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Abstract
In this work, we investigate the phase retrieval problem of real-valued signals in finite dimension, a
challenge encountered across various scientific and engineering disciplines. It explores two complemen-
tary approaches: retrieval with and without regularization. In both settings, our work is focused on
relaxing the Lipschitz-smoothness assumption generally required by first-order splitting algorithms,
and which is not valid for phase retrieval cast as a minimization problem. The key idea here is to
replace the Euclidean geometry by a non-Euclidean Bregman divergence associated to an appropri-
ate kernel. We use a Bregman gradient/mirror descent algorithm with this divergence to solve the
phase retrieval problem without regularization, and we show exact (up to a global sign) recovery both
in a deterministic setting and with high probability for a sufficient number of random measurements
(Gaussian and Coded Diffraction Patterns). Furthermore, we establish the robustness of this approach
against small additive noise. Shifting to regularized phase retrieval, we first develop and analyze an
Inertial Bregman Proximal Gradient algorithm for minimizing the sum of two functions in finite di-
mension, one of which is convex and possibly nonsmooth and the second is relatively smooth in the
Bregman geometry. We provide both global and local convergence guarantees for this algorithm. Fi-
nally, we study noiseless and stable recovery of low complexity regularized phase retrieval. For this, we
formulate the problem as the minimization of an objective functional involving a nonconvex smooth
data fidelity term and a convex regularizer promoting solutions conforming to some notion of low
complexity related to their nonsmoothness points. We establish conditions for exact and stable recov-
ery and provide sample complexity bounds for random measurements to ensure that these conditions
hold. These sample bounds depend on the low complexity of the signals to be recovered. Our new
results allow to go far beyond the case of sparse phase retrieval.

Keywords: phase retrieval, inverse problems, stability to noise, inertial Bregman proximal gradi-
ent, partly smooth function, trap avoidance, variational regularization, sparsity, exact recovery, low
complexity prior, robustness.

Résumé
Dans ce travail, nous nous intéressons au problème de reconstruction de phase de signaux à valeurs
réelles en dimension finie, un défi rencontré dans de nombreuses disciplines scientifiques et d’inénierie.
Nous explorons deux approches complémentaires : la reconstruction avec et sans régularisation. Dans
les deux cas, notre travail se concentre sur la relaxation de l’hypothèse de Lipschitz-continuité générale-
ment requise par les algorithmes de descente du premier ordre, et qui n’est pas valide pour la recon-
struction de phase lorsqu’il formulée comme un problème de minimisation. L’idée clé ici est de rem-
placer la géométrie euclidienne par une divergence de Bregman non euclidienne associée à un noyau
générateur approprié. Nous utilisons un algorithme de descente miroir ou de descente à la Bregman
avec cette divergence pour résoudre le problème de reconstruction de phase sans régularisation. Nous
démontrons des résultats de reconstruction exacte (à un signe global près) à la fois dans un cadre
déterministe et avec une forte probabilité pour un nombre suffisant de mesures aléatoires (mesures
Gaussiennes et pour des mesures structurées comme la diffraction codée). De plus, nous établissons la
stabilité de cette approche vis-à-vis d’un bruit additif faible. En passant à la reconstruction de phase
régularisée, nous développons et analysons d’abord un algorithme proximal inertiel à la Bregman pour
minimiser la somme de deux fonctions, l’une étant convexe et potentiellement non lisse et la seconde
étant relativement lisse dans la géométrie de Bregman. Nous fournissons des garanties de convergence
à la fois globale et locale pour cet algorithme. Enfin, nous étudions la reconstruction sans bruit et
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la stabilité du problème régularisé par un a priori de faible complexité. Pour celà, nous formulons
le problème comme la minimisation d’une objective impliquant un terme d’attache aux données non
convex et un terme de régularisation convexe favorisant les solutions conformes à une certaine notion
de faible complexité. Nous établissons des conditions pour une reconstruction exacte et stable et four-
nissons des bornes sur le nombre de mesures aléatoires suffisants pour de garantir que ces conditions
soient remplies. Ces bornes d’échantillonnage dépendent de la faible complexité des signaux à recon-
struire. Ces résultats nouveaux permettent d’aller bien au-delà du cas de la reconstruction de phase
parcimonieuse.

Mots-clés: reconstruction de phase, problème inverse, stabilité au bruit, algorithme du gradient
proximal Bregman inertiel, fonction partiellement lisse, évitement de piège, parcimonie, a priori de
faible complexité, robustesse.
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Chapter 1

Introduction

Contents
1.1 Context and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Phase retrieval without regularization . . . . . . . . . . . . . . . . . . . 2
1.2.2 Phase retrieval with regularization . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Phase retrieval without regularization . . . . . . . . . . . . . . . . . . . 8
1.3.2 Regularized phase retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Work Not Included in the Thesis . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Immediate and one-point roughness measurements using spectrally
shaped light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.2 Instantaneous measurement of surface roughness spectra using white light
scattering projected on a spectrometer. . . . . . . . . . . . . . . . . . . 13

1.1 Context and Motivations
This thesis studies a nonlinear, ill-posed inverse problem known as phase retrieval. It consists in
recovering an arbitrary signal from the intensity of its linear measurements, i.e. from phaseless
observations. In many applications, detectors or sensors have only access to the squared modulus of
the Fresnel diffraction pattern of the radiation that is scattered from the object, leaving out desired
structural information which comes from the phase or the sign of the signal. Historically, the first
application of phase retrieval started with X-ray crystallography, and it now permeates many areas of
imaging science with applications that include diffraction imaging, astronomical imaging, microscopy
to name just a few; see the overviews [161, 97, 127] and references therein. One of the main applications
motivating our work originates from optics precision. In this field, one is interested in characterizing
the roughness of an optically polished surface. Often components (e.g., interference filters) exhibit
optical losses of order 10−6 of the incident power. Super-polished surfaces are commonly used to
circumvent this issue. Indeed, their roughness (responsible for losses by optical scattering) is very
low compared to the illumination wavelength. Therefore, it is crucial to know how to characterize
the roughness of polished surfaces. To do so, light scattering is ideal among the existing techniques
because it is fast and noninvasive. The surface is illuminated with a laser source, and the diffusion is
measured by moving a detector. Then the power spectral density of the surface topography can be
directly measured thanks to the electromagnetic theory of light scattering; see [6, 7].

Our focus in this thesis will be on the case of real signals. Formally, suppose x̄ ∈ Rn is a signal
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and that we are given information about the squared modulus of the inner product between x̄ and m
sensing/measurement vectors (ar)r∈JmK. The noisy phase retrieval problem can be cast as:Recover x̄ ∈ Rn from the measurements y ∈ Rm

y[r] = |a∗r x̄|2 + ε[r], r ∈ JmK,
(GeneralPR)

where [r] is the r-th entry of the corresponding vector, and , and ε ∈ Rm models the noise during
the acquisition process. Different types of noise can corrupt the measurements such as photon noise,
thermal noise, Johnson noise. The measurement model (GeneralPR) is quite standard and is similar
for instance to [55, 70, 63].

Since x̄ is real-valued, the best one can hope for is to ensure that x̄ is uniquely determined from its
intensities up to a global sign. Phase retrieval is in fact an ill-posed inverse problem in general, and
even for ε = 0, checking whether a solution to (GeneralPR) exists or not is known to be NP complete
[157]. The situation is even more challenging in presence of noise. Thus, one of the major difficulties
is to design efficient recovery algorithms and find conditions on m, (ar)r∈JmK and ε which guarantee
exact (up to a global sign change) and robust recovery.

1.2 Prior Work
Our review here on the phase retrieval problem and how to solve it, is by no means exhaustive and
the interested reader should refer to the following references for comprehensive reviews [161, 97, 78,
175, 127].

1.2.1 Phase retrieval without regularization

Feasibility formulation of constrained phase retrieval In the one-dimensional, on the con-
tinum setting with Fourier measurements, it was shown by [1, 2, 181] (see also [28, 32] in the discrete
case) that the phase retrieval problem without any prior constraints lacks uniqueness (up to trivial
ambiguities). This fundamental barrier does not apply in higher dimensions as pointed out in [190]
and shown in [93] for band-limited 2D signals, and uniqueness was shown to hold "generically" in [19].

To circumvent this barrier, workarounds have been proposed that involve adding a constraint either
implicitly or explicitly. Phase retrieval is then formulated as a feasibility problem, that is, as finding
some point in the intersection of the set of points satisfying the constraints implied by the data
measurements in (GeneralPR), and the set of points satisfying constraints expressing some prior
knowledge on the object to recover, such as support, band-limitedness, non-negativity, sparsity, etc.
The Gerchberg and Saxton algorithm [82], proposed in the early 70’s in the optics literature, is
an alternating projection algorithm to solve such a feasibility problem. Improved variants include
Fienup’s basic input-output and the hybrid input-output (HIO) [65, 79, 66]. For the case of a support
constraint alone, it has been identified by [23] that HIO corresponds to the now well-known Douglas-
Rachford algorithm. Other fixed-point iterations based on projections that apply to constrained phase
retrieval have also been proposed, such as the HPR scheme [24], or RAAR [125] which is a relaxation
of Douglas-Rachford. Thanks to a wealth of results in the variational analysis community, some
convergence properties of these algorithms for the phase retrieval problem are now known. One has
to distinguish between the two important cases for feasibility problems: consistent and inconsistent.

For consistent phase retrieval problems, it is known for instance that alternating projections is locally
linearly convergent at points of intersection provided that the constraints do not intersect tangentially
[73, 25, 142, 126, 112, 113]. Similar results are also known for Douglas-Rachford [94, 150]. Global
convergence guarantees are however only conjectured, and translating the nontangential intersection
into conditions on m and (ar)r∈JmK remains open.

– 2 –
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For the inconsistent case, it was argued in [127] that almost any constraint, in particular compact
support, will be inconsistent with the measurement process in optical phase retrieval problems. This
means that the corresponding feasibility problems are inconsistent. In this even more challenging
inconsistent phase retrieval setting, the only two works that we are aware of where local linear con-
vergence of alternating projections and relaxed Douglas-Rachford to local best approximation points
is established are [129, Theorem3.2 and Example 3.6] and [128, Theorem4.11 and Section 5].

Unconstrained phase retrieval In the unconstrained setting of (GeneralPR), the dominant
approach in computational phase retrieval is to use oversampling, i.e. to take more measurements, in
order to ensure well-posedness and improve the performance of phase retrieval algorithms. This idea
of oversampling has been known for a while, and for instance in non-crystallographic modalities [134].
From a theoretical point of view, for the case where (ar)r∈JmK is a frame (redundant complete system),
the authors in [16, 15] derived various necessary and sufficient conditions for the uniqueness of the
solution, as well as algebraic polynomial-time numerical algorithms valid for very specific choices of
(ar)r∈JmK. This approach is however of theoretical interest only and has some drawbacks, for instance
that it requires specific types of measurements that cannot be realized in most applications of interest.

A very different route, which is now an established approach in the applied mathematics literature to
understand fundamental limits of phase retrieval and its stability, consists in assuming that (ar)r∈JmK
are sampled from an appropriate distribution and using probabilistic arguments to get lower bounds
on oversampling (i.e. m/n) and on ε to ensure exact (up to sign or phase change in the complex case)
and stable recovery with high probability. This can be done either through convex relaxation or by
directly attacking the nonconvex formulation of the phase retrieval problem;see [55, 70, 164, 63]. The
recovery error and oversampling bounds derived in those papers can be compared to the fundamental
lower bounds established in [17, 77, 63]. We would like to mention that we are aware that this setting
might not always be realistic from an application perspective as it may sometimes involve changing
the data measurements, imposed by the physical imaging system, to fit the theory. Nonetheless, this
still makes sense in some applications such as the one motivating our work (precision in optics), where
the CDP (Coded Diffraction Patterns) measurement model can be implemented.

Convex relaxation The key ingredient is to use a well-known trick turning a quadratic function
on Rn, such as in the data measurement mapping in (GeneralPR), into a linear function on the space
of n × n matrices [31, 84]. Thus the recovery of a vector from quadratic measurements is lifted into
that of recovering a rank-one Hermitian semidefinite positive (SDP) matrix from affine constraints,
and the rank-one constraint is then relaxed into a convenient convex one. The two most popular
methods in this line are PhaseLift [56, 55] and PhaseCut [180]. Both approaches are inspired by
the matrix completion problem [54] and they differ in the way factorization takes place. Exact and
robust recovery with random Gaussian or CDP (Coded Diffraction Patterns) measurements using
PhaseLift was established in [55, 51, 52]. For Gaussian measurements, [55] showed that exact recovery
by PhaseLift holds for a sampling complexity bound m & n log(n). This has then been improved
in [51] to a universal result with m & n. Exact recovery by PhaseLift for CDP measurements was
established in [52] for m & n log4(n), and has been improved to m & n log2(n) in [87]. While SDP
based relaxations lead to solving tractable convex problems, the prospect of squaring the number of
unknowns make them computationally prohibitive and impractical as n increases. Since then, there
has been a resurgence in the proposal of direct nonconvex methods.

Nonconvex formulations The general strategy here is to use an initialization technique that
lands one in a neighborhood of the optimal solution (up to global sign or phase change) where a
usual iterative procedure from nonlinear programming with carefully chosen parameters can perform
reliably.
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In [53], the authors use a spectral initialization and propose a gradient-descent type algorithm
(Wirtinger flow) for solving the general complex phase retrieval problem by casting it as

min
z∈Cn

f(z) def= 1
4m

m∑
r=1

(
y[r]− |a∗r z|2

)2
. (1.2.1)

For an appropriate (Wirtinger) gradient-descent step-size, they showed that with high probability, the
scheme converges linearly to the true vector (up to a global phase change) for both Gaussian and CDP
measurements provided that m is on the order of n up to polylogarithmic terms.

A truncated version of the Wirtinger flow was proposed in [63] which uses careful selection rules
providing a tighter initial guess, better descent directions and step-sizes, and thus enhanced perfor-
mance. For Gaussian measurements, truncated Wirtinger flow was also shown to converge linearly
to the correct solution and is robust to noise provided that m & n. Other variants of Wirtinger flow
possibly and/or other initializations were proposed in [192] and [182], and were shown to enjoy similar
guarantees in the noiseless case for Gaussian measurements. The Polyak subgradient method to mini-
mize 1

m

∑m
r=1 |y[r]− |ar>z|2| on Rn was proposed and analyzed in [69] for noiseless real phase retrieval

with real isotropic sub-Gaussian measurements. When properly initialized, its linear convergence was
also shown for m & n.

An alternating minimization strategy, alternating between phase update and vector update, with
a resampling-based initialization has been proposed in [141] and was shown to enjoy noiseless exact
recovery for m & n log(n)3. A truncated version of the spectral initialization followed by alternating
projection was also proposed in [179] with exact recovery guarantees for Gaussian measurements under
the sample complexity bound m & n.

The authors in [168] studied the landscape geometry of the nonconvex objective in (1.2.1) for
Gaussian measurements. They showed that for large enough number of measurements, i.e., m &
n log(n)3, there are no spurious local minimizers, all global minimizers are equal to the correct signal
x̄, up to a global sign or phase, and the objective function has a negative directional curvature
around each saddle point (that we coin strict saddles in this manuscript). This allowed them to
describe and analyze a second-order trust-region algorithm to find a global minimizer without special
initialization. The work of [64] provides an analysis of global convergence properties of gradient descent
for Gaussian measurements and heavily relies on Gaussianity of the initialization. They required a
sample complexity bound m & npoly log(m) without making explicit the linear local convergence rate.

Stability to noise In phase retrieval, understanding the impact of noise is crucial because real-
world measurements are invariably corrupted by it. Thus, establishing stability of phase retrieval to
(small enough) noise is of paramount importance. For convex relaxations, Candès and Li showed
in [51] that a noise-aware variant of PhaseLift is stable against additive noise with a reconstruction
error bound O

(
‖x̄‖ , ‖ε‖1m‖x̄‖

)
as soon as m & n (complex) Gaussian measurements are taken (see

also [55] where the sample complexity was m & n log(n)). This is of course only meaningful if the
signal-to-noise ration is sufficiently high. This result has been extended to the case of sub-Gaussian
measurements in [102]. For nonconvex formulations, Huang and Xu in [132] analyzed the performance
of the Wirtinger flow and showed that any solution of this algorithm enjoys a reconstruction error
upper bound O

(
min

{√
‖ε‖

m1/4 ,
‖ε‖
‖x̄‖
√
m

})
as soon as m & n. The amplitude and the reshaped Wirtinger

flow algorithms are stable against additive noise as shown respectively in [192],[182] and [80]. Indeed,
these authors showed that the reconstruction error scales as O

(
‖ε‖√
m

)
. The convergence result is

obtained under the specific assumption that ‖ε‖∞ . ‖x̄‖. In [188], the authors study the performance
of the amplitude-based model and showed the solution satisfies the following reconstruction upper
bound O

(
‖ε‖√
m

)
as soon as m & n. The truncated Wirtinger flow [63], which can account even for

Poisson noise, has been shown to be stable with a reconstruction error bound that scales as O
(
‖ε‖√
m‖x̄‖

)
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under the assumption ‖ε‖∞ . ‖x̄‖2 provided that m & n. It was shown there that this is the best
statistical guarantee any algorithm can achieve by deriving a fundamental lower bound on the minimax
estimation error.

1.2.2 Phase retrieval with regularization

As argued above, (GeneralPR) is a severely ill-posed inverse problem in general unless either over-
sampling or some prior knowledge is available on the underlying signal x̄. The use of a well-chosen
prior allows to restrict the inversion process to an appropriate subset of Rn containing the plausible
solutions including X . In turn, this allows to reach the land of well-posedness. A standard way to
implement this idea consists in adopting a variational framework where the sought-after solutions are
those where a prior penalty/regularization function R is the smallest. This approach is in line with
variational regularization theory pioneered by Tikhonov [170]. Put formally, this amounts to solving
the following optimization problem

inf
x∈Rn

{
Fy,λ(x) def= F (x) +G(x) =

∥∥∥y − |Ax|2∥∥∥2
+ λR(x)

}
, (Py,λ)

where A = [a1, . . . , am]> and R : Rn → R∪{+∞} is a proper closed convex function which is intended
to promote objects similar or close to x̄. λ > 0 is the regularization parameter which balances the
trade-off between fidelity and regularization. It is immediate that F is C2(Rn) but is nonconvex due
to the quadratic measurements. Besides, his gradient is not Lipschitz continuous. In this setting, we
can associate to the objective the following function or kernel

ψ(x) = 1
4 ‖x‖

4 + 1
2 ‖x‖

2 . (1.2.2)

ψ ∈ C2(Rn) has full domain and 1−strongly convex function with a gradient that is Lipschitz over
bounded subsets of Rn. It turns out that F is smooth relative to ψ (see Section 2.3 for the definition
and discussion of the notion of relative smoothness). Therefore, the problem (Py,λ) is amenable to the
efficient Bregman proximal gradient scheme; see Chapter 5 for a detailed description and discussion.

1.2.2.1 Algorithms to solve (Py,λ) and their guarantees

Inertial Bregman proximal gradient algorithms Inertial methods emerged from the quest
of accelerating the convergence of first-order optimization methods such as gradient descent. This
starts with the Heavy-ball with friction [151] method for gradient descent (G ≡ 0). This approach
can be interpreted as a discretization of a nonlinear second-order dynamical system, specifically an
oscillator with viscous damping. This idea permeates now all the optimization techniques and has
been applied for instance to the proximal point method [3, 4] and to the inertial Forward-Backwards
type methods [135, 10, 123]. In terms of acceleration for convex programming, the accelerated FISTA
method [27, 140] achieves a convergence rate of O(k−2) for the sequence of objective functions which
has been improved to o(k−2) in [9], with convergent iterates in [58].

For Bregman-based methods, first-order methods achieve the convergence O(k−1) for the sequence
of objective [34, 21, 40, 124, 169] as in the Euclidean case. A natural question is whether the Bregman
proximal gradient algorithm can be accelerated in the relative smooth setting. This question has been
raised in several works, including [21, 124], and the survey paper [169, Section 6]. Positive answers have
already been provided under somewhat strict additional regularity assumptions. When the entropy ψ
is a strongly convex Legendre kernel and the smooth part of the objective has a Lipschitz continuous
gradient, the Improved Interior Gradient Algorithm in [13] admits an accelerated O(1/k2) convergence
rate on the objective, by using the same inertial technique as Nesterov-type methods. For a subclass of
relatively smooth functions, [89] shows that the convergence rate of the objective can be improved from
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to O(1/kκ) where κ ∈ [1, 2] is determined by some crucial triangle scaling property of the Bregman
distance, whose genericity is unclear. The general case was still open until the work of [72] which
showed that the O(1/k) rate is optimal for first-order algorithms over the class of relatively smooth
functions, and this cannot be improved in general. As far as the nonconvex case is concerned, inertial
versions of the proximal gradient method were analyzed in [136, 185, 95, 187] when the entropy is
strongly convex. All these works use either backtracking or line search on both the extrapolation
(inertial) parameter and the descent step-size. Global convergence of the iterates under KL were
proved in [136, 187] while [185] showed linear convergence under certain error bound condition.

Activity identification Finite activity identification of underlying manifolds is an important
phenomenon that occurs when different types of algorithms are used to solve structured nonsmooth
minimization problems. Such analysis can be traced back to the work of [48] and [76], where a the non-
degeneracy condition is used to ensure that the optimal active constraints are identified after finitely
many iterations. They showed how polyhedral faces of convex sets could be identified finitely. Later
[186] extended these results by introducing the concept of smooth identifiable surface and providing
an algorithm that identifies the active constraints in convex problems in a finite number of iterations.
This work was then generalized in [111] to the notion of partial smoothness for general non necessarily
convex problems.Among algorithms that identify active manifolds of partly smooth functions, one can
cite the (sub)gradient projection method, Newton-like methods, and the proximal point algorithm as
shown in [92, 91, 90] have shown for the (sub)gradient projection method, Newton-like methods, and
the proximal point algorithm. A comprehensive study of finite activity identification as well as sharp
local linear convergence has been established by Liang et al. in a series of papers for a variety of opera-
tor splitting algorithms: forward-backward-type algorithms including accelerated ones [116, 118, 117],
for Douglas-Rashford/ADMM [120] and for the Primal-Dual splitting [119].

Strict saddle avoidance A driving theme in nonconvex optimization, supported by empirical
evidence, is that simple algorithms often work well in highly nonconvex and even nonsmooth settings
by avoiding “bad” critical points. A growing body of literature provides one compelling explanation
for this escape property or trap avoidance phenomenon. Namely, typical smooth objective functions
provably satisfy the strict saddle property, meaning each critical point is either a local minimizer or has
a direction of strictly negative curvature. For such functions, either randomly initialized gradient-type
methods [86, 146], or stochastically perturbed gradient methods [149, 44] provably escape all strict
saddle points, generically on initialization or on the noise. At the heart of the analysis in all these
work is the use of the Center Stable Manifold Theorem [162, Theorem III.7] which finds its roots in
the work of Poincaré. In [86], it was proved that the heavy ball method with friction, applied to a C2

Morse function, provably converges to a local minimizer generically on initialization. Morse functions
are known to be generic in the Baire sense in the space of C2 functions (see [11]). In [110], it has been
shown that when the objective function is sufficiently smooth with a Lipschitz continuous gradient,
a large class of first-order methods avoid strict saddle points. In the nonsmooth setting, Euclidean
proximal methods as explored in [68], are effective in avoiding a nonsmooth version of strict saddle
points: “active” strict saddle points, which are strict saddle points with respect to an underlying
activity manifold. In parallel to [68], we would like to mention the recent work of [33] which shows
that stochastic subgradient descent also escapes “active” strict saddle points. The last two papers rely
on important geometric conditions that turn out to be generic in the space of tame weakly convex
functions.
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1.2.2.2 Recovery and stability guarantees for (Py,λ)

Regularized phase retrieval is an active area of research. Our review of this problem is not exhaus-
tive and readers interested in a comprehensive and extended overview should refer to the following
references [161, 97, 175, 127, 78].

Sparse phase retrieval When the signal of interest is s−sparse w.r.t some basis and and the goal
is to recover the signal from a few measurements m� n, this problem is referred as “compressive or
sparse phase retrieval”. From a theoretical perspective, generic sensing vectors (ar)r∈JmK are injective
(up to a global sign change) in the class of real s−sparse signals as soon as the number of measurements
satisfies m ≥ 2s − 1 [184]. We recall that the natural information theoretical lower-bound is m &
s log(n) for solving the problem using any approach. Whereas for Gaussian sensing vectors, [143]
show that m & s log(en/s) separate signals well. In [178], the authors introduced a notion of strong
Restricted Injectivity Property (s-RIP) which holds for the class of Gaussian sensing vectors and they
showed that solving (Pȳ,0) when R is the `0−norm is equivalent to solving the same problem replacing
`0 with the `1 norm for sensing vectors satisfying the s-RIP. For Gaussian sensing vectors, the latter
holds for m & s log(en/s). Stable sparse phase retrieval under the s-RIP was studied in [80]. Other
works in the same vein include [131, 189, 80, 184, 159, 98, 99, 100, 18].

We can categorize the methods to solve the sparse phase retrieval problem into three groups. The
first considers convex relaxation, the second tackles directly the nonconvex problem and the third
manually designs the measurement vectors.

Again, lifting methods such as the PhaseLift or PhaseCut1 can be used to convexify the constraint in
(Py,λ) while sparsity on the lifted rand-one matrix is now to be promoted entry-wise or on rows. This
regularization entails that the rank-one matrix to be recovered is s2 sparse and thus, as expected, the
sample complexity for exact recovery from Gaussian measurements is m & s2 log(n) [114]. However,
this problem becomes less tractable and it is not possible to achieve the natural theoretical lower-
bound using this approach [114, 144]. Another approach in this setting is PhaseMax [88] which
consists in relaxing the nonconvex constraint set in (Pȳ,0) from equality to inequality (i.e. from the
sphere constraint to the ball one), and then to solve the resulting linear program. This method
achieves the optimal sample complexity m & s log(n/s) for Gaussian sensing vectors. However, it
requires an anchor or initialization that is sufficiently correlated with the true signal which requires
m & s2 log(n) to be successful. In [133], the authors use a convex relaxation and propose an atomic
norm that favors low-rank and sparse matrices. They achieve nearly optimal sample complexity i.e.
bound m & s log(en/s). Regarding the stability of the reconstruction against additive noise, the same
authors showed that the sparse with low-rank atomic norm regularization achieves a reconstruction
error bound of O(σ

√
s
m log(en/s)) where σ is the standard deviation.

Concerning methods that study directly the sparse phase retrieval problem, it has been shown that
m & s2 log(n) are sufficient to provably recover the original vector (up to global sign/phase change)
[50, 141, 183, 191, 101]. The authors in [50] proposed a method to find a good initialization of the
problem which requires thatm & s2 log(n). The authors in [141] proposed an alternating minimization
strategy to reconstruct the signal. Sparta [183] uses an amplitude-based instead of an intensity-based
measurement which is clearly nonsmooth and [191] proposed a sparse version of the classical Wirtinger
flow [53]. The authors in [101] proposed the Copram which combines Alternating minimization and
the Cosamp [137], and they showed that reconstruction is possible with O(s2 log(n)) measurements.
In the general case of block sparsity or group Lasso, they showed that exact recovery (up to a global
sign change) is possible with m & s2

B log(n) where B is the size number of the blocks slightly improving
the bound on the number of measurements. As far as robust recovery is concerned, it was proved

1Even though, we are not aware of any work adapting the PhaseCut to sparse phase retrieval.
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in [50, 189] that solving (Py,λ) achieves a reconstruction error bound of O(σ
√

(s/m) log(n)) which is
very close to the optimal rate for the classic compress sensing.

The third class of methods that design the sensing vectors usually achieves near-optimal sample
complexity bounds, we refer to [14, 148] but they are of limited interest for our work.

General regularized phase retrieval As reviewed above, most existing work focuses on the
recovery of sparse signals from phaseless measurements. On the other hand, real signals and images
involve much richer structure and complexity such as being piecewise smooth. In this case, a wise
choice of the regularizer would the is the popular Total Variation (TV) seminorm, or sparsity in some
frame. This scope is quite recent for the phase retrieval. For the TV phase retrieval, we refer to
[29, 30]. In [29], the authors combined the standard Fienup’s Hybrid input-output [79] method that is
well-known to be the Douglas-Rachford [23] with TV regularization based on a primal-dual method.
This was applied to optical diffraction tomography and the sensing vectors are the Non-Uniform
Fourier Transform. In [30], they extend the scope to moving objects. See also [147] for an algorithmic
framework based on Fienup methods with general semialgebraic regularizers.

In the general setting, we have to cite the work in [107], where the authors consider the recon-
struction of a real vector living in a general constraint subset of Rn from sub-Gaussian measurements.
They showed that Empirical Risk Minimization to solve the noisy phase retrieval produces a signal
close enough to the true signal up to sign change and this error depends on the Gaussian width of
the subset and the signal-to-noise ratio of the problem. Phase retrieval with general regularization is
studied in [165], where the authors showed that the main problem for achieving the optimal sample
complexity is the initialization step. However, it is still an open question to find a good strategy
to find an anchor or initialization that is close enough or sufficiently correlated with the true vector
beyond the sparse case, and with a reasonable bound on the number of measurements, i.e. that does
not scale as the square of the intrinsic dimension of the vector to recover.

1.3 Contributions

We recall that throughout this manuscript, we consider that the signal is real valued 2. Our work
makes contributions in two distinct areas: first, by exploring the problem of phase retrieval without
any prior knowledge on the signal that we aim to recover, and second by delving into the case of phase
retrieval with regularization.

1.3.1 Phase retrieval without regularization

In this part of the thesis, we formulate (GeneralPR) as the minimization problem (1.2.1). Inspired by
[40], we propose a mirror descent (or Bregman gradient descent) algorithm with backtracking associ-
ated to a wisely chosen Bregman divergence, hence removing the classical global Lipschitz continuity
requirement on the gradient of the nonconvex objective (see (1.2.1)).

In the deterministic case without any specific structural assumption on the sensing vectors, we show
that for almost all initializers, mirror descent converges to a critical point near the true vectors (up to
sign ambiguity) where the objective has no direction of negative curvature, i.e., a critical point which
is not a strict saddle point. We show that mirror descent to solve (1.2.1) is stable against additive noise
and this in turn provides recovery error bounds of the noisy phase retrieval problem (GeneralPR).
Theses results are summarized in the following theorem. Let us denote X = {±x̄}.

Theorem 1.3.1 (Exact and stable recovery guarantees for deterministic measurements).

2This is motivated by main application in light scattering where the roughness of a surface to be recovered is real.
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Consider the phase retrieval problem cast as (1.2.1). Let (xk)k∈N be a bounded sequence generated
by Algorithm3. Then,
(i) the sequence (xk)k∈N has a finite length, converges to a critical point and the values (f(xk))k∈N

are nonincreasing.
For constant descent step-sizes and without backtracking then,

(ii) for Lebesgue almost all initializers x0, the sequence (xk)k∈N converges to a critical point which
cannot be a strict saddle.

(iii) Assume that Argmin(f) 6= ∅. Let ρ, σ > 0 such that ρ >
√

2‖ε‖√
mσ

and define the radius r ≤√
ρ2− 2‖ε‖2

mσ
max(Θ(ρ),1) where Θ(·) is a function to be specified later. If the initial point x0 ∈ B(X , r) and

f is σ-strongly convex relative to ψ on B(X , ρ) then we have

∀k ∈ N, xk ∈ B(X , ρ) and dist2(xk,X ) ≤ (1− γσ)k−1 ρ2 + 2‖ε‖
2

mσ
. (1.3.1)

The deterministic stable recovery results of Theorem1.3.1 require for instance a local relative strong
convexity condition as well as a good enough initial guess. A natural question to ask is when these
conditions are verified. In turns out that this is indeed the case in the oversampling regime with random
measurements drawn from appropriate random ensembles. We consider two random measurements
models: i.i.d Gaussian measurements and the CDP model.

For Gaussian measurements, and in the regime where the signal-to-noise ratio is large enough, we
provide a complete geometric characterization of the landscape of the nonconvex objective provided
that m & n log3(n). In turn, this allows us to describe the set of the critical points of f as the union
of the strict saddle points and global minimizers of f . From this, we provide a generic convergence
result of our algorithm to a point in Argmin(f), which is near the true vector (up to sign ambiguity),
as soon as the number of samples is large enough. If m & n log(n), using a spectral initialization
method, we provide a local convergence to a vector in the neighborhood of the target vector (up to
sign ambiguity). Our main result for Gaussian measurements is the following.

Theorem 1.3.2 (Exact and stable recovery guarantees for Gaussian measurements).
Fix λ ∈

]
1

9
√

2 , 1
[
, %, ς and ε̃ as in Theorem4.3.2. Let (xk)k∈N be the sequence generated by Algo-

rithm3.
(i) If the number of measurements m is large enough, i.e., m ≥ C(%)n log3(n), then for almost all

initializers x0 of Algorithm 3 with the step-size γ ≡ 1−κ
3+ε̃+%max(‖x̄‖2/3+‖ε‖∞,1) ,

then we have
xk → x? ∈ Argmin(f) ∩B

(
X , ς

)
and ∃K > 0 such that for all k ≥ K, we have

dist2(xk,X ) ≤ (1− ν)k−Kρ2 + ς2, (1.3.2)

this holds with high probability where ν ∈ [0, 1[.
(ii) Suppose that % obeys (3.6.12). If m is such that m ≥ C(%, ‖ε‖∞)n log(n), and Algorithm3 is

initialized with the spectral method in Algorithm4, then (1.3.2) holds for all k ≥ K = 0 with high
probability.
The rate 1− ν is given explicitly in Theorem4.3.2.

The reconstruction error is eventually ς and this will be shown to scale as O
(
‖ε‖√
m‖x̄‖

)
which is

minimax optimal according to [63, Theorem3].
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Though we focus on Gaussian measurements when establishing the global recovery properties of our
mirror descent algorithm, our theory extends to the situation where the ar’s are i.i.d sub-Gaussian
random vectors.

For the CDP model, we only have guarantees in absence of noise. For instance, we show that one
can afford a smaller sampling complexity bound but at the price of using an appropriate spectral
initialization procedure to find an initial guess near a solution before applying our scheme. Starting
from this initial guess, mirror descent then converges linearly to the true vector up to a global sign
change with a dimension-independent convergence rate. Our main result for the CDP measurements
model is the following.

Theorem 1.3.3 (Exact recovery guarantee for CDP model).
Let % ∈]0, 1[ and (xk)k∈N be the sequence generated by Algorithm1.
(i) If the number of patterns P satisfies P ≥ C(%) log(n), then with high probability, for almost all
initializers x0 of Algorithm1 used with constant step-size γk ≡ γ = 1−κ

L , for any κ ∈]0, 1[ and L
given by Lemma 3.2.3, (xk)k∈N converges to a critical point which cannot be a strict saddle.

(ii) Let δ ∈]0,min(‖x̄‖2 , 1)/2[. There exists ρδ > 0 such that if % is small enough and P ≥
C(%) log3(n), and if Algorithm1 is initialized with the spectral method in Algorithm 2, then with
high probability

dist2(xk,X ) ≤ (1− ν)k, ∀k ≥ 0, (1.3.3)

where ν ∈ [0, 1[ and will be given explicitly.

The CDP model is very challenging. Indeed, at this stage, we do not have any theoretical guarantee
with the CDP model, neither for generic strict saddle points avoidance nor for stable recovery by
mirror descent. One of the main difficulties is that several of our arguments rely on uniform bounds,
for instance on the Hessian, that need to hold simultaneously for all vectors x ∈ Rn with high proba-
bility. But the CDP model bears much less randomness to exploit for establishing such bounds with
reasonable sampling complexity bounds. Nevertheless, numerical experiments suggest that global con-
vergence and stable recovery still holds for our mirror descent algorithm with CDP measurements. A
rigorous analysis of these numerical results is open and is left for future research.

1.3.2 Regularized phase retrieval

Our contributions are along two lines. First, we propose and analyze an inertial Bregman proximal
gradient algorithm to solve (P) and then we turn to studying noiseless and stable phase retrieval with
general low complexity promoting regularizers.

1.3.2.1 Inertial Bregman proximal gradient under partial smoothness

This part is purely algorithmic. We study the global and local convergence properties of an inertial
type Bregman proximal gradient (see Algorithm5) to solve the problem (P) with a class of Bregman
kernels that satisfies the triangle scaling property (see Definition 2.3.9). Our main motivation is
that the Tikhonov variational formulation (Py,λ) of the regularized phase retrieval satisfies the list of
Assumptions 5.1.1-5.2.1. Besides, Fy,λ is semialgebraic. We can sum up the main contributions of this
work in the following compact theorem.

Theorem 1.3.4 (Convergence analysis of the IBPG). Let us consider the problem (P) with
Assumption 5.1.1-5.2.1 and assume that Φ is a semialgebraic function. Besides, let us assume that
the inertial parameters (ak)k∈N converge to a ∈ [0, 1]. Suppose that the sequence (zk)k∈N generated by
Algorithm5 is bounded, then
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(i) all the sequences (xk)k∈N , (yk)k∈N and (zk)k∈N have finite length and converges to a critical
point.

(ii) if the algorithm is started near a global minimizer x? in the Φ−attentive topology, the generated
sequences converge to x?.

(iii) if x? ∈ critΦ is the limit of the sequence and assume that G is partly smooth at x? relative to a
manifoldMx? and that a non-degeneracy condition holds at x?. Then there exists a constant K
large enough such that for all k ≥ K,xk ∈Mx? .

(iv) if F is locally C2 around the cluster point x? where now both a non-degeneracy and a restricted
injectivity condition hold, then (xk)k∈N converges locally linearly to x?.

(v) If G ≡ 0, then for almost all initializers, the generated sequences converge toward the set of
critical points that are not strict saddle points.

This result shows that for semialgebraic (and more generally tame) functions, bounded iterates
generated by the inertial Bregman proximal gradient converge to an element in the set of critical
points of the objective function. If we start near an optimal solution the sequence converges to
it. Besides, this result shows that the inertial Bregman proximal gradient enjoys a finite activity
identification property. In the case, we carry out a sharp spectral analysis from which we exhibit a
linear convergence regime under a particular choice of inertial parameters. This choice of parameters
highly depends on the triangle scaling exponent κ, which generalizes the Euclidean case when this
parameter is just 2. When G ≡ 0, for almost all initializers the inertial Bregman proximal gradient
avoids the strict saddle points, and we recall that these are critical points where the function has a
direction of negative curvature.

1.3.2.2 Low-complexity regularized phase retrieval

Noiseless recovery We establish sufficient conditions under which solving the minimization prob-
lem (Pȳ,0) recovers the original signal x̄ up to a global sign change. These conditions are deterministic
and depend on the regularizer R (for instance its descent cone at x̄) and the measurement matrix A.
This holds true with high probability for standard Gaussian measurements and common regularizers,
given a sufficient number of measurements. Furthermore, we derive precise recovery guarantees for
specific regularizer types, including decomposable ones (like Lasso and group Lasso), frame analysis-
based regularizers, and the total variation. The following theorem highlights our deterministic results.

Theorem 1.3.5 (Exact recovery). Assume that the set of minimizers of (Pȳ,0) is nonempty. If R
is a proper convex lower semicontinuous and even function obeying (H.2), then the recovery of x̄ (up
to a global sign) is exact by solving (Pȳ,0).

Stable recovery We analyze the minimization problem (Py,λ) which is a noise-aware with a
Tikhonov-type regularization. We show that under appropriate nondegeneracy and restricted injec-
tivity conditions, the solution of this problem converges to the original signal (up to sign change) as
λ → 0 when ε → 0. We also give robust recovery error bounds for small enough noise. For standard
Gaussian measurements and various regularizers, we provide sample complexity bounds for the above
conditions to hold, and in turn, for robust recovery to occur.

Theorem 1.3.6 (Stable recovery). Consider the noisy phaseless measurements in (GeneralPR).
Let σ def= ‖ε‖. Assume that R is a nonnegative convex lower semicontinuous and even function obeying
(H.2). Suppose also that R is coercive on ker(A), and that

λ→ 0 and σ2/λ→ 0, as σ → 0.

– 11 –
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Then, for any minimizer x?y,λ of (Py,λ)

dist
(
x?y,λ,X

)
→ 0 as σ → 0.

If R and A verify an appropriate nondegeneracy and restricted injectivity conditions (see (6.4.4) and
(6.4.5)) at x̄, then for σ small enough and λ ∝ σ

dist
(
x?y,λ,X

)
= O(σ).

1.4 Outline
The remainder of the thesis is divided into two parts and seven chapters.

Chapter 2: Mathematical Background. This chapter provides the necessary mathematical
material used throughout the manuscript. It gathers tools from convex analysis, as well as Bregman
based optimization, tools from nonsmooth analysis, and elements from probability theory such as
concentration inequalities.

Chapter 3: Phase retrieval using mirror descent. We start by describing the mirror descent
algorithm with backtracking and establish its global and local convergence guarantees in the deter-
ministic case applied to phase retrieval. We then turn to the case of random measurements and we
provide sample complexity bounds for the deterministic guarantees to hold with high probability. The
last section is devoted to the numerical experiments.

Chapter 4: Stable Phase retrieval using mirror descent. We first establish convergence
guarantees of mirror descent in the deterministic case for noisy phase retrieval. We then instantiate
to the case of Gaussian measurements and provide sample complexity bounds for the deterministic
guarantees to hold with high probability. Numerical experiments close this chapter.

Chapter 5: Inertial Bregman proximal gradient under Partial smoothness. We start with
the global convergence analysis of the inertial Bregman proximal gradient scheme under the Kurdyka-
Łojasiewicz property. We then delve into a local analysis under partial smoothness. Trap avoidance
in the smooth case is also investigated. Numerical experiments on regularized phase retrieval are then
described.

Chapter 6: Low-complexity regularized Phase retrieval. We consider the regularized phase
retrieval. We establish perfect recovery of the true signal up to global sign change from the min-
imization problem in the noiseless setting. We then turn to the noisy case, where we analyze two
formulations of the problem. Finally, we study convergence of the minimizers to the set of true
vectors.

Chapter 7: Conclusion & Perspectives. This last chapter sums up the main ideas and contri-
butions of the thesis and draws important conclusions. It also discusses several interesting perspectives
and open problems that we believe are worth investigating in the future.

1.5 Work Not Included in the Thesis
To close the introduction, I list here works that are not included in this thesis. I give short summaries
of them outlining the main ideas without delving into the details. These works were carried out
with collaborators from the Concept team at the Fresnel Institute throughout the PhD. They were
intended to prepare the application of our phase retrieval framework and algorithms to light scattering
and precision optics.

– 12 –
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1.5.1 Immediate and one-point roughness measurements using spectrally shaped
light.

This work appeared in [45]. We propose a novel approach different from the usual scattering measure-
ments, one that is free of any mechanical movement or scanning. Scattering is measured along a single
direction. Wide-band illumination with a properly chosen wavelength spectrum makes the signal pro-
portional to the sample roughness, or to the higher-order roughness moments. Spectral shaping is
carried out with gratings and a spatial light modulator. We validate the technique by crosschecking
with a classical angle- resolved scattering set-up. Though the bandwidth is reduced, this white light
technique may be of key interest for on-line measurements, large components that cannot be displaced,
or other parts that do not allow mechanical movement around them.

1.5.2 Instantaneous measurement of surface roughness spectra using white light
scattering projected on a spectrometer.

This work was published in [46]. We propose a new experiment of white light scattering that should
overtake the previous ones in most situations. The set-up is very simple, as it requires only a broad-
band illumination source and a spectrometer to analyze light scattering at a unique direction. After
introducing the principle of the instrument, roughness spectra are extracted for different samples and
the consistency of results is validated at the intersection of bandwidths. The technique will be of great
use for samples that cannot be moved.

– 13 –
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Background

Contents
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We assemble in this chapter the relevant background material and some notations that will be used
throughout the following chapters.

2.1 Notations
Vectors and matrices We denote 〈·, ·〉 the scalar product on Rn and ‖·‖ the corresponding norm.
B(x, r) is the corresponding ball of radius r centered at x and Sn−1 is the corresponding unit sphere.
Moreover, ‖·‖p , p ∈ [1,∞] stands for the `p norm . For m ∈ N∗, we use the shorthand notation
JmK = {1, . . . ,m}. The i-th entry of a vector x is denoted x[i]. For any y ∈ Rm the operations |y|
and y2 should be understood componentwise. Given a matrix M ∈ Rm×n, M> is its transpose. Let
λmin(M) and λmax(M) be respectively the smallest and the largest eigenvalues of M . For two real
symmetric matrices M and N , M � N if M − N is positive semidefinite. For a linear operator M ,
M∗ is its adjoint.

In the following, or a subspace V ⊂ Rn, PV denotes the orthogonal projector on V , and

xV = PV x and AV = APV .

For I ⊂ JmK, AI def= [ai : i ∈ I]> denotes the sub-matrix whose rows are only those of A indexed by I.
We denote |I| the cardinality of I and Ic its complement.

Throughout, we use the shorthand notation X def= {±x̄} to denote the set of true vectors. Hence,
for any vector x ∈ Rn, the distance to the set of true vectors is

dist(x,X ) def= min(‖x− x̄‖ , ‖x+ x̄‖). (2.1.1)

Remark 2.1.1. Our limitation of the set of true solutions to {±x̄} may appear restrictive since
even for real vectors, the equivalence class is much larger than what we are allowing. Moreover, our
restriction will be justified in the oversampling regime with random measurements. For instance,
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for Gaussian measurements, only {±x̄} are provably global minimizers for large enough number of
measurements. Moreover, for the two types of random measurements on which we focus in this thesis,
spectral initialization also provides an initialization which is real and provably lies in the neighborhood
of {±x̄}.

2.2 Nonsmooth and Convex Analysis
Sets For a nonempty set S ∈ Rn, we denote S it closure, conv (S) the closure of its convex hull,

and ιS its indicator function i.e.,

ιS(x) def=

0 x ∈ S
+∞ x 6∈ S.

Recall that, if S is nonempty, closed, and convex, then ιS belongs to Γ0 (Rn). For a nonempty convex
set S, its affine hull aff(S) is the smallest affine manifold containing it. It is a translate of its parallel
subspace par(S), i.e. par(S) = aff(S)− S = R(S − S), for any x ∈ S. The relative interior ri(S) of a
convex set S is the interior of S for the topology relative to its affine full.

For any vector x ∈ Rn, the distance to a non-empty set S ⊂ Rn is

dist(x,S) def= inf
z∈S
‖x− z‖ . (2.2.1)

We recall that the orthogonal projection of x ∈ Rn on S is define by

PS(x) def= argmin
z∈S

‖x− z‖ . (2.2.2)

Definition 2.2.1 (Support function). The support function of S ⊂ Rn is

σS(z) = sup
x∈S
〈z, x〉 .

Definition 2.2.2 (Polar set). Let S be a nonempty convex set. The set S◦ given by

S◦ =
{
v ∈ Rn : 〈v, x〉 ≤ 1 ∀x ∈ S

}
is called the polar of S.

The set S◦ is closed convex and contains the origin. When S is also closed and contains the origin,
then it coincides with its bipolar, i.e. S◦◦ = S.

Definition 2.2.3 (Gauge). Let S ⊆ Rn be a non-empty closed convex set containing the origin. The
gauge of S is the function γS defined on Rn by

γS(x) = inf
{
λ > 0 : x ∈ λS

}
.

As usual, γS(x) = +∞ if the infimum is not attained.

We have the following characterization of the support function in finite dimension. γS is a non-
negative, closed and sublinear function. When S is a closed convex set containing the origin, then

γS = σS◦ and γS◦ = σS .

Let S ⊂ Rn a nonempty, closed bounded and convex subset. If 0 ∈ ri(S), then γS ∈ Γ0(Rn) is
sublinear, nonnegative and finite-valued, and

σC(x) = 0 ⇐⇒ x ∈ (par(C))⊥.

Definition 2.2.4 (Asymptotic cone). Let S be a non-empty closed convex set. The asymptotic
cone, or recession cone is the closed convex cone defined by

S∞
def=
⋂
t>0

S − x
t

, x ∈ S.

– 15 –
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This definition does not depend on the choice of x ∈ S. The importance of the asymptotic cone
becomes obvious through the following fundamental fact; see [12, Proposition 2.1.2].

Fact 2.2.5. S is compact if and only if S∞ =
{
0
}
.

Functions
A function f : Rn → R∪ {+∞} is closed (or lower semicontinuous (lsc)) if its epigraph is closed. It

is coercive if
lim

‖x‖→+∞
f(x) = +∞.

The effective domain of f is dom(f) =
{
x ∈ Rn : f(x) < +∞

}
and f is proper if dom(f) 6= ∅ as is

the case when it is finite-valued.
A function is said sublinear if it is convex and positively homogeneous. The Legendre-Fenchel

conjugate of f is
f∗(z) = sup

x∈Rn
〈z, x〉 − f(x).

Let the kernel of a function be defined as ker(f) def=
{
z ∈ Rn : f(z) = 0

}
. Let us denote by Slevf (x̄) def={

z ∈ Rn : f(z) ≤ f(x̄)
}
the sublevel set of f at x̄. We denote by Γ0(Rn) the class of proper lsc convex

function from Rn to R = R ∪ {+∞}. For µ > 0, f is µ-strongly convex if and only if f − µ
2 ‖·‖

2 is
convex, and is µ-weakly convex (or semiconvex) if and only if f + µ

2 ‖·‖
2 is convex.

A point x ∈ Rn is in the f−attentive neighborhood of x? ∈ Rn, if for all r > 0, there exists ρ ∈]0, r[
and η > 0 such that ‖x− x?‖ ≤ ρ and f(x?) < f(x) < f(x?) + η. The following notation x

f−→ x?
stand for f−attentive convergence, i.e., x→ x? with f(x)→ f(x?).

Definition 2.2.6. (Subdifferentials) The Fréchet subdifferential of f at a point x ∈ Rn is the set

∂F f(x) def=


{
v ∈ Rn : f(z) ≥ f(x)− 〈v; z − x〉+ o(‖z − x‖)

}
, if x ∈ dom(f)

∅, otherwise.
The limiting subdifferential at x is defined as the set

∂f(x) def=
{
v ∈ Rn : ∃xk

f−→ x, v ← vk ∈ ∂F f(xk)
}
.

An element of ∂f(x) is called a subgradient. If f is differentiable at x, then its only subgradient
is its gradient, i.e., ∂F f(x) = ∂f(x) = {∇f(x)}. While ∂F f is convex-valued, ∂f is closed-valued. If
f is (subdifferentially) regular at x then both subdifferentials coincide. This is the case in particular
for any f ∈ Γ0(Rn), and in this case ∂f is the usual (Fenchel) subdifferential in the sense of convex
analysis

∂f(x) =
{
v ∈ Rn : f(z) ≥ f(x) + 〈v, z − x〉 , ∀z ∈ dom(f)

}
.

The set of critical points of f is crit(f) =
{
x? ∈ Rn : 0 ∈ ∂f(x?)

}
, and Argmin(f) is the set of global

minimizers of f .

Definition 2.2.7 (Asymptotic function). For a proper closed function f : Rn → R, f∞ : Rn → R
is the asymptotic function, or recession function associated with f , which is defined by

f∞(z) def= lim inf
z′→z,t→+∞

f(tz′)
t

. (2.2.3)

It is well-known that f∞ is lsc and positively homogeneous and that its epigraph is the asymptotic
cone of the epigraph of f . This function plays an important role in the existence of solutions to
minimization problems. Besides for any closed convex set S, one has

(ιS)∞ = ιS∞ .

The following result relates coercivity to properties of the recession function.
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Proposition 2.2.8. Let f ∈ Γ0 (Rn) and A : Rm → Rn be a linear operator. Then,
(i) g coercive ⇐⇒ f∞ (x) > 0 ∀x 6= 0.
(ii) f∞ ≡ σdom(f∗).
(iii) (f ◦A)∞ ≡ f∞ ◦A.
In particular, we deduce that f ◦A is coercive if and only if σdom(f∗)(Ax) > 0 for every x 6= 0.

Proof. The proofs can be found in [156, Theorem 3.26], [156, Theorem 11.5] and [105, Corollary 3.2]
respectively.

Operator norm Let g1 and g2 be two finite-valued gauges defined on two vector spaces V1, V2,
and A : V1 → V2 be a linear map. The operator bound ‖A‖g1→g2

of A between g1 and g2 is given by

‖A‖g1→g2
= sup

g1(x)≤1
g2(Ax).

Let us note that ‖A‖g1→g2
<∞ if and only if Aker(g1) ⊂ ker(g2). Moreover a sufficient condition for

‖A‖g1→g2
< ∞ is that g1 is coercive. As a convention, ‖A‖g1→‖·‖p

is denoted as ‖A‖g1→`p . A direct
consequence of this definition is the fact that, for every x ∈ V1,

g2(Ax) ≤ ‖A‖g1→g2
g1(x).

2.3 Bregman Toolbox
Definition and properties Let us start with the definition of a Legendre function.

Definition 2.3.1. [155, Chapter 26](Legendre function) Let φ ∈ Γ0(Rn) such that int(dom(φ)) 6= ∅.
φ is called
(i) essentially smooth if it is differentiable on int(dom(φ)) with ‖∇φ(xk)‖ → ∞ for every sequence

(xk)k∈N of int(dom(φ)) converging to a boundary point of dom(φ).

(ii) essentially strictly convex if it is strictly convex on every convex subset of dom ∂φ
def=
{
x :

∂φ(x) 6= ∅
}
.

A Legendre function is essentially smooth and strictly convex.

Remark 2.3.2. [155, Theorem 26.5]
• Let us notice that a function is Legendre if and only if its conjugate φ∗ is of Legendre.
• We also have that dom∂φ = int(dom(φ)), ∂φ = ∅, ∀x ∈ bd(dom(φ)) and ∀x ∈ int(dom(φ)) we

have ∂φ(x) = {∇φ(x)} and ∇φ is a bijection from int(dom(φ)) to int(dom(φ))∗ with ∇φ∗ =
(∇φ)−1.

For any function φ : Rn → R, we define a proximity measure associated with φ.

Definition 2.3.3. (Bregman divergence) The general Bregman divergence associated with φ is

Dv
φ(x, y) def=

{
φ(x)− φ(y)− 〈v;x− y〉 , if(x, y) ∈ (dom(φ)× int(dom(φ))) , v ∈ ∂φ(y),
+∞ otherwise.

(2.3.1)

Remark 2.3.4. When φ is Legendre or simply sufficiently smooth on int(dom(φ)), we recover the
classical definition i.e.,

Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉 . (2.3.2)

If φ(x) = 1
2 ‖x‖

2, the Bregman divergence is the usual euclidean distance Dφ(x, y) = 1
2 ‖x− y‖

2 . This
proximity measure is not a distance (it’s not symmetric in general for instance).
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Throughout the rest of the work, we use the following properties of the Bregman divergence.

Proposition 2.3.5. (Properties of the Bregman distance)
(i) Dφ is nonnegative if and only if φ is convex. If in addition, φ is strictly convex, Dφ vanishes if

and only if its arguments are equal.
(ii) Linear additivity: for any α, β ∈ R and any functions φ1 and φ2 sufficiently smooth, we have

Dαφ1+βφ2(x, u) = αDφ1(x, u) + βDφ2(x, u), (2.3.3)

for all (x, u) ∈ (domφ1 ∩ domφ2)2 such that both φ1 and φ2 are differentiable at u.
(iii) The three-point identity: For any x ∈ dom(φ) and u, z ∈ int(dom(φ)), we have

Dφ(x, z)−Dφ(x, u)−Dφ(u, z) = 〈∇φ(u)−∇φ(z);x− u〉 . (2.3.4)

(iv) Suppose that φ is also C2(int(dom(φ))) and ∇2φ(x) is positive definite for any x ∈ int(dom(φ)).
Then for every convex compact subset Ω ⊂ int(dom(φ)), there exists 0 < θΩ ≤ ΘΩ < +∞ such
that for all x, u ∈ Ω,

θΩ
2 ‖x− u‖

2 ≤ Dφ(x, u) ≤ ΘΩ
2 ‖x− u‖

2 . (2.3.5)

Regularity of functions The following definition extends the classical gradient Lipschitz conti-
nuity property to the Bregman setting, this notion is named "relative smoothness" and is important to
the analysis of optimization problems that are differentiable but lack of gradient Lipschitz-smoothness.
The earliest reference to this notion can be found in an economics paper [34] where it is used to address
a problem in game theory involving fisher markets. Later on it was developed in [21, 40] and then in
[124], although first coined relative smoothness in [124]. Let φ ∈ Γ0(Rn) ∩C1(int(dom(φ))), and g be
a proper and lower semicontinuous function such that dom(φ) ⊂ dom(g).

Definition 2.3.6. (L−relative smoothness) Let g ∈ C1(int(dom(φ))), g is called L−smooth rela-
tive to φ on int(dom(φ)) if there exists L > 0 such that Lφ− g is convex on int(dom(φ)), i.e.

Dg(x, u) ≤ LDφ(x, u) for all (x, u) ∈ dom(φ)× int(dom(φ)). (2.3.6)

When φ is the energy entropy, i.e. φ = 1
2 ‖·‖

2, one recovers the standard descent lemma implied by
Lipschitz continuity of the gradient of g.

In a similar way, we also extend the standard local strong convexity property to a relative version
w.r.t to an entropy or kernel φ.

Definition 2.3.7. (Local relative strong convexity) Let C be a non-empty subset of dom(φ). Let
g ∈ C1(int(dom(φ))), for σ > 0 we say that g is σ-strongly convex on C relative to φ if

Dg(x, u) ≥ σDφ(x, u) for all x ∈ C andu ∈ C ∩ int(dom(φ)). (2.3.7)

When C = dom(φ), we get the idea of global relative strong convexity. If φ is the energy entropy
(i.e. φ = 1

2 ‖·‖
2), one recovers the standard definition of (local/global) strong convexity.

The idea of global (i.e. C = dom(φ)) relative strong convexity has already been used in the
literature, see e.g. [169, Proposition 4.1] and [20, Definition 3.3]. Its local version was first proposed
in [163]. When φ is the energy entropy (i.e. φ = 1

2 ‖·‖
2), one recovers the standard definition of

(local/global) strong convexity. Relation of global relative strong convexity to gradient dominated
inequalities, which is an essential ingredient to prove global linear convergence of mirror descent, was
studied in [20, Lemma3.3].

Let us give the following useful lemma which compare the Bregman divergences of smooth functions.

Lemma 2.3.8. Let g, φ ∈ C2(Rn). If ∀u ∈ Rn, ∇2g(u) � ∇2φ(u) for all u in the segment [x, z], then,

Dg(x, z) ≤ Dφ(x, z). (2.3.8)
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Proof. The result comes from the Taylor-MacLaurin expansion. Indeed we have ∀x, z ∈ Rn

Dg(x, z) = g(x)− g(z)− 〈∇g(z), x− z〉

=
∫ 1

0
(1− τ)

〈
x− z,∇2g(z + τ(x− z))(x− z)

〉
dτ,

and thus

Dφ(x, z)−Dg(x, z) = ∫ 1

0
(1− τ)

〈
x− z,

(
∇2φ(z + τ(x− z))−∇2g(z + τ(x− z))

)
(x− z)

〉
dτ.

The positive semidefiniteness assumption implies the claim.

Triangle scaling property Here, we introduce the triangle scaling property (TSP) [89] for Breg-
man distances.

Definition 2.3.9. Let φ be a Legendre function. The Bregman distance generated by φ has the
triangle scaling property if there is a constant κ > 0 such that for all x, y, z ∈ ri(dom(φ)),

Dφ((1− a)x+ ay, (1− a)x+ az) ≤ aκDφ(y, z), ∀a ∈ [0, 1]. (2.3.9)

We call κ the uniform triangle scaling exponent (TSE) of Dφ.

There is a large class of functions that satisfy this property, here are some specific examples.
• Euclidean distance. When φ is the energy and thus Dφ(x, y) = 1

2 ‖x− y‖
2 . The squared Eu-

clidean distance has a uniform TSE κ = 2.
• Bregman divergence induced by strongly convex and smooth functions. If φ is σφ−strongly convex

and L−smooth over its domain then (2.3.9) hold with κ = 2 if the right-hand side is multiplied
by the condition number L/σφ.

• Bregman geometry based on polynomial kernel. Polynomial functions of the form φ(x) = 1
p‖x‖

p

for some p ≥ 2, the global TSE for the induced Bregman divergence can be less than 1 for p > 2.
However, the modified reference function φ(x) = 1

2‖x‖
2 + 1

p‖x‖
p for p ≥ 4 has a coefficient κ > 1,

or κ = 2 with an additional factor on the right-hand side of (2.3.9), over a bounded domain. It
turns that this choice of φ is precisely the one that we make for phase retrieval as announced in
(1.2.2).

We have the following proposition.

Proposition 2.3.10. (Second order characterization of the TSP.) Let φ ∈ C2(Rn) Legendre
function. If the kernel or entropy function satisfies the TSP then we have for all u ∈ [(1 − a)x +
ay, (1− a)x+ az] and for all v ∈ [y, z] then

aκ∇2φ(v)− a2∇2φ(u) � 0. (TSP)

Proof. The proof follows from Taylor expansion of C2−smooth functions.

2.4 KL Functions
This section encompasses all the essential components required for the axiomatization of convergence
for KL functions and therefore can be skipped by an experienced reader. We start by defining the
non-smooth KL property which is an additional assumption on the class of functions that we consider.
This property gives a hint about the geometric bearing of the function near the point where it is
satisfied.
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Definition 2.4.1. (Non-smooth KL property) A proper and lower semicontinuous function g :
Rn → R has the KL property at a point x? ∈ dom(g) if there exists a neighborhood Ux? , η > 0 and a
concave real-valued function ϕ ∈ C1([0, η[), with ϕ(0) = 0 and ϕ′ > 0, such that

ϕ′ (g(x)− g(x?)) dist(0, ∂g(x)) ≥ 1, ∀x ∈ Ux? ∩
{
x ∈ Rn : g(x?) < g(x) < g(x?) + η

}
.

If g has the KL property at each point of dom(g), g is called a KL function.

ϕ is known as the desingularizing function. The KL property is also closely related to error bounds
and the broader notion of “(sub)metric regularity”. We refer the reader to [96] and [37] for a detailed
study of these notions. In general, it is not obvious to check whether a given function is KL or
not. Actually, this is a very deep question that has been studied at the interface of analysis and
algebraic geometry. For smooth functions, it has been shown that semi-algebraic and sub-analytic are
Łojaciewicz in the seminal works of [121, 122, 104]. This has been extended to the nonsmooth case
and then widely studied in the scope of optimization in [36, 35, 37]. For instance, functions definable
on o-minimal structures are KL. This cover most functions studied in practice, and for instance those
in this manuscript.

The following uniformization of the KL property will be very useful; see [38, Lemma6].

Lemma 2.4.2 (Uniformized KL property). Let Ω be a compact set, and let g : Rn → R be a
proper and closed function. Assume that g is constant on Ω and satisfies the KL property at each
point of Ω. Then, there exist ε > 0, η > 0, if there exists η > 0 and a concave real-valued function
ϕ ∈ C1([0, η[) with ϕ(0) = 0, ϕ′ > 0 such that for all x? in Ω, one has

ϕ′(g(x)− g(x?))dist(0, ∂g(x)) ≥ 1,

and all x ∈ Rn such that dist(x,Ω) < ε and g(x?) < g(x) < g(x?) + η.

For the convergence of our inertial Bregman proximal gradient (IBPG) algorithm, we will use a
general convergence mechanism as first axiomatized in [8] for descent algorithms and generalized in
[38] on the so-called PALM algorithm, so that it can be used and applied to any given algorithm
such as ours (see also, e.g. [40, Appendix 6] for a self-contained presentation). The main goal is to
prove that the whole sequence (xk)k∈N generated by IBPG, converges to a critical point. For that
purpose, considering a Lyapunov function Ψ associated to IBPG, it has to satisfy the following three
key conditions.

Definition 2.4.3 (Descent-like method). A sequence (xk)k∈N is called descent-like for the function
Ψ if the following conditions hold:
(C.1) Sufficient decrease condition. There exists a positive scalar ρ1 such that

ρ1 ‖xk − xk−1‖2 ≤ Ψ(xk, xk−1)−Ψ(xk+1, xk), ∀k ∈ N.

(C.2) Relative error condition. There exists K ∈ N and ρ2 > 0 such that ∀k ≥ K, there exists
vk+1 ∈ ∂Ψ(xk+1, xk) such that

‖vk+1‖ ≤ ρ2 (‖xk+1 − xk‖+ ‖xk − xk−1‖) .

(C.3) Continuity condition. Let x∗ be a limit point of a subsequence (xk)k∈K⊂N then we have that
lim sup
k∈K⊂N

Ψ(xk, xk−1) ≤ Ψ(x∗) def= Ψ(x∗, x∗).

Condition (C.1) is intended to model a descent property of the Lyapunov function, and hence
a dissipation of the energy Ψ. (C.2)1 originates from the well-known fact that most algorithms in

1The original version of this condition in [8] involves only the first term in the bound. The reasoning however remains
the same with this version of the inequality; see e.g. [41, 117, 136].
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optimization generate sequences via exact or inexact minimization of subproblems and condition (C.2)
reflects relative inexact optimality conditions for such minimization subproblems. Condition (C.3) is
a weak requirement which, in particular, holds when Ψ is continuous. However, the latter is not
mandatory in general as the nature of the algorithm (IBPG here) will force the sequences to comply
with (C.3) under a simple lower semicontinuity assumption.

Equipped with Definition 2.4.3, and when Ψ satisfies the KL property, the following global conver-
gence result holds true.

Theorem 2.4.4 (Global convergence). Let (xk)k∈N be a bounded sequence generated by a descent-
like method for Ψ. If Ψ satisfies the KL property, then the sequence (xk)k∈N has finite length, i.e.,∑
k∈N ‖xk+1 − xk‖ < +∞ and it converges to x? ∈ crit(Ψ).

2.5 Riemannian Geometry and Partial Smoothness

2.5.1 Riemannian geometry

In this section, we introduce the essential tools from Riemannian geometry that appear throughout
this work. This is done to make the manuscript self-contained and its reading smoother.

Let M be a C2−smooth embedded submanifold of Rn around a point x ∈ Rn. With some abuse
of terminology, we will state C2−manifold instead of C2−smooth embedded submanifold of Rn. The
natural embedding of a submanifold M into Rn permits to define a Riemannian structure and to
introduce geodesics onM, and we simply sayM is a Riemannian manifold. We denote respectively
TM(x) and NM(x) the tangent and normal space ofM at x ∈M.

Exponential map Geodesics generalize the concept of straight lines from linear spaces to man-
ifolds. It is a smooth curve from an interval of R to M, with intrinsic acceleration normal ev-
erywhere to M. Roughly speaking, it is locally the shortest path between two points on M. Let
denote by g(t;x, h) the value at t ∈ R of the geodesic starting g(0;x, h) = x ∈ M with velocity
ġ(t;x, h) = dg(t;x, h)

dt
= h ∈ TM(x) (uniquely defined). It is important to realize that for every

h ∈ TM(x) there exists an interval I around 0 and a unique geodesic g(t;x, h) : I → M such that
g(0;x, h) = x and ġ(0;x, h) = t. The mapping Expx : TM(x) → M, h 7→ Expx(h) = g(1;x, h), is
called the Exponential map. Given x, x′ ∈ M, and a direction h ∈ TM(x) we are want such map to
fulfill Expx(h) = x′ = g(1;x, h).

Parallel translation Given two points x, x′ ∈M let TM(x), TM(x′) be the corresponding tangent
spaces. Define τ : TM(x)→ TM(x′), the parallel translation along the unique geodesic joining x to x′,
which is an isomorphism and isometry with respect to the Riemannian metric.

Riemannian gradient and Hessian For a vector v ∈ NM(x), the Weingarten map ofM at x is
the operator Wx(., v) : TM(x)→ TM(x) defined by:

Wx(h, v) = −PTM(x)dV [h],

where V is any local extension of v to a normal vector field onM. The definition does not depend of
the choice of the extension V . The Weingarten map as defined above is a symmetric linear operator
which is closely tied to the second fundamental form of M ([43, Definition 5.48]). Let g be a real-
valued function which is C2 alongM around x. The covariant gradient of g at x′ ∈ M is the vector
denoted ∇Mg(x′) ∈ TM(x′) defined by:〈

∇Mg(x′), h
〉

= d

dt
g(PM(x′ + th))|t=0, ∀h ∈ TM(x′),
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where PM is the projection ontoM. The covariant Hessian of g at x′ is the symmetric linear mapping
∇2
Mg(x′) from TM(x′) to itself which is defined as〈

∇2
Mg(x′)h;h

〉
= d2

dt2
g(PM(x′ + th))|t=0, ∀h ∈ TM(x′).

This definition agrees with the definition using geodesics or connections. Now, assume that M is a
Riemannian embedded submanifold of Rn and g has a C2−smooth restriction on M. This can be
characterization by the existence of a C2− smooth extension (representative) of g i.e. a C2-smooth
function g̃ on Rn such that g̃ agrees with g on M. Thus, the Riemannian gradient ∇Mg(x′) is also
given by

∇Mg(x′) = PTM(x′)∇g̃(x′),

and ∀h ∈ TM(x′), the Riemannian Hessian reads

∇2
Mg(x′)h = PTM(x′)d

(
∇Mg(x′)

)
[h] = PTM(x′)d

(
∇Mg̃(x′)

)
[h]

= PTM(x′)∇2g̃(x′)h+ Wx′(h,PNM(x′)∇g̃(x′)).

WhenM is affine or linear subspace of Rn, then obviouslyM = x+TM(x) andWx′(h,PNM(x′)∇g̃(x′)) =
0 and finally

∇2
Mg(x′) = PTM(x′)∇2g̃(x′)PTM(x′).

The next two lemmas will be instrumental when analyzing the local convergence behaviour of our
inertial algorithm. We refer to [115, Section 2.6] for their proofs.

Lemma 2.5.1. Let x ∈ M and xk a sequence converging to x in M. Denote τk : TM(xk)→ TM(xk)
be the parallel translation along the unique geodesic joining x to xk. Then, for any bounded vector
u ∈ Rn, we have: ( 1

τk
PTM(xk) − PTM(x)

)
u = o (‖u‖) . (2.5.1)

Lemma 2.5.2. Let x, x′ be two close points inM, denote τ : TM(x)→ TM(x′) the parallel translation
along the unique geodesic joining x too x′. The Riemannian Taylor expansion of g ∈ C2(M) around
x reads,

1
τ
∇Mg(x′) = ∇Mg(x) +∇2

Mg(x)PTM(x)(x′ − x) + o(
∥∥x′ − x∥∥). (2.5.2)

2.5.2 Partial Smoothness

Introduced by Lewis in [111], “Partial smoothness” captures the characteristics of the geometry of
nonsmooth functions. It axiomatizes the notion of active/identifiable submanifold or identifiable
surfaces in [186]. A partly smooth function is smooth along the identifiable submanifold and sharp
transversally to the manifold. Therefore, the behaviour of the function of its minimizers depends
essentially on its restriction to this manifold, hence offering a powerful framework for algorithmic and
sensitivity analysis theory.

Definition 2.5.3 (Partly smooth function). A function g ∈ Γ0(Rn) is C2−partly smooth at a point
x relative to the set M containing x, if ∂g(x) 6= ∅ and M is an embedded C2−smooth submanifold
and there exists a neighborhood Vx of x such that the following properties hold
(i) (Smoothness) the restriction g|M is a C2 function in the neighborhood Vx;
(ii) (Sharpness) The affine hull of ∂g(x) is a translation of the space NM(x), i.e.

Sx
def= par(∂g(x)) = NM(x)⇔ Tx

def= par(∂g(x))⊥ = TM(x).

(iii) (Continuity) The set-valued mapping ∂g is continuous at x relative toM.
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Observe that Sx = T⊥x by definition. Throughout the rest of the work, we denote the class of
C2−partly smooth function at x relative toM by PSFx(M).

Owing to the definition of partial smoothness, we have the following facts.

Fact 2.5.4. (Local normal sharpness) If g ∈ PSFx(M), then for all point x′ ∈M near x we have
TM(x′) = Tx′ . In particular whenM is affine or linear, then Tx′ = Tx.

Fact 2.5.5. If g ∈ PSFx(M), then for all x′ ∈M near x we have

∇Mg(x′) = PTx′
(
∂g(x′)

)
,

and this does not depend on the smooth representation of g onM. In turn, for all h ∈ Tx′ ,

∇2
Mg(x′)h = PTx′∇

2g̃(x′)h+ Wx′(h,PT⊥
x′
∇g̃(x′)),

where g̃ is a smooth representative of g onM and Wx′(·, ·) is the Weingarten map ofM at x.

2.6 Probability and Concentration Inequalities
Many of the following notations for probabilistic concepts are adopted directly from [176, 171]. We
denote by (Ω,F ,P) a probability space with a set of events Ω, a σ-algebra F , and a probability measure
P.

Definition 2.6.1. Let S be an arbitrary bounded subset of Rn. The covering number of S in the
Euclidean norm at resolution δ > 0 is the smallest number, N(S, δ), such that S can be covered with
balls B(xi, δ), xi ∈ S, i ∈ JN(S, δ)K, i.e.,

S ⊆
⋃

i∈JN(S,δ)K
B(xi, δ)

The finite set of points Sδ
def=
{
xi : i ∈ JN(S, δ)K

}
is called a δ-covering or δ-net of S.

Definition 2.6.2. The Gaussian width of a subset S ⊂ Rn is defined as

w(S) def= E (σS(g)) , where g ∼ N(0, Idn).

The Gaussian width is a summary geometric quantity that, informally speaking, measures the size
of the bulk of a set in Rn. This concept plays a central role in high-dimensional probability and its
applications. It has appeared in the literature in different contexts [85]. In particular, it has been
used to establish sample complexity bounds to ensure exact recovery (noiseless case) and mean-square
estimation stability (noisy case) for low-complexity penalized estimators from Gaussian measurements;
see e.g. [61, 5, 145, 173]. The Gaussian width has deep connections to convex geometry and it enjoys
many useful properties. It is well-known that it is positively homogeneous, monotonic w.r.t inclusion,
and invariant under orthogonal transformations. Moreover, one has

w(S) = w(S) = w(conv (S)) = w(conv (S)).

This comes from the properties of the support function. A lower bound for the Gaussian width of a
bounded set can be obtained via Sudakov’s minoration.

Proposition 2.6.3. Let S be a bounded set. Then for any δ > 0 small enough, we have

w(S) ≥ δ
√

log (N(S, δ)).

Proof. Let Sδ be an δ-net of S. Thus,

w(S) ≥ w(Sδ).

Since min
xi 6=xj⊂Sδ

‖xi − xj‖ = 2δ, the claim follows from [42, Theorem13.4] for all δ smaller than the
diameter of Sδ.
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Next, we recall some deviation and concentration inequalities that will be important for us.

Proposition 2.6.4 (Markov inequality). Let X be a random variable and ϕ a nondecreasing
nonnegative function then ∀t > 0 such that ϕ(t) > 0 we have

P(X ≥ t) ≤ E (ϕ(X))
ϕ(t) .

Proposition 2.6.5 (Tchebychev inequality). Let X be a random variable with finite variance σ2.
Then ∀t > 0 we have

P(|X − E (X) | ≥ tσ) ≤ 1
t2
.

For a random variable X and k ≥ 1, we define

‖X‖ψk = sup
p≥1

p−1/k(E (|X|p))1/p.

‖X‖ψ2
is known as the sub-Gaussian norm while ‖X‖ψ1

is the sub-exponential norm.

Proposition 2.6.6 (Hoeffding-type inequality). Let X = (X1, · · · , XN ) be independent centered
sub-gaussian random variables, and let K = maxi ‖Xi‖ψ2

. Then for every vector a ∈ RN and t ≥ 0,
we have

P (|〈a,X〉| ≥ t) ≤ e. exp
(
− ct2

K2 ‖a‖2

)
,

where c > 0 is an absolute constant.

Proposition 2.6.7 (Bernstein-type inequality). Let X1, · · · , XN be independent centered sub-
exponential random variables, and let K = maxi ‖Xi‖ψ1

. Then for every vector a ∈ RN and t ≥ 0, we
have

P (|〈a,X〉| ≥ t) ≤ e. exp
{
−cmin

(
t2

K2 ‖a‖2
,

t

K ‖a‖∞

)}
,

where c > 0 is an absolute constant.

The following proposition gives the concentration of measure in the Gauss space. A comprehensive
account can be found in [108].

Proposition 2.6.8. Let f be a real-valued K−Lipschitz continuous on Rn. Let g be the standard
normal random vector in Rn. Then for every t ≥ 0 one has

Pr
{
f(g)− E (f(g)) ≥ t

}
≤ exp(−t2/2K2).
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Chapter 3

Provable Phase Retrieval with Mirror
Descent

In this chapter, we consider the problem of phase retrieval, which consists of recovering an n-
dimensional real vector from the magnitude of itsm linear measurements. We propose a mirror descent
(or Bregman gradient descent) algorithm based on a wisely chosen Bregman divergence, hence allow-
ing to remove the classical global Lipschitz continuity requirement on the gradient of the non-convex
phase retrieval objective to be minimized. We apply the mirror descent for two random measurements:
the i.i.d. standard Gaussian and those obtained by multiple structured illuminations through Coded
Diffraction Patterns (CDP). For the Gaussian case, we show that when the number of measurements
m is large enough, then with high probability, for almost all initializers, the algorithm recovers the
original vector up to a global sign change. For both measurements, the mirror descent exhibits a
local linear convergence behaviour with a dimension-independent convergence rate. Our theoretical
results are finally illustrated with various numerical experiments, including an application to the re-
construction of images in precision optics. Our main contributions and findings can be summarized
as follows:

Main contributions of this chapter

I For general sensing vectors, bounded iterates of our algorithm converge to a critical point
which is not a strict saddle point. In addition, provided that a local relative strong convexity,
the mirror descent exhibits a local linear convergence behaviour.

I For Gaussian standard measurements, when the number of sensing vector is large enough for
almost all initializer the mirror descent recovers the true signal up to a global sign change
with a local linear convergence which is dimension-independent.

I For CDP and Gaussian measurements, if we afford a smaller sampling complexity we have
to use an appropriate initialization method to be close the true signal. Then starting from
this initial guess, mirror descent converges linearly to the true vector up to a global sign
change with a dimension-independent convergence rate.

The content of this chapter appeared in [83].
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3.1 Introduction

3.1.1 Problem Statement

In this chapter, we consider the noiseless version of phase retrieval problem (GeneralPR), i.e., ε = 0,
that we recall for convenience. Let x̄ ∈ Rn be a vector to be recovered and that we are given
information about the squared modulus of the inner product between x̄ and m sensing/measurement
vectors (ar)r∈JmK. The noiseless phase retrieval problem can be cast as:

Recover x̄ ∈ Rn from the measurements y ∈ Rm

y[r] = |a∗r x̄|2, r ∈ JmK,
(NLPR)

where [r] is the r-th entry of the corresponding vector. Throughout the chapter, A is the m×n matrix
with a∗r ’s as its rows.

Since x̄ is real-valued, the best one can hope is to ensure that x̄ is uniquely determined by y up
to a global sign. Phase retrieval is in fact an ill-posed inverse problem in general and is known to
be NP-hard [157]. Thus, one of the major challenges is to design efficient recovery algorithms and
find conditions on m and (ar)r∈JmK which guarantee exact recovery (up to a global sign change); see
Section 1.2.1 for a review and discussion of the state-of-the-art.
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3.1.2 Contributions and relation to prior work

In this chapter, we cast (NLPR) as solving the minimization problem (3.2.1). Inspired by [40], we
propose a mirror descent (or Bregman gradient descent) algorithm with backtracking associated to a
wisely chosen Bregman divergence, hence removing the classical global Lipschitz continuity require-
ment on the gradient of the nonconvex objective in (3.2.1).

In the deterministic case, we show that for almost all initializers, bounded iterates of our algorithm
converge to a critical point where the objective has no direction of negative curvature, i.e., a critical
point which is not a strict saddle point. In addition, provided that a local relative strong convexity
property holds, we also show that our mirror descent scheme exhibits a local linear convergence
behaviour.

In the case of i.i.d standard Gaussian measurements, provided that the the number m of sensing
vectors is large enough, it turns out that the iterates of our algorithm are bounded, and that the set of
critical points of the objective f in (3.2.1) is the union of {±x̄} and the set of strict saddle points. This
together with the above deterministic guarantees ensures that with high probability, for almost all
initializers, our mirror descent recovers the original vector x̄ up to a global sign change, and exhibits
a local linear convergence behaviour with a dimension-independent convergence rate. Our results are
far more general than those of [64] as we require for instance a smaller sampling complexity bound
and we assume any random initialization provided that it is drawn from a distribution that has a
density w.r.t the Lebesgue measure, i.e. the Gaussian nature of initialization in [64] is irrelevant in
our context.

For both CDP and Gaussian measurements, we show that one can afford a smaller sampling com-
plexity bound but at the price of using an appropriate spectral initialization procedure to find an initial
guess near a solution before applying our scheme. Starting from this initial guess, mirror descent then
converges linearly to the true vector up to a global sign change with a dimension-independent conver-
gence rate. This is in contrast with the Wirtinger flow [53] which also requires spectral initialization
and whose local convergence rate degrades with the dimension, though the latter aspect has been
improved in the truncated Wirtinger flow [63]. The Polyak subgradient method [69] initialized with a
spectral method provably converges linearly with isotropic sub-gaussian measurements under a sample
complexity bound similar to ours. However, no analysis is known for the CDP measurement model.
Observe also that the Polyak subgradient algorithm requires the knowledge of the minimal value of
the phase retrieval objective. This is obviously 0 for the noiseless case but is unknown in the noisy
one. In terms of computational complexity, mirror descent involves solving the mirror step (see Propo-
sition 3.2.4) which amounts to computing the unique real positive root of a third order polynomial
and then multiplying it by the entry vector. This costs O(n) operations. Overall, the computational
complexity of mirror descent is similar to that of other first-order methods such as the Wirtinger flow
or the Polyak subgradient algorithm.

Though we focus on Gaussian measurements when establishing the global recovery properties of our
mirror descent algorithm, our theory extends to the situation where the ar’s are i.i.d sub-Gaussian
random vectors. The case where ar’s are a drawn form the CDP model is, however, far more challeng-
ing. One of the main difficulties is that several of our arguments rely on uniform bounds, for instance
on the Hessian, that need to hold simultaneously for all vectors x ∈ Rn with high probability. But
the CDP model bears much less randomness to exploit for establishing such bounds with reasonable
sampling complexity bounds. Whether this is possible or not is an open problem that we leave to
future research.
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3.1.3 Chapter organization

The rest of the chapter is organized as follows. In Section 3.2, we describe the mirror descent algorithm
with backtracking and establish its global and local convergence guarantees in the deterministic case.
We then turn to the case of random measurements in Section 3.3 where we provide sample complexity
bounds for the deterministic guarantees to hold with high probability. Section 3.4 is devoted to the
numerical experiments. The proofs of technical results are collected in Section 3.5 and Section 3.6.

3.2 Deterministic Phase Retrieval

3.2.1 Phase retrieval minimization problem

In this work, we cast (NLPR) as solving the following optimization problem

min
x∈Rn

{
f(x) def= 1

4m

m∑
r=1

(
y[r]− |(Ax)[r]|2

)2
}
. (3.2.1)

Observe that f ∈ C2(Rn) but is obviously nonconvex. Actually, f is weakly convex (or semiconvex).

Proposition 3.2.1. f is µ-weakly convex with µ = m−1∑m
r=1 |y[r]| ‖ar‖2.

Proof. Starting from the Hessian of f in (3.5.2) and using Cauchy-Schwarz inequality, we have for
any z ∈ Rn,

m
〈
∇2f(x)z, z

〉
= 3

m∑
r=1
|(Ax)[r]|2|(Az)[r]|2 −

m∑
r=1

y[r]|(Az)[r]|2 ≥ −
m∑
r=1
|y[r]| ‖ar‖2 ‖z‖2 .

Recalling that f is µ-weakly convex if and only if ∇2f(x) + µId � 0, we conclude.

It is also clear that ∇f is not Lipschitz continuous. This is the main motivation behind considering
the framework of Bregman gradient descent. As we will see shortly, f has a relative smoothness
property (see Definition 2.3.6 above) with respect to a well-chosen entropy function. In turn, relative
smoothness will prove crucial for establishing descent properties of Bregman gradient descent, also
known as, mirror descent.

Following [40], let us consider the following kernel or entropy function

ψ(x) = 1
4 ‖x‖

4 + 1
2 ‖x‖

2 . (3.2.2)

Proposition 3.2.2. ψ enjoys the following properties:
(i) ψ ∈ C2(Rn), is 1-strongly convex and Legendre according to Definition 2.3.1.
(ii) ∇ψ is Lipschitz over bounded subsets of Rn.
(iii) ∇ψ is a bijection from Rn to Rn, and its inverse is ∇ψ∗.

The first two claims are easy to show. The last one follows from [155, Theorem26.5].
It turns out that the objective f in (3.2.1) is smooth relative to the entropy ψ defined in (3.2.2) on

the whole space Rn. This is stated in the following result whose proof is provided in Section 3.5.1.

Lemma 3.2.3. Let f and ψ as defined in (3.2.1) and (3.2.2) respectively. f is L-smooth relative to ψ
on Rn for any L ≥ 1

m

∑m
r=1 3 ‖ar‖4.

This estimate of of the modulus of relative smoothness L in Lemma3.2.3 is rather crude but has
the advantage to not depend on the measurements y. A far sharper estimate will be provided in the
case where the sensing vectors are random; see Section 3.3.

– 30 –



Chapter 3 3.2. Deterministic Phase Retrieval

3.2.2 Mirror descent with backtracking

We recall the following mapping closely related to the Bregman gradient descent. For all x ∈ Rn and
any step-size γ > 0,

Tγ(x) def= argmin
u∈Rn

{
〈∇f(x), u− x〉+ 1

γ
Dψ(u, x)

}
. (3.2.3)

The pair (f, ψ) defined in (3.2.1)-(3.2.2) satisfies [40, AssumptionsA,B,C,D] (in fact ψ is even strongly
convex in our case). Therefore, it is straightforward to see that Tγ is a well-defined and single-valued
on Rn; see [40, Lemma3.1]. Moreover, by virtue of Proposition 3.2.2, letting x+ = Tγ(x), the first
order optimality condition for (3.2.3) reads

x+ = F (x) def= ∇ψ−1 (∇ψ(x)− γ∇f(x)) = ∇ψ∗ (∇ψ(x)− γ∇f(x)) . (3.2.4)

Our mirror descent (or Bregman gradient descent) scheme with backtracking is summarized in
Algorithm1.
Algorithm 1: Mirror Descent for Phase Retrieval
Parameters: 0 < L0 ≤ L (see Lemma4.2.1), κ ∈]0, 1[, ξ ≤ 1 .
Initialization: x0 ∈ Rn;
for k = 0, 1, . . . do

repeat
γk = 1−κ

Lk
;

xk+1 = F (xk) = ∇ψ∗ (∇ψ(xk)− γk∇f(xk));
Lk ← Lk/ξ;

until Df (xk+1, xk) ≤ ξLkDψ(xk+1, xk);
Lk+1 ← ξLk;
Output: xk+1.

Observe that Algorithm1 cannot be trapped in the second loop thanks to Lemma4.2.1. Indeed,
we have Lk ∈ [L0, L/ξ] for all k ∈ N. The version without backtracking is recovered by setting ξ = 1
and using constant step-size verifying γ ∈]0, 1/L[ where L is the global relative smoothness coefficient.
Backtracking for an inertial version of the Bregman proximal gradient algorithm was used in [136].

It remains now to compute the mirror step. This amounts to finding a root of a third-order
polynomial.

Proposition 3.2.4. (Mirror step computation)[40, Proposition 5.1] Let x ∈ Rn and pγ(x) =
∇ψ(x)− γ∇f(x). Then computing (3.2.4) amounts to

x+ = t∗pγ(x), (3.2.5)

where t∗ is the unique real positive root of t3 ‖pγ(x)‖2 + t− 1 = 0.

3.2.3 Deterministic recovery guarantees by mirror descent

We pause to recall two notions that will be important in our convergence result.

Definition 3.2.5. (f-attentive neighborhood) A point u ∈ Rn belongs to an f -attentive neigh-
borhood of x ∈ Rn, if there exist δ > 0 and µ > 0 such that u ∈ B(x, δ) and f(x) < f(u) < f(x) + µ.

Definition 3.2.6. (Strict saddle points) A point x? ∈ crit(f) is a strict saddle point of f if
λmin(∇2f(x?)) < 0. The set of strict saddle points of f is denoted strisad(f).

We are now ready to state our main convergence result.

– 31 –



Chapter 3 3.3. Random Phase Retrieval via Mirror Descent

Theorem 3.2.7. Let (xk)k∈N be a bounded sequence generated by Algorithm 1 for the phase retrieval
problem (NLPR). Then,

(i) the sequence (f(xk))k∈N is non-increasing,
(ii) the sequence (xk)k∈N has a finite length and converges to a point in crit(f).
(iii) Let r > 0. Assume that the initial point x0 is in the f -attentive neighborhood of x? ∈

Argmin(f) 6= ∅, i.e. ∃δ ∈]0, r[ and µ > 0 such that x0 ∈ B(x?, δ) and f(x0) ∈]0, µ[, then
(a) ∀k ∈ N, xk ∈ B(x?, r), and xk converges to a global minimizer of f .
(b) Besides, if ∃ρ > 0 such that f is σ-strongly convex on B(x?, ρ) relative to ψ, with r ≤

ρ

max(
√

Θ(ρ),1)
, where we recall Θ(ρ) from Proposition 2.3.5-(iv), then ∀k ∈ N

‖xk − x?‖2 ≤
(
k−1∏
i=0

1− σγi
1 + σγiΘ(ρ)−1

)
ρ2 → 0. (3.2.6)

(iv) If Lk = L, then for Lebesgue almost all initializers x0, the sequence (xk)k∈N converges to an
element in crit(f)\strisad(f).

See Section 3.5.2 for the proof.

Remark 3.2.8.
• A standard assumption that automatically guarantees the boundedness of the sequence (xk)k∈N,
hence its convergence to a critical point, is coercivity of f . Since the latter is a composition of
a coercive function (a positive quartic function) and the linear operator A (recall that its rows
are the a∗r ’s), coercivity of f amounts to injectivity of A. This is exactly what we will show in
the random case when m is large enough.

• It is clear that Argmin(f) 6= ∅ since X ⊂ Argmin(f) and the claim (iii) applies at ±x̄ in which
case one has exact recovery up to a global sign.

• A close inspection at the proof of Proposition 2.3.5-(iv) shows that
Θ(ρ) = supx∈B(x̄,ρ)

∥∥∇2ψ(x)
∥∥ does the job. In view of (3.5.3), it is easy to see that Θ(ρ) ≤

6 ‖x̄‖2 + 6ρ2 + 1.
• Claim (iii) shows local linear convergence of xk to x?. Indeed, σ ≤ Lk for any k, and thus

1− σγk ∈]κ, 1[.
• Clearly, claim (iv) states that when the initial point is selected according to a distribution
which has a density w.r.t the Lebesgue measure, then the sequence (xk)k∈N converges to a point
that avoids strict saddle points of f . This is a consequence of the centre stable manifold theorem
applied to our mirror descent algorithm.

• When it will come to the phase retrieval problem from random measurements (see forthcoming
section), in order to prove local linear convergence, the key argument will be to show that for a
sufficient number of measurements, then w.h.p f is strongly convex around ±x̄ relative to ψ.

3.3 Random Phase Retrieval via Mirror Descent

3.3.1 Framework

Throughout the chapter, we will work under two random measurement models:
(1) The sensing vectors are drawn i.i.d following a (real) standard Gaussian distribution. We can

then rewrite the observation data as

y[r] = |ar>x̄|2, r ∈ JmK, (3.3.1)
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where (ar)r∈JmK are i.i.d N (0, 1).
(2) The Coded Diffraction Patterns (CDP) model, as considered for instance in [52]. The idea is to

modulate the signal before diffraction in the case of the Fourier transform measurements. The
observation model is then

y =
(
|F(Dpx̄)[j]|2

)
j,p

=

∣∣∣∣∣
n−1∑
`=0

x̄`dp[`]e−i
2πj`
n

∣∣∣∣∣
2

j,p

. (3.3.2)

where j ∈ {0, . . . , n − 1} and p ∈ {0, . . . , P − 1}, Dp is a real diagonal matrix with the mod-
ulation pattern dp on its diagonal, and F is the discrete Fourier transform. P is the number
of coded patterns/masks and the total number of measurements is then m = nP . The modu-
lation patterns (dp)p∈[P ] are i.i.d copies of the same random vector d satisfying the following
assumption:

Assumption 3.3.1.
(A.1) d is symmetric and ∃M > 0 such that |d| ≤M .
(A.2) Moments conditions: E (d) = 0 and E

(
d4) = 2E

(
d2)2. Without loss of generality, we

assume E
(
d2) = 1.

For example, we can take ternary random variables with values in {−1, 0, 1} with probabilities
{1

4 ,
1
2 ,

1
4}. We refer to [52] for other modulation patterns.

When the number of measurements is large enough for both measurements models, we will be able
to establish local convergence properties of Algorithm1 provided it is initialized with a good guess. For
this, we use a spectral initialization method; see for instance [53, 63, 141, 192, 182, 179]. The procedure
consists of taking x0 as the leading eigenvector of a specific matrix as described in Algorithm2.
Algorithm 2: Spectral Initialization.
Input: y[r], r = 1, . . . ,m.
Output: x0

Set λ2 = n

∑
r
y[r]∑

r
‖ar‖2

;

Take x0 the top eigenvector of Y = 1
m

∑m
r=1 y[r]ara∗r normalized to ‖x0‖ = λ.

Remark 3.3.2. Assuming random measurements models and using probabilistic arguments to get
sample complexity bounds and understand fundamental limits of phase retrieval (and other inverse
problems) is an established technique in the applied mathematics literature. Of course, we are aware
that this might not always be realistic from an application perspective as it may sometimes involve
changing the data measurements to fit the theory. Nonetheless, for the application we have in mind
(precision in optics), the CDP measurement model seems reasonable. This is the subject of an ongoing
work.

We are now ready to state our main results for each measurement model.

3.3.2 Gaussian measurements

Before stating our result, we consider the following events which will be helpful in our proofs. For
this, we fix % ∈]0, 1[ and λ ∈]0, 1[.

• The event
Estrictsad =

{
crit(f) = X ∪ strisad(f)

}
(3.3.3)

means that the set of critical points of the function f is reduced to {±x̄} and the set of strict
saddle points.
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• The event

EconH =
{
∀x ∈ Rn,

∥∥∥∇2f(x)− E
(
∇2f(x)

)∥∥∥ ≤ % (‖x‖2 + ‖x̄‖2 /3
)}

(3.3.4)

captures the deviation of the Hessian of f around its expectation.
• The event

Einj =
{
∀x ∈ Rn, (1− %) ‖x‖2 ≤ 1

m
‖Ax‖2

}
(3.3.5)

represents injectivity of the measurement matrix A.
• Esmad is the event on which the function f is L-smooth relative to ψ in the sense of Definition 2.3.6,

with L = 3 + %max(‖x̄‖2 /3, 1).
• Escvx is the event on which f is σ-strongly convex on B(X , ρ) relative to ψ in the sense of

Definition 2.3.7, with σ = (λmin(‖x̄‖2 , 1)− %max(‖x̄‖2 /3, 1)) and ρ = 1−λ√
3 ‖x̄‖.

• We end up by denoting

Econv = Estrictsad ∩ EconH ∩ Einj ∩ Esmad ∩ Escvx. (3.3.6)

Our main result for Gaussian measurements is the following.

Theorem 3.3.3. Fix λ ∈]0, 1[ and % ∈]0, λmin(‖x̄‖2 , 1)/(2 max(‖x̄‖2 /3, 1))[. Let (xk)k∈N be the
sequence generated by Algorithm1.

(i) If the number of measurements m is large enough, i.e. m ≥ C(%)n log3(n), then for almost
all initializers x0 of Algorithm 1 used with constant step-size γk ≡ γ = 1−κ

3+%max(‖x̄‖2/3,1) , for any
κ ∈]0, 1[, we have

dist(xk,X )→ 0,

and ∃K ≥ 0, large enough such that ∀k ≥ K,

dist2(xk,X ) ≤ (1− ν)k−K ρ2, (3.3.7)

where

ν =
(1− κ)

(
λmin(‖x̄‖2 , 1)− %max(‖x̄‖2 /3, 1)

)
3 + %max(‖x̄‖2 /3, 1)

. (3.3.8)

This holds with a probability at least 1− 2e−
m(
√

1+%−1)2
8 − 5e−ζn− 4/n2− c/m, where C(%), c and

ζ are numerical positive constants.
(ii) Suppose moreover that % obeys

% ≤ η−1
1

(
1− λ√

3 (6(1 + (1− λ)2/3) + 1)
1

max (‖x̄‖ , 1)

)
,

where η1 is the function defined in (3.6.11). When m ≥ C(%)n log(n), if Algorithm 1 is initialized
with the spectral method in Algorithm2, then with probability at least 1−2e−

m(
√

1+%−1)2
8 −5e−ζn−

4/n2 (ζ is a fixed numerical constant), (3.3.7) holds for all k ≥ K = 0.

Before proving our result, the following remarks are in order.

Remark 3.3.4.
• In the regime of claim (i), when x0 is chosen uniformly at random, Algorithm1 provably con-
verges to the true vector x̄ up to a sign change. In this case any initialization strategy becomes
superfluous, though the number of measurements required then is slightly (polylogarithmically)
higher than with spectral initialization.
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• In the regime of of claim (ii), one has to use a spectral initialization to find a good initial guess,
from which mirror descent converges locally linearly to x̄ up to global sign change.

• When the true vector norm is one, as assumed in many works, the convergence rate takes the
simple form

(
1− (1−κ)(λ−%)

3+%

)
≤ 2

3 +O((1− λ) + κ+ %).
• The convergence rate 1 − ν as given in (3.3.7)-(3.3.8) can be slightly improved as we did in
(3.2.6) (here we dropped the denominator in (3.2.6)). It is also important to point out that our
convergence rate is independent from the dimension n of the signal. This is in contrast with the
Wirtinger flow [53, 52], whose convergence rate is

(
1− cst

n

)
and thus dimension-dependent. Such

dependence was removed for the truncated Wirtinger flow with Gaussian measurements [63].
To close these remarks, we strongly believe that handling the geometry of the problem through the
framework of mirror/Bregman gradient descent with a wisely chosen entropy/kernel ψ is a key for this
better behaviour in our case.

Proof.

(i) Assume for this claim that Econv holds true; we will show later that this is indeed the case
w.h.p when the number of measurements is as large as prescribed. The proof then consists in
combining Theorem3.2.7 and the characterization of the structure of crit(f).

• Global convergence of the iterates: under event Einj (see (3.3.5)), the sequence (xk)k∈N
generated by Algorithm1 is bounded; see the discussion in Remark 3.2.8. Since Esmad
holds, Theorem3.2.7(i)-(ii) ensure that the sequence (xk)k∈N converges to x? ∈ crit(f) and
the induced sequence (f(xk))k∈N converges to f(x?).

• Since Estrictsad holds also, we have by Theorem3.2.7-(iv) that for almost all initial points
x0, the sequence (xk)k∈N converges to an element of crit(f)\strisad(f) = X . We assume
w.l.o.g that xk → x̄ whence ‖xk − x̄‖ → 0, and f(xk) → min(f) = 0. Therefore, for
η ≤ ρ√

max(Θ(ρ),1)
, there exists ∃K = K(η) such that,

∀k ≥ K, ‖xk − x̄‖ < η and f(xk) ∈]0, η[, (3.3.9)

i.e. for k ≥ K, xk is in an f -attentive neighborhood of x̄.
• Thanks to Escvx, f is σ-strongly convex on B(x̄, ρ) relative to ψ with σ and ρ as given in

that event. It then follows from Theorem3.2.7(iii) that, ∀k > K and γk ≡ (1−κ)
3+%max(‖x̄‖2/3,1) ,

we have

Dψ(x̄, xk+1) ≤ (1− ν)Dψ(x̄, xk)
≤ (1− ν)k−K Dψ(x̄, xK).

Moreover by (2.3.5) and 1-strong convexity of ψ, for all k ≥ K

dist2(xk,X ) ≤ ‖xk − x̄‖2 ≤ 2Dψ(x̄, xk) ≤ (1− ν)k−K Θ(ρ)η2,

≤ (1− ν)k−K ρ2.

To conclude this part of the proof we need to compute the probability that the event Econv
occurs. We have,

Econv = Estrictsad ∩ EconH ∩ Einj ∩ Esmad ∩ Escvx,

= Estrictsad ∩ EconH ∩ Einj,

since Esmad ⊂ EconH and Escvx ⊂ EconH thanks to Lemma3.6.5 and Lemma3.6.6 respectively.
Owing to Lemma4.6.2, the event EconH holds true with a probability at least 1 − 5e−ζn − 4

n2 ,
where ζ is a fixed numerical constant, with the proviso that m ≥ C(%)n log(n).
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On the other hand, Lemma3.6.4 tells us that, when m ≥ 16
%2n, the event Einj is true with a

probability at least 1 − 2e−
m(
√

1+%−1)2
8 . The study of the critical points of the objective f , see

[168, Theorem2.2], shows that when m ≥ C(%)n log3(n), the event Estrictsad holds true with a
probability 1 − c

m (where c a fixed numerical constant). Using a union bound, Econv occurs
with the stated high probability provided that m ≥ C(%)n log(n) for a large enough numerical
constant C(%).

(ii) The proof of this claim is similar to the last part of claim (i) except that now, we invoke
Lemma3.6.7-(iii) to see that with probability at least at least 1 − 2e−

m(
√

1+%−1)2
8 − 5e−ζn − 4

n2 ,

the initial guess x0 obtained by spectral initialization belongs to B
(
X , ρ√

max(Θ(ρ),1)

)
. We can

now follow the reasoning in the last item of the proof of statement (i) to conclude.

3.3.3 CDP measurements

Our main result for the CDP measurements model is the following.

Theorem 3.3.5. Let % ∈]0, 1[ and (xk)k∈N be the sequence generated by Algorithm1.
(i) If the number of patterns P satisfies P ≥ C(%) log(n), then with a probability at least 1−1/n2,
for almost all initializers x0 of Algorithm1 used with constant step-size γk ≡ γ = 1−κ

L , for any
κ ∈]0, 1[ and L given by Lemma 3.2.3, (xk)k∈N converges to an element in crit(f)\strisad(f).

(ii) Let δ ∈]0,min(‖x̄‖2 , 1)/2[. There exists ρδ > 0 such that if % is small enough (i.e. it satisfies
(3.6.24)) and P ≥ C(%) log3(n), and if Algorithm1 is initialized with the spectral method in
Algorithm2, then with probability at least 1− 4P+1

n3 − 1
n2

dist2(xk,X ) ≤
k−1∏
i=0

(1− νi)ρ2
δ , ∀k ≥ 0, (3.3.10)

where

νi =
(1− κ)

(
min(‖x̄‖2 , 1)− 2δ

)
(1 + δ)Li

. (3.3.11)

Let us first discuss this result and compare it to the one for Gaussian measurements.

Remark 3.3.6.
• As far as global recovery guarantees are concerned, Theorem3.3.5-(i) does not ensure exact
recovery of ±x̄. This is in contrast with the Gaussian model where this was established in The-
orem3.3.3-(i). As we pointed out earlier in the introduction section, one of the main difficulties
is that several of our arguments in the Gaussian case rely on uniform bounds, for instance on
the Hessian and gradient, that need to hold simultaneously for all vectors x ∈ Rn w.h.p . Un-
fortunately, the CDP model enjoys much much less randomness to exploit in the mathematical
analysis making this very challenging. Nevertheless, numerical evidence in the next section sug-
gests that global exact recovery (without spectral initialization) holds for the CDP model as
well.

• Theorem3.3.5(ii) ensures local linear convergence to the true vectors ±x̄ when our algorithm is
initialized with the spectral method. The convergence rate is expressed in terms of the step-sizes
γi = 1−κ

Li
, where the Li’s are expected to be much smaller than L in Lemma3.2.3. It is tempting

to use 2(1 + δ)2, the local relative smoothness constant in (3.6.20), as an upper-bound estimate
of the Li’s. But one has to keep in mind that this is valid only locally on B(±x̄, ρδ), and thus one
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cannot use it when iterating from xk to xk+1. In our numerical experiments, we nevertheless ob-
serve that the linear convergence rate in (3.3.11) is well estimated by

(
1− (1−κ)(min(‖x̄‖2,1)−2δ)

2(1+δ)3

)
.

When ‖x̄‖ ≤ 1, this rate reads
(
1− (1−κ)(1−2δ)

2(1+δ)3

)
≤ 1

2 +O(κ+ δ).

Proof.
(i) Under the bound on P , we know from Lemma3.6.10 that the measurement operator A is
injective with probability at least 1− 1/n2. On this event, the objective f is coercive, and thus
the sequence (xk)k∈N generated by Algorithm1 is bounded. Since f is L-smooth relative to ψ
according to Lemma3.2.3, Theorem3.2.7(i)-(ii) ensure that the sequence (xk)k∈N converges to
x? ∈ crit(f) and the induced sequence (f(xk))k∈N converges to f(x?). Then using Theorem3.2.7-
(iv) we get the statement.

(ii) By Lemma3.6.12-(iii), we have that the spectral initialization guess x0 belongs to
B

(
X , ρδ√

max(Θ(ρδ),1)

)
with probability larger than 1 − 4P+1

n3 − 1
n2 . Moreover, we know from

Lemma3.6.11 that with probability at least 1− 4P+1
2n3 , f is σ-strongly convex on B(X , ρδ) rela-

tive to ψ with σ = (min(‖x̄‖2,1)−2δ)
1+δ . The rest of the proof follows the same reasoning as in the

last item of the proof of statement Theorem3.3.3-(i). We omit the details.

3.4 Numerical Experiments

In this section, we discuss some numerical experiments to illustrate the efficiency of our phase recovery
algorithm. We use the standard normal Gaussian and we consider the CDP model with a random
ternary variable d, i.e. taking values in {−1, 0, 1} with probability {1/4, 1/2, 1/4}. In each instance,
we measured the relative error between the reconstructed vector x̃ and the true signal one x̄ as

dist(x̃,X )
‖x̄‖

. (3.4.1)

In the experiments, we set ‖x̄‖ = 1 and x̃ was the output of Algorithm1 at iteration K large enough.

3.4.1 Reconstruction of 1D signals

3.4.1.1 Gaussian measurements

The goal is to recover a one-dimensional signal with n = 128 from Gaussian measurements. Fig-
ure 3.1(a) shows the reconstruction result from one random instance with m = 2 × 128 × log3(128)
without spectral initialization. Algorithm1 was initialized with a vector drawn from the uniform dis-
tribution, and used with 600 iterations and a constant step-size γ = 0.99

3 . Given the oversampling
rate, and as predicted by Theorem3.3.3-(i), one can observe from Figure 3.1(a) that we have exact
recovery, and after ∼ 90 iterations, the iterates enter a linear convergence regime. The “Theoretical
error” corresponds to the linear convergence rate predicted by (3.3.7)-(3.3.8), which is valid for k large
enough.

Figure 3.1(b) displays the results for the case where m = 2 × 128 × log(128), and Algorithm1 was
applied with the same parameters as above except that the spectral initialization method was used to
get the initial guess. As anticipated by Theorem3.3.3-(ii), we again have exact recovery with a linear
convergence behavior starting from the initial guess.
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(a) Reconstruction with random initialization
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(b) Reconstruction with spectral initialization

Figure 3.1: Reconstruction of a 1D signal by mirror descent from Gaussian measurements.
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(a) Reconstruction with random initialization
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(b) Reconstruction with spectral initialization

Figure 3.2: Reconstruction of a 1D signal by mirror descent from CDP measurements.

3.4.1.2 CDP measurements

We carried out the same experiment with the CDP measurements where we took P = 7 × log3(128)
ternary random masks, and set γ = 0.99

2 in mirror descent. The results are shown in Figure 3.2.
The same conclusions drawn in the Gaussian case remain true for the CDP model. The results with
spectral initialization depicted in Figure 3.2(b) are in agreement with those of Theorem3.3.5-(ii). As
for random uniform initialization, the results of Figure 3.2(a) provide numerical evidence that our
algorithm enjoys global exact recovery properties, though this is so far not justified by our theoretical
analysis.

3.4.2 Recovery of the roughness of a 2D surface (light scattering)

In this experiment, we simulated a rough surface as a 256 × 256 Gaussian random field. The goal
to recover this surface profile from the magnitude of the measurements according to the CDP model
with P = 100 masks. The initial guess was drawn from the uniform distribution. The recovery results
are displayed in Figure 3.3.
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Figure 3.3: Roughness surface profile reconstruction by solving the phase retrieval problem from the
CDP measurement model using mirror descent with uniform random initialization.

20 40 60 80 100 120

200

400

600

800

1000

1200

20 40 60 80 100 120

200

400

600

800

1000

1200

(a) Gaussian measurements
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(b) CDP measurements

Figure 3.4: Phase diagrams of mirror descent (MD) with spectral and uniform random initialization.
(a) Gaussian measurements. (b) CDP measurements.
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Figure 3.5: Comparison of mirror descent to other methods in the literature. Each plot shows the
empirical probability of success based on 100 random trials for two different measurement models
(Gaussian and CDP) and a varied number of measurements.
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3.4.3 Phase diagrams and comparison with other algorithms

Phase diagrams We first report the results of an experiment designed to estimate the phase
retrieval probability for mirror descent, as we vary n and m. The results are depicted in Figure 3.4.
For each pair (n,m), we generated 100 random instances and solved them with mirror descent (denoted
MD for short hereafter), both with spectral initialization and with random uniform initialization. Each
diagram shows the empirical probability (among the 100 random trials) that an algorithm successfully
recovers the original vector up to a global sign change. We declared that a signal is recovered if the
relative error (3.4.1) is less than 10−5. The grayscale of each point in the diagrams reflects the empirical
probability of success, from 0% (black) to 100% (white). The solid curve marks the prediction of the
phase transition edge. One clearly sees a phase transition phenomenon which is in agreement with
the predicted sample complexity bound shown as a solid line. For Gaussian measurements, MD with
uniform random initialization has a transition to success occurring at a higher threshold compared to
the version of MD with spectral initialization. This is in agreement with our theoretical findings. On
the other hand, for CDP measurements, MD with uniform random initialization shows comparable
performance to the version with spectral initialization especially as the oversampling (number of
masks) increases, confirming numerically that spectral initialization does not seem to be mandatory
for MD with CDP measurements.

Comparison with other algorithms We have also carried out a comprehensive comparative
study of mirror descent (MD) to the methods included in the PhasePack library [60], which provides
a common interface for testing phase retrieval methods on empirical datasets. We have used their
implementations and included in the comparison MD and the Polyak subgradient method used in [69].
For fair comparison, and except MD with uniform initialization, we used spectral initialization for all
algorithms. The results are displayed Figure 3.5 where each plot shows the empirical probability of
success of each algorithm based on 100 random trials for two different measurement models (Gaussian
and CDP) and a varied number of measurements. We fixed n = 128 in this experiment. References
for all other algorithms as denoted in the legend in PhasePack can be found in [60].

For Gaussian measurements, MD with spectral initialization is in the group of best performing
methods (Reweighted WF, Reweighted AF, Truncated AF, Polyak subgradient, MD) which exhibit
comparable performance, though MD and Polyak subgradient are slightly better for low sampling
rates (less than 2), and Reweighted AF appears better for m/n ∈ [2, 3]. This first group clearly
outperforms the others especially when oversampling is less than 3. This is followed by a second group
(AF, Fineup, Gerchberg-Saxton and WF), then Truncated WF, MD with random initialization, and
finally the Coordinate Descent method. As far CDP measurements are concerned, most algorithms
perform similarly and MD with spectral initilization appears to be among the best ones. MD with
uniform random initialization has a recovery performance rather close to those ones, and better than
the Wirtinger flow even if the latter uses spectral initialization.

3.5 Proofs for the Deterministic Case

Let us start this section by recalling our objective function i.e.

∀x ∈ Rn, f(x) = 1
4m

m∑
r=1

(
|a∗rx|2 − y[r]

)2
= 1

4m

m∑
r=1

(
|a∗rx|2 − |a∗r x̄|2

)2
, (3.5.1)

The following expressions give the gradients and Hessians of f and ψ that will be used throughout.
For all ∀x ∈ Rn, we have
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∇f(x) = 1
m

m∑
r=1

(
|a∗rx|2 − |a∗r x̄|2

)
ara

∗
rx, ∇2f(x) = 1

m

m∑
r=1

(
3|a∗rx|2 − |a∗r x̄|2

)
ara

∗
r , (3.5.2)

∇ψ(x) =
(
‖x‖2 + 1

)
x, ∇2ψ(x) =

(
‖x‖2 + 1

)
Id + 2xx>. (3.5.3)

3.5.1 Proof of Lemma3.2.3

Proof. Our proof is different from that of [40, Lemma5.1] and gives a better estimate of L. Since y
has positive entries, we have for all x, u ∈ Rn,〈

u,∇2f(x)u
〉

= 1
m

m∑
r=1

(
3|a∗rx|2 − y[r]

)
|a∗ru|2

≤ 1
m

m∑
r=1

3|a∗rx|2|a∗ru|2

≤ ‖x‖2 ‖u‖2 1
m

m∑
r=1

3 ‖ar‖4.

On the other hand, 〈
u,∇2ψ(x)u

〉
=
(
‖x‖2 + 1

)
‖u‖2 + 2| 〈x, u〉 |2

≥ ‖x‖2 ‖u‖2

Thus for any L ≥ 1
m

∑m
r=1 3 ‖ar‖4, we have for all x ∈ Rn

∇2f(x) � L∇2ψ(x). (3.5.4)

We conclude by invoking Lemma2.3.8 with g = f and φ = Lψ, and Proposition 2.3.5-(ii).

The following lemma states a key inequality that will be the starting point of our proof. It has
appeared in different forms in the literature; see [40, Lemma4.1 and Remark 4.1] or [169, Lemma4.1].
We hereafter include a self-contained proof that accounts for backtracking.

Lemma 3.5.1. Let (xk)k∈N be a sequence generated by Algorithm1. Then ∀x ∈ Rn

Dψ (x, xk+1) + γk (f(xk+1)− f(x)) ≤ Dψ (x, xk)− κDψ (xk+1, xk)− γkDf (x, xk) . (3.5.5)

Proof. From the update of xk+1, we have ∇ψ(xk) − ∇ψ(xk+1) = γk∇f(xk), and multiplying both
sides by xk+1 − x, we get

〈∇ψ(xk)−∇ψ(xk+1), xk+1 − x〉 = γk 〈∇f(xk), xk+1 − x〉 . (3.5.6)

Using the three-point identity (2.3.4), we have

Dψ (x, xk)−Dψ (x, xk+1)−Dψ (xk+1, xk) = γk 〈∇f(xk), xk+1 − x〉 , (3.5.7)

By the backtracking test, we have that f verifies the Lk−relative smoothness inequality (2.3.6) w.r.t
ψ at (xk+1, xk), with constant Lk ≤ L, that is

f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+ LkDψ(xk+1, xk)
= 〈∇f(xk), xk+1 − x〉+ 〈∇f(xk), x− xk〉+ LkDψ(xk+1, xk), (3.5.8)

Plugging (3.5.7) into (3.5.8), we arrive at

γk (f(xk+1)− f(xk))
≤ Dψ (x, xk)−Dψ (x, xk+1)−Dψ (xk+1, xk) + γk 〈∇f(xk), x− xk〉+ γkLkDψ(xk+1, xk)
≤ Dψ (x, xk)−Dψ (x, xk+1)− (1− γkLk)Dψ (xk+1, xk) + γk 〈∇f(xk), x− xk〉
≤ Dψ (x, xk)−Dψ (x, xk+1)− κDψ (xk+1, xk) + γk 〈∇f(xk), x− xk〉 .
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Therefore

γk (f(xk+1)− f(x)) ≤ Dψ (x, xk)−Dψ (x, xk+1)− κDψ (xk+1, xk)
+ γk (f(xk)− f(x) + 〈∇f(xk), x− xk〉)

= Dψ (x, xk)−Dψ (x, xk+1)− κDψ (xk+1, xk)− γkDf (x, xk).

3.5.2 Proof of Theorem3.2.7

Proof.

(i)-(ii) The objective function f in (3.2.1) is a real polynomial, hence obviously semi-algebraic. It
then follows that f satisfies the Kurdyka-Łojasiewicz (KL) property [121, 122]. Combining this with
Lemma3.5.1, which ensures that the sequence (xk)k∈N is a gradient-like descent sequence, and 1-strong
convexity of the entropy ψ, the proof of (i)-(ii) are similar to those of [40, Proposition 4.1,Theorem4.1]
with slight modifications to handle backtracking.

(iii)-(a) The proof of this claim follows the same steps as the proof of [8, Theorem2.12] using again
that f is a continuous function which satisfies the KL property, that min f = 0 and that (xk)k∈N is a
gradient-like descent sequence thanks to Lemma3.5.1.

(iii)-(b) We verify by induction that xk ∈ B(x?, ρ),∀k ∈ N. Observe first that x0 ∈ B(x?, r) ⊂
B(x?, ρ) since r ≤ ρ

max(
√

Θ(ρ),1)
≤ ρ. Suppose now that for k ≥ 0, xi ∈ B(x?, ρ) for all i ≤ k. From

Lemma3.5.1 applied at x = x?, and the optimality of x?, we have

Dψ (x?, xk+1) ≤ Dψ (x?, xk+1)− (1− γkL)Dψ (xk+1, xk)− γkDf (x?, xk)
≤ Dψ (x?, xk)− γkDf (x?, xk)
≤ (1− γkσ)Dψ (x?, xk) (3.5.9)

≤
k∏
i=0

(1− γiσ)Dψ(x?, x0) ≤ Dψ (x?, x0) ,

where we used the positivity of Dψ and the relative strong convexity on B(x?, ρ). Now invoking
Proposition 2.3.5-(iv), we have

‖xk+1 − x?‖2 ≤ 2Dψ (x?, xk) ≤ 2
k∏
i=0

(1− γiσ)Dψ(x?, x0)

≤ Θ(ρ) ‖x0 − x?‖2 ≤
Θ(ρ)

max(Θ(ρ), 1)ρ
2 ≤ ρ2,

which entails that xi ∈ B(x?, ρ) for all i ≤ k + 1 as desired.

To show (3.2.6), we use again Lemma3.5.1, relative strong convexity on B(x?, ρ), and (3.5.9) to get

Dψ (x?, xk+1) + γkσDψ (xk+1, x
?) ≤ Dψ (x?, xk+1) + γk (f(xk+1)− f?) ≤ (1− γkσ)Dψ (x?, xk) .

(3.5.10)

Now Proposition 2.3.5-(iv) and 1-strong convexity of ψ tell us that

Dψ (x?, xk+1) ≤ Θ(ρ)Dψ (xk+1, x
?) . (3.5.11)

Combining (3.5.10), (3.5.11), 1-strong convexity of ψ and that 2Dψ (x?, x0) ≤ ρ2, we get the claim.
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(iv) We need the following lemma which is an extension of [109, Proposition 10] to the more general
L−smooth case.

Lemma 3.5.2. Let F be defined as in (3.2.4) then,
(a) ∀x ∈ Rn,det DF (x) 6= 0,
(b) strisad(f) ⊂ UF

def=
{
x ∈ Rn : F (x) = x,maxi |λi(DF (x))| > 1

}
.

Proof of Lemma3.5.2. Recall that F (x) = (∇ψ)−1 (∇ψ(x)− γ∇f(x)). Denote G(x) def= ∇ψ(x) −
γ∇f(x) so that F (x) = (∇ψ)−1 ◦G(x).

(a) Since ψ is C2 function, and thus ∇ψ is C1, and as ψ is strongly convex, the inverse function
theorem ensures that (∇ψ)−1 is a local diffeomorphism 1. Therefore to have det DF (x) 6= 0,
it suffices to show that G is a local diffeomorphism i.e. ∀x ∈ Rn,DG(x) is an invertible linear
transformation. We have DG(x) = ∇2ψ(x)−γ∇2f(x), and the L−relative smoothness property
of f w.r.t ψ (see (3.5.4) in the proof of Lemma3.2.3) implies that

DG(x) = ∇2ψ(x)− γ∇2f(x) � (1− γL)∇2ψ(x) = κ∇2ψ(x) � κId � 0.

where we used 1-strong convexity of ψ and that γL = 1− κ ∈]0, 1[.
(b) For x? ∈ strisad(f), we have F (x?) = x? since strisad(f) ⊂ crit(f). It remains to show that

det DF (x?) has an eigenvalue of magnitude greater than one. We have,

DF (x?)
(Chain rule)= ∇2ψ−1(G(x?))DG(x?),

=∇2ψ−1(x?)
(
∇2ψ(x?)− γ∇2f(x?)

)
,

=Id− γ∇2ψ(x?)−1∇2f(x?).

Denote for short Hψ = ∇2ψ(x?). We then have

H
1/2
ψ DF (x?)H−1/2

ψ = Id− γH−1/2
ψ ∇2f(x?)H−1/2

ψ .

H
1/2
ψ DF (x?)H−1/2

ψ is symmetric. Let v′ = H
1/2
ψ v with v a unit-norm eigenvector associated to

a strictly negative eigenvalue of ∇2f(x?). By the Courant-Fisher min-max theorem, we have

λmin(H−1/2
ψ ∇2f(x?)H−1/2

ψ ) ≤
〈
v′, H

−1/2
ψ ∇2f(x?)H−1/2

ψ v′
〉

=
〈
v,∇2f(x?)v

〉
< 0.

In turn, 1 − γλmin(H−1/2
ψ ∇2f(x?)H−1/2

ψ ) > 1 is an eigenvalue of H1/2
ψ DF (x?)H−1/2

ψ . Since,
H

1/2
ψ DF (x?)H−1/2

ψ is similar to DF (x?), we conclude.

To show (iv), we combine claim (ii), Lemma3.5.2 and the centre stable manifold theorem (see
[109, Corollary 1]) which allows to conclude that

{
x0 ∈ Rn : lim

k→∞
F k(x0) ∈ strisad(f)

}
has measure

zero.

3.6 Proofs for Random Measurements

3.6.1 Gaussian measurements

In this section, we assume that the sensing vectors (ar)r∈JmK follow the i.i.d standard Gaussian model.

1Recall that we have already argued that ψ is a Legendre function and thus ∇ψ is a bijection from Rn to Rn with
inverse (∇ψ)−1 = ∇ψ∗; see [155, Theorem26.5]
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3.6.1.1 Expectation and deviation of the Hessian

The next lemma gives the expression of the expectation of ∇2f(x).

Lemma 3.6.1. (Expectation of the Hessian) Under the Gaussian model, we have

E
(
∇2f(x)

)
= 3

(
2xx>+ ‖x‖2 Id

)
− 2x̄x̄>− ‖x̄‖2 Id. (3.6.1)

Proof. In view of (3.5.2), it is sufficient to compute

E
(

1
m

m∑
r=1
|ar>x|2arar>

)
.

Computing this expectation is standard using independence and a simple moment calculation, which
gives

E
(

1
m

m∑
r=1
|ar>x|2arar>

)
= 2xx>+ ‖x‖2 Id. (3.6.2)

We now turn our attention to the concentration of the Hessian of f around its mean. We start with
following key lemma.

Lemma 3.6.2. Fix % ∈]0, 1[. If the number of samples obeys m ≥ C(%)n logn, for some sufficiently
large C(%) > 0, then ∥∥∥∥∥ 1

m

m∑
r=1
|ar>x|2arar>−

(
2xx>+ ‖x‖2 Id

)∥∥∥∥∥ ≤ %

3 ‖x‖
2 .

holds simultaneously for all x ∈ Rn with a probability at least 1 − 5e−ζn − 4
n2 , where ζ is a fixed

numerical constant.

Proof. We follow a similar strategy to that of [53, SectionA.4]. By a homogeneity argument and
isotropy of the Gaussian distribution, it is sufficient to establish the claim for x = e1, i.e. that∥∥∥∥∥ 1

m

m∑
r=1
|ar[1]|2arar>−

(
2e1e1

>+ Id
)∥∥∥∥∥ ≤ %

3 . (3.6.3)

Since the matrix in (3.6.3) is symmetric, its spectral norm can be computed via the associated quadratic
form, and (3.6.3) amounts to showing that

V (v) def=
∣∣∣∣∣ 1
m

m∑
r=1
|ar[1]|2|a>rv|2 −

(
1 + 2v[1]2

)∣∣∣∣∣ ≤ %

3

for all v ∈ Sn−1. The rest of the proof shows this claim.
Let ãr = (ar[2], . . . , ar[n]) and ṽ = (v[2], . . . , v[n]) . We rewrite

|a>rv|2 =
(
ar[1]v[1] + ã>rṽ

)2
= (ar[1]v[1])2 +

(
ã>r ṽ

)2
+ 2ar[1]v[1]ã>r ṽ.

We plug this decomposition into V (v) to get

V (v) =
∣∣∣∣∣ 1
m

m∑
r=1

ar[1]4v[1]2 + 1
m

m∑
r=1

ar[1]2(ã>r ṽ)2 + 2 1
m

m∑
r=1
|ar[1]|3v[1]ã>r ṽ −

(
‖ṽ‖2 + 3v[1]2

)∣∣∣∣∣ ,
≤
∣∣∣∣∣ 1
m

m∑
r=1

ar[1]4 − 3
∣∣∣∣∣ v[1]2 +

∣∣∣∣∣ 1
m

m∑
r=1

ar[1]2 − 1
∣∣∣∣∣ ‖ṽ‖2 + 2

∣∣∣∣∣ 1
m

m∑
r=1
|ar[1]|3v[1]ã>r ṽ

∣∣∣∣∣
+
∣∣∣∣∣ 1
m

m∑
r=1

ar[1]2
(
ã>r ṽ − ‖ṽ‖

2
)∣∣∣∣∣ .
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If X ∼ N (0, 1) we have E
(
X2p) = (2p)!

2pp! for p ∈ N, and in particular E
(
X2) = 1 and E

(
X4) = 3. By

the Tchebyshev’s inequality Proposition 2.6.5 and a union bound argument, ∀ε > 0, and a constant
C(ε) ≈ max

(
26, 96

ε2

)
such that when m ≥ C(ε)n we have,

1
m

m∑
r=1

(
ar[1]4 − 3

)
< ε,

1
m

m∑
r=1

(
ar[1]2 − 1

)
< ε,

1
m

m∑
r=1

ar[1]6 ≤ 20

and max
1≤r≤m

|ar[1]| ≤
√

10 logm.

Each of these event happens with probability at least 1− 1
n2 , and thus their intersection occurs with

a probability at least 1− 4
n2 . On this intersection event, we have

V (v) ≤ ε(v[1]2 + ‖ṽ‖2) + 2
∣∣∣∣∣ 1
m

m∑
r=1

ar[1]3v[1]ã>r ṽ
∣∣∣∣∣+

∣∣∣∣∣ 1
m

m∑
r=1

ar[1]2
(
ã>r ṽ − ‖ṽ‖

2
)∣∣∣∣∣ .

On the one hand, by a Hoeffding-type inequality Proposition 2.6.6, we have

∀%′ > 0,
∣∣∣∣∣ 1
m

m∑
r=1

ar[1]3v[1]ã>r ṽ
∣∣∣∣∣ < %′|v[1]| ‖ṽ‖2 ,

with a probability 1 − ee−ζ′n ≥ 1 − 3e−ζ′n, when m ≥ C(%′)
√
n
∑m
r=1 ar[1]6 with C(%′) ≈ 1

%′2 and
ζ ′ > 2 an absolute constant.
On the other hand, by Bernstein-type inequality Proposition 2.6.7, we have

∀%′ > 0,
∣∣∣∣∣ 1
m

m∑
r=1

ar[1]2
(
ã>r ṽ − ‖ṽ‖

2
)∣∣∣∣∣ ≤ %′ ‖ṽ‖2 ,

with a probability 1− 2e−ζ′n, when m ≥ C(%′)
(√

n
∑m
r=1 ar[1]4 + n max

1≤r≤m
ar[1]2

)
with C(%′) ≈ 1

%′2 .

Overall, for any v ∈ Sn−1, we have with probability at least 1− 5e−ζ′n

V (v) ≤ ε+ 3%′.

At this stage, we use a covering argument ([176, Lemma5.4]) with an 1
2−net whose cardinality is

smaller than 5n. Therefore, choosing ε = %′ and % = 12%′ we get the claim where ζ = ζ ′ − log(5) > 0
since ζ ′ > 2 in the Hoeffding and Bernstein inequalities used above.

Lemma 3.6.3. (Concentration of the Hessian) Fix % ∈]0, 1[. If the number of samples obeys
m ≥ C(%)n logn, for some sufficiently large constant C(%) > 0, then∥∥∥∇2f(x)− E

(
∇2f(x)

)∥∥∥ ≤ %(‖x‖2 + ‖x̄‖
2

3

)
(3.6.4)

holds simultaneously for all x ∈ Rn with a probability at least 1 − 5e−ζn − 4
n2 , where ζ is a fixed

numerical constant.

Proof. Recall ∇2f(x) from (3.5.2). By the triangle inequality and Lemma3.6.1, we have∥∥∥∇2f(x)− E
(
∇2f(x)

)∥∥∥ ≤3
∥∥∥∥∥ 1
m

m∑
r=1
|ar>x|2arar>−

(
2xx>+ ‖x‖2 Id

)∥∥∥∥∥
+
∥∥∥∥∥ 1
m

m∑
r=1
|ar>x̄|2arar>−

(
2x̄x̄>+ ‖x̄‖2 Id

)∥∥∥∥∥ .
The claim is then a consequence of Lemma3.6.2.

3.6.1.2 Injectivity of the measurement operator

The next result shows that when the number of measurements is large enough, the measurement
matrix A (whose rows are the ar>’s) is injective w.h.p .
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Lemma 3.6.4. Fix % ∈]0, 1[. Assume that m ≥ 16
%2n. Then

(1− %) ‖x‖2 ≤ 1
m
‖Ax‖2 ≤ (1 + %) ‖x‖2 , ∀x ∈ Rn. (3.6.5)

This happens with a probability at least 1− 2e−mt2/2 with %
4 = t2 + t.

Proof. This is a consequence of very standard deviation inequalities on the singular values of Gaussian
random matrices; see [55, Lemma3.1] for a similar statement.

3.6.1.3 Relative smoothness

For the Gaussian phase retrieval, we have the following refined dimension-independent estimate of the
relative smoothness modulus, which is much better that the bound of Proposition 3.2.3.

Lemma 3.6.5. Fix % ∈]0, 1[. If the event EconH defined by (3.3.4) holds true then,

Df (x, z) ≤
(
3 + %max(‖x̄‖2 /3, 1)

)
Dψ(x, z), ∀x, z ∈ Rn. (3.6.6)

Proof. Using (3.3.4), Lemma3.6.1 and (3.5.3), we have

∀x ∈ Rn, ∇2f(x) � E
(
∇2f(x)

)
+ %

(
‖x‖2 + ‖x̄‖

2

3

)
Id,

� 3
(
2xx>+ ‖x‖2 Id

)
− 2x̄x̄>− ‖x̄‖2 Id

+ %max(‖x̄‖2 /3, 1)
(
‖x‖2 + 1

)
Id,

� 3
(
2xx>+ (‖x‖2 + 1)Id

)
+ %max(‖x̄‖2 /3, 1)∇2ψ(x),

= 3∇2ψ(x) + %max(‖x̄‖2 /3, 1)∇2ψ(x). (3.6.7)

We conclude by applying Lemma2.3.8.

3.6.1.4 Local relative strong convexity

The next proposition establishes strong convexity of f relative to ψ on a sufficiently small ball around
X . In view of strong 1-convexity of ψ, our result also implies strong convexity on the same ball as
shown in [53, 168].

Lemma 3.6.6. Fix λ ∈]0, 1[ and % ∈]0, λmin(‖x̄‖2 , 1)/(2 max(‖x̄‖2 /3, 1)). If the event EconH defined
by (3.3.4) holds true then for all x, z ∈ B

(
x̄, 1−λ√

3 ‖x̄‖
)
and x, z ∈ B

(
−x̄, 1−λ√

3 ‖x̄‖
)
,

Df (x, z) ≥
(
λmin(‖x̄‖2 , 1)− %max(‖x̄‖2 /3, 1)

)
Dψ(x, z). (3.6.8)

Observe that if ‖x̄‖ = 1 the above result has a simpler statement. In particular, % must lie in ]0, λ[,
and the local relative strong convexity modulus is λ− % on a ball of radius 1−λ√

3 around X .

Proof. We embark from (3.3.4) and Lemma3.6.1 to infer that ∀x ∈ Rn

∇2f(x) � −%
(
‖x‖2 + ‖x̄‖

2

3

)
Id + 3

(
2xx>+ ‖x‖2 Id

)
−
(
2x̄x̄>+ ‖x̄‖2 Id

)
(3.6.9)

� −%max(‖x̄‖2 /3, 1)∇2ψ(x) + 3
(
2xx>+ ‖x‖2 Id

)
−
(
2x̄x̄>+ ‖x̄‖2 Id

)
. (3.6.10)

We then obtain, for any v ∈ Sn−1

v>∇2f(x)v + %max(‖x̄‖2 /3, 1)v>∇2ψ(x)v ≥ 3
(

2
(
v>x

)2
+ ‖x‖2

)
−
(

2
(
v>x̄

)2
+ ‖x̄‖2

)
.
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Let ρ > 0 small enough, to be made precise later. Thus for any x = ±x̄+ ρv we get

v>∇2f(x)v + %max(‖x̄‖2 /3, 1)v>∇2ψ(x)v

≥ 6
(
v>x̄

)2
+ 6ρ2 ± 12ρv>x̄+ 3 ‖x̄‖2 ± 6ρv>x̄+ 3ρ2 − 2

(
v>x̄

)2
− ‖x̄‖2

= 4
(
v>x̄

)2
+ 9ρ2 ± 18ρv>x̄+ 2 ‖x̄‖2 .

From (3.5.3), we also have

v>∇2ψ(x)v = ‖x‖2 + 1 + 2
(
v>x

)2
= 2

(
v>x̄

)2
+ 3ρ2 +±6ρv>x̄+ ‖x̄‖2 + 1.

Consider first the case where ‖x̄‖ ≥ 1. We then get

v>
(
∇2f(x)−

(
λ− %max(‖x̄‖2 /3, 1)

)
∇2ψ(x)

)
v

≥ 2(2− λ)
(
v>x̄

)2
+ 3(3− λ)ρ2 ± 6(3− λ)ρv>x̄+ (2− λ) ‖x̄‖2 − λ

= 2(2− λ)
(
v>x̄

)2
+ 3(3− λ)ρ2 ± 6(3− λ)ρv>x̄+ 2(1− λ) ‖x̄‖2 + λ(‖x̄‖2 − 1)

≥ 2(2− λ)
(
v>x̄

)2
+ 3(3− λ)ρ2 ± 6(3− λ)ρv>x̄+ 2(1− λ) ‖x̄‖2 .

We claim that

inf
v∈Sn−1

2(2− λ)
(
v>x̄

)2
+ 3(3− λ)ρ2 ± 6(3− λ)ρv>x̄+ 2(1− λ) ‖x̄‖2 ≥ 0

for ρ small enough. Let v>x̄ = α ‖x̄‖, where α ∈ [−1, 1] and ρ = β ‖x̄‖. Thus

2(2− λ)
(
v>x̄

)2
+ 3(3− λ)ρ2 ± 6(3− λ)ρv>x̄+ 2(1− λ) ‖x̄‖2 =(

2(2− λ)α2 + 3(3− λ)β2 ± 6(3− λ)αβ + 2(1− λ)
)
‖x̄‖2 .

Minimizing the last term for α and substituting back, we have after simple algebra that

2(2− λ)α2 + 3(3− λ)β2 ± 6(3− λ)αβ + 2(1− λ) ≥ 2(1− λ)− φ(λ)β2.

where we set the function φ : t ∈]0, 1[ 7→ 36(3−t)2

8(2−t) − 3(3 − t) ∈ R+. It can be easily shown that
sup]0,1[ φ(t) = φ(1) = 12. In turn, we have

2(2− λ)α2 + 3(3− λ)β2 ± 6(3− λ)αβ + 2(1− λ) ≥ 0

since we assumed that ρ ≤ 1−λ√
3 ‖x̄‖ ≤

2(1−λ)√
φ(λ)
‖x̄‖.

Let us now turn to the case where ‖x̄‖ ≤ 1. We then have

v>
(
∇2f(x)− λ

(
‖x̄‖2 − %max(‖x̄‖2 /3, 1)

)
∇2ψ(x)

)
v

≥ 2(2− λ ‖x̄‖2)
(
v>x̄

)2
+ 3(3− λ ‖x̄‖2)ρ2 ± 6(3− λ ‖x̄‖2)ρv>x̄+ 2 ‖x̄‖2 − λ ‖x̄‖4 − λ ‖x̄‖2

≥ 2(2− λ ‖x̄‖2)
(
v>x̄

)2
+ 3(3− λ ‖x̄‖2)ρ2 ± 6(3− λ ‖x̄‖2)ρv>x̄+ 2(1− λ) ‖x̄‖2 + λ

(
‖x̄‖2 − ‖x̄‖4

)
≥ 2(2− λ ‖x̄‖2)

(
v>x̄

)2
+ 3(3− λ ‖x̄‖2)ρ2 ± 6(3− λ ‖x̄‖2)ρv>x̄+ 2(1− λ) ‖x̄‖2

=
(
2(2− λ ‖x̄‖2)α2 + 3(3− λ ‖x̄‖2)β2 ± 6(3− λ ‖x̄‖2)αβ + 2(1− λ)

)
‖x̄‖2 .

Arguing as in the first case, we have

2(2− λ ‖x̄‖2)α2 + 3(3− λ ‖x̄‖2)β2 ± 6(3− λ ‖x̄‖2)αβ + 2(1− λ) ≥ 2(1− λ)− φ(λ ‖x̄‖2)β2.

Thus, the right hand side is non-negative since

β ≤ 1− λ√
3
≤ 2(1− λ)√

φ(λ ‖x̄‖2)
,
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where we used that ‖x̄‖2 ≤ 1 in the argument of φ.
Overall, we have shown that

v>
(
∇2f(x)−

(
λmin(‖x̄‖2 , 1)/2− %max(‖x̄‖2 /3, 1)

)
∇2ψ(x)

)
v ≥ 0

for all v ∈ Sn−1 and ρ ≤ 1−λ√
3 ‖x̄‖. We complete the proof by invoking Lemma2.3.8 and convexity of

the ball.

3.6.1.5 Spectral initialization

We now show that the initial guess x0 generated by spectral initialization (Algorithm2) belongs to a
small f -attentive neighborhood of X .

Lemma 3.6.7. Fix % ∈]0, 1[. If the number of samples obeys m ≥ C(%)n logn, for some sufficiently
large constant C(%) > 0, then with probability at least 1 − 2e−

m(
√

1+%−1)2
8 − 5e−ζn − 4

n2 , where ζ is a
fixed numerical constant, x0 satisfies:

(i) dist(x0,X ) ≤ η1(%) ‖x̄‖, where

η1 : ]0, 1[→ ]0, 1[

% 7→
(√

2− 2
√

1− %+ %/2
)
, (3.6.11)

which is an increasing function.
(ii) f(x0) ≤

(
3 + %max(‖x̄‖2 /3, 1)

)
Θ(η1(%)‖x̄‖)

2 η1(%)2 ‖x̄‖2.
(iii) Besides, for λ ∈]0, 1[, if

% ≤ η−1
1

(
1− λ√

3 (6(1 + (1− λ)2/3) + 1)
1

max (‖x̄‖ , 1)

)
, (3.6.12)

then with the same probability as above x0 ∈ B
(
X , ρ

max
(√

Θ(ρ),1
)) where ρ = 1−λ√

3 ‖x̄‖.

Proof.
(i) Denote the matrix

Y = 1
m

m∑
r=1

y[r]arar>= 1
m

m∑
r=1
|ar>x̄|2arar>.

By Lemma3.6.2, we have w.h.p
‖Y − E (Y )‖ ≤ % ‖x̄‖2 .

Let x̃ be the eigenvector associated with the largest eigenvalue λ̃ of Y such that ‖x̃‖ = ‖x̄‖
(obviously λ̃ is nonnegative since Y is semidefinite positive). Then,

% ‖x̄‖2 ≥ ‖Y − E(Y )‖ ≥ ‖x̄‖−2
∣∣∣x̃>(Y − 2x̄x̄>− ‖x̄‖2 Id

)
x̃
∣∣∣

= ‖x̄‖−2
∣∣∣λ̃ ‖x̄‖2 − 2(x̃>x̄)2 − ‖x̄‖4

∣∣∣ .
Hence

2(x̃>x̄)2 ≥ λ̃ ‖x̄‖2 − (1 + %) ‖x̄‖4 .

Moreover, using Lemma3.6.2 again entails that w.h.p

λ̃ ‖x̄‖2 ≥ x̄>Y x̄ ≥ x̄>
(
2x̄x̄>+ ‖x̄‖2 Id

)
x̄− % ‖x̄‖4 = (3− %) ‖x̄‖4 .

Combining the last two inequalities, we get

(x̃>x̄)2 ≥ (1− ρ) ‖x̄‖4 .
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It then follows that
dist(x̃,X ) ≤

√
2− 2

√
1− ρ ‖x̄‖ .

By definition of x0 in Algorithm2, x0 =
√
m−1∑

r y[r] x̃
‖x̄‖ , and thus w.h.p

‖x0 − x̃‖ =
∣∣∣∣∣
√
m−1∑

r y[r]
‖x̄‖2

− 1
∣∣∣∣∣ ‖x̄‖ =

∣∣∣∣∣∣
√√√√m−1 ‖Ax̄‖2

‖x̄‖2
− 1

∣∣∣∣∣∣ ‖x̄‖ ≤ %/2 ‖x̄‖ ,
where we used Lemma3.6.4. In turn,

dist(x0,X ) ≤ dist(x̃,X ) + ‖x0 − x̃‖ ≤
(√

2− 2
√

1− %+ %/2
)
‖x̄‖ .

(ii) Under our sampling complexity bound, event EconH defined by (3.3.4) holds true w.h.p . It
then follows from Lemma3.6.5 applied at x̄ and x0, that

Df (x0, x̄) ≤
(
3 + %max(‖x̄‖2 /3, 1)

)
Dψ(x0, x̄). (3.6.13)

Since f(x̄) = 0 and ∇f(x̄) = 0, we obtain from Proposition 2.3.5-(iv) that

f(x0) ≤
(
3 + %max(‖x̄‖2 /3, 1)

)
Dψ(x0, x̄)

≤
(
3 + %max(‖x̄‖2 /3, 1)

) Θ(η1(%) ‖x̄‖)
2 η1(%)2 ‖x̄‖2 . (3.6.14)

(iii) In view of (i), it is sufficient to show that η1(%) ‖x̄‖ ≤ ρ

max
(√

Θ(ρ),1
) . Since from Proposi-

tion 2.3.5-(iv) (see also Remark 3.2.8) we have

Θ(ρ) ≤ 6(‖x̄‖2 + ρ2) + 1 ≤
(
6(1 + (1− λ)2/3) + 1

)
max

(
‖x̄‖2 , 1

)
,

and η1 is an increasing function, we conclude.

3.6.2 CDP model measurements

In this section, we assume that the sensing vectors (ar)r∈JmK follow the CDP model introduced in
Section 3.3.1.

3.6.2.1 Expectation and deviation of the Hessian

Lemma 3.6.8. (Expectation of the Hessian) Under the CDP measurement model, the following
holds

E
(
∇2f(x)

)
= 3

(
xx>+ ‖x‖2 Id

)
− x̄x̄>− ‖x̄‖2 Id. (3.6.15)

Proof. From [52, Lemma3.1], we have

∀x ∈ Rn, E

 1
nP

n,P∑
j,p=1

|f∗j Dpx|2Dpfjf
∗
j Dp

 = xx>+ ‖x‖2 Id. (3.6.16)

Combining this with (3.5.2) yields the claim.

Unlike the Gaussian model, it turns out that it is very challenging to concentrate the Hessian
of f around its mean simultaneously for all vectors x ∈ Rn with non-trivial sampling complexity
bounds. The main reason is that the CDP model does not have enough randomness to be used in the
mathematical analysis. However, one can still do that for a fixed vector x. The next lemma gives the
Hessian deviation at ±x̄.
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Lemma 3.6.9. (Concentration of the Hessian) Fix δ ∈]0, 1[. If the number of patterns obeys
P ≥ C(δ) log3(n), then with a probability at least 1− 4P+1

2n3∥∥∥∇2f(x̄)− E
(
∇2f(x̄)

)∥∥∥ ≤ δ ‖x̄‖2 . (3.6.17)

Proof. Let f∗j be the rows of the discrete Fourier transform, i.e. fj [`] = ei
2πj`
n . With a slight

adaptation to the real case of the argument in [53, SectionA.4.1], we deduce that∥∥∥∥∥∥ 1
nP

n,P∑
j,p

|f∗j Dpx̄|2Dpfjf
∗
j Dp −

(
x̄x̄>+ ‖x̄‖2 Id

)∥∥∥∥∥∥ ≤ δ

2 ‖x̄‖
2 , (3.6.18)

provided that P ≥ C(δ) log3(n) with a probability at least 1− 4P+1
2n3 . Combining this with Lemma3.6.8,

we conclude.

3.6.2.2 Injectivity of the measurement operator

We now establish that for m large enough, the measurement matrix A is injective w.h.p . Recall that
the rows of A are the a∗r ’s.

Lemma 3.6.10. Fix % ∈]0, 1[. Assume that P ≥ C(%) log(n). Then with a probability at least 1−1/n2

(1− %) ‖x‖2 ≤ 1
m
‖Ax‖2 ≤ (1 + %) ‖x‖2 , ∀x ∈ Rn. (3.6.19)

Proof. This is a consequence of the fact that∥∥∥∥ 1
m
A∗A− Id

∥∥∥∥ ≤ %
with the claimed probability. Indeed, as for [52, Lemma3.3], the covariance matrix 1

mA
∗A is diagonal

with i.i.d diagonal entries whose expectation is E
(
d2) = 1, and the statement follows from Hoeffding’s

inequality and a union bound.

3.6.2.3 Local relative smoothness and relative strong convexity

We now turn to proving local relative smoothness and relative strong convexity near the true vectors.
Unlike the Gaussian case, we only have a local version of relative smoothness. The reason behind this,
as discussed above, is that it seems very hard to have a uniform concentration bound for the Hessian
of f around its mean for the CDP model. To circumvent this, we use a continuity argument.

Lemma 3.6.11. Fix δ ∈]0,min(‖x̄‖2 , 1)/2[. Suppose that (3.6.17) holds. Then there exists ρδ > 0
such that for all x, z ∈ B

(
x̄, ρδ

)
and x, z ∈ B

(
−x̄, ρδ

)
(
min(‖x̄‖2 , 1)− 2δ

)
1 + δ

Dψ(x, z) ≤ Df (x, z) ≤ 2(1 + δ)2Dψ(x, z). (3.6.20)

Observe that while in the Gaussian case, the ball radius on which relative strong convexity holds is
fixed and explicit, for the CDP model, we only know it exists and it depends on δ.

Proof. We prove the claim for x̄ and the same holds obviously around −x̄. Using (3.6.17) and (3.5.3)
gives

∇2f(x̄) � E
(
∇2f(x̄)

)
+ δ ‖x̄‖2 Id

= 2x̄x̄>+ (2 + δ) ‖x̄‖2 Id

� (2 + δ)
(
2x̄x̄>+ (‖x̄‖2 + 1)Id

)
,

= (2 + δ)∇2ψ(x̄).
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Again, from (3.6.17) and (3.5.3), we get

∇2f(x̄) � E
(
∇2f(x̄)

)
− δ ‖x̄‖2 Id � 2(x̄x̄>+ ‖x̄‖2 Id)− δ∇2ψ(x̄)Id.

If ‖x̄‖ ≥ 1, we arrive at

∇2f(x̄) � 2x̄x̄>+ (‖x̄‖2 + 1)Id− δ∇2ψ(x̄)Id = (1− δ)∇2ψ(x̄).

If ‖x̄‖ ≤ 1, we have

∇2f(x̄)−
(
‖x̄‖2 − δ

)
∇2ψ(x̄) � 2x̄x̄>+ 2 ‖x̄‖2 Id− 2 ‖x̄‖2 x̄x̄>− ‖x̄‖4 Id− ‖x̄‖2 Id

= 2(1− ‖x̄‖2)x̄x̄>+ (‖x̄‖2 − ‖x̄‖4)Id � 0.

Therefore (
min(‖x̄‖2 , 1)− δ

)
∇2ψ(x̄) � ∇2f(x̄) � (2 + δ)∇2ψ(x̄). (3.6.21)

Combining (3.6.21) with continuity of ∇2f and 1-strong convexity of ψ, ∃ρδ > 0 such that ∀x ∈
B(x̄, ρδ) we have(

min(‖x̄‖2 , 1)− 2δ
)
∇2ψ(x̄) � ∇2f(x̄)− δId � ∇2f(x) � ∇2f(x̄) + δId � 2(1 + δ)∇2ψ(x̄). (3.6.22)

Continuity of ∇2ψ and 1-strong convexity of ψ also yield that ∀x ∈ B(x̄, ρδ)

∇2ψ(x̄) � ∇2ψ(x) + δId � (1 + δ)∇2ψ(x) and ∇2ψ(x) � ∇2ψ(x̄) + δId � (1 + δ)∇2ψ(x̄). (3.6.23)

Combining (3.6.22) and (3.6.23), we obtain that ∀x ∈ B(x̄, ρδ),(
min(‖x̄‖2 , 1)− 2δ

)
1 + δ

∇2ψ(x) � ∇2f(x) � 2(1 + δ)2∇2ψ(x).

Invoking Lemma2.3.8 and convexity of the ball, we get the statement.

3.6.2.4 Spectral initialization

We now show the analogue of Lemma3.6.7 for the CDP measurement model.

Lemma 3.6.12. Fix % ∈]0, 1[. If the number of patterns obeys P ≥ C(%) log3(n), for some sufficiently
large constant C(%) > 0, then with probability at least 1− 4P+1

n3 − 1
n2 , x0 satisfies:

(i) dist(x0,X ) ≤ η1(%) ‖x̄‖, where η1(%) =
(√

2− 2
√

1− %+ %/2
)

.

Let δ ∈]0,min(‖x̄‖2 , 1)/2[ and ρδ is the neighborhood radius in Lemma3.6.11. Suppose that % is
sufficiently small, i.e.

% ≤ min

δ, η−1
1

 ρδ/ ‖x̄‖√
6(‖x̄‖2 + ρ2

δ) + 1

 . (3.6.24)

Then, with the same probability as above,
(ii) f(x0) ≤ 2(1 + δ2)Θ(η1(%)‖x̄‖)

2 η1(%)2 ‖x̄‖2 ;

(iii) x0 ∈ B
(
X , ρδ

max
(√

Θ(ρδ),1
)).

Proof. The proof of this claim is similar to that of Lemma3.6.7 for the Gaussian case, where
we now invoke Lemma3.6.9 and Lemma3.6.10 for statement (i). For the last two claims, we also
use Lemma3.6.11 and that % is small enough as prescribed.
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Chapter 4

Stable Phase Retrieval with Mirror
Descent

In this chapter, we aim to reconstruct an n-dimensional real vector from m phaseless measurements
corrupted by an additive noise. We extend the noiseless framework developed in Chapter 3, based
on mirror descent (or Bregman gradient descent), to deal with noisy measurements and prove that
the procedure is stable to (small enough) additive noise. In the deterministic case, we show that
mirror descent converges to a critical point of the phase retrieval problem, and if the algorithm is well
initialized and the noise is small enough, the critical point is near the true vector up to a global sign
change. When the measurements are i.i.d Gaussian and the signal-to-noise ratio is large enough, we
provide global convergence guarantees that ensure that with high probability, mirror descent converges
to a global minimizer near the true vector (up to a global sign change), as soon as the number
of measurements m is large enough. The sample complexity bound can be improved if a spectral
method is used to provide a good initial guess. We complement our theoretical study with several
numerical results showing that mirror descent is both a computationally and statistically efficient
scheme to solve the phase retrieval problem. The contributions of this chapter can be summarized as
follows:

Main contributions of this chapter

I For almost all initializers, mirror descent converges to a critical point near the true vectors
(up to sign ambiguity) where the objective has no direction of negative curvature.

I For i.i.d Gaussian measurements, and in the regime where the signal-to-noise ratio is large
enough, we provide a complete geometric characterization of the landscape of the nonconvex
objective provided that m & n log3(n).

I A global convergence to a point in Argmin(f), which is near x̄ (up to sign ambiguity), as
soon as the number of samples is large enough. Ifm & n log(n), using a spectral initialization
method, we provide a local convergence to a vector in the neighborhood of the target vector
(up to sign ambiguity).
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4.1 Introduction

4.1.1 Problem statement

Our focus in this chapter is phase retrieval with possibly noisy measurements. In real applications, the
intensity measurements are not perfectly acquired. For instance, let us consider light scattering for
precision in optics [7] which is our motivating application, where the goal is to describe the roughness
of a polished surface. The latter is illuminated with a laser source, and the diffusion is measured by
moving a detector. Then the power spectral density of the surface topography can be directly mea-
sured. However, during the acquisition process, different types of noise can corrupt the measurements
such as photon noise, thermal noise, Johnson noise, etc.. Knowing the statistical model underlying the
noise and the way it contaminates the measurements can prove useful to achieve robust reconstruction.
The noise model can then be incorporated as the negative log-likelihood in the minimization objective.
There are several noise models used in phase retrieval. One of them is the signal-dependent Poisson
noise model which models the photon count noise. Another noise model is the (complex-valued)
noise arising from multiple scattering, which can be modelled by the (complex) circularly-symmetric
Gaussian distribution, and used to describe Rayleigh fading channels encountered in communication
systems. Yet another source of noise the thermal one or the incoherent background noise.

In this manuscript, and similarly to [55, 70, 63], we will work with a generic additive noise model,
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without any particular statistical assumption, in which the noisy phase retrieval problem readsRecover x̄ ∈ Rn from the measurements y ∈ Rm

y[r] = |a∗r x̄|2 + ε[r], r ∈ JmK,
(NoisyPR)

where [r] is the r-th entry of the corresponding vector, and ε ∈ Rm is the noise vector. Throughout
the chapter, A is the m× n matrix with a∗r ’s as its rows.

Since x̄ is real-valued, the best one can hope for is to ensure that x̄ is uniquely determined from its
intensities up to a global sign. Phase retrieval is in fact an ill-posed inverse problem in general, and
even for ε = 0, checking whether a solution to (NoisyPR) exists or not is known to be NP complete
[157]. The situation is even more complicated in presence of noise. Thus, one of the major challenges
is to design efficient recovery algorithms and find conditions on m, (ar)r∈JmK and ε which guarantee
stable recovery in presence of noise. This is the goal we pursue in this chapter.

In this chapter, we cast the noise-aware phase retrieval problem (NoisyPR) as the smooth but
nonconvex minimization problem

min
x∈Rn

{
f(x) def= 1

4m

m∑
r=1

(
y[r]− |(Ax)[r]|2

)2
}
. (4.1.1)

In fact, this is the same problem as in (4.2.1) studied in the noiseless case in Chapter 3. There, we
proposed a mirror descent algorithm based on a suitably chosen entropy. In particular, we analyzed
the case where the measurements were either i.i.d standard Gaussian measurements or drawn from
the Coded Diffraction Pattern (CDP) model. It is our aim in this chapter to extend these results to
the noisy case and prove stability guarantees for mirror descent to minimize (4.2.1).

4.1.2 Contributions and relation to prior work

Stability of phase retrieval to (small enough) noise has been studied by several authors with various
measurement ensembles and reconstruction procedures; see the detailed review in Section 1.2. In this
chapter, we claim that mirror descent to solve (4.2.1) is stable against sufficiently small additive noise.
This in turn provides recovery error bounds of the noisy phase retrieval problem (NoisyPR). In the
deterministic case, we show that for almost all initializers, mirror descent converges to a critical point
near the true vectors (up to sign ambiguity) where the objective has no direction of negative curvature.
In the random case, we consider i.i.d Gaussian measurements, and in the regime where the signal-to-
noise ratio is large enough (see Assumption 4.3.1), we provide a complete geometric characterization
of the landscape of the nonconvex objective provided that m & n log3(n). In turn, this allows us to
describe the set of the critical points of f as the union of the strict saddle points and global minimizers
of f . From this, we provide a global convergence to a point in Argmin(f), which is near x̄ (up to
sign ambiguity), as soon as the number of samples is large enough. If m & n log(n), using a spectral
initialization method, we provide a local convergence to a vector in the neighborhood of the target
vector (up to sign ambiguity). By "near" we mean a reconstruction error that eventually scales as
O
(
‖ε‖√
m‖x̄‖

)
which matches the minimax optimal bounded established in [63, Theorem3]. Compared

to the Wirtinger flow and variants, our algorithm, by adapting to the geometry, offers an easier and
dimension-independent choice of the parameters (in fact one, the descent-step size), and has global
convergence guarantees.

Our results can be easily extended to sub-Gaussian measurements with minor changes. The case
where ar’s are drawn from the CDP model is, however, far more challenging. Indeed, this model
enjoys less randomness compared to the (sub-)Gaussian case and many of our arguments that require
the uniformization of some bounds that are difficult to extend to the CDP model. Nevertheless,
numerical experiments suggest that stable recovery still holds for our mirror descent algorithm with
CDP measurements.
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4.1.3 Chapter organization

The rest of the chapter is organized as follows. In Section 4.5, we recall the mirror descent algorithm
with backtracking and establish its global and local convergence guarantees in the deterministic case.
In Section 4.6, we sample complexity bounds with Gaussian measurements for our deterministic guar-
antees to hold with high probability. Section 4.4 describes the numerical experiments. The proofs of
technical results are deferred to Section 4.5 and Section 4.6, while Section 4.7 studies the landscape of
the noise-aware objective with Gaussian measurements.

4.2 Deterministic Stable Recovery

4.2.1 Mirror descent with backtracking

Observe that the objective in (NoisyPR) can be decomposed as

f(x) = 1
4m

m∑
r=1

(
|(Ax)[r]|2 − |(Ax̄)[r]|2 − ε[r]

)2
. (4.2.1)

As argued in Section 3.2, the objective f is C2(Rn) and nonconvex (in fact only weakly convex).
Moreover, its gradient is not Lipschitz continuous. However, using the strongly convex entropy (see
Proposition 3.2.2 for its properties),

ψ(x) = 1
4 ‖x‖

4 + 1
2 ‖x‖

2 , (4.2.2)

f turns out to be smooth relative to ψ.

Lemma 4.2.1. Let f and ψ defined in (4.1.1)-(4.2.2). f is L−smooth relative to ψ on Rn for any
L ≥ 1

m

m∑
r=1
‖ar‖2

(
3 ‖ar‖2 + ‖ε‖∞

)
.

See Section 4.5.1 for the proof. This estimate of the modulus of relative smoothness L is crude and
depends also on noise. This estimate will be largely improved for Gaussian measurements. Observe
that we recover Lemma3.2.3 in the noiseless case.

This relative smoothness property is the key motivation behind considering the framework of mirror
descent or Bregman gradient descent. The mirror descent scheme with backtracking, already stated
in Algorithm1, is recalled in Algorithm3 for convenience.
Algorithm 3: Mirror Descent for Phase Retrieval
Parameters: L0 = L (see Lemma4.2.1), κ ∈]0, 1[, ξ ≥ 1 ;
Initialization: x0 ∈ Rn;
for k = 0, 1, . . . do

repeat
Lk ← Lk/ξ, γk = 1−κ

Lk
;

xk+1 = F (xk) = ∇ψ∗ (∇ψ(xk)− γk∇f(xk)) ;
until Df (xk+1, xk) > LkDψ(xk+1, xk);
Lk ← ξLk, γk = 1−κ

Lk
;

xk+1 = F (xk).

In Algorithm3, ψ∗ is the Legendre-Fenchel conjugate of ψ. The pair (f, ψ) defined in (4.1.1)-(4.2.2)
satisfies [40, Assumptions A,B,C,D] and thus the mapping F in Algorithm3 is well-defined and single-
valued on Rn. Moreover, the mirror step ∇ψ∗(z) can be computed easily as ∇ψ∗(z) = t∗z, where t∗
is the unique real positive root of the third-order polynomial t3 ‖z‖2 + t− 1 = 0; see Proposition 3.2.4.
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4.2.2 Deterministic recovery guarantees by mirror descent

Before the deterministic result, we start by recalling the notion of strict saddles.

Definition 4.2.2 (Strict saddle point). A point x? ∈ crit(f) is a strict saddle point of f if
λmin(∇2f(x?)) < 0. The set of strict saddle points of f is denoted strisad(f).

We now claim that mirror descent is stable against additive noise, as demonstrated in the following
theorem.

Theorem 4.2.3. Consider the noisy phase retrieval problem cast as (4.1.1). Let (xk)k∈N be a bounded
sequence generated by Algorithm3. Then,
(i) the sequence (xk)k∈N has a finite length, converges to a point in crit(f) and the values (f(xk))k∈N

are nonincreasing.
Take Lk = L,∀k ≥ 0. Then,

(ii) for Lebesgue almost all initializers x0, the sequence (xk)k∈N converges to a critical point which
cannot be a strict saddle, i.e. xk → x̃ ∈ crit(f)\strisad(f).

(iii) Assume that Argmin(f) 6= ∅. Let ρ, σ > 0 such that ρ >
√

2‖ε‖√
mσ

and define the radius r ≤√
ρ2− 2‖ε‖2

mσ
max(Θ(ρ),1) . If the initial point x0 ∈ B(X , r) and f is σ-strongly convex relative to ψ on

B(X , ρ) then xk ∈ B(X , ρ),∀k ∈ N, and

dist2(xk,X ) ≤ (1− γσ)k−1 ρ2 + 2‖ε‖
2

mσ
, (4.2.3)

See Section 4.5.2 for the proof.

Some remarks are in order.

Remark 4.2.4.
• Clearly, claim (i) suggests that even in the presence of the noise, any bounded sequence of

Algorithm3 will converge to a critical point of f with decreasing values. Let us observe that
the sequence generated by our algorithm is bounded if for instance f is coercive, in which case
Argmin(f) is also a non-empty compact set. This happens to be true when A is injective, i.e.
in the oversampling regime as we will show in the random case.

• Claim (ii) shows that when the initial guess x0 is chosen according to a distribution that has
a density w.r.t the Lebesgue measure with constant step-size, then the sequence generated by
mirror descent converges to a critical point where f has no direction of negative curvature.

• Concerning our local results in claim-(iii), if mirror descent is well initialized i.e., in a ball of
sufficiently small radius r < ρ around the true vectors X , and if f is strongly convex relative to
ψ on the larger ball B(X , ρ), then all the iterates (xk)k∈N will remain in B(X , ρ). Moreover, the
sequence (xk)k∈N will converge to a critical point x̃ obeying

dist(x̃,X ) ≤
√

2 ‖ε‖√
mσ

.

4.3 Stable Recovery from Gaussian Measurements
The deterministic stable recovery results of Theorem4.2.3(ii)-(iii) require for instance a local relative
strong convexity condition around ±x̄ and possibly a good enough initial guess. A natural question to
ask is when these conditions hold true. In turns out that this is indeed the case in the oversampling
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regime with i.i.d Gaussian measurements, and if the noise is small enough. This section is devoted
to rigorously show these statements.

We consider that the sensing vectors (ar)r∈JmK are drawn i.i.d from a real zero-mean standard
Gaussian distribution. We also work under the following assumption on the noise ε.

Assumption 4.3.1. Denote ε̃ = 1
m

m∑
r=1

ε[r]. Given λ ∈]0, 1[, we suppose that

0 ≤ ε̃

min(‖x̄‖2 , 1)
< λ and ‖ε‖∞ ≤ cs min(‖x̄‖2 , 1),

for some constant cs ∈

0,
(1− λ) ‖x̄‖

√
λmin(‖x̄‖2 , 1)− ε̃

2
√

6 min(‖x̄‖2 , 1)

 . (4.3.1)

To get better understanding of this assumption, we observe that it implies that
‖ε‖

√
m ‖x̄‖2

≤ ‖ε‖∞
‖x̄‖2

<
(1− λ)

√
λ

2
√

6
< 1.

On the other hand, for the observation model (NoisyPR) with i.i.d real Gaussian sensing vectors, the
signal-to-noise ratio (SNR) is captured by

SNR def=
∑m
r=1 |ar>x̄|4

‖ε‖2
≈ 3m ‖x̄‖4

‖ε‖2
.

In other words, Assumption 4.3.1 amounts to imposing that the SNR is large enough, i.e.
√

SNR &
6
√

2
(1− λ)

√
λ
.

Let us also observe that Assumption 4.3.1 imposes that the empirical mean ε̃ is non-negative. This
is a practical assumption that is fulfilled in many applications and will be helpful to describe the
landscape of the noise-aware objective for Gaussian measurements. However, it was not used to have
the deterministic guarantees.

Some of our stable recovery guarantees will be local provided that Algorithm3 is initialized with
a good guess. For this, we will use a spectral initialization method; see for instance [53, 63, 141,
192, 182, 179]. The procedure consists of taking x0 as the leading eigenvector of a specific matrix as
described in Algorithm4.
Algorithm 4: Spectral Initialization.
Input: y[r], r = 1, . . . ,m
Output: x0

Set λ2 = n

∑
r

y[r]∑
r

‖ar‖2
= n

∑r 〈ar,x̄〉2∑
r

‖ar‖2
+

∑
r

εr∑
r

‖ar‖2

 ;

Take x0 the top eigenvector of Y = 1
m

m∑
r=1

y[r]arar> normalized to ‖x0‖ = λ.

To lighten notations and clarify our proof, we consider the following events on whose intersection
our deterministic convergence result will hold with high probability. Let fix % ∈]0, 1[ and λ ∈

]
1

9
√

2 , 1
[
.

• The event
Estrictsad = {crit(f) = Argmin(f) ∪ strisad(f)} (4.3.2)

means that the set of critical points of the function f reduces to the set global minimizers of f
and the set of strict saddle points.

• The event

EconH =
{
∀x ∈ Rn,

∥∥∥∇2f(x)− E
(
∇2f(x)

)∥∥∥ ≤ % (‖x‖2 + ‖x̄‖2 /3 + ‖ε‖∞
)}

(4.3.3)
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captures the deviation of the Hessian of f around its expectation.
• The event

Einj =
{
∀x ∈ Rn, (1− %) ‖x‖2 ≤ 1

m
‖Ax‖2

}
(4.3.4)

corresponds to the injectivity of the measurement operator A.
• Let us denote by Esmad the event on which the function f is L−smooth relative to ψ with
L = 3 + ε̃+ %max(‖x̄‖2 /3 + 1, 1).

• Let us define ρ = (1−λ)‖x̄‖√
3 > 0 and Escvx is the event on which f is σ-strongly convex relative to

ψ locally on B(X , ρ), with σ = λmin(‖x̄‖2 , 1)− ε̃− %max(‖x̄‖2 /3 + ‖ε‖∞ , 1).
• We end up denoting

Econv = Estrictsad ∩ EconH ∩ Einj ∩ Esmad ∩ Escvx. (4.3.5)

Our main result for Gaussian measurements is the following.

Theorem 4.3.2. Fix λ ∈
]

1
9
√

2 , 1
[
and % ∈

]
0, λmin(‖x̄‖2,1)−ε̃

2 max(‖x̄‖2/3+‖ε‖∞,1)

[
. Let (xk)k∈N be the sequence

generated by Algorithm3. Under Assumption 4.3.1, let us define for any κ ∈]0, 1[

ν =
(1− κ)

(
λmin(‖x̄‖2 , 1)− ε̃− %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)

)
3 + ε̃+ %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)

∈ [0, 1[

and

ς = 2
√

2 ‖ε‖√
m
(
cs min(‖x̄‖2 , 1)− ε̃

) .
(i) If the number of measurements m is large enough i.e., m ≥ C(%)n log3(n), then for almost all

initializers x0 of Algorithm 3 with the step-size γ ≡ 1−κ
3+ε̃+%max(‖x̄‖2/3+‖ε‖∞,1) ,

then we have
xk → x? ∈ Argmin(f) ∩B

(
X , ς

)
and ∃K > 0 such that for all k ≥ K, we have

dist2(xk,X ) ≤ ‖x̄‖
2

3 (1− ν)k−K + ς2. (4.3.6)

This holds with a probability at least 1 − 2e−
m(
√

1+%−1)2
8 − e−Ω(m) − 5e−ζn − 4/n2 − c/m, where

c, ζ are fixed numerical constants.
(ii) Suppose that % obeys (3.6.12). If m is such that m ≥ C(%, ‖ε‖∞)n log(n), and Algorithm 3 is

initialized with the spectral method in Algorithm 4, then (4.3.6) holds for all k ≥ K = 0 with
probability at least 1 − 2e−

m(
√

1+%−1)2
8 − e−Ω(m) − 5e−ζn − 4/n2, where ζ is a fixed numerical

constant.

The choice of parameters can be made easier to read when ‖x̄‖ = 1 as assumed in many works.

Corollary 4.3.3. Suppose that ‖x̄‖ = 1 and the noise is small enough. Fix λ ∈
]

1
9
√

2 , 1
[
and % ∈]

0, λ−ε̃2

[
. Let (xk)k∈N be the sequence generated by Algorithm3 with the step-size γ ≡ 1−κ

3+ε̃+% , where
κ ∈]0, 1[. Then the statements of Theorem4.3.2 hold true with

ν = (1− κ) (λ− ε̃)
3 + ε̃+ %

and ς = 2
√

2 ‖ε‖√
m (cs − ε̃)

.

Remark 4.3.4.
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• When the number of measurements is sufficiently large as in claim (i), the SNR is large enough
and the initial point x0 is chosen randomly from a measure that has a density w.r.t Lebesgue
measure, then mirror descent converges, eventually linearly, to an element of Argmin(f) which is
within a factor of the noise level from X . The local convergence rate is dimension-independent.
To the best of our knowledge, this is the first kind of results for the noisy phase retrieval problem.

• When the number of measurements is in the less demanding regime of the second claim, then
mirror descent with spectral initialization again converges to a noise region around X .

• We recover the rate of Theorem3.3.3 in the noiseless case.
• In the normalized setting of Corollary 4.3.3, the convergence rate behaves as (1− ν) ≤ 2

3 +
O ((1− λ) + κ+ ε̃+ %).

• It is important to observe that in the noisy case, the true vectors X are not even critical points
of f . Nonetheless, Lemma4.5.2 will show that ±x̄ are actually ‖ε‖

2

m -minimizers.

Proof.
(i) We prove this claim by combining Theorem4.2.3 and the characterization of the structure of

crit(f) that we provide in Theorem4.7.3. For the moment, let us assume that the event Econv
holds true.

• By construction, Econv ⊂ Einj which means that the operator A is injective showing the coer-
civity of the objective f which implies that the sequence (xk)k∈N generated by Algorithm3
is bounded.

• From the event Esmad, we deduce that the function f is L-smooth relative to ψ with L =
3 + ε̃ + %max(‖x̄‖2 /3 + ‖ε‖∞ , 1). Since the initializer is chosen at random with a fixed
stepsize Theorem4.2.3-(i)(ii) guarantees that (xk)k∈N converges to x? ∈ crit(f)\strisad(f)
and (f(xk))k∈N also converges to f(x?).

• The event Escvx shows that the function f is σ-strongly convex relative to ψ on B(X , ρ)
with σ = λmin(‖x̄‖2 , 1)− ε̃−%max(‖x̄‖2 /3+‖ε‖∞ , 1). Given that Assumption 4.3.1 holds,
Corollary 4.6.6 implies that ρ2− 4‖ε‖2

mσ > 0 where we recall that ρ = (1−λ)‖x̄‖√
3 . Let us denote

r2 = ρ2− 4‖ε‖2
mσ

max(Θ(ρ),1) .
• Moreover, Estrictsad holds true, and thus crit(f)\strisad(f) = Argmin(f), which means that

for almost all initilizers x0,

xk → x? ∈ Argmin(f) and f(xk)−min f → 0. (4.3.7)

We now claim that ∃K > 0, large enough, such that ∀k ≥ K,dist(xK ,X ) ≤ r which will allow
to invoke Theorem4.2.3(iii). By Lemma4.6.3, we have for any k ∈ N

dist(xk,X ) ≤ ‖xk − x?‖+ 8 ‖ε‖√
m ‖x̄‖

with probability at least 1 − e−Ω(m). Since xk → x?, there exists K large enough such that
∀k ≥ K

dist(xk,X ) ≤ 9 ‖ε‖√
m ‖x̄‖

with the same probability. To conclude, it is then sufficient to show that

9 ‖ε‖√
m ‖x̄‖

≤ r.

This is true for sufficiently high SNR, i.e. under our Assumption 4.3.1. Therefore we deduce
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from Theorem4.2.3-(iii) that the sequence (xk)k≥K ∈ B(X , ρ) and for k ≥ K,

dist2(xk,X ) ≤
(

1− (1− κ)σ
L

)k−1
ρ2 + 4 ‖ε‖2

mσ
,

≤ (1− ν)k−Kρ2 + 4‖ε‖
2

mσ
,

≤ (1− ν)k−Kρ2 + ς2,

where we have used (4.6.12) i.e., σ ≥ cs min(‖x̄‖2,1)−ε̃
2 which implies that dist(xk,X ) ≤ ς.

Let us now compute the probability that Econv occurs. The events Esmad, Escvx are contained
in EconH, see respectively Lemma4.6.4 and Lemma4.6.5. From Lemma4.6.2, EconH occurs with
a probability 1 − 5e−ζn − 4/n2 − 2e−

m(
√

1+%−1)2
8 as soon as m ≥ C(%)n log(n). Besides, close

observation of the Hessian concentration (noisy part) highlights that it implies the injectivity
of the measurements thus Einj is also contained in EconH. Thanks to Theorem4.7.3, the event
Estricsad holds with a probability 1−c/m as soon asm ≥ C(%)n log3(n). Finally, we conclude with
a union bound that Econv holds with a probability at least 1−2e−

m(
√

1+%−1)2
8 −5e−ζn−4/n2−c/m

(ζ, c are a fixed numerical constant) for m ≥ C(%)n log3(n), which complete the proof.
(ii) By Lemma3.6.4, the operator A is injective entailing by the coercivity of f that the sequence

(xk)k∈N is bounded. From Corollary 4.6.6, when the signal-to-noise coefficient cs satisfies (4.3.1),
r is well-defined. Lemma4.6.8 shows that when % obeys (3.6.12), the initial point x0 given
by Algorithm4 is in the right f−attentive topology at the distance at most r =

√
ρ2 − 4‖ε‖2

mσ .
Thanks to Lemma4.6.5, ρ is the radius of the ball B(X , ρ) where we have σ-strong convexity
relative to ψ with σ = λmin(‖x̄‖2 , 1) − ε̃ − %max(‖x̄‖2 /3 + ‖ε‖∞ , 1). The last point to check
before applying Theorem4.2.3 comes from Lemma4.6.4 which shows that f is L−smooth relative
to ψ with L = 3 + ε̃+ %max(‖x̄‖2 /3 + ‖ε‖∞ , 1). We deduce from Theorem4.2.3 that

dist2(xk,X ) ≤
(

1− (1− κ)σ
L

)k−1
ρ2 + 4 ‖ε‖2

mσ
,

≤ (1− ν)k−Kρ2 + 4‖ε‖
2

mσ

≤ (1− ν)k−Kρ2 + ς2.

Let us observe that this statement is true only on the intersection of the above events, we call
it E ′conv. Let now compute the probability that E ′conv occurs. We conclude with an appropriate
union bound similar to the previous one, taking into account the fact that the spectral initial-
ization event is contained in EconH. Finally, the statement holds with a probability at least
1− 2e−

m(
√

1+%−1)2
8 − 5e−ζn − 4/n2 (ζ is a fixed numerical constant) for m ≥ C(%)n log(n), which

completes the proof.

4.4 Numerical Experiments

In this section, we discuss some experiments to illustrate and validate numerically the efficiency of our
phase recovery algorithm. In each instance, we measured the relative error between the reconstructed
vector x̃ and the true signal one x̄ as

dist(x̃,X )
‖x̄‖

. (4.4.1)

In the experiments, we set ‖x̄‖ = 1 and x̃ was the output of Algorithm3 at iteration K large enough.
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4.4.1 Experiments with Gaussian sensing vectors

4.4.1.1 Reconstruction of 1D signals

The aim is to reconstruct a randomly generated one-dimensional signal of length n = 128 from m

noisy observations where the sensing vectors were drawn i.i.d from the standard Gaussian ensemble.
The noise vector ε is chosen uniform such that ε̃ = 10−5.

In Figure 4.1, the blue line shows the evolution of the objective (left) and the relative error (right)
using Algorithm3 with m = 128 × log2(128), where the initial point was drawn from the uniform
distribution. The red line is the result of reconstruction from m = 5 × 128 × log(128) measurements
where Algorithm3 was intialized using the spectral method in Algorithm4 (the top eigenvalue was
computed with the power iteration method using 200 iterations). In both cases, we run Algorithm3
with a constant step-size γ = 0.99

3+10−5 (see Theorem4.3.2). As predicted by the latter, the curves in
blue (i.e. with random initialization) have two regimes: a sublinear regime and then a local linear
regime. Moreover, with spectral initialization (red curves), f and the relative error converge linearly
at the same rate as in the local regime of the blue curves, hence confirming our theoretical findings. As
anticipated also, both f and the relative error eventually stabilize at a plateau whose level is governed
by the noise level.
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Figure 4.1: Reconstruction of signal from Gaussian measurements. The noise mean is ε̃.

4.4.1.2 Comparison with the Wirtinger flow

We compared our mirror descent algorithm (with and without spectral initialization) with theWirtinger
flow [53]. However, the Polyak subgradient method proposed in [69], that we included in our com-
parison in Chapter 3, is only applicable to the noiseless case as it needs the value of min f which is
no longer known in presence of noise. We used the spectral method in Algorithm4 for the Wirtinger
flow, and we compared with mirror descent with and without spectral initialization.

For this, we report the results of an experiment designed to estimate the phase retrieval probability
of success of each algorithm as we vary n and m. The results are depicted in Figure 4.2. For each pair
(n,m), we generated 100 instances and solved them with each algorithm. Each diagram shows the
empirical success probability (among the 100 instances) of the corresponding algorithm. An algorithm
is declared as successful if the relative error (4.4.1) is less than 2‖ε‖√

mσ
≈ 10−5. The grayscale of each

point in the diagrams reflects the observed probability of success, from 0% (black) to 100% (white).
The solid curve marks the prediction of the phase transition edge. On the left panel of Figure 4.2, we
also plot a profile of the phase diagram extracted at n = 128.

One observes a phase transition phenomenon that is in agreement with the predicted sample com-
plexity bound shown as a solid line. Moreover, mirror descent performs better than the Wirtinger
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Figure 4.2: Phase diagrams for Gaussian measurements.

flow with both use spectral intialization. Mirror descent with uniform random initialization has a
weaker recovery performance with a transition to success occurring at a higher threshold compared
to the version of mirror descent with spectral initialization. This is in agreement with our theoretical
findings as more measurements are needed in this case to ensure stable recovery.

4.4.2 Experiments with the CDP model

We now turn to the case of structured measurements from the CDP model. This model uses P coded
diffraction patterns/masks followed by a Fourier transform. The observation model is given by

y =

∣∣∣∣∣
n−1∑
`=0

x̄`dp[`]e−i
2πj`
n

∣∣∣∣∣
2

+ εj,p


j,p

, (4.4.2)

where j ∈ {0, . . . , n− 1} and p ∈ {0, . . . , P − 1}, ε is the noise. The total number of measurements is
thus m = nP (i.e. the oversampling factor is P ). (dp)p∈[P ] are i.i.d copies of a random variable d, and
in our experiment, d takes values in {−1, 0, 1} with probability {1/4, 1/2, 1/4}. Here we performed
a similar experience to the Gaussian case described in Section 4.4.1.1, where we chose the number
of masks P = 7 × log3(128) and a constant step-size γ = 0.99

2+ε̃ , with ε̃ = 10−5. Despite the lack of
theoretical guarantees for the CDP model in the noisy case, that we conjecture are true, one can
observe in Figure 4.3 that we have very similar results to those for Gaussian measurements.

4.4.3 Recovery of a 2D image

In this experiment, we work with the image of the beautiful Unicaen’s1 phoenix whose dimension is
396× 396. Our goal is to recover the image from noisy CDP measurements with P = 90 masks. The
noise is chosen such that ε̃ = 10−5. We used the spectral method to find the initial guess and run
mirror descent for 1000 iterations. The results are displayed in Figure 4.4 showing that our algorithm
converges to the desired image with a relative error of order 10−2.

1Unicaen = University of Caen
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Figure 4.3: Reconstruction of signal from Noisy CDP. The noise mean is ε̃

(a) Original Unicaen’s phoenix (b) The CDP measurements averaged over the P = 90 masks

(c) Recovered Unicaen’s phoenix

Figure 4.4: Reconstruction of an image from noisy CDP measurements.
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4.5 Proofs for the Deterministic Case
Throughout the work, we use when it is convenient the following decomposition of the objective
function f in (4.1.1).

∀x ∈ Rn, f(x) = fNL(x) + fNy(x), (4.5.1)

where fNL and fNy denote respectively the noiseless and the noisy part of f and we have

fNL(x) = 1
4m

m∑
r=1

(
|ar>x|2 − |ar>x̄|2

)2
, fNy(x) = − 1

2m

m∑
r=1

ε[r]
(
|ar>x|2 − |ar>x̄|2

)
+ ‖ε‖

2

4m . (4.5.2)

The following computations are straightforward:

∇ψ(x) =
(
‖x‖2 + 1

)
x, ∇2ψ(x) =

(
‖x‖2 + 1

)
Id + 2xx>, (4.5.3)

∇f(x) = 1
m

m∑
r=1

(
|ar>x|2 − |ar>x̄|2

)
arar

>x− 1
m

m∑
r=1

ε[r]arar>x (4.5.4)

and

∇2f(x) = 1
m

m∑
r=1

(
3|ar>x|2 − |ar>x̄|2

)
arar

>− 1
m

m∑
r=1

ε[r]arar>. (4.5.5)

4.5.1 Proof of Lemma4.2.1

Proof. For all x, u ∈ Rn, it easy to check that〈
u,∇2ψ(x)u

〉
≥
(
‖x‖2 + 1

)
‖u‖2 .

On the other hand, we have〈
u,∇2f(x)u

〉
= 1
m

m∑
r=1

(
3|ar>x|2 − |ar>x̄|2 − ε[r]

)
|ar>u|2

≤ 1
m

m∑
r=1

(
3|ar>x|2 − ε[r]

)
|ar>u|2

≤
(

1
m

m∑
r=1

(
3 ‖ar‖2 + ‖ε‖∞

)
‖ar‖2

)(
‖x‖2 + 1

)
‖u‖2 .

Thus for any L ≥ 1
m

m∑
r=1
‖ar‖2

(
3 ‖ar‖2 + ‖ε‖∞

)
, we have for all x ∈ Rn

∇2f(x) � L∇2ψ(x). (4.5.6)

The claim then follows from Lemma2.3.8 with g = f and φ = Lψ, and Proposition 2.3.5(ii).

4.5.2 Proof of Theorem4.2.3

Let us start with the following intermediate results.

Lemma 4.5.1. Let the sequence (xk)k∈N be generated by Algorithm3. Then for all u ∈ Rn,

Dψ(u, xk+1) + γk(f(xk+1)−min f) ≤ Dψ(u, xk)− κDψ(xk+1, xk)− γkDf (u, xk) + γk(f(u)−min f).
(4.5.7)

Proof. From Lemma3.5.1, we have

∀u ∈ Rn, Dψ (u, xk+1) + γk (f(xk+1)− f(u)) ≤ Dψ (u, xk)− κDψ (xk+1, xk)− γkDf (u, xk) .

Subtracting min f from both sides yields the result.
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Lemma 4.5.2. Assume that Argmin(f) 6= ∅. We have

0 ≤ f(±x̄)−min f ≤ ‖ε‖
2

m
.

Proof. Let x? ∈ Argmin(f). We prove the claim for x̄. By optimality, we have f(x?) ≤ f(x̄) = ‖ε‖2
4m ,

which equivalently reads
m∑
r=1

(
|ar>x?|2 − |ar>x̄|2

)2
≤ 2

m∑
r=1

εr
(
|ar>x?|2 − |ar>x̄|2

)
.

Applying Young’s inequality to the right-hand side then entails

(1− δ)
m∑
r=1

(
|ar>x?|2 − |ar>x̄|2

)2
≤ ‖ε‖

2

δ
∀δ ∈]0, 1[. (4.5.8)

Consequently, using (4.5.8) and Young’s inequality again, we get

4mDf (±x̄, x?) = 4m
(
f(x̄)− f(x?)

)
= 2

m∑
r=1

ε[r]
(
|ar>x?|2 − |ar>x̄|2

)
−

m∑
r=1

(
|ar>x?|2 − |ar>x̄|2

)2

≤ 2
m∑
r=1

ε[r]
(
|ar>x?|2 − |ar>x̄|2

)
≤ ‖ε‖

2

1− δ + (1− δ)
m∑
r=1

(
|ar>x?|2 − |ar>x̄|2

)2
≤ ‖ε‖2

δ(1− δ) .

The minimal value of the right hand side is 4 ‖ε‖2 attained for δ = 1/2.

Proof.

(i)-(ii) Similar to the proofs of the corresponding claims in Theorem3.2.7

(iii) We give the proof for x̄ and obviously the same holds at −x̄. We proceed by induction. We
first have that x0 ∈ B(x̄, r) ⊂ B(x̄, ρ) since r ≤ ρ. Suppose now that for k ≥ 0, (xi)0≤i≤k ⊂ B(x̄, ρ).
Applying Lemma4.5.1 at x̄ and using Lemma4.5.2, we have

Dψ(x̄, xk+1) ≤ Dψ(x̄, xk)− κDψ(xk+1, xk)− γDf (x̄, xk) + γ
‖ε‖2

m
(4.5.9)

≤ Dψ(x̄, xk)− γDf (x̄, xk) + γ
‖ε‖2

m

≤ (1− γσ)Dψ(x̄, xk) + γ
‖ε‖2

m
,

where we also used positivity of Dψ and local σ-relative strong convexity of f since xk ∈ B(x̄, ρ).
Iterating the last inequality, we get

Dψ(x̄, xk+1) ≤ (1− γσ)k+1Dψ(x̄, x0) + γ
‖ε‖2

m

k∑
i=0

(1− γσ)i

≤ (1− γσ)k+1Dψ(x̄, x0) + ‖ε‖
2

mσ

(
1− (1− γσ)k+1

)
(4.5.10)

≤ Dψ(x̄, x0) + ‖ε‖
2

mσ
.

It then follows from Proposition 2.3.5(iv) that

‖xk+1 − x̄‖2 ≤ ‖x0 − x̄‖2 Θ(ρ) + 2 ‖ε‖2

mσ
≤ r2Θ(ρ) + 2 ‖ε‖2

mσ
≤ ρ2.

This shows (4.2.3).
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4.6 Proofs for Gaussian Measurements

4.6.1 Expectation and deviation of the Hessian

Lemma 4.6.1. (Expectation of the Hessian) If the sensing vectors (ar)r∈[m] are sampled following
the Gaussian model then we have for any x ∈ Rn,

E
(
∇2f(x)

)
= 3

(
2xx>+ ‖x‖2 Id

)
− 2x̄x̄>− ‖x̄‖2 Id− ε̃Id. (4.6.1)

Proof. The proof combines (4.5.5), Lemma3.6.1 for the expectation of the first (i.e. noiseless part),
and the last term comes the fact that the sensing vectors have zero mean and unit covariance.

Lemma 4.6.2. (Concentration of the Hessian) Fix % ∈]0, 1[, if the number of samples obeys
m ≥ C(%)n logn, for some sufficiently large constant C(%) > 0 then∥∥∥∇2f(x)− E

(
∇2f(x)

)∥∥∥ ≤ %(‖x‖2 + ‖x̄‖
2

3 + ‖ε‖∞

)
(4.6.2)

holds simultaneously for all x ∈ Rn with a probability at least 1 − 5e−ζn − 4
n2 − 2e−

m(
√

1+%−1)2
8 , where

ζ is a fixed numerical constant.

Proof. By the triangle inequality, we have∥∥∥∇2f(x)− E
(
∇2f(x)

)∥∥∥ ≤ ∥∥∥∥∥ 1
m

m∑
r=1

(
3|ar>x|2arar>− |ar>x̄|2arar>

)
−
(
6xx>+ 3 ‖x‖2 Id− 2x̄x̄>− ‖x̄‖2 Id

)∥∥∥∥∥
+
∥∥∥∥∥ 1
m

m∑
r=1

ε[r]arar>− ε̃Id
∥∥∥∥∥ .

The concentration of the first term has been proved for the noiseless case (see [83, Lemma B.3]) with
a probability 1− 5e−ζn − 4

n2 . For the noisy part, we have∥∥∥∥∥ 1
m

m∑
r=1

ε[r]arar>− ε̃Id
∥∥∥∥∥ ≤ ‖ε‖∞m

∥∥∥∥∥
m∑
r=1

(
arar

>− Id
)∥∥∥∥∥ = ‖ε‖∞

m

∥∥∥A>A− Id
∥∥∥ , (4.6.3)

where A is the m×nmatrix whose r−th row is the vector ar>. From Lemma3.6.4, we get that for any
% ∈]0, 1[, ∥∥∥∥∥ 1

m

m∑
r=1

ε[r]arar>− ε̃Id
∥∥∥∥∥ ≤ % ‖ε‖∞

with a probability at least 1 − 2e−mt2/2, with %
4 = t2 + t with m ≥ 16

%2n. We conclude by applying a
simple union bound.

4.6.2 Optimal solution near the true vector

Lemma 4.6.3. Assume that Assumption 4.3.1 holds and that m ≥ cn where c is a positive numerical
constant. Then for any x? ∈ Argmin(f),

dist(x?,X ) ≤ 8 ‖ε‖√
m ‖x̄‖

(4.6.4)

holds with probability 1− e−Ω(m).

Proof. Let us use the following notation: X? = x?x?>, X = x̄x̄>, ε
def= ‖ε‖√

m
and ε0

def= 4ε.

By optimality of x?, we have f(x?) ≤ f(x̄) = ‖ε‖2
m , which also implies that

m∑
r=1

(
|a∗rx?|2 − |a∗r x̄|2

)2 ≤ 2
m∑
r=1

εr
(
|a∗rx?|2 − |a∗r x̄|2

)
.
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Applying Young’s inequality to the right-hand side then entails
m∑
r=1

(
|a∗rx?|2 − |a∗r x̄|2

)2 ≤ 4 ‖ε‖2 . (4.6.5)

Fix ζ ∈]0, 1[. Using [63, Lemma1], there are positive numerical constants C and C ′ such that if
m & nζ−2 log(1/ζ), then with probability at least 1− C ′e−Cζ2m, we have

1
m

m∑
r=1

(
|a∗rx?|2 − |a∗r x̄|2

)2 ≥ 0.81(1− ζ)2
∥∥∥X? −X

∥∥∥2

F
.

Thus, in view of (4.6.5), we the same probability, we have∥∥∥X? −X
∥∥∥

F
≤ 20

9(1− ζ)ε. (4.6.6)

Therefore taking ζ = 0.4 in (4.6.6) one has∥∥∥X? −X
∥∥∥

F
≤ ε0. (4.6.7)

The rest of the proof is inspired by that of [55, Theorem1.2]. Since ‖x?‖2 and ‖x̄‖2 are the largest
eigenvalues of the rank-one symmetric matricesX? andX, we have fromWeyl’s perturbation inequality
of the eigenvalues that ∣∣∣‖x?‖2 − ‖x̄‖2∣∣∣ ≤ ∥∥∥X? −X

∥∥∥
F
≤ ε0.

Let us assume that ‖x̄‖2 = 1 and the general case is obtained via a simple rescaling argument. Under
Assumption 4.3.1, ε is small enough so that ε0 < 1. We then get that ‖x?‖2 ∈ [1 − ε0, 1 + ε0]. The
sin-θ-Theorem [67] implies that

|sin θ| ≤

∥∥∥X? −X
∥∥∥

F
‖x?‖2

≤ ε0
1− ε0

,

where 0 ≤ θ ≤ π
2 is the angle between x? and x̄ which are the eigenvectors of X? and X associated to

the eigenvalues ‖x?‖2 and 1, respectively. We can then write

x? = ‖x?‖ (cos θx̄+ sin θx̄⊥),

where x̄⊥ is a unit vector orthogonal to x̄. We apply the Ihâmessou-Pythagoras theorem to get

‖x? − x̄‖2 = (1− ‖x?‖ cos θ)2 + ‖x?‖2 sin2 θ.

Since cos θ =
√

1− sin2 θ, we have for

1 + ε0 ≥
√

1 + ε0 ≥ ‖x?‖ cos θ ≥
√

1− ε0 −
ε20

1− ε0
≥ 1− ε0.

where we used that ε0 < 1/3 in the last inequality. We then get that

(1− ‖x?‖ cos θ)2 ≤ ε20.

In turn
‖x? − x̄‖2 ≤ ε20 + ε20(1 + ε0)

(1− ε0)2 ≤ 4ε20

for ε0 < 1/3. We also know that
‖x? − x̄‖ ≤ 2 + ε0 ≤ 7/3

for ε0 < 1/3. We therefore get that

dist(x?,X ) ≤ 8 min(ε, 1) ≤ 8ε,

where the last inequality is a consequence of Assumption 4.3.1.
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4.6.3 Relative smoothness

Lemma 4.6.4. Fix % ∈]0, 1[, if the event EconH holds true then,

∀x, z ∈ Rn, Df (x, z) ≤
(
3 + ε̃+ %max

(
‖x̄‖2 /3 + ‖ε‖∞ , 1

))
Dψ(x, z). (4.6.8)

Proof. Let fix % ∈]0, 1[, for any u ∈ Rn, we have

∇2f(u) � E
(
∇2f(u)

)
+ %(‖u‖2 + ‖x̄‖2 /3 + ‖ε‖∞)Id,

� 3
(
2uu>+ ‖u‖2 Id

)
− 2x̄x̄>− ‖x̄‖2 Id− ε̃Id + %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)

(
‖u‖2 + 1

)
Id,

� 3
(
2uu>+ (‖u‖2 + 1)Id

)
+ ε̃Id + %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)∇2ψ(x),

� 3∇2ψ(u) + ε̃∇2ψ(u) + %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)∇2ψ(x),

�
(
3 + ε̃+ %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)

)
∇2ψ(u), (4.6.9)

We conclude by applying Lemma2.3.8 in the segment [x, z].

4.6.4 Local relative strong convexity

Lemma 4.6.5. Fix λ ∈
]

1
9
√

2 , 1
[
and for % ∈

]
0, λmin(‖x̄‖2,1)−ε̃

2 max(‖x̄‖2/3+‖ε‖∞,1)

[
. If the event EconH holds true,

then for any x, z ∈ B(x̄, ρ) or x, z ∈ B(−x̄, ρ), we have

Df (x, z) ≥
(
λmin(‖x̄‖2 , 1)− ε̃− %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)

)
Dψ(x, z), (4.6.10)

where ρ = 1−λ√
3 ‖x̄‖.

Proof. For any u ∈ Rn, we have

∇2f(u) � E
(
∇2f(u)

)
− %

(
‖u‖2 + ‖x̄‖2 /3 + ‖ε‖∞

)
Id,

� 6uu>+ 3 ‖u‖2 − 2x̄x̄>− ‖x̄‖2 Id− ε̃Id− %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)(‖u‖2 + 1).

We then obtain, for any v ∈ Sn−1

v>
(
∇2f(u) + %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)∇2ψ(u)

)
v ≥ 3

(
2
(
v>u

)2
+ ‖u‖2

)
−
(

2
(
v>x̄

)2
+ ‖x̄‖2

)
− ε̃Id.

Let ρ > 0 be small enough, to be made precise later. Thus for any u = ±x̄+ ρv we get

v>∇2f(u)v+%max(‖x̄‖2 /3 + ‖ε‖∞ , 1)v>∇2ψ(u)v

≥ 6
(
v>x̄

)2
+ 6ρ2 ± 12ρv>x̄+ 3 ‖x̄‖2 ± 6ρv>x̄+ 3ρ2 − 2

(
v>x̄

)2
− ‖x̄‖2 − ε̃

= 4
(
v>x̄

)2
+ 9ρ2 ± 18ρv>x̄+ 2 ‖x̄‖2 − ε̃. (4.6.11)

For the entropy ψ, we also have

v>∇2ψ(u)v = ‖u‖2 + 1 + 2
(
v>u

)2
= 2

(
v>x̄

)2
+ 3ρ2 +±6ρv>x̄+ ‖x̄‖2 + 1.

At this step, the proof becomes very similar to the noiseless phase retrieval (see [83, Lemma B.6]).
Indeed, let us observe that we showed that for any vector u = ±x̄+ ρv with ρ = 1−λ√

3 ‖x̄‖ we have,

4
(
v>x̄

)2
+ 9ρ2 ± 18ρv>x̄+ 2 ‖x̄‖2 ≥ λmin(‖x̄‖2 , 1)

(
2
(
v>x̄

)2
+ 3ρ2 +±6ρv>x̄+ ‖x̄‖2 + 1

)
By replacing this result in (4.6.11), we get

v>∇2f(u)v + %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)v>∇2ψ(u)v

≥ λmin(‖x̄‖2 , 1)
(

2
(
v>x̄

)2
+ 3ρ2 +±6ρv>x̄+ ‖x̄‖2 + 1

)
− ε̃

≥
(
λmin(‖x̄‖2 , 1)− ε̃

)
v>∇2ψ(u)v
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Finally, we have that

v>
(
∇2f(x)−

(
λmin(‖x̄‖2 , 1)− ε̃− %max(‖x̄‖2 /3 + ‖ε‖∞ , 1)

)
∇2ψ(x)

)
v ≥ 0

for all v ∈ Sn−1 and ρ ≤ 1−λ√
3 ‖x̄‖. To conclude the proof, let us observe that with the prescribed

bound on %, we have

σ = λmin(‖x̄‖2 , 1)− ε̃− %max(‖x̄‖2 /3 + ‖ε‖∞ , 1) > λmin(‖x̄‖2 , 1)− ε̃
2 > 0, (4.6.12)

where we used Assumption 4.3.1 on the noise. Therefore, (4.6.10) follows simply by invoking Lemma2.3.8.

We have the following corollary which gives a condition on the coefficient of the signal-to-noise ratio
cs ensuring that the neighborhood of strong convexity ρ is greater than the noise.

Corollary 4.6.6. For any fixed λ ∈
]

1
9
√

2 , 1
[
and % ∈

]
0, λmin(‖x̄‖2,1)−ε̃

2 max(‖x̄‖2/3+‖ε‖∞,1)

[
, if Assumption 4.3.1 is

satisfied then r2 = ρ2 − 4‖ε‖2
mσ > 0, where ρ = 1−λ√

3 ‖x̄‖.

Proof. To have the desired result, it suffices that ρ2 − 4‖ε‖2
mσ > 0 i.e. ρ > 2‖ε‖∞√

σ
. From (4.6.12) we

have,
√
σ >

√
λmin(‖x̄‖2 , 1)− ε̃

√
2

thus,
2 ‖ε‖∞√

σ
≤ 2

√
2 ‖ε‖∞√

λmin(‖x̄‖2 , 1)− ε̃
≤ 2
√

2cs min(‖x̄‖2 , 1)√
λmin(‖x̄‖2 , 1)− ε̃

.

Therefore it suffices to show that
ρ >

2
√

2cs min(‖x̄‖2 , 1)√
λmin(‖x̄‖2 , 1)− ε̃

.

Replacing now ρ by its expression, we get that cs should satisfy

(1− λ) ‖x̄‖
√
λmin(‖x̄‖2 , 1)− ε̃ > 2

√
6cs min(‖x̄‖2 , 1)

which holds thanks to Assumption 4.3.1.

Remark 4.6.7. This result estimates the maximum signal-to-noise ratio for which we ensure that the
neighborhood of strong convexity around the true vectors is well-defined. Let us notice that a more
practical upper bound is

cs <
(1− λ)

√
λ

2
√

6
≤ 1

9
√

2
. (4.6.13)

Indeed, it is a simple maximization of the function λ 7→ (1−λ)
√
λ

2
√

6 over
]

1
9
√

2 , 1
[
.

4.6.5 Spectral initialization

We now show that the initial guess x0 generated by spectral initialization (Algorithm4) belongs to a
small f -attentive neighborhood of X .

Lemma 4.6.8. Fix % ∈]0, 1[ and assume that for r ∈ [m], we have ε[r] ≤ |ar>x̄|2. If the number of
samples obeys m ≥ C(%)n logn for some sufficiently large constant C(%) > 0 and (4.6.2) holds true
then x0 satisfies:
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(i) dist(x0,X ) ≤ η1(%) ‖x̄‖, where

η1 : ]0, 1[→ ]0, 1[

% 7→
(√

2− 2
√

1− %(1 + cs) + %(1 + cs)
2

)
, (4.6.14)

which is an increasing function.
(ii) Moreover, we have

f(x0) ≤ f(x̄) +
(

(1 + %)cs ‖x̄‖+ L
Θ(η1(%) ‖x̄‖)

2 η1(%)
)
η1(%) ‖x̄‖2 , (4.6.15)

with L = 3 + ε̃+ %max(‖x̄‖2 /3 + ‖ε‖∞ , 1).
(iii) Besides, for λ ∈]0, 1[, if

% ≤ η−1
1

 1− λ√
3
(
6
(
1 + (1−λ)2

3 − 4‖ε‖2

mσ‖x̄‖2
)

+ 1
) 1

max (‖x̄‖ , 1)

 , (4.6.16)

then we have x0 ∈ B
(
X , r

max
(√

Θ(r),1
)) where r2 = (1−λ)2

3 ‖x̄‖2 − 4‖ε‖2
mσ .

Proof. (i) Denote the matrix

Y = 1
m

m∑
r=1

y[r]arar>= 1
m

m∑
r=1

(|ar>x̄|2 + ε[r])arar>.

We have w.h.p
‖Y − E (Y )‖ ≤ %(‖x̄‖2 + ‖ε‖∞) ≤ %(1 + cs) ‖x̄‖2 .

Let x̃ be the eigenvector associated with the largest eigenvalue λ̃ of Y such that ‖x̃‖ = ‖x̄‖
(obviously λ̃ is nonnegative since Y is semidefinite positive). Then,

%(1 + cs) ‖x̄‖4 ≥
∣∣∣x̃>(Y − 2x̄x̄>− ‖x̄‖2 Id− ε̃Id

)
x̃
∣∣∣

=
∣∣∣λ̃ ‖x̄‖2 − 2(x̃>x̄)2 − ‖x̄‖4 − ε̃ ‖x̄‖2

∣∣∣
Hence

2(x̃>x̄)2 ≥ λ̃ ‖x̄‖2 − ‖x̄‖4 − ε̃ ‖x̄‖2 − %(1 + cs) ‖x̄‖4 .

Moreover, since λ̃ is the largest eigenvalue of Y , applying the concentration inequality at x̄ w.h.p

λ̃ ‖x̄‖2 ≥ x̄>Y x̄ ≥ x̄>
(
2x̄x̄>+ ‖x̄‖2 Id− ε̃Id

)
x̄− %(1 + cs) ‖x̄‖4

= 3 ‖x̄‖4 + ε̃ ‖x̄‖2 − %(1 + cs) ‖x̄‖4 .

Merging the last two inequalities, we get

2(x̃>x̄)2 ≥ 3 ‖x̄‖4 + ε̃ ‖x̄‖2 − %(1 + cs) ‖x̄‖4 − ‖x̄‖4 − ε̃ ‖x̄‖2 − %(1 + cs) ‖x̄‖4

= 2 ‖x̄‖4 − 2%(1 + cs) ‖x̄‖4 .

Which implies that

dist(x̃,X ) ≤
√

2− 2
√

1− %(1 + cs) ‖x̄‖ .

By definition of x0 in Algorithm4, x0 =
√

1
m

∑
r y[r] x̃

‖x̄‖ =
√

1
m

∑
r

(|ar>x̄|2 + ε[r]) x̃
‖x̄‖ , and thus

w.h.p

‖x0 − x̃‖ =
∣∣∣∣∣
√
m−1∑

r y[r]
‖x̄‖2

− 1
∣∣∣∣∣ ‖x̄‖ =

∣∣∣∣∣
√
m−1∑

r(|ar>x̄|2 + ε[r])
‖x̄‖2

− 1
∣∣∣∣∣ ‖x̄‖ ≤ %(1 + cs) ‖x̄‖

2 ,
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it comes out that,

dist(x0,X ) ≤ dist(x̃,X ) + ‖x0 − x̃‖ ≤
(√

2− 2
√

1− %(1 + cs) + %(1 + cs)
2

)
‖x̄‖ .

(ii) Under our sampling complexity bound, event EconH defined by (4.3.3) holds true w.h.p . It then
follows from Lemma4.6.4 applied at x̄ and x0, that

Df (x0, x̄) ≤ LDψ(x0, x̄).

The latter implies that

f(x0) ≤ f(x̄) + 〈∇f(x̄);x0 − x̄〉+ LDψ(x0, x̄),

f(x0) ≤ f(x̄) + ‖∇f(x̄)‖ ‖x0 − x̄‖+ L
Θ(η1(%) ‖x̄‖)

2 ‖x0 − x̄‖2 ,

Since ∇f(x̄) = 1
m

m∑
r=1

ε[r]arar>x̄, we obtain from (4.6.3) that

‖∇f(x̄)‖ ≤ ‖ε‖∞

∥∥∥∥∥ 1
m

m∑
r=1

arar
>
∥∥∥∥∥ ‖x̄‖ ≤ (1 + %) ‖ε‖∞ ‖x̄‖ .

Combining the two last inequality yields to

f(x0) ≤ f(x̄) +
(

(1 + %)cs ‖x̄‖+ L
Θ(η1(%) ‖x̄‖)

2 η1(%)
)
η1(%) ‖x̄‖2 .

(iii) In view of (i), it is sufficient to show that η1(%) ‖x̄‖ ≤ r

max
(√

Θ(r),1
) . Since from Proposi-

tion 2.3.5(iv) (see also Remark 3.2.8) we have

Θ(r) ≤ 6(‖x̄‖2 + r2) + 1 ≤
(

6
(

1 + (1− λ)2

3 − 4 ‖ε‖2

mσ ‖x̄‖2

)
+ 1

)
max

(
‖x̄‖2 , 1

)
,

and η1 is an increasing function, we conclude.

4.7 Landscape of the Noise-Aware Objective with Gaussian Mea-
surements

4.7.1 Warm up: Critical points of E (f)

We start by studying and characterizing the set of critical points of E (f). This can be seen as the
asymptotic behavior of the critical points of f when the number of measurements m grows to +∞.

Proposition 4.7.1. We have

crit(E (f)) = {0} ∪ X ε ∪
{
x ∈ Rn : x̄>x = 0, ‖x‖2 = 1

3
(
‖x̄‖2 + ε̃

)}
,

where X ε
def=
{
±x̄
√

1 + ε̃
3‖x̄‖2

}
. Those sets are respectively, the local maximizer, the set of global

minimizes, and strict saddle points of E (f).

Before proving this result, we the closed form expressions of the expectation of f and its derivatives.

Lemma 4.7.2. For all x ∈ Rn, we have:

E (f(x)) = 3
4
(
‖x‖4 + ‖x̄‖4

)
− 1

2 ‖x̄‖
2 ‖x‖2 − (|x̄>x|2 + ‖ε‖

2

4m − ε̃(‖x‖2 − ‖x̄‖2)
2 ,

∇E (f(x)) = 3 ‖x‖2 x− 2x̄(x̄>x)− ‖x̄‖2 x− ε̃x,

∇2E (f(x)) = 3
(
2xx>+ ‖x‖2 Id

)
− 2x̄x̄>− ‖x̄‖2 Id− ε̃Id.
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Proof. By linearity of the expectation, we have E (f(x)) = E (fNL(x)) + E (fNy(x)). Linearity again
yields

E (fNy(x)) = − 1
2m

m∑
r=1

ε[r]
(
x>E

(
arar

>
)
x− x̄>E

(
arar

>
)
x̄
)

+ ‖ε‖
2

4m ,

= − 1
2m

m∑
r=1

ε[r]
(
‖x‖2 − ‖x̄‖2

)
+ ‖ε‖

2

4m . (4.7.1)

We also have

E (fNL(x)) = 1
4m

m∑
r=1

E
(
|ar>x|4

)
+ 1

4m

m∑
r=1

E
(
|ar>x̄|4

)
− 1

2m

m∑
r=1
|ar>x|2|ar>x̄|2.

From [83, Lemma B.1], we know that

∀x ∈ Rn, E
(

m∑
r=1
|ar>x|2arar>

)
= 2xx>+ ‖x‖2 Id.

Therefore we have

E
(

1
4m

m∑
r=1
|ar>x|4

)
= x>

(
E
(

1
4m

m∑
r=1
|ar>x|2arar>

))
x = 1

4x
>
(
2xx>+ ‖x‖2

)
x = 3

4 ‖x‖
4 ,

and
E
(

1
2m

m∑
r=1
|ar>x|2|ar>x̄|2

)
= x>

(
x̄x̄>+ 1

2 ‖x̄‖
2
)
x = |x̄>x|2 + 1

2 ‖x̄‖
2 ‖x‖2 .

Whence we have

E (fNL(x)) = 3
4
(
‖x‖4 + ‖x̄‖4

)
− 1

2 ‖x̄‖
2 ‖x‖2 − |x̄>x|2. (4.7.2)

The claim follows simply by summing (4.7.1) and (4.7.2).
We deduce the gradient and the Hessian by straightforward derivation of E (f).

Proof. (Proposition 4.7.1)
• The origin : Let us observe that ∇E (f(0)) = 0, it follows that the value of the Hessian at zero

satisfies

∇2E (f(0)) = −‖x̄‖2 Id− 2x̄x̄>− ε̃Id � −(‖x̄‖2 + ε̃)Id− 2x̄x̄>≺ 0,

where we have used that ε̃ is non-negative (see Assumption 4.3.1). It follows that 0 is a local
maximizer of E (f).

• Subspaces with no critical points:
1. For any point in

{
x ∈ Rn : 0 < ‖x‖2 < ‖x̄‖2+ε̃

3

}
, we have

〈x,∇E (f(x))〉 =
(
3 ‖x‖2 − ‖x̄‖2 − ε̃

)
‖x‖2 − 2|x̄>x|2 ≤

(
3 ‖x‖2 − ‖x̄‖2 − ε̃

)
‖x‖2 < 0.

We deduce that, 〈x,∇E (f(x))〉 < 0 which implies that ‖∇E (f(x))‖ is bounded away from
zero on this region, and thus that there are no critical points there.

2. Consider a point in
{
x ∈ Rn : ‖x̄‖

2+ε̃
3 < ‖x‖2 < ‖x̄‖2 + ε̃

3

}
and recall that it is a critical

point if and only if (
3 ‖x‖2 − ‖x̄‖2 − ε̃

)
x = 2(x̄x̄>)x. (4.7.3)

Combining Assumption 4.3.1 and the fact that ‖x‖2 > ‖x̄‖2+ε̃
3 , we get that

(
3 ‖x‖2 − ‖x̄‖2 − ε̃

)
/2

is the positive eigenvalue of the rank-one matrix matrix x̄x̄>. This is equivalent to 3 ‖x‖2−
‖x̄‖2 − ε̃ = 2 ‖x̄‖2, i.e., ‖x‖2 = ‖x̄‖2 + ε̃

3 which contradicts the definition of this region,
showing again that there are no critical points there.
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3. For a point in the region
{
x ∈ Rn : ‖x‖2 > ‖x̄‖2 + ε̃

3

}
, we have the lower bound

〈x,∇E (f(x))〉 =
(
3 ‖x‖2 − ‖x̄‖2 − ε̃

)
‖x‖2 − 2|x̄>x|2,

≥
(
3 ‖x‖2 − 3 ‖x̄‖2 − ε̃

)
‖x‖2 > 0.

Hence, ‖∇E (f(x))‖ is bounded away from zero on this region yielding the same conclusion.

• Strict saddle points: A point in the sphere
{
x ∈ Rn : ‖x‖2 = ‖x̄‖2+ε̃

3

}
is a critical point if it

is orthogonal to the true vector x̄. Indeed we have,

∇E (f(x)) = 0 ⇐⇒
(
3 ‖x‖2 − ‖x̄‖2 − ε̃

)
x = 2x̄x̄>x ⇐⇒ x̄>x = 0.

Besides, for any v ∈ Rn we have〈
v,∇2E (f(x)) v

〉
= 6|v>x|2 + 3 ‖x‖2 ‖v‖2 − 2|v>x̄|2 − ‖x̄‖2 ‖v‖2 − ε̃ ‖v‖2

= 6|v>x|2 − 2|v>x̄|2 + ‖v‖2
(
3 ‖x‖2 − ‖x̄‖2 − ε̃

)
= 6|v>x|2 − 2|v>x̄|2.

In the direction v = x, we deduce that〈
x,∇2E (f(x))x

〉
= 6 ‖x‖4 > 0,

and in the direction v = x̄ we have〈
x̄,∇2E (f(x)) x̄

〉
= −2 ‖x̄‖4 < 0,

where we have used orthogonality of x and x̄. These facts show that the critical points in this
region, i.e. points orthogonal to x̄, are strict saddle points of E (f).

• Global minimizers: In view of the above, local/global minimizers can only occur on the sphere{
x ∈ Rn : ‖x‖2 = ‖x̄‖2 + ε̃

3

}
. Any point in his set is a critical point of E (f) if and only if

∇E (f(x)) = 0 ⇐⇒
(
3 ‖x‖2 − ‖x̄‖2 − ε̃

)
x = 2x̄x̄>x ⇐⇒

(
‖x̄‖2 Id− x̄x̄>

)
x = 0.

Therefore, x is a critical point on this region if and only if x is an eigenvector of x̄x̄>, that is
x ∈ span(x̄), or equivalently, ∃β ∈ R such that x = βx̄ with

‖x‖2 = β2 ‖x̄‖2 = ‖x̄‖2 + ε̃

3 ⇐⇒ β = ±
√

1 + ε̃

3 ‖x̄‖2
.

The set of critical points in this region is reduced to X ε
def=
{
±x̄
√

1 + ε̃
3‖x̄‖2

}
. For x ∈ X ε we

have

∇2E (f(x)) = 6xx>− 2x̄x̄>+
(
3 ‖x‖2 − ‖x̄‖2 − ε̃

)
Id

= (6β2 − 2)x̄x̄>+ 2 ‖x̄‖2 Id � 2 ‖x̄‖2 Id.

Indeed, we have
6β2 − 2 = 4 + 2ε̃

‖x̄‖2
≥ 4 > 0,

where we use again the non-negativity of ε̃ in Assumption 4.3.1. We conclude that X ε is the set
of global minimizers of E (f).

4.7.2 Main result: Critical points of f

In this section, we study the landscape of the objective function f for the Gaussian measurement
model. Our main result hereafter characterizes the set of critical points of f for m large enough.
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Theorem 4.7.3. (Critical points of f) Fix λ ∈
]

1
9
√

2 , 1
[
. Let us assume that the noise vector

satisfies Assumption 4.3.1. If m & n log(n)3, then

crit(f) = Argmin(f) ∪ strisad(f) (4.7.4)

where Argmin(f) = {±x?}. This holds with probability of at least 1− c
m where c is a positive numerical

constant.

Remark 4.7.4.
• In [168, Theorem2.2], the authors study the geometry of f in the noiseless case here coined

as fNL. We aim with our result to extend it to the noisy case with small enough noise (see
Assumption 4.3.1).

• This result shows that when the number of measurements m is sufficiently large and the noise ε
is very small compared to the true vector which is entailed by a large SNR, then the set of critical
points of the objective function f is reduced to the set of global minimizers Argmin(f) and the
set of strict saddle points strisad(f). The strict saddle avoidance of mirror descent will then
imply that the sequence provided by mirror descent will always converge to global minimizers
of the function f .

We recall the radius ρ = 1−λ√
3 ‖x̄‖ defined in Lemma4.6.5. To prove Theorem4.7.3, we consider the

following regions of Rn which are helpful to characterize the landscape of f :

R1 =
{
x ∈ Rn :

〈
x̄,E

(
∇2f(x)

)
x̄
〉
≤ − 1

100 ‖x‖
2 ‖x̄‖2 − 1

50 ‖x̄‖
4
}
, (4.7.5)

R3 =
{
x ∈ Rn : dist(x,X ) ≤ ρ

}
, (4.7.6)

R2 = (R1 ∪R3)c. (4.7.7)

We also define specific regions Rx2 and Rh2 ,

Rx2 =
{
x ∈ Rn : 〈x,E (∇f(x))〉 ≥ 1

500 ‖x‖
2 ‖x̄‖2 + 1

100 ‖x‖
4
}
,

Rh2 =
{
x ∈ Rn : 〈dx,E (∇f(x))〉 ≥ 1

250 ‖x‖ ‖dx‖ ‖x̄‖
2 ,

11
20 ‖x̄‖ ≤ ‖x‖ ≤ ‖x̄‖ , dist(x,X ) ≥ ‖x̄‖3

}
.

where dx = ±x̄−x
‖±x̄−x‖ if x 6= ±x̄ and any vector on the unit sphere otherwise.

Let us observe that these regions are similar to those defined in [168] replacing f by fNL. Indeed,
the idea behind our assumptions is the fact that small noise will introduce small perturbations in the
function f , and therefore under our assumption of small noise, the latter has benign influence on the
landscape of f (see Figure 4.5). Mainly, in the region R1 the function f still has negative curvature.
In the region R2, f has a large gradient and in R3 relative strong convexity with respect to our chosen
entropy ψ. It is important to observe that in the noisy case, it is not true that the true vectors X
are critical points of f or even E (f). However, we have already shown in Lemma4.5.2 that ±x̄ are
actually ‖ε‖

2

m -minimizers. Moreover, we have already given in Proposition 4.7.1 a description of the
set of critical points of E (f), providing a hint that in the large oversampling regime, the geometry of
f is close to that of fNL. This result shows that the set of critical points of E (f) is also reduced to
the set of strict saddle points with symmetric global minimizers of E (f). This set of minimizers, that
we denoted X ε (see Proposition 4.7.1), are direct perturbations of the true vectors X by the noise; see
also Lemma4.6.3 which quantifies the distance of global minimizers of f to X in probability.

Proof. In the following, all assertions are to be understood in high probability sense. The proof
consists in invoking properly the statements of Proposition 4.7.5. In the region R1, Proposition 4.7.5-
(i) shows that

∀x ∈ R1,
〈
x̄,∇2f(x)x̄

〉
≤ − 1

100(1− cs) ‖x̄‖4 , (4.7.8)
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Figure 4.5: Landscape of the function f as m → ∞; we have (m,n) = (200, 2) and the true vectors
are [±3/4, 0]. The noise vector is generated at uniform in [-1,1] such that ε̃ ≈ 5.10−3. One clearly sees
that the geometry of the landscape of f is preserved and that the only minimizers of f are very close
to the true vectors.

i.e. f has a negative curvature in the direction of the true vectors X which means that any critical
point in R1 is a strict saddle point for f . From Proposition 4.7.5-(iii) and (iv), we deduce that

∀x ∈ Rx2 ∪Rh2 , ‖∇f(x)‖ ≥ 1
1000(1− cs) ‖x‖ ‖x̄‖2 . (4.7.9)

Moreover, Proposition 4.7.5-(v) entails that R2 ⊂ Rx2 ∪Rh2 which means that (4.7.9) holds true for all
x ∈ R2. Thus the gradient of function f is bounded away from zero on R2 which means that there are
no critical points in this region. Therefore, local/global minimizers of f are necessarily located in the
region R3. It remains to show that the only critical points in the domain R3 are just the elements of
Argmin(f)2 which contains only two points ±x?. This will be a consequence of σ-strong convexity of
f on R3. In the following, since R3 = B(x̄, ρ)∪B(−x̄, ρ), we prove the claim only on B(x̄, ρ) and the
same holds for the symmetric case with −x̄. Let x ∈ B(x̄, ρ)\{x?}. In view of Proposition 4.7.5-(ii),
we have

Df (x, x?) = f(x)−min f ≥ σDψ(x, x?) ≥ σ

2 ‖x− x
?‖2 .

The right hand side is positive since x 6= x?, which means that f has a unique minimizer on B(x̄, ρ).
Moreover,

Df (x?, x) = min f − f(x)− 〈∇f(x), x? − x〉 ≥ σDψ(x?, x) ≥ σ

2 ‖x− x
?‖2 ,

and thus
〈∇f(x), x− x?〉 ≥ Df (x?, x) ≥ σ

2 ‖x− x
?‖2 .

Cauchy-Schwarz then entails
‖∇f(x)‖ ≥ σ

2 ‖x− x
?‖ > 0

meaning that f has no other critical point than x? on B(x̄, ρ). This completes the proof.
2Remember that Argmin(f) is a nonempty compact set by injectivity of A under the assumed measurement bound.
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The proof of the above result heavily relies on the behaviour of f on each region. This is the subject
of the next proposition.

Proposition 4.7.5. If the number of samples obeys m & n log3(n) then with probability 1− c
m where

c is a positive numerical constant, we have the following statements.
(i) In the region R1, the objective f has a negative curvature i.e.,

∀x ∈ R1,
〈
x̄,∇2f(x)x̄

〉
≤ − 1

100(1− cs) ‖x̄‖4 . (4.7.10)

(ii) In R3, f is σ-strongly convex where σ > 0 is given in Proposition 4.6.5.
(iii) The gradient is bounded from away from zero in Rx2 . More precisely,

∀x ∈ Rx2 , 〈x,∇f(x)〉 ≥ 1
1000(1− cs) ‖x‖2 ‖x̄‖2 . (4.7.11)

(iv) We have

∀x ∈ Rh2 , 〈dx,∇f(x)〉 ≥ 1
1000(1− cs) ‖x̄‖2 ‖x‖ ‖dx‖ . (4.7.12)

(v) We have R2 ⊂ Rx2 ∪Rh2 .

Remark 4.7.6. The previous result extends the series of propositions ([168, Proposition 2.3-2.7])
to the noisy case. All the statements depend on the (inverse) signal-to-noise coefficient cs which
obviously less than 1 under our assumption. In the noiseless case, let us observe that we recover all
the Propositions mentioned above.

Proof.
(i) For any x ∈ R1, we have〈

x̄,∇2f(x)x̄
〉

= 1
m

m∑
r=1

3
∣∣∣ar>x∣∣∣2 ∣∣∣ar>x̄∣∣∣2 − 1

m

m∑
r=1

∣∣∣ar>x̄∣∣∣4 − 1
m

m∑
r=1

ε[r]
∣∣∣ar>x̄∣∣∣2.

By using similar concentration inequalities as in Lemma4.6.2 we have the following

1
m

m∑
r=1

3
∣∣∣ar>x∣∣∣2 ∣∣∣ar>x̄∣∣∣2 ≤ E

(
1
m

m∑
r=1

3
∣∣∣ar>x∣∣∣2 ∣∣∣ar>x̄∣∣∣2

)
+ % ‖x̄‖2 ‖x‖2 ,

1
m

m∑
r=1

∣∣∣ar>x̄∣∣∣4 ≥ E
(

1
m

m∑
r=1

∣∣∣ar>x̄∣∣∣4
)
− % ‖x̄‖4 ,

1
m

m∑
r=1

ε[r]
∣∣∣ar>x∣∣∣2 ≥ E

(
1
m

m∑
r=1

ε[r]
∣∣∣ar>x∣∣∣2

)
− % ‖ε‖∞ ‖x‖

2 .

After summing, we get〈
x̄,∇2f(x)x̄

〉
≤
〈
x̄,E

(
∇2f(x)

)
x̄
〉

+ % ‖x‖2 ‖x̄‖2 + % ‖x̄‖4 + %cs ‖x̄‖2 ‖x‖2 .

We choose now % = 1
100 , and since x ∈ R1, we finally obtain that〈

x̄,∇2f(x)x̄
〉
≤ − 1

100 ‖x‖
2 ‖x̄‖2 − 1

50 ‖x̄‖
4 + 1

100 ‖x‖
2 ‖x̄‖2 + 1

100 ‖x̄‖
4 + 1

100cs ‖x̄‖
2 ‖x‖2 ,

= − 1
100(1− cs) ‖x̄‖4 .

(ii) Combine Lemma4.6.5 and 1−strong convexity of ψ (see Proposition 3.2.2).
(iii) Let x ∈ Rx2 ,

〈x,∇f(x)〉 = 1
m

m∑
r=1

∣∣∣ar>x∣∣∣4 − 1
m

m∑
r=1

∣∣∣ar>x̄∣∣∣2 ∣∣∣ar>x̄∣∣∣2 − 1
m

m∑
r=1

ε[r]
∣∣∣ar>x∣∣∣2.
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using the same concentration arguments as in the proof of Lemma4.6.2, we get

〈x,∇f(x)〉 ≥ 〈x,E (∇f(x))〉 − 1
100 ‖x‖

4 − 1
1000 ‖x‖

2 ‖x̄‖2 − ‖x‖
2 ‖ε‖∞

1000 ,

≥ 1
500 ‖x‖

2 ‖x̄‖2 + 1
100 ‖x‖

4 − 1
100 ‖x‖

4 − 1
1000 ‖x‖

2 ‖x̄‖2 − ‖x‖
2 ‖ε‖∞

1000 ,

= 1
1000(1− cs) ‖x̄‖2 ‖x‖2 ,

where we used Assumption 4.3.1 in the last inequality.
(iv) We have,

〈dx,∇f(x)〉 = 〈dx,∇fNL(x)〉+ 〈dx,∇fNy(x)〉 .

Therefore by [168, Proposition 2.6], when m ≥ Cn log(n)3 with a probability at least 1− c
m we

have

〈dx,∇fNL(x)〉 ≥ 〈dx,E (∇fNL(x))〉 − 1
500 ‖x̄‖

2 ‖x‖ ‖dx‖ .

On the other hand, with similar arguments as in the proof of Lemma4.6.2 and using again
Assumption 4.3.1, we have

〈dx,∇fNy(x)〉 = dx
>
(

1
m

m∑
r=1

ε[r]arar>
)
x ≥ 〈dx,E (∇fNy(x))〉 − cs

500 ‖x̄‖
2 ‖x‖ ‖dx‖ .

We combine now the last two inequalities to get

〈dx,∇f(x)〉 ≥ 〈dx,E (∇fNL(x)) + fNy(x)〉 − 1
500 ‖x̄‖

2 ‖x‖ ‖dx‖ −
cs

500 ‖x̄‖
2 ‖x‖ ‖dx‖ .

Thus for any x ∈ Rh2 we have,

〈dx,∇fNL(x)〉 ≥ 1
500(1− cs) ‖x̄‖2 ‖x‖ ‖dx‖ .

(v) The proof is similar to that of [168, Proposition 2.7] which consists of showing that Rn =
R1 ∪ Rx2 ∪ Rh2 ∪ R3. We then get out claim by definition of R2 and that Rn = R1 ∪ R2 ∪ R3.
The idea is to divide the Rn into several overlapping regions and show that we can cover them
with our good partition. To achieve this task we will use the set

Rh′2 =
{
x ∈ Rn : 〈dx,E (∇f(x))〉 ≥ 1

250 ‖x̄‖
2 ‖x‖ ‖dx‖ , ‖x‖ ≤ ‖x̄‖

}
.

• We can cover the set Ra
def=
{
x ∈ Rn : |x>x̄| ≤ 1

2 ‖x‖ ‖x̄‖
}
with both R1 and Rx2 . If ‖x‖

2 ≤
298
451 ‖x̄‖

2

〈
x̄;∇2f(x)x̄

〉
+ 1

100 ‖x̄‖
2 ‖x‖2 = 6(x>x̄)2 + 301

300 ‖x‖
2 ‖x̄‖2 − 3 ‖x̄‖4 − ε̃ ‖x̄‖2

≤
(3

2 + 301
100

)
‖x̄‖2 ‖x‖2 − 149

50 ‖x̄‖
4 − ε̃ ‖x̄‖2 − 1

50 ‖x̄‖
4

≤ 298
100 ‖x̄‖

4 − 149
50 ‖x̄‖

4 − ε̃ ‖x̄‖2 − 1
50 ‖x̄‖

4

≤ 1
50 ‖x̄‖

4 .
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If ‖x‖2 ≥ 626
995 ‖x̄‖

2,

〈x,E (∇f(x))〉 − 1
500 ‖x‖

2 ‖x̄‖2 = 3 ‖x‖4 − 2(x>x̄)2 − 501
500 ‖x̄‖

2 ‖x‖2 − ε̃ ‖x‖2

≥ 3 ‖x‖4 − 1
2 ‖x‖

2 ‖x̄‖2 − 501
500 ‖x̄‖

2 ‖x‖2 − ε̃ ‖x‖2

≥ 1
100 ‖x‖

4 + 299
100 ‖x‖

4 − 751
500 ‖x̄‖

2 ‖x‖2 − ε̃ ‖x‖2

≥ 1
100 ‖x‖

4 + 299
100 ‖x‖

4 −
(751

500 + 1
9
√

2

)(995
626

)
‖x‖4

≥ 1
100 ‖x̄‖

4 ,

where we have used the fact that ε̃ ≥ 0 combined with the practical upper bound on cs
(4.6.13). Since 298

451 ≥
626
995 , we conclude that Ra ⊂ R1 ∪Rx2 .

• The set Rb
def=
{
x ∈ Rn : |x>x̄| ≥ 1

2 ‖x‖ ‖x̄‖ ; ‖x‖ ≤ 57
100 ‖x̄‖

}
is covered by the set R1. Indeed

for any x ∈ Rb we have,〈
x̄;∇2f(x)x̄

〉
+ 1

100 ‖x̄‖
2 ‖x‖2 = 6(x>x̄)2 + 301

300 ‖x‖
2 ‖x̄‖2 − 3 ‖x̄‖4 − ε̃ ‖x̄‖2

≤ 901
100 ‖x‖

2 ‖x̄‖2 − 149
50 ‖x̄‖

4 − ε̃ ‖x̄‖2 − 1
50 ‖x̄‖

4

≤ 901
100

( 57
100

)2
‖x̄‖2 − 149

50 ‖x̄‖
4 − ε̃ ‖x̄‖2 − 1

50 ‖x̄‖
4

≤ −ε̃ ‖x̄‖2 − 1
50 ‖x̄‖

4 ≤ − 1
50 ‖x̄‖

4 ,

since ε̃ ≥ 0.
• Let consider the set Rc

def=
{
x ∈ Rn : 1

2 ‖x‖ ‖x̄‖ ≤ |x
>x̄| ≤ 99

100 ‖x‖ ‖x̄‖
}
, which is covered by

Rx2 and Rh′2 . For any x ∈ Rc such that ‖x‖ ≥
√

1996
1973 ‖x̄‖ we have

〈x;E (∇f(x))〉− 1
500 ‖x̄‖

2 ‖x‖2 + 1
100 ‖x‖

4 = 3 ‖x‖4 − 2(x>x̄)2 − ‖x̄‖2 ‖x‖2 − ε̃ ‖x‖2 − 1
500 ‖x̄‖

2 ‖x‖2

≥ 299
100 ‖x‖

4 + 501
500 ‖x̄‖

2 ‖x‖2 − 2(x>x̄)2 − 2(x>x̄)2 − ε̃ ‖x‖2

≥ 299
100 ‖x‖

4 −
(

2
( 99

100

)2
+ 501

500 + 1
9
√

2

)
‖x̄‖2 ‖x‖2

≥
(

299
100

(1996
1973

)2
−
(

2
( 99

100

)2
+ 501

500 + 1
9
√

2

))
‖x‖4

≥ 0.

Therefore, we have Rc ∩
{
x ∈ Rn : ‖x‖ ≥

√
1996
1973 ‖x̄‖

}
⊂ Rx2 . To show the remaining in-

clusion, we use an (α, β)−type argument. Let assume that ‖x‖ = α ‖x̄‖, |x>x̄| = β =
‖x̄‖ ‖x‖ = αβ ‖x̄‖ and ε̃ = ε ‖x̄‖2 with α ∈

[
11
20 ,
√

1996
1973

]
, β ∈

[
1
2 ,

99
100

]
and ε ∈

[
0, 1

9
√

2

]
. We

have

〈x− x̄,E (∇f(x))〉 = 3 ‖x‖4 + 3(x>x̄)
(
‖x̄‖2 − ‖x‖2

)
− 2(x>x̄)2 − ‖x̄‖2 ‖x‖2 + ε̃

(
(x>x̄)− ‖x‖

)
= ‖x̄‖4 α

(
3α3 + 3β(1− α2)− 2αβ2 − α+ ε(β − α)

)
.

Whence we have
1

‖x̄‖4 α

(
〈x− x̄,E (∇f(x))〉 − 1

250 ‖x̄‖
2 ‖x‖ ‖dx‖

)
= 3α3 + 3β(1− α2)− 2αβ2

− α+ ε(β − α)− 1
250

√
1 + α2 − 2αβ.
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It is straightforward that in this domain 1
250
√

1 + α2 − 2αβ ≤ 1
250

√
3969−2

√
984527

1973 ≤ 41
10000 .

Therefore we define the following function

p(α, β, ε) def= 3α3 + 3β(1− α2)− 2αβ2 − α+ ε(β − α)− 41
10000

Then p has a unique minimizer arising at
(
0.998237, 99

100 ,
1

9
√

2

)
with a value 87239

2500000 . We
deduce that

〈x− x̄,E (∇f(x))〉− 1
250 ‖x̄‖

2 ‖x‖ ‖dx‖ ≥ 0

Therefore Rc ⊂ Rx2 ∪Rh
′

2 .
• We now cover Rd

def=
{
x ∈ Rn : 99

100 ‖x̄‖ ‖x‖ ≤ |x
>x̄| ≤ ‖x‖ ‖x̄‖ , ‖x‖ ≥ 11

20 ‖x̄‖
}
with Rx2 ,R3

and Rh′2 . For any x ∈ Rd, with ‖x‖ ≥
√

1031
1000 ‖x̄‖, we have

〈x,E (∇f(x))〉 − 1
500 ‖x‖

2 ‖x̄‖2− 1
100 ‖x̄‖

4 = 299
100 ‖x‖

4 − 2(x>x̄)2 − 501
500 ‖x̄‖

2 ‖x‖2 − ε̃ ‖x‖2

≥ 299
100 ‖x‖

4 − 1501
500 ‖x̄‖

2 ‖x‖2 − ε̃ ‖x‖2

≥ 299
100 ‖x‖

4 −
(1501

500 + 1
9
√

2

)
‖x̄‖2 ‖x‖2

≥
(299

100 −
(1501

500 + 1
9
√

2

) 1000
1031

)
‖x‖4 ≥ 0.

hence we have Rd ∩
{
x ∈ Rn : ‖x‖ ≥

√
1031
1000 ‖x̄‖

}
⊂ Rx2 . When 23

25 ≤ ‖x‖ ≤
√

1031
1000 we have,

‖dx‖2 = ‖x̄‖2 + ‖x‖2 − 2x>x̄ = ‖x̄‖2
(
1 + α2 − 2αβ

)
,

where we have α ∈
[

23
25 ,
√

1031
1000

]
and β ∈

[
99
100 , 1

]
. Therefore, we consider

p(α, β, λ) = 1 + α2 − 2αβ − (1− λ)2

3 ,

with λ ∈
]

1
9
√

2 ,
3
5

]
. The maximum value of p is taken at (α, β, λ) =

(
23
25 ,

99
100 ,

3
5

)
thus

p(α, β, λ) ≤ − 107
3750 . We deduce that Rd ∩

{
x ∈ Rn, 23

25 ≤ ‖x‖ ≤
√

1031
1000

}
⊂ R3. When

11
20 ‖x̄‖ ‖x‖ ≤

24
25 ‖x̄‖, we have

1
‖x̄‖4 α

(
〈x− x̄,E (∇f(x))〉 − 1

250 ‖x̄‖
2 ‖x‖ ‖dx‖

)
= 3α3 + 3β(1− α2)− 2αβ2

− α+ ε(β − α)− 1
250

√
1 + α2 − 2αβ

where α ∈
[

11
20 ,
√

24
25

]
, β ∈

[
99
100 , 1

]
and ε ∈

[
0, 1

9
√

2

]
. One check easily that

p(α, β, ε) = 3α3 + 3β(1− α2)− 2αβ2 − α+ ε(β − α)− 1
250

√
1 + α2 − 2αβ ≥ 0.

Consequently, we have Rd ∩
{
x ∈ Rn : 11

20 ‖x̄‖ ‖x‖ ≤
24
25 ‖x̄‖

}
⊂ Rh′2 . Finally Rd ⊂ Rx2 ∪

R3 ∪Rh
′

2 .
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By construction, we have Ra ∪Rb ∪Rc ∪Rd = Rn, and therefore

Rn = Ra ∪Rb ∪Rc ∪Rd
⊂ R1 ∪Rx2 ∪Rh

′
2 ∪R3

= R1 ∪Rx2 ∪
(
Rh′2 ∩

{
x ∈ Rn : 11

20 ‖x̄‖ ≤ ‖x‖
})
∪R3

= R1 ∪Rx2 ∪
(
Rh′2 ∩

{
x ∈ Rn : 11

20 ‖x̄‖ ≤ ‖x‖
}
∩Rc3

)
∪R3

= R1 ∪Rx2 ∪Rh2 ∪R3.
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Part II

Phase Retrieval with Regularization





Chapter 5

Inertial Bregman Proximal Gradient

In this chapter, we study global and local convergence properties of an Inertial Bregman Proximal
Gradient algorithm (IBPG) for minimizing the sum of two functions functions in finite dimension.
One of the functions is assumed to be proper, closed, and convex but non-necessarily smooth whilst
the second is a sufficiently smooth function but not necessarily convex. For the latter, we demand the
smooth adaptable property w.r.t to some kernel/entropy which allows to remove the very popular
global Lipschitz continuity requirement on its gradient. We consider IBPG under the framework
of the triangle scaling property (TSP) which is a geometrical property for which one can provably
ensure acceleration for a certain class of kernel/entropy functions in the convex setting. We provide
global convergence guarantees when the kernel/entropy is strongly convex under the framework of
the Kurdyka-Łojasiewicz property. Turning to the local convergence properties, we show that when
the nonsmooth part is partly smooth relative to a smooth submanifold, IBPG has a finite activity
identification property before entering a local linear convergence regime for which we establish a sharp
estimate of the convergence rate. We report numerical simulations to illustrate our theoretical results
on low complexity regularized phase retrieval.

In summary, the contributions of this chapter are:

Main contributions of this chapter

I Global convergence of IBPG under the Under the Kurdyka-Łojasiewicz property.
I Finite activity identification under partial smoothness.
I Local linear convergence analysis of IBPG with a sharp rate estimate.
I Saddle point escape property in the smooth case.
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5.1 Introduction

5.1.1 Problem statement

In this work, we study the following class of composite non-necessarily smooth nor convex optimization
problem

inf
x∈Rn

{
Φ(x) def= F (x) +G(x)

}
, (P)

under the following assumptions:

Assumption 5.1.1.
(A.1) F : Rn → R is C1−smooth.
(A.2) G : Rn → R is a proper, lower semi-continuous and convex.
(A.3) Φ is bounded from below, i.e. inf Φ(Rn) > −∞ .

In many application in machine learning, data processing and inverse problems, the function G

plays the role of a penalty/regularization term. It is intended to encode structural properties or
prior knowledge information about the set of desired solutions. The function F on the other hand
correspond to the loss function or the data fidelity term.
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Throughout this chapter, the smooth function F can be nonconvex which allows us to cover a
large class of problems arising in applications such as statistics, machine learning, and in particular
quadratic inverse problems, i.e., phase retrieval.

To solve (P), we associate to the objective Φ a kernel or entropy function ψ w.r.t which F is
relatively smooth. In this work, we propose Algorithm5 which we coin Inertial Bregman Proximal
Gradient (IBPG).

Algorithm 5: Inertial Bregman Proximal Gradient
Parameters: κ ∈]1, 2];
Initialization: z−1 = x−1, z0 = x0 ∈ Rn, a−1 = a0 = 1, and 0 < a < a ≤ 1;
for k = 0, 1, . . . do

yk = zk + ak(xk − zk);

xk+1 = (∇ψ + γk∂G)−1 (∇ψ(yk)− γk∇F (yk)) , γk = aκ−1
k

L
;

zk+1 = xk + ak(xk+1 − xk);

Choose ak+1 ∈ [a, a] s.t. (a1−κ
k+1 + 1)1/κ(1− ak+1) < a

1/κ−1
k /(1− ak).

(IBPG)

I can be easily shown that yk can be written as a recursion of (xk, xk−1) with inertial parameters
that depend on (ak, ak−1). When ak ≡ 1, we recover the Bregman Proximal Gradient (BPG without
inertia) whose global convergence was already established in [40].

In [89], a slightly different algorithm called Accelerated Bregman Proximal Gradient, was considered
in the convex case. This scheme was inspired by the Improved Interior Gradient Algorithm for conic
optimization as developed in [13, Section 5]. It was shown in [89] that the Accelerated Bregman
Proximal Gradient indeed provides acceleration when the kernel ψ satisfies the triangle scaling property
(TSP) (see Definition 2.3.9) with a convergence rate on the values of O(k−κ), where κ ∈]1, 2] is the
triangle scaling exponent (TSE). For κ = 2, one recovers the standard Nesterov-like accelerated rate.

In the nonconvex case, another inertial scheme was analyzed in [136] when the Bregman ker-
nel/entropy is also strongly convex and G is weakly (or semi-) convex. Global convergence of the
iterates under KL was proved there using line search on both the extrapolation (inertial) parameter
and the descent step-size. Using more structure of the kernel, i.e. the TSP, will allow to have a
sharper analysis and results.

5.1.2 Contributions

In this chapter, we study the global and local convergence properties of Algorithm5 for a class of
Bregman kernels that satisfies the TSP property. The main contributions of this work are:

Global convergence of the scheme Under the Kurdyka-Łojasiewicz (KL) property, we show
that bounded iterates generated by the Inertial Bregman Proximal Gradient converge to a critical point
of the objective function when the inertial parameters satisfy the condition that ak ∈ [a, a] ⊂]0, 1[.
We also show that starting near an optimal solution, the sequence converges to it.

Finite activity identification We establish that IBPG enjoys a finite activity identification
property. More precisely, we show that when the nonsmooth part G is partly smooth with respect
to an underlying manifold Mx? near some critical point x?, the iterates will identify the manifold
under an appropriate nondegeneracy condition. This identification phenomenon implies the existence
of some large number K such that the iterates generated after this number lie in the manifoldMx? .
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The nondegeneracy condition cannot be relaxed in general as shown in [92, Example 4.1, 4.2, 4.3]
respectively for the projected gradient descent, Newton method, and the proximal point algorithm.

Local linear convergence analysis After activity identification property, we show that locally
along the active manifoldMx? , we can linearize the iterates generated by IBPG when F is locally C2.
In the case, we provide a spectral analysis of the linearized system, and under appropriate restricted
injectivity, we exhibit a linear convergence regime for proper choice of the inertial parameter. This
choice depends in particular on the TSE parameter κ, which generalizes the Euclidean case for which
this parameter is just 2. Our work hence extends that of [117] to non-euclidean Bregman-based
geometry.

Escape property in the smooth case Equipped with the center stable manifold theorem, we
study the trap avoidance of the inertial Bregman gradient method where G ≡ 0. We show that the
scheme generically avoids strict saddle points, which are critical points where the function has at least
one direction of negative curvature.

5.2 Global Convergence Analysis

5.2.1 Main assumptions

We will need the following assumptions on ψ, which will be invoked jointly or separately in our proofs.

Assumption 5.2.1.
(B.1) ψ is a C2 σψ-strongly convex function with σψ > 0.
(B.2) F is L−smooth relative to ψ on Rn.
(B.3) ∇F and ∇ψ are Lipschitz continuous on bounded subsets of Rn.

Remark 5.2.2.
• Strong convexity of ψ plays an important role to establish global convergence of the sequences

of iterates.
• C2 smoothness of ψ is only needed occasionally and some of our statements remain true even

without it.
• Assumption (B.1) implies that ψ is Legendre and thus ∇ψ is a bijection on Rn whose inverse is
∇ψ∗ (see Remark 2.3.2). Moreover, strong convexity implies that ∇2ψ∗(∇ψ(x)) = ∇2ψ(x)−1;
see e.g., [106, Lemma2.2].

• Assumption (A.2) together with (B.1) imply that the D-prox operator of index γ > 0

(∇ψ + γ∂G)−1 ◦ ∇ψ : x ∈ Rn 7→ Argmin
z∈Rn

G(z) + 1
γ
Dψ(z, x)

is single-valued; see [26, Proposition 3.22]. Strong convexity of ψ can be weakened to strict
convexity and legenderness if ψ + γG is supercoercive. If convexity of G is removed, the D-
prox is nonempty and compact-valued if ψ is Legendre and ψ + γG is supercoercive; see [40,
Lemma3.1].

• Our analysis and results can be extended to handle the constrained case where (P) is solved
over a closed convex set. This necessitates that ψ to be a barrier function of the constraint set
and some technical (domain) adaptations of our assumptions that we prefer to avoid here for
the sake of clarity1.

1Anyway, our focus being on phase retrieval, our current setting is sufficient.
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5.2.2 Convergence analysis

Our main result states that if Φ is also a KL function, then bounded iterates of IBPG converge to a
critical point of Φ.

Theorem 5.2.3. Consider problem (P) under Assumptions 5.1.1-5.2.1. Suppose that the sequence of
IBPG parameters (ak)k∈N are chosen as in Algorithm5. Then,
(i)

∑
k∈N ‖xk − xk−1‖2 <∞ and

min
0≤i≤k

‖xi − xi−1‖2 ≤
2(σψνL)−1Ψ0(x0, x−1)

k + 1 .

Assume moreover that Φ and ψ satisfy the KL property, that ak ≡ a ∈ [a, a] for all k ≥ K, where
K is arbitrarily large. If the sequence of IBPG iterates (xk)k∈N is bounded then,

(ii) all sequences (xk)k∈N, (yk)k∈N and (zk)k∈N have finite length and converge to the same limit in
crit(Φ).

(iii) If Argmin(Φ) 6= ∅ and IBPG is started near a global minimizer x? in the Φ−attentive topology,
then the generated sequences converge to x?.

We defer the proof to Section 5.6.

Remark 5.2.4.
• The boundedness of the sequence is a standard assumption for the global convergence of the

sequence in the nonconvex case. Coercivity of Φ is for instance sufficient to ensure it.
• Choosing ak constant for k large enough is a standard strategy for the Lyapunov analysis in

the nonconvex case. A similar strategy is also used in [39] and [136]. This also makes sense
in practice, a fixed inertial parameter as in the heavy ball method with friction is popular for
inertial algorithms.

The choice of (γk)k∈N and (ak)k∈N devised in Algorithm5 is sufficient for our analysis. Actually, we
only need that

γk ∈]0, 1/L] and (L+ γ−1
k )(1− ak)κ(1− ak−1)κ < γ−1

k−1.

For instance, if γk ≡ 1/L, then it is sufficient that (1− ak) < 2−1/κ/(1− ak−1) which is easy to verify
since ak ∈]0, 1].

There are many possible choices of the sequence (ak)k∈N that obey the condition of Algorithm5. For
instance, take ak = k+1

k+1+α ∈ [1/(1 + α), 1], where α > 0. To verify that the condition holds, observe
that (a1−κ

k+1 + 1)(1 − ak+1)κ is decreasing in k. On the other hand, the function h : [1/(1 + α), 1] 7→
a1−κ/(1− a)κ has a unique minimum on [0, 1] at amin = max (1/(1 + α), (κ− 1)/(2κ− 1)). Thus, for
the inequality to hold true, it is sufficient that (a1−κ

1 + 1)(1− a1)κ < h(amin) for all κ ∈]1, 2]. This is
achieved by taking α ≤ 3.

5.3 Local Convergence Analysis
In this section, we present the local analysis of the Inertial Bregman Proximal Gradient. We start
with the following definition.

Definition 5.3.1. (Nondegenerate critical point for composite function)We say that a critical
point satisfies the nondegeneracy condition for the composite function Φ if:

−∇F (x?) ∈ ri(∂G(x?)). (ND)

Let ND(Φ) denote the set of critical points satisfying this condition for Φ.
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Remark 5.3.2.
(i) Applying [75, Proposition 10.12], it turns out that for G ∈ Γ0(Rn), the notion of identifiable

manifold is equivalent to partial smoothness around an active smooth manifold combined with
the nondegeneracy condition.

(ii) Suppose that Φ is a semi-algebraic function, and more generally a function definable on an o-
minimal structure. It follows from [74, Theorem4.16] that generically on v ∈ Rn, the function
Φv

def= Φ(x)−〈v, x〉 has a finite number of critical points and each critical point is nondegenerate
and admits an identifiable manifold. In plain words, assumption (ND) is generic.

5.3.1 Finite activity identification of IBPG

The following result shows that IBPG generates a sequence that identifies active manifolds in finite
time.

Lemma 5.3.3 (Finite time activity identification). Let us consider an instance of Algorithm5
such that (xk)k∈N is bounded. Let x? ∈ crit(Φ) be the limit of the sequence and assume that G ∈
PSFx?(Mx?) with x? ∈ ND(Φ). Under the same assumptions as Theorem5.2.3, there exists a constant
K large enough such that for all k ≥ K,xk ∈Mx? .

(i) Mx? is an affine subspace, thenMx? = x? + Tx? and (yk)k∈N , (zk)k∈N ∈Mx? , k ∈ K,
(ii) If moreover, G is locally polyhedral around x? then for all k ≥ K, the remaining sequences satisfy

yk, zk ∈Mx? and ∇2
Mx?

G(xk) = 0.

See the Section 5.7.1 for the proof of this lemma.

5.3.2 Local linearization of IBPG

In this section, let us consider x? a critical point of Φ and let Mx? be a C2−smooth submanifold
such that G ∈ PSFx?(Mx?). Let us assume that the smooth part F is C2 around x?. Let us denote
Tx?

def= TM(x?) and fix a stepsize γk ∈]0, 1/L]. For the rest of the analysis, we define the following
matrices which help us to capture the local behavior of the iterates.

HF
def= γPTx?∇

2F (x?)PTx? , Hψ
def= PTx?∇

2ψ(x?)PTx? , V
def= Hψ −HF , (5.3.1)

U
def= γ∇2

Mx?
Φ(x?)PTx? −HF .

where ∇2
Mx?

Φ denotes the Riemannian Hessian of Φ along the submanifold Mx? and PTx? the pro-
jection onto Tx? .

Remark 5.3.4. Since G ∈ Γ0(Rn), [118, Lemma4.3] shows that U is symmetric positive semi-definite
under the condition that x? ∈ ND(Φ) or thatMx? is an affine space. Therefore Hψ +U is symmetric
positive definite and hence invertible. Let us denote

W
def= (Hψ + U)−1 .

We have that W is symmetric positive with eigenvalues in ]0, 1/σψ] .

Definition 5.3.5. (Restricted injectivity) We say that a critical point x? satisfies the restricted
injectivity condition if there exists σ ≥ 0 such that the following condition holds true

∀h ∈ Tx? ,
〈
h,
(
∇2F (x?)− σ∇2ψ(x?)

)
h
〉
≥ 0. (5.3.2)

We denote by RI(Φ) the set of all critical points where the restricted injectivity is satisfied. In this
case, the local continuity of the Hessian of F implies that ker(∇2F (x?)) ∩ Tx? = {0}. Observe that
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by [74, Theorem4.16] and strong convexity of ψ, (5.3.2) is equivalent to the fact that x? is a stable
strong local minimizer of Φ.

Let a ∈ [a, a] and define rk
def= xk − x? and dk

def=

 rk

rk−1

, we will need the following key matrix

M
def=

(2a− a2)WV (1− a)2WV

Id 0

 . (5.3.3)

At this step, we can describe the local behavior of the sequence generated by Algorithm5. The next
result is a local linearization of the iterative scheme.

Proposition 5.3.6. Consider the problem (P) under Assumptions 5.1.1-5.2.1. Let us assume that
the sequences produced by Algorithm5 converge to x? ∈ ND(Ψ) ∩ RI(Ψ) with G ∈ PSFx?(Mx?). If F
is C2 locally around x? and the inertial parameter sequence (ak)k∈N satisfies ak → a then for k large
enough, we have

dk+1 = Mdk + o(‖dk‖). (5.3.4)

The little “o” term disappears when G is locally polyhedral and ak is chosen constant.

See Section 5.7.2 for the proof of this proposition.

Remark 5.3.7.
(i) If ak ≡ 1, we recover the Bregman Proximal Gradient and we have the following linearized

iteration
rk+1 = WV rk + o(‖rk‖).

(ii) When the kernel is the energy, i.e. ψ = ‖·‖2 /2, a similar analysis has been done for a symmetric
version of the inertial Forward-Backward [118, Proposition 4.5] with a different choice of inertial
parameters. Our result is however different and it involves the new matrix Hψ which makes the
spectral analysis of M more intricate.

5.3.3 Spectral properties of M

Our goal now is to show local linear convergence of IBPG. Towards this, we examine the structure of
the locally linearized iteration given in (5.3.4). It is adequate to upper-bound (strictly) the spectral
radius of M by 1 and subsequently draw conclusions using standard reasoning. We will relate the
eigenvalues ofM to those ofWV . Let η and % be an eigenvalue ofWV andM respectively. We denote
η and η as the smallest and largest (signed) eigenvalues ofWV , and ρ(M) as the spectral radius ofM .
When G is a general partly smooth function, then U is nontrivial, we have the following proposition.

Proposition 5.3.8. Let us define Λ def= |qψ(x?)− γσ| where qψ(x?) = λmax(∇2ψ(x?))
σψ

. Denote qF (x?) =
L
σ .

(i) Let

r1

r2

 be an eigenvector of M corresponding to an eigenvalue % then it must satisfy r1 = %r2.

Besides, r2 is an eigenvector of WV associated with the eigenvalue η, where η and % satisfy the
relation

%2 − (2a− a2)%η − (1− a)2η = 0, (5.3.5)

and ρ(M) ≤ ρ(WV ) < Λ if, and only if,
1

2a2 − 4a+ 1 < η.

– 89 –



Chapter 5 5.4. Escape Property in the Smooth Case

(ii) If the inertial parameters are chosen such that a ∈ [a, a] with a > κ−1
√
qF (x?)(qψ(x?)− 1) and

a < κ−1
√
qF (x?)(qψ(x?) + 1) then Λ < 1.

See section 5.7.3 for the proof.

Remark 5.3.9.
(ii) In the euclidean case, Λ =

(
1− aκ−1

k
σ
L

)
< 1 since σ ≤ L and ak ∈]0, 1].

(iii) Claim (ii) states that ρ(M) < 1 whenever a is small enough while being bounded away from
zero.

5.3.4 Local linear convergence

We can now state the local linear convergence result.

Theorem 5.3.10. (Local linear convergence) Consider the problem (P) under Assumptions 5.1.1-
5.2.1. Let (xk)k∈N be a bounded sequence produced by Algorithm 5 that converges to x? ∈ ND(Φ)∩RI(Φ)
with G ∈ PSFx?(Mx?), and assume that F is C2 locally around x?. If a is such that Proposi-
tion 5.3.8(ii) holds, then (xk)k∈N converges locally linearly to x?. More precisely, given any ρ ∈
[ρ(M), 1[, there exist K ∈ N large enough such that ∀k ≥ K ,

‖zk − x?‖
‖zK − x?‖

= O(ρk−K). (5.3.6)

Proof. First use the global convergence result combined with the local linearization Proposition 5.3.6
and the spectral analysis of M in Proposition 5.3.8. Then conclude by standard arguments.

5.4 Escape Property in the Smooth Case

5.4.1 Trap avoidance for the inertial mirror descent

Throughout this subsection, we assume that G ≡ 0. Thus IBPG reduces to the Inertial Mirror
Descent (IMD) which is a variant of the Improved Interior Gradient Algorithm [13]. We assume that
the algorithm is run with a fixed stepsize and a fix inertial parameter. The scheme is summarized in
Algorithm6 for the reader’s convenience.

Algorithm 6: Inertial Mirror Descent
Parameters: κ ∈]1, 2];
Initialization: z−1 = x−1, z0 = x0 ∈ Rn, a−1 = a0 = 1, and fix a ∈]0, 1];
for k = 0, 1, . . . do

yk = zk + a(xk − zk);

xk+1 = ∇ψ−1 (∇ψ(yk)− γ∇F (yk)) , γ = aκ−1

L
;

zk+1 = xk + a(xk+1 − xk).

Theorem 5.4.1. (Trap avoidance of IMD.) Consider the minimization problem (P) with G ≡ 0
under Assumption 5.1.1-5.2.1 and let x? ∈ crit(Φ). Then for almost all initilizers (x0, x−1) of IMD,
the generated sequences converge to a critical point that is not a strict saddle point.

We defer the proof to Section 5.8.1. Clearly, this means that if (x0, x−1) is drawn at random from
a distribution with has a density w.r.t Lebesgue measure, then with probability one, IMD converges
to a critical point which is not a strict saddle.
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5.4.2 Challenges of the escape property for IBPG in the nonsmooth case

In this section, we discuss the difficulties and challenges posed by the case where G 6= 0 in P is
nonsmooth. First one has to adapt the notion of strict saddles to the nonsmooth setting. Adopting
the terminology in [68], we introduce the following notion of active strict saddles.

Definition 5.4.2 (Active strict saddle). Let us consider g : Rn → R. We say that a point x? is an
active strict saddle point of the nonsmooth function g if
(i) x? ∈ crit(g) i.e., 0 ∈ ∂g(x?).
(ii) There exists an active manifoldM at the point x?.
(iii) The Riemannian Hessian of g at x? has a at least one negative eigenvalue.
Let us denote by Actstrisad(g) the set of all active strict saddle points of g.

In the euclidean setting, the authors in [68] showed that proximal methods with weakly convex
and definable functions generically avoid active strict saddle points. At the core of their proofs is
again the center stable manifold theorem. In turn, the regularity required by this theorem heavily
rely on the properties of the proximal mapping in the euclidean setting, and in particular its firm
nonexpansiveness, as well as Lipschitz continuity of the gradient of the smooth part.

In the Bregman setting, these properties are not true anymore. In fact, the proof strategy con-
sists in characterizing the regularity and the spectrum of the the following fixed point mapping that
characterizes Algorithm5,

T(x2, x1) =

(∇ψ + γ∂G)∗
(
∇ψ

(
y(x2, x1)

)
− γ∇F (y(x2, x1))

)
x2

 ,
where

a ∈ [a, a] and y(x2, x1) = (2a− a2)x2 + (1− a)2x1.

One has that x? ∈ crit(Φ) if and only if (x?, x?) is a fixed point of the operator T. We have the
following result.

Lemma 5.4.3. Consider the minimization problem (P) under Assumptions 5.1.1-5.2.1 and let x? ∈
crit(Φ). Then T is a C1−smooth function in a neighborhood of (x?, x?). Besides, if x? is an active
strict saddle of Φ then the jacobian DT(x?, x?) has a real eigenvalue that is strictly greater than one.

We defer the proof to Section 5.8.2.
This lemma extends [68, Theorem4.1] to the inertial Bregman proximal gradient setting. The key

insight is that, in the vicinity of the critical point denoted by x?, any optimization problem can be
locally approximated on the active manifold. This allows us to circumvent the nonsmoothness issues
present in the general case.

However, extending [68, Theorem4.1] to the Bregman setting presents a significant challenge. In the
Euclidean framework, the arguments rely heavily on [68, Corollary 2.12] of the center manifold theorem.
This result hinges on the assumption that the mapping A is a global lipeomorphism. Unfortunately,
this is not true in the Bregman setting, as A is only a local lipeomorphism but not a global one. This
suggests that a different proof strategy is needed which calls for future work as we will discuss in our
perspectives.

5.5 Numerical Experiments
In this section, we discuss some numerical experiments to illustrate our theoretical results.
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5.5.1 Phase retrieval

We apply our results to regularized phase retrieval. Recall that the goal is to recover a vector x̄ ∈ Rn

from quadratic measurements
y = |Ax̄|2 ∈ Rm,

where A : Rn → Rm is a linear operator. We can reformulate this problem as an optimization problem
in the form

min
x∈Rn

Φ(x) = 1
4m

∥∥∥y − |Ax|2∥∥∥2
+ λR(x), λ > 0. (5.5.1)

where R ∈ Γ0(Rn). R is a regularizer that that promotes objects sharing a structure similar to that
of x̄. Problem (5.5.1) is an instance of (P) with F (x) = 1

4m
∥∥y − |Ax|2∥∥2 and G(x) = λR(x).

Let us observe that F is a semi-algebraic data fidelity term and that F ∈ C2(Rn) but is nonconvex
(though weakly convex). Besides, ∇F is not Lipschitz continuous. Therefore, we associate to F the
kernel function

ψ(x) = 1
4 ‖x‖

4 + 1
2 ‖x‖

2 . (5.5.2)

ψ ∈ C2(Rn) is full domain and 1−strongly convex function with a gradient that is Lipschitz over
bounded subsets of Rn; see Proposition 3.2.2. We have already seen that F is smooth relative to ψ
(see Lemma3.2.3). Thus all our Assumptions 5.1.1-5.2.1 are fulfilled.

5.5.2 Experiments setup

Throughout our experiments, A is drawn from the standard Gaussian ensemble, i.e., the entries of A
are i.i.d mean-zero and standard Gaussian. We solve this problem using Algorithm5 with ak ≡ 1.
For each numerical experiment, we run the algorithm with a constant step-size γ = 0.99

3+10−4 . For R, we
have tested several regularizers as described hereafter. All the results on partial smoothness of this
part are taken from [174].

Example 5.5.1. (`1-norm). For any x ∈ Rn, the `1-norm is given by R(x) = ‖x‖1
def= ∑n

i=1 |xi|,
which is partly smooth at any x relative to the linear subspace

M = Tx
def= {u ∈ Rn : supp(u) ⊂ supp(x)} , supp(x) def= {i : xi 6= 0}.

The underlying vector x̄ is taken to be sparse with s = 12 non-zeros entries for a vector of size
n = 128. The number of quadratic measurements is taken as m = 0.5× s1.5 × log(n), which is in line
with the bounds discussed in Chapter 6. As there is no noise, we took λ = 10−8. Figure 5.1 shows the
recovery results. The left plot of Figure 5.1 displays the relative error of the iterates vs the number of
iterations. On the right plot, we display the support of the iterates. Clearly, the left plot shows that
Algorithm5 identifies the correct support after 300 iterations and converges to the true vector. The
left plot confirms what is anticipated by our analysis, that the relative error converges locally linearly
(see the dashed line). The local linear convergence rate is in very good agreement with the one we
predicted.

Example 5.5.2. (`1,2-norm). Here, we take R as the group/block Lasso which si designed to promote
group sparsity. Let {1, · · · , n} be partitioned into nonoverlapping blocks B such that: ⋃

b∈B
= {1, · · · , n}.

The `1,2-norm of x is given by R(x) = ‖x‖1,2
def= ∑

b∈B ‖xb‖ with xb = (xi)i∈b ∈ R|b|. This function is
partly smooth at x with respect to the linear subspace

M = Tx
def=
{
u ∈ Rn : suppB(u) ⊂ SB, SB

def=
⋃
{b : xb 6= 0}

}
.

In our experiment, we consider the true vector is of size n = 128 with 2 nonzero blocks of size 8
each. The number of measurements is m = 0.5× (2× 8)2× log(128) quadratic measurements which is
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Figure 5.1: Phase retrieval by solving (5.5.1) with the `1−norm regularizer.

again in agreement with our bounds in Chapter 6. We also take λ = 10−8. The results are shown in
Figure 5.2, and they are consistent with the discussion for the `1-norm.
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Figure 5.2: Phase retrieval by solving (5.5.1) with the `1,2−norm regularizer.

Example 5.5.3. (Analysis-type prior). Let R0 ∈ PSFDx(M0) where D : Rn → Rp is a linear
operator. When D satisfies an appropriate transversality condition, then R def= R0 ◦D is partly smooth
with respect toM = {u ∈ Rn : Du ∈M0}.

The anisotropic total variation is a particular case where R0 is the `1-norm and D is a finite-
difference operator with appropriate boundary conditions. It is is polyhedral and partly smooth at x
relative to the linear subspace

M = Tx
def= {u ∈ Rn : supp(Du) ⊂ supp(Dx)}.

In our experiment here, the original vector x̄ is piecewise constant with s = 12 randomly placed jumps.
The number of measurements is m = 0.5×s2× log(n). The regularizer is the total variation. Since the
proximity operator of the latter is not explicit, we used the maxflow algorithm of [59] to compute it.
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The results are depicted in Figure 5.3. The left plot shows the original (dashed line) and the recovered
vector (solid line). The right plot shows the evolution of the relative error vs iterations where again, a
linear convergence behaviour is observed with a predicted rate that is very close to the observed one.
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Figure 5.3: Phase retrieval by solving (5.5.1) with the TV semi-norm.

Example 5.5.4. (Wavelet synthesis-type prior). We here cast the phase retrieval problem as

min
v∈Rp

Φ(v) def= 1
4m

∥∥∥y − |AWv|2
∥∥∥2

+ λ ‖v‖1 , λ > 0, (5.5.3)

where W is a wavelet synthesis operator. The reconstructed vector is given by x = Wv. When W is
orthonormal, this is equivalent to the analysis-type formulation with D = W>. This is not anymore
the case when W is redundant.

In this experiment, we will use the shift-invariant wavelet dictionary with the Haar wavelet, which
is closely related to the total variation regularizer for 1D signals; see [167]. We take the same number
of jumps and measurements as in the previous example. The results are shown in Figure 5.4.

5.6 Proof of Global Convergence
Lemma 5.6.1. Let (xk)k∈N , (yk)k∈N and (zk)k∈N be generated by IBPG (Algorithm5). Then the
following holds true
(i) If (xk)k∈N is bounded, then the other sequences are also bounded.
(ii) If (xk)k∈N has a limit, then the remaining sequences also converge to the same limit.

Proof. (i) zk being a convex combination of xk and xk−1, the conclusion is immediate. The same
holds also for yk.

(ii) Suppose that xk → x∗. We have by definition

‖zk − x∗‖ ≤ ‖xk − x∗‖+ ‖xk − xk−1‖ .

Passing to the limit we get that zk → x∗. Moreover,

‖yk − x∗‖ ≤ (1− ak) ‖zk − x∗‖+ ak ‖xk − x∗‖ ≤ ‖zk − x∗‖+ ‖xk − x∗‖ .
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Figure 5.4: Phase retrieval with the synthesis prior formulation.

and thus yk → x∗.

Our global convergence analysis will be based on a Lyapunov analysis with the energy function Ψk

on R3n defined as
Ψk(xk, xk−1) = Φ(xk)− inf Φ + a1−κ

k−1LDψ(xk, xk−1),

where κ ∈]1, 2] is the TSE parameter of ψ. The subscript k underscores the fact that Ψk depends on
ak−1. Observe that Ψk is non-negative. The first part of Ψk corresponds to the potential energy of
IBPG seen as a dissipative (discrete) dynamical system. The second term, which captures how the
iterates remain close to each other, can be interpreted as a discrete Bregman version of the kinetic
energy (involving the discrete velocity) of the system. The following lemma shows that Ψk is indeed
a Lyapunov function for IBPG.

Lemma 5.6.2. Under Assumptions 5.1.1 and (B.2), there exists ν ∈]0, 1] such that the sequences
generated by Algorithm5 satisfy ∀k ≥ 0

Ψk+1(xk+1, xk) ≤ Ψk(xk, xk−1)− νLDψ(xk, xk−1)−
(
a1−κ − 1

)
LDψ(xk+1, yk). (5.6.1)

Proof. By L-smoothness of F relative to ψ, we have

Φ(xk+1) ≤ F (yk) + 〈∇F (yk), xk+1 − yk〉+G(xk+1) + LDψ(xk+1, yk). (5.6.2)

Observe that
xk+1 ∈ Argmin

x∈Rn
F (yk) + 〈∇F (yk), x− yk〉+G(x) + 1

γk
Dψ(x, yk). (5.6.3)

Then convexity of G gives that ∀x ∈ Rn (see e.g. [62, Lemma3.2])

F (yk) + 〈∇F (yk), xk+1 − yk〉+G(xk+1) + 1
γk
Dψ(xk+1, yk) ≤ F (yk) + 〈∇F (yk), x− yk〉+G(x)

+ 1
γk
Dψ(x, yk)−

1
γk
Dψ(xk+1, x). (5.6.4)
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Inserting this into (5.6.2), we get

Φ(xk+1) ≤ F (yk) + 〈∇F (yk), x− yk〉+G(x) + 1
γk
Dψ(x, yk)−

1
γk
Dψ(xk+1, x)−

( 1
γk
− L

)
Dψ(xk+1, yk)

= Φ(x)−DF (x, yk) + 1
γk
Dψ(x, yk)−

1
γk
Dψ(xk+1, x)−

( 1
γk
− L

)
Dψ(xk+1, yk)

≤ Φ(x) +
( 1
γk

+ L

)
Dψ(x, yk)−

1
γk
Dψ(xk+1, x)−

( 1
γk
− L

)
Dψ(xk+1, yk),

where we used again L-smoothness of F relative to ψ. Applying this inequality at x = xk, we obtain

Φ(xk+1) + 1
γk
Dψ(xk+1, xk) ≤ Φ(xk) +

( 1
γk

+ L

)
Dψ(xk, yk)−

( 1
γk
− L

)
Dψ(xk+1, yk).

We now use the TSP property twice to get

Dψ(xk, yk) = Dψ((1− ak)xk + akxk, (1− ak)zk + akxk) ≤ (1− ak)κDψ(xk, zk) and
Dψ(xk, zk) = Dψ((1− ak−1)xk + ak−1xk, (1− ak−1)xk−1 + ak−1xk) ≤ (1− ak−1)κDψ(xk, xk−1).

Combining the above inequalities, we arrive at

Φ(xk+1) + 1
γk
Dψ(xk+1, xk) ≤ Φ(xk) +

( 1
γk

+ L

)
(1− ak)κ(1− ak−1)κDψ(xk, xk−1)

−
( 1
γk
− L

)
Dψ(xk+1, yk).

Thus, in view of the choice of the parameters, there exists ν]0, 1] such that

Φ(xk+1) + a1−κ
k LDψ(xk+1, xk) ≤ Φ(xk) + a1−κ

k−1LDψ(xk, xk−1)− νa1−κ
k−1LDψ(xk, xk−1)

−
(
a1−κ
k − 1

)
LDψ(xk+1, yk)

≤ Φ(xk) + a1−κ
k−1LDψ(xk, xk−1)− νLDψ(xk, xk−1)

−
(
a1−κ − 1

)
LDψ(xk+1, yk).

Subtracting inf Φ on both sides, we get the claimed inequality.

Capitalizing on the above descent property of the Lyapunov function Ψk, we get some preliminary
convergence properties2.

Proposition 5.6.3. Under Assumptions 5.1.1 and (B.1)-(B.2), the sequences generated by Algorithm 5
(IBPG) are such that:
(i) The sequence

{
Ψk(xk, xk−1)

}
k∈N is decreasing and thus limk→+∞Ψk(xk, xk−1) ≥ 0 exists.

(ii)
∑
k∈N ‖xk − xk−1‖2 <∞ and thus limk→∞ ‖xk − xk−1‖ = 0.

(iii) We have the rate

min
0≤i≤k

‖xi − xi−1‖2 ≤
2(σψνL)−1Ψ0(x0, x−1)

k + 1 .

Proof. (i) The first claim comes from Lemma5.6.2 and non-negativity of Dψ thanks to convexity
of ψ. The existence of the limit then follows as Ψk is non-negative and decreasing (recall that Φ
is bounded from below, ak ≥ a > 0 and κ ∈]0, 1]).

(ii) We use σψ-strong convexity of ψ and then sum (5.6.1) dropping the last non-negative term to
get

σψνL

2

k∑
i=0
‖xi − xi−1‖2 ≤ νL

k∑
i=0

Dψ(xi, xi−1)

≤ Ψ0(x0, x−1)−Ψk(xk, xk−1) ≤ Ψ0(x0, x−1). (5.6.5)
2Only convexity of ψ is needed for claim (i) to hold.
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Passing to the limit as k → +∞ we get the summability claim.
(iii) We have

(k + 1) min
0≤i≤k

‖xi − xi−1‖2 ≤
k∑
i=0
‖xi − xi−1‖2 .

Combining this with (5.6.5), we conclude.

To prove global convergence, it is sufficient to show that IBPG is a descent-like method according
to Definition 2.4.3 and then to invoke Theorem2.4.4. For this we need to a construct an appropriate
function Ψ that verifies the conditions of Definition 2.4.3. The sequence of functions Ψk could do the
job if ak is taken fixed, say equal to a ∈ [a, a], for all k ≥ K, where K is arbitrarily large (see the
discussion in Remark 5.2.4). We therefore consider the energy function

Ψ(xk, xk−1) =

Ψk(xk, xk−1) if k < K,

Φ(xk)− inf Φ + a1−κLDψ(xk, xk−1) otherwise.

Observe first that Ψ is KL since both Φ and ψ are. The following proposition shows that the sequence
generated by IBPG is a descent-like sequence for the new Lyapunov function Ψ.

Proposition 5.6.4. Assume that Assumptions 5.1.1 and Assumptions 5.2.1 hold. Let (xk)k∈N be a
bounded sequence generated by Algorithm5. Then (xk)k∈N is a gradient-like descent sequence. More-
over the set of cluster points of (xk)k∈N is a nonempty compact set of crit(Φ).

Proof.
• Sufficient decrease condition. From Lemma5.6.2 σψ-strong convexity of ψ, we have ∀k ∈ N

Ψ(xk+1, xk) ≤ Ψ(xk, xk−1)− νLDψ(xk, xk−1)

≤ Ψ(xk, xk−1)− σψνL

2 ‖xk − xk−1‖2

which shows (C.1) in Definition 2.4.3.
• Relative error condition. We have to show (C.2) in Definition 2.4.3.
ψ is C2 hence Dψ(·, ·) is C1 jointly in its arguments. The sum rule of the limiting subdifferential
applies in this case and tells us that for k ≥ K, we have

∂Ψ(xk+1, xk) =

∇F (xk+1) + ∂G(xk+1) + a1−κL(∇ψ(xk+1)−∇ψ(xk))
−a1−κL∇2ψ(xk)(xk+1 − xk)

 . (5.6.6)

From the update equation of xk+1 by IBPG, we have

∇ψ(yk)− γ∇F (yk)−∇ψ(xk+1) ∈ γ∂G(xk+1), (5.6.7)

where γ = aκ−1/L. Set vk+1
def= (v1

k+1, v
2
k+1) where

v1
k+1 = (∇F (xk+1)−∇F (yk)) + a1−κL (∇ψ(yk)−∇ψ(xk))

and v2
k+1 = −a1−κL∇2ψ(xk)(xk+1 − xk).

In view of (5.6.6) and (5.6.7), we have

vk+1 ∈ ∂Ψ(xk+1, xk).

We shall now bound ‖vk+1‖2 =
∥∥∥v1
k+1

∥∥∥2
+
∥∥∥v2
k+1

∥∥∥2
. Since (xk)k∈N is bounded and ∇ψ is Lipschitz

continuous on any bounded subset by (B.3), there exists Lψ such that∥∥∥v2
k+1

∥∥∥ ≤ a1−κLLΨ ‖xk+1 − xk‖ ≤ a1−κLLψ ‖xk+1 − xk‖ .
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Moreover, (xk)k∈N is also bounded by Lemma5.6.1. Assumption (B.3) then entails that there
exist LF > 0 such that∥∥∥v1

k+1

∥∥∥ ≤ LF ‖xk+1 − xk‖+ LF ‖xk − yk‖+ a1−κLLψ ‖xk − yk‖ .

where we used that a ∈]0, 1] and κ ∈]1, 2]. Now, by definition of the iterates

xk − yk = xk − zk − a(xk − zk) = (1− a)(xk − xk−1 − a(xk − xk−1)) = (1− a)2(xk − xk−1).

Therefore ∥∥∥v1
k+1

∥∥∥ ≤ LF ‖xk+1 − xk‖+ (LF + a1−κLLψ)(1− a)2 ‖xk − xk−1‖

≤ LF ‖xk+1 − xk‖+ (LF + a1−κLLψ)(1− a)2 ‖xk − xk−1‖ .

Taking ρ2 = LF + (LF + a1−κLLψ)(1− a)2 + a1−κLLψ, we get the claim.
• Continuity condition. Since (xk)k∈N is bounded, its set of cluster points is a nonempty set. It is

also compact set as the intersection of compact sets. Let us consider a subsequence (xkj )j∈N that
converges to some limit x∗. From Proposition 5.6.3(i) and Lemma5.6.1, we have that

(
xkj+1

)
k∈N

and
(
ykj

)
k∈N

converge to the same limit. Now arguing as in (5.6.3)-(5.6.4), we get

G(xkj+1) ≤ G(x∗) +
〈
∇F (ykj ), x∗ − xkj+1

〉
− 1
γ
Dψ(xkj+1, ykj ) + 1

γ
Dψ(x∗, ykj )−

1
γ
Dψ(xkj+1, x

∗)

≤ G(x∗) +
〈
∇F (ykj ), x∗ − xkj+1

〉
+ 1
γ
Dψ(x∗, ykj ).

Passing to the limit as j → +∞ and using continuity of Dψ we get that

lim sup
j→+∞

G(xkj+1) ≤ G(x∗).

Combining this with continuity of F proves (C.3) in Definition 2.4.3.
Let xkj → x∗. We argued above that ykj → x∗ and xkj+1 → x∗. We then have from (5.6.7), continuity
of ∇ψ and ∇F , and sequential closedness of ∇G that

−∇F (x∗) ∈ ∂G(x∗),

i.e. x∗ ∈ crit(Φ).

Proof of Theorem5.2.3

Proof. (i) This claim comes from Proposition 5.6.3.
(ii) This is a consequence of Proposition 5.6.4 and Theorem2.4.4 after observing from (5.6.6) that

crit(Ψ) = {(x?, x?) : x? ∈ crit(Φ)}.
(iii) We now turn to proving convergence to a global minimizer. We introduce the following extended

variable, x̃k = (xk, xk−1) ∈ Rn ×Rn such that Ψ(xk, xk−1) = Ψ(x̃k) for all k ∈ N. Let us choose
radius r > ρ2 > 0 such that η < ρ1(r − ρ2)2. Let us suppose that the initial point x0 is chosen
such that the following conditions hold,

Φ(x?) = Ψ(x̃?) ≤ Ψ(x̃0) < Ψ(x̃?) + η = Φ(x?) + η (5.6.8)

‖x0 − x?‖+ 2
√

Ψ(x̃0)−Ψ(x̃?)
ρ1

+ ρ2
ρ1
ϕ
(
Ψ(x̃0)−Ψ(x̃?)

)
< ρ. (5.6.9)

The condition (C.1) combined with (5.6.8) imply that for any k ∈ N,Ψ(x̃?) ≤ Ψ(x̃k+1) ≤
Ψ(x̃0) < Ψ(x̃?) + η, and moreover

‖xk+1 − xk‖ ≤
√

Ψ(x̃k+1)−Ψ(x̃k+2)
ρ1

≤

√
Ψ(x̃k+1)−Ψ(x̃?)

ρ1
. (5.6.10)
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We deduce that if for any k ∈ N, xk ∈ B(x?, ρ) then xk+1 ∈ B(x?, r). Indeed, by the triangle
inequality

‖xk+1 − x?‖ ≤ ‖xk − x?‖+
√

Ψ(x̃k+1)−Ψ(x̃?)
ρ1

= ρ+ (r − ρ) = r. (5.6.11)

It remains to show that ∀k ∈ N, xk ∈ B(x?, ρ). We argue by induction. The triangle inequality
gives

‖x1 − x?‖ ≤ ‖x0 − x?‖+
√

Ψ(x̃1)−Ψ(x̃?)
ρ1

≤ ‖x0 − x?‖+
√

Ψ(x̃0)−Ψ(x̃?)
ρ1

< ρ,

which means that x1 ∈ B(x?, ρ). We also have

‖xk+1 − x?‖ ≤ ‖z0 − x?‖+ 2 ‖x1 − x0‖+
k∑
j=1
‖xk − xk−1‖ ,

Standard arguments with the KL inequality show that
k∑

i=l+1
‖xk − xk−1‖ ≤

ρ2
ρ1
ϕ
(
Ψ(xl+1, xl)−Ψ(x̃?)

)
. (5.6.12)

Applying this bound (5.6.12) with l = 0 and combining with (5.6.9) yields

‖xk+1 − x?‖ ≤ ‖x0 − x?‖+ 2
√

Ψ(x̃0)−Ψ(x̃?)
ρ1

+ ρ2
ρ1
ϕ
(
Ψ(x̃0)−Ψ(x̃?)

)
< ρ,

which implies that xk+1 ∈ B(x?, ρ).
If we start close enough to x? so that (5.6.8)-(5.6.9) holds the sequence (xk)k∈N will remain in
the neighborhood B(x?, ρ) and converges to a critical point, say x∗. Moreover Ψ(xk)→ Φ(x∗) ≥
Φ(x?). Let us assume that Φ(x∗) > Φ(x?). Since Φ has the KL property at x? and thus

ϕ′ (Φ(x∗)− Φ(x?)) dist(0, ∂Φ(x∗) ≥ 1.

This is a contradiction since ϕ′(s) > 0 for s ∈]0, η[ and dist(0, ∂Φ(x∗)) = 0 since x∗ is a critical
point. We conclude that x∗ is indeed a global minimizer.

5.7 Proofs of Local Convergence

At this juncture, we pause to present the following Lemma, which forms the essence of our framework.

Lemma 5.7.1. (A Firmly nonexpansive map) Let G ∈ Γ0(Rn) and ψ be a strongly convex function
with full domain then the following map J def= (∇ψ + ∂G)−1 and Id− J are firmly non-expansive.

Let us observe that if ψ is not strongly convex but just convex, then from (5.7.1) one has that J is
only monotone.

Proof. Let x, y ∈ Rn such that p = J(x) and q = J(y). Since G ∈ Γ0(Rn) we have the following
statements

D
−∇ψ(p)+x
G (q, p) ≥ 0 and D

−∇ψ(q)+y
G (p, q) ≥ 0.

If we sum up both inequalities, we find that

D
−∇ψ(p)+x
G (q, p) +D

−∇ψ(q)+y
G (p, q) ≥ 0 ⇐⇒ 〈Jx− Jy, x− y〉 ≥ Dψ(q, p) +Dψ(p, q). (5.7.1)

Therefore we get the desired result through strong convexity of ψ and [22, Proposition 4.4].
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5.7.1 Proof of Lemma5.3.3

Proof. We have 0 ∈ ∂Φ(x?), since G ∈ PSFx?(Mx?) and F ∈ C1 thanks to [111, Corollay 4.7]
(smooth perturbation of partly smooth functions), we have that Φ ∈ PSFx?(Mx?). From the global
convergence Theorem5.2.3, we have xk

Φ−→ x?. Let us consider the iteration of Algorithm5 and define

vk+1 = 1
γk

(−∇ψ(xk+1) +∇ψ(yk)) +∇F (xk+1)−∇F (yk),

we have that ∀k ∈ N, vk ∈ ∂Φ(xk). Besides,

‖vk+1‖ ≤
1
γk
‖∇ψ(xk+1)−∇ψ(yk)‖+ ‖∇F (xk+1)−∇F (yk)‖

Since (xk)k∈N is assumed to be bounded and so thus (yk)k∈N by Lemma5.6.1, we deduce from As-
sumption (B.3) that there exists a positive scalar M1,M2 > 0 such that

‖vk+1‖ ≤
(
M1
γk

+M2

)
‖xk+1 − yk‖ ,

=
(
M1
γk

+M2

)
‖xk+1 − (1− ak)(1− ak−1)xk−1 − (1− ak)ak−1xk − akxk‖ ,

≤
(
M1
γk

+M2

)
(‖xk+1 − xk‖+ (1− ak)(1− ak−1) ‖xk − xk−1‖) ,

≤
(
M1
γk

+M2

)
‖xk+1 − xk‖+

(
M1
γk

+M2

)
(1− ak)(1− ak−1) ‖xk − xk−1‖ ,

Therefore, we obtained that for k →∞ we get that ak → a ∈ [a, a] implying that (γk)k∈N converges.
The latter combined with the fact that xk → x?, we deduce that ‖vk‖ → 0 as k → ∞. We conclude
that xk identifiesMx? thanks to [75, Proposition 10.12].
(i) If the active manifold Mx? is an affine subspace, then Mx? = x? + Tx? due to the normal

sharpness property, and the claim follows immediately.
(ii) When G is locally polyhedral around x?, Mx? is an affine subspace, and the identification of

(yk)k∈N and (zk)k∈N follows from (i). For the rest, it is sufficient to observe that, by polyhedrality,
for any x in Mx? near x?, ∂G(x) = ∂G(x?), combining Fact 2.5.4 and Fact 2.5.5, we arrive at
the second conclusion.

The next Lemma gives the spectral properties of the matrices defined (5.3.1).

Lemma 5.7.2. Under the Assumption 5.1.1-5.2.1, let x? ∈ RI(Φ) ∩ ND(Φ) such that F is locally C2

around x?. Then for any stepsize γ ∈ ]0, 1/L], we have
(i) HF is symmetric positive definite with eigenvalues in

]
γσσψ, Lλmax(∇2ψ(x?))γ

]
.

(ii) V has eigenvalues in [
λmax(∇2ψ(x?)) (1− γL) , λmax(∇2ψ(x?))− γσψσ

[
,

hence H−1
ψ V has eigenvalues in[

1− γLλmax(∇2ψ(x?))
σψ

, 1− γσ σψ
λmax(∇2ψ(x?))

[
.

(iii) WHψ has eigenvalues in ]0, qψ(x?)].
(iv) If either x? ∈ ND(Ψ) orMx? is affine then WV has eigenvalues in ]−Λ,Λ[ where we recall that

Λ = |qψ(x?)− γσ| with qψ(x?) = λmax(∇2ψ(x?))
σψ

.

Proof.
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(i) Combining the fact that F is locally C2 and x? ∈ RI(Ψ) we get that ∃σ > 0,∀h ∈ Tx? ,〈
h;∇2F (x?)h

〉
≥
〈
h;σ∇2ψ(x?)h

〉
≥ σσψ ‖h‖2

where the last part comes from the strong convexity of ψ. This implies that λmin(HF ) ≥ γσσψ.
Since F is L−smooth relative to ψ, ∀h ∈ Tx? ,〈

h;∇2F (x?)h
〉
≤ L

〈
h;∇2ψ(x?)h

〉
≤ Lλmax(∇2ψ(x?)) ‖h‖2 .

(ii) We have that V = Hψ −HF and that Hψ has eigenvalues in [σψ, λmax(∇2ψ(x?))]. We combine
this with the previous claim on HF and the eigenvalues of the difference of two positive definite
matrices.
For the second claim, let us observe thatH−1

ψ V is similar to the following matrice Id−H−1/2
ψ HFH

−1/2
ψ .

Besides, we have thatH−1/2
ψ HFH

−1/2
ψ has eigenvalues in

[
γσ

σψ
λmax(∇2ψ(x?)) , γL

λmax(∇2ψ(x?))
σψ

[
thus,

the difference of two positive definite matrices.
(iii) From Remark 5.3.4, we have that W has eigenvalues in ]0, 1/σψ] which implies that WHψ has

eigenvalues in
]
0, λmax(∇2ψ(x?))

σψ

]
.

(iv) Let us observe that WV = W 1/2
(
W 1/2VW 1/2

)
W−1/2, thus WV is similar to W 1/2VW 1/2. We

have ∥∥∥W 1/2VW 1/2
∥∥∥ ≤ ∥∥∥W 1/2

∥∥∥ ‖V ‖ ∥∥∥W 1/2
∥∥∥ ≤ ∣∣∣λmax(∇2ψ(x?))− γσψσ

∣∣∣ ∥∥∥W 1/2
∥∥∥2
.

=
∣∣∣∣∣λmax(∇2ψ(x?))

σψ
− γσ

∣∣∣∣∣ ,
where we used the fact that either x? ∈ ND(Ψ) orMx? is affine holds then from Remark 5.3.4
we have ‖W‖ ≤ 1

σψ
.

Let us define the following matrices i.e.,

Hk
F

def= γkPTx?∇
2F (x?)PTx? , V k def= Hψ −Hk

F , Uk
def= γk∇2

Mx?
Φ(x?)PTx? −HF . (5.7.2)

To enhance readability, we introduce simplified notation for any k ∈ N,

bk = (1− ak)ak−1 + ak and ck = (1− ak)(1− ak−1), (5.7.3)
b = 2a− a2 and c = (1− a)2. (5.7.4)

From this notation, we have this obvious Lemma.

Lemma 5.7.3. Let us consider the sequences define in (5.7.3), If ak → a as k → ∞ then we have
bk → b and ck → c.

Following the work of [118, SectionB], we also define the matrices

Mk
1 =

[
bW (V k − V ), cW (V k − V )

]
, Mk

2 =
[
(bk − b)WV k, (ck − c)WV k

]
.

Therefore, we have the following proposition.

Proposition 5.7.4. Under the same assumptions as Proposition 5.3.6, for k large enough we have

‖yk − x?‖ = O(‖dk‖), ‖rk+1‖ = O(‖dk‖), ‖xk+1 − yk‖ = O(‖dk‖), (5.7.5)
‖∇F (yk)− F (xk+1)‖ = O (‖dk‖) , ‖∇ψ(yk)−∇ψ(xk+1)‖ = O (‖dk‖) , (5.7.6)

and ∥∥∥W (Uk − U)(xk+1 − x?)
∥∥∥ = o(‖dk‖),

∥∥∥Mk
1 dk

∥∥∥ = o(‖dk‖),
∥∥∥Mk

2 dk
∥∥∥ = o(‖dk‖). (5.7.7)

Proof.

– 101 –



Chapter 5 5.7. Proofs of Local Convergence

• From the definition of the sequences we have,

‖yk − x?‖ = ‖(1− ak)zk + akxk − x?‖ ,
= ‖(1− ak)(zk − x?) + ak(xk − x?)‖ ,
= ‖(1− ak)(1− ak−1)rk−1 + ((1− ak)ak−1 + ak) rk‖ ,
≤(1− ak)(1− ak−1) (‖rk−1‖+ ‖rk‖) ,
≤
√

2 ‖dk‖ .

• We recall that rk+1 = xk+1 − x? thus,

‖rk+1‖ =
∥∥∥(∇ψ + γk∂G)−1(∇ψ(yk)− γk∇F (yk))− (∇ψ + γk∂G)−1(∇ψ(x?)− γk∇F (x?))

∥∥∥ ,
≤ ‖∇ψ(yk)−∇ψ(x?)‖+ γk ‖∇F (yk)−∇F (x?)‖ ,
≤ (M1 +M2γk) ‖yk − x?‖ ,
≤ (M1 +M2γk)

√
2 ‖dk‖ ,

where we used the non-expansiveness of the mapping (∇ψ + γk∂G)−1 (see Lemma5.7.1), the
boundedness of the sequence and again Assumption (A.3).

• From Assumption (A.3), there exists M1 > 0 large enough such that

‖∇ψ(yk)−∇ψ(xk+1)‖ ≤M1 ‖xk+1 − yk‖ = O(‖dk‖).

Similarly, there exists M2 large enough such that

‖∇F (yk)−∇F (xk+1)‖ ≤M2 ‖yk − xk+1‖ ≤M2
√

2 ‖dk‖ = O(‖dk‖).

• Let us now turn to the proof of (5.7.7), from the definition of Φ, we have that

lim
k→∞

∥∥∥W (Uk − U)rk+1
∥∥∥

‖rk+1‖
≤ lim

k→∞
|γk − γ| ‖W‖

∥∥∇Mx?
Φ(x?)PTx?

∥∥ = 0, (5.7.8)

since γk → γ which means that
∥∥∥W (Uk − U)rk+1

∥∥∥ = o(‖rk+1‖) = o(‖dk‖), where we have used
(5.7.5).

• We have that,

lim
k→∞

∥∥∥Mk
1 dk

∥∥∥
‖dk‖

= lim
k→∞

∥∥∥bW (V k − V )rk + cW (V k − V )rk−1
∥∥∥

‖dk‖

≤ lim
k→∞

max(|b| , |c|) ‖W‖
∥∥∥V k − V

∥∥∥ (‖rk‖+ ‖rk+1‖)
‖dk‖

≤ lim
k→∞

max(|b| , |c|) ‖W‖ |γk − γ|
∥∥PTx?∇2F (x?)PTx?

∥∥√2 ‖dk‖
‖dk‖

= lim
k→∞

√
2|γk − γ|max(|b| , |c|) ‖W‖

∥∥∥PTx?∇2F (x?)PTx?
∥∥∥ = 0,

as the term max(|b| , |c|) ‖W‖
∥∥PTx?∇2F (x?)PTx?

∥∥ is bounded since ‖W‖
∥∥PTx?∇2F (x?)PTx?

∥∥ ≤
Lλmax(∇2ψ(x?))−1 ‖Hψ‖ ≤ 1 and max(|b| , |c|) ≤ 1.

• To finish the proof, we have

lim
k→∞

∥∥∥Mk
2 dk

∥∥∥
‖dk‖

= lim
k→∞

∥∥∥(bk − b)WV krk + (ck − c)WV krk−1
∥∥∥

‖dk‖
,

≤ lim
k→∞

max (|bk − b| , |ck − c|) ‖W‖
∥∥∥V k

∥∥∥√2 ‖dk‖
‖dk‖

,

≤ lim
k→∞

max (|bk − b| , |ck − c|) ‖W‖
∥∥∥V k

∥∥∥√2 = 0,
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where we use (5.7.5), the fact that
∥∥∥V k

∥∥∥→ ‖V ‖ <∞, the boundedness of ‖W‖ combined with
Lemma5.7.3 to get the result.

5.7.2 Proof of Proposition 5.3.6

Proof.
Since (zk)k∈N is a sequence generated by Algorithm5 converging to x? ∈ critΦ. From the finite
identification Lemma5.3.3, there exists K ∈ N such that xk is close enough to x? for k ≥ K. Let
Txk+1 , Tx? be their corresponding tangent spaces, and define τk+1 : Tx? → Txk+1 the parallel translation
along the unique geodesic joining xk+1 to x?. From the definition of the point xk+1 and the fact that
x? ∈ critΦ we have

∇ψ(yk)−∇ψ(xk+1)− γk (∇F (yk)−∇F (xk+1)) ∈ γk∂Φ(xk+1)
0 ∈ γk∂Φ(x?).

We project now this inclusions over the tangents spaces Txk+1 and Tx? respectively to get that

τ−1
k+1PTxk+1

(
∇ψ(yk)−∇ψ(xk+1)− γk (∇F (yk)−∇F (xk+1))

)
= γkτ

−1
k+1∇Mx?

Φ(xk+1)
0 = γk∇Mx?

Φ(x?)

where we have used the Fact 2.5.5. After summing both lines and subtracting the value τ−1
k+1PTxk+1

∇ψ(x?)
we have

γk
(
τ−1
k+1∇Mx?

Φ(xk+1)−∇Mx?
Φ(x?)

)
= τ−1

k+1PTxk+1
(∇ψ(yk)−∇ψ(xk+1))− γkτ−1

k+1PTxk+1
(∇F (yk)−∇F (xk+1)) .

(5.7.9)

We combined Lemma2.5.1, (5.7.6) and Lemma2.5.2 due to the local C2-smoothness of ψ to obtain
that

τ−1
k+1PTxk+1

(∇ψ(yk)−∇ψ(xk+1))

= PTx? (∇ψ(yk)−∇ψ(xk+1)) + o(‖xk+1 − yk‖),
= PTx? (∇ψ(yk)−∇ψ(x?))− PTx? (∇ψ(xk+1)−∇ψ(x?)) + o(‖dk‖),
= PTx?∇

2ψ(x?)(yk − x?) + o(‖yk − x?‖)− PTx?∇
2ψ(x?)(xk+1 − x?) + o(‖rk+1‖) + o(‖dk‖),

= PTx?∇
2ψ(x?)(yk − x?)− PTx?∇

2ψ(x?)(xk+1 − x?) + o(‖dk‖),
= PTx?∇

2ψ(x?)PTx? (yk − x?)− PTx?∇
2ψ(x?)PTx? (xk+1 − x?) + o(‖dk‖), (5.7.10)

where we have used (5.7.6), [120, Lemma5.1] and the fact that rk+1 = O(‖dk‖). Using similar
arguments, we have

τ−1
k+1PTxk+1

(∇F (yk)−∇F (xk+1))

= PTx? (∇F (yk)−∇F (xk+1)) + o(‖dk‖),
= PTx? (∇F (yk)−∇F (x?))− PTx? (∇F (xk+1)−∇ψ(x?)) + o(‖dk‖),
= PTx?∇

2F (x?)(yk − x?) + o(‖yk − x?‖)− PTx?∇
2F (x?)(xk+1 − x?) + o(‖xk+1 − x?‖) + o(‖dk‖),

= PTx?∇
2F (x?)(yk − x?)− PTx?∇

2F (x?)(xk+1 − x?) + o(‖dk‖),
= PTx?∇

2F (x?)PTx? (yk − x?)− PTx?∇
2F (x?)PTx? (xk+1 − x?) + o(‖dk‖). (5.7.11)

Moreover, we have

τ−1
k+1∇Mx?

Φ(xk+1)−∇Mx?
Φ(x?) = ∇2

Mx?
Φ(x?)PTx? (xk+1 − x?) + o(‖dk‖). (5.7.12)
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We replace now the expressions (5.7.10), (5.7.11), (5.7.12), in (5.7.9), we obtain(
PTx?∇

2ψ(x?)PTx? + γk∇2
Mx?

Φ(x?)PTx? − γkPTx?∇
2F (x?)PTx?

)
(xk+1 − x?) = (Hψ + Uk)(xk+1 − x?)

= PTx?∇
2ψ(x?)PTx? (yk − x?)− γkPTx?∇

2F (x?)PTx? (yk − x?) + o(‖dk‖).
(5.7.13)

We get by factorizing and replacing (5.7.2) that

(Hψ + Uk)(xk+1 − x?) = V k(yk − x?) + o(‖dk‖). (5.7.14)

Now we replace the expressions of the inertial term in term of xk, xk−1 to obtain that

(Hψ + Uk)rk+1 = ((1− ak)ak−1 + ak)V krk + (1− ak)(1− ak−1)V krk−1 + o(‖dk‖), (5.7.15)

We can write further

(Hψ + U) rk+1 =
(
U − Uk

)
rk+1 + ((1− ak)ak−1 + ak)V krk + (1− ak)(1− ak−1)V krk−1

+ o(‖dk‖),

Thanks to Remark 5.3.4, it is possible to invert the matrice U +Hψ we have,

rk+1 = W
(
U − Uk

)
rk+1 + ((1− ak)ak−1 + ak)WV krk + (1− ak)(1− ak−1)WV krk−1

+ o(‖Wdk‖),

Let us use the notation (5.7.3) with the estimates (5.7.7)

dk+1 =

M +

Mk
1

0

+

Mk
2

0

 dk + o(‖dk‖) = Mdk + o(‖dk‖),

which concludes the proof.

5.7.3 Proof of Proposition 5.3.8

Proof. We have that

M

r1

r2

 =

(2a− a2)H−1
ψ V (a− 1)2H−1

ψ V

Id 0

r1

r2


=

(2a− a2)H−1
ψ V r1 + (a− 1)2H−1

ψ V r2

r1

 = %

r1

r2

 ,
therefore r1 = %r2, and insert it in the first identity to get that

%2r2 = (2a− a2)H−1
ψ V %r2 + (1− a)2H−1

ψ V r2

which means that (
(2a− a2)%+ (1− a)2

)
HψV r2 = %2r2

thus there exists η such that H−1
ψ V r2 = ηr2 moreover η satisfies the following equation

%2 − (2a− a2)%η − (1− a)2η = 0. (5.7.16)

The rest of the proof follows exactly the same step as the proof of [118, Proposition 4.7,Corollary 4.9]
and we conclude with Lemma5.7.2-(iv).

– 104 –



Chapter 5 5.8. Proof of the Escape Property

5.8 Proof of the Escape Property

5.8.1 Proof of Theorem5.4.1

Let us define the following mapping for a ∈ [a, a].

T(x2, x1) def=

∇ψ−1 (∇ψ(y(x2, x1)
)
− γ∇F (y(x2, x1))

)
x2

 , (5.8.1)

where
y(x2, x1) = (2a− a2)x2 + (1− a)2x1.

It is simple to see that x? ∈ critΦ if and only if (x?, x?) is a fixed point of the operator T. We have
the following lemma which is an extension of the [83, LemmaA.2] to the inertial case.

Lemma 5.8.1. Let T be defined as in (5.8.1) then,
(a) For all (x2, x1) ∈ R2n, detDT(x2, x1) 6= 0,
(b) The set of strict saddle points is contained in the following set

UT
def=

(x2, x1) ∈ R2n : T(x2, x1) =

x2

x1

 ,max
i
|λi(DT(x1, x2))| > 1

 , (5.8.2)

=

(x, x) ∈ R2n : T(x, x) =

x
x

 ,max
i
|λi(DT(x, x))| > 1

 . (5.8.3)

Proof.
(a) Since ψ is a C2 function, and thus ∇ψ is C1, and as ψ is strongly convex, the inverse function

theorem ensures that (∇ψ)−1 is a local diffeomorphism. Moreover, F is C2, therefore we define
the following for simplicity

A(x2, x1) def= (2a− a2)∇2ψ−1 (∇ψ(y(x2, x1))− γ∇F (y(x1, x2)))(
∇2ψ(y(x2, x1))− γ∇2F (y(x2, y1))

)
,

and

B(x2, x1) def= (1− a)2∇2ψ−1 (∇ψ(y(x2, x1))− γ∇F (y(x1, x2)))(
∇2ψ(y(x2, x1))− γ∇2F (y(x2, y1))

)
,

then one can write that

DT(x2, x1) =

A(x2, x1) B(x2, x1)
Id 0

 . (5.8.4)

We deduce that for any (x2, x1) we have that detDT(x2, x1) = det(−B(x2, x1)). Therefore,
it suffices to show that det(−B(x2, x1)) 6= 0 which hold since ∀(x2, x1), ∇2ψ(y(x2, x1)) −
γ∇2F (y(x2, x1)) is invertible. Indeed we have,

∇2ψ(y(x2, x1))− γ∇2F (y(x2, x1)) � (1− γL)∇2ψ(y(x2, x1)) � 0,

where we have used the L−smooth adaptable property and the strong convexity of ψ.
(b) Let x? be a strict saddle point therefore (x?, x?) is a fixed point of T. To have that (x?, x?) ∈ UT

it remains to show that DT has an eigenvalue of magnitude greater than 1. We have

DT(x?, x?) =

(2a− a2)
(
Id− γ∇2ψ(x?)−1∇2F (x?)

)
, (1− a)2 (Id− γ∇2ψ(x?)−1∇2F (x?)

)
Id 0

 .
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Let us remark that DT(x?, x?) is similar to the following matrix

T̃ =

(2a− a2)
(
Id− γH−1/2

ψ ∇2F (x?)H1/2
ψ

)
, (1− a)2

(
Id− γH−1/2

ψ ∇2F (x?)H1/2
ψ

)
Id 0

 ,
where we have applied the following transformation

H−1/2
ψ 0
0 H

−1/2
ψ

DT(x?, x?)

H1/2
ψ 0
0 H

1/2
ψ

.
For γ < 1/L, the symmetric matrix Id − γH−1/2

ψ ∇2F (x?)H1/2
ψ has an eigenvalue of magnitude

greater than one,(see Lemma3.5.2). Let us denote by v the eigenvector associated with this

eigenvalue that we denote η > 1. We claim that the vector

v
0

 is an eigenvector associated with

the eigenvalue η of the matrix T̃. Indeed, we have

T̃

v
0

 =

(2a− a2)vη + (1− a)2vη

0

 = η

v
0

 ,
which conclude the proof.

To show our Claim, we combine the global convergence result of Theorem5.2.3-(ii) the previous
Lemma and the center stable manifold theorem see [110, Corollary 1]. This allows us to say that the
set {

(z0, z−1) ∈ R2n : lim
k→∞

Tk((z0, z−1)) ∈ strisad(Φ)
}

has measure zero.

5.8.2 Proof of Lemma5.4.3

Let us first observe that since x? ∈ ND(Φ), using the same arguments as for the finite time identification
Lemma5.3.3 for any x = (x2, x1) ∈ R2n near (x?, x?), T(x2, x1) ∈ W̃x? . The subsequent portion of the
proof faithfully adheres to the perturbation analysis used in [68, Theorem4.1] with a minor adjustment
to the inertial Bregman case.

Let G̃ : Rn → R be any C2−smooth extension (representative) of G on the neighborhood of x? in
Wx? , consider the following problem defining P1T near (x?, x?),

min
u∈Wx?

Υ(x, u) def=
{
F (y(x)) + G̃(u) + 〈∇F (y(x)), u− y(x)〉+ 1

γ
Dψ(u, y(x))

}
. (P̃x)

We can write the map T as

T(x) =

 min
u∈Wx?

Υ(x, u)

x

 ,
To apply the perturbation result [160, Theorem 3.1] to Υ. We need a quadratic growth condition
which we got using the fact that ψ is strongly convex and thus u 7→ Υ(x, u) is also σψ

γ -strongly convex.
We also need to check a level-boundedness condition. This comes from a sufficient condition see [68,
Lemma2.4]. u(x), the minimizer of Υ(z, ·) is a continuous map in near (x?, x?) then we apply the
perturbation analysis [160, Theorem 3.1] with the following Lagrangian function

L(x, u, λ) def= Υ(x, u) + 〈W (u), λ)〉 ,

where λ is the vector of Lagrange multipliers.
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Since u 7−→ Υ(x, u) is a strongly convex function and u(x?, x?) = x? is the unique minimizer on
Wx? . Thus there exists optimal Lagrange multipliers λ̄ such that

∇uL
(
(x?, x?), x?, λ̄

)
= ∇G̃(x?) +∇F (x?) +

n∑
i=1

λ̄i∇Wi(x?) = 0.

From [160, Theorem3.1], we get that locally for any x near (x?, x?), u(x) = P1T(x) is a C1− smooth
map and we deduce that for any h = (h1, h2) ∈ R2n with ‖h‖ → 0,

〈∇P1T(x?, x?), h〉 = argmin
v∈TWx?

2
〈
∇2
zuL

(
(x?, x?), x?, λ̄

)
v, h

〉
+
〈
∇2
uuL

(
(x?, x?), x?, λ̄

)
v, v

〉
. (5.8.5)

The expression of the Hessians of the Lagrangian is of the form 2n× n

Hzu
def= ∇2

zuL
(
(x?, x?), x?, λ̄

)
=

(2− a)
(
∇2F (x?)− 1

γ∇
2ψ(x?)

)
,

(1− a)2
(
∇2F (x?)− 1

γ∇
2ψ(x?)

)
 ,

and
Huu

def= ∇2
uuL

(
(x?, x?), x?, λ̄

)
= ∇2G̃(x?) + 1

γ
∇2ψ(x?) +

n∑
i=1

λ̄i∇2
uuWi(x?).

The minimization problem (5.8.5) is a quadratic form over the tangent space TWx?
thus the minimizer

v̄ must satisfy the following condition

PTWx?HuuPTWx? v̄ + PTWx?P1H>zuPTWx? h1 + PTWx?P2H>zuPTWx? h2 = 0. (5.8.6)

Let us denote H̃uu = PTWx?HuuPTWx? , H̃
2
zu = PTWx?P1H>zuPTWx? and H̃1

zu = PTWx?P2H>zuPTWx? .
(5.8.6) becomes

H̃uuv̄ + H̃2
zuh1 + H̃1

zuh2 = 0.

Since x? is the unique minimizer of Υ ((x?, x?), ·) and we also observe that Υ ((x?, x?), ·) has the same
active manifold Wx? as a sum of G and a smooth function this implies that Υ ((x?, x?), ·) has at least
a quadratic growth near x?. Therefore H̃uu is symmetric positive definite and invertible. Then we
solve (5.8.5) to get that

〈∇P1T ((x?, x?)) , h〉 = −H̃−1
uu H̃2

zuh1 − H̃−1
uu H̃1

zuh2, ∀h1, h2 ∈ TWx?
.

At this point, we get that T is a C1−smooth map. We immediately deduce that

〈∇T ((x?, x?)) , h〉 =

−H̃−1
uu H̃2

zuh2 − H̃−1
uu H̃1

zuh1

h1

 , ∀h1, h2 ∈ TWx?
.

It remains now to show that ∇T(x?, x?) has at least one eigenvalue greater than one. Let us first
show that when x? ∈ Actstrisad(Φ), −H̃−1

uu H̃2
zu has an eigenvalue greater than one. Let η be an real

eigenvalue associated to an eigenvector v ∈ TWx?
i.e.

−H̃−1
uu H̃2

zuv = ηv ⇐⇒
(
ηH̃uu + H̃2

zu

)
v = 0.

Let us observe that since x? is an active strict saddle point for the problem, then H̃uu + H̃2
zu has a

strict negative eigenvalue. Indeed,

H̃uu + H̃2
zu = PTWx?

(
∇2G̃(x?) +

n∑
i=1

λ̄i∇2
uuWi(x?) + (1− a)2

(
∇2F (x?)−

1
γ
∇2ψ(x?)

))
PTWx? .

Combining with the fact that H̃uu is positive definite means that there exists η > 1 such that the
matrix ηH̃uu + H̃zu is singular. By construction, we get that η > 1 is an eigenvalue of ∇T associated

to the eigenvector

v
0

 of T.
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Chapter 6

Low Complexity Regularized Phase
Retrieval

In this chapter, we study the phase retrieval problem in the situation where the vector to be recovered
has an a priori structure that can encoded into a regularization term. This regularizer is intended to
promote solutions conforming to some notion of simplicity or low complexity. We investigate both
noiseless recovery and stability to noise and provide a very general and unified analysis framework
that goes far beyond the sparse phase retrieval mostly considered in the literature. In the noiseless
case we provide sufficient conditions under which exact recovery, up to global sign change, is possible.
For (sub)Gaussian measurements, we also provide sample complexity bounds for exact recovery. The
depends on the Gaussian width of the descent cone at the sought-after vector which is a geometric
measure of the complexity of x̄. In the noisy case, we consider both the constrained (Mozorov) and
penalized (Tikhonov) formulations. We provide sufficient conditions for stable recovery and prove
linear convergence for sufficiently small noise. For Gaussian measurements, we again provide sample
complexity bounds for this to hold in high probability. These bound depend on the the intrinsic
dimension of the sought-after vector and only (poly)logarithmically on the ambient dimension.

Our main contributions are as follows:

Main contributions of this chapter

I Analysis of exact recovery for the noiseless regularized phase retrieval (Pȳ,0) in the deter-
ministic case, and explicit sample complexity bounds for standard (sub)Gaussian sensing
vectors over a large class of regularizers.

I Analysis of stable phase retrieval in the deterministic case with linear convergence in the
low noise regime. We also provide sample complexity bounds ensuring local stable recovery
from standard Gaussian measurements.

I Instantiation of the above sample complexity bounds for several examples including the
`1-norm, the `1,2-norm as well as total variation.
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6.1 Introduction

6.1.1 Problem statement

We consider a generic additive noise model in which the noisy phase retrieval problem reads:Recover x̄ ∈ Rn from the measurements y ∈ Rm

y[r] = | 〈ar, x̄〉 |2 + ε[r], r ∈ JmK,
(GeneralPR)

where [r] is the r-th entry of the corresponding vector, and ε ∈ Rm is the noise vector. This model is
inspired by works such as [55, 70, 63]. Since x̄ is real-valued, the best one can hope for is to ensure
that x̄ is uniquely determined from its intensities up to a global sign. Without any prior information,
one can recover the signal in the noiseless case using mirror descent Chapter 3 and Chapter 4 in the
noisy case. In order to reach the land of well-posedness without unreasonably increasing the number
of measurements, it appears natural to restrict the inversion process to a well-chosen low dimensional
subset of Rn containing the plausible solutions including x̄; e.g. a linear space or a union of subspaces.
A closely related procedure, that we will describe shortly, amounts to adopting a variational framework
where the sought-after solutions are those where a prior penalty/regularization function is the smallest.
It is then natural to leverage this low dimensional structure which will hopefully allow to minimize
the number of measurements needed for recovery, and this is the most important as the measurement
process might be expensive or can destroy the sample at hand. Here, we focus on the Tikhonov
variational regularization:

inf
x∈Rn
{Fy,λ(x) def=

∥∥∥y − |Ax|2∥∥∥2
+ λR(x)}, (Py,λ)

where A = [a1, . . . , am]> and R : Rn → R∪{+∞} is a proper closed convex function which is intended
to promote objects similar or close to x̄. λ > 0 is the regularization parameter which balances the
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trade-off between fidelity and regularization. It is immediate that x 7→
∥∥y − |Ax|2∥∥2 is C2(Rn) but is

nonconvex due to the quadratic measurements (though weakly convex). Besides, his gradient is not
Lipschitz continuous. In this setting, we can associate to the objective the following function or kernel

ψ(x) = 1
4 ‖x‖

4 + 1
2 ‖x‖

2 . (6.1.1)

We bear in mind that x 7→
∥∥y − |Ax|2∥∥2 is smooth relative to ψ (see Chapter 3). Therefore Fy,λ(x) is

amenable to the efficient Bregman proximal gradient scheme or its inertial version studied in Chapter 5.
It is well known in the inverse problem literature, see e.g. [158], that the value of λ should typically

be an increasing function of ‖ε‖. In the special case where there is no noise, i.e. ε = 0, the fidelity to
data should be perfect, which corresponds to considering the limit1 of (Py,λ) as λ → 0+. This limit
turns out to be the noiseless version for exact (up to a global sign) recovery,

inf
x∈Rn

R(x) s.t. |Ax| =
√
ȳ where ȳ

def= |Ax̄|2. (Pȳ,0)

Denoting F def=
{
w ∈ Rm : |w| =

√
ȳ
}
, which is a non-empty finite bounded set of cardinality 2m

(vertices of a hyper-rectangle), (Pȳ,0) can be equivalently written as

inf
x∈Rn

R(x) s.t. Ax ∈ F .

We refer to Section 1.2.2 for an extended review about this problem.

6.1.2 Contributions

In this chapter, we start by providing sufficient conditions under which the set of solutions to (Pȳ,0)
is non-empty. Then, we show that the recovery of x̄ up to a global sign is exact when we solve (Pȳ,0)
under two geometric (deterministic) conditions on R, the descent cone of R and the deterministic
measurements A. It turns out that for standard Gaussian measurements and the class of regularizer
that we consider, these conditions are satisfied with high probability under a sufficiently large sample
complexity. As a consequence, when the number of measurements is large enough the recovery of
x̄ up to a sign change is exact by solving (Pȳ,0). Futhermore, we provide an explicit expression of
the recovery bounds for decomposable regularizers (including the lasso, the group lasso), for frame
analysis-type regularizers and the total variation.

Concerning stable recovery, we first consider a relaxed inequality constrained form (Py,ρ) which is
known as the residual method or Mozorov formulation. We show that under the previous deterministic
conditions, the set of solutions is nonempty. Moreover, the solutions are located in a ball of center x̄ up
to a sign-change and radius equal to the signal-to-noise ratio. For standard Gaussian measurements
and a large class of regularizers, we show with high probability that solving (Py,ρ) yields a solution
that is near x̄ up to a sign change as soon as the number of measurements is large enough.

We then turn to penalized problem (Py,λ). First, we show that under an appropriate geometric
deterministic, the problem has a nonempty and compact set of minimizers. Then, using Γ−convergence
tools, when λ → 0 and ε → 0 the set of minimizers reduces to the set of true vectors up to a global
sign change. Finally, we show that for small noise, the recovery error scales as ‖ε‖, a rate known in
the inverse problem literature as linear convergence2.

For standard Gaussian measurements, we exemplify our sample complexity bounds for several reg-
ularizers. This covers both the popular sparse retrieval case, but we also provide bounds that are new
and unknown in the literature to the best of our knowledge.

1This will be studied rigorously in Section 6.4.
2The reason is that the bound is indeed linear ‖ε‖.
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6.2 Noiseless Recovery
We here study well-posedness (existence and uniqueness of minimizers) of (Pȳ,0), which in turn will
allow us to state when exact recovery is possible. In this section, we use the shorthand notation

Sȳ,0
def= Argmin

A−1(F)
(R).

6.2.1 Existence of minimizers

The following result provides sufficient conditions under which problem (Pȳ,0) has minimizers. It does
not need convexity of R.

Proposition 6.2.1. Let R : Rn → R be a proper and lsc function. Assume that:
(i) A(dom(R)) ∩ F 6= ∅.
(ii) R is non-negative3.
(iii) ker(R∞) ∩ ker(A) = {0}.
Then Sȳ,0 is a non-empty compact set.

Remark 6.2.2.
• A typical case where all above assumptions are in force is when R is coercive, has full domain

and is bounded from below.
• This result is general and goes beyond the phase retrieval problem, indeed this result can be

applied for instance for general non-linear inverse problem with a suitable definition of F .

Proof. The range of R∞ is on R+ since R verifies (ii). Define G = R+ ιF ◦A. In view of the domain
qualification assumption (i), we get by [12, Proposition 2.6.1 and Proposition 2.6.3] that

G∞(z) ≥ R∞(z) + ιF∞(Az).

Since F is bounded, we get that F∞ = {0}. Moreover, the range of R∞ is on R+ since R is bounded
from below. Thus

G∞(z) > 0 for all z /∈ ker(R∞) ∩ ker(A).

It then follows from [12, Corollary 3.1.2] that (iii) entails the claim.

6.2.2 Deterministic recovery condition

Definition 6.2.3 (Descent cone). The descent cone of R at x̄ is the conical hull of the sublevel set
of R at x̄, i.e.

DR(x̄) def=
⋃
t>0

{
z : R(x̄+ tz) ≤ R(x̄)

}
. (6.2.1)

The tangent cone of the sublevel set of R at x̄, denoted TR(x̄) def= cone(SlevR(x̄)− x̄), is the closure
of DR(x̄). The normal cone of the sublevel set of R at x̄ is

NR(x̄) def=
{
s : 〈s, z − x̄〉 ≤ 0, z ∈ SlevR(x̄)

}
,

and we have NR(x̄) = TR(x̄)◦, where ◦ stand for polarity.

Theorem 6.2.4. Suppose that Sȳ,0 6= ∅, and that:
(H.1) R ∈ Γ0(Rn) and is even symmetric.

3In fact, we need R to be only bounded from below, and there is no loss of generality by taking the lower bound as 0
by a trivial translation argument.
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(H.2) ∀I ⊂ JmK, |I| ≥ m/2
ker(AI) ∩ DR(x̄) = {0}.

Then the recovery of x̄ (up to a global sign) is exact by solving (Pȳ,0), i.e.

Sȳ,0 = X .

Remark 6.2.5.
• Assumption is quite general in the choice of the regularizer R it encompasses any convex atomic

norm, or norms such as `1, `1,2 and `∞−norm etc.
• Of course, assumption (H.2) is vacuous if DR(x̄) is empty, which is the case if the set of mini-

mizers is empty. The assumptions of Proposition 6.2.1 ensure that this cannot be the case.

Proof. The proof is a generalization of that [178, Theorem2.2] beyond the `1-norm, and exploits
the structure of the constraint set F . Let b def= Ax̄, and for any sign vector ε ∈ {1,−1}m, set
bε

def= [ε[r]b[r] : r ∈ JmK]>. Consider the minimization problem

min
x∈Rn

R(x) s.t. Ax = bε,

and denote xε any minimizer, if it exists. If xε does not exist, there is nothing to say. We claim that
if xε exists, then under our assumptions, for any sign vector ε,

R(x̄) ≤ R(xε)

with equality iff xε = ±x̄.
Observe that xε ∈ A−1(F). Thus 〈ar, xε〉 = ±b[r] for all r ∈ JmK. Let

I =
{
r ∈ JmK : 〈ar, xε〉 = b[r]

}
.

Thus either |I| ≥ m/2 or |Ic| ≥ m/2. Assume the first case holds. This implies that AIxε = AI x̄.
From [61, Proposition 2.1], it follows using (H.2) and convexity of R that

Argmin
x∈Rn

{R(x) s.t. AIx = AI x̄} = {x̄},

and thus, since xε is a feasible point,
R(x̄) ≤ R(xε),

with equality holding if and only if xε = x̄. For the case where |Ic| ≥ m/2, we have −AIcxε = AI
c
x̄.

Arguing similarly as before using also that R is even, we get

Argmin
x∈Rn

{R(x) s.t. −AIcx = AI
c
x̄} = −Argmin

x∈Rn
{R(x) s.t. AIcx = AI

c
x̄} = {−x̄},

Thus, in this case
R(x̄) ≤ R(xε),

with equality holding if and only if xε = −x̄. Since this holds for any ε ∈ {1,−1}m and any minimizer
of (Pȳ,0) is of the form xε (when the latter exists), we conclude.

6.2.3 Recovery from Gaussian measurements

Here the entries of A are i.i.d. N (0, 1/m).

Lemma 6.2.6. Let δ ∈]0, 1[ and ν = 1
18

√
π
2 . Suppose that x ∈ Rn is a fixed vector. Then

min
I⊂JmK,|I|≥m/2

∥∥∥AIx∥∥∥ ≥ ν/2 ‖x‖
with probability at least 1− 2e− ν

2m
8 , and

max
I⊂JmK,|I|≥m/2

∥∥∥AIx∥∥∥ ≤ (1 + δ) ‖x‖
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with probability at least 1− e− δ
2m
2 .

Proof. The first claim follows from [178, Lemma4.4]. The second one follows from the fact that∥∥∥AIx∥∥∥ ≤ ‖Ax‖ for all I ⊂ JmK,

and then use Proposition 2.6.8.

Theorem 6.2.7. Let ν be as defined in Lemma6.2.6. Suppose that (H.1) holds. Let A be a matrix
whose entries are i.i.d. N (0, 1/m) with

m ≥ 16
ν2 log

(
N
(
DR(x̄) ∩ Sn−1, ε

))
,

for some ε ∈]0, ν/(2 + ν)[. Then with probability at least 1− 3e− ν
2m
16 , the recovery of x̄ (up to a global

sign) is exact by solving (Pȳ,0).

Proof. The proof relies on combining Theorem6.2.4 and Lemma6.2.6 together with a covering argu-
ment. Throughout the proof, denote Ω = DR(x̄) ∩ Sn−1. In view of Theorem6.2.4, we need to prove
that there exists c ∈]0, 1[ such that

min
I⊂JmK,|I|≥m/2

∥∥∥AIz∥∥∥ ≥ c
for all z ∈ Ω. Let Ωε =

{
zi : i ∈ JN (Ω, ε)K

}
be an ε-net of Ω. For a fixed zi ∈ Ωε, Lemma6.2.6 tells

us that ∥∥∥AIzi∥∥∥ ≥ ν/2
with probability at least 1− 2e− ν

2m
8 . Now, for an arbitrary but fixed z ∈ Ω, there exists zj ∈ Ωε such

that ‖z − zj‖ ≤ ε. Thus

min
I⊂JmK,|I|≥m/2

∥∥∥AIz∥∥∥ ≥ min
I⊂JmK,|I|≥m/2

∥∥∥AIzj∥∥∥− max
I⊂JmK,|I|≥m/2

∥∥∥AI(z − zj)∥∥∥ ≥ ν

2 −
(

1 + ν

2

)
ε

with probability at least 1− 3e− ν
2m
8 , where we took δ = ν/2 in Lemma6.2.6 for the second inequality.

Taking ε small as devised and setting c = ν
2 −

(
1 + ν

2
)
ε ∈]0, ν/2[, we deduce that

min
I⊂JmK,|I|≥m/2

∥∥∥AIz∥∥∥ ≥ c
holds for all z ∈ Ω with probability at least 1 − 3elog(N(Ω,ε))− ν

2m
8 . The bound on the number of

measurements then leads to the claim.

Estimating covering numbers is difficult to compute for general convex cones. On the other hand
in [61, 5, 172], the authors developed a general recipe for estimating Gaussian widths of the descent
cone (restricted to the unit sphere). This is the motivation behind the following corollary.

Corollary 6.2.8. Let ν be as defined in Lemma6.2.6. Suppose that (H.1) holds. Let A be a matrix
whose entries are i.i.d. N (0, 1/m) with

m ≥ 32(ν + 2)2

ν4 w
(
DR(x̄) ∩ Sn−1

)2
.

Then with probability at least 1 − 3e− ν
2m
16 , the recovery of x̄ (up to a global sign) is exact by solving

(Pȳ,0).

Proof. Use the lower bound of Proposition 2.6.3 and choose ε = ν√
2(2+ν) in Theorem6.2.7.

Remark 6.2.9.
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(i) Clearly, this result shows that the sample complexity bound for exact phase recovery by solving
(Pȳ,0) is nearly (up to constants) the same as for exact recovery from linear Gaussian measure-
ments [61, 5]. However, one has to keep in mind that (Pȳ,0) contains a non-convex constraint
and the recovery results we have are not for an algorithmic scheme.

(ii) This result can not be extended to the general case of the Subgaussian random variable. The
most technical reason is that it heavily relies on the Gaussian structure of the measurements
which is related to the strong RIP property defined in [178]. For instance, [178, Remark 2.3]
highlights the fact that basic subgaussian sensing such as Bernoulli ensemble which is defined as

Pr(aj,i = 1) = Pr(aj,i = −1) = 1
2 ,

does not satisfy this property. Let us observe that regardless of the number of measurements
taken reconstruction of an element of the standard basis of Rn is not possible with from this
measurement.

In the numerical section, we will report experimental results with a Bregman Proximal Gradient
algorithm showing good empirical performance.

6.2.4 Recovery bounds for decomposable regularizers

We start by defining some essential geometrical objects that were introduced in [173].

Definition 6.2.10 (Model Subspace). Let x ∈ Rn. We denote by ex as

ex = Paff(∂R(x))(0).

We denote
Sx = par(∂R(x)) and Tx = S⊥x .

Tx is coined the model subspace of x associated to J .

It can be shown, see [173, Proposition 5], that x ∈ Tx, hence the name model subspace. When R is
differentiable at x, we have ex = ∇R(x) and Tx = Rn. When R is the `1-norm (Lasso), the vector ex
is nothing but the sign of x. Thus, ex can be viewed as a generalization of the sign vector. Observe
also that ex = PTx(∂R(x)), and thus ex ∈ Tx ∩ aff(∂R(x)). However, in general, ex 6∈ ∂R(x).

In this subsection, we will assume that R is a strong gauge in the sense of [173, Definition 6].

Definition 6.2.11 (Strong Gauge). R is a strong gauge if

R = γC , (6.2.2)

where C is a non-empty convex compact set containing the origin as an interior point, and ex ∈
ri(∂R(x)).

Strong gauges have a nice decomposable description of ∂R(x) in terms of ex, Tx, Sx and σC . More
precisely, piecing together [173, Theorem1, Proposition 4 and Proposition 5(iii)], we have

∂R(x) = aff(∂R(x)) ∩ C◦ =
{
v ∈ Rn : vTx = ex and σC(vSx) ≤ 1

}
. (6.2.3)

The Lasso, group Lasso, and nuclear norms are typical popular examples of (symmetric) strong gauges.
Let us observe that strong symmetric gauges not only conform to (H.1) but also meet the requirements
outlined in Proposition 6.2.1.

The following Lemma is a characterization of the Gaussian width of the descent cone of strong
gauge function.
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Lemma 6.2.12. If R is a strong gauge of C, then for any x ∈ Rn \ {0}

w
(
DR(x) ∩ Sn−1

)2
≤ E

(
σC(gSx)2

)
‖ex‖2 + dim (Tx) . (6.2.4)

Proof. From [61, Proposition 3.6] which is an expression of the Gaussian width of a cone in terms of
the dual of the cone, we have

w
(
DR(x) ∩ Sn−1

)2
≤ E

(
dist (g,DR(x)◦)2

)
= E

(
dist (g,NR(x))2

)
.

R being a strong gauge implies R is convex and has full domain, and thus ∂R is non-empty convex and
compact valued at any x ∈ Rn. Moreover, Argmin(R) = {0}. It then follows from [155, Theorem23.7]
that for any x 6= 0

NR(x) =
⋃
t≥0

t∂R(x),

where t∂R(x) is the dilation of the subdifferential through the scaling factor t. In turn, we get

w
(
DR(x) ∩ Sn−1

)2
≤ E

(
dist (g,∪t≥0t∂R(x))2

)
≤ inf

t≥0
E
(
dist (g, t∂R(x))2

)
≤ E

(
dist

(
g, t̃∂R(x)

)2)
for any t̃ ≥ 0. Observe that in view of definition (6.2.3), we have

t∂R(x) =
{
v ∈ Rn : vTx = tex and σC(vSx) ≤ t

}
. (6.2.5)

We will now device an appropriate choice of t̃ and of a subgradient in ∂R(x)4. Let v be a random
vcetor such that vSx = gSx and vTx = σC(gSx)ex. Obviously, v ∈ σC(gSx)∂R(x) by (6.2.5). Thus

w
(
DR(x) ∩ Sn−1

)2
≤ E

(
‖g − v‖2

)
= E

(
‖(gTx − vTx) + (gSx − vSx)‖2

)
= E

(
‖gTx − σC(gSx)ex‖2

)
≤ E

(
σC(gSx)2

)
‖ex‖2 + E

(
‖gTx‖

2
)

= E
(
σC(gSx)2

)
‖ex‖2 + dim(Tx),

where we used orthogonality of Tx and Sx in the first equality, independence of gTx and σC(gSx) in
third equality since g is Gaussian, and E

(
‖gTx‖

2
)

= tr(PTx) = dim(Tx) in the last equality.

`1 regularization `1 regularization (a.k.a. Lasso) is used to promote the sparsity of the minimizers,
see [47] for a comprehensive review. It corresponds to choosing R as the `1-norm

R(x) = ‖x‖1 =
n∑
i=1
|x[i]| . (6.2.6)

It is also referred to as `1-synthesis in the signal processing community.
We denote (ai)1≤i≤n the canonical basis of Rn and supp(x) def=

{
i ∈ JnK : x[i] 6= 0

}
. Then,

Tx = span{(ai)i∈supp(x)}, ex[i] =

sign(x[i]) if i ∈ supp(x)
0 otherwise

, and σC = ‖·‖∞ . (6.2.7)

Thus if x̄ is s-sparse, i.e. |supp(x̄)| = s, then dim(Tx̄) = s and ‖ex̄‖2 = s. Moreover

E
(
σC(gSx)2

)
= E

(
max

i∈supp(x̄)c
|g[i]|2

)
,

which is the expectation of the maximum of (n − s) χ2-random variables with 1 degree of freedom.
We then have, using [154, Lemma3.2], that

E
(

max
i∈supp(x̄)c

|g[i]|
)
≤
(√

2 log(n− s) + 1
)2
.

4This generalizes the reasoning of [154] beyond group sparsity.
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Collecting the above in Lemma6.2.12 and using Corollary 6.2.8, we obtain the following result.
Proposition 6.2.13. Let x̄ be an s-sparse vector. Let A be a matrix whose entries are i.i.d. N (0, 1/m)
with

m ≥ 32(ν + 2)2

ν4 s

((√
2 log(n− s) + 1

)2
+ 1

)
.

Then with probability at least 1 − 3e− ν
2m
16 , the recovery of x̄ (up to a global sign) is exact by solving

(Pȳ,0) with R = ‖·‖1.
Remark 6.2.14. Clearly, m & s log(n − s) + s measurements are sufficient for the exact recovery
of an s-sparse vector from m phaseless measurements of a Gaussian map A. This can be improved
to m & s log(n/s) + s by exploiting the particular form of the normal cone of the `1 norm, see [61,
Proposition 3.10]. This leads to a measurement bound similar to the one in [178]. Note however that
their recovery guarantee is RIP-based, and thus is uniform over all s-sparse vectors while our recovery
analysis is non-uniform.

`1 − `2 regularization The `1 − `2 regularization (a.k.a. group Lasso) is widely advocated to
promote group/block sparsity, i.e. it drives all the coefficients in one group to zero together hence
leading to group selection, see [47] for a comprehensive review. The group Lasso penalty with L groups
reads

R(x) = ‖x‖1,2
def=

L∑
i=1
‖x[bi]‖2 . (6.2.8)

where
L⋃
i=1

bi = JnK, bi, bj ⊂ JnK, and bi ∩ bj = ∅ whenever i 6= j. Define the group support as

suppB(x) def=
{
i ∈ JLK : x[bi] 6= 0

}
. Thus, one has

Tx = span{(aj){j: ∃i∈suppB(x),j∈bi
}}, ex[bi] =


x[bi]
‖x[bi]‖2

if i ∈ suppB(x)
0 otherwise

, (6.2.9)

and
σC(v) = max

i∈suppB(x̄)c
‖v[bi]‖2 . (6.2.10)

Thus if x̄ is s-block sparse, i.e. |suppB(x̄)| = s, and the groups have equal sizeB, we have dim(Tx̄) = sB

and ‖ex̄‖2 = s. Moreover, [154, Lemma3.2] yields

E
(

max
i∈suppB(x̄)c

‖g[bi]‖2
)
≤
(√

2 log(L− s) +
√
B

)2
.

Hence, we get the following result for the group Lasso.
Proposition 6.2.15. Let x̄ be an s-block sparse vector. Let A be a matrix whose entries are i.i.d.
N (0, 1/m) with

m ≥ 32(ν + 2)2

ν4 s

((√
2 log(L− s) +

√
B

)2
+B

)
.

Then with probability at least 1 − 3e− ν
2m
16 , the recovery of x̄ (up to a global sign) is exact by solving

(Pȳ,0) with R = ‖·‖1,2.
Remark 6.2.16. For group Lasso, in [101] the authors proposed the Copram algorithm which
achieves reconstruction from O( s2B log(n)). Our theoretical bound for recovery is of order m &
s (2 log(L− s) +B). This bound is up to a constant similar to the case where the reconstruction
is done from linear measurements and A is a Gaussian matrix [57, Theorem3.1] and [153]. We think
this is the first recovery bound for Group Lasso Phase retrieval. It shows the gap between the the-
oretical bound and the bound obtained using an iterative procedure to solve the group Lasso phase
retrieval problem.
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6.2.5 Recovery bounds for frame analysis-type regularizers

Analysis-type priors build upon the assumption that the signal of interest x̄ is of low complexity
(sparse) after being transformed by a so-called analysis operator. Given D : Rn×p, the analysis-type
regularizer we consider is

R(x) = γC(D>x). (6.2.11)

where γC is a strong gauge (see (6.2.2) and the discussion just after). Since γC has a full domain, we
have

∂R(x) = D∂γC(D>x) = D
{
v ∈ Rp : vT

D>x
= eD>x and σC(vS

D>x
) ≤ 1

}
, (6.2.12)

where eD>x and TD>x are the model parameters of γC at D>x.
In this section, we will assume that D is a Parseval tight frame of Rn, hence surjective, meaning

that D is in the orthogonal group, i.e. DD> = Idn. Many popular sparsifying transforms in signal and
image processing are Parseval tight frames (e.g. wavelets, curvelets, or concatenation of orthonormal
bases; see [166]).

We can now state the following analysis-type prior version of Lemma6.2.12.

Lemma 6.2.17. Let R be of the form (6.2.2), where γC is a strong gauge and D is a Parseval tight
frame. Let z = D>g where g ∼ N (0, Idn). Then for any x ∈ Rn \ {0}

w
(
DR(x) ∩ Sn−1

)
≤ E

(
σC(zS

D>x
)
)
‖eD>x‖+

√
dim (TD>x). (6.2.13)

The proof bears an apparent similarity with that of Lemma6.2.12, but handling the presence of D
necessitates new arguments.

Proof. Since D is surjective and γC is a strong gauge, we have Argmin(R) = {0}. It then follows
from [155, Theorem23.7] that for any x 6= 0

NR(x) =
⋃
t≥0

t∂R(x).

Combining this with (6.2.12), we get

w
(
DR(x) ∩ Sn−1

)
≤ inf

t≥0
E (dist (g, t∂R(x))) ≤ E

(
dist

(
g, t̃D∂γC(D>x)

))
for any t̃ ≥ 0. Let us pick v ∈ Rp such that vS

D>x
= zS

D>x
and vT

D>x
= σC(zS

D>x
)eD>x. Obviously,

v ∈ σC(zS
D>x

)∂γC(D>x). However, although the entries of z are all standard Gaussian, they are not
independent. We have

w
(
DR(x) ∩ Sn−1

)
≤ E (‖g −Dv‖)

= E
(∥∥∥DD>g −Dv∥∥∥)

≤ E (‖z − v‖)

= E
(∥∥∥(zT

D>x
− vT

D>x
) + (zS

D>x
− vS

D>x
)
∥∥∥2
)

= E
(∥∥∥zT

D>x
− σC(zS

D>x
)eD>x

∥∥∥)
≤ E

(
σC(zS

D>x
)
)
‖eD>x‖+ E

(∥∥∥zT
D>x

∥∥∥) .
In the first equality we used that D is a Parseval tight frame, and in the second inequality that
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‖D‖ ≤ 1. Let s(M) ∈ Rp be the decreasing sequence of singular values of M . We have

E
(∥∥∥zT

D>x

∥∥∥)2
≤ E

(∥∥∥zT
D>x

∥∥∥2
)

= E
(
tr
(
PT

D>x
D>gg>DPT

D>x

))
= tr

(
PT

D>x
D>DPT

D>x

)
= tr

(
PT

D>x
D>D

)
≤
〈
s
(
PT

D>x

)
, s(D>D)

〉
≤
∥∥∥s(PT

D>x

)∥∥∥
1
‖D‖2

= dim (TD>x) .
In the first inequality, we used Jensen’s inequality. In the second one, we invoked a well-known result
essentially due to von Neumann [177]. In the third one, we used Hölder’s inequality, and the last
equality uses that D is a Parseval tight frame and standard properties of orthogonal projectors on
subspaces.

The challenging part to compute the upper-bound in (6.2.13) is to compute the expectation therein
while the entries of z which are not independent (except the obvious case where D is orthonormal).
For the case of the `1 norm, however, this can be achieved.

`1 frame analysis regularization In this case, γC = ‖·‖1, and thus

TD>x = span{(ai)i∈supp(D>x)}, eD>x[i] =

sign((D>x)[i]) if i ∈ supp(D>x)
0 otherwise

, and σC = ‖·‖∞ .

(6.2.14)
Thus if x̄ is s-sparse in the dictionaryD>, i.e.

∣∣∣supp(D>x̄)
∣∣∣ = s, then dim(TD>x̄) = s and ‖eD>x̄‖2 = s.

Moreover
E (σC(zSx)) = E

(
max

i∈supp(D>x̄)c
|z[i]|

)
.

A standard estimate of the expectation of the `∞ norm of (not necessarily independent) standard
Gaussian random vectors gives

E
(

max
i∈supp(D>x̄)c

|z[i]|
)
≤
√

2 log(2(p− s)).

Inserting the above in Lemma6.2.17, and using Corollary 6.2.8 together with Jensen’s inequality, we
get the following.

Proposition 6.2.18. Let x̄ such that D>x̄ is s-sparse. Let A be a matrix whose entries are i.i.d.
N (0, 1/m) with

m ≥ 64(ν + 2)2

ν4 s (2 log(2(p− s)) + 1) .

Then with probability at least 1 − 3e− ν
2m
16 , the recovery of x̄ (up to a global sign) is exact by solving

(Pȳ,0) with R =
∥∥∥D>·∥∥∥

1
.

Remark 6.2.19.
• Consequently, it is sufficient to have m & s log(n−s)+s to ensure the exact recovery of a vector,

which is s-sparse in a tight frame, from m phaseless measurements of a Gaussian map A. We
are not aware of any such result in the phase recovery literature. Observe also that the sample
complexity bound we get is nearly (up to constants) the same as for exact recovery from linear
Gaussian measurements [57].
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• Unlike for the `1 case, when the gauge is the Group Lasso it is quite challenging to compute the
Gaussian width of the descent cone as the entries of z = D>g are dependents. The difficulty
lies in bounding the term E

(
σC(zS

D>x
)
)
which, in this case, contains the square of dependant

chi-variable over the maximal sub-blocks and we don’t know how to concentrate them.

6.2.6 Recovery bounds for total variation

Total variation (TV) corresponds to the case where the analysis operatorD> in (6.2.11) is the (discrete)
gradient ∇ and γC = ‖·‖1. In the 1D case, TV regularization reads

R(x) = ‖∇x‖1 , where ∇x[i] = x[i+ 1]− x[i], for i = 1, 2, . . . , n− 1.

R promotes signals x whose gradient is sparse, |supp(∇x)| ≤ s, or in other words, signals that are
piecewise constant with at most s jumps.

Bounding the Gaussian width of the descent cone of R in this case is very challenging as ∇ has a
non-trivial kernel, and thus does not fit within the setting of the previous section. However, if the
jumps of an s-gradient sparse signal x are well separated, [81] proposed a non-trivial construction
of the dual vector to compute the Gaussian width of the descent cone of the Total Variation. More
precisely, assume that there exists ∆ > 0 such that

min
i∈Js+1K

|ki − ki−1]
n

≥ ∆
s+ 1 ,

where supp(∇x) = {k1, . . . , ks} with 0 = k0 < k1 < . . . < ks < ks+1 = n. It was shown in [81,
Theorem2.10] that if ∆ ≥ 8s/n, then

w
(
D‖∇·‖1(x) ∩ Sn−1

)2
≤ C

∆s log(n)2,

for some numerical constant C > 0.
We are then able to state the following result.

Proposition 6.2.20. Let x̄ be an s-group sparse vector such that its separation constant verifies
∆ ≥ 8s/n. Let A be a matrix whose entries are i.i.d. N (0, 1/m) with

m &
1
∆s log(n)2.

Then with probability at least 1 − 3e− ν
2m
16 , the recovery of x̄ (up to a global sign) is exact by solving

(Pȳ,0) with R = ‖∇·‖1.

Remark 6.2.21. As mentioned before, finding complexity bounds for TV minimization is quite
challenging even in the compressed sensing literature. In this setting, [138, 139, 49] showed, for
two or higher dimensions signals, robust and stable recovery when A is Gaussian and composed with
orthonormal Haar wavelet transform. The complexity in this case is of order m ≥ sPolyLog(n, s). The
success of this approach relies on establishing a connection between the compressibility of Haar wavelet
representations and the bounded variation of a function and this does not hold in one dimension. We
think it is possible to extend this result to the case of phase retrieval and we leave this as future work.

It was shown in [49] that for general one-dimension signals, it is not possible to recover the signal
from m ≤ C1

√
sn − C2. This is why the authors of [81] consider signals where the jumps are more

separated and thus achievingm ≥ s log(n)2 which is of interest in this work. It would be also interesting
to explore the case of Fourier sub-sampled measurements for phaseless measurements. Indeed for
compress sensing, [103, 152] use variable-density sampling of the Fourier transform, wherein sampling
in the low frequencies is denser than in the high frequencies to provide complexity bound. We wind
up this discussion by noticing that this result is new for phase retrieval.
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6.3 Stable Recovery: Constrained Problem
When we have access only to inaccurate noisy measurements as in (NoisyPR), a natural formulation
is one in which the equality constraint in (Pȳ,0) is relaxed to an inequality constraint leading to

inf
x∈Rn

R(x) s.t.
∥∥∥y − |Ax|2∥∥∥ ≤ ρ, (Py,ρ)

where ρ is an upper bound on the size of the noise ε. In the inverse problems literature, this for-
mulation is known as the residual method or Mozorov regularization. In the following, we denote
Fy,ρ

def=
{
w ∈ Rn :

∥∥y − |w|2∥∥ ≤ ρ}. We obviously have F ȳ,0 = F . We also use the shorthand notation
Sy,ρ for the set of minimizers of (Py,ρ).

We start by showing that (Py,ρ) has minimizers. This result does not require convexity of R.

Proposition 6.3.1. Let R : Rn → R be a proper and lsc function. Assume that A(dom(R))∩Fy,ρ 6= ∅,
and that assumptions (ii)-(iii) of Proposition 6.2.1 hold. Then problem (Py,ρ) has a non-empty compact
set of minimizers.

Proof. The proof is similar to that of Proposition 6.2.1 replacing F by Fy,ρ, and the latter is a
compact set.

We are now ready to state our (deterministic) stability result.

Theorem 6.3.2. Consider the noisy phaseless measurements in (NoisyPR) where ‖ε‖ ≤ ρ. Assume
that R verifies (H.1). Then, for any x?y,ρ ∈ Sy,ρ, we have

dist(x?y,ρ,X ) ≤ 2ρ
smin

,

where

smin
def= inf

{
min

I⊂JmK,|I|≥m/2

∥∥∥AIz∥∥∥ : z ∈ DR(x̄) ∩ Sn−1
}
.

Proof. The proof as a flavour of the reasoning in the proof of Theorem6.2.4. Let I ⊂ JmK such that〈
ar, x

?
y,ρ

〉
= 〈ar, x̄〉 for all r ∈ I, and Ic its complement where the inner products have opposite signs.

Thus either |I| ≥ m/2 or |Ic| ≥ m/2. Assume that |I| ≥ m/2. Then∥∥∥|Ax?y,ρ| − |Ax̄|∥∥∥2
=
∥∥∥|AIx?y,ρ| − |AI x̄|∥∥∥2

+
∥∥∥|AIcx?y,ρ| − |AIc x̄|∥∥∥2

≥
∥∥∥AIx?y,ρ −AI x̄∥∥∥2

.

Recall that x̄ ∈ Fy,ρ by assumption on the noise. Thus R(x?y,ρ) ≤ R(x̄) and in turn x?y,ρ − x̄ ∈ DR(x̄).
Therefore, ∥∥∥|Ax?y,ρ| − |Ax̄|∥∥∥2

≥ s2
min

∥∥∥x?y,ρ − x̄∥∥∥2
.

For the case where |Ic| ≥ m/2, we argue similarly to infer that∥∥∥|Ax?y,ρ| − |Ax̄|∥∥∥2
≥ s2

min

∥∥∥x?y,ρ + x̄
∥∥∥2
.

Overall, we have

dist(x?y,ρ,X ) ≤

∥∥∥|Ax?y,ρ| − |Ax̄|∥∥∥
smin

≤

∥∥∥y − |Ax?y,ρ|∥∥∥+ ‖ε‖
smin

≤ 2ρ
smin

.

When A is a standard Gaussian map, we obtain the following general error bound.
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Proposition 6.3.3. Consider the noisy phaseless measurements in (NoisyPR) where ‖ε‖ ≤ ρ. Suppose
that (H.1) holds. Let ν be as defined in Lemma 6.2.6 and A be a matrix whose entries are i.i.d.
N (0, 1/m) with

m ≥ 32(ν + 2)2

ν4 w
(
DR(x̄) ∩ Sn−1

)2
.

Then with probability at least 1− 3e− ν
2m
16 , the following statement holds: for any x?y,ρ ∈ Sy,ρ,

dist(x?y,ρ,X ) ≤ 4ρ
ν(1− 1/

√
2)
.

Proof. From the proof of Corollary 6.2.8, we have

smin ≥ ν/2(1− 1/
√

2),

with probability at least 1− 3e− ν
2m
16 under the bound on m. Combining this with Theorem6.2.4, we

conclude.

Remark 6.3.4.
• In [80], the authors studied the stability of `1−norm phase retrieval against noise they showed

that for m ≥ s log(n/s) we can stably reconstruct a s−sparse signal for measurements that
satisfies the strong-RIP property. Our stability result here goes far beyond the `1−norm and
does not require that A satisfies the strong-RIP but rather a structural assumption. For Gaussian
measurements, Proposition 6.3.3 entails the recovery bound depending on the descent cone.

• We can easily instantiate the last result for the regularizers studied in Section 6.2.4, 6.2.5 and
6.2.6, which in turn will give sample complexity bounds for the error bound of Theorem6.2.7 to
hold.

• Let us notice that despite the nice stability properties of (Py,ρ), it is not clear if it can be solved
with an efficient algorithmic scheme. Indeed, although R is convex, the constraint in (Py,ρ) is
highly non-convex, and it is very challenging to project onto it. On the other hand, as stated
in the introduction, (Py,λ) is amenable to the efficient Bregman proximal gradient algorithmic
scheme proposed [40] and further studied in Chapter 5. This is the reason we now turn our
attention to (Py,λ).

6.4 Stable Recovery: Penalized Problem
We now turn to study the noise-aware problem (Py,λ). In particular, the following questions will be
of most interest to us:

• Convergence: this ensures that for λ→ 0 as ε→ 0, the set of regularized solutions converges to
either x̄ or −x̄.

• Convergence rates: this provides an estimate of the rate at which the above convergence takes
place.

As will see, studying the stability of (Py,λ) is more involved than for (Py,ρ). One of the main difficulties,
which was also highlighted for linear inverse problems (see [174]), is that a minimizer of (Py,λ) is not
anymore in the descent cone of R at x̄.

In this section, we set
Sy,λ

def= Argmin
x∈Rn

Fy,λ(x),

where we recall the objective Fy,λ from (Py,λ).
We begin by providing conditions for the existence of minimizers. Again, this does not need con-

vexity of R.
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Proposition 6.4.1. Let R : Rn → R be a proper and lsc function. Assume that assumptions (ii)-(iii)
of Proposition 6.2.1 hold. Then for any λ > 0 and y ∈ Rm, problem (Py,λ) has a non-empty compact
set of minimizers.

Proof. The proof is similar to that of Proposition 6.2.1 replacing ιF by
∥∥y − | · |2∥∥2

/2, and the latter
turns out to be a smooth and coercive function. We omit the details for the sake of brevity.

6.4.1 Convergence

We start by proving the following convergence result for any minimizer x?y,λ of (Py,λ).

Theorem 6.4.2. Consider the noisy phaseless measurements in (NoisyPR). Let σ def= ‖ε‖. Assume
that (H.1), (H.2) and assumptions (ii)-(iii) of Proposition 6.2.1 hold. Suppose also that

λ→ 0 and σ2/λ→ 0, as σ → 0.

Then,
|Ax?y,λ| → |Ax̄|, R(x?y,λ)→ R(x̄) and dist

(
x?y,λ,X

)
→ 0 as σ → 0.

Proof. Let yk = ȳ + εk, σk = ‖εk‖ with σk → 0 as k → +∞. Observe that for any yk and λk > 0
Syk,λk is a non-empty compact set thanks to Proposition 6.4.1. Let x?k ∈ Syk,λk . We have by optimality
that ∥∥∥yk − |Ax?k|2∥∥∥2

+ λkR(x?k) ≤ ‖yk − ȳ‖2 + λkR(x̄) = σ2
k + λkR(x̄).

Thus ∥∥∥yk − |Ax?k|2∥∥∥2
≤ λk

(
σ2
k/λk +R(x̄)

)
and

R(x?yk,λk) ≤ σ2
k/λk +R(x̄).

In turn, ∥∥∥|Ax?k|2 − ȳ∥∥∥2
≤ 2

(∥∥∥yk − |Ax?k|2∥∥∥2
+ σ2

k

)
≤ 2

(
λk
(
σ2
k/λk +R(x̄)

)
+ σ2

k

)
.

Since the right hand side of this inequality goes to 0 as k → +∞, we deduce that

lim
k→+∞

|Ax?k|2 = ȳ. (6.4.1)

Moreover,
lim sup
k→+∞

R(x?k) ≤ R(x̄). (6.4.2)

We therefore obtain

lim sup
k→+∞

Fȳ,1(x?k) = lim sup
k→+∞

(∥∥∥|Ax?k|2 − ȳ∥∥∥2
+R(x?k)

)
≤ R(x̄)

This means that there exists k0 ∈ N such that (x?k)k≥k0
belongs to the sublevel set of Fȳ,1 at 2R(x̄),

that we denote CF . Since Fȳ,1 is lsc and coercive under our assumptions, its sublevel sets are compact
and so is CF . In turn, (x?k)k≥k0

lives on the compact set CF . The sequence thus possesses a convergent
subsequence and every accumulation point lies CF . Let

(
x?kj
)
j∈N be a convergent subsequence, say

x?kj → x∗. We have |Ax?kj |
2 → |Ax∗|2, and in view of (6.4.1), we obtain

|Ax∗|2 = ȳ.

Moreover, by lower-semicontinuity and (6.4.2),

R(x∗) ≤ lim inf
j→+∞

R(xkj ) ≤ lim sup
j→+∞

R(x?kj ) ≤ R(x̄). (6.4.3)
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Invoking Theorem6.2.4 (which holds under our assumptions), the last two relations mean that x∗ ∈
Sȳ,0 = X . The latter relation also shows that R(x̄) = R(x∗), and thus we have R(xkj )→ R(x̄). Since
this holds for any convergent subsequence, we conclude.

For Gaussian measurements, combining Theorem6.4.2 and Corollary 6.2.8, we have the following
asymptotic robustness result provided m is large enough.

Proposition 6.4.3. Consider the noisy phaseless measurements in (NoisyPR) and let σ def= ‖ε‖.
Assume that (H.1) and assumptions (ii)-(iii) of Proposition 6.2.1 hold. Suppose also that

λ→ 0 and σ2/λ→ 0, as σ → 0.

Let ν be as defined in Lemma6.2.6, and A be a matrix whose entries are i.i.d. N (0, 1/m) with

m ≥ 32(ν + 2)2

ν4 w
(
DR(x̄) ∩ Sn−1

)2
.

Then with probability at least 1− 3e− ν
2m
16 ,

dist
(
x?y,λ,X

)
→ 0 as σ → 0.

This result can be specialized with the corresponding sample complexity bounds for each of the
regularizers considered in Section 6.2.4 to 6.2.6. We leave the details to the reader.

6.4.2 Deterministic convergence rate

We now turn to quantifying the rate at which convergence of Theorem6.4.2 occurs. This will be possi-
ble under more stringent conditions. For instance, we will require the noise to be small enough to that
the rate is actually local. We moreover need a non-degeneracy condition and a restricted injectivity
conditions which are standard in inverse problems; see Remark 6.4.5 for a detailed discussion.

To lighten notation, let us denote
Bx̄

def= diagAx̄A.

Although the following result can be stated for general symmetric convex regularizers R, to avoid
additional technicalities and make the presentation simpler, we will restrict our attention to the case
of analysis-type symmetric strong gauges which will be sufficient for our purposes. More precisely, R
will be of the form (6.2.11), where D is a Parseval tight frame and γC is a symmetric strong gauge.
We recall the definition, notations, and properties of Section 6.2.4.

Theorem 6.4.4. Consider the noisy phaseless measurements in (NoisyPR). Let σ def= ‖ε‖. Assume
that R is as in (6.2.11), where D is a Parseval tight frame and γC is a symmetric strong gauge, and
that

∃q ∈ Rm s.t. Bx̄
>q ∈ ri(∂R(x̄)) (6.4.4)

and
ker(Bx̄) ∩ Im(DT

D>x̄
) = {0}. (6.4.5)

Consider the choice λ = cσ, for some c > 0. Then, for σ small enough and any minimizer x?y,λ ∈ Sy,λ,
we have

dist
(
x?y,λ,X

)
≤ Cσ,

where C > 0 is a constant which depends in particular on A, TD>x̄, c and q.

A few remarks are in order before we proceed with the proof.

Remark 6.4.5.
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• The error bound of Theorem6.4.4 tells us that for small noise, the distance of any minimizer of
(Py,λ) to X is within a factor of the noise level, which justifies the terminology "linear convergence
rate" known in the inverse problem literature. On the other hand, since R verifies all assumptions
of Theorem6.4.2, we have that Sy,λ are bounded uniformly in (y, λ), and it follows from (6.4.6)
that the error

∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥ is global and scales as O(max(σ1/2, σ)).
• Source condition: condition (6.4.4) is a strengthened version of the so-called "source condition"

or "range condition" in the literature of inverse problems; see [158] for a general overview of this
condition and its implications. In this case, v = B>x̄ q is called a non-degenerate dual certificate5;
see [174] for a detailed discussion in the case of linear inverse problems.

• Restricted injectivity: the restricted injectivity condition (6.4.5) is only favorable when γC is
non-smooth at D>x̄, hence the intuition that γC (hence R) promotes low-dimensional vectors.
Indeed, the higher the degree of non-smoothness, the lower the dimension of the subspace TD>x̄,
and hence the less number of measurements is needed for the restricted injectivity to hold. From
the calculus rules in [173, Proposition 10(i)-(ii)], the model subspace of the regularizer R at
x̄ is ker(D>S

D>x̄
). Since D is a Parseval tight frame, one can easily show that ker(D>S

D>x̄
) ⊆

Im(DT
D>x̄

), with equality if D orthonormal. Thus (6.4.5) implies that Bx̄ is injective on the
model subspace of R at x̄, which is a minimal requirement to ensure recovery as is known even
for linear inverse problems.

• Bx̄ is nothing but the Jacobian of the non-linear mapping x ∈ Rn 7→ |Ax|2/2. Convergence rates
for regularized non-linear inverse problems were studied in [158]. However, their conditions are
too stringent and do not hold for the case of phase retrieval by solving (Py,λ).

The following lemma is a key step towards establishing our error bound.

Lemma 6.4.6. Let R as in (6.2.11) where D ∈ Rp×n and γC is a strong gauge of C. Let x ∈ Rn.
Then, for any w ∈ ri(γC(D>x)) and z ∈ Rn

γC
(
PS

D>x
D>(z − x)

)
≤ DDw

R (z, x)
1− σC

(
wS

D>x

) =
Dw
γC(D

>z,D>x)
1− σC

(
wS

D>x

) .
Observe that by the decomposability property in (6.2.3), w ∈ ri(∂γC(D>x)) is equivalent to

wT
D>z

= eD>x and σC(wS
D>x

) < 1.

In plain words, the denominator in Lemma6.4.6 does not vanish and the statement is not vacuous. In
fact, this denominator can be viewed as a “distance” to degeneracy.

Proof. We start by noting that ri(∂R(x)) = Dri(∂γC(D>x)). Let v = Dw. We have by convexity
and decomposability of the subdifferential of γC that for any pair (u,w) ∈ ∂γC(D>x)× ri

(
∂γC(D>x)

)
,

Dv
R(z, x) = Dw

γC(D
>z,D>x)

≥ Dw
γC(D

>z,D>x)−Du
γC(D

>z,D>x)

=
〈
u− w,D>z −D>x

〉
=
〈
uS

D>z
− wS

D>z
, D>z −D>x

〉
.

From [130, Theorem1], specialized to strong gauges, we have that for any ω ∈ Rp, ∃ũ ∈ ∂γC(D>x)
such that

γC(ωS
D>x

) =
〈
ũS

D>x
, ωS

D>x

〉
.

5Strictly speaking, the terminology "dual" may seem awkward because of non-convexity of the phase retrieval problem
(Py,λ) though it is weakly convex.
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Applying this with ω = D>z − D>x and taking u = ũ, continuing the above chain of inequalities
yields

Dv
R(z, x) ≥ γC(PS

D>x
(D>z −D>x))−

〈
wS

D>x
,PS

D>x
(D>z −D>x)

〉
≥ γC(PS

D>x
(D>z −D>x))

(
1− σC(wS

D>x

)
,

where in the last inequality, we used the duality inequality which holds by polarity between γC and
σC . This concludes the proof.

Proof of Theorem6.4.4. By symmetry of R, it can be easily seen that ∂R(−x̄) = −∂R(x̄), and
thus T−D>x̄ = TD>x̄ and e−D>x̄ = −eD>x̄. Therefore, if (6.4.4)-(6.4.5) hold then so they do at −x̄
and vice versa.

Let x?y,λ ∈ Sy,λ and suppose that x̄ is its closest point in X . We have by optimality that∥∥∥y − |Ax?y,λ|2∥∥∥2
+ λR(x?y,λ) ≤ σ2 + λR(x̄).

By the source condition (6.4.4), there exists q ∈ Rm such that v = Dw
def= B>x̄ q ∈ ri(∂R(x̄)). In turn,

w ∈ ri(∂γC(D>x̄)). Convexity of R then implies∥∥∥y − |Ax?y,λ|2∥∥∥2
+ λDv

R(x?y,λ, x̄) ≤ σ2 − λ
〈
q,Bx̄(x?y,λ − x̄)

〉
= σ2 + λ

2
〈
q, |Ax?y,λ −Ax̄|2 + (|Ax?y,λ|2 − |Ax̄|2)

〉
≤ σ2 + λ

2

(
‖q‖

∥∥∥Ax?y,λ −Ax̄∥∥∥2

4
+ ‖q‖

∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥)
≤ σ2 + λ

2 ‖q‖
(∥∥∥Ax?y,λ −Ax̄∥∥∥2

+
∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥) .

Strong convexity of ‖·‖2 implies that∥∥∥y − |Ax?y,λ|2∥∥∥2
− σ2 ≥ 2

〈
ε, |Ax?y,λ|2 − |Ax̄|2

〉
+
∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥2

Thus ∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥2
+ λDv

R(x?y,λ, x̄)

≤ −2
〈
ε, |Ax?y,λ|2 − |Ax̄|2

〉
+ λ

2 ‖q‖
(∥∥∥Ax?y,λ −Ax̄∥∥∥2

+
∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥)

≤ λ

2 ‖q‖
∥∥∥Ax?y,λ −Ax̄∥∥∥2

+
(

2σ + λ

2 ‖q‖
)∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥

≤ λ

2 ‖q‖ ‖A‖
2
∥∥∥x?y,λ − x̄∥∥∥2

+

(
2σ + λ

2 ‖q‖
)2

2 + 1
2
∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥2

,

and therefore∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥2
+ 2λDv

R(x?y,λ, x̄) ≤ λ ‖q‖ ‖A‖2
∥∥∥x?y,λ − x̄∥∥∥2

+
(

2σ + λ

2 ‖q‖
)2
.

With the choice of λ and non-negativity of the Bregman divergence of R, we get∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥ ≤ (c1/2 ‖q‖1/2 ‖A‖
∥∥∥x?y,λ − x̄∥∥∥)σ1/2 +

(
2 + c

2 ‖q‖
)
σ

and

Dv
R(x?y,λ, x̄) ≤ ‖q‖2 ‖A‖

2
∥∥∥x?y,λ − x̄∥∥∥2

+
(
2 + c

2 ‖q‖
)2

2c σ.

(6.4.6)

By the triangle inequality and since D is a Parseval tight frame, we get∥∥∥x?y,λ − x̄∥∥∥ =
∥∥∥DD>(x?y,λ − x̄)

∥∥∥
≤
∥∥∥DPT

D>x̄
D>(x?y,λ − x̄)

∥∥∥+
∥∥∥PS

D>x̄
D>(x?y,λ − x̄)

∥∥∥ .
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Denote Vx̄
def= Im(DT

D>x̄
). In view of (6.4.5), we have Bx̄+

Vx̄
= (Bx̄>Vx̄Bx̄Vx̄)−1Bx̄

>
Vx̄ . Noting that

DPT
D>x̄

D>(x?y,λ − x̄) ∈ Vx̄ and using Lemma6.4.6, we obtain∥∥∥x?y,λ − x̄∥∥∥
≤
∥∥∥Bx̄+

Vx̄
Bx̄Vx̄DPT

D>x̄
D>(x?y,λ − x̄)

∥∥∥+
∥∥∥PS

D>x̄
D>(x?y,λ − x̄)

∥∥∥
=
∥∥∥Bx̄+

Vx̄
Bx̄DPT

D>x̄
D>(x?y,λ − x̄)

∥∥∥+
∥∥∥PS

D>x̄
D>(x?y,λ − x̄)

∥∥∥
=
∥∥∥Bx̄+

Vx̄
Bx̄
(
Idn −DPS

D>x̄
D>

)
(x?y,λ − x̄)

∥∥∥+
∥∥∥PS

D>x̄
D>(x?y,λ − x̄)

∥∥∥
≤
∥∥∥Bx̄+

Vx̄

∥∥∥ ∥∥∥Bx̄(x?y,λ − x̄)
∥∥∥+

(∥∥∥PS
D>x̄

∥∥∥
γC→2

+
∥∥∥Bx̄+

Vx̄

∥∥∥ ∥∥∥Bx̄DS
D>x̄

∥∥∥
γC→2

)
γC
(
PS

D>x̄
D>(x?y,λ − x̄)

)
≤
∥∥∥Bx̄+

Vx̄

∥∥∥ ∥∥∥Bx̄(x?y,λ − x̄)
∥∥∥+

(∥∥∥PS
D>x̄

∥∥∥
γC→2

+
∥∥∥Bx̄+

Vx̄

∥∥∥ ∥∥∥Bx̄DS
D>x̄

∥∥∥
γC→2

)
Dv
R(x, x̄)

1− σC
(
wS

D>x̄

) ,
where we also used coercivity of γC . Let

α =

∥∥∥PS
D>x̄

∥∥∥
γC→2

+
∥∥∥Bx̄+

Vx̄

∥∥∥ ∥∥∥Bx̄DS
D>x̄

∥∥∥
γC→2

1− σC
(
wS

D>x̄

) .

Thus ∥∥∥x?y,λ − x̄∥∥∥ ≤ ∥∥∥Bx̄+
Vx̄

∥∥∥ ∥∥∥|Ax?y,λ −Ax̄|2 + (|Ax?y,λ|2 − |Ax̄|2)
∥∥∥+ αDv

R(x, x̄)

≤
∥∥∥Bx̄+

Vx̄

∥∥∥(‖A‖2 ∥∥∥x?y,λ − x̄∥∥∥2
+
∥∥∥|Ax?y,λ|2 − |Ax̄|2∥∥∥)+ αDv

R(x, x̄).

Inserting the bounds in (6.4.6) and rearranging, we get∥∥∥x?y,λ − x̄∥∥∥ ≤ bσ + a
∥∥∥x?y,λ − x̄∥∥∥2

,

where

a = 3
2
∥∥∥Bx̄+

Vx̄

∥∥∥ ‖A‖2 + α ‖A‖2 ‖q‖2

b =
∥∥∥Bx̄+

Vx̄

∥∥∥(c ‖q‖2 +
(

2 + c

2 ‖q‖
))

+ α

(
2 + c

2 ‖q‖
)2

2c .

When −x̄ is the closest point, we argue similarly to get∥∥∥x?y,λ + x̄
∥∥∥ ≤ bσ + a

∥∥∥x?y,λ + x̄
∥∥∥2
.

Overall, we arrive at

dist(x?y,λ,X ) ≤ bσ + adist(x?y,λ,X )2.

Solving the above inequality6, we get that if

σ ≤ 1/(4ab),

Then
dist(x?y,λ,X ) ≤ 1−

√
1− 4abσ
2a ≤ 2bσ.

6.4.3 Convergence rate for Gaussian measurements

6.4.3.1 Construction of a “dual” certificate

The non-degenerate source condition (6.4.4) is a geometric condition, which is not easy to check in
practice since exhibiting a valid non-degenerate dual certificate is not trivial for general A. We will

6Recall that dist(x?y,λ,X ) vanishes as σ → 0 thanks to Theorem6.4.2.
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now describe a particular construction of a good candidate (the so-called linearized pre-certificate).
Moreover, when A is a Gaussian map, we will also provide sufficient bounds onm needed for conditions
(6.4.4)-(6.4.5) to hold with overwhelming probability. In the sequel, the entries of A are i.i.d sampled
from N (0, 1/m).

In the sequel, we will focus on the case where D = Idn. To lighten notation, we denote T and e the
model parameters of R at x̄.

Assume that (6.4.5). We define the vector

w
def= B>x̄ argmin

B>x̄ q∈aff(∂R(x̄))
‖q‖ .

This is the minimal norm dual certificate. It can be easily shown, by definition of the model subspace
T , that w can be equivalently expressed in closed form as

w = B>x̄ Bx̄
+,>
T e, where Bx̄

+
T =

(
Bx̄
>
TBx̄T

)−1
Bx̄
>
T .

The goal is to investigate under which condition on m one can ensure that

σC(wS) < 1

with high probability.
Our approach is inspired by that of [57]. The key ingredient is the fact that, owing to the isotropy

of the Gaussian ensemble, the actions on T and S are independent. However, unlike the linear case,
in the phase retrieval problem, there is a major issue since Bx̄ depends on x̄. Therefore, our reasoning
will also hold true for regularizers such that x̄ ∈ T . This covers the case of the `1 norm as well as the
`1 − `2 norms. In this case, we can write

Bx̄ = diag|AT x̄|A,

and thus
w = A>diag|AT x̄|2AT

(
A>T diag|AT x̄|2AT

)−1
e.

Define the vector
η

def= diag|AT x̄|2AT
(
A>T diag|AT x̄|2AT

)−1
e.

Clearly, isotropy of the Gaussian ensemble entails that η and AS are independent, which allows us to
infer the distribution of ASη with no knowledge of the values of AT . Thus, for some τ > 0 and ν ≥ 1

Pr (σC(wS) ≥ ν) ≤ Pr
(
σC(wS) ≥ ν

∣∣∣ ‖η‖ ≤ τ)+ Pr (‖η‖ ≥ τ) . (6.4.7)

The first term in this inequality will be bounded on a case-by-case basis (see the following sections)
and uses the fact that conditionally on η, the entries of w = A>η are i.i.d N (0, ‖η‖2 /m).

Let us consider the second term. We have the following.

Lemma 6.4.7. If m ≥ C(%) log(m), on the same event we have

‖η‖ < 1 + δ

1− % ‖e‖ , (6.4.8)

and

‖q‖ <
√

1 + δ

1− % ‖e‖
√
m

‖x̄‖
, (6.4.9)

with a probability at least 1− 6
m2 − e−δ

2/2, where

q
def= diag|AT x̄|AT

(
A>T diag|AT x̄|2AT

)−1
e.
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6.4.3.2 The `1 norm

In this case, σC = ‖·‖∞, and where s = |I|, with I = supp(x̄). We have the following result.

Lemma 6.4.8. Fix ν ∈]0, 1[ and δ, % (small enough), assume that the regularizer is the `1−norm we
have,
(i) if m ≥ C(δ, %)s log(n) where C(δ, %) = 6(1+δ)

(1−%)ν2 then∥∥∥A>Icη∥∥∥∞ < ν,

with probability at least 1− 6
m2 − 1

n2 − e−δ
2/2.

(ii) if m ≥ C(δ, %)s log2(n) where C(δ, %) = 6(1+δ)
(1−%)ν2 then we get the same result with probability at

least 1− 6
m2 − 1

n2 −mδ−1.

We defer the proof to Section 6.5.1.1.
We now turn to state our convergence result for the `1−norm.

Proposition 6.4.9. Fix ν ∈]0, 1[ and δ, % (small enough), and define ζ def=
√

1+δ
1−% . Let us consider the

noisy phaseless measurements in (NoisyPR) with the Lasso penalty. Moreover let us choose λ = cσ,
for some c > 0. If the entries of A are i.i.d sampled from N (0, 1/m) with

m ≥ 6ζ2

ν2 s log(n),

then with a probability at least 1− 1
nδ′−1 − e−δ

2/2 − 6
m2 where δ′ > 1 is a constant, for σ small enough

and any minimizer x?y,λ, we have

dist(x?y,λ,X ) ≤

2ζ
(
cζ
√
s+ 2

)
+
(
cζ
√
s

2 + 2
)2 1 + ζ

√
1 + δ

(√
m+

√
2δ′ log(n)

)
c(1− ν) ‖x̄‖

σ.
See Section 6.5.1.2 for the proof.

6.4.3.3 The `1 − `2 norm

We consider the group Lasso penalty. We recall that the number of blocks is L with equal size B and
that x̄ is s-block sparse. Let I be the (block) support of x̄, i.e. I = suppB(x̄). From (6.2.10) we have
that σC(v) = maxi∈Ic ‖v[bi]‖2. Denote ‖v‖∞,2 = maxi ‖v[bi]‖2. We have the following.

Lemma 6.4.10. Fix ν ∈]0, 1[ and δ, % (small enough), assume that the number of sample m is such
that m ≥ 1+δ(√

ν(1−%)−
√

(1+δ)s
)2 s (√B + 4

√
log(L)

)2
+ sB then∥∥∥A>Icη∥∥∥∞,2 < ν,

with probability at least 1− L−7 − 6
m2 − e−

δ2
2 .

The proof can be found in Section 6.5.2.1.

Proposition 6.4.11. Fix ν ∈]0, 1[ and δ, % (small enough), and define ζ def=
√

1+δ
1−% . Let us consider

the noisy phaseless measurements in (NoisyPR) with the group Lasso penalty. Moreover let us choose
λ = cσ, for some c > 0. If the entries of A are i.i.d sampled from N (0, 1/m) with

m ≥ max

 1 + δ(√
ν(1− %)−

√
(1 + δ)s

)2 ,
1

(1− δ)2

 s(√B + 4
√

log(L)
)2

+ sB
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then, with a probability at least 1 − L−7 − 6
m2 − e−

δ2
2 − Lδ′−1where δ′ > 1 is a constant, for σ small

enough and any minimizer x?y,λ, we have

dist(x?y,λ,X ) ≤

2ζ
(
cζ
√
s+ 2

)
+
(
cζ
√
s

2 + 2
)2 1 +

(√
m+

√
B +

√
2δ log(L)

)
δ ‖x̄‖ ζ

c(1− ν)

σ.
The proof of this statement is similar to that of Proposition 6.4.9.

6.4.3.4 Symmetric strong gauge of a polytope

Here we suppose that
R = γC ,

where C is a polytope. We use the shorthand notation V for the set of vertices of PSC. We have the
following.

Lemma 6.4.12. Fix ν ∈]0, 1[ and δ, % (small enough), ᾱ def= ‖e‖2 maxv∈VS ‖v‖
2

ν2 . Let us assume that the
number of samples m is such that m ≥ 2 (1+δ)

1−% ᾱ(1 + ζ) log(|VS |) where ζ > 0 is a fixed numerical
constant chosen arbitrary large, then

σC(A>S η) < ν,

with probability at least 1− |VS |−ζ − 6
m2 − e−

δ2
2 .

The proof is in Section 6.5.3.1.
As before, under this complexity bound, the conclusion of Theorem6.4.4 holds with high probability.

We do not restate it here for the sake of brevity.

6.5 Proofs for Section 6.4.3

6.5.0.1 Proof of Lemma6.4.7

We have

‖η‖2 =
〈

diag|AT x̄|2AT
(
A>T diag|AT x̄|2AT

)−1
e, diag|AT x̄|2AT

(
A>T diag|AT x̄|2AT

)−1
e

〉
,

≤ ‖AT x̄‖4∞ λ
2
min

(
A>T diag|AT x̄|2AT

)−1
‖e‖2 .

Thus,
‖η‖ ≤ ‖AT x̄‖2∞ λmin

(
A>T diag|AT x̄|2AT

)−1
‖e‖

By Lemma6.6.1, we have
‖AT x̄‖2∞ ≤

1 + δ

m
‖x̄‖2

with probability at least 1− 2e− δ
2
2 . Observe also that

A>T diag|AT x̄|2AT =
m∑
r=1
| 〈(ar)T , x̄〉 |2(ar)T (ar)T>.

From Lemma6.6.2, as soon as m ≥ C(%)dT log(m) we have

λmin
(
A>T diag|AT x̄|2AT

)
≥ 1− %

m
‖x̄‖2 .

with a probability at least 1− 6
m2 . Thus,

Pr
(
‖η‖ ≥ 1 + δ

1− % ‖e‖
)
≤ 6
m2 + e−

δ2
2 .
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We have

‖q‖2 =
〈

diag|AT x̄|AT
(
A>T diag|AT x̄|2AT

)−1
e, diag|AT x̄|AT

(
A>T diag|AT x̄|AT

)−1
e

〉
,

≤ ‖AT x̄‖2∞ λ
2
min

(
A>T diag|AT x̄|2AT

)−1
‖e‖2 .

Thus,
‖q‖ ≤ ‖AT x̄‖∞ λmin

(
A>T diag|AT x̄|2AT

)−1

By Lemma6.6.1, we have

‖AT x̄‖∞ ≤ ‖x̄‖

√
1 + δ

m

with probability at least 1− 2e− δ
2
2 . Observe also that

A>T diag|AT x̄|2AT =
m∑
r=1
| 〈(ar)T , x̄〉 |2(ar)T (ar)T>.

From Lemma6.6.2, as soon as m ≥ C(%)dT log(m) we have

λmin
(
A>T diag|AT x̄|2AT

)
≥ 1− %

m
‖x̄‖2 .

with a probability at least 1− 6
m2 . Thus,

Pr
(
‖q‖ ≥

√
1 + δ

1− % ‖e‖
√
m

‖x̄‖

)
≤ 6
m2 + e−

δ2
2 .

6.5.1 Proofs for the Lasso

6.5.1.1 Proof of Lemma6.4.8

(i) The union bound and classical tail bounds of the Gaussian distribution give

Pr
(∥∥∥A>Icη∥∥∥∞ ≥ ν∣∣∣ ‖η‖ ≤ τ) ≤ (n− s) Pr

(
|Z| ≥ ν

√
m

τ

)
≤ (n− s)e−

mν2
2τ2 ,

where Z ∼ N (0, 1). We invoke Lemma6.4.7 and take τ =
√

1+δ
1−%s to get

Pr
(∥∥∥A>Icη∥∥∥∞ ≥ ν∣∣∣ ‖η‖ ≤ τ) ≤ e−m(1−%)ν2

2s(1+δ) +log(n−s)
.

As soon as m ≥ C(δ, %)s log(n) we indeed have that
∥∥∥A>Icη∥∥∥∞ < ν with probability at least

1− 6
m2 − 1

n2 − e−δ/2 with C(δ, %) = 6 1+δ
(1−%)ν2 .

(ii) We can improve this probability by increasing the number of measurements. Indeed we also
have by Lemma6.6.1-(ii) that

‖Ax‖2∞ ≤
(1 + δ) log(m)

m
‖x‖2 .

Similar arguments the first case then yield

Pr
(∥∥∥A>Icη∥∥∥∞ ≥ ν∣∣∣ ‖η‖ ≤ τ) ≤ e− −m(1−%)ν2

2s(1+δ) log(m) +log(n−s)
.

If m ≥ C(δ, %)s log2(n) we get that
∥∥∥A>Icη∥∥∥∞ < ν with probability at least 1− 6

m2 − 1
n2 −mδ−1

with C(δ, %) = 6 (1+δ)
(1−%)ν2 .
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6.5.1.2 Proof of Proposition 6.4.9

The proof of this result involves applying the deterministic Theorem6.4.4, along with additional
arguments derived from the concentration properties of the random matrix A.

We have to bound the parameters b and α. We shall recall that,

b =
∥∥∥B+

T

∥∥∥(c ‖q‖2 +
(

2 + c

2 ‖q‖
))

+ α

(
2 + c

2 ‖q‖
)2

2c ,

where

α =
‖PSx̄‖1→2 +

∥∥∥B+
Tx̄

∥∥∥ ‖BSx̄‖1→2

1−
∥∥∥wS

D>x̄

∥∥∥
∞

.

6.5.2 Proofs for the group Lasso

6.5.2.1 Proof of Lemma6.4.10

We denote Si = span{(aj){j: j∈bi}}, i ∈ suppB(x)c then we have

Pr
(

max
i∈suppB(x̄)c

∥∥∥A>S η[bi]
∥∥∥ ≥ ν∣∣∣ ‖η‖ ≤ τ) = Pr

(
max

i∈suppB(x̄)c
‖ASiη[bi]‖ ≥ ν

∣∣∣ ‖η‖ ≤ τ) ,
≤ L max

i∈suppB(x̄)c
Pr
(
‖ASiη[bi]‖ ≥ ν

∣∣∣ ‖η‖ ≤ τ) ,
≤ L max

i∈suppB(x̄)c
Pr
(
‖Z‖ ≥ ν

√
m

τ

)
,

where Z is a standard Gaussian matrix of size m×B, we have now to bound ‖Z‖. By Proposition 2.6.8
and Gordon’s Theorem [176, Theorem5.32], we have

Pr
(
‖Z‖ ≥

√
m

τ

)
= Pr

(
‖Z‖ − E (‖Z‖) ≥ ν

√
m

τ
− E (‖Z‖)

)
,

≤ Pr
(
‖Z‖ − E (‖Z‖) ≥ ν

√
m

τ
−
√
m−

√
B

)
,

≤ exp

−
(√

m
(
ν
τ − 1

)
−
√
B
)2

2

 ,
Consequently,

Pr
(

max
i∈suppB(x̄)c

∥∥∥A>S η[bi]
∥∥∥ ≥ ν∣∣∣ ‖η‖ ≤ τ) ≤ exp

−
(√

m
(
ν
τ − 1

)
−
√
B
)2

2 + log(L)

 ,

For m ≥ 1+δ(√
ν(1−%)−

√
(1+δ)s

)2 s (√B + 4
√

log(L)
)2

+ sB, we get that max
i∈suppB(x̄)c

∥∥∥A>S η[bi]
∥∥∥ < ν with

probability at least 1− L−7 − 6
m2 − e−

δ2
2 .
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6.5.3 Proof for a symmetric strong gauge of a polytope

6.5.3.1 Proof of Lemma6.4.12

We have that

Pr
(
σC(A>S η) ≥ ν

∣∣∣ ‖η‖ ≤ τ) = Pr
(

max
v∈C

〈
A>S η, v

〉
≥ ν

∣∣∣ ‖η‖ ≤ τ) ,
= Pr

(
max
v∈VS

〈Aη, v〉 ≥ ν
∣∣∣ ‖η‖ ≤ τ) ,

≤ |VS |max
v∈VS

Pr
(
〈Zη, v〉 ≥ ν

√
m
∣∣∣ ‖η‖ ≤ τ) ,

where Z is drawn from the standard Gaussian ensemble. Let us observe that A 7→ 〈Aη, ν〉 is
‖η‖ ‖v‖−Lipschitz continuous function of matrices A considered as vector in Rmn. From Proposi-
tion 2.6.8, we have that

Pr
(
σC(A>S η) ≥ ν

∣∣∣ ‖η‖ ≤ τ) ≤ |VS |max
v∈VS

e
− mν2

2τ2‖v‖2 ,

≤ |VS | e
− mν2

2τ2 maxv∈VS ‖v‖
2
,

= e
− mν2

2τ2 maxv∈VS ‖v‖
2 +log(|VS |)

.

we get that for the choice of ᾱ and for m ≥ 2 (1+δ)
1−% ᾱ(1 + ζ) log(|VS |) where ζ > 0 is a fixed numerical

constant chosen arbitrary large, σC(A>S η) < ν with probability at least 1− |VS |−ζ − 6
m2 − e−

δ2
2 .

6.6 Concentrations
Let us consider T ⊂ Rn, denote d = dim(T ) and consider A a m × d matrix whose entries are i.i.d
N (0, 1/m). Throughout this section, we will see T through Rd since there exists an isometry between
T and Rd. We have the following concentrations.

Lemma 6.6.1. Fix δ ∈]0, 1[ we have,
(i) for any x ∈ T

‖Ax‖2∞ ≤
1 + δ

m
‖x‖2 . (6.6.1)

This happens with probability at least 1− e−δ
2

2 .
(ii) for any x ∈ T

‖Ax‖2∞ ≤
(1 + δ) log(m)

m
‖x‖2 . (6.6.2)

with probability 1−mδ−1.

Proof. The proof comes easily from Lemma3.6.4.

Lemma 6.6.2. Fix % ∈]0, 1[ (small enough) and choose 0 < %̄ < %+3
10 log(m) .

(i) If the number of samples obeys m ≥ C(%)d log(d), for some sufficiently large C(%) > 0, we have∥∥∥mA>diag|Ax̄|2A−
(
2x̄x̄>+ ‖x̄‖2 Id

)∥∥∥ ≤ % ‖x̄‖2 . (6.6.3)

with a probability at least 1− 5e−ζd − 4
d2 where ζ is a fixed numerical constant.

(ii) If the number of samples obeys m ≥ C(%̄, %)d log(m), for some sufficiently large C(%̄, %) > 0,
(6.6.3) hold true with a probability at least 1− 6

m2 .
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Proof. The proof of claim (i) is just an application of Lemma3.6.2.
For the proof of claim (ii), we have to modify the choice of m in the different concentrations used in

the proof of Lemma3.6.2. We provide here a self-contained proof. We have to emphasize that showing
(6.6.3) is similar to showing that∥∥∥∥∥ 1

m

m∑
r=1
|ār[1]|2ārā>r −

(
2e1e1

>+ Id
)∥∥∥∥∥ ≤ %̄, (6.6.4)

where the entries of ār are now standard Gaussian random variable and e1 is a vector of the standard
basis.

From symmetric arguments, showing (6.6.4) amounts to show that

V (v) def=
∣∣∣∣∣ 1
m

m∑
r=1
|ār[1]|2|ā>rv|2 −

(
1 + 2v[1]2

)∣∣∣∣∣ ≤ %̄
for all v ∈ Sd−1. The rest of the proof shows this claim.

Let ãr = (ār[2], . . . , ār[d]) and ṽ = (v[2], . . . , v[d]) . We rewrite

|ā>rv|2 =
(
ār[1]v[1] + ã>rṽ

)2
= (ār[1]v[1])2 +

(
ã>r ṽ

)2
+ 2ār[1]v[1]ã>r ṽ.

We plug this decomposition into V (v) to get

V (v) ≤
∣∣∣∣∣ 1
m

m∑
r=1

ār[1]4 − 3
∣∣∣∣∣ v[1]2 +

∣∣∣∣∣ 1
m

m∑
r=1

ār[1]2 − 1
∣∣∣∣∣ ‖ṽ‖2 + 2

∣∣∣∣∣ 1
m

m∑
r=1
|ār[1]|3v[1]ã>r ṽ

∣∣∣∣∣
+
∣∣∣∣∣ 1
m

m∑
r=1

ār[1]2
(
ã>r ṽ − ‖ṽ‖

2
)∣∣∣∣∣ .

If X ∼ N (0, 1) we have E
(
X2p) = (2p)!

2pp! for p ∈ N, and in particular E
(
X2) = 1 and E

(
X4) = 3. By

the Tchebyshev’s inequality and a union bound argument, ∀ε > 0, and a constant C(ε) ≈ max
(
26, 96

ε2

)
such that when m ≥ C(ε) we have,

1
m

m∑
r=1

(
ār[1]4 − 3

)
< ε,

1
m

m∑
r=1

(
ār[1]2 − 1

)
< ε,

1
m

m∑
r=1

ār[1]6 ≤ 20

and max
1≤r≤m

|ār[1]| ≤
√

10 logm.

Each of these events happens with probability at least 1− 1
m2 , and thus their intersection occurs with

probability at least 1− 4
m2 . On this intersection event, we have

V (v) ≤ ε+ 2
∣∣∣∣∣ 1
m

m∑
r=1

ār[1]3v[1]ã>r ṽ
∣∣∣∣∣+

∣∣∣∣∣ 1
m

m∑
r=1

ār[1]2
(
ã>r ṽ − ‖ṽ‖

2
)∣∣∣∣∣ .

On the one hand, by a Hoeffding-type inequality (Proposition 2.6.6), we have

∀%′ > 0,
∣∣∣∣∣ 1
m

m∑
r=1

ār[1]3v[1]ã>r ṽ
∣∣∣∣∣ < %′|v[1]| ‖ṽ‖2 ,

with a probability

p ≥ 1− e exp
(
− c%′2m2

d
∑m
r=1 ar[1]6

)
≥ 1− e exp

(
−c%

′2m

20d

)
≥ 1− exp

(
−2Cm

d

)
,

where C is a constant that is large enough. When m ≥ 1
C d log(m) we get the bound with probability

p ≥ 1− 1
m2 . On the other hand, by Bernstein-type inequality (Proposition 2.6.7), we have

∀%̄ > 0,
∣∣∣∣∣ 1
m

m∑
r=1

ār[1]2
(
ã>r ṽ − ‖ṽ‖

2
)∣∣∣∣∣ ≤ %̄ ‖ṽ‖2 ,
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with probability

p′ ≥ 1− exp

−min

 %̄2m2

d
∑m
r=1 ar[1]4 ; %̄m

d max
1≤r≤m

ar[1]2

 ,
≥ 1− exp

{
−min

(
%̄2m

d(ε+ 3); %̄m

10d log(m)

)}
,

For %̄ < ε+3
10 log(m) , we get that p′ ≥ 1 − exp

(
− %̄2m
d(ε+3)

)
≥ 1 − exp

(
−2C′m

d

)
for C ′ large enough. Thus,

taking again m ≥ 1
C′d log(m) we get the bound with probability p′ ≥ 1 − 1

m2 . Overall, for any
v ∈ Sn−1 ∩ T , we have with probability at least 1− 6

m2

V (v) ≤ ε+ %′ + 2%̄.

We conclude with a covering type argument which can be plugged into the sublinear term and we
choose m ≥ C(%, %̄)d log(m) and observe that log(m) ≥ log(d). Therefore, choosing % = ε + %′ + 2%̄,
we get the claim.
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Conclusion and Perspectives

7.1 Summary

This manuscript is concerned with the problem of phase retrieval. We have studied this problem from
a theoretical and algorithmic point of view over the set of real vectors in finite dimension. We can split
our analysis into two main parts: “Phase retrieval without regularization” and “Phase retrieval with
regularization”. In the first part, we have used a least-squared formulation to solve the problem. Due
to the nonlinearity, the objective considered is nonconvex with a non-Lipschitz continuous gradient.
Hence, we proposed to change the geometry to a Bregman-type one to solve the problem since this
objective is smooth relative to an appropriate distance generating kernel. While in the second part, we
have considered to minimize the sum of two functions. In fact, we add to the previous least-squared
formulation a regularization term which promotes some prior knowledge about the object that we
want to recover. In this setting, we have proposed and analyzed an algorithm that is suitable in this
case: an inertial Bregman proximal gradient. Furthermore, we studied the noiseless and stability of
the recovery for low complexity regularized phase retrieval.

We can sum up the main conclusions of our work in the following key points.

Phase retrieval without regularization.
(i) In the noiseless case, we can solve the phase retrieval problem based on the least square formu-

lation using Bregman proximal gradient (aka mirror descent). For standard Gaussian measure-
ment, if the number of measurements is sufficiently large, then for almost all initializers of the
mirror descent with a given fixed step-size, we recover the true signal up to a global sign change
with high probability. The convergence rate is linear and do not depend on the dimension of
the problem. With a slightly smaller (polylog) number of measurements, we can afford to use
a spectral initialization method to lie in a neighbourhood of the true vector and then recover
the true one up to a global sign change. For the coded diffraction patterns model, we show
local linear convergence to the true signal up to a global sign change with high probability for
sufficiently large number of measurements, with the proviso that spectral initialization is used.

(ii) The mirror descent scheme is stable to small additive noise on the observations. Indeed, even in
presence to noise bounded sequences converge to a critical point of the phase retrieval problem,
and if the algorithm is well initialized and the noise is small enough, the critical point is near
the true vector up to a global sign change. For standard Gaussian measurements, if the signal-
to-noise ratio is large enough and the number of measurements is sufficiently large, almost all
initializers globally converge to a global minimizer near the true vector (up to a global sign
change). This sample complexity bound can be improved to (polylog) at the price of using a
spectral method to provide a good initial guess. Furthermore, we have analyzed the geometry
of the noisy objective function. When the number of measurements is sufficiently large and the

– 135 –



Chapter 7 7.2. Perspectives

signal-to-noise ratio is large. In particular, the set of critical points of the objective function is
reduced to the set of global minimizers and the set of strict saddle points.

Phase retrieval with regularization.
(iii) The inertial Bregman proximal method with the triangle scaling exponent property exhibits

a similar behavior as Euclidean inertial forward-backward-type methods. Our results reveal
that partial smoothness combined with a (generic) nondegeneracy condition allow our algorithm
to identify activity in finite time and to enter a local (almost) linear regime restricted to a
Riemannian manifold. Indeed, we have a global convergence of our iterates under the framework
of the Kurdyka-Łojasiewicz property and a local linear convergence regime. In the case where
the nonsmooth part vanishes, we show that for almost all initializers the generated sequences
converge generically toward the set of critical points that are not strict saddle points, meaning
that our algorithm escapes strict saddle points.

(iv) Noiseless and local stable recovery by low-complexity regularized phase retrieval is possible if
the number of measurements is sufficiently large compared to the intrinsic complexity of the
sought-after vector. This covers both sparse retrieval but also regularizers for which sour results
are distinctly new.

7.2 Perspectives
Several extensions and directions are possible in the context of future work. Some of the most promising
ones in our opinion are the following.

Structured measurement models. We have seen that the coded diffraction patterns model is
challenging as it enjoys less randomness than the Gaussian model. We would like to understand this
model more deeply from the theoretical point of view both for stability with and without regularization.
Other questions remain open such as providing global recovery guarantees via mirror descent without
spectral initialization. Such a result would be possible only if one can give a result on the landscape
of the objective function in this setting. Stability results of mirror descent similar to those Chapter 4
for the Gaussian model are also lacking for the CDP model. More generally, many realistic phase-
retrieval models still remain unexplored from a theoretical recovery viewpoint. This calls for more
studies and necessitates a fruitful exchange between different disciplines, from applied physics to
applied mathematics and computer science.

Regularized phase retrieval. Our guarantees in Chapter 6 are on global minimizers of the
regularized phase retrieval minimization problem. To translate this in practice, one has to be ensured
to have an algorithmic scheme that indeed converges near a global minimizer, or at least to have an
initialization which provides such a good initial guess. This is for instance possible in the sparse case,
but would degrade the sample complexity bound to the sparsity squared. It would then be interesting,
and challenging, to design an algorithm or an initialization scheme for the general regularized case
with sample complexity bounds that still scale linearly with the intrinsic dimension of the vector
to recover. This is also in a close connection with studying the landscape of the regularized phase
retrieval objective.

Escape property of the (I)BPG. It would be of strong interest to provide a generic escape
property of Bregman-type proximal methods to minimize a smooth+nonsmooth objective under the
“smooth adaptable” property which extends the Lipschitz continuity property of the gradient. Lips-
chitz continuity of the gradient of the smooth part, and more generally non-expansiveness, turns out to
be instrumental to apply the centre stable manifold theorem in the Euclidean setting. The extension
to the Bregman case is therefore an open challenging question.
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Stochastic IBPG. We have only studied deterministic algorithms in this work where the whole
gradient of the smooth part is computed at each iteration. However, since the latter has a finite sum
structure, a stochastic version of (I)BPG can be designed where the gradient can be computed on
small batch at each iteration. Studying the recovery guarantees for these stochastic schemes is an
interesting and promising direction of furure work.

Machine learning for phase retrieval. Recently, neural networks based reconstruction algo-
rithms have been applied to the phase retrieval problem with significant practical performance; see
[71] for a recent overview. However, this comes with significant challenges including availability of
training data, robustness issues, and the lack of theoretical reconstruction guarantees. This calls for
more studies that we believe are worth investigating in the future.

– 137 –



List of Publications

Submitted or in preparation
(1) J-J. Godeme, J. Fadili, Low Complexity Regularized Phase Retrieval. In preparation.
(2) J.-J. Godeme, J. Fadili, Inertial Bregman Proximal Gradient under Partial Smoothness. In

preparation.
(3) J.-J. Godeme, J. Fadili, M. Lequime, G. Soriano, C. Amra, and M. Zerrad, Stable Phase Retrieval

with Mirror Descent. Submitted.

Journal Papers
(4) J.-J. Godeme, J. Fadili, X. Buet, M. Zerrad, M. Lequime, and C. Amra, Provable Phase Retrieval

with Mirror Descent, SIAM J. Imaging Sci., 16(3):1106–1141, September 2023.
(5) X. Buet, M. Zerrad, M. Lequime, G. Soriano, J.-J. Godeme, J. Fadili, and C. Amra, Instan-

taneous measurement of surface roughness spectra using white-light scattering projected on a
spectrometer,. Appl. Opt., AO, 62(7):B164–B169, March 2023.

(6) X. Buet, M. Zerrad, M. Lequime, G. Soriano, J.-J. Godeme, J. Fadili, and C. Amra, Im-
mediate and one-point roughness measurements using spectrally shaped light Opt. Express,
30(10):16078–16093, May 2022.

Conference Papers
(7) J.-J. Godeme, M.J. Fadili, X. Buet, M. Zerrad, M. Lequime and C. Amra, Reconstruction

de Phase Garantie par Descente Miroir, In 28th GRETSI Symposium on Signal and Image
Processing, Nancy, 2022.

– 138 –



List of Notations

General definitions

R: the set of real numbers
R+: nonnegative real numbers

R++: positive real numbers
R: ]−∞,+∞[∪{+∞}, the extended real values
`1+: nonnegative summable sequence
N: set of nonnegative integers

N+: set of positive integers
Rn,Rm: finite dimensional real Euclidean spaces

Id: identity operator or Rn
e: vector of all 1s

Set related

S: a convex (often compact) set
ιS(·): indicator function for the set S
σS(·): support function of the set S
PS(·): projection operator onto S
intS: interior of S
S̄: closure of S

ri(S): relative interior of S
aff(S): smallest affine subspace that contains S, a.k.a. affine hull of S

par(S): the subspace parallel to S
A−1: inverse of A

dom(A): domain of A
ran(A): range of A
argmin: the set of minimizing arguments
B(x, r): a ball centered at x with radius r > 0

Function related

Γ0 (Rn): the set of proper convex and lower semi-continuous functions on a Rn.
dom(R): domain of R

R∗: Fenchel conjugate of R
∇F : gradient of F

proxγR: proximal operator of R with γ > 0
∂R: subdifferential of function R

(γk)k∈N: a sequence indexed by k
Dv
R: Bregman divergence of R associated to v ∈ ∂R

E [x]: total expectation of the random variable x
P: a probability measure

– 139 –



List of Figures

3.1 Reconstruction of a 1D signal by mirror descent from Gaussian measurements. . . . . 38
3.2 Reconstruction of a 1D signal by mirror descent from CDP measurements. . . . . . . . 38
3.3 Roughness surface profile reconstruction by solving the phase retrieval problem from

the CDP measurement model using mirror descent with uniform random initialization. 39
3.4 Phase diagrams of mirror descent (MD) with spectral and uniform random initialization.

(a) Gaussian measurements. (b) CDP measurements. . . . . . . . . . . . . . . . . . . . 39
3.5 Comparison of mirror descent to other methods in the literature. Each plot shows the

empirical probability of success based on 100 random trials for two different measure-
ment models (Gaussian and CDP) and a varied number of measurements. . . . . . . . 39

4.1 Reconstruction of signal from Gaussian measurements. The noise mean is ε̃. . . . . . . 61
4.2 Phase diagrams for Gaussian measurements. . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Reconstruction of signal from Noisy CDP. The noise mean is ε̃ . . . . . . . . . . . . . 63
4.4 Reconstruction of an image from noisy CDP measurements. . . . . . . . . . . . . . . . 63
4.5 Landscape of the function f as m→∞; we have (m,n) = (200, 2) and the true vectors

are [±3/4, 0]. The noise vector is generated at uniform in [-1,1] such that ε̃ ≈ 5.10−3.
One clearly sees that the geometry of the landscape of f is preserved and that the only
minimizers of f are very close to the true vectors. . . . . . . . . . . . . . . . . . . . . 75

5.1 Phase retrieval by solving (5.5.1) with the `1−norm regularizer. . . . . . . . . . . . . . 93
5.2 Phase retrieval by solving (5.5.1) with the `1,2−norm regularizer. . . . . . . . . . . . . 93
5.3 Phase retrieval by solving (5.5.1) with the TV semi-norm. . . . . . . . . . . . . . . . . 94
5.4 Phase retrieval with the synthesis prior formulation. . . . . . . . . . . . . . . . . . . . 95

– 140 –



Bibliography

[1] E. J. Akutowicz. On the determination of the phase of a Fourier integral, I. Transactions of the
American Mathematical Society, 83(1):179, September 1956.

[2] E. J. Akutowicz. On the determination of the phase of a Fourier integral, II. Proceedings of the
American Mathematical Society, 8(2):234, April 1957.

[3] F.Alvarez. On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces.
SIAM J. Control Optim., 38(4):1102–1119, January 2000.

[4] F.Alvarez and H.Attouch. An Inertial Proximal Method for Maximal Monotone Operators via
Discretization of a Nonlinear Oscillator with Damping. Set-Valued Analysis, 9(1):3–11, March
2001.

[5] D.Amelunxen, M. Lotz, M.B. McCoy, and J.A. Tropp. Living on the edge: phase transitions in
convex programs with random data. Information and Inference, 3(3):224–294, September 2014.

[6] C.Amra, M. Lequime, and M. Zerrad. Electromagnetic Optics of Thin-Film Coatings: Light
Scattering, Giant Field Enhancement, and Planar Microcavities. Cambridge University Press,
Cambridge, 2021.

[7] C.Amra, M. Zerrad, S. Liukaityte, and M.Lequime. Instantaneous one-angle white-light scat-
terometer. Opt. Express, OE, 26(1):204–219, January 2018.

[8] H.Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel
methods. Math. Program., 137(1-2):91–129, February 2013.

[9] H.Attouch and J. Peypouquet. The Rate of Convergence of Nesterov’s Accelerated Forward-
Backward Method is Actually Faster Than $1/k^2$. SIAM J. Optim., 26(3):1824–1834, January
2016.

[10] H.Attouch, J. Peypouquet, and P.Redont. A Dynamical Approach to an Inertial Forward-
Backward Algorithm for Convex Minimization. SIAM J. Optim., 24(1):232–256, January 2014.

[11] J.-P. Aubin and I. Ekeland. Applied Nonlinear Analysis. Elsevier, 1984.

[12] A.Auslender and M.Teboulle. Asymptotic Cones and Functions in Optimization and Variational
Inequalities. Springer Monographs in Mathematics, pages 25–80, 2003.

[13] A.Auslender and M.Teboulle. Interior gradient and proximal methods for convex and conic
optimization. SIAM J. Optim., 16(3):697–725, January 2006.

[14] S. Bahmani and J.Romberg. Efficient Compressive Phase Retrieval with Constrained Sensing
Vectors. In Advances in Neural Information Processing Systems, volume 28. Curran Associates,
Inc., 2015.

– 141 –



[15] R.Balan. Reconstruction of signals from magnitudes of redundant representations: The complex
case. Found Comput Math, 16(3):677–721, June 2016.

[16] R.Balan, P.Casazza, and D.Edidin. On signal reconstruction without phase. Applied and
Computational Harmonic Analysis, 20(3):345–356, May 2006.

[17] A. S. Bandeira, J. Cahill, D.G. Mixon, and A.A. Nelson. Saving phase: Injectivity and stability
for phase retrieval. arXiv:1302.4618 [math], October 2013.

[18] A. S. Bandeira and D.G. Mixon. Near-optimal phase retrieval of sparse vectors. In SPIE
Proceedings. SPIE, September 2013.

[19] R.Barakat and G.Newsam. Algorithms for reconstruction of partially known, band-limited
Fourier-transform pairs from noisy data. J. Opt. Soc. Am. A, JOSAA, 2(11):2027–2039, Novem-
ber 1985.

[20] H.H. Bauschke, J. Bolte, J. Chen, M.Teboulle, and X.Wang. On linear convergence of non-
euclidean gradient methods without strong convexity and Lipschitz gradient continuity. Journal
of Optimization Theory and Applications, 182(3):1068–1087, 2019.

[21] H.H. Bauschke, J. Bolte, and M.Teboulle. A descent lemma beyond Lipschitz gradient con-
tinuity: First-order methods revisited and applications. Mathematics of Operations Research,
page 20, 2016.

[22] H.H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. Springer, 2011.

[23] H.H. Bauschke, P. L. Combettes, and D.R. Luke. Phase retrieval, error reduction algorithm,
and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A, 19(7):1334, July
2002.

[24] H.H. Bauschke, P. L. Combettes, and D.R. Luke. Finding best approximation pairs relative to
two closed convex sets in Hilbert spaces. J. Approx. Theory, 127:178–192, 2004.

[25] H.H. Bauschke, D.R. Luke, H.M. Phan, and X.Wang. Restricted normal cones and the method
of alternating projections: applications. Set-Valued and Variational Analysis, 21:475–501, 2013.

[26] HeinzH. Bauschke, JonathanM. Borwein, and Patrick L. Combettes. Bregman monotone opti-
mization algorithms. SIAM Journal on Control and Optimization, 42(2):596–636, 2003.

[27] A.Beck and M.Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
Problems. SIAM J. Imaging Sci., 2(1):183–202, January 2009.

[28] R.Beinert and G.Plonka. Ambiguities in one-dimensional discrete phase retrieval from Fourier
magnitudes. J. Fourier Ana. App., 21(6):1169–1198, 2015.

[29] R.Beinert and M.Quellmalz. Total Variation-Based Reconstruction and Phase Retrieval for
Diffraction Tomography. SIAM Journal on Imaging Sciences, 15:1373–1399, September 2022.

[30] R.Beinert and M.Quellmalz. Total Variation-Based Reconstruction and Phase Retrieval for
Diffraction Tomography with an Arbitrarily Moving Object. PAMM, 22(1):e202200135, 2023.

[31] A.Ben-Tal and A. S. Nemirovski. Lectures on modern convex optimization: analysis, algorithms,
and engineering applications. MPS-SIAM series on optimization. Society for Industrial and
Applied Mathematics, 2001.

– 142 –



[32] T.Bendory, R.Beinert, and Y.C. Eldar. Fourier phase retrieval: Uniqueness and algorithms.
In Holger Boche, Giuseppe Caire, Robert Calderbank, Maximilian März, Gitta Kutyniok, and
Rudolf Mathar, editors, Compressed Sensing and its Applications, Applied and Numerical Har-
monic Analysis, pages 55–91. Birkhäuser, 2017.

[33] P.Bianchi, W.Hachem, and S. Schechtman. Stochastic Subgradient Descent Escapes Active
Strict Saddles on Weakly Convex Functions. Mathematics of OR, September 2023.

[34] B.Birnbaum, N.R. Devanur, and L.Xiao. Distributed algorithms via gradient descent for fisher
markets. In Proceedings of the 12th ACM conference on Electronic commerce, pages 127–136,
2011.

[35] J. Bolte, A.Daniilidis, and A. Lewis. The łojasiewicz Inequality for Nonsmooth Subanalytic
Functions with Applications to Subgradient Dynamical Systems. SIAM J. Optim., 17(4):1205–
1223, January 2007.

[36] J. Bolte, A.Daniilidis, A. Lewis, and M. Shiota. Clarke subgradients of stratifiable functions.
SIAM Journal on Optimization, 18(2):556–572, 2007.

[37] J. Bolte, A.Daniilidis, O. Ley, and L.Mazet. Characterizations of łojasiewicz inequalities: Sub-
gradient flows, talweg, convexity. Trans. Amer. Math. Soc., 362(06):3319–3363, December 2009.

[38] J. Bolte, S. Sabach, and M.Teboulle. Proximal alternating linearized minimization for nonconvex
and nonsmooth problems. Math. Program., 146(1-2):459–494, August 2014.

[39] J. Bolte, S. Sabach, and M.Teboulle. Nonconvex lagrangian-based optimization: Monitoring
schemes and global convergence. Mathematics of Operations Research, 43(4):1210–1232, 2018.

[40] J. Bolte, S. Sabach, M.Teboulle, and Y.Vaisbourd. First order methods beyond convexity and
Lipschitz gradient continuity with applications to quadratic inverse problems. SIAM J. Optim.,
28(3):2131–2151, 2018.

[41] R. I. Bot, E.Robert Csetnek, and S.C. László. An inertial forward-backward algorithm for
the minimization of the sum of two nonconvex functions. EURO Journal on Computational
Optimization, 4(1):3–25, 2016.

[42] S. Boucheron, G. Lugosi, and P.Massart. Concentration Inequalities: A Nonasymptotic Theory
of Independence. Oxford University Press, February 2013.

[43] N.Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023.

[44] O.Brandière and M.Duflo. Les algorithmes stochastiques contournent-ils les pièges ? Annales
de l’I.H.P. Probabilités et statistiques, 32:395–427, 1996.

[45] X.Buet, M. Zerrad, M. Lequime, G. Soriano, J.-J. Godeme, J. Fadili, and C.Amra. Imme-
diate and one-point roughness measurements using spectrally shaped light. Opt. Express,
30(10):16078–16093, May 2022.

[46] X.Buet, M. Zerrad, M. Lequime, G. Soriano, J.-J. Godeme, J. Fadili, and C.Amra. Instanta-
neous measurement of surface roughness spectra using white-light scattering projected on a
spectrometer. Appl. Opt., AO, 62(7):B164–B169, March 2023.

[47] P.Bühlmann and S.Van DeGeer. Statistics for High-Dimensional Data: Methods, Theory and
Applications. Springer Series in Statistics. Springer, Berlin, Heidelberg, 2011.

– 143 –



[48] J. V. Burke and J. J. More. On the Identification of Active Constraints. SIAM Journal on
Numerical Analysis, 25(5):1197–1211, 1988.

[49] J.-F. Cai and W.Xu. Guarantees of total variation minimization for signal recovery. Information
and Inference: A Journal of the IMA, 4(4):328–353, December 2015.

[50] T.T. Cai, X. Li, and Z.Ma. Optimal Rates of Convergence for Noisy Sparse Phase Retrieval Via
Thresholded Wirtinger Flow. The Annals of Statistics, 44(5):2221–2251, 2016.

[51] E.Candès and X. Li. Solving quadratic equations via phaselift when there are about as many
equations as unknowns. Found. Comput. Math., 2014.

[52] E.Candès, X. Li, and M. Soltanolkotabi. Phase retrieval from coded diffraction patterns. Applied
and Computational Harmonic Analysis, 39(2):277–299, September 2015.

[53] E.Candès, X. Li, and M. Soltanolkotabi. Phase retrieval via Wirtinger flow: Theory and algo-
rithms. IEEE Trans. Inform. Theory, 61(4):1985–2007, 2015.

[54] E.Candès and Y.Plan. Matrix completion with noise. Proceedings of the IEEE, 98:925–936,
2010.

[55] E.Candés, T. Strohmer, and V.Voroninski. PhaseLift: Exact and stable signal recovery from
magnitude measurements via convex programming. Communications on Pure and Applied Math-
ematics, 66(8):1241–1274, 2013.

[56] E. J. Candès, Y.C. Eldar, T. Strohmer, and V.Voroninski. Phase retrieval via matrix completion.
SIAM Journal on Imaging Sciences, 6(1):199–225, 2013.

[57] E. J. Candès and B.Recht. Simple bounds for recovering low-complexity models. Mathematical
Programming, 141(1–2):577–589, 2013.

[58] A.Chambolle and Ch. Dossal. On the Convergence of the Iterates of the “Fast Iterative Shrink-
age/Thresholding Algorithm”. J Optim Theory Appl, 166(3):968–982, September 2015.

[59] Antonin Chambolle and Jérôme Darbon. A parametric maximum flow approach for discrete
total variation regularization. In Image Processing and Analysis with Graphs. CRC Press, 2012.

[60] R.Chandra, Z. Zhong, J.Hontz, V.McCulloch, C. Studer, and T.Goldstein. Phasepack: A phase
retrieval library. Asilomar Conference on Signals, Systems, and Computers, 2017.

[61] V.Chandrasekaran, B.Recht, A. Parrilo, P., and S.Willsky, A. The Convex Geometry of Linear
Inverse Problems. Found Comput Math, 12(6):805–849, December 2012.

[62] G.Chen and M.Teboulle. Convergence analysis of a proximal-like minimization algorithm using
Bregman functions. SIAM J. Optim., 3(3):538–543, August 1993.

[63] Y.Chen and E.Candès. Solving random quadratic systems of equations is nearly as easy as
solving linear systems. Comm. Pure Appl. Math., 70(5):822–883, May 2017.

[64] Y.Chen, Y.Chi, J. Fan, and C.Ma. Gradient descent with random initialization: Fast global
convergence for nonconvex phase retrieval. Math. Program., 176(1-2):5–37, July 2019.

[65] T.R. Crimmins and J.R. Fienup. Ambiguity of phase retrieval for functions with disconnected
support. J. Opt. Soc. Am., 71(8):1026, August 1981.

– 144 –



[66] T.R. Crimmins and J.R. Fienup. Uniqueness of phase retrieval for functions with sufficiently
disconnected support. J. Opt. Soc. Am., 73(2):218, February 1983.

[67] C.Davis and W.M. Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM J. Numer.
Anal., 7:1–4, 1970.

[68] D.Davis and D.Drusvyatskiy. Proximal Methods Avoid Active Strict Saddles of Weakly Convex
Functions. Found Comput Math, 22(2):561–606, April 2022.

[69] D.Davis, D.Drusvyatskiy, and C.Paquette. The nonsmooth landscape of phase retrieval. IMA
Journal of Numerical Analysis, 40(4):2652–2695, October 2020.

[70] L.Demanet and P.Hand. Stable Optimizationless Recovery from Phaseless Linear Measure-
ments. MIT web domain, November 2013.

[71] Jonathan Dong, Lorenzo Valzania, Antoine Maillard, Thanh-an Pham, Sylvain Gigan, and
Michael Unser. Phase retrieval: From computational imaging to machine learning: A tuto-
rial. IEEE Signal Processing Magazine, 40(1):45–57, 2023.

[72] R.-A. Dragomir, A.B. Taylor, A. d’Aspremont, and J.Bolte. Optimal complexity and certifica-
tion of Bregman first-order methods. Math. Program., 194(1):41–83, July 2022.

[73] D.Drusvyatskiy, A.D. Ioffe, and A. S. Lewis. Transversality and alternating projections for
nonconvex sets. Found. Comput. Math., 15(6):1637–1651, 2015.

[74] D.Drusvyatskiy, A.D. Ioffe, and A. S. Lewis. Generic Minimizing Behavior in Semialgebraic
Optimization. SIAM J. Optim., 26(1):513–534, January 2016.

[75] D.Drusvyatskiy and A. S. Lewis. Optimality, identifiability, and sensitivity. Math. Program.,
147(1):467–498, October 2014.

[76] J. C. Dunn. On the convergence of projected gradient processes to singular critical points. J
Optim Theory Appl, 55(2):203–216, November 1987.

[77] Y.C. Eldar and Mendelson S. Phase retrieval: Stability and recovery guarantees. Applied and
Computational Harmonic Analysis, 36(3):473–494, 2014.

[78] A. Fannjiang and T. Strohmer. The numerics of phase retrieval. Acta Numerica, 29:125–228,
May 2020.

[79] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21(15):2758, August 1982.

[80] B.Gao, Y.Wang, and Z.Xu. Stable Signal Recovery from Phaseless Measurements. J Fourier
Anal Appl, 22(4):787–808, August 2016.

[81] M.Genzel, M.März, and R. Seidel. Compressed Sensing with 1D Total Variation: Breaking
Sample Complexity Barriers via Non-Uniform Recovery. Information and Inference: A Journal
of the IMA, 11:203–250, March 2022.

[82] R.Gerchberg and W. Saxton. A practical algorithm for the determination of phase from image
and diffraction plane pictures. Optik, 35(2):237, 1972.

[83] J.-J. Godeme, J. Fadili, X. Buet, M. Zerrad, M. Lequime, and C.Amra. Provable phase retrieval
with mirror descent. SIAM J. Imaging Sci., 16(3):1106–1141, September 2023.

– 145 –



[84] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM),
42(6):1115–1145, 1995.

[85] Y.Gordon. On Milman’s inequality and random subspaces which escape through a mesh in
?n. In J. Lindenstrauss and V.D. Milman, editors, Geometric Aspects of Functional Analysis,
Lecture Notes in Mathematics, pages 84–106, Berlin, Heidelberg, 1988. Springer.

[86] X.Goudou and J.Munier. The gradient and heavy ball with friction dynamical systems: the
quasiconvex case. Math. Program., 116(1):173–191, January 2009.

[87] D.Gross, F.Krahmer, and R.Kueng. Improved recovery guarantees for phase retrieval from
coded diffraction patterns. Applied and Computational Harmonic Analysis, 42(1):37–64, January
2017.

[88] P.Hand and V.Voroninski. Compressed Sensing from Phaseless Gaussian Measurements via
Linear Programming in the Natural Parameter Space. ArXiv, November 2016.

[89] F.Hanzely, P.Richtárik, and L.Xiao. Accelerated Bregman proximal gradient methods for rel-
atively smooth convex optimization. Comput Optim Appl, 79(2):405–440, June 2021.

[90] W. L. Hare. Identifying Active Manifolds in Regularization Problems. In H.H. Bauschke, R. S.
Burachik, P. L. Combettes, V. Elser, D.R. Luke, and H.Wolkowicz, editors, Fixed-Point Algo-
rithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Appli-
cations, pages 261–271. Springer, New York, NY, 2011.

[91] W. L. Hare and A. S. Lewis. Identifying Active Constraints via Partial Smoothness and Prox-
Regularity. Journal of Convex Analysis, 2004.

[92] W. L. Hare and A. S. Lewis. Identifying Active Manifolds. Algorithms Operations Research,
pages 75–82, 2007.

[93] M.Hayes. The reconstruction of a multidimensional sequence from the phase or magnitude of its
Fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 30(2):140–
154, April 1982.

[94] R.Hesse and D.R. Luke. Nonconvex notions of regularity and convergence of fundamental
algorithms for feasibility problems. SIAM J. Optim., 23(4):2397–2419, 2013.

[95] L. T.K. Hien, N.Gillis, and P.Patrinos. Inertial block proximal methods for non-convex non-
smooth optimization, 2020.

[96] A.D. Ioffe. Variational Analysis of Regular Mappings. Springer Monographs in Mathematics.
Springer International Publishing, Cham, 2017.

[97] K. Jaganathan, EldarY. C., and B.Hassibi. Phase retrieval: An overview of recent developments.
In A. Stern, editor, Optical Compressive Imaging. CRC Press, 2016.

[98] K. Jaganathan, S.Oymak, and B.Hassibi. Recovery of sparse 1-D signals from the magnitudes
of their Fourier transform. In 2012 IEEE International Symposium on Information Theory
Proceedings, pages 1473–1477, July 2012. ISSN: 2157-8117.

[99] K. Jaganathan, S.Oymak, and B.Hassibi. Sparse phase retrieval: Convex algorithms and limi-
tations. In 2013 IEEE International Symposium on Information Theory, pages 1022–1026, July
2013. ISSN: 2157-8117.

– 146 –



[100] K. Jaganathan, S.Oymak, and B.Hassibi. Sparse Phase Retrieval: Uniqueness Guarantees and
Recovery Algorithms. IEEE Transactions on Signal Processing, 65(9):2402–2410, May 2017.

[101] G. Jagatap and C.Hegde. Fast, Sample-Efficient Algorithms for Structured Phase Retrieval. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[102] F.Krahmer and D. Stöger. Complex Phase Retrieval from Subgaussian Measurements. J. Fourier
Anal Appl, 26(6):89, November 2020.

[103] F.Krahmer and R.Ward. Stable and Robust Sampling Strategies for Compressive Imaging.
IEEE Transactions on Image Processing, 23(2):612–622, February 2014.

[104] K.Kurdyka. On gradients of functions definable in o-minimal structures. Annales de l’institut
Fourier, 48(3):769–783, 1998.

[105] M. Laghdir and M.Volle. A general formula for the horizon function of a convex composite
function. Archiv der Mathematik, 73(4):291–302, Oct 1999.

[106] E. Laude, P.Ochs, and D.Cremers. Bregman proximal mappings and Bregman–Moreau en-
velopes under relative prox-regularity. J Optim Theory Appl, 184(3):724–761, March 2020.

[107] G. Lecué and S.Mendelson. Minimax rate of convergence and the performance of empirical risk
minimization in phase recovery. Electronic Journal of Probability, 20:1–29, January 2015.

[108] M. Ledoux. The Concentration of Measure Phenomenon, volume 89 of Mathematical Surveys
and Monographs. American Mathematical Society, Providence, Rhode Island, February 2005.

[109] J.D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, I.M. Jordan, and B.Recht. First-order meth-
ods almost always avoid strict saddle points. Mathematical Programming, 176(1):311–337, 2019.

[110] J.D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. I. Jordan, and B.Recht. First-order meth-
ods almost always avoid strict saddle points. Math. Program., 176(1-2):311–337, July 2019.

[111] A. S. Lewis. Active Sets, Nonsmoothness, and Sensitivity. SIAM J. Optim., 13(3):702–725,
January 2002.

[112] A. S. Lewis, D.R. Luke, , and J.Malick. Local linear convergence of alternating and averaged
projections. Found. Comput. Math., 9(4):485–513, 2009.

[113] A. S. Lewis and J.Malick. Alternating projections on manifolds. Math. Oper. Res., 33:216–234,
2008.

[114] X. Li and V.Voroninski. Sparse Signal Recovery from Quadratic Measurements via Convex
Programming. SIAM Journal on Mathematical Analysis, 45(5):3019–3033, January 2013.

[115] J. Liang. Convergence rates of first-order operator splitting methods. PhD thesis, Université de
Caen, 2016.

[116] J. Liang, J. Fadili, and G.Peyré. Local linear convergence of forward–backward under partial
smoothness. In Proceedings of the 27th International Conference on Neural Information Pro-
cessing Systems - Volume 2, NIPS’14, pages 1970–1978, Cambridge, MA, USA, December 2014.
MIT Press.

[117] J. Liang, J. Fadili, and G.Peyré. A Multi-step Inertial Forward-Backward Splitting Method for
Non-convex Optimization. In Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

– 147 –



[118] J. Liang, J. Fadili, and G.Peyré. Activity Identification and Local Linear Convergence of
Forward–Backward-type Methods. SIAM J. Optim., 27(1):408–437, January 2017.

[119] J. Liang, J. Fadili, and G.Peyré. Local linear convergence analysis of Primal–Dual splitting
methods. Optimization, 67(6):821–853, June 2018.

[120] J. Liang, J. Fadili, G. Peyré, and R. Luke. Activity Identification and Local Linear Conver-
gence of Douglas–Rachford/ADMM under Partial Smoothness. In J.-F. Aujol, M.Nikolova, and
N.Papadakis, editors, Scale Space and Variational Methods in Computer Vision, Lecture Notes
in Computer Science, pages 642–653. Springer International Publishing, 2015.

[121] S. Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. In Les Équations
aux Dérivées Partielles, pages 87–89. Editions du Centre National de la Recherche Scientifique,
1963.

[122] S. Łojasiewicz. Ensembles semi-analytiques. Lectures Notes IHES (Bures-sur-Yvette), 1965.

[123] D.A. Lorenz and T.Pock. An Inertial Forward-Backward Algorithm for Monotone Inclusions.
J Math Imaging Vis, 51(2):311–325, February 2015.

[124] H. Lu, R.M. Freund, and Y.Nesterov. Relatively smooth convex optimization by first-order
methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

[125] D.R. Luke. Finding best approximation pairs relative to a convex and a prox-regular set in
Hilbert space. SIAM J. Optim., 19(2):714–739, 2008.

[126] D.R. Luke. Local linear convergence of approximate projections onto regularized sets. Nonlinear
Anal., 75:1531–1546, 2012.

[127] D.R. Luke. Phase Retrieval, What’s New? SIAG/OPT Views and News, 25(1):1–6, 2017.

[128] D.R. Luke and A.-L. Martins. Convergence analysis of the relaxed douglas–rachford algorithm.
SIAM Journal on Optimization, 30(1):542–584, 2020.

[129] D.R. Luke, N.H. Thao, and M.K. Tam. Quantitative convergence analysis of iterated expansive,
set-valued mappings. Mathematics of Operations Research, 43(4):1143–1176, 2018.

[130] T.D. Luu, J. Fadili, and C.Chesneau. Sharp oracle inequalities for low-complexity priors. Ann
Inst Stat Math, 72(2):353–397, April 2020.

[131] AkÃSakaya M. and Tarokh V. New conditions for sparse phase retrieval. ArXiv, abs/1310.1351,
2013.

[132] Huang M. and XuZ. Performance bound of the intensity-based model for noisy phase retrieval,
2021.

[133] A.D. McRae, J. Romberg, and M.A. Davenport. Optimal Convex Lifted Sparse Phase Retrieval
and PCAWith an Atomic Matrix Norm Regularizer. IEEE Transactions on Information Theory,
69(3):1866–1882, March 2023.

[134] J.Miao, P.Charalambous, J.Kirz, and D. Sayre. Extending the methodology of x-ray crystal-
lography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400:342–344,
1999.

[135] A.Moudafi and M.Oliny. Convergence of a splitting inertial proximal method for monotone
operators. Journal of Computational and Applied Mathematics, 155(2), June 2003.

– 148 –



[136] M.C. Mukkamala, P.Ochs, T. Pock, and S. Sabach. Convex-concave backtracking for inertial
Bregman proximal gradient algorithms in nonconvex optimization. SIAM Journal on Mathe-
matics of Data Science, 2(3):658–682, January 2020.

[137] D.Needell and J.A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate
samples. Applied and Computational Harmonic Analysis, 26(3):301–321, May 2009.

[138] D.Needell and R.Ward. Near-Optimal Compressed Sensing Guarantees for Total Variation
Minimization. IEEE Transactions on Image Processing, 22(10):3941–3949, October 2013.

[139] D.Needell and R.Ward. Stable Image Reconstruction Using Total Variation Minimization.
SIAM J. Imaging Sci., 6(2):1035–1058, January 2013.

[140] Y.Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k^2). Proceedings of the USSR Academy of Sciences, 1983.

[141] P.Netrapalli, P. Jain, and S. Sanghavi. Phase retrieval using alternating minimization. IEEE
Transactions on Signal Processing, 63(18):4814–4826, 2015.

[142] D.Noll and A.Rondepierre. On local convergence of the method of alternating projections.
Found. Comput. Math., 16(2):425–455, 2016.

[143] H.Ohlsson and Y.C. Eldar. On conditions for uniqueness in sparse phase retrieval. In 2014
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1841–1845, May 2014.

[144] S.Oymak, A. Jalali, M. Fazel, Y.C. Eldar, and B.Hassibi. Simultaneously Structured Models
With Application to Sparse and Low-Rank Matrices. IEEE Transactions on Information Theory,
61(5):2886–2908, May 2015.

[145] S.Oymak, C.Thrampoulidis, and B.Hassibi. The squared-error of generalized LASSO: A precise
analysis. In 2013 51st Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1002–1009, October 2013.

[146] I. Panageas and G.Piliouras. Gradient Descent Only Converges to Minimizers: Non-Isolated
Critical Points and Invariant Regions, 2017.

[147] E. Pauwels, A.Beck, Y.C. Eldar, and S. Sabach. On fienup methods for sparse phase retrieval.
IEEE Transactions on Signal Processing, 66(4):982–991, February 2018.

[148] R. Pedarsani, D.Yin, K. Lee, and K.Ramchandran. PhaseCode: Fast and Efficient Compressive
Phase Retrieval Based on Sparse-Graph Codes. IEEE Transactions on Information Theory,
63(6):3663–3691, June 2017.

[149] R. Pemantle. Nonconvergence to Unstable Points in Urn Models and Stochastic Approximations.
The Annals of Probability, 18(2):698–712, April 1990.

[150] H. Phan. Linear convergence of the Douglas-Rachford method for two closed sets. Optimization,
65:369–385, 2016.

[151] B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, January 1964.

[152] C. Poon. On the Role of Total Variation in Compressed Sensing. SIAM J. Imaging Sci., 8(1):682–
720, January 2015.

– 149 –



[153] N.Rao, B.Recht, and R.Nowak. Universal Measurement Bounds for Structured Sparse Signal
Recovery. In Proceedings of the Fifteenth International Conference on Artificial Intelligence and
Statistics, pages 942–950, March 2012.

[154] N. S. Rao, B.Recht, and R.Nowak. Signal Recovery in Unions of Subspaces with Applications
to Compressive Imaging. arXiv: Machine Learning, September 2012.

[155] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[156] R.T. Rockafellar and R. J. B. Wets. Variational Analysis, volume 317 of Grundlehren der math-
ematischen Wissenschaften. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[157] H. Sahinoglou and S.Cabrera. On phase retrieval of finite-length sequences using the initial time
sample. IEEE Transactions on Circuits and Systems, 38(5):954–958, 1991.

[158] O. Scherzer, M.Grasmair, H.Grossauer, M.Haltmeier, and F. Lenzen. Variational Methods in
Imaging, volume 167 of Applied Mathematical Sciences. Springer, New York, NY, 2009. ISSN:
0066-5452.

[159] P. Schniter and S.Rangan. Compressive phase retrieval via generalized approximate message
passing. IEEE Transactions on Signal Processing, 63(4):1043–1055, 2015.

[160] A. Shapiro. Second order sensitivity analysis and asymptotic theory of parametrized nonlinear
programs. Mathematical Programming, 33(3):280–299, December 1985.

[161] YShechtman, Y.C. Eldar, O.Cohen, H.N. Chapman, J.Miao, and M. Segev. Phase retrieval
with application to optical imaging: A contemporary overview. IEEE Signal Processing Maga-
zine, 32(3):87–109, May 2015.

[162] M. Shub. Global Stability of Dynamical Systems. Springer, 1987.

[163] A. Silveti-Falls, C.Molinari, and J. Fadili. A stochastic Bregman primal-dual splitting algorithm
for composite optimization. Pure and Applied Functional Analysis (special issue in honor of L.
Bregman), 2022.

[164] M. Soltanolkotabi. Algorithms and Theory for Clustering and Nonconvex Quadratic Program-
ming. PhD thesis, Stanford University, 2014.

[165] M. Soltanolkotabi. Structured Signal Recovery From Quadratic Measurements: Breaking Sample
Complexity Barriers via Nonconvex Optimization. IEEE Transactions on Information Theory,
65(4):2374–2400, April 2019.

[166] J.-L. Starck, F.Murtagh, and J. Fadili. Sparse Image and Signal Processing: Wavelets and
Related Geometric Multiscale Analysis, Second Edition. Cambridge University Press, 2 edition,
2015.

[167] G. Steidl, J.Weickert, T.Brox, P.Mrázek, and M.Welk. On the Equivalence of Soft Wavelet
Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs. SIAM J.
Numer. Anal., 42(2):686–713, January 2004.

[168] J. Sun, Q.Qu, and J.Wright. A geometric analysis of phase retrieval. Found Comput Math,
18(5):1131–1198, October 2018.

[169] M.Teboulle. A simplified view of first order methods for optimization. Mathematical Program-
ming, 170(1):67–96, 2018.

– 150 –



[170] A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-Posed Problems. V. H. Winston and Sons,
October 1977.

[171] J. A. Tropp. User-Friendly Tail Bounds for Sums of Random Matrices. Found Comput Math,
12(4):389–434, August 2012.

[172] J. A. Tropp. Convex Recovery of a Structured Signal from Independent Random Linear Mea-
surements. In Sampling Theory, a Renaissance, pages 67–101. Birkhäuser, 2015.

[173] S.Vaiter, M.Golbabaee, J. Fadili, and G.Peyré. Model selection with low complexity priors.
Information and Inference: A Journal of the IMA, 4(3):230–287, September 2015.

[174] S.Vaiter, G. Peyré, and J. Fadili. Low Complexity Regularization of Linear Inverse Problems.
In GötzE. Pfander, editor, Sampling Theory, a Renaissance: Compressive Sensing and Other
Developments, Applied and Numerical Harmonic Analysis, pages 103–153. Springer International
Publishing, 2015.

[175] N.Vaswani. Non-convex structured phase retrieval. arXiv:2006.13298 [cs, eess, math, stat],
June 2020.

[176] R.Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv:1011.3027
[cs, math], November 2011.

[177] J. VonNeumann. Some matrix inequalities and metrization of matric space. In: Collected Works,
Vol. IV, Pergamon, Oxford, 1962.

[178] V.Voroninski and Z.Xu. A strong restricted isometry property, with an application to phaseless
compressed sensing. Applied and Computational Harmonic Analysis, 40(2):386–395, March 2016.

[179] I.Waldspurger. Phase retrieval with random gaussian sensing vectors by alternating projections.
IEEE Transactions on Information Theory, 64(5):3301–3312, May 2018.

[180] I.Waldspurger, A. d’Aspremont, and S.Mallat. Phase recovery, MaxCut and complex semidefi-
nite programming. Math. Program., 149(1):47–81, February 2015.

[181] A.Walther. The question of phase retrieval in optics. Optica Acta: International Journal of
Optics, 10(1):41–49, January 1963.

[182] G.Wang, G.B. Giannakis, and Y.C. Eldar. Solving systems of random quadratic equations via
truncated amplitude flow. arXiv:1605.08285 [cs, math, stat], August 2017.

[183] G.Wang, GeorgiosB. Giannakis, J. Chen, and M.Akçakaya. SPARTA: Sparse phase retrieval
via Truncated Amplitude flow. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3974–3978, March 2017.

[184] Y.Wang and Z.Xu. Phase retrieval for sparse signals. Applied and Computational Harmonic
Analysis, 37(3):531–544, November 2014.

[185] B.Wen, X.Chen, and T.K. Pong. Linear convergence of proximal gradient algorithm with
extrapolation for a class of nonconvex nonsmooth minimization problems. SIAM Journal on
Optimization, 27(1):124–145, 2017.

[186] S. J. Wright. Identifiable Surfaces in Constrained Optimization. SIAM J. Control Optim.,
31(4):1063–1079, July 1993.

– 151 –



[187] Z.Wu, C. Li, M. Li, and A. Lim. Inertial proximal gradient methods with bregman regularization
for a class of nonconvex optimization problems. Journal of Global Optimization, 79(3):617–644,
2021.

[188] Y.Xia and Z.Xu. The performance of the amplitude-based model for complex phase retrieval.
Information and Inference: A Journal of the IMA, 13(1), 01 2024.

[189] Z.Yang, L. F. Yang, E.X. Fang, T. Zhao, Z.Wang, and M.Neykov. Misspecified nonconvex
statistical optimization for sparse phase retrieval. Mathematical Programming, 176:545–571,
July 2019.

[190] M.B. Yu. and L.G. Sodin. On the ambiguity of the image reconstruction problem. Optics
Communications, 30(3):304–308, 1979.

[191] Z.Yuan, H.Wang, and Q.Wang. Phase retrieval via Sparse Wirtinger Flow. Journal of Com-
putational and Applied Mathematics, 355:162–173, August 2019.

[192] H. Zhang, Y. Liang, and Y.Chi. A nonconvex approach for phase retrieval: Reshaped Wirtinger
flow and incremental algorithms. Journal of Machine Learning Research, 18(141):1–35, 2017.

– 152 –




	1 Introduction
	1.1 Context and Motivations
	1.2 Prior Work
	1.3 Contributions
	1.4 Outline
	1.5 Work Not Included in the Thesis

	2 Background
	2.1 Notations
	2.2 Nonsmooth and Convex Analysis
	2.3 Bregman Toolbox
	2.4 KL Functions
	2.5 Riemannian Geometry and Partial Smoothness
	2.6 Probability and Concentration Inequalities

	I Phase Retrieval without Regularization
	3 Provable Phase Retrieval with Mirror Descent
	3.1 Introduction
	3.2 Deterministic Phase Retrieval
	3.3 Random Phase Retrieval via Mirror Descent
	3.4 Numerical Experiments
	3.5 Proofs for the Deterministic Case
	3.6 Proofs for Random Measurements

	4 Stable Phase Retrieval with Mirror Descent
	4.1 Introduction
	4.2 Deterministic Stable Recovery
	4.3 Stable Recovery from Gaussian Measurements
	4.4 Numerical Experiments
	4.5 Proofs for the Deterministic Case
	4.6 Proofs for Gaussian Measurements
	4.7 Landscape of the Noise-Aware Objective with Gaussian Measurements


	II Phase Retrieval with Regularization
	5 Inertial Bregman Proximal Gradient
	5.1 Introduction
	5.2 Global Convergence Analysis
	5.3 Local Convergence Analysis
	5.4 Escape Property in the Smooth Case
	5.5 Numerical Experiments
	5.6 Proof of Global Convergence
	5.7 Proofs of Local Convergence
	5.8 Proof of the Escape Property

	6 Low Complexity Regularized Phase Retrieval
	6.1 Introduction
	6.2 Noiseless Recovery
	6.3 Stable Recovery: Constrained Problem
	6.4 Stable Recovery: Penalized Problem
	6.5 Proofs for Section 6.4.3
	6.6 Concentrations

	7 Conclusion and Perspectives
	7.1 Summary
	7.2 Perspectives

	List of Publications
	List of Notations
	List of Figures
	Bibliography


