions.

Example 1 (Accuracy Parity (AP) (Zafar et al., 2017a)). A model hθ is fair for Accuracy
Parity when the probability of being correct is independent of the sensitive group,
that is, ∀g ∈ G

P̂ (hθ(x) = y | g) = P̂ (hθ(x) = y) .
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It means that we need to partition the space corresponding to intersectional groups,
∀g ∈ G, we define F̂(r) as the fairness level of group g

F̂(r)(T , hθ) = P̂ (hθ(x) ̸= y)− P̂ (hθ(x) ̸= y | g)

= (P̂ (g)− 1)P̂ (hθ(x) ̸= y | g) + ∑
(g′) ̸=(g)

P̂
(
g′
)

P̂
(
hθ(x) ̸= y | g′

)

where the law of total probability was used to obtain the last equality. Thus, Accuracy

Parity satisfies all our assumptions with C
g
g = P̂ (g)− 1, C

g′

g = P̂ (g′) with g′ ̸= g,
and C0

g = 0.

4.3 General Formulation

In Section 3.5.2, we list various in-processing approaches. Primary amongst them are
methods relying on formulating the problem as either a constrained optimization,
which is later relaxed to an unconstrained case or using re-weighting techniques
where examples are dynamically re-weighed based on the fairness levels of the
model (Caton and Haas, 2020). In this section, we provide a general formulation of
these mechanisms and list the similarities and differences between FairGrad and the
corresponding approaches. Additionally, we will also demonstrate how FairGrad can
be seen as a solution that connects these two streams of work. In the next subsection,
we list very closely related works.

Constrained Optimization The problem of fair machine learning can be seen as
the following constrained optimization problem (Cotter, Jiang, and Sridharan, 2019;
Agarwal et al., 2018):

arg min
hθ∈H

P̂ (hθ(x) ̸= y)

s.t. ∀k ∈ [K], F̂k(T , hθ) = 0. (4.2)

This problem can then be reformulated as an unconstrained optimization problem
using Lagrange multipliers. More specifically, with multipliers denoted by ¼1, . . . , ¼K,
the unconstrained objective that should be minimized for hθ ∈ H and maximized for
¼1, . . . , ¼K ∈ R is:

L (hθ , ¼1, . . . , ¼K) = P̂ (hθ(x) ̸= y) +
K

∑
k=1

¼k F̂k(T , hθ) . (4.3)

Several strategies may then be employed to find a saddle point for the aforemen-
tioned objective1. Agarwal et al. (2018) first relax the problem by searching for a
distribution over the models rather than a single optimal hypothesis. Then, they
alternate between using an exponentiated gradient step to find ¼1, . . . , ¼K ∈ R and a
procedure based on cost sensitive learning to find the next hθ to add to their distri-
bution. Similarly, Cotter, Jiang, and Sridharan (2019) also search for a distribution
over the models using an alternating approach based on Lagrange multipliers where
they relax objective (4.3) by replacing the error rate with a loss term. To update the ¼

1These min-max formulations are not new in the literature and was already used in the 1940’s (Wald,
1945). More recently, Madry et al. (2018) employed the formulation to make deep neural networks
more robust against adversarial attacks. Similarly, Ben-Tal et al. (2012) modeled uncertainty in input via
this formulation.
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multipliers, unlike Agarwal et al. (2018), they use projected gradient descent based
on the original fairness terms. To search the next hθ to add to their distribution of
models they use a projected gradient descent update over a relaxed overall objective
function where the fairness measures are replaced with smooth upper bounds.

In this work, we also use an alternating approach based on objective (4.3). However,
we look for a single model rather than a distribution of models. To this end, at each
iteration, we update ¼ using a projected gradient descent step similar to Cotter, Jiang,
and Sridharan (2019), that is using the original fairness measures. To solve for hθ ,
contrary to Cotter, Jiang, and Sridharan (2019), we first show that Objective (4.3),
with fixed ¼, may be rewritten as a weighted sum of group-wise error rates. This is
similar in spirit to the cost-sensitive learning method of Agarwal et al. (2018) but can
be applied beyond binary classification. We then follow Cotter, Jiang, and Sridharan
(2019) and replace in our new objective the error rate terms with a loss function, albeit
not necessarily an upper bound, to obtain meaningful gradient directions.

Re-weighting Another way to learn fair models is to use a re-weighting approach
(see Section 3.5.2) where each example x is associated with a weight wx ∈ R so that
minimizing the following objective for hθ outputs a fair model:

W (hθ) = Ê

(
wxI{hθ(x) ̸=y}

)
.

The underlying idea for the methods which posit the problem as above is to propose
a cost function that outputs weights for each example. Recall that on the one hand,
the weights can be determined in a pre-processing step (Kamiran and Calders, 2012),
based on the statistics of the data under consideration. On the other hand, the
weights may evolve with hθ , that is they are dynamically updated each time the
model changes during the training process (Roh et al., 2020).

In this work, to find hθ , we also use a dynamic re-weighting approach where the
weights change at each iteration. To choose the weights, we initially give the same im-
portance to each example. Then, we increase the weights of disadvantaged examples
and decrease the weights of advantaged examples proportionally to the fairness level
of the current model for their group. An important feature of our approach, unlike
other re-weighting approaches, is that we do not constrain ourselves to positive
weights but rather allow the use of negative weights. Indeed, we show in Lemma 1
that the latter are sometimes necessary to learn fair models.

To summarize, we first frame the task as a constrained optimization problem, similar
to Cotter, Jiang, and Sridharan (2019) and Agarwal et al. (2018). We then propose an
alternating approach, where we update ¼ at each iteration using a projected gradient
descent step similar to Cotter, Jiang, and Sridharan (2019). However, in order to
learn the model hθ , we show that Objective (4.3), with fixed ¼, can be rewritten as a
weighted sum of group-wise error rates. This step can be interpreted as an instance
of re-weighting where the weights change at each iteration. Thus our method can be
seen as a connection between constrained optimization and re-weighting.

4.4 FairGrad

In the above section, we argued that FairGrad is connected to both constrained
optimization and re-weighting approaches. In this section, we provide details on
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our method and we present it starting from the constrained optimization point of
view as we believe it makes it easier to understand how the weights are selected and
updated. We begin by discussing FairGrad for exact fairness and then extend it to the
approximate fairness also referred as ϵ-fairness.

4.4.1 FairGrad for Exact Fairness

To solve the problem described in equation 4.3, we propose to use an alternating
approach where the hypothesis and the multipliers are updated one after the other2.
We begin by describing our method to update the multipliers and then the model.

Updating the Multipliers. To update ¼1, . . . , ¼K, we will use a standard gradient
ascent procedure. Hence, given that the gradient of Problem (4.3) is

∇¼1,...,¼K
L (hθ , ¼1, . . . , ¼K) =




F̂1(T , hθ)
...

F̂K(T , hθ)




we have the following update rule ∀k ∈ [K]:

¼T+1
k = ¼T

k + η¼ F̂k

(
T , hT

θ

)

where η¼ is a rate that controls the importance of each update. In the experiments, we
use a constant rate of 0.01 as our initial tests showed that it is a good rule of thumb
when the data is properly standardized.

Updating the Model. To update the parameters θ ∈ R
D of the model hθ , we use

a standard gradient descent. However, first, we notice that, given our fairness
definition, Equation (4.3) can be written as

L (hθ , ¼1, . . . , ¼K) =
K

∑
k=1

P̂ (hθ(x) ̸= y|Tk)

[
P̂ (Tk) +

K

∑
k′=1

Ck
k′¼k′

]
+

K

∑
k=1

¼kC0
k . (4.4)

where ∑
K
k=1 ¼kC0

k is independent of hθ by definition. Hence, at iteration t, the update
rule becomes

θT+1 = θT − ηθ

K

∑
k=1

[
P̂ (Tk) +

K

∑
k′=1

Ck
k′¼k′

]
∇θP̂ (hθ(x) ̸= y|Tk)

where ηθ is the usual learning rate that controls the importance of each parameter

update. Here, we obtain our group specific weights ∀k, wk =
[
P̂ (Tk) + ∑

K
k′=1 Ck

k′¼k′

]
,

that depend on the current fairness level of the model through ¼1, . . . , ¼K, the relative
size of each group through P̂ (Tk), and the fairness notion under consideration
through the constants C. The exact values of these constants are given in Section 4.2.1
and Appendix A.1 for various group fairness notions. Overall, they are such that, at
each iteration, the weights of the advantaged groups are reduced and the weights of
the disadvantaged groups are increased.

2It is worth noting that, here, we do not have formal duality guarantees and that the problem is not
even guaranteed to have a fair solution. Nevertheless, the approach seems to work well in practice as
can be seen in the experiments.
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Algorithm 3 FairGrad for Exact Fairness

Input: Groups T1, . . . , TK, Functions F̂1, . . . , F̂K, Function class H of models hθ with
parameters θ ∈ R

D, Learning rates η¼, ηθ , and Iterator iter that returns batches of
examples.
Output: A fair model h∗θ .

1: Initialize the group specific weights and the model.
2: for B in iter do

3: Compute the predictions of the current model on the batch B.
4: Compute the group-wise losses using the predictions.
5: Compute the current fairness level using the predictions and update the group-wise

weights.
6: Compute the overall weighted loss using the group-wise weights.
7: Compute the gradients based on the loss and update the model.
8: end for

9: return the trained model h∗θ

The main limitation of the above update rule is that one needs to compute the gradient
of 0−1-losses since ∇θP̂ (hθ(x) ̸= y|Tk) = 1

nk
∑(x,y)∈Tk

∇θI{hθ(x) ̸=y}. Unfortunately,
this usually does not provide meaningful optimization directions. To address this
issue, we follow the usual trend in machine learning and replace the 0−1-loss with one
of its continuous and differentiable surrogates that provides meaningful gradients.
For instance, in our experiments, we use the cross entropy loss.

4.4.2 Computational Overhead of FairGrad.

We summarize our approach in Algorithm 3, where we have used italic font to
highlight the steps inherent to FairGrad that do not appear in classic gradient descent.
We consider batch gradient descent rather than full gradient descent as it is a popular
scheme. We empirically investigate the impact of the batch size in Section 4.6.7. The
main difference is Step 5, that is the computation of the group-wise fairness levels.
However, these can be cheaply obtained from the predictions of h

(t)
θ on the current

batch which are always available since they are also needed to compute the gradient.
Hence, the computational overhead of FairGrad is very limited.

4.4.3 Importance of Negative Weights.

A key property of FairGrad is that we allow the use of negative weights, that is[
P̂ (Tk) + ∑

K
k′=1 Ck

k′¼k′

]
may become negative, while existing methods (Roh et al.,

2020; Iosifidis and Ntoutsi, 2019; Jiang and Nachum, 2020) restrict themselves to
positive weights. In this section, we show that these negative weights are important
as they are sometimes necessary to learn fair models. Hence, in the next lemma, we
provide sufficient conditions so that negative weights are mandatory if one wants to
enforce Accuracy Parity.

Lemma 1 (Negative weights are necessary.). Let the fairness notion be Accuracy
Parity (Example 1). Let h∗θ be the most accurate and fair model. Then using negative
weights is necessary as long as

min
hθ∈H

hθunfair

max
Tk

P̂ (hθ(x) ̸= y|Tk) < P̂ (h∗θ (x) ̸= y) .
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Proof. The proof is provided in Appendix A.2.

The previous condition can sometimes be verified in practice. As a motivating
example, assume a binary setting with only two sensitive groups T1 and T−1. Let

h−1
θ be the model minimizing P̂ (hθ(x) ̸= y|T−1) and assume that P̂

(
h−1

θ (x) ̸= y
)
<

P̂

(
h−1

θ (x) ̸= y|T−1

)
, that is group T−1 is disadvantaged for accuracy parity. Given

h∗θ the most accurate and fair model, we have

min
hθ∈H

hθunfair

max
Tk

P̂ (hθ(x) ̸= y|Tk) = P̂

(
h−1

θ (x) ̸= y|T−1

)
< P̂ (h∗θ (x) ̸= y)

as otherwise we would have a contradiction since the fair model would also be
the most accurate model for group T−1 since P̂ (h∗θ (x) ̸= y) = P̂ (h∗θ (x) ̸= y|T−1) by
definition of Accuracy Parity. In other words, a dataset where the most accurate
model for a given group still disadvantages it requires negative weights. This might
be connected to the notion of “leveling down” (Zietlow et al., 2022; Mittelstadt,
Wachter, and Russell, 2023), where fairness can only be achieved by harming all the
groups or bringing advantaged groups closer to disadvantaged groups by harming
them. It is generally an artifact of strictly egalitarian fairness measures. We investigate
this leveling down phenomena in more depth in the next chapter.

4.4.4 FairGrad for ϵ-fairness

In the previous section, we considered exact fairness and we showed that this could
be achieved by using a re-weighting approach. Here, we extend this procedure
to ϵ-fairness where the fairness constraints are relaxed and a controlled amount of
violations is allowed. Usually, ϵ is a user defined parameter but it can also be set by
the law, as it is the case with the 80% rule in the US (Biddle, 2006). The main difference
with exact fairness is that each equality constraint in Problem (4.2) is replaced with
two inequalities of the form

∀k ∈ [K], F̂k(T , hθ) f ϵ

∀k ∈ [K], F̂k(T , hθ) g −ϵ.

The main consequence is that we need to maintain twice as many Lagrange multipli-
ers and that the group-wise weights are slightly different. Since the two procedures
are similar, we omit the details here but provide them in Appendix A.3 for the sake
of completeness.

4.5 Related Work

For an extensive discussion of fairness interventions approaches, refer to Section 3.5.
Here, we focus on recent works that are more closely related to our approach.

BiFair (Ozdayi, Kantarcioglu, and Iyer, 2021). This paper proposes a bilevel opti-
mization scheme for fairness. The idea is to use an outer optimization scheme that
learns weights for each example so that the trade-off between fairness and accuracy
is as favorable as possible while an inner optimization scheme learns a model that
is as accurate as possible. One limitation of this approach is that it does not directly
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optimize the fairness level of the model but rather a relaxation that does not provide
any guarantees on the goodness of the learned predictor. Furthermore, it is limited to
binary classification with a binary sensitive attribute. In this chapter, we also learn
weights for the examples in an iterative way. However, we use a different update
rule. Furthermore, we focus on exact fairness definitions rather than relaxations and
our objective is to learn accurate models with given levels of fairness rather than a
trade-off between the two. Finally, our approach is not limited to the binary setting.

FairBatch (Roh et al., 2020). This paper proposes a batch gradient descent approach
to learn fair models. More precisely, the idea is to draw a batch of examples from a
skewed distribution that favors the disadvantaged groups by oversampling them. In
FairGrad, we propose to use a re-weighting approach which could also be interpreted
as altering the distribution of the examples based on th eir fairness level if all the
weights were positive. However, we allow the use of negative weights, and we prove
that they are sometimes necessary to achieve fairness. Furthermore, we employ a
different update rule for the weights.

AdaFair (Iosifidis and Ntoutsi, 2019). This paper proposes a boosting based frame-
work to learn fair models. The underlying idea is to modify the weights of the
examples depending on both the performances of the current strong classifier and
the group memberships. Hence, examples that belong to the disadvantaged group
and are incorrectly classified receive higher weights than the examples that belong to
the advantaged group and are correctly classified. In this chapter, we use a similar
high level idea but we use different weights that do not depend on the accuracy
of the model but solely on its fairness. Furthermore, rather than a boosting based
approach, we consider problems that can be solved using gradient descent. Finally,
while AdaFair only focuses on Equalized Odds, we show that our approach works
with several fairness notions.

Identifying and Correcting Label Bias in Machine Learning (Jiang and Nachum,

2020). This paper tackles the fairness problem by assuming that the observed labels
are biased compared to the true labels. The goal is then to learn a model with respect
to the true labels using only the observed labels. To this end, it proposes to use an
iterative re-weighting procedure where positive example-wise weights and the model
are alternatively updated. In FairGrad, we also propose a re-weighting approach.
However, we use different weighing mechanism which is not restricted to positive
weights. Furthermore, our approach is not limited to binary labels and can handle
multiclass problems.

4.6 Experiments

In this section, we present several experiments that demonstrate the competitiveness
of FairGrad as a procedure to learn fair models for classification. We begin by
presenting results over standard fairness datasets and a Natural language Processing
dataset in Section 4.6.4. We then study the behaviour of the ϵ-fairness variant of
FairGrad in Section 4.6.5. Next, we showcase the fine-tuning ability of FairGrad
on a Computer Vision dataset in Section 4.6.6. Finally, we investigate the impact of
batch size on the learned model in Section 4.6.7 and present results related to the
computational overhead incurred by FairGrad in Section 4.6.8.
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4.6.1 Datasets

In the main chapter, we consider 4 different datasets and postpone the results on
another 6 datasets to Appendix A.4.3 as they follow similar trends. We also postpone
the detailed descriptions of these datasets as well as the pre-processing steps to
Appendix A.4.2.

We consider commonly used fairness datasets, namely Adult Income (Kohavi, 1996)
and CelebA (Liu et al., 2015). Both are binary classification datasets with binary
sensitive attributes (gender). We also consider a variant of the Adult Income dataset
where we add a second binary sensitive attribute (race) to obtain a dataset with 4
disjoint sensitive groups. For both datasets, we use 20% of the data as a test set and
the remaining 80% as a train set. We further divide the train set into two and keep
25% of the training examples as a validation set. For each repetition, we randomly
shuffle the data before splitting it, and thus we have unique splits for each random
seed. Lastly, we standardize each features independently by subtracting the mean
and scaling to unit variance which were estimated on the training set.

To showcase the wide applicability of FairGrad, we consider the Twitter Senti-

ment3 (Blodgett, Green, and O’Connor, 2016) dataset from the Natural Language
Processing community. It consists of 200k tweets with binary sensitive attribute
(race) and binary sentiment score. We employ the same setup, splits, and the pre-
processing as proposed by Han, Baldwin, and Cohn (2021) and Elazar and Goldberg
(2018) and create bias in the dataset by changing the proportion of each subgroup
(race-sentiment) in the training set. Following the footsteps of Elazar and Goldberg
(2018) we encode the tweets using the DeepMoji (Felbo et al., 2017) encoder with no
fine-tuning, which has been pre-trained over millions of tweets to predict their emoji,
thereby predicting the sentiment. We also employ the UTKFace dataset4 (Zhang,
Song, and Qi, 2017) from the Computer Vision community. It consists of 23, 708
images tagged with race, age, and gender with pre-defined splits.

4.6.2 Performance Measures

For fairness, we consider the four measures introduced in Section 4.2.1 and Ap-
pendix A.1, namely Equalized Odds (EOdds), Equality of Opportunity (EOpp),
Accuracy Parity (AP), and Demographic Parity (DP). For each specific fairness notion,
we report the average absolute fairness level of the different groups over the test

set, that is 1
K ∑

K
k=1

∣∣∣F̂k(T , hθ)
∣∣∣ (lower is better). To assess the utility of the learned

models, we use their accuracy levels over the test set, that is 1
n ∑

n
i=1 Ihθ(xi)=yi

(higher is
better). All the results reported are averaged over 5 independent runs and standard
deviations are provided. Note that, in the main chapter, we graphically report a
subset of the results over the aforementioned datasets. We provide detailed results
in Appendix A.4.3, including the missing pictures as well as complete tables with
accuracy levels, fairness levels, and fairness level of the most well-off and worst-off
groups for all the relevant methods.

4.6.3 Methods

We compare FairGrad to a wide variety of baselines, namely:

3http://slanglab.cs.umass.edu/TwitterAAE/
4https://susanqq.github.io/UTKFace/

http://slanglab.cs.umass.edu/TwitterAAE/
https://susanqq.github.io/UTKFace/
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• Unconstrained, which is oblivious to any fairness measure and is trained using
a standard batch gradient descent method.

• Adversarial learning based method where we employ adversarial mecha-
nism (Goodfellow et al., 2014a) using a gradient reversal layer (Ganin and
Lempitsky, 2015), similar to GRAD-Pred (Raff and Sylvester, 2018), where an
adversary, with an objective to predict the sensitive attribute, is added to the
unconstrained model

• Bi-level optimization based method implemented in the form of BiFair (Ozdayi,
Kantarcioglu, and Iyer, 2021)

• Re-weighting based methods in the form of FairBatch (Roh et al., 2020). We also
compare against a simpler baseline called Weighted ERM where each example
is reweighed based on the size of the sensitive group the example belongs to in
the beginning. Unlike FairBatch these weights are not updated during training.

• Constrained optimization based method as proposed by Cotter, Jiang, and
Sridharan (2019). We refer to this method as Constraints in this article.

• Reduction implements the exponentiated gradient based fair classification
approach as proposed by Agarwal et al. (2018).

In all our experiments, we consider two different hypothesis classes. On the one
hand, we use linear models implemented in the form of neural networks with no
hidden layers. On the other hand, we use a more complex, non-linear architecture
with three fully-connected hidden layers of respective sizes 128, 64, and 32. We use
ReLU as our activation function with batch normalization and dropout. In both cases,
we optimize the cross-entropy loss.

In several experiments, we only consider subsets of the baselines due to the limitations
of the methods. For instance, BiFair was designed to handle binary labels and binary
sensitive attributes and thus is not considered for the datasets with more than two
sensitive groups or two labels. Furthermore, we implemented it using the authors
code that is freely available online but does not include AP as a fairness measure,
thus we do not report results related to this measure for BiFair. Similarly, we also
implemented FairBatch from the authors code which does not support AP as a
fairness measure, thus we also exclude it from the comparison for this measure. For
Constraints, we based our implementation on the publicly available authors library
but were only able to reliably handle linear models and thus we do not consider this
baseline for non-linear models. Finally, for Adversarial, we used our custom made
implementation. However, it is only applicable when learning non-linear models
since it requires at least one hidden layer to propagate its reversed gradient.

Apart from the common hyper-parameters such as dropout, several baselines come
with their own set of hyper-parameters. For instance, BiFair has the inner loop length,
which controls the number of iterations in its inner loop, while Adversarial has the
scaling, which re-weights the adversarial branch loss and the task loss. We provide
details of common and approach specific hyper-parameters in Appendix A.4.1.

With several hyper-parameters for each approach, selecting the best combination is
often crucial to avoid undesirable behaviors such as over-fitting (Maheshwari et al.,
2022). In this chapter, we opt for the following procedure. First, for each method, we
consider all the X possible hyper-parameter combinations and we run the training
procedure for 50 epochs for each combination. Then, we retain all the models returned
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by the last 5 epochs, that is, for a given method, we have 5X models and the goal is to
select the best one among them. Since we have access to two performance measures,
we can select either the most accurate model, the most fair, or a trade-off between
the two depending on the end goal. Here, we chose to focus on the third option and
select the model with the lowest fairness score between certain accuracy intervals.
More specifically, let ³∗ be the highest validation accuracy among the 5X models. We
choose the model with the lowest validation fairness score amongst all models with
a validation accuracy in the interval [³∗ − k, ³∗]. In this work, we fix k to 0.03. We
provide more details around this selection strategy in Chapter 7.

4.6.4 Results for Exact Fairness

We report the results over the Adult dataset using a linear model, the Adult dataset
with multiple groups with a non-linear model, and the Twitter sentiment dataset
using both linear and nonlinear models in Figures 4.2, 4.3, and 4.4 respectively. In
these figures, the best methods are closer to the bottom right corner. If a method is
closer to the bottom left corner, it has good fairness but reduced accuracy. Similarly,
if the method is closer to the top right corner it has good accuracy but poor fairness.

The main take-away from these experiments is that there is no fairness enforcing
method that is consistently better than the others in terms of both accuracy and
fairness. All of them have strengths, that is datasets and fairness measures where they
obtain good results, and weaknesses, that is datasets and fairness measures for which
they are sub-optimal. FairBatch induces better accuracy than the other approaches
over Adult with linear model and EOdds and only pays a small price in fairness.
However, it is significantly worse in terms of fairness over the Adult Multigroup
dataset with a non-linear model. Similarly, BiFair is sub-optimal on Adult with EOpp,
while being comparable to the other approaches on the Twitter Sentiment dataset.
We observed similar trends on the other datasets, available in Appendix A.4.3, with
different methods coming out on top for different datasets and fairness measures.

Interestingly, FairGrad generally outperforms other approaches in terms of fairness,
albeit with a slight loss in accuracy. These observations are even more amplified in the
Accuracy Parity and Equalized Odds settings. Moreover, it is generally more robust
and tends to show a lower standard deviation in accuracy and fairness than the other
approaches. Even in terms of accuracy, the largest difference is over the Crime dataset,
where the difference between FairGrad and Unconstrained is 0.04. However, in most
cases, the difference is within 0.02. In terms of the multi-group setup, we find similar
observations, that is FairGrad outperforms other approaches in fairness, albeit with a
drop in accuracy. In fact, for Equality of Opportunity FairGrad almost outperforms all
approaches in terms of fairness and accuracy. Overall, FairGrad performs reasonably
well in all the settings we considered with no obvious weaknesses, that is no datasets
with the lowest accuracy and fairness compared to the baselines.

4.6.5 Accuracy Fairness Trade-off

In this second set of experiments, we demonstrate the capability of FairGrad to sup-
port approximate fairness (see Section 4.4.4). In Figure 4.5, we show the performance,
as accuracy-fairness pairs, of several models learned on the CelebA dataset by vary-
ing the fairness level parameter ϵ. These results suggest that FairGrad respects the
constraints well. Indeed, the average absolute fairness level (across all the groups,
see Section 4.6.2) achieved by FairGrad is either the same or less than the given
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FIGURE 4.2: Results for the Adult dataset using Linear Models.
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FIGURE 4.3: Results for the Adult Multigroup dataset using Non
Linear models.

threshold. It is worth mentioning that FairGrad is designed to enforce ϵ-fairness for
each constraint individually which is slightly different from the summarized quantity
displayed here. Finally, as the fairness constraint is relaxed, the accuracy of the model
increases, reaching the same performance as Unconstrained when the fairness level
of the latter is below ϵ.

4.6.6 FairGrad as a Fine-Tuning Procedure

While FairGrad has primarily been designed to learn fair classifiers from scratch,
it can also be used to fine-tune an existing classifier to achieve better fairness. To
showcase this, we fine-tune the ResNet18 (He et al., 2016b) model, developed for
image recognition, over the UTKFace dataset (Zhang, Song, and Qi, 2017), consisting
of human face images tagged with Gender, Age, and Race information. Following
the same process as Roh et al. (2020), we use Race as the sensitive attribute and
consider two scenarios. Either we consider Demographic Parity as the fairness
measure and use the gender (binary) as the target label or we consider Equalized
Odds and predict the age (multi-valued). The results are displayed in Table 4.1.
In both settings, FairGrad learns models that are more fair than an Unconstrained
fine-tuning procedure, albeit at the expense of accuracy.

Method
s=Race ; y=Gender s=Race ; y=Age

Accuracy DP Accuracy EOdds
Unconstrained 0.8691 ± 0.0075 0.0448 ± 0.0066 0.6874 ± 0.0080 0.0843 ± 0.0089
FairGrad 0.8397 ± 0.0085 0.0111 ± 0.0064 0.6491 ± 0.0082 0.0506 ± 0.0059

TABLE 4.1: Results for the UTKFace dataset where a ResNet18 is fine-
tuned using different strategies.
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FIGURE 4.4: Results for the Twitter Sentiment dataset for Linear and
Non Linear Models.
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FIGURE 4.5: Results for CelebA using Linear models. The Uncon-
strained Linear model achieves a test accuracy of 0.8532 with fairness

level of 0.0499 for EOdds, 0.0204 for AP, and 0.0387 for EOpp.

4.6.7 Impact of the Batch-size

In this section, we evaluate the impact of batch size on the fairness and accuracy level
of the learned model. Indeed, at each iteration, in order to minimize the overhead
associated with FairGrad (see Section 4.4.1), we update the weights using the fairness
level of the model estimated solely on the current batch. When these batches are small,
these estimates are unreliable and might lead the model astray. In Table 4.2 we present
the performances of several linear models learned with different batch sizes on the
CelebA dataset. Over this dataset, we observe that FairGrad consistently learns a fair
model across all batch sizes and obtains reasonable accuracy since Unconstrained
has an accuracy of 0.8532 for this problem. Nevertheless, we still recommend the
practitioners to use a larger batch size whenever possible as we observe a slight
reduction in terms of fairness standard deviations.

4.6.8 Computational Overhead

In this last experiment, we evaluate the overhead of FairGrad, by reporting the wall
clock time in seconds to train for an epoch with the Unconstrained approach and our
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Batch Size 8 16 32 64 128 256 512 1024 2048

Accuracy 0.8186 0.8234 0.8215 0.8268 0.8273 0.8286 0.8292 0.8289 0.8303
Accuracy Std 0.0013 0.006 0.0028 0.0025 0.0031 0.0008 0.0027 0.0017 0.0031

Fairness 0.0031 0.0091 0.0045 0.0036 0.0051 0.0046 0.004 0.0038 0.0057
Fairness Std 0.0042 0.0062 0.0012 0.0014 0.0025 0.0032 0.0026 0.0019 0.0018

TABLE 4.2: Batch size effect on the CelebA dataset with Linear Models
and EOdds as the fairness measure.

Setting Parameters BS Unconstrained FairGrad Delta

Linear model - Adult Dataset -CPU 106 512 0.277 ± 0.031 0.307 ± 0.01 0.03
2 layers -Adult Dataset -CPU 1762 512 0.315 ± 0.036 0.316 ± 0.029 0.01
5 layers -Adult Dataset -CPU 21346 512 0.370 ± 0.042 0.394 ± 0.025 0.02
10 layers -Adult Dataset -CPU 39042 512 0.483 ± 0.021 0.499 ± 0.034 0.02
20 layers -Adult Dataset -CPU 80642 512 0.672 ± 0.034 0.689 ± 0.026 0.02
ResNet18 trained -UTKFace -GPU 11177538 64 31.173 ± 0.085 31.588 ± 0.055 0.42
Bert Twitter Sentiment -GPU 109505310 32 2246.342 ± 3.20 2294.382 ± 4.01 48.04

TABLE 4.3: The computational overhead of FairGrad in various set-
tings. BS here refers to Batch Size, and the Unconstrained and Fair-
Grad columns refers to the average time in seconds taken by these
approaches for an epoch, respectively. Delta refers to the difference in

time between these two approaches.

method in various settings.

• We show the effect of model size by varying the number of hidden layers of
the model over the Adult Income dataset, which consists of 45, 222 records. We
used an Intel Xeon E5-2680 CPU to train.

• We consider a large convolutional neural network (ResNet18 (He et al., 2016b))
fine tuned over the UTK-Face dataset consisting of 23, 708 images. We trained
the model using a Tesla P100 GPU.

• We experiment with a large transformer (bert-base-uncased (Devlin et al., 2019))
fine tuned over the Twitter Sentiment Dataset consisting of 200k tweets. We
trained it using a Tesla P100 GPU.

We present results of the computation overhead of FairGrad in Table 4.3. We find that
the overhead is limited and should not be critical in most applications as it does not
depend on the complexity of the model but, instead, on the number of examples and
the batch size. Overall, these observations are in line with the arguments presented
in Section 4.4.2.

4.7 Conclusion

In this chapter, we proposed FairGrad, a fairness aware gradient descent approach
based on a re-weighting scheme. We showed that it can be used to learn fair models
for various group fairness definitions and is able to handle multiclass problems as
well as settings where there is multiple sensitive groups. We empirically showed
the competitiveness of our approach against several baselines on standard fairness
datasets and on a Natural Language Processing task. We also showed that it can be
used to fine-tune an existing model on a Computer Vision task. Finally, since it is
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based on gradient descent and has a small overhead, we believe that FairGrad could
be used for a wide range of applications, even beyond classification.

Limitations and Societal Impact

While appealing, FairGrad also has limitations. It implicitly assumes that a set of
weights that would lead to a fair model exists but this might be difficult to verify in
practice. Thus, even if in our experiments FairGrad seems to behave quite well, a
practitioner using this approach should not trust it blindly. It remains important to
always check the actual fairness level of the learned model. On the other hand, we
believe that, due to its simplicity and its versatility, FairGrad could be easily deployed
in various practical contexts and, thus, could contribute to the dissemination of fair
models.
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Chapter 5

Fair Without Leveling Down: A New
Intersectional Fairness Definition

Abstract

In this work, we consider the problem of intersectional group fairness in the clas-
sification setting, where the objective is to learn discrimination-free models in the
presence of several intersecting sensitive groups. First, we illustrate various shortcom-
ings of existing fairness measures commonly used to capture intersectional fairness.
Then, we propose a new definition called the ³-Intersectional Fairness, which com-
bines the absolute and the relative performance across sensitive groups and can
be seen as a generalization of the notion of differential fairness. We highlight sev-
eral desirable properties of the proposed definition and analyze its relation to other
fairness measures. Finally, we benchmark multiple popular fair machine learning
approaches using our new fairness definition and show that they do not achieve any
improvement over a simple baseline. Our results reveal that the increase in fairness
measured by previous definitions hides a “leveling down” effect, i.e., degrading the
best performance over groups rather than improving the worst one.

This chapter is based on: Maheshwari, Gaurav, Aurélien Bellet, Pascal Denis, and
Mikaela Keller. "Fair NLP Models with Differentially Private Text Encoders." In
The 2023 Conference on Empirical Methods in Natural Language Processing. The
codebase for the chapter is available at - https://github.com/saist1993/Benchma
rkingIntersectionalBias.

5.1 Introduction

In the preceding chapter, our primary focus was on group fairness with most of
the discussion and evaluation centered on single sensitive attributes like gender
(e.g., Male vs. Female) or race (e.g., African-Americans vs. European-Americans).
However, recent studies (Yang, Cisse, and Koyejo, 2020; Kirk et al., 2021) have demon-
strated that even when fairness can be ensured at the level of each individual sensitive
axis, significant unfairness can still exist at the intersection levels (e.g., Male European-
Americans vs. Female African-Americans). For example, Buolamwini and Gebru
(2018) showed that commercially available face recognition tools exhibit significantly
higher error rates for darker-skinned females than for lighter-skinned males. Similar

https://github.com/saist1993/BenchmarkingIntersectionalBias
https://github.com/saist1993/BenchmarkingIntersectionalBias
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FIGURE 5.1: ³-Intersectional Fairness focuses on model evaluation
aspect of the machine learning pipeline.

observations have been made by several studies in NLP including contextual word
representation Tan and Celis, 2019, and generative models Kirk et al., 2021. These
findings resonate with the analytical framework of intersectionality Crenshaw, 1989,
which argues that systems of inequality based on various attributes (like gender and
race) may “intersect” to create unique effects.

Thus we shift our focus to intersectional fairness (see Section 3.3.3). More specifically,
on capturing intersectional fairness and benchmarking various methods in this setting.
The chapter is part of the model evaluation aspect of the machine learning pipeline
(see Figure 5.1). To capture intersectional fairness, several measures have been
proposed Kearns et al., 2018; Hébert-Johnson et al., 2018; Foulds et al., 2020. Amongst
them the most commonly used (Lalor et al., 2022; Zhao et al., 2022; Subramanian et al.,
2021) is Differential Fairness (DF) Foulds et al., 2020, which is the log-ratio of the best-
performing group to the worst-performing group for a given performance measure
(such as the True Positive Rate. For more details refer to Section 3.2.2). While DF has
many desirable properties, in this work we emphasize that DF implements a “strictly
egalitarian” view, i.e., it only considers the relative performance between the group
and ignores their absolute performance. In particular, a trivial way to improve fairness
as measured by DF is by harming the best-off group without improving the worst-off
group. This phenomenon, known as leveling down, does not fit the desired fairness
requirements in many practical use-cases Mittelstadt, Wachter, and Russell, 2023;
Zietlow et al., 2022. Yet, we empirically observe that (i) popular fairness-promoting
approaches tend to level down more in intersectional fairness, and (ii) this often goes
unnoticed in the overall performance of the model due to the large number of groups
induced by intersectional fairness.

To address these issues and explicitly capture the leveling down phenomena, we
propose a generalization of DF, called ³-Intersectional Fairness (IF³), which takes
into account both the relative performance between the groups and the absolute
performance of the groups. More precisely, IF³ is a weighted average between the
relative and absolute performance of the groups, and allows the exploration of the
whole trade-off between these two quantities by changing their relative importance
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via a weight ³ ∈ [0, 1]. Our extensive benchmarks across various datasets show
that many existing fairness-inducing methods aim for a different point in the afore-
mentioned trade-off and generally show no consistent improvement over a simple
unconstrained approach.

In summary, our primary contributions are as follows:

• We showcase the shortcomings of the existing intersectional fairness definition
and propose a generalization called ³-Intersectional Fairness. We analyze the
properties and behavior of the proposed fairness measure, and contrast them
with DF.

• We benchmark existing fairness approaches on multiple datasets and evaluate
their performance with several fairness measures, including ours. On the one
hand, we find that many fairness approaches optimize for existing fairness
measures by harming both the worst-off and best-off groups or only the best-off
group. On the other hand, our measure is more careful in showing improve-
ments over a simple baseline than previous metrics, allowing the emphasis on
cases of leveling down.

5.2 Setting

In this section, we begin by introducing our notations and then formally define
problem statement.

5.2.1 Notations

In this study, we adopt and extend the notations proposed by Morina et al. (2019). Let
p denote the number of distinct sensitive axes of interest, which generally correspond
to socio-demographic features of a population. We refer to these sensitive axes as
A1, . . . , Ap, each of which is a set of discrete-valued sensitive attributes. For instance, a
dataset may be composed of gender, race, and age as the three sensitive axes, and
each of these sensitive axes may be encoded by a set of sensitive attributes, such as
gender: {male, female, non-binary}, race: {European American, African American},
and age: {under 45, above 45}. We define a sensitive group g as any p-dimensional
vector in the Cartesian product set G = A1 × · · · × Ap of these sensitive axes. A
sensitive group g ∈ G can then be written as (a1, . . . , ap) with aj ∈ Aj.

5.2.2 Problem Statement

Consider a feature space X , a finite discrete label space Y , and a set G representing
all possible intersections of p sensitive axes as defined above. Let D be an unknown
distribution over X × Y × G through which we sample i.i.d a finite dataset T =
{(xi, yi, gi)}

n
i=1 consisting of n examples. This sample can be rewritten as T =

⋃

g∈G Tg where Tg represents the subset of examples from group g. The goal of
fair machine learning is then to learn an accurate model hθ ∈ H, with learnable
parameters θ ∈ R

D, such that hθ : X → Y is fair with respect to a given group
fairness definition (See section 3.3) like Equal Opportunity (Hardt, Price, and Srebro,
2016), Equal Odds (Hardt, Price, and Srebro, 2016), Accuracy Parity Zafar et al., 2017b,
etc.

Existing group fairness definitions generally consist of comparing a certain perfor-
mance measure (See Section 3.2.2), such as True Positive Rate (TPR), False Positive
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Rate (FPR) or accuracy, across groups. In the following, for the sake of generality,
we abstract away from the particular measure and denote by m(hθ , Tg) ∈ [0, 1] the
group-wise performance for model hθ on the group of examples Tg, with the conven-
tion that higher values of m correspond to better performance. For instance, in the
case of TPR (used to define Equal Opportunity) we define m(hθ , Tg) = TPR(hθ , Tg),
while for FPR, we define it as m(hθ , Tg) = 1 − FPR(hθ , Tg).

5.3 Existing Intersectional Framework

While the literature on group fairness in machine learning initially considered a
single sensitive axis (Section 3.3.1), several works have recently proposed fairness
definitions for the intersectional setting (Gohar and Cheng, 2023) (Section 3.3.3).
Kearns et al. (2018) proposed subgroup-fairness, which is based on the difference
in performance of a particular group weighted by the size of the group. Several
calibration and metric fairness-based variants were considered by Hébert-Johnson
et al. (2018) and Yona and Rothblum (2018). A shortcoming of these notions is that
they weight each group by its size, hence small groups may not be protected even
though they are often the disadvantaged ones.

5.3.1 Differential Fairness

To circumvent the above issue as introduced in Section 3.3.3, Foulds et al. (2020) pro-
posed Differential Fairness (DF), which puts a constraint on the relative performance
between all pairs of groups. DF was originally proposed for statistical parity (Foulds
et al., 2020), and was then extended by (Morina et al., 2019) to generalize other fair-
ness definitions such as parity in False Positive Rates and Equal Odds. Below, we
provide a general definition of DF based on an arbitrary group-wise performance
measure m as defined in Section 5.2.2.1

Definition 4 (Differential Fairness). A model hθ is ϵ-differentially fair (DF) with
respect to a group-wise performance measure m, if

DF(hθ , m) ≡ max
g,g′∈G

log
m(hθ , Tg)

m(hθ , Tg′)
f ϵ.

It is important to note that DF only depends on the relative performance between the
best-performing group and the worst-performing group.

5.3.2 Shortcomings of Differential Fairness

We now highlight what we believe to be a key shortcoming of DF in the context of
intersectional fairness: DF can be improved by leveling down, i.e., harming the best-

off and/or worst-off group, without significantly affecting the overall performance

of the model. This problem is caused by the combination of two factors.

First, DF is a strictly egalitarian measure that only considers the relative performance
between groups. This can lead to situations where a model that improves the per-
formance across all groups is deemed more unfair by DF. To illustrate this, let the

1We note that, in their extension to parity in False Positive Rates, Morina et al. (2019) did not account
for the fact that higher FPR means lower performance, hence harming all groups always leads to better
fairness. Our general formulation in Definition 4 fixes this problem through the convention that higher
m corresponds to better performance.
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group-wise performance measure m to be the TPR and consider two models hθ and
hθ̃ . Let the worst-off and best-off group-wise performance of hθ be 0.50 and 0.60,
respectively. For hθ̃ , let it be 0.65 and 0.95. According to DF, hθ is more fair than hθ̃

as the two groups are closer, while hθ̃ has better performance for both groups. In
other words, hθ is leveling down compared to hθ̃ , but is deemed more fair. This ex-
hibits the tension between the relative performance between groups, and the absolute
performance of the groups.

The second factor is that in intersectional fairness, leveling down can have a negligible
effect on the overall performance of a model on the full dataset. This is because the
number of groups in intersectional fairness is typically quite large (exponential in the
number of sensitive axes p). Therefore, the bulk of examples generally do not belong
to either the worst-off or best-off group, leading to a situation where the performance
of other groups accounts for most of the model’s overall performance. This issue may
be further exacerbated if the class proportions are imbalanced across groups.

5.4 ³-Intersectional Fairness

In order to circumvent the above issue and effectively capture intersectional fairness
while taking into account the leveling down phenomena, we propose ³-Intersectional
Fairness (IF³). Our definition is essentially a convex combination of two components,
namely (i) ∆rel , which takes into account the relative performance between the two
groups, such as the ratio of their performance, and (ii) ∆abs, which captures the
leveling down effect by accounting for the absolute performance of the worst-off
group.

More precisely, given a model hθ and a group-wise performance measure m, let us
first define a measure of fairness for a pair of groups g and g′:

I³(g, g′, hθ , m) = ³∆abs + (1 − ³)∆rel , (5.1)

where ³ ∈ [0, 1] and

∆abs = max
(

1 − m(hθ , Tg), 1 − m(hθ , Tg′)
)

,

∆rel =
1 − max

(

m(hθ , Tg), m(hθ , Tg′)
)

1 − min
(

m(hθ , Tg), m(hθ , Tg′)
) .

Now taking the maximum value of I³ over all pairs of groups, we get our proposed
notion of ³-Intersectional Fairness.

Definition 5 (³-Intersectional Fairness). A model hθ is (³, γ)-intersectionally fair (IF³)
with respect to a group-wise performance measure m, if

IF³(hθ , m) ≡ max
g,g′∈G

I³(g, g′, hθ , m) f γ.

Note that IF³(hθ , m) can be equivalently obtained as the the value of I³ over the
pair of worst performing and the best performing group, as shown by the following
proposition.
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Proposition 1. If a model hθ is (³, γ)-intersectionally fair with respect to a group-wise
performance measure m, then

IF³(hθ , m) = I³(g
w, gb, hθ , m) f γ,

where gw = arg ming∈G m(hθ , Tg) and gb = arg maxg∈G m(hθ , Tg).

5.5 Design Choices of ³-Intersectional Fairness

In this section, we discuss our design choices for ∆abs and ∆rel .

Choice of ∆rel An alternate choice of ∆rel is to utilize the performance difference
between the groups instead of the above mentioned ratio. However, we advocate for
the ratio as a superior choice for the following reasons:

• Scale-Invariant Comparison: The ratio enables comparing two models without
the influence of the scale by normalizing the relative performance of a model.
For instance, assume two models hθ and hθ′ with the worst and the best group’s
performance for hθ as 0.01 and 0.02 respectively, and 0.1 and 0.2 for hθ′ . In this
setting, the ∆rel as the difference would always assign hθ as fairer, even though
both models are twice worse for the worst group compared to the best group.
Note that our overall fairness measure accounts for the effect of scale through
the inclusion of ∆abs. This is in-contrast to DFwhich does not take scale into
account.

• Alignment with the 80% rule: The ratio aligns with the well-known 80%
rule (Commission et al., 1990), which states that there exists legal evidence
of discrimination if the ratio of the probabilities for a favorable outcome be-
tween the disadvantaged sensitive group and the advantaged sensitive group is
less than 0.8. By adopting the ratio as ∆rel , our metric adheres to this established
criterion.

• Influence of worst-case group: If ∆rel represents the difference in performance,
then at ³ = 0.5 the model with better worst-case performance will always have
a lower γ than the one with worse worst-case performance. In other words,
at ³ = 0.5, ∆abs would always dominate ∆rel . However, this contradicts the
intuitive understanding that, at ³ = 0.5, both ∆rel and ∆abs should exert an
equal influence.

Choice of ∆abs An alternate choice we explored for ∆abs was the average perfor-
mance of the two groups involved instead of just the worst-performing one. However,
Proposition 1 does not hold in the average case. This implies that a pair of groups
can exist for which I³ is larger than the pair of groups consisting of the worst and
best-performing groups. Moreover, Proposition 1 is an essential building block for
intersectional property which is described later.

5.6 Properties of ³-Intersectional Fairness

In the following, we compare and contrast our fairness definition with DF when
evaluating the fairness of the two models. We then investigate various properties of
our proposed definition and discuss the impact of ³.
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FIGURE 5.2: Group-wise performance range comparison. The range of
group-wise performances of models hθ and model hθ̃ are respectively
[w, b] and [w̃, b̃]. Note that the difference x (resp. y) between the best
(resp. worst) group-wise performances of hθ and hθ̃ can be positive or

negative.

Comparing DF and IF³. The primary difference between DF and IF³ when compar-
ing two models arises when one model adversely affects the worst-off group (∆abs)
more than the other, despite having better relative performance (∆rel). In this case, DF
would consistently consider one model more fair than the other, whereas IF³ enables
the exploration of this tension by varying the relative importance of both criteria
through ³.

We formally capture this intuition as follows. Consider two models hθ and hθ̃ . Let the
value of the worst-off and the best-off group’s performance for the model hθ be w and
b, respectively. Similarly, for model hθ̃ let the worst and the best group’s performance
be w̃ and b̃, respectively. Without the loss of generality, w̃ and b̃ can be written as
w̃ = w + x and b̃ = b + y. Note that x and y can be either positive or negative as
long as w̃ f b̃. We visualize this setup in Figure 5.2. Based on this setup, we have
following cases:

• x g y g 0: In this case, hθ harms the worst-off group (absolute performance)
more, and its relative performance is worse than hθ̃ . In Figure 5.2, this cor-
responds to w̃ g w and the blue region is smaller than the red region. Here,
IF³(hθ̃ , m) f IF³(hθ , m) ∀ ³ ∈ [0, 1], and DF(hθ̃ , m) f DF(hθ , m).

• x f y f 0: This is similar to the case above, but with hθ̃ harming the groups
more than hθ . In Figure 5.2, this corresponds to w̃ f w and the blue region
is larger than the red region. Here, IF³(hθ̃ , m) f IF³(hθ , m) ∀ ³ ∈ [0, 1], and
DF(hθ̃ , m) f DF(hθ , m).

• All other cases: In this setting, one of the model has better ∆abs performance,
while the other model has better ∆rel performance. The fairness in this setting
depends on the relative importance of absolute and relative performance for
IF³, while for DF it exclusively depends on absolute performance. In Figure 5.2,
this corresponds to w̃ f w and the blue region is smaller than the red region or
vice-versa. Here, ∃³ ∈ [0, 1] for which IF³(hθ̃ , m) g IF³(hθ , m) and vice versa.
On the other hand, DF(hθ̃ , m) f DF(hθ , m) if y × m(hθ , Tgw) f x × m(hθ , Tgb),
otherwise DF(hθ̃ , m) > DF(hθ , m).

To summarize, in the first two cases, one model harms the worst-off group (absolute
performance), and the relative performance of that model is worse than the other.
Thus, a good fairness measure should assign a higher unfairness to that model, which
both DF and IF³ do. In the third case, one model performs better on the worst-off
group, while the other model has a closer relative performance. The fairness in this
setting depends on the relative importance of absolute and relative performance.
Here, DF consistently assigns one model a higher fairness than the other, while
IF³ enables to explore this tension and tune the relative importance of both criteria
through ³. For instance, the previous example in Section 5.2 falls in the third case.
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On the one hand, DF will assign higher ϵ for hθ1 in comparison to hθ2 . On the other
hand, IF³ will assign higher γ for hθ1 for ³ ∈ (0.0, 0.81), while for all other ³, the γ

would be higher for hθ2 . We illustrate the effect of ³ in more details below.

Impact of ³: The parameter ³ allows to tune the relative importance of ∆abs and
∆rel . On the one end of the spectrum, ³ = 0 corresponds to considering only the
relative performance ∆rel , while ³ = 1 corresponds to considering only the abso-
lute performance. At ³ = 0.0 we recover the same relative ranking of unfairness
as DF, and thus DF can be seen as a special case of IF³. In other words, for any
three models hθ1 , hθ2 , and hθ3 such that DF(hθ1 , m) g DF(hθ2 , m) g DF(hθ3 , m), then
IF0(hθ1 , m) g IF0(hθ2 , m) g IF0(hθ3 , m). On the other end, ³ = 1 only considers the
absolute performance ∆abs), and ³ = 0.5 corresponds to giving ∆abs and ∆rel an equal
importance. In practice, it is useful to visualize the complete trade-off by plotting
³ 7→ IF³ (see Section 5.7).

Intersectional Property: We have the following intersectional property.

Proposition 2. Let the model hθ be (³, γ)-intersectionally fair over the set of groups
defined by G = A1 × · · · Ap. Let 1 f s1 f · · · f sk f p, and P = As1 × · · · Ask

be the Cartesian product of the sensitive axes where sj ∈ N
+. Then, hθ is (³, γ)-

intersectionally fair over P .

In other words, the fairness value calculated over the intersectional groups also holds
over independent and “gerrymandering” intersectional groups Yang, Cisse, and
Koyejo, 2020. For instance, if a model is (³, γ)-intersectionally fair in a space defined
by gender, race, and age, then it is also (³, γ)-intersectionally fair in the space defined
by gender and race, or just gender. We delegate the proof to Appendix C.1.

Generalization Guarantees: ³-Intersectional Fairness enjoys the same generaliza-
tion guarantees as the ones shown for DF in (Foulds et al., 2020). Indeed, the result of
Foulds et al. (2020) relies on a generalization analysis of the group-wise performance
measure m, which directly translates into generalization guarantees for IF³.

Guidelines for setting ³: ³-Intersectional Fairness enables exploring the tradeoff
between worst-case performance and relative performance across groups. Indeed, at
alpha=0.0, only relative performance is considered, aligning with strictly egalitarian
measures. On the other extreme, at alpha=1.0, solely the worst-off group performance
is considered. Based on this, we recommend:
Setting ³ = 0.75 (more focus towards worst case performance) in:

• Situations where the cost of misclassification is not similar for each group. In
these cases, leveling down would disproportionately affect those subgroups for
whom the cost is higher. One example can be seen in education system, where
the cost of denying financial assistance has higher impact on minority (Nora
and Horvath, 1989; Hinojosa, 2023).

• Cases where data for disadvantaged groups is unreliable due to historical under-
representation and lack of opportunities. For instance, certain facial recognition
systems exhibit a higher likelihood of error when analyzing images of dark-
skinned female individuals (Buolamwini and Gebru, 2018). Similarly, Sap et al.
(2019) found that the hate speech detection systems are biased against black
people.
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In such contexts, emphasizing improvement for these disadvantaged groups is more
pivotal than uniform performance over all subgroups, in line with the ideas of
affirmative action. These scenarios best align with strategies seeking Demographic
Parity or Equalized Odds.

Setting ³ = 0.25 (more focus on relative performance) in:

• Scenarios where no group is significantly worse off, but to make sure that
the algorithm behaves similarly for all the groups involved. This is related to
algorithmic bias, as presented by Mehrabi et al. (2022). Moreover, the misclassi-
fication costs are similar in this setting.

• Legal or regulatory requirements may mandate similar outcomes across groups,
like the 4/5th employment rule.2 However, one must exercise caution when
extrapolating this to other contexts, as it can lead to the "portability trap" as
discussed by (Selbst et al., 2019).

In such a context, the emphasis is on equality among the groups. In practice, these
scenarios indicate places where the practitioner would advocate for Accuracy Parity.

Otherwise, we recommend setting ³ = 0.50 (a neutral default) when no domain
or context-specific insights are available. This is what we used in our experiments.
Ultimately, the choice of alpha reflects an understanding of the domain, the inherent
biases in the data, and the real-world consequences of misclassifications.

5.7 Experiments

In this section, we present experiments3 that showcase (i) the model’s performance
over the worst-off group as the number of sensitive axes increases, and (ii) the
“leveling down" phenomenon observed in various fairness-promoting mechanisms,
along with the effectiveness of ³-Intersectional Fairness in uncovering it. However,
before describing these experiments, we begin with an overview of the datasets,
baselines, and fairness measures used.

Datasets: We benchmark over four datasets covering both text and images, with
varying numbers of examples and sensitive groups:

• Twitter Hate Speech: The dataset is derived from multilingual Twitter Hate speech
corpus (Huang et al., 2020) consisting of tweets annotated with 4 demographic
factors (sensitive axes), namely age, race, gender, and country. The primary
objective is to classify individual tweets as either hate speech or non-hate speech.
In this work, we focus on the English subset and binarize all the demographic
factors resulting in a total of 63 sensitive groups. Moreover, we only choose
tweets where all the demographic factors are present. Consequently, our train,
valid and test sets consists of 22, 818, 4, 512, and 5, 032 tweets.

• CelebA (Liu et al., 2015): The dataset consists of 202, 599 images of human faces,
alongside 40 binary attributes for each image. We set ‘sex’, ‘Young’, ‘Attractive’,
and ‘Pale Skin’ attributes as the sensitive axis for the images and ‘Smiling’
as the class label. We split the dataset into 80% training and 20% test split.
Furthermore, we set aside 20% of the training set as the validation split.

2https://www.law.cornell.edu/cfr/text/29/1607.4
3source code is available here: https://github.com/saist1993/BenchmarkingIntersectionalB

ias

https://github.com/saist1993/BenchmarkingIntersectionalBias
https://github.com/saist1993/BenchmarkingIntersectionalBias
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FIGURE 5.3: Test results over the worst-off group on CelebA, Twitter
Hate Speech, and (b) Numeracy by varying the number of sensitive axes.
For p binary sensitive axis in the dataset, the total number of sensitive
groups are p3 − 1. Note that in FPR, lower the value better it is, while

for TPR opposite is true.

• Psychometric dataset (Abbasi et al., 2021): The dataset is a collection of 8, 502
free text responses alongside numerical scores over multiple psychometric
dimensions. In this work, we focus on two dimensions:

– Numeracy reflects the numerical comprehension capability of the individ-
ual.

– Anxiety reflects the anxiety level as described by the patient.

Both these datasets consists of free text responses and binarized scores by the
medical expert. Moreover, each response is associated with gender, race, age,
and income. We use same pre-processing as Lalor et al., 2022 and follow the
same procedure to split the dataset as described above.

For improved readability, we present a subset of experiments in the main thesis. The
remaining experiments are included in the Appendix.

Methods. We evaluate the fairness performance and accuracy of the following
methods: (i) Unconstrained which is oblivious to any fairness measure and solely
optimizes the model’s accuracy; (ii) Adversarial implements standard adversarial
learning approach (Li, Baldwin, and Cohn, 2018), where an adversary is added
to the Unconstrained with the objective to predict the sensitive attributes; (iii)
FairGrad (Maheshwari and Perrot, 2022) (introduced in the previous chapter), is
an in-processing approach that iteratively learns group-specific weights based on
the fairness level of the model; (iv) INLP (Ravfogel et al., 2020), is a post-processing
approach that iteratively trains a classifier to predict the sensitive attributes and then
projects the representation on the classifier’s null space. To enforce fairness across
multiple sensitive axes in this work, we follow the extension proposed by Subrama-
nian et al. (2021); (v) Fair MixUp (Chuang and Mroueh, 2021) is a data augmentation
mechanism that enforces fairness by regularizing the model on the paths of interpo-
lated samples between the sensitive groups.
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FIGURE 5.4: Value of IF³ on the test set of CelebA, and Numeracy
datasets for varying ³ ∈ [0, 1].

In all our experiments, we employ the same model architecture for all the approaches
to have a fair comparison. Specifically, we use a three-hidden layer fully connected
neural network with 128, 64, and 32 corresponding sizes. Furthermore, we use ReLU
as the activation with dropout fixed to 0.5. We optimize cross-entropy loss in all
cases with Adam (Kingma and Ba, 2015) as the optimizer using default parameters.
Moreover, for Twitter Hate Speech and Numeracy datasets, we encode the text using
bert-base-uncased Devlin et al., 2019 text encoder. For CelebA, an image dataset, we
employ ResNet18 (He et al., 2016b) as the encoder. In all cases, we do not fine-tune the
pre-trained encoders. Lastly, several previous studies have shown the effectiveness
of equal sampling in improving fairness (Kamiran and Calders, 2009; Chawla et al.,
2003; Kamiran and Calders, 2010; González-Zelaya et al., 2021). That is, to counter
the imbalance in the training data, the data is resampled so that there is an equal
number of examples from each group and class in the final training set. Through
preliminary experiments, we determine that equal sampling improves the worst-case
performance of several approaches, including Unconstrained in various settings.
We thus incorporate it as a hyperparameter indicating a continuous scale between
undersampling and oversampling. Note that we also incorporate a setting where no
equal sampling is performed, and we take the distribution as it is.

Fairness performance measure. In this work we focus on True Positive Rate parity
and False Positive Rate parity as the fairness measure. The corresponding group wise
performance measure m for these fairness measures are TPR and FPR. Formally, m in
case of TPR for a group g is:

m(hθ , Tg) = P(hθ(x) = 1|y = 1) ∀x, y ∈ Tg,

while the FPR for a group g is:

m(hθ , Tg) = 1− P(hθ(x) = 0|y = 1) ∀x, y ∈ Tg

In order to estimate the empirical probabilities, we employ the bootstrap estimation
procedure as proposed by Morina et al. (2019). In total, we generate 1000 datasets
by sampling from the original dataset with replacement. We then estimate the
probabilities on this dataset using smoothed empirical estimation mechanism and
then average the results over all the sampled datasets. In order to evaluate the utility
of various methods, we employ balanced accuracy. Note that the choice of TPR Parity,
and FPR Parity allows the derivation of several other fairness measures including
Equal Opportunities, and Equalized Odds.
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Method BA ↑ Best Off ³ Worst Off ³ DF ³ IF³=0.5 ³

Unconstrained 0.81 + 0.0 0.08 + 0.01 0.36 + 0.04 0.36 +/- 0.06 0.31 +/- 0.02
Adversarial 0.8 + 0.0 0.07 + 0.02 0.32 + 0.02 0.31 +/- 0.12 0.28 +/- 0.04
FairGrad 0.77 + 0.01 0.14 + 0.01 0.39 + 0.01 0.34 +/- 0.03 0.4 +/- 0.02
INLP 0.8 + 0.0 0.09 + 0.01 0.34 + 0.04 0.32 +/- 0.03 0.32 +/- 0.01
Fair MixUp 0.8 + 0.0 0.08 + 0.01 0.37 + 0.02 0.38 +/- 0.04 0.3 +/- 0.01

(A) Results on CelebA

Method BA ↑ Best Off ³ Worst Off ³ DF ³ IF³=0.5 ³

Unconstrained 0.63 + 0.01 0.27 + 0.04 0.5 + 0.03 0.38 +/- 0.05 0.55 +/- 0.06
Adversarial 0.62 + 0.01 0.28 + 0.05 0.53 + 0.09 0.43 +/- 0.04 0.55 +/- 0.06
FairGrad 0.63 + 0.01 0.33 + 0.04 0.59 + 0.06 0.49 +/- 0.05 0.61 +/- 0.03
INLP 0.63 + 0.01 0.27 + 0.04 0.49 + 0.03 0.36 +/- 0.03 0.56 +/- 0.05
Fair MixUp 0.61 + 0.02 0.3 + 0.03 0.61 + 0.07 0.58 +/- 0.03 0.56 +/- 0.03

(B) Results on Anxiety

TABLE 5.1: Test results on (a) CelebA, and (b) Anxiety using False Posi-
tive Rate while optimizing for DF. The utility of various approaches is
measured by balanced accuracy (BA), whereas fairness is measured
by differential fairness DF and intersectional fairness IF³=0.5. For both
fairness definition, lower is better, while for balanced accuracy, higher
is better. The Best Off and Worst Off, in both cases lower is better,
represents the min FPR and max FPR. Results have been averaged
over 5 different runs. We deem a method to exhibit leveling down if its
performance on either the worst-off or best-off group is inferior to the
performance of an unconstrained model which we have highlighted

using cyan ( ).

5.7.1 Worst-off performance and number of sensitive axis

In this experiment, we empirically evaluate the interplay between the number of
sensitive groups and the harm towards the worst-off group. To this end, we iteratively
increase the number of sensitive axes in the dataset and report the performance of
the worst-off group for each approach. For instance, with CelebA we first randomly
added gender (randomly chosen) when considering 1 sensitive axis. In the next
iteration, we added race (randomly chosen) to the set with gender (previously added).
Similarly, we then added age, and finally country. Note that for all the datasets, we
start with a random choice of sensitive axis hoping to remove any form of selection
bias. To select the optimal hyperparameters for this experiment, we follow the same
procedure described in (Maheshwari et al., 2022) with the objective to select the
hyperparameters with the best performance over the worst-off group.

We plot the results of this experiment in Figure 5.3. The results over the Anxiety
dataset, which follow similar trend, can be found in the Appendix C.2. Based on
these results, we observe that as the number of subgroups increases, the performance
of the worst-off group becomes worse for all approaches in all settings. This can
be attributed to the fact that the number of training examples available for each
group decreases as the number of sensitive axis in the dataset increases. In terms of
the performance of other approaches in comparison to Unconstrained, we find that
fairness-inducing approaches generally perform better or similar to Unconstrained

when 1 or 2 sensitive axes are considered. However, when 3 or more sensitive
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axis are considered, the performance of all approaches tends to converge to that of
Unconstrained. For instance, in CelebA, on the one hand, with 1 sensitive axis, all
approaches significantly outperform Unconstrained with the difference between the
best-performing method and Unconstrained being 0.26. On the other hand, when
4 sensitive axes are considered, the difference between the best-performing method
and Unconstrained is 0.03, with only Adversarial outperforming it.

In a similar fashion, when considering TPR over Numeracy dataset, Unconstrained
performs significantly worse than FairGrad and Adversarial with 1 sensitive axis
while outperforming all approaches apart from INLP when 3 sensitive axis are con-
sidered. Similar observations can be made for Numeracy and Twitter Hate Speech
datasets in the FPR setting, with some minor exceptions. Overall we find that most
fairness approaches start harming or do not improve the worst-off group as the
number of sensitive axes grows in the dataset. Thus it is pivotal for an intersectional
fairness measure to consider the harm induced by an approach.

5.7.2 Benchmarking Intersectional Fairness

In this experiment, we showcase the leveling down phenomena shown by various
existing approaches. We also compare and contrast IF³ and DF. The results of this
comparison over FPR parity can be found in Table 5.1a and 5.1b for CelebA and
Anxiety respectively. The results of remaining two datasets over FPR parity, and all
datasets over TPR Parity can be found in Appendix C.2. In these experiment, we deem a
method to exhibit leveling down if its performance on either the worst-off or best-off group is
inferior to the performance of an unconstrained model. In the results table, we highlight
the methods that show leveling down in cyan ( ).

We find that most of the methods have similar balanced accuracy across all the
datasets, even if the fairness levels are different. This observation aligns with the
arguments presented in Section 5.3 about the relationship between group fairness
measure and the overall performance. In terms of fairness, most methods show-
case leveling down. For instance, over the CelebA dataset, all methods apart from
Adversarial shows leveling down. While in the case of Anxiety, all methods apart
from INLP shows leveling down.

While comparing DF and IF³=0.5, we find that IF³=0.5 is more conservative in as-
signing fairness value, with most approaches performing similarly to Unconstrained.
Moreover, leveling down cases may go unnoticed in DF. For instance, over the CelebA
dataset, even though FairGrad and INLP showcases leveling down, the fairness value
assigned by DF is lower for them than the one assigned to Unconstrained. Similar
observation can be seen over Numeracy in case of INLP.

A particular advantage of IF³ over DF is that it equips the practitioner with a more
nuanced view of the results. In Figure 5.4, we plot the complete trade-off between
the relative and the absolute performance of groups by varying ³. For instance, in
CelebA FPR, Fair MixUp shows the lowest level of unfairness at ³ = 0.0. However,
as soon as the worst-off group’s performance is considered, i.e., ³ > 0.0, it rapidly
becomes unfair with it being one of the most unfair method at ³ = 1.0. Interestingly,
in Anxiety, INLP starts as one of the worst-performing mechanisms. However, with
³ > 0.0, it quickly outperforms most approaches.

These findings shed light on the trade-offs and complexities inherent in optimiz-
ing fairness while maintaining worst-off group performance. It highlights the need
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for comprehensive evaluation metrics and the importance of considering the per-
formance of both advantaged and disadvantaged groups in the fairness analysis.
Finally, we emphasize that methods do not always exhibit leveling down. In set-
tings without leveling down, DF adequately captures unfairness, producing values
similar to ³-Intersectional Fairness. However, every method displays some degree
of leveling down for some combinations of datasets and metrics. A robust fairness
measure should expose unfairness universally, which our experiments demonstrate
IF³ achieves.

5.8 Conclusion

We propose a new definition for measuring intersectional fairness in the group
classification setting. We provide various comparative analyses of our proposed
measure, and contrast it with existing ones. Through them, we show that our fairness
definition can uncover various notions of harm, including notably, the leveling
down phenomenon. We further show that many fairness-inducing methods show no
significant improvement over a simple unconstrained approach. Through this work,
we provide tools to the community to better uncover latent vectors of harm. Further,
our findings chart a path for developing new fairness-inducing approaches which
optimizes for fairness without harming the groups involved.

5.9 Limitations

While appealing, ³-Intersectional Fairness also has limitations. One of the primary
ones is that it assumes a minimum number of examples for each subgroup to estimate
the fairness level of the model correctly. Moreover, it does not consider the data drift
over time, as it assumes a static view of the problem. Thus we recommend checking
the fairness level over time to account for it. Further, in this definition, setting up ³

is left to the practitioner and thus can be abused. In the future, we aim to develop
mechanisms to validate ³ without access to the dataset or model.

Finally, we want to emphasize that a hypothetical perfectly fair model might not be
devoid of social harm. Firstly, vectors of harm of using statistical models are not
restricted to existing definitions of group fairness. Further, if some socio-economic
groups are not present in a given dataset, existing fairness-inducing approaches
are likely to not have any positive impact towards them when encountered upon
deployment. Such is the case with commonly used datasets in the community, which
over-simplify gender and race as binary features, ignoring people of mixed heritage,
or non-binary gender, for example. In our experiments, we too have used these
datasets, owing to their prevalence, and we urge the community to create dataset
with non-binary attributes. That said, our measure works with non-binary sensitive
attributes, with no modifications.
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Chapter 6

Synthetic Data Generation for
Intersectional Fairness

Abstract

In this chapter, we introduce a data augmentation approach specifically tailored to
enhance intersectional fairness in classification tasks. Our method capitalizes on the
hierarchical structure inherent to intersectionality, by viewing groups as intersections
of their broader parent categories. This perspective allows us to augment data for
smaller groups by learning a transformation function that combines data from these
parent groups. Our empirical analysis, conducted on four diverse datasets, reveals
that classifiers trained with this data augmentation approach achieve superior fairness
levels and is more robust to “leveling down” when compared to methods focused
solely on optimizing traditional group fairness metrics.

The codebase for the chapter is available at - https://github.com/saist1993/Bench
markingIntersectionalBias.

6.1 Introduction

In the previous chapter, we highlighted that many fairness promoting methods
improve intersectional fairness by compromising the performance over the best-off
and/or the worst-off groups. This tendency, where a mechanism achieves better
fairness at the expense of the involved groups, is termed “leveling down." A plausible
explanation for this phenomenon is the limited data availability for specific subgroups.
For instance, in the Twitter Hate Speech Dataset (Huang et al., 2020), the most
underrepresented group has a mere 300 examples, contrasting starkly with the largest
group which has over 6,000 examples. This data disparity, we posit, mirrors real-
world challenges where gathering data for specific groups can be notably difficult.

To tackle the issue of data scarcity, we introduce a data augmentation method that
utilizes the hierarchical structure characteristic of intersectionality. More precisely, we
conceptualize each group as a combination of its parent groups. Figure 6.1 illustrates
this hierarchical structure for the Twitter Hate Speech Dataset, showing how the group
’African American Male under 45’ is composed of ’Male’, ’African American’, ’Male
under 45’, and ’African American under 45’ groups. The figure further highlights the
data scarcity challenge, showing that the number of samples often decreases sharply

https://github.com/saist1993/BenchmarkingIntersectionalBias
https://github.com/saist1993/BenchmarkingIntersectionalBias
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FIGURE 6.1: This figure illustrates a snippet of the hierarchical struc-
ture found in intersectional fairness along side group size for Twitter
Hate Speech Dataset (Huang et al., 2020). In this context, ’F’ and ’M’
stand for Female and Male, respectively, while ’AA’ and ’EA’ repre-
sent African American and European American. Additionally, ’U45’
and ’A45’ denote age groups under 45 and above 45 years old, respec-
tively. For instance, the group labeled ’M,AA,U45’, represents African
American men under 45 years old, and has parent groups identified
as ’M,AA’, ’M,U45’, and ’AA,U45’. For each group, the number of
examples is reported. The deeper we get in this hierarchical structure,

the smaller the number of examples in each group.

as we consider more specific intersections. For example, the ’African American Male
under 45’ group has 3,277 instances, whereas the ’Male’ group has 14,171 instances.

Our data generation mechanism tackles the problem of fairness at the data collection
and preparation phase of the machine learning pipeline (See Figure 6.2). We hypothe-
sizes that more specific groups can be augmented by modifying and combining the
data from parent groups (which generally have more examples). For instance, data
for the subgroup Female African American could be synthesized by combining and
transforming examples from the Female and African American groups. To achieve
this, we train a generative model optimizing a loss based on Maximum Mean Dis-
crepancy (MMD) Gretton et al., 2012, which quantifies the difference between the
generated and the original examples.

During training, we combine generated examples with original examples from the
dataset, and additionally, as in previous chapters, we use equal sampling. The first
step increases the diversity of examples the classifier is trained on, thereby improving
generalization, while the latter ensures that equal importance is given to all subgroups
instead of focusing more on larger groups. We empirically evaluate the quality and
diversity of the generated examples and their impact on fairness and accuracy. Our
results on various datasets show that our proposed approach consistently improves
fairness, without harming the groups and at a minimal cost in accuracy.

The chapter is organized as follows. Section 6.2 provides background on MMD.
Section 6.3 presents the setting and notations. Section 6.4 details our approach.
Experimental results and conclusions are given in Sections 6.5 and 6.6.
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FIGURE 6.2: This chapter focuses on data pre-processing aspect of the
machine learning pipeline.

6.2 Background: Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) is a kernel-based divergence used to assess the
similarity between distributions. In a nutshell, it involves identifying a function that,
given two distributions P and Q, yields larger values for samples drawn from P and
smaller values for those from Q. The difference in the mean value of this function for
samples drawn from these two distributions provides an estimate of their similarity.

In this work, following the footsteps of Gretton et al. (2012), we use unit balls in
characteristic reproducing kernel Hilbert spaces as the function class. Intuitively,
the idea is to use the kernel trick to compute the differences in all moments of
two distributions and then average the result. Formally, the MMD between two
distributions P and Q is:

MMD2(P ,Q) = sup
∥Ψ∥Hf1

|EZ∼P [Ψ(Z)]

− EZ′∼Q[Ψ(Z′)]|

= EZ∼P [k(Z, Z)]

− 2EZ∼P ,Z′∼Q[k(Z, Z′)]

+ EZ′∼Q[k(Z′, Z′)]

Here, k is the kernel derived from ∥·∥H, the norm associated with corresponding
Reproducing Kernel Hilbert Space H. In practice, we generally do not have access to
true distributions but only samples, and thus the above equation is approximated as:

MMD2(Sz, Sz′) =
1

m(m− 1) ∑
i

∑
j ̸=i

k(zi, zj)

1
m(m− 1) ∑

i
∑
j ̸=i

k(z′i, z′j)+
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1
m(m) ∑

i
∑

j

k(zi, z′j)

where Sz (resp. Sz′) is a set of m samples drawn from P (resp. Q). In this work,
we use the radial basis function kernel k : (z, z′) 7→ exp(∥z− z′∥2 /2Ã2) where Ã

is the free parameter. In summary, MMD provides a simple and powerful way to
compute the similarity between two distributions by using samples drawn from those
distributions.

6.3 Problem Statement

This section introduces the notation used throughout the chapter and the problem
statement.

Notations: In this chapter, we adopt and extend the notations proposed in the
previous chapter. Let p denote the number of distinct sensitive axes of interest, which
we denote as A1, . . . ,Ap. Each of these sensitive axes is a set of discrete-valued
sensitive attributes. For instance, a dataset may be composed of gender, race, and age
as the three sensitive axes, and each of these sensitive axes may be encoded by a set
of sensitive attributes, such as gender: {male, female}, race: {European American,
African American}, and age: {under 45, above 45}.

Consider a feature space X , a finite discrete label space Y , and the sensitive axis space
A1 · · · Ap corresponding to sensitive axes as defined above. Let D be an unknown
distribution over X ×Y ×A1 × · · · × Ap which can be written as:

D = P(X, Y, A1, · · · , Ap) (6.1)

We define a sensitive group g as any p-dimensional vector in the Cartesian product set
G = A1 × · · · × Ap of these sensitive axes. For instance, a sensitive group g ∈ G can
be represented as (a1, . . . , ap) and the corresponding distribution is given by:

Dg = P(X, Y, A1 = a1, · · · , Ap = ap)

= P(X, Y, g)

Additionally, we introduce a more general group than g called g\i, referred to as the
parent group where the i-th sensitive axis is not specified. It can be represented as
(a1, · · · , ai−1, ai+1, · · · , ap) where i ∈ {1, . . . , p}. The distribution over such a group
can be written as:

Dg\i = ∑
ai∈Ai

P(X, Y, A1 = a1,

· · · , Ai = ai, · · · , Ap = ap)
(6.2)

In our example above, if a group g is {male, European American, under 45}, then
the corresponding parent groups are: ({male, European American}, {male, under 45},
{European American, under 45}).
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Finally, in this work, we focus on classification problems and assume K distinct labels.
We will denote the distribution of a group conditioned on same label k by Dg|Y=k.

Problem Statement: As standard in machine learning, D is generally unknown
and instead we have access to a finite dataset T = {(xj, yj, gj)}

n
j=1 consisting of n

examples sample i.i.d from D. This sample can be rewritten as T =
⋃

g∈G Tg where
Tg represents the subset of examples from group g. Examples belonging to parent
group g\i are denoted by:

Tg\i =
⋃

ai∈Ai

Ta1,··· ,ai,···ap (6.3)

The goal of fair machine learning is then to learn an accurate model hθ ∈ H, with
learnable parameters θ ∈ R

D, such that hθ : X → Y is fair with respect to a given
group fairness definition like Equal Opportunity (Hardt, Price, and Srebro, 2016),
Equal Odds (Hardt, Price, and Srebro, 2016), Accuracy Parity Zafar et al., 2017b, etc.

6.4 Approach

In this work, we introduce a novel approach for generating data that leverages the
underlying structure of intersectional groups. We begin by the structural properties of
interest, and then present our data generation mechanism. Note that in this work, we
treat data as vectors, which allows us to encompass a range of modalities including
images and text. In order to convert data into vector representations, we may use
pre-trained encoders.

6.4.1 Structure of the data

Using the notations discussed in the previous section, we make the following simple
but crucial observation the structure of the data:

Tg =
p⋂

i=1

Tg\i and Tg ¢ Tg\i ∀i ∈ {1, . . . , p}.

In other words, the intersection of immediate parent groups constitutes the target
group g, with each parent group containing more examples than the target group
itself. For example, all instances of the group Female African American are also part
of both the Female and African American groups. Moreover, the common instances
between the Female and African American groups collectively define the Female
African American group.

6.4.2 Data Generation

Our goal is to learn a generative function genθ,k such that, given a dataset T , a
group g, and task label k, the generated distribution Zgen ∼ genθ,k(T , g) is similar
to the true distribution Dg|Y=k. Based on the above observations, we propose to
generate examples for group g by combining and transforming the examples from the
corresponding parent groups. This can be achieved by appropriate parameterizations
of genθ,k which we describe next.

Parameterization of the Generative Function: In this work, we explore the use of
two simple choices for the generative function genθ,k(T , g) that generates an example
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Zgen = (Xgen, k, g) for a given group g and label k. The first parameterization is:

Xgen =
p

∑
i=1

¼iXg\i (6.4)

where Zg\i = (Xg\i , k, g\i) ∼ Dg\i |Y=k. In the above equation, ¼ = (¼1, . . . , ¼p) ∈ R
p

are the parameters to optimize based on the loss we define below. In other words, we
generate data for group g by forming weighted combinations of examples from its
parent groups. A second parameterization that we consider is:

Xgen =
p

∑
i=1

W · XT
g\i

, (6.5)

where W ∈ R
d×d is a diagonal matrix with d parameters where d is the dimension of

the encoded inputs. Here, we use a uniform combination of examples from parent
groups, but learn weights for the different features of the representation.

Given the limited data available for many groups, we opt to share parameters across
them instead of learning specific parameters for each group. This approach, combined
with the relatively simple parameterizations of the generative function, serves to
reduce the risk of overfitting (recall that in practice we have very limited data for many
groups). However, we still learn a separate model for each label, i.e., genθ,k(T , g) ∀k ∈
K, to avoid the added complexity of jointly learning X ×Y .

Training the Generative Models: To train the generative model genθ,k, we minimize
the Maximum Mean Discrepancy between the generated samples and the samples
from group g. Additionally, we integrate into our objective the MMD between
the generated samples and those from its parent groups. In our preliminary set
of experiments, we found that this additional term brought more diversity in the
generated examples. Consequently, the final loss function is formulated as follows:

Lg,k(θ) = MMD(Sgen, Sg,k)+
p

∑
i=1

MMD(Sgen, Sg\i ,k),
(6.6)

where Sgen is a batch of examples generated from genθ,k. Sg,k and Sg\i ,k are batches
of examples respectively drawn from Dg|Y=k and Dg\i |Y=k. Since Dg|Y=k and Dg\i |Y=k

are unknown, we approximate them with the empirical distribution by sampling
with replacement from Tg|Y=k and Tg\i |Y=k. Algorithm 4 details the precise training
process to learn the generative function.

Training Classifiers on Augmented Data: After training the generative models
genθ,k, we use them to create additional training data. Specifically, for a group g,
we sample examples from its corresponding parent groups and pass these samples
through the generative models as previously described. In this way, we can generate
additional data for smaller groups that we use to augment the original training
dataset, so as to enhance their representation in downstream tasks. As we will see in
the next section, this helps to improve the fairness of the classifier.

Alternative formulations: An alternative approach to learn genθ,k involves using a
generative adversarial network (GAN) (Goodfellow et al., 2014b). In this setup, the
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Algorithm 4 Training the Generative Models
Input: Groups G, Dataset T , batch size b, number of iterations l and batch size b
Output: K trained generative models {genθ,k}

K
k=1 capable of generating data for each

label k

1: for _ in l do

2: Randomly sample a group g from G
3: for k in K do

4: Sg,k ← Sample b examples from Tg|Y=k

5: Sg\i ,k ← Sample b examples from Tg\i |Y=k ∀i ∈ {1, . . . , p}

6: Sgen ← Sample b examples from genθ,k(T , g)
7: Compute the MMD loss using these examples as stated in Equation 6.6
8: Backpropagate this loss to update the parameters of the model genθ,k
9: end for

10: end for

adversary aims to differentiate between two distributions, while the encoder strives to
mislead the adversary. However, training GANs presents notable challenges (Thanh-
Tung and Tran, 2020; Bau et al., 2019), including the risk of mode collapse, the
complexity of nested optimization, and substantial computational demands. By
contrast, MMD is more straightforward to implement and train, with significantly
less computational burden. We also note that, while this work primarily employs
MMD, our methodology can be adapted to work with other divergences between
distributions, such as Sinkhorn Divergences and the Fisher-Rao Distance. We keep
the exploration of other choices of divergences for future work.

6.5 Experiments

In this section, we present experiments designed to (i) assess the quality of the data
generated by our approach, and (ii) examine the influence of this data on fairness
with a focus on leveling down and performance of classifier over the worst-off group.
We start by outlining the datasets, baselines, and fairness metrics employed in our
experiments.

Datasets: Throughout this chapter, we experiment with four datasets, each differing
in the number of examples, sensitive groups, and modality. These datasets are: (i)
Twitter Hate Speech (Huang et al., 2020) – a collection of tweets annotated based on 4
demographic attributes, or sensitive axes, namely age, race, gender, and country; (ii)
CelebA (Liu et al., 2015) – composed of human face images annotated with various
attributes; (iii) Numeracy (Abbasi et al., 2021) – a compilation of free text responses
that denote the numerical comprehension capabilities of individuals; and (iv) Anxi-
ety (Abbasi et al., 2021) – a dataset indicative of a patient’s anxiety levels. These are
the same datasets used in the previous chapter. Furthermore, we rely on the same
setup, pre-processing, and splits as in the preceding chapter.

Methods: We benchmark against the same methods as the ones in the previous
chapter. More specifically, we experiment with: (i) Unconstrained which solely op-
timizes model accuracy and is oblivious to any fairness measure; (ii) Adversarial
which adds an adversary (Li, Baldwin, and Cohn, 2018) to unconstrained, imple-
menting standard adversarial learning approach (Li, Baldwin, and Cohn, 2018); (iii)
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FairGrad (Maheshwari and Perrot, 2022),is an in-processing iterative approach as
described in Chapter 4; (iv) INLP (Ravfogel et al., 2020) is a post-processing approach
that iteratively trains a classifier and then projects the representation on the classi-
fier’s null space; (v) Fair MixUp (Chuang and Mroueh, 2021) enforces fairness by
forcing the model to have similar predictions on the paths of interpolated samples
between the sensitive groups; and (vi) Unconstrained + Augmented which is same as
Unconstrained, but trained on the data generated via our proposed data generation
mechanism.

In these experiments we employ the same non-linear architecture as described in
Chapter 4 and 5. Specifically, we use a three-hidden layer fully connected neural
network with 128, 64, and 32 corresponding sizes. Furthermore, we use ReLU as the
activation with dropout fixed to 0.5. We optimize cross-entropy loss in all cases with
Adam (Kingma and Ba, 2015) as the optimizer using default parameters. Finally, for
text-based datasets we encode the text using bert-base-uncased Devlin et al., 2019 and
for images we employ a pre-trained ResNet181 (He et al., 2016b). As in the previous
chapter, we use equal sampling, where we sample equal number of examples for
each group. We keep the number of examples as the hyperparameter ranging from
100 to 5000 indicating a continuous scale between undersampling regime (where we
under sample from each group) and oversampling.

In order to generate data for Unconstrained + Augmented, we employ the generative
function as described in Section 6.4.2. More specifically, our initial experiments
suggest that employing a simpler model with fewer parameters (Equation 6.4) for the
positive class, and a more complex model with a larger number of parameters for the
negative class (Equation 6.5), leads to an enhanced fairness-accuracy trade-off, when
using the False Positive rate as a measure of fairness. Consequently, for the positive
class, we implement the function detailed in Equation 6.4, and for the negative class,
we apply the model specified in Equation 6.5.

Fairness Metrics: In this chapter we employ IF³ introduced in the previous chapter,
as well as Differential Fairness (DF), as fairness definitions. For the performance mea-
sure m associated with these definitions, we focus on False Positive Rate. Formally,
for a group g, m is given by:

m(hθ , Tg) = 1− P(hθ(x) = 0|(x, y) ∈ Tg, y = 1)

To estimate the empirical probabilities, we employ the bootstrap estimation procedure
as proposed by Morina et al. (2019). Like in the previous chapter, we generate 1000
datasets by sampling from the original dataset with replacement. We then estimate
the probabilities on this dataset using a smoothed empirical estimation mechanism
and then average the results over all the sampled datasets.

Utility metric: In order to evaluate the utility of various methods, we employ
balanced accuracy.

6.5.1 Quality of Generated Data

In this experiment, we assess both the quality and diversity of the generated data.
Specifically, our goal is to generate data that resembles the overall distribution of

1https://pytorch.org/vision/stable/models.html
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Dataset Gen-Real Real-Real

CelebA 0.46 ± 0.014 0.48 ± 0.00
Numeracy 0.51 ± 0.01 0.58 ± 0.01
Anxiety 0.51 ± 0.00 0.59 ± 0.02
Twitter Hate Speech 0.47 ± 0.01 0.53 ± 0.01

TABLE 6.1: Analyzing the similarity of a generated sample with exist-
ing sample.

real data, while ensuring the generated examples remain distinct from the original
samples. To achieve this, we propose two evaluations:

• Diversity: To gauge the diversity of the generated dataset, for each generated ex-
ample, we identify the most similar example in the real dataset. If the generated
sample closely resembles a real one, the distance between the generated and
real examples will be substantially smaller than between distinct real examples.

• Distinguishability: To assess the difference between the generated and real
datasets, we train a classifier to differentiate between them. If the classifier’s
accuracy approaches that of a random guess, it suggests the empirical distribu-
tions of the generated and real data are analogous.

In both experiments, we report metrics based on the entire dataset rather than com-
puting averages for individual groups and then aggregating these averages.

Diversity

In this experiment, we use cosine similarity as a measure of closeness, which for two
vectors a and b is defined as:

cosine_similarity(a, b) =
a · b

∥a∥ ∥b∥
. (6.7)

We generate 1000 examples and randomly sample an equal number from the real
dataset. For each of these real examples, we identify its closest counterpart within
the real dataset to establish a baseline (Real-Real). Subsequently, for each generated
example, we determine its nearest match in the real dataset (Gen-Real). The results of
this experiment can be found in Table 6.1.

For all datasets, the distance between the generated and real examples is comparable
to that between two real examples. In every dataset, the Gen-Real closeness is less
than the Real-Real proximity. Based on these results, we conclude that the generated
examples are not mere replicas of the real samples.

Distinguishability

In this study, we frame distinguishability as a binary classification task where we
train a two-layer MLP classifier aimed at distinguishing between real and generated
samples. As in prior experiments, we compile a dataset by selecting 1000 real in-
stances and generating an equivalent number of samples. This dataset is subsequently
partitioned into training and evaluation subsets with a ratio of 80% to 20%.
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Dataset Accuracy

CelebA 0.52 ± 0.011
Numeracy 0.64 ± 0.012
Anxiety 0.64 ± 0.019
Twitter Hate Speech 0.57 ± 0.022

TABLE 6.2: Accuracy of a classifier to distinguish between real and
generated sample over various datasets. The value of 0.5 represents a

random classifier, while 1.0 is a perfect classifier.
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FIGURE 6.3: Value of IF³ on the test set of Twitter Hate Speech, and
Numeracy datasets for varying ³ ∈ [0, 1].

Results are presented in Table 6.2. The mean accuracy of the classifier is approximately
0.59, suggesting that the generated samples have a distribution similar, but not
identical to, the real instances. In our preliminary experiments we found that by
modulating the generator complexity (i.e by employing more complex and higher
parameter models), we could achieve near-random distinguishability. However, such
adjustments led to an unfavorable fairness-accuracy trade-off. We conjecture this may
arise because near-random indistinguishability in the generated samples causes them
to inherit biases from the real data.

6.5.2 Fairness-Accuracy Trade-offs

In this experiment, we explore the impact of generated data on the fairness-privacy
trade-off. To that end, we train Unconstrained just over the generated data which
we refer to as Unconstrained + Augmented in this chapter. Specifically, we delve into
the leveling down phenomenon as detailed in the preceding chapter. To recap, a
method is considered to exhibit leveling down if its performance for the worst-off or
best-off group is inferior to that of an unconstrained model.

The outcomes of this experiment are presented in Table 6.3. Detailed results for
CelebA and Numeracy, both of which display a similar trend, are provided in the
Appendix D. In terms of accuracy, Unconstrained + Augmented exhibits a slight drop
for the Anxiety dataset. However, its accuracy is on par with the Unconstrained model
when evaluated on Twitter Hate Speech. In terms of performance for both best-off
and worst-off groups, Unconstrained + Augmented outperforms competing methods.
Notably, Unconstrained + Augmented does not show any signs of leveling down
across all datasets. When assessing IF³, Unconstrained + Augmented consistently
achieves the best fairness results among the datasets. We also plot the complete trade-
off between relative and absolute performance of groups by varying ³ in Figure 6.3.
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Method BA ↑ Best Off ³ Worst Off ³ DF ³ IF³ = 0.5 ³

Unconstrained 0.63 + 0.01 0.25 + 0.02 0.51 + 0.03 0.43 +/- 0.09 0.52 +/- 0.03
Adversarial 0.63 + 0.01 0.27 + 0.06 0.55 + 0.12 0.48 +/- 0.05 0.55 +/- 0.04
FairGrad 0.63 + 0.01 0.29 + 0.05 0.56 + 0.12 0.48 +/- 0.07 0.57 +/- 0.04
INLP 0.63 + 0.01 0.22 + 0.02 0.49 + 0.03 0.42 +/- 0.07 0.48 +/- 0.03
Fair MixUp 0.61 + 0.01 0.28 + 0.02 0.55 + 0.06 0.47 +/- 0.09 0.55 +/- 0.02
Unconstrained + Augmented 0.6 + 0.0 0.13 + 0.08 0.35 + 0.12 0.29 +/- 0.32 0.39 +/- 0.11

(A) Results on Anxiety

Method BA ↑ Best Off ³ Worst Off ³ DF ³ IF³ = 0.5 ³

Unconstrained 0.81 + 0.0 0.18 + 0.01 0.46 + 0.01 0.42 +/- 0.05 0.46 +/- 0.02
Adversarial 0.79 + 0.01 0.18 + 0.01 0.48 + 0.04 0.46 +/- 0.08 0.47 +/- 0.02
FairGrad 0.8 + 0.0 0.17 + 0.01 0.49 + 0.03 0.49 +/- 0.1 0.44 +/- 0.02
INLP 0.66 + 0.0 0.08 + 0.02 0.26 + 0.02 0.22 +/- 0.25 0.29 +/- 0.04
Fair MixUp 0.81 + 0.01 0.18 + 0.02 0.46 + 0.02 0.42 +/- 0.09 0.45 +/- 0.04
Unconstrained + Augmented 0.81 + 0.0 0.12 + 0.02 0.44 + 0.02 0.45 +/- 0.18 0.37 +/- 0.04

(B) Results on Twitter Hate Speech

TABLE 6.3: Test results on (a) Anxiety, and (b) Twitter Hate Speech using
False Positive Rate. We select hyper parameters based on IF³ = 0.5
value. The utility of various approaches is measured by balanced
accuracy (BA), whereas fairness is measured by differential fairness
DF and intersectional fairness IF³ = 0.5. For both fairness definitions,
lower is better, while for balanced accuracy, higher is better. Best Off
and Worst Off represent the min FPR and max FPR across groups
(in both cases, lower is better). Results have been averaged over 5

different runs.

For the Anxiety dataset, Unconstrained + Augmented gives the best trade-off for
every value of ³. In the case of Twitter Hate Speech, INLP achieves superior results.
However, it is worth noting that INLP’s accuracy is 14 points below Unconstrained +

Augmented.

6.5.3 Impact of Intersectionality

In this experiment, we examine the influence of intersectionality on our approach
and its effect on worst-case performance. To achieve this, we iteratively introduce
more sensitive axes and plot the fairness-accuracy trade-off. For example, akin to the
experiment in the preceding chapter using CelebA, we initially introduced gender
(selected at random) as a single sensitive axis. In the subsequent step, we incorporated
race (also selected randomly) alongside the previously added gender. Similarly, we
then added age, and finally country.

The results of this experiment can be found in Figure 6.4. With fewer groups (2
sensitive axes), the model’s performance on the generated dataset closely matches
that on the real dataset. However, as the number of axes increases, the performance
difference becomes more pronounced. Furthermore, we find that the performance
of the model remains relatively stable despite the increase in sensitive axes, further
underscoring the effectiveness of our proposed approach.
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FIGURE 6.4: FPR for the worst-off group on the test data of CelebA (the
lower, the better) by varying the number of sensitive axes.

Method BA ↑ Best Off ³ Worst Off ³ DF ³ IF³ = 0.5 ³

Unconstrained + Augmented 0.6 + 0.0 0.13 + 0.08 0.35 + 0.12 0.29 +/- 0.32 0.39 +/- 0.11
Unconstrained + Augmented Parent-of-Parent 0.59 + 0.01 0.16 + 0.08 0.40 + 0.15 0.34 +/- 0.32 0.43 +/- 0.08

(A) Results on Anxiety

Method BA ↑ Best Off ³ Worst Off ³ DF ³ IF³ = 0.5 ³

Unconstrained + Augmented 0.69 + 0.02 0.14 + 0.05 0.39 + 0.11 0.34 +/- 0.24 0.44 +/- 0.07
Unconstrained + Augmented Parent-of-Parent 0.69 + 0.01 0.17 + 0.08 0.44 + 0.15 0.39 +/- 0.32 0.44 +/- 0.11

(B) Results on Numeracy

TABLE 6.4: Test results on (a) Anxiety, and (b) Twitter Hate Speech
using False Positive Rate while optimizing for DF. The utility of
various approaches is measured by balanced accuracy (BA), whereas
fairness is measured by differential fairness DF and intersectional
fairness IF³ = 0.5. For both fairness definition, lower is better, while
for balanced accuracy, higher is better. The Best Off and Worst Off,
in both cases lower is better, represents the min FPR and max FPR.

Results have been averaged over 5 different runs.

6.5.4 Impact of Abstract Groups

Until now in this chapter, we have focused on generating data for a group by com-
bining and manipulating data from the immediate parents of the group. However,
this notion can be further extended to get parents of parents for a given group. For
example, for group g defined as {male, European American, under 45}. The imme-
diate parent groups are: ({male, European American}, {male, under 45}, {European
American, under 45}), while the parents of these parent groups are ({male}, {European
American}, {under 45}). In this experiment, we explore the impact of generating data
from the parents of immediate parents, as opposed to solely from the immediate
parent set.

Table 6.4 presents the results of this experiment. We observe that training on the
parents of parent groups neither enhances the accuracy nor the fairness of the clas-
sifier. Furthermore, the performance on the Anxiety closely resembles that of an
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unconstrained model. We hypothesize that this occurs because considering more
abstract groups approximates a scenario where no groups are considered, which is
similar to an unconstrained setting.

6.6 Conclusion

In this chapter, we introduce a data augmentation mechanism that leverages the
hierarchical structure inherent to intersectional settings. Our extensive experiments
demonstrate that this method not only generates diverse data but also enhances the
classifier’s performance across both the best-off and worst-off groups. In the future,
we plan to extend our approach to a broader range of performance metrics, delve
into zero-shot fairness, and explore more sophisticated sampling mechanisms.
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Chapter 7

Fair NLP Models with Differentially
Private Text Encoders

Abstract

Encoded text representations often capture sensitive attributes about individuals (e.g.,
race or gender), which raise privacy concerns and can make downstream models
unfair to certain groups. In this chapter, we propose FEDERATE, an approach that
combines ideas from differential privacy and adversarial training to learn private
text representations which also induces fairer models. We empirically evaluate the
trade-off between the privacy of the representations and the fairness and accuracy
of the downstream model on four NLP datasets. Our results show that FEDERATE
consistently improves upon previous methods, and thus suggest that privacy and
fairness can positively reinforce each other.

This chapter is based on the article - Gaurav Maheshwari, Pascal Denis, Mikaela
Keller, and Aurélien Bellet. 2022. Fair NLP Models with Differentially Private Text
Encoders. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pages 6913–6930, Abu Dhabi, United Arab Emirates. Association for Computational
Linguistics. The codebase for the chapter is available at - https://github.com/sai
st1993/DPNLP.

7.1 Introduction

In this thesis, thus far, we have primarily focused on issues of fairness in machine
learning models. However, these systems have also been shown to leak sensitive
information about the data of individuals used for training or inference and thus
pose privacy risks (Shokri et al., 2017). Societal pressure as well as recent regulations
push for enforcing both privacy and fairness in real-world deployments, which is
challenging as these notions are multi-faceted concepts that need to be tailored to
the context. Moreover, privacy and fairness can be at odds with one another: recent
studies have shown that preventing a model from leaking information about its train-
ing data negatively impacts the fairness of the model and vice versa (Bagdasaryan,
Poursaeed, and Shmatikov, 2019; Pujol et al., 2020; Cummings et al., 2019; Chang and
Shokri, 2020).

https://github.com/saist1993/DPNLP
https://github.com/saist1993/DPNLP
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FIGURE 7.1: FEDERATE focuses on model training aspect of the machine
learning pipeline.

In this chapter we study fairness and privacy and their interplay in the NLP context
during model training phase (See Figure 7.1), where these two notions have often
been considered independently from one another. Modern NLP heavily relies on
learning or fine-tuning encoded representations of text. Unfortunately, such represen-
tations often leak sensitive attributes (e.g., gender, race, or age) present explicitly or
implicitly in the input text, even when such attributes are known to be irrelevant to
the task Song and Raghunathan, 2020. Moreover, the presence of such information
in the representations may lead to unfair downstream models, as has been shown
on various NLP tasks such as occupation prediction from text bios De-Arteaga et al.,
2019, coreference resolution Zhao et al., 2018, or sentiment analysis Kiritchenko and
Mohammad, 2018.

Privatizing encoded representations is thus an important, yet challenging problem
for which existing approaches based on subspace projection (Bolukbasi et al., 2016;
Wang et al., 2020; Karve, Ungar, and Sedoc, 2019; Ravfogel et al., 2020) or adversarial
learning (Li, Baldwin, and Cohn, 2018; Coavoux, Narayan, and Cohen, 2018; Han,
Baldwin, and Cohn, 2021) do not provide a satisfactory solution. In particular, these
methods lack any formal privacy guarantee, and it has been shown that an adversary
can still recover sensitive attributes from the resulting representations with high
accuracy Elazar and Goldberg, 2018; Gonen and Goldberg, 2019.

Instead of relying on adversarial learning to prevent attribute leakage, Lyu, He, and
Li (2020) and Plant, Gkatzia, and Giuffrida (2021) recently propose to add random
noise to text representations so as to satisfy differential privacy (DP), a mathematical
definition which comes with rigorous guarantees (Dwork et al., 2006). However,
we uncover a critical error in their privacy analysis which drastically weakens their
privacy claims. Moreover, their approach harms accuracy and fairness compared to
adversarial learning.

To circumvent these issues, we propose a novel approach (called FEDERATE) to learn
private text representations and fair models by combining ideas from DP with an
adversarial training mechanism. More specifically, we propose a flexible end-to-end
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architecture in which (i) the output of an arbitrary text encoder is normalized and
perturbed using random noise to make the resulting encoder differentially private,
and (ii) on top of the encoder, we combine a classifier branch with an adversarial
branch to actively induce fairness, improve accuracy and further hide specific sen-
sitive attributes. Like Chapter 4, FEDERATE is an in-processing fairness promoting
method which focuses on the model training aspect of the machine learning pipeline.

We empirically evaluate the privacy-fairness-accuracy trade-offs achieved by our
proposed mechanism over four datasets and find that it simultaneously leads to
more private representations and fairer models than state-of-the-art methods while
maintaining comparable accuracy. Beyond the superiority of our approach, our
results bring valuable insights on the complementarity of DP and adversarial learning
and the compatibility of privacy and fairness. On the one hand, DP drastically
reduces undesired leakage from adversarially trained representations, and has a
stabilizing effect on the training dynamics of adversarial learning. On the other hand,
adversarial learning improves the accuracy and fairness of models trained over DP
text representations.

Our main contributions are as follows:

• We propose a new approach, FEDERATE, which combines a DP encoder with
adversarial learning to learn fair and accurate models from private representa-
tions.

• We identify and fix (with a formal proof) a critical mistake in the privacy analysis
of previous work on learning DP text representations.

• We empirically show that FEDERATE leads to more private representations and
fairer models than state-of-the-art methods while maintaining comparable
accuracy.

• Unlike previous studies, our empirical results suggest that privacy and fairness
are compatible in our setting, and even mutually reinforce each other.

7.2 Background: Differential Privacy

Differential Privacy (DP) (Dwork et al., 2006) provides a rigorous mathematical def-
inition of the privacy leakage associated with an algorithm. It does not depend on
assumptions about the attacker’s capabilities and comes with a powerful algorithmic
framework. For these reasons, it has become a de-facto standard in privacy currently
used by the US Census Bureau Abowd, 2018 and several big tech companies (Erlings-
son, Pihur, and Korolova, 2014; Fanti, Pihur, and Erlingsson, 2016; Ding, Kulkarni,
and Yekhanin, 2017). This section gives a brief overview of DP, focusing on the aspects
needed to understand our approach (see Dwork and Roth (2014) for an in-depth
review of DP).

Over the last few years, two main models for DP have emerged:

• Central DP (CDP) Dwork et al., 2006, where raw user data is collected and
processed by a trusted curator, which then releases the result of the computation
to a third party or the public.

• Local DP (LDP) Kasiviswanathan et al., 2011 which removes the need for a
trusted curator by having each user locally perturb their data before sharing it.
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Our work aims to create an encoder that leads to a private embedding of an input
text, which can then be shared with an untrusted curator for learning or inference.
We thus consider LDP, defined as follows.

Definition 6 (Local Differential Privacy). A randomized algorithm M : X → O is
ϵ-differentially private if for all pairs of inputs x, x′ ∈ X and all possible outputs
o ∈ O:

Pr[M(x) = o] f eϵ Pr[M(x′) = o]. (7.1)

LDP ensures that the probability of observing a particular output o of M should not
depend too much on whether the input is x or x′. The strength of privacy is controlled
by ϵ, which bounds the log-ratio of these probabilities for any x, x′. Setting ϵ = 0
corresponds to perfect privacy, while ϵ→ ∞ does not provide any privacy guarantees
(as one may be able to uniquely associate an observed output to a particular input).
In our approach described in Section 7.3, x will be an input text and M will be an
encoding function which transforms x into a private vector representation that can
be safely shared with untrusted parties.

Laplace mechanism. As clearly seen from Definition 6, an algorithm needs to be
randomized to satisfy DP. A classical approach to achieve ϵ-DP for vector data is
the Laplace mechanism Dwork et al., 2006. Given the desired privacy guarantee ϵ

and an input vector x ∈ R
D, this mechanism adds centered Laplace noise Lap(∆

ϵ )

independently to each dimension of x. The noise scale ∆
ϵ is calibrated to ϵ and the

L1-sensitivity ∆ of inputs:

∆ = max
x,x′∈X

∥x− x′∥1. (7.2)

In this chapter, we propose an architecture in which the Laplace mechanism is applied
on top of a trainable encoder to get private representations of input texts, and is
further combined with adversarial training to learn fair models.

7.3 Approach

We consider a scenario similar to Coavoux, Narayan, and Cohen (2018), where a user
locally encodes its input data (text) x into an intermediate representation Epriv(x)
which is then shared with an untrusted curator to predict the label y associated with
x using a classifier C. Additionally, an attacker (which may be the untrusted curator
or an eavesdropper) may observe the intermediate representation Epriv(x) and try
to infer some sensitive (discrete) attribute z about x (e.g., gender, race etc.). Our
goal is to learn an encoder Epriv and classifier C such that (i) the attacker performs
poorly at inferring z from Epriv(x), (ii) the classifier C(Epriv(x)) is fair with respect to
z according to some fairness definition, and (iii) C accurately predicts the label y.

To achieve the above goals we introduce FEDERATE (Fair modEls with DiffERentiAlly
private Text Encoders), which combines two components: a differentially private
encoder and an adversarial branch. Figure 7.2 shows an overview of our proposed
architecture.
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FIGURE 7.2: Overview of our FEDERATE approach. The text input x is transformed
to E(x) ∈ R

D by the text encoder E. The encoded input is then made private by
the privacy layer priv, which involves normalization and addition of Laplace noise.
The resulting private representation Epriv(x) ∈ R

D is then used by the main task
classifier C. It also serves as input to the adversarial layer A which is connected to
the main branch via a radient reversal layer g¼. The light red boxes represent the
Differentially Private Encoder (Sec. 7.3.1), and the light blue boxes represent the

Adversarial component (Sec. 7.3.2).

7.3.1 Differentially Private Encoder

We propose a generic private encoder construction Epriv = priv ◦ E composed of
two main components. The first component E can be any encoder which maps the
text input to some vector space of dimension D. It can be a pre-trained language
model along with a few trainable layers, or it can be trained from scratch. The second
component priv is a randomized mapping which transforms the encoded input to
a differentially private representation. Given the desired privacy guarantee ϵ > 0,
this mapping is obtained by applying the Laplace mechanism (see Section 7.2) to a
normalized version of the encoded representation E(x):

priv(E(x)) = E(x)/∥E(x)∥1 + ℓ, (7.3)

where each entry of ℓ ∈ R
D is sampled independently from Lap( 2

ϵ ). We will prove
that Epriv = priv ◦ E satisfies ϵ-DP in Section 7.3.4.

7.3.2 Adversarial Component

To improve the fairness of the downstream classifier C, we model the adversary
by another classifier A which aims to predict z from the privately encoded input
Epriv(x). The encoder Epriv is optimized to fool A while maximizing the accuracy
of the downstream classifier C. Specifically, given ¼ > 0, we train Epriv, C and A
(parameterized by θE, θC, and θA respectively) to optimize the following objective:

min
θE,θC

max
θA

Lclass(θE, θC)− ¼Ladv(θE, θA), (7.4)

where Lclass(θE, θC) is the cross-entropy loss for the C ◦ Epriv branch and Ladv(θE, θA)
is the cross-entropy loss for the A ◦ Epriv branch. For an in-depth introduction to
Adversarial Learning, please refer to Chapter 2.
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Algorithm 5 Training procedure of FEDERATE (one epoch).
Input: Model architecture composed of encoder E (parameterized by θE), classifier C
(parameterized by θC), adversary A (parameterized by θA), loss function L.
Output: Trained model.
Data: Samples S={xi, yi, zi}m

i=1 where xi is the input text, yi is the task label, and zi is
the sensitive attribute.

1: for i← 0 to m do

2: Encode: xi ← E(xi)

3: Normalize: xi ← xi

∥xi∥1

4: Privatize: xi
priv ← xi + ℓ, where each entry of the vector ℓ ∈ R

D is sampled

independently from a centered Laplace distribution with scale 2
ϵ

5: Adversarial prediction: ẑi ← A(xi
priv)

6: Update θA by backpropagating the loss L(zi, ẑi)
7: Task classification: ŷi ← C(xi

priv)

8: Update θE and θC by backpropagating the loss L(yi, ŷi)− ¼ · L(zi, ẑi)
9: end for

7.3.3 Training

We train the private encoder Epriv and the classifier C from a set of public tuples
(x, y, z) by optimizing (7.4) with backpropagation using a gradient reversal layer
g¼ Ganin and Lempitsky, 2015. The latter acts like an identity function in the forward
pass but scales the gradients passed through it by −¼ in the backward pass. This
results in Epriv receiving opposite gradients to A. The pseudo-code of the training
procedure of FEDERATE in Algorithm 5. Note that the combination of Steps 2-3-4
corresponds to Epriv as defined in Sec. 7.3.

7.3.4 Privacy Analysis

We show the following privacy guarantee.

Theorem 1. Our encoder Epriv and the downstream predictions C ◦ Epriv satisfy ϵ-DP.

Proof. We start by proving that our noisy encoder Epriv : X → R
D satisfies ϵ-DP.

Recall that for any input text x ∈ X

Epriv(x) = priv ◦ E(x) = E(x)/∥E(x)∥1 + ℓ,

where each entry of ℓ ∈ R
D is sampled independently from Lap( 2

ϵ ), the centered
Laplace distribution with scale 2/ϵ. Let Ẽ(x) = E(x)/∥E(x)∥1. The L1 sensitivity of
Ẽ is

∆Ẽ = max
x,x′∈X

∥Ẽ(x)− Ẽ(x)′∥1.

Since for any x ∈ X we have ∥Ẽ(x)∥1 = 1, the triangle inequality gives ∆Ẽ f 2. The
ϵ-DP guarantee then follows from the application of the Laplace mechanism Dwork
et al., 2006. Formally, let

p(y) =
ϵ

4
e−
|y|ϵ

2

denote the p.d.f. of Lap(2/ϵ). Consider two arbitrary input texts x, x′ ∈ X and let
x̃ = Ẽ(x) ∈ R

D and x̃′ = Ẽ(x′) ∈ R
D be their normalized encoded representations.
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Then, for any possible encoded output e = (e1, . . . , eD) ∈ R
D, we have:

Pr[Epriv(x) = e]

Pr[Epriv(x′) = e]
=

D

∏
d=1

p(ed − x̃d)

p(ed − x̃d
′)

(7.5)

=
D

∏
d=1

e−
ϵ
2 |ed−x̃d|

e−
ϵ
2 |ed−x̃′d|

= e
ϵ
2 ∑

D
d=1 |ed−x̃′d|−|ed−x̃d|

f e
ϵ
2 ∑

D
d=1 |x̃d−x̃′d| (7.6)

= e
ϵ
2 ∥x̃−x̃′∥1

f e
ϵ
2 ∆Ẽ = eϵ, (7.7)

where (7.5) follows from the independence of the noise across dimensions, (7.6) uses
the triangle inequality, and (7.7) from the definition of ∆Ẽ and the fact that ∆Ẽ f 2 as
shown above.

The above inequality shows that Epriv satisfies ϵ-DP as per Definition 6. The fact that
C ◦ Epriv also satisfies ϵ-DP follows from the post-processing property of DP, which
ensures that the composition of any function with an ϵ-DP algorithm also satisfies
ϵ-DP Dwork and Roth, 2014.

Error in previous work. We found a critical error in the privacy analysis of previous
work on differential private text encoders (Lyu, He, and Li, 2020; Plant, Gkatzia, and
Giuffrida, 2021). In a nutshell, they incorrectly state that normalizing each entry of the
encoded representation in [0, 1] allows to bound the sensitivity of their representation
by 1, while it can in fact be as large as D (the dimension of the representation). As a
result, the privacy guarantees are dramatically weaker than what the authors claim:
the ϵ values they report should be multiplied by D. In contrast, the L1 normalization
we use in (7.3) ensures that the sensitivity of E is bounded by 2. We provide more
details in Appendix B.1.

Interestingly, Habernal (2021) recently identified an error in ADePT Krishna, Gupta,
and Dupuy, 2021, a differentially private auto-encoder for text rewriting. However,
the error in ADePT is different from the one in Lyu, He, and Li (2020) and Plant,
Gkatzia, and Giuffrida (2021): the problem with ADePT is that it calibrates the noise
to L2 sensitivity, while the Laplace mechanism requires L1 sensitivity. These errors
call for greater scrutiny of differential privacy-based approaches in NLP—our work
contributes to this goal.

7.4 Related Work

FEDERATE is an in-processing approach (see Section 3.5) that induces fairness by
removing sensitive attributes from the encoder representations. In this section, we
first describe two common techniques for removing sensitive attributes. We then
discuss research exploring the interplay between fairness and differential privacy.
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Adversarial learning. In order to improve model fairness or to prevent leaking
sensitive attributes, several approaches employ adversarial-based training. For in-
stance, Li, Baldwin, and Cohn (2018) propose to use a different adversary for each
protected attribute, while Coavoux, Narayan, and Cohen (2018) consider additional
loss components to improve the privacy-accuracy trade-off of the learned represen-
tation. Han, Baldwin, and Cohn (2021) introduce multiple adversaries focusing on
different aspects of the representation by encouraging orthogonality between pairs
of adversaries. Recently, Chowdhury et al. (2021) propose an adversarial scrubbing
mechanism. However, they purely focus on information leakage, and not on fairness.
Moreover, unlike our approach, these methods do not offer formal privacy guarantees.
In fact, it has been observed that one can recover the sensitive attributes from the rep-
resentations by training a post-hoc non linear classifier (Elazar and Goldberg, 2018).
This is confirmed by our empirical results in Section 7.5. Several works have also ex-
plored the use of adversarial learning in inducing fairness. For instance, Beutel et al.
(2017) explore the effect of data distribution during fair adversarial training, while
Madras et al. (2018) propose various adversarial objective and connects them with
different group fairness measure. However, unlike our work, they do not consider
fairness and privacy at the same time.

Sub-space projection. A related line of work focuses on debiasing text represen-
tations using projection methods Bolukbasi et al., 2016; Wang et al., 2020; Karve,
Ungar, and Sedoc, 2019. The general approach involves identifying and removing
a sub-space associated with sensitive attributes. However, they rely on a manual
selection of words in the vocabulary which is difficult to generalize to new attributes.
Furthermore, Gonen and Goldberg (2019) showed that sensitive attributes still remain
present even after applying these approaches.

Recently, Ravfogel et al. (2020) propose Iterative Null space Projection (INLP). It in-
volves iteratively training a linear classifier to predict sensitive attributes followed by
projecting the representation on the classifier’s null space. On the same lines, Ravfogel
et al. (2022) proposed a linear minmax game based mechanism to remove information
which they showcase to be a better formulation than null space projection. How-
ever, these methods can only remove linear information from the representation. By
leveraging DP, our approach provides robust guarantees that do not depend on the
expressiveness of the adversary, thereby providing protection against a wider range
of attacks.

DP and fairness. Recent work has studied the interplay between DP and (group)
fairness in the setting where one seeks to prevent a model from leaking information
about individual training points. Empirically, this is evaluated through membership
inference attacks, where an attacker uses the model to determine whether a given
data point was in the training set (Shokri et al., 2017). While Kulynych et al. (2022)
observed that DP reduces disparate vulnerability to such attacks, it has also been
shown that DP can exacerbate unfairness Bagdasaryan, Poursaeed, and Shmatikov,
2019; Pujol et al., 2020. Conversely, Chang and Shokri (2020) showed that enforcing a
fair model leads to more privacy leakage for the unprivileged group. This tension
between DP and fairness is further confirmed by a formal incompatibility result
between ϵ-DP and fairness proved by Cummings et al. (2019), albeit in a restrictive
setting. Some recent work attempts to train models under both DP and fairness
constraints (Cummings et al., 2019; Xu, Du, and Wu, 2020; Liu et al., 2020), but this
typically comes at the cost of enforcing weaker privacy guarantees for some groups.
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Finally, Jagielski et al. (2019) train a fair model under DP constraints only for the
sensitive attribute.

A fundamental difference between this line of work and our approach lies in the kind
of privacy we provide. While the above approaches study (central) DP as a way to
design algorithms which protect training points from membership inference attacks
on the model, we construct a private encoder such that the encoded representation
does not leak sensitive attributes of the input. Thus, unlike previous work, we provide
privacy guarantees with respect to the model’s intermediate representation for data
unseen at training time, and empirically observe that in this case privacy and fairness
are compatible and even mutually reinforce each other.

DP representations for NLP. In a setting similar to ours, Lyu, He, and Li (2020)
propose to use DP to privatize model’s intermediate representation. Unlike their
method, we actively promote fairness by using an adversarial training mechanism,
which leads to more private representations and fairer models in practice. Importantly,
we also uncover a critical error in their privacy analysis (see Sec. 7.3.4). Concurrent to
and independently from our work, Plant, Gkatzia, and Giuffrida (2021) propose an
adversarial-driven DP training mechanism. However, they do not consider fairness,
whereas we focus on enforcing both fairness and privacy. Moreover, their method
has the same incorrect analysis as Lyu, He, and Li (2020).

7.5 Experiments

Recall that we are interested in approaches that are not only accurate but also fair
and private at the same time. However, these three dimensions are not independent
and are not straightforwardly amenable to a single evaluation metric. Thus, we
present experiments aiming at (i) showcasing the privacy-fairness-accuracy tradeoffs
of different approaches and then (ii) analyzing privacy-accuracy and fairness-accuracy
tradeoffs separately. We begin by describing the datasets and the metrics.

Datasets. We consider 4 different datasets:

• Twitter Sentiment (Blodgett, Green, and O’Connor, 2016) consists of 200k tweets
annotated with a binary sentiment label and a binary “race” attribute corre-
sponding to African American English (AAE) vs. Standard American English
(SAE) speakers.

• Bias in Bios De-Arteaga et al., 2019 consists of 393,423 textual biographies anno-
tated with an occupation label (28 classes) and a binary gender attribute.

• CelebA Liu et al., 2015 is a binary classification dataset with a binary sensitive
attribute (gender).

• Adult Income Kohavi, 1996 consists of 48,842 instances with binary sensitive
attribute (gender).

Our setup for the first two dataset is similar to Ravfogel et al. (2020) and Han,
Baldwin, and Cohn (2021). Appendix B.2 provides detailed description of these
datasets, including sizes, pre-processing, and the challenges they pose to privacy and
fairness tasks. Similar to Chapter 4, we postpone the results for Adult Income and
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CelebA dataset to Appendix B.2.5 as they exhibit similar trends. The preprocessed
versions of the datasets can be downloaded from this URL.1

Fairness metrics. For Twitter Sentiment we report the True Positive Rate Gap (TPR-
gap), which measures the true positive rate difference between the two sensitive
groups and is closely related to the notion of equal opportunity (see Section 3.3.1).
Formally, denoting the binary ground truth y ∈ Y , ŷ the predicted label and G ∈
{g, g′} the sensitive attribute, TPR-gap is defined as:

TPR-gap = P(ŷ = 1|y = 1, g)− P(ŷ = 1|y = 1, g′).

For Bias in Bios, which has 28 classes, we follow Romanov et al. (2019) and report the
root mean square of TPR-gaps (GRMS) over all occupations y ∈ Y to obtain a single
number:

GRMS =
√

(1/|O|)∑y∈Y (TPR-gapy)
2. (7.8)

Note that for GRMS essentially boils down to TPR-gap in binary setting.

Privacy metrics. We report two metrics for privacy:

• Leakage: The accuracy of a two-layer classifier which predicts the sensitive
attribute from the encoded representation.

• Minimum Description Length (MDL) Voita and Titov, 2020, which quanti-
fies the amount of “effort” required by such a classifier to achieve a certain
accuracy. A higher MDL means that it is more difficult to retrieve the sensi-
tive attribute from the representation. The metric depends on the dataset and
the representation dimension, and thus cannot be compared across different
datasets.

We provide more details about these metrics in Sec. B.2.1.

Methods and model architectures. We compare FEDERATE to the following methods:
(i) Adversarial implements standard adversarial learning Li, Baldwin, and Cohn,
2018, which is equivalent to our approach without the priv layer, (ii) Adversarial
+ Multiple Han, Baldwin, and Cohn, 2021 implements multiple adversaries, (iii)
INLP Ravfogel et al., 2020 is a subspace projection approach, and (iv) Noise learns DP
text representations as proposed by Lyu, He, and Li (2020) but with corrected privacy
analysis: this corresponds to our approach without the adversarial component. These
methods have been described in details in Section 7.4 and their hyperparametrs in
Appendix B.2.4. We also report the performance of two simple baselines: Random
simply predicts a random label, and Unconstrained optimizes the classification
performance without special consideration for privacy or fairness.

To provide a fair comparison, all methods use the same architecture for the encoder,
the classifier and (when applicable) the adversarial branches. In order to evaluate
across varying model complexities, we employ different architectures for the differ-
ent datasets. For Twitter Sentiment, we follow the architecture employed by Han,
Baldwin, and Cohn (2021), while for Bias in Bios we use a deeper architecture. The

1https://drive.google.com/uc?id=1ZmUE-g6FmzPPbZyw3EOki7z4bpzbKGWk

https://drive.google.com/uc?id=1ZmUE-g6FmzPPbZyw3EOki7z4bpzbKGWk
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FIGURE 7.3: Validation accuracy, fairness and privacy of various ap-
proaches for different relaxation threshold (RT) (see Section 7.5.1) on
Twitter Sentiment. When RT is increased, we select models with
potentially lower accuracy on the validation set but are more fair
(lower TPR-gap). Our approach FEDERATE consistently achieves better
accuracy-fairness-privacy trade-offs than its competitors across all RTs.

exact architecture, hyperparameters, and their tuning details are provided in Ap-
pendix B.2.3-B.2.4. We implement FEDERATE in PyTorch Paszke et al., 2019. Our
implementation, training, and evaluation scripts are available here.2

7.5.1 Accuracy-Fairness-Privacy Trade-off

In this first set of experiments, we explore the tridimensional trade-off between ac-
curacy, fairness, and privacy and the inherent tension between them. These metrics
are potentially all equally important and represent different information about the
system on different scales. Thus, they cannot be trivially combined into a single
metric. Moreover, this trade-off is influenced by the choice of method but also some
of its hyperparameters (e.g., the value of ϵ and ¼ in our approach). Previous studies
Han, Baldwin, and Cohn, 2021; Lyu, He, and Li, 2020 essentially selected hyperpa-
rameter values that maximize validation accuracy, which may lead to undesirable
or suboptimal trade-offs. For instance, we found that this strategy does not always
induce a fairer model than the Unconstrained baseline, and that it is often possible
to obtain significantly more fair models at a negligible cost in accuracy.

Based on these observations, we propose to use a Relaxation Threshold (RT): instead
of selecting the hyperparameters with highest validation accuracy ³∗, we consider all
models with accuracy in the range [³∗ − RT, ³∗]. We then select the hyperparameters
with best fairness score within that range.3

Figure 7.3 presents the (validation) accuracy, fairness and privacy scores related
to different RT for each method on Twitter Sentiment. The first thing to note is
that FEDERATE achieves the best fairness and privacy results with accuracy higher
or comparable to competing approaches. We also observe that setting RT= 0.0 (i.e.,
choosing the model with highest validation accuracy) leads to a significantly more
unfair model in all approaches, while fairness generally improves with increasing RT.
This improvement comes at a negligible or small cost in accuracy. In terms of privacy,
we find no significant differences across RTs.

We now showcase detailed results with RT fixed to 1.0 which is found to provide
good trade-offs for all approaches in Figure 7.3, see Table 7.1a for Twitter Sentiment
and Table 7.1b for Bias in Bios (and Appendix B.2.5 for additional results). For
both datasets, we observe that all adversarial approaches induce a fairer model
than Unconstrained or Noise, with FEDERATE performing best. In terms of accuracy,

2https://github.com/saist1993/DPNLP.
3We can also incorporate privacy into our hyperparameter selection strategy but, for the datasets

and methods in our study, we found no significant change in Leakage across different hyperparameters.

https://github.com/saist1993/DPNLP.
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Method Accuracy ↑ TPR-gap ³ Leakage ³ MDL ↑

Random 50.00 ± 0.00 0.00 ± 0.00 - 31.3 ± 0.10
Unconstrained 72.09 ± 0.73 26.26 ± 0.87 86.56 ± 0.83 15.21 ± 0.88

INLP 67.62 ± 0.57 9.19 ± 1.08 80.27 ± 2.50 24.82 ± 3.28
Noise 71.52 ± 0.51 21.23 ± 2.50 66.29 ± 3.55 21.10 ± 1.81
Adversarial 75.16 ± 0.65 5.03 ± 2.94 88.06 ± 0.20 16.16 ± 1.05
Adversarial + Multiple 75.32 ± 0.60 2.09 ± 1.18 88.03 ± 0.47 15.85 ± 1.46

FEDERATE 75.15 ± 0.59 1.75 ± 1.41 61.74 ± 5.05 22.94 ± 1.25

(A) Results on Twitter Sentiment dataset.

Method Accuracy ↑ GRMS ³ Leakage ³ MDL ↑

Random 3.53 ± 0.01 0.00 ± 0.00 – 265.44 ± 0.13
Unconstrained 79.29 ± 0.32 15.88 ± 0.80 75.92 ± 2.73 173.99 ± 7.08

INLP 75.96 ± 0.47 12.81 ± 0.09 59.91 ± 0.08 253.36 ± 1.05
Noise 77.88 ± 0.32 13.89 ± 0.31 62.23 ± 0.99 241.22 ± 2.97
Adversarial 79.02 ± 0.20 13.06 ± 0.39 69.47 ± 1.64 206.78 ± 13.02
Adversarial + Multiple 79.30 ± 0.20 13.38 ± 0.63 68.24 ± 1.12 222.35 ± 10.04

FEDERATE 77.79 ± 0.11 11.02 ± 0.55 56.92 ± 0.98 257.94 ± 1.93

(B) Results on Bias in Bios dataset.

TABLE 7.1: Test results on (a) Twitter Sentiment, and (b) Bias in Bios
with fixed Relaxation Threshold of 1.0. Fairness is measured with TPR-
Gap or GRMS (lower is better), while privacy is measured by Leakage
(lower is better) and MDL (higher is better). The MDL achieved by
Random gives an upper bound for that particular dataset. Results have
been averaged over 5 different seeds. Our proposed FEDERATE ap-
proach is the only method which achieves high levels of both fairness

and privacy while maintaining competitive accuracy.

all adversarial approaches perform similarly on Twitter Sentiment. Interestingly,
they achieve higher accuracy than Unconstrained. We attribute this to a significant
mismatch in the train and test distribution due to class imbalance. On Bias in Bios,
we observe a small drop in accuracy of our proposed approach in comparison to
Adversarial, albeit with a corresponding gain in fairness. We hypothesize that this is
due to the choice of possible hyperparameters for FEDERATE (we did not consider very
large values of ϵ which would recover Adversarial), meaning that FEDERATE pushes
for more fairness (and privacy) at a potential cost of some accuracy. We explore
the pairwise trade-offs (fairness-accuracy and privacy-accuracy) in more details in
Section 7.5.2.

In terms of both privacy metrics, FEDERATE significantly outperforms all adversarial
methods on both datasets. In fact, in line with previous studies Han, Baldwin, and
Cohn, 2021, the leakage and MDL of purely adversarial methods are similar to
that of Unconstrained. On both datasets, Noise achieves slightly weaker privacy
than FEDERATE with much worse accuracy and fairness. FEDERATE also consistently
outperforms INLP in all dimensions.

In summary, the results show that FEDERATE stands out as the only approach that
can simultaneously induce a fairer model and make its representation private while
maintaining high accuracy. Furthermore, these results empirically demonstrate that
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FIGURE 7.4: Fairness-accuracy trade-off on Twitter Sentiment (top)
and Bias in Bios (bottom). A missing point means that the accuracy
interval was not found within our hyperparameter search. FEDERATE
provides better fairness across most accuracy intervals in comparison

to Adversarial over both datasets.

our measures of privacy and fairness are indeed compatible with one another and
can even reinforce each other.

7.5.2 Pairwise Trade-offs

In the previous experiments, we explored the tridimensional trade-off and found FEDERATE

to attain better trade-offs than all other methods. Here, we take a closer look at the
pairwise fairness-accuracy and privacy-accuracy trade-offs separately. We find that
FEDERATE outperforms the Adversarial and Noise approach in their corresponding
dimension, suggesting that FEDERATE is a better choice even for bidimensional trade-
offs. This experiment also validates the superiority of combining adversarial learning
and DP over using either approach alone.

Fairness-accuracy trade-off. We plot best validation fairness scores over different
accuracy intervals for the two datasets in Figure 7.4. The interval is denoted by its
mean accuracy (i.e., [71.5, 72.5] is represented by 72). We then find the corresponding
best fairness score for the interval. We observe:

• Better fairness-accuracy trade-off: FEDERATE provides better fairness than the
Adversarial approach for almost all accuracy intervals. In the case of Bias
in Bios, Adversarial is able to achieve higher accuracy (albeit with a loss in
fairness). We note that this high accuracy regime can be matched by FEDERATE

with a larger ϵ.
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datasets.

• Smoother fairness-accuracy trade-off: Interestingly, FEDERATE enables a smoother
exploration of the accuracy-fairness trade-off space than Adversarial. As
adversarial models are notoriously difficult to train, this suggests that the
introduction of DP noise has a stabilizing effect on the training dynamics of the
adversarial component.

Privacy-accuracy trade-off. We plot privacy and accuracy with respect to ϵ, the
parameter controlling the theoretical privacy level in Figure 7.5. In general, the
value of ϵ correlates well with the empirical leakage. On Bias in Bios, FEDERATE and
Noise are comparable in both accuracy and privacy. However, for Twitter Sentiment,
our approach outperforms Noise in both accuracy and privacy for every ϵ. We
hypothesize this difference in the accuracy to be a case of mismatch between train-test
split, suggesting FEDERATE to be more robust to these distributional shifts. These
observations suggest that FEDERATE either improves upon Noise in privacy-accuracy
tradeoff or remains comparable. For completeness, we also present the same results
as a table in Appendix B.2.5.

7.6 Limitations

A current limitation of this work in the context of fairness is that it is not designed to
work with a specific definition of fairness, such as equal odds. Instead, it enforces
fairness by removing certain protected information, which can correlate with specific
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fairness notions. Similarly, we do not provide formal fairness guarantees for our
method as we do for privacy. We also do not provide privacy of training data, i.e.,
protection against reconstruction attacks. It is also necessary for the practitioner to
monitor the fairness levels of the model over time, as due to data drift and other
changes, the model’s fairness level might change.

7.7 Conclusion and Perspectives

In this chapter, we proposed a DP-driven adversarial learning approach for NLP.
Through our experiments, we showed that our method simultaneously induces
private representations and fair models, with a mutually reinforcing effect between
privacy and fairness. We also find that our approach improves upon competitors
on each dimension separately. While we focused on privatizing sensitive attributes
like race or gender, our approach can be used to remove other types of unwanted
information from text representations, such as tenses or POS tag information, which
might not be relevant for certain NLP tasks.
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Chapter 8

Conclusion

In this chapter, we first summarize our contributions and then outline few potential
future work and extensions.

8.1 Summary

In this thesis, we investigated the problem of fairness in machine learning. Specifically,
we introduced measures and methods to mitigate allocation harm at different stages of
a machine learning pipeline. We presented two in-processing fairness approaches that
address the problem at the time of training. Further, we introduced a new evaluation
measure for intersectional fairness which is robust to the phenomena of "leveling
down". Finally, we proposed a data generation mechanism that leverages the structure
of intersectional fairness to enhance performance for the most disadvantaged groups.

In Chapter 4, we introduced FairGrad, an iterative approach which dynamically
learns group-specific weights based on fairness levels. Specifically, it increases the
weights of disadvantaged groups, thereby enhancing their influence on the final loss
function and decreases weights for the opposite scenario. FairGrad is straightforward
to implement, necessitating only minor modifications to existing infrastructures. It is
versatile, supporting multiple fairness measures and accommodating both approxi-
mate fairness and multi-class scenarios. Through experiments across over 10 datasets
and 6 baselines, we demonstrated that FairGrad is an effective in-processing method,
offering wide applicability with limited computational overhead.

We then shifted our attention to intersectional fairness setting in Chapter 5 where
we benchmarked various fairness-inducing methods. Our experiments revealed that
several approaches exhibit “leveling down" behavior, implying that they optimize for
current fairness measures by harming the involved groups. We believe this occurs
because existing fairness measures take a strictly egalitarian view. Consequently, we
introduced a novel intersectional fairness measure, IF³, devised to address leveling
down by considering both relative and absolute performance. Furthermore, we
illustrated its various properties and highlight its relationship with other fairness
methods.

In Chapter 6, we introduced a data generation mechanism aimed at enhancing per-
formance for the most disadvantaged groups in intersectional setting. Specifically,
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we developed a generative function that exploits the hierarchial structure of the inter-
sectional setting, and augment data for sensitive groups by modifying and merging
data from more general groups. Our experiments across three datasets demonstrated
that this data generation yields diverse samples and improves performance for the
most underrepresented groups.

Lastly, in Chapter 7, we explore the relationship between fairness and privacy in the
context of NLP. We introduce FEDERATE, a novel approach that combines adversarial
learning with differential privacy. Our evaluations delve into the privacy-fairness
tradeoff, revealing that FEDERATE can simultaneously learn private representations
and models that are fairer than contemporary methods but also maintain comparable
accuracy. Furthermore, our findings underscore that privacy and fairness can coexist
and even positively reinforce each other in specific scenarios.

8.2 Future Works and Perspective

I now outline few potential extensions of the works proposed as part of this thesis.

Joint Optimization of Fairness Across the Machine Learning Pipeline In this
thesis, our focus has been on individual stages of the machine learning pipeline,
where we propose various methods to promote fairness at each step. However,
the cumulative impact of integrating these methods on overall fairness remains an
open question. I will delve into these combined effects, along with exploring novel
approaches that optimize fairness across multiple stages simultaneously. Additionally,
I plan to examine how the characteristics of a task influence the most effective place
for fairness intervention. This analysis could lead to gains in both fairness and
computational efficiency, as well as a more nuanced understanding of the problem.

Generalized benchmark for group fairness: In Chapter 4, we experimented with
over 10 datasets, 4 fairness measures, 6 different baselines, and 5 distinct seeds.
Through our experiments we found significant sensitivity to seeds, hyperparameters,
and hypothesis classes, echoing observations from other studies. Given the subtle
differences in experimental settings across many research works, direct comparisons
between them prove challenging. Consequently, there’s a pressing need for an
open-source benchmarking framework with standardized data splits, seeds, and
other configurations. Such a benchmark would provide insights into the field’s
progression. For example, while many approaches claim to achieve state-of-the-art
results, our experiments showed that no single fairness-enforcing method consistently
outperformed others in terms of both accuracy and fairness across a wide range of
settings. An open-source benchmark would allow practitioners to compare their
findings more easily.

Intersectionality: The analytical framework of intersectionality (Crenshaw, 1989)
posits that inequalities based on attributes like gender and race might “intersect”,
giving rise to unique combined effects. In Chapter 6, our initial results indicate
that data for smaller groups can be derived from their corresponding parent groups.
While the newly generated data is distinct, it remains nearly indistinguishable from
the actual data. Additionally, employing this generated data enhances classifier
performance for sensitive groups. However, these findings seem to deviate from the
traditional intersectionality framework, as our data generation for a specific group



8.2. Future Works and Perspective 105

involves manipulating and combining data from its related parent groups. This
might suggest that our transformation function either captures these unique identities
because they are already present in the parent groups (albeit in a latent manner) or
that the dataset does not adequately mirror the intersectionality framework. Future
research should delve deeper into this phenomenon where new identities stem from
pre-existing ones.

Missing Sensitive Attributes: In this thesis, we have operated under the assump-
tion that all sensitive attributes are available for every instance. Nevertheless, there
are situations where such information might be inaccessible due to legal constraints,
such as the GDPR. Additionally, even when this data is available, it may not be
comprehensive for all instances given the costs and challenges associated with col-
lecting sensitive attributes. Hence, it becomes crucial to develop methods that can
ensure fairness in scenarios with absent or incomplete sensitive attributes. Recent
studies, such as those by Lahoti et al. (2020) and Hashimoto et al. (2018), have started
addressing this situation. Similarly, FairGrad could be adapted to such contexts by
incorporating a classifier to predict group membership, in tandem with the dynamic
group re-weighting procedure during training. Another potential strategy might
involve initially training a classifier on data with missing attributes, followed by
finetuning it using FairGrad on data containing sensitive attributes. Exploring data
generation techniques in these scenarios would also be an area worth pursuing.

Effect of Training Techniques on Fairness: As deep learning architectures for NLP
have significantly advanced, various specialized training methods have emerged
in the literature. We identify several techniques that might have implications for
fairness and privacy:

• Prompting and Fine-tuning: In the last year, several advancements have been
made to classify data efficiently via large language models. These include meth-
ods such as prompting (Li and Liang, 2021), fine-tuning (Lialin, Deshpande,
and Rumshisky, 2023), and adapters (Houlsby et al., 2019). However, several
questions related to fairness have yet to be explored in-depth. These include:

– The fairness implications of these techniques. For example, it is important
to investigate whether fine-tuning uniformly improves a model’s perfor-
mance across all groups, or if certain subgroups are disproportionately
affected.

– The interplay between a language model’s inherent bias and dataset bias.
As discussed in Chapter 1, biases can arise at both dataset and model
training levels. Given that large language models, pretrained on vast
datasets, already contain various biases, a critical research direction would
be examining the interaction between dataset bias and the biases within
these large models.

– The impact of in-context examples used during prompting on fairness. In
few-shot prompting, where a model is exposed to a limited number of
examples before generalizing to unseen data, the impact over accuracy
is well-documented (Brown et al., 2020; Touvron et al., 2023). However,
the influence of biases in these examples on model predictions remains
unexplored. For instance, an intriguing question is whether combining
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stereotypical and anti-stereotypical examples leads to improved fairness,
or if focusing solely on anti-stereotypical examples is more effective.

• Distillation: The rise of large language models has prompted significant research
interest in distilling these models (Sanh et al., 2019; Rashid et al., 2020; Gou et al.,
2021) aiming to reduce computational complexity and memory requirements.
Several works have shown that the distilled model often achieves higher or
similar accuracy as the original model. However, the effects of distillation on
subgroups are still unclear.

• Interpretability: The need for understanding complex architecture has gathered
broad interest in creating training routines and mechanism which are inter-
pretable. This generally involves methods like attention visualization (Vashishth
et al., 2019), and highlighting parts of the text (Ventura et al., 2021) which played
a significant role in classification. However, these methods typically generate
explanations based on input data and the training dataset, potentially increasing
the model’s vulnerability to privacy breaches and data leakage.
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Appendix A

FairGrad: Fairness Aware Gradient
Descent (Appendix)

In this appendix, we provide details that were omitted in Chapter 4. First, in in
Section A.1, we show that several well known group fairness measures are compatible
with FairGrad. In Section A.2, we prove Lemma 1. Next, in Section A.3, we derive
the update rules for FairGrad with ϵ-fairness. Finally, in Section A.4, we provide
additional experiments.

A.1 Reformulation of Various Group Fairness Notion

In this section, we present several group fairness notions which respect our fairness
definition presented in Section 4.2.1.

Example 2 (Equalized Odds (EOdds) (Hardt, Price, and Srebro, 2016)). A model
hθ is fair for Equalized Odds when the probability of predicting the correct label is
independent of the sensitive attribute, that is, ∀l ∈ Y , ∀g ∈ G

P̂ (hθ(x) = l | g, y = l) = P̂ (hθ(x) = l | y = l) .

It means that we need to partition the space into K = |Y × G| groups and, ∀l ∈
Y , ∀g ∈ G, we define F̂(l,g) as

F̂(l,g)(T , hθ) = P̂ (hθ(x) ̸= l | y = l)− P̂ (hθ(x) ̸= l | g, y = l)

= ∑
(l,g′) ̸=(l,g)

P̂
(
g′|y = l

)
P̂
(
hθ(x) ̸= l | g′, y = l

)

− (1− P̂ (g|y = l))P̂ (hθ(x) ̸= l | g, y = l)

where the law of total probability was used to obtain the last equation. Thus,

Equalized Odds satisfies all our assumptions with C
(l,g)
(l,g) = P̂ (g|y = l)− 1, C

(l,g′)
(l,g) =

P̂ (g′|y = l), C
(l′,g′)
(l,g) = 0 with g′ ̸= g and l′ ̸= l, and C0

(l,g) = 0.
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Example 3 (Equality of Opportunity (EOpp) (Hardt, Price, and Srebro, 2016)). A
model hθ is fair for Equality of Opportunity when the probability of predicting the
correct label is independent of the sensitive attribute for a given subset Y ′ ¢ Y of
labels called the desirable outcomes, that is, ∀l ∈ Y ′, ∀g ∈ G

P̂ (hθ(x) = l | g, y = l) = P̂ (hθ(x) = l | y = l) .

It means that we need to partition the space into K = |Y × G| groups and, ∀l ∈
Y , ∀g ∈ G, we define F̂(l,g) as

F̂(l,g)(T , hθ) =





P̂ (hθ(x) = l | g, y = l)

− P̂ (hθ(x) = l | y = l) ∀(l, g) ∈ Y ′ × G
0 ∀(l, g) ∈ Y × G \ Y ′ × G

which can then be rewritten in the correct form in the same way as Equalized Odds,
the only difference being that C·(l,g) = 0, ∀(l, g) ∈ Y × G \ Y ′ × G.

Example 4 (Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)).
A model hθ is fair for Demographic Parity when the probability of predicting a binary
label is independent of the sensitive attribute, that is, ∀l ∈ Y , ∀g ∈ G

P̂ (hθ(x) = l | g) = P̂ (hθ(x) = l) .

It means that we need to partition the space into K = |Y × G| groups and, ∀l ∈
Y , ∀g ∈ G, we define F̂(l,g) as

F̂(l,g)(T , hθ) = P̂ (hθ(x) ̸= l)− P̂ (hθ(x) ̸= l | g)

=
(

P̂ (y = l, g)− P̂ (y = l | g)
)

P̂ (hθ(x) ̸= y | g, y = l)

+ ∑
(l,g′) ̸=(l,g)

P̂
(
y = l, g′

)
P̂
(
hθ(x) ̸= y | g′, y = l

)

+
(

P̂
(
y = l̄ | g

)
− P̂

(
y = l̄, g

))
P̂
(
hθ(x) ̸= y | g, y = l̄

)

− ∑
(l̄,g′) ̸=(l̄,g)

P̂
(
y = l̄, g′

)
P̂
(
hθ(x) ̸= y | g′, y = l̄

)

P̂
(
y = l̄

)
− P̂

(
y = l̄ | g

)

where the law of total probability was used to obtain the last equation. Thus, Demo-
graphic Parity satisfies all our assumptions with C

(l,g)
(l,g) = P̂ (y = l, g)− P̂ (y = l | g),

C
(l,g′)
(l,g) = P̂ (y = l, g′) with g′ ̸= g, C

(l̄,g)
(l,g) = P̂

(
y = l̄ | g

)
− P̂

(
y = l̄, g

)
, C

(l̄,g′)
(l,g) =

−P̂
(
y = l̄, g′

)
with g′ ̸= g, and C0

(l,g) = P̂
(
y = l̄

)
− P̂

(
y = l̄ | g

)
.

A.2 Proof of Lemma 1

Lemma (Negative weights are necessary.). Assume that the fairness notion under
consideration is Accuracy Parity. Let h∗θ be the most accurate and fair model. Then
using negative weights is necessary as long as

min
hθ∈H

hθunfair

max
Tk

P̂ (hθ(x) ̸= y|Tk) < P̂ (h∗θ (x) ̸= y) .
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Proof. To prove this Lemma, one first need to notice that, for Accuracy Parity, since
∑

K
k=1 P̂ (Tk) = 1 we have that

K

∑
k′=1

Ck′

k = (P̂ (Tk)− 1) +
K

∑
k′=1
k′ ̸=k

P̂ (Tk′) = 0.

This implies that

K

∑
k=1

[
P̂ (Tk) +

K

∑
k′=1

Ck
k′¼k′

]
= 1.

This implies that, whatever our choice of ¼, the weights will always sum to one.
In other words, since we also have that ∑

K
k=1 ¼kC0

k = 0 by definition, for a given
hypothesis hθ , we have that

max
¼1,...,¼K∈R

K

∑
k=1

P̂ (hθ(x) ̸= y|Tk)

[
P̂ (Tk) +

K

∑
k′=1

Ck
k′¼k′

]
(A.1)

= max
w1,...,wK∈R

s.t. ∑k wk=1

K

∑
k=1

P̂ (hθ(x) ̸= y|Tk)wk (A.2)

where, given w1, . . . , wK, the original values of lambda can be obtained by solving
the linear system C¼ = w where

C =




C1
1 . . . C1

K
...

...
CK

1 . . . CK
K


 , ¼ =




¼1
...

¼K


 , w =




w1 − P̂ (T1)
...

wK − P̂ (TK)




which is guaranteed to have infinitely many solutions since the rank of the matrix C
is K− 1 and the rank of the augmented matrix (C|w) is also K− 1. Here we are using
the fact that P̂ (Tk) ̸= 0, ∀k since all the groups have to be represented to be taken
into account.

We will now assume that all the weights are positive, that is wk g 0, ∀k. Then, the
best strategy to solve Problem (A.2) is to put all the weight on the worst off group k,
that is set wk = 1 and wk′ = 0, ∀k′ ̸= k. It implies that

max
w1,...,wK∈R

s.t. ∑k wk=1

K

∑
k=1

P̂ (hθ(x) ̸= y|Tk)wk = max
k

P̂ (hθ(x) ̸= y|Tk) .

Furthermore, notice that, for fair models with respect to Accuracy Parity, we have
that P̂ (hθ(x) ̸= y|Tk) = P̂ (hθ(x) ̸= y) , ∀k. Thus, if it holds that

min
hθ∈H

hθunfair

max
Tk

P̂ (hθ(x) ̸= y|Tk) < P̂ (h∗θ (x) ̸= y)

where h∗θ is the most accurate and fair model, then the optimal solution of Problem (3)
in the main chapter will be unfair. It implies that, in this case, using positive weights
is not sufficient and negative weights are necessary.
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A.3 FairGrad for ϵ-fairness

To derive FairGrad for ϵ-fairness we first consider the following standard optimization
problem

arg min
hθ∈H

P̂ (hθ(x) ̸= y)

s.t. ∀k ∈ [K], F̂k(T , hθ) f ϵ

∀k ∈ [K], F̂k(T , hθ) g −ϵ.

We, once again, use a standard multipliers approach to obtain the following uncon-
strained formulation:

L (hθ , ¼1, . . . , ¼K, δ1, . . . , δK) = P̂ (hθ(x) ̸= y) +
K

∑
k=1

¼k

(
F̂k(T , hθ)− ϵ

)
− δk

(
F̂k(T , hθ) + ϵ

)

(A.3)

where ¼1, . . . , ¼K and δ1, . . . , δK are the multipliers that belong to R
+, that is the set of

positive reals. Once again, to solve this problem, we will use an alternating approach
where the hypothesis and the multipliers are updated one after the other.

Updating the Multipliers. To update the values ¼1, . . . , ¼K, we will use a stan-
dard gradient ascent procedure. Hence, noting that the gradient of the previous
formulation is

∇¼1,...,¼K
L (hθ , ¼1, . . . , ¼K, δ1, . . . , δK) =




F̂1(T , hθ)− ϵ
...

F̂K(T , hθ)− ϵ




∇δ1,...,δK
L (hθ , ¼1, . . . , ¼K, δ1, . . . , δK) =



−F̂1(T , hθ)− ϵ

...
−F̂K(T , hθ)− ϵ




we have the following update rule ∀k ∈ [K]

¼T+1
k = max

(
0, ¼T

k + η
(

F̂k

(
T , hT

θ

)
− ϵ

))

δT+1
k = max

(
0, δT

k − η
(

F̂k

(
T , hT

θ

)
+ ϵ

))

where η is a fairness rate that controls the importance of each weight update.

Updating the Model. To update the parameters θ ∈ R
D of the model hθ , we proceed

as before, using a gradient descent approach. However, first, we notice that given the
fairness notions that we consider, Equation (A.3) is equivalent to

L (hθ , ¼1, . . . , ¼K, δ1, . . . , δK) =
K

∑
k=1

P̂ (hθ(x) ̸= y|Tk)

[
P̂ (Tk) +

K

∑
k′=1

Ck
k′ (¼k′ − δk′)

]

(A.4)

−
K

∑
k=1

(¼k + δk) ϵ +
K

∑
k=1

(¼k − δk)C
0
k .
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Since the additional terms in the optimization problem do not depend on hθ , the main
difference between exact and ϵ-fairness is the nature of the weights. More precisely,
at iteration t, the update rule becomes

θT+1 = θT − ηθ

K

∑
k=1

[
P̂ (Tk) +

K

∑
k′=1

Ck
k′ (¼k′ − δk′)

]
∇θP̂ (hθ(x) ̸= y|Tk)

where ηθ is a learning rate. Once again, we obtain a simple re-weighting scheme where
the weights depend on the current fairness level of the model through ¼1, . . . , ¼K

and δ1, . . . , δK, the relative size of each group through P̂ (Tk), and the fairness notion
through the constants C.

A.4 Extended Experiments

In this section, we provide additional details related to the baselines and the hyper-
parameters tuning procedure. We then provide descriptions of the datasets and
finally the results.

A.4.1 Baselines

• Adversarial: One of the common ways of removing sensitive information from
the model’s representation is via adversarial learning. Broadly, it consists of
three components, namely an encoder, a task classifier, and an adversary. On the
one hand, the objective of the adversary is to predict sensitive information from
the encoder. On the other hand, the encoder aims to create representations that
are useful for the downstream task (task classifier) and, at the same time, fool the
adversary. The adversary is generally connected to the encoder via a gradient
reversal layer (Ganin and Lempitsky, 2015) which acts like an identity function
during the forward pass and scales the loss with a parameter −¼ during the
backward pass. In our setting, the encoder is a Multi-Layer Perceptron with
two hidden layers of size 64 and 128 respectively, and the task classifier is
another Multi-Layer Perceptron with a single hidden layer of size 32. The
adversary is the same as the main task classifier. We use a ReLU as the activation
function with the dropout set to 0.2 and employ batch normalization with
default PyTorch parameters. As a part of the hyper-parameter tuning, we did a
grid search over ¼, varying it between 0.1 to 3.0 with an interval of 0.2.

• BiFair (Ozdayi, Kantarcioglu, and Iyer, 2021): For this baseline, we fix the
weight parameter to be of length 8 as suggested in the code released by the
authors1. In this fixed setting, we perform a grid search over the following
hyper-parameters:

– Batch Size: 128, 256, 512

– Weight Decay: 0.0, 0.001

– Fairness Loss Weight: 0.5, 1, 2, 4

– Inner Loop Length: 5, 25, 50

1https://github.com/TinfoilHat0/BiFair

https://github.com/TinfoilHat0/BiFair
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• Constraints: We use the implementation available in the TensorFlow Con-
strained Optimization2 library with default hyper-parameters.

• FairBatch: We use the implementation publicly released by the authors3.

• Weighted ERM: We reweigh each example in the dataset based on inverse of
the proportion of the sensitive group it belongs to.

• Reduction: We use the implementation available in the Fairlearn4 with default
hyper-parameters.

In our initial experiments, we varied the batch size, and learning rates for both Con-
straints and FairBatch. However, we found that the default hyper-parameters as
specified by the authors result in the best performances. In the spirit of being compa-
rable in terms of hyper-parameter search budget, we also fix all hyper-parameters
of FairGrad, apart from the batch size and weight decay. We experiment with two
different batch sizes namely, 64 or 512 for the standard fairness dataset. Similarly, we
also experiment with three weight decay values namely, 0.0, 0.001 and 0.01. Note that
we also vary weight decay and batch sizes for FairBatch, Adversarial, Unconstrained,
and BiFair.

For all our experiments, apart from BiFair, we use Batch Gradient Descent as the
optimizer with a learning rate of 0.1 and a gradient clipping of 0.05 to avoid ex-
ploding gradients. For BiFair, we employ the Adam optimizer as suggested by the
authors with a learning rate of 0.001. For FairGrad, FairBatch and Unconstrained,
we considered 6 hyper-parameters combinations. For BiFair, we considered 72 such
combinations, while for Adversarial, there were 90 combinations.

A.4.2 Datasets

Here, we provide additional details on the datasets used in our experiments. We begin
by describing the standard fairness datasets for which we follow the pre-processing
procedure described in Lohaus, Perrot, and Von Luxburg (2020).

• Adult5: The dataset (Kohavi, 1996) is composed of 45222 instances, with 14
features each describing several attributes of a person. The objective is to predict
the income of a person (below or above 50k) while remaining fair with respect
to gender (binary in this case). Following the pre-processing step of Wu, Zhang,
and Wu (2019), only 9 features were used for training.

• CelebA6: The dataset (Liu et al., 2015) consists of 202, 599 images, along with
40 binary attributes associated with each image. We use 38 of these as features
while keeping gender as the sensitive attribute and “Smiling” as the class label.

• Dutch7: The dataset (Žliobaite, Kamiran, and Calders, 2011) is composed
of 60, 420 instances with each instance described by 12 features. We predict
“Low Income” or “High Income” as dictated by the occupation as the main
classification task and gender as the sensitive attribute.

2https://github.com/google-research/tensorflow_constrained_optimization
3https://github.com/yuji-roh/fairbatch
4https://fairlearn.org/
5https://archive.ics.uci.edu/ml/datasets/adult
6https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
7https://sites.google.com/site/conditionaldiscrimination/

https://github.com/google-research/tensorflow_constrained_optimization
https://github.com/yuji-roh/fairbatch
https://fairlearn.org/
https://archive.ics.uci.edu/ml/datasets/adult
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://sites.google.com/site/conditionaldiscrimination/
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• Compas8: The dataset (Larson et al., 2016) contains 6172 data points, where
each data point has 53 features. The goal is to predict if the defendant will be
arrested again within two years of the decision. The sensitive attribute is race,
which has been merged into “White” and “Non White” categories.

• Communities and Crime9: The dataset (Redmond and Baveja, 2002) is com-
posed of 1994 instances with 128 features, of which 29 have been dropped. The
objective is to predict the number of violent crimes in the community, with race
being the sensitive attribute.

• German Credit10: The dataset (Dua, Graff, et al., 2017) consists of 1000 in-
stances, with each having 20 attributes. The objective is to predict a person’s
creditworthiness (binary), with gender being the sensitive attribute.

• Gaussian11: It is a toy dataset with binary task label and binary sensitive at-
tribute, introduced in Lohaus, Perrot, and Von Luxburg (2020). It is constructed
by drawing points from different Gaussian distributions. We follow the same
mechanism as described in Lohaus, Perrot, and Von Luxburg (2020), and sample
50000 data points for each class.

• Adult Folktables12: This dataset (Ding et al., 2021) is an updated version of the
original Adult Income dataset. We use California census data with gender as the
sensitive attribute. There are 195665 instances, with 9 features describing several
attributes of a person. We use the same preprocessing step as recommended by
the authors.

For all these datasets, we use a 20% of the data as a test set and 80% as a train set.
We further divide the train set into two and keep 25% of the training examples as a
validation set. For each repetition, we randomly shuffle the data before splitting it,
and thus we had unique splits for each random seed. We use the following seeds:
10, 20, 30, 40, 50 for all our experiments. As a last pre-processing step, we centered
and scaled each feature independently by substracting the mean and dividing by the
standard deviation both of which were estimated on the training set.

Twitter Sentiment Analysis13: The dataset (Blodgett, Green, and O’Connor, 2016)
consists of 200k tweets with binary sensitive attribute (race) and binary sentiment
score. We follow the setup proposed by Han, Baldwin, and Cohn (2021) and Elazar
and Goldberg (2018) and create bias in the dataset by changing the proportion of
each subgroup (race-sentiment) in the training set. With two sentiment classes being
happy and sad, and two race classes being AAE and SAE, the training data consists
of 40% AAE-happy, 10% AAE-sad, 10% SAE-happy, and 40% SAE-sad. The test set
remains balanced. The tweets are encoded using the DeepMoji (Felbo et al., 2017)
encoder with no fine-tuning, which has been pre-trained over millions of tweets to
predict their emoji, thereby predicting the sentiment. Note that the train-test splits
are pre-defined and thus do not change based on the random seed of the repetition.

A.4.3 Detailed Results

8https://github.com/propublica/compas-analysis
9http://archive.ics.uci.edu/ml/datasets/communities+and+crime

10https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
11https://github.com/mlohaus/SearchFair/blob/master/examples/get_synthetic_data.py
12https://github.com/zykls/folktables
13https://slanglab.cs.umass.edu/TwitterAAE/

https://github.com/propublica/compas-analysis
http://archive.ics.uci.edu/ml/datasets/communities+and+crime
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
 https://github.com/mlohaus/SearchFair/blob/master/examples/get_synthetic_data.py
https://github.com/zykls/folktables
 https://slanglab.cs.umass.edu/TwitterAAE/
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FIGURE A.1: Results for the Adult dataset with different fairness
measures.

TABLE A.1: Results for the Adult dataset with Linear Models. All the
results are averaged over 5 runs. Here MEAN ABS., MAXIMUM, and
MINIMUM represent the mean absolute fairness value, the fairness
level of the most well-off group, and the fairness level of the worst-off

group, respectively.

METHOD (L) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8456 ± 0.0033 AP 0.0571 ± 0.0022 0.077 ± 0.0029 -0.0373 ± 0.0017
Constant 0.751 ± 0.0 AP 0.102 ± 0.0 0.138 ± 0.0 0.067 ± 0.0
Weighted ERM 0.8442 ± 0.0016 AP 0.0581 ± 0.0021 0.0783 ± 0.0028 -0.0379 ± 0.0014
Constrained 0.783 ± 0.007 AP 0.005 ± 0.003 0.007 ± 0.005 0.004 ± 0.002
Reduction 0.7064 ± 0.0315 AP 0.0361 ± 0.0158 0.0235 ± 0.0103 -0.0487 ± 0.0214
FairGrad 0.8124 ± 0.005 AP 0.0097 ± 0.0029 0.0131 ± 0.004 -0.0063 ± 0.0019

Unconstrained 0.846 ± 0.0028 Eodds 0.0453 ± 0.0039 0.048 ± 0.0043 -0.0878 ± 0.01
Constant 0.748 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8475 ± 0.0024 Eodds 0.044 ± 0.0043 0.0477 ± 0.0031 -0.0837 ± 0.0124
Constrained 0.805 ± 0.004 Eodds 0.007 ± 0.005 0.019 ± 0.017 0.002 ± 0.001
BiFair 0.793 ± 0.009 Eodds 0.036 ± 0.008 0.085 ± 0.027 -0.03 ± 0.016
FairBatch 0.8437 ± 0.0013 Eodds 0.0228 ± 0.0071 0.0411 ± 0.0105 -0.0245 ± 0.0183
Reduction 0.7059 ± 0.0277 Eodds 0.0542 ± 0.0158 0.0711 ± 0.0189 -0.1055 ± 0.022
FairGrad 0.8284 ± 0.004 Eodds 0.0051 ± 0.0021 0.0078 ± 0.0068 -0.0078 ± 0.0054

Unconstrained 0.8457 ± 0.0028 Eopp 0.0263 ± 0.0024 0.0157 ± 0.0011 -0.0893 ± 0.0083
Constant 0.754 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8475 ± 0.0024 Eopp 0.0246 ± 0.0036 0.0148 ± 0.002 -0.0837 ± 0.0124
Constrained 0.846 ± 0.002 Eopp 0.011 ± 0.004 0.039 ± 0.012 0.0 ± 0.0
BiFair 0.8 ± 0.009 Eopp 0.031 ± 0.024 0.019 ± 0.014 -0.107 ± 0.083
FairBatch 0.8457 ± 0.0016 Eopp 0.0098 ± 0.0068 0.0225 ± 0.0174 -0.0166 ± 0.0241
Reduction 0.8226 ± 0.0149 Eopp 0.0341 ± 0.0168 0.116 ± 0.0575 -0.0204 ± 0.0098
FairGrad 0.8353 ± 0.0106 Eopp 0.0053 ± 0.006 0.0177 ± 0.021 -0.0037 ± 0.0033
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TABLE A.2: Results for the Adult dataset with Non Linear Models.
All the results are averaged over 5 runs. Here MEAN ABS., MAXI-
MUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the

worst-off group, respectively.

METHOD (NL) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8438 ± 0.0025 AP 0.0575 ± 0.0025 0.0776 ± 0.0033 -0.0375 ± 0.0018
Constant 0.751 ± 0.0 AP 0.102 ± 0.0 0.138 ± 0.0 0.067 ± 0.0
Weighted ERM 0.8469 ± 0.0035 AP 0.0564 ± 0.003 0.0761 ± 0.0038 -0.0368 ± 0.0021
Adversarial 0.8364 ± 0.0063 AP 0.0526 ± 0.0017 0.0709 ± 0.0025 -0.0343 ± 0.0009
Reduction 0.7015 ± 0.0225 AP 0.0681 ± 0.0184 0.0444 ± 0.0122 -0.0917 ± 0.0247
FairGrad 0.8054 ± 0.0051 AP 0.0034 ± 0.0033 0.0033 ± 0.0031 -0.0036 ± 0.0042

Unconstrained 0.8299 ± 0.0142 Eodds 0.0448 ± 0.0109 0.0404 ± 0.0136 -0.0977 ± 0.0422
Constant 0.748 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8285 ± 0.0085 Eodds 0.0102 ± 0.0025 0.0196 ± 0.0102 -0.0099 ± 0.0047
Adversarial 0.8202 ± 0.0068 Eodds 0.0145 ± 0.0052 0.0288 ± 0.0177 -0.0153 ± 0.0067
BiFair 0.823 ± 0.017 Eodds 0.038 ± 0.009 0.09 ± 0.034 -0.038 ± 0.015
FairBatch 0.8379 ± 0.0009 Eodds 0.02 ± 0.0088 0.0327 ± 0.0153 -0.0244 ± 0.0218
Reduction 0.729 ± 0.0252 Eodds 0.0636 ± 0.0176 0.0673 ± 0.0203 -0.115 ± 0.0334
FairGrad 0.827 ± 0.0071 Eodds 0.0118 ± 0.0024 0.022 ± 0.014 -0.0165 ± 0.0135

Unconstrained 0.8382 ± 0.0076 Eopp 0.0242 ± 0.0031 0.0145 ± 0.0017 -0.0822 ± 0.0108
Constant 0.754 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8293 ± 0.0091 Eopp 0.0051 ± 0.0033 0.0141 ± 0.0137 -0.0062 ± 0.0038
Adversarial 0.8324 ± 0.0058 Eopp 0.007 ± 0.0044 0.0139 ± 0.0159 -0.0144 ± 0.0133
BiFair 0.815 ± 0.014 Eopp 0.03 ± 0.015 0.019 ± 0.009 -0.103 ± 0.053
FairBatch 0.8415 ± 0.0054 Eopp 0.0082 ± 0.0073 0.0157 ± 0.0121 -0.017 ± 0.0271
Reduction 0.8343 ± 0.0059 Eopp 0.0294 ± 0.0164 0.0779 ± 0.0662 -0.0396 ± 0.0455
FairGrad 0.8373 ± 0.0043 Eopp 0.0053 ± 0.0047 0.0099 ± 0.0146 -0.0112 ± 0.0127



116 Appendix A. FairGrad: Fairness Aware Gradient Descent (Appendix)

0.67 0.71 0.76 0.80 0.85 0.89

Accuracy

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

A
c
c
u
ra
c
y
P
a
ri
ty

FairGrad

Unconstrained

Weighted Erm

Reduction

Constraints

(A) Linear - AP

0.67 0.71 0.76 0.80 0.85 0.89

Accuracy

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

E
q
u
a
l
O
d
d
s

FairGrad

FairBatch

Unconstrained

Weighted Erm

Reduction

Constraints

BiFair

(B) Linear - EOdds

0.67 0.71 0.76 0.80 0.85 0.89

Accuracy

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

E
q
u
a
l
O
p
p
o
rt
u
n
it
y

FairGrad

FairBatch

Unconstrained

Weighted Erm

Reduction

Constraints

BiFair

(C) Linear - EOpp

0.67 0.71 0.76 0.80 0.85 0.89

Accuracy

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

A
c
c
u
ra
c
y
P
a
ri
ty

FairGrad

Unconstrained

Adversarial

Weighted Erm

Reduction

(D) Non Linear - AP

0.67 0.71 0.76 0.80 0.85 0.89

Accuracy

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

E
q
u
a
l
O
d
d
s

FairGrad

FairBatch

Unconstrained

Adversarial

Weighted Erm

Reduction

BiFair

(E) Non Linear - EOdds

0.67 0.71 0.76 0.80 0.85 0.89

Accuracy

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

E
q
u
a
l
O
p
p
o
rt
u
n
it
y

FairGrad

FairBatch

Unconstrained

Adversarial

Weighted Erm

Reduction

BiFair

(F) Non Linear - EOpp

FIGURE A.2: Results for the CelebA dataset with different fairness
measures.

TABLE A.3: Results for the CelebA dataset with Linear Models. All the
results are averaged over 5 runs. Here MEAN ABS., MAXIMUM, and
MINIMUM represent the mean absolute fairness value, the fairness
level of the most well-off group, and the fairness level of the worst-off

group, respectively.

METHOD (L) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8532 ± 0.0009 AP 0.0204 ± 0.0022 0.017 ± 0.0019 -0.0238 ± 0.0025
Constant 0.516 ± 0.0 AP 0.072 ± 0.0 0.084 ± 0.0 0.06 ± 0.0
Weighted ERM 0.853 ± 0.0008 AP 0.0193 ± 0.0021 0.0161 ± 0.0018 -0.0225 ± 0.0023
Constrained 0.799 ± 0.013 AP 0.01 ± 0.001 0.012 ± 0.002 0.009 ± 0.001
Reduction 0.7734 ± 0.011 AP 0.0242 ± 0.006 0.0282 ± 0.0071 -0.0201 ± 0.005
FairGrad 0.835 ± 0.0028 AP 0.0012 ± 0.0009 0.0011 ± 0.0007 -0.0014 ± 0.0011

Unconstrained 0.8532 ± 0.0009 Eodds 0.0499 ± 0.0019 0.0538 ± 0.0024 -0.1011 ± 0.0033
Constant 0.518 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.853 ± 0.0009 Eodds 0.0504 ± 0.0019 0.0532 ± 0.0024 -0.1001 ± 0.0032
Constrained 0.802 ± 0.004 Eodds 0.006 ± 0.001 0.01 ± 0.003 0.002 ± 0.001
BiFair 0.845 ± 0.007 Eodds 0.021 ± 0.005 0.02 ± 0.003 -0.036 ± 0.009
FairBatch 0.8518 ± 0.0009 Eodds 0.0226 ± 0.0017 0.0218 ± 0.0028 -0.0411 ± 0.0053
Reduction 0.7268 ± 0.011 Eodds 0.0312 ± 0.0036 0.0628 ± 0.0089 -0.0334 ± 0.0047
FairGrad 0.8274 ± 0.002 Eodds 0.0025 ± 0.0009 0.0038 ± 0.0018 -0.0046 ± 0.0026

Unconstrained 0.8532 ± 0.0009 Eopp 0.0387 ± 0.0014 0.0538 ± 0.0024 -0.1011 ± 0.0033
Constant 0.518 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.853 ± 0.0008 Eopp 0.0383 ± 0.0014 0.0531 ± 0.0024 -0.0999 ± 0.0032
Constrained 0.834 ± 0.005 Eopp 0.002 ± 0.001 0.005 ± 0.002 0.0 ± 0.0
BiFair 0.848 ± 0.004 Eopp 0.014 ± 0.006 0.02 ± 0.009 -0.037 ± 0.017
FairBatch 0.8498 ± 0.001 Eopp 0.0102 ± 0.0016 0.0142 ± 0.0022 -0.0268 ± 0.0042
Reduction 0.7358 ± 0.0159 Eopp 0.0698 ± 0.0118 0.1824 ± 0.0313 -0.0968 ± 0.0158
FairGrad 0.844 ± 0.0022 Eopp 0.0013 ± 0.0009 0.0025 ± 0.0021 -0.0028 ± 0.0018
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TABLE A.4: Results for the CelebA dataset with Non Linear Models.
All the results are averaged over 5 runs. Here MEAN ABS., MAXI-
MUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the

worst-off group, respectively.

METHOD (NL) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8587 ± 0.0015 AP 0.0184 ± 0.0014 0.0154 ± 0.0012 -0.0215 ± 0.0016
Constant 0.516 ± 0.0 AP 0.072 ± 0.0 0.084 ± 0.0 0.06 ± 0.0
Weighted ERM 0.8593 ± 0.0018 AP 0.018 ± 0.0017 0.015 ± 0.0014 -0.021 ± 0.0019
Adversarial 0.8588 ± 0.0012 AP 0.0178 ± 0.0014 0.0148 ± 0.0012 -0.0208 ± 0.0015
Reduction 0.7802 ± 0.0142 AP 0.0436 ± 0.0108 0.0508 ± 0.0123 -0.0364 ± 0.0092
FairGrad 0.8359 ± 0.0033 AP 0.0023 ± 0.0012 0.0025 ± 0.0015 -0.0021 ± 0.0009

Unconstrained 0.8583 ± 0.0012 Eodds 0.0432 ± 0.003 0.0475 ± 0.0028 -0.0893 ± 0.0049
Constant 0.518 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8589 ± 0.0009 Eodds 0.0419 ± 0.0021 0.0459 ± 0.0025 -0.0864 ± 0.0038
Adversarial 0.8567 ± 0.0014 Eodds 0.0223 ± 0.002 0.0272 ± 0.0039 -0.0511 ± 0.0073
BiFair 0.856 ± 0.004 Eodds 0.023 ± 0.002 0.028 ± 0.005 -0.052 ± 0.009
FairBatch 0.8533 ± 0.0037 Eodds 0.0217 ± 0.0014 0.0197 ± 0.0026 -0.0321 ± 0.005
Reduction 0.7021 ± 0.0323 Eodds 0.0813 ± 0.0253 0.1777 ± 0.0426 -0.0946 ± 0.0238
FairGrad 0.8304 ± 0.0031 Eodds 0.0037 ± 0.0017 0.0048 ± 0.0018 -0.0055 ± 0.0023

Unconstrained 0.8585 ± 0.0016 Eopp 0.0341 ± 0.002 0.0473 ± 0.003 -0.0889 ± 0.0052
Constant 0.518 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.859 ± 0.0009 Eopp 0.0331 ± 0.0014 0.046 ± 0.0023 -0.0866 ± 0.0035
Adversarial 0.8557 ± 0.0019 Eopp 0.0161 ± 0.002 0.0223 ± 0.0029 -0.0419 ± 0.0053
BiFair 0.854 ± 0.004 Eopp 0.015 ± 0.009 0.021 ± 0.012 -0.039 ± 0.022
FairBatch 0.8475 ± 0.0043 Eopp 0.0051 ± 0.0024 0.007 ± 0.0033 -0.0131 ± 0.0063
Reduction 0.765 ± 0.0149 Eopp 0.0533 ± 0.0124 0.1393 ± 0.033 -0.0738 ± 0.0167
FairGrad 0.8439 ± 0.0063 Eopp 0.0009 ± 0.0008 0.002 ± 0.0022 -0.0016 ± 0.0011
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FIGURE A.3: Results for the Crime dataset with different fairness
measures.

TABLE A.5: Results for the Crime dataset with Linear Models. All the
results are averaged over 5 runs. Here MEAN ABS., MAXIMUM, and
MINIMUM represent the mean absolute fairness value, the fairness
level of the most well-off group, and the fairness level of the worst-off

group, respectively.

METHOD (L) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8145 ± 0.0136 AP 0.0329 ± 0.0195 0.0258 ± 0.0162 -0.0399 ± 0.0229
Constant 0.734 ± 0.0 AP 0.272 ± 0.0 0.377 ± 0.0 0.168 ± 0.0
Weighted ERM 0.808 ± 0.0246 AP 0.0361 ± 0.0108 0.0284 ± 0.0091 -0.0438 ± 0.0129
Constrained 0.775 ± 0.015 AP 0.025 ± 0.019 0.031 ± 0.025 0.019 ± 0.014
Reduction 0.8521 ± 0.0075 AP 0.055 ± 0.0197 0.0426 ± 0.0147 -0.0673 ± 0.0253
FairGrad 0.814 ± 0.0102 AP 0.0403 ± 0.0181 0.0316 ± 0.0147 -0.049 ± 0.0218

Unconstrained 0.8035 ± 0.0212 Eodds 0.2152 ± 0.0215 0.1038 ± 0.0231 -0.396 ± 0.0433
Constant 0.677 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8045 ± 0.0271 Eodds 0.2086 ± 0.0357 0.0974 ± 0.0165 -0.3747 ± 0.0679
Constrained 0.751 ± 0.014 Eodds 0.036 ± 0.012 0.088 ± 0.043 0.007 ± 0.004
BiFair 0.76 ± 0.03 Eodds 0.082 ± 0.048 0.048 ± 0.03 -0.163 ± 0.092
FairBatch 0.8306 ± 0.0237 Eodds 0.2015 ± 0.035 0.1054 ± 0.0333 -0.3704 ± 0.067
Reduction 0.6842 ± 0.0339 Eodds 0.0611 ± 0.0281 0.0349 ± 0.0111 -0.1291 ± 0.047
FairGrad 0.7634 ± 0.03 Eodds 0.0938 ± 0.0144 0.0491 ± 0.016 -0.1927 ± 0.0362

Unconstrained 0.804 ± 0.0215 Eopp 0.1215 ± 0.0183 0.1009 ± 0.0238 -0.3852 ± 0.0549
Constant 0.697 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8171 ± 0.0213 Eopp 0.1209 ± 0.0154 0.0985 ± 0.0106 -0.3851 ± 0.0599
Constrained 0.762 ± 0.021 Eopp 0.044 ± 0.021 0.138 ± 0.066 0.0 ± 0.0
BiFair 0.806 ± 0.01 Eopp 0.085 ± 0.038 0.073 ± 0.042 -0.268 ± 0.112
FairBatch 0.8225 ± 0.0252 Eopp 0.1126 ± 0.0259 0.1002 ± 0.0281 -0.3501 ± 0.0821
Reduction 0.6747 ± 0.0488 Eopp 0.0283 ± 0.022 0.0413 ± 0.0375 -0.0718 ± 0.0829
FairGrad 0.7755 ± 0.0233 Eopp 0.0609 ± 0.0149 0.0507 ± 0.0166 -0.193 ± 0.0456
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TABLE A.6: Results for the Crime dataset with Non Linear Models.
All the results are averaged over 5 runs. Here MEAN ABS., MAXI-
MUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the

worst-off group, respectively.

METHOD (NL) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8165 ± 0.019 AP 0.0535 ± 0.0199 0.0423 ± 0.0155 -0.0648 ± 0.0251
Constant 0.734 ± 0.0 AP 0.272 ± 0.0 0.377 ± 0.0 0.168 ± 0.0
Weighted ERM 0.8271 ± 0.0114 AP 0.0483 ± 0.0167 0.0382 ± 0.0139 -0.0584 ± 0.02
Adversarial 0.809 ± 0.0175 AP 0.0592 ± 0.0173 0.0464 ± 0.0135 -0.0719 ± 0.0223
Reduction 0.8501 ± 0.0096 AP 0.0559 ± 0.0215 0.0432 ± 0.0166 -0.0685 ± 0.0269
FairGrad 0.822 ± 0.0203 AP 0.0434 ± 0.0206 0.0341 ± 0.0162 -0.0526 ± 0.0252

Unconstrained 0.8115 ± 0.014 Eodds 0.1635 ± 0.0395 0.0854 ± 0.014 -0.3326 ± 0.0649
Constant 0.677 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8135 ± 0.0137 Eodds 0.1739 ± 0.0394 0.0861 ± 0.0212 -0.3309 ± 0.0778
Adversarial 0.791 ± 0.007 Eodds 0.1464 ± 0.0168 0.0797 ± 0.0192 -0.3001 ± 0.0296
BiFair 0.793 ± 0.022 Eodds 0.161 ± 0.032 0.091 ± 0.025 -0.339 ± 0.048
FairBatch 0.8391 ± 0.0195 Eodds 0.189 ± 0.0368 0.1106 ± 0.0313 -0.3828 ± 0.0671
Reduction 0.7258 ± 0.0267 Eodds 0.0743 ± 0.0409 0.0553 ± 0.014 -0.1556 ± 0.0976
FairGrad 0.7734 ± 0.0251 Eodds 0.0982 ± 0.0513 0.0511 ± 0.0179 -0.2016 ± 0.0771

Unconstrained 0.817 ± 0.0152 Eopp 0.1044 ± 0.0133 0.0856 ± 0.0123 -0.3321 ± 0.0489
Constant 0.697 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8205 ± 0.0184 Eopp 0.1159 ± 0.0191 0.0955 ± 0.019 -0.368 ± 0.0642
Adversarial 0.795 ± 0.0148 Eopp 0.0959 ± 0.0153 0.0802 ± 0.0227 -0.3036 ± 0.042
BiFair 0.807 ± 0.025 Eopp 0.11 ± 0.031 0.091 ± 0.031 -0.351 ± 0.097
FairBatch 0.8411 ± 0.0177 Eopp 0.1217 ± 0.0277 0.1083 ± 0.0311 -0.3784 ± 0.0891
Reduction 0.6887 ± 0.0271 Eopp 0.0282 ± 0.0159 0.034 ± 0.0281 -0.0788 ± 0.0619
FairGrad 0.7799 ± 0.0243 Eopp 0.0675 ± 0.0179 0.0556 ± 0.0147 -0.2143 ± 0.0592
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FIGURE A.4: Results for the Adult with multiple groups dataset with
different fairness measures.

TABLE A.7: Results for the Adult with multiple groups dataset with
Linear Models. All the results are averaged over 5 runs. Here MEAN
ABS., MAXIMUM, and MINIMUM represent the mean absolute fair-
ness value, the fairness level of the most well-off group, and the fair-

ness level of the worst-off group, respectively.

METHOD (L) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8451 ± 0.0042 AP 0.0559 ± 0.0047 0.0985 ± 0.0111 -0.042 ± 0.003
Constant 0.754 ± 0.0 AP 0.097 ± 0.0 0.159 ± 0.0 0.024 ± 0.0
Weighted ERM 0.8454 ± 0.0032 AP 0.0562 ± 0.0042 0.0993 ± 0.0117 -0.0426 ± 0.0018
Reduction 0.6436 ± 0.0178 AP 0.049 ± 0.01 0.0493 ± 0.017 -0.0661 ± 0.0113
FairGrad 0.807 ± 0.0022 AP 0.0148 ± 0.0041 0.0256 ± 0.0048 -0.0107 ± 0.0045

Unconstrained 0.844 ± 0.0011 Eodds 0.0558 ± 0.0062 0.0578 ± 0.0069 -0.1586 ± 0.0621
Constant 0.75 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8448 ± 0.0038 Eodds 0.0586 ± 0.0097 0.0567 ± 0.0048 -0.1702 ± 0.0776
FairBatch 0.8396 ± 0.0034 Eodds 0.0308 ± 0.0057 0.0565 ± 0.0116 -0.0641 ± 0.0234
Reduction 0.6932 ± 0.0264 Eodds 0.0446 ± 0.0048 0.0806 ± 0.043 -0.0896 ± 0.0278
FairGrad 0.8162 ± 0.0052 Eodds 0.0197 ± 0.0118 0.0373 ± 0.0233 -0.0493 ± 0.0403

Unconstrained 0.8431 ± 0.002 Eopp 0.0391 ± 0.0052 0.0297 ± 0.0131 -0.169 ± 0.0565
Constant 0.762 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8443 ± 0.0038 Eopp 0.0415 ± 0.01 0.0316 ± 0.0145 -0.1767 ± 0.0797
FairBatch 0.8392 ± 0.004 Eopp 0.0219 ± 0.0055 0.05 ± 0.0133 -0.0749 ± 0.0285
Reduction 0.7615 ± 0.0357 Eopp 0.026 ± 0.0189 0.0487 ± 0.0378 -0.1115 ± 0.0867
FairGrad 0.834 ± 0.0044 Eopp 0.0201 ± 0.0099 0.0442 ± 0.0415 -0.0679 ± 0.0808



A.4. Extended Experiments 121

TABLE A.8: Results for the Adult with multiple groups dataset with
Non Linear Models. All the results are averaged over 5 runs. Here
MEAN ABS., MAXIMUM, and MINIMUM represent the mean abso-
lute fairness value, the fairness level of the most well-off group, and

the fairness level of the worst-off group, respectively.

METHOD (NL) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8427 ± 0.0041 AP 0.0546 ± 0.0026 0.0966 ± 0.0098 -0.0421 ± 0.0022
Constant 0.754 ± 0.0 AP 0.097 ± 0.0 0.159 ± 0.0 0.024 ± 0.0
Weighted ERM 0.8408 ± 0.0031 AP 0.0575 ± 0.0035 0.101 ± 0.0106 -0.0443 ± 0.0026
Adversarial 0.8358 ± 0.0043 AP 0.0527 ± 0.0028 0.0889 ± 0.0066 -0.0401 ± 0.0022
Reduction 0.7025 ± 0.0144 AP 0.0388 ± 0.0066 0.054 ± 0.0151 -0.0525 ± 0.0099
FairGrad 0.7991 ± 0.0036 AP 0.013 ± 0.0051 0.0257 ± 0.0138 -0.0125 ± 0.0043

Unconstrained 0.8347 ± 0.0129 Eodds 0.0523 ± 0.0126 0.0495 ± 0.0166 -0.1772 ± 0.0512
Constant 0.75 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8199 ± 0.002 Eodds 0.0287 ± 0.0076 0.0274 ± 0.0177 -0.1013 ± 0.0543
Adversarial 0.8251 ± 0.0064 Eodds 0.0223 ± 0.0065 0.0451 ± 0.0308 -0.0667 ± 0.0559
FairBatch 0.8212 ± 0.0103 Eodds 0.0806 ± 0.0137 0.0522 ± 0.0076 -0.2545 ± 0.0525
Reduction 0.7649 ± 0.0241 Eodds 0.0386 ± 0.011 0.044 ± 0.02 -0.0954 ± 0.0465
FairGrad 0.8128 ± 0.0102 Eodds 0.0196 ± 0.0061 0.0392 ± 0.0176 -0.0443 ± 0.0342

Unconstrained 0.8373 ± 0.0123 Eopp 0.0331 ± 0.008 0.0183 ± 0.0045 -0.1587 ± 0.0643
Constant 0.762 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8216 ± 0.0031 Eopp 0.0245 ± 0.008 0.0243 ± 0.0196 -0.1016 ± 0.0543
Adversarial 0.8343 ± 0.0036 Eopp 0.0209 ± 0.0093 0.0327 ± 0.013 -0.0927 ± 0.0589
FairBatch 0.821 ± 0.0097 Eopp 0.067 ± 0.0168 0.047 ± 0.0113 -0.2484 ± 0.0535
Reduction 0.8156 ± 0.0204 Eopp 0.0259 ± 0.0209 0.0472 ± 0.0325 -0.0968 ± 0.1117
FairGrad 0.8341 ± 0.0053 Eopp 0.0176 ± 0.0059 0.0302 ± 0.0272 -0.0731 ± 0.0543
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FIGURE A.5: Results for the Compas dataset with different fairness
measures.

TABLE A.9: Results for the Compas dataset with Linear Models. All
the results are averaged over 5 runs. Here MEAN ABS., MAXIMUM,
and MINIMUM represent the mean absolute fairness value, the fair-
ness level of the most well-off group, and the fairness level of the

worst-off group, respectively.

METHOD (L) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.6644 ± 0.0137 AP 0.0091 ± 0.0025 0.0076 ± 0.0031 -0.0107 ± 0.004
Constant 0.545 ± 0.0 AP 0.066 ± 0.0 0.085 ± 0.0 0.047 ± 0.0
Weighted ERM 0.6671 ± 0.0169 AP 0.0088 ± 0.004 0.0061 ± 0.0028 -0.0115 ± 0.0051
Constrained 0.65 ± 0.012 AP 0.014 ± 0.005 0.018 ± 0.006 0.009 ± 0.003
Reduction 0.6141 ± 0.011 AP 0.0107 ± 0.0064 0.009 ± 0.006 -0.0124 ± 0.0086
FairGrad 0.6708 ± 0.0166 AP 0.0083 ± 0.0068 0.0057 ± 0.0048 -0.0108 ± 0.0088

Unconstrained 0.6636 ± 0.0104 Eodds 0.0827 ± 0.0165 0.0758 ± 0.0133 -0.1553 ± 0.0259
Constant 0.527 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.6685 ± 0.0073 Eodds 0.082 ± 0.0137 0.0697 ± 0.0115 -0.1618 ± 0.0222
Constrained 0.564 ± 0.014 Eodds 0.007 ± 0.004 0.014 ± 0.011 0.002 ± 0.001
BiFair 0.672 ± 0.021 Eodds 0.076 ± 0.023 0.071 ± 0.025 -0.15 ± 0.039
FairBatch 0.6847 ± 0.0175 Eodds 0.09 ± 0.0094 0.0854 ± 0.0149 -0.1727 ± 0.0304
Reduction 0.5493 ± 0.027 Eodds 0.029 ± 0.0058 0.0268 ± 0.0062 -0.0622 ± 0.0219
FairGrad 0.6557 ± 0.0075 Eodds 0.0593 ± 0.0128 0.0524 ± 0.0102 -0.1241 ± 0.0202

Unconstrained 0.6609 ± 0.0106 Eopp 0.052 ± 0.0107 0.062 ± 0.0145 -0.1461 ± 0.0286
Constant 0.55 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.6695 ± 0.0055 Eopp 0.0554 ± 0.0074 0.0659 ± 0.0107 -0.1557 ± 0.0194
Constrained 0.565 ± 0.015 Eopp 0.004 ± 0.003 0.011 ± 0.009 0.0 ± 0.0
BiFair 0.68 ± 0.013 Eopp 0.054 ± 0.016 0.064 ± 0.022 -0.15 ± 0.044
FairBatch 0.6865 ± 0.0171 Eopp 0.0618 ± 0.0134 0.0715 ± 0.0173 -0.1755 ± 0.0364
Reduction 0.5828 ± 0.0457 Eopp 0.0252 ± 0.0178 0.03 ± 0.0216 -0.0707 ± 0.0498
FairGrad 0.6565 ± 0.0152 Eopp 0.0467 ± 0.0046 0.0554 ± 0.0071 -0.1313 ± 0.0119



A.4. Extended Experiments 123

TABLE A.10: Results for the Compas dataset with Non Linear Models.
All the results are averaged over 5 runs. Here MEAN ABS., MAXI-
MUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the

worst-off group, respectively.

METHOD (NL) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.6593 ± 0.0192 AP 0.0119 ± 0.0072 0.0095 ± 0.004 -0.0144 ± 0.0107
Constant 0.545 ± 0.0 AP 0.066 ± 0.0 0.085 ± 0.0 0.047 ± 0.0
Weighted ERM 0.6687 ± 0.0138 AP 0.0127 ± 0.0061 0.011 ± 0.0034 -0.0145 ± 0.0099
Adversarial 0.6583 ± 0.0157 AP 0.0078 ± 0.0051 0.0066 ± 0.0044 -0.009 ± 0.0069
Reduction 0.6287 ± 0.0117 AP 0.0118 ± 0.0024 0.0103 ± 0.0062 -0.0134 ± 0.0024
FairGrad 0.6672 ± 0.0099 AP 0.0113 ± 0.005 0.0095 ± 0.0023 -0.0131 ± 0.0082

Unconstrained 0.6562 ± 0.0154 Eodds 0.0782 ± 0.014 0.0715 ± 0.0136 -0.1521 ± 0.0277
Constant 0.527 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.6615 ± 0.0175 Eodds 0.0789 ± 0.0131 0.0726 ± 0.0077 -0.1496 ± 0.0313
Adversarial 0.6504 ± 0.0157 Eodds 0.059 ± 0.0138 0.0549 ± 0.0107 -0.1294 ± 0.0183
BiFair 0.661 ± 0.009 Eodds 0.07 ± 0.013 0.068 ± 0.018 -0.133 ± 0.016
FairBatch 0.6792 ± 0.0086 Eodds 0.071 ± 0.0083 0.0663 ± 0.0091 -0.1508 ± 0.0304
Reduction 0.5631 ± 0.0072 Eodds 0.0214 ± 0.0112 0.024 ± 0.0102 -0.0489 ± 0.0363
FairGrad 0.6457 ± 0.0088 Eodds 0.061 ± 0.0075 0.0564 ± 0.0065 -0.127 ± 0.0081

Unconstrained 0.6552 ± 0.0137 Eopp 0.0553 ± 0.0108 0.0659 ± 0.015 -0.1552 ± 0.0281
Constant 0.55 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.6604 ± 0.0163 Eopp 0.0519 ± 0.0111 0.0618 ± 0.0148 -0.1458 ± 0.0299
Adversarial 0.6494 ± 0.0148 Eopp 0.0472 ± 0.0072 0.0563 ± 0.0108 -0.1327 ± 0.0183
BiFair 0.669 ± 0.01 Eopp 0.042 ± 0.02 0.05 ± 0.025 -0.117 ± 0.055
FairBatch 0.6802 ± 0.0114 Eopp 0.0536 ± 0.0133 0.062 ± 0.0167 -0.1526 ± 0.0367
Reduction 0.5801 ± 0.0258 Eopp 0.025 ± 0.0119 0.0296 ± 0.0145 -0.0702 ± 0.0333
FairGrad 0.6586 ± 0.0118 Eopp 0.0476 ± 0.0056 0.0563 ± 0.0067 -0.1339 ± 0.0163
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FIGURE A.6: Results for the Dutch dataset with different fairness
measures.

TABLE A.11: Results for the Dutch dataset with Linear Models. All the
results are averaged over 5 runs. Here MEAN ABS., MAXIMUM, and
MINIMUM represent the mean absolute fairness value, the fairness
level of the most well-off group, and the fairness level of the worst-off

group, respectively.

METHOD (L) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8049 ± 0.007 AP 0.0281 ± 0.006 0.0281 ± 0.006 -0.0282 ± 0.0061
Constant 0.524 ± 0.0 AP 0.151 ± 0.0 0.152 ± 0.0 0.15 ± 0.0
Weighted ERM 0.8052 ± 0.0073 AP 0.028 ± 0.006 0.028 ± 0.006 -0.0281 ± 0.006
Constrained 0.799 ± 0.009 AP 0.009 ± 0.006 0.009 ± 0.006 0.009 ± 0.006
Reduction 0.723 ± 0.0341 AP 0.0367 ± 0.0172 0.0368 ± 0.0172 -0.0367 ± 0.0172
FairGrad 0.8042 ± 0.0046 AP 0.0048 ± 0.0033 0.0048 ± 0.0033 -0.0048 ± 0.0032

Unconstrained 0.8071 ± 0.0072 Eodds 0.0212 ± 0.0018 0.0322 ± 0.009 -0.0256 ± 0.0052
Constant 0.522 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8074 ± 0.0074 Eodds 0.0213 ± 0.002 0.032 ± 0.0086 -0.0254 ± 0.0051
Constrained 0.79 ± 0.005 Eodds 0.005 ± 0.003 0.009 ± 0.005 0.002 ± 0.002
BiFair 0.804 ± 0.008 Eodds 0.021 ± 0.003 0.025 ± 0.004 -0.033 ± 0.01
FairBatch 0.809 ± 0.0096 Eodds 0.018 ± 0.0016 0.0262 ± 0.0039 -0.0211 ± 0.004
Reduction 0.6716 ± 0.0251 Eodds 0.0226 ± 0.006 0.0333 ± 0.0107 -0.0404 ± 0.0213
FairGrad 0.7978 ± 0.0064 Eodds 0.0053 ± 0.0019 0.007 ± 0.0019 -0.009 ± 0.0049

Unconstrained 0.8129 ± 0.0021 Eopp 0.0075 ± 0.0034 0.0107 ± 0.0049 -0.0193 ± 0.0086
Constant 0.524 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8077 ± 0.0078 Eopp 0.0076 ± 0.0034 0.011 ± 0.0049 -0.0196 ± 0.0087
Constrained 0.814 ± 0.003 Eopp 0.003 ± 0.002 0.007 ± 0.006 0.0 ± 0.0
BiFair 0.808 ± 0.01 Eopp 0.005 ± 0.005 0.008 ± 0.007 -0.012 ± 0.012
FairBatch 0.8149 ± 0.0117 Eopp 0.0031 ± 0.0014 0.0044 ± 0.002 -0.0079 ± 0.0036
Reduction 0.7397 ± 0.0176 Eopp 0.026 ± 0.0058 0.0669 ± 0.0149 -0.0372 ± 0.0083
FairGrad 0.8144 ± 0.0021 Eopp 0.004 ± 0.0037 0.006 ± 0.0052 -0.0099 ± 0.0097
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TABLE A.12: Results for the Dutch dataset with Non Linear Models.
All the results are averaged over 5 runs. Here MEAN ABS., MAXI-
MUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the

worst-off group, respectively.

METHOD (NL) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.7937 ± 0.0052 AP 0.0252 ± 0.0091 0.0252 ± 0.009 -0.0252 ± 0.0091
Constant 0.524 ± 0.0 AP 0.151 ± 0.0 0.152 ± 0.0 0.15 ± 0.0
Weighted ERM 0.7954 ± 0.0023 AP 0.0257 ± 0.0089 0.0257 ± 0.0089 -0.0257 ± 0.0089
Adversarial 0.7939 ± 0.0043 AP 0.0232 ± 0.0071 0.0232 ± 0.0071 -0.0232 ± 0.007
Reduction 0.7421 ± 0.0168 AP 0.0227 ± 0.0141 0.0227 ± 0.0142 -0.0227 ± 0.0141
FairGrad 0.8043 ± 0.0071 AP 0.0052 ± 0.0026 0.0052 ± 0.0026 -0.0052 ± 0.0026

Unconstrained 0.7914 ± 0.006 Eodds 0.0162 ± 0.0062 0.0193 ± 0.0071 -0.0263 ± 0.0142
Constant 0.522 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7958 ± 0.0027 Eodds 0.0168 ± 0.0053 0.0202 ± 0.0048 -0.0261 ± 0.0131
Adversarial 0.7928 ± 0.0077 Eodds 0.0148 ± 0.0041 0.0202 ± 0.0066 -0.0211 ± 0.006
BiFair 0.819 ± 0.003 Eodds 0.021 ± 0.004 0.03 ± 0.005 -0.028 ± 0.007
FairBatch 0.8091 ± 0.012 Eodds 0.018 ± 0.0021 0.0254 ± 0.0058 -0.0248 ± 0.0062
Reduction 0.7144 ± 0.0176 Eodds 0.0253 ± 0.0073 0.0347 ± 0.0123 -0.0323 ± 0.0064
FairGrad 0.8013 ± 0.0073 Eodds 0.0069 ± 0.0031 0.0099 ± 0.0038 -0.0095 ± 0.0068

Unconstrained 0.8149 ± 0.0034 Eopp 0.0055 ± 0.0024 0.0079 ± 0.0035 -0.014 ± 0.0061
Constant 0.524 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8179 ± 0.0044 Eopp 0.0066 ± 0.0026 0.0095 ± 0.0037 -0.017 ± 0.0065
Adversarial 0.8156 ± 0.0038 Eopp 0.004 ± 0.0039 0.0058 ± 0.0057 -0.0102 ± 0.01
BiFair 0.819 ± 0.003 Eopp 0.009 ± 0.002 0.012 ± 0.003 -0.022 ± 0.006
FairBatch 0.8174 ± 0.0031 Eopp 0.002 ± 0.0012 0.0029 ± 0.0017 -0.0052 ± 0.0031
Reduction 0.7571 ± 0.0061 Eopp 0.0219 ± 0.0021 0.0563 ± 0.0054 -0.0313 ± 0.0028
FairGrad 0.8158 ± 0.0051 Eopp 0.0036 ± 0.0031 0.0051 ± 0.0045 -0.0092 ± 0.0079
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FIGURE A.7: Results for the German dataset with different fairness
measures.

TABLE A.13: Results for the German dataset with Linear Models.
All the results are averaged over 5 runs. Here MEAN ABS., MAXI-
MUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the

worst-off group, respectively.

METHOD (L) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.692 ± 0.0232 AP 0.0226 ± 0.0181 0.0169 ± 0.0111 -0.0284 ± 0.0256
Constant 0.73 ± 0.0 AP 0.05 ± 0.0 0.069 ± 0.0 0.031 ± 0.0
Weighted ERM 0.707 ± 0.0344 AP 0.0243 ± 0.0191 0.0186 ± 0.0113 -0.0299 ± 0.027
Constrained 0.733 ± 0.033 AP 0.024 ± 0.025 0.032 ± 0.033 0.015 ± 0.017
Reduction 0.631 ± 0.0396 AP 0.0323 ± 0.0139 0.0286 ± 0.0202 -0.036 ± 0.0185
FairGrad 0.744 ± 0.0357 AP 0.0274 ± 0.0212 0.0215 ± 0.0123 -0.0334 ± 0.0306

Unconstrained 0.69 ± 0.0266 Eodds 0.0316 ± 0.0207 0.0499 ± 0.0341 -0.0618 ± 0.0471
Constant 0.7 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.709 ± 0.0296 Eodds 0.0324 ± 0.0338 0.0461 ± 0.046 -0.055 ± 0.0626
Constrained 0.739 ± 0.027 Eodds 0.037 ± 0.012 0.072 ± 0.025 0.01 ± 0.004
BiFair 0.698 ± 0.039 Eodds 0.033 ± 0.01 0.052 ± 0.023 -0.059 ± 0.029
FairBatch 0.7 ± 0.0247 Eodds 0.0706 ± 0.0184 0.1102 ± 0.0489 -0.1134 ± 0.0518
Reduction 0.707 ± 0.0335 Eodds 0.0361 ± 0.0175 0.0716 ± 0.056 -0.0576 ± 0.0266
FairGrad 0.734 ± 0.0358 Eodds 0.0464 ± 0.0201 0.0784 ± 0.0232 -0.0721 ± 0.0496

Unconstrained 0.704 ± 0.0193 Eopp 0.0053 ± 0.0035 0.0096 ± 0.004 -0.0116 ± 0.0117
Constant 0.7 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.706 ± 0.0328 Eopp 0.0048 ± 0.0039 0.0097 ± 0.0091 -0.0096 ± 0.0092
Constrained 0.741 ± 0.019 Eopp 0.005 ± 0.002 0.015 ± 0.006 0.0 ± 0.0
BiFair 0.703 ± 0.037 Eopp 0.007 ± 0.006 0.014 ± 0.015 -0.013 ± 0.015
FairBatch 0.718 ± 0.0229 Eopp 0.0172 ± 0.0124 0.0272 ± 0.0187 -0.0416 ± 0.0396
Reduction 0.717 ± 0.0441 Eopp 0.0183 ± 0.014 0.036 ± 0.0254 -0.0372 ± 0.0407
FairGrad 0.723 ± 0.0425 Eopp 0.0125 ± 0.0043 0.0212 ± 0.0087 -0.0288 ± 0.0162
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TABLE A.14: Results for the German dataset with Non Linear Models.
All the results are averaged over 5 runs. Here MEAN ABS., MAXI-
MUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the

worst-off group, respectively.

METHOD (NL) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.695 ± 0.0122 AP 0.0426 ± 0.0241 0.0314 ± 0.0144 -0.0537 ± 0.0345
Constant 0.73 ± 0.0 AP 0.05 ± 0.0 0.069 ± 0.0 0.031 ± 0.0
Weighted ERM 0.703 ± 0.0183 AP 0.035 ± 0.0237 0.0265 ± 0.0138 -0.0436 ± 0.0338
Adversarial 0.681 ± 0.0156 AP 0.041 ± 0.0254 0.0327 ± 0.0165 -0.0492 ± 0.0368
Reduction 0.666 ± 0.0198 AP 0.0173 ± 0.0171 0.0131 ± 0.0115 -0.0215 ± 0.0231
FairGrad 0.714 ± 0.026 AP 0.037 ± 0.0222 0.0291 ± 0.0119 -0.0448 ± 0.0331

Unconstrained 0.689 ± 0.0213 Eodds 0.0089 ± 0.0052 0.0117 ± 0.0045 -0.0144 ± 0.0116
Constant 0.7 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.703 ± 0.034 Eodds 0.0211 ± 0.0106 0.0305 ± 0.0186 -0.0372 ± 0.0158
Adversarial 0.684 ± 0.0097 Eodds 0.0184 ± 0.0122 0.0263 ± 0.0201 -0.0339 ± 0.0237
BiFair 0.725 ± 0.031 Eodds 0.016 ± 0.015 0.021 ± 0.018 -0.027 ± 0.018
FairBatch 0.692 ± 0.026 Eodds 0.0489 ± 0.0382 0.0607 ± 0.0446 -0.0882 ± 0.0983
Reduction 0.706 ± 0.0272 Eodds 0.0489 ± 0.0217 0.0742 ± 0.0266 -0.0717 ± 0.051
FairGrad 0.695 ± 0.0237 Eodds 0.0095 ± 0.004 0.0121 ± 0.0046 -0.0175 ± 0.0076

Unconstrained 0.686 ± 0.0215 Eopp 0.0124 ± 0.0075 0.0227 ± 0.0128 -0.0269 ± 0.0227
Constant 0.7 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7 ± 0.0261 Eopp 0.0066 ± 0.0057 0.0131 ± 0.0071 -0.0133 ± 0.0173
Adversarial 0.687 ± 0.0129 Eopp 0.0085 ± 0.0051 0.0203 ± 0.0147 -0.0137 ± 0.0099
BiFair 0.727 ± 0.023 Eopp 0.015 ± 0.013 0.023 ± 0.019 -0.036 ± 0.038
FairBatch 0.697 ± 0.025 Eopp 0.0084 ± 0.0079 0.0235 ± 0.0226 -0.0102 ± 0.0094
Reduction 0.701 ± 0.0397 Eopp 0.0102 ± 0.008 0.0242 ± 0.024 -0.0167 ± 0.0134
FairGrad 0.696 ± 0.0166 Eopp 0.0052 ± 0.0038 0.0093 ± 0.0064 -0.0115 ± 0.0108
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FIGURE A.8: Results for the Gaussian dataset with different fairness
measures.

TABLE A.15: Results for the Gaussian dataset with Linear Models.
All the results are averaged over 5 runs. Here MEAN ABS., MAXI-
MUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the

worst-off group, respectively.

METHOD (L) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8689 ± 0.0037 AP 0.0966 ± 0.0029 0.0957 ± 0.0028 -0.0974 ± 0.0036
Constant 0.497 ± 0.0 AP 0.001 ± 0.0 0.001 ± 0.0 0.001 ± 0.0
Weighted ERM 0.869 ± 0.0039 AP 0.0966 ± 0.0026 0.0957 ± 0.0023 -0.0974 ± 0.0034
Constrained 0.799 ± 0.004 AP 0.003 ± 0.002 0.003 ± 0.002 0.003 ± 0.002
Reduction 0.7891 ± 0.0266 AP 0.0575 ± 0.0114 0.057 ± 0.0118 -0.0579 ± 0.0111
FairGrad 0.8516 ± 0.0064 AP 0.0558 ± 0.0094 0.0553 ± 0.0093 -0.0562 ± 0.0096

Unconstrained 0.869 ± 0.0037 Eodds 0.0971 ± 0.0026 0.1872 ± 0.0067 -0.1896 ± 0.0056
Constant 0.499 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.869 ± 0.0039 Eodds 0.0971 ± 0.0023 0.1869 ± 0.0063 -0.1894 ± 0.0051
Constrained 0.497 ± 0.003 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
BiFair 0.873 ± 0.004 Eodds 0.113 ± 0.004 0.21 ± 0.007 -0.213 ± 0.004
FairBatch 0.8649 ± 0.0025 Eodds 0.0902 ± 0.0035 0.1717 ± 0.0046 -0.1719 ± 0.0079
Reduction 0.6241 ± 0.054 Eodds 0.0632 ± 0.0164 0.0732 ± 0.0198 -0.074 ± 0.0226
FairGrad 0.8459 ± 0.01 Eodds 0.0786 ± 0.0051 0.1504 ± 0.0102 -0.1527 ± 0.0142

Unconstrained 0.8598 ± 0.0121 Eopp 0.0928 ± 0.0012 0.1845 ± 0.0041 -0.1869 ± 0.0041
Constant 0.498 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8599 ± 0.0121 Eopp 0.0931 ± 0.0011 0.1849 ± 0.004 -0.1874 ± 0.004
Constrained 0.698 ± 0.005 Eopp 0.004 ± 0.002 0.008 ± 0.005 0.0 ± 0.0
BiFair 0.863 ± 0.009 Eopp 0.1 ± 0.003 0.2 ± 0.007 -0.202 ± 0.006
FairBatch 0.8635 ± 0.0024 Eopp 0.085 ± 0.0023 0.17 ± 0.0032 -0.1702 ± 0.0065
Reduction 0.6251 ± 0.0355 Eopp 0.0189 ± 0.0138 0.0379 ± 0.0271 -0.0378 ± 0.0282
FairGrad 0.8431 ± 0.0065 Eopp 0.0752 ± 0.0043 0.1494 ± 0.0087 -0.1514 ± 0.0094
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TABLE A.16: Results for the Gaussian dataset with Non Linear Models.
All the results are averaged over 5 runs. Here MEAN ABS., MAXI-
MUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the

worst-off group, respectively.

METHOD (NL) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.88 ± 0.0038 AP 0.0897 ± 0.0045 0.0888 ± 0.0035 -0.0905 ± 0.0055
Constant 0.497 ± 0.0 AP 0.001 ± 0.0 0.001 ± 0.0 0.001 ± 0.0
Weighted ERM 0.8809 ± 0.0048 AP 0.0903 ± 0.0045 0.0894 ± 0.0033 -0.0911 ± 0.0057
Adversarial 0.8725 ± 0.0115 AP 0.0858 ± 0.0077 0.0851 ± 0.0076 -0.0866 ± 0.0081
Reduction 0.718 ± 0.0251 AP 0.0694 ± 0.0237 0.0699 ± 0.0236 -0.0689 ± 0.0239
FairGrad 0.8542 ± 0.0047 AP 0.0352 ± 0.0047 0.0349 ± 0.0048 -0.0355 ± 0.0046

Unconstrained 0.8814 ± 0.0024 Eodds 0.093 ± 0.0032 0.1807 ± 0.0066 -0.183 ± 0.005
Constant 0.499 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8821 ± 0.0031 Eodds 0.0939 ± 0.0013 0.1826 ± 0.0042 -0.185 ± 0.0033
Adversarial 0.8775 ± 0.0091 Eodds 0.0852 ± 0.007 0.1643 ± 0.0125 -0.1666 ± 0.0146
BiFair 0.868 ± 0.013 Eodds 0.092 ± 0.011 0.167 ± 0.035 -0.168 ± 0.031
FairBatch 0.8735 ± 0.0032 Eodds 0.0749 ± 0.0041 0.1455 ± 0.0059 -0.1456 ± 0.0056
Reduction 0.7309 ± 0.0189 Eodds 0.0262 ± 0.0141 0.0438 ± 0.0257 -0.0435 ± 0.0265
FairGrad 0.8539 ± 0.0056 Eodds 0.0596 ± 0.0068 0.1013 ± 0.0147 -0.1025 ± 0.0144

Unconstrained 0.8801 ± 0.004 Eopp 0.0902 ± 0.0017 0.1792 ± 0.0041 -0.1816 ± 0.0053
Constant 0.498 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8805 ± 0.0046 Eopp 0.0912 ± 0.0008 0.1812 ± 0.0024 -0.1837 ± 0.0045
Adversarial 0.8754 ± 0.0086 Eopp 0.0808 ± 0.0066 0.1605 ± 0.0128 -0.1628 ± 0.0143
BiFair 0.88 ± 0.003 Eopp 0.086 ± 0.005 0.17 ± 0.013 -0.172 ± 0.009
FairBatch 0.874 ± 0.0035 Eopp 0.0733 ± 0.0029 0.1465 ± 0.0054 -0.1467 ± 0.0066
Reduction 0.6868 ± 0.0234 Eopp 0.0505 ± 0.0179 0.1015 ± 0.0359 -0.1005 ± 0.036
FairGrad 0.8543 ± 0.0082 Eopp 0.0517 ± 0.0095 0.1028 ± 0.0191 -0.1041 ± 0.0192
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FIGURE A.9: Results for the Twitter Sentiment dataset with different
fairness measures.

TABLE A.17: Results for the Twitter Sentiment dataset with Linear
Models. All the results are averaged over 5 runs. Here MEAN ABS.,
MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness

level of the worst-off group, respectively.

METHOD (L) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.7211 ± 0.004 AP 0.0426 ± 0.0011 0.0426 ± 0.0011 -0.0426 ± 0.0011
Constant 0.5 ± 0.0 AP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7212 ± 0.0044 AP 0.0426 ± 0.0011 0.0426 ± 0.0011 -0.0426 ± 0.0011
Constrained 0.72 ± 0.002 AP 0.04 ± 0.003 0.04 ± 0.003 0.04 ± 0.003
Reduction 0.6008 ± 0.022 AP 0.0159 ± 0.0092 0.0159 ± 0.0092 -0.0159 ± 0.0092
FairGrad 0.7219 ± 0.0027 AP 0.0462 ± 0.0021 0.0462 ± 0.0021 -0.0462 ± 0.0021

Unconstrained 0.7237 ± 0.0054 Eodds 0.1867 ± 0.0052 0.2287 ± 0.0078 -0.2288 ± 0.0078
Constant 0.5 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7234 ± 0.0054 Eodds 0.188 ± 0.0033 0.2314 ± 0.0056 -0.2315 ± 0.0056
Constrained 0.72 ± 0.004 Eodds 0.012 ± 0.002 0.019 ± 0.005 0.006 ± 0.005
BiFair 0.736 ± 0.009 Eodds 0.041 ± 0.012 0.056 ± 0.022 -0.056 ± 0.022
FairBatch 0.7413 ± 0.0014 Eodds 0.1391 ± 0.0043 0.1755 ± 0.0084 -0.1756 ± 0.0084
Reduction 0.5962 ± 0.0113 Eodds 0.0213 ± 0.0108 0.0314 ± 0.0211 -0.0314 ± 0.021
FairGrad 0.7193 ± 0.0062 Eodds 0.0154 ± 0.0051 0.0204 ± 0.0098 -0.0204 ± 0.0098

Unconstrained 0.7244 ± 0.0051 Eopp 0.0719 ± 0.0012 0.1439 ± 0.0023 -0.1438 ± 0.0023
Constant 0.5 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.72 ± 0.0054 Eopp 0.0718 ± 0.0013 0.1437 ± 0.0026 -0.1436 ± 0.0026
Constrained 0.752 ± 0.004 Eopp 0.002 ± 0.001 0.005 ± 0.001 0.0 ± 0.0
BiFair 0.746 ± 0.009 Eopp 0.009 ± 0.004 0.017 ± 0.009 -0.017 ± 0.009
FairBatch 0.7426 ± 0.001 Eopp 0.0429 ± 0.0005 0.0858 ± 0.0011 -0.0858 ± 0.0011
Reduction 0.6381 ± 0.0039 Eopp 0.0712 ± 0.0117 0.1424 ± 0.0234 -0.1425 ± 0.0234
FairGrad 0.7518 ± 0.0069 Eopp 0.0024 ± 0.002 0.0049 ± 0.004 -0.0049 ± 0.004
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TABLE A.18: Results for the Twitter Sentiment dataset with Non Lin-
ear Models. All the results are averaged over 5 runs. Here MEAN ABS.,
MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness

level of the worst-off group, respectively.

METHOD (NL) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.715 ± 0.0043 AP 0.0392 ± 0.0055 0.0392 ± 0.0055 -0.0392 ± 0.0055
Constant 0.5 ± 0.0 AP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7183 ± 0.0042 AP 0.0427 ± 0.0019 0.0427 ± 0.0019 -0.0427 ± 0.0019
Adversarial 0.7385 ± 0.0075 AP 0.0367 ± 0.0027 0.0367 ± 0.0027 -0.0368 ± 0.0027
Reduction 0.6555 ± 0.0162 AP 0.0101 ± 0.0038 0.0101 ± 0.0038 -0.0101 ± 0.0038
FairGrad 0.7154 ± 0.0047 AP 0.0368 ± 0.0079 0.0367 ± 0.0078 -0.0368 ± 0.0079

Unconstrained 0.7167 ± 0.0126 Eodds 0.1854 ± 0.0061 0.2349 ± 0.0091 -0.235 ± 0.0091
Constant 0.5 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.718 ± 0.0137 Eodds 0.1882 ± 0.0062 0.2379 ± 0.0073 -0.2381 ± 0.0073
Adversarial 0.7393 ± 0.0024 Eodds 0.0382 ± 0.0056 0.06 ± 0.0151 -0.06 ± 0.0151
BiFair 0.74 ± 0.01 Eodds 0.039 ± 0.016 0.058 ± 0.017 -0.058 ± 0.017
FairBatch 0.7318 ± 0.004 Eodds 0.1313 ± 0.0057 0.1724 ± 0.0055 -0.1725 ± 0.0055
Reduction 0.6653 ± 0.0134 Eodds 0.0133 ± 0.0097 0.0199 ± 0.0172 -0.0199 ± 0.0173
FairGrad 0.717 ± 0.0082 Eodds 0.0109 ± 0.0027 0.0165 ± 0.0053 -0.0165 ± 0.0053

Unconstrained 0.7147 ± 0.0118 Eopp 0.0653 ± 0.0062 0.1306 ± 0.0124 -0.1306 ± 0.0124
Constant 0.5 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7074 ± 0.0158 Eopp 0.0672 ± 0.0062 0.1346 ± 0.0125 -0.1345 ± 0.0125
Adversarial 0.7471 ± 0.0042 Eopp 0.005 ± 0.0035 0.0099 ± 0.007 -0.0099 ± 0.007
BiFair 0.747 ± 0.009 Eopp 0.007 ± 0.005 0.013 ± 0.01 -0.013 ± 0.01
FairBatch 0.7359 ± 0.0011 Eopp 0.0368 ± 0.0012 0.0736 ± 0.0025 -0.0736 ± 0.0025
Reduction 0.681 ± 0.0078 Eopp 0.0436 ± 0.0071 0.0871 ± 0.0143 -0.0871 ± 0.0143
FairGrad 0.7401 ± 0.0059 Eopp 0.0049 ± 0.0041 0.0099 ± 0.0083 -0.0099 ± 0.0083
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FIGURE A.10: Results for the Folktables Adult dataset with different
fairness measures.

TABLE A.19: Results for the Folktables Adult dataset with Linear
Models. All the results are averaged over 5 runs. Here MEAN ABS.,
MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness

level of the worst-off group, respectively.

METHOD (L) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.7905 ± 0.0033 AP 0.0131 ± 0.0021 0.0123 ± 0.0021 -0.0138 ± 0.0022
Constant 0.666 ± 0.0 AP 0.053 ± 0.0 0.056 ± 0.0 0.051 ± 0.0
Weighted ERM 0.7906 ± 0.0032 AP 0.0127 ± 0.0023 0.0119 ± 0.0022 -0.0134 ± 0.0024
Constrained 0.467 ± 0.115 AP 0.036 ± 0.003 0.039 ± 0.003 0.034 ± 0.003
Reduction 0.733 ± 0.0106 AP 0.0653 ± 0.0114 0.0614 ± 0.011 -0.0692 ± 0.0118
FairGrad 0.7837 ± 0.0049 AP 0.0023 ± 0.0009 0.0023 ± 0.001 -0.0022 ± 0.0008

Unconstrained 0.789 ± 0.0026 Eodds 0.0301 ± 0.011 0.0377 ± 0.0153 -0.0458 ± 0.0184
Constant 0.667 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7886 ± 0.0032 Eodds 0.0294 ± 0.012 0.0364 ± 0.0169 -0.0443 ± 0.0206
Constrained 0.663 ± 0.032 Eodds 0.008 ± 0.003 0.013 ± 0.004 0.004 ± 0.002
BiFair 0.768 ± 0.007 Eodds 0.008 ± 0.005 0.011 ± 0.006 -0.011 ± 0.008
FairBatch 0.788 ± 0.0027 Eodds 0.0045 ± 0.0033 0.0069 ± 0.0065 -0.0063 ± 0.0049
Reduction 0.6922 ± 0.0346 Eodds 0.077 ± 0.0322 0.0761 ± 0.0257 -0.0903 ± 0.0378
FairGrad 0.7885 ± 0.0027 Eodds 0.0043 ± 0.0019 0.0073 ± 0.0037 -0.0068 ± 0.0045

Unconstrained 0.7902 ± 0.0038 Eopp 0.0094 ± 0.0031 0.0162 ± 0.0053 -0.0215 ± 0.0071
Constant 0.667 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7893 ± 0.0031 Eopp 0.009 ± 0.003 0.0155 ± 0.0051 -0.0206 ± 0.0069
Constrained 0.706 ± 0.002 Eopp 0.004 ± 0.0 0.01 ± 0.001 0.0 ± 0.0
BiFair 0.77 ± 0.002 Eopp 0.019 ± 0.01 0.033 ± 0.017 -0.044 ± 0.023
FairBatch 0.79 ± 0.0031 Eopp 0.0012 ± 0.0015 0.0022 ± 0.0026 -0.0026 ± 0.0034
Reduction 0.7388 ± 0.0144 Eopp 0.0409 ± 0.0111 0.0932 ± 0.025 -0.0704 ± 0.0194
FairGrad 0.7893 ± 0.0026 Eopp 0.0011 ± 0.0009 0.0024 ± 0.002 -0.0021 ± 0.0016
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TABLE A.20: Results for the Folktables Adult dataset with Non Linear
Models. All the results are averaged over 5 runs. Here MEAN ABS.,
MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness

level of the worst-off group, respectively.

METHOD (NL) ACCURACY ↑
FAIRNESS

MEASURE MEAN ABS. ³ MAXIMUM MINIMUM

Unconstrained 0.8037 ± 0.0037 AP 0.0131 ± 0.0017 0.0123 ± 0.0016 -0.0139 ± 0.0017
Constant 0.666 ± 0.0 AP 0.053 ± 0.0 0.056 ± 0.0 0.051 ± 0.0
Weighted ERM 0.8046 ± 0.0049 AP 0.0131 ± 0.0014 0.0123 ± 0.0014 -0.0138 ± 0.0015
Adversarial 0.8016 ± 0.0053 AP 0.0122 ± 0.0016 0.0115 ± 0.0015 -0.0129 ± 0.0016
Reduction 0.7293 ± 0.0133 AP 0.0991 ± 0.0149 0.0932 ± 0.0139 -0.1051 ± 0.016
FairGrad 0.7917 ± 0.0025 AP 0.0016 ± 0.0011 0.0016 ± 0.0011 -0.0016 ± 0.001

Unconstrained 0.7947 ± 0.0078 Eodds 0.0314 ± 0.0059 0.0373 ± 0.0058 -0.0454 ± 0.0066
Constant 0.667 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7902 ± 0.0049 Eodds 0.0327 ± 0.0061 0.04 ± 0.0067 -0.0488 ± 0.0077
Adversarial 0.806 ± 0.0047 Eodds 0.0035 ± 0.0018 0.0051 ± 0.0021 -0.0053 ± 0.0028
BiFair 0.793 ± 0.006 Eodds 0.006 ± 0.003 0.007 ± 0.003 -0.007 ± 0.004
FairBatch 0.8061 ± 0.0044 Eodds 0.0051 ± 0.0015 0.0087 ± 0.0048 -0.0084 ± 0.0029
Reduction 0.7416 ± 0.01 Eodds 0.0933 ± 0.022 0.1517 ± 0.0311 -0.1244 ± 0.026
FairGrad 0.7997 ± 0.0087 Eodds 0.0045 ± 0.0029 0.0067 ± 0.0045 -0.0071 ± 0.0058

Unconstrained 0.7902 ± 0.0044 Eopp 0.0097 ± 0.0026 0.0168 ± 0.0045 -0.0222 ± 0.006
Constant 0.667 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7947 ± 0.0022 Eopp 0.0105 ± 0.0027 0.0181 ± 0.0047 -0.024 ± 0.0062
Adversarial 0.8108 ± 0.0161 Eopp 0.0034 ± 0.0057 0.0041 ± 0.0057 -0.0095 ± 0.017
BiFair 0.793 ± 0.008 Eopp 0.028 ± 0.017 0.048 ± 0.029 -0.064 ± 0.039
FairBatch 0.8038 ± 0.0063 Eopp 0.0008 ± 0.0005 0.0014 ± 0.0009 -0.0018 ± 0.0012
Reduction 0.7334 ± 0.0155 Eopp 0.0573 ± 0.0116 0.1307 ± 0.0265 -0.0986 ± 0.0199
FairGrad 0.8058 ± 0.0035 Eopp 0.0014 ± 0.0014 0.003 ± 0.0031 -0.0026 ± 0.0024
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Appendix B

Fair NLP Models with Differentially
Private Text Encoders

In this appendix, we provide details that were omitted in Chapter 7. First, in Sec-
tion B.1, we describe in more details the error in privacy analysis of previous works.
We then describe experimental settings and extended results in Section B.2.

B.1 Error in Privacy Analysis of Previous Work

As briefly mentioned in Section 7.3.4, we found a critical error in the differential
privacy analysis made in previous work by Lyu, He, and Li (2020). This error is
then reproduced in subsequent work by Plant, Gkatzia, and Giuffrida (2021). In this
section, we explain this error and its consequences for the formal privacy guarantees
of these methods, and provide a correction.

Recall from Section 7.2 that to achieve ϵ-DP with the Laplace mechanism, one must
calibrate the scale of the Laplace noise needed to the L1 sensitivity of the encoded
representation (see Eq. 7.2). This sensitivity bounds the worst-case change in L1 norm
for any two arbitrary encoded user inputs x and x′ of dimension D.

In order to bound the L1 sensitivity, Lyu, He, and Li (2020) and Plant, Gkatzia, and
Giuffrida (2021) propose to bound each entry of the encoded input x ∈ R

D in the
[0, 1] range. Specifically, they normalize as follows:

x← x−min(x)/(max(x)−min(x)) (B.1)

where min(x) and max(x) are respectively the minimum and maximum values in the
vector x. Lyu, He, and Li (2020) and Plant, Gkatzia, and Giuffrida (2021) incorrectly
claim that this allows to bound the L1 sensitivity by 1 and thus add Laplace noise of
scale 1

ϵ
. In fact, the sensitivity can be as large as D, as can be seen by considering the

two inputs x = [0, 1, . . . , 1]D and x′ = [1, 0, . . . , 0] for which ∥x− x′∥1 = D. Therefore,
to achieve ϵ-DP, the scale of the Laplace noise should be D

ϵ
(i.e., D times larger than

what the authors use). As a consequence, the differential privacy provided by their
method are D times worse than claimed by Lyu, He, and Li (2020) and Plant, Gkatzia,
and Giuffrida (2021): the ϵ values they report should be multiplied by D, which leads
to essentially void privacy guarantees.
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While Lyu, He, and Li (2020) claim to follow the approach of Shokri and Shmatikov
(2015), they missed the fact that Shokri and Shmatikov (2015) do account for multiple
dimensions by scaling the noise to the number of entries (denoted by c in their paper)
that are submitted to the server, see pseudo-code in Figure 12 of Shokri and Shmatikov
(2015). In contrast to Lyu, He, and Li (2020) and Plant, Gkatzia, and Giuffrida (2021),
our normalization in Eq. 7.3 guarantees by design that the L1 sensitivity is bounded
by 2.

B.2 Experiments

B.2.1 Privacy metric

Leakage: We compute the leakage using a sklearn’s MLPClassifier. We use the
validation set of the original dataset as the train and the test set of the original dataset
as the test.

Minimum Description Length (MDL) is a information-theoretic probing measure
which captures the strength of regularity in the data. In this work, we employ the
online coding approach (Voita and Titov, 2020) to calculate MDL. Online coding
captures the regularity by characterizing the effort required to achieve a certain level
of accuracy. Here, a portion of data is transmitted to the receiver at each step, which
then uses all the data in the previous steps to understand the regularity in the current
step. The regularity is obtained by training the model on the previously received data
and then evaluating it on the current portion of the data.

Borrowing, the terminology from Voita and Titov (2020), consider a dataset D con-
sisting of {(x1, y1), · · · , (xn, yn)} pairs, where the xi’s are the data representation,
and the yi’s are the task label. In our case, xi is the output of the encoder, and yi is
the sensitive attribute associated with the underlying text. Following the standard
information theory setting, consider a sender Alice who wants to transmit labels
y1:n = {y1 · · · , yn} to a receiver Bob, and both of them have access to the data repre-
sentation x1:n = {x1 · · · , xn}. In order to transmit labels y1:n efficiently (as few bits
possible), Alice encodes y1:n using a model p(y|x). According to Shannon-Huffman
code, the minimum bits required to transmit these labels losslessly is:

Lp(y1:n|x1:n) = −
n

∑
i=1

log2 p(yi|xi).

In the online coding setting of MDL, the labels are transmitted in blocks of n timesteps
t0 < t1 < · · · tn. Alice starts by encoding y1:t1 with a uniform code, then both Alice
and Bob learn a model pθ1(y|x) that predicts y from x using data {(xi, yi)}

t1
i=1. Alice

then uses this model to communicate the next data block yt1 :t2 , and both learns a new
model using larger chunk of data {(xi, yi)}

t2
i=1. This continues till the whole set of

labels y1:n is transmitted. The total code length required for transmission using this
setting is given as:

Lonline(y1:n|x1:n) = t1 log2 C−

n−1

∑
i=1

log2 pθi
(yti+1:ti

|xti+1:ti
).

(B.2)
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where yi ∈ {1, 2, · · · , C}. In our case, the online code length Lonline(y1:n|x1:n) is
shorter, if it is easier for probing model to perform well with fewer training instances.
This implies that the sensitive information is more easily available in the encoder’s
representation.

We compute MDL using sklearn’s MLPClassifier at timesteps corresponding to 0.1%,
0.2%, 0.4%, 0.8%, 1.6%, 3.2%, 6.25%, 12.5%, 25%, 50% and 100% of each dataset as
suggested by Voita and Titov (2020).

B.2.2 Datasets

Twitter Sentiment (Blodgett, Green, and O’Connor, 2016) consists of 200k tweets
annotated with a binary sentiment label and a binary “race” attribute corresponding
to African American English (AAE) vs. Standard American English (SAE) speakers.
The initial representation of tweets are obtained from a Deepmoji encoder Felbo et al.,
2017. The dataset is evenly balanced with respect to the four sentiment-race subgroup
combinations. To create bias in the training data, we follow Elazar and Goldberg
(2018) and change the race proportion in each sentiment class to have 40% AAE-
happy, 10% AAE-sad, 10% SAE-happy, and 40% SAE-sad. Test data remains balanced.
This setup is particularly challenging regarding privacy and fairness, as the model
may exploit the correlation between the protected attribute and the main class label,
which is reinforced due to skewing. The mismatch between the train-test distribution
is also relevant for our setup, where the system may be trained on publicly available
datasets or collected via an opt-in policy and may therefore not closely resemble the
test distribution. This dataset is made available for research purposes only.1

Bias in Bios De-Arteaga et al., 2019 consists of 393,423 textual biographies annotated
with an occupation label (28 classes) and a binary gender attribute. Similar to Ravfogel
et al. (2020), we encode each biography with BERT Devlin et al., 2019, using the last
hidden state over the CLS token. We use the same train-valid-test split as De-Arteaga
et al. (2019). As the dataset was collected by scrapping the web, it tends to reflect
common gender stereotypes and contains explicit gender indicators (e.g., pronouns),
making it more challenging to prevent models from relying on these gendered words.
It is also more complex than Twitter Sentiment in terms of the number of classes.
Dataset is released under MIT License.2

CelebA Liu et al., 2015 consists of over 200,000 images of the human face, alongside
with 40 binary attributes labels describing the content of the images. Following the
standard setting as described in Lohaus, Perrot, and Von Luxburg, 2020, we use 38
of these attributes as features, "Smiling" as the class label, and "Sex" as the sensitive
attribute. We use 60% of the data as train, 20% as validation, and the remaining as
the test split. This dataset is available for non-commercial research purposes.3

Adult Income Kohavi, 1996 consists of a U.S. 1994 Census database segment and
has 48842 instances with 14 features each. We apply the pre-processing as proposed
by Wu, Zhang, and Wu, 2019 resulting in a total of 9 features for each instance. The
objective is to predict whether a given data point earns more than fifty thousand U.S.
dollars or less. We consider sex (binary) as the sensitive attribute. Like CelebA, We

1http://slanglab.cs.umass.edu/TwitterAAE/
2https://github.com/Microsoft/biosbias
3https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

http://slanglab.cs.umass.edu/TwitterAAE/
https://github.com/Microsoft/biosbias
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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use 60% of the data as train, 20% as validation, and the remaining as the test split. The
license of the dataset is unknown, however it is commonly used in several fairness
papers and is available at Dua, Graff, et al., 2017.

B.2.3 Model Architecture

Twitter Sentiment. The encoder consists of two layers with ReLU activation and
a fixed dropout of 0.1. The classifier is linear, and the adversarial branch consists
of three layers. We use a fixed dropout of 0.1 in all the layers with ReLU activation,
apart from the last layer.

Bias in Bios. The encoder consists of three layers and a fixed dropout of 0.1. The
classifier also consists of three layers, and the adversarial branch consists of two
layers. We use a fixed dropout of 0.1 in all the layers with ReLU activation, apart
from the last layer.

In case of Adult Income and CelebA dataset we use the same model as for Twitter
Sentiment.

B.2.4 Hyperparameters

For all our experiments, we use Adam optimizer with a learning rate of 0.001 and
batch size of 2000. We give additional tuning details of the different methods below.
A single experiment takes about 30 minutes to run on Intel Xenon CPU. We will also
provide the PyTorch model description in the README of the source code for easier
reproduction.

• Adversarial: We perform a grid search over ¼ varying it between 0.1 to 3.0
with an interval of 0.2. Moreover, following previous work Lample et al., 2017;
Adi et al., 2019, instead of a constant ¼, we increase it over the epochs using
the update scheme ¼i = 2/(1 + e−pi)− 1, where pi is the scaled version of the
epoch number. We also experimented with increasing the ¼ linearly, as well as
keeping it constant, but found the above update scheme to perform the best in
various settings. We also use this scheme in all other adversarial approaches.

• Adversarial + Multiple: Similar to Adversarial, we vary ¼ between 0.1 to
3.0 with an interval of 0.2. Apart from ¼, Adversarial + Multiple has an
additional hyperparameter ¼ort which corresponds to the weight given to the
orthogonality loss component. We vary ¼ort between 0.1 and 1.0. Here, we do
a simultaneous grid search over ¼ and ¼ort resulting in 150 runs for each seed.
We fix the number of the adversary to three which is the same as the original
implementation by Han, Baldwin, and Cohn, 2021.

• FEDERATE: In order to have comparable number of runs to Adversarial +

Multiple, we experiments with following ϵ values: 8, 9, 10, 11, 12, 13, 14, 15, 16, 20.
Similar to above approach, we do a simultaneous grid search over ¼ and ϵ re-
sulting in 150 runs for each seed.

• INLP: In the case of INLP, we always debias the representation after the penul-
timate classifier layer and before the final layer, which is consistent with the
setting considered by the authors (Ravfogel et al., 2020). We also observe that
this choice empirically led to the best results. We vary the number of iterations
as a part of hyperparameter tuning. For Bias in Bios we vary the iterations
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Method Accuracy ↑ TPR-gap ³ Leakage ³ MDL ↑

Random 50.00 ± 0.00 0.00 ± 0.00 – 104.64 ± 0.11
Unconstrained 85.70 ± 0.21 12.25 ± 2.07 81.3 ± 0.89 67.82 ± 1.46

INLP 84.81 ± 0.47 12.69 ± 4.66 66.00 ± 1.32 100.17 ± 1.65
Noise 85.12 ± 0.47 12.49 ± 0.58 59.01 ± 0.65 103.93 ± 0.24
Adversarial 85.34 ± 0.22 7.83 ± 0.97 87.00 ± 2.22 46.61 ± 5.52
Adversarial + Multiple 84.92 ± 0.12 5.79 ± 1.44 84.38 ± 2.07 51.11 ± 4.06

FEDERATE 84.81 ± 0.34 2.68 ± 0.60 65.49 ± 3.48 98.53 ± 4.51

TABLE B.1: Test results on CelebA dataset with fixed Relaxation
Threshold of 1.0. Fairness is measured by TPR-Gap (lower is better),
while privacy is measured by Leakage (lower is better) and MDL
(higher is better). The MDL achieved by Random gives an upper bound
for that particular dataset. The results have been averaged over 5

different seeds.

between 15 and 45, while for Twitter Sentiment we vary between 2 to 7. We
found that in case of Bias in Bios, performing less than 15 iterations resulted
in the same behaviour as Unconstrained model over validation set while more
than 45 iterations resulted in a random classifier. We observed the same in the
Twitter Sentiment before 2 and after 7 iterations, respectively.

B.2.5 Extended Experiments

Tables B.1–B.2 present detailed results on CelebA and Adult Income dataset respec-
tively. In terms of fairness over both the datasets, we observe that adversarial-based
approaches induce a more fair model than Unconstrained or Noise, with FEDERATE

outperforming all other methods. Interestingly, unlike Twitter Sentiment and Bias in
Bios, all approaches have comparable accuracy, including Noise and INLP. We believe
this to be the case due to these datasets being relatively more challenging than CelebA
and Adult Income. As observed previously, purely adversarial-based approaches leak
significantly more information than the DP-based approaches in terms of privacy. We
observe that Noise and INLP performs marginally better in privacy than FEDERATE;
however, they suffer significantly in the fairness metric. In fact, they induce fairness
levels which are similar to Unconstrained.

Overall, the results show FEDERATE as the only viable choice to induce a fairer model
and make its representation private while maintaining comparable accuracy. These
observations are in line with previous experiments described in Sec. 7.5.1

B.2.6 Additional Results

Tables B.3–B.5 present detailed results on Twitter Sentiment with different relaxation
thresholds, which were summarized in Figure 7.3.

Table B.6 provides the detailed privacy-fairness results which were summarized in
Figure 7.5.
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Method Accuracy ↑ TPR-gap ³ Leakage ³ MDL ↑

Random 50.00 ± 0.00 0.00 ± 0.00 - 20.15 ± 0.083
Unconstrained 83.41 ± 0.32 12.73 ± 7.17 78.19 ± 1.0 16.38 ± 0.46

INLP 83.11 ± 0.51 3.91 ± 2.43 74.54 ± 0.67 19.93 ± 0.35
Noise 82.87 ± 0.37 8.01 ± 1.18 68.12 ± 0.94 19.38 ± 0.33
Adversarial 83.14 ± 0.53 7.02 ± 3.31 78.2 ± 0.18 16.1 ± 0.36
Adversarial + Multiple 83.14 ± 0.25 3.55 ± 2.16 81.37 ± 0.98 13.5 ± 1.09

FEDERATE 82.29 ± 0.9 2.73 ± 2.18 70.25 ± 4.81 18.1 ± 2.79

TABLE B.2: Test results on Adult Income dataset with fixed Relaxation
Threshold of 1.0. Fairness is measured by TPR-Gap (lower is better),
while privacy is measured by Leakage (lower is better) and MDL
(higher is better). The MDL achieved by Random gives an upper bound
for that particular dataset. The results have been averaged over 5

different seeds.

Method Accuracy ↑ TPR-gap ³ Leakage ³

Unconstrained 72.54 ± 0.57 27.17 ± 1.76 87.18 ± 0.32

Noise 71.87 ± 0.56 25.14 ± 3.47 71.75 ± 2.99
Adversarial 75.49 ± 0.71 8.47 ± 3.5 88.03 ± 0.24
Adversarial + Multiple 75.6 ± 0.53 7.74 ± 4.17 88.01 ± 0.28

FEDERATE 75.34 ± 0.56 5.46 ± 3.59 62.31 ± 5.69

TABLE B.3: Test set results on Twitter Sentiment dataset (scores aver-
aged over 5 different seeds, RT=0.0).

Method Accuracy ↑ TPR-gap ³ Leakage ³

Unconstrained 70.57 ± 0.98 20.68 ± 0.99 82.91 ± 1.65

Noise 70.47 ± 0.43 19.84 ± 0.91 66.83 ± 3.32
Adversarial 74.09 ± 1.56 3.03 ± 2.65 88.14 ± 0.18
Adversarial + Multiple 74.44 ± 0.62 1.07 ± 0.74 87.98 ± 0.36

FEDERATE 74.24 ± 1.25 0.89 ± 0.46 61.92 ± 5.04

TABLE B.4: Test set results on Twitter Sentiment dataset (scores aver-
aged over 5 different seeds, RT=3.0).

Method Accuracy ↑ TPR-gap ³ Leakage ³

Unconstrained 70.57 ± 0.98 20.68 ± 0.99 82.91 ± 1.65

Noise 70.47 ± 0.43 19.84 ± 0.91 66.83 ± 3.32
Adversarial 70.8 ± 2.77 1.72 ± 1.5 88.2 ± 0.24
Adversarial + Multiple 67.39 ± 1.16 1.0 ± 0.8 88.01 ± 0.12

FEDERATE 73.97 ± 1.6 1.4 ± 1.22 60.38 ± 5.46

TABLE B.5: Test set results on Twitter Sentiment dataset (scores aver-
aged over 5 different seeds, RT=10.0).
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Method ϵ
Twitter Sentiment Bias in Bios

Accuracy ↑ Leakage ³ Accuracy ↑ Leakage ³

Noise 8.0 71.3 60.59 64.75 56
FEDERATE 8.0 74.89 56.91 64.78 54.4

Noise 10.0 71.63 65.57 70.86 57.7
FEDERATE 10.0 75.25 60.55 70.97 56.5

Noise 12.0 71.76 66.04 75.01 58.4
FEDERATE 12.0 75.31 53.31 75.01 57

Noise 14.0 71.7 67.98 76.74 59
FEDERATE 14.0 75.3 57.29 76.83 56.3

Noise 16.0 71.7 67.69 77.77 60.3
FEDERATE 16.0 75.56 61.98 77.89 57.9

TABLE B.6: Accuracy-privacy trade-off for different noise level (as
captured by ϵ).
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Appendix C

Fair Without Leveling Down:
³-Intersectional Fairness

C.1 Intersectional Property

In this section, we prove the intersectional property stated in Section 5.4. The proof
follows the same procedure as described by Foulds et al. (2020). The intersectional
property states that:

Proposition. Let the model hθ be (³, γ)-intersectionally fair over the set of groups
defined by G = A1 × · · · Ap. Let 1 f s1 f · · · f sk f p, and P = As1 × · · · Ask

be the Cartesian product of the sensitive axes where sj ∈ N
+. Then, hθ is (³, γ)-

intersectionally fair over P .

The essential idea of the proof is to show that the maximum and the minimum group
wise performance in P is bounded by the maximum and the minimum group wise
performance in G. After proving the above, then using Proposition 1, we can show
that IF³ over G is higher than IF³ over P .

Define E = A1 × . . . × Aa−1 × Aa+1 . . . × Ak−1 × Ak+1 × . . . × Ap, the Cartesian
product of the protected attributes included in G but not in P . Then for any model hθ ,
y ∈ Range(hθ),

max
g∈P :P(g|θ)>0

Phθ
(hθ(x) = y|P = g)

= max
g∈P :P(g|θ)>0

∑
e∈E

Phθ
(hθ(x) = y|E = e, g)

Phθ
(E = e|g)

f max
g∈P :P(g|θ)>0

∑
e∈E

max
e′∈E:Phθ

(E=e′|g)>0
(

Phθ
(hθ(x) = y|E = e′, g)

)

× Pθ(E = e|g)

= max
g∈P :P(g|θ)>0

max
e′∈E:Pθ(E=e′|g,θ)>0

Phθ
(hθ(x) = y|E = e′, g)

= max
s′∈G :P(s′|θ)>0

PM,θ(M(x) = y|s′)
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Method BA ↑ Best Off ↑ Worst Off ↑ DF ³ IF³=0.5 ³

Unconstrained 0.8 + 0.01 0.84 + 0.01 0.45 + 0.04 0.62 +/- 0.03 0.43 +/- 0.01
Adversarial 0.8 + 0.01 0.84 + 0.01 0.46 + 0.04 0.6 +/- 0.04 0.44 +/- 0.01
FairGrad 0.78 + 0.01 0.85 + 0.02 0.44 + 0.04 0.66 +/- 0.02 0.43 +/- 0.03
INLP 0.8 + 0.0 0.85 + 0.03 0.52 + 0.05 0.49 +/- 0.04 0.41 +/- 0.02
Fair MixUp 0.79 + 0.01 0.85 + 0.03 0.48 + 0.05 0.57 +/- 0.05 0.43 +/- 0.04

(A) Results on CelebA

Method BA ↑ Best Off ↑ Worst Off ↑ DF ³ IF³=0.5 ³

Unconstrained 0.68 + 0.02 0.87 + 0.05 0.61 + 0.04 0.36 +/- 0.01 0.38 +/- 0.09
Adversarial 0.7 + 0.01 0.81 + 0.05 0.55 + 0.08 0.39 +/- 0.03 0.45 +/- 0.07
FairGrad 0.68 + 0.02 0.88 + 0.04 0.64 + 0.09 0.32 +/- 0.03 0.35 +/- 0.07
INLP 0.68 + 0.01 0.84 + 0.05 0.66 + 0.1 0.24 +/- 0.03 0.44 +/- 0.08
Fair MixUp 0.7 + 0.01 0.81 + 0.05 0.54 + 0.05 0.41 +/- 0.02 0.44 +/- 0.07

(B) Results on Numeracy

Method BA ↑ Best Off ↑ Worst Off ↑ DF ³ IF³=0.5 ³

Unconstrained 0.79 + 0.01 0.96 + 0.01 0.77 + 0.03 0.22 +/- 0.03 0.2 +/- 0.03
Adversarial 0.76 + 0.0 0.97 + 0.01 0.81 + 0.04 0.18 +/- 0.04 0.21 +/- 0.03
FairGrad 0.76 + 0.02 0.95 + 0.01 0.78 + 0.03 0.2 +/- 0.04 0.25 +/- 0.03
INLP 0.67 + 0.01 0.73 + 0.03 0.38 + 0.03 0.65 +/- 0.05 0.56 +/- 0.03
Fair MixUp 0.76 + 0.01 0.98 + 0.0 0.84 + 0.02 0.15 +/- 0.02 0.16 +/- 0.01

(C) Results on Twitter Hate Speech

Method BA ↑ Best Off ↑ Worst Off ↑ DF ³ IF³=0.5 ³

Unconstrained 0.63 + 0.01 0.77 + 0.02 0.47 + 0.07 0.49 +/- 0.05 0.5 +/- 0.02
Adversarial 0.63 + 0.01 0.82 + 0.05 0.51 + 0.1 0.47 +/- 0.06 0.45 +/- 0.05
FairGrad 0.63 + 0.01 0.76 + 0.01 0.47 + 0.06 0.48 +/- 0.04 0.52 +/- 0.02
INLP 0.63 + 0.01 0.76 + 0.02 0.51 + 0.04 0.4 +/- 0.01 0.51 +/- 0.03
Fair MixUp 0.62 + 0.01 0.75 + 0.07 0.45 + 0.07 0.51 +/- 0.03 0.52 +/- 0.06

(D) Results on Anxiety

TABLE C.1: Test results on (a) CelebA, (b) Numeracy, and (c) Twitter Hate
Speech using True Positive Rate while optimizing for DF. The utility of
various approaches is measured by balanced accuracy (BA), whereas
fairness is measured by differential fairness DF and intersectional
fairness IF³=0.5. For both fairness definition, lower is better, while for
balanced accuracy, higher is better. The Best Off and Worst Off, in both
cases higher is better, represents the min TPR and max TPR. Results
have been averaged over 5 different runs. We have also highlighted

methods which showcase leveling down using cyan ( ).

By a similar argument, ming∈P :P(g|θ)>0 Phθ
(hθ(x) = y|P = g) g ming′∈G :P(g′|θ)>0 Phθ

(hθ(x) =
y|g′). Applying Corollary 1, we hence bound γ in P by the γ in G



C.2. Extended Experiments 145

Method BA ↑ Best Off ³ Worst Off ³ DF ³ IF³=0.5 ³

Unconstrained 0.7 + 0.01 0.22 + 0.03 0.5 + 0.04 0.44 +/- 0.1 0.51 +/- 0.04
Adversarial 0.71 + 0.01 0.14 + 0.03 0.38 + 0.02 0.33 +/- 0.22 0.42 +/- 0.08
FairGrad 0.7 + 0.02 0.19 + 0.06 0.51 + 0.07 0.5 +/- 0.22 0.45 +/- 0.07
INLP 0.68 + 0.01 0.27 + 0.08 0.52 + 0.08 0.42 +/- 0.13 0.58 +/- 0.06
Fair MixUp 0.7 + 0.01 0.22 + 0.05 0.48 + 0.03 0.41 +/- 0.17 0.52 +/- 0.06

(A) Results on Numeracy

Method BA ↑ Best Off ³ Worst Off ³ DF ³ IF³=0.5 ³

Unconstrained 0.81 + 0.01 0.18 + 0.02 0.47 + 0.02 0.44 +/- 0.04 0.46 +/- 0.03
Adversarial 0.8 + 0.01 0.18 + 0.02 0.46 + 0.02 0.42 +/- 0.03 0.47 +/- 0.04
FairGrad 0.79 + 0.01 0.19 + 0.03 0.51 + 0.04 0.5 +/- 0.03 0.47 +/- 0.04
INLP 0.67 + 0.01 0.18 + 0.1 0.38 + 0.18 0.28 +/- 0.02 0.47 +/- 0.1
Fair MixUp 0.81 + 0.01 0.18 + 0.02 0.49 + 0.04 0.47 +/- 0.02 0.46 +/- 0.03

(B) Results on Twitter Hate Speech

TABLE C.2: Test results on (a) Numeracy, and (b) Twitter Hate Speech
using False Positive Rate while optimizing for DF. The utility of
various approaches is measured by balanced accuracy (BA), whereas
fairness is measured by differential fairness DF and intersectional
fairness IF³=0.5. For both fairness definition, lower is better, while for
balanced accuracy, higher is better. The Best Off and Worst Off, in both
cases lower is better, represents the min FPR and max FPR. Results
have been averaged over 5 different runs. We have also highlighted

methods which showcase leveling down using cyan ( ).

C.2 Extended Experiments

In this section, we detail the additional results. Table C.1 provides results for the True
Positive Rate (TPR) fairness measure, as outlined in the Experiment Section 5.7.2. In
Figure C.3, we vary the number of sensitive axes and plot the worst-case performance
for Anxiety in FPR and TPR settings. Finally, Table C.2 displays results related to
the FPR parity fairness measure, focusing on the Twitter Hate Speech and Numeracy
datasets. Notably, for TPR, each method exhibits leveling down in at least one dataset.
For example, Adversarial shows leveling down in the Numeracy dataset, whereas
INLP does so in both the Twitter Hate Speech and Anxiety datasets. Similarly, as
with FPR, DF does not consistently identify leveling down. As evidence, while both
FairGrad and INLP demonstrate leveling down, they show a better fairness level than
Unconstrained.
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FIGURE C.1: Value of IF³ on the test set of CelebA, Numeracy, and
Twitter Hate Speech datasets for varying ³ ∈ [0, 1].
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FIGURE C.2: Value of IF³ on the test set of Anxiety datasets for varying
³ ∈ [0, 1].
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FIGURE C.3: Test results over the worst-off group on Anxiety by vary-
ing the number of sensitive axes. For p binary sensitive axis in the
dataset, the total number of sensitive groups are p3 − 1. Note that in

FPR, lower the value better it is, while for TPR opposite is true.
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Appendix D

Synthetic Data Generation for
Intersectional Fairness

D.1 Extended Experiments

In this section, we detail the additional experiments over the CelebA and Numeracy
datasets. Table D.1 shows results for fixed value of ³. While Figure D.1 plot the
trade-off between relative and absolute performance of groups by varying ³.

Method BA Best Off Worst Off DF IF³ = 0.5

Unconstrained 0.81 + 0.0 0.06 + 0.02 0.34 + 0.01 0.35 +/- 0.38 0.26 +/- 0.04
Adversarial 0.81 + 0.01 0.05 + 0.01 0.3 + 0.03 0.31 +/- 0.19 0.24 +/- 0.03
FairGrad 0.76 + 0.0 0.1 + 0.01 0.35 + 0.04 0.33 +/- 0.12 0.34 +/- 0.02
INLP 0.81 + 0.01 0.07 + 0.01 0.35 + 0.03 0.36 +/- 0.16 0.27 +/- 0.01
Fair MixUp 0.81 + 0.0 0.06 + 0.0 0.4 + 0.07 0.45 +/- 0.19 0.28 +/- 0.02
Unconstrained + Augmented 0.76 + 0.01 0.02 + 0.0 0.21 + 0.03 0.22 +/- 0.21 0.16 +/- 0.01

(A) Results on CelebA

Method BA Best Off Worst Off DF IF³ = 0.5

Unconstrained 0.7 + 0.01 0.21 + 0.05 0.46 + 0.06 0.38 +/- 0.13 0.5 +/- 0.06
Adversarial 0.69 + 0.02 0.15 + 0.03 0.39 + 0.04 0.33 +/- 0.16 0.42 +/- 0.05
FairGrad 0.7 + 0.01 0.19 + 0.05 0.45 + 0.09 0.39 +/- 0.12 0.47 +/- 0.06
INLP 0.69 + 0.0 0.23 + 0.02 0.52 + 0.02 0.47 +/- 0.05 0.52 +/- 0.02
Fair MixUp 0.69 + 0.01 0.21 + 0.04 0.45 + 0.05 0.36 +/- 0.09 0.51 +/- 0.04
Unconstrained + Augmented 0.69 + 0.02 0.14 + 0.05 0.39 + 0.11 0.34 +/- 0.24 0.44 +/- 0.07

(B) Results on Numeracy

TABLE D.1: Test results on (a) CelebA, (and b) Numeracy using False
Positive Rate. We select hyper parameters based on IF³ = 0.5 value.
The utility of various approaches is measured by balanced accuracy
(BA), whereas fairness is measured by differential fairness DF and
intersectional fairness IF³ = 0.5. For both fairness definitions, lower
is better, while for balanced accuracy, higher is better. Best Off and
Worst Off represent the min FPR and max FPR across groups (in both
cases, lower is better). Results have been averaged over 5 different

runs.
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FIGURE D.1: Value of IF³ on the test set of CelebA, and Numeracy
datasets for varying ³ ∈ [0, 1].
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